

infef

LITERATURE SALES ORDER FORM
NAME: _______________________________ _

COMPANY: ______________________________________ _

ADDRESS: ___ __

CITY: ____________________________ STATE: ______ ZIP: _____ _

COUNTRY: ___ __

PHONE NO.:('-____ --'-_______________________________________ _

ORDER NO.

Must add appropriate postage to sUbtotal
(10% U.S. and Canada, 20% all other)

TITLE QTY. PRICE TOTAL

__ X ____ =

__ x

__ X ___ =

____ X _____ =

__ X ___ =

__ X

__ X ____ =

__ X ___ =

___ X ___ =

____ X _____ =

Subtotal

Must Add Your

Local Sales Tax

) Postage

Total

Pay by Visa, MasterCard, American Express, Check, Money Order, or company purchase order payable
to Intel Literature Sales. Allow 2-4 weeks for delivery.
o Visa 0 MasterCard 0 American Express Expiration Date ________ __
Account No. ________________________________ __

Signature: ___ _

Mail To: Intel Literature Sales
P.O. Box 58130
Santa Clara, CA
95052-8130

International Customers outside the U.S. and Canada
should contact their local Intel Sales Office or Distributor
listed in the back of most Intel literature.
European Literature Order Form in back of book.

Call Toll Free: (800) 548-4725 for phone orders

Prices good until 12/31/88.

Source HB

Mail To: Intel Literature Sales
P.O. Box 58130
Santa Clara, CA 95052-8130

inter
CUSTOMER SUPPORT

CUSTOMER SUPPORT

Customer Support is Intel's complete support service that provides Intel customers with hardware support, software
support, customer training, and consulting services. For more information contact your local sales offices.

After a customer purchases any system hardware or software product, service and support become major factors in
determining whether that product will continue to meet a customer's expectations. Such support requires an interna­
tional support organization and a breadth of programs to meet a variety of customer needs. As you might expect,
Intel's customer support is quite extensive. It includes factory repair services and worldwide field service offices
providing hardware repair services, software support services, customer training classes, and consulting services.

HARDWARE SUPPORT SERVICES

Intel is committed to providing an international service support package through a wide variety of service offerings
available from Intel Bardware Support.

SOFTWARE SUPPORT SERVICES

Intel's software support consists of two levels of contracts. Standard support includes TIPS (Technical Information
Phone Service), updates and subscription service (product-specific troubleshooting guides and COMMENTS Maga­
zine). Basic support includes updates and the subscription service. Contracts are sold in environments which repre­
sent product groupings (i.e., iRMX environment).

CONSULTING SERVICES

Intel provides field systems engineering services for any phase of your development or support effort. You can use
our systems engineers in a variety of ways ranging from assistance in using a new product, developing an application,
personalizing training, and customizing or tailoring an Intel product to providing technical and management con­
sulting. Systems Engineers are well versed in technical areas such as microcommunications, real-time applications,
embedded microcontrollers, and network services. You know your application needs; we know our products. Work­
ing together we can help you get a successful product to market in the least possible time.

CUSTOMER TRAINING

Intel offers a wide range of instructional programs covering various aspects of system design and implementation. In
just three to ten days a limited number of individuals learn more in a single workshop than in weeks of self-study.
For optimum convenience, workshops are scheduled regularly at Training Centers worldwide or we can take our
workshops to you for on-site instruction. Covering a wide variety of topics, Intel's major course categories include:
architecture and assembly language, programming and operating systems, bitbus and LAN applications.

inter

80386
SYSTEM SOFTWARE

WRITER'S GUIDE

1987

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which may
appear in this document nor does it make a commitment to update the information contained herein.

Intel retains the right to make changes to these specifications at any time, without notice.

Contact your local sales office to obtain the latest specifications before placing your order.

The following are trademarks of Intel Corporation and may only be used to identify Intel Products:

Above, BITBUS, COMMputer, CREDIT, Data Pipeline, FASTPATH, Genius, i,t,
ICE, iCEL, iCS, iDBP, iDIS, FICE, iLBX, im, iMDDX, iMMX, Inboard, Insite, Intel,
intel, intelBOS, Intel Certified, Intelevision, inteligent Identifier, inteligent
Programming, Intellec, Intellink, iOSP, iPDS, iPSC, iRMK, iRMX, iSBC, iSBX,
iSDM, iSXM, KEPROM, Library Manager, MAPNET, MCS, Megachassis,
MICROMAINFRAME, MULTIBUS, MULTICHANNEL, MULTIMODULE,
MultiSERVER, ONCE, OpenNET, OTP, PC BUBBLE, Plug-A-Bubble, PROMPT,
Promware, QUEST, QueX, Quick-Pulse Programming, Ripplemode, RMX/80,
RUPI, Seamless, SLD, SugarCube, SupportNET, UPI, and VLSiCEL, and the
combination of ICE, iCS, iRMX, iSBC, iSBX, iSXM, MCS, or UPI and a numerical
suffix, 4-SITE.

MDS is an ordering code only and is not used as a product name or trademark. MDS@ is a registered trademark of Mohawk
Data Sciences Corporation .

• MULTIBUS is a patented Intel bus.

Additional copies of this manual or other Intel literature may be obtained from:

Intel Corporation
Literature Sales
P.O. Box 58130
Santa Clara, CA 95052-8130

©INTEL CORPORATION 1988 CG- 1/ 18/88

PREFACE

The 80386 System Software Writer's Guide describes the interface between the 80386 system
architecture and low-level operating system mechanisms. It does not discuss operating system
policy issues or operating system facilities that are independent of a processor's architecture.
For example, the book shows how an operating system can use the 80386's task switch
instruction to dispatch a new task (process), but it does not discuss the many policies an
operating system could adopt for selecting the task to be dispatched. To cite another example,
the 80386 System Software Writer's Guide covers the 80386's facilities for device input/
output, but leaves the discussion of file I/O to operating system textbooks.

AUDIENCE

This book has been written primarily for the systems programmer who is developing an
operating system for the 80386 microprocessor. Programmers writing other systems software,
such as linkers and utilities, may also benefit from reading this book. The book can also be
valuable to anyone who wants to see how 80386 architectural facilities support common
operating system mechanisms.

To use this book successfully, you must be thoroughly familiar with multitasking operating
systems.

RELATED PUBLICATIONS

The 80386 System Software Writer's Guide is one of four Intel publications that describe
the 80386 microprocessor. The others are

• Introduction to the 80386, Order No. 231252

• 80386 Programmer's Reference Manual, Order No. 230985

• 80386 Hardware Reference Manual, Order No. 231298

The 80386 System Software Writer's Guide can be read independently of the 80386
Hardware Reference Manual. The Introduction to the 80386 is a prerequisite to this book
and the 80386 Programmer's Reference Manual is a companion to it.

Before reading this book you should thoroughly understand the material in the Introduction
to the 80386, especially Chapters 2 (Application Architecture) and 3 (System Architec­
ture). If you are interested in running 8086 or 80286 programs on the 80386, you need to
read Chapter 4 (Architectural Compatibility) as well. Before reading this book you should
browse through the 80386 Programmer's Reference Manual and you should keep it handy
while reading the 80386 System Software Writer's Guide. The 80386 System Software
Writer's Guide frequently simplifies the presentation of architectural features in order to
more clearly show how these features relate to operating system mechanisms. When you
want the definitive description of any 80386 facility, consult the 80386 Programmer's
Reference Manual.

iii

PREFACE

Some examples in this guide are written in ASM386, Intel's 80386 assembly language,
documented in the ASM386 Assembly Language Reference Manual, Order No. 122332.

HOW TO READ THIS BOOK

The ten chapters of the 80386 System Software Writer's Guide are generally arranged so
that the most specialized topics are covered at the end of the guide. The first seven chapters
describe the 80386's protected 32-bit operation, the mode of operation most likely to be
selected for new 80386 applications. Features that make the 80386 compatible with earlier
Intel 86 family processors are described in Chapters 8 and 9, while Chapter 10 describes
one way to implement the UNIX System V operating system on the 80386.

Chapters 1 and 2 describe tasking and memory management. These topics are very closely
related and you will find frequent references in the first chapter to the second. Having read
the Introduction to the 80386, however, most readers should understand enough about the
80386's memory management facilities to ignore these inevitable forward references. The
third chapter covers interrupts and their close relatives, exceptions. Chapter 4 describes how
operating system calls can be implemented on the 80386. Chapter 5 describes the 80386's
input/output facilities. The first five chapters describe the 80386 as if it were already running
in protected 32-bit mode, with all architecture-defined data structures (for example, page
tables) in place. Chapter 6 tells you how to take the 80386 from a hardware RESET to
protected 32-bit operation.

The last four chapters cover specialized topics and can be read selectively. Chapter 7 describes
the interaction between an 80386 operating system and the 80287 and 80387 numerics
coprocessors (or their software emulators). Chapters 8 and 9 describe 80386 facilities for
running existing 80286 and 8086 software. The final chapter is an extended example that
describes one way to implement the UNIX System V operating system on the 80386.

Note that the code examples given in this book have not been tested.

iv

TABLE OF CONTENTS

CHAPTER 1 Page
TASKS

1.1 The Task Execution Environment 1-1
1.2 Task State Segments and Descriptors .. 1-1
1.3 Task Creation .. 1-4
1.4 Task Termination 1-5
1.5 Task Switching 1-6

CHAPTER 2
MEMORY MANAGEMENT

2.1 Segmentation .. 2-1
2.1.1 Required Segments .. 2-2
2.1.2 Segmentation Models ... 2-2
2.1.3 Defining Segments 2-4
2.1.3.1 Descriptors ... :.................................. 2 .. 4
2.1.3.2 Descriptor Tables 2-4
2.1.4 Aliases .. 2-6
2.1.5 Sharing ... 2-8
2.1.6 Protection ... 2-8
2.1.6.1 Type and Rights .. 2-8
2.1.6.2 Limit .. 2-9
2.1.6.3 Expand-Down Segments .. 2-10
2.1.6.4 Privilege ... 2-13
2.1.7 Other Attributes ... 2-14
2.1.8 Building Descriptors 2-14
2.2 Paging 2-15
2.2.1 Relationship of Segments and Pages 2-16
2.2.2 Page Table and Page Directory Entries 2-17
2.2.3 Aliases 2-19
2.2.4 Sharing 2-19
2.2.5 Protection Attributes 2-21
2.2.5.1 Privilege 2-21
2.2.5.2 Rights .. 2-21
2.2.6 Other Attributes 2-22
2.2.7 Translation Lookaside Buffer Considerations ... 2-22
2.3 Virtual Memory 2-23
2.3.1 Demand Segmentation 2-23
2.3.2 Demand Paging 2-25
2.3.2.1 Handling Page Faults 2-25
2.3.2.2 Replacing Pages 2-26
2.4 Examples 2-27
2.4.1 A Flat Memory Design 2-27
2.4.2 A Paged Memory Design 2-34

v

TABLE OF CONTENTS

Page
2.4.3 A Segmented Memory Design 2-35
2.4.4 A Hybrid Memory Design ... 2-38

CHAPTER 3
INTERRUPTS AND EXCEPTIONS

3.1 Interrupt Descriptor Table 3-1
3.2 Interrupt and Exception Handlers .. 3-2
3.2.1 Procedures versus Tasks ... 3-2
3.2.2 Procedure-Based Handlers 3-3
3.2.3 Task-Based Handlers 3-5
3.2.4 Memory Residency ... 3-7
3.3 Exception Handling Guidelines 3-8
3.3.1 Invalid Opcode Fault, Number 6 3-9
3.3.2 Device Not Available Fault, Number 7 3-9
3.3.3 Double Fault, Number 8 ... 3-10
3.3.4 Processor Extension Segment Overrun, Number 9 3-10
3.3.5 Invalid TSS Fault, Number 10 3-11
3.3.6 Segment Fault, Number 11 3-11
3.3.7 Stack Fault, Number 12 ... 3-11
3.3.8 General Protection Fault, Number 13 '" 3-11
3.3.9 Page Fault, Number 14 .. 3-12
3.3.10 Coprocessor Error Fault, Number 16 3-12

CHAPTER 4
SYSTEM CAllS

4.1 Call Gates .. 4-1
4.1.1 How Many Gates? ... 4-2
4.1.2 Controlling Access 4-2
4.1.3 Switching Privilege Levels and Stacks 4-3
4.1.4 Passing Parameters 4-3
4.2 Trap Gates .. 4-5
4.3 Segmented Pointer Validation ... 4-6
4.4 Calling Less-Privileged Procedures ... 4-7

CHAPTER 5
INPUT I OUTPUT

5.1 Programmed I/O .. 5-1
5.1.1 I/O-Mapped I/O .. 5-1
5.1.2 Memory-Mapped I/O 5-1
5.2 10PL and the I/O Permission Map 5-2
5.2.1 Protecting I/O-Mapped Devices 5-2
5.2.2 Device Driver· Privilege 5-4
5.3 Direct I/O 5-5

vi

TABLE OF CONTENTS

Page
5.3.1 Physical Addressing 5-5
5.3.2 Locking Segments and Pages .. 5-5

CHAPTER 6
INITIALIZATION

6.1 Entering Protected Mode 6-1
6.2 Enabling Paging .. 6-4
6.3 Switching to the Initial Task .. 6-7

CHAPTER 7
NUMERICS

7.1 Supporting a Coprocessor .. 7-1
7.1.1 Initialization ... 7-1
7.1.2 Exceptions ... 7-8
7.1.2.1 Coprocessor Context Switching .. 7-8
7.1.2.2 Coprocessor Error ... 7-9
7.1.2.3 Simultaneous Exceptions 7-10
7.1.3 Coprocessor Differences .. 7-10
7.2 Supporting an Emulator 7-10
7.2.1 Initialization ... 7-11
7.2.2 Exceptions ... 7-11

CHAPTER 8
80286 COMPATIBILITY

8.1 Running an 80286 Operating System 8-1
8.2 Running 80286 and 80386 Programs Concurrently 8-2
8.2.1 Basic Operating System Support ... 8-2
8.2.2 Handling Mixed System Calls 8-3
8.2.2.1 System Call Adapters 8-3
8.2.2.2 Parameter Passing 8-4
8.2.2.3 Parameter Conversion 8-4

CHAPTER 9
8086 COMPATIBILITY

9.1 Common Elements of Real and Virtual 8086 Modes 9-1
9.1.1 Instruction Set .. 9-1
9.1.2 Pseudodescriptors 9-2
9.2 Real Mode 9-3
9.3 Virtual 8086 Mode ... 9-5
9.3.1 Virtual Machine Monitors 9-6
9.3.2 Task Management 9-6
9.3.3 Memory Management 9-9
9.3.4 Interrupts and Exceptions 9-10
9.3.4.1 Handler Considerations 9-10

vii

TABLE OF CONTENTS

Page
9.3.4.2 Interrupt Enable Flag Considerations 9-10
9.3.4.3 Simulating Interrupts 9-11
9.3.5 System Calls 9-11
9.3.6 Input/Output 9-13

CHAPTER 10
A UNIX SYSTEM IMPLEMENTATION

10.1 U/386 Implementation Philosophy ... 10-1
10.2 Process and Memory Overview .. 10-1
10.3 Processes ... 10-4
10.3.1 Representing a Process ... 10-5
10.3.2 Forking a Child Process 10-5
10.3.3 Executing a New Program 10-8
10.3.4 Process Switching 10-8
10.3.5 Process Termination 10-8
10.4 Memory Management 10-9
10.4.1 Descriptor Tables ... 10-9
10.4.2 Directories and Page Tables .. 10-10
10.4.3 Managing the Stack and the Heap 10-12
10.4.4 Protection ... 10-14
10.4.5 Sharing ... 10-14
10.4.6 Virtual Memory ... 10-15
10.4.7 Locking .. 10-16
10.5 System Calls 10-16
10.6 Interrupts and Exceptions 10-18
10.6.1 Interrupts .. 10-18
10.6.2 Blocking Interrupts in the Kernel................. 10-19
10.6.3 Exceptions 10-20
10.7 Input/Output .. 10-21
10.8 Numerics ... 10-21
10.9 Debug Support 10-22

Figures

Figure Title Page

1-1 Task Execution Environment 1-2
1-2 Task State Segment ... 1-3
1-3 Task State Segment Descriptor 1-4
1-4 Example Dispatcher .. 1-7
2-1 Code and Data Segment Descriptors ... 2-5
2-2 Alias Table .. 2-7

viii

Figure

2-3
2-4
2-5
2-6
2-7
2-8
2-9
2-10
2-11
2-12
2-13
2-14
2-15
2-16
2-17
3-1
3-2
3-3
4-1
4-2
4-3
5-1
5-2
6-1
6-2
6-3
6-4
7-1
7-2
8-1
9-1
9-2
9-3
9-4
9-5
10-1
10-2
10-3
10-4
10-5
10-6

TABLE OF CONTENTS

Title

Intrastack References '"
Expand-Up and Expand-Down Segment Comparison
Storing Descriptor Fields
Building a Descriptor
Extracting a Descriptor's Base Address .. .
Two Ways to Map Segments to Pages
Page Table and Page Directory Entries
Example Page Table Addressing Convention .. .
Page Fault Handler Stack .. .
F/386 Linear Space Map
Flat Mode Initialization Code
P /386 Linear Space Map
P/386 Linear-to-Physical Map .. .
S/386 Linear Space Map
H/386 Linear-to-Physical Map
Stack at Entry to Interrupt or Exception Procedure
Interrupt Task Skeleton
Error Code Format .. .
Call Gate .. .
Stack at Entry to Privileged Procedure .. .
Parameters Copied to Privileged Procedure .. .
I/O Permission Map Structure and Operation .. .
I/O Permission Map Location and Extent .. .
Entering Protected Mode (Part 1)
Entering Protected Mode (Part 2) .. .
Entering Protected Mode (Part 3) .. .
Entering Protected Mode Program Layout .. .
Probing for an 80287
Switching the Coprocessor Context .. .
System Call Adapter
Switching to Real Mode .. .
Invoking a Virtual Machine Monitor .. .
V86 Mode Address Relocation with Paging
Handler's Stack after V86 Interrupt or Exception
Simulating and Reflecting V86 System Calls
U/386 Linear Address Space Snapshot
U/386 Process Representation .. .
U/386 Process TSS
U/386 GDT Layout .. .
U/386 Kernel Data Segment
Typical U/386 Process Page Directory .. .

ix

Page

2-11
2-12
2-14
2-15
2-15
2-16
2-17
2-20
2-26
2-28
2-29
2-34
2-36
2-37
2-39

3-4
3-7

3-10
4-1
4-4
4-5
5-3
5-4
6-3
6-4
6-5
6-6
7-2
7-9
8-3
9-4
9-7
9-8
9-9

9-12
10-3
10-6
10-7
10-9

10-11
10-12

Figure

10-7
10-8
10-9
10-10

Table

2-1
2-2
6-1
7-1
9-1
9-2
10-1
10-2
10-3
10-4
10-5

TABLE OF CONTENTS

Title

U/386 Stack and Heap Expansion
U/386 Present and Not-Present Page Table Entries
U/386 System Call Dispatching
U/386 Interrupt Dispatching

Tables

Title

Page Table Addressing Examples
Not-Present Segment Fault Conditions
Registers Following RESET .. .
EM and MP Bit Interpretation .. .
Real and Virtual 8086 Mode Instruction Execution
Pseudodescriptor Attributes .. .
U/386 Kernel Segment Descriptors
U/386 User Segment Descriptors .. .
U/386 Page Directory Entry Attributes .. .
U/386 Call Gate Attributes
U/386 Kernel Exception Handling .. .

x

Page

10-13
10-15
10-17
10-19

Page

2-21
2-24

6-2
7-7
9-1
9-2

10-10
10-10
10-12
10-18
10-20

Tasks 1

CHAPTER 1
TASKS

The 80386 is fundamentally a multitasking computer. Although the processor can be used
in single task systems, most facilities of its system architecture are designed to support the
concurrent execution of multiple tasks. For example, memory management, protection, and
exception handling are all task-based. The 80386 can perform a task switch (context switch)
upon direction from the operating system or automatically in response to an interrupt or
exception. This chapter describes the 80386 facilities that an operating system can use to
create and manage tasks; those aspects of tasking that relate to interrupt and exception
handling are described in Chapter 3.

1.1 THE TASK EXECUTION ENVIRONMENT

Figure 1-1 shows the architecture-defined registers and data structures that an 80386 task
may use during its execution. Most of the data structures shown in Figure 1-1 are more
closely related to interrupt handling and memory management than task management and
are therefore described in later chapters. The task state segment (TSS), however, is central
to task management and is the principal subject of this chapter.

1.2 TASK STATE SEGMENTS AND DESCRIPTORS

The state of a task can be considered in two parts: the machine state, consisting mainly of
register values, and the software state, consisting of file descriptors, scheduling parameters,
and other operating system-defined data. A multitasking operating system traditionally
records each task's machine state and software state in a "task control block" or a similarly
named record (or collection of records).

The 80386 system architecture defines a record that holds the machine state of a task. This
record is called a task state segment and is illustrated in Figure 1-2. The operating system
initializes the TSS of a new task, but the 80386 maintains the TSS, reading and writing it
on task switches and reading it on privilege level changes. The 80386 specifies the format of
only the first 26 double words, and, optionally, up to the last 8K bytes (the I/O Bit-map for
the 64K I/O address space) of the TSS. An operating system is free to use the area between
the I/O Bit-map and the TSS core (first 26 double words) to record a task's software state.

Because a TSS is an 80386-defined segment, it must have a descriptor. Figure 1-3 shows
the format of an 80386 TSS descriptor. The base, limit, granularity, available, present, and
descriptor privilege level fields are identical to their code and data segment descriptor
counterparts (these are described in Chapter 2). Note that the TSS limit must account for
the optional I/O permission map and the task software state, if these fields are defined and
used by the operating system (the I/O permission map is described in Chapter 5). If no
I/O permission map is present, the limit must be set to at least 68H (the length of the
machine state data); if the operating system extends a TSS with software state information,

1-1

TASKS

80386 REGISTERS 80386 OAT A STRUCTURES

SEL. BASE AND LIMIT GLOBAL DESC. TABLE

IOTR '-- • LOT DESCRIPTOR f--

LOlR f--

TR ~J--. T55 DESCRIPTOR

I

CRO INT. DESC. TABLE

CR1 (RESERVED)

CR2

CR3

LOCAL DESC. TABLE
EAX - - - - - - r I
ESX I I

ECX I I

EDX
I I

'-~ I - - - - - -ESI

TASK STATE SEG.

EDI

ESP

ESP

5EL. DESCRIPTOR

CS r-- PAGE DIRECTORY

I'" - - - - - - ,
5S - I I

I I
OS - I - - - - -

=-~ I
DIR. ENTRY

ES - - - - - -
I - - - - -FS - - -

PAGE T ASLE(S) - - ------ I
I I
I

I
EFLAGS

I I
I I

DIRECTLY I I
EIP ADDRESSABLE I I SEGMENTS

L.L- - - - - - -
1"'--'
I I -~ OPTIONAL OAT A STRUCTURE
L. __ '"

G30287

Figure 1-1. Task Execution Environment

1-2

TASKS

8K BYTE [
MAX. 1 1/0 PERMISSION MAP (OPTIONAL) 1

I t8 SOFTWARE STATE (OPTIONAL)

L- 110 PERMISSION BASE R oil .. RI T 64

R oil .. R LOT 60

R R GS 5C

R oil .. R FS 58

R oil .. R OS 54

R U ss 50

R R CS 4C

R R ES 48

EDI 44

ESI 40

EBP 3C

ESP 38

EBX 34

EOX 30

ECX 2C

EAX 28

EFLAGS 24

EIP 20

CRa 1C

R III .. R SS2 18

ESP2 14

R OIl ... SSl 10

ESP1 OC

R OIl ... R SSO 8

ESPO 4

R OIl .. R BACK LINK 0

31 R ~ RESERVED

G30287

Figure 1-2. Task State Segment

1-3

TASKS

15 7

BASE 31-24 G I 0 I 0 I AVI LIMIT 19-16

PIDPLI 0 111 0 lBl1

BASE 15-0

LIMIT 15-0

LEGEND
G: GRANULARITY

O~lBYTE

1 ~ 4K BYTE
AV: AVAILABLE FOR OS USE
P: PRESENT

o ~ TSS IS NOT PRESENT
1 ~ TSS IS PRESENT

DPL: DESCRIPTOR PRIVILEGE LEVEL
B: TSSBUSY

o ~ AVAILABLE
1 ~ BUSY

BASE 23-16

o

Figure 1-3. Task State Segment Descriptor

+6

+4

+2

o

G30287

the limit can, but need not, cover the additional information. TSSs must reside in the global
descriptor table (GOT) to give the processor access to all TSSs regardless of the task that is
running (interrupt and exceptions can trigger task switches as described in Chapter 3). To
prevent unauthorized task switches, TSS descriptors should be assigned privilege level O.

The 80386 sets the busy (B) bit in a TSS descriptor to trap an lbttempt to invoke a task
recursively; the operating system should initialize this bit to O. In a normal task switch, the
80386 sets the busy bit of the new task and clears the busy bit of the old task. However, in
a nested task switch, the 80386 leaves the old task's busy bit set. A nested task switch occurs
when one task calls another or, more commonly, when the 80386 invokes an interrupt or
exception handler that is implemented as a task (see Chapter 3). An attempt to invoke a
task whose busy bit is set results in an invalid TSS exception.

1.3 TASK CREATION

The 80386-defined data structures shown in Figure 1-1 must be in place before switching to
a new task. The GOT and the interrupt descriptor table (lOT) are system-wide resources,
which can be created statically by the Intel System Builder utility, or by the operating system
at initialization time, as discussed in Chapter 6. A new local descriptor table (LOT) must
be created for a new task unless the new task shares the LOT of another task, or the system
does not use LOTs; the criteria for associating tasks and LOTs are described in Chapter 2.
If paging is enabled, the task needs a page directory and one or more page tables (alterna­
tively, all tasks can share a single page directory and set of page tables). LOT, page direc­
tory, and page table creation are discussed in Chapter 2.

1-4

TASKS

An operating system cannot initialize a TSS or a TSS descriptor by writing directly into the
TSS or the GDT, but must use a data segment alias. Aliased segments are segments that
overlap one another in the linear address space; they are described further in Chapter 2.

When initializing a TSS, operating systems should observe the following guidelines:

• Backlink: This field should be initialized to 0 to prevent an erroneously set NT (nested
task) flag from causing an erroneous task switch. If a task's NT flag is set, the 80386
executes an IRET instruction by switching to the task whose selector is recorded in the
backlink field. The 80386 sets the NT bit and updates the backlink field when a task is
interrupted or incurs an exception whose handler is a task, or when a task calls another
task. A task can set its NT bit with a POPF instruction, but it cannot update its backlink
field without access to the operating system's TSS alias. By initializing the backlink
to 0, the operating system makes the 80386 raise an invalid TSS fault if the task issues
an IRET instruction when NT has been erroneously set.

• Privileged stack pointers: SSO, SS1, SS2, ESPO, ESPl, and ESP2 must contain the
initial stack selectors and offsets for privilege levels 0-2 respectively. The operating system
must initialize the fields that correspond to the privilege levels it, or other software, uses.
For example, if an operating system runs user code at privilege level 3 and operating
system code at privilege level 0, it must initialize SSO and ESPO. When, as the result of
a system call, an interrupt, or an exception, the 80386 changes from privilege level 3 to
privilege level 0, it switches to a privileged stack by loading the SS segment register
with SSO and ESP register with ESPO.

• CR3: If paging is enabled, the TSS CR3 field must be initialized with the physical
address of the task's page directory.

EIP, EFLAGS, general, and segment registers: Initialize to values the task should have
when it begins to run.

• LDT: Initialize with the selector for the task's LDT; this field must be set to zero (null
selector) if a task does not use an LDT.

• T bit: By setting this bit, the operating system directs the 80386 to raise a debug trap
when the processor switches to this task (see Chapter 3).

• I/O permission map base and optional I/O permission map: These fields can be used
to grant a task access to selected I/O ports (see Chapter 5).

1.4 TASK TERMINATION

Task termination is generally a matter of operating system design and is little influenced by
the 80386 system architecture. Typically, the termination process is divided between an
operating system exit procedure and system reclamation task. Running in the context of the
task to be terminated, the privileged exit procedure has direct access to the task's address
space and software state. In brief, the exit procedure changes the task's software execution
state to terminated, then calls the operating system dispatcher to run the next task. In more
detail, the exit procedure disconnects the task from system resources, closing files, removing
the task from any semaphores it may be waiting on, and the like. By severing these links,
the exit procedure ensures that these resources are usable by other tasks when the task
actually disappears. The exit procedure may be able to reclaim some of the task's memory,

1-5

TASKS

but at least a small amount of memory (for example, the task's stacks, TSS, and page direc­
tory, if paging is enabled) must be left for the reclamation task to reclaim. Finally, the exit
procedure calls the dispatcher to switch to another task. The operating system must ensure
that the terminated task never runs again because most of its context has been destroyed by
the exit procedure.

The reclamation task is a privileged operating system task that can access task-related data
structures. The reclamation task may run periodically, scanning TSSs for terminated tasks,
or it may run upon receipt of a message from the exit procedure (the message may contain
the terminating task's TSS selector). If passed the terminated task's TSS selector, the recla­
mation task can find the terminated task's TSS descriptor in the GDT. From this descriptor
the reclamation task can find the task's TSS, LDT, page directory, and page tables. The
reclamation task can free both the memory these structures occupy and the task's TSS
descriptor.

1.5 TASK SWITCHING

Deciding when to switch tasks is an operating system policy issue; the 80386 plays no part
in such scheduling/dispatching decisions. (However, the 80386 can automatically dispatch
task-based interrupt and exception handlers, as discussed in Chapter 3.) Once the operating
system has decided to suspend the running task and run another task, the 80386 provides
the mechanism to switch the machine context (the operating system must switch the software
context).

Most operating systems use an 80386 JMP TSS instruction to direct the 80386 to switch
tasks. There are other ways to direct the 80386 to switch tasks, but they are less commonly
used. The CALL TSS instruction implements a nested task switch in which return to the
calling task is implied; it can be useful for implementing coroutines and for invoking task­
based interrupt and exception handlers (see Chapter 3). A JMP TASKGATE instruction
also switches tasks. Because task gates can reside in LDTs and can be made accessible to
selected privilege levels, this instruction can be used to extend task switching capabilities to
selected privilege levels or tasks.

The TSS operand of the JMP TSS instruction is a segmented (selector and offset) pointer
to the new task's TSS. Because a TSS is a segment, the 80386 uses only the selector part of
the operand and ignores the offset part. JMP TSS is not a privileged instruction, but to
execute it without faulting, the running code segment must be at least as privileged as the
target TSS. If all TSS descriptors are defined with privilege levels of 0, only tasks running
at privilege level 0 can switch tasks with a JMP TSS instruction.

A typical operating system encapsulates the task switching code in a procedure called a
dispatcher. Other operating system procedures call the dispatcher when a task switch is, or
may be, in order. In general, any operating system procedure that makes the running task
unable to proceed, or makes a suspended task ready, calls the dispatcher. The dispatcher
changes the software states of the old and new tasks, updates the list of ready tasks, and
otherwise prepares for execution to transfer to another task. To switch the 80386 machine
state from the old task to the new, the dispatcher issues a JMP TSS instruction, as shown
in Figure 1-4.

1-6

inter TASKS

(*save registers*)

EnterCr i t icalSect ion;

GetNewTSSPtr;

If NewTSSPtr not = CurrentTSSPtr
then JMP NewTSSPtr;

(*old task resumed here when it is
of JMP NewTSSPtr issued by another

LeaveCr i t icalSect ion;

(*restore registers*)

Return;

target
task*)

Figure 1-4. Example Dispatcher

The JMP TSS instruction saves the task-specific machine state into the current TSS and
loads the task-specific machine state from the new TSS. JMP TSS is thus equivalent to
many MOV instructions (and a substantial amount of validation; for example, the 80386
ensures that the descriptor named in the JMP TSS instruction is in fact a TSS descriptor).
The 80386 executes a JMP TSS essentially as follows (for the definitive description consult
the 80386 Programmer's Reference Manual):

• Save general registers, segment registers, EFLAGS register, and EIP in current TSS.

• Clear old TSS descriptor's busy bit, so the old task can be resumed later.

Load TR with new TSS selector and descriptor.

• Load general registers, segment registers, EFLAGS register, EIP, LDTR, and CR3 (page
directory base address) registers from new TSS.

• Fetch the instruction pointed to by new task's CS:EIP. This is the instruction the task
would have executed next when it was last suspended (or it is the first instruction of a
newly created task).

An 80386 task switch does not switch the state of a numeric coprocessor because the copro­
cessor's context may not need to be switched with every task switch. Chapter 7 describes
how to write an exception handler that switches the state of a coprocessor when necessary,
eliminating the need for the dispatcher to switch it on every task switch.

The 80386 does not save system registers such as CRO, GDTR, and IDTR on a task switch
because these registers represent system-wide resources that are shared by all tasks. The
processor does not save LDTR or CR3 because these are not normally changed while a task
is executing. (If an operating system changes LDTR or CR3, it must update the correspond­
ing fields in the current task's TSS.)

1-7

TASKS

Note that the 80386 does not save CR2, the page fault linear address, in the TSS (the TSS
does not include a field for CR2). However, CR2 could contain task-related data if a task
switch occurred during the handling of a page fault. Consequently, a page fault handler
must save CR2 before allowing a task switch to occur. See Chapter 2 for details of page
fault handling.

Before switching to the new task, the 80386 checks the new TSS descriptor and TSS for
validity. These checks can raise the following faults:

• Invalid TSS (for example, the target segment is not aTSS)

• Segment fault (for example, the new TSS is not present, or a segment selected by the
CS-GS fields of the new TSS is not present)

• Page Fault (for example, all or part of the new TSS is in a not-present page)

• General Protection Fault (for example, the privilege level of the new TSS is less than
the current privilege level)

(The preceding is not an exhaustive list of the fault conditions that can be detected in a task
switch; consult the 80386 Programmer's Reference Manual for details.) Although it is possi­
ble to recover from many of these faults, prudent operating system designs avoid faults during
task switches. A fault that occurs late in a task switch increases interrupt latency by
"stretching" the duration of the task switch instruction by the extra operations required to
invoke the fault handler.

If, in a task switch, the T bit of the new TSS is set, the 80386 raises a debug exception after
switching to the new task but before executing the new task's first instruction. This excep­
tion can be used to notify a debugger that a task being debugged is about to run.

1-8

Memory Management 2

CHAPTER 2
MEMORY MANAGEMENT

An 80386 operating system designer can use the 80386 segmentation and paging facilities
to implement any commonly used memory model, including "flat," "segmented," "paged,"
and "segmented paged." Memory can be unprotected, or segments or pages can be protected
with attributes such as supervisor or user, or read-only. Segments or pages can permanently
reside in physical memory or they can be swapped between memory and disk, to implement
virtual memory.

Underlying the 80386's memory management flexibility are two common denominators,
descriptor tables and page tables. The content of these tables expresses an operating system's
memory model. This chapter shows how to set up and manage these tables.

In the 80386, segmentation and paging are independent of one another and are therefore
covered in separate sections of this chapter. (Virtual memory is also covered separately
because it is optional, even when paging is enabled.) Nevertheless, an operating system
designer must consider segmentation and paging together in order to develop the design that
best supports the operating system's needs. The final section of the chapter gives four
examples of memory management designs that can be implemented on the 80386; two of
these designs use both segmentation and paging.

2.1 SEGMENTATION

The 80386 logical address space is inherently segmented, but an operating system designer
has great freedom in defining the segments. For example, in one operating system the logical
address space might consist of a single segment that spans the entire 4-gigabyte linear address
space. Another operating system might separate system from user by placing their code and
data in different segments. A third operating system might map a task's private data to one
segment and data shared by tasks to another segment. Thus, while every 80386 operating
system uses segments, each operating system defines them to support its own protection and
performance needs.

Two attributes give 80386 segments their flexibility:

• They can be as large as 4 gigabytes.

• They can overlap one another in the linear address space.

Operating systems that use segmentation actively can define many small segments, mapping
them to distinct linear address ranges. Operating systems that are not segment-oriented can

2-1

MEMORY MANAGEMENT

define a few large overlapping segments; in the extreme case (all segments fully overlap one
another), segmentation is effectively nullified.

2.1.1 Required Segments

Although a task in a segment-oriented operating system can have dozens, hundreds, or
thousands of segments, even an operating system that defines a "flat" (effectively unseg­
mented) logical address space must provide each task with a minimal complement of
segments. Every task must have a code segment (represented by the selector in CS) and a
data segment (selector in DS). A task can have a separate stack segment or can use its data
segment for a stack (the selector in SS defines the current stack segment). An extra segment
is not required, but the string instructions assume a valid selector in ES. Loading the same
selector into DS and ES makes string moves operate within the same segment. ES can be
loaded whenever DS is loaded, or just before executing a string instruction.

The F and G data segments (represented by the selectors in FS and GS) are not required.
In systems that define multiple data segments, compilers may be able to improve perform­
ance by maintaining frequently used data selectors in FS and GS, thereby reducing the
number of times DS must be reloaded to make a segment addressable. Systems that address
all data through DSjES and SS can initialize FS and GS with null selectors to trap refer­
ences that use these registers without initializing them. (Null selectors also improve task
switch time by eliminating descriptor checking and loading.)

2.1.2 Segmentation Models

Segments allow processor protection to be applied to programmer-defined objects. Segments
can be byte-variable in length up to one megabyte; segments from one megabyte to four
gigabytes are defined in units of 4 Kbytes. An operating system, with compiler and linker
support, can map programming units as small as individual procedures (or functions or
subroutines) and data structures (such as arrays and records) to distinct segments. In addition
to standard read and write permission checking, the 80386 can check segment accesses for
proper type (code versus data), length, and privilege (a segment can be assigned one of four
privilege levels). These run-time checks can uncover programming errors, such as bad array
indexes and pointers, that cannot be detected at compile-time.

An operating system designer must balance the protection advantages of segments against
their application fit, and their performance and storage costs. Some programming languages,
for example, have a built-in view of memory that does not map naturally to segmentation.
For example, the C language allows a pointer to uniformly address any object in a task's
address space whether the object is a function, a constant, or a local variable allocated on
the task's stack.

Run-time segment protection checking takes time. The 80386 mlnImlZeS the cost of
segment protection by checking many segment attributes (such as length) in parallel with

2-2

MEMORY MANAGEMENT

logical-to-linear address translation. Other segment protection checks are made only when a
segment register is loaded with a new selector as described below:

• Intersegment (far) jumps and calls reload CS with the target segment's selector and
descriptor. When the 80386 loads a new selector into a segment register, it checks the
associated descriptor for validity. For example, when loading CS, the processor ensures
that the target segment is a code segment and is present in memory. Intersegment returns
also take longer to execute than returns within the same segment; again, the processor
checks the return address's descriptor. Overall, intersegment control transfers take several
times as long as intrasegment transfers.

• lntersegment data references take longer when the selector for the new segment must
be loaded into a data segment register; the 80386 checks the new segment's descriptor
(for example, to ensure that it is a data segment) before loading it. If the new segment
is to be the subject of a string instruction, ES must similarly be loaded. (Segment-oriented
systems may be able to reduce DS loading by making some data references through ES,
FS, and GS.) Overall, intersegment data references are usually more costly than inter­
segment transfers because they occur more frequently.

A task that uses multiple data segments or distinct data and stack segments must use 48-bit
segmented (selector and offset) pointers to unambiguously identify the segment to which a
pointer refers. (32-bit offset-only pointers implicitly refer to the segment whose descriptor is
currently loaded in DS or SS.) Compared to 32-bit offset-only pointers, segmented pointers
consume more storage space (they are pushed as two doublewords) and require an additional
bus cycle to transfer to or from memory.

An 80386 operating system can control the amount of time the processor spends checking
segments by selecting a model of segmentation. By employing segmentation judiciously, an
operating system can strike a protection/performance balance that is consistent with its goals.
Some representative models of segmentation are described below (others are possible):

1. The operating system defines one code segment and one data segment; both segments
map the entire linear address space. DS, ES, and SS are loaded with the data segment
selector. In this model, both code and data references are 32-bit offsets; after initiali­
zation, segment registers are never changed. This model provides the equivalent of an
unsegmented, and, in the absence of paging, unprotected 4-gigabyte logical address space.

2. Similar to modell, except that user segments are distinct from operating system
segments; operating system segments map the full 4 Gbyte linear space, but user segments
map a subset of the linear addresses. Operating system segments have greater privilege
than user segments and are therefore protected from user access. This model uses
32-bit code and data pointers, except for system calls. A 48-bit code pointer is required
to call an entry point in the operating system's code segment. (The user/supervisor type
of protection provided by this model can also be implemented with page, rather than
segment, protection.)

3. Similar to model 2, except that data and stack segments map different areas of the
linear space. Because the data and stack segments do not overlap in the linear space,
this model uses 48-bit data pointers. With separate stack and data segments, the 80386
can detect stack overflows, the stack is protected from bad data references, and the data
segment is protected from bad stack references.

2-3

MEMORY MANAGEMENT

4. Same as model 3, except that major data structures are mapped to different data
segments. This model uses 48-bit code and data pointers; CS changes on interrupts,
exceptions, system calls, and procedure calls; DS, ES, FS, or GS changes to reference a
new data structure; ES is changed to match DS before executing a string instruction
(unless the instruction is an intersegment string move).

Each of the preceding models trades tighter protection for reduced performance. The actual
performance differences between models depends on the frequency of intersegment, proce­
dure calls, and system calls. In systems that tend to be pointer-intensive and procedure-call­
intensive (C programs are a good example) it may be wise to choose one of the first segment
models listed above. Conversely, systems in which pointer and procedure call performance
is not critical, or in which maximum protection is very important, can choose one of the later
models.

2.1.3 Defining Segments

Having decided which segmentation model best fits an operating system's performance and
protection goals, the operating system designer must express the model in the contents of
80386 descriptor tables. This section provides guidance for setting up and managing these
tables.

2.1.3.1 DESCRIPTORS

80386 segments are defined by segment descriptors (see Figure 2-1). A segment's descriptor
defines the segment's location (base address and limit) in the linear address space and its
protection attributes. The operating system (or the Intel System Builder utility) creates
descriptors, but they are mainly interpreted and updated by the processor.

A task's descriptors completely define the linear addresses the 80386 can generate for the
task. Any linear address that is not covered by a descriptor is inaccessible to a task because
the processor cannot generate such an address. Thus, the distribution of descriptors among
tasks, and the linear address ranges these descriptors cover, provides an initial level of control
over accessibility to the linear address space. The second level of control over access to the
linear space is provided by the protection attributes of a task's descriptors.

2.1.3.2 DESCRIPTOR TABLES

A task's logical address space map is defined by the segment descriptors in two descriptor
tables, the global descriptor table (GDT) and the task's local descriptor table (LDT). These
descriptor tables are variable in length to a maximum of 64 kilobytes, giving each a maximum
capacity of 8,192 descriptors. The GDT holds descriptors that are global to all tasks; the
LDT holds descriptors that are local to a single task, or are local to a group of closely related
tasks. A task need not have an LDT, and tasks can share an LDT; for example, an operating
system might define a "job" as group of tasks that shared a common pool of resources,
including the same LDT. The descriptors in a task's LDT and the GDT fully define the
linear addresses a task can generate. (Note, however, that the presence of a descriptor in the
GDT or a task's LDT does not automatically grant access to a range of linear addresses; the

2-4

MEMORY MANAGEMENT

15 7 o

BASE 31-24 G I D I 0 IAVILIMIT 19-16 +6

pi DPL 11111CIRIA BASE 23-16 +4

BASE 15-0 +2

LIMIT 15-0 o

LEGEND:
G: GRANULARITY
D: DEF AUL T OPERAND SIZE
0: MUSTBEO
AV: AVAILABLE FOR OS USE
P: PRESENT
DPL: DESCRIPTOR PRIVILEGE LEVEL
C: CONFORMING
R: READABLE

a. CODE SEGMENT DESCRIPTOR

15 7 o

BASE 31-24 G I B I 0 IAVILIMIT 19-16 +6

pi DPL 1110JEIWIA BASE 23-16 +4

BASE 15-0 +2

LIMIT 15-0 o

LEGEND:
G: GRANULARITY
B: BIG
0: MUST BE 0
AV: AVAILABLE FOR OS USE
P: PRESENT
DPL: DESCRIPTOR PRIVILEGE LEVEL
EI: EXPANSION DIRECTION
W: WRITEABLE
A: ACCESSED

b. DATA SEGMENT DESCRIPTOR

G30287

Figure 2-1. Code and Data Segment Descriptors

protection attributes of a descriptor can prevent a task from using the descriptor. Segment
protection attributes are discussed in Section 2.1.6.)

The system registers GDTR and LDTR point to the global and local descriptor tables,
respectively. GDTR contains the 32-bit linear address of the GDT and a 16-bit limit. At
initialization time (see Chapter 6), the operating system loads GDTR with the LGDT
instruction. Although GDTR can be reloaded during execution (provided that CPL=O),
there is normally no reason to do so_ The operating system must load LDTR with a selector
for the current LDT; this selector must reference an LDT descriptor in the GDT. If a task
does not have an LDT, LDTR can be loaded with a null selector (all O-bits). The operating
system also loads LDTR during initialization, either directly with the LLDT instruction or
indirectly by means of a dummy task switch (see Chapter 6). On each task switch, the 80386

2-5

MEMORY MANAGEMENT

reloads LDTR from the new task's TSS. Because GDTR is constant, whereas LDTR (poten­
tially) changes with every task switch, every task can share the segments defined in the GDT
and yet have exclusive access to the segments defined in its LDT (if the task does not share
its LDT with other tasks).

2.1.4 Aliases

Two descriptors are aliases if they define the same addresses in the linear address space.
(Note that one segment alias can frame the linear addresses of multiple segments, poten­
tially even the full 4-gigabyte linear address space.) Aliases can give alternative "views" of
a segment to different tasks, or can give one view to the operating system and another to an
application program. For example, a code segment is by definition unwriteable; although
this attrilmte prevents an application program from erroneously overwriting its instructions,
it also prevents an operating system from legitimately loading the application program's
instructions into memory. By aliasing the code segment with a writeable data segment, the
operating system can load the application program's instructions into the linear addresses
defined by the code segment descriptor. As long as the application program does not have
access to the data segment alias, it cannot modify its own code. As discussed in
Section 2.1.5, aliases can also be used to share segments between tasks.

An operating system must define a data segment alias for the GDT, the IDT (interrupt
descriptor table, described in Chapter 3), and for any 80386-defined segment that the
operating system updates. The GDT and the IDT must be aliased because they are not
addressable with logical addresses (there are no descriptors for these tables; the processor
addresses them through the linear addresses in the GDTR and IDTR registers). Other system
segments, such as TSSs and LDTs, must be aliased because of the need to update them upon
a task switch or when a task's address space needs to be increased/decreased dynamically.
The 80386 raises a general protection exception if software attempts to load their descriptors
into data segment registers. The operating system can define one alias for each table or
segment described here, or it can define a single alias that spans all of them (or even all of
the linear address space). The alias(es) for system tables and system segments should be
assigned privilege level 0 so that access to them is restricted to the most privileged level of
the operating system (Section 2.1.6 describes privilege level and other segment protection
mechanisms).

While they are useful, and even indispensable, segment aliases complicate an operating
system. The principal problem presented by aliases is keeping the multiple descriptors
consistent. Suppose, for example, an operating system increases the size of a segment.
Typically, this means allocating a segment of the new length, copying the content of the old
segment to the new segment, and, finally, freeing the old segment. If the old segment has
aliases, however, the operating system must find and update the aliases so they point to the
new segment rather than the old. Aliases also complicate segment deletion; the memory
occupied by a segment cannot be freed until no aliases for the segment exist.

To manage segment aliases, an operating system must effectively extend descriptors with
alias information. One way to extend descriptors is to define an alias table that has an entry
for each GDT or LDT entry (see Figure 2-2). The alias table entry for a descriptor can

2-6

2

0

0

0

0

0

0

0

0

0 0

9

8

7

6

5
DESCRIPTOR

TABLE
</

3

2

0

MEMORY MANAGEMENT

LIST HEAD I 5
I

I

I 2

Figure 2-2. Alias Table

2-7

I NEXT

I NULL

IlALIAS U LIST

G30287

MEMORY MANAGEMENT

indicate the number of aliases for the segment and can point to a list of pointers to the
aliases. The operating system can supply system calls that create and delete aliases; if the
operating system makes these calls available to applications, it must check the parameters
supplied in each invocation, since aliases can potentially permit access to memory that should
not be allowed. (An application should not, for example, be permitted to alias operating
system code or data.)

Operating systems that are not segment-oriented can simplify alias management by defining
a single data segment alias that spans the entire linear address space. The operating system
can then read or write any linear address via this alias and the alias need never be updated.

2.1.5 Sharing

For two (or more) tasks to share a segment, the tasks can either share a common descriptor
for the segment, or they can hold aliases to the same segment. There are three ways to effect
segment sharing.

Because all tasks share all descriptors in the GDT, the simplest way to achieve intertask
segment sharing is to place a descriptor in the GDT. Although simple, this approach is
nonselective because every task shares the segment. Consequently, GDT slots are
normally defined to hold descriptors for system-wide resources, such as the operating
system's code and data, that would otherwise have to be duplicated in every task's LDT.

Tasks can also share a descriptor by sharing an LDT. Although more selective than
GDT-sharing, two tasks that share an LDT share all of their segments.

Individual tasks can share individual segments by means of aliases in their LDTs. Aliases
are the most precise form of intertask sharing and allow the sharing tasks to be given
different views of the shared segment. For example, one task may be able to write a
segment, whereas another task's alias for the same segment allows only reading.

2.1.6 Protection

A descriptor's protection fields allow an operating system to define the conditions under
which the associated segment can be accessed. If an attempted access violates one of these
conditions, the 80386 does not make the access but raises an exception. Exceptions are
described in Chapter 3.

2.1.6.1 TYPE AND RIGHTS

The 80386 distinguishes between segments that contain code and segments that contain data;
stack segments are data segments. When the code/data bit of a descriptor (bit 43, see
Figure 2-1) is set, the 80386 interprets the corresponding segment as a code segment. The
80386 ensures that a data segment is used as a data segment and a code segment is used as
a code segment. An attempt to write into a code segment or to transfer control to a data
segment raises a general protection fault.

2-8

MEMORY MANAGEMENT

An operating system can restrict the operations a task may perform on a code or data segment
by clearing the R (readable) bit of a code segment or the W (writeable) bit of a data segment
(see Figure 2-1). When clear, these bits make a code segment unreadable and a data segment
unwriteable. Code segments are by definition unwriteable and executable; data segments are
by definition readable and un executable. A code segment can be further classified as
conforming by setting its C (conforming) bit. Conforming code segments are described in
Chapter 4. They provide a way to implement procedures that have no inherent privilege
level, but execute at the privilege levels of their callers.

2.1.6.2 LIMIT

To detect a segment overrun, the 80386 compares the offset part of a logical address to thc
segment's limit. For example, suppose a task computes an address (an offset within the
current code segment) and jumps to that address. If the task erroneously computes the offset
as larger than any address in the segment, the 80386 does not perform the jump but raises
a general protection exception. .

A segment's limit is encoded in its descriptor as a combination of the G (granularity) bit
and the concatenation of the limit fields. (In the rest of this section, "limit field" means the
concatenation of the limit fields.) The limit field is 20 bits wide; the G bit tells the processor
how to expand the limit field to 32 bits. If G=O, the segment's granularity is 1 byte; the
80386 computes the limit of a byte-granular segment by concatenating 12 high-order O-bits
to the limit field. If G= 1, the segment's granularity is 4 Kbytes or one page (the term page,
as used here, refers to a 4 Kbyte unit of memory and is independent of the 80386 paging
facility). The 80386 computes the limit of a page-granular segment by concatenating the
limit field to 12 low-order I-bits. Segments up to 1 megabyte (220 bytes) can be defined with
byte granularity; page granularity must be used for larger segments. A segment with page
granularity can span the entire linear address space (220 pages = 4 Gbytes). Three examples
of segment limit computation follow:

1. If G= 1, base= 1000H, and the limit field =OH, the descriptor defines a segment with
base address 1000H (4096D) and a limit of FFFH (4095D). The associated segment is
one page long and spans the second page frame of the linear address space. Note that
the minimum size of a large-grain segment is 4 Kbytes.

2. If G=O, base=lOOOH, and the limit fie1d=FFFH, the descriptor defines the same
4 Kbyte segment as the previous example.

3. If G = 1, base = 0, and limit field = FFFFFH, the descriptor defines a segment with base
address 0 and limit of FFFFFFFFH. The segment spans the entire 32-bit linear address
space.

Byte-granular segments provide precise size checking, but have a limited size range (1 byte-
1 megabyte); page-granular segments have a greater range (4 Kbytes-4 Gbytes), but limit
checking is coarser. (A reference beyond a data structure allocated in a page-granular
segment causes a limit violation only if the end of the data structure coincides with end of

2-9

MEMORY MANAGEMENT

the segment.) To prevent unintentional segment overlap, an operating system should allocate
page-granular segments on 4 Kbyte linear address boundaries.

2.1.6.3 EXPAND-DOWN SEGMENTS

The preceding description of the segment limit computation holds for expand-up segments,
that is, segments whose E (expansion direction) bit is O. The great majority of segments are
expand-up segments. The 80386 provides expand-down data segments for operating systems
that meet both of the following criteria:

• Stacks are defined as distinct segments (DS and SS contain different selectors).

• A stack is expanded by copying it to a larger segment (rather than by adding present
pages to its segment).

Designers who do not plan to implement stacks in this way need not define expand-down
segments and can skip the remainder of this section.

Implementing a stack with an expand-down segment preserves intrastack references if the
stack is copied to a larger segment (see Figure 2-3). Stacks grow toward lower addresses;
therefore, to expand a stack, the stack must be copied to the high end of a larger segment.
If a stack in an expand-up segment is copied in this way, the offsets of the items on the stack
change; when a stack in an expand-down segment is similarly copied, the offsets of the stack
items do not change.

The 80386 provides two kinds of expand-down (E= 1) data segments, small and big. A small
expand-down segment is denoted by a B (big) bit that is 0; a large expand-down segment is
denoted by a B bit that is I. (The B bit has a second function for stack segments, whether
expand-up or expand-down. When loaded into SS, a segment descriptor with B=O directs
the 80386 to use the 16-bit SP register for implicit stack references, such as those made by
the PUSH, POP, CALL, and RET instructions. When B= I, the 80386 uses the 32-bit ESP
register for the stack pointer.) A small expand-down segment can range from 0 to
64 Kbytes-I in length; the G bit of a small expand-down segment must be O. A big expand­
down segment can range in size from 4 Kbytes-I to 4 Gbytes-I, in increments of 4 Kbytes;
the G bit of a big expand-down segment should always be 1.

Figure 2-4 summarizes the differences between expand-up and expand-down segments. An
expand-up segment's lowest linear address is equal to its base address; its highest linear
address (that is, the maximum offset that can be used to form an address in the segment) is
a function of the segment's limit and G bit. The highest and lowest linear addresses of expand­
down segments are expressed differently. The lowest linear address of an expand-down
segment is equal to its base plus the quantity (limit-I), with the computation "wrapping
around" at 4 Gbytes if necessary. "4 gigabyte wraparound" means that the processor ignores
any overflow into bit 33 of the linear address; the linear address following FFFFFFFFH
is O. The highest address of a small expand-down segment is base + FFFFH; the highest
address of a big expand-down segment is base+ FFFFFFFFH. In both cases, the computa­
tion wraps around at 4 Gbytes if necessary (always true for big expand-down segments).

2-10

36

32

28

24

20

16

12

OLD

x

32

EXPAND-UP SEGMENTS

.....
64

D
56

52

48

44

40

36

32

MEMORY MANAGEMENT

EXPAND-DOWN SEGMENTS

NEW OLD NEW

X

32

\
12

x

)
4 12

x

~ 4

16 16

) 20 20

J 24

28

32 32

36 28 -24
------- 36

40
1-------

t HIGHER LINEAR I ADDRESSES

20

16

12

a. COPYING EXPAND-UP STACK
SEGMENT INVALIDATES INTRASTACK
REFERENCE.

44

48

56

60

64

b. COPYING EXPAND-DOWN STACK
SEGMENTS PRESERVES INTRAST ACK
REFERENCE.

Figure 2-3. Intrastack References

G30287

Both small and big expand-down segments can be located anywhere in the linear address
space. To define a small expand-down segment, set the base address to (highest address-
64 Kbytes); set the limit to 1 greater than the desired segment size. A small expand-down
segment can be expanded by reducing its limit if the memory between its lowest address and
its base has not been allocated to another segment; otherwise the data in the segment can be
copied to a larger segment. To define a large expand-down segment, set its base to (highest
address minus 4 Gbytes); set the limit field to 1 greater than the desired size of the segment.

2-11

T
LIMIT

+ BASE .-:....

-,
FFFFH

T
LlMIT-1

I

MEMORY MANAGEMENT

r-------------------~4GB

-
HLA

SEG. SIZE
~
MAX: 64K
STEP; 1

LLA

-

E a
G a
B X

4GB

-
HLA

SEG. SIZE
MiN":()
MAX: 64K-1
STEP: 1

LLA

-

r----------, 4GB

-

T
HLA

SEG. SIZE LIMIT , MIN: 4K
MAX' 4G

~ STEP: 4K

I
BASE_ LLA

r-FFFFFFFFHl

r ffi u
LlMIT+'

E - a
G 1
B -- X

r-------------------'4GB

t---~--__I -
HLA

LLA

SEG. SIZE
MIN: 4K-1
MAX: 4G-1
STEP: 4K

iffi
3ASE -'-_--'I-l~~It--------~

E -- 1
G a
B 0

E = 1
G 1
B 1

NOTES: HlA - HIGHEST LINEAR ADDRESS IN SEGMENT
LLA LOWEST LINEAR ADDRESS IN SEGMENT
LIMIT - LIMIT FIELD ADJUSTED BY G BIT

Figure 2-4. Expand-Up and Expand-Down Segment Comparison

2-12

G30287

MEMORY MANAGEMENT

2.1.6.4 PRIVILEGE

The DPL (descriptor privilege level) field defines a segment's privilege level; 0 is the most­
privileged level and 3 is the least-privileged level. Unless a task is executing a conforming
code segment, its current privilege level is equal to the privilege level of the code segment it
is executing. (If the task is executing a conforming code segment, its current privilege is
equal to the privilege level of the code segment that called the conforming segment.) When
an instruction operand is a selector, the task's current privilege level can be reduced for the
execution of that instruction by the RPL (requested privilege level) field in the selector.
When RPL is 0, it has no effect on current privilege level. See Chapter 4 for a more detailed
description of RPL.

A segment's privilege level defines the privilege required to access the segment. To read or
write a data segment, a task must be at least as privileged as the target segment (numeri­
cally, the task's current privilege level must be less than or equal to the value coded in the
target segment's DPL field). For example, a task running at privilege level 2 can access data
segments whose privilege levels are 3 or 2, but cannot access data segments whose privilege
levels are 1 or O. To transfer control to another code segment by a JMP, CALL, RET, or
IRET instruction, a task must have the same privilege level as the target segment. For the
special cases of system calls, interrupts, and exceptions, in which a task's privilege level is
numerically decreased while it executes a more privileged code segment, the 80386 provides
special descriptors called gates. Gates are described in Chapters 3 and 4. (The 80386 does
not allow a task to call to a less-privileged code segment because such a call implies that a
return to a more-privileged segment is also allowed. Such a return mechanism, however,
would permit tasks to enter more privileged code segments by returning to them.)

If, as is strongly recommended, the GDT and LDT data segment aliases are defined as
privilege level 0 segments, only tasks executing privilege level 0 code segments can create
descriptors. (There is no GDT selector and attempting to load an LDT selector into a data
segment register results in a general protection exception.) Without the ability to manufac­
ture descriptors, tasks running at privilege levels 3, 2, or 1 can increase their privilege only
by transferring through the gates defined by the level 0 operating system.

A task's privilege level defines not only segment accessibility but the instructions the task
can execute. Privileged instructions can only be executed by tasks running at privilege
level o. To execute I/O instructions, a task must be at least as privileged as its IOPL (input/
output privilege level, a field the operating system sets in the task's TSS); such a task is said
to have I/O privilege. However, a task that does not have I/O privilege can be allowed to
issue I/O instructions for selected I/O ports; these ports are specified in the I/O permission
map in the task's TSS. See Chapter 5 for a more detailed description of 10PL and the I/O
permission map.

The four segment privilege levels can be used to implement a variety of privilege hierarchies.
To build an unprotected system, every segment can be assigned the same privilege level; the
level should be 0 so privileged instructions can be executed. To implement a supervisor/user
style of protection, supervisor segments should be assigned privilege level 0, and user segments
should be assigned privilege level 3. (Technically, user segments can be assigned privilege
levels 1 or 2 provided that page-based protection is not used, but there is no advantage to
doing so.)

2-13

MEMORY MANAGEMENT

Privilege levels 1 and 2 can be used to establish protection boundaries within the operating
system, or to establish protection boundaries between operating system and end user. For
example, a personal computer could implement its operating system at level 0 and assign
programs written by end users to level 3. Level 2 might be reserved for third party software,
protecting this software from end user errors or tampering.

2.1.7 Other Attributes

Both code and data segment descriptors provide an available bit that the processor does not
interpret or update. This bit can be used to mark a segment that is locked in memory, or
has an alias, or has another operating system-defined attribute.

The D (default operand size) bit in code segment descriptors should be set to I to specify
32-bit operands and offsets; the 0 setting specifies 16-bit operands and offsets and is provided
for compatibility with the 80286 (see Chapter 8). The 80386 macro assembler (ASM386)
provides 'useI6' (D=O) and 'use32' (D= l) directives which allow a programmer to define
80286/80386 compatible segments. The linker/loader uses this information to define
80286/80386 compatible descriptors.

The P (present) and A (accessed) bits are provided mainly for segment-based virtual memory
implementations and are described in Section 2.3.1.

2.1.8 Building Descriptors

Figure 2-5 shows one wayan operating system can store the content of a descriptor in a
simpler format. The record shown in Figure 2-5 coalesces the multiple limit and base fields
of a descriptor into single fields that are easier to manipulate. Note that the attributes field
is stored with the attribute bits in the same relative locations as they occur in a descriptor;
the four O-bits in the attribute field are placeholders for the upper limit field. Figure 2-6
shows how these fields can be packed into a 64-bit descriptor.

An assembly language sequence that extracts the base address from a descriptor and leaves
it in register EAX is shown in Figure 2-7.

+8

+4

BASE +0

31 19 15 7 o

G30287

Figure 2-5. Storing Descriptor Fields

2-14

MOV
5 H L
MOV
ROL
MOV
MOV
ROR
MOV
MOV
AND
OR
MOV
MOV

MOV
MOV
SHRD
AND
AND
OR

BX,Attr
E B X , 16
EDX,Base
ED X , 16
BL,DH
B H , D L
E B X ,8
EAX,Limit
DX,AX
EAX,OOOf"OOOOH
EBX,EAX
Descr,EDX
Descr+4,EBX

MEMORY MANAGEMENT

Load Attribute word
Chinese puzzle rotate
Load Base Address
Put high bytes into byte regs
Base 31 .. 24
Base 23 .. 16
Rotate to final alignment
Load Limit
Limit 15 .. 0 with Base 15 .. 0
Mask Limit 19 .. 16
OR into high order word
Store low word
Store high word

Figure 2-6. Building a Descriptor

EAX,Descr
EDX,Descr+4
EAX,EDX,16
EAX,OOFFFFFFH
EDX,OFFOOOOOOH
EAX,EDX

Load low word
Load high word
Align Base 23 •• 0
Clear AR byte
Mask Base 31. .24
EAX holds base

Figure 2-7. Extracting a Descriptor's Base Address

2.2 PAGING

Every 80386 operating system implements some model of segmentation, but paging is
optional. Although paging is typically used to implement virtual memory, its relocation and
protection facilities can be used for other uses as well. For example, virtual 86 mode tasks
(see Chapter 9) generate addresses that fall into the first megabyte of the linear address
space. An operating system that runs multiple virtual 86 mode tasks can use paging to direct
their accesses to different pages of the physical address space.

An operating system enables paging (typically during initialization) by setting the PG (paging
enabled) bit in the CRO system register with the privileged MOY CRO instruction.
Chapter 6 provides a more detailed explanation of the procedure for enabling paging. Paging
can also be disabled with a MOY CRO instruction. If an operating system disables paging,
it must first ensure that it is executing in linear addresses that are identical to physical
addresses, because no linear address translation will be performed after the MOY CRO
instruction is executed.

2-15

MEMORY MANAGEMENT

2.2.1 Relationship of Segments and Pages

The 80386 implements paging "underneath" segmentation by performing page translation
and protection checking after segment address translation and protection checking. (The
word "after" here means logically after; in reality, the 80386 MMU performs segment and
page translation in parallel.) Because the segment checks are performed first, a page-oriented
operating system must ensure that segment descriptors allow the page protection checks to
occur. For example, every page in a read-only data segment is effectively read-only, because
an attempt to write into the segment will fault even if the protection attributes of the under­
lying pages allow writing.

Depending on its degree of segment-orientation, an operating system can map segments to
pages in two ways (see Figure 2-8):

An operating system that defines a few large segments can compose segments of integral
pages. In this type of system, every segment begins on a page boundary and is at least
one page long. The page is the unit of memory allocation, protection, and swapping (in
a virtual memory system).

a. LARGE b. SMALL
SEGMENT PAGING SEGMENT PAGING

r---

r--- r---

r---

r---

r---- r----

r--- ~---

1---- 1---

1---- r---

_ SEGMENT BOUNDARY

--- PAGE BOUNDARY

Figure 2-8. Two Ways to Map Segments to Pages

2-16

G30287

MEMORY MANAGEMENT

• An operating system that defines hundreds or thousands of segments whose average size
is tens or hundreds of bytes would waste substantial space if it aligned segments on
4 Kbyte boundaries. Such a system can, instead, map segments to pages without concern
for segment and page boundaries, or it can map related segments to the same page. In
this kind of system, the segment is the unit of linear space allocation and of protection;
pages are used for virtual memory only.

2.2.2 Page Tables and Page Directories

An 80386 page table defines a collection of 4 kilobyte pages much as an 80386 descriptor
table defines a collection of variable-size segments. A page table is an array of PTEs (page
table entries); a page table is one page long and must be aligned on a 4 Kbyte linear address.
A page table contains 1,024 entries, each of which defines one 4 kilobyte page; therefore, a
page table can cover 4 megabytes of the linear and physical address spaces. To prevent
unauthorized access, a page table should be defined in a segment whose DPL is 0 or by a
PTE whose U IS bit is 0 (the U IS bit is described in Section 2.2.5).

Figure 2-9 shows the format of a PTE. Technically, Figure 2-9 shows the format of a present
PTE, one whose P (present) bit is set. The format of not-present PTEs is operating system­
defined; because not-present pages are most commonly used by virtual memory systems,
they are described in Section 2.3. A (present) page table entry contains addressing, protec­
tion, and virtual memory fields; the protection and virtual memory fields are described in

31

PAGE FRAME ADDRESS 31·12

a. PAGE TABLE ENTRY (PTE)

31

PAGE TABLE ADDRESS 31-12

b. PAGE DIRECTORY ENTRY (POE)

LEGEND:
AV: AVAILABLE FOR OS USE
0: DIRTY
A: ACCESSED
U/S: USER/SUPERVISOR
R/W: READ/WRITE
P: PRESENT

NOTE: IF P~O, BITS 1·31 ARE AVAILABLE
FOR OS USE.

Figure 2-9. Page Table and Page Directory Entries

2-17

G30287

inter MEMORY MANAGEMENT

Sections 2.2.5 and 2.3. The page frame address field of a PTE contains the upper 20 bits of
a present page's physical address; the lower 12 bits are assumed to be ° because pages are
aligned on 4 Kbyte boundaries.

The linear addresses an 80386 task can generate are specified in the task's segment descrip­
tors; in the general case, a task can generate any address in the 4 Gbyte linear space. When
paging is enabled, the 80386 must look up every linear address in a page table to determine
if the address is valid. To translate every possible linear address into a physical address
would require 1,024 page tables. Rather than force each task to carry the overhead of a full
set of 1,024 page tables (most of whose entries would define not-present pages), the 80386
provides a higher level of page table called a page directory. (Page directories also provide
an elegant way to implement page-based sharing, as described in Section 2.2.4.)

A page directory is similar to a page table; a page directory is one page long and must be
page-aligned. To prevent unauthorized access, a page directory should be located in a privi­
lege level ° segment. Whereas each of a page table's 1,024 PTEs defines the attributes of a
page, each of a page directory's 1,024 PDEs (page directory entries) defines the attributes
of all pages described in a page table. Thus, a page has two set of attributes, one defined by
its PTE and one defined by its page table's PDE. Logically speaking, when translating a
linear address to a physical address, the 80386 checks the attributes defined in the PDE
before it checks the PTE. Should the attributes defined in the PDE cause a fault, the attri­
butes defined in the PTE are irrelevant because the 80386 does not check them. Thus,
logically speaking, the 80386 checks segment attributes first, page table attributes second,
and page attributes third; any fault detected in an earlier check cancels all subsequent checks.
For a page to be considered present, the descriptor of the segment containing the page must
be marked present, the page table's PDE must be marked present, and the page's PTE must
be marked present. As another example, suppose two linearly adjacent pages in the same
segment are covered by entries in the same page table. To make one of them read-only and
the other write able, their common segment descriptor must grant read-write access as must
their common PDE. One PTE, however, must grant read-write access, whereas the other
specifies read-only access.

Because a PDE defines a set of global attributes that apply to 4 megabytes of the linear
space, marking a PDE not-present has the same effect as marking all the entries in a page
table not-present, with the added benefit of eliminating the need for the page table. (If page
tables are swapped, another PDE bit can be used to distinguish between a not-present page
table and a page table that does not exist.) A task that uses 17 megabytes of (linearly contig­
uous) memory, for example, needs only a page directory and five page tables. The smallest
task needs a page directory and one page table.

The CR3 system register contains the physical address of the current page directory. During
initialization, the operating system can load CR3 with the privileged MaY CR3 instruction.
The privileged MaY MEM,CR3 instruction can store CR3. When loading CR3, the 80386
ignores the low 12 bits of the source operand; when storing CR3, the low 12 bits of the
destination operand are undefined. CR3 is loaded automatically on a task switch if the CR3
value in the new task's TSS differs from CR3's current value.

To update a PDE or a PTE, an operating system must have page tables that contain the
page frame numbers of the page directory and all page tables. Although there are a number

2-18

MEMORY MANAGEMENT

of ways to ensure that page frames containing page tables are themselves accessible through
page tables, access is most convenient when these page frames can be accessed with linear
addresses that are the same in all tasks. Figure 2-10 shows one way to arrange each task's
page directory and page tables so they are accessed with the same linear addresses regardless
of the task in which the operating system is running. (This example assumes that each task
has a different page directory.)

The example dedicates one 4-megabyte range of the linear space to represent the addresses
by which a task's page tables and page directory can be addressed. The range must begin at
a 4-megabyte boundary, but can otherwise fall anywhere in the linear space, so long as it is
the same in each task. A task's page directory is allocated at the top of the block and its
page tables are allocated from the bottom; note that the 4-megabyte range can hold 1,024
page tables plus the page directory (which serves double duty as a page table as well in this
example). 1,024 page tables are sufficient to cover the entire 4-gigabyte linear space. The
page directory is initialized so that each PDE contains the page frame number of a page
table, and the topmost PDE contains the page frame number of the page directory.

The 80386 translates any linear address that falls into this 4-megabyte range to the physical
address of a page table or the page directory. Table 2-1 gives addressing examples assuming
that the page tables occupy the top 4-megabytes of the linear address space. In this table, a
linear address is expressed as three components, the first identifying the page directory entry,
the second identifying the page table entry, and the third identifying the offset in the page
frame. Thus, the first example in the table (1023,0,0) is equivalent to linear address
FFCOOOOOH.

2.2.3 Aliases

Two PTEs containing the same page frame address are aliases of one another, as are two
PDEs containing the same page table address. Aliases can have different attributes; for
example, one PTE may allow reading a page while another allows a page to be both read
and written.

Page aliases require the same management techniques as segment aliases. For example, an
operating system cannot free a page frame if the page it contains is aliased (to do so would
give the aliases access to a page that could be reallocated). Similarly, should a virtual memory
system swap an aliased page out to disk, the present bits of all aliases of the page must be
cleared.

2.2.4 Sharing

Two (or more) tasks can share all of their pages by sharing the same page directory. This
approach is useful in segment-oriented systems that use paging for virtual memory, because
such systems use LDTs to separate the local address spaces of tasks. (In fact, such systems
typically share a single page directory among all tasks.) Because paging is defined under­
neath segmentation, two tasks that share a page directory have access only to the addresses
defined by the system's GDT and the tasks' LDTs.

2-19

MEMORY MANAGEMENT

4 GBYTES

POE 1023

PAGE DIRECTORY

POE 1

POE 0
PAGE TABLE 1

PAGE DIRECTORY

4 MBYTES

PAGE TABLE 1

PAGE TABLE 0

T T
UNEARSPACE

PHYSICAL SPACE

Figure 2-10. Example Page Table Addressing Convention

2-20

MAX.
PHYS.
ADDRESS

G30287

MEMORY MANAGEMENT

Table 2-1. Page Table Addressing Examples

Page Dir Page Table
Offset Access

Entry Entry

1023 0 0 PTO,PTEO
1023 0 4 PTO,PTE1
1023 1 8 PT1,PTE2
1023 1 12 PT1,PTE3
1023 1023 4092 PD,PDE1023

Tasks with separate page directories can share either page tables or individual pages. Two
tasks share a page table if the page table is aliased in their page directories. Two tasks share
a page if the page is aliased in their respective page tables.

In general, page attributes are more volatile than page table attributes, making the page
table a more attractive unit of sharing. The difference in volatility is especially relevant to
virtual memory systems, which change the attributes of a page every time it is swapped in
or out. If a page is aliased, all its aliases must be updated when it is swapped in or out. If a
page table is aliased, the attributes of the pages it defines can be changed freely because
only a single PTE describes each shared page. Only if the attributes of the page table itself
are changed do all aliases have to be altered. A virtual memory system can eliminate the
problem by not swapping page tables.

2.2.5 Protection Attributes

As mentioned earlier, when paging is enabled, the 80386 logically checks segment protection
attributes first and page protection attributes second. Consequently, an operating system
that defines pages within segments can use page protection to protect the pages in a segment.
An operating system that defines segments within pages should use segment protection, setting
the page protection attributes to their most permissive values.

2.2.5.1 PRIVILEGE

The U IS (user Isupervisor) bit in a PTE allows a page to be defined as user-accessible
(U IS= 1) or supervisor-accessible (U IS=O). A task can access a user page (for which it
has a descriptor) regardless of the task's current privilege level. To access a supervisor page,
a task must be running at privilege level 2, I, or O. All the pages in a page table can be made
supervisor pages by clearing the U IS bit in the page table's PDE.

2.2.5.2 RIGHTS

Unlike segments, pages are not typed as containing code or data; all pages are executable
and readable. However, a user page can be made read-only to a privilege level 3 task by

2-21

MEMORY MANAGEMENT

clearing the page's R/W (read-write) bit. Supervisor pages are always write able by tasks
running at supervisor privilege level.

2.2.6 Other Attributes

Each page table entry has three available bits that the 80386 does not interpret or change.
An operating system can define these bits for its own use. For example, an operating system
can use these bits to mark pages that are locked for I/O, that are to be copied when written,
or are aliased.

2.2.7 Translation Lookaside Buffer Considerations

Architecturally (logically), the 80386 translates a linear address by looking up a page direc­
tory entry and, using that entry, looking up a page table entry. However, the linear-to­
physical translation is accelerated with an onchip translation lookaside buffer (TLB) that
holds recently used page directory and page table entries. The processor automatically keeps
the most recently referenced PDE-PTE entries in the TLB; it also automatically updates
PDE and PTE accessed bits and PTE dirty bits as pages represented in the TLB are read or
written. (The dirty bit in a PDE is undefined.) To keep the TLB consistent with PDEs and
PTEs, the operating system must flush the TLB when it updates a PDE or PTE that may
be represented in the TLB. Flushing the TLB forces the processor to load the updated PDE
or PTE into the TLB when the relevant page is next referenced. To the flush TLB, move
any value (including the current CR3 value), to CR3.

If the operating system knows a PTE or PDE is not in the TLB, it can update the entry
without flushing the TLB. In particular, the operating system can change a not-present PTE
to present without flushing the TLB, because not-present PTEs are never in the TLB. To
avoid flushing the TLB, the operating system code that clears accessed bits (to identify
pages that have not been accessed recently) should be implemented as an operating system
task whose page directory is distinct from the page directories of all tasks that have swapp­
able pages. When the operating system switches to this clearing task, the 80386 flushes the
TLB because the clearing task's page directory base address (recorded in its TSS) is differ­
ent from the current value in CR3. The clearing task can then be sure that the PTEs it is
examining and updating are not in the TLB because the pages they define are not in the
clearing task's physical address space.

A TLB miss can occur on a memory read or a memory write. A read miss occurs when the
required entry is not in the TLB. A write miss occurs when the required entry is not in the
TLB, or when the entry is there, but its D bit is clear (meaning the 80386 must set the PTE
D bit before performing the write). The 80386 responds to all TLB misses in the same
way by

• Asserting the bus LOCK signal and reading the PDE

• Deasserting the LOCK signal and writing the PDE with a set A bit

• Asserting the LOCK signal and reading the PTE

2-22

MEMORY MANAGEMENT

• Deasserting the LOCK signal and writing the PTE back with a set A bit and, if the
transaction is a write, a set D bit

• Merging the (updated) PDE and PTE into a single TLB entry

• Recording the new TLB entry in an empty TLB slot (if the TLB is not full) or overwrit­
ing an existing TLB entry (if the TLB is full)

The processor guarantees that PDE and PTE accessed bits are set before a page is accessed
and that PTE dirty bits are set before a page is written. Locking the bus during PDE and
PTE updates ensures that, in a shared memory multiprocessor system, another processor
does not access the same PTE until 80386's update is complete. (However, the external bus
arbitration hardware must implement the actual bus locking when signaled by the 80386;
see the 80386 Hardware Reference Manual for details.) In a multiprocessor system, the
operating system software must also lock the bus when it updates a PDE or a PTE. If the
PDE or PTE is marked present, the operating system must force other processors to flush
their TLBs so they use the updated value when the page associated with the PDE/PTE is
next referenced.

TLB misses only slightly increase the overall memory access time of most tasks, because the
memory references of most tasks tend to cluster in a few small, slowly changing address
ranges. Designers of real-time operating systems should note, however, that TLB misses
make memory access times variable because interrupts, exceptions, and task switches can
alter the content of the TLB.

2.3 VIRTUAL MEMORY

An 80386 operating system can implement a virtual memory subsystem that swaps either
segments or pages. (In this section, the term swap-in means to transfer a segment or page
from a swap device-normally a disk-to memory; the term swap-out means to transfer a
segment or page from memory to a swap device.) Both approaches have their merits, but
page-based systems tend to perform better when segments are large. (Finding a large free
block of linear space can substantially increase the time required to swap-in a large segment;
a page fits in any available page frame). Because large segments are common in 80386-
based systems, page-based virtual memory is the principal topic of this section. For a more
complete discussion of segment-based virtual memory, consult the 80286 Operating System
Writer's Guide, Order No. 121960.

2.3.1 Demand Segmentation

80386 segment descriptors (see Figure 2-1) have a P bit that allows the operating system to
shuffle segments between physical memory and a swap device. An operating system can use
the base and limit fields of a not-present descriptor to store the disk address of a swapped­
out segment. However, the other descriptor fields remain defined even when the descriptor
is marked not-present; the 80386 checks the present bit after it has checked the descriptor'S
protection attributes. If more space is necessary than the base and limit fields provide, the
operating system can define "descriptor extension tables" whose entries contain the additional
information for not-present segments.

2-23

MEMORY MANAGEMENT

Whenever the 80386, on its own initiative or in response to an instruction, loads a descriptor
register, it checks the descriptor's present bit and raises a segment fault exception if the
present bit is clear. Not-present segments can cause several different kinds of faults (see
Table 2-2), although they most frequently cause segment faults (for more information on
exceptions, consult Chapter 3).

As Table 2-2 shows, a not-present segment can cause the invocation of one of several fault
handlers. These fault handlers should call a common procedure to swap-in the not-present
segment. The swap-in procedure allocates space for the segment in physical memory, finds
the segment on the swap device, reads the segment into memory, and sets the present bit
and descriptor's base and limit fields. When the fault handler returns, the 80386 re-executes
the instruction that caused the fault.

The present bit helps the operating system swap segments into memory when they are needed;
the A (accessed) bit helps the operating system find memory segments to swap-out. When
free memory becomes scarce, the operating system must swap-out some segments. The 80386
sets a descriptor's accessed bit whenever the descriptor is loaded into a register. (A segment
can be accessed only when its descriptor is loaded into a descriptor register.) When the
supply of free memory runs low, a system task (called the swap-out task in this section) can
cycle through descriptor tables, examining and clearing their accessed bits as follows. Every­
time it "visits" a descriptor, the swap-out task examines the descriptor's accessed bit. If the
accessed bit is 1, the swap-out task simply clears the bit; such a segment has been used
recently (since the swap-out task's previous visit), and is a good candidate for use in the near
future. If, on the other hand, a descriptor's accessed bit is 0, the descriptor has not recently
been used and is a good candidate to swap-out. After transferring the segment to disk, the
swap-out task can add the memory occupied by the segment to the free pool.

Having identified a segment to swap-out, the swap-out task may be able to free the segment's
memory without writing the segment to disk. If a copy of the segment already exists on disk,
the swap-out task needs to update the copy only if the segment is "dirty," that is, if the
segment has been written since it was last swapped-in. Segment descriptors do not have dirty
bits (PTEs do), but their type and rights bits yield similar information. A code segment is
by definition unwriteable, as is a data segment whose W (writeable) bit is O. An unwriteable

Table 2-2. Not-Present Segment Fault Conditions

Exception Condition

Segment Fault Loading CS, DS, ES, FS, or GS with a not-present descriptor; loading
TR or LDTR with a not-present descriptor (using the L TR or LLDTR
instruction); loading CS with a not-present gate descriptor.

Stack Fault Loading SS with a not-present descriptor.

Invalid TSS Fault Switching to a TSS that contains a selector for a not-present LDT;
switching to a not-present TSS.

Double Fault Attempting to load CS with a fault handler's not-present code segment
descriptor. (This is not a legitimate condition that a fault handler can
resolve, but an operating system bug.)

2-24

MEMORY MANAGEMENT

segment need not be written out if a copy of it exists on disk; instead, its memory can simply
be freed. A writeable segment must be written out because it may be dirty.

Note that segment aliases complicate demand segment-based virtual memory. When an
aliased segment is swapped-out, all the alias descriptors must be updated to indicate that
the segment is not present. Likewise, swapping-in a segment requires updating all aliases so
they point to the segment's new location. To determine if a segment has been recently
accessed, all aliases for the segment must be examined. Because aliases may redefine a
segment's type or rights, the need to write out an aliased segment can be determined only
by examining all its aliases; one of these aliases may make the segment writeable. For these
reasons, it may be simplest to make aliased segments immune from swapping.

2.3.2 Demand Paging

Demand paging essentially consists of two functions, handling page faults by swapping-in
pages, and swapping-out pages to free page frames for swapped-in pages.

2.3.2.1 HANDLING PAGE FAULTS

The 80386 raises a page fault (number 14) when, in translating a linear address to a physical
address, it encounters a not-present PDE or a not-present PTE. The operating system code
that responds to page faults is called the page fault handler. A page fault handler is normally
implemented as a privileged procedure that runs in the context of the task that incurs the
fault. Because it runs in the faulting task's context, the page fault handler has ready access
to the task's page directory and page tables. So it can examine and update the faulting task's
page directory and page tables, page fault handler should run at privilege level 0 and should
have read and write access to the segment(s) containing the running task's page directory
and page tables and to the pages that contain the page tables.

Once invoked, the page fault handler must first determine what the page fault means. The
80386 raises a page fault on a page protection violation in addition to a not-present page.
Moreover, many operating systems use the page fault mechanism to signal more conditions
than "a page must be swapped-in from disk." For example, a system that gives each task a
flat 4-gigabyte logical address space will allocate only the pages a task actually needs, marking
typically hundreds of PDEs not-present. A reference to one of these unallocated pages is not
an implicit request to swap-in the page, but an error that is cause to terminate the task. To
cite another example, operating systems commonly interpret page faults that occur near the
top of the stack as requests to add pages to the stack. Thus, an operating system may have
different classes of not-present pages. Because the 80386 does not interpret or alter the
upper 31 bits of a not-present PDE or PTE, the operating system can encode a page's classi­
fication in these bits. However, an operating system should not use the U IS and R/W bits
of a not-present page that is swapped-out; if left unchanged, these bits will be properly set
when the operating system swaps-in the page.

The 80386 provides diagnostic data to assist the page fault handler. The top of the page
fault handler's stack contains the logical address of the instruction that caused the fault and
an error code that describes the nature of the fault (see Figure 2-11). System register CR2

2-25

inlel" MEMORY MANAGEMENT

t
HIGHER

ADDRESSES

~ 0

(UNDEFINED) I OLDCS

OLD EIP

(UNDEFINED) I ~ It I P

'--------ERROR CODE------...

ERROR CODE INTERPRETATION
U/S: PROCESSOR MODE

o ~ SUPERVISOR
1 ~ USER

W/R: ACCESS TYPE
o ~ WRITE
1 ~ READ

P: PAGE FAULT INTERPRETATION
o ~ NOT·PRESENT POE OR PTE
1 ~ PROTECTION VIOLATION

Figure 2-11. Page Fault Handler Stack

~ESP

G302B7

contains the linear address that could not be translated; system register CR3 contains the
physical address of the task's page directory.

An actual page fault handler must also examine the PDE and the PTE to determine how to
respond to the not-present condition. Supposing that the required response is to swap-in the
missing page, the page fault handler can proceed as follows:

• Allocate a page frame for the page.

• Find the page's disk address and schedule the page to be read into the page frame; block
until the read completes.

• When the read completes, update the PTE, setting the page frame address, marking the
page present and not-dirty. (It is not necessary to mark the page accessed; the 80386
sets the accessed bit when it reexecutes the faulting instruction.)

• Return with an IRET instruction so the processor will reexecute the instruction that
incurred the page fault.

Page directories can be swapped-out with other task pages subject to the following constraint.
Before switching to a TSS, the operating system must ensure that the task's page directory
is resident in physical memory and that the CR3 field of the TSS contains the physical
address of the page directory.

2.3.2.2 REPLACING PAGES

A page fault handler can swap-in a page only if a free page frame is available to hold it. A
swapper complements a page fault handler by swapping out present pages and adding the

2-26

MEMORY MANAGEMENT

frames they occupy to a list of free frames. When tasks page against themselves (that is,
each task has a limited supply of page frames), the swapper is typically implemented as a
procedure. The page fault handler calls the swapper when no free frame is available. In
systems that share a pool of page frames among all tasks, the swapper is typically imple­
mented as a system task. The operating system starts the swapper task when the supply of
free pages falls below a threshold deemed necessary for good system performance. The
swapper suspends itself when it builds the free frame list up to an upper threshold. Whether
it is implemented as a procedure or as a task, the swapper attempts to replace pages that
are unlikely to be referenced in the near future.

The swapper must have read-write access to page directories and page tables. The A
(accessed) and D (dirty) bits in page table entries can help the swapper find pages to replace
and to replace them efficiently. (Note that in a code segment descriptor the default operand
size and address field is called the D bit, whereas the D bit in a PTE is the dirty bit.) The
80386 sets a PTE's accessed bit whenever a page is read or written. The swapper can monitor
page reference activity by periodically testing and clearing accessed bits. If the swapper
finds that an accessed bit is clear, the swapper knows the page has not been referenced since
its last examination and is a good candidate to swap-out.

The 80386 sets a PTE's D bit whenever the page is written. If the page fault handler clears
the D bit whenever it swaps in a page, the D bit tells the swapper whether a page has been
updated since it was last swapped-in. If the D bit is clear, and the swapper knows a copy of
the page exists on the swap device, the swapper can free the frame without writing out the
page.

Note that page aliases complicate the swapper's job. Only by examining all the aliases of a
page can the swapper tell whether the page has been recently accessed or is dirty. If page
tables, rather than pages, are aliased, swapping is considerably simplified.

2.4 EXAMPLES

This section shows how segmentation and paging can be used to implement representative
memory management schemes. Chapter 10 provides an example of a complete operating
system, including memory management.

2.4.1 A Flat Memory Design

F /386 is a hypothetical embedded real-time control system in which there is little distinction
between operating system code and user code. In F /386, performance is of greatest impor­
tance, and protection is of no importance.

To simplify the calculation of worst case execution times, F /386 does not use paging. (When
paging is enabled, TLB misses effectively increase memory access times and the number of
TLB misses is dependent upon interrupt patterns. Figure 2-12 shows F /386's GDT and linear
address space. F /386 defines the minimum number of segments, code and data. All descrip­
tors are defined in the GDT because all tasks share a single logical address space (the LDT
selectors in F /386 TSSs are null). Only two segment descriptors, one for code and one for

2-27

4GB

o

MEMORY MANAGEMENT

GDT

TSS

TSS

SUPER CODE DESCR,

USER CODE OESCR.

DATA OESCR,

NULL OESCR.

-

LOAD ED INTO
S, ANO ES SS,D

!:::;o.--

I~

r--

Figure 2-12. F/386 Linear Space Map

G30287

data, are required; both have a base address of 0 and a limit equal to the amount of physical
memory in the system. Because all segments map the same linear addresses, pointers are
simple 32-bit offsets representing displacements from linear address 0 (which is also physical
address 0 since paging is not enabled). All segments have a DPL of 0 so that tasks can call
OS procedures directly with fast intrasegment calls (task and operating system code are
linked together in this simple system).

Figure 2-13 illustrates an actual example of a program running in a flat, 32-bit, protected
environment on an 80386 PC. Since the PC BIOS is not written to run reliably in protected
mode, this example code uses direct write (rather than using the BIOS screen handling
services) to the PC display RAM at the 32-bit address 000b8000h. Note that the code is
assembled using an 8086 assembler, and uses the 'db' (define bytes) directive to generate
the 80386 specific instructions.

2-28

I\)
I
I\)
(0

BOB6/B7/88/18i MACRO ASSEMBLER 1156 ASSEMBLY OF MODULE FLAT
OBJECT MODULE PLACED IH FLAT.OBJ
ASSEMBLER IHVOKED BY: ASMB6 FLAT.ASM

LaC OBJ

o 066
o 067
OOEA

0200
020 0
0224
0224

o 1 00

LIHE SOURCE

Flat Machine Initialization

initialization code to turn 386 into 32-bit address/32-bil data fla! machine
(paging and segmentation features are not used)

7
8
9

1 0
11
1 2
1 3
1 4
15
16
1 7
18
19
20
2 1
22
23
24
25
26
27
2B

name

Data32
Addr32
JMPFar

Tables

assume

GDT:

SetSegs
SetS!ss

Tables

29 I nit
30
31
32
33 assume
34

F I a t

equ 66h
equ 67h
equ OEAh

segment at o h

cs:Tables

or g 200h

Drs 224h
proc far
endp

ends

segment

erg 100h

cs: Init,ds: Inlt,es: Inlt

prefix to toggle 16/32-bit data operand
prefix to toggle 16/32-bit addressing mode
opeode for JMP inter segment

Figure 2-13_ Flat Mode Initialization Code

cl

3:
m
3:
o
::g
<
3:
l>
Z
l>
G)
m
!!:
m
z
-I

I\J
I

(,)
0

8086/87/88/186 MACRO ASSEMBLER X156 ASSEMBLY OF MODULE FLAT
OBJECT MODULE PLACED IN FLAT.OBJ
ASSEMBLER INVOKED BY: ASM86 FLAT.ASM

LOC OBJ LIM E SOURCE

o 1 00 35 Start:
o 1 00 B80000 36 mov ax,~e9 GDT
o 1 03 8ECO 37 mov e 5 , a x

38 a.S!5ume e.:T.bles
39

o 1 05 BEOO0290 40 mov 5i,off5el NullDelC
o 1 09 BFOO02 41 mov di,offsel GDT
o 1 0 C 890001 42 mov cx,100h
o 1 0 F F C 43 c 1 d
o 1 1 0 F3 44 rep mov'!!lw move
o 11 1 AS
o 11 2 EA24020000 45 l m p SetSq.

46
0200 47 or 9 200 h

48
49 Global De5criptor Tab 1 e
50 contain. t h r e e descriplon:
51 Oh: M u I I : not u 5 e d
52 8h: Code: code segment 5 I art s at
53 1 0 h : Dala: d a t a segmenl 5 I a r Is at
54

020 0 o 000 55 NullDesc dw o , 0 , 0 , 0 ; null

0202 o 000
0204 o 000
0206 0000

56

Global Descriptor Table! to

and extend! for gigabytes
and extends for 9 i 9 ab ytn

descriptor - not u ~ e d

0208 F F F F 57 CodeDesc dw OFFFFh lim it at maximum: (bit s 1 5 : 0)
020A 00 58 db o , 0 , 0 ba.e at o : (bit s 23 : 0)
020B 00
020 C 00

G D T : 0

(overlap code)

020D 9F 59 db 1 0 0 1 1 1 1 1 b present/priv level 0/code/conformin9/readable
020 E C F 60 db 11 00 1 1 1 1 b page 9ranular/default 32-blt/limlt(bit~ 19: 16)

02 OF 00 61 db base a t o : (bit s 31 : 24l
62

Figure 2-13. Flat Mode Initialization Code (Cont'd.)

l

31:
m
31:
0

" -<
31:
l>
Z
l>
C>
m
31:
m
Z
-t

N
I

~

8086/87/88/186 M~CRO ASSEMBLER X156 ASSEMBLY OF MODULE FLAT
OBJECT MODULE PLACED IN FLAT.OBJ
ASSEMBLER INVOKED BY: ASM86 FLAT.ASM

LOC OBJ

0210 FFFF
0212 00
0213 00
0214 o 0
0215 93
0216 CF
0217 00

0218 FF07
02 1 A 0000
021C 0000

021E 1 700
0220 0002
0222 0000

0224

0224 FA

0225 2E
0226 OF
0227 01
0228 1E

LINE SOURCE

63 DataDe5c dw
64 db

65 db
66 db
67 db
68
69

OFFFFh
o , 0 , 0

10010011b
11 0 0 1 111 b
o

Load Pointers for Tables

limit at maximum: (bits 15:0)
base at 0: (bits 23:0)

present/priv level O/data/expand-up/writeable
page granular/default 32-bltlllmitcblt5 19:16)
base at 0: (bits 31:20

70
71
72
73

contains 6-byte pointer information for: LIDT, LGDT

74
75
76
77
78
79
80
81
82
83
84

IDTPtr

GDTPtr

85 SetSeg:

dw
dw
dw

dill
dill
dill

7F F h

17 h
offset GDT
Oh

Interrupt Descriptor Table pointer
lim ita t m a x i mum (a I low sal I 2 56 i n t err u p t 5)
base at 0: (blt5 15:0)
base at 0: (bit! 31:16)

Global Descriptor Table pointer
limit to three 8 byte selecton(null,data,code)
base at 80000h: (bits 15:0)
base at 80000h: (bits 31:16)

86 assume cs:lnit,d!:nothlng,es:nothlng
87 cli di!!ble interrupts
88 ; (eLI not needed if immediately after RESET since already clear)
89 lid! cs:IDTPtr load Interrupt Descriptor Table
90 db 2Eh,OFh,0Ih,OOOI1110b

Figure 2-13. Flat Mode Initialization Code (Cont'd.)

cl

i:
m
i:
o
:»
-<
i:
):>
z
):>
C)
m
i:
m z
-I

J\)
I
(,)
J\)

8086/87/88/186 MACRO ASSEMBLER X156 ASSEMBLY OF MODULE FLAT
OBJECT MODULE PLACED IN FLAT.OBJ
ASSEMBLER INVOKED BY, ASM86 FLAT.ASM

LOC OBJ LI N E

0229 1802 91
92
93

022B 2E 94
022C OF
022D o 1
022E 16
022F IE 0 2 95

96
97

023 1 OF 9S
0232 o 1
0233 EO
0234 DC 0 1 99

1 0 0
0236 OF 1 0 1
0237 o 1
023S FO

1 02
0239 EB0190 103
023C 1 04
023C BB1000 1 05
023F SED3 106
024 1 SEDS 1 07
0243 8EC3 lOS

109
0245 66 1 1 0
0246 EA 111
0247 4D02 1 12
0249 o 000 1 13
024B 0800 1 14

115
116

SOURCE

dw offset IDTPtr

I g d t cs:GDTPtr
db 2Eh I OFh I 01h , 00010110b

dw offset GDTPtr

smsw ax
db OFh 1 01h , l1100000b

or a 1,1
1m 5 w ax

db OFh 1 01h , 11110000b

jmp Next
N e x I :

mov b x I 1 0 h
mov s s,b x
mov d 5 I b x
mov e 5 I b x

db Dala32
db JMPFar
dill offsel No I e
dill 0
dill 8h

laid Global Descriptor Table

pul Machine Status Word in AX

acllvale Protection Enable bll
slore Machine SIalus Word , begin protected mode

flush prefelch queue

sel segment registers to DeteDesc(selector a l0h)
load SS,DS,ES segment registers with DateDesc

32-bil override prefix
opcode for JMP Inters!gment
starting address of 32-blt code (low-word)
starting addre55 (high-word of linear address)
CodeDesc selector aSh

Figure 2-13. Flat Mode Initialization Code (Cont'd_)

I:

!II:
m
!II:
o
::a
-<
!II:
l>
Z
l>
G')
m
!II:
m z
-t

I\)
I

c.:>
c.:>

8086/87/88/186 MACRO ASSEMBLER X15S ASSEMBLY OF MODULE FLAT
OBJECT MODULE PLACED IN FLAT.OBJ
ASSEMBLER INVOKED BY: ASM86 FLAT.ASM

L 0 C o B J LI N E SOURCE

024D E 4 6 1 1 1 7 No Ie: i n a I , 6 1 h
024F o C 0 3 118 or a I ,3
025 1 E 661 119 oul 6 1 h , a I t urn

1 20
0253 B8330E 1 2 1 mov ax,0E33h
0256 320 E 122 dw OE32h; loa d

on speaker

E A X wit h 330E320E
0258 A30080 1 23 mov ds:Video,ax P I ace ye I low "32 11 directly on IBM-CGA dl5play
0258 0800 1 2 4 dw 08h ... by writing E A X to linear address OOOBBOOOh
025 D B9FFFF 1 25 mov cx,OFFFFh
0260 040 0 126 dw set del a y co u n t t 0 0004FFFFh
02&2 E2FE 1 27 Delay: loop Del a y
0264 B 0 F E 128 mov al,OFEh
0266 E664 129 out 64 h , a I shutdown and reboot
0268 F 4 1 30 Shutdwn:hlt
0269 EBFD 1 3 1 j m p s h 0 r t Shutdown

1 3 2
8000 133 or g 800 0 h
8000 ? ? ? ? 134 Vi de 0 dw pseudo pointer to IBM Color/Graphics display

135
136 I nit ends
1 37
138 end S tar t

ASSEMBLY COMPLETE, NO ERRORS FOUND

Figure 2-13. Flat Mode Initialization Code (Cont'd.)

cl

3i:
m
3i:
0
:0
-<
3i: »
Z »
C)
m
3i:
m
Z
-I

MEMORY MANAGEMENT

2.4.2 A Paged Memory Design

P /386 is a hypothetical operating system that uses paging for protection and for virtual
memory. Figure 2-14 shows P /386's linear address space and GDT. P /386 uses segments in
much the same way that F /386 does; however, there are separate code segments for super­
visor and user. The descriptors for these segments are identical, except that the supervisor's
code descriptor has a privilege level of 0, whereas the user's code descriptor has a privilege
level of 3. (The common data descriptor also has a privilege level of 3.) All segments have
base addresses of ° and limits of 4 gigabytes. Because all segments are based at linear address
0, P /386 uses offset-only pointers.

P /386 tasks do not use an LDT because they share a common set of segments. However, as
shown in Figure 2-15, each task has a separate page directory. Although tasks generate the
same linear addresses, the linear addresses are translated to different physical addresses

MAX.
MEMORY

o

GOT

T55

TSS

CODE DESC.

DATA DESC.

NULL DESC.

,-

I- LOAD
55,0

ED INTO
5, AND ES

'':;01--

-

Figure 2-14. P/3S6 Linear Space Map

2-34

G30287

MEMORY MANAGEMENT

(except for operating system references). The unit of intertask sharing in P 1386 is the page
table; each task's page directory defines the page tables it shares with other tasks. At a
minimum, each task has a PDE defining the shared supervisor page table. In this way, the
operating system is mapped into the address space of each task.

Although operating system pages are present in each task's address space, the U IS bits of
operating system PTEs are 0 to prevent these pages being accessed from privilege level 3.
Thus, while an application task running at privilege level 3 uses the same data segment as
the operating system, it cannot read or write operating system pages. Similarly, even though
a task's level 3 code segment covers the same linear addresses as the operating system's level
o code segment, the application task cannot directly execute operating system code because
the pages containing the operating system's code allow supervisor access only.

The PTEs of user code pages have their R IW bits set to catch programming errors that
would overwrite code. (Although the user code segment is unwriteable by definition, it is
overlapped by the writeable user data segment, allowing code to be overwritten if it is not
page-protected.) User data and stack pages are marked read-write. User code makes a system
call through a call gate (see Chapter 4); this call loads CS with the operating system's code
segment selector, changing the current privilege level to 0 so the operating system can access
its pages. Interrupts and exceptions also load CS so their handlers run at privilege level O.
Segment registers otherwise remain constant.

P j386 shuffles pages between page frames and a pageout device, setting the PTE present
bit when a page is brought into memory and clearing the present bit when the page is
swapped out.

2.4.3 A Segmented Memory Design

Sj386 is a hypothetical system that uses segmentation for run-time protection. Sj386 does
not implement virtual memory. Figure 2-16 summarizes Sj386's memory organization.

In Sj386, a job is a collection of related tasks. All tasks in a job share an LDT and, there­
fore, share all code and data. Tasks in different jobs have different LDTs and share only the
segments defined in the GDT (the operating system code and data segments).

In Sj386, the segment is the unit of memory allocation. When a task asks for more memory,
the system returns a selector for a new segment in the job's LDT. Sj386 makes all segments
as small as possible and uses byte granularity for segments less than I megabyte. Sj386
gives a task a small expand-down stack segment. If the task overruns the small stack, the
operating system automatically expands the segment (up to a predefined maximum) by
allocating a larger segment, copying the stack contents from the old segment to the new,
and freeing the old segment's memory. Each segment has the most protective attributes
possible; for example, code segments are not readable. No segments are aliased; however,

2-35

KERNEL
SEGMENTS

(DPl - 0 ,1
EXECUTE

SEGMENTS
(OPL - 1 ,{

RESERVED
FOR OEM

SOFTWARE

DPl

{

MEMORY MANAGEMENT

HIGHEST PHYSICA l
GOT ADDRESS I

~
TSS STACKS

:
(DATA)

TSS

STACKS

rJf
CODE

DATA STACKS

CODE

DATA
STACKS

~
..

DATA

CODE n CODE

NULL ..
NULL

NULL (FREE)

NULL

STACK

~""~~"" H DATA

DEFINED IN A
DIFFERENT LOT DATA

CODE

JOB LOT

I
(FREE)

(SPARE)

STACK

I (SPARE) DATA

I
TASK 2 STACK r- (FREE)

TASK 2 DATA r-- STACK

II TASK 2 CODE (FREE)

TASK 1 STACK .. CODE

I
TASK 1 DATA DATA

I TASK 1 DATA DATA

I : I 'OIl
TASK 1 CODE CODE

G30287

Figure 2-15. P / 386 Linear-to-Physical Map

2-36

I\:)

b
"

USER -...c

LINEAR
SPACE

~ "

I> -

~~4444W>-

u:;t::R 1

PAGE DIRECTORIES PAGE TABLES PAGEOUT DEVICE

E~"'±ill5~~~:~gl==~,111 ~I~ii i ... i
'-1 I L-ji\:;:i:::::;:\i:i:i:i:i::::::::i))

r=-'.~ II~ ,.E-·3=-·~=9I· :;~~~i=

LINEAR
SPACE

L.(~ _ '.

SUPERVISOR J=::::= SHARED ~

I .. ' t-

PHYSICAL
MEMORY

'6MBW I!'<'E >,,',(,,' ""';'~

tI:::\·::'Y':' ::r: ::> ::].

o ri:).::::)))r)))))

Figure 2-16. 5/386 Linear Space Map

cl

3:
m
3:
o
::0
-<
3:
:I>
Z
:I>
C)
m
3:
m
Z
-I

MEMORY MANAGEMENT

the operating system defines a privilege level 0 data segment alias that covers the entire
linear address space; the operating system uses this alias to update 80386 system segments
and tables and to access arbitrary locations in a task's linear space.

The Sj386 operating system is implemented in privilege levels 0 and 1. Level 0 procedures
and data comprise the operating system kernel. This kernel essentially provides a system call
interface to the 80386 system architecture. The kernel manages the linear address space,
created segments, creates TSSs, and so on. Operating system structures such as memory
pools and files are implemented at privilege level 1. User code and data runs at privilege
level 3. Sj386 does not define privilege level 2; an OEM (original equipment manufacturer)
can implement its software at this level to obtain protection from user code without jeopard­
izing the operating system.

Sj386 uses call gates (see Chapter 4) to define the privilege levels that can make each
system call.

2.4.4 A Hybrid Memory Design

Hj386 adds demand paging to Sj386. Hj386's linear space map is identical to Sj386's.
Figure 2-17 shows how linear addresses are mapped to physical addresses through one page
directory and one set of page tables. Retaining Sj386's segment-based protection and sharing,
Hj386 need not use page attributes to restrict memory addressability because the contents
of a task's descriptor tables do that job. Thus, all Hj386 tasks share a common page direc­
tory and a common set of page tables. The PTEs and PDEs define all pages as user-accessible
and writeable.

2-38

MEMORY MANAGEMENT

",

-
LINEAR
SPACE

4GB
..

-
...........

-

~
,---.

PAGE
TABLES

f= J: PAGE
DIRECTORY

t: ~

r: [~
~

~
~

I- ~

Figure 2-17. H/386 linear to Physical Map

2-39

PAGEOUT
DEVICE

..........

/'
PHYSICAL
MEMORY

G30287

Interrupts and Exceptions 3

CHAPTER 3
INTERRUPTS AND EXCEPTIONS

Interrupts and exceptions are unprogrammed events that alter the normal sequential flow of
execution through a task's instructions. Interrupts occur independent of instruction execu­
tion and typically signal requests for service from external devices. The 80386 recognizes
interrupts at instruction boundaries, or in the case of string instructions, between repeat
steps. Unlike interrupts, exceptions result from instruction execution; for example, the
processor raises an exception when it detects an error in an instruction. Note that, by this
definition, the result of executing an INT n (software interrupt) instruction is an exception,
not an interrupt.

3.1 INTERRUPT DESCRIPTOR TABLE

Each different type of interrupt or exception potentially requires a different type of response.
Each type of interrupt and exception has an identifying number in the range 0-255. Some
interrupt and exception numbers are predefined by the processor, others are reserved by
Intel, but most are available to the operating system. An operating system associates a number
with an interrupt source by programming an 8259A Programmable Interrupt Controller;
when the interrupt occurs, the interrupt controller passes the number to the 80386. (See the
80386 Hardware Reference Manual for details.)

The interrupt descriptor table (IDT) is the link between an interrupt or exception number
and the handler that operating system has designated to handle that type of interrupt or
exception. The processor uses the number as an index into the IDT. The descriptor indexed
by the interrupt or exception number contains the information the processor needs to trans­
fer control to the handler.

Like an LDT or the GDT, the IDT is a table of descriptors. The IDT can be located anywhere
in the linear address space; the operating system's initialization routine loads the IDT's
address into the processor's IDT register (IDTR) with an LIDT instruction. The operating
system must guarantee that when an interrupt or exception occurs, the IDT slot correspond­
ing to the interrupt or exception number contains a valid descriptor.

A descriptor in the IDT must be an interrupt gate, a trap gate, or a task gate. Interrupt
gates and trap gates contain a selector and an offset for the procedure that is to handle the
associated interrupt or exception within the current task. A handler invoked through an
interrupt gate is invoked with interrupts disabled; invocation of a handler through a trap
gate does not change the interrupt enable flag; interrupt and trap gates are otherwise identi­
cal. A task gate contains a selector for a TSS representing the task that is to handle the
interrupt or exception. By setting a gate's DPL, the operating system can specify the privi­
lege level required to invoke an interrupt or exception handler with an INT n instruction; to
use a gate, a task must be at least as privileged as the gate.

The IDT is a critical resource that should be modified only by privilege level 0 code; this
can be ensured by making DPL=O in the data segment alias that frames the linear addresses

3-1

INTERRUPTS AND EXCEPTIONS

occupied by the IDT. To minimize interrupt latency, the IDT should always be present in
physical memory. Each IDT gate must be internally consistent when the corresponding
interrupt or exception occurs. When updating an IDT gate, the operating system must ensure
that the interrupt or exception corresponding to the gate does not occur until the gate has
been completely updated. Because IDT changes are normally rare and take very little time,
disabling interrupts during updates is the simplest way to ensure IDT gate consistency.
Alternatively, the operating system can update a copy of the LDT and issue the LIDT
instruction to load the new IDT's address into IDTR; this approach should be used to update
the non-maskable interrupt gate unless external hardware can disable nonmaskable
interrupts.

3.2 INTERRUPT AND EXCEPTION HANDLERS

An interrupt or exception handler can be implemented as a procedure or as a task; each
form has advantages and disadvantages, which are discussed in this section. A procedure­
based handler runs in the context of the currently executing task, whereas a task-based
handler (which can be dispatched by the processor without operating system intervention),
runs in its own context. In either case, when the handler has finished, the processor returns
to execute the next instruction in the interrupted task. (For most exceptions, and notably
page faults, the "next instruction" is the instruction that incurred the exception.)

3.2.1 Procedures versus Tasks

In general, an exception handler should be implemented as a procedure, so that it can handle
an exception in the context of the task that incurs the exception. To resolve an exception, an
exception handler often requires access to the running task's address space; for example, the
page fault handler must find the page table entry associated with the fault. Therefore,
exceptions (including software interrupts) are usually best handled with procedures. (As
discussed in Section 3.3, some exceptions, however, must be handled by tasks.)

Interrupts are unrelated to the running task and their handlers are good candidates for
implementation as separate tasks. To take care of its associated device, an interrupt handler
has no need to access the running task's data, and, in fact, an attempt to do so is probably
an error. Therefore, from a logical point of view, interrupts are best handled with tasks that
run in their own contexts. When interrupt latency is critical, however, 80386 interrupt
handlers can be implemented as procedures. Because most processors have no facility for
handling interrupts with tasks, it has been traditional to handle interrupts with procedures.
Interrupt tasks, however, have several advantages:

• An interrupt task can run its own address space and not threaten the task it interrupts.
(An interrupt procedure bug that corrupts the tasks it runs in is among the most diffi­
cult to diagnose.)

• Unlike a procedure, an interrupt task does not need to save and restore registers; the
processor-initiated task switch saves and restores all registers. (Automatic register saving
removes one source of error from an interrupt handler, but also increases the time
required to invoke the handler.)

3-2

INTERRUPTS AND EXCEPTIONS

• An interrupt task can be made to run at any privilege level and, therefore, can be
subjected to additional protection constraints. (While an interrupt procedure can
theoretically run at any privilege level, practically speaking, its privilege level must
be O. Inerrupt procedure privilege levels are described in more detail later in this chapter.)

• In systems that manage resources on a per-task basis, an interrupt task can issue operat­
ing system calls because the task can be given its own resources (for example, a memory
pool). An interrupt procedure, on the other hand, inherits the resources of the task it
happens to run in. (Consider what can happen if an interrupt procedure allocates memory
for a message it sends to a task. First, the interrupted task may not have sufficient
memory; second, the interrupt procedure reduces the amount of memory the interrupted
task has available for allocation; third, if the interrupted task terminates shortly, the
operating system might reclaim the interrupt procedure's message before it is delivered.)

• Interrupt tasks can simplify stack space management. An interrupt procedure inherits
the stack of the task it interrupts. Therefore, all interruptible tasks must provide suffi­
cient stack space for the deepest level of interrupt procedure nesting that can occur.
Spreading and duplicating interrupt stack space across all tasks, it uses more memory
than is necessary and can add to management difficulties (if an interrupt procedure
needs more stack, all tasks must be modified). An interrupt task has its own stack.

• An interrupt task may use LDT-based descriptors, freeing up GDT slots, which can be
scarce resources in systems with many shared segments. An interrupt procedure must
use only GDT-based selectors, because it is generally impossible to predict which tasks
it will interrupt, and, therefore, which LDTs it will inherit. (However, if all interruptible
tasks share a single LDT, then interrupt procedures can use that LDT.)

Although they have many advantages, 80386 interrupt tasks should not always be favored
over interrupt procedures. Many 80386 operating systems will continue to handle interrupts
with procedures. For example, when all tasks run in a single environment, as they might in
a simple static application, the issues of protection and resource control are irrelevant. In
systems where interrupt latency is critical, interrupt procedures may be the best choice;
interrupt procedures are invoked faster than interrupt tasks for the same reason that a CALL
instruction is faster than a JMP TSS instruction. (For simple interrupt handlers, the complete
register save and restore performed in a task switch may be unnecessary.)

3.2.2 Procedure-Based Handlers

To handle an interrupt or exception with a procedure, place an interrupt gate or a trap gate
in the corresponding slot in the IDT. These gates are operationally identical except for a
single important difference. Invocation through an interrupt gate clears the interrupt enable
flag (IF), whereas invocation through a trap gate does not alter this flag. In general, inter­
rupt gates are used for interrupt handlers and trap gates are used for exception handlers.
However, some exception handlers, such as the page fault handler, must be invoked with
interrupts disabled and should therefore be invoked through interrupt gates.

The processor invokes an interrupt or exception procedure in much the same way that it
executes a CALL through a gate. If the gate is an interrupt gate, the processor clears IF; if
the gate is a trap gate, IF is not changed. Note that clearing IF only blocks recognition of

3-3

INTERRUPTS AND EXCEPTIONS

interrupt requests on the INTR pin; nonmaskable interrupts (on the NMI pin) and excep­
tions (including software interrupts and coprocessor errors) are unaffected by IF's state.
(Note that NMI interrupts are disabled when the the NMI handler is invoked by an inter­
rupt; however, invoking the NMI handler with an INT n instruction does not disable NMI
interrupts.) The code segment pointed to by the gate must be at least as privileged as the
task's current privilege level; otherwise, the 80386 raises a general protection fault. If the
code segment pointed to by the gate is more privileged than the interrupted task's current
privilege level (CPL), the processor changes to the more privileged stack and pushes the
running task's SS and ESP registers. The 80386 pushes the EFLAGS, CS, and EIP in that
order (see Figure 3-1). The processor stores the interrupted task's privilege level in the RPL
field of the saved CS value. All pushed selector values are 32 bits wide with the high-order
16 bits undefined. For some exceptions the processor also pushes an identifying error code
(also a 32-bit value whose high-order 16 bits are undefined).

To return, the handler must pop the error code, if any, and issue a 32-bit IRET instruction.
The 80386 inspects the privilege level it saved on the interrupt handler's stack to determine
how to clean up the stack before returning to the interrupted task. If the interrupted task
was running at the same privilege level as the handler, the 80386 pops the saved CS, EIP,

OLD ESP - ~

",

~

OLD FLAGS

OLDS CS'

OLD EIP

ERROR CODE"

a. NO PRIVILEGE TRANSITION

ESP FROM lSS - ~

OLD SS'

OLD ESP

OLD FLAGS

- IF DEFINED FOR EXCEPTION OLD CS"

"'

..--""
ESP < __

~

"

OLD EIP

ERROR CODE"

I
IF DEFINED FOR EXCEPTION

T J
ss~L--------------~-

31 a

b. WITH PRIVILEGE TRANSITION

"16 HIGH ORDER BITS UNDEFINED

G30287

Figure 3-1. Stack at Entry to Interrupt or Exception Procedure

3-4

INTERRUPTS AND EXCEPTIONS

and EFLAGS values into the corresponding registers. If the interrupted task was less­
privileged than the interrupt or exception procedure, the 80386 additionally pops the saved
ESP and SS values, thus switching back to the less-privileged stack.

In general, an interrupt or exception procedure should run at privilege level O. An 80386
procedure can never call a less-privileged procedure, and the processor enforces the same
rule when it invokes an interrupt or exception procedure. Such a procedure must, therefore,
be at least as privileged as the most-privileged procedure executed by the tasks in whose
context it may be invoked. In most operating systems, almost every procedure is at times
interruptible, including those that run at privilege level o. Moreover, many operating system
procedures can incur exceptions, such as page faults. The DPL of an interrupt or exception
handler procedure must be 0 if the handler can be invoked when a task is executing a privi­
lege level 0 procedure. Never make an interrupt or exception procedure less privileged
than 0 unless you can guarantee that the procedure will never be invoked when a more
privileged procedure is running.

There is a second protection-related reason to make an interrupt procedure run at privilege
level o. When the processor executes the procedure's IRET instruction, it checks to see that
the procedure has sufficient privilege to change IF (this can occur when the processor pops
the EFLAGS image from the stack into its EFLAGS register). To change the interrupt
enable flag, CPL must be (numerically) less than or equal to IOPL. If an interrupt proce­
dure can run in any task whose IOPL is 0, then the DPL of the procedure issuing the IRET
must be O.

A conforming code segment has no inherent privilege level, but runs at the privilege level of
the task that invokes it, either by a CALL instruction or by an exception. An exception
procedure can be implemented as a conforming segment when the following conditions hold:

• The exception procedure has no data of its own, but operates only on the data of the
task incurring the exception.

• No virtual 8086 mode tasks are in the system (virtual 8086 mode is described in
Chapter 9). An interrupt or exception handler must run at privilege level 0 to be invoked
without fault in a virtual 8086 mode task; a conforming procedure would be invoked at
privilege level 3, the level of a virtual 8086 mode task.

Using a conforming segment for an exception procedure minimizes the procedure's privilege
level and therefore contributes to system safety and may help uncover bugs. However, the
fact that a conforming handler must be able to run successfully at any privilege level limits
its utility. For example, a conforming divide exception procedure is appropriate (because the
handler needs access only to the running task's data), but a conforming page fault handler
is not (because the page fault handler needs access to page tables whose privilege level is
most likely 0).

3.2.3 Task-Based Handlers

When, in responding to an interrupt or exception, the 80386 finds that the relevant descrip­
tor in the IDT is a task gate, it switches to the task whose TSS selector is in the gate. This

3-5

INTERRUPTS AND EXCEPTIONS

processor-initiated task switch works as an operating system-induced task switch: the proces­
sor saves the machine state of the old task in the old task's TSS and loads the machine state
of the handler task from the handler's TSS. Note that the handler task runs with interrupts
enabled or disabled depending on the IF bit its TSS EFLAGS image. The processor also
sets its NT (nested task) bit and writes a selector for the old task's TSS into the backlink
field of the handler's TSS. Setting the NT bit directs the 80386 to execute the handler's
IRET instruction as a task switch to the task defined by the backlink. Note that a task­
based handler cannot be entered recursively as can a procedure-based handler. A task-based
handler's busy bit remains set until the task suspends itself with an IRET instruction. An
attempt to invoke a busy task results in an invalid TSS fault.

When the handler is ready for the next interrupt or exception, it issues a 32-bit IRET
instruction. (Handlers for exceptions that push an error code must pop the error code before
issuing the IRET.) In its execution of the IRET, the processor copies the NT bit to an
internal register and then clears the NT bit. It then stores the handler's context, including
the clear NT bit, in the handler's TSS. Because the NT bit was set at the time of the IRET,
the processor uses the backlink field in the handler's TSS to find and load the TSS of the
old task, thus resuming its execution. The next occurrence of the associated interrupt or
exception resumes execution of the handler at the instruction following the IRET. Thus, a
task-based handler runs in an endless cycle; the IRET instruction suspends the task until it
is invoked by the next interrupt or exception.

Processor dispatching of interrupt and exception tasks minimizes latency, but it can also
conflict with the operating system's task dispatcher. For example, consider what happens if
an interrupt or exception task makes a system call. Unless it has been notified that the 80386
has dispatched a new task, the operating system will interpret the call as though issued by
the task that was interrupted or incurred the exception. Figure 3-2 shows one way the
operating system can integrate the processor's dispatching efforts with its own software
dispatching.

An interrupt or exception task's code can be implemented as two procedures, one that handles
the interrupt or exception and one that coordinates processor and operating system dispatch­
ing. The handler procedure consists of an initialization part that is executed once, and an
endless loop that is executed once for each interrupt or exception. The dispatcher interface
contains the IRET instruction that causes the 80386 to switch from the handler task back
to the task that was running when the interrupt or exception occurred. (When the operating
system invokes the handler to allow it to initialize itself, the IRET causes a task switch back
to the operating system initialization task.) The instruction following the IRET is the first
instruction in the handler task that is executed when an interrupt or exception causes the
task to be invoked by the 80386. This and the following instructions can update the operat­
ing system's dispatching information so the processor's dispatch of the handler task is consis­
tent with the operating system's information. Then the interface procedure can return to the
handler procedure, which can take care of the interrupt or exception. When the interrupt or
exception has been handled, the handler procedure calls the interface procedure, which
prepares the operating system for the task switch that will occur when the interface proce­
dure's IRET instruction is executed.

To minimize the interval between invocation of the handler task and execution of the first
instruction that directly responds to the interrupt or exception, the interface procedure should

3-6

:
t

- r- LNT,

~:

HANDLER
TASK

INTERRUPTS AND EXCEPTIONS

OPERATING SYSTEM
INITIALIZATION TASK ANY TASK

-

l-

¢
INITI!LlZE

I
I
I t I

WHILE TRUE DO I
I I , I

CALL DISPATCH --+-
HANDL! EVENT

I

I

t I
- ENDDO I

I
HANDLER PROCEDURE

.
(ANY INSTRUCTION)

.

SAVE
~SOFTWARE

STATE

~
IRET

RESTORE !OFTWARE
STATE

t
'---RET

DISPATCHER INTERFACE
PROCEDURE

NOTE, 1. INT CAUSES TASK SWITCH TO INITIALIZE HANDLER.
2. IRET CAUSES TASK SWITCH BACK TO TASK

INCURRING INTERRUPT OR EXCEPTION.
3. INTERRUPT OR EXCEPTION CAUSES TASK SWITCH

TO HANDLER.

Figure 3-2. Interrupt Task Skeleton

3

2

G30287

run as quickly as possible. The interface procedure can be implemented as in line code in the
handler procedure to avoid CALL/RET overhead;

Some exception tasks may need access to the old task's TSS, or to data in the old task's
address space. Such tasks must run at privilege level 0 or call an operating system procedure
that provides the data.

3.2.4 Memory Residency

To provide fast, consistent interrupt response, operating systems typically do not swap inter­
rupt handlers but keep them resident in physical memory. This practice can be followed for

3-7

INTERRUPTS AND EXCEPTIONS

80386 interrupt handlers, it is recommended but not required; for example, a page fault
exception is permitted during the invocation of an interrupt handler. In such a case, the
interrupt handler is invoked when the page fault handler, having loaded the interrupt handler
into physical memory, returns.

The handlers for the following exceptions must be in present segments; all but the page fault
handler and the double fault handler can reside in not-present pages:

Divide error fault (number 0)

• Double fault (number 8)

• Invalid TSS fault (number 10)

• Segment fault (number 11)

• Stack fault (number 12)

• General protection fault (number 13)

• Page fault (number 14)

If, in attempting to invoke one of these handlers, the 80386 detects a segment fault, the
result is a double fault, except that a segment fault incurred while attempting to invoke the
double fault handler results in a system shutdown.

3.3 EXCEPTION HANDLING GUIDELINES

Although hardware protection checking is much faster than software checking, the operat­
ing system should sometimes check a descriptor itself rather than rely on the processor.
Consider a situation in which a task has asked the operating system to fill a segment with
data from an I/0 device. Suppose the device driver uses the INS (input string) instruction
to transfer the data and locks the segment (see Chapter 5) during the transfer. If the task
has asked for more data than will fit in the segment, the 80386 will raise a general protection
fault rather than write beyond the segment. This catches the error, but the general protec­
tion fault handler may not have enough information to handle the error properly. In this
example, "proper handling" might consist of unlocking the segment and returning an error
code to the task. Rather than try to prepare the general protection fault handler for every
possible condition under which it can be invoked, the operating system can check the segment
limit in advance and prevent the fault. The 80386 LSL (load segment limit), LAR (load
access rights), VERR (verify for reading), and VER W (verify for writing) instructions can
be used to check for protection violations in advance.

An 80386 exception is classified as a fault, a trap, or an abort. An exception's classification
determines:

• Whether the offending instruction can be restarted following resolution of the excep­
tion-causing condition (faults), or execution can proceed with the instruction following
the instruction causing the exception (traps), or the task incurring the exception cannot
be restarted (aborts)

3-8

INTERRUPTS AND EXCEPTIONS

• Whether the CS and EIP values pushed onto the stack (or saved in the old TSS) point
to the offending instruction (faults), to the next instruction (traps), or do not identify
the offending instruction (aborts)

The majority of exceptions are faults; fau:lting instructions are restartable, and CS and ElP
point to the instruction that incurred the fault. If a fault handler is able to correct the condi­
tion that caused an instruction to fault, the handler need only pop the error code (if present)
from the stack and issue an lRET instruction; the offending instruction will then be
reexecuted.

The breakpoint instruction (I-byte lNT 3), debug register data breakpoints, and a switch to
a task whose T bit is set, cause trap exceptions. (Debug register instruction breakpoints
cause faults.) (Do not confuse a trap exception with an lOT trap gate. Most exceptions,
including traps, are likely to be invoked through trap gates, but there is no necessary
relationship between the type of gate and the type of exception.) Unlike most faults, traps
are intentional diversions of the flow of control; CS and ElP point to the next instruction.
Thus, a trap handler that issues an IRET without altering the saved CS and EIP values
causes control to continue just as if the trap had not occurred.

Aborts are the most serious exceptions; they indicate a hardware failure or an operating
system bug. An instruction that aborts cannot be restarted, and the saved CS and EIP values
do not identify the offending instruction. Typically, an abort handler can only display debug­
ging information.

The 80386 Programmer's Reference Manual documents the exact conditions that cause the
80386 to raise each kind of exception. The following sections generally describe the excep­
tions that are related to operating systems and provide guidelines for handling these excep­
tions. For the definitive description of all exception-generating conditions and error codes,
consult the 80386 Programmer's Reference Manual.

Figure 3-3 shows the format of the error code the processor pushes onto the exception
handler's stack for some exceptions.

3.3.1 Invalid Opcode Fault, Number 6

This exception indicates invalid information (not limited to the opcode) in an instruction. It
generally indicates a fatal error in the task, such as an attempt to execute data, and the task
should be terminated. No error code is produced for this fault.

3.3.2 Device Not Available Fault, Number 7

This exception indicates that the handler should call the numeric coprocessor emulator, or
should switch the coprocessor's context. Refer to Chapter 7 for details. No error code is
produced for this fault.

3-9

INTERRUPTS AND EXCEPTIONS

31 16 15 3 2 1 0

GEFINED) I DESCRIPTOR INDEX I TI II I EX I
TABLE INDICATOR ~

o ~ GOT
1 ~ LDT

INTERRUPT DESCRIPTOR
1 ~ DESCRIPTOR IS IN IDT

(OVERRIDES TABLE INDICATOR)

EXTERNAL SOURCE
1 ~ EXCEPTION WAS TRIGGERED BY

AN INTERRUPT, NOT AN INSTRUCTION

G30287

Figure 3-3. Error Code Format

3.3.3 Double Fault, Number 8

If, in the execution of a single instruction, the 80386 detects two faults, it raises the double
fault exception. If, for example, a task incurs a page fault and the processor finds the page
fault handler is itself not present, the processor raises a double fault. Double faults are fatal
to the operating system. A double fault handler typically displays diagnostic information or
transfers to a monitor that allows the processor and memory to be examined. A double fault
should be handled with a task, not a procedure. An exception handler must have a guaran­
teed valid context in order to run properly, and the context of the running task cannot be
guaranteed when a double fault has occurred. The error code pushed onto the stack contains
zero.

Note that the occurrence of an exception during invocation of the double fault handler (a
triple fault) causes the processor to shut down without producing diagnostic information.
External hardware can detect a shutdown (see the 80386 Hardware Reference Manual).
External hardware can force the 80386 out of the shutdown state by issuing a nonmaskable
interrupt or a RESET.

3.3.4 Processor Extension Segment Overrun, Number 9

This exception occurs when an operand of a coprocessor instruction is wrapped around an
addressing limit (Offffh for small segments, Offffffffh for big segments, and Oh for expand­
down segments). The wrap-around will place the beginning and ending addresses of such an
operand at opposite ends of the segment. The operand may span inaccessible addresses if the
segment limit is smaller than the addressing limit, and the operand is located close to the
segment limit.

The failing numeric instruction is not restart able. The associated instruction and data point­
ers may be lost; an FSTENV does not return reliable addresses in this case. As with the
80286/80287, the coprocessor segment overrun exception must be handled by executing an

3-10

INTERRUPTS AND EXCEPTIONS

FNINlT instruction. The return address on the stack does not necessarily point to the failing
instruction nor to the following instruction.

The coprocessor segment overrun exception can be avoided by never allowing numeric data
to start within the last 108 bytes of a segment.

3.3.5 Invalid TSS Fault, Number 10

This fault indicates that a TSS descriptor is invalid or a TSS contains invalid information.
This fault must be handled with a task because the processor can detect the fault when it
has internally invalidated part of the old task's context, but has not yet completed the transi­
tion to the new context. (The handler must run in a known-valid context.) The error code
provided for this exception identifies the invalid TSS or the invalid segment referenced by
the TSS.

3.3.6 Segment Fault, Number 11

The 80386 raises this fault when it uses a descriptor whose present bit is clear. This fault
may be used by operating systems that implement segmented virtual memory (see
Chapter 2). Note that a page fault incurred while the processor is invoking the segment
fault handler is not a double fault. The processor first invokes the page fault handler; when
the page fault handler returns, the processor invokes the segment fault handler. The error
code supplied with this fault identifies the offending descriptor.

3.3.7 Stack Fault, Number 12

This fault indicates stack segment underflow or overflow (for example, pushing an item onto
a full stack or popping an item from an empty stack) or a not-present stack segment. A
stack underflow probably denotes a fatal error, and the task should be terminated. For a
stack overflow, the handler can either extend the stack and restart the instruction, or termi­
nate the task. If the stack fault handler is implemented as a level 0 procedure (as is likely to
allow quick examination of the running task's context), the handler can run out of stack if
it is invoked by a level 0 procedure. The result will be a double fault. Such a situation
indicates a serious bug in the operating system, either insufficient level 0 stack space allocated
to a task, or one or more level 0 procedures not cleaning up the stack before returning. The
error code pushed with this fault contains zero if the problem is with the current stack
segment; otherwise, it contains a selector for the invalid stack segment.

3.3.8 General Protection Fault, Number 13

The 80386 raises this fault when a task attempts an operation that is inconsistent with a
segment descriptor. Many such conditions exist, including writing to a read-only segment,
loading a null selector, and accessing a more privileged segment. Theoretically, instructions
that raise this fault are restartable (exceptions are documented in the 80386 Programmer's
Reference Manual). In practice, however, a general protection fault in a protected mode
task indicates a serious progam bug and the task should usually be terminated. V86 tasks,

3-11

INTERRUPTS AND EXCEPTIONS

on the other hand, can legitimately raise this exception to signal the virtual machine monitor
to simulate an instruction (see Chapter 9 for details). Note that if this fault occurs when the
processor is invoking an interrupt handler, the interrupted instruction is restartable but the
interrupt may be lost. The error code supplied for this fault contains the relevant selector if
the fault occurred when loading a segment register or transferring control through a gate;
otherwise, the error code contains zero.

3.3.9 Page Fault, Number 14

The 80386 raises this fault on an attempt to reference a not-present page or an attempt to
violate a page's access rights. CR2 contains the linear address associated with the page fault;
the error code distinguishes between a not-present page and a protection violation. See
Chapter 2 for details.

3.3.10 Coprocessor Error Fault, Number 16

When executing a numerics instruction or aWAIT instruction, the 80386 raises this fault
to indicate that the execution of the previous numerics instruction by a coprocessor resulted
in an exception (for example, underflow). No error code is supplied for this fault. See
Chapter 7 for details on the 80386's numerics facilities.

3-12

System Calls 4

CHAPTER 4
SYSTEM CALLS

An application task normally transfers control to an 80386 operating system through a call
gate or a trap gate. (Other methods~for example, intertask messages~are also possible,
but the 80386 provides no special support for them.) An 80386 trap gate is similar to the
interrupt vector found in many processors. To call an operating system procedure using a
trap gate, a task issues a software interrupt (INT n) instruction, the equivalent of the "trap"
instruction of some architectures. Trap gates and software interrupts are familiar mecha­
nisms that may be used to enter an 80386 operating system just as they are used in other
processors.

Less familiar, but more versatile, are 80386 call gates, the main subject of this chapter. Like
a trap gate, a call gate is a protected operating system entry point. An ordinary inter segment
CALL instruction transfers control through a call gate to the operating system, automati­
cally copying parameters from the caller's stack to the more privileged operating system
stack. Thus, call gates present an operating system interface that is identical to the interface
presented by a collection of ordinary procedures. No special measures, on the part of either
the application programmer, the compiler, or the linker, are required to make a system call
through a call gate.

4.1 CALL GATES

A call gate (see Figure 4-1) can reside in the GDT or in an LDT. A call gate can be defined
statically with the Intel System Builder utility, or can be created statically or dynamically
by an operating system. If gates are defined statically, applications can name a gate in inter­
segment CALL instructions, and the linker can resolve the reference as it resolves a refer­
ence to a procedure. When used to implement system calls, call gates usually are placed in

15 7 o

ENTRY POINT OFFSET 31·16 16

pJ DPL 1011 1 0 01 0 0 o 1 DWORD COUNT

ENTRY POINT SELECTOR +2

ENTRY POINT OFFSET 15·0

LEGEND:
P: PRESENT
DPL: DESCRIPTOR PRIVILEGE LEVEL

G30287

Figure 4-1. Call Gate

4-1

SYSTEM CALLS

the GDT so they can be shared by all tasks. Placing call gates in LDTs is one way to imple­
ment dynamic linking. (The gate can be marked not-present; the segment fault handler can
load the code, place the code's address in the gate, mark the gate present, and return.)

A call gate contains a selector and an offset that point to a procedure that is the ultimate
target of a CALL instruction directed at the gate. (The CALL instruction itself specifies a
selector for the gate and an offset that the processor ignores.) Thus, a call gate is the indirect
address of a system procedure. As long as the call gate's address (that is, its position in the
GDT) remains constant, the address it points to can be changed (as may be required in a
new release of the operating system) without relinking existing programs.

Besides providing this basic call redirection facility, a call gate can optionally

Prevent insufficiently privileged procedures from calling its procedure

Increase a task's privilege while it executes a procedure called through a gate

• Switch to a different stack for execution of the called procedure

• Copy parameters from the caller's stack to the new stack

It is these optional facilities that make call gates so versatile; they are described in more
detail in the following sections. First, however, comes a discussion of the number of gates an
operating system should define.

4.1.1 How Many Gates?

The number of call gates an operating system defines in the GDT is a matter of preference.
There can be as few as one, there can be one per privilege level transition (that is, from level
3 to level 2, from level 3 to levell, and so on), or every system call can be given its own
gate.

A single call gate that effects a privilege transition from level 3 to level 0 provides the
conventional user-to-supervisor transition. This gate funnels all system calls to a single
operating system procedure that, in turn, passes them to their ultimate destinations in the
operating system.

Providing one call gate per system call can be faster, because there is no intermediate "call
forwarding" procedure. One gate per call also supports parameter copying (as will be
explained shortly, a call through a gate copies a fixed length parameter list). On the other
hand, call gates consume GDT slots, which can be a limited resource in some systems (the
GDT can hold 8,192 descriptors).

4.1.2 Controlling Access

An operating system can thus establish the privilege level required to make a system call by
setting the DPL field in the corresponding call gate appropriately. Just as the DPL field in
a data segment descriptor defines the privilege levels that can reference the segment, the
same field in a call gate dictates the privilege required to call through the gate. A gate that

4-2

SYSTEM CALLS

is more privileged than a caller is inaccessible to the caller; an attempt to call through such
a gate results in a general protection exception.

4. 1.3 Switching Privilege Levels and Stacks

Each 80386 task has its own set of stacks, one for each privilege level at which the task may
run. (A task needs a stack for each privilege level it actually uses. An operating system that
implements a user-supervisor style of protection provides each task with a level 3 stack and
a level 0 stack.) The level 3 stack is defined by the initial values of SS and ESP in the task's
TSS. The privileged stacks are defined by the SSO-2 and ESPO-2 values in the task's TSS.
Providing separate stacks for each privilege level ensures that a called procedure has enough
stack to run on-it does not depend on its caller to leave sufficient space.

The intersegment CALL and RET instructions, when used in conjunction with a call gate,
detect a change in privilege level and switch to the appropriate stack before executing the
first instruction at the new level. The mechanics of switching privilege levels and stacks work
as follows. When executing an intersegment CALL whose selector operand references a call
gate, the processor compares the caller'sCPL with the DPL of the target code segment's
descriptor (the call gate contains a selector for the descriptor). Note that the DPL of the
call gate controls gate accessibility, whereas the DPL of the target code segment controls
the privilege level shift. The three possible results of the CPL:DPL comparison are summa­
rized below:

CPL=DPL No privilege transition, push CS and EIP on current stack

CPL<DPL Raise general protection exception

CPL>DPL Change to more privileged stack

The processor switches to a more privileged stack by loading SS and ESP with the appro­
priate values from the TSS and by pushing the old SS and ESP values on the stack as shown
in Figure 4-2. 1'-.rote that the caller's privilege level is available in the lower order two bits of
the CS selector pushed on the stack after the old SS and ESP. By comparing this saved
value with CPL, the RET instruction determines if it is making a privilege level transition
and restores the old stack if this is so.

4.1.4 Passing Parameters

Procedures customarily pass parameters to each other by pushing them on the stack and
then issuing a CALL instruction. The same familiar approach can be used for system calls
that are directed to call gates. When the target of such a call has the same privilege level as
the caller, no stack switch occurs, and the called procedure finds the parameters just below
(that is, at higher addresses) the return address on the stack (where they would be after any
CALL). The parameter copying facility of a call gate places parameters in the same relative
location, even if the caller is less privileged and stacks are switched.

4-3

SSo:ESP;'
FROM TSS

NEW SS:ESP

SYSTEM CALLS

-.- U. .UI OLDSS

OLD ESP

u. .. Ul OLD CS"

--. OLD EIP

31 15

'BITS 0-1 CONTAIN CALLERS PRIVILEGE LEVEL
.. 0 ~ PRIVILEGED PROCEDURES PRIVILEGE LEVEL
U ~ UNDEFINED BIT

HIGH ADDRESSES

LOW ADDRESSES

o

Figure 4-2. Stack at Entry to Privileged Procedure

G30287

In each call gate is a field called dword count that specifies the length of the parameter list
that the processor should copy from the caller's to the called procedure's stack. 0-31 double­
words can be copied. Systems that pass parameters in registers should specify a dword count
of O. If more than 31 doublewords must be passed, a pointer to a record containing the
parameters can be passed, or the operating system can obtain them from the caller's stack.
Figure 4-3 shows the stack at entry to a more privileged procedure in which the processor
has copied three 32-bit parameters from the less-privileged caller's stack. That is, the figure
shows how the stack appears at entry to a more-privileged procedure named SysWait­
ForMsg after the caller issued the following instructions:

PUSH
PUSH
PUSH
CALL

par m 1
parm
parm3
SysWaitForMs9

Note that the return address and parameters occupy the same positions they would if the
caller was the same privilege level as SysWaitForMsg. This means that the called procedure
need not be concerned about the level from which it is called. Its parameters are always in
the same place whether it is running on the caller's stack or its own. Further, the called
procedure can always return by issuing RET n where n is the number of parameter bytes
that the 80386 should remove from the stack (n should be 12 in the example). The RET n
instruction pops the old CS and EIP values and notes (from the caller's privilege level stored
in bits 0-1 of the CS selector) whether it is returning to a less-privileged procedure. It then
increments ESP by n. Finally, if and only if CPL is changing, the processor pops the old
ESP and SS values from the new stack and increments the old ESP by n; the result is a
switch to the old stack and removal of the parameters the caller pushed. Thus, regardless of
whether the caller calls a procedure of equal or greater privilege, it receives control again
with no parameters on its stack. (Note that upon return from a privileged procedure, the
ESP and SS values of the privileged procedure have returned to their initial values that are
stored in the TSS; that is, the stack is empty. Therefore the processor need not (and does

4-4

-.

-.

SYSTEM CALLS

U '" "'UI OLD SS

OLD ESP

PARAMETER 1

PARAMETER 2

PARAMETER 3

U UI OLDCS·

OLD EIP

31 15

·BITS 0-1 CONTAIN CALLERS PRIVILEGE LEVEL
•• " ~ PRIVILEGED PROCEDURES PRIVILEGE LEVEL
U ~ UNDEFINED BIT

HIGH ADDRESSES

LOW ADDRESSES

o

Figure 4-3. Parameters Copied to Privileged Procedure

G30287

not) save ESP and SS on the return-they can simply be loaded from the TSS when needed
again.)

To return results in a uniform manner, regardless of the level from which it is called, a
privileged procedure can use registers or a record for which the caller supplies a pointer
parameter.

When using call gates to copy parameters it is best to allocate one call gate per system call.
It may be tempting to define a single gate with a word count equal to the longest parameter
list needed by any call, but to do so is both wasteful and dangerous. Not only does this cause
excessive copying for calls that pass shorter parameter lists, but, more importantly, the
RET n instruction corrupts the caller's stack by removing too many bytes from it when the
caller pushes fewer than n bytes.

4.2 TRAP GATES

A trap gate is similar to a call gate, and the INT nand IRET instructions are quite similar
to CALL and RET instructions. To use a trap gate as a system call mechanism, observe the
following:

• A trap gate must be placed in the interrupt descriptor table (IDT).

A task makes a system call through a trap gate with an INT n instruction where n is
the index (32-255) of the trap gate. (Gate positions 0-31 in the IDT are reserved by
Intel.)

• Like a call gate, a trap gate switches stacks on privilege level transitions; however, a
trap gate has no provision for copying parameters across stacks.

• The processor pushes EFLAGS before pushing the old CS and EIP values.

4-5

SYSTEM CALLS

A trap gate has almost exactly the same format as a call gate; this format is described in
the 80386 Programmer's Reference Manual. Chapter 3 covers the 80386's interrupt and
exception handling facilities of which trap gates and INT n instructions are components.

4.3 SEGMENTED POINTER VALIDATION

Segment-oriented 80386 operating systems typically define many system call parameters as
segmented pointers. The 80386 validates such parameters when system call handlers load
them into segment registers and subsequently use them for data references. For example,
the processor will not load a selector for an unreadable code segment into a data segment
register, nor will it write into an unwriteable data segment. While the checking performed
by the 80386 is extensive, operating system designers should be aware of its limits. This
section describes two such limitations that operating system designers can surmount with
special 80386 instructions.

There is one privilege violation the 80386 cannot directly detect. Suppose a task running at
privilege level 3 forges a selector for a level 2 data segment and passes it to an operating
system service procedure. If the service procedure runs at privilege level 2, I, or 0, it can
access the level 2 data segment. However, the service procedure should reject the call because
the level 3 procedure is attempting to gain indirect access to a more privileged segment via
the service procedure. There are two ways to detect such an attempt:

1. If the service procedure has no data of its own, but operates entirely on data passed to
it, then the procedure has no inherent privilege level. Instead, it should assume the privi­
lege level of its caller. If the C bit of the service procedure's code segment descriptor is
set, the procedure inherits the privilege level of its caller. In the example, the task running
at level 3 does not raise its privilege by calling the conforming service procedure; the
service procedure running at level 3 incurs a general protection fault when it tries to use
the level 2 segment. Utilities, such as numerics libraries, are good candidates for
conforming segments.

2. When the service procedure has its own data, it cannot be made conforming because it
must be privileged enough to access its own data regardless of the caller's privilege level.
In such a case, the service procedure can use the ARPL (adjust requested privilege
level) instruction to set the RPL field of a selector to the caller's CPL. The 80386 raises
a general protection exception when max(RPL,CPL) > DPL of the target segment.
Thus, when numerically greater than CPL, RPL reduces a task's privilege level for the
duration of the instruction in which the relevant selector is an operand. In the example
above, the service procedure's CPL might be I, but by issuing an ARPL instruction, it
can set the RPL of the suspect selector to the caller's privilege level (3 in the example).
The service procedure then incurs a general protection fault if it attempts to load the
suspect descriptor. Note that simply creating a selector with RPL equal to the privilege
level required to use the associated segment is not a reliable method of insuring that
tasks do not use more-privilege segments, because tasks can create selectors (with any
RPL) at will. Operating systems should validate segmented pointers as soon as such
pointers enter the operating system. In addition to ARPL, the VERR (verify read),
VERW (verify write), LAR (load access rights), and LSL (load segment limit) instruc­
tions are useful for segmented pointer validation.

4-6

SYSTEM CALLS

The 80386 detects many parameter errors, but the time at which it detects them may
complicate fault diagnosis and possible recovery. For example, suppose a level 3 procedure
passes a bad parameter to a level 2 procedure, that does not use the parameter but passes it
on to a level I procedure. The level 1 procedure will fault when it uses the selector. The fault
handler cannot tell in a case like this whether the error lies in the level 2 procedure or the
level 3 procedure. As another example, consider an I/O request that attempts to read or
write past the end of a segment. The desirable response to such a request is to dishonor it,
returning an explanatory error code. If the I/O request handler defers detection of the error
to the 80386, the general protection fault handler will have great difficulty returning an
error code to the caller because it does not know the circumstances of the limit violation. By
checking the request against the segment limit, the I/O handler can respond properly.
Operating system procedures can use the LSL, LAR, VERR, and VER W instructions to
check a segment's limit, its type (and other attributes), its readability, and its writeability
without faulting. These instructions are not privileged.

4.4 CALLING LESS-PRIVILEGED PROCEDURES

Sometimes an operating system procedure must call a less-privileged procedure. Consider,
for example, the UNIX system signal facility. A signal is an indication from the operating
system to a task that an exception or an asynchronous event has occurred-for example,
that a child process has terminated. A process can declare a signal handler procedure that
the operating system calls when the process receives a signal.

An 80386 task running at one privilege level cannot call a less-privileged procedure. (If the
80386 allowed such a call, the less-privileged procedure, could, by manipulating the return
address on its stack, return to an arbitrary location in the more-privileged procedure.) An
operating system can, however, make such an "outward call" indirectly. To "call" a less­
privileged procedure, the operating system can push the desired address onto the stack and
then issue an intersegment RET instruction. The less-privileged procedure can return to the
more-privileged procedure by calling through a gate. Note that this description covers only
the rudiments of calling less-privileged procedures. In any given operating system, the actual
implementation of such calls may be substantially more complex.

4-7

Input/Output 5

CHAPTER 5
INPUT I OUTPUT

The 80386 supports both I/O-mapped and memory-mapped I/O devices. An operating system
can restrict I/O operations to itself, or it can allow tasks running at lower privilege levels to
read and write selected I/O devices, whether memory- or I/O-mapped. Operating systems
can also delegate I/O operations to separate processors, such as DMA (direct memory access)
controllers.

5.1 PROGRAMMED 1/0

Input/output operations performed by 80386 instructions are called programmed I/O
operations. An operating system can address I/O device registers located in either the 80386
dedicated I/O space or in the physical memory space. The 80386 architecture provides special
instructions for accessing device registers in the I/O space; ordinary memory reference
instructions can be used to read or write memory-mapped devices.

5.1.1 I/O-Mapped 1/0

The 80386 IN, OUT, INS, and OUTS instructions refer to device registers mapped into the
processor's 64KB I/O space. Each location in the I/O space is called an I/O port; ports can
be 8, 16, or 32 bits wide. IN and OUT move a byte, a word, or a dword between the
AL/ AX/EAX register and an I/O port. INS and OUTS transfer byte, word, or dword
strings between an I/O port and memory. A task's ability to issue these I/O instructions is
subject to the protection constraints described in Section 5.2".

5.1.2 Memory-Mapped 110

A memory-mapped device register can be accessed with any memory reference instruction,
although MOV, AND, OR, and TEST are the most commonly used. Any memory address­
ing mode can be used to specify the offset of a memory-mapped device. When using memory­
mapped I/O, an operating system designer must observe these cautions:

• Verify that your compiler aligns the structures that you declare to represent device
registers to the actual addresses occupied by the registers.

• Beware of the 80386 bit test and bit field instructions (BT, BTS, BTR, and BTC).
Regardless of the actual register size, the processor will always initiate a 16- or 32-bit
bus cycle to access the operand of these instructions. Before using one of these instruc­
tions, be certain that the hardware will complete the bus cycle and that you do not
erroneously access adjacent registers, or non-existent physical addresses.

• If your hardware implements a data cache, be sure that it does not cache memory­
mapped I/O registers. To see why device registers should not be cached, suppose a task
repeatedly polls the status register of a memory-mapped device. The first time the regis­
ter is polled, the cacheing hardware loads the register value into the cache and the task

5-1

INPUT /OUTPUT

reads that value. Subsequent polls, however, are likely to obtain the cache value again,
even if the real value has changed. (The device has no way to invalidate the cache entry.)
One simple way to distinguish between cache able and noncacheable addresses is to divide
the physical address space in half and use address line 31 to distinguish between cache­
able and noncacheable addresses. The 80386 Hardware Reference Manual covers
cacheing in detail.

5.2 10PL AND THE I/O PERMISSION MAP

A memory-mapped device is protected by the attributes encoded in its segment descriptor
and, if paging is enabled, the attributes encoded in its PDE and PTE.

5.2.1 Protecting I/O-Mapped Devices

A task's ability to issue an 1/0 instruction is controlled by its 1/0 privilege level (IOPL)
and its optional 1/0 guard map. A task can issue an 1/0 instruction on any 1/0 port if the
task's current privilege level is less than or equal to its 10PL. The processor maintains the
running task's IOPL in a like-named field of the EFLAGS register; the value of IOPL can
range from 0-3. Because the 80386 loads EFLAGS from the new TSS on every task switch,
tasks can have different 10PLs. So long as a task cannot write into its TSS (except by
calling operating system procedures), a task cannot change its ability to do 1/0. A task
running at a privilege level greater than 0 cannot change its IOPL with the unprivileged
POPF instruction because this instruction alters 10PL only when CPL=O.

A task's 10PL controls its right to execute these instructions: IN, INS, OUT, OUTS,
INT n, IRET, PUSHF, POPF, ST!, and CLI. Thus, a task whose 10PL allows it to issue
1/0 instructions can also enable and disable interrupts. Such a task must be highly trusted.
An operating system can use a task's 1/0 permission map to grant a less-trusted task access
to selected 1/0 ports while protecting IF flag from the task.

If a task's CPL is greater than its 10PL, and the task attempts to execute an 1/0 instruc­
tion, the 80386 consults the 1/0 permission map in the task's TSS. If the permission map
allows access to the port named in the instruction, the 80386 executes the instruction; if the
permission map denies access to the port, the 80386 raises a general protection exception.
To appreciate the utility of an 1/0 permission map, consider a real-time system that controls
a special 1/0 device for which there is no operating system driver. Setting an application
task's 10PL to zero prevents the task from disabling interrupts or accessing arbitrary 1/0
ports. Yet with an appropriately initialized 1/0 permission map, the application task, running
at any privilege level, can read and write the port(s) that represent the special device and no
other ports.

Figure 5-1 shows how the 1/0 permission map is organized and how the 80386 interprets it.
(Note that the 1/0 permission map is not defined for 80286 TSSs, as the 80286 has no
corresponding facility.) An 1/0 permission map is a bit string up to 64 Kbits in length; each
bit represents an address in the 80386 1/0 space. A O-bit permits access to the correspond­
ing 1/0 address; a I-bit causes a general protection exception if a task attempts to access

5-2

INPUT 10UTPUT

PAD BYTE ALLOWS 11 111 LAST BYTE IN MAP
_ TO BE ACCESSED

I AS A WORD

(O---------------I.~O
~5~------------------------------~

o ..

00100011110010101111110011111001

111101100000111101 0110000000011

31 23 15 7

LEG ED: 0 ~ PORT IS ACCESSIBLE
1 ~ PORT IS INACCESSIBLE

EXAMPLES:
; READ DWORD PORT 7
IN EAX,07H ; FAULT: BITS 10-7 ~ 1000

; WRITE WORD PORT 33 (DECIMAL)
OUT 33,AX ; NO FAULT: BITS 34-33 ~ 00

o

B KBYTEMAP
COVERS 64 KBIT
1/0 SPACE

Figure 5-1. 1/0 Permission Map Structure and Operation

G30287

the corresponding port. As the examples in Figure 5-1 show, a multibyte access is allowed
only if all permission bits representing the target word or doubleword port are O.

Figure 5-2 shows that a task's I/O permission map is located in its TSS above the area used
by the operating system, if any. The I/O permission map base field in the TSS must be
initialized with the displacement of the map from the base of the TSS. Because the 80386
reads the I/O permission map in units of one word, the last byte of the I/O permission map
must be followed by a pad byte containing all I-bits. Setting the I/O permission map base
field in the TSS to FFFFH defines a null permission map. A null map is equivalent to a
map containing all I-bits and requires no pad byte_

The limit field in the TSS descriptor governs the extent of the I/O permission map. The
limit field can be used to define a map that is smaller than the 8 Kbytes required to explicitly
define the accessibility of all 65,536 I/O addresses. When the I/O permission map is
truncated by the limit field, the processor interprets the unspecified bits as Is, thus prohib­
iting I/O to any address not defined in the map. Thus, an operating system need only define
as much of the map as is needed to specify the addresses to which I/O is permitted. Whatever
the I/O permission map's length, it must be terminated with a pad byte of all I-bits, and
the TSS limit field must account for the extra byte. (The 80386 uses word accesses to read
the I/O permission map; the pad byte ensures that the last map byte can be read.)

5-3

~

INPUT /OUTPUT

PAD BYTE

TSS LIMIT --.J 1 ~1

I I 0 PERMISSION MAP

SOFTWARE STATE
(OPTIONAL)

1 SOFTWARE STATE
(OPTIONAL)

1

J~o-.-----.~ol~-BA-CK-LI-NK~J I~O-.-----.-o~I--B-AC-K-LlN-K~I
31 o

TSS

a. EXPLICIT 1/0 PERMISSION MAP

R ~ RESERVED

31

TSS

b. NULL 1/0 PERMISSION MAP
(ALLOWS NO ACCESS)

Figure 5-2. I/O Permission Map Location and Extent

5.2.2 Device Driver Privilege

o

G30287

Device drivers that are implemented as procedures should run at privilege level O. A typical
device driver is implemented as an operating system service procedure, an interrupt proce­
dure, and data that describes the device and pending I/O requests. The service procedure
runs in he context of the task that requests an I/O operation; the interrupt procedure runs
in the context of the task that happens to be executing when the device interrupts. Because
the service procedure and the interrupt handler interact with the device and with request
data, they share data and call common procedures. If, as is usually desirable, the operating
system is to be interruptible at all privilege levels, then the interrupt procedure must be
assigned DPL=O. (The 80386 raises a general protection fault if an interrupt attempts to
invoke an interrupt procedure whose DPL is greater than the current privilege level.) This

5-4

INPUT /OUTPUT

means that any procedure the interrupt procedure calls must also have DPL=O. Because
the common procedures have DPL=O, the service procedure must also have DPL=O.

Implementing a device driver as a collection of privilege level 0 procedures has the disadvan­
tage of jeopardizing all system code and data whenever a driver is installed or modified.
Where performance and protection requirements permit or demand, a device driver can be
implemented as two tasks whose procedures run at privilege level 1 or 2. The gain in protec­
tion is offset to some degree by a decline in performance, due to the extra time required to
invoke an interrupt task, and the need for the driver to make system calls to obtain operating
system services (for example, to wake up a task).

5.3 DIRECT 1/0

When setting up direct I/O operations, the operating system must accommodate the limita­
tions of the direct I/0 processor, typically a DMA controller.

5.3.1 Physical Addressing

Most DMA controllers can generate only physical memory addresses. To support direct
memory access, the operating system must supply the DMA controller with the physical
address of an I/O buffer. If the operating system allocates buffers statically, it can associate
a header record with each buffer and initialize a field in the header with the buffer's physical
address. When buffers are allocated dynamically, the operating system can implement a
procedure that uses the GDT and LDT (and page directory and page tables, if paging is
enabled) to translate a logical address to a physical address.

When paging is enabled, an operating system must be prepared for I/O requests that cross
page boundaries. Addresses that are linearly adjacent can be mapped to noncontiguous page
frames. Using the page directory and page tables, the operating system can break I/0 requests
that cross nonadjacent page frames into multiple DMA controller commands.

A OMA controller may also be limited in the amount of physical memory it can address;
many controllers, for example, have a range of only 16 megabytes. If the hardware imple­
ments more physical memory than the DMA controller can address, the operating system
must allocate I/O buffers in the area of physical memory that the DMA controller can
address.

5.3.2 locking Segments and Pages

An operating system must ensure that the physical address and validity of a memory location
that is the subject of a direct I/O transfer does not change until the transfer is complete. In
practice, this means that a segment or page cannot be moved, deleted, or made not-present
while a direct I/0 transfer involving the segment or page is pending. Segment descriptors
have one available bit that the operating system can designate as meaning "locked for I/O."
Page table entries have three available bits that can be used for the same purpose. All
operating system code must refrain from altering a locked descriptor or PTE if the alteration
would result in an incomplete I/O operation.

5-5

Initialization 6

CHAPTER 6
INITIALIZATION

Initialization is the sequence of instructions an operating system must execute before start­
ing the first task. The great bulk of initialization consists of creating operating system data
structures and is therefore independent of the 80386. This chapter describes the processor­
dependent aspects of initialization, emphasizing three key transitions:

• Entering protected mode

• Enabling paging (optional)

• Switching to the initial task

A good deal of operating system-specific code is likely to be interspersed between these
transitions.

6.1 ENTERING PROTECTED MODE

When its RESET line is activated, the 80386 responds by entering real mode. As discussed
in Chapter 9, real mode is useful for applications that wish to use the 80386 as a very fast
8086. Most applications, however, are best served by the full resources of the processor; to
make these resources available, the operating system initialization code must switch the
processor from real mode to protected mode. At about the same time, most operating systems
also transfer control to a 32-bit code segment to change the default operand and address
sizes to 32 bits. A typical operating system switches from real to protected mode and from a
16-bit to a 32-bit code segment as soon as possible following a RESET.

Table 6-1 show the contents of the 80386's registers immediately following activation of the
RESET line. Activation of RESET also forces address lines A31-20 to high for code fetches.
These address lines remain high (for code fetches) until an intersegment jump or call is
executed; following such an instruction, A31-A20 go low and remain low until the processor
is switched to protected mode. Data references following a RESET are directed by default
to the first 64 Kbytes of the linear (and physical) address space.

Thus, following a RESET, the 80386 code space is the top 64 Kbytes of the 80386 linear
address space, and the data space is the low 64 Kbytes. A simple way to implement a RESET
routine is to place both code and data in the top 64 Kbytes and use a CS segment override
prefix for data references; this forces data addresses to fall into the top 64 Kbytes of the
address space. Such a simple routine must refrain from issuing an inter segment transfer
until it has switched the processor from real mode to protected mode.

Given the RESET values of CS, EIP, and address lines A31-A20, the 80386 fetches its first
instruction from linear address FFFFFFFOH. Because the RESET address is so close to the
code segment limit, the instruction there should be an intrasegment jump to a lower offset
in the 64 Kbyte code segment. An attempt to fetch an instruction from past the
64 Kbyte code segment limit produces a general protection exception.

6-1

INITIALIZATION

Table 6-1. Registers Following RESET

Register Value

EFLAGS Defined bits contain 0; undefined bits contain undefined values

CRO Defined bits contain 0 except for ET, whose value is described
in Chapter 7; undefined bits contain undefined values

CS Base FFFFOOOOH

CS Limit FFFFH

EIP OOOOFFFOH

DS-GS Base OOOOOOOOH

DS-GS Limit FFFFH

EAX Self-test result or undefined'

EDX Component and revision number'

All Others Undefined

'For information on self-test and component and revision numbers, consult the 80386 Hardware Reference
Manual.

Figures 6-1 through 6-3 show an assembly language program that illustrates the essentials
of switching the 80386 from real to protected mode after a RESET. Figure 6-4 shows how
this program would appear if it were burned into ROM. Upon completion of the program,
the 80386 is configured as a "flat" unprotected machine with a 32-bit address space.

The program shown in Figures 6-1 through 6-3 has limitations that an actual initialization
routine can avoid:

The program leaves a large unused space between its first and last instructions; a differ­
ent program could locate the instructions and data closer to the RESET address.

The program defines descriptors by encoding their actual bit values. While practical in
a simple program like this, operating systems that define many static descriptors may
be able to use the Intel System Builder utility to advantage. The Builder can create the
IDT, the GDT, LDTs, and TSSs from symbolic specifications. A simple bootstrap loader
can transfer these images from disk to RAM, or they can be burned into ROM and then
copied to RAM.

The comments in Figures 6-1 through 6-3 explain the operation of the program, but a few
points should be noted:

• The program is written as two segments called ResetSeg and BigSeg. ResetSeg contains
8086-compatible code while BigSeg contains 32-bit 80386 code. Where an 80386
instruction must be executed in ResetSeg (for example, MaY CRO,EAX), the assem­
bler automatically provides the required override prefix.

6-2

inter INITIALIZATION

THIS CODE HAS MOT BEEM TESTED
Initialize 80386 to flat 32-bit machine

ResetSeg segment
j locate this 5!gment (e.g., wilh Binder) 10 OFFFFOOOOH

j lell assembler whal's in CS
assume CS:ResetSeg

j place first inslruclion al RESET address OFFFFFFFOH
org OFFFOH

RESET: JMP Begin

j set localion counter 10 start of ROM
org 8000H

STARTROMTABS label word j lag start of ROM tables
j define GDT containing reqUired null descriplor plus one
j descriplor for code and one descriplor for dala

ROMGDT label w 0 r d
NullDes dw o , 0 , 0 , 0
CodeDes dw OFFFFH lim i I at max (b i I s 1 5 : 0)

db o , 0 , 0 base al 0 (b i I 5 23 : 0)
db 1 00 11 0 11 B presenl/DPL O/code/

nonconform/readable/X
db 11 0 0 11 11 B 4K grain/default 32/

O/X/limit (b i I s 19: 16)
db 0 base al 0 (b 1 I s 31: 24)

DalaDes dw OFFFFH 1 i mil a I max (b i I s 1 5 : 0)
db o , 0 , 0 b a 5 e at 0 (b i I 5 23:0)
db 10010011B presenl/DPL O/dalal

expand-up/writeable/X
db 1 00 0 1111 B 4 K grain/OO/X/

lim i I (b it 5 19: 16)
db b a 5 e a I 0 (b i I s 31: 24)

Figure 6-1. Entering Protected Mode (Part 1)

• Immediately after switching to protected mode, the program issues a JMP instruction
to flush the instructions in the 80386 prefetch queue. The instructions in the queue were
fetched and decoded while the processor was in real mode; executing them after it has
been switched to protected mode can be erroneous. For example, the 80386 loads a
segment register differently in real mo.de than in protected mode.

The 80386 can be switched from protected to real mode; this subject is discussed lfl

Chapter 9.

6-3

INITIALIZATION

; define IDT
ROMIDT label word
; up to 256 interrupt/trap gates go here
ENDROMTABS label word; tag end of rom tables

; define values
IDTPtr dw

dw
dw

for IDT and GDT registers
7FFH limit is max for 256 interrupts
offset IDT base (bits 15:0) is IDT base
OFFFFH base (bits 31:16) is IDT base

GDTPtr dw 1 7 H limit is 3: null, code, and data
base (bits 15:0) is GDT base

Begin

dw
dw

offset GDT
OFFFFH base (bits 31:16) is GDT base

; still in real mode, use CS override for data refs
; disable interrupts in case we aren't starting from RESET
CLl
; move
MOV
MOV
MOV
CLD
DTOV
MOV
REP
Ll D T
LGDT
MOV
MOV
MOV

GDT and IDT to RAM with string move
SI,offset CS:STARTROMTABS
DI,offset CS:TABLES
CX,ENDROMTABS-STARTROMTABS

auto-increment
DS,CS

set source
set destination
set byte count

E S , C S
MOVSB
CS:IDTPtr
CS:GDTPtr
EAX,CRO

initialize ES for string move
move tables

E A X , 1 B
CRO,EAX

load IDTR
load GDTR
get current CRO
set PE bit
begin protected mode

flush prefetch queue
JMP Continue

Figure 6-2. Entering Protected Mode (Part 2)

6.2 ENABLING PAGING

Before enabling paging, the 80386 must be running in protected mode. An operating system
must also ensure that the data structures and routines associated with paging are in place:

A page directory must contain present PDEs for at least the page table(s) that cover
the pages containing the page fault handler.

The page fault handler must be present in physical memory; its presence must be reflected
in the page table(s) that map its addresses.

• Entry 14 of the IDT must contain a descriptor (normally a trap gate) that points to the
page fault handler.

• The code and data that enable paging must be in present pages and their linear addresses
must be equal to their physical addresses; that is, they must identify mapped.

6-4

INITIALIZATION

Continue:
; now in protected mode
; set data segment registers to DataDes

MOV BX,10H ; load DataDes selector
MOV SS,BX
MOV DS,BX
MOV ES,BX

load CS with CodeDes
JMP far ptr Start32 ; intersegment jump

set location counter to start of RAM in this segment
OR G 0 H

allocate RAM
TABLES label
G D T db
I D T db

for GDT and IDT
w 0 r d
dup(3 f S)
dub(256 f S)

space for 3 descriptors
space for 256 descriptors

ResetSeg ends end of segment
BigSeg segment use32
; this segment should be located at linear address

assume CS:BigSeg,DS:BigSeg,ES:BigSeg,SS:BigSeg

Start32:
i code here can load ESP with top of stack pOinter,
; enable interrupts, and proceed with initialization.

BigSeg ends

Figure 6-3. Entering Protected Mode (Part 3)

Disk copies of any pages marked not-present must be up-to-date before enabling paging.
With data and code in place, the operating system issues a MOV CR3 instruction to load
the physical address of the page directory into the page directory base register. To enable
paging, the operating system can set the PG bit (bit 31 of CRO) without disturbing other
bits in CRO as follows:

MOV EAX,CRO
OR EAX,80000000H
MOV CRO,EAX
JMP anywhere

Note the JMP instruction following the MOV instruction that enables paging. (There are
no restrictions on the address of the jump target.) This instruction flushes the prefetch queue;
the prefetch queue may contain instructions whose operand addresses were computed before
paging was enabled. Executing these instructions after paging has been enabled is erroneous
unless their operands have identical linear and physical addresses. Flushing the prefetch
queue immediately after enabling paging eliminates any potential problem.

6-5

INITIALIZATION

FFFFFFFO 1. _____ .J.M.p.B.E.G.,N ____ --t!
(NOT USED)

~ ________________ ~r

JMP FOR PTR START 32

BEGIN: ell
GDTPTR
IDTPTR
ROMIDT
ROMGDT

FFFF8000,1-_____________ ..1

(NOT USED)

GDT
IDT

FFFFOOOO ____________

START32:
O~ ____________________ ~

ROM
(32KB)

]

RAM
(32KB)

READSEG
(64KB)

Figure 6-4. Entering Protected Mode Program Layout

6-6

BIGSEG
(4GB)

G30287

INITIALIZATION

6.3 SWITCHING TO THE INITIAL TASK

Before switching to the first task, the operating system must create a valid TSS and TSS
descriptor for the first task, and a dummy TSS and valid TSS descriptor for the running
pseudotask. The 80386 writes its machine state into the dummy TSS when the operating
system switches to the first task. With the TSSs in place, the operating system can issue the
LTR instruction to load the task register with a selector for the dummy TSS descriptor. To
effect the actual task switch, the operating system can issue the usual JMP TSS instruction.

6-7

Numerics 7

CHAPTER 7
NUMERICS

An 80386 numerics instruction (defined in the next paragraph) can be executed directly by
an 80387 or 80287 Numerics Corprocessor, or interpreted by a software emulator that mimics
one of these coprocessors. Functionally, all three options are nearly identical; they differ
primarily in speed. The operating system support required for any of them is fairly simple
and is limited to initialization, task switching, and exception handling functions.

In this chapter, the term "numerics instruction" refers to those valid instructions that the
80386 cannot execute itself. The most common numerics instructions operate on real
("floating point") data types, but there are also packed decimal and integer instructions. In
ASM386, numerics instruction mnemonics begin with the letter F, such as FADD, FMUL,
and FSQRT. Numerics machine instructions begin with the pattern 11011B, which is called
the ESC (escape) opcode.

7.1 SUPPORTING A COPROCESSOR

A numerics coprocessor is essentially a parallel execution unit that interprets numerics
instructions. A coprocessor performs no bus transactions, but instead relies on the 80386 to
compute addresses, to fetch instructions, and to load and store memory-based operands.
Because it is little more than an extended execution unit, a numerics coprocessor places little
additional burden on an operating system. The additional support consists mainly of telling
the 80386 that a numerics coprocessor is present, and responding to two exceptions that the
80386 raises in behalf of the coprocessor.

7.1.1 Initialization

During its initialization phase, an operating system must determine which numerics copro­
cessor is present, inform the 80386 of this, and initialize the coprocessor before executing
any numerics instructions.

The operating system's initialization code can tell if an 80387 is present by testing the ET
(extension type) bit in CRO; as part of its RESET sequence, the 80386 sets this bit if an
80387 is present. Testing for an 80287 can be almost as easy. The code fragment shown in
Figure 7-1 will probe for a numerics chip in a pc, and will work with 8086/8087,
80286/80287,80386/80287,or80386/80387.

Having determined which numerics coprocessor is present, the operating system's initiali­
zation code must set up the 80386. This consists of setting the values of the EM (emulate
coprocessor) and MP (monitor coprocessor) bits in CRO. Table 7-1 shows how the 80386
interprets these bits. The EM bit directs the 80386 to pass numerics instructions to either a
coprocessor (EM=O) or to an emulator (EM= I). The MP bit directs the 80386 to ignore
(MP=O) or to test (MP= 1) the TS (task switched) bit before executing an 80386 WAIT
instruction. The MP bit is provided for compatibility with 8086-based systems that used the
WAIT instruction to synchronize with a device (other than a numerics coprocessor) connected

7-1

"" I
I\:)

DOS 3,20 (033-Hl 8086/87/88/186 MACRO ASSEMBLER V2,0 ASSEMBLY OF MODULE TEST_HPX
OBJECT MODULE PLACED IH FIHDHPX,OBJ
ASSEMBLER INVOKED BY: D:\ASM86,EXE FIHDHPX,A86

L 0 C OBJ LIN E SOURCE

+ 1 ltitle('Test for presence of an Humerics Chi P , l

name TesLHPX
ext r n dqopen:near,dqcreate:near,dqwrite:near,dqexil:near

o 0 0 D C R EQU ODH
o 0 0 A LF EQU o A H

9 • tack .egment • tack ' • t a c k '
o 0 0 0 (1 0 0 I 0 d w 1 0 0 d u P (?)

? ? ? ?

OOC8 ? ? ? ? 11 • s t dw Top of • t a c k 1 abe 1
1 2 • tack end s
13
14 d a t a .egment pub 1 i c 'd a t a '

o 0 0 0 00 0 0 1 5 • tat u • dw 0
o 0 02 o 0 0 0 16 co dw
o 0 04 o 0 0 0 1 7 t em p dw
o 0 06 04 18 co_name db 4 , , : CO: '

o 0 0 7 3A434F3A
o 0 0 B 2 I 19 n_npx db 33 , , H 0 8087, 80287, or 80387 found, , , C R , L F
o 0 0 C 4E6F2038303837

2C203830323837
2C206F72203830
33383720666F75
6E642E

002B o D
002 C o A
002D 11 2 0 L387 db 17,'Found an 80387.',CR,LF

Figure 7-1. Probing for an 80287

(

Z
c::
3:
m
:l3
0 en

-..J

~

DDS 3.20 (033-N) 8086/87/88/186 MACRO ASSEMBLER V2.0 ASSEMBLY OF MODULE TEST_NPX
OBJECT MODULE PLACED I~ FI~DNPX.OBJ

ASSEMBLER INVOKED BY: D:\ASM86.EXE FINDNPX.A86

LOC OBJ

002E 466F756E642061
6E203830333837
2 E

003D OD
003E OA
003F 19
0040 466F756E642061

6E203830383720
6F722038303238
372E

0057 aD
0058 OA

000 0
0000 B8----
0003 8ED8
0005 8EDO
0007 BCC800
OOOA B80600
OOOD 50
OOOE B80000
o 0 1 1 50
0012 E80000
0015 A30200
001850
0019 B80200

LI N E SOURCE

2 1 L npx

22 data
23 '1 $eject
24 dgroup
25 cgroup
26

27 code
28
29
30
31
32
33
34
35
36
37
38
39
40
4 1
42

s tar t :

db

end s

9 r 0 u p
group

25,'Found an 8087 or 80287.',CR,LF

data,stack
c c d e

segment public 'code'
assume cs:cgroup,ds:dgroup

mov
mov
mov
mov
mov
pus h
mov
pus h
call
mov
pus h
mov

ax,dgroup
d 5 I a x
5 5 , a x
sp,offset dgroup:sst
ax,offset dgroup:co_name
a x
ax,offset dgroup:status
a x
dqcreate
co, a x
a x
a x , 2

Setup file connection
Save file token

Signal write open

Figure 7-1. Probing for an 80287 (Cont'd.)

l

z
c:
3:
m
:c
(;
en

.....,
I ..,.

DOS 3.20 (033-N) 8086/87/88/186 MACRO ASSEMBLER V2.0 ASSEMBLY OF MODULE TEST_NPX
OBJECT MODULE PLACED 1M FIMDMPX.OBJ
ASSEMBLER IHVOKED BY: D:IASM86.EXE FIHDNPX.A86

LOC OBJ LI HE SOURCE

001C 50 43 push ax
0010 33CO 44 xor aX,ax i Mo buffers needed
OOH 50 45 push ax
0020 B800000 46 mov ax,offset d9roup:status
0023 50 47 push ax
0024 E80000 48 call dqopen j Open file for writing
0027 FF360200 19 pU5h co i Setup for call
002B BBOBOO 50 mov bx,offset d9roup:n_npx
002E EB18 51 imp short test_npx i Enter test code on next page

52
53 Print message at [BXI then exit
54

0030 55 found_87_287:
0030 BB3FOO 56 mov bx,offset dgroup:f_npx
0033 57 no_npx:
0033 58 found_387:
0033 43 59 Inc bx Point at character strln9
0034 53 60 push bx
0035 8A47FF 61 mov a I , [b x - 1 I Get count
0038 98 62 cbw
0039 50 63 push ax
003A B80000 64 mov ax,offset dgroup: statU!
0030 50 65 push a x
003E E80000 66 c a II dqwrlte i P r i n t message
0041 33cO 67 xor a x, 8 x
0043 50 68 push a x
0011 E80000 69 C II II dqexit End the program, go back to DDS
0047 CC 70 I n t 3 Just 1 n elise

71 + 1 $e lee I
72
73 Look for an 80S7, S0287, or S03S7 NPX.
74 Nole Ihal we cannot execute WAIT on SOS6/SS if no 8087 Is present.
75

0048 76 test_npx:

Figure 7-1. Probing for an 80287 (Cont'd.)

(

z
c:
3C
m
:D
o
tn

CHAPTER 7
NUMERICS

An 80386 numerics instruction (defined in the next paragraph) can be executed directly by
an 80387 or 80287 Numerics Corprocessor, or interpreted by a software emulator that mimics
one of these coprocessors. Functionally, all three options are nearly identical; they differ
primarily in speed. The operating system support required for any of them is fairly simple
and is limited to initialization, task switching, and exception handling functions.

In this chapter, the term "numerics instruction" refers to those valid instructions that the
80386 cannot execute itself. The most common numerics instructions operate on real
("floating point") data types, but there are also packed decimal and integer instructions. In
ASM386, numerics instruction mnemonics begin with the letter F, such as FADD, FMUL,
and FSQRT. Numerics machine instructions begin with the pattern llOllB, which is called
the ESC (escape) opcode.

7.1 SUPPORTING A COPROCESSOR

A numerics coprocessor is essentially a parallel execution unit that interprets numerics
instructions. A coprocessor performs no bus transactions, but instead relies on the 80386 to
compute addresses, to fetch instructions, and to load and store memory-based operands.
Because it is little more than an extended execution unit, a numerics coprocessor places little
additional burden on an operating system. The additional support consists mainly of telling
the 80386 that a numerics coprocessor is present, and responding to two exceptions that the
80386 raises in behalf of the coprocessor.

7. 1. 1 Initialization

During its initialization phase, an operating system must determine which numerics copro­
cessor is present, inform the 80386 of this, and initialize the coprocessor before executing
any numerics instructions.

The operating system's initialization code can tell if an 80387 is present by testing the ET
(extension type) bit in CRO; as part of its RESET sequence, the 80386 sets this bit if an
80387 is present. Testing for an 80287 can be almost as easy. The code fragment shown in
Figure 7-1 will probe for a numerics chip in a pc, and will work with 8086(8087,
80286/80287, 80386/80287, or 80386/80387.

Having determined which numerics coprocessor is present, the operating system's initiali­
zation code must set up the 80386. This consists of setting the values of the EM (emulate
coprocessor) and MP (monitor coprocessor) bits in CRO. Table 7-1 shows how the 80386
interprets these bits. The EM bit directs the 80386 to pass numerics instructions to either a
coprocessor (EM =0) or to an emulator (EM = 1). The MP bit directs the 80386 to ignore
(MP=O) or to test (MP= 1) the TS (task switched) bit before executing an 80386 WAIT
instruction. The MP bit is provided for compatibility with 8086-based systems that used the
WAIT instruction to synchronize with a device (other than a numerics coprocessor) connected

7-1

DOS 3.20 C033-H) 8086/87/88/186 MACRO ASSEMBLER V2.0 ASSEMBLY OF MODULE TEST_HPX
OBJECT MODULE PLACED IN FINDHPX.OBJ
ASSEMBLER IHVOKED BY: D:\ASMB6.EXE FIHDHPX.A86

LOC OBJ LI HE SOURCE

.1 $IitleC'Teal for preaen.e of an Humerica Chip')

name Te~LHPX

4 ext r n d~open:near,d~create:near,dqwrile:near,dqexit:near

5
6 C R EGU ODH
7 LF EGU OAH
8
9 5 tack 5egment a tack ' 5 t a. k '

1 a dw 1 a a dup cn

11 5 5 t dw Top of 5 tack 1 abel
1 2 5 t a • k end5
13
14 d a t a 5egment pub 1 i. 'd a t a'
15 5 I a I u 5 dw a
16 co dw a
1 7 temp dw a
18 co_name db 4 , ' : CO: '

19 n_npx db 33, ' H 0 8087, 80287, or 80387 found. , , C R , L F

20 f_387 db 17,'Found an B0387.',CR,LF

Figure 7-1. Probing for an 80287

l

Z
c:
3:
m
XI
n
en

-.J
I

Co>

DOS 3.20 (033-N) 8086/87/88/186 MACRO ASSEMBLER V2.0 ASSEMBLY OF MODULE TEST.NPX
OBJECT MODULE PLACED IN FINDNPX.OBJ
ASSEMBLER INVOKED BY: D:IASM86.EXE FINDNPX.A86

LOC OBJ

002E 466F756E642061
6E203830333837
2E

003D 00
003E OA
003F 19
0040 466F756E642061

6E203830383720
6F722038303238
372E

0057 OD
0058 OA

0000
0000 B8----
0003 8ED8
0005 8EDO
0007 BCC800
OOOA B80600
OOOD 50
OOOE 880000
00 1 1 50
0012 E80000
0015 A30200
001850
0019 B80200

Ll N E SOURCE

21 Lnp x

22 data
23 +1 $ejecl
24 dgroup
25 cgroup
26
27 code
28
29
30
31
32
33
34
35
36
37
38
39
40
4 1
42

s I art:

db

ends

g r 0 u p
group

25,'Found an 8087 or 80287.',CR,LF

dala,stack
code

segment public 'code'
assume cs:cgroup,ds:dgroup

mov
mov
mov
mov
mov
pus h
mov
pus h
c a I I
mov
push
mov

ax,dgroup
ds,ax
5 5 t a x
sp,offset dgroup:sst
ax, offset dgroup:co_name
ax
ax,offset dgroup:status
a x
dqcreate
COt a x
a x
a x , 2

Setup file connection
Save file loken

Signal write open

Figure 7·1. Probing for an 80287 (Cont'd.)

l

z
c:
s::
m
:xl
o
(J)

--oJ
I

.I>-

DOS 3.20 (033-N) 8086/87/88/186 MACRO ASSEMBLER V2.0 ASSEMBLY OF MODULE TEST_NPX
OBJECT MODULE PLACED IN FINDNPX.OBJ
ASSEMBLER INVOKED BY: D:\ASM86.EXE FINDNPX.A86

LOC o B J LIN E

001C 50 43
001D 33CO 44
OOH 50 45
0020 B800000 46
0023 50 47
0024 E80000 48
0027 FF360200 49
002B BBOBOO 50
OOH EB18 51

52
53
54

0030 55
0030 BB3FOO 56
0033 57
0033 58
0033 43 59
0034 53 60
0035 8A47FF 61
0038 98 62
0039 50 63
003A B80000 64
003D 50 65
003E E80000 66
o 0 4 1 33cO 67
0043 50 68
0044 E80000 69
0047 CC 70

71 + 1
72
73
74
75

0048 76

SOURCE

push ax
xor aX,ax ; No buffers needed
push ax
mov ax,offset dgroup:status
push ax
call dqopen ; Open file for IIIriling
push co ; Setup for call
mov bx,offset dgroup:n_npx
imp shorl lesLnpx ; Enler test code on nexl page

Prlnl message al IBX] Ihen exil

founL8L287:
mov

no_npx:
founL387:

inc
pus h
mov
cblll
push

$eject

mov
pus h
c a I I
x 0 r
pus h
cal I
in t

bx,offset dgroup:f_npx

bx
b x
a I , I b x - 1]

a x

Point at character string

Get count

ax,offset dgroup:stalus
a x
dqwrite
a x, a x
ax
d q • x i t
3

Print message

End the program, go back to DOS
Just in ca5e

Look for an 8087, 80287, or 80387 HPX.
Note that IIIe cannol execule WAIT on 8086/88 if no 8087 is present.

lesLnpx:

Figure 7-1. Probing for an 80287 (Cont'd.)

cl

z
c
3:
m
:xJ
(;
CII

--J
I

01

DOS 3.20 (033-N) 80861871881186 MACRO ASSEMBLER V2.0 ASSEMBLY OF MODULE TEST_HPX
OBJECT MODULE PLACED IN FINDHPX.OBJ
ASSEMBLER INVOKED BY: D:IASM86.EXE FINDHPX.A86

LOC OBJ

0048 90D8£3
0048 8E0400
004£ C704SASA
0052 90DD3C

0055 803COO

0058 75D9

005A 90D93C

005D 8804
005F 253Fl0
0062 3D3FOO
0065 75CC

0067 98D9E8
006A 9BD9EE
o 06D 9BDEF9
0070 98D9CO
0073 98D9EO

L I H £ SOURCE

77
78
79
80
81
82
83

84

85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

1 00
1 0 1
1 02
1 03
1 04

fninil ; Must use non-wait form
mov si,offset dgroup:temp
mov word ptr IsiI,5A5AH Initialize temp to non-zero value
fnstsw [sil Must use non-wait form of fstsw

It is not necessary 10 use a WAIT instruclion
after fnstsw or fnstcw. Do not use one here.

emp byte ptr ISil,O See if correct status wilh zeroes was
read

j n e no_npx Jump if not a valid status word, meaning no
H P X

How see if ones can be correctly written from the control word.

fnstcw

mov
and
c m p
J n e

I s I I

a x , lsi I
ax,103fh
ax,3fh
no_npx

Look at the control word do not use WAIT form
Do not use a WAIT instruction here!
See if ones can be written by NPX
See if selected parts of control word look OK
Check that ones and zeroes were correctly read
Jump if no npx Is installed

Some numerics chip is installed. NPX instructions and WAIT are now
safe. See if the HPX is an 8087/287 or 80387.
This code is necessary if a denormal exception handler Is
used or the new 80387 instructions will be used.

f 1 d 1
f 1 d z
f d i v

f I d
f c h s

s t

Must use default control word from FHINIT
Form infinity
8087/287 "Y' 'inf • -inf
Form negative infinity
80387 says 'inf () -inf

Figure 7·1. Probing for an 80287 (Cont'd.)

cf

z
c:
3:
m
:xl
n
(J)

-..j
I

a>

DOS 3.20 (033-Nl 8086/87/88/186 MACRO ASSEMBLER V2.0 ASSEMBLY OF MODULE TEST_NPX
OBJECT MODULE PLACED IN FINDNPX.OBJ
ASSEMBLER INVOKED BY: D:\ASM86.EXE FINDNPX.A86

LOC OBJ LI N E SOURCE

0076 9BDED9 1 05 fcompp See i f they are the 5 s m e and remove the m
0079 9BDD3C 1 06 f 5 I s w [si I L 0 0 k 8 I slalu5 from FCOMPP
007C 8B04 1 07 mov a x , [s i I
007E 9E 1 08 sahf See i f I h e infinilies malched
007F 74AF 1 09 j e founL8L281 Jump i f 8087/287 i s present

1 1 0
111 An 80387 is present. I f denormal exceptions are use d for an
1 12 8087/287, Ihey must be masked. The 80387 will aUlomalically
1 13 normalize denormal operands faster t han an exception handler
1 1 4

008 1 BE2DOO 1 1 5 mov bx,offsel dgroup:L387
0084 EBAD 116 jmp founL387

1 1 7
118 code ends
119 end slarl,ds:dgroup,s5:dgroup:5s1

ASSEMBLY COMPLETE , NO ERRORS FOUND

Figure 7-1. Probing for an 80287 (Cont'd.)

cf

can.

Z
C
~
m
::J:I
0
(J)

NUMERICS

7.1.2 Exceptions

With respect to numerics instructions, the 80386 raises an exception to notify system software
of the following:

• A task switch has occurred since execution of the previous numerics instruction; there­
fore, the context of the coprocessor may have to be switched before executing the current
numerics instruction.

• The previous numerics instruction incurred an error that requires software intervention.

A numerics instruction must be emulated.

Chapter 3 describes the 80386's exception facilities in general; the following sections discuss
the two exceptions that relate specifically to numerics coprocessors.

7.1.2.1 COPROCESSOR CONTEXT SWITCHING

A numerics coprocessor adds considerable machine state to a task, the bulk of it consisting
of either 80-bit registers. The operating system dispatcher can switch the coprocessor context
on every task switch. In most applications, however, this expensive operation is often wasted
because ordinarily only a minority of tasks issue numerics instructions. The coprocessor
context must actually be switched only when the task state loaded in the coprocessor does
not represent the task about to execute a numerics instruction. This may be simpler to
understand by defining the notion of "numerics tasks," that is, the subset of tasks that actually
issue numerics instructions. The context of the coprocessor must be changed only when the
current numerics task is not the same as the previous numerics task. By changing the context
of the coprocessor only when a different numerics task issues a numerics instruction, many
task switches can be made without incurring the expense of saving and reloading the context
of the coprocessor.

To help implement this strategy, the 80386 sets the TS bit in CRO whenever it performs a
task switch. It also tests TS before executing any numerics instruction; when MP is set, the
80386 further tests TS before executing aWAIT instruction. If, when tested, TS is set, the
processor raises exception number 7 (device not available). This exception means that at
least one task switch has occurred since the execution of the previous numerics or WAIT
instruction. The exception handler should therefore determine if the task whose context is
represented in the coprocessor (that is, the previous task to issue a numerics instruction) is
not the task whose attempt to execute a numerics instruction just incurred the exception.
The tasks may actually be the same; suppose, for example, that numerics Task A issues a
numerics instruction and is shortly thereafter preempted by Task B. Task B, which is non­
numeric, runs for awhile and then gives up the processor, allowing Task A to run again.
When Task A next issues a numerics instruction, the 80386 raises exception 7 because there
have been two task switches (A to Band B to A) since the previous numerics instruction
was executed. Nevertheless, the context of the coprocessor is still Task B's context, and there
is no need to change it before Task B executes another instruction. In this case, the exception
handler need only reset the TS bit and IRET. If, on the other hand, the running task is not
the same as the task whose context is loaded in the coprocessor, the handler must save the
coprocessor context in the old task's coprocessor save area and reload it from the new task's

7-8

NUMERICS

Table 7-1. EM and MP Bit Interpretation

EM MP Interpretation

0 0 Numerics instructions are passed to coprocessor; WAIT ignores TS

0 1 Numerics instructions are passed to coprocessor; WAIT tests TS

1 0 Numerics instructions trap to emulator; WAIT ignores TS

1 1 Numerics instructions trap to emulator; WAIT tests TS

to the BUSY # line. If numerics instructions can be encountered in a system, EM and MP
must be set to 0 and 1, respectively, for coprocessor interpretation of the instructions, or to
1 and 1 for emulator interpretation.

EM and MP can be altered with the privileged MOV eRO instruction. To avoid altering
other bits in the register (for example, the ET bit), a sequence like the following can be
used.

MOV EAX,CRO
AND EAX,BitClearMa5k
OR EAX,BitSetMa5k
MOV CRO,EAX

The WAIT instruction always waits for the BUSY # pin to go inactive; however, if no copro­
cessor is present, a pullup resistor in the 80386 causes WAIT to continue immediately as if
BUSY # were inactive. The WAIT instruction is used to delay execution of the next 80386
instruction while a coprocessor stores data in memory. WAIT is an interruptible instruction;
upon return from an interrupt handler the processor resumes execution of the WAIT
instruction.

The FNINIT instruction initializes the coprocessor; it must be the first numerics instruction
every task executes (the operating system can issue the instruction for an application task).
(FRSTOR can also be used to initialize the coprocessor if the restored coprocessor state
record contains the same values that FNINIT produces; FRSTOR, however, takes substan­
tially longer to execute than FNINIT.) The FSETPM instruction, required when the 80287
is used with an 80286, is not required when either coprocessor is used with an 80386; the
80386 ignores FSETPM. (The 80386 maintains and formats the addresses of the current
numerics instruction and operand, so neither coprocessor need be concerned with the 80386's
mode.)

For every task that issues a numerics instruction, the operating system must provide space
to save the coprocessor's state on task switches. Because, in general, it is not practical to
know which tasks execute numerics instructions and which do not, it is best to provide copro­
cessor save areas for all tasks if a numerics coprocessor or emulator is present. A convenient
place for this save area is the software state area of the task's TSS; for best performance the
save area should be doubleword-aligned. The save area should be 94 bytes, the size of the
area used by the FSA VE and FRSTOR instructions.

7-7

NUMERICS

TSS. In other words, the handler must perform the analog of an 80386 task switch for the
coprocessor.

Figure 7-2 is a pseudocode fragment that switches the context of the coprocessor if neces­
sary. At the heart of the example are the variables NumericTSS and CurrentTSS.
NumericTSS identifies the TSS of the current numerics task, that is, the task that last
issued a numerics instruction. At entry to the fragment, the coprocessor's context corre­
sponds to this task. The other variable identifies the TSS of the running task; the operating
system obtains this pointer by issuing an STR (store task register) instruction.

Exception 7 must be handled by a procedure, not a task. If the handler is a task, the 80386
sets TS when the handler issues an IRET instruction. The processor then reexecutes the
faulting instruction, finds that TS is set, and again raises exception 7; the result is an endless
loop. The handler can be invoked through a trap gate, because interrupts can remain enabled
during its execution.

Note that a numerics task's coprocessor context must also be saved if the operating system
swaps the task out of memory.

7.1.2.2 COPROCESSOR ERROR

Bits in a coprocessor's control word register mask or unmask the errors the coprocessor
discovers during execution of a numerics instruction. (See the 80386 Programmer's Refer­
ence Manual for details on error masking.) If an error is masked, the coprocessor deals with
the error directly and completes the instruction normally from the point of view of the 80386.
If an error is unmasked, the coprocessor does not handle the error but instead holds it
ERROR# pin active. This in turn makes the 80386 raise the coprocessor error exception
(number 16) when it encounters the following numerics instruction or WAIT instruction.

('switch coproces50r context when neces5ary')
GLOBAL NumericTSSj

(·clear TS bit in CRO·)
CLTSj
(·return if no switch is necessary')
CurrentTSS := STRj
IF CurrentTSS = NumericTSS

THEN Returnj
END IF j

('prevent context 5witch while 5witching coproce550r context·)
EnlerCrilicalSeclion()j
FSAVE -) NumericTSSj
NumericTSS := CurrentTSSj
FRSTOR -) NumericTSSj
LeaveCrilicalSection()j
Returnj

Figure 7-2. Switching the Coprocessor Context

7-9

NUMERICS

Exception 16 is a trap, not a fault. On entry to the handler, the ElP value on the stack does
not point to the offending instruction. It points to the numerics instruction or WAIT follow­
ing the offending instruction (that is, to the instruction the processor was starting to execute
when it noticed that ERROR# was active). To examine the offending instruction (and, if
applicable, its memory operand), the handler can issue the FSTENV instruction.

A coprocessor error handler can terminate the offending task, can supply an alternate result,
or can change a source operand and reexecute the instruction. To reexecute an instruction,
the handler can copy the offending instruction to a data segment for which the handler has
an alias that redefines the data segment as a code segment. By following the copied instruc­
tion with a RET instruction, the handler can CALL the instruction and then regain control.

7 .1.2.3 SIMULTANEOUS EXCEPTIONS

As it begins to execute a numerics instruction, the 80386 may find that TS is set and
ERROR# is active simultaneously. In this case, the processor raises exception 7 first. What
happens next depends on whether the exception 7 handler switched the context of the copro­
cessor. If it did not, as soon as the exception 7 handler returns, the 80386 raises exception
16. If the exception 7 handler switched the coprocessor context, the fact that an error was
pending in the old task is saved in its TSS by the FSA VE instruction. When the context of
the old task is next reloaded with FRSTOR, the coprocessor immediately activates ERROR#.
As a result, the next time the old task issues a numerics instruction, the 80386 raises excep­
tion 16. In sum, task switching takes priority over numerics error handling, but the exception
16 handler is always properly invoked in the context of the task that incurred the error.

7.1.3 Coprocessor Differences

When attached to an 80386, the 80287 and 80387 are essentially identical from an appli­
cation programming point of view. Both coprocessors automatically support real, protected,
and virtual 86 mode operation. Aside from speed, the most visible difference between the
processors is the few additional instructions provided by the 80387. Should the 80386
encounter an instruction that the 80287 cannot execute (because it is a member of the
expanded 80387 instruction set), the processor nevertheless passes the instruction on to the
coprocessor. The 80287's interpretation of such an instruction is not defined.

Other differences between the 80287 and 80387 are masked by the 80386. For example,
when attached to an 80286, the 80287 can overrun a segment when fetching or storing a
multiword operand; the result is exception 9. However, this never occurs when the coproces­
sor is used with the 80386; instead the 80386 raises a general protection fault before passing
the instruction to the coprocessor.

7.2 SUPPORTING AN EMULATOR

In an application needs the numerics coprocessor instruction set and can accept substantially
reduced performance, it can employ software that emulates one of the coprocessors. The
Intel emulators mimic their respective coprocessors with great fidelity; the operating system

7-10

NUMERICS

need deal with the emulator only in its initialization code and in the fault handler for
exception 7. These subjects are discussed in the following sections.

7.2.1 Initialization

If, at initialization time, the operating system discovers that neither an 80287 nor an 80387
is present, the operating system should direct the 80386 to raise a processor extension not
available fault (number 7) if the processor decodes a numerics instruction.

To direct the 80386 to raise exception 7 when it decodes a numerics instruction, the operat­
ing system initialization code must set the EM bit in eRO. As discussed in the next section,
the handler for exception 7 can either call an emulator or can terminate the task that issued
the numerics instruction. If the operating system provides a coprocessor emulator, it can
initialize the emulator just as it would initialize a coprocessor, with an FNINIT instruction;
the emulator will emulate the instruction. When an emulator is present, the operating system
must supply each task with a save area in which the emulator's context can be saved on task
switches.

7.2.2 Exceptions

A numerics coprocessor emulator should be packaged as a procedure (or collection of proce­
dures) called by the exception 7 handler when no coprocessor is present. The 80386 raises
exception 7 (device not available) when EM is set and the processor encounters a numerics
instruction. The processor raises the same exception to notify the operating system that the
emulator context may need to be switched. The exception 7 handler can determine whether
to call the emulator or to call the coprocessor context switcher by inspecting the EM bit in
the EFLAGS image on the stack (EM =0 means call context switcher). If the operating
system does not provide an emulator, the exception 7 fault handler should terminate the
task.

For anyone contemplating writing a numerics coprocessor emulator, at entry to the
exception 7 handler, EIP on the stack points to the instruction, including any prefixes, that
must be emulated. As it interprets the instruction, the emulator must increment EIP on the
stack so that when the handler returns with an IRET instruction, EIP points to the instruc­
tion following the emulated instruction. To emulate an instruction, the emulator must have
a descriptor for the associated code segment that grants the emulator read and execute
permission; the emulator must be able to read the instruction to emulate it. Pages are always
readable, so they require no special attention.

Exception 16 can be handled identically whether numerics instructions are interpreted by an
emulator or a coprocessor.

7-11

80286 Compatibility 8

CHAPTER 8
80286 COMPATIBILITY

This chapter describes two ways to execute 80286 binary programs (load modules) on a
comparable 80386-based system. The 80386 is almost exactly compatible with the 80286
and can therefore run most 80286 operating systems and applications with little or no change.
However, running an 80286 operating system binary does not take advantage of advanced
80386 facilities, because the processor is being used essentially as 80286. The alternative,
also described in this chapter, is to develop an 80386 operating system that can support both
existing 80286 programs and new 80386 programs. In this way, the operating system and
new applications can exploit the features of the 80386 while the investment represented by
existing 80286 programs is preserved.

8.1 RUNNING AN 80286 OPERATING SYSTEM

The 80286 data types, registers, instructions, gates, descriptors, and selectors are a proper
subset of the corresponding 80386 facilities. An 80286 operating system binary that observes
the compatibility rules set forth in the 80286 Programmer's Reference Manual, can run
without modification on the 80386. The most important requirement for 80286-80386
compatibility is the 0 in the top word of 80286 descriptors; non-O values in this word denote
80386 descriptors. Some other differences between the two processors are listed below; for a
definitive list, consult the 80386 Programmer's Reference Manual. Most of the differences
between the processors affect at most isolated portions of operating system code.

The 80386 stores different values in some fields that were reserved or undefined by the
80286. For example, the 80286 SIDT instruction stores the 40-bit value of the IDTR in
a 48-bit field, setting the undefined upper 8 bits to FFH. When it executes the same
instruction, the 80386 stores OOH in the upper 8 bits. 80286 programs that relied on
values of such reserved or undefined fields may behave differently on the 80386.

• The 80286 and 80386 interpret the LOCK prefix differently. On the 80386, LOCK is
independent of IOPL and can only be executed at privilege level 0, and only for a subset
of instructions. If LOCK is executed incorrectly on the 80386, the result is an invalid
opcode fault. See the 80386 Programmer's Reference Manual for details.

• The 80386 automatically senses the presence of an 80387; 80286 initialization code that
tested for the presence of an 80287 must be changed if an 80387 can be present.

The 80386 has no "80286 mode" analogous to the real mode that emulates an 8086. In
protected mode, the processor interprets an instruction according to the content of the
descriptors that are in effect at the time the instruction is executed. For example, suppose a
JMP instruction's target is 100,000 bytes from the beginning of its code segment. The
instruction faults if the code segment was produced by an 80286 translator because the code
segment's limit is, at most, 64 Kbytes. The same instruction does not fault if the descriptor
specifies a larger limit (as can be the case if the segment is created by an 80386 translator).
Thus, code segments are self-identifying: they establish either an 80286 or an 80386 "execu­
tion environment" for each instruction. Note, however, that the 80386 does not trap an

8-1

80286 COMPATIBILITY

attempt by a 80286 code segment to execute an 80386 instruction that is undefined for
the 80286.

8.2 RUNNING 80286 AND 80386 PROGRAMS CONCURRENTLY

Because the 80386 instructions, data types, and so on are a superset of the 80286's, you can
write an 80386 operating system that supports application programs written for the 80386
as well as programs written for a predecessor 80286 operating system.

8.2.1 Basic Operating System Support

Any new operating system that is to support existing applications must maintain a system
call interface that is functionally equivalent to the interface provided by the predecessor
operating system. At the same time, the new operating system can extend the interface (that
is, add system calls or parameters) for the benefit of the new 80386 applications.

Beyond supporting the old application interface, an operating system that supports execution
of both 80286 and 80386 programs must recognize that, in general, both old (80286 code)
and new (80386 code) tasks can be interrupted or encounter an exception at any time.
Consequently, the operating system must

• Use 80386 TSSs for all tasks, whether they are executing 80286 or 80386 programs

• Use only 80386 gates in the IDT

• Use only 80386 code segments for interrupt and exception procedures

In other words, both tasks and interrupt and exception procedures must run in a uniform
80386 "execution environment" to ensure that the processor saves and restores a task's full
state whenever the task is interrupted or incurs an exception. (In fact, if an interrupted task
is running an 80286 program, more than its full state is saved and restored, but the extra
information does not affect the task's behavior.) The uniform environment also ensures that
the processor properly invokes and returns from interrupt and exception procedures. For
example, an interrupt or exception procedure that returns through an 80386 gate returns
control correctly to an 80386 task and incorrectly to an 80286 task (it pops too much infor­
mation from the stack).

A TSS that represents a task executing an 80286 program should be initialized as follows:

• Set the high word of all doubleword register fields to OB

• Set CR3 as it is set for tasks executing 80386 programs

Set the FS and GS fields to OB (null selector)

The operating system can mark the TSSs of 80386 tasks that are executing 80286 code so
that interrupt, exception, and system call handlers can identify the caller, if necessary. (The
software state area of the TSS can be used for this purpose.) Note also that the I/O permis­
sion map (described in Chapter 5) available in an 80386 TSS can be used to grant 80286
tasks access to selected I/O ports.

8-2

80286 COMPATIBILITY

8.2.2 Handling Mixed System Calls

80286 code can call an 80386 operating system that provides an interface that is functionally
compatible with the interface provided by the 80286 operating system. However, 16-bit
parameters and 32-bit results are likely to have to be converted by procedures called system
call adapters. In this section, terms such as "80286 code" and "80286 procedure" mean code
that is produced by an 80286 translator and that resides in a code segment whose D bit
(default operand and address size is 16).

8.2.2.1 SYSTEM CAll ADAPTERS

Figure 8-1 shows how a system call adapter can be positioned so it intercepts system calls
from 80286 code without slowing calls from 80386 code. The adapter should be placed behind
an 80386 call gate that replaces the 80286 gate formerly used to enter the operating system.
(As explained in the next section, 80286 code should call an 80386 operating system through
an 80386 gate.) The adapter should have the same privilege level as the operating system.
An 80286 task then calls through a gate as usual, but the adapter intercepts the call, converts
parameters, and calls the 80386 operating system. The operating system returns to the
adapter, which converts results and returns through the gate to the 80286 application code.
To avoid interception by the adapter, a task executing 80386 code can call through a differ­
ent gate.

80286
APPLICATION

CODE

80386
APPLICATION

CODE

SAME PRIVILEGE LEVEL n

I CAL~

~ INTERFACE
PROCEDURE

(80286 CODE)

~ INTERFACE

~
PROCEDURE

(80386 CODE)

--14-

•

..,...

....

80386
CALL

GATES
CALL

RET

CALL

RET

Figure 8-1. System Call Adapter

8-3

PRIVILEGE LEVEL < n

SYSTEM CALL
ADAPTER

(80386 CODE)
CALL

'RET

80386
OPERATING

SYSTEM

G30287

80286 COMPATIBILITY

The adapter must reside in an 80386 code segment whose D bit is 1. The operation of the
CALL and RET instructions, when directed to a call gate, are determined by the gate itself.
Thus, when an 80286 segment issues a CALL whose operand selects an 80386 call gate, the
processor executes the CALL just as if an 80386 segment had issued it. The RET instruction
works analogously. Note that because the 80286 code calls through an 80386 gate, the adapter
entry point can be at an offset higher than 64 Kbytes (the maximum offset "reachable" with
an 80386 gate).

8.2.2.2 PARAMETER PASSING

80286 parameters can be copied automatically through an 80386 call gate, provided that
the parameters consist of an even number of words. Whereas an 80286 call gate passes n
words (where n is the word count field in the gate), an 80386 call gate passes dwords. Ifthe
80386 gate is defined to pass nl2 dwords, the parameters will be copied correctly.

If an 80286 procedure passes an odd number of words, the 80386 gate can be defined to
pass zero dwords, and the system call adapter behind the gate can copy the parameters.

8.2.2.3 PARAMETER CONVERSION

80286 offsets and pointers are smaller than the corresponding 80386 types, and the 80386
supports 32-bit integers while the 80286 does not. Thus, 16-bit parameters passed directly
from an 80286 program to an 80386 operating system would be misinterpreted by an operat­
ing system that expected 32-bit quantities. The system call adapter must convert these
parameters to the form expected by the 80386 operating system.

An 8- or 16-bit unsigned value can be converted to 32 bits by adding 0 bits at the high end,
using, for example, the MOVZX (move with zero extension) instruction. A 16-bit integer
can be converted to 32 bits by propagating its sign bit through the upper bits, using, for
example, the MOVSX (move with sign extension) instruction. Floating point numbers need
not be converted because they are identical on both processors.

Converting 32-bit results to 16-bit results is similarly straightforward, providing the operat­
ing system does not return significant digits in bits 16-31. If a result can legitimately be
32 bits if the caller is a task running 80386 code, the operating system can provide separate
system calls for 80286 and 80386 callers.

The adapter or the operating system itself should also ensure that the operating system does
not violate protection that would have been enforced had the application been run on an
80286. For example, the operating system should refuse a request from an 80286 program
to extend a segment past 64 Kbytes.

8-4

8086 Compatibility 9

CHAPTER 9
8086 COMPATIBILITY

The 80386 can execute 8086 binary programs in either of two modes, real mode or virtual
8086 (V86) mode. Real mode is an alternative to protected mode, the mode that has been
described in previous chapters. In real mode, the processor behaves much like a fast 8086; it
provides no tasking or protection facilities. V86 mode is a submode of protected mode that
an operating system can apply to individual 80386 tasks. Virtual 8086 mode provides a
protected task environment in which an 8086 program can execute without interfering with
the operating system or with other tasks. Thus, whereas real mode governs the execution of
all software, virtual 8086 mode applies only when the processor is executing V86 tasks.

Note that some 8086 programs time the duration of a sequence of instructions. Such programs
must be modified to execute correctly in real mode or in virtual 8086 mode because the
80386 executes instructions faster than the 8086.

9.1 COMMON ELEMENTS OF REAL AND VIRTUAL 8086 MODES

Real mode and virtual 8086 mode differ most importantly in privilege level and in interrupt
and exception handling. In basic instruction execution and addressing, real and V86 modes
are quite similar, as described in this section.

9.1.1 Instruction Set

Table 9-1 divides the 80386 instruction set into classes and shows how the processor executes
the instructions in each class in real and virtual 8086 modes. The instructions are grouped
according to the 8086 family processor that introduced them.

A debugged 8086 binary program should not contain 80286 or 80386 instructions because
such an instruction causes undefined behavior if executed by an 8086. Nevertheless, if such
instructions are present in an 8086 program that is executed in real or V86 mode, they can

Table 9-1. Real and Virtual 8086 Mode Instruction Execution

Instruction Class Real Mode V86 Mode

8086 ADD, MOV, etc. Executed Executed
8086 PUSHF,POPF,
INT,IRET,STI,CLI,Lock Executed 10PL-sensitive
8086IN,OUT,INS,OUTS Executed I/O Map-sensitive
80286 ARPL, LSL, etc. Opcode Fault Opcode Fault
80286 LMSW, LlDT, etc. Executed GP Fault
80286 ENTER, SOUND, etc. Executed Executed
80386 32-bit extensions Executed Executed
80386 LFS, LGS, ST, SLD, etc. Executed Executed
80386 MOV CRO, MOV Dr, etc. Executed GP Fault

9-1

8086 COMPATIBILITY

be executed, as shown in Table 9-1. Note that, as described in the next section, the 80386
32-bit instruction and operand addressing extensions (specified with 66H and 67H prefixes)
can be executed in real and V86 modes, but are subject to 64 Kbyte limit checking. For
example, an attempt to JMP or CALL to an offset greater than 64K results in a general
protection exception, as does an attempt to address an operand located at an offset higher
than 64K.

9.1.2 Pseudodescriptors

In real mode and V86 mode, as in protected mode, the 80386 uses the values in its descriptor
registers to form and check linear addresses. When the descriptor registers are loaded with
the values shown in Table 9-1, the 80386 mimics the logical-to-linear address translation of
the 8086. However, descriptors do not exist in real mode and V86 mode; therefore, the
contents of the descriptor registers in these modes are called pseudodescriptors. (Note also
that no descriptor has the attributes listed in Table 9-2; for example, an 80386 segment
cannot be both executable and writeable.) The processor initializes some pseudodescriptor
values when it is reset (see Chapter 6), and loads others when it switches from protected
mode to V86 mode. If the operating system switches the processor from protected mode to
real mode, the operating system must first load pseudodescriptor values, as described in
Section 9.2.

Software running in real mode or V86 mode can change the base address in a descriptor
register. In these modes, the 80386 interprets a selector operand as a 16-bit address. When
the processor loads a segment register in real mode or virtual 8086 mode, it shifts the selec­
tor value left by 4 and loads the resulting base address into the associated descriptor register.
To compute a linear address, the 80386 adds an offset to the base address as usual; the
resulting linear address is identical to the physical address that an 8086 computes by shifting
a segment register value left by 4 and adding the offset.

Table 9-2. Pseudodescriptor Attributes

Attribute Value

Present 1 (Present)
Base Address <FFFFFH «1MB)
Limit FFFFH (64KB)
Granularity o (Byte)
Privilege Level - V86 3
Privilege Level - Real 0
Expansion Direction o (Up)
Readable 1 (Readable)
Writeable 1 (Writeable)
Executable 1 (Executable)
CS Default Operand 0(16 Bits)
SS Big o (Small)

9-2

8086 COMPATIBILITY

The pseudodescriptor-based addressing used by the 80386 in real and virtual 8086 modes
differs from 8086 addressing (but is identical to 80286 real mode addressing) at the one­
megabyte 8086 address space boundary. The 8086 "wraps" physical addresses that exceed
1 megabyte (possible when a segment's base is within the top 64K of the 8086 physical
address space); the physical address following FFFFFH is effectively O. Under the same
conditions, the 80386, running in real or V86 mode, generates the linear address. (The highest
linear address in real or virtual 8086 modes is lOFFEFH, the result of adding the maximum
offset of FFFFH to the maximum base address of FFFFH shifted left 4 bits.) 8086 one­
megabyte wraparound can be simulated in V86 mode with paging (see Section 9.3.3).

9.2 REAL MODE

The 80386 enters real mode when it is reset; operating system software can also switch the
80386 from protected mode to real mode. The differences between 80386 real mode and a
true 8086 are documented in the 80386 Programmer's Reference Manual. The differences
are minor, and most 8086 application code runs without change in 80386 real mode. 80386
real mode is almost identical to 80286 real mode; consequently, 8086 binaries that execute
correctly on a real mode 80286 are very likely to execute correctly on a real mode 80386
(the 80386 Programmer's Reference Manual also describes the differences between 80286
and 80386 real modes).

Chapter 6 describes the values the 80386 registers contain following a hardware RESET,
and how an operating system's initialization routine can switch the 80386 from real mode
to protected mode. An operating system can also switch the 80386 from protected mode to
real mode without resetting the chip. The assembly language code shown in Figure 9-1 illus­
trates the sequence of operations that switches the 80386 from protected mode to real mode.

When the 80386 is switched to real mode, the CS descriptor register must contain values
that are 8086-compatible. Therefore, the operating system code that performs the switch
must reside in a code segment whose descriptor has 8086-compatible attributes: present = 1,
privilege level = 0, limit = 64K, granularity=O, default operand size=O, conforming =0, and
readable = 1. If paging is enabled, the code and data segments used to make the switch must
have physical addresses that are identical to their linear addresses (that is, the PTEs that
map these segments must define an identity mapping). The identity mapping insures that
instructions and operands are fetched from consistent physical addresses before and after
paging is disabled.

Because, except for base address, descriptor register values cannot be loaded in real mode,
8086-compatible attributes must be loaded into the data segment descriptor registers before
switching to real mode. To load these values, the operating system can define a data segment
descriptor that contains 8086-compatible attributes (present= 1, write able = 1, expansion
direction=O, limit=64K, granularity=O, Big=O), and load a selector for this descriptor
into SS, DS, ES, FS, and GS.

If paging is enabled, it must be disabled before entering real mode. This is done by clearing
the PG bit in CRO; the next instruction must flush the TLB by moving any value to CR3.
The 80386 is switched to real mode by clearing the PE bit in CRO. Immediately after the
switch, the operating system must execute a JMP instruction to flush any instructions in the

9-3

8086 COMPATIBILITY

THIS CODE HAS ~OT BEE~ TESTED
load data descriptor regs with values for real mode:

load=64K, present, writeable, expand-up, byte
granularity. New base addressees) must allow access to
this routine's data and stack.

MOV AX,RealModeSel selector for descriptor
with real mode attributes

MOV D5,AX
MOV E5,AX
MOV 55,AX
MOV FS,AX
MOV GS,AX

prevent maskable interrupts while changing modes
CLI

turn off paging
MOV EAX,CRO
A~D EAX,7FFFFFFEH
MOV CRO,EAX
MOV CR3,EAX

; t urn off protection
JMP FlushG

; get current CRO
; turn off PG and PE bits
; disable paging, protection
flush TLB by loading any value

FlushG:
; set up real

MOV
MOV

; flush prefetch ~ueue
; now in real mode

mode interrupt table; can be at any address
AX,IntTabBase

load

loa d

LI DT
5 T I

8086
MOV
MOV
MOV
MOV
MOV
MOV

D S , A X
IntTabOffset ; address of real mode int tbl

; interrupts on again
program base

AX,10aOH
D S , A X
E5,AX

addresses into data descriptor regs
1000H is just an example

55 , A X
F 5, A X
GS,AX

C5 with
JMP

real mode attributes
far ptr Entry86

and jump to 8086 program

Figure 9-1. Switching to Real Mode

80386 prefetch queue; such instructions have been decoded in protected mode and can be
executed incorrectly in real mode.

The operating system must load IDTR with the address of the 8086 interrupt vector table.
(The 80386 LIDT instruction works in real mode.) Unlike the 8086, the 80386 allows the
interrupt vector table to reside at any linear address. Interrupts can be enabled after the real
mode interrupt vector table has been established.

The base address values of the data descriptor registers can be loaded in the same way they
are loaded in an 8086 program. Finally, the operating system call issue an intersegment JMP
to the 8086 code. When executed in real mode, an intersegment JMP instruction loads the
CS descriptor register with real mode attributes.

9-4

8086 COMPATIBILITY

Nonmaskable interrupts can complicate switching to real mode because it is impossible to
switch to real mode and switch to an 8086 interrupt vector table simultaneously. There is
always an instant when the processor is in one mode but IDTR points to an interrupt table
that has the format of the other mode. Systems that have supporting external hardware
should disable nonmaskable interrupts, just as they disable maskable interrupts, during the
switch. If nonmaskable interrupts cannot be disabled, the IDT must be overwritten with an
8086-format interrupt vector at offset 8 (the offset of the 8086 NMI interrupt vector). The
4-byte vector must be written with a single 32-bit MOV instruction (use 66H prefix), and
the vector must be written after nonmaskable interrupts have been disabled and before
switching to real mode. The 8086 vector at offset 8 of the IDT permits the processor to
vector a nonmaskable interrupt through the protected mode IDT, should such an interrupt
occur after real mode has been entered, but before the real mode interrupt table has been
established.

9.3 VIRTUAL 8086 MODE

An 8086 application typically runs in a single task unprotected environment. The 8086 does
not constrain the application in any way; it can issue all instructions and access all of memory.
In the multitask protected mode environment of the 80386, only the operating system can
issue all instructions and access all of memory; application code is usually constrained to
addressing a subset of the address space and to executing a subset of the instruction set.
Using virtual 8086 mode, an operating system can integrate an existing 8086 program into
the protected, multitask (and optionally paged) environment of the 80386. The key attri­
butes of a V86 task are summarized below and are described in more detail in the rest of
this section:

• The VM bit (in EFLAGS) of a V86 task is 1.

• A V86 task runs at privilege level 3 when executing 8086 instructions; interrupts and
exceptions switch the processor from V86 mode to protected mode and from privilege
level 3 to privilege level 0; IRET instructions return the processor to V86 mode and
privilege level 3.

• A V86 task can execute concurrently with protected mode (VM = 0) 80386 tasks, other
V86 tasks, and 80286 tasks.

• V86 tasks are compatible with paging and with virtual memory.

A V86 task can be allowed to reference memory-mapped and I/O-mapped devices, or
these references can be trapped and simulated by the 80386 operating system.

• A V86 task can be allowed to access the 80386 interrupt enable flag (IF), or references
to IF can be trapped and simulated by the operating system.

9-5

8086 COMPATIBILITY

9.3.1 Virtual Machine Monitors

Because their programs were written for a different machine and a different operating system,
V86 tasks incur exceptions that the 80386 operating system must handle specially. For
example, suppose a protected mode task issues an INT 21 H instruction. Such an instruction
is likely to be erroneous and cause for termination of the task. However, the same instruction
issued by a V86 mode task might represent a legitimate 8086 operating system call.

It is convenient to package the code that responds specially to V86 exceptions in a procedure
(or collection of procedures) called a virtual machine monitor (VMM). A VMM simulates
the 8086 instructions that the 80386 will not execute in V86 mode. The virtual machine
monitor's code must be contained in a 32-bit code segment whose DPL is O. As Figure 9-2
shows, the VMM is called by an exception handler when the exception occurs in the context
of a V86 task. To identify a V86 task, an exception handler can examine the VM bit in the
EFLAGS image the 80386 saves on the handler's stack (Section 9.3.4 describes the format
of a handler's stack when it is invoked in a V86 task).

To simulate an 8086 instruction, the VMM must locate and decode the instruction. The CS
and EIP fields pushed onto the exception handler's stack contain the logical address of the
faulting instruction. After simulating an instruction, the VMM must increment the EIP
value on the stack so the V86 task will execute the following instruction when the exception
handler returns. Note that a VMM should simulate only 8086 instructions; if an erroneous
V86 task issues a privileged 80386 instruction, such as LGDT, the VMM should terminate
the task.

9.3.2 Task Management

An 80386 operating system can create a V86 task directly, or it can create a protected mode
task that transforms itself to a V86 task. To create a task that begins execution in virtual
8086 mode, an 80386 TSS must be initialized as follows:

• Set the EFLAGS VM bit to 1.

• Set the CS selector field so that when shifted left by 4, the result is the linear base
address of the task's initial code segment.

Set the IP field to the task's entry point.

Set 10PL (in the EFLAGS field) to 3 if the task is to be able to access the interrupt
enable flag; otherwise, set 10PL to 0 (see Section 9.3.4).

Set the LDT selector field to 0 (null). (LDTs are not used in V86 mode; however, if an
interrupt or exception procedure uses an LDT, the task's LDT selector must be initial­
ized with a non-null selector.)

Initialize the I/O permission map to grant or deny access to I/O ports (see
Section 9.3.6); setting the permission map base field to FFFFH is equivalent to setting
all permission bits (that is, to prohibiting all I/0 space accesses).

9-6

PROTECTED OR
va6 MODE TASK

8086 COMPATIBILITY

IRET

RET

VIRTUAL
MACHINE
MONITOR

CALL EXCEPTION HANDLER

r-~--------------'
I I

II l<§>~~A~ 0 N~~~t~y :1

(RETURN TO I
va6 MODE)

I (LEAVE va6 MODE) I I
I INSTRUCTION L- ____ 1- __________ ---1
L..-"':":':'=:";":';;';':"-'

.--------- -----
80386

------,
I
I I

I
I
I
I

EXECUTE
RAISE

EXCEPTION

I
I
j

I I L _________________ J

Figure 9-2. Invoking a Virtual Machine Monitor

G30287

In all other respects, V86 task creation is identical to protected mode task creation. When
the TSS and other data structures used by the task are in place, the V86 task can be sched­
uled and dispatched like any protected mode task. When the V86 TSS is the new task in a
task switch, the 80386 loads EFLAGS; because the VM bit is set, the 80386 switches to
virtual 8086 mode. The processor interprets the remaining TSS fields as containing V86
values and loads them accordingly.

The second way to create a V86 task is to create a protected mode task that, running at
privilege level 0, changes itself to a V86 task. To perform this transformation, the protected
mode task must push a stack frame onto the level 0 stack that is identical to the frame
pushed by the 80386 when a V86 task is interrupted or incurs an exception. Figure 9-4 shows

9-7

PAGE
DIRECTORIES

AND PAGE
TABLES

1MB

LINEAR
ADDRESS

SPACE

...

-

808S COMPATIBILITY

r

r*' I-

-
'---

va6 TASK 1 vaG TASK 2

Figure 9-3. V8S Mode Address Relocation with Paging

9-8

4GB

PHYSICAL
ADDRESS
SPACE

G30287

8086 COMPATIBILITY

GS'

FS'

os'

ES'

SS·

ESP

EFLAGS

CS'

EIP .,...
TOPOFSTACK t_.-I ERROR CODE' I ... --------

31 0

'UPPER 16 BITS UNDEFINED

SAVED WHEN V86
TASK IS INTERRUPTED
OR INCURS EXCEPTION.

SAVED FOR ANY INTERRUPT
OR EXCEPTION (S5 AND ESP
ARE SAVED WHEN HANDLE IS
MORE PRIVILEGED THAN TASK AT
TIME OF INTERRUPT OR EXCEPTION).

Figure 9-4. Handler's Stack after V86 Interrupt or Exception

G30287

the format of this stack frame. If the protected mode task then issues an IRET instruction,
the 80386 loads the V86-format stack frame into its registers and continues execution in
V86 mode. On the next task switch, the 80386 saves the V86 task's registers in V86 format.

9.3.3 Memory Management

Paging can be enabled as usual when virtual 8086 mode tasks are present. Indeed, if multiple
V86 tasks can run concurrently, paging must be used to separate their physical address
spaces; all V86 tasks run in the first megabyte of the linear space, as shown in Figure 9-3.
With respect to paging, including page swapping, a V86 task is no different from a protected
mode task; the guidelines provided in Chapter 2 apply to both kinds of tasks.

The 8086's I-megabyte wraparound can be simulated with aliased pages. 256 page table
entries are required to define a I-megabyte physical address space and 16 more PTEs are
required to define the 65,519 bytes above 1 megabyte that a V86 task can potentially address.
By making the first 16 and the last 16 PTEs identical, any V86 reference to a linear address
above 1 megabyte is relocated to the same physical address as a reference to the same
displacement from linear address O. In other words, the first and last 64 Kbytes of the linear
space are mapped to the same physical pages. Note that as with all aliasing, this technique
requires some extra operating system bookkeeping because multiple PTEs point to the same

9-9

8086 COMPATIBILITY

physical pages. For example, to swap out an aliased page, both PTEs that point to the page
must be marked not-present.

9.3.4 Interrupts and Exceptions

In virtual 8086 mode, the processor treats interrupts and exceptions as it does when running
in protected mode, except that it switches from V86 mode to protected mode before invoking
a handler. When the handler issues an IRET instruction, the 80386 switches back to V86
mode and resumes execution of the V86 task. For the automatic V86-protected mode switch­
ing to operate properly, an operating system must observe the following:

• All gates in the IDT must be 80386 gates.

• Procedure-based handlers must reside in non-conforming privilege level 0 code segments;
task-based handlers can run at any privilege level.

9.3.4.1 HANDLER CONSIDERATIONS

When a V86 task incurs an exception or is interrupted, the 80386 invokes the handler in a
way that minimizes the difference between the V86 task and a protected mode task. If the
interrupt or exception handler is a task, the 80386 switches to the handler task as usual,
saving the V86 task's machine state in the old TSS. If the handler is a procedure, the 80386
first saves the V86 task's segment registers on the level 0 stack {see Figure 9-4}, and then
saves the usual EFLAGS, return address, and error code, as applicable to the interrupt or
exception. {Pushing the additional segment registers slightly increases interrupt latency.}
Because the top stack elements are identical when a handler is invoked in a protected mode
task or in a V86 task, the handler can invariably return with an IRET instruction.

At entry to the handler, DS, ES, FS, and GS contain null selectors; SS and CS contain valid
selectors as usual. If the handler needs to use DS-GS, it can push the segment registers in
its prolog and pop them in its epilog without regard for the mode of the running task. When
the handler issues an IRET instruction, the 80386 pops EIP, CS, EFLAGS, ESP, and SS
from the handler's stack into the corresponding registers. When, after popping EFLAGS,
the processor's VM bit is set, the processor additionally pops DS-GS from the stack.

The presence of V86 tasks is generally transparent to procedure-based interrupt and excep­
tion handlers. However, as mentioned earlier in Section 9.3.1, some exception handlers must
examine the VM bit on the stack and call the virtual machine monitor if VM is set. Note
also that interrupt or exception handlers that alter the running task's DS, ES, FS, or GS
registers cannot do so directly if the running task is a V86 task; instead they must alter the
register values on the level 0 stack.

9.3.4.2 INTERRUPT ENABLE FLAG CONSIDERATIONS

Some 8086 programs disable interrupts while they perform critical operations. An 80386
operating system can allow a V86 task to change IF or the operating system can direct the
processor to raise a general protection exception if the task attempts to load or store IF. A
V86 task runs at privilege level 3; its ability to access IF is determined by its IOPL. If a

9-10

8086 COMPATIBILITY

V86 task's IOPL is less than 3, instructions that load or store IF result in general protection
exceptions; the virtual machine monitor can simulate these instructions. If a V86 task's IOPL
is equal to 3, the 80386 executes IF-related instructions. Because of the potential risk to the
rest of the system, in general, a V86 task's IOPL should be set to 3 only when performance
requirements cannot be met by simulating IF.

If a V86 task is denied direct access to IF, the VMM must simulate the following instruc­
tions: PUSHF, POPF, INT n, IRET, ST!, and CLI. The VMM can maintain a variable
(perhaps in the software portion of the task's TSS) that represents the task's simulated IF,
supplying the variable's value to simulate instructions that store IF (for example, PUSHF)
and updating the variable to simulate instructions that load IF (ST!, for example).

Systems that permit V86 tasks to alter IF can deploy a hardware watchdog timer that gener­
ates a nonmaskable interrupt if a V86 task disables interrupts for too long. The watchdog
timer can be implemented in coordination with the customary system timer that regularly
interrupts on the INTR pin. Whenever the system timer interrupts, the operating system
can load the watchdog timer with the value it loads into the system timer plus the maximum
time interrupts are permitted to be disabled. As long as the system timer interrupts on
schedule, the watchdog does not interrupt. If interrupts are disabled too long, however, the
watchdog timer generates a nonmaskable interrupt, allowing the operating system to enable
interrupts and terminate the V86 task.

Note that a V86 task whose IOPL is 3 can potentially issue any of the 256 INT instructions.
To prevent such a V86 task from invoking an interrupt or exception handler with an INT n
instruction, set the DPL field in the handler's IDT gate to O. An attempt to invoke a handler
through a gate whose DPL is 0 will result in a general protection exception; the VMM can
then terminate the V86 task. If an IDT gate's DPL must be set to 3 to allow protected mode
tasks running at privilege level 3 to invoke the associated handler, the handler can identify
an erroneous V86 task by examining the VM bit on its stack. The handler can then call the
virtual machine monitor which can terminate the V86 task.

9.3.4.3 SIMULATING INTERRUPTS

An 80386 operating system can deliver simulated interrupts to a V86 task. The technique is
identical to reflecting a system call, described in Section 9.3.5. In essence, the virtual machine
monitor builds a stack frame whose return address is the entry point of the V86 interrupt
handler, and then issues an IRET instruction.

9.3.5 System Calls

Many 8086 operating systems use an INT n instruction for a system call. A V86 task's
ability to execute an INT n instruction depends on the task's IOPL. If the V86 task's IOPL
is less than 3, an INT n instruction results in a general protection exception. Invoked by the
general protection exception handler, the VMM can handle the 8086 system call in one of
two ways: it can simulate the call by making an equivalent call on the 80386 operating
system, or it can reflect the call to a copy of the 8086 operating system loaded into the V86
task's address space (see Figure 9-5, which, for simplicity, omits the exception handler that
calls the VMM). If a V86 task's IOPL is 3, it can issue an INT n instruction, which will

9-11

PRIVILEGE
LEVEL

0

3

8086 COMPATIBILITY

G)RET
80386 -=-- 80386

OPERATING
CALL

OPERATING
SYSTEM

CD
SYSTEM

CD IRET - -
VIRTUAL

~
VIRTUAL

MACHINE MACHINE
MONITOR r-- MONITOR f-----

I- I-

INT
INT

CD CD
8086 I~ 8086

-.=;..

APPLICATION APPLICATION
CD IRET

CD --=-
8086

OPERATION
G)IRET

SYSTEM

a. SIMULATION b. REFLECTION

G30287

Figure 9-5. Simulating and Reflecting V86 System Calls

invoke the 80386 handler pointed to by gate n in the IDT. This handler can call the virtual
machine monitor which can simulate or reflect the system call.

To simulate an 8086 system call, the VMM must decode the call, transform the call and the
parameters to 80386 operating system equivalents, and call the 80386 operating system.
When the 80386 operating system returns to the VMM, the VMM must transform the
results into the format expected by the V86 task, advance the V86's task's saved EIP, and
return to the V86 task with an IRET instruction.

If V86 system calls are to be handled by a copy of the 8086 operating system, the 8086
operating system must be allowed to initialize itself before any application code is executed.
One way to do this is to load the 8086 operating system and let the 8086 operating system
load the application. The 80386 operating system may need to invoke the 8086 operating
system (using an IRET instruction) at an entry point other than its RESET address to avoid
low-level hardware-dependent operations that can raise unnecessary exceptions if executed
by a V86 task. Having initialized itself, a typical 8086 operating system can then wait for a
command from an end-user. When a command requires loading an application, the 8086
operating system can do it.

9-12

8086 COMPATIBILITY

Assuming an 8086 operating system and an 8086 application program reside together in a
V86 task's address space, the virtual machine monitor can reflect a system call to the 8086
operating system as follows:

• Push a copy of the V86 task's stack frame (its segment registers, stack pointer, EFLAGS,
and return address) onto the level 0 stack.

Change the return address in the copied frame to the 8086 operating system's entry
point (for an INT n system call, the address is located at linear address 4*n, that is, in
the nth slot of the 8086 interrupt vector table).

• Simulate the 8086 INT instruction's push of the V86 task's FLAGS, CS, and IP onto
the level 3 stack; adjust ESP in the copied stack frame on the level 0 stack to reflect the
simulated push.

Issue an IRET instruction to switch to virtual 8086 mode and transfer to the 8086
operating system's system call entry point.

When the 8086 operating issues an 8086 IRET instruction to return to the 8086 application,
the VMM is invoked again. The VMM can return control to the 8086 application as follows:

Adjust ESP to point to the original stack frame return address.

Simulate the 8086 IRET instruction by copying FLAGS, CS and IP from the level 3
stack to their corresponding locations in the original stack frame (ESP in the original
stack frame is correct as is).

• Increment EIP on the level 0 stack so it points to the instruction after the INT n
instruction.

• Return to the exception handler which should return to the V86 task with an IRET
instruction.

When paging is enabled. multiple V86 tasks can run concurrently, and a single copy of a
reentrant 8086 operating system can be mapped into the address spaces of all V86 tasks. If
the 8086 operating system is not reentrant, each V86 task must have its own copy of the
8086 operating system data; a single copy of the operating system code can be shared among
the V86 tasks (unless the operating system modifies its code). Note that existence of multi­
ple copies of an 8086 operating system necessitates coordinating their accesses to shared
I/O devices (each copy of the 8086 operating system probably assumes it has exclusive
access to all I/O devices). Section 9.3.6 describes how the virtual machine monitor can gain
control when any of the 8086 operating systems attempts to access an I/O device.

9.3.6 Input/Output

A V86 task addresses a memory-mapped I/O device just as if it were running on an 8086.
If paging is enabled, V86 task references to memory-mapped devices can be relocated
automatically. For example, an 80386-based system may have a memory-mapped video
refresh buffer located at a physical address higher than I megabyte. A similar buffer on an
8086-based system must necessarily be located below the 8086's I-megabyte physical address
limit. An 80386 operating system can initialize a V86 task's page tables so that its references
to the addresses of the 8086-based buffer are automatically translated to the addresses of

9-13

inter 8086 COMPATIBILITY

the 80386 buffer. Because this technique relocates all addresses in a page, it is best-suited
to devices aligned on 4 Kbyte boundaries.

By clearing bits in a V86 task's I/O permission map, an 80386 operating system can permit
the task to access selected I/O ports directly. (Chapter 5 describes the format and operation
of the I/O permission map.) Note that, unlike a protected mode task, a V86 task's 10PL is
irrelevant to the task's ability to access I/O ports; the 80386 examines only the I/O permis­
sion bits to determine V86 I/O port accessibility.

The accesses of multiple V86 tasks to the same I/O ports (whether memory- or I/O-mapped)
must be serialized. Unless all V86 tasks perform I/O via a single copy of an 8086 operating
system which performs the serialization, the serialization must be provided by the VMM.
To insure that the VMM is invoked by any V86 I/O operation, I/O operations must be
made to raise exceptions. Setting bits in the V86 task's I/O permission map makes refer­
ences to the corresponding ports raise exceptions. References to memory-mapped devices can
be made to raise exceptions by marking the associated pages not-present and setting an
available PTE bit to indicate "trap on I/O." The page fault handler is invoked on a refer­
ence to a not-present page; if the page's trap on I/O bit is set, the page fault handler can
invoke the VMM.

9-14

A UNIX System Implementation 10

CHAPTER 10
A UNIX SYSTEM IMPLEMENTATION

This chapter describes a hypothetical implementation of the UNIX System V kernel on the
80386. For convenience, we call this implementation U /386, but it corresponds to no actual
system. The chapter will be of interest to readers who

• Want to see the 80386 system architecture applied to a complete operating system
example

Are porting the UNIX system to 80386-based hardware

• Are evaluating the 80386 as a "System V engine"

To get the most from this chapter, you should be moderately familiar with the UNIX System
V kernel.

Only about 10 percent of the System V kernel is written in assembly language. These assem­
bly language routines provide an interface between the processor and the bulk of the kernel,
which is written in C. This chapter concentrates on the assembly language portions of the
kernel because these are the routines that interact directly with the 80386 system architec­
ture. The topics covered in this chapter are the lower levels of process management, memory
management, system calls, interrupt and exception handling, I/O, and debug support.

Note that the UNIX System V is a proprietary product of AT&T. This chapter covers only
subjects whose operation is common knowledge.

10.1 U/386 IMPLEMENTATION PHILOSOPHY

When implementing an existing operating system you must adapt one architecture to another.
Either the operating system architecture must be adapted to the processor or the processor
architecture must be adapted to the operating system. U /386 bridges this "architectural
gap" by adapting the 80386 to the System V system architecture. Such an approach does
not use every architectural feature of the 80386. However, tailoring the processor architec­
ture to the operating system illustrates the flexibility of the 80386 system architecture, and
shows how an existing operating system can be ported to the 80386 at minimum cost and
risk. This chapter illustrates but one way to implement the System V system on the 80386;
other design approaches can also be justified.

10.2 PROCESS AND MEMORY OVERVIEW

The traditional System V process-memory model is simple, although it has recently been
made more elaborate to support greater interprocess sharing. (A System V process is analo­
gous to an 80386 task and U /386 stores the machine state of process in a TSS.) In general,
each process runs in its own address space, protected from all other processes.

10-1

A UNIX SYSTEM IMPLEMENTATION

The System V operating system distinguishes between user processes and system processes.
Most processes are user processes; system processes typically perform housekeeping activi­
ties such as swapping out pages. A user process executing its own code is said to be running
in user mode. A user mode process enters kernel mode as a result of a system call, an inter­
rupt, or an exception. In kernel mode, a process executes kernel code, which can include
privileged instructions. The kernel's code and data are mapped into each process's address
space, but they are not directly accessible; a user process can do nothing to the kernel but
call it. Conversely, the kernel has access to the running process's entire address space, which
simplifies I/O transfers.

A process's address space is divided into functional areas called the text, data, and stack
segments. However, from an addressing standpoint, the System V process address space is
not segmented but uniform. For example, C programs routinely use the same pointer to
alternately refer to an item on the stack and an item in the data segment. Although less
common, some System V programs modify their own code or execute code that they gener­
ate on their stacks or in their data segments. Thus, System V segment types are not as
distinct from one another as 80386 segment types. Although it is possible to map System V
segments to 80386 segments, it is simpler to map them into what amounts to a single large
80386 segment that is subdivided into pages; this is the approach taken by U /386.

Figure 10-1 shows the 80386 linear address space during normal U /386 execution. A
U /386 process uses one 80386 code and one data segment when it runs in user mode; it uses
a different code segment and a different data segment when it runs in kernel mode. DS, ES,
and SS are always loaded with the same descriptor. (U /386 uses ES for string instructions
and does not use FS and GS.) The user segments begin at linear address 0 and extend over
nearly the entire linear address space to the kernel boundary. U /386's segment arrangement
gives each user process an unsegmented logical address space nearly 4 gigabytes long. In
this flat address space, a pointer is simply a 32-bit offset, whether it points to code, a constant,
or an item on the stack, because all segment base addresses are zero. Offset-only pointers
match the C language's uniform view of the address space. Because a process's code is
contained in a single code segment, function calls can be implemented with the fast intra­
segment (near) CALL instruction.

The kernel's segments overlap the user's and extend to the 4 Gbyte limit of the linear address
space. The kernel's segments have a privilege level of 0; the user segments are privilege
level 3. Running at privilege level 0, the kernel can execute privileged instructions and is
protected from the user. U /386 system calls, interrupts, and exceptions enter the kernel
through a call gate, interrupt gates, and trap gates, respectively. When control passes through
these gates, the 80386 loads the CS and SS registers automatically; the kernel loads DS and
ES to gain access to its extended data segment. Note that by making the kernel's segments
extended versions of the user's, a 32-bit pointer passed from user to kernel always points to
the same linear address. U /386's segment arrangement also gives the kernel instant access
to the user address space.

(A different design could extend the user segments to the full 4 gigabytes and protect the
kernel's upper 4 megabytes of the linear space with page attributes. U /386 separates kernel
from user by segmentation rather than paging because it is natural to define the division in
the logical rather than the linear address space. However, both approaches are workable.)

10-2

KERNEL
(4MB)

USER

4GB

A UNIX SYSTEM IMPLEMENTATION

-
DATA

(INCLUDES STACKS)

KERNEL CODE
AND DATA
SEGMENTS

CODE

SHARED
LIBRARIES

SHARED
MEMORY

STACK
SEGMENT

REGIONS USER CODE
AND DATA

(AVAILABLE
SEGMENTS

FOR STACK
AND DATA
GROWTH)

DATA
SEGMENT

TEXT
SEGMENT]

G30287

Figure 10-1. U/386 Linear Address Space Snapshot

10-3

A UNIX SYSTEM IMPLEMENTATION

Although U /386 uses 80386 segments lightly, it uses paging extensively to

Sparsely allocate pages of physical memory to segments

• Protect processes from each other by mapping them to different pages of the 80386
physical address space

Share memory between processes

Implement demand paged virtual memory

Protect a process from some of its own errors

Although a U /386 process can be almost as large as 4 gigabytes, most System V processes
require only a fraction of the available space. To accommodate smaller processes efficiently,
U /386 allocates only the number of pages a process actually uses. Although every process
occupies nearly 4 Gbytes of the linear space, most processes occupy only tens or hundreds
of pages of the physical space. The relocation provided by paging enables the kernel to give
each process the impression that it is loaded beginning at linear address zero, whereas it is
actually mapped to pages scattered over the physical address space. Although most of a
process's pages are private to the process, U /386 processes can also share pages of code and
data. U /386 implements virtual memory by swapping infrequently used pages out to disk
when the supply of physical memory runs low, and swapping pages in from disk on demand.
Finally, U /386 uses the protection attributes of pages to trap wild pointers and array indexes
that fall into unallocated or read-only pages.

The notion of a region is central to System V memory management. A region is a sequence
of consecutive logical addresses that the kernel can map into the user space of one or more
processes. (Figure 10-1 shows that a process's System V segments are mapped to regions,
and that regions are the basis for interprocess sharing.) In U /386, each active region is
described in a kernel data structure called the region table. A region table entry points to
the file, if any, associated with the region, and contains a field that identifies the region as
public or private. A public region can be shared by other processes; a private region is private
to a process. Public region table entries have a share count that indicates the number of
processes whose address space currently includes the region.

U /386 implements a region as a list of page tables; because a page table covers 4 megabytes
of memory, a typical region consists of a single page table. The kernel functions a t t a c h
and d eta c h map and unmap a public region into a process's address space. (This chapter
uses a "special" typeface to distinguish System V terms.) The at t a c h function increments
a public region's share count and adds entries for the region's page table(s) to the process's
page directory. The d eta c h function invalidates the relevant page directory entries and
decrements the share count; if the share count goes to zero (indicating the region is no longer
attached to any process), de t a c h frees the region.

10.3 PROCESSES

A System V process corresponds closely to an 80386 task. It is a unit of execution that runs
in its own address space, executing (logically) in parallel with other processes. This section
describes how U /386 represents, creates, and terminates processes. System V processes
frequently execute the same program (for example, the v i editor or the C compiler), making

10-4

A UNIX SYSTEM IMPLEMENTATION

program sharing an important aspect of an efficient implementation. Interprocess sharing is
described in Section 10.4.5.

10.3.1 Representing a Process

AU /386 process is comanaged by the U /386 operating system and the 80386. Figure 10-2
shows the linked data structures that the operating system and the processor use to represent
a process. The process table contains the minimal information the kernel needs to manage
the active processes, principally each process's state and the address of its us t rue t (user
structure). A us t rue t describes a process in detail; it contains the process's scheduling
priority, accounting information, open file descriptors, kernel stack, and other machine­
independent data. U /386 extends the us t rue t with the 80386's task management struc­
ture, the TSS. The complete one-page structure is called the u p a 9 e and contains essen­
tially all process information.

A process's page directory and page tables are memory management structures and are
described in detail in Section 10.4.2. Briefly, every page directory includes a common entry
that maps the kernel's page table so that every process shares the kernel's pages. Other page
directory entries map the page tables that implement the process's regions. Typically, one
page table is sufficient to represent a region because a page table covers 4 megabytes. Not
shown in Figure 10-2 are the GDT, which is shared by all processes and is described in
Section 10.4.1.

Figure 10-3 shows the details of a U /386 process's TSS. (The TSS has been extended by a
save area for the 80386 debug registers; Section 10.9 describes how this area is used.)
U /386 does not use the back link field of the TSS, although the 80386 sets this field when
it invokes a task-based exception handler. ESPO points to the base of the kernel stack in the
process's us t rue t; SSO is a selector for the kernel data descriptor (described in Section
10.4.1). The remaining privileged stack pointers are not used because U /386 does not use
privilege levels 1 and 2. The CR3 field contains the physical address of the process's page
directory. The ES, SS, and DS fields contain selectors for the process's data segment; the
CS field holds the selector for the process's code segment. The F and G segment registers
are not used in U /386, so the corresponding TSS fields contain null selectors. The LDT
field contains 0 because U /386 tasks do not have local segments; note that their distinct
page directories prevent tasks from accessing each other's (unshared) physical memory, even
though they generate the same linear addresses. Because U /386 user processes are not
permitted to operate on I/O ports, their TSSs have null I/O guard maps.

10.3.2 Forking a Child Process

A System V process clones itself by issuing a for k system call. U /386 implements a for k
system call as follows:

• Allocates a page for the new (child) process's up a 9 e.

• Finds a free GDT slot for new process's TSS descriptor; initializes the descriptor to
point to the TSS area of the new u p a 9 e.

• Copies the running (parent) process's up a 9 e to the child's up a 9 e.

10-5

inl:el" A UNIX SYSTEM IMPLEMENTATION

PROCESS TABLE UPAGE -
I--------I~
I--------I~

~
t--------1

~
~------~ -

TO OTHER
UPAGES

\
\

TSS \

:..-
INSTRUCT

PAGE TABLES

t~----------~ -
~

~--------------~\
\
\
~ . \

~- ~
'-- ___________ - PROCESS

DIRECTORY

.. -----------~ ----.
~------------~\

\ ,
.... _----------'111
\ ~
\ \
\ , . \
I ~

I _ ' \

t.-.I \ I \ ---- -..------------'-------I.~I~ _____ -____ __ ~

LEGEND

80386
STRUCTURE

... _------ --_
SYSTEM V

STRUCTURES

Figure 10-2. U/386 Process Representation

10-6

PAGES

G30287

I 0 BASE '"
LDT 0"

GS 0"

FS 0"

os o ..

S5 o ..

CS 0"
ES 0"

EDI

ESI

EBP

ESP

EBX

EDX

ECX

EAX

EFLAGS

CR3

552 0"
ESP2 0"""

551 0"
ESP1 o oil

5S0 0"""
ESPO

LINK 0
31

.J;

DRl

DR6

DRS

DR4

DR3

DR2

DRI

ORO

A UNIX SYSTEM IMPLEMENTATION

. ' 0" • lojoJo
.0 0 .. .0

.. 0 0" .. 0

.. 0 0" .. 0

.. 0 0 USER CODE SELECTOR

.. 0 0 USER DATA SELECTOR

.. 0 0 USER OAT A SELECTOR

.. 0 a USER OAT A SELECTOR

OFFSET OF PROCESS PAGE DIRECTORY (PHYSICAL)

.0 0" .0
.0

_0 o oil .0

"'0

., KERNEL DATA SelECTOR

KERNEL STACK OFFSET

.,0 .. _0

(AVAILABLE)

]

1

NOT USED

REGISTER VALUES WHEN
PROCESS LAST SUSPENDED

NOT USED

DEBUG REGISTER
SAVE AREA

Figure 10-3. U/386 Process TSS

10-7

G30287

A UNIX SYSTEM IMPLEMENTATION

• Allocates a page for the child's page directory and loads the CR3 field in the child's
TSS with the page directory's physical address.

• Attaches the parent's code, shared library, and shared memory regions to the child's
address space. (Sharing these regions saves copying them from parent to child.)

• Creates a private region for the child's data region, but does not allocate the region's
pages. Instead, U /386 copies the parent's data region page table(s) to the child, then
marks both parent's and child's PTEs read-only and copy-on-write (explained below).

After a for k, the child has inherited its parent's regions, except the data region. Sharing
these regions between parent and child causes no problems because the code and shared
library regions are read-only; the shared memory region is by definition shared. The child
must have its own data region, however, so it can write into the region without disturbing
its parent. However, allocating pages for the child's data region is usually wasteful because
most children quickly execute (by calling e x e c) a different program. By marking the
parent's and the child's data region pages read-only, copy-on-write (one of the three availa­
ble PTE bits is used to denote copy-on-write), U /386 defers allocation of data pages until
the parent or the child actually writes into them. If the child reads a data page, it reads its
parent's page. If the child or the parent writes into a data page, the 80386 raises a page
fault. Noting that the target page is marked copy-on-write, the page fault handler allocates
a page for the child, copies the parent's page to the child's, and makes both PTEs writeable.

10.3.3 Executing a New Program

A System V process executes a different program by issuing an e x e c system call. This call
detaches the process's regions and then scans the region table for a public text region with
the same name as the new program. If the program is found, e x e c attaches the text region
to the process. If the text region is not found, e x e c creates a region for the text and fills it
with text from the file; the new region is marked public if the file indicates that the program
is pure (does not modify its code). e x e c then finds the file containing the program and
creates a private region large enough to hold the program's data. ex e c does not load the
data pages from the file, however, but initializes the process's page tables so the data pages
demand-page in as they are referenced. e x e c does not return to its caller, but to the program
it has just loaded.

10.3.4 Process Switching

To change processes, a kernel function (typically 5 1 e e p) or the interrupt dispatcher
(explained in Section 10.6.1) calls a kernel function called 5 wit c h. 5 wit c h saves the
machine context of the old process and loads the machine context of the new process with a
single JMP TSS instruction.

10.3.5 Process Termination

A process terminates by calling the kernel's e x i t function. e x i t cleans up the process
by closing open files, and so on. To release the process's user memory, ex i t calls de t a c h
for each of the process's regions. If the child's parent is waiting for the child to terminate,

10-8

A UNIX SYSTEM IMPLEMENTATION

e x i t awakens the parent; if the parent is not waiting, ex i t sends the parent a SIGCHLD
signal so the parent will wait. (The kernel's i nit process waits for children whose parents
have predeceased them.) When it has finished, e x i t calls 5 wit c h. When the terminated
process's parent executes wa it, wa i t deletes the child from the process table and frees
its page directory, u p a 9 e, and other kernel resources assigned ot it.

10.4 MEMORY MANAGEMENT

U /386 uses a combination of segmentation and paging to implement a memory management
scheme that neatly matches the System V design.

10.4.1 Descriptor Tables

Figure 10-4 shows the GDT that all U /386 processes share. This simple structure contains
one code descriptor that describes the kernel's code segment and one data descriptor that
describes the kernel's data, stack, and extra segments. (In kernel mode the DS, SS, and ES
registers all select the same descriptor.) Table 10-1 gives the attributes of these descriptors.

The user segments are similarly described by a code descriptor and a data descriptor in the
GDT. (U /386 processes do not use an LDT; the per-process page directory separates the
physical address spaces of processes.) Except for privilege level and limit, the user code and
data descriptors are identical to the kernel's (see Table 10-2). U /386's system call gate is
located in the GDT; Section 10.5 gives the attributes of this gate. The remaining GDT
entries are for TSS descriptors, one descriptor for each active U /386 process.

TSS DESCRIPTOR BK

.
TSS DESCRIPTOR

SYSTEM CALL GATE

USER DATA DESCRIPTOR

USER CODE DESCRIPTOR

KERNEL OAT A DESCRIPTOR

KERNEL CODE DESCRIPTOR

o "" ~ 0
o

G30287

Figure 10-4. U/386 GOT Layout

10-9

A UNIX SYSTEM IMPLEMENTATION

Table 10-1. U/386 Kernel Segment Descriptors

Attribute Code Data

Base OH OH
Limit OFFFFFH OFFFFFH
Granularity 1B 1B
Default32/Big 1B 1B
Present 1B 1B
Privilege Level OOB OOB
Segment Oeser. 1B 1B
Executable 1B OB
Conform./Ex. Down OB OB
Read/Write 1B 1B

Table 10-2. U/386 User Segment Descriptors

Attribute Code Data

Base OH OH
Limit OFF6FFH OFF6FFH
Granularity 1B 1B
Default32/Big 1B 1B
Present 1B 1B
Privilege Level 11B 11B
Segment Oescr. 1B 1B
Executable 1B OB
Conform./Ex. Down OB OB
Read/Write 1B 1B

Figure 10-5 shows that all U /386 kernel data structures, whether defined by System V or
the 80386, are effectively aliased by the kernel's data segment. This arrangement permits
the kernel to update any of the 80386 system segments and tables (for example, TSSs and
the GDT) without maintaining a separate data segment alias for each such segment or table.

10.4.2 Directories and Page Tables

Each U /386 process has its own page directory, allowing its physical address space to be
separated from those of other processes. Figure 10-6 shows how a typical page directory is
laid out. (This example shows a process whose regions are all less than 4 megabytes in
length.)

The page directory entries correspond to System V regions (recall that U /386 implements
regions with page tables). Although every process has a private data region, its other regions
are (or may be, in the case of text) public. Thus, the kernel and shared library page directory
entries are identical in all page directories; processes that execute the same program have
the same text entry; and processes that attach to the same shared memory region share that
entry as well (for simplicity, Figure 10-6 shows only a single shared memory region). Sharing
page tables among processes is described in more detail in Section 10.4.5.

10-10

A UNIX SYS"fEM IMPLEMENTATION

4GB

o

INITIALIZATION
CODE

MEMORY-MAPPED
DEVICE REGISTERS

(FREE)

UPAGES,
DIRECTORIES,
PAGE TABLES

GDT

IDT

SYSTEM V.3
DATA

CODE

USER AREA

KERNEL SPACE
(4MB)

Figure 10-5. U/386 Kernel Data Segment

G302B7

Table 10-3 shows how the entries in a page directory are encoded. The basic rules are

• All pages but the kernel's are accessible to the user. (Page-protecting the kernel's memory
is technically redundant because it is already segment-protected.)

• All pages permit read-write access except for those containing code.

• The PDEs of all defined page tables are always marked present; pages are made not­
present by changing their PTEs.

10-11

A UNIX SYSTEM IMPLEMENTATION

4K
KERNEL

SHARED LIBRARY

SHARED MEMORY

(AVAILABLE)

DATA

TEXT

o

G30287

Figure 10-6. Typical U/386 Process Page Directory

Table 10-3. U/386 Page Directory Entry Attributes

Attribute Kernel ShLib. ShMem. Data Text

User/Super. OB 1B 1B 1B 1B
Read/Write 1B OB 1B 1B OB
Present 1B 1B 1B 1B 1B

Process page table entries have the same attributes as their page directory entries (for
example, text pages are read-only), except that the present bit changes dynamically as the
virtual memory subsystem moves pages between memory and disk. Because processes share
several page tables, the U /386 per-process page table overhead is minimal. A new process
requires only a data page table if it shares text with another process, or a data and a text
page table if no other process is executing the same program.

10_4.3 Managing the Stack and the Heap

A U /386 process's stack and heap are located at opposite ends of its data region and grow
toward each other as shown in Figure 10-7. The heap grows toward higher addresses as a
result of explicit 5 b r k system calls. (The top of the heap is called the break and 5 b r k
"sets the break.") The stack grows down automatically as a result of page faults.

When it creates a process, the kernel marks the pages between the initial top of the stack
and the initial top of the heap as not-present, both to avoid allocating pages that are not in
use, and to trap references to these unallocated pages. The page fault handler treats a refer­
ence to one of these not-present and unallocated pages as an implicit request to extend the
stack. After checking that the referenced page is not below the break (that is, it has not been
allocated to the heap), the page fault handler allocates the page and marks it present.

10-12

A UNIX SYSTEM IMPLEMENTATION

STACK GROUPS +

AVAILABLE
FOR STACK OR
HEAD EXPANSION

HEAD GROWS t

~

HIGH MEMORY

ALLOCATED
STACK
PAGE

ALLOCATED
STACK
PAGE

ALLOCATED
STACK
PAGE

~ BREAK

ALLOCATED
HEAD
PAGE

ALLOCATED
HEAD
PAGE

LOW MEMORY

Figure 10-7. U/386 Stack and Heap Expansion

G30287

The heap grows up toward the stack by explicit calls to the kernel's 5 b r k system call. Such
calls are typically made by language run-time routines such as mal 1 0 c in C. 5 b r k moves
the break up by the number of bytes requested in the call, rounded up to the next page
boundary. 5 b r k does not allocate the pages just added to the heap; the pages are allocated
by the page fault handler when and if the pages are referenced.

10-13

A UNIX SYSTEM IMPLEMENTATION

10.4.4 Protection

Although it is mapped into the address space of every process, the kernel's memory is
protected by its privilege level. Kernel segments are privilege level 0; user segments are privi­
lege level 3. (Kernel pages also have supervisor privilege and user pages have user privilege,
but this protection is redundant in U /386 because the 80386 checks segment privilege levels
first.) User code has no direct access to kernel memory, only indirect access through the
system call gate.

When the kernel creates a user process, it sets the process's IOPL to 0; this prevents the
process from issuing I/O instructions except when it is running at privilege level 0 - that
is, when it is executing kernel code. (The I/O guard map base field of U /386 TSSs is set to
FFFFH, which effectively sets guard bits on all ports.) User code cannot issue 80386 privi­
leged instructions because user code always runs at privilege level 3.

Every U /386 process is mapped to the same linear addresses because every process shares
the GDT. To protect processes from each other, U /386 processes have separate page direc­
tories. Every process has a different set of pages in the physical address space, except for
the kernel pages, which all processes share, and the shared regions described in the next
section.

Separate page directories protect processes from each other, whereas page protection attri­
butes protect a process from some of its own errors. If a process executes a pure program,
the kernel marks the process's code pages read-only. Although a process's allocated data
pages are marked read-write, the free pages lying between its stack and heap are marked
not-present, allowing the processor to trap references to these pages caused by wild pointers
or array indexes. Note that because a process's read-write data segment overlays its read­
only code segment in the linear space, a program, such as an interpreter, can write instruc­
tions into its data segment and then execute them by jumping to the same address in its code
segment. (The 80386 does not define writeable code segments.)

10.4.5 Sharing

System V processes run in separate address spaces, but in System V they can share programs,
library routines, and data. Regions allow these diverse entities to be shared in a uniform
way. U /386 implements regions with 80386 page tables. Page tables are convenient units
for sharing because a shared page is described by a single page table entry. To change the
attributes of a page, for example, to mark it not-present after swapping it out, the kernel
has only one page table entry to update.

Besides sharing entire program texts (see Section 10.3.3), System V allows frequently used
functions to be shared across programs. Such functions, which typically include standard
I/O and string handling routines, are contained in shared libraries known to the linker.
When the linker encounters a reference to a shared library function, it does not insert the
function's code into the object file, but rather a special identifier. At initialization time, the
kernel loads shared libraries into the public shared library region. As it loads a program, the
kernel resolves object file references to shared libraries with addresses in the shared library
region.

10-14

A UNIX SYSTEM IMPLEMENTATION

Processes can share data through System V's shared memory facility. U /386 implements
shared memory as public regions (that is, as shared page tables). The kernel honors a process's
request to attach shared memory by simply attaching the region like any other.

10.4.6 Virtual Memory

The U /386 kernel demand pages the user space but not the kernel space. Although this
approach is typical of System V implementations, a more sophisticated design could page
out at least part of the kernel, for example, the per-process u p a 9 e s, page directories, and
page tables.

U /386 virtual memory management consists of a system process called the pager and the
page fault handler, which is implemented as a procedure. Figure 10-8 shows the format of
the page table entries used by the pager and the page fault handler.

The locked bit identifies a page that should be immune from paging and swapping. The
copy-on-write bit identifies a parent's data page that should not be copied to the child's
address space until the child writes to the page. The disk block number of a swapped-out
page is kept in the disk address field.

U /386 also defines a free frame list, which contains page frames that are available for
allocation, and an allocated frame list which defines allocated page frames. U /386 always
allocates from the front of the free frame list, but may place a newly freed frame on the
front or the back. A frame goes on the front of the list if the data in the frame is of no
further use (a frame from a terminated process's stack is an example). A frame containing
data that may be needed again (for example, a text page from a process) is placed on the
back of the list to delay its reallocation. Frames can be reclaimed quickly from the free list
as described below.

NOT USED --------...,

1 ~ LOCKED --------::1 1
31 l o

PAGE FRAME ADDRESS

1 ~1 COPY OR WRITE -------,.10

DISK ADDRESS

G30287

Figure 10-8. U/386 Present and Not-Present Page Table Entries

10-15

A UNIX SYSTEM IMPLEMENTATION

The kernel activates the pager process when the number of free frames reaches a "low water
mark"; the pager runs until it builds the list up to a "high water mark." Ignoring locked
pages, the pager cycles around the circular allocated frame list, examining each frame's
accessed bit (that is, the accessed bit of the PTE that maps the frame). If the accessed bit
is set, the page was used recently; the pager clears the bit and moves to the next allocated
frame. If the accessed bit is clear, the page has not been used recently (that is, the page has
not been accessed since the pager last cleared the page's accessed bit). Such a page is a good
candidate to page out so its frame can be freed.

Having identified a page to remove from memory, the pager examines the page's dirty bit
to determine if the page must be written to disk. If the dirty bit is set, the page has been
updated since it was swapped-in and must be written to disk. If the dirty bit is clear, the
disk copy of the page is current. (The page fault handler clears the dirty bit when it
swaps-in a page.) If the page does not need to be written, the pager marks the page not­
present and adds the page to the tail of the free list. Otherwise, the pager adds the page to
a list of pages that must be written to disk. Another system process writes these pages and
then frees their frames.

When a process attempts to access a not-present page, the 80386 invokes the page fault
handler. The U /386 handler is implemented as a procedure that runs in the context of the
faulting process. The page fault handler uses CR2 and CR3 to find the not-present page
table entry that caused the fault. To retrieve the page, the handler first searches the free list
for the page frame. If the handler finds the page on the free list, it reclaims the frame by
removing it from the free list and adding it to the allocated list; it then marks the PTE
present and accessed, and returns. If the frame is not on the free list, the page fault handler
allocates a frame from the head of the free list and calls the page device driver to read the
page into the frame. The handler puts it process to sleep until the page has been read. When
awakened, the handler updates the page's PTE with its new frame address, marks the page
present and accessed (so it will stay in memory for at least one pager cycle), and returns.

10.4.7 Locking

A System V process (running with super-user privilege) can prevent itself from being paged
or swapped out by issuing the p 1 0 c k system call. U /386 locks a process in memory by
first setting a flag in the process's u p age to mark the process locked. This makes the
process immune to swapping (process swapping, not page swapping). p 1 0 c k then sets the
lock bit in all of the process's present pages. Whenever the page fault handler brings in a
page, it checks the process's lock bit in the u p age. If it is set, the pager marks the page's
PTE locked to prevent it from being paged out.

10.5 SYSTEM CALLS

A typical UNIX system call is made from a high-level language such as C, and is ultimately
handled by a C function in the kernel. Between the caller and the handler is some assembly
languge that provides a language-independent interface across the user-kernel protection
boundary. Figure 10-9 shows how this assembly language is implemented in U /386.

10-16

A UNIX SYSTEM IMPLEMENTATION

1-01 .. ----- USER SPACE-PRIVILEGE LEVEL 3 -----.. ~I_KERNEL SPACE-PRIVILEGE LEVEL 0-1
USER

PROGRAM (C)

• · •
READ (PARMS)

•
•
•

-READ INTERFACE (ASM)
K

Lr
,.... EG

f---PUSH REGISTER VARIABLE RA

EAX : ~ READ NUMBER
NT

COPY PARMS FROM STACK ~~ErL

IL
TO REGS
CALL KERNEL GATE
POP REGISTER VARIABLE --
RETURN --

~

'----
4-

'----

DISPATCHER
INTERFACE (ASM)

PUSH ALL REGISTERS
LOAD DS AND ES WITH
KERNEL DATA SEG
CALL DISPATCHER
RETURN

DISPATCHER (C)

SYA CALL [CALL_NOlO,
SWITCH PROCESS IF
NECESSARY

RETURN

READ HANDLER (C)

•
•
RETURN

WRITE HANDLER (C)

•
•
RETURN

Figure 10-9. U/386 System Call Dispatching

l

-

G30287

U /386 follows the conventional System V practice of providing a single kernel entry point,
implemented as an 80386 call gate. Table 10-4 shows the attributes of the U /386 system
call gate.

In Figure 10-9, the two key routines are the system call interface (one for each system call)
and the call dispatcher interface. The call interface is the function the linker provides to
satisfy the user program's reference to a system call. Following normal C practice, at entry
to the call interface, the parameters to be passed to the system function are on the stack.
The call interface pushes any registers that contain C register variables. It then loads EAX
with a number that identifies the system call to the call dispatcher. The call interface then
copies parameters from the stack to registers and issues an intersegment CALL to the kernel's
call gate. The call gate is initialized to copy 0 doublewords of parameters from the user's to
the kernel's stack.

10-17

A UNIX SYSTEM IMPLEMENTATION

Table 10-4. U/386 Call Gate Attributes

Attribute Value

Selector (Kernel Code Descriptor in GOT)
Offset (Dispatcher Interface)
Present 18
Privilege Level 118
Type 011008
Dword Count 000008

The intersegment CALL (whose selector operand is a call gate) instruction loads SS and
CS; consequently, the process's privilege level is changed to 0, and the kernel uses the stack
provided for it in the process's u p a 9 e. The dispatcher interface pushes all registers (this
puts the system call parameters and the call number on the kernel's stack) and loads DS
and ES with the kernel's data segment selector. Having established addressability and a
calling environment that conforms to C's calling conventions, the call dispatcher interface
calls the call dispatcher.

The machine-dependent transitions from the user's environment to the kernel's is now
complete, and the rest of the system call is handled in C. Using the call number as an index,
the call dispatcher calls the function in the kernel that handles the system call. When the
function returns to the call dispatcher, the call dispatcher checks a flag to see if the call (or
an interrupt) has made a higher priority process ready. If so, the dispatcher calls s wit c h
to switch processes rather than returning via the dispatcher interface and system call inter­
face to the user code. The next time the process runs, control will return to the user by this
route.

10.6 INTERRUPTS AND EXCEPTIONS

System V and the 80386 inevitably handle interrupts and exceptions somewhat differently.
With a small amount of assembly language, however, the 80386 can be tailored to fit the
System V model neatly, as described in this section.

10.6.1 Interrupts

System V dispatches interrupts in much the same way that it dispatches system calls. (Note
that the system call dispatcher and the interrupt dispatcher distribute system calls and inter­
rupts to their respective handlers; these dispatchers are distinct from the dispatcher that
switches processes.) U /386 essentially provides an assembly language interface between the
8259A Programmable Interrupt Controller(s) and the System V interrupt dispatcher.
Figure 10-10 shows this interface. Each interrupt source is associated with a different inter­
rupt gate in the IDT. The interrupt gate points to a short device-specific piece of privilege
level 0 code that saves the ID of the interrupting device on the kernel stack. (The interrupt
gate is initialized so that an interrupt switches the 80386 to kernel mode just as a call through
a call gate does.) All interrupts go through the remaining dispatcher interface code. The
common code saves all registers on the kernel stack and resets the interrupt controller; exactly

10-18

A UNIX SYSTEM IMPLEMENTATION

INTERRUPT
DESCRIPTOR

TABLE

• •

DISPATCHER
INTERFACE (ASM)

PUSH INTERRUPT 10
JUMP COMMON

• •
PUSH INTERRUPT 10

JUMP COMMON

COMMON:
PUSH ALL REGISTERS
RESET 8259A
ENABLE INTERRUPTS
CALL DISPATCHER (10)

r- POP ALL REGISTERS
IRET

L DISPATCHER (C)

r+ CALL HANDLER [10]

.----I-- SWITCH PROCESS IF
APPROPRIATE

'-- RETURN

HANDLER 1 (C)

~R:TURN
• • •

HANDLER n IC)

RETURN

Figure 10-10. U/386 Interrupt Dispatching

f--

f--

1--

-
- r-

Q

TO INTERRUPTED
PROCESS

G30287

what "resets" means depends on how many interrupt controllers the system uses and how
they are programmed. Having made the interrupt controller able to pass along the next
interrupt, the common code enables processor interrupts by issuing an STI instruction. It
then calls the interrupt dispatcher, passing the interrupt ID as a parameter.

The interrupt dispatcher is a machine-independent C function that uses the interrupt ID as
an index to the proper interrupt handler (also written in C). After the handler returns, the
interrupt dispatcher switches to a new process if the current process was interrupted in user
mode and if the handler awakened a higher-priority process.

10.6.2 Blocking Interrupts in the Kernel

System V defines a series of machine-independent kernel routines that set the kernel's prior­
ity level. Priority level 7 is high and is assigned to the clock; block and character devices
have priority levels 6 and 5, respectively. Kernel routines, notably device drivers, call 5 pIn
to return the current priority level and set the priority level to n. For example, a disk device

10-19

A UNIX SYSTEM IMPLEMENTATION

driver calls 5 p 1 6 to block out all but clock interrupts while it updates data structures that
an interrupt handler might also use.

U /386 implements the 5 p 1 routines (in assembly language) as follows:

• Save current priority level

Disable processor interrupts

• Reprogram interrupt controller(s) to block interrupts below new level

• Enable processor interrupts

• Return old priority level

10.6.3 Exceptions

As Table 10-5 shows, the U /386 kernel responds to an 80386 exception differently depend­
ing on whether the exception occurs in user or kernel mode. (The kernel disables interrupts
and changes the IDT on entry to and exit from the kernel.) U /386 transforms most user
mode exceptions into standard UNIX signals. ·(An exception handler sends a signal by calling
the kernel's psi 9 n a 1 function; pSi 9 n a 1 finds the addresses of the process's signal
handlers, if any, in the process's up a 9 e.) Exceptions that occur in the kernel generally
indicate unrecoverable problems and should, except for hardware-related exceptions, never
occur in a debugged kernel. The kernel responds to these fatal exceptions by calling the
System V pan i c function, which prints a message on the console and halts the system.

The double fault, invalid TSS, and stack fault exceptions occurring in the kernel are handled
by exception tasks. The handlers for these exceptions cannot assume that the context of the
faulting process is valid; therefore, the handlers are implemented as 80386 tasks and are
represented in the IDT by task gates. When one of these exceptions occurs, the 80386 switches

Table 10-5. U/386 Kernel Exception Handling

Number Name User Action Kernel Action

0 Divide Error SIGILL Panic
1 Single Step SIGTRAP Monitor
2 NMI Panic Panic
3 Breakpoint SIGTRAP Monitor
4 Overflow SIGSEGV Panic
5 Bounds SIGSEGV Panic
6 Invalid Opcode SIGILL Panic
7 No Coproc. Emulate Panic
8 Double Fault Panic Panic (task)
9 Coproc. Overrun SIGSEGV Panic
10 Invalid TSS Panic Panic (taSk)
11 Segment Fault Panic Panic
12 Stack Fault SIGSEGV Panic (taSk)
13 Protection SIGSEGV Panic
14 Page Fault Get Page Get Page
16 Coproc. Error SIGFPE Panic
other (undefined) SIGILL Panic

10-20

inter A UNIX SYSTEM IMPLEMENTATION

to the interrupt task, which has a known-good context. Because these faults are fatal, no
return occurs, so the task switch can be done by the 80386 without kernel involvement.

10.7 INPUT IOUTPUT

UNIX system device drivers are written in C and are largely processor-independent. U /386
support for device drivers consists of a few assembly language routines (in addition to the
5 p 1 routines described earlier) and a convention that provides drivers with the physical
addresses of buffers.

U /386 supports memory-mapped and I/O-mapped devices. Drivers can address memory­
mapped device registers directly; these devices are mapped into the top of the kernel data
segment. To permit drivers to access the 80386 I/O space, the kernel provides a set of
assembly language routines that transfer bytes, words, or dwords to or from I/O ports. These
routines use the various forms of the IN and OUT instructions.

To move data between user areas and kernel buffers, U /386 supplies the cop yin and
cop you t routines. The heart of these assembly language routines is the MOVS (move
string) instruction. Isolating MOVS in these two routines allows the kernel to determine
whether a fault occurring in the execution of the instruction is caused by a user error or a
kernel bug. A user may pass a bad address or count in are a d or 11/ r i t e system call. If,
when moving the data across the user/kernel boundary, a general protection fault occurs,
the fault handler can determine if the offending instruction is in cop yin or cop you t.
If so, it knows the fault is a result of a user error, and it can send a signal to the user process.
If the fault occurs in another routine, it indicates a kernel bug, so the fault handler calls
panic.

The standard System V block device interface transfers blocks between kernel buffers and
devices. The DMA controllers incorporated in typical device controllers cannot read or write
these buffers with logical addresses because they have no knowledge of the 80386 descriptor
and page tables. U /386 enables drivers to supply physical addresses to DMA controllers as
follows. During initialization, the kernel allocates a pool of I/O buffers that drivers use for
block transfers. Each of these buffers has a header that the kernel initializes with the physi­
cal address of the actual buffer. When the kernel calls a driver to process an I/O request, it
passes the driver the logical address of a buffer header. The driver can copy the physical
address from the buffer header to the DMA controller without incurring any logical-to­
physical translation overhead. The kernel breaks 1/0 requests that cross page boundaries
into multiple requests.

10.8 NUMERICS

By default, U /386 lets the 80287 or 80387 numeric coprocessor (or emulator) handle the
errors it discovers. However, nothing prevents an assembly language program from unmask­
ing the errors so they can be handled by the program. Unmasked errors are delivered via

10-21

A UNIX SYSTEM IMPLEMENTATION

standard floating point signal (SIGFPE). The program's signal handler can use the FSTENV
instruction to find out what happened.

10.9 DEBUG SUPPORT

The System V p t rae e system call allows a debugger to inspect and modify the represen­
tation of the child process it is debugging. The debugger runs such a program as a child and
calls p t rae e to set breakpoints, change registers, etc. By making the 80386 breakpoint
registers accessible to p t rae e, just like other registers, the debugger can gain access to
the breakpoint registers.

U /386 debuggers use the INT 3 (I-byte interrupt) instruction to implement instruction
breakpoints. (Because the kernel's data segment overlaps its text segment, a debugger running
in kernel mode can overwrite code with the INT 3 instruction.) The four breakpoint registers
are used to implement data breakpoints.

10-22

LITERATURE SALES FORM (EUROPE)
NAME: ___________________________ ___

COMPANY: ________________________ ~.

ADDRESS: ______________________________________ _

PHONE NO.: _______________________________ _

ORDER NO TITLE QTY. PRICE TOTAL

'--'--...J'--...J'--...J'--...JL........JI - ,--,---,----, _________ _ __ X __ = __ _

~~~~I-~~-----------­
~~~~I - ----'----'---
,----,--,-----,---'..---,-----"1 - --'..--'.._

__ X __ = __ _

__ X ___ .= __ _

__X __ = __ _

L........J----'.--'..--'..---,-----"I - ---L--'-_ __X __ = __ _

~~~~I-~~------------
,----,----'.--'..--'..---,-----"1 - --'..--'.._ 

__ X __ = __ _ 

__X __ = __ _ 

,----,----'.--'..--,----,-----"1 - --'..---L.._ 
__ X __ = __ _ 

~==:=~:::::=~I- --'----'--' _______ _ 
~~~~I-~~------------
'--'---'L.....JL.....J,--,----,I - --'----'--' _________ _

__ X __ = __ _

__ X __ = __ _

__ X __ = __ _

Subtotal ___ _

Your Local Sales Tax ___ _

Postage ___ _

Total ___ _

PAYMENT

Cheques should be made payable to your local Intel Sales Office.

Other forms of payment may be available in your country. Please contact the Literature Coordinator at your
local Intel Sales Office for details.

The Completed form should be marked for the attention of the LITERATURE CO-ORDINATOR and returned
to your local Intel Sales Office.

ALABAMA

tlntel Corp
5015 Bradford Dr" #2
Huntsville 35805
Tel: (205) 830-4010

ARIZONA

tlntel Corp
11225 N. 28th Dr
Suite 0-214
Phoenix 85029
Tel: (602) 869-4980

Intel Corp
1161 N. EI Dorado Place
Suite 301
Tucson 8571 5
Tel: (602) 299-6815

CALIFORNIA

tlntel Corp.
21515 Vanowen Street
Suite 116

~:t(91aBr~~~:8~go3
tlntel Corp
2250 E. Impenal Highw<ly
Suite 218

i~F{11u~)d~4~~~61o
Inlel Corp.

1~~~a~~;t~ ~~lituite 101
Tel: (916) 920-8096

tlntel Corp
4350 Executive Drive
Suite 105
San DIego 92121
Tel: (619) 452-5880

Intel Corp'
400 N. Tustin Avenue
Suite 450
Santa Ana 92705
Tel: (714) 835-9642
rwX: 910-595-11 1 4

tlntel Corp.'
San Tomas 4
2700 San Tomas Expressway
2nd Floor
Santa Clara. CA 95051
Tel: (408) 986-8086
TWX: 910-338-0255

COlORADO

Intel Corp.
4445 Northpark Drive
Suite 100

~~/:o[3a8~ ~g4~6~230907
tlntel Corp.-

~~;er1~221 St., Suite 915

~l~~b~9~11-~2~~~
CONNECTICUT

tlntal Corp.
26 Mill Plain Road
2nd Floor
Danbu~06811

~i~~lb~\86~\~~
FLORIDA

tlntel Corp
242 N. Westmonte Dr.
Suite 105

~~1~(30s\9 8~~~~R8s8 32714
FAX: 305-682-6047

Intel Corp.

~~~a~d~;d~l~ ~3rO:Uite 100 
Tel: (305) 771-0600 
TWX: 510-956-9407 
FAX: 305·772-8193 

Intel Corp. 
11300 4th Street North 
Suite 170 
St. Petersburg 33716 
Tel: (813) 577-2413 
FAX: 813-578-1607 

tSales and Service Office 
-Field Application Location 

DOMESTIC SALES OFFICES 
GEORGIA 

tlntel Corp 
3280 POinte Parkway 
Suite 200 
Norcross 30092 
Tel: (404) 449-0541 

ILLINOIS 

Intel Corp' 

~~ga~·m~~7~n~g~;road. Suite 400 

Tel: (312) 310-8031 

INOIANA 

tlntel Corp 
8777 Purdue Road 
SUite 125 

~~i(3~7)~~:~~~~ 
IOWA 

Intel Corp 
1930 SI. Andrews Dnve N.E 
2nd Floor 
Cedar Rapids 52402 
Tel: (319) 393-5510 

KANSAS 

tlntel Corp 
8400 W. 11 Olh Street 
SlJiTe 170 
Overland Park 66210 
Tel· (913) 345-2727 

MARYlAND 

Intel Corp.' 
7321 Parkway Drive South 
Suite C 
Hanover 21076 
Tel: (301) 796-7500 
TWX: 710-862-1944 

Intel Corp. 
7833 Walker Drtlle 
SUite 550 
Greenbelt 20770 
lei: (301) 441-1020 

MASSACHUSETTS 

tlntel Corp'-
Westford Corp. Center 
3 Carlisle Road 
2nd Floor 
Westford 01886 
Tel: (617) 692-3222 
TWX: 710-343-6333 

MICHIGAN 

tlntel Corp. 
7071 Orchard Lake Road 
Suite 100 
West Bloomfield 48322 
Tel: (313) 851-8096 

MINNESOTA 

Inlel Corp. 
3500 W. 80th St., Suite 360 

~~~:o(~~2~tg~5~gi~j 
TWX: 910-576-2867

MISSOURI

Intel Corp.
fu?t! ~~~h City Expressway

Earth City 63045
Tel: (314) 291-1990

NEW JERSEY

Inlel Corp."
328 Newman Springs Road
Red Bank 07701
Tel: (201) 747-2233

Intel Corp
75 Livingston Avenue
First Floor
Roseland 07068
Tel: (201) 740-0111

NEW MEXICO

Intel Corp
8500 Menaul Boulevard N.E
Suite B 295
Albuquerque 87112
Tel: (505\ 292-8086

NEW YORK

Intel Corp'-

~i~~~~s4~~Os Office Park

Tel· (716) 425-2750
TWX: 510-253-7391

Intel Corp.-
300 Motor Parkway
Hauppauge 11787
Tel: (516) 231-3300
TWX: 510-227-6236

Intel Corp.
15 Myers Corner Road
Suite 28

~e~:g~f);~j!~1~~590
TWX: 510-248-0060

NORTH CAROLINA

Intel Corp
5700 Executive Drive
SUite 213
Charlotte 28212
Tel: (704) 568 6966

tlntel Corp
2700 Wycliff Road
SUIte 102

~:i:ei~~ 9r7~~~8022
OHIO

Intel Corp'-
3401 Park Center Drive
Suite 220
Dayton 45414
Tel: (513) 890-5350
TWX: 810-450-2528

Intel Corp'
25700 Science Park Dr., Suite 100
Beachwood 44122
Tel: (216) 464-2736
TWX: 810-427-9298

OKLAHOMA

Intef Corp.
6801 N, Broadway
Suite 115
Ok;lahoma City 73162
Tel: (405) 848·8086

OREGON

tlntsl Corp.
15254 NW. Greenbrier Parkway, Bldg. B
Beaverton 97006
Tel: (503) 645-8051
TWX: 910-467-8741

PENNSYLVANIA

Intel Corp.'
455 Pennsylvania Avenue
Suite 230 '
Fort WaShington 19034

~lJn~_1°0~~
Intel Corp.'
400 Penn Center Blvd., Suite 610

~~~:s~~ra)h81~~~g70 
PUERTO RICO 

Intel Mioroprocessor Corp. 
South Industrial Park 
P.O_ Box 910 
Las Piedras 00671 
Tel: (809) 733-8616 

TEXAS 

tlntel Corp. 
313 E. Anderson Lane 
SUite 314 
Austin 78752 
Tel: (512) 454-3628 

tlntel Corp'-
12300 Ford Road 
Suite 380 
Dallas 75234 
Tel: (214) 241-8087 
TWX: 910-860-5617 

Intel Corp.-
7322 S.W. Freeway 
Suite 1490 
Houston 77074 
Tel: (713) 988-8086 
TWX: 910-881-2490 

UTAH 

Intel Corp. 
5201 Green Street 
Suite 290 
Murray 84123 
Tel: (801) 263-8051 

VIRGINIA 

tlntel Corp. 
1504 Santa Rosa Road 
Suite 108 
Richmond 2328B 
Tel: (804) 282-5668 

WASHINGTON 

Intel Corp. 
15510Bth Avenue N.E 
Suite 386 
Believue 98004 
Tel: (206) 453-8086 
TWX: 910-443-3002 

Intel Corp 
408 N. Mullan Road 
Suite 102 
Spokane 99206 
Tel: (509) 928-8086 

WISCONSIN 

tlntel Corp. 
330 S. Executive Dr 
Suite 102 
Brookfield 53005 
Tel: (414) 784-8087 
FAX: (414) 796-2115 

CANADA 
BRITISH COLUMBIA 

Intel Semiconductor of Canada, Ltd. 

~~~~a~~nJg& ~L~' Suite 202 
Tel: (604) 298-0387
FAX: (604) 298-8234

ONT4RIO

Z~~gl ~~:i~~~~~C~~vo~ Canada, Ltd.

Suite 250
Ottawa K2B 8H6
Tel: (613) 829-9714
TLX: 053-4115

tlntel Semiconductor of Canada, Ltd.
190 Attwell Drive
Suite 500
Rexdale M9W 6Ha
Tel: (416) 675-2105
TLX: 06983574
FAX: (416) 675-2438

QUEBEC

tlntel Semiconductor of Canada, Ltd,
620 St. John Boulevard
Pointe Claire H9R 3K2
Tel: (514.) 694-9130
TWX: 514-694-9134

eGo-11/30/S7

intJ
DOMESTIC DISTRIBUTORS

ALABAMA CALIFORNIA (Conrd.) FLORIDA INDIANA (Cont'd.) MICHIGAN {Cont'd.}

Arrow Electronics. Inc. Klerulff Electronics, Inc tArrow Electronics, Inc ~:~~~~~:v;r~~eElectronICS Pioneer Electronics
1015 Henderson Road 10824 Hope Street 350 Fairway Drille 4505 Broadmoor Ave. S.E.
Huntsville 35816 Cypress 90430 Deerfield Beach 33441 Carmel 46032 Grand Rapids 49508
Tel; (205) 837-6955 Tel. (714) 220-6300 Tel: (305) 429-8200 Tel: (317) 844-9333 Tel: (616) 698-1800

FAX: 714-821-8420 TWX' 510-955-9456 FAX' 317-844-5921 FAX: 616-698-1831
tHamiiton/Avnet ElectrOniCS
4940 Research Drive tKierulff E!ectronics, Inc. Arrow ElectrOniCs, Inc tPloneer Electronics tPioneer Electronics
Huntsville 35805 1180 Murphy Avenue IDOl N W. 62nd St., Ste. 106 6408 Castleplace Dri e 13485 Stamford
Tel: (205)837-7210 San Jose 95131 Ft. Lauderdale 33309 Indianapolis 46250 Uvonla48150
TWX: 810-726-2162 Tel: (408) 971-2600 Tel: (305) 475-4297 Tel: (317) 849-7300 Tel: (313) 525-1800

FAX· 408-947-3432 TWX: 510-955-9456 TWX: 810-260-1794 TWX. 810-242-3271
PlOneer{Technologies Group Inc.
4825 University Square tKIerulf1 Electronics, Inc tArrow Electronics. Inc KANSAS MINNESOTA
Huntsville 35816 14242 Chamber Ad 1530 Bottlebrush N.E
Tel· (205) 837-9300 Tustin 92680 Palm Bay 3290S tHamllton/Avnet ElectroniCs tArrow ElectrOnics. Inc.
TWX: 810-726-2197 Tel: (714) 731-5711 Tel· (30S) 725-1480 9219 Quivera Road 5230 W 73rd Street

FAX. 714-669-4235 Overland Park 66215 Edina 55435
ARIZONA tHamllton/Avnet ElectroniCs Tel: (913) 888-8900 Tel: (612) 830-1800

tKlerulff Electronics, Inc ~~.O~a~d~rd~~!h3~3a69 FAX: 913-541-7951 FAX. 612-830-1856
tHam!ltonjAvnet ElectrOnics 9800 Vanel St.
505 S. Madison Drive Chattsworth 91311 Tel: (305) 971-2900 Pioneer ElectrOnics Hamiltonj Avnet ElectroniCs
Tempe 85281 Tel: (213) 725-0325 TLX: 510-956-3097 10551 Lackman Rd 12400 White Water Dnve
Tel: (602) 968-1461 FAX· 818-407-0803 Lenexa 66215 Minnetonka 55343
fflX: 910-950-0077 HamlltonjAvnet ElectroniCs Tel. (913) 492-0500 Tel: (612) 932-0600

Wyle Distribution Group 3245 Tech Drive North FAX: 913-492-7832 FAX: 612-932-0613
KlerulH Electronics, Inc. 26677 W. Agoura Ad St Petersburg 33702
4134 E. Wood Street Calabasas 91302 Tel. (813) 576-3930 KENTUCKY tPioneer Electronics
Phoenix 85040 Tel: (818) 880-9000 TWX: 810-863-0374 10203 Bren Road East
Tel· (602) 437-0750 FAX. 818-880-5510 HamlltonjAvnet Electronics Minnetonka 55343
FAX: 602-252-9109 Hamllton/Avnet Electronics 805-A Newtown Circle Tel· (612) 935-5444

tWyle Distribution Group ~~ie~pn~~~~~~9~oulevard i:~T2ci~) 2~~~~ !75
FAX· 612-935-1921

Wyle Dlstnbutlon Group 17872 Cowan Avenue
17855 N. Black Canyon Highway Irvine 92714 Tel. (305) 628-3888 FAX: 606-252-3238 MISSOURI
PhoeniX 85023 Tel· (714) 863-9953 FAX: 305-628-3888 ext. 40
Tel: (602) 866-2888 FAX 714-863-0473 MARYLAND tArrow Electronics. Inc
FAX. 602-866-6937 tPloneer Electronics 2380 Schuetz

Wyle Distribution Gro.up 337 N Lake Blvd. Ste. 1000 Arrow Electronlcs,lnc St. LoUIS 63146
CALIFORNIA 11151 Sun Center Dnve ~~Ia (~3~)t~:f-~8~g 32701

8300 GUilford Road, Ste H ~:~ ~~ ~ ~-~~~ :~~~~ Rancho Cordova 95670 AlversCenter
Arrow Electronics. Inc Tel (916) 638-5282 TWX: 810-853-0284 Columbia 21046
19748 Dearborn Street FAX. 916-638-1491 Tel: (301) 990-6002 tHamlltonjAvnet Electronics
Chatsworth 91311 Pioneer Electromcs TWX: 710·236-9005 13743 Shoreline Court East
Tel. (818)701-7500 tWy!e Distribution Group 674S. Military Tra!1 FAX· 301-381-3854 Earth City 63045
FAX: 818-772-8930 9525 ChesapeaKe Drive Deerfield Beach 33442 ~~Ik}~~~-~~~:~~g~ San Diego 92123 Tel: (305) 428-8877 tHamliton/Avnet ElectrOniCS
Arrow ElectroniCs. Inc. Tel: (619) 565·9171 TWX 510-955-9653 6822 Oak Hall Lane
9511 Ridgehaven Court TWX· 910,371-9592 Columbia 21045 KlerulffElectronlcs, Inc.
San Diego 92123 FAX. 619-565-9171 ext 274 GEORGIA Tel· (301) 995-3500 11804 Borman Dr.
Tel. (619) 565-4800 FAX: 301-995-3593 St LOUIS 63146
FAX 619-279-0862 tWyle Distnbutlon Group tArrow ElectroniCs, Inc Tel· (314) 997-4956

3000 Sowers Avenup 3155 Northwoods Parkway ~~2bs~~~;~~~~to~~~;. FAX· 314-567-0860
tArrow ElectrOnics. Inc Santa Clara 95051 SUite A
521 Weddell Drive Tel· (408) 727-2500 Norcross 30071 Columbia 21046 NEW HAMPSHIRE
Sunnyvale 94089 FAX 408-727-5896 Tel (404) 449-8252 Tel. (301) 720-5020
Tel: (408) 745-6600 FAX 404-242-6827 TWX: 710-828-9702 t Arrow ElectrOfllCS, Inc
FAX: 408-743-4770 WyleMllltary 3 Perimeter Road

18910 Teller AVenue HamlllonjAvnet ElectroniCS tP,cneer Electronics Manchester 03103
Arrow ElectrOnics. Inc Irvlfle92715 5825 D. Peachtree Corners East 9100 Gaither Road Tel. (603) 668-6968
2961 Dow Avenue Tel (714) 851-9958 Norcross 30092 Gaithersburg 20877 FAX· 603-668-3484
Tustin 92680 TWX 310-371-9127 Tel (404) 447-7500 Tel: (301) 921-0660
Tel: (714) 838-5422 FAX. 714-851-8366 TWX- 810-766-0432 TWX. 710-828-0545 Hamlltonj Avnet Electronics
FAX 714-838-4151 444 E. Industnal Drive

WyleSystems Pioneer Electrofllcs MASSACHUSETTS Manchester 03103
tAvnet Electronics 7382 Lampson Avenue 3100 F. Northwoods Place Tel: (603) 624-9400
350 McCormick Avenue Garden Grove 92641 Norcross 30071 tArrow ElectrOniCS. Inc. FAX: 603-624-2402
Costa Mesa 92626 Tel (714) 891-1717 Tel: (404) 448-1711 1 Arrow Dnve
Tel: (714) 754-6051 FAX 714-895-9038 FAX· 404-446-8270 Woburn 01801 NEW JERSEY
FAX. 714-754-6007 Tel (617) 933-8130

COLORADO ILLINOIS TWX: 710-393-6770 tArrow ElectrOnics, Inc.
Hamilton/Avnet ElectrOfllcs 6000 lincoln Drive East
1175 Bordeaux Drive Arrow Electronics, Inc. tArrow Electronics, Inc tHamdtonjAvnet ElectroniCS Marlton 08053
Sunnyvale 94089 1390 S Potomac Street 2000 E. AlonqUin Street 100 Centennial Dnve Tel: (609) 596-8000
Tel (40B) 743-3300 SUite 136 ~~~(~~2~e;~7~~1:g Peabody 01960 FAX: 609-596-5632
FAX: 408-745-6679 Aurora 80012 Tel. (617) 532-3701

Tel (303) 696-1111 FAX· 312-397-3550 TWX· 710-393-0382 tArrowElectronics.lnc
tHamlltonjAvnet ElectroniCs 6 Century Drive
4545 Vlewndge Avenue tHamllton!Avnet ElectroniCS tHamiltonjAvnet ElectroniCs Klerulff ElectroniCS. Inc ~:~s(go~)n~3~g~cio San D'e~o 92123 8765 E. Orchard Road 1130 Thorndale Avenue 13 Fortune Dr.
Tel: (619) 571-7500 Suite 708 BensenVille 60106 BlliericCl 01821 rAX: 201-538-4962
FAX: 619-277-6136 Englewood 80111 Tel. (312) 860-7780 Tel. (617) 667-8331

Tel (303) 740-1017 TWX: 910-227-0060 TWX: 710-390-1449 tHamilton/Avnet Electronics
tHamllton/Avnet ElectroniCS TWX· 910·935-0787 FAX: 617-663-1754 1 Keystone Ave .. Bldg. 36
9650 Desoto Ave Klerulff Electronics, Inc ~~I~(~0~)iI~g~~8:1 0 CI1Clh,w(lrlh91311 tWyle Distribution Group 1140 W. Thorndale Plont'!t'!r Northeast ElectroniCs
Tel. (818) 700·1222.6500 451 E. 124th Avenue Itasca 60143 44 Hartwell Avenue TWX: 710-940-0262
FAX: 818-700-6553 Thornton 80241 Tel (312) 250-0500 ~~~I(~lt~) 8~~~~~00 FAX: 609-751-8624

Tel (303) 457-9953 FAX· 312-250-0916
tHamlltonjAvnet Electronics TWX. 910-936-0770 FAX: 617-863-1547 tHamiiton/Avnet ElectrOniCs
4103 Northgate Boulevard MTI Systems Sales 10 Industrial
Sacramento 95834 COt-iNECTICUT 1100 West Thorndale MICHIGAN Fairfield 07006
Tel: (916) 920-3150 Itasca 60143 Tel: (201) 575-3390
FAX. 916-925-3478 tArrow ElectroniCs, Inc Tel· (312) 773-2300 Arrow Electromcs. Inc FAX: 201-575-5839

12 Beaumont Road 755 PhoeniX Dnve
tHamlltonjAvnet Electronics f~~I(~O~r~6~~jii 1

tPloneer ElectrOnics Ann Arbor 48108 tPloneer Northeast Electronics
3002 G Street 1551 Carmen Dnve Tel· (313) 971-8220 45 Route 46
Ontano 91311 TWX. 710-476-0162 f~~: ~;?~i 4~~~§~8~0007 FAX· 313-971-2633 Pinebrook 07058
Tel. (714) 989-9411 Tel' (201)575-3510
FAX. 714-980-7129 HamiltonjAvnet ElectrOniCs TWX: 910-222-1834 tHamllton/Avnet Electronics FAX. 201-575-3454

Commerce Industrial Park 32487 Schoolcraft Road
tHamiltonjAvnpt Elf'ctronlcs Commerce Drive INDIANA livonia 48150 tMTI Systems Sales
10950 W. Washmgton Blvd Danbury 06810 Tel· (313) 522-4700 37 Kulick Ad.
CUlver City 90230 Tel· (203) 797-2800 tArrow ElectroniCS, Inc. TWX: 810-242-8775 Fairfield 07006
Tel: (213) 558-2458 FAX: 203·797-2866 2495 Directors Row. Suite H FAX 313-522·2624 Tel: (201) 227-5552
FAX· 213-558-2248 IndianapoliS 46241 FAX: 201-575-6336

tPloneer Nortl1east ElectroniCS Tel· (317) 243-9353 HamlltonjAvnet ElectroniCs
tHamllton Electro Sales 112 Main Sireet TWX: 810 341-3119 2215 29th StremS E
3170 Pullman Street Norwalk 06851 Space A5
Costa Mesa 92626 Tel: (203) 853-1515 Grand Rapids 49508
Tel. (714) 641-4150 TWX· 710-468-3373 Tel. (616) 243-8805
FAX· 714-641-4122 TWX· 810-273-6921

FAX. 616-243-0028

tMicrocomputer System Technical Dlstnbutor Centers CG-11/30/87

