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PREFACE

This manual describes the 80387 Numeric Processor Extension (NPX) for the 80386 micro-
processor. Understanding the 80387 requires an understanding of the 80386; therefore, a
brief overview of 80386 concepts is presented first. A detailed discussion of the 80386 micro-
processor can be found in the 80386 Programmer’s Reference Manual.

THE 80386 MICROSYSTEM

The 80386 is the basis of a new VLSI microprocessor system with exceptional capabilities
for supporting large-system applications. This powerful microsystem is designed to support
multiuser reprogrammable and real-time multitasking applications. Its dedicated system
support circuits simplify system hardware; sophisticated hardware and software tools reduce
both the time and the cost of product development. The 80386 microsystem offers a total-
solution approach, enabling you to develop high-speed, interactive, multiuser, multitask-
ing—even multiprocessor—systems more rapidly and at higher performance than ever before.

* Reliability and system up-time are becoming increasingly important in all applications.
Information must be protected from misuse or accidental loss. The 80386 includes a
sophisticated and flexible four-level protection mechanism that can isolate layers of
operating system programs from application programs to maintain a high degree of
system integrity.

¢ The 80386 addresses up to 4 gigabytes of physical memory to support today’s applica-
tion requirements. This large physical memory enables the 80386 to keep many large
programs and data structures simultaneously in memory for high-speed access.

e  For applications with dynamically changing memory requirements, such as multiuser
business systems, the 80386 CPU provides on-chip memory management and virtual
memory support. On an 80386-based system, each user can have up to 64 terabytes of
virtual-address space. This large address space virtually eliminates restrictions on the
size of programs that may be part of the system. The memory management features are
subject to control of systems software; therefore, systems software designers can choose
among a variety of memory-organization models. Systems designers can choose to view
memory in terms of fixed-length pages, in terms of variable length segments, or as a
combination of pages and segments. The sizes of segments can range from one byte to
4 gigabytes. Virtual memory can be implemented either at the level of segments or at
the level of pages.

e Large multiuser or real-time multitasking systems are easily supported by the 80386.
High-performance features, such as a very high-speed task switch, fast interrupt-response
time, intertask protection, page-oriented virtual memory, and a quick and direct operat-
ing system interface, make the 80386 highly suited to multiuser/multitasking
applications.

» The 80386 has two primary operating modes: real-address mode and protected mode.
In real-address mode, the 80386 /80387 is fully upward compatible from the 8086, 8088,
80186, and 80188 microprocessors and from the 80286 real-address mode; all of the
extensive libraries of 8086 and 8088 software execute 15 to 20 times faster on the 80386,
without any modification.
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e In protected-address mode, the advanced memory management and protection features
of the 80386 become available, without any reduction in performance. Upgrading 8086
and 8088 application programs to use these new memory management and protection
features usually requires only reassembly or recompilation (some programs may require
minor modification). Entire 80286 protected-mode applications can run in this mode
without modification.

e The virtual-8086 mode of the 80386 is available when the primary mode is protected
mode. Virtual-8086 mode enables direct execution of multiple 8086/8088 programs
within a protected-mode environment. Most 8086 and 8088 application programs can
be executed in this environment without alteration (refer to the 80386 Programmer’s
Reference Manual for differences from 8086). This high degree of compatibility between
80386 and earlier members of the 8086 processor family reduces both the time and the
cost of software development.

THE ORGANIZATION OF THIS MANUAL

This manual describes the 80387 Numeric Processor Extension (NPX) for the 80386 micro-
processor. The material in this manual is presented from the perspective of software design-
ers, both at an applications and at a systems software level.

¢ Chapter 1, “Introduction to the 80387 Numerics Processor Extension,” gives an overview
of the 80387 NPX and reviews the concepts of numeric computation using the 80387.

¢ Chapter 2, “80387 Numerics Processor Architecture,” presents the registers and data
types of the 80387 to both applications and systems programmers.

o  Chapter 3, “Special Computational Situations,” discusses the special values that can be
represented in the 80387’s real formats—denormal numbers, zeros, infinities, NaNs (not
a number)—as well as numerics exceptions. This chapter should be read thoroughly by
systems programmers, but may be skimmed by applications programmers. Many of these
special values and exceptions may never occur in applications programs.

e Chapter 4, “80387 Instruction Set,” provides functional information for software
designers generating applications for systems containing an 80386 CPU with an 80387
NPX. The 80386/80387 instruction set mnemonics are explained in detail.

e Chapter 5, “Programming Numeric Applications,” provides a description of program-
ming facilities for 80386/80387 systems. A comparative 80387 programming example
is given.

¢ Chapter 6, “System-Level Numeric Programming,” provides information of interest to
systems software writers, including details of the 80387 architecture and operational
characteristics.

s Chapter 7, “Numeric Programming Examples,” provides several detailed programming
examples for the 80387, including conditional branching, the conversion between
floating-point values and their ASCII representations, and the use of trigonometric
functions. These examples illustrate assembly-language programming on the 80387 NPX.

« Appendix A, “Machine Instruction Encoding and Decoding,” gives reference informa-
tion on the encoding of NPX instructions. This information is useful to writers of debug-
gers, exception handlers, and compilers.
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e Appendix B, “Exception Summary,” provides a list of the exceptions that each instruc-
tion can cause. This list is valuable to both applications and systems programmers.

e Appendix C, “Compatability between the 80387 and the 80287/8087,” describes the
differences from the 80387 that are common to the 80287 and the 8087.

¢ Appendix D, “Compatability between the 80387 and the 8087,” describes the additional
differences between the 80387 and the 8087 that are of concern when porting 8086/
8087 programs directly to the 80386/80387.

e Appendix E, “80387 80-Bit CHMOS III Numeric Processor Extension,” reproduces a
data sheet of 80387 specifications that is separately available. The table of instruction
timings in this appendix will be of interest to many readers of this manual. (The AC
specifications have been deliberately left out.) The specifications in data sheets are subject
to change; consult the most recent data sheet for design-in information.

e Appendix F, “PC/AT-Compatible 80387 Connection,” documents a nonstandard method
of connecting an 80387 to an 80386 to achieve compatibility with the IBM PC/AT.

e The Glossary defines 80387 and floating-point terminology. Refer to it as needed.

RELATED PUBLICATIONS

To best use the material in this manual, readers should be familiar with the operation and
architecture of 80386 systems. The following manuals contain information related to the
content of this manual and of interest to programmers of 80387 systems:

e Introduction to the 80386, order number 231252

e 80386 Data Sheet, order number 231630

e 80386 Hardware Reference Manual, order number 231732

e 80386 Programmer’s Reference Manual, order number 230985
e 80387 Data Sheet, order number 231920
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support, customer training, and consulting services. For more information contact your local sales offices.

After a customer purchases any system hardware or software product, service and support become major factors in
determining whether that product will continue to meet a customer’s expectations. Such support requires an interna-
tional support organization and a breadth of programs to meet a variety of customer needs. As you might expect,
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Intel is committed to providing an international service support package through a wide variety of service offerings
available from Intel Hardware Support.

SOFTWARE SUPPORT SERVICES

Intel’s software support consists of two levels of contracts. Standard support includes TIPS (Technical Information
Phone Service), updates and subscription service (product-specific troubleshooting guides and COMMENTS Maga-
zine). Basic support includes updates and the subscription service. Contracts are sold in environments which repre-
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For optimum convenience, workshops are scheduled regularly at Training Centers worldwide or we can take our
workshops to you for on-site instruction. Covering a wide variety of topics, Intel’s major course categories include:
architecture and assembly language, programming and operating systems, bitbus and LAN applications.
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CHAPTER 1
INTRODUCTION TO THE 80387
NUMERICS PROCESSOR EXTENSION

The 80387 NPX is a high-performance numerics processing element that extends the 80386
architecture by adding significant numeric capabilities and direct support for floating-point,
extended-integer, and BCD data types. The 80386 CPU with 80387 NPX easily supports
powerful and accurate numeric applications through its implementation of the IEEE Standard
754 for Binary Floating-Point Arithmetic. The 80387 provides floating-point performance
comparable to that of large minicomputers while offering compatibility with object code for
8087 and 80287.

1.1 HISTORY

The 80387 Numeric Processor Extension (NPX) is compatible with its predecessors, the
carlier Intel 8087 NPX and 80287 NPX. As the 80386 runs 8086 programs, so programs
designed to use the 8087 and 80287 should run unchanged on the 80387.

The 8087 NPX was designed for use in 8086-family systems. The 8086 was the first micro-
processor family to partition the processing unit to permit high-performance numeric
capabilities. The 8087 NPX for this processor family implemented a complete numeric
processing environment in compliance with an early proposal for the IEEE 754 Floating-
Point Standard.

With the 80287 Numeric Processor Extension, high-speed numeric computations were
extended to 80286 high-performance multitasking and multiuser systems. Multiple tasks
using the numeric processor extension were afforded the full protection of the 80286 memory
management and protection features.

The 80387 Numeric Processor Extension is Intel’s third generation numerics processor. The
80387 implements the final IEEE standard, adds new trigonometric instructions, and uses a
new design and CHMOS-III process to allow higher clock rates and require fewer clocks
per instruction. Together, the 80387 with additional instructions and the improved standard
bring even more convenience and reliability to numerics programming and make this
convenience and reliability available to applications that need the high-speed and large
memory capacity of the 32-bit environment of the 80386 CPU.

Figure 1-1 illustrates the relative performance of 5-MHz 8086/8087, 8-MHz 80286/80287,
and 20-MHz 80386/80387 systems in executing numerics-oriented applications.

1.2 PERFORMANCE

Table 1-1 compares the execution times of several 80387 instructions with the equivalent
operations executed on an §-MHz 80287. As indicated in the table, the 16-MHz 80387
NPX provides about 5 to 6 times the performance of an 8-MHz 80287 NPX. A 16-MHz
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Figure 1-1. Evolution and Performance of Numeric Processors

Table 1-1. Numeric Processing Speed Comparisons

Approximate Performance Ratios:
Floating-Point Instruction 16 MHz 80386/80387
8 MHz 80286 /80287

FADD ST, ST(i) Addition 6.2
FDIV dword_var Division 4.7
FYL2X stack (0), (1) assumed Logarithm 6.0
FPATAX stack (0) assumed Arctangent 2.6*
F2XM1 stack (0) assumed Exponentiation 2.7*

*The ratio is higher if the operand is not in range of the 80287 instruction.

80387 multiplies 32-bit and 64-bit floating-point numbers in about 1.9 and 2.8 microse-
conds, respectively. Of course, the actual performance of the NPX in a given system depends
on the characteristics of the individual application.

Although the performance figures shown in Table 1-1 refer to operations on real (floating-
point) numbers, the 80387 also manipulates fixed-point binary and decimal integers of up
to 64 bits or 18 digits, respectively. The 80387 can improve the speed of multiple-precision
software algorithms for integer operations by 10 to 100 times.

Because the 80387 NPX is an extension of the 80386 CPU, no software overhead is incurred
in setting up the NPX for computation. The 80387 and 80386 processors coordinate their
activities in a manner transparent to software. Moreover, built-in coordination facilities allow
the 80386 CPU to proceed with other instructions while the 80387 NPX is simultaneously
executing numeric instructions. Programs can exploit this concurrency of execution to further
increase system performance and throughput.
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1.3 EASE OF USE

The 80387 NPX offers more than raw execution speed for computation-intensive tasks. The
80387 brings the functionality and power of accurate numeric computation into the hands
of the general user. These features are available in most high-level languages available for
the 80386.

Like the 8087 and 80287 that preceded it, the 80387 is explicitly designed to deliver stable,
accurate results when programmed using straightforward “pencil and paper” algorithms.
The IEEE standard 754 specifically addresses this issue, recognizing the fundamental
importance of making numeric computations both easy and safe to use.

For example, most computers can overflow when two single-precision floating-point numbers
are multiplied together and then divided by a third, even if the final result is a perfectly
valid 32-bit number. The 80387 delivers the correctly rounded result. Other typical examples
of undesirable machine behavior in straightforward calculations occur when computing
financial rate of return, which involves the expression (1 + i)* or when solving for roots of
a quadratic equation:

—b = /b?—4ac

2a

If a does not equal 0, the formula is numerically unstable when the roots are nearly coin-
cident or when their magnitudes are wildly different. The formula is also vulnerable to spuri-
ous over/underflows when the coefficients a, b, and ¢ are all very big or all very tiny. When
single-precision (4-byte) floating-point coefficients are given as data and the formula is
evaluated in the 80387’s normal way, keeping all intermediate results in its stack, the 80387
produces impeccable single-precision roots. This happens because, by default and with no
effort on the programmer’s part, the 80387 evaluates all those subexpressions with so much
extra precision and range as to overwhelm any threat to numerical integrity.

If double-precision data and results were at issue, a better formula would have to be used,
and once again the 80387’s default evaluation of that formula would provide substantially
enhanced numerical integrity over mere double-precision evaluation.

On most machines, straightforward algorithms will not deliver consistently correct results
(and will not indicate when they are incorrect). To obtain correct results on traditional
machines under all conditions usually requires sophisticated numerical techniques that are
foreign to most programmers. General application programmers using straightforward
algorithms will produce much more reliable programs using the 80387. This simple fact
greatly reduces the software investment required to develop safe, accurate computation-based
products.

Beyond traditional numerics support for scientific applications, the 80387 has built-in facil-
ities for commercial computing. It can process decimal numbers of up to 18 digits without
round-off errors, performing exact arithmetic on integers as large as 2% or 10'8. Exact arith-
metic is vital in accounting applications where rounding errors may introduce monetary losses
that cannot be reconciled.
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The NPX contains a number of optional facilities that can be invoked by sophisticated users.
These advanced features include directed rounding, gradual underflow, and programmed
exception-handling facilities.

These automatic exception-handling facilities permit a high degree of flexibility in numeric
processing software, without burdening the programmer. While performing numeric calcu-
lations, the NPX automatically detects exception conditions that can potentially damage a
calculation (for example, X + 0 or \/Y when X < 0). By default, on-chip exception logic
handles these exceptions so that a reasonable result is produced and execution may proceed
without program interruption. Alternatively, the NPX can signal the CPU, invoking a
software exception handler to provide special results whenever various types of exceptions
are detected.

1.4 APPLICATIONS

The 80386’s versatility and performance make it appropriate to a broad array of numeric
applications. In general, applications that exhibit any of the following characteristics can
benefit by implementing numeric processing on the 80387:

»  Numeric data vary over a wide range of values, or include nonintegral values.
¢ Algorithms produce very large or very small intermediate results.

+ Computations must be very precise; i.e., a large number of significant digits must be
maintained.

e Performance requirements exceed the capacity of traditional microprocessors.

e Consistently safe, reliable results must be delivered using a programming staff that is
not expert in numerical techniques.

Note also that the 80387 can reduce software development costs and improve the perform-
ance of systems that use not only real numbers, but operate on multiprecision binary or
decimal integer values as well.

A few examples, which show how the 80387 might be used in specific numerics applications,
are described below. In many cases, these types of systems have been implemented in the
past with minicomputers or small mainframe computers. The advent of the 80387 brings the
size and cost savings of microprocessor technology to these applications for the first time.

+ Business data processing—The NPX’s ability to accept decimal operands and produce
exact decimal results of up to 18 digits greatly simplifies accounting programming.
Financial calculations that use power functions can take advantage of the 80387’s
exponentiation and logarithmic instructions. Many business software packages can benefit
from the speed and accuracy of the 80387; for example, Lotus™ 1-2-3", Multiplan®,
SuperCalc®, and Framework”.
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*  Simulation—The large (32-bit) memory space of the 80386 coupled with the raw speed
of the 80386 and 80387 processors make 80386/80387 microsystems suitable for
attacking large simulation problems, which heretofore could only be executed on expen-
sive mini and mainframe computers. For example, complex electronic circuit simula-
tions using SPICE can now be performed on a microcomputer, the 80386/80387.
Simulation of mechanical systems using finite element analysis can employ more
elements, resulting in more detailed analysis or simulation of larger systems.

e Graphics transformations—The 80387 can be used in graphics terminals to locally
perform many functions that normally demand the attention of a main computer; these
include rotation, scaling, and interpolation. By also using an 82786 Graphics Display
Controller to perform high-speed drawing and window management, very powerful and
highly self-sufficient terminals can be built from a relatively small number of 80386
family parts.

e Process control—The 80387 solves dynamic range problems automatically, and its
extended precision allows control functions to be fine-tuned for more accurate and
efficient performance. Control algorithms implemented with the NPX also contribute
to improved reliability and safety, while the 80387’s speed can be exploited in real-time
operations.

e Computer numerical control (CNC)—The 80387 can move and position machine tool
heads with accuracy in real-time. Axis positioning also benefits from the hardware
trigonometric support provided by the 80387.

e Robotics—Coupling small size and modest power requirements with powerful compu-
tational abilities, the 80387 is ideal for on-board six-axis positioning.

¢ Navigation—Very small, lightweight, and accurate inertial guidance systems can be
implemented with the 80387. Its built-in trigonometric functions can speed and simplify
the calculation of position from bearing data.

e Data acquisition—The 80387 can be used to scan, scale, and reduce large quantities of
data as it is collected, thereby lowering storage requirements and time required to process
the data for analysis.

The preceding examples are oriented toward traditional numerics applications. There are,
in addition, many other types of systems that do not appear to the end user as computa-
tional, but can employ the 80387 to advantage. Indeed, the 80387 presents the imaginative
system designer with an opportunity similar to that created by the introduction of the micro-
processor itself. Many applications can be viewed as numerically-based if sufficient compu-
tational power is available to support this view (e.g., character generation for a laser printer).
This is analogous to the thousands of successful products that have been built around “buried”
microprocessors, even though the products themselves bear little resemblance to computers.

1.5 UPGRADABILITY

The architecture of the 80386 CPU is specifically adapted to allow easy upgradability to use
an 80387, simply by plugging in the 80387 NPX. For this reason, designers of 80386 systems
may wish to incorporate the 80387 NPX into their designs in order to offer two levels of
price and performance at little additional cost.
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Two features of the 80386 CPU make the design and support of upgradable 80386 systems
particularly simple:

» The 80386 can be programmed to recognize the presence of an 80387 NPX; that is,
software can recognize whether it is running on an 80386 with or without an 80387
NPX.

¢ After determining whether the 80387 NPX is available, the 80386 CPU can be instructed
to let the NPX execute all numeric instructions. If an 80387 NPX is not available, the
80386 CPU can emulate all 80387 numeric instructions in software. This emulation is
completely transparent to the application software—the same object code may be used
by 80386 systems both with and without an 80387 NPX. No relinking or recompiling
of application software is necessary; the same code will simply execute faster with the
80387 NPX than without.

To facilitate this design of upgradable 80386 systems, Intel provides a software emulator for
the 80387 that provides the functional equivalent of the 80387 hardware, implemented in
software on the 80386. Except for timing, the operation of this 80387 emulator (EMUL387)
is the same as for the 80387 NPX hardware. When the emulator is combined as part of the
systems software, the 80386 system with 80387 emulation and the 80386 with 80387
hardware are virtually indistinguishable to an application program. This capability makes it
easy for software developers to maintain a single set of programs for both systems. System
manufacturers can offer the NPX as a simple plug-in performance option without necessi-
tating any changes in the user’s software.

1.6 PROGRAMMING INTERFACE

The 80386/80387 pair is programmed as a single processor; all of the 80387 registers appear
to a programmer as extensions of the basic 80386 register set. The 80386 has a class of
instructions known as ESCAPE instructions, all having a common format. These ESC
instructions are numeric instructions for the 80387 NPX. These numeric instructions for the
80387 are simply encoded into the instruction stream along with 80386 instructions.

All of the CPU memory-addressing modes may be used in programming the NPX, allowing
convenient access to record structures, numeric arrays, and other memory-based data struc-
tures. All of the memory management and protection features of the CPU (both paging and
segmentation) are extended to the NPX as well.

Numeric processing in the 80387 centers around the NPX register stack. Programmers can
treat these eight 80-bit registers either as a fixed register set, with instructions operating on
explicitly-designated registers, or as a classical stack, with instructions operating on the top
one or two stack elements.

Internally, the 80387 holds all numbers in a uniform 80-bit extended format. Operands that
may be represented in memory as 16-, 32-, or 64-bit integers, 32-, 64-, or 80-bit floating-
point numbers, or 18-digit packed BCD numbers, are automatically converted into extended
format as they are loaded into the NPX registers. Computation results are subsequently
converted back into one of these destination data formats when they are stored into memory
from the NPX registers.
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Table 1-2 lists each of the seven data types supported by the 80387, showing the data format
for each type. All operands are stored in memory with the least significant digits starting at
the initial (lowest) memory address. Numeric instructions access and store memory operands
using only this initial address. For maximum system performance, all operands should start
at memory addresses divisible by four.

Table 1-3 lists the 80387 instructions by class. No special programming tools are necessary
to use the 80387, because all of the NPX instructions and data types are directly supported
by the ASM386 Assembler, by high-level languages from Intel, and by assemblers and
compilers produced by many independent software vendors. Software routines for the 80387
may be written in ASM386 Assembler or any of the following higher-level languages from
Intel:

PL/M-386
C-386

In addition, all of the development tools supporting the 8086/8087 and 80286/80287 can
also be used to develop software for the 80386,/80387.

All of these high-level languages provide programmers with access to the computational
power and speed of the 80387 without requiring an understanding of the architecture of the
80386 and 80387 chips. Such architectural considerations as concurrency and synchroniza-
tion are handled automatically by these high-level languages. For the ASM386 programmer,
specific rules for handling these issues are discussed in a later section of this manual.

The following operating systems are known or expected to support the 80387:

RMX-286/386, MS-DOS, Xenix-286/386, and Unix-286/386. Advanced in-circuit debug-
ging support is provided by ICE-386.

Table 1-2. Numeric Data Types

Significant
Data Type Bits Digits Approximate Range (Decimal)
(Decimal)
Word integer 16 4 —32,768 < X < +32,767
Short integer 32 9 —2X10° = X < +2X10°
Long integer 64 18 —9X10"® < X < +9X10%8
Packed decimal 80 18 —99...99 < X < +99...99 (18 digits)
Single real 32 6-7 1.18 X 1072 < X1 =< 3.40 X 10
Double real 64 15-16 2.23 X 107%8 < |X| =< 1.80 X 10308
Extended real* 80 19 3.30 X 107492 < | X| =< 1.21 X 1032

*Equivalent to double extended format of IEEE Std 754
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Table 1-3. Principal NPX Instructions

Class Instruction Types
Data Transfer Load (all data types), Store (all data types), Exchange
Arithmetic Add, Subtract, Multiply, Divide, Subtract Reversed, Divide Reversed,

Square Root, Scale, Remainder, Integer Part, Change Sign, Absolute
Value, Extract

Comparison Compare, Examine, Test

Transcendental Tangent, Arctangent, Sine, Cosine, Sine and Cosine, 2x —1, Y « Log,(X),
Y e Log, (X+1)

Constants 0,1, =, Log,e2, Log.2, Log,10, Log.e

Processor Control Load Control Word, Store Control Word, Store Status Word, Load
Environment, Store Environment, Save, Restore, Clear Exceptions,
Initialize

1-8
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CHAPTER 2
80387 NUMERICS PROCESSOR ARCHITECTURE

To the programmer, the 80387 NPX appears as a set of additional registers, data types, and
instructions—all of which complement those of the 80386. Refer to Chapter 4 for detailed
explanations of the 80387 instruction set. This chapter explains the new registers and data
types that the 80387 brings to the architecture of the 80386.

2.1 80387 REGISTERS
The additional registers consist of

e Eight individually-addressable 80-bit numeric registers, organized as a register stack
e  Three sixteen-bit registers containing:

the NPX status word
the NPX control word
the tag word

¢ Two 48-bit registers containing pointers to the current instruction and operand (these
registers are actually located in the 80386)

All of the NPX numeric instructions focus on the contents of these NPX registers.

2.1.1 The NPX Register Stack

The 80387 register stack is shown in Figure 2-1. Each of the eight numeric registers in the
80387’s register stack is 80 bits wide and is divided into fields corresponding to the NPX’s
extended real data type.

Numeric instructions address the data registers relative to the register on the top of the
stack. At any point in time, this top-of-stack register is indicated by the TOP (stack TOP)
field in the NPX status word. Load or push operations decrement TOP by one and load a
value into the new top register. A store-and-pop operation stores the value from the current
TOP register and then increments TOP by one. Like 80386 stacks in memory, the 80387
register stack grows down toward lower-addressed registers.

Many numeric instructions have several addressing modes that permit the programmer to
implicitly operate on the top of the stack, or to explicitly operate on specific registers relative
to the TOP. The ASM386 Assembler supports these register addressing modes, using the
expression ST(0), or simply ST, to represent the current Stack Top and ST(i) to specify the
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80387 DATA REGISTERS e
79 78 64 63 0 10
ro [siGN]ExpONENT SIGNIFICAND ]
R1 ]
R2 [ ]
R3 B
R4 (]
RS B
R6 ]|
R7 ]
15 0 47 0

CONTROL REGISTER INSTRUCTION POINTER

STATUS REGISTER DATA POINTER
TAG WORD

G40003

Figure 2-1. 80387 Register Set

ith register from TOP in the stack (0 < i < 7). For example, if TOP contains 011B (register
3 is the top of the stack), the following statement would add the contents of two registers in
the stack (registers 3 and 5):

FADD ST, ST(2)

The stack organization and top-relative addressing of the numeric registers simplify subrou-
tine programming by allowing routines to pass parameters on the register stack. By using
the stack to pass parameters rather than using “dedicated” registers, calling routines gain
more flexibility in how they use the stack. As long as the stack is not full, each routine
simply loads the parameters onto the stack before calling a particular subroutine to perform
a numeric calculation. The subroutine then addresses its parameters as ST, ST(1), etc., even
though TOP may, for example, refer to physical register 3 in one invocation and physical
register 5 in another.
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2.1.2 The NPX Status Word

The 16-bit status word shown in Figure 2-2 reflects the overall state of the 80387. This
status word may be stored into memory using the FSTSW/FNSTSW, FSTENV/
FNSTENYV, and FSAVE/FNSAVE instructions, and can be transferred into the 80386 AX
register with the FSTSW AX/FNSTSW AX instructions, allowing the NPX status to be
inspected by the CPU.

The B-bit (bit 15) is included for 8087 compatibility only. It reflects the contents of the ES
bit (bit 7 of the status word), not the status of the BUSY# output of the 80387.

80387 BUSY

TOP OF STACK POINTER

bl b CONDITION CODE
l_ l vy

AAAAAAAA

ERROR SUMMARY STATUS
STACK FAULT
EXCEPTION FLAGS
PRECISION
UNDERFLOW
OVERFLOW
ZERO DIVIDE
DENORMALIZED OPERAND
INVALID OPERATION

ES IS SET IF ANY UNMASKED EXCEPTION BIT IS SET; CLEARED OTHERWISE.
SEE TABLE 2-1 FOR INTERPRETATION OF CONDITION CODE.
TOP VALUES:

000 = REGISTER 0 1S TOP OF STACK

001 = REGISTER 11S TOP OF STACK

111 = REGISTER 7 Ié TOP OF STACK
FOR DEFINITIONS OF EXCEPTIONS, REFER TO CHAPTER 3.

G40003

Figure 2-2. 80387 Status Word
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The four NPX condition code bits (C,-C,) are similar to the flags in a CPU: the 80387
updates these bits to reflect the outcome of arithmetic operations. The effect of these
instructions on the condition code bits is summarized in Table 2-1. These condition code bits
are used principally for conditional branching. The FSTSW AX instruction stores the NPX
status word directly into the CPU AX register, allowing these condition codes to be inspected
efficiently by 80386 code. The 80386 SAHF instruction can copy C,-C, directly to 80386
flag bits to simplify conditional branching. Table 2-2 shows the mapping of these bits to the
80386 flag bits.

Bits 12-14 of the status word point to the 80387 register that is the current Top of Stack
(TOP). The significance of the stack top has been described in the prior section on the
register stack.

Figure 2-2 shows the six exception flags in bits 0-5 of the status word. Bit 7 is the exception
summary status (ES) bit. ES is set if any unmasked exception bits are set, and is cleared
otherwise. If this bit is set, the ERROR# signal is asserted. Bits 0-5 indicate whether the
NPX has detected one of six possible exception conditions since these status bits were last
cleared or reset. They are “sticky” bits, and can only be cleared by the instructions FINIT,
FCLEX, FLDENYV, FSAVE, and FRSTOR.

Bit 6 is the stack fault (SF) bit. This bit distinguishes invalid operations due to stack overflow
or underflow from other kinds of invalid operations. When SF is set, bit 9 (C,) distinguishes
between stack overflow (C, = 1) and underflow (C, = 0).

2.1.3 Control Word

The NPX provides the programmer with several processing options, which are selected by
loading a word from memory into the control word. Figure 2-3 shows the format and encod-
ing of the fields in the control word.

The low-order byte of this control word configures the 80387 exception masking. Bits 0-5
of the control word contain individual masks for each of the six exception conditions recog-
nized by the 80387. The high-order byte of the control word configures the 80387 processing
options, including

e Precision control

*  Rounding control

The precision-control bits (bits 8-9) can be used to set the 80387 internal operating preci-
sion at less than the default precision (64-bit significand). These control bits can be used to
provide compatibility with the earlier-generation arithmetic processors having less precision
than the 80387. The precision-control bits affect the results of only the following five arith-
metic instructions: ADD, SUB(R), MUL, DIV(R), and SQRT. No other operations are
affected by PC.

2-4
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Table 2-1. Condition Code Interpretation

Instruction CO (S) C3(2) C1(A) C2(C)
Three least significant bits of quotient Reduction
= I
FPREM,FPREM1 Q2 Qo Q1 (1)=i(;3:r2£1:}:te
or O/U#
FCOM, FCOMP,
FCOMPP, FTST, .
FUCOM, FUCOMP, Result of comparison orzg/ra # cocgrﬁraar:gglsenot
FUCOMPP, FICOM, P
FICOMP
FXAM Operand class Sign Operand class
P or O/U# P
FCHS, FABS,
FXCH, FINCTOP,
FDECTOP, Constant Zero
loads, EXTRACT, UNDEFINED or O/U# UNDEFINED
FLD, FILD, FBLD,
FSTP (ext real)
FIST, FBSTP,
FRNDINT, FST,
FSTP, FADD, FMUL,
FDIV, FDIVR, FSUB, Roundup
FSUBR, FSCALE, UNDEFINED or O/U# UNDEFINED
FSQRT, FPATAN,
F2XM1, FYL2X,
FYL2XP1
Roundup Reduction
FPTAN, FSIN, or OjU# 0=complete
FCOS, FSINCOS UNDEFINED undefined 1=incomplete
if C2=1
FLDENV, FRSTOR Each bit loaded from memory
FLDCW, FSTENYV,
FSTCW, FSTSW,
FCLEX, FINIT, UNDEFINED
FSAVE
O/U# When both IE and SF bits of status word are set, indicating a stack exception, this bit distin-

guishes between stack overflow (C1=1) and underflow (C1=0).

Reduction If FPREM and FPREM1 produces a remainder that is less than the modulus, reduction is
complete. When reduction is incomplete the value at the top of the stack is a partial remain-
der, which can be used as input to further reduction. For FPTAN, FSIN, FCOS, and FSINCOS,
the reduction bit is set if the operand at the top of the stack is too large. In this case the
original operand remains at the top of the stack.

Roundup When the PE bit of the status word is set, this bit indicates whether the last rounding in the
instruction was upward.

UNDEFINED Do not rely on finding any specific value in these bits.
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Table 2-2. Correspondence between 80387 and 80386 Flag Bits

80387 Flag 80386 Flag
Co CF
C, (none)
C. PF
C, ZF
RESERVED
(INFINITY CONTROL)"
ROUNDING CONTROL
PRECISION CONTROL
15 7 o
1 J I |
plulolzlo|
x x xIx| re ppc|x x|RIOIOIZI00
| | ] 11 1]
RESERVED
EXCEPTION MASKS
PRECISION
UNDERFLOW
OVERFLOW
ZERO DIVIDE
DENORMALIZED OPERAND

INVALID OPERATION

PRECISION CONTROL ROUNDING CONTROL
00—24 BITS (SINGLE PRECISION) 00—ROUND TO NEAREST OR EVEN
01—(RESERVED) 01—ROUND DOWN (TOWARD — o0)
10—>53 BITS (DOUBLE PRECISION) 10—ROUND UP (TOWARD -+ o)
11—64 BITS (EXTENDED PRECISION) 11—CHOP (TRUNCATE TOWARD ZERO)

‘This “infinity control”” bit is not meaningful to the 80387. To maintain compatibility
with the 80287, this bit can be programmed; however, regardless of its value, the
80387 treats infinity in the affine sense (—oco0 < +co).

G40003

Figure 2-3. 80387 Control Word Format
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The rounding-control bits (bits 10-11) provide for the common round-to-nearest mode, as
well as directed rounding and true chop. Rounding control affects only the arithmetic
instructions (refer to Chapter 3 for lists of arithmetic and nonarithmetic instructions).

2.1.4 The NPX Tag Word

The tag word indicates the contents of each register in the register stack, as shown in
Figure 2-4. The tag word is used by the NPX itself to distinguish between empty and
nonempty register locations. Programmers of exception handlers may use this tag informa-
tion to check the contents of a numeric register without performing complex decoding of the
actual data in the register. The tag values from the tag word correspond to physical registers
0-7. Programmers must use the current top-of-stack (TOP) pointer stored in the NPX status
word to associate these tag values with the relative stack registers ST(0) through ST(7).

The exact values of the tags are generated during execution of the FSTENV and FSAVE
instructions according to the actual contents of the nonempty stack locations. During execu-
tion of other instructions, the 80387 updates the TW only to indicate whether a stack location
is empty or nonempty.

2.1.5 The NPX Instruction and Data Pointers

The instruction and data pointers provide support for programmed exception-handlers. These
registers are actually located in the 80386, but appear to be located in the 80387 because
they are accessed by the ESC instructions FLDENYV, FSTENV, FSAVE, and FRSTOR.
Whenever the 80386 decodes an ESC instruction, it saves the instruction address, the operand
address (if present), and the instruction opcode.

When stored in memory, the instruction and data pointers appear in one of four formats,
depending on the operating mode of the 80386 (protected mode or real-address mode) and
depending on the operand-size attribute in effect (32-bit operand or 16-bit operand). When
the 80386 is in virtual-8086 mode, the real-address mode formats are used.

Figures 2-5 through 2-8 show these pointers as they are stored following an FSTENV
instruction.

15 0
TAG (7) TAG (6) TAG (5) TAG (4) TAG (3) TAG (2) TAG (1) TAG (0)
1 1 L 'l 4 e 1 1
TAG VALUES:
00 = VALID
01 = ZERO
10 = INVALID OR INFINITY
11 = EMPTY
G40003

Figure 2-4. 80387 Tag Word Format
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32-BIT PROTECTED MODE FORMAT
31 .23 15 . 7 0
RES%RVED CONTRC%L WORD OH
RESE|RVED STATUS: WORD 4H
RESI}:RVED TAG V:IORD 8H
: IP OFFSET : CH
00000 :OPCODE 10.0 | Cs SELI:F.CTOR 10H
' DATA OPERAND OFFSET : 14H
RES!jERVED r OPERAND ‘:SELECTOR 18H
T y
G40003

Figure 2-5. Protected Mode 80387 Instruction and Data Pointer Image in Memory,
32-Bit Format

32-BIT REAL-ADDRESS MODE FORMAT
31 23 15 7 0
T T
RESERVED CONTROL WORD OH
t t
RESERVED STATUS WORD 4H
. +
RESERVED TAG WORD 8H
f :
RESERVED INSTRUCTION POINTER ,, , CH
t t
000 ti INSTRUCTION POINTER , lol OPCODE ., 10H
t +
RESERVED | OPERAND POINTER ., 14H
. t
000 ol OPERAND POINTER ,, ., Io 00000000O0O O] 18H
t t
G40003

Figure 2-6. Real Mode 80387 Instruction and Data Pointer Image in Memory, 32-Bit Format

The FSTENV and FSAVE instructions store this data into memory, allowing exception

handlers to determine the precise nature of any numeric exceptions that may be
encountered.

The instruction address saved in the 80386 (as in the 80287) points to any prefixes that
preceded the instruction. This is different from the 8087, for which the instruction address
points only to the ESC instruction opcode.

Note that the processor control instructions FINIT, FLDCW, FSTCW, FSTSW, FCLEX,
FSTENYV, FLDENYV, FSAVE, FRSTOR, and FWAIT do not affect the data pointer. Note
also that, except for the instructions just mentioned, the value of the data pointer is undefined
if the prior ESC instruction did not have a memory operand.

2-8
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16-BIT PROTECTED MODE FORMAT

15 7 o
CONTROL WORD OH
STATu:S WORD 2H
TAG WORD 4H
P OF:FSET 6H
cs SEL:ECTOR 8H
OPERANI:) OFFSET AH
OPERAND :SELECTOR CH

1
640003

Figure 2-7. Protected Mode 80387 Instruction and Data Pointer Image in Memory,
16-Bit Format

16-BIT REAL-ADDRESS MODE
AND VIRTUAL-8086 MODE FORMAT

15 .7 0
CONTR(:)L WORD OH
STATU:S WORD 2H
TAG V:VORD ‘4H
|NSTRUCTIO:N POINTER,; 6H
IPig 16 ]OI : OPCODE ,, ¢ 8H
OPERAND I:’OINTER 15.0 AH
OP .6 |o|o 0 o:o 0000O0OO]CH

G40003
Figure 2-8. Real Mode 80387 Instruction and Data Pointer Image in Memory, 16-Bit Format

2.2 COMPUTATION FUNDAMENTALS

This section covers 80387 programming concepts that are common to all applications. It
describes the 80387’s internal number system and the various types of numbers that can be
employed in NPX programs. The most commonly used options for rounding and precision
(selected by fields in the control word) are described, with exhaustive coverage of less
frequently used facilities deferred to later sections. Exception conditions that may arise during
execution of NPX instructions are also described along with the options that are available
for responding to these exceptions.
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2.2.1 Number System

The system of real numbers that people use for pencil and paper calculations is conceptually
infinite and continuous. There is no upper or lower limit to the magnitude of the numbers
one can employ in a calculation, or to the precision (number of significant digits) that the
numbers can represent. When considering any real number, there are always arbitrarily
many numbers both larger and smaller. There are also arbitrarily many numbers between
(i.e., with more significant digits than) any two real numbers. For example, between 2.5 and
2.6 are 2.51, 2.5897, 2.500001, etc.

While ideally it would be desirable for a computer to be able to operate on the entire real
number system, in practice this is not possible. Computers, no matter how large, ultimately
have fixed-size registers and memories that limit the system of numbers that can be accom-
modated. These limitations determine both the range and the precision of numbers. The
result is a set of numbers that is finite and discrete, rather than infinite and continuous. This
sequence is a subset of the real numbers that is designed to form a useful approximation of
the real number system.

Figure 2-9 superimposes the basic 80387 real number system on a real number line (decimal
numbers are shown for clarity, although the 80387 actually represents numbers in binary).
The dots indicate the subset of real numbers the 80387 can represent as data and final
results of calculations. The 80387’s range of double-precision, normalized numbers is
approximately +2.23 X 102 to +£1.80 X 10%%, Applications that are required to deal with
data and final results outside this range are rare. For reference, the range of the IBM System
370* is about +0.54 X 1078 to £0.72 X 107.

1

[ NEGATIVE RANGE ! POSITIVE RANGE !

- (NORMALIZED) > -~ (NORMALIZED) !

~5 —4 —3 —2 —1 !

* * el j
1.80 X 10%

<G & + | A

0o

| | |
| i 1
| | |
t Y Y j t
—1.80 X 10°%08 —2.23 X 107308 2.23 X 10738

+2

3

| 2.00000000000000000
(NOT REPRESENTABLE)
1.99999999999999999

PRECISION |-«——18 DIGITS —»|

G40003

Figure 2-9. 80387 Double-Precision Number System
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The finite spacing in Figure 2-9 illustrates that the NPX can represent a great many, but
not all, of the real numbers in its range. There is always a gap between two adjacent 80387
numbers, and it is possible for the result of a calculation to fall in this space. When this
occurs, the NPX rounds the true result to a number that it can represent. Thus, a real
number that requires more digits than the 80387 can accommodate (e.g., a 20-digit number)
is represented with some loss of accuracy. Notice also that the 80387’s representable numbers
are not distributed evenly along the real number line. In fact, an equal number of represent-
able numbers exists between successive powers of 2 (i.e., as many representable numbers
exist between 2 and 4 as between 65,536 and 131,072). Therefore, the gaps between repre-
sentable numbers are larger as the numbers increase in magnitude. All integers in the range
+ 264 (approximately +10'8), however, are exactly representable.

In its internal operations, the 80387 actually employs a number system that is a substantial
superset of that shown in Figure 2-9. The internal format (called extended real) extends the
80387’s range to about +£3.30 X 10432 to £1.21 X 10%3?, and its precision to about 19
(equivalent decimal) digits. This format is designed to provide extra range and precision for
constants and intermediate results, and is not normally intended for data or final results.

From a practical standpoint, the 80387’s set of real numbers is sufficiently large and dense
so as not to limit the vast majority of microprocessor applications. Compared to most
computers, including mainframes, the NPX provides a very good approximation of the real
number system. It is important to remember, however, that it is not an exact representation,
and that arithmetic on real numbers is inherently approximate.

Conversely, and equally important, the 80387 does perform exact arithmetic on integer
operands. That is, if an operation on two integers is valid and produces a result that is in
range, the result is exact. For example, 4 = 2 yields an exact integer, 1 = 3 does not, and
240 X 2% 4 1 does not, because the result requires greater than 64 bits of precision.

2.2.2 Data Types and Formats

The 80387 recognizes seven numeric data types for memory-based values, divided into three
classes: binary integers, packed decimal integers, and binary reals. A later section describes
how these formats are stored in memory (the sign is always located in the highest-addressed
byte).

Figure 2-10 summarizes the format of each data type. In the figure, the most significant
digits of all numbers (and fields within numbers) are the leftmost digits.

2.2.2.1 BINARY INTEGERS

The three binary integer formats are identical except for length, which governs the range
that can be accommodated in each format. The leftmost bit is interpreted as the number’s
sign: 0=positive and 1=negative. Negative numbers are represented in standard two’s
complement notation (the binary integers are the only 80387 format to use two’s comple-
ment). The quantity zero is represented with a positive sign (all bits are 0). The 80387 word
integer format is identical to the 16-bit signed integer data type of the 80386; the 80387
short integer format is identical to the 32-bit signed integer data type of the 80386.

2-11
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MOST SIGNIFICANT BYTE HIGHEST ADDRESSED BYTE
Fo‘;‘:}:Ts RANGE | PRECISION
7 0|7 o|7 o|l7 o|l7 o|l7 of7 o|7 of7 o|7 o
TWO'S
WORD INTEGER 104 16 BITS :E:OMPLEMENT)
15 0
(TWO’S
SHORT INTEGER 10 32 BITS COMPLEMENT)
31 )
™wo'
LONG INTEGER 10 64 BITS (Cg:J(:’fEMENT)
63 0
"MAGNITUDE
PACKEDBCD | " 10 1gpiGrs || X ldw,d.s,dm,du,d,ii.z,du,dw,d, 9 d. d, d; d, d; d, d, ,dol
79 72 0
BIASED
SINGLE PRECISION | 10+2° 24BITS || exponent I SIGNIFICAND I
31 23 0
DOUBLE 105 H:I BIASED l SIGNIFICAND ]
PRECISION 53BITS EXPONENT
63 52 0
EXTENDED . BIASED
PRECISION 104932 saBTs Is| SAER [—,1 SIGNIFICAND
[79 64 634 0|
(1) S = SIGN BIT (0 = positive, 1 = negative)
(2) d, = DECIMAL DIGIT (TWO PER TYPE)
(3) X = BITS HAVE NO SIGNIFICANCE; 80387 IGNORES WHEN LOADING, ZEROS WHEN
STORING
(4) A = POSITION OF IMPLICIT BINARY POINT
(5) | = INTEGER BIT OF SIGNIFICAND; STORED IN TEMPORARY REAL, IMPLICIT IN
SINGLE AND DOUBLE PRECISION
(6) EXPONENT BIAS (NORMALIZED VALUES):
SINGLE: 127 (7FH)
DOUBLE: 1023 (3FFH)
EXTENDED REAL: 16383 (3FFFH)
(7) PACKED BCD: (— 1)* (D,;...D,)
(8) REAL: (— 1)5 (25%%5) (FoF,...)
G40003

Figure 2-10. 80387 Data Formats
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The binary integer formats exist in memory only. When used by the 80387, they are
automatically converted to the 80-bit extended real format. All binary integers are exactly
representable in the extended real format.

2.2.2.2 DECIMAL INTEGERS

Decimal integers are stored in packed decimal notation, with two decimal digits “packed”
into each byte, except the leftmost byte, which carries the sign bit (0=npositive, ]l =negative).
Negative numbers are not stored in two’s complement form and are distinguished from
positive numbers only by the sign bit. The most significant digit of the number is the leftmost
digit. All digits must be in the range 0-9.

The decimal integer format exists in memory only. When used by the 80387, it is automat-
ically converted to the 80-bit extended real format. All decimal integers are exactly repre-
sentable in the extended real format.

2.2.2.3 REAL NUMBERS
The 80387 represents real numbers of the form:

( —1 )SZE(bOAblbzbz--bpﬂ)

...where...
s=20orl
E = any integer between Emin and Emax, inclusive
b,=0o0r1

p = number of bits of precision

Table 2-3 summarizes the parameters for each of the three real-number formats.

Table 2-3. Summary of Format Parameters

Format
Parameter

Single Double Extended
Format width in bits 32 64 80
p (bits of precision) 24 53 64
Exponent width in bits 8 11 15
Emax +127 +1023 +16383
Emin —126 —1022 —16382
Exponent bias +127 +1023 +16383
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The 80387 stores real numbers in a three-field binary format that resembles scientific, or
exponential, notation. The format consists of the following fields:

»  The number’s significant digits are held in the significand field, b,b,b,b;..b,,. (The
term “significand” is analogous to the term “mantissa” used to describe floating point
numbers on some computers.)

e The exponent field, e = E-+bias, locates the binary point within the significant digits
(and therefore determines the number’s magnitude). (The term “exponent” is analogous
to the term ‘“characteristic’” used to describe floating point numbers on some
computers.)

o The 1-bit sign field indicates whether the number is positive or negative. Negative
numbers differ from positive numbers only in the sign bits of their significands.

Table 2-4 shows how the real number 178.125 (decimal) is stored in the 80387 single real
format. The table lists a progression of equivalent notations that express the same value to
show how a number can be converted from one form to another. (The ASM386 and
PL/M-386 language translators perform a similar process when they encounter program-
mer-defined real number constants.) Note that not every decimal fraction has an exact binary
equivalent. The decimal number 1/10, for example, cannot be expressed exactly in binary
(just as the number 1/3 cannot be expressed exactly in decimal). When a translator encoun-
ters such a value, it produces a rounded binary approximation of the decimal value.

The NPX usually carries the digits of the significand in normalized form. This means that,
except for the value zero, the significand contains an integer bit and fraction bits as follows:

1,,fff...ff
where , indicates an assumed binary point. The number of fraction bits varies according to

the real format: 23 for single, 52 for double, and 63 for extended real. By normalizing real
numbers so that their integer bit is always a 1, the 80387 eliminates leading zeros in small

Table 2-4. Real Number Notation

Notation Value
Ordinary Decimal 178.125
Scientific Decimal 1,78125E2
Scientific Binary 1,0110010001E111
Scientific Binary
(Biased Exponent) 1,0110010001E10000110
Sign Biased Exponent Significand
80387 Single Format
(Normalized) 0 10000110 01100100010000000000000
1 (implicit)
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values (I X1 < 1). This technique maximizes the number of significant digits that can be
accommodated in a significand of a given width. Note that, in the single and double formats,
the integer bit is implicit and is not actually stored; the integer bit is physically present in
the extended format only.

If one were to examine only the significand with its assumed binary point, all normalized
real numbers would have values greater than or equal to 1 and less than 2. The exponent
field locates the actual binary point in the significant digits. Just as in decimal scientific
notation, a positive exponent has the effect of moving the binary point to the right, and a
negative exponent effectively moves the binary peint to the left, inserting leading zeros as
necessary. An unbiased exponent of zero indicates that the position of the assumed binary
point is also the position of the actual binary point. The exponent field, then, determines a
real number’s magnitude.

In order to simplify comparing real numbers (e.g., for sorting), the 80387 stores exponents
in a biased form. This means that a constant is added to the true exponent described above.
As Table 2-3 shows, the value of this bias is different for each real format. It has been
chosen so as to force the biased exponent to be a positive value. This allows two real numbers
(of the same format and sign) to be compared as if they are unsigned binary integers. That
is, when comparing them bitwise from left to right (beginning with the leftmost exponent
bit), the first bit position that differs orders the numbers; there is no need to proceed further
with the comparison. A number’s true exponent can be determined simply by subtracting
the bias value of its format.

The single and double real formats exist in memory only. If a number in one of these formats
is loaded into an 80387 register, it is automatically converted to extended format, the format
used for all internal operations. Likewise, data in registers can be converted to single or
double real for storage in memory. The extended real format may be used in memory also,
typically to store intermediate results that cannot be held in registers.

Most applications should use the double format to store real-number data and results; it
provides sufficient range and precision to return correct results with a minimum of program-
mer attention. The single real format is appropriate for applications that are constrained by
memory, but it should be recognized that this format provides a smaller margin of safety. It
is also useful for the debugging of algorithms, because roundoff problems will manifest
themselves more quickly in this format. The extended real format should normally be reserved
for holding intermediate results, loop accumulations, and constants. Its extra length is
designed to shield final results from the effects of rounding and overflow /underflow in inter-
mediate calculations. However, the range and precision of the double format are adequate
for most microcomputer applications.

2.2.3 Rounding Control

Internally, the 80387 employs three extra bits (guard, round, and sticky bits) that enable it
to round numbers in accord with the infinitely precise true result of a computation; these
bits are not accessible to programmers. Whenever the destination can represent the infinitely
precise true result, the 80387 delivers it. Rounding occurs in arithmetic and store operations
when the format of the destination cannot exactly represent the infinitely precise true result.

2-15
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For example, a real number may be rounded if it is stored in a shorter real format, or in an
integer format. Or, the infinitely precise true result may be rounded when it is returned to a
register.

The NPX has four rounding modes, selectable by the RC field in the control word (see
Figure 2-3). Given a true result b that cannot be represented by the target data type, the
80387 determines the two representable numbers @ and ¢ that most closely bracket b in value
(a < b < ¢). The processor then rounds (changes) b to a or to ¢ according to the mode
selected by the RC field as shown in Table 2-5. Rounding introduces an error in a result
that is less than one unit in the last place to which the result is rounded.

e “Round to nearest” is the default mode and is suitable for most applications; it provides
the most accurate and statistically unbiased estimate of the true result.

e The “chop” or “round toward zero” mode is provided for integer arithmetic
applications.

¢ “Round up” and “round down” are termed directed rounding and can be used to imple-
ment interval arithmetic. Interval arithmetic generates a certifiable result independent
of the occurrence of rounding and other errors. The upper and lower bounds of an inter-
val may be computed by executing an algorithm twice, rounding up in one pass and
down in the other.

Rounding control affects only the arithmetic instructions (refer to Chapter 3 for lists of
arithmetic and nonarithmetic instructions).

2.2.4 Precision Control

The 80387 allows results to be calculated with either 64, 53, or 24 bits of precision in the
significand as selected by the precision control (PC) field of the control word. The default
setting, and the one that is best suited for most applications, is the full 64 bits of significance
provided by the extended real format. The other settings are required by the IEEE standard
and are provided to obtain compatibility with the specifications of certain existing program-
ming languages. Specifying less precision nullifies the advantages of the extended format’s
extended fraction length. When reduced precision is specified, the rounding of the fractional
value clears the unused bits on the right to zeros.
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Table 2-5. Rounding Modes

RC Field Rounding Mode Rounding Action
00 Round to nearest Closer to b of a or ¢; if equally close,
select even number (the one whose
least significant bit is zero).
01 Round down (toward —oo) a
10 Round up (toward +co) c
11 Chop (toward 0) Smaller in magnitude of a or c.

NOTE: a < b < ¢; aand ¢ are successive representable numbers; b is not representable.
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CHAPTER 3
SPECIAL COMPUTATIONAL SITUATIONS

Besides being able to represent positive and negative numbers, the 80387 data formats may
be used to describe other entities. These special values provide extra flexibility, but most
users will not need to understand them in order to use the 80387 successfully. This section
describes the special values that may occur in certain cases and the significance of each. The
80387 exceptions are also described, for writers of exception handlers and for those inter-
ested in probing the limits of computation using the 80387.

The material presented in this section is mainly of interest to programmers concerned with
writing exception handlers. Many readers will only need to skim this section.

When discussing these special computational situations, it is useful to distinguish between
arithmetic instructions and nonarithmetic instructions. Nonarithmetic instructions are those
that have no operands or transfer their operands without substantial change; arithmetic
instructions are those that make significant changes to their operands. Table 3-1 defines
these two classes of instructions.

3.1 SPECIAL NUMERIC VALUES

The 80387 data formats encompass encodings for a variety of special values in addition to
the typical real or integer data values that result from normal calculations. These special
values have significance and can express relevant information about the computations or
operations that produced them. The various types of special values are

¢ Denormal real numbers

e Zeros

» Positive and negative infinity
¢ NaN (Not-a-Number)

*  Indefinite

*  Unsupported formats

The following sections explain the origins and significance of each of these special values.
Tables 3-6 through 3-9 at the end of this section show how each of these special values is
encoded for each of the numeric data types.

3.1.1 Denormal Real Numbers

The 80387 generally stores nonzero real numbers in normalized floating-point form; that is,
the integer (leading) bit of the significand is always a one. (Refer to Chapter 2 for a review
of operand formats.) This bit is explicitly stored in the extended format, and is implicitly

3-1
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Table 3-1. Arithmetic and Nonarithmetic Instructions

Nonarithmetic Instructions Arithmetic Instructions
FABS F2XM1
FCHS FADD (P)
FCLEX FBLD
FDECSTP FBSTP
FFREE FCOMP(P)(P)
FINCSTP FCOS
FINIT FDIV(R)(P)
FLD (register-to-register) FIADD
FLD (extended format from memory) FICOM(P)
FLD constant FIDIV(R)
FLDCW FILD
FLDENV FIMUL
FNOP FIST(P)
FRSTOR FISUB(R)
FSAVE FLD (conversion)
FST(P) (register-to-register) FMUL(P)
FSTP (extended format to memory) FPATAN
FSTCW FPREM
FSTENV FPREM1
FSTSW FPTAN
FWAIT FRNDINT
FXAM FSCALE
FXCH FSIN
FSINCOS
FSQRT
FST(P) (conversion)
FSUB(R)(P)
FTST
FUCOM(P)(P)
FXTRACT
FYL2X
FYL2XP1

assumed to be a one (1,) in the single and double formats. Since leading zeros are elimi-
nated, normalized storage allows the maximum number of significant digits to be held in a
significand of a given width.

When a numeric value becomes very close to zero, normalized floating-point storage cannot
be used to express the value accurately. The term tiny is used here to precisely define what
values require special handling by the 80387. A number R is said to be tiny when — 2Bmin <
R < 0or 0 <R < +28min (As defined in Chapter 2, Emin is —126 for single format,
—1022 for double format, and —16382 for extended format.) In other words, a nonzero
number is ziny if its exponent would be too negative to store in the destination format.

To accommodate these instances, the 80387 can store and operate on reals that are not
normalized, i.e., whose significands contain one or more leading zeros. Denormals typically
arise when the result of a calculation yields a value that is tiny.

3-2
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Denormal values have the following properties:

»  The biased floating-point exponent is stored at its smallest value (zero)
e The integer bit of the significand (whether explicit or implicit) is zero

The leading zeros of denormals permit smaller numbers to be represented, at the possible
cost of some lost precision (the number of significant bits is reduced by the leading zeros).
In typical algorithms, extremely small values are most likely to be generated as intermedi-
ate, rather than final, results. By using the NPX’s extended real format for holding inter-
mediate values, quantities as small as +3.4 X 1043 can be represented; this makes the
occurrence of denormal numbers a rare phenomenon in 80387 applications. Nevertheless,
the NPX can load, store, and operate on denormalized real numbers when they do occur.

Denormals receive special treatment by the 80387 in three respects:

e The 80387 avoids creating denormals whenever possible. In other words, it always
normalizes real numbers except in the case of tiny numbers.

e The 80387 provides the unmasked underflow exception to permit programmers to detect
cases when denormals would be created.

¢  The 80387 provides the denormal exception to permit programmers to detect cases when
denormals enter into further calculations.

Denormalizing means incrementing the true result’s exponent and inserting a corresponding
leading zero in the significand, shifting the rest of the significand one place to the right.
Denormal values may occur in any of the single, double, or extended formats. Table 3-2
illustrates how a result might be denormalized to fit a single format destination.

Denormalization produces either a denormal or a zero. Denormals are readily identified by
their exponents, which are always the minimum for their formats; in biased form, this is
always the bit string: 00..00. This same exponent value is also assigned to the zeros, but a
denormal has a nonzero significand. A denormal in a register is tagged special. Tables 3-8
and 3-9 later in this chapter show how denormal values are encoded in each of the real data
formats.

The denormaiization process causes ioss of significance if low-order one-bits bits are shifted
off the right of the significand. In a severe case, all the significand bits of the true result are
shifted out and replaced by the leading zeros. In this case, the result of denormalization is a
true zero, and, if the value is in a register, it is tagged as a zero.

Table 3-2. Denormalization Process

Operation Sign Exponent Significand
True Result 0 —129 1,01011100..00
Denormalize 0 —128 0,101011100..00
Denormalize 0 —127 0,0101011100..00
Denormalize 0 —126 0,00101011100..00
Denormal Result 0 —126 0,00101011100..00
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Denormals are rarely encountered in most applications. Typical debugged algorithms gener-
ate extremely small results during the evaluation of intermediate subexpressions; the final
result is usually of an appropriate magnitude for its single or double format real destination.
If intermediate results are held in temporary real, as is recommended, the great range of
this format makes underflow very unlikely. Denormals are likely to arise only when an appli-
cation generates a great many intermediates, so many that they cannot be held on the regis-
ter stack or in extended format memory variables. If storage limitations force the use of
single or double format reals for intermediates, and small values are produced, underflow
may occur, and, if masked, may generate denormals.

When a denormal number is single or double format is used as a source operand and the
denormal exception is masked, the 80387 automatically normalizes the number when it is
converted to extended format.

3.1.1.1 DENORMALS AND GRADUAL UNDERFLOW

Floating-pont arithmetic cannot carry out all operations exactly for all operands; approxi-
mation is unavoidable when the exact result is not representable as a floating-point variable.
To keep the approximation mathematically tractable, the hardware is made to conform to
accuracy standards that can be modeled by certain inequalities instead of equations. Let the
assignment

XeY@Z (where @ is some operation)

represent a typical operation. In the default rounding mode (round to nearest), each opera-
tion is carried out with an absolute error no larger than half the separation between the two
floating-point numbers closest to the exact results. Let x be the value stored for the variable
whose name in the program is X, and similarly y for Y, and z for Z. Normally y and z will
differ by accumulated errors from what is desired and from what would have been obtained
in the absence of error. For the calculation of x we assume that y and z are the best approx-
imations available, and we seek to compute x as well as we can. If y@z is representable
exactly, then we expect x = y@z, and that is what we get for every algebraic operation on
the 80387 (i.e., when y@z is one of y+z, y—z, yXz, y+z, sqrt z). But if y@z must be
approximated, as is usually the case, then x must differ from y@z by no more than half the
difference between the two representable numbers that straddle y@z. That difference depends
on two factors:

1. The precision to which the calculation is carried out, as determined either by the preci-
sion control bits or by the format used in memory. On the 80387, the precisions are
single (24 significant bits), double (53 significant bits), and extended (64 significant
bits).

2. How close y@z is to zero. In this respect the presence of denormal numbers on the 80387
provides a distinct advantage over systems that do not admit denormal numbers.

In any floating-point number system, the density of representable numbers is greater near
zero than near the largest representable magnitudes. However, machines that do not use
denormal numbers suffer from an enormous gap between zero and its closest neighbors.
Figures 3-1 and 3-2 show what happens near zero in two kinds of floating-point number
systems.
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Figure 3-1. Floating-Point System with Denormals

Figure 3-2. Floating-Point System without Denormals

Figure 3-1 shows a floating-point number system that (like the 80387) admits denormal
numbers. For simplicity, only the non-negative numbers appear and the figure illustrates a
number system that carries just four significant bits instead of the 24, 53, or 64 significant
bits that the 80387 offers.

Each vertical mark stands for a number representable in four significant bits, and the bolder
marks stand for the normal powers of 2. The denormal numbers lie between 0 and the nearest
normal power of 2. They are no less dense than the remaining normal nonzero numbers.

Figure 3-2 shows a floating-point number system that (unlike the 80387) does not admit
denormal numbers. There are two yawning gaps, one on the positive side of zero (as illus-
trated) and one on the negative side of zero (not illustrated). The gap between zero and the
nearest neighbor of zero differs from the gap between that neighbor and the next bigger
number by a factor of about 8.4 X 10¢ for single, 4.5 X 10" for double, and 9.2 X 10'¢ for
extended format. Those gaps would horribly complicate error analysis.

The advantage of denormal numbers is apparent when one considers what happens in either
case when the underflow exception is masked and y@z falls into the space between zero and
the smallest normal magnitude. The 80387 returns the nearest denormal number. This action
might be called “gradual underflow.” The effect is no different than the rounding that can
occur when y@z falls in the normal range.

On the other hand, the system that does not have denormal numbers returns zero as the
result, an action that can be much more inaccurate than rounding. This action could be
called “abrupt underflow.”
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3.1.2 Zeros

The value zero in the real and decimal integer formats may be signed either positive or
negative, although the sign of a binary integer zero is always positive. For computational
purposes, the value of zero always behaves identically, regardless of sign, and typically the
fact that a zero may be signed is transparent to the programmer. If necessary, the FXAM
instruction may be used to determine a zero’s sign.

If a zero is loaded or generated in a register, the register is tagged zero. Table 3-3 lists the
results of instructions executed with zero operands and also shows how a zero may be created
from nonzero operands.
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Table 3-3. Zero Operands and Results

Operation Operands Result
FLD,FBLD +0 +0
-0 -0
FILD +0 +0
FST,FSTP +0 +0
-0 -0
+X +0
_X _01
FBSTP +0 +0
-0 -0
FIST,FISTP +0 +0
—0 -0
+X +03
_X _03
Addition +0 plus +0 +0
—0plus —0 -0
+0 plus —0, —0 plus +0 +02
—X plus +X, +X plus —X +0?
+0plus =X, £X plus £0 #X
Subtraction +0 minus —0 +0
—0 minus +0 -0
+0 minus +0, —0 minus —0 +0?
+X minus +X, —X minus —X +02
+0 minus =X —#X
=X minus =0 #X
Multiplication +0 X +0,—0 X —0 +0
+0X —0, -0 X +0 -0
+0 X +X, +X X +0 +0
+0 X —X, =X X +0 -0
—0 X +X, =X X +0 -0
Multiplication —0X =X, - XX -0 +0
+X X +Y, =X X =Y +0
+X X =Y, =X X +Y -0
Division +0 -+ +0 Invalid Operation
=X+ =0 ®oo (Zero Divide)

FPREM, FPREM1

FPREM

FPREM1

+0 + +X, -0+ —X
+0 -+ —X, =0 + +X
—X =+ =Y, +X = +Y
—X =+ +4Y, +X =+ =Y
+0rem +0
+Xrem =0
+0rem £X
—0rem £X
+Xrem Y
—Xrem xY
+Xrem =Y
—Xrem £Y

+0

-0

+0

_01

Invalid Operation
Invalid Operation

+0

-0

+0 Y exactly divides X
—0Y exactly divides X
+0 Y exactly divides X
—0Y exactly divides X

X and Y denote nonzero positive operands.

* N =

| %

When extreme underflow denormalizes the result to zero.

Sign determined by rounding mode: + for nearest, up, or chop, — for down.
When 0 < X < 1 and rounding mode is not up.
Sign of original zero operand.

Sign of original X operand.

Complement of sign of original X operand.
Exclusive OR of the signs of the operands.
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Table 3-3. Zero Operands and Results (Cont’d.)

Operation Operands Result
FSQRT +0 +0
-0 -0
Compare +0: +X +0 < +X
+0: +0 +0= +0
+0: —X +0> —X
FTST +0 +0=0
+0 C,=1; C,=C,=C,=0
-0 C;=C,=1;C,=C,=0
FCHS +0 -0
-0 +0
FABS +0 +0
F2XM1 +0 +0
-0 -0
FRNDINT +0 +0
-0 -0
FSCALE +0 scaled by —oo “0
+0 scaled by +oo Invalid Operation
+0 scaled by X 0
FXTRACT +0 ST=+0,ST(1)=—o0, Zero divide
-0 ST=—0,ST(1)= —o0, Zero divide
FPTAN +0 *0
FSIN (or +0 *0
SIN result of
FSINCOS)
FCOS (or +0 +1
COS result of
FSINCOS)
FPATAN +0 + +X “0
+0+ —X T
+X + =0 #m[2
+0+ +0 “0
+0+ —0 *r
+oo + *0 +x/2
—oo + +0 —7/2
+0 + +oo *0
+0+ — *r
FYL2X +Y X log(£0) Zero Divide
+0 X log(+0) Invalid Operation
FYL2XP1 +Y X log(+0+1) *0
=Y X log(x0+1) —*0

X and Y denote nonzero positive operands.

* Sign of original zero operand.

#  Sign of original X operand.

—# Complement of sign of original X operand.
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3.1.3 Infinity

The real formats support signed representations of infinities. These values are encoded with
a biased exponent of all ones and a significand of 1,00..00; if the infinity is in a register, it
is tagged special.

A programmer may code an infinity, or it may be created by the NPX as its masked response
to an overflow or a zero divide exception. Note that depending on rounding mode, the masked
response may create the largest valid value representable in the destination rather than
infinity.

The signs of the infinities are observed, and comparisons are possible. Infinities are always
interpreted in the affine sense; that is, —oo < (any finite number) < +co. Arithmetic on
infinities is always exact and, therefore, signals no exceptions, except for the invalid opera-
tions specified in Table 3-4.

Table 3-4. Infinity Operands and Results

Multiplication

Division

FSQRT

FPREM, FPREM1

FRNDINT

+oo minus +oo

—oo minus —oo

+oo minus =X

+X minus oo

+oo X oo

too X £Y, Y X +0
+0 X +o0o, +oo X 0
t+oo + oo

+oo + £X
+X + too
+oo + 0
—QC0
+oo

+oorem oo
+oorem £X
+Xrem £ oo
*+oo

Operation Operands Result
Addition +co plus +o +co
—oo plus —o —oo
+ oo plus —oco Invalid Operation
—oo plus +oo Invalid Operation
+oo plus +X *oo
+X plus £ *oo
Subtraction + 00 minus —oo +oo
—oo minus +co —oo

Invalid Operation
Invalid Operation
*oo

_*m

®oo

®oo

Invalid Operation
Invalid Operation
®co

&0

doo

Invalid Operation
+oo

Invalid Operation
Invalid Operation
$X,Q=0

[ee]

X Zero or nonzero positive operand.

Y Nonzero positive operand.

* Sign of original infinity operand.
* Complement of sign of original infinity operand.

$ Sign of original operand.
&

Exclusive OR of signs of operands.

3-9
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Table 3-4. Infinity Operands and Results (Cont’d.)

Operation Operands Result
FSCALE + oo scaled by —— oo Invalid Operation
+ oo scaled by +oo *o0
+oo scaled by +X *oo
+0 scaled by —co +0'
+0 scaled by oo Invalid Operation
+Y scaled by +o #oo
+Y scaled by —co #0
FXTRACT +oo ST = *o0, ST(1) = +©
Compare +oo: +oo +o0 = +oo
—00 ! —o —00 = —CO
+oo: —oo +oo > —
—oo: too —oo < +oo
+oo: X +oo0 > X
—oo: =X —oo < X
+X: +o X< +oo
+X:—oo X > 400
FTST + o +o0 >0
— — o0 <0
FPATAN *oo + =X *xf2
+Y + +o #0
+Y + —oo #m
+oo + +oo *w[4
+too + —0 *3r /4
+oo + £0 /2
+0 + +oo +0
+0 + —0 +
-0+ 4o —0
-0+ — -
F2XM1 +oo + oo
—o —1
FYL2X, FYL2XP1 +oo X log(1) Invalid Operation
+oo X log(Y>1) *co
+oo X log(0<Y<1) —*0
+Y X log(+ o) #o0
+0 X log(+ o) Invalid Operation
+Y X log(— o) Invalid Operation

Zero or nonzero positive operand.

Nonzero positive operand.

Sign of original infinity operand.

—* Complement of sign of original infinity operand.
#  Sign of the original Y operand.

Sign of original zero operand.

* <X

—_

3.1.4 NaN (Not-a-Number)

A NaN (Not a Number) is a member of a class of special values that exists in the real
formats only. A NaN has an exponent of 11..11B, may have either sign, and may have any
significand except 1,00..00B, which is assigned to the infinities. A NaN in a register is
tagged special.
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There are two classes of NaNs: signaling (SNaN) and quiet (QNaN). Among the QNaNss,
the value real indefinite is of special interest.

3.1.4.1 SIGNALING NaNs

A signaling NaN is a NaN that has a zero as the most significant bit of its significand. The
rest of the significand may be set to any value. The 80387 never generates a signaling NaN
as a result; however, it recognizes signaling NaNs when they appear as operands. Arithmetic
operations (as defined at the beginning of this chapter) on a signaling NaN cause an invalid-
operation exception (except for load operations, FXCH, FCHS, and FABS).

By unmasking the invalid operation exception, the programmer can use signaling NaNs to
trap to the exception handler. The generality of this approach and the large number of NaN
values that are available provide the sophisticated programmer with a tool that can be applied
to a variety of special situations.

For example, a compiler could use signaling NaNs as references to uninitialized (real) array
elements. The compiler could preinitialize each array element with a signaling NaN whose
significand contained the index (relative position) of the element. If an application program
attempted to access an element that it had not initialized, it would use the NaN placed there
by the compiler. If the invalid operation exception were unmasked, an interrupt would occur,
and the exception handler would be invoked. The exception handler could determine which
element had been accessed, since the operand address field of the exception pointers would
point to the NaN, and the NaN would contain the index number of the array element.

3.1.4.2 QUIET NaNs

A quiet NaN is a NaN that has a one as the most significant bit of its significand. The
80387 creates the quiet NaN real indefinite (defined below) as its default response to certain
exceptional conditions. The 80387 may derive other QNaNs by converting an SNaN. The
80387 converts a SNaN by setting the most significant bit of its significand to one, thereby
generating an QNaN. The remaining bits of the significand are not changed; therefore,
diagnostic information that may be stored in these bits of the SNaN is propagated into the
QNaN.

The 80387 will generate the special QNaN, real indefinite, as its masked response to an
invalid operation exception. This NaN is signed negative; its significand is encoded 1,100..00.
All other NaNs represent values created by programmers or derived from values created by
programmers.

Both quiet and signaling NaNs are supported in all operations. A QNaN is generated as the
masked response for invalid-operation exceptions and as the result of an operation in which
at least one of the operands is a QNaN. The 80387 applies the rules shown in
Table 3-5 when generating a QNaN:

Note that handling of a QNaN operand has greater priority than all exceptions except certain
invalid-operation exceptions (refer to the section “Exception Priority” in this chapter).

3-11
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Table 3-5. Rules for Generating QNaNs

Operation Action

Real operation on an SNaN and Deliver the QNaN operand.

a QNaN

Real operation on two SNaNs Deliver the QNaN that results from
converting the SNaN that has the larger
significand.

Real operation on two QNaNs Deliver the QNaN that has the larger
significand.

Real operation on an SNaN and Deliver the QNaN that results from

another number converting the SNaN.

Real operation on a QNaN and Deliver the QNaN.

another number

Invalid operation that does not Deliver the default QNaN real indefinite.

involve NaNs

Quiet NaNs could be used, for example, to speed up debugging. In its early testing phase, a
program often contains multiple errors. An exception handler could be written to save
diagnostic information in memory whenever it was invoked. After storing the diagnostic
data, it could supply a quiet NaN as the result of the erroneous instruction, and that NaN
could point to its associated diagnostic area in memory. The program would then continue,
creating a different NaN for each error. When the program ended, the NaN results could
be used to access the diagnostic data saved at the time the errors occurred. Many errors
could thus be diagnosed and corrected in one test run.

3.1.5 Indefinite

For every 80387 numeric data type, one unique encoding is reserved for representing the
special value indefinite. The 80387 produces this encoding as its response to a masked invalid-
operation exception.

In the case of reals, the indefinite value is a QNaN as discussed in the prior section.

Packed decimal indefinite may be stored by the NPX in a FBSTP instruction; attempting
to use this encoding in a FBLD instruction, however, will have an undefined result; thus
indefinite cannot be loaded from a packed decimal integer.

In the binary integers, the same encoding may represent either indefinite or the largest
negative number supported by the format (—2'5, —23!, or —2¢%). The 80387 will store this
encoding as its masked response to an invalid operation, or when the value in a source regis-
ter represents or rounds to the largest negative integer representable by the destination. In
situations where its origin may be ambiguous, the invalid-operation exception flag can be
examined to see if the value was produced by an exception response. When this encoding is
loaded or used by an integer arithmetic or compare operation, it is always interpreted as a
negative number; thus indefinite cannot be loaded from a binary integer.

3-12




Intel SPECIAL COMPUTATIONAL SITUATIONS

3.1.6 Encoding of Data Types

Tables 3-6 through 3-9 show how each of the special values just described is encoded for
each of the numeric data types. In these tables, the least-significant bits are shown to the
right and are stored in the lowest memory addresses. The sign bit is always the left-most bit
of the highest-addressed byte.

3.1.7 Unsupported Formats

The extended format permits many bit patterns that do not fall into any of the previously
mentioned categories. Some of these encodings were supported by the 80287 NPX; however,
most of them are not supported by the 80387 NPX. These changes are required due to
changes made in the final version of the IEEE 754 standard that eliminated these data types.

The categories of encodings formerly known as pseudozeros, pseudo-NaNs, pseudoinfinities,
and unnormal numbers are not supported by the 80387. The 80387 raises the invalid-
operation exception when they are encountered as operands.

The encodings formerly known as pseudodenormal numbers are not generated by the 80387;
however, they are correctly utilized when encountered in operands to 80387 instructions.
The exponent is treated as if it were 00..01 and the mantissa is unchanged. The denormal
exception is raised.
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Table 3-6. Binary Integer Encodings

Class Sign Magnitude

(Largest) 11..11

Positives
O e o o 0o ¢ ¢ O
. . L] . . .

(Smallest) 00..01

o

Zero 00..00

(Smallest) 11..11

Negatives

— e o @ o o o —
e o o o o o

00..00

(Largest/indefinite*)

Word: 15 bits
Short: 31 bits
Long: 63 bits
*If this encoding is used as a source operand (as in an integer load or integer arithmetic instruction), the

80387 interprets it as the largest negative number representable in the format... —2'5, —23' or —2%3, The
80387 delivers this encoding to an integer destination in two cases:

1. If the result is the largest negative number.
2. As the response to a masked invalid operation exception, in which case it represents the special value
integer indefinite.

3-14
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Table 3-7. Packed Decimal Encodings

Magnitude
Class Sign
digit digit digit digit e digit
(Largest) 0 0000000 1001 1001 1001 1001 1001

0 . . .

o

-2 . . .

& (Smallest) 0 0000000 0000 0000 0000 0000 0001
Zero 0 0000000| 0000 0000 0000 0000 0000
Zero 1 0000000f 0000 0000 0000 0000 0000

§ (Smallest) 1 00000001 0000 0000 0000 0000 0001

] . . .

o . . .

O

z . L] .

(Largest) 1 0000000| 1001 1001 1001 1001 1001
Indefinite* 1 1111111 1111 1111 uuuu~ vuuuu uuuu
—1 byte — 9 bytes

* The packed decimal indefinite is stored by FBSTP in response to a masked invalid operation exception.
Attempting to load this value via FBLD produces an undefined result.
** UUUU means bit values are undefined and may contain any value.
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Table 3-8. Single and Double Real Encodings

*Integer bit is implied and not stored.

. Biased Significand
Class Sign Exponent ff--ff*
0 1.1 11..11
Quiet :
® 0 11.11 10..00
=
©
=z 0 11.11 01..11
Signaling . .
0 11.11 00..01
[
2 Infinity 0 1.1 00..00
ré
K 0 11..10 11.11
Normals :
0 00..01 00..00
2
§ 0 00..00 11..11
Denormals : :
0 00..00 00..01
Zero 0 00..00 00..00
Zero 1 00..00 00..00
1 00..00 00..01
@ Denormals : :
® 1 00..00 11..11
[
1 00..01 00..00
2 Normals . R
2 1 11..10 11..11
®
o
2 Infinity 1 11..11 00..00
1 11..11 00..01
Signaling : :
@ 1 11..11 01..11
%
=z Indefinite 1 11..11 10..00
Quiet B .
1 1.1 11..11
Single: 8 bits 23 bits———
Double: 11 bits 52 bits——————
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Table 3-9. Extended Real Encodings

" Biased Significand
Class Sign Exponent i.fff
0 11..1 111.11
Quiet : : :
"]
g % 0 11..11 110..00
|z 0 11.11 101..11
8 Signaling : : :
0 11..11 100..01
Infinity 0 11..11 100..00
0 11..10 111.11
Normals : : :
0 00..01 100..00
0 11..10 011.11
Unsupported . . .
» 8087 Unnormals . . N
@ 0 00..01 0 00..00
S 0 00..00 111.1
& Pseudodenormals : : :
0 00..00 1 00..00
0 00..00 011.11
Denormals : : .
0 00..00 000..01
% Zero 0 00..00 000..00
e Zero 1 00..00 000..00
1 00..00 0 00..01
Denormals : .
1 00..00 011.11
1 00..00 100..00
@ Pseudodenormals : : :
E 1 00..00 1111
©
g 1 00..00 0 00..00
F Unsupported . . .
8087 Unnormals . . N
1 11..10 011.11
1 00..01 100..00
Normals : : :
1 11..10 111.1
Infinity 1 11.11 1 00..00
1 11..11 100..01
® Signaling : : :
g % 1 1.1 101..11
s
o | <2 1 11..11 110..00
2 Quiet : : :
1 11..11 111,11
15 bits 64 bits
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3.2 NUMERIC EXCEPTIONS

The 80387 can recognize six classes of numeric exception conditions while executing numeric
instructions:

1. I— Invalid operation
e  Stack fault
e IEEE standard invalid operation

Z— Divide-by-zero

D— Denormalized operand
O— Numeric overflow
U— Numeric underflow

SR

P— Inexact result (precision)

3.2.1 Handling Numeric Exceptions
When numeric exceptions occur, the NPX takes one of two possible courses of action:

» The NPX can itself handle the exception, producing the most reasonable result and
allowing numeric program execution to continue undisturbed.

e A software exception handler can be invoked by the CPU to handle the exception.

Each of the six exception conditions described above has a corresponding flag bit in the
80387 status word and a mask bit in the 80387 control word. If an exception is masked (the
corresponding mask bit in the control word = 1), the 80387 takes an appropriate default
action and continues with the computation. If the exception is unmasked (mask=0), the
80387 asserts the ERROR# output to the 80386 to signal the exception and invoke a software
exception handler.

Note that when exceptions are masked, the NPX may detect multiple exceptions in a single
instruction, because it continues executing the instruction after performing its masked
response. For example, the 80387 could detect a denormalized operand, perform its masked
response to this exception, and then detect an underflow.

3.2.1.1 AUTOMATIC EXCEPTION HANDLING

The 80387 NPX has a default fix-up activity for every possible exception condition it may
encounter. These masked-exception responses are designed to be safe and are generally
acceptable for most numeric applications.

As an example of how even severe exceptions can be handled safely and automatically using
the NPX’s default exception responses, consider a calculation of the parallel resistance of
several values using only the standard formula (Figure 3-3). If R1 becomes zero, the circuit
resistance becomes zero. With the divide-by-zero and precision exceptions masked, the 80387
NPX will produce the correct result.
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EQUIVALENT RESISTANCE =

122164-11

Figure 3-3. Arithmetic Example Using Infinity

By masking or unmasking specific numeric exceptions in the NPX control word, NPX
programmers can delegate responsibility for most exceptions to the NPX, reserving the most
severe exceptions for programmed exception handlers. Exception-handling software is often
difficult to write, and the NPX’s masked responses have been tailored to deliver the most
reasonable result for each condition. For the majority of applications, masking all exceptions
other than invalid-operation yields satisfactory results with the least programming effort.
An invalid-operation exception normally indicates a program error that must be corrected;
this exception should not normally be masked.

The exception flags in the NPX status word provide a cumulative record of exceptions that
have occurred since these flags were last cleared. Once set, these flags can be cleared only
by executing the FCLEX (clear exceptions) instruction, by reinitializing the NPX, or by
overwriting the flags with an FRSTOR or FLDENY instruction. This allows a programmer
to mask all exceptions (except invalid operation), run a calculation, and then inspect the
status word to see if any exceptions were detected at any point in the calculation.

3.2.1.2 SOFTWARE EXCEPTION HANDLING

If the NPX encounters an unmasked exception condition, it signals the exception to the
80386 CPU using the ERROR# status line between the two processors.

The next time the 80386 CPU encounters a WAIT or ESC instruction in its instruction
stream, the 80386 will detect the active condition of the ERROR# status line and automat-
ically trap to an exception response routine using interrupt #16, the “processor extension
error’” exception.
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This exception response routine is normally a part of the systems software. Typical exception
responses may include:

e Incrementing an exception counter for later display or printing

o Printing or displaying diagnostic information (e.g., the 80387 environment and
registers)

¢ Aborting further execution

¢ Using the exception pointers to build an instruction that will run without exception and
executing it

For 80386 systems having systems software support for the 80387 NPX, applications
programmers should consult the operating system’s reference manuals for the appropriate
system response to NPX exceptions. For systems programmers, specific details on writing
software exception handlers are included in Chapter 6.

3.2.2 Invalid Operation
This exception may occur in response to two general classes of operations:

1. Stack operations

2. Arithmetic operations

The stack flag (SF) of the status word indicates which class of operation caused the excep-
tion. When SF is 1 a stack operation has resulted in stack overflow or underflow; when SF
is 0, an arithmetic instruction has encountered an invalid operand.

3.2.2.1 STACK EXCEPTION

When SF is 1, indicating a stack operation, the O/U# bit of the condition code (bit C,)
distinguishes between stack overflow and underflow as follows:

O/U# =1 Stack overflow— an instruction attempted to push down a nonempty stack
location.

O/U# =0 Stack underflow— an instruction attempted to read an operand from an
empty stack location.

When the invalid-operation exception is masked, the 80387 returns the QNaN indefinite.
This value overwrites the destination register, destroying its original contents.

When the invalid-operation exception is not masked, the 80386 exception “processor exten-
sion error” is triggered. TOP is not changed, and the source operands remain unaffected.
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intel

3.2.2.2 INVALID ARITHMETIC OPERATION

This class includes the invalid operations defined in IEEE Std 754. The 80387 reports an
invalid operation in any of the cases shown in Table 3-10. Also shown in this table are the
80387’s responses when the invalid exception is masked. When unmasked, the 80386 excep-
tion “‘processor extension error” is triggered, and the operands remain unaltered. An invalid
operation generally indicates a program error.

3.2.3 Division by Zero

If an instruction attempts to divide a finite nonzero operand by zero, the 80387 will report
a zero-divide exception. This is possible for F(I)DIV(R)(P) as well as the other instructions

Table 3-10. Masked Responses to Invalid Operations

Condition

Masked Response

Any arithmetic operation on an unsupported
format.

Any arithmetic operation on a signaling NaN.

Compare and test operations: one or both
operands is a NaN.

Addition of opposite-signed infinities or
subtraction of like-signed infinities.

Multiplication: co X 0; or 0 X co.
Division: co + oo; or 0 = 0.

Remainder instructions FPREM, FPREM1
when modulus (divisor) is zero or dividend
is co.

Trigonometric instructions FCOS, FPTAN,
FSIN, FSINCOS when argument is co.

FSQRT of negative operand (except FSQRT
(—0) = —0), FYL2X of negative operand
(except FYL2X (—0) = —oo), FYL2XP1 of
operand more negative than —1.

FIST(P) instructions when source register is
empty, a NaN, oo, or exceeds representable
range of destination.

FBSTP instruction when source register is
empty, a NaN, oo, or exceeds 18 decimal
digits.

FXCH instruction when one or both registers
are tagged empty.

Return the QNaN indefinite.

Return a QNaN (refer to the section
“Rules for Generating QNaNs”’).

Set condition codes ‘‘not comparable.”

Return the QNaN indefinite.

Return the QNaN indefinite.

Return the QNaN indefinite.

Return the QNaN indefinite; set C,.

Return the QNaN indefinite; set C,.

Return the QNaN indefinite.

Store integer indefinite.

Store packed decimal indefinite.

Change empty registers to the QNaN
indefinite and then perform exchange.
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that perform division internally: FYL2X and FXTRACT. The masked response for FDIV
and FYL2X is to return an infinity signed with the exclusive OR of the signs of the operands.
For FXTRACT, ST(1) is set to —oo; ST is set to zero with the same sign as the original
operand. If the divide-by-zcro exception is unmasked, the 80386 exception “processor exten-
sion error” is triggered; the operands remain unaltered.

3.2.4 Denormal Operand

If an arithmetic instruction attempts to operate on a denormal operand, the NPX reports
the denormal-operand exception. Denormal operands may have reduced significance due to
lost low-order bits, therefore it may be advisable in certain applications to preclude opera-
tions on these operands. This can be accomplished by an exception handler that responds to
unmasked denormal exceptions. Most users will mask this exception so that computation
may proceed; any loss of accuracy will be analyzed by the user when the final result is
delivered.

When this exception is masked, the 80387 sets the D-bit in the status word, then proceeds
with the instruction. Gradual underflow and denormal numbers as handled on the 80387
will produce results at least as good as, and often better than what could be obtained from
a machine that flushes underflows to zero. In fact, a denormal operand in single- or double-
precision format will be normalized to the extended-real format when loaded into the 80387.
Subsequent operations will benefit from the additional precision of the extended-real format
used internally.

When this exception is not masked, the D-bit is set and the exception handler is invoked.
The operands are not changed by the instruction and are available for inspection by the
exception handler.

If an 8087,/80287 program uses the denormal exception to automatically normalize denor-
mal operands, then that program can run on an 80387 by masking the denormal exception.
The 8087,/80287 denormal exception handler would not be used by the 80387 in this case.
A numerics program runs faster when the 80387 performs normalization of denormal
operands. A program can detect at run-time whether it is running on an 80387 or 8087/
80287 and disable the denormal exception when an 80387 is used. The following code
sequence is recommended to distinguish between an 80387 and an 8087/80287.

FINIT i Use default infinity mode:
;i projective for 8087/80287,
H affine for 80387
FLD1 ; Generate infinty
FLDZ
FDIV
FLD ST ; Form negative infinity
FCHS
FCOMPP i Compare +infinity with -infinity
FSTSH temp ; 8087/80287 will say they are equal
Mav AX, temp
SAHF
JNZ Using_80387
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The denormal-operand exception of the 80387 permits emulation of arithmetic on unnormal
operands as provided by the 8087/80287. The standard does not require the denormal
exception nor does it recognize the unnormal data type.

3.2.5 Numeric Overflow and Underflow

If the exponent of a numeric result is too large for the destination real format, the 80387
signals a numeric overflow. Conversely, if the exponent of a result is too small to be repre-
sented in the destination format, a numeric underflow is signaled. If either of these excep-
tions occur, the result of the operation is outside the range of the destination real format.

Typical algorithms are most likely to produce extremely large and small numbers in the
calculation of intermediate, rather than final, results. Because of the great range of the
extended-precision format (recommended as the destination format for intermediates),
overflow and underflow are relatively rare events in most 80387 applications.

3.2.5.1 OVERFLOW

The overflow exception can occur whenever the rounded true result would exceed in magni-
tude the largest finite number in the destination format. The exception can occur in the
execution of most of the arithmetic instructions and in some of the conversion instructions;
namely, FST(P), F(DADD(P), F(I)SUB(R)(P), F(I)MUL(P), FDIV(R)(P), FSCALE,
FYL2X, and FYL2XP1.

The response to an overflow condition depends on whether the overflow exception is masked:

e Overflow exception masked. The value returned depends on the rounding mode as
Table 3-11 illustrates.

Table 3-11. Masked Overflow Results

RC;::gLNQ S%'gr:: ' Result
Result
To nearest i f£
Toward — oo t L_aggest finite positive number
Toward +oco il Ij_acr)gest finite negative number
Toward zero i Largest finits hegative number
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* Overflow exception not masked. The unmasked response depends on whether the
instruction is supposed to store the result on the stack or in memory:

— Destination is the stack. The true result is divided by 22476 and rounded. (The bias
24,576 is equal to 3 X 212.) The significand is rounded to the appropriate precision
(according to the precision control (PC) bit of the control word, for those instruc-
tions controlled by PC, otherwise to extended precision). The roundup bit (C,) of
the status word is set if the significand was rounded upward.

The biasing of the exponent by 24,576 normally translates the number as nearly as
possible to the middle of the exponent range so that, if desired, it can be used in
subsequent scaled operations with less risk of causing further exceptions. With the
instruction FSCALE, however, it can happen that the result is too large and overflows
even after biasing. In this case, the unmasked response is exactly the same as the
masked round-to-nearest response, namely + infinity. The intention of this feature
is to ensure the trap handler will discover that a translation of the exponent by
—24574 would not work correctly without obliging the programmer of Decimal-to-
Binary or Exponential functions to determine which trap handler, if any, should be
invoked.

— Destination is memory (this can occur only with the store instructions). No result
is stored in memory. Instead, the operand is left intact in the stack. Because the
data in the stack is in extended-precision format, the exception handler has the
option either of reexecuting the store instruction after proper adjustment of the
operand or of rounding the significand on the stack to the destination’s precision as
the standard requires. The exception handler should ultimately store a value into
the destination location in memory if the program is to continue.

3.2.5.2 UNDERFLOW

Underflow can occur in the execution of the instructions FST(P), FADD(P), FSUB(RP),
FMUL(P), F(I)DIV(RP), FSCALE, FPREM(1), FPTAN, FSIN, FCOS, FSINCOS,
FPATAN, F2XM1, FYL2X, and FYL2XP1.

Two related events contribute to underflow:

1. Creation of a tiny result which, because it is so small, may cause some other exception
later (such as overflow upon division).

2. Creation of an inexact result; i.e. the delivered result differs from what would have been
computed were both the exponent range and precision unbounded.

Which of these events triggers the underflow exception depends on whether the underflow
exception is masked:

1. Underflow exception masked. The underflow exception is signaled when the result is
both tiny and inexact.

2. Underflow exception not masked. The underflow exception is signaled when the result
is tiny, regardless of inexactness.
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The response to an underflow exception also depends on whether the exception is masked:

Masked response. The result is denormal or zero. The precision exception is also triggered.

2. Unmasked response. The unmasked response depends on whether the instruction is
supposed to store the result on the stack or in memory:

» Destination is the stack. The true result is multiplied by 22457 and rounded. (The
bias 24,576 is equal to 3 X 21.) The significand is rounded to the appropriate
precision (according to the precision control (PC) bit of the control word, for those
instructions controlled by PC, otherwise to extended precision). The roundup bit
(C,) of the status word is set if the significand was rounded upward.

The biasing of the exponent by 24,576 normally translates the number as nearly as
possible to the middle of the exponent range so that, if desired, it can be used in
subsequent scaled operations with less risk of causing further exceptions. With the
instruction FSCALE, however, it can happen that the result is too tiny and under-
flows even after biasing. In this case, the unmasked response is exactly the same as
the masked round-to-nearest response, namely =+ 0. The intention of this feature is
to ensure the trap handler will discover that a translation by +24576 would not
work correctly without obliging the programmer of Decimal-to-Binary or
Exponential functions to determine which trap handler, if any, should be invoked.

»  Destination is memory (this can occur only with the store instructions). No result
is stored in memory. Instead, the operand is left intact in the stack. Because the
data in the stack is in extended-precision format, the exception handler has the
option either of reexecuting the store instruction after proper adjustment of the
operand or of rounding the significand on the stack to the destination’s precision as
the standard requires. The exception handler should ultimately store a value into
the destination location in memory if the program is to continue.

3.2.6 Inexact (Precision)

This exception condition occurs if the result of an operation is not exactly representable in
the destination format. For example, the fraction 1/3 cannot be precisely represented in
binary form. This exception occurs frequently and indicates that some (generally accepta-
ble) accuracy has been lost.

All the transcendental instructions are inexact by definition; they always cause the inexact
exception.

The C, (roundup) bit of the status word indicates whether the inexact result was rounded
up (C, = 1) or chopped (C, = 0).

The inexact exception accompanies the underflow exception when there is also a loss of
accuracy. When underflow is masked, the underflow exception is signaled only when there
is a loss of accuracy; therefore the precision flag is always set as well. When underflow is
unmasked, there may or may not have been a loss of accuracy; the precision bit indicates
which is the case.
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This exception is provided for applications that need to perform exact arithmetic only. Most
applications will mask this exception. The 80387 delivers the rounded or over/underflowed
result to the destination, regardless of whether a trap occurs.

3.2.7 Exception Priority

The 80387 deals with exceptions according to a predetermined precedence. Precedence in
exception handling means that higher-priority exceptions are flagged and results are deliv-
ered according to the requirements of that exception. Lower-priority exceptions may not be
flagged even if they occur. For example, dividing an SNaN by zero causes an invalid-operand
exception (due to the SNaN) and not a zero-divide exception; the masked result is the QNaN
real indefinite, not co. A denormal or inexact (precision) exception, however, can accom-
pany a numeric underflow or overflow exception.

The exception precedence is as follows:

1. Invalid operation exception, subdivided as follows:
a. Stack underflow.
b. Stack overflow.
¢.  Operand of unsupported format.
d. SNaN operand.

2. QNaN operand. Though this is not an exception, if one operand is a QNaN, dealing
with it has precedence over lower-priority exceptions. For example, a QNaN divided by
zero results in a QNaN, not a zero-divide exception.

3. Any other invalid-operation exception not mentioned above or zero divide.

4. Denormal operand. If masked, then instruction execution continues, and a lower-priority
exception can occur as well.

Numeric overflow and underflow. Inexact result (precision) can be flagged as well.

Inexact result (precision).

3.2.8 Standard Underflow/Overflow Exception Handler

As long as the underflow and overflow exceptions are masked, no additional software is
required to cause the output of the 80387 to conform to the requirements of IEEE Std 754.
When unmasked, these exceptions give the exception handler an additional option in the
case of store instructions. No result is stored in memory; instead, the operand is left intact
on the stack. The handler may round the significand of the operand on the stack to the
destination’s precision as the standard requires, or it may adjust the operand and reexecute
the faulting instruction.
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CHAPTER 4
THE 80387 INSTRUCTION SET

This chapter describes the operation of all 80387 instructions. Within this section, the
instructions are divided into six functional classes:

o Data Transfer instructions

* Nontranscendental instructions
»  Comparison instructions

o Transcendental instructions

o  Constant instructions

e Processor Control instructions

Throughout this chapter, the instruction set is described as it appears to the ASM386
programmer who is coding a program. Not included in this chapter are details of instruction
format, encoding, and execution times. This detailed information may be found in
Appendix A and Appendix E. Refer also to Appendix B for a summary of the exceptions
caused by each instruction.

4.1 COMPATIBILITY WITH THE 80287 AND 8087

The instruction set for the 80387 NPX is largely the same as that for the 80287 NPX (used
with 80286 systems) and that for the 8087 NPX (used with 8086 and 8088 systems). Most
object programs generated for the 80287 or 8087 will execute without change on the 80387.
Several instructions are new to the 80387, and several 80287 and 8087 instructions perform
no useful function on the 80387. Appendix C and Appendix D give details of these instruc-
tion set differences.

4.2 NUMERIC OPERANDS

The typical NPX instruction accepts one or two operands as inputs, operates on these, and
produces a result as an output. An operand is most often the contents of a register or of a
memory location. The operands of some instructions are predefined; for example, FSQRT
always takes the square root of the number in the top NPX stack element. Others allow, or
require, the programmer to explicitly code the operand(s) along with the instruction
mnemonic. Still others accept one explicit operand and one implicit operand, which is usually
the top NPX stack element. All 80387 instructions that have a data operand use ST as one
operand or as the only operand.

Whether supplied by the programmer or utilized automatically, the two basic types of
operands are sources and destinations. A source operand simply supplies one of the inputs
to an instruction; it is not altered by the instruction. Even when an instruction converts the
source operand from one format to another (e.g., real to integer), the conversion is actually
performed in an internal work area to avoid altering the source operand. A destination
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operand may also provide an input to an instruction. It is distinguished from a source operand,
however, because its content may be altered when it receives the result produced by the
operation; that is, the destination is replaced by the result.

Many instructions allow their operands to be coded in more than one way. For example,
FADD (add real) may be written without operands, with only a source or with a destination
and a source. The instruction descriptions in this section employ the simple convention of
separating alternative operand forms with slashes; the slashes, however, are not coded.
Consecutive slashes indicate an option of no explicit operands. The operands for FADD are
thus described as

//source/destination, source

This means that FADD may be written in any of three ways:

Written Form Action
FADD Add ST to ST(1), put result in ST(1), then pop ST
FADD source Add source to ST(0)
FADD destination, source Add source to destination

The assembler can allow the same instruction to be specified in different ways; for example:

FADD = FADDP ST(1), ST
FADD ST(1) = FADD ST, ST(1)

When reading this section, it is important to bear in mind that memory operands may be
coded with any of the CPU’s memory addressing methods provided by the ModR /M byte.
To review these methods (BASE + (INDEX X SCALE) + DISPLACEMENT) refer to
the 80386 Programmer’s Reference Manual. Chapter 5 also provides several addressing mode
examples.

4.3 DATA TRANSFER INSTRUCTIONS

These instructions (summarized in Table 4-1) move operands among elements of the register
stack, and between the stack top and memory. Any of the seven data types can be converted
to extended real and loaded (pushed) onto the stack in a single operation; they can be stored
to memory in the same manner. The data transfer instructions automatically update the
80387 tag word to reflect whether the register is empty or full following the instruction.
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Table 4-1. Data Transfer Instructions

Real Transfers

FLD Load Real
FST Store real
FSTP Store real and pop
FXCH Exchange registers

Integer Transfers

FILD Integer load
FIST Integer store
FISTP Integer store and pop

Packed Decimal Transfers

FBLD Packed decimal (BCD) load
FBSTP Packed decimal (BCD) store and pop

4.3.1 FLD source

FLD (load real) loads (pushes) the source operand onto the top of the register stack. This is
done by decrementing the stack pointer by one and then copying the content of the source
to the new stack top. ST(7) must be empty to avoid causing an invalid-operation exception.
The new stack top is tagged nonempty. The source may be a register on the stack (ST(i))
or any of the real data types in memory. If the source is a register, the register number used
is that before TOP is decremented by the instruction. Coding FLD ST(0) duplicates the
stack top. Single and double real source operands are converted to extended real automati-
cally. Loading an extended real operand does not require conversion; therefore, the I and D
exceptions do not occur in this case.

4.3.2 FST destination

FST (store real) copies the NPX stack top to the destination, which may be another register
on the stack or a single or double (but not extended-precision) memory operand. If the
destination is single or double real, the copy of the significand is rounded to the width of the
destination according to the RC field of the control word, and the copy of the exponent is
converted to the width and bias of the destination format. The over/underflow condition is
checked for as well.

If, however, the stack top contains zero, = co, or a NaN, then the stack top’s significand is
not rounded but is chopped (on the right) to fit the destination. Neither is the exponent
converted, rather it also is chopped on the right and transferred “as is”. This preserves the
value’s identification as co or a NaN (exponent all ones) so that it can be properly loaded
and used later in the program if desired.

Note that the 80387 does not signal the invalid-operation exception when the destination is
a nonempty stack element.
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4.3.3 FSTP destination

FSTP (store real and pop) operates identically to FST except that the NPX stack is popped
following the transfer. This is done by tagging the top stack element empty and then incre-
menting TOP. FSTP also permits storing to an extended-precision real memory variable,
whereas FST does not. If the source operand is a register, the register number used is that
before TOP is incremented by the instruction. Coding FSTP ST(0) is equivalent to popping
the stack with no data transfer.

4.3.4 FXCH //destination

FXCH (exchange registers) swaps the contents of the destination and the stack top registers.
If the destination is not coded explicitly, ST(1) is used. Many 80387 instructions operate
only on the stack top; FXCH provides a simple means of effectively using these instructions
on lower stack elements. For example, the following sequence takes the square root of the
third register from the top (assuming that ST is nonempty):

FXCH ST(3)
FSQRT
FXCH ST(3)

4.3.5 FILD source
FILD (integer load) converts the source memory operand from its binary integer format
(word, short, or long) to extended real and pushes the result onto the NPX stack. ST(7)

must be empty to avoid causing an exception. The (new) stack top is tagged nonempty.
FILD is an exact operation; the source is loaded with no rounding error.

4.3.6 FIST destination
FIST (integer store) stores the content of the stack top to an integer according to the RC
field (rounding control) of the control word and transfers the result to the destination, leaving

the stack top unchanged. The destination may define a word or short integer variable.
Negative zero is stored in the same encoding as positive zero: 0000...00.

4.3.7 FISTP destination

FISTP (integer and pop) operates like FIST except that it also pops the NPX stack follow-
ing the transfer. The destination may be any of the binary integer data types.

4.3.8 FBLD source
FBLD (packed decimal (BCD) load) converts the content of the source operand from packed

decimal to extended real and pushes the result onto the NPX stack. ST(7) must be empty
to avoid causing an exception. The sign of the source is preserved, including the case where
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the value is negative zero. FBLD is an exact operation; the source is loaded with no rounding
error.

The packed decimal digits of the source are assumed to be in the range 0-9. The instruction
does not check for invalid digits (A—FH), and the result of attempting to load an invalid
encoding is undefined.

4.3.9 FBSTP destination

FBSTP (packed decimal (BCD) store and pop) converts the content of the stack top to a
packed decimal integer, stores the result at the destination in memory, and pops the stack.
FBSTP rounds a nonintegral value according to the RC (rounding control) field of the control
word.

4.4 NONTRANSCENDENTAL INSTRUCTIONS

The 80387’s nontranscendental instruction set (Table 4-2) provides a wealth of variations
on the basic add, subtract, multiply, and divide operations, and a number of other useful
functions. These range from a simple absolute value to a square root instruction that executes
faster than ordinary division; 80387 programmers no longer need to spend valuable time
eliminating square roots from algorithms because they run too slowly. Other nontranscen-
dental instructions perform exact modulo division, round real numbers to integers, and scale
values by powers of two.

The 80387’s basic nontranscendental instructions (addition, subtraction, multiplication, and
division) are designed to encourage the development of very efficient algorithms. In partic-
ular, they allow the programmer to reference memory as easily as the NPX register stack.

Table 4-3 summarizes the available operation/operand forms that are provided for basic
arithmetic. In addition to the four normal operations, two “reversed” instructions make
subtraction and division “symmetrical” like addition and multiplication. The variety of
instruction and operand forms give the programmer unusual flexibility:

e Operands may be located in registers or memory.
« Results may be deposited in a choice of registers.

¢ Operands may be a variety of NPX data types: extended real, double real, single real,
short integer or word integer, with automatic conversion to extended real performed by
the 80387.

Five basic instruction forms may be used across all six operations, as shown in Table 4-3.
The classical stack form may be used to make the 80387 operate like a classical stack
machine. No operands are coded in this form, only the instruction mnemonic. The NPX
picks the source operand from the stack top and the destination from the next stack element.
It then pops the stack, performs the operation, and returns the result to the new stack top,
effectively replacing the operands by the result.
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Table 4-2. Nontranscendental instructions

Addition
FADD Add real
FADDP Add real and pop
FIADD Integer add

Subtraction

FSUB Subtract real

FSUBP Subtract real and pop

FISUB Integer subtract

FSUBR Subtract real reversed
FSUBRP Subtract real reversed and pop
FISUBR Integer subtract reversed

Multiplication

FMUL Multiply real
FMULP Multiply real and pop
FIMUL Integer multiply
Division
FDIV Divide real
FDIVP Divide real and pop
FIDIV Integer divide
FDIVR Divide real reversed
FDIVRP Divide real reversed and pop
FIDIVR Integer divide reversed

Other Operations

FSQRT Square root

FSCALE Scale

FPREM Partial remainder

FPREM1 IEEE standard partial remainder
FRNDINT Round to integer

FXTRACT Extract exponent and significand
FABS Absolute value

FCHS Change sign

The register form is a generalization of the classical stack form; the programmer specifies
the stack top as one operand and any register on the stack as the other operand. Coding the
stack top as the destination provides a convenient way to access a constant, held elsewhere
in the stack, from the stack top. The destination need not always be ST, however. All two
operand instructions allow use of another register as the destination. This coding (ST is the
source operand) allows, for example, adding the stack top into a register used as an
accumulator.

Often the operand in the stack top is needed for one operation but then is of no further use
in the computation. The register pop form can be used to pick up the stack top as the source

4-6




Intel 80387 INSTRUCTION SET

Table 4-3. Basic Nontranscendental Instructions and Operands

" Mnemonic Operand Forms
Instruction Form Form destination, source ASM386 Example

Classical stack Fop {8T(1), ST} FADD

Classical stack, extra pop | FopP {ST(1),ST} FADDP

Register Fop ST(i), ST or ST, ST(j) FSUB ST, ST(3)

Register pop FopP ST(i), ST FMULP  ST(2), ST

Real memory Fop { ST, } single/double FDIV AZIMUTH

Integer memory Flop { ST, } word-integer/short-integer | FIDIV PULSES
NOTES:
Braces ({ }) surround implicit operands; these are not coded, and are shown here for information only.
op= ADD destination « destination + source

SuUB destination « destination — source
SUBR destination « source — destination
MUL destination « destination « source

DIV destination « destination = source
DIVR  destination « source = destination

operand, and then discard it by popping the stack. Coding operands of ST(1), ST with a
register pop mnemonic is equivalent to a classical stack operation: the top is popped and the
result is left at the new top.

The two memory forms increase the flexibility of the 80387’s nontranscendental instruc-
tions. They permit a real number or a binary integer in memory to be used directly as a
source operand. This is useful in situations where operands are not used frequently enough
to justify holding them in registers. Note that any memory addressing method may be used
to define these operands, so they may be elements in arrays, structures, or other data organi-
zations, as well as simple scalars.

The six basic operations are discussed further in the next paragraphs, and descriptions of
the remaining seven operations follow.

4.4.1 Addition

FADD //source/destination,source
FADDP //destination,source
FIADD source

The addition instructions (add real, add real and pop, integer add) add the source and desti-
nation operands and return the sum to the destination. The operand at the stack top may be
doubled by coding:

FADD ST, STC0)
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- If the source operand is in memory, conversion of an integer, a single real, or a double real
operand to extended real is performed automatically.

4.4.2 Normal Subtraction

FSUB //source/destination,source
FSUBP //destination,source
FISUB  source

The normal subtraction instructions (subtract real, subtract real and pop, integer subtract)
subtract the source operand from the destination and return the difference to the
destination.

4.4.3 Reversed Subtraction

FSUBR //source/destination,source
FSUBRP //destination,source
FISUBR  source

The reversed subtraction instructions (subtract real reversed, subtract real reversed and pop,
integer subtract reversed) subtract the destination from the source and return the difference
to the destination. For example, FSUBR ST, ST(1) means subtract ST from ST(1) and
leave the result in ST.

4.4.4 Multiplication

FMUL //source/destination,source
FMULP  //destination,source
FIMUL  source

The multiplication instructions (multiply real, multiply real and pop, integer multiply)
multiply the source and destination operands and return the product to the destination. Coding
FMUL ST, ST(C0) squares the content of the stack top.

4.4.5 Normal Division

FDIV //source/destination,source
FDIVP  //destination,source
FIDIV  source

The normal division instructions (divide real, divide real and pop, integer divide) divide the
destination by the source and return the quotient to the destination.
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4.4.6 Reversed Division

FDIVR //source/destination,source

FDIVRP  //destination,source

FIDIVR  source

The reversed division instructions (divide real reversed, divide real reversed and pop, integer

divide reversed) divide the source operand by the destination and return the quotient to the
destination.

4.4.7 FSQRT

FSQRT (square root) replaces the content of the top stack element with its square root.
(Note: The square root of —O0 is defined to be —0.)

4.4.8 FSCALE

FSCALE (scale) interprets the value contained in ST(1) as an integer and adds this value
to the exponent of the number in ST. This is equivalent to

ST « ST+ 25T

Thus, FSCALE provides rapid multiplication or division by integral powers of 2. It is partic-
ularly useful for scaling the elements of a vector.

There is no limit on the range of the scale factor in ST(1). If the value is not integral,

FSCALE uses the nearest integer smaller in magnitude; i.e., it chops the value toward 0. If
the resulting integer is zero, the value in ST is not changed.

4.4.9 FPREM — Partial Remainder (80287 /8087-Compatible)

FPREM computes the remainder of division of ST by ST(1) and leaves the result in ST.
FPREM finds a remainder REM and a quotient Q such that

REM = ST — ST(1)*Q

The quotient Q is chosen to be the integer obtained by chopping the exact value of
ST/ST(1) toward zero. The sign of the remainder is the same as the sign of the original
dividend from ST.

By ignoring precision control, the 80387 produces an exact result with FPREM. The preci-
sion (inexact) exception does not occur and the rounding control has no effect.

The FPREM instruction is not the remainder operation specified in the IEEE standard. To
get that remainder, the FPREMI1 instruction should be used.
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The FPREM instruction is designed to be executed iteratively in a software-controlled loop.
It operates by performing successive scaled subtractions; therefore, obtaining the exact
remainder when the operands differ greatly in magnitude can consume large amounts of
execution time. Because the 80387 can only be preempted between instructions, the remain-
der function could seriously increase interrupt latency in these cases. For this reason, the
maximum number of iterations is limited. The instruction may terminate before it has
completely terminated the calculation. The C2 bit of the status word indicates whether the
calculation is complete or whether the instruction must be executed again.

FPREM can reduce the exponent of ST by up to (but not including) 64 in one execution. If
FPREM produces a remainder that is less than the modulus (i.e., the divisor), the function
is complete and bit C2 of the status word condition code is cleared. If the function is incom-
plete, C2 is set to 1; the result in ST is then called the partial remainder. Software can
inspect C2 by storing the status word following execution of FPREM, reexecuting the
instruction (using the partial remainder in ST as the dividend) until C2 is cleared. A higher
priority interrupting routine that needs the 80387 can force a context switch between the
instructions in the remainder loop.

An important use for FPREM is to reduce arguments (operands) of transcendental functions
to the range permitted by these instructions. For example, the FPTAN (tangent) instruction
requires its argument ST to be less than 2. For w/4 <<IST| < 2%, FPTAN (as well as the
other trigonometric instructions) performs an internal reduction of ST to a value less than
w/4 using an internally stored = /4 divisor that has 67 significant bits. Because of its greater
accuracy, this method of reduction is recommended when the argument is within the required
range.

However, when I ST | = 29, FPREM can be employed to reduce ST. With =/4 as a modulus,
FPREM can reduce an argument so that it is within range of FPTAN and so that no further
reduction is required by FPTAN.

Because FPREM produces an exact result, the argument reduction does not introduce
roundoff error into the calculation, even if several iterations are required to bring the
argument into range. However, = is never accurate. The rounding of =, when it is used by
FPREM to reduce an argument for a periodic trigonometric function, does not create the
effect of a rounded argument, but of a rounded period.

When reduction is complete, FPREM provides the least-significant three bits of the quotient
generated by FPREM (in C,;, C,, C,). This is also important for transcendental argument
reduction, because it locates the original angle in the correct one of eight /4 segments of
the unit circle (see Table 4-4).

4.4.10 FPREM1—Partial Remainder (IEEE Std. 754-Compatible)

FPREMI computes the remainder of division of ST by ST(1) and leaves the result in ST.
FPREMI finds a remainder REM1 and a quotient Q1 such that

REMI1 = ST — ST(1)*Q1
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Table 4-4. Condition Code Interpretation after FPREM and FPREM1 Instructions

Condition Code
ondition Interpretation after

FPREM and FPREM1

C2(PF) Cc3 C1 co

Incomplete Reduction:
1 X X X further interation required
or complete reduction

Q1 Qo Q2 Q MOD 8
0 0 0 0
(1) é 8 ; Complete Reduction:
0 1 1 0 3 CO0, C3, C1 contain three least

0 0 1 4 significant bits of quotient

0 1 1 5

1 0 1 6

1 1 1 7

The quotient Q1 is chosen to be the integer nearest to the exact value of ST/ST(1). When
ST/ST(1) is exactly N + 1/2 (for some integer N), there are two integers equally close to
ST/ST(1). In this case the value chosen for Q1 is the even integer.

The result produced by FPREMI1 is always exact; no rounding is necessary, and therefore
the precision exception does not occur and the rounding control has no effect.

The FPREMI instruction is designed to be executed iteratively in a software-controlled loop.
FPREMI1 operates by performing successive scaled subtractions; therefore, obtaining the
exact remainder when the operands differ greatly in magnitude can consume large amounts
of execution time. Because the 80387 can only be preempted between instructions, the
remainder function could seriously increase interrupt latency in these cases. For this reason,
the maximum number of iterations is limited. The instruction may terminate before it has
completely terminated the calculation. The C2 bit of the status word indicates whether the
calculation is complete or whether the instruction must be executed again.

FPREMI1 can reduce the exponent of ST by up to (but not including) 64 in one execution.
If FPREM 1 produces a remainder that is less than the modulus (i.e., the divisor), the function
is complete and bit C2 of the status word condition code is cleared. If the function is incom-
plete, C2 is set to 1; the result in ST is then called the partial remainder. Software can
inspect C2 by storing the status word following execution of FPREMI1, reexecuting the
instruction (using the partial remainder in ST as the dividend) until C2 is cleared. When
C2 is cleared, FPREMI1 also provides the least-significant three bits of the quotient gener-
ated by FPREM1 (in C,, C,, C,).
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The uses for FPREM1 are the same as those for FPREM.
FPREMI1 differs from FPREM it these respects:

« FPREM and FPREMI choose the value of the quotient differently; the low-order three
bits of the quotient as reported in bits C3,C1,CO of the status word may differ by one
in some cases.

+  FPREM and FPREM1 may produce different remainders. FPREM produces a remain-
der R such that 0 < R < IST(1)lor —IST(1)! < R =< 0, depending on the sign of the
dividend. FPREM1 produces a remainder R1 such that —IST(1)I/2 < Rl <
+IST(1)1/2.

4.4.11 FRNDINT

FRNDINT (round to integer) rounds the top stack element to an integer according to the
RC bits of the control word. For example, assume that ST contains the 80387 real number
encoding of the decimal value 155.625. FRNDINT will change the value to 155 if the RC
field of the control word is set to down or chop, or to 156 if it is set to up or nearest.

4.4.12 FXTRACT

FXTRACT (extract exponent and significand) performs a superset of the IEEE-
recommended logh(x) function by “decomposing” the number in the stack top into two
numbers that represent the actual value of the operand’s exponent and significand fields.
The “exponent” replaces the original operand on the stack and the “significand” is pushed
onto the stack. (ST(7) must be empty to avoid causing the invalid-operation exception.)
Following execution of FXTRACT, ST (the new stack top) contains the value of the original
significand expressed as a real number: its sign is the same as the operand’s, its exponent is
0 true (16,383 or 3FFFH biased), and its significand is identical to the original operand’s.
ST(1) contains the value of the original operand’s true (unbiased) exponent expressed as a
real number.

If the original operand is zero, FXTRACT leaves —co in ST(1) (the exponent) while ST is
assigned the value zero with a sign equal to that of the original operand. The zero-divide
exception is raised in this case, as well.

To illustrate the operation of FXTRACT, assume that ST contains a number whose true
exponent is +4 (i.e., its exponent field contains 4003H). After executing FXTRACT, ST(1)
will contain the real number +4.0; its sign will be positive, its exponent field will contain
4001H (42 true) and its significand field will contain 1,00...00B. In other words, the value
in ST(1) will be 1.0 X 22 = 4. If ST contains an operand whose true exponent is —7
(i.e., its exponent field contains 3FF8H), then FXTRACT will return an “exponent” of
—7.0; after the instruction executes, ST(1)’s sign and exponent fields will contain CO01H
(negative sign, true exponent of 2), and its significand will be 1,1100...00B. In other words,
the value in ST(1) will be —1.75 X 22 = —7.0. In both cases, following FXTRACT, ST’s
sign and significand fields will be the same as the original operand’s, and its exponent field
will contain 3FFFH (0 true).
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FXTRACT is useful for power and range scaling operations. Both FXTRACT and the base
2 exponential instruction F2XM1 are needed to perform a general power operation.
Converting numbers in 80387 extended real format to decimal representations (e.g., for
printing or displaying) requires not only FBSTP but also FXTRACT to allow scaling that
does not overflow the range of the extended format. FXTRACT can also be useful for
debugging, because it allows the exponent and significand parts of a real number to be
examined separately.

4.4.13 FABS

FABS (absolute value) changes the top stack element to its absolute value by making its
sign positive. Note that the invalid-operation exception is not signaled even if the operand is
a signaling NaN or has a format that is not supported.

4.4.14 FCHS

FCHS (change sign) complements (reverses) the sign of the top stack element. Note that
the invalid-operation exception is not signaled even if the operand is a signaling NaN or has
a format that is not supported.

4.5 COMPARISON INSTRUCTIONS

The instructions of this class allow comparison of numbers of all supported real and integer
data types. Each of these instructions (Table 4-5) analyzes the top stack element, often in
relationship to another operand, and reports the result as a condition code in the status word.

The basic operations are compare, test (compare with zero), and examine (report type, sign,
and normalization). Special forms of the compare operation are provided to optimize
algorithms by allowing direct comparisons with binary integers and real numbers in memory,
as well as popping the stack after a comparison.

The FSTSW (store status word) instruction may be used following a comparison to transfer
the condition code to memory or to the 80386 AX register for inspection. The 80386 SAHF

Table 4-5. Comparison Instructions

FCOM Compare real

FCOMP Compare real and pop

FCOMPP Compare real and pop twice

FICOM Integer compare

FICOMP Integer compare and pop

FTST Test i

FUCOM Unordered compare real

FUCOMP Unordered compare real and pop
FUCOMPP Unordered compare real and pop twice
FXAM Examine
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instruction is recommended for copying the 80387 flags from AX to the 80386 flags for easy
conditional branching.

Note that instructions other than those in the comparison group may update the condition
code. To ensure that the status word is not altered inadvertently, store it immediately follow-
ing a comparison operation.

4.5.1 FCOM //source

FCOM (compare real) compares the stack top to the source operand. The source operand
may be a register on the stack, or a single or double real memory operand. If an operand is
not coded, ST is compared to ST(1). The sign of zero is ignored, so that +0 = —0. Follow-
ing the instruction, the condition codes reflect the order of the operands as shown in
Table 4-6.

If either operand is a NaN (either quiet or signaling) or an undefined format, or if a stack

fault occurs, the invalid-operation exception is raised and the condition bits are set to
“unordered.”

4.5.2 FCOMP //source

FCOMP (compare real and pop) operates like FCOM, and in addition pops the stack.

4.5.3 FCOMPP

FCOMPP (compare real and pop twice) operates like FCOM and additionally pops the
stack twice, discarding both operands. FCOMPP always compares ST to ST(1); no operands
may be explicitly specified.

4.5.4 FICOM source

FICOM (integer compare) converts the source operand, which may reference a word or

short binary integer variable, to extended real and compares the stack top to it. The condi-
tion code bits in the status word are set as for FCOM.

Table 4-6. Condition Code Resulting from Comparisons

80386
Order C3 (ZF) C2 (PF) CO (CF) Conditional
Branch
ST > Operand 0 0 0 JA
ST < Operand 0 0 1 JB
ST = Operand 1 0 0 JE
Unordered 1 1 1 JP
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4.5.5 FICOMP source

FICOMP (integer compare and pop) operates identically to FICOM and additionally discards
the value in ST by popping the NPX stack.

4.5.6 FTST

FTST (test) tests the top stack element by comparing it to zero. The result is posted to the
condition codes as shown in Table 4-7.

4.5.7 FUCOM //source
FUCOM (unordered compare real) operates like FCOM, with two differences:

1. It does not cause an invalid-operation exception when one of the operands is a NaN. If
either operand is a NaN, the condition bits of the status word are set to unordered as
shown in Table 4-6.

2. Only operands on the NPX stack can be compared.

4.5.8 FUCOMP //source

FUCOMP (unordered compare real and pop) operates like FUCOM and in addition pops
the NPX stack.

4.5.9 FUCOMPP

FUCOMPP (unordered compare real and pop) operates like FUCOM and in addition pops
the NPX stack twice, discarding both operands. FUCOMPP always compares ST to ST(1);
no operands can be explicitly specified.

Table 4-7. Condition Code Resulting from FTST

83086
Order C3 (ZF) C2 (ZF) CO (ZF) Conditional
Branch
ST > 0.0 0 0 0 JA
ST < 0.0 0 0 1 JB
ST=0.0 1 0 ] JE
Unordered 1 1 1 JP
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4.5.10 FXAM

FXAM (examine) reports the content of the top stack element as positive/negative and
NaN, denormal, normal, zero, infinity, unsupported, or empty. Table 4-8 lists and interprets
all the condition code values that FXAM generates.

4.6 TRANSCENDENTAL INSTRUCTIONS

The instructions in this group (Table 4-9) perform the time-consuming core calculations for
all common trigonometric, inverse trigonometric, hyperbolic, inverse hyperbolic, logarith-
mic, and exponential functions. The transcendentals operate on the top one or two stack
elements, and they return their results to the stack. The trigonometric operations assume
their arguments are expressed in radians. The logarithmic and exponential operations work
in base 2.

The results of transcendental instructions are highly accurate. The absolute value of the
relative error of the transcendental instructions is guaranteed to be less than 262, (Relative
error is the ratio between the absolute error and the exact value.)

Table 4-8. Condition Code Defining Operand Class

C3 Cc2 C1 Cco Value at TOP
0 0 0 0 + Unsupported
0 0 0 1 +NaN
0 0 1 0 —Unsupported
0 0 1 1 —NaN
0 1 0 0 +Normal
0 1 0 1 + Infinity
0 1 1 0 —Normal
0 1 1 1 —Infinity
1 0 0 0 +0
1 0 0 1 + Empty
1 0 1 0 -0
1 0 1 1 —Empty
1 1 0 0 +Denormal
1 1 1 0 —Denormal

Table 4-9. Transcendental Instructions

FSIN Sine

FCOS Cosine

FSINCOS Sine and cosine

FPTAN Tangent of ST

FPATAN Arctangent of ST(1)/ST

F2XM1 2x—1

FYL2X Y « log,X; Y is ST(1), X is ST
FYL2XP1 Y elog,(X + 1); Yis ST(1), Xis ST
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The trigonometric functions accept a practically unrestricted range of operands, whereas the
other transcendental instructions require that arguments be more restricted in range. FPREM
or FPREM1 may be used to bring the otherwise valid operand of a periodic function into
range. Prologue and epilogue software may be used to reduce arguments for other instruc-
tions to the expected range and to adjust the result to correspond to the original arguments
if necessary. The instruction descriptions in this section document the allowed operand range
for each instruction.

4.6.1 FCOS

When complete, this function replaces the contents of ST with COS(ST). ST, expressed in
radians, must lie in the range 10| << 26 (for most practical purposes unrestricted). If ST is
in range, C2 of the status word is cleared and the result of the operation is produced.

If the operand is outside of the range, C2 is set to one (function incomplete) and ST remains
intact (i.e., no reduction of the operand is performed). It is the programmers responsibility
to reduce the operand to an absolute value smaller than 2%, The instructions FPREM1 and
FPREM are available for this purpose.

4.6.2 FSIN

When complete, this function replaces the contents of ST with SIN(ST). FSIN is equivalent
to FCOS in the way it reduces the operand. ST is expressed in radians.

4.6.3 FSINCOS

When complete, this instruction replaces the contents of ST with SIN(ST), then pushes
COS(ST) onto the stack. (ST(7) must be empty to avoid an invalid exception.) FSINCOS
is equivalent to FCOS in the way it reduces the operand. ST is expressed in radians.

4.6.4 FPTAN

When complete, FPTAN (partial tangent) computes the function Y = TAN (ST). ST is
expressed in radians. Y replaces ST, then the value 1 is pushed, becoming the new stack top.
(ST(7) must be empty to avoid an invalid exception.) When the function is complete
ST(1) = TAN (arg) and ST = 1. FPTAN is equivalent to FCOS in the way it reduces the
operand.

The fact that FPTAN places two results on the stack maintains compatibility with the
8087/80287 and aids the calculation of other trigonometric functions that can be derived
from tan via standard trigonometric identities. For example, the cot function is given by this
identity:

cotx=1/tan x.
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Therefore, simply executing the reverse divide instruction FDIVR after FPTAN yields the
cot function.

4.6.5 FPATAN

FPATAN (arctangent) computes the function ® = ARCTAN (Y/X). X is taken from
ST(0) and Y from ST(1). The instruction pops the NPX stack and returns © to the (new)
stack top, overwriting the Y operand. The result is expressed in radians. The range of operands
is not restricted; however, the range of the result depends on the relationship between the
operands according to Table 4-10.

The fact that the argument of FPATAN is a ratio aids calculation of other trigonometric
functions, including Arcsin and Arccos. These can be derived from Arctan via standard
trigonometric identities. For example, the Arcsin function can be easily calculated using this
identity:

Arcsin x = Arctan (x [ \/ 1 — x2).

Thus, to find Arcsin (YY), push Y onto the NPX stack, then calculate X = /1 — Y2,
pushing the result X onto the stack. Executing FPATAN then leaves Arcsin (Y) at the top
of the stack.

4.6.6 F2XM1

F2XMI1 (2 to the X minus 1) calculates the function Y = 2X — 1. X is taken from the
stack top and must be in the range —1 =< X =< 1. The result Y replaces the argument X at
the stack top. If the argument is out of range, the results are undefined.

This instruction is designed to produce a very accurate result even when X is close to 0. For
values of the argument very close in magnitude to 1, a larger error will be incurred. To
obtain Y = 2%, add 1 to the result delivered by F2XMI1.

Table 4-10. Results of FPATAN

Sign(Y) Sign(X) Yl <<IXi? Final Result
+ + Yes 0 < atan(Y/X) < n/4
+ + No w4 < atan(Y/X) < =/2
+ - No w2 < atan(Y/X) < 3e+x/4
+ - Yes 3en/4 < atan(Y/X) <=
- + Yes —w/4 < atan(Y/X) <0
- + No —w/2 < atan(Y/X) < —n/4
- - No —3 /4 < atan(Y/X) < —/2
— - Yes —mx < atan(Y/X) < —3ex/4
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The following formulas show how values other than 2 may be raised to a power of X:
10x j— 2X~LOG2(|O)
eX = DX-LOG2(e)

yX = 2X-LOG2(Y)

As shown in the next section, the 80387 has built-in instructions for loading the constants
LOG,10 and LOG,e, and the FYL2X instruction may be used to calculate XeLOG,Y.

4.6.7 FYL2X

FYL2X (Y log base 2 of X) calculates the function Z = Y « LOG,X. X is taken from the
stack top and Y from ST(1). The operands must be in the following ranges:

0< X<+
—o < Y< +oo

The instruction pops the NPX stack and returns Z at the (new) stack top, replacing the Y
operand. If the operand is out of range (i.e., in negative) the invalid-operation exception
occurs.

This function optimizes the calculations of log to any base other than two, because a multi-
plication is always required:

LOGwx = (LOG,N)~"» LOG,x

4.6.8 FYL2XP1

FYL2XP1 (Y log base 2 of (X + 1)) calculates the function Z = YeLOG, (X+1). X is
taken from the stack top and must be in the range —(1—SQRT(2)/2) < X <
1—SQRT(2)/2. Y is taken from ST(1) and is unlimited in range (—o0 < Y < +o0).
FYL2XP1 pops the stack and returns Z at the (new) stack top, replacing Y. If the argument
is out of range, the results are undefined.

This instruction provides improved accuracy over FYL2X when computing the logarithm of
a number very close to 1, for example 1 + ¢ where ¢ << 1. Providing ¢ rather than
1 + € as the input to the function allows more significant digits to be retained.

4.7 CONSTANT INSTRUCTIONS

Each of these instructions (Table 4-11) loads (pushes) a commonly used constant onto the
stack. (ST(7) must be empty to avoid an invalid exception.) The values have full extended
real precision (64 bits) and are accurate to approximately 19 decimal digits. Because an
external real constant occupies 10 memory bytes, the constant instructions, which are only
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Table 4-11. Constant Instructions

FLDZ Load + 0.0

FLD1 Load + 1.0

FLDPI Load =

FLDL2T Load log,10

FLDL2E Load log,e

FLDLG2 Load log,2 .
FLDLN2 Load log.2

two bytes long, save storage and improve execution speed, in addition to simplifying
programming.

The constants used by these instructions are stored internally in a format more precise even
than extended real. When loading the constant, the 80387 rounds the more precise internal
constant according the RC (rounding control) bit of the control word. However, in spite of
this rounding, the precision exception is not raised (to maintain compatibility). When the

rounding control is set to round to nearest on the 80387, the 80387 produces the same constant
that is produced by the 80287.

4.7.1 FLDZ

FLDZ (load zero) loads (pushes) +0.0 onto the NPX stack.

4.7.2 FLD1

FLDI1 (load one) loads (pushes) +1.0 onto the NPX stack.

4.7.3 FLDPI

FLDPI (load =) loads (pushes) w onto the NPX stack.

4.7.4 FLDL2T

FLDL2T (load log base 2 of 10) loads (pushes) the value LOG,10 onto the NPX stack.

4.7.5 FLDL2E

FLDL2E (load log base 2 of e) loads (pushes) the value LOG,e onto the NPX stack.

4.7.6 FLDLG2

FLDLG?2 (load log base 10 of 2) loads (pushes) the value LOG,,2 onto the NPX stack.
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4.7.7 FLDLN2

FLDLN?2 (load log base e of 2) loads (pushes) the value LOG,2 onto the NPX stack.

4.8 PROCESSOR CONTROL INSTRUCTIONS

The processor control instructions are shown in Table 4-12. The instruction FSTSW is
commonly used for conditional branching. The remaining instructions are not typically used
in calculations; they provide control over the 80387 NPX for system-level activities. These
activities include initialization, exception handling, and task switching.

As shown in Table 4-12, many of the NPX processor control instructions have two forms of
assembler mnemonic:

1. A wait form, where the mnemonic is prefixed only with an F, such as FSTSW. This
form checks for unmasked numeric exceptions.

2. A no-wait form, where the mnemonic is prefixed with an FN, such as FNSTSW. This
form ignores unmasked numeric exceptions.

When the control instruction is coded using the no-wait form of the mnemonic, the ASM386
assembler does not precede the ESC instruction with a wait instruction, and the CPU does
not test the ERROR# status line from the NPX before executing the processor control
instruction.

Only the processor control class of instructions have this alternate no-wait form. All numeric
instructions are automatically synchronized by the 80386; the CPU transfers all operands
before initiating the next instruction. Because of this automatic synchronization by the 80386,
numeric instructions for the 80387 need not be preceded by a CPU wait instruction in order
to execute correctly.

Table 4-12. Processor Control Instructions

FINIT/FENINIT Initialize processor
FLDCW Load control word
FSTCW/FNSTCW Store control word
FSTSW/FNSTSW Store status word
FSTSW AX/FNSTSW AX Store status word to AX
FCLEX/FNCLEX Clear exceptions
FSTENV/FNSTENV Store environment
FLDENV Load environment
FSAVE/FNSAVE Save state

FRSTOR Restore state

FINCSTP Increment stack pointer
FDECSTP Decrement stack pointer
FFREE Free register

FNOP No operation

FWAIT CPU Wait
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It should also be noted that the 8087 instructions FENI and FDISI and the 80287 instruc-
tion FSETPF perform no function in the 80387. If these opcodes are detected in an 80386/
80387 instruction stream, the 80387 performs no specific operation and no internal states
are affected. For programmers interested in porting numeric software from 80287 or 8087
environments to the 80386, however, it should be noted that program sections containing
these exception-handling instructions are not likely to be completely portable to the 80387.
Appendix C and Appendix D contains a more complete description of the differences between
the 80387 and the 80287/8087.

4.8.1 FINIT/FNINIT

FINIT/FNINIT (initialize processor) sets the 80387 NPX into a known state, unaffected
by any previous activity. It sets the control word to its default value 037FH (round to nearest,
all exceptions masked, 64 bits of precision), clears the status word, and empties all floating-
point stack registers. The no-wait form of this instruction causes the 80387 to abort any
previous numeric operations currently executing in the NEU.

This instruction performs the functional equivalent of a hardware RESET, with one excep-
tion: RESET causes the IM bit of the control word to be reset and the ES and IE bits of the
status word to be set as a means of signaling the presence of an 80387; FINIT puts the
opposite values in these bits.

FINIT checks for unmasked numeric exceptions, FNINIT does not. Note that if FNINIT
is executed while a previous 80387 memory-referencing instruction is running, 80387 bus
cycles in progress are aborted. This instruction may be necessary to clear the 80387 if a
processor-extension segment-overrun exception (interrupt 9) is detected by the CPU.

4.8.2 FLDCW source

FLDCW (load control word) replaces the current processor control word with the word
defined by the source operand. This instruction is typically used to establish or change the
80387’s mode of operation. Note that if an exception bit in the status word is set, loading a
new control word that unmasks that exception will activate the ERROR# output of the
80387. When changing modes, the recommended procedure is to first clear any exceptions
and then load the new control word.

4.8.3 FSTCW/FNSTCW destination

FSTCW /FNSTCW (store control word) writes the processor control word to the memory
location defined by the destination. FSTCW checks for unmasked numeric exceptions;
FNSTCW does not.
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4.8.4 FSTSW/FNSTSW destination

FSTSW /FNSTSW (store status word) writes the current value of the 80387 status word to
the destination operand in memory. The instruction is used to

* Implement conditional branching following a comparison, FPREM, or FPREMI1
instruction (FSTSW).

e Invoke exception handlers (by polling the exception bits) in environments that do not
use interrupts (FSTSW).

FSTSW checks for unmasked numeric exceptions, FNSTSW does not.

4.8.5 FSTSW AX/FNSTSW AX

FSTSW AX/FNSTSW AX (store status word to AX) is a special 80387 instruction that
writes the current value of the 80387 status word directly into the 80386 AX register. This
instruction optimizes conditional branching in numeric programs, where the 80386 CPU
must test the condition of various NPX status bits. The waited form FSTSW AX checks for
unmasked numeric exceptions, the non-waited form FNSTSW AX does not.

When this instruction is executed, the 80386 AX register is updated with the NPX status
word before the CPU executes any further instructions. The status stored is that from the
completion of the prior ESC instruction.

4.8.6 FCLEX/FNCLEX

FCLEX/FNCLEX (clear exceptions) clears all exception flags, the exception status flag
and the busy flag in the status word. As a consequence, the 80387’s ERROR# line goes
inactive. FCLEX checks for unmasked numeric exceptions, FNCLEX does not.

4.8.7 FSAVE/FNSAVE destination

FSAVE/FNSAVE (save state) writes the full 80387 state—environment plus register stack—
to the memory location defined by the destination operand. Figure 4-1 and
Figure 4-2 show the layout of the save area; the size and layout of the save area depends on
the operating mode of the 80386 (real-address mode or protected mode) and on the operand-
size attribute in effect for the instruction (32-bit operand or 16-bit operand). When the
80386 is in virtual-8086 mode, the real-address mode formats are used. Typically the
instruction is coded to save this image on the CPU stack.

The values in the tag word in memory are determined during the execution of FSAVE/
FNSAVE. If the tag in the status register indicates that the corresponding register is
nonempty, the 80387 examines the data in the register and stores the appropriate tag in
memory. Thus the tag that is stored always reflects the actual content of the register.
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ST(0)
ST(1)
ST(2)
ST(3)
ST(4)
ST(5)
ST(6)

ST(7)

31

23

+O0H

+4H

+8H

ENVIRONMENT +CH

+10H

+14H

+18H

SIGN

EXPONENT

SIGNIFICAND

79 78

64 63

+1CH
+26H
+30H
+3AH
+44H
+4EH
+58H

+62H

G40003

Figure 4-1. FSAVE/FRSTOR Memory Layout (32-Bit)

FNSAVE delays its execution until all NPX activity completes normally. Thus, the save
image reflects the state of the NPX following the completion of any running instruction.
After writing the state image to memory, FSAVE/FNSAVE initializes the 80387 as if

FINIT/FNINIT had been executed.

FSAVE/FNSAVE is useful whenever a program wants to save the current state of the NPX
and initialize it for a new routine. Three examples are

1. An operating system needs to perform a context switch (suspend the task that had been
running and give control to a new task).

2. An exception handler needs to use the 80387.

3. An application task wants to pass a “clean” 80387 to a subroutine.

FSAVE checks for unmasked numeric exceptions before executing, FNSAVE does not.
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ST(0)
ST(1)
ST(2)
ST(3)
ST(4)
ST(5)
ST(6)

ST(7)

ENVIRONMENT

+0H
+2H
+4H

+8H
+AH

I CH

SIGN

EXPONENT

SIGNIFICAND

79 78

64 63

+EH

+18H
+22H
+2CH
+36H
+40H
+4AH

+54H

G40003

4.8.8 FRSTOR source

Figure 4-2. FSAVE/FRSTOR Memory Layout (16-Bit)

FRSTOR (restore state) reloads the 80387 state from the memory area defined by the source
operand. This information should have been written by a previous FSAVE/FNSAVE
instruction and not altered by any other instruction. FRSTOR automatically waits checking
for interrupts until all data transfers are completed before continuing to the next instruction.

Note that the 80387 “reacts” to its new state at the conclusion of the FRSTOR. It generates
an exception request, for example, if the exception and mask bits in the memory image so

indicate when the next WAIT or exception-checking ESC instruction is executed.
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4.8.9 FSTENV/FNSTENYV destination

FSTENV/FNSTENY (store environment) writes the 80387’s basic status—control, status,
and tag words, and exception pointers—to the memory location defined by the destination
operand. Typically, the environment is saved on the CPU stack. FSTENV/FNSTENY is
often used by exception handlers because it provides access to the exception pointers that
identify the offending instruction and operand. After saving the environment, FSTENV/
FNSTENYV sets all exception masks in the 80387 control word (i.e., masks all exceptions).
FSTENYV checks for pending exceptions before executing, FNSTENYV does not.

Figures 4-3 through 4-6 shows the format of the environment data in memory; the size and
layout of the save area depends on the operating mode of the 80386 (real-address mode or
protected mode) and on the operand-size attribute in effect for the instruction (32-bit operand
or 16-bit operand). When the 80386 is in virtual-8086 mode, the real-address mode formats
are used. FNSTENYV does not store the environment until all NPX activity has completed.
Thus, the data saved by the instruction reflects the 80387 after any previously decoded
instruction has been executed.

The values in the tag word in memory are determined during the execution of FNSTENV/
FSTENYV. If the tag in the status register indicates that the corresponding register is
nonempty, the 80387 examines the data in the register and stores the appropriate tag in
memory. Thus the tag that is stored always reflects the actual content of the register.

4.8.10 FLDENV source

FLDENYV (load environment) reloads the environment from the memory area defined by
the source operand. This data should have been written by a previous FSTENV/FNSTENV

32-BIT PROTECTED MODE FORMAT
31 .23 15 . 7 0
RESERVED conmq'l. WORD OH
RESERVED STATus: WORD aH
RES%RVED TAG V:IORD 8H
' IP OFFSET ' CH
00000 :OPCODE 0.0 I cs seu:scwn 10H
' DATA OPERAND OFFSET : 14H
RES%RVED J OPERAND %ELECTOR 18H
+ +
G40003

Figure 4-3. Protected Mode 80387 Environment, 32-Bit Format
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32-BIT REAL-ADDRESS MODE FORMAT

31 23 15 7 0
RESER\?ED CONTRO:L WORD OH
RESEB\%ED STATus: WORD 4H
RESER\:IED TAG V:IORD 8H
RESER\:/ED INSTRUCTIOE{ POINTER ,; , CH

000 ol INS'IERUCTION POINTER ,, . lol :OPCODE 10.0 10H
RESER\?ED I OPERAND FI:OINTER 5.0 14H

000 ol OI%ERAND POINTER ;, Io 00 ojo 0000O0O Of 184

t
G40003

Figure 4-4. Real Mode 80387 Environment, 32-Bit Format

16-BIT PROTECTED MODE FORMAT

15 . 7 0o
CONTR(%L WORD OH
STATUS‘.: WORD 2H
TAG \E\IORD 4H
P OF:FSET 6H
(2] SEI;ECTOR 8H
OPERANI:J OFFSET AH
OPERAND :SELECTOR CH

T

G40003

Figure 4-5. Protected Mode 80387 Environment, 16-Bit Format

instruction. CPU instructions (that do not reference the environment image) may immedi-
ately follow FLDENV. FLDENYV automatically waits for all data transfers to complete
before executing the next instruction.

Note that loading an environment image that contains an unmasked exception causes a
numeric exception when the next WAIT or exception-checking ESC instruction is executed.

4.8.11 FINCSTP

FINCSTP (increment NPX stack pointer) adds 1 to the stack top pointer (TOP) in the
status word. It does not alter tags or register contents, nor does it transfer data. It is not
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16-BIT REAL-ADDRESS MODE
AND VIRTUAL-8086 MODE FORMAT

15 -7 (4]
CONTR(?L WORD OH
STATUZS WORD 2H
TAG V:IORD 4H
INSTRUCTIOjN POINTER,; , 6H
IPig.16 Iol : OPCODE ,, , 8H
OPERAND F:’OINTER 15.0 AH
OP ;.6 |0|000:00000000 CH

G40003

Figure 4-6. Real Mode 80387 Environmenft, 16-Bit Format

equivalent to popping the stack, because it does not set the tag of the previous stack top to
empty. Incrementing the stack pointer when ST="7 produces ST=0.

4.8.12 FDECSTP

FDECSTP (decrement NPX stack pointer) subtracts 1 from ST, the stack top pointer in
the status word. No tags or registers are altered, nor is any data transferred. Executing
FDECSTP when ST=0 produces ST=17.

4.8.13 FFREE destination

FFREE (free register) changes the destination register’s tag to empty; the content of the
register is unaffected.

4.8.14 FNOP

FNOP (no operation) effectively performs no operation.

4.8.15 FWAIT (CPU Instruction)

FWALIT is not actually an 80387 instruction, but an alternate mnemonic for the 80386 WAIT
instruction. The FWAIT or WAIT mnemonic should be coded whenever the programmer
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wants to check for a pending error before modifying a variable used in the previous floating-
point instruction. Coding an FWAIT instruction after an 80387 instruction ensures that
unmasked numeric exceptions occur and exception handlers are invoked before the next
instruction has a chance to examine the results of the 80387 instruction.

More information on when to code an FWAIT instruction is given in Chapter 5 in the section
“Concurrent Processing with the 80387.”
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CHAPTER 5
PROGRAMMING NUMERIC APPLICATIONS

5.1 PROGRAMMING FACILITIES

As described previously, the 80387 NPX is programmed simply as an extension of the 80386
CPU. This section describes how programmers in ASM386 and in a variety of higher-level
languages can work with the 80387.

The level of detail in this section is intended to give programmers a basic understanding of
the software tools that can be used with the 80387, but this information does not document
the full capabilities of these facilities. Complete documentation is available with each program
development product.

5.1.1 High-Level Languages

For programmers using high-level languages, the programming and operation of the NPX
is handled automatically by the compiler. A variety of Intel high-level languages are avail-
able that automatically make use of the 80387 NPX when appropriate. These languages
include C-386 and PL/M-386. In addition many high-level language compilers are available
from independent software vendors.

Each of these high-level languages has special numeric libraries allowing programs to take
advantage of the capabilities of the 80387 NPX. No special programming conventions are
necessary to make use of the 80387 NPX when programming numeric applications in any
of these languages.

Programmers in PL/M-386 and ASM386 can also make use of many of these library routines
by using routines contained in the 80387 Support Library. These libraries implement many
of the functions provided by higher-level languages, including exception handlers, ASCII-
to-floating-point conversions, and a more complete set of transcendental functions than that
provided by the 80387 instruction set.

5.1.2 C Programs

C programmers automatically cause the C compiler to generate 80387 instructions when
they use the double and float data types. The float type corresponds to the 80387’s single real
format; the double type corresponds to the 80387’s double real format. The statement #include
<math.h> causes mathematical functions such as sin and sqrt to return values of type double.
Figure 5-1 illustrates the ease with which C programs interface with the 80387.
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XENIX286 C386 COMPILER, V0.2 COMPILATION OF MODULE SAMPLE
OBJECT MODULE PLACED IN sample.obj
COMPILER INVOKED BY: ¢386 sample.c

stmt level

1 /

2 * *

3 * SAMPLE C PROGRAM *

4 * *

5 /

[

7 /** Include /usr/include/stdio.h if necessary **/

8 /** Include math declarations for transcendenatals and others **/
9

10 #include </usr/include/math.h>
36 #define PI 3.141592654
37
38 main()
39 {
40 1 double sin_result, cos_result;
41 1 double angle_deg = 0.0, angle_rad;
42 1 int i, no_of_trial = 4;
43 1
461 for( i = 1; i <= no_of_trial; i++)(
45 2 angle_rad = angie deg * PI / 180.0;
46 2 sin_result = sin (angle_rad);
47 2 cos_result = cos (angle_rad);
48 2 printf("sine of %f degrees equals %f\n", angle_deg, sin_result);
49 2 printf(®cosine of %f degrees equals %f\n\n", angle_deg, cos_result);
50 2 angle_deg = angle_deg + 30.0;
51 2 b
52 1 /** etc. *x/

1

3

€386 COMPILATION COMPLETE. O WARNINGS, 0 ERRORS

Figure 5-1. Sample C-386 Program
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5.1.3 PL/M-386

Programmers in PL/M-386 can access a very useful subset of the 80387’s numeric capabil-
ities. The PL/M-386 REAL data type corresponds to the NPX’s single real (32-bit) format.
This data type provides a range of about 8.43 X 10~ < |X| =< 3.38 X 10%, with about
seven significant decimal digits. This representation is adequate for the data manipulated by
many microcomputer applications.

The utility of the REAL data type is extended by the PL/M-386 compiler’s practice of
holding intermediate results in the 80387’s extended real format. This means that the full
range and precision of the processor are utilized for intermediate results. Underflow, overflow,
and rounding exceptions are most likely to occur during intermediate computations rather
than during calculation of an expression’s final result. Holding intermediate results in
extended-precision real format greatly reduces the likelihood of overflow and underflow and
eliminates roundoff as a serious source of error until the final assignment of the result is
performed.

The compiler generates 80387 code to evaluate expressions that contain REAL data types,
whether variables or constants or both. This means that addition, subtraction, multiplica-
tion, division, comparison, and assignment of REALs will be performed by the NPX.
INTEGER expressions, on the other hand, are evaluated on the CPU.

Five built-in procedures (Table 5-1) give the PL/M-386 programmer access to 80387
functions manipulated by the processor control instructions. Prior to any arithmetic opera-
tions, a typical PL/M-386 program will set up the NPX wusing the
INITSREALSMATHSUNIT procedure and then issue SETSREAL$MODE to configure
the NPX. SETSREALSMODE loads the 80387 control word, and its 16-bit parameter has
the format shown for the control word in Chapter 1. The recommended value of this param-
eter is 033EH (round to nearest, 64-bit precision, all exceptions masked except invalid
operation). Other settings may be used at the programmer’s discretion.

If any exceptions are unmasked, an exception handler must be provided in the form of an
interrupt procedure that is designated to be invoked via CPU interrupt vector number 16.
The exception handler can use the GETSREALSERROR procedure to obtain the low-order

Table 5-1. PL/M-386 Built-In Procedures

80387 -

Procedure Instruction Description
INITSREALSMATHSUNIT™ FINIT Initialize processor.
SET$REAL$MODE FLDCW Set exception masks, rounding

precision, and infinity controls.
GET$REAL$ERROR® FNSTSW Store, then clear, exception flags.
& FNCLEX N
SAVE$REAL$STATUS FNSAVE Save processor state.
RESTORE$REALS$STATUS FRSTOR Restore processor state.
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byte of the 80387 status word and to then clear the exception flags. The byte returned by
GETSREALSERROR contains the exception flags; these can be examined to determine the
source of the exception. .

The SAVESREALSSTATUS and RESTORESREALSSTATUS procedures are provided
for multitasking environments where a running task that uses the 80387 may be preempted
by another task that also uses the 80387. It is the responsibility of the operating system to
issue SAVESREALSSTATUS before it executes any statements that affect the 80387; these
include the INITSREALSMATHS$UNIT and SETSREAL$MODE procedures as well as
arithmetic expressions. SAVESREALSSTATUS saves the 80387 state (registers, status, and
control words, etc.) on the CPU’s stack. RESTORESREALSSTATUS reloads the state
information; the preempting task must invoke this procedure before terminating in order to
restore the 80387 to its state at the time the running task was preempted. This enables the
preempted task to resume execution from the point of its preemption.

5.1.4 ASM386

The ASM386 assembly language provides programmers with complete access to all of the
facilities of the 80386 and 80387 processors.

The programmer’s view of the 80386/80387 hardware is a single machine with these
resources:

¢ 160 instructions

¢ 12 data types

e 8 general registers

e 6 segment registers

« 8 floating-point registers, organized as a stack

5.1.4.1 DEFINING DATA

The ASM386 directives shown in Table 5-2 allocate storage for 80387 variables and
constants. As with other storage allocation directives, the assembler associates a type with
any variable defined with these directives. The type value is equal to the length of the storage
unit in bytes (10 for DT, 8 for DQ, etc.). The assembler checks the type of any variable
coded in an instruction to be certain that it is compatible with the instruction. For example,
the coding FIADD ALPHA will be flagged as an error if ALPHA’s type is not 2 or 4,

Table 5-2. ASM386 Storage Allocation Directives

Directive Interpretation Data Types

DW Define Word Word integer

DD Define Doubleword Short integer, short real

DQ Dfine Quadword Long integer, long real

DT Define Tenbyte Packed decimal, temporary real




Intel PROGRAMMING NUMERIC APPLICATIONS
because integer addition is only available for word and short integer (doubleword) data types.
The operand’s type also tells the assembler which machine instruction to produce; although

to the programmer there is only an FIADD instruction, a different machine instruction is
required for each operand type.

On occasion it is desirable to use an instruction with an operand that has no declared type.
For example, if register BX points to a short integer variable, a programmer may want to
code FIADD [BX]. This can be done by informing the assembler of the operand’s type in
the instruction, coding FIADD DWORD PTR [BX]. The corresponding overrides for the
other storage allocations are WORD PTR, QWORD PTR, and TBYTE PTR.

The assembler does not, however, check the types of operands used in processor control
instructions. Coding FRSTOR [BP] implies that the programmer has set up register BP to
point to the location (probably in the stack) where the processor’s 94-byte state record has
been previously saved.

The initial values for 80387 constants may be coded in several different ways. Binary integer
constants may be specified as bit strings, decimal integers, octal integers, or hexadecimal
strings. Packed decimal values are normally written as decimal integers, although the assem-
bler will accept and convert other representations of integers. Real values may be written as
ordinary decimal real numbers (decimal point required), as decimal numbers in scientific
notation, or as hexadecimal strings. Using hexadecimal strings is primarily intended for
defining special values such as infinities, NaNs, and denormalized numbers. Most program-
mers will find that ordinary decimal and scientific decimal provide the simplest way to
initialize 80387 constants. Figure 5-2 compares several ways of setting the various 80387
data types to the same initial value.

; THE FOLLOWING ALL ALLOCATE THE CONSTANT:
; NOTE TWO’S COMPLETE STORAGE OF NEGATIVE

.
1

-126

BINARY INTEGERS.

PACKED_DECIMAL

IN THE FOLLOWING,

EXTENDED_REAL DT

SIGNIFICAND IS “7E00...00",
THE STRING REPRESENTS A REAL DATA TYPE.

i EVEN ; FORCE WORD ALIGNMENT
WORD_INTEGER DW 111111111000010B ; BIT STRING
SHORT_INTEGER DD OFFFFFF82H ; HEX STRING MUST START

; WITH DIGIT
LONG_INTEGER ba -126 ; ORDINARY DECIMAL
SINGLE_REAL DD -126.0 ; NOTE PRESENCE OF .-’
DOUBLE_REAL DD -1.26E2 i "SCIENTIFICH

DT -126 ; ORDINARY DECIMAL INTEGER

SIGN AND EXPONENT IS *C00S’

‘RY

0CO00S57E00000000000000R

INFORMS ASSEMBLER THAT

; HEX STRING

Figure 5-2. Sample 80387 Constants
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Note that preceding 80387 variables and constants with the ASM386 EVEN directive ensures
that the operands will be word-aligned in memory. The best performance is obtained when
data transfers are double-word aligned. All 80387 data types occupy integral numbers of
words so that no storage is “wasted” if blocks of variables are defined together and preceded
by a single EVEN declarative.

5.1.4.2 RECORDS AND STRUCTURES

The ASM386 RECORD and STRUC (structure) declaratives can be very useful in NPX
programming. The record facility can be used to define the bit fields of the control, status,
and tag words. Figure 5-3 shows one definition of the status word and how it might be used
in a routine that polls the 80387 until it has completed an instruction.

Because structures allow different but related data types to be grouped together, they often
provide a natural way to represent “real world” data organizations. The fact that the struc-
ture template may be “moved” about in memory adds to its flexibility. Figure 5-4 shows a
simple structure that might be used to represent data consisting of a series of test score
samples. A structure could also be used to define the organization of the information stored
and loaded by the FSTENV and FLDENY instructions.

s RESERVE SPACE FOR STATUS WORD
STATUS_WORD
;5 LAY OUT STATUS WORD FIELDS
STATUS RECORD
BUSY:
COND_CODE3:
STACK_TOP:
COND_CODE2:
COND_CODE1:
COND_CODED:
INT_REQ:
S_FLAG:
P_FLAG:
U_FLAG:
0_FLAG:
Z_FLAG:
D_FLAG:
[_FLAG: 1
s+ REDUCE UNTIL COMPLETE
REDUCE: FPREMt

FNSTSW STATUS_WORD

TEST STATUS_WORD, MASK_COND_CODE2

JNZ REDUCE

- e h e e —a e s WD s -

Qe Qo Qe Qo Ge Qe Qo Re Re Qo Qo Qe Ko Qe

Figure 5-3. Status Word Record Definition
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FDIVR ALPHA.BETA

FSUB ALPHA [SI]

FILD [BP].BETA

SAMPLE STRUC
N_0BS DD ? ; SHORT INTEGER
MEAN pa ? ; DOUBLE REAL
MODE DKW 7 + WORD INTEGER
STD_DEV D@ ? ; DOUBLE REAL
; ARRAY OF OBSERVATIONS -- WORD INTEGER
TEST_SCORES DW 1000 DUP (?)
SAMPLE ENDS
Figure 5-4. Structure Definition
Table 5-3. Addressing Method Examples
Coding Interpretation
FIADD ALPHA ALPHA is a simple scalar (mode is direct).

BETA is a field in a structure that is
“‘overlaid” on ALPHA (mode is direct).

FMUL QWORD PTR [BX] BX contains the address of a long real

variable (mode is register indirect).

ALPHA is an array and Si contains the
offset of an array element from the start of
the array (mode is indexed).

BP contains the address of a structure on
the CPU stack and BETA is a field in the
structure (mode is based).

FBLD TBYTE PTR [BX] [DI] BX contains the address of a packed

decimal array and D! contains the offset of
an array element (mode is based indexed).

5.1.4.3 Addressing Methods

80387 memory data can be accessed with any of the memory addressing methods provided
by the ModR /M byte and (optionally) the SIB byte. This means that 80387 data types can
be incorporated in data aggregates ranging from simple to complex according to the needs
of the application. The addressing methods and the ASM386 notation used to specify them
in instructions make the accessing of structures, arrays, arrays of structures, and other
organizations direct and straightforward. Table 5-3 gives several examples of 80387 instruc-

tions coded with operands that illustrate different addressing methods.
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5.1.5 Comparative Programming Example

Figures 5-5 and 5-6 show the PL/M-386 and ASM386 code for a simple 80387 program,
called ARRSUM. The program references an array (X$ARRAY), which contains 0-100
single real values; the integer variable NSOF$X indicates the number of array elements the
program is to consider. ARRSUM steps through X$ARRAY accumulating three sums:

e  SUMS$X, the sum of the array values

»  SUMSINDEXES, the sum of each array value times its index, where the index of the
first element is 1, the second is 2, etc.

 SUMSSQUARES, the sum of each array element squared

(A true program, of course, would go beyond these steps to store and use the results of these
calculations.) The control word is set with the recommended values: round to nearest, 64-bit
precision, interrupts enabled, and all exceptions masked except invalid operation. It is assumed
that an exception handler has been written to field the invalid operation if it occurs, and
that it is invoked by interrupt pointer 16. Either version of the program will run on an actual
or an emulated 80387 without altering the code shown.

The PL/M-386 version of ARRSUM (Figure 5-5) is very straightforward and illustrates
how easily the 80387 can be used in this language. After declaring variables, the program
calls built-in procedures to initialize the processor (or its emulator) and to load to the control
word. The program clears the sum variables and then steps through X$ARRAY with a
DO-loop. The loop control takes into account PL/M-386’s practice of considering the index
of the first element of an array to be 0. In the computation of SUMSINDEXES, the
built-in procedure FLOAT converts [+ 1 from integer to real because the language does not
support “mixed mode” arithmetic. One of the strengths of the NPX, of course, is that it
does support arithmetic on mixed data types (because all values are converted internally to
the 80-bit extended-precision real format).

The ASM386 version (Figure 5-6) defines the external procedure INIT387, which makes
the different initialization requirements of the processor and its emulator transparent to the
source code. After defining the data and setting up the segment registers and stack pointer,
the program calls INIT387 and loads the control word. The computation begins with the
next three instructions, which clear three registers by loading (pushing) zeros onto the stack.
As shown in Figure 5-7, these registers remain at the bottom of the stack throughout the
computation while temporary values are pushed on and popped off the stack above them.

The program uses the CPU LOOP instruction to control its iteration through X_ARRAY;
register ECX, which LOOP automatically decrements, is loaded with N_OF_X, the number
of array elements to be summed. Register ESI is used to select (index) the array elements.
The program steps through X_ARRAY from back to front, so ESI is initialized to point at
the element just beyond the first element to be processed. The ASM386 TYPE operator is
used to determine the number of bytes in each array element. This permits changing
X_ARRAY to a double-precision real array by simply changing its definition (DD to DQ)
and reassembling.




PROGRAMMING NUMERIC APPLICATIONS

XENIX286 PL/M-386 DEBUG X291a COMPILATION OF MODULE ARRAYSUM
OBJECT MODULE PLACED IN arraysum.obj
COMPILER INVOKED BY: plm386 arraysum.plm

[C W N)

o

10
"
12
13

[N

NN N =

* % kN

ARRAYSUM MODDULE

a

N ok % %

rray$sum: do;

declare (sum$x, sum$indexes, sum$squares) real;
declare x$array(100) real;

declare (n$of$x, i) integer;

declare contro!$387 literally '033eh’;

/* Assume x$array and n$of$x are initialized */
call init$real$math$unit;
call set$real$mode(control$387);

/* Clear sums */
sumbx, sum$indexes, sum$squares = 0.0;

/* Loop through array, accumulating sums */
do i = 0 to n$oféx - 1;
sum$x = sum$x + x$array(i);
sum$indexes = sum$indexes + (x$array(i)*float(i+1));
sum$squares = sum$squares + (x$array(i)*x$array(i));
end;

/* etc. */

end array$sum;

MODULE INFORMATION:

CODE AREA SIZE = 000000ACH 160D
CONSTANT AREA SIZE = 00000004H 4D
VARIABLE AREA SIZE = 000001A4H 420D
MAXIMUM STACK SIZE = 00000004H 4D

32 LINES READ
0 PROGRAM WARNINGS
0 PROGRAM ERRORS

DICTIONARY SUMMARY :

8KB MEMORY USED
OKB DISK SPACE USED

END OF PL/M-386 COMPILATION

Figure 5-5. Sample PL/M-386 Program
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XENIX286 80386 MACRO ASSEMBLER V1.0, ASSEMBLY OF MODULE ARRAYSUM
OBJECT MODULE PLACED IN arraysum.obj
ASSEMBLER INVOKED BY: asm386 arraysum.asm

Loc

00000006

00000196
0000019A
0000019E

00000000
00000000
00000004
00000006
0000000A
0000000F
00000011

00000016
0000001D

00000023
00000025
00000027

08J

(100
22722222

66B8----
8ED8
6688 -~ -
8800000000
8EDO
BCO0000000

9A00000000- - - -
D92D00000000

D9EE
D9EE
DYEE

LINE

VNV S NN -

13
14
15
16
17
18
19

21
22
23
24
25
26
27
28

R 29

30

R 31

32
33

R 34

35
36
37
38
39
40

E 41
R 42

43
4b
45
46
47
48

SOURCE

name arraysum

; Define initialization routine
extrn init387:far

; Allocate space for data

data segment rw public
control_387 dw 033eh
n_of_x dd ?

x_array dd 100 dup (?)
sum_squares dd ?
sum_indexes dd ?

sum_x dd ?

data ends

; Allocate CPU stack space

stack stackseg 400
; Begin code
code segment er public

assume ds:data, ss:stack

start:
mov ax, data
mov ds, ax
mov ax, stack
mov eax, Oh
mov ss, ax
mov esp, stackstart stack

; Assume x_array and n_of_x have
; been initialized

; Prepare the 80387 or its emulator

call init387
fldew  control_387

; Clear three registers to hold
; running sums

fldz
fldz
fldz

Figure 5-6.

Sample ASM386 Program
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Loc

00000029
0000002F
00000031

00000033

00000033
00000036

0000003C
0000003E

00000040
00000042

00000044
0000004A

0000004C
0000004C
00000052
00000058
0000005

ASSEMBLY

0BJ LINE SOURCE
50
51 ; Setup ECX as loop counter and ESI
52 ; as index into x_array
53
880002000000 R 54 mov ecx, n_of x
F7E9 55 imul ecx
8BFO 56 mov esi, eax
57
58 ; ESI now contains index of last
59 ; element + 1
60 ; Loop through x_array and
61 ; accumulate sum
62
63 sum_next:
64 ; backup one element and push on
65 ; the stack
66
83EE04 67 sub esi, type Xx_array
D98606000000 R 68 fld x_arraylesi]
69
70 ; add to the sum and duplicate x
71 ; on the stack
72
pce3 3 fadd st(3), st
D9CO 74 fld st
75
76 ; square it and add into the sum of
77 ; (index+1) and discard
78
pces 79 fmul st, st
DEC2 80 faddp st(2), st
81
82 ; reduce index for next iteration
83
FFOD02000000 R 84 dec n_of_x
E2E7 85 Loop sum_next
86
87 ; Pop sums into memory
88

89 pop_results:

D91D96010000 R 90 fstp sum_squares
D91D9A010000 R N fstp  sum_indexes
D91DPE010000 R 92 fstp sum_x
98 93 fwait

9%

95 ;

96 ; Etc.

o7 H

98 code ends

9 end start, ds:data, ss:stack
COMPLETE, NO WARNINGS, NO ERRORS.

Figure 5-6. Sample ASM386 Program (Cont’d.)
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ST(0)
ST(1)

ST(2)

ST(0)
ST(1)
ST(2)
ST(3)

ST(0)
ST(1)
ST(2)
ST(3)
ST(4)

ST(0)
ST(1)
ST(2)
ST(3)

FLDZ, FLDZ, FLDZ

FLD X_ARRAYI[SI]

0.0 SUM_SQUARES ST(0) 25
0.0 SUM_INDEXES ST(1)
0.0 SUM_X ST(2) 0.0
ST(3) 0.0
-
FADD_ST(3),ST — : : FLD_ST
2.5 X_ARRAY (19) ST(0) 25
0.0 SUM_SQUARES  ST(1) 2.5
0.0 SUM_INDEXES ST(2) 0.0
25 SUM_X ST(3) 0.0
st | 25
-—
FMUL_ST, ST — /_ /__ FADDP_ST(2), ST
6.25 X_ARRAY(19) ST(0) 2.5
2.5 X_ARRAY (19) ST(1) 6.25
0.0 SUM_SQUARES  ST(2) 0.0
0.0 SUM_INDEXES ST(3) 2.5
2.5 SUM_X —
-

FIMUL N_of_X FADDP_ST(2), ST
50.0 X_ARRAY (19)20  ST(0) 6.25
6.25 SUM_SQUARES  ST(1) 50.0

0.0 SUM_INDEXES ST(2) 25
2.5 SUM_X

X_ARRAY (19)
SUM_SQUARES
SUM_INDEXES

SUM_X

X_ARRAY (19)
X_ARRAY(19)
SUM_SQUARES
SUM_INDEXES

SUM_X

X_ARRAY (19)
SUM_SQUARES
SUM_INDEXES

SUM_X

SUM_SQUARES
SUM_INDEXES
SUM_X

122164-14

Figure 5-7. Instructions and Register Stack
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Figure 5-7 shows the effect of the instructions in the program loop on the NPX register
stack. The figure assumes that the program is in its first iteration, that N_OF_X is 20, and
that X_ARRAY(19) (the 20th element) contains the value 2.5. When the loop terminates,
the three sums are left as the top stack elements so that the program ends by simply popping
them into memory variables.

5.1.6 80387 Emulation

The programming of applications to execute on both 80386 with an 80387 and 80386 systems
without an 80387 is made much easier by the existence of an 80387 emulator for 80386
systems. The Intel EMUL387 emulator offers a complete software counterpart to the 80387
hardware; NPX instructions can be simply emulated in software rather than being executed
in hardware. With software emulation, the distinction between 80386 systems with or without
an 80387 is reduced to a simple performance differential. Identical numeric programs will
simply execute more slowly (using software emulation of NPX instructions) on 80386 systems
without an 80387 than on an 80386/80387 system executing NPX instructions directly.

When incorporated into the systems software, the emulation of NPX instructions on the
80386 systems is completely transparent to the applications programmer. Applications
software needs no special libraries, linking, or other activity to allow it to run on an 80386
with 80387 emulation.

To the applications programmer, the development of programs for 80386 systems is the
same whether the 80387 NPX hardware is available or not. The full 80387 instruction set
is available for use, with NPX instructions being either emulated or executed directly.
Applications programmers need not be concerned with the hardware configuration of the
computer systems on which their applications will eventually run.

For systems programmers, details relating to 80387 emulators are described in Chapter 6.

The EMUL387 software emulator for 80386 systems is available from Intel as a separate
program product.

5.2 CONCURRENT PROCESSING WITH THE 80387

Because the 80386 CPU and the 80387 NPX have separate execution units, it is possible for
the NPX to execute numeric instructions in parallel with instructions executed by the CPU.
This simultaneous execution of different instructions is called concurrency.

No special programming techniques are required to gain the advantages of concurrent
execution; numeric instructions for the NPX are simply placed in line with the instructions
for the CPU. CPU and numeric instructions are initiated in the same order as they are
encountered by the CPU in its instruction stream. However, because numeric operations
performed by the NPX generally require more time than operations performed by the CPU,
the CPU can often execute several of its instructions before the NPX completes a numeric
instruction previously initiated.
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This concurrency offers obvious advantages in terms of execution performance, but concur-
rency also imposes several rules that must be observed in order to assure proper synchroni-
zation of the 80386 CPU and 80387 NPX.

All Intel high-level languages automatically provide for and manage concurrency in the NPX.
Assembly-language programmers, however, must understand and manage some areas of
concurrency in exchange for the flexibility and performance of programming in assembly
language. This section is for the assembly-language programmer or well-informed
high-level-language programmer.

5.2.1 Managing Concurrency

Concurrent execution of the host and 80387 is easy to establish and maintain. The activities
of numeric programs can be split into two major areas: program control and arithmetic. The
program control part performs activities such as deciding what functions to perform, calcu-
lating addresses of numeric operands, and loop control. The arithmetic part simply adds,
subtracts, multiplies, and performs other operations on the numeric operands. The NPX and
host are designed to handle these two parts separately and efficiently.

Concurrency management is required to check for an exception before letting the 80386
change a value just used by the 80387. Almost any numeric instruction can, under the wrong
circumstances, produce a numeric exception. For programmers in higher-level languages, all
required synchronization is automatically provided by the appropriate compiler. For
assembly-language programmers exception synchronization remains the responsibility of the
assembly-language programmer.

A complication is that a programmer may not expect his numeric program to cause numeric
exceptions, but in some systems, they may regularly happen. To better understand these
points, consider what can happen when the NPX detects an exception.

Depending on options determined by the software system designer, the NPX can perform
one of two things when a numeric exception occurs:

 The NPX can provide a default fix-up for selected numeric exceptions. Programs can
mask individual exception types to indicate that the NPX should generate a safe,
reasonable result whenever that exception occurs. The default exception fix-up activity
is treated by the NPX as part of the instruction causing the exception; no external
indication of the exception is given. When exceptions are detected, a flag is set in the
numeric status register, but no information regarding where or when is available. If the
NPX performs its default action for all exceptions, then the need for exception synchro-
nization is not manifest. However, as will be shown later, this is not sufficient reason to
ignore exception synchronization when designing programs that use the 80387.

¢ As an alternative to the NPX default fix-up of numeric exceptions, the 80386 CPU can
be notified whenever an exception occurs. When a numeric exception is unmasked and
the exception occurs, the NPX stops further execution of the numeric instruction and
signals this event to the CPU. On the next occurrence of an ESC or WAIT instruction,
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the CPU traps to a software exception handler. The exception handler can then imple-
ment any sort of recovery procedures desired for any numeric exception detectable by
the NPX. Some ESC instructions do not check for exceptions. These are the nonwaiting
forms FNINIT, FNSTENYV, FNSAVE, FNSTSW, FNSTCW, and FNCLEX.

When the NPX signals an unmasked exception condition, it is requesting help. The fact that
the exception was unmasked indicates that further numeric program execution under the
arithmetic and programming rules of the NPX is unreasonable.

If concurrent execution is allowed, the state of the CPU when it recognizes the exception is
undefined. The CPU may have changed many of its internal registers and be executing a
totally different program by the time the exception occurs. To handle this situation, the
NPX has special registers updated at the start of each numeric instruction to describe the
state of the numeric program when the failed instruction was attempted.

Exception synchronization ensures that the NPX is in a well-defined state after an unmasked
numeric exception occurs. Without a well-defined state, it would be impossible for exception
recovery routines to determine why the numeric exception occurred, or to recover success-
fully from the exception.

The following two sections illustrate the need to always consider exception synchronization
when writing 80387 code, even when the code is initially intended for execution with excep-
tions masked. If the code is later moved to an environment where exceptions are unmasked,
the same code may not work correctly. An example of how some instructions written without
exception synchronization will work initially, but fail when moved into a new environment
is shown in Figure 5-8.

INCORRECT ERROR SYNCHRONIZATION

FILD COUNT 3 NPX instruction

INC COUNT 3 CPU instruction alters operand

FSQRT COUNT ; subsequent NPX instruction -- error from
H previous NPX instruction detected here

PROPER ERROR SYNCHRONIZATION

FILD COUNT ; NPX instruction

FSART ; subsequent NPX instruction -- error from
; previous NPX instruction detected here

INC COUNT 3 CPU instruction alters operand

Figure 5-8. Exception Synchronization Examples
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5.2.1.1 INCORRECT EXCEPTION SYNCHRONIZATION

In Figure 5-8, three instructions are shown to load an integer, calculate its square root, then
increment the integer. The 80386-t0-80387 interface and synchronous execution of the NPX
emulator will allow this program to execute correctly when no exceptions occur on the FILD
instruction.

This situation changes if the 80387 numeric register stack is extended to memory. To extend
the NPX stack to memory, the invalid exception is unmasked. A push to a full register or
pop from an empty register sets SF and causes an invalid exception.

The recovery routine for the exception must recognize this situation, fix up the stack, then
perform the original operation. The recovery routine will not work correctly in the first
example shown in the figure. The problem is that the value of COUNT is incremented
before the NPX can signal the exception to the CPU. Because COUNT is incremented
before the exception handler is invoked, the recovery routine will load an incorrect value of
COUNT, causing the program to fail or behave unreliably.

5.2.1.2 PROPER EXCEPTION SYNCHRONIZATION

Exception synchronization relies on the WAIT instruction and the BUSY# and ERROR#
signals of the 80387. When an unmasked exception occurs in the 80387, it asserts the
ERROR# signal, signaling to the CPU that a numeric exception has occurred. The next
time the CPU encounters a WAIT instruction or an exception-checking ESC instruction,
the CPU acknowledges the ERROR# signal by trapping automatically to Interrupt #16, the
processor-extension exception vector. If the following ESC or WAIT instruction is properly
placed, the CPU will not yet have disturbed any information vital to recovery from the
exception.
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CHAPTER 6
SYSTEM-LEVEL NUMERIC PROGRAMMING

System programming for 80387 systems requires a more detailed understanding of the 80387
NPX than does application programming. Such things as emulation, initialization, exception
handling, and data and error synchronization are all the responsibility of the systems
programmer. These topics are covered in detail in the sections that follow.

6.1 80386/80387 ARCHITECTURE

On a software level, the 80387 NPX appears as an extension of the 80386 CPU. On the
hardware level, however, the mechanisms by which the 80386 and 80387 interact are more
complex. This section describes how the 80387 NPX and 80386 CPU interact and points
out features of this interaction that are of interest to systems programmers.

6.1 .1 Instruction and Operand Transfer

All transfers of instructions and operands between the 80387 and system memory are
performed by the 80386 using I/O bus cycles. The 80387 appears to the CPU as a special
peripheral device. It is special in two respects: the CPU initiates I/O automatically when it
encounters ESC instructions, and the CPU uses reserved I/O addresses to communicate
with the 80387. These I/O operations are completely transparent to software.

Because the 80386 actually performs all transfers between the 80387 and memory, no
additional bus drivers, controllers, or other components are necessary to interface the 80387
NPX to the local bus. The 80387 can utilize instructions and operands located in any memory
accessible to the 80386 CPU.

6.1.2 Independent of CPU Addressing Modes

Unlike the 80287, the 80387 is not sensitive to the addressing and memory management of
the CPU. The 80387 operates the same regardless of whether the 80386 CPU is operating
in real-address mode, in protected mode, or in virtual 8086 mode.

The instruction FSETPM that was necessary in 80286 /80287 systems to set the 80287 into
protected mode is not needed for the 80387. The 80387 treats this instruction as a no-op.

Because the 80386 actually performs all transfers between the 80387 and memory, 80387
instructions can utilize any memory location accessible by the task currently executing on
the 80386. When operating in protected mode, all references to memory operands are
automatically verified by the 80386’s memory management and protection mechanisms as
for any other memory references by the currently-executing task. Protection violations
associated with NPX instructions automatically cause the 80386 to trap to an appropriate
exception handler.
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To the numerics programmer, the operating modes of the 80386 affect only the manner in
which the NPX instruction and data pointers are represented in memory following an FSAVE
or FSTENV instruction. Each of these instructions produces one of four formats depending
on both the operating mode and on the operand-size attribute in effect for the instruction.
The differences are detailed in the discussion of the FSAVE and FSTENYV instructions in
Chapter 4.

6.1.3 Dedicated I/0 Locations

The 80387 NPX does not require that any memory addresses be set aside for special purposes.
The 80387 does make use of I/O port addresses, but these are 32-bit addresses with the
high-order bit set (i.e. > 80000000H ); therefore, these 1/O operations are completely trans-
parent to the 80386 software. Because these addresses are beyond the 64 Kbyte I/O address-
ing limit of I /O instructions, 80386 programs cannot reference these reserved I/0O addresses
directly.

6.2 PROCESSOR INITIALIZATION AND CONTROL

One of the principal responsibilities of systems software is the initialization, monitoring, and
control of the hardware and software resources of the system, including the 80387 NPX. In
this section, issues related to system initialization and control are described, including recog-
nition of the NPX, emulation of the 80387 NPX in software if the hardware is not available,
and the handling of exceptions that may occur during the execution of the 80387.

6.2.1 System Initialization
During initialization of an 80386 system, systems software must

e Recognize the presence or absence of the NPX.
e Set flags in the 80386 MSW to reflect the state of the numeric environment.

If an 80387 NPX is present in the system, the NPX must be initialized. All of these activi-
ties can be quickly and easily performed as part of the overall system initialization.

6.2.2 Hardware Recognition of the NPX

The 80386 identifies the type of its coprocessor (80287 or 80387) by sampling its ERROR#
input some time after the falling edge of RESET and before executing the first ESC instruc-
tion. The 80287 keeps its ERROR# output in inactive state after hardware reset; the 80387
keeps its ERROR# output in active state after hardware reset. The 80386 records this
difference in the ET bit of control register zero (CRO). The 80386 subsequently uses ET to
control its interface with the coprocessor. If ET is set, it employs the 32-bit protocol of the
80387, if ET is not set, it employs the 16-bit protocol of the 80287.

6-2
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Systems software can (if necessary) change the value of ET. There are three reasons that
ET may not be set:

1. An 80287 is actually present.
No coprocessor is present.

3. An 80387 is present but it is connected in a nonstandard manner that does not trigger
the setting of ET.

An example of case three is the PC/AT-compatible design described in Appendix F. In such
cases, initialization software may need to change the value of ET.

6.2.3 Software Recognition of the NPX

Figure 6-1 shows an example of a recognition routine that determines whether an NPX is
present, and distinguishes between the 80387 and the 8087/80287. This routine can be
executed on any 80386, 80286, or 8086 hardware configuration that has an NPX socket.

The example guards against the possibility of accidentally reading an expected value from a
floating data bus when no NPX is present. Data read from a floating bus is undefined. By
expecting to read a specific bit pattern from the NPX, the routine protects itself from the
indeterminate state of the bus. The example also avoids depending on any values in reserved
bits, thereby maintaining compatibility with future numerics coprocessors.

6.2.4 Configuring the Numerics Environment

Once the 80386 CPU has determined the presence or absence of the 80387 or 80287 NPX,
the 80386 must set either the MP or the EM bit in its own control register zero (CRO)
accordingly. The initialization routine can either

* Set the MP bit in CRO to allow numeric instructions to be executed directly by the
NPX.

e Set the EM bit in the CRO to permit software emulation of the numeric instructions.

The MP (monitor coprocessor) flag of CRO indicates to the 80386 whether an NPX is physi-
cally available in the system. The MP flag controls the function of the WAIT instruction.
When executing a WAIT instruction, the 80386 tests the task switched (TS) bit only if MP
is set; if it finds TS set under these conditions, the CPU traps to exception #7.

The Emulation Mode (EM) bit of CRO indicates to the 80386 whether NPX functions are
to be emulated. If the CPU finds EM set when it executes an ESC instruction, program
control is automatically trapped to exception #7, giving the exception handler the opportu-
nity to emulate the functions of an 80387.

For correct 80386 operation, the EM bit must never be set concurrently with MP. The EM
and MP bits of the 80386 are described in more detail in the 80386 Programmer’s Reference
Manual. More information on software emulation for the 80387 NPX is described in the
“80387 Emulation” section later in this chapter. In any case, if ESC instructions are to be
executed, either the MP or EM bit must be set, but not both.
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8086/87/88/186 MACRO ASSEMBLER

Test for presence of a Numerics Chip, Revision 1.0 PAGE

DOS 3.20 (033-N) 8086/87/88/186 MACRO ASSEMBLER V2.0 ASSEMBLY OF MODULE TEST_NPX

OBJECT MODULE PLACED IN FINDNPX.O0BJ

LoC 0BJ

0000 (100

2222

0ocg 22?22

0000 0000

0000

0000

0000 90DBE3
0003 BE00OO
0006 C7045A5A
000A 90DD3C

000D 803C00
0010 752A

0012 90093C

0015 8804
0017 253F10
001A 3D3F00
001D 751D

LINE

VA WN -

8

10
1
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

29
30
3
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

+1

SOURCE

$title('Test for presence of a Numerics Chip, Revision 1.0')

Test_NPX

stack 'stack'
100 dup (?)

public 'data’'
Oh

data, stack
code

public 'code!

¢s:cgroup, ds:dgroup

Look for an 8087, 80287, or 80387 NPX.
Note that we cannot execute WAIT on 8086/88 if no 8087 is present.

name
stack  segment
dw
sst dw
stack ends
data segment
temp dw
data ends
dgroup group
cgroup group
code segment
assume
start:
i
H
H
test_npx:
fninit
mov
mov
fnstsw
cmp
jne
H
H Now see
H
fnstcw
mov
and
cmp
jne

i

Must use non-wait form

si,offset dgroup:temp
word ptr [si],5A5AH ; Initialize temp to non-zero value

[si]

byte ptr (sil,0
no_npx

H

Must use non-wait form of fstsw

It is not necessary to use a WAIT instruction
after fnstsw or fnstcw. Do not use one here.
See if correct status with zeroes was read
Jump if not a valid status word, meaning no NPX

if ones can be correctly written from the control word.

[sil

ax, [sil
ax, 103fh
ax,3fh
no_npx

Look at the control word; do not use WAIT form
Do not use a WAIT instruction here!

See if ones can be written by NPX

See if selected parts of control word look OK

Check that ones and zeroes were correctly read
Jump if no NPX is installed

Some numerics chip is installed. NPX instructions and WAIT are now safe.
See if the NPX is an 8087, 80287, or 80387.

This code is necessary if a denormal exception handler is used or the
new 80387 instructions will be used.

Figure 6-1. Software Routine to Recognize the 80287
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Loc oBJ

001F 9BDYES
0022 9BDYEE
0025 9BDEF9
0028 98D9CO
0028 9BDYEO
002E 9BDEDY
0031 98DD3C
0034 8804
0036 %€
0037 7406

0039 EBO790
003c

003C EB0490
003F

003F EBO190
0042

0042

8086/87/88/186 MACRO ASSEMBLER
LINE

49
50
51

52
53
54
55
56
57
58
59
60
61

62
63
64
65
66
67
68
69
70
4

72
IEd
74
75
76
7
78
79
80
81

ASSEMBLY COMPLETE, NO ERRORS FOUND

Test for presence of a Numerics Chip, Revision 1.0 PAGE
SOURCE
fld1 ; Must use default control word from FNINIT
fldz ; Form infinity
fdiv ; 8087/287 says +inf = -inf
fld st ; Form negative infinity
fchs ; 80387 says +inf <> -inf
fcompp ; See if they are the same and remove them
fstsw  [si] ; Look at status from FCOMPP
mov ax, [sil
sahf ; See if the infinities matched
je found 87 287 ; Jump if 8087/287 is present

An 80387 is present.
they must be masked.

jmp found 387

no_npx:

H set up for no NPX
jmp exit

found_87_287:

; set up for 87/287
jmp exit

found 387:
set up for 387

;

exit:

code ends

1f denormal exceptions are used for an 8087/287,
The 80387 will automatically normalize denormal
operands faster than an exception handler can.

end start,ds:dgroup, ss:dgroup:sst

6.2.5 Initializing the 80387

Initializing the 80387 NPX simply means placing the NPX in a known state unaffected by
any activity performed earlier. A single FNINIT instruction performs this initialization. All
the error masks are set, all registers are tagged empty, TOP is set to zero, and default
rounding and precision controls are set. Table 6-1 shows the state of the 80387 NPX follow-
ing FINIT or FNINIT. This state is compatible with that of the 80287 after FINIT or after
hardware RESET.

The FNINIT instruction does not leave the 80387 in the same state as that which results
from the hardware RESET signal. Following a hardware RESET signal, such as after initial

Figure 6-1. Software Routine to Recognize the 80287 (Cont’d.)

power-up, the state of the 80387 differs in the following respects:

1. The mask bit for the invalid-operation exception is reset.

2. The invalid-operation exception flag is set.

3. The exception-summary bit is set (along with its mirror image, the B-bit).
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Table 6-1. NPX Processor State Following Initialization

Field Value Interpretation

Control Word

(Infinity Control)* 0 Affine

Rounding Control 00 Round to nearest
Precision Control 11 64 bits

Exception Masks 111111 All exceptions masked

Status Word

(Busy) 0 —
Condition Code 0000 —
Stack Top 000 Register 0 is stack top
Exception Summary 0 No exceptions
Stack Flag 0 —
Exception Flags 000000 No exceptions
Tag Word
Tags 11 Empty
Registers N.C. Not changed

Exception Pointers

Instruction Code N.C. Not changed
Instruction Address N.C. Not changed
Operand Address N.C. Not changed

*The 80387 does not have infinity control. This value is listed to emphasize that programs written for the
80287 may not behave the same on the 80387 if they depend on this bit.

These settings cause assertion of the ERROR# signal as described previously. The FNINIT
instruction must be used to change the 80387 state to one compatible with the 80287.

6.2.6 80387 Emulation

If it is determined that no 80387 NPX is available in the system, systems software may
decide to emulate ESC instructions in software. This emulation is easily supported by the
80386 hardware, because the 80386 can be configured to trap to a software emulation routine
whenever it encounters an ESC instruction in its instruction stream.

Whenever the 80386 CPU encounters an ESC instruction, and its MP and EM status bits
are set appropriately (MP=0, EM=1), the 80386 automatically traps to interrupt #7, the
“processor extension not available” exception. The return link stored on the stack points to
the first byte of the ESC instruction, including the prefix byte(s), if any. The exception
handler can use this return link to examine the ESC instruction and proceed to emulate the
numeric instruction in software.
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The emulator must step the return pointer so that, upon return from the exception handler,
execution can resume at the first instruction following the ESC instruction.

To an application program, execution on an 80386 system with 80387 emulation is almost
indistinguishable from execution on a system with an 80387, except for the difference in
execution speeds.

There are several important considerations when using emulation on an 80386 system:

¢ When operating in protected mode, numeric applications using the emulator must be
executed in execute-readable code segments. Numeric software cannct be emulated if it
is executed in execute-only code segments. This is because the emulator must be able to
examine the particular numeric instruction that caused the emulation trap.

e Only privileged tasks can place the 80386 in emulation mode. The instructions necessary
to place the 80386 in emulation mode are privileged instructions, and are not typically
accessible to an application.

An emulator package (EMUL387) that runs on 80386 systems is available from Intel. This
emulation package operates in both real and protected mode as well as in virtuai 8086 mode,
providing a complete functional equivalent for the 80387 emulated in software.

When using the EMUL387 emulator, writers of numeric exception handlers should be aware
of one slight difference between the emulated 80387 and the 80387 hardware:

e On the 80387 hardware, exception handlers are invoked by the 80386 at the first WAIT
or ESC instruction following the instruction causing the exception. The return link, stored
on the 80386 stack, points to this second WAIT or ESC instruction where execution
will resume following a return from the exception handler.

e Using the EMUL387 emulator, numeric exception handlers are invoked from within the
emulator itself. The return link stored on the stack when the exception handler is invoked
will therefore point back to the EMUL387 emulator, rather than to the program code
actually being executed (emulated). An IRET return from the exception handler returns
to the emulator, which then returns immediately to the emulated program. This added
layer of indirection should not cause confusion, however, because the instruction causing
the exception can always be identified from the 80387’s instruction and data pointers.

6.2.7 Handling Numerics Exceptions

Once the 80387 has been initialized and normal execution of applications has been
commenced, the 80387 NPX may occasionally require attention in order to recover from
numeric processing exceptions. This section provides details for writing software exception
handlers for numeric exceptions. Numeric processing exceptions have already been intro-
duced in Chapter 3.
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The 80387 NPX can take one of two actions when it recognizes a numeric exception:

o If the exception is masked, the NPX will automatically perform its own masked excep-
tion response, correcting the exception condition according to fixed rules, and then
continuing with its instruction execution.

o If the exception is unmasked, the NPX signals the exception to the 80386 CPU using
the ERROR# status line between the two processors. Each time the 80386 encounters
an ESC or WAIT instruction in its instruction stream, the CPU checks the condition of
this ERROR# status line. If ERRORG# is active, the CPU automatically traps to Inter-
rupt vector #16, the Processor Extension Error trap.

Interrupt vector #16 typically points to a software exception handler, which may or may not
be a part of systems software. This exception handler takes the form of an 80386 interrupt
procedure.

When handling numeric errors, the CPU has two responsibilities:

e The CPU must not disturb the numeric context when an error is detected.
e The CPU must clear the error and attempt recovery from the error.

Although the manner in which programmers may treat these responsibilities varies from one
implementation to the next, most exception handlers will include these basic steps:

e Store the NPX environment (control, status, and tag words, operand and instruction
pointers) as it existed at the time of the exception.

e Clear the exception bits in the status word.
» Enable interrupts on the CPU.

o Identify the exception by examining the status and control words in the saved
environment.

o Take some system-dependent action to rectify the exception.

e Return to the interrupted program and resume normal execution.

6.2.8 Simultaneous Exception Response

In cases where multiple exceptions arise simultaneously, the 80387 signals one exception
according to the precedence shown at the end of Chapter 3. This means, for example, that
an SNaN divided by zero results in an invalid operation, not in a zero divide exception.

6.2.9 Exception Recovery Examples

Recovery routines for NPX exceptions can take a variety of forms. They can change the
arithmetic and programming rules of the NPX. These changes may redefine the default fix-
up for an error, change the appearance of the NPX to the programmer, or change how
arithmetic is defined on the NPX.
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A change to an exception response might be to automatically normalize all denormals loaded
from memory. A change in appearance might be extending the register stack into memory
to provide an “infinite” number of numeric registers. The arithmetic of the NPX can be
changed to automatically extend the precision and range of variables when exceeded. All
these functions can be implemented on the NPX via numeric exceptions and associated
recovery routines in a manner transparent to the application programmer.

Some other possible application-dependent actions might include:

¢ Incrementing an exception counter for later display or printing

» Printing or displaying diagnostic information (e.g., the 80387 environment and
registers)

*  Aborting further execution
«  Storing a diagnostic value (a NaN) in the result and continuing with the computation

Notice that an exception may or may not constitute an error, depending on the application.
Once the exception handler corrects the condition causing the exception, the floating-point
instruction that caused the exception can be restarted, if appropriate. This cannot be accom-
plished using the IRET instruction, however, because the trap occurs at the ESC or WAIT
instruction following the offending ESC instruction. The exception handler must obtain (using
FSAVE or FSTENV) the address of the offending instruction in the task that initiated it,
make a copy of it, execute the copy in the context of the offending task, and then return via
IRET to the current CPU instruction stream.

In order to correct the condition causing the numeric exception, exception handlers must
recognize the precise state of the NPX at the time the exception handler was invoked, and
be able to reconstruct the state of the NPX when the exception initially occurred. To recon-
struct the state of the NPX, programmers must understand when, during the execution of
an NPX instruction, exceptions are actually recognized.

Invalid operation, zero divide, and denormalized exceptions are detected before an operation
begins, whereas overflow, underflow, and precision exceptions are not raised until a true
result has been computed. When a before exception is detected, the NPX register stack and
memory have not yet been updated, and appear as if the offending instructions has not been
executed.

When an after exception is detected, the register stack and memory appear as if the instruc-
tion has run to completion; i.e., they may be updated. (However, in a store or store-and-pop
operation, unmasked over/underflow is handled like a before exception, memory is not
updated and the stack is not popped.) The programming examples contained in Chapter 7
include an outline of several exception handlers to process numeric exceptions for the 80387.
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CHAPTER 7
NUMERIC PROGRAMMING EXAMPLES

The following sections contain examples of numeric programs for the 80387 NPX written
in ASM386. These examples are intended to illustrate some of the techniques for program-
ming the 80386,/80387 computing system for numeric applications.

7.1 CONDITIONAL BRANCHING EXAMPLE

As discussed in Chapter 2, several numeric instructions post their results to the condition
code bits of the 80387 status word. Although there are many ways to implement conditional
branching following a comparison, the basic approach is as follows:

e Execute the comparison.
o Store the status word. (80387 allows storing status directly into AX register.)
* Inspect the condition code bits.

e Jump on the result.

Figure 7-1 is a code fragment that illustrates how two memory-resident double-format real
numbers might be compared (similar code could be used with the FTST instruction). The
numbers are called A and B, and the comparison is A to B.

The comparison itself requires loading A onto the top of the 80387 register stack and then
comparing it to B, while popping the stack with the same instruction. The status word is
then written into the 80386 AX register.

A and B have four possible orderings, and bits C3, C2, and CO of the condition code indicate
which ordering holds. These bits are positioned in the upper byte of the NPX status word so
as to correspond to the CPU’s zero, parity, and carry flags (ZF, PF, and CF), when the byte
is written into the flags. The code fragment sets ZF, PF, and CF of the CPU status word to
the values of C3, C2, and CO of the NPX status word, and then uses the CPU conditional
jump instructions to test the flags. The resulting code is extremely compact, requiring only
seven instructions.

The FXAM instruction updates all four condition code bits. Figure 7-2 shows how a jump
table can be used to determine the characteristics of the value examined. The jump table
(FXAM_TBL) is initialized to contain the 32-bit displacement of 16 labels, one for each
possible condition code setting. Note that four of the table entries contain the same value,
“EMPTY.” The first two condition code settings correspond to “EMPTY.” The two other
table entries that contain “EMPTY” will never be used on the 80387, but may be used if
the code is executed with an 80287.

The program fragment performs the FXAM and stores the status word. It then manipulates
the condition code bits to finally produce a number in register BX that equals the condition
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B pa ?
FLD A ; LOAD A ONTO TOP OF 387 STACK
FCOomP B ; COMPARE A:B, POP A
FSTSH AX 3 STORE RESULT TO CPU AX REGISTER

CPU AX REGISTER CONTAINS CONDITION CODES
(RESULTS OF COMPARE)

LOAD CONDITION CODES INTO CPU FLAGS

SAHF
; USE CONDITIONAL JUMPS TO DETERMINE ORDERING OF A TO B

JP A_B_UNORDERED i TEST 02 (PF)

JB A_LESS . TEST €O CCF)
JE A_EQUAL . TEST €3 (ZF)
A_GREATER: 00 CCF) = 0, C3 (ZF) = 0
A_EQUAL: . 00 (CF) = 0, €3 (ZF) =
A_LESS: L 00 (CF) = 1, €3 (ZF) = 0
02 (PF) = 1

A_B_UNORDERED:

Figure 7-1. Conditional Branching for Compares

code times 2. This involves zeroing the unused bits in the byte that contains the code, shift-
ing C3 to the right so that it is adjacent to C2, and then shifting the code to multiply it by
2. The resulting value is used as an index that selects one of the displacements from
FXAM_TBL (the multiplication of the condition code is required because of the 2-byte
length of each value in FXAM_TBL). The unconditional JMP instruction effectively vectors
through the jump table to the labeled routine that contains code (not shown in the example)

to process each possible result of the FXAM instruction.

7.2 EXCEPTION HANDLING EXAMPLES

There are many approaches to writing exception handlers. One useful technique is to consider
the exception handler procedure as consisting of “prologue,” “body,” and “epilogue” sections

of code. This procedure is invoked via interrupt number 16.
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; JUMP TABLE FOR EXAMINE ROUTINE

FXAM_TBL DD POS_UNNORM, POS NAN, NEG_UNNORM, NEG_NAN,
¢ POS_NORM, POS_INFINITY, NEG_NORM,
NEG_INFINITY, POS_ZERO, EMPTY, NEG_ZEROD,
EMPTY, POS_DENORM, EMPTY, NEG_DENORM, EMPTY

o e

H EXAMINE ST AND STORE RESULT (CONDITION CODES)
FXAM
XOR EAX,EAX ; CLEAR EAX
FSTSW AX

; CALCULATE OFFSET INTO JUMP TABLE
AND AX,0100011100000000B ; CLEAR ALL BITS EXCEPT €3, C2-C0
SHR EAX,6 i SHIFT C2-C0 INTO PLACE (0000XXX0)
SAL AH,S i POSITION C3 (000Xx0000)
OR AL,AH ; DROP C3 IN ADJACENT TO C2 (000XXXX0)
XOR AH,AH ; CLEAR OUT THE OLD COPY OF C3

; JUMP TO THE ROUTINE ‘ADDRESSED’ BY CONDITION CODE
JMP FXAM_TBLIEAX]

; HERE ARE THE JUMP TARGETS, ONE TO HANDLE
; EACH POSSIBLE RESULT OF FXAM

POS_UNNORN:
POS_NAN:
NEG_UNNORM:
NEG_NAN:
POS_NORM:
POS_INFINITY:
NEG_NORM:
NEG_INFINITY:
PUS_ZERD:
EMPTY:
NEG_ZERD:
POS_DENORM:
NEG_DENORM:

Figure 7-2. Conditional Branching for FXAM
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At the beginning of the prologue, CPU interrupts have been disabled. The prologue performs
all functions that must be protected from possible interruption by higher-priority sources.
Typically, this involves saving CPU registers and transferring diagnostic information from
the 80387 to memory. When the critical processing has been completed, the prologue may
enable CPU interrupts to allow higher-priority interrupt handlers to preempt the exception
handler.

The body of the exception handler examines the diagnostic information and makes a response
that is necessarily application-dependent. This response may range from halting execution,
to displaying a message, to attempting to repair the problem and proceed with normal
execution.

The epilogue essentially reverses the actions of the prologue, restoring the CPU and the
NPX so that normal execution can be resumed. The epilogue must rot load an unmasked
exception flag into the 80387 or another exception will be requested immediately.

Figures 7-3 through 7-5 show the ASM386 coding of three skeleton exception handlers.
They show how prologues and epilogues can be written for various situations, but provide
comments indicating only where the application dependent exception handling body should
be placed.

SAVE_ALL PROC

; SAVE CPU REGISTERS, ALLOCATE STACK SPACE
; FOR 80387 STATE IMAGE

PUSH EBP
MoV EBP,ESP
SUB ESP,108

; SAVE FULL 80387 STATE, ENABLE CPU INTERRUPTS
FNSAVE [EBP-1081
5T1

APPLICATION-DEPENDENT EXCEPTION HANDLING
CODE GOES HERE

CLEAR EXCEPTION FLAGS IN STATUS WORD
(WHICH IS IN MEMORY)
RESTORE MODIFIED STATE IMAGE
MOV BYTE PTR [EBP-1041, OH
FRSTOR [EBP-1081
i DEALLOCATE STACK SPACE, RESTORE CPU REGISTERS
MOVE ESP,EBP

POP EBP

; RETURN TO INTERRUPTED CALCULATION
IRET
SAVE_ALL ENDP

Figure 7-3. Full-State Exception Handler
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SAVE_ENVIRONMENT PROC

; SAVE CPU REGISTERS, ALLOCATE STACK SPACE
; FOR 80387 ENVIRONMENT

PUSH  EBP
MOV EBP,ESP
SUB £SP,28

; SAVE ENVIRONMENT, ENABLE CPU INTERRUPTS
FNSTENV [EBP-28]
STI

APPLICATION EXCEPTION-HANDLING CODE GOES HERE

CLEAR EXCEPTION FLAGS IN STATUS WORD
(WHICH IS IN MEMORY)
RESTORE MODIFIED ENVIRONMENT IMAGE
mov BYTE PTR [EBP-241, O0H
FLDENV [EBP-28]
; DE-ALLOCATE STACK SPACE, RESTORE CPU REGISTERS
MoV ESP,EBP
POP EBP

; RETURN TO INTERRUPTED CALCULATION
IRET
SAVE_ENVIRONMENT ENDP

Figure 7-4. Reduced-Latency Exception Handler

Figures 7-3 and 7-4 are very similar; their only substantial difference is their choice of
instructions to save and restore the 80387. The tradeoff here is between the increased
diagnostic information provided by FNSAVE and the faster execution of FNSTENV. For
applications that are sensitive to interrupt latency or that do not need to examine register
contents, FNSTENYV reduces the duration of the “critical region,” during which the CPU
does not recognize another interrupt request.

After the exception handler body, the epilogues prepare the CPU and the NPX to resume
execution from the point of interruption (i.e., the instruction following the one that gener-
ated the unmasked exception). Notice that the exception flags in the memory image that is
loaded into the 80387 are cleared to zero prior to reloading (in fact, in these examples, the
entire status word image is cleared).

The examples in Figures 7-3 and 7-4 assume that the exception handler itself will not cause
an unmasked exception. Where this is a possibility, the general approach shown in
Figure 7-5 can be employed. The basic technique is to save the full 80387 state and then to
load a new control word in the prologue. Note that considerable care should be taken when
designing an exception handler of this type to prevent the handler from being reentered
endlessly.
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LUCAL CONTROL DW 2 ; ASSUME INITIALIZED

REENTRANT PROC

1
i
i

SAVE CPU REGISTERS, ALLOCATE STACK SPACE FOR
80387 STATE IMAGE

PUSH  EBP
Moy EBP,ESP
SUB ESP.108

SAVE STATE, LOAD NEW CONTROL WORD,
ENABLE CPU INTERRUPTS

FNSAVE [EBP-1081]

FLDCW LOCAL_CONTROL

STI

APPLICATION EXCEPTION HANDLING CODE GOES HERE.
AN UNMASKED EXCEPTION GENERATED HERE WILL
CAUSE THE EXCEPTION HANDLER TO BE REENTERED.
IF LOCAL STORAGE IS NEEDED, IT MUST BE
ALLOCATED ON THE CPU STACK.

CLEAR EXCEPTION FLAGS IN STATUS WORD

(WHICH IS IN MEMORY)

RESTORE MODIFIED STATE IMAGE
Mov BYTE PTR [EBP-1041, 0H
FRSTOR [EBP-1081

DE-ALLOCATE STACK SPACE, RESTORE CPU REGISTERS
Mov ESP,EBP

POP EBP

: RETURN TO POINT OF INTERRUPTION
IRET

REENTRANT ENDP

Figure 7-5. Reentrant Exception Handler

7.3 FLOATING-POINT TO ASCIli CONVERSION EXAMPLES

Numeric programs must typically format their results at some point for presentation and
inspection by the program user. In many cases, numeric results are formatted as ASCII
strings for printing or display. This example shows how floating-point values can be converted
to decimal ASCII character strings. The function shown in Figure 7-6 can be invoked from

PL/M-386, Pascal-386, FORTRAN-386, or ASM 386 routines.
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OBJECT MODULE PLACED IN fpasc.obj
ASSEMBLER INVOKED BY: asm386 fpasc.asm

Loc 0BJ LINE

N =

00000000

+

A

XENIX286 80386 MACRO ASSEMBLER V1.0, ASSEMBLY OF MODULE FLOATING_TO_ASCII

SOURCE

$title('Convert a floating point number to ASCII')

name floating_to_ascii

public floating_to_ascii
extrn get_power_10:near,tos_status:near

This subroutine will convert the floating point

number in the top of the NPX stack to an ASCII

string and separate power of 10 scaling value

(in binary). The maximum width of the ASCII string
formed is controlled by a parameter which must be

> 1. Unnormal values, denormal values, and psuedo
zeroes Will be correctly converted. However, unnormals
and pseudo zeros are no longer supported formats on the
80387( in conformance with the IEEE floating point
standard) and hence not generated internally. A
returned value will indicate how many binary bits

of precision were lost in an unnormal or denormal
value. The magnitude (in terms of binary power)

of a pseudo zero will also be indicated. Integers

less than 10**18 in magnitude are accurately converted
if the destination ASCII string field is wide enough

to hold all the digits. Otherwise the value is converted
to scientific notation.

The status of the conversion is identified by the
return value, it can be:

conversion complete, string_size is defined
invalid arguments

exact integer conversion, string_size is defined
indefinite

+ NAN (Not A Number)

- NAN

+ Infinity

- Infinity

pseudo zero found, string_size is defined

H
H
;
H
i
H
B
H
;
v
;
H
;
H
;
i
i
H
i
H
H

ONCOUVHWN—=O

The PLM/386 calling convention is:

floating_to_ascii:
procedure (number,denormal_ptr,string_ptr,size_ptr,
field_size, power_ptr) word external;
declare (denormal_ptr,string_ptr,power_ptr,size_ptr)
pointer;
declare field_size word,
string_size based size_ptr word;
declare number real;
declare denormal integer based denormal_ptr;

i Ne Ne e NE e S Se SE SIS SEose Ne s e N

Figure 7-6. Floating-Point to ASCIlI Conversion Routine
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Loc 0BJ

00000000 (]
00000004 [1
0000000801
0000000C[]
00000010(1
00000014 [
000000181
0000001C ]

0014

LINE SOURCE

51 H declare power integer based power_ptr;

52 ; end floating_to_ascii;

53 ;

54 ; The floating point value is expected to be
55 ; on the top of the NPX stack. This subroutine

56 ; expects 3 free entries on the NPX stack and

57 i Will pop the passed value off when done. The

58 ; generated ASCII string will have a leading

59 H character either '-' or '+' indicating the sign
60 H of the value. The ASCII decimal digits will

61 ; immediately follow. The numeric value of the

62 H ASCII string is (ASCII STRING.)*10**POWER. If

63 ;  the given number was zero, the ASCII string will
64 ; contain a sign and a single zero chacter. The

65 ; value string_size indicates the total length of
66 H the ASCII string including the sign character.

67 H String(0) will always hold the sign. It is

68 H possible for string_size to be less than

69 ; field_size. This occurs for zeroes or integer

70 ;  values. A pseudo zero will return a special

71 ; return code. The denormal count will indicate

72 ; the power of two originally associated with the
3 H value. The power of ten and ASCII string will

74 ; be as if the value was an ordinary zero.

75 ;

76 ; This subroutine is accurate up to a maximum of

77 H 18 decimal digits for integers. Integer values
78 ;  Will have a decimal power of zero associated

79 ;  with them. For non integers, the result will be
80 H accurate to within 2 decimal digits of the 16th
81 ; decimal place(double precision). The exponentiate
82 H instruction is also used for scaling the value into
83 ; the range acceptable for the BCD data type. The
84 H rounding mode in effect on entry to the

85 ;  subroutine is used for the conversion.

86 H

87 H The following registers are not transparent:
88 H

89 H eax ebx ecx edx esi edi eflags

90 H

91 H

92 H Define the stack layout.

93 ;

94 ebp_save equ dword ptr [ebpl

95 es_save equ ebp_save + size ebp_save

96 return_ptr equ es_save + size es_save

97 power_ptr equ return_ptr + size return_ptr
98 field size equ power_ptr + size power_ptr

99 size_ptr equ field_size + size field size
100 string_ptr equ size_ptr + size size_ptr

101 denormal_ptr equ string_ptr + size string_ptr
102

103 parms_size equ size power_ptr + 'size field size +
104 & size size_ptr + size string_ptr +

105 & size denormal_ptr

Figure 7-6. Floating-Point to ASCIil Conversion Routine (Cont’d.)
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Loc OBJ

0012
0004
000A
0001
0004
0006
0003
0008
-0002
-0004
-0006
-0008
0000
0002

FFFFFFFC
FFFFFFF20]
FFFFFFF201
FFFFFFF20]

000c

LINE

106
107
108
109
110
m
112
113
114
115
116
17
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137

SOURCE

i
BCD_DIGITS

Define constants used

equ
WORD_SI1ZE equ
BCD_SIZE equ
MINUS equ
NAN equ
INFINITY equ
INDEFINITE equ
PSEUDO_ZERO equ
INVALID equ
ZERO equ
DENORMAL equ
UNNORMAL equ
NORMAL equ
EXACT equ
H Define layout
H
power_two equ
bed_value equ
bed_byte equ
fraction equ
local_size equ

18 ; Number of digits in bcd_value

4

10

1 ; Define return values

4 ; The exact values chosen

6 ; here are important. They must

3 ; correspond to the possible return
8 ; values and be in the same numeric
-2 ; order as tested by the program.
-4

-6

-8

0

2

of temporary storage area.

word ptr [ebp - WORD_SIZE}
tbyte ptr power_two - BCD_SIZE
byte ptr bcd value

bed_value

size power_two + size bcd_value

Allocate stack space for the temporaries so

the stack will be big enough

stack stackseg (local_size+6) ; Allocate stack

138 +1 $eject

; space for locals

Figure 7-6. Floating-Point to ASCHl Conversion Routine (Cont’d.)
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Loc

00000000

00000002
00000003
00000004
00000005
00000006
00000007
00000008
00000009
0000000A
00000008
0000000C
0000000D
0000000E
0000000F
00000010
00600011

0000012

00000012

00000017
0000001F
00000021

00000023

00000026
00000026
00000028

0000002A
0000002A
0000002C
0000002C

0BJ LINE
139
140
141
142
143
144

0A00 145
146
147
148
149
150

£8 151

04 152

F9 153

05 154

00 155

06

01

07

FC

FE

FD

FE

FA

FE

)

FE
156
157
158

£800000000 3 159
160
161

2E0FB68002000000 R 162

3CFE 163

7527 164
165
166
167

21400 168
169
170
171
172

DDD8 173

EBO2 174
175
176
177
178
179

BOFE 180
181

9 182

SOURCE
code segment public er
extrn  power_table:qword
H
H Constants used by this function.
H
even ; Optimize for 16 bits
const10 dw 10 ; Adjustment value for

H ; too big BCD

i

; Convert the C3,C2,C1,C0 encoding from tos_status
; into meaningful bit flags and values.

i

status_table db UNNORMAL, NAN, UNNORMAL + MINUS,

& NAN + MINUS, NORMAL, INFINITY,

& NORMAL + MINUS, INFINITY + MINUS,

& ZERO, INVALID, ZERO + MINUS, INVALID,

& DENORMAL, INVALID, DENORMAL + MINUS, INVALID

floating_to_ascii proc
call tos_status ; Look at status of ST(0)

; Get descriptor from table
movzx  eax, status_tablefeax]
cmp al, INVALID ; Look for empty ST(0)
jne not_empty

ST(0) is empty! Return the status value.

ret parms_size

; Remove infinity from stack and exit.

H

found_infinity:
fstp st(0) ; OK to leave fstp running
jmp short exit_proc

i

H String space is too small!

; Return invalid code.

small_string:

mov al, INVALID
exit_proc:
leave ; Restore stack setup

Figure 7-6. Floating-Point to ASCII Conversion Routine (Cont’d.)
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Loc

00000020
0000002E

00000031
00000031

00000034

00000036
00000037

00000039

0000003E

00000041
00000044

00000046
00000048

0000004A
0000004A
00000048

0000004F
00000052
00000055

00000057

00000058
00000058

0000005D
00000062
00000062

00000064

0By

07
€21400

DB7DF2
A801

9B
T4F3

BB00000OCO

2B5DF6

0B5DF2
75E6

B003
EBE2

06
€80c0000

884D10

83F902

7c03

49

83F912

7605

B912000000

3c06

70C0

LINE

183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201

202
203
204
205
206
207
208
209
210
21

212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237

SOURCE
pop es
ret parms_size
H
; ST(0) is NAN or indefinite. Store the
; value in memory and look at the fraction
; field to separate indefinite from an ordinary NAN.
H
NAN_or_indefinite:
fstp fraction ; Remove value from stack
; for examination
test al ,MINUS ; Look at sign bit
fwait ; Insure store is done
jz exit_proc ; Can't be indefinite if
; positive

mov ebx,0C00000004 ; Match against upper 32
;bits of fraction

; Compare bits 63-32
sub ebx, dword ptr fraction + 4

; Bits 31-0 must be zero
or ebx, dword ptr fraction
jnz exit_proc

; Set return value for indefinite value
mov al,INDEFINITE
mp exit_proc

Allocate stack space for local variables
and establish parameter addressibility.

ot_empty:
push es ; Save working register
enter local_size, 0 ; Setup stack addressing

; Check for enough string space

mov ecx,field_size

cmp ecx,2

jl small_string

dec ecx ; Adjust for sign character

; See if string is too large for BCD
cmp ecx,BCD_DIGITS
jbe size_ok

; Else set maximum string size
mov ecx,BCD_DIGITS
size_ok:
cmp al, INFINITY ; Look for infinity

; Return status value for + or - inf
jge found_infinity

Figure 7-6.

Floating-Point to ASCII Conversion Routine (Cont’d.)




ntel NUMERIC PROGRAMMING EXAMPLES

Loc 0BJ LINE SOURCE
238
00000066 3C04 239 cmp al,NAN ; Look for NAN or INDEFINITE
00000068 7DC7 240 jge NAN_or_indefinite
241 ;
242 ; Set default return values and check that
243 ; the number is normalized.
244 H
0000006A DYE1 245 fabs ; Use positive value only
246 ; sign bit in al has true sign of value
0000006C 31D2 247 xor edx, edx ; Form 0 constant
0000006E 8B7D1C 248 mov edi,denormal_ptr; Zero denormal count
00000071 668917 249 mov edil, dx
00000074 8B5DOC 250 mov ebx,power_ptr ; Zero power of ten value
00000077 668913 251 mov [ebx], dx
0000007A 88C2 252 mov di, al
0000007C 80E201 253 and dl, 1
0000007F 80Cc202 254 add dl, EXACT
00000082 3CFC 255 cmp al,ZERO ; Test for zero
00000084 OF83BC000000 256 jae convert_integer ; Skip power code if value
257 ; is zero
0000008A DB7DF2 258 fstp fraction
0000008D 98 259 fwait
0000008E 8A45F9 260 mov al, bcd byte + 7
00000091 804DF980 261 or byte ptr bcd byte + 7, 80h
00000095 DB6DF2 262 fld fraction
00000098 D9F4 263 fxtract
0000009A A880 264 test al, 80h
0000009C 7524 265 jnz normal_value
266
0000009E DYES 267 fldl
000000A0 DEE9 268 fsub
000000A2 D9E4 269 ftst
000000A4 9BDFEO 270 fstsw ax
000000A7 9E rigl sahf
000000A8 7510 272 jnz set_unnormal_count
273 ;
274 ; Found a pseudo zero
275 H
000000AA DYEC 276 fldlg2 ; Develop power of ten estimate
000000AC B80C206 277 add dl, PSEUDO_ZERO - EXACT
000000AF DECA 278 fmulp st(2), st
000000B1 D9CY 279 fxch ; Get power of ten
00000083 DF1B 280 fistp word ptr [ebx] ; Set power of ten
000000B5 E98C000000 281 jmp convert_integer
282
000000BA 283 set_unnormal_count:
000000BA D9F4 284 fxtract ; Get original fraction,
285 ; now normalized
000000BC D9CY 286 fxch ; Get unnormal count
000000BE DYEO 287 fchs
000000CO DF1F 288 fistp word ptr [edil ; Set unnormal count
289
290
291 Calculate the decimal magnitude associated

292 ; wWith this number to within one order. This

Figure 7-6. Floating-Point to ASCIl Conversion Routine (Cont’d.)
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Loc OBJ

000000C2
000000C2 DB7DF2

000000C5 DF55FC
000000C8 DYEC

000000CA DECY
000000cC DF1B

0C0000CE 98B

000000CF 668833
000000D2 29CE

000000D4 771C

000000D6 DF45FC
00000009 8OEAFE

000000DC DB6DF2
000000DF D9FD

000000E1T DDD1
000000E3 D9FC
000000E5 D8DY
000000E7 9BDFEQ
000000EA 9E

000000EB 7559

000000ED DDD8
000000EF 80C2FE

LINE SOURCE

293 ; error will always be inevitable due to

294 ; rounding and lost precision. As a result,

295 ; we will deliberately fail to consider the

296 ; LOG10 of the fractiorf value in calculating

297 ; the order. Since the fraction will always

298 ; be1<=F <2, its LOGI0 will not change

299 ; the basic accuracy of the function. To

300 ; get the decimal order of magnitude, simply

301 ; multiply the power of two by LOG10(2) and

302 ; truncate the result to an integer.

303 ;

304 normal_value:

305 fstp fraction ; Save the fraction field

306 ; for later'use

307 fist power_two ; Save power of two

308 fldig2 ; Get LOG10(2)

309 ; Power_two is now safe to use
310 fmul  Form LOG10(of exponent of number)
3n fistp word ptr [ebx] ; Any rounding mode

312 ; will work here
313 ;

314 H Check if the magnitude of the number rules

315 H out treating it as an integer.

316 H

317 ; CX has the maximum number of decimal digits

318 ;  allowed.

319 H

320 fwait ; Wait for power_ten to be valid

321

322 ; Get power of ten of value

323 movsx si, word ptr [ebx]

324 sub esi,ecx ; Form scaling factor
325 ; necessary in ax

326 ja adjust_result ; Jump if number will not fit
327 H

328 ; The number is between 1 and 10**(field size).

329 ; Test if it is an integer.

330 ;

331 fild power_two ; Restore original number

332 sub dl,NORMAL-EXACT ; Convert to exact return

333 ; value

334 fld fraction

335 fscale ; Form full value, this
336 ; is safe here

337 fst st(1) ; Copy value for compare
338 frndint ; Test if its an integer
339 fcomp ; Compare values

340 fstsw  ax ; Save status

341 sahf ; C3=1 implies it was
342 ; an integer

343 inz convert_integer

344

345 fstp st(0) ; Remove non integer value

346 add dl,NORMAL-EXACT ; Restore original return value
347 H

Figure 7-6.

Floating-Point to ASCII Conversion Routine (Cont’d.)
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Loc 0BJ LINE SOURCE
348 H Scale the number to within the range allowed
349 ; by the BCD format.The scaling operation should
350 i produce a number within one decimal order of
351 ; magnitude of the largest decimal number
352 ;i representable within the given string width.
353 H
354 ; The scaling power of ten value is in si.
355 ;
000000F2 356 adjust_result:
000000F2 8BC6 357 mov eax,esi ; Setup for powl10
000000F4 668903 358 mov word ptr [ebx],ax ; Set initial power
359 ; of ten return value
000000F7 F7D8 360 neg eax ; Subtract one for each order of
361 ; magnitude the value is scaled by
000000F9 E800000000 E 362 call get_power_10 ; Scaling factor is
363 ; returned as
364 ; exponent and fraction
000000FE DB6DF2 365 fld fraction ; Get fraction
00000101 DEC9 366 fmut ; Combine fractions
00000103 8BF1 367 mov esi, ecx ; Form power of ten of
368 ; the maximum
00000105 C1E603 369 shl esi,3 ; BCD value to fit in
370 ; the string
00000108 DF4SFC 37N fild power_two ; Combine powers of two
00000108 DEC2 372 faddp st(2),st
0000010D D9FD 33 fscale ; Form full value,
374 ; exponent was safe
0000010F DDDY 375 fstp st(1) ; Remove exponent
376 H
377 H Test the adjusted value against a table
378 ; of exact powers of ten. The combined errors
379 ; of the magnitude estimate and power function
380 H can result in a value one order of magnitude
381 ; too small or too large to fit correctly in
382 ; the BCD field. To handle this problem, pretest
383 H the adjusted value, if it is too small or
384 ; large, then adjust it by ten and adjust the
385 H power of ten value.
386 ;
00000111 387 test_power:
388
389 ; Compare against exact power entry. Use the next
390 ; entry since cx has been decremented by one
00000111 2EDCP608000000 E 391 fcom power_tablel[esil+type power_table
00000118 9BDFEO 392 fstsw ax ; No wait is necessary
00000118 9E 393 sahf ; If C3 =¢C0 = 0 then
0000011C 720F 394 jb test_for_small ; too big
395
0000011E 2EDE3500000000 R 396 fidiv  const10 ; Else adjust value
00000125 80E2FD 397 and dl,not EXACT ; Remove exact flag
00000128 66FF03 398 inc word ptr [ebx] ; Adjust power of ten value
00000128 EB17 399 jmp short in_range ; Convert the value to a BCD
400 ; integer
0000012D 401 test_for_small:
0000012D 2EDC9600000000 E 402 fcom power_tablelesil ; Test relative size

Figure 7-6. Floating-Point to ASCII Conversion Routine (Cont’d.)
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oc

0000134

0000137

10000138

i000013A
0000141
10000144
10000144

10000146
0000146

0000149
D000014E
30000152

00000157

3000015A
3000015C
0000015E
0000015F
00000161
00000164

00000166
00000168
00000168

00000169
0000016C

0BJ

9BDFEO

9E

720A

2EDEOD0O0000000 R
66FFOB

D9FC

DF75F2

BEO8000000
66B9040F
8801000000

8B7D18

8cD8
8ECO
FC
8028
F6C201
7402

B02D

AR

80E2FE
98

LINE SOURCE

403 fstsw  ax ; No wait is necess
ary

404 sahf ; 1f CO = 0 then

405 ; st(0) >= lower bound

406 jc in_range ; Convert the value
to a

407 ; BCD integer

408

409 fimul  const10 ; Adjust value into range

410 dec word ptr [ebx] ; Adjust power of ten value

41 in_range:

412 frndint ; Form integer value

413 H

414 : Assert: 0 <= TOS <= 999,999,999,999,999,999

415 H The TOS number will be exactly representable

416 H in 18 digit BCD format.

417 H

418 convert_integer:

419 fbstp  bed_value ; Store as BCD format number

420

421 While the store BCD runs, setup registers

422 for the conversion to ASCII.

423

424 mov esi,BCD_SIZE-2 ; Initial BCD index value

425 mov cx,0f04h ; Set shift count and mask
426 mov ebx, 1 ;-Set initial size of ASCII
427 ; field for sign

428 mov edi,string_ptr ; Get address of start of

429 ; ASCII string

430 mov ax,ds ; Copy ds to es

431 mov es,ax

432 cld ; Set autoincrement mode
433 mov al, '+ ; Clear sign field

434 test dl,MINUS : Look for negative value

435 iz positive_result

436

437 mov al,'-!

438 positive_result:

439 stosb ; Bump string pointer

440 ; past sign

441 and dl,not MINUS ; Turn off sign bit

442 fwait ; Wait for fbstp to finish
443 ;

444 H Register usage:

445 ; ah: BCD byte value in use

446 ; al: ASCII character value

447 H dx: Return value

448 ; ch: BCD mask = Ofh

449 H cl: BCD shift count = 4

450 ; bx: ASCII string field width
451 H esi: BCD field index

452 : di: ASCI! string field pointer
453 H ds,es: ASCII string segment base
454 ;

455 : Remove leading zeroes from the number.

Figure 7-6. Floating-Point to ASCII Conversion Routine (Cont’d.)
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Loc

0000016D
0000016D
00000171
00000173
00000175
00000177

00000179
00000178
0000017D

0000017F
00000180

00000182
00000184
00000185
00000186

00000188
00000188
0000018C
0000018E
00000190
00000190
00000192

00000193
00000195
00000197
00000198
00000198
0000019A
00000198
0000019C
00000190

0000019F
0000019F
000001A2
000001A5
000001A7

000001AC

ASSEMBLY

0BJ

B8A6435F2
88EQ
D2E8
240F
7517

88EQ
240F
7519

4E
79EB

8030
AA
43
EB17

8A6L35F2
88EO
D2E8

0430
AA

88EQ
240F
43

0430

43
4E
79E9

8B7D14
66891F
8BC2
E9BOFEFFFF

COMPLETE,

LINE

456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
47
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513

SOURCE

i
skip_leading_zeroes:

mov ah,bcd_bytelesi] ; Get BCD byte
mov al,ah ; Copy value
shr al,cl ; Get high order digit
and al,0fh ; Set zero flag
jnz enter_odd ; Exit loop if leading
; non zero found
mov al,ah ; Get BCD byte again
and al,0fh ; Get low order digit
jnz enter_even ; Exit loop if non zero
; digit found
dec esi ; Decrement BCD index
jns skip_leading_zeroes
H
H The significand was all zeroes.
;
mov al,'0’ ; Set initial zero
stosb
inc ebx ; Bump string length
jmp short exit_with_value
i
H Now expand the BCD string into digit
; per byte values 0-9.
H
digit_loop:
mov ah,bcd_bytefesil ; Get BCD byte
mov al,ah
shr al,cl ; Get high order digit
enter_odd:
add al,'0" ; Convert to ASCII
stosb ; Put digit into ASCII
; string area
mov al,ah ; Get low order digit
and al,0fh
inc ebx ; Bump field size counter
enter_even:
add al,'0! ; Convert to ASCII
stosb ; Put digit into ASCII area
inc ebx ; Bump field size counter
dec esi ; Go to next BCD byte

jns digit_loop
B
; Conversion complete.
; size and remainder.

H
exit_with_value:

mov edi,size_ptr
mov word ptr [edil
mov eax, edx
jmp exit_proc
floating_to_ascii endp
code ends
end

NO ERRORS.

Set the string

Lbx
; Set return value

Figure 7-6. Floating-Point to ASCIl Conversion Routine (Cont’d.)
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XENIX286 80386 MACRO ASSEMBLER V1.0, ASSEMBLY OF MODULE GET_POWER_10

OBJECT MODULE PLACED IN power10.obj
ASSEMBLER INVOKED BY: asm386 power10.asm

Loc OBJ LINE

VRNV HAUWN -

00000000 15

00000000 000000000000FO3F 24
00000008 0000000000002440
00000010 0000000000005940
00000018 0000000000408F40
00000020 000000000088C340 25
00000028 00000000006AF840
00000030 0000000080842E41
00000038 0000000000126341
00000040 0000000084D79741 26
00000048 0000000065CDCD41
00000050 000000205FA00242
00000058 O00000EB76483742
00000060 000000A2941A6D42 27
00000068 000040E59C30A242
00000070 0000901EC4BCD642
00000078 00003426F56B0C43
00000080 0080EQ3779C34143 28
00000088 00AOD88557347643
00000090 0OC84E676DC1ABALS

29
00000098 30
31
00000098 3012000000 32
00000090 7708 33
34
0000009F 2EDD04C500000000 R 35
000000A7 D9F4 36

+

SOURCE
$title(Calculate the val

This subroutin
value of 10**eax.
0 <= eax < 19, the
ALl 80386 register
and the value is r
as two numbers, ex
fraction in ST(0).
can be larger than
exponent of an ext
number. Three sta

name

public
stack stackseg
code segment

Use exact valu

even
power_table dq

get_power_10 proc

cmp eax, 18
ja out_of_r
fld power_tal
fxtract

ue of 10**ax)

e will calculate the
For values of
result will exact.
s are transparent
eturned on the TOS
ponent in ST(1) and
The exponent value
the largest
ended real format
ck entries are used.

get_power_10

get_power_10, power_table
8

public er

es from 1.0 to 1e18.

; Optimize 16 bit access
1.0,1e1,1e2,1e3

1e4,1e5,1e6,1e7

1e8,1e9, 1e10,1e11

1e12,1e13,1e14,1e15

1e16,1e17,1e18

; Test for 0 <= ax < 19
ange

blel[eax*8]; Get exact value
; Separate power

Figure 7-6. Floating-Point to ASCIl Conversion Routine (Cont’d.)




Intel NUMERIC PROGRAMMING EXAMPLES

Shortness, speed, and accuracy were chosen rather than providing the maximum number of
significant digits possible. An attempt is made to keep integers in their own domain to avoid
unnecessary Conversion errors.

Using the extended precision real number format, this routine achieves a worst case accuracy
of three units in the 16th decimal position for a noninteger value or integers greater than
108, This is double precision accuracy. With values having decimal exponents less than 100
in magnitude, the accuracy is one unit in the 17th decimal position.

Higher precision can be achieved with greater care in programming, larger program size,
and lower performance.

7.3.1 Function Partitioning

Three separate modules implement the conversion. Most of the work of the conversion is
done in the module FLOATING_TO_ASCII. The other modules are provided separately,
because they have a more general use. One of them, GET_POWER_10, is also used by the
ASCII to floating-point conversion routine. The other small module, TOS_STATUS, identi-
fies what, if anything, is in the top of the numeric register stack.

7.3.2 Exception Considerations

Care is taken inside the function to avoid generating exceptions. Any possible numeric value
is accepted. The only possible exception is insufficient space on the numeric register stack.

The value passed in the numeric stack is checked for existence, type (NaN or infinity), and
status (denormal, zero, sign). The string size is tested for a minimum and maximum value.
If the top of the register stack is empty, or the string size is too small, the function returns
with an error code.

Overflow and underflow is avoided inside the function for very large or very small numbers.

7.3.3 Special Instructions

The functions demonstrate the operation of several numeric instructions, different data types,
and precision control. Shown are instructions for automatic conversion to BCD, calculating
the value of 10 raised to an integer value, establishing and maintaining concurrency, data
synchronization, and use of directed rounding on the NPX.

Without the extended precision data type and built-in exponential function, the double
precision accuracy of this function could not be attained with the size and speed of the shown
example.

The function relies on the numeric BCD data type for conversion from binary floating-point
to decimal. It is not difficult to unpack the BCD digits into separate ASCII decimal digits.
The major work involves scaling the floating-point value to the comparatively limited range
of BCD values. To print a 9-digit result requires accurately scaling the given value to an
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integer between 10® and 10°. For example, the number +0.123456789 requires a scaling
factor of 10° to produce the value +123456789.0, which can be stored in 9 BCD digits. The
scale factor must be an exact power of 10 to avoid changing any of the printed digit values.

These routines should exactly convert all values exactly representable in decimal in the field
size given. Integer values that fit in the given string size are not be scaled, but directly stored
into the BCD form. Noninteger values exactly representable in decimal within the string
size limits are also exactly converted. For example, 0.125 is exactly representable in binary
or decimal. To convert this floating-point value to decimal, the scaling factor is 1000, result-
ing in 125. When scaling a value, the function must keep track of where the decimal point
lies in the final decimal value.

7.3.4 Description of Operation

Converting a floating-point number to decimal ASCII takes three major steps: identifying
the magnitude of the number, scaling it for the BCD data type, and converting the BCD
data type to a decimal ASCII string.

Identifying the magnitude of the result requires finding the value X such that the number is
represented by I X 10X, where 1.0 < I < 10.0. Scaling the number requires multiplying it
by a scaling factor 108, so that the result is an integer requiring no more decimal digits than
provided for in the ASCII string.

Once scaled, the numeric rounding modes and BCD conversion put the number in a form
easy to convert to decimal ASCII by host software.

Implementing each of these three steps requires attention to detail. To begin with, not all
floating-point values have a numeric meaning. Values such as infinity, indefinite, or NaN
may be encountered by the conversion routine. The conversion routine should recognize these
values and identify them uniquely.

Special cases of numeric values also exist. Denormals have numeric values, but should be
recognized because they indicate that precision was lost during some earlier calculations.

Once it has been determined that the number has a numeric value, and it is normalized
(setting appropriate denormal flags, if necessary, to indicate this to the calling program),
the value must be scaled to the BCD range.

7.3.5 Scaling the Value

To scale the number, its magnitude must be determined. It is sufficient to calculate the
magnitude to an accuracy of 1 unit, or within a factor of 10 of the required value. After
scaling the number, a check is made to see if the result falls in the range expected. If not,
the result can be adjusted one decimal order of magnitude up or down. The adjustment test
after the scaling is necessary due to inevitable inaccuracies in the scaling value.
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Because the magnitude estimate for the scale factor need only be close, a fast technique is
used. The magnitude is estimated by multiplying the power of 2, the unbiased floating-point
exponent, associated with the number by log,,2. Rounding the result to an integer produces
an estimate of sufficient accuracy. Ignoring the fraction value can introduce a maximum
error of 0.32 in the result.

Using the magnitude of the value and size of the number string, the scaling factor can be
calculated. Calculating the scaling factor is the most inaccurate operation of the conversion
process. The relation 10¥=2"2:10) jg ysed for this function. The exponentiate instruction
F2XM1 is used.

Due to restrictions on the range of values allowed by the F2XM1 instruction, the power of
2 value is split into integer and fraction components. The relation 2¢ + P = 2! X 2F allows
using the FSCALE instruction to recombine the 2F value, calculated through F2XM1, and
the 2! part.

7.3.5.1 INACCURACY IN SCALING

The inaccuracy in calculating the scale factor arises because of the trailing zeros placed into
the fraction value of the power of two when stripping off the integer valued bits. For each
integer valued bit in the power of 2 value separated from the fraction bits, one bit of preci-
sion is lost in the fraction field due to the zero fill occurring in the least significant bits.

Up to 14 bits may be lost in the fraction because the largest allowed floating point exponent
value is 2'“— 1. These bits directly reduce the accuracy of the calculated scale factor, thereby
reducing the accuracy of the scaled value. For numbers in the range of 10, a maximum
of 8 bits of precision are lost in the scaling process.

7.3.5.2 AVOIDING UNDERFLOW AND OVERFLOW

The fraction and exponent fields of the number are separated to avoid underflow and overflow
in calculating the scaling values. For example, to scale 1074932 to 108 requires a scaling factor
of 104%, which cannot be represented by the NPX.

By separating the exponent and fraction, the scaling operation involves adding the exponents
separate from multiplying the fractions. The exponent arithmetic involves small integers, all
easily represented by the NPX.

7.3.5.3 FINAL ADJUSTMENTS

It is possible that the power function (Get_Power_10) could produce a scaling value such
that it forms a scaled result larger than the ASCII field could allow. For example, scaling
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9.9999999999999999 X 10%4° by 1.00000000000000010 X 10-433 produces
1.00000000000000009 X 10'¢. The scale factor is within the accuracy of the NPX and the
result is within the conversion accuracy, but it cannot be represented in BCD format. This
is why there is a post-scaling test on the magnitude of the result. The result can be multiplied
or divided by 10, depending on whether the result was too small or too large, respectively.

7.3.6 Output Format

For maximum flexibility in output formats, the position of the decimal point is indicated by
a binary integer called the power value. If the power value is zero, then the decimal point is
assumed to be at the right of the rightmost digit. Power values greater than zero indicate
how many trailing zeros are not shown. For each unit below zero, move the decimal point to
the left in the string.

The last step of the conversion is storing the result in BCD and indicating where the decimal
point lies. The BCD string is then unpacked into ASCII decimal characters. The ASCII
sign is set corresponding to the sign of the original value.

7.4 TRIGONOMETRIC CALCULATION EXAMPLES (NOT TESTED)

In this example, the kinematics of a robot arm is modeled with the 4 X 4 homogeneous
transformation matrices proposed by Denavit and Hartenberg'2 The translational and
rotational relationships between adjacent links are described with these matrices using the
D-H matrix method. For each link, there is a 4 X 4 homogeneous transformation matrix
that represents the link’s coordinate system (L;) at the joint (J;) with respect to the previous
link’s coordinate system (J;,_,, L,_,). The following four geometric quantities completely
describe the motion of any rigid joint/link pair (J;, L;), as Figure 7-7 illustrates.

(2 = The angular displacement of the x; axis from the x,, axis by rotating around
the z;, axis (anticlockwise).

d; = The distance from the origin of the (i-1)™* coordinate system along the z,,
axis to the x; axis.

N = The distance of the origin of the i" coordinate system from the z,, axis
along the —x; axis.

o = The angular displacement of the z; axis from the z,, about the x; axis
(anticlockwise).

1. J. Denavit and R.S. Hartenberg, “A Kinematic Notation for Lower-Pair Mechanisms Based on Matrices,” J. Applied
Mechanics, June 1955, pp. 215-221.

2. C.S. George Lee, “Robot Arm Kinematics, Dynamics, and Control,” TEEE Computer, Dec. 1982.
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Z_,

¥Yir

JOINT,

L
|

JOINT,, ,

— .

G40003

Figure 7-7. Relationships between Adjacent Joints
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The D-H transformation matrix A, for adjacent coordinate frames (from joint, to joint, is
calculated as follows:

AL =T,  XT,XT, XT,,
...where...
T,q represents a translation along the z,, axis
T,s represents a rotation of angle 6 about the z,, axis
T,. represents a translation along the x; axis
T,. represents a rotation of angle « about the x; axis
COS 6; —COS «; SIN 6, SIN ¢, SIN 6, coso, |
Al = SIN 6, COS ¢; COS ¥, —SIN o; COS 6, SIN 6,
i 0 SIN «; COS ¢, d;
0 0 0 1

The composite homogeneous matrix T which represents the position and orientation of the
joint/link pair with respect to the base system is obtained by successively multiplying the
D-H transformation matrices for adjecent coordinate frames.

Ti = A} X A} X .. X Al
This example in Figure 7-8 illustrates how the transformation process can be accomplished
using the 80387. The program consists of two major procedures. The first procedure

TRANS_PROC is used to calculate the elements in each D-H matrix, Ai_,. The second
procedure MATRIXMUL_PROC finds the product of two successive D-H matrices.
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XENIX286 80386 MACRO ASSEMBLER V1.0, ASSEMBLY OF MODULE TOS_STATUS
OBJECT MODULE PLACED IN tos.obj
ASSEMBLER INVOKED BY: asm386 tos.asm

Loc

00000000

00000000

00000000
00000002
00000005
00000007
0000000C
0000000F
00000011
00000013

00000014

ASSEMBLY

0oBJ

DYES
9BDFEQ
88E0
2507400000
COECO3
08EO

B40O

c3

COMPLETE,

r
=
m

SOURCE

+

s

$title(Determine TOS register contents)

This subroutine will return a value
from 0-15 in eax corresponding

to the contents of NPX TOS. All
registers are transparent and no

errors are possible. The return
value corresponds to ¢3,c2,c1,c0

of FXAM instruction.

OOV NOWV & UWN -

-

1 name tos_status

12 public tos_status

13

14 stack stackseg 6

15

16 code segment public er

17

18 tos_status proc

19

20 fxam ; Get status of TOS register
21 fstsw ax ; Get current status

22 mov al ,ah ; Put bit 10-8 into bits 2-0
23 and eax,4007h ; Mask out bits ¢3,c2,c1,c0
24 shr ah, 3 ; Put bit c3 into bit 11

25 or al,ah ; Put ¢3 into bit 3

26 mov ah,0 ; Clear return value

27 ret

28

29 tos_status endp

30

31 code ends

32 end

NO WARNINGS, NO ERRORS.

Figure 7-8. Robot Arm Kinematics Example
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Loc 0BJ

000000A9 C3

000000AA
000000AA DIES
000000AC €8040000

000000B0 8945FC

00000083 DA4DFC
00000086 D9ES
00000088 DYEO
0000008A D9C1

000000BC D9FC

000000BE D9CA

000000C0 D8E2

000000c2 58
000000C3 D9FO
000000C5 c9
000000C6é DEE1T
000000c8 €3

000000C9

ASSEMBLY COMPLETE,

LINE SOURCE
37 ; and fraction
38 ret ; OK to leave fxtract running
39 H
40 : Calculate the value using the
41 H exponentiate instruction. The following
42 H relations are used:
43 H 10%*x = 2**(10g2(10)*x)
44 H 2¥R(I+F) = 2WN] * 2WhE
45 H if st(1) =1 and st(0) = 2**F then
46 H fscale produces 2**(1+F)
47 H
48 out_of_range:
49
50 fidt2e ; TOS = L0G2(¢10)
51 enter 4,0
52
53 ; save power of 10 value, P
54 mov [ebp-43,eax
55
56 ; TOS,X = LOG2(10)*P = LOG2( 10**P)
114 fimul  dword ptr [ebp-4]
58 fld1 ; Set T0S = -1.0
59 fchs
60 fid st(1) ; Copy power value
61 ; in base two
62 frndint ; Y08 = I: -inf <[ <= X
63 ; where 1 is an integer
64 ; Rounding mode does
65 ; not matter
66 fxch st(2) ; YOS = X, ST(1) = -1.0
67 ;ST = 1
68 fsub  st,st(2)  ; TOS,F = X-1:
69 : ; -1.0 < 105 <= 1.0
70
k4l ; Restore orignal rounding control
2 pop eax
3 f2xm1 ; TOS = 2**(F) - 1.0
74 Leave ; Restore stack
It ] fsubr ; Form 2**(F)
76 ret ; OK to leave fsubr running
”
78 get_power_10 endp
7
80 code ends
81 end
NO WARNINGS, NO ERRORS.

Figure 7-8. Robot Arm Kinematics Example (Cont’d.)
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XENIX286 80386 MACRO ASSEMBLER V1.0, ASSEMBLY OF MODULE ROT_MATRIX_CAL

OBJECT MODULE PLACED IN transx.obj
ASSEMBLER INVOKED BY: asm386 transx.asm

Loc 0BJ

,_
=
m

SOVENCU A UWN -

NAWWAWRNNRONRNNNONRN = 2 -2
AN SOVONOUVRUN=200RNCANR~WNND

N W W
&N ;&

00000000
00000008
00000010
00000018
00000020
00000028
00000030
00000038
00000040
00000048
00000050
00000058
00000060
00000068
00000070
00000078

VU nvy yiu s SRS S W
NCUHRUN IOOB®NOUVMARWN =00

SOURCE

Name ROT_MATRIX_CAL

This example illustrates the use
of the 80387 floating point
instructions, in particular, the
FSINCOS function which gives both
the SIN and COS values.

The program calculates the
composite matrix for base to end-
effector transformation.

Only the kinematics is considered in
this example.

If the composite matrix mentioned above
is given by:

TIn=A1 X A2 X ... X An

Tin is found by successively calling
trans_proc and matrixmul_pro until

all matrices have been exhausted.

trans_proc calculates entries in each
A(A1, ... ,An) while matrixmul_proc
performs the matrix multiplication for
Ai and Ai+1. matrixmul_proc in turn
calls matrix_row and matrix_elem to

do the multiplication.

T I T T R R T R T R TR T T s

; Define stack space
trans_stack stackseg 400

; Define the matrix structure for
; 4X4 transformational matrices
a_matrix struc
all
al2
al3
alé
a21
a22
a23
a24
a3l
a32
a33
a34
EA
a2
a3
abh
a_matrix ends

WY N N N W

8288 8888888888588

=
>

Figure 7-8. Robot Arm Kinematics Example (Cont’d.)
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00000000
00000004

00000000
00000004

00000000
00000008

00000000
00000008

00000000

00000030
00000038
00000040
00000048
00000050
00000058
00000060
00000068
00000070
00000078
00000080

00000088
000000C0
000000c8

00000008
000000ED
000000E8
000000F0
000000F8

00000008 ?
00000010 ?
00000018 ?
00000020 ?
00000028 ?

00000000 ?

2722222222222222

0000000000000000
2222222222222222

0000000000000000
0000000000000000
0000000000000000
0100000000000000
222222222222222?

00000088 222
00000090 ?
00000098 22?2
000000AD 2
000000A8 ?
00000080 2

000000000000000

0000000000000000
0000000000000000
0100000000000000

58
59
60
61
62
63
65
67
69

70
7

74
75
76
78

80
81

83

85

87

89

H
H

Assume One joint in the storage
allocation and hence for
two sets of parameters; however,
more joints are possible

alp_deg struc

alpha_deg1 dd
alpha_deg2 dd

alp_deg ends

tht_deg struc

theta_deg? dd
theta_deg2 dd

tht_deg ends

A_array struc
Al
A2
A_array ends

D_array struc
D1
D2
D_array ends

trans_data is the data

trans_data

Amx

Bmx

dq
dq

dq
dq

segment

segment rw public

a_matrix<>

a_matrix<>

Figure 7-8. Robot Arm Kinematics Example (Cont’d.)
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00000100 ?77?7722222222?2?
00000108 22?222222222222?
00000110 222222222222222?
00000118 2772222222222222?
00000120 22?27222222222?27
00000128 ?27222222222227?
00000130 22222?222222722?
00000138 ?2272722222222727
00000140 0000000000000000
00000148 7?77222222222222
00000158 722222222222722?
00000160 0000000000000000
00000168 0000000000000000
00000170 0000000000000000
00000178 0100000000000000
00000180 77227272
00000184 72222227
00000188 ?2?272??
0000018C 72227727
00000190 ?2??72222722227?
00000198 2222727222222227?
000001A0 222222222222227?
000001A8 27?22222727222227
00000180 00000000
00000184 84000000

0001

0004

0004
00000188 01

C MACRO
#
#

00000000

00000000 D9EB
00000002 D83584010000

00000008 D9CO
0000000A DCOCCDE0010000

00000011 D9CY
00000013 DCOCCD88010000

91

92

100
101
102
103
104
105
106
107
108
109
110
m
112
113
114
i15
116
17
118
119
120
121
122
123
12
125
126
127
128
129
130
13
132
133
134

Tmx a_matrix<>
ALPHA_DEG alp_deg<>
THETA_DEG tht_deg<>
A_VECTOR A_array<>
D_VECTOR D_array<>
ZERO dd 0
d180 dd 180
NUM_JOINT equ 1
NUM_ROW equ 4
NUM_coL equ 4
REVERSE db 1h

trans_data ends

assume ds:trans_data, es:trans_data
; trans_code contains the procedures

; for calculating matrix elements and
; matrix multiplications

trans_code segment er public

; create mnemonics for fsincos which is not
; yet available from ASM386 as of now

codemacro fsincos
dw 0fbddh

endm

trans_proc proc far

Calculate alpha and theta in radians
from their values in degrees

fldpi
fdiv  d180

Duplicate pi/180
fld st

froul qword ptr ALPHA_DEG [ecx*8]
fxch st(1)
fmul gword ptr THETA_DEG [ecx*8]

Figure 7-8. Robot Arm Kinematics Example (Cont’d.)
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0000001A D9FB

0000001C D9CO

0000001E DD13

00000020 DCOCCDP0010000
00000027 DD5B18
0000002A D9C

0000002C DD5320
0000002F D9CO

00000031 DCOCCDP0010000
00000038 DD5B38
00000038 D9C2

0000003D D9FB

0000003F DD5350
00000042 D9CY
00000044 DD5348
00000047 D9C2

00000049 DBCY
00000048 DD5B10
0000004E D8CB
00000050 D9EC
00000052 DD5B30
00000055 D9C2

00000057 D8CY
00000059 DD5B28
0000005C D8CY

0000005E 50

0000005F 8B04CDA0010000
00000066 894358

135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
”m
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196

; theta(radians) in ST and
; alpha(radians) in ST(1)

; Calculate matrix elements

; all = cos theta

; al2 = - cos alpha * sin thet
; al3 = sin alpha * sin theta
; ald = A * cos theta

; a21 = sin theta

; a22 = cos alpha * cos theta
; a23 = -sin alpha * cos theta
; a24 = A * sin theta

; a32 = sin alpha

; a33 = cos alpha

; a3% =D

; a31 = a4l = ab2 = a43 = 0.0
; abk4é =1

; ebx contains the offset for the matrix

fsincos ;cos theta in ST
;sin theta in ST(1)

fld st ;duplicate cos theta

fst [ebx].al1 ;cos theta in all

fmul qword ptr A_VECTOR [ecx*8]
fstp [ebx].al4 ;A * cos thetain al4

fxch st(1) ;sin theta in ST
fst febx].a21 ;sin theta in a2l
fld st ;duplicate sin theta

fmul qword ptr A_VECTOR [ecx*8}
fstp [ebx].a24 ;A * sin theta in a24
fid st(2) ;alpha in ST
fsincos ;cos alpha in ST
;sin alpha in ST(1)
;sin theta in ST(2)
theta in ST(3)

fst [ebx] .a33 alpha in a33
fxch st(1) alpha in ST
fst [ebx].a32 alpha in a32
fld ST(2) theta in ST

alpha in ST(1)
fmul st,st(1) ;sin alpha * sin theta
fstp [ebx].a13 ;stored in al13

fmul st,st(3) ;cos theta * sin alpha

fchs ;-cos theta * sin alpha
fstp [ebx].a23 ;stored in a23
fld st(2) ;cos theta in ST

;cos alpha in ST(1)
;sin theta in ST(2)
;cos theta in ST(3)
fmul st,st(1) ;cos theta * cos alpha
fstp lebx].a22 ;stored in a22
fmul st,st(1) ;cos alpha * sin theta

To take advantage of parallel operations
between the CPU and NPX

push eax ; save eax

also move D into a34 in a faster way
mov eax, dword ptr D_VECTOR [ecx*8]
mov dword ptr [ebx + 88], eax

Figure 7-8. Robot Arm Kinematics Example (Cont’d.)
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00000069
00000070
00000073
00000074
00000076
00000079

0000007A

0000007A

0000007A
00000078
0000007C

0000007E

00000081

00000083
00000086

0000008A

00000088
00000088

00000080

00000090
00000092

8B04CDA4010000 R
89435¢C

58

D9EO

DD5B08

197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
261
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259

55
51
8BCE

6BC904

31ED

892C39
896C3904

51

01E9

DD0408

88CD
6BC904

mov eax, dword ptr D_VECTOR[ecx*8 + 4]
mov dword ptr [ebx + 921, eax
pop eax ; restore eax
fchs ;-cos alpha * sin theta
fstp [ebx].a12 ;stored in a12
;and all nonzero elements
;have been calculated
ret

trans_proc endp

matrix_elem proc far

NXT_|

This procedure calculate the dot product
of the ith row of the first matrix and
the jth column of the second matrix:

Tij where Tij = sum of Aik x Bkj over k

parameters passed from the calling routine,
matrix_row:

ESI = (i-1)*8

EDI = (j-1)*8

local register, EBP = (k-1)*8

push ebp ; save ebp

push ecx ; ecx to be used as a tmp reg
mov ecx, esi; save it for later indexing

locating the element in the first matrix, A

imul ecx, NUM_COL ; ecx contains offset due
; to preceding rows; the
; offset is from the
; beginning of the matrix
xor ebp, ebp; clear ebp, which will be

used a temp reg to index( k)
across the ith row of the first
matrix as well as down the jth
column of the second matrix

clear Tij for accumulating Aik*Bkj

mov dword ptr [ecx] [edil,ebp

mov dword ptr [ecx] [edi+4], ebp

push ecx ; save on stack: esi * num _col =
; the offset of the beginnging
; of the ith row from the
; beginning of the A matrix

add ecx, ebp ; get to the kth column entry

H
; of the ith row of the A matrix

load Aik into 80387

fld qword ptr [eax] [ecx]

locating Bkj

mov ecx, ebp

imut ecx, NUM_ROW ; ecx contains the offset

H
; of the beginning of the
: kth row from the

Figure 7-8.
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00000095 01F9
entry

00000097 DCOCOB
0000009A 59

00000098 51

0000009C 01F9

0000009E DCO40A

000000A1 DD1COA

000000A4 83C508

000000A7 83FD20
0000CQAA 7CDF

000000AC 59
000000AD 59
000000AE 5D
000000AF CB

00000080

00000080

00000080 31FF

00000082

00000082 $A7A000000- - - -
00000089 83C708
0000008C 83FF20
0000008F 7CF1

000000Ct CB

000000C2

000000C2

260
261

262
263
264
265

267
268
269
270
27
272
273
274
275
276
277
278

280
281
282
283
284
285
286
287
288
289

291
292
293

295
296
297

299
300
301

302
303
304
305
306
307
308
309
310
n

312
313
314
315
316
37
318
319
320

; beginning of the B matrix
add ecx, edi ; get to the jth column

; of the kth row of the B
; matrix

fmul quord ptr [ebxllecx]; Aik * Bkj

pop ecx ; esi * num_col
; in ecx again

push ecx ; also at top of program
; stack

add to the result in the output matrix,Tij
add ecx, edi

accumulating the sum of Aik * Bkj
fadd qword ptr [edx] [ecx]

fstp qword ptr [edx] [ecx]
increment k by 1, i.e., ebp by 8
add ebp, 8

Has k reached the width of the matrix yet?
cmp ebp, NUM_COL*8
jt NXT_k

Restore registers

pop ecx ; clear esi*num_col from stack
pop ecx ; restore ecx

pop ebp ; restore ebp

ret

matrix_elem endp

matrix_row proc far

xor edi, edi
; sctan across a row

NXT_COL:
call matrix_elem
add edi, 8
cmp edi, NUM_COL*8
jt NXT_COL
ret

matrix_row endp

matrixmul_proc proc far

This procedure does the matrix
multiplication by calling matrix_row
to calculate entries in each row

The matrix multiplication is
performed in the following manner,

Tij = Aik x Bkj
where i and j denote the row and column
respectively and k is the index for
scanning across the ith row of the
first matrix and the jth column of the
second matrix.

Figure 7-8. Robot Arm Kinematics Example (Cont’d.)
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000000C2
000000C3
000000C4

000000C5
000000Cc7
000000C7
000000CE
00000001
00000004
00000006

00000007

00000000

00000000

00000005

00000006
00000008
0000000D
00000014

00000015

SA 321
58 322
58 323
324
325
326
327
328
31F6 329
330
331
9AB000000O- - - - R 332
83c608 333
83FE20 334
7CF1 335
cB 336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
BC00000000 R 357
358
359
60 360
361
362
363
364
365
366
31c9 367
BB80000000 R 368
9A00000000-- - - R 369
41 370
n
372
373
374
375
376
377
378
379
380
381
382

pop edx ; offset Tmx in edx
pop ebx ; offset Bmx in ebx
pop eax ; offset Amx in eax

setup esi and edi
edi points to the column
esi points to the row

xor esi, esi ; clear esi

NXT_ROW:

call matrix_row

add esi, 8

cmp esi, NUM_ROW*8
jt NXT_ROW

ret

matrixmul_proc endp

trans_code ends

Main program

main_code segment er

START:

mov esp, stackstart trans_stack
save all registers

pushad

ECX denotes the number of joints
where no of matrices = NUM_JOINT + 1
Find the first matrix( from the base
of the system to the first joint)
and call it Bmx

Xor ecx, ecx ; Ist matrix
mov ebx, offset Bmx ;
call trans_proc ; is Bmx
inc ecx
NXT_MATRIX:

From the 2nd matrix and on, it

will be stored in Amx.

The result from the first matrix mult.
is stored in Tmx but will be accessed
as Bmx in the next multiplication.

As a matter of fact, the roles of Bmx
and Tmx alternate in successive
multiplications. This is achieved by
reversing the order of the Bmx and Tmx
pointers being passed onto the program

Figure 7-8. Robot Arm Kinematics Example (Cont’d.)
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00000015 BBOGO00COO
0000001A 9A00000000- - - -
00000021 41

00000022 8035801060001
00000029 7511

00000028 6800000000
00000030 6880000000
00000035 6800010000
0000003A EBOF

0000003C

0000003C 6800000000
00000041 6800010000
00000046 6880000000

00000048
00000048 9AC2000000- - --

00000052 83F901
00000055 7EBE

00000057 61

ASSEMBLY COMPLETE,

NO WARNINGS,

383 ; stack. Thus, this is invisible to the
384 ; matrix multiplication procedure.

385 ; REVERSE serves as the indicator;

386 ; REVERSE = 0 means that the result
387 H is to placed in Tmx.

388

389 mov ebx, offset Amx ;find Amx
390 call trans_proc

391 inc ecx

392 xor REVERSE, 1h

393 jnz Bmx_as_Tmx

39

395 ; no reversing. Bmx as the second input
396 ; matrix while Tmx as the output matrix.
397 push offset Amx

398 push offset Bmx

39 push offset Tmx

400 jmp CONTINUE

401

402 ; reversing. Tmx as the second input
403 ; matrix while Bmx as the output matrix.
404 Bmx_as_Tmx:

405 push offset Amx

406 push offset Tmx ;reversing the
407 push offset Bmx ;pointers passed
408

409 CONTINUE:

410 call matrixmul_proc

411 cmp ecx, NUM_JOINT

412 jte NXT_MATRIX

413

414 ; if REVERSE = 1 then the final answer
415 ; will be in Bmx otherwise, in Tmx.
416

“z popad

418

419 main_code ends

420

421 end START, ds:trans_data, ss:trans_stack
NO ERRORS.

Figure 7-8. Robot Arm Kinematics Example (Cont’d.)
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APPENDIX A
MACHINE INSTRUCTION ENCODING AND DECODING

1st Byte .
2nd Byte Bytes 3-7 ASM38FG Instruction
. ormat

Hex Binary
D8 1101 1000 MOD 000 R/M SIB, displ FADD single-real
D8 1101 1000 MOD 001 R/M SIB, displ FMUL single-real
D8 1101 1000 MOD 010 R/M SIB, displ FCOM single-real
D8 1101 1000 MOD 011 R/M SIB, displ FCOMP  single-real
D8 1101 1000 MOD 100 R/M SIB, displ FSuUB single-real
D8 1101 1000 MOD 101 R/M SIB, displ FSUBR  single-real
D8 1101 1000 MOD 110 R/M SIB, displ FDIV single-real
D8 1101 1000 MOD 111 R/M SIB, displ FDIVR single-real
D8 1101 1000 1100 0 REG FADD ST,ST(i)
D8 1101 1000 1100 1 REG FMUL ST,ST(j)
D8 1101 1000 1101 0 REG FCOM ST(i)
D8 1101 1000 1101 1 REG FCOMP  ST(j)
D8 1101 1000 1110 0 REG FSuUB ST,ST(j)
D8 1101 1000 1110 1 REG FSUBR  ST,ST(i)
D8 1101 1000 1111 0 REG FDIV ST,ST()
D8 1101 1000 1111 1 REG FDIVR ST,ST(i)
D9 1101 1001 MOD 000 R/M SIB, displ FLD single-real
D9 1101 1001 MOD 001 R/M reserved
D9 1101 1001 MOD 010 R/M SIB, displ FST single-real
D9 1101 1001 MOD 011 R/M SIB, displ FSTP single-real
D9 1101 1001 MOD 100 R/M SIB, displ FLDENV 14 or 28 bytes***
D9 1101 1001 MOD 101 R/M SIB, displ FLDCW 2 bytes
D9 1101 1001 MOD 110 R/M SIB, displ FSTENV 14 or 28 bytes***
D9 1101 1001 MOD 111 R/M SIB, displ FSTCW 2 bytes
D9 1101 1001 1100 0 REG FLD ST(i)
D9 1101 1001 1100 1 REG FXCH ST(i)
D9 1101 1001 1101 0000 FNOP
D9 1101 1001 1101 0001 reserved
D9 1101 1001 1101 001- reserved
D9 1101 1001 1101 01— reserved
D9 1101 1001 1101 1 REG reserved
D9 1101 1001 1110 0000 FCHS
D9 1101 1001 1110 0001 FABS
D9 1101 1001 1110 001- reserved
D9 1101 1001 1110 0100 FTST
D9 1101 1001 1110 0101 FXAM
D9 1101 1001 1110 011- reserved
D9 1101 1001 1110 1000 FLD1
D9 1101 1001 1110 1001 FLDL2T
D9 1101 1001 1110 1010 FLDL2E
D9 1101 1001 1110 1011 FLDPI
D9 1101 1001 1110 1100 FLDLG2
D9 1101 1001 1110 1101 FLDLN2
D9 1101 1001 1110 1110 FLDZ
D9 1101 1001 1110 1111 reserved
D9 1101 1001 1111 0000 F2XM1
D9 1101 1001 1111 0001 FyL2X
D9 1101 1001 1111 0010 FPTAN




intel

MACHINE INSTRUCTION ENCODING AND DECODING

1st Byte )
2nd Byte Bytes 3-7 ASM38FG Instruction
. ormat
Hex Binary

D9 1101 1001 1111 0011 FPATAN
D9 1101 1001 1111 0100 FXTRACT
D9 1101 1001 1111 0101 FPREM1
D9 1101 1001 1111 0110 FDECSTP
D9 1101 1001 1111 0111 FINCSTP
D9 1101 1001 1111 1000 FPREM
D9 1101 1001 1111 1001 FYL2XP1
D9 1101 1001 1111 1010 FSQRT
D9 1101 1001 1111 1011 FSINCOS
D9 1101 1001 1111 1100 FRNDINT
D9 1101 1001 1111 1101 FSCALE
D9 1101 1001 1111 1110 FSIN
D9 1101 1001 1111 1111 FCOS
DA 1101 1010 MOD 000 R/M SIB, displ FIADD short-integer
DA 1101 1010 MOD 001 R/M SIB, displ FIMUL  short-integer
DA 1101 1010 MOD 010 R/M SIB, displ FICOM  short-integer
DA 1101 1010 MOD 011 R/M SIB, displ FICOMP short-integer
DA 1101 1010 MOD 100 R/M SIB, displ FISUB short-integer
DA 1101 1010 MOD 101 R/M SIB, displ FISUBR short-integer
DA 1101 1010 MOD 110 R/M SIB, displ FIDIV short-integer
DA 1101 1010 MOD 111 R/M SIB, displ FIDIVR  short-integer
DA 1101 1010 110- ——— reserved
DA 1101 1010 1110 0-— reserved
DA 1101 1010 1110 1000 reserved
DA 1010 1010 1110 1001 FUCOMPP
DA 1101 1010 1110 101- reserved
DA 1101 1010 1110 11— reserved
DA 1101 1010 1111 — reserved
DB 1101 1011 MOD 000 R/M SIB, displ FILD short-integer
DB 1101 1011 MOD 001 R/M SIB, displ reserved
DB 1101 1011 MOD 010 R/M SIB, displ FIST short-integer
DB 1101 1011 MOD 011 R/M SIB, displ FISTP short-integer
DB 1101 1011 MOD 100 R/M SIB, displ reserved
DB 1101 1011 MOD 101 R/M SIB, displ FLD extended-real
DB 1101 1011 MOD 110 R/M SIB, displ reserved
DB 1101 1011 MOD 111 R/M SIB, displ FSTP extended-real
DB 1101 1011 110- ——- reserved
DB 1101 1011 1110 0000 **1)
DB 1101 1011 1110 0001 **2)
DB 1101 1011 1110 0010 FCLEX
DB 1101 1011 1110 0011 FINIT
DB 1101 1011 1110 0100 **(3)
DB 1101 1011 1110 0101 reserved
DB 1101 1011 1110 011- reserved
DB 1101 1011 1110 1— reserved
DB 1101 1011 1111 —— reserved
DC 1101 1100 MOD 000 R/M SIB, displ FADD double-real
DC 1101 1100 MOD 001 R/M SIB, displ FMUL double-real
DC 1101 1100 MOD 010 R/M SIB, displ FCOM double-real
DC 1101 1100 MOD 011 R/M SIB, displ FCOMP double-real
DC 1101 1100 MOD 100 R/M SIB, displ FSUB double-real
DC 1101 1100 MOD 101 R/M SIB, displ FSUBR double-real
DC 1101 1100 MOD 110 R/M SIB, displ FDIV double-real
DC 1101 1100 MOD 111 R/M SIB, displ FDIVR double-real
DC 1101 1100 1100 0 REG FADD ST(i),ST
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DC 1101 1100 1100 1 REG FMUL ST(i),ST
DC 1101 1100 1101 0 REG reserved
DC 1101 100 1101 1 REG reserved
DC 1101 1100 1110 0 REG FSUBR  ST(j),ST
DC 1101 1100 1110 1 REG FSUB ST(i),ST
DC 1101 1100 1111 0 REG FDIVR ST(i),ST
DC 1101 1100 1111 1 REG FDIV ST(i),ST
DD 1101 1101 MOD 000 R/M SIB, displ FLD double-real
DD 1101 1101 MOD 001 R/M reserved
DD 1101 1101 MOD 010 R/M SIB, displ FST double-real
DD 1101 1101 MOD 011 R/M SIB, displ FSTP double-real
DD 1101 1101 MOD 100 R/M SIB, displ FRSTOR 94 or 108 bytes***
DD 1101 1101 MOD 101 R/M SIB, disp! reserved
DD 1101 1101 MOD 110 R/M SIB, displ FSAVE 94 or 108 bytes***
DD 1101 1101 MOD 111 R/M SIB, disp! FSTSW 2 bytes
DD 1101 1101 1100 0 REG FFREE  ST(i)
DD 1101 1101 1100 1 REG reserved
DD 1101 1101 1101 0 REG FST ST(i)
DD 1101 1101 1101 1 REG FSTP ST(i)
DD 1101 1101 1110 0 REG FUCOM ST(j)
DD 1101 1101 1110 1 REG FUCOMP ST(i)
DD 1101 1101 1111 ——— reserved
DE 1101 1110 MOD 000 R/M SIB, displ FIADD word-integer
DE 1101 1110 MOD 001 R/M SIB, displ FIMUL  word-integer
DE 1101 1110 MOD 010 R/M SIB, displ FICOM  word-integer
DE 1101 1110 MOD 011 R/M SIB, displ FICOMP word-integer
DE 1101 1110 MOD 100 R/M SIB, displ FISUB word-integer
DE 1101 1110 MOD 101 R/M SIB, displ! FISUBR word-integer
DE 1101 1110 MOD 110 R/M SIB, displ FIDIV word-integer
DE 1101 1110 MOD 111 R/M SIB, displ FIDIVR  word-integer
DE 1101 1110 1100 0 REG FADDP  ST(i),ST
DE 1101 1110 1100 1 REG FMULP  ST(i),ST
DE 1101 1110 1101 0——- reserved
DE 1101 1110 1101 1000 reserved
DE 1101 1110 1101 1001 FCOMPP
DE 1101 1110 1101 101- reserved
DE 1101 1110 1101 11— reserved
DE 1101 1110 1110 0 REG FSUBRP ST(i),ST
DE 1101 1110 1110 1 REG FSUBP  ST(i),ST
DE 1101 1110 1111 0 REG FDIVRP  ST(i),ST
DE 1101 1110 1111 1 REG FDIVP ST(i),ST
DF 1101 1111 MOD 000 R/M SIB, displ! FILD word-integer
DF 1101 1111 MOD 001 R/M SIB, displ reserved
DF 1101 1111 MOD 010 R/M SIB, displ FIST word-integer
DF 1101 1111 MOD 011 R/M SIB, displ FISTP word-integer
DF 1101 1111 MOD 100 R/M SIB, displ FBLD packed-decimal
DF 1101 1111 MOD 101 R/M SIB, displ FILD long-integer
DF 1101 1111 MOD 110 R/M SIB, displ! FBSTP  packed-decimal
DF 1101 1111 MOD 111 R/M SIB, displ FISTP long-integer
DF 1101 1111 1100 0 REG reserved
DF 1101 1111 1100 1 REG reserved
DF 1101 1111 1101 0 REG reserved
DF 1101 1111 1101 1 REG reserved
DF 1101 1111 1110 0000 FSTSW AX
DF 1101 1111 1110 0001 reserved

A-3
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DF 1101 1111 1110 001- reserved
DF 1101 1111 1110 01— reserved
DF 1101 1111 1110 1— reserved
DF 1101 1111 1111 — reserved

** The marked encodings can be generated by the language translators; however, the 80387 treats them
as FNOP. They correspond to the following 8087 or 80287 instructions.

(1) FENI
(2) FDISI
(3) FSETPM

*** The size of operand transferred depends on the 80386 operand-size attribute in effect for the
instruction.
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APPENDIX B
EXCEPTION SUMMARY

The following table lists the instruction mnemonics in alphabetical order. For each mnemonic,
it summarizes the exceptions that the instruction may cause. When writing 80387 programs
that may be used in an environment that employs numerics exception handlers, assembly-
language programmers should be aware of the possible exceptions for each instruction in
order to determine the need for exception synchronization. Chapter 4 explains the need for
exception synchronization.

Mnemonic Instruction IS | D z (0] U P
F2XM1 2x—1 Y Y Y Y Y
FABS Absolute value Y
FADD(P) Add real Y Y Y Y Y
FBLD BCD load Y
FBSTP BCD store and pop Y Y Y
FCHS Change sign Y
FCLEX Clear exceptions
FCOM(P)(P) Compare real Y Y Y
FCOS Cosine Y Y Y Y Y
FDECSTP Decrement stack pointer
FDIV(R)P) Divide real Y Y Y Y Y Y Y
FFREE Free register
FIADD Integer add Y Y Y Y Y Y
FICOM(P) Integer compare Y Y Y
FIDIV Integer divide Y Y Y Y Y Y
FIDIVR Integer divide reversed Y Y Y Y Y Y Y
FILD Integer load Y
FIMUL Integer multiply Y Y Y Y Y Y
FINCSTP Increment stack pointer
FINIT Initialize processor
FIST(P) Integer store Y Y Y
FISUB(R) Integer subtract Y Y Y Y Y Y
FLD extended Load real Y

or stack
FLD single Load real Y Y Y

or double
FLD1 Load + 1.0 Y
FLDCW Load Control word Y Y Y Y Y Y Y
FLDENV Load environment Y Y Y Y Y Y Y
FLDL2E Load log,e Y
FLDL2T Load log,10 Y
FLDLG2 Load log,o2 Y
FLDLN2 Load log.2 Y
FLDPI Load = Y

IS—Invalid operand due to stack overflow/underflow
|—Invalid operand due to other cause

D—Denormal operand

Z—Zero-divide

O—Overflow

U—Underflow

P—Inexact result (precision)
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Mnemonic Instruction IS I D u P
FLDZ Load + 0.0 Y
FMUL(P) Multiply real Y Y Y Y Y
FNOP No operation
FPATAN Partial arctangent Y Y Y Y Y
FPREM Partial remainder Y Y Y Y
FPREM1 |EEE partial remainder Y Y Y Y
FPTAN Partial tangent Y Y Y Y Y
FRNDINT Round to integer Y Y Y Y
FRSTOR Restore state Y Y Y Y Y
FSAVE Save state
FSCALE Scale Y Y Y Y Y
FSIN Sine Y Y Y Y Y
FSINCOS Sine and cosine Y Y Y Y Y
FSQRT Square root Y Y Y Y
FST(P) stack Store real Y
or extended
FST(P) single Store real Y Y Y Y Y
or double
FSTCW Store control word
FSTENV Store Environment
FSTSW (AX) Store status word
FSUB(R)(P) Subtract real Y Y Y Y Y
FTST Test Y Y Y
FUCOM(P)(P) Unordered compare real Y Y Y
FWAIT CPU Wait
FXAM Examine
FXCH Exchange registers Y
FXTRACT Extract Y Y Y
FYL2X Y » log.X Y Y Y Y Y
FYL2XP1 Y e logy(X + 1) Y Y Y Y Y

IS—Invalid operand due to stack overflow/underflow
|—Invalid operand due to other cause
D—Denormal operand

Z—Zero-divide
O—Overflow
U—Underflow

P—Inexact result (precision)
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APPENDIX C
COMPATIBILITY BETWEEN THE 80387
AND THE 80287/8087

This appendix summarizes the differences between the 80387 and its predecessors the 80287
and the 8087, and analyzes the impact of these differences on software that must be trans-
ported from the 80287 or 8087 to the 80387. Any migration from the 8087 directly to the
80387 must also take into account the additional differences between the 8087 and the 80387
as listed in Appendix D of this manual.

C.1 INITIALIZATION SEQUENCE

Difference Description

Reason
Issue Impact on Software for the
80387 Behavior 8087/80287 Behavior Difference
RESET, FINIT, After a hardware RESET, No difference between 80387 initialization Permits the 80386 to differ-
and ERROR# PIN | the ERROR# output is RESET and FINIT. software must execute an entiate between the 80287
asserted to indicate that an FENINIT instruction to clear | and the 80387.
80387 is present. To ERROR#. The FNINIT is
accomplish this, the IE and not required for 80287/
ES bits of the status word 8087 software, though Intel
are set, and the IM bit in documentation recom-
the control word is reset. mends its use (refer to the
After FINIT, the status Numerics Supplement to
word and the control word the IAPX 286 Program-
have the same values as in mer’s Reference Manual).
an 80287/8087 after
RESET.
C.2 DATA TYPES AND EXCEPTION HANDLING
Difference Description Reason
Issue Impact on Software for the
80387 Behavior 8087/80287 Behavior Difference
NaN The 80387 distinguishes The 80287/8087 only Uninitialized memory |IEEE Standard 754
between signaling NaNs generates one kind of NaN | locations that contain compatibility.
and quiet NaNs. The 80387 | (the equivalent of a quiet QNaNs should be changed
only generates quiet NaNs. | NaN) but raises an invalid- | to SNaNs to cause the
An invalid-operation operation exception upon 80387 to fault when unini-
exception is raised only encountering any kind of tialized memory locations
upon encountering a NaN. are referenced.
signaling NaN (except for
FCOM, FIST, and FBSTP
which also raise IE for
quiet NaNs).
Pseudozero, The 80387 neither gener- The 80287/8087 defines None. The 80387 does not | IEEE Standard 754
Pseudo-NaN, ates not supports these and supports special generate these formats, compatibility.
Pseudoinfinity, formats; it raises an handling for these formats. | and therefore will not
and Unnormal invalid-operation exception encounter them unless a
Formats whenever it encounters programmer deliberately
them in an arithmetic enters them.
operation.
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Issue

Difference Description

80387 Behavior

8087/80287 Behavior

Impact on Software

Reason
for the
Difference

Tag Word Bits
for Unsupported
Data Formats

The encoding in the tag
word for the unsupported
data formats mentioned in
Section C.2.2 is “‘special
data” (type 10).

The encoding for pseudo-
zero and unnormal is
“valid”" (type 00); the
others are ‘“‘special data”
(type 10).

The exception handler may
need to be changed if
programmers use such
data types.

|EEE Standard 754
compatibility.

Invalid-Operation

No invalid-operation

Upon encountering a

None. Software on the

Upgrade, to eliminate

If the rounding mode is set
to chop (toward zero), the
result is the most positive
or most negative number.

Overflow exception not
masked.

The precision exception is
flagged. When the result is
stored in the stack, the
significand is rounded
according to the precision
control (PC) bit of the
control word or according
to the opcode.

The 80287/8087 does not
signal the overflow excep-
tion when the masked
response is not infinity; i.e.,
it signals overflow only
when the rounding control
is not set to round to zero.
If rounding is set to chop
(toward zero), the result is
positive or negative infinity.

Overflow exception not
masked.

The precision exception is
not flagged and the signifi-
cand is not rounded.

Under the most common
rounding modes, no
impact. If rounding is
toward zero (chop), a
program on the 80387
produces under overflow
conditions a result that is
different in the least signifi-
cant bit of the significand,
compared to the result on
the 80287.

Overflow exception not
masked.

If the result is stored on
the stack, a program on
the 80387 produces a
different result under
overflow conditions than
on the 80287/8087. The
difference is apparent only
to the exception handler.

Exception exception is raised upon denormal in FSQRT, FDIV, | 80387 will continue to exception.
encountering a denormal in | or FPREM or upon conver- | execute in cases where the
FSQRT, FDIV, or FPREM sion to BCD or to integer, 80287/8087 would trap.
or upon conversion to the invalid-operation
BCD or to integer. The exception is raised.
operation proceeds by first
normalizing the value.
Denormal The denormal exceptionis | The denormal exception is The exception handler Performance enhancement
Exception raised in transcendental not raised in transcenden- needs to be changed only for normal case.
instructions and FXTRACT. | tal instructions and if it gives special treatment
FXTRACT. to different opcodes.
Overflow Overflow exception Overflow exception Overflow exception |EEE Standard 754
Exception masked. masked. masked. compatibility.
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Difference Description

80387 Behavior

8087/80287 Behavior

Reason
for the
Difference

Underflow
Exception

Two related
events contribute
to underflow:

1. The creation
tiny result. A
tiny number,
because it is
so small, may
cause some
other excep-
tion later
(such as
overflow upon
division).

2. Loss of
accuracy
during the
denormaliza-
tion of a tiny
number.

Which of these
events triggers
the underflow
exception
depends on
whether the
underflow excep-
tion is masked.

Conditions for underflow.

When the underflow
exception is masked, the
underflow exception is
signaled when both the
result is tiny and denormal-
ization results in a loss of
accuracy.

Response to underflow.

When the underflow
exception is unmasked
and the instruction is
supposed to store the
result on the stack, the
significand is rounded to
the appropriate precision
(according to the precision
control (PC) bit of the
control word, for those
instructions controlled by
PC, otherwise to extended
precision).

Conditions for underflow.

When the underflow excep-
tion is masked and round-
ing is toward zero, the
underflow exception flag is
raised on tininess, regard-
less of loss of accuracy.

Response to underflow.

When the underflow excep-
tion is not masked and the
destination is the stack, the
significand is not rounded
but rather is left as is.

Underflow exception
masked.

No impact. The underflow
exception occurs less
often when rounding is
toward zero.

Underflow exception not
masked.

A program on the 80387
produces a different result
during underflow condi-
tions than on the 80287/
8087 if the result is stored
on the stack. The differ-
ence is only in the least
significant bit of the signifi-
cand and is apparent only
to the exception handler.

|EEE Standard 754
compatibility.

Exception
Precedence

There is no difference in
the precedence of the
denormal exception,
whether it be masked or
not.

When the denormal excep-
tion is not masked, it takes
precedence over all other
exceptions.

None, but some unneeded
normalization of denormal
operands is prevented on
the 80387.

Operational improvement.

C.3 TAG, STATUS, AND CONTROL WORDS

Difference Description

reset, the 80387 sets these
bits to zero.

reset, the 80287/8087
leaves these bits intact
(they contain the prior
value).

Reason
Issue Impact on e for the
80387 Behavior 8087/80287 Behavior Difterence
Bits C3-CO of After FINIT, incomplete After FINIT, incomplete None. Upgrade, to provide
Status Word FPREM, and hardware FPREM, and hardware consistent state after reset.

Bit C2 of Status
Word

Bit 10 (C2) serves as an
incomplete bit for FPTAN.

This bit is undefined for
FPTAN.

None. Programs don’t
check C2 after FPTAN.

Upgrade to allow fast
checking of operand range.

Infinity Control

Only affine closure is

supported. Bit 12 remains
programmable but has no
effect on 80387 operation.

Both affine and projective
closures are supported.
After RESET, the defauit
value in the control word is
projective.

Software that requires
projective infinity arithmetic
may give different results.

|IEEE Standard 754
compatibility.
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Difference Description

Impact on Software

80387 Behavior

8087 /80287 Behavior

Reason
for the
Difference

Status Word Bit
6 for Stack Fault

When an invalid-operation
exception occurs due to
stack overflow or under-
flow, not only is bit 0 (IE) of
the status word set, but
also bit 6 is set to indicate
a stack fault and bit 9 (C1)
specifies overflow or
underflow. Bit 6 is called
SF and serves to distin-
guish invalid exceptions
caused by stack overflow/
underflow from those
caused by numeric
operations.

When an invalid-operation
exception occurs due to
stack overflow or under-
flow, only bit 0 (IE) of the
status word is set. Bit 6 is
RESERVED.

None. Existing exception
handlers need not change,
but may be upgraded to
take advantage of the
additional information.
Newly written handlers wiil
be more effective.

Upgrade and performance
improvement.

Tag Word

When loading the tag word
with an FLDENV or
FRSTOR instruction, the
only interpretations of tag
values used by the 80387
are empty (value 11) and

The corresponding tag is
checked before each regis-
ter access to determine the
class of operand in the
register; the tag is updated
after every change to a

Software may not operate
correctly if it uses FLDENV
or FRSTOR to change tags
to values (other than
empty) that are different
from actual register

Performance improvement.

nonempty (values 00, 01, register so that the tag contents.
and 10). Subsequent always reflects the most
operations on a nonempty | recent status of the regis-
register always examine ter. Programmers can load
the value in the register, a tag with a value that
not the value in its tag. The | disagrees with the contents
FSTENV and FSAVE of a register (for example,
instructions examine the the register contains valid
nonempty registers and contents, but the tag says
put the correct values in special; the 80287/8087, in
the tags before storing the | this case, honors the tag
tag word. and does not examine the
register).
C.4 INSTRUCTION SET
Difference Description Reason
Issue L t on Software for the
80387 Behavior 8087/80287 Behavior Difference
FBSTP, FDIV, Operation on denormal Operation on denormal The exception handler for |EEE Standard 754

FIST(P), FPREM,
FSQRT

operand is supported. An
underflow exception can
occur.

operand raises invalid-
operation exception.
Underfiow is not possible.

underflow may require
change only if it gives
different treatment to
different opcodes. Possibly
fewer invalid-operation
exceptions will occur.

compatibility.

FSCALE

The range of the scaling
operand is not restricted. If
0 <IST()I < 1, the
scaling factor is zero;
therefore, ST(0) remains
unchanged. If the rounded
result is not exact or if
there was a loss of
accuracy (masked under-
flow), the precision excep-
tion is signaled.

The range of the scaling
operand is retricted. If 0 <
18T(1)1 < 1, the result is
undefined and no excep-
tion is signaled.

Different result when 0 <
IST(1) 1< 1.

Upgrade.
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Difference Description

extended-real

exception because the
instruction is not
arithmetic.

exception.

Reason
Issue [l t on Software for the
80387 Behavior 8087/80287 Behavior Difference
FPREM1 Performs partial remainder | Does not exist. None. |EEE Standard 754
according to IEEE compatibility and upgrade.
Standard 754 standard.
FPREM Bits CO0, C3, C1 of the The quotient bits are incor- | None. Software that works | Upgrade.
status word, correctly rect when performing a around the bug should not
reflect the three low-order reduction of 64N +M when | be affected.
bits of the quotient. N> 1and M=1or M=2.
FUCOM, Perform unordered Do not exist. None. |EEE Standard 754
FUCOMP, compare according to compatibility.
FUCOMPP IEEE Standard 754
standard.
FPTAN Range of operand is much | Range of operand is None. Upgrade.
less restricted (1ST(0) | < restricted (1ST(0) | << =/4);
25%); reduces operand operand must be reduced
internally using an internal | to range using FPREM.
«/4 constant that is more
accurate.
After a stack overflow After a stack overflow |EEE Standard 754
when the invalid-operation | when the invalid-operation compatibility.
exception is masked, both | exception is masked, the
ST and ST(1) contain quiet | original operand remains
NaNs. unchanged, but is pushed
to ST(1).
FSIN, FCOS, Perform three common Do not exist. None. Upgrade.
FSINCOS trigonometric functions.
FPATAN Range of operands is 1 ST(0) | must be smaller None. Upgrade.
unrestricted. than | ST(1)1.
F2XM1 Wider range of operand The supported operand None. Upgrade.
(—1 =< 8T(0) < +1). rangeis 0 < ST (0) < 0.5.
FLD Does not report denormal Reports denormal None. Upgrade.

FXTRACT

If the operand is zero, the
zero-divide exception is
reported and ST(1) is —oo.
If the operand is +oo, N0
exception is reported.

If the operand is zero,
ST(1) is zero and no excep-
tion is reported. If the
operand is + oo, the
invalid-operation exception
is reported.

None. Software usually
bypasses zero and co.

IEEE 754 recommendation
to fully support the logb
function.

FLD constant

Rounding control is in
effect.

Rounding control is not in
effect.

Results are the same as
for the 8087/80287 when
rounding control is set to
round to zero, round to
—o0, and (in the case of
FLDL2T) round to nearest.
Results are different by
one in the least significant
bit of the significand in
round to +co and round to
nearest (excluding
FLDL2T). FLD1 and FLDZ
are always the same.

IEEE 754 recommendation.

C-5
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status word.

instructions.

Difference Description Reason
issue I ton for the
80387 Behavior 8087/80287 Behavior Ditterence
FLD single/ Loading a denormal Loading a denormal causes | If the next instruction is |EEE Standard 754
double precision | causes the number to be the number to be converted | FXTRACT or FXAM, the compatibility.
converted to extended to an unnormal. 80387 will give a different
precision (because it is put resuit than the
on the stack). 80287/8087.
FLD single/ When loading a signaling Does not raise an excep- The exception handler |EEE Standard 754
double precision | NaN, raises invalid tion when loading a signal- | need to be updated to compatibility.
exception. ing NaN. handle this condition.
FSETPM Treated as FNOP (no Informs the 80287 that the None. The 80386 handies all
operation). system is in protected addressing and exception-
mode. pointer information,
whether in protected mode
or not.
FXAM When encountering an May generate these combi- | None. Upgrade, to provide
empty register, the 80387 nations, among others. repeatable results.
will not generate combina-
tions of C3-C0 equal to
1101 or 1111,
All Transcenden- | May generate different Round-up bit of status None. Upgrade, to signal round-
tal Instructions results in round-up bit of word is undefined for these ing status.
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APPENDIX D
COMPATIBILITY BETWEEN THE 80387 AND THE 8087

The 80386/80387 operating in real-address mode will execute 8087 programs without major
modification. However, because of differences in the handling of numeric exceptions between
the 80387 NPX and the 8087 NPX, exception-handling routines may need to be changed.

This appendix summarizes the additional differences between the 80387 NPX and the
8087 NPX (other than those already included in Appendix B), and provides details showing
how 8087 programs can be ported to the 80387.

1. The 80387 signals exceptions through a dedicated ERROR# line to the 80386; no inter-
rupt controller is needed for this purpose. The 8087 requires an interrupt controller
(8259A) to interrupt the CPU when an unmasked exception occurs. Therefore, any
interrupt-controller-oriented instructions in numeric exception handlers for the 8087
should be deleted.

2. The 8087 instructions FENI/FNENI and FDISI/FNDISI perform no useful function
in the 80387. If the 80387 encounters one of these opcodes in its instruction stream, the
instruction will effectively be ignored—none of the 80387 internal states will be updated.
While 8087 code containing these instructions may be executed on the 80387, it is
unlikely that the exception-handling routines containing these instructions will be
completely portable to the 80387.

3. Inreal mode and protected mode (not including virtual 8086 mode), interrupt vector 16
must point to the numeric exception handling routine. In virtual 8086 mode, the V86
monitor can be programmed to accommodate a different location of the interrupt vector
for numeric exceptions.

4. The ESC instruction address saved in the 80386/80387 or 80386,/80287 includes any
leading prefixes before the ESC opcode. The corresponding address saved in the
8086/8087 does not include leading prefixes.

5. In protected mode (not including virtual 8086 mode), the format of the 80387’s saved
instruction and address pointers is different than for the 8087. The instruction opcode
is not saved in protected mode—exception handlers will have to retrieve the opcode from
memory if needed.

6. Interrupt 7 will occur in the 80386 when executing ESC instructions with either TS
(task switched) or EM (emulation) of the 80386 MSW set (TS=1or EM=1). If TS is
set, then a WAIT instruction will also cause interrupt 7. An exception handler should
be included in 80387 code to handle these situations.

7. Interrupt 9 will occur if the second or subsequent words of a floating-point operand fall
outside a segment’s size. Interrupt 13 will occur if the starting address of a numeric
operand falls outside a segment’s size. An exception handler should be included to report
these programming errors.
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10.

11.

Except for the processor control instructions, all of the 80387 numeric instructions are
automatically synchronized by the 80386 CPU—the 80386 automatically waits until all
operands have been transferred between the 80386 and the 80387 before executing the
next ESC instruction. No explicit WAIT instructions are required to assure this
synchronization. For the 8087 used with 8086 and 8088 processors, explicit WAITs are
required before each numeric instruction to ensure synchronization. Although 8087
programs having explicit WAIT instructions will execute perfectly on the 80387 without
reassembly, these WAIT instructions are unnecessary.

Since the 80387 does not require WAIT instructions before each numeric instruction,
the ASM386 assembler does not automatically generate these WAIT instructions. The
ASMB86 assembler, however, automatically precedes every ESC instruction with a WAIT
instruction. Although numeric routines generated using the ASM86 assembler will
generally execute correctly on the 80386/20, reassembly using ASM386 may result in
a more compact code image and faster execution.

The processor control instructions for the 80387 may be coded using either a WAIT or
No-WAIT form of mnemonic. The WAIT forms of these instructions cause ASM386
to precede the ESC instruction with a CPU WAIT instruction, in the identical manner
as does ASM86.

The address of a memory operand stored by FSAVE or FSTENYV is undefined if the
previous ESC instruction did not refer to memory.

Because the 80387 automatically normalizes denormal numbers when possible, an 8087
program that uses the denormal exception solely to normalize denormal operands can
run on an 80387 by masking the denormal exception. The 8087 denormal exception
handler would not be used by the 80387 in this case. A numerics program runs faster
when the 80387 performs normalization of denormal operands. A program can detect
at run-time whether it is running on an 80387 or 8087/80287 and disable the denormal
exception when an 80387 is used.

D-2
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1985 for Binary Floating-Point | Built-In Exception Handling
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Performance the 80386
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Bit Integers and 18-Digit BCD Operands (See Packaging Spec: Order #231369)

m Directly Extends 80386 Instruction Set
to Include Trigonometric, Logarithmic,
Exponential and Arithmetic Instructions
for All Data Types

The Intel 80387 is a high-performance numerics processor extension that extends the 80386 architecture with
floating point, extended integer and BCD data types. The 80386/80387 computing system fully conforms to
the ANSI/IEEE floating-point standard. Using a numerics oriented architecture, the 80387 adds over seventy
mnemonics to the 80386/80387 instruction set, making the 80386/80387 a complete solution for high-per-
formance numerics processing. The 80387 is implemented with 1.5 micron, high-speed CHMOS Il technology
and packaged in a 68-pin ceramic pin grid array (PGA) package. The 80386/80387 is upward object-code
compatible from the 80386/80287, 80286/80287 and 8086/8087 computing systems.
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Figure 0.1. 80387 Block Diagram
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80386 Registers I 80387 Data Registers
Tag
GENERAL REGISTERS SEGMENT REGISTERS | Field
31 15 0 5 0 [ 79 78 64 63 0 1 0
EAX AX cs I RO | Sign | Exponent Significand
| AH | AL ss | Al
EBX BX D'S | R2
| BH | BL f I R3
* ES
ECX CcX } | R4
[ cH | cL FS | RS
EDX DX Gs } R6
| oH | oL Y
ESI 31 0 |
| s S | 15 0 47 0
* EIP
EDI t EFLjAGS BE ; Control Register Instruction Pointer (in 80386)
‘ l?l t + —+— | Status Register Data Pointer (in 80386)
EBP | Tag Word
| sp |
' |
ESP |
| sp !
: t |
|
|
l

Figure 1.1. 80386/80387 Register Set

1.0 FUNCTIONAL DESCRIPTION

The 80387 Numeric Processor Extension (NPX) pro-
vides arithmetic instructions for a variety of numeric
data types in 80386/80387 systems. It also exe-
cutes numerous built-in transcendental functions
(e.g. tangent, sine, cosine, and log functions). The
80387 effectively extends the register and instruc-
tion set of an 80386 system for existing data types
and adds several new data types as well. Figure 1.1
shows the model of registers visible to 80386/80387
programs. Essentially, the 80387 can be treated as
an additional resource or an extension to the 80386.
The 80386 together with an 80387 can be used as a
single unified system, the 80386/80387.

The 80387 works the same whether the 80386 is
executing in real-address mode, protected mode, or
virtual-8086 mode. All memory access is handled by
the 80386; the 80387 merely operates on instruc-
tions and values passed to it by the 80386. There-
fore, the 80387 is not sensitive to the processing
mode of the 80386.

In real-address mode and virtual-8086 mode, the
80386/80387 is completely upward compatible with
software for 8086/8087, 80286/80287 real-address
mode, and 80386/80287 real-address mode sys-
tems.

In protected mode, the 80386/80387 is completely
upward compatible with software for 80286/80287
protected mode, and 80386/80287 protected mode
systems.

The only differences of operation that may appear
when 8086/8087 programs are ported to a protect-
ed-mode 80386/80387 system (not using virtual-
8086 mode), is in the format of operands for the
administrative instructions FLDENV, FSTENV,
FRSTOR and FSAVE. These instructions are nor-
mally used only by exception handlers and operating
systems, not by applications programs.

The 80387 contains three functional units that can
operate in parallel to increase system performance.
The 80386 can be transferring commands and data
to the 80387 bus control logic for the next instruction
while the 80387 floating-point unit is performing the
current numeric instruction.
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2.0 PROGRAMMING INTERFACE

The 80387 adds to an 80386 system additional data
types, registers, instructions, and interrupts specifi-
cally designed to facilitate high-speed numerics pro-
cessing. To use the 80387 requires no special pro-
gramming tools, because all new instructions and
data types are directly supported by the 80386 as-
sembler and compilers for high-level languages. All
8086/8088 development tools that support the 8087
can also be used to develop software for the
80386/80387 in real-address mode or virtual-8086
mode. All 80286 development tools that support the
80287 can also be used to develop software for the
80386/80387.

All communication between the 80386 and the
80387 is transparent to applications software. The
CPU automatically controls the 80387 whenever a
numerics instruction is executed. All physical memo-
ry and virtual memory of the CPU are available for
storage of the instructions and operands of pro-
grams that use the 80387. All memory addressing
modes, including use of displacement, base register,
index register, and scaling, are available for address-
ing numerics operands.

Section 6 at the end of this data sheet lists by class
the instructions that the 80387 adds to the instruc-
tion set of an 80386 system.

2.1 Data Types

Table 2.1 lists the seven data types that the 80387
supports and presents the format for each type. Op-
erands are stored in memory with the least signifi-
cant digit at the lowest memory address. Programs
retrieve these values by generating the lowest ad-
dress. For maximum system performance, all oper-
ands should start at physical-memory addresses
evenly divisible by four (doubleword boundaries); op-
erands may begin at any other addresses, but will
require extra memory cycles to access the entire op-
erand.

Internally, the 80387 holds all numbers in the ex-
tended-precision real format. Instructions that load
operands from memory automatically convert oper-
ands represented in memory as 16-, 32-, or 64-bit
integers, 32- or 64-bit floating-point numbers, or 18-
digit packed BCD numbers into extended-precision
real format. Instructions that store operands in mem-
ory perform the inverse type conversion.

2.2 Numeric Operands

A typical NPX instruction accepts one or two oper-
ands and produces a single result. In two-operand
instructions, one operand is the contents of an NPX
register, while the other may be a memory location.
The operands of some instructions are predefined;
for example FSQRT always takes the square root of
the number in the top stack element.
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Table 2.1. 80387 Data Type Representation in Memory

Dat Most Significant Byte HIGHEST ADDRESSED BYTE
ata Range Precision

Formats 7 0|7 0|7 o7 0|7 0|7 o|7 ol7 o|l7 o7 o

Word Integer 10t 16 Bits :j ‘c'S’nﬁ’p?mm,
15 0

Short Integer 10° 32 Bits j CoMPrEMENT)
31 0

Long Integer 10'® 64 Bits J‘c’ggp?.[mem;
63 0

MAGNITUD

Packed BCD 1018 18 Digits S[ la.,ld“,ld‘slu.,ln.“u.,,d.,lumlc,Nlld‘: lEd;lﬂ(,‘Ld«.Ld, (90, 4o 4 1""'

79 72 o

Single Precision | 10738 24 Bits 5| exvonent [ SIGNIFICAND J
3 23R _ N 0
Double Precision | 10°3% | 53 Bits SL P ] SIGNIFICAND ]
6.
3 52X __ N 0
Extended +4932 ) BIASED
Precision 10 64 Bits SL EXPONENT t‘.‘L SIGNIFICAND ]
19 64 631 0

231920-2

NOTES:
(1) S = Sign bit (0 = positive, 1 = negative)
(2) d, = Decimal digit (two per byte)
(3) X = Bits have no significance; 80387 ignores when loading, zeros when storing
(4)A4 = Position of implicit binary point
(5) | = Integer bit of significand; stored in temporary real, implicit in single and double precision
(6) Exponent Bias (normalized values):
Single: 127 (7FH)
Double: 1023 (3FFH)
Extended Real: 16383 (3FFFH)
(7) Packed BCD: (—1)S (D17..Do)
(8) Real: (—1)S (2E-BIAS) (Fg Fy...)
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15

0

TAG (7) | TAG(6) | TAG (5)

TAG() | TAG@®) | TAG (@) | TAG() | TAG ()

NOTE:

field refers to logical top of stack.

The index i of tag(i) is not top-relative. A program typically uses the “top” field of Status Word to determine which tag(i)

TAG VALUES:
00 = Valid
01 = Zero
10 = QNaN, SNaN, Infinity, Denormal and Unsupported Formats
11 = Empty
Figure 2.1. 80387 Tag Word
23 Register Set TOP by one. Like 80386 stacks in memory, the

Figure 1.1 shows the 80387 register set. When an
80387 is present in a system, programmers may use
these registers in addition to the registers normally
available on the 80386.

2.3.1 DATA REGISTERS

80387 computations use the 80387’s data registers.
These eight 80-bit registers provide the equivalent
capacity of twenty 32-bit registers. Each of the eight
data registers in the 80387 is 80 bits wide and is
divided into “fields” corresponding to the NPXs ex-
tended-precision real data type.

The 80387 register set can be accessed either as a
stack, with instructions operating on the top one or
two stack elements, or as a fixed register set, with
instructions operating on explicitly designated regis-
ters. The TOP field in the status word identifies the
current top-of-stack register. A “push” operation
decrements TOP by one and loads a value into the
new top register. A “pop” operation stores the value
from the current top register and then increments

80387 register stack grows “‘down” toward lower-
addressed registers.

Instructions may address the data registers either
implicitly or explicitly. Many instructions operate on
the register at the TOP of the stack. These instruc-
tions implicitly address the register at which TOP
points. Other instructions allow the programmer to
explicitly specify which register to user. This explicit
register addressing is also relative to TOP.

2.3.2 TAG WORD

The tag word marks the content of each numeric
data register, as Figure 2.1 shows. Each two-bit tag
represents one of the eight numerics registers. The
principal function of the tag word is to optimize the
NPXs performance and stack handling by making it
possible to distinguish between empty and nonemp-
ty register locations. It also enables exception han-
dlers to check the contents of a stack location with-
out the need to perform complex decoding of the
actual data.
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80387 BUSY
TOP OF STACK POINTER
CONDITION CODE
15 7 0
8l top clcle]s|pP|lu z|o|1
3 tjols|FlE|EJE]EJE]E

ERROR SUMMARY STATUS
STACK FLAG

EXCEPTION FLAGS:

PRECISION
UNDERFLOW

OVERFLOW

ZERO DIVIDE

DENORMALIZED OPERAND

INVALID OPERATION

See Table 2.2 for interpretation of condition code.
TOP values:
000 = Register 0 is Top of Stack
001 = Register 1 is Top of Stack
L

111 = Register 7 is Top of Stack

“Exception Handling”

ES is set if any unmasked exception bit is set; cleared otherwise.

For definitions of exceptions, refer to the section entitled

231920-3

Figure 2.2. 80387 Status Word

2.3.3 STATUS WORD

The 16-bit status word (in the status register) shown
in Figure 2.2 reflects the overall state of the 80387.
It may be read and inspected by CPU code.

Bit 15, the B-bit (busy bit) is included for 8087 com-
patibility only. It reflects the contents of the ES bit
(bit 7 of the status word), not the status of the
BUSY # output of 80387/80287.

Bits 13-11 (TOP) point to the 80387 register that is
the current top-of-stack.

The four numeric condition code bits (C3—Cgp) are
similar to the flags in a CPU; instructions that per-
form arithmetic operations update these bits to re-
flect the outcome. The effects of these instructions
on the condition code are summarized in Tables 2.2
through 2.5.

Bit 7 is the error summary (ES) status bit. This bit is
set if any unmasked exception bit is set; it is clear
otherwise. If this bit is set, the ERROR# signal is
asserted.

Bit 6 is the stack flag (SF). This bit is used to distin-
guish invalid operations due to stack overflow or un-
derflow from other kinds of invalid operations. When
SF is set, bit 9 (C4) distinguishes between stack
overflow (Cq = 1) and underflow (C; = 0).

Figure 2.2 shows the six exception flags in bits 5-0
of the status word. Bits 5-0 are set to indicate that
the 80387 has detected an exception while execut-
ing an instruction. A later section entitled *“Exception
Handling” explains how they are set and used.

Note that when a new value is loaded into the status
word by the FLDENV or FRSTOR instruction, the
value of ES (bit 7) and its reflection in the B-bit (bit
15) are not derived from the values loaded from
memory but rather are dependent upon the values of
the exception flags (bits 5-0) in the status word and
their corresponding masks in the control word. If ES
is set in such a case, the ERROR# output of the
80387 is activated immediately.
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Table 2.2. Condition Code Interpretation

Instruction CO (S) C3(2) | C1(A) Cc2(C)

FPREM, FPREMH1 Three least significant bits .

. Reduction
(see Table 2.3) of quotient 0 = complete
Q2 Qo Q1 At
or O/U# = incomplete
FCOM, FCOMP,
FCOMPP, FTST, Result of comparison Zero Operand is not
FUCOM, FUCOMP, (see Table 2.4) or O/U# comparable
FUCOMPP, FICOM, (Table 2.4)
FICOMP
FXAM Operand class Sign Operand class
(see Table 2.5) orO/U# (Table 2.5)
FCHS, FABS, FXCH,
FINCTOP, FDECTOP, Zero
Constant loads, UNDEFINED o/ UNDEFINED
FXTRACT, FLD, orO/U#
FILD, FBLD,
FSTP (extreal)
FIST, FBSTP,
FRNDINT, FST,
FSTP, FADD, FMUL, Round
FDIV, FDIVR, UNDEFINED O/UUP UNDEFINED
FSUB, FSUBR, oro/U#
FSCALE, FSQRT,
FPATAN, F2XM1,
FYL2X, FYL2XP1
FPTAN, FSIN Roundup Reduction
FCOS, FSINCOS UNDEFINED or O/U#, 0 = complete
undefined 1 = incomplete
ifC2 =1
FLDENV, FRSTOR Each bit loaded from memory
FLDCW, FSTENV,
FSTCW, FSTSW, UNDEFINED
FCLEX, FINIT,
FSAVE

O/U# When both IE and SF bits of status word are set, indicating a stack exception, this bit
distinguishes between stack overflow (C1 = 1) and underflow (C1 = 0).

Reduction If FPREM or FPREM1 produces a remainder that is less than the modulus, reduction is
complete. When reduction is incomplete the value at the top of the stack is a partial
remainder, which can be used as input to further reduction. For FPTAN, FSIN, FCOS, and
FSINCOS, the reduction bit is set if the operand at the top of the stack is too large. In this
case the original operand remains at the top of the stack.

Roundup When the PE bit of the status word is set, this bit indicates whether the last rounding in the
instruction was upward.

UNDEFINED Do not rely on finding any specific value in these bits.
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Table 2.3. Condition Code Interpretation after FPREM and FPREM1 Instructions

Condition Code Interpretation after FPREM and FPREM1
Cc2 C3 C1 co
Incomplete Reduction:
1 X X X further interation required
for complete reduction
Qi Qo Q2 Q MOD8
0 0 0 0
9 (1) g ;_ Complete Reduction:
0 1’ » o 3 C0, C3, C1 contain three least
0 0 1 4 significant bits of quotient
0 1 1 5
1 0 1 6
1 1 1 7

Table 2.4. Condition Code Resulting from Comparison

Order C3 C2 co
TOP > Operand 0 0 0
TOP < Operand 0 0 1
TOP = Operand 1 0 0
Unordered 1 1 1
Table 2.5. Condition Code Defining Operand Class
Cc3 C2 Ct Co Value at TOP
0 0 0 0 + Unsupported
0 0 0 1 + NaN
0 0 1 0 — Unsupported
0 0 1 1 — NaN
0 1 0 0 + Normal
0 1 0 1 + Infinity
0 1 1 0 — Normal
0 1 1 1 — Infinity
1 0 0 0 +0
1 0 0 1 + Empty
1 0 1 0 -0
1 0 1 1 — Empty
1 1 0 0 + Denormal
1 1 1 0 — Denormal

10
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2.3.4 INSTRUCTION AND DATA POINTERS

Because the NPX operates in parallel with the CPU,
any errors detected by the NPX may be reported
after the CPU has executed the ESC instruction
which caused it. To allow identification of the failing
numeric instruction, the 80386/80387 contains two
pointer registers that supply the address of the fail-
ing numeric instruction and the address of its numer-
ic memory operand (if appropriate).

The instruction and data pointers are provided for
user-written error handlers. These registers are ac-
tually located in the 80386, but appear to be located
in the 80387 because they are accessed by the ESC
instructions FLDENV, FSTENV, FSAVE, and
FRSTOR. (In the 8086/8087 and 80286/80287,
these registers are located in the NPX.) Whenever
the 80386 decodes a new ESC instruction, it saves

the address of the instruction (including any prefixes
that may be present), the address of the operand (if
present), and the opcode.

The instruction and data pointers appear in one of
four formats depending on the operating mode of
the 80386 (protected mode or real-address mode)
and depending on the operand-size attribute in ef-
fect (32-bit operand or 16-bit operand). When the
80386 is in virtual-8086 mode, the real-address
mode formats are used. (See Figures 2.3 through
2.6.) The ESC instructions FLDENV, FSTENV,
FSAVE, and FRSTOR are used to transfer these val-
ues between the 80386 registers and memory. Note
that the value of the data pointer is undefined if the
prior ESC instruction did not have a memory oper-
and.

32-BIT PROTECTED MODE FORMAT
31 23 15 7 0

- -
RESERVED CONTROL WORD 0

+ :
RESERVED STATUS WORD 4

| !

T T
RESERVED TAG WORD 8

—~+ —i
IP OFFSET C

| ]

T T
RESERVED CS SELECTOR 10

1 I

T T
DATA OPERAND OFFSET 14

| Il

T T
RESERVED OPERAND SELECTOR 18

| Il

T T

Figure 2.3. Protected Mode 80387 Instruction and Data Pointer Image in Memory, 32-Bit Format

11
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32-BIT REAL-ADDRESS MODE FORMAT
31 l23 15 I7 0
RESEIRVED CONTROL WORD 0
1
RESERVED STATUS WORD 4
) 4
RESEIRVED TAG VIVORD 8
RESE{RVED INSTRUCTlON'POINTER 15..0 C
0000 |NSTRL{CTION POINTER 31..16 0 OP(?ODE 10..0 10
RESEIRVED OPERAND PPINTEF{ 15..0 14
0000 OPEF(LANDPOINTER31..16 0000 | 00000000 18
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Figure 2.5. Protected Mode 80387
Instruction and Data Pointer
Image in Memory, 16-Bit Format
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Figure 2.6. Real Mode 80387
Instruction and Data Pointer
Image in Memory, 16-Bit Format
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Precision Control
00—24 bits (single precision)
01—(reserved)
10—53 bits (doubie precision)
11—64 bits (extended precision)

231920-4
Rounding Control
00—Round to nearest or even
01—Round down (toward — o)
10—Round up (toward + )
11—Chop (truncate toward zero)

Figure 2.7. 80387 Control Word

2.3.5 CONTROL WORD

The NPX provides several processing options that
are selected by loading a control word from memory
into the control register. Figure 2.7 shows the format
and encoding of fieids in the control word.

The low-order byte of this control word configures
the 80387 error and exception masking. Bits 5-0 of
the control word contain individual masks for each of
the six exceptions that the 80387 recognizes.

The high-order byte of the control word configures
the 80387 operating mode, including precision and
rounding.

* Bit 12 no longer defines infinity control and is a
reserved bit. Only affine closure is supported for
infinity arithmetic. The bit is initialized to zero after
RESET or FINIT and is changeable upon loading
the CW. Programs must ignore this bit.

e The rounding control (RC) bits (bits 11-10) pro-
vide for directed rounding and true chop, as well
as the unbiased round to nearest even mode
specified in the IEEE standard. Rounding control
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affects only those instructions that perform
rounding at the end of the operation (and thus
can generate a precision exception); namely,
FST, FSTP, FIST, all arithmetic instructions (ex-
cept FPREM, FPREM1, FXTRACT, FABS, and
FCHS), and all transcendental instructions.

e The precision control (PC) bits (bits 9-8) can be
used to set the 80387 internal operating precision
of the significand at less than the default of 64
bits (extended precision). This can be useful in
providing compatibility with early generation arith-
metic processors of smaller precision. PC affects
only the instructions ADD, SUB, DIV, MUL, and
SQRT. For all other instructions, either the preci-
sion is determined by the opcode or extended
precision is used.

2.4 Interrupt Description

Several interrupts of the 80386 are used to report
exceptional conditions while executing numeric pro-
grams in either real or protected mode. Table 2.6
shows these interrupts and their causes.
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Table 2.6. 80386 Interrupt Vectors Reserved for NPX

Interrupt
Number

Cause of Interrupt

7

An ESC instruction was encountered when EM or TS of 80386 control register zero (CRO)
was set. EM = 1 indicates that software emulation of the instruction is required. When TS
is set, either an ESC or WAIT instruction causes interrupt 7. This indicates that the current
NPX context may not belong to the current task.

An operand of a coprocessor instruction wrapped around an addressing limit (OFFFFH for
small segments, OFFFFFFFFH for big segments, zero for expand-down segments) and
spanned inaccessible addresses?. The failing numerics instruction is not restartable. The
address of the failing numerics instruction and data operand may be lost; an FSTENV does

not return reliable addresses. As with the 80286/80287, the segment overrun exception
should be handled by executing an FNINIT instruction (i.e. an FINIT without a preceding
WAIT). The return address on the stack does not necessarily point to the failing instruction
nor to the following instruction. The interrupt can be avoided by never allowing numeric
data to start within 108 bytes of the end of a segment.

13 The first word or doubleword of a numeric operand is not entirely within the limit of its
segment. The return address pushed onto the stack of the exception handler points at the
ESC instruction that caused the exception, including any prefixes. The 80387 has not
executed this instruction; the instruction pointer and data pointer register refer to a
previous, correctly executed instruction.

cannot cause this interrupt.

16 The previous numerics instruction caused an unmasked exception. The address of the
faulty instruction and the address of its operand are stored in the instruction pointer and
data pointer registers. Only ESC and WAIT instructions can cause this interrupt. The
80386 return address pushed onto the stack of the exception handler points to a WAIT or
ESC instruction (including prefixes). This instruction can be restarted after clearing the
exception condition in the NPX. FNINIT, FNCLEX, FNSTSW, FNSTENV, and FNSAVE

a. An operand may wrap around an addressing limit when the segment limit is near an addressing limit and the operand is near the largest valid
address in the segment. Because of the wrap-around, the beginning and ending addresses of such an operand will be at opposite ends of the
segment. There are two ways that such an operand may also span inaccessible addresses: 1) if the segment limit is not equal to the addressing
limit (e.g. addressing limit is FFFFH and segment limit is FFFDH) the operand will span addresses that are not within the segment (e.g. an 8-byte
operand that starts at valid offset FFFC will span addresses FFFC-FFFF and 0000-0003; however addresses FFFE and FFFF are not valid,
because they exceed the limit); 2) if the operand begins and ends in present and accessible pages but intermediate bytes of the operand fall in a
not-present page or a page to which the procedure does not have access rights.

2.5 Exception Handling

The 80387 detects six different exception conditions
that can occur during instruction execution. Table
2.7 lists the exception conditions in order of prece-
dence, showing for each the cause and the default
action taken by the 80387 if the exception is masked
by its corresponding mask bit in the control word.

Any exception that is not masked by the control
word sets the corresponding exception flag of the
status word, sets the ES bit of the status word, and
asserts the ERROR# signal. When the CPU
attempts to execute another ESC instruction or
WAIT, exception 16 occurs. The exception condi-
tion must be resolved via an interrupt service
routine. The 80386/80387 saves the address of the
floating-point instruction that caused the exception
and the address of any memory operand required
by that instruction.
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2.6 Initialization

80387 initialization software must execute an FNIN-
IT instruction (i.e. an FINIT without a preceding
WAIT) to clear ERROR#. The FNINIT is not re-
quired for the 80287, though intel documentation
recommends its use (refer to the Numerics Supple-
ment to the /APX 286 Programmer’s Reference
Manual). After a hardware RESET, the ERROR#
output is asserted to indicate that an 80387 is pres-
ent. To accomplish this, the IE and ES bits of the
status word are set, and the IM bit in the control
word is reset. After FNINIT, the status word and the
control word have the same values as in an 80287
after RESET.

|
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2.7 8087 and 80287 Compatibility

This section summarizes the differences between
the 80387 and the 80287. Any migration from the
8087 directly to the 80387 must also take into ac-
count the differences between the 8087 and the
80287 as listed in Appendix A.

Many changes have been designed into the 80387
to directly support the IEEE standard in hardware.
These changes result in increased performance by
eliminating the need for software that supports the
standard.

2.7.1 GENERAL DIFFERENCES

The 80387 supports only affine closure for infinity
arithmetic, not projective closure. Bit 12 of the Con-
trol Word (CW) no longer defines infinity control. It is
a reserved bit; but it is initialized to zero after RESET
or FINIT and is changeable upon loading the CW.
Programs must ignore this bit.

Operands for FSCALE and FPATAN are no longer
restricted in range (except for *+ ); F2XM1 and
FPTAN accept a wider range of operands.

The resuits of transcendental operations may be
slightly different from those computed by 80287.

In the case of FPTAN, the 80387 supplies a true
tangent result in ST(1), and (always) a floating point
1in ST.

Rounding control is in effect for FLD constant.

Software cannot change entries of the tag word to
values (other than empty) that do not reflect the ac-
tual register contents.

After reset, FINIT, and incomplete FPREM, the
80387 resets to zero the condition code bits C3-Cq
of the status word.

In conformance with the IEEE standard, the 80387
does not support the special data formats: pseu-
dozero, pseudo-NaN, pseudoinfinity, and unnormal.

Table 2.7. Exceptions

Exception Cause Default Action
P (if exception is masked)

Invalid Operation on a signaling NaN, unsupported format, Result is a quiet NaN, integer

Operation indeterminate form (0* o, 0/0, (+ ) + (— o°), etc.), or indefinite, or BCD indefinite
stack overflow/underflow (SF is also set).

Denormalized | At least one of the operands is denormalized, i.e. it has Normal processing

Operand the smallest exponent but a nonzero significand. continues

Zero Divisor The divisor is zero while the dividend is a noninfinite, Resultis
nonzero number.

Overflow The result is too large in magnitude to fit in the specified Result is largest finite value
format. or ©

Underflow The true result is nonzero but too small to be Result is denormalized or
represented in the specified format, and, if underflow zero
exception is masked, denormalization causes loss of
accuracy.

Inexact The true result is not exactly representable in the Normal processing

Result specified format (e.g. 1/3); the result is rounded continues

(Precision) according to the rounding mode.

15
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2.7.2 EXCEPTIONS

When the overflow or underflow exception is
masked, one difference from the 80287 is in round-
ing when overflow or underfiow occurs. The 80387
produces results that are consistent with the round-
ing mode. The other difference is that the 80387
sets its underflow flag only if there is also a loss of
accuracy during denormalization.

A number of differences exist due to changes in the
IEEE standard and to functional improvements to
the architecture of the 80387:

1. Fewer invalid-operation exceptions due to denor-
mal operands, because the instructions FSQRT,
FDIV, FPREM and conversions to BCD or to inte-
ger normalize denormal operands before pro-
ceeding.

2. The FSQRT, FBSTP, and FPREM instructions
may cause underflow, because they support de-
normal operands.

3. The denormal exception can occur during the
transcendental instructions and the FXTRACT in-
struction.

4. The denormal exception no longer takes prece-
dence over all other exceptions.

5. When the operand is zero, the FXTRACT instruc-
tion reports a zero-divide exception and leaves
— oo in ST(1).

6. The status word has a new bit (SF) that signals
when invalid-operation exceptions are due to
stack underflow or overflow.

7. FLD extended precision no longer reports denor-
mal exceptions, because the instruction is not nu-
meric.

8. FLD single/double precision when the operand is
denormal converts the number to extended preci-
sion and signals the denormalized operand ex-
ception. When loading a signaling NaN, FLD
single/double precision signals an invalid-opera-
tion exception.

9. The 80387 only generates quiet NaNs (as on the
80287); however, the 80387 distinguishes be-
tween quiet NaNs and signaling NaNs. Signaling
NaNs trigger exceptions when they are used as
operands; quiet NaNs do not (except for FCOM,
FIST, and FBSTP which also raise IE for quiet
NaNs).

3.0 HARDWARE INTERFACE

In the following description of hardware interface,
the # symbol at the end of a signal name indicates
that the active or asserted state occurs when the
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signal is at a low voltage. When no # is present after
the signal name, the signal is asserted when at the
high voltage level.

3.1 Signal Description
In the following signal descriptions, the 80387 pins
are grouped by function as follows:

1. Execution control—386CLK2, 387CLK2, CKM,
RESETIN

2. NPX handshake—PEREQ, BUSY #, ERROR #

3. Bus interface pins—D31-D0, W/R#, ADS#,
READY #, READYO #

4. Chip/Port  Select—STEN,
CMDO #

5. Power supplies—Vc¢c, Vss

NPS1#, NPS2,

Table 3.1 lists every pin by its identifier, gives a brief
description of its function, and lists some of its char-
acteristics. All output signals are tristate; they leave
floating state only when STEN is active. The output
buffers of the bidirectional data pins D31-D0 are
also tristate; they leave floating state only in read
cycles when the 80387 is selected (i.e. when STEN,
NPS1#, and NPS2 are all active).

Figure 3.1 and Table 3.2 together show the location
of every pin in the pin grid array.

3.1.1 80386 CLOCK 2 (386CLK2)

This input uses the 80386 CLK2 signal to time the
bus control logic. Several other 80387 signals are
referenced to the rising edge of this signal. When
CKM = 1 (synchronous mode) this pin also clocks
the data interface and control unit and the floating-
point unit of the 80387. This pin requires MOS-level
input. The signal on this pin is divided by two to pro-
duce the internal clock signal CLK.

3.1.2 80387 CLOCK 2 (387CLK2)

When CKM = 0 (asynchronous mode) this pin pro-
vides the clock for the data interface and control unit
and the floating-point unit of the 80387. In this case,
the ratio of the frequency of 387CLK2 to the fre-
quency of 386CLK2 must lie within the range 10:16
to 16:10. When CKM = 1 (synchronous mode) this
pin is ignored; 386CLK2 is used instead for the data
interface and control unit and the floating-point unit.
This pin requires TTL-level input.
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Table 3.1. 80387 Pin Summary

Pin Function Active Input/ Referenced
Name State Output To
386CLK2 80386 CLocK 2 |
387CLK2 80387 CLocK 2 |
CKM 80387 CLocKing Mode 1
RESETIN System reset High | 386CLK2
PEREQ Processor Extension High (0] 386CLK2/STEN
REQuest
BUSY # Busy status Low (0] 386CLK2/STEN
ERROR # Error status Low O 387CLK2/STEN
D31-D0 Data pins High 170 386CLK2
W/R# Write/Read bus cycle Hi/Lo | 386CLK2
ADS# ADdress Strobe Low | 386CLK2
READY # Bus ready input Low | 386CLK2
READYO # Ready output Low (0] 386CLK2/STEN
STEN STatus ENable High | 386CLK2
NPS1# NPX select #1 Low | 386CLK2
NPS2 NPX select #2 High | 386CLK2
CMDO # CoMmanD Low | 386CLK2
Veo |
Vss I
NOTE:
STEN is referenced to only when getting the output pins into or out of tristate mode.
Table 3.2. 80387 Pin Cross-Reference
A2 D9 C11 — Vss J10 — Vss
A3 D11 D1 — D5 J11 — CKM
A4 D12 D2 — D4 K1 — PEREQ
A5 D14 D10 — D24 K2 — BUSY #
A6 Voo D11 — D25 K3 — Tie High
A7 D16 E1 — Vee K5 — W/R#
A8 D18 E2 — Vss K5 — Vee
A9 Veo E10 — D26 K6 — NPS2
A10 D21 E11 — D27 K7 — ADS #
B1 D8 F1 — Veoe K8 — READY #
B2 Vss F2 — Vss K9 —  No Connect
B3 D10 F10 — Vee K10 — 386CLK2
B4 Vee F11 — Vss K11 — 387CLK2
B5 D13 G1 — D3 L2 — ERROR #
B6 D15 G2 — D2 L3 — READYO #
B7 Vss G10 — D28 L4 — STEN
B8 D17 G11 — D29 L5 — Vss
B9 D19 H1 — D1 L6 — NPS1#
B10 D20 H2 — DO L7 — Voo
B11 D22 H10 — D30 L8 — CMDO #
(03] D7 H11 — D31 L9 — Tie High
c2 D6 J1 — Vss L10 — RESETIN
C10 D23 J2 — Veo

17
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Figure 3.1. 80387 Pin Configuration

3.1.3 80387 CLOCKING MODE (CKM)

This pin is a strapping option. When it is strapped to
Vce, the 80387 operates in synchronous mode;
when strapped to Vgg, the 80387 operates in asyn-
chronous mode. These modes relate to clocking of
the data interface and control unit and the floating-
point unit only; the bus control logic always operates
synchronously with respect to the 80386.

3.1.4 SYSTEM RESET (RESETIN)

A LOW to HIGH transition on this pin causes the
80387 to terminate its present activity and to enter
a dormant state. RESETIN must remain HIGH for
at least 40 387CLK2 periods. The HIGH to LOW
transitions of RESETIN must be synchronous with
386CLK2, so that the phase of the internal clock of
the bus control logic (which is the 386CLK2 divided
by 2) is the same as the phase of the internal clock
of the 80386. After RESETIN goes LOW, at least 50
387CLK2 periods must pass before the first NPX
instruction is written into the 80387. This pin should
be connected to the 80386 RESET pin. Table 3.3
shows the status of other pins after a reset.

Table 3.3. Output Pin Status during Reset

Pin Value Pin Name
HIGH READYO#, BUSY #
LOW PEREQ, ERROR#

Tri-State OFF D31-DO

3.1.5 PROCESSOR EXTENSION REQUEST
(PEREQ)

When active, this pin signals to the 80386 CPU that
the 80387 is ready for data transfer to/from its data
FIFO. When all data is written to or read from the
data FIFO, PEREQ is deactivated. This signal al-
ways goes inactive before BUSY# goes inactive.
This signal is referenced to 386CLK2. It should be
connected to the 80386 PEREQ input. Refer to Fig-
ure 3.7 for the timing relationships between this and
the BUSY # and ERROR# pins.

3.1.6 BUSY STATUS (BUSY #)

When active, this pin signals to the 80386 CPU that
the 80387 is currenily executing an instruction. This
signal is referenced to 386CLK2. It should be con-
nected to the 80386 BUSY # pin. Refer to Figure 3.7
for the timing relationships between this and the
PEREQ and ERROR # pins.

3.1.7 ERROR STATUS (ERROR #)

This pin reflects the ES bits of the status register.
When active, it indicates that an unmasked excep-
tion has occurred (except that, immediately after a
reset, it indicates to the 80386 that an 80387 is pres-
ent in the system). This signal can be changed to
inactive state only by the following instructions (with-
out a preceding WAIT): FNINIT, FNCLEX,
FNSTENV, and FNSAVE. This signal is referenced
to 387CLK2. It should be connected to the 80386
ERROR # pin. Refer to Figure 3.7 for the timing rela-
tionships between this and the PEREQ and BUSY #
pins.

3.1.8 DATA PINS (D31-D0)

These bidirectional pins are used to transfer data
and opcodes between the 80386 and 80387. They
are normally connected directly to the correspond-
ing 80386 data pins. HIGH state indicates a value of
one. DO is the least significant data bit. Timings are
referenced to 386CLK2.

3.1.9 WRITE/READ BUS CYCLE (W/R#)

This signal indicates to the 80387 whether the
80386 bus cycle in progress is a read or a write cy-
cle. This pin should be connected directly to the
80386 W/R# pin. HIGH indicates a write cycle;
LOW, a read cycle. This input is ignored if any of the
signals STEN, NPS1#, or NPS2 is inactive. Setup
and hold times are referenced to 386CLK2.
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3.1.10 ADDRESS STROBE (ADS #)

This input, in conjunction with the READY # input
indicates when the 80387 bus-control logic may
sample W/R# and the chip-select signals. Setup
and hold times are referenced to 386CLK2. This pin
should be connected to the 80386 ADS # pin.

3.1.11 BUS READY INPUT (READY #)

This input indicates to the 80387 when an 80386
bus cycle is to be terminated. It is used by the bus-
control logic to trace bus activities. Bus cycles can
be extended indefinitely until terminated by
READY #. This input should be connected to the
same signal that drives the 80386 READ# input.
Setup and hold times are referenced to 386CLK2.

3.1.12 READY OUTPUT (READYO #)

This pin is activated at such a time that write cycles
are terminated after two clocks and read cycles after
three clocks. In configurations where no extra wait
states are required, it can be used to directly drive
the 80386 READY # input. Refer to section 3.4 “Bus
Operation” for details. This pin is activated only dur-
ing bus cycles that select the 80387. This signal is
referenced to 386CLK2.

3.1.13 STATUS ENABLE (STEN)

This pin serves as a chip select for the 80387. When
inactive, this pin forces BUSY #, PEREQ, ERROR #,
and READYO# outputs into floating state. D31-D0
are normally floating and leave floating state only if
STEN is active and additional conditions are met.
STEN also causes the chip to recognize its other
chip-select inputs. STEN makes it easier to do on-
board testing (using the overdrive method) of other
chips in systems containing the 80387. STEN should
be pulled up with a resistor so that it can be pulled
down when testing. In boards that do not use on-
board testing, STEN should be connected to Vgg.
Setup and hold times are relative to 386CLK2. Note
that STEN must maintain the same setup and hold
times as NPS1#, NPS2, and CMDO# (i.e. if STEN
changes state during an 80387 bus cycle, it should
change state during the same CLK period as the
NPS1#, NPS2, and CMDO# signals).

3.1.14 NPX Select #1 (NPS1#)

When active (along with STEN and NPS2) in the first
period of an 80386 bus cycle, this signal indicates
that the purpose of the bus cycle is to communicate
with the 80387. This pin should be connected direct-
ly to the 80386 M/IO# pin, so that the 80387 is
selected only when the 80386 performs 1/0 cycles.
Setup and hold times are referenced to 386CLK2.
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3.1.15 NPX SELECT #2 (NPS2)

When active (along with STEN and NP&1#) in the
first period of an 80386 bus cycle, this signal indi-
cates that the purpose of the bus cycle is to commu-
nicate with the 80387. This pin should be connected
directly to the 80386 A31 pin, so that the 80387 is
selected only when the 80386 uses one of the 1/0
addresses reserved for the 80387 (800000F8 or
800000FC). Setup and hold times are referenced to
386CLK2.

3.1.16 COMMAND (CMDO #)

During a write cycle, this signal indicates whether an
opcode (CMDO# active) or data (CMDO# inactive)
is being sent to the 80387. During a read cycle, it
indicates whether the control or status register
(CMDO # active) or a data register (CMDO # inactive)
is being read. CMDO# should be connected directly
to the A2 output of the 80386. Setup and hold times
are referenced to 386CLK2.

3.2 Processor Architecture

As shown by the block diagram on the front page,
the NPX is internally divided into three sections: the
bus control logic (BCL), the data interface and con-
trol unit, and the floating point unit (FPU). The FPU
(with the support of the control unit which contains
the sequencer and other support units) executes all
numerics instructions. The data interface and control
unit is responsible for the data flow to and from the
FPU and the control registers, for receiving the in-
structions, decoding them, and sequencing the mi-
croinstructions, and for handling some of the admin-
istrative instructions. The BCL is responsible for
80386 bus tracking and interface. The BCL is the
only unit in the 80387 that must run synchronously
with the 80386; the rest of the 80387 can run asyn-
chronously with respect to the 80386.

3.2.1 BUS CONTROL LOGIC

The BCL communicates solely with the CPU using
170 bus cycles. The BCL appears to the CPU as a
special peripheral device. It is special in two re-
spects: the CPU initiates 1/0 automatically when it
encounters ESC instructions, and the CPU uses re-
served I/0 addresses to communicate with the BCL.
The BCL does not communicate directly with memo-
ry. The CPU performs all memory access, transfer-
ring input operands from memory to the 80387 and
transferring outputs from the 80387 to memory.
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3.2.2 DATA INTERFACE AND CONTROL UNIT

The data interface and control unit latches the data
and, subject to BCL control, directs the data to the
FIFO or the instruction decoder. The instruction de-
coder decodes the ESC instructions sent to it by the
CPU and generates controls that direct the data flow
in the FIFO. It also triggers the microinstruction se-
quencer that controls execution of each instruction.
If the ESC instruction is FINIT, FCLEX, FSTSW,
FSTSW AX, or FSTCW, the control executes it inde-
pendently of the FPU and the sequencer. The data
interface and control unit is the one that generates
the BUSY #, PEREQ and ERROR # signals that syn-
chronize 80387 activities with the 80386. It also sup-
ports the FPU in all operations that it cannot perform
alone (e.g. exceptions handling, transcendental op-
erations, etc.).

3.2.3 FLOATING POINT UNIT

The FPU executes all instructions that involve the
register stack, including arithmetic, logical, transcen-

dental, constant, and data transfer instructions. The
data path in the FPU is 84 bits wide (68 significant
bits, 15 exponent bits, and a sign bit) which allows
internal operand transfers to be performed at very
high speeds.

3.3 System Configuration

As an extension to the 80386, the 80387 can be
connected to the CPU as shown by Figure 3.2. A
dedicated communication protocol makes possible
high-speed transfer of opcodes and operands be-
tween the 80386 and 80387. The 80387 is designed
so that no additional components are required for
interface with the 80386. The 80387 shares the 32-
bit wide local bus of the 80386 and most control pins
of the 80387 are connected directly to pins of the
80386.

32MHz CLOCK GENERATOR FROM OTHER PERIPHERALS
Vil -
S—] CKM
X1 X2 EFI F/C# ’
80387 CLOCK +
ADSO# —> GENERATOR »] 387 CLK2
(OPTIONAL)
80384
| RES# CLK2 f—> » 386 CLK2
CLK |—»
ADS#
RESET > »| RESETIN
»{ READY#
a
< WAIT STATE
‘_4
GENERATOR |
(oPTIONAL) [¢ READYO#
HLDA 80387
> RESET D/c# >
——p] READY# Lock# |
»| CLK2  BE3#-BEO# >
BS16# M/10# NPS1#
—> NA# A31 NPS2
—»{ HOLD A30-A3 >
—>|{INTR 80386 A2 CMDO#
—>{ NMI W/R# W/R#
ADS# | P ADS# STEN
D31-D0 [« 32 #{ D31-D0
BUSY# [« BUSY#
ERROR# [« ERROR#
PEREQ PEREQ
231920-6

Figure 3.2. 30386/80387 System Configuration
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Table 3.4. Bus Cycles Definition

STEN NPS1# NPS2 CMDO # W/R# Bus Cycle Type
0 X X X X 80387 not selected and all
outputs in floating state
1 1 X X X 80387 not selected
1 X 0 X X 80387 not selected
1 0 1 0 0 CW or SW read from 80387
1 0 1 0 1 Opcode write to 80387
1 0 1 1 0 Data read from 80387
1 0 1 1 1 Data write to 80387

3.3.1 BUS CYCLE TRACKING

The ADS# and READY # signals allow the 80387 to
track the beginning and end of 80386 bus cycles,
respectively. When ADS# is asserted at the same
time as the 80387 chip-select inputs, the bus cycle is
intended for the 80387. To signal the end of a bus
cycle for the 80387, READY # may be asserted di-
rectly or indirectly by the 80387 or by other bus-con-
trol logic. Refer to Table 3.4 for definition of the
types of 80387 bus cycles.

3.3.2 80387 ADDRESSING

The NPS1#, NPS2 and STEN signals allow the NPX
to identify which bus cycles are intended for the
NPX. The NPX responds only to I/0 cycles when bit
31 of the I/0 address is set. In other words, the NPX
acts as an I/0O device in a reserved I/0O address
space.

Because Agzq is used to select the 80387 for data
transfers, it is not possible for a program running on
the 80386 to address the 80387 with an I/O instruc-
tion. Only ESC instructions cause the 80386 to com-
municate with the 80387. The 80386 BS16# input
must be inactive during I/0 cycles when Agq is ac-
tive.

3.3.3 FUNCTION SELECT

The CMDO# and W/R# signals identify the four
kinds of bus cycle: control or status register read,
data read, opcode write, data write.

3.3.4 CPU/NPX Synchronization

The pin pairs BUSY #, PEREQ, and ERROR# are
used for various aspects of synchronization between
the CPU and the NPX.

BUSY # is used to synchronize instruction transfer
from the 80386 to the 80387. When the 80387 rec-
ognizes an ESC instruction, it asserts BUSY #. For
most ESC instructions, the 80386 waits for the
80387 to deassert BUSY # before sending the new
opcode.
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The NPX uses the PEREQ pin of the 80386 CPU to
signal that the NPX is ready for data transfer to or
from its data FIFO. The NPX does not directly ac-
cess memory; rather, the 80386 provides memory
access services for the NPX. Thus, memory access
on behalf of the NPX always obeys the rules applica-
ble to the mode of the 80386, whether the 80386 be
in real-address mode or protected mode.

Once the 80386 initiates an 80387 instruction that
has operands, the 80386 waits for PEREQ signals
that indicate when the 80387 is ready for operand
transfer. Once all operands have been transferred
(or if the instruction has no operands) the 80386
continues program execution while the 80387 exe-
cutes the ESC instruction.

In 8086/8087 systems, WAIT instructions may be
required to achieve synchronization of both com-
mands and operands. In 80286/80287 and
80386/80387 systems, WAIT instructions are re-
quired only for operand synchronization; namely, af-
ter NPX stores to memory (except FSTSW and
FSTCW) or loads from memory. Used this way,
WAIT ensures that the value has already been writ-
ten or read by the NPX before the CPU reads or
changes the value.

Once it has started to execute a numerics instruction
and has transferred the operands from the 80386,
the 80387 can process the instruction in parallel with
and independent of the host CPU. When the NPX
detects an exception, it asserts the ERROR # signal,
which causes an 80386 interrupt.

3.3.5 SYNCHRONOUS OR ASYNCHRONOUS
MODES

The internal logic of the 80387 (the FPU) can either
operate directly from the CPU clock (synchronous
mode) or from a separate clock (asynchronous
mode). The two configurations are distinguished by
the CKM pin. In either case, the bus control logic
(BCL) of the 80387 is synchronized with the CPU
clock. Use of asynchronous mode allows the 80386
and the FPU section of the 80387 to run at different
speeds. In this case, the ratio of the frequency of
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387CLK2 to the frequency of 386CLK2 must lie with-
in the range 10:16 to 16:10. Use of synchronous
mode eliminates one clock generator from the board
design.

3.3.6 AUTOMATIC BUS CYCLE TERMINATION

In configurations where no extra wait states are re-
quired, READYO# can be used to drive the 80386
READY # input. If this pin is used, it should be con-
nected to the logic that ORs all READY outputs from
peripherals on the 80386 bus. READYO# is assert-
ed by the 80387 only during 1/0 cycles that select
the 80387. Refer to section 3.4 “Bus Operation” for
details.

3.4 Bus Operation

With respect to the bus interface, the 80387 is fully
synchronous with the 80386. Both operate at the
same rate, because each generates its internal CLK
signal by dividing 386CLK2 by two.

The 80386 initiates a new bus cycle by activating
ADS #. The 80387 recognizes a bus cycle, if, during
the cycle in which ADS# is activated, STEN,
NPS1+#, and NPS2 are all activated. Proper opera-
tion is achieved if NPS1# is connected to the
M/IO# output of the 80386, and NPS2 to the A31
output. The 80386’s A31 output is guaranteed to be
inactive in all bus cycles that do not address the
80387 (i.e. 170 cycles to other devices, interrupt ac-
knowledge, and reserved types of bus cycles). Sys-
tem logic must not signal a 16-bit bus cycle via the
80386 BS16# input during 1/0 cycles when A31 is
active.

During the CLK period in which ADS# is activated,
the 80387 also examines the W/R# input signal to
determine whether the cycle is a read or a write cy-
cle and examines the CMDO# input to determine
whether an opcode, operand, or control/status reg-
ister transfer is to occur.

The 80387 supports both pipelined and nonpipe-
lined bus cycles. A nonpipelined cycle is one for
which the 80386 asserts ADS# when no other
80387 bus cycle is in progress. A pipelined bus cycle
is one for which the 80386 asserts ADS# and pro-
vides valid next-address and control signals as soon
as in the second CLK period after the ADS# asser-
tion for the previous 80386 bus cycle. Pipelining in-
creases the availability of the bus by at least one
CLK period. The 80387 supports pipelined bus cy-
cles in order to optimize address pipelining by the
80386 for memory cycles.
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Bus operation is described in terms of an abstract
state machine. Figure 3.3 illustrates the states and
state transitions for 80387 bus cycles:

e T, is the idle state. This is the state of the bus
logic after RESET, the state to which bus logic
returns after evey nonpipelined bus cycle, and
the state to which bus logic returns after a series
of pipelined cycles.

* Trs is the READY# sensitive state. Different
types of bus cycle may require a minimum of one
or two successive Trg states. The bus logic re-
mains in Trg state until READY # is sensed, at
which point the bus cycle terminates. Any number
of wait states may be implemented by delaying
READY #, thereby causing additional successive
TRs states.

e Tpis the first state for every pipelined bus cycle.

The READYO# output of the 80387 indicates when
a bus cycle for the 80387 may be terminated if no
extra wait states are required. For all write cycles
(except those for the instructions FLDENV and
FRSTOR), READYO# is always asserted in the first
Trs state, regardiess of the number of wait states.
For all read cycles and write cycles for FLDENV and
FRSTOR, READYO# is always asserted in the sec-
ond TRrgs state, regardless of the number of wait
states. These rules apply to both pipelined and non-
pipelined cycles. Systems designers may use
READYO# in one of three ways:

1. Leave it disconnected and use external logic to
generate READY # signals. When choosing this
option, 80387 requirements for wait states in read
cycles and write cycles of FLDENV and FRSTOR
must be obeyed.

2. Connect it (directly or through logic that ORs
READY signals from other devices) to the
READY # inputs of the 80386 and 80387.

3. Use it as one input to a wait-state generator.

READY * ADS

“ALWAYS"
READY * ADS#

READY#

231920-7

Figure 3.3. Bus State Diagram
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The following sections illustrate different types of
80387 bus cycles.

Because different instructions have different
amounts of overhead before, between, and after op-
erand transfer cycles, it is not possible to represent
in a few diagrams all of the combinations of succes-
sive operand transfer cycles. The following bus-cy-
cle diagrams show memory cycles between 80387
operand-transfer cycles. Note however that, during
the instructions FLDENV, FSTENV, FSAVE, and
FRSTOR, some consecutive accesses to the NPX
do not have intervening memory accesses. For the
timing relationship between operand transfer cycles
and opcode write or other overhead activities, see
Figure 3.7.

3.4.1 NONPIPELINED BUS CYCLES

Figure 3.4 illustrates bus activity for consecutive
nonpipelined bus cycles.

3.4.1.1 Write Cycle

At the second clock of the bus cycle, the 80387 en-
ters the Trs (READY #-sensitive) state. During this
state, the 80387 samples the READY # input and
stays in this state as long as READY # is inactive.

In write cycles, the 80387 drives the READYO # sig-
nal for one CLK period beginning with the second
CLK of the bus cycle; therefore, the fastest write
cycle takes two CLK cycles (see cycle 2 of Figure
3.4). For the instructions FLDENV and FRSTOR,
however, the 80387 forces a wait state by delaying
the activation of READYO# to the second Trg cy-
cle (not shown in Figure 3.4).
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When READY # is asserted the 80387 returns to the
idle state, in which ADS# could be asserted again
by the 80386 for the next cycle.

3.4.1.2 Read Cycle

At the second clock of the bus cycle, the 80387 en-
ters the Trg state. See Figure 3.4. In this state, the
80387 samples the READY # input and stays in this
state as long as READY # is inactive.

At the rising edge of CLK in the second clock period
of the cycle, the 80387 starts to drive the D31-D0
outputs and continues to drive them as long as it
stays in Trg state.

In read cycles that address the 80387, at least one
wait state must be inserted to insure that the 80386
latches the correct data. Since the 80387 starts driv-
ing the system data bus only at the rising edge of
CLK in the second clock period of the bus cycle, not
enough time is left for the data signals to propagate
and be latched by the 80386 at the falling edge of
the same clock period. The 80387 drives the READ-
YO +# signal for one CLK period in the third CLK of
the bus cycle. Therefore, if the READYO# output is
used to drive the 80386 READY # input, one wait
state is inserted automatically.

Because one wait state is required for 80387 reads,
the minimum is three CLK cycles per read, as cycle
3 of Figure 3.4 shows.

When READY # is asserted the 80387 returns to the
idle state, in which ADS# could be asserted again
by the 80386 for the next cycle. The transition from
TRs state to idle state causes the 80387 to put the
tristate D31-DO0 outputs into the floating state, al-
lowing another device to drive the system data bus.
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CYCLE 1 CYCLE2 CYCLE 3 CYCLE 4
NON=PIPELINED | NON=PIPELINED NON=PIPELINED NON-PIPELINED
MEMORY READ NPX WRITE NPX READ MEMORY WRITE
T Trs T Trs n* Ty Trs Trs Ti Trs T
s [T T UYL UU UL UYL
4
M WAVAVAVAVAVAVAVAVAWAWE
NPS2, s
S1#,
N:/:O;;l X 2%
—
W/R# / \
—
A N N
z i
READYO# \ f ) \ /
R, YA R B
DO-D31 === =4 --C)—( CPU )-Eb ----- --( NPX H CPU )--

Cycles 1 & 2 represent part of the operand transfer cycle for instructions involving either 4-byte or 8-byte operand loads.
Cycles 3 & 4 represent part of the operand transfer cycle for a store operation.
*Cycles 1 & 2 could repeat here or T states for various non-operand transfer cycles and overhead.

231920-8

Figure 3.4. Nonpipelined Read and Write Cycles

3.4.2 PIPELINED BUS CYCLES

Because all the activities of the 80387 bus interface
occur either during the Trg state or during the tran-
sitions to or from that state, the only difference be-
tween a pipelined and a nonpipelined cycle is the
manner of changing from one state to another. The
exact activities in each state are detailed in the pre-
vious section “Nonpipelined Bus Cycles”.

When the 80386 asserts ADS # before the end of a
bus cycle, both ADS# and READY # are active dur-
ing a TRg state. This condition causes the 80387 to
change to a different state named Tp. The 80387
activities in the transition from a Trg state to a Tp
state are exactly the same as those in the transition
from a TRg state to a T) state in nonpipelined cycles.

Tp state is metastable; therefore, one clock period
later the 80387 returns to Trg state. In consecutive
pipelined cycles, the 80387 bus logic uses only Trg
and Tp states.

Figure 3.5 shows the fastest transition into and out
of the pipelined bus cycles. Cycle 1 in this figure
represents a nonpipelined cycle. (Nonpipelined write
cycles with only one Trg state (i.e. no wait states)
are always followed by another nonpipelined cycle,
because READY # is asserted before the earliest
possible assertion of ADS# for the next cycle.)

Figure 3.6 shows the pipelined write and read cycles
with one additional Trg states beyond the minimum
required. To delay the assertion of READY # re-
quires external logic.
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3.4.3 BUS CYCLES OF MIXED TYPE

When the 80387 bus logic is in the Trg state, it dis-
tinguishes between nonpipelined and pipelined cy-
cles according to the behavior of ADS# and
READY #. In a nonpipelined cycle, only READY # is
activated, and the transition is from Tgrg to idle state.
In a pipelined cycle, both READY # and ADS# are
active and the transition is first from Trg state to Tp
state then, after one clock period, back to Trg state.

3.4.4 BUSY# AND PEREQ TIMING
RELATIONSHIP

Figure 3.7 shows the activation of BUSY # at the
beginning of instruction execution and its deactiva-
tion after execution of the instruction is complete.
PEREQ is activated in this interval. If ERROR# (not
shown in the diagram) is ever asserted, it would oc-
cur at least six 386CLK2 periods after the deactiva-
tion of PEREQ and at least six 386CLK2 periods be-
fore the deactivation of BUSY #. Figure 3.7 shows
also that STEN is activated at the beginning of a bus
cycle.

CYCLE 1 CYCLE 2 CYCLE 3 CYCLE 4
NON=PIPELINED PIPELINED PIPELINED NON=PIPELINED
MEMORY READ NPX WRITE MEMORY READ NPX WRITE
T Trs Trs Tp Trs Tp Trs T Trs T
seectrz mmmmmmmmmm
NPS2,
NPS1#,
M/10#
W/R# \
ADS# \ \ \ / /
READYO# \ j \ J
waors O | T | BRGR | IR | BRI | B
DO-D31 --------------< D—( CcPU )-----C}-( cPU )--ﬁ
231920-9
Cycle 1-Cycle 4 represent the operand transfer cycle for an instruction involving a transfer of two 32-bit loads in total.
The opcode write cycles and other overhead are not shown.
Note that the next cycle will be a pipelined cycle if both READY # and ADS# are sampled active at the end of a Trg
state of the current cycle.

Figure 3.5. Fastest Transitions to and from Pipelined Cycles
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CYCLE 1 CYCLE 2
PIPELINED WRITE NOTE 1 PIPELINED READ

Trs T Trs

e (AUTLALASLA AL UL UL,
e\ NSNS \/

NPS2,
NPS1#,
M/10# 2

s
T
L

W/R#

—
I

ADS#

2%

READYO# \_ _/ ) \—‘/
o TR | R R0 | R | RS
DO-D31 | MEMORY H cPU ) Qeceaboncad --

T8

231920-10

NOTE:
1. Cycles between operand write to the NPX and storing result.

Figure 3.6. Pipelined Cycles with Wait States

OPCODE . 15T OPERAND
WRITE NOTE 4 WRITE

UL
SIVAVAWAWAWAWAWA

_/

\_

386CLK2

UL
\./]

N 2 e
s 0y

=

Js

In 2
STEN

ADS#

/ s EE—\
READY# \__/ N h
BUSY# Ay /

N ” J—t

(¢ ady ds

gy 25
ST ISS
~

PEREQ ----“\

X¢ — —¢ ¢

NOTE 1| NOTE 2 NOTE 3 | NOTE 1

231920-11

NOTES:

1. Instruction dependent.

2. PEREQ is an asynchronous input to the 80386; it may not be asserted (instruction dependent).
3. More operand transfers.

4. Memory read (operand) cycle is not shown.

Figure 3.7. STEN, BUSY # and PEREQ Timing Relationship
26
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4.0 MECHANICAL DATA

68 LEAD CERAMIC PIN GRID ARRAY PACKAGE INTEL TYPE A
D
Dy
eR11-:'l§ i
: SEATIN
| (Tecococccoe PLANE
0000000000
gg . 88 @B (ALL PINS)
[oJo] ’ Y [oXo]
PIN B2 88 o) o2 o
&eee‘e—oeegg r
L\ G39‘3‘9"9@'@'5’3\ ) SWAGGED
N | PIN
299 SWAGGED o2 DETAIL
§:57 REF- (4 PL) 0:25 REF:
45° CHAMFER 45° CHAMFER
(INDEX CORNER) (3 PL)
231920-12
Family: Ceramic Pin Grid Array Package
Symbol Millimeters Inches
Min Max Notes Min Max Notes
A 3.56 4.57 0.140 0.180
Ay 0.76 1.27 Solid Lid 0.030 0.050 Solid Lid
A4 0.41 EPROM Lid 0.016 EPROM Lid
Ao 2.72 3.43 Solid Lid 0.107 0.135 Solid Lid
Ao 3.43 4.32 EPROM Lid 0.135 0.170 EPROM Lid
Ag 1.14 1.40 0.045 0.055
B 0.43 0.51 0.017 0.020
D 28.83 29.59 1.135 1.165
D4 25.27 25.53 0.995 1.005
eq 2.29 2.79 0.090 0.110
L 2.29 3.30 0.090 0.130
N 68 68
S 127 254 0050 | 0100 |
ISSUE IWSREV7 3/26/86

Figure 4.1. Package Description

27



80387 ADVANCE INFORMATION

Consult the most recent 80387 data sheet for AC specifications.
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Consult the most recent 80387 data sheet for AC specifications.
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Consult the most recent 80387 data sheet for AC specifications.
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Consult the most recent 80387 data sheet for AC specifications.
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Consult the most recent 80387 data sheet for AC specifications.
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Instruction Optional
First Byte Second Byte Flelds
1 11011 OPA 1 MOD 1 ] OPB R/M SIB DISP
2 11011 MF OPA MOD OPB R/M SIB DISP
3 11011 P OPA 1 1 OPB ST(i)
4 11011 0 1 1 1 1 OoP
5 11011 1 1 1 1 1 OoP
15-11 10 9 8 7 6 5 4 3 210

6.0 80387 EXTENSIONS TO THE
80386 INSTRUCTION SET

Instructions for the 80387 assume one of the five
forms shown in the following table. In all cases, in-
structions are at least two bytes long and begin with
the bit pattern 11011B, which identifies the ESCAPE
class of instruction. Instructions that refer to memory
operands specify addresses using the 80386 ad-
dressing modes.

OoP Instruction opcode, possible split into two
fields OPA and OPB

MF = Memory Format
00—32-bit real
01—32-bit integer
10—64-bit real
11—16-bit integer

P = Pop
0—Do not pop stack
1—Pop stack after operation

ESC = 11011

d = Destination
0—Destination is ST(0)
1—Destination is ST(j)

R XOR d = 0—Destination (op) Source
R XOR d = 1—Source (op) Destination

33

ST(i) = Register stack element 7
000 = Stack top

001 = Second stack element
[ ]

111 = Eighth stack element

MOD (Mode field) and R/M (Register/Memory spec-
ifier) have the same interpretation as the corre-
sponding fields of 80386 instructions (refer to 80386
Programmer’s Reference Manual)

SiB (Scale Index Base) byte and DISP (displace-
ment) are optionally present in instructions that have
MOD and R/M fields. Their presence depends on
the values of MOD and R/M, as for 80386 instruc-
tions.

The instruction summaries that follow assume that
the instruction has been prefetched, decoded, and is
ready for execution; that bus cycles do not require
wait states; that there are no local bus HOLD re-
quest delaying processor access to the bus; and
that no exceptions are detected during instruction
execution. If the instruction has MOD and R/M fields
that call for both base and index registers, add one
clock.
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80387 Extensions to the 80386 Instruction Set

FXAM = Examine ST(0)
CONSTANTS

FLDZ = Load +0.0 into ST(0)
FLD1 = Load + 1.0 into ST(0)
FLDPI = Load pi into ST(0)

FLDL2T = Load logy(10) into ST(0)

ESC 001

[ [ 11100101 ]
[ Escoor | 11101110 |
[ Escoor | 11101000 ]
[ escoor [ 11101011 |
[ escoot | 11101001 |

Encoding Clock Count Range
Instruction Byte Byte Optional 32-Bit 32-Bit 64-Bit 16-Bit
0 | 1 | Bytes 2-6 Real | Integ I Real Integ
DATA TRANSFER
FLD = Load2
Integer/real memory to ST(0) [ ESCMF1 [ MODO00OR/M |  SIB/DISP 20 45-52 25 61-65
Long integer memory to ST(0) [ Esc111 [ MOD101R/M | SiB/DISP 56-67
Extended real memory to ST(0) [ Escoin [ MOD101R/M [  SIB/DISP 44
BCD memory to ST(0) [ EsC111 [ MOD100R/M |  SIB/DISP 266-275
ST(i) to ST(0) [ Escoor [ 11000ST() | 14
FST = Store
ST(0) to integer/real memory I ESC MF 1 [ MOD 010 R/M [ SIB/DISP 44 79-93 45 82-95
ST(0) to ST() [ Escio1 [ 11010ST(H) | 1
FSTP = Store and Pop
ST(0) to integer/real memory [ ESCMF1 [ MODO11R/M | SIB/DISP 44 79-93 45 82-95
ST(0) to long integer memory [ Esci11 [ MOD111R/M | SIB/DISP 80-97
ST(0) to extended real [ Escot1 [ MOD111R/M | siB/DISP 53
ST(0) to BCD memory [ Esc111 [ MOD110R/M |  SIB/DISP 512-534
ST(0) to ST() [ Esc101 [ 110018T@) | 12
FXCH = Exchange
ST(j) and ST(0) [ Escoor | 110018TG) | 18
COMPARISON
FCOM = Compare
Integer/real memory to ST(0) [ escMro | mopotor/Mm |  siB/DISP 26 56-63 31 71-75
ST() to ST(0) [ escooo | 1t010sT() | 24
FCOMP = Compare and pop
Integer/real memory to ST [ escmro | mopotir/M | siB/DIsP 26 56-63 31 71-75
ST() 1o ST(0) [ Escooo [ t1011s1) | 26
FCOMPP = Compare and pop twice
ST(1) to ST(0) [ Esc11i0 [ 11011001 | 26
FTST = Test ST(0) [ Escoot | 11100100 | 28

30-38

20
24
40
40

Shaded areas indicate instructions not available in 8087/80287.

NOTE:

a. When loading single- or double-precision zero from memory, add 5 clocks.
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80387 Extensions to the 80386 Instruction Set (Continued)

FRNDINT = Round ST(0) ESC 001 11111100

to integer
FXTRACT = Extract components

of ST(0) [ Escoor [ 11110100 |
FABS = Absolute value of ST(0) [ escoot | 11100001 |
FCHS = Change sign of ST(0) [ Escoot | 11100000 |

Encoding Clock Count Range
Instruction Byte | Byte Optlonfl 32-Bit l 32-Bit | 64-Bit l 16-Bit
0 1 Bytes 2-6 Real Real ]
CONSTANTS (Continued)
FLDL2E = Load loga(e) into ST(0) [ Eescoot [ 11101010 | 40
FLDLG2 = Load log1o(2) into ST(0) [ Escoot [ 11101100 | a4
FLDLN2 = Load loge(2) into ST(0) [ Eescoor [ 11101101 | @
ARITHMETIC
FADD = Add
Integer/real memory with ST(0) [ escmro | mopooor/M |  siB/DISP 24-32  57-72  29-37  71-85
ST(i) and ST(0) [ escdpo [ 11000sT) | 23-31b
FSUB = Subtract
Integer/real memory with ST(0) [ escmMFo [ moD10RR/M | siB/DISP 24-32  57-82  28-36  71-83¢
ST(i) and ST(0) [ escdpo | 1110RR/M | 26-34d
FMUL = Multiply
Integer/real memory with ST(0) [ escMFo | mopootmr/M | siB/DISP 27-35  61-82  32-57  76-87
ST(j) and ST(0) [ escdpo [ 11001RM | 29-57¢
FDIV = Divide
Integer/real memory with ST(0) [ escMFo [ mop11rRR/M | siB/DISP 89  120-127f 94  136-1409
ST(i) and ST(0) [ escdpo | 1111RAM ] geh
FSQRT! = Square root [ Escoot | 11111010 ] 122-129
FSCALE = Scale ST(0) by ST(1) [ Eescoot [ 11111101 | 67-86
FPREM = Partial remainder [ Escoot | 11111000 ]

70-76

22
24-25

Shaded areas indicate instructions not available in 8087/80287.

NOTES:

b. Add 3 clocks to the range when d = 1.

c. Add 1 clock to each range when R = 1.

d. Add 3 clocks to the range when d = 0.

e. typical = 52 (When d = 0, 46-54, typical = 49).
f. Add 1 clock to the range when R = 1.

g. 135-141 when R = 1.

h. Add 3 clocks to the range when d = 1.

i. =0 < ST(0) < + .
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80387 Extensions to the 80386 Instruction Set (Continued)

FPATAN = Partial arctangent

Encoding
Instruction Byte Byte Optional Clock Count Range
0 1 Bytes 2-6
TRANSCENDENTAL
4 L e nRR e
FPTANK = Partial tangent of ST(0) [ escoot [ 11110010 | 191-497i
ESCO01 | 11110011 | 314-487

F2XM1! = 25T(0) — 1 [ escoor [ 11110000 | 211-476
FYL2Xm = ST(1) * loga(ST(0)) [ escoor [ 11110001 | 120-538
FYL2XP1n = ST(1) * logo(ST(0) + 1.0) [ Escoor [ 11111001 | 257-547
PROCESSOR CONTROL

FINIT = Initialize NPX [ escotr [ 11100011 | 33
FSTSW AX = Store status word [ esc111 [ 11100000 ] 13
FLDCW = Load control word [ Escoor [ mop1o1R/M | siB/DISP 19
FSTCW = Store control word [ ESC 101 | MOD 111 R/M l SIB/DISP 15
FSTSW = Store status word [ esc1io1 | mop11ir/M | siB/DISP 15
FCLEX = Clear exceptions [ escort | 11100010 | 1
FSTENV = Store environment I ESC 001 [ MOD 110 R/M l SIB/DISP 103-104
FLDENV = Load environment [ Escoot [ mop1o0m/M [ siB/DisP 71
FSAVE = Save state [ esciot [ mop1iom/M | siB/DiSP 375-376
FRSTOR = Restore state [ esc101 [ mob1oom/M [ sis/Disp 308
FINCSTP = Increment stack pointer | ESC 001 T 11110111 I 21
FDECSTP = Decrementstackpointer | ESC001 | 11110110 | 22
FFREE = Free ST() [ escior [ 11000sti) | 18
FNOP = No operations [ Escoot | 11010000 | 12

Shaded areas indicate instructions not available in 8087/80287.

NOTES:

j. These timings hold for operands in the range |x| < /4. For operands not in this range, up to 76 additional clocks may be
needed to reduce the operand.

k.0 < |ST(0)| < 2868.

. —1.0 < ST(0) < 1.0.

m.0 < ST(0) < ®©, —o0 < ST(1) < + oo,

n.0 < [ST(0)] < (2 — SQRT(2))/2, — < ST(1) < +o0.
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APPENDIX A
COMPATIBILITY BETWEEN
THE 80287 AND THE 8087

The 80286/80287 operating in Real-Address mode
will execute 8086/8087 programs without major
modification. However, because of differences in the
handling of numeric exceptions by the 80287 NPX
and the 8087 NPX, exception-handling routines may
need to be changed.

This appendix summarizes the differences between
the 80287 NPX and the 8087 NPX, and provides
details showing how 8086/8087 programs can be
ported to the 80286/80287.

1. The NPX signals exceptions through a dedicated
ERROR line to the 80286. The NPX error signal
does not pass through an interrupt controller (the
8087 INT signal does). Therefore, any interrupt-
controller-oriented instructions in numeric excep-
tion handlers for the 8086/8087 should be delet-
ed.

2. The 8087 instructions FENI/FNENI and FDISI/
FNDISI perform no useful function in the 80287. If
the 80287 encounters one of these opcodes in its
instruction stream, the instruction will effectively
be ignored—none of the 80287 internal states will
be updated. While 8086/8087 containing these
instructions may be executed on the
80286/80287, it is unlikely that the exception-
handling routines containing these instructions
will be completely portable to the 80287.

3. Interrupt vector 16 must point to the numeric ex-
ception handling routine.

4. The ESC instruction address saved in the 80287
includes any leading prefixes before the ESC op-
code. The corresponding address saved in the
8087 does not include leading prefixes.

5. In Protected-Address mode, the format of the
80287’s saved instruction and address pointers is
different than for the 8087. The instruction op-
code is not saved in Protected mode—exception
handlers will have to retrieve the opcode from
memory if needed.
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. Interrupt 7 will occur in the 80286 when executing

ESC instructions with either TS (task switched) or
EM (emulation) of the 80286 MSW set (TS = 1 or
EM = 1). If TS is set, then a WAIT instruction will
also cause interrupt 7. An exception handler
should be included in 80286/80287 code to han-
dle these situations.

. Interrupt 9 will occur if the second or subsequent

words of a floating-point operand fall outside a
segment’s size. Interrupt 13 will occur if the start-
ing address of a numeric operand falls outside a
segment’s size. An exception handler should be
included in 80286/80287 code to report these
programming errors.

. Except for the processor control instructions, all

of the 80287 numeric instructions are automati-
cally synchronized by the 80286 CPU—the 80286
automatically tests the BUSY line from the 80287
to ensure that the 80287 has completed its previ-
ous instruction before executing the next ESC in-
struction. No explicit WAIT instructions are re-
quired to assure this synchronization. For the
8087 used with 8086 and 8088 processors, ex-
plicit WAITs are required before each numeric in-
struction to ensure synchronization. Although
8086/8087 programs having explicit WAIT in-
structions will execute perfectly on the
80286/80287 without reassembly, these WAIT in-
structions are unnecessary.

. Since the 80287 does not require WAIT instruc-

tions before each numeric instruction, the
ASM286 assembler does not automatically gener-
ate these WAIT instructions. The ASM86 assem-
bler, however, automatically precedes every ESC
instruction with a WAIT instruction. Although nu-
meric routines generated using the ASM86 as-
sembler will generally execute correctly on the
80286/80287, reassembly using ASM286 may re-
sult in @ more compact code image.

The processor control instructions for the 80287
may be coded using either a WAIT or No-WAIT
form of mnemonic. The WAIT forms of these in-
structions cause ASM286 to precede the ESC in-
struction with a CPU WAIT instruction, in the iden-
tical manner as does ASM86.
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APPENDIX F
PC/AT"-COMPATIBLE 80387 CONNECTION

The PC/AT uses a nonstandard scheme to report 80287 exceptions to the 80286. When
replicating the PC/AT coprocessor interface in 80386-based systems, the PC/AT interface
cannot be used in exactly the same way; however, this appendix outlines a similar interface
that works on 80386/80387 systems and maintains compatibility with the nonstandard
PC/AT scheme.

Note that the interface outlined here does not represent a new interface standard; it needs
to be incorporated in AT-compatible designs only because the 80286 and 80287 in the
PC/AT are not connected according to the standards defined by Intel. The standard
80386,/80387 connection recommended by Intel in the 80387 Data Sheet functions properly;
the 80386 implementation has not been and will not be altered.

F.1 THE PC/AT INTERFACE

In the PC/AT, the ERROR# input to the 80286 is tied inactive (high) permanently. The
ERROR# output of the 80287 is tied to an interrupt port (IRQ13). This interrupt replaces
exception signaling via the 80286’s ERROR# input. To guarantee (in the case of an 80287
exception) that INTR 13 will be serviced prior to the execution of any further 80287 instruc-
tions, an edge-triggered flip-flop latches BUSY# using ERROR# as a clock. The output of
this latch is ORed with the BUSY# output of the 80287 and drives the BUSY# input of the
80286. This PC/AT scheme effectively delays deactivation of BUSY# at the 80286 whenever
an 80287 ERROR# is signaled.

Since the 80286 BUSY# input remains active after an exception, the 80286 interrupt 13
handler is guaranteed to execute before any other 80287 instructions may begin. The inter-
rupt 13 handler clears the BUSY# latch (via a write to a special I/O port), thus allowing
execution of 80287 instructions to proceed. The interrupt 13 handler then branches to the
NMI handler, where the user-defined numerics exception handler resides in PC-compatible
systems.

The use of an interrupt guarantees that an exception from a coprocessor instruction will be
detected. Latching BUSY# guarantees that any coprocessor instruction (except FINIT,
FSETPM, and FCLEX) following the instruction that raised the exception will not be
executed before the NMI handler is executed.

This PC/AT scheme approximates the exception reporting scheme between the 8087 and
8088 in the original PC.
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F.2 HOW TO ACHIEVE THE SAME EFFECT IN AN 80386 SYSTEM

The 80386 can use a PC/AT-compatible interface to communicate with an 80387 provided
that, when an NPX exception occurs, BUSY# active time is extended and PEREQ is reacti-
vated only after 80387 BUSY# has gone inactive. The 80387 is left active (tying STEN
high) at all times. Also, the 80386 and 80387 must be reset by the same RESET signal.

The reactivation of PEREQ for the 80386 is needed for store instructions (for example, FST
mem) because the 80387 drops PEREQ once it signals an exception. While the 80386 has
not yet recognized the occurrence of the exception, it still expects the data transfers to
complete via PEREQ reactivation. It is permissible for the 80386 to receive undefined data
during such I/O read cycles. Disabling the 80387 is not necessary, because the dummy data-
transfer cycles directed to the 80387 when PEREQ is externally reactivated for the 80386
will not disturb the operation of the 80387. The interrupt 13 handler should remove the
extension of BUSY# and reactivation of PEREQ via a write to PC/AT-compatible hardware
at I/O port FOH.
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GLOSSARY OF 80387
AND FLOATING-POINT TERMINOLOGY

This glossary defines many terms that have precise technical meanings as specified in the
IEEE 754 Standard or as specified in this manual. Where these terms are used, they have
been italicized to emphasize the precision of their meanings. In reading these definitions,
you may therefore interpret any italicized terms or phrases as cross-references.

Base: (1) a term used in logarithms and exponentials. In both contexts, it is a number that
is being raised to a power. The two equations (y = log base b of x) and (b¥ = x) are the
same.

Base: (2) a number that defines the representation being used for a string of digits. Base 2
is the binary representation; base 10 is the decimal representation; base 16 is the hexadeci-
mal representation. In each case, the base is the factor of increased significance for each
succeeding digit (working up from the bottom).

Bias: a constant that is added to the true exponent of a real number to obtain the exponent
field of that number’s floating-point representation in the 80387. To obtain the true exponent,
you must subtract the bias from the given exponent. For example, the single real format has
a bias of 127 whenever the given exponent is nonzero. If the 8-bit exponent field contains
10000011, which is 131, the true exponent is 131 —127, or +4.

Biased Exponent: the exponent as it appears in a floating-point representation of a number.
The biased exponent is interpreted as an unsigned, positive number. In the above example,
131 is the biased exponent.

Binary Coded Decimal: a method of storing numbers that retains a base 10 representation.
Each decimal digit occupies 4 full bits (one hexadecimal digit). The hexadecimal values A
through F (1010 through 1111) are not used. The 80387 supports a packed decimal format
that consists of 9 bytes of binary coded decimal (18 decimal digits) and one sign byte.

Binary Point: an entity just like a decimal point, except that it exists in binary numbers.
Each binary digit to the right of the binary point is multiplied by an increasing negative
power of two.

C3—C0: the four ‘“‘condition code” bits of the 80387 status word. These bits are set to
certain values by the compare, test, examine, and remainder functions of the 80387.

Characteristic: a term used for some non-Intel computers, meaning the exponent field of a
floating-point number.

Chop: to set one or more low-order bits of a real number to zero, yielding the nearest repre-
sentable number in the direction of zero.

Condition Code: the four bits of the 80387 status word that indicate the results of the
compare, test, examine, and remainder functions of the 80387.
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Control Word: a 16-bit 80387 register that the user can set, to determine the modes of
computation the 80387 will use and the exception interrupts that will be enabled.

Denormal: a special form of floating-point number. On the 80387, a denormal is defined as
a number that has a biased exponent of zero. By providing a significand with leading zeros,
the range of possible negative exponents can be extended by the number of bits in the signi-
ficand. Each leading zero is a bit of lost accuracy, so the extended exponent range is obtained
by reducing significance.

Double Extended: the Standard’s term for the 80387’s extended format, with more exponent
and significand bits than the double format and an explicit integer bit in the significand.

Double Format: a floating-point format supported by the 80387 that consists of a sign, an
11-bit biased exponent, an implicit integer bit, and a 52-bit significand—a total of 64 explicit
bits.

Environment: the 14 or 28 (depending on addressing mode) bytes of 80387 registers affected
by the FSTENV and FLDENY instructions. It encompasses the entire state of the 80387,
except for the 8 registers of the 80387 stack. Included are the control word, status word,
tag word, and the instruction, opcode, and operand information provided by interrupts. '

Exception: any of the six conditions (invalid operand, denormal, numeric overflow, numeric
underflow, zero-divide, and precision) detected by the 80387 that may be signaled by status
flags or by traps.

Exception Pointers: The data maintained by the 80386 to help exception handlers identify
the cause of an exception. This data consists of a pointer to the most recently executed ESC
instruction and a pointer to the memory operand of this instruction, if it had a memory
operand. An exception handler can use the FSTENV and FSAVE instructions to access
these pointers.

Exponent: (1) any number that indicates the power to which another number is raised.

Exponent: (2) the field of a floating-point number that indicates the magnitude of the
number. This would fall under the above more general definition (1), except that a bias
sometimes needs to be subtracted to obtain the correct power.

Extended Format: the 80387’s implementation of the Standard’s double extended format.
Extended format is the main floating-point format used by the 80387. It consists of a sign,
a 15-bit biased exponent, and a significand with an explicit integer bit and 63 fractional-
part bits.

Floating-Point: of or pertaining to a number that is expressed as base, a sign, a significand,
and a signed exponent. The value of the number is the signed product of its significand and
the base raised to the power of the exponent. Floating-point representations are more versa-
tile than integer representations in two ways. First, they include fractions. Second, their
exponent parts allow a much wider range of magnitude than possible with fixed-length integer
representations.
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Gradual Underflow: a method of handling the underflow error condition that minimizes the
loss of accuracy in the result. If there is a denormal number that represents the correct
result, that denormal is returned. Thus, digits are lost only to the extent of denormalization.
Most computers return zero when underflow occurs, losing all significant digits.

Implicit Integer Bit: a part of the significand in the single real and double real formats that
is not explicitly given. In these formats, the entire given significand is considered to be to
the right of the binary point. A single implicit integer bit to the left of the binary point is
always one, except in one case. When the exponent is the minimum (biased exponent is
zero), the implicit integer bit is zero.

Indefinite: a special value that is returned by functions when the inputs are such that no
other sensible answer is possible. For each floating-point format there exists one quiet NaN
that is designated as the indefinite value. For binary integer formats, the negative number
furthest from zero is often considered the indefinite value. For the 80387 packed decimal
format, the indefinite value contains all 1’s in the sign byte and the uppermost digits byte.

Inexact: The Standard’s term for the 80387’s precision exception.

Infinity: a value that has greater magnitude than any integer or any real number. It is often
useful to consider infinity as another number, subject to special rules of arithmetic. All three
Intel floating-point formats provide representations for +oco and — co.

Integer: a number (positive, negative, or zero) that is finite and has no fractional part. Integer
can also mean the computer representation for such a number: a sequence of data bytes,
interpreted in a standard way. It is perfectly reasonable for integers to be represented in a
floating-point format; this is what the 80387 does whenever an integer is pushed onto the
80387 stack.

Integer Bit: a part of the significand in floating-point formats. In these formats, the integer
bit is the only part of the significand considered to be to the left of the binary point. The
integer bit is always one, except in one case: when the exponent is the minimum (biased
exponent is zero), the integer bit is zero. In the extended format the integer bit is explicit;
in the single format and double format the integer bit is implicit; i.e., it is not actually stored
in memory.

Invalid Operation: the exception condition for the 80387 that covers all cases not covered by
other exceptions. Included are 80387 stack overflow and underflow, NaN inputs, illegal
infinite inputs, out-of-range inputs, and inputs in unsupported formats.

Long Integer: an integer format supported by the 80387 that consists of a 64-bit two’s
complement quantity.

Long Real: an older term for the 80387’s 64-bit double format.

Mantissa: a term used with some non-Intel computers for the significand of a floating-point
number.
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Masked: a term that applies to each of the six 80387 exceptions 1,D,Z,0,U,P. An exception
is masked if a corresponding bit in the 80387 control word is set to one. If an exception is
masked, the 80387 will not generate an interrupt when the exception condition occurs; it
will instead provide its own exception recovery.

Mode: One of the status word fields “rounding control” and “precision control” which
programs can set, sense, save, and restore to control the execution of subsequent arithmetic
operations.

NaN: an abbreviation for “Not a Number”; a floating-point quantity that does not repre-
sent any numeric or infinite quantity. Na/Ns should be returned by functions that encounter
serious errors. If created during a sequence of calculations, they are transmitted to the final
answer and can contain information about where the error occurred.

Normal: the representation of a number in a floating-point format in which the significand
has an integer bit one (either explicit or implicit).

Normalize: convert a denormal representation of a number to a normal representation.
NPX: Numeric Processor Extension. This is the 80387, 80287, or 8087.

Overflow: an exception condition in which the correct answer is finite, but has magnitude
too great to be represented in the destination format. This kind of overflow (also called
numeric overflow) is not to be confused with stack overflow.

Packed Decimal: an integer format supported by the 80387. A packed decimal number is a
10-byte quantity, with nine bytes of 18 binary coded decimal digits and one byte for the
sign.

Pop: to remove from a stack the last item that was placed on the stack.

Precision: The effective number of bits in the significand of the floating-point representa-
tion of a number.

Precision Control: an option, programmed through the 80387 control word, that allows all
80387 arithmetic to be performed with reduced precision. Because no speed advantage results
from this option, its only use is for strict compatibility with the standard and with other
computer systems.

Precision Exception: an 80387 exception condition that results when a calculation does not
return an exact answer. This exception is usually masked and ignored; it is used only in
extremely critical applications, when the user must know if the results are exact. The preci-
sion exception is called inexact in the standard.

Pseudozero: one of a set of special values of the extended real format. The set consists of
numbers with a zero significand and an exponent that is neither all zeros nor all ones.
Pseudozeros are not created by the 80387 but are handled correctly when encountered as
operands.
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Quiet NaN: a NaN in which the most significant bit of the fractional part of the significand
is one. By convention, these NaNs can undergo certain operations without causing an
exception.

Real: any finite value (negative, positive, or zero) that can be represented by a (possibly
infinite) decimal expansion. Reals can be represented as the points of a line marked off like
a ruler. The term real can also refer to a floating-point number that represents a real value.

Short Integer: an integer format supported by the 80387 that consists of a 32-bit two’s
complement quantity. short integer is not the shortest 86387 integer format—the 16-bit
word integer is.

Short Real: an older term for the 80387’s 32-bit single format.

Signaling NaN: a NaN that causes an invalid-operation exception whenever it enters into a
calculation or comparison, even a nonordered comparison.

Significand: the part of a floating-point number that consists of the most significant nonzero
bits of the number, if the number were written out in an unlimited binary format. The
significand is composed of an integer bit and a fraction. The integer bit is implicit in the
single format and double format. The significand is considered to have a binary point after
the integer bit; the binary point is then moved according to the value of the exponent.

Single Extended: a floating-point format, required by the standard, that provides greater
precision than single; it also provides an explicit integer bit in the significand. The 80387’s
extended format meets the single extended requirement as well as the double extended
requirement.

Single Format: a floating-point format supported by the 80387, which consists of a sign, an
8-bit biased exponent, an implicit integer bit, and a 23-bit significand—a total of 32 explicit
bits.

Stack Fault: a special case of the invalid-operation exception which is indicated by a one in
the SF bit of the status word. This condition usually results from stack underflow or overflow.

Standard: “IEEE Standard for Binary Floating-Point Arithmetic,” ANSI/IEEE Std
754-1985.

Status Word: A 16-bit 80387 register that can be manually set, but which is usually
controlled by side effects to 80387 instructions. It contains condition codes, the 80387 stack
pointer, busy and interrupt bits, and exception flags.

Tag Word: a 16-bit 80387 register that is automatically maintained by the 80387. For each
space in the 80387 stack, it tells if the space is occupied by a number; if so, it gives infor-
mation about what kind of number.

Temporary Real: an older term for the 80387’s 80-bit extended format.
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Tiny: of or pertaining to a floating-point number that is so close to zero that its exponent is
smaller than smallest exponent that can be represented in the destination format.

TOP: The three-bit field of the status word that indicates which 80387 register is the current
top of stack.

Transcendental: one of a class of functions for which polynomial formulas are always
approximate, never exact for more than isolated values. The 80387 supports trigonometric,
exponential, and logarithmic functions; all are transcendental.

Two’s Complement: a method of representing integers. If the uppermost bit is zero, the
number is considered positive, with the value given by the rest of the bits. If the uppermost
bit is one, the number is negative, with the value obtained by subtracting (2%t <) from all
the given bits. For example, the 8-bit number 11111100 is —4, obtained by subtracting 28
from 252.

Unbiased Exponent: the true value that tells how far and in which direction to move the
binary point of the significand of a floating-point number. For example, if a single-format
exponent is 131, we subtract the Bias 127 to obtain the unbiased exponent +4. Thus, the
real number being represented is the significand with the binary point shifted 4 bits to the
right.

Underflow: an exception condition in which the correct answer is nonzero, but has a magni-
tude too small to be represented as a normal number in the destination floating-point format.
The Standard specifies that an attempt be made to represent the number as a denormal.
This denormalization may result in a loss of significant bits from the significand. This kind
of underflow (also called numeric overflow) is not to be confused with stack underflow.

Unmasked: a term that applies to each of the six 80387 exceptions: 1,D,Z,0,U,P. An excep-
tion is unmasked if a corresponding bit in the 80387 control word is set to zero. If an excep-
tion is unmasked, the 80387 will generate an interrupt when the exception condition occurs.
You can provide an interrupt routine that customizes your exception recovery.

Unnormal: a extended real representation in which the explicit integer bit of the significand
is zero and the exponent is nonzero. Unnormal values are not supported by the 80387; they
cause the invalid-operation exception when encountered as operands.

Unsupported Format: Any number representation that is not recognized by the 80387. This
includes several formats that are recognized by the 8087 and 80287; namely: pseudo-NaN,
pseudoinfinity, and unnormal.

Word Integer: an integer format supported by both the 80386 and the 80387 that consists
of a 16-bit two’s complement quantity.

Zero divide: an exception conditicn in which the inputs are finite, but the correct answer,
even with an unlimited exponent, has infinite magnitude.
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Tel: (206) 453-8086
TWX: 910-443-3002

Intel Corp.
408 N. Mullan Road
Suite 102

Spokane 99206
Tel: (509) 928-8086
WISCONSIN

Intel Corp.

330 S. Exacullve Dr.
Suite 1

Brookheld 53005
Tel: (414) 784-8087
FAX: 414-796-2115

CANADA
BRITISH COLUMBIA

Intel Semiconductor of Canada, Ltd.
301-2245 W. Broadway

Vancouver V6K 2E4

Tel: (604) 738-6522

ONTARIO

Intel Semiconductor of Canada, Ltd.
Queensview Drive
Suite 250
Ottawa K28 8H6
Tel: (613) 829-9714
TLX: 053-4115

Intel Semiconductor of Canada, Ltd.
190 Attwell Drive

Suite 500

Rexdale MW 6H8

Tel: (416) 675-2105

TLX: 06983574

QUEBEC

Intel Semiconductor of Canada, Ltd.
620 St. Jean Boulevard

Pointe Claire HIR 3K3

Tel: (514) 694-9130
TWX: 514-694-9134

“Field Application Location
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ALABAMA

Arrow Electronics, Inc
1015 Henderson Road
Huntsville 35805

Tel: (205) 837-6955

tHamilton/Avnet Electionics
4940 Research Drive
Huntsville 35805

Tel: (205) 837-7210

TWX: 810-726-2162

‘echnologies Group Inc.
4825 University Square
Huntsville 35
Tel: (205) 837-9300
TWX: 810-726-2197

ARIZONA

tHam-lton/Avnat Electromcs
5 S. Madison Drive

Tempe 85281

Tel: (602) 231-5100

TWX: 910-950-0077

Kierulff Electronics. Inc.
4134 E. Wood Street
Phoenix 85040

Tel: (602) 437-0750
TWX: 910-951-1550

Wyle Distribution Group

17855 N. Black Canyon Highway
Phoenix 85023

Tel: (602) 866-2888

CALIFORNIA

Arrow Electronics, Inc.
19748 Dearborn Street
Chatsworth 91311

Tel: (818) 701-7500
TWX: 910-493-2086

Arrow Electronics, Inc
1502 Crocker Avenue
Hayward 94544

Tel: (408) 487-4600

Arrow Electronics, Inc
9511 Rldgehaven Court

San 9212
Tel (Gfg) 565- 4800

Arrow Electronics, Inc.
521 Weddell Drive
Sunnyvale 94086
Tel: (408) 745-6600
TWX: 910-339-9371

Arrow Electronics, Inc.
2961 Dow Avenue
Tustin 92680

Tel: (714) 838-5422
TWX: 910-695-2860

tAvnet Electronics

350 McCormick Avenue
Costa Mesa 92626

Tel: (714) 754-6051
TWX: 910-595-1928

Hamilton/Avnet Electronics
1175 Bordeaux Drive
Sunnyvale 94086

Tel: (408) 743-3300

TWX: 910-339-9332

tHamilton/Avnet Electronics
4545 Viewridge Avenue

San Diego 92123

Tel: (619) 571-7500

TWX: 910-595-2638

tHamilton/Avnet Electronics
20501 Plummer Street
Chatsworth 91311
Tek: (818) 700.6271

X: 910-494-2207

tHamilton/Avnet Electronics
4103 Northgate Boulevard
Sacramento 95834

Tel: (916) 920-3150

‘tHamilton/Avnet Electronics
S!reel

Ontario 913

Tel: (714) 95&941 1

Hamilton/Avnet Electronics
19515 So. Vermont Avenue
Torrance 90502

Tel: (213) 615-3909

TWX: 910-349-6263

Hamnlton Electro Sales

C al
Tel: (818) 700—6500

DOMESTIC DISTRIBUTORS

CALIFORNIA (Cont'd)

THamilton Electro Sales
10950 W. Washington Blvd.
Culver City 90230
Tel: (213) 558-2458

TWX: 910-340-6364

Hamilton Electro Sales
1361 B ( 190"\ Street

Garden:
Tel: (213) 558»2131

tHamilton Electro Sales
3170 Pullman Street
Costa Mesa 92626

Tel: (714) 641-4150
TWX: 910-595-2638

Kierulff Electronics, Inc
1082 treet

Cypress 90430
Tel: (714) 220-6300

tKierulff Electronics, Inc.
1180 Murphy Avenue
San Jose 95131

Tel: (408) 971-2600
TWX: 910-379-6430

tKierultf Electronics, Inc
14101 Frankiin Avenue
Tustin

Tel: (714) 731-5711
TWX: 910-595-2599

tKierulff Electronics, Inc.
5650 Jillson Street
Commerce 90040

Tel: (213) 725-0325
TWX: 910-580-3666

Wyle Distribution Group

TWX: 818-372-0232

tWyle Distribution Group
124 Maryland Street

El Segundo 90245

Tel: (213) 322-8100

TWX: 910-348-7140 or 7111

TWyle Distrioution Group
17872 Cowan Avenue
Irvine 92714

Tel: (714) 863-9953
TWX: 910-595-1572

Wyle Distribution Group
11151 Sun Center Drive
Rancho Cordova 95670
Tel: (916) 638-5282

tWyle Distribution Group
9525 Cnesapeake Drive
San Diego 9212

Tel: (619) 565-9171
TWX: 910-335-1590

tWyle Distribution Group
3000 Bowers Avenue
Santa Clara 95051

Tel: (408) 727-2500
TWX: 910-338-0296

Wyle Military
18910 Teller Avenue
Ivine 92750

Tel: (714) 851-9958

TWX: 310-371-9127

Wyle Systems

7382 Lampson Avenue
Garden Grove 92641
Tel: (714) 891-1717
TWX: 910-595-2642

COLORADO

Arrow Electronics, Inc.
1390 S. Potomac Street
Suite 136

Aurora 80012

Tel: (303) 696-1111

tHamilton/Avnet Electronics
765 E. Orchard Road
uite
Englewood 80111
el (303) 740-1017
TWX: 910-935-0787

+tWyle Distribution Group
451 E. 124th Avenue
Thornton 80241

Tel: (303) 457-9953
TWX: 910-936-0770

CONNECTICUT

tArrow Electronics, Inc.
12 Beaumont Road
Wallln% ford 06492

Tel: (203) 265-7741
TWX: 710-476-0162

Hamilton/Avnet Electronics
Commerce Industrial Park
Commerce Dnve

810
Tel: (26%) 797-2800
TWX: 710-456-9974

1Pioneer Northeast Electronics
112 Main Street

Norwalk 06851

Tel: (203) 853-1515

TWX: 710-468-3373

FLORIDA

tArrow Electronics, Inc.
350 Fairway Drive
Deerfield Beach 33441
Tel: (305) 429-8200
TWX: 510-955-9456

Arrow Electronics, inc
1001 N.W. 62nd St., Ste. 108

TWX: 510-955-9456

tArrow Electronics, Inc.

50 Woodlake Drive W., Bldg. B
Palm Bay 32905

Tel: (305) 725-1480

TWX: 510-959-6337

1Ham||lon/Avnel Eleclromcs
6801 N.W. 15t

X: 510-956-3097

Hamilton/Avnet Electronics
3197 Tech Drive North

St. Petersburg 33702

Tel: (813) 576-3930

TWX: 810-863-0374

Hamilton/Avnet Electronics
6947 Universi Boulevard
Winter, rpark 3279

Tel: (305) 62&3888

TWX: 810-853-0322

tPioneer Electronics

337 N. Lake Blvd., Ste. 1000
Alta Monte Spnngs 32701
Tel: (305) 834

TWX: 810-853-0284

Pioneer Electronics
674 S. Military Trail
Deerfield Beach 33442
Tel: (305) 428-8877
TWX: 510-955-9653

GEORGIA

tArrow Electronics, Inc.
3155 Northwoods Parkway

uite
Norcross 30071
Tel: (404) 449-8252
TWX: 810-766-0439

Hamilton/Avnet Electronics
5825 D. Peachtree Corners
Norcross 30092

Tel: (404) 447-7500

TWX: 810-766-0432

Pioneer Electronics

3100 F. Northwoods Place
Norcross 30071

Tel: (404) 448-1711

TWX: 810-766-4515

ILLINOIS

‘tArrow Electronics, Inc.
2000 E Alonqsuin Street
Schaumber 5
Tel: (312) 397-3440
TWX: 910-291-3544

tHamilton/Avnet Electronics
1130 Thorndale Avenue
Bensenville 60106

Tel: (312) 860-7780

TWX: 910-227-0060

Kierulff Electronics, Inc.
||40 W. Thorndale

Itasca 60143

Tel: (31 2) 250-0500

ILLINOIS (Cont'd)

MT| Systems Sales
1100 West Thorndale
Itasca 60143

Tel: (312) 773-2300

TFioneer Electronics
1551 Carmen Drive
Elk Gvove Village 60007
Tel: (312) 437-
TWX: 910-222- 1834

INDIANA

TArrow Electronics, Inc.
2495 Directors Row, Suite H
Indianapolis 46241
Tel: (317) 243-9353

TWX: 810-341-3119

Hamilton, Avnet Elec(mnucs
485 Gradle Dr

Carmel 46032

Tel: (317) 844-9333

TWX: 810-260-3966

tPioneer Electronics
6408 Castleplace Drive
Indianapolis 46250
Tel: (317) 849-7300
TWX: 810-260-1794

KANSAS

tHamilton/Avnet Electronics
9219 Quivera Road
Overland Park 66215

Tel: (913) 888-8900

TWX: 910-743-0005

Pioneer Electronics
10551 Lackman Rd.
Lenexa 66215

Tel: (913) 492-0500

KENTUCKY

MICHIGAN

Arrow Electronics, Inc.
755 Phoenix Drive
Ann Arbor 48104

Tel: (313) 971-8220
TWX: 810-223-6020

fHamlI(nn/Avnet Electronics
7 Schoolcraft Road

ia 48150
Tel (313) 522-4700
TWX: 810-242-8775

Hamilton/Avnet Eleclromcs
2215 29th Street S.E.
Space A5
Grand Rapids 49508
Tel: (616) 243-8805
TWX: 810-273-6921

Pioneer Electronics

4505 Broadmoor Ave. 3.E.
Grand Rapids

Tel: (616) 555 IBOD

tPioneer Electromcs
13485 Sta

Livonia 48150

Tel: (313) 525-1800
TWX: 810-242-3271

MINNESOTA

tArrow Electronics, Inc.
5230 W. 73rd Street
Edina 55435

Tel: (612) 830-1800
TWX: 910-576-3125

Hammon/Avnet Electronics

12400 White Water Drive
2-06

TWX: (910) 576- 2720

tPioneer Electronics
10203 Bren Road East

1051 D. Newton Park
Lexin g(on 40511
Tel: (606) 259-1475

MARYLAND

Arrow Electronics, Inc.
8300 Gulford Road #H
Rivers Center
Columbia 21046

Tel: (301) 995-0003
TWX: 710-236-9005

1Ham||(on/Avnel Eleclromcs
6822 Oak H l
Columbia
Tel: (301) 995 -3500
TWX: 710-862-1861

1Mesa Technology Corp.
9720 Patuxentwood Dr.
Columbia 21046

Tel: (301) 720-5020
TWX: 710-828-9702

tPioneer Electronics
9100 Gaither Road
Gaithersburg 20877
Tel: (301) 921-0660
TWX: 710-828-0545

MASSACHUSETTS

tArrow Electronics, Inc
1 Arrow Drive

Woburn 01801

Tel: (617) 933-8130
TWX: 710-393-6770

tHamilton/Avnet Electronics
100 Cemennlal Drive
Peabod;

Tel: (61;) 532-3701

TWX: 710-393-0382

Kierulff Electronlcs inc
13 Fortuns

Billerica 01 821

Tel: (617) 667-8331
MTI Systems Sales

13 Fortune Drive
Billerica 01821

Pioneer Northeast Electronics

TWX: 710-326-6617

5343
Tel: (612) 935-5444
TWX: 91 576«2738
MISSOURI

TArrow Electromcs Inc.
2380 Sch

St. Louis 5314!

Tel: (314) 567-6888
TWX: 910-764-0882

tHamilton/Avnet Electronics
13743 Shoreline Court

h City 63045
Tel (314) 344-1200
TWX: 910-762-0684
Kierulff Electronics, Inc.
11804 Borman Dr.

St. Luis 63146
Tel: (314) 997-4956

NEW HAMPSHIRE

tArrow Electronics, Inc.
3 Perimeter Road
Manchester 03103

Tel: (603) 668-6968
TWX: 710-220-1684

Hamilton/Avnet Electronics
444 E. Industrial Drive
Manchester 03104

Tel: (603) 624-9400

NEW JERSEY

tArrow Electronics, inc.
6000 Lincoln East
Mariton 08053

Tel: (609) 596-8000
TWX: 710-897-0829

tArrow Electronics, Inc.
2 Industrial Road
Fairfield 07006

Tel: (201) 575-5300
TWX: 710-998-2206

tHamilton/Avnet Electronics
1 Keystons Avenue
Bldg.
Char
el: (¢ 9\ 424 Ol 10
TWX 710-940-0262

tMicrocomputer System Technical Distributor Centers
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NEW JERSEY (Cont'd)

‘tHamilton/Avnet Electronics
10 industrial

Fairfield 07006

Tel: (201) 575-3390

TWX: 701-734-4388

tpioneev Nonheast Electronics
5 Rout

Prncbrook 0705
Tel: (201) 575-3510
TWX: 710-734-4382

1MTI Sys(ems Sales
383 Ro 46 W
Fairfiel DOG

Tel: (201) 227-5552

NEW MEXICO
Alliance Electronics Inc.
030 Cochiti S.E.

Albuquerque 87123
Tel: (505) 292-3360
TWX: 910-989-1151

Hamilton/Avnet Electronics
2524 Baylor Drive S.E
Albuquerque 87106
Tel (505) 765-1500

X: 910-989-0614

NEW YORK

Arrow Electronics. Inc
25 Hub Drive

Melville 11747

Tel: (516) 694-6800
TWX: 510-224-6126

tArrow Electronics, Inc.

3375 Brighton-Henrietta Townline Rd

Rochester 14623
Tel: (716) 427-0300
TWX: 510-253-4766

Arrow Electronics, Inc.
7705 Maltage Drive
Liverpool 13088

Tel: (315) 652-1000
TWX: 710-545-0230

Arrow Electronics, Inc
20 Oser Avenue
Hauppauge 11788
Tel: (516) 231-1000
TWX: 510-227-6623

Hamilton/Avnet Electronics
333 Metro Park

Rochester 14623

Tel: (716) 475-9130

TWX: 510-253-5470

‘tHamilton/Avnet Electronics
103 Twin Oaks Drive
Syracuse 13206

Tel: (315) 437-2641

TWX: 710-541-1560
‘tHamilton/Avnet Electronics
933 Motor Parkway
Hauppauge 11788

Tel: (516) 231-9800

TWX: 510-224-6166

1MTI Systems Sales
38 Harbor Pavk Drive
P.0. Box 271

Port Washington 11050
Tel: (516) 621-6200
TWX: 510-223-0846

tPioneer Northeast Electronics
1806 Vestal Parkway East
Vestal 13850

Tel: (607) 748-8211

TWX: 510-252-0893

tPioneer Northeast Electronics
60 Crossway Park West

bury, Long Island 11797
Tel: (516) 921-8700
TWX: 510-221-2184

DOMESTIC DISTRIBUTORS

NEW YORK (Cont'd)

tPioneer Northeast Electronics
840 Falvpon ark

rt 14450
Tel (716) 381-7070
TWX: 510-253-7001

NORTH CAROLINA

tArrow Electronics, Inc.
5240 Greendairy Road
Ralelgh 27604

Tel: (319) 876-3132
TWX: 510-928-1856

OREGON (Cont’d)

Wyle Distribution Group

5250 N.E. Elam Young Parkway
Suite 600

Hillsboro 97124

Tel: (503) 640-6000

TWX: 910-460-2203

PENNSYLVANIA

Arrow Electronics, Inc.
650 Seco Road
Monroeville 15146
Tel: (412) 856-7000

35‘0 Sprlngmorest Drive

Tel (319) 878-0819
TWX: 510-928-1836

Pioneer Electronics

9801 A-Southern Pine Blvd
Charlotte 28210

Tel: (704) 527-8188

TWX: 810-621-0366

OHIO

Arrow Electronics, Inc

TWX: 810-459-1611

+Arrow Electronics. Inc.
6238 Cochran Road
Solon 44139

Tel (216) 248-3990
TWX: 810-427-3409

Hamilton/Avnet Electronics
777 Brookedge Bivd.
Westerville 4: 081

Tel: (614) 882-7004

tHamilton/Avnet Electronics
954 Senate Drive

Dayton 45459

Tel: (513) 433-0610

TWX: 810-450-2531
tHamilton/Avnet Electronics
4588 Emery Industrial Parkway
Warrensville Heights 44128
Tel: (216) 831-3500

TWX: 810-427-9452

tPioneer Electronics
£433 Interpoit Bivd
Dayton 4!

Tel (513) 2369900

TWX: 810-459-1622

tPioneer Electronics
4800 E. 131st Street
Cleveland 44105
Tel: (216) 587-3600
TWX: 810-422-2211

OKLAHOMA

Arrow Electronics, Inc
4719 S. Memonal Drive
Tulsa 7414!

Tel: (918) 665 7700

OREGON
tAlmac Electronics Corpora-

tion
1885 N.W. 169th Place

Beaverton
Tel (503) 629-8090
X: 910-467-8743

tTHamiltonjAvnet Electronics
6024 S.W. Jean Road

Bldg. C, Suite 10

Lake Oswego 97034

Tel: (503) 635-7848

TWX: 910-455-8179

'2800 leertg Ave., Bldg E
Pmsbur?
Tel: (413) 281 uso

Pioneer Electronics

Tel: (412) 782-2300
TWX: 710-795-3122

tPioneer Electronics
261 Gibralter Road
Horsham 19044

Tel: (215) 674-4000
TWX: 610-665-6778

TEXAS

tArrow Electronics, Inc
3220 Commander Drive
Carroliton 75006

Tel: (214) 380-6464
TWX: 910-860-5377

tArrow Electronics, Inc.
10899 Kinghurst

Suite 100

Houston 77099

Tel: (713) 530-4700
TWX: 910-880-4439

tArrow Electronics, Inc

10125 Metropolitan

Austin 78751

Tel: (512) 835-4180
TWX: 910-874-1348

tHamilton/Avnet Electronics
2401 Rutiand

Austin 78758

Tel: (512) 837-8911

TWX: 910-874-1319

1Hamllton/Avnel Electronics
11 W Walnur Hil Lane

in

Tel: ?214) 659-4100

TWX: 910-860-5929

tHamilton/Avnet Electronics
4850 Wright Road #190
Statford 77477

Tel: (713) 780-1771

TWX: 910-881-5523

Kierulff Elecllonlcs Inc.
9610 Skil

Dallas 75243

Tel: (214) 343-2400

tPioneer Electronics
1826 D. Kramer Lane
Austin 78758

Tel: (512) 835-4000
TWX: 910-874-1323

tPioneer Electronics
13710 Omega Road
Dallas 75234

Tel: (214) 386-7300
TWX: 910-850-5563

tPioneer Electronics
5853 Point West Drive
Houston 77036

Tel: (713) 988-5555
TWX: 910-881-1606

UTAH

‘tHamilton/Avnet Electronics
1585 West 2100 South

Salt Lake City 84119

Tel: (801) 972-2800

TWX: 910-925-4018

Kierulff Electronics, Inc.
1946 W. Parkway Bivd.
Salt Lake Cil 1
Tel: (801) 973-6913

Wyle Distribution Group
1325 West 2200 South
Suite E

Salt Lake City 84119
Tel: (801) 974-9953

WASHINGTON

tAlmac Electronics Corp.
14360 S.E. Eastgate Way
Bellevue 98007

Tel: (206) 643-9992
TWX: 910-444-2067

Arrow Electronics, Inc.
14320 N.E. 21st Street
Bellevue 98007

Tel: (206) 643-4800
TWX: 910-444-2017

Hamilton/Avnet Electronics
14212 N.E. 21st Street
Bellevue 98005

Tel: (206) 453-5874

TWX: 910-443-2469

Wyle Distribution Group
1750 132nd Ave., N.E
Bellvue 98005

Tel: (206) 453-8300

WISCONSIN

TArrow Electronics, Inc.
430 W. Rausson Avenue
Oakcreek 53154

Tel: (414) 764-6600
TWX: 910-262-1193

Hamilton/Avnet Electronics
2975 Moorland Road

New Berlin 53151

Tel: (414) 784-4510

TWX: 910-262-1182

Kierulff Electronics, Inc.
2238-E W. Bluemound Rd.
Waukeshaw 53186

Tel: (414) 784-8160

CANADA
ALBERTA
Hammon/Avnet Electromcs

Calgal EZZ
Tei: (4’33) 230-3586
TWX: 03-827-642

Hamilton/Avnet Electronics
6845 Rexwood Road Unit &
Mississauga, Ontario L4VIR2
Tel: (416) 677-0484

TZentvomcs
No. 1

3330 14th Avenue N.E.
Calgary T2A 6J4
Tel: (403) 272-1021

BRITISH COLUMBIA

Hamilton/Avnet Electronics
105-255/ Bound? Road
Burmalay V5M 373

Tel: (604) 272-4242

BRITISH COLUMBIA (Cont'd)

Zentronics

108-11400 Bridgapon Road
Richmond V6X 1T2

Tel: (604) 273-5575

TWX: 04-5077-89

MANITOBA

Zentronics
590 Berry Slreels
1

Tsl ( 775-8661

ONTARIO

Arrow Electronics Inc.

24 Martin Ross Avenue
Downsview

Tel: (416)66 -0220

TLX: 06-218213

Arrow Electronics Inc.
148 Colonnade Road
Nepean K2E 7J5

Tel: (613) 226-6903

THamilton/Avnet Electronics
5 A Road

Units G & H
Mississauga L4V 1R2
Tel: (416) §77-7432
TWX: 610-492-8867

tHamilton/Avnet Electronics
210 Colonnade Road South
Nepean K2E 7LS

Tel: (613) 226-1700

TWX: 05-349-71

tZentronics

8 Tilbury Court
Bramfton L6T 374
Tel: (416) 451-9600
TWX: 06-976-78

Zentronics

564/10 Weber Street North
Waterloo N2L 5C6

Tel: (519) 884-5700

tZentronics

155 Colonnade Road

Unit 17

Nepean K2E 7K1

Tel (613) 225-8840
X: 06-976-78

QUEBEC

tArrow Electronics Inc.
4050 Jean Talon Quest
Montreal H4P 1W1

Tel: (514) 735-5511
TLX: 05-25596

Arrow Electronics Inc.
9009 Charest Blvd.

uebec 61N 269
Tel: (418) 687-4231
TLX: 05-13388

Hamilton/Avnet Elsctmmcs
2795 Rue Halj

St. Laurent H4S IPB

Tel: (514) 335-1000

TWX: 610-421-3731

Zentronics

505 Locke Street
St. Laurent H4T 1X7
Tel: (514) 735-5361
TWX: 05-827-535

tMicrocomputer System Technical Distributor Centers
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BELGIUM

Intel Corporation S.A.
Rue es 65
B-1180 Brussels
Tel: (02) 347-0666

DENMARK

Intel Denmark A/S*
Glentevej 61 - 3rd Floor
DK- 2400 Co gnhagen

FINLAND

Intel Finland OY
Rousilantie 2
00390 Helsinki
Tel: (8) 0544-644
TLX: 123332

FRANCE

Intel Paris

1 Rue Edison, BP 303

78054 Saint-Quentin-en-Yvelines Cedex
Tel, &) 1:30:57- 7000

Intel Corporation, S.A.R.L
Immeuble B

4 Quai des Etroits

69005 Lyon

Tel: (7) 442-4089

TLX: 305153

WEST GERMANY

Intel Semiconductor GmbH*
Seidlestrasse 27

D-8000 Muenchen 2

Tel: (89) 538!

TLX: 0! 23177 INTL D

Intel Semiconductor GmbH
Verkaufsbuero Wiesbaden
Abraham-Lincoln Str. 16-18
6200 Wiesbaden

Tel: (6121) 76050

TLX: 04186183 INTW D

Intel Semiconductor GmbH
Verkaufsbuero Hannover
Hohenzollernstrasse 5
3000 Hannover 1

Tel: (511) 34-40-81

TLX: 923625 INTH D

Intel Semiconductor GmbH
Verkaufsbuero Stuttgart
Bruckstrasse 61

7012 Fellbach

Tel: (711) 58-00-82

TLX: 7254826 INTS D

EUROPEAN SALES OFFICES

ISRAEL

Intel Semiconductor Ltd*
Attidim Industrial Park

Bldg. ND |3 Mh Floor
P.O. Box 43202

Tel Avlv G 430

Tel: (3) 491-099, 491-098
TLX: 371215

ITALY

Inte! Corporation S.P.A.*
Milanofiori, Palazzo E/4
20090 Assago (Milano)
Tel: (02) 824-4071

TLX: 341286 INTMIL

NETHERLANDS

Intel Semiconductor (Nederland) B.V.*
Alexanderpoort Building
Marten Meesweg 93
3068 Rotterdam

Tel: (10) 21-23-77

TLX: 22283

NORWAY

intel Norwa; AIS

P.O. Box 9.

Hvamveien 4

N-2013, Skjetten

Tel: (2) 742-420
TLX: 78018

SPAIN

Intel Iberia

Calle Zurbaran 28-1ZQDA
28010 Madrid

Tel: (1) 410-4004

TLX: 46880

SWEDEN
Intel Sweden A.B.*

Tel (8) 734-0100
TLX: 12261

SWITZERLAND
Intel Semiconductor A.G.*
Talackerstrasse 17
8152 Glanbrugg
H-8065 Zuri
Tel: (01) 829- o
TLX: 57989 ICH CH

UNITED KINGDOM

Intel Corporanon (VK)Ld.”
Pipers Way

Swindon, Wiltshire SN1 1RJ
Tel: (0793) 696-000

TLX: 444447 INT SWN

*Field Application Location

EUROPEAN DISTRIBUTORS/REPRESENTATIVES

AUSTRIA

Bacher Elektronics Ges.m.b.H
Rotenmuehigasse 26

A-1120 Wien

Tel: (222) 835-6460

TLX: 131532

BELGIUM

Ineico Belgium S.A

Ave. des Croix de Guerre, 94
Bruxelles 1120

Tel: (02) 216-01-60

TLX: 64475

BENELUX

Koning en Hartman Electrotechniek B.V
Postbus 125

2600 AC Delft
Tel: (15) 609-906
TLX: 38250

DENMARK

ITT MultiKomponent
Naveriand 29
DK-2600 Glostrup

Tel: (02) 456-66-45
TLX: 33355 ITTCG DK

FINLAND

Oy Fintronic AB
Melkonkatu 24A
SF-00210 Helsinki 21
Tel: (0) 692-60-22

TLX: 124224 FTRON SF

FRANCE

Gener

Zone d Activite de Counaboeul
Tel: (1) 69-07-78-78

TLX: 691700

73 73’Hue des Solets
94663 Rungis Cedex
Tel: (1) 4 5—30—04-00
TLX: 290967

Metrologie

Tour d'Asnieres

4, Avenue Laurent Cely
92606 Asnieres

Tel: (1) 47-90-62-40

TLX: 611448

FRANCE (Cont'd)

Tekelec Airtronic

Cite des Bruyeres
Rue Carle Veme( BP 2
92310 Sevi

Tel (1)45 34 75-35

WEST GERMANY

Electronic 2000 Vertriebs AG
Stahlgruberring 12

8000 Muenchen 82

Tel: (089) 42-00-10

TLX: 522561 ELEC D

Jermyn GmbH
Schulstrasse 84

6277 Bad Camberg
Tel: (064) 34-231

TLX: 415257-0 JERM D

Metrologie GmbH
Meglingerstr. 49
8000 Muenchen 71
Tel: (089) 570-940
TLX: 5213189

Metrologie GmbH
Rheinstr. 94-96
6100 Darmstadt
Tel: (06151) 33661
TLX: 176151820

Proelectron Vertriebs AG
Max-Planck-Strasse 1-3
6072 Dreieich

Tel: (061 03) 3040

TLX: 41797

ITT-MultiKomponent
Bahnhofstrasse 44
7141 Moeglingen

Tel: (07147) 4879

TLX: 7264399 MUKO D

ISRAEL

Eastronics Ltd.
11 Rosanis Street
.0. Box 39300
Tel Aviv 61392
Tel: (3) 47-51-61
TLX: 342670 DATIX IL or
33638 RONIX IL

ITALY

Eledra Componenti S.P.A.
V'~ Giacomo

20143 Milano

Tel: (02) 82821

TLX: 332332

ITALY (Cont'd)

Intesi
Milanotion E5
0090 Assago
Tel: (02) 82:
TLX: 311351

Lasi Elettronica S.P.A

Viale Fulvio Testi, 126
20092 Ciniselio Balsamo
Tel: (02) 244-0012, 244-0212
TLX: 352040

NORWAY

Nordisk Electronik A/S
Postboks 130
N-1364 Hvalstad
Te!: (2) 846-210
TLX: 77546 NENAS N

PORTUGAL

Ditram

Avenida ’ Mar%ues de Tomar, 46A
Lisboa P-

Tel: (351-1) 734-834

TWX: (0404) 14182

SPAIN

21 -3 Mlguel Angel
Madrid 28010
Tel: (1) 419-54-00
TWX: 27461

A.T.D. Electronica S.A.
PI. Ciudad de Viena 6
28040 Madrid

Tel: (1) 234-4000
TWX: 42477

SWEDEN

Nordisk Elektronik AB
Box 1409

$-171 27 Solna

Tel: (B) 734-97-70
TLX: 10547

SWITZERLAND

Industrade AG
Hertistrasse 31
CH-8304 Wallisellen
Tel: (01) 830-5040
TLX: 56788

UNITED KINGDOM

Accent Electronic Components Ltd.
Jubilee House, Jubilee Wa
Letchworth, Herts SG6 1Ql

ngland
Tel: (0462) 686666
TLX: 626923

Bytech Ltd.

Unit 2 Western Centre

Western Industrial Estate
Bracknell Berkshire RG12 1RW

Englar
Tel (0344) 4azzu
TLX: 8482

Comway Microsystems Ltd.
John Scott House, Market St
Bracknell, Berkshire RJ12 1QP

England
Tel: (0344) 55333
TLX: 847201

IBR Microcomputers Ltd.

Unit 2 Western Centre

Western Industrial Estate
Bracknell, Berkshire RG12 1RW

England
Tel: (0344) 486-555
TLX: 849381

Jermyn Industries
Vestry Estate, Otford Road
Sevenoaks, Kent TN14 5EU

England
Tel: (0732) 450144
TLX: 95142

Rapid Silicon
Rapid House, Denmark St.
High Wycombe, Bucks HP11 2ER

England
Tel: (0494) 442266
TLX: 837931

Rapid Systems
Rapid House, Denmark St.
ngh Wycombe, Bucks HP11 2ER

oy (0494) 450244
TLX: 837931

Micro Marketing

Glenageary Office Park

Glenageary, Co. Dublin

Irelan

Tel: (0001) 856288

TLX: 31584

YUGOSLAVIA

H.R. Microelectronics Corp.
2005 De La Cruz Bivd,, Ste. 223

Santa Clara, CA 95050 LSA.
Tel (408) 938
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INTERNATIONAL SALES OFFICES

AUSTRALIA
Intel Australia Pty. Ltd.*
rum Building

200 Pacific Hwy., Level 6
O\ , NSW,

Tal (2) 9571 2744

FAX (2) 923—2632

CHINA

Intel PRC Corporation

15/F, Office 1, Citic Bldg
J uo Men Wai Street

o 500
Tox 2204y INTEL ON
FAX: (1) 500-2953

HONG KONG

Intel Semiconductor Ltd.*
1701-3 Connaught Centre
1 Connaught Road
Tel (5) 844-4555

X: 63869 ISLHK HX
FAX (5) 294-589

ARGENTINA

VLC S.R.L. Bartalome Mitre 1711
3 Piso

1037 Buenos Aires

Tel: 54-1-49-2092

TLX: 17575 EDARG-AR

AUSTRALIA

Total Electronics

YLX AA 31261

Total Electronics

P.O. Box

Artamon, N.S.W. 2064
Tel: 61-02-438-1855
TLX: 26297

BRAZIL

Elebra Microelectronica S/A
Geraldo Flausino Gomes, 78

a
04575 - Sao Pauio - S.P.
Tel: 55-11-534-9600
TLX: 3911125131 ELBR BR
FAX: 55-11-534-9424
CHILE
DIN Instruments
uecia 2323
Casilla 6055, Correo 22
Santiago
Tel: 56-2-225-8139
TLX: 440422 RUDY CZ
CHINA
Novel Precision Macnmerg Co., Ltd.
Flat D, 20 Kingsford Ind. Bldg

Phase 1, 26 Kwai Hei Street
N.T., Nowloon

FAX: 852-0-261-602

JAPAN

Intel Japan K K.

5-6 Tokodai Toyosato-machi
Tsukuba: un Ibaraki-ken 300-26
Tel: (02) 97-47-8511

TLX: 03555-1 60

Intel Japan K.K.”
Daiichi Mitsugi Bidg.
9 Fuchu-cho
Fuchu-shi, Tokyo 183
Tel: (04) 23-60-7871

Intel Japan K.K.*
Flower-Hill Shin-machi Bldg
| 23 -9 Shinmachi

%ya-ku Tokyo 154
Tel (03) 426-2231

Intel Japan K K.*
Kumagaya Bld

2-69 I‘? 4 o
Kumagaya Sanama 360
Tel: (04) 85-24-6871

Intel Japan K.K.
Mishima Tokyo-Kaijo Bldg

1.1 Shibanon-cho, bsnima-shi
Shizuoka-ken 4

Tel: (05) 59-72- it

JAPAN (Cont'd)

Intel Japan K.K.*

Mitsui-Seimei Musashi-Kosugi Bidg.
915-20 Shinmaruko, Nakahara-ku
Kawasaki-shi, Kanagawa 21

Tel: (04) 47-33-7011

mlel Ja an K K

Bldg
1 12 c
Atsugi Kana jawa 243
Tel: (04) 62-23-3511

Intel Japan K.K."
Ryokuchi-Station Bldg
2-4-1 Terauchi
Toyonaka, Osaka 560
Tei: (06) 863-1091

Chiyoda-ku, Tokyo 100
Tel: (03) 201-3621

INTERNATIONAL
DISTRIBUTORS/REPRESENTATIVES

CHINA (Cont'd)

Schmidt & Co. Lt

18/F Great Eagle Cemre
23 Harbour Road
Wanchai, Hong Kong
Tel: 852-5»833-0222

FAX: 852- 5 891-8754
INDIA

Micronic Devices

Basavanagudi

Bangalore 560 004

Tel: 91-812-600-631

TLX: 0845-8332 MD BG IN

Micronic Devices
403, Gagan Deep
12, Rajendra Place
New Delhi HO 008
I: 91-58-97-]
LX 03163235 MDND IN

Micronic Devices

No. 516 5th Floor
Swastik Chambers
Sion, Chambray Road
Bombay 400 071

-39-63
TLX: 9531 171447 MDEV IN
JAPAN

Asahi Electronics Co. Ltd.
KMM Bidg. 2-14-1 Asano
Kokurakita-ku
Kitakyushu-shi 802

: 093-511-6471
FAX: 093-551-7861

C. Itoh Techno-Science Co., Ltd.
C. Itoh Bldg.. 2-5-1 Kita-Aoyama
Minato-ku, Tokyo 107

Tel: 03-497-4

FAX: 03-497-4969

JAPAN (Cont'd)

Dia Semicon Systems, Inc.
Wacore 64, 1-37-8 Sangenjaya
Seta aya ku Takyo 15

Tel: 03-487-0:

FAX: 03-487- 8088

Okaya Koki

2-4-18 Sakae

Naka-ku, Nagogyarshn 460
Tel: 052-204-2911

FAX: 052-204-2901

Konwa

11222 Tsukql
Chuo-ku, Tokyo 104
Tel: 03-546-5011
FAX: 03-546-5044

Ryoyo Electro Corp
idg

KOREA
J-Tek Corporation

6th Floor, Government Pension Bldg.
-Don,

24-3 Yoido
Youngdeungpo-ku
RE

eoul
Tel: 82-2-782-8039
TLX: 25299 KODIGIT
FAX: 82-2-784-8391

Samsung Semiconductor &
Telecommunications Co., Ltd.
150, 2-KA, Tafpyung-ro, Chung-ku

Seoul 1

Tel: 82-2-751-3987
TLX: 27970 KORSST
FAX: 82-2-753-0967

MEXICO

Dicopel S.A.

Tochtii 368 Fracc. Ind. San Antonio
Azcapotzalco

C.P. 02760-Mexico, D.F.

Tel: 52-5-561-32
TLX: 1773790 DICOME

KOREA

Intel Technology Asia le

Room 906, Sing sor?

25-4, Voud(yDong oungooungpo-ku
Seoul 150

Tel: (2) 784-8186

TLX: 29312 INTELKO

FAX: (2) 784-8096

SINGAPORE

Intel Smgapcre Technology, Ltd.
1-1 Thom: Road

#21-06 Goldmll Square
Singapore 1130

Tel: 250-7811

TLX: 39921 INTEL

FAX: 250-9256

TAIWAN

Intel Technology (Far East) Ltd
Taiwan Branch

10/F., No. 205, Tun Hua N. Road
Taipei, R.0.C.

Tel: (02) 716-9660

TLX: 13159 INTELTWN

FAX: (02) 717-2455

“Field Application Location

NEW ZEALAND
Nonmup Instruments & Systems Ltd
459 KJO r Pass Road
9464 Newmarket
Auckland
Tel: 64-9-501-219, 501-801
TLX: 21570 THERMAL
Northrup Instruments & Systems Ltd.
.0. Box 2406
Waellington 856658
Tel: 64-4-856-658
TLX: NZ3380
FAX: 64-4-857276
SINGAPORE

Francotone Eleclmmcs Pte Ltd.
17 Harvey Road 4-01
Singapore 1336

Tel: 283-0888, 289-1618

TWX: 56541 FRELS

FAX: 2895327

SOUTH AFRICA
Elaclromc Building Elements, Pty. Ltd.
0. Box 4609

Pme Square, 18th Street
Hazelwood, Pretoria 0001
Tel: 27-12-469921
TLX: 3-227786 SA

TAIWAN

Mitac Corporation

No. 585, Ming Shen East Rd.
Tanpel. R.O.
Tel: 886-2-501-8231
FAX: 886-2-501-4265

VENEZUELA

P. Benavides S/A
Avilanes a Rio
Residencias Kamara'a
Locales 4 A17
Candelaria, Caracas
1-4

TLX:
FAX: 58-2-572-3321
“Fiela Application Location
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ALABAMA

Intel Corp.

5015 Bradford Drive, #2
Huntsville 35805

Tel: (205) 830-4010

ARIZONA

Intel Cor
1|225 N Poth or. #D214

ix 85029
Tel: (602) 869-4980

Intel CO
500 E. ry Bivd., Suite M-15
Sierr: 63

Tel: (602) 459-501 0
ARKANSAS

Intel Corp.

P.O. Box 206

Uim 72170

Tel: (501) 241-3264

CALIFORNIA

215!5 Vgnowen

uite
Canoga Park 91303
Tel: (818) 704-8500

Intel Corp.

2250 E. Impenal Highway
Suite 2

El Segundo 90245

Tel: 1-800-468-3548

Intel Corp.

1900 Pralrle C|
Folsol

Tel: (91 6) 35‘ -6143

Intel Corp.

2000 E. 4th Street
Suite 110

Santa Ana 92705
Tel: (714) 835-5789
TWX: 910-595-2475

Intel Corp.

2700 San Tomas Expressway
Santa Clara 95051

Tel: (408) 970-1740

Intel Corp.

4350 Executive Drive
Suite 150

San Diego 92121

Tel: (619) 452-5880

COLORADO

Intel Cor,

650 Somh Cherry
Suite
Den 222

Tel: (303) 321 -8086
TWX: 910-931-2289

CALIFORNIA

2700 San Tomas Expressway
Santa Clara 95051
Tel: (408) 970-1700

CALIFORNIA

2700 San Tomas Expressway
Santa Clara 95051
Tel: (408) 986-8086

DOMESTIC SERVICE OFFICES

CONNECTICUT
Intel Corp.

26 Mill Plain Road
Danburg 06811

Tel: (203) 748-3130
FLORIDA

Intel Corp.

1500 N.W. 62, Suite 104
Ft. Lauderdale 33309
Tel: (305) 771-0600
TWX: 510-956-9407

Intel Corp.

242 N. Westmonte Drive
Suite 105

Altamonte Springs 32714
Tel: (305) 869-5588

GEORGIA

Intel Corp.

3280 Pointe Parkway
Suite 200

Norcross 30092
Tel: (404) 441-1171

ILLINOIS

Intet Corp.

300 N. Martingate Rd.
Suite 300
Schaumburg 60194
Tel: (312) 310-5733

INDIANA

intel Cor|

8777 Purdue Rd., #125
Indianapolis 46268

Tel: (317) 875-0623

KANSAS

Intel Corp.

8400 W. 110th Street
Suite 170

Overland Park 66210
Tel: (913) 345-2727

KENTUCKY

Intel Corp.
3525 Tatescreek Road.

Zexington 40502
Tel: (606) 272-6745

MARYLAND

Intel Corp

5th Floor

7833 Walker Drive
Greenbelt 20770
Tel: (301) 441-1020
MASSACHUSETTS
Intel Corp.

3 Carlisle Road

Westford 01886
Tel: (617) 692-1060

CUSTOMER TRAINING CENTERS

ILLINOIS

300 N. Martingale, #300
Schaumburg 80173
Tel: (312) 310-5700

ILLINOIS

300 N. Marting ale. #300
Schaumburg
Tel: (312) 3104 9031

MICHIGAN

Intel Corp.

7071 Orchard Lake Road
Suite 100

West Bloomfield 48033
Tel: (313) 851-8905
MISSOURI

Intel Corp.

4203 Earth City Expressway
Suite 143

Earth Ci 045

Tel: (31 4) 291 -2015

NEW JERSEY

Intel Corp.

TWX: 710-991-8593

Intel Corp.
Raritan Plaza i
Rantan Center

ison 08817

Tel (201) 225-3000

NORTH CAROLINA

intel Corp.

2306 W. Meadowview Road
Suite 206

Greensboro 27407

Tel: (919) 294-1541

Intel N
2700 Trych" Rd, Suite 102

g 271
Tel (919) 781-8022
OHIO

Intel Corp.
Chagv:;maramard BIdg.

Sui

28001 Chagrin Bculevavd
Cleveland 4412:

Tel: (216) 464-+ 5915

TWX: 810-427-9298

Intel Corp.

6500 Poe

Dayton 45414

Tel: (513) 890-5350

OREGON

Intel Corp.

15254 N.W. Greenbrier
18! 36

TWX 910- 467 374!

Intel Corp

5200 N.E. Elam Young Parkway

Hillsboro 97123
Tel: (503) 681-8080

MASSACHUSETTS

3 Carlisle Road
Westford 01886
Tel: (617) 692-1000

SYSTEMS ENGINEERING OFFICES

MASSACHUSETTS

3 Carlisle Road
Westford 01886
Tel: (617) 692-3222

PENNSYLVANIA

Intel Corp.
gm Pann Cenlw Boulevard
uite

Tal: (31‘:‘?) 354-1540
TEXAS

313 E Anuerson Lane
Suite 314
Austzn 75752
el: (512) 454-
TWX 91 0-874—'347

intel

!2300 Ford Road
Suite 380

Dallas 75234

Tel: (214) 241-2820
TWX: 910-860-5617

Intel Corp.

8815 Dyer St., Suite 225

El Paso 79!

Tel: (915) 751-0186
VIRGINIA

intel Corp.

1603 Santa Rosa Rd., #109

Richmond 23288
Tel: (804) 282-5668

WASHINGTON

|10 1|0!h Avenue N.E.

TWX: 910-443-3002
WISCONSIN

N unnyslope Road
Suite 130

Brooklield
Tel: (414) 784-8087
CANADA

intel Corp.

190 Atiwell Drive, Suite 103
Rexdaie Onlan

Canad: 8R2

Tel: (416) 675 2105

Intel Corp.

620 St. Jean Bivd.

Painte Claire, Quebec

Canada H9R 3K2

Tel: (514) 694-9130

Intel Corp.

2650 Queensview Drive, #250
ntario,

Ottawa,
Canada K2B 8H6
Tel: (613) 829-9714

MARYLAND
7833 Walker Dr., 4th Floor

Greenbelt 20770
Tel: (301) 220-3380

NEW YORK
300 Motor Parkway

Haupj 0 11788
Tel: (586.‘)9231»3300

CG-3/17/87




UNITED STATES

Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051

JAPAN

Intel Japan K.K.

5—6 Tokodai Toyosato-machi
Tsukuba-gun, Ibaraki-ken 300-26
Japan

FRANCE

Intel Paris

1 Rue Edison, BP 303

78054 Saint-Quentin en Yvelines
France

UNITED KINGDOM

Intel Corporation (U.K.) Ltd.
Piper’s Way

Swindon

Wiltshire, England SN3 1R]

WEST GERMANY

Intel Semiconductor GmbH
Seidlstrasse 27

D-8000 Munchen 2

West Germany

HONG KONG

Intel Semiconductor Ltd.
1701 Connaught Centre
1 Connaught Road
Hong Kong

Printed in U.S.A./C87-084/0687/25K/RRD LD
Microprocessors
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