

inter
LITERATURE SALES ORDER FORM

NAME: __ _

COMPANY: ___ __

ADDRESS: __ _

CITY: _________________ STATE: ____ ZIP: ____ _

COUNTRY: ____________________________ ___

PHONE NO.:('-__!-________________________ ___

ORDER NO.

Must add appropriate postage to subtotal
(10% U.S. and Canada, 20% all other)

TITLE QTY. PRICE TOTAL

__ X ___ = ___ __

__ X ___ = ___ __

__ X ___ = ___ __

__ X ____ = ___ __

__ X ___ = ___ __

__ X ___ = ___ __

__ X ___ = ___ __

__ X ___ = ___ __

__ X ___ = ___ __

___ X ___ = ____ __

Subtotal ___ __

Must Add Your

Local Sales Tax ____ __

------------!» Postage ____ __

Total ___ __

Pay by Visa, MasterCard, American Express, Check, Money Order, or company purchase order payable
to Intel Literature Sales. Allow 2-4 weeks for delivery.
o Visa 0 MasterCard 0 American Express Expiration Date ____ _
Account No. _____________________________ __

Signature: _____________________________ _

Mail To: Intel Literature Sales
P.O. Box 58130
Santa Clara, CA
95052-8130

International Customers outside the U.S. and Canada
should contact their local Intel Sales Office or Distributor
listed in the back of most Intel literature.

Call Toll Free: (800) 548-4725 for phone orders

Prices good unli112/31/87.

Source HB

80387
PROGRAMMER'S REFERENCE

MANUAL

1987

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which may
appear in this document nor does it make a commitment to update the information contained herein.

Intel retains the right to make changes to these specifications at any time, without notice.

Contact your local sales office to obtain the latest specifications before placing your order.

The following are trademarks of Intel Corporation and may only be used to identify Intel Products:

Above, BITBUS, COMMputer, CREDIT, Data Pipeline, FASTPATH, Genius, i, t.
ICE, iCEL, iCS, iDBP, iDIS, I"ICE, iLBX, im, iMDDX, iMMX, Inboard, Insite, Intel,
intel, intelBOS, Intel Certified, Intelevision, inteligent Identifier, inteligent
Programming. Intellec, Intellink, iOSP, iPDS, iPSC, iRMK, iRMX, iSBC, iSBX,
iSDM, iSXM, KEPROM, Library Manager, MAPNET, MCS, Megachassis,
MICROMAINFRAME, MULTIBUS, MULTICHANNEL, MUL TIMODULE,
MultiSERVER, ONCE, OpenNET, OTP, PC BUBBLE, Plug-A-Bubble, PROMPT,
Promware, QUEST, QueX, Quick-Pulse Programming, Ripplemode, RMX/80,
RUPI, Seamless, SLD, SugarCube, SupportNET, UPI, and VLSiCEL, and the
combination of ICE, iCS, iRMX, iSBC, iSBX, iSXM, MCS, or UPI and a numerical
suffix, 4-SITE.

MDS is an ordering code only and is not used as a product name or trademark. MDS" is a registered trademark of Mohawk
Data Sciences Corporation.

"MULTIBUS is a patented Intel bus.
Unix is a trademark of AT&T Bell Labs.
MS-DOS, XENIX, and Multiplan are trademarks of Microsoft Corporation.
Lotus and 1-2-3 are registered trademarks of Lotus Development Corporation.
SuperCalc is a registered trademark of Computer Associates International.
Framework is a trademark of Ashton-Tate.
System 370 is a trademark of IBM Corporation.
AT is a registered trademark of IBM Corporation.

Additional copies of this manual or other Intel literature may be obtained from:

Intel Corporation
Literature Distribution
Mail Stop SC6-59
3065 Bowers Avenue
Santa Clara, CA 95051

@INTEL CORPORATION 1987 CG-5/26/87

PREFACE

This manual describes the 80387 Numeric Processor Extension (NPX) for the 80386 micro­
processor. Understanding the 80387 requires an understanding of the 80386; therefore, a
brief overview of 80386 concepts is presented first. A detailed discussion of the 80386 micro­
processor can be found in the 80386 Programmer's Reference Manual.

THE 80386 MICROSYSTEM

The 80386 is the basis of a new VLSI microprocessor system with exceptional capabilities
for supporting large-system applications. This powerful microsystem is designed to support
multiuser reprogrammable and real-time multitasking applications. Its dedicated system
support circuits simplify system hardware; sophisticated hardware and software tools reduce
both the time and the cost of product development. The 80386 micro system offers a total­
solution approach, enabling you to develop high-speed, interactive, multiuser, multitask­
ing--even multiprocessor-systems more rapidly and at higher performance than ever before.

Reliability and system up-time are becoming increasingly important in all applications.
Information must be protected from misuse or accidental loss. The 80386 includes a
sophisticated and flexible four-level protection mechanism that can isolate layers of
operating system programs from application programs to maintain a high degree of
system integrity.

• The 80386 addresses up to 4 gigabytes of physical memory to support today's applica­
tion requirements. This large physical memory enables the 80386 to keep many large
programs and data structures simultaneously in memory for high-speed access.

For applications with dynamically changing memory requirements, such as multiuser
business systems, the 80386 CPU provides on-chip memory management and virtual
memory support. On an 80386-based system, each user can have up to 64 terabytes of
virtual-address space. This large address space virtually eliminates restrictions on the
size of programs that may be part of the system. The memory management features are
subject to control of systems software; therefore, systems software designers can choose
among a variety of memory-organization models. Systems designers can choose to view
memory in terms of fixed-length pages, in terms of variable length segments, or as a
combination of pages and segments. The sizes of segments can range from one byte to
4 gigabytes. Virtual memory can be implemented either at the level of segments or at
the level of pages.

• Large multiuser or real-time multitasking systems are easily supported by the 80386.
High-performance features, such as a very high-speed task switch, fast interrupt-response
time, intertask protection, page-oriented virtual memory, and a quick and direct operat­
ing system interface, make the 80386 highly suited to multiuser/multitasking
applications.

• The 80386 has two primary operating modes: real-address mode and protected mode.
In real-address mode, the 80386/80387 is fully upward compatible from the 8086,8088,
80186, and 80188 microprocessors and from the 80286 real-address mode; all of the
extensive libraries of 8086 and 8088 software execute 15 to 20 times faster on the 80386,
without any modification.

iii

PREFACE

• In protected-address mode, the advanced memory management and protection features
of the 80386 become available, without any reduction in performance. Upgrading 8086
and 8088 application programs to use these new memory management and protection
features usually requires only reassembly or recompilation (some programs may require
minor modification). Entire 80286 protected-mode applications can run in this mode
without modification.

• The virtual-8086 mode of the 80386 is available when the primary mode is protected
mode. Virtual-8086 mode enables direct execution of multiple 8086/8088 programs
within a protected-mode environment. Most 8086 and 8088 application programs can
be executed in this environment without alteration (refer to the 80386 Programmer's
Reference Manual for differences from 8086). This high degree of compatibility between
80386 and earlier members of the 8086 processor family reduces both the time and the
cost of software development.

THE ORGANIZATION OF THIS MANUAL

This manual describes the 80387 Numeric Processor Extension (NPX) for the 80386 micro­
processor. The material in this manual is presented from the perspective of software design­
ers, both at an applications and at a systems software level.

• Chapter 1, "Introduction to the 80387 Numerics Processor Extension," gives an overview
of the 80387 NPX and reviews the concepts of numeric computation using the 80387.

• Chapter 2, "80387 Numerics Processor Architecture," presents the registers and data
types of the 80387 to both applications and systems programmers.

Chapter 3, "Special Computational Situations," discusses the special values that can be
represented in the 80387's real formats---denormal numbers, zeros, infinities, NaNs (not
a number)-as well as numerics exceptions. This chapter should be read thoroughly by
systems programmers, but may be skimmed by applications programmers. Many of these
special values and exceptions may never occur in applications programs.

Chapter 4, "80387 Instruction Set," provides functional information for software
designers generating applications for systems containing an 80386 CPU with an 80387
NPX. The 80386/80387 instruction set mnemonics are explained in detail.

• Chapter 5, "Programming Numeric Applications," provides a description of program­
ming facilities for 80386/80387 systems. A comparative 80387 programming example
is given.

• Chapter 6, "System-Level Numeric Programming," provides information of interest to
systems software writers, including details of the 80387 architecture and operational
characteristics.

$ Chapter 7, "Numeric Programming Examples," provides several detailed programming
examples for the 80387, including conditional branching, the conversion between
floating-point values and their ASCII representations, and the use of trigonometric
functions. These examples illustrate assembly-language programming on the 80387 NPX.

Appendix A, "Machine Instruction Encoding and Decoding," gives reference informa­
tion on the encoding of NPX instructions. This information is useful to writers of debug­
gers, exception handlers, and compilers.

iv

PREFACE

• Appendix B, "Exception Summary," provides a list of the exceptions that each instruc­
tion can cause. This list is valuable to both applications and systems programmers.

• Appendix C, "Compatability between the 80387 and the 80287/8087," describes the
differences from the 80387 that are common to the 80287 and the 8087.

• Appendix D, "Compatability between the 80387 and the 8087," describes the additional
differences between the 80387 and the 8087 that are of concern when porting 8086/
8087 programs directly to the 80386/80387.

• Appendix E, "80387 80-Bit CHMOS III Numeric Processor Extension," reproduces a
data sheet of 80387 specifications that is separately available. The table of instruction
timings in this appendix will be of interest to many readers of this manual. (The AC
specifications have been deliberately left out.) The specifications in data sheets are subject
to change; consult the most recent data sheet for design-in information.

• Appendix F, "PC/AT-Compatible 80387 Connection," documents a nonstandard method
of connecting an 80387 to an 80386 to achieve compatibility with the IBM PC/AT.

• The Glossary defines 80387 and floating-point terminology. Refer to it as needed.

RELATED PUBLICATIONS

To best use the material in this manual, readers should be familiar with the operation and
architecture of 80386 systems. The following manuals contain information related to the
content of this manual and of interest to programmers of 80387 systems:

Introduction to the 80386, order number 231252

• 80386 Data Sheet, order number 231630

• 80386 Hardware Reference Manual, order number 231732

• 80386 Programmer's Reference Manual, order number 230985

• 80387 Data Sheet, order number 231920

v

TABLE OF CONTENTS

CHAPTER 1 Page
INTRODUCTION TO THE 80387 NUMERICS PROCESSOR EXTENSION

1.1 History ... 1-1
1.2 Performance .. 1-1
1.3 Ease of Use ... 1-3
1.4 Applications ... 1-4
1.5 Upgradability 1-5
1.6 Programming Interface 1-6

CHAPTER 2
80387 NUMERICS PROCESSOR ARCHITECTURE

2.1 80387 Registers .. 2-1
2.1.1 The NPX Register Stack .. 2-1
2.1.2 The NPX Status Word .. 2-3
2.1.3 Control Word .. 2-4
2.1.4 The NPX Tag Word .. 2-7
2.1.5 The NPX Instruction and Data Pointers .. 2-7
2.2 Computation Fundamentals 2-9
2.2.1 Number System ... 2-10
2.2.2 Data Types and Formats .. 2-11
2.2.2.1 Binary Integers .. 2-11
2.2.2.2 Decimal Integers .. 2-13
2.2.2.3 Real Numbers ... 2-13
2.2.3 Rounding Control ... 2-15
2.2.4 Precision Control .. 2-16

CHAPTER 3
SPECIAL COMPUTATIONAL SITUATIONS

3.1 Special Numeric Values 3-1
3.1.1 Denormal Real Numbers 3-1
3.1 .1.1 Denormals and Gradual Underflow .. 3-4
3.1.2 Zeros .. 3-6
3.1.3 Infinity ... 3-9
3.1.4 NaN (Not-a-Number) 3-10
3.1.4.1 Signaling NaNs .. 3-11
3.1.4.2 Quiet NaNs 3-11
3.1.5 Indefinite ... 3-12
3.1.6 Encoding of Data Types 3-13
3.1.7 Unsupported Formats .. 3-13
3.2 Numeric Exceptions 3-18
3.2.1 Handling Numeric Exceptions ... 3-18
3.2.1.1 Automatic Exception Handling 3-18
3.2.1.2 Software Exception Handling 3-19

vii

T ABLE OF CONTENTS

3.2.2 Invalid Operation
3.2.2.1 Stack Exception
3.2.2.2 Invalid Arithmetic Operation
3.2.3 Division by Zero .. .
3.2.4 Denormal Operand
3.2.5 Numeric Overflow and Underflow .. .
3.2.5.1 Overflow
3.2.5.2 Underflow
3.2.6 Inexact (Precision)
3.2.7 Exception Priority
3.2.8 Standard Underflow/Overflow Exception Handler

CHAPTER 4
THE 80387 INSTRUCTION SET

4.1 Compatibility with the 80287 and 8087
4.2 Numeric Operands
4.3 Data Transfer Instructions
4.3.1 FLD source
4.3.2 FST destination
4.3.3 FSTP destination
4.3.4 FXCH //destination .. .
4.3.5 FILD source
4.3.6 FIST destination .. .
4.3.7 FISTP destination
4.3.8 FBLD source
4.3.9 FBSTP destination .. .
4.4 Nontranscendental Instructions
4.4.1 Addition
4.4.2 Normal Subtraction
4.4.3 Reversed Subtraction
4.4.4 Multiplication
4.4.5 Normal Division
4.4.6 Reversed Division
4.4.7 FSQRT
4.4.8 FSCALE
4.4.9 FPREM-Partial Remainder (80287/8087-Compatible)
4.4.10 FPREM1 ~Partial Remainder (IEEE Std. 754-Compatible)
4.4.11 FRNDINT
4.4.12 FXTRACT .. ,
4.4.13 FABS
4.4.14 FCHS .. .
4.5 Comparison Instructions

viii

Page

3-20
3-20
3-21
3-21
3-22
3-23
3-23
3-24
3-25
3-26
3-26

4-1
4-1
4-2
4-3
4-3
4-4
4-4
4-4
4-4
4-4
4-4
4-5
4-5
4-7
4-8
4-8
4-8
4-8
4-9
4-9
4-9
4-9

4-10
4-12
4-12
4-13
4-13
4-13

TABLE OF CONTENTS

Page

4.5.1 FCOM //source .. 4-14
4.5.2 FCOMP //source .. 4-14
4.5.3 FCOMPP .. 4-14
4.5.4 FICOM source .. 4-14
4.5.5 FICOMP source 4-15
4.5.6 FTST .. 4-15
4.5.7 FUCOM //source .. 4-15
4.5.8 FUCOMP //source .. ,. 4-15
4.5.9 FUCOMPP 4-15
4.5.10 FXAM ... 4-16
4.6 Transcendental Instructions 4-16
4.6.1 FCOS' ... 4-17
4.6.2 FSIN 4-17
4.6.3 FSINCOS ... 4-17
4.6.4 FPTAN ... 4-17
4.6.5 FPATAN ... 4-18
4.6.6 F2XM1 4-18
4.6.7 FYL2X .. 4-19
4.6.8 FYL2XP1 4-19
4.7 Constant Instructions .. 4-19
4.7.1 FLDZ .. 4-20
4.7.2 FLD1 .. 4-20
4.7.3 FLDPI ... 4-20
4.7.4 FLDL2T ... ,.................. 4-20
4.7.5 FLDL2E .. 4-20
4.7.6 FLDLG2 .. 4-20
4.7.7 FLDLN2 .. 4-21
4.8 Processor Control Instructions 4-21
4.8.1 FINIT/FNINIT .. 4-22
4.8.2 FLDCW source ... 4-22
4.8.3 FSTCW /FNSTCW destination 4-22
4.8.4 FSTSW/FNSTSW destination,.. 4-23
4.8.5 FSTSW AX/FNSTSW AX 4-23
4.8.6 FCLEX/FNCLEX 4-23
4.8.7 FSA VE/FNSAVE destination .. 4-23
4.8.8 FRSTOR source 4-25
4.8.9 FSTENV/FNSTENV destination ... 4-26
4.8.10 FLDENV source 4-26
4.8.11 FINCSTP 4-27
4.8.12 FDECSTP ... 4-28
4.8.13 FFREE destination 4-28
4.8.14 FNOP ... 4-28
4.8.15 FWAIT (CPU Instruction) .. ., 4-28

ix

TABLE OF CONTENTS

Page

CHAPTER 5
PROGRAMMING NUMERIC APPLICATIONS

5.1 Programming Facilities 5-1
5.1.1 High-Level Languages 5-1
5.1.2 C Programs 5-1
5.1.3 PL/M-386 ... 5-3
5.1.4 ASM386 5-4
5.1 .4.1 Defining Data 5-4
5.1.4.2 Records and Structures•. 5-6
5.1.4.3 Addressing Methods 5-7
5.1.5 Comparative Programming Example .. 5-8
5.1.6 80387 Emulation 5-13
5.2 Concurrent Processing with the 80387 5-13
5.2.1 Managing Concurrency .. 5-14
5.2.1.1 Incorrect Exception Synchronization 5-16
5.2.1.2 Proper Exception Synchronization 5-16

CHAPTER 6
SYSTEM-LEVEL NUMERIC PROGRAMMING

6.1 80386/80387 Architecture 6-1
6.1.1 Instruction and Operand Transfer 6-1
6.1.2 Independent of CPU Addressing Modes 6-1
6.1.3 Dedicated I/O Locations ... 6-2
6.2 Processor Initialization and Control 6-2
6.2.1 System Initialization .. 6-2
6.2.2 Hardware Recognition of the NPX ... 6-2
6.2.3 Software Recognition of the NPX 6-3
6.2.4 Configuring the Numerics Environment .. 6-3
6.2.5 Initializing the 80387 ... 6-5
6.2.6 80387 Emulation .. 6-6
6.2.7 Handling Numerics Exceptions ... 6-7
6.2.8 Simultaneous Exception Response 6-8
6.2.9 Exception Recovery Examples 6-8

CHAPTER 7
NUMERIC PROGRAMMING EXAMPLES

7.1 Conditional Branching Example ... 7-1
7.2 Exception Handling Examples ... 7-2
7.3 Floating-Point to ASCII Conversion Examples ... 7-6
7.3.1 Function Partitioning 7 -18
7.3.2 Exception Considerations ... 7-18
7.3.3 Special Instructions 7 -18
7.3.4 Description of Operation 7-19

x

TABLE OF CONTENTS

Page

7.3.5 Scaling the Value .. 7-19
7.3.5.1 Inaccuracy in Scaling ... 7-20
7.3.5.2 Avoiding Underflow and Overflow ... 7-20
7.3.5.3 Final Adjustments 7 -20
7.3.6 Output Format .. 7-21
7.4 Trigonometric Calculation Examples (Not Tested) 7 -21

APPENDIX A
MACHINE INSTRUCTION ENCODING AND DECODING

APPENDIX B
EXCEPTION SUMMARY

APPENDIX C
COMPATIBILITY BETWEEN THE 80387 AND THE 80287/8087

APPENDIX D
COMPATIBILITY BETWEEN THE 80387 AND THE 8087

APPENDIX E
80387 80-BIT CHMOS III NUMERIC PROCESSOR EXTENSION

APPENDIX F
PC/AT-COMPATIBLE 80387 CONNECTION

GLOSSARY OF 80387 AND FLOATING-POINT TERMINOLOGY

Figures

Figure Title Page

1-1 Evolution and Performance of Numeric Processors 1-2
2-1 80387 Register Set 2-2
2-2 80387 Status Word .. 2-3
2-3 80387 Control Word Format 2-6
2-4 80387 Tag Word Format .. 2-7
2-5 Protected Mode 80387 Instruction and Data Pointer Image in Memory,

32-Bit Format 2-8
2-6 Real Mode 80387 Instruction and Data Pointer Image in Memory,

32-Bit Format .. 2-8

xi

Figure

2-7

2-8

2-9
2-10
3-1
3-2
3-3
4-1
4-2
4-3
4-4
4-5
4-6
5-1
5-2
5-3
5-4
5-5
5-6
5-7
5-8
6-1
7-1
7-2
7-3
7-4
7-5
7-6
7-7
7-8

TABLE OF CONTENTS

Title

Protected Mode 80387 Instruction and Data Pointer Image in Memory,
16-Bit Format

Real Mode 80387 Instruction and Data Pointer Image in Memory,
16-Bit Format

80387 Double-Precision Number System .. .
80387 Data Formats
Floating-Point System with Denormals .. .
Floating-Point System without Denormals
Arithmetic Example Using Infinity
FSA VE/FRSTOR Memory Layout (32-Bit)
FSA VE/FRSTOR Memory Layout (16-Bit)
Protected Mode 80387 Environment, 32-Bit Format
Real Mode 80387 Environment, 32-Bit Format
Protected Mode 80387 Environment, 16-Bit Format
Real Mode 80387 Environment, 16-Bit Format
Sample C-386 Program
Sample 80387 Constants .. .
Status Word Record Definition .. .
Structure Definition .. .
Sample PL/M-386 Program
Sample ASM386 Program
Instructions and Register Stack
Exception Synchronization Examples .. .
Software Routine to Recognize the 80287 .. .
Conditional Branching for Compares
Conditional Branching for FXAM
Full-State Exception Handler
Reduced-Latency Exception Handler .. .
Reentrant Exception Handler
Floating-Point to ASCII Conversion Routine .. .
Relationships between Adjacent Joints
Robot Arm Kinematics Example .. .

Tables

Page

2-9

2-9
2-10
2-12
3-5
3-5

3-19
4-24
4-25
4-26
4-27
4-27
4-28
5-2
5-5
5-6
5-7
5-9

5-10
5-12
5-15

6-4
7-2
7-3
7-4
7-5
7-6
7-7

7-22
7-24

Table Title Page

1-1 Numeric Processing Speed Comparisons ... 1-2
1-2 Numeric Data Types ... 1-7
1-3 Principal NPX Instructions .. 1-8
2-1 Condition Code Interpretation '" 2-5
2-2 Correspondence between 80387 and 80386 Flag Bits 2-6

xii

Table

2-3
2-4
2-5
3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8
3-9
3-10
3-11
4-1
4-2
4-3
4-4

4-5
4-6
4-7
4-8
4-9
4-10
4-11
4-12
5-1
5-2
5-3
6-1

TABLE OF CONTENTS

Title

Summary of Format Parameters
Real Number Notation ... '"
Rounding Modes
Arithmetic and Nonarithmetic Instructions
Denormalization Process
Zero Operands and Results
Infinity Operands and Results
Rules for Generating QNaNs
Binary Integer Encodings
Packed Decimal Encodings
Single and Double Real Encodings
Extended Real Encodings
Masked Responses to Invalid Operations
Masked Overflow Results
Data Transfer Instructions
Nontranscendental Instructions
Basic Nontranscendental Instructions and Operands
Condition Code Interpretation after FPREM and FPREM1

Instructions .. .
Comparison Instructions
Condition Code Resulting from Comparisons
Condition Code Resulting from FTST
Condition Code Defining Operand Class
Transcendental Instructions
Results of FPATAN
Constant Instructions .. .
Processor Control Instructions .. .
PL/M-386 Built-In Procedures
ASM386 Storage Allocation Directives .. .
Addressing Method Examples
NPX Processor State Following Initialization

xiii

Page

2-13
2-14
2-17

3-2
3-3
3-7
3-9

3-12
3-14
3-15
3-16
3-17
3-21
3-23

4-3
4-6
4-7

4-11
4-13
4-14
4-15
4-16
4-16
4-18
4-20
4-21

5-3
5-4
5-7
6-6

CUSTOMER SUPPORT
CUSTOMER SUPPORT

Customer Support is Intel's complete support service that provides Intel customers with hardware support, software
support, customer training, and consulting services. For more information contact your local sales offices.

After a customer purchases any system hardware or software product, service and support become major factors in
determining whether that product will continue to meet a customer's expectations. Such support requires an interna­
tional support organization and a breadth of programs to meet a variety of customer needs. As you might expect,
Intel's customer support is quite extensive. It includes factory repair services and worldwide field service offices
providing hardware repair services, software support services, customer training classes, and consulting services.

HARDWARE SUPPORT SERVICES

Intel is committed to providing an international service support package through a wide variety of service offerings
available from Intel Hardware Support.

SOFfW ARE SUPPORT SERVICES

Intel's software support consists of two levels of contracts. Standard support includes TIPS (Technical Information
Phone Service), updates and subscription service (product-specific troubleshooting guides and COMMENTS Maga­
zine). Basic support includes updates and the SUbscription service. Contracts are sold in environments which repre­
sent product groupings (i.e., iRMX environment).

CONSULTING SERVICES

Intel provides field systems engineering services for any phase of your development or support effort. You can use
our systems engineers in a variety of ways ranging from assistance in using a new product, developing an application,
personalizing training, and customizing or tailoring an Intel product to providing technical and management con­
sulting. Systems Engineers are well versed in technical areas such as microcommunications, real-time applications,
embedded microcontrollers, and network services. You know your application needs; we know our products. Work·
ing together we can help you get a successful product to market in the least possible time.

CUSTOMER TRAINING

Intel offers a wide range of instructional programs covering various aspects of system design and implementation. In
just three to ten days a limited number of individuals learn more in a single workshop than in weeks of self-study.
For optimum convenience, workshops are scheduled regularly at Training Centers worldwide or we can take our
workshops to you for on-site instruction. Covering a wide variety of topics, Intel's major course categories include:
architecture and assembly language, programming and operating systems, bitbus and LAN applications.

Introduction to the 80387 1
Numerics Processor Extension

CHAPTER 1
INTRODUCTION TO THE 80387

NUMERICS PROCESSOR EXTENSION

The 80387 NPX is a high-performance numerics processing element that extends the 80386
architecture by adding significant numeric capabilities and direct support for floating-point,
extended-integer, and BCD data types. The 80386 CPU with 80387 NPX easily supports
powerful and accurate numeric applications through its implementation of the IEEE Standard
754 for Binary Floating-Point Arithmetic. The 80387 provides floating-point performance
comparable to that of large minicomputers while offering compatibility with object code for
8087 and 80287.

1.1 HISTORY

The 80387 Numeric Processor Extension (NPX) is compatible with its predecessors, the
earlier Intel 8087 NPX and 80287 NPX. As the 80386 runs 8086 programs, so programs
designed to use the 8087 and 80287 should run unchanged on the 80387.

The 8087 NPX was designed for use in 8086-family systems. The 8086 was the first micro­
processor family to partition the processing unit to permit high-performance numeric
capabilities. The 8087 NPX for this processor family implemented a complete numeric
processing environment in compliance with an early proposal for the IEEE 754 Floating­
Point Standard.

With the 80287 Numeric Processor Extension, high-speed numeric computations were
extended to 80286 high-performance multitasking and multiuser systems. Multiple tasks
using the numeric processor extension were afforded the full protection of the 80286 memory
management and protection features.

The 80387 Numeric Processor Extension is Intel's third generation numerics processor. The
80387 implements the final IEEE standard, adds new trigonometric instructions, and uses a
new design and CHMOS-III process to allow higher clock rates and require fewer clocks
per instruction. Together, the 80387 with additional instructions and the improved standard
bring even more convenience and reliability to numerics programming and make this
convenience and reliability available to applications that need the high-speed and large
memory capacity of the 32-bit environment of the 80386 CPU.

Figure 1-1 illustrates the relative performance of 5-MHz 8086/8087, 8-MHz 80286/80287,
and 20-MHz 80386/80387 systems in executing numerics-oriented applications.

1.2 PERFORMANCE

Table 1-1 compares the execution times of several 80387 instructions with the equivalent
operations executed on an 8-MHz 80287. As indicated in the table, the 16-MHz 80387
NPX provides about 5 to 6 times the performance of an 8-MHz 80287 NPX. A 16-MHz

1-1

INTRODUCTION TO THE 80387

16 80386/80387 (20 MHz)

15
14
13
12
11
10
9

RELATIVE 8
PERFORMANCE

7
6
5
4
3
2 80286/80287 (8 MHz)

1 808618087 (5 MHz)

1980 1983 1987

YEAR INTRODUCED

G40003

Figure 1-1. Evolution and Performance of Numeric Processors

Table 1-1. Numeric Processing Speed Comparisons

Approximate Performance Ratios:
Floating-Point Instruction 16 MHz 80386/80387 -7-

8 MHz 80286/80287

FADD ST, ST(i) Addition 6.2
FDIV dword_var Division 4.7
FYL2X stack (0), (1) assumed Logarithm 6.0
FPATAX stack (0) assumed Arctangent 2.6*
F2XM1 stack (0) assumed Exponentiation 2.7*

*The ratio is higher if the operand is not in range of the 80287 instruction.

80387 multiplies 32-bit and 64-bit floating-point numbers in about 1.9 and 2.8 microse­
conds, respectively. Of course, the actual performance of the NPX in a given system depends
on the characteristics of the individual application.

Although the performance figures shown in Table 1-1 refer to operations on real (floating­
point) numbers, the 80387 also manipulates fixed-point binary and decimal integers of up
to 64 bits or 18 digits, respectively. The 80387 can improve the speed of multiple-precision
software algorithms for integer operations by 10 to 100 times.

Because the 80387 NPX is an extension of the 80386 CPU, no software overhead is incurred
in setting up the NPX for computation. The 80387 and 80386 processors coordinate their
activities in a manner transparent to software. Moreover, built-in coordination facilities allow
the 80386 CPU to proceed with other instructions while the 80387 NPX is simultaneously
executing numeric instructions. Programs can exploit this concurrency of execution to further
increase system performance and throughput.

1-2

INTRODUCTION TO THE 80387

1.3 EASE OF USE

The 80387 NPX offers more than raw execution speed for computation-intensive tasks. The
80387 brings the functionality and power of accurate numeric computation into the hands
of the general user. These features are available in most high-level languages available for
the 80386.

Like the 8087 and 80287 that preceded it, the 80387 is explicitly designed to deliver stable,
accurate results when programmed using straightforward "pencil and paper" algorithms.
The IEEE standard 754 specifically addresses this issue, recognizing the fundamental
importance of making numeric computations both easy and safe to use.

For example, most computers can overflow when two single-precision floating-point numbers
are multiplied together and then divided by a third, even if the final result is a perfectly
valid 32-bit number. The 80387 delivers the correctly rounded result. Other typical examples
of undesirable machine behavior in straightforward calculations occur when computing
financial rate of return, which involves the expression (1 + i)n or when solving for roots of
a quadratic equation:

-b ± V b2 - 4ac
2a

If a does not equal 0, the formula is numerically unstable when the roots are nearly coin­
cident or when their magnitudes are wildly different. The formula is also vulnerable to spuri­
ous over/underflows when the coefficients a, b, and c are all very big or all very tiny. When
single-precision (4-byte) floating-point coefficients are given as data and the formula is
evaluated in the 80387's normal way, keeping all intermediate results in its stack, the 80387
produces impeccable single-precision roots. This happens because, by default and with no
effort on the programmer's part, the 80387 evaluates all those subexpressions with so much
extra precision and range as to overwhelm any threat to numerical integrity.

If double-precision data and results were at issue, a better formula would have to be used,
and once again the 80387's default evaluation of that formula would provide substantially
enhanced numerical integrity over mere double-precision evaluation.

On most machines, straightforward algorithms will not deliver consistently correct results
(and will not indicate when they are incorrect). To obtain correct results on traditional
machines under all conditions usually requires sophisticated numerical techniques that are
foreign to most programmers. General application programmers using straightforward
algorithms will produce much more reliable programs using the 80387. This simple fact
greatly reduces the software investment required to develop safe, accurate computation-based
products.

Beyond traditional numerics support for scientific applications, the 80387 has built-in facil­
ities for commercial computing. It can process decimal numbers of up to 18 digits without
round-off errors, performing exact arithmetic on integers as large as 264 or 1018• Exact arith­
metic is vital in accounting applications where rounding errors may introduce monetary losses
that cannot be reconciled.

1-3

INTRODUCTION TO THE 80387

The NPX contains a number of optional facilities that can be invoked by sophisticated users.
These advanced features include directed rounding, gradual underflow, and programmed
exception-handling facilities.

These automatic exception-handling facilities permit a high degree of flexibility in numeric
processing software, without burdening the programmer. While performing numeric calcu­
lations, the NPX automatically detects exception conditions that can potentially damage a
calculation (for example, X -7- 0 or y'X when X < 0). By default, on-chip exception logic
handles these exceptions so that a reasonable result is produced and execution may proceed
without program interruption. Alternatively, the NPX can signal the CPU, invoking a
software exception handler to provide special results whenever various types of exceptions
are detected.

1.4 APPLICATIONS

The 80386's versatility and performance make it appropriate to a broad array of numeric
applications. In general, applications that exhibit any of the following characteristics can
benefit by implementing numeric processing on the 80387:

Numeric data vary over a wide range of values, or include nonintegral values.

Algorithms produce very large or very small intermediate results.

• Computations must be very precise; i.e., a large number of significant digits must be
maintained.

• Performance requirements exceed the capacity of traditional microprocessors.

Consistently safe, reliable results must be delivered using a programming staff that is
not expert in numerical techniques.

Note also that the 80387 can reduce software development costs and improve the perform­
ance of systems that use not only real numbers, but operate on multiprecision binary or
decimal integer values as well.

A few examples, which show how the 80387 might be used in specific numerics applications,
are described below. In many cases, these types of systems have been implemented in the
past with minicomputers or small mainframe computers. The advent of the 80387 brings the
size and cost savings of microprocessor technology to these applications for the first time.

Business data processing-The NPX's ability to accept decimal operands and produce
exact decimal results of up to 18 digits greatly simplifies accounting programming.
Financial calculations that use power functions can take advantage of the 80387's
exponentiation and logarithmic instructions. Many business software packages can benefit
from the speed and accuracy of the 80387; for example, Lotus" 1-2-3*, Multiplan',
SuperCalc", and Framework".

1-4

INTRODUCTION TO THE 80387

• Simulation-The large (32-bit) memory space of the 80386 coupled with the raw speed
of the 80386 and 80387 processors make 80386/80387 microsystems suitable for
attacking large simulation problems, which heretofore could only be executed on expen­
sive mini and mainframe computers. For example, complex electronic circuit simula­
tions using SPICE can now be performed on a microcomputer, the 80386/80387.
Simulation of mechanical systems using finite element analysis can employ more
elements, resulting in more detailed analysis or simulation of larger systems.

• Graphics transformations-The 80387 can be used in graphics terminals to locally
perform many functions that normally demand the attention of a main computer; these
include rotation, scaling, and interpolation. By also using an 82786 Graphics Display
Controller to perform high-speed drawing and window management, very powerful and
highly self-sufficient terminals can be built from a relatively small number of 80386
family parts.

• Process control-The 80387 solves dynamic range problems automatically, and its
extended precision allows control functions to be fine-tuned for more accurate and
efficient performance. Control algorithms implemented with the NPX also contribute
to improved reliability and safety, while the 80387's speed can be exploited in real-time
operations.

• Computer numerical control (CNC)-The 80387 can move and position machine tool
heads with accuracy in real-time. Axis positioning also benefits from the hardware
trigonometric support provided by the 80387.

• Robotics-Coupling small size and modest power requirements with powerful compu­
tational abilities, the 80387 is ideal for on-board six-axis positioning.

Navigation-Very small, lightweight, and accurate inertial guidance systems can be
implemented with the 80387. Its built-in trigonometric functions can speed and simplify
the calculation of position from bearing data.

• Data acquisition-The 80387 can be used to scan, scale, and reduce large quantities of
data as it is collected, thereby lowering storage requirements and time required to process
the data for analysis.

The preceding examples are oriented toward traditional numerics applications. There are,
in addition, many other types of systems that do not appear to the end user as computa­
tional, but can employ the 80387 to advantage. Indeed, the 80387 presents the imaginative
system designer with an opportunity similar to that created by the introduction of the micro­
processor itself. Many applications can be viewed as numerically-based if sufficient compu­
tational power is available to support this view (e.g., character generation for a laser printer).
This is analogous to the thousands of successful products that have been built around "buried"
microprocessors, even though the products themselves bear little resemblance to computers.

1.5 UPGRADABILITY

The architecture of the 80386 CPU is specifically adapted to allow easy upgradability to use
an 80387, simply by plugging in the 80387 NPx. For this reason, designers of 80386 systems
may wish to incorporate the 80387 NPX into their designs in order to offer two levels of
price and performance at little additional cost.

1-5

INTRODUCTION TO THE 80387

Two features of the 80386 CPU make the design and support of upgradable 80386 systems
particularly simple:

The 80386 can be programmed to recognize the presence of an 80387 NPX; that is,
software can recognize whether it is running on an 80386 with or without an 80387
NPX.

After determining whether the 80387 NPX is available, the 80386 CPU can be instructed
to let the NPX execute all numeric instructions. If an 80387 NPX is not available, the
80386 CPU can emulate all 80387 numeric instructions in software. This emulation is
completely transparent to the application software-the same object code may be used
by 80386 systems both with and without an 80387 NPX. No relinking or recompiling
of application software is necessary; the same code will simply execute faster with the
80387 NPX than without.

To facilitate this design of upgradable 80386 systems, Intel provides a software emulator for
the 80387 that provides the functional equivalent of the 80387 hardware, implemented in
software on the 80386. Except for timing, the operation of this 80387 emulator (EMUL387)
is the same as for the 80387 NPX hardware. When the emulator is combined as part of the
systems software, the 80386 system with 80387 emulation and the 80386 with 80387
hardware are virtually indistinguishable to an application program. This capability makes it
easy for software developers to maintain a single set of programs for both systems. System
manufacturers can offer the NPX as a simple plug-in performance option without necessi­
tating any changes in the user's software.

1.6 PROGRAMMING INTERFACE

The 80386/80387 pair is programmed as a single processor; all of the 80387 registers appear
to a programmer as extensions of the basic 80386 register set. The 80386 has a class of
instructions known as ESCAPE instructions, all having a common format. These ESC
instructions are numeric instructions for the 80387 NPX. These numeric instructions for the
80387 are simply encoded into the instruction stream along with 80386 instructions.

All of the CPU memory-addressing modes may be used in programming the NPX, allowing
convenient access to record structures, numeric arrays, and other memory-based data struc­
tures. All of the memory management and protection features of the CPU (both paging and
segmentation) are extended to the NPX as well.

Numeric processing in the 80387 centers around the NPX register stack. Programmers can
treat these eight 80-bit registers either as a fixed register set, with instructions operating on
explicitly-designated registers, or as a classical stack, with instructions operating on the top
one or two stack elements.

Internally, the 80387 holds all numbers in a uniform 80-bit extended format. Operands that
may be represented in memory as 16-, 32-, or 64-bit integers, 32-, 64-, or 80-bit floating­
point numbers, or 18-digit packed BCD numbers, are automatically converted into extended
format as they are loaded into the NPX registers. Computation results are subsequently
converted back into one of these destination data formats when they are stored into memory
from the NPX registers.

1-6

INTRODUCTION TO THE 80387

Table 1-2 lists each of the seven data types supported by the 80387, showing the data format
for each type. All operands are stored in memory with the least significant digits starting at
the initial (lowest) memory address. Numeric instructions access and store memory operands
using only this initial address. For maximum system performance, all operands should start
at memory addresses divisible by four.

Table 1-3 lists the 80387 instructions by class. No special programming tools are necessary
to use the 80387, because all of the NPX instructions and data types are directly supported
by the ASM386 Assembler, by high-level languages from Intel, and by assemblers and
compilers produced by many independent software vendors. Software routines for the 80387
may be written in ASM386 Assembler or any of the following higher-level languages from
Intel:

PL/M-386
C-386

In addition, all of the development tools supporting the 8086/8087 and 80286/80287 can
also be used to develop software for the 80386/80387.

All of these high-level languages provide programmers with access to the computational
power and speed of the 80387 without requiring an understanding of the architecture of the
80386 and 80387 chips. Such architectural considerations as concurrency and synchroniza­
tion are handled automatically by these high-level languages. For the ASM386 programmer,
specific rules for handling these issues are discussed in a later section of this manual.

The following operating systems are known or expected to support the 80387:
RMX-286/386, MS-DOS, Xenix-286/386, and Unix-286/386. Advanced in-circuit debug­
ging support is provided by ICE-386.

Table 1-2. Numeric Data Types

Significant
Data Type Bits Digits Approximate Range (DeCimal)

(DeCimal)

Word integer 16 4 -32,768 :oS X :oS +32,767

Short integer 32 9 -2X109 :oS X:oS +2X109

Long integer 64 18 -9X10 'B :oS X:oS +9X10 'B

Packed decimal 80 18 -99 ... 99 :oS X :oS +99 ... 99 (18 digits)

Single real 32 6-7 1.18 X 1O-3B :oS I X I :oS 3.40 X 103B

Double real 64 15-16 2.23 X 10-30B :oS I X I :oS 1.80 X 10308

Extended real" 80 19 3.30 X 10--4932 :oS I X I :oS 1.21 X 104932

"Equivalent to double extended format of IEEE Std 754

1-7

INTRODUCTION TO THE 80387

Table 1-3. Principal NPX Instructions

Class Instruction Types

Data Transfer Load (all data types), Store (all data types), Exchange

Arithmetic Add, Subtract, Multiply, Divide, Subtract Reversed, Divide Reversed,
Square Root, Scale, Remainder, Integer Part, Change Sign, Absolute
Value, Extract

Comparison Compare, Examine, Test

Transcendental Tangent, Arctangent, Sine, Cosine, Sine and Cosine, 2x ~ 1, y. Log2(X),
y. Log2 (X+1)

Constants 0, 1, 7r, Log,02, Loge2, Log21O, Log2e

Processor Control Load Control Word, Store Control Word, Store Status Word, Load
Environment, Store Environment, Save, Restore, Clear Exceptions,
Initialize

1-8

80387 Numerics
Processor Architecture

2

CHAPTER 2
80387 NUMERICS PROCESSOR ARCHITECTURE

To the programmer, the 80387 NPX appears as a set of additional registers, data types, and
instructions~all of which complement those of the 80386. Refer to Chapter 4 for detailed
explanations of the 80387 instruction set. This chapter explains the new registers and data
types that the 80387 brings to the architecture of the 80386.

2.1 80387 REGISTERS

The additional registers consist of

• Eight individually-addressable 80-bit numeric registers, organized as a register stack

• Three sixteen-bit registers containing:

the NPX status word
the NPX control word
the tag word

• Two 48-bit registers containing pointers to the current instruction and operand (these
registers are actually located in the 80386)

All of the NPX numeric instructions focus on the contents of these NPX registers.

2.1.1 The NPX Register Stack

The 80387 register stack is shown in Figure 2-1. Each of the eight numeric registers in the
80387's register stack is 80 bits wide and is divided into fields corresponding to the NPX's
extended real data type.

Numeric instructions address the data registers relative to the register on the top of the
stack. At any point in time, this top-of-stack register is indicated by the TOP (stack TOP)
field in the NPX status word. Load or push operations decrement TOP by one and load a
value into the new top register. A store-and-pop operation stores the value from the current
TOP register and then increments TOP by one. Like 80386 stacks in memory, the 80387
register stack grows down toward lower-addressed registers.

Many numeric instructions have several addressing modes that permit the programmer to
implicitly operate on the top of the stack, or to explicitly operate on specific registers relative
to the TOP. The ASM386 Assembler supports these register addressing modes, using the
expression ST(O), or simply ST, to represent the current Stack Top and STU) to specify the

2-1

RO

R1

R2

R3

R4

R5

R6

R7

80387 ARCHITECTURE

80387 DATA REGISTERS
TAG

FIELD
64 63 79 78 0 1 0

P-~------~------------------------~ SIGN EXPONENT SIGNIFICAND

15 0 47

CONTROL REGISTER INSTRUCTION POINTER

STATUS REGISTER DATA POINTER

TAG WORD

Figure 2-1. 80387 Register Set

G40003

ith register from TOP in the stack (0 <: i <: 7). For example, if TOP contains 011 B (register
3 is the top of the stack), the following statement would add the contents of two registers in
the stack (registers 3 and 5):

FADD ST, ST(2)

The stack organization and top-relative addressing of the numeric registers simplify subrou­
tine programming by allowing routines to pass parameters on the register stack. By using
the stack to pass parameters rather than using "dedicated" registers, calling routines gain
more flexibility in how they use the stack. As long as the stack is not full, each routine
simply loads the parameters onto the stack before calling a particular subroutine to perform
a numeric calculation. The subroutine then addresses its parameters as ST, ST(1), etc., even
though TOP may, for example, refer to physical register 3 in one invocation and physical
register 5 in another.

2-2

80387 ARCHITECTURE

2.1.2 The NPX Status Word

The 16-bit status word shown in Figure 2-2 reflects the overall state of the 80387. This
status word may be stored into memory using the FSTSW /FNSTSW, FSTENV /
FNSTENV, and FSA VE/FNSA VE instructions, and can be transferred into the 80386 AX
register with the FSTSW AX/FNSTSW AX instructions, allowing the NPX status to be
inspected by the CPU.

The B-bit (bit 15) is included for 8087 compatibility only. It reflects the contents of the ES
bit (bit 7 of the status word), not the status of the BUSY # output of the 80387.

80387 BUSY

r!-I-l ~ ~ l
TOP OF STACK POINTER

15 7

C
I I

C C C E S P U 0 B TOP
3

I I
2 1 0 S F E E E

ERROR SUMMARY STATUS ------'

STACK FAULT ---------......

EXCEPTION FLAGS
PRECISION _________ ---iI

UNDERFLOW----------.......

OVERFLOW -----------.......

Z
E

ZERO DIVIDE ____________J

CONDITION CODE

0

D I
E E

DENORMALIZED OPERAND ---------....

INVALID OPERATION ------------....

ES IS SET IF ANY UNMASKED EXCEPTION BIT IS SET; CLEARED OTHERWISE.
SEE TABLE 2-1 FOR INTERPRETATION OF CONDITION CODE.
TOP VALUES:

000 ~ REGISTER 0 IS TOP OF STACK
001 ~ REGISTER liS TOP OF STACK

111 ~ REGISTER 7 IS TOP OF STACK
FOR DEFINITIONS OF EXCEPTIONS, REFER TO CHAPTER 3.

Figure 2-2. 80387 Status Word

2-3

G40003

80387 ARCHITECTURE.

The four NPX condition code bits (C3-CO) are similar to the flags in a CPU: the 80387
updates these bits to reflect the outcome of arithmetic operations. The effect of these
instructions on the condition code bits is summarized in Table 2-1. These condition code bits
are used principally for conditional branching. The FSTSW AX instruction stores the NPX
status word directly into the CPU AX register, allowing these condition codes to be inspected
efficiently by 80386 code. The 80386 SAHF instruction can copy C3-CO directly to 80386
flag bits to simplify conditional branching. Table 2-2 shows the mapping of these bits to the
80386 flag bits.

Bits 12-14 of the status word point to the 80387 register that is the current Top of Stack
(TOP). The significance of the stack top has been described in the prior section on the
register stack.

Figure 2-2 shows the six exception flags in bits 0-5 of the status word. Bit 7 is the exception
summary status (ES) bit. ES is set if any unmasked exception bits are set, and is cleared
otherwise. If this bit is set, the ERROR# signal is asserted. Bits 0-5 indicate whether the
NPX has detected one of six possible exception conditions since these status bits were last
cleared or reset. They are "sticky" bits, and can only be cleared by the instructions FINIT,
FCLEX, FLDENV, FSA VE, and FRSTOR.

Bit 6 is the stack fault (SF) bit. This bit distinguishes invalid operations due to stack overflow
or underflow from other kinds of invalid operations. When SF is set, bit 9 (C l) distinguishes
between stack overflow (C l = 1) and underflow (C l = 0).

2.1.3 Control Word

The NPX provides the programmer with several processing options, which are selected by
loading a word from memory into the control word. Figure 2-3 shows the format and encod­
ing of the fields in the control word.

The low-order byte of this control word configures the 80387 exception masking. Bits 0-5
of the control word contain individual masks for each of the six exception conditions recog­
nized by the 80387. The high-order byte of the control word configures the 80387 processing
options, including

Precision control

• Rounding control

The precision-control bits (bits 8-9) can be used to set the 80387 internal operating preci­
sion at less than the default precision (64-bit significand). These control bits can be used to
provide compatibility with the earlier-generation arithmetic processors having less precision
than the 80387. The precision-control bits affect the results of only the following five arith­
metic instructions: ADD, SUBeR), MUL, DIV(R), and SQRT. No other operations are
affected by PC.

2-4

80387 ARCHITECTURE

Table 2-1. Condition Code Interpretation

Instruction CO(S) I C3 (Z) C1 (A) C2 (C)

Three least significant bits of quotient
Reduction

FPREM,FPREM1
02 I 00 01

O=complete

or O/U#
1 = incomplete

FCOM, FCOMP,
FCOMPP, FTST, Zero Operand is not FUCOM, FUCOMP, Result of comparison or O/U# comparable FUCOMPP, FICOM,
FICOMP

FXAM Operand class Sign Operand class or O/U#

FCHS, FABS,
FXCH, FiNCTOP,
FDECTOP, Constant UNDEFINED Zero UNDEFINED loads, FXTRACT, or O/U#
FLD, FILD, FBLD,
FSTP (ext real)

FIST, FBSTP,
FRNDINT, FST,
FSTP, FADD, FMUL,
FDIV, FDIVR, FSUB, UNDEFINED Roundup UNDEFINED FSUBR, FSCALE, orO/U#
FSORT, FPATAN,
F2XM1, FYL2X,
FYL2XP1

Roundup Reduction
FPTAN, FSIN, UNDEFINED or O/U# 0= complete
FCOS, FSINCOS undefined 1 = incomplete

if C2=1

FLDENV, FRSTOR Each bit loaded from memory

FLDCW, FSTENV,
FSTCW, FSTSW, UNDEFINED FCLEX, FINIT,
FSAVE

O/U# When both IE and SF bits of status word are set, indicating a stack exception, this bit distin­
guishes between stack overflow (C1 =1) and underflow (C1 =0).

Reduction If FPREM and FPREM1 produces a remainder that is less than the modulus, reduction is
complete. When reduction is incomplete the value at the top of the stack is a partial remain­
der, which can be used as input to further reduction. For FPTAN, FSIN, FCOS, and FSINCOS,
the reduction bit is set if the operand at the top of the stack is too large. In this case the
original operand remains at the top of the stack.

Roundup When the PE bit of the status word is set, this bit indicates whether the last rounding in the
instruction was upward.

UNDEFINED Do not rely on finding any specific value in these bits.

2-5

80387 ARCHITECTURE

Table 2-2. Correspondence between 80387 and 80386 Flag Bits

80387 Flag 80386 Flag

Co CF
C, (none)
C2 PF
C. ZF

r-~'-----------------------------RESERVED

lr--! ! '_-I =~::~~~;GC~~:~~~~ H ,"wmN CONmO<

15 7 o

Ix;x;+1 + 1 + Ix;xl*I*I*1
==~:S_K_s __________ t __ t...."J

UNDERFLOW -------------....

OVERFLOW ------------------______ ---'

ZERO DIVIDE ---------------....

DENORMALIZED OPERAND ------------~

INVALID OPERATION ---------------001
PRECISION CONTROL

00-24 BITS (SINGLE PRECISION)
01-(RESERVED)
10-53 BITS (DOUBLE PRECISION)
11-64 BITS (EXTENDED PRECISION)

ROUNDING CONTROL
OO-ROUND TO NEAREST OR EVEN
01-ROUND DOWN (TOWARD-oo)
10-ROUND UP (TOWARD +(0)
11-CHOP (TRUNCATE TOWARD ZERO)

·This "infinity control" bit is not meaningful to the 80387. To maintain compatibility
with the 80287, this bit can be programmed; however, regardless of its value, the
80387 treats infinity in the affine sense (- 00 < + (0).

Figure 2-3. 80387 Control Word Format

2-6

G40003

80387 ARCHITECTURE

The rounding-control bits (bits 10-11) provide for the common round-to-nearest mode, as
well as directed rounding and true chop. Rounding control affects only the arithmetic
instructions (refer to Chapter 3 for lists of arithmetic and non arithmetic instructions).

2.1.4 The NPX Tag Word

The tag word indicates the contents of each register in the register stack, as shown in
Figure 2-4. The tag word is used by the NPX itself to distinguish between empty and
non empty register locations. Programmers of exception handlers may use this tag informa­
tion to check the contents of a numeric register without performing complex decoding of the
actual data in the register. The tag values from the tag word correspond to physical registers
0-7. Programmers must use the current top-of-stack (TOP) pointer stored in the NPX status
word to associate these tag values with the relative stack registers ST(O) through ST(7).

The exact values of the tags are generated during execution of the FSTENV and FSA VE
instructions according to the actual contents of the non empty stack locations. During execu­
tion of other instructions, the 80387 updates the TW only to indicate whether a stack location
is empty or nonempty.

2.1.5 The NPX Instruction and Data Pointers

The instruction and data pointers provide support for programmed exception-handlers. These
registers are actually located in the 80386, but appear to be located in the 80387 because
they are accessed by the ESC instructions FLDENV, FSTENV, FSAVE, and FRS TOR.
Whenever the 80386 decodes an ESC instruction, it saves the instruction address, the operand
address (if present), and the instruction opcode.

When stored in memory, the instruction and data pointers appear in one of four formats,
depending on the operating mode of the 80386 (protected mode or real-address mode) and
depending on the operand-size attribute in effect (32-bit operand or 16-bit operand). When
the 80386 is in virtual-8086 mode, the real-address mode formats are used.

Figures 2-5 through 2-8 show these pointers as they are stored following an FSTENV
instruction.

TAG VALUES:
00 ~ VALID
01 ~ ZERO
10 ~ INVALID OR INFINITY
11 ~ EMPTY

Figure 2-4. 80387 Tag Word Format

2-7

G40003

31

000001

80387 ARCHITECTURE

23

32-BIT PROTECTED MODE FORMAT

15 7

RESERVED CONTROL WORD

RESERVED STATUS WORD

RESERVED TAG WORD

IP OFFSET

OPCODE w .. o CS SELECTOR

DATA OPERAND OFFSET

RESERVED OPERAND SELECTOR

o

OH

4H

8H

CH

10H

14H

18H

G40003

Figure 2-5. Protected Mode 80387 Instruction and Data Pointer Image in Memory,
32-Bit Format

32-BIT REAL·ADDRESS MODE FORMAT

31 23 15 7 o

RESERVED CONTROL WORD OH

RESERVED STATUS WORD 4H

RESERVED TAG WORD 8H

RESERVED INSTRUCTION POINTER " .. 0 CH

000 01 INSTRUCTION POINTER 31 .. 1. 10 1 OPCODE 10 .• 0 10H

RESERVED OPERAND POINTER 15 .• 0 14H

o 0 0 0/ OPERAND POINTER 31 .. 1. /0 0 0 0 0 0 0 0 0 000 18H

G40003

Figure 2-6. Real Mode 80387 Instruction and Data Pointer Image in Memory, 32-Bit Format

The FSTENV and FSA VE instructions store this data into memory, allowing exception
handlers to determine the precise nature of any numeric exceptions that may be
encountered.

The instruction address saved in the 80386 (as in the 80287) points to any prefixes that
preceded the instruction. This is different from the 8087, for which the instruction address
points only to the ESC instruction opcode.

Note that the processor control instructions FINIT, FLDCW, FSTCW, FSTSW, FCLEX,
FSTENV, FLDENV, FSA VE, FRSTOR, and FW AIT do not affect the data pointer. Note
also that, except for the instructions just mentioned, the value of the data pointer is undefined
if the prior ESC instruction did not have a memory operand.

2-8

15

80387 ARCHITECTURE

16-BIT PROTECTED MODE FORMAT

7

CONTROL WORD

STATUS WORD

TAG WORD

IP OFFSET

CS SELECTOR

OPERAND OFFSET

OPERAND SELECTOR

o

OH

2H

4H

6H

SH

AH

CH

G40003

Figure 2-7_ Protected Mode 80387 Instruction and Data Pointer Image in Memory,
16-Bit Format

15

16-BIT REAL-ADDRESS MODE
AND VIRTUAL-SOS6 MODE FORMAT

7

CONTROL WORD

STATUS WORD

TAG WORD

INSTRUCTION POINTER,s .. o

1P19 __ 16
10 1

OPCODE '0 .. 0

OPERAND POINTER ,s .. o

o

OP '9 .. '6 1010 0 0 0 0 0 0 0 0 0 0

OH

2H

4H

6H

SH

AH

CH

G40003

Figure 2-8_ Real Mode 80387 Instruction and Data Pointer Image in Memory, 16-Bit Format

2.2 COMPUTATION FUNDAMENTALS

This section covers 80387 programming concepts that are common to all applications. It
describes the 80387's internal number system and the various types of numbers that can be
employed in NPX programs_ The most commonly used options for rounding and precision
(selected by fields in the control word) are described, with exhaustive coverage of less
frequently used facilities deferred to later sections. Exception conditions that may arise during
execution of NPX instructions are also described along with the options that are available
for responding to these exceptions.

2-9

80387 ARCHITECTURE

2.2.1 Number System

The system of real numbers that people use for pencil and paper calculations is conceptually
infinite and continuous. There is no upper or lower limit to the magnitude of the numbers
one can employ in a calculation, or to the precision (number of significant digits) that the
numbers can represent. When considering any real number, there are always arbitrarily
many numbers both larger and smaller. There are also arbitrarily many numbers between
(i.e., with more significant digits than) any two real numbers. For example, between 2.5 and
2.6 are 2.51,2.5897,2.500001, etc.

While ideally it would be desirable for a computer to be able to operate on the entire real
number system, in practice this is not possible. Computers, no matter how large, ultimately
have fixed-size registers and memories that limit the system of numbers that can be accom­
modated. These limitations determine both the range and the precision of numbers. The
result is a set of numbers that is finite and discrete, rather than infinite and continuous. This
sequence is a subset of the real numbers that is designed to form a useful approximation of
the real number system.

Figure 2-9 superimposes the basic 80387 real number system on a real number line (decimal
numbers are shown for clarity, although the 80387 actually represents numbers in binary).
The dots indicate the subset of real numbers the 80387 can represent as data and final
results of calculations. The 80387's range of double-precision, normalized numbers is
approximately ± 2.23 X 10.308 to ± 1.80 X 10308• Applications that are required to deal with
data and final results outside this range are rare. For reference, the range of the IBM System
370* is about ±0.54 X 10-78 to ±0.72 X 1076•

1

: ...
1
1
1

I

t- 1.ao x 10308

1 NEGATIVE RANGE
(NORMALIZED) ~I

I
-5 -4 -3 -2 -1 I

1
S5 I I I I I J 0

-2.23 X 10-308

1
I"
1
I
I

1 POSITIVE RANGE
(NORMALIZED) ~I

I

4 5 I
I s·

'l.a~ x ~~0.J

+2
• • • fo[L_-

(NOT REPRESENTABLE)

1.99999999999999999

G40003

Figure 2-9. 80387 Double-Precision Number System

2-10

80387 ARCHITECTURE

The finite spacing in Figure 2-9 illustrates that the NPX can represent a great many, but
not all, of the real numbers in its range. There is always a gap between two adjacent 80387
numbers, and it is possible for the result of a calculation to fall in this space. When this
occurs, the NPX rounds the true result to a number that it can represent. Thus, a real
number that requires more digits than the 80387 can accommodate (e.g., a 20-digit number)
is represented with some loss of accuracy. Notice also that the 80387's representable numbers
are not distributed evenly along the real number line. In fact, an equal number of represent­
able numbers exists between successive powers of 2 (i.e., as many representable numbers
exist between 2 and 4 as between 65,536 and 131,072). Therefore, the gaps between repre­
sentable numbers are larger as the numbers increase in magnitude. All integers in the range
± 264 (approximately ± 1018), however, are exactly representable.

In its internal operations, the 80387 actually employs a number system that is a substantial
superset of that shown in Figure 2-9. The internal format (called extended real) extends the
80387's range to about ±3.30 X 10.4932 to ± 1.21 X 104932 , and its precision to about 19
(equivalent decimal) digits. This format is designed to provide extra range and precision for
constants and intermediate results, and is not normally intended for data or final results.

From a practical standpoint, the 80387's set of real numbers is sufficiently large and dense
so as not to limit the vast majority of microprocessor applications. Compared to most
computers, including mainframes, the NPX provides a very good approximation of the real
number system. It is important to remember, however, that it is not an exact representation,
and that arithmetic on real numbers is inherently approximate.

Conversely, and equally important, the 80387 does perform exact arithmetic on integer
operands. That is, if an operation on two integers is valid and produces a result that is in
range, the result is exact. For example, 4 -7- 2 yields an exact integer, I -7- 3 does not, and
240 X 230 + I does not, because the result requires greater than 64 bits of precision.

2.2.2 Data Types and Formats

The 80387 recognizes seven numeric data types for memory-based values, divided into three
classes: binary integers, packed decimal integers, and binary reals. A later section describes
how these formats are stored in memory (the sign is always located in the highest-addressed
byte).

Figure 2-10 summarizes the format of each data type. In the figure, the most significant
digits of all numbers (and fields within numbers) are the leftmost digits.

2.2.2.1 BINARY INTEGERS

The three binary integer formats are identical except for length, which governs the range
that can be accommodated in each format. The leftmost bit is interpreted as the number's
sign: O=positive and I = negative. Negative numbers are represented in standard two's
complement notation (the binary integers are the only 80387 format to use two's comple­
ment). The quantity zero is represented with a positive sign (all bits are 0). The 80387 word
integer format is identical to the 16-bit signed integer data type of the 80386; the 80387
short integer format is identical to the 32-bit signed integer data type of the 80386.

2-11

80387 ARCHITECTURE

MOST SIGNIFICANT BYTE HIGHEST ADDRESSED BYTE
DATA

FORMATS RANGE PRECISION

01 7 01 7 01 7 01 7 01 7 01 7 01 7 01 7 01 7 01 7

WORD INTEGER 10' 16 BITS , g~~~EMENT)
15 0

SHORT INTEGER 10' 32 BITS
WWO'S
COMPLEMENT)

31 0

LONG INTEGER 1019 64 BITS
,(TWO'S

COMPLEMENT)
63 0

PACKED BCD 10'8 18 DIGITS sl Ie MAGNITUDE
X d17 d'6 d,s d'4 d'3 d'2 d n d,o d g dB d 7 d 6 d s d 4 d 3 d 2 d t do I

79 72 0

SINGLE PRECISION 10+ 36 24BITS Sl E:~~~i~T I SIGNIFICAND I
31 23 0

DOUBLE 10' 308 53 BITS SI BIASED I SIGNIFICAND I PRECISION EXPONENT

63 52 0

EXTENDED 10:1:4932 64 BITS SI
BIASED hl SIGNIFICAND I EXPONENT PRECISION

79

(1) S ~ SIGN BIT (0 ~ positive, 1 ~ negative)
(2) do ~ DECIMAL DIGIT (TWO PER TYPE)

6463"

(3) X ~ BITS HAVE NO SIGNIFICANCE; 80387 IGNORES WHEN LOADING, ZEROS WHEN
STORING

(4) " ~ POSITION OF IMPLICIT BINARY POINT
(5) I ~ INTEGER BIT OF SIGNIFICAND; STORED IN TEMPORARY REAL, IMPLICIT IN

SINGLE AND DOUBLE PRECISION
(6) EXPONENT BIAS (NORMALIZED VALUES):

SINGLE: 127 (7FH)
DOUBLE: 1023 (3FFH)
EXTENDED REAL: 16383 (3FFFH)

(7) PACKED BCD: (-1)' (0" ... 0,)
(8) REAL: (-1)' (2E · ... ') (FoF, ...)

Figure 2-10. 80387 Data Formats

2-12

0

G40003

80387 ARCHITECTURE

The binary integer formats exist in memory only. When used by the 80387, they are
automatically converted to the 80-bit extended real format. All binary integers are exactly
representable in the extended real format.

2.2.2.2 DECIMAL INTEGERS

Decimal integers are stored in packed decimal notation, with two decimal digits "packed"
into each byte, except the leftmost byte, which carries the sign bit (O=positive, 1 = negative).
Negative numbers are not stored in two's complement form and are distinguished from
positive numbers only by the sign bit. The most significant digit of the number is the leftmost
digit. All digits must be in the range 0-9.

The decimal integer format exists in memory only. When used by the 80387, it is automat­
ically converted to the 80-bit extended real format. All decimal integers are exactly repre­
sentable in the extended real format.

2.2.2.3 REAL NUMBERS

The 80387 represents real numbers of the form:

... where ...

s = 0 or I
E = any integer between Emin and Emax, inclusive
bi = 0 or 1
p = number of bits of precision

Table 2-3 summarizes the parameters for each of the three real-number formats.

Table 2-3. Summary of Format Parameters

Format
Parameter

Single Double Extended

Format width in bits 32 64 80

P (bits of precision) 24 53 64

Exponent width in bits 8 11 15

Emax +127 +1023 +16383

Emin -126 -1022 -16382

Exponent bias +127 +1023 +16383

2-13

80387 ARCHITECTURE

The 80387 stores real numbers in a three-field binary format that resembles scientific, or
exponential, notation. The format consists of the following fields:

The number's significant digits are held in the significand field, bo"blb2b3 .. bp_l. (The
term "significand" is analogous to the term "mantissa" used to describe floating point
numbers on some computers.)

The exponent field, e = E + bias, locates the binary point within the significant digits
(and therefore determines the number's magnitude). (The term "exponent" is analogous
to the term "characteristic" used to describe floating point numbers on some
computers.)

The I-bit sign field indicates whether the number is positive or negative. Negative
numbers differ from positive numbers only in the sign bits of their significands.

Table 2-4 shows how the real number 178.125 (decimal) is stored in the 80387 single real
format. The table lists a progression of equivalent notations that express the same value to
show how a number can be converted from one form to another. (The ASM386 and
PL/M-386 language translators perform a similar process when they encounter program­
mer-defined real number constants.) Note that not every decimal fraction has an exact binary
equivalent. The decimal number 1/10, for example, cannot be expressed exactly in binary
(just as the number 113 cannot be expressed exactly in decimal). When a translator encoun­
ters such a value, it produces a rounded binary approximation of the decimal value.

The NPX usually carries the digits of the significand in normalized form. This means that,
except for the value zero, the significand contains an integer bit and fraction bits as follows:

I "fff...ff

where" indicates an assumed binary point. The number of fraction bits varies according to
the real format: 23 for single, 52 for double, and 63 for extended real. By normalizing real
numbers so that their integer bit is always a I, the 80387 eliminates leading zeros in small

Table 2-4. Real Number Notation

Notation Value

Ordinary Decimal 178.125

Scientific Decimal 1,,78125E2

Scientific Binary 1,,0110010001 E111

Scientific Binary 1,,0110010001E10000110
(Biased Exponent)

Sign Biased Exponent Significand

80387 Single Format
0 10000110 01100100010000000000000 (Normalized)

1,(implicit)

2-14

80387 ARCHITECTURE

values (I X I < 1). This technique maximizes the number of significant digits that can be
accommodated in a significand of a given width. Note that, in the single and double formats,
the integer bit is implicit and is not actually stored; the integer bit is physically present in
the extended format only.

If one were to examine only the significand with its assumed binary point, all normalized
real numbers would have values greater than or equal to 1 and less than 2. The exponent
field locates the actual binary point in the significant digits. Just as in decimal scientific
notation, a positive exponent has the effect of moving the binary point to the right, and a
negative exponent effectively moves the binary point to the left, inserting leading zeros as
necessary. An unbiased exponent of zero indicates that the position of the assumed binary
point is also the position of the actual binary point. The exponent field, then, determines a
real number's magnitude.

In order to simplify comparing real numbers (e.g., for sorting), the 80387 stores exponents
in a biased form. This means that a constant is added to the true exponent described above.
As Table 2-3 shows, the value of this bias is different for each real format. It has been
chosen so as to force the biased exponent to be a positive value. This allows two real numbers
(of the same format and sign) to be compared as if they are unsigned binary integers. That
is, when comparing them bitwise from left to right (beginning with the leftmost exponent
bit), the first bit position that differs orders the numbers; there is no need to proceed further
with the comparison. A number's true exponent can be determined simply by subtracting
the bias value of its format.

The single and double real formats exist in memory only. If a number in one of these formats
is loaded into an 80387 register, it is automatically converted to extended format, the format
used for all internal operations. Likewise, data in registers can be converted to single or
double real for storage in memory. The extended real format may be used in memory also,
typically to store intermediate results that cannot be held in registers.

Most applications should use the double format to store real-number data and results; it
provides sufficient range and precision to return correct results with a minimum of program­
mer attention. The single real format is appropriate for applications that are constrained by
memory, but it should be recognized that this format provides a smaller margin of safety. It
is also useful for the debugging of algorithms, because roundoff problems will manifest
themselves more quickly in this format. The extended real format should normally be reserved
for holding intermediate results, loop accumulations, and constants. Its extra length is
designed to shield final results from the effects of rounding and overflow (underflow in inter­
mediate calculations. However, the range and precision of the double format are adequate
for most microcomputer applications.

2.2.3 Rounding Control

Internally, the 80387 employs three extra bits (guard, round, and sticky bits) that enable it
to round numbers in accord with the infinitely precise true result of a computation; these
bits are not accessible to programmers. Whenever the destination can represent the infinitely
precise true result, the 80387 delivers it. Rounding occurs in arithmetic and store operations
when the format of the destination cannot exactly represent the infinitely precise true result.

2-15

80387 ARCHITECTURE

For example, a real number may be rounded if it is stored in a shorter real format, or in an
integer format. Or, the infinitely precise true result may be rounded when it is returned to a
register.

The NPX has four rounding modes, selectable by the RC field in the control word (see
Figure 2-3). Given a true result b that cannot be represented by the target data type, the
80387 determines the two representable numbers a and c that most closely bracket b in value
(a < b < c). The processor then rounds (changes) b to a or to c according to the mode
selected by the RC field as shown in Table 2-5. Rounding introduces an error in a result
that is less than one unit in the last place to which the result is rounded.

"Round to nearest" is the default mode and is suitable for most applications; it provides
the most accurate and statistically unbiased estimate of the true result.

• The "chop" or "round toward zero" mode is provided for integer arithmetic
applications.

• "Round up" and "round down" are termed directed rounding and can be used to imple­
ment interval arithmetic. Interval arithmetic generates a certifiable result independent
of the occurrence of rounding and other errors. The upper and lower bounds of an inter­
val may be computed by executing an algorithm twice, rounding up in one pass and
down in the other.

Rounding control affects only the arithmetic instructions (refer to Chapter 3 for lists of
arithmetic and non arithmetic instructions).

2.2.4 Precision Control

The 80387 allows results to be calculated with either 64, 53, or 24 bits of precision in the
significand as selected by the precision control (PC) field of the control word. The default
setting, and the one that is best suited for most applications, is the full 64 bits of significance
provided by the extended real format. The other settings are required by the IEEE standard
and are provided to obtain compatibility with the specifications of certain existing program­
ming languages. Specifying less precision nullifies the advantages of the extended format's
extended fraction length. When reduced precision is specified, the rounding of the fractional
value clears the unused bits on the right to zeros.

2-16

80387 ARCHITECTURE

Table 2-5. Rounding Modes

RC Field Rounding Mode Rounding Action

00 Round to nearest Closer to b of a or c; if equally close,
select even number (the one whose
least significant bit is zero).

01 Round down (toward -00) a

10 Round up (toward +00) c

11 Chop (toward 0) Smaller in magnitude of a or c.

NOTE: a < b < c; a and c are successive representable numbers; b is not representable.

2-17

Special Computational Situations 3

CHAPTER 3
SPECIAL COMPUTATIONAL SITUATIONS

Besides being able to represent positive and negative numbers, the 80387 data formats may
be used to describe other entities. These special values provide extra flexibility, but most
users will not need to understand them in order to use the 80387 successfully. This section
describes the special values that may occur in certain cases and the significance of each. The
80387 exceptions are also described, for writers of exception handlers and for those inter­
ested in probing the limits of computation using the 80387.

The material presented in this section is mainly of interest to programmers concerned with
writing exception handlers. Many readers will only need to skim this section.

When discussing these special computational situations, it is useful to distinguish between
arithmetic instructions and nonarithmetic instructions. Nonarithmetic instructions are those
that have no operands or transfer their operands without substantial change; arithmetic
instructions are those that make significant changes to their operands. Table 3-1 defines
these two classes of instructions.

3.1 SPECIAL NUMERIC VALUES

The 80387 data formats encompass encodings for a variety of special values in addition to
the typical real or integer data values that result from normal calculations. These special
values have significance and can express relevant information about the computations or
operations that produced them. The various types of special values are

• Denormal real numbers

• Zeros

• Positive and negative infinity

• NaN (Not-a-Number)

Indefinite

• Unsupported formats

The following sections explain the origins and significance of each of these special values.
Tables 3-6 through 3-9 at the end of this section show how each of these special values is
encoded for each of the numeric data types.

3.1.1 Denormal Real Numbers

The 80387 generally stores nonzero real numbers in normalized floating-point form; that is,
the integer (leading) bit of the significand is always a one. (Refer to Chapter 2 for a review
of operand formats.) This bit is explicitly stored in the extended format, and is implicitly

3-1

SPECIAL COMPUTATIONAL SITUATIONS

Table 3-1. Arithmetic and Nonarithmetic Instructions

Nonarithmetic Instructions Arithmetic Instructions

FABS F2XM1
FCHS FAOO(P)
FCLEX FBLO
FOECSTP FBSTP
FFREE FCOMP(P)(P)
FINCSTP FCOS
FINIT FOIV(R)(P)
FLO (register-to-register) FIAOO
FLO (extended format from memory) FICOM(P)
FLO constant FIOIV(R)
FLDCW FILO
FLDENV FIMUL
FNOP FIST(P)
FRSTOR FISUB(R)
FSAVE FLO (conversion)
FST(P) (register-to-register) FMUL(P)
FSTP (extended format to memory) FPATAN
FSTCW FPREM
FSTENV FPREM1
FSTSW FPTAN
FWAIT FRNOINT
FXAM FSCALE
FXCH FSIN

FSINCOS
FSQRT
FST(P) (conversion)
FSUB(R)(P)
FTST
FUCOM(P)(P)
FXTRACT
FYL2X
FYL2XP1

assumed to be a one (1,,) in the single and double formats. Since leading zeros are elimi­
nated, normalized storage allows the maximum number of significant digits to be held in a
significand of a given width.

When a numeric value becomes very close to zero, normalized floating-point storage cannot
be used to express the value accurately. The term tiny is used here to precisely define what
values require special handling by the 80387. A number R is said to be tiny when -2Emin <
R < 0 or 0 < R < +2Emin. (As defined in Chapter 2, Emin is -126 for single format,
-1022 for double format, and -16382 for extended format.) In other words, a nonzero
number is tiny if its exponent would be too negative to store in the destination format.

To accommodate these instances, the 80387 can store and operate on reals that are not
normalized, i.e., whose significands contain one or more leading zeros. Denormals typically
arise when the result of a calculation yields a value that is tiny.

3-2

SPECIAL COMPUTATIONAL SITUATIONS

Denormal values have the following properties:

The biased floating-point exponent is stored at its smallest value (zero)

The integer bit of the significand (whether explicit or implicit) is zero

The leading zeros of denormals permit smaller numbers to be represented, at the possible
cost of some lost precision (the number of significant bits is reduced by the leading zeros).
In typical algorithms, extremely small values are most likely to be generated as intermedi­
ate, rather than final, results. By using the NPX's extended real format for holding inter­
mediate values, quantities as small as ± 3.4 X 10-4932 can be represented; this makes the
occurrence of denormal numbers a rare phenomenon in 80387 applications. Nevertheless,
the NPX can load, store, and operate on denormalized real numbers when they do occur.

Denormals receive special treatment by the 80387 in three respects:

The 80387 avoids creating denormals whenever possible. In other words, it always
normalizes real numbers except in the case of tiny numbers.

• The 80387 provides the unmasked underflow exception to permit programmers to detect
cases when denormals would be created.

The 80387 provides the denormal exception to permit programmers to detect cases when
denormals enter into further calculations.

Denormalizing means incrementing the true result's exponent and inserting a corresponding
leading zero in the significand, shifting the rest of the significand one place to the right.
Denorma! values may occur in any of the single, double, or extended formats. Table 3-2
illustrates how a result might be denormalized to fit a single format destination.

Denormalization produces either a denormal or a zero. Denormals are readily identified by
their exponents, which are always the minimum for their formats; in biased form, this is
always the bit string: 00 .. 00. This same exponent value is also assigned to the zeros, but a
denormal has a nonzero significand. A denormal in a register is tagged special. Tables 3-8
and 3-9 later in this chapter show how denormal values are encoded in each of the real data
formats.

The denormalization process causes loss of significance if low-order one-bits bits are shifted
off the right of the significand. In a severe case, all the significand bits of the true result are
shifted out and replaced by the leading zeros. In this case, the result of denormalization is a
true zero, and, if the value is in a register, it is tagged as a zero.

Table 3-2. Denormalization Process

Operation Sign Exponent Significand

True Result 0 -129 1,,01011100 .. 00
Denormalize 0 -128 0,,101011100 .. 00
Denormalize 0 -127 0,,0101011100 .. 00
Denormalize 0 -126 0,,00101011100 .. 00
Denormal Result 0 -126 0,,00101011100 .. 00

3-3

SPECIAL COMPUTATIONAL SITUATIONS

Denormals are rarely encountered in most applications. Typical debugged algorithms gener­
ate extremely small results during the evaluation of intermediate subexpressions; the final
result is usually of an appropriate magnitude for its single or double format real destination.
If intermediate results are held in temporary real, as is recommended, the great range of
this format makes underflow very unlikely. Denormals are likely to arise only when an appli­
cation generates a great many intermediates, so many that they cannot be held on the regis­
ter stack or in extended format memory variables. If storage limitations force the use of
single or double format reals for intermediates, and small values are produced, underflow
may occur, and, if masked, may generate denormals.

When a denormal number is single or double format is used as a source operand and the
denormal exception is masked, the 80387 automatically normalizes the number when it is
converted to extended format.

3.1.1.1 DE NORMALS AND GRADUAL UNDERFLOW

Floating-pont arithmetic cannot carry out all operations exactly for all operands; approxi­
mation is unavoidable when the exact result is not representable as a floating-point variable.
To keep the approximation mathematically tractable, the hardware is made to conform to
accuracy standards that can be modeled by certain inequalities instead of equations. Let the
assignment

X+-Y@Z (where @ is some operation)

represent a typical operation. In the default rounding mode (round to nearest), each opera­
tion is carried out with an absolute error no larger than half the separation between the two
floating-point numbers closest to the exact results. Let x be the value stored for the variable
whose name in the program is X, and similarly y for Y, and z for Z. Normally y and z will
differ by accumulated errors from what is desired and from what would have been obtained
in the absence of error. For the calculation of x we assume that y and z are the best approx­
imations available, and we seek to compute x as well as we can. If y@z is representable
exactly, then we expect x = y@z, and that is what we get for every algebraic operation on
the 80387 (i.e., when y@z is one of y+z, y-z, yXz, y-;-z, sqrt z). But if y@z must be
approximated, as is usually the case, then x must differ from y@z by no more than half the
difference between the two representable numbers that straddle y@z. That difference depends
on two factors:

1. The precision to which the calculation is carried out, as determined either by the preci­
sion control bits or by the format used in memory. On the 80387, the precisions are
single (24 significant bits), double (53 significant bits), and extended (64 significant
bits).

2. How close y@z is to zero. In this respect the presence of denormal numbers on the 80387
provides a distinct advantage over systems that do not admit denormal numbers.

In any floating-point number system, the density of representable numbers is greater near
zero than near the largest representable magnitudes. However, machines that do not use
denormal numbers suffer from an enormous gap between zero and its closest neighbors.
Figures 3-1 and 3-2 show what happens near zero in two kinds of floating-point number
systems.

3-4

SPECIAL COMPUTATIONAL SITUATIONS

0+++++++1 +++++++1-+-+-+-+-+-+-+-1---+---+---+---+---·---+---+---1-------+-------+-------.
-----Normal Humbers-----~

Denormals

Figure 3-1. Floating-Point System with Denormals

I ••• +t •• 1-+·.-+-+-+-+-+-1---+---+---+---+---+---+---+---1-------.-------.-------.
----Hormal Numbers----- ..

Figure 3-2. Floating-Point System without Denormals

Figure 3-1 shows a floating-point number system that (like the 80387) admits denormal
numbers. For simplicity, only the non-negative numbers appear and the figure illustrates a
number system that carries just four significant bits instead of the 24, 53, or 64 significant
bits that the 80387 offers.

Each vertical mark stands for a number representable in four significant bits, and the bolder
marks stand for the normal powers of 2. The denormal numbers lie between 0 and the nearest
normal power of 2. They are no less dense than the remaining normal nonzero numbers.

Figure 3-2 shows a floating-point number system that (unlike the 80387) does not admit
denormal numbers. There are two yawning gaps, one on the positive side of zero (as illus­
trated) and one on the negative side of zero (not illustrated). The gap between zero and the
nearest neighbor of zero differs from the gap between that neighbor and the next bigger
number by a factor of about 8.4 X 106 for single, 4.5 X 1015 for double, and 9.2 X lOIS for
extended format. Those gaps would horribly complicate error analysis.

The advantage of denormal numbers is apparent when one considers what happens in either
case when the underflow exception is masked and y@z falls into the space between zero and
the smallest normal magnitude. The 80387 returns the nearest denormal number. This action
might be called "gradual underflow." The effect is no different than the rounding that can
occur when y@z falls in the normal range.

On the other hand, the system that does not have denormal numbers returns zero as the
result, an action that can be much more inaccurate than rounding. This action could be
called "abrupt underflow."

3-5

SPECIAL COMPUTATIONAL SITUATIONS

3.1.2 Zeros

The value zero in the real and decimal integer formats may be signed either positive or
negative, although the sign of a binary integer zero is always positive. For computational
purposes, the value of zero always behaves identically, regardless of sign, and typically the
fact that a zero may be signed is transparent to the programmer. If necessary, the FXAM
instruction may be used to determine a zero's sign.

If a zero is loaded or generated in a register, the register is tagged zero. Table 3-3 lists the
results of instructions executed with zero operands and also shows how a zero may be created
from nonzero operands.

3-6

SPECIAL COMPUTATIONAL SITUATIONS

Table 3-3. Zero Operands and Results

Operation Operands Result

FLD,FBLD JO +0
-0 -0

FILD +0 +0
FST,FSTP +0 +0

-0 -0
+X +0'
-X -0'

FBSTP +0 +0
-0 -0

FIST,FISTP +0 +0
-0 -0
+X +03

-X -03

Addition +0 plus +0 +0
-0 plus -0 -0
+0 plus -0, -0 plus +0 ±02
-X plus +X, +X plus -X ±02
±O plus ±X, ±X plus ±O #X

Subtraction +0 minus -0 +0
-0 minus +0 -0
+0 minus +0, -0 minus -0 ±02
+X minus +X, -X minus -X ±02
±O minus ±X -#X
±X minus ±O #X

Multiplication +0 X +0, -0 X -0 +0
+0 X -0, -0 X +0 -0
+0 X +X, +X X +0 +0
+ 0 X - X, - X X + 0 -0
-0 X +X, -X X +0 -0

Multiplication -0 X -X, -X X -0 +0
+X X +Y, -X X -Y +0'
+X X -V, -X X +Y -0'

Division ±O -;- ±O Invalid Operation
±X -;- ±O $00 (Zero Divide)
+0 -;- +X, -0 -;- -X +0
+ 0 -;- - X, - 0 -;- + X -0
-X -;- -V, +X -;- +Y +0'
-X -;- +Y, +X -;- -Y -0'

FPREM, FPREM1 ±O rem ±O Invalid Operation
±X rem ±O Invalid Operation
+0 rem ±X +0
-0 rem ±X -0

FPREM +X rem ±Y +0 Y exactly divides X
-X rem ±Y -0 Y exactly divides X

FPREM1 +X rem ±Y + 0 Y exactly divides X
-X rem ±Y - 0 Y exactly divides X

X and Y denote nonzero positive operands.
1 When extreme underflow denormalizes the result to zero.
2 Sign determined by rounding mode: + for nearest, up, or chop, - for down.
3 When 0 < X < 1 and rounding mode is not up.

Sign of original zero operand.
Sign of original X operand.
-# Complement of sign of original X operand.
$ Exclusive OR of the signs of the operands.

3-7

SPECIAL COMPUTATIONAL SITUATIONS

Table 3-3. Zero Operands and Results (Cont'd.)

Operation Operands Result

FSQRT +0 +0
-0 -0

Compare ±O:+X ±O < +X
±O:±O ±O = ±O
±O:-X ±O> -X

FTST ±O ±O = 0
+0 C3 =1; C2 =C,=CO=0
-0 C3 =C, = 1; C2 =CO=0

FCHS +0 -0
-0 +0

FABS ±O +0
F2XM1 +0 +0

-0 -0
FRNDINT +0 +0

-0 -0
FSCALE ± 0 scaled by - CD *0

± 0 scaled by + CD Invalid Operation
± 0 scaled by X '0

FXTRACT +0 ST= +0,ST(1)= -CD, Zero divide
-0 ST= -0,ST(1)= -CD, Zero divide

FPTAN ±O *0
FSIN (or ±O '0

SIN result of
FSINCOS)

FCOS (or ±O +1
COS result of
FSINCOS)

FPATAN ±O -i- +X '0
±O -i- -X * 1r
±X -i- ±O #1r/2
±O -i- +0 '0
±O -i- -0 . 1r
+CD -i- ±O +1r/2
-CD -:- ±O -1r/2
±O -i- +CD '0
±O -:- -CD *1r

FYL2X ±Y X 10g(±0) Zero Divide
±O X 10g(±0) Invalid Operation

FYL2XP1 +Y X log(±0+1) *0
-Y X log(±0+1) -*0

X and Y denote nonzero positive operands.
• Sign of original zero operand.
Sign of original X operand.
- # Complement of sign of original X operand.

3-8

SPECIAL COMPUTATIONAL SITUATIONS

3.1.3 Infinity

The real formats support signed representations of infinities. These values are encoded with
a biased exponent of all ones and a significand of l~OO .. OO; if the infinity is in a register, it
is tagged special.

A programmer may code an infinity, or it may be created by the NPX as its masked response
to an overflow or a zero divide exception. Note that depending on rounding mode, the masked
response may create the largest valid value representable in the destination rather than
infinity.

The signs of the infinities are observed, and comparisons are possible. Infinities are always
interpreted in the affine sense; that is, -CXl < (any finite number) < +CXl. Arithmetic on
infinities is always exact and, therefore, signals no exceptions, except for the invalid opera­
tions specified in Table 3-4.

Table 3-4. Infinity Operands and Results

Operation Operands Result

Addition + co plus + (X) +00
-co plus -(X) -(X)

+co plus -(X) Invalid Operation
-co plus +00 Invalid Operation
±co plus ±X *00
±X plus ±oo *00

Subtraction +co minus -(X) +00
-co minus +00 -(X)

+co minus +00 I nvalid Operation
-co minus -(X) Invalid Operation
± co minus ± X *00
±X minus ±oo -*00

Multiplication ±co X ±oo $00
±co X ±Y, ±Y X ±oo $00
±O X ±co, ±oo X ±O Invalid Operation

Division ±co -:-- ±co Invalid Operation
±co -:- ±X $00
±X -:- ±oo $0
±co -:- ±O $co

FSQRT -m Invalid Operation
+co +co

FPREM, FPREM1 ±co rem ±co Invalid Operation
±co rem ±X Invalid Operation
±X rem ±co $X, Q = 0

FRNDINT ±m 'co

X Zero or nonzero positive operand.
Y Nonzero positive operand.

Sign of original infinity operand.
Complement of sign of original infinity operand.

$ Sign of original operand.
$ Exclusive OR of signs of operands.

3-9

SPECIAL COMPUTATIONAL SITUATIONS

Table 3-4. Infinity Operands and Results (Cont'd.)

Operation Operands Result

FSCALE ± 00 scaled by - - 00 Invalid Operation
± 00 scaled by + 00 *00
± 00 scaled by ± X *00
± 0 scaled by - 00 ±O'
± 0 scaled by 00 Invalid Operation
± Y scaled by + 00 #00
± Y scaled by - 00 #0

FXTRACT ±oo ST = *00, ST(1) = +00
Compare +00 : +00 +00 = +00

-00 : -00 -00 = -00
+00 : -00 +00 > -00
-00 : +00 -00 < +00
+00 : ±X +00 > X
-00 : ±X -00 < X
±X: +00 X < +00
±X :-00 X> +00

FTST +00 +00 >0
- 00 - 00 <0

FPATAN ±oo -0- ±X *7rj2
±Y-o- +00 #0
±Y -0- -00 #7r
±oo -0- +00 *7rj4
± 00 -0- -00 *37rj4
±oo -0- ±O *7rj2
+0 -0- +00 +0
+0 -0- -00 +7r
-0 -0- +00 -0
-0 -0- -00 -7r

F2XM1 +00 +00
-00 -1

FYL2X, FYL2XP1 ± 00 X log(1) Invalid Operation
± 00 X 10g(Y> 1) *00
±oo X log(0<Y<1) -*00
±Y X log(+oo) #00
±O X log(+oo) Invalid Operation
±Y X log(-oo) Invalid Operation

X Zero or nonzero positive operand.
Y Nonzero positive operand.

Sign of original infinity operand.
Complement of sign of original infinity operand.

Sign of the original Y operand.
1 Sign of original zero operand.

3.1.4 NaN (Not-a-Number)

A NaN (Not a Number) is a member of a class of special values that exists in the real
formats only. A NaN has an exponent of 11..11B, may have either sign, and may have any
significand except l~OO .. OOB, which is assigned to the infinities. A NaN in a register is
tagged special.

3-10

SPECIAL COMPUTATIONAL SITUATIONS

There are two classes of NaNs: signaling (SNaN) and quiet (QNaN). Among the QNaNs,
the value real indefinite is of special interest.

3.1.4.1 SIGNALING NaNs

A signaling NaN is a NaN that has a zero as the most significant bit of its significand. The
rest of the significand may be set to any value. The 80387 never generates a signaling NaN
as a result; however, it recognizes signaling NaNs when they appear as operands. Arithmetic
operations (as defined at the beginning of this chapter) on a signaling NaN cause an invalid­
operation exception (except for load operations, FXCH, FCHS, and FABS).

By unmasking the invalid operation exception, the programmer can use signaling NaN s to
trap to the exception handler. The generality of this approach and the large number of NaN
values that are available provide the sophisticated programmer with a tool that can be applied
to a variety of special situations.

For example, a compiler could use signaling NaNs as references to un initialized (real) array
elements. The compiler could preinitialize each array element with a signaling NaN whose
significand contained the index (relative position) of the element. If an application program
attempted to access an element that it had not initialized, it would use the NaN placed there
by the compiler. If the invalid operation exception were unmasked, an interrupt would occur,
and the exception handler would be invoked. The exception handler could determine which
element had been accessed, since the operand address field of the exception pointers would
point to the NaN, and the NaN would contain the index number of the array element.

3.1.4.2 QUIET NaNs

A quiet NaN is a NaN that has a one as the most significant bit of its significand. The
80387 creates the quiet NaN real indefinite (defined below) as its default response to certain
exceptional conditions. The 80387 may derive other QNaNs by converting an SNaN. The
80387 converts a SNaN by setting the most significant bit of its significand to one, thereby
generating an QNaN. The remaining bits of the significand are not changed; therefore,
diagnostic information that may be stored in these bits of the SNaN is propagated into the
QNaN.

The 80387 will generate the special QNaN, real indefinite, as its masked response to an
invalid operation exception. This NaN is signed negative; its significand is encoded 1~100 .. 00.
All other NaNs represent values created by programmers or derived from values created by
programmers.

Both quiet and signaling NaNs are supported in all operations. A QNaN is generated as the
masked response for invalid-operation exceptions and as the result of an operation in which
at least one of the operands is a QNaN. The 80387 applies the rules shown in
Table 3-5 when generating a QNaN:

Note that handling of a QNaN operand has greater priority than all exceptions except certain
invalid-operation exceptions (refer to the section "Exception Priority" in this chapter).

3-11

inter SPECIAL COMPUTATIONAL SITUATIONS

Table 3-5. Rules for Generating QNaNs

Operation Action

Real operation on an SNaN and Deliver the QNaN operand.
aQNaN

Real operation on two SNaNs Deliver the QNaN that results from
converting the SNaN that has the larger
significand.

Real operation on two QNaNs Deliver the QNaN that has the larger
significand.

Real operation on an SNaN and Deliver the QNaN that results from
another number converting the SNaN.

Real operation on a QNaN and Deliver the QNaN.
another number

Invalid operation that does not Deliver the default QNaN real indefinite.
involve NaNs

Quiet NaNs could be used, for example, to speed up debugging. In its early testing phase, a
program often contains multiple errors. An exception handler could be written to save
diagnostic information in memory whenever it was invoked. After storing the diagnostic
data, it could supply a quiet NaN as the result of the erroneous instruction, and that NaN
could point to its associated diagnostic area in memory. The program would then continue,
creating a different NaN for each error. When the program ended, the NaN results could
be used to access the diagnostic data saved at the time the errors occurred. Many errors
could thus be diagnosed and corrected in one test run.

3.1.5 Indefinite

For every 80387 numeric data type, one unique encoding is reserved for representing the
special value indefinite. The 80387 produces this encoding as its response to a masked invalid­
operation exception.

In the case of reals, the indefinite value is a QNaN as discussed in the prior section.

Packed decimal indefinite may be stored by the NPX in a FBSTP instruction; attempting
to use this encoding in a FBLD instruction, however, will have an undefined result; thus
indefinite cannot be loaded from a packed decimal integer.

In the binary integers, the same encoding may represent either indefinite or the largest
negative number supported by the format (-2'5, -231 , or _263). The 80387 will store this
encoding as its masked response to an invalid operation, or when the value in a source regis­
ter represents or rounds to the largest negative integer representable by the destination. In
situations where its origin may be ambiguous, the invalid-operation exception flag can be
examined to see if the value was produced by an exception response. When this encoding is
loaded or used by an integer arithmetic or compare operation, it is always interpreted as a
negative number; thus indefinite cannot be loaded from a binary integer.

3-12

SPECIAL COMPUTATIONAL SITUATIONS

3.1.6 Encoding of Data Types

Tables 3-6 through 3-9 show how each of the special values just described is encoded for
each of the numeric data types. In these tables, the least-significant bits are shown to the
right and are stored in the lowest memory addresses. The sign bit is always the left-most bit
of the highest-addressed byte.

3.1.7 Unsupported Formats

The extended format permits many bit patterns that do not fall into any of the previously
mentioned categories. Some of these encodings were supported by the 80287 NPX; however,
most of them are not supported by the 80387 NPX. These changes are required due to
changes made in the final version of the IEEE 754 standard that eliminated these data types.

The categories of encodings formerly known as pseudozeros, pseudo-NaNs, pseudoinfinities,
and unnormal numbers are not supported by the 80387. The 80387 raises the invalid­
operation exception when they are encountered as operands.

The encodings formerly known as pseudodenormal numbers are not generated by the 80387;
however, they are correctly utilized when encountered in operands to 80387 instructions.
The exponent is treated as if it were 00 .. 01 and the mantissa is unchanged. The denormal
exception is raised.

3-13

SPECIAL COMPUTATIONAL SITUATIONS

Table 3-6. Binary Integer Encodings

Class Sign Magnitude

(Largest) 0 11 .. 11

· · U> · · CD

~ · · ';;; · · 0
0.. · · · · (Smallest) 0 00 .. 01

Zero 0 00 .. 00

(Smallest) 1 11,.11

· ·
U> · · CD

~ · ·
«I · · C>
CD · · z · · (Largest/lndefinite*) 1 00 .. 00

Word: 15 bits
Short: 31 bits
Long: 63 bits

*If this encoding is used as a source operand (as in an integer load or integer arithmetic instruction), the
80387 interprets it as the largest negative number representable in the format... -215, -231 , or -263. The
80387 delivers this encoding to an integer destination in two cases:

1. If the result is the largest negative number.
2. As the response to a masked invalid operation exception, in which case it represents the special value

integer indefinite.

3-14

SPECIAL COMPUTATIONAL SITUATIONS

Table 3-7. Packed Decimal Encodings

Magnitude
Class Sign

I I I digit digit digit digit ... digit

(Largest) a 0000000 1 001 1 001 1 001 1 001 ... 1 001

· · · III · Q) · ·
~ · · · 'in · · · 0

(Smallest) 0 0000000 0000 0000 0000 0000 0001 a.. ...

Zero 0 0000000 0000 0000 0000 0000 ... 0000

Zero 1 0000000 0000 0000 0000 0000 ., . 0000

III
(Smallest) 1 0000000 0000 0000 0000 0000 0001 Q) ...

,~
-; · · · en · · · Q)

z · · · · · · (Largest) 1 0000000 1 001 1 001 1 001 1 0 a 1 ... 1 001

Indefinite* 1 1111111 1 1 1 1 1 1 1 1 U U U U** UUUU ... UUUU

--1 b te-y 9 b tes y

* The packed decimal indefinite is stored by FBSTP in response to a masked invalid operation exception.
Attempting to load this value via FBLD produces an undefined result.
UUUU means bit values are undefined and may contain any value.

3-15

SPECIAL COMPUTATIONAL SITUATIONS

Table 3-8. Single and Double Real Encodings

Class Sign
Biased Significand

Exponent ff--ff'

0 11 .. 11 11 .. 11

Quiet · · · ·
In 0 11 .. 11 10 .. 00
z
«J
Z 0 11 .. 11 01 .. 11

Signaling · · · · 0 11 .. 11 00 .. 01

In
CD Infinity 0 11 .. 11 00 .. 00 > :;:::
'iii
0 0 11..10 11..11 D..

Normals · · · · 0 00 .. 01 00 .. 00
In
iij

0 00 .. 00 11..11 CD
a: · Denormals · · · 0 00 .. 00 00 .. 01

Zero 0 00 .. 00 00 .. 00

Zero 1 00 .. 00 00 .. 00

1 00 .. 00 00 .. 01

Denormals · ·
In · · iij 1 00 .. 00 11..11 CD
a:

1 00 .. 01 00 .. 00

Normals · · In · · CD

~ 1 11..10 11..11
«J
en
CD Infinity 1 11..11 00 .. 00 z

1 11..11 00 .. 01

Signaling · · · ·
In 1 11..11 01..11
z
«J z Indefinite 1 11..11 10 .. 00

Quiet · · · · 1 11..11 11..11

Single: ---8bits-- ---23 bits
Double: --11 bits-- ---52 bits

'Integer bit is implied and not stored.

3-16

SPECIAL COMPUTATIONAL SITUATIONS

Table 3-9. Extended Real Encodings

Class Sign Biased Significand
Exponent i.ff-ff

0 11 .. 11 1 11 .. 11

Quiet · · · · · · on on 0 11 .. 11 1 10 .. 00 CD
.!: z

1\1 := Z 0 11 .. 11 1 01 .. 11 on
0 Signaling · · · Q. · · · 0 11 .. 11 1 00 .. 01

Infinity 0 11 .. 11 100 .. 00

0 11 .. 10 111 .. 11
Normals · · · · · · 0 00 .. 01 100 .. 00

0 11 .. 10 011 .. 11
Unsupported · · ·

on 8087 Un normals · · · CD 0 00 .. 01 000 .. 00
~ 0 00 .. 00 111 .. 11 'iii
0 Pseudodenormals · · · Q. · · · 0 00 .. 00 1 00 .. 00

0 00 .. 00 011..11
Denormals · · · · · · 0 00 .. 00 000 .. 01

on Zero 0 00 .. 00 000 .. 00 iii
I-- CD

00 .. 00 a: Zero 1 000 .. 00

1 00 .. 00 000 .. 01
Denormals · · · · · · 1 00 .. 00 011 .. 11

1 00 .. 00 100 .. 00
Pseudodenormals · · · on · · · CD

~ 1 00 .. 00 111 .. 11
1\1
01 1 00 .. 00 000 .. 00 CD Unsupported · · · Z

8087 Un normals · · · 1 11 .. 10 011 .. 11

1 00 .. 01 100 .. 00
Normals · · · · · · 1 11..10 111 .. 11

Infinity 1 11 .. 11 100 .. 00

1 11 .. 11 1 00 .. 01

Signaling · · · (II · · · CD (II 1 11 .. 11 1 01 .. 11 > z :;::; 1\1 1\1 Z Indefinite 1 11 .. 11 1 10 .. 00 01
CD Quiet · · · z · · · 1 11 .. 11 111 .. 11

---15 bits--- ---64 bits---

3-17

SPECIAL COMPUTATIONAL SITUATIONS

3.2 NUMERIC EXCEPTIONS

The 80387 can recognize six classes of numeric exception conditions while executing numeric
instructions:

1. 1- Invalid operation

Stack fault

• IEEE standard invalid operation

2. Z- Divide-by-zero

3. D- Denormalized operand

4. 0- Numeric overflow

5. U- Numeric underflow

6. P- Inexact result (precision)

3.2.1 Handling Numeric Exceptions

When numeric exceptions occur, the NPX takes one of two possible courses of action:

The NPX can itself handle the exception, producing the most reasonable result and
allowing numeric program execution to continue undisturbed.

• A software exception handler can be invoked by the CPU to handle the exception.

Each of the six exception conditions described above has a corresponding flag bit in the
80387 status word and a mask bit in the 80387 control word. If an exception is masked (the
corresponding mask bit in the control word = 1), the 80387 takes an appropriate default
action and continues with the computation. If the exception is unmasked (mask=O), the
80387 asserts the ERROR# output to the 80386 to signal the exception and invoke a software
exception handler.

Note that when exceptions are masked, the NPX may detect multiple exceptions in a single
instruction, because it continues executing the instruction after performing its masked
response. For example, the 80387 could detect a denormalized operand, perform its masked
response to this exception, and then detect an underflow.

3.2.1.1 AUTOMATIC EXCEPTION HANDLING

The 80387 NPX has a default fix-up activity for every possible exception condition it may
encounter. These masked-exception responses are designed to be safe and are generally
acceptable for most numeric applications.

As an example of how even severe exceptions can be handled safely and automatically using
the NPX's default exception responses, consider a calculation of the parallel resistance of
several values using only the standard formula (Figure 3-3). If Rl becomes zero, the circuit
resistance becomes zero. With the divide-by-zero and precision exceptions masked, the 80387
NPX will produce the correct result.

3-18

SPECIAL COMPUTATIONAL SITUATIONS

R, R, R,

EQUIVALENT RESISTANCE ~
1 + _1_ + _1_

R, R, R,

122164-11

Figure 3-3. Arithmetic Example Using Infinity

By masking or unmasking specific numeric exceptions in the NPX control word, NPX
programmers can delegate responsibility for most exceptions to the NPX, reserving the most
severe exceptions for programmed exception handlers. Exception-handling software is often
difficult to write, and the NPX's masked responses have been tailored to deliver the most
reasonable result for each condition. For the majority of applications, masking all exceptions
other than invalid-operation yields satisfactory results with the least programming effort.
An invalid-operation exception normally indicates a program error that must be corrected;
this exception should not normally be masked.

The exception flags in the NPX status word provide a cumulative record of exceptions that
have occurred since these flags were last cleared. Once set, these flags can be cleared only
by executing the FCLEX (clear exceptions) instruction, by reinitializing the NPX, or by
overwriting the flags with an FRSTOR or FLDENV instruction. This allows a programmer
to mask all exceptions (except invalid operation), run a calculation, and then inspect the
status word to see if any exceptions were detected at any point in the calculation.

3.2.1.2 SOFTWARE EXCEPTION HANDLING

If the NPX encounters an unmasked exception condition, it signals the exception to the
80386 CPU using the ERROR# status line between the two processors.

The next time the 80386 CPU encounters a WAIT or ESC instruction in its instruction
stream, the 80386 will detect the active condition of the ERROR# status line and automat­
ically trap to an exception response routine using interrupt #16, the "processor extension
error" exception.

3-19

SPECIAL COMPUTATIONAL SITUATIONS

This exception response routine is normally a part of the systems software. Typical exception
responses may include:

Incrementing an exception counter for later display or printing

Printing or displaying diagnostic information (e.g., the 80387 environment and
registers)

• Aborting further execution

• Using the exception pointers to build an instruction that will run without exception and
executing it

For 80386 systems having systems software support for the 80387 NPX, applications
programmers should consult the operating system's reference manuals for the appropriate
system response to NPX exceptions. For systems programmers, specific details on writing
software exception handlers are included in Chapter 6.

3.2.2 Invalid Operation

This exception may occur in response to two general classes of operations:

1. Stack operations

2. Arithmetic operations

The stack flag (SF) of the status word indicates which class of operation caused the excep­
tion. When SF is 1 a stack operation has resulted in stack overflow or underflow; when SF
is 0, an arithmetic instruction has encountered an invalid operand.

3.2.2.1 STACK EXCEPTION

When SF is 1, indicating a stack operation, the O/U# bit of the condition code (bit C 1)

distinguishes between stack overflow and underflow as follows:

O/U# = 1

O/U# = 0

Stack overflow- an instruction attempted to push down a non empty stack
location.

Stack underflow- an instruction attempted to read an operand from an
empty stack location.

When the invalid-operation exception is masked, the 80387 returns the QNaN indefinite.
This value overwrites the destination register, destroying its original contents.

When the invalid-operation exception is not masked, the 80386 exception "processor exten­
sion error" is triggered. TOP is not changed, and the source operands remain unaffected.

3-20

SPECIAL COMPUTATIONAL SITUATIONS

3.2.2.2 INVALID ARITHMETIC OPERATION

This class includes the invalid operations defined in IEEE Std 754. The 80387 reports an
invalid operation in any of the cases shown in Table 3-10. Also shown in this table are the
80387's responses when the invalid exception is masked. When unmasked, the 80386 excep­
tion "processor extension error" is triggered, and the operands remain unaltered. An invalid
operation generally indicates a program error.

3.2.3 Division by Zero

If an instruction attempts to divide a finite nonzero operand by zero, the 80387 will report
a zero-divide exception. This is possible for F(I)DIV(R)(P) as well as the other instructions

Table 3-10. Masked Responses to Invalid Operations

Condition

Any arithmetic operation on an unsupported
format.

Any arithmetic operation on a signaling NaN.

Compare and test operations: one or both
operands is a NaN.

Addition of opposite-signed infinities or
subtraction of like-signed infinities.

Multiplication: 00 x 0; or 0 X 00.

Division: 00 -i- 00; or 0 -i- O.

Remainder instructions FPREM, FPREM1
when modulus (divisor) is zero or dividend
is 00.

Trigonometric instructions FCOS, FPTAN,
FSIN, FSINCOS when argument is 00.

FSORT of negative operand (except FSORT
(- 0) = - 0), FYL2X of negative operand
(except FYL2X (-0) = -00), FYL2XP1 of
operand more negative than -1.

FIST(P) instructions when source register is
empty, a NaN, 00, or exceeds representable
range of destination.

FBSTP instruction when source register is
empty, a NaN, 00, or exceeds 18 decimal
digits.

FXCH instruction when one or both registers
are tagged empty.

3-21

Masked Response

Return the QNaN indefinite.

Return a QNaN (refer to the section
"Rules for Generating QNaNs").

Set condition codes "not comparable."

Return the QNaN indefinite.

Return the QNaN indefinite.

Return the QNaN indefinite.

Return the QNaN indefinite; set C2 .

Return the QNaN indefinite; set C2 •

Return the QNaN indefinite.

Store integer indefinite.

Store packed decimal indefinite.

Change empty registers to the QNaN
indefinite and then perform exchange.

SPECIAL COMPUTATIONAL SITUATIONS

that perform division internally: FYL2X and FXTRACT. The masked response for FDIV
and FYL2X is to return an infinity signed with the exclusive OR of the signs of the operands.
For FXTRACT, ST(1) is set to -00; ST is set to zero with the same sign as the original
operand. If the divide-by-zcro exception is unmasked, the 80386 exception "processor exten­
sion error" is triggered; the operands remain unaltered.

3.2.4 Denormal Operand

If an arithmetic instruction attempts to operate on a denormal operand, the NPX reports
the denormal-operand exception. Denormal operands may have reduced significance due to
lost low-order bits, therefore it may be advisable in certain applications to preclude opera­
tions on these operands. This can be accomplished by an exception handler that responds to
unmasked denormal exceptions. Most users will mask this exception so that computation
may proceed; any loss of accuracy will be analyzed by the user when the final result is
delivered.

When this exception is masked, the 80387 sets the D-bit in the status word, then proceeds
with the instruction. Gradual underflow and denormal numbers as handled on the 80387
will produce results at least as good as, and often better than what could be obtained from
a machine that flushes underflows to zero. In fact, a denormal operand in single- or double­
precision format will be normalized to the extended-real format when loaded into the 80387.
Subsequent operations will benefit from the additional precision of the extended-real format
used internally.

When this exception is not masked, the D-bit is set and the exception handler is invoked.
The operands are not changed by the instruction and are available for inspection by the
exception handler.

If an 8087/80287 program uses the denormal exception to automatically normalize denor­
mal operands, then that program can run on an 80387 by masking the denormal exception.
The 8087/80287 denormal exception handler would not be used by the 80387 in this case.
A numerics program runs faster when the 80387 performs normalization of denormal
operands. A program can detect at run-time whether it is running on an 80387 or 8087/
80287 and disable the denormal exception when an 80387 is used. The following code
sequence is recommended to distinguish between an 80387 and an 8087/80287.

F I Ii I T

F L D 1
FLDZ
F D I V
FLD
F C H 5
FCOMPP
FSTSW
MOV
SAHF
JliZ

ST

temp
AX, temp

Us i ng_80387

Use default infinity mode:
projective for 8087/80287,
affine for 80387

Generate infinty

Form negative infinity

Compare +infinity with -infinity
8087/80287 will say they are equal

3-22

SPECIAL COMPUTATIONAL SITUATIONS

The denormal-operand exception of the 80387 permits emulation of arithmetic on unnormal
operands as provided by the 8087/80287. The standard does not require the denormal
exception nor does it recognize the unnormal data type.

3.2.5 Numeric Overflow and Underflow

If the exponent of a numeric result is too large for the destination real format, the 80387
signals a numeric overflow. Conversely, if the exponent of a result is too small to be repre­
sented in the destination format, a numeric underflow is signaled. If either of these excep­
tions occur, the result of the operation is outside the range of the destination real format.

Typical algorithms are most likely to produce extremely large and small numbers in the
calculation of intermediate, rather than final, results. Because of the great range of the
extended-precision format (recommended as the destination format for intermediates),
overflow and underflow are relatively rare events in most 80387 applications.

3.2.5.1 OVERFLOW

The overflow exception can occur whenever the rounded true result would exceed in magni­
tude the largest finite number in the destination format. The exception can occur in the
execution of most of the arithmetic instructions and in some of the conversion instructions;
namely, FST{P), F(I)ADD{P), F(I)SUB{R){P), F{I)MUL{P), FDIV{R){P), FSCALE,
FYL2X, and FYL2XPl.

The response to an overflow condition depends on whether the overflow exception is masked:

• Overflow exception masked. The value returned depends on the rounding mode as
Table 3-11 illustrates.

Table 3-11. Masked Overflow Results

Rounding Sign of
True Result Mode Result

To nearest + +00
- -00

Toward -00 + Largest finite positive number
- -00

Toward +00 + +00
- Largest finite negative number

Toward zero + Largest finite positive number
- Largest finite negative number

3-23

SPECIAL COMPUTATIONAL SITUATIONS

• Overflow exception not masked. The unmasked response depends on whether the
instruction is supposed to store the result on the stack or in memory:

Destination is the stack. The true result is divided by 224,576 and rounded. (The bias
24,576 is equal to 3 X 213.) The significand is rounded to the appropriate precision
(according to the precision control (PC) bit of the control word, for those instruc­
tions controlled by PC, otherwise to extended precision). The roundup bit (C1) of
the status word is set if the significand was rounded upward.

The biasing of the exponent by 24,576 normally translates the number as nearly as
possible to the middle of the exponent range so that, if desired, it can be used in
subsequent scaled operations with less risk of causing further exceptions. With the
instruction FSCALE, however, it can happen that the result is too large and overflows
even after biasing. In this case, the unmasked response is exactly the same as the
masked round-to-nearest response, namely ± infinity. The intention of this feature
is to ensure the trap handler will discover that a translation of the exponent by
-24574 would not work correctly without obliging the programmer of Decimal-to­
Binary or Exponential functions to determine which trap handler, if any, should be
invoked.

Destination is memory (this can occur only with the store instructions). No result
is stored in memory. Instead, the operand is left intact in the stack. Because the
data in the stack is in extended-precision format, the exception handler has the
option either of reexecuting the store instruction after proper adjustment of the
operand or of rounding the significand on the stack to the destination's precision as
the standard requires. The exception handler should ultimately store a value into
the destination location in memory if the program is to continue.

3.2.5.2 UNDERFLOW

Underflow can occur in the execution of the instructions FST(P), FADD(P), FSUB(RP),
FMUL(P), F(I)DIV(RP), FSCALE, FPREM(I), FPTAN, FSIN, FCOS, FSINCOS,
FPATAN, F2XM1, FYL2X, and FYL2XPl.

Two related events contribute to underflow:

1. Creation of a tiny result which, because it is so small, may cause some other exception
later (such as overflow upon division).

2. Creation of an inexact result; i.e. the delivered result differs from what would have been
computed were both the exponent range and precision unbounded.

Which of these events triggers the underflow exception depends on whether the underflow
exception is masked:

1. Underflow exception masked. The underflow exception is signaled when the result is
both tiny and inexact.

2. Underflow exception not masked. The underflow exception is signaled when the result
is tiny, regardless of inexactness.

3-24

SPECIAL COMPUTATIONAL SITUATIONS

The response to an underflow exception also depends on whether the exception is masked:

1. Masked response. The result is denormal or zero. The precision exception is also triggered.

2. Unmasked response. The unmasked response depends on whether the instruction is
supposed to store the result on the stack or in memory:

• Destination is the stack. The true result is multiplied by 224,576 and rounded. (The
bias 24,576 is equal to 3 X 213,) The significand is rounded to the appropriate
precision (according to the precision control (PC) bit of the control word, for those
instructions controlled by PC, otherwise to extended precision). The roundup bit
(C I) of the status word is set if the significand was rounded upward.

The biasing of the exponent by 24,576 normally translates the number as nearly as
possible to the middle of the exponent range so that, if desired, it can be used in
subsequent scaled operations with less risk of causing further exceptions. With the
instruction FSCALE, however, it can happen that the result is too tiny and under­
flows even after biasing. In this case, the unmasked response is exactly the same as
the masked round-to-nearest response, namely ± 0, The intention of this feature is
to ensure the trap handler will discover that a translation by +24576 would not
work correctly without obliging the programmer of Decimal-to-Binary or
Exponential functions to determine which trap handler, if any, should be invoked.

• Destination is memory (this can occur only with the store instructions). No result
is stored in memory. Instead, the operand is left intact in the stack. Because the
data in the stack is in extended-precision format, the exception handler has the
option either of reexecuting the store instruction after proper adjustment of the
operand or of rounding the significand on the stack to the destination's precision as
the standard requires. The exception handler should ultimately store a value into
the destination location in memory if the program is to continue.

3.2.6 Inexact (Precision)

This exception condition occurs if the result of an operation is not exactly representable in
the destination format. For example, the fraction 1/3 cannot be precisely represented in
binary form. This exception occurs frequently and indicates that some (generally accepta­
ble) accuracy has been lost.

All the transcendental instructions are inexact by definition; they always cause the inexact
exception.

The C I (roundup) bit of the status word indicates whether the inexact result was rounded
up eC I = 1) or chopped eC I = 0).

The inexact exception accompanies the underflow exception when there is also a loss of
accuracy. When underflow is masked, the underflow exception is signaled only when there
is a loss of accuracy; therefore the precision flag is always set as well. When underflow is
unmasked, there mayor may not have been a loss of accuracy; the precision bit indicates
which is the case,

3-25

SPECIAL COMPUTATIONAL SITUATIONS

This exception is provided for applications that need to perform exact arithmetic only. Most
applications will mask this exception. The 80387 delivers the rounded or over /underflowed
result to the destination, regardless of whether a trap occurs.

3.2.7 Exception Priority

The 80387 deals with exceptions according to a predetermined precedence. Precedence in
exception handling means that higher-priority exceptions are flagged and results are deliv.
ered according to the requirements of that exception. Lower-priority exceptions may not be
flagged even if they occur. For example, dividing an SNaN by zero causes an invalid-operand
exception (due to the SNaN) and not a zero-divide exception; the masked result is the QNaN
real indefinite, not 00. A denormal or inexact (precision) exception, however, can accom­
pany a numeric underflow or overflow exception.

The exception precedence is as follows:

1. Invalid operation exception, subdivided as follows:

a. Stack underflow.

b. Stack overflow.

c. Operand of unsupported format.

d. SNaN operand.

2. QNaN operand. Though this is not an exception, if one operand is a QNaN, dealing
with it has precedence over lower-priority exceptions. For example, a QNaN divided by
zero results in a QNaN, not a zero-divide exception.

3. Any other invalid-operation exception not mentioned above or zero divide.

4. Denormal operand. If masked, then instruction execution continues, and a lower-priority
exception can occur as well.

5. Numeric overflow and underflow. Inexact result (precision) can be flagged as well.

6. Inexact result (precision).

3.2.8 Standard Underflow/Overflow Exception Handler

As long as the underflow and overflow exceptions are masked, no additional software is
required to cause the output of the 80387 to conform to the requirements of IEEE Std 754.
When unmasked, these exceptions give the exception handler an additional option in the
case of store instructions. No result is stored in memory; instead, the operand is left intact
on the stack. The handler may round the significand of the operand on the stack to the
destination's precision as the standard requires, or it may adjust the operand and reexecute
the faulting instruction.

3-26

The 80387 Instruction Set 4

CHAPTER 4
THE 80387 INSTRUCTION SET

This chapter describes the operation of all 80387 instructions. Within this section, the
instructions are divided into six functional classes:

Data Transfer instructions

• Nontranscendental instructions

Comparison instructions

Transcendental instructions

Constant instructions

Processor Control instructions

Throughout this chapter, the instruction set is described as it appears to the ASM386
programmer who is coding a program. Not included in this chapter are details of instruction
format, encoding, and execution times. This detailed information may be found in
Appendix A and Appendix E. Refer also to Appendix B for a summary of the exceptions
caused by each instruction.

4.1 COMPATIBILITY WITH THE 80287 AND 8087

The instruction set for the 80387 NPX is largely the same as that for the 80287 NPX (used
with 80286 systems) and that for the 8087 NPX (used with 8086 and 8088 systems). Most
object programs generated for the 80287 or 8087 will execute without change on the 80387.
Several instructions are new to the 80387, and several 80287 and 8087 instructions perform
no useful function on the 80387. Appendix C and Appendix D give details of these instruc­
tion set differences.

4.2 NUMERIC OPERANDS

The typical NPX instruction accepts one or two operands as inputs, operates on these, and
produces a result as an output. An operand is most often the contents of a register or of a
memory location. The operands of some instructions are predefined; for example, FSQR T
always takes the square root of the number in the top NPX stack element. Others allow, or
require, the programmer to explicitly code the operand(s) along with the instruction
mnemonic. Still others accept one explicit operand and one implicit operand, which is usually
the top NPX stack element. All 80387 instructions that have a data operand use ST as one
operand or as the only operand.

Whether supplied by the programmer or utilized automatically, the two basic types of
operands are sources and destinations. A source operand simply supplies one of the inputs
to an instruction; it is not altered by the instruction. Even when an instruction converts the
source operand from one format to another (e.g., real to integer), the conversion is actually
performed in an internal work area to avoid altering the source operand. A destination

4-1

80387 INSTRUCTION SET

operand may also provide an input to an instruction. It is distinguished from a source operand,
however, because its content may be altered when it receives the result produced by the
operation; that is, the destination is replaced by the result.

Many instructions allow their operands to be coded in more than one way. For example,
FADD (add real) may be written without operands, with only a source or with a destination
and a source. The instruction descriptions in this section employ the simple convention of
separating alternative operand forms with slashes; the slashes, however, are not coded.
Consecutive slashes indicate an option of no explicit operands. The operands for FADD are
thus described as

/ /source/destination, source

This means that FADD may be written in any of three ways:

Written Form Action

FADD Add ST to ST(1), put result in ST(1), then pop ST
FADD source Add source to ST(O)
FADD destination, source Add source to destination

The assembler can allow the same instruction to be specified in different ways; for example:

FADD = FADDP ST(l), ST
F ADD ST(l) = F ADD ST, ST(l)

When reading this section, it is important to bear in mind that memory operands may be
coded with any of the CPU's memory addressing methods provided by the ModRjM byte.
To review these methods (BASE + (INDEX X SCALE) + DISPLACEMENT) refer to
the 80386 Programmer's Reference Manual. Chapter 5 also provides several addressing mode
examples.

4.3 DATA TRANSFER INSTRUCTIONS

These instructions (summarized in Table 4-1) move operands among elements of the register
stack, and between the stack top and memory. Any of the seven data types can be converted
to extended real and loaded (pushed) onto the stack in a single operation; they can be stored
to memory in the same manner. The data transfer instructions automatically update the
80387 tag word to reflect whether the register is empty or full following the instruction.

4-2

80387 INSTRUCTION SET

Table 4-1. Data Transfer Instructions

Real Transfers

FLD Load Real
FST Store real
FSTP Store real and pop
FXCH Exchange registers

Integer Transfers

FILD Integer load
FIST I nteger store
FISTP Integer store and pop

Packed Decimal Transfers

FBLD Packed decimal (BCD) load
FBSTP Packed decimal (BCD) store and pop

4.3.1 FLO source

FLD (load real) loads (pushes) the source operand onto the top of the register stack. This is
done by decrementing the stack pointer by one and then copying the content of the source
to the new stack top. ST(7) must be empty to avoid causing an invalid-operation exception.
The new stack top is tagged nonempty. The source may be a register on the stack (ST(i))
or any of the real data types in memory. If the source is a register, the register number used
is that before TOP is decremented by the instruction. Coding FLD ST(O) duplicates the
stack top. Single and double real source operands are converted to extended real automati­
cally. Loading an extended real operand does not require conversion; therefore, the I and D
exceptions do not occur in this case.

4.3.2 FST destination

FST (store real) copies the NPX stack top to the destination, which may be another register
on the stack or a single or double (but not extended-precision) memory operand. If the
destination is single or double real, the copy of the significand is rounded to the width of the
destination according to the RC field of the control word, and the copy of the exponent is
converted to the width and bias of the destination format. The over/underflow condition is
checked for as well.

If, however, the stack top contains zero, ± 00, or a NaN, then the stack top's significand is
not rounded but is chopped (on the right) to fit the destination. Neither is the exponent
converted, rather it also is chopped on the right and transferred "as is". This preserves the
value's identification as 00 or a NaN (exponent all ones) so that it can be properly loaded
and used later in the program if desired.

Note that the 80387 does not signal the invalid-operation exception when the destination is
a nonempty stack element.

4-3

80387 INSTRUCTION SET

4.3.3 FSTP destination

FSTP (store real and pop) operates identically to FST except that the NPX stack is popped
following the transfer. This is done by tagging the top stack element empty and then incre­
menting TOP. FSTP also permits storing to an extended-precision real memory variable,
whereas FST does not. If the source operand is a register, the register number used is that
before TOP is incremented by the instruction. Coding FSTP ST(O) is equivalent to popping
the stack with no data transfer.

4.3.4 FXCH / /destination

FXCH (exchange registers) swaps the contents of the destination and the stack top registers.
If the destination is not coded explicitly, ST(l) is used. Many 80387 instructions operate
only on the stack top; FXCH provides a simple means of effectively using these instructions
on lower stack elements. For example, the following sequence takes the square root of the
third register from the top (assuming that ST is nonempty):

FXCH ST(3)
FSQRT
FXCH ST(3)

4.3.5 FILD source

FILD (integer load) converts the source memory operand from its binary integer format
(word, short, or long) to extended real and pushes the result onto the NPX stack. ST(7)
must be empty to avoid causing an exception. The (new) stack top is tagged nonempty.
FILD is an exact operation; the source is loaded with no rounding error.

4.3.6 FIST destination

FIST (integer store) stores the content of the stack top to an integer according to the RC
field (rounding control) of the control word and transfers the result to the destination, leaving
the stack top unchanged. The destination may define a word or short integer variable.
Negative zero is stored in the same encoding as positive zero: 0000 ... 00.

4.3.7 FISTP destination

FISTP (integer and pop) operates like FIST except that it also pops the NPX stack follow­
ing the transfer. The destination may be any of the binary integer data types.

4.3.8 FBLD source

FBLD (packed decimal (BCD) load) converts the content of the source operand from packed
decimal to extended real and pushes the result onto the NPX stack. ST(7) must be empty
to avoid causing an exception. The sign of the source is preserved, including the case where

4-4

80387 INSTRUCTION SET

the value is negative zero. FBLD is an exact operation; the source is loaded with no rounding
error.

The packed decimal digits of the source are assumed to be in the range 0-9. The instruction
does not check for invalid digits (A-FH), and the result of attempting to load an invalid
encoding is undefined.

4.3.9 FBSTP destination

FBSTP (packed decimal (BCD) store and pop) converts the content of the stack top to a
packed decimal integer, stores the result at the destination in memory, and pops the stack.
FBSTP rounds a non integral value according to the RC (rounding control) field of the control
word.

4.4 NONTRANSCENDENTAL INSTRUCTIONS

The 80387's non transcendental instruction set (Table 4-2) provides a wealth of variations
on the basic add, subtract, multiply, and divide operations, and a number of other useful
functions. These range from a simple absolute value to a square root instruction that executes
faster than ordinary division; 80387 programmers no longer need to spend valuable time
eliminating square roots from algorithms because they run too slowly. Other nontranscen­
dental instructions perform exact modulo division, round real numbers to integers, and scale
values by powers of two.

The 80387's basic nontranscendental instructions (addition, subtraction, multiplication, and
division) are designed to encourage the development of very efficient algorithms. In partic­
ular, they allow the programmer to reference memory as easily as the NPX register stack.

Table 4-3 summarizes the available operation/operand forms that are provided for basic
arithmetic. In addition to the four normal operations, two "reversed" instructions make
subtraction and division "symmetrical" like addition and multiplication. The variety of
instruction and operand forms give the programmer unusual flexibility:

• Operands may be located in registers or memory.

• Results may be deposited in a choice of registers.

Operands may be a variety of NPX data types: extended real, double real, single real,
short integer or word integer, with automatic conversion to extended real performed by
the 80387.

Five basic instruction forms may be used across all six operations, as shown in Table 4-3.
The classical stack form may be used to make the 80387 operate like a classical stack
machine. No operands are coded in this form, only the instruction mnemonic. The NPX
picks the source operand from the stack top and the destination from the next stack element.
It then pops the stack, performs the operation, and returns the result to the new stack top,
effectively replacing the operands by the result.

4-5

80387 INSTRUCTION SET

Table 4-2. Nontranscendental Instructions

Addition

FADD Add real
FADDP Add real and pop
FIADD Integer add

Subtraction

FSUB Subtract real
FSUBP Subtract real and pop
FISUB Integer subtract
FSUBR Subtract real reversed
FSUBRP Subtract real reversed and pop
FISUBR Integer subtract reversed

Multiplication

FMUL Multiply real
FMULP Multiply real and pop
FIMUL Integer multiply

Division

FDIV Divide real
FDIVP Divide real and pop
FIDIV Integer divide
FDIVR Divide real reversed
FDIVRP Divide real reversed and pop
FIDIVR Integer divide reversed

Other Operations

FSQRT Square root
FSCALE Scale
FPREM Partial remainder
FPREM1 IEEE standard partial remainder
FRNDINT Round to integer
FXTRACT Extract exponent and significand
FABS Absolute value
FCHS Change sign

The register form is a generalization of the classical stack form; the programmer specifies
the stack top as one operand and any register on the stack as the other operand. Coding the
stack top as the destination provides a convenient way to access a constant, held elsewhere
in the stack, from the stack top. The destination need not always be ST, however. All two
operand instructions allow use of another register as the destination. This coding (ST is the
source operand) allows, for example, adding the stack top into a register used as an
accumulator.

Often the operand in the stack top is needed for one operation but then is of no further use
in the computation. The register pop form can be used to pick up the stack top as the source

4-6

80387 INSTRUCTION SET

Table 4-3. Basic Nontranscendental Instructions and Operands

Instruction Form
Mnemonic Operand Forms

ASM386 Example
Form destination, source

Classical stack Fop {ST(1), ST} FADD
Classical stack, extra pop FopP {ST(1), ST} FADDP
Register Fop ST(i), ST or ST, ST(i) FSUB ST, ST(3)
Register pop FopP ST(i), ST FMULP ST(2), ST
Real memory Fop { ST,} single/double FDIV AZIMUTH
Integer memory Flop { ST,} word-integer/short-integer FIDIV PULSES

NOTES:

Braces ({ }) surround implicit operands; these are not coded, and are shown here for information only.

op= ADD destination f- destination + source
SUB destination f- destination - source
SUBR destination f- source - destination
MUL destination f- destination· source
DIV destination f- destination -:- source
DIVR destination f- source -:- destination

operand, and then discard it by popping the stack. Coding operands of ST(1), ST with a
register pop mnemonic is equivalent to a classical stack operation: the top is popped and the
result is left at the new top.

The two memory forms increase the flexibility of the 80387's nontranscendental instruc­
tions. They permit a real number or a binary integer in memory to be used directly as a
source operand. This is useful in situations where operands are not used frequently enough
to justify holding them in registers. Note that any memory addressing method may be used
to define these operands, so they may be elements in arrays, structures, or other data organi­
zations, as well as simple scalars.

The six basic operations are discussed further in the next paragraphs, and descriptions of
the remaining seven operations follow.

4.4.1 Addition

FADD
FADDP
FIADD

j jsourcejdestination, source
j jdestination, source
source

The addition instructions (add real, add real and pop, integer add) add the source and desti­
nation operands and return the sum to the destination. The operand at the stack top may be
doubled by coding:

FADD 5T, 5T<O)

4-7

80387 INSTRUCTION SET

If the source operand is in memory, conversion of an integer, a single real, or a double real
operand to extended real is performed automatically.

4.4.2 Normal Subtraction

FSUB
FSUBP
FISUB

/ /source/destination, source
/ /destination, source
source

The normal subtraction instructions (subtract real, subtract real and pop, integer subtract)
subtract the source operand from the destination and return the difference to the
destination.

4.4.3 Reversed Subtraction

FSUBR
FSUBRP
FISUBR

/ /source/destina tion, source
/ /destination,source
source

The reversed subtraction instructions (subtract real reversed, subtract real reversed and pop,
integer subtract reversed) subtract the destination from the source and return the difference
to the destination. For example, FSUBR ST, ST(1) means subtract ST from ST(1) and
leave the result in ST.

4.4.4 Multiplication

FMUL
FMULP
FIMUL

/ /source/destination,source
/ /des tination, source
source

The multiplication instructions (multiply real, multiply real and pop, integer multiply)
multiply the source and destination operands and return the product to the destination. Coding
F M U L S T, S T (0) squares the content of the stack top.

4.4.5 Normal Division

FDIV
FDIVP
FIDIV

//source/destination, source
//destination,source
source

The normal division instructions (divide real, divide real and pop, integer divide) divide the
destination by the source and return the quotient to the destination.

4-8

inter 80387 INSTRUCTION SET

4.4.6 Reversed Division

FDIVR
FDIVRP
FIDIVR

jjsourcejdestination, source
jjdestination,source
source

The reversed division instructions (divide real reversed, divide real reversed and pop, integer
divide reversed) divide the source operand by the destination and return the quotient to the
destination.

4.4.7 FSQRT

FSQRT (square root) replaces the content of the top stack element with its square root.
(Note: The square root of -0 is defined to be -0.)

4.4.8 FSCALE

FSCALE (scale) interprets the value contained in ST(1) as an integer and adds this value
to the exponent of the number in ST. This is equivalent to

ST +- ST. 2ST(I)

Thus, FSCALE provides rapid multiplication or division by integral powers of 2. It is partic­
ularly useful for scaling the elements of a vector.

There is no limit on the range of the scale factor in ST(1). If the value is not integral,
FSCALE uses the nearest integer smaller in magnitude; i.e., it chops the value toward O. If
the resulting integer is zero, the value in ST is not changed.

4.4.9 FPREM - Partial Remainder (80287/8087-Compatible)

FPREM computes the remainder of division of ST by ST(1) and leaves the result in ST.
FPREM finds a remainder REM and a quotient Q such that

REM = ST - ST(l)*Q

The quotient Q is chosen to be the integer obtained by chopping the exact value of
ST IST(I) toward zero. The sign of the remainder is the same as the sign of the original
dividend from ST.

By ignoring precision control, the 80387 produces an exact result with FPREM. The preci­
sion (inexact) exception does not occur and the rounding control has no effect.

The FPREM instruction is not the remainder operation specified in the IEEE standard. To
get that remainder, the FPREMI instruction should be used.

4-9

80387 INSTRUCTION SET

The FPREM instruction is designed to be executed iteratively in a software-controlled loop.
It operates by performing successive scaled subtractions; therefore, obtaining the exact
remainder when the operands differ greatly in magnitude can consume large amounts of
execution time. Because the 80387 can only be preempted between instructions, the remain­
der function could seriously increase interrupt latency in these cases. For this reason, the
maximum number of iterations is limited. The instruction may terminate before it has
completely terminated the calculation. The C2 bit of the status word indicates whether the
calculation is complete or whether the instruction must be executed again.

FPREM can reduce the exponent of ST by up to (but not including) 64 in one execution. If
FPREM produces a remainder that is less than the modulus (i.e., the divisor), the function
is complete and bit C2 of the status word condition code is cleared. If the function is incom­
plete, C2 is set to l; the result in ST is then called the partial remainder. Software can
inspect C2 by storing the status word following execution of FPREM, reexecuting the
instruction (using the partial remainder in ST as the dividend) until C2 is cleared. A higher
priority interrupting routine that needs the 80387 can force a context switch between the
instructions in the remainder loop.

An important use for FPREM is to reduce arguments (operands) of transcendental functions
to the range permitted by these instructions. For example, the FPTAN (tangent) instruction
requires its argument ST to be less than 263. For 7r /4 < I ST 1< 263 , FPTAN (as well as the
other trigonometric instructions) performs an internal reduction of ST to a value less than
7r / 4 using an internally stored 7r / 4 divisor that has 67 significant bits. Because of its greater
accuracy, this method of reduction is recommended when the argument is within the required
range.

However, when I ST I > 26\ FPREM can be employed to reduce ST. With 7r / 4 as a modulus,
FPREM can reduce an argument so that it is within range of FPTAN and so that no further
reduction is required by FPT AN.

Because FPREM produces an exact result, the argument reduction does not introduce
roundoff error into the calculation, even if several iterations are required to bring the
argument into range. However, 7r is never accurate. The rounding of 7r, when it is used by
FPREM to reduce an argument for a periodic trigonometric function, does not create the
effect of a rounded argument, but of a rounded period.

When reduction is complete, FPREM provides the least-significant three bits of the quotient
generated by FPREM (in C 3 , C j , Co). This is also important for transcendental argument
reduction, because it locates the original angle in the correct one of eight 7r / 4 segments of
the unit circle (see Table 4-4).

4.4.10 FPREM1-Partial Remainder (IEEE Std. 754-Compatible)

FPREM 1 computes the remainder of division of ST by ST(I) and leaves the result in ST.
FPREMI finds a remainder REMl and a quotient QI such that

REMI = ST - ST(l)*QI

4-10

80387 INSTRUCTION SET

Table 4-4. Condition Code Interpretation after FPREM and FPREM1 Instructions

Condition Code
Interpretation after

FPREM and FPREM1
C2(PF) C3 C1 CO

Incomplete Reduction:
1 X X X further interation required

or complete reduction

01 00 02 OMOD8

0 0 0 0
0 1 0 1 Complete Reduction:

0 1 0 0 2 CO, C3, C1 contain three least
1 1 0 3 significant bits of quotient
0 0 1 4
0 1 1 5
1 0 1 6
1 1 1 7

The quotient Q 1 is chosen to be the integer nearest to the exact value of ST /ST(1). When
ST /ST(I) is exactly N + 1/2 (for some integer N), there are two integers equally close to
ST/ST(I). In this case the value chosen for QI is the even integer.

The result produced by FPREMI is always exact; no rounding is necessary, and therefore
the precision exception does not occur and the rounding control has no effect.

The FPREMI instruction is designed to be executed iteratively in a software-controlled loop.
FPREM I operates by performing successive scaled subtractions; therefore, obtaining the
exact remainder when the operands differ greatly in magnitude can consume large amounts
of execution time. Because the 80387 can only be preempted between instructions, the
remainder function could seriously increase interrupt latency in these cases. For this reason,
the maximum number of iterations is limited. The instruction may terminate before it has
completely terminated the calculation. The C2 bit of the status word indicates whether the
calculation is complete or whether the instruction must be executed again.

FPREM I can reduce the exponent of ST by up to (but not including) 64 in one execution.
If FPREM I produces a remainder that is less than the modulus (i.e., the divisor), the function
is complete and bit C2 of the status word condition code is cleared. If the function is incom­
plete, C2 is set to 1; the result in ST is then called the partial remainder. Software can
inspect C2 by storing the status word following execution of FPREM I, reexecuting the
instruction (using the partial remainder in ST as the dividend) until C2 is cleared. When
C2 is cleared, FPREMI also provides the least-significant three bits of the quotient gener­
ated by FPREMI (in C3, C], Co).

4-11

80387 INSTRUCTION SET

The uses for FPREM 1 are the same as those for FPREM.

FPREM 1 differs from FPREM it these respects:

FPREM and FPREM 1 choose the value of the quotient differently; the low-order three
bits of the quotient as reported in bits C3,Cl,CO of the status word may differ by one
in some cases.

• FPREM and FPREM 1 may produce different remainders. FPREM produces a remain­
der R such that 0 -< R < 1 ST(1) 1 or -I ST(1) 1 < R -< 0, depending on the sign of the
dividend. FPREMI produces a remainder Rl such that -I ST(I) 1/2 < Rl <
+1 ST(I) 1/2.

4.4.11 FRNDINT

FRNDINT (round to integer) rounds the top stack element to an integer according to the
RC bits of the control word. For example, assume that ST contains the 80387 real number
encoding of the decimal value 155.625. FRNDINT will change the value to 155 if the RC
field of the control word is set to down or chop, or to 156 if it is set to up or nearest.

4.4.12 FXTRACT

FXTRACT (extract exponent and significand) performs a superset of the IEEE­
recommended logb(x) function by "decomposing" the number in the stack top into two
numbers that represent the actual value of the operand's exponent and significand fields.
The "exponent" replaces the original operand on the stack and the "significand" is pushed
onto the stack. (ST(7) must be empty to avoid causing the invalid-operation exception.)
Following execution of FXTRACT, ST (the new stack top) contains the value of the original
significand expressed as a real number: its sign is the same as the operand's, its exponent is
o true (16,383 or 3FFFH biased), and its significand is identical to the original operand's.
ST(1) contains the value of the original operand's true (unbiased) exponent expressed as a
real number.

If the original operand is zero, FXTRACT leaves -co in ST(1) (the exponent) while ST is
assigned the value zero with a sign equal to that of the original operand. The zero-divide
exception is raised in this case, as well.

To illustrate the operation of FXTRACT, assume that ST contains a number whose true
exponent is +4 (Le., its exponent field contains 4003H). After executing FXTRACT, ST(1)
will contain the real number +4.0; its sign will be positive, its exponent field will contain
400lH (+2 true) and its significand field will contain laOO ... OOB. In other words, the value
in ST(l) will be 1.0 X 22 = 4. If ST contains an operand whose true exponent is -7
(i.e., its exponent field contains 3FF8H), then FXTRACT will return an "exponent" of
-7.0; after the instruction executes, ST(1)'s sign and exponent fields will contain COOIH
(negative sign, true exponent of 2), and its significand will be lal100 ... 00B. In other words,
the value in ST(l) will be -1.75 X 22 = -7.0. In both cases, following FXTRACT, ST's
sign and significand fields will be the same as the original operand's, and its exponent field
will contain 3FFFH (0 true).

4-12

80387 INSTRUCTION SET

FXTRACT is useful for power and range scaling operations. Both FXTRACT and the base
2 exponential instruction F2XM 1 are needed to perform a general power operation.
Converting numbers in 80387 extended real format to decimal representations (e.g., for
printing or displaying) requires not only FBSTP but also FXTRACT to allow scaling that
does not overflow the range of the extended format. FXTRACT can also be useful for
debugging, because it allows the exponent and significand parts of a real number to be
examined separately.

4.4.13 FABS

FABS (absolute value) changes the top stack element to its absolute value by making its
sign positive. Note that the invalid-operation exception is not signaled even if the operand is
a signaling NaN or has a format that is not supported.

4.4.14 FCHS

FCHS (change sign) complements (reverses) the sign of the top stack element. Note that
the invalid-operation exception is not signaled even if the operand is a signaling NaN or has
a format that is not supported.

4.5 COMPARISON INSTRUCTIONS

The instructions of this class allow comparison of numbers of all supported real and integer
data types. Each of these instructions (Table 4-5) analyzes the top stack element, often in
relationship to another operand, and reports the result as a condition code in the status word.

The basic operations are compare, test (compare with zero), and examine (report type, sign,
and normalization). Special forms of the compare operation are provided to optimize
algorithms by allowing direct comparisons with binary integers and real numbers in memory,
as well as popping the stack after a comparison.

The FSTSW (store status word) instruction may be used following a comparison to transfer
the condition code to memory or to the 80386 AX register for inspection. The 80386 SAHF

FCOM
FCOMP
FCOMPP
FICOM
FICOMP
FTST
FUCOM
FUCOMP
FUCOMPP
FXAM

Table 4-5. Comparison Instructions

Compare real
Compare real and pop
Compare real and pop twice
Integer compare
Integer compare and pop
Test -
Unordered compare real
Unordered compare real and pop
Unordered compare real and pop twice
Examine

4-13

80387 INSTRUCTION SET

instruction is recommended for copying the 80387 flags from AX to the 80386 flags for easy
conditional branching.

Note that instructions other than those in the comparison group may update the condition
code. To ensure that the status word is not altered inadvertently, store it immediately follow­
ing a comparison operation.

4.5.1 FCOM / /source

FCOM (compare real) compares the stack top to the source operand. The source operand
may be a register on the stack, or a single or double real memory operand. If an operand is
not coded, ST is compared to ST(1). The sign of zero is ignored, so that +0 = -0. Follow­
ing the instruction, the condition codes reflect the order of the operands as shown in
Table 4-6.

If either operand is a NaN (either quiet or signaling) or an undefined format, or if a stack
fault occurs, the invalid-operation exception is raised and the condition bits are set to
"unordered. "

4.5.2 FCOMP / /source

FCOMP (compare real and pop) operates like FCOM, and in addition pops the stack.

4.5.3 FCOMPP

FCOMPP (compare real and pop twice) operates like FCOM and additionally pops the
stack twice, discarding both operands. FCOMPP always compares ST to ST(1); no operands
may be explicitly specified.

4.5.4 FICOM source

FICOM (integer compare) converts the source operand, which may reference a word or
short binary integer variable, to extended real and compares the stack top to it. The condi­
tion code bits in the status word are set as for FCOM.

Table 4-6. Condition Code Resulting from Comparisons

80386
Order C3(ZF) C2(PF) CO (CF) Conditional

Branch

ST> Operand 0 0 0 JA
ST < Operand 0 0 1 JB
ST = Operand 1 0 0 JE
Unordered 1 1 1 JP

4-14

80387 INSTRUCTION SET

4.5.5 FICOMP source

FICOMP (integer compare and pop) operates identically to FICOM and additionally discards
the value in ST by popping the NPX stack.

4.5.6 FTST

FTST (test) tests the top stack element by comparing it to zero. The result is posted to the
condition codes as shown in Table 4-7.

4.5.7 FUCOM / / source

FUCOM (unordered compare real) operates like FCOM, with two differences:

1. It does not cause an invalid-operation exception when one of the operands is a NaN. If
either operand is a NaN, the condition bits of the status word are set to unordered as
shown in Table 4-6.

2. Only operands on the NPX stack can be compared.

4.5.8 FUCOMP / / source

FUCOMP (unordered compare real and pop) operates like FUCOM and in addition pops
the NPX stack.

4.5.9 FUCOMPP

FUCOMPP (unordered compare real and pop) operates like FUCOM and in addition pops
the NPX stack twice, discarding both operands. FUCOMPP always compares ST to ST(I);
no operands can be explicitly specified.

Table 4-7. Condition Code Resulting from FTST

83086
Order C3 (ZF) C2 (ZF) CO (ZF) Conditional

Branch

8T> 0.0 0 0 0 JA
8T < 0.0 0 0 1 JB
8T = 0.0 1 0 0 JE
Unordered 1 1 1 JP

4-15

80387 INSTRUCTION SET

4.5.10 FXAM

FXAM (examine) reports the content of the top stack element as positive/negative and
NaN, denormal, normal, zero, infinity, unsupported, or empty. Table 4-8 lists and interprets
all the condition code values that FXAM generates.

4.6 TRANSCENDENTAL INSTRUCTIONS

The instructions in this group (Table 4-9) perform the time-consuming core calculations for
all common trigonometric, inverse trigonometric, hyperbolic, inverse hyperbolic, logarith­
mic, and exponential functions. The transcendentals operate on the top one or two stack
elements, and they return their results to the stack. The trigonometric operations assume
their arguments are expressed in radians. The logarithmic and exponential operations work
in base 2.

The results of transcendental instructions are highly accurate. The absolute value of the
relative error of the transcendental instructions is guaranteed to be less than 2-62• (Relative
error is the ratio between the absolute error and the exact value.)

C3

0
0
0
0
0
0
0
0
1
1
1
1
1
1

FSIN
FCOS
FSINCOS
FPTAN
FPATAN
F2XM1
FYL2X
FYL2XP1

Table 4-8. Condition Code Defining Operand Class

C2

0
0
0
0
1
1
1
1
0
0
0
0
1
1

Cl CO Value at TOP

0 0 + Unsupported
0 1 +NaN
1 0 - Unsupported
1 1 -NaN
0 0 +Normal
0 1 +Infinity
1 0 -Norma!
1 1 -Infinity
0 0 +0
0 1 + Empty
1 0 -0
1 1 -Empty
0 0 + Denormal
1 0 -Denormal

Table 4-9. Transcendental Instructions

Sine
Cosine
Sine and cosine
Tangent of ST
Arctangent of ST(l)/ST
2x-1
Y 0 IOg2X; Y is ST(l), X is ST
Y o10g2(X + 1); Y is ST(l), X is ST

4-16

80387 INSTRUCTION SET

The trigonometric functions accept a practically unrestricted range of operands, whereas the
other transcendental instructions require that arguments be more restricted in range. FPREM
or FPREMI may be used to bring the otherwise valid operand of a periodic function into
range. Prologue and epilogue software may be used to reduce arguments for other instruc­
tions to the expected range and to adjust the result to correspond to the original arguments
if necessary. The instruction descriptions in this section document the allowed operand range
for each instruction.

4.6.1 FCOS

When complete, this function replaces the contents of ST with COS(ST). ST, expressed in
radians, must lie in the range 101 < 263 (for most practical purposes unrestricted). If ST is
in range, C2 of the status word is cleared and the result of the operation is produced.

If the operand is outside of the range, C2 is set to one (function incomplete) and ST remains
intact (i.e., no reduction of the operand is performed). It is the programmers responsibility
to reduce the operand to an absolute value smaller than 263. The instructions FPREMI and
FPREM are available for this purpose.

4.6.2 FSIN

When complete, this function replaces the contents of ST with SIN(ST). FSIN is equivalent
to FCOS in the way it reduces the operand. ST is expressed in radians.

4.6.3 FSINCOS

When complete, this instruction replaces the contents of ST with SIN(ST), then pushes
COS(ST) onto the stack. (ST(7) must be empty to avoid an invalid exception.) FSINCOS
is equivalent to FCOS in the way it reduces the operand. ST is expressed in radians.

4.6.4 FPTAN

When complete, FPTAN (partial tangent) computes the function Y = TAN (ST). ST is
expressed in radians. Y replaces ST, then the value 1 is pushed, becoming the new stack top.
(ST(7) must be empty to avoid an invalid exception.) When the function is complete
ST(l) = TAN (arg) and ST = 1. FPTAN is equivalent to FCOS in the way it reduces the
operand.

The fact that FPTAN places two results on the stack maintains compatibility with the
8087/80287 and aids the calculation of other trigonometric functions that can be derived
from tan via standard trigonometric identities. For example, the cot function is given by this
identity:

cot x = 1 / tan x .

4-17

80387 INSTRUCTION SET

Therefore, simply executing the reverse divide instruction FDIVR after FPT AN yields the
cot function.

4.6.5 FPATAN

FPATAN (arctangent) computes the function 8 = ARCTAN (Y IX). X is taken from
ST(O) and Y from ST(l). The instruction pops the NPX stack and returns 8 to the (new)
stack top, overwriting the Y operand. The result is expressed in radians. The range of operands
is not restricted; however, the range of the result depends on the relationship between the
operands according to Table 4-10.

The fact that the argument of FPATAN is a ratio aids calculation of other trigonometric
functions, including Arcsin and Arccos. These can be derived from Arctan via standard
trigonometric identities. For example, the Arcsin function can be easily calculated using this
identity:

Arcsin x = Arctan (x I V 1 - X2) .

Thus, to find Arcsin (Y), push Y onto the NPX stack, then calculate X = vi 1 - y2,
pushing the result X onto the stack. Executing FPAT AN then leaves Arcsin (Y) at the top
of the stack.

4.6.6 F2XM1

F2XMl (2 to the X minus 1) calculates the function Y = 2X - 1. X is taken from the
stack top and must be in the range -1 <: X <: 1. The result Y replaces the argument X at
the stack top. If the argument is out of range, the results are undefined.

This instruction is designed to produce a very accurate result even when X is close to O. For
values of the argument very close in magnitude to 1, a larger error will be incurred. To
obtain Y = 2x, add 1 to the result delivered by F2XM1.

Table 4-10. Results of FPATAN

Sign(V) Sign(X) IVI <IXI? Final Result

+ + Yes o < atan(Y/X) < 7r/4
+ + No 7r/4 < atan(Y/X) < 7r/2
+ - No 7r/2 < atan(Y/X) < 3· 7r/4
+ - Yes 3·7r/4 < atan(Y/X) < 7r
- + Yes -7r/4 < atan(Y/X) < 0
- + No -7r/2 < atan(Y/X) < -7r/4
- - No -3.7r/4 < atan(Y/X) < -7r/2
- - Yes -7r < atan(Y/X) < -3· 7r/4

4-18

80387 INSTRUCTION SET

The following formulas show how values other than 2 may be raised to a power of X:

1 Ox = 2x• LOG2(1O)

yX = 2x, LOG2(Y)

As shown in the next section, the 80387 has built-in instructions for loading the constants
LOG2 1O and LOG2e, and the FYL2X instruction may be used to calculate X.LOG2Y.

4.6.7 FYL2X

FYL2X (Y log base 2 of X) calculates the function Z = Y - LOG2X. X is taken from the
stack top and Y from ST(1). The operands must be in the following ranges:

o -< X < +00
-00 < Y < +00

The instruction pops the NPX stack and returns Z at the (new) stack top, replacing the Y
operand. If the operand is out of range (i.e., in negative) the invalid-operation exception
occurs.

This function optimizes the calculations of log to any base other than two, because a multi­
plication is always required:

4.6.8 FYL2XP 1

FYL2XP 1 (Y log base 2 of (X + 1» calculates the function Z = Y -LOG2 (X + 1). X is
taken from the stack top and must be in the range -(1-SQRT(2)j2) < X <
I-SQRT(2)j2. Y is taken from ST(l) and is unlimited in range (-00 < Y < +(0).
FYL2XP1 pops the stack and returns Z at the (new) stack top, replacing Y. If the argument
is out of range, the results are undefined.

This instruction provides improved accuracy over FYL2X when computing the logarithm of
a number very close to 1, for example 1 + t where E < < 1. Providing f rather than
1 + E as the input to the function allows more significant digits to be retained.

4.7 CONSTANT INSTRUCTIONS

Each of these instructions (Table 4-10 loads (pushes) a commonly used constant onto the
stack. (ST(7) must be empty to avoid an invalid exception.) The values have full extended
real precision (64 bits) and are accurate to approximately 19 decimal digits. Because an
external real constant occupies 10 memory bytes, the constant instructions, which are only

4-19

80387 INSTRUCTION SET

Table 4-11. Constant Instructions

FLDZ
FLD1
FLDPI
FLDL2T
FLDL2E
FLDLG2
FLDLN2

Load + 0.0
Load + 1.0
Load 7r

Load log210
Load log2e
Load log,02
Load 10g.,2

two bytes long, save storage and improve execution speed, in addition to simplifying
programming.

The constants used by these instructions are stored internally in a format more precise even
than extended real. When loading the constant, the 80387 rounds the more precise internal
constant according the RC (rounding control) bit of the control word. However, in spite of
this rounding, the precision exception is not raised (to maintain compatibility). When the
rounding control is set to round to nearest on the 80387, the 80387 produces the same constant
that is produced by the 80287.

4.7.1 FLOZ

FLDZ (load zero) loads (pushes) +0.0 onto the NPX stack.

4.7.2 FL01

FLDI (load one) loads (pushes) + 1.0 onto the NPX stack.

4_7.3 FLOPI

FLDPI (load 11") loads (pushes) 11" onto the NPX stack.

4_7.4 FLOL2T

FLDL2T (load log base 2 of 10) loads (pushes) the value LOG)O onto the NPX stack.

4.7.5 FLOL2E

FLDL2E (load log base 2 of e) loads (pushes) the value LOG2e onto the NPX stack.

4.7.6 FLOLG2

FLDLG2 (load log base 10 of 2) loads (pushes) the value LOG102 onto the NPX stack.

4-20

80387 INSTRUCTION SET

4.7.7 FLDLN2

FLDLN2 (load log base e of 2) loads (pushes) the value LOGe2 onto the NPX stack.

4.8 PROCESSOR CONTROL INSTRUCTIONS

The processor control instructions are shown in Table 4-12. The instruction FSTSW is
commonly used for conditional branching. The remaining instructions are not typically used
in calculations; they provide control over the 80387 NPX for system-level activities. These
activities include initialization, exception handling, and task switching.

As shown in Table 4-12, many of the NPX processor control instructions have two forms of
assembler mnemonic:

1. A wait form, where the mnemonic is prefixed only with an F, such as FSTSW. This
form checks for unmasked numeric exceptions.

2. A no-wait form, where the mnemonic is prefixed with an FN, such as FNSTSW. This
form ignores unmasked numeric exceptions.

When the control instruction is coded using the no-wait form of the mnemonic, the ASM386
assembler does not precede the ESC instruction with a wait instruction, and the CPU does
not test the ERROR# status line from the NPX before executing the processor control
instruction.

Only the processor control class of instructions have this alternate no-wait form. All numeric
instructions are automatically synchronized by the 80386; the CPU transfers all operands
before initiating the next instruction. Because of this automatic synchronization by the 80386,
numeric instructions for the 80387 need not be preceded by a CPU wait instruction in order
to execute correctly.

Table 4·12. Processor Control Instructions

FINIT/FNINIT
FLDCW
FSTCW/FNSTCW
FSTSW /FNSTSW
FSTSW AX/FNSTSW AX
FCLEX/FNCLEX
FSTENV /FNSTENV
FLDENV
FSAVE/FNSAVE
FRSTOR
FINCSTP
FDECSTP
FFREE
FNOP
FWAIT

4-21

Initialize processor
Load control word
Store control word
Store status word
Store status word to AX
Clear exceptions
Store environment
Load environment
Save state
Restore state
Increment stack pOinter
Decrement stack pOinter
Free register
No operation
CPU Wait

80387 INSTRUCTION SET

It should also be noted that the 8087 instructions FENI and FDISI and the 80287 instruc­
tion FSETPF perform no function in the 80387. If these opcodes are detected in an 80386/
80387 instruction stream, the 80387 performs no specific operation and no internal states
are affected. For programmers interested in porting numeric software from 80287 or 8087
environments to the 80386, however, it should be noted that program sections containing
these exception-handling instructions are not likely to be completely portable to the 80387.
Appendix C and Appendix D contains a more complete description of the differences between
the 80387 and the 80287/8087.

4.8.1 FINIT IFNINIT

FINIT /FNINIT (initialize processor) sets the 80387 NPX into a known state, unaffected
by any previous activity. It sets the control word to its default value 037FH (round to nearest,
all exceptions masked, 64 bits of precision), clears the status word, and empties all floating­
point stack registers. The no-wait form of this instruction causes the 80387 to abort any
previous numeric operations currently executing in the NEU.

This instruction performs the functional equivalent of a hardware RESET, with one excep­
tion: RESET causes the 1M bit of the control word to be reset and the ES and IE bits of the
status word to be set as a means of signaling the presence of an 80387; FINIT puts the
opposite values in these bits.

FINIT checks for unmasked numeric exceptions, FNINIT does not. Note that if FNINIT
is executed while a previous 80387 memory-referencing instruction is running, 80387 bus
cycles in progress are aborted. This instruction may be necessary to clear the 80387 if a
processor-extension segment-overrun exception (interrupt 9) is detected by the CPU.

4.8.2 FLDCW source

FLDCW (load control word) replaces the current processor control word with the word
defined by the source operand. This instruction is typically used to establish or change the
80387's mode of operation. Note that if an exception bit in the status word is set, loading a
new control word that unmasks that exception will activate the ERROR# output of the
80387. When changing modes, the recommended procedure is to first clear any exceptions
and then load the new control word.

4.8.3 FSTCW IFNSTCW destination

FSTCW /FNSTCW (store control word) writes the processor control word to the memory
location defined by the destination. FSTCW checks for unmasked numeric exceptions;
FNSTCW does not.

4-22

80387 INSTRUCTION SET

4.8.4 FSTSW IFNSTSW destination

FSTSW jFNSTSW (store status word) writes the current value of the 80387 status word to
the destination operand in memory. The instruction is used to

• Implement conditional branching following a comparison, FPREM, or FPREM 1
instruction (FSTSW).

Invoke exception handlers (by polling the exception bits) in environments that do not
use interrupts (FSTSW).

FSTSW checks for unmasked numeric exceptions, FNSTSW does not.

4.8.5 FSTSW AX/FNSTSW AX

FSTSW AX/FNSTSW AX (store status word to AX) is a special 80387 instruction that
writes the current value of the 80387 status word directly into the 80386 AX register. This
instruction optimizes conditional branching in numeric programs, where the 80386 CPU
must test the condition of various NPX status bits. The waited form FSTSW AX checks for
unmasked numeric exceptions, the non-waited form FNSTSW AX does not.

When this instruction is executed, the 80386 AX register is updated with the NPX status
word before the CPU executes any further instructions. The status stored is that from the
completion of the prior ESC instruction.

4.8.6 FCLEX/FNCLEX

FCLEXjFNCLEX (clear exceptions) clears all exception flags, the exception status flag
and the busy flag in the status word. As a consequence, the 80387's ERROR# line goes
inactive. FCLEX checks for unmasked numeric exceptions, FNCLEX does not.

4.8.7 FSAVE/FNSAVE destination

FSA VE/FNSA VE (save state) writes the full 80387 state---environment plus register stack­
to the memory location defined by the destination operand. Figure 4-1 and
Figure 4-2 show the layout of the save area; the size and layout of the save area depends on
the operating mode of the 80386 (real-address mode or protected mode) and on the operand­
size attribute in effect for the instruction (32-bit operand or 16-bit operand). When the
80386 is in virtual-8086 mode, the real-address mode formats are used. Typically the
instruction is coded to save this image on the CPU stack.

The values in the tag word in memory are determined during the execution of FSA VEl
FNSA VE. If the tag in the status register indicates that the corresponding register is
nonempty, the 80387 examines the data in the register and stores the appropriate tag in
memory. Thus the tag that is stored always reflects the actual content of the register.

4-23

80387 INSTRUCTION SET

31 23 15 o

+OH

+4H

+8H

ENVIRONMENT +CH

+10H

+14H

+18H

~------~~------~---------+--------~

ST(O) SIGN EXPONENT SIGNIFICAND +lCH

ST(l) +26H

ST(2) +30H
~~--------~-------------------------------------4

ST(3) t3AH

ST(4) +44H
~~--------~-------------------------------------4

ST(5) +4EH

ST(6) +S8H

ST(7) +62H

79 78 6463 o

G40003

Figure 4-1. FSAVE/FRSTOR Memory Layout (32-Bit)

FNSA VE delays its execution until all NPX activity completes normally. Thus, the save
image reflects the state of the NPX following the completion of any running instruction.
After writing the state image to memory, FSA VEjFNSA VE initializes the 80387 as if
FIN IT jFNINIT had been executed.

FSA VEjFNSA VE is useful whenever a program wants to save the current state of the NPX
and initialize it for a new routine. Three examples are

1. An operating system needs to perform a context switch (suspend the task that had been
running and give control to a new task).

2. An exception handler needs to use the 80387.

3. An application task wants to pass a "clean" 80387 to a subroutine.

FSA VE checks for unmasked numeric exceptions before executing, FNSA VE does not.

4-24

80387 INSTRUCTION SET

15 7 o

+OH

+2H

+4H
-

ENVIRONMENT +6H -
+8H

+AH

I CH

ST(O} SIGN EXPONENT SIGNIFICAND +EH

~-r---------r------------------------------------~
ST(1} +1BH

ST(2} +22H

ST(3} ~-r---------r------------------------------------~ +2CH

ST(4} +36H

ST(5} +40H

ST(6} +4AH

ST(7} +54H

79 78 64 63 o

040003

Figure 4-2. FSAVE/FRSTOR Memory Layout (16-Bit)

4.8.8 FRSTOR source

FRSTOR (restore state) reloads the 80387 state from the memory area defined by the source
operand. This information should have been written by a previous FSA VE/FNSA VE
instruction and not altered by any other instruction. FRSTOR automatically waits checking
for interrupts until all data transfers are completed before continuing to the next instruction.

Note that the 80387 "reacts" to its new state at the conclusion of the FRSTOR. It generates
an exception request, for example, if the exception and mask bits in the memory image so
indicate when the next WAIT or exception-checking ESC instruction is executed.

4-25

80387 INSTRUCTION SET

4.8.9 FSTENV IFNSTENV destination

FSTENV /FNSTENV (store environment) writes the 80387's basic status-control, status,
and tag words, and exception pointers-to the memory location defined by the destination
operand. Typically, the environment is saved on the CPU stack. FSTENV /FNSTENV is
often used by exception handlers because it provides access to the exception pointers that
identify the offending instruction and operand. After saving the environment, FSTENV /
FNSTENV sets all exception masks in the 80387 control word (i.e., masks all exceptions).
FSTENV checks for pending exceptions before executing, FNSTENV does not.

Figures 4-3 through 4-6 shows the format of the environment data in memory; the size and
layout of the save area depends on the operating mode of the 80386 (real-address mode or
protected mode) and on the operand-size attribute in effect for the instruction (32-bit operand
or 16-bit operand). When the 80386 is in virtual-8086 mode, the real-address mode formats
are used. FNSTENV does not store the environment until all NPX activity has completed.
Thus, the data saved by the instruction reflects the 80387 after any previously decoded
instruction has been executed.

The values in the tag word in memory are determined during the execution of FNSTENV /
FSTENV. If the tag in the status register indicates that the corresponding register is
nonempty, the 80387 examines the data in the register and stores the appropriate tag in
memory. Thus the tag that is stored always reflects the actual content of the register.

4.8.10 FLDENV source

FLDENV (load environment) reloads the environment from the memory area defined by
the source operand. This data should have been written by a previous FSTENV /FNSTENV

31

000001

23

32-BIT PROTECTED MODE FORMAT

15 7

RESERVED CONTROL WORD

RESERVED STATUS WORD

RESERVED TAG WORD

IP OFFSET

OPCODE 1 •••• CS SELECTOR

DATA OPERAND OFFSET

RESERVED OPERAND SELECTOR

o

Figure 4-3. Protected Mode 80387 Environment, 32-Bit Format

4-26

OH

4H

8H

CH

10H

14H

18H

G40003

80387 INSTRUCTION SET

32-BIT REAL-ADDRESS MODE FORMAT

31 23 15 7 o

RESERVED CONTROL WORD

RESERVED STATUS WORD

RESERVED TAG WORD

RESERVED INSTRUCTION POINTER ".0

000 01 INSTRUCTION POINTER 3U'
10 1

OPCODE '0 .. 0

RESERVED OPERAND POINTER " .. 0

o 0 0 01 OPERAND POINTER 3U' 10 0 0 0 0 0 0 0 0 000

Figure 4-4. Real Mode 80387 Environment, 32-Bit Format

15

16-BIT PROTECTED MODE FORMAT

7

CONTROL WORD

STATUS WORD

TAG WORD

IP OFFSET

CS SELECTOR

OPERAND OFFSET

OPERAND SELECTOR

o

OH

2H

4H

6H

8H

AH

CH

Figure 4-5. Protected Mode 80387 Environment, 16-Bit Format

OH

4H

8H

CH

10H

14H

18H

G40003

G40003

instruction. CPU instructions (that do not reference the environment image) may immedi­
ately follow FLDENV. FLDENV automatically waits for all data transfers to complete
before executing the next instruction.

Note that loading an environment image that contains an unmasked exception causes a
numeric exception when the next WAIT or exception-checking ESC instruction is executed.

4.8.11 FINCSTP

FINCSTP (increment NPX stack pointer) adds 1 to the stack top pointer (TOP) in the
status word. It does not alter tags or register contents, nor does it transfer data. It is not

4-27

15

80387 INSTRUCTION SET

16-BIT REAL-ADDRESS MODE
AND VIRTUAL-BOB6 MODE FORMAT

7

CONTROL WORD

STATUS WORD

TAG WORD

INSTRUCTION POINTER" .. o

IP'9 .. 16 /01 OPCODE ,o .. 0

OPERAND POINTER 15.0

o

OP ,g." 10 I 0 0 0 0 0 0 0 0 0 0 0

OH

2H

4H

6H

8H

AH

CH

Figure 4-6. Real Mode 80387 Environmenf, 16-Bit Format

G40003

equivalent to popping the stack, because it does not set the tag of the previous stack top to
empty. Incrementing the stack pointer when ST=7 produces ST=O.

4.8.12 FDECSTP

FDECSTP (decrement NPX stack pointer) subtracts 1 from ST, the stack top pointer in
the status word. No tags or registers are altered, nor is any data transferred. Executing
FDECSTP when ST=O produces ST=7.

4.8.13 FFREE destination

FFREE (free register) changes the destination register's tag to empty; the content of the
register is unaffected.

4.8.14 FNOP

FNOP (no operation) effectively performs no operation.

4.8.15 FWAIT (CPU Instruction)

FW AIT is not actually an 80387 instruction, but an alternate mnemonic for the 80386 WAIT
instruction. The FW AIT or WAIT mnemonic should be coded whenever the programmer

4-28

80387 INSTRUCTION SET

wants to check for a pending error before modifying a variable used in the previous floating­
point instruction. Coding an FW AIT instruction after an 80387 instruction ensures that
unmasked numeric exceptions occur and exception handlers are invoked before the next
instruction has a chance to examine the results of the 80387 instruction.

More information on when to code an FW AIT instruction is given in Chapter 5 in the section
"Concurrent Processing with the 80387."

4-29

Programming
Numeric Applications

5

CHAPTER 5
PROGRAMMING NUMERIC APPLICATIONS

5.1 PROGRAMMING FACILITIES

As described previously, the 80387 NPX is programmed simply as an extension of the 80386
CPU. This section describes how programmers in ASM386 and in a variety of higher-level
languages can work with the 80387.

The level of detail in this section is intended to give programmers a basic understanding of
the software tools that can be used with the 80387, but this information does not document
the full capabilities of these facilities. Complete documentation is available with each program
development product.

5.1.1 High-Level Languages

For programmers using high-level languages, the programming and operation of the NPX
is handled automatically by the compiler. A variety of Intel high-level languages are avail­
able that automatically make use of the 80387 NPX when appropriate. These languages
include C-386 and PLfM-386. In addition many high-level language compilers are available
from independent software vendors.

Each of these high-level languages has special numeric libraries allowing programs to take
advantage of the capabilities of the 80387 NPX. No special programming conventions are
necessary to make use of the 80387 NPX when programming numeric applications in any
of these languages.

Programmers in PLfM-386 and ASM386 can also make use of many of these library routines
by using routines contained in the 80387 Support Library. These libraries implement many
of the functions provided by higher-level languages, including exception handlers, ASCII­
to-floating-point conversions, and a more complete set of transcendental functions than that
provided by the 80387 instruction set.

5.1.2 C Programs

C programmers automatically cause the C compiler to generate 80387 instructions when
they use the double and float data types. The float type corresponds to the 80387's single real
format; the double type corresponds to the 80387's double real format. The statement #include
<math.h> causes mathematical functions such as sin and sqrt to return values of type double.
Figure 5-1 illustrates the ease with which C programs interface with the 80387.

5-1

PROGRAMMING NUMERIC APPLICATIONS

XENIX286 C386 COMPILER, VO.2 COMPILATION OF MODULE SAMPLE
OBJECT MODULE PLACED IN sample. obi
COMPILER INVOKED BY: c386 sample.c

stmt level

7
8
9

10
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

/**

SAMPLE C PROGRAM

** /

/.* Include /usr/;nclude/stdio.h if necessary **1
/** Include math declarations for transcendenatals and others **/

#;nc tude </usr Ii nelude/math .h>
#define PI 3.141592654

main()
{

double
double
int

sin resul t, cos resut t;
angle_deg = o.o~ angLe_rad;
i. no_ot_trial = 4;

fore i '" 1; ; <= no of trial; iH)(

angle_rad = angTe_deg '* PI I 180.0;
sin_resut t = sin (angle_rad);
cos_resut t = cos (angle_rad);
printf(lIsine of %f degrees equals %f\nll, angle deg, sin result);
printf("cosine of %f degrees equals %f\n\n". angLe~deg,~cos_result};
angle_deg = angLe_deg + 30.0;
}

/** etc. **/
}

c386 COMPILATION COMPLETE. 0 WARNINGS, 0 ERRORS

Figure 5-1. Sample C-386 Program

5-2

PROGRAMMING NUMERIC APPLICATIONS

5.1.3 PLlM-386

Programmers in PLfM-386 can access a very useful subset of the 80387's numeric capabil­
ities. The PLfM-386 REAL data type corresponds to the NPX's single real (32-bit) format.
This data type provides a range of about 8.43 X 1 0~37 <:: I X I <:: 3.38 X 1038 , with about
seven significant decimal digits. This representation is adequate for the data manipulated by
many microcomputer applications.

The utility of the REAL data type is extended by the PLfM-386 compiler's practice of
holding intermediate results in the 80387's extended real format. This means that the full
range and precision of the processor are utilized for intermediate results. Underflow, overflow,
and rounding exceptions are most likely to occur during intermediate computations rather
than during calculation of an expression's final result. Holding intermediate results in
extended-precision real format greatly reduces the likelihood of overflow and underflow and
eliminates roundoff as a serious source of error until the final assignment of the result is
performed.

The compiler generates 80387 code to evaluate expressions that contain REAL data types,
whether variables or constants or both. This means that addition, subtraction, multiplica­
tion, division, comparison, and assignment of REALs will be performed by the NPX.
INTEGER expressions, on the other hand, are evaluated on the CPU.

Five built-in procedures (Table 5-1) give the PLfM-386 programmer access to 80387
functions manipulated by the processor control instructions. Prior to any arithmetic opera­
tions, a typical PLfM-386 program will set up the NPX using the
INIT$REAL$MATH$UNIT procedure and then issue SET$REAL$MODE to configure
the NPX. SET$REAL$MODE loads the 80387 control word, and its 16-bit parameter has
the format shown for the control word in Chapter I. The recommended value of this param­
eter is 033EH (round to nearest, 64-bit precision, all exceptions masked except invalid
operation). Other settings may be used at the programmer's discretion.

If any exceptions are unmasked, an exception handler must be provided in the form of an
interrupt procedure that is designated to be invoked via CPU interrupt vector number 16.
The exception handler can use the GET$REAL$ERROR procedure to obtain the low-order

Table 5-1. PLlM-386 Built-In Procedures

Procedure 80387 Description
Instruction

INIT$REAL$MATH$UNIT(1) FINIT Initialize processor.

SET$REAL$MODE FLDCW Set exception masks, rounding
precision, and infinity controls.

GET$REAL$ERROR(2) FNSTSW Store, then clear, exception flags.
& FNCLEX 'j ...

SAVE$REAL$STATUS FNSAVE Save processor state.

RESTORE$REAL$STATUS FRSTOR Restore processor state.

5~3

PROGRAMMING NUMERIC APPLICA nONS

byte of the 80387 status word and to then clear the exception flags. The byte returned by
GET$REAL$ERROR contains the exception flags; these can be examined to determine the
source of the exception.

The SAVE$REAL$STATUS and RESTORE$REAL$STATUS procedures are provided
for multitasking environments where a running task that uses the 80387 may be preempted
by another task that also uses the 80387. It is the responsibility of the operating system to
issue SA VE$REAL$STATUS before it executes any statements that affect the 80387; these
include the INIT$REAL$MATH$UNIT and SET$REAL$MODE procedures as well as
arithmetic expressions. SAVE$REAL$STATUS saves the 80387 state (registers, status, and
control words, etc.) on the CPU's stack. RESTORE$REAL$STATUS reloads the state
information; the preempting task must invoke this procedure before terminating in order to
restore the 80387 to its state at the time the running task was preempted. This enables the
preempted task to resume execution from the point of its preemption.

5.1.4 ASM386

The ASM386 assembly language provides programmers with complete access to all of the
facilities of the 80386 and 80387 processors.

The programmer's view of the 80386/80387 hardware is a single machine with these
resources:

160 instructions

• 12 data types

8 general registers

6 segment registers

• 8 floating-point registers, organized as a stack

5.1.4.1 DEFINING DATA

The ASM386 directives shown in Table 5-2 allocate storage for 80387 variables and
constants. As with other storage allocation directives, the assembler associates a type with
any variable defined with these directives. The type value is equal to the length of the storage
unit in bytes (10 for DT, 8 for DQ, etc.). The assembler checks the type of any variable
coded in an instruction to be certain that it is compatible with the instruction. For example,
the coding FIADD ALPHA will be flagged as an error if ALPHA's type is not 2 or 4,

Table 5-2. ASM386 Storage Allocation Directives

Directive Interpretation Data Types

DW Define Word Word integer
DD Define Doubleword Short integer, short real
DO Dfine Ouadword Long integer, long real
DT Define Tenbyte Packed decimal, temporary real

5-4

PROGRAMMING NUMERIC APPLICATIONS

because integer addition is only available for word and short integer (doubleword) data types.
The operand's type also tells the assembler which machine instruction to produce; although
to the programmer there is only an FlADD instruction, a different machine instruction is
required for each operand type.

On occasion it is desirable to use an instruction with an operand that has no declared type.
For example, if register BX points to a short integer variable, a programmer may want to
code FlADD [BX]. This can be done by informing the assembler of the operand's type in
the instruction, coding FIADD DWORD PTR [BX]. The corresponding overrides for the
other storage allocations are WORD PTR, QWORD PTR, and TBYTE PTR.

The assembler does not, however, check the types of operands used in processor control
instructions. Coding FRS TOR [BP] implies that the programmer has set up register BP to
point to the location (probably in the stack) where the processor's 94-byte state record has
been previously saved.

The initial values for 80387 constants may be coded in several different ways. Binary integer
constants may be specified as bit strings, decimal integers, octal integers, or hexadecimal
strings. Packed decimal values are normally written as decimal integers, although the assem­
bler will accept and convert other representations of integers. Real values may be written as
ordinary decimal real numbers (decimal point required), as decimal numbers in scientific
notation, or as hexadecimal strings. Using hexadecimal strings is primarily intended for
defining special values such as infinities, NaNs, and denormalized numbers. Most program­
mers will find that ordinary decimal and scientific decimal provide the simplest way to
initialize 80387 constants. Figure 5-2 compares several ways of setting the various 80387
data types to the same initial value.

THE FOLLOWING ALL ALLOCATE THE CONSTANT: -126
NOTE TWO'S COMPLETE STORAGE OF NEGATIVE BINARY INTEGERS.

; EVE N FORCE WORD ALIGNMENT
WORLINTEGER DW 111111111000010B BIT STRING
SHORLIHTEGER DD OFFFFFF82H HEX STRING MUST START

WITH DIGIT
LONLINTEGER DQ - 126 ORDINARY DECIMAL
5 I N G L E_R E AL DD - 1 26 . 0 HOTE PRESENCE OF
DO U B L CR E A L DD -1.26E2 "SCIENTIFIC"
PAC K E LD E C I MAL DT - 1 26 ORDINARY DECIMAL

IN THE FOLLOWING, SIGN AND EXPONENT IS 'COOS'

;

SIGNlFICAND IS '7[00 ... 00', 'R' INFORMS ASSEMBLER THAT
THE STRING REPRESENTS A REAL DATA TYPE.

EX TE N D E LR E A L DT OCOOS7EOOOOOOOOOOOOOOR HEX STRING

Figure 5-2. Sample 80387 Constants

5-5

, ,

INTEGER

PROGRAMMING NUMERIC APPLICATIONS

Note that preceding 80387 variables and constants with the ASM386 EVEN directive ensures
that the operands will be word-aligned in memory. The best performance is obtained when
data transfers are double-word aligned. All 80387 data types occupy integral numbers of
words so that no storage is "wasted" if blocks of variables are defined together and preceded
by a single EVEN declarative.

5.1.4.2 RECORDS AND STRUCTURES

The ASM386 RECORD and STRUC (structure) declaratives can be very useful in NPX
programming. The record facility can be used to define the bit fields of the control, status,
and tag words. Figure 5-3 shows one definition of the status word and how it might be used
in a routine that polls the 80387 until it has completed an instruction.

Because structures allow different but related data types to be grouped together, they often
provide a natural way to represent "real world" data organizations. The fact that the struc­
ture template may be "moved" ahout in memory adds to its flexibility. Figure 5-4 shows a
simple structure that might be used to represent data consisting of a series of test score
samples. A structure could also be used to define the organization of the information stored
and loaded by the FSTENV and FLDENV instructions.

; RESERVE SPACE FOR STATUS WORD
STATULWORD
; LAY OUT STATUS WORD FIELDS
STATUS RECORD

BUS Y :
CONLCODE3 :
STACCTOP:
COND_CODE2:
CONLCODE 1:
CONLCODEO:
I MLREQ:
LF LAG:
P_FLAG:
LF L AG:
LFLAG:
Z_FLAG:
LFLAG:
LF LAG:

; REDUCE UNTIL
REDUCE: FPREMl

FNSTSW
TE S T
JNZ

1,
1,
3,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1

COMPLETE

STAT U LW 0 R D
STATUS_WORD, MASK_COMD_CODE2
REDUCE

Figure 5-3. Status Word Record Definition

5-6

PROGRAMMING NUMERIC APPLICATIONS

SAMPLE STRUC
N_OBS DD SHORT INTEGER
MEAN DQ DOUBLE REAL
MODE DW WORD INTEGER
STD_DEV DQ ; DOUBLE REAL
; ARRAY OF OBSERVATIOHS -- WORD INTEGER
TEST_SCORES DW 1000 DUP I?l

SAMPLE ENDS

Figure 5-4. Structure Definition

Table 5-3. Addressing Method Examples

Coding Interpretation

FIAOO ALPHA ALPHA is a simple scalar (mode is direct).

FDIVR ALPHA. BETA BETA is a field in a structure that is
"overlaid" on ALPHA (mode is direct).

FMUL aWORO PTR [BX] BX contains the address of a long real
variable (mode is register indirect).

F8UB ALPHA [81] ALPHA is an array and 81 contains the
offset of an array element from the start of
the array (mode is indexed).

FILD [BP].BETA BP contains the address of a structure on
the CPU stack and BETA is a field in the
structure (mode is based).

FBLO TBYTE PTR [BX] [01] BX contains the address of a packed
decimal array and 01 contains the offset of
an array element (mode is based indexed).

5.1.4.3 Addressing Methods

80387 memory data can be accessed with any of the memory addressing methods provided
by the ModRjM byte and (optionally) the SIB byte. This means that 80387 data types can
be incorporated in data aggregates ranging from simple to complex according to the needs
of the application. The addressing methods and the ASM386 notation used to specify them
in instructions make the accessing of structures, arrays, arrays of structures, and other
organizations direct and straightforward. Table 5-3 gives several examples of 80387 instruc­
tions coded with operands that illustrate different addressing methods.

5-7

PROGRAMMING NUMERIC APPLICATIONS

5.1.5 Comparative Programming Example

Figures 5-5 and 5-6 show the PL/M-386 and ASM386 code for a simple 80387 program,
called ARRSUM. The program references an array (X$ARRAY), which contains 0-100
single real values; the integer variable NOFX indicates the number of array elements the
program is to consider. ARRSUM steps through X$ARRA Y accumulating three sums:

SUM$X, the sum of the array values

• SUM$INDEXES, the sum of each array value times its index, where the index of the
first element is 1, the second is 2, etc.

SUM$SQUARES, the sum of each array element squared

(A true program, of course, would go beyond these steps to store and use the results of these
calculations.) The control word is set with the recommended values: round to nearest, 64-bit
precision, interrupts enabled, and all exceptions masked except invalid operation. It is assumed
that an exception handler has been written to field the invalid operation if it occurs, and
that it is invoked by interrupt pointer 16. Either version of the program will run on an actual
or an emulated 80387 without altering the code shown.

The PL/M-386 version of ARRSUM (Figure 5-5) is very straightforward and illustrates
how easily the 80387 can be used in this language. After declaring variables, the program
calls built-in procedures to initialize the processor (or its emulator) and to load to the control
word. The program clears the sum variables and then steps through X$ARRA Y with a
DO-loop. The loop control takes into account PL/M-386's practice of considering the index
of the first element of an array to be o. In the computation of SUM$INDEXES, the
built-in procedure FLOAT converts 1+1 from integer to real because the language does not
support "mixed mode" arithmetic. One of the strengths of the NPX, of course, is that it
does support arithmetic on mixed data types (because all values are converted internally to
the 80-bit extended-precision real format).

The ASM386 version (Figure 5-6) defines the external procedure INIT387, which makes
the different initialization requirements of the processor and its emulator transparent to the
source code. After defining the data and setting up the segment registers and stack pointer,
the program calls INIT387 and loads the control word. The computation begins with the
next three instructions, which clear three registers by loading (pushing) zeros onto the stack.
As shown in Figure 5-7, these registers remain at the bottom of the stack throughout the
computation while temporary values are pushed on and popped off the stack above them.

The program uses the CPU LOOP instruction to control its iteration through X_ARRAY;
register ECX, which LOOP automatically decrements, is loaded with N_OF _X, the number
of array elements to be summed. Register ESI is used to select (index) the array elements.
The program steps through X_ARRA Y from back to front, so ESI is initialized to point at
the element just beyond the first element to be processed. The ASM386 TYPE operator is
used to determine the number of bytes in each array element. This permits changing
X~RRA Y to a double-precision real array by simply changing its definition (DD to DQ)
and reassembling.

5-8

PROGRAMMING NUMERIC APPLICATIONS

XENIX286 PL/M-386 DEBUG X291a COMPILATION OF MODULE ARRAYSUM
OBJECT MODULE PLACED IN arraysum.obj
COMPILER INVOKED BY: plm386 arraysum.plm

6
7

10

11

12
13

14

/***
*

ARRAYSUM MODDULE

*** /

array$sum: do;

declare (sumx, sumindexes, sum$squares) real;
declare x$array(100) real;
declare (nofx, i) integer;
declare controt$387 literally I033eh';

1* Assume x$array and n$oUx are initialized wI
caLL init$reat$math$unit;
call set$real$mode(control$387);

J* Clear sums */
sumx, sumindexes, sum$squares ::: 0.0;

/* loop through array, accumuLating sums */
do i :::: 0 to nofx - 1;

end;

sum$x = sum$x + x$array(i);
sum$indexes = sum$indexes + (x$array(;)*float(;+1);
sum$squares == stmSsquares + (x$array(;)*x$array(i»;

/* etc. */

end arraySsurn;

MODULE INFORMATION:

CODE AREA SIZE " OOOOOOAOH 1600

CONSTANT AREA SIZE" 00000004H 40

VARIABLE AREA SIZE" 000001A4H 4200

MAXIMUM STACK SIZE" 00000004H 40
32 LINES READ
o PROGRAM ~ARNINGS

o PROGRAM ERRORS

DICTIONARY SUMMARY:

8KB MEMORY USED

OKB 0 I SK SPACE USED

END OF PL/M-386 COMPILATION

Figure 5-5. Sample PLlM-386 Program

5-9

PROGRAMMING NUMERIC APPLICATIONS

XENIX286 80386 MACRO ASSEMBLER V1.0, ASSEMBLY OF MaCULE ARRAY SUM
OBJECT MODULE PLACED IN arraysum.obj

ASSEMBLER INVOKED BY: asm386 arraysuffi.asm

LaC OBJ

00000000 3E03
00000002 ????????
00000006 (100

????????

00000196 ????????
0000019A ????????
OOOD019E ????????

00000000
00000000 66B8····
00000004 8ED8
00000006 6688····
OOOOOOOA B800000000
OOOOOOOF 8EOO
00000011 BCOOOOOOOO

00000016 9AOOOOOOOO·
00000010 092000000000

00000023 09EE
00000025 09EE
00000027 D9EE

LINE

10
11
12

13
14
1S
16
17

SOURCE

name arraysum

; Define initiaL ization routine

extrn init387:far

; Allocate space for data

data segment rw pubL i c
cont ra L _387 dw 033eh

sum_squares
sum _ indexes

dd ?
dd 100 dup (?)

dd?
dd?
dd?

18 ; At locate CPU stack space
19
20
21

stack stacKseg 400

22 ; Begin code
23
24 code segment er pubL i c
25
26 assume ds:data, ~s:stack

27
28
29
30
31
32
33
34
3S

start:
mov
mov
mov
mov
mov
mov

ax, data
ds, ax
ax, stack
eax, Oh
55, ax
esp, stackstart stack

36 Assume x array and n of x have
37 been initiali7t'~d --
38
39
40
41
42
43

Prepare the 80387 or its emulator

call lnit387
fldcw control_387

44 CLear three registers to hoLd
45 running sums
46
47
48
49

fldz
fldz
fldz

Figure 5-6. Sample ASM386 Program

5-10

PROGRAMMING NUMERIC APPLICATIONS

LOC OBJ

00000029 8B0002000000
0000002F F7E9
00000031 8BFO

00000033

00000033 83EE04
00000036 098606000000

0000003C Occ3
0000003E 09CO

00000040 OCC8
00000042 OEc2

00000044 FF0002000000
0000004A E2E7

0000004C
0000004C 091096010000
00000052 09109A010000
00000058 09109E010000
0000005E 98

LINE SOURCE

50

51 Setup ECX as loop counter and ESI
52 as ; ndex into x array
53
54
55
56
57

mov
irrul
mov

ecx, n_of_x
ecx
esi I eax

58 ESI now contains index of Last
S9 clement;. 1
60 Loop through x_array and
61 aCClJT1Ulate Sl.ll1

62
63
64
65
66
67
68
69

sum_next:
backup one element and push on
the stack

sub
fLd

esi, type x_array
x_array[esi]

70 add to the sum and dup l ; cate x
71 on the stack
72
73
74
75

fadd
ftd

8tO), st
st

76 square it and add into the sum of
77 (index+1) and discard
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

fmul st, st
faddp 5t(2), st

reduce index for next iteration

dec
loop sum_next

Pop sums ; nto memory

pop_results:
fstp sum_squares
fstp sLITl_indexes
fstp sum_x
twait

96 Etc.
97
98
99

code
end

ends
start, ds:data, ss:stack

ASSEMBl.Y COMPLETE, NO UARNINGS, NO ERRORS.

Figure 5-6. Sample ASM386 Program (Cont'd.)

5-11

ST(O)

ST(l)

ST(2)

ST(O)

ST(l)

ST(2)

ST(3)

ST(O)

ST(l)

ST(2)

ST(3)

ST(4)

ST(O)

ST(l)

ST(2)

ST(3)

PROGRAMMING NUMERIC APPLICATIONS

FLDZ,FLDZ,FLDZ

0.0

0.0

0.0

FADD ST(3) ST -

2.5

0.0

0.0

2.5

FMUL ST ST -

6.25

2.5

0.0

0.0

2.5

FIMULN_oLX

50.0

6.25

0.0

2.5

SU

SU

SU

M_SQUARES

M_INDEXES

ST(O)

ST(l)

ST(2)

ST(3) ----
X _ARRAY (19)

UM_SQUARES S

S

S UMJ,

ST(O)

ST(l)

ST(2)

ST(3)

ST(4) ----
X _ARRAY(19)'

_ARRAY (19) X

S UM._.SQUARES

UM_INDEXES S

S

X_A

SUM

RRAY(19)"20

_SQUARES

_INDEXES SUM.

SUM

S T(O)

ST(l)

S

S

T(2)

T(3)

.....

ST(O)

ST(l)

ST(2)

FLO X ARRA YISI] -

2.5

0.0

0.0

FLO ST -

2.5

2.5

0.0

0.0

2.5

FADDP ST(2), ST -

2.5

6.25

0.0

2.5

FADDP ST(2), ST -

6.25

50.0

2.5

Figure 5-7. Instructions and Register Stack

5-12

X_ARRAY (19)

SUM_SQUARES

SUM_INDEXES

SUM_X

JLARRAY (19)

X-.ARRAY(19)

SUM_SQUARES

X-.ARRAY (19)

SUM_SQUARES

SUM_INDEXES

122164-14

PROGRAMMING NUMERIC APPLICATIONS

Figure 5-7 shows the effect of the instructions in the program loop on the NPX register
stack. The figure assumes that the program is in its first iteration, that N_OF _X is 20, and
that X_ARRAY(19) (the 20th element) contains the value 2.5. When the loop terminates,
the three sums are left as the top stack elements so that the program ends by simply popping
them into memory variables.

5.1.6 80387 Emulation

The programming of applications to execute on both 80386 with an 80387 and 80386 systems
without an 80387 is made much easier by the existence of an 80387 emulator for 80386
systems. The Intel EMUL387 emulator offers a complete software counterpart to the 80387
hardware; NPX instructions can be simply emulated in software rather than being executed
in hardware. With software emulation, the distinction between 80386 systems with or without
an 80387 is reduced to a simple performance differential. Identical numeric programs will
simply execute more slowly (using software emulation of NPX instructions) on 80386 systems
without an 80387 than on an 80386/80387 system executing NPX instructions directly.

When incorporated into the systems software, the emulation of NPX instructions on the
80386 systems is completely transparent to the applications programmer. Applications
software needs no special libraries, linking, or other activity to allow it to run on an 80386
with 80387 emulation.

To the applications programmer, the development of programs for 80386 systems is the
same whether the 80387 NPX hardware is available or not. The full 80387 instruction set
is available for use, with NPX instructions being either emulated or executed directly.
Applications programmers need not be concerned with the hardware configuration of the
computer systems on which their applications will eventually run.

For systems programmers, details relating to 80387 emulators are described in Chapter 6.

The EMUL387 software emulator for 80386 systems is available from Intel as a separate
program product.

5.2 CONCURRENT PROCESSING WITH THE 80387

Because the 80386 CPU and the 80387 NPX have separate execution units, it is possible for
the NPX to execute numeric instructions in parallel with instructions executed by the CPU.
This simultaneous execution of different instructions is called concurrency.

No special programming techniques are required to gain the advantages of concurrent
execution; numeric instructions for the NPX are simply placed in line with the instructions
for the CPU. CPU and numeric instructions are initiated in the same order as they are
encountered by the CPU in its instruction stream. However, because numeric operations
performed by the NPX generally require more time than operations performed by the CPU,
the CPU can often execute several of its instructions before the NPX completes a numeric
instruction previously initiated.

5-13

PROGRAMMING NUMERIC APPLICATIONS

This concurrency offers obvious advantages in terms of execution performance, but concur­
rency also imposes several rules that must be observed in order to assure proper synchroni­
zation of the 80386 CPU and 80387 NPX.

All Intel high-level languages automatically provide for and manage concurrency in the NPX.
Assembly-language programmers, however, must understand and manage some areas of
concurrency in exchange for the flexibility and performance of programming in assembly
language. This section is for the assembly-language programmer or well-informed
high-level-language programmer.

5.2.1 Managing Concurrency

Concurrent execution of the host and 80387 is easy to establish and maintain. The activities
of numeric programs can be split into two major areas: program control and arithmetic. The
program control part performs activities such as deciding what functions to perform, calcu­
lating addresses of numeric operands, and loop control. The arithmetic part simply adds,
subtracts, multiplies, and performs other operations on the numeric operands. The NPX and
host are designed to handle these two parts separately and efficiently.

Concurrency management is required to check for an exception before letting the 80386
change a value just used by the 80387. Almost any numeric instruction can, under the wrong
circumstances, produce a numeric exception. For programmers in higher-level languages, all
required synchronization is automatically provided by the appropriate compiler. For
assembly-language programmers exception synchronization remains the responsibility of the
assembly-language programmer.

A complication is that a programmer may not expect his numeric program to cause numeric
exceptions, but in some systems, they may regularly happen. To better understand these
points, consider what can happen when the NPX detects an exception.

Depending on options determined by the software system designer, the NPX can perform
one of two things when a numeric exception occurs:

The NPX can provide a default fix-up for selected numeric exceptions. Programs can
mask individual exception types to indicate that the NPX should generate a safe,
reasonable result whenever that exception occurs. The default exception fix-up activity
is treated by the NPX as part of the instruction causing the exception; no external
indication of the exception is given. When exceptions are detected, a flag is set in the
numeric status register, but no information regarding where or when is available. If the
NPX performs its default action for all exceptions, then the need for exception synchro­
nization is not manifest. However, as will be shown later, this is not sufficient reason to
ignore exception synchronization when designing programs that use the 80387.

• As an alternative to the NPX default fix-up of numeric exceptions, the 80386 CPU can
be notified whenever an exception occurs. When a numeric exception is unmasked and
the exception occurs, the NPX stops further execution of the numeric instruction and
signals this event to the CPU. On the next occurrence of an ESC or WAIT instruction,

5-14

PROGRAMMING NUMERIC APPLICATIONS

the CPU traps to a software exception handler. The exception handler can then imple­
ment any sort of recovery procedures desired for any numeric exception detectable by
the NPX. Some ESC instructions do not check for exceptions. These are the non waiting
forms FNINIT, FNSTENV, FNSA VE, FNSTSW, FNSTCW, and FNCLEX.

When the NPX signals an unmasked exception condition, it is requesting help. The fact that
the exception was unmasked indicates that further numeric program execution under the
arithmetic and programming rules of the NPX is unreasonable.

If concurrent execution is allowed, the state of the CPU when it recognizes the exception is
undefined. The CPU may have changed many of its internal registers and be executing a
totally different program by the time the exception occurs. To handle this situation, the
NPX has special registers updated at the start of each numeric instruction to describe the
state of the numeric program when the failed instruction was attempted.

Exception synchronization ensures that the NPX is in a well-defined state after an unmasked
numeric exception occurs. Without a well-defined state, it would be impossible for exception
recovery routines to determine why the numeric exception occurred, or to recover success­
fully from the exception.

The following two sections illustrate the need to always consider exception synchronization
when writing 80387 code, even when the code is initially intended for execution with excep­
tions masked. If the code is later moved to an environment where exceptions are unmasked,
the same code may not work correctly. An example of how some instructions written without
exception synchronization will work initially, but fail when moved into a new environment
is shown in Figure 5-8.

F [L D
[H C
FSQRT

CO U N T
COUNT
COUNT

F[LD COUHT
FSQRT

[HC COUHT

INCORRECT ERROR SYNCHRONIZATION

NPX instruction
CPU instruction alten operand
subseguent NPX instruction -- error from

previous HPX instruction detected here

PROPER ERROR SYNCHRONIZATION

HPX instruction
subseguent HPX instruction -- error from

previous HPX instruction detected here
CPU instruction alters operand

Figure 5-8. Exception Synchronization Examples

5-15

PROGRAMMING NUMERIC APPLICATIONS

5.2.1.1 INCORRECT EXCEPTION SYNCHRONIZATION

In Figure 5-8, three instructions are shown to load an integer, calculate its square root, then
increment the integer. The 80386-to-80387 interface and synchronous execution of the NPX
emulator will allow this program to execute correctly when no exceptions occur on the FILD
instruction.

This situation changes if the 80387 numeric register stack is extended to memory. To extend
the NPX stack to memory, the invalid exception is unmasked. A push to a full register or
pop from an empty register sets SF and causes an invalid exception.

The recovery routine for the exception must recognize this situation, fix up the stack, then
perform the original operation. The recovery routine will not work correctly in the first
example shown in the figure. The problem is that the value of COUNT is incremented
before the NPX can signal the exception to the CPU. Because COUNT is incremented
before the exception handler is invoked, the recovery routine will load an incorrect value of
COUNT, causing the program to fail or behave unreliably.

5.2.1.2 PROPER EXCEPTION SYNCHRONIZATION

Exception synchronization relies on the WAIT instruction and the BUSY # and ERROR#
signals of the 80387. When an unmasked exception occurs in the 80387, it asserts the
ERROR# signal, signaling to the CPU that a numeric exception has occurred. The next
time the CPU encounters aWAIT instruction or an exception-checking ESC instruction,
the CPU acknowledges the ERROR# signal by trapping automatically to Interrupt #16, the
processor-extension exception vector. If the following ESC or WAIT instruction is properly
placed, the CPU will not yet have disturbed any information vital to recovery from the
exception.

5-16

System-Level
Numeric Programming

6

CHAPTER 6
SYSTEM-LEVEL NUMERIC PROGRAMMING

System programming for 80387 systems requires a more detailed understanding of the 80387
NPX than does application programming. Such things as emulation, initialization, exception
handling, and data and error synchronization are all the responsibility of the systems
programmer. These topics are covered in detail in the sections that follow.

6.1 80386/80387 ARCHITECTURE

On a software level, the 80387 NPX appears as an extension of the 80386 CPU. On the
hardware level, however, the mechanisms by which the 80386 and 80387 interact are more
complex. This section describes how the 80387 NPX and 80386 CPU interact and points
out features of this interaction that are of interest to systems programmers.

6.1.1 Instruction and Operand Transfer

All transfers of instructions and operands between the 80387 and system memory are
performed by the 80386 using I/0 bus cycles. The 80387 appears to the CPU as a special
peripheral device. It is special in two respects: the CPU initiates I/O automatically when it
encounters ESC instructions, and the CPU uses reserved I/0 addresses to communicate
with the 80387. These I/O operations are completely transparent to software.

Because the 80386 actually performs all transfers between the 80387 and memory, no
additional bus drivers, controllers, or other components are necessary to interface the 80387
NPX to the local bus. The 80387 can utilize instructions and operands located in any memory
accessible to the 80386 CPU.

6.1.2 Independent of CPU Addressing Modes

Unlike the 80287, the 80387 is not sensitive to the addressing and memory management of
the Cpu. The 80387 operates the same regardless of whether the 80386 CPU is operating
in real-address mode, in protected mode, or in virtual 8086 mode.

The instruction FSETPM that was necessary in 80286/80287 systems to set the 80287 into
protected mode is not needed for the 80387. The 80387 treats this instruction as a no-op.

Because the 80386 actually performs all transfers between the 80387 and memory, 80387
instructions can utilize any memory location accessible by the task currently executing on
the 80386. When operating in protected mode, all references to memory operands are
automatically verified by the 80386's memory management and protection mechanisms as
for any other memory references by the currently-executing task. Protection violations
associated with NPX instructions automatically cause the 80386 to trap to an appropriate
exception handler.

6-1

SYSTEM PROGRAMMING

To the numerics programmer, the operating modes of the 80386 affect only the manner in
which the NPX instruction and data pointers are represented in memory following an FSA VE
or FSTENV instruction. Each of these instructions produces one of four formats depending
on both the operating mode and on the operand-size attribute in effect for the instruction.
The differences are detailed in the discussion of the FSA VE and FSTENV instructions in
Chapter 4.

6.1.3 Dedicated I/O Locations

The 80387 NPX does not require that any memory addresses be set aside for special purposes.
The 80387 does make use of I/O port addresses, but these are 32-bit addresses with the
high-order bit set (i.e. > 80000000H); therefore, these I/O operations are completely trans­
parent to the 80386 software. Because these addresses are beyond the 64 Kbyte I/O address­
ing limit of I/O instructions, 80386 programs cannot reference these reserved I/O addresses
directly.

6.2 PROCESSOR INITIALIZATION AND CONTROL

One of the principal responsibilities of systems software is the initialization, monitoring, and
control of the hardware and software resources of the system, including the 80387 NPX. In
this section, issues related to system initialization and control are described, including recog­
nition of the NPX, emulation of the 80387 NPX in software if the hardware is not available,
and the handling of exceptions that may occur during the execution of the 80387.

6.2.1 System Initialization

During initialization of an 80386 system, systems software must

• Recognize the presence or absence of the NPX.

Set flags in the 80386 MSW to reflect the state of the numeric environment.

If an 80387 NPX is present in the system, the NPX must be initialized. All of these activi­
ties can be quickly and easily performed as part of the overall system initialization.

6.2.2 Hardware Recognition of the NPX

The 80386 identifies the type of its coprocessor (80287 or 80387) by sampling its ERROR#
input some time after the falling edge of RESET and before executing the first ESC instruc­
tion. The 80287 keeps its ERROR# output in inactive state after hardware reset; the 80387
keeps its ERROR# output in active state after hardware reset. The 80386 records this
difference in the ET bit of control register zero (CRO). The 80386 subsequently uses ET to
control its interface with the coprocessor. If ET is set, it employs the 32-bit protocol of the
80387; if ET is not set, it employs the 16-bit protocol of the 80287.

6-2

SYSTEM PROGRAMMING

Systems software can (if necessary) change the value of ET. There are three reasons that
ET may not be set:

1. An 80287 is actually present.

2. No coprocessor is present.

3. An 80387 is present but it is connected in a nonstandard manner that does not trigger
the setting of ET.

An example of case three is the PC / AT-compatible design described in Appendix F. In such
cases, initialization software may need to change the value of ET.

6.2.3 Software Recognition of the NPX

Figure 6-1 shows an example of a recognition routine that determines whether an NPX is
present, and distinguishes between the 80387 and the 8087/80287. This routine can be
executed on any 80386, 80286, or 8086 hardware configuration that has an NPX socket.

The example guards against the possibility of accidentally reading an expected value from a
floating data bus when no NPX is present. Data read from a floating bus is undefined. By
expecting to read a specific bit pattern from the NPX, the routine protects itself from the
indeterminate state of the bus. The example also avoids depending on any values in reserved
bits, thereby maintaining compatibility with future numerics coprocessors.

6.2.4 Configuring the Numerics Environment

Once the 80386 CPU has determined the presence or absence of the 80387 or 80287 NPX,
the 80386 must set either the MP or the EM bit in its own control register zero (CRO)
accordingly. The initialization routine can either

• Set the MP bit in CRO to allow numeric instructions to be executed directly by the
NPX.

• Set the EM bit in the CRO to permit software emulation of the numeric instructions.

The MP (monitor coprocessor) flag of CRO indicates to the 80386 whether an NPX is physi­
cally available in the system. The MP flag controls the function of the WAIT instruction.
When executing a WAIT instruction, the 80386 tests the task switched (TS) bit only if MP
is set; if it finds TS set under these conditions, the CPU traps to exception #7.

The Emulation Mode (EM) bit of CRO indicates to the 80386 whether NPX functions are
to be emulated. If the CPU finds EM set when it executes an ESC instruction, program
control is automatically trapped to exception #7, giving the exception handler the opportu­
nity to emulate the functions of an 80387.

For correct 80386 operation, the EM bit must never be set concurrently with MP. The EM
and MP bits of the 80386 are described in more detail in the 80386 Programmer's Reference
Manual. More information on software emulation for the 80387 NPX is described in the
"80387 Emulation" section later in this chapter. In any case, if ESC instructions are to be
executed, either the MP or EM bit must be set, but not both.

6-3

SYSTEM PROGRAMMING

8086/87/88/186 MACRO ASSEM8LER Test for presence of a NLrnerics Chip, Revision 1.0 PAGE

DOS 3.20 (033-N) 8086/87/88/186 MACRO ASSEMBLER V2.0 ASSEMBLY Of MOOULE TEST_NPX
OBJECT MODULE PLACED IN FINDNPX.OBJ

LOC QBJ

0000 (100

????

00e8 ????

0000 0000

0000

0000
0000 90D8E3
0003 BED 000
0006 C7045A5A
OOOA 90003C

0000 803COO

0010 752A

0012 90093C

0015 8B04
0017 253f10
001A 303fOO

0010 7510

LINE S(XJRCE

1 +1 Stitle('Test for presence of a Nl..Il'Ierics Chip, Revision 1.0 1)

2

5
6

7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

29
30

31
32
33
34
35
36
37
38
39

40
41
42

43
44
45
46

47
48

stack segment stack. 'stack'
dw 100 dup (?)

sst dw
stack: ends

data segment publ ic 'data'
te"" dw Oh
data ends

dgroup group data, stack.
cgroup group code

code segment pubL i c I code I

assune cs:cgroup, ds:dgroup

start:

Look for an 8087, 80287. or 80387 NPX.
Note that we cannot execute WAIT on 8086/88 if no 8087 is present.

test_npx:
fninit ; Must use non-wait form
mov si ,offset dgroup:terrp
mov word ptr [5i] ,5A5AH ; Initial lze temp to non-zero value
fnstsw [51] ; Must use non-wait form of fstsw

It is not necessary to use a 'WAIT instruction
after fnstsw or fnstcw. Do not use one here.

clll> byte ptr [sl] ,0 See if correct status with zeroes was read
jne JlIfl> 1f not a vaLid status word, meaning no NPX

Now see if ones can be correctly written from the control word.

fnstcw [s;]

mav ax, [s1]
and aX,103fh
crrp ax,3fh
jne no_npx

; look at the control word; do not use \JAIT form
; Do not use a WAIT instruction here!

See if ones can be wri tten by NPX
See if selected parts of control word look OK
Check that ones and zeroes were correctly read
JlJll> if no NPX is installed

Some nl.l1lerics chip is installed. NPX instrUctions and WAIT are now safe.
See if the NPX is an 8087, 80287, or 80387.
This code is necessary if a denormal exception handler is used or the
new 80387 instructions will be used.

Figure 6-1. Software Routine to Recognize the 80287

6-4

8086/87/88/186 MACRO ASSEMBLER

LOC OBJ LINE

OOlF 9B09E8 49
0022 9B09EE 50
0025 9BDEF9 51
0028 9BD9CO 52
002B 98D9EO 53
002E 98DED9 54
0031 98DD3C 55
0034 8804 56
0036 9E 57
0037 7406 58

59
60
61
62
63

0039 E80790 64
003C 65

66
67
68

003C E80490 69
003F 70

71
72
73

003F E80190 74
0042 75

76
n
78

0042 79
80
81

ASSEMBLY COMPLETE, NO ERRORS FOONO

SYSTEM PROGRAMMING

Test for presence of a NLJOerics Chip~ Revision 1.0

SOORCE

fld1
fldz
fdiv
fld
fchs
fcOOW
fstsw
mov
sahf
je

sr

[sj]
ax. [si]

tound_87_287

i Must use default control word from FNINIT
; Form inHnity
; 80871287 says +1nf = - inf
; Form negative infinity
; 80387 says +inf <> • inf
; See if they are the same and remove them
; look at status from FCOMPP

; See if the infinities matched
; JI.IJ1) if 8087/287 is present

PAGE

An 80387 is present. If denormal exceptions are used for an 8087/287,
they must be masked. The 80387 wilt automatically normalize denormaL
operands faster than an exception handler can.

j"l' found_387

set up for no NPX

jlTp exit
found_87 _287:

set up for 87/287

jrrp exit
found_387:

set up for 387

exit:
code ends

end start,ds:dgroup,ss:dgroup:sst

Figure 6-1. Software Routine to Recognize the 80287 (Cont'd.)

6.2.5 Initializing the 80381

Initializing the 80387 NPX simply means placing the NPX in a known state unaffected by
any activity performed earlier. A single FNINIT instruction performs this initialization. All
the error masks are set, all registers are tagged empty, TOP is set to zero, and default
rounding and precision controls are set. Table 6-1 shows the state of the 80387 NPX follow­
ing FINIT or FNINIT. This state is compatible with that of the 80287 after FINIT or after
hardware RESET.

The FNINIT instruction does not leave the 80387 in the same state as that which results
from the hardware RESET signal. Following a hardware RESET signal, such as after initial
power-up, the state of the 80387 differs in the following respects:

1. The mask bit for the invalid-operation exception is reset.

2. The invalid-operation exception flag is set.

3. The exception-summary bit is set (along with its mirror image, the B-bit).

6-5

SYSTEM PROGRAMMING

Table 6-1. NPX Processor State Following Initialization

Field Value Interpretation

Control Word
(Infinity Control)* 0 Affine
Rounding Control 00 Round to nearest
Precision Control 11 64 bits
Exception Masks 111111 All exceptions masked

Status Word
(Busy) 0 -
Condition Code 0000 -
Stack Top 000 Registe~ 0 is stack top
Exception Summary 0 No exceptions
Stack Flag 0 -
Exception Flags 000000 No exceptions

Tag Word
Tags 11 Empty

Registers N.C. Not changed

Exception Pointers
Instruction Code N.C. Not changed
Instruction Address N.C. Not changed
Operand Address N.C. Not changed

*The 80387 does not have infinity control. This value is listed to emphasize that programs written for the
80287 may not behave the same on the 80387 if they depend on this bit.

These settings cause assertion of the ERROR# signal as described previously. The FNINIT
instruction must be used to change the 80387 state to one compatible with the 80287.

6.2.6 80387 Emulation

If it is determined that no 80387 NPX is available in the system, systems software may
decide to emulate ESC instructions in software. This emulation is easily supported by the
80386 hardware, because the 80386 can be configured to trap to a software emulation routine
whenever it encounters an ESC instruction in its instruction stream.

Whenever the 80386 CPU encounters an ESC instruction, and its MP and EM status bits
are set appropriately (MP=O, EM = 1), the 80386 automatically traps to interrupt #7, the
"processor extension not available" exception. The return link stored on the stack points to
the first byte of the ESC instruction, including the prefix byte(s), if any. The exception
handler can use this return link to examine the ESC instruction and proceed to emulate the
numeric instruction in software.

6-6

SYSTEM PROGRAMMING

The emulator must step the return pointer so that, upon return from the exception handler,
execution can resume at the first instruction following the ESC instruction.

To an application program, execution on an 80386 system with 80387 emulation is almost
indistinguishable from execution on a system with an 80387, except for the difference in
execution speeds.

There are several important considerations when using emulation on an 80386 system:

When operating in protected mode, numeric applications using the emulator must be
executed in execute-readable code segments. Numeric software cannot be emulated if it
is executed in execute-only code segments. This is because the emulator must be able to
examine the particular numeric instruction that caused the emulation trap.

Only privileged tasks can place the 80386 in emulation mode. The instructions necessary
to place the 80386 in emulation mode are privileged instructions, and arc not typically
accessible to an application.

An emulator package (EMUL387) that runs on 80386 systems is available from Intel. This
emulation package operates in both real and protected mode as well as in virtual 8086 mode,
providing a complete functional equivalent for the 80387 emulated in software.

When using the EMUL387 emulator, writers of numeric exception handlers should be aware
of one slight difference between the emulated 80387 and the 80387 hardware:

On the 80387 hardware, exception handlers are invoked by the 80386 at the first WAIT
or ESC instruction following the instruction causing the exception. The return link, stored
on the 80386 stack, points to this second WAIT or ESC instruction where execution
will resume following a return from the exception handler.

Using the EMUL387 emulator, numeric exception handlers are invoked from within the
emulator itself. The return link stored on the stack when the exception handler is invoked
will therefore point back to the EMUL387 emulator, rather than to the program code
actually being executed (emulated). An IRET return from the exception handler returns
to the emulator, which then returns immediately to the emulated program. This added
layer of indirection should not cause confusion, however, because the instruction causing
the exception can always be identified from the 80387's instruction and data pointers.

6.2.7 Handling Numerics Exceptions

Once the 80387 has been initialized and normal execution of applications has been
commenced, the 80387 NPX may occasionally require attention in order to recover from
numeric processing exceptions. This section provides details for writing software exception
handlers for numeric exceptions. Numeric processing exceptions have already been intro­
duced in Chapter 3.

6-7

SYSTEM PROGRAMMING

The 80387 NPX can take one of two actions when it recognizes a numeric exception:

• If the exception is masked, the NPX will automatically perform its own masked excep­
tion response, correcting the exception condition according to fixed rules, and then
continuing with its instruction execution.

• If the exception is unmasked, the NPX signals the exception to the 80386 CPU using
the ERROR# status line between the two processors. Each time the 80386 encounters
an ESC or WAIT instruction in its instruction stream, the CPU checks the condition of
this ERROR# status line. If ERROR# is active, the CPU automatically traps to Inter­
rupt vector #16, the Processor Extension Error trap.

Interrupt vector #16 typically points to a software exception handler, which mayor may not
be a part of systems software. This exception handler takes the form of an 80386 interrupt
procedure.

When handling numeric errors, the CPU has two responsibilities:

The CPU must not disturb the numeric context when an error is detected.

• The CPU must clear the error and attempt recovery from the error.

Although the manner in which programmers may treat these responsibilities varies from one
implementation to the next, most exception handlers will include these basic steps:

• Store the NPX environment (control, status, and tag words, operand and instruction
pointers) as it existed at the time of the exception.

Clear the exception bits in the status word.

• Enable interrupts on the CPU.

• Identify the exception by examining the status and control words III the saved
environment.

• Take some system-dependent action to rectify the exception.

Return to the interrupted program and resume normal execution.

6.2.8 Simultaneous Exception Response

In cases where multiple exceptions arise simultaneously, the 80387 signals one exception
according to the precedence shown at the end of Chapter 3. This means, for example, that
an SNaN divided by zero results in an invalid operation, not in a zero divide exception.

6.2.9 Exception Recovery Examples

Recovery routines for NPX exceptions can take a variety of forms. They can change the
arithmetic and programming rules of the NPX. These changes may redefine the default fix­
up for an error, change the appearance of the NPX to the programmer, or change how
arithmetic is defined on the NPX.

6-8

SYSTEM PROGRAMMING

A change to an exception response might be to automatically normalize all denormals loaded
from memory. A change in appearance might be extending the register stack into memory
to provide an "infinite" number of numeric registers. The arithmetic of the NPX can be
changed to automatically extend the precision and range of variables when exceeded. All
these functions can be implemented on the NPX via numeric exceptions and associated
recovery routines in a manner transparent to the application programmer.

Some other possible application-dependent actions might include:

• Incrementing an exception counter for later display or printing

• Printing or displaying diagnostic information (e.g., the 80387 environment and
registers)

Aborting further execution

Storing a diagnostic value (a NaN) in the result and continuing with the computation

Notice that an exception mayor may not constitute an error, depending on the application.
Once the exception handler corrects the condition causing the exception, the floating-point
instruction that caused the exception can be restarted, if appropriate. This cannot be accom­
plished using the IRET instruction, however, because the trap occurs at the ESC or WAIT
instruction following the offending ESC instruction. The exception handler must obtain (using
FSA VE or FSTENV) the address of the offending instruction in the task that initiated it,
make a copy of it, execute the copy in the context of the offending task, and then return via
IRET to the current CPU instruction stream.

In order to correct the condition causing the numeric exception, exception handlers must
recognize the precise state of the NPX at the time the exception handler was invoked, and
be able to reconstruct the state of the NPX when the exception initially occurred. To recon­
struct the state of the NPX, programmers must understand when, during the execution of
an NPX instruction, exceptions are actually recognized.

Invalid operation, zero divide, and denormalized exceptions are detected before an operation
begins, whereas overflow, underflow, and precision exceptions are not raised until a true
result has been computed. When a before exception is detected, the NPX register stack and
memory have not yet been updated, and appear as if the offending instructions has not been
executed.

When an after exception is detected, the register stack and memory appear as if the instruc­
tion has run to completion; i.e., they may be updated. (However, in a store or store-and-pop
operation, unmasked over junderflow is handled like a before exception; memory is not
updated and the stack is not popped.) The programming examples contained in Chapter 7
include an outline of several exception handlers to process numeric exceptions for the 80387.

6-9

Numeric Programming Examples 7

CHAPTER 7
NUMERIC PROGRAMMING EXAMPLES

The following sections contain examples of numeric programs for the 80387 NPX written
in ASM386. These examples are intended to illustrate some of the techniques for program­
ming the 80386/80387 computing system for numeric applications.

7.1 CONDITIONAL BRANCHING EXAMPLE

As discussed in Chapter 2, several numeric instructions post their results to the condition
code bits of the 80387 status word. Although there are many ways to implement conditional
branching following a comparison, the basic approach is as follows:

Execute the comparison.

• Store the status word. (80387 allows storing status directly into AX register.)

• Inspect the condition code bits.

• Jump on the result.

Figure 7-1 is a code fragment that illustrates how two memory-resident double-format real
numbers might be compared (similar code could be used with the FTST instruction). The
numbers are called A and B, and the comparison is A to B.

The comparison itself requires loading A onto the top of the 80387 register stack and then
comparing it to B, while popping the stack with the same instruction. The status word is
then written into the 80386 AX register.

A and B have four possible orderings, and bits C3, C2, and CO of the condition code indicate
which ordering holds. These bits are positioned in the upper byte of the NPX status word so
as to correspond to the CPU's zero, parity, and carry flags (ZF, PF, and CF), when the byte
is written into the flags. The code fragment sets ZF, PF, and CF of the CPU status word to
the values of C3, C2, and CO of the NPX status word, and then uses the CPU conditional
jump instructions to test the flags. The resulting code is extremely compact, requiring only
seven instructions.

The FXAM instruction updates all four condition code bits. Figure 7-2 shows how a jump
table can be used to determine the characteristics of the value examined. The jump table
(FXAM_TBL) is initialized to contain the 32-bit displacement of 16 labels, one for each
possible condition code setting. Note that four of the table entries contain the same value,
"EMPTY." The first two condition code settings correspond to "EMPTY." The two other
table entries that contain "EMPTY" will never be used on the 80387, but may he used if
the code is executed with an 80287.

The program fragment performs the FXAM and stores the status word. It then manipulates
the condition code bits to finally produce a number in register BX that equals the condition

7-1

DQ
DQ

FLD
FCOMP
FSTSW

A
B
A X

NUMERIC PROGRAMMING EXAMPLES

LOAD A ONTO TOP OF 387 STACK
COMPARE A:B, POP A
STORE RESULT TO CPU AX REGISTER

CPU AX REGISTER CONTAINS CONDITION CODES
(RESULTS OF COMPARE)

LOAD CONDITION CODES INTO CPU FLAGS

SAHF

USE CONDITIONAL JUMPS TO DETERMINE ORDERING OF A TO B

JP A E UNORDERED
JB LLESS
JE A_EQUAL

LGREATER:

EQUAL:

A LESS:

A 8 UNORDERED:

; TEST C2 (PF)
TEST CO (CF)
TEST C3 (ZF)
CO (CF) = 0, C3 (ZF) =

CO (C F) U, C3 (ZF)

CO (C F) 1, C3 (ZF)

C 2 (P F)

Figure 7-1. Conditional Branching for Compares

code times 2. This involves zeroing the unused bits in the byte that contains the code, shift­
ing C3 to the right so that it is adjacent to C2, and then shifting the code to multiply it by
2. The resulting value is used as an index that selects one of the displacements from
FXAM_ TBL (the mUltiplication of the condition code is required because of the 2-byte
length of each value in FXAM_TBL). The unconditional JMP instruction effectively vectors
through the jump table to the labeled routine that contains code (not shown in the example)
to process each possible result of the FXAM instruction.

7.2 EXCEPTION HANDLING EXAMPLES

There are many approaches to writing exception handlers. One useful technique is to consider
the exception handler procedure as consisting of "prologue," "body," and "epilogue" sections
of code. This procedure is invoked via interrupt number 16.

7-2

NUMERIC PROGRAMMING EXAMPLES

j JUMP TABLE FOR EXAMINE ROUTINE
j

FXAM_TBL DD POS_UNNORM, POS NAN, NEG_UNNORM, NEG_NAN,
POS_NORM, POS_INFINITY, NEG_NORM,
NEG_!NFINITY, POS_ZERO, EMPTY, NEG_ZERO,
EMPTY, POS_DENORM, EMPTY, HEG_DENORM, EMPTY

EXAMINE ST AND STORE RESULT (CONDITION CODES)

F X A M
XOR EAX,EAX j CLEAR EAX
FSTSW AX

CALCULATE OFFSET INTO JUMP TABLE

AND AX,0100011100000000B j CLEAR ALL BITS
SHR EAX,6 SHIFT C2-CO INTO PLACE
SAL AH,5 POSITION C3
OR AL,AH DROP C3 IN ADJACENT TO C2
XOR AH,AH CLEAR OUT THE OLD COPY OF

EXCEPT C3,
(OOOOXXXO)
(OOOXOOOO)
(OOOXXXXO)
C 3

JUMP TO THE ROUTINE 'ADDRESSED' BY CONDITION CODE

JMP FXAM_TBLIEAXl

HERE ARE THE JUMP TARGETS, ONE TO HANDLE
EACH POSSIBLE RESULT OF FXAM

POLUNNORM:

N E LU N NOR M :

N E LN AN:

POS_NORM:

POLINFiNITY:

NELNORM:

NELINFINITY:

PO LZ E R 0 :

EMPTY:

NELZE R 0:

PO LD END R M :

N E LD END R M :

Figure 7-2. Conditional Branching for FXAM

7-3

C 2 - C 0

NUMERIC PROGRAMMING EXAMPLES

At the beginning of the prologue, CPU interrupts have been disabled. The prologue performs
all functions that must be protected from possible interruption by higher-priority sources.
Typically, this involves saving CPU registers and transferring diagnostic information from
the 80387 to memory. When the critical processing has been completed, the prologue may
enable CPU interrupts to allow higher-priority interrupt handlers to preempt the exception
handler.

The body of the exception handler examines the diagnostic information and makes a response
that is necessarily application-dependent. This response may range from halting execution,
to displaying a message, to attempting to repair the problem and proceed with normal
execution.

The epilogue essentially reverses the actions of the prologue, restoring the CPU and the
NPX so that normal execution can be resumed. The epilogue must not load an unmasked
exception flag into the 80387 or another exception will be requested immediately.

Figures 7-3 through 7-5 show the ASM386 coding of three skeleton exception handlers.
They show how prologues and epilogues can be written for various situations, but provide
comments indicating only where the application dependent exception handling body should
be placed.

PROC

SAVE CPU REGISTERS, ALLOCATE STACK SPACE
FOR 80387 STATE IMAGE

PUSH EBP
MOV EBP,ESP
SUB ESP,10B

SAVE FULL 80387 STATE, ENABLE CPU INTERRUPTS
FNSAVE [EBP-l0BI
S T I

APPLICATION-DEPENDENT EXCEPTION HANDLING
CODE GOES HERE

CLEAR EXCEPTION FLAGS IN STATUS WORD
(WHICH IS IN MEMORY)

RESTORE MODIFIED STATE IMAGE
MOV BYTE PTR [EBP-l041, OH
FRSTOR [EBP-l08I

DEALLOCATE STACK SPACE, RESTORE CPU REGISTERS
MOVE ESP, EBP

POP EBP

RETURN TO INTERRUPTED CALCULATION
IRE T

SAVE_ALL ENDP

Figure 7-3. Full-State Exception Handler

7-4

NUMERIC PROGRAMMING EXAMPLES

SAVE_ENVIRONMENT PROC

SAVE CPU REGISTERS, ALLOCATE STACK SPACE
FOR 80387 ENVIRONMENT

PUSH ESP

MOV EBP,ESP
SUB ESP, 28

SAVE ENVIRONMENT, ENABLE CPU INTERRUPTS
FNSTENV IEBP-28J
S T I

APPLICATION EXCEPTION-HANDLING CODE GOES HERE

CLEAR EXCEPTION FLAGS IN STATUS WORD
(WHICH IS IN MEMORY)

RESTORE MODIFIED ENVIRONMENT IMAGE
MOV BYTE PTR IEBP-241, OH
FLDENV IEBP-28J

DE-ALLOCATE STACK SPACE, RESTORE CPU REGISTERS
MOV ESP,EBP
POP EBP

RETURN TO INTERRUPTED CALCULATION
IRE T

SAVE_ENVIRON"ENT ENDP

Figure 7-4. Reduced-Latency Exception Handler

Figures 7-3 and 7-4 are very similar; their only substantial difference is their choice of
instructions to save and restore the 80387. The tradeoff here is between the increased
diagnostic information provided by FNSA VE and the faster execution of FNSTENV. For
applications that are sensitive to interrupt latency or that do not need to examine register
contents, FNSTENV reduces the duration of the "critical region," during which the CPU
does not recognize another interrupt request.

After the exception handler body, the epilogues prepare the CPU and the NPX to resume
execution from the point of interruption (i.e., the instruction following the one that gener­
ated the unmasked exception). Notice that the exception flags in the memory image that is
loaded into the 80387 are cleared to zero prior to reloading (in fact, in these examples, the
entire status word image is cleared).

The examples in Figures 7-3 and 7-4 assume that the exception handler itself will not cause
an unmasked exception. Where this is a possibility, the general approach shown in
Figure 7-5 can be employed. The basic technique is to save the full 80387 state and then to
load a new control word in the prologue. Note that considerable care should be taken when
designing an exception handler of this type to prevent the handler from being reentered
endlessly.

7-5

NUMERIC PROGRAMMING EXAMPLES

LOCAL CONTROL DW ASSUME INITIALIZED

REENTRANT PROC

SAVE CPU REGISTERS, ALLOCATE STACK SPACE fOR
80387 STATE IMAGE

PUSH EBP

MOV EBP,ESP
SUB ESP,10B

SAVE STATE, LOAD NEW CONTROL WORD,
ENABLE CPU INTERRUPTS

fNSAVE IEBP-10B]
fLDCW LOCAL_CONTROL
S T I

APPLICATION EXCEPTION HANDLING CODE GOES HERE.
AN UNMASKED EXCEPTION GENERATED HERE WILL
CAUSE THE EXCEPTION HANDLER TO BE REENTERED.
If LOCAL STORAGE IS NEEDED, IT MUST BE
ALLOCATED ON THE CPU STACK.

CLEAR EXCEPTION fLAGS IN STATUS WORD
(WHICH IS IN MEMORY)
RESTORE MODifiED STATE IMAGE

MOV BYTE PTR IEBP-l04I, OH
fRSTOR IEBP-l0B]

DE-ALLOCATE STACK SPACE, RESTORE CPU REGISTERS
MOV ESP, EBP

POP EBP
RETURN TO POINT OF INTERRUPTION

IRET
REENTRANT ENDP

Figure 7-5. Reentrant Exception Handler

7.3 FLOATING-POINT TO ASCII CONVERSION EXAMPLES

Numeric programs must typically format their results at some point for presentation and
inspection by the program user. In many cases, numeric results are formatted as ASCII
strings for printing or display. This example shows how floating-point values can be converted
to decimal ASCII character strings. The function shown in Figure 7-6 can be invoked from
PL/M-386, Pascal-386, FORTRAN-386, or ASM386 routines.

7-6

NUMERIC PROGRAMMING EXAMPLES

XENIX286 80386 MACRO ASSEMBLER V1.0, ASSEMBLY OF MODULE FLOATlNG_TO_ASCll
OBJECT MODULE PLACED IN fpasc.obj
ASSEMBLER INVOKED BY: asm386 fpasc.asm

LOC OBJ

00000000

LINE

3
4
5
6
7
8
9

10
11

12
13
14
15
16
17
18
19
20
21
22

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

SOURCE

.... 1 Stitle(• Convert a floating point nutDer to ASCII')

public flosting_to_Bscii
extrn getJ)OWer _10:ne8r, tos_status:near

This subroutine wi l t convert the floating point
rn.rnber in the top of the NPX stack to an ASCII
string and separate power of 10 seal ing value
(in binary). The maxinun width of the ASCII string
formed is controlled by a parameter which must be
> 1. Unnonnal values, denormal values, and psuedo
zeroes wHl be correctly converted. However, unnormals
and pseudo zeros are no longer supported formats on the

; 80387(in conformance with the IEEE floating point
; standard) and hence not generated internally. A
; returned value wi Ll indicate how many binary bits
; of precision were lost in an unnormal or denormal
; value. The magnitude (in terms of binary power)

of a pseudo zero wi II also be indicated. Integers
Less than 10**18 in magnitude are accurately converted
if the destination ASCII string field is wide enough
to hold all the digits. Otherwise the value is converted
to scientific notation.

The status of the conversion is identified by the
return value, it can be:

o conversion complete, string_size is defined
1 inval id argunents
2 exact integer conversion, string size is defined
3 indefinite -
4 • NAN (Not A Nl.Illber)
5 . NAN

6 + Infinity
7 - Infinity
8 pseudo zero found, string_size is defined

The PLM/386 call ing convention is:

42 floating to ascii:
43 pr~cedure (nLllDer ,denormaLytr,string_ptr ,sizeytr,
44 field size, power J)tr) word external;
45 decla;e (denormal_ptr ,stringJ)tr ,power ytr ,size_ptr)
46 pointer;
47 declare field size word,
48 string size based sizeJltr word;
49 declsr; nunber real;
50 declare denormal integer based denormalytr;

Figure 7-6. Floating-Point to ASCII Conversion Routine

7-7

LaC OBJ

00000000 []
00000004 []
00000008 []
OOOOOOOC []
00000010 []
00000014 []
00000018 []
0000001C []

0014

NUMERIC PROGRAMMING EXAMPLES

LINE SOURCE

51 declare power integer based power ytr;
52 end floating_to_ascii;
53
54 The floating point value is expected to be
55 on the top of the NPX stack. This subroutine
56 expects 3 free entries on the NPX stack and
57 wi II pop the passed value off when done. The
58 generated ASCII string will have a leading
59 character either 1.1 or 1+1 indicating the sign
60 of the vaLue. The ASCII decimal digits will
61 inmediately follow. The nllneric value of the
62 ASCII string is (ASCII STRING.)*10**POUER. If
63 the given mll1ber was zero, the ASCI I string wi 11
64 contain a sign and a single zero chacter. The
65 value string_size indicates the total length of
66 the ASCI I string including the sign character.
67 StringeD) will always hold the sign. It is
68 possible for string_size to be Less than
69 field_size. This occurs for zeroes or integer
70 values. A pseudo zero will return a special
71 return code. The denormal count wi 11 indicate
72 the power of two originally assoclated with the
73 value. The power of ten and ASCII string will
74 be as if the value was an ordinary zero.
75
76 Thh subroutine is accurate up to a maximum of
77 18 decimal digits for integers. Integer values
78 will have a decimal power of zero associated
79 with them. For non integers, the resul t wi L l be
80 accurate to within 2 decimaL digits of the 16th
81 decimal placeCdouble precision). The exponentiate
82 instruction is aLso used for scaling the value into
83 the range acceptabl e for the BCD data type. The
84 rounding mode in effect on entry to the
85 subroutine is used for the conversion.
86
87 The following registers are not transparent:
88
89 eax ebx ecx edx esi edi eflags
90
91
92 Define the stack Layout.
93
94
95
96
97
98
99

100
101
102
103
104
105

ebp_save
es_save
returnytr
power _ptr
field_size
sizeytr
stringytr
denormal_ptr

parms size
&

equ
equ
equ
equ
equ
equ
equ
equ

dword ptr [ebp]
ebp_save + size ebp_save
es_save + size es_save
return_ptr + size return_ptr
powerytr + size power_ptr
field_size + size field_size
sizeytr + size size_ptr
string_ptr + size string_ptr

equ size power J'tr + 'size field_Size +
size size_ptr + size stringJ'tr +
size denormaL_ptr

Figure 7-6. Floating-Point to ASCII Conversion Routine (Cont'd.)

7-8

NUMERIC PROGRAMMING EXAMPLES

LOC OBJ LINE SOURCE

106
107 Define constants used
108

0012 109 BCD_DIGITS equ 18 ; NLll'ber of digits in bcd_value
0004 110 \/oRO_SIZE equ 4
OOOA 111 BCD_SIZE equ 10
0001 112 MINUS equ 1 Define return values
0004 113 NAN equ 4 The exact values chosen
0006 114 INFINITY equ 6 here are inportant. They must
0003 115 INDEFINITE equ 3 correspond to the possible return
0008 116 PSEUDO_ZERO equ 8 values and be in the same numeric
-0002 117 INVALID equ -2 order as tested by the program.
-0004 118 ZERO equ ·4
·0006 119 DENORMAL equ ·6
-0008 120 UN NORMAL equ -8
0000 121 NORMAL equ 0
0002 122 EXACT equ 2

123
124 Define layout of temporary storage area.
125

"FF'FFC[] 126 power_two equ word ptr [ebp - WORD_SIZE]
FFFFFFF2[] 127 bed value equ tbyte ptr power_two' BCD_SIZE
FFFFFFF2 [] 128 bcd=byte equ byte ptr bcd_value
FFFFFFF2[] 129 fraction equ bed_value

130
oooe 131 Local_size equ size power_two + size bcd_vaLue

132
133 Allocate stack space for the temporaries so
134 the stack wi II be bi 9 enough
135
136 stack stackseg (local_si ze+6) ; Allocate stack
137 ; space for Locals
138 +1 $eject

Figure 7-6. Floating-Point to ASCII Conversion Routine (Cont'd.)

7-9

LOC OBJ

00000000 OAOO

00000002 F8
00000003 04
00000004 F9
00000005 05
00000006 00
00000007 06
00000008 01
00000009 07
OOOOOOOA FC
OOOOOOOB FE
OOOOOOOC FD
00000000 FE
OODOGDOE FA
OOOOOOOF FE
00000010 FB
00000011 FE

00000012

00000012 E800000000

00000017 2EOFB68002000000
0000001F 3CFE
00000021 7527

00000023 C21400

00000026
00000026 ODDS
000001]28 EB02

0000002A
0000002A BOFE
0000002C
0000002C C9

NUMERIC PROGRAMMING EXAMPLES

LINE

139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155

156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182

SOURCE

code segment publ ic er
extrn power ~ table:qword

Constants used by this fUnction.

const10
even
dw 10

Optimize for 16 bits
Adjustment value for

; too big BCD

Convert the C3,C2,C1,CO encoding from tos status
into meaningful bH flags and values.

status_table db UNNORMAL, NAN, UNNORMAL + MINUS,
& NAN + MINUS, NORMAL, INFINITY,
&
&
&

NORMAL + MINUS, INFINITY + MINUS,
ZERO, INVALID, ZERO + MINUS, INVALID,
DENORMAL, INVALID, DENORMAL + MINUS, INVALID

call tos status Look at status of SHO)

Get descriptor from table
movzx eax, status_table[eax]
cmp aL,INVALID ; Look for empty ST(O)
jne not_empty

ST(O) is empty! Return the status vaLue.

Remove infinity from stack and exit.

found_inf1nl ty:
fstp st(O) OK to Leave fstp running
jmp short exit_proc

String space is too small!
Return inval id code.

smal L string:
mov al, INVALID

exit_proc:
leave ; Restore stack setup

Figure 7-6. Floating-Point to ASCII Conversion Routine (Cont'd.)

7-10

LaC OBJ

00000020 07
0000002E C21400

00000031
00000031 DB?oF2

00000034 A801
00000036 9B
00000037 74F3

00000039 BBOOOOOOCO

0000003E 2B5DF6

00000041 DB5DF2
00000044 75E6

00000046 B003
00000048 EBE2

0000004A
0000004A 06
00000048 C80COOOO

0000004F 8B4010
00000052 83F902
00000055 7CD3

00000057 49

00000058 83F912
0000005B 7605

00000050 B912DOOOOO
00000062
00000062 3C06

00000064 ?oCO

NUMERIC PROGRAMMING EXAMPLES

LINE

183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237

SOURCE

pop es
ret parms_s;ze

SHO) is NAN or indefinite. Store the
value in memory and look at the fract; on

i field to separate indefinite from an ordinary NAN.

NAN or indefinite:
- - fstp fraction ; Remove value from stack

for examination
test al,MINUS ; Look at sign bit
fwait Insure store is done
jz exityroc ; Can't be indefinite if

positive

mov ebx,OCOOOOOOOH; Match against upper 32
ibits of fraction

C_are bits 63-32
sub ebx, dword ptr fraction + 4

Bi ts 31-0 I1lJst be zero
or ebx, dword ptr fraction
jnz exityroc

Set return value for indefinite value
maval,INDEFINlTE

jmp exit_proc

Allocate stack space for local variables
and establ ish parameter addressibi l ity.

not_empty:
push es
enter local_size,

Check for enough string space
mov ecx, fieLd_size
c"" ecx,2
jl small_string

dec ecx

Save working register
Setup stack address; ng

; Adjust for sign character

See if string is too large for BCD
crq:> ecx,BCO_DIGITS
jbe size_ok.

Else set maximum string size
mov ecx,BCD_OIGITS

al, INFINITY i Look for infinity

Return status value for + or inf
jge found_infinity

Figure 7-6. Floating-Point to ASCII Conversion Routine (Cont'd.)

7-11

LOC OBJ

00000066 3C04
00000068 lOC7

0000006A 09El

0000006C 3102
0000006E 8B701C
00000071 668917
00000074 8B500C
00000077 668913
0000007. 88C2
0000007C 80E201
0000007F 80C202
000000B2 3CFC
00000084 OF83BCOOOOOO

0000008A OBlO ,2
00000080 9B
0000008E 8.45F9
00000091 8040 F980
00000095 OB60F2
00000098 09F4
0000009. A880
0000009c 7524

0000009E 09E8
OOOOOOAO OEE9
000000A2 09E4
OOOOOOM 9BO FEO
000000A7 9E
000000A8 7510

OOOOOOAA D9EC
OOOOOOAC 80C206
OOOOOOAF OECA
OOOOOOB 1 09c9
000000B3 OF1B
000000B5 E98COOOOOO

OOOOOOBA
OOOOOOBA 09F4

OOOOOOBC 09C9
OOOOOOBE 09EO
OOOOOOCO 0 F1 F

NUMERIC PROGRAMMING EXAMPLES

LINE

238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292

SOURCE

cmp at,NAN ; Look for NAN or INDEFINITE
jge NAN_or _indefinite

Set defaul t return values and check that
the number is normallzed.

tabs ; Use positive value only
; sign bit in at has true sign of vaLue

xor edx,edx ; Form 0 constant
mov 00; ,denormal_ptr; Zero denormal count
mov [edi], dx
me'll ebx,power ptf Zero power of ten value
mov [ebx]. dx-
mav dt, at
and dl, 1

add d l, EXACT
cmp at,ZERO ; Test for zero
jae convert_integer Skip power code if value

; is zero
fstp fract i on
fwait
roov al, bed byte + 7

byte pt'j: bcd_byte + 7, BOh
fld fraction
fxt,act
test al, BOh
jnz normal_value

fld1
fsub
ftst
fstsw ax
sahf
jnz set_unnormat _count

Found a pseudo zero

fldtg2 ; Develop power of ten est imate
add dl, PSEUDO_ZERO • EXACT
fmulp st(2). st
fxch Get power of ten
fistp word ptr [ebx] Set power of ten
jmp convert_integer

set_ unnormal _count:
fxtract

fxch
fchs

Get original fraction.
now normaL ized
Get unnormal count

fistp word ptr [edi] Set unnormal count

Calculate the decimaL magnitude associated
with this nl.I1lber to within one order. This

Figure 7-6. Floating-Point to ASCII Conversion Routine (Cont'd.)

7-12

LOC OBJ

000000C2
000000C2 DB7DF2

ODOOOOC5 D F55 FC
OOOOOOC8 D9EC

OOOOOOCA DEC9
oooooocc DF1 B

ODOOOOCE 9B

OOOOOOCF 668B33
00000002 29CE

00000004 771C

000000D6 OF45FC
00000009 80EAFE

OOOOOODC DB60F2
ODOODODF D9FD

000000E1 DOD1
000000E3 D9FC
ODODDOE5 08D9
000000E7 9BO FED
ODOOOOEA 9E

OOOOOOEB 7559

OOOOOOEO 0008
ODOOOOEF 8DC2FE

NUMERIC PROGRAMMING EXAMPLES

LINE

293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313

SOURCE

error wi II always be inevitable due to
rounding and lost precision. As a result,
we wi II del iberateLy fail to consider the
LOG10 of the fractiOl'\' value in calculating
the order. Since the fraction wiLL always
be 1 <= F < 2. its LOG10 wi Lt not change
the basic accuracy of the function. To
get the decimal order of magnitude, simply
ITlJLtiply the power of two by LOG10(2) and
truncate the resuL t to an integer.

normal_value:
fstp fraction ; Save the fraction fieLd

for later ,use
; Save power of two fist power_two

fldlg2 ; Get LOG10(2)

; Power_two is now safe to use
frrul '; Form LOG10(of exponent of number)
fistp word ptr [ebx] ; Any rounding mode

; will work here

314 Check if the magnitude of the number rules
315 out treating it as an integer.
316
317 CX has the maxinun number of decimal digits
318 allowed.
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347

fwait ; YaH for power_ten to be val id

Get power of ten of value
ITlOVSX s i, word pt r [ebx]
sub esi, ecx ; Form seal ing factor

; necessa ry in ax
ja adjust_result Jump if number will not fit

The number is between 1 and 10**(fieLd_size).
Test if it is an integer.

fild
sub

power_two Restore original number
dl,NORMAL·EXACT Convert to exact return

; value
fLd fraction
fscale ; Form full value, this

is safe here
fst st(1) Copy vaLue for compare
frndint
fcomp

; Test if its an integer
Compare vaLues

fstsw ax Save status
sahf

jnz

fstp
add

an integer
convert _1 nteger

C3=1 impl ies it

st(O) Remove non integer value
dL,NORMAL-EXACT Re'Store original return value

Figure 7-6. Floating-Point to ASCII Conversion Routine (Cont'd.)

7-13

Lac a9J

OOOOOOf2
000000F2 89C6
000000F4 668903

OOOOOOF? F708

000000F9 E800000000

OOOOOOFE 0960F2
00000101 OEC9
00000103 89Fl

00000105 C1E603

00000108 OF45FC
00000109 OEC2
00000100 09FO

0000010F 0009

00000111

00000111 2EOC9608000000
00000118 9BOFEO
0000011B 9E
0000011c 720F

0000011E 2EOE3500000000
00000125 80E2FO
00000128 66Ff03
0000012B EB17

0000012D
00000120 2EOC9600000000

NUMERIC PROGRAMMING EXAMPLES

LINE SOURCE

348 Scale the numl::>er to within the range aLLowed
349 by the BCD format. The scal ;ng operation should
350 produce a number within one decimal order of
351 magnitude of the largest decimal nlJlTber
352 representable within the given string width.
353

354 The seal ing power of ten value is in S1.
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402

adjust_ result:
mov eax,esi i Setup for powlO
mov word ptr [ebx] ,ax ; Set initial power

of ten return value
neg eax Subtract one for each order of

magnitude the value ;s scaled by
call getJ'Ower _10 Seal ing factor is

returned as
exponent and fraction

fld fraction ; Get fraction
fmul ; Combine fractions

esi ,ecx Form power of ten of
the maximum

shl esi ,3 ; BCD value to fi t
the string

fild power two ; Combine powers of two
faddp st(2),st
fscale Form full

exponent was safe
fstp st(l) ; Remove exponent

Test the adjusted value against a table
of exact powers of ten. The combined errors
of the magnitude estimate and power function
can resul t in a value one order of magnitude
too small or too large to fit correctly in
the BCD field. To handle this problem, pretest
the adjusted value, if it is too small or
large, then adjust 1t by ten and adjust the
power of ten value.

Compare against exact power entry. Use the next
entry since cx has been decremented by one

feam power_table (es;]+type power_table

value,

fstsw ax ; No wait is necessary
sahf ; If C3 = CO = 0 then
jb test_far_small too big

fidiv const10
and dl. not EXACT
inc word ptr [ebx]
jmp short in_range

Else adjust value
Remove exact flag
Adjust power of ten value
Convert the value to a BCD

; integer
test_for _smal t:

feam power table[esiJ Test relative size

Figure 7-6. Floating-Point to ASCII Conversion Routine (Cont'd.)

7-14

in

OC OBJ

0000134 980FEO

:0000137 9E

'0000138 720A

'000013A 2EDEOOOOOOOOOO
:0000141 66FFOB
-0000144
'0000144 09FC

10000146
10000146 OF75F2

)0000149 BE08000000
D000014E 66B9040F
00000152 BB01000000

00000157 887018

D000015A 8C08
J000015C 8ECO
0000015E FC
0000015F B028
00000161 F6C201
00000164 7402

00000166 8020
00000168
00000168 AA

00000169 80E2FE
0000016C 98

NUMERIC PROGRAMMING EXAMPLES

LINE

403

404
405
406

407
408
409
410
411
412
413

SOURCE

ary

to a

fstsw ax

sahf

jc in_range

No wait is necess

1 f CO = 0 then
steO) >= lower bound

; Convert the va 1 ue

; BCD integer

filTMJl const10 ; Adjust value into range
dec word ptr [ebxJ Adjust power of ten value

in_range:
frncHnt ; Form integer vaLue

414 Assert: a <= IDS <= 999,999,999,999,999,999
415 The lOS number wi II be exactly representable
416 in 18 digit BCD format.
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455

convert integer:
-fbstp bcd_value ; Store as BCD format number

White the store BCD runs, setup registers
for the conversion to ASCI I.

mov es;,BCO SIZE-2 i Initial BCD index value
mov cx,Of04h Set shift count and mask
moy

moy

moy

moy

cld
moy

test
jz

ebx,1 Set initial size of ASCII
; field for sign

edi ,string_ptr i Get address of start of
; ASCI I string

ax.~ Co~ds toes
es,ax

al,I+1

dl,MINUS
posit ive_resul t

; Set autoincrement mode
; Clear sign fieLd

look for negative value

mov al, I. I

POSt tive_resut t:
stosb ; Bump string pointer

past sign
and dl.not MINUS Turn off sign bit
fwait ; Wait for fbstp to finish

Regi ster usage;
ah: BCD byte value in use
a1: ASCI I character value
dx: Return vaLue
ch: BCD mask::: Oth
cl: BCD shift count = 4
bx: ASCII string field width
esi: BCD field index
di: ASCII string field pointer
ds,es: ASCI I string segment base

Remove leading zeroes from the number.

Figure 7-6. Floating-Point to ASCII Conversion Routine (Cont'd.)

7-15

LOC OBJ

00000160
00000160 8A6435F2
00000171 88EO
00000173 02E8
00000175 240F
00000177 7517

00000179 88EO
00000178 240F
00000170 7519

0000017F 4E
00000180 79E8

00000182 B030
00000184 AA
00000185 43
00000186 EB17

00000188
00000188 8A6435F2
0000018c 88EO
0000018E 02E8
00000190
00000190 0430
00000192 AA

00000193 88EO
00000195 240F
00000197 43
00000198
00000198 0430
0000019A AA
00000198 43
0000019C 4E
0000019D 79E9

0000019F
0000019F 887014
000001A2 66891 F
000001A5 8BC2
000001A? E980FEFFFF

000001AC

NUMERIC PROGRAMMING EXAMPLES

LINE

456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510

511
512
513

SOURCE

sk ip _ teadi ng_zeroes:
mav ah,bcd_byte[esl] ; Get BCD byte
mov al,ah
shr al ret
and at,Ofh
jnz

mov
and
jnz

enter_odd

al,ah
al,Ofh
enter_even

esi

Copy value
Get high order digit
Set zero flag
Exit loop if leading

non zero found

; Get BCD byte again
; Get low order digit
; Exit loop if non zero

digit found

Decrement BCD index dec
jns skip_leading_ zeroes

The significand was all zeroes.

mav at, '0' Set initial zero
stasb
inc ebx ; Bump string length
jrnp short cxit_with_value

Now expand the BCD string into digH
per byte values 0-9.

mov
mov
shr

enter_odd:
add
stosh

ah,bcd byte[esi]
aL,ah -

al,cl

aL, 'a'

Get BCD byte

Get high order digit

Convert to ASCII
Put digit into ASCII

strl n9 area
mav al,ah
and al,Ofh
inc ebx

enter_even:
add at, 'a'
stosb
inc ebx
dec esi
jns digit loop

; Get low order diglt

; Bump fieLd size counter

Convert to ASCI I
Put di gft into ASCI I area

Bump field size counter
; Go to next BCD byte

Conversion compLete. Set the string
size and remainder.

exit with_value:
edi ,size_ptr

mav word ptr [ediJ,bx
mov
j~

eax,edx
ex; t_proc

code ends
end

Set return va 1 ue

'/\'SSEMBl Y COMPL ErE I NO WARN I NGS I NO ERRORS.

Figure 7-6. Floating-Point to ASCII Conversion Routine (Cont'd.)

7-16

NUMERIC PROGRAMMING EXAMPLES

XENIX286 80386 MACRO ASSEMBLER V1.0, ASSEMBLY OF MODULE GET POIIER 10
OBJECT MOOULE PLACED IN power10.obj - -
ASSEMBLER INVOKED BY: asm386 power10.asm

LOC OBJ

00000000

00000000 000000000000F03F
00000008 0000000000002440
00000010 0000000000005940
00000018 0000000000408F40
00000020 000000000088C340
00000028 00000000006AF840
00000030 0000000080842E41
00000038 0000000000126341
00000040 0000000084079741
00000048 0000000065COC041
00000050 000000205FA00242
00000058 000000E876483742
00000060 000000A2941 A6042
00000068 000040ES9C30A242
00000070 0000901EC4BC0642
00000078 00003426FS6BOC43
00000080 0080E03779C34143
00000088 00A0088557347643
00000090 00C84E6760C1AB43

00000098

00000098 3012000000
00000090 770B

0000009F 2E0004C500000000
000000A7 09F4

LINE

3
4
5
6
7
8
9

10
11
12
13

14
15
16
17
18
19
20
21
22
23
24

25

26

27

28

29
30
31
32
33
34
35
36

SOURCE

+1 $title(Calculate the value of 10**ax)

stack

code

This subroutine wi II calculate the
value of 10**eax. For values of
o <= eax < 19, the resuLt wi 1t exact.
All 80386 registers are transparent
and the value is returned on the TOS
as two numbers, exponent in ST(l) and
fraction in STeO). The exponent vaLue
can be Larger than the largest
exponent of an extended rea 1 format
number. Three stack entries are used.

name get_power_l0
public get_power_l0,power_tabte

stacKseg

segment pubt i c er

Use exact values from 1.0 to le18.

power table
even
dq

; Optimize 16 bit access
1.0,1e1,1e2,1e3

cmp
ja

fld
fxtract

dq le4, le5,1e6, le7

dq 1e8,1e9,1e10,1e11

dq le12, le13,le14, 1e15

dq le16, le17, lela

proc

eax,18
out_of_range

Test for a <= ax < 19

power_tabLe [eax*8]; Get exact value
; Separate power

Figure 7-6. Floating-Point to ASCII Conversion Routine (Cont'd.)

7-17

NUMERIC PROGRAMMING EXAMPLES

Shortness, speed, and accuracy were chosen rather than providing the maximum number of
significant digits possible. An attempt is made to keep integers in their own domain to avoid
unnecessary conversion errors.

Using the extended precision real number format, this routine achieves a worst case accuracy
of three units in the 16th decimal position for a non integer value or integers greater than
1018• This is double precision accuracy. With values having decimal exponents less than 100
in magnitude, the accuracy is one unit in the 17th decimal position.

Higher precision can be achieved with greater care in programming, larger program size,
and lower performance.

7.3.1 Function Partitioning

Three separate modules implement the conversion. Most of the work of the conversion is
done in the module FLOATING_TO_ASCII. The other modules are provided separately,
because they have a more general use. One of them, GET_POWER_lO, is also used by the
ASCII to floating-point conversion routine. The other small module, TOS_STATUS, identi­
fies what, if anything, is in the top of the numeric register stack.

7.3.2 Exception Considerations

Care is taken inside the function to avoid generating exceptions. Any possible numeric value
is accepted. The only possible exception is insufficient space on the numeric register stack.

The value passed in the numeric stack is checked for existence, type (NaN or infinity), and
status (denormal, zero, sign). The string size is tested for a minimum and maximum value.
If the top of the register stack is empty, or the string size is too small, the function returns
with an error code.

Overflow and underflow is avoided inside the function for very large or very small numbers.

7.3.3 Special Instructions

The functions demonstrate the operation of several numeric instructions, different data types,
and precision control. Shown are instructions for automatic conversion to BCD, calculating
the value of 10 raised to an integer value, establishing and maintaining concurrency, data
synchronization, and use of directed rounding on the NPX.

Without the extended precision data type and built-in exponential function, the double
precision accuracy of this function could not be attained with the size and speed of the shown
example.

The function relies on the numeric BCD data type for conversion from binary floating-point
to decimal. It is not difficult to unpack the BCD digits into separate ASCII decimal digits.
The major work involves scaling the floating-point value to the comparatively limited range
of BCD values. To print a 9-digit result requires accurately scaling the given value to an

7-18

NUMERIC PROGRAMMING EXAMPLES

integer between 108 and 109• For example, the number +0.123456789 requires a scaling
factor of lO9 to produce the value + 123456789.0, which can be stored in 9 BCD digits. The
scale factor must be an exact power of lO to avoid changing any of the printed digit values.

These routines should exactly convert all values exactly representable in decimal in the field
size given. Integer values that fit in the given string size are not be scaled, but directly stored
into the BCD form. Noninteger values exactly representable in decimal within the string
size limits are also exactly converted. For example, 0.125 is exactly representable in binary
or decimal. To convert this floating-point value to decimal, the scaling factor is 1000, result­
ing in 125. When scaling a value, the function must keep track of where the decimal point
lies in the final decimal value.

7.3.4 Description of Operation

Converting a floating-point number to decimal ASCII takes three major steps: identifying
the magnitude of the number, scaling it for the BCD data type, and converting the BCD
data type to a decimal ASCII string.

Identifying the magnitude of the result requires finding the value X such that the number is
represented by I X lOX, where 1.0 -< I < 10.0. Scaling the number requires multiplying it
by a scaling factor lOS, so that the result is an integer requiring no more decimal digits than
provided for in the ASCII string.

Once scaled, the numeric rounding modes and BCD conversion put the number in a form
easy to convert to decimal ASCII by host software.

Implementing each of these three steps requires attention to detail. To begin with, not all
floating-point values have a numeric meaning. Values such as infinity, indefinite, or NaN
may be encountered by the conversion routine. The conversion routine should recognize these
values and identify them uniquely.

Special cases of numeric values also exist. Denormals have numeric values, but should be
recognized because they indicate that precision was lost during some earlier calculations.

Once it has been determined that the number has a numeric value, and it is normalized
(setting appropriate denormal flags, if necessary, to indicate this to the calling program),
the value must be scaled to the BCD range.

7.3.5 Scaling the Value

To scale the number, its magnitude must be determined. It is sufficient to calculate the
magnitude to an accuracy of 1 unit, or within a factor of 10 of the required value. After
scaling the number, a check is made to see if the result falls in the range expected. If not,
the result can be adjusted one decimal order of magnitude up or down. The adjustment test
after the scaling is necessary due to inevitable inaccuracies in the scaling value.

7-19

NUMERIC PROGRAMMING EXAMPLES

Because the magnitude estimate for the scale factor need only be close, a fast technique is
used. The magnitude is estimated by multiplying the power of 2, the unbiased floating-point
exponent, associated with the number by log102. Rounding the result to an integer produces
an estimate of sufficient accuracy. Ignoring the fraction value can introduce a maximum
error of 0.32 in the result.

Using the magnitude of the value and size of the number string, the scaling factor can be
calculated. Calculating the scaling factor is the most inaccurate operation of the conversion
process. The relation 10x =2(X-log21O) is used for this function. The exponentiate instruction
F2XM 1 is used.

Due to restrictions on the range of values allowed by the F2XM I instruction, the power of
2 value is split into integer and fraction components. The relation 2(1 + F) = 21 X 2F allows
using the FSCALE instruction to recombine the 2F value, calculated through F2XM1, and
the 2' part.

7.3.5.1 INACCURACY IN SCALING

The inaccuracy in calculating the scale factor arises because of the trailing zeros placed into
the fraction value of the power of two when stripping off the integer valued bits. For each
integer valued bit in the power of 2 value separated from the fraction bits, one bit of preci­
sion is lost in the fraction field due to the zero fill occurring in the least significant bits.

Up to 14 bits may be lost in the fraction because the largest allowed floating point exponent
value is 214-1. These bits directly reduce the accuracy of the calculated scale factor, thereby
reducing the accuracy of the scaled value. For numbers in the range of lO±30, a maximum
of 8 bits of precision are lost in the scaling process.

7.3.5.2 AVOIDING UNDERFLOW AND OVERFLOW

The fraction and exponent fields of the number are separated to avoid underflow and overflow
in calculating the scaling values. For example, to scale lO~4932 to 108 requires a scaling factor
of 10495°, which cannot be represented by the NPX.

By separating the exponent and fraction, the scaling operation involves adding the exponents
separate from multiplying the fractions. The exponent arithmetic involves small integers, all
easily represented by the NPX.

7.3.5.3 FINAL ADJUSTMENTS

It is possible that the power function (GeLPoweLlO) could produce a scaling value such
that it forms a scaled result larger than the ASCII field could allow. For example, scaling

7-20

NUMERIC PROGRAMMING EXAMPLES

9.9999999999999999 X 104900 by 1.00000000000000010 X 10- 4883 produces
1.00000000000000009 X 1018 • The scale factor is within the accuracy of the NPX and the
result is within the conversion accuracy, but it cannot be represented in BCD format. This
is why there is a post-scaling test on the magnitude of the result. The result can be multiplied
or divided by 10, depending on whether the result was too small or too large, respectively.

7.3.6 Output Format

For maximum flexibility in output formats, the position of the decimal point is indicated by
a binary integer called the power value. If the power value is zero, then the decimal point is
assumed to be at the right of the rightmost digit. Power values greater than zero indicate
how many trailing zeros are not shown. For each unit below zero, move the decimal point to
the left in the string.

The last step of the conversion is storing the result in BCD and indicating where the decimal
point lies. The BCD string is then unpacked into ASCII decimal characters. The ASCII
sign is set corresponding to the sign of the original value.

7.4 TRIGONOMETRIC CALCULATION EXAMPLES (NOT TESTED)

In this example, the kinematics of a robot arm is modeled with the 4 X 4 homogeneous
transformation matrices proposed by Denavit and Hartenbergl •2• The translational and
rotational relationships between adjacent links are described with these matrices using the
D-H matrix method. For each link, there is a 4 X 4 homogeneous transformation matrix
that represents the link's coordinate system (LJ at the joint (J.) with respect to the previous
link's coordinate system (J1- 1, L i - I). The following four geometric quantities completely
describe the motion of any rigid joint/link pair (Ji, L.), as Figure 7-7 illustrates.

d i

The angular displacement of the Xi axis from the Xi_I axis by rotating around
the Zi_1 axis (antic1ockwise).

The distance from the origin of the (i-l)'h coordinate system along the Zi_1

axis to the Xi axis.

The distance of the origin of the ith coordinate system from the Zi_1 axis
along the -Xi axis.

The angular displacement of the Zi axis from the Zi_1 about the Xi aXIS
(anticlockwise).

1. J. Denavit and R.S. Hartenberg, "A Kinematic Notation for Lower-Pair Mechanisms Based on Matrices," J. Applied
Mechanics, June 1955, pp. 215-221.

2. C.S. George Lee, "Robot Arm Kinematics, Dynamics, and Control," IEEE Computer, Dec. 1982.

7-21

NUMERIC PROGRAMMING EXAMPLES

d,

JOINT,+,

I---a'---l
x,

G40003

Figure 7-7. Relationships between Adjacent Joints

7-22

NUMERIC PROGRAMMING EXAMPLES

The D-H transformation matrix AL for adjacent coordinate frames (from jointi_1 to jointi is
calculated as follows:

___ where ...

Tz,d represents a translation along the Zi_1 axis

Tz,o represents a rotation of angle 8 about the Zi_1 axis

Tx,a represents a translation along the Xi axis

Tx,a represents a rotation of angle 0' about the Xi axis

COS(Ji

SIN (Ji

o
o

-COS O'i SIN 8i
COS O'i COS (Ji

SIN O'i
o

SIN O'i SIN (Ji

- SIN O'i COS (Ji

COSO'i
o

COS (Ji
SIN (Ji

d i

1

The composite homogeneous matrix T which represents the position and orientation of the
joint/link pair with respect to the base system is obtained by successively multiplying the
D-H transformation matrices for adjecent coordinate frames.

This example in Figure 7-8 illustrates how the transformation process can be accomplished
using the 80387. The program consists of two major procedures. The first procedure
TRANS_PROC is used to calculate the elements in each D-H matrix, Ai-I' The second
procedure MATRIXMUL_PROC finds the product of two successive D-H matrices.

7-23

NUMERIC PROGRAMMING EXAMPLES

XEN!x286 80386 MACRO ASSEMBLER V1.0, ASSEMBLY OF MOOULE TOS STATUS
OBJECT MODULE PLACED IN tos.obj -
ASSEMBLER INVOKED BY: asm386 tos.asm

LOC OSJ

00000000

00000000

00000000 D9E5
00000002 9BOFEO
00000005 88EO
00000007 2507400000
OOOOOOOC COEC03
OOOOOOOf 08EO
00000011 B400
00000013 C3

00000014

LINE

5
6
7
8
9

10

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

SOURCE

+1 $title(Oetermine IDS register contents)

stack.

code

This subroutine will return a value
from 0-15 in eax corresponding

to the contents of NPX IDS. At t
reg; sters are transparent and no

errors are possible. The return
value corresponds to c3,c2,cl,cO

of FXAM instruction.

name tos_status
public tos_status

stackseg

segment publ i c er

tos_status proc

fxam ; Get status of lOS reg; ster
fstsw ax Get current status
mov al,ah Put bit 10-8 into bits 2-0
and eax,4007h Mask out bits c3,c2,cl,cO
shr ah, 3 Put bit c3 into bit 11
or at ,ah Put c3 into bit 3
mov ah,O CLear return vaLue
ret

tos_status endp

code ends
end

ASSEMBL Y COMPLETE I NO YARN I NGS, NO ERRORS.

Figure 7-8. Robot Arm Kinematics Example

7-24

LOC 08J

000000A9 C3

OOOOOOAA

OOOOOOAA 09E9
OOOOOOAC C8040000

00000080 8945FC

00000083 OA4DFC
00000086 09ES
0000008S D9EO
0000008A 09Cl

0000008C D9FC

OOOOOOBE D9CA

OOOOOOCO OBE2

000000C2 58
000000C3 D9FO
000000C5 C9
000000C6 DEEl
000000C8 C3

000000C9

NUMERIC PROGRAMMING EXAMPLES

LINE

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
n
78
79
80
81

SOURCE

; and fraction
ret ; OK to leave fxtract ruming

Calculate the value using the
exponentiate instruction .. The following
relations are used:

10**x = 2··(10g2(10)*x)
2··U+F) :z; 2**1 .. 2**F

if st(l) I: I and &t(O) = 2**F then
fseale produces 2*·(1+1")

fldl2t lOS = LOG2(10)
enter 4,0

save poker of 10 value, P
IhOY [ebp~4] ,eax

lOS,X = LOGZ(10)*P • LOGZ(10**P)
filDJl <!word ptr [ebp·41
fld1 ; Set TOS = -1_0
fchs
fld st(1)

frndint

Copy power va 1 ue
in base two
ros Ii: I: . inf < I <; X
where 1 is an integer
ROUlding mode does
not matter

fxch st(2) TOS = X, ST(l) = -1.0
SH2) • I

fsub st,st(2) ; TOS,F = X-I:
; -1 .. 0 < ros <= 1.0

; Restore orignal rounding control
pop eax
f2"",1 lOS = 2**(F) 1.0
leave Restore stack
flubr ForRl 2**(F)
ret IX to leave fsubr runni n9

code ends
end

ASSEMBLY COMPLETE, NO ~ARNINGS, NO ERRORS.

Figure 7-8. Robot Arm Kinematics Example (Cont'd.)

7-25

NUMERIC PROGRAMMING EXAMPLES

XENIX286 80386 MACRO ASSEMBLER V1.0, ASSEMBLY OF MOOULE ROT MATRIX CAL
OBJECT MODULE PLACED IN transx.obj - -

ASSEMBLER INVOKED BY: asm386 transx.asm

LOC

00000000
00000008
00000010
00000018
00000020
00000028
00000030
00000038
00000040
00000048
00000050
00000058

00000060
00000068
00000070
00000078

OBJ LINE SOURCE

4
5 This example i tlustrates the use
6 of the 80387 fLoating point
7 instructions, in particular. the

FSINCOS function which gives both
the SIN and COS values.

10 The program calculates the
11 composite matrix for base to end~
12 effector transformation.
13
14 ; Only the kinematics is considered in
15 this example.
16
17 If the c~site matrix mentioned above
18 is given by:
19 T1n = A1 x A2 x •.. x An
20 T1n is found by successively call lng
21 transyroc and matrixmul pro unti 1
22 a1 t matrices have been e;;:hausted.
23
24 transYfoc calculates entries in each
25 ; ACA1, ... ,An) whi 1e matrixmul_proc
26 ; performs the matrix multiplication for
27 ; Ai and Ai+1. matrixmul proc in turn
28 ; calls matrix row and matrix elem to
29 ; do the mut tipl lcation. -
30
31
32 ; Define stack space
33
34 trans_stack stackseg 400
35
36 Define the matrix structure for
37 4X4 transformational matrices
38
39
40
41
42
43
44
45
46
47
48
49
50
51

52
53
54
55
56
57

a_matrix struc
a11
a12
an
.14
a21
a22
a23
a24
631
632
633
a34

641
642
643
644

a_matriX ends

dq
dq
dq
dq
dq
dq
dq
dq
dq Oh
dq
dq
dq

dq Oh
dq Oh
dq Oh
dq 1h

Figure 7-8. Robot Arm Kinematics Example (Cont'd.)

7-26

NUMERIC PROGRAMMING EXAMPLES

00000000
00000004

00000000
00000004

00000000
00000008

00000000
00000008

00000000 ????????????????
00000008 ??????17????7???
00000010 ????????????????
00000018 ????????????????
00000020 ????????????????
00000028 ????????????????
00000030 ????????????????
00000038 ????????????????
00000040 0000000000000000
00000048 ????????????????
00000050 ??7711????????71
00000058 ????????????????
00000060 0000000000000000
00000068 0000000000000000
00000070 0000000000000000
00000078 0100000000000000
00000080 ????????????????
00000088 ????????????????
00000090 1??7??7??17????7
00000098 177111????????7?
aOaOQOAO ????????????????
OOOOOOA8 11?11??????17??7
00000080 ????????????????
00000088 ????????????????
OOOOOOCO 0000000000000000
nOODODes ????????????????
00000000 ????????????????
00000008 ????????????????
OOOOOOEO 0000000000000000
000000E8 0000000000000000
OOOOOOFO 0000000000000000
000000F8 0100000000000000

58 AssL..llle One joint in the storage
59 at location and hence for
60 two sets of parameters; however,
61 more joints are possible
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

alp~deg struc
aLpha deg1 dd ?
alpha -deg2 dd ?

alp_deg ends -

tht_deg struc
theta deg1 dd ?
theta - deg2 dd ?

tht_deg ends -

A_array struc
A1
A2

A_array ends

D_array struc
01
02

dq ?
dq ?

dq ?
dq ?

81 D _array ends
82
83 trans data is the data segment
84
85
86
87
88

89

segment rw publ ic

Amx

Bmx

Figure 7-8. Robot Arm Kinematics Example (Cont'd.)

7-27

NUMERIC PROGRAMMING EXAMPLES

00000100 1111711?????1177 90 TIIU< 8_matrix<>
00000108 1771171117111711
00000110 ?171111111711117
00000118 7177117111117111
00000120 111111???????777
00000128 ???????'?????????
00000130 ?????711?7?77?11
00000138 17???11????1?1??
00000140 0000000000000000
00000148 1771111111111171
00000150 1111111711111117
00000158 ????????????????
00000160 0000000000000000
00000168 0000000000000000
00000170 0000000000000000
00000178 0100000000000000
00000180 17711111 91 ALPHA_DEG alp_deg<>
00000184 17171111
00000188 ??????71 92 THETA_DEG tht_deg<:>
0000018C 77111171
00000190 1111111777111111 93 A_VECTOR A_array<>
00000198 11771777????771?
000001AO 7???717?????17?7 94 O_VECTOR D_Brray<>
DOOG01A8 111??11111777711
00000180 00000000 95 ZERO dd 0
00000184 84000000 96 d180 dd 180

0001 97 NlIM_JOINT "'" 1
0004 98 NUM_ROW "'" 4
0004 99 NUll_COL "'" 4

00000188 01 100 REVERSE db 1h
101 trans_data ends
102
103 assl.De ds:trans_data, es:trans_data
104
105
106 trans_code contains the procedures
107 for calculating matrix elements and
108 i matrix nut tipL ications
109
110 trans_code segment er public
111
112 ; create nnemonics for fsincos which is not
113 ; yet avai table from ASM386 8S of now
114

C MACRO i15 codemacro fsincos
116 dw Ofbd9h
II 117 erdn

118
00000000 119 transJlroc proc far

120
121
122 Calculate alpha and theta in radians
123 from their values in degrees
124

00000000 D9EB 125 fldpi
00000002 083584010000 126 fdiv dlBO

127
128 Dupl i eate pi /1 BO

00000008 D9CO 129 fld st
130

OOOOOOOA DCOCCD80010000 131 f1wl qword ptr ALPHA_DEG [ec~'81

00000011 D9C9 132 fxch .t(l)

00000013 DCOCC088010000 133 f""'l qword ptr THETA_DEG[ec~'81
134

Figure 7-8. Robot Arm Kinematics Example (Cont'd.)

7-28

NUMERIC PROGRAMMING EXAMPLES

0000001A 09FB

0000001 C 09CO
0000001E 0013
00000020 OCOCCD90010000
00000027 005B18
0000002A 09C9
0000002C 005320
0000002 F 09CO
00000031 OCOCC090010000
00000038 005B38
0000003B 0ge2
00000030 09FB

0000003F 005350
00000042 0ge9
00000044 005348
00000047 09C2

00000049 08e9
00000048 005B10
0000004E 08e8
00000050 09EO
00000052 005830
00000055 09C2

00000057 08C9
00000059 005828
0000005C 08C9

0000005E 50

0000005F 8B04eOA0010000
00000066 894358

135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167

168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196

theta(radians) in ST and
alpha(radians) in ST(1)

Calculate matrix elements
a11 = cos theta
a12 = - cos alpha"" sin thet
an = sin alpha * sin theta
a14 = A * cos theta
a21 ;: sin theta
a22 = cos aLpha * cos theta
a23 = -sin aLpha'" cos theta
a24 = A ... sin theta
a32 = sin alpha
a33 = cos alpha
.34 = 0
a31 = a41 = a42 = a43 = 0.0
.44 =1

ebx contains the offset for the matrix

fsincos iCOS theta in ST
;s1n theta in ST(l)

fld st ;dupl i cate cos theta
fst [ebx].a11 ;cos theta in al1
frwt qword ptf A_VECTOR [ecx*8]
fstp [ebx] .a14 ;A * cos theta in a14
fxch 8t(1) ;sin theta in ST
fst [ebx] .a21 ;51n theta in a21
fld 5t ;dupt ieate sin theta
fmut qword ptr A_VECTOR[ecx*81
fstp [ebx] . a24 ; A "" sin theta in a24
ftd st(2) :alpha in ST
fsincos ;cos aLpha in ST

isin alpha in SHU
;sin theta in ST(2)
; cos theta in 5T(3)

fst [ebx] .833 ;cos alpha in 833
fxch st(1) ;sin alpha in 51
fst [ebx] .a32 ;sin alpha in a32
fld 5T(2) ;sin theta in ST

isin alpha in 5T(1)
frrul st,st(1) ;sin alpha * sin theta
fstp [ebx] .a13 ;stored in a13
flJlJl st,st(3) JCOS theta" sin alpha
fchs i-COS theta * sin alpha
fstp [ebx] .a23 ;stored in 8Z3
fld st(2) JCOS theta in S1

;cos alpha in ST(1)
;sin theta in 5T(Z)
ices theta in 51(3)

flrul st , st(1) ices theta * cos alpha
fstp [ebx] . a22 ; stored in a22
flrul st , st(1) ;cos alpha * sin theta

To tak.e advantage af parallel operations
between the CPU and NPX

push eax; save eax

also move 0 into a34 in a faster way
mav eax, dword ptr D_VECTOR (ecx*8J
mav dword ptr [ebx + 88], e9X

Figure 7-8_ Robot Arm Kinematics Example (Cont'd.)

7-29

NUMERIC PROGRAMMING EXAMPLES

00000069 8B04CDA4010000
00000070 89435C
00000073 58
00000074 D9EO
00000076 DD5B08

00000079 CB

0000007A

0000007A

0000007A 55
00000078 51
0000007C 88CE

0000007E 6BC904

00000081 31ED

00000083 892C39
00000086 896C3904

0000008A 51

0000008B
00000088 01 E9

00000080 000408

00000090 8BCD
00000092 68C904

197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259

mov
mov
pop
fens
fstp

ret

eax, dword ptr D VECTOR (ecx*8 + 4]
dword ptr [ebx +-92] I eax
eax ; restore eax

i-COS alpha * sin theta
[ebx] . a12 ; stored in a12

;and all nonzero elements
:have been calculated

trans_proc endp

matrix_elem proc far

; This procedure calculate the dot product
of the ith row of the first matrix and
the jth cotLlll'l of the second matrix:

Tf j where Ti j = sun of Aik x Bkj over k

parameters passed from the call ing routine,
matrix_row:
ESI = 0-1)*8
EOI = (j -1)*S
local register, ESP = (k-1)*8

poJsh
poJsh
mov

ebp save ebp
ecx ecx to be used as a tmp reg
ecx, esi i save it for later indexing

locating the element in the first matrix, A
inul ecx, NUM_COl ecx contains offset due

to preceding rows; the
offset is from the
beginning of the matrix

xor ebp, ebp; clear ebp, which wi II be
used a temp reg to index(k)
across the ith row of the first
matrix as well as down the jth
colLlm of the second matrix

clear Tij for accuruLating Aik*Bkj
mov dword ptr [ecx] Cedi] ,ebp
mav dword ptr [ecxl [edi+41, ebp

eex save on stack: esi * nurn_col
the offset of the beginnging
of the ith row from the
beginning of the A. matrix

add ecx, ebp ; get to the kth column entry
of the ith row of the A. matrix

load Aik into 80387
fld qword ptr [eax) [ecx]

Loeat i n9 Bkj
mav ecx, ebp
imut ecx, NUM_ROW ; ecx contains the offset

of the beginning of the
kth row from the

Figure 7-8. Robot Arm Kinematics Example (Cont'd.)

7-30

inter

00000095 01F9
entry

00000097 DCOCOB
0000009A 59

0000009B 51

0000009C 01 F9

0000009E OC040A
OOOOOOA 1 001 COA

000000A4 83C508

000000A7 83F020
OOOOOOAA 7CDF

OOOOOOAC 59
OOOOOOAO 59
OOOOOOAE 50
OOOOOOAF CB

OOOOOOBO

OOOOOOBO

OOOOOOBO 31 FF

000000B2
000000B2 9A7AOOOOOO- - --
000000B9 83C708
OOOOOOBC 83FF20
OOOOOOBF 7CF1
000000C1 CB

000000C2

000000C2

NUMERIC PROGRAMMING EXAMPLES

260
261

262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277

278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320

add ecx, edt
; beginning of the B matrix

get to the jth column

of the kth row of the B
; matrix

fmul qword ptr [ebx] [ecx]; Ai k * Skj
pop ecx esi * nun_col

push ecx
in ecx again
a Lso at top of program
stack

add to the result in the output matrix, Tij
add ecx, ed;

accl..ITULating the sum of Ailt: * Skj
fadd qword pt r [edx] [ecx]
fstp qword pt r [edx] [ecx]
increment k by 1, i.e., ebp by 8
add ebp. 8

Has k reached the width of the matrix yet?
c"l' ebp. NUM _COL *8
jl NXT_k

Restore registers
pop ecx clear esi*m.IJI_col from stack
pop ecx restore ecx
pop ebp restore ebp
ret

matrix_row proc far

xor edi. edi
scan across a row

NXT_COL:
call matrix eLem
add edi, 8-
c~ eeli, NUM_COl*8
j l NXT_COL
ret

This procedure does the matrix
mut tipl ication by cat Ling matrix_row
to calculate entries in each row

The matrix multipl ication is
performed in the fol towing manner,

Tij :; Aik x Bkj
where i and j denote the row and colutm
respectively and k is the index for
seaming across the ith row of the
first matrix and the jth coll.firl of the
second matrix.

Figure 7-8. Robot Arm Kinematics Example (Cont'd.)

7-31

NUMERIC PROGRAMMING EXAMPLES

000000C2 5A
000000C3 5B
000000C4 58

000000C5 31 F6

000000C7
000000C7 9ABOOOOOOO- - -­
OOOOOOCE 83C608
00000001 83FE20
00000004 7CFl
00000006 CB

00000007

00000000

00000000 BCOOOOOOOO

00000005 60

00000006 31C9
00000008 BB80000000
00000000 9AOOOOOOOO- - - -
00000014 41

00000015

321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340

pop edx ; offset Tmx n edx
pop ebx ; offset Brnx n ebx
pop eax ; offset"Amx n eax

setup esi and 001
edt points to the colunn
es; poi nts to the row

xor esi. esi clear esi

NXT_ROY:
call
add

cl11'
jl
ret

matrix_row
est, 8
esi, NUM_R0\I*8

NXT_ROY

341 trans_code ends
342

343 ; ***************************************
344
345
346
347 Ma i n program
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376

. . . .
; ***************************************

main_code segment er

START:

mav esp, stackstart trans_stack
save at t regi sters

pushad

ECX denotes the nUl'ber of joints
where no of matrices = NUM_JOINT + 1
Find the first matrix(from the base
of the system to the first joint)
and call it Bmx
xor ecx, ecx
may ebx, offset Brnx
call trans_proc
inc ecx

1st matrix

is Brnx

From the 2nd matrix and on, it
will be stored in AffiX.
The result from the first matrix multo
is stored in Tmx but wi II be accessed

3n as Bmx in the next mul tipl ication.
378 As a matter of fact, the roles of 8mx
379 and Tmx alternate in successive
380 multipl ications. This is achieved by
381 ; reversing the order of the Bmx and Tmx
382 ; poi nters be; ng passed onto the program

Figure 7-8. Robot Arm Kinematics Example (Cont'd.)

7-32

NUMERIC PROGRAMMING EXAMPLES

383
384
385
386
387
388

00000015 BBOOOOOOOO 389
0000001A 9AOOOOOOOO···· 390
00000021 41 391
00000022 8035B801000001 392
00000029 7511 393

394
395
396

0000002B 6800000000 397
00000030 6880000000 398
00000035 6800010000 399
0000003A EBOF 400

401
402
403

0000003C 404
0000003C 6800000000 405
00000041 6800010000 406
00000046 6880000000 407

408
00000048 409
0000004B 9AC2000000···· 410
00000052 83F901 411
00000055 7EBE 412

413
414
415
416

00000057 61 417
418
419
420
421

; stack: Thus, this is invisible to the
; matrix tllJltiplication procedure.
; REVERSE serves as the indicator:
; REVERSE = 0 means that the resul t

is to placed in Tmx.

IIIOV ebx, offset Amx :find Amx
call transj)roc
inc ecx
xor REVERSE, 1h
jnz BInX_BS_Tmx

no reversing. Bmx as the second input
matrix white Trnx as the output matrix.
push offset Amx
push offset 8mx
push offset Tmx
j"" CONTINUE

; reversing. Tmx as the second input
; matrix while Bmx as the output matrix.

8mx as Tmx:
- Push

push
push

CONTINUE:

offset Amx
offset Trnx
offset 8mx

; revers i n9 the
;pointers passed

call matrixmuLyroc
clJ1) ecx, NOM_JOINT
jt. NXT_MATRIX

if REVERSE = 1 then the f i na L answer
wilt be in Bmx otherwise, in Tmx.

popad

end START, ds:trans_data, ss:trans_staek

ASSEMBLY COMPLETE, NO WARNINGS, NO ERRORS.

Figure 7-8. Robot Arm Kinematics Example (Cont'd.)

7-33

Machine Instruction A
Encoding and Decoding

APPENDIX A
MACHINE INSTRUCTION ENCODING AND DECODING

1st Byte
ASM386 Instruction 2nd Byte Bytes 3-7

Format
Hex Binary

D8 1101 1000 MOD 000 RIM SIB, displ FADD single-real
D8 1101 1000 MOD 001 RIM SIB, displ FMUL single-real
D8 1101 1000 MOD 010 RIM SIB, displ FCOM single-real
D8 1101 1000 MOD 011 RIM SIB, displ FCOMP single-real
D8 1101 1000 MOD 100 RIM SIB, displ FSUB single-real
D8 1101 1000 MOD 101 RIM SIB, displ FSUBR single-real
D8 1101 1000 MOD 110 RIM SIB, displ FDIV single-real
D8 1101 1000 MOD 111 RIM SIB, displ FDIVR single-real
D8 1101 1000 11000 REG FADD ST,ST(i)
D8 1101 1000 11001 REG FMUL ST,ST(i)
D8 1101 1000 1101 0 REG FCOM ST(i)
D8 1101 1000 11011 REG FCOMP ST(i)
D8 1101 1000 11100 REG FSUB ST,ST(i)
D8 11011000 11101 REG FSUBR ST,ST(i)
D8 1101 1000 11110 REG FDIV ST,ST(i)
D8 1101 1000 1111 1 REG FDIVR ST,ST(i)
D9 11011001 MOD 000 RIM SIB, displ FLO single-real
09 11011001 MOD 001 RIM reserved
09 11011001 MOD 010 RIM SIB, displ FST single-real
D9 11011001 MOD 011 RIM SIB, displ FSTP single-real
09 11011001 MOO 100 RIM SIB, displ FLOENV 14 or 28 bytes'"
D9 11011001 MOD 101 RIM SIB, displ FLOCW 2 bytes
D9 11011001 MOD 110 RIM SIB, displ FSTENV 14 or 28 bytes'"
D9 1101 1001 MOD 111 RIM SIB, displ FSTCW 2 bytes
D9 11011001 11000 REG FLO ST(i)
09 11011001 11001 REG FXCH ST(i)
D9 11011001 1101 0000 FNOP
09 11011001 1101 0001 reserved
D9 11011001 1101 001- reserved
09 11011001 1101 01-- reserved
D9 11011001 1101 1 REG reserved
D9 11011001 11100000 FCHS
09 11011001 11100001 FABS
D9 1101 1001 1110001- reserved
09 11011001 11100100 FTST
09 1101 1001 11100101 FXAM
09 11011001 1110011- reserved
D9 11011001 11101000 FLD1
D9 11011001 11101001 FLDL2T
09 1101 1001 11101010 FLOL2E
D9 1101 1001 1110 1011 FLOP I
D9 1101 1001 11101100 FLOLG2
D9 11011001 1110 1101 FLDLN2
D9 11011001 11101110 FLDZ
09 11011001 11101111 reserved
D9 11011001 11110000 F2XM1
D9 1101 1001 1111 0001 FYL2X
D9 11011001 1111 0010 FPTAN

A-1

MACHINE INSTRUCTION ENCODING AND DECODING

1st Byte
ASM386 Instruction

2nd Byte Bytes 3-7
Format

Hex Binary

D9 1101 1001 1111 0011 FPATAN
D9 11011001 1111 0100 FXTRACT
D9 11011001 11110101 FPREM1
D9 11011001 1111 0110 FDECSTP
D9 11011001 1111 0111 FINCSTP
D9 1101 1001 1111 1000 FPREM
D9 11011001 1111 1001 FYL2XP1
D9 1101 1001 1111 1010 FSQRT
D9 11011001 1111 1011 FSINCOS
D9 1101 1001 11111100 FRNDINT
D9 1101 1001 11111101 FSCALE
D9 1101 1001 1111 1110 FSIN
D9 1101 1001 1111 1111 FCOS
DA 11011010 MOD 000 RIM SIB, displ FIADD short-integer
DA 1101 1010 MOD 001 RIM SIB, displ FIMUL short-integer
DA 11011010 MOD 010 RIM SIB, displ FICOM short-integer
DA 11011010 MOD 011 RIM SIB, displ FICOMP short-integer
DA 11011010 MOD 100 RIM SIB, displ FISUB short-integer
DA 11011010 MOD 101 RIM SIB, displ FISUBR short-integer
DA 1101 1010 MOD 110 RIM SIB, displ FIDIV short-integer
DA 1101 1010 MOD 111 RIM SIB, displ FIDIVR short-integer
OA 1101 1010 110- ---- reserved
DA 11011010 11100--- reserved
DA 11011010 1110 1000 reserved
DA 10101010 11101001 FUCOMPP
DA 11011010 1110101- reserved
OA 1101 1010 111011-- reserved
DA 1101 1010 1111 ---- reserved
DB 1101 1011 MOD 000 RIM SIB, displ FILD short-integer
DB 11011011 MOD 001 RIM SIB, displ reserved
DB 11011011 MOD 010 RIM SIB, displ FIST short-integer
DB 11011011 MOD 011 RIM SIB, displ FISTP short-integer
DB 11011011 MOD 100 RIM SIB, displ reserved
DB 1101 1011 MOD 101 RIM SIB, displ FLO extended-real
DB 1101 1011 MOD 110 RIM SIB, displ reserved
DB 1101 1011 MOD 111 RIM SIB, displ FSTP extended-real
DB 1101 1011 110- ---- reserved
DB 1101 1011 11100000 **(1)
DB 11011011 11100001 **(2)
DB 11011011 11100010 FCLEX
DB 1101 1011 11100011 FINIT
DB 1101 1011 11100100 **(3)
DB 1101 1011 11100101 reserved
DB 11011011 1110011- reserved
DB 1101 1011 11101--- reserved
DB 1101 1011 1111 ---- reserved
DC 1101 1100 MOD 000 RIM SIB, displ FADD double-real
DC 1101 1100 MOD 001 RIM SIB, displ FMUL double-real
DC 11011100 MOD 010 RIM SIB, displ FCOM double-real
DC 1101 1100 MOD 011 RIM SIB, displ FCOMP double-real
DC 1101 1100 MOD 100 RIM SIB, displ FSUB double-real
DC 11011100 MOD 101 RIM SIB, displ FSUBR double-real
DC 1101 1100 MOD 110 RIM SIB, displ FDIV double-real
DC 11011100 MOD 111 RIM SIB, displ FDIVR double-real
DC 1101 1100 11000REG FADD ST(i),ST

A-2

MACHINE INSTRUCTION ENCODING AND DECODING

1st Byte
ASM386 Instruction

2nd Byte Bytes 3-7
Format

Hex Binary

DC 1101 1100 11001 REG FMUL ST(i),ST
DC 1101 1100 11010 REG reserved
DC 1101 100 1101 1 REG reserved
DC 1101 1100 11100 REG FSUBR ST(i),ST
DC 1101 1100 11101 REG FSUB ST(i),ST
DC 1101 1100 1111 0 REG FDIVR ST(i),ST
DC 1101 1100 1111 1 REG FDIV ST(i),ST
DD 1101 1101 MOD 000 RIM SIB, displ FLD double-real
DD 1101 1101 MOD 001 RIM reserved
DD 11011101 MOD 010 RIM SIB, displ FST double-real
DD 11011101 MOD 011 RIM SIB, displ FSTP double-real
DD 11011101 MOD 100 RIM SIB, displ FRSTOR 94 or 1 08 bytes···
DD 1101 1101 MOD 101 RIM SIB, displ reserved
DD 11011101 MOD 110 RIM SIB, displ FSAVE 94 or 108 bytes···
DD 1101 1101 MOD 111 RIM SIB, displ FSTSW 2 bytes
DD 1101 1101 11000 REG FFREE ST(i)
DD 1101 1101 11001 REG reserved
DD 1101 1101 1101 0 REG FST ST(i)
DD 11011101 1101 1 REG FSTP ST(i)
DD 1101 1101 11100 REG FUCOM ST(i)
DD 11011101 11101 REG FUCOMP ST(i)
DD 1101 1101 1111 ---- reserved
DE 11011110 MOD 000 RIM SIB, displ FIADD word-integer
DE 1101 1110 MOD 001 RIM SIB, displ FIMUL word-integer
DE 1101 1110 MOD 010 RIM SIB, displ FICOM word-integer
DE 1101 1110 MOD 011 RIM SIB, displ FICOMP word-integer
DE 1101 1110 MOD 100 RIM SIB, displ FISUB word-integer
DE 1101 1110 MOD 101 RIM SIB, displ FISUBR word-integer
DE 1101 1110 MOD 110 RIM SIB, displ FIDIV word-integer
DE 1101 1110 MOD 111 RIM SIB, displ FIDIVR word-integer
DE 11011110 11000 REG FADDP ST(i),ST
DE 1101 1110 11001 REG FMULP ST(i),ST
DE 1101 1110 1101 0--- reserved
DE 11011110 1101 1000 reserved
DE 1101 1110 1101 1001 FCOMPP
DE 1101 1110 1101101- reserved
DE 11011110 1101 11-- reserved
DE 1101 1110 11100 REG FSUBRP ST(i),ST
DE 11011110 11101 REG FSUBP ST(i),ST
DE 1101 1110 1111 0 REG FDIVRP ST(i),ST
DE 11011110 1111 1 REG FDIVP ST(i),ST
DF 1101 1111 MOD 000 RIM SIB, displ FILD word-integer
DF 1101 1111 MOD 001 RIM SIB, displ reserved
DF 1101 1111 MOD 010 RIM SIB, displ FIST word-integer
DF 1101 1111 MOD 011 RIM SIB, displ FISTP word-integer
DF 1101 1111 MOD 100 RIM SIB, displ FBLD packed-decimal
DF 11011111 MOD 101 RIM SIB, displ FILD long-integer
DF 1101 1111 MOD 110 RIM SIB, displ FBSTP packed-decimal
DF 11011111 MOD 111 RIM SIB, displ FISTP long-integer
DF 1101 1111 11000 REG reserved
DF 1101 1111 11001 REG reserved
DF 1101 1111 1101 0 REG reserved
DF 1101 1111 1101 1 REG reserved
DF 11011111 11100000 FSTSW AX
DF 1101 1111 11100001 reserved

A-3

MACHINE INSTRUCTION ENCODING AND DECODING

1st Byte
ASM386 Instruction

2nd Byte Bytes 3-7
Format

Hex Binary

OF 1101 1111 1110001- reserved
OF 1101 1111 111001-- reserved
OF 1101 1111 11101--- reserved
OF 1101 1111 1111 ---- reserved

•• The marked encodings can be generated by the language translators; however, the 80387 treats them
as FNOP. They correspond to the following 8087 or 80287 instructions.

(1) FEN I
(2) FOISI
(3) FSETPM

••• The size of operand transferred depends on the 80386 operand-size attribute in effect for the
instruction.

A-4

Exception Summary B

APPENDIX B
EXCEPTION SUMMARY

The following table lists the instruction mnemonics in alphabetical order. For each mnemonic,
it summarizes the exceptions that the instruction may cause. When writing 80387 programs
that may be used in an environment that employs numerics exception handlers, assembly­
language programmers should be aware of the possible exceptions for each instruction in
order to determine the need for exception synchronization. Chapter 4 explains the need for
exception synchronization.

Mnemonic Instruction IS

F2XM1 2X-1 y
FABS Absolute value Y
FADD(P) Add real Y
FBLD BCD load Y
FBSTP BCD store and pop y
FCHS Change sign Y
FCLEX Clear exceptions
FCOM(P)(P) Compare real y
FCOS Cosine y
FDECSTP Decrement stack pointer
FDIV(R)(P) Divide real Y
FFREE Free register
FIADD Integer add y
FICOM(P) Integer compare Y
FIDIV Integer divide y
FIDIVR Integer divide reversed y
FILD Integer load Y
FIMUL Integer multiply y
FINCSTP Increment stack pOinter
FINIT Initialize processor
FIST(P) I nteger store Y
FISUB(R) Integer subtract y
FLD extended Load real Y

or stack
FLD single Load real Y

or double
FLD1 Load + 1.0 Y
FLDCW Load Control word y
FLDENV Load environment Y
FLDL2E Load log2e y
FLDL2T Load log21O y
FLDLG2 Loadlog1Q2 y
FLDLN2 Load 10g.,2 Y
FLDPI Load ... y

IS-Invalid operand due to stack overflow/underflow
I-Invalid operand due to other cause
D-Denormal operand
Z-Zero-divide
O-Overflow
U-Underflow
P-Inexact result (precision)

B-1

I 0 Z 0 U P

y y y y

y y y y y

Y Y

y y
y y y y

Y Y Y Y Y Y

y y y y y
Y Y
y y y y y
y y y y y y

y y y y y

Y Y
y y y y y

y y

y y y y y y
Y Y y y y y

EXCEPTION SUMMARY

Mnemonic Instruction IS

FLDZ Load + 0.0 Y
FMUL(P) Multiply real Y
FNOP No operation
FPATAN Partial arctangent Y
FPREM Partial remainder Y
FPREM1 IEEE partial remainder Y
FPTAN Partial tangent Y
FRNDINT Round to integer Y
FRSTOR Restore state Y
FSAVE Save state
FSCALE Scale Y
FSIN Sine Y
FSINCOS Sine and cosine Y
FSQRT Square root Y
FST(P) stack Store real Y

or extended
FST(P) single Store real Y

or double
FSTCW Store control word
FSTENV Store Environment
FSTSW(AX) Store status word
FSU8(R)(P) Subtract real Y
FTST Test Y
FUCOM(P)(P) Unordered compare real Y
FWAIT CPU Wait
FXAM Examine
FXCH Exchange registers Y
FXTRACT Extract Y
FYL2X Y oloQ2X Y
FYL2XP1 Y oloQ2(X + 1) Y

IS-Invalid operand due to stack overflow/underflow
I-Invalid operand due to other cause
D-Denormal operand
Z-Zero-divide
O-Overflow
U-Underflow
P-Inexact result (precision)

8-2

I

Y

Y
Y
Y
Y
Y
Y

Y
Y
Y
Y

Y

Y
Y
Y

y
y
Y

0 Z 0 U P

Y Y Y Y

Y Y Y
Y Y
Y Y
Y Y Y
Y Y
Y Y Y Y Y

Y Y Y Y
Y Y Y
Y Y Y
Y Y

Y Y Y Y

Y Y Y Y
Y
Y

Y Y
Y Y Y Y Y
Y Y Y

Compatibility Between the C
80387 and the 80287/8087

APPENDIX C
COMPATIBILITY BETWEEN THE 80387

AND THE 80287/8087

This appendix summarizes the differences between the 80387 and its predecessors the 80287
and the 8087, and analyzes the impact of these differences on software that must be trans­
ported from the 80287 or 8087 to the 80387. Any migration from the 8087 directly to the
80387 must also take into account the additional differences between the 8087 and the 80387
as listed in Appendix D of this manual.

C.1 INITIALIZATION SEQUENCE

Difference Description Reason
Issue Impact on Software for the

80387 Behavior 8087/80287 Behavior Difference

RESET, FINIT, After a hardware RESET, No difference between 80387 initialization Permits the 80386 to differ·
and ERROR# PIN the ERROR# output is RESET and FINIT. software must execute an entiate between the 80287

asserted to indicate that an FNINIT instruction to clear and the 80387.
80387 is present. To ERROR#. The FNINIT is
accomplish this, Ihe IE and not required for 80287/
ES bits of the status word 8087 software, though Intel
are set, and the 1M bit in documentation recom-
the control word is reset. mends its use (refer to the
After FINIT, the status Numerics Supplement to
word and the contrOl word the iAPX 286 Program-
have the same values as in mer's Reference Manua~.
an 80287/8087 after
RESET.

C.2 DATA TYPES AND EXCEPTION HANDLING

Difference Description Reason
Issue Impact on Software for the

80387 Behavior 8087/80287 Behavior Difference

NaN The 80387 distinguishes The 80287/8087 only Uninitialized memory IEEE Standard 754
between signaling NaNs generates one kind of NaN locations that contain compatibility.
and quiet NaNs. The 80387 (the equivalent of a quiet aNaNs should be changed
only generates quiet NaNs. NaN) but raises an invalid- to SNaNs to cause the
An invalid-operation operation exception upon 80387 to faUlt when unini-
exception is raised only encountering any kind of tialized memory locations
upon encountering a NaN. are referenced.
signaling NaN (except for
FCOM, FIST, and FBSTP
which also raise IE for
quiet NaNs).

Pseudozero, The 80387 neither gener- The 80287/8087 defines None. The 80387 does not IEEE Standard 754
Pseudo-NaN, ates not supports these and supports special generate these formats, compatibility.
Pseudoi"'i"i!y, formats; it raises an handling for these formats. and therefore will not
and Unnormal invalid-operation exception encounter them unless a
Formats whenever it encounters programmer deliberately

them in an arithmetic enters them.
operation.

C-1

COMPATIBILITY BETWEEN THE 80387 AND THE 80287/8087

Difference Description Reason
Issue Impact on Software for the

80387 Behavior 8087/80287 Behavior Difference

Tag Word Bits The encoding in the tag The encoding lor pseudo- The exception handler may IEEE Standard 754
for Unsupported word for the unsupported zero and unnormal is need to be changed if compatibility.
Data Formats data formats mentioned in "valid" (type 00); the programmers use such

Section C.2.2 is "special others are "special data" data types.
data" (type 10). (type 10).

Invalid-Operation No invalid-operation Upon encountering a None. Software on the Upgrade, to eliminate
Exception exception is raised upon denormal in FSORT, FDIV, 80387 will continue to exception.

encountering a denormal in or FPREM or upon conver- execute in cases where the
FSORT, FDIV, or FPREM sian to BCD or to integer, 80287/8087 would trap.
or upon conversion to the invalid-operation
BCD or to integer. The exception is raised.
operation proceeds by lirst
normalizing the value.

Denormal The denormal exception is The denormal exception is The exception handler Performance enhancement
Exception raised in transcendental not raised in transcenden- needs to be changed only for normal case.

instructions and FXTRACT. tal instructions and if it gives special treatment
FXTRACT. to different opcodes.

Overflow Overflow exception Overflow exception Overflow exception IEEE Standard 754
Exception masked. masked. masked. compatibility.

If the rounding mode is set The 80287/8087 does not Under the most common
to chop (toward zero), the signal the overllow excep- rounding modes, no
result is the most positive tion when the masked impact. II rounding is
or most negative number. response is not infinity; i.e., toward zero (chop), a

it signals overflow only program on the 80387
when the rounding control produces under overflow
is not set to round to zero. conditions a result that is
If rounding is set to chop different in the least signili-
(toward zero), the result is cant bit 01 the signilieand,
positive or negative infinity. compared to the result on

the 80287.

Overflow exception not Overflow exception not Overflow exception not
masked. masked. masked.

The precision exception is The precision exception is If the result is stored on
flagged. When the result is not Ilagged and the signili- the stack, a program on
stored in the stack, the cand is not rounded. the 80387 produces a
significand is rounded different result under
according to the precision overflow conditions than
control (PC) bit of the on the 80287/8087. The
control word or according difference is apparent only
to the opcode. to the exception handler.

C-2

COMPATIBILITY BETWEEN HIE 80387 AND THE 80287/8087

Difference Description Reason
Issue Impact on Software for the

80387 Behavior 8087/80287 Behavior Difference

Underflow Conditions for underflow. Conditions for underflow. Underflow exception IEEE Standard 754
Exception masked. compatibility.

When the underflow When the underflow excep-
Two related exception is masked, the tion is masked and round- No impact. The underflow
events contribute underflow exception is ing is toward zero, the exception occurs less
to underflow: signaled when both the underflow exception flag is often when rounding is

result is tiny and denormal- raised on tininess, regard- toward zero.
1. The creation ization results in a loss of less of loss of accuracy.

tiny result. A accuracy.
tiny number,
because it is Response to underflow. Response to underflow. Underflow exception not
so small, may masked.
cause some When the underflow When the underflow excep-
other excep- exception is unmasked tion is not masked and the A program on the 80387
tion later and the instruction is destination is the stack, the produces a different result
(such as supposed to store the significand is not rounded during underflow condi-
overflow upon result on the stack, the but rather is left as is. tions than on the 80287/
division). significand is rounded to 8087 if the result is stored

2. Loss of the appropriate precision on the stack. The differ-
accuracy (according to the precision ence is only in the least
during the control (PC) bit of the significant bit of the si9n;fi-
denormaliza- control word, for those cand and is apparent only
tion of a tiny instructions controlled by to the exception handler.
number. PC, otherwise to extended

precision).
Which of these
events triggers
the underfiow
exception
depends on
whether the
underflow excep-
tion is masked.

Exception There is no difference in When the denormal excep- None, but some unneeded Operational improvement.
Precedence the precedence of the tion is not masked, it takes normalization of denormal

denormal exception, precedence over all other operands is prevented on
whether it be masked or exceptions. the 80387.
not.

C.3 TAG, STATUS, AND CONTROL WORDS

Difference Description Reason
Issue Impact on Software for the

80387 Behavior 8087/80287 Behavior Difference

Bits C3-CO of After FINIT, incomplete After FINIT, incomplete None. Upgrade, to provide
Status Word FPREM, and hardware FPREM, and hardware consistent state after reset.

reset, the 80387 sets these reset, the 80287/8087
bits to zero. leaves these bits intact

(they contain the prior
value).

Bit C2 of Status Bit 10 (C2) serves as an This bit is undefined for None. Programs don't Upgrade to allow fast
Word incomplete bit for FPTAN. FPTAN. check C2 after FPT AN. checking of operand range.

Infinity Control Only affine ciosure is Both affine and projective Software that requires iEEE Standard 754
supported. Bit 12 remains closures are supported. projective inlinity arithmetic compatibility.
programmable but has no After RESET, the default may give different results.
effect on 80387 operation. value in the control word is

projective.

C-3

COMPATIBILITY BETWEEN THE 80387 AND THE 80287/8087

Difference Description Reason
Issue Impact on Software for the

80387 Behavior 8087/80287 Behavior Difference

Status Word Bit When an invalid-operation When an invalid-operation None. Existing exception Upgrade and performance
6 for Stack Fault exception occurs due to exception occurs due to handlers need not change, Improvement.

stack overflow or under- stack overflow or under- but may be upgraded to
flow, not only is bit 0 (IE) of flow, only bit 0 (IE) of the take advantage of the
the status word set, but status word is set. Bit 6 is additional information.
also bit 6 is set to indicate RESERVED. Newly written handlers will
a stack fault and bit 9 (C1) be more effective.
specifies overflow or
underflow. Bit 6 is called
SF and serves to distin-
guish invalid exceptions
caused by stack overflow/
underflow from those
caused by numeric
operations.

Tag Word When loading the tag word The corresponding tag is Software may not operate Performance improvement
with an FLO EN V or checked before each reg15- correctly if it uses FLDENV
FRSTOR instruction, the ter access to determine the or FRSTOR to change tags
only interpretations of tag class of operand in the to values (other than
values used by the 80387 register; the tag is updated empty) that are different
are empty (value 11) and after every change to a from actual register
nonempty (values 00, 01, register so that the tag contents.
and 10). Subsequent always reflects the most
operations on a nonempty recent status of the regis-
register always examine ter. Programmers can load
the value in the register, a tag with a vaille that
not the value in its tag. The disagrees with the contents
FSTENV and FSAVE 0/ a register (for example,
instructions examine the the register contains valid
nonempty registers and contents, but the tag says
put the correct values in special; the 80287/8087, in
the tags before storing the this case, honors the tag
tag word. and does not examine the

register).

C.4 INSTRUCTION SET

Difference Description Reason
Issue Impact on Software for the

80387 Behavior 8087180287 Behavior Difference

FBSTP, FDIV, Operation on denormal Operation on denormal The exception handler for IEEE Standard 754
FIST(P), FPREM, operand is supported. An operand raises invalid- underflow may require compatibility.
FSQRT underflow exception can operation exception. change only if it gives

occur. Underflow is not possible. different treatment to
different opcodes. Possibly
fewer invalid-operation
exceptions will occur.

FSCALE The range of the scaling The range of the scaling Different result when 0 < Upgrade.
operand is not restricted. If operand is retricted. If 0 < IST(1)1< 1.
0< IST(1)1 < 1, the I ST(1) I < 1, the result is
scaling factor is zero; undefined and no excep-
therefore, ST(O) remains tion is signaled.
unchanged. If the rounded
result is not exact or if
there was a loss of
accuracy (masked under-
flow), the precision excep-
tion is signaled.

C-4

COMPATIBILITY BETWEEN THE 80387 AND THE 80287/8087

Difference Description Reason
Issue Impact on Software for the

80387 Behavior 8087/80287 Behavior Difference

FPREMl Performs partial remainder Does not exist. None. I EEE Standard 754
according to IEEE compatibility and upgrade.
Standard 754 standard.

FPREM Bits CO, C3, Cl of the The quotient bits are incor- None. Software that works Upgrade.
status word, correctly rect when performing a around the bug should not
reflect the three low-order reduction of 64N + M when be affected.
bits of the quotient. N:2: 1 and M~l or M~2.

FUCOM, Perform unordered Do not exist. None. I EEE Standard 754
FUCOMP, compare according to compatibility.
FUCOMPP IEEE Standard 754

standard.

FPTAN Range of operand is much Range of operand is None. Upgrade.
less restricted (I ST(O) I < restricted (I ST(O) I < ,,/4);
263); reduces operand operand must be reduced
internally using an internal to range using FPREM.
,,/4 constant that is more
accurate.

After a stack overflow After a stack overflow IEEE Standard 754
when the invalid-operation when the invalid-operation compatibility.
exception is masked, both exception is masked, the
ST and ST(l) contain quiet original operand remains
NaNs. unchanged, but is pushed

toST(l).

FSIN, FCOS, Perform three common Do not exist. None. Upgrade.
FSINCOS trigonometric functions.

FPATAN Range of operands is I ST(O) I must be smaller None. Upgrade.
unrestricted. than I ST(l) I.

F2XMl Wider range of operand The supported operand None. Upgrade.
(-1 :5ST(O):5 +1). range is 0 :5 ST (0) :5 0.5.

FLO Does not report denormal Reports denormal None. Upgrade.
extended~real exception because the exception.

instruction is not
arithmetic.

FXTRACT If the operand is zero, the If the operand is zero, None. Software usually IEEE 754 recommendation
zero-divide exception is ST(l) is zero and no excep- bypasses zero and co. to fully support the 10gb
reported and ST(l) is -co. tion is reported. If the function.
II the operand is +co, no operand is + co, the
exception is reported. invalid-operation exception

is reported.

FLO constant Rounding control is in Rounding control is not in Results are the same as IEEE 754 recommendation.
effect. effect. for the 8087/80287 when

rounding control is set to
round to zero, round to
-co, and (in the case of
FLDL2T) round to nearest.
Results are different by
one in the least significant
bit of the signilicand in
round to + CXJ and round to
nearest (excluding
FLDL2T). FLDl and FLDZ
are always the same.

C-5

COMPATIBILITY BETWEEN THE 80387 AND THE 80287/8087

Difference D •• crlptlon Realon
Isaue Impact on Software lor the

80387 Behavior 8087/80287 Behavior Difference

FLD Iinglel Loading a denormal Loading a denormal causes If the next instruction is IEEE Standard 754
double precision causes the number to be the number to be converted FXTRACT or FXAM, the compatibility.

converted to extended to an unnormal. 80387 will give a different
precision (because it is put resu~ than the
on the stack). 80287/8087.

FLO .Inglel When loading a signaling Does not raise an excep- The exception handler IEEE Standard 754
double preclalon NaN, raises invalid tion when loading a signal- need to be updated to compatibility.

exception. ing NaN. handle this condition.

FSETPM Treated as FNOP (no Informs the 80287 that the None. The 80386 handles all
operation). system is in protected addressing and exception-

mode. pointer information,
whether in protected mode
or not.

FXAM When encountering an May generate these combi- None. Upgrade, to provide
empty register, the 80387 nations, among others. repeatable results.
will not generate combina-
tions of C3-CO equal to
1101 or 1111.

All Tranlcenden- May generate different Round-up bit of status None. Upgrade, to signal round-
tal Instructions resu~ in round-up bit of word is undefined for these ing status.

status word. instructions.

C-6

Compatibility Between the D
80387 and the 8087

APPENDIX D
COMPATIBILITY BETWEEN THE 80387 AND THE 8087

The 80386/80387 operating in real-address mode will execute 8087 programs without major
modification. However, because of differences in the handling of numeric exceptions between
the 80387 NPX and the 8087 NPX, exception-handling routines may need to be changed.

This appendix summarizes the additional differences between the 80387 NPX and the
8087 NPX (other than those already included in Appendix B), and provides details showing
how 8087 programs can be ported to the 80387.

1. The 80387 signals exceptions through a dedicated ERROR# line to the 80386; no inter­
rupt controller is needed for this purpose. The 8087 requires an interrupt controller
(8259A) to interrupt the CPU when an unmasked exception occurs. Therefore, any
interrupt-con troller-oriented instructions in numeric exception handlers for the 8087
should be deleted.

2. The 8087 instructions FENI/FNENI and FDISI/FNDISI perform no useful function
in the 80387. If the 80387 encounters one of these opcodes in its instruction stream, the
instruction will effectively be ignored-none of the 80387 internal states will be updated.
While 8087 code containing these instructions may be executed on the 80387, it is
unlikely that the exception-handling routines containing these instructions will be
completely portable to the 80387.

3. In real mode and protected mode (not including virtual 8086 mode), interrupt vector 16
must point to the numeric exception handling routine. In virtual 8086 mode, the V86
monitor can be programmed to accommodate a different location of the interrupt vector
for numeric exceptions.

4. The ESC instruction address saved in the 80386/80387 or 80386/80287 includes any
leading prefixes before the ESC opcode. The corresponding address saved in the
8086/8087 does not include leading prefixes.

5. In protected mode (not including virtual 8086 mode), the format of the 80387's saved
instruction and address pointers is different than for the 8087. The instruction opcode
is not saved in protected mode-exception handlers will have to retrieve the opcode from
memory if needed.

6. Interrupt 7 will occur in the 80386 when executing ESC instructions with either TS
(task switched) or EM (emulation) of the 80386 MSW set (TS= 1 or EM = 1). If TS is
set, then a WAIT instruction will also cause interrupt 7. An exception handler should
be included in 80387 code to handle these situations.

7. Interrupt 9 will occur if the second or subsequent words of a floating-point operand fall
outside a segment's size. Interrupt 13 will occur if the starting address of a numeric
operand falls outside a segment's size. An exception handler should be included to report
these programming errors.

D-1

COMPATIBILITY BETWEEN THE 80387 AND THE 8087

8. Except for the processor control instructions, all of the 80387 numeric instructions are
automatically synchronized by the 80386 CPU-the 80386 automatically waits until all
operands have been transferred between the 80386 and the 80387 before executing the
next ESC instruction. No explicit WAIT instructions are required to assure this
synchronization. For the 8087 used with 8086 and 8088 processors, explicit WAITs are
required before each numeric instruction to ensure synchronization. Although 8087
programs having explicit WAIT instructions will execute perfectly on the 80387 without
reassembly, these WAIT instructions are unnecessary.

9. Since the 80387 does not require WAIT instructions before each numeric instruction,
the ASM386 assembler does not automatically generate these WAIT instructions. The
ASM86 assembler, however, automatically precedes every ESC instruction with a WAIT
instruction. Although numeric routines generated using the ASM86 assembler will
generally execute correctly on the 80386/20, reassembly using ASM386 may result in
a more compact code image and faster execution.

The processor control instructions for the 80387 may be coded using either aWAIT or
No-WAIT form of mnemonic. The WAIT forms of these instructions cause ASM386
to precede the ESC instruction with a CPU WAIT instruction, in the identical manner
as does ASM86.

10. The address of a memory operand stored by FSA VE or FSTENV is undefined if the
previous ESC instruction did not refer to memory.

11. Because the 80387 automatically normalizes denormal numbers when possible, an 8087
program that uses the denormal exception solely to normalize denormal operands can
run on an 80387 by masking the denormal exception. The 8087 denormal exception
handler would not be used by the 80387 in this case. A numerics program runs faster
when the 80387 performs normalization of denormal operands. A program can detect
at run-time whether it is running on an 80387 or 8087/80287 and disable the denormal
exception when an 80387 is used.

D-2

80387 80-Bit CHMOS III
Numeric Processor Extension

E

This appendix is a copy of the 80387 Data Sheet, which is also available separately. (The
AC specifications have been deliberately left out.) The specifications in data sheets are subject
to change; consult the most recent data sheet for design-in information.

•
•

•
•
•

•

80387
80-BIT CHMOS III

NUMERIC PROCESSOR EXTENSION
High Performance SO-Bit Internal • Full-Range Transcendental Operations
Architecture for SINE, COSINE, TANGENT,

Implements ANSI/IEEE Standard 754- ARCTANGENT and LOGARITHM

19S5 for Binary Floating-Point • Built-In Exception Handling
Arithmetic • Operates Independently of Real,
Five to Six Times SOS7/S02S7 Protected and Virtual-SOS6 Modes of
Performance the S03S6

Upward Object-Code Compatible from • Eight SO-Bit Numeric Registers, Usable
SOS7 and S02S7 as Individually Addressable General

Expands S03S6 Data Types to Include Registers or as a Register Stack

32-, 64-, SO-Bit Floating POint, 32-, 64- • Available in 6S-Pin PGA Package
Bit Integers and 1S-Digit BCD Operands (See Packaging Spec: Order #231369)

Directly Extends S03S6 Instruction Set
to Include Trigonometric, Logarithmic,
Exponential and Arithmetic Instructions
for All Data Types

The Intel 80387 is a high-performance numerics processor extension that extends the 80386 architecture with
floating point, extended integer and BCD data types. The 80386/80387 computing system fully conforms to
the ANSIIIEEE floating-point standard. Using a numerics oriented architecture, the 80387 adds over seventy
mnemonics to the 80386/80387 instruction set, making the 80386/80387 a complete solution for high-per­
formance numerics processing. The 80387 is implemented with 1.5 micron, high-speed CHMOS III technology
and packaged in a 68-pin ceramic pin grid array (PGA) package. The 80386/80387 is upward object-code
compatible from the 80386/80287, 80286/80287 and 808618087 computing systems.

I
BUS CONTROL LOGIC I DATA INTERFACE AND CONTROL UNIT I FLOATING POINT UNIT

31 DBUS INTERFACE
DATA ALIGNMENT AND OPERAND CHECKING

16

00-D31

386CLK2 387CLK2

231920-1

Figure 0.1. 80387 Block Diagram

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel product. No other circuit patent
licenses are implied. Information contained herein supersedes previously published specifications on these devices from Intel. January 1987
CD Intel Corporation, 1987 Order Number: 231920·002

intJ 80387

CONTENTS
1.0 Functional Description. 4
2.0 Programming Interface. 5

2.1 Data Types 5
2.2 Numeric Operands . 5
2.3 Register Set ... 7

2.3.1 Data Registers ... 7
2.3.2 Tag Word . 7
2.3.3 Status Word. 8
2.3.4 Instruction and Data Pointers ... 11
2.3.5 Control Word.. 13

2.4 Interrupt Description. 13
2.5 Exception Handling.. 14
2.6 Initialization ... 14
2.7 8087 and 80287 Compatibility. 15

2.7.1 General Differences. 15
2.7.2 Exceptions... 16

3.0 Hardware Interface , . 16
3.1 Signal Description. 16

3.1.1 80386 Clock 2 (386CLK2) 16
3.1.2 80387 Clock 2 (387CLK2). 16
3.1.3 80387 Clocking Mode (CKM)... 18
3.1.4 System Reset (RESETIN). 18
3.1.5 Processor Extension Request (PEREQ) 18
3.1.6 Busy Status (BUSY #) . 18
3.1.7 Error Status (ERROR #) . 18
3.1.8 Data Pins (D31-DO) '" 18
3.1.9 Write/Read Bus Cycle (W/R#) 18
3.1.10 Address Strobe (ADS#) ... 19
3.1.11 BusReadylnput(READY#).. 19
3.1.12 Ready Output (READYO #) .. 19
3.1.13 Status Enable (STEN) 19
3.1.14 NPX Select #1 (NPS1#).. 19
3.1.15 NPXSelect #2 (NPS2) 19
3.1.16 Command (CMDO#) ... 19

3.2 Processor Architecture. 19
3.2.1 Bus Control Logic. 19
3.2.2 Data Interface and Control Unit. 20
3.2.3 Floating Point Unit. 20

3.3 System Configuration . 20
3.3.1 Bus Cycle Tracking. .. 21
3.3.2 80387 Addressing .. 21
3.3.3 Function Select .. 21
3.3.4 CPU/NPX Synchronization. 21
3.3.5 Synchronous or Asynchronous Modes. 21
3.3.6 Automatic Bus Cycle Termination 22

3.4 Bus Operation ... 22
3.4.1 Nonpipelined Bus Cycles. 23

3.4.1.1 Write Cycle. 23
3.4.1.2 Read Cycle. 23

3.4.2 Pipelined Bus Cycles ... 24
3.4.3 Bus Cycles of Mixed Type. 25
3.4.4 BUSY # and PEREQ Timing Relationship 25

4.0 Mechanical Data ... 27

2

inter 80387

5.0 Electrical Data .. 28
5.1 Absolute Maximum Ratings . 28
5.2 DC Characteristics . 28
5.3 AC Characteristics . 29

6.0 80387 Extensions to the 80386 Instruction Set 33
Appendix A-Compatibility Between the 80287 NPX and the 8087 37

Figure 0.1
Figure 1.1
Figure 2.1
Figure 2.2
Figure 2.3

Figure 2.4

Figure 2.5

Figure 2.6

Figure 2.7
Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 3.7
Figure 4.1
Figure 5.1
Figure 5.2
Figure 5.3
Figure 5.4
Figure 5.5
Figure 5.6

Table 2.1
Table 2.2
Table 2.3
Table 2.4
Table 2.5
Table 2.6
Table 2.7
Table 3.1
Table 3.2
Table 3.3
Table 3.4
Table 5.1
Table 5.2
Table 5.3

FIGURES
80387 Block Diagram .. .
80386/80387 Register Set .. .
80387 Tag Word
80387 Status Word .. .
Protected Mode 80387 Instruction and Data Pointer Image in Memory,

32-Bit Format
Real Mode 80387 Instruction and Data Pointer Image in Memory, 32-Bit

Format
Protected Mode 80387 Instruction and Data Pointer Image in Memory,

16-Bit Format
Real Mode 80387 Instruction and Data Pointer Image in Memory, 16-Bit

Format
80387 Control Word
80387 Pin Configuration
80386/80387 System Configuration
Bus State Diagram .. .
Nonpipelined Read and Write Cycles
Fastest Transitions to and from Pipelined Cycles
Pipelined Cycles with Wait States
STEN, BUSY # and PEREQ Timing Relationship
Package Description .. .
386CLK2/387CLK2 Waveform
Output Signals .. .
Input and 1/0 Signals .. .
RESET Signal
Float from STEN .. .
Other Parameters

TABLES
80387 Data Type Representation in Memory
Condition Code Interpretation
Condition Code Interpretation after FPREM and FPREM11nstructions .
Condition Code Resulting from Comparison
Condition Code Defining Operand Class
80386 Interrupt Vectors Reserved for NPX
Exceptions
80387 Pin Summary
80387 Pin Cross-Reference .. .
Output Pin Status after Reset
Bus Cycles Definition .. .
DC Specifications
Timing Requirements .. .
Other Parameters

3

1
4
7
8

11

12

12

12
13
18
20
22
24
25
26
26
27
30
30
31
31
31
32

6
9

10
10
10
14
15
17
17
18
21
28
29
32

intJ 80387

80386 Registers

i

80387 Data Registers
Tag

GENERAL REGISTERS SEGMENT REGISTERS Field
31 15 0 15 0 79 78 64 63 0 1 0

,----

EAX
AX CS RO Sign Exponent Significand

1 AH 1 AL
f------

SS
R1

f---
EBX

BX R2

1 BH 1 BL
DS f------

R3
ES f------

CX R4
ECX

1 CH 1 CL
f---FS R5
f---

EDX
DX GS R6

1 DH -I DL
f------

R7
'-----

ESI
1

31 0
SI

I : EF~GS : I

15 0 47 0

EDI

1

Control Register I Instruction Pointer (in 80386) 1
DI Status Register 1 Data Pointer (in 80386) 1

EBP

I
Tag Word

BP

ESP

1 SP

:
Figure 1.1.80386/80387 Register Set

1.0 FUNCTIONAL DESCRIPTION

The 80387 Numeric Processor Extension (NPX) pro­
vides arithmetic instructions for a variety of numeric
data types in 80386/80387 systems. It also exe­
cutes numerous built-in transcendental functions
(e.g. tangent, sine, cosine, and log functions). The
80387 effectively extends the register and instruc­
tion set of an 80386 system for existing data types
and adds several new data types as well. Figure 1.1
shows the model of registers visible to 80386/80387
programs. Essentially, the 80387 can be treated as
an additional resource or an extension to the 80386.
The 80386 together with an 80387 can be used as a
single unified system, the 80386/80387.

The 80387 works the same whether the 80386 is
executing in real-address mode, protected mode, or
virtual-8086 mode. All memory access is handled by
the 80386; the 80387 merely operates on instruc­
tions and values passed to it by the 80386. There­
fore, the 80387 is not sensitive to the processing
mode of the 80386.

4

In real-address mode and virtual-8086 mode, the
80386/80387 is completely upward compatible with
software for 808618087, 80286/80287 real-address
mode, and 80386/80287 real-address mode sys­
tems.

In protected mode, the 80386/80387 is completely
upward compatible with software for 80286/80287
protected mode, and 80386/80287 protected mode
systems.

The only differences of operation that may appear
when 808618087 programs are ported to a protect­
ed-mode 80386/80387 system (not using virtual-
8086 mode), is in the format of operands for the
administrative instructions FLDENV, FSTENV,
FRSTOR and FSAVE. These instructions are nor­
mally used only by exception handlers and operating
systems, not by applications programs.

The 80387 contains three functional units that can
operate in parallel to increase system performance.
The 80386 can be transferring commands and data
to the 80387 bus control logic for the next instruction
while the 80387 floating-point unit is performing the
current numeric instruction.

inter 80387

2.0 PROGRAMMING INTERFACE

The 80387 adds to an 80386 system additional data
types, registers, instructions, and interrupts specifi­
cally designed to facilitate high-speed numerics pro­
cessing. To use the 80387 requires no special pro­
gramming tools, because all new instructions and
data types are directly supported by the 80386 as­
sembler and compilers for high-level languages. All
8086/8088 development tools that support the 8087
can also be used to develop software for the
80386/80387 in real-address mode or virtual-8086
mode. All 80286 development tools that support the
80287 can also be used to develop software for the
80386/80387.

All communication between the 80386 and the
80387 is transparent to applications software. The
CPU automatically controls the 80387 whenever a
numerics instruction is executed. All physical memo­
ry and virtual memory of the CPU are available for
storage of the instructions and operands of pro­
grams that use the 80387. All memory addressing
modes, including use of displacement, base register,
index register, and scaling, are available for address­
ing numerics operands.

Section 6 at the end of this data sheet lists by class
the instructions that the 80387 adds to the instruc­
tion set of an 80386 system.

5

2.1 Data Types

Table 2.1 lists the seven data types that the 80387
supports and presents the format for each type. Op­
erands are stored in memory with the least signifi­
cant digit at the lowest memory address. Programs
retrieve these values by generating the lowest ad­
dress. For maximum system performance, all oper­
ands should start at physical-memory addresses
evenly divisible by four (doubleword boundaries); op­
erands may begin at any other addresses, but will
require extra memory cycles to access the entire op­
erand.

Internally, the 80387 holds all numbers in the ex­
tended-precision real format. I nstructions that load
operands from memory automatically convert oper­
ands represented in memory as 16-, 32-, or 64-bit
integers, 32- or 64-bit floating-point numbers, or 18-
digit packed BCD numbers into extended-precision
real format. Instructions that store operands in mem­
ory perform the inverse type conversion.

2.2 Numeric Operands

A typical NPX instruction accepts one or two oper­
ands and produces a single result. In two-operand
instructions, one operand is the contents of an NPX
register, while the other may be a memory location.
The operands of some instructions are predefined;
for example FSQRT always takes the square root of
the number in the top stack element.

inter 80387

Table 2.1. 80387 Data Type Representation in Memory

Most Significant Byte HIGHEST ADDRESSED BYTE
Data

Range Precision
017 017 017 017 017 017 01 7 Formats 7

Word Integer 104 16 Bits .lITWO S
COMPLEMENT)

15 0

Short Integer 109 32 Bits 11TWO S
COMPLEMENT}

31 0

Long Integer 1019 64 Bits

63

Packed BCD 1018 18 Digits Sl x I d" d1t;. dl~ d 1.1 d'j d12 d"

MAGNITUDE
d 'U d'-j d, d, d,

79 72

Single Precision 10±38 24 Bits ;\ BIASED I
S EXPONENT SIGN1FlCAND I
J1 23'- I, 0

Double Precision 10±308 53 Bits sL BIASED I SIGNIFtCAND EXPONENT

63 52'-1 ..

Extended 10-,-4932 64 Bits sL BIASED h SIGNIFICANO EXPONENT Precision
79

NOTES:
(1) S ~ Sign bit (0 ~ positive, 1 ~ negative)
(2) dn ~ Decimal digit (two per byte)

64 63'

(3) X = Bits have no significance; 80387 ignores when loading, zeros when storing
(4). = Position of implicit binary point
(5) I = Integer bit of significand; stored in temporary real, implicit in single and double precision
(6) Exponent Bias (normalized values):

Single: 127 (7FH)
Double: 1023 (3FFH)
Extended Real: 16383 (3FFFH)

(7) Packed BCD: (-I)S (017 ... 00)
(8) Real: (-I)S (2E-BIAS) (Fo F1"')

6

d.

01 7 01 7 a I

I (TWO S
COMPLEM(NT)

0

d; d ,1 d, dJ
0

I
0

I
0

231920-2

inter 80387

15 o
TAG (7) TAG (6) TAG (5) TAG (4) TAG (3) TAG (2) TAG (1) TAG (0)

NOTE:
The index i of tag(i) is not top-relative. A program typically uses the "top" field of Status Word to determine which tag(i)
field refers to logical top of stack.
TAG VALUES:

00 = Valid
01 = Zero
10 = QNaN, SNaN, Infinity, Denormal and Unsupported Formats
11 = Empty

Figure 2.1. 80387 Tag Word

2.3 Register Set

Figure 1.1 shows the 80387 register set. When an
80387 is present in a system, programmers may use
these registers in addition to the registers normally
available on the 80386.

2.3.1 DATA REGISTERS

80387 computations use the 80387's data registers.
These eight 80-bit registers provide the equivalent
capacity of twenty 32-bit registers. Each of the eight
data registers in the 80387 is 80 bits wide and is
divided into "fields" corresponding to the NPXs ex­
tended-precision real data type.

The 80387 register set can be accessed either as a
stack, with instructions operating on the top one or
two stack elements, or as a fixed register set, with
instructions operating on explicitly designated regis­
ters. The TOP field in the status word identifies the
current top-of-stack register. A "push" operation
decrements TOP by one and loads a value into the
new top register. A "pop" operation stores the value
from the current top register and then increments

7

TOP by one. Like 80386 stacks in memory, the
80387 register stack grows "down" toward lower­
addressed registers.

Instructions may address the data registers either
implicitly or explicitly. Many instructions operate on
the register at the TOP of the stack. These instruc­
tions implicitly address the register at which TOP
points. Other instructions allow the programmer to
explicitly specify which register to user. This explicit
register addressing is also relative to TOP.

2.3.2 TAG WORD

The tag word marks the content of each numeric
data register, as Figure 2.1 shows. Each two-bit tag
represents one of the eight numerics registers. The
principal function of the tag word is to optimize the
NPXs performance and stack handling by making it
possible to distinguish between empty and nonemp­
ty register locations. It also enables exception han­
dlers to check the contents of a stack location with­
out the need to perform complex decoding of the
actual data.

intJ 80387

,------------------ 80387 BUSY

,--,-,--------------- TOP OF STACK POINTER

,-H-+--r---,-,-------------- CONDITION CODE

ERROR SUMMARY STATUS -------'
STACK FLAG _______ --l

EXCEPTION FLAGS:

PRECISION -----------"

UNDERFLOW ---------~

OVERFLOW ---------------'

ZERO DIVIDE -------------'

DENORMALIZED OPERAND ---------------'

INVALID OPERATION -----------------'

231920-3

ES is set if any unmasked exception bit is set; cleared otherwise.
See Table 2.2 for interpretation of condition code.
TOP values:

000 ~ Register 0 is Top of Stack
001 ~ Register 1 is Top of Stack

111 ~ Register 7 is Top of Stack
For definitions of exceptions, refer to the section entitled
"Exception Handling"

Figure 2.2. 80387 Status Word

2.3.3 STATUS WORD

The 16-bit status word (in the status register) shown
in Figure 2.2 reflects the overall state of the 80387.
It may be read and inspected by CPU code.

Bit 15, the B-bit (busy bit) is included for 8087 com­
patibility only. It reflects the contents of the ES bit
(bit 7 of the status word), not the status of the
BUSY # output of 80387/80287.

Bits 13-11 (TOP) point to the 80387 register that is
the current top-of-stack.

The four numeric condition code bits (C3-CO) are
similar to the flags in a CPU; instructions that per­
form arithmetic operations update these bits to re­
flect the outcome. The effects of these instructions
on the condition code are summarized in Tables 2.2
through 2.5.

Bit 7 is the error summary (ES) status bit. This bit is
set if any unmasked exception bit is set; it is clear
otherwise. If this bit is set, the ERROR# signal is
asserted.

8

Bit 6 is the stack flag (SF). This bit is used to distin­
guish invalid operations due to stack overflow or un­
derflow from other kinds of invalid operations. When
SF is set, bit 9 (C1) distinguishes between stack
overflow (C1 = 1) and underflow (C1 = 0).

Figure 2.2 shows the six exception flags in bits 5-0
of the status word. Bits 5-0 are set to indicate that
the 80387 has detected an exception while execut­
ing an instruction. A later section entitled "Exception
Handling" explains how they are set and used.

Note that when a new value is loaded into the status
word by the FLDENV or FRSTOR instruction, the
value of ES (bit 7) and its reflection in the B-bit (bit
15) are not derived from the values loaded from
memory but rather are dependent upon the values of
the exception flags (bits 5-0) in the status word and
their corresponding masks in the control word. If ES
is set in such a case, the ERROR# output of the
80387 is activated immediately.

il1tef 80387

Table 2.2. Condition Code Interpretation

Instruction CO(S) I C3(Z) C1 (A) C2(C)

FPREM, FPREM1 Three least significant bits
Reduction

(see Table 2.3) of quotient
0= complete

Q2 QO Q1
orO/U# 1 = incomplete

FCOM, FCOMP,
FCOMPP, FTST, Result of comparison

Zero
Operand is not

FUCOM, FUCOMP, (see Table 2.4)
orO/U#

comparable
FUCOMPP, FICOM, (Table 2.4)
FICOMP

FXAM Operand class Sign Operand class
(see Table 2.5) orO/U# (Table 2.5)

FCHS, FABS, FXCH,
FINCTOP, FDECTOP,

Zero
Constant loads, UNDEFINED

or O/U#
UNDEFINED

FXTRACT, FLD,
FILD, FBLD,
FSTP (ext real)

FIST, FBSTP,
FRNDINT, FST,
FSTP, FADD, FMUL,

Roundup
FDIV, FDIVR, UNDEFINED UNDEFINED
FSUB, FSUBR, orO/U#

FSCALE, FSQRT,
FPATAN, F2XM1,
FYL2X, FYL2XP1

FPTAN, FSIN Roundup Reduction
FCOS, FSINCOS UNDEFINED orO/U#, 0= complete

undefined 1 = incomplete
if C2 = 1

FLDENV, FRSTOR Each bit loaded from memory

FLDCW, FSTENV,
FSTCW, FSTSW, UNDEFINED
FCLEX, FINIT,
FSAVE

O/U# When both IE and SF bits of status word are set, indicating a stack exception, this bit
distinguishes between stack overflow (C1 = 1) and underflow (C1 = 0).

Reduction If FPREM or FPREM1 produces a remainder that is less than the modulus, reduction is
complete. When reduction is incomplete the value at the top of the stack is a partial
remainder, which can be used as input to further reduction. For FPTAN, FSIN, FCOS, and
FSINCOS, the reduction bit is set if the operand at the top of the stack is too large. In this
case the original operand remains at the top of the stack.

Roundup When the PE bit of the status word is set, this bit indicates whether the last rounding in the
instruction was upward.

UNDEFINED Do not rely on finding any specific value in these bits.

9

inter 80387

Table 2.3. Condition Code Interpretation after FPREM and FPREM1 Instructions

Condition Code
Interpretation after FPREM and FPREM1

C2 C3 C1 CO

Incomplete Reduction:
1 X X X further interation required

for complete reduction

01 00 02 o MOD8

0 0 0 0
0 1 0 1

Complete Reduction:
1 0 0 2

0
1 1 0 3

CO, C3, C1 contain three least

0 0 1 4
significant bits of quotient

0 1 1 5
1 0 1 6
1 1 1 7

Table 2.4. Condition Code Resulting from Comparison

Order C3 C2 CO

TOP> Operand 0 0 0
TOP < Operand 0 0 1
TOP = Operand 1 0 0
Unordered 1 1 1

Table 2.5. Condition Code Defining Operand Class

C3 C2 C1 CO Value at TOP

0 0 0 0 + Unsupported
0 0 0 1 + NaN
0 0 1 0 - Unsupported
0 0 1 1 - NaN
0 1 0 0 + Normal
0 1 0 1 + Infinity
0 1 1 0 - Normal
0 1 1 1 - Infinity
1 0 0 0 +0
1 0 0 1 + Empty
1 0 1 0 -0
1 0 1 1 - Empty
1 1 0 0 + Denormal
1 1 1 0 - Denormal

10

inter 80387

2.3.4 INSTRUCTION AND DATA POINTERS

Because the NPX operates in parallel with the CPU,
any errors detected by the NPX may be reported
after the CPU has executed the ESC instruction
which caused it. To allow identification of the failing
numeric instruction, the 80386/80387 contains two
pointer registers that supply the address of the fail­
ing numeric instruction and the address of its numer­
ic memory operand (if appropriate).

The instruction and data pointers are provided for
user-written error handlers. These registers are ac­
tually located in the 80386, but appear to be located
in the 80387 because they are accessed by the ESC
instructions FLDENV, FSTENV, FSAVE, and
FRSTOR. (In the 8086/8087 and 80286/80287,
these registers are located in the NPX.) Whenever
the 80386 decodes a new ESC instruction, it saves

the address of the instruction (including any prefixes
that may be present), the address of the operand (if
present), and the opcode.

The instruction and data pointers appear in one of
four formats depending on the operating mode of
the 80386 (protected mode or real-address mode)
and depending on the operand-size attribute in ef­
fect (32-bit operand or 16-bit operand). When the
80386 is in virtual-8086 mode, the real-address
mode formats are used. (See Figures 2.3 through
2.6.) The ESC instructions FLDENV, FSTENV,
FSAVE, and FRSTOR are used to transfer these val­
ues between the 80386 registers and memory. Note
that the value of the data pointer is undefined if the
prior ESC instruction did not have a memory oper­
and.

31 23
32-BIT PROTECTED MODE FORMAT

15 7 o

RESERVED CONTROL WORD o

RESERVED STATUS WORD 4

RESERVED TAG WORD 8

IPOFFSET C

RESERVED CSSELECTOR 10

DATA OPERAND OFFSET 14

RESERVED OPERAND SELECTOR 18

Figure 2.3. Protected Mode 80387 Instruction and Data POinter Image in Memory, 32·Bit Format

11

infef 80387

32-BIT REAL-ADDRESS MODE FORMAT
31 23 15 7 o

RESERVED CONTROL WORD

RESERVED STATUS WORD

RESERVED TAG WORD

RESERVED INSTRUCTION POINTER 15 .. 0

0000 I INSTRUCTION POINTER 31 .. 16 I 0 I OPCODE 10 .. 0

RESERVED OPERAND POINTER 15 .. 0

0000 I OPERAND POINTER 31 .. 16 I 0000 00000000

Figure 2.4. Real Mode 80387 Instruction and Data Pointer Image in Memory, 32-Bit Format

16-BIT PROTECTED MODE FORMAT 16-BIT REAL-ADDRESS MODE AND
VIRTUAL-a086 MODE FORMAT 15 7

CONTROL WORD

STATUS WORD

TAG WORD

IPOFFSET

CSSELECTOR

OPERAND OFFSET

OPERAND SELECTOR

Figure 2.5. Protected Mode 80387
Instruction and Data Pointer

Image in Memory, 16-Bit Format

o

o

2

4

6

a

A

C

12

15 7 o

CONTROL WORD

STATUS WORD

TAG WORD

INSTRUCTION POINTER 15 .. 0

IP19.16 101 OPCODE 10 .. 0

OPERAND POINTER 15 .. 0

DP 19.16/0 / 0 0 0 0 0 0 0 0 0 o 0

Figure 2.6. Real Mode 80387
Instruction and Data Pointer

Image in Memory, 16-Bit Format

o

4

a

C

10

14

1a

o

2

4

6

8

A

C

inter 80387

5 117 a

RESERVED

RESERVED"
ROUNDING CONTROL

PRECISION CONTROL

I x x x I x I RC I PC I x x I : I ~ I ~ I ~ I ~ I ~ I " "0" AFTER RESET OR FIN IT;
CHANGEABLE UPON LOADING THE
CONTROL WORD (CW). PROGRAMS
MUST IGNORE THIS BIT.

RESERVED

EXC EPTION MASKS:

PRECISION

U NDERFLOW

OVERFLOW

ERO DIVIDE
D OPERAND

Z
DENORMALIZE

INVALID OPERATION

Precision Control
00-24 bits (single precision)
01-(reserved)
10-53 bits (double precision)
11-64 bits (extended precision)

Rounding Control
OO-Round to nearest or even
01-Round down (toward - 00)
1 o-Round up (toward + "")
11-Chop (truncate toward zero)

231920-4

Figure 2.7. 80387 Control Word

2.3.5 CONTROL WORD

The NPX provides several processing options that
are selected by loading a control word from memory
into the control register. Figure 2.7 shows the format
and encoding of fields in the control word.

The low-order byte of this control word configures
the 80387 error and exception masking. Bits 5-0 of
the control word contain individual masks for each of
the six exceptions that the 80387 recognizes.

The high-order byte of the control word configures
the 80387 operating mode, including precision and
rounding.

• Bit 12 no longer defines infinity control and is a
reserved bit. Only affine closure is supported for
infinity arithmetic. The bit is initialized to zero after
RESET or FINIT and is changeable upon loading
the CWo Programs must ignore this bit.

• The rounding control (RG) bits (bits 11-10) pro­
vide for directed rounding and true chop, as well
as the unbiased round to nearest even mode
specified in the IEEE standard. Rounding control

13

affects only those instructions that perform
rounding at the end of the operation (and thus
can generate a precision exception); namely,
FST, FSTP, FIST, all arithmetic instructions (ex­
cept FPREM, FPREM1, FXTRACT, FABS, and
FCHS), and all transcendental instructions.

• The precision control (PG) bits (bits 9-8) can be
used to set the 80387 internal operating precision
of the significand at less than the default of 64
bits (extended precision). This can be useful in
providing compatibility with early generation arith­
metic processors of smaller precision. PC affects
only the instructions ADD, SUB, DIV, MUL, and
SORT. For all other instructions, either the preci­
sion is determined by the opcode or extended
precision is used.

2.4 Interrupt Description

Several interrupts of the 80386 are used to report
exceptional conditions while executing numeric pro­
grams in either real or protected mode. Table 2.6
shows these interrupts and their causes.

inter 80387

Table 2.6. 80386 Interrupt Vectors Reserved for NPX

Interrupt
Cause of Interrupt

Number

7 An ESC instruction was encountered when EM or TS of 80386 control register zero (CRO)
was set. EM = 1 indicates that software emulation of the instruction is required. When TS
is set, either an ESC or WAIT instruction causes interrupt 7. This indicates that the current
NPX context may not belong to the current task.

9 An operand of a coprocessor instruction wrapped around an addressing limit (OFFFFH for
small segments, OFFFFFFFFH for big segments, zero for expand-down segments) and
spanned inaccessible addressesa. The failing numerics instruction is not restartable. The
address of the failing numerics instruction and data operand may be lost; an FSTENV does
not return reliable addresses. As with the 80286/80287, the segment overrun exception
should be handled by executing an FNINIT instruction (i.e. an FINIT without a preceding
WAIT). The return address on the stack does not necessarily point to the failing instruction
nor to the following instruction. The interrupt can be avoided by never allowing numeric
data to start within 108 bytes of the end of a segment.

13 The first word or doubleword of a numeric operand is not entirely within the limit of its
segment. The return address pushed onto the stack of the exception handler points at the
ESC instruction that caused the exception, including any prefixes. The 80387 has not
executed this instruction; the instruction pointer and data pointer register refer to a
previous, correctly executed instruction.

16 The previous numerics instruction caused an unmasked exception. The address of the
faulty instruction and the address of its operand are stored in the instruction pointer and
data pointer registers. Only ESC and WAIT instructions can cause this interrupt. The
80386 return address pushed onto the stack of the exception handler points to a WAIT or
ESC instruction (including prefixes). This instruction can be restarted after clearing the
exception condition in the NPX. FNINIT, FNCLEX, FNSTSW, FNSTENV, and FNSAVE
cannot cause this interrupt.

. , ,
a. An operand may wrap around an addreSSing limit when the segment limit IS near an addreSSing limit and the operand IS near the largest valid
address in the segment. Because of the wrap·around, the beginning and ending addresses of such an operand will be at opposite ends of the
segment. There are two ways that such an operand may also span inaccessible addresses: 1) if the segment limit is not equal to the addressing
limit (e.g. addressing limit is FFFFH and segment limit is FFFDH) the operand will span addresses that are not within the segment (e,g, an a·byte
operand that starts at valid offset FFFC will span addresses FFFC-FFFF and 0000·0003; however addresses FFFE and FFFF are not valid,
because they exceed the lim~); 2) if the operand begins and ends in present and accessible pages but intermediate bytes of the operand fall in a
not·present page or a page to which the procedure does not have access rights,

2.5 Exception Handling

The 80387 detects six different exception conditions
that can occur during instruction execution. Table
2.7 lists the exception conditions in order of prece­
dence, showing for each the cause and the default
action taken by the 80387 if the exception is masked
by its corresponding mask bit in the control word.

Any exception that is not masked by the control
word sets the corresponding exception flag of the
status word, sets the ES bit of the status word, and
asserts the ERROR# signal. When the CPU
attempts to execute another ESC instruction or
WAIT, exception 16 occurs. The exception condi­
tion must be resolved via an interrupt service
routine. The 80386/80387 saves the address of the
floating-point instruction that caused the exception
and the address of any memory operand required
by that instruction.

14

2.6 Initialization

80387 initialization software must execute an FNIN­
IT instruction (i.e. an FINIT without a preceding
WAIT) to clear ERROR#-. The FNINIT is not re­
quired for the 80287, though Intel documentation
recommends its use (refer to the Numerics' Supple­
ment to the iAPX 286 Programmer's Reference
Manual). After a hardware RESET, the ERROR#­
output is asserted to indicate that an 80387 is pres­
ent. To accomplish this, the IE and ES bits of the
status word are set, and the 1M bit in the control
word is reset. After FNINIT, the status word and the
control word have the same values as in an 80287
after RESET.

inter 80387

2.78087 and 80287 Compatibility

This section summarizes the differences between
the 80387 and the 80287. Any migration from the
8087 directly to the 80387 must also take into ac­
count the differences between the 8087 and the
80287 as listed in Appendix A.

Many changes have been designed into the 80387
to directly support the IEEE standard in hardware.
These changes result in increased performance by
eliminating the need for software that supports the
standard.

2.7.1 GENERAL DIFFERENCES

The 80387 supports only affine closure for infinity
arithmetic, not projective closure. Bit 12 of the Con­
trol Word (CW) no longer defines infinity control. It is
a reserved bit; but it is initialized to zero after RESET
or FINIT and is changeable upon loading the CWo
Programs must ignore this bit.

Operands for FSCALE and FPATAN are no longer
restricted in range (except for ± 00); F2XM1 and
FPT AN accept a wider range of operands.

The results of transcendental operations may be
slightly different from those computed by 80287.

In the case of FPTAN, the 80387 supplies a true
tangent result in ST(1), and (always) a floating pOint
1 in ST.

Rounding control is in effect for FLD constant.

Software cannot change entries of the tag word to
values (other than empty) that do not reflect the ac­
tual register contents.

After reset, FINIT, and incomplete FPREM, the
80387 resets to zero the condition code bits C3-CO
of the status word.

In conformance with the IEEE standard, the 80387
does not support the special data formats: pseu­
dozero, pseudo-NaN, pseudoinfinity, and unnormal.

Table 2.7. Exceptions

Exception Cause
Default Action

(if exception is masked)

Invalid Operation on a signaling NaN, unsupported format, Result is a quiet NaN, integer
Operation indeterminate form (0' 00, 0/0, (+ 00) + (- 00), etc.), or indefinite, or BCD indefinite

stack overflow/underflow (SF is also set).

Denormalized At least one of the operands is denormalized, i.e. it has Normal processing
Operand the smallest exponent but a nonzero significand. continues

Zero Divisor The divisor is zero while the dividend is a noninfinite, Result is 00
nonzero number.

Overflow The result is too large in magnitude to fit in the specified Result is largest finite value
format. or 00

Underflow The true result is nonzero but too small to be Result is denormalized or
represented in the specified format, and, if underflow zero
exception is masked, denormalization causes loss of
accuracy.

Inexact The true result is not exactly representable in the Normal processing
Result specified format (e.g. 1/3); the result is rounded continues
(Precision) according to the rounding mode.

15

inter 80387

2.7.2 EXCEPTIONS

When the overflow or underflow exception is
masked, one difference from the 80287 is in round­
ing when overflow or underflow occurs. The 80387
produces results that are consistent with the round­
ing mode. The other difference is that the 80387
sets its underflow flag only if there is also a loss of
accuracy during denormalization.

A number of differences exist due to changes in the
IEEE standard and to functional improvements to
the architecture of the 80387:

1. Fewer invalid-operation exceptions due to denor­
mal operands, because the instructions FSQRT,
FOIV, FPREM and conversions to BCO or to inte­
ger normalize denormal operands before pro­
ceeding.

2. The FSQRT, FBSTP, and FPREM instructions
may cause underflow, because they support de­
normal operands.

3. The denormal exception can occur during the
transcendental instructions and the FXTRACT in­
struction.

4. The denormal exception no longer takes prece­
dence over all other exceptions.

5. When the operand is zero, the FXTRACT instruc­
tion reports a zero-divide exception and leaves
- 00 in ST(1).

6. The status word has a new bit (SF) that signals
when invalid-operation exceptions are due to
stack underflow or overflow.

7. FLO extended precision no longer reports den or­
mal exceptions, because the instruction is not nu­
meric.

8. FLO single/double precision when the operand is
denormal converts the number to extended preci­
sion and signals the denormalized operand ex­
ception. When loading a signaling NaN, FLO
single/double precision signals an invalid-opera­
tion exception.

9. The 80387 only generates quiet NaNs (as on the
80287); however, the 80387 distinguishes be­
tween quiet NaNs and signaling NaNs. Signaling
NaNs trigger exceptions when they are used as
operands; quiet NaNs do not (except for FCOM,
FIST, and FBSTP which also raise IE for quiet
NaNs).

3.0 HARDWARE INTERFACE

In the following description of hardware interface,
the # symbol at the end of a signal name indicates
that the active or asserted state occurs when the

16

signal is at a low Voltage. When no # is present after
the signal name, the signal is asserted when at the
high voltage level.

3.1 Signal Description

In the following signal descriptions, the 80387 pins
are grouped by function as follows:

1. Execution control-386CLK2, 387ClK2, CKM,
RESETIN

2. NPX handshake-PEREQ, BUSY#, ERROR#

3. Bus interface pins-031-00, W/R#, AOS#,
REAOY#, REAOYO#

4. Chip/Port Select-STEN, NPS1 #, NPS2,
CMOO#

5. Power supplies-Vee, Vss

Table 3.1 lists every pin by its identifier, gives a brief
description of its function, and lists some of its char­
acteristics. All output signals are tristate; they leave
floating state only when STEN is active. The output
buffers of the bidirectional data pins 031-00 are
also tristate; they leave floating state only in read
cycles when the 80387 is selected (i.e. when STEN,
NPS1 #, and NPS2 are all active).

Figure 3.1 and Table 3.2 together show the location
of every pin in the pin grid array.

3.1.1 80386 CLOCK 2 (386CLK2)

This input uses the 80386 CLK2 signal to time the
bus control logic. Several other 80387 signals are
referenced to the rising edge of this signal. When
CKM = 1 (synchronous mode) this pin also clocks
the data interface and control unit and the floating­
point unit of the 80387. This pin requires MOS-Ievel
input. The Signal on this pin is divided by two to pro­
duce the internal clock signal ClK.

3.1.280387 CLOCK 2 (387CLK2)

When CKM = 0 (asynchronous mode) this pin pro­
vides the clock for the data interface and control unit
and the floating-point unit of the 80387. In this case,
the ratio of the frequency of 387CLK2 to the fre­
quency of 386CLK2 must lie within the range 10:16
to 16:10. When CKM = 1 (synchronous mode) this
pin is ignored; 386ClK2 is used instead for the data
interface and control unit and the floating-point unit.
This pin requires TTL-level input.

80387

Table 3.1. 80387 Pin Summary

Pin
Function

Active Input! Referenced
Name State Output To

386CLK2 80386 CLocK 2 I
387CLK2 80387 CLocK 2 I
CKM 80387 CLocKing Mode I
RESETIN System reset High I 386CLK2

PEREQ Processor Extension High 0 386CLK2/STEN
REQuest

BUSY# Busy status Low 0 386CLK2/STEN
ERROR# Error status Low 0 387CLK2/STEN

031-00 Data pins High I/O 386CLK2
W/R# Write/Read bus cycle HilLa I 386CLK2
AOS# ADdress Strobe Low I 386CLK2
REAOY# Bus ready input Low I 386CLK2
REAOYO# Ready output Low 0 386CLK2/STEN

STEN STatus ENable High I 386CLK2
NPS1# NPX select # 1 Low I 386CLK2
NPS2 NPX select #2 High I 386CLK2
CMOO# CoMmanD Low I 386CLK2

Vee I
Vss I

NOTE:
STEN is referenced to only when getting the output pins into or out of tristate mode.

Table 3.2. 80387 Pin Cross-Reference

A2 - 09 C11 - VSS J10 - VSS
A3 - 011 01 - 05 J11 - CKM
A4 - 012 02 - 04 K1 - PEREQ
A5 - 014 010 - 024 K2 - BUSY#
A6 - Vee 011 - 025 K3 - Tie High
A7 - 016 E1 - Vee K5 - W/R#
A8 - 018 E2 - VSS K5 - Vee
A9 - Vee E10 - 026 K6 - NPS2

A10 - 021 E11 - 027 K7 - AOS#
B1 - 08 F1 - Vee K8 - REAOY#
B2 - Vss F2 - VSS K9 - No Connect
B3 - 010 F10 - Vee K10 - 386CLK2
B4 - Vee F11 - VSS K11 - 387CLK2
B5 - 013 G1 - 03 L2 - ERROR#
B6 - 015 G2 - 02 L3 - REAOYO#
B7 - VSS G10 - 028 L4 - STEN
B8 - 017 G11 - 029 L5 - VSS
B9 - 019 H1 - 01 L6 - NPS1#

B10 - 020 H2 - 00 L7 - Vee
B11 - 022 H10 - 030 L8 - CMOO#
C1 - 07 H11 - 031 L9 - Tie High
C2 - 06 J1 - Vss L10 - RESETIN

C10 - 023 J2 - Vee

17

80387

ABCDEFGHJKL

* +

2 + + +

3 + +

4 + +

5 + +

6 + +

7 + +

8 + +

9 + +

10 + + +

11 + +

+ + + +

+ + + +

80387

+ + + +

+ + + +

PIN SIDE VIEW
*Pin 1

+ + +

+ + + +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ + + +

+ + +

231920-5

Figure 3.1. 80387 Pin Configuration

3.1.380387 CLOCKING MODE (CKM)

This pin is a strapping option. When it is strapped to
Vee, the 80387 operates in synchronous mode;
when strapped to Vss, the 80387 operates in asyn­
chronous mode. These modes relate to clocking of
the data interface and control unit and the floating­
point unit only; the bus control logic always operates
synchronously with respect to the 80386.

3.1.4 SYSTEM RESET (RESETIN)

A LOW to HIGH transition on this pin causes the
80387 to terminate its present activity and to enter
a dormant state. RESETIN must remain HIGH for
at least 40 387CLK2 periods. The HIGH to LOW
transitions of RESETIN must be synchronous with
386CLK2, so that the phase of the internal clock of
the bus control logic (which is the 386CLK2 divided
by 2) is the same as the phase of the internal clock
of the 80386. After RESETIN goes LOW, at least 50
387CLK2 periods must pass before the first NPX
instruction is written into the 80387. This pin should
be connected to the 80386 RESET pin. Table 3.3
shows the status of other pins after a reset.

Table 3.3. Output Pin Status during Reset

Pin Value Pin Name

HIGH REAOYO#, BUSY#

LOW PEREa, ERROR#

Tri-State OFF 031-00

18

3.1.5 PROCESSOR EXTENSION REQUEST
(PEREQ)

When active, this pin signals to the 80386 CPU that
the 80387 is ready for data transfer to/from its data
FIFO. When all data is written to or read from the
data FIFO, PEREa is deactivated. This signal al­
ways goes inactive before BUSY # goes inactive.
This signal is referenced to 386CLK2. It should be
connected to the 80386 PEREa input. Refer to Fig­
ure 3.7 for the timing relationships between this and
the BUSY# and ERROR# pins.

3.1.6 BUSY STATUS (BUSV#)

When active, this pin signals to the 80386 CPU that
the 80387 is currently executing an instruction. This
signal is referenced to 386CLK2. It should be con­
nected to the 80386 BUSY # pin. Refer to Figure 3.7
for the timing relationships between this and the
PEREa and ERROR# pins.

3.1.7 ERROR STATUS (ERROR#)

This pin reflects the ES bits of the status register.
When active, it indicates that an unmasked excep­
tion has occurred (except that, immediately after a
reset, it indicates to the 80386 that an 80387 is pres­
ent in the system). This signal can be changed to
inactive state only by the following instructions (with­
out a preceding WAIT): FNINIT, FNCLEX,
FNSTENV, and FNSAVE. This signal is referenced
to 387CLK2. It should be connected to the 80386
ERROR# pin. Refer to Figure 3.7 for the timing rela­
tionships between this and the PEREa and BUSY #
pins.

3.1.8 DATA PINS (031-00)

These bidirectional pins are used to transfer data
and opcodes between the 80386 and 80387. They
are normally connected directly to the correspond­
ing 80386 data pins. HIGH state indicates a value of
one. DO is the least significant data bit. Timings are
referenced to 386CLK2.

3.1.9 WRITE/READ BUS CYCLE (W/R#)

This signal indicates to the 80387 whether the
80386 bus cycle in progress is a read or a write cy­
cle. This pin should be connected directly to the
80386 W/R# pin. HIGH indicates a write cycle;
LOW, a read cycle. This input is ignored if any of the
signals STEN, NPS1 #, or NPS2 is inactive. Setup
and hold times are referenced to 386CLK2.

intJ 80387

3.1.10 ADDRESS STROBE (ADS#)

This input, in conjunction with the READY # input
indicates when the 80387 bus·control logic may
sample W/R# and the chip-select signals. Setup
and hold times are referenced to 386ClK2. This pin
should be connected to the 80386 ADS# pin.

3.1.11 BUS READY INPUT (READY#)

This input indicates to the 80387 when an 80386
bus cycle is to be terminated. It is used by the bus­
control logic to trace bus activities. Bus cycles can
be extended indefinitely until terminated by
READY #. This input should be connected to the
same signal that drives the 80386 READ# input.
Setup and hold times are referenced to 386ClK2.

3.1.12 READY OUTPUT (READYO#)

This pin is activated at such a time that write cycles
are terminated after two clocks and read cycles after
three clocks. I n configurations where no extra wait
states are required, it can be used to directly drive
the 80386 READY # input. Refer to section 3.4 "Bus
Operation" for details. This pin is activated only dur­
ing bus cycles that select the 80387. This signal is
referenced to 386ClK2.

3.1.13 STATUS ENABLE (STEN)

This pin serves as a chip select for the 80387. When
inactive, this pin forces BUSY #, PEREQ, ERROR #,
and READYO# outputs into floating state. D31-DO
are normally floating and leave floating state only if
STEN is active and additional conditions are met.
STEN also causes the chip to recognize its other
chip-select inputs. STEN makes it easier to do on­
board testing (using the overdrive method) of other
chips in systems containing the 80387. STEN should
be pulled up with a resistor so that it can be pulled
down when testing. In boards that do not use on­
board testing, STEN should be connected to Vee.
Setup and hold times are relative to 386ClK2. Note
that STEN must maintain the same setup and hold
times as NPS1 #, NPS2, and CMDO# (i.e. if STEN
changes state during an 80387 bus cycle, it should
change state during the same ClK period as the
NPS1 #, NPS2, and CMDO# signals).

3.1.14 NPX Select #1 (NPS1#)

When active (along with STEN and NPS2) in the first
period of an 80386 bus cycle, this signal indicates
that the purpose of the bus cycle is to communicate
with the 80387. This pin should be connected direct­
ly to the 80386 M/IO# pin, so that the 80387 is
selected only when the 80386 performs 1/0 cycles.
Setup and hold times are referenced to 386ClK2.

19

3.1.15 NPX SELECT #2 (NPS2)

When active (along with STEN and NPS1 #) in the
first period of an 80386 bus cycle, this signal indi­
cates that the purpose of the bus cycle is to commu­
nicate with the 80387. This pin should be connected
directly to the 80386 A31 pin, so that the 80387 is
selected only when the 80386 uses one of the 1/0
addresses reserved for the 80387 (800000F8 or
800000FC). Setup and hold times are referenced to
386ClK2.

3.1.16 COMMAND (CMDO#)

During a write cycle, this signal indicates whether an
opcode (CMDO# active) or data (CMDO# inactive)
is being sent to the 80387. During a read cycle, it
indicates whether the control or status register
(CMDO# active) or a data register (CMDO# inactive)
is being read. CMDO# should be connected directly
to the A2 output of the 80386. Setup and hold times
are referenced to 386ClK2.

3.2 Processor Architecture

As shown by the block diagram on the front page,
the NPX is internally divided into three sections: the
bus control logic (BCl), the data interface and con­
trol unit, and the floating point unit (FPU). The FPU
(with the support of the control unit which contains
the sequencer and other support units) executes all
numerics instructions. The data interface and control
unit is responsible for the data flow to and from the
FPU and the control registers, for receiving the in­
structions, decoding them, and sequencing the mi­
croinstructions, and for handling some of the admin­
istrative instructions. The BCl is responsible for
80386 bus tracking and interface. The BCl is the
only unit in the 80387 that must run synchronously
with the 80386; the rest of the 80387 can run asyn­
chronously with respect to the 80386.

3.2.1 BUS CONTROL LOGIC

The BCl communicates solely with the CPU using
1/0 bus cycles. The BCl appears to the CPU as a
special peripheral device. It is special in two re­
spects: the CPU initiates 1/0 automatically when it
encounters ESC instructions, and the CPU uses re­
served 1/0 addresses to communicate with the BCl.
The BCl does not communicate directly with memo­
ry. The CPU performs all memory access, transfer­
ring input operands from memory to the 80387 and
transferring outputs from the 80387 to memory.

inter 80387

3.2.2 DATA INTERFACE AND CONTROL UNIT

The data interface and control unit latches the data
and, subject to BCl control, directs the data to the
FIFO or the instruction decoder. The instruction de­
coder decodes the ESC instructions sent to it by the
CPU and generates controls that direct the data flow
in the FIFO. It also triggers the microinstruction se­
quencer that controls execution of each instruction.
If the ESC instruction is FIN IT, FClEX, FSTSW,
FSTSW AX, or FSTCW, the control executes it inde­
pendently of the FPU and the sequencer. The data
interface and control unit is the one that generates
the BUSY #, PEREQ and ERROR # signals that syn­
chronize 80387 activities with the 80386. It also sup­
ports the FPU in all operations that it cannot perform
alone (e.g. exceptions handling, transcendental op­
erations, etc.).

3.2.3 FLOATING POINT UNIT

The FPU executes all instructions that involve the
register stack, including arithmetic, logical, transcen-

32 MHz CLOCK GENERATOR

li i i'
X1 X2 EFI F Ic#

ADSO# r+
--I RES# 80384

ClK2

ClK 1-+ ADS#
RESET

1.
t

HLDA

4 RESET D/c# ...
'------+ READY# LOCK# ...

'-----+ ClK2 BE3#-BEO# ...
..... BS'6# M/IO#

..... NA# A31

..... HOLD A30-A3 r+ INTR 80386 A2

..... NMI W/R#
ADS#

D31-00

BUSY#

ERROR#

PEREQ

dental, constant, and data transfer instructions. The
data path in the FPU is 84 bits wide (68 significant
bits, 15 exponent bits. and a sign bit) which allows
internal operand transfers to be performed at very
high speeds.

3.3 System Configuration
As an extension to the 80386, the 80387 can be
connected to the CPU as shown by Figure 3.2. A
dedicated communication protocol makes possible
high-speed transfer of opcodes and operands be­
tween the 80386 and 80387. The 80387 is designed
so that no additional components are required for
interface with the 80386. The 80387 shares the 32-
bit wide local bus of the 80386 and most control pins
of the 80387 are connected directly to pins of the
80386.

FROM OTHER PERIPHERALS

T

>-- CKM

~ 180387 CLOCK I
GENERATOR 387 ClK2
(OPTIONAL) I

386ClK2

RESETIN

READY#

WAIT STATE b-I GENERATOR READYO# (OPTIONAL) I

80387

NPS'#

NPS2

lJ CMDO#

WjR#

ADS# STEN
32

D3'-DO

BUSY#

ERROR#

PEREQ

231920-6

Figure 3.2. S0386/80387 System Configuration

20

inter 80387

Table 3.4. Bus Cycles Definition

STEN NPS1# NPS2 CMDO#

0 x x x

1 1 x x
1 x 0 x
1 0 1 0
1 0 1 0
1 0 1 1
1 0 1 1

3.3.1 BUS CYCLE TRACKING

The ADS# and READY # signals allow the 80387 to
track the beginning and end of 80386 bus cycles,
respectively. When ADS# is asserted at the same
time as the 80387 chip-select inputs, the bus cycle is
intended for the 80387. To signal the end of a bus
cycle for the 80387, READY # may be asserted di­
rectly or indirectly by the 80387 or by other bus-con­
trol logic. Refer to Table 3.4 for definition of the
types of 80387 bus cycles.

3.3.2 80387 ADDRESSING

The NPS1 #, NPS2 and STEN signals allow the NPX
to identify which bus cycles are intended for the
NPX. The NPX responds only to liD cycles when bit
31 of the 110 address is set. In other words, the NPX
acts as an liD device in a reserved liD address
space.

Because A31 is used to select the 80387 for data
transfers, it is not possible for a program running on
the 80386 to address the 80387 with an I/O instruc­
tion. Only ESC instructions cause the 80386 to com­
municate with the 80387. The 80386 BS16# input
must be inactive during 110 cycles when A31 is ac­
tive.

3.3.3 FUNCTION SELECT

The CMDO# and W/R# signals identify the four
kinds of bus cycle: control or status register read,
data read, opcode write, data write.

3.3.4 CPU/NPX Synchronization

The pin pairs BUSY#, PEREQ, and ERROR# are
used for various aspects of synchronization between
the CPU and the NPX.

BUSY# is used to synchronize instruction transfer
from the 80386 to the 80387. When the 80387 rec­
ognizes an ESC instruction, it asserts BUSY #. For
most ESC instructions, the 80386 waits for the
80387 to deassert BUSY # before sending the new
opcode.

21

W/R# Bus Cycle Type

x 80387 not selected and all
outputs in floating state

x 80387 not selected
x 80387 not selected
0 CW or SW read from 80387
1 Opcode write to 80387
0 Data read from 80387
1 Data write to 80387

The NPX uses the PEREQ pin of the 80386 CPU to
signal that the NPX is ready for data transfer to or
from its data FIFO. The NPX does not directly ac­
cess memory; rather, the 80386 provides memory
access services for the NPX. Thus, memory access
on behalf of the NPX always obeys the rules applica­
ble to the mode of the 80386, whether the 80386 be
in real-address mode or protected mode.

Once the 80386 initiates an 80387 instruction that
has operands, the 80386 waits for PEREQ signals
that indicate when the 80387 is ready for operand
transfer. Once all operands have been transferred
(or if the instruction has no operands) the 80386
continues program execution while the 80387 exe­
cutes the ESC instruction.

In 8086/8087 systems, WAIT instructions may be
required to achieve synchronization of both com­
mands and operands. In 80286/80287 and
80386/80387 systems, WAIT instructions are re­
quired only for operand synchronization; namely, af­
ter NPX stores to memory (except FSTSW and
FSTCW) or loads from memory. Used this way,
WAIT ensures that the value has already been writ­
ten or read by the NPX before the CPU reads or
changes the value.

Once it has started to execute a numerics instruction
and has transferred the operands from the 80386,
the 80387 can process the instruction in parallel with
and independent of the host CPU. When the NPX
detects an exception, it asserts the ERROR # signal,
which causes an 80386 interrupt.

3.3.5 SYNCHRONOUS OR ASYNCHRONOUS
MODES

The internal logic of the 80387 (the FPU) can either
operate directly from the CPU clock (synchronous
mode) or from a separate clock (asynchronous
mode). The two configurations are distinguished by
the CKM pin. In either case, the bus control logic
(BCl) of the 80387 is synchronized with the CPU
clock. Use of asynchronous mode allows the 80386
and the FPU section of the 80387 to run at different
speeds. In this case, the ratio of the frequency of

intJ 80387

387ClK2 to the frequency of 386ClK2 must lie with­
in the range 10:16 to 16:10. Use of synchronous
mode eliminates one clock generator from the board
design.

3.3.6 AUTOMATIC BUS CYCLE TERMINATION

In configurations where no extra wait states are re­
quired, READYO# can be used to drive the 80386
READY # input. If this pin is used, it should be con­
nected to the logic that ORs all READY outputs from
peripherals on the 80386 bus. READYO# is assert­
ed by the 80387 only during 1/0 cycles that select
the 80387. Refer to section 3.4 "Bus Operation" for
details.

3.4 Bus Operation

With respect to the bus interface, the 80387 is fully
synchronous with the 80386. Both operate at the
same rate, because each generates its internal ClK
signal by dividing 386ClK2 by two.

The 80386 initiates a new bus cycle by activating
ADS #. The 80387 recognizes a bus cycle, if, during
the cycle in which ADS# is activated, STEN,
NPS1 #, and NPS2 are all activated. Proper opera­
tion is achieved if NPS1 # is connected to the
M/IO# output of the 80386, and NPS2 to the A31
output. The 80386's A31 output is guaranteed to be
inactive in all bus cycles that do not address the
80387 (i.e. 1/0 cycles to other devices, interrupt ac­
knowledge, and reserved types of bus cycles). Sys­
tem logic must not signal a 16-bit bus cycle via the
80386 BS16# input during 1/0 cycles when A31 is
active.

During the ClK period in which ADS# is activated,
the 80387 also examines the W/R# input signal to
determine whether the cycle is a read or a write cy­
cle and examines the CMDO# input to determine
whether an opcode, operand, or controll status reg­
ister transfer is to occur.

The 80387 supports both pipelined and nonpipe­
lined bus cycles. A nonpipelined cycle is one for
which the 80386 asserts ADS# when no other
80387 bus cycle is in progress. A pipelined bus cycle
is one for which the 80386 asserts ADS# and pro­
vides valid next-address and control signals as soon
as in the second ClK period after the ADS# asser­
tion for the previous 80386 bus cycle. Pipelining in·
creases the availability of the bus by at least one
ClK period. The 80387 supports pipelined bus cy­
cles in order to optimize address pipelining by the
80386 for memory cycles.

22

Bus operation is described in terms of an abstract
state machine. Figure 3.3 illustrates the states and
state transitions for 80387 bus cycles:

• TI is the idle state. This is the state of the bus
logic after RESET, the state to which bus logic
returns after evey nonpipelined bus cycle, and
the state to which bus logic returns after a series
of pipe lined cycles.

• T RS is the READY # sensitive state. Different
types of bus cycle may require a minimum of one
or two successive T RS states. The bus logic re­
mains in T RS state until READY # is sensed, at
which point the bus cycle terminates. Any number
of wait states may be implemented by delaying
READY #, thereby causing additional successive
T RS states.

• T p is the first state for every pipelined bus cycle.

The READYO# output of the 80387 indicates when
a bus cycle for the 80387 may be terminated if no
extra wait states are required. For all write cycles
(except those for the instructions FlDENV and
FRSTOR), READYO# is always asserted in the first
T RS state, regardless of the number of wait states.
For all read cycles and write cycles for FlDENV and
FRSTOR, READYO# is always asserted in the sec­
ond T RS state, regardless of the number of wait
states. These rules apply to both pipe lined and non­
pipelined cycles. Systems designers may use
READYO# in one of three ways:

1. leave it disconnected and use external logic to
generate READY # signals. When choosing this
option, 80387 requirements for wait states in read
cycles and write cycles of FlDENV and FRSTOR
must be obeyed.

2. Connect it (directly or through logic that ORs
READY signals from other devices) to the
READY# inputs of the 80386 and 80387.

3. Use it as one input to a wait-state generator.

ADS#

READY#

231920-7

Figure 3.3. Bus State Diagram

inter 80387

The following sections illustrate different types of
80387 bus cycles.

Because different instructions have different
amounts of overhead before, between, and after op­
erand transfer cycles, it is not possible to represent
in a few diagrams all of the combinations of succes­
sive operand transfer cycles. The following bus-cy­
cle diagrams show memory cycles between 80387
operand-transfer cycles. Note however that, during
the instructions FlDENV, FSTENV, FSAVE, and
FRSTOR, some consecutive accesses to the NPX
do not have intervening memory accesses. For the
timing relationship between operand transfer cycles
and opcode write or other overhead activities, see
Figure 3.7.

3_4.1 NONPIPELINED BUS CYCLES

Figure 3.4 illustrates bus activity for consecutive
nonpipelined bus cycles.

3.4.1.1 Write Cycle

At the second clock of the bus cycle, the 80387 en­
ters the T RS (READY #-sensitive) state. During this
state, the 80387 samples the READY# input and
stays in this state as long as READY # is inactive.

In write cycles, the 80387 drives the READYO# sig­
nal for one elK period beginning with the second
elK of the bus cycle; therefore, the fastest write
cycle takes two elK cycles (see cycle 2 of Figure
3.4). For the instructions FlDENV and FRSTOR,
however, the 80387 forces a wait state by delaying
the activation of READYO# to the second T RS cy­
cle (not shown in Figure 3.4).

23

When READY # is asserted the 80387 returns to the
idle state, in which ADS# could be asserted again
by the 80386 for the next cycle.

3.4.1.2 Read Cycle

At the second clock of the bus cycle, the 80387 en­
ters the T RS state. See Figure 3.4. In this state, the
80387 samples the READY # input and stays in this
state as long as READY # is inactive.

At the rising edge of elK in the second clock period
of the cycle, the 80387 starts to drive the 031-00
outputs and continues to drive them as long as it
stays in T RS state.

In ~ead cycles that address the 80387, at least one
walt state must be inserted to insure that the 80386
latches the correct data. Since the 80387 starts driv­
ing the system data bus only at the rising edge of
elK rn the second clock period of the bus cycle, not
enough time is left for the data signals to propagate
and be latched by the 80386 at the falling edge of
the same clock period. The 80387 drives the READ­
YO# signal for one elK period in the third elK of
the bus cycle. Therefore, if the READYO# output is
used to drive the 80386 READY# input, one wait
state is inserted automatically.

Because one wait state is required for 80387 reads
the minimum is three elK cycles per read, as cycl~
3 of Figure 3.4 shows.

When READY # is asserted the 80387 returns to the
idle state, in which ADS# could be asserted again
by the 80386 for the next cycle. The transition from
T RS state to idle state causes the 80387 to put the
trls~ate 031-00 outputs into the floating state, al­
lowrng another device to drive the system data bus.

intJ 80387

386ClK2

(ClK)

CYCLE 1
NON-PIPELINED
MEMORY READ

CYCLE 2
NON-PIPELINEO

NPX WRITE

CYCLE 3
NON-PIPELINED

NPX READ

CYCLE 4
NON-PIPELINED
MEMORY WRITE

NPS2, ~----+-----~~--~-----T,-~~-i~--~------~----~----~----~----~
NPS1#,

M/IO# fLL--+---+ -+----iu..~r_;_.l....-+_--t_-"""'f~-+--+_-__i

W/R#

ADS#

REAOYO#

DO-031 ---- --

231920-8

Cycles 1 & 2 represent part of the operand transfer cycle for instructions involving either 4-byte or 8-byte operand loads.
Cycles 3 & 4 represent part of the operand transfer cycle for a store operation.
'Cycles 1 & 2 could repeat here or TI states for various non-operand transfer cycles and overhead.

Figure 3.4. Nonpipelined Read and Write Cycles

3.4.2 PIPELINED BUS CYCLES

Because all the activities of the 80387 bus interface
occur either during the T RS state or during the tran­
sitions to or from that state, the only difference be­
tween a pipelined and a nonpipelined cycle is the
manner of changing from one state to another. The
exact activities in each state are detailed in the pre­
vious section "Nonpipelined Bus Cycles".

When the 80386 asserts ADS# before the end of a
bus cycle, both ADS# and READY# are active dur­
ing a T RS state. This condition causes the 80387 to
change to a different state named T p. The 80387
activities in the transition from a T RS state to a T p
state are exactly the same as those in the transition
from a T RS state to a TI state in non pipe lined cycles.

24

T p state is metastable; therefore, one clock period
later the 80387 returns to T RS state. In consecutive
pipelined cycles, the 80387 bus logic uses only T RS
and T p states.

Figure 3.5 shows the fastest transition into and out
of the pipe lined bus cycles. Cycle 1 in this figure
represents a nonpipelined cycle. (Nonpipelined write
cycles with only one T RS state (i.e. no wait states)
are always followed by another nonpipelined cycle,
because READY # is asserted before the earliest
possible assertion of ADS# for the next cycle.)

Figure 3.6 shows the pipelined write and read cycles
with one additional T RS states beyond the minimum
required. To delay the assertion of READY# re­
quires external logic.

infef 80387

3.4.3 BUS CYCLES OF MIXED TYPE

When the 80387 bus logic is in the T RS state, it dis­
tinguishes between nonpipelined and pipelined cy­
cles according to the behavior of ADS# and
READY#. In a nonpipelined cycle, only READY# is
activated, and the transition is from T RS to idle state.
In a pipelined cycle, both READY# and ADS# are
active and the transition is first from T RS state to T p
state then, after one clock period, back to T RS state.

386ClK2

(ClK)

CYCLE 1
NON-PIPELINED
MEMORY READ

CYCLE 2
PIPELINED

NPX WRITE

3.4.4 BUSY # AND PEREQ TIMING
RELATIONSHIP

Figure 3.7 shows the activation of BUSY # at the
beginning of instruction execution and its deactiva­
tion after execution of the instruction is complete.
PEREO is activated in this interval. If ERROR # (not
shown in the diagram) is ever asserted, it would oc­
cur at least six 386CLK2 periods after the deactiva­
tion of PEREO and at least six 386CLK2 periods be­
fore the deactivation of BUSY #. Figure 3.7 shows
also that STEN is activated at the beginning of a bus
cycle.

CYCLE 3
PIPELINED

MEMORY READ

CYCLE 4
NON-PIPELINED

NPX WRITE

NPS2, ~----~----rr--~~----rr--~~--~----~~--~----~----~
NPS1#,

M/IO# fU---+--oof"l.--+-----!U---t---+---iU---+--+---i

W/R#

ADS#

READYO#

READY# V"'''.''''

00-031 ---- ----- --

231920-9

Cycle 1-Cycle 4 represent the operand transfer cycle for an instruction involving a transfer of two 32-bit loads in total.
The opcode write cycles and other overhead are not shown.
Note that the next cycle will be a pipelined cycle if both READY # and ADS# are sampled active at the end of a T RS
state of the current cycle.

Figure 3.5. Fastest Transitions to and from Pipelined Cycles

25

intJ

386CLK2

(elK)

CYCLE 1
PIPELINED WRITE

80387

NOTE 1

Tp

CYCLE 2
PIPEUNED READ

Tp

NP52. ~---+----~~--rr---+--~~~--~----_+----~--~n----r--~
NP51#.

M/IO# 1'-'----+----_f''----f-L---+--~~_f'--_1----_+----~--~ -_t_--~

W/R#

AD5#

READYO#

NOTE:
1. Cycles between operand write to the NPX and storing result.

NOTES:

QPCODE
WRITE

1. Instruction dependent.

Figure 3.S. Pipelined Cycles with Wait States

NOTE 4

NOTE 1 NOTE 2

1ST OPERAND
WRITE

NOTE 3 NOTE 1

2. PEREQ is an asynchronous input to the 80386; it may not be asserted (instruction dependent).
3. More operand transfers.
4. Memory read (operand) cycle is not shown.

Figure 3.7. STEN, BUSY# and PEREa Timing Relationship

26

231920-10

231920-11

infef 80387

4.0 MECHANICAL DATA

68 LEAD CERAMIC PIN GRID ARRAY PACKAGE INTEL TYPE A

Symbol
Min

A 3.56

A1 0.76

A1

A2 2.72

A2 3.43

A3 1.14

B 0.43

0 28.83

D1 25.27

e1 2.29

L 2.29

N

S1 1.27

ISSUE IWSREV7

A'=F-BASE '
PLANE

SEATIN~ PLANE

o B (ALL PINS)

~~
SWAGGED

PIN
DETAIL

Family: Ceramic Pin Grid Array Package

Millimeters Inches

Max Notes Min Max

4.57 0.140 0.180

1.27 Solid Lid 0.030 0.050

0.41 EPROM Lid 0.016

3.43 Solid Lid 0.107 0.135

4.32 EPROM Lid 0.135 0.170

1.40 0.045 0.055

0.51 0.017 0.020

29.59 1.135 1.165

25.53 0.995 1.005

2.79 0.090 0.110

3.30 0.090 0.130

68 68

2.54 0.050 0.100

3/26/86

Figure 4.1. Package Description

27

231920-12

Notes

Solid Lid

EPROM Lid

Solid Lid

EPROM Lid

80387

Consult the most recent 80387 data sheet for AC specifications.

28

intJ 80387

Consult the most recent 80387 data sheet for AC specifications.

29

intJ 80387

Consult the most recent 80387 data sheet for AC specifications.

30

inter 80387

Consult the most recent 80387 data sheet for AC specifications.

31

inter 80387

Consult the most recent 80387 data sheet for AC specifications.

32

inter 80387

Instruction

First Byte

11011 OPA 1 MOD

2

3

4

5

11011 MF OPA MOD

11011 d P OPA

11011 0 0 1

11011 0 1 1

15-11 10 9 8

6.0 80387 EXTENSIONS TO THE
80386 INSTRUCTION SET

1

1

1

7

Instructions for the 80387 assume one of the five
forms shown in the following table. In all cases, in·
structions are at least two bytes long and begin with
the bit pattern 11011 B, which identifies the ESCAPE
class of instruction. Instructions that refer to memory
operands specify addresses using the 80386 ad­
dressing modes.

OP = Instruction opcode, possible split into two
fields OPA and OPB

MF = Memory Format
00-32-bit real
01-32-bit integer
10-64-bit real
11-16-bit integer

P = Pop
0-00 not pop stack
1-Pop stack after operation

ESC = 11011

d = Destination
O-Destination is ST(O)
1-Destination is ST(i)

R XOR d = O-Destination (op) Source
R XOR d = 1-Source (op) Destination

33

Optional

Second Byte Fields

1 I OPB RIM SIB I DISP

OPB RIM SIB I DISP

1 OPB ST(i)

1 1 I OP

1 1 I OP

6 5 43210

ST(i) = Register stack element i
000 = Stack top
001 = Second stack element

•
•
•

111 = Eighth stack element

MOD (Mode field) and RIM (Register/Memory spec­
ifier) have the same interpretation as the corre­
sponding fields of 80386 instructions (refer to 80386
Programmer's Reference Manual)

SIB (Scale Index Base) byte and DISP (displace­
ment) are optionally present in instructions that have
MOD and RIM fields. Their presence depends on
the values of MOD and RIM, as for 80386 instruc­
tions.

The instruction summaries that follow assume that
the instruction has been prefetched, decoded, and is
ready for execution; that bus cycles do not require
wait states; that there are no local bus HOLD re­
quest delaying processor access to the bus; and
that no exceptions are detected during instruction
execution. If the instruction has MOD and RIM fields
that call for both base and index registers, add one
clock.

inter 80387 b:\IIDW£OO©~ OOO[P©OO~b:\trO@oo

80387 Extensions to the 80386 Instruction Set

Instruction Optional 32-Blt
Bytes 2-6 Real

DATA TRANSFER

FLO ~ Loada

Integer/real memory to ST(O) SIB/DISP 20

Long integer memory to ST(O) SIB/DISP

Extended real memory to ST(O) SIB/DISP

BCD memory to ST(O) SIB/DISP

ST(i) to ST(O) ESC 001 11000ST(i)

FST ~ Store

ST(O) to integer/real memory SIB/DISP 44

ST(O) to ST(i) ESC 101 11010ST(i)

FSTP ~ Store and Pop

ST(O) to integer/real memory SIB/DISP 44

ST(O) to long integer memory SIB/DISP

ST(O) to extended real SIB/DISP

ST(O) to BCD memory SIB/DISP

ST(O) to ST(i) ESC 101 11001 ST(i)

FXCH ~ Exchange

ST(i) and ST(O) ESC 001 11001 ST(i)

COMPARISON

FCOM ~ Compare

Integer/real memory to ST(O) SIB/DISP 26

ST(i) to ST(O) ESC 000 11010ST(i)

FCOMP ~ Compare and pop

Integer/real memory to ST SIBIDISP 26

ST(i) to ST(O) ESC 000 11011 ST(i)

FCOMPP ~ Compare and pop twice

ST(l) to ST(O) ESCll0 11011001

FTST ~ Test ST(O)

FXAM ~ Examine ST(O) ESC 001 11100101

CONSTANTS

FLOZ ~ Load + 0.0 into ST(O) ESC 001 11101110

FLOI ~ Load + 1.0 into ST(O) ESC 001 11101000

FLOPI ~ Load pi into ST(O) ESC 001 11101011

FLOL2T ~ Load log2(10) into ST(O) ESC 001 11101001

Shaded areas indicate instructions not available in 8087/80287.

NOTE:
a. When loading single- or double-precision zero from memory, add 5 clocks.

34

45-52

56-67

44

266-275

14

79-93

11

79-93

80-97

53

512-534

56-63

56-63

12

18

24

26

26

20

24

40

40

16-Bil
Inleger

25 61-65

45 82-95

45 82-95

31 71-75

31 71-75

inter 80387

80387 Extensions to the 80386 Instruction Set (Continued)

Instruction

CONSTANTS (Continued)

FLDL2E = Load log2(e) into ST(O)

FLDLG2 = Load IOg10(2) into ST(O)

FLDLN2 = Load log.(2) into ST(O)

ARITHMETIC

FADD = Add

Integer/real memory with ST(O)

STeil and ST(O)

FSUB = Subtract

Integer/real memory with ST(O)

STeil and ST(O)

FMUL = Multiply

Integer/real memory with ST(O)

STeil and ST(O)

FDIV = Divide

Integer/real memory with ST(O)

STO) and ST(O)

FSQRTi = Square root

FSCALE = Scale ST(O) by ST(I)

FPREM = Partial remainder

FRNDINT = Round ST(O)
to integer

FXTRACT = Extract components
oIST(O)

FABS = Absolute value 01 ST(O)

FCHS = Change sign of ST(O)

ESC 001 11101010

ESC 001 11101100

ESC 001 11101101

ESC 001 11111010

ESC 001 11111101

ESC 001 11111100

ESC 001 11110100

ESC 001 11100001

ESC 001 11100000

Shaded areas indicate instructions not available in 8087/80287.

NOTES:
b. Add 3 clocks to the range when d = 1.
c. Add 1 clock to each range when R = 1.
d. Add 3 clocks to the range when d = O.
e. typical = 52 (When d = 0, 46-54, typical = 49).
f. Add 1 clock to the range when R = 1.
g. 135-141 when R = 1.
h. Add 3 clocks to the range when d = 1.
i. ~O s ST(O) s + 00.

35

Oplional
Bytes 2-6

SIB/DISP

SIB/DISP

SIB/DISP

SIB/DISP

32-Bil
Real

24-32

24-32

27-35

89

40

41

41

57-72 29-37

23-31 b

57-82 28-36

26-34d

61-82 32-57

29-57e

120-127f

BSh

122-129

67-86

66-80

70-76

22

24-25

94

16-Bil
Inleger

71-85

71-83c

76-87

136-1409

inter 80387

80387 Extensions to the 80386 Instruction Set (Continued)

Instruction

TRANSCENDENTAL

FeW:;;; P~~!l!$T<i>hc:+L:eSpoil1: .('.'1111,11t'1:;'·I·
FPTANk ~ Partial tangent of ST(O) I ESC 001 I 11110010 I
FPATAN ~ Partial arctangent I ESC 001 I 11110011 I
iiSlNk'" SiriEi'ofS'F(oi ;; ;,.; ,. :.< ""l','; ,. :1;. ~C OO'f;.~.'I' ;'1 t#'j.t'~." · .•. 11. '.;.'" ' ..

~.,.~~:~~~,~~~~~~~~~';:.f:·::eSp~l·;:t' i1j1;f'1~ft:' :
F2XMl i ~ 2ST(O) - 1 I ESC 001 I 1111 0000 I
FYL2xm ~ ST(I) , IOg2(ST(0» I ESC 001 I 1111 0001 I
FYL2XP1" ~ ST(I) 'log2(ST(0) + 1.0) I ESC 001 I 11111001 I
PROCESSOR CONTROL

FINIT ~ Initialize NPX

FSTSW AX ~ Store status word

FLDCW ~ Load control word

FSTCW ~ Store control word

FSTSW ~ Store status word

FCLEX ~ Clear exceptions

FSTENV ~ Store environment

FLDENV ~ Load environment

FSA VE ~ Save state

FRSTOR ~ Restore state

FINCSTP ~ Increment stack pointer

FDECSTP ~ Decrement stack pOinter

FFREE ~ Free ST(i)

FNOP ~ No operations

ESCOll 11100011

11100000

11100010

11110111

ESC 001 11110110

ESC 101 11000 ST(i)

ESC 001 11010000

Shaded areas indicate instructions not available in 8087/80287.

NOTES:

Optional
Bytes 2-6

SIB/DISP

SIB/DISP

SIB/DISP

SIB/DISP

SIB/DISP

SIB/DISP

SIB/DISP

Clock Count Range

1.2$.. 172l.

191-497i

211-476

120-538

257-547

33

13

19

15

15

11

103-104

71

375-376

308

21

22

18

12

j. These timings hold for operands in the range Ixl < 7T 14. For operands not in this range, up to 76 additional clocks may be
needed to reduce the operand.
k. 0 ,;: I ST(O) I < 263.
I. -1.0 ,;: ST(O) ,;: 1.0.
m.O ,;: ST(O) < "", - "" < ST(1) < + "".
n. 0 ,;: IST(O)I < (2 - SQRT(2))/2, - 00 < ST(l) < + 00.

36

inter 80387

APPENDIX A
COMPATIBILITY BETWEEN
THE 80287 AND THE 8087

The 80286/80287 operating in Real-Address mode
will execute 808618087 programs without major
modification. However, because of differences in the
handling of numeric exceptions by the 80287 NPX
and the 8087 NPX, exception-handling routines may
need to be changed.

This appendix summarizes the differences between
the 80287 NPX and the 8087 NPX, and provides
details showing how 8086/8087 programs can be
ported to the 80286/80287.

1. The NPX signals exceptions through a dedicated
ERROR line to the 80286. The NPX error signal
does not pass through an interrupt controller (the
8087 INT Signal does). Therefore, any interrupt­
controller-oriented instructions in numeric excep­
tion handlers for the 8086/8087 should be delet­
ed.

2. The 8087 instructions FENI/FNENI and FDISII
FNDISI perform no useful function in the 80287. If
the 80287 encounters one of these opcodes in its
instruction stream, the instruction will effectively
be ignored-none of the 80287 internal states will
be updated. While 8086/8087 containing these
instructions may be executed on the
80286/80287, it is unlikely that the exception­
handling routines containing these instructions
will be completely portable to the 80287.

3. Interrupt vector 16 must point to the numeric ex­
ception handling routine.

4. The ESC instruction address saved in the 80287
includes any leading prefixes before the ESC op­
code. The corresponding address saved in the
8087 does not include leading prefixes.

5. In Protected-Address mode, the format of the
80287's saved instruction and address pointers is
different than for the 8087. The instruction op­
code is not saved in Protected mode-exception
handlers will have to retrieve the opcode from
memory if needed.

37

6. Interrupt 7 will occur in the 80286 when executing
ESC instructions with either TS (task switched) or
EM (emulation) of the 80286 MSW set (TS = 1 or
EM = 1). If TS is set, then a WAIT instruction will
also cause interrupt 7. An exception handler
should be included in 80286/80287 code to han­
dle these situations.

7. Interrupt 9 will occur if the second or subsequent
words of a floating-point operand fall outside a
segment's size. Interrupt 13 will occur if the start­
ing address of a numeric operand falls outside a
segment's size. An exception handler should be
included in 80286/80287 code to report these
programming errors.

8. Except for the processor control instructions, all
of the 80287 numeric instructions are automati­
cally synchronized by the 80286 CPU-the 80286
automatically tests the BUSY line from the 80287
to ensure that the 80287 has completed its previ­
ous instruction before executing the next ESC in­
struction. No explicit WAIT instructions are re­
quired to assure this synchronization. For the
8087 used with 8086 and 8088 processors, ex­
plicit WAITs are required before each numeric in­
struction to ensure synchronization. Although
808618087 programs having explicit WAIT in­
structions will execute perfectly on the
80286/80287 without reassembly, these WAIT in­
structions are unnecessary.

9. Since the 80287 does not require WAIT instruc­
tions before each numeric instruction, the
ASM286 assembler does not automatically gener­
ate these WAIT instructions. The ASM86 assem­
bler, however, automatically precedes every ESC
instruction with a WAIT instruction. Although nu­
meric routines generated using the ASM86 as­
sembler will generally execute correctly on the
80286/80287, reassembly using ASM286 may re­
sult in a more compact code image.

The processor control instructions for the 80287
may be coded using either a WAIT or No-WAIT
form of mnemonic. The WAIT forms of these in­
structions cause ASM286 to precede the ESC in­
struction with a CPU WAIT instruction, in the iden­
tical manner as does ASM86.

PC/ A T-Compatib/e
80387 Connection

F

APPENDIX F
PCI AT*-COMPATIBLE 80387 CONNECTION

The PC/AT uses a nonstandard scheme to report 80287 exceptions to the 80286. When
replicating the PC/AT coprocessor interface in 80386-based systems, the PC/AT interface
cannot be used in exactly the same way; however, this appendix outlines a similar interface
that works on 80386/80387 systems and maintains compatibility with the nonstandard
PC / A T scheme.

Note that the interface outlined here does not represent a new interface standard; it needs
to be incorporated in AT-compatible designs only because the 80286 and 80287 in the
PC / A T are not connected according to the standards defined by Intel. The standard
80386/80387 connection recommended by Intel in the 80387 Data Sheet functions properly;
the 80386 implementation has not been and will not be altered.

F.1 THE PCI AT INTERFACE

In the PC/AT, the ERROR# input to the 80286 is tied inactive (high) permanently. The
ERROR# output of the 80287 is tied to an interrupt port (IRQI3). This interrupt replaces
exception signaling via the 80286's ERROR# input. To guarantee (in the case of an 80287
exception) that INTR 13 will be serviced prior to the execution of any further 80287 instruc­
tions, an edge-triggered flip-flop latches BUSY # using ERROR# as a clock. The output of
this latch is ORed with the BUSY # output of the 80287 and drives the BUSY # input of the
80286. This PC/AT scheme effectively delays deactivation of BUSY # at the 80286 whenever
an 80287 ERROR# is signaled.

Since the 80286 BUSY # input remains active after an exception, the 80286 interrupt 13
handler is guaranteed to execute before any other 80287 instructions may begin. The inter­
rupt 13 handler clears the BUSY# latch (via a write to a special I/O port), thus allowing
execution of 80287 instructions to proceed. The interrupt 13 handler then branches to the
NMI handler, where the user-defined numerics exception handler resides in PC-compatible
systems.

The use of an interrupt guarantees that an exception from a coprocessor instruction will be
detected. Latching BUSY # guarantees that any coprocessor instruction (except FINIT,
FSETPM, and FCLEX) following the instruction that raised the exception will not be
executed before the NMI handler is executed.

This PC/AT scheme approximates the exception reporting scheme between the 8087 and
8088 in the original Pc.

F-1

PCI AT-COMPATIBLE 80387 CONNECTION

F.2 HOW TO ACHIEVE THE SAME EFFECT IN AN 80386 SYSTEM

The 80386 can use a PC/AT-compatible interface to communicate with an 80387 provided
that, when an NPX exception occurs, BUSY # active time is extended and PEREQ is reacti­
vated only after 80387 BUSY # has gone inactive. The 80387 is left active (tying STEN
high) at all times. Also, the 80386 and 80387 must be reset by the same RESET signaL

The reactivation of PEREQ for the 80386 is needed for store instructions (for example, FST
mem) because the 80387 drops PEREQ once it signals an exception. While the 80386 has
not yet recognized the occurrence of the exception, it still expects the data transfers to
complete via PEREQ reactivation. It is permissible for the 80386 to receive undefined data
during such I/O read cycles. Disabling the 80387 is not necessary, because the dummy data­
transfer cycles directed to the 80387 when PEREQ is externally reactivated for the 80386
will not disturb the operation of the 80387. The interrupt 13 handler should remove the
extension of BUSY # and reactivation of PEREQ via a write to PC / AT -compatible hardware
at I/O port FOH.

F-2

Glossary of 80387 and
Floating-Point Terminology

GLOSSARY OF 80387
AND FLOATING-POINT TERMINOLOGY

This glossary defines many terms that have precise technical meanings as specified in the
IEEE 754 Standard or as specified in this manual. Where these terms are used, they have
been italicized to emphasize the precision of their meanings. In reading these definitions,
you may therefore interpret any italicized terms or phrases as cross-references.

Base: (1) a term used in logarithms and exponentials. In both contexts, it is a number that
is being raised to a power. The two equations (y = log base b of x) and (bY = x) are the
same.

Base: (2) a number that defines the representation being used for a string of digits. Base 2
is the binary representation; base lOis the decimal representation; base 16 is the hexadeci­
mal representation. In each case, the base is the factor of increased significance for each
succeeding digit (working up from the bottom).

Bias: a constant that is added to the true exponent of a real number to obtain the exponent
field of that number's floating-point representation in the 80387. To obtain the true exponent,
you must subtract the bias from the given exponent. For example, the single real format has
a bias of 127 whenever the given exponent is nonzero. If the 8-bit exponent field contains
10000011, which is 131, the true exponent is 131-127, or +4.

Biased Exponent: the exponent as it appears in a floating-point representation of a number.
The biased exponent is interpreted as an unsigned, positive number. In the above example,
131 is the biased exponent.

Binary Coded Decimal: a method of storing numbers that retains a base 10 representation.
Each decimal digit occupies 4 full bits (one hexadecimal digit). The hexadecimal values A
through F (1010 through 1111) are not used. The 80387 supports a packed decimal format
that consists of 9 bytes of binary coded decimal (18 decimal digits) and one sign byte.

Binary Point: an entity just like a decimal point, except that it exists in binary numbers.
Each binary digit to the right of the binary point is multiplied by an increasing negative
power of two.

C3-CO: the four "condition code" bits of the 80387 status word. These bits are set to
certain values by the compare, test, examine, and remainder functions of the 80387.

Characteristic: a term used for some non-Intel computers, meaning the exponent field of a
floating-point number.

Chop: to set one or more low-order bits of a real number to zero, yielding the nearest repre­
sentable number in the direction of zero.

Condition Code: the four bits of the 80387 status word that indicate the results of the
compare, test, examine, and remainder functions of the 80387.

Glossary-1

GLOSSARY

Control Word: a 16-bit 80387 register that the user can set, to determine the modes of
computation the 80387 will use and the exception interrupts that will be enabled.

Denormal: a special form of floating-point number. On the 80387, a denormal is defined as
a number that has a biased exponent of zero. By providing a significand with leading zeros,
the range of possible negative exponents can be extended by the number of bits in the signi­
ficand. Each leading zero is a bit of lost accuracy, so the extended exponent range is obtained
by reducing significance.

Double Extended: the Standard's term for the 80387's extended format, with more exponent
and significand bits than the double format and an explicit integer bit in the significand.

Double Format: a floating-point format supported by the 80387 that consists of a sign, an
II-bit biased exponent, an implicit integer bit, and a 52-bit significand-a total of 64 explicit
bits.

Environment: the 14 or 28 (depending on addressing mode) bytes of 80387 registers affected
by the FSTENV and FLDENV instructions. It encompasses the entire state of the 80387,
except for the 8 registers of the 80387 stack. Included are the control word, status word,
tag word, and the instruction, opcode, and operand information provided by interrupts.

Exception: any of the six conditions (invalid operand, denormal, numeric overflow, numeric
underflow, zero-divide, and precision) detected by the 80387 that may be signaled by status
flags or by traps.

Exception Pointers: The data maintained by the 80386 to help exception handlers identify
the cause of an exception. This data consists of a pointer to the most recently executed ESC
instruction and a pointer to the memory operand of this instruction, if it had a memory
operand. An exception handler can use the FSTENV and FSA VE instructions to access
these pointers.

Exponent: (I) any number that indicates the power to which another number is raised.

Exponent: (2) the field of a floating-point number that indicates the magnitude of the
number. This would fall under the above more general definition (I), except that a bias
sometimes needs to be subtracted to obtain the correct power.

Extended Format: the 80387's implementation of the Standard's double extended format.
Extendedformat is the main floating-point format used by the 80387. It consists of a sign,
a I5-bit biased exponent, and a significand with an explicit integer bit and 63 fractional­
part bits.

Floating-Point: of or pertaining to a number that is expressed as base, a sign, a significand,
and a signed exponent. The value of the number is the signed product of its significand and
the base raised to the power of the exponent. Floating-point representations are more versa­
tile than integer representations in two ways. First, they include fractions. Second, their
exponent parts allow a much wider range of magnitude than possible with fixed-length integer
representations.

Glossary-2

GLOSSARY

Gradual Underflow: a method of handling the underflow error condition that minimizes the
loss of accuracy in the result. If there is a denormal number that represents the correct
result, that denormal is returned. Thus, digits are lost only to the extent of denormalization.
Most computers return zero when underflow occurs, losing all significant digits.

Implicit Integer Bit: a part of the significand in the single real and double real formats that
is not explicitly given. In these formats, the entire given significand is considered to be to
the right of the binary point. A single implicit integer bit to the left of the binary point is
always one, except in one case. When the exponent is the minimum (biased exponent is
zero), the implicit integer bit is zero.

Indefinite: a special value that is returned by functions when the inputs are such that no
other sensible answer is possible. For eachjZoating-point format there exists one quiet NaN
that is designated as the indefinite value. For binary integer formats, the negative number
furthest from zero is often considered the indefinite value. For the 80387 packed decimal
format, the indefinite value contains all 1 's in the sign byte and the uppermost digits byte.

Inexact: The Standard's term for the 80387's precision exception.

Infinity: a value that has greater magnitude than any integer or any real number. It is often
useful to consider infinity as another number, subject to special rules of arithmetic. All three
Intel floating-point formats provide representations for +00 and -00.

Integer: a number (positive, negative, or zero) that is finite and has no fractional part. Integer
can also mean the computer representation for such a number: a sequence of data bytes,
interpreted in a standard way. It is perfectly reasonable for integers to be represented in a
floating-point format; this is what the 80387 does whenever an integer is pushed onto the
80387 stack.

Integer Bit: a part of the significand injZoating-point formats. In these formats, the integer
bit is the only part of the significand considered to be to the left of the binary point. The
integer bit is always one, except in one case: when the exponent is the minimum (biased
exponent is zero), the integer bit is zero. In the extended format the integer bit is explicit;
in the single format and double format the integer bit is implicit; i.e., it is not actually stored
in memory.

Invalid Operation: the exception condition for the 80387 that covers all cases not covered by
other exceptions. Included are 80387 stack overflow and underflow, NaN inputs, illegal
infinite inputs, out-of-range inputs, and inputs in unsupported formats.

Long Integer: an integer format supported by the 80387 that consists of a 64-bit two's
complement quantity.

Long Real: an older term for the 80387's 64-bit double format.

Mantissa: a term used with some non-Intel computers for the significand of afloating-point
number.

Glossary-3

GLOSSARY

Masked: a term that applies to each of the six 80387 exceptions I,D,Z,O,U,P. An exception
is masked if a corresponding bit in the 80387 control word is set to one. If an exception is
masked, the 80387 will not generate an interrupt when the exception condition occurs; it
will instead provide its own exception recovery.

Mode: One of the status word fields "rounding control" and "precision control" which
programs can set, sense, save, and restore to control the execution of subsequent arithmetic
operations.

NaN: an abbreviation for "Not a Number"; a floating-point quantity that does not repre­
sent any numeric or infinite quantity. NaNs should be returned by functions that encounter
serious errors. If created during a sequence of calculations, they are transmitted to the final
answer and can contain information about where the error occurred.

Normal: the representation of a number in a floating-point format in which the significand
has an integer bit one (either explicit or implicit).

Normalize: convert a denormal representation of a number to a normal representation.

NPX: Numeric Processor Extension. This is the 80387, 80287, or 8087.

Overflow: an exception condition in which the correct answer is finite, but has magnitude
too great to be represented in the destination format. This kind of overflow (also called
numeric overflow) is not to be confused with stack overflow.

Packed Decimal: an integer format supported by the 80387. A packed decimal number is a
lO-byte quantity, with nine bytes of 18 binary coded decimal digits and one byte for the
sign.

Pop: to remove from a stack the last item that was placed on the stack.

Precision: The effective number of bits in the significand of the floating-point representa­
tion of a number.

Precision Control: an option, programmed through the 80387 control word, that allows all
80387 arithmetic to be performed with reduced precision. Because no speed advantage results
from this option, its only use is for strict compatibility with the standard and with other
computer systems.

Precision Exception: an 80387 exception condition that results when a calculation does not
return an exact answer. This exception is usually masked and ignored; it is used only in
extremely critical applications, when the user must know if the results are exact. The preci­
sion exception is called inexact in the standard.

Pseudozero: one of a set of special values of the extended real format. The set consists of
numbers with a zero significand and an exponent that is neither all zeros nor all ones.
Pseudozeros are not created by the 80387 but are handled correctly when encountered as
operands.

Glossary-4

GLOSSARY

Quiet NaN: a NaN in which the most significant bit of the fractional part of the significand
is one. By convention, these NaNs can undergo certain operations without causing an
exception.

Real: any finite value (negative, positive, or zero) that can be represented by a (possibly
infinite) decimal expansion. Reals can be represented as the points of a line marked off like
a ruler. The term real can also refer to afloating-point number that represents a real value.

Short Integer: an integer format supported by the 80387 that consists of a 32-bit two's
complement quantity. short integer is not the shortest 80387 integer format-the 16-bit
word integer is.

Short Real: an older term for the 80387's 32-bit single format.

Signaling NaN: a NaN that causes an invalid-operation exception whenever it enters into a
calculation or comparison, even a nonordered comparison.

Significand: the part of a floating-point number that consists of the most significant nonzero
bits of the number, if the number were written out in an unlimited binary format. The
significand is composed of an integer bit and a fraction. The integer bit is implicit in the
single format and double format. The significand is considered to have a binary point after
the integer bit; the binary point is then moved according to the value of the exponent.

Single Extended: a floating-point format, required by the standard, that provides greater
precision than single; it also provides an explicit integer bit in the significand. The 80387's
extended format meets the single extended requirement as well as the double extended
requirement.

Single Format: a floating-point format supported by the 80387, which consists of a sign, an
8-bit biased exponent, an implicit integer bit, and a 23-bit significand-a total of 32 explicit
bits.

Stack Fault: a special case of the invalid-operation exception which is indicated by a one in
the SF bit of the status word. This condition usually results from stack underflow or overflow.

Standard: "IEEE Standard for Binary Floating-Point Arithmetic," ANSI/IEEE Std
754-1985.

Status Word: A 16-bit 80387 register that can be manually set, but which is usually
controlled by side effects to 80387 instructions. It contains condition codes, the 80387 stack
pointer, busy and interrupt bits, and exception flags.

Tag Word: a 16-bit 80387 register that is automatically maintained by the 80387. For each
space in the 80387 stack, it tells if the space is occupied by a number; if so, it gives infor­
mation about what kind of number.

Temporary Real: an older term for the 80387's 80-bit extended format.

Glossary-5

GLOSSARY

Tiny: of or pertaining to a floating-point number that is so close to zero that its exponent is
smaller than smallest exponent that can be represented in the destination format.

TOP: The three-bit field of the status word that indicates which 80387 register is the current
top of stack.

Transcendental: one of a class of functions for which polynomial formulas are always
approximate, never exact for more than isolated values. The 80387 supports trigonometric,
exponential, and logarithmic functions; all are transcendental.

Two's Complement: a method of representing integers. If the uppermost bit is zero, the
number is considered positive, with the value given by the rest of the bits. If the uppermost
bit is one, the number is negative, with the value obtained by subtracting (2bit count) from all
the given bits. For example, the 8-bit number 11111100 is ~4, obtained by subtracting 28

from 252.

Unbiased Exponent: the true value that tells how far and in which direction to move the
binary point of the significand of a floating-point number. For example, if a Single-format
exponent is 131, we subtract the Bias 127 to obtain the unbiased exponent +4. Thus, the
real number being represented is the significand with the binary point shifted 4 bits to the
right.

Underflow: an exception condition in which the correct answer is nonzero, but has a magni­
tude too small to be represented as a normal number in the destination floating-point format.
The Standard specifies that an attempt be made to represent the number as a denormal.
This denormalization may result in a loss of significant bits from the significand. This kind
of underflow (also called numeric overflow) is not to be confused with stack underflow.

Unmasked: a term that applies to each of the six 80387 exceptions: I,D,Z,O,U,P. An excep­
tion is unmasked if a corresponding bit in the 80387 control word is set to zero. If an excep­
tion is unmasked, the 80387 will generate an interrupt when the exception condition occurs.
You can provide an interrupt routine that customizes your exception recovery.

Unnormal: a extended real representation in which the explicit integer bit of the significand
is zero and the exponent is nonzero. Unnormal values are not supported by the 80387; they
cause the invalid-operation exception when encountered as operands.

Unsupported Format: Any number representation that is not recognized by the 80387. This
includes several formats that are recognized by the 8087 and 80287; namely: pseudo-NaN,
pseudoinfinity, and un normal.

Word Integer: an integer format supported by both the 80386 and the 80387 that consists
of a 16-bit two's complement quantity.

Zero divide: an exception conditiGn in which the inputs are finite, but the correct answer,
even with an unlimited exponent, has infinite magnitude.

Glossary-6

inter
ALABAMA

Intel Corp.
5015 Bradford Drtve
Suittf2
Huntsville 35805
Tel: (205) 830-4010

ARIZONA

Intel Corp
11225 N. 28th Orive
Suite 2140
Phoenix 85029
Tel. (602) 869-4980

~nlt~~ CN~r~i Dorado Place
Suite 301
Tucson 85715
Tel: (602) 299-6815

CALIFORNIA

Intel Corp
21515 Vanowen Street
SUite 116

¥:t{3f8f~~~81~oOg
Intel Corp.
2250 E, Imperial Highway
SUite 218

~~~~~3)d~~~~~lo 
Intel Corp. 

~~~~a~~t~ ~~l1~ulte 101 
Tel. (916) 920-8096

Inlel Corp
4350 ExecutilJe DrlII8
SUite 105

~:I~ (~~e~t4~~!g~BO
Intel Corp·
400 N Tustin Avenue
SUite 450
Santa Ana 92705
Tel: (714) 835-9642
TWX: 910-595-'114

Intel Corp."
San Tomas 4 .
2700 San Tomas Expressway
Santa Crara. CA 95051
Tel: (40B) 986-8086
TWX: 910-338-0255

COlORADO

'nteICarp.
4445 NorthparJ(Drive
Suite 100

~~,':O[;~~ ~Ct6b~~0907

Intel Corp:

:~~~r~~2r~ St-, SUite 915

Tel. (303) 321-8086
TWX. 910-931-2289

CONNECTICUT

Intel Corp
26 Mill Plain Road

~:1~~~~)O;:J-1130
TWX· 710-456-1199

FLORIDA

Intel Corp
242 N. Westmonte Or.. Suite
105

~~~~~\e 8~~~~~i8 32714 

Intel Corp. 

~~a~d'Z~d~'~ ~oJ>ulte 100 
Tel: (305) 771-0600 
TWX: 510-956-9407 

Intel Corp. 
11300 4th Street North 
Suite 110 
St. Petersburg 33702 
Te'· (813) 577-2413 

DOMESTIC SALES OFFICES 
GEORGIA 

Intel Corp. 
3280 Pointe Parkway 
Suite 200 
Norcross 30092 
Tel. (404) 449-0541 

ILLINOIS 

Inte'Co~.· 
~~~~mb~7~n~o~~~Qad, Suite 400 

Tel. (312) 310-8031

INDIANA

Inlel Corp
8777 Purdue Road
Suite 125
Indianapolis 46268
Te1: (317) 875-0623

IOWA

Intel Corp
SI. Andrews Building
1930 SI. Andrews Drive N E
Cedar Rapids 52402
Tel· (319) 393-5510

KANSAS

Intel Corp.
8400 W. 11 Oth Street
SUite 170
Overland Park 66210
Tel· (913) 345-2727

MARYLAND

Intel Corp·
7321 Parkway Drive South
SUlteC
Hanover 21076
Tel. (301) 796-7500
TWX: 710-862-1944

Intel Corp
7833 Walker Dnve
Greenbelt 20770
Tel (301)441-1020

MASSACHUSETTS

Intel Corp."
Westford Corp Center
3 Carlisle Road
Westford 01886
Tel: (617) 692-3222
TWX: 710-343-6333

MICHIGAN

Intel Corp
7071 Orcnard Lake Road
Suite 100
West Bloomfield 48033
TeJ: (313) 851-8096

MINNESOTA

Intel Corp
3500 W. 80tn 51.. SUite 360

~~1.o(~1~~'835~gii~
TWX: 910-576-2867

MISSOURI

Intel Corp
4203 Eartn City Expressway
Suite 131
Earth City 63045
Tel: (314) 291-1990

NEW JERSEY

InteICorp.-
Parkway 109 Office Center
328 Newman Springs Road
Red Bank 07701
Tel. (201) 747-2233

Inlel Corp.
280 Corporate Center
75 Livingston Avenue
First Floor
Roseland 07068
Tel· (201) 740-0111

NEW MEXICO

Intel Corp
8500 Menual Boulevard N E
SUite B 295
Albuquerque 87112
Tel: (505) 292-8086

NEW YORK

Intel Corp.
127 MaIO Street
Binghamton 13905
Tel: (607) 773-0337

Intel Corp."

~~~~~slS.~~6s Office Park 

Tel· (716) 425-2750 
TWX 510-253-7391 

Intel Corp" 
300 Motor Parkway 
Hauppauge 11787 
Tel: (516)231-3300 
TWX: 510-227-6236 

Intel Corp 
SUite 28 Hollowbrook Park 
15 Myers Corners Road 

~~~(g1~2);;;_'~1 ~~590 
TWX: 510-248-0060

NORTH CAROLINA

Intel Corp
5700 E:a:ecul!ve Cenler Drive
SUite 213
Charlone 28212
Tel (704) 568-8966

Intel Corp

~;J~~ ~6iilff Road

~:,'ei~~ 9~77~~~8022
OHIO

Intel Corp'
3401 Park Center Dnve
SUite 220
Dayton 45414
Tel: (513) 890-5350
TWX: 810-450-2528

Intel Corp."
25700 Science Park Dr SUite 100
Beachwood 44122
Tel: (216) 464-2736
TWX. 810-427-9::!OS

OKLAHOMA

Intel Corp.
6801 N. Broadway
Suite 115
Oklahoma City 73116
Tel· (405) 848-8086

OREGON

Intel Corp
15254 N W Greenbrier Parkway, Bldg. B
Beaverton 97006
Tel: (503) 645-8051
TWX· 910-467-8741

PENNSYLVANIA

Intel Corp
1513 Cedar Cliff Dnve
Camp Hlfj 17011
Tel. (717) 737-5035

Intel Corp."
455 Pennsylvania Avenue
Fort Washington 19034
Tel· (215) 641-1000
TWX. 510-661-2077

Inlel Corp.'
400 Penn Center Blvd., Suite 610

~~~.s(~~rN)\~~~:~70 
PUERTO RICO 

Intel Microprocessor Corp 
South Industrial Park 
P.O. Box 910 
Las Piedras 00671 
Tel. (809) 733-8616 

TEXAS 

Intel Corp. 
313 E. Anderson Lane 
SUite 314 
Austin 78752 
Tel (512) 454-3628 

Intel Corp· 
12300 Ford Road 
Suite 380 
Danas 75234 
Tel: (214) 241-8087 
TWX: 910-860-5617 

Inlel Corp." 
7322 S.W. Freeway 
Suite 1490 
Houston 77074 
Tel: (713) 988-8086 
TWX. 910-881-2490 

UTAH 

Intel Corp 
5201 Green Street 
SUite 290 
Murray 64123 
Tel. (801) 263-8051 

VIRGINIA 

Intel Corp 
1603 Santa Rosa Road 
SUite log 
Richmond 23288 
Tel: (804) 282-5668 

WASHINGTON 

Intet Corp 
155-108 Avenue N.E 
SUite 386 
Bel!evue 98004 
Tel: (206) 453-8086 
TWX. 910-443-3002 

Intet Corp 
408 N. Mullan Road 
SUite 102 
SpOkane 99206 
Tel: (509) 928-8086 

WISCONSIN 

Intel Corp 
330 S Executive Dr 
SUite 102 
Brookfield 53005 
Tel: (414) 184-8087 
FAX.: 414-796-2115 

CANADA 
BRITISH COLUMBIA 

Intel Semiconductor of Canada. Ltd 
301-2245 W Broadway 
Vancouver V6K 2E4 
Tel. (604) 738-6522 

ONTARIO 

Intel Semiconductor of Canada, Ltd 
2650 QueenSlliew Drive 
SUite 250 
Ottawa K28 BHfi 
Tel· (613) 829-9714 
TLX: 053-4115 

Intel Semiconductor of Canada, ltd. 
190 Attwell Drive 
SUlle500 
Rexdale M9W 6H8 
Tel: (416) 675-2105 
TLX· 06983574 

QUEBEC 

Intel Sertllconductor of Canada. Ltd 
620 St. Jean Boulevard 
POinte Claire H9A 3K3 
Tel: (514) 694-9130 
TWX: 514-694-9134 

'Field ApplicatIOn Location 

CG-3/17/a1 



ALABAMA 

Arrow Electronics, Inc 
1015 Henderson Road 
Huntsville 35805 
Tel' (205) 837-6955 

tHamiltonJAvnet Elect,omcs 
4940 Research Drive 
Huntsville 35805 
Tel: (205) 637-7210 
TWX: 810-726-2162 

Pioneer(fechnologies Group Inc 

~~~~S~j~!:e;~~~5SQuare 
Tel: (205) 837-9300
TWX: 810-726-2197

ARIZONA

tHamilton/Avnet Electronics
505 S. Madison Drive
TAmpe 85281
Tel: (602) 231-5100
TWX: 910-950-0077

Kierulff Electronics, Inc
4134 E, Wood Street
PhoeniX 85040
Tel: (602) 437-0750
TWX: 910-951-1550

Wyle Distribution Group
17855 N. Black Canyon Highway
PhoeniX 85023
Tel: (602) 866-2888

CALIFORNIA

Arrow Electronics, Inc
19748 Dearborn Street
Chatsworth 9131 1
Tel: (818) 701-7500
TWX: 910-493-2086

Arrow Electroflics. Inc
1502 Crocker Avenue
Hayward 94544
Tel: (408) 487-4600

Arrow Electronics. Inc
9511 Ridgehaven Court

~:I~ (~~~t5~~~iioo
TLX' 888064

tArrow ElectrOnics. Inc
521 Weddell Drive
Sunnyvale 940B6
Tel: (408) 745-6600
TWX' 910-339-9371

Arrow Electronics. Inc
2961 Dow Avenue
Tustin 92680
Tel: (714) 838-5422
TWX: 910-595-2860

tAvnet Electronics
350 McCormick Avenue
Costa Mesa 92626
Tel: (714) 754-6051
TWX: 910-595-192B

Hamllton/Avnet ElectrOniCS
1175 Bordeaux Drive

~~I~(XO~~e7~j~~~00
TWX: 910·339-9332

tHamllton/Avnet ElectroniCs
4545 Viewridge Avenue

~;~ (~~e£o5~~~i?00
TWX: 910-595-263B

tHamilton/Avnet Electronics
20501 Plummer Street
Chatsworth 91311
Tel: (818) 700-6271
TWX: 910·494-2207

tHamilton/Avnet ElectroniCS
4103 Northgate Boulevard
Sacramento 95834
Tel: (916) 920-3150

tHamilton/Avnet Electronics
3002 G Street
Ontario 91311
Tel: (714) 989-9411

HamiltonjAvnet Electronics
19515 So Vermont Avenue
Torrance 90502
Tel: (213) 615-3909
TWX: 910-349-6263

Hamilton Electro Sales
9650 De Soto Avenue
Chatsworth 91311
Tel: (81B) 700-6500

DOMESTIC DISTRIBUTORS
CALIFORNIA (Cont'd)

tHamilton Electro Sales
10950W. Washington Blvd

~~II:V~l ~)~:~~~~B
TWX: 910-340-6364

Hamilton Electro Sales
1361 B West 190th Street
Gardena 9024B
Tel: (213) 558-2131

tHamliton Electro Sales
3170 Pullman Street
Costa Mesa 92626
Tel: (714) 64'1-4150
TWX: 910-595-2638

Klerulff Electronics, Inc
10824 Hope Street
Cypress 90430
Tel: (714) 220-6300

tKierulH Electronics, Inc
1180 Murphy Avenue
San Jose 95131
Tel' (40B) 971-2600
TWX: 910-379-6430

tKlerulH Electronics, Inc
14101 Franklin Avenue
Tustin 92680
Tel. (714) 731-5711
TWX: 910-595·2599

tKlerulff Electronics. Inc
5650 Jillson Street
Commerce 90040
Tel. (213) 725-0325
TWX: 910-580-3666

Wyle Distnbution Group
26560 Agoura Street
Calabasas 91302
Tel: (SIB) 8S0-9000
TWX: 818-372-0232

tWyle Distribution Group
124 Maryland Street

~~~(~~~)d~2~~~{gO 
TWX: 910-34B-7140 or 7111 

tWyle Dlstnoutlon G~oup 
17872 Cowan Avenue 
IrVine 92714 
Tel: (714) B63-9953 
TWX: 910-595-1572 

Wyle Distribution Group 
11151 Sun Center Drive 
Rancho Cordova 95670 
Tel: (916) 638-52B2 

tWyle Distribution Group 
9525 Chesapeake Drive 

~;I~ (~if~o5~;~~~71 
TWX: 910-335-1590 

tWyle Distribution Group 
3000 Bowers AvenlJ~ 
Santa Clara 95051 
Tel. (408) 727-2500 
TWX: 910-33B-0296 

Wyle Military 
18910 Teller Avenue 
Irvine 92750 
Tel: (714) 851-9958 
TWX: 310-371-9127 

Wyle Systems 
7382 Lampson Avenue 
Garden Grove 9264 I 
Tel: (714) 891-'717 
TWX: 910-595-2642 

COLORADO 

Arrow Eleclronics, Inc 
1390 S. Potomac Street 
Suite 136 
Aurora 80012 
Tel: (303) 696-1111 

tHamiiton/Avnet Electronics 
8765 E. Orchard Road 
Suite 708 
Englewood 80111 
Tel: (303) 740-1017 
TWX: 910-935-0787 

tWyle Oistributiorl Group 
451 E. 124th Avenue 
Thornton 80241 
Tel: (303) 457-9953 
TWX. 910-936-0770 

CONNECTICUT 

tArrow Electronics, Inc. 
12 Beaumont Road 

~~~'(~gmrg6~~ij~ 1 
TWX: 710-476-0162

HamiltonjAvnet Electronics
Commerce Industrial Park
Commerce Drive
Danbury 06810
Tel: (203) 797-2800
TWX: 710-456-9974

tPioneer Northeasl Electronics
112 Main Street
Norwalk 06851
Tel: (203) 853-1515
TWX, 710-46B-3373

FLORIDA

tArrow ElectrOnics, Inc.
350 Fairway Drive
Deerfield Beach 33441
Tel: (305) 429-B200
TWX: 510-955-9456

Arrow ElectroniCS, Inc
1001 NW. 62nd St, 5te. lOB
Ft Lauderdale 33309
Tel: (305) 776-7790
TWX: 510-955-9456

tArrow Electronics, Inc
50 Woodlake Drive W" Bldg. B
Palm Bay 32905
Tel: (305) 725·1480
TWX: 510·959-6337

tHamilton/Avnet Electronics

~~.02a~d'Z;d~1!h3~t69
Tel: (305) 971-2900
TWX' 510-956-3097

Hamilton/Avnet Electronics
3197 Tech Dflve North
SI. Petersburg 33702
Tel: (813) 576-3930
TWX: Bl0-B63-0374

Hamllton/Avnet ElectroniCS

~~~e~n~;:r;2~9~oulevard 
Tel: (3g5) 628-38BB 
TWX, 810-853-0322 

tPioneer Electronics 
337 N. Lake Blvd" Ste 1000 

~~~ (~8~)t~if.~8~g 32701 
TWX: 810·853-0284

Pioneer ElectroniCs
674 S. Military Trail
Deerfield Beach 33442
Tel: (305) 42S-8877
TWX: 510-955-9653

GEORGIA

tArrow Electronics, Inc
3155 Northwoods Parkway
SUite A
Norcross 30071
Tel: (404) 449·8252
TWX' 810-766-0439

~:~II~n~~~~~:r;~e~~~~~~~
Norcross 30092
Tel: (404) 447-7500
TWX: 810-766-0432

Pioneer ElectrOnics
3100 F. Northwoods Place
Norcross 30071
Tel: (404) 44B-1111
TWX: 810-766-4515

ILLINOIS

tArrow Electronics, Inc
2000 E Alonquin Street

i~t(~~2j~~7 ~g~lg
TWX. 910-291-3544

tHamilton/Avnet Electronics
1130 Thorndale Avenue
Bensenville 60106
Tel: (312) 860-7780
TWX: 910-227-0060

Klerul1f Electronics, Inc
1140 W. Thorndale
Itasca 60143
Tel: (312) 250-0500

ILUNOIS (Conl'd)

MT\ System'S Sales
1100 West Thorndale
Itasca 60143
Tel: (312) 773-2300

tPioneer Electronics
1551 Carmen Drive

~~: ~3~~i ~~~§68%0007
TWX: 910-222-1834

INDIANA

tArrow Electronics, Inc
2495 Directors Row. Suite H
Indianapolis 46241
Tel: (317) 243-9353
TWX: 810-341-3119

~:;~~~~:v;~~eElectronics
Carmel 46032
Tel: (317) 844-9333
TWX: 810-260-3966

tPioneer Electrorllcs
6408 Castle place Drive
Indianapolis 46250
Tel: (317) 849-7300
TWX: 810-260-1794

KANSAS

tHamiltonjAvnet Electronics
9219 Quivera Road
Overland Park 66215
Tel: (913) 8BB-8900
TWX: 910-743-0005

Pioneer ElectrOrllcs
10551 Lackman Rd.
Lenexa 66215
Tei: (913) 492-0500

KENTUCKY

Hamilton/Allnet Electronics
1051 O. Newton Park

i:fl('9J~) 2\09~~~75
MARYLAND

Arrow Electronics. Inc
8300 Gulford Road #H
Rivers Center
Columbia 21046
Tel: (301) 995-0003
TWX: 71 0-236-9005

tHamiltonjAvnet Electronics
6822 Oak Hall Lane
Columbia 21045
Tel: (301) 995-3500
TWX: 710-862-1B61

tMesa Technology Corp
9720 Patuxentwood Dr
Columbia 21046
Tel: (301) 720-5020
TWX: 710-B28-9702

tPloneer ElectroniCS
9100 Gaither Road
Gaithersburg 20B77
Tel: (301) 921-0660
TWX: 710-B28-0545

MASSACHUSETTS

tArrow Eleclronics, Inc
1 Arrow Drive
Woburn 01801
Tel: (617) 933-8130
TWX: 710-393-6770

tHamilton/Avnet Electronics
100 Centennial Drive

~:~~~~1) ~1~~g701
TWX: 710-393-0382

Kierulf1 Electronics. Inc
13 Fortune Dr
Billerica 01821
Tel: (617) 667-8331

MTI Systems Sales
13 Fortune Drive
Billenca 01821

Pioneer Northeast ElectroniCS
44 Hartwell Avenue

i:~7211~) 8~211_~~00
TWX: 710·326-6617

MICHIGAN

Arrow ElectroniOs. Inc
755 Phoenix Drive:
Ann Arbor 481 04

~:x(~Jrb-~2~~20~~
tHamiltonjAvnet Electronics
32487 Schoolcraft Road
Livonia 48150
Tel: (313) 522-4700
TWX: 810-242-8775

~:~il~~ASt~:~F~~t~onics
Space A5
Grand Rapids 49508
Tel: (616) 243-8805
TWX: 810-273-6921

Pioneer Electronics
4505 8roadmoor Ave. S.E.
Grand Rapids 49508
Tel: (616) 555-1800

tPior.aer Electronics
13485 Stamford
Li~onia 48150
Tel: (313) 525-1800
TWX: 810-242-3271

MINNESOTA

tArrow Electronics, Inc.
5230 W. 73rd Street
Edina 55435
Tel: (612) 830-1800
TWX: 910-576-3125

Hamilton/Avnet Electronics
12400 White Water Drive
Minnetonka 55343
Tel: (612) 932-0600
TWX: (910) 576-2720

tPioneer Electronics
10203 Bren Road East
Minnetonka 55343
Tel: (S12) 935-5444
TWX: 910-576-2738

MISSOURI

tArrow ElectroniCS. Inc.
2380 Schuet!
St louis 63141
Tel: (314) 567-68B8
TWX: 910-764-08B2

tHamilton/Avnet Electronics
13743 Shoreline Court
Earth City 63045
Tel: (314) 344-1200
TWX: 910-762-0684

Kierulff Electronics. Inc
11804 Borman Dr
St. LuiS 63146
Tel: (314) 997-4956

NEW HAMPSHIRE

tArrow Electronics. Inc
3 Perimeter Road
Manchester 03103
Tel: (603) 668-6968
TWX: 710-220-1684

Hamilton/Avnet Electronics
444 E. Industrial Drive
Manchester 03104
Tel: (603) 624-9400

NEW JERSEY

tArrow Electronics. Inc
6000 Lincoln East
Marlton 08053
Tel. (609) 596-8000
TWX: 710-897-0829

tArrow Electronics, Inc
2 Industrial Road
Fairfield 07006
Tel: (201) 575-5300
TWX: 710-998-2206

tHamilton/Avnet Electronics
1 Keystone Avenue
Bldg. 36

i~I~(2'O~,!I~~~?gll 0
TWX: 710-940-0262

tMlcrocomputer System Technical Distributor Centers

CG-3!17/87

NEW JERSEY (Cont'd)

tHamilton/Avnat ElectroniCS
10 Industrial
Fairfield 07006
Tel: (201) 575-3390
TWX: 701-734-4388

tPioneer Northeast Electronics
45 Roule 46
Plnebrook 07058
Tel: (201) 575-3510
TWX: 710-734-4382

tMTI Systems Sales
383 Route 46 W
Fairfield 07006
Tel: (201) 227-5552

NEW MEXICO

Alliance Electronics Inc
11030 COChttl S.E
Albuquerque B7123
Tel· (505) 292-3360
TWX· 910-989-1151

Hamilton/Avnet Electronics
2524 Baylor Dflve S E
Albuquerque 87106
Tel· (505) 765-1500
TWX: 910-989-0614

NEW YORK

Arrow Electronics. Inc
25 Hub Drive
Melville 11747
Tel: (SIS) 694-6800
TWX. 510-224-6126

t Arrow ElectrOniCS, Inc
3375 Brighton-Henrietta Townltne Rd
Rochester 14623
Tel (716) 427-0300
TWX. 510-253-4766

Arrow Electronics, Inc.

[:v~~p~~\t~~ofarlve
Tel: (315) 652-1000
TWX 710-545-0230

Arrow ElectroniCS. Inc
20 Oser Avenue
Hauppauge 11788
Tel. (SIS) 231-1000
TWX: 510-227-6623

Hamllton/Avne! ElactronlCS
333 Metro Park
Rochester 14623
Tel. (716)475-9130
TWX 510-253-5470

tHamlJton/ Avnet ElectroniCS
103 TWin Oaks Drive
Syracuse 13206
Tel· (315) 437-2641
TWX: 710-541-1560

tHamiiton/Avnet Electromcs
933 Motor Parkway
Hauppauge 11788
Tel (516) 231-9800
TWX· 510-224-6166

tMTI Systems Sales
3B Harbor Park Dflve
POBox 271
Port Washington 11050
Tel: (516) 621-6200
TWX: 510-223-0846

tPloneer Northeast ElectroniCs
1806 Vastat Parkway East
Vestal 13850
Tel: (607) 748-8211
TWX. 510-252-0893

tPloneer Northeast ElectroniCS
60 Crossway Park West

~eT1s~679~'~8~J~and 11797
TWX· 510-221-2184

DOMESTIC DISTRIBUTORS
NEW YORK (Cont'd)

tPloneer Northeast ElectroniCs
B40 Fairport Park
Fairport 14450
Tet· (716) 3B1-7070
TWX: 510-253-7001

NORTH CAROLINA

tArrow ElectrOniCS, Inc
5240 Greendalry Road

~:,'~(~~ 9~~~~~3132
lWX: 510-928-1856

tHamllton/Avnet Electronics

~~~~ Stf~~~~orest Drrve 

Tel (~'9) 878-0819 
TWX. 510-928-1836 

Pioneer Electronics 
9801 A-Southern Pine Blvd 
Crrarlotte 28210 
Tet: {704} 527-8188 
TWX. 810-621-0366 

OHIO 

Arrow Electronics. Inc 
7620 McEwen Road 
Centerville 45459 
Tel (513) 435-5563 
TWX 810-459-1611 

tArrow Electronecs. Inc 
6238 Cochran Road 
Solon 44139 
Tel {216} 248-3990 
TWX 810-427-9409 

tHamilton/Avnet ElectroniCS 
954 Senate Drrve 
Dayton 45459 
Tel· (513) 433-0610 
rNX 810-450-2531 

tHamllton/Avnet Electronics 
4588 Emery Industrral Park-way 
WarrenSVille Heights 44128 
Tel. (216) 831-3500 
TWX. 810-427-9452 

tPloneer Electrontcs 
4433 InterpOlnt Blvd 
Dayton 45424 
Tel (513) 236-9900 
TWX 810-459-1622 

tPloneer Electrontcs 
4800 E. 131st Street 
Cleveland 44105 
Tel: (216) 587-3600 
TWX: 810-422-2211 

OKLAHOMA 

Arrow ElectroniCS. Inc 
4719 S Memorial DrIVe 
Tulsa 74145 
Tel: (918) 665-7700 

OREGON 

tAlmac ElectroniCS Corpora­
tion 
1885 N W. 169th Place 
Bflavflrton 97006 
Tel. (503) 629-8090 
TWX. 910-467-8743 

tHamiltonjAvnet ElectroniCs 
6024 S W Jean Road 
Bldg C, SUite 10 

!r:~(5~3)6~g-~;gr 
TWX· 910-455-8179 

OREGON (Cont'd) 

Wyte Distribution Group 
5250 N.E Elam Young Parkway 
SUIte 600 
Hillsboro 97124 
Tel: (503) 640-6000 
TWX: 910-460-2203 

PENNSYLVANIA 

Arrow ElectrOniCS, Inc 
650 Seco Road 
Monroeville 15146 
Tel: (412) 856-7000 

Hamilton/Avnet Electronics 

~?g~b~lrbe~2~(t. Bldg E 

Tel (41~)281-4150 
Pioneer Electronics 
259 Kappa Dnve 

~~~.s~~r~t71~~~goo 
TWX: 710-795-3122

tPloneer Electronics
261 Glbralter Road
Horsham 19044
Tel: (215) 674-4000
TWX 510-665-6778

TEXAS

tArrow ElectroniCs, Inc
3220 Commander Drive
Carrollton 75006
Tel (214) 380-6464
TWX. 910-860-5377

tArrow Electronics. Inc.
10899 Klnghurst
Suite 100
Houston 77099
Tel· (713) 530-4700
TWX 910-880-4439

tArrow ElectrOfllCS, Inc
10125 Metropolitan
Ausiin 78758
Tel: (512) 835-4180
TWX: 910-874-1348

tHamlltonjAvnet Electronics
2401 Rutland
AUStin 78758
Tel. (512) 837-8911
TWX 910-874-1319

tHamllton/Avnat Electronics
2111 W Walnut HIli lane
IrVing 75062
Tel (214)659-4100
TWX: 910-860-5929

tHamllton/ Allnet ElectroniCs

~~;f~o:i1p!f7oad #190

Tel· (713) 780-1771
TWX. 910-881-5523

Klerulff Electronics. Inc
9610 Skillman
Oallas 75243
Tel. (214) 343-2400

tPloneer ElectronicS
, 826 D Kramer Lane
Ausltn 78758
Tel. (512) 835-4000
TWX 910-B74-1323

tPioneer Electronics
13710 Omega Road
Dallas 75234
Tel (214) 386-7300
TWX. 910-850-5563

tPloneer ElectrOnics
5853 Pornt West Drive
Houston 77036
Tel: (713) 988-5555
TWX 910-881-1606

UTAH

tHamllton/Avnel Electronics
1585 West 2100 South

~::~ Mm ~;~-::JJ 9
TWX. 910-925-4018

Wyle Distribution Group
1325 West 2200 South
SUite E

~::~ (~b~) ~i7_::JJ9
WASHINGTON

tAlmac Electronics Corp.
14360 S.E. Eastgate Way
Bellevue 96007
Tel: (206) 643-9992
TWX: 910-444-2067

Arrow ElectrOnics, Inc
14320 N.E 2151 Street
Bellevue 98007
Tel. (206) 643-4800
TWX· 910-444-2017

Hamilton/Avnet Electronics
14212 N.E. 21st Street
Bellevue 98005
Te!: (206) 453-5874
TWX 910-443-2469

Wyle Distribution Group
1750 132nd Ave., N.E
Bellvue 98005
Tel: (206) 453-8300

WISCONSIN

tArrow Electronics, Inc
430 W Rausson Avenue
Oakcreek 53154
Tel. (414) 764-6600
TWX: 910-262-1193

Hamilton/Avnet Electromcs
2975 Moorland Road
New Berlin 53151
Tel· (414) 784-4510
TWX· 910-262-1182

Klerulff Electromcs, Inc
2238-E W. Bluemound Rd
Waukeshaw 53186
Tel· (414) 784-8160

CANADA
ALBERTA

Hamilton/Avnet Electromcs
2816 21st Street N.E

~:I,g(a;63T~~0~~~86
TWX. 03-827-642

HamiitonjAvne! Electromcs
6845 Rexwood Road Umt 6

~~f(~f6)u~~7~~W:IO L4Vl R2

tZentromcs

~300~~t~ Avenue N.E

¥:,I?(~63n~2~621
BRtTtSH COLUMBIA

Hamllto~Avnet Electrontcs

~~~~~,~y e~~ng2'3 Road 
Tel (604) 272-4242 

BRITISH COLUMBIA (Cont'd) 

Zentronics 

~?~h~:~g 96~~Wrt Road 
Tel: (604) 273-5575 
TWX: 04-S077-89 

MANITOBA 

Zentronics 
590 ~rry Street 

~~(~ ~i~8~~~ 
ONTARIO 

Arrow Electronics Inc 
24 Martin Ross Avenue 
Downsview M3J 2K9 
Tel: (416) 661-0220 
TLX: 06-218213 

Arrow Electronics Inc. 
14B Colonnade Road 
Nepean K2E 7 JS 
Tel: (613) 226-6903 

tHamiiton/Avnet Electronics 
6845 Rexwood Road 
UnltsG&H 

~~~(~f6)a~7:~¥31 R2 
TWX: 510-492-8867

tHamilton/Avnet Electronics
210 Colonnade Road South
Nepean K2E 7L5
Tel: (613) 226-1700
TWX: 05-349-71

Zentrontcs
564/10 Weber Street North
Waterloo N2L SC5
Tel: (519) 884-5700

tZentronlcs
155 Colonnade Road
Unit 17
Nepean K2E 7K1
Tel: (613) 225-8840
TWX: 06-976-78

aUEBEC

tArrow Electronics Inc.
4050 Jean Talon Quest
Montreal H4P 1 WI
Tel: (514) 735-5511
TlX· 05-25596

Arrow Electronics Inc.
909 Charest Blvd.
Quebec 61 N 269
Tel: (418) 687-4231
TLX: 05-13388

Hamllton/Avnet ElectrOniCS
2795 Aue Halpern
St. laurent H4S 1 PB
Tel: (514) 335-1000
TWX: 610-421-3731

Zwtronics
505 locke Street
St laurent H4T 1 X7
Tel: (514) 735-5361
TWX· 05~827~S35

tMlcrocomputer System Technical Distributor Centers

CG-3/17/87

BELGIUM

~~~I ~:~~~~~ ~5A 
B~1180 Brussels 
Tel. (02) 347~0666 

DENMARK 

bUel Denmark AlS' 
Glentevej 61 ~ 3rd Floor 

~~~~ci~ 1~~C~_3~agen 
TLX: 19567

FINLAND

Intel Finland OY
Rousilantle2
00390 Helsinki
lei· (8) 0544-644
TLX: 123332

FRANCE

Intel Paris
1 Rue Edison, BP 303
78054 Salnt-Quentln-en-Yvelines Cedex
Tel: (33)1-30-57-7000
TLX. 69901677

Intel Corporation, S.A R.l
Immeuble BBC
4 Quai des Etroits

~:~~~)Llf2.4089
TLX.305153

EUROPEAN SALES OFFICES
WEST GERMANY

Intel Semiconductor GmbH"
Seid[estrasse 27
D~8000 Muenchen 2
Te[: (89) 53891
TLX. 05-23177 [NTl 0

Intel Semiconductor GmbH
Verkaufsbuero Wlesbadsn
Abraham-lincoln Str 16-18
6200 Wiesbadsn
Tsl: (6121) 76050
TlX: 041861831NTW 0

Intel Semiconductor GmbH
Verkaufsbuero Hannover
Hohenz:ollernstrasse 5
3000 Hannover 1
Tel· (511) 34-40-81
TLX 923625 INTH D

Intel Semiconductor GmbH
Verkaufsbuero Stuttgart
Bruckstrasse 61
7012 Fellbach
Tel: (711) 58-00-82
TLX· 7254826 INTS D

ISRAEL

Intel Semiconductor Ltd"
Attidim Industrial Park
Neve Share!
Ovora Hanevla
Bldg. No 13, 4th Floor
P.O. Box 43202
Tel Aviv 61430
Tel· (3) 491-099. 491-098
TLX: 371215

ITALY

Intel Corporation S P.A •
Mllanoflofl. Palazzo E/4
20090 Assago (Milano)
Tel: (02)824-4071
TlX 3412861NTMIL

NETHERLANDS

Intel Semiconductor (Nederland) B V •
Alexanderpoort BUIlding
Marten Meesweg 93
3068 Rotterdam
Tel· (10) 21-23-77
TLX· 22283

NORWAY

~.~~ ~~~9al A/s
Hvamvelen 4
N-2013. SkJetten
Tel. (2) 742-420
TLX· 78018

SPAIN

Inlel Iberia
Calle Zurbaran 28-IZODA
28010 Madrid
Tel: (1) 410-4004
TLX: 46880

SWEDEN

Intel Sweden A.S:
Dalvagen 24
8-171 36 Solna
Tel· (8) 734-0100
TLX: 12261

SWITZERLAND
Intel Semiconductor A.G •
Talackerstrasse 17
8152 Glattbrugg
CH-8065 Zurich
Tel: (01) 829-2977
TLX· 57989 ICH CH

UNITED KINGDOM

Intel Corporation (U K) Ltd •
Pipers Way
SWlndon, Wiltshire SNI lRJ
Tel: (0793) 696-000
TLX 444447 INT SWN

"Field Application Location

EUROPEAN DISTRIBUTORS/ REPRESENTATIVES
AUSTRIA

Bacher Elektromcs Ges m.b H
Rotenmuehlgasse 26
A-1120Wlen
Tel: (222) 835-6460
TUC·131532

BELGIUM

~:~c~~e~:~~ ~/Guerre, 94
Bruxelles 1120
Tel: (02)216-01-60
TlX· 64475

BENELUX

Koning en Hartman Electrotechmek B V
Postbus 125
2600 AC Delft
Tel: (15) 609-90S
TLX: 38250

DENMARK

ITT MultlKomponent
Naverland 29
DK-2S00 Gloslrup
Tel. (02) 456-66-45
TlX: 33355 InCG OK

FINLAND

Oy Fintronic AS
Melkonkatu 24A
SF-0021O Helsinki 2t
Tel: (0) 692-60-22
TLX: 124224 FTRON SF

FRANCE

Generim
Zone d·Activile de Courtaboeuf
Avenue de la Baltlque
91943 Les UliS Cedex
Tel: (1) 69-07-78-78
TLX.691700

Metrologie
Tour d'Asnieres
4, Avenue Laurent Cely
92606 Asnieres
Tel: (1) 47-90-62-40
TLX: 611448

FRANCE (Cont'd)

Tekelec Alrtronlc
C,te des Bruyeres
Aue Carle Vernel BP 2
92310 Sevres
Tel: (1)45-34-75-35
TLX· 204552

WEST GERMANY

Electromc 2000 Vertriebs AG

~h~~t~~~~~negn 1~
Tel. (OS9) 42-00-10
TLX 522561 ElEC D

~~h~rs1r~~~H84
6277 Bad Camberg
Tel (064) 34-231
TLX 415257-0JERM D

Metrologle GmbH
Rhelnstr 94-96
6100 Darmstadt
Tel: (06151) 33661
TLX: 176151820

Proeleclron Vertnebs AG
Max-Planck-5trasse 1-3
6072 Orelelch
Tel (06103) 3040
TLX: 417972

ITT -MultlKomponent
Bahnhofstrasse 44

~~~~o~~:r;'~~~~ 
TLX 7264399 MUKO D 

ISRAel 

Eastromcs Ltd. 
11 Rosanis Sireet 
PO. Box 39300 
Tel Aviv 61392 
Tel. (3) 47-51-51 
TLX: 342610 DATIX IL or 

33638 AONIX IL 

ITALY 

Eledra Compopentl S.P A 
I/"- Glacol"ftO Welt, 37 
20143 Milano 
Tel: (02) 82821 
TLX: 332332 

ITALY (Cont'd) 

Intesl 
Mllanollon E5 

f~?~g2~82j?0 I 
TLX 311351 

Lasl Elettromca S P.A 
Vlale Fulvlo Testl. t26 
20092 Clnlsello Balsamo 
Tel. (02) 244-0012. 244-0212 
TlX 352040 

NORWAY 

Nordlsk Electronlk AjS 
Postboks 130 
N-1364 Hvalstad 
Tel (2)846-210 
TLX. 77546 NENAS N 

PORTUGAL 

Dltram 
Avemda Marques de Tomar. 46A 
l1sboa P-1000 
Tel. (351-1) 734-834 
TWX· (0404) 14182 

SPAtN 

In 
~1~Jr~i~8gI1;ngel 
Tel (t}419-54-00 
TWX· 27461 

A.T.D Electronlca S A 
PI e.udad dp Vlena 6 
28040 Madrid 
Tel (1) 234-4000 
TWX· 42477 

SWEDEN 

Nordisk Eleklromk AB 
Box 1409 
5-17127 Solna 
Tel: (8) 734·97-70 
TLX· 10547 

SWITZERLAND 

lndustrade AG 
Hertlstrasse 31 
CH-8304 Wallisellen 
Tet: (01) 830-5040 
TLX· 56788 

UNITED KINGDOM 

Accent Electronic Components Ltd 

i~~~:oHrfh~s~e~~b~~~ ~Q~ 
England 
Tel: (0462) 686666 
TLX 626923 

By tech Ltd 
Unit 2 Western Centre 
Western Industrial Estate 
Bracknell. Berkshire AG12 1RW 
England 
Tel (0344) 482211 
TLK 848215 

Comway Mlcrosystems Ltd. 
John Scott House, Market St 
Bracknell, Berkshire AJt2 lOP 
England 
Tel: (0344) 55333 
TLX· 847201 

IBA MICrocomputers Ltd 
Unit 2 Western Centre 
Western lndustnal Estate 
Bracknell. Berkshire RG12 lAW 
England 
Tel: (0344) 466-555 
TLX· 849381 

Jermyn Industnes 
Vestry Estate, Olford Road 
Sevenoaks, Kent TN14 5EU 
England 
Tel: (0732) 450144 
TLX.95142 

Rapid Silicon 
Rapid House, Denmark 5t. 
High Wycombe, Bucks HP11 2ER 
England 
Tel· (0494) 442266 
TLX 837931 

Rapid Systems 
Rapid House. Denmark SI 
High Wycombe, Bucks HP11 2EA 
England 
Tel: (0494) 450244 
TL.X: 837931 

Micro Marketing 
Glenageary Office Park 
Gtenageary, Co. Dublin 
Ireland 
Tel: (0001) 856288 
TLX.31584 

YUGOSLAVIA 

H.R. Mlcroelectromcs Corp 
2005 De La Cruz Blvd., Ste. 223 
Santa Clara, CA 95050 U.S.A. 
Tel: (408) 98S-0286 
TLX: 387452 

CG-3/17/87 



intJ 
AUSTRALIA 

Intel Australia?ty Ltd_' 
S~trur:n Building 

~ro::~~~t~~w ~~~56 
i~~WO~jl-2744 
FAX. (2) 923-2632 

CHINA 

Intel PRC Corporation 

j~~ G~~it.1e~ ~~~c S~:~t 
Beijing, PRC 
Tel: (1) 500-4850 
TLX: 22947 INTEL eN 
FAX' (1) 500-2953 

HONG KONG 

Intel Semiconductor Ltd • 
1701-3 Connaugh\ Centre 
1 Connaught Road 
Tel: (5) 844-4555 
TWX: 63869 ISLHK HX 
FAX' (5) 294-589 

INTERNATIONAL SALES OFFICES 
JAPAN 

Intel Japan K.K 
5·6 Tokodal Toyosato-machi 

i!~~O~91}~~7~~;~ki-ken 300-26 
TLX: 03656-160 

Inlel Japan K.K." 
Dailchl MltsUgl Bldg. 
1-8889 Fuchu-cho 
Fuchu-shl, Tokyo 183 
Tel: (04) 23-60-7871 

Intel Japan K.K· 
Flower-HIli Shln-machl Bldg 
1-23-9 Shlnmachl 

~:f.a(t3)a.;~622~~~YO 154 
Intel Japan K.K: 

~_69~~X~~~dg 
Kumagaya, Saltama 360 
TeJ. (04) 85-24-6871 

Inlel Japan K K 

~11s~~~a~~~~h~~I~i:~?~~_Shl 
Shlzuaka-ken411 
Tel' (05) 59~72-2141 

JAPAN (Cont'd) 

~:~~~~g:i~~i ~~saShl-KOSU91 Bldg. 
g15-20 Shinmaruko, Nakahara-ku 
KBwasaki-shi, Kanagawa 211 
Tel: (04) 47-33-7011 

Intel Japan K.K 
Nlhon Seimel Bldg 
1-12 Asahl-cho 

~~~:U{&r)K:;_~~~~~1 ~43 
Intel Japan K.K:
Ryokuchl-Station Bldg
2-4-1 Terauchi
Toyonaka, Osaka 560
Tel. (06) 863-1091

Intel Japan K.K
Shinmaru Bldg
1-5-1 Marunouchi
Chlyoda-ku. TOkyo 100
Tel' (03j201-3621

KOREA

Intel TechnOlogy ASia Ltd.

~~~ Y~~O~~~~)Po~~~~'ElUngpo-ku 
580U1150 

~~.(~9~~-1~~~LKO 
FAX: (2) 784-8096 

SINGAPORE 

Intel Singapore Technology, Ltd 
1-1 Thomson Road 
#21 -06 GoldhlH Square 
Singapore 1130 
Tel: 250-7811 
Tl.X: 39921 INTEL 
FAX: 250-9256 

TAIWAN 

Intel Technology (Far East) Ltd. 
Taiwan Branch 
lO/F., No. 205, Tun Hua N. RU<:I.d 
Taipei, R.O.C. 
Tet. (02) 716-9660 
Tl.X: 13159 tNTELTWN 
FAX: (02) 717-2455 

-Field Application Location 

INTERNATIONAL 
DISTRIBUTORS/REPRESENT ATIVES 

ARGENTINA 

VLC S.R.L Bartalome Mitre 1711 
3 Piso 
1037 Buenos Aires 
Tel: 54-1~49-2092 
TLX' 17575 EDARG-AA 

AUSTRALIA 

Total Electromcs 
Private Bag 250 
9 Harker Street 
Burwood, Vlctona 3125 
Tel: 61-3-288-4044 
TLX: AA 31261 

Total Electronics 
P.O. Box 139 
Artamon, N.S.W. 2064 
Tel: 61-02-438-1855 
TLX: 26297 

BRAZIL 

Elebra Mlcroelectronica S/A 
Geraldo Flauslno Gomes. 78 
9 Andar 
04575 - Sao Paulo - S.P 
Tel: 55-11-534-9600 
TLX: 3911125131 ELBR SR 
FAX. 55-11-534-9424 

CHILE 

DIN Instruments 
Suecia 2323 
Casilta 6055, Correa 22 
Santiago 
Tel' 56~2-225-8139 
TLX: 440422 RUDY CZ 

CHINA 

CHINA (Cont'd) 

Schmidt & Co Ltd 
18/F Great Eagle Centre 
23 Harbour Road 
Wanchal, Hong Kong 
Tel. 852-5-833-0222 
TWX. 74766 SCHMC HX 
FAX 852-5-891·8754 

INDIA 

Mlcromc DeVices 
Arun Complex 
No 65 OV.G. Road 
Basavanagudl 

~:I~~~I~~ 2:gg0~~;1 
TLX: 0645-8332 MD BG IN 

Micronic Devices 
403, Gagan Deep 
12, RSJendra Place 
New Delhi 110 008 
Tel' 91-58-97-71 
TLX: 03163235 MOND IN 

Mlcronic DeVices 
No. 516 5th Floor 
Swastik Chambers 

~~~b~~~~8r~!1 Road 
Tel: 91-52-39-63
TLX: 9531 171447 MDEV IN

JAPAN

Asahi ElectrOniCS Co Ltd
KMM Bldg. 2-14-1 Asano
Kokurakita-ku

~~1~'69U;~~1~~~~~2
FAX. 093-551-7861

C. Itoh Techno-Science Co., Ltd.
C.ltoh Bld~, 2-5-1 Klta-Aoyama

~~~~~~97_4~Oo 107 
FAX: 03-497-4969 

JAPAN (Conl'd) 

Okaya Kokl 
2-4-18 Sakae 

~:tO~2_'2~?2J:1sh' 460 
FAX 052~204-2901 

Ryoyo Electro Corp 
Konwa Bldg 
1-12-22 TsuklJi 

~~I~~;_~4~~;6f,'04 
FAX' 03·546-5044 

KOREA 

J-Tek Corporation 
6th Floor, Government PenSIon Bldg 

$~~n~~~~o~g~;~u 
Seoul 150 
Tel: 82-2-782-8039 
TLX. 25299 KODlGIT 
FAX. 82·2-764-8391 

Sam sung SemIconductor & 
Telecommunications Co . Ltd 
150. 2-KA. Tafpyung-ro. Chung.ku 
Seoul 100 
Tel: 82-2-751-3987 
TLX: 27970 KORSST 
FAX: 82-2-753-0967 

MEXICO 

Dicopei S A 
Tochtli 368 Fracc Ind San AntoniO 
Azcapotzalco 
C.P. 02760-Mexico, O.F. 
Tel: 52-5-561·3211 
TLX: 1773790 DICOME 

NEW ZEALAND 

Northrup Instruments & Systems Ltd. 

~~g.'~(g:~~~~ :eo:~arket 
Auckland 1 
Tel: 64-9-501-219, 501-801 
TLX: 21570 THERMAL 

Northrup Instruments & Systems Ltd. 
P.O. Box 2406 

~~~I~_t.r_~:~.~~~a 
TLX: NZ3380
FAX' 64-4-857276

SINGAPORE

Francotone Electronics Pte Ltd
1? Harvey Road #04-01
Smgapore 1336
Tel: 283-0888, 289-1618
TWX' 56541 FRELS
FAX' 2895327

SOUTH AFRICA

Electronic Building Elements, Pty. !...td
P.O. Box 4609
Pine Square. 18th Street
Hazelwood, Pretoria 0001
Tel: 27-12-469921
Tl.X: 3-227786 SA

TAIWAN

Mitac Corporation
No: 585, Ming Shen East Rd
TaIpei, R.O.C
Te(' 886-2-501-8231
FAX. 886-2-501-4265

VENEZUELA

P. Benavides SIA
Avilanes a Rio
Resldencia.s Kamarata
locales 4 A 17
La Candelaria. Caracas
Tel: 58-2-571-0396
TLX: 28450 PBVEN VC
FAX: 58-2-572-3321

"Field Application Location

CG-3/17/87

inter
ALABAMA

Intel Corp
5015 Bradford Drive, #2
Huntsville 35805
Tel: (205) 830-4010

ARIZONA

Intel Corp.
11225 N. 2Bth Dr #D214
Phoenix 85029
Tel: (602) 869-4980

Intel Corp.
500 E. Fry Blvd., Suite M-15
SIerra Vista 85635
TAl: (602) 459-501 0

ARKANSAS

Intel Corp
P.O. Box 206
Ulm 72170
Tel. (501)241-3264

CALIFORNIA

Intel Corp
21515 Vanowen
Suite 116

~:,~(~f8r~~:~~g~
Intel Corp.
2250 E. Imperial Highway
SUite 218
[I Segundo 90245
Tel: 1-800-468-3548

Intel Corp
2000 E. 4th Street
Suite 110
Sanla Ana 92705
Tel: (714) 835-5789
TWX· 910-595-2475

Inte! Corp
2700 San Tomas Expressway
Santa Clara 95051
Tel· (408) 970-1740

Intel Corp
4350 Executive Dnve
SUite 150

~:~ (~I~)04~~~;~80
COLORADO

Intel Corp.
650 South Cherry
SUite 915
Denver 80222
Tel: (303) 321-8086
TWX. 910-931-2289

CALIFORNIA

2700 San Tomas Expressway
Santa Clara 95051
Tel: (408) 970-1700

CALIFORNIA

2700 San Tomas Expressway
Santa Clara 95051
Tel: (408) 986-8086

DOMESTIC SERVICE OFFICES
CONNECTICUT

Intel Corp
26 Mill Plain Road

~:1~~~~)~:~-1130
FLORIDA

Intel Corp
1500 N.w. 62, SUIte 104
Ft. Lauderdale 33309
Tel; (305) 771-0600
TWX: 510-956-9407

Intel Corp.
242 N. Westmante Drive
Suite 105

~~~71b5\e8~~~~~:8 32714 

GEORGIA 

Intel Corp. 
3280 POinte Parkway 
Suite 200 
Norcross 30092 
Tel: (404)441-1171 

ILLINOIS 

Intel Corp 
300 N. Martingale Ad 
Suite 300 
Schaumburg 60194 
Tel: (312) 310-5733 

INDIANA 

Intel Corp 
8777 Purdue Ad., #125 
Indianapolis 46268 
Tel: (317) 875-0623 

KANSAS 

Intel Corp 
8400 W. 11 Oth Street 
Suite 170 
Overland ParK 66210 
Tel: (913) 345-2727 

KENTUCKY 

Intel Corp 
3525 Tatescreek Road. 
#51 

i:~I{~ci6) 2~~:~~ 45 

MARYlAND 

Intel Corp 
5th Floor 
7833 Walker Drive 
Greenbelt 20770 
Tel: (301)441-1020 

MASSACHUSETTS 

Intel Corp. 
3 Carlisle Road 
Westford 01886 
Tel. (617) 692-1060 

MICHIGAN 

Intel Corp. 
7071 Orchard Lake Road 
Suitfi 100 
West Bloomfield 48033 
Tel: (313) 851-8905 

MISSOURI 

Intel Corp 
4203 Earth City Expressway 
Suite 143 
Earth City 63045 
Tel. (314) 291-2015 

NEW JERSEY 

Intel Corp 
385 Sylvan Avenue 
Englewood Cliffs 07632 
Tel· (201) 567-0821 
TWX: 710-991-8593 

Intel Corp. 
Raritan Plaza II! 
Raritan Center 
Edison 08817 
Tel· (201) 225-3000 

NORTH CAROLINA 

Intel Corp 
2306 W. Meadowv!ew Road 
SUIte 206 
Greensboro 27407 
Tel. (919) 294-1541 

Intel Corp 
2700 T ryc1iff Ad, Suite 102 

~:II.ei§~ 9F7~~~8022 
OHIO 

Intel Corp 
Chagrin-Brainard Bldg 
SUite 305 

~?~eia~~a2~f2~oulevard 
Tel: (216) 464-6915 
TWX 810-427-9298 

Intel Corp. 
6500 Poe 
Dayton 45414 
Tel. (513) 890-5350 

OREGON 

Inlel Corp. 
15254 N.W. Greenbrier 
Beaverton 01886 
Tel (503) 645-8051 
TWX 910-467-8741 

Intel Corp 
5200 N E. Elam Young Parkway 
Hillsboro 97123 
Tel: (503) 681 -8080 

CUSTOMER TRAINING CENTERS 
ILLINOIS 

~~~a~m~~7~n~g~ei3#300 
Tel. (312) 310-5700

MASSACHUSETTS

3 Carlisle Road
Westford 01886
Tel (617) 692-1000

SYSTEMS ENGINEERING OFFICES
ILLINOIS

~~~a~m~~7;~~~~3#300 
Tel: (312) 310-8031 

MASSACHUSETTS 

3 Carlisle Road 
Westford 01886 
Tel: (617) 692-3222 

PENNSYLVANIA 

Intel Corp. 
201 Penn Center Boulevard 
Suite 301 W 

~~.s~rjlr3~~~~O 
TEXAS 

Intel Corp. 
313 E. Anderson Lane 
Suite 314 
Austin 78752 
Tel: (512) 454..J628 
TWX: 910-674-1347 

Intel Corp 
12300 Ford Road 
SUite 380 
Dallas 75234 
Tel: (214) 241-2820 
TWX: 910-860-5617 

Intel Corp. 
8815 Dyer St., Suite 225 
EI Paso 79904 
Tel: (915) 751-0186 

VIRGINIA 

Intel Corp. 
1603 Santa Rosa Rd. #109 
Richmond 23288 
Tel: (804) 282-5668 

WASHINGTON 

Intel Corp. 
110 110th Avenue N.E. 
Suite 510 
Bellevue 98004 
Tel: 1-800-468-3548 
TWX: 910-443-3002 

WISCONSIN 

Intel Corp. 
450 N. Sunnyslope Road 
Surte 130 
Brookfield 53005 
Tel: (414) 784-8087 

CANADA 
Intel Corp 
190 Altwell Drive, Suite 103 
Rexdale, Ontario 
Canada K2H 8A2 
Tel: (416) 675-2105 

Intel Corp 
620 5t. Jean Blvd. 
Pointe Claire, Quebec 
Canada H9R 3K2 
Tel. (514) 694-9130 

Intel Corp 
2650 Queensvlew Drive. #250 
Ottawa, OntariO, 
Canada K2B SH6 
Tel: (613) 829-9714 

MARYLAND 

7833 Walker Dr., 4th Floor 
Greenbelt 20770 
Tel· (301) 220-3380 

NEW YORK 

300 Motor Parkway 
Hauppauge 11788 
Tel: (516) 231-3300 

CG-3/17/87 




