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PREFACE 

The 80386 System Software Writer's Guide describes the interface between the 80386 system 
architecture and low-level operating system mechanisms. It does not discuss operating system 
policy issues or operating system facilities that are independent of a processor's architecture. 
For example, the book shows how an operating system can use the 80386's task switch 
instruction to dispatch a new task (process), but it does not discuss the many policies an 
operating system could adopt for selecting the task to be dispatched. To cite another example, 
the 80386 System Software Writer's Guide covers the 80386's facilities for device input/ 
output, but leaves the discussion of file I/O to operating system textbooks. 

AUDIENCE 

This book has been written primarily for the systems programmer who is developing an 
operating system for the 80386 microprocessor. Programmers writing other systems software, 
such as linkers and utilities, may also benefit from reading this book. The book can also be 
valuable to anyone who wants to see how 80386 architectural facilities support common 
operating system mechanisms. 

To use this book successfully, you must be thoroughly familiar with multitasking operating 
systems. 

RELATED PUBLICATIONS 

The 80386 System Software Writer's Guide is one of four Intel publications that describe 
the 80386 microprocessor. The others are 

• Introduction to the 80386, Order No. 231252 

• 80386 Programmer's Reference Manual, Order No. 230985 

• 80386 Hardware Reference Manual, Order No. 231298 

The 80386 System Software Writer's Guide can be read independently of the 80386 
Hardware Reference Manual. The Introduction to the 80386 is a prerequisite to this book 
and the 80386 Programmer's Reference Manual is a companion to it. 

Before reading this book you should thoroughly understand the material in the Introduction 
to the 80386, especially Chapters 2 (Application Architecture) and 3 (System Architec­
ture). If you are interested in running 8086 or 80286 programs on the 80386, you need to 
read Chapter 4 (Architectural Compatibility) as well. Before reading this book you should 
browse through the 80386 Programmer's Reference Manual and you should keep it handy 
while reading the 80386 System Software Writer's Guide. The 80386 System Software 
Writer's Guide frequently simplifies the presentation of architectural features in order to 
more clearly show how these features relate to operating system mechanisms. When you 
want the definitive description of any 80386 facility, consult the 80386 Programmer's 
Reference Manual. 
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PREFACE 

Some examples in this guide are written in ASM386, Intel's 80386 assembly language, 
documented in the ASM386 Assembly Language Reference Manual, Order No. 122332. 

HOW TO READ THIS BOOK 

The ten chapters of the 80386 System Software Writer's Guide are generally arranged so 
that the most specialized topics are covered at the end of the guide. The first seven chapters 
describe the 80386's protected 32-bit operation, the mode of operation most likely to be 
selected for new 80386 applications. Features that make the 80386 compatible with earlier 
Intel 86 family processors are described in Chapters 8 and 9, while Chapter 10 describes 
one way to implement the UNIX System V operating system on the 80386. 

Chapters 1 and 2 describe tasking and memory management. These topics are very closely 
related and you will find frequent references in the first chapter to the second. Having read 
the Introduction to the 80386, however, most readers should understand enough about the 
80386's memory management facilities to ignore these inevitable forward references. The 
third chapter covers interrupts and their close relatives, exceptions. Chapter 4 describes how 
operating system calls can be implemented on the 80386. Chapter 5 describes the 80386's 
input/output facilities. The first five chapters describe the 80386 as if it were already running 
in protected 32-bit mode, with all architecture-defined data structures (for example, page 
tables) in place. Chapter 6 tells you how to take the 80386 from a hardware RESET to 
protected 32-bit operation. 

The last four chapters cover specialized topics and can be read selectively. Chapter 7 describes 
the interaction between an 80386 operating system and the 80287 and 80387 numerics 
coprocessors (or their software emulators). Chapters 8 and 9 describe 80386 facilities for 
running existing 80286 and 8086 software. The final chapter is an extended example that 
describes one way to implement the UNIX System V operating system on the 80386. 

Note that the code examples given in this book have not been tested. 
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CHAPTER 1 
TASKS 

The 80386 is fundamentally a multitasking computer. Although the processor can be used 
in single task systems, most facilities of its system architecture are designed to support the 
concurrent execution of multiple tasks. For example, memory management, protection, and 
exception handling are all task-based. The 80386 can perform a task switch (context switch) 
upon direction from the operating system or automatically in response to an interrupt or 
exception. This chapter describes the 80386 facilities that an operating system can use to 
create and manage tasks; those aspects of tasking that relate to interrupt and exception 
handling are described in Chapter 3. 

1.1 THE TASK EXECUTION ENVIRONMENT 

Figure 1-1 shows the architecture-defined registers and data structures that an 80386 task 
may use during its execution. Most of the data structures shown in Figure 1-1 are more 
closely related to interrupt handling and memory management than task management and 
are therefore described in later chapters. The task state segment (TSS), however, is central 
to task management and is the principal subject of this chapter. 

1.2 TASK STATE SEGMENTS AND DESCRIPTORS 

The state of a task can be considered in two parts: the machine state, consisting mainly of 
register values, and the software state, consisting of file descriptors, scheduling parameters, 
and other operating system-defined data. A multitasking operating system traditionally 
records each task's machine state and software state in a "task control block" or a similarly 
named record (or collection of records). 

The 80386 system architecture defines a record that holds the machine state of a task. This 
record is called a task state segment and is illustrated in Figure 1-2. The operating system 
initializes the TSS of a new task, but the 80386 maintains the TSS, reading and writing it 
on task switches and reading it on privilege level changes. The 80386 specifies the format of 
only the first 26 double words, and, optionally, up to the last 8K bytes (the I/O Bit-map for 
the 64K I/O address space) of the TSS. An operating system is free to use the area between 
the I/O Bit-map and the TSS core (first 26 double words) to record a task's software state. 

Because a TSS is an 80386-defined segment, it must have a descriptor. Figure 1-3 shows 
the format of an 80386 TSS descriptor. The base, limit, granularity, available, present, and 
descriptor privilege level fields are identical to their code and data segment descriptor 
counterparts (these are described in Chapter 2). Note that the TSS limit must account for 
the optional I/O permission map and the task software state, if these fields are defined and 
used by the operating system (the I/O permission map is described in Chapter 5). If no 
I/O permission map is present, the limit must be set to at least 68H (the length of the 
machine state data); if the operating system extends a TSS with software state information, 
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Figure 1-1. Task Execution Environment 
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Figure 1-2. Task State Segment 
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the limit can, but need not, cover the additional information. TSSs must reside in the global 
descriptor table (GOT) to give the processor access to all TSSs regardless of the task that is 
running (interrupt and exceptions can trigger task switches as described in Chapter 3). To 
prevent unauthorized task switches, TSS descriptors should be assigned privilege level O. 

The 80386 sets the busy (B) bit in a TSS descriptor to trap an lbttempt to invoke a task 
recursively; the operating system should initialize this bit to O. In a normal task switch, the 
80386 sets the busy bit of the new task and clears the busy bit of the old task. However, in 
a nested task switch, the 80386 leaves the old task's busy bit set. A nested task switch occurs 
when one task calls another or, more commonly, when the 80386 invokes an interrupt or 
exception handler that is implemented as a task (see Chapter 3). An attempt to invoke a 
task whose busy bit is set results in an invalid TSS exception. 

1.3 TASK CREATION 

The 80386-defined data structures shown in Figure 1-1 must be in place before switching to 
a new task. The GOT and the interrupt descriptor table (lOT) are system-wide resources, 
which can be created statically by the Intel System Builder utility, or by the operating system 
at initialization time, as discussed in Chapter 6. A new local descriptor table (LOT) must 
be created for a new task unless the new task shares the LOT of another task, or the system 
does not use LOTs; the criteria for associating tasks and LOTs are described in Chapter 2. 
If paging is enabled, the task needs a page directory and one or more page tables (alterna­
tively, all tasks can share a single page directory and set of page tables). LOT, page direc­
tory, and page table creation are discussed in Chapter 2. 
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An operating system cannot initialize a TSS or a TSS descriptor by writing directly into the 
TSS or the GDT, but must use a data segment alias. Aliased segments are segments that 
overlap one another in the linear address space; they are described further in Chapter 2. 

When initializing a TSS, operating systems should observe the following guidelines: 

• Backlink: This field should be initialized to 0 to prevent an erroneously set NT (nested 
task) flag from causing an erroneous task switch. If a task's NT flag is set, the 80386 
executes an IRET instruction by switching to the task whose selector is recorded in the 
backlink field. The 80386 sets the NT bit and updates the backlink field when a task is 
interrupted or incurs an exception whose handler is a task, or when a task calls another 
task. A task can set its NT bit with a POPF instruction, but it cannot update its backlink 
field without access to the operating system's TSS alias. By initializing the backlink 
to 0, the operating system makes the 80386 raise an invalid TSS fault if the task issues 
an IRET instruction when NT has been erroneously set. 

• Privileged stack pointers: SSO, SS1, SS2, ESPO, ESPl, and ESP2 must contain the 
initial stack selectors and offsets for privilege levels 0-2 respectively. The operating system 
must initialize the fields that correspond to the privilege levels it, or other software, uses. 
For example, if an operating system runs user code at privilege level 3 and operating 
system code at privilege level 0, it must initialize SSO and ESPO. When, as the result of 
a system call, an interrupt, or an exception, the 80386 changes from privilege level 3 to 
privilege level 0, it switches to a privileged stack by loading the SS segment register 
with SSO and ESP register with ESPO. 

• CR3: If paging is enabled, the TSS CR3 field must be initialized with the physical 
address of the task's page directory. 

EIP, EFLAGS, general, and segment registers: Initialize to values the task should have 
when it begins to run. 

• LDT: Initialize with the selector for the task's LDT; this field must be set to zero (null 
selector) if a task does not use an LDT. 

• T bit: By setting this bit, the operating system directs the 80386 to raise a debug trap 
when the processor switches to this task (see Chapter 3). 

• I/O permission map base and optional I/O permission map: These fields can be used 
to grant a task access to selected I/O ports (see Chapter 5). 

1.4 TASK TERMINATION 

Task termination is generally a matter of operating system design and is little influenced by 
the 80386 system architecture. Typically, the termination process is divided between an 
operating system exit procedure and system reclamation task. Running in the context of the 
task to be terminated, the privileged exit procedure has direct access to the task's address 
space and software state. In brief, the exit procedure changes the task's software execution 
state to terminated, then calls the operating system dispatcher to run the next task. In more 
detail, the exit procedure disconnects the task from system resources, closing files, removing 
the task from any semaphores it may be waiting on, and the like. By severing these links, 
the exit procedure ensures that these resources are usable by other tasks when the task 
actually disappears. The exit procedure may be able to reclaim some of the task's memory, 
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but at least a small amount of memory (for example, the task's stacks, TSS, and page direc­
tory, if paging is enabled) must be left for the reclamation task to reclaim. Finally, the exit 
procedure calls the dispatcher to switch to another task. The operating system must ensure 
that the terminated task never runs again because most of its context has been destroyed by 
the exit procedure. 

The reclamation task is a privileged operating system task that can access task-related data 
structures. The reclamation task may run periodically, scanning TSSs for terminated tasks, 
or it may run upon receipt of a message from the exit procedure (the message may contain 
the terminating task's TSS selector). If passed the terminated task's TSS selector, the recla­
mation task can find the terminated task's TSS descriptor in the GDT. From this descriptor 
the reclamation task can find the task's TSS, LDT, page directory, and page tables. The 
reclamation task can free both the memory these structures occupy and the task's TSS 
descriptor. 

1.5 TASK SWITCHING 

Deciding when to switch tasks is an operating system policy issue; the 80386 plays no part 
in such scheduling/dispatching decisions. (However, the 80386 can automatically dispatch 
task-based interrupt and exception handlers, as discussed in Chapter 3.) Once the operating 
system has decided to suspend the running task and run another task, the 80386 provides 
the mechanism to switch the machine context (the operating system must switch the software 
context). 

Most operating systems use an 80386 JMP TSS instruction to direct the 80386 to switch 
tasks. There are other ways to direct the 80386 to switch tasks, but they are less commonly 
used. The CALL TSS instruction implements a nested task switch in which return to the 
calling task is implied; it can be useful for implementing coroutines and for invoking task­
based interrupt and exception handlers (see Chapter 3). A JMP TASKGATE instruction 
also switches tasks. Because task gates can reside in LDTs and can be made accessible to 
selected privilege levels, this instruction can be used to extend task switching capabilities to 
selected privilege levels or tasks. 

The TSS operand of the JMP TSS instruction is a segmented (selector and offset) pointer 
to the new task's TSS. Because a TSS is a segment, the 80386 uses only the selector part of 
the operand and ignores the offset part. JMP TSS is not a privileged instruction, but to 
execute it without faulting, the running code segment must be at least as privileged as the 
target TSS. If all TSS descriptors are defined with privilege levels of 0, only tasks running 
at privilege level 0 can switch tasks with a JMP TSS instruction. 

A typical operating system encapsulates the task switching code in a procedure called a 
dispatcher. Other operating system procedures call the dispatcher when a task switch is, or 
may be, in order. In general, any operating system procedure that makes the running task 
unable to proceed, or makes a suspended task ready, calls the dispatcher. The dispatcher 
changes the software states of the old and new tasks, updates the list of ready tasks, and 
otherwise prepares for execution to transfer to another task. To switch the 80386 machine 
state from the old task to the new, the dispatcher issues a JMP TSS instruction, as shown 
in Figure 1-4. 
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(*save registers*) 

EnterCr i t icalSect ion; 

GetNewTSSPtr; 

If NewTSSPtr not = CurrentTSSPtr 
then JMP NewTSSPtr; 

(*old task resumed here when it is 
of JMP NewTSSPtr issued by another 

LeaveCr i t icalSect ion; 

(*restore registers*) 

Return; 

target 
task*) 

Figure 1-4. Example Dispatcher 

The JMP TSS instruction saves the task-specific machine state into the current TSS and 
loads the task-specific machine state from the new TSS. JMP TSS is thus equivalent to 
many MOV instructions (and a substantial amount of validation; for example, the 80386 
ensures that the descriptor named in the JMP TSS instruction is in fact a TSS descriptor). 
The 80386 executes a JMP TSS essentially as follows (for the definitive description consult 
the 80386 Programmer's Reference Manual): 

• Save general registers, segment registers, EFLAGS register, and EIP in current TSS. 

• Clear old TSS descriptor's busy bit, so the old task can be resumed later. 

Load TR with new TSS selector and descriptor. 

• Load general registers, segment registers, EFLAGS register, EIP, LDTR, and CR3 (page 
directory base address) registers from new TSS. 

• Fetch the instruction pointed to by new task's CS:EIP. This is the instruction the task 
would have executed next when it was last suspended (or it is the first instruction of a 
newly created task). 

An 80386 task switch does not switch the state of a numeric coprocessor because the copro­
cessor's context may not need to be switched with every task switch. Chapter 7 describes 
how to write an exception handler that switches the state of a coprocessor when necessary, 
eliminating the need for the dispatcher to switch it on every task switch. 

The 80386 does not save system registers such as CRO, GDTR, and IDTR on a task switch 
because these registers represent system-wide resources that are shared by all tasks. The 
processor does not save LDTR or CR3 because these are not normally changed while a task 
is executing. (If an operating system changes LDTR or CR3, it must update the correspond­
ing fields in the current task's TSS.) 
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Note that the 80386 does not save CR2, the page fault linear address, in the TSS (the TSS 
does not include a field for CR2). However, CR2 could contain task-related data if a task 
switch occurred during the handling of a page fault. Consequently, a page fault handler 
must save CR2 before allowing a task switch to occur. See Chapter 2 for details of page 
fault handling. 

Before switching to the new task, the 80386 checks the new TSS descriptor and TSS for 
validity. These checks can raise the following faults: 

• Invalid TSS (for example, the target segment is not aTSS) 

• Segment fault (for example, the new TSS is not present, or a segment selected by the 
CS-GS fields of the new TSS is not present) 

• Page Fault (for example, all or part of the new TSS is in a not-present page) 

• General Protection Fault (for example, the privilege level of the new TSS is less than 
the current privilege level) 

(The preceding is not an exhaustive list of the fault conditions that can be detected in a task 
switch; consult the 80386 Programmer's Reference Manual for details.) Although it is possi­
ble to recover from many of these faults, prudent operating system designs avoid faults during 
task switches. A fault that occurs late in a task switch increases interrupt latency by 
"stretching" the duration of the task switch instruction by the extra operations required to 
invoke the fault handler. 

If, in a task switch, the T bit of the new TSS is set, the 80386 raises a debug exception after 
switching to the new task but before executing the new task's first instruction. This excep­
tion can be used to notify a debugger that a task being debugged is about to run. 

1-8 



Memory Management 2 





CHAPTER 2 
MEMORY MANAGEMENT 

An 80386 operating system designer can use the 80386 segmentation and paging facilities 
to implement any commonly used memory model, including "flat," "segmented," "paged," 
and "segmented paged." Memory can be unprotected, or segments or pages can be protected 
with attributes such as supervisor or user, or read-only. Segments or pages can permanently 
reside in physical memory or they can be swapped between memory and disk, to implement 
virtual memory. 

Underlying the 80386's memory management flexibility are two common denominators, 
descriptor tables and page tables. The content of these tables expresses an operating system's 
memory model. This chapter shows how to set up and manage these tables. 

In the 80386, segmentation and paging are independent of one another and are therefore 
covered in separate sections of this chapter. (Virtual memory is also covered separately 
because it is optional, even when paging is enabled.) Nevertheless, an operating system 
designer must consider segmentation and paging together in order to develop the design that 
best supports the operating system's needs. The final section of the chapter gives four 
examples of memory management designs that can be implemented on the 80386; two of 
these designs use both segmentation and paging. 

2.1 SEGMENTATION 

The 80386 logical address space is inherently segmented, but an operating system designer 
has great freedom in defining the segments. For example, in one operating system the logical 
address space might consist of a single segment that spans the entire 4-gigabyte linear address 
space. Another operating system might separate system from user by placing their code and 
data in different segments. A third operating system might map a task's private data to one 
segment and data shared by tasks to another segment. Thus, while every 80386 operating 
system uses segments, each operating system defines them to support its own protection and 
performance needs. 

Two attributes give 80386 segments their flexibility: 

• They can be as large as 4 gigabytes. 

• They can overlap one another in the linear address space. 

Operating systems that use segmentation actively can define many small segments, mapping 
them to distinct linear address ranges. Operating systems that are not segment-oriented can 
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define a few large overlapping segments; in the extreme case (all segments fully overlap one 
another), segmentation is effectively nullified. 

2.1.1 Required Segments 

Although a task in a segment-oriented operating system can have dozens, hundreds, or 
thousands of segments, even an operating system that defines a "flat" (effectively unseg­
mented) logical address space must provide each task with a minimal complement of 
segments. Every task must have a code segment (represented by the selector in CS) and a 
data segment (selector in DS). A task can have a separate stack segment or can use its data 
segment for a stack (the selector in SS defines the current stack segment). An extra segment 
is not required, but the string instructions assume a valid selector in ES. Loading the same 
selector into DS and ES makes string moves operate within the same segment. ES can be 
loaded whenever DS is loaded, or just before executing a string instruction. 

The F and G data segments (represented by the selectors in FS and GS) are not required. 
In systems that define multiple data segments, compilers may be able to improve perform­
ance by maintaining frequently used data selectors in FS and GS, thereby reducing the 
number of times DS must be reloaded to make a segment addressable. Systems that address 
all data through DSjES and SS can initialize FS and GS with null selectors to trap refer­
ences that use these registers without initializing them. (Null selectors also improve task 
switch time by eliminating descriptor checking and loading.) 

2.1.2 Segmentation Models 

Segments allow processor protection to be applied to programmer-defined objects. Segments 
can be byte-variable in length up to one megabyte; segments from one megabyte to four 
gigabytes are defined in units of 4 Kbytes. An operating system, with compiler and linker 
support, can map programming units as small as individual procedures (or functions or 
subroutines) and data structures (such as arrays and records) to distinct segments. In addition 
to standard read and write permission checking, the 80386 can check segment accesses for 
proper type (code versus data), length, and privilege (a segment can be assigned one of four 
privilege levels). These run-time checks can uncover programming errors, such as bad array 
indexes and pointers, that cannot be detected at compile-time. 

An operating system designer must balance the protection advantages of segments against 
their application fit, and their performance and storage costs. Some programming languages, 
for example, have a built-in view of memory that does not map naturally to segmentation. 
For example, the C language allows a pointer to uniformly address any object in a task's 
address space whether the object is a function, a constant, or a local variable allocated on 
the task's stack. 

Run-time segment protection checking takes time. The 80386 mlnImlZeS the cost of 
segment protection by checking many segment attributes (such as length) in parallel with 
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logical-to-linear address translation. Other segment protection checks are made only when a 
segment register is loaded with a new selector as described below: 

• Intersegment (far) jumps and calls reload CS with the target segment's selector and 
descriptor. When the 80386 loads a new selector into a segment register, it checks the 
associated descriptor for validity. For example, when loading CS, the processor ensures 
that the target segment is a code segment and is present in memory. Intersegment returns 
also take longer to execute than returns within the same segment; again, the processor 
checks the return address's descriptor. Overall, intersegment control transfers take several 
times as long as intrasegment transfers. 

• lntersegment data references take longer when the selector for the new segment must 
be loaded into a data segment register; the 80386 checks the new segment's descriptor 
(for example, to ensure that it is a data segment) before loading it. If the new segment 
is to be the subject of a string instruction, ES must similarly be loaded. (Segment-oriented 
systems may be able to reduce DS loading by making some data references through ES, 
FS, and GS.) Overall, intersegment data references are usually more costly than inter­
segment transfers because they occur more frequently. 

A task that uses multiple data segments or distinct data and stack segments must use 48-bit 
segmented (selector and offset) pointers to unambiguously identify the segment to which a 
pointer refers. (32-bit offset-only pointers implicitly refer to the segment whose descriptor is 
currently loaded in DS or SS.) Compared to 32-bit offset-only pointers, segmented pointers 
consume more storage space (they are pushed as two doublewords) and require an additional 
bus cycle to transfer to or from memory. 

An 80386 operating system can control the amount of time the processor spends checking 
segments by selecting a model of segmentation. By employing segmentation judiciously, an 
operating system can strike a protection/performance balance that is consistent with its goals. 
Some representative models of segmentation are described below (others are possible): 

1. The operating system defines one code segment and one data segment; both segments 
map the entire linear address space. DS, ES, and SS are loaded with the data segment 
selector. In this model, both code and data references are 32-bit offsets; after initiali­
zation, segment registers are never changed. This model provides the equivalent of an 
unsegmented, and, in the absence of paging, unprotected 4-gigabyte logical address space. 

2. Similar to modell, except that user segments are distinct from operating system 
segments; operating system segments map the full 4 Gbyte linear space, but user segments 
map a subset of the linear addresses. Operating system segments have greater privilege 
than user segments and are therefore protected from user access. This model uses 
32-bit code and data pointers, except for system calls. A 48-bit code pointer is required 
to call an entry point in the operating system's code segment. (The user/supervisor type 
of protection provided by this model can also be implemented with page, rather than 
segment, protection.) 

3. Similar to model 2, except that data and stack segments map different areas of the 
linear space. Because the data and stack segments do not overlap in the linear space, 
this model uses 48-bit data pointers. With separate stack and data segments, the 80386 
can detect stack overflows, the stack is protected from bad data references, and the data 
segment is protected from bad stack references. 
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4. Same as model 3, except that major data structures are mapped to different data 
segments. This model uses 48-bit code and data pointers; CS changes on interrupts, 
exceptions, system calls, and procedure calls; DS, ES, FS, or GS changes to reference a 
new data structure; ES is changed to match DS before executing a string instruction 
(unless the instruction is an intersegment string move). 

Each of the preceding models trades tighter protection for reduced performance. The actual 
performance differences between models depends on the frequency of intersegment, proce­
dure calls, and system calls. In systems that tend to be pointer-intensive and procedure-call­
intensive (C programs are a good example) it may be wise to choose one of the first segment 
models listed above. Conversely, systems in which pointer and procedure call performance 
is not critical, or in which maximum protection is very important, can choose one of the later 
models. 

2.1.3 Defining Segments 

Having decided which segmentation model best fits an operating system's performance and 
protection goals, the operating system designer must express the model in the contents of 
80386 descriptor tables. This section provides guidance for setting up and managing these 
tables. 

2.1.3.1 DESCRIPTORS 

80386 segments are defined by segment descriptors (see Figure 2-1). A segment's descriptor 
defines the segment's location (base address and limit) in the linear address space and its 
protection attributes. The operating system (or the Intel System Builder utility) creates 
descriptors, but they are mainly interpreted and updated by the processor. 

A task's descriptors completely define the linear addresses the 80386 can generate for the 
task. Any linear address that is not covered by a descriptor is inaccessible to a task because 
the processor cannot generate such an address. Thus, the distribution of descriptors among 
tasks, and the linear address ranges these descriptors cover, provides an initial level of control 
over accessibility to the linear address space. The second level of control over access to the 
linear space is provided by the protection attributes of a task's descriptors. 

2.1.3.2 DESCRIPTOR TABLES 

A task's logical address space map is defined by the segment descriptors in two descriptor 
tables, the global descriptor table (GDT) and the task's local descriptor table (LDT). These 
descriptor tables are variable in length to a maximum of 64 kilobytes, giving each a maximum 
capacity of 8,192 descriptors. The GDT holds descriptors that are global to all tasks; the 
LDT holds descriptors that are local to a single task, or are local to a group of closely related 
tasks. A task need not have an LDT, and tasks can share an LDT; for example, an operating 
system might define a "job" as group of tasks that shared a common pool of resources, 
including the same LDT. The descriptors in a task's LDT and the GDT fully define the 
linear addresses a task can generate. (Note, however, that the presence of a descriptor in the 
GDT or a task's LDT does not automatically grant access to a range of linear addresses; the 
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Figure 2-1. Code and Data Segment Descriptors 

protection attributes of a descriptor can prevent a task from using the descriptor. Segment 
protection attributes are discussed in Section 2.1.6.) 

The system registers GDTR and LDTR point to the global and local descriptor tables, 
respectively. GDTR contains the 32-bit linear address of the GDT and a 16-bit limit. At 
initialization time (see Chapter 6), the operating system loads GDTR with the LGDT 
instruction. Although GDTR can be reloaded during execution (provided that CPL=O), 
there is normally no reason to do so_ The operating system must load LDTR with a selector 
for the current LDT; this selector must reference an LDT descriptor in the GDT. If a task 
does not have an LDT, LDTR can be loaded with a null selector (all O-bits). The operating 
system also loads LDTR during initialization, either directly with the LLDT instruction or 
indirectly by means of a dummy task switch (see Chapter 6). On each task switch, the 80386 
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reloads LDTR from the new task's TSS. Because GDTR is constant, whereas LDTR (poten­
tially) changes with every task switch, every task can share the segments defined in the GDT 
and yet have exclusive access to the segments defined in its LDT (if the task does not share 
its LDT with other tasks). 

2.1.4 Aliases 

Two descriptors are aliases if they define the same addresses in the linear address space. 
(Note that one segment alias can frame the linear addresses of multiple segments, poten­
tially even the full 4-gigabyte linear address space.) Aliases can give alternative "views" of 
a segment to different tasks, or can give one view to the operating system and another to an 
application program. For example, a code segment is by definition unwriteable; although 
this attrilmte prevents an application program from erroneously overwriting its instructions, 
it also prevents an operating system from legitimately loading the application program's 
instructions into memory. By aliasing the code segment with a writeable data segment, the 
operating system can load the application program's instructions into the linear addresses 
defined by the code segment descriptor. As long as the application program does not have 
access to the data segment alias, it cannot modify its own code. As discussed in 
Section 2.1.5, aliases can also be used to share segments between tasks. 

An operating system must define a data segment alias for the GDT, the IDT (interrupt 
descriptor table, described in Chapter 3), and for any 80386-defined segment that the 
operating system updates. The GDT and the IDT must be aliased because they are not 
addressable with logical addresses (there are no descriptors for these tables; the processor 
addresses them through the linear addresses in the GDTR and IDTR registers). Other system 
segments, such as TSSs and LDTs, must be aliased because of the need to update them upon 
a task switch or when a task's address space needs to be increased/decreased dynamically. 
The 80386 raises a general protection exception if software attempts to load their descriptors 
into data segment registers. The operating system can define one alias for each table or 
segment described here, or it can define a single alias that spans all of them (or even all of 
the linear address space). The alias(es) for system tables and system segments should be 
assigned privilege level 0 so that access to them is restricted to the most privileged level of 
the operating system (Section 2.1.6 describes privilege level and other segment protection 
mechanisms ). 

While they are useful, and even indispensable, segment aliases complicate an operating 
system. The principal problem presented by aliases is keeping the multiple descriptors 
consistent. Suppose, for example, an operating system increases the size of a segment. 
Typically, this means allocating a segment of the new length, copying the content of the old 
segment to the new segment, and, finally, freeing the old segment. If the old segment has 
aliases, however, the operating system must find and update the aliases so they point to the 
new segment rather than the old. Aliases also complicate segment deletion; the memory 
occupied by a segment cannot be freed until no aliases for the segment exist. 

To manage segment aliases, an operating system must effectively extend descriptors with 
alias information. One way to extend descriptors is to define an alias table that has an entry 
for each GDT or LDT entry (see Figure 2-2). The alias table entry for a descriptor can 
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indicate the number of aliases for the segment and can point to a list of pointers to the 
aliases. The operating system can supply system calls that create and delete aliases; if the 
operating system makes these calls available to applications, it must check the parameters 
supplied in each invocation, since aliases can potentially permit access to memory that should 
not be allowed. (An application should not, for example, be permitted to alias operating 
system code or data.) 

Operating systems that are not segment-oriented can simplify alias management by defining 
a single data segment alias that spans the entire linear address space. The operating system 
can then read or write any linear address via this alias and the alias need never be updated. 

2.1.5 Sharing 

For two (or more) tasks to share a segment, the tasks can either share a common descriptor 
for the segment, or they can hold aliases to the same segment. There are three ways to effect 
segment sharing. 

Because all tasks share all descriptors in the GDT, the simplest way to achieve intertask 
segment sharing is to place a descriptor in the GDT. Although simple, this approach is 
nonselective because every task shares the segment. Consequently, GDT slots are 
normally defined to hold descriptors for system-wide resources, such as the operating 
system's code and data, that would otherwise have to be duplicated in every task's LDT. 

Tasks can also share a descriptor by sharing an LDT. Although more selective than 
GDT-sharing, two tasks that share an LDT share all of their segments. 

Individual tasks can share individual segments by means of aliases in their LDTs. Aliases 
are the most precise form of intertask sharing and allow the sharing tasks to be given 
different views of the shared segment. For example, one task may be able to write a 
segment, whereas another task's alias for the same segment allows only reading. 

2.1.6 Protection 

A descriptor's protection fields allow an operating system to define the conditions under 
which the associated segment can be accessed. If an attempted access violates one of these 
conditions, the 80386 does not make the access but raises an exception. Exceptions are 
described in Chapter 3. 

2.1.6.1 TYPE AND RIGHTS 

The 80386 distinguishes between segments that contain code and segments that contain data; 
stack segments are data segments. When the code/data bit of a descriptor (bit 43, see 
Figure 2-1) is set, the 80386 interprets the corresponding segment as a code segment. The 
80386 ensures that a data segment is used as a data segment and a code segment is used as 
a code segment. An attempt to write into a code segment or to transfer control to a data 
segment raises a general protection fault. 
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An operating system can restrict the operations a task may perform on a code or data segment 
by clearing the R (readable) bit of a code segment or the W (writeable) bit of a data segment 
(see Figure 2-1). When clear, these bits make a code segment unreadable and a data segment 
unwriteable. Code segments are by definition unwriteable and executable; data segments are 
by definition readable and un executable. A code segment can be further classified as 
conforming by setting its C (conforming) bit. Conforming code segments are described in 
Chapter 4. They provide a way to implement procedures that have no inherent privilege 
level, but execute at the privilege levels of their callers. 

2.1.6.2 LIMIT 

To detect a segment overrun, the 80386 compares the offset part of a logical address to thc 
segment's limit. For example, suppose a task computes an address (an offset within the 
current code segment) and jumps to that address. If the task erroneously computes the offset 
as larger than any address in the segment, the 80386 does not perform the jump but raises 
a general protection exception. . 

A segment's limit is encoded in its descriptor as a combination of the G (granularity) bit 
and the concatenation of the limit fields. (In the rest of this section, "limit field" means the 
concatenation of the limit fields.) The limit field is 20 bits wide; the G bit tells the processor 
how to expand the limit field to 32 bits. If G=O, the segment's granularity is 1 byte; the 
80386 computes the limit of a byte-granular segment by concatenating 12 high-order O-bits 
to the limit field. If G= 1, the segment's granularity is 4 Kbytes or one page (the term page, 
as used here, refers to a 4 Kbyte unit of memory and is independent of the 80386 paging 
facility). The 80386 computes the limit of a page-granular segment by concatenating the 
limit field to 12 low-order I-bits. Segments up to 1 megabyte (220 bytes) can be defined with 
byte granularity; page granularity must be used for larger segments. A segment with page 
granularity can span the entire linear address space (220 pages = 4 Gbytes). Three examples 
of segment limit computation follow: 

1. If G= 1, base= 1000H, and the limit field =OH, the descriptor defines a segment with 
base address 1000H (4096D) and a limit of FFFH (4095D). The associated segment is 
one page long and spans the second page frame of the linear address space. Note that 
the minimum size of a large-grain segment is 4 Kbytes. 

2. If G=O, base=lOOOH, and the limit fie1d=FFFH, the descriptor defines the same 
4 Kbyte segment as the previous example. 

3. If G = 1, base = 0, and limit field = FFFFFH, the descriptor defines a segment with base 
address 0 and limit of FFFFFFFFH. The segment spans the entire 32-bit linear address 
space. 

Byte-granular segments provide precise size checking, but have a limited size range (1 byte-
1 megabyte); page-granular segments have a greater range (4 Kbytes-4 Gbytes), but limit 
checking is coarser. (A reference beyond a data structure allocated in a page-granular 
segment causes a limit violation only if the end of the data structure coincides with end of 
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the segment.) To prevent unintentional segment overlap, an operating system should allocate 
page-granular segments on 4 Kbyte linear address boundaries. 

2.1.6.3 EXPAND-DOWN SEGMENTS 

The preceding description of the segment limit computation holds for expand-up segments, 
that is, segments whose E (expansion direction) bit is O. The great majority of segments are 
expand-up segments. The 80386 provides expand-down data segments for operating systems 
that meet both of the following criteria: 

• Stacks are defined as distinct segments (DS and SS contain different selectors). 

• A stack is expanded by copying it to a larger segment (rather than by adding present 
pages to its segment). 

Designers who do not plan to implement stacks in this way need not define expand-down 
segments and can skip the remainder of this section. 

Implementing a stack with an expand-down segment preserves intrastack references if the 
stack is copied to a larger segment (see Figure 2-3). Stacks grow toward lower addresses; 
therefore, to expand a stack, the stack must be copied to the high end of a larger segment. 
If a stack in an expand-up segment is copied in this way, the offsets of the items on the stack 
change; when a stack in an expand-down segment is similarly copied, the offsets of the stack 
items do not change. 

The 80386 provides two kinds of expand-down (E= 1) data segments, small and big. A small 
expand-down segment is denoted by a B (big) bit that is 0; a large expand-down segment is 
denoted by a B bit that is I. (The B bit has a second function for stack segments, whether 
expand-up or expand-down. When loaded into SS, a segment descriptor with B=O directs 
the 80386 to use the 16-bit SP register for implicit stack references, such as those made by 
the PUSH, POP, CALL, and RET instructions. When B= I, the 80386 uses the 32-bit ESP 
register for the stack pointer.) A small expand-down segment can range from 0 to 
64 Kbytes-I in length; the G bit of a small expand-down segment must be O. A big expand­
down segment can range in size from 4 Kbytes-I to 4 Gbytes-I, in increments of 4 Kbytes; 
the G bit of a big expand-down segment should always be 1. 

Figure 2-4 summarizes the differences between expand-up and expand-down segments. An 
expand-up segment's lowest linear address is equal to its base address; its highest linear 
address (that is, the maximum offset that can be used to form an address in the segment) is 
a function of the segment's limit and G bit. The highest and lowest linear addresses of expand­
down segments are expressed differently. The lowest linear address of an expand-down 
segment is equal to its base plus the quantity (limit-I), with the computation "wrapping 
around" at 4 Gbytes if necessary. "4 gigabyte wraparound" means that the processor ignores 
any overflow into bit 33 of the linear address; the linear address following FFFFFFFFH 
is O. The highest address of a small expand-down segment is base + FFFFH; the highest 
address of a big expand-down segment is base+ FFFFFFFFH. In both cases, the computa­
tion wraps around at 4 Gbytes if necessary (always true for big expand-down segments). 
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Both small and big expand-down segments can be located anywhere in the linear address 
space. To define a small expand-down segment, set the base address to (highest address-
64 Kbytes); set the limit to 1 greater than the desired segment size. A small expand-down 
segment can be expanded by reducing its limit if the memory between its lowest address and 
its base has not been allocated to another segment; otherwise the data in the segment can be 
copied to a larger segment. To define a large expand-down segment, set its base to (highest 
address minus 4 Gbytes); set the limit field to 1 greater than the desired size of the segment. 
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2.1.6.4 PRIVILEGE 

The DPL (descriptor privilege level) field defines a segment's privilege level; 0 is the most­
privileged level and 3 is the least-privileged level. Unless a task is executing a conforming 
code segment, its current privilege level is equal to the privilege level of the code segment it 
is executing. (If the task is executing a conforming code segment, its current privilege is 
equal to the privilege level of the code segment that called the conforming segment.) When 
an instruction operand is a selector, the task's current privilege level can be reduced for the 
execution of that instruction by the RPL (requested privilege level) field in the selector. 
When RPL is 0, it has no effect on current privilege level. See Chapter 4 for a more detailed 
description of RPL. 

A segment's privilege level defines the privilege required to access the segment. To read or 
write a data segment, a task must be at least as privileged as the target segment (numeri­
cally, the task's current privilege level must be less than or equal to the value coded in the 
target segment's DPL field). For example, a task running at privilege level 2 can access data 
segments whose privilege levels are 3 or 2, but cannot access data segments whose privilege 
levels are 1 or O. To transfer control to another code segment by a JMP, CALL, RET, or 
IRET instruction, a task must have the same privilege level as the target segment. For the 
special cases of system calls, interrupts, and exceptions, in which a task's privilege level is 
numerically decreased while it executes a more privileged code segment, the 80386 provides 
special descriptors called gates. Gates are described in Chapters 3 and 4. (The 80386 does 
not allow a task to call to a less-privileged code segment because such a call implies that a 
return to a more-privileged segment is also allowed. Such a return mechanism, however, 
would permit tasks to enter more privileged code segments by returning to them.) 

If, as is strongly recommended, the GDT and LDT data segment aliases are defined as 
privilege level 0 segments, only tasks executing privilege level 0 code segments can create 
descriptors. (There is no GDT selector and attempting to load an LDT selector into a data 
segment register results in a general protection exception.) Without the ability to manufac­
ture descriptors, tasks running at privilege levels 3, 2, or 1 can increase their privilege only 
by transferring through the gates defined by the level 0 operating system. 

A task's privilege level defines not only segment accessibility but the instructions the task 
can execute. Privileged instructions can only be executed by tasks running at privilege 
level o. To execute I/O instructions, a task must be at least as privileged as its IOPL (input/ 
output privilege level, a field the operating system sets in the task's TSS); such a task is said 
to have I/O privilege. However, a task that does not have I/O privilege can be allowed to 
issue I/O instructions for selected I/O ports; these ports are specified in the I/O permission 
map in the task's TSS. See Chapter 5 for a more detailed description of 10PL and the I/O 
permission map. 

The four segment privilege levels can be used to implement a variety of privilege hierarchies. 
To build an unprotected system, every segment can be assigned the same privilege level; the 
level should be 0 so privileged instructions can be executed. To implement a supervisor/user 
style of protection, supervisor segments should be assigned privilege level 0, and user segments 
should be assigned privilege level 3. (Technically, user segments can be assigned privilege 
levels 1 or 2 provided that page-based protection is not used, but there is no advantage to 
doing so.) 
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Privilege levels 1 and 2 can be used to establish protection boundaries within the operating 
system, or to establish protection boundaries between operating system and end user. For 
example, a personal computer could implement its operating system at level 0 and assign 
programs written by end users to level 3. Level 2 might be reserved for third party software, 
protecting this software from end user errors or tampering. 

2.1.7 Other Attributes 

Both code and data segment descriptors provide an available bit that the processor does not 
interpret or update. This bit can be used to mark a segment that is locked in memory, or 
has an alias, or has another operating system-defined attribute. 

The D (default operand size) bit in code segment descriptors should be set to I to specify 
32-bit operands and offsets; the 0 setting specifies 16-bit operands and offsets and is provided 
for compatibility with the 80286 (see Chapter 8). The 80386 macro assembler (ASM386) 
provides 'useI6' (D=O) and 'use32' (D= l) directives which allow a programmer to define 
80286/80386 compatible segments. The linker/loader uses this information to define 
80286/80386 compatible descriptors. 

The P (present) and A (accessed) bits are provided mainly for segment-based virtual memory 
implementations and are described in Section 2.3.1. 

2.1.8 Building Descriptors 

Figure 2-5 shows one wayan operating system can store the content of a descriptor in a 
simpler format. The record shown in Figure 2-5 coalesces the multiple limit and base fields 
of a descriptor into single fields that are easier to manipulate. Note that the attributes field 
is stored with the attribute bits in the same relative locations as they occur in a descriptor; 
the four O-bits in the attribute field are placeholders for the upper limit field. Figure 2-6 
shows how these fields can be packed into a 64-bit descriptor. 

An assembly language sequence that extracts the base address from a descriptor and leaves 
it in register EAX is shown in Figure 2-7. 

+8 

+4 

BASE +0 

31 19 15 7 o 
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Figure 2-5. Storing Descriptor Fields 
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Figure 2-7. Extracting a Descriptor's Base Address 

2.2 PAGING 

Every 80386 operating system implements some model of segmentation, but paging is 
optional. Although paging is typically used to implement virtual memory, its relocation and 
protection facilities can be used for other uses as well. For example, virtual 86 mode tasks 
(see Chapter 9) generate addresses that fall into the first megabyte of the linear address 
space. An operating system that runs multiple virtual 86 mode tasks can use paging to direct 
their accesses to different pages of the physical address space. 

An operating system enables paging (typically during initialization) by setting the PG (paging 
enabled) bit in the CRO system register with the privileged MOY CRO instruction. 
Chapter 6 provides a more detailed explanation of the procedure for enabling paging. Paging 
can also be disabled with a MOY CRO instruction. If an operating system disables paging, 
it must first ensure that it is executing in linear addresses that are identical to physical 
addresses, because no linear address translation will be performed after the MOY CRO 
instruction is executed. 
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2.2.1 Relationship of Segments and Pages 

The 80386 implements paging "underneath" segmentation by performing page translation 
and protection checking after segment address translation and protection checking. (The 
word "after" here means logically after; in reality, the 80386 MMU performs segment and 
page translation in parallel.) Because the segment checks are performed first, a page-oriented 
operating system must ensure that segment descriptors allow the page protection checks to 
occur. For example, every page in a read-only data segment is effectively read-only, because 
an attempt to write into the segment will fault even if the protection attributes of the under­
lying pages allow writing. 

Depending on its degree of segment-orientation, an operating system can map segments to 
pages in two ways (see Figure 2-8): 

An operating system that defines a few large segments can compose segments of integral 
pages. In this type of system, every segment begins on a page boundary and is at least 
one page long. The page is the unit of memory allocation, protection, and swapping (in 
a virtual memory system). 

a. LARGE b. SMALL 
SEGMENT PAGING SEGMENT PAGING 

r---

r--- r---

r---

r---

r---- r----

r--- ~---

1---- 1---

1---- r---

_ SEGMENT BOUNDARY 

--- PAGE BOUNDARY 

Figure 2-8. Two Ways to Map Segments to Pages 
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• An operating system that defines hundreds or thousands of segments whose average size 
is tens or hundreds of bytes would waste substantial space if it aligned segments on 
4 Kbyte boundaries. Such a system can, instead, map segments to pages without concern 
for segment and page boundaries, or it can map related segments to the same page. In 
this kind of system, the segment is the unit of linear space allocation and of protection; 
pages are used for virtual memory only. 

2.2.2 Page Tables and Page Directories 

An 80386 page table defines a collection of 4 kilobyte pages much as an 80386 descriptor 
table defines a collection of variable-size segments. A page table is an array of PTEs (page 
table entries); a page table is one page long and must be aligned on a 4 Kbyte linear address. 
A page table contains 1,024 entries, each of which defines one 4 kilobyte page; therefore, a 
page table can cover 4 megabytes of the linear and physical address spaces. To prevent 
unauthorized access, a page table should be defined in a segment whose DPL is 0 or by a 
PTE whose U IS bit is 0 (the U IS bit is described in Section 2.2.5). 

Figure 2-9 shows the format of a PTE. Technically, Figure 2-9 shows the format of a present 
PTE, one whose P (present) bit is set. The format of not-present PTEs is operating system­
defined; because not-present pages are most commonly used by virtual memory systems, 
they are described in Section 2.3. A (present) page table entry contains addressing, protec­
tion, and virtual memory fields; the protection and virtual memory fields are described in 

31 

PAGE FRAME ADDRESS 31·12 

a. PAGE TABLE ENTRY (PTE) 

31 

PAGE TABLE ADDRESS 31-12 

b. PAGE DIRECTORY ENTRY (POE) 

LEGEND: 
AV: AVAILABLE FOR OS USE 
0: DIRTY 
A: ACCESSED 
U/S: USER/SUPERVISOR 
R/W: READ/WRITE 
P: PRESENT 

NOTE: IF P~O, BITS 1·31 ARE AVAILABLE 
FOR OS USE. 

Figure 2-9. Page Table and Page Directory Entries 
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Sections 2.2.5 and 2.3. The page frame address field of a PTE contains the upper 20 bits of 
a present page's physical address; the lower 12 bits are assumed to be ° because pages are 
aligned on 4 Kbyte boundaries. 

The linear addresses an 80386 task can generate are specified in the task's segment descrip­
tors; in the general case, a task can generate any address in the 4 Gbyte linear space. When 
paging is enabled, the 80386 must look up every linear address in a page table to determine 
if the address is valid. To translate every possible linear address into a physical address 
would require 1,024 page tables. Rather than force each task to carry the overhead of a full 
set of 1,024 page tables (most of whose entries would define not-present pages), the 80386 
provides a higher level of page table called a page directory. (Page directories also provide 
an elegant way to implement page-based sharing, as described in Section 2.2.4.) 

A page directory is similar to a page table; a page directory is one page long and must be 
page-aligned. To prevent unauthorized access, a page directory should be located in a privi­
lege level ° segment. Whereas each of a page table's 1,024 PTEs defines the attributes of a 
page, each of a page directory's 1,024 PDEs (page directory entries) defines the attributes 
of all pages described in a page table. Thus, a page has two set of attributes, one defined by 
its PTE and one defined by its page table's PDE. Logically speaking, when translating a 
linear address to a physical address, the 80386 checks the attributes defined in the PDE 
before it checks the PTE. Should the attributes defined in the PDE cause a fault, the attri­
butes defined in the PTE are irrelevant because the 80386 does not check them. Thus, 
logically speaking, the 80386 checks segment attributes first, page table attributes second, 
and page attributes third; any fault detected in an earlier check cancels all subsequent checks. 
For a page to be considered present, the descriptor of the segment containing the page must 
be marked present, the page table's PDE must be marked present, and the page's PTE must 
be marked present. As another example, suppose two linearly adjacent pages in the same 
segment are covered by entries in the same page table. To make one of them read-only and 
the other write able, their common segment descriptor must grant read-write access as must 
their common PDE. One PTE, however, must grant read-write access, whereas the other 
specifies read-only access. 

Because a PDE defines a set of global attributes that apply to 4 megabytes of the linear 
space, marking a PDE not-present has the same effect as marking all the entries in a page 
table not-present, with the added benefit of eliminating the need for the page table. (If page 
tables are swapped, another PDE bit can be used to distinguish between a not-present page 
table and a page table that does not exist.) A task that uses 17 megabytes of (linearly contig­
uous) memory, for example, needs only a page directory and five page tables. The smallest 
task needs a page directory and one page table. 

The CR3 system register contains the physical address of the current page directory. During 
initialization, the operating system can load CR3 with the privileged MaY CR3 instruction. 
The privileged MaY MEM,CR3 instruction can store CR3. When loading CR3, the 80386 
ignores the low 12 bits of the source operand; when storing CR3, the low 12 bits of the 
destination operand are undefined. CR3 is loaded automatically on a task switch if the CR3 
value in the new task's TSS differs from CR3's current value. 

To update a PDE or a PTE, an operating system must have page tables that contain the 
page frame numbers of the page directory and all page tables. Although there are a number 
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of ways to ensure that page frames containing page tables are themselves accessible through 
page tables, access is most convenient when these page frames can be accessed with linear 
addresses that are the same in all tasks. Figure 2-10 shows one way to arrange each task's 
page directory and page tables so they are accessed with the same linear addresses regardless 
of the task in which the operating system is running. (This example assumes that each task 
has a different page directory.) 

The example dedicates one 4-megabyte range of the linear space to represent the addresses 
by which a task's page tables and page directory can be addressed. The range must begin at 
a 4-megabyte boundary, but can otherwise fall anywhere in the linear space, so long as it is 
the same in each task. A task's page directory is allocated at the top of the block and its 
page tables are allocated from the bottom; note that the 4-megabyte range can hold 1,024 
page tables plus the page directory (which serves double duty as a page table as well in this 
example). 1,024 page tables are sufficient to cover the entire 4-gigabyte linear space. The 
page directory is initialized so that each PDE contains the page frame number of a page 
table, and the topmost PDE contains the page frame number of the page directory. 

The 80386 translates any linear address that falls into this 4-megabyte range to the physical 
address of a page table or the page directory. Table 2-1 gives addressing examples assuming 
that the page tables occupy the top 4-megabytes of the linear address space. In this table, a 
linear address is expressed as three components, the first identifying the page directory entry, 
the second identifying the page table entry, and the third identifying the offset in the page 
frame. Thus, the first example in the table (1023,0,0) is equivalent to linear address 
FFCOOOOOH. 

2.2.3 Aliases 

Two PTEs containing the same page frame address are aliases of one another, as are two 
PDEs containing the same page table address. Aliases can have different attributes; for 
example, one PTE may allow reading a page while another allows a page to be both read 
and written. 

Page aliases require the same management techniques as segment aliases. For example, an 
operating system cannot free a page frame if the page it contains is aliased (to do so would 
give the aliases access to a page that could be reallocated). Similarly, should a virtual memory 
system swap an aliased page out to disk, the present bits of all aliases of the page must be 
cleared. 

2.2.4 Sharing 

Two (or more) tasks can share all of their pages by sharing the same page directory. This 
approach is useful in segment-oriented systems that use paging for virtual memory, because 
such systems use LDTs to separate the local address spaces of tasks. (In fact, such systems 
typically share a single page directory among all tasks.) Because paging is defined under­
neath segmentation, two tasks that share a page directory have access only to the addresses 
defined by the system's GDT and the tasks' LDTs. 

2-19 



MEMORY MANAGEMENT 

4 GBYTES 

POE 1023 

PAGE DIRECTORY 

POE 1 

POE 0 
PAGE TABLE 1 

PAGE DIRECTORY 

4 MBYTES 

PAGE TABLE 1 

PAGE TABLE 0 

T T 
UNEARSPACE 

PHYSICAL SPACE 
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Table 2-1. Page Table Addressing Examples 

Page Dir Page Table 
Offset Access 

Entry Entry 

1023 0 0 PTO,PTEO 
1023 0 4 PTO,PTE1 
1023 1 8 PT1,PTE2 
1023 1 12 PT1,PTE3 
1023 1023 4092 PD,PDE1023 

Tasks with separate page directories can share either page tables or individual pages. Two 
tasks share a page table if the page table is aliased in their page directories. Two tasks share 
a page if the page is aliased in their respective page tables. 

In general, page attributes are more volatile than page table attributes, making the page 
table a more attractive unit of sharing. The difference in volatility is especially relevant to 
virtual memory systems, which change the attributes of a page every time it is swapped in 
or out. If a page is aliased, all its aliases must be updated when it is swapped in or out. If a 
page table is aliased, the attributes of the pages it defines can be changed freely because 
only a single PTE describes each shared page. Only if the attributes of the page table itself 
are changed do all aliases have to be altered. A virtual memory system can eliminate the 
problem by not swapping page tables. 

2.2.5 Protection Attributes 

As mentioned earlier, when paging is enabled, the 80386 logically checks segment protection 
attributes first and page protection attributes second. Consequently, an operating system 
that defines pages within segments can use page protection to protect the pages in a segment. 
An operating system that defines segments within pages should use segment protection, setting 
the page protection attributes to their most permissive values. 

2.2.5.1 PRIVILEGE 

The U IS (user Isupervisor) bit in a PTE allows a page to be defined as user-accessible 
(U IS= 1) or supervisor-accessible (U IS=O). A task can access a user page (for which it 
has a descriptor) regardless of the task's current privilege level. To access a supervisor page, 
a task must be running at privilege level 2, I, or O. All the pages in a page table can be made 
supervisor pages by clearing the U IS bit in the page table's PDE. 

2.2.5.2 RIGHTS 

Unlike segments, pages are not typed as containing code or data; all pages are executable 
and readable. However, a user page can be made read-only to a privilege level 3 task by 
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clearing the page's R/W (read-write) bit. Supervisor pages are always write able by tasks 
running at supervisor privilege level. 

2.2.6 Other Attributes 

Each page table entry has three available bits that the 80386 does not interpret or change. 
An operating system can define these bits for its own use. For example, an operating system 
can use these bits to mark pages that are locked for I/O, that are to be copied when written, 
or are aliased. 

2.2.7 Translation Lookaside Buffer Considerations 

Architecturally (logically), the 80386 translates a linear address by looking up a page direc­
tory entry and, using that entry, looking up a page table entry. However, the linear-to­
physical translation is accelerated with an onchip translation lookaside buffer (TLB) that 
holds recently used page directory and page table entries. The processor automatically keeps 
the most recently referenced PDE-PTE entries in the TLB; it also automatically updates 
PDE and PTE accessed bits and PTE dirty bits as pages represented in the TLB are read or 
written. (The dirty bit in a PDE is undefined.) To keep the TLB consistent with PDEs and 
PTEs, the operating system must flush the TLB when it updates a PDE or PTE that may 
be represented in the TLB. Flushing the TLB forces the processor to load the updated PDE 
or PTE into the TLB when the relevant page is next referenced. To the flush TLB, move 
any value (including the current CR3 value), to CR3. 

If the operating system knows a PTE or PDE is not in the TLB, it can update the entry 
without flushing the TLB. In particular, the operating system can change a not-present PTE 
to present without flushing the TLB, because not-present PTEs are never in the TLB. To 
avoid flushing the TLB, the operating system code that clears accessed bits (to identify 
pages that have not been accessed recently) should be implemented as an operating system 
task whose page directory is distinct from the page directories of all tasks that have swapp­
able pages. When the operating system switches to this clearing task, the 80386 flushes the 
TLB because the clearing task's page directory base address (recorded in its TSS) is differ­
ent from the current value in CR3. The clearing task can then be sure that the PTEs it is 
examining and updating are not in the TLB because the pages they define are not in the 
clearing task's physical address space. 

A TLB miss can occur on a memory read or a memory write. A read miss occurs when the 
required entry is not in the TLB. A write miss occurs when the required entry is not in the 
TLB, or when the entry is there, but its D bit is clear (meaning the 80386 must set the PTE 
D bit before performing the write). The 80386 responds to all TLB misses in the same 
way by 

• Asserting the bus LOCK signal and reading the PDE 

• Deasserting the LOCK signal and writing the PDE with a set A bit 

• Asserting the LOCK signal and reading the PTE 
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• Deasserting the LOCK signal and writing the PTE back with a set A bit and, if the 
transaction is a write, a set D bit 

• Merging the (updated) PDE and PTE into a single TLB entry 

• Recording the new TLB entry in an empty TLB slot (if the TLB is not full) or overwrit­
ing an existing TLB entry (if the TLB is full) 

The processor guarantees that PDE and PTE accessed bits are set before a page is accessed 
and that PTE dirty bits are set before a page is written. Locking the bus during PDE and 
PTE updates ensures that, in a shared memory multiprocessor system, another processor 
does not access the same PTE until 80386's update is complete. (However, the external bus 
arbitration hardware must implement the actual bus locking when signaled by the 80386; 
see the 80386 Hardware Reference Manual for details.) In a multiprocessor system, the 
operating system software must also lock the bus when it updates a PDE or a PTE. If the 
PDE or PTE is marked present, the operating system must force other processors to flush 
their TLBs so they use the updated value when the page associated with the PDE/PTE is 
next referenced. 

TLB misses only slightly increase the overall memory access time of most tasks, because the 
memory references of most tasks tend to cluster in a few small, slowly changing address 
ranges. Designers of real-time operating systems should note, however, that TLB misses 
make memory access times variable because interrupts, exceptions, and task switches can 
alter the content of the TLB. 

2.3 VIRTUAL MEMORY 

An 80386 operating system can implement a virtual memory subsystem that swaps either 
segments or pages. (In this section, the term swap-in means to transfer a segment or page 
from a swap device-normally a disk-to memory; the term swap-out means to transfer a 
segment or page from memory to a swap device.) Both approaches have their merits, but 
page-based systems tend to perform better when segments are large. (Finding a large free 
block of linear space can substantially increase the time required to swap-in a large segment; 
a page fits in any available page frame). Because large segments are common in 80386-
based systems, page-based virtual memory is the principal topic of this section. For a more 
complete discussion of segment-based virtual memory, consult the 80286 Operating System 
Writer's Guide, Order No. 121960. 

2.3.1 Demand Segmentation 

80386 segment descriptors (see Figure 2-1) have a P bit that allows the operating system to 
shuffle segments between physical memory and a swap device. An operating system can use 
the base and limit fields of a not-present descriptor to store the disk address of a swapped­
out segment. However, the other descriptor fields remain defined even when the descriptor 
is marked not-present; the 80386 checks the present bit after it has checked the descriptor'S 
protection attributes. If more space is necessary than the base and limit fields provide, the 
operating system can define "descriptor extension tables" whose entries contain the additional 
information for not-present segments. 
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Whenever the 80386, on its own initiative or in response to an instruction, loads a descriptor 
register, it checks the descriptor's present bit and raises a segment fault exception if the 
present bit is clear. Not-present segments can cause several different kinds of faults (see 
Table 2-2), although they most frequently cause segment faults (for more information on 
exceptions, consult Chapter 3). 

As Table 2-2 shows, a not-present segment can cause the invocation of one of several fault 
handlers. These fault handlers should call a common procedure to swap-in the not-present 
segment. The swap-in procedure allocates space for the segment in physical memory, finds 
the segment on the swap device, reads the segment into memory, and sets the present bit 
and descriptor's base and limit fields. When the fault handler returns, the 80386 re-executes 
the instruction that caused the fault. 

The present bit helps the operating system swap segments into memory when they are needed; 
the A (accessed) bit helps the operating system find memory segments to swap-out. When 
free memory becomes scarce, the operating system must swap-out some segments. The 80386 
sets a descriptor's accessed bit whenever the descriptor is loaded into a register. (A segment 
can be accessed only when its descriptor is loaded into a descriptor register.) When the 
supply of free memory runs low, a system task (called the swap-out task in this section) can 
cycle through descriptor tables, examining and clearing their accessed bits as follows. Every­
time it "visits" a descriptor, the swap-out task examines the descriptor's accessed bit. If the 
accessed bit is 1, the swap-out task simply clears the bit; such a segment has been used 
recently (since the swap-out task's previous visit), and is a good candidate for use in the near 
future. If, on the other hand, a descriptor's accessed bit is 0, the descriptor has not recently 
been used and is a good candidate to swap-out. After transferring the segment to disk, the 
swap-out task can add the memory occupied by the segment to the free pool. 

Having identified a segment to swap-out, the swap-out task may be able to free the segment's 
memory without writing the segment to disk. If a copy of the segment already exists on disk, 
the swap-out task needs to update the copy only if the segment is "dirty," that is, if the 
segment has been written since it was last swapped-in. Segment descriptors do not have dirty 
bits (PTEs do), but their type and rights bits yield similar information. A code segment is 
by definition unwriteable, as is a data segment whose W (writeable) bit is O. An unwriteable 

Table 2-2. Not-Present Segment Fault Conditions 

Exception Condition 

Segment Fault Loading CS, DS, ES, FS, or GS with a not-present descriptor; loading 
TR or LDTR with a not-present descriptor (using the L TR or LLDTR 
instruction); loading CS with a not-present gate descriptor. 

Stack Fault Loading SS with a not-present descriptor. 

Invalid TSS Fault Switching to a TSS that contains a selector for a not-present LDT; 
switching to a not-present TSS. 

Double Fault Attempting to load CS with a fault handler's not-present code segment 
descriptor. (This is not a legitimate condition that a fault handler can 
resolve, but an operating system bug.) 
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segment need not be written out if a copy of it exists on disk; instead, its memory can simply 
be freed. A writeable segment must be written out because it may be dirty. 

Note that segment aliases complicate demand segment-based virtual memory. When an 
aliased segment is swapped-out, all the alias descriptors must be updated to indicate that 
the segment is not present. Likewise, swapping-in a segment requires updating all aliases so 
they point to the segment's new location. To determine if a segment has been recently 
accessed, all aliases for the segment must be examined. Because aliases may redefine a 
segment's type or rights, the need to write out an aliased segment can be determined only 
by examining all its aliases; one of these aliases may make the segment writeable. For these 
reasons, it may be simplest to make aliased segments immune from swapping. 

2.3.2 Demand Paging 

Demand paging essentially consists of two functions, handling page faults by swapping-in 
pages, and swapping-out pages to free page frames for swapped-in pages. 

2.3.2.1 HANDLING PAGE FAULTS 

The 80386 raises a page fault (number 14) when, in translating a linear address to a physical 
address, it encounters a not-present PDE or a not-present PTE. The operating system code 
that responds to page faults is called the page fault handler. A page fault handler is normally 
implemented as a privileged procedure that runs in the context of the task that incurs the 
fault. Because it runs in the faulting task's context, the page fault handler has ready access 
to the task's page directory and page tables. So it can examine and update the faulting task's 
page directory and page tables, page fault handler should run at privilege level 0 and should 
have read and write access to the segment(s) containing the running task's page directory 
and page tables and to the pages that contain the page tables. 

Once invoked, the page fault handler must first determine what the page fault means. The 
80386 raises a page fault on a page protection violation in addition to a not-present page. 
Moreover, many operating systems use the page fault mechanism to signal more conditions 
than "a page must be swapped-in from disk." For example, a system that gives each task a 
flat 4-gigabyte logical address space will allocate only the pages a task actually needs, marking 
typically hundreds of PDEs not-present. A reference to one of these unallocated pages is not 
an implicit request to swap-in the page, but an error that is cause to terminate the task. To 
cite another example, operating systems commonly interpret page faults that occur near the 
top of the stack as requests to add pages to the stack. Thus, an operating system may have 
different classes of not-present pages. Because the 80386 does not interpret or alter the 
upper 31 bits of a not-present PDE or PTE, the operating system can encode a page's classi­
fication in these bits. However, an operating system should not use the U IS and R/W bits 
of a not-present page that is swapped-out; if left unchanged, these bits will be properly set 
when the operating system swaps-in the page. 

The 80386 provides diagnostic data to assist the page fault handler. The top of the page 
fault handler's stack contains the logical address of the instruction that caused the fault and 
an error code that describes the nature of the fault (see Figure 2-11). System register CR2 
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contains the linear address that could not be translated; system register CR3 contains the 
physical address of the task's page directory. 

An actual page fault handler must also examine the PDE and the PTE to determine how to 
respond to the not-present condition. Supposing that the required response is to swap-in the 
missing page, the page fault handler can proceed as follows: 

• Allocate a page frame for the page. 

• Find the page's disk address and schedule the page to be read into the page frame; block 
until the read completes. 

• When the read completes, update the PTE, setting the page frame address, marking the 
page present and not-dirty. (It is not necessary to mark the page accessed; the 80386 
sets the accessed bit when it reexecutes the faulting instruction.) 

• Return with an IRET instruction so the processor will reexecute the instruction that 
incurred the page fault. 

Page directories can be swapped-out with other task pages subject to the following constraint. 
Before switching to a TSS, the operating system must ensure that the task's page directory 
is resident in physical memory and that the CR3 field of the TSS contains the physical 
address of the page directory. 

2.3.2.2 REPLACING PAGES 

A page fault handler can swap-in a page only if a free page frame is available to hold it. A 
swapper complements a page fault handler by swapping out present pages and adding the 
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frames they occupy to a list of free frames. When tasks page against themselves (that is, 
each task has a limited supply of page frames), the swapper is typically implemented as a 
procedure. The page fault handler calls the swapper when no free frame is available. In 
systems that share a pool of page frames among all tasks, the swapper is typically imple­
mented as a system task. The operating system starts the swapper task when the supply of 
free pages falls below a threshold deemed necessary for good system performance. The 
swapper suspends itself when it builds the free frame list up to an upper threshold. Whether 
it is implemented as a procedure or as a task, the swapper attempts to replace pages that 
are unlikely to be referenced in the near future. 

The swapper must have read-write access to page directories and page tables. The A 
(accessed) and D (dirty) bits in page table entries can help the swapper find pages to replace 
and to replace them efficiently. (Note that in a code segment descriptor the default operand 
size and address field is called the D bit, whereas the D bit in a PTE is the dirty bit.) The 
80386 sets a PTE's accessed bit whenever a page is read or written. The swapper can monitor 
page reference activity by periodically testing and clearing accessed bits. If the swapper 
finds that an accessed bit is clear, the swapper knows the page has not been referenced since 
its last examination and is a good candidate to swap-out. 

The 80386 sets a PTE's D bit whenever the page is written. If the page fault handler clears 
the D bit whenever it swaps in a page, the D bit tells the swapper whether a page has been 
updated since it was last swapped-in. If the D bit is clear, and the swapper knows a copy of 
the page exists on the swap device, the swapper can free the frame without writing out the 
page. 

Note that page aliases complicate the swapper's job. Only by examining all the aliases of a 
page can the swapper tell whether the page has been recently accessed or is dirty. If page 
tables, rather than pages, are aliased, swapping is considerably simplified. 

2.4 EXAMPLES 

This section shows how segmentation and paging can be used to implement representative 
memory management schemes. Chapter 10 provides an example of a complete operating 
system, including memory management. 

2.4.1 A Flat Memory Design 

F /386 is a hypothetical embedded real-time control system in which there is little distinction 
between operating system code and user code. In F /386, performance is of greatest impor­
tance, and protection is of no importance. 

To simplify the calculation of worst case execution times, F /386 does not use paging. (When 
paging is enabled, TLB misses effectively increase memory access times and the number of 
TLB misses is dependent upon interrupt patterns. Figure 2-12 shows F /386's GDT and linear 
address space. F /386 defines the minimum number of segments, code and data. All descrip­
tors are defined in the GDT because all tasks share a single logical address space (the LDT 
selectors in F /386 TSSs are null). Only two segment descriptors, one for code and one for 
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data, are required; both have a base address of 0 and a limit equal to the amount of physical 
memory in the system. Because all segments map the same linear addresses, pointers are 
simple 32-bit offsets representing displacements from linear address 0 (which is also physical 
address 0 since paging is not enabled). All segments have a DPL of 0 so that tasks can call 
OS procedures directly with fast intrasegment calls (task and operating system code are 
linked together in this simple system). 

Figure 2-13 illustrates an actual example of a program running in a flat, 32-bit, protected 
environment on an 80386 PC. Since the PC BIOS is not written to run reliably in protected 
mode, this example code uses direct write (rather than using the BIOS screen handling 
services) to the PC display RAM at the 32-bit address 000b8000h. Note that the code is 
assembled using an 8086 assembler, and uses the 'db' (define bytes) directive to generate 
the 80386 specific instructions. 
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0200 
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8086/87/88/186 MACRO ASSEMBLER X156 ASSEMBLY OF MODULE FLAT 
OBJECT MODULE PLACED IN FLAT.OBJ 
ASSEMBLER INVOKED BY: ASM86 FLAT.ASM 

LOC OBJ LIM E SOURCE 

o 1 00 35 Start: 
o 1 00 B80000 36 mov ax,~e9 GDT 
o 1 03 8ECO 37 mov e 5 , a x 

38 a.S!5ume e.:T.bles 
39 

o 1 05 BEOO0290 40 mov 5i,off5el NullDelC 
o 1 09 BFOO02 41 mov di,offsel GDT 
o 1 0 C 890001 42 mov cx,100h 
o 1 0 F F C 43 c 1 d 
o 1 1 0 F3 44 rep mov'!!lw move 
o 11 1 AS 
o 11 2 EA24020000 45 l m p SetSq. 

46 
0200 47 or 9 200 h 

48 
49 Global De5criptor Tab 1 e 
50 contain. t h r e e descriplon: 
51 Oh: M u I I : not u 5 e d 
52 8h: Code: code segment 5 I art s at 
53 1 0 h : Dala: d a t a segmenl 5 I a r Is at 
54 

020 0 o 000 55 NullDesc dw o , 0 , 0 , 0 ; null 

0202 o 000 
0204 o 000 
0206 0000 

56 

Global Descriptor Table! to 

and extend! for gigabytes 
and extends for 9 i 9 ab ytn 

descriptor - not u ~ e d 

0208 F F F F 57 CodeDesc dw OFFFFh lim it at maximum: ( bit s 1 5 : 0 ) 
020A 00 58 db o , 0 , 0 ba.e at o : ( bit s 23 : 0 ) 
020B 00 
020 C 00 

G D T : 0 

(overlap code) 

020D 9F 59 db 1 0 0 1 1 1 1 1 b present/priv level 0/code/conformin9/readable 
020 E C F 60 db 11 00 1 1 1 1 b page 9ranular/default 32-blt/limlt(bit~ 19: 16) 

02 OF 00 61 db base a t o : ( bit s 31 : 24l 
62 

Figure 2-13. Flat Mode Initialization Code (Cont'd.) 
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8086/87/88/186 M~CRO ASSEMBLER X156 ASSEMBLY OF MODULE FLAT 
OBJECT MODULE PLACED IN FLAT.OBJ 
ASSEMBLER INVOKED BY: ASM86 FLAT.ASM 

LOC OBJ 

0210 FFFF 
0212 00 
0213 00 
0214 o 0 
0215 93 
0216 CF 
0217 00 

0218 FF07 
02 1 A 0000 
021C 0000 

021E 1 700 
0220 0002 
0222 0000 

0224 

0224 FA 

0225 2E 
0226 OF 
0227 01 
0228 1E 

LINE SOURCE 

63 DataDe5c dw 
64 db 

65 db 
66 db 
67 db 
68 
69 

OFFFFh 
o , 0 , 0 

10010011b 
11 0 0 1 111 b 
o 

Load Pointers for Tables 

limit at maximum: (bits 15:0) 
base at 0: (bits 23:0) 

present/priv level O/data/expand-up/writeable 
page granular/default 32-bltlllmitcblt5 19:16) 
base at 0: (bits 31:20 

70 
71 
72 
73 

contains 6-byte pointer information for: LIDT, LGDT 

74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 

IDTPtr 

GDTPtr 

85 SetSeg: 

dw 
dw 
dw 

dill 
dill 
dill 

7F F h 

17 h 
offset GDT 
Oh 

Interrupt Descriptor Table pointer 
lim ita t m a x i mum (a I low sal I 2 56 i n t err u p t 5 ) 
base at 0: (blt5 15:0) 
base at 0: (bit! 31:16) 

Global Descriptor Table pointer 
limit to three 8 byte selecton(null,data,code) 
base at 80000h: (bits 15:0) 
base at 80000h: (bits 31:16) 

86 assume cs:lnit,d!:nothlng,es:nothlng 
87 cli di!!ble interrupts 
88 ; (eLI not needed if immediately after RESET since already clear) 
89 lid! cs:IDTPtr load Interrupt Descriptor Table 
90 db 2Eh,OFh,0Ih,OOOI1110b 

Figure 2-13. Flat Mode Initialization Code (Cont'd.) 
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8086/87/88/186 MACRO ASSEMBLER X156 ASSEMBLY OF MODULE FLAT 
OBJECT MODULE PLACED IN FLAT.OBJ 
ASSEMBLER INVOKED BY, ASM86 FLAT.ASM 

LOC OBJ LI N E 

0229 1802 91 
92 
93 

022B 2E 94 
022C OF 
022D o 1 
022E 16 
022F IE 0 2 95 

96 
97 

023 1 OF 9S 
0232 o 1 
0233 EO 
0234 DC 0 1 99 

1 0 0 
0236 OF 1 0 1 
0237 o 1 
023S FO 

1 02 
0239 EB0190 103 
023C 1 04 
023C BB1000 1 05 
023F SED3 106 
024 1 SEDS 1 07 
0243 8EC3 lOS 

109 
0245 66 1 1 0 
0246 EA 111 
0247 4D02 1 12 
0249 o 000 1 13 
024B 0800 1 14 

115 
116 

SOURCE 

dw offset IDTPtr 

I g d t cs:GDTPtr 
db 2Eh I OFh I 01h , 00010110b 

dw offset GDTPtr 

smsw ax 
db OFh 1 01h , l1100000b 

or a 1,1 
1m 5 w ax 

db OFh 1 01h , 11110000b 

jmp Next 
N e x I : 

mov b x I 1 0 h 
mov s s,b x 
mov d 5 I b x 
mov e 5 I b x 

db Dala32 
db JMPFar 
dill offsel No I e 
dill 0 
dill 8h 

laid Global Descriptor Table 

pul Machine Status Word in AX 

acllvale Protection Enable bll 
slore Machine SIalus Word , begin protected mode 

flush prefelch queue 

sel segment registers to DeteDesc(selector a l0h) 
load SS,DS,ES segment registers with DateDesc 

32-bil override prefix 
opcode for JMP Inters!gment 
starting address of 32-blt code (low-word) 
starting addre55 (high-word of linear address) 
CodeDesc selector aSh 

Figure 2-13. Flat Mode Initialization Code (Cont'd_) 
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c.:> 
c.:> 

8086/87/88/186 MACRO ASSEMBLER X15S ASSEMBLY OF MODULE FLAT 
OBJECT MODULE PLACED IN FLAT.OBJ 
ASSEMBLER INVOKED BY: ASM86 FLAT.ASM 

L 0 C o B J LI N E SOURCE 

024D E 4 6 1 1 1 7 No Ie: i n a I , 6 1 h 
024F o C 0 3 118 or a I ,3 
025 1 E 661 119 oul 6 1 h , a I t urn 

1 20 
0253 B8330E 1 2 1 mov ax,0E33h 
0256 320 E 122 dw OE32h; loa d 

on speaker 

E A X wit h 330E320E 
0258 A30080 1 23 mov ds:Video,ax P I ace ye I low "32 11 directly on IBM-CGA dl5play 
0258 0800 1 2 4 dw 08h ... by writing E A X to linear address OOOBBOOOh 
025 D B9FFFF 1 25 mov cx,OFFFFh 
0260 040 0 126 dw set del a y co u n t t 0 0004FFFFh 
02&2 E2FE 1 27 Delay: loop Del a y 
0264 B 0 F E 128 mov al,OFEh 
0266 E664 129 out 64 h , a I shutdown and reboot 
0268 F 4 1 30 Shutdwn:hlt 
0269 EBFD 1 3 1 j m p s h 0 r t Shutdown 

1 3 2 
8000 133 or g 800 0 h 
8000 ? ? ? ? 134 Vi de 0 dw pseudo pointer to IBM Color/Graphics display 

135 
136 I nit ends 
1 37 
138 end S tar t 

ASSEMBLY COMPLETE, NO ERRORS FOUND 

Figure 2-13. Flat Mode Initialization Code (Cont'd.) 
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2.4.2 A Paged Memory Design 

P /386 is a hypothetical operating system that uses paging for protection and for virtual 
memory. Figure 2-14 shows P /386's linear address space and GDT. P /386 uses segments in 
much the same way that F /386 does; however, there are separate code segments for super­
visor and user. The descriptors for these segments are identical, except that the supervisor's 
code descriptor has a privilege level of 0, whereas the user's code descriptor has a privilege 
level of 3. (The common data descriptor also has a privilege level of 3.) All segments have 
base addresses of ° and limits of 4 gigabytes. Because all segments are based at linear address 
0, P /386 uses offset-only pointers. 

P /386 tasks do not use an LDT because they share a common set of segments. However, as 
shown in Figure 2-15, each task has a separate page directory. Although tasks generate the 
same linear addresses, the linear addresses are translated to different physical addresses 
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(except for operating system references). The unit of intertask sharing in P 1386 is the page 
table; each task's page directory defines the page tables it shares with other tasks. At a 
minimum, each task has a PDE defining the shared supervisor page table. In this way, the 
operating system is mapped into the address space of each task. 

Although operating system pages are present in each task's address space, the U IS bits of 
operating system PTEs are 0 to prevent these pages being accessed from privilege level 3. 
Thus, while an application task running at privilege level 3 uses the same data segment as 
the operating system, it cannot read or write operating system pages. Similarly, even though 
a task's level 3 code segment covers the same linear addresses as the operating system's level 
o code segment, the application task cannot directly execute operating system code because 
the pages containing the operating system's code allow supervisor access only. 

The PTEs of user code pages have their R IW bits set to catch programming errors that 
would overwrite code. (Although the user code segment is unwriteable by definition, it is 
overlapped by the writeable user data segment, allowing code to be overwritten if it is not 
page-protected.) User data and stack pages are marked read-write. User code makes a system 
call through a call gate (see Chapter 4); this call loads CS with the operating system's code 
segment selector, changing the current privilege level to 0 so the operating system can access 
its pages. Interrupts and exceptions also load CS so their handlers run at privilege level O. 
Segment registers otherwise remain constant. 

P j386 shuffles pages between page frames and a pageout device, setting the PTE present 
bit when a page is brought into memory and clearing the present bit when the page is 
swapped out. 

2.4.3 A Segmented Memory Design 

Sj386 is a hypothetical system that uses segmentation for run-time protection. Sj386 does 
not implement virtual memory. Figure 2-16 summarizes Sj386's memory organization. 

In Sj386, a job is a collection of related tasks. All tasks in a job share an LDT and, there­
fore, share all code and data. Tasks in different jobs have different LDTs and share only the 
segments defined in the GDT (the operating system code and data segments). 

In Sj386, the segment is the unit of memory allocation. When a task asks for more memory, 
the system returns a selector for a new segment in the job's LDT. Sj386 makes all segments 
as small as possible and uses byte granularity for segments less than I megabyte. Sj386 
gives a task a small expand-down stack segment. If the task overruns the small stack, the 
operating system automatically expands the segment (up to a predefined maximum) by 
allocating a larger segment, copying the stack contents from the old segment to the new, 
and freeing the old segment's memory. Each segment has the most protective attributes 
possible; for example, code segments are not readable. No segments are aliased; however, 
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the operating system defines a privilege level 0 data segment alias that covers the entire 
linear address space; the operating system uses this alias to update 80386 system segments 
and tables and to access arbitrary locations in a task's linear space. 

The Sj386 operating system is implemented in privilege levels 0 and 1. Level 0 procedures 
and data comprise the operating system kernel. This kernel essentially provides a system call 
interface to the 80386 system architecture. The kernel manages the linear address space, 
created segments, creates TSSs, and so on. Operating system structures such as memory 
pools and files are implemented at privilege level 1. User code and data runs at privilege 
level 3. Sj386 does not define privilege level 2; an OEM (original equipment manufacturer) 
can implement its software at this level to obtain protection from user code without jeopard­
izing the operating system. 

Sj386 uses call gates (see Chapter 4) to define the privilege levels that can make each 
system call. 

2.4.4 A Hybrid Memory Design 

Hj386 adds demand paging to Sj386. Hj386's linear space map is identical to Sj386's. 
Figure 2-17 shows how linear addresses are mapped to physical addresses through one page 
directory and one set of page tables. Retaining Sj386's segment-based protection and sharing, 
Hj386 need not use page attributes to restrict memory addressability because the contents 
of a task's descriptor tables do that job. Thus, all Hj386 tasks share a common page direc­
tory and a common set of page tables. The PTEs and PDEs define all pages as user-accessible 
and writeable. 
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CHAPTER 3 
INTERRUPTS AND EXCEPTIONS 

Interrupts and exceptions are unprogrammed events that alter the normal sequential flow of 
execution through a task's instructions. Interrupts occur independent of instruction execu­
tion and typically signal requests for service from external devices. The 80386 recognizes 
interrupts at instruction boundaries, or in the case of string instructions, between repeat 
steps. Unlike interrupts, exceptions result from instruction execution; for example, the 
processor raises an exception when it detects an error in an instruction. Note that, by this 
definition, the result of executing an INT n (software interrupt) instruction is an exception, 
not an interrupt. 

3.1 INTERRUPT DESCRIPTOR TABLE 

Each different type of interrupt or exception potentially requires a different type of response. 
Each type of interrupt and exception has an identifying number in the range 0-255. Some 
interrupt and exception numbers are predefined by the processor, others are reserved by 
Intel, but most are available to the operating system. An operating system associates a number 
with an interrupt source by programming an 8259A Programmable Interrupt Controller; 
when the interrupt occurs, the interrupt controller passes the number to the 80386. (See the 
80386 Hardware Reference Manual for details.) 

The interrupt descriptor table (IDT) is the link between an interrupt or exception number 
and the handler that operating system has designated to handle that type of interrupt or 
exception. The processor uses the number as an index into the IDT. The descriptor indexed 
by the interrupt or exception number contains the information the processor needs to trans­
fer control to the handler. 

Like an LDT or the GDT, the IDT is a table of descriptors. The IDT can be located anywhere 
in the linear address space; the operating system's initialization routine loads the IDT's 
address into the processor's IDT register (IDTR) with an LIDT instruction. The operating 
system must guarantee that when an interrupt or exception occurs, the IDT slot correspond­
ing to the interrupt or exception number contains a valid descriptor. 

A descriptor in the IDT must be an interrupt gate, a trap gate, or a task gate. Interrupt 
gates and trap gates contain a selector and an offset for the procedure that is to handle the 
associated interrupt or exception within the current task. A handler invoked through an 
interrupt gate is invoked with interrupts disabled; invocation of a handler through a trap 
gate does not change the interrupt enable flag; interrupt and trap gates are otherwise identi­
cal. A task gate contains a selector for a TSS representing the task that is to handle the 
interrupt or exception. By setting a gate's DPL, the operating system can specify the privi­
lege level required to invoke an interrupt or exception handler with an INT n instruction; to 
use a gate, a task must be at least as privileged as the gate. 

The IDT is a critical resource that should be modified only by privilege level 0 code; this 
can be ensured by making DPL=O in the data segment alias that frames the linear addresses 
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occupied by the IDT. To minimize interrupt latency, the IDT should always be present in 
physical memory. Each IDT gate must be internally consistent when the corresponding 
interrupt or exception occurs. When updating an IDT gate, the operating system must ensure 
that the interrupt or exception corresponding to the gate does not occur until the gate has 
been completely updated. Because IDT changes are normally rare and take very little time, 
disabling interrupts during updates is the simplest way to ensure IDT gate consistency. 
Alternatively, the operating system can update a copy of the LDT and issue the LIDT 
instruction to load the new IDT's address into IDTR; this approach should be used to update 
the non-maskable interrupt gate unless external hardware can disable nonmaskable 
interrupts. 

3.2 INTERRUPT AND EXCEPTION HANDLERS 

An interrupt or exception handler can be implemented as a procedure or as a task; each 
form has advantages and disadvantages, which are discussed in this section. A procedure­
based handler runs in the context of the currently executing task, whereas a task-based 
handler (which can be dispatched by the processor without operating system intervention), 
runs in its own context. In either case, when the handler has finished, the processor returns 
to execute the next instruction in the interrupted task. (For most exceptions, and notably 
page faults, the "next instruction" is the instruction that incurred the exception.) 

3.2.1 Procedures versus Tasks 

In general, an exception handler should be implemented as a procedure, so that it can handle 
an exception in the context of the task that incurs the exception. To resolve an exception, an 
exception handler often requires access to the running task's address space; for example, the 
page fault handler must find the page table entry associated with the fault. Therefore, 
exceptions (including software interrupts) are usually best handled with procedures. (As 
discussed in Section 3.3, some exceptions, however, must be handled by tasks.) 

Interrupts are unrelated to the running task and their handlers are good candidates for 
implementation as separate tasks. To take care of its associated device, an interrupt handler 
has no need to access the running task's data, and, in fact, an attempt to do so is probably 
an error. Therefore, from a logical point of view, interrupts are best handled with tasks that 
run in their own contexts. When interrupt latency is critical, however, 80386 interrupt 
handlers can be implemented as procedures. Because most processors have no facility for 
handling interrupts with tasks, it has been traditional to handle interrupts with procedures. 
Interrupt tasks, however, have several advantages: 

• An interrupt task can run its own address space and not threaten the task it interrupts. 
(An interrupt procedure bug that corrupts the tasks it runs in is among the most diffi­
cult to diagnose.) 

• Unlike a procedure, an interrupt task does not need to save and restore registers; the 
processor-initiated task switch saves and restores all registers. (Automatic register saving 
removes one source of error from an interrupt handler, but also increases the time 
required to invoke the handler.) 
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• An interrupt task can be made to run at any privilege level and, therefore, can be 
subjected to additional protection constraints. (While an interrupt procedure can 
theoretically run at any privilege level, practically speaking, its privilege level must 
be O. Inerrupt procedure privilege levels are described in more detail later in this chapter.) 

• In systems that manage resources on a per-task basis, an interrupt task can issue operat­
ing system calls because the task can be given its own resources (for example, a memory 
pool). An interrupt procedure, on the other hand, inherits the resources of the task it 
happens to run in. (Consider what can happen if an interrupt procedure allocates memory 
for a message it sends to a task. First, the interrupted task may not have sufficient 
memory; second, the interrupt procedure reduces the amount of memory the interrupted 
task has available for allocation; third, if the interrupted task terminates shortly, the 
operating system might reclaim the interrupt procedure's message before it is delivered.) 

• Interrupt tasks can simplify stack space management. An interrupt procedure inherits 
the stack of the task it interrupts. Therefore, all interruptible tasks must provide suffi­
cient stack space for the deepest level of interrupt procedure nesting that can occur. 
Spreading and duplicating interrupt stack space across all tasks, it uses more memory 
than is necessary and can add to management difficulties (if an interrupt procedure 
needs more stack, all tasks must be modified). An interrupt task has its own stack. 

• An interrupt task may use LDT-based descriptors, freeing up GDT slots, which can be 
scarce resources in systems with many shared segments. An interrupt procedure must 
use only GDT-based selectors, because it is generally impossible to predict which tasks 
it will interrupt, and, therefore, which LDTs it will inherit. (However, if all interruptible 
tasks share a single LDT, then interrupt procedures can use that LDT.) 

Although they have many advantages, 80386 interrupt tasks should not always be favored 
over interrupt procedures. Many 80386 operating systems will continue to handle interrupts 
with procedures. For example, when all tasks run in a single environment, as they might in 
a simple static application, the issues of protection and resource control are irrelevant. In 
systems where interrupt latency is critical, interrupt procedures may be the best choice; 
interrupt procedures are invoked faster than interrupt tasks for the same reason that a CALL 
instruction is faster than a JMP TSS instruction. (For simple interrupt handlers, the complete 
register save and restore performed in a task switch may be unnecessary.) 

3.2.2 Procedure-Based Handlers 

To handle an interrupt or exception with a procedure, place an interrupt gate or a trap gate 
in the corresponding slot in the IDT. These gates are operationally identical except for a 
single important difference. Invocation through an interrupt gate clears the interrupt enable 
flag (IF), whereas invocation through a trap gate does not alter this flag. In general, inter­
rupt gates are used for interrupt handlers and trap gates are used for exception handlers. 
However, some exception handlers, such as the page fault handler, must be invoked with 
interrupts disabled and should therefore be invoked through interrupt gates. 

The processor invokes an interrupt or exception procedure in much the same way that it 
executes a CALL through a gate. If the gate is an interrupt gate, the processor clears IF; if 
the gate is a trap gate, IF is not changed. Note that clearing IF only blocks recognition of 
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interrupt requests on the INTR pin; nonmaskable interrupts (on the NMI pin) and excep­
tions (including software interrupts and coprocessor errors) are unaffected by IF's state. 
(Note that NMI interrupts are disabled when the the NMI handler is invoked by an inter­
rupt; however, invoking the NMI handler with an INT n instruction does not disable NMI 
interrupts.) The code segment pointed to by the gate must be at least as privileged as the 
task's current privilege level; otherwise, the 80386 raises a general protection fault. If the 
code segment pointed to by the gate is more privileged than the interrupted task's current 
privilege level (CPL), the processor changes to the more privileged stack and pushes the 
running task's SS and ESP registers. The 80386 pushes the EFLAGS, CS, and EIP in that 
order (see Figure 3-1). The processor stores the interrupted task's privilege level in the RPL 
field of the saved CS value. All pushed selector values are 32 bits wide with the high-order 
16 bits undefined. For some exceptions the processor also pushes an identifying error code 
(also a 32-bit value whose high-order 16 bits are undefined). 

To return, the handler must pop the error code, if any, and issue a 32-bit IRET instruction. 
The 80386 inspects the privilege level it saved on the interrupt handler's stack to determine 
how to clean up the stack before returning to the interrupted task. If the interrupted task 
was running at the same privilege level as the handler, the 80386 pops the saved CS, EIP, 
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Figure 3-1. Stack at Entry to Interrupt or Exception Procedure 
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and EFLAGS values into the corresponding registers. If the interrupted task was less­
privileged than the interrupt or exception procedure, the 80386 additionally pops the saved 
ESP and SS values, thus switching back to the less-privileged stack. 

In general, an interrupt or exception procedure should run at privilege level O. An 80386 
procedure can never call a less-privileged procedure, and the processor enforces the same 
rule when it invokes an interrupt or exception procedure. Such a procedure must, therefore, 
be at least as privileged as the most-privileged procedure executed by the tasks in whose 
context it may be invoked. In most operating systems, almost every procedure is at times 
interruptible, including those that run at privilege level o. Moreover, many operating system 
procedures can incur exceptions, such as page faults. The DPL of an interrupt or exception 
handler procedure must be 0 if the handler can be invoked when a task is executing a privi­
lege level 0 procedure. Never make an interrupt or exception procedure less privileged 
than 0 unless you can guarantee that the procedure will never be invoked when a more 
privileged procedure is running. 

There is a second protection-related reason to make an interrupt procedure run at privilege 
level o. When the processor executes the procedure's IRET instruction, it checks to see that 
the procedure has sufficient privilege to change IF (this can occur when the processor pops 
the EFLAGS image from the stack into its EFLAGS register). To change the interrupt 
enable flag, CPL must be (numerically) less than or equal to IOPL. If an interrupt proce­
dure can run in any task whose IOPL is 0, then the DPL of the procedure issuing the IRET 
must be O. 

A conforming code segment has no inherent privilege level, but runs at the privilege level of 
the task that invokes it, either by a CALL instruction or by an exception. An exception 
procedure can be implemented as a conforming segment when the following conditions hold: 

• The exception procedure has no data of its own, but operates only on the data of the 
task incurring the exception. 

• No virtual 8086 mode tasks are in the system (virtual 8086 mode is described in 
Chapter 9). An interrupt or exception handler must run at privilege level 0 to be invoked 
without fault in a virtual 8086 mode task; a conforming procedure would be invoked at 
privilege level 3, the level of a virtual 8086 mode task. 

Using a conforming segment for an exception procedure minimizes the procedure's privilege 
level and therefore contributes to system safety and may help uncover bugs. However, the 
fact that a conforming handler must be able to run successfully at any privilege level limits 
its utility. For example, a conforming divide exception procedure is appropriate (because the 
handler needs access only to the running task's data), but a conforming page fault handler 
is not (because the page fault handler needs access to page tables whose privilege level is 
most likely 0). 

3.2.3 Task-Based Handlers 

When, in responding to an interrupt or exception, the 80386 finds that the relevant descrip­
tor in the IDT is a task gate, it switches to the task whose TSS selector is in the gate. This 
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processor-initiated task switch works as an operating system-induced task switch: the proces­
sor saves the machine state of the old task in the old task's TSS and loads the machine state 
of the handler task from the handler's TSS. Note that the handler task runs with interrupts 
enabled or disabled depending on the IF bit its TSS EFLAGS image. The processor also 
sets its NT (nested task) bit and writes a selector for the old task's TSS into the backlink 
field of the handler's TSS. Setting the NT bit directs the 80386 to execute the handler's 
IRET instruction as a task switch to the task defined by the backlink. Note that a task­
based handler cannot be entered recursively as can a procedure-based handler. A task-based 
handler's busy bit remains set until the task suspends itself with an IRET instruction. An 
attempt to invoke a busy task results in an invalid TSS fault. 

When the handler is ready for the next interrupt or exception, it issues a 32-bit IRET 
instruction. (Handlers for exceptions that push an error code must pop the error code before 
issuing the IRET.) In its execution of the IRET, the processor copies the NT bit to an 
internal register and then clears the NT bit. It then stores the handler's context, including 
the clear NT bit, in the handler's TSS. Because the NT bit was set at the time of the IRET, 
the processor uses the backlink field in the handler's TSS to find and load the TSS of the 
old task, thus resuming its execution. The next occurrence of the associated interrupt or 
exception resumes execution of the handler at the instruction following the IRET. Thus, a 
task-based handler runs in an endless cycle; the IRET instruction suspends the task until it 
is invoked by the next interrupt or exception. 

Processor dispatching of interrupt and exception tasks minimizes latency, but it can also 
conflict with the operating system's task dispatcher. For example, consider what happens if 
an interrupt or exception task makes a system call. Unless it has been notified that the 80386 
has dispatched a new task, the operating system will interpret the call as though issued by 
the task that was interrupted or incurred the exception. Figure 3-2 shows one way the 
operating system can integrate the processor's dispatching efforts with its own software 
dispatching. 

An interrupt or exception task's code can be implemented as two procedures, one that handles 
the interrupt or exception and one that coordinates processor and operating system dispatch­
ing. The handler procedure consists of an initialization part that is executed once, and an 
endless loop that is executed once for each interrupt or exception. The dispatcher interface 
contains the IRET instruction that causes the 80386 to switch from the handler task back 
to the task that was running when the interrupt or exception occurred. (When the operating 
system invokes the handler to allow it to initialize itself, the IRET causes a task switch back 
to the operating system initialization task.) The instruction following the IRET is the first 
instruction in the handler task that is executed when an interrupt or exception causes the 
task to be invoked by the 80386. This and the following instructions can update the operat­
ing system's dispatching information so the processor's dispatch of the handler task is consis­
tent with the operating system's information. Then the interface procedure can return to the 
handler procedure, which can take care of the interrupt or exception. When the interrupt or 
exception has been handled, the handler procedure calls the interface procedure, which 
prepares the operating system for the task switch that will occur when the interface proce­
dure's IRET instruction is executed. 

To minimize the interval between invocation of the handler task and execution of the first 
instruction that directly responds to the interrupt or exception, the interface procedure should 
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run as quickly as possible. The interface procedure can be implemented as in line code in the 
handler procedure to avoid CALL/RET overhead; 

Some exception tasks may need access to the old task's TSS, or to data in the old task's 
address space. Such tasks must run at privilege level 0 or call an operating system procedure 
that provides the data. 

3.2.4 Memory Residency 

To provide fast, consistent interrupt response, operating systems typically do not swap inter­
rupt handlers but keep them resident in physical memory. This practice can be followed for 
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80386 interrupt handlers, it is recommended but not required; for example, a page fault 
exception is permitted during the invocation of an interrupt handler. In such a case, the 
interrupt handler is invoked when the page fault handler, having loaded the interrupt handler 
into physical memory, returns. 

The handlers for the following exceptions must be in present segments; all but the page fault 
handler and the double fault handler can reside in not-present pages: 

Divide error fault (number 0) 

• Double fault (number 8) 

• Invalid TSS fault (number 10) 

• Segment fault (number 11) 

• Stack fault (number 12) 

• General protection fault (number 13) 

• Page fault (number 14) 

If, in attempting to invoke one of these handlers, the 80386 detects a segment fault, the 
result is a double fault, except that a segment fault incurred while attempting to invoke the 
double fault handler results in a system shutdown. 

3.3 EXCEPTION HANDLING GUIDELINES 

Although hardware protection checking is much faster than software checking, the operat­
ing system should sometimes check a descriptor itself rather than rely on the processor. 
Consider a situation in which a task has asked the operating system to fill a segment with 
data from an I/0 device. Suppose the device driver uses the INS (input string) instruction 
to transfer the data and locks the segment (see Chapter 5) during the transfer. If the task 
has asked for more data than will fit in the segment, the 80386 will raise a general protection 
fault rather than write beyond the segment. This catches the error, but the general protec­
tion fault handler may not have enough information to handle the error properly. In this 
example, "proper handling" might consist of unlocking the segment and returning an error 
code to the task. Rather than try to prepare the general protection fault handler for every 
possible condition under which it can be invoked, the operating system can check the segment 
limit in advance and prevent the fault. The 80386 LSL (load segment limit), LAR (load 
access rights), VERR (verify for reading), and VER W (verify for writing) instructions can 
be used to check for protection violations in advance. 

An 80386 exception is classified as a fault, a trap, or an abort. An exception's classification 
determines: 

• Whether the offending instruction can be restarted following resolution of the excep­
tion-causing condition (faults), or execution can proceed with the instruction following 
the instruction causing the exception (traps), or the task incurring the exception cannot 
be restarted (aborts) 
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• Whether the CS and EIP values pushed onto the stack (or saved in the old TSS) point 
to the offending instruction (faults), to the next instruction (traps), or do not identify 
the offending instruction (aborts) 

The majority of exceptions are faults; fau:lting instructions are restartable, and CS and ElP 
point to the instruction that incurred the fault. If a fault handler is able to correct the condi­
tion that caused an instruction to fault, the handler need only pop the error code (if present) 
from the stack and issue an lRET instruction; the offending instruction will then be 
reexecuted. 

The breakpoint instruction (I-byte lNT 3), debug register data breakpoints, and a switch to 
a task whose T bit is set, cause trap exceptions. (Debug register instruction breakpoints 
cause faults.) (Do not confuse a trap exception with an lOT trap gate. Most exceptions, 
including traps, are likely to be invoked through trap gates, but there is no necessary 
relationship between the type of gate and the type of exception.) Unlike most faults, traps 
are intentional diversions of the flow of control; CS and ElP point to the next instruction. 
Thus, a trap handler that issues an IRET without altering the saved CS and EIP values 
causes control to continue just as if the trap had not occurred. 

Aborts are the most serious exceptions; they indicate a hardware failure or an operating 
system bug. An instruction that aborts cannot be restarted, and the saved CS and EIP values 
do not identify the offending instruction. Typically, an abort handler can only display debug­
ging information. 

The 80386 Programmer's Reference Manual documents the exact conditions that cause the 
80386 to raise each kind of exception. The following sections generally describe the excep­
tions that are related to operating systems and provide guidelines for handling these excep­
tions. For the definitive description of all exception-generating conditions and error codes, 
consult the 80386 Programmer's Reference Manual. 

Figure 3-3 shows the format of the error code the processor pushes onto the exception 
handler's stack for some exceptions. 

3.3.1 Invalid Opcode Fault, Number 6 

This exception indicates invalid information (not limited to the opcode) in an instruction. It 
generally indicates a fatal error in the task, such as an attempt to execute data, and the task 
should be terminated. No error code is produced for this fault. 

3.3.2 Device Not Available Fault, Number 7 

This exception indicates that the handler should call the numeric coprocessor emulator, or 
should switch the coprocessor's context. Refer to Chapter 7 for details. No error code is 
produced for this fault. 

3-9 



INTERRUPTS AND EXCEPTIONS 

31 16 15 3 2 1 0 

GEFINED) I DESCRIPTOR INDEX I TI II I EX I 
TABLE INDICATOR ~ 

o ~ GOT 
1 ~ LDT 

INTERRUPT DESCRIPTOR 
1 ~ DESCRIPTOR IS IN IDT 

(OVERRIDES TABLE INDICATOR) 

EXTERNAL SOURCE 
1 ~ EXCEPTION WAS TRIGGERED BY 

AN INTERRUPT, NOT AN INSTRUCTION 

G30287 

Figure 3-3. Error Code Format 

3.3.3 Double Fault, Number 8 

If, in the execution of a single instruction, the 80386 detects two faults, it raises the double 
fault exception. If, for example, a task incurs a page fault and the processor finds the page 
fault handler is itself not present, the processor raises a double fault. Double faults are fatal 
to the operating system. A double fault handler typically displays diagnostic information or 
transfers to a monitor that allows the processor and memory to be examined. A double fault 
should be handled with a task, not a procedure. An exception handler must have a guaran­
teed valid context in order to run properly, and the context of the running task cannot be 
guaranteed when a double fault has occurred. The error code pushed onto the stack contains 
zero. 

Note that the occurrence of an exception during invocation of the double fault handler (a 
triple fault) causes the processor to shut down without producing diagnostic information. 
External hardware can detect a shutdown (see the 80386 Hardware Reference Manual). 
External hardware can force the 80386 out of the shutdown state by issuing a nonmaskable 
interrupt or a RESET. 

3.3.4 Processor Extension Segment Overrun, Number 9 

This exception occurs when an operand of a coprocessor instruction is wrapped around an 
addressing limit (Offffh for small segments, Offffffffh for big segments, and Oh for expand­
down segments). The wrap-around will place the beginning and ending addresses of such an 
operand at opposite ends of the segment. The operand may span inaccessible addresses if the 
segment limit is smaller than the addressing limit, and the operand is located close to the 
segment limit. 

The failing numeric instruction is not restart able. The associated instruction and data point­
ers may be lost; an FSTENV does not return reliable addresses in this case. As with the 
80286/80287, the coprocessor segment overrun exception must be handled by executing an 
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FNINlT instruction. The return address on the stack does not necessarily point to the failing 
instruction nor to the following instruction. 

The coprocessor segment overrun exception can be avoided by never allowing numeric data 
to start within the last 108 bytes of a segment. 

3.3.5 Invalid TSS Fault, Number 10 

This fault indicates that a TSS descriptor is invalid or a TSS contains invalid information. 
This fault must be handled with a task because the processor can detect the fault when it 
has internally invalidated part of the old task's context, but has not yet completed the transi­
tion to the new context. (The handler must run in a known-valid context.) The error code 
provided for this exception identifies the invalid TSS or the invalid segment referenced by 
the TSS. 

3.3.6 Segment Fault, Number 11 

The 80386 raises this fault when it uses a descriptor whose present bit is clear. This fault 
may be used by operating systems that implement segmented virtual memory (see 
Chapter 2). Note that a page fault incurred while the processor is invoking the segment 
fault handler is not a double fault. The processor first invokes the page fault handler; when 
the page fault handler returns, the processor invokes the segment fault handler. The error 
code supplied with this fault identifies the offending descriptor. 

3.3.7 Stack Fault, Number 12 

This fault indicates stack segment underflow or overflow (for example, pushing an item onto 
a full stack or popping an item from an empty stack) or a not-present stack segment. A 
stack underflow probably denotes a fatal error, and the task should be terminated. For a 
stack overflow, the handler can either extend the stack and restart the instruction, or termi­
nate the task. If the stack fault handler is implemented as a level 0 procedure (as is likely to 
allow quick examination of the running task's context), the handler can run out of stack if 
it is invoked by a level 0 procedure. The result will be a double fault. Such a situation 
indicates a serious bug in the operating system, either insufficient level 0 stack space allocated 
to a task, or one or more level 0 procedures not cleaning up the stack before returning. The 
error code pushed with this fault contains zero if the problem is with the current stack 
segment; otherwise, it contains a selector for the invalid stack segment. 

3.3.8 General Protection Fault, Number 13 

The 80386 raises this fault when a task attempts an operation that is inconsistent with a 
segment descriptor. Many such conditions exist, including writing to a read-only segment, 
loading a null selector, and accessing a more privileged segment. Theoretically, instructions 
that raise this fault are restartable (exceptions are documented in the 80386 Programmer's 
Reference Manual). In practice, however, a general protection fault in a protected mode 
task indicates a serious progam bug and the task should usually be terminated. V86 tasks, 
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on the other hand, can legitimately raise this exception to signal the virtual machine monitor 
to simulate an instruction (see Chapter 9 for details). Note that if this fault occurs when the 
processor is invoking an interrupt handler, the interrupted instruction is restartable but the 
interrupt may be lost. The error code supplied for this fault contains the relevant selector if 
the fault occurred when loading a segment register or transferring control through a gate; 
otherwise, the error code contains zero. 

3.3.9 Page Fault, Number 14 

The 80386 raises this fault on an attempt to reference a not-present page or an attempt to 
violate a page's access rights. CR2 contains the linear address associated with the page fault; 
the error code distinguishes between a not-present page and a protection violation. See 
Chapter 2 for details. 

3.3.10 Coprocessor Error Fault, Number 16 

When executing a numerics instruction or aWAIT instruction, the 80386 raises this fault 
to indicate that the execution of the previous numerics instruction by a coprocessor resulted 
in an exception (for example, underflow). No error code is supplied for this fault. See 
Chapter 7 for details on the 80386's numerics facilities. 
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CHAPTER 4 
SYSTEM CALLS 

An application task normally transfers control to an 80386 operating system through a call 
gate or a trap gate. (Other methods~for example, intertask messages~are also possible, 
but the 80386 provides no special support for them.) An 80386 trap gate is similar to the 
interrupt vector found in many processors. To call an operating system procedure using a 
trap gate, a task issues a software interrupt (INT n) instruction, the equivalent of the "trap" 
instruction of some architectures. Trap gates and software interrupts are familiar mecha­
nisms that may be used to enter an 80386 operating system just as they are used in other 
processors. 

Less familiar, but more versatile, are 80386 call gates, the main subject of this chapter. Like 
a trap gate, a call gate is a protected operating system entry point. An ordinary inter segment 
CALL instruction transfers control through a call gate to the operating system, automati­
cally copying parameters from the caller's stack to the more privileged operating system 
stack. Thus, call gates present an operating system interface that is identical to the interface 
presented by a collection of ordinary procedures. No special measures, on the part of either 
the application programmer, the compiler, or the linker, are required to make a system call 
through a call gate. 

4.1 CALL GATES 

A call gate (see Figure 4-1) can reside in the GDT or in an LDT. A call gate can be defined 
statically with the Intel System Builder utility, or can be created statically or dynamically 
by an operating system. If gates are defined statically, applications can name a gate in inter­
segment CALL instructions, and the linker can resolve the reference as it resolves a refer­
ence to a procedure. When used to implement system calls, call gates usually are placed in 
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Figure 4-1. Call Gate 
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the GDT so they can be shared by all tasks. Placing call gates in LDTs is one way to imple­
ment dynamic linking. (The gate can be marked not-present; the segment fault handler can 
load the code, place the code's address in the gate, mark the gate present, and return.) 

A call gate contains a selector and an offset that point to a procedure that is the ultimate 
target of a CALL instruction directed at the gate. (The CALL instruction itself specifies a 
selector for the gate and an offset that the processor ignores.) Thus, a call gate is the indirect 
address of a system procedure. As long as the call gate's address (that is, its position in the 
GDT) remains constant, the address it points to can be changed (as may be required in a 
new release of the operating system) without relinking existing programs. 

Besides providing this basic call redirection facility, a call gate can optionally 

Prevent insufficiently privileged procedures from calling its procedure 

Increase a task's privilege while it executes a procedure called through a gate 

• Switch to a different stack for execution of the called procedure 

• Copy parameters from the caller's stack to the new stack 

It is these optional facilities that make call gates so versatile; they are described in more 
detail in the following sections. First, however, comes a discussion of the number of gates an 
operating system should define. 

4.1.1 How Many Gates? 

The number of call gates an operating system defines in the GDT is a matter of preference. 
There can be as few as one, there can be one per privilege level transition (that is, from level 
3 to level 2, from level 3 to levell, and so on), or every system call can be given its own 
gate. 

A single call gate that effects a privilege transition from level 3 to level 0 provides the 
conventional user-to-supervisor transition. This gate funnels all system calls to a single 
operating system procedure that, in turn, passes them to their ultimate destinations in the 
operating system. 

Providing one call gate per system call can be faster, because there is no intermediate "call 
forwarding" procedure. One gate per call also supports parameter copying (as will be 
explained shortly, a call through a gate copies a fixed length parameter list). On the other 
hand, call gates consume GDT slots, which can be a limited resource in some systems (the 
GDT can hold 8,192 descriptors). 

4.1.2 Controlling Access 

An operating system can thus establish the privilege level required to make a system call by 
setting the DPL field in the corresponding call gate appropriately. Just as the DPL field in 
a data segment descriptor defines the privilege levels that can reference the segment, the 
same field in a call gate dictates the privilege required to call through the gate. A gate that 
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is more privileged than a caller is inaccessible to the caller; an attempt to call through such 
a gate results in a general protection exception. 

4. 1.3 Switching Privilege Levels and Stacks 

Each 80386 task has its own set of stacks, one for each privilege level at which the task may 
run. (A task needs a stack for each privilege level it actually uses. An operating system that 
implements a user-supervisor style of protection provides each task with a level 3 stack and 
a level 0 stack.) The level 3 stack is defined by the initial values of SS and ESP in the task's 
TSS. The privileged stacks are defined by the SSO-2 and ESPO-2 values in the task's TSS. 
Providing separate stacks for each privilege level ensures that a called procedure has enough 
stack to run on-it does not depend on its caller to leave sufficient space. 

The intersegment CALL and RET instructions, when used in conjunction with a call gate, 
detect a change in privilege level and switch to the appropriate stack before executing the 
first instruction at the new level. The mechanics of switching privilege levels and stacks work 
as follows. When executing an intersegment CALL whose selector operand references a call 
gate, the processor compares the caller'sCPL with the DPL of the target code segment's 
descriptor (the call gate contains a selector for the descriptor). Note that the DPL of the 
call gate controls gate accessibility, whereas the DPL of the target code segment controls 
the privilege level shift. The three possible results of the CPL:DPL comparison are summa­
rized below: 

CPL=DPL No privilege transition, push CS and EIP on current stack 

CPL<DPL Raise general protection exception 

CPL>DPL Change to more privileged stack 

The processor switches to a more privileged stack by loading SS and ESP with the appro­
priate values from the TSS and by pushing the old SS and ESP values on the stack as shown 
in Figure 4-2. 1'-.rote that the caller's privilege level is available in the lower order two bits of 
the CS selector pushed on the stack after the old SS and ESP. By comparing this saved 
value with CPL, the RET instruction determines if it is making a privilege level transition 
and restores the old stack if this is so. 

4.1.4 Passing Parameters 

Procedures customarily pass parameters to each other by pushing them on the stack and 
then issuing a CALL instruction. The same familiar approach can be used for system calls 
that are directed to call gates. When the target of such a call has the same privilege level as 
the caller, no stack switch occurs, and the called procedure finds the parameters just below 
(that is, at higher addresses) the return address on the stack (where they would be after any 
CALL). The parameter copying facility of a call gate places parameters in the same relative 
location, even if the caller is less privileged and stacks are switched. 
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In each call gate is a field called dword count that specifies the length of the parameter list 
that the processor should copy from the caller's to the called procedure's stack. 0-31 double­
words can be copied. Systems that pass parameters in registers should specify a dword count 
of O. If more than 31 doublewords must be passed, a pointer to a record containing the 
parameters can be passed, or the operating system can obtain them from the caller's stack. 
Figure 4-3 shows the stack at entry to a more privileged procedure in which the processor 
has copied three 32-bit parameters from the less-privileged caller's stack. That is, the figure 
shows how the stack appears at entry to a more-privileged procedure named SysWait­
ForMsg after the caller issued the following instructions: 

PUSH 
PUSH 
PUSH 
CALL 

par m 1 
parm 
parm3 
SysWaitForMs9 

Note that the return address and parameters occupy the same positions they would if the 
caller was the same privilege level as SysWaitForMsg. This means that the called procedure 
need not be concerned about the level from which it is called. Its parameters are always in 
the same place whether it is running on the caller's stack or its own. Further, the called 
procedure can always return by issuing RET n where n is the number of parameter bytes 
that the 80386 should remove from the stack (n should be 12 in the example). The RET n 
instruction pops the old CS and EIP values and notes (from the caller's privilege level stored 
in bits 0-1 of the CS selector) whether it is returning to a less-privileged procedure. It then 
increments ESP by n. Finally, if and only if CPL is changing, the processor pops the old 
ESP and SS values from the new stack and increments the old ESP by n; the result is a 
switch to the old stack and removal of the parameters the caller pushed. Thus, regardless of 
whether the caller calls a procedure of equal or greater privilege, it receives control again 
with no parameters on its stack. (Note that upon return from a privileged procedure, the 
ESP and SS values of the privileged procedure have returned to their initial values that are 
stored in the TSS; that is, the stack is empty. Therefore the processor need not (and does 
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not) save ESP and SS on the return-they can simply be loaded from the TSS when needed 
again.) 

To return results in a uniform manner, regardless of the level from which it is called, a 
privileged procedure can use registers or a record for which the caller supplies a pointer 
parameter. 

When using call gates to copy parameters it is best to allocate one call gate per system call. 
It may be tempting to define a single gate with a word count equal to the longest parameter 
list needed by any call, but to do so is both wasteful and dangerous. Not only does this cause 
excessive copying for calls that pass shorter parameter lists, but, more importantly, the 
RET n instruction corrupts the caller's stack by removing too many bytes from it when the 
caller pushes fewer than n bytes. 

4.2 TRAP GATES 

A trap gate is similar to a call gate, and the INT nand IRET instructions are quite similar 
to CALL and RET instructions. To use a trap gate as a system call mechanism, observe the 
following: 

• A trap gate must be placed in the interrupt descriptor table (IDT). 

A task makes a system call through a trap gate with an INT n instruction where n is 
the index (32-255) of the trap gate. (Gate positions 0-31 in the IDT are reserved by 
Intel.) 

• Like a call gate, a trap gate switches stacks on privilege level transitions; however, a 
trap gate has no provision for copying parameters across stacks. 

• The processor pushes EFLAGS before pushing the old CS and EIP values. 
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A trap gate has almost exactly the same format as a call gate; this format is described in 
the 80386 Programmer's Reference Manual. Chapter 3 covers the 80386's interrupt and 
exception handling facilities of which trap gates and INT n instructions are components. 

4.3 SEGMENTED POINTER VALIDATION 

Segment-oriented 80386 operating systems typically define many system call parameters as 
segmented pointers. The 80386 validates such parameters when system call handlers load 
them into segment registers and subsequently use them for data references. For example, 
the processor will not load a selector for an unreadable code segment into a data segment 
register, nor will it write into an unwriteable data segment. While the checking performed 
by the 80386 is extensive, operating system designers should be aware of its limits. This 
section describes two such limitations that operating system designers can surmount with 
special 80386 instructions. 

There is one privilege violation the 80386 cannot directly detect. Suppose a task running at 
privilege level 3 forges a selector for a level 2 data segment and passes it to an operating 
system service procedure. If the service procedure runs at privilege level 2, I, or 0, it can 
access the level 2 data segment. However, the service procedure should reject the call because 
the level 3 procedure is attempting to gain indirect access to a more privileged segment via 
the service procedure. There are two ways to detect such an attempt: 

1. If the service procedure has no data of its own, but operates entirely on data passed to 
it, then the procedure has no inherent privilege level. Instead, it should assume the privi­
lege level of its caller. If the C bit of the service procedure's code segment descriptor is 
set, the procedure inherits the privilege level of its caller. In the example, the task running 
at level 3 does not raise its privilege by calling the conforming service procedure; the 
service procedure running at level 3 incurs a general protection fault when it tries to use 
the level 2 segment. Utilities, such as numerics libraries, are good candidates for 
conforming segments. 

2. When the service procedure has its own data, it cannot be made conforming because it 
must be privileged enough to access its own data regardless of the caller's privilege level. 
In such a case, the service procedure can use the ARPL (adjust requested privilege 
level) instruction to set the RPL field of a selector to the caller's CPL. The 80386 raises 
a general protection exception when max(RPL,CPL) > DPL of the target segment. 
Thus, when numerically greater than CPL, RPL reduces a task's privilege level for the 
duration of the instruction in which the relevant selector is an operand. In the example 
above, the service procedure's CPL might be I, but by issuing an ARPL instruction, it 
can set the RPL of the suspect selector to the caller's privilege level (3 in the example). 
The service procedure then incurs a general protection fault if it attempts to load the 
suspect descriptor. Note that simply creating a selector with RPL equal to the privilege 
level required to use the associated segment is not a reliable method of insuring that 
tasks do not use more-privilege segments, because tasks can create selectors (with any 
RPL) at will. Operating systems should validate segmented pointers as soon as such 
pointers enter the operating system. In addition to ARPL, the VERR (verify read), 
VERW (verify write), LAR (load access rights), and LSL (load segment limit) instruc­
tions are useful for segmented pointer validation. 
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The 80386 detects many parameter errors, but the time at which it detects them may 
complicate fault diagnosis and possible recovery. For example, suppose a level 3 procedure 
passes a bad parameter to a level 2 procedure, that does not use the parameter but passes it 
on to a level I procedure. The level 1 procedure will fault when it uses the selector. The fault 
handler cannot tell in a case like this whether the error lies in the level 2 procedure or the 
level 3 procedure. As another example, consider an I/O request that attempts to read or 
write past the end of a segment. The desirable response to such a request is to dishonor it, 
returning an explanatory error code. If the I/O request handler defers detection of the error 
to the 80386, the general protection fault handler will have great difficulty returning an 
error code to the caller because it does not know the circumstances of the limit violation. By 
checking the request against the segment limit, the I/O handler can respond properly. 
Operating system procedures can use the LSL, LAR, VERR, and VER W instructions to 
check a segment's limit, its type (and other attributes), its readability, and its writeability 
without faulting. These instructions are not privileged. 

4.4 CALLING LESS-PRIVILEGED PROCEDURES 

Sometimes an operating system procedure must call a less-privileged procedure. Consider, 
for example, the UNIX system signal facility. A signal is an indication from the operating 
system to a task that an exception or an asynchronous event has occurred-for example, 
that a child process has terminated. A process can declare a signal handler procedure that 
the operating system calls when the process receives a signal. 

An 80386 task running at one privilege level cannot call a less-privileged procedure. (If the 
80386 allowed such a call, the less-privileged procedure, could, by manipulating the return 
address on its stack, return to an arbitrary location in the more-privileged procedure.) An 
operating system can, however, make such an "outward call" indirectly. To "call" a less­
privileged procedure, the operating system can push the desired address onto the stack and 
then issue an intersegment RET instruction. The less-privileged procedure can return to the 
more-privileged procedure by calling through a gate. Note that this description covers only 
the rudiments of calling less-privileged procedures. In any given operating system, the actual 
implementation of such calls may be substantially more complex. 
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CHAPTER 5 
INPUT I OUTPUT 

The 80386 supports both I/O-mapped and memory-mapped I/O devices. An operating system 
can restrict I/O operations to itself, or it can allow tasks running at lower privilege levels to 
read and write selected I/O devices, whether memory- or I/O-mapped. Operating systems 
can also delegate I/O operations to separate processors, such as DMA (direct memory access) 
controllers. 

5.1 PROGRAMMED 1/0 

Input/output operations performed by 80386 instructions are called programmed I/O 
operations. An operating system can address I/O device registers located in either the 80386 
dedicated I/O space or in the physical memory space. The 80386 architecture provides special 
instructions for accessing device registers in the I/O space; ordinary memory reference 
instructions can be used to read or write memory-mapped devices. 

5.1.1 I/O-Mapped 1/0 

The 80386 IN, OUT, INS, and OUTS instructions refer to device registers mapped into the 
processor's 64KB I/O space. Each location in the I/O space is called an I/O port; ports can 
be 8, 16, or 32 bits wide. IN and OUT move a byte, a word, or a dword between the 
AL/ AX/EAX register and an I/O port. INS and OUTS transfer byte, word, or dword 
strings between an I/O port and memory. A task's ability to issue these I/O instructions is 
subject to the protection constraints described in Section 5.2". 

5.1.2 Memory-Mapped 110 

A memory-mapped device register can be accessed with any memory reference instruction, 
although MOV, AND, OR, and TEST are the most commonly used. Any memory address­
ing mode can be used to specify the offset of a memory-mapped device. When using memory­
mapped I/O, an operating system designer must observe these cautions: 

• Verify that your compiler aligns the structures that you declare to represent device 
registers to the actual addresses occupied by the registers. 

• Beware of the 80386 bit test and bit field instructions (BT, BTS, BTR, and BTC). 
Regardless of the actual register size, the processor will always initiate a 16- or 32-bit 
bus cycle to access the operand of these instructions. Before using one of these instruc­
tions, be certain that the hardware will complete the bus cycle and that you do not 
erroneously access adjacent registers, or non-existent physical addresses. 

• If your hardware implements a data cache, be sure that it does not cache memory­
mapped I/O registers. To see why device registers should not be cached, suppose a task 
repeatedly polls the status register of a memory-mapped device. The first time the regis­
ter is polled, the cacheing hardware loads the register value into the cache and the task 
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reads that value. Subsequent polls, however, are likely to obtain the cache value again, 
even if the real value has changed. (The device has no way to invalidate the cache entry.) 
One simple way to distinguish between cache able and noncacheable addresses is to divide 
the physical address space in half and use address line 31 to distinguish between cache­
able and noncacheable addresses. The 80386 Hardware Reference Manual covers 
cacheing in detail. 

5.2 10PL AND THE I/O PERMISSION MAP 

A memory-mapped device is protected by the attributes encoded in its segment descriptor 
and, if paging is enabled, the attributes encoded in its PDE and PTE. 

5.2.1 Protecting I/O-Mapped Devices 

A task's ability to issue an 1/0 instruction is controlled by its 1/0 privilege level (IOPL) 
and its optional 1/0 guard map. A task can issue an 1/0 instruction on any 1/0 port if the 
task's current privilege level is less than or equal to its 10PL. The processor maintains the 
running task's IOPL in a like-named field of the EFLAGS register; the value of IOPL can 
range from 0-3. Because the 80386 loads EFLAGS from the new TSS on every task switch, 
tasks can have different 10PLs. So long as a task cannot write into its TSS (except by 
calling operating system procedures), a task cannot change its ability to do 1/0. A task 
running at a privilege level greater than 0 cannot change its IOPL with the unprivileged 
POPF instruction because this instruction alters 10PL only when CPL=O. 

A task's 10PL controls its right to execute these instructions: IN, INS, OUT, OUTS, 
INT n, IRET, PUSHF, POPF, ST!, and CLI. Thus, a task whose 10PL allows it to issue 
1/0 instructions can also enable and disable interrupts. Such a task must be highly trusted. 
An operating system can use a task's 1/0 permission map to grant a less-trusted task access 
to selected 1/0 ports while protecting IF flag from the task. 

If a task's CPL is greater than its 10PL, and the task attempts to execute an 1/0 instruc­
tion, the 80386 consults the 1/0 permission map in the task's TSS. If the permission map 
allows access to the port named in the instruction, the 80386 executes the instruction; if the 
permission map denies access to the port, the 80386 raises a general protection exception. 
To appreciate the utility of an 1/0 permission map, consider a real-time system that controls 
a special 1/0 device for which there is no operating system driver. Setting an application 
task's 10PL to zero prevents the task from disabling interrupts or accessing arbitrary 1/0 
ports. Yet with an appropriately initialized 1/0 permission map, the application task, running 
at any privilege level, can read and write the port(s) that represent the special device and no 
other ports. 

Figure 5-1 shows how the 1/0 permission map is organized and how the 80386 interprets it. 
(Note that the 1/0 permission map is not defined for 80286 TSSs, as the 80286 has no 
corresponding facility.) An 1/0 permission map is a bit string up to 64 Kbits in length; each 
bit represents an address in the 80386 1/0 space. A O-bit permits access to the correspond­
ing 1/0 address; a I-bit causes a general protection exception if a task attempts to access 
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PAD BYTE ALLOWS 11 ......... 111 LAST BYTE IN MAP 
_ TO BE ACCESSED 

I AS A WORD 

( O ...... .---------------I.~O 
~5~------------------------------~ 

o .. 

00100011110010101111110011111001 

111101100000111101 0110000000011 

31 23 15 7 

LEG ED: 0 ~ PORT IS ACCESSIBLE 
1 ~ PORT IS INACCESSIBLE 

EXAMPLES: 
; READ DWORD PORT 7 
IN EAX,07H ; FAULT: BITS 10-7 ~ 1000 

; WRITE WORD PORT 33 (DECIMAL) 
OUT 33,AX ; NO FAULT: BITS 34-33 ~ 00 

o 

B KBYTEMAP 
COVERS 64 KBIT 
1/0 SPACE 

Figure 5-1. 1/0 Permission Map Structure and Operation 
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the corresponding port. As the examples in Figure 5-1 show, a multibyte access is allowed 
only if all permission bits representing the target word or doubleword port are O. 

Figure 5-2 shows that a task's I/O permission map is located in its TSS above the area used 
by the operating system, if any. The I/O permission map base field in the TSS must be 
initialized with the displacement of the map from the base of the TSS. Because the 80386 
reads the I/O permission map in units of one word, the last byte of the I/O permission map 
must be followed by a pad byte containing all I-bits. Setting the I/O permission map base 
field in the TSS to FFFFH defines a null permission map. A null map is equivalent to a 
map containing all I-bits and requires no pad byte_ 

The limit field in the TSS descriptor governs the extent of the I/O permission map. The 
limit field can be used to define a map that is smaller than the 8 Kbytes required to explicitly 
define the accessibility of all 65,536 I/O addresses. When the I/O permission map is 
truncated by the limit field, the processor interprets the unspecified bits as Is, thus prohib­
iting I/O to any address not defined in the map. Thus, an operating system need only define 
as much of the map as is needed to specify the addresses to which I/O is permitted. Whatever 
the I/O permission map's length, it must be terminated with a pad byte of all I-bits, and 
the TSS limit field must account for the extra byte. (The 80386 uses word accesses to read 
the I/O permission map; the pad byte ensures that the last map byte can be read.) 
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PAD BYTE 

TSS LIMIT --.J 1 ~1 

I I 0 PERMISSION MAP 

SOFTWARE STATE 
(OPTIONAL) 

1 SOFTWARE STATE 
(OPTIONAL) 

1 

J~o-.-----.~ol~-BA-CK-LI-NK~J I~O-.-----.-o~I--B-AC-K-LlN-K~I 
31 o 

TSS 

a. EXPLICIT 1/0 PERMISSION MAP 

R ~ RESERVED 

31 

TSS 

b. NULL 1/0 PERMISSION MAP 
(ALLOWS NO ACCESS) 

Figure 5-2. I/O Permission Map Location and Extent 

5.2.2 Device Driver Privilege 

o 

G30287 

Device drivers that are implemented as procedures should run at privilege level O. A typical 
device driver is implemented as an operating system service procedure, an interrupt proce­
dure, and data that describes the device and pending I/O requests. The service procedure 
runs in he context of the task that requests an I/O operation; the interrupt procedure runs 
in the context of the task that happens to be executing when the device interrupts. Because 
the service procedure and the interrupt handler interact with the device and with request 
data, they share data and call common procedures. If, as is usually desirable, the operating 
system is to be interruptible at all privilege levels, then the interrupt procedure must be 
assigned DPL=O. (The 80386 raises a general protection fault if an interrupt attempts to 
invoke an interrupt procedure whose DPL is greater than the current privilege level.) This 
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means that any procedure the interrupt procedure calls must also have DPL=O. Because 
the common procedures have DPL=O, the service procedure must also have DPL=O. 

Implementing a device driver as a collection of privilege level 0 procedures has the disadvan­
tage of jeopardizing all system code and data whenever a driver is installed or modified. 
Where performance and protection requirements permit or demand, a device driver can be 
implemented as two tasks whose procedures run at privilege level 1 or 2. The gain in protec­
tion is offset to some degree by a decline in performance, due to the extra time required to 
invoke an interrupt task, and the need for the driver to make system calls to obtain operating 
system services (for example, to wake up a task). 

5.3 DIRECT 1/0 

When setting up direct I/O operations, the operating system must accommodate the limita­
tions of the direct I/0 processor, typically a DMA controller. 

5.3.1 Physical Addressing 

Most DMA controllers can generate only physical memory addresses. To support direct 
memory access, the operating system must supply the DMA controller with the physical 
address of an I/O buffer. If the operating system allocates buffers statically, it can associate 
a header record with each buffer and initialize a field in the header with the buffer's physical 
address. When buffers are allocated dynamically, the operating system can implement a 
procedure that uses the GDT and LDT (and page directory and page tables, if paging is 
enabled) to translate a logical address to a physical address. 

When paging is enabled, an operating system must be prepared for I/O requests that cross 
page boundaries. Addresses that are linearly adjacent can be mapped to noncontiguous page 
frames. Using the page directory and page tables, the operating system can break I/0 requests 
that cross nonadjacent page frames into multiple DMA controller commands. 

A OMA controller may also be limited in the amount of physical memory it can address; 
many controllers, for example, have a range of only 16 megabytes. If the hardware imple­
ments more physical memory than the DMA controller can address, the operating system 
must allocate I/O buffers in the area of physical memory that the DMA controller can 
address. 

5.3.2 locking Segments and Pages 

An operating system must ensure that the physical address and validity of a memory location 
that is the subject of a direct I/O transfer does not change until the transfer is complete. In 
practice, this means that a segment or page cannot be moved, deleted, or made not-present 
while a direct I/0 transfer involving the segment or page is pending. Segment descriptors 
have one available bit that the operating system can designate as meaning "locked for I/O." 
Page table entries have three available bits that can be used for the same purpose. All 
operating system code must refrain from altering a locked descriptor or PTE if the alteration 
would result in an incomplete I/O operation. 

5-5 





Initialization 6 





CHAPTER 6 
INITIALIZATION 

Initialization is the sequence of instructions an operating system must execute before start­
ing the first task. The great bulk of initialization consists of creating operating system data 
structures and is therefore independent of the 80386. This chapter describes the processor­
dependent aspects of initialization, emphasizing three key transitions: 

• Entering protected mode 

• Enabling paging (optional) 

• Switching to the initial task 

A good deal of operating system-specific code is likely to be interspersed between these 
transitions. 

6.1 ENTERING PROTECTED MODE 

When its RESET line is activated, the 80386 responds by entering real mode. As discussed 
in Chapter 9, real mode is useful for applications that wish to use the 80386 as a very fast 
8086. Most applications, however, are best served by the full resources of the processor; to 
make these resources available, the operating system initialization code must switch the 
processor from real mode to protected mode. At about the same time, most operating systems 
also transfer control to a 32-bit code segment to change the default operand and address 
sizes to 32 bits. A typical operating system switches from real to protected mode and from a 
16-bit to a 32-bit code segment as soon as possible following a RESET. 

Table 6-1 show the contents of the 80386's registers immediately following activation of the 
RESET line. Activation of RESET also forces address lines A31-20 to high for code fetches. 
These address lines remain high (for code fetches) until an intersegment jump or call is 
executed; following such an instruction, A31-A20 go low and remain low until the processor 
is switched to protected mode. Data references following a RESET are directed by default 
to the first 64 Kbytes of the linear (and physical) address space. 

Thus, following a RESET, the 80386 code space is the top 64 Kbytes of the 80386 linear 
address space, and the data space is the low 64 Kbytes. A simple way to implement a RESET 
routine is to place both code and data in the top 64 Kbytes and use a CS segment override 
prefix for data references; this forces data addresses to fall into the top 64 Kbytes of the 
address space. Such a simple routine must refrain from issuing an inter segment transfer 
until it has switched the processor from real mode to protected mode. 

Given the RESET values of CS, EIP, and address lines A31-A20, the 80386 fetches its first 
instruction from linear address FFFFFFFOH. Because the RESET address is so close to the 
code segment limit, the instruction there should be an intrasegment jump to a lower offset 
in the 64 Kbyte code segment. An attempt to fetch an instruction from past the 
64 Kbyte code segment limit produces a general protection exception. 
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Table 6-1. Registers Following RESET 

Register Value 

EFLAGS Defined bits contain 0; undefined bits contain undefined values 

CRO Defined bits contain 0 except for ET, whose value is described 
in Chapter 7; undefined bits contain undefined values 

CS Base FFFFOOOOH 

CS Limit FFFFH 

EIP OOOOFFFOH 

DS-GS Base OOOOOOOOH 

DS-GS Limit FFFFH 

EAX Self-test result or undefined' 

EDX Component and revision number' 

All Others Undefined 

'For information on self-test and component and revision numbers, consult the 80386 Hardware Reference 
Manual. 

Figures 6-1 through 6-3 show an assembly language program that illustrates the essentials 
of switching the 80386 from real to protected mode after a RESET. Figure 6-4 shows how 
this program would appear if it were burned into ROM. Upon completion of the program, 
the 80386 is configured as a "flat" unprotected machine with a 32-bit address space. 

The program shown in Figures 6-1 through 6-3 has limitations that an actual initialization 
routine can avoid: 

The program leaves a large unused space between its first and last instructions; a differ­
ent program could locate the instructions and data closer to the RESET address. 

The program defines descriptors by encoding their actual bit values. While practical in 
a simple program like this, operating systems that define many static descriptors may 
be able to use the Intel System Builder utility to advantage. The Builder can create the 
IDT, the GDT, LDTs, and TSSs from symbolic specifications. A simple bootstrap loader 
can transfer these images from disk to RAM, or they can be burned into ROM and then 
copied to RAM. 

The comments in Figures 6-1 through 6-3 explain the operation of the program, but a few 
points should be noted: 

• The program is written as two segments called ResetSeg and BigSeg. ResetSeg contains 
8086-compatible code while BigSeg contains 32-bit 80386 code. Where an 80386 
instruction must be executed in ResetSeg (for example, MaY CRO,EAX), the assem­
bler automatically provides the required override prefix. 
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THIS CODE HAS MOT BEEM TESTED 
Initialize 80386 to flat 32-bit machine 

ResetSeg segment 
j locate this 5!gment (e.g., wilh Binder) 10 OFFFFOOOOH 

j lell assembler whal's in CS 
assume CS:ResetSeg 

j place first inslruclion al RESET address OFFFFFFFOH 
org OFFFOH 

RESET: JMP Begin 

j set localion counter 10 start of ROM 
org 8000H 

STARTROMTABS label word j lag start of ROM tables 
j define GDT containing reqUired null descriplor plus one 
j descriplor for code and one descriplor for dala 

ROMGDT label w 0 r d 
NullDes dw o , 0 , 0 , 0 
CodeDes dw OFFFFH lim i I at max ( b i I s 1 5 : 0 ) 

db o , 0 , 0 base al 0 ( b i I 5 23 : 0 ) 
db 1 00 11 0 11 B presenl/DPL O/code/ 

nonconform/readable/X 
db 11 0 0 11 11 B 4K grain/default 32/ 

O/X/limit ( b i I s 19: 16) 
db 0 base al 0 (b 1 I s 31: 24) 

DalaDes dw OFFFFH 1 i mil a I max (b i I s 1 5 : 0 ) 
db o , 0 , 0 b a 5 e at 0 (b i I 5 23:0) 
db 10010011B presenl/DPL O/dalal 

expand-up/writeable/X 
db 1 00 0 1111 B 4 K grain/OO/X/ 

lim i I (b it 5 19: 16) 
db b a 5 e a I 0 ( b i I s 31: 24) 

Figure 6-1. Entering Protected Mode (Part 1) 

• Immediately after switching to protected mode, the program issues a JMP instruction 
to flush the instructions in the 80386 prefetch queue. The instructions in the queue were 
fetched and decoded while the processor was in real mode; executing them after it has 
been switched to protected mode can be erroneous. For example, the 80386 loads a 
segment register differently in real mo.de than in protected mode. 

The 80386 can be switched from protected to real mode; this subject is discussed lfl 

Chapter 9. 
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; define IDT 
ROMIDT label word 
; up to 256 interrupt/trap gates go here 
ENDROMTABS label word; tag end of rom tables 

; define values 
IDTPtr dw 

dw 
dw 

for IDT and GDT registers 
7FFH limit is max for 256 interrupts 
offset IDT base (bits 15:0) is IDT base 
OFFFFH base (bits 31:16) is IDT base 

GDTPtr dw 1 7 H limit is 3: null, code, and data 
base (bits 15:0) is GDT base 

Begin 

dw 
dw 

offset GDT 
OFFFFH base (bits 31:16) is GDT base 

; still in real mode, use CS override for data refs 
; disable interrupts in case we aren't starting from RESET 
CLl 
; move 
MOV 
MOV 
MOV 
CLD 
DTOV 
MOV 
REP 
Ll D T 
LGDT 
MOV 
MOV 
MOV 

GDT and IDT to RAM with string move 
SI,offset CS:STARTROMTABS 
DI,offset CS:TABLES 
CX,ENDROMTABS-STARTROMTABS 

auto-increment 
DS,CS 

set source 
set destination 
set byte count 

E S , C S 
MOVSB 
CS:IDTPtr 
CS:GDTPtr 
EAX,CRO 

initialize ES for string move 
move tables 

E A X , 1 B 
CRO,EAX 

load IDTR 
load GDTR 
get current CRO 
set PE bit 
begin protected mode 

flush prefetch queue 
JMP Continue 

Figure 6-2. Entering Protected Mode (Part 2) 

6.2 ENABLING PAGING 

Before enabling paging, the 80386 must be running in protected mode. An operating system 
must also ensure that the data structures and routines associated with paging are in place: 

A page directory must contain present PDEs for at least the page table(s) that cover 
the pages containing the page fault handler. 

The page fault handler must be present in physical memory; its presence must be reflected 
in the page table(s) that map its addresses. 

• Entry 14 of the IDT must contain a descriptor (normally a trap gate) that points to the 
page fault handler. 

• The code and data that enable paging must be in present pages and their linear addresses 
must be equal to their physical addresses; that is, they must identify mapped. 
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Continue: 
; now in protected mode 
; set data segment registers to DataDes 

MOV BX,10H ; load DataDes selector 
MOV SS,BX 
MOV DS,BX 
MOV ES,BX 

load CS with CodeDes 
JMP far ptr Start32 ; intersegment jump 

set location counter to start of RAM in this segment 
OR G 0 H 

allocate RAM 
TABLES label 
G D T db 
I D T db 

for GDT and IDT 
w 0 r d 
dup(3 f S) 
dub(256 f S) 

space for 3 descriptors 
space for 256 descriptors 

ResetSeg ends end of segment 
BigSeg segment use32 
; this segment should be located at linear address 

assume CS:BigSeg,DS:BigSeg,ES:BigSeg,SS:BigSeg 

Start32: 
i code here can load ESP with top of stack pOinter, 
; enable interrupts, and proceed with initialization. 

BigSeg ends 

Figure 6-3. Entering Protected Mode (Part 3) 

Disk copies of any pages marked not-present must be up-to-date before enabling paging. 
With data and code in place, the operating system issues a MOV CR3 instruction to load 
the physical address of the page directory into the page directory base register. To enable 
paging, the operating system can set the PG bit (bit 31 of CRO) without disturbing other 
bits in CRO as follows: 

MOV EAX,CRO 
OR EAX,80000000H 
MOV CRO,EAX 
JMP anywhere 

Note the JMP instruction following the MOV instruction that enables paging. (There are 
no restrictions on the address of the jump target.) This instruction flushes the prefetch queue; 
the prefetch queue may contain instructions whose operand addresses were computed before 
paging was enabled. Executing these instructions after paging has been enabled is erroneous 
unless their operands have identical linear and physical addresses. Flushing the prefetch 
queue immediately after enabling paging eliminates any potential problem. 
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FFFFFFFO 1. _____ .J.M.p.B.E.G.,N ____ --t! 
(NOT USED) 

~ ________________ ~r 

JMP FOR PTR START 32 

BEGIN: ell 
GDTPTR 
IDTPTR 
ROMIDT 
ROMGDT 

FFFF8000,1-_____________ ..1 

(NOT USED) 

GDT 
IDT 

FFFFOOOO .... ____________ ...... 

START32: 
O~ ____________________ ~ 

ROM 
(32KB) 

] 

RAM 
(32KB) 

READSEG 
(64KB) 

Figure 6-4. Entering Protected Mode Program Layout 
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6.3 SWITCHING TO THE INITIAL TASK 

Before switching to the first task, the operating system must create a valid TSS and TSS 
descriptor for the first task, and a dummy TSS and valid TSS descriptor for the running 
pseudotask. The 80386 writes its machine state into the dummy TSS when the operating 
system switches to the first task. With the TSSs in place, the operating system can issue the 
LTR instruction to load the task register with a selector for the dummy TSS descriptor. To 
effect the actual task switch, the operating system can issue the usual JMP TSS instruction. 
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CHAPTER 7 
NUMERICS 

An 80386 numerics instruction (defined in the next paragraph) can be executed directly by 
an 80387 or 80287 Numerics Corprocessor, or interpreted by a software emulator that mimics 
one of these coprocessors. Functionally, all three options are nearly identical; they differ 
primarily in speed. The operating system support required for any of them is fairly simple 
and is limited to initialization, task switching, and exception handling functions. 

In this chapter, the term "numerics instruction" refers to those valid instructions that the 
80386 cannot execute itself. The most common numerics instructions operate on real 
("floating point") data types, but there are also packed decimal and integer instructions. In 
ASM386, numerics instruction mnemonics begin with the letter F, such as FADD, FMUL, 
and FSQRT. Numerics machine instructions begin with the pattern 11011B, which is called 
the ESC (escape) opcode. 

7.1 SUPPORTING A COPROCESSOR 

A numerics coprocessor is essentially a parallel execution unit that interprets numerics 
instructions. A coprocessor performs no bus transactions, but instead relies on the 80386 to 
compute addresses, to fetch instructions, and to load and store memory-based operands. 
Because it is little more than an extended execution unit, a numerics coprocessor places little 
additional burden on an operating system. The additional support consists mainly of telling 
the 80386 that a numerics coprocessor is present, and responding to two exceptions that the 
80386 raises in behalf of the coprocessor. 

7.1.1 Initialization 

During its initialization phase, an operating system must determine which numerics copro­
cessor is present, inform the 80386 of this, and initialize the coprocessor before executing 
any numerics instructions. 

The operating system's initialization code can tell if an 80387 is present by testing the ET 
(extension type) bit in CRO; as part of its RESET sequence, the 80386 sets this bit if an 
80387 is present. Testing for an 80287 can be almost as easy. The code fragment shown in 
Figure 7-1 will probe for a numerics chip in a pc, and will work with 8086/8087, 
80286/80287,80386/80287,or80386/80387. 

Having determined which numerics coprocessor is present, the operating system's initiali­
zation code must set up the 80386. This consists of setting the values of the EM (emulate 
coprocessor) and MP (monitor coprocessor) bits in CRO. Table 7-1 shows how the 80386 
interprets these bits. The EM bit directs the 80386 to pass numerics instructions to either a 
coprocessor (EM=O) or to an emulator (EM= I). The MP bit directs the 80386 to ignore 
(MP=O) or to test (MP= 1) the TS (task switched) bit before executing an 80386 WAIT 
instruction. The MP bit is provided for compatibility with 8086-based systems that used the 
WAIT instruction to synchronize with a device (other than a numerics coprocessor) connected 
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"" I 
I\:) 

DOS 3,20 (033-Hl 8086/87/88/186 MACRO ASSEMBLER V2,0 ASSEMBLY OF MODULE TEST_HPX 
OBJECT MODULE PLACED IH FIHDHPX,OBJ 
ASSEMBLER INVOKED BY: D:\ASM86,EXE FIHDHPX,A86 

L 0 C OBJ LIN E SOURCE 

+ 1 ltitle('Test for presence of an Humerics Chi P , l 

name TesLHPX 
ext r n dqopen:near,dqcreate:near,dqwrite:near,dqexil:near 

o 0 0 D C R EQU ODH 
o 0 0 A LF EQU o A H 

9 • tack .egment • tack ' • t a c k ' 
o 0 0 0 ( 1 0 0 I 0 d w 1 0 0 d u P (?) 

? ? ? ? 

OOC8 ? ? ? ? 11 • s t dw Top of • t a c k 1 abe 1 
1 2 • tack end s 
13 
14 d a t a .egment pub 1 i c 'd a t a ' 

o 0 0 0 00 0 0 1 5 • tat u • dw 0 
o 0 02 o 0 0 0 16 co dw 
o 0 04 o 0 0 0 1 7 t em p dw 
o 0 06 04 18 co_name db 4 , , : CO: ' 

o 0 0 7 3A434F3A 
o 0 0 B 2 I 19 n_npx db 33 , , H 0 8087, 80287, or 80387 found, , , C R , L F 
o 0 0 C 4E6F2038303837 

2C203830323837 
2C206F72203830 
33383720666F75 
6E642E 

002B o D 
002 C o A 
002D 11 2 0 L387 db 17,'Found an 80387.',CR,LF 

Figure 7-1. Probing for an 80287 
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DDS 3.20 (033-N) 8086/87/88/186 MACRO ASSEMBLER V2.0 ASSEMBLY OF MODULE TEST_NPX 
OBJECT MODULE PLACED I~ FI~DNPX.OBJ 

ASSEMBLER INVOKED BY: D:\ASM86.EXE FINDNPX.A86 

LOC OBJ 

002E 466F756E642061 
6E203830333837 
2 E 

003D OD 
003E OA 
003F 19 
0040 466F756E642061 

6E203830383720 
6F722038303238 
372E 

0057 aD 
0058 OA 

000 0 
0000 B8----
0003 8ED8 
0005 8EDO 
0007 BCC800 
OOOA B80600 
OOOD 50 
OOOE B80000 
o 0 1 1 50 
0012 E80000 
0015 A30200 
001850 
0019 B80200 

LI N E SOURCE 

2 1 L npx 

22 data 
23 '1 $eject 
24 dgroup 
25 cgroup 
26 

27 code 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
4 1 
42 

s tar t : 

db 

end s 

9 r 0 u p 
group 

25,'Found an 8087 or 80287.',CR,LF 

data,stack 
c c d e 

segment public 'code' 
assume cs:cgroup,ds:dgroup 

mov 
mov 
mov 
mov 
mov 
pus h 
mov 
pus h 
call 
mov 
pus h 
mov 

ax,dgroup 
d 5 I a x 
5 5 , a x 
sp,offset dgroup:sst 
ax,offset dgroup:co_name 
a x 
ax,offset dgroup:status 
a x 
dqcreate 
co, a x 
a x 
a x , 2 

Setup file connection 
Save file token 

Signal write open 

Figure 7-1. Probing for an 80287 (Cont'd.) 
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DOS 3.20 (033-N) 8086/87/88/186 MACRO ASSEMBLER V2.0 ASSEMBLY OF MODULE TEST_NPX 
OBJECT MODULE PLACED 1M FIMDMPX.OBJ 
ASSEMBLER IHVOKED BY: D:IASM86.EXE FIHDNPX.A86 

LOC OBJ LI HE SOURCE 

001C 50 43 push ax 
0010 33CO 44 xor aX,ax i Mo buffers needed 
OOH 50 45 push ax 
0020 B800000 46 mov ax,offset d9roup:status 
0023 50 47 push ax 
0024 E80000 48 call dqopen j Open file for writing 
0027 FF360200 19 pU5h co i Setup for call 
002B BBOBOO 50 mov bx,offset d9roup:n_npx 
002E EB18 51 imp short test_npx i Enter test code on next page 

52 
53 Print message at [BXI then exit 
54 

0030 55 found_87_287: 
0030 BB3FOO 56 mov bx,offset dgroup:f_npx 
0033 57 no_npx: 
0033 58 found_387: 
0033 43 59 Inc bx Point at character strln9 
0034 53 60 push bx 
0035 8A47FF 61 mov a I , [ b x - 1 I Get count 
0038 98 62 cbw 
0039 50 63 push ax 
003A B80000 64 mov ax,offset dgroup: statU! 
0030 50 65 push a x 
003E E80000 66 c a II dqwrlte i P r i n t message 
0041 33cO 67 xor a x, 8 x 
0043 50 68 push a x 
0011 E80000 69 C II II dqexit End the program, go back to DDS 
0047 CC 70 I n t 3 Just 1 n elise 

71 + 1 $e lee I 
72 
73 Look for an 80S7, S0287, or S03S7 NPX. 
74 Nole Ihal we cannot execute WAIT on SOS6/SS if no 8087 Is present. 
75 

0048 76 test_npx: 

Figure 7-1. Probing for an 80287 (Cont'd.) 
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CHAPTER 7 
NUMERICS 

An 80386 numerics instruction (defined in the next paragraph) can be executed directly by 
an 80387 or 80287 Numerics Corprocessor, or interpreted by a software emulator that mimics 
one of these coprocessors. Functionally, all three options are nearly identical; they differ 
primarily in speed. The operating system support required for any of them is fairly simple 
and is limited to initialization, task switching, and exception handling functions. 

In this chapter, the term "numerics instruction" refers to those valid instructions that the 
80386 cannot execute itself. The most common numerics instructions operate on real 
("floating point") data types, but there are also packed decimal and integer instructions. In 
ASM386, numerics instruction mnemonics begin with the letter F, such as FADD, FMUL, 
and FSQRT. Numerics machine instructions begin with the pattern llOllB, which is called 
the ESC (escape) opcode. 

7.1 SUPPORTING A COPROCESSOR 

A numerics coprocessor is essentially a parallel execution unit that interprets numerics 
instructions. A coprocessor performs no bus transactions, but instead relies on the 80386 to 
compute addresses, to fetch instructions, and to load and store memory-based operands. 
Because it is little more than an extended execution unit, a numerics coprocessor places little 
additional burden on an operating system. The additional support consists mainly of telling 
the 80386 that a numerics coprocessor is present, and responding to two exceptions that the 
80386 raises in behalf of the coprocessor. 

7. 1. 1 Initialization 

During its initialization phase, an operating system must determine which numerics copro­
cessor is present, inform the 80386 of this, and initialize the coprocessor before executing 
any numerics instructions. 

The operating system's initialization code can tell if an 80387 is present by testing the ET 
(extension type) bit in CRO; as part of its RESET sequence, the 80386 sets this bit if an 
80387 is present. Testing for an 80287 can be almost as easy. The code fragment shown in 
Figure 7-1 will probe for a numerics chip in a pc, and will work with 8086(8087, 
80286/80287, 80386/80287, or 80386/80387. 

Having determined which numerics coprocessor is present, the operating system's initiali­
zation code must set up the 80386. This consists of setting the values of the EM (emulate 
coprocessor) and MP (monitor coprocessor) bits in CRO. Table 7-1 shows how the 80386 
interprets these bits. The EM bit directs the 80386 to pass numerics instructions to either a 
coprocessor (EM =0) or to an emulator (EM = 1). The MP bit directs the 80386 to ignore 
(MP=O) or to test (MP= 1) the TS (task switched) bit before executing an 80386 WAIT 
instruction. The MP bit is provided for compatibility with 8086-based systems that used the 
WAIT instruction to synchronize with a device (other than a numerics coprocessor) connected 

7-1 



DOS 3.20 C033-H) 8086/87/88/186 MACRO ASSEMBLER V2.0 ASSEMBLY OF MODULE TEST_HPX 
OBJECT MODULE PLACED IN FINDHPX.OBJ 
ASSEMBLER IHVOKED BY: D:\ASMB6.EXE FIHDHPX.A86 

LOC OBJ LI HE SOURCE 

.1 $IitleC'Teal for preaen.e of an Humerica Chip') 

name Te~LHPX 

4 ext r n d~open:near,d~create:near,dqwrile:near,dqexit:near 

5 
6 C R EGU ODH 
7 LF EGU OAH 
8 
9 5 tack 5egment a tack ' 5 t a. k ' 

1 a dw 1 a a dup cn 

11 5 5 t dw Top of 5 tack 1 abel 
1 2 5 t a • k end5 
13 
14 d a t a 5egment pub 1 i. 'd a t a' 
15 5 I a I u 5 dw a 
16 co dw a 
1 7 temp dw a 
18 co_name db 4 , ' : CO: ' 

19 n_npx db 33, ' H 0 8087, 80287, or 80387 found. , , C R , L F 

20 f_387 db 17,'Found an B0387.',CR,LF 

Figure 7-1. Probing for an 80287 
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DOS 3.20 (033-N) 8086/87/88/186 MACRO ASSEMBLER V2.0 ASSEMBLY OF MODULE TEST.NPX 
OBJECT MODULE PLACED IN FINDNPX.OBJ 
ASSEMBLER INVOKED BY: D:IASM86.EXE FINDNPX.A86 

LOC OBJ 

002E 466F756E642061 
6E203830333837 
2E 

003D 00 
003E OA 
003F 19 
0040 466F756E642061 

6E203830383720 
6F722038303238 
372E 

0057 OD 
0058 OA 

0000 
0000 B8----
0003 8ED8 
0005 8EDO 
0007 BCC800 
OOOA B80600 
OOOD 50 
OOOE 880000 
00 1 1 50 
0012 E80000 
0015 A30200 
001850 
0019 B80200 

Ll N E SOURCE 

21 Lnp x 

22 data 
23 +1 $ejecl 
24 dgroup 
25 cgroup 
26 
27 code 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
4 1 
42 

s I art: 

db 

ends 

g r 0 u p 
group 

25,'Found an 8087 or 80287.',CR,LF 

dala,stack 
code 

segment public 'code' 
assume cs:cgroup,ds:dgroup 

mov 
mov 
mov 
mov 
mov 
pus h 
mov 
pus h 
c a I I 
mov 
push 
mov 

ax,dgroup 
ds,ax 
5 5 t a x 
sp,offset dgroup:sst 
ax, offset dgroup:co_name 
ax 
ax,offset dgroup:status 
a x 
dqcreate 
COt a x 
a x 
a x , 2 

Setup file connection 
Save file loken 

Signal write open 

Figure 7·1. Probing for an 80287 (Cont'd.) 
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DOS 3.20 (033-N) 8086/87/88/186 MACRO ASSEMBLER V2.0 ASSEMBLY OF MODULE TEST_NPX 
OBJECT MODULE PLACED IN FINDNPX.OBJ 
ASSEMBLER INVOKED BY: D:\ASM86.EXE FINDNPX.A86 

LOC o B J LIN E 

001C 50 43 
001D 33CO 44 
OOH 50 45 
0020 B800000 46 
0023 50 47 
0024 E80000 48 
0027 FF360200 49 
002B BBOBOO 50 
OOH EB18 51 

52 
53 
54 

0030 55 
0030 BB3FOO 56 
0033 57 
0033 58 
0033 43 59 
0034 53 60 
0035 8A47FF 61 
0038 98 62 
0039 50 63 
003A B80000 64 
003D 50 65 
003E E80000 66 
o 0 4 1 33cO 67 
0043 50 68 
0044 E80000 69 
0047 CC 70 

71 + 1 
72 
73 
74 
75 

0048 76 

SOURCE 

push ax 
xor aX,ax ; No buffers needed 
push ax 
mov ax,offset dgroup:status 
push ax 
call dqopen ; Open file for IIIriling 
push co ; Setup for call 
mov bx,offset dgroup:n_npx 
imp shorl lesLnpx ; Enler test code on nexl page 

Prlnl message al IBX] Ihen exil 

founL8L287: 
mov 

no_npx: 
founL387: 

inc 
pus h 
mov 
cblll 
push 

$eject 

mov 
pus h 
c a I I 
x 0 r 
pus h 
cal I 
in t 

bx,offset dgroup:f_npx 

bx 
b x 
a I , I b x - 1 ] 

a x 

Point at character string 

Get count 

ax,offset dgroup:stalus 
a x 
dqwrite 
a x, a x 
ax 
d q • x i t 
3 

Print message 

End the program, go back to DOS 
Just in ca5e 

Look for an 8087, 80287, or 80387 HPX. 
Note that IIIe cannol execule WAIT on 8086/88 if no 8087 is present. 

lesLnpx: 

Figure 7-1. Probing for an 80287 (Cont'd.) 
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DOS 3.20 (033-N) 80861871881186 MACRO ASSEMBLER V2.0 ASSEMBLY OF MODULE TEST_HPX 
OBJECT MODULE PLACED IN FINDHPX.OBJ 
ASSEMBLER INVOKED BY: D:IASM86.EXE FINDHPX.A86 

LOC OBJ 

0048 90D8£3 
0048 8E0400 
004£ C704SASA 
0052 90DD3C 

0055 803COO 

0058 75D9 

005A 90D93C 

005D 8804 
005F 253Fl0 
0062 3D3FOO 
0065 75CC 

0067 98D9E8 
006A 9BD9EE 
o 06D 9BDEF9 
0070 98D9CO 
0073 98D9EO 

L I H £ SOURCE 

77 
78 
79 
80 
81 
82 
83 

84 

85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

1 00 
1 0 1 
1 02 
1 03 
1 04 

fninil ; Must use non-wait form 
mov si,offset dgroup:temp 
mov word ptr IsiI,5A5AH Initialize temp to non-zero value 
fnstsw [sil Must use non-wait form of fstsw 

It is not necessary 10 use a WAIT instruclion 
after fnstsw or fnstcw. Do not use one here. 

emp byte ptr ISil,O See if correct status wilh zeroes was 
read 

j n e no_npx Jump if not a valid status word, meaning no 
H P X 

How see if ones can be correctly written from the control word. 

fnstcw 

mov 
and 
c m p 
J n e 

I s I I 

a x , lsi I 
ax,103fh 
ax,3fh 
no_npx 

Look at the control word do not use WAIT form 
Do not use a WAIT instruction here! 
See if ones can be written by NPX 
See if selected parts of control word look OK 
Check that ones and zeroes were correctly read 
Jump if no npx Is installed 

Some numerics chip is installed. NPX instructions and WAIT are now 
safe. See if the HPX is an 8087/287 or 80387. 
This code is necessary if a denormal exception handler Is 
used or the new 80387 instructions will be used. 

f 1 d 1 
f 1 d z 
f d i v 

f I d 
f c h s 

s t 

Must use default control word from FHINIT 
Form infinity 
8087/287 "Y' 'inf • -inf 
Form negative infinity 
80387 says 'inf () -inf 

Figure 7·1. Probing for an 80287 (Cont'd.) 
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DOS 3.20 (033-Nl 8086/87/88/186 MACRO ASSEMBLER V2.0 ASSEMBLY OF MODULE TEST_NPX 
OBJECT MODULE PLACED IN FINDNPX.OBJ 
ASSEMBLER INVOKED BY: D:\ASM86.EXE FINDNPX.A86 

LOC OBJ LI N E SOURCE 

0076 9BDED9 1 05 fcompp See i f they are the 5 s m e and remove the m 
0079 9BDD3C 1 06 f 5 I s w [si I L 0 0 k 8 I slalu5 from FCOMPP 
007C 8B04 1 07 mov a x , [ s i I 
007E 9E 1 08 sahf See i f I h e infinilies malched 
007F 74AF 1 09 j e founL8L281 Jump i f 8087/287 i s present 

1 1 0 
111 An 80387 is present. I f denormal exceptions are use d for an 
1 12 8087/287, Ihey must be masked. The 80387 will aUlomalically 
1 13 normalize denormal operands faster t han an exception handler 
1 1 4 

008 1 BE2DOO 1 1 5 mov bx,offsel dgroup:L387 
0084 EBAD 116 jmp founL387 

1 1 7 
118 code ends 
119 end slarl,ds:dgroup,s5:dgroup:5s1 

ASSEMBLY COMPLETE , NO ERRORS FOUND 

Figure 7-1. Probing for an 80287 (Cont'd.) 
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NUMERICS 

7.1.2 Exceptions 

With respect to numerics instructions, the 80386 raises an exception to notify system software 
of the following: 

• A task switch has occurred since execution of the previous numerics instruction; there­
fore, the context of the coprocessor may have to be switched before executing the current 
numerics instruction. 

• The previous numerics instruction incurred an error that requires software intervention. 

A numerics instruction must be emulated. 

Chapter 3 describes the 80386's exception facilities in general; the following sections discuss 
the two exceptions that relate specifically to numerics coprocessors. 

7.1.2.1 COPROCESSOR CONTEXT SWITCHING 

A numerics coprocessor adds considerable machine state to a task, the bulk of it consisting 
of either 80-bit registers. The operating system dispatcher can switch the coprocessor context 
on every task switch. In most applications, however, this expensive operation is often wasted 
because ordinarily only a minority of tasks issue numerics instructions. The coprocessor 
context must actually be switched only when the task state loaded in the coprocessor does 
not represent the task about to execute a numerics instruction. This may be simpler to 
understand by defining the notion of "numerics tasks," that is, the subset of tasks that actually 
issue numerics instructions. The context of the coprocessor must be changed only when the 
current numerics task is not the same as the previous numerics task. By changing the context 
of the coprocessor only when a different numerics task issues a numerics instruction, many 
task switches can be made without incurring the expense of saving and reloading the context 
of the coprocessor. 

To help implement this strategy, the 80386 sets the TS bit in CRO whenever it performs a 
task switch. It also tests TS before executing any numerics instruction; when MP is set, the 
80386 further tests TS before executing aWAIT instruction. If, when tested, TS is set, the 
processor raises exception number 7 (device not available). This exception means that at 
least one task switch has occurred since the execution of the previous numerics or WAIT 
instruction. The exception handler should therefore determine if the task whose context is 
represented in the coprocessor (that is, the previous task to issue a numerics instruction) is 
not the task whose attempt to execute a numerics instruction just incurred the exception. 
The tasks may actually be the same; suppose, for example, that numerics Task A issues a 
numerics instruction and is shortly thereafter preempted by Task B. Task B, which is non­
numeric, runs for awhile and then gives up the processor, allowing Task A to run again. 
When Task A next issues a numerics instruction, the 80386 raises exception 7 because there 
have been two task switches (A to Band B to A) since the previous numerics instruction 
was executed. Nevertheless, the context of the coprocessor is still Task B's context, and there 
is no need to change it before Task B executes another instruction. In this case, the exception 
handler need only reset the TS bit and IRET. If, on the other hand, the running task is not 
the same as the task whose context is loaded in the coprocessor, the handler must save the 
coprocessor context in the old task's coprocessor save area and reload it from the new task's 
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Table 7-1. EM and MP Bit Interpretation 

EM MP Interpretation 

0 0 Numerics instructions are passed to coprocessor; WAIT ignores TS 

0 1 Numerics instructions are passed to coprocessor; WAIT tests TS 

1 0 Numerics instructions trap to emulator; WAIT ignores TS 

1 1 Numerics instructions trap to emulator; WAIT tests TS 

to the BUSY # line. If numerics instructions can be encountered in a system, EM and MP 
must be set to 0 and 1, respectively, for coprocessor interpretation of the instructions, or to 
1 and 1 for emulator interpretation. 

EM and MP can be altered with the privileged MOV eRO instruction. To avoid altering 
other bits in the register (for example, the ET bit), a sequence like the following can be 
used. 

MOV EAX,CRO 
AND EAX,BitClearMa5k 
OR EAX,BitSetMa5k 
MOV CRO,EAX 

The WAIT instruction always waits for the BUSY # pin to go inactive; however, if no copro­
cessor is present, a pullup resistor in the 80386 causes WAIT to continue immediately as if 
BUSY # were inactive. The WAIT instruction is used to delay execution of the next 80386 
instruction while a coprocessor stores data in memory. WAIT is an interruptible instruction; 
upon return from an interrupt handler the processor resumes execution of the WAIT 
instruction. 

The FNINIT instruction initializes the coprocessor; it must be the first numerics instruction 
every task executes (the operating system can issue the instruction for an application task). 
(FRSTOR can also be used to initialize the coprocessor if the restored coprocessor state 
record contains the same values that FNINIT produces; FRSTOR, however, takes substan­
tially longer to execute than FNINIT.) The FSETPM instruction, required when the 80287 
is used with an 80286, is not required when either coprocessor is used with an 80386; the 
80386 ignores FSETPM. (The 80386 maintains and formats the addresses of the current 
numerics instruction and operand, so neither coprocessor need be concerned with the 80386's 
mode.) 

For every task that issues a numerics instruction, the operating system must provide space 
to save the coprocessor's state on task switches. Because, in general, it is not practical to 
know which tasks execute numerics instructions and which do not, it is best to provide copro­
cessor save areas for all tasks if a numerics coprocessor or emulator is present. A convenient 
place for this save area is the software state area of the task's TSS; for best performance the 
save area should be doubleword-aligned. The save area should be 94 bytes, the size of the 
area used by the FSA VE and FRSTOR instructions. 
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TSS. In other words, the handler must perform the analog of an 80386 task switch for the 
coprocessor. 

Figure 7-2 is a pseudocode fragment that switches the context of the coprocessor if neces­
sary. At the heart of the example are the variables NumericTSS and CurrentTSS. 
NumericTSS identifies the TSS of the current numerics task, that is, the task that last 
issued a numerics instruction. At entry to the fragment, the coprocessor's context corre­
sponds to this task. The other variable identifies the TSS of the running task; the operating 
system obtains this pointer by issuing an STR (store task register) instruction. 

Exception 7 must be handled by a procedure, not a task. If the handler is a task, the 80386 
sets TS when the handler issues an IRET instruction. The processor then reexecutes the 
faulting instruction, finds that TS is set, and again raises exception 7; the result is an endless 
loop. The handler can be invoked through a trap gate, because interrupts can remain enabled 
during its execution. 

Note that a numerics task's coprocessor context must also be saved if the operating system 
swaps the task out of memory. 

7.1.2.2 COPROCESSOR ERROR 

Bits in a coprocessor's control word register mask or unmask the errors the coprocessor 
discovers during execution of a numerics instruction. (See the 80386 Programmer's Refer­
ence Manual for details on error masking.) If an error is masked, the coprocessor deals with 
the error directly and completes the instruction normally from the point of view of the 80386. 
If an error is unmasked, the coprocessor does not handle the error but instead holds it 
ERROR# pin active. This in turn makes the 80386 raise the coprocessor error exception 
(number 16) when it encounters the following numerics instruction or WAIT instruction. 

('switch coproces50r context when neces5ary') 
GLOBAL NumericTSSj 

(·clear TS bit in CRO·) 
CLTSj 
(·return if no switch is necessary') 
CurrentTSS := STRj 
IF CurrentTSS = NumericTSS 

THEN Returnj 
END IF j 

('prevent context 5witch while 5witching coproce550r context·) 
EnlerCrilicalSeclion()j 
FSAVE -) NumericTSSj 
NumericTSS := CurrentTSSj 
FRSTOR -) NumericTSSj 
LeaveCrilicalSection()j 
Returnj 

Figure 7-2. Switching the Coprocessor Context 
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Exception 16 is a trap, not a fault. On entry to the handler, the ElP value on the stack does 
not point to the offending instruction. It points to the numerics instruction or WAIT follow­
ing the offending instruction (that is, to the instruction the processor was starting to execute 
when it noticed that ERROR# was active). To examine the offending instruction (and, if 
applicable, its memory operand), the handler can issue the FSTENV instruction. 

A coprocessor error handler can terminate the offending task, can supply an alternate result, 
or can change a source operand and reexecute the instruction. To reexecute an instruction, 
the handler can copy the offending instruction to a data segment for which the handler has 
an alias that redefines the data segment as a code segment. By following the copied instruc­
tion with a RET instruction, the handler can CALL the instruction and then regain control. 

7 .1.2.3 SIMULTANEOUS EXCEPTIONS 

As it begins to execute a numerics instruction, the 80386 may find that TS is set and 
ERROR# is active simultaneously. In this case, the processor raises exception 7 first. What 
happens next depends on whether the exception 7 handler switched the context of the copro­
cessor. If it did not, as soon as the exception 7 handler returns, the 80386 raises exception 
16. If the exception 7 handler switched the coprocessor context, the fact that an error was 
pending in the old task is saved in its TSS by the FSA VE instruction. When the context of 
the old task is next reloaded with FRSTOR, the coprocessor immediately activates ERROR#. 
As a result, the next time the old task issues a numerics instruction, the 80386 raises excep­
tion 16. In sum, task switching takes priority over numerics error handling, but the exception 
16 handler is always properly invoked in the context of the task that incurred the error. 

7.1.3 Coprocessor Differences 

When attached to an 80386, the 80287 and 80387 are essentially identical from an appli­
cation programming point of view. Both coprocessors automatically support real, protected, 
and virtual 86 mode operation. Aside from speed, the most visible difference between the 
processors is the few additional instructions provided by the 80387. Should the 80386 
encounter an instruction that the 80287 cannot execute (because it is a member of the 
expanded 80387 instruction set), the processor nevertheless passes the instruction on to the 
coprocessor. The 80287's interpretation of such an instruction is not defined. 

Other differences between the 80287 and 80387 are masked by the 80386. For example, 
when attached to an 80286, the 80287 can overrun a segment when fetching or storing a 
multiword operand; the result is exception 9. However, this never occurs when the coproces­
sor is used with the 80386; instead the 80386 raises a general protection fault before passing 
the instruction to the coprocessor. 

7.2 SUPPORTING AN EMULATOR 

In an application needs the numerics coprocessor instruction set and can accept substantially 
reduced performance, it can employ software that emulates one of the coprocessors. The 
Intel emulators mimic their respective coprocessors with great fidelity; the operating system 
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need deal with the emulator only in its initialization code and in the fault handler for 
exception 7. These subjects are discussed in the following sections. 

7.2.1 Initialization 

If, at initialization time, the operating system discovers that neither an 80287 nor an 80387 
is present, the operating system should direct the 80386 to raise a processor extension not 
available fault (number 7) if the processor decodes a numerics instruction. 

To direct the 80386 to raise exception 7 when it decodes a numerics instruction, the operat­
ing system initialization code must set the EM bit in eRO. As discussed in the next section, 
the handler for exception 7 can either call an emulator or can terminate the task that issued 
the numerics instruction. If the operating system provides a coprocessor emulator, it can 
initialize the emulator just as it would initialize a coprocessor, with an FNINIT instruction; 
the emulator will emulate the instruction. When an emulator is present, the operating system 
must supply each task with a save area in which the emulator's context can be saved on task 
switches. 

7.2.2 Exceptions 

A numerics coprocessor emulator should be packaged as a procedure (or collection of proce­
dures) called by the exception 7 handler when no coprocessor is present. The 80386 raises 
exception 7 (device not available) when EM is set and the processor encounters a numerics 
instruction. The processor raises the same exception to notify the operating system that the 
emulator context may need to be switched. The exception 7 handler can determine whether 
to call the emulator or to call the coprocessor context switcher by inspecting the EM bit in 
the EFLAGS image on the stack (EM =0 means call context switcher). If the operating 
system does not provide an emulator, the exception 7 fault handler should terminate the 
task. 

For anyone contemplating writing a numerics coprocessor emulator, at entry to the 
exception 7 handler, EIP on the stack points to the instruction, including any prefixes, that 
must be emulated. As it interprets the instruction, the emulator must increment EIP on the 
stack so that when the handler returns with an IRET instruction, EIP points to the instruc­
tion following the emulated instruction. To emulate an instruction, the emulator must have 
a descriptor for the associated code segment that grants the emulator read and execute 
permission; the emulator must be able to read the instruction to emulate it. Pages are always 
readable, so they require no special attention. 

Exception 16 can be handled identically whether numerics instructions are interpreted by an 
emulator or a coprocessor. 
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CHAPTER 8 
80286 COMPATIBILITY 

This chapter describes two ways to execute 80286 binary programs (load modules) on a 
comparable 80386-based system. The 80386 is almost exactly compatible with the 80286 
and can therefore run most 80286 operating systems and applications with little or no change. 
However, running an 80286 operating system binary does not take advantage of advanced 
80386 facilities, because the processor is being used essentially as 80286. The alternative, 
also described in this chapter, is to develop an 80386 operating system that can support both 
existing 80286 programs and new 80386 programs. In this way, the operating system and 
new applications can exploit the features of the 80386 while the investment represented by 
existing 80286 programs is preserved. 

8.1 RUNNING AN 80286 OPERATING SYSTEM 

The 80286 data types, registers, instructions, gates, descriptors, and selectors are a proper 
subset of the corresponding 80386 facilities. An 80286 operating system binary that observes 
the compatibility rules set forth in the 80286 Programmer's Reference Manual, can run 
without modification on the 80386. The most important requirement for 80286-80386 
compatibility is the 0 in the top word of 80286 descriptors; non-O values in this word denote 
80386 descriptors. Some other differences between the two processors are listed below; for a 
definitive list, consult the 80386 Programmer's Reference Manual. Most of the differences 
between the processors affect at most isolated portions of operating system code. 

The 80386 stores different values in some fields that were reserved or undefined by the 
80286. For example, the 80286 SIDT instruction stores the 40-bit value of the IDTR in 
a 48-bit field, setting the undefined upper 8 bits to FFH. When it executes the same 
instruction, the 80386 stores OOH in the upper 8 bits. 80286 programs that relied on 
values of such reserved or undefined fields may behave differently on the 80386. 

• The 80286 and 80386 interpret the LOCK prefix differently. On the 80386, LOCK is 
independent of IOPL and can only be executed at privilege level 0, and only for a subset 
of instructions. If LOCK is executed incorrectly on the 80386, the result is an invalid 
opcode fault. See the 80386 Programmer's Reference Manual for details. 

• The 80386 automatically senses the presence of an 80387; 80286 initialization code that 
tested for the presence of an 80287 must be changed if an 80387 can be present. 

The 80386 has no "80286 mode" analogous to the real mode that emulates an 8086. In 
protected mode, the processor interprets an instruction according to the content of the 
descriptors that are in effect at the time the instruction is executed. For example, suppose a 
JMP instruction's target is 100,000 bytes from the beginning of its code segment. The 
instruction faults if the code segment was produced by an 80286 translator because the code 
segment's limit is, at most, 64 Kbytes. The same instruction does not fault if the descriptor 
specifies a larger limit (as can be the case if the segment is created by an 80386 translator). 
Thus, code segments are self-identifying: they establish either an 80286 or an 80386 "execu­
tion environment" for each instruction. Note, however, that the 80386 does not trap an 
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attempt by a 80286 code segment to execute an 80386 instruction that is undefined for 
the 80286. 

8.2 RUNNING 80286 AND 80386 PROGRAMS CONCURRENTLY 

Because the 80386 instructions, data types, and so on are a superset of the 80286's, you can 
write an 80386 operating system that supports application programs written for the 80386 
as well as programs written for a predecessor 80286 operating system. 

8.2.1 Basic Operating System Support 

Any new operating system that is to support existing applications must maintain a system 
call interface that is functionally equivalent to the interface provided by the predecessor 
operating system. At the same time, the new operating system can extend the interface (that 
is, add system calls or parameters) for the benefit of the new 80386 applications. 

Beyond supporting the old application interface, an operating system that supports execution 
of both 80286 and 80386 programs must recognize that, in general, both old (80286 code) 
and new (80386 code) tasks can be interrupted or encounter an exception at any time. 
Consequently, the operating system must 

• Use 80386 TSSs for all tasks, whether they are executing 80286 or 80386 programs 

• Use only 80386 gates in the IDT 

• Use only 80386 code segments for interrupt and exception procedures 

In other words, both tasks and interrupt and exception procedures must run in a uniform 
80386 "execution environment" to ensure that the processor saves and restores a task's full 
state whenever the task is interrupted or incurs an exception. (In fact, if an interrupted task 
is running an 80286 program, more than its full state is saved and restored, but the extra 
information does not affect the task's behavior.) The uniform environment also ensures that 
the processor properly invokes and returns from interrupt and exception procedures. For 
example, an interrupt or exception procedure that returns through an 80386 gate returns 
control correctly to an 80386 task and incorrectly to an 80286 task (it pops too much infor­
mation from the stack). 

A TSS that represents a task executing an 80286 program should be initialized as follows: 

• Set the high word of all doubleword register fields to OB 

• Set CR3 as it is set for tasks executing 80386 programs 

Set the FS and GS fields to OB (null selector) 

The operating system can mark the TSSs of 80386 tasks that are executing 80286 code so 
that interrupt, exception, and system call handlers can identify the caller, if necessary. (The 
software state area of the TSS can be used for this purpose.) Note also that the I/O permis­
sion map (described in Chapter 5) available in an 80386 TSS can be used to grant 80286 
tasks access to selected I/O ports. 
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8.2.2 Handling Mixed System Calls 

80286 code can call an 80386 operating system that provides an interface that is functionally 
compatible with the interface provided by the 80286 operating system. However, 16-bit 
parameters and 32-bit results are likely to have to be converted by procedures called system 
call adapters. In this section, terms such as "80286 code" and "80286 procedure" mean code 
that is produced by an 80286 translator and that resides in a code segment whose D bit 
(default operand and address size is 16). 

8.2.2.1 SYSTEM CAll ADAPTERS 

Figure 8-1 shows how a system call adapter can be positioned so it intercepts system calls 
from 80286 code without slowing calls from 80386 code. The adapter should be placed behind 
an 80386 call gate that replaces the 80286 gate formerly used to enter the operating system. 
(As explained in the next section, 80286 code should call an 80386 operating system through 
an 80386 gate.) The adapter should have the same privilege level as the operating system. 
An 80286 task then calls through a gate as usual, but the adapter intercepts the call, converts 
parameters, and calls the 80386 operating system. The operating system returns to the 
adapter, which converts results and returns through the gate to the 80286 application code. 
To avoid interception by the adapter, a task executing 80386 code can call through a differ­
ent gate. 

80286 
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APPLICATION 
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Figure 8-1. System Call Adapter 
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The adapter must reside in an 80386 code segment whose D bit is 1. The operation of the 
CALL and RET instructions, when directed to a call gate, are determined by the gate itself. 
Thus, when an 80286 segment issues a CALL whose operand selects an 80386 call gate, the 
processor executes the CALL just as if an 80386 segment had issued it. The RET instruction 
works analogously. Note that because the 80286 code calls through an 80386 gate, the adapter 
entry point can be at an offset higher than 64 Kbytes (the maximum offset "reachable" with 
an 80386 gate). 

8.2.2.2 PARAMETER PASSING 

80286 parameters can be copied automatically through an 80386 call gate, provided that 
the parameters consist of an even number of words. Whereas an 80286 call gate passes n 
words (where n is the word count field in the gate), an 80386 call gate passes dwords. Ifthe 
80386 gate is defined to pass nl2 dwords, the parameters will be copied correctly. 

If an 80286 procedure passes an odd number of words, the 80386 gate can be defined to 
pass zero dwords, and the system call adapter behind the gate can copy the parameters. 

8.2.2.3 PARAMETER CONVERSION 

80286 offsets and pointers are smaller than the corresponding 80386 types, and the 80386 
supports 32-bit integers while the 80286 does not. Thus, 16-bit parameters passed directly 
from an 80286 program to an 80386 operating system would be misinterpreted by an operat­
ing system that expected 32-bit quantities. The system call adapter must convert these 
parameters to the form expected by the 80386 operating system. 

An 8- or 16-bit unsigned value can be converted to 32 bits by adding 0 bits at the high end, 
using, for example, the MOVZX (move with zero extension) instruction. A 16-bit integer 
can be converted to 32 bits by propagating its sign bit through the upper bits, using, for 
example, the MOVSX (move with sign extension) instruction. Floating point numbers need 
not be converted because they are identical on both processors. 

Converting 32-bit results to 16-bit results is similarly straightforward, providing the operat­
ing system does not return significant digits in bits 16-31. If a result can legitimately be 
32 bits if the caller is a task running 80386 code, the operating system can provide separate 
system calls for 80286 and 80386 callers. 

The adapter or the operating system itself should also ensure that the operating system does 
not violate protection that would have been enforced had the application been run on an 
80286. For example, the operating system should refuse a request from an 80286 program 
to extend a segment past 64 Kbytes. 
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CHAPTER 9 
8086 COMPATIBILITY 

The 80386 can execute 8086 binary programs in either of two modes, real mode or virtual 
8086 (V86) mode. Real mode is an alternative to protected mode, the mode that has been 
described in previous chapters. In real mode, the processor behaves much like a fast 8086; it 
provides no tasking or protection facilities. V86 mode is a submode of protected mode that 
an operating system can apply to individual 80386 tasks. Virtual 8086 mode provides a 
protected task environment in which an 8086 program can execute without interfering with 
the operating system or with other tasks. Thus, whereas real mode governs the execution of 
all software, virtual 8086 mode applies only when the processor is executing V86 tasks. 

Note that some 8086 programs time the duration of a sequence of instructions. Such programs 
must be modified to execute correctly in real mode or in virtual 8086 mode because the 
80386 executes instructions faster than the 8086. 

9.1 COMMON ELEMENTS OF REAL AND VIRTUAL 8086 MODES 

Real mode and virtual 8086 mode differ most importantly in privilege level and in interrupt 
and exception handling. In basic instruction execution and addressing, real and V86 modes 
are quite similar, as described in this section. 

9.1.1 Instruction Set 

Table 9-1 divides the 80386 instruction set into classes and shows how the processor executes 
the instructions in each class in real and virtual 8086 modes. The instructions are grouped 
according to the 8086 family processor that introduced them. 

A debugged 8086 binary program should not contain 80286 or 80386 instructions because 
such an instruction causes undefined behavior if executed by an 8086. Nevertheless, if such 
instructions are present in an 8086 program that is executed in real or V86 mode, they can 

Table 9-1. Real and Virtual 8086 Mode Instruction Execution 

Instruction Class Real Mode V86 Mode 

8086 ADD, MOV, etc. Executed Executed 
8086 PUSHF,POPF, 
INT,IRET,STI,CLI,Lock Executed 10PL-sensitive 
8086IN,OUT,INS,OUTS Executed I/O Map-sensitive 
80286 ARPL, LSL, etc. Opcode Fault Opcode Fault 
80286 LMSW, LlDT, etc. Executed GP Fault 
80286 ENTER, SOUND, etc. Executed Executed 
80386 32-bit extensions Executed Executed 
80386 LFS, LGS, ST, SLD, etc. Executed Executed 
80386 MOV CRO, MOV Dr, etc. Executed GP Fault 
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be executed, as shown in Table 9-1. Note that, as described in the next section, the 80386 
32-bit instruction and operand addressing extensions (specified with 66H and 67H prefixes) 
can be executed in real and V86 modes, but are subject to 64 Kbyte limit checking. For 
example, an attempt to JMP or CALL to an offset greater than 64K results in a general 
protection exception, as does an attempt to address an operand located at an offset higher 
than 64K. 

9.1.2 Pseudodescriptors 

In real mode and V86 mode, as in protected mode, the 80386 uses the values in its descriptor 
registers to form and check linear addresses. When the descriptor registers are loaded with 
the values shown in Table 9-1, the 80386 mimics the logical-to-linear address translation of 
the 8086. However, descriptors do not exist in real mode and V86 mode; therefore, the 
contents of the descriptor registers in these modes are called pseudodescriptors. (Note also 
that no descriptor has the attributes listed in Table 9-2; for example, an 80386 segment 
cannot be both executable and writeable.) The processor initializes some pseudodescriptor 
values when it is reset (see Chapter 6), and loads others when it switches from protected 
mode to V86 mode. If the operating system switches the processor from protected mode to 
real mode, the operating system must first load pseudodescriptor values, as described in 
Section 9.2. 

Software running in real mode or V86 mode can change the base address in a descriptor 
register. In these modes, the 80386 interprets a selector operand as a 16-bit address. When 
the processor loads a segment register in real mode or virtual 8086 mode, it shifts the selec­
tor value left by 4 and loads the resulting base address into the associated descriptor register. 
To compute a linear address, the 80386 adds an offset to the base address as usual; the 
resulting linear address is identical to the physical address that an 8086 computes by shifting 
a segment register value left by 4 and adding the offset. 

Table 9-2. Pseudodescriptor Attributes 

Attribute Value 

Present 1 (Present) 
Base Address <FFFFFH «1MB) 
Limit FFFFH (64KB) 
Granularity o (Byte) 
Privilege Level - V86 3 
Privilege Level - Real 0 
Expansion Direction o (Up) 
Readable 1 (Readable) 
Writeable 1 (Writeable) 
Executable 1 (Executable) 
CS Default Operand 0(16 Bits) 
SS Big o (Small) 
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The pseudodescriptor-based addressing used by the 80386 in real and virtual 8086 modes 
differs from 8086 addressing (but is identical to 80286 real mode addressing) at the one­
megabyte 8086 address space boundary. The 8086 "wraps" physical addresses that exceed 
1 megabyte (possible when a segment's base is within the top 64K of the 8086 physical 
address space); the physical address following FFFFFH is effectively O. Under the same 
conditions, the 80386, running in real or V86 mode, generates the linear address. (The highest 
linear address in real or virtual 8086 modes is lOFFEFH, the result of adding the maximum 
offset of FFFFH to the maximum base address of FFFFH shifted left 4 bits.) 8086 one­
megabyte wraparound can be simulated in V86 mode with paging (see Section 9.3.3). 

9.2 REAL MODE 

The 80386 enters real mode when it is reset; operating system software can also switch the 
80386 from protected mode to real mode. The differences between 80386 real mode and a 
true 8086 are documented in the 80386 Programmer's Reference Manual. The differences 
are minor, and most 8086 application code runs without change in 80386 real mode. 80386 
real mode is almost identical to 80286 real mode; consequently, 8086 binaries that execute 
correctly on a real mode 80286 are very likely to execute correctly on a real mode 80386 
(the 80386 Programmer's Reference Manual also describes the differences between 80286 
and 80386 real modes). 

Chapter 6 describes the values the 80386 registers contain following a hardware RESET, 
and how an operating system's initialization routine can switch the 80386 from real mode 
to protected mode. An operating system can also switch the 80386 from protected mode to 
real mode without resetting the chip. The assembly language code shown in Figure 9-1 illus­
trates the sequence of operations that switches the 80386 from protected mode to real mode. 

When the 80386 is switched to real mode, the CS descriptor register must contain values 
that are 8086-compatible. Therefore, the operating system code that performs the switch 
must reside in a code segment whose descriptor has 8086-compatible attributes: present = 1, 
privilege level = 0, limit = 64K, granularity=O, default operand size=O, conforming =0, and 
readable = 1. If paging is enabled, the code and data segments used to make the switch must 
have physical addresses that are identical to their linear addresses (that is, the PTEs that 
map these segments must define an identity mapping). The identity mapping insures that 
instructions and operands are fetched from consistent physical addresses before and after 
paging is disabled. 

Because, except for base address, descriptor register values cannot be loaded in real mode, 
8086-compatible attributes must be loaded into the data segment descriptor registers before 
switching to real mode. To load these values, the operating system can define a data segment 
descriptor that contains 8086-compatible attributes (present= 1, write able = 1, expansion 
direction=O, limit=64K, granularity=O, Big=O), and load a selector for this descriptor 
into SS, DS, ES, FS, and GS. 

If paging is enabled, it must be disabled before entering real mode. This is done by clearing 
the PG bit in CRO; the next instruction must flush the TLB by moving any value to CR3. 
The 80386 is switched to real mode by clearing the PE bit in CRO. Immediately after the 
switch, the operating system must execute a JMP instruction to flush any instructions in the 
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THIS CODE HAS ~OT BEE~ TESTED 
load data descriptor regs with values for real mode: 

load=64K, present, writeable, expand-up, byte 
granularity. New base addressees) must allow access to 
this routine's data and stack. 

MOV AX,RealModeSel selector for descriptor 
with real mode attributes 

MOV D5,AX 
MOV E5,AX 
MOV 55,AX 
MOV FS,AX 
MOV GS,AX 

prevent maskable interrupts while changing modes 
CLI 

turn off paging 
MOV EAX,CRO 
A~D EAX,7FFFFFFEH 
MOV CRO,EAX 
MOV CR3,EAX 

; t urn off protection 
JMP FlushG 

; get current CRO 
; turn off PG and PE bits 
; disable paging, protection 
flush TLB by loading any value 

FlushG: 
; set up real 

MOV 
MOV 

; flush prefetch ~ueue 
; now in real mode 

mode interrupt table; can be at any address 
AX,IntTabBase 

load 

loa d 

LI DT 
5 T I 

8086 
MOV 
MOV 
MOV 
MOV 
MOV 
MOV 

D S , A X 
IntTabOffset ; address of real mode int tbl 

; interrupts on again 
program base 

AX,10aOH 
D S , A X 
E5,AX 

addresses into data descriptor regs 
1000H is just an example 

55 , A X 
F 5, A X 
GS,AX 

C5 with 
JMP 

real mode attributes 
far ptr Entry86 

and jump to 8086 program 

Figure 9-1. Switching to Real Mode 

80386 prefetch queue; such instructions have been decoded in protected mode and can be 
executed incorrectly in real mode. 

The operating system must load IDTR with the address of the 8086 interrupt vector table. 
(The 80386 LIDT instruction works in real mode.) Unlike the 8086, the 80386 allows the 
interrupt vector table to reside at any linear address. Interrupts can be enabled after the real 
mode interrupt vector table has been established. 

The base address values of the data descriptor registers can be loaded in the same way they 
are loaded in an 8086 program. Finally, the operating system call issue an intersegment JMP 
to the 8086 code. When executed in real mode, an intersegment JMP instruction loads the 
CS descriptor register with real mode attributes. 
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Nonmaskable interrupts can complicate switching to real mode because it is impossible to 
switch to real mode and switch to an 8086 interrupt vector table simultaneously. There is 
always an instant when the processor is in one mode but IDTR points to an interrupt table 
that has the format of the other mode. Systems that have supporting external hardware 
should disable nonmaskable interrupts, just as they disable maskable interrupts, during the 
switch. If nonmaskable interrupts cannot be disabled, the IDT must be overwritten with an 
8086-format interrupt vector at offset 8 (the offset of the 8086 NMI interrupt vector). The 
4-byte vector must be written with a single 32-bit MOV instruction (use 66H prefix), and 
the vector must be written after nonmaskable interrupts have been disabled and before 
switching to real mode. The 8086 vector at offset 8 of the IDT permits the processor to 
vector a nonmaskable interrupt through the protected mode IDT, should such an interrupt 
occur after real mode has been entered, but before the real mode interrupt table has been 
established. 

9.3 VIRTUAL 8086 MODE 

An 8086 application typically runs in a single task unprotected environment. The 8086 does 
not constrain the application in any way; it can issue all instructions and access all of memory. 
In the multitask protected mode environment of the 80386, only the operating system can 
issue all instructions and access all of memory; application code is usually constrained to 
addressing a subset of the address space and to executing a subset of the instruction set. 
Using virtual 8086 mode, an operating system can integrate an existing 8086 program into 
the protected, multitask (and optionally paged) environment of the 80386. The key attri­
butes of a V86 task are summarized below and are described in more detail in the rest of 
this section: 

• The VM bit (in EFLAGS) of a V86 task is 1. 

• A V86 task runs at privilege level 3 when executing 8086 instructions; interrupts and 
exceptions switch the processor from V86 mode to protected mode and from privilege 
level 3 to privilege level 0; IRET instructions return the processor to V86 mode and 
privilege level 3. 

• A V86 task can execute concurrently with protected mode (VM = 0) 80386 tasks, other 
V86 tasks, and 80286 tasks. 

• V86 tasks are compatible with paging and with virtual memory. 

A V86 task can be allowed to reference memory-mapped and I/O-mapped devices, or 
these references can be trapped and simulated by the 80386 operating system. 

• A V86 task can be allowed to access the 80386 interrupt enable flag (IF), or references 
to IF can be trapped and simulated by the operating system. 
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9.3.1 Virtual Machine Monitors 

Because their programs were written for a different machine and a different operating system, 
V86 tasks incur exceptions that the 80386 operating system must handle specially. For 
example, suppose a protected mode task issues an INT 21 H instruction. Such an instruction 
is likely to be erroneous and cause for termination of the task. However, the same instruction 
issued by a V86 mode task might represent a legitimate 8086 operating system call. 

It is convenient to package the code that responds specially to V86 exceptions in a procedure 
(or collection of procedures) called a virtual machine monitor (VMM). A VMM simulates 
the 8086 instructions that the 80386 will not execute in V86 mode. The virtual machine 
monitor's code must be contained in a 32-bit code segment whose DPL is O. As Figure 9-2 
shows, the VMM is called by an exception handler when the exception occurs in the context 
of a V86 task. To identify a V86 task, an exception handler can examine the VM bit in the 
EFLAGS image the 80386 saves on the handler's stack (Section 9.3.4 describes the format 
of a handler's stack when it is invoked in a V86 task). 

To simulate an 8086 instruction, the VMM must locate and decode the instruction. The CS 
and EIP fields pushed onto the exception handler's stack contain the logical address of the 
faulting instruction. After simulating an instruction, the VMM must increment the EIP 
value on the stack so the V86 task will execute the following instruction when the exception 
handler returns. Note that a VMM should simulate only 8086 instructions; if an erroneous 
V86 task issues a privileged 80386 instruction, such as LGDT, the VMM should terminate 
the task. 

9.3.2 Task Management 

An 80386 operating system can create a V86 task directly, or it can create a protected mode 
task that transforms itself to a V86 task. To create a task that begins execution in virtual 
8086 mode, an 80386 TSS must be initialized as follows: 

• Set the EFLAGS VM bit to 1. 

• Set the CS selector field so that when shifted left by 4, the result is the linear base 
address of the task's initial code segment. 

Set the IP field to the task's entry point. 

Set 10PL (in the EFLAGS field) to 3 if the task is to be able to access the interrupt 
enable flag; otherwise, set 10PL to 0 (see Section 9.3.4). 

Set the LDT selector field to 0 (null). (LDTs are not used in V86 mode; however, if an 
interrupt or exception procedure uses an LDT, the task's LDT selector must be initial­
ized with a non-null selector.) 

Initialize the I/O permission map to grant or deny access to I/O ports (see 
Section 9.3.6); setting the permission map base field to FFFFH is equivalent to setting 
all permission bits (that is, to prohibiting all I/0 space accesses). 
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In all other respects, V86 task creation is identical to protected mode task creation. When 
the TSS and other data structures used by the task are in place, the V86 task can be sched­
uled and dispatched like any protected mode task. When the V86 TSS is the new task in a 
task switch, the 80386 loads EFLAGS; because the VM bit is set, the 80386 switches to 
virtual 8086 mode. The processor interprets the remaining TSS fields as containing V86 
values and loads them accordingly. 

The second way to create a V86 task is to create a protected mode task that, running at 
privilege level 0, changes itself to a V86 task. To perform this transformation, the protected 
mode task must push a stack frame onto the level 0 stack that is identical to the frame 
pushed by the 80386 when a V86 task is interrupted or incurs an exception. Figure 9-4 shows 
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the format of this stack frame. If the protected mode task then issues an IRET instruction, 
the 80386 loads the V86-format stack frame into its registers and continues execution in 
V86 mode. On the next task switch, the 80386 saves the V86 task's registers in V86 format. 

9.3.3 Memory Management 

Paging can be enabled as usual when virtual 8086 mode tasks are present. Indeed, if multiple 
V86 tasks can run concurrently, paging must be used to separate their physical address 
spaces; all V86 tasks run in the first megabyte of the linear space, as shown in Figure 9-3. 
With respect to paging, including page swapping, a V86 task is no different from a protected 
mode task; the guidelines provided in Chapter 2 apply to both kinds of tasks. 

The 8086's I-megabyte wraparound can be simulated with aliased pages. 256 page table 
entries are required to define a I-megabyte physical address space and 16 more PTEs are 
required to define the 65,519 bytes above 1 megabyte that a V86 task can potentially address. 
By making the first 16 and the last 16 PTEs identical, any V86 reference to a linear address 
above 1 megabyte is relocated to the same physical address as a reference to the same 
displacement from linear address O. In other words, the first and last 64 Kbytes of the linear 
space are mapped to the same physical pages. Note that as with all aliasing, this technique 
requires some extra operating system bookkeeping because multiple PTEs point to the same 
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physical pages. For example, to swap out an aliased page, both PTEs that point to the page 
must be marked not-present. 

9.3.4 Interrupts and Exceptions 

In virtual 8086 mode, the processor treats interrupts and exceptions as it does when running 
in protected mode, except that it switches from V86 mode to protected mode before invoking 
a handler. When the handler issues an IRET instruction, the 80386 switches back to V86 
mode and resumes execution of the V86 task. For the automatic V86-protected mode switch­
ing to operate properly, an operating system must observe the following: 

• All gates in the IDT must be 80386 gates. 

• Procedure-based handlers must reside in non-conforming privilege level 0 code segments; 
task-based handlers can run at any privilege level. 

9.3.4.1 HANDLER CONSIDERATIONS 

When a V86 task incurs an exception or is interrupted, the 80386 invokes the handler in a 
way that minimizes the difference between the V86 task and a protected mode task. If the 
interrupt or exception handler is a task, the 80386 switches to the handler task as usual, 
saving the V86 task's machine state in the old TSS. If the handler is a procedure, the 80386 
first saves the V86 task's segment registers on the level 0 stack {see Figure 9-4}, and then 
saves the usual EFLAGS, return address, and error code, as applicable to the interrupt or 
exception. {Pushing the additional segment registers slightly increases interrupt latency.} 
Because the top stack elements are identical when a handler is invoked in a protected mode 
task or in a V86 task, the handler can invariably return with an IRET instruction. 

At entry to the handler, DS, ES, FS, and GS contain null selectors; SS and CS contain valid 
selectors as usual. If the handler needs to use DS-GS, it can push the segment registers in 
its prolog and pop them in its epilog without regard for the mode of the running task. When 
the handler issues an IRET instruction, the 80386 pops EIP, CS, EFLAGS, ESP, and SS 
from the handler's stack into the corresponding registers. When, after popping EFLAGS, 
the processor's VM bit is set, the processor additionally pops DS-GS from the stack. 

The presence of V86 tasks is generally transparent to procedure-based interrupt and excep­
tion handlers. However, as mentioned earlier in Section 9.3.1, some exception handlers must 
examine the VM bit on the stack and call the virtual machine monitor if VM is set. Note 
also that interrupt or exception handlers that alter the running task's DS, ES, FS, or GS 
registers cannot do so directly if the running task is a V86 task; instead they must alter the 
register values on the level 0 stack. 

9.3.4.2 INTERRUPT ENABLE FLAG CONSIDERATIONS 

Some 8086 programs disable interrupts while they perform critical operations. An 80386 
operating system can allow a V86 task to change IF or the operating system can direct the 
processor to raise a general protection exception if the task attempts to load or store IF. A 
V86 task runs at privilege level 3; its ability to access IF is determined by its IOPL. If a 
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V86 task's IOPL is less than 3, instructions that load or store IF result in general protection 
exceptions; the virtual machine monitor can simulate these instructions. If a V86 task's IOPL 
is equal to 3, the 80386 executes IF-related instructions. Because of the potential risk to the 
rest of the system, in general, a V86 task's IOPL should be set to 3 only when performance 
requirements cannot be met by simulating IF. 

If a V86 task is denied direct access to IF, the VMM must simulate the following instruc­
tions: PUSHF, POPF, INT n, IRET, ST!, and CLI. The VMM can maintain a variable 
(perhaps in the software portion of the task's TSS) that represents the task's simulated IF, 
supplying the variable's value to simulate instructions that store IF (for example, PUSHF) 
and updating the variable to simulate instructions that load IF (ST!, for example). 

Systems that permit V86 tasks to alter IF can deploy a hardware watchdog timer that gener­
ates a nonmaskable interrupt if a V86 task disables interrupts for too long. The watchdog 
timer can be implemented in coordination with the customary system timer that regularly 
interrupts on the INTR pin. Whenever the system timer interrupts, the operating system 
can load the watchdog timer with the value it loads into the system timer plus the maximum 
time interrupts are permitted to be disabled. As long as the system timer interrupts on 
schedule, the watchdog does not interrupt. If interrupts are disabled too long, however, the 
watchdog timer generates a nonmaskable interrupt, allowing the operating system to enable 
interrupts and terminate the V86 task. 

Note that a V86 task whose IOPL is 3 can potentially issue any of the 256 INT instructions. 
To prevent such a V86 task from invoking an interrupt or exception handler with an INT n 
instruction, set the DPL field in the handler's IDT gate to O. An attempt to invoke a handler 
through a gate whose DPL is 0 will result in a general protection exception; the VMM can 
then terminate the V86 task. If an IDT gate's DPL must be set to 3 to allow protected mode 
tasks running at privilege level 3 to invoke the associated handler, the handler can identify 
an erroneous V86 task by examining the VM bit on its stack. The handler can then call the 
virtual machine monitor which can terminate the V86 task. 

9.3.4.3 SIMULATING INTERRUPTS 

An 80386 operating system can deliver simulated interrupts to a V86 task. The technique is 
identical to reflecting a system call, described in Section 9.3.5. In essence, the virtual machine 
monitor builds a stack frame whose return address is the entry point of the V86 interrupt 
handler, and then issues an IRET instruction. 

9.3.5 System Calls 

Many 8086 operating systems use an INT n instruction for a system call. A V86 task's 
ability to execute an INT n instruction depends on the task's IOPL. If the V86 task's IOPL 
is less than 3, an INT n instruction results in a general protection exception. Invoked by the 
general protection exception handler, the VMM can handle the 8086 system call in one of 
two ways: it can simulate the call by making an equivalent call on the 80386 operating 
system, or it can reflect the call to a copy of the 8086 operating system loaded into the V86 
task's address space (see Figure 9-5, which, for simplicity, omits the exception handler that 
calls the VMM). If a V86 task's IOPL is 3, it can issue an INT n instruction, which will 

9-11 



PRIVILEGE 
LEVEL 

0 

3 

8086 COMPATIBILITY 

G)RET 
80386 -=-- 80386 

OPERATING 
CALL 

OPERATING 
SYSTEM 

CD 
SYSTEM 

CD IRET - -
VIRTUAL 

~ 
VIRTUAL 

MACHINE MACHINE 
MONITOR r-- MONITOR f-----

I- I-

INT 
INT 

CD CD 
8086 I~ 8086 

-.=;.. 

APPLICATION APPLICATION 
CD IRET 

CD --=-
8086 

OPERATION 
G)IRET 

SYSTEM 

a. SIMULATION b. REFLECTION 

G30287 

Figure 9-5. Simulating and Reflecting V86 System Calls 

invoke the 80386 handler pointed to by gate n in the IDT. This handler can call the virtual 
machine monitor which can simulate or reflect the system call. 

To simulate an 8086 system call, the VMM must decode the call, transform the call and the 
parameters to 80386 operating system equivalents, and call the 80386 operating system. 
When the 80386 operating system returns to the VMM, the VMM must transform the 
results into the format expected by the V86 task, advance the V86's task's saved EIP, and 
return to the V86 task with an IRET instruction. 

If V86 system calls are to be handled by a copy of the 8086 operating system, the 8086 
operating system must be allowed to initialize itself before any application code is executed. 
One way to do this is to load the 8086 operating system and let the 8086 operating system 
load the application. The 80386 operating system may need to invoke the 8086 operating 
system (using an IRET instruction) at an entry point other than its RESET address to avoid 
low-level hardware-dependent operations that can raise unnecessary exceptions if executed 
by a V86 task. Having initialized itself, a typical 8086 operating system can then wait for a 
command from an end-user. When a command requires loading an application, the 8086 
operating system can do it. 
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Assuming an 8086 operating system and an 8086 application program reside together in a 
V86 task's address space, the virtual machine monitor can reflect a system call to the 8086 
operating system as follows: 

• Push a copy of the V86 task's stack frame (its segment registers, stack pointer, EFLAGS, 
and return address) onto the level 0 stack. 

Change the return address in the copied frame to the 8086 operating system's entry 
point (for an INT n system call, the address is located at linear address 4*n, that is, in 
the nth slot of the 8086 interrupt vector table). 

• Simulate the 8086 INT instruction's push of the V86 task's FLAGS, CS, and IP onto 
the level 3 stack; adjust ESP in the copied stack frame on the level 0 stack to reflect the 
simulated push. 

Issue an IRET instruction to switch to virtual 8086 mode and transfer to the 8086 
operating system's system call entry point. 

When the 8086 operating issues an 8086 IRET instruction to return to the 8086 application, 
the VMM is invoked again. The VMM can return control to the 8086 application as follows: 

Adjust ESP to point to the original stack frame return address. 

Simulate the 8086 IRET instruction by copying FLAGS, CS and IP from the level 3 
stack to their corresponding locations in the original stack frame (ESP in the original 
stack frame is correct as is). 

• Increment EIP on the level 0 stack so it points to the instruction after the INT n 
instruction. 

• Return to the exception handler which should return to the V86 task with an IRET 
instruction. 

When paging is enabled. multiple V86 tasks can run concurrently, and a single copy of a 
reentrant 8086 operating system can be mapped into the address spaces of all V86 tasks. If 
the 8086 operating system is not reentrant, each V86 task must have its own copy of the 
8086 operating system data; a single copy of the operating system code can be shared among 
the V86 tasks (unless the operating system modifies its code). Note that existence of multi­
ple copies of an 8086 operating system necessitates coordinating their accesses to shared 
I/O devices (each copy of the 8086 operating system probably assumes it has exclusive 
access to all I/O devices). Section 9.3.6 describes how the virtual machine monitor can gain 
control when any of the 8086 operating systems attempts to access an I/O device. 

9.3.6 Input/Output 

A V86 task addresses a memory-mapped I/O device just as if it were running on an 8086. 
If paging is enabled, V86 task references to memory-mapped devices can be relocated 
automatically. For example, an 80386-based system may have a memory-mapped video 
refresh buffer located at a physical address higher than I megabyte. A similar buffer on an 
8086-based system must necessarily be located below the 8086's I-megabyte physical address 
limit. An 80386 operating system can initialize a V86 task's page tables so that its references 
to the addresses of the 8086-based buffer are automatically translated to the addresses of 
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the 80386 buffer. Because this technique relocates all addresses in a page, it is best-suited 
to devices aligned on 4 Kbyte boundaries. 

By clearing bits in a V86 task's I/O permission map, an 80386 operating system can permit 
the task to access selected I/O ports directly. (Chapter 5 describes the format and operation 
of the I/O permission map.) Note that, unlike a protected mode task, a V86 task's 10PL is 
irrelevant to the task's ability to access I/O ports; the 80386 examines only the I/O permis­
sion bits to determine V86 I/O port accessibility. 

The accesses of multiple V86 tasks to the same I/O ports (whether memory- or I/O-mapped) 
must be serialized. Unless all V86 tasks perform I/O via a single copy of an 8086 operating 
system which performs the serialization, the serialization must be provided by the VMM. 
To insure that the VMM is invoked by any V86 I/O operation, I/O operations must be 
made to raise exceptions. Setting bits in the V86 task's I/O permission map makes refer­
ences to the corresponding ports raise exceptions. References to memory-mapped devices can 
be made to raise exceptions by marking the associated pages not-present and setting an 
available PTE bit to indicate "trap on I/O." The page fault handler is invoked on a refer­
ence to a not-present page; if the page's trap on I/O bit is set, the page fault handler can 
invoke the VMM. 
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CHAPTER 10 
A UNIX SYSTEM IMPLEMENTATION 

This chapter describes a hypothetical implementation of the UNIX System V kernel on the 
80386. For convenience, we call this implementation U /386, but it corresponds to no actual 
system. The chapter will be of interest to readers who 

• Want to see the 80386 system architecture applied to a complete operating system 
example 

Are porting the UNIX system to 80386-based hardware 

• Are evaluating the 80386 as a "System V engine" 

To get the most from this chapter, you should be moderately familiar with the UNIX System 
V kernel. 

Only about 10 percent of the System V kernel is written in assembly language. These assem­
bly language routines provide an interface between the processor and the bulk of the kernel, 
which is written in C. This chapter concentrates on the assembly language portions of the 
kernel because these are the routines that interact directly with the 80386 system architec­
ture. The topics covered in this chapter are the lower levels of process management, memory 
management, system calls, interrupt and exception handling, I/O, and debug support. 

Note that the UNIX System V is a proprietary product of AT&T. This chapter covers only 
subjects whose operation is common knowledge. 

10.1 U/386 IMPLEMENTATION PHILOSOPHY 

When implementing an existing operating system you must adapt one architecture to another. 
Either the operating system architecture must be adapted to the processor or the processor 
architecture must be adapted to the operating system. U /386 bridges this "architectural 
gap" by adapting the 80386 to the System V system architecture. Such an approach does 
not use every architectural feature of the 80386. However, tailoring the processor architec­
ture to the operating system illustrates the flexibility of the 80386 system architecture, and 
shows how an existing operating system can be ported to the 80386 at minimum cost and 
risk. This chapter illustrates but one way to implement the System V system on the 80386; 
other design approaches can also be justified. 

10.2 PROCESS AND MEMORY OVERVIEW 

The traditional System V process-memory model is simple, although it has recently been 
made more elaborate to support greater interprocess sharing. (A System V process is analo­
gous to an 80386 task and U /386 stores the machine state of process in a TSS.) In general, 
each process runs in its own address space, protected from all other processes. 
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The System V operating system distinguishes between user processes and system processes. 
Most processes are user processes; system processes typically perform housekeeping activi­
ties such as swapping out pages. A user process executing its own code is said to be running 
in user mode. A user mode process enters kernel mode as a result of a system call, an inter­
rupt, or an exception. In kernel mode, a process executes kernel code, which can include 
privileged instructions. The kernel's code and data are mapped into each process's address 
space, but they are not directly accessible; a user process can do nothing to the kernel but 
call it. Conversely, the kernel has access to the running process's entire address space, which 
simplifies I/O transfers. 

A process's address space is divided into functional areas called the text, data, and stack 
segments. However, from an addressing standpoint, the System V process address space is 
not segmented but uniform. For example, C programs routinely use the same pointer to 
alternately refer to an item on the stack and an item in the data segment. Although less 
common, some System V programs modify their own code or execute code that they gener­
ate on their stacks or in their data segments. Thus, System V segment types are not as 
distinct from one another as 80386 segment types. Although it is possible to map System V 
segments to 80386 segments, it is simpler to map them into what amounts to a single large 
80386 segment that is subdivided into pages; this is the approach taken by U /386. 

Figure 10-1 shows the 80386 linear address space during normal U /386 execution. A 
U /386 process uses one 80386 code and one data segment when it runs in user mode; it uses 
a different code segment and a different data segment when it runs in kernel mode. DS, ES, 
and SS are always loaded with the same descriptor. (U /386 uses ES for string instructions 
and does not use FS and GS.) The user segments begin at linear address 0 and extend over 
nearly the entire linear address space to the kernel boundary. U /386's segment arrangement 
gives each user process an unsegmented logical address space nearly 4 gigabytes long. In 
this flat address space, a pointer is simply a 32-bit offset, whether it points to code, a constant, 
or an item on the stack, because all segment base addresses are zero. Offset-only pointers 
match the C language's uniform view of the address space. Because a process's code is 
contained in a single code segment, function calls can be implemented with the fast intra­
segment (near) CALL instruction. 

The kernel's segments overlap the user's and extend to the 4 Gbyte limit of the linear address 
space. The kernel's segments have a privilege level of 0; the user segments are privilege 
level 3. Running at privilege level 0, the kernel can execute privileged instructions and is 
protected from the user. U /386 system calls, interrupts, and exceptions enter the kernel 
through a call gate, interrupt gates, and trap gates, respectively. When control passes through 
these gates, the 80386 loads the CS and SS registers automatically; the kernel loads DS and 
ES to gain access to its extended data segment. Note that by making the kernel's segments 
extended versions of the user's, a 32-bit pointer passed from user to kernel always points to 
the same linear address. U /386's segment arrangement also gives the kernel instant access 
to the user address space. 

(A different design could extend the user segments to the full 4 gigabytes and protect the 
kernel's upper 4 megabytes of the linear space with page attributes. U /386 separates kernel 
from user by segmentation rather than paging because it is natural to define the division in 
the logical rather than the linear address space. However, both approaches are workable.) 
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Figure 10-1. U/386 Linear Address Space Snapshot 
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Although U /386 uses 80386 segments lightly, it uses paging extensively to 

Sparsely allocate pages of physical memory to segments 

• Protect processes from each other by mapping them to different pages of the 80386 
physical address space 

Share memory between processes 

Implement demand paged virtual memory 

Protect a process from some of its own errors 

Although a U /386 process can be almost as large as 4 gigabytes, most System V processes 
require only a fraction of the available space. To accommodate smaller processes efficiently, 
U /386 allocates only the number of pages a process actually uses. Although every process 
occupies nearly 4 Gbytes of the linear space, most processes occupy only tens or hundreds 
of pages of the physical space. The relocation provided by paging enables the kernel to give 
each process the impression that it is loaded beginning at linear address zero, whereas it is 
actually mapped to pages scattered over the physical address space. Although most of a 
process's pages are private to the process, U /386 processes can also share pages of code and 
data. U /386 implements virtual memory by swapping infrequently used pages out to disk 
when the supply of physical memory runs low, and swapping pages in from disk on demand. 
Finally, U /386 uses the protection attributes of pages to trap wild pointers and array indexes 
that fall into unallocated or read-only pages. 

The notion of a region is central to System V memory management. A region is a sequence 
of consecutive logical addresses that the kernel can map into the user space of one or more 
processes. (Figure 10-1 shows that a process's System V segments are mapped to regions, 
and that regions are the basis for interprocess sharing.) In U /386, each active region is 
described in a kernel data structure called the region table. A region table entry points to 
the file, if any, associated with the region, and contains a field that identifies the region as 
public or private. A public region can be shared by other processes; a private region is private 
to a process. Public region table entries have a share count that indicates the number of 
processes whose address space currently includes the region. 

U /386 implements a region as a list of page tables; because a page table covers 4 megabytes 
of memory, a typical region consists of a single page table. The kernel functions a t t a c h 
and d eta c h map and unmap a public region into a process's address space. (This chapter 
uses a "special" typeface to distinguish System V terms.) The at t a c h function increments 
a public region's share count and adds entries for the region's page table(s) to the process's 
page directory. The d eta c h function invalidates the relevant page directory entries and 
decrements the share count; if the share count goes to zero (indicating the region is no longer 
attached to any process), de t a c h frees the region. 

10.3 PROCESSES 

A System V process corresponds closely to an 80386 task. It is a unit of execution that runs 
in its own address space, executing (logically) in parallel with other processes. This section 
describes how U /386 represents, creates, and terminates processes. System V processes 
frequently execute the same program (for example, the v i editor or the C compiler), making 

10-4 



A UNIX SYSTEM IMPLEMENTATION 

program sharing an important aspect of an efficient implementation. Interprocess sharing is 
described in Section 10.4.5. 

10.3.1 Representing a Process 

AU /386 process is comanaged by the U /386 operating system and the 80386. Figure 10-2 
shows the linked data structures that the operating system and the processor use to represent 
a process. The process table contains the minimal information the kernel needs to manage 
the active processes, principally each process's state and the address of its us t rue t (user 
structure). A us t rue t describes a process in detail; it contains the process's scheduling 
priority, accounting information, open file descriptors, kernel stack, and other machine­
independent data. U /386 extends the us t rue t with the 80386's task management struc­
ture, the TSS. The complete one-page structure is called the u p a 9 e and contains essen­
tially all process information. 

A process's page directory and page tables are memory management structures and are 
described in detail in Section 10.4.2. Briefly, every page directory includes a common entry 
that maps the kernel's page table so that every process shares the kernel's pages. Other page 
directory entries map the page tables that implement the process's regions. Typically, one 
page table is sufficient to represent a region because a page table covers 4 megabytes. Not 
shown in Figure 10-2 are the GDT, which is shared by all processes and is described in 
Section 10.4.1. 

Figure 10-3 shows the details of a U /386 process's TSS. (The TSS has been extended by a 
save area for the 80386 debug registers; Section 10.9 describes how this area is used.) 
U /386 does not use the back link field of the TSS, although the 80386 sets this field when 
it invokes a task-based exception handler. ESPO points to the base of the kernel stack in the 
process's us t rue t; SSO is a selector for the kernel data descriptor (described in Section 
10.4.1). The remaining privileged stack pointers are not used because U /386 does not use 
privilege levels 1 and 2. The CR3 field contains the physical address of the process's page 
directory. The ES, SS, and DS fields contain selectors for the process's data segment; the 
CS field holds the selector for the process's code segment. The F and G segment registers 
are not used in U /386, so the corresponding TSS fields contain null selectors. The LDT 
field contains 0 because U /386 tasks do not have local segments; note that their distinct 
page directories prevent tasks from accessing each other's (unshared) physical memory, even 
though they generate the same linear addresses. Because U /386 user processes are not 
permitted to operate on I/O ports, their TSSs have null I/O guard maps. 

10.3.2 Forking a Child Process 

A System V process clones itself by issuing a for k system call. U /386 implements a for k 
system call as follows: 

• Allocates a page for the new (child) process's up a 9 e. 

• Finds a free GDT slot for new process's TSS descriptor; initializes the descriptor to 
point to the TSS area of the new u p a 9 e. 

• Copies the running (parent) process's up a 9 e to the child's up a 9 e. 

10-5 



inl:el" A UNIX SYSTEM IMPLEMENTATION 

PROCESS TABLE UPAGE -
I--------I~ 
I--------I~ 

~ 
t--------1 

~ 
~------~ -

TO OTHER 
UPAGES 

\ 
\ 

TSS \ 

:..-
INSTRUCT 

PAGE TABLES 

t~----------~ -
~ 

~--------------~\ 
\ 
\ 
~ . \ 

~- ~ 
'-- ___________ - PROCESS 

DIRECTORY 

.. -----------~ ----. 
~------------~\ 

\ , 
.... _----------'111 
\ ~ 
\ \ 
\ , . \ 
I ~ 

I _ ' \ 

t.-.I \ I \ ---- -..------------'-------I.~I~ _____ -____ __ ~ 

LEGEND 

80386 
STRUCTURE 

... _------ ..... --_ .... 
SYSTEM V 

STRUCTURES 

Figure 10-2. U/386 Process Representation 

10-6 

PAGES 

G30287 



I 0 BASE '" 
LDT 0" 

GS 0" 

FS 0" 

os o .. 

S5 o .. 

CS 0" 
ES 0" 

EDI 

ESI 

EBP 

ESP 

EBX 

EDX 

ECX 

EAX 

EFLAGS 

CR3 

552 0" 
ESP2 0""" 

551 0" 
ESP1 o oil 

5S0 0""" 
ESPO 

LINK 0 .... 
31 

.J; 

DRl 

DR6 

DRS 

DR4 

DR3 

DR2 

DRI 

ORO 

A UNIX SYSTEM IMPLEMENTATION 

. ' 0" • lojoJo 
.0 0 .. .0 

.. 0 0" .. 0 

.. 0 0" .. 0 

.. 0 0 USER CODE SELECTOR 

.. 0 0 USER DATA SELECTOR 

.. 0 0 USER OAT A SELECTOR 

.. 0 a USER OAT A SELECTOR 

OFFSET OF PROCESS PAGE DIRECTORY (PHYSICAL) 

.0 0" .0 
.0 

_0 o oil .0 

"'0 

., KERNEL DATA SelECTOR 

KERNEL STACK OFFSET 

.,0 .. _0 

(AVAILABLE) 

] 

1 

NOT USED 

REGISTER VALUES WHEN 
PROCESS LAST SUSPENDED 

NOT USED 

DEBUG REGISTER 
SAVE AREA 

Figure 10-3. U/386 Process TSS 

10-7 

G30287 



A UNIX SYSTEM IMPLEMENTATION 

• Allocates a page for the child's page directory and loads the CR3 field in the child's 
TSS with the page directory's physical address. 

• Attaches the parent's code, shared library, and shared memory regions to the child's 
address space. (Sharing these regions saves copying them from parent to child.) 

• Creates a private region for the child's data region, but does not allocate the region's 
pages. Instead, U /386 copies the parent's data region page table(s) to the child, then 
marks both parent's and child's PTEs read-only and copy-on-write (explained below). 

After a for k, the child has inherited its parent's regions, except the data region. Sharing 
these regions between parent and child causes no problems because the code and shared 
library regions are read-only; the shared memory region is by definition shared. The child 
must have its own data region, however, so it can write into the region without disturbing 
its parent. However, allocating pages for the child's data region is usually wasteful because 
most children quickly execute (by calling e x e c) a different program. By marking the 
parent's and the child's data region pages read-only, copy-on-write (one of the three availa­
ble PTE bits is used to denote copy-on-write), U /386 defers allocation of data pages until 
the parent or the child actually writes into them. If the child reads a data page, it reads its 
parent's page. If the child or the parent writes into a data page, the 80386 raises a page 
fault. Noting that the target page is marked copy-on-write, the page fault handler allocates 
a page for the child, copies the parent's page to the child's, and makes both PTEs writeable. 

10.3.3 Executing a New Program 

A System V process executes a different program by issuing an e x e c system call. This call 
detaches the process's regions and then scans the region table for a public text region with 
the same name as the new program. If the program is found, e x e c attaches the text region 
to the process. If the text region is not found, e x e c creates a region for the text and fills it 
with text from the file; the new region is marked public if the file indicates that the program 
is pure (does not modify its code). e x e c then finds the file containing the program and 
creates a private region large enough to hold the program's data. ex e c does not load the 
data pages from the file, however, but initializes the process's page tables so the data pages 
demand-page in as they are referenced. e x e c does not return to its caller, but to the program 
it has just loaded. 

10.3.4 Process Switching 

To change processes, a kernel function (typically 5 1 e e p) or the interrupt dispatcher 
(explained in Section 10.6.1) calls a kernel function called 5 wit c h. 5 wit c h saves the 
machine context of the old process and loads the machine context of the new process with a 
single JMP TSS instruction. 

10.3.5 Process Termination 

A process terminates by calling the kernel's e x i t function. e x i t cleans up the process 
by closing open files, and so on. To release the process's user memory, ex i t calls de t a c h 
for each of the process's regions. If the child's parent is waiting for the child to terminate, 
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e x i t awakens the parent; if the parent is not waiting, ex i t sends the parent a SIGCHLD 
signal so the parent will wait. (The kernel's i nit process waits for children whose parents 
have predeceased them.) When it has finished, e x i t calls 5 wit c h. When the terminated 
process's parent executes wa it, wa i t deletes the child from the process table and frees 
its page directory, u p a 9 e, and other kernel resources assigned ot it. 

10.4 MEMORY MANAGEMENT 

U /386 uses a combination of segmentation and paging to implement a memory management 
scheme that neatly matches the System V design. 

10.4.1 Descriptor Tables 

Figure 10-4 shows the GDT that all U /386 processes share. This simple structure contains 
one code descriptor that describes the kernel's code segment and one data descriptor that 
describes the kernel's data, stack, and extra segments. (In kernel mode the DS, SS, and ES 
registers all select the same descriptor.) Table 10-1 gives the attributes of these descriptors. 

The user segments are similarly described by a code descriptor and a data descriptor in the 
GDT. (U /386 processes do not use an LDT; the per-process page directory separates the 
physical address spaces of processes.) Except for privilege level and limit, the user code and 
data descriptors are identical to the kernel's (see Table 10-2). U /386's system call gate is 
located in the GDT; Section 10.5 gives the attributes of this gate. The remaining GDT 
entries are for TSS descriptors, one descriptor for each active U /386 process. 
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TSS DESCRIPTOR 

SYSTEM CALL GATE 

USER DATA DESCRIPTOR 

USER CODE DESCRIPTOR 

KERNEL OAT A DESCRIPTOR 

KERNEL CODE DESCRIPTOR 

o "" ~ 0 
o 

G30287 

Figure 10-4. U/386 GOT Layout 
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Table 10-1. U/386 Kernel Segment Descriptors 

Attribute Code Data 

Base OH OH 
Limit OFFFFFH OFFFFFH 
Granularity 1B 1B 
Default32/Big 1B 1B 
Present 1B 1B 
Privilege Level OOB OOB 
Segment Oeser. 1B 1B 
Executable 1B OB 
Conform./Ex. Down OB OB 
Read/Write 1B 1B 

Table 10-2. U/386 User Segment Descriptors 

Attribute Code Data 

Base OH OH 
Limit OFF6FFH OFF6FFH 
Granularity 1B 1B 
Default32/Big 1B 1B 
Present 1B 1B 
Privilege Level 11B 11B 
Segment Oescr. 1B 1B 
Executable 1B OB 
Conform./Ex. Down OB OB 
Read/Write 1B 1B 

Figure 10-5 shows that all U /386 kernel data structures, whether defined by System V or 
the 80386, are effectively aliased by the kernel's data segment. This arrangement permits 
the kernel to update any of the 80386 system segments and tables (for example, TSSs and 
the GDT) without maintaining a separate data segment alias for each such segment or table. 

10.4.2 Directories and Page Tables 

Each U /386 process has its own page directory, allowing its physical address space to be 
separated from those of other processes. Figure 10-6 shows how a typical page directory is 
laid out. (This example shows a process whose regions are all less than 4 megabytes in 
length.) 

The page directory entries correspond to System V regions (recall that U /386 implements 
regions with page tables). Although every process has a private data region, its other regions 
are (or may be, in the case of text) public. Thus, the kernel and shared library page directory 
entries are identical in all page directories; processes that execute the same program have 
the same text entry; and processes that attach to the same shared memory region share that 
entry as well (for simplicity, Figure 10-6 shows only a single shared memory region). Sharing 
page tables among processes is described in more detail in Section 10.4.5. 
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Figure 10-5. U/386 Kernel Data Segment 

G302B7 

Table 10-3 shows how the entries in a page directory are encoded. The basic rules are 

• All pages but the kernel's are accessible to the user. (Page-protecting the kernel's memory 
is technically redundant because it is already segment-protected.) 

• All pages permit read-write access except for those containing code. 

• The PDEs of all defined page tables are always marked present; pages are made not­
present by changing their PTEs. 
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Figure 10-6. Typical U/386 Process Page Directory 

Table 10-3. U/386 Page Directory Entry Attributes 

Attribute Kernel ShLib. ShMem. Data Text 

User/Super. OB 1B 1B 1B 1B 
Read/Write 1B OB 1B 1B OB 
Present 1B 1B 1B 1B 1B 

Process page table entries have the same attributes as their page directory entries (for 
example, text pages are read-only), except that the present bit changes dynamically as the 
virtual memory subsystem moves pages between memory and disk. Because processes share 
several page tables, the U /386 per-process page table overhead is minimal. A new process 
requires only a data page table if it shares text with another process, or a data and a text 
page table if no other process is executing the same program. 

10_4.3 Managing the Stack and the Heap 

A U /386 process's stack and heap are located at opposite ends of its data region and grow 
toward each other as shown in Figure 10-7. The heap grows toward higher addresses as a 
result of explicit 5 b r k system calls. (The top of the heap is called the break and 5 b r k 
"sets the break.") The stack grows down automatically as a result of page faults. 

When it creates a process, the kernel marks the pages between the initial top of the stack 
and the initial top of the heap as not-present, both to avoid allocating pages that are not in 
use, and to trap references to these unallocated pages. The page fault handler treats a refer­
ence to one of these not-present and unallocated pages as an implicit request to extend the 
stack. After checking that the referenced page is not below the break (that is, it has not been 
allocated to the heap), the page fault handler allocates the page and marks it present. 

10-12 



A UNIX SYSTEM IMPLEMENTATION 

STACK GROUPS + 

AVAILABLE 
FOR STACK OR 
HEAD EXPANSION 

HEAD GROWS t 

~ 

HIGH MEMORY 

ALLOCATED 
STACK 
PAGE 

ALLOCATED 
STACK 
PAGE 

ALLOCATED 
STACK 
PAGE 

~ BREAK 

ALLOCATED 
HEAD 
PAGE 

ALLOCATED 
HEAD 
PAGE 

LOW MEMORY 

Figure 10-7. U/386 Stack and Heap Expansion 
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The heap grows up toward the stack by explicit calls to the kernel's 5 b r k system call. Such 
calls are typically made by language run-time routines such as mal 1 0 c in C. 5 b r k moves 
the break up by the number of bytes requested in the call, rounded up to the next page 
boundary. 5 b r k does not allocate the pages just added to the heap; the pages are allocated 
by the page fault handler when and if the pages are referenced. 
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10.4.4 Protection 

Although it is mapped into the address space of every process, the kernel's memory is 
protected by its privilege level. Kernel segments are privilege level 0; user segments are privi­
lege level 3. (Kernel pages also have supervisor privilege and user pages have user privilege, 
but this protection is redundant in U /386 because the 80386 checks segment privilege levels 
first.) User code has no direct access to kernel memory, only indirect access through the 
system call gate. 

When the kernel creates a user process, it sets the process's IOPL to 0; this prevents the 
process from issuing I/O instructions except when it is running at privilege level 0 - that 
is, when it is executing kernel code. (The I/O guard map base field of U /386 TSSs is set to 
FFFFH, which effectively sets guard bits on all ports.) User code cannot issue 80386 privi­
leged instructions because user code always runs at privilege level 3. 

Every U /386 process is mapped to the same linear addresses because every process shares 
the GDT. To protect processes from each other, U /386 processes have separate page direc­
tories. Every process has a different set of pages in the physical address space, except for 
the kernel pages, which all processes share, and the shared regions described in the next 
section. 

Separate page directories protect processes from each other, whereas page protection attri­
butes protect a process from some of its own errors. If a process executes a pure program, 
the kernel marks the process's code pages read-only. Although a process's allocated data 
pages are marked read-write, the free pages lying between its stack and heap are marked 
not-present, allowing the processor to trap references to these pages caused by wild pointers 
or array indexes. Note that because a process's read-write data segment overlays its read­
only code segment in the linear space, a program, such as an interpreter, can write instruc­
tions into its data segment and then execute them by jumping to the same address in its code 
segment. (The 80386 does not define writeable code segments.) 

10.4.5 Sharing 

System V processes run in separate address spaces, but in System V they can share programs, 
library routines, and data. Regions allow these diverse entities to be shared in a uniform 
way. U /386 implements regions with 80386 page tables. Page tables are convenient units 
for sharing because a shared page is described by a single page table entry. To change the 
attributes of a page, for example, to mark it not-present after swapping it out, the kernel 
has only one page table entry to update. 

Besides sharing entire program texts (see Section 10.3.3), System V allows frequently used 
functions to be shared across programs. Such functions, which typically include standard 
I/O and string handling routines, are contained in shared libraries known to the linker. 
When the linker encounters a reference to a shared library function, it does not insert the 
function's code into the object file, but rather a special identifier. At initialization time, the 
kernel loads shared libraries into the public shared library region. As it loads a program, the 
kernel resolves object file references to shared libraries with addresses in the shared library 
region. 
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Processes can share data through System V's shared memory facility. U /386 implements 
shared memory as public regions (that is, as shared page tables). The kernel honors a process's 
request to attach shared memory by simply attaching the region like any other. 

10.4.6 Virtual Memory 

The U /386 kernel demand pages the user space but not the kernel space. Although this 
approach is typical of System V implementations, a more sophisticated design could page 
out at least part of the kernel, for example, the per-process u p a 9 e s, page directories, and 
page tables. 

U /386 virtual memory management consists of a system process called the pager and the 
page fault handler, which is implemented as a procedure. Figure 10-8 shows the format of 
the page table entries used by the pager and the page fault handler. 

The locked bit identifies a page that should be immune from paging and swapping. The 
copy-on-write bit identifies a parent's data page that should not be copied to the child's 
address space until the child writes to the page. The disk block number of a swapped-out 
page is kept in the disk address field. 

U /386 also defines a free frame list, which contains page frames that are available for 
allocation, and an allocated frame list which defines allocated page frames. U /386 always 
allocates from the front of the free frame list, but may place a newly freed frame on the 
front or the back. A frame goes on the front of the list if the data in the frame is of no 
further use (a frame from a terminated process's stack is an example). A frame containing 
data that may be needed again (for example, a text page from a process) is placed on the 
back of the list to delay its reallocation. Frames can be reclaimed quickly from the free list 
as described below. 

NOT USED --------..., 

1 ~ LOCKED --------::1 1 
31 l o 

PAGE FRAME ADDRESS 

1 ~1 COPY OR WRITE -------,.10 

DISK ADDRESS 
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Figure 10-8. U/386 Present and Not-Present Page Table Entries 
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The kernel activates the pager process when the number of free frames reaches a "low water 
mark"; the pager runs until it builds the list up to a "high water mark." Ignoring locked 
pages, the pager cycles around the circular allocated frame list, examining each frame's 
accessed bit (that is, the accessed bit of the PTE that maps the frame). If the accessed bit 
is set, the page was used recently; the pager clears the bit and moves to the next allocated 
frame. If the accessed bit is clear, the page has not been used recently (that is, the page has 
not been accessed since the pager last cleared the page's accessed bit). Such a page is a good 
candidate to page out so its frame can be freed. 

Having identified a page to remove from memory, the pager examines the page's dirty bit 
to determine if the page must be written to disk. If the dirty bit is set, the page has been 
updated since it was swapped-in and must be written to disk. If the dirty bit is clear, the 
disk copy of the page is current. (The page fault handler clears the dirty bit when it 
swaps-in a page.) If the page does not need to be written, the pager marks the page not­
present and adds the page to the tail of the free list. Otherwise, the pager adds the page to 
a list of pages that must be written to disk. Another system process writes these pages and 
then frees their frames. 

When a process attempts to access a not-present page, the 80386 invokes the page fault 
handler. The U /386 handler is implemented as a procedure that runs in the context of the 
faulting process. The page fault handler uses CR2 and CR3 to find the not-present page 
table entry that caused the fault. To retrieve the page, the handler first searches the free list 
for the page frame. If the handler finds the page on the free list, it reclaims the frame by 
removing it from the free list and adding it to the allocated list; it then marks the PTE 
present and accessed, and returns. If the frame is not on the free list, the page fault handler 
allocates a frame from the head of the free list and calls the page device driver to read the 
page into the frame. The handler puts it process to sleep until the page has been read. When 
awakened, the handler updates the page's PTE with its new frame address, marks the page 
present and accessed (so it will stay in memory for at least one pager cycle), and returns. 

10.4.7 Locking 

A System V process (running with super-user privilege) can prevent itself from being paged 
or swapped out by issuing the p 1 0 c k system call. U /386 locks a process in memory by 
first setting a flag in the process's u p age to mark the process locked. This makes the 
process immune to swapping (process swapping, not page swapping). p 1 0 c k then sets the 
lock bit in all of the process's present pages. Whenever the page fault handler brings in a 
page, it checks the process's lock bit in the u p age. If it is set, the pager marks the page's 
PTE locked to prevent it from being paged out. 

10.5 SYSTEM CALLS 

A typical UNIX system call is made from a high-level language such as C, and is ultimately 
handled by a C function in the kernel. Between the caller and the handler is some assembly 
languge that provides a language-independent interface across the user-kernel protection 
boundary. Figure 10-9 shows how this assembly language is implemented in U /386. 
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U /386 follows the conventional System V practice of providing a single kernel entry point, 
implemented as an 80386 call gate. Table 10-4 shows the attributes of the U /386 system 
call gate. 

In Figure 10-9, the two key routines are the system call interface (one for each system call) 
and the call dispatcher interface. The call interface is the function the linker provides to 
satisfy the user program's reference to a system call. Following normal C practice, at entry 
to the call interface, the parameters to be passed to the system function are on the stack. 
The call interface pushes any registers that contain C register variables. It then loads EAX 
with a number that identifies the system call to the call dispatcher. The call interface then 
copies parameters from the stack to registers and issues an intersegment CALL to the kernel's 
call gate. The call gate is initialized to copy 0 doublewords of parameters from the user's to 
the kernel's stack. 
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Table 10-4. U/386 Call Gate Attributes 

Attribute Value 

Selector (Kernel Code Descriptor in GOT) 
Offset (Dispatcher Interface) 
Present 18 
Privilege Level 118 
Type 011008 
Dword Count 000008 

The intersegment CALL (whose selector operand is a call gate) instruction loads SS and 
CS; consequently, the process's privilege level is changed to 0, and the kernel uses the stack 
provided for it in the process's u p a 9 e. The dispatcher interface pushes all registers (this 
puts the system call parameters and the call number on the kernel's stack) and loads DS 
and ES with the kernel's data segment selector. Having established addressability and a 
calling environment that conforms to C's calling conventions, the call dispatcher interface 
calls the call dispatcher. 

The machine-dependent transitions from the user's environment to the kernel's is now 
complete, and the rest of the system call is handled in C. Using the call number as an index, 
the call dispatcher calls the function in the kernel that handles the system call. When the 
function returns to the call dispatcher, the call dispatcher checks a flag to see if the call (or 
an interrupt) has made a higher priority process ready. If so, the dispatcher calls s wit c h 
to switch processes rather than returning via the dispatcher interface and system call inter­
face to the user code. The next time the process runs, control will return to the user by this 
route. 

10.6 INTERRUPTS AND EXCEPTIONS 

System V and the 80386 inevitably handle interrupts and exceptions somewhat differently. 
With a small amount of assembly language, however, the 80386 can be tailored to fit the 
System V model neatly, as described in this section. 

10.6.1 Interrupts 

System V dispatches interrupts in much the same way that it dispatches system calls. (Note 
that the system call dispatcher and the interrupt dispatcher distribute system calls and inter­
rupts to their respective handlers; these dispatchers are distinct from the dispatcher that 
switches processes.) U /386 essentially provides an assembly language interface between the 
8259A Programmable Interrupt Controller(s) and the System V interrupt dispatcher. 
Figure 10-10 shows this interface. Each interrupt source is associated with a different inter­
rupt gate in the IDT. The interrupt gate points to a short device-specific piece of privilege 
level 0 code that saves the ID of the interrupting device on the kernel stack. (The interrupt 
gate is initialized so that an interrupt switches the 80386 to kernel mode just as a call through 
a call gate does.) All interrupts go through the remaining dispatcher interface code. The 
common code saves all registers on the kernel stack and resets the interrupt controller; exactly 
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what "resets" means depends on how many interrupt controllers the system uses and how 
they are programmed. Having made the interrupt controller able to pass along the next 
interrupt, the common code enables processor interrupts by issuing an STI instruction. It 
then calls the interrupt dispatcher, passing the interrupt ID as a parameter. 

The interrupt dispatcher is a machine-independent C function that uses the interrupt ID as 
an index to the proper interrupt handler (also written in C). After the handler returns, the 
interrupt dispatcher switches to a new process if the current process was interrupted in user 
mode and if the handler awakened a higher-priority process. 

10.6.2 Blocking Interrupts in the Kernel 

System V defines a series of machine-independent kernel routines that set the kernel's prior­
ity level. Priority level 7 is high and is assigned to the clock; block and character devices 
have priority levels 6 and 5, respectively. Kernel routines, notably device drivers, call 5 pIn 
to return the current priority level and set the priority level to n. For example, a disk device 
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driver calls 5 p 1 6 to block out all but clock interrupts while it updates data structures that 
an interrupt handler might also use. 

U /386 implements the 5 p 1 routines (in assembly language) as follows: 

• Save current priority level 

Disable processor interrupts 

• Reprogram interrupt controller(s) to block interrupts below new level 

• Enable processor interrupts 

• Return old priority level 

10.6.3 Exceptions 

As Table 10-5 shows, the U /386 kernel responds to an 80386 exception differently depend­
ing on whether the exception occurs in user or kernel mode. (The kernel disables interrupts 
and changes the IDT on entry to and exit from the kernel.) U /386 transforms most user 
mode exceptions into standard UNIX signals. ·(An exception handler sends a signal by calling 
the kernel's psi 9 n a 1 function; pSi 9 n a 1 finds the addresses of the process's signal 
handlers, if any, in the process's up a 9 e.) Exceptions that occur in the kernel generally 
indicate unrecoverable problems and should, except for hardware-related exceptions, never 
occur in a debugged kernel. The kernel responds to these fatal exceptions by calling the 
System V pan i c function, which prints a message on the console and halts the system. 

The double fault, invalid TSS, and stack fault exceptions occurring in the kernel are handled 
by exception tasks. The handlers for these exceptions cannot assume that the context of the 
faulting process is valid; therefore, the handlers are implemented as 80386 tasks and are 
represented in the IDT by task gates. When one of these exceptions occurs, the 80386 switches 

Table 10-5. U/386 Kernel Exception Handling 

Number Name User Action Kernel Action 

0 Divide Error SIGILL Panic 
1 Single Step SIGTRAP Monitor 
2 NMI Panic Panic 
3 Breakpoint SIGTRAP Monitor 
4 Overflow SIGSEGV Panic 
5 Bounds SIGSEGV Panic 
6 Invalid Opcode SIGILL Panic 
7 No Coproc. Emulate Panic 
8 Double Fault Panic Panic (task) 
9 Coproc. Overrun SIGSEGV Panic 
10 Invalid TSS Panic Panic (taSk) 
11 Segment Fault Panic Panic 
12 Stack Fault SIGSEGV Panic (taSk) 
13 Protection SIGSEGV Panic 
14 Page Fault Get Page Get Page 
16 Coproc. Error SIGFPE Panic 
other (undefined) SIGILL Panic 
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to the interrupt task, which has a known-good context. Because these faults are fatal, no 
return occurs, so the task switch can be done by the 80386 without kernel involvement. 

10.7 INPUT IOUTPUT 

UNIX system device drivers are written in C and are largely processor-independent. U /386 
support for device drivers consists of a few assembly language routines (in addition to the 
5 p 1 routines described earlier) and a convention that provides drivers with the physical 
addresses of buffers. 

U /386 supports memory-mapped and I/O-mapped devices. Drivers can address memory­
mapped device registers directly; these devices are mapped into the top of the kernel data 
segment. To permit drivers to access the 80386 I/O space, the kernel provides a set of 
assembly language routines that transfer bytes, words, or dwords to or from I/O ports. These 
routines use the various forms of the IN and OUT instructions. 

To move data between user areas and kernel buffers, U /386 supplies the cop yin and 
cop you t routines. The heart of these assembly language routines is the MOVS (move 
string) instruction. Isolating MOVS in these two routines allows the kernel to determine 
whether a fault occurring in the execution of the instruction is caused by a user error or a 
kernel bug. A user may pass a bad address or count in are a d or 11/ r i t e system call. If, 
when moving the data across the user/kernel boundary, a general protection fault occurs, 
the fault handler can determine if the offending instruction is in cop yin or cop you t. 
If so, it knows the fault is a result of a user error, and it can send a signal to the user process. 
If the fault occurs in another routine, it indicates a kernel bug, so the fault handler calls 
panic. 

The standard System V block device interface transfers blocks between kernel buffers and 
devices. The DMA controllers incorporated in typical device controllers cannot read or write 
these buffers with logical addresses because they have no knowledge of the 80386 descriptor 
and page tables. U /386 enables drivers to supply physical addresses to DMA controllers as 
follows. During initialization, the kernel allocates a pool of I/O buffers that drivers use for 
block transfers. Each of these buffers has a header that the kernel initializes with the physi­
cal address of the actual buffer. When the kernel calls a driver to process an I/O request, it 
passes the driver the logical address of a buffer header. The driver can copy the physical 
address from the buffer header to the DMA controller without incurring any logical-to­
physical translation overhead. The kernel breaks 1/0 requests that cross page boundaries 
into multiple requests. 

10.8 NUMERICS 

By default, U /386 lets the 80287 or 80387 numeric coprocessor (or emulator) handle the 
errors it discovers. However, nothing prevents an assembly language program from unmask­
ing the errors so they can be handled by the program. Unmasked errors are delivered via 
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standard floating point signal (SIGFPE). The program's signal handler can use the FSTENV 
instruction to find out what happened. 

10.9 DEBUG SUPPORT 

The System V p t rae e system call allows a debugger to inspect and modify the represen­
tation of the child process it is debugging. The debugger runs such a program as a child and 
calls p t rae e to set breakpoints, change registers, etc. By making the 80386 breakpoint 
registers accessible to p t rae e, just like other registers, the debugger can gain access to 
the breakpoint registers. 

U /386 debuggers use the INT 3 (I-byte interrupt) instruction to implement instruction 
breakpoints. (Because the kernel's data segment overlaps its text segment, a debugger running 
in kernel mode can overwrite code with the INT 3 instruction.) The four breakpoint registers 
are used to implement data breakpoints. 
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Suite 105 

~~1~(30s\9 8~~~~R8s8 32714 
FAX: 305-682-6047 

Intel Corp. 

~~~a~d~;d~l~ ~3rO:Uite 100 
Tel: (305) 771-0600 
TWX: 510-956-9407 
FAX: 305·772-8193 

Intel Corp. 
11300 4th Street North 
Suite 170 
St. Petersburg 33716 
Tel: (813) 577-2413 
FAX: 813-578-1607 

tSales and Service Office 
-Field Application Location 

DOMESTIC SALES OFFICES 
GEORGIA 

tlntel Corp 
3280 POinte Parkway 
Suite 200 
Norcross 30092 
Tel: (404) 449-0541 

ILLINOIS 

Intel Corp' 

~~ga~·m~~7~n~g~;road. Suite 400 

Tel: (312) 310-8031 

INOIANA 

tlntel Corp 
8777 Purdue Road 
SUite 125 

~~i(3~7)~~:~~~~ 
IOWA 

Intel Corp 
1930 SI. Andrews Dnve N.E 
2nd Floor 
Cedar Rapids 52402 
Tel: (319) 393-5510 

KANSAS 

tlntel Corp 
8400 W. 11 Olh Street 
SlJiTe 170 
Overland Park 66210 
Tel· (913) 345-2727 

MARYlAND 

Intel Corp.' 
7321 Parkway Drive South 
Suite C 
Hanover 21076 
Tel: (301) 796-7500 
TWX: 710-862-1944 

Intel Corp. 
7833 Walker Drtlle 
SUite 550 
Greenbelt 20770 
lei: (301) 441-1020 

MASSACHUSETTS 

tlntel Corp'-
Westford Corp. Center 
3 Carlisle Road 
2nd Floor 
Westford 01886 
Tel: (617) 692-3222 
TWX: 710-343-6333 

MICHIGAN 

tlntel Corp. 
7071 Orchard Lake Road 
Suite 100 
West Bloomfield 48322 
Tel: (313) 851-8096 

MINNESOTA 

Inlel Corp. 
3500 W. 80th St., Suite 360 

~~~:o(~~2~tg~5~gi~j 
TWX: 910-576-2867 

MISSOURI 

Intel Corp. 
fu?t! ~~~h City Expressway 

Earth City 63045 
Tel: (314) 291-1990 

NEW JERSEY 

Inlel Corp." 
328 Newman Springs Road 
Red Bank 07701 
Tel: (201) 747-2233 

Intel Corp 
75 Livingston Avenue 
First Floor 
Roseland 07068 
Tel: (201) 740-0111 

NEW MEXICO 

Intel Corp 
8500 Menaul Boulevard N.E 
Suite B 295 
Albuquerque 87112 
Tel: (505\ 292-8086 

NEW YORK 

Intel Corp'-

~i~~~~s4~~Os Office Park 

Tel· (716) 425-2750 
TWX: 510-253-7391 

Intel Corp.-
300 Motor Parkway 
Hauppauge 11787 
Tel: (516) 231-3300 
TWX: 510-227-6236 

Intel Corp. 
15 Myers Corner Road 
Suite 28 

~e~:g~f);~j!~1~~590 
TWX: 510-248-0060 

NORTH CAROLINA 

Intel Corp 
5700 Executive Drive 
SUite 213 
Charlotte 28212 
Tel: (704) 568 6966 

tlntel Corp 
2700 Wycliff Road 
SUIte 102 

~:i:ei~~ 9r7~~~8022 
OHIO 

Intel Corp'-
3401 Park Center Drive 
Suite 220 
Dayton 45414 
Tel: (513) 890-5350 
TWX: 810-450-2528 

Intel Corp' 
25700 Science Park Dr., Suite 100 
Beachwood 44122 
Tel: (216) 464-2736 
TWX: 810-427-9298 

OKLAHOMA 

Intef Corp. 
6801 N, Broadway 
Suite 115 
Ok;lahoma City 73162 
Tel: (405) 848·8086 

OREGON 

tlntsl Corp. 
15254 NW. Greenbrier Parkway, Bldg. B 
Beaverton 97006 
Tel: (503) 645-8051 
TWX: 910-467-8741 

PENNSYLVANIA 

Intel Corp.' 
455 Pennsylvania Avenue 
Suite 230 ' 
Fort WaShington 19034 

~lJn~\_1°0~~ 
Intel Corp.' 
400 Penn Center Blvd., Suite 610 

~~~:s~~ra)h81~~~g70 
PUERTO RICO 

Intel Mioroprocessor Corp. 
South Industrial Park 
P.O_ Box 910 
Las Piedras 00671 
Tel: (809) 733-8616 

TEXAS 

tlntel Corp. 
313 E. Anderson Lane 
SUite 314 
Austin 78752 
Tel: (512) 454-3628 

tlntel Corp'-
12300 Ford Road 
Suite 380 
Dallas 75234 
Tel: (214) 241-8087 
TWX: 910-860-5617 

Intel Corp.-
7322 S.W. Freeway 
Suite 1490 
Houston 77074 
Tel: (713) 988-8086 
TWX: 910-881-2490 

UTAH 

Intel Corp. 
5201 Green Street 
Suite 290 
Murray 84123 
Tel: (801) 263-8051 

VIRGINIA 

tlntel Corp. 
1504 Santa Rosa Road 
Suite 108 
Richmond 2328B 
Tel: (804) 282-5668 

WASHINGTON 

Intel Corp. 
15510Bth Avenue N.E 
Suite 386 
Believue 98004 
Tel: (206) 453-8086 
TWX: 910-443-3002 

Intel Corp 
408 N. Mullan Road 
Suite 102 
Spokane 99206 
Tel: (509) 928-8086 

WISCONSIN 

tlntel Corp. 
330 S. Executive Dr 
Suite 102 
Brookfield 53005 
Tel: (414) 784-8087 
FAX: (414) 796-2115 

CANADA 
BRITISH COLUMBIA 

Intel Semiconductor of Canada, Ltd. 

~~~~a~~nJg& ~L~' Suite 202 
Tel: (604) 298-0387 
FAX: (604) 298-8234 

ONT4RIO 

Z~~gl ~~:i~~~~~C~~vo~ Canada, Ltd. 

Suite 250 
Ottawa K2B 8H6 
Tel: (613) 829-9714 
TLX: 053-4115 

tlntel Semiconductor of Canada, Ltd. 
190 Attwell Drive 
Suite 500 
Rexdale M9W 6Ha 
Tel: (416) 675-2105 
TLX: 06983574 
FAX: (416) 675-2438 

QUEBEC 

tlntel Semiconductor of Canada, Ltd, 
620 St. John Boulevard 
Pointe Claire H9R 3K2 
Tel: (514.) 694-9130 
TWX: 514-694-9134 
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intJ 
DOMESTIC DISTRIBUTORS 

ALABAMA CALIFORNIA (Conrd.) FLORIDA INDIANA (Cont'd.) MICHIGAN {Cont'd.} 

Arrow Electronics. Inc. Klerulff Electronics, Inc tArrow Electronics, Inc ~:~~~~~:v;r~~eElectronICS Pioneer Electronics 
1015 Henderson Road 10824 Hope Street 350 Fairway Drille 4505 Broadmoor Ave. S.E. 
Huntsville 35816 Cypress 90430 Deerfield Beach 33441 Carmel 46032 Grand Rapids 49508 
Tel; (205) 837-6955 Tel. (714) 220-6300 Tel: (305) 429-8200 Tel: (317) 844-9333 Tel: (616) 698-1800 

FAX: 714-821-8420 TWX' 510-955-9456 FAX' 317-844-5921 FAX: 616-698-1831 
tHamiiton/Avnet ElectrOniCS 
4940 Research Drive tKierulff E!ectronics, Inc. Arrow ElectrOniCs, Inc tPloneer Electronics tPioneer Electronics 
Huntsville 35805 1180 Murphy Avenue IDOl N W. 62nd St., Ste. 106 6408 Castleplace Dri .... e 13485 Stamford 
Tel: (205)837-7210 San Jose 95131 Ft. Lauderdale 33309 Indianapolis 46250 Uvonla48150 
TWX: 810-726-2162 Tel: (408) 971-2600 Tel: (305) 475-4297 Tel: (317) 849-7300 Tel: (313) 525-1800 

FAX· 408-947-3432 TWX: 510-955-9456 TWX: 810-260-1794 TWX. 810-242-3271 
PlOneer{Technologies Group Inc. 
4825 University Square tKIerulf1 Electronics, Inc tArrow Electronics. Inc KANSAS MINNESOTA 
Huntsville 35816 14242 Chamber Ad 1530 Bottlebrush N.E 
Tel· (205) 837-9300 Tustin 92680 Palm Bay 3290S tHamllton/Avnet ElectroniCs tArrow ElectrOnics. Inc. 
TWX: 810-726-2197 Tel: (714) 731-5711 Tel· (30S) 725-1480 9219 Quivera Road 5230 W 73rd Street 

FAX. 714-669-4235 Overland Park 66215 Edina 55435 
ARIZONA tHamllton/Avnet ElectroniCs Tel: (913) 888-8900 Tel: (612) 830-1800 

tKlerulff Electronics, Inc ~~.O~a~d~rd~~!h3~3a69 FAX: 913-541-7951 FAX. 612-830-1856 
tHam!ltonjAvnet ElectrOnics 9800 Vanel St. 
505 S. Madison Drive Chattsworth 91311 Tel: (305) 971-2900 Pioneer ElectrOnics Hamiltonj Avnet ElectroniCs 
Tempe 85281 Tel: (213) 725-0325 TLX: 510-956-3097 10551 Lackman Rd 12400 White Water Dnve 
Tel: (602) 968-1461 FAX· 818-407-0803 Lenexa 66215 Minnetonka 55343 
fflX: 910-950-0077 HamlltonjAvnet ElectroniCs Tel. (913) 492-0500 Tel: (612) 932-0600 

Wyle Distribution Group 3245 Tech Drive North FAX: 913-492-7832 FAX: 612-932-0613 
KlerulH Electronics, Inc. 26677 W. Agoura Ad St Petersburg 33702 
4134 E. Wood Street Calabasas 91302 Tel. (813) 576-3930 KENTUCKY tPioneer Electronics 
Phoenix 85040 Tel: (818) 880-9000 TWX: 810-863-0374 10203 Bren Road East 
Tel· (602) 437-0750 FAX. 818-880-5510 HamlltonjAvnet Electronics Minnetonka 55343 
FAX: 602-252-9109 Hamllton/Avnet Electronics 805-A Newtown Circle Tel· (612) 935-5444 

tWyle Distribution Group ~~ie~pn~~~~~~9~oulevard i:~T2ci~) 2~~~~ !75 
FAX· 612-935-1921 

Wyle Dlstnbutlon Group 17872 Cowan Avenue 
17855 N. Black Canyon Highway Irvine 92714 Tel. (305) 628-3888 FAX: 606-252-3238 MISSOURI 
PhoeniX 85023 Tel· (714) 863-9953 FAX: 305-628-3888 ext. 40 
Tel: (602) 866-2888 FAX 714-863-0473 MARYLAND tArrow Electronics. Inc 
FAX. 602-866-6937 tPloneer Electronics 2380 Schuetz 

Wyle Distribution Gro.up 337 N Lake Blvd. Ste. 1000 Arrow Electronlcs,lnc St. LoUIS 63146 
CALIFORNIA 11151 Sun Center Dnve ~~Ia (~3~)t~:f-~8~g 32701 

8300 GUilford Road, Ste H ~:~ ~~ ~ ~-~~~ :~~~~ Rancho Cordova 95670 AlversCenter 
Arrow Electronics. Inc Tel (916) 638-5282 TWX: 810-853-0284 Columbia 21046 
19748 Dearborn Street FAX. 916-638-1491 Tel: (301) 990-6002 tHamlltonjAvnet Electronics 
Chatsworth 91311 Pioneer Electromcs TWX: 710·236-9005 13743 Shoreline Court East 
Tel. (818)701-7500 tWy!e Distribution Group 674S. Military Tra!1 FAX· 301-381-3854 Earth City 63045 
FAX: 818-772-8930 9525 ChesapeaKe Drive Deerfield Beach 33442 ~~Ik}~~~-~~~:~~g~ San Diego 92123 Tel: (305) 428-8877 tHamliton/Avnet ElectrOniCS 
Arrow ElectroniCs. Inc. Tel: (619) 565·9171 TWX 510-955-9653 6822 Oak Hall Lane 
9511 Ridgehaven Court TWX· 910,371-9592 Columbia 21045 KlerulffElectronlcs, Inc. 
San Diego 92123 FAX. 619-565-9171 ext 274 GEORGIA Tel· (301) 995-3500 11804 Borman Dr. 
Tel. (619) 565-4800 FAX: 301-995-3593 St LOUIS 63146 
FAX 619-279-0862 tWyle Distnbutlon Group tArrow ElectroniCs, Inc Tel· (314) 997-4956 

3000 Sowers Avenup 3155 Northwoods Parkway ~~2bs~~~;~~~~to~~~;. FAX· 314-567-0860 
tArrow ElectrOnics. Inc Santa Clara 95051 SUite A 
521 Weddell Drive Tel· (408) 727-2500 Norcross 30071 Columbia 21046 NEW HAMPSHIRE 
Sunnyvale 94089 FAX 408-727-5896 Tel (404) 449-8252 Tel. (301) 720-5020 
Tel: (408) 745-6600 FAX 404-242-6827 TWX: 710-828-9702 t Arrow ElectrOfllCS, Inc 
FAX: 408-743-4770 WyleMllltary 3 Perimeter Road 

18910 Teller AVenue HamlllonjAvnet ElectroniCS tP,cneer Electronics Manchester 03103 
Arrow ElectrOnics. Inc Irvlfle92715 5825 D. Peachtree Corners East 9100 Gaither Road Tel. (603) 668-6968 
2961 Dow Avenue Tel (714) 851-9958 Norcross 30092 Gaithersburg 20877 FAX· 603-668-3484 
Tustin 92680 TWX 310-371-9127 Tel (404) 447-7500 Tel: (301) 921-0660 
Tel: (714) 838-5422 FAX. 714-851-8366 TWX- 810-766-0432 TWX. 710-828-0545 Hamlltonj Avnet Electronics 
FAX 714-838-4151 444 E. Industnal Drive 

WyleSystems Pioneer Electrofllcs MASSACHUSETTS Manchester 03103 
tAvnet Electronics 7382 Lampson Avenue 3100 F. Northwoods Place Tel: (603) 624-9400 
350 McCormick Avenue Garden Grove 92641 Norcross 30071 tArrow ElectrOniCS. Inc. FAX: 603-624-2402 
Costa Mesa 92626 Tel (714) 891-1717 Tel: (404) 448-1711 1 Arrow Dnve 
Tel: (714) 754-6051 FAX 714-895-9038 FAX· 404-446-8270 Woburn 01801 NEW JERSEY 
FAX. 714-754-6007 Tel (617) 933-8130 

COLORADO ILLINOIS TWX: 710-393-6770 tArrow ElectrOnics, Inc. 
Hamilton/Avnet ElectrOfllcs 6000 lincoln Drive East 
1175 Bordeaux Drive Arrow Electronics, Inc. tArrow Electronics, Inc tHamdtonjAvnet ElectroniCS Marlton 08053 
Sunnyvale 94089 1390 S Potomac Street 2000 E. AlonqUin Street 100 Centennial Dnve Tel: (609) 596-8000 
Tel (40B) 743-3300 SUite 136 ~~~(~~2~e;~7~~1:g Peabody 01960 FAX: 609-596-5632 
FAX: 408-745-6679 Aurora 80012 Tel. (617) 532-3701 

Tel (303) 696-1111 FAX· 312-397-3550 TWX· 710-393-0382 tArrowElectronics.lnc 
tHamlltonjAvnet ElectroniCs 6 Century Drive 
4545 Vlewndge Avenue tHamllton!Avnet ElectroniCS tHamiltonjAvnet ElectroniCs Klerulff ElectroniCS. Inc ~:~s(go~)n~3~g~cio San D'e~o 92123 8765 E. Orchard Road 1130 Thorndale Avenue 13 Fortune Dr. 
Tel: (619) 571-7500 Suite 708 BensenVille 60106 BlliericCl 01821 rAX: 201-538-4962 
FAX: 619-277-6136 Englewood 80111 Tel. (312) 860-7780 Tel. (617) 667-8331 

Tel (303) 740-1017 TWX: 910-227-0060 TWX: 710-390-1449 tHamilton/Avnet Electronics 
tHamllton/Avnet ElectroniCS TWX· 910·935-0787 FAX: 617-663-1754 1 Keystone Ave .. Bldg. 36 
9650 Desoto Ave Klerulff Electronics, Inc ~~I~(~0~)iI~g~~8:1 0 CI1Clh,w(lrlh91311 tWyle Distribution Group 1140 W. Thorndale Plont'!t'!r Northeast ElectroniCs 
Tel. (818) 700·1222.6500 451 E. 124th Avenue Itasca 60143 44 Hartwell Avenue TWX: 710-940-0262 
FAX: 818-700-6553 Thornton 80241 Tel (312) 250-0500 ~~~I(~lt~) 8~~~~~00 FAX: 609-751-8624 

Tel (303) 457-9953 FAX· 312-250-0916 
tHamlltonjAvnet Electronics TWX. 910-936-0770 FAX: 617-863-1547 tHamiiton/Avnet ElectrOniCs 
4103 Northgate Boulevard MTI Systems Sales 10 Industrial 
Sacramento 95834 COt-iNECTICUT 1100 West Thorndale MICHIGAN Fairfield 07006 
Tel: (916) 920-3150 Itasca 60143 Tel: (201) 575-3390 
FAX. 916-925-3478 tArrow ElectroniCs, Inc Tel· (312) 773-2300 Arrow Electromcs. Inc FAX: 201-575-5839 

12 Beaumont Road 755 PhoeniX Dnve 
tHamlltonjAvnet Electronics f~~I(~O~r~6~~jii 1 

tPloneer ElectrOnics Ann Arbor 48108 tPloneer Northeast Electronics 
3002 G Street 1551 Carmen Dnve Tel· (313) 971-8220 45 Route 46 
Ontano 91311 TWX. 710-476-0162 f~~: ~;?~i 4~~~§~8~0007 FAX· 313-971-2633 Pinebrook 07058 
Tel. (714) 989-9411 Tel' (201)575-3510 
FAX. 714-980-7129 HamiltonjAvnet ElectrOniCs TWX: 910-222-1834 tHamllton/Avnet Electronics FAX. 201-575-3454 

Commerce Industrial Park 32487 Schoolcraft Road 
tHamiltonjAvnpt Elf'ctronlcs Commerce Drive INDIANA livonia 48150 tMTI Systems Sales 
10950 W. Washmgton Blvd Danbury 06810 Tel· (313) 522-4700 37 Kulick Ad. 
CUlver City 90230 Tel· (203) 797-2800 tArrow ElectroniCS, Inc. TWX: 810-242-8775 Fairfield 07006 
Tel: (213) 558-2458 FAX: 203·797-2866 2495 Directors Row. Suite H FAX 313-522·2624 Tel: (201) 227-5552 
FAX· 213-558-2248 IndianapoliS 46241 FAX: 201-575-6336 

tPloneer Nortl1east ElectroniCS Tel· (317) 243-9353 HamlltonjAvnet ElectroniCs 
tHamllton Electro Sales 112 Main Sireet TWX: 810 341-3119 2215 29th StremS E 
3170 Pullman Street Norwalk 06851 Space A5 
Costa Mesa 92626 Tel: (203) 853-1515 Grand Rapids 49508 
Tel. (714) 641-4150 TWX· 710-468-3373 Tel. (616) 243-8805 
FAX· 714-641-4122 TWX· 810-273-6921 

FAX. 616-243-0028 

tMicrocomputer System Technical Dlstnbutor Centers CG-11/30/87 




