

UPI41A™
USER'S MANUAL

APRIL 1980

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which
may appear in this document nor does it make a commitment to update the information contained herein.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use, duplication or
disclosure is subject to restrictions stated in Intel's software license, or as defined in ASPR 7-104.9 (a) (9).

No part of this document may be copied or reproduced in any form or by any means without the prior written consent
of the Intel Corporation.

The following are trademarks of Intel Corporation and may only be used to describe Intel products:

i Intellec Multimodule
ICE iSBC PROMPT
ICS Library Manager Promware
im MCS RMX
Insite Megachassis UPI
Intel Micromap ~Scope

Intelevision

and the combinations of ICE, iCS, MCS or RMX and a numerical suffix.

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051

Table of Contents

CHAPTER 1
Introduction ... 1-1

CHAPTER 2
Functional Description .. ' 2-1
Basic Features ... 2-1
Pin Description ... 2-1
CPU Section ... 2-4
Program Memory ... 2-4
Data Memory .. 2-5
Program Counter .. 2-6
Program Status Word .. 2-6
Conditional Branch Logic ... 2-7
Oscillator and Timing Circuits .. 2-7
Internal Timer / Event Counter .. 2-9
Test Inputs .. 2-11
Interrupts and DMA .. 2-11
Reset .. 2-12
Data Bus Buffer ... 2-13
System Interface ... 2-14
Input/Output Interface .. 2-15

110 Ports .. 2-15
110 Port Expansion .. 2-16

CHAPTER 3
Instruction Set .. 3-1
Introduction ... 3-1
Instruction Set Description .. 3-3

Instruction Set Summary ... 3-3
Alphabetic Listing .. 3-5

CHAPTER 4
Single-step, Programming and Power-down Modes .. 4-1
8741 A Single-Step ... 4-1
Programming and Verification .. 4-3
External Access ... 4-4
8041A Power Down Mode .. 4-4

CHAPTER 5
System Operation ... 5-1
Bus Interface ... 5-1
Design Examples ... 5-2
General Handshaking Protocol ... 5-4

CHAPTER 6
Application Notes .. 6-1
Abstracts ... 6-1
Application Notes ... 6-5

Introduction to the UPI41ATM ... 6-5
Keyboard Scanning Application .. 6-47

iii

CHAPTER 7
Data Sheets .. .
8041 A 18641 A 18741 A, Universal Peripheral Interface 8-bit Microcomputer ..
8243 MCS-48™ Input/Output Expander
8292 GPIB Controller
8294 Data Encryption Unit
8295 Dot Matrix Printer Controller

CHAPTER 8
System Support.
ICE 41 A ™ UPI 41 A ™ In-Circuit Emulator
Multi ICE Software, Multiple-In-Circuit-Emulator
MCS-48™ Diskette-Based Software Support Package
Model 230 Intellec@ Series II Microcomputer Development System
UPP-103 Universal PROM Programmer

iv

. ~1

. ~1
.7-11

. .7-17
.7-31

..... 7-43

. .8-1
.8-1

. ... 8-5
.. 8-9

.... 8-11

. ... 8-15

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

CHAPTER 1
INTRODUCTION

Accompanying the introduction of microprocessors
such as the 8080, 8085, and 8086 there has been a
rapid proliferation of intelligent peripheral devices.
These special purpose peripherals extend CPU per­
formance and flexibility in a number of important
ways.

Table 1-1. Intelligent Peripheral Devices

8255 (GPIO) Programmable Peripheral
Interface

8251 (USART) Programmable
Communication Interface

8253 (TIMER) Programmable Interval Timer

8257 (DMA) Programmable DMA Controller

8259 Programmable Interrupt
Controller

8272 (DDFDC) Programmable Floppy Disk
Controller

8273 (SDLC) Programmable Synchronous
Data Link Controller

8275 (CRT) Programmable CRT
Controller

8279 (PKD) Programmable
Keyboard/Display Controller

8291,8292,8293 Programmable GPIB System
Talker, Listener, Controller

Intelligent devices like the 8272 floppy disk control­
ler and 8273 synchronous data link controller (see
Table 1-1) can preprocess serial data and perform
control tasks which off-load the main system proces­
sor. Higher overall system throughout is achieved
and software complexity is greatly reduced. The in­
telligent peripheral chips simplify master processor
control tasks by performing many functions exter­
nally in peripheral hardware rather than internally
in main processor software.

Intelligent peripherals also provide system flexibil­
ity. They contain on-chip mode registers which are
programmed by the master processor during system
initialization. These control registers allow the pe­
ripheral to be configured into many different oper­
ation modes. The user-defined program for the
peripheral is stored in main system memory and is
transferred to the peripheral's registers whenever a
mode change is required. Of course, this type of
flexibility requires software overhead in the master
system which tends to limit the benefit derived form
the peripheral chip.

In the past, intelligent peripherals were designed to
handle very specialized tasks. Separate chips were

1-1

designed for communication disciplines, parallel
I/O, keyboard encoding, interval timing, CRT con­
trol, etc. Yet, in spite of the large number of devices
available and the increased flexibility built into
these chips, there is still a large number of micro­
computer peripheral control tasks which are not
satisfied.

With the introduction of the Universal Peripheral
Interface (UP!) microcomputer, Intel has taken the
intelligent peripheral concept a step further by
providing an intelligent controller that is fully user
programmable. It is a complete single-chip micro­
computer which can connect directly to a master
processor data bus. It has the same advantages of in­
telligence and flexibility which previous peripheral
chips offered. In addition, the UPI is user-program­
mable: it has 1K bytes of ROM or EPROM memory
for program storage plus 64 bytes of RAM memory
for data storage or initialization from the master
processor. The UPI device allows a designer to fully
specify his control algorithm in the peripheral chip
without relying on the master processor. Devices like
printer controllers and keyboard scanners can be
completely self-contained, relying on the master
processor only for data transfer.

The UPI family consists of three components:

• 8741A microcomputer with EPROM memory
• 8041A microcomputer with ROM memory
• 8243 I/O expander device

The 8741A and 8041A single chip microcomputers
are functionally equivalent except for the type of
program memory available with each. These devices
have the following main features:

• 8-bit CPU
• 8-bit data bus interface registers
• 1K by 8 bit ROM or EPROM memory
• 64 by 8 bit RAM memory
• Interval timer/event counter
• Two 8-bit TTL compatible I/O ports
• Resident clock oscillator

The 8243 device is an I/O multiplexer which allows
expansion of I/O to over 100 lines (if seven devices
are used). All three parts are fabricated with N­
channel MOS technology and require a single, 5V
supply for operation.

INTRODUCTION

HOST
PROCESSOR ~

UP,·41A ~
~~

DATA
BUS

CONTROL
BUS

ADDRESS
BUS

KEYBOARD

UPI-41A

PRINTER

Figure 1·1. Interfacing Peripherals To Microcomputer Systems

INTERFACE REGISTERS FOR MUL TI­
PROCESSOR CONFIGURATIONS

In the normal configuration, the 8041A/8741A inter­
faces to the system bus, just like any intelligent pe­
ripheral device (see Figure 1-1). The host processor
and the 8041A/8741A form a loosely coupled multi­
processor system, that is, communications between
the two processors are direct. Common resources are
three addressable registers located physically on the
8041A/8741A. These registers are the Data Bus
Buffer Input (DBBIN), Data Bus Buffer Output
(DBBOUT), and Status (STATUS) registers. The
host processor may read data from DBBOUT or
write commands and data into DBBIN. The status
of DB BOUT and DBBIN plus user-defined status is
supplied in STATUS. The host may read STATUS
at any time. An interrupt to the UPI processor is
automatically generated (if enabled) when DBBIN
is loaded.

Because the UPI contains a complete microcom­
puter with program memory, data memory, and
CPU it can function as a "Universal" controller. A
designer can program the UPI to control printers,
tape transports, or multiple serial communication
channels. The UPI can also handle off-line arithme­
tic processing, or any number of other low speed con­
trol tasks.

POWERFUL a-BIT PROCESSOR

The UPI contains a powerful, 8-bit CPU with 2.5
/Lsec cycle time and two single-level interrupts. Its

1-2

instruction set includes over 90 instructions for easy
software development. Most instructions are single
byte and single cycle and none are more than' two
bytes long. The instruction set is optimized for bit
manipulation and I/O operations. Special instruc­
tions are included to allow binary or BCD arithmetic
operations, table lookup routines, loop counters, and
N-way branch routines.

B041A
MASK

PROGRAMMED
ROM

8741A
ELECTRICALLY

PROGRAMMABLE
LIGHT ERASABLE

EPROM

Figure 1·2. Pin Compatible ROM/EPROM Versions

INTRODUCTION

SPECIAL INSTRUCTION SET
FEATURES

• For Loop Counters:
Decrement Register and Jump if not
zero.

• For Bit Manipulation:
AND to A (immediate data or Register)
OR to A (immediate data or Register)
XOR to A (immediate data or Register)
AND to Output Ports (Accumulator)
OR to Output Ports (Accumulator)
Jump Conditionally on any bit in A

• For BDC Arithmetic:
Decimal Adjust A
Swap 4-bit Nibbles of A
Exchange lower nibbles of A and Register
Rotate A left or right with or without
Carry

• For Lookup Tables:
Load A from Page of ROM (Address in A)
Load A from Current Page of ROM
(Address in A)

Features for Peripheral Control
The UPI 8-bit interval timer/event counter can be
used to generate complex timing sequences for con­
trol applications or it can count external events such
as switch closures and position encoder pulses. Soft­
ware timing loops can be simplified or eliminated by
the interval timer. If enabled, an interrupt to the
CPU will occur when the timer overflows.

The UPI I/O complement contains two TTL-com­
patible 8-bit bidirectional I/O ports and two general­
purpose test inputs. Each of the 16 port lines can
individually function as either input or output under

a-BIT
MICROCOMPUTER

SYSTEM

software control. Four of the port lines can also func­
tion as an interface for the 8243 I/O expander which
provides four additional4-bit ports that are directly
addressable by UPI software. The 8243 expander al­
lows low cost I/O expansion for large control applica­
tions while maintaining easy and efficient software
port addressing.

8243 16 I/O LINES

aO"A/PROG t-----...J
8741A

121/0 LINES

Figure 1-4. 8243 I/O Expander Interface

On-Chip Memory
The UPI's 64 bytes of data memory include dual
working register banks and an 8-level program
counter stack. Switching between the register banks
allows fast response to interrupts. The stack is used
to store return addresses and processor status upon
entering a subroutine.

The UPI program memory is available in two types
to allow flexibility in moving from design to proto­
type to production with the same PC layout. The
8741A device with EPROM memory is very eco­
nomical for initial system design and development.

PERIPHERAL
CONTROL

OFF-UNE ARITHMETIC
PROCESSING

Figure 1-3. Interfaces And Protocols For Multiprocessor Systems

1-3

INTRODUCTION

Its program memory can be electrically programmed
using the Intel Universal PROM Programmer.
When changes are needed, the entire program can be
erased using UV lamp and reprogrammed in about
20 minutes. This means the 8741A can be used as a
single chip "breadboard" for very complex interface
and control problems. After the 8741A is pro­
grammed it can be tested in the actual production
level PC board and the actual functional environ­
ment. Changes required during system debugging
can be made in the 8741A program much more easily
than they could be made in a random logic design.
The system configuration and PC layout can remain
fixed during the development process and the turn
around time between changes can be reduced to a
minimum.

At any point during the development cycle, the
8741A EPROM part can be replaced with the low
cost 8041A part with factory mask programmed
memory. The transition from system development
to mass production is made smoothly because the
8741A and 8041A parts are completely pin compati­
ble. This feature allows extensive testing with the
EPROM part, even into initial shipments to custom­
ers. Yet, the transition to low-cost ROM is simplified
to the point of being merely a package substitution.

PREPROGRAMMED UPI's
The 8292, 8294, and 8295 are 8041A's that are pro­
grammed by Intel and sold as standard peripherals.

1-4

The 8292 is a GPIB controller, part of a three chip
GPIB system. The 8294 is a Data Encryption Unit
that implements the National Bureau of Standards
data encryption algorithm. The 8295 is a dot matrix
printer controller designed especially for the LRC
7040 series dot matrix impact printers. These parts
illustrate the great flexibility offered by the UPI
family.

DEVELOPMENT SUPPORT
The UPI microcomputer is fully supported by Intel
with development tools like the UPP PROM pro­
grammer already mentioned. An ICE-41A in-circuit
emulator is also available to allow UPI software and
hardware to be developed easily and quickly. The
combination of device features and Intel develop­
ment support make the UPI an ideal component for
low-speed peripheral control applications.

UPI DEVELOPMENT SUPPORT

• 8048/8041A Assembler
• Universal PROM Programmer UPP Series
• ICE-41A Module
• MULTI-ICE
• Insite User's Library
• Application Engineers
• Training Courses

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

CHAPTER 2
FUNCTIONAL DESCRIPTION

The UPI-41A microcomputer is an intelligent pe­
ripheral controller designed to operate in MCS-86,
MCS-85, MCS-80, and MCS-48 systems. The UPI'S
architecture, illustrated in Figure 2-1, is based on a
low cost, single-chip microcomputer with program
memory, data memory, CPU, I/O, event timer and
clock oscillator in a single 40-pin package. Special
interface registers are included which enable the
UPI to function as a peripheral to an 8-bit master
processor.

This chapter provides a basic description of the UPI
microcomputer and its system interface registers.
Unless otherwise noted the descriptions in this sec-

I CLOCK

1 1
8-BIT CPU

l
I

8-BIT
DATA BUS

INPUT REGISTER

II

I
1024 X 8

PROGRAM
MEMORY

II
II
8-BIT

DATA BUS
OUTPUT REGISTER

II
SYSTEM

INTERFACE

tion apply to both the 8741A (with UV erasable pro­
gram memory) and the 8041A (with factory mask
programmed memory). These two devices are so
similar that they can be considered identical under
most circumstances. All functions described in this
chapter apply to both the 8041A and 8741A.

PIN DESCRIPTION
The 8741A and 8041A are packaged in 40-pin Dual
In-Line (DIP) packages. The pin configuration for
both devices is shown in Figure 2-2. Figure 2-3 illus­
trates the UPI Logic Symbol.

64 X8
DATA MEMORY

II
II

8·BIT
STATUS

REGISTER

J I

8-BIT
TIMER/COUNTER

18
1/0 LINES

v
PERIPHERAL INTERFACE

AND
1/0 EXPANSION

Figure 2-1. UPI-41A Single Chip Microcomputer

2-1

FUNCTIONAL DESCRIPTION

TEST 0 VCC

XTAL1 TEST1

XTAL2 P27/DACK

RESET ·26/0RO

SS .25/iiiF PROGRAM
PROM

Cs .24/0BF +5V GNO..--'--,

EA ·,7

iffi ·,6
PORT #1

AO ·,5

WR ·,4 PORT #2

SYNC ·,3 DATA
BUS BUFFER

DO ·,2 INTERFACE

0, { -.11
02

CONTROL WRITE
·,0 INTERFACE CONTROL/

DATA
03 VOO CHIP SELECT

04 .ROG

05 .23

06 .22

07 ·21

VSS ·20

Figure 2-2. Pin Configuration Figure 2-3. Logic Symbol

The following section summarizes the functions of
each UPI-41A pin. NOTE that several pins have two

or more functions which are described in separate
paragraphs.

Table 2-1. Pin Description

Symbol Pin No. Type Name and Function

DO-D7 12-19 I/O Data Bus: Three-state, bidirectional DATA BUS BUFFER lines used to interface the
(BUS) UPI-41A microcomputer to an 8-bit master system data bus.

PlO-P I7 27-34 I/O Port 1: 8-bit, PORT 1 quasi-bidirectional I/O lines.

P20-P 27 21-24 I/O Port 2: 8-bit, PORT 2 quasi-bidirectional I/O lines. The lower 4 bits (P20·P23) inter-
35-38 face directly to the 8243 I/O expander device and contain address and data information

during PORT 4-7 access. The upper 4 bits (P24-P27) can be programmed to provide
interrupt Request and DMA Handshake capability. Software control can configure P24
as Output Buffer Full (OBF) interrupt, P25 as Input Buffer Full (IBF) interrupt, P26
as DMA Request (DRQ), and P27 as DMA ACKnowledge (DACK).

WR 10 I Write: I/O write input which enables the master CPU to write data and command
words to the UPI-41A INPUT DATA BUS BUFFER.

RD 8 I Read: I/O read input which enables the master CPU to read data and status words
from the OUTPUT DATA BUS BUFFER or status register.

CS 6 I Chip Select: Chip select input used to select one UPI-41A microcomputer out of sev·
eral connected to a common data bus.

AO 9 I Command/Data Select: Address input used by the master processor to indicate
whether byte transfer is data (AO=O) or command (AO=I).

TEST 0, 1 I Test Inputs: Input pins which can be directly tested using conditional branch instruc-
TEST 1 39 tions.

Frequency Reference: TEST 1 (Tl) also functions as the event timer input (under
software control). TEST 0 (TO) is used during PROM programming and verification in
the 8741A.

2-2

FUNCTIONAL DESCRIPTION

Table 2-1. Pin Description (Continued)

Symbol Pin No. Type Name and Function

XTAL 1, 2 I Inputs: Inputs for a crystal, LC or an external timing signal to determine the internal
XTAL2 3 oscillator frequency.
SYNC 11 0 Output Clock: Output signal which occurs once per UPI-41A instruction cycle. SYNC

can be used as a strobe for external circuitry; it is also used to synchronize single step
operation.

EA 7 I External Access: External access input which allows emulation, testing and PROM/
ROM verification.

PROG 25 I/O Program: Multifunction pin used as the program pulse input during PROM program-
ming.

During I/O expander access the PROG pin acts as an address/data strobe to the 8243.
RESET 4 I Reset: Input used to reset status flip-flops and to set the program counter to zero.

RESET is also used during PROM programming and verification.
SS 5 I Single Step: Single step input used in the 8741A in conjunction with the SYNC out-

put to step the program through each instruction.

VCC 40 Power: +5V main power supply pin.

VDD 26 Power: +5V during normal operation. +25V during programming operation. Low
power standby pin in ROM version.

VSS 20 Ground: Circuit ground potentiaL

The following sections provide a detailed functional
description of the UPI microcomputer. Figure 2-4 il-

lustrates the functional blocks within the UPI de­
vice.

'"

00-

'" D,

MASTER
SYSTEM

INTERFACE

iID

'"
"

CRYSTAL, JxTAL1

~rog~ 1TAL2

{

'DD --_ F'fIOM PROGRAM SUPPLY

POWER Vee --_ +5 SUPPLY

'" --- GROUND

INTERNAL

'"'

Figure 2-4. UPI-41ATM Block Diagram

2-3

8·BIT
TIMEAI

EVENT COUNTER

FUNCTIONAL DESCRIPTION

CPU SECTION
The CPU section of the UPI-41A microcomputer
performs basic data manipulations and controls data
flow throughout the single chip computer via the in­
ternal 8-bit data bus. The CPU section includes the
following functional blocks shown in Figure 2-4:

• Arithmetic Logic Unit (ALU)
• Instruction Decoder
• Accumulator
• Flags

Arithmetic Logic Unit (ALU)
The ALU is capable of performing the following op­
erations:

• ADD with or without carry
• AND, OR, and EXCLUSIVE OR
• Increment, Decrement
• Bit complement
• Rotate left or right
• Swap
• BCD decimal adjust

In a typical operation data from the accumulator is
combined in the ALU with data from some other
source on the UPI-41A internal bus (such as a regis­
ter or an I/O port). The result of an ALU operation
can be transferred to the internal bus or back to the
accumulator.

If an operation such as an ADD or ROTATE re­
quires more than 8 bits, the CARRY flag is used as
an indicator. Likewise, during decimal adjust and
other BCD operations the AUXILIARY CARRY
flag can be set and acted upon. These flags are part
of the Program Status Word (PSW).

Instruction Decoder
During an instruction fetch, the operation code (op­
code) portion of each program instruction is stored
and decoded by the instruction decoder. The de­
coder generates outputs used along with various tim­
ing signals to control the functions performed in the
ALU. Also, the instruction decoder controls the
source and destination of ALU data.

Accumulator
The accumulator is the single most important regis­
ter in the processor. It is the primary source of data
to the ALU and is often the destination for results as
well. Data to and from the I/O ports and memory
normally passes through the accumulator.

PROGRAM MEMORY

The UPI-41A microcomputer has 1024 8-bit words
of resident, read-only memory for program storage.
Each of these memory locations is directly address­
able by a lO-bit program counter. Depending on the

2-4

type of application and the number of program
changes anticipated, two types of program memory
are available:

• 8041A with mask programmed ROM Memory
• 8741A with electrically programmable

EPROM Memory
The 8041A and 8741A are functionally identical
parts and are completely pin compatible. The 8041A
has ROM memory which is mask programmed to
user specification during fabrication. The 8741A is
electrically programmed by the user using the Uni­
versal PROM Programmer (UPP series) with a
UPP-848 Personality Card. It can be erased using ul­
traviolt light and reprogrammed at any time.

A program memory map is illustrated in Figure 2-5.
Memory is divided into 256 location 'pages' and
three locations are reserved for special use:

PAGE 3

PAGE 2

PAGE 1

{

'023

768

{

767

512

{

511

256
255

8
7

PAGE 0 6

5

4

3

2

1

..

~

0716151413121'10

ADDRESS

LOCATION 7 - TIMER
NTERRUPT VECTORS
PROGRAM HERE 1--'

t----
LOCATION 3 - IBF
INTERRUPT VECTORS
PROGRAM HERE

I-- RESET VECTORS
PROGRAM HERE

Figure 2-5. Program Memory Map

INTERRUPT VECTORS
1) Location 0

Following a RESET input to the processor, the
next instruction is automatically fetched from
location O.

2) Location 3
An interrupt generated by an Input Buffer Full
(IBF) condition (when the IBF interrupt is en­
abled) causes the next instruction to be fetched
from location 3.

FUNCTIONAL DESCRIPTION

3) Location 7
A timer overflow interrupt (when enabled) will
cause the next instruction to be fetched from lo­
cation 7.

Following a system RESET, program execution be­
gins at location O. Instructions in program memory
are normally executed sequentially. Program control
can be transferred out of the main line of code by an
input buffer full (IBF) interrupt or a timer inter­
rupt, or when a jump or call instruction is encoun­
tered. An IBF interrupt (if enabled) will
automatically transfer control to location 3 while a
timer interrupt will transfer control to location 7.

All conditional JUMP instructions and the indirect
JUMP instruction are limited in range to the current
256-location page (that is, they alter PC bits 0-7
only). If a conditional JUMP or indirect JUMP be­
gins in location 255 of a page, it must reference a des­
tination on the following page.

Program memory can be used to store constants as
well as program instructions. the UPI-41A instruc­
tion set contains an instruction (MOVP3) designed
specifically for efficient transfer of look-up table in­
formation from page 3 of memory.

DATA MEMORY
The UPI-41A universal peripheral interface has 64
8-bit words of random access data memory. This
memory contains two working register banks, an 8-
level program counter stack and a scratch pad mem­
ory, as shown in Figure 2-6. The amount of scratch
pad memory available is variable depending on the
number of addresses nested in the stack and the
number of working registers being used.

Addressing Data Memory
The first eight locations in RAM are designated as
working registers Ro-R7. These locations (or regis­
ters) can be addressed directly by specifying a regis­
ter number in the instruction. Since these locations
are easily addressed, they are generally used to store
frequently accessed intermediate results. Other lo­
cations in data memory are addressed indirectly by
using RO or Rl to specify the desired address. Since
all RAM locations (including the eight working reg­
isters) can be addressed by 6 bits, the two most sig­
nificant bits (6 and 7) of the addressing registers are
ignored.

Working Registers
Dual banks of eight working registers are included in
the UPI-41A data memory. Locations 0-7 make up
register bank 0 and locations 24-31 form register
bank 1. A RESET signal automatically selects regis-

2-5

63 r----------,

USER RAM
32 X 8

~~ f----------j

24
23

BANK 1
WORKING

REGISTERS
8X8

R1 ----Fio7-----

8 LEVEL STACK
OR

USER RAM
16 X 8

BANK 0
WORKING

REGISTERS
8X8

_____ !!1 _____ _
RO

I
DIRECTLY

ADDRESSABLE
WHEN BANK 1
IS SELECTED

-.-l
ADDRESSED
INDIRECTLY
THROUGH
R1 OR RO

(RO' OR R1')

DIRECTLY
ADDRESSABLE
WHEN BANK 0
IS SELEerD

Figure 2-6. Data Memory Map

ter bank O. When bank 0 is selected, references to
Ro-R7 in UPI-41A instructions operate on locations
0-7 in data memory. A "select register bank" in­
struction is used to select between the banks during
program execution. If the instruction SEL RBI (Se­
lect Register Bank 1) is executed, then program re­
ferences to RO-R7 will operate on locations 24-31.
As stated previously, registers 0 and 1 in the active
register bank are used as indirect address registers
for all locations in data memory.

Register bank 1 is normally reserved for handling in­
terrupt service routines, thereby preserving the con­
tents of the main program registers. The SEL RBI
instruction can be issued at the beginning of an in­
terrupt service routine. Then, upon return to the
main program, an RETR (return & restore status)
instruction will automatically restore the previously
selected bank. During interrupt processing, registers
in bank 0 can be accessed indirectly using RO' and
RI'.

If register bank 1 is not used, registers 24-31 can still
serve as additional scratch pad memory.

Program Counter Stack
RAM locations 8-23 are used as an 8-level program
counter stack. When program control is temporarily
passed from the main program to a subroutine or in­
terrupt service routine, the to-bit program counter

FUNCTIONAL DESCRIPTION

and bits 4-7 of the program status word (PSW) are
stored in two stack locations. When control is re­
turned to the main program via an RETR instruc­
tion, the program counter and PSW bits 4-7 are
restored. Returning via an RET instruction does not
restore the PSW bits, however. The program counter
stack is addressed by three stack pointer bits in the
PSW (bits 0-2). Operation of the program counter
stack and the program status word is explained in
detail in the following sections.

The stack allows up to eight levels of subroutine
'nesting'; that is, a subroutine may call a second sub­
routine, which may call a third, etc., up to eight lev­
els. Unused stack locations can be used as scratch
pad memory. Each unused level of subroutine nest­
ing provides two additional RAM locations for gen­
eral use.

The following sections provide a detailed descrip­
tion of the Program Counter Stack and the Program
Status Word.

PROGRAM COUNTER
The UPI-41A microcomputer has a lO-bit program
counter (PC) which can directly address any of the
1024 locations in program memory. The program
counter always contains the address of the next in­
struction to be executed and is normally increment­
ed sequentially for each instruction to be executed
when each instruction fetches occurs.

When control is temporarily passed from the main
program to a subroutine or an interrupt routine,
however, the PC contents must be altered to point to
the address of the desired routine. The stack is used
to save the current PC contents so that, at the end of
the routine, main program execution can continue.
The program counter is initialized to zero by a
RESET signal.

PROGRAM COUNTER STACK
The Program Counter Stack is composed of 16 loca­
tions in Data Memory as illustrated in Figure 2-7.
These RAM locations (8 through 23) are used to
store the lO-bit program counter and 4 bits of the
program status word.

An interrupt or CALL to a subroutine causes the
contents of the program counter to be stored in one
of the 8 register pairs of the program counter stack.

A 3-bit Stack Pointer which is part of the Program
Status Word (PSW) determines the stack pair to be
used at a given time. ,The stack pointer is initialized
by a RESET signal to OOH which corresponds to
RAM locations 8 and 9.

2-6

STACK
POINTER

11 1

110

101

100

01 1

010

00 1

000

MSB

PSW(4,7)

PC(4-7)

I

I

I

I

I

I

I

I
I

I

I

I

I

I

I PC(8-9)

I PC(0-3)

DATA
MEMORY

LOCATION

LSB

23

22

21

20

19

18

17

16

15

14

13

12

11

10

Figure 2-7. Program Counter Stack

The first call or interrupt results in the program
counter and PSW contents being transferred to
RAM locations 8 and 9 in the format shown in Figure
2-7. The stack pointer is automatically incremented
by 1 to point to locations 10 and 11 in anticipation of
another CALL.

Nesting of subroutines within subroutines can con­
tinue up to .8 levels without overflowing the stack. If
overflow does occur the deepest address stored (lo­
cations 8 and 9) will be overwritten and lost since the
stack pointer overflows from 07H to OOH. Likewise,
the stack pointer will underflow from OOH to 07H.

The end of a subroutine is signaled by a return in­
struction, either RET or RETR. Each instruction
will automatically decrement the Stack Pointer and
transfer the contents of the proper RAM register
pair to the Program Counter.

PROGRAM STATUS WORD
The 8-bit program status word illustrated in Figure
2-8 is used to store general information about pro­
gram execution. In addition to the 3-bit Stack Point­
er discussed previously, the PSW includes the
following flags:

• CY - Carry
• AC - Auxiliary Carry
• FO - Flag 0
• BS - Register Bank Select

FUNCTIONAL DESCRIPTION

SAVED IN STACK , 0,
STACK POINTER ,

cv AC Fa BS

MSB LSB

Figure 2-8. Program Status Word

The Program Status Word (PSW) is actually a col­
lection of flip-flops located throughout the machine
which are read or written as a whole. The PSW can
be loaded to or from the accumulator by the MOV A,
PSW or MOV PSW,A instructions. The ability to
write directly to the PSW allows easy restoration of
machine status after a power-down sequence.

The upper 4 bits of the PSW (bits 4, 5, 6, and 7) are
stored in the PC Stack with every subroutine CALL
or interrupt vector. Restoring the bits on a return is
optional. The bits are restored if an RETR instruc­
tion is executed, but not if an RET is executed.

PSW bit definitions are as follows:
• Bits 0-2 Stack Pointer Bits SO, SI, S2
• Bit 3
• Bit 4

• Bit 5

• Bit 6

Not Used
Working Register Bank

0= BankO
I=Bankl

Flag 0 bit (FO)
This is a general purpose flag
which can be cleared or comple­
mented and tested with condi­
tional jump instructions. It may
be used during data transfer to
an external processor.

Auxiliary Carry (AC)
The flag status is determined by
an ADD instruction and is used

• Bit 7

by the Decimal Adjustment in­
struction DAA.

Carry (CY)
The flag indicates that a previous
operation resulted in overflow of
the accumulator.

CONDITIONAL BRANCH LOGIC
Conditional Branch Logic in the UPI-41A allows the
status of various processor flags, inputs, and other
hardware functions to directly affect program execu­
tion. The status is sampled in state 3 of the first
cycle.

Table 2-2 lists the internal conditions which are test­
able and indicates the condition which will cause a
jump. In all cases, the destination address must be
within the page of program memory (256 locations)
in which the jump instruction occurs.

OSCILLATOR AND TIMING CIRCUITS
The 8041A's internal timing generation is controlled
by a self-contained oscillator and timing circuit. A
choice of crystal, L-C or external clock can be used to
derive the basic oscillator frequency.

The resident timing circuit consists of an oscillator,
a state counter and a cycle counter as illustrated in
Figure 2-9. Figure 2-10 shows instruction cycle
timing.

Oscillator
The on-board oscillator is a series resonant circuit
with a frequency range of 1 to 6 MHz. Pins XTAL 1
and XTAL 2 are input and output (respectively) of a
high gain amplifier stage. A crystal or inductor and
capacitor connected between XTAL 1 and XTAL 2
provide the feedback and proper phase shift for os-

Table 2·2. Conditional Branch Instructions

Jump Condition
Device Instruction Mnemonic Jump If:

Accumulator JZ addr All bits zero
JNZ addr Any bit not zero

Accumulator bit JBb addr Bit "b" = 1
Carry flag JC addr Carry flag = 1

JNC addr Carry flag = 0
User flag JFO addr FO flag = 1

JFl addr Fl flag = 1
Timer flag JTF addr Timer flag = 1
Test Input 0 JTO addr TO = 1

JNTO addr TO=O
Test Input 1 JTl addr Tl = 1

JNTI addr Tl = 0
Input Buffer flag JNIBF addr IBF flag = 0
Output Buffer flag JOBF addr OBF flag = 1

2-7

FUNCTIONAL DESCRIPTION

SYNC
t-""'?"---tr- OUTPUT

(2.5 ~sec)

INTERNAL TIMING

Figure 2-9. Oscillator Configuration

cillation. Recommended connections for crystal or
L-C are shown in Figure 2-11.

State Counter
The output of the oscillator is divided by 3 in the
state counter to generate a signal which defines the
state times of the machine.

Each instruction cycle consists of five states as illus­
trated in Figure 2-10 and Table 2-3. The overlap of

5YNC _______ 11 ______ _
2.5 ,usee CYCLE

I 55 5, 52 53 I 54 I 55 5,

I INPUT DECODE EXECUTION
INPUT

INST. INST.

OUTPUT ADDRESS INC. PC OUTPUT ADDRESS

I I I I I

Figure 2-10. Instruction Cycle Timing

address and execution operations illustrated in Fig­
ure 2-10 allows fast instruction execution.

Cycle Counter
The output of the state counter is divided by 5 in the
cycle counter to generate a signal which defines a
machine cycle. This signal is call SYNC and is avail­
able continously on the SYNC output pin. It can be
used to synchronize external circuitry or as a general
purpose clock output. It is also used for synchroniz­
ing single-step in the 8741A.

Table 2-3. Instruction Timing Diagram
CYCLE 1 CYCLE 2

INSTRUCTION
Sl 52 S3 54 55 Sl 52 53 54 S5

IN A,Pp Felch Increment - Increment - - Read Port - - -Instruction Program COunter Timer

OUTl Pp,A Fetch Increment - Increment Outpul - - - - -Instruction Program Counter Timer To Pori

ANl Pp, DATA Felch Increment - Increment Read Pori Felch - Increment Oulput -Instrucllon Program Counter Timer Immediate Data Program Counter To Pori

ORl Pp, DATA Felch Increment - Increment Read Port Felch - Increment Outpul -Instruction Program Counter Timer Immediate Data program Counter To Port

MOVO A,Pp Fetch Increment Output Increment - - Read - - -Instrucllon Program Counter Opcode/ Address Timer P2lower

MOVD Pp,A Fetch Increment Outpul Increment OulpulOala - - - - -Instruction Program Counter Opcode/Address Timer To P2 Lower

ANlO Pp,A Fetch Increment Output Increment Oulpul - - - - -Instrucllon Program Counter Opcode/ Address Timer Data

ORlO Pp,A Fetch Increment Oulpul Increment Output - - - - -Instrucllon Program Counter Opcode/ Address Timer Data

J (Condilional) Felch Increment sample tncrement - Fetch - Update - -Instruction Program Counter Condition Timer Immediate Data Program Counter

IN A,OBB Fetch Increment - Increment -Instrucllon Program Counter Timer

OUT 08B,A Fetch Increment - Increment Oulpul
Instruction Program Counter Timer To Port

STRT T Fetch Increment Start - -STRT CNT Instruction Program Counter Counter

STOP TCNT Fetch Increment - - Stop
Instruction Program Counter Counter

EN I Fetch Increment - Enable -Instruction Program Counter Interrupt

DIS I Fetch Increment - Disable -Instruction Program Counter Interrupt

EN DMA Fetch Increment - OMA Enab~d -Instruction Program Counter ORO Cleared

EN FLAGS Felch Increment - OBF,IBF -Instruction Program Counter Oulpul Enabled

2-8

FUNCTIONAL DESCRIPTION

r 20 pF
2

XTAL 1

~ I'
XTAL 1

'3
8041A/8741A 8041A/8741A

~OPF
3 i 15·25 pF

XTAL 2 XTAL 2

Figure 2-11. Recommended Crystal and L-C Connections

Frequency Reference
The external crystal provides high speed and accu­
rate timing generation. A crystal frequency of 5.9904
MHz is useful for generation of standard communi­
cation frequencies by the 8741A and 8041A. How­
ever, if an accurate frequency reference and maxi­
mum processor speed are not required, an inductor
and capacitor may be used in place of the crystal as
shown in Figure 2-11.

A recommended range of inductance and capaci­
tance combinations is given below:

• L = 130 /tH corresponds to 3 MHz
• L = 45 /tH corresponds to 5 MHz

An external clock signal can also be used as a fre­
quency reference to the 8741A or 8041A; however,
the levels are not TTL compatible. The signal must
be in the 1-6 MHz frequency range and must be con­
nected to pins XTAL 1 and XTAL 2 by buffers with
a suitable pull-up resistor to guarantee that a logic
"I" is above 3.8 volts. The recommended connection
is shown in Figure 2-12.

+5V

Ie -ll>:>---<p----+-.-; XTAL 1

+5V

8041A/8741A

L.....I>o-+-.-; XTAL 2

STANDARD TTL OR
OPEN COLLECTOR

Figure 2-12. Recommended Connection
For External Clock Signal

2-9

INTERVAL TIMER/EVENT COUNTER
The 8041A has a resident 8-bit timer/counter which
has several software selectable modes of operation.
As an interval timer, it can generate accurate delays
from 80 microseconds to 20.48 milliseconds without
placing undue burden on the processor. In the
counter mode, external events such as switch clo­
sures or tachometer pulses can be counted and used
to direct program flow.

Timer Configuration
Figure 2-13 illustrates the basic timer/counter con­
figuration. An 8-bit register is used to count pulses
from either the internal clock and prescaler or from
an external source. The counter is presettable and
readable with two MOV instructions which transfer
the contents of the accumulator to the counter and
vice-versa. The counter is initialized solely by the
MOV T,A instruction; it is not cleared by a RESET
signal. The counter is stopped by a RESET or STOP
TCNT instruction and remains stopped until re­
started either as a timer (START T instruction) or
as a counter (START CNT instruction). Once
started, the counter will increment to its maximum
count (FFH) and overflow to zero continuing its
count until stopped by a STOP TCNT instruction or
RESET.

The increment from maximum count to zero (over­
flow) results in setting the Timer Flag (TF) and gen­
erating an interrupt request. The state of the
overflow flag is testable with the conditional jump
instruction, JTF. The flag is reset by executing a
JTF or by a RESET signal.

The timer interrupt request is stored in a latch and
ORed with the input buffer full interrupt request.
The timer interrupt can be enabled or disabled inde­
pendent of the IBF interrupt by the EN TCNTI and

FUNCTIONAL DESCRIPTION

EXTERNAL
INPUT

~TE ~

PRESCALER .-- (+ 32)

~ ~TER
0

STOP

r-IOI-
XTAL 1 XTAl2

I--- OSCILLATOR

r-f OVERFLOW 1
FLAG

a-BIT I---
COUNTER

JLOAD/READ
Y INTERRUPT I

\ INTERNAL BUS \

Figure 2·13. Timer Counter

DIS TCTNI instructions. If enabled, the counter
overflow will cause a subroutine call to location 7
where the timer service routine is stored. If the timer
and Input Buffer Full interrupts occur simulta­
neously, the IBF source will be recognized and the
call will be to location 3. Since the timer interrupt is
latched, it will remain pending until the DBBIN reg­
ister has been serviced and will immediately be rec­
ognized upon return from the service routine. A
pending timer interrupt is reset by the initiation of a
timer interrupt service routine.

Event Counter Mode
The START CNT instruction connects the TEST 1
input pin to the counter input and enables the
counter. Note that this instruction does not clear the
counter. The counter is incremented on high to low
transition of TEST 1. The maximum count rate is
one count per three instruction cycles (every 7.5 mi·
croseconds when using a 6 MHz crystal). There is no
minimum frequency limit. The TEST 1 input must
remain high for a minimum of 500 ns (at 6 MHz)
during a count cycle.

Timer Mode
The START T instruction connects an internal
clock to the counter input and enables the counter.
The input frequency is derived from a divide by 32
prescaler connected to the 400 kHz machine cycle
clock. The configuration is illustrated in Figure 2·13.
The resulting 12.5 kHz clock provides a counter in­
crement every 80 ,usec. Various delays and timing se­
quences between 80 ,usec and 20.48 msec can easily
be generated with a miniumum of software timing

loops. Times longer than 20 msec can be accurately
measured by accumulating multiple overflows in a
register under software control. For time resolution
less than 80 ,usec an external clock can be applied to
the TEST 1 input and the counter can be operated
in the event counter mode. The 2.5 ,usec SYNC out­
put divided by 3 or more can serve as the external
clock. Software loops can also be used to "fine tune"
long delays generated by the timer.

TEST 1 Event Counter Input
The TEST 1 pin is multifunctional. It is automati·
cally initialized as a test input by a RESET signal
and can be tested using UPI·41A conditional branch
instructions.

In the second mode of operation, illustrated in Fig­
ure 2-13, the TEST 1 pin is used as an input to the
internal 8·bit event counter. The Start Counter
(STRT CNT) instruction controls an internal switch
which connects TEST 1 through an edge detector to
the 8-bit internal counter. Note that this instruction
does not inhibit the testing of TEST 1 via condition­
al Jump instructions.

2·10

In the counter mode the TEST 1 input is sampled
once per instruction cycle. Mter a high level is de­
tected, the next occurence of a low level at TEST 1
will cause the counter to increment by one.

The event counter functions can be stopped by the
Stop Timer/Counter (STOP TCNT) instruction.
When this instruction is executed the TEST 1 pin

FUNCTIONAL DESCRIPTION

becomes a test input and functions as previously de­
scribed.

TEST INPUTS
There are two multifunction pins designated as Test
Inputs, TEST 0 and TEST 1. In the normal mode of
operation, status of each of these lines can be direct­
ly tested using the following conditional Jump
instructions:

• JTO Jump if TEST 0 = 1
• JNTO Jump if TEST 0 = 0
• JT1 Jump if TEST 1 = 1
• JNT1 Jump if TEST 1 = 0

The test inputs are TTL compatible. An external
logic signal connnected to one of the test inputs will
be sampled at the time the appropriate conditional
jump instruction is executed. The path of program
execution will be altered depending on the state of
the external signal when sampled.

INTERRUPTS
The 8041A/8741A has the following internal inter­
rupts:

• Input Buffer Full (IBF) interrupt
• Timer Overflow interrupt

The IBF interrupt forces a CALL to location 3 in
program memory; a timer-overflow interrupt forces
a CALL to location 7. The IBF interrupt is enabled
by the EN I instruction and disabled by the DIS I
instruction. The timer-overflow interrupt is enabled
and disabled by the EN TNCTI and DIS TCNTI
instructions, respectively.

Figure 2-14 illustrates the internal interrupt l~
An IBF interrupt request is generated whenever WR
and CS are both low, regardless of whether inter­
rupts are enabled. The interrupt request is cleared
upon entering the IBF service routine only. That is,
the DIS I instruction does not clear a pending IBF
interrupt.

Interrupt Timing Latency
When the IBF interrupt is enabled and an IBF inter­
rupt request occurs, an interrupt sequence is initi­
ated as soon as the currently executing instruction is
completed. The following sequence occurs:

• A CALL to location 3 is forced.
• The program counter and bits 4-7 of the Pro­

gram Status Word are stored in the stack.
• The stack pointer is incremented.

Location 3 in program memory should contain an:

a
cs

IBF
INTERRUPT
REQUEST

IBF
INTERRUPT

RECOGNIZED

RESET

ENI -------I

DIS I

RESET

IBF
INTERRUPT
REQUEST

a

IBF
INTERRUPT

ENABLE

IBF
INTERRUPT
ENABLE

a INTERRUPT

TIMER =J1...~=---r").. ___ --I
OVERFLOW

IN PROGRESS

TIMER
INTERRUPT

RECOGNIZED

DIS TeNTI
EXECUTED

RESET

a

TIMER
INTERRUPT

ENABLE

TIMER
INTERRUPT
REQUEST

RETR EXECUTED

RESET

Figure 2-14. Interrupt Logic

2-11

FUNCTIONAL DESCRIPTION

unconditional jump to the beginning of the IBF in­
terrupt service routine elsewhere in program mem­
ory. At the end of the service routine, an RETR
(Return and Restore Status) instruction is used to
return control to the main program. This instruction
will restore the program counter and PSW bits 4-7,
providing automatic restoration of the previously
active register bank as well. RETR also re-enables
interrupts.

A timer-overflow interrupt is enabled by the EN
TCNTI instruction and disabled by the DIS TCNTI
instruction. If enabled, this interrupt occurs when
the timer/counter register overflows. A CALL to lo­
cation 7 is forced and the interrupt routine proceeds
as described above.

The interrupt service latency is the sum of current
instruction time, interrupt recognition time, and the
internal call to the interrupt vector address. The
worst case latency time for servicing an interrupt is 7
clock cycles. Best case latency is 4 clock cycles.

Interrupt Timing
Interrupt inputs may be enabled or disabled under
program control using EN I, DIS I, EN TCNTI and
DIS TCNTI instructions. Also, a RESET input will
disable interrupts. An interrupt request must be re­
moved before the RETR instruction is executed to
return from the service routine, otherwise the pro­
cessor will re-enter the service routine immediately.
Thus, the WR and CS inputs should not be held low
longer than the duration of the interrupt service
routine.

The interrupt system is single level. Once an inter­
rupt is detected, all further interrupt requests are
latched but are not acted upon until execution of an
RETR instruction re-enables the interrupt input
logic. This occurs at the beginning of the second cy­
cle of the RETR instruction. If an IBF interrupt and
a timer-overflow interrupt occur simultaneously, the
IBF interrupt will be recognized first and the timer­
overflow interrupt will remain pending until the end
of the interrupt service routine.

External Interrupts
An external interrupt can be created using the UPI-
41A timer/counter in the event counter mode. The
counter is first preset to FFH and the EN TCNTI
instruction is executed. A timer-overflow interrupt
is generated by the first high to low transition of the
TEST 1 input pin. Also, if an IBF interrupt occurs
during servicing of the timer/counter interrupt, it
will remain pending until the end of the service
routine.

Host Interrupts And DMA
If needed, two external interrupts to the host system
can be created using the EN FLAGS instruction.
This instruction allocates two I/O lines on PORT 2
(P24 and P25). P24 is the Output Buffer Full inter­
rupt request line to the host system; P25 is the Input
Buffer empty interrupt request line. These interrupt
outputs reflect the internal status of the OBF flag
and the IBF inverted flag. Note, these outputs may
be inhibited by writing a "0" to these pins. Reenab­
ling interrupts is done by writing a "1" to these port
pins. Interrupts are typically enabled after power on
since the I/O ports are set in a "1" condition. The EN
FLAG's effect is only cancelled by a device RESET.

DMA handshaking controls are available from two
pins on PORT 2 of the UPI-41A microcomputer.
These lines (P26 and P27) are enabled by the EN
DMA instruction. P26 becomes DMA request
(DRQ) and P27 becomes DMA acknowledge
(DACK). The UPI program initiates a DMA request
by writing a "1" to P26. The DMA controller trans­
fers the data into the DBBIN data register using
DACK which acts as a chip select. The EN DMA in­
struction can only be cancelled by a chip RESET.

2-12

RESET
The RESET input on the 8041A/8741A provides a
means for internal initialization of the processor. An
automatic initialization pulse can be generated at
power turn-on simply by connecting a 1 ~fd capaci­
tor between the RESET input and ground as shown
in Figure 2-15. It has an internal pull-up resistor to
charge the capacitor and a Schmitt-trigger circuit to
generate a clean transition.

If an external RESET pulse is used it must hold the
RESET input low for at least 10 milliseconds after
the power supply is within tolerance. Figure 2-15 il­
lustrates a configuration using an external TTL gate
to generate the RESET input. This configuration
can be used to derive the RESET signal from the
8224 clock generator in an 8080 system.

The RESET input performs the following functions:

• Sets Program Counter to zero.
• Sets the Stack Pointer to zero
• Selects Register Bank 0
• Sets PORTS 1 and 2 to the Input Mode
• Disables interrupts.
• Stops the timer.
• Clears the timer flag.
• Clears FO and F1 flip-flops.

FUNCTIONAL DESCRIPTION

..J:l... 1K 4 -- 8041A

I 1PFJ
RESET 8741A EXTERNAL~

RESET
8041A

RESET TTL 8741A
SIGNAL

OPEN COLLECTOR

10VI OR ACTIVE
PULL·UP

Figure 2-15. External Reset Configuration

DATA BUS BUFFER
Two 8-bit data bus buffer registers, DBBIN and
DBBOUT, serve as temporary buffers for commands
and data flowing between it and the master proces­
sor. Externally, data is transmitted or received by
the DBB registers upon execution of an INput or
OUTput instruction by the master processor. Four
control signals are used:

•

•
•
•

AO

CS
RD
WR

Address input signifying control or da­
ta
Chip Select
Read strobe
Write strobe

Transfer can be implemented with or without UPI
program interference by enabling or disabling an in·
ternal UPI interrupt. Internally, data transfer be-

SYSTEM
INTERFACE

WR
CONTROL RD

BUS cs
AO

tween the DBB and the UPI accumulator is under
software control and is completely asynchronous to
the external processor timing. This allows the UPI
software to handle peripheral control tasks indepen­
dent of the main processor while still maintaining a
data interface with the master system.

Configuration
Figure 2-16 illustrates the internal configuration of
the DBB registers. Data is stored in two 8-bit buffer
registers, DBBIN and DBBOUT. DBBIN and
DBBOUT may be accessed~ the external processor
using the WR line and the RD line, respectively. The
data bus is a bidirectional, three·state bus which can
be connected directly to an 8-bit microprocessor sys­
tem. Four control lines (WR, RD, CS, AO) are used
by the external processor to transfer data to and
from the DBBIN and DBBOUT registers.

DATA BUS ¢:=+~(8LI ~

2-16. Data Bus Buffer Configuration

2-13

FUNCTIONAL DESCRIPTION

An 8-bit register containing status flags is used to
indicate the status of the DBB registers. The eight
status flags are defined as follows:

• OBF Output Buffer Full This flag is auto­
matically set when the 8041A loads the
DBBOUT register and is cleared when the mas­
ter processor reads the data register.

• IBF Input Buffer Full This flag is set when
the master processor writes a character to the
DBBIN register and is cleared when the 8041A
INputs the data register contents to its accumu­
lator.

• FO This is a general purpose flag which can be
cleared or toggled under 8041A software control.
The flag is used to transfer 8041A status infor­
mation to the master processor.

• Fl Command/Data This flag is set to the con­
dition of the AO input line when the master pro­
cessor writes a character to the data register. The
F1 flag can also be cleared or toggled under
8041A program control.

• ST4 Through ST7 These bits are user defined
status bits. They are defined by the MOV STS A
instruction. '

All flags in the status register are automatically
cleared by a RESET input.

a-BIT
SYSTEM

BUS

S

- ~

~

8

,

00-D7

PORT 1

8

"

AO A,

AO CS

SYSTEM INTERFACE
Figure 2-17 illustrates how an 8041A can be connect­
ed to a standard 8080-type bus system. Data lines
DO-D7 form a three-state, bidirectional port which
can be connected directly to the system data bus.
The UPI bus interface has sufficient drive capability
(400 /LA) for small systems, however, a larger system
may require buffers.

Four control signals are required to handle the data
and status information transfer:

• WR I/O WRITE signal used to transfer data
from the system bus to the UPI DBBIN
register and set the F1 flag in the status
register.

• RD I/O READ signal used to transfer data
from the DBBOUT register or status
register to the system data bus.

• CS CHIP SELECT signal used to enable
one 8041A out of several connected to a
common bus.

• AO Address input used to select either the
8-bit status register or DBBOUT regis­
ter during an I/O READ.

iOR lOW

Also, the signal is used to set the F1 flag
in the status register during an I/O
WRITE.

ADDRESS BUS\

CONTROL BUS ~

RESET 1>2

DATA BUS--s

~ U
470

Y
+sv

470
+5V

RD WR RESET XTAL 1 XTAL 2

8041A/8741A

PORT 2 TEST1 TEST 0

8

"
I

PERIPHERAL INTERFACE

Figure 2-17. Interface to 8080 System Bus

2-14

FUNCTIONAL DESCRIPTION

The WR and RD signals are active low and are stan­
dard MCS-SO peripheral control signals used to syn­
chronize data transfer between the system bus and
peripheral devices.

The CS and Ao signals are decoded from the address
bus of the master system. In a system with few I/O
devices a linear addressing configuration can be used
where t.o and Al lines are connected directly to AO
and CS inputs (see Figure 2-17).

Data Read
Table 2-4 illustrates the relative timing of a
DBBOUT Read. When CS, Ao, and RD are low, the
contents of the DBBOUT register is placed on the
three-state Data lines DO-D7 and the OBF flag is
cleared.

The master processor uses CS, Ao, WR, and RD to
control data transfer between the DBBOUT register
and the master system. The following operations are
under master processor control:

Table 2·4. Data Transfer Controls

CS RD WR AO
0 0 1 0 Read DBBOUT register
0 0 1 1 Read STATUS register
0 1 0 0 Write DBBIN data register
0 1 0 1 Write DBBIN command register
1 x x x Disable DBB

Status Read
Table 2-4 shows the logic sequence re<l!!!!ed for a
STATUS register read. When CS and RD are low
with Ao high, the contents of the 8-bit status register
appears on Data lines DO-D7.

Data Write
Table 2-4 shows the sequence for writing informa­
tion to the DBBIN register. When CS and WR are
low, the contents of the system data bus is latched
into DBBIN. Also, the IBF flag is set and an inter­
rupt is generated, if enabled.

Command Write
During any write (Table 2-4), the state of the AO in­
put is latched into the status register in the Fl (com­
mand/data) flag location. This additional bit is used
to signal whether DBBIN contents are command
(Ao = 1) or data (Ao = 0) information.

INPUT/OUTPUTINTERFACE
The UPI-41A has 16 lines for input and output func­
tions. These I/O lines are grouped as two 8-bit TTL
compatible ports: PORTS 1 and 2. The port lines

2-15

can individually function as either inputs or outputs
under software control. In addition, the lower 4 lines
of PORT 2 can be used to interface to an 8243 I/O
expander device to increase I/O capacity to 28 or
more lines. The additional lines are grouped as 4-bit
ports: PORTS 4, 5, 6, and 7.

PORTS 1 and 2
PORTS 1 and 2 are each 8 bits wide and have the
same I/O characteristics. Data written to these ports
by an OUTL Pp,A instruction is latched and re­
mains unchanged until it is rewritten. Input data is
sampled at the time the IN, A,Pp instruction is ex­
ecuted. Therefore, input data must be present at the
PORT until read by an INput instruction. PORT 1
and 2 inputs are fully TTL compatible and outputs
will drive one standard TTL load.

Circuit Configuration
The PORT 1 and 2 lines have a special output struc­
ture (shown in Figure 2-18) that allows each line to
serve as an input, an output, or both, even though
outputs are statically latched.

Each line has a permanent high impedance pull-up
(50KO) which is sufficient to provide source current
for a TTL high level, yet can be pulled low by a stan­
dard TTL gate drive. Whenever a "I" is written to a
line, a low impedance pull-up (5K) is switched in
momentarily (500 ns) to provide a fast transition
from 0 to 1. When a "0" is written to the line, a low
impedance pull-down (3000) is active to provide
TTL current sinking capability.

To Use a particular PORT pin as an input, a logic "I"
must first be written to that pin.

NOTE: A RESET intializes all PORT pins to the
high impedance logic "I" state.

An external TTL device connected to the pin has
sufficient current sinking capability to pull-down
the pin to the low state. An IN A,Pp instruction will
sample the status of PORT pin and will input the
proper logic level. With no external input connected,
the IN A,Pp instruction inputs the previous output
status.

This structure allows input and output information
on the same pin and also allows any mix of input and
output lines on the same port. However, when inputs
and outputs are mixed on one PORT, a PORT write
will cause the strong internal pull-ups to turn on at
all inputs. If a switch or other low impedance device
is connected to an input, a PORT write ("I" to an
input) could cause current limits on internal lines to

FUNCTIONAL DESCRIPTION

INTERNAL
BUS

IN

Figure 2-18. Quasi-Bidirectional Port Structure

be exceeded. Figure 2-19 illustrates the recommend­
ed connection when inputs and outputs are mixed on
one PORT.

The bidirectional port structure in combination with
the UPI-41A logical AND and OR instructions pro­
vides an efficient means for handling single line in­
puts and outputs within an 8-bit processor.

PORTS 4, 5, 6, and 7
By using an 8243 I/O expander, 16 additional I/O
lines can be connected to the UPI-41A and directly
addressed as 4-bit I/O ports using UPI-41A instruc­
tions. This feature saves program space and design
time, and improves the bit handling capability of the
UPI-41A.

PORT 1,2 f----o ~

8741A18041A ~
INCORRECT UNLESS
ALL LINES ON THE
PORT ARE INPUTS

The lower half of PORT 2 provides an interface to
the 8243 as illustrated in Figure 2-20. The PROG pin
is used as a strobe to clock address and data informa­
tion via the PORT 2 interface. The extra 16 I/O lines
are referred to in UPI software as PORTS 4, 5, 6, and
7. Each PORT can be directly addressed and can be
ANDed and ORed with an immediate data mask.
Data can be moved directly to the accumulator from
the expander PORTS (or vice-versa).

The 8243 I/O ports, PORTS 4, 5, 6, and 7, provide
more drive capability than the UPI-41A bidirec­
tional ports. The 8243 output is capable of driving
about 5 standard TTL loads.

1K 1 PORT 1,2 t-oANlr----<l '::'

8741A/8041A

RECOMMENDED WHEN
INPUTS AND OUTPUTS
ARE MIXED ON A PORT

Figure 2-19. Recommended PORT Input Connections

2-16

FUNCTIONAL DESCRIPTION

"':'" THAN ONE EXPANDER IS USEe
fl CHIP SELECT CONNECTION IF MaR

12 I/O CS

P4-- PORT 4 4 I/O

2 TEST
INPUTS

P5- PORT 5 4 I/O

a041A
8741A 8243

P6- PORT 6 4 I/O

P20·P23 4 00-03

P7 -- PORT 7 4 I/O
PROG PROG

\ / BITS 0,1 BITS 2,3
PROG

o~ o~ READ 01 PORT 01 WRITE

X
10 ADDRESS 10 OR

--< >
11 11 AND

P20-P23

ADDRESS (4-8IT5) DATA (4-8IT5)

Figure 2·20. 8243 Expander Interface

Multiple 8243's can be connected to the PORT 2 in·
terface. In normal operation, only one of the 8243's
would be active at the time an Input or Output com·
mand is executed. The upper half of PORT 2 is used
to provide chip select signals to the 8243's. Figure 2-
21 shows how four 8243's could be connected. Soft-

CONTROL '-~-"'CONTROL
BUS PORT 1 "'---"--,/

B041A
8741A

ware is needed to select and set the proper PORT 2
pin before an INPUT or OUTPUT command to
PORTS 4-7 is executed. In general, the software
overhead required is very minor compared to the
added flexibility of having a large number of I/O
pins available.

PORT2~:JC:==::~~~~====J[==~~~==========~~==========;:~
PROGr-----------~------------~~------------~----------~

Figure 2·21. Multiple 8243 Expansion

2-17

CHAPTER 3
INSTRUCTION SET

The UPI-41A Instruction Set is opcode-compatible
with the MCS-48 set except for the elimination of
external program and data memory instructions and
the addition of the data bus buffer instructions. It is
very straightforward and efficient in its use of pro­
gram memory. All instructions are either 1 or 2 bytes
in length (over 70% are only 1 byte long) and over
half of the instructions execute in one machine cycle.
The remainder require only two cycles and include
Branch, Immediate, and I/O operations.

The UPI-41A Instruction Set efficiently handles the
single-bit operations required in control applica­
tions. Special instructions allow port bits to be set or
cleared individually. Also, any accumulator bit can
be directly tested via conditional branch instruc­
tions. Additional instructions are included to
simplify loop counters, table look-up routines and
N-way branch routines.

The UPI-41A Microcomputer handles arithmetic
operations in both binary and BCD for efficient in­
terface to peripherals such as keyboards and dis­
plays.

The instruction set can be divided into the following
groups:

• Data Moves
• Accumulator Operations
• Flags
• Register Operations
• Branch Instructions
• Control
• Timer Operations
• Subroutines
• Input/Output Instructions

Data Moves
(See Instruction Summary)
The 8-bit accumulator is the control point for all
data transfers within the UPI-41A. Data can be
transferred between the 8 registers of each working
register bank and the accumulator directly (i.e., with
a source or destination register specified by 3 bits in
the instruction). The remaining locations in the
RAM array are addressed either by RO or Rl of the
active register bank. Transfers to and from RAM re­
quire one cycle.

Constants stored in Program Memory can be loaded
directly into the accumulator or the eight working
registers. Data can also be transferred directly be­
tween the accumulator and the on-board timer/
counter, the Status Register (STS), or the Program
Status Word (PSW). Transfers to the STS register
alter bits 4-7 only. Transfers to the PSW alter ma-

3-1

chine status accordingly and provide a means of re­
storing status after an interrupt or of altering the
stack pointer if necessary.

Accumulator Operations
Immediate data, data memory, or the working regis­
ters can be added (with or without carry) to the ac­
cumulator. These sources can also be ANDed, ORed,
or exclusive ORed to the accumulator. Data may be
moved to or from the accumulator and working reg­
isters or data memory. The two values can also be
exchanged in a single operation.

The lower 4 bits of the accumulator can be ex­
changed with the lower 4 bits of any of the internal
RAM locations. This operation, along with an in­
struction which swaps the upper and lower 4-bit
halves of the accumulator, provides easy handling of
BCD numbers and other 4-bit quantities. To facili­
tate BCD arithmetic a Decimal Adjust instruction is
also included. This instruction is used to correct the
result of the binary addition of two 2-digit BCD
numbers. Performing a decimal adjust on the result
in the accumulator produces the desired BCD result.

The accumulator can be incremented, decremented,
cleared, or complemented and can be rotated left or
right 1 bit at a time with or without carry.

A subtract operation can be easily implemented in
UPI-41A software using three single-byte, single­
cycle instructions. A value can be subtracted from
the accumulator by using the following instructions:

• Complement the accumulator
• Add the value to the accumulator
• Complement the accumulator

Flags
There are four user accessible flags:

• Carry
• Auxiliary Carry

• FO
• Fl

The Carry flag indicates overflow of the accumula­
tor, while the Auxiliary Carry flag indicates overflow
between BCD digits and is used during decimal ad­
just operations. Both Carry and Auxiliary Carry are
part of the Program Status Word (PSW) and are
stored in the stack during subroutine calls. The FO
and Fl flags are general-purpose flags which can be
cleared or complemented by UPI instructions. FO is
accessible via the Program Status Word and is
stored in the stack with the Carry flags. Fl reflects
the condition of the AO line, and caution must be
used when setting or clearing it.

INSTRUCTION SET

Register Operations
The working registers can be accessed via the accu­
mulator as explained above, or they can be loaded
with immediate data constants from program mem­
ory. In addition, they can be incremented or decre­
mented directly, or they can be used as loop counters
as explained in the section on branch instructions.

Additional Data Memory locations can be accessed
with indirect instructions via Ro and Rl.

Branch Instructions
The UPI-41A Instruction Set includes 17 jump
instructions. The unconditional jump instruction al­
lows jumps anywhere in the lK words of program
memory. All other jump instructions are limited to
the current page (256 words) of program memory.

Conditional jump instructions can test the following
inputs and machine flags:

• TEST 0 input pin
• TEST 1 input pin
• Input Buffer Full flag
• Output Buffer Full flag
• Timer flag
• Accumulator zero
• Accumulator bit
• Carry flag
• FO flag
• Fl flag

The conditions tested by these instructions are the
instantaneous values at the time the conditional
jump instruction is executed. For instance, the jump
on accumulator zero instruction tests the accumula­
tor itself, not an intermediate flag.

The decrement register and jump if not zero (DJNZ)
instruction combines decrement and branch oper­
ations in a single instruction which is useful in im­
plementing a loop counter. This instruction can
designate any of the 8 working registers as a counter
and can effect a branch to any address within the
current page of execution.

A special indirect jump instruction (JMPP @A) al­
lows the program to be vectored to anyone of several
different locations based on the contents of the accu­
mulator. The contents of the accumulator point to a
location in program memory which contains the
jump address. As an example, this instruction could
be used to vector to anyone of several routines based
on an ASCII character which has been loaded into
the accumulator. In this way, ASCII inputs can be
used to initiate various routines.

3-2

Control
The UPI-41A Instruction Set has six instructions for
control of the DMA, interrupts, and selection of
working register banks.

The UPI-41A provides two instructions for control
of the external microcomputer system. IBF and
OBF flags can be routed to PORT 2 allowing inter­
rupts of the external processor. DMA handshaking
signals can also be enabled using lines from PORT 2.

The IBF interrupt can be enabled and disabled us­
ing two instructions. Also, the interrupt is automati­
cally disabled following a RESET input or during an
interrupt service routine.

The working register bank switch instructions allow
the programmer to immediately substitute a second
8 register bank for the one in use. This effectively
provides either 16 working registers or the means for
quickly saving the contents of the first 8 registers in
response to an interrupt. The user has the option of
switching register banks when an interrupt occurs.
However, if the banks are switched, the original
bank will automatically be restored upon execution
of a return and restore status (RETR) instruction at
the end of the interrupt service routine.

Timer
The 8-bit on-board timer/counter can be loaded or
read via the accumulator while the counter is
stopped or while counting.

The counter can be started as a timer with an inter­
nal clock source or as an event counter or timer with
an external clock applied to the TEST 1 pin. The
instruction executed determines which clock source
is used. A single instruction stops the counter
whether it is operating with an internal or an exter­
nal clock source. In addition, two instructions allow
the timer interrupt to be enabled or disabled.

Subroutines
Subroutines are entered by executing a call instruc­
tion. Calls can be made to any address in the lK
word program memory. Two separate return
instructions determine whether or not status (i.e.,
the upper 4 bits of the PSW) is restored upon return
from a subroutine.

InputlOutput Instructions
Two 8-bit data bus buffer registers (DBBIN and
DBBOUT) and an 8-bit status register (STS) enable
the UPI-41A universal peripheral interface to com­
municate with the external microcomputer system.
Data can be INputted from the DBBIN register to

INSTRUCTION SET

the accumulator. Data can be OUTputted from the
accumulator to the DBBOUT register.

The STS register contains four user-definable bits
(ST 4 -ST7) plus four reserved status bits (IBF, OBF,
FO, and Fl). The user-definable bits are set from the
accumulator.

The UPI-41A peripheral interface has two 8-bit stat­
ic I/O ports which can be loaded to and from the ac­
cumulator. Outputs are statically latched but inputs
to the ports are sampled at the time an IN instruc­
tion is executed. In addition, immediate data from
program memory can be ANDed and ORed directly
to PORTS 1 and 2 with the result remaining on the
port. This allows "masks" stored in program memory
to be used to set or reset individual bits on the I/O
ports. PORTS 1 and 2 are configured to allow input
on a given pin by first writing a "1" to the pin.

Four additional4-bit ports are available through the
82431/0 expander device. The 8243 interfaces to the
UPI-41A peripheral interface via four PORT 2 lines
which form an expander bus. The 8243 ports have
their own AND and OR instructions like the on­
board ports, as well as move instructions to transfer
data in or out. The expander AND or OR instruc­
tions, however, combine the contents of the accumu­
lator with the selected port rather than with
immediate data as is done with the on-board ports.

Instruction Set Description
The following section provides a detailed descrip­
tion of each UPI instruction and illustrates how the
instructions are used.

For further information about programming the
UPI, consult the 8048/8041A Assembly Language
Manual.

Table 3-1. Symbols and Abbreviations Used

Symbol Definition

A Accumulator
C Carry

DBBIN Data Bus Buffer Input
DBBOUT Data Bus Buffer Output

FO,Fl FLAG 0, FLAG 1 (CID flag)
I Interrupt
P Mnemonic for "in-page" operation

PC Program Counter
Pp Port designator (p = 1,2, or 4-7)

PSW Program Status Word
Rr Register designator (r = 0-7)
SP Stack Pointer

STS Status register
T Timer

TF Timer Flag
TO,Tl TEST 0, TEST 1

Immediate data prefix
@ Indirect address prefix

«» Double parentheses show the effect of @,
that is, @RO is shown as «RO)).

() Contents of

Table 3-2. Instruction Set Summary

Mnemonic Operation Description Bytes Cycles

Accumulator
ADD A,Rr Add register to A 1 1
ADD A,@Rr Add data memory to A 1 1
ADD A,#data Add immediate to A 2 2
ADDC A,Rr Add register to A with carry 1 1
ADDC A,@Rr Add data memory to A with carry 1 1
ADDC A,#data Add immediate to A with carry 2 2
ANL A,Rr And register to A 1 1
ANL A,@Rr And data memory to A 1 1
ANL A,#data And immediate to A 2 2
ORL A,Rr Or register to A 1 1
ORL A,@Rr Or data memory to A 1 1
ORL A,#data Or immediate to A 2 2
XRL A,Rr Exclusive Or register to A 1 1
XRL A,@Rr Exclusive Or data memory to A 1 1
XRL A,#data Exclusive Or immediate to A 2 2
INC A Increment A 1 1
DEC A Decrement A 1 1
CLR A Clear A 1 1
CPL A Complement A 1 1
DA A Decimal Adjust A 1 1
SWAP A Swap nibbles of A 1 1
RL A Rotate A left 1 1
RLC A Rotate A left through carry 1 1
RR A Rotate A right 1 1
RRC A Rotate A right through carry 1 1

3-3

INSTRUCTION SET

Table 3-2. Instruction Set Summary (Con't.)

Mnemonic Operation Description Bytes Cycles

INPUT /OUTPUT
IN A,Pp Input port to A 1 2
OUTL Pp,A Output A to port 1 2
ANL Pp,#data And immediate to port 2 2
ORL Pp,#data Or immediate to port 2 2
IN A,DBB Input DBB to A, clear IBF I I
OUT DBB,A Output A to DBB, Set OBF 1 I
MOV STS,A A4-A7 to bits 4-7 of status I 1
MOVD A,Pp Input Expander port to A I 2
MOVD Pp,A Output A to Expander port I 2
ANLD Pp,A And A to Expander port I 2
ORLD Pp,A Or A to Expander port I 2

DATA MOVES
MOV A,Rr Move register to A I 1
MOV A,@Rr Move data memory to A 1 I
MOV A,#data Move immediate to A 2 2
MOV Rr,A Move A to register I 1
MOV @Rr,A Move A to data memory 1 1
MOV Rr,#data Move immediate to register 2 2
MOV @Rr,#data Move immediate to data memory 2 2
MOV A,PSW Move PSW to A 1 1
MOV PSW,A Move A toPSW I 1
XCH A,Rr Exchange A and registers 1 1
XCH A,@Rr Exchange A and data memory I 1
XCHD A,@Rr Exchange digit of A and register 1 I
MOVP A,@A Move to A from current page I 2
MOVP3 A,@A Move to A from Page 3 I 2

TIMER/COUNTER

MOV A,T Read Timer/Counter 1 I
MOV T,A Load Timer/Counter I I
STRT T Start Timer I 1
STRT CNT Start Counter I 1
STOP TCNT Stop Timer/Counter I I
EN TCNTI Enable Timer/Counter Interrupt 1 1
DIS TCNTI Disable Timer/Counter Interrupt 1 I

CONTROL

EN DMA Enable DMA Handshake Lines I 1
EN I Enable IBF interrupt I I
DIS I Disable IBF interrupt 1 1
EN FLAGS Enable Master Interrupts 1 I
SEL RBO Select register bank 0 I I
SEL RBI Select register bank I I 1
NOP No Operation I I

REGISTERS
INC Rr Increment register I 1
INC @Rr Increment data memory 1 1
DEC Rr Decrement register I 1

SUBROUTINE
CALL addr Jump to subroutine 2 2
RET Return I 2
RETR Return and restore status I 2

FLAGS
CLRC Clear Carry I I
CPLC Complement Carry I I
CLRFO Clear Flag 0 1 1
CPLFO Complement Flag 0 I I
CLRFI Clear Fl Flag I I
CPLFl Complement FI Flag 1 1

3-4

INSTRUCTION SET

Table 3-2. Instruction Set Summary (Con't.)

Mnemonic Operation Description Bytes Cycles

BRANCH

JMP addr Jump unconditional 2
JMPP @A Jump indirect 1
DJNZ Rr,addr Decrement register and jump on non-zero 2
JC addr Jump on Carry=l 2
JNC addr Jump on Carry=O 2
JZ addr Jump on A Zero 2
JNZ addr Jump on A not Zero 2
JTO addr Jump on TO=l 2
JNTO addr Jump on TO=O 2
JTl addr Jump on Tl=l 2
JNTl addr Jump on Tl=O 2
JFO addr Jump on FO Flag=l 2
JFl addr Jump on Fl Flag=l 2
JTF addr Jump on Timer Flag=l 2
JNIBF addr Jump on IBF Flag=O 2
JOBF addr Jump on OBF Flag=l 2
JBb addr Jump on Accumulator Bit 2

ALPHABETIC LISTING

ADD A,Rr Add Register Contents to Accumulator

Opcode: LI _o ________ o~1_1 ___ r2 ___ r1 __ r_0~1
The contents of register 'r' are added to the accumulator. Carry is affected.

Example:
(A) - (A) + (Rr) r=0-7
ADDREG: ADD A,R6 ;ADD REG 6 CONTENTS

;TO ACC

ADD A,@Rr Add Data Memory Contents to Accumulator

Opcode: I 0 0 I 0 0 0 r I
L-________ ~ __________ ~

2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2

The contents of the standard data memory location addressed by register 'r' bits 0-5 are added to the
accumulator. Carry is affected.
(A) - (A) + «Rr» r=O-1

Example: ADDM: MOV RO,#47 ;MOVE 47 DECIMAL TO REG 0
ADD A,@RO ;ADD VALUE OF LOCATION

;47 TO ACC

ADD A,#data Add Immediate Data to Accumulator

Opcode: I 0 0 0 0 I 0 0

This is a 2-cycle instruction. The specified data is added to the accumulator. Carry is affected.
(A) - (A) + data

Example: ADDID: ADD A,#ADDER ;ADD VALUE OF SYMBOL
;'ADDER' TO ACC

3-5

INSTRUCTION SET

ADDC A,Rr Add Carry and Register Contents to Accumulator

Opcode: 1-1 0 ____ 1--1.1_1_r2_r_1 _r----'o 1

The content of the carry bit is added to accumulator location o. The contents of register 'r' are then added to
the accumulator. Carry is affected.
(A) - (A) + (Rr) + (C) r=0-7

Example: ADDRGC: ADDC A,R4 ;ADD CARRY AND REG 4
;CONTENTS TO ACC

ADDC A,@Rr Add Carry and Data Memory Contents to Accumulator

Opcode: LI 0 ____ 1...J.1_0_0_0_---.Jr 1

The content of the carry bit is added to accumulator location o. Then the contents of the standard data
memory location addressed by register 'r' bits 0-5 are added to the accumulator. Carry is affected.
(A) - (A) + «Rr» + (C) r=0-1

Example: ADDMC: MOV R1,#40 ;MOV '40' DEC TO REG 1
ADDC A,@R1 ;ADD CARRY AND LOCATION 40

;CONTENTS TO ACC

ADDC A,#data Add Carry and Immediate Data to Accumulator

Ope ode: 1 0 0 0 1 1 0 0

This is a 2-cycle instruction. The content of the carry bit is added to accumulator location O. Then the
specified data is added to the accumulator. Carry is affected.
(A) - (A) + data + (C)

Example: ADDC A,#255 ;ADD CARRY AND '225' DEC
;TOACC

ANL A,Rr Logical AND Accumulator With Register Mask

Opcode: 10 ___ 0_1--1-11_r_2_r1_rO--,1

Data in the accumulator is logically ANDed with the mask contained in working register 'r'.
(A) - (A) AND (Rr) r=0-7

Example: ANDREG: ANL A,R3 ;'AND' ACC CONTENTS WITH MASK
;MASK IN REG 3

ANL A,@Rr Logical AND Accumulator With Memory Mask

Opcode: LI 0 ___ 0_1...J.1_0_0_0_---.Jr 1

Data in the accumulator is logically ANDed with the mask contained in the data memory location referenced
by register 'r', bits 0-5.
(A) - (A) AND «Rr» r=0-1

Example: ANDDM: MOV RO,#OFFH ;MOVE 'FF' HEX TO REG 0
ANL A,#OAFH ;'AND' ACC CONTENTS WITH

;MASK IN LOCATION 63

3-6

INSTRUCTION SET

ANL A,#data Logical AND Accumulator With Immediate Mask

Opcode: '-10 ___ 0_1--'-1_0_0 __ --'1 I· Id7 d6 d5 d41 d3 d2 d1 dO I
This is a 2-cycle instruction. Data in the accumulator is logically ANDed with an immediately-specified mask.
(A) - (A) AND data

Example: ANDID: ANL A,#OAFH ;'AND' ACC CONTENTS
:WITH MASK 10101111

ANL A,#3+X/Y ;'AND' ACC CONTENTS
;WITH VALUE OF EXP
;'3+X/Y'

ANL Pp,#data Logical AND Port 1-2 With Immediate Mask

This is a 2-cycle instruction. Data on port 'p' is logically ANDed with an immediately-specified mask.
(Pp) - (Pp) AND data p=1-2

Note: Bits 0-1 of the opcode are used to represent PORT 1 and PORT 2. If you are coding in binary rather than
assembly language, the mapping is as follows:

Example:

Bits p1

o
o

1
ANDP2: ANL P2,#OFOH

pO Port

o X
1
o 2
1 X

;'AND' PORT 2 CONTENTS
;WITH MASK 'FO' HEX
;(CLEAR P20-23)

ANLD Pp,A Logical AND Port 4-7 With Accumulator Mask

Opcode: 11 0 0 1 11 1 P1 PO I
This is a 2-cycle instruction. Data on port 'p' on the 8243 expander is logically ANDed with the digit mask
contained in accumulator bits 0-3.
(Pp) - (Pp) AND (AO-3) p=4-7

Note: The mapping of Port 'p' to opcode bits P1,PO is as follows:

Example:

P1 PO
o 0
o 1

o
1 1

ANDP4: ANLD P4,A

Port

4
5
6
7

;'AND' PORT 4 CONTENTS
;WITH ACC BITS 0-3

3-7

INSTRUCTION SET

CALL address Subroutine Call

Opcode: I 0 ag as 1 I 0 o 0 I. I a7 a6 a5 a41 a3 a2 a1 aO I
This is a 2-cycle instruction. The program counter and PSW bits 4-7 are saved in the stack. The stack
pointer (PSW bits 0-2) is updated. Program control is then passed to the location specified by 'address'.

Execution continues at the instruction following the CALL upon return from the subroutine.
«SP» - (PC), (PSW4-7)
(SP) - (SP) + 1
(PCS-g) - (addrs-g)
(PCO-7) - (addrO-7)

Example: Add three groups of two numbers. Put subtotals in locations 50,51 and total in location 52.
MOV RO,#50 ;MOVE '50' DEC TO ADDRESS

;REG 0
BEGADD: MOV A,R1 ;MOVE CONTENTS OF REG 1

;TO ACC
ADD A,R2 ;ADD REG 2 TO ACC
CALL SUBTOT ;CALL SUBROUTINE 'SUBTOT'
ADD A,R3 ;ADD REG 3 TO ACC
ADD A,R4 ;ADD REG 4 TO ACC
CALL SUBTOT ;CALL SUBROUTINE 'SUBTOT'
ADD A,R5 ;ADD REG 5 TO ACC
ADD A,R6 ;ADD REG 6 TO ACC
CALL SUBTOT ;CALL SUBROUTINE 'SUBTOT'

SUBTOT: MOV @RO,A ;MOVE CONTENTS OF ACC TO
;LOCATION ADDRESSED BY
;REGO

INCRO
RET

CLR A Clear Accumulator

Opcode: I 0 0 0 I 0

;INCREMENT REG 0
;RETURN TO MAIN PROGRAM

The contents of the accumulator are cleared to zero.
(A) - OOH

CLR C Clear Carry Bit

Opcode: I 1 0 0 I 0

During normal program execution, the carry bit can be set to one by the ADD, ADDC, RLC, CPLC, RRC, and
DAA instructions. This instruction resets the carry bit to zero.
(C)- 0

CLR F 1 Clear Flag 1

Opcode: LI _1 __ 0 ______ 0-L1 O ______ O __ ~
The F 1 flag is cleared to zero.
(F1) - 0

3-S

INSTRUCTION SET

CLR FO Clear Flag 0

Opcode: 11 ° ° ° 1 ° °
Flag ° is cleared to zero.

(FO) -- °
CPL A Complement Accumulator

Opcode: 1 ° ° 1 1 °
The contents of the accumulator are complemented. This is strictly a one's complement. Each one is
changed to zero and vice-versa.
(A) -- NOT (A)

Example: Assume accumulator contains 01101010.
CPLA: CPL A ;ACC CONTENTS ARE COMPLE­

;MENTED TO 10010101

CPL C Complement Carry Bit

Opcode: LI1_0 ___ 0...l.I_o ___ 1--,1

The setting of the carry bit is complemented; one is changed to zero, and zero is changed to one.
(C) -- NOT (C)

Example: Set C to one; current setting is unknown.
CT01: CLR C ;C IS CLEARED TO ZERO

CPL C ;C IS SET TO ONE

CPL FO Complement Flag 0

Opcode: 1 1 ° ° 1 1 ° °
The setting of Flag ° is complemented; one is changed to zero, and zero is changed to one.
FO -- NOT (FO)

CPL F1 Complement Flag 1

Opcode: 1....1_1_o ___ 1-'-1_0 ___ 0_---'

The setting of the F 1 Flag is complemented; one is changed to zero, and zero is changed to one.
(F1) -- NOT (F1)

3-9

INSTRUCTION SET

DA A Decimal Adjust Accumulator

Opcode: ,-1_o ___ o __ 1--,-1 _0 ____ --'

The 8-bit accumulator value is adjusted to form two 4-bit Binary Coded Decimal (BCD) digits following the
binary addition of BCD numbers. The carry bit C is affected. If the contents of bits 0-3 are greater than nine,
or if AC is one, the accumulator is incremented by six.

The four high-order bits are then checked. If bits 4-7 exceed nine, or if C is one, these bits are increased by
six. If an overflow occurs, C is set to one; otherwise, it is cleared to zero.

Example: Assume accumulator contains 9AH.
DA A ;ACC ADJUSTED TO 01H with C set

C AC ACC

° ° 9AH INITIAL CONTENTS
06H ADD SIX TO LOW DIGIT

° ° A1H
60H ADD SIX TO HIGH DIGIT

° 01H RESULT

DEC A Decrement Accumulator

Opcode: 1 ° ° ° ° 1 °
The contents of the accumulator are decremented by one.
(A)-(A) - 1

Example: Decrement contents of data memory location 63.
MOV RO,#3FH ;MOVE '3F' HEX TO REG °
MOV A,@RO ;MOVE CONTENTS OF LOCATION 63

;TO ACC
DEC A ;DECREMENT ACC
MOV @RO,A ;MOVE CONTENTS OF ACC TO

;LOCATION 63

DEC Rr Decrement Register

Opcode: LI_1 ___ 0 __ 0---,1_1 __ r2 __ r 1 __ rO....J1

The contents of working register 'r' are decremented by one.
(Rr) - (Rr) - 1 r=0-7

Example: DECR1: DEC R1 ;DECREMENT ADDRESS REG 1

DIS I Disable IBF Interrupt

Opcode: ,-I_O_O __ O __ ,-Io ___ o_--..J

The input Buffer Full interrupt is disabled. The interrupt sequence is not initiated by WR and CS, however,
an IBF interrupt request is latched and remains pending until an EN I (enable IBF interrupt) instruction is
executed.

Note: The IBF flag is set and cleared independent of the IBF interrupt request so that handshaking protocol can
continue normally.

3-10

INSTRUCTION SET

DIS TCNTI Disable Timer/Counter Interrupt

Opcode: 1,-0_0 ___ 1--,-I_o __ 0_...-J1 1

The timer I counter interrupt is disabled. Any pending timer interrupt request is cleared. The interrupt se­
quence is not initiated by an overflow, but the timer flag is set and time accumulation continues.

DJNZ Rr, address Decrement Register and Test

Opcode: 11

This is a 2-cycle instruction. Register 'r' is decremented and tested for zero. If the register contains all zeros,
program control falls through to the next instruction. If the register contents are not zero, control jumps to the
specified address within the current page.
(Rr) - (Rr) - 1
If R "* 0, then;
(PCO-7) - addr

Note: A 10-bit address specification does not cause an error if the DJNZ instruction and the jump target are on the
same page. If the DJNZ instruction begins in location 255 of a page, it will jump to a target address on the
following page. Otherwise, it is limited to a jump within the current page.

Example: Increment values in data memory locations 50-54.
MOV RO,#50 ;MOVE '50' DEC TO ADDRESS

;REGO
MOV R3,#05 ;MOVE '5' DEC TO COUNTER

;REG3
INCRT: INC @RO ;INCREMENT CONTENTS OF

;LOCATION ADDRESSED BY
;REGO

INC RO ;INCREMENT ADDRESS IN REG °
DJNZ R3,INCRT ;DECREMENT REG 3--JUMP TO

;'INCRT' IF REG 3 NONZERO
NEXT -- ;'NEXT' ROUTINE EXECUTED

;IF R3 IS ZERO

EN DMA Enable DMA Handshake Lines

Opcode: ,--I _1 ____ 0....J...I_o ___ o_--'

DMA handshaking is enabled using P26 as DMA request (DRO) and P27 as DMA acknowledge (DACK). The
DACK line forces CS and AO low internally and clears DRO.

EN FLAGS Enable Master Interrupts

Opcode: LI_1 ____ 1....L.1_0 ___ 0_----1

The Output Buffer Full (OBF) and the Input Buffer Full (lBF) flags (lBF is inverted) are routed to P24 and P25.
For proper operation, a "1" should be written to P25 and P24 before the EN FLAGS instruction. A "0" written
to P24 or P25 disables the pin.

3-11

INSTRUCTION SET

EN I Enable IBF Interrupt

Opcode: 1 ° ° ° ° 1 ° °
The Input Buffer Full interrupt is enabled. A low signal on WR and CS initiates the interrupt sequence.

EN TCNTI Enable Timer/Counter Interrupt

Opcode: LI 0_0 ___ oJI_o __ o_---.J1 1

The timer I counter interrupt is enabled. An overflow of this register initiates the interrupt sequence.

IN A,DBB Input Data Bus Buffer Contents to Accumulator

Opcode: LI 0 __ 0 __ 0....1.1_0_0 __ 0--,1

Data in the DBBIN register is transferred to the accumulator and the Input Buffer Full (lBF) flag is set to zero.
(A) -- (DBB)

(lBF) -- °
Example: INDBB: IN A,DBB ;INPUT DBBIN CONTENTS TO

;ACCUMULATOR

IN A,Pp Input Port 1-2 Data to Accumulator

Opcode: 1 ° ° ° ° 11 ° P1 PO 1

This is a 2-cycle instruction. Data present on port 'p' is transferred (read) to the accumulator.
(A) -- (Pp) p= 1-2 (see ANL instruction)

Example: INP12: IN A,P1 ;INPUT PORT 1 CONTENTS
;TO ACC

MOV R6,A ;MOVE ACC CONTENTS TO
;REG 6

IN A,P2 ;INPUT PORT 2 CONTENTS
;TO ACC

MOV R7,A ;MOVE ACC CONTENTS TO REG 7

INC A Increment Accumulator

Opcode: 1 ° ° ° 1 1 °
The contents of the accumulator are incremented by one.
(A) -- (A) + 1

Example: Increment contents of location 10 in data memory.
INCA: MOV RO,# 10 ;MOV '10' DEC TO ADDRESS

;REGO
MOV A,@RO ;MOVE CONTENTS OF LOCATION

;10 TO ACC
INC A ;INCREMENT ACC
MOV @RO,A ;MOVE ACC CONTENTS TO

;LOCATION 10

3-12

INSTRUCTION SET

INC Rr Increment Register

Opcode: 1 ° ° ° 1 1

The contents of working register 'r' are incremented by one.
(Rr) - (Rr) + 1 r=0-7

Example: INCRO: INC RO ;INCREMENT ADDRESS REG °
INC @Rr Increment Data Memory Location

Opcode: 1 ° ° ° 1 1 ° ° ° r 1

The contents of the resident data memory location addressed by register 'r' bits 0-5 are incremented by
one.
«Rr» - «Rr» + 1 r=0-1

Example: INCDM: MOV R1,#OFFH ;MOVE ONES TO REG 1
;INCREMENT LOCATION 63 INC @R1

JBb address Jump If Accumulator Bit is Set

Opcode: 1 b2 b1 bO 1 1 ° °
This is a 2-cycle instruction. Control passes to the specified address if accumulator bit 'b' is set to one.
(PCO-7) - addr if b= 1
(PC) - (PC) + 2 if b=O

Example: JB4IS1: JB4 NEXT ;JUMP TO 'NEXT' ROUTINE
;IF ACC BIT 4= 1

JC address Jump If Carry Is Set

Opcode: LI_1 _____ 1 ...11_0 _____ 0--'1 • 1 a7 a6 a5 a41 a3 a2 a 1 ao 1

This is a 2-cycle instruction. Control passes to the specified address if the carry bit is set to one.
(PCO-7) - addr if C=1
(PC) - (PC) + 2 if C=O

Example: JC1: JC OVERFLOW ;JUMP TO 'OVFLOW' ROUTINE
;IF C=1

JFO address Jump If Flag 0 Is Set

Opcode: '--__ 0 ___ 1 ...11_0 _____ 0--'1 • 1 a7 a6 a5 a41 a3 a2 a 1 ao 1

This is a 2-cycle instruction. Control passes to the specified address if flag ° is set to one.
(PCO-7) - addr if FO=1

Example: JFOIS1: JFO TOTAL ;JUMP TO 'TOTAL' ROUTINE
;IF FO=1

3-13

INSTRUCTION SET

JF1 address Jump If C/O Flag (F1) Is Set

Opcode: 1-1 _0 ____ 1--'--1 _0 ____ 0--'1 • 1 a7 a6 a5 a41 a3 a2 a 1 aO 1

This is a 2-cycle instruction. Control passes to the specified address if the C/D flag (F1) is set to one.
(PCO-7) - addr if F1=1

Example: JF 11S1: JF1 FILBUF ;JUMP TO 'FILBUF'
;ROUTINE IF F 1 = 1

JMP address Direct Jump Within 1 K Block

Opcode: F10 a9 as ° 1 ° ° ° 1 • 1 a7 a6 a5 a41 a3 a2 a 1 aO 1

This is a 2-cycle instruction. Bits 0-9 of the program counter are replaced with the directly-specified
address.
(PCS-9) - addr S-9
(PCO-7) - addr 0-7

Example: JMP SUBTOT ;JUMP TO SUBROUTINE 'SUBTOT'
JMP $-6 ;JUMP TO INSTRUCTION SIX LOCATIONS

;BEFORE CURRENT LOCATION
JMP 2FH ;JUMP TO ADDRESS '2F' HEX

JMPP @A Indirect Jump Within Page

Opcode: 1,--1_0 ___ 1~1L....0 __ o ___ ...J

This is a 2-cycle instruction. The contents of the program memory location pointed to by the accumulator are
substituted for the 'page' portion of the program counter (PC 0-7).
(PCO-7) - «A»

Example: Assume accumulator contains OFH
JMPPAG: JMPP @A ;JMP TO ADDRESS STORED IN

;LOCATION 151N CURRENT PAGE

JNC address Jump If Carry Is Not Set

Opcode: '--____ 0--'--1 0 _____ 0--'1 • 1 a7 a6 a5 a41 a3 a2 a 1 ao 1

This is a 2-cycle instruction. Control passes to the specified address if the carry bit is not set, that is, equals
zero.
(PGo-7) - addr ifC=O

Example: JCO: JNC NOVFLO ;JUMP TO 'NOVFLO' ROUTINE
;IFC=O

JNIBF address Jump If Input Buffer Full Flag Is Low

Opcode: 1-1_1 ___ 0 __ 1--'--1_0 ____ 0-'1. la7 a6 a5 a41 a3 a2 a1 aol

This is a 2-cycle instruction. Control passes to the specified address if the Input Buffer Full flag is low
(lBF=O).
(PCo-7) - addr if IBF=O

Example: LOC 3:JNIBF LOC 3 ;JUMP TO SELF IF IBF=O
;OTHERWISE CONTINUE

3-14

INSTRUCTION SET

JNTO address Jump If TEST 0 Is Low

Opcode: L...1_o_o ___ o-----'-l_o _____ o--'l. 1 a7 a6 as a41 a3 a2 a 1 ao 1

This is a 2-cycle instruction. Control passes to the specified address, if the TEST ° signal is low. Pin is
sampled during SYNC.
(PCO-7) - addr if TO=O

Example: JTOLOW: JNTO 60 ;JUMP TO LOCATION 60 DEC
;IF TO=O

JNT1 address Jump If TEST 1 Is Low

Opcode: L...1_o ___ o __ o--'-l_o _____ o l. 1 a7 a6 as a41 a3 a2 a 1 ao 1

This is a 2-cycle instruction. Control passes to the specified address if the TEST 1 signal is low. Pin is
sampled during SYNC.
(PCO-7) - addr if T 1 =0

Example: JT1LOW: JNT1 OBBH ;JUMP TO LOCATION 'BB' HEX
;IF T1=0

JNZ address Jump If Accumulator Is Not Zero

Opcode: '--__ 0_0 __ 1-----'-1_0 _____ 0--'1 • 1 a7 a6 as a41 a3 a2 a1 aol

This is a 2-cycle instruction. Control passes to the specified address if the accumulator contents are nonzero
at the time this instruction is executed.
(PCO-7) - addr if A;"O

Example: JACCNO: JNZ OABH ;JUMP TO LOCATION 'AB' HEX
;IF ACC VALUE IS NONZERO

JOBF Address Jump If Output Buffer Full Flag Is Set

Opcode: 11 ° ° ° 1 ° ° 1 • 1 a7 a6 as a41 a3 a2 a1 aol

This is a 2-cycle instruction. Control passes to the specified address if the Output Buffer Full (OBF) flag is set
(= 1) at the time this instruction is executed.
(PCO-7) - addr if OBF= 1

Example: JOBFHI: JOBF OAAH ;JUMP TO LOCATION 'AA' HEX
;IF OBF=1

JTF address Jump If Timer Flag Is Set

Opcode: 1 ° ° ° 1 1 ° ° 1 • 1 a7 a6 as a41 a3 a2 a1 aol

This is a 2-cycle instruction. Control passes to the specified address if the timer flag is set to one, that is, the
timer / counter register overflows to zero. The timer flag is cleared upon execution of this instruction. (This
overflow initiates an interrupt service sequence if the timer-overflow interrupt is enabled.)
(PCO-7) - addr if TF= 1

Example: JTF1: JTF TIMER ;JUMP TO 'TIMER' ROUTINE
;IF TF= 1

3-1S

INSTRUCTION SET

JTO address Jump It TEST 0 Is High

Opcode: 1 0 __ 0 ___ 1_1 0 _____ 0-'1- la7 ae a5 a41 a3 a2 a1 aO I

This is a 2-cycle instruction. Control passes to the specified address if the TEST ° signal is high (= 1). Pin is
sampled during SYNC.
(PCO-7) - addr if TO= 1

Example: JTOHI: JTO 53 ;JUMP TO LOCATION 53 DEC
;IF TO= 1

JT 1 address Jump If TEST 1 Is High

Opcode: LI _0 ___ 0 __ 1--'-.1 _0 ____ 0--'1 - I a7 ae a5 a41 a3 a2 a 1 ao I

This is a 2-cycle instruction. Control passes to the specified address if the TEST 1 signal is high (= 1). Pin is
sampled during SYNC.
(PCo-7) - addr if T 1 = 1

Example: JT1HI: JTl COUNT ;JUMP TO 'COUNT' ROUTINE
;IF T1=1

JZ address Jump If Accumulator Is Zero

Opcode: L-1_1 ___ 0 __ 0-L1_0 ____ 0-'1 - I a7 ae a5 a41 a3 a2 a1 aO I

This is a 2-cycle instruction. Control passes to the specified address if the accumulator contains all zeros at
the time this instruction is executed.
(PCo-7) - addr if A=O

Example: JACCO: JZ OA3H ;JUMP TO LOCATION 'A3' HEX
;IF ACC VALUE IS ZERO

MOV A,#data Move Immediate Data to Accumulator

Opcode: L...lo_o ___ 0....LI_o_o __ --'l I- I d7 de d5 d41 d3 d2 d1 do I

This is a 2-cycle instruction. The B-bit value specified by 'data' is loaded in the accumulator.
(A) - data

Example: MOV A,#OA3H ;MOV 'A3' HEX TO ACC

MOV A,PSW Move PSW Contents to Accumulator

Opcode: 1,-1 __ 0_0-L..1 o ___ 1--,1

The contents of the program status word are moved to the accumulator.
(A) - (PSW)

Example: Jump to 'RB1SET' routine if bank switch, PSW bit 4, is set.
BSCHK: MOV A,PSW ;MOV PSW CONTENTS TO ACC

JB4 RB1 SET ;JUMP TO 'RB1SET' IF ACC
;BIT 4=1

3-1e

INSTRUCTION SET

MOV A, Rr Move Register Contents to Accumulator

Opcode: �L-1 ________ 1~1_1 ___ r2 ___ r1 __ r_o~1
Eight bits of data are moved from working register 'r' into the accumulator.
(A) -- (Rr) r=0-7

Example: MAR: MOV A,R3 ;MOVE CONTENTS OF REG 3
;TO ACC

MOV A,@Rr Move Data Memory Contents to Accumulator

Opcode: I-11 ____ 1--LI_o_o_o_----'r 1

The contents of the data memory location addressed by bits 0-5 of register 'r' are moved to the accumula­
tor. Register 'r' contents are unaffected.
(A) -- «Rr» r=0-1

Example: Assume R1 contains 00110110.

MADM: MOV A,@R1 ;MOVE CONTENTS OF DATA MEM
;LOCATION 54 TO ACC

MOV A,T Move Timer/Counter Contents to Accumulator

Opcode: LI o ___ o_o...J.l_o_o __ o--,1

The contents of the timer / event-counter register are moved to the accumulator. The timer / event-counter is
not stopped.
(A) -- (T)

Example: Jump to "EXIT" routine when timer reaches '64', that is, when bit 6 is set-assuming initialization to zero.
TIMCHK: MOV A,T ;MOVE TIMER CONTENTS TO

;ACC
JB6 EXIT ;JUMP TO 'EXIT' IF ACC BIT

;6=1

MOV PSW,A Move Accumulator Contents to PSW

Opcode:

Example:

° 1 1 °
The contents of the accumulator are moved into the program status word. All condition bits and the stack
pointer are affected by this move.
(PSW) -- (A)
Move up stack pointer by two memory locations, that is, increment the pointer by one.
INCPTR: MOV A,PSW ;MOVE PSW CONTENTS TO ACC

INC A ;INCREMENT ACC BY ONE
MOV PSW,A ;MOVE ACC CONTENTS TO PSW

3-17

INSTRUCTION SET

MOV Rr,A Move Accumulator Contents to Register

Opcode: 1_1_0 ___ 0_1I.....-1_r2 __ r1_r_O-,1

The contents of the accumulator are moved to register 'r'.
(Rr) - (A) r=Q-7

Example: MRA MOV RO,A ;MOVE CONTENTS OF ACC TO
;REGO

MOV Rr,#data Move Immediate Data to Register

Opcode: 11 °
This a 2-cycle instruction. The B-bit value specified by 'data' is moved to register 'r'.
(Rr) - data r=0-7

Example: MIR4: MOV R4,#HEXTEN ;THE VALUE OF THE SYMBOL
;'HEXTEN' IS MOVED INTO
;REG4

MIRS: MOV RS;#PI*(R*R) ;THE VALUE OF THE
;EXPRESSION 'PI*(R*R)'
;IS MOVED INTO REG S

MIR6: MOV R6,#OADH ;'AD' HEX IS MOVED INTO
;REG6

MOV@Rr,A Move Accumulator Contents to Data Memory

Opcode: 1,--1_0 ___ 0-,-I_o_o_o_r---,1

Example:

The contents of the accumulator are moved to the data memory location whose address is specified by bits
O-S of register 'r'. Register 'r' contents are unaffected.
«Rr» - (A) r=0-1
Assume RO contains 11000111.
MDMA: MOV @R,A ;MOVE CONTENTS OF ACC TO

;LOCATION 7 (REG)

MOV@Rr,#data Move Immediate Data to Data Memory

Opcode: 11 °
This is a 2-cycle instruction. The B-bit value specified by 'data' is moved to the standard data memory
location addressed by register 'r', bit O-S.
«Rr» - data r=0-1

Example: Move the hexadecimal value AC3F to locations 62-63.
MIDM: MOV RO,#62 ;MOVE '62' DEC TO ADDR REGO

MOV @RO,#OACH ;MOVE 'AC' HEX TO LOCATION 62
INC RO ;INCREMENT REG ° TO '63'
MOV @RO,#3FH ;MOVE '3F' HEX TO LOCATION 63

3-1B

INSTRUCTION SET

MOV STS,A Move Accumulator Contents to STS Register

Opcode: 1 1 ° ° 1 1 ° ° ° ° 1

The contents of the accumulator are moved into the status register. Only bits 4-7 are affected.
(STS4-7) - (A4-7)

Example: Set ST4-ST7 to "1".

MSTS: MOV A,#OFOH ;SET ACC
MOV STS,A ;MOVE TO STS

MOV T,A Move Accumulator Contents to Timer/Counter

Opcode: 1.-1 O ___ 0---L-I 0_0 __ 0--,1

The contents of the accumulator are moved to the timer I event-counter register.
(T) - (A)

Example: Initialize and start event counter.

INITEC: CLR A
MOV T,A
STRTCNT

;CLEAR ACC TO ZEROS
;MOVE ZEROS TO EVENT COUNTER
;START COUNTER

MOVD A,Pp Move Port 4-7 Data to Accumulator

Opcode: 1 ° ° ° ° 11 1 P1 PO 1

This is a 2-cycle instruction. Data on 8243 port 'p' is moved (read) to accumulator bits 0-3. Accumulator bits
4-7 are zeroed.
(AO-3) - Pp p=4-7

(A4-7) - °
Note: Bits 0-1 of the opcode are used to represent PORTS 4-7. If you are coding in binary rather than assembly

language, the mapping is as follows:

Example:

Bits P1 PO

° °
°

°
INPPT5: MOVD A,P5

Port

4

5

6

7

;MOVE PORT 5 DATA TO ACC
;BITS 0-3, ZERO ACC BITS 4-7

MOVD Pp,A Move Accumulator Data to Port 4, 5, 6 and 7

Opcode: 1.-1 0_0 ___ 1--L1_1_1_P_1 _P--,O 1

This is a 2-cycle instruction. Data in accumulator bits 0-3 is moved (written) to 8243 port 'p'. Accumulator
bits 4-7 are unaffected. (See NOTE above regarding port mapping.)
(Pp) - (AO-3) p=4-7

Example: Move data in accumulator to ports 4 and 5.
OUTP45: MOVD P4,A ;MOVE ACC BITS 0-3 TO PORT 4

SWAP A ;EXCHANGE ACC BITS 0-3 AND 4-7
MOVD P5,A ;MOVE ACC BITS 0-3 TO PORT 5

3-19

INSTRUCTION SET

MOVP A,@A Move Current Page Data to Accumulator

Opcode: LI _1 _0 __ °--'-�_°_° __ ---'1 1

This is a 2-cycle instruction. The contents of the program memory location addressed by the accumulator
are moved to the accumulator. Only bits 0-7 of the program counter are affected, limiting the program
memory reference to the current page. The program counter is restored following this operation.
(A) - «A»

Note: This is a 1-byte, 2-cycle instruction. If it appears in location 255 of a program memory page, @A addresses
a location in the following page.

Example: MOV128: MOV A,#128 ;MOVE '128' DEC TO ACC
MOVP A,@A ;CONTENTS OF 129TH LOCATION

;IN CURRENT PAGE ARE MOVED TO
;ACC

MOVP3 A,@A Move Page 3 Data to Accumulator

Opcode: ° 1 ° °
This is a 2-cycle instruction. The contents of the program memory location within page 3, addressed by the
accumulator, are moved to the accumulator. The program counter is restored following this operation.
(A) - «A» within page 3

Example: Look up ASCII equivalent of hexadecimal code in table contained at the beginning of page 3. Note that ASCII
characters are designated by a 7 -bit code; the eighth bit is always reset.
TABSCH: MOV A,#OB8H ;MOVE 'B8' HEX TO ACC (10111000)

ANL A,#7FH ;LOGICAL AND ACC TO MASK BIT
;7 (00111000)

MOVP3, A,@A ;MOVE CONTENTS OF LOCATION
;'38' HEX IN PAGE 3 TO ACC
;(ASCII '8')

Access contents of location in page 3 labelled TAB 1. Assume current program location is not in page 3.
TABSCH: MOV A,#TAB1 ;ISOLATE BITS 0-7

;OF LABEL
;ADDRESS VALUE

MOVP3 A,@A ;MOVE CONTENT OF PAGE 3
;LOCATION LABELED 'TAB l'
;TO ACC

NOP The NOP Instruction

Opcode: 1 0 0 ° ° 1 0 0 ° °
No operation is performed. Execution continues with the following instruction.

ORL A,Rr Logical OR Accumulator With Register Mask

Opcode: ~I _0 _____ 0 ___ 0~1_1 ___ r2 ___ r1 __ r_o~1

Data in the accumulator is logically ORed with the mask contained in working register 'r'.
(A) - (A) OR (Rr) r=0-7

Example: ORREG: ORL A,R4 ;'OR' ACC CONTENTS WITH
;MASK IN REG 4

3-20

INSTRUCTION SET

ORl A,@Rr logical OR Accumulator With Memory Mask

Opcode: 1....1 O ___ O_O-,I_o_o_o_--,r 1

Data in the accumulator is logically ORed with the mask contained in the data memory location referenced by
register 'r', bits 0-5.
(A) - (A) OR «Rr» r=0-1

Example: ORDM: MOVE RO,#3FH ;MOVE '3F' HEX TO REG 0
ORL A,@RO ;'OR' ACC CONTENTS WITH MASK

;IN LOCATION 63

ORl A, # data logical OR Accumulator With Immediate Mask

This is a 2-cycle instruction. Data in the accumulator is logically ORed with an immediately-specified mask.
(A) - (A) OR data

Example: ORID: ORL A,#'X' ;'OR' ACC CONTENTS WITH MASK
;01011000 (ASCII VALUE OF 'X')

ORl Pp,#data logical OR Port 1-2 With Immediate Mask

This is a 2-cycle instruction. Data on port 'p' is logically ORed with an immediately-specified mask.
(Pp) - (Pp) OR data p= 1-2 (see OUTL instruction)

Example: ORP1: ORL P1,#OFFH ;'OR' PORT 1 CONTENTS WITH
;MASK 'FF' HEX (SET PORT 1
'TO ALL ONES)

ORlD Pp,A logical OR Port 4-7 With Accumulator Mask

Opcode: 11 0 0 0 11 1 P1 PO 1

This is a 2-cycle instruction. Data on 8243 port 'p' is logically ORed with the digit mask contained in accumu­
lator bits 0-3,
(Pp) (Pp) OR (AO-3> p=4-7 (See MOVD instruction)

Example: ORP7: ORLD P7,A ;'OR' PORT 7 CONTENTS
;WITH ACC BITS 0-3

OUT DBB,A Output Accumulator Contents to Data Bus Buffer

Opcode: 1 0 0 0 0 1 0 0 0 1

Contents of the accumulator are transferred to the Data Bus Buffer Output register and the Output Buffer Full
(OBF) flag is set to one.
(DBB)- (A)
OBF-1

Example: OUTDBB: OUT DBB,A ;OUTPUT THE CONTENTS OF
;THE ACC TO DBBOUT

3-21

INSTRUCTION SET

OUTL Pp,A Output Accumulator Data to Port 1 and 2

Opcode: ,-I 0_0 ___ 1-L1_1_0_P_1 _P--,O 1

This is a 2-cycle instruction. Data residing in the accumulator is transferred (written) to port 'p' and latched.
(Pp) - (A) P= 1-2

Note: Bits 0-1 of the opcode are used to represent PORT 1 and PORT 2. If you are coding in binary rather than
assembly language, the mapping is as follows:

Example:

Bits p1
o
o

OUTLP: MOV A,R7
OUTL P2,A
MOV A,R6
OUTL P1,A

pO Port
o)(
1
o 2
1 X

;MOVE REG 7 CONTENTS TO ACC
;OUTPUT ACC CONTENTS TO PORT2
;MOVE REG 6 CONTENTS TO ACC
;OUTPUT ACC CONTENTS TO PORT 1

RET Return Without PSW Restore

Opcode: 11 0 0 0 1 0 0

This is a 2-cycle instruction. The stack pointer (PSW bits 0-2) is decremented. The program counter is then
restored from the stack. PSW bits 4-7 are not restored.
(SP) - (SP) - 1
(PC) - «SP»

RETR Return With PSW Restore

Opcode: 11 0 0 1 1 0 0

This is a 2-cycle instruction. The stack pointer is decremented. The program counter and bits 4-7 of the
PSW are then restored from the stack. Note that RETR should be used to return from an interrupt, but should
not be used within the interrupt service routine as it signals the end of an interrupt routine.
(SP) - (SP) - 1
(PC) - «SP»
(PSW4-7) - «SP»

RL A Rotate Left Without Carry

Opcode: 1 1 0 1 0

The contents of the accumulator are rotated left one bit. Bit 7 is rotated into the bit 0 position.
(An+1) - (An) n=0-6
(AO) - (A7)

Example: Assume accumulator contains 10110001.
RLNC: RL A ;NEW ACC CONTENTS ARE 01100011

3-22

INSTRUCTION SET

RLC A Rotate Lett Through Carry

Opcode: '-1_1 ____ 1-'-1_0-'-, _1 __ ----'

The contents of the accumulator are rotated left one bit. Bit 7 replaces the carry bit; the carry bit is rotated
into the bit ° position.
(An+ 1) - (An) n=0-6
(Ae)- (C)
(C) - (A7)

Example: Assume accumulator contains a 'signed' number; isolate sign without changing value.
RL TC: CLR C ;CLEAR CARRY TO ZERO

RLC A ;ROTATE ACC LEFT, SIGN
;BIT (7) IS PLACED IN CARRY

RR A ;ROTATE ACC RIGHT - VALUE
;(BITS 0-6) IS RESTORED,
;CARRY UNCHANGED, BIT 7
;ISZERO

RR A Rotate Right Without Carry

Opcode: I ° 1 1 °
The contents of the accumulator are rotated right one bit. Bit ° is rotated into the bit 7 position.
(An) - (An+1) n=0-6
(A7) - (Ae)

Example: Assume accumulator contains 10 11 000 1.
RRNC: RRA ;NEW ACC CONTENTS ARE 11011000

RRC A Rotate Right Through Carry

Opcode: 1 ° ° 1 °
The contents of the accumulator are rotated right one bit. Bit ° replaces the carry bit; the carry bit is rotated
into the bit 7 position.
(An) - (An+1) n=0-6
(A7) - (C)
(C) - (Ae)

Example: Assume carry is not set and accumulator contains 10110001.
RATC: RRCA ;CARRY IS SET AND ACC

;CONT AINS 010 11 000

SEL RBO Select Register Bank 0

Opcode: L...I _1 __ o_0-L-I 0 ___ 0_--'

PSW BIT 4 is set to zero. References to working registers 0-7 address data memory locations 0-7. This is
the recommended setting for normal program execution.
(BS)- °

3-23

INSTRUCTION SET

SEL RB1 Select Register Bank 1

Opcode: 1-1 _1 __ 0_1......1.-1 0 ___ 0_---'

PSW bit 4 is set to one. References to working registers 0-7 address data memory locations 24-31. This is
the recom"mended setting for interrupt service routines, since locations 0-7 are left intact. The setting of
PSW bit 4 in effect at the time of an interrupt is restored by the RETR instruction when the interrupt service
routine is completed.
(BS) - 1

Example: Assume an IBF interrupt has occurred, control has passed to program memory location 3, and PSW bit 4
was zero before the interrupt.
LOC3: JMP INIT ;JUMP TO ROUTINE 'INIT'

INIT: MOV R7,A

SEL RB1
MOV R7,#OFAH

SEL RBO
MOVA,R7
RETR

STOP TCNT Stop Timer/Event Counter

;MOV ACC CONTENTS TO
;LOCATION 7
;SELECT REG BANK 1
;MOVE 'FA' HEX TO LOCATION 31

;SELECT REG BANK °
;RESTORE ACC FROM LOCATION 7
;RETURN--RESTORr; PC AND PSW

Opcode: LI 0 ____ 0-'1_0 __ 0_--'

This instruction is used to stop both time accumulation and event counting.
Example: Disable interrupt, but jump to interrupt routine after eight overflows and stop timer. Count overflows in

register 7.
START: DIS TCNTI ;DISABLE TIMER INTERRUPT

CLR A ;CLEAR ACC TO ZERO
MOV T,A :MOV ZERO TO TIMER
MOV R7,A :MOVE ZERO TO REG 7
STRT T ;START TIMER

MAIN: JTF COUNT ;JUMP TO ROUTINE 'COUNT'
;IF TF= 1 AND CLEAR TIMER FLAG

JMP MAIN ;CLOSE LOOP
COUNT: INC R7 ;INCREMENT REG 7

MOV A,R7 ;MOVE REG 7 CONTENTS TO ACC
JB3 INT ;JUMP TO ROUTINE 'INT' IF ACC

;BIT 3 IS SET (REG 7=8)
JMP MAIN ;OTHERWISE RETURN TO ROUTINE

;MAIN

INT: STOP TCNT
JMP7H

;STOPTIMER
;JUMP TO LOCATION 7 (TIMER
;INTERRUPT ROUTINE)

3-24

INSTRUCTION SET

STRT CNT Start Event Counter

Opcode: '-1_0 ___ 0 __ 0--'-1_0 ___ 0_---'

The TEST 1 (T 1) pin is enabled as the event-counter input and the counter is started. The event-counter
register is incremented with each high to low transition on the T 1 pin.

Example: Initialize and start event counter. Assume overflow is desired with first T 1 input.
STARTC: EN TCNTI ;ENABLE COUNTER INTERRUPT

STRT T Start Timer

MOV A,#OFFH ;MOVE 'FF' HEX (ONES) TO
;ACC

MOV T,A ;MOVE ONES TO COUNTER
STRT CNT ;INPUT AND START

Opcode: 1 0 ___ 0 __ 1 0 ___ 0_--,

Timer accumulation is initiated in the timer register. The register is incremented every 32 instruction cycles.
The prescaler which counts the 32 cycles is cleared but the timer register is not.

Example: Initialize and start timer.
STARTT: EN TCNTI ;ENABLE TIMER INTERRUPT

CLR A :CLEAR ACC TO ZEROS
MOV T,A ;MOVE ZEROS TO TIMER
STRT T ;START TIMER

SWAP A Swap Nibbles Within Accumulator

Opcode: 1-1 0 ___ 0_0-'-1_0 ___ ---'1 1

Bits 0-3 of the accumulator are swapped with bits 4-7 of the accumulator.
(A4-7) - (Ao-3)

Example: Pack bits 0-3 of locations 50-51 into location 50.
PCKDIG: MOV RO,#50 ;MOVE '50' DEC TO REG °

MOV R1,#51 ;MOVE '51' DEC TO REG 1
XCHD A,@RO ;EXCHANGE BIT 0-3 OF ACC

;AND LOCATION 50
SWAP A ;SWAP BITS 0-3 AND 4-7 OF ACC

XCHD A,@R1 ;EXCHANGE BITS 0-3 OF ACC AND
;LOCATION 51

MOV @RO,A ;MOVE CONTENTS OF ACC TO
;LOCATION 51

XCH A,Rr Exchange Accumulator-Register Contents

Opcode: ,-1_o_o ___ o--,-I_1_r_2_r_1_ro-,1

The contents of the accumulator and the contents of working register 'r' are exchanged.
(A) - (Rr) r=0-7

Example: Move PSW contents to Reg 7 without losing accumulator contents.
XCHAR7: XCH A,R7 ;EXCHANGE CONTENTS OF REG 7

;AND ACC
MOV A,PSW ;MOVE PSW CONTENTS TO ACC
XCH A,R7 ;EXCHANGE CONTENTS OF REG 7

;AND ACC AGAIN

3-25

INSTRUCTION SET

XCH A,@Rr Exchange Accumulator and Data Memory Contents

Opcode: LI_o_o ___ o-,-1 _o_o __ o __ r-,I

The contents of the accumulator and the contents of the data memory location addressed by bits 0-5 of
register 'r' are exchanged. Register 'r' contents are unaffected.
(A) -- «Rr» r=0-1

Example: Decrement contents of location 52.
DEC52: MOV RO,#52 ;MOVE '52' DEC TO ADDRESS

;REGO
XCH A,@RO ;EXCHANGE CONTENTS OF ACC

;AND LOCATION 52
DEC A ;DECREMENT ACC CONTENTS
XCH A,@RO ;EXCHANGE CONTENTS OF ACC

;AND LOCATION 52 AGAIN

XCHD A,@Rr Exchange Accumulator and Data Memory 4-bit Data

Opcode: LI_o_o ___ 1-,-1 o __ o __ o __ r-,I

This instruction exchanges bits 0-3 of the accumulator with bits 0-3 of the data memory location addressed
by bits 0-5 of register 'r'. Bits 4-7 of the accumulator, bits 4-7 of the data memory location, and the
contents of register 'r' are unaffected.
(AO-3) -- «RrO-3» r=0-1

Example: Assume program counter contents have been stacked in locations 22-23.
XCHNIB: MOV RO,#23 ;MOVE '23' DEC TO REG °

CLR A ;CLEAR ACC TO ZEROS
XCHD A,@RO ;EXCHANGE BITS 0-3 OF ACC

;AND LOCATION 23 (BITS 8-11
;OF PC ARE ZEROED, ADDRESS
;REFERS TO PAGE 0)

XRL A,Rr Logical XOR Accumulator With Register Mask

Opcode: ~I _1 ___ 0 __ 1~1 _1_r2 __ r1_r_o~1
Data in the accumulator is EXCLUSIVE ORed with the mask contained in working register 'r'.
(A) - (A) XOR (Rr) r=0-7

Example: XORREG: XRL A,R5 ;'XOR' ACC CONTENTS WITH
;MASK IN REG 5

XRL A,@Rr Logical XOR Accumulator With Memory Mask

Opcode: ,--1_1 __ 0_1....l.I_o_o_o_--,r 1

Data in the accumulator is EXCLUSIVE ORed with the mask contained in the data memory location ad·
dressed by register 'r', bits 0-5.
(A) - (A) XOR «Rr» r=0-1

Example: XORDM: MOV R1,#20H ;MOVE '20' HEX TO REG 1
XRL A,@R1 ;'XOR' ACC CONTENTS WITH MASK

;IN LOCATION 32

3·26

INSTRUCTION SET

XRL A,#data Logical XOR Accumulator With Immediate Mask

Opcode:

This is a 2-cycle instruction. Data in the accumulator is EXCLUSIVE ORed with an immediately-specified
mask.
(A) - (A) XOR data

Example: XORID: XOR A,#HEXTEN ;XOR CONTENTS OF ACC WITH
;MASK EQUAL VALUE OF SYMBOL
;'HEXTEN'

3-27

CHAPTER 4
SINGLE-STEP, PROGRAMMING,

AND POWER-DOWN MODES

SINGLE-STEP (8741A EPROM Only)
The 8741A has a single-step mode which allows the
user to manually step through his program one in­
struction at a time. While stopped, the address of
the next instruction to be fetched is available on
PORT 1 and the lower 2 bits of PORT 2. The single­
step feature simplifies program debugging by allow­
ing the user to easily follow program execution.

+5V

10k

PRESET

MOMENTARY +5V Q

PUSH TO STEP fl} +5V

10k

CLEAR

~ 7474

Figure 4-1 illustrates a recommended circuit for sin­
gle-step operation, while Figure 4-2 shows the tim­
!!!g relationship between the SYNC output and the
SS input. During single-step operation, PORT 1 and
part of PORT 2 are used to output address informa­
tion. In order to retain the normal I/O functions of
PORTS 1 and 2, a separate latch can be used as
shown in Figure 4-3.

+5V

10k
HALT

r.~
PRESET

TOSS
+SV 0 Q INPUT

ON 8741A

CLOCK

FROM
8741A
SYNC

}2 7474 OUTPUT

Figure 4-1. Single-Step Circuit

SYNC~

\~ I :~ .. "'
Ss

55 BUTTON

P10-17 PORT DATA X :: PCO-7 >C
P2o-P21 X :: pes·g >C

ACTIVE CYCLE STOP CYCLE ACTIVE CYCLE

Figure 4-2. Single-Step Timing

4-1

SINGLE-STEP, PROGRAMMING, & POWER-DOWN MODES

SYNC

P10 P10 010

P11
DATA IN

011

P12 012

P13 013
8741A

P1' 01'

P15 015

P16 016

P17 017

" " " -=-:-..
+5V " +sv

SYNC

10k ADDRESS
DISPLAY
(LED)

LS

P17 017

OC = OPEN COLLECTOR TTL
LS = LOW POWER SCHOTTKL Y TTL P17 INPUT DATA

Figure 4-3. Latching Port Data

Timing
The sequence of single-step operation is as follows:
1) The processor is requested to stop by applying a

low level on SS. The SS input should not be
brought low while SYNC is high. (The 8741A
samples the SS pin in the middle of the SYNC
pulse).

2) The processor responds to the request by stop­
ping during the instruction fetch portion of the
next instruction. If a double cycle instruction is
in progress when the single-step command is re­
ceived, both cycles will be completed before
stopping.

3) The processor acknowledges it has entered the
stopped state by raising SYNC high. In this
state, which can be maintained indefinitely, the
lO-bit address of the next instruction to be
fetched is present on PORT 1 and the lower 2
bits of PORT 2.

4) SS is then raised high to bring the processor out
of the stopped mode allowing it to fetch the
next instruction. The exit from stop is indicated
by the processor bringing SYNC low.

4-2

5) To stop the processor at the next instruction SS
must be brought low again before the next
SYNC pulse-the circuit in Figure 4-1 uses the
trailing edge of the previous pulse. If SS is left
high, the processor remains in the "RUN"
mode.

Figure 4-1 shows a schematic for implementing sin­
gle-step. A single D-type flip-flop with preset and
clear is used to generate SS. In the RUN mode SS is
held high by keeping the flip-flop preset (preset has
precedence over the clear input). To enter single­
step, preset is removed allowing SYNC to bring SS
low via the clear input. Note that SYNC must be
buffered since the SN7474 is equivalent to 3 TTL
loads.

The processor is now in the stopped state. The next
instruction is initiated by clockinK..:'l" into the flip­
flop. This "I" will not appear on SS unless SYNC is
high (i.e., clear must be removed from the flip-flop).
In response to SS going high, the processor begins an
instruction fetch which brings SYNC low. SS is then
reset through the clear input and the processor again
enters the stopped state.

SINGLE-STEP, PROGRAMMING, & POWER-DOWN MODES

PROGRAMMING, VERIFYING AND
ERASING EPROM (8741A EPROM ONLY)
The internal Program Memory of the 8741A may be
erased and reprogrammed by the user as explained
in the following sections. See the data sheet for more
detail.

Programming
The programming procedure consists of the follow­
ing: activating the program mode, applying an
address, latching the address, applying data, and
applying a programming pulse. Each word is pro­
grammed completely before moving on to the next
and is followed by a verification step. Figure 4-4
illustrates the programming and verifying sequence.
The following is a list of the pins used for program­
ming and a description of their functions:

• XTAL 1, Clock Input (1 to 6 MHz)
XTAL2

• RESET Initialization and Address Latching

• TEST 0 Selection of Program or Verify
Mode

• EA Activation of Program/Verify
Modes

• DO-D7 Address and Data Input
Data Output During Verify

+5V

RESET

• P20, P21 Address Input

• VDD Programming Power Supply

• PROG Program Pulse Input
NOTE: All set-up and hold times are 4 cycles.

The detailed ProgramNerify sequence is as follows:

1) VDD = 5V; Clock Running 4MHz. Crystal or
External Clock; RESET = OV; VDD = 5V; Ao
= OV; CS = 5V
TEST 0 = 5V; EA = 5V, DO-D7 and PROG
floating.

2) Insert 8741A in programming socket.

3) TEST 0 = OV (Select Program Mode)

4) EA = 23V (Activate Program Mode), PROG
will float.

5) Address applied to DO-D7, P20, P21.

6) RESET = 5V (Latch Address).

7) Data applied to DO-D7.

8) VDD = 25V (Programming Power).

BUS AND PROG CAN BE DRIVEN ONLY DURING THIS TIME .,
+5V

I TEST 0

+23V

EA

+5V

PO-P7 (ADDRESS 0-7 }-{ DATA) OJ[OUT

P20-21 (ADDRESS AO-Ag)
+25V

VDD
+5V

+5v
+23V I PROG ~ +OV ,

Figure 4-4. Programming Sequence

4-3

SINGLE-STEP, PROGRAMMING, & POWER-DOWN MODES

9) PROG = OV followed by 50ms pulse to 23V.

10) VDD = 5V.

11) TEST 0 = 5V (Verify Mode).

12) Read and Verify Data on DO-D7.

13) TEST 0 = OV.

14) RESET = OV and repeat from step 5.

15) Programmer should be at conditions of step 1
when 8741A is removed from socket.

WARNING
An attempt to program a mis-socketed 8741A
will result in severe damage to the part. An in­
dication of a properly socketed part is the ap­
pearance of the SYNC clock output. The lack
of this clock may be used to disable the pro­
grammer.

Verification
Verification is accomplished by latching in an ad­
dress as in the Programming Mode and then apply­
ing "I" to the TEST 0 input. The word stored at the
selected address then appears on the DO-D7 lines.
Note that verification can be applied to both ROM's
and EPROM's independently of the programming
procedure. See the data sheet.

Erasing
The program memory of the 8741A may be erased to
zeros by exposing its translucent lid to shortwave ul­
traviolet light.

EPROM Light Sensitivity
The erasure characteristics of the 8741A EPROM
are such that erasure begins to occur when exposed
to light with wavelengths shorter than approximate­
ly 4000 Angstroms. It should be noted that sunlight
and certain types of fluorescent lamps have wave­
lengths in the 3000-4000 Angstrom range. Data
shows that constant exposure to room level fluores­
cent lighting could erase the typical 8741A in ap­
proximately 3 years while it would take
approximately 1 week to cause erasure when ex­
posed to direct sunlight. If the 8741A is to be ex­
posed to these types of lighting conditions for
extended periods of time, opaque labels (available
from Intel) should be placed over the 8741A window
to prevent unintentional erasure.

The recommended erasure procedure for the 8741A
is exposure to shortwave ultraviolet light which has a

4-4

wavelength of 2537 Angstroms. The integrated dose
(Le., UV intensity X exposure time) for erasure
should be a minimum of 15W-sec/cm2 power rating.
The erasure time with this dosage is approximately
15 minutes using an ultraviolet lamp with a 12,000
,.,.W/cm2 power rating. The 8741A should be placed
within 1 inch of the lamp tubes during erasure. Some
lamps have a filter on their tubes which should be
removed before erasure.

External Access
The 8041A/8741A has an External Access (EA) pin
which will put the processor into a test mode when a
high level is applied. This allows the user to effec­
tively disable the internal program memory.

The External Access mode is useful in testing be­
cause it allows the user to disable the internal appli­
cation program and test processor functions
directly. In addition, program memory can be read
externally, independent of the processor.

This mode is invoked by connecting the EA pin to
5V. The current program counter contents then
come out on PORTS 10-17 and PORTS 20-21
(PORT 10 is the least significant and PORT 21 the
most significant bits). The desired instruction
opcode is placed on DO-D7. This instruction is exe­
cuted in place of the internal program memory con­
tents. The I/O port data and program address are
multiplexed on the 8741A but not on the 8041A.

Upon reset with EA = 5V, the 8041A sends out pro­
gram counter contents OFFH as the first address
rather than OOOH. The second address is 001H.
Therefore, the first and second instructions should
be located at OFFH and 001H respectively. The
8741A outputs OOOH as the first address after reset.

Reading and/or writing the Data Bus Buffer regis­
ters is still allowed although only when DO-D7 are
not being sampled for opcode data. In practice, since
this sampling time is not known externally, reads or
writes on the system bus are done during SYNC high
time. Approximately 600ns are available for each
read or write cycle.

POWER DOWN MODE (8041A ROM ONLY)
Extra circuitry is included in the 8041A ROM ver­
sion to allow low power, standby operation. Power is
removed from all system elements except the 64-
byte data RAM in the low power mode. Thus, the
contents of RAM can be maintained while typically
drawing only 10 to 15 % of normal power.

The V CC pin serves as the 5V supply pin for most of
the 8041A circuitry while the VDD pin supplies only
the RAM array. In normal operation, both pins are

SINGLE-STEP, PROGRAMMING, & POWER-DOWN MODES

at 5 volts. To enter the Power-Down mode, the Vee
pin is grounded while only VDD is maintained at 5
volts. Applying a RESET signal to the processor in­
hibits access to RAM and thereby guarantees that
the memory is not inadvertently altered during the
transition when power is removed from Vee. Figure
4-5 illustrates a recommended Power-Down se­
quence. The sequence typically occurs as follows:

1) Imminent power supply failure is detected by
user defined circuitry. The signal must occur
early enough to guarantee the 8041A can save
all necessary data before Vee falls outside nor­
mal operating tolerance.

2) A "Power Failure" signal is used to interrupt
the processor (via a timer overflow interrupt,

POWER SUPPLY

for instance) and call a Power Failure service
routine.

3) The Power Failure routine saves all important
data and machine status in the RAM array. The
routine may also initiate transfer of a backup
supply to the VDD pin and indicate to external
circuitry that the Power Failure routine is com­
plete.

4) A RESET signal is applied by external hard­
ware to guarantee data will not be altered as the
power supply falls out of limits. RESET must
be low until Vee reaches ground potential.

Recovery from the Power-Down mode can occur as
any other power-on sequence. An external 1 !Lfd ca­
pacitor on the RESET input will provide the neces­
sary initialization pulse.

! """''-----~NRT~~~~~~~D I I
____ ~.I :: I 1 1

PO~~~ ~y~~~t ~ I I NORMAL

""I ------!:-----:--------- ~~tJ:Ng~
1 1 1 FOLLOWS
1 1 1 _____ ~I----~I 1

RESET : LJ:
: 1 ______ ---

LI ---.---01 LI ___ .,.-__

DATA SAVE
ROUTINE
EXECUTED

ACCESS TO
DATA RAM
INHIBITED

Figure 4-5. Power-Down Sequence

4-5

CHAPTER 5
SYSTEM OPERATION

BUS INTERFACE
The UPI-41A Microcomputer functions as a periph­
eral to a master processor by using the data bus
buffer registers to handle data transfers. The DBB
configuration is illustrated in Figure 5-1. The UPI-
41A Microcomputer's 8 three-state data lines (D7-
DO) connect directly to the master processor's data
bus. Data transfer to the master is controlled by 4
external inputs to the UPI:

• AO Address Input signifying command
or data

• CS Chip Select
• RD Read strobe
• WR Write strobe

WR
CONTROL RD

BUS Cs
AD

DATA ,;'---f-;;;;-'
BUS '-<----1~~__I

Figure 5-1. Data Bus Register Configuration

The master processor addresses the UPI-41A Micro­
computer as a standard peripheral device. Table 5-1
shows the conditions for data transfer:

Table 5-1. Data Transfer Controls

es AO lID WR Condition

0 0 0 ReadDBBOUT

0 1 0 1 Read STATUS
0 0 1 0 Write DBBIN data, set FI = 0
0 1 1 0 Write DBBIN command set

FI = 1
1 x x x Disable DBB

Reading the DBBOUT Register
The sequence for reading the DBBOUT register is
shown in Figure 5-2. This operation causes the 8-bit
contents of the DBBOUT register to be placed on

5-1

the system Data Bus. The OBF flag is cleared auto­
matically.

Reading STATUS
The sequence for reading the UPI-41A Microcom­
puter's 8 STATUS bits is shown in Figure 5-3. This
operation causes the 8-bit STATUS register con­
tents to be placed on the system Data Bus as shown.

Write Data to DBBIN
The sequence for writing data to the DBBIN register
is shown in Figure 5-4. This operation causes the sys­
tem Data Bus contents to be transferred to the
DBBIN register and the IBF flag is set. Also, the F1
flag is cleared (F1 = 0) and an interrupt request is
generated. When the IBF interrupt is enabled, a
jump to location 3 will occur. The interrupt request
is cleared upon entering the IBF service routine or
by a system RESET input.

AO

\~_----J/

DATA ----<.(-----.....,)--

Figure 5-2. OBBOUT Read

Cs \ /

AO -.I \
AD \ I

DATA < r-
BUS CONTENTS DURING ST ATU$ READ

ST7 ST6 STs ST4 I F1 FO IBF OBF

D7 06 05 04 03 02 01 DO

Figure 5-3. Status Read

SYSTEM OPERATION

AO

WR

\'--------/
DATA -<)-

Figure 5-4. Writing Data to DBBIN

Writing Commands to DBBIN
The sequence for writing commands to the DBBIN
register is shown in Figure 5-5. This sequence is
identical to a data write except that the AO input is
latched in the Fl flag (Fl = 1). The IBF flag is set
and an interrupt request is generated when the mas­
ter writes a command to DBB.

OPERATIONS OF DATA BUS REGISTERS
The UPI-41A Microcomputer controls the transfer
of DBB data to its accumulator by executing INput
and OUTput instructions. An IN A,DBB instruction
causes the contents to be transferred to the UPI ac­
cumulator and the IBF flag is cleared.

The OUT DBB,A instruction causes the contents of
the accumulator to be transferred to the DBBOUT
register. The OBF flag is set.

The UPI's data bus buffer interface is applicable to a
variety of microprocessors including the 8086, 8088,
8085,8080, and 8048.

A description of the interface to each of these pro­
cessors follows.

DESIGN EXAMPLES
808SA Interface
Figure 5-6 illustrates an 8085A system using a UPI-
41A. The 8085A system uses a multiplexed address
and data bus. During I/O the 8 upper address lines
(A8-AI5) contain the same I/O address as the lower
8 address/data lines (AO-A7); therefore I/O address
decoding is done using only the upper 8 lines to
eliminate latching of the address. An 8205 decoder
provides address decoding for both the UPI-41A and
the 8237. Data is transferred using the two DMA

5-2

AO

ViR \ /
DATA -< >
Figure 5-5. Writing Commands to DBBIN

handshaking lines of PORT 2. The 8237 performs
the actual bus transfer operation. Using the UPI-
41A's OBF master interrupt, the UPI-41A notifies
the 8085A upon transfer completion using the RST
5.5 interrupt input. The IBF master interrupt is not
used in this example.

8088 Interface
Figure 5-7 illustrates a UPI-41A interface to an 8088
minimum mode system. Two 8-bit latches are used
to demultiplex the address and data bus. The ad­
dress bus is 20-lines wide. For I/O only, the lower 16
address lines are used, providing an addressing
range of 64K. UPI address selection is accomplished
using an 8205 decoder. The AO address line of the
bus is connected to the corresponding UPI input for
register selection. Since the UPI-41A is polled by the
8088, neither DMA nor master interrupt capabilities
of the UPI-41A are used in the figure.

8086 Interface
The UPI-41A can be used on an 8086 maximum
mode system as shown in figure 5-8. The address and
data bus is demultiplexed using three 8282 latches
providing separate address and data buses. The ad­
dress bus is 20-lines wide and the data bus is 16-lines
wide. Multiplexed control lines are decoded by the
8288. The UPI's CS input is provided by linear selec­
tion. Note that the UPI-41A is both I/O mapped and
memory mapped as a result of the linear addressing
technique. An address decoder may be used to limit
the UPI-41A to a specific I/O mapped address. Ad­
dress line Al is connected to the UPI's AO input.
This insures that the registers of the UPI will have
even I/O addresses. Data will be transferred on DO­
D7 lines only. This allows the I/O registers to be ac­
cessed using byte manipulation instructions.

SYSTEM OPERATION

8085A

lolii E3 8205

ALE E2 00 r--
A8-A15

ADDRESS AO-A2 01 f-

ADO-AD? f'r- ADDRESS/DATA

t-- CONTROL (
t--

r- RST 5.5

L 8237 8041A/
8741A

Cs l.o. Cs PORT 1 (8))

~ '----- AD PORT 2 (8)

W-

00-0 7
00-07

TEST a
ORO

TEST 1
DACK

Figure 5-6. 8041A To 8085A System

- 8284

ADDRESS eLK
8088

1 S
READY

RESET 8041A/ - 8282 8205 I 8741A
ADo-AD15

['r- r' (2))I

r=F1 I
Cs

lo/ii
PORT 1 (8)

J I
ALE AO

PORT' (8))

DATA BUS 00-07

Ro Ro TEST 0

WR WR TEST 1

Figure 5-7. 8041A To 8088 Minimum Mode System

5-3

SYSTEM OPERATION

8284

ClK
8086

CONTROL ~ READY 8288

RESET

8282
AOO-AD16

'~I
(3) ADDRESS --"

DATA

~ 1'"

7
Do-D7 CS AO WR RD

8041A/
8741A

PORT 2 PORT 1

TEL 1
~ } ~ }

8 ~
~ 7 V

TEST 1

Figure 5-8. 8041A To 8086 Maximum Mode Systems

8080 Interface
Figure 5-9 illustrates the interface to an 8080A sys­
tem. In this example, a crystal and capacitor are
used for UPI-41A timing reference and power-on
RESET. If the 2-MHz 8080A 2-phase clock were
used instead of the crystal, the UPI-41A would run
at only 30 % full speed.

The AO and es inputs are direct connections to the
8080 address bus. In larger systems, however, either
of these inputs may be decoded from the 16 address
lines.

The RD and WR inputs to the UPI can be either the
lOR and lOW or the MEMR and MEMR signals de­
pending on the I/O mapping technique to be used.

The UPI can be addressed as an I/O device using IN­
put and OUTput instructions in 8080 software.

8048 Interface
Figure 5-10 shows the UPI interface to an 8048 mas­
ter processor.

5-4

The 8048 RD and WR outputs are directly compati­
ble with the UPI. Figure 5-11 shows a distributed
processing system with up to seven 8041A's con­
nected to a single 8048 master processor.

In this configuration the 8048 uses PORT 0 as a data
bus. I/O PORT 2 is used to select one of the seven
8041A's when data transfer occurs. The 8041A's are
programmed to handle isolated tasks and, since they
operate in parallel, system throughput is increased.

GENERAL HANDSHAKING PROTOCOL
1) Master reads STATUS register (RD, es, AO =

(0,0, 1» in polling or in response to either an
IBF or an OBF interrupt.

2) If the UPI-41A DBBIN register is empty (IBF
flag = 0), Master writes a word to the DBBIN
register (WR, es, AO = (0, 0, 1) or (0, 0, 0». If
Ao = 1, write command word, set Fl. If AO = 0,
write data word, F1 = O.

8080A

SYSTEM OPERATION

DATA IV-----"------.----.-----.----.-.Il

AODR 1-_....:'.::..6 -----,V1

lOw I-------'----'--'\.I
iORl--------r-rYi

J' J..tfd/10V

Figure 5·9. 8080A·8041A Interface

\

- Ro ~ RO

WR WR ~ 8048 8041A/
_ 8741A

PORT CONTROL 2
CS

i.-TEST 0
Ao

BUS DATA BUS 8 OBB r-TEST,

/

Figure 5·10. 8048·8041A Interface

TEST 0

TEST 1

TO
PERIPHERAL
DEVICES

TO
PERIPHERAL
DEVICES

3) If the UPI·41A DBBOUT register is full (OBF
flag = 1), Master reads a word from the
DBBOUT register (RD, es, AO = (0,0,0)).

5) UPI-41A recognizes OBF flag = ° (via JOBF).

4) UPI-41A recognizes IBF (via IBF interrupt or
JNIBF). Input data or command word is
processed, depending on F1; IBF is reset. Re­
peat step 1 above.

5-5

Next word is output to DBBOUT register, OBF
is set. Repeat step 1 above.

SYSTEM OPERATION

P2,
RO,WR

8048

PORT 0

CONTROL
BUS

8

~
RD
WR a041A/
AO 8741A

DBB

#1

CS
Ri5
WR 8041AI
AO 8741A

DBB

#2

DATA BUS

cs
r----,--'\IRD

WR 8041AI
AO 8741A

I/'---=~\J DBB

#N

N .:S 7

Figure 5-11. Distributed Processor System

5-6

110

liD

liD

Chapter 6
APPLICATIONS

ABSTRACTS
The UPI-41A is designed to fill a wide variety of low
to medium speed peripheral interface applications
where flexibility and easy implementation are im­
portant considerations. The following examples il­
lustrate some typical applications.

Keyboard Encoder
Figure 6-1 illustrates a keyboard encoder config­
uration using the UPI and the 8243 I/O expander
to scan a 128-key matrix. The encoder has switch
matrix scanning logic, N-key rollover logic, ROM
look-up table, FIFO character buffer, and additional
outputs for display functions, control keys or other
special functions.

PORT 1 and PORTs 4-7 provide the interface to the
keyboard. PORT 1 lines are set one at a time to se­
lect the various key matrix rows.

When a row is energized, all 16 columns (i.e., PORTs
4-7 inputs) are sampled to determine if any switch
in the row is closed. The scanning software is code
efficient because the UPI instruction set includes in­
dividual bit set/clear operations and expander
PORTs 4-7 can be directly addressed with single, 2-
byte instructions. Also, accumulator bits can be test­
ed in a single operation. Scan time for 128 keys is
about 10 ms. Each matrix point has a unique binary

INTERFACE
TO 8-BlT
MASTER

PROCESSOR

~

\

PORT 4

PORTS
8243

EXPANDER
PORTS

PORT 7

4

PORT 2 PADO

DBB

r8

DATA BUS

CONTROL BUS

code which is used to address ROM when a key clo­
sure is detected. Page 3 of ROM contains a look-up
table with useable codes (i.e., ASCII, EBCDIC, etc.)
which correspond to each key. When a valid key clo­
sure is detected the ROM code corresponding to that
key is stored in a FIFO buffer in data memory for
transfer to the master processor. To avoid stray
noise and switch bounce, a key closure must be de­
tected on two consecutive scans before it is consid­
ered valid and loaded into the FIFO buffer. The
FIFO buffer allows multiple keys to be processed as
they are depressed without regard to when they are
released, a condition known as N-key rollover.

The basic features of this encoder are fairly standard
and require only about 500 bytes of memory. Since
the UPI is programmable and has additional mem­
ory capacity it can handle a number of other func­
tions. For example, special keys can be programmed
to give an entry on closing as well as opening. Also,
I/O lines are available to control a 16-digit, 7-seg­
ment display. The UPI can also be programmed to
recognize special combinations of characters such as
commands, then transfer only the decoded informa­
tion to the master processor.

A complete keyboard application has been devel­
oped for the UPI-41A. A description is included in
this section. The code for the application is available
in the Intel Insite Library (program AB 147).

4

4 i
" KEYBOARD g MATRIX

4
\!!

4 8 ROWS

...I
" li 'l'

~ l 9 ~ 8

I

I ' PORT 1

PORT 2

8041A/8741A

CONTROL

~
')

I
-'l

Figure 6-1. Keyboard Encoder Configuration

6·1

APPLICA TIONS

Matrix Printer Interface
The matrix printer interface illustrated in Figure 6-2
is a typical application for the UPI-41A. The actual
printer mechanism could be any of the numerous
dot-matrix types and similar configurations can be
shown for drum, spherical head, daisy wheel or chain
type printers.

The bus structure shown represents a generalized, 8-
bit system bus configuration. The UPI's three-state
interface port and asynchronous data buffer regis­
ters allow it to connect directly to this type of system
for efficient, two-way data transfer.

The UPI's two on-board I/O ports provide up to 16
input and output signals to control the printer
mechanism. The timer/event counter is used for
generating a timing sequence to control print head
position, line feed, carriage return, and other se­
quences. The on-board program memory provides
character generation for 5 X 7, 7 X 9, or other dot
matrix formats. As an added feature a portion of the
64 X 8-bit data memory can be used as a FIFO buffer
so that the master processor can send a block of data
at a high rate. The UPI can then output characters
from the buffer at a rate the printer can accept while
the master processor returns to other tasks.

INTERFACE
TO 8-BIT
MASTER

PROCESSOR

\

)

FORM
PRINT l.F. HOLD

MOTOR
DRIVERS

PORT 2

DBB

'i'-
S

T
DATA BUS

CONTROL BUS

The 8295 Printer Controller is an example of an
8041A preprogrammed as a dot matrix printer inter­
face.

Tape Cassette Controller
Figure 6-3 illustrates a digital cassette interface
which can be implemented with the UPI-41A. Two
sections of the tape transport are controlled by the
UPI: digital data/command logic, and motor servo
control.

The motor servo requires a speed reference in the
form of a monostable pulse whose width is propor­
tional to the desired speed. The UPI monitors a
prerecorded clock from the tape and uses its on­
board interval timer to generate the required speed
reference pulses at each clock transition.

Recorded data from the tape is supplied serially by
the data/command logic and is converted to 8-bit
words by the UPI, then transferred to the master
processor. At 10 ips tape speed the UPI can easily
handle the 8000 bps data rate. To record data, the
UPI uses the two input lines to the data/command
logic which control the flux direction in the record­
ing head. The UPI also monitors 4 status lines from
the tape transport including: end of tape, cassette

DOT MATRIX PRINTER

SOLENOIDS

z
Q

'"
...

'" iii
0 2 I "- SOLENOID
l5 m

DRIVERS
0.
0 ... w

~

7 OR 9

PORT 2 PORT 1/PORT 2

B041A/8741A

CONTROL

4

\

~

Figure 6·2. Matrix Printer Controller

6-2

APPLICATIONS

DATA
EDT leOT

G) B
I DATA ENCODE/DECODE

J I MOTOR

J AND COMMAND DRIVE

INTERFACE
TO 8-BIT
MASTER

PROCESSOR

~

DATA
OUT

I

DATA CLOCK IN 2

I
PORT 1

DBB

STATUS FWD REV SPEED
4

I I r I

PORT 2

8041A/8741A

CONTROL

DATA BUS --"
CONTROL BUS --"

Figure 6·3. Tape Transport Controller

inserted, busy, and write permit. All control signals
can be handled by the UPI's two I/O ports.

Universal 110 Interface
Figure 6-4 shows an I/O interface design based on
the UPI. This configuration includes 12 parallel I/O
lines and a serial (RS232C) interface for full duplex
data transfer up to 1200 baud. This type of design
can be used to interface a master processor to a
broad spectrum of peripheral devices as well as to a
serial communication channel.

PARALLEL
1/0

,--L-,

PORT 1 is used strictly for I/O in this example while
PORT 2 lines provide five functions:

• P23-P20 I/O lines (bidirectional)
• P24 Request to send (RTS)
• P25 Clear to Send (CTS)
• P26 Interrupt to master
• P27 Serial data out

The parallel I/O lines make use of the bidirectional
port structure of the UPI. Any line can function as
an input or output. All port lines are automatically
initialized to 1 by a system RESET pulse and remain

RS232C
SERIAL INTERFACE

r
crs RTS

INTERRUPT, 1

INTERFACE
TO 8-BIT
MASTER

PROCESSOR

/' OUTPUT
TO AO

MASTER
PROCESSOR ~

12

r
TRANSMIT

DATA

'---r-' .
I

. TEST 0
PORT 1 AND 2 PORT 2

BQ41A/8741A

DBB CONTROL

J I
DATA

I I
CONTROL

Figure 6·4. Universal 1/0 Interface

6·3

A1

RECEIVE
DATA

j

APPLICATIONS

latched. An external TTL signal connected to a port
line will override the UPI's 50K-ohm internal pull­
up so that an INPUT instruction will correctly sam­
ple the TTL signal.

Four PORT 2 lines function as general I/O similar to
PORT 1. Also, the RTS signal is generated on PORT
2 under software control when the UPI has serial
data to send. The CTS signal is monitored via PORT
2 as an enable to the UPI to send serial data. A
PORT 2 line is also used as a software generated in­
terrupt to the master processor. The interrupt func­
tions as a service request when the UPI has a byte of
data to transfer or when it is ready to receive. Alter­
natively, the EN FLAGS instruction could be used
to create the OBF and IBF interrupts on P24 and
P25·

The RS232C interface is implemented using the
TEST 0 pin as a receive input and a PORT 2 pin as a
transmit output. External packages (AO, AI) are
used to provide RS232C drive requirements. The
serial receive software is interrupt driven and uses
the on-chip timer to perform time critical serial con­
trol. After a start bit is detected the interval timer

6-4

can be preset to generate an interrupt at the proper
time for sampling the serial bit stream. This elimi­
nates the need for software timing loops and allows
the processor to proceed to other tasks (i.e., parallel
I/O operations) between serial bit samples. Software
flags are used so the main program can determine
when the interrupt driven receive program has a
character assembled for it.

This type of configuration allows system designers
flexibility in designing custom I/O interfaces for spe­
cific serial and parallel I/O applications. For in­
stance, a second or third serial channel could be
substituted in place of the parallel I/O if required.
The UPI's data memory can buffer data and com­
mands for up to 4 low-speed channels (110 baud tele­
typewriter, etc.)

Application Notes
The following application notes illustrate the var­
ious applications of the UPI family. Other related
publications including the 8048 Family Application
Handbook are available through the Intel Literature
Department.

APPLICATIONS

INTRODUCTION TO THE UPI-41 A ™

Introduction

Since the introduction in 1974 of the second genera­
tion of microprocessors, such as the 8080, a wide
range of peripheral interface devices have appeared.
At first, these devices solved application problems of
a general nature; i.e., parallel interface (8255), serial
interface (8251), timing (8253), interrupt control
(8259). However, as the speed and density of LSI
technology increased, more and more intelligence
was incorporated into the peripheral devices. This
allowed more specific application problems to be
solved, such as floppy disk control (8271), CRT con­
trol (8275), and data link control (8273). The advan­
tage to the system designer of this increased
peripheral device intelligence is that many of the pe­
ripheral control tasks are now handled externally to
the main processor in the peripheral hardware
rather than internally in the main processor soft­
ware. This reduced main processor overhead results
in increased system throughput and reduced soft­
ware complexity.

In spite of the number of peripheral devices avail­
able, the pervasiveness of the microprocessor has
been such that there is still a large number of peri ph­
eral control applications not yet satisfied by dedi­
cated LSI. Complicating this problem is the fact that
new applications are emerging faster than the manu­
facturers can react in developing new, dedicated pe­
ripheral controllers. To address this problem, a new
microcomputer-based Universal Peripheral Inter­
face (UPI-41A) device was developed.

In essence, the UPI-4IA acts as a slave processor to
the main system CPU. The UPI contains its own
processor, memory, and I/O, and is completely user
programmable; that is, the entire peripheral control
algorithm can be programmed locally in the UPI, in­
stead of taxing the master processor's main memory.
This distributed processing concept allows the UPI
to handle the real-time tasks such as encoding key­
boards, controlling printers, or multiplexing dis­
plays, while the main processor is handling non-real­
time dependent tasks such as buffer management or
arithmetic. The UPI relies on the master only for
initialization, elementary commands, and data
transfers. This technique results in an overall in­
crease in system efficiency since both processors­
the master CPU and the slave UPI-are working in
parallel.

This application note presents three UPI-41A appli­
cations which are roughly divided into two groups:
applications whose complexity and UPI code space

6·5

requirements allow them to either stand alone or be
incorporated as just one task in a "multi-tasking"
UPI, and applications which are complete UPI ap­
plications in themselves. Applications in the first
group are a simple LED display and sensor matrix
controllers. A combination serial/parallel/ I/O de­
vice is an application in the second group. Each ap­
plication illustrates different UPI configurations
and features. However, before the application de­
tails are presented, a section on the UPI/master pro­
tocol requirements is included. These protocol
requirements are key to UPI software development.
For convenience, the UPI block diagram is repro­
duced in Figure 1 and the instruction set summary
in Table 1.

UPI-41 VS. UPI-41 A

The UPI-41A is an enhanced version of the UPI-41.
It incorporates several architectural features not
found on the "non-A" device:

• Separate Data In and Data Out data bus buf­
fer registers

• User-definable STATUS register bits
• Programmable master interrupts for the OBF

and IBF flags
• Programmable DMA interface to external

DMA controller.

The separate Data In (DBBIN) and Data Out
(DBBOUT) registers greatly simplify the master/
UPI protocol compated to the UPI-41. The master
need only check IBF before writing to DBBIN and
OBF before reading DBBOUT. No data bus buffer
lock-out is required.

The most significant nibble of the STATUS register,
undefined in the UPI-41, is user-definable in UPI-
41A. It may be loaded directly from the most signifi­
cant nibble of the Accumulator (MOV STS,A).
These extra four STATUS bits are useful for trans­
ferring additional status information to the master.
This application note uses this feature extensively.

A new instruction, EN FLAGS, allows OBF and IBF
to be reflected on PORT 2 BIT 4 and PORT 2 BIT 5
respectively. This feature enables interrupt-driven
data transfers when these pins are interrupt sources
to the master.

By executing an EN DMA instruction PORT 2 BIT
6 becomes a DRQ (DMA Request) output and
PORT 2 BIT 7 becomes DACK (DMA Acknowl­
edge). Setting DRQ requests a DMA cycle to an ex­
ternal DMA controller. When the cycle is granted,
the DMA controller returns DACK plus either RD
(Read) or WR (Write). DACK automatically forces

APPLICATIONS

·~"r 76a t---------I

""'r 5'2 1---------1

""'f ~~~ 1--------1

LOCATION 7 - TIMER

1-______ .. ~-~,;r~~~~~TH~~~TORS

PAGE 0

LoeA TlON 3 - ISF

I-______ ~ .. -~~~~~:~ ~~~~TORS

7L61sl_lal2l'lo -~~~~~~~C:E<;'~S
ADDRESS

Figure 1A. Program Memory Map

CS and AO low internally and clears DRQ. This se­
lects the appropriate data buffer register (DBBOUT
for DACK and RD, DBBIN for DACK and WR) for
the DMA transfer.

Like the "non-A", the UPI-41A is available in both
ROM (8041A) and EPROM (8741A) Program Mem­
ory versions. This application note deals exclusively
with the UPI-41A since the applications use the "A"s
enhanced features.

UPI/MASTER PROTOCOL
As in most closely coupled multiprocessor systems,
the various processors communicate via a shared re­
source. This shared resource is typically specific lo­
cations in RAM or in registers through which status
and data are passed. In the case of a master proces­
sor and a UPI-41A, the shared resource is 3 separate,
master-addressable, registers internal to the UPI.
These registers are the status register (STATUS),
the Data Bus Buffer Input register (DB BIN) , and
the Data Bus Output register (DBBOUT). [Data
Bus Buffer direction is relative to the UPI]. To illus­
trate this register interface, consider the 8085A/UPI
system in Figure 2.

6-6

6ar-------------~

USER RAM
32 X 8

~~r-------------~
BANK 1

WORKING
REGISTERS

axa

8 LEVEL STACK
OR

USER RAM
16 X 8

BANK 0
WORKING

REGISTERS
axa

I
DIRECTLY

ADDRESSABLE
WHEN BANK 1
IS SELECTED

--.-J
ADDRESSED
INDIRECTLY
THROUGH
R1 OR RO

(RO' OR R1')

DIRECTLY
ADDRESSABLE
WHEN BANK 0
ISSELECrD

Figure 1 B. Data Memory Map

Looking into the UPI from the 8085A, the 8085A
sees only the three registers mentioned above. If the
8085A wishes to issue a command to the UPI, it does
so by writing the command to the DBBIN register
according to the decoding of Table 2. Data for the
UPI is also passed via the DBBIN register. (The UPI
differentiates commands and data by examining the
AO pin. Just how this is done is covered shortly.)
Data from the UPI for the 8085A is passed in the
DBBOUT register. The 8085A may interrogate the
UPI's status by reading the UPI's STATUS register.
Four bits of the STATUS register act as flags and
are used to handshake data and commands into and
out of the UPI. The STATUS register format is
shown in Figure 3.

BIT 0 is OBF (Output Buffer Full). This flag indi­
cates to the master when the UPI has placed data in
the DBBOUT register. OBF is set when the UPI
writes to DBBOUT and is reset when the master
reads DBBOUT. The master finds meaningful data
in the DBBOUT register only when OBF is set.

The Input Buffer Full (IBF) flag is BIT 1. The UPI
uses this flag as an indicator that the master has
written to the DBBIN register. The master uses IBF

APPLICATIONS

'"

00- ,,,
0,

MASTER
SYSTEM

INTERFACE
Wi

" Co
'0

CRYSTAL JxTAL 1

~fog~ tTAL2

{

,"0 --_ PROM PROGRAM SUPPL V

POWER Vee --_ +5 SUPPLY

'" --_ GROUND

INTERNAL

'"'

RESIDENT

'/0
PORT 1

f--------j R~~~~M

1K X 8
PROM/ROM
PROGRAM
MEMORY

~~~~~~ 

a-BIT 

EVEN~Mt~~NTER 

PERIPHERAL 
INTERFACE 

Figure 1C. UPI-41 A Block Diagram 

to indicate when the UPI has accepted a particular 
command or data byte. The master should examine 
IBF before outputting anything to the UPI. IBF is 
set when the master writes to DBBIN and is reset 
when the UPI reads DBBIN. The master must wait 
until IBF=O before writing new data or commands 
to DBBIN. Conversely, the UPI must ensure IBF=l 
before reading DBBIN. 

The third STATUS register bit is FO (FLAG 0). This 
is a general purpose flag that the UPI can set, reset, 
and test. It is typically used to indicate a UPI error 
or busy condition to the master. 

FLAG 1 (Fl) is the final dedicated STATUS bit. 
Like FO the UPI can set, reset, and test this flag. 
However, in addition, Fl reflects the state of the AO 
pin whenever the master writes to the DBBIN regis­
ter. The UPI uses this flag to delineate between mas­
ter command and data writes to DBBIN. 

The remaining four STATUS register bits are user 
definable. Typical uses ofthese bits are as status in-

6-7 

('----"..,~/'-r--"" r--"" 
-" I I 

'-r----v' :--.-- = STATUS 
-y 

-ct~a: ~ 
8085 -!;t~5i __ ~ AD I DBBIN I 

-"I-- ~8 cs 
r---- I-- f--v' RD 

WR I OBeOUT I 
'-- ...... 

Figure 2. Register Interface 

dicators for individual tasks in a multitasking UPI 
or as UPI generated interrupt status. These bits find 
a wide variety of uses in the upcoming applications. 

Looking into the 8085A from the UPI, the UPI sees 
the two DBB registers plus the IBF, OBF, and Fl 
flags. The UPI can write from its accumulator to 
DBBOUT or read DBBIN into the accumulator. 
The UPI cannot read OBF, IBF, or Fl directly, but 
these flags may be tested using conditional jump 



APPLICATIONS 

Table 1. Instruction Set Summary 

Mnemonic Description Byte. Cycle. Mnemonic Description Byte. Cycles 

Accumulator Timer/Counter 

ADDA,Rr Add register to A I I MOVA,T Read Timer/Counter I I 
ADDA,@Rr Add dats memory to A I I MOVT,A Load Timer/Counter I I 
ADD A,#data Add immediate to A 2 2 STRTT Stsrt Timer I I 
ADDCA,Rr Add register to A with carry I I STRTCNT Stsrt Counter I I 
ADDCA@Rr Add dats memory to A with carry I I STOP TCNT Stop Timer/Counter I I 
ADDC A,#data Add immed. to A with carry 2 2 EN TCNTI Enable Timer/Counter Interrupt I 1 
ANLa,Rr AND register to A I I DIS TCNTI Disable Timer/Counter Interrupt 1 I 
ANLA,@Rr AND dats memory to A I I 
ANLA,#dats AND immediate to A 2 2 Control 

ORLA,Rr OR register to A I I ENDMA Enable DMA Handshake Lines I 1 
ORLA@Rr OR data memory to A I I ENI Enable IBF Interrupt 1 I 
ORLA,#dats OR immediate to A 2 2 DIS I Disable IBF Interrupt 1 1 
XRLA,Rr Exclusive OR register to A I I EN FLAGS Enable Master Interrupts 1 I 
XRLA,@Rr Exclusive OR data memory to A I I SELRBO Select register bank 0 I I 
XRL A,#dats Exclusive OR immediate to A 2 2 
INCA IncrementA I I 

SELRBI Select register bank I I I 
NOP No Operation I I 

DEC A Decrement A I I 
CLRA Clear A I I Registers 

CPLA Complement A I I 
DAA Decimal Adjust A I I 
SWAP A Swap digits of A I I 
RLA Rotste A left I I 

INCRr Increment register I I 
INC@Rr Increment data memory I I 
DECRr Decrement register I I 

RLCA Rotste A left through carry I I Subroutine 
RRA Rotate A right I I 
RRCA Rotste A right through carry I I 

CALL addr Jump to subroutine 2 2 
RET Return I 2 

Input/Output RETR Return and restore ststus I 2 

INA,P Input port to A I 2 
OUTL~p,A Output A to port I 2 
ANL Pp,#data AND immediate to port 2 2 
ORLP~#dats OR immediate to port 2 2 
IN A,D B Input DBB to A, clear IBF I I 
OUTDBB,A Output A to DBB, set OBF I I 
MOVSTS,A A4 -A7 to Bits 4-7 of Status I I 
MOVDA,PX Input Expander port to A I 2 
MOVDPp, Output A to Expander port I 2 
ANLD Pp,A AND A to Expander port I 2 
ORLDPp,A OR A to Expander port I 2 

Flags 

CLRC Clear Carry I I 
CPLC Complement Carry I 1 
CLRFO Clear Flag 0 I I 
CPLFO Complement Flag 0 I I 
CLRFI Clear FI Flag I I 
CPLFI Complement FI Flag I I 

Brancb 

JMPADDR Jump unconditional 2 2 
JMPP@A Jump indirect I 2 

Data Moves DJNZR,addr Decrement register and skip 2 2 

MOVA,Rr Move register to A I I 
MOVA,@Rr Move data memory to A I I 
MOV A,#dats Move immediate to A 2 2 
MOVRr,A Move A to register I I 
MOV@Rr,A Move A to dats memory I I 
MOV Rr,#dats Move immediate to register 2 2 
MOV @Rr,#dats Move immediate to data memory 2 2 
MOVA,PSW Move PSW to A I I 
MOVPSW,A Move A toPSW I I 
XCHA,Rr Exchange A and register I I 
XCHA,@Rr Exchange A and data memory I I 
XCHDA@Rr Exchange digit of A and register I I 
MOVPA,@A Move to A from current page I 2 
MOVP3,A,@A Move to A from page 3 I 2 

JC addr Jump on Carry=1 2 2 
JNC addr Jump on Carry=O 2 2 
JZ addr Jump on A Zero 2 2 
JNZ addr Jump on A not Zero 2 2 
JTO addr Jump on TO=I 2 2 
JNTO addr Jump on TO=O 2 2 
JTI addr Jump on TI=I 2 2 
JNTladdr Jump on TI=O 2 2 
JFO addr Jump on FO Flag=1 2 2 
JFI addr Jump on FI Flag=1 2 2 
JTF addr Jump on Timer Flag=I,Clear Flag 2 2 
JNIBF addr Jump on IBF Flag=O 2 2 
JOBF addr Jump on OBF Flag=1 2 2 
JBb addr Jump on Accumulator Bit 2 2 

Table 2. Register Decoding 

cs AO Ri) VIR 

0 0 0 1 

0 1 0 1 

0 0 1 0 
0 1 1 0 

1 X X X 

REGISTER 

READDBBOUT 
READ STATUS 
WRITE DBBIN (DATA) 
WRITE DBBIN (COM-
MAND) 

NO ACTION 

6-8 

171 ~514 31211~o Lli--'--'r. -r--'--'r'--i--'-ir-'--'r'---r OBF _ DBBOUT FULL 

ISF - DBBIN FULL 
L-___ FO - FLAG 0 

'------ F1 - FLAG 1 
'---------- USER DEFINED 

STATUS REGISTER 

Figure 3. Status Register Format 



APPLICATIONS 

instructions. The UPI should make sure that OBF is 
reset before writing new data into DBBOUT to en­
sure that the master has read previous DBBOUT 
data. IBF should also be tested before reading 
DBBIN since DBBIN data is valid only when IBF is 
set. As was mentioned earlier, the UPI uses Fl to dif­
ferentiate between command and data contents in 
DBBIN when IBF is set. The UPI may also write the 
upper 4-bits of its accumulator to the upper 4-bits of 
the STATUS register. These bits are thus user 
definable. 

The UPI can test the flags at any time during its in­
ternal program execution. It essentially "polls" the 
STATUS register for changes. If faster response is 
needed to master commands and data, the UPI's in­
ternal interrupt structure can be used. If IBF inter­
rupts are enabled, a master write to DBBIN (either 
command or data) sets IBF which generates an in­
ternal CALL to location 03H in program memory. At 
this point, working register contents can be saved 
using bank switching, the accumulator saved in a 
spare working register, and the DBBIN register read 
and serviced. The interrupt logic for the IBF inter­
rupt is shown in Figure 4. A few observations con­
cerning this logic are appropriate. Note that if the 
master writes to DBBIN while the UPI is still servic­
ing the last IBF interrupt (a RETR instruction has 
not been executed), the IBF Interrupt Pending line 

is made high which causes a new CALL to 03H as 
soon as the first RETR is executed. No EN I (Enable 
Interrupt) instruction is needed to rearm the inter­
rupt logic as is needed in an 8080 or 8085A system; 
the RETR performs this function. Also note that ex­
ecuting a DIS I to disable further IBF interrupts 
does not clear a pending interrupt. Only a CALL to 
location 03H or RESET clears a pending IBF inter­
rupt. 

Keeping in mind that the actual master/UPI proto­
col is dependent on the application, probably the 
best way to illustrate correct protocol is by example. 
Let's consider using the UPI as a simple parallel I/O 
device. (This is a trivial application but it embodies 
all of the important protocol considerations.) Since 
the UPI may be either interrupt or non-interrupt 
driven internally, both cases are considered. 

Let's take the easiest configuration first; using the 
UPI PORT 1 as an 8-bit output port. From the UPI's 
point-of-view, this is an input-only application since 
all that is required is that the UPI input data from 
the master. Once the master writes data to the UPI, 
the UPI reads the DBBIN register and transfers the 
data to PORT 1. No testing for commands versus 
data is needed since the UPI "knows" it only per­
forms one task-no commands are needed. 

FORCE TIMER/COUNTER 
OVERFLOW or------, a INTERRUPT 

CALL 

EN TeNTI 
EXECUTED 

RESET 
DIS TeNTI 

EXECUTED 

ol--------i 

TIMER 
INTERRUPT 

ENABLE 

TIMER INTERRUPT 
CALL EXECUTED 

WR 
Cs 

RESET 
IBF INTERRUPT 

CALL EXECUTED 

RESET 
DIS I 

EXECUTED 

+ 5V 

EN I 
EXECUTED 

TIMER 
INTERRUPT 
REQUEST 

s a 

IBF INTERRUPT 
ENABLE 

LAST CYCLE 
OF INSTRUCTION 

RESET 

RETR EXECUTED 

Figure 4. UPI-41A Interrupt Structure 

6-9 

INTERRUPT 
IN PROGRESS 

1-SHOT 



APPLICATIONS 

Non-interrupt driven UPI software is shown in Fig­
ure 5A while Figure 5B shows interrupt based soft­
ware. For Figure 5A, the UPI simply waits until it 
sees IBF go high indicating the master has written a 
data byte to DBBIN. The UPI then readsDBBIN, 
transfers it to PORT 1, and returns to waiting for the 
next data. For the interrupt-driven UPI, Figure 5B, 
once the EN I instruction is executed, the UPI sim­
ply waits for the IBF interrupt before handling the 
data. The UPI could handle other tasks during this 
waiting time. When the master writes the data to 
DBBIN, an IBF interrupt is generated which per­
forms a CALL to location 03H. At this point the UPI 
reads DBBIN (no testing of IBF is needed since an 
IBF interrupt implies that IBF is set), transfers the 
data to PORT 1, and executes an RETR which re­
turns program flow to the main program. 

Software for the master 8085A is included in Figure 
5C. The only requirement for the master to output 
data to the UPI is that it check the UPI to be sure 
the previous data had been taken before writing new 
data. To accomplish this the master simply reads the 
STATUS register looking for IBF=O before writing 
the next data. 

; UPIINPUT ONLY EXAMPLE-PORT 1 USED AS OUTPUT PORT 
UPI POLLS IBF FOR DATA 

RESET: JNIBF RESET 
IN A.DBB 
OUTl P1.A 
JMP RESET 

; WAIT ON IBF FOR INPUT 
; INPUT THERE. SO READ IT 
; TRANSFER DATA TO PORT 1 
; GO WAIT FOR NEXT DATA 

Figure SA. Single Output Port Example-Polling 

; UPI INPUT ONLY EXAMPLE-PORT 1 USED AS OUTPUT PORT 
DATA INPUT IS INTERRUPT·DRIVEN ON IBF 

RESET: EN I 
JMP RESET+1 

IBFINT: IN A.DBB 
OUTl P1.A 
RETR 

; ENABLE IBF INTERRUPTS 
; lOOP WAITING FOR INPUT 
; READ DATA FROM DBBIN 
; TRANSFER DATA TO PORT 1 
; RETURN WITH RESTORE 

Figure 58. Single Output Port Example-Interrupt 

; 8085 SOFTWARE FOR UPIINPUT·ONLY EXAMPLE 
DATA FOR OUTPUT IS PASSED IN REG. C 

UPIOUT: IN 
ANI 
JNZ 
MOV 
OUT 
RET 

STATUS 
IBF 
UPIOUT 
A.C 
DBBIN 

; READ UPI STATUS 
; LOOK AT IBF 
; WAIT FOR IBF=O 
; GET DATA FROM C 
; OUTPUT DATA TO DBBIN 
; DONE. RETURN 

Figure SC. 80SSA Code for Single Output Port Ex­
ample 

6-10 

Figure 6A illustrates the case where UPI PORT 2 is 
used as an 8-bit input port. This configuration is 
termed UPI output-only as the master does not 
write (input) to the UPI but simply reads either the 
STATUS or the DBBOUT registers. In this example 
only the OBF flag is used. OBF signals the master 
that the UPI has placed new port data in DBBOUT. 
The UPI loops testing OBF. When OBF is clear, the 
master has read the previous data and UPI then 
reads its input port (PORT 2) and places this data in 
DBBOUT. It then waits on OBF until the master 
reads DBBOUT before reading the input port again. 
When the master wishes to read the input port data, 
Figure 6B, it simply checks for OBF being set in the 
STATUS register before reading DBBOUT. While 
this technique illustrates proper protocol, it should 
be noted that it is not meant to be a good method of 
using the UPI as an input port since the master 
would never get the newest status of the port. 

; UPI OUTPUT ONLY EXAMPLE-PORT 2 USED AS INPUT PORT 
PORT DATA IS AVAILABLE IN DBBOUT 

RESET: JOBF 
IN 
OUT 
JMP 

RESET 
A.P2 
DBB.A 
RESET 

; lOOP IF OBF=1 (DATA NOT READ) 
; DBBOUT CLEAR. READ PORT 
; TRANSFER PORT DATA TO DBBOUT 
; WAIT FOR MASTER TO READ DATA 

Figure 6A. Single Input Port Example 

; 8085 SOFTWARE FOR UPI OUTPUT -ONLY EXAMPLE 
INPUT DATA RETURNED IN REG. A 

UPIIN: IN STATUS 
ANI OBF 
JZ UPIIN 
IN DBBOUT 
RET 

; READ UPI STATUS 
; LOOK AT OBF 
; WAIT UNTIL OBF= 1 
; READ DBBOUT 
; RETURN WITH DATA IN A 

Figure 68. 808SA Single Input Port Code 

The above examples can easily be combined. Figure 
7 shows UPI software to use PORT 1 as an output 
port simultaneously with PORT 2 as an input port. 
The program starts with the UPI checking IBF to 
see if the master has written data destined for the 
output port into DBBIN. If IBF is set, the UPI reads 
DBBIN and transfers the data to the output port 
(PORT 1). If IBF is not set or once the data is trans­
ferred to the output port if it was, OBF is tested. If 
OBF is reset (indicating the master has read 
DBBOUT), the input port (PORT 2) is read and 
transferred to DBBOUT. If OBF is set, the master 
has yet to read DBBOUT so the program just loops 
back to test IBF. 

The master software is identical to the separate 
input/output examples; the master must test IBF 



APPLICATIONS 

; UPIINPUT /OUTPUT EXAMPLE-PORT 10UTPUT, PORT 2 INPUT 

RESET: JNIBF 
IN 
OUTL 

OUT1: JOBF 
IN 
OUT 
JMP 

OUTl 
A, DBB 
Pl, A 
RESET 
A, P2 
DBB, A 
RESET 

; IF IBF=O, DO OUTPUT 
: IF IBF= 1, READ DBBIN 
; TRANSFER DATA TO PORT 1 
; IF OBF= 1, GO TEST IBF 
; IF OBF=O, READ PORT 2 
; TRANSFER PORT DATA TO DB BOUT 
; GO CHECK FOR INPUT 

Figure 7. Combination Output/Input Port Example 

and OBF before writing output port data into 
DBEIN or before reading input port from DBBOUT 
respectively. 

In all of the three examples above, the UPI treats 
information from the master solely as data. There 
has been no need to check if DBBIN information is a 
command rather than data since the applications do 
not require commands. But what if both PORTs 1 
and 2 were used as output ports? The UPI needs to 
know into which port to put the data. Let's use a 
command to select which port. 

Recall that both commands and data pass through 
DBBIN. The state of the AO pin at the time of the 
write to DBBIN is used to distinguish commands 
from data. By convention, DBBIN writes with AO=O 
are for data, and those with AO=l are commands. 
When DBBIN is written into, F1 (FLAG 1) is set to 
the state of AO. The UPI tests F1 to determine if the 
information in the DBBIN register is data or 
command. 

For the case of two output ports, let's assume that 
the master selects the desired port with a command 
prior to writing the data. (We could just use F1 as a 
port select but that would not illustrate the subtle 
differences between commands and data). Let's de­
fine the port select commands such that BIT 1=1 if 
the next data is for PORT 1 (Write PORT 1=0000 
0010) and BIT 2=1 if the next data is for PORT 2 
(Write PORT 2=00000100). (The number of the set 
bit selects the port.) Any other bits are ignored. This 
assignment is completely arbitrary; we could use any 
command structure, but this one has the advantage 
of being simple. 

Note that the UPI must "remember" from DBBIN 
write to write which port has been selected. Let's use 
FO (FLAG 0) for this purpose. If a Write PORT 1 
command is received, FO is reset. If the command is 
Write PORT 2, FO is set. When the UPI finds data in 
DBBIN, FO is interrogated and the data is loaded 
into the previously selected port. The UPI software 
is shown in Figure SA. 

6-11 

; UPI DUAL OUTPUT PORT EXAMPLE-BOTH PORT 1 AND 2 OUTPUTS 
COMMAND SELECTS DESIRED PORT 
WRITE PORT 1-0000 0010 (02H) 
WRITE PORT 2-0000 0100 (04H) 

FLAG 0 USED TO REMEMBER WHICH PORT WAS SELECTED 
BY LAST COMMAND, 

RESET: JNIBF RESET 
IN A, DBB 
JFl CMD 
JFO PORT2 
OUTL Pl,A 
JMP RESET 

PORT2: OUTL P2,A 
JMP RESET 

CMD: JBl PTl 
JB2 PT2 
JMP RESET 

PT1: CLR Fa 
JMP RESET 

PT2: CLR Fa 
CPL Fa 
JMP RESET 

; WAIT FOR MASTER INPUT 
; READ INPUT 
; IF F 1 = 1, COMMAND INPUT 
; INPUT IS DATA, TEST FO 
; FO=O, SO OUTPUT TO PORT 1 
; WAIT FOR NEXT INPUT 
; FO= 1, so OUTPUT TO PORT 2 
; WAIT FOR NEXT INPUT 
; TEST COMMAND BITS (BIT 1) 
; TEST BIT 2 
; NEITHER BIT SET, WAIT FOR INPUT 
; PORT 1 SELECTED, CLEAR FO 
; WAIT FOR INPUT 
; PORT 2 SELECTED, SET Fa 

; WAIT FOR INPUT 

Figure SA. Dual Output Port Example 

Initially, the UPI simply waits until IBF is set indi­
cating the master has written into DBBIN. Once 
IBF is set, DBEIN is read and F1 is tested for a com­
mand. If F1 =1, the DB BIN byte is a command. As­
suming a command, BIT 1 is tested to see if the 
command selected PORT 1. If so, FO is cleared and 
the program returns to wait for the data. If BIT 1=0, 
BIT 2 is tested. If BIT 2 is set, PORT 2 is selected so 
FO is set. The program then loops back waiting for 
the next master input. This input is the desired port 
data. If BIT 2 was not set, FO is not changed and no 
action is taken. 

When IBF=l is again detected, the input is again 
tested for command or data. Since it is necessarily 
data, DBBIN is read and FO is tested to determine 
which port was previously selected. The data is then 
output to that port, following which the program 
waits for the next input. Note that since FO still se­
lects the previous port, the next input could be more 
data for that port. The port selection command 
could be thought of as a port select flip-flop control; 
once a selection is made, data may be repeatedly 
written to that port until the other port is selected. 
Master software, Figure SB, simply must check IBF 
before writing either a command or data to DBBIN. 
Otherwise, the master software is straightforward. 

For the sake of completeness, UPI software for im­
plementing two input ports is given in Figure 9. This 
case is simpler than the dual output case since the 
UPI can assume that all writes to DBBIN are port 
selection commands so no command/data testing is 
required. Once the Port Read command is input, the 
selected port is read and the port data is placed in 
DBBOUT. Note that in this case FO is used as a UPI 



APPLICATIONS 

error indicator. If the master happened to issue an 
invalid command (a command without either BIT 1 
or 2 set), FO is set to notify the master that the UPI 
did not know how to interpret the command. FO is 
also set if the master commanded a port read before 
it had read DBBOUT from the previous command. 
The UPI simply tests OBF just prior to loading 
DBBOUT and if OBF=1, FO is set to indicate the 
error. 

All of the above examples are, in themselves, rather 
trivial applications of the UPI although they could 
easily be incorporated as one of several tasks in a 
UPI handling multiple small tasks. We have covered 
them primarily to introduce the UPI concept and to 
illustrate some master/UPI protocol. Before moving 
on to more realistic UPI applications, let's discuss 
two UPI features that do not directly relate to the 
master/UPI protocol but greatly enhance the UPI's 
transfer capability. 

In addition to the OBF and IBF bits in the STATUS 
register, these flags can also be made available di­
rectly on two port pins. These port pins can then be 
used as interrupt sources to the master. By execut­
ing an EN FLAGS instruction, PORT 2 pin 4 re­
flects the condition of OBF and PORT 2 pin 5 
reflects the inverted condition of IBF (IBF). These 
dedicated outputs can then be enabled or disabled 
via their respective port bit values; i.e., P24 reflects 
OBF as long as an instruction is executed which sets 
P24 (i.e. ORL P2,#10H). The same action applies to 
the IBF output except P25 is used. Thus P24 may 
serve as a DATA AVAILABLE interrupt output. 
Likewise for P25 as a READY-TO-ACCEPT-DATA 
interrupt. This greatly simplifies interrupt-driven 
master-slave data transfers. 

; 8085 SOFTWARE FOR DUAL OUTPUT PORT EXAMPLE 
THIS ROUTINE WRITES DATA IN REG. C TO PORT 1 
(SAME ROUTINE FOR PORT 2-JUST CHANGE COMMAND) 

PORT1: IN STATUS ; READ UPI STATUS 
ANI IBF ; LOOK AT IBF 
JNZ PORT1 ; WAIT UNTIL IBF=O 
MVI A, 00000010B ; LOAD WRITE PORT1 CMD 
OUT UPICMD ; OUTPUT TO UPI COMMAND PORT 

P1: IN STATUS ; READ UPI STATUS AGAIN 
ANI IBF ; LOOK AT IBF 
JNZ P1 ; WAIT UNTIL COMMAND ACCEPTED 
MOV A, C ; GET DATA FROM C 
OUT DBBIN ; OUTPUT TO DBBIN 
RET ; DONE, RETURN 

Figure 8B. 8085A Dual Output Port Example Code 

The UPI also supports a DMA transfer interface. If 
an EN DMA instruction is executed, PORT 2 pin 6 
becomes a DMA Request (DRQ) output and P27 be­
comes a high impedance DMA Acknowledge 

6-12 

; UPI DUAL INPUT PORT EXAMPLE-BOTH PORT 1 AND 2 INPUTS 
COMMAND SELECTS WHICH PORT IS TO BE READ 
FLAG 0 USED AS ERROR FLAG 

RESET: JNIBF 
CLR 
IN 
JB1 
JB2 

ERROR: CPL 
JMP 

PT1: IN 
JOBF 
OUT 
JMP 

PT2: IN 
JOBF 
OUT 
JMP 

RESET 
FO 
A,DBB 
PT1 
PT2 
FO 
RESET 
A, P1 
ERROR 
DBB, A 
RESET 
A, P2 
ERROR 
DBB,A 
RESET 

; WAIT FOR INPUT 
; CLEAR ERROR FLAG 
; READ INPUT (COMMAND) 
; TEST BIT 1 (PORT 1) 
; TEST BIT 2 (PORT 2) 
; ERROR-COMPLEMENT FO 
; WAIT FOR INPUT 
; READ PORT 1 
; TEST OBF BEFORE LOADING DBBOUT 
; LOAD PORT 1 DATA INTO DBBOUT 
; WAIT FOR INPUT 
; READ PORT 2 
; TEST OBF BEFORE LOADING DBBOUT 
; LOAD PORT 2 DATA INTO DBBOUT 
; WAIT FOR INPUT 

Figure 9. Dual Input Port Example 

(DACK) input. Any instruction which would nor­
mally set P26 now sets D~ DRQ is cleared when 
DACK is low and either RD or WR is low. When 
DACK is low, CS and AO are forced low internally 
which allows data bus transfers between DBBOUT 
or DBBIN to occur, depending upon whether WR or 
RD is true. Of course, the function requires the use 
of an external DMA controller. 

Now that we have discussed the aspects of the UPI 
protocol and data transfer interfaces, let's move on 
to the actual applications. 

EXAMPLE APPLICATIONS 
Each of the following three sections presents the 
hardware and software details of a UPI application. 
Each application utilizes one of the protocols men­
tioned in the last section. The first example is a sim­
ple 8-digit LED display controller. This application 
requires only that the UPI perform input operations 
from the DBBIN; DBBOUT is not used. The reverse 
is true for the second application: a sensor matrix 
controller. The final application involves both 
DBBOUT and DBBIN operations: a combination 
serial/parallel I/O device. 

The core master processor system with which these 
applications were developed is the iSBC 80/30 single 
board computer. This board provides an especially 
convenient UPI environment since it contains a 
dedicated socket specifically interfaced for the UPI-
41A. The 80/30 uses the 8085A as the master proces­
sor. The I/O and peripheral complement on the 
80/30 include 12 vectored priority interrupts (8 on 
an 8259 Programmable Interrupt Controller and 4 
on the 8085A itself), an 8253 Programmable Interval 
Timer supplying three 16-bit programmable timers 
(one is dedicated as a programmable baud rate gen­
erator), a high speed serial channel provided by a 
8251 Programmable USART, and 24 parallel I/O 



APPLICATIONS 

lines implemented with an 8255A Programmable 
Parallel Interface. The memory complement con­
tains 16K bytes of RAM using 211716K bit Dynamic 
RAMs and the 8202 Dynamic RAM Controller, and 
up to 8K bytes of ROM/EPROM with sockets com­
patible with 2716, 2758, or 2332 devices. The SO/30's 
RAM uses a dual port architecture. That is, the 
memory can be considered a global system resource, 
accessible from the on-board SOSSA as well as from 
remote CPUs and other devices via the 
MULTIBUS. The SO/30 contains MULTIBUS con­
trollogic which allows up to 16 SO/30s or other bus 
masters to share the same system bus. (More de­
tailed information on the iSBC 80/30 and other 
iSBC products may be found in the latest Intel 
Systems Data Catalog.) 

A block diagram of the iSBC 80/30 is shown in Fig­
ure 10. Details of the UPI interface are shown in Fig­
ure 11. This interface decodes the UPI registers in 
the following format: 

Register 

Read STATUS 
Write DBBIN (command) 

Read DBBOUT (data) 
Write DBBIN (data) 

Operations 

INE5H 
OUTE5H 
INE4H 

OUTE4H 

a-Digit Multiplexed LED Display 
The traditional method of interfacing an LED dis­
play with a microprocessor is to use a data latch 
along with a BDC-to-7-segment decoder for each 
digit of the display. Thus two ICs, seven current 
limiting resistors, and about 45 connections are re­
quired for each digit. These requirements are, of 
course, multiplied by the total number of digits de­
sired. The obvious disadvantages of this method are 
high parts count and high power dissipation since 
each digit is "ON" continuously. Instead, a scheme 
of time multiplexing the display can be used to de­
crease both parts count and power dissipation. 

Display multiplexing basically involves connecting 
the same segment (a, b, c, d, e, f, or g) of each digit in 
parallel and driving the common digit element (an­
ode or cathode) of each digit separately. This is 
shown schematically in Figure 12. The various digits 
of the display are not all on at once; rather, only one 
digit at a time is energized. As each digit is ener­
gized, the appropriate segments for that digit are 
turned on. Each digit is enabled in this way, in se­
quence, at a rate fast enough to ensure that each 
digit appears to be "ON" continuously. This implies 
that the display must be "refreshed" at periodic in­
tervals to keep the digits flicker-free. If the CPU had 
to handle this task, it would have to suspend normal 

6-13 

processing, go update the display, and then return to 
its normal flow. This extra burden is ideally handled 
by a UPI. The master CPU could simply give charac­
ters to the UPI and let the UPI do the actual seg­
ment decoding, display multiplexing, and 
refreshing. 

As an example ofthis technique, Figure 13 shows the 
UPI controlling an 8-digit LED display. All digit 
segments are connected in parallel and are driven 
through segment drivers by the UPI PORT 1. The 
lower 3 bits of PORT 2 are inputs to a 3-to-8 decoder 
which selects an individual digit through a digit 
driver. A fourth PORT 2 line is used as a decoder 
enable input. The remaining PORT 2 lines plus the 
TEST 0 and TEST 1 inputs are available for other 
tasks. 

Internally, the UPI uses the counter/timer in the in­
terval timer mode to define the interval between dis­
play refreshes. Once the timer is loaded with the 
desired interval and started, the UPI is free to han­
dle other tasks. It is only when a timer overflow in­
terrupt occurs that the UPI handles the short 
display multiplexing routine. The display multiplex­
ing can be considered a background task which is en­
tirely interrupt-driven. The amount of time spent 
multiplexing is such that there is ample time to han­
dle a non-timer task in the UPI foreground. (We'll 
discuss this timing shortly.) 

When a timer interrupt occurs, the UPI turns off all 
digits via the decoder enable. The next digit's seg­
ment contents are retrieved from the internal data 
memory and output via PORT 1 to the segment 
drivers. Finally, the next digit's location is placed on 
PORT 2 (P20-P22) and the decoder enabled. This 
displays the digit's segment information until the 
next interrupt. The timer is then restarted for the 
next interval. This process continues repeatedly for 
each digit in sequence. 

As a prelude to discussing the UPI software, let's ex­
amine the internal data memory structure used in 
this application, Figure 14. This application requires 
only 14 of the 64 total data memory locations. The 
top eight locations are dedicated to the Display 
Map; one location for each digit. These locations 
contain the segment and decimal point information 
for each character. Just how characters are loaded 
into this section of memory is covered shortly. Regis­
ter R7 of Register Bank 1 is used as the temporary 
Accumulator store during the interrupt service 
routines. Register R3 stores the digit number of the 
next digit to be displayed. R2 is a temporary storage 
register for characters during input routine. Ro is 



APPLICATIONS 

16K X 8 
RAM 
2117 

RS232C 
COMPATIBLE 

DEVICE 

POWER FAIL 
INTERRUPT 

4 INTERRUPT 
REQUEST LINES 

USER DESIGNATED 
PERIPHERALS 

42 PROGRAMMABLE 
PARALLEL I/O LINES 

8 INTERRUPT 
REQUEST LINES 

2 INTERRUPT 
AEQUEST LINES 

MULTIBUSTM 

Figure 10. iSBC 80/30 Block Diagram 

the offset pointer pointing to the Display Map loca­
tion of the next digit. That makes 12 locations so far. 
The remaining two locations are the two stack loca­
tions required to store the return address plus status 
during the timer and input interrupt service 
routines. The remaining unused locations, all of 
Register Bank 0, 14 bytes of stack, 4 in Register 
Bank 1, and 24 general purpose RAM locations, are 
all available for use by any foreground task. 

The UPI software consists of only three short 
routines. One, INIT, is used strictly during 
initialization. DISPLA is the multiplexing routine 
called at a timer interrupt. INPUT is the character 
input handler called at an IBF interrupt. The flow 

6-14 

charts for these routines are shown in Figures 14A 
through 14C. 

INIT initializes the UPI by simply turning off all 
segment and digit drivers, filling the Display Map 
with blank characters, loading and starting the 
timer, and enabling both timer and IBF interrupts. 
Although the flow chart shows the program looping 
at this point, it is here that the code for any fore­
ground task is inserted. The only restrictions on this 
foreground task are that it not use I/O lines dedi­
cated to the display and that it not require dedicated 
use of the timer. It could share the timer if precau­
tions are taken to ensure that the display will still be 
refreshed at the required interval. 



APPLICATIONS 

+sV 

VDD 
P10 

iOW WR 

iDA RD 
Pl1 

RESET RESET 
P12 

P13 
A2 AO 0' CS 

A3 A' 
PORT 1 

P,. 

A. A2 
P15 8205 

A4 As ., 
As .2 

P,6 
A7 

A4 As .3 P17 

TO 10 PORT TEST 0 

3' T1 

+5V TEST 1 

a041A EVENT CLOCK (8253) 
55 

8741A 

~~IRS-232 
3~ CHANNEL 

.5 
0 808SlNTR 

P20 
OBO- 00-

DB7 07 
P21 

P22 

P23 

+sV +SV 
PORT 2 

P2' 
.20 .20 

P25 

5.5296 XTAL 1 
P2. 

M'" 
P27 

XTAL 2 
VSS 

Figure 11. UPllnterface on iSBC 80/30 

+ SV 

Figure 12. LED Multiplexing 

6·15 



Cs 

RD 

WR 

PORT2/

3 AO 

n 
0 " Z ,. ... ... DATA 
" ,. 
/2 

8041A/ 
8741A 

PORT 1: 

+ 5V 

-::-

APPLICATIONS 

E3 00 

01 
E2 

02 

8205 03 

E1 O' 
A2 05 

A1 06 

AO 07 

SEGMENT 
DRIVERS 

Figure 13. UPI Controlled a-Digit LED Display 

63 

31 

2. 
23 

DISPLAY MAP 
8x8 

USER RAM 
24 x 8 

(NOT USED) 

ACCUMULATOR STORE 

NOT USED 

NOT USED 

NOT USED 

DIGIT COUNTER 

TEMPORARY STORE 

NOT USED 

DISPLAY MAP POINTER 

STACK 
16 X 8 

UNUSED 
8x8 

R7 

R6 

R5 

R' 

R3 

R2 

R1 

RO 

REGISTER 
BANK 1 

REGISTER 
BANK 0 

Figure 14. LED Display Controller Data Memory 
Allocation 

6-16 

INIT 

INITIALIZE 
REGISTERS 

TURN OFF ALL 
DRIVERS 

FILL DISPLAY MAP WITH 
BLANK CHARACTERS 

CLEAR DIGIT COUNTER 

LOAD AND START 
TIMER 

ENABLE TIMER AND 
IBF INTERRUPTS 

WAIT LOOPQR 
FOREGROUND TASK CODE 

Figure 14A. IN IT Routine Flow 

DIGIT 
DRIVERS 



APPLICATIONS 

INPUT 

SWITCH TO RS 1 
SAVE ACCUMULATOR 

REAO AND SAVE DBBIN 

ISOLATE DIGIT SELECT 

UPDATE DISPLAY MAP POINTER 
TO SELECTED DIGIT LOCATION 

RESTORE ACCUMULATOR 

RETURN 

Figure 14B. INPUT Routine Flow 

The INPUT routine handles the character input. It 
is called when an IBF interrupt occurs. After the 
usual swapping of register banks and saving of the 
accumulator, DBBIN is read and stored in register 
R2. DBBIN contains the Display Data Word. The 
format for this word, Figure 15, has two fields: Digit 
Select and Character Select. The Digit Select field 
selects the digit number into which the character 
from the Character Select field is placed. Notice that 
the character set is not limited strictly to numerics, 
some alphanumeric capability is provided. Once 
DBBIN is read, the offset for the selected digit is 
computed and placed in the Display Map Pointer 
Ro. Next the segment information for the selected 
character is found through a look-up table starting 
in page g of the program memory. This segment in­
formation is then stored at the location pointed at by 
the Display Map Pointer. If the Character Select 
field specified a decimal point, the segment corre­
sponding to the decimal point is ANDed into the 
present segment information for that digit. After the 
accumulator is restored, execution is returned to the 
main program. 

The DISPLA routine simply implements the 
multiplexing actions described earlier. It is called 
whenever a timer interrupt occurs. After saving pre-

6·17 

DISPLA 

SWITCH TO RB 1 
SAVE ACCUMULATOR 

TURN OFF ALL DIGIT 
DRIVERS 

UPDATE DISPLAY 
MAP POINTER 

GET SEGMENT INFO 
FROM DISPLAY MAP 

OUTPUT TO SEGMENT 
DRIVERS 

TURN ON DIGIT 
DRIVER 

RESTORE ACCUMULATOR 

RETURN 

Figure 14C. DISPLA Routine Flow 

interrupt status by switching register banks and 
storing the Accumulator, all digit drivers are turned 
off. The Display Map Pointer is then updated using 
the Current Digit Register to point at that digit's 
segment information in the Display Map. This infor­
mation is output to PORT 1; the segment drivers. 
The number of the current digit, Rg, is then sent to 
the digit select decoder and the decoder is enabled. 
This turns on the current digit. The digit counter is 
incremented and tested to see if all eight digits have 
been refreshed. If so, the digit counter is reset to 
zero. If not, nothing is done. Finally, the timer is 
loaded and restarted, the Accumulator is restored, 
and the routine returns execution to the main pro­
gram. Thus DISPLA refreshes one digit each time it 
is CALLed by the timer interrupt. The digit remains 
on until the next time DISPLA is executed. 

The UPI software listing is included as Appendix 
AI. Appendix A2 shows the 8085A test routine used 



APPLICATIONS 

DISPLAY DATA WORD 

I 7 I 6 I 5 I 4 3 I 2 1 I 0 I 

I I I I 

DIGIT SELECT 

7 5 6 DIGIT 

0 0 0 1 

0 0 1 2 

0 1 0 3 

0 1 1 4 

1 0 0 5 

1 0 1 6 

1 1 0 7 

1 1 1 8 

I 
CHARACTER SELECT 

4 3 2 1 0 CHAR 

0 0 0 0 0 IJ 

0 0 0 0 1 , 
0 0 0 1 0 ,? 

0 0 0 1 1 ,7' 

0 0 1 0 0 y 

0 0 1 0 1 5 

0 0 1 1 0 t; 

0 0 1 1 1 1 

0 1 0 0 0 EI 

0 1 0 0 1 '1 

0 1 0 1 0 F' 
0 1 0 1 1 b 

0 1 1 0 0 [ 

0 1 1 0 1 d 

0 1 1 1 0 E 

0 1 1 1 1 F 

1 0 0 0 0 

1 0 0 0 1 D 

1 0 0 1 0 EI 

1 0 0 1 1 , 
1 0 1 0 0 d 

1 0 1 0 1 
" 1 0 1 1 0 n 

1 0 1 1 1 ,:. 

1 1 0 0 0 " 1 1 0 0 1 " 
1 1 0 1 0 t 

1 1 0 1 1 11 

1 1 1 0 0 " 1 1 1 0 1 

1 1 1 1 0 

1 1 1 1 1 blank 

Figure 15. LED Display Controller Display Data 
Word Format 

to display the contents of a display buffer on the dis­
play. The 8085A software takes care of the display 
digit numbering. Since the application is input-only 
for the UPI, the only protocol required is that the 
master must test IBF before writing a Display Data 
Word into DBBIN. 

On the iSBC 80/30, the UPI frequency is at 5.5296 
MHz. To obtain a flicker-free display, the whole dis­
play must be refreshed at a rate of 50 Hz or greater. 

If we assume a 50 Hz refresh rate and an 8-digit dis­
play, this means the DISPLA routine must be 
CALLed 50X8 or 400 times/sec. This transfers, using 
the timer interval of 87 J.ls at 5.5296 MHz, to a timer 
count of 227. (Recall from the UPI-41A User's Man­
ual that the timer is an "8-bit up-counter".) Hence 
the TIME equate of 227D in the UPI listing. Obvi­
ously, different frequency sources or display lengths 
would require that this equate be modified. 

With the UPI running at 5.5296 MHz, the instruc­
tion cycle time is 2.713 J.lS. The DISPLA routine re­
quires 28 instruction cycles, therefore, the routine 
executes in 76 J.lS. Since DISPLA is CALLed 400 
times/sec, the total time spent refreshing the display 
during one second is then 30 ms or 3 % of the total 
UPI time. This leaves 97.0% for any foreground 
tasks that could be added. 

While the basic UPI software is useful just as it 
stands, there are several enhancements that could be 
incorporated depending on the application. Auto-in­
crementing of the digit location could be added to 
the input routine to alleviate the need for the master 
to keep track of digit numbers. This could be (op­
tionally) either right-handed or left-handed entry a 
la TI or HP calculators. The character set could be 
easily modified by simply changing the lookup table. 
The display could be expanded to 16 digits at the 
expense of one additional PORT 2 digit select line, 
the' replacement of the 3-to-8 decoder with a 4-to-16 
decoder, and 8 more Display Map locations. 

Now let's move on to a slightly more complex appli­
cation that is UPI output-only-a sensor matrix 
controller. 

6-18 

Sensor Matrix Controller 
Quite often a microprocessor system is called upon 
to read the status of a large number of simple SPST 
switches or sensors. This is especially true in a proc­
ess or industrial control environment. Alarm sys­
tems are also good examples of systems with a large 
sensor population. If the number of sensors is small, 
it might be reasonable to dedicate a single input port 
pin for each sensor. However, as the number of sen­
sors increase, this technique becomes very wasteful. 
A better arrangement is to configure the sensors in a 
matrix organization like that shown in Figure 16. 
This arrangement of 16 sensors requires only 4 input 
and 4 output lines; half the number needed if dedi­
cated inputs were used. The line saving becomes 
even more substantial as the number of sensors 
increases. 



APPLICATIONS 

In Figure 16, the basic operation of the matrix in­
volves scanning individual row select lines in se­
quence while reading the column return lines. The 
state of any particular sensor can then be deter­
mined by decoding the row and column information. 
The typical configuration pulls up the column re­
turn lines and the selected row is held low. De­
selected rows are held high. Thus a return line re­
mains high for an open sensor on the selected row 
and is pulled low for a closed sensor. Diode isolation 
is used to prevent a phantom closure which would 
occur when a sensor is closed on a selected row and 
there are two or more closures on a deselected row. 
Germanium diodes are used to provide greater noise 
margin at the return line input. 

ROW 
SELECT 

LINES 

2 + v 1 + v 0+ v 

Figure 16. 4X4 Sensor Matrix 

o .. 
-< .. 

FIFO NOT 
EMPTY 

08F 

DO· 
07 

cs 
-
RO 

-
WR 

AO 

P2' 

P25 

If the main processor was required to control such a 
matrix it would periodically have to output at the 
row port and then read the column return port. The 
processor would need to maintain in memory a map 
of the previous state of the matrix. A comparison of 
the new return information to the old information 
would then be made to determine whether a sensor 
change had occurred. Any changes would be pro­
cessed as needed. A row counter and matrix map 
pointer also require maintenance each scan. Since in 
most applications sensors change very slowly com­
pared to most processing actions, the processor 
probably would scan the rows only periodically with 
other tasks being processed between scans. 

Rather than require the processor to handle the 
rather mundane tasks of scanning, comparing, and 
decoding the matrix, why not use a dedicated pro­
cessor? The UPI is perfect. 

Figure 17 shows a UPI configuration for controlling 
up to 128 sensors arranged in a 16X8 matrix. The 4-
to-16 line decoder is used as the row selector to save 
port pins and provides the expansion to 128 sensors 
over the maximum of 64 sensors if the port had been 
used directly. It also helps increase the port drive ca­
pability. The column return lines go directly into 
PORT 1. Features of this design include complete 
matrix management. As the UPI scans the matrix it 
compares its present status to the previous scan. If 
any change is detected, the location of the change is 
decoded and loaded, along with the sensor's present 
state, into DBBOUT. This byte is called a Change 
Word. The Master processor has only to read one 
byte to determine the status and coordinate of a 
changed sensor. If the master had not read a pre­
vious Change Word in DBBOUT (OBF=l) before a 
new sensor change is detected, the new Change 

PORT 1 a RETURN LINES 

8041A/ 
8741A 74154 

P23 I-- 0 

P22 r- C 

"~ 
16 x 8 

J 16 SENSOR 
P21 I-- 8 MATRIX 

P20 r- A 
G1 G2 

~ ~ SELECT LINES 

Figure 17. 128 Sensor Matrix Controller 

6-19 



APPLICATIONS 

Word is loaded into an internal FIFO. This FIFO 
buffers up to 40 changes before it fills. The status of 
the FIFO and OBF is made available to the master 
either by polling the UPI STATUS register, Figure 
18A, or as interrupt sources on port pins P24 and 
P25 respectively, Figure 17. The FIFO NOT EMP­
TY pin and bit are true as long as there are changes 
not yet read in the FIFO. As long as the FIFO is not 
empty, the UPI monitors OBF and loads new 
Change Words from the FIFO into DBBOUT. Thus, 
the UPI provides complete FIFO management. 

71s1514131211101 

LW I I L OBF - CHANGE WORD READY (P25) 
L.=IBF 

'-----F1 • 

'------FO 

'------- FIFO NOT EMPTY (P24) 

'---------- NOT USED 

Figure 18A. Sensor Matrix Status Register Format 

D8BOUT REGISTER - CHANGE WORD 

. SENSOR COORDINATE I 1 1 1 .... 1 ___ 1_1_ 

'----------- SENSOR STATE 
o =CLOSED 
1 =QPEN 

Figure 18B. Sensor Matrix Change Word Format 

Internally, the matrix scanning software is pro­
grammed to run as a foreground task. This allows 
the timer/counter to be used by any background task 
although the hardware configuration leaves only 2 
inputs (TEST 0 and TEST 1) plus 2 I/O port pins 
available. Also, to add a background task, the FIFO 
would have to be made smaller to accommodate the 
needed register and data memory space. (It would be 
possible however to turn the table here and make the 
scanning software timer/counter interrupt-driven 
where the timer times the scan interval.) 

The data memory organization for this application is 
shown in Figure 19. The upper 16 bytes form the 
Matrix Map and store the sensor states from the 
previous scan; one bit for each sensor. The Change 
Word FIFO occupies the next 40 locations. (The top 
and bottom addresses of this FIFO are treated as 
equate variables in the program so that the FIFO 
size may easily be changed to accommodate the reg­
ister needs of other tasks.) Register Ro serves as a 
pointer into the matrix map area for comparisons 

and updates of the sensor status. Rl is a general 
FIFO pointer. The FIFO is implemented as a circu­
lar buffer with In and Out pointer registers which 
are stored in R4 and R5 respectively. These registers 
are moved into FIFO pointer R1 for actual transfers 
into or out of the FIFO. R2 is the Row Select 
Counter. It stores the number of the row being 
scanned. 

63 

48 
47 

MATRIX MAP 
16 x 8 

FIFO 
40 x 8 

COMPARE RESULT 

CHANGE WORD STORE 

FIFO OUT 

FIFO IN 

COLUMN COUNTER 

SCAN ROW SELECT 

FIFO POINTER 

MATRIX MAP POINTER 

R7 

RS 

R5 

R4 

R3 

R2 

R1 

RO 

Figure 19. Sensor Matrix Data Memory Map 

Register R3 is the Column Counter. This counter is 
normally set to OOH; however, when a change is de­
tected somewhere in a particular row, it is used to 
inspect each sensor status bit individually for a 
change. When a changed counter sensor bit is found, 
the Row Select Counter and Column Counter are 
combined to give the sensor's matrix coordinate. 
This coordinate is temporarily stored in the Change 
Word Store, register Rs. Register R7 is the Compare 
Result. As each row is scanned, the return informa­
tion is Exclusive-OR'd with the return information 
from the previous scan of that row. The result ofthis 
operation is stored in R7. If R7 is zero, there have 
been no changes on that row. A non-zero result indi­
cates at least one changed sensor. 

The basic program operation is shown in the flow 
chart of Figure 20. At RESET, the software ini­
tializes the working registers, the ports, and clears 
the STATUS register. To get a starting point from 
which to perform the sensor comparisons, the cur­
rent status of the matrix is read and stored in the 
Matrix Map. At this point, the UPI begins looking 
for changed sensors starting with the first row. 

6-20 



INITIALIZATION 

SCAN AND 
COMPARE 

CHANGE WOAD 
ENCODING 

FIFO DBBOUT 
MANAGEMENT 

APPLICATIONS 

Before delving further into the flow, let's pause to 
describe the general format of the operation. The 
UPI scans the matrix one row at a time. If no 
changes are detected on a particular row, the UPI 
simply moves to the next row after checking the sta­
tus of DBBOUT and the FIFO. If a change is de­
tected, the UPI must check each bit (sensor) within 
the row to determine the actual sensor location. 
(More than one sensor on the scanned row could 
have changed.) Rather than test all 8 bits of the row 
before checking the DBBOUT and FIFO status 
again, the UPI performs the status check in between 
each of the bit tests. This ensures the fastest re­
sponse to the master reading previous Change 
Words from DBBOUT and the FIFO. 

With this general overview in mind, let's go first 
thru the flow chart assuming we are scanning a row 
where no changes have occurred. Starting at the 
Scan-and-Compare section, the UPI first checks if 
the entire matrix has been scanned. If it has, the var­
ious pointers are reset. If not, the address of the 
next row is placed on PORTs 20 thru 23. This selects 
the desired row. The state of the row is then read 
on PORT 1; the column return lines. This present 
state is compared to the previous state by retriev­
ing the previous state from the matrix map and 
performing an Exclusive-OR with the present state. 
Since we are assuming that no change has occurred, 
the result is zero. No coordinate decoding is needed 
and the flow branches to the FIFO-DBBOUT Man­
agement section. 

Figure 20. Sensor Matrix Controller Flow Chart 

The FIFO-DBBOUT Management section simply 
maintains the FIFO and loads DBBOUT whenever 
Change Words are present in the FIFO and 
DBBOUT is clear (OBF=O). The section first tests if 
the FIFO is full. (If we assume our "no-change" row 
is the first row scanned, the FIFO obviously would 
not be full.) If it is, the UPI waits until OBF=O, at 
which point the next Change Word is retrieved from 
the FIFO and placed in DBBOUT. This "unfills" the 
FIFO making room for more Change Words. At this 
point, the Column Counter, R3, is checked. For rows 
with no changes, the Column Counter is always zero 
so the test simply falls through. (We cover the case 
for changes shortly.) Now the FIFO is tested for be­
ing empty. If it is, there is no sense in any further 
tests so the flow simply goes back up to scan the next 
row. If the FIFO is not empty, DBBOUT is tested 
again through OBF. If a Change Word is in 
DBBOUT waiting for the master to read it, nothing 
can be done and the flow likewise branches up for 
the next row. However, if the DBBOUT is free and 
remembering that the previous test showed that the 
FIFO was not empty, DBBOUT is loaded with the 
next Change Word and the last two conditional tests 
repeat. 

6-21 



APPLICATIONS 

Now let's assume the next row contains several 
changed sensors. Like before, the row is selected, the 
return lines read, and the sensor status compared to 
the previous scan. Since changes have occurred, the 
Exclusive-OR result is now non-zero. Any l's in the 
result reflect the positions of the changed sensors. 
This non-zero result is stored in the Compare Result 
register, R7. At this point, the Column Counter is 
preset to S. To determine the changed sensors' loca­
tions, the Compare Result register is shifted bit-by­
bit to the left while decrementing the Column 
Counter. After each shift, BIT 7 of the result is test­
ed. If it is a one, a changed sensor has been found. 
The Column Counter then reflected the sensor's ma­
trix column position while the Scan Row Select reg­
ister holds it row position. These registers are then 
combined in RS, the Change Word Store, to form the 
sensor's matrix coordinate section of the Change 
Word. The Sth bit of the Change Word Store is cod­
ed with the sensor's present state (Figure IS). This 
byte forms the complete Change Word. It is loaded 
into the next available FIFO position. If BIT 7 of the 
Compare Result had been zero, that particular sen­
sor had not changed and the coordinate decoding is 
not performed. 

In between each shift, test, and coordinate encode (if 
necessary), the FIFO-DBBOUT Management is 
performed. It is the Column Counter test within this 
section that routes the flow back up to the Change 
Word Encoding section if the entire Compare Result 
(row) has not been shifted and tested. 

The FIFO is implemented as a circular buffer with 
IN and OUT pointers (R4 and R5 respectively). The 
operations of the FIFO is best understood using an 
example, Figure 21. This series of figures show how 
the FIFO, DBBOUT, and OBF interact as changes 
are detected and Change Words are read by the mas­
ter. The letters correspond to sequential Change 
Words being loaded into the FIFO. Note that the fig­
ures show only a 4XS FIFO however, the principles 
are the same in the 40XS FIFO. 

Figure 21A shows the condition where no Change 
Words have been loaded into the FIFO or DBBOUT. 
In Figure 21B a change, "A", has been detected, de­
coded, and loaded into the FIFO at the location 
equal to the value of the FIFO-IN pointer. The 
FIFO-OUT pointer is reset to the bottom of the 
FIFO since it had reached the FIFO top. Now that a 
Change Word is in the FIFO, OBF is checked to see 
ifDBBOUT is empty. Because OBF=O, DBBOUT is 
empty and the Change Word is loaded from the 
FIFO location pointed at by the FIFO-OUT pointer. 
This is shown in Figure 21C. Loading DBBOUT 
automatically sets OBF. OBF remains set until the 

master reads DBBOUT. Figures 21D and 21E show 
two more Change Words loaded into the FIFO. In 
Figure 21F the first Change Word is finally read by 
the master resetting OBF. This allows the next 
Change Word to be loaded into DBBOUT. Note that 
each time the FIFO is loaded, the FIFO-IN pointer 
increments. Each time DBBOUT is read the FIFO­
OUT pointer increments unless there are no more 
Change Words in the FIFO. Both pointers wrap­
around to the bottom once they reach the FIFO top. 
The remaining figures show more Change Words be­
ing loaded into the FIFO. When the entire FIFO fills 
and DBBOUTcan not be loaded (OBF=l), scanning 
stops until the master reads DBBOUT making room 
for more Change Words. 

As was mentioned earlier, two interrupt outputs to 
the master are available: Change Word Ready (P25, 
OBF) and FIFO NOT EMPTY (P24). The Change 
Word Ready interrupt simply reflects OBF and is 
handled automatically by the UPI since an EN 
FLAGS instruction is executed during initialization. 
The FIFO NOT EMPTY interrupt is generated and 
cleared as appropriate, each pass through the FIFO 
management code. 

No debouncing is provided although it could be 
added. Rather, the scan time is left as an equate 
variable so that it could be varied to account for both 
debounce time and expected sensor change rates. 
The minimum scan time for this application is 
2msec when using a SMHz clock. Since the matrix 
controller is coded as a foreground task, scan time 
simply uses a software delay loop. 

The UPI software is included as Appendix B1. Ap­
pendix B2 is SOS5A test software which builds a 
Change Word buffer starting at BUFSRT. This soft­
ware simply polls the STATUS register looking for 
Change Word Ready to go true. DBBOUT is then 
read and loaded into the buffer. Now let's move on to 
an application which combines both the foreground 
and background concepts. 

6-22 

Combination 1/0 Device 
The final UPI application was designed especially to 
add additional serial and parallel I/O ports to the 
iSBC SO/30. This UPI simulates a full-duplex UART 
(Universal Asynchronous Receiver/Transmitter) 
combined with an S-bit parallel I/O port. Features of 
the UART include: software selectable baud rates 
(110, 300, SOO, or 1200 baud), double buffering for 
both the transmitter and receiver, and receiver test­
ing for false start bit, framing, and overrun errors. 
For parallel I/O, one S-bit port is programmable for 
either input or output. The output port is statically 
latched and the input port is sampled. 



APPLICATIONS 

AI 
OUT 

[:J 
OBF 

DBBOUT 

BI 

[:J 
OBF 

OUT 

DSSOUT 

el 

D 
OBF 

----

---00 

FIFO 
FIFO EMPTY 

A 

--

----
FIFO 

CHANGE A DETECTED 

-

IN 

IN 

IN 

c::=! OUT -
D8BOUT FIFO 

01 

D 
OBF 

c::=! 
DBBOUT 

" 

D 
OBF 

DBBOUT 

CHANGE A LOADED INTO OaBOUT, 
FIFO EMPTY 

OUT 

OUT 

-
B 

----
FIFO 

CHANGE B DETECTED 

--
e 

-- B 

FIFO 
CHANGE C DETECTED 

IN 

IN 

FI 
I--

8 e 

OBF 
OUT ---- B 

0 
DBBOUT 

(MASTER READS 
FIFO 

CHANGE A 
FINALLY READ 

GI 

HI 

JI 

DBBOUT) 

D 
OBF 

0 
DBBOUT 

[J 
OBF 

0 
DBBOUT 

D 
OBF 

c::=! 
OSSOUT 

D 
B 

DBBOUT 

OUT 

OUT 

OUT 

r--

- e 

FIFO 
CHANGE B LOADED 

INTO DBBOUT 

D 

- e 

I--
FIFO 

CHANGE 0 DETECTED 

0 

----- e 

-
E 

FIFO 
CHANGE E DETECTED 

FIFO 
CHANGE F DETECTED, FIFO FULL, 

SCANNING STOPPED UNTIL B IS READ 

Figure 21A-J. FIFO Operation Example 

6-23 

IN 

IN 

IN 

IN 



APPLICATIONS 

Figure 22 shows the interface of this combination 
I/O device to the dedicated UPI socket on the iSBC 
SO/30. The only external requirement is a 76.8 kHz 
source which serves as the baud rate standard. The 
internal baud rates are generated as multiples of this 
external clock. This clock is obtained from one of the 
8253 counters. Otherwise, an RS-232 driver and re­
ceiver already available for UPI use in serial I/O ap­
plications. Sockets are also provided for termination 
of the parallel port. 

PARALLEL PORT 

TxD 

AxD 

TICK SAMPLE 

EXT. CLOCK(76.8 KHz) 
FROM 8253 

Figure 22. Combination 1/0 Device 

There are three commands for this application. 
Their format is shown in Figure 23. The CON­
FIGURE command specifies the serial baud rate 
and the parallel I/O direction. Normally this com­
mand is issued once during system initialization. 
The I/O command causes a parallel I/O operation to 
be performed. If the parallel port direction is out, 
the UPI expects the data byte immediately following 
an I/O command to be data for the output port. If 
the port is in the input direction, an I/O command 
causes the port to be read and the data placed in 
DBBOUT. The RESET ERROR command resets 
the serial receiver error bits in the STATUS register. 

COMMAND FORMAT 

171s151413121'Io I 
CONFIGURE COMMAND 

BCD P A-1200 BAUD SELECT 
B- 600 BUAD SELECT 
c- 300 BAUD SELECT 
0- 110 BAUD SELECT 
P-PARALLEL 1/0 DIRECTION 

O-INPUT 
1-0UTPUT 

o liD COMMAND 

o RESET ERROR COMMAND 

Figure 23. Combination 1/0 Command Format 

The STATUS register format is shown in Figure 24. 
Looking at each bit, BIT 0 (OBF) is the DATA 
AVAILABLE flag. It is set whenever the UPI places 
data into DBBOUT. Since the data may come from 

6-24 

either the receiver or the parallel input port, the FO 
and Fl flags (BITs 2 and 3) code the source. Thus, 
when the master finds OBF set, it must decode FO 
and Fl to determine the source. 

STATUS FORMAT 

1716151413121,~oJ 

II~, OBF-DATA AVAILABLE 
SF-BUSY 

FO 
F1 
NOT USED 
Tx INTERRUPT 
FRAMING ERROR 
OVERRUN ERROR 

FO F1 OPERATION (SF = 1) 

, 
o 

NO OPERATION 
PARALLEL I/O DATA 
SERIAL liD DATA 

COMMAND ERROR 

Figure 24. STATUS Register Format 

BIT 1 (IBF) functions as a busy bit. When IBF is set, 
no writes to DBBIN are allowed. BIT 5 is the TxINT 
(Transmitter Interrupt) bit. It is asserted whenever 
the transmitter buffer register is empty. The master 
uses this bit to determine when the transmitter is 
ready to accept a data character. 

BITS 6 and 7 are receiver error flags. The framing 
error flag, BIT 6, is set whenever a character is re­
ceived with an invalid stop bit. BIT 7, overrun error, 
is set if a character is received before the master has 
read a previous character. If an overrun occurs, the 
previous character is overwritten and lost. Once an 
error occurs, the error flag remains set until reset by 
a RESET ERROR command. A set error flag does 
not inhibit receiver operation however. 

Figure 25 shows the port pin definition for this ap­
plication. PORT 1 is the parallel I/O port. The 
UART uses PORT 2 and the Test inputs. P20 is the 
transmitter data out pin. It is set for a mark and re­
set for a space. P23 is a transmitter interrupt output. 
This pin has the same timing as the TxINT bit in the 
STATUS register. It is normally used in interrupt­
driven systems to interrupt the master processor 
when the transmitter is ready to accept a new data 
character. 

The OBF flag is brought out on P24 as a master in­
terrupt when data is available in DBBOUT. P26 is a 
diagnostic pin which pulses at four times the se­
lected baud rate. (More about this pin later.) The re­
ceiver data input uses the TEST 0 input. One of the 
PORT 2 pins could have been used, however, the 



APPLICATIONS 

PORT PIN DEFINITION 

~ !!!. ~ 
0-7 PARALLEL 1/0 

Tx Data 
NOT USED 
NOT USED 
Tx INTERRUPT 

4 OBF INTERRUPT 
5 NOT USED 

NOT USED (TICK SAMPLE) 
NOT USED 

TO Rx DATA 

T1 EXTERNAL CLOCK (76.8 kHz) 

Figure 25. Combination 1/0 Port Definition 

software can test the TEST 0 in one instruction 
without first reading a port. 

The TEST 1 input is the baud rate external source. 
The UART divides this input to determine the tim­
ing needed for the selected baud rate. The input is a 
non-synchronous 76.8 kHz source. 

Internally, when the CONFIGURE command is re­
ceived and the selected baud rate is determined, the 
internal timer/counter is loaded with a baud rate 
constant and started in the event counter mode. 
Timer/counter interrupts are then enabled. The 
baud rate constant is selected to provide a counter 
interrupt at four times the desired baud rate. At 
each interrupt, both the transmitter and receiver are 
handled. Between interrupts, any new commands 
and data are recognized and executed. 

As a prelude to discussing the flow charts, Figure 26 
shows the register definition. Register Bank 0 serves 
the UART receiver and parallel I/O while Register 
Bank 1 handles the UART transmitter and com­
mands. Looking at RBO first, Ra is the receiver sta­
tus register, RxSTS. Reflected in the bits of this 
register is the current receiver status in sequential 
order. Figure 27 shows this bit definition. BIT 0 is 
the Rx flag. It is set whenever a possible start bit is 
received. BIT 1 signifies that the start bit is good 
and character construction should begin with the 
next received bit. BIT 1 is the Good Start flag. BIT 2 
is the Byte Finished flag. When all data bits of a 
character are received, this flag is set. When all the 
bits, data and stop bits are received, the assembled 
character is loaded into the holding register (14 in 
Figure 27) BIT a, the Data Ready flag, is set. The 
foreground routine which looks for commands and 
data continuously, looks at this bit to determine 
when the receiver has received a character. BITS 4 
and S signify any error conditions for a particular 
character_ 

6-25 

63 

32 
31 
30 

29 

28 

27 
26 

2' 
24 
23 

6 

USER RAM 
(NOT USED) 

AC TEMP. STORE 

COMMAND STORE 

Tx STATUS - TxSTS 

Tx BUFFER 

Tx SERIALIZER 

Tx TICK COUNTER 

BAUD RATE CONSTANT 

NOT USED 

STACK 
(ONE LEVEL USED) 

STATUS STORE 

Rx DESERIALIZER 

Ax TICK COUNTER 

Rx HOLDING 

Rx STATUS-RxSTS 

NQTUSED 

NQTUSEO 

NOT USED 

R7 

R6 

RS 

R4 

R3 

R2 

R1 

RO 

R7 

R6 

RS 

R4 

R3 

R2 

R1 

R 

REGISTER 
BANK 1 

REGISTER 
BANKO 

Figure 26. Combination 1/0 Register Map 

RxSTS FORMAT 

17161s14131211Tol 

II~ Rx FLAG-POSSIBLE 8T ART BIT 
START FLAG-GOOD START BIT 
BYTE FINISHED FLAG 
OAT A READY FLAG 
FRAMING ERROR 

OVERRRUN ERROR 
1/0 DIRECTION 
I /0 FLAG 

Figure 27. RxSTS Register 

The parallel I/O port software uses BITS 6 and 7. 
BIT 6 codes the I/O direction specified by the last 
CONFIGURE command. BIT 7 is set whenever an 
I/O command is received. The foreground routine 
tests this bit to determine when an I/O operation has 
been requested by the master. 

As was mentioned, 14 is the receiver holding regis­
ter. Assembled characters are held in this register 
until the foreground routine finds DBBOUT free, at 
which time the data is transferred from R4 to 
DBBOUT. RS is the receiver tick counter. Recall 
that counter interrupts occur at four times the baud 
rate. Therefore, once a start bit is found, the receiver 
only needs to look at the data every four interrrupts 
or tick counts. R5 holds the current tick count. 

Rs is the receiver de-serializing register. Data char­
acters are assembled in this register. R6 is preset to 
SOH when a good start bit is received. As each bit is 



APPLICATIONS 

sampled every four timer ticks, they are rotated into 
the leftmost bit of B.s. The software knows the char­
acter assembly is complete when the original preset 
bit rotates into the carry. 

An image of the upper 4 bits of the STATUS register 
is stored in R7. These bits are the TxINT, Framing 
and Overrun bits. This image is needed since the 
UPI may load the upper 4 STATUS register bits 
from its accumulator; however, it cannot read STA­
TUS directly. 

In Register Bank 1 (Figure 26), Rl holds the baud 
rate constant which is found from decoding the baud 
rate select bits of the CONFIGURE command. The 
counter is reloaded with this constant every timer 
tick. Like the receiver, the transmitter only needs to 
update the transmitter output every four ticks. R2 
holds the transmitter tick count. The value of R2 de­
termines which portion of the data is being trans­
mitted; start bit, data bits, or stop bit. The transmit 
serializer is R3. R3 holds the data character as each 
character bit is transmitted. 

14 is the transmitter holding register. It provides 
the double buffering for the transmitter. While 
transmitting one character, it is possible to load the 
next character into 14 via DBBIN. The TxINT bit 
in STATUS and pin on PORT 2 reflect the "full­
ness" ofR4. If the holding register is empty, the in­
terrupt bit and pin are set. They are reset when the 
master writes a new data byte for the transmitter 
into DBBIN. The transmitter status register 
(TxSTS) is R5. Like RxSTS,TxSTS contains flag 
bits which indicate the current state of the transmit­
ter. This flag bit format is shown in Figure 28. 

TxSTS BIT 0 is the Tx flag. It is set whenever the 
transmitter is transmitting a character. It is set from 
the beginning of the start bit until the end of the 
stop bit. BIT 1 is the Tx request flag. This bit is set 
by the foreground routine when it transfers a new 
character from DBBIN to the Tx holding register, 
14. The transmitter software uses this flag to tell if 
new data is available. It is reset when the transmitter 
transfers the character from the holding register to 
the serializer. 

TxSTS FORMAT 

Figure 28. TxSTS Register 

BIT 2 is the pipelined Tx data bit. The transmitter 
uses a pipelining technique which sets up the next 
output level in BIT 2 after processing the current 
timer tick. The output level is always changed at the 
same point after a timer tick interrupt. This tech­
nique ensures that no bit timing distortion results 
from different length processing paths through the 
receiver and transmitter routines. 

BIT 3 of TxSTS is the Start Bit flag. It is set by the 
transmitter when the start bit space is set up in the 
pipelined data bit. This allows the transmitter to 
differentiate between the start bit and the data bits 
on following timer ticks. 

The flow charts for this application are shown in 
Figures 29A-F. At reset, the INIT routine is exe­
cuted which initializes the registers and port pins. 
After initialization, IBF and OBF are tested in 
MNLOOP. These flags are tested continually in this 
loop. If IBF is set, Fl is tested for command or data 
and execution is transferred to the appropriate rou­
tine (CMD or DATA). IfIBF=O, OBF is checked. If 
OBF=O (DBBOUT is free), the Rx data ready and 
I/O flags in RxSTS are tested. If Rx data ready is set, 
the received data is retrieved from the Rx holding 
register and transferred to DBBOUT. Any error 
flags associated with that data are also transferred to 
STATUS. If the I/O flag is set and the I/O direction 
is input, PORT 1 is read and the data transferred to 
DBBOUT. In either case, FO and Fl are set to indi­
cate the data source. 

6-26 

If IBF is set by a command write to DBBIN, CMD 
reads the command and decodes the desired oper­
ation. If an I/O operation is specified, the I/O flag is 
set to indicate to the MNLOOP and DATA routines 
that an I/O operation is to be performed. If the com­
mand is a CONFIGURE command, the constant for 
the selected baud rate is loaded into both Baud Rate 
Constant register and the timer/counter. The timer/ 
counter is started in the event counter mode and 
timer/counter interrupts are enabled. In addition, 
the I/O port is initialized to alll's if the I/O direction 
bit specifies an input port. If the command is a RE­
SET ERROR command, the two error flags in STA­
TUS are cleared. 

If the IBF flag is set by a data write, the DATA rou­
tine reads DBBIN and places the data in the appro­
priate place. If the I/O flag is set, the data is for the 
output port so the port is loaded. If the I/O flag is 
reset, the data is for the UART transmitter. Data for 
the transmitter resets the TxINT bit and pin plus 
sets the Tx request flag in TxSTS. The data is trans­
ferred to the Tx holding register, 14. 



APPLICATIONS 

SET FRAMING 
ERROR IN STATUS 

OUTPUT 

Figure 29A. INIT Flow Chart 

Once a CONFIGURE command is received and the 
counter started, timer/counter interrupts start oc­
curring at four times the selected baud rate. These 
interrupts cause a vector to the TIMINT routine, 
Figure 29D. A 76.8 kHz counter input provides a 
13.02 ILS counter resolution. Since it requires several 
UPI instruction cycles to reload the counter, the 
counter is set to two counts less than the desired 
baud rate and the counter is reloaded in TIMINT 
synchronous with the second low-going transition 
after the interrupt. Once the counter is reloaded, an 
output port (P26) is toggled to give an external indi-

6·27 

cation of internal counter interval. This is a helpful 
diagnostic feature. After the tick sample output, the 
pipelined transmitter data in TxSTS is output to the 
TxD pin. Although this occurs every timer tick, the 
pipelined data is changed only every fourth tick. 

The receiver is now handled, Figure 29E. The Rx 
flag in RxSTS is examined to see if the receiver is 
currently in the process of receiving a character. If it 
is not, the RxD input is tested for a space condition 
which might indicate a possible start bit. If the input 
is a mark, no start bit is possible and execution 



APPLICATIONS 

Figure 29B. CMD Flow Chart 

branches to the transmitter flow, XMIT. If the input 
is a space, the Rx flag is set before proceeding with 
XMIT. 

If the Rx flag is found set when entering ReV, the 
receiver is in the process of receiving a character. If 
so, the start bit flag is then tested to determine if a 
good start bit was received. The Rx tick counter is 
initialized to 4 and the Rx deserializer is set to SOH. 
A mark indicates a bad start bit; the Rx flag is reset 
to abort the reception. 

If the start bit flag is set, the program is somewhere 
in the middle of the received character. Since the 
data should be sampled every fourth timer tick, the 
tick counter is decremented and tested for zero. If 
non-zero no sample is needed and execution contin­
ues with XMIT. If zero, the tick counter is reset to 
four. Now the byte finished flag is tested to deter­
mine if the data sample is a data or stop bit. If reset, 
the sample is a data bit. The sample is done and the 
new bit rotated into the Rx deserializer. If this rotate Figure 29C. Data Flow Chart 

6-28 



APPLICATIONS 

Flgur. 29D. nMINT Flow Chart 

sets the carry, that data bit was the last so the byte 
fmished flag is set. If the carry is reset, the data bit is 
not the last so execution simply continues with 
XMIT. 

Had the byte finished flag been set, this sample is for 
the stop bit. The RxD input is tested and if a space, 
the framing error flag is set. Otherwise, it is reset. 
Next, the Rx data ready flag is tested. If it is set, the 
master has not read the previous character so the 
overrun error flag is set. Then the Rx data ready flag 
is set and the received data character is transferred 
into the Rx holding register. The Rx, start bit, and 
byte fmished flags are reset to get ready for the next 
character. 

Execution of the transmitter routine, XMIT, follows 
the receiver, Figure 29F. The transmitter starts by 
checking the start bit flag in TxSTS. Recall that the 
actual transmit data is output at the beginning of 
the timer routine. The start bit flag indicates wheth­
er the current timer tick interrupt started the start 
bit. If it is set, the pipelined data output earlier in 
the routine was the start of the start bit so the flag is 
reset and the Tx tick counter is initialized. Nothing 
else is done this timer tick so the routine returns to 
the foreground. 

6-29 

If the start bit flag is reset, the Tx tick counter is 
incremented and tested. The test is performed mod­
ulo 4. If the counter mod 4 is not zero, it has not been 
four ticks since the transmitter was handled last so 
the routine simply returns. If the counter mod 4 is 
zero, it is time to handle the transmitter and the Tx 
flag is tested. 

The Tx flag indicates whether the transmitter is ac­
tive. If the transmitter is inactive, no character is 
currently being transmitted so the Tx request flag is 
tested to see if a new character is waiting in the Tx 
buffer. If no character is waiting (Tx request 
flag=O), the Tx interrupt pin and bit are set before 
returning to the foreground. If there is a character 
waiting, it is retrieved from the buffer and placed in 
the Tx serializer. The Tx request flag is reset while 
the Tx and start bit flags are set. A space is placed in 
the Tx pipelined data bit so a start bit will be output 
on the next tick. Since the Tx buffer is now empty, 
the Tx interrupt bit and pin are set to indicate the 
availability of the buffer to the master. The routine 
then returns to the foreground. 

If the tick counter mod 4 is zero and the Tx flag in­
dicates the transmitter is in the middle of a charac­
ter, the tick counter is checked to see what transmit­
ter operation is needed. If the counter is 28H (40D), 
all data bits plus the stop bits are complete. The 
character is therefore done and the Tx flag is reset. If 
the counter is 24H (36D), the data bits are complete 
and the next output should be a mark for the stop bit 
so a mark is loaded into the Tx pipelined data bit. 

If neither of the above conditions are met for the 
counter, the transmitter is some place in the data 
field, so the next data bit is rotated out of the Tx 
serializer into the pipelined data bit. The next tick 
outputs this bit. 

At this point the program execution is returned to 
the foreground. 

That completes the discussion of the combination 
I/O device flow charts. The UPI software listing is 
shown in Appendix Cl. Appendix C2 is example 
B085A driver software. 

Several observations concerning the drivers are ap­
propriate. Notice that since the receiver and input 
port of the UPI use the OBF flag and interrupt out­
put, the interrupt and flag are cleared when the mas­
ter reads DBBOUT. This is not true for the 
transmitter. There is always some time after a mas­
ter write of new transmitter data before the trans­
mitter bit and pin are cleared. Thus in an interrupt­
driven system, edge-sensitive interrupts should be 



APPLICATIONS 

SET FRAMING 
ERROR FLAG 

XMIT 

XMIT 

Figure 29E. RCV Flow Chart 

used. For polled-systems, the software must wait 
after writing new data for IBF=O before re-examin­
ing the Tx interrupt flag in STATUS. 

Notice that this application uses none of the user 
data memory above Register Bank 1 and only 361 
bytes of program memory. This leaves the door open 
for many improvements . .Improvements that come 
to mind are increased buffering of the transmit or 
received data, modem control pins, and parallel port 
handshaking inputs. 

This completes our discussion of specific UPI appli­
cations. Before concluding, let's look briefly at two 
debug techniques used during the development of 

6-30 

these applications that you might find useful in your 
own designs. 

DEBUG TECHNIQUES 
Since the UPI is essentially a single-chip microcom­
puter, the classical data, address, and control buses 
are not available to the outside world during normal 
operation. This fact normally makes debugging a 
UPI design difficult; however, certain "tricks" can be 
included in the UPI software to ease this task. 

If a UPI is handling multiple tasks, it is usually 
easier to code and debug each task individually. This 
is fairly standard procedure. Since each task usually 
utilizes only a subset of the total number of I/O pins, 



APPLICATIONS 

( XMIT ) 

RETR ) 

RETR ( RETR ) 

MARK TO PIPEllNED 
DATA FLAG (STOP) 

( RETR ) 

SET Tx INT 

( RETR ) 

Figure 29F. XMIT Flow Chart 

coding only one task leaves some I/O pins free. Port 
output instructions can then be added in the task 
code being debugged which toggle these unused pins 
to determine which section of task code is being ex­
ecuted at any particular time. The task can also be 
made to "wait" at various points by using an extra 
pin as an input and adding code to loop until a par­
ticular input condition is met. 

One example of using an extra pin as an output is 
included in the combination serial/parallel device 
code. During initial development the receiver was 
not receiving characters correctly. Since this could 
be caused by incorrect sampling, three lines of code 
were added to toggle BIT 6 of PORT 2 at each tick of 
the sample clock. This code is at lines 184 and 185 of 
the listing. Thus by looking at the location of the tick 

6-31 

sample pulse with respect to the received bit, the 
UPI sampling interval can be observed. The tick 
sample time was incorrect and the code was modi­
fied accordingly. Similar techniques could be ap­
plied at other locations in the program. 

The EPROM version of the UPI (8741A) also con­
tains another feature to aid in debug: the capability 
to single step thru a program. The user may step 
thru the program instruction-by-instruction. The 
address of the next instruction to be fetched is avail­
able on PORT 1 and the lower 2 bits of PORT 2. Fig­
ure 30 shows the timing used in the discussion below. 
When the single step input, SS, is brought low, the 
internal processor responds by stopping during the 
fetch portion of the next instruction. This action is 
acknowledged by the processor raising the SYNC 



APPLICATIONS 

~ ~1o.. ___ / _____ ~:~:_~ri_U~_g:...F~----" 
PORTS ___ .JX PORT DATA VALID X ADDRESS ~: -x:::= 

I tx'i,1J~NG .1. STOPPED-+ ACTIVE""":' r INSTRUCTION 

Figure 30. Single Step Timing 

output. The address of the instruction to be fetched 
is then placed on the port pins. This state may be 
held indefinitely. To step to the next instruction, SS 
is raised high, which causes SYNC to go low, which is 
then used to return SS low. This allows the processor 
to advance to the next instruction. If SS is left high, 
the processor continues to execute at normal speed 
until SS goes low. 

To preserve port functionality, port data is valid 
while SYNC is low. Figure 31 shows the external cir­
cuitry required to implement single step while pre­
serving port functionality. SI is the RUN/STOP 
switch. When in the RUN position, the 7474 is held 
preset so SS is high and the UPI executes normally. 
When switched to STOP, the preset is removed and 

the next low-going transition of SYNC causes the 
7474 to clear, lowering SS. While sync is low, the 
port data is valid and the current instruction is ex­
ecuting. Low SYNC is also used to enable the tri­
state buffers when the ports are used as inputs. 
When execution is complete, SYNC goes high. This 
transition latches the valid port data in the 
74LS374s. SYNC going high also signifies that the 
address of the next instruction will appear on the 
port pins. This state can be held indefinitely with 
the address data displayed on the LEDs. 

When the S2 is depressed, the 7474 is set which 
causes SS to go high. This allows the processor to 
fetch and execute the instruction whose address was 
displayed. SYNC going low during execution, clears 

Figure 31. Single Step External ClrcuHry 

6-32 



APPLICATIONS 

the 747 4 lowering SS. Thus the processor again stops 
when execution is complete and the next fetch is 
started. 

All UPI functions continue to operate while single 
stepping (the processor is actually executing NOPs 
internally while stopped). Both IBF and timer/ 
counter interrupts can be serviced. The only change 
is that the interval timer is prescaled on single 
stepped instructions and, of course, will not indicate 
the correct intervals in real time. The total number 
of instruction which would have been executed dur­
ing a given interval is the same however. 

The single step circuitry can be used to step through 
a complete program; however, this might be a time­
consuming job if the program is long or if only a por­
tion is to be examined. The circuitry could easily be 
modified to incorporate the output toggling tech­
nique to determine when to run and stop. If you 
would like to step thru a particular section of code, 

6-33 

an extra port pin could replace switch 81. Extra 
instructions would then be added to lower the port 
when entering the code section and raise the port 
when exiting the section. The program would then 
stop when that section of code is reached allowing it 
to be stepped through. At the end of the section, the 
program would execute at normal speed. 

CONCLUSION 
Well, that's it. Machine readable (floppy disk or pa­
per tape) source listings of UPI software for these 
applications are available in Insite, the Intel library 
of user-donated programs. Also available in Insite 
are the source listings for some of Intel's pre-pro­
grammed UPI products. 

For information about Insite, write to: 
Insite 
Intel Corp. 
3065 Bowers Ave. 
Santa Clara, Ca 95051 



APPLICATIONS 

: Fl: ASM48 'F3: LED PR INT ( : LP:) NOOBJECT 

ISIS-I I MCS-48/UPI-41 MACRO ASSEMBLER, V3.0 PAGE 

LoC DB" LINE 

I 
2 
3 
4 
5 
6 
7 
8 
9 

10 
II 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 

SOURCE STATEMENT 

SMOD41A 

*********************************************** * UPI-41A B-DIGIT LED DISPLAY CONTROLLER * 
*********************************************** 

; THIS PROGRAM USES THE UPI-41A AS A LED DISPLAY CONTROLLER 
; WHICH SCANS AND REFRESHES EIGHT SEVEN-SEGMENT LED DISPLAYS. 
i THE CHARACTERS ARE DEFINED BY INPUT FROM A MASTER CPU IN THE 
; FORM OF ONE EIGHT BIT WORD PER DIGIT-CHARACTER SELECTION. 

; ********************************************************************* 
; REGISTER DEFINITIONS: 

REGISTER RBI RBO 

Ro DISPLAY MAP POINTER NOT USED 
RI NOT USED NOT USED 
R2 DATA WORD AND CHARACTER STORAGE NOT USED 
R3 DIGIT COUNTER NOT USED 
R4 NOT USED NOT USED 
RS NOT USED NOT USED 
R6 NOT USED NOT USED 
R7 ACCUMULATOR STORAGE NOT USED 

; ********************************************************************** 
; PORT PIN DEFINITIONS: 

P IN PORT 1 FUNCTION PORT 2 FUNCTION 

PO-7 SEGMENT DRIVER CONTROL DIGIT DRIVER CONTROL 

$E"ECT 

6-34 



APPLICATIONS 

ISIS-I I MCS-48/UPI-41 MACRO ASSEMBLER, V3.0 PAGE 2 

LOC OBJ LINE SOURCE STATEMENT 

36 ; ************************************************************************ 
37 j DISPLAY DATA WORD BIT DEFINITION: 
38 BIT FUNCTION 
39 
40 0-4 CHARACTER SELECT 
41 5-7 DIGIT SELECT 
42 
43 l CHARACTER SELECT: 
44 D4 D3 D2 Dl DO CHARACTER 
45 0 0 0 0 0 0 
46 0 0 0 0 1 1 
47 0 0 0 1 0 2 
48 0 0 0 1 1 3 
49 0 0 1 0 0 4 
50 0 0 1 0 1 5 
51 0 0 1 1 0 6 
52 0 0 1 1 1 7 
53 0 1 0 0 0 8 
54 0 1 0 0 1 9 
55 0 1 0 1 0 A 
56 0 1 0 1 1 B 
57 0 1 0 0 C 
58 0 1 0 1 D 
59 0 1 1 0 E 
60 0 1 1 1 1 F 
61 0 0 0 0 
62 0 0 0 1 G 
63 0 0 1 0 H 
64 0 0 1 1 I 
65 0 1 0 0 J 
66 0 1 0 1 L 
67 0 1 1 0 N 
68 0 1 1 1 0 
69 1 0 0 0 P 
70 0 0 1 R 
71 0 1 0 T 
72 0 1 1 U 
73 1 0 0 y 
74 1 0 1 
75 1 1 0 
76 "BLANK" 
77 
78 ; DIGIT SELECT: 
79 D7 D6 D5 DIGIT NUMBER 
80 0 0 0 1 
81 0 0 1 2 
82 0 1 0 3 
83 0 1 1 4 
84 0 0 5 
85 0 1 6 
86 0 7 
87 1 8 
88 ; *********************************************************************** 
89 $EJECT 

6-35 



APPLICATIONS 

ISIS-XI MCS-4S/UPI-41 MACRO ASSEMBLER. Y3.0 PAIIE 3 

LOC OB.J 

FFFI 

0000 
0000 0409 
0002 00 
0003 043b 
0005 00 
OOOb 00 
0007 041D 

0009 D5 
OOOA SAOS 
OOOC BB3B 
OOOE 23FF 
0010 1'10 
0011 1B 
0012 FB 
0013 120E 
0015 BBOO 
0017 23F1 
0019 b2 
OOIA 55 
001B 25 
OOIC 05 

LINE SOURCE STATEMENT 

90 J *********************************************************************** 
91 , EClUATES 
92 ,THE FDLLOWINQ CODE DESIQNATES "TIllE" AS A YARIABLE. THIS 
93 ,AD.JUSTS THE AMOUNT OF CYCLES THE TIllER COUNTS BEFORE 
94 ,A TIMER INTERRUPT OCCURS AND REFRESHES THE DISPLAY. APPROXIMATELY 
95 ,50 TIMES PER BECOND. 
9b TIllE ECIU -OFH ,TIMER YALUE 2. 5MSEC 

97 J ************************************************************************ 
9B , INTERRUPT BRANCHINQ 
99 ,THIS PORTION OF MEMORY IS DEDICATED FOR USE OF RESET AND 

100 ,INTERRUPT BRANCHINQ. WHEN THE INTERRUPTS ARE ENABLED THE 
101 ,CODE AT THE FOLLOWINQ DESIQNATED SPOTS ARE EXECUTED WHEN A 
102 ,REBET OR A INTERRUPT OCCURS. 
103 ORQ 0 , 
104 .JIIP START 'RESET 
105 NOP , 
lOb .JMP INPUT ,IIF INTERRUPT 
107 NOP , 
IDS NOP , 
109 .JIIP DISPLA ,TIMER INTERRUPT 

110 j ************************************************************************* 
111 J INITIALIZATION 
112 ,THE FOLLOWINQ CODE SETS UP THE UPI-4I AND DISPLAY HARDWARE 
113 ,INTO OPERATIONAL FORMAT. THE DISPLAY IS TURNED OFF. THE DISPLAY 
114 ,MAP IS FILLED WITH "BLANK" CHARACTERS. THE TIllER SET ANO THE 
115 ,INTERRUPTS ARE ENABLED. 
lib 
117 START: SEL RBI , 
liS ORL P2 •• OSH I TURN DIQIT DRIVERS OFF 
119 MOV RD •• 3BH ,DISPLAY MAP POINTER. BOTTOM OF DISPLAY MAP 
120 BLKMAP: MOV A •• OFFH 'FF~"BLANK" 
121 MOY eRO, A I BLANK TO DISPLAY MAP 
122 INC RO , INCREMENT DISPLAY MAP POINTER 
123 MOV A. RO ,DISPLAY MAP POINTER TO ACCUMULATOR 
124 .JB5 BLKMAP ,BLANK DISPLAY MAP TILL FILLED 
125 MOV R3 •• OOH ,SET DIQIT COUNTER TO 0 
12b MOV II •• TIME ,TIMER VALUE 
127 MOY T, A ; LOAD TIMER 
12B STRT T ,START TIMER 
129 EN TCNTI 'ENABLE TIMER INTERRUPT 
130 EN I ,ENABLE I BF INTERRUPT 

131 J ************************************************************************ 
132 I USER PRDIIRAM 
133 ,A USERS PROQRAM WOULD INITIALIZE AT THIS POINT. THE FOLLOWINQ 
134 I CODE IS UND CONCLUDED WITH 
135 ,SYNC CHARACTERS (OAAH). A CHECKSUM BYTE IMMEDIATELY PRECEEDS THE 
136 J FINAL SYNC. WHEN READINQ, THE CONTROLLE********************_**************** 
137 .E.JECT 

6-36 



APPLICATIONS 

ISIS-II MCS-48/UPI-41 MACRO ASSEMBLER. V3.0 PAGE 

LOC OD") 

001D D~ 
001E AF 
001F 8A08 
0021 FB 
0022 4338 
0024 A8 
002~ FO 
0026 3'1 
0027 FB 
002B 3A 
002'1 lB 
002A D307 
002C '1b30 
002E 8800 
0030 23Fl 
0032 62 
0033 ~~ 
0034 FF 
003~ 93 

LINE SOURCE STATEMENT 

138 ; *********************************************************************** 
139 DISPLAY ROUTINE 
140 ; THIS PORTION OF THIS PROGRAM IS AN INTERRUPT ROUTINE WHICH IS 
141 ; ACTED UPON WHEN THE TIMER COUNT IS COMPLETED. THE ROUTINE UPDATES 
142 ; ONE DISPLAY DIGIT FROM THE DISPLAY MAP PER INTERRUPT SEQUENTIA1..LY. 
143 ; THUS EIGHT TIMER INTERRUPTS WILL HAVE REFRESHED THE ENTIRE DISPLAY. 
144 ; REGISTER BANK 1 IS SELECTED AND THE ACCUMULATOR IS SAVED UPON 
14~ i ENTERING THE ROUTINE. ONCE THE DISPLAY HAS BEEN REFRESHED THE TIMER 
14b ; IS RESET AND THE ACCUMULATOR AND PRE-INTERRUPT REGISTER BANK IS RESTORED. 
147 
148 
14'1 
150 
1~1 

152 
153 
1~4 

155 
1~6 

1~7 

1~8 

15'1 
lbO 
161 
lb2 
lb3 
164 
163 
166 
lb7 
168 

CISPLA: BEL RBl j REGISTER BANK 1 
MOV R7. A j SAVE ACCUMULATOR 
ORL P2 •• OSH ,TURN DIGIT DRIVERS OFF 
MOV A. R3 J DIGIT COUNTER TO ACCUMULATOR 
ORL AI laSH ; "OR" TO GET DISPLAY MAP ADDRESS 
MOV RO. A I DISPLAY MAP POINTER 
MOV A. itRO ; GET CHARACTER FROM DISPLAY MAP 
OUTL Pl. A ; OUTPUT CHARACTER TO SEGMENT DR I VERB 
MOV A. R3 ; DIGIT COUNTER VALUE TO ACCUMULATOR 
OUTL P2.A i OUTPUT TO DIGIT DRIVERS 
INC R3 ; INCREMENT DIGIT COUNTER 
XRL A,.07H J CHECK IF AT I-AST DIGIT 
JNZ BETIME J RESET TIMER IN NOT LAST DIGIT 
MOV R3. "OOH ,REBET DIGIT COUNTER 

SETIME: MOV A. "TIME J TIMER VALUE 
MOV T. A I L.OAD TIMER 
STRT T J START TIMER 
MOV A. R7 I RESTORE ACCUMULATOR 
RETR JRETURN 

J ********************************************************************** 
_EJECT 

6-37 



APPLICATIONS 

ISIS-I I MC5-4B/UPI-41 MACRO ASSEMBLER. V3.0 PAGE 

LOC OB.J 

0036 D5 
0037 AF 
003S 22 
0039 AA 
003A 47 
003B 77 
003C 5307 
003E 433S 
0040 AS 
0041 FA 
0042 531F 
0044 E3 
0045 AA 
0046 D37F 
004S CI>4E 
004A FA 
004B AO 
004C 0451 
004E FA 
004F 50 
0050 AO 
0051 FF 
0052 93 

LINE SOURCE STATEMENT 

169 , 

170 J *********************************************************************** 
171 , INPUT CHARACTER AND DIGIT ROUTINE 
172 , THIS PORTION OF THE PROGRAM IS AN INTERRUPT ROUTINE WHICH 
173 ,IS ACTED UPON WHEN THE IBF BIT IS SET. THE ROUTINE GETS THE 
174 ; DISPLAY DATA WORD FROM THE DBB AND DEFINES BOTH THE DIGIT AND 
175 ,THE CHARACTER TO BE DISPLAYED. THIS IS DONE BY MEANS OF A 
171> ,CHARACTER LOOP-UP TABLE AND A DISPLAY MAP FOR DIGIT AND CHARACTER 
177 ,LOCATION. SPECIAL CONSIDERATION IS TAKEN FOR A DECIMAL POINT WHICH IS 
17S ,SIMPLY ADDED TO THE EXISTING CHARACTER IN THE DISPLAY MAP. REGISTER 
179 ,BANK I IS SELECTED AND THE ACCUMULATOR IS SAVED UPON ENTERING 
180 J THE ROUTINE. ONCE THE DATA WORD HAS BEEN FULLY DEFINED THE ACCUMULATOR 
181 ,AND THE PRE-INTERRUPT REGISTER BANK IS RESTORED. 
182 J 

183 INPUT: 
IS4 
IS5 
186 
187 
18S 
IS9 
190 
191 
192 
193 
194 
195 
196 
197 
19S 
199 
200 
201 DPOINT: 
202 
203 
204 RETURN: 
205 

SEL 
MOV 
IN 
MOV 
SWAP 
RR 
ANL 
ORL 
MOV 
MOV 
ANL 
MOVP3 
MOV 
XRL 
.JZ 
MOV 
MOV 
.JMP 
MOV 
ANL 
MOV 
MOV 
RETR 

RBI 
R7. A 
A,DBB 
R2. A 
A 
A 
A. *07H 
AI "3SH 
RO.A 
A. R2 
A,4t:1FH 
AI tl:A 
R2. A 
A,4t7FH 
DPOINT 
A. R2 
eRO. A 
RETURN 
A. R2 
A, eRO 
I!RO. A 
A. R7 

,REGISTER BANK I 
; SAVE ACCUMULATOR 
,gET DATA 
,SAVE DATA WORD 
,DEFINE DIGIT LOCATION 

, 
'DIGIT LOCATION IN DIGIT POINTER 
,SAVED DATA WORD TO ACCUMULATOR 
; DEFINE CHARACTER LOOK-UP-TABLE 
I GET CHARACTER 
,SAVE CHARACTER 
; IS CHARACTER DECIMAL POINT , 
,SAVED CHARACTER TO ACCUMULATOR 
,CHARACTER TO DISPLAY MAP , 
,SAVED CHARACTER TO ACCUMULATOR 
; "AND" WITH OLD CHARACTER 
,BACK TO DISPLAY MAP 
; RESTORE ACCUMULATOR 

LOC. 

206 J ********************************************************************** 
207 tE.JECT 

6-38 



APPLICATIONS 

ISIS-II MCS-4S/UPI-41 MACRO ASSEMBLER. V3.0 PAGE 6 

LOC OB-J LINE SOURCE STATEMENT 

20S ; ********************************************************************* 
209 , LOOK-UP TABLE 
210 ; THIS LOOK-UP TABLE ORIQINATES IN PAQE 3 OF THE UPI-41 PROGRAM 
211 I MEMORY. IT IS USED TO DEFINE THE CORRECT LEVEL OF EACH SEGMENT 
212 ,AND DECIMAL POINT FOR A SELECTED CHARACTER FROM THE INPUT ROUTINE. 
213 , INVERSE LOGIC IS USED BECAUSE OF THE SPECIFIC DRIVER CIRCUITRY. THUS 
214 ,A I ON A GIVEN SEGMENT MEANS IT IS OFF AND A 0 MEANS IT IS ON. 
21:t I 

216 I *******SEGMENTS******** 
0300 217 ORG 300H ,DP G F E 0 C B A 
0300 CO 21S CHO: DB OCOH , I I 0 0 0 0 0 0 
0301 F9 219 CHI: DB OF9H , I I I I I 0 0 I 
0302 A4 220 CH2: DB OA4H , I 0 I 0 0 I 0 0 
0303 BO 221 CH3: DB OBOH , I 0 I I 0 0 0 0 
0304 .... 222 CH4: DB .... H , I 0 0 I I 0 0 I 
030' .. 2 223 CH,: DB .. 2H , I 0 0 I 0 0 I 0 
0306 B2 224 CH6: DB S2H , I 0 0 0 0 0 I 0 
0307 FS 22' CH7: DB OFBH , I I I I 1 0 0 0 
030B BO 226 CHB: DB BOH ; I 0 0 0 0 0 0 0 
0309 "B 227 CH": DB "BH , I 0 0 I I 0 0 0 
030A BB 22B CHA: DB BBH , I 0 0 0 I 0 0 0 
030B B3 22 .. CHB: DB B3H , I 0 0 0 0 0 I I 
030C C6 230 CHC: DB OC6H , I I 0 0 0 I I 0 
0300 AI 231 CHD: DB OAIH ; 1 0 I 0 0 0 0 I 
030E B6 232 CHE: DB B6H , I 0 0 0 0 I I 0 
030F aE 233 CHF: DB BEH ; I 0 0 0 I I I 0 
0310 7F 234 CHOP: DB 7FH ;0 I I I I I I I 
0311 COl 23' CHG: DB OC2H , I I 0 0 0 0 I 0 
0312 B9 236 CHH: DB B9H , 1 0 0 0 I 0 0 I 
0313 FB 237 CHI: DB OFBH ; I I I I I 0 I I 
0314 EI 23S CHJ: DB OEIH ;1 I I 0 0 0 0 I 
03" C7 239 CHL: DB OC7H , I I 0 0 0 I I I 
0316 AB 240 CHN: DB OABH ; I 0 I 0 I 0 I I 
0317 A3 241 CHO: DB OA3H , I 0 I 0 0 0 I I 
031B se 242 CHP: DB aCH , I 0 0 0 I I 0 0 
031" AF 243 CHR: DB OAFH ; I 0 I 0 I I I I 
031A a7 244 CHT: DB S7H , I 0 0 0 0 I I I 
031B CI 24' CHU: DB OCIH , I 1 0 0 0 0 0 1 
031C "I 246 CHY: DB .. IH , I 0 0 1 0 0 0 I 
0310 BF 247 CHDASH: DB OBFH ; I 0 I I I I I I 
03lE FD 24S CHAPOB: DB OF'CH ; 1 0 
031F FF 24" BLANK: DB OFFH ; I I 

2'0 i ************************************************************************ 
251 END 

USER SYMBOLS 
BLANK 031F BLKMAP OOOE CHO 0300 CHI 0301 CH2 0302 CH3 0303 CH4 0304 CH5 0305 
CH6 0306 CH7 0307 CHB 030B CH9 030" CHA 030A CHAPOS 031E CHB 030B CHC 030C 
CHD 0300 CHDASH 0310 CHOP 0310 CHE 030E CHF 030F CHQ 0311 CHH 0312 CHI 0313 
CH-J 0314 CHL 03" CHN 0316 CHO 0317 CHP 031S CHR 031 .. CHT 031A CHU 031B 
CHY 031C OISPLA 0010 OPOINT 004E INPUT 0036 RETURN 00'1 SETIME 0030 START 0009 TIME FFFl 

ASSEMBLY COMPLETE. NO ERRORS 

6-39 



APPLICATIONS 

:FI:ASM4B :F3:SENSOR NOOB~ECT PRINT(:LP:) 

ISIS-II MCS-4B/UPI-41 MACRO ASSEMBLER. V3.0 PAGE 

LDC aBJ LINE SOURCE STATEMENT 

I $MOD4IA 
2 
3 
4 
5 
6 
7 
B 
9 

10 
II 
12 

********************************************** 
* UPI-4IA SENSOR MATRIX CONTROLLER * 
****************************************.***** 

THIS PROGRAM USES THE UPI-4IA AS A SENSOR MATRIX CONTROLLER. 
, IT HAS MONITORING CAPABILITIES OF UP TO 128 8ENSORS. THE COORDINATE 
,AND SENSOR STATUS OF EACH DETECTED CHANGE IS AVAILABLE TO THE MASTER 
,MICROPROCESSOR IN A SINGLE BYTE. A 40X8 FIFO GUEUE 18 PROVIDED FOR 
,DATA BUFFERING. BOTH HARDWARE OR POLLED INTERRUPT METHODS CAN BE USED 
'TO NOTIFY THE MASTER OF A DETECTED SENSOR CHANGE. 

13 J*********************************************************************** 
14 
15 ,REGISTER DEFINITIONS: 
16 , REGISTER 
17 , 
18 
19 
20 
21 , 
22 , 
23 
24 , 
25 , 
26 , 

RO 
RI 
R2 
R3 
R4 
R5 
R6 
R7 

RBG 

MATRIX MAP POINTER 
FIFO POINTER 
SCAN ROW SELECT 
COLUMN COUNTER 
FIFO-IN 
FIFO-OUT 
CHANGE WORD 
COMPARE 

RBI 

NOT 
NOT 
NOT 
NOT 
NOT 
NOT 
NOT 
NOT 

USED 
USED 
USED 
USED 
USED 
USED 
USED 
USED 

27 J******************************************************************.**** 
28 , 
29 ,PORT PIN DEFINITIONS: 
30 , 
31 ,PIN 
32 ,---
33 ,PO-7 
34 , 
35 , 
36 , 
37 , 

PORT I FUNCTION 

COLUMN LINE INPUTS 

PIN 

PO-3 
P4 
P5 
P6-7 

PORT 2 FUNCTION 

ROW SELECT OUTPUTS 
FIFO NOT EMPTY INTERRUPT 
OBF INTERRUPT 
NOT USED 

38 J*********************************************************************** 
39 
40 $E~ECT 



APPLICATIONS 

ISIS-II MCS-4B/UPI-41 MACRO ASSEMBLER. V3.0 PAGE 2 

LOC OB.J 

OOOF 
OOOB 
002F 

LINE SOURCE STATEMENT 

41 i********* •• *********************************************************. 
42 
43 • CHANGE WORD BIT DEFINITION: 
44 
4:1 
46 
47 
4B 
49 

BIT 

DO-6 
D7 

FUNCTION 

SENSOR COORDINATE 
SENSOR STATUS 

~O i***********************.*********************************.************* 
:11 
52 • STATUS REGISTER BIT DEFINITION: 
:13 
:14 
:1:1 
56 , 
:17 , 
:18 
59 
60 , 

BIT 

DO 
DI-3 
D4 
D5-7 

FUNCTION 

OBF 
IBF, FO, Fl (NOT USED) 
FIFO NOT EMPTY 
USED DEFINED (NOT USED) 

61 j**********************************************************.************ 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 

EOUATES 

• THE FOLLOWING CODE DESIGNATES THREE VARIABLES. SCANTM.FIFOBA 
• AND FIFOTA. SCANTM AD.JUSTS THE LENGTH OF A DELAY BETWEEN 
• SCANNING SWITCH. THIS SIMULATES DEB OUNCE FUNCTIONS. FIFOBA 
• IS THE BOTTOM ADDRESS OF THE FIFO. FIFOTA IS THE TOP ADDRESS 
.OF THE FIFO. THIS MAKES IT POSSIBLE TO HAVE A FIFO 3 TO 40 
.BYTES IN LENGTH. 

72 j************.*******************************************************. 
73 
74 
7:1 
76 
77 

SCANTM 
FIFOBA 
FIFOTA 

78 SE.JECT 

EOU 
EOU 
EOU 

OFH 
OBH 
2FH 

.SCAN TIME AD.JUST 

.FIFO BOTTOM ADDRESS 

.FIFO TOP ADDRESS 

6-41 



APPLICATIONS 

1515-1 I MCS-48/UPI-41 MACRO ASSEMBLER. V3.0 PAGE 3 

LoC oBJ 

0000 
0000 BB3F 
0002 BAOF 
0004 BC08 
0006 BD2F 
0008 89FF 
QODA 2300 
coDe 90 
OOOD FA 
CODE 3A 
OOOF 09 
0010 AO 
0011 FA 
0012 CblB 
0014 C8 
0015 CA 
0016 0400 
0018 BAI0 
aOIA FA 
001B 3A 
OOIC F~ 

LINE SOURCE STATEMENT 

79 j.******************************************************************** 
80 
81 INITIALIZATION 
82 
83 ; THE PROGRAM STARTS AT THE FOLLOWING CODE UPON RESET. WITHIN 
84 ;THIS INITIALIZATION SECTION THE REGISTERS THAT MAINTAIN THE MATRIX 
85 ; MAP. FIFO AND ROW SCANNING ARE SET UP. PORT 1 IS SET HIGH FOR USE 
86 JAS AN INPUT PORT FOR THE COLUMN STATUS. BIT 4 OF STATUS REGISTER IS 
87 ; WRITTEN TO CONVEY A FIFO EMPTY CONDITION. THE INITIAL COLUMN STATUS 
88 ;oF ALL THE ROWS IN THE SENSOR MATRIX IS THEN READ INTO THE MATRIX 
89 ;MAP. ONCE THE MATRIX MAP IS FILLED THE OBF INTERRUPT (PORT 2-4) IS 
90 ; ENABLED. 
91 
92 i***************************************************** ****************** 
93 
94 oRG 0 
9~ INITMX: MOV 
96 MOV 
97 MoV 
98 MOV 
99 QRL 

100 MOV 
101 MOV 
102 FILLMX. MoV 
103 DUTL 
104 IN 
105 MoV 
106 MoV 
107 JZ 
108 DEC 
109 DEC 
110 JMP 
111 oBFINT MoV 
112 MOV 
113 DUTL 
114 EN 
115 
116 SEJECT 

RO.,..,3FH 
R2.IIOFH 
R4.IIFIFoBA 
R~.""FIFOTA 

Pl .• 0FFH 
A.,..,OOH 
5TS.A 
A,R2 
P2,A 
A,Pl 
@RO.A 
A,R2 
OBFINT 
RO 
R2 
FILLMX 
R2,""10H 
A,R2 
P2.A 
FLAGS 

jMATRIX MAP POINTER REGISTER, TOP ADDRESS 
; SCAN ROW SELECT REGISTER. TOP ROW 
;FIFo INPUT ADDRESS REGISTER. BOTTOM OF FIFO 
jFIFO OUTPUT ADDRESS REGISTER, TOP OF FIFO 
j INITIALIZE PORT 1 HIGH FOR INPUTS 
j INITIALIZE STATUS REGISTER. FIFO EMPTY 
i WRITE TO STATUS REGISTER. BITS 4-7 
; SCAN ROW SELECT TO ACCUMULATOR 
iOUTPUT SCAN ROW SELECT TO PORT 2 
; INPUT COLUMN STATUS PORT 1 
iLOAD MATRIX MAP WITH COLUMN STATUS 
; CHECK SCAN ROW SELECT REGISTER VALUE FOR 0 
j IF 0 ENABLE OBF INTERRUPT 
iDECREMENT TO NEXT MATRIX MAP ADDRESS 
iDECREMENT TO SCAN NEXT ROW 
IFILL NEXT MATRIX MAP ADDRESS 
.BIT 4 HIGH IN ROW SCAN SELECT REGISTER 
.ROW SCAN SELECT VALUE TO ACCUMULATOR 
J INITIALIZE PORT 2, BIT 4 FOR "EN FLAGS" 
j ENABLE OBF INTERRUPT PORT 2, BIT 4 

6-42 



APPLICATIONS 

1915-1 I MCS-48/UPI-41 MACRO ASSEMBLER, V3.0 PAGE 4 

LOC OBJ 

001D FA 
OOIE ~30F 
0020 C626 
0022 C8 
0023 CA 
0024 042C 
0026 B83F 
0028 FA 
0029 430F 
002B AA 
002C FA 
002D 3A 
002E BBOF 
0030 EB30 
0032 09 
0033 20 
0034 DO 
0035 AF 
0036 C669 

LINE SOURCE STATEMENT 

117 .********************************************************************** 
118 
119 SC AN AND COMPARE 
120 
121 ,THE FOLLOWING CODE IS THE SCAN AND COMPARE SECTION OF THE PROGRAM. 
122 ,UPON ENTERING THIS SECTION A CHECK IS MADE TO SEE IF THE ENTIRE MATRIX 
123 ,HAS BEEN SCANNED. IF SO THE REGISTERS THAT MAINTAIN THE MATRIX MAP AND ROW 
124 ,SCANNING ARE RESET TO THE BEGINNING OF THE SENSOR MATRIX. IF THE ENTIRE 
125 ,MATRIX HASNT BEEN SCANNED THE REGISTERS INCREMENT TO SCAN THE NEXT ROW. 
126 ,FROM THIS POINT ON THE ROW SCAN SELECT REGISTER IS USED FOR TWO FUNCTIONS. 
127 ,BITS 0-3 FOR SCANNING AND BITS 4 AND 5 FOR THE EXTERNAL INTERRUPTS. THUSLY 
128 ,ALL USAGE OF THE REGISTERS IS DONE BY LOGICALLY MASKING IT SO AS TO ONLY 
129 ,AFFECT THE FUNCTION DESIRED. ONCE THE REGISTERS ARE RESET. ONE ROW OF THE 
130 ,SENSOR MATRIX IS SCANNED. A DELAY IS EXECUTED TO ADJUST FOR SCAN TIME 
131 ,(DEBOUNCE) A BYTE OF COLUMN STATUS IS THEN READ INTO THE MATRIX MAP. 
132 ,AT THE TIME THE NEW COLUMN STATUS IS COMPARED TO THE OLD. THE RESULT IS 
133 ,STORED IN THE COMPARE REGISTER. THE PROGRAM IS THEN ROUTED ACCORDING TO 
134 ,WHETHER OR NOT A CHANGE WAS DETECTED. 
135 
136 i********************************************************************* 
137 
138 ADJREG: MOV 
139 ANL 
140 JZ 
141 DEC 
142 DEC 
143 JMP 
144 RSETRG' MOV 
145 
146 
147 
148 
149 
150 
151 
152 
153 

SCANMX: 

DELAY2: 

MOV 
ORL 
MOV 
MOV 
OUTL 
MOV 
DJNZ 
IN 
XCH 

1:54 XRL 
155 MOV 
156 JZ 
157 
158 .EJECT 

A.R2 
A .• OFH 
RSETRG 
RO 
R2 
SCANMX 
RO .• 3FH 
A,R2 
A •• OFH 
R2.A 
A. R2 
P2.A 
R3 •• SCANTM 
R3.DELAY2 
A.Pl 
A.(!RO 
A,I!RO 
R7.A 
CHFFUL 

SCAN ROW SELECT TO ACCUMULATOR 
CHECK FOR 0 SCAN VALUE ONLY. NOT INTERRUPT 
IF 0 RESET REGISTERS 
DECREMENT MATRIX MAP POINTER 
DECREMENT SCAN ROW SELECT 
SCAN MATRIX 
RESET MATRIX MAP POINTER REGISTER. TOP ADDRESS 
SCAN ROW SELECT TO ACCUMULATOR 
RESET SCAN ROW SELECT.NO INTERRUPT CHANGE 
SCAN ROW SELECT REGISTER 
SCAN ROW SELECT TO ACCUMULATOR 
OUTPUT SCAN ROW SELECT TO PORT 2 
SET DELAY FOR OUTPUT SCAN TIME 
DELAY 
INPUT COLUMN STATUS FROM PORT 1 TO ACCUMULATOR 
STORE NEW COLUMN STATUS SAVE OLD IN ACCUMULATOR 
COMPARE OLD WITH NEW COLUMN STATUS 
SAVE COMPARE RESULT IN COMPARE REGISTER 
IF THE SAME. CHECK IF FIFO IS FULL 

6·43 



APPLICATIONS 

ISIS-II MCS-48/UPI-41 MACRO ASSEMBLER. V3.0 PAGE 

LOC OB" 

0038 8808 
003A C8 
0038 FO 
003C 77 
003D AO 
003E FF 
003F 77 
0040 AF 
0041 F24~ 
0043 0469 
004' FA 
0046 ~30F 
0048 E7 
0049 E7 
004A E7 
004B 4B 

004C AE 
004D FO 
004E 5380 
OO~O 4E 
00" AE 

LINE SOURCE STATEMENT 

159 ;************************************************************************ 
160 
161 CHANGE WORD ENCODING 
162 
163 • THE FOLLOWING CODE IS THE CHANGE WORD ENCODING SECTION. THIS 
164 ,SECTION IS ONLY EXECUTED IF A CHANGE WAS DETECTED THE COLUMN COUNTER 
16~ , IS SET AND DECREMENTED TO DESIGNATE EACH OF THE 8 COLUMNS. THE COMPARE 
166 ,REGISTER IS LOOKED AT ONE BIT AT A TIME TO FIND THE EXACT LOCATION OF 
167 ,THE CHANGE(S)' WHEN A CHANGE IS FOUND IT IS ENCODED BY GIVING IT A 
168 ,COORDINATE FOR ITS LOCATION. THIS IS DONE BY COMBINING THE PRESENT VALUE 
169 ; IN THE ROW SCAN SELECT REGISTER AND THE COLUMN COUNTER. THE ACTUAL STATUS 
170 ,OF THAT SENSOR IS ESTABLISHED BY LOOKING AT THE CORRESPONDING BYTE IN 
171 ,THE MATRIX MAP. THIS STATUS IS COMBINED WITH THE COORDINATE TO ESTABLISH 
172 • THE CHANGE WORD. THE CHANGE WORD IS THEN STORED IN THE CHANGE WORD REGISTER 
173 
174 .********************************************************************* 
175 
176 MOV 
177 RRLOOK: DEC 
178 MOV 
179 RR 
180 MOV 
181 MOV 
182 RR 
183 MOV 
184 JB7 
18~ "MP 
186 ENCODE: MOV 
187 ANL 
188 RL 
189 RL 
190 RL 
191 ORL 
192 
193 MOV 
194 MOV 
195 ANL 
196 ORL 
197 MOV 
198 
199 $EJECT 

A.(!RO 
A 
@RO,A 
A.R7 
A 
R7.A 
ENCODE 
CHFFUL 
A. R2 
A,ft:OFH 
A 
A 
A 
A.R3 

R6.A 
A.i!RO 
A •• 80H 
A,R6 
R6,A 

,SET COLUMN COUNTER REGISTER TO 8 
,DECREMENT COLUMN COUNTER 
,COLUMN STATUS TO ACCUMULATOR 
,ROTATE COLUMN STATUS RIGHT 
,ROTATED COLUMN STATUS BACK TO MATRIX MAP 
,COMPARE REGISTER VALUE TO ACCUMULATOR 
,ROTATE COMPARE VALUE RIGHT 
,ROTATED COMPARE VALUE TO COMPARE REGISTER 
iTEST BIT 7 IF CHANGE DETECTED ENCODE CHANGE WORD 
j IF NO CHANGE IS DETECTED CHECK FOR FIFO FULL 
,SCAN ROW SELECT TO ACCUMULATOR OOOOXXXX 
JROTATE ONLY SCAN VALUE 
,ROTATE LEFT OOOXXXXO 
jROTATE LEFT OOXXXXOO 
,ROTATE LEFT OXXXXOOQ 
,ESTABLISH MATRIX COORDINANT OXXXXXXX 
,(DR) COLUMN COUNTER VALUE WITH ACCUMULATOR 
; SAVE COORDINANT IN CHANGE WORD REGISTER 
,COLUMN STATUS FROM MATRIX MAP TO ACCUMULATOR 
,0 ALL BITS BUT BIT 7 
j (OR) SENSOR STATUS WITH COORDINATE FOR COMPLETED CHANGE WORD 
jSAVE CHANGE WORD XXXXXXXX 

6-44 



APPLICATIONS 

ISIS-II MCS-48/UPI-41 MACRO ASSEMBLER. V3.0 PAGE 10 

LaC OB-J 

00~2 FC 
00~3 A9 
OO~4 FE 
OO~, AI 
OO~b 2310 
00'8 90 
0059 8A20 
005B FA 
OO'C 4320 
OO'E AA 
005F 232F 
0061 DC 
00102 Cbb7 
00104 IC 
006:5 0469 
00107 BC08 
00109 FC 
OObA DO 
OObB 91070 
00100 810100 
006F 232F 
0071 DO 
0072 Cb77 
0074 10 
0075 0479 
0077 BD08 
0079 FD 
007A A9 
007B FI 
007C 02 
0070 FB 
007E 9b3A 
0080 2308 

LINE 

200 
201 
202 
203 
204 
20' 
2010 
207 
208 
209 
210 
211 
212 
213 
214 
215 
2110 
217 
218 
219 
220 
221 
222 
223 
224 
22' 
2210 
227 
228 
229 
230 
231 
232 
233 
234 
235 
2310 
237 
238 
239 
240 
241 
242 
243 
244 
245 
2410 
247 
248 
249 
250 
251 

SOURCE STATEMENT 

i********************************************************************* 

FIFO-DBBOUT MANAGEMENT 

,THE FOLLOWING CODE IS THE FIFO-DBBOUT MANAGEMENT SECTION OF THE 
,PROGRAM. THIS SECTION TAKES AN ENCODED CHANGE WORD AND LOADS IT INTO 
,THE FIFO. THE FIFO NOT EMPTY INTERRUPT IS THEN SET AND THE FIFO-IN 
,POINTER GETS UPDATED. A FIFO FULL CONDITION IS THEN CHECKED FOR AND 
,ROUTED ACCORDINGLY. IF BOTH THE FIFO AND OBF HAVE CHANGE WORDS THE 
,PROGRAM LOCKS UP UNTIL THIS HAS CHANGED. IF THE FIFO ISNT FULL COLUMN 
I COUNTER- o. FIFO EMPTY AND OBF CONDITIONS ARE CHECKED. THE FIFO-OUT 
,POINTER IS SET AND DBBOUT IS LOADED IF THE FIFO ISNT EMPTY AND OBF ISNT 
,SET. IF THIS ISNT THE SITUATION. PROGRAM FLOW IS ROUTED BACK TO THE 
,THE SCAN AND COMPARE SECTION TO SCAN THE NEXT ROW 

l •••••••••••••••••••••••••••••••••• *.* •••••••••••••••• **************** 

LOADFF: MOV 
MOV 
MOV 
MOV 

STATNE: MOV 
MOV 

INTRHI: ORL 
MOV 
ORL 
MOV 

AD-JFIN: MOV 
XRL 
-JZ 
INC 
-JMP 

RSFFIN MOV 
CHFFUL: MOV 

XRL 
-JNZ 

CHOBFI: JOBF 
AO,-,FQT: MOV 

XRL 
JZ 
INC 
JMP 

RSFFOT: MOV 
LQADDB: MOV 

MOV 
MOV 
OUT 

CHCNTR: MOV 
JNZ 

CHFFEM: MOV 

$EJECT 

A.R4 
RI. A 
A.R6 
I!RI. A 
A •• IOH 
STS.A 
P2 •• 20H 
A.R2 
A •• 20H 
R2.A 
A •• FIFOTA 
A.R4 
RSFFIN 
R4 
CHFFUL 
R4 •• FIFOBA 
A.R4 
A.R5 
CHCNTR 
CHOBFI 
A.ttFIFQTA 
A.R5 
RSFFOT 
R5 
LOADDB 
R5 •• FIFOBA 
A. R:5 
R I. A 
A.I!RI 
DBB.A 
A. R3 
RRLOOK 
A •• FIFOBA 

FIFO INPUT ADDRESS TO ACCUMULATOR 
FIFO POINTER USED FOR INPUT 
CHANGE WORD TO ACCUMULATOR 
LOAD FIFO AT FIFO INPUT ADDRESS 
BIT 4 FOR FIFO NOT EMPTY 
WRITE TO STATUS REGISTER. FIFO NOT EMPTY 
FIFO NOT EMPTY INTERRUPT PORT 2-5 HIGH 
ROW SCAN SELECT TO ACCUMULATOR 
SAVE INTERRUPT. NO CHANGE TO SCAN VALUE 
ROW SCAN SELECT REGISTER 
FIFO TOP ADDRESS TO ACCUMULATOR 
COMPARE WITH CURRENT FIFO INPUT ADDRESS 
IF THE SAME RESET FIFO INPUT REGISTER 
NEXT FIFO INPUT ADDRESS 
CHECK FIFO FULL 
RESET FIFO INPUT REGISTER. BOTTOM OF FIFO 
FIFO INPUT ADDRESS TO ACCUMULATOR 
COMPARE INPUT WITH OUTPUT FIFO ADDRESS 
IF NOT SAME CHECK COLUMN COUNTER VALUE 
IF OBF IS I THEN CHECK OBF 
FIFO TOP ADDRESS TO ACCUMULATOR 
COMPARE TOP TO OUTPUT FIFO ADDRESS 
IF THE SAME RESET FIFO OUTPUT REGISTER 
NEXT FIFO OUTPUT ADDRESS 
LOAD DBBOUT 
RESET FIFO OUTPUT ADDRESS TO BOTTOM OF FIFO 
OUTPUT FIFO ADDRESS TO ACCUMULATOR 
FIFO POINTER USED FOR OUTPUT 
CHANGE WORD TO ACCUMULATOR 
CHANGE WORD TO DBBOUT 
COLUMN COUNTER TO ACCUMULATOR 
IF NOT 0 FINISH CHANGE WORD ENCODING 
FIFO BOTTOM ADDRESS TO ACCUMULATOR 

6·45 



APPLICATIONS 

ISIS-II MCS-48/UPI-41 MACRO ASSEMBLER, V3 0 

LOC OBJ LINE SOURCE STATEMENT 

0082 DC 
0083 CbBe 
0085 FC 
0086 07 
0087 DD 
0088 C691 
008A 049C 
008C 232F 
008E DO 
008F 969C 
0091 2300 
0093 90 
0094 9AOF 
0096 FA 
0097 '30F 
0099 AA 
OO'M 0410 
009C 8610 
009E 046F 

USER SYMBOLS 
AOJFEM 008C 
CHOBF2 009C 
INTRLO 0094 
SCANMX 002C 

252 XRL 
2~3 JZ 
254 MOV 
255 DEC 
2'6 XRL 
257 JZ 
258 JMP 
259 ADJFEM: MOV 
260 XRL 
261 JNZ 
262 STATMT: MOV 
263 MOV 
264 INTRLO: ANL 
26~ MOV 
266 ANL 
267 MOV 
268 vMP 
269 CHOBF2: JOBF 
270 JMP 
271 
272 END 

ADJFIN OO'F AOJFOT 
DELAY2 0030 ENCODE 
LOADDB 0079 LOADFF 
SCANTM OOOF STATMT 

ASSEMBLY COMPLETE. NO ERRORS 

A.R4 
AOJFEM 
A,R4 
A 
A.R' 
STATMT 
CHOBF2 
A.*FIFOTA 
A. R5 
CHOBF2 
A •• OOH 
STS.A 
P2 •• 0DFH 
A.R2 
A •• ODFH 
R2.A 
AO~REG 

ADJREG 
ADJFOT 

OObF ADJREG 
0045 FIFOBA 
0052 OBFINT 
0091 STATNE 

0010 
0008 
0018 
OOSb 

PAGE 

,COMPARE FIFO INPUT ADDRESS WITH FIFO BOTTOM ADD 
i IF THE SAME. ADJUST TO CHEC~ FOR FIFO EMPTY 

FIFO INPUT ADDRESS TO ACCUMULATOR 
DECREMENT FIFO INPUT ADDRESS IN ACCUMULATOR 
COMPARE INPUT TO OUTPUT FIFO ADDRESSES 
IF SAME. WRITE STATUS REGISTER FOR FIFO EMPTY 
CHECK OBF 
FIFO TOP ADDRESS TO ACCUMULATOR 
COMPARE TOP TO OUTPUT FIFO ADDRESS 
IF NOT SAME THEN FIFO IS NOT EMPTY. CHECK OBF 
CLEAR BIT 0 FOR FIFO EMPTY 
WRITE TO STATUS REGISTER 
FIFO EMPTY. INTERRUPT PORT 2-5 LOW 
SCAN ROW SELECT TO ACCUMULATOR 
SAVE INTERRUPT. NO CHANGE TO SCAN VALUE 
SCAN ROW SELECT REGISTER 
ADJUST REGISTERS 
IF OBF=I THEN ADJUST REGISTERS 
ADJUST FIFO OUT ADDRESS TO LOAD DBBOUT 

CHCNTR 0070 CHFFEM 0080 CHFFUL 
FIFOTA 002F FILLMX 0000 INITMX 
RRLOOK 003A RSETRG 0026 RSFFIN 

0069 
0000 
0067 

6-46 

CHOBFl OObD 
INTRHI 00'9 
RSFFOT 0077 



APPLICATIONS 

PROGRAMMABLE KEYBOARD INTERFACE 

• Simultaneous Keyboard and Display 
Operations 

• Interface Signals for Contact and 
Capacitive Coupled Keyboards 

• 128-Key Scanning Logic 

• 10. 7msec Matrix Scan Time for 128 Keys 
and 6MHz Clock 

• Eight Character Keyboard FIFO 

This application is a general purpose programmable 
keyboard and display interface device designed for 
use with 8·bit microprocessors like the MCS-SO and 
MCS-85. The keyboard portion can provide a 
scanned interface to 128-key contact or capacitive­
coupled keyboards. The keys are fully debounced 
with N -key rollover and programmable error genera­
tion on multiple new key closures. Keyboard entries 
are stored in an 8-character FIFO with overrun sta-

RL Vcc 

x, CLR 

X2 S3 

RESET S2 

NC S, 

Cs So 

GND KCL 

Rri Me 

AO MS 

WR M4 

SYNC M3 

DO M2 

D, M, 

D2 Mo 

D3 Voo 
D4 NC 

DS ERROR 

D6 IRQ 

D7 HYS 

GND SP 

Figure 1. Pin Configuration 

6-47 

• N-Key Rollover with Programmable 
Error Mode on Multiple New Closures 

• Sixteen or Eight Character Seven­
Segment Display Interface 

• Right or Left Entry Display RAM 

• Depress/Release Mode Programmable 

• Interrupt Output on Key Entry 

tus indication when more than 8 characters are en­
tered. Key entries set an interrupt request output to 
the master CPU. 

The display portion of the UPI-41A provides a 
scanned display interface for LED, incandescent 
and other popular display technologies. Both nu­
meric displays and simple indicators may be used. 
The UPI-41A has a 16X4 display RAM which can be 

INTERRUPT 
REQUEST 

Rri 
WR 
Cs 
AO 

+s­
PWR~ 

GND -.. 

INTERNAL 
sus 

Figure 2. Block Diagram 

SCAN 
QUTPUTS ,....., 

Me 

MO 

TQ 
DISPLAY 
DIGITS 



APPLICATIONS 

loaded or interrogated by the CPU. Both right entry 
calculator and left entry typewriter display formats 
are possible. Both read and write of the display 
RAM can be done with auto increment of the display 
RAM address. 

PRINCIPLES OF OPERATION 

The following is a description of the major elements 
of the Programmable Keyboard/Display interface 
device. Refer to the block diagram in Figure 1. 

1/0 Control and Data Buffers 
ORDERING INFORMATION: The I/O control section uses the CS, AO, RD, and 

WR lines to control data flow to and from the var­
ious internal registers and buffers (see Table 2). All 
data flow to and from the 8278 is enabled by CS. The 
8-bits of information being transferred by the CPU 
is identified by AO. A logic one means information is 
command or status. ~ic zero means the informa­
tion is data. RD and WR determine the direction of 
data flow through the Data Bus Buffer (DBB). The 

This part may be ordered as an 8041A with ROM 
code number 8278. The source code is available 
through Insite. 

Throughout this application of the UPI-41A, it will 
be referred to by its ROM code number, 8278. The 
8278 is packaged in a 40-pin DIP. The following is a 
brief functional description of each pin. 

Table 1. Pin Description 

Signal Pin. No. Type Name and Function 

DO-D7 12-19 I/O Data Bus: Three-state, bi-directional data bus lines used to transfer data and com-
mands between the CPU and the 8278. 

WR 10 I Write: Write strobe which enables the master CPU to write data and commands be-
tween the CPU and the 8278. 

RD 8 I Read: Read strobe which enables the master CPU to read data and status from the 
8278 internal registers. 

CS 6 I Chip Select: Chip select input used to enable reading and writing to the 8278. 

AO 9 I Control/Data: Address input used by the CPU to indicate control or data. 
RESET 4 I Reset: A low signal on this pin resets the 8278. 
X1,X2 2,3 I Freq. Reference Inputs: Inputs for crystal, L-C or external timing signal to deter-

mine internal oscillator frequency. 
IRQ 23 0 Interrupt Request: Interrupt Request Output to the master CPU. In the keyboard 

mode the IRQ line goes low with each FIFO read and returns high if there is still infor-
mation in the FIFO or an ERROR has occurred. 

Mo-M6 27-33 0 Matrix Scan Lines: Matrix scan outputs. These outputs control a decoder which 
scans the key matrix columns and the 16 display digits. Also, the Matrix scan outputs 
are used to multiplex the return lines from the key matrix. 

RL 1 I Keyboard Return Line: Input from the multiplexer which indicates whether the key 
currently being scanned is closed. 

HYS 22 0 Hysteresis: Hysteresis output to the analog detector. (Capacitive keyboard configu-
ration). A "0" means the key currently being scanned has already been recorded. 

KCL 34 0 Key Clock: Key Clock output to the analog detector (capacitive keyboard configura-
tion) used to reset the detector before scanning a key. 

SYNC 11 0 Output Clock: High frequency (400 kHz) output signal used in the key scan to detect 
a closed key (capacitive keyboard configuration). 

BO-B3 35-38 0 Display Outputs: These four lines contain binary coded decimal display information 
synchronized to the keyboard column scan. The outputs are for multiplexed digital 
displays. 

ERROR 24 0 Error Signal: This line is high whenever two new key closures are detected during a 
single scan or when too many characters are entered into the keyboard FIFO. It is reset 
by a system RESET pulse or by a "I" input on the CLR pin or by the CLEAR ERROR 
command. 

CLR 39 I Clear Error: Input used to clear an ERROR condition in the 8278. 
BP 21 0 Tone Enable: Tone enable output. This line is high for 10ms following a valid key 

closure; it is set high and remains high during an ERROR condition. 

VCC, VDD 40,26 I Power: +5 volt power input: +5V ± 10%. 
GND 20,7 I Ground: Signal ground. 

6-48 



APPLICATIONS 

DBB register is a bi-directionaI8-bit buffer register 
which connects the internal 8278 bus buffer register 
to the external bus. When the chip is not selected 
(CS = 1) the DBB is in the high im~ance state. 
The DBB acts as an input when (RD, WR, CS) = (1, 
0, 0) and an output when (RD, WR, CS) = (0, 1, 0). 

Table 2. 1/0 Control and Data Buffers 

CS AO WR RD Condition 

0 0 1 0 Read DBB Data 
0 1 1 0 Read STATUS 
0 0 0 1 Write Data to DBB 

0 1 0 1 Write Command to DBB 
1 X X X Disable 8278 Bus, 

High Impedance 

Scan Counter 
The scan counter provides the timing to scan the 
keyboard and display. The four MSB's (M3-M6) 
scan the display digits and provide column scan to 
the keyboard via a 4 to 16 decoder. The three LSB's 
(MO-M2) are used to multiplex the row return lines 
into the 8278. 

Keyboard Debounce and Control 
The 8278 system configuration is shown in Figure 3. 
The rows of the matrix are scanned and the outputs 

are multiplexed by the 8278. When a key closure is 
detected, the debounce logic waits about 12 msec to 
check if the key remains closed. If it does, the ad­
dress of the key in the matrix is transferred into a 
FIFO buffer. 

FIFO and FIFO Status 
The 8278 contains an 8X8 FIFO character buffer. 
Each new entry is written into a successive FIFO lo­
cation and each is then read out in the order of entry. 
A FIFO status register keeps track of the number of 
characters in the FIFO and whether it is full or emp­
ty. Too many reads or key entries will be recognized 
as an error. The status can be read by a RD with CS 
low and AO high. The status logic also provides a 
IRQ signal to the master processor whenever the 
FIFO is not empty. 

Display Address Registers and Display RAM 
The Display Address registers hold the address of 
the word currently being written or read by the CPU 
and the two 4-bit nibbles being displayed. The 
read/write addresses are programmed by CPU com­
mand. They also can be set to auto increment after 
each read or write. The display RAM can be directly 
read by the CPU after the correct mode and address 
is set. Data entry to the display can be set to either 
left or right entry. 

TO TONE GENERATOR 

ANALOG 
DETECTOR 

TO 
8080. 8085 OR 8048 

MASTER 
PROCESSOR 

r_ 

< 8 

:lHYS~ BP 

ERROR KCl 
ClR M.2 

IRQ M3 
8041AI 
B741A 

00-07 

WR SYNC 
AD 

"!6 
AO 

Cs 
RESET MO 

83'··· 'BO 

8 OR 16 DIGIT DISPLAY 

I 
I ANALOG I I MULTIPLEXER 

--8-

-
! 

~ 
4 TO 16 
DECODE 16 

~ 
'---

I 
I 

I 

CAPACITIVE 
KEYBOARD 

MATRIX 

~TSCAN 
Figure 3. System Configuration for Capacitive-Coupled Keyboard 

6-49 



APPLICATIONS 

TO 
8080, 8085 OR 8048 

MASTER 
PROCESSOR 

-
8 

BP Rl 

ERROR 

ClR M. 

IRa MO 
8041A/ 
8741A 

00-07 

WR 
-
RD 

"!6 
AO 

cs 
RESET M3 

63··.· .60 

TO TONE GENERATOR 

I 
DIGITAL I 

MUl TIPLEXEA 

r-- B --

r--

I 

R 4 TO 16 I 
DECODE 16 

i 

~ ~ 
'---

4 TO 16 
DECODE 

I 
I 

I 

CONTACT 

~- 16 --I 16 DIGIT SCAN 
KEYBOARD 

MATRIX 

8 OR 16 DIGIT DISPLAY 

Figure 4. System Configuration for Contact Keyboard 

COMMANDS 
The 8278 operating mode is programmed by the 
master CPU using the AO, WR and DO-D7 inputs as 
shown below: 

AO, cs 3 _____ VA_Ll_D ___ ....IX'--_'_NV_A_LlD_ 

\ / 
00-07 INVALID X VALID X INVALID 

The master CPU presents the proper command on 
the DO-D7 data lines with AO =1 and then sends a 
WR pulse. The command is latched by the 8278 on 
the rising edge of the WR and is decoded internally 
to set the proper operating mode. See the 
8041A/8741A data sheet for timing details_ 

Command Summary 

KEYBOARD/DISPLAY MODE SET 

CODE lolololNIElllDIK 

Where the mode set bits are defined as follows: 
K-the keyboard mode select bit 

O-normal key entry mode 
I-special function mode: Entry on key closure 

and on key release 
D-the display entry mode select bit 

O-left display entry 
I-right display entry 

I-the interrupt request (IRQ) output enable bit. 
O-enable IRQ output 
I-disable IRQ output 

E-the error mode select bit 

6-50 

O-error on multiple key depression 
I-no error on multiple key depression 

N-the number of display digits select 
0-16 display digits 
1-8 display digits 

NOTE: 
The default made following a RESET input is all bits zero: 

I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 

READ FIFO COMMAND 

CODE I 0 I 1 I 0 I 0 I 0 I 0 I 0 I 0 

READ DISPLAY COMMAND 

CODE I 0 I 1 I 1 I AI I Aa I A2 I A, I AO I 



APPLICATIONS 

Where AI indicates Auto Increment and Aa-Ao is 
the address of the next display character to be read 
out. 

AI = 1 AUTO increment 
AI = 0 no AUTO increment 

WRITE DISPLAY COMMAND 

CODE I 1 I 0 I 0 I AI I A3 I A2 I A1 I Ao I 

Where AI indicates Auto Increment and Aa-Ao is 
the address of the next display character to be 
written. 

CLEAR/BLANK COMMAND 

CODE 11 1011 IUDIBDICDICFICEI 

Where the command bits are defined as follows: 
CE = Clear ERROR 
CF = Clear FIFO 
CD = Clear Display to all High 
BD = Blank Display to all High 
UD = Unblank Display 

The display is cleared and blanked following a 
Reset. 

Status Read 
The status register in the 8278 can be read by the 
master CPU using the AQ, RD, and DO-D7 inputs as 
shown below: 

AO,CS ==:x VALID 

The 8278 places 8-bits of status information on the 
DO-D7lines following (AQ, CS, RD) = 1,0,0 inputs 
from the master. 

Status Format 

I S3 I S2 I S1 I So I BIKE IIBF IOBF I 
07 De 06 04 03 02 01 DO 

Where the Btatus bits are defined as follows: 
IBF = Input Buffer Full Flag 
OBF = Output Buffer Full Flag 
KE = Keyboard Error Flag (multiple depression) 
B = BUSY Flag 
Sa-So = FIFO Status 

STATUS DESCRIPTION 

The Sa-So status bits indicate the number of entries 
(0 to 8) in the 8-level FIFO. A FIFO overrun will lock 
status at 1111. The overrun condition will prevent 
further key entries until cleared. 

A multiple key closure error will set the KE flag and 
prevent further key entries until cleared. 

The IBF and OBF flags signify the status of the 8278 
data buffer registers used to transfer information 
(data, status or commands) to and from the master 
Cpu. 

The IBF flag is set when the master CPU writes 
Data or Commands to the 8278. The IBF flag is 
cleared by the 8278 during its response to the Data 
or Command. 

The OBF flag is set when the 8278 has output data 
ready for the master CPU. This flag is cleared by a 
master CPU Data READ. 

The Busy flag in the status register is used as a 
LOCKOUT signal to the master processor during re­
sponse to any command or data write from the 
master. 

6-51 

The master must test the Busy flag before each read 
(during a sequence) to be sure that the 8278 is ready 
with valid DATA. 

The ERROR and TONE outputs from the 8278 are 
set high for either type of error. Both types of error 
are cleared by the CLR input, by the CLEAR ER­
ROR command, or by a reset. The FIFO and Display 
buffers are cleared independently of the Errors. 

FIFO status is used to indicate the number of char­
acters in the FIFO and to indiate whether an error 
has occurred. Overrun occurs when the entry of an­
other character into a full FIFO is attempted. Un­
derrun occurs when the CPU tries to read an empty 
FIFO. The character read will be the last one en­
tered. FIFO status will remain at 0000 and the error 
condition will not be set. 

Data Read 
The master CPU can read DATA from the 8278 
FIFO or Display buffers by using the AQ, RD, and 
DO-D7 inputs. 

The master sends a RD pulse with AO = 0 and CS = 0 
and the 8278 responds by outputting data on lines 
~D7. The data is strobed by the trailing edge of 
RD. 



APPLICATIONS 

DATA READ SEQUENCE 

Before reading data, the master CPU must send a 
command to select FIFO or Display data. Following 
the command, the master must read STATUS and 
test the BUSY flag and the OBF flag to verify that 
the 8278 has responded to the previous command. A 
typical DATA READ sequence is as follows: 

BUSY J L 
OBF 1--__ ......11 

t 
READ DISPLAY FIRST MASTER NEXT 

OR FIFO COMMAND DATA BYTe READS DATA BYTe REAOY 
FROM MASTER READY 8278 

PROCESSING 
NEXT BYTe 

After the first read following a Read Display or Read 
FIFO command, successive reads may occur as soon 
as OBF rises. 

Data Write 
The master CPU can write DATA to the 8278 Dis­
play buffers by using the AO, WR and DO-D7 inputs 
as follows: 

AO, Cs 3 ______ V_AL_'D ___ -JX INVALID 

The master CPU presents the Data on the DO-D7 
lines with AO=O and then sends a WR pulse. The 
data is latched by the 8278 on the rising edge of WR. 

DATA WRITE SEQUENCE 

Before writing data to the 8278, the master CPU 
must first send a command to select the desired dis­
play entry mode and to specify the address of the 
next data byte. Following the commands, the master 
must read STATUS and test the BUSY flag (B) and 
IBF flag to verify that the 8278 has responded. A 
typical sequence is shown below. 

~J L 
IBF 

WRITE DISPLAY 8278 MASTER 8278 8278 
COMMAND READY DATA WRITE READY READY 

FOR FIRST BYTe 
COMMAND MASTER WRITES 
OR DATA NEXT BYTe 

INTERFACE CONSIDERATIONS 

Scanned Keyboard Mode 
With N-key rollover each key depression is treated 
independently from all others. When a key is de­
pressed the debounce logic waits for a full scan of 
128 keys and then checks to see if the key is still 
down. If it is, the key is entered into the FIFO. 

If two key closures occur during the same scan the 
ERROR output is set, the KE flag is set in the Status 
word, the TONE output is activated and IRQ is set, 
and no further inputs are accepted. This condition is 
cleared by a high signal on the CLEAR input or by a 
system RESET input or by the CLEAR ERROR 
command. 

In the special function mode both the key closure 
and the key release cause an entry to the FIFO. The 
release is entered with the MSB=l. 

Any key entry triggers the TONE output for 10ms. 

The HYS and KCL outputs enable the analog multi­
plexer and detector to be synchronized for interface 
to capacitive coupled keyboards. 

Data Format 
In the scanned keyboard mode, the code entered 
into the FIFO corresponds to the position or address 
of the switch in the keyboard. The MSB is relevant 
only for special function keys in which code "0" sig­
nifies closure and "1" signifies release. The next four 
bits are the column count which indicates which col­
umn the key was found in. The last three bits are 
from the row counter. 

6-52 

BIT 

Display 

6 5 4 3 2 o 

1 FOR SPECIAL FUNCTION 
MODE AND KEY RELEASED 
o FOR KEY DEPRESSED 

Display data is entered into a 16X4 display register 
and may be entered from the left, from the right or 



APPLICATIONS 

COUNT 

MO 

M, 

M, 

"YS { X X X X X 
KCL l n n n n n 

RL SAMPLED t 

Figure 5. Keyboard Timing 

SCAN CYC1.E 

IRQ 

BP 

--------------------~ 

ERROR 

--------------------------------------~ 

KEY 1 
DEPRESSED 

KEY 1 KEY 1 
ENTERED READ BY MASTER 

KEY 2 KEY 3 
DEPRESSED DEPRESSED 

Figure 6. Key Entry and Error Timing 

DISPLAY 
CHARACTER 

M4 

----------------~ 

M5 ______________________________________________ ~ 

X 
n 

BO-B3 \\-..----/1 \~----JI \~----JI \~---JI \\-..---JI \\-..---JI \'--_ 

Figure 7. Display Timing 

6-53 



APPLICATIONS 

into specific locations in the display register. A new 
data character is put out on BO-B3 each time the 
Ms-M3lines change (i.e., once every O.75ms with a 6 
MHz crystal). Data is blanked during the time the 
column select lines change by raising the display 
outputs. Output data is positive true. 

LEFT ENTRY 

The left entry mode is the simplest display format in 
that each display position in the display corresponds 
to a byte (or nibble) in the Display RAM. ADDRESS 
o in the RAM is the left-most display character and 
ADDRESS 15 is the right-most display character. 
Entering characters from position zero causes the 
display to fill from the left. The 17th character is en­
tered back in the left-most position and filling again 
proceeds from there. 

RIGHT ENTRY 
Right entry is the method used by most electronic 
calculators. The first entry is placed in the right­
most display character. The next entry is also placed 
in the right-most character after the display is 
shifted left one character. The left-most character is 
shifted off the end and is lost. 

OISPLAY 
2 14 15 0 RAM 

1ST ENTRY I I 1 
I ADDRESS 

3 15 0 

2ND ENTRY I 1 I 2 

3 4 0 2 

3RDENTRY I 1 I 2 I 3 I 
0 13 14 15 

16TH ENTRY I 1 I 2 I 141 16 1 16 1 

2 14 16 0 

17TH ENTRY I 2 I 3 I I 15 1 16 1 171 

2 3 16 0 

18TH ENTRY I 3 I 4 I I 16 1 171 18 I 

Note that now the display position and register ad­
dress do not correspond. Consequently, entering a 
character to an arbitrary position in the Auto Incre­
ment mode may have unexpected results. Entry 
starting at Display RAM ADDRESS 0 with sequen­
tial entry is recommended. A Clear Display com­
mand should be given before display data is entered 
if the number of data characters is not equal to 16 (or 
8) in this mode. 

AUTO INCREMENT 
In the Left Entry mode, Auto Incrementing causes 
the address where the CPU will next write to be in­
cremented by one and the character appears in the 
next location. With non-Auto Incrementing the en­
try is both to the same RAM address and display po­
sition. Entry to an arbitrary address in the Left 
Entry-Auto Increment mode has no undesirable 
side effects and the result is predictable: 

DISPLAY 
o 2 3 4 5 6 RAM 

,--r--r--r-r----r--r--r-'I ADDRESS 
1 ST ENTRY .... 1 _1 -L---"_.L---'---''--''''---'----'. 

o 234 667 

2ND ENTRY 1.-1 _1 .... 1_2--"_.L---'---''--''''---'----' 

COMMAND 
10010101 

o 234 6 6 

ENTER NEXT AT LOCATION 5 AUTO INCREMENT 

0 2 3 4 5 6 

3RD ENTRY I 1 I 2 I 3 I 
0 2 3 4 5 6 7 

4TH ENTRY I 1 I 2 I 3 I 4 I 
In the Right Entry mode, Auto Incrementing and 
non-Incrementing have the same effect as in the Left 
Entry except that the address sequence is inter-
rupted. 

DISPLAY 
2 3 4 6 6 0 RAM 

1ST ENTRY 
I ADDRESS 

2 3 4 5 6 0 

2ND ENTRY 2 

2 3 4 5 6 0 
COMMAND 

1 1 1 1 1 1 
1 1 121 

10010101 

ENTER NEXT AT LOCATION 5 AUTO INCREMENT 

3 4 5 6 7 0 2 

3RD ENTRY I 3 I 1 I 2 

4 5 6 0 2 3 

4TH ENTRY I 3 I 4 I 1 I 2 I 
6-54 



APPLICATIONS 

Starting at an arbitrary location operates as shown 
below. 

COMMAND 
10010101 

o 3 4 5 6 
DISPLAY 
RAM 

I I I I I I I I I ADDRESS 

ENTER NEXT AT LOCATION 5 AUTO INCREMENT 

3 4 5 6 0 

1ST ENTRY 
1 

1 

3 4 5 6 0 

2ND ENTRY 11 1 2 

8TH ENTRY 1 4 51 6 1 7 1 8 11 1 2 1 3 

9TH ENTRY 51 6 1 7 1 8 1 9 1 2 1 3 1 4 

Entry appears to be from the initial entry point. 

6-55 









8041 AJ8641 AJ8741 A 
UNIVERSAL PERIPHERAL INTERFACE 

8·BIT MICROCOMPUTER 
• 8·Bit CPU plus ROM, RAM, I/O, Timer 

and Clock In a Single Package 

• One 8·Bit Status and Two Data Regis· 
ters for Asynchronous Slave·to·Master 
Interface 

• DMA, Interrupt, or Polled Operation 
Supported 

• Fully Compatible with MCS·48™, 
MCS·80™, MCS·85™, and MCS·86™ 
Microprocessor Families 

• Interchangeable ROM and EPROM 
Versions 

• 3.6 MHz 8741A·8 Available 

• Expandable I/O 

• RAM Power· Down Capability • 1024 x 8 ROM/EPROM, 64 x 8 RAM, 
8·Bit Timer/Counter, 18 Programmable 
I/O Pins 

• Over 90 Instructions: 70% Single Byte 

• Single 5V Supply 

The Intel'" 8041A18741A is a general purpose, programmable interface device designed for use with a variety of 8-blt 
microprocessor systems. It contains a low cost microcomputer with program memory, data memory, 8-bit CPU, 110 
ports, timerlcounter, and clock in a single 40-pin package. Interface registers are included to enable the UPI device to 
function as a peripheral controller in MCS-48™, MCS-80™, MCS-85™, MeS-86™, and other 8-bit systems. 

The UPI_41A™ has 1 K words of program memory and 64 words of data memory on-chip. To allow full user flexibility the 
program memory is available as ROM in the 8041A version or as UV-erasable EPROM in the 8741A version. The 8741A 
and the 8041 A are fully pin compatible for easy transition from prototype to production level designs. The 8641 A is a 
one-time programmable (at the factory) 8741A which can be ordered as the first 25 pieces of a new 8041A order. The 
substitution of 8641A's for 8041A's allows for very fast turnaround for initial code verification and evaluation results. 

The device has two 8-bit, TIL compatible 110 ports and two test inputs. Individual port lines can function as either in­
puts or outputs under software control. 110 can be expanded with the 8243 device which is directly compatible and has 
16 110 lines. An 8-blt programmable timerlcounter Is included in the UPI device for generating timing sequences or 
counting external inputs. Additional UPI features include: single 5V supply, low power standby mode (in the 8041 A), 
single-step mode for debug (in the 8741 A), and dual working register banks. 

Because It's a complete microcomputer, the UPI provides more flexibility for the designer than conventional LSI inter­
face devices. It is designed to be an efficient controller as well as an arithmetic processor. Applications include key­
board scanning, printer control, display multiplexing and similar functions which involve interfacing peripheral 
devices to microprocessor systems. 

PIN CONFIGURATION 

XTAL1 
XTA", 

RElET 
!IS 
ilii 

D3 

D4 

Do 

D7 
VSS ... ___ ....-

""D"Q 

'26/iiF 
P24IOBF 

'17 
'18 

". 
"4 

". 
VDD 

7-1 

BLOCK DIAGRAM 

k:============:)1 pci~~ 1 

DATA 
MEMORY 

1--==-::=--1 RESIDENT 
REO. SANK 1 84 .. ' 

I--c=-S'::::AC::::K c:---l :1liv 

TEST 0 

PERIPHERAL 
INTERFACE 

OQ188A 



8041 AJ8641 AJ8741 A 

UPI·41ATM FEATURES AND 
ENHANCEMENTS 

1. Two Data Bus Buffers, one for Input and one for out· 
put. This allows a much cleaner Master/Slave pro­
tocol. 

INPUT 

BUS 
BUFFER 

(8) 

INTERNAL 
DATA BUS 

~ 
DATA 

00-07 L......----I 

2. 8 Bits of Status 

OUTPUT 
DATA 
BUS 

BUFFER 
(8) 

FO IBF OBF I 

ST 4-ST 7 are user definable status bits. These bits are 
defined by the "MOV STS, A" single byte, single 
cycle instruction. Bits 4-7 of the accumulator are 
moved to bits 4-7 of the status register. Bits 0-3 of 
the status register are not affected. 

MOV STS, A Op Code: 90H 

o I 0 o I 
DO 

3. RD and WR are edge triggered. IBF, OBF, F1 and INT 
change internally after the trailing edge of RD or WR. 

FLAGS AFFECTED 

AD orWR 

4. P24 and P25 are port pins or Buffer Flag pins which 
can be used to interrupt a master processor. These 
pins default to port pins on Reset. 

If the "EN FLAGS" instruction has been executed, 
P24 becomes the OBF (Output Buffer Full) pin. A "1" 
written to P24 enables the OBF pin (the pin outputs 
the OBF Status Bit). A "0" written to P24 disables the 
OBF pin (the pin remains lOW). This pin can be used 
to indicate that valid data is available from the UPI· 
41A (in Output Data Bus Buffer). 

7-2 

If "EN FLAGS" has been executed, P25 becomes the 
IBF (Input Buffer Full) pin. A "1" written to P25 
enables the IBF pin (the pin outputs the inverse of the 
IBF Status Bit). A "0" written to P25 disables the IBF 
pin (the pin remains low). This pin can be used to 
Indicate that the UPI·41A is ready for data. 

OBF (INTERRUPT REQUEST) 

IBF (INTERRUPT REQUEST) 

DATA BUS BUFFER INTERRUPT CAPABILITY 

EN FLAGS Op Code: OF5H 

DO 

5. P26 and P27 are port pins or DMA handshake pins for 
use with a DMA controller. These pins default to port 
pins on Reset. 

If the "EN DMA" instruction has been executed, P26 
becomes the ORO (DMA ReOuest) pin. A "1" written 
to P26 causes a DMA request (ORO is activated). ORO 
is deactivated by DACK· RD, DACK· WR, or execution 
of the "EN DMA" instruction. 

If "EN OM A" has been executed, P27 becomes the 
DACK (OM A ACKnowledge) pin. This pin acts as a 
chip select input for the Data Bus Buffer registers 
during DMA transfers. 

DRQ~ DRQ" 
8041AJ 8257 
8741A 

DACK~ DACK 

DMA HANDSHAKE CAPABILITY 

EN DMA Op Code: OE5H 

DO 

OQ188A 



8041 AJ8641 AJ8741 A 

PIN DESCRIPTION UPI'M INSTRUCTION SET 

Mnemonic Description Byte. Cycle. 

ACCUMULATOR 
Signal Description 

ADD A,Rr Add register to A 1 1 
ADD A,@Rr Add data memory to A 1 1 

00 -07 Three-state, bidirectional DATA BUS BUFFER lines ADD A,Hdata Add immediate to A 2 2 
(BUS) used to interface the UPI-41A to an 8-blt master ADDC A,Rr Add register to A with carry 1 1 

system data bus. AD DC A,@Rr Add data memory to A with carry 1 1 

P,o-P 17 8-blt, PORT 1 quasi·bidlrectional I/O lines. ADDC A,Hdata Add immed. to A with carry 2 2 
ANL A,Rr AND register to A 1 1 

PZO-P27 8-bit, PORT 2 quasi-bidirectional 1/0 lines. The lower ANL A,@Rr AND data memory to A 1 1 
4 bits (P20-P2:y interface directly to the 8243110 ex· ANL A,#data AND immediate to A 2 2 
pander device and contain address and data Infor- OAL A,Ar OA register to A 1 1 
matlon during PORT 4-7 access. The upper 4 bits OAL A,@Ar OA data memory to A 1 1 
(P24-P27) can be programmed to provide Interrupt ORL A,Hdata OR immediate to A 2 2 
Request and DMA Handshake capability. Software XRL A,Rr Exclusive OR register to A 1 1 
control can configure P24 as OBF (Output Buffer XRL A,@Rr Exclusive OR data memory to A 1 1 
Full), P25 as IBF (Input Buffer Full~as ORO XRL A,#data Exclusive OR immediate to A 2 2 
(DMA Request), and P27 as DACK (DMA INC A Increment A 1 1 
ACKnowledge). DEC A Decrement A 1 1 

WR 1/0 write input which enables the master CPU to CLR A Clear A 1 1 
write data and command words to the UPI·41A IN- CPL A Complement A 1 1 

PUT DATA BUS BUFFER. DA A Decimal Adjust A 1 1 
SWAP A Swap nibbles of A 1 1 

RD 1/0 read input which enables the master CPU to RL A Rotate A left 1 1 
read data and status words from the OUTPUT DATA RLC A Rotate A left through carry 1 1 
BUS BUFFER or status register. RA A Rotate A right 1 1 

CS Chip select input used to select one UPI-41A out of RRC A Rotate A right through carry 1 1 

several connected to a common data bus. 

Address input used by the master processor to in-
INPUT /oUTPUT 

Ao 
IN A,Pp Input port to A 1 2 dicate whether byte transfer is data or command. 
OUTL Pp,A Output A to port 1 2 

TEST 0, Input pins which can be directly tested using condi· ANL Pp,Hdata AND immediate to port 2 2 
TEST 1 tional branch instructions. ORL Pp,#data OR immediate to port 2 2 

T, also functions as the event timer input (under IN A,DBB Input DBB to A, clear IBF 1 1 
OUT DBB,A Output A to DBB, set OBF 1 1 software control). To is used during PROM program-
MOV STS,A A4-A7 to Bits 4-7 of Status 1 1 ming and verification in the 8741A. 
MOVD A,Pp Input Expander port to A 2 

XTAL1, Inputs for a crystal, LC or an external timing signal MOVD Pp,A Output A to Expander port 2 
XTAL2 to determine the internal oscillator frequency. ANLD Pp,A AND A to Expander port 2 

SYNC Output signal which occurs once per UPI-41A in- ORLD Pp,A OR A to Expander port 2 
struction cycle. SYNC can be used as a strobe for 
external circuitry; it is also used to synchronize DATA MOVES 
single step operation. 

MOV A,Rr Move reg ister to A 1 1 
EA External access input which allows emulation, MOV A,@Rr Move data memory to A 1 1 

testing and PROM/ROM verification. MOV A,Hdata Move immediate to A 2 2 
MOV Rr,A Move A to register 1 1 

PROG Multifunction pin used as the program pulse input MOV @Rr,A Move A to data memory 1 1 
during PROM programming. MOV Rr,Hdata Move immediate to register 2 2 
During 1/0 expander access the PROG pin acts as MOV @Rr,Hdata Move immediate to data memory 2 2 
an addressldata strobe to the 8243. MOV A.PSW Move PSW to A 1 1 

RESET 
MOV PSW,A Move A to PSW 1 1 

Input used to reset status flip-flops and to set the XCH A.Ar Exchange A and register 1 1 
prog ram cou nter to zero. XCH A,@Rr Exchange A and data memory 1 1 
RESET is also used during PROM programming and XCHD A.@Rr Exchange digit of A and register 1 1 
verification. MOVP A,@A Move to A from current page 1 2 

MOVP3. A.@A Move to A from page 3 1 2 
SS Single step input used in the 8741A in conjunction 

with the SYNC output to step the program through 
TIMER/COUNTER each instruction. 

Vcc + 5V main power supply pin. 
MOV A.T Read Timer ICounter 
MOV T.A Load Timer ICounter 

Voo + 5V during normal operation. + 25V during pro- STRT T Start Timer 
grammlng operation. Low power standby pin In STRT CNT Start Counter 
ROM version. STOP TCNT Stop Timer ICounter 

EN TCNTI Enable Timer/Counter Interrupt 
Vss Circuit ground potential. DIS TCNTI Disable Timer ICounter Interrupt 

7-3 Q0188A 



8041 A/8641 Al8741 A 

Mnemonic Descrlpllon Bytes 

CONTROL 

EN DMA Enable DMA Handshake Lines 
EN I Enable IBF Interrupt 
DIS I Disable IBF Interrupt 
EN FLAGS Enable Master Interrupts 
SEL RBO Select register bank 0 
SEL RBI Select register bank 1 
NOP No Operation 

REGISTERS 

INC Rr Increment register 
INC@Rr Increment data memory 
DEC Rr Decrement register 

SUBROUTINE 

CALL addr Jump to subroutine 
RET Return 
RETR Return and restore status 

FLAGS 

CLR C Clear Carry 
CPLC Complement Carry 
CLR FO Clear Flag 0 

APPLICATIONS 

DATA 

8085A 

ADDR 

CONTROL 

Figure 1. SOS5A-S041A Interface 

8243 
EXPANDER 

DATA BUS 

8041Af8741A 

2 
1 

W 
-TO 

Tl 

KEYBOARD 
MATRIX 

Cycles 

2 
2 
2 

TO 
PERIPHERAL 
DEVICES 

Mnemonic 

CPL FO 
CLR Fl 
CPL Fl 

BRANCH 

JMP addr 
JMPP @A 
DJNZ Rr. addr 
JC addr 
JNC addr 
JZ addr 
JNZ addr 
JTO addr 
JNTO addr 
JTl addr 
JNTI addr 
JFO addr 
JFl addr 
JTF addr 
JNIBF addr 
JOBF addr 
JBb addr 

Ali 

8048 
WR 

PORT 

BUS 

Description Bytes Cycles 

Complement Flag 0 

Clear Fl Flag 
Complement Fl Flag 

Jump unconditional 
Jump indirect 
Decrement register and jump 
Jump on Carry = 1 2 2 
Jump on Carry = 0 2 2 
Jump on A Zero 2 2 
Jump on A not Zero 2 2 
Jump on TO= 1 2 2 
Jump on TO=O 2 2 
Jump on T1 = 1 2 2 
Jump on T1 =0 2 2 
Jump on FO Flag = 1 2 2 
Jump on Fl Flag = 1 2 2 
Jump on Timer Flag = 1. Clear Flag 2 2 
Jump on IBF Flag = 0 
Jump on OBF Flag = 1 
Jump on Accumulator Bit 

Ali 

WR 8041Ai 

cs 8741A 
CONTROL 2 

Ao 

DATA BUS 8 DBB 

~ 
~ 
~TO 

--Tl 

2 
2 
2 

TO 
PERIPHERAL 
DEVICES 

Figure 2. S04S-S041A Interface 

CONTROL BUS L-__ ~C~O~N~T~R~O~L~B~U~S __________________________________ J 

Figure 3. S041A-S243 Keyboad Scanner Figure 4. S041A Matrix Printer Interface 

7-4 00188A 



8041AJ8641 AJ8741 A 

ABSOLUTE MAXIMUM RATINGS· 

Ambient Temperature Under Bias ......... O·C to 70·C 
Storage Temperature ............. - 65·C to + 150·C 
Voltage on Any Pin With Respect 

to Ground .......................... 0.5V to + 7V 
Power Dissipation ......................... 1.5 Watt 

D.C. AND OPERATING CHARACTERISTICS 

'COMMENT: Stresses above those listed under "Absolute Maximum 
Ratings" may cause permanent damage to the device. This Is a stress 
rating only and functional operation of the device at these or any other 
conditions above those Indicated In the operational sections of this 
specification Is not Implied. Exposure to absolute maximum rating con· 
dltlons for extended periods may affect device reliability. 

TA= o·c to 70·C, Vss= OV, B041 A: Vcc= Voo= +5V ± 10%, B741A: Vcc= Voo= +5V± 5% 

Symbol Parameter Min. Max. Unit Test Conditions 

VIL Input Low Voltage (Except XTAL 1, XTAL2, RESET) -0.5 O.B V 

VIL1 Input Low Voltage (XTAL1, XTAL2, RESET) -0.5 0.6 V 

VIH Input High Voltage (Except XTAL 1, XTAL2, RESET) 2.2 Vee 
VIHI Input High Voltage (XTAL 1, XTAL2, RESET) 3.B Vee V 

VOL Output Low Voltage (00-07) 0.45 V IOL=2.0 mA 

VOLI Output Low Voltage (PIOP17, P20P27, Sync) 0.45 V IOL = 1.6 mA 

VOL2 Output Low Voltage (Prog) 0.45 V IOL = 1.0 mA 

VOH Output High Voltage (00-07) 2.4 V IOH=-400"A 

VOHI Output High Voltage (All Other Outputs) 2.4 V IOH=-50"A 

IlL Input Leakage Current (To, TI , RD; WR, CS, Ao, EA) ±10 "A Vss :S VIN :S Vce 

loz Output Leakage Current (00-07, High Z State) ±10 "A Vss+0.45 :S VIN :S Vee 

III Low Input Load Current (PIOP17, P20 P27) 0.5 mA VIL=O.BV 

ILII Low Input Load Current (RESET, SS) 0.2 mA VIL=O.BV 

100 Voo Supply Current 15 mA Typical = 5 mA 

lee+ 100 Total Supply Current 125 mA Typical = 60 mA 

A.C. CHARACTERISTICS 
TA=O·C to 70·C, Vss=OV, B041A: Vee=Voo= +5V ± 10%, B741A: Vee=Voo= +5V ±5% 
DBB READ 

Symbol Parameter Min. Max. Unit Test Conditions 

tAR CS, Ao Setup to ADI 0 ns 

tRA OS, Ao Hold After RDI 0 ns 

tRR RD Pulse Width 250 ns 

tAD CS, Ao to Data Out Delay 225 ns CL=150pF 

tRo RDI to Data Out Delay 225 ns CL=150pF 

tOF R'DI to Data Float Delay 100 ns 

tey Cycle Time (Except B741A·B) 2.5 15 "s 6.0 MHzXTAL 

tey Cycle Time (B741A·8) 4.17 15 "s 3.6 MHz XTAL 

DBBWRITE 

Symbol Parameter Min. Max. Unit Test Conditions 

tAW CS, Ao Setup to WRI 0 ns 

tWA eg, Ao Hold After WRI 0 ns 

tww WR Pulse Width 250 ns 

tow Data Setup to WRI 150 ns 

two Data Hold After WRI 0 ns 

7-5 0018sA 



8041 AJ8641 AJ8741 A 

INPUT AND OUTPUT WAVEFORMS FOR A.C. TESTS 

2.4 ----'"\X2.2 ........ TEST POINTS ....... 2•2X 
OA5 ______ • O.S........ .......O.S ..... ___ _ 

WAVEFORMS 

1. READ OPERATION-DATA BUS BUFFER REGISTER. 

CI OR AO ~ K 
-tAR-

' .. 
~ 

I4-tRA-

"\ 

-tRD - -'D'l 
_--'AD . 

2. WRITE OPERATION-DATA BUS BUFFER REGISTER. 

(SYSTEM'S 
ADDRESS BUS) 

(READ CONTROL) 

J ]( (SYSTEM'S 

e!OR AO _ [--------------~J'---------- AODRESSBUSI 

~ -~l{ ~wJ"". -tw-'--:-D------------ (WRITE CONTROL) 

DATA BUS DATA ) -DATA VALID_I\/' DATA 
IINPUT.I _____ MA_Y....;C....;HA....;N..;.GE~_~ ~'-____ MA_Y_C_HA_N_GE ____ _ 

TYPICAL 8041/8741A CURRENT 
80 rnA 

60 rnA 

g 
"+ 40mA 

1l 

20 rnA 

20' 40° 800 60' 
TEMP ('C) 

7-6 00 188A 



8041 A/8641Al8741 A 

A.C. CHARACTERISTICS-PORT 2 
TA=O·C to 70·C, 8041A: vcc= + 5V ± 10%, 8741A: VCC= + 5V ± 5% 

Symbol Parameter 

tcp Port Control Setup Before Falling 
Edge of PROG 

tpc Port Control Hold After Falling 
Edge of PROG 

tpR PROG to Time P2 Input Must Be Valid 

tpF Input Data Hold Time 

top Output Data Setup Time 

tpo Output Data Hold Time 

tpp PROG Pulse Width 

PORT 2 TIMING 

EXPANDER 
PORT 

SYNC 

OUTPUT 

EXPANDER 
PORT 

INPUT 

PROG 

PORT 20_3 DATA 

PORT 20-3 DATA 

A.C. CHARACTERISTICS-DMA 

Symbol Parameter 

tACC DACK to WR or RD 

tCAC RD or WR to DACK 

tACO DACK to Data Valid 

tCRO RD or WR to ORO Cleared 

WAVEFORMS- DMA 

- tAce - JCAC-
DATA BUS ~ 

VALID 

-tACD-

ORa 

Min. 

110 

100 

0 

250 

65 

1200 

Min. 

0 

0 

- tAce -

Max. Unit 

ns 

ns 

810 ns 

150 ns 

ns 

ns 

ns 

Max. Unit 

ns 

ns 

225 ns 

200 ns 

-tcAe -
,----.. 

VALID 

-ll - ICRQ-

7-7 

Test Conditions 

Test Conditions 

CL = 150 pF 

Q0188A 



8041 A/8641 A/87 41 A 

CRYSTAL OSCILLATOR MODE 

< 15 pF 
(INCLUDES XTAL, 
SOCKET, STRAY) 

r-----
I 
I 
I 

...L , 
I 
I 
I L ____ _ 

15-25 pF 
(INCLUDES SOCKET, I 

STRAY) ':' 

XTAL1 

CRYSTAL SERIES RESISTANCE SHOULD BE <75Q AT 6 MHz, <180Q AT 3.6 MHz. 

DRIVING FROM EXTERNAL SOURCE 

+5V 

470Q 

»--t-----_=_j XTAL 1 

+5V 

470Q 

'----'----''1 XTAL2 

BOTH XTAL1 AND XTAL2 SHOULD BE DRIVEN. 
RESISTORS TO Vee ARE NEEDED TO ENSURE V,H = 3.8V 
IF TTL CIRCUITRY IS USED. 

LC OSCILLATOR MODE 

--'- ~ NOMINAL' 

45 fAH 20 pF 5.2 MHz 
120 ",H 20 pF 3.2 MHz 

,----..----1XTAL 1 
C,=C+3Cpp 

2 

'-----~--1XTAL2 
Cpp "5 -10 pF PIN·TO·PIN 
CAPACITANCE 

EACH C SHOULD BE APPROXIMATELY 20 pF, INCLUDING STRAY CAPACITANCE. 

PROGRAMMING, VERIFYING, AND 
ERASING THE 8741A EPROM 

Programming Verification 

In brief, the programming process consists of: activating 
the program mode, applying an address, latching the 
address, applying data, and applying a programming pulse, 
Each word is programmed completely before moving on to 
the next and is followed by a verification step. The follow­
ing is a list of the pins used for programming and a descrip­
tion of their functions: 

Pin 

XTAL1 

Reset 

Test 0 

EA 

BUS 

P20-1 

VDD 

PROG 

Function 

Clock Input (1 to 6MHz) 

Initialization and Address Latching 

Selection of Program or Verify Mode 

Activation of Program/Verify Modes 

Address and Data Input 
Data Output During Verify 

Address Input 

Programming Power Supply 

Program Pulse Input 

7-8 

WARNING: 

An attempt to program a missocketed 8741 A will result in severe 
damage to the part. An indication of a properly socketed part is the 
appearance of the SYNC clock output. The lack of this clock may 
be used to disable the programmer. 

The Program !Verify sequence is: 

1. AO = OV. CS = 5V. EA = 5V. RESET = OV. TESTa = 5V. 
VDO = 5V , clock applied or internal oscillator operating, 
BUS and PROG floating. 

2. Insert 8741 A in programming socket 

3. TEST a = Ov (select program mode) 

4. EA = 23V (activate program mode) 

5. Address applied to BUS and P2Q..1 

6. RESET = 5v (latch address) 

7. Data applied to BUS 

8. V DD = 25v (programming power) 

9. PROG = Ov followed by one 50ms pulse to 23V 

10. V DD = 5v 

11. TEST a = 5v (verify mode) 

12. Read and verify data on BUS 

13. TEST 0= Ov 

14. RESET = Ov and repeat from step 5 

15. Programmer should be at conditions of step 1 when 
8741 A is removed from socket. 

00188A 



8041AJ8641 A/8741 A 

8741A Erasure Characteristics 

The erasure characteristics of the 8741A are such that 
erasure begins to occur when exposed to light with 
wavelengths shorter than approximately 4000 Ang­
stroms (A). It should be noted that sunlight and certain 
types of fluorescent lamps have wavelengths in the 
3000-4000A range. Data show that constant exposure to 
room level fluorescent lighting could erase the typical 
8741A in approximately 3 years while it would take ap­
proximately one week to cause erasure when exposed 
to direct sunlight. If the 8741A is to be exposed to these 
types of lighting conditions for extended periods of 
time, opaque labels are available from Intel which 

should be placed over the 8741A window to prevent 
unintentional erasure. 

The recommended erasure procedure for the 8741A is 
exposure to shortwave ultraviolet light which has a 
wavelength of 2537 A. The integrated dose (I.e., UV Inten­
sity x exposure time) for erasure should be a minimum 
of 15 w-sec/cm 2• The erasure time with this dosage is· 
approximately 15 to 20 minutes using an ultraviolet 
lamp with a 12,000 ",W/cm2 power rating. The 8741A 
should be placed within one inch of the lamp tubes dur­
ing erasure. Some lamps have a filter on their tubes 
which should be removed before erasure. 

A.C. TIMING SPECIFICATION FOR PROGRAMMING 
TA = 25°C ± 5°C, Vcc = 5V ± 5%, Voo = 25V ± 1V 

Symbol Parameter Min. Max. Unit Test Conditions 

tAW Address Setup Time to RESET t 41CY 

tWA Address Hold Time After RESET t 41cy 

tow Data in Setup Time to PROG t 41cy 

two Data in Hold Time After PROG I 41cy 

tpH RESET Hold Time to Verify 41cy 

tvoow Voo Setup Time to PROG t 41cy 

tVOOH Voo Hold Time After PROG I 0 
tpw Program Pulse Width 50 60 mS 

trw Test 0 Setup Time for Program Mode 41cy 

tWT Test 0 Hold Time After Program Mode 41cy 

too Test 0 to Data Out Delay 41cy 

tww RESET Pulse Width to Latch Address 41cy 

tr. tf Voo and PROG Rise and Fall Times 0.5 2.0 JJ.s 

tCY CPU Operation Cycle Time 5.0 JJ.s 

tRE RESET Setup Time Before EA t. 41cy 

Nota: If TEST 0 Is high. too can be triggered by RESeT t. 

D.C. SPECIFICATION FOR PROGRAMMING 
TA = 25°C ±5°C, Vcc = 5V ±5%, Voo = 25V ±1V 

Symbol Parameter Min. Max. Unll Tesl Condilions 

VOOH Voo Program Voltage High Level 24.0 26.0 V 

VOOL Voo Voltage Low Level 4.75 5.25 V 

VPH PROG Program Voltage High Level 21.5 24.5 V 

VPL PROG Voltage Low Level 0.2 V 

VEAH EA Program or Verify Voltage High Level 21.5 24.5 V 

VEAL EA Voltage Low Level 5.25 V 

100 Voo High Voltage Supply Current 30.0 mA 

IPROG PROG High Voltage Supply Current 16.0 mA 

lEA EA High Voltage Supply Current 1.0 mA 

7-9 00188A 



8041 Al8641 A/8741 A 

WAVEFORMS FOR PROGRAMMING 

COMBINATION PROGRAM/VERIFY MODE (EPROM'S ONLY) 

5V 

______ I 23V 

EA 

tTW_ 
_.+-1'0-------- PROGRAM ----­1_-------- PROGRAM --------_l---~VERIFY 

~---"'"' 
TESTO 

OBo-DB, J--
LAST 

ADDRESS 

tww_ 

DATA TO BE 
PROGRAMMED VALID ---< NEXT ADDR x== 

VALID 

NEXT 
ADDRESS 

."-:::.;; _______ -_-_-_-_-_-_-_--_-t~-~-"-;-:--~-:--:-----------------------------------------------
+0 I ___ -' - - - '\. _______ _ 

VERIFY MODE (ROM/EPROM) 

\ ____ -----J/ \'-----
=>----< ... ____ 'OA_-~_~_~_!L_S~_D __ ..JX\._D_~_:A_L_~U_T...J>- - - -< ... ____ A_~_~_~_;S_S __ .....JX"__~_~_~_TV_';,,_~T_'~...J>_ - - - - - - -

______ -J)<: ... __________ A_D_D_R_ES_S_18_-_9_'V_A_L_'D __________ J )<:\. ____________ N_E_XT __ A_DD_R_E_S_S_V_A_Ll_D ______________ _ 

NOTES: 
1. PROG MUST FLOAT IF EA IS LOW (1.8., *23V), OR IF TO=5V FOR THE 8741A. FOR THE 

8041A PROG MUST ALWAYS FLOAT. 
2. XTALI AND XTAL 2 DRIVEN BY 3.6 MHz CLOCK WILL GIVE 4.17 "S8C tCY' THIS IS ACCEPT· 

ABLE FOR 8741A·8 PARTS AS WELL AS STANDARD PARTS. 
3. AD MUST BE HELD LOW (1.8., = OV) DURING PROGRAMIVERIFY MODES. 

The 8741A EPROM can be programmed by either of two 
Intel products: 

1. PROMPT·48 Microcomputer Design Aid, or 
2. Universal PROM Programmer (UPP series) peripheral 

of the Intellec® Development System with a UPP-848 
Personality Card. 

7·10 00188A 



8243 
MCS-48™ INPUT/OUTPUT EXPANDER 

• Low Cost • 24-Pin DIP 

• Simple Interface to MCS-48™ Mlcro- • Single SV Supply 
computers • High Output Drive 

• Four 4-Bit I/O Ports • Direct Extension of Resident 8048 I/O 

• AND and OR Directly to Ports Ports 

The Intell!) 8243 is an input/output expander designed specifically to provide a low cost means of I/O expansion for the 
MCS-48'· family of single chip microcomputers. Fabricated in 5 volts NMOS, the 8243 combines low cost, single supply 
voltage and high drive current capability. 

The 8243 consists of four 4-bit bidirectional static I/O ports and one 4-bit port which serves as an interface to the MCS-48 
microcomputers. The 4-bit interface requires that only 4 I/O lines of the 8048 be used for I/O expansion, and also allows 
multiple 8243's to be added to the same bus. 

The I/O ports of the 8243 serve as a direct extension of the resident I/O facilities of the MCS-48 microcomputers and are 
accessed by their own MOV, ANL, and ORL instructions. 

PIN CONFIGURATION BLOCK DIAGRAM 

PORT 4 

P50 vee 
P40 P5l 

P4l P52 

P42 P53 

P43 P60 PORTS 

cs P6l 

PROG P62 
PORT 2 

P23 P63 

P22 P73 

P2l P72 

P20 P7l 

GND P70 
PORT 6 

PORT 7 

7·11 00214A 



PIN DESCRIPTION 
Symbol 

PROG 

P20-P23 

GNO 

P40-P43 
P50-P53 
P60-P63 
P70-P73 

Vee 

Pin No. Function 

7 Clock Input. A high to low 
transistion on PROG signifies 
that address and control are 
available on P20-P23. and a low 
to high transition signifies that 
data is available on P20-23. 

6 Chip Select Input. A high on CS 
inhibits any change of output or 
internal status. 

11-8 Four (4) bit bi-directional port 
contains the address and con­
trol bits on a high to low 
transition of PROG. During a 
low to high transition contains 
the data for a selected output 
port if a write operation, or the 
data from a selected port before 
the low to high transition if a 
read operation. 

12 

2-5 
1,23-21 
20-17 
13-16 

o volt supply. 

Four (4) bit bi-directional 1/0 
ports. May be programmed 
to be input (during read), 
low impedance latched output 
(after write) or a tri-state (after 
read). Data on pins P20-23 may 
be directly written, ANOed or 
ORed with previous data. 

24 +5 volt supply. 

FUNCTIONAL DESCRIPTION 
General Operation 
The 8243 contains four 4-bit 1/0 ports which serve as an 
extension of the on-chip 1/0 and are addressed as ports 4-
7. The following operations may be performed on these 
ports: 

• Transfer Accumulator to Port. 
• Transfer Port to Accumulator. 
• AND Accumulator to Port. 
• OR Accumulator to Port. 

All communication between the 8048 and the 8243 occurs 
over Port 2 (P20-P23) with timing provided by an output 
pulse on the PROG pin of the processor. Each transfer 
consists of two 4-bit nibbles: 

The first containing the "op code" and port address and 
the second containing the actual 4-bits of data. 

8243 

7-12 

A high to low transition of the PROG line indicates that 
address is present while a low to high transition indicates 
the presence of data. Additional 8243's may be added to 
the 4-bit bus and chip selected using additional output 
lines from the 8048/8748/8035. 

Power On Initialization 
Initial application of power to the device forces 
inputloutput ports 4, 5,6, and 7 to the tri-state and port 2 to 
the input mode. The PROG pin may be either high or low 
when power is applied. The first high to low transition of 
PROG causes device to exit power on mode. The power on 
sequence is initiated if Vee drops below 1V. 

P21 P20 Address Code P23 P22 Instruction Code 

0 0 Port 4 0 0 Read 
0 1 Port 5 0 1 Write 

0 Port 6 0 ORLO 
Port 7 1 ANLO 

Write Modes 
The device has three write modes. MOVO Pi, A directly 
writes new data into the selected port and old data is lost. 
ORLO Pi,A takes new data, OR's it with the old data and 
then writes it to the port. ANLO Pi,A takes new data AND's 
it with the old data and then writes it to the port. Operation 
code and port address are latched from the input port 2 on 
the high to low transition of the PROG pin. On the low to 
high transition of PROG data on port 2 is transferred to the 
logic block of the specified output port. 

After the logic manipulation is performed, the data is 
latched and outputed. The old data remains latched until 
new valid outputs are entered. 

Read Mode 
The device has one read mode. The operation code and 
port address are latched from the input port 2 on the high 
to low transition of the PROG pin. As soon as the read 
operation and port address are decoded, the appropriate 
outputs are tri-stated, and the input buffers switched on. 
The read operation is terminated by a low to high 
transition of the PROG pin. The port (4, 5, 6 or 7) that was 
selected is switched to the tri-stated mode while port 2 is 
returned to the input mode. 

Normally, a port will be in an output (write mode) orinput 
(read mode). If modes are changed during operation, the 
first read following a write should be ignored; all follow­
ing reads are valid. This is to allow the external driver on 
the port to sellie after the !irst read instruction removes 
the low impedance drive from the 8243 output. A read of 
any port will leave that port in a high impedance state. 

00214A 



ABSOLUTE MAXIMUM RATINGS* 

Ambient Temperature Under Bias. 
Storage Temperature. 
Voltage on Any Pin 

With Respect to Ground. 
Power Dissipation. 

O"C to 70"C 
.-65Q C to +150"C 

. -0.5V to + 7V 
1 Watt 

8243 

D.C. AND OPERATING CHARACTERISTICS 
TA = O°Cto 70°C, Vee = 5V ±10% 

SYMBOL PARAMETER MIN. 

VIL Input Low Voltage -0.5 

VIH Input High Voltage 2.0 

VOLl Output Low Voltage Ports 4· 7 

VO L2 Output Low Voltage Port 7 

VO H1 Output High Voltage Ports 4-7 2.4 

IILl Input Leakage Ports 4-7 -10 

IIL2 Input Leakage Port 2, CS, PROG -10 

VOL3 Output Low Voltage Port 2 

IcC Vee Supply Current 

VOH2 Output Va Itage Port 2 2.4 

IOL Sum of all IOL from 16 Outputs 

OSee following graph for additional sink current capability 

A.C. CHARACTERISTICS 
TA = O°Cto 70°C, Vee = 5V ±10% 

SYMBOL PARAMETER 

tA Code Valid Before PROG 

t8 Code Valid After PROG 

te Data Valid Before PROG 

tD Data Valid After PROG 

tH Floating After PROG 

tK PROG Negative Pulse Width 

tcs CS Valid Before/After PROG 

tpo Ports 4-7 Valid After PROG 

t LP1 Ports 4-7 Valid Before/After PROG 

tAce Port 2 Valid After PROG 

7-13 

·COMMENT. Stresses above those listed under "Absolute 

Maximum Ratings" may cause permanent damage to the 

device. This is a stress rating onlv and functional opera· 

tion of the device at these or any other conditions above 

those indicated in the operational sections of this specifi· 

cation is not implied. Exposure to absolute maximum 

rating conditions for ex tended periods may affect device 

reliability. 

TYP. MAX. UNITS TEST CONDITIONS 

0.8 V 

Vee+0.5 V 

0.45 V IOL=5mA* 

1 V IOL = 20 mA 

V IOH= 240/lA 

20 /lA Vin = Vee to OV 

10 /lA Vin = Vee to OV 

.45 V IOL ~ 0.6 mA 

10 20 mA 

IOH= 100/lA 

80 mA 5 mA Each Pin 

MIN. MAX. UNITS TEST CONDITIONS 

100 ns 80 pF Load 

60 ns 20 pF Load 

200 ns 80 pF Load 

20 ns 20 pF Load 

0 150 ns 20 pF Load 

700 ns 

50 ns 

700 ns 100 pF Load 

100 ns 

650 ns 80 pF Load 

00214A 



8243 

WAVEFORMS 

PROG 

~------------------tK----------------~ 

PORT 2 FLOAT FLOAT 

• .. "~ '~M~'"x PORT 2 VALID 

_t po 

PORTS 4·7 PR EVIOUS OUTPUT VALID OUTPUT 
VALID 

t,P ---- t,P 

PORTS 4·7 INPUT VALID 

tes 

7-14 00214A 



<t 
E 

125 

...J 100 
o 
~ 

I- 75 
z 
w 
a: 
a: a 50 
~ z 
CI) 

~ 25 
I­o 
I-

8243 

GUARANTEED WORST CASE 
CURRENT SINKING 
CAPABILITIES OF ANY I/O 
PORT PIN VS. TOTAL SINK 
CURRENT OF ALL PINS 

o ~~--~--~--~~--~--~--~~--~--~--~~ 
o 1 2 3 4 5 6 7 8 9 10 11 12 13 

MAXIMUM SINK CURRENT ON ANY PIN@.45V 
MAXIMUM IOL WORST CASE PIN (rnA) 

Sink Capability 

The 8243 can sink 5 mA@.45V on each of its 161/0 lines 
simultaneously. If, however, all lines are not sinking 
simultaneously or all lines are not fully loaded, the drive 
capability of any individual line increases as is shown by 
the accompanying curve. 

For example, if only 5 of the 16 lines are to sink current 
at one time, the curve shows that each of those 5 lines is 
capable of sinking 9 mA@.45V (if any lines are to sink 
9 mA the total 10l must not exceed 45 mA or five 9 mA 
loads). 

Example: How many pins can drive 5 TTL loads (1.6 mAl 
assuming remaining pins are unloaded? 

IOl=5 x 1.6 mA=8 mA 
dOL = 60 mA from curve 
# pins= 60 mA -;- 8 mAlpin = 7.5= 7 

In this case, 7 lines can sink 8 mA for a total 
of 56 mAo This leaves 4 mA sink current capa­
bility which can be divided in any way among 
the remaining 8 1/0 lines of the 8243. 

Example: This example shows how the use of the 20 
mA sink capability of Port 7 affects the sink­
ing capability of the other I/O lines. 

An 8243 will drive the following loads simul­
taneously. 

2 loads - 20 mA@ 1V (port 7 on Iy) 
8 loads - 4 mA@.45V 
6 loads - 3.2 mA@.45V 
Is this within the specified limits? 

d Ol=( 2 x 20)+(8 x 4)+(6 x 3.2)=91.2 mAo 
From the curve: for 10l = 4 mA, rlOl '" 93 mA 
since 91.2 mA < 93 mA the loads are within 
specified limits. 

Although the 20 mA@1V loads are used in 
calculating dOL, it is the largest current re­
quired@.45V which determines the maximum 
allowable dOL' 

Note: A 10 to 50Kn pullup resistor to +5V should be added to 8243 outputs when driving to 5V CMOS directly. 

7-15 00214A 



BUS 

PORT 1 
8048 

PORT 2 

8243 

EXPANDER INTERFACE 

-=-
1/0 

os 
P4 

PAOG 

TEST P5 

8048 INPUTS 8243 

P6 

DATA IN 
P2 

P7 

OUTPUT EXPANDER TIMING 

PROG ~ / 
\\-. ___ .....J 

P20·P23 --< ..... _--'X ..... ___ ...J)>---
ADDRESS (4·BITSl DATA (4-81TS) 

BITS 3,2 

00} READ 
01 WRITE 
10 OR 
11_ AND 

1/0 

1/0 

1/0 

1/0 

BITS 1,0 

00} 01 PORT 
10 ADDRESS 

" 

PROG~----------------~------------------~------------------~----------------~ 

USING MULTIPLE 8243'5 

7-16 00214A 



8292 
GPIB CONTROLLER 

• Complete IEEE Standard 488 Controller 
Function 

• Interface Clear (IFC) Sending Capability 
Allows Seizure of Bus Control and/or 
Initialization of the Bus 

• Responds to Service Requests (SRQ) 

• Sends Remote Enable (REN), Allowing 
Instruments to Switch to Remote 
Control 

• Complete Implementation of Transfer 
Control Protocol 

• Synchronous Control Seizure Prevents 
the Destruction of Any Data 
Transmission in Progress 

• Connects with the 8291 to Form a 
Complete IEEE Standard 488 Interface 
Talker/Listener/Controller 

The 8292 GPIB Controller is a microprocessor-controlled chip designed to function with the 8291 GPIB Talker/Listener 
to implement the full IEEE Standard 488 controller function, including transfer control protocol. The 8292 is a pre­
programmed Intel® 8041A. 

PIN CONFIGURATION 

IFCL Vcc 

X1 COUNT 

X2 REN 

RESET OAV 

VCC IBFI 

Cs OBFI 

GND EOI 

Rli SPI 

AO TCI 

WR CIC 

SYNC NC 

DO ATNO 

01 NC 

02 CLTH 

03 VCC 

04 NC 

05 SYC 

06 IFC 

07 I\TNI 

Vss SRQ 

7-17 

8291,8292 SYSTEM DIAGRAM 

r--- --... 
I 
I DMA 
I CONTROLLER I 
I (OPTIONAL) I 
L ______ I 

MICROPROCESSOR SYSTEM BUS 

DACR 
DREQ 

TIR 2 

8291 
GPIB 

TALKERI 
LISTENER 

TiR'1 

8293 
BUS 

TRANSCEIVERS 

GENERAL PURPOSE INTERFACE BUS 

8292 
GPIB 

CONTROLLER 

00741C 



8292 

PIN DESCRIPTION 

Symbol 1/0 Pin No. Function Symbol 1/0 Pin No. Function 

IFCL I 1 IFC Received (latched) - The 8292 Vcc P.S. 5,26,40 +5V supply input. ± 10%. 
monitors the IFC Line (when not 
system controller) through this 
pin. 

COUNT I 39 Count Input - When enabled by 
the proper command the internal 
counter will count external events 

X1, X2 I 2, 3 Inputs for a crystal, LC or an exter· through this pin. High to low tran· 
nal timing signal to determine the sition will increment the internal 
internal oscillator frequency. counter by one. The pin is sampled 

RESET I 4 Used to initialize the chip to a 
known state during power on. 

CS I 6 Chip Select Input - Used to select 
the 8292 from other devices on the 
common data bus. 

once per three internal instruction 
cycles (7.5I'sec sample period 
when using 6 MHz XTAL). It can be 
used for byte counting when con· 
nected to NDAC, or for block 
counting when connected to the 

RD I 8 I/O write input which allows the EOL 
master CPU to read from the 8292. REN 0 38 The Remote Enable bus signal 

Ao I 9 Address Line - Used to select be- selects remote or local control of 
tween the data bus and the status the device on the bus. A GPIB bus 
register during read operations management line, as defined by 
and to distinguish between data IEEE Std. 488·1978. 
and commands written into the DAV I/O 37 DAV Handshake Line - Used duro 
8292 during write operations. ing parallel poll to force the 8291 

WR I 10 I/O read input which allows the to accept the parallel poll status 
master CPU to write to the 8292. bits. It is also used during the tcs 

SYNC 0 11 8041A instruction cycle synchro· procedure. 

nization signal; it is an output IBFI 0 36 Input Buffer Not Full - Used to 
clock with a frequency of interrupt the central processor 
XTAL+15. while the input buffer of the 8292 

Do-D7 I/O 12-19 8 bidirectional lines used for com· 
munication between the central 
processor and the 8292's data bus 

is empty. This feature is enabled 
and disabled by the interrupt 
mask register. 

buffers and status register. OBFI 0 35 Output Buffer Full - Used as an 

Vss P.S. 7,20 Circuit ground potential. 

SRO I 21 Service Request - One of the 

interrupt to the central processor 
while the output buffer of the 8292 
is full. The feature can be enabled 

IEEE control lines. Sampled by the 
8292 when it is controller in 
charge. If true, SPI interrupt to the 
master will be generated. 

ATNI I 22 Attention In - Used by the 8292 to 

and disabled by the interrupt 
mask register. 

EOl2 1/0 34 End Or Identify - One of the GPIB 
management lines, as defined by 
IEEE Std. 488·1978. Used with ATN 

monitor the GPIB ATN control 
line. It is used during the transfer 

as Identify Message during paral· 
lei poll. 

control procedure. 

IFC 1/0 23 Interface Clear - One of the GPIB 
SPI 0 33 Special Interrupt - Used as an 

interrupt on events not initiated by 
management lines, as defined by the central processor. 
IEEE Std. 488·1978, places all de· 
vices in a known quiescent state. 

SYC I 24 System Controller - Monitors the 

TCI 0 32 Task Complete Interrupt - Inter· 
rupt to the control processor used 
to indicate that the task requested 

system controller switch. was completed by the 8292 and 
CLTH 0 27 CLEAR LATCH Output - Used to the information requested is ready 

clear the IFCR latch after being in the data bus buffer. 
recognized by the 8292. Usually 
low (except after hardware Reset), 

CIC 0 31 Controller In Charge - Controls 
the SIR input of the SRO bus 

it will be pulsed high when IFCR is transceiver. It can also be used to 
recognized by the 8292. indicate that the 8292 is in charge 

ATNO 0 29 Attention Out - Controls the ATN of the GPIB bus. 
control line of the bus through ex· 
ternal logic for tcs and tca pro· 
cedures. (ATN is a GPIB control 
line, as defined by IEEE Std. 
488·1978.) 

7-18 00741C 



8292 

GENERAL DESCRIPTION 
The 8292 Is an Intel 8041A which has been programmed 
as a GPIB Controller interface element. It is used with 
the 8291 GPIB Talker/Listener and two 8293 GPIB Trans­
ceivers to form a complete IEEE-488 Bus Interface for a 
microprocessor. The electrical interface Is performed by 
the transceivers, data transfer Is done by the talker/ 
listener, and control of the bus is done by the 8292. 
Figure 1 is a typical controller Interface using Intel's 
GPIB peripherals. 

TO 
PROCESSOR 

BUS 

TO 
PROCESSOR 

BUS 

(lPIB 

(lPIB 

Figure 1, Talker/Listener/Controller Configuration 

The internal RAM in the 8041A is used as a special 
purpose register bank for the 8292. Most of these 
registers (except for the interrupt flag) can be accessed 
through commands to the 8292. Table 1 identifies the 
registers used by the 8292 and how they are accessed. 

TABLE 1, 8292 REGISTERS, 
READ FROM 8282 

INTERRUPT STATUS 

SVC ERR I SRO 
I 

EV 
, 

X IIFCR I 

07 
ERROR FLAG 

IBF OBF , 

DO 

I X 
, x I USER , x , x , TOUT3' TOUT2' TOUT1' 

CONTROLLER STATUS 

I CSBS I CA I X x I svcs I IFC REN SRO , 

GPIB (BUS) STATUS , REN , OAV I EOI X , SVC , IFC I ANTI I SRO , 

EVENT COUNTER STATUS 

I D 0 
I 

D 
I 

D 
I 

D 
I 

D 
I 

0 D , 
TIME OUT STATUS 

I D 0 
, 

D 
, 

D I D 
, 

D 
, 

0 D 
, 

0' 

0' 

0' 

0' 

0' 

7-19 

Interrupt Status Register 

I svc I ERR ISRO I EV x IFCR IBF OBF 

The 8292 can be configured to interrupt the microproc­
essor on one of several conditions. Upon receipt of the 
Interrupt the microprocessor must read the 8292 
interrupt status register to determine which event 
caused the interrupt, and then the appropriate subrou­
tine can be performed. The interrupt status register is 
read with Ao high. With the exception of OBF and IBF, 
these Interrupts are enabled or disabled by the SPI 
interrupt mask. OBF and IBF have their own bits In the 
interrupt mask (OBFI and IBFI). 

OBF Output Buffer Full. A byte is waiting to be read by 
the microprocessor. This flag is cleared when the 
output data bus buffer is read. 

IBF Input Buffer Full. The byte previously written by 
the microprocessor has not been read yet by the 
8292. If another byte Is written to the 8292 before 
this flag clears, data will be lost. IBF is cleared 
when the 8292 reads the data byte. 

IFCR Interface Clear Received. The GPIB system 
controller has set IFC. The 8292 has become idle 
and is no longer In charge of the bus. The flag is 
cleared when the lACK command is issued. 

EV Event Counter Interrupt. The requested number 
of blocks or data bytes has been transferred. The 
EV interrupt flag is cleared by the lACK 
command. 

SRQ Service Request. Notifies the 8292 that a service 
request (SRO) message has been received. It is 
cleared by the lACK command. 

ERR Error occurred. The type of error can be deter­
mined by reading the error status register. This 
Interrupt flag is cleared by the lACK command. 

SYC System Controller SWitch Change. Notifies the 
processor that the state of the system controller 
switch has changed. The actual state is con­
tained In the GPIB Status Register. This flag is 
cleared by the lACK command. 

WRITE TO 8282 

INTERRUPT MASK AD 

I 
1 SPI TCI SVC I OBFI I IBFI I 0 I SRO I 

07 Do 
ERROR MASK 

I 0 I 0 , USER' 0 
, 

0 'TOUT3' TOUT2' TOUT1' 

COMMAND FIELD , 1 , 1 , 1 , OP , C , C , C C , 
EVENT COUNTER , D , D , D I 0 I D , D I D I D I 0' 

TIMEOUT 

I 0 , D , D , 0 I D , D I 0 , D 0' 

Note: These registers are accessed by a special utility command, 
see page 6. 

00741C 



8292 

Interrupt Mask Register 

I I SPI I TCI I SYC OBFI IBFI SRO 

DO 

The Interrupt Mask Register is used to enable features 
and to mask the SPI and TCI interrupts. The flags in the 
Interrupt Status Register will be active even when 
masked out. The Interrupt Mask Register is written 
when Ao is low and reset by the RINM command. When 
the register is read, 0, and 0 7 are undefined. An inter· 
tupt is enabled by setting the corresponding register bit. 

SRQ Enable interrupts on SRQ received. 

IBFI Enable interrupts on input buffer empty. 

OBFI Enable interrupts on output buffer full. 

SYC Enable interrupts on a change in the system 
controller switch. 

TCI Enable interrupts on the task completed. 

SPI Enable interrupts on special events. 

NOTE: The event counter is enabled by the GSEC 
command, the error interrupt is enabled by the error 
mask register, and IFC cannot be masked (it will always 
cause an interrupt). 

Controller Status Register 

I CSBS I CA I x I x I SYCS IFC REN SRO 

The Controller Status Register is used to determine the 
status of the controller function. This register is 
accessed by the RCST command. 

SRQ Service Request line active (CSRS). 

REN 

IFC 

SYCS 

CA 

Sending Remote Enable. 

Sending or receiving interface clear. 

System Controller Switch Status (SACS). 

Controller Active (CACS + CAWS + CSWS). 

CSBS Controller Stand· by State (CSBS, CAl = (0,0) -
Controller Idle 

GPIB Bus Status Register 

I REN I DAV I EOI I x SYC IFC ATNI SRO 

DO 

This register contains GPIB bus status information. It 
can be used by the microprocessor to monitor and 
manage the bus. The GPIB Bus Register can be read 
using the RBST command. 

Each of these status bits reflect the current status of 
the corresponding pin on the 8292. 

SRQ Service Request 

ATNI Attention In 

IFC Interface Clear 

SYC System Controller Switch 

EOI End or Identify 

DAV Data Valid 

REN Remote Enable 

Event Counter Register 

DO 

The Event Counter Register contains the initial value for 
the event counter. The counter can count pulses on pin 
39 of the 8292 (COUNT). It can be connected to EOI or 
NDAC to count blocks or bytes respectively during 
standby state. A count of zero equals 256. This register 
cannot be read, and is written using the WEVC 
command. 

Event Counter Status Register 

This register contains the current value in the event 
counter. The event counter counts back from the initial 
value stored in the Event Counter Register to zero and 
then generates an Event Counter Interrupt. This register 
cannot be written and can be read using a REVC 
command. 

Time Out Register 

The Time Out Register is used to store the time used for 
the time out error function. See the individual timeouts 
(TOUT1, 2, 3) to determine the units of this counter. This 
Time Out Register cannot be read, and it is written with 
the WTOUT command. 

Time Out Status Register 

This register contains the current value in the time out 
counter. The time out counter decrements from the 
original value stored in the Time Out Register. When 
zero is reached, the appropriate error interrupt is gen­
erated. If the register is read while none of the time out 
functions are active, the register will contain the last 
value reached the last time a function was active. The 
Time Out Status Register cannot be written, and it is 
read with the RTOUT command. 

7-20 

Error Flag Register 

I x I x I USER I x I x I TOUTS I TOUT2 I TOUT, 

07 DO 

Four errors are flagged by the 8292 with a bit in the Error 
Flag Register. Each of these errors can be masked by 
the Error Mask Register. The Error Flag Register cannot 
be written, and it is read by the lACK command when the 
error flag in the Interrupt Status Register is set. 

TOUT1 Time Out Error 1 occurs when the current con­
troller has not stopped sending ATN after 
receiving the TCT message for the time period 
specified by the Time Out Register. Each count 
in the Time Out Register is at least 1800 tCY. 
After flagging the error, the 8292 will remain in a 
loop trying to take control until the current 
controller stops sending ATN or a new com­
mand is written by the microprocessor. If a new 
command is written, the 8292 will return to the 
loop after executing it. 

00741C 



8292 

TOUT2 Time Out Error 2 occurs when the transmission 
between the addressed tal ker and listener has 
not started for the time period specified by the 
Time Out Register. Each count in the Time Out 
Register is at least 45 tCY' This feature is only 
enabled when the controller is in the CSBS 
state. 

TOUT3 Time Out Error 3 occurs when the handshake 
signals are stuck and the 8292 is not succeed· 
ing in taking control synchronously for the time 
period specified by the Time Out Register. Each 
count in the Time Out Register Is at least 1800 
tCY' The 8292 will continue checking ATNI until 
it becomes true or a new command is received. 
After performing the new command, the 8292 
will return to the ATNI checking loop. 

USER User error occurs when request to assert IFC or 
REN was received and the 8292 was not the 
system controller. 

Error Mask Register 

USER 

DO 

The Error Mask Register is used to mask the interrupt 
from a particular type of error. Each type of error i nter­
rupt is enabled by setting the corresponding bit in the 
Error Mask Register. This register can be read with the 
RERM command and written with Ao low. 

Command Register 

OP c C 

Commands are performed by the 8292 whenever a byte 
is written with Ao high. There are two categories of 
commands distinguished by the OP bit (bit 4). The first 
category is the operation command (OP= 1). These 
commands initiate some action on the interface bus. 
The second category is the utility commands (OP = 0). 
These commands are used to aid the communication 
between the processor and the 8292. 

OPERATION COMMANDS 
Operation commands initiate some action on the GPIB 
interface bus. It Is using these commands that the 
control functions such as polling, taking and passing 
control, and system controller functions are performed. 
A TCI interrupt is generated upon successful comple· 
tion of each of these functions. 

FO - SPCNI - Stop Counter Interrupts 

This command disables the internal counter interrupt so 
that the 8292 will stop Interrupting the master on event 
counter underflows. However, the counter will continue 
counting and its contents can stili be used. 

7-21 

F1 - GIDL - Go To Idle 

This command is used during the transfer of control 
procedure while transferring control to another con­
troller. The 8292 will respond to this command only If it 
is in the active state. ATNO will go high, and CIC will be 
high so that this 8292 will no longer be driving the ATN 
line on the GPIB interface bus. 

F2 - RST - Reset 

This command has the same effect as asserting the 
external reset on the 8292. For details, refer to the reset 
procedure described later. 

F3 - RSTI - Reset Interrupts 

This command resets any pending interrupts and clears 
the error flags. The 8292 will not return to any loop It was 
in (such as from the time out Interrupts). 

F4 - GSEC - Go To Standby, Enable Counting 

The function causes ATNO to go high and the counter 
will be enabled. If the 8292 was not the active controller, 
this command will exit immediately. If the 8292 is the 
active controller, the counter will be loaded with the 
value stored in the Event Counter Register, and the 
internal interrupt will be enabled so that when the 
counter reaches zero, the SPI interrupt will be gener­
ated. SPI will be generated every 256 counts thereafter 
until the controller exits the standby state or the SPCNI 
command is written. An Initial count of 256 (zero In the 
Event Counter Register) will be used If the WEVC 
command is not executed. If the data transmission does 
not start, a TOUT2 error will be generated. 

F5 - EXPP - Execute Parallel Poll 

This command initiates a parallel poll by asserting ATN 
and EOI (lOY message) true. The 8291 should be 
previously configured as a listener. Upon detection of 
OAV true, the 8291 enters ACOS and latches the parallel 
poll response (PPR) byte into its data in register. The 
master will be interrupted by the 8291 Bllnterrupt when 
the PPR byte is available. No interrupts except the IBFI 
will be generated by the 8292. The 8292 will respond to 
this command only when it is the active controller. 

F6 - GTSB - Go To Standby 

If the 8292 is the active controller, ATNO will go high 
.then TCI will be generated. If the data transmission does 
not start, a TOUT2 error will be generated. 

F7 - SLOC - Set Local Mode 

If the 8292 Is the system controller, then REN will be 
asserted false for at least 100 "sec. If It is not the 
system controller, the User Error bit will be set in the 
Error Flag Register. 

Fa - SREM - Set Interface To Remote Control 

This command will set REN true if this 8292 Is the 
system controller. If not, the User Error bit will be set in 
the Error Flag Register. 

00741C 



8292 

Fe - ABORT - Abort All Operation, Clear Interface 

This command will cause IFC to be asserted true for at 
least 100 ",sec if this 8292 is the system controller. If It Is 
in CIOS, it will take control over the bus (see the TCNTR 
command). 

FA - TCNTR - Take Control 

The transfer of control procedure is coordinated by the 
master with the 8291 and 8292. When the master 
receives a TCT message from the 8291, it should issue 
the TCNTR command to the 8292. The following events 
occur to take control: 

1. The 8292 checks to see if it Is in CIOS, and If not, It 
exits. 

2. Then ATNI is checked until it becomes high. If the 
current controller does not release ATN for the time 
specified by the Time Out Register, then a TOUT1 
error is generated. The 8292 will return to this loop 
after an error or any command except the RST and 
RSTI commands. 

3. After the current controller releases ATN, the 8292 
will assert A'fR"O and 0Te low. 

4. Finally, the TCI Interrupt is generated to inform the 
master that it is In control of the bus. 

FC - TCASY - Take Control Asynchronously 

TCAS transfers the 8292 from CSBS to CACS Indepen­
dent of the handshake lines. If a bus hang up is detected 
(by an error flag), this command will force the 8292 to 
take control (asserting ATN) even If the AH function is 
not in ANRS (Acceptor Not Ready State). This command 
should be used very carefully since It may cause the 
loss of a data byte. Normally, control should be taken 
synchronously. After checking the controller function 
for being In the CSBS (else It will exit immediately), 
Ai'1iIO will go low, and a TCI interrupt will be generated. 

FD - TCSY - Take Control Synchronously 

There are two different procedures used to transfer the 
8292 from CSBS to CACS depending on the state of the 
8291 in the system. If the 8291 is in "continuous AH 
cycling" mode (Aux. Reg. AO=A1=1), then the 
following procedure should be followed: 

1. The master microprocessor stops the continuous AH 
cycling mode In the 8291; 

2. The master reads the 8291 Interrupt Status 1 
Register; 

3. If the END bit is set, the master sends the TCSY 
command to the 8292; 

4. If the END bit was not set, the master reads the 8291 
Data In Register and then waits for another BI 
interrupt from the 8291. When it occurs, the master 
sends the 8292 the TCSY command. 

If the 8291 Is not In AH cycling mode, then the master 
Just waits for a BI interrupt and then sends the TCSY 
command. After the TCSY command has been issued, 
the 8292 checks for CSBS. If CSBS, then It exits the 
routine. Otherwise, It then checks the DAV bit In the 
GPIB status. When DAV becomes false, the 8292 will 

7-22 

wait for at least 1.5 ",sec. (T10) and then ATNO will go 
low. If DAV does not go low, a TOUT3 error will be 
generated. 

FE - STCNI - Start Counter Interrupts 

This command enables the Internal counter Interrupt. 
The counter is enabled by the GSEC command. 

UTILITY COMMANDS 
All these commands are either Read or Write to regis­
ters In the 8292. Upon completion of Read commands, 
the TCI (Task Completed Interrupt) will be generated. 
Note that writing to the Error Mask Register and the 
Interrupt Mask Register are done directly. 

E1 - WTOUT - Write To Time Out Register 

The byte written to the data bus buffer (with Ao= 0) 
following this command will determine the time used 
for the time out function. Since this function Is Imple­
mented in software, this will not be an accurate time 
measurement. This feature is enable or disable by the 
Error Mask Register. No interrupts except for the IBFI 
will be generated upon completion. 

E2 - WEVC - Write To Event Counter 

The byte written to the data bus buffer (with Ao = 0) 
following this command will be loaded into the Event 
Counter Register and the Event Counter Status for byte 
counting or EOI counting. Only iBFl will indicate 
completion of this command. 

E3 - REVC - Read Event Counter Status 

This command transfers the contents of the Event 
Counter Into the data bus buffer. A TCI Is generated 
when the data is available in the data bus buffer. 

E4 - RERF - Read Error Flag Register 

This command transfers the contents of the Error Flag 
Register Into the data bus buffer. A TCI Is generated 
when the data Is available. 

ES - RINM - Read Interrupt Mask Register 

This command transfers the contents of the Interrupt 
Mask Register Into the data bus buffer. This register Is 
available to the processor so that it does not need to 
store this information elsewhere. A TCI is generated 
when the data Is available in the data bus buffer. 

E6 - RCST - Read Controller Status Register 

This command transfers the contents of the Controller 
Status Register Into the data bus buffer and a TCI Inter­
rupt Is generated. 

E7 - RBST - Read GPIB Bus Status Register, 

This command transfers the contents of the GPIB Bus 
Status Register Into the data bus buffer, and a TCI 
interrupt is generated when the data is available. 

00741C 



8292 

E9 - RTOUT - Read Time Out Status Register 

This command transfers the contents of the Time Out 
Status Register into the data bus buffer, and a TCI 
interrupt is generated when the data is available. 

EA - RERM - Read Error Mask Register 

This command transfers the contents of the Error Mask 
Register to the data bus buffer so that the processor 
does not need to store this information elsewhere. A TCI 
interrupt is generated when the data is available. 

Interrupt Acknowledge 

SVC ERR SRQ EV iFCR 

DO 

Each named bit in an Interrupt Acknowledge (lACK) 
corresponds to a flag in the Interrupt Status Register. 
When the 8292 receives this command, it will clear the 
SPI and the corresponding bits in the Interrupt Status 
Register. If not all the bits were cleared, then the SPI will 
be set true agai n. If the error flag is not acknowledged 
by the lACK command, then the Error Flag Register will 
be transferred to the data bus buffer, and a TCI wi II be 
generated. 

NOTE: XXXX1X11 is an undefined operation or utility 
command, so no conflict exists between the lACK 
operation and utility commands. 

SYSTEM OPERATION 
8292 To Master Processor Interface 

Communication between the 8292 and the Master 
Processor can be either interrupt based communication 
or based upon polling the interrupt status register in 
predetermined intervals. 

Interrupt Based Communication 

Four different interrupts are available from the 8292: 

OBFI Output Buffer Full Interrupt 
IBFI Input Buffer Not Full Interrupt 
TCI Task Completed Interrupt 
SPI Special Interrupt 

Each of the interrupts is enabled or disabled by a bit in 
the interrupt mask register. Since OBFI and IBFI are 
directly connected to the OBF and IBF flags, the master 
can write a new command to the input data bus buffer 
as soon as the previous command has been read. 

The TCI interrupt is useful when the master is sending 
commands to the 8292. The pending TCI will be cleared 
with each new command written to the 8292. Commands 
sent to the 8292 can be divided into two major groups: 

1. Commands that require response back from the 8292 
to the master, e.g., reading register. 

2. Commands that initiate some action or enable 
features but do not require response back from the 
8292, e.g., enable data bus buffer interrupts. 

7-23 

With the first group, the TCI interrupt will be used to 
indicate that the required response is ready in the data 
bus buffer and the master may continue and read it. 
With the second group, the interrupt will be used to 
indicate completion of the required task, so that the 
master may send new commands. 

The SPI should be used when immediate information or 
special events is required (see the Interrupt Status 
Register). 

"Polling Status" Based Communication 

When interrupt based communication is not desired, all 
interrupts can be masked by the interrupt mask register. 
The communication with the 8292 is based upon 
sequential poll of the interrupt status register. By 
testing the OBF and IBF flags, the data bus buffer 
status is determined while speCial events are deter­
mined by testing the other bits. 

Receiving IFC 

The IFC pulse defined by the IEEE-488 standard is at 
least 100 "sec. In this time, all operation on the bus 
should be aborted. Most important, the current control­
ler (the one that is in charge at that time) should stop 
sending ATN or EOI. Thus, IFC must externally gate CIC 
(controller in charge) and ATNO to ensure that this 
occurs. 

Reset and Power Up Procedure 

A Iter the 8292 has been reset either by the external reset 
pin, the device being powered on, or a RST command, 
the following sequential events will take place: 

1. All outputs to the GPIB interface will go high (SAO, 
ATNI, IFC, SYC, CLTH, ATNO, CIC, TCI, SPI, EOI, 
OBFI, iBFf, DAV, REV). 

2. The four interrupt outputs (TCI, SPI, OBFI, IBFI) and 
CLTH output will go low. 

3. The following registers will be cleared: 
Interrupt Status 
Interrupt Mask 
Error Flag 
Error Mask 
Time Out 
Event Counter (= 256), Counter is disabled. 

4. If the 8292 is the system controller, an ABORT 
command will be executed, the 8292 will become the 
controller in charge, and it will enter the CACS state. 

If it is not the system controller, it will remain in 
CIDS. 

System Configuration 

The 8291 and 8292 must be interfaced to an IEEE-488 
bus meeting a variety of specifications including drive 
capability and loading characteristics. To interface the 
8291 and the 8292 without the 8293's, several external 
gates are required, using a configuration similar to that 
used in Figure 3. 

00741C 



8292 

EOI 

TIR2 

ATN 

REN 

PROCESSOR BUS 

IN TERRUPT WR AD RST ClK ADD DATA DMA NDAC 

1 
8291 IFC 

NRFD DREO 

DACK TIR"1 

DATA 

r--v' I'{ DIO 

lor- RS. 
~ 

1°1"- RS, 

lor- RS2 
DAV 

'-- I"- CLOCK 

~ I"- RESET 

r- AD 

I"- WR 

r- INT 
SRO 

lot- Cs" 

"" I"--
ClTH 

~ DATA ATNO 
r 

A. 
CIC 

Cs" 

AD ~ 
WR SPI 
RESET 

EOI2 
8292 

ATNI 

c!s 
X, 

IFC 

T SYC 

± 
X2 

~ 
~ 

DAV 

REN 

NOTES: EA 
1. CONNECT TO NDAC FOR ~ BYTE COUNT OR TO EOI SRO 

FOR BLOCK COUNT. 
COUNT 2. GATE ENSURES OPEN 

SS T, 
COllECTOR OPERATION IFCl 
DURING PARALLEL POLL. T. 

Figure 2. 8291 and 8292 System Configuration 

7-24 

NOTE 1 

I 

i 
f4.7K I 

I NOTE 2 Q 
I 
I 

C 
..... ... 

e f4.7~ 

GPIB 
TRANSCEIVERS 

3. EOI 

3b ATN 

-=-
3c NDAC 

-=-

3d NRFD 

-=-
~ 

45 DIO 
r 

~DAV 

ATN '-: 2. 

k- '-----' -=-

.... 
~ r-L./ 

~ 

'--~ 
1. IFC 

filM 
LY2; 

1c SRO 

4.7K -=-
SYSTEM ON 

CONTROllER --0-
SWITCH 

00741C 



TO 
MICROPROCESSOR 

GPI 
TRIGGE 
OUTPU 

B 
R 
T 

TO MICROPROCESSOR 

~ 
r.!! 
~ 
~ 

16 

17 

18 

19 

21 

22 

23 

9 

10 

4 

6 

7 

8 

3 

11 

5 

~ 
---1.!. 
~ 
~ 

16 

17 

18 

19 

9 

8 

10 

DO 

01 

02 

03 

04 

05 

06 

07 

RSO 8291 

RSl 

RS2 

RD 
WR 

RESET 

OREO 
--
OACK 

Cs 
CLOCK 

INT 

TRIG 

00 

01 

02 

03 

04 

05 

06 

07 

AO 8292 

RD 
WR ..... 4 
RESET11 

V' 

TO 
MICROPROCESSOR 

OSCILLATO 
OUTPU 

1 
R 
T 

6 Cs 
32 

TCI 
33 

SPI 
35 

OBFI 
36 

IBFI 
11 

SYNC 

Vee~ SS 

~X1t 
~1 

X,1 

15·25 pF ± r EA 

, = GPIB BUS TRANSCEIVER 
1 = SEE 8041A DATA SHEET FOR ALTERNATE 

CRYSTAL CONFIGURATiONS 
11 = CAN CONNECT TO SYSTEM RESET SWITCH, 

SEE 8041A DATA SHEET 

8292 

0101 
28 

0102 
29 

- 30 
0103 

0104 
31 

-- 32 
0105 

0106 
33 

-- 34 
0107 

DlOe 35 

TIRl 
1 

-OAV 36 

EOI 
39 

A"iN 
26 

SRO 
27 

- 24 
IFC 

NOAC 
38 

NRFD 37 

T/R2 
2 

REN ~ 

OAV .E-

SRO 
21 

REN 
38 

IFC 
23 

ATNO 
29 

COUNT 
39 

- 34 
EOl2 

ATNI 
22 

IFCL 
1 

CIC 
31 

CLTH 
27 

SYC 
24 

Figure 3, 8291, 8292, and 8293 System Configuration 

7-25 

25 
0101 

23 
0102 

10 
0103 

9 
0104 

8 
0105 

7 
0106 

6 
0107 

5 
0108 

1 
TlRl 

24 
OAV 

3 
EOI 

4 
ATN 

,---.11- ATNO 

I- ,2- IFCL 

I-r-!- TlRl 
4 

ATN 
10 

NOAC 
9 NFRii 
2 

TlR2 
8 

SRO 
6 

REN 
5 

IFC 
23 

ATNO 
3 

EOI 
7 

EOl2 
11 

ATNI 

25 
IFCL 

24 
CIC 

21 
CLTH 

22 
SYC 

LJ ON SYSTEM 
CONTROLLER 

.i0FF SWITCH 

0101' 

0102' 

0103' 

0104' 

0105' 

0106' 

0107' 
8293 

0108' 

OAV' 

OPTA 

OPTB 
MODE 3 

NOAC 

NRFO 

SRO' 

REN' 
8293 IFC' 

ATN' 

EOI' 

OPTA 

OPTB 

MOOE2 

.E. 
~ 

..!!.. 

..!Z... 

.1!.. 

.1!.. 

..!!.. 

.!!.. 

2.!... 

E.. 
~ 

..!!.. 

..!Z... 

.1!.. 

..!!.. 

.!!.. 
~ 
.1!.. 

E.. 
~ 

TO 
IEEE·488 
BUS 

Vee 

Vee 

TO 
IEEE·488 
BUS 

V •• 

Vee 

00741C 



8292 

ABSOLUTE MAXIMUM RATINGS· 
Ambient Temperature Under Bias ......... O·C to 70·C 
Storage Temperature ............. -65·C to + 150·C 
Voltage on Any Pin With Respect 

to Ground ........................... 0.5V to + 7V 
Power Dissipation ......................... 1.5 Watt 

D.C. AND OPERATING CHARACTERISTICS 
TA=O·C to 70·C, Vss=OV, 8292: Vee= ±5V± 10% 

Symbol Parameter 

VIL1 Input Low Voltage (All Except X1, X2, RESET) 

VIL2 Input Low Voltage (X1' X2, RESET) 

VIH1 Input High Voltage (All Except X1, X2, RESET) 

VIH2 Input High Voltage (X1, X2, RESET) 

VOL1 Output Low Voltage (00-07) 

VOL2 Output Low Voltage (All Other Outputs) 

VOH1 Output High Voltage (00-07) 

VOH2 Output High Voltage (All Other Outputs) 

·COMMENT: Stresses above those listed under "Abso· 
lute Maximum Ratings" may cause permanent damage 
to the device. This is a stress rating only and functional 
operation of the device at these or any other conditions 
above those indicated in the operational sections of this 
specification is not implied. Exposure to absolute 
maximum rating conditions for extended periods may 
affect device reliability. 

Min. Max. Unit Test Conditions 

-0.5 0.8 V 

-0.5 0.6 V 

2.2 Vee V 

3.8 Vee V 

0.45 V IOL=2.0 mA 

0.45 V IOL= 1.6 mA 

2.4 V 10H= -400 I'A 

2.4 V 10H= -50 I'A 

IlL Input Leakage Current (COUNT, IFCL, RD, WR, CS, Ao) ±10 J.LA Vss" VIN .. Vee 

loz Output Leakage Current (00-07, High Z State) 

ILl1 Low Input Load Current (Pins 21-24, 27-38) 

ILI2 Low Input Load Current (RESET) 

Icc Total Supply Current 

A.C. CHARACTERISTICS 
T A= o·e to 70·C, Vss= OV, 8292: Vee= +5V ± 10% 

1. DBB READ 

Symbol Parameter 

tAR CS, Ao Setup to RD-I 

tRA CS, Ao Hold After ROt 

tRR RD Pulse Width 

tAD CS, Ao to Data Out Delay 

tRo RD-I to Data Out Delay 

tOF ROt to Data Float Delay 

tey Cycle Time 

2. DBB WRITE 

Symbol Parameter 

tAW CS, Ao Setup to WR-I 

tWA CS, Ao Hold After WRt 

tww WR Pulse Width 

tow Data Setup to WRt 

two Data Hold After WR-I 

7·26 

±10 I'A Vss+ 0.45 .. VIN" Vee 

0.5 mA VIL =0.8V 

0.2 mA VIL=0.8V 

125 mA Typical = 65 mA 

Min. Max. Unit Test Conditions 

0 ns 

0 ns 

250 ns 

225 ns CL= 150 pF 

225 ns CL= 150 pF 

100 ns 

2.5 15 I's 

Min. Max. Unit Test Conditions 

0 ns 

0 ns 

250 ns 

150 ns 

0 ns 

00741C 



8292 

3. COMMAND TIMINGSll,31 
execution 

Code Name Time IiFit TCI121 SPI ATNO CIC we iWi 
El WTOUT 63 24 

E2 WEVC 63 24 

E3 REVC 71 24 51 

E4 RERF 67 24 47 

E5 RINM 69 24 49 

E6 RCST 97 24 77 

E7 RBST 92 24 72 

E6 
E9 RTOUT 69 24 49 

EA RERM 69 24 49 

FO SPCNI 53 24 

Fl GIOL 88 24 70 161 161 

F2 RST 94 24 152 

F2 RST 214 24 192 ~52 1179 ~174 ~101 

F3 RSTI 61 24 

F4 GSEC 125 24 107 !98 

F5 EXPP 75 24 
~53 

159 
F6 GTSB 118 24 100 191 

F7 SLOC 73 24 55 146 
F8 SREM 91 24 73 154 
F9 ABORT 155 24 133 ~120 ~115 142 
FA TCNTR 108 24 88 ~71 158 
FC TCAS 92 24 67 155 

FD TCSY 115 24 91 150 
FE STCNI 59 24 

PIN RESET 29 - ~7 ~7 

X lACK 116 - ~73 
196 

Notes: 1. All times are muilipies oitCY lrom the 8041A command Interrupt. 
2. TCI clears alter 7 tCY on all commands. 
3. I Indicates a level transition Irom low to high, ~ Indicates a high to low trsnsltlon. 

WAVEFORMS 
1. READ OPERATION - DATA BUS BUFFER REGISTER. 

CS OR Ao 
(SYSTEM'S 

ADDRESS BUSI 

AD 
(READ CONTROL) 

~ 
-tAR-

IRR 

'\ 

K 
.... IRA .... 

t 
. IRV 

EOi DAY Commenta 

Count Stops After 39 

Not System Controller 

System Controller 

~55 
157 

Starts Count Alter 43 

Not System Controller 

II Interrupt Pending 

-' 
\ 

-tRD- I-IDF-

_tAD_ ~~1~~~~ _____________________ ~r-------D-A-TA--VA-L-ID------~~~-------------------
2. WRITE OPERATION - DATA BUS BUFFER REGISTER. 

CSORA0=1 r (SYSTEM'S ADDRESS BUS) '-____________________ _ 

-lAW-I r"-------· _IW_W-=.~ .. twA-
(WRITE CONTR~~ L _ 

-tow- I~ 

DATA BUS DATA \i DATA VALID V DATA 
(INPUT) _______ M_A_y_C_H_AN_G_E ______ ....JjI.,... ______________ .,..~'_ ______ ..;M..;A..;y..;C..;H;;.;A..;N(l..;E;.... ______ _ 

7·27 DC741C 



8292 

APPENDIX 
The following tables and state diagrams were taken 
from the IEEE Standard Digital Interface for Program-

mabie Instrumentation, IEEE Std. 488-1978. This docu­
ment is the official standard for the GPIB bus and can be 
purchased from IEEE, 345 East 47th St., New York, NY 
10017. 

C MNEMONICS 

Messages 

pon = power on 
rsc = request system control 
rpp = request parallel poll 
gts = go to standby 
tca = take control asynchronously 
tcs = take control synchronously 
sic = send interface clear 
sre = send remote enable 

I FC = interface clear 
ATN = attention 
TCT = take control 

• T10 > 1.5 ~.ec 
t THE MICROPROCESSOR MUST WAIT FOR THE BO 

INTERRUPT BEFORE WRITING THE GTSB OR GSEe 
COMMANDS TO ENSURE THAT (l!TI!!l"mYll) 
IS TRUE. 

Figure A.1. C State Diagram 

CIDS 
CADS 
CTRS 
CACS 
CPWS 
CPPS 

CSBS 
CSHS 
CAWS 
CSWS 
CSRS 
CSNS 
SNAS 
SACS 
SRIS 
SRNS 
SRAS 
SIIS 
SINS 
SIAS 

(ACDS) 

~ 
(SDYS) 

@BID 
C!:AQID 

7-28 

I nterface States 

= controller id Ie state 
= controller addressed state 
= controller transfer state 
= controller active state 
= controller parallel poll wait state 
= controller parallel poll state 

= controller standby state 
= controller standby hold state 
= controller active wait state 
= controller synchronous wait state 
= controller service requested state 
= controller service not requested state 
= system control not active state 
= system control active state 
= system control remote enable idle state 
= system control remote enable not active state 
= system control remote enable active state 
= system control interface clear Idle state 
= system control Interface clear not active state 
= system control interface clear active state 

= accept data state (AH function) 

= acceptor not ready state (AH function) 

= source delay state (SH function) 

= source transfer state (SH function) 

= talker addressed state (T function) 

SRQ 

o 
~~ 

roc 

G 

00741C 



Mnemonic 

ACG 
ATN 
DAB 

DAC 
DAV 
DCL 
END 
EOS 

GET 
GTL 
IDY 
IFC 
LAG 
LLO 
MLA 

MTA 

MSA 

NUL 
OSA 
OTA 
PCG 
PPC 
PPE 

PPD 

PPR1 
PPR2 
PPR3 
PPR4 
PPR5 
PPR6 
PPR7 
PPR8 
PPU 
REN 
RFD 
ROS 
SCG 
SDC 
SPD 
SPE 
SRO 
STB 

TCT 
TAG 
UCG 
UNL 
UNT 

8292 

REMOTE MESSAGE CODING 

Message Name 

Addressed Command Group 
Attention 
Data Byte 

Data Accepted 
Data Valid 
Device Clear 
End 
End of String 

Group Execute Trigger 
Go to Local 
Identify 
Interface Clear 
Listen Address Group 
Local Lock Out 
My Listen Address 

My Talk Address 

My Secondary Address 

Null Byte 
Other Secondary Address 
Other Talk Address 
Primary Command Group 
Parallel Poll Configure 
Parallel Poll Enable 

Parallel Poll Disable 

Parallel Poll Response 1 
Parallel Poll Response 2 
Parallel Poll Response 3 
Parallel Poll Response 4 
Parallel Poll Response 5 
Parallel Poll Response 6 
Parallel Poll Response 7 
Parallel Poll Response 8 
Parallel Poll Unconfigure 
Remote Enable 
Ready for Data 
Request Service 
Secondary Command Group 
Selected Device Clear 
Serial Poll Disable 
Serial Poll Enable 
Service Request 
Status Byte 

Take Control 
Talk Address Group 
Universal Command Group 
Unlisten 
Untalk 

(Notes 1, 9) 

(Notes 2, 9) 

(Note 3) 

(Note 4) 

(Note 5) 

(Note 6) 

(Note 7) 

(Note 10) 

(Note 9) 

(Notes 8, 9) 

(Note 11) 

T 
Y 
P 
E 

M 
U 
M 

U 
U 
M 
U 
M 

M 
M 
U 
U 
M 
M 
M 

M 

M 

M 
M 
M 
M 
M 
M 

M 

U 
U 
U 
U 
U 
U 
U 
U 
M 
U 
U 
U 
M 
M 
M 
M 
U 
M 

M 
M 
M 
M 
M 

C 
L 
A 
S 
S 

AC 
UC 
DD 

HS 
HS 
UC 
ST 
DD 

AC 
AC 
UC 
UC 
AD 
UC 
AD 

AD 

SE 

DD 
SE 
AD 

AC 
SE 

SE 

ST 
ST 
ST 
ST 
ST 
ST 
ST 
ST 
UC 
UC 
HS 
ST 
SE 
AC 
UC 
UC 
ST 
ST 

AC 
AD 
UC 
AD 
AD 

Bus Signal Line(s) and Coding That 
Asserts the True Value of the Message 

o 0 NN 
I I ORO A E SIR 
o 0 AFA TOR F E 
87654321 VOC N I Q C N 

Y 0 0 0 X X X X 
X X X X X X X X 
D D D D D D D D 
8765432 1 

XXX 1 X X X X 
XXX 1 X X X X 
XXX 0 X X X X 

X X X X X X X X XXO 
XXXXXXXX 1XX 
Y 0 0 1 0 1 0 0 XXX 
X X X X X X X X XXX 
E E E E E E E E XXX 
8765432 1 
Y 0 0 0 1 0 0 0 XXX 
Y 0 0 0 0 0 0 1 XXX 
X X X X X X X X XXX 
X X X X X X X X XXX 
Y 0 1 X X X X X XXX 
Y 0 0 0 0 0 1 XXX 
Y 0 1 L L L L LXXX 

5 4 3 2 1 
Y 0 T T T T T XXX 

Y 
54321 
S S S S S XXX 
5 4 3 2 1 

X X X X X 
X X X X X 
1 X X X X 
o 1 X X X 
o X X X X 

X X X X 
1 X X X X 
X 1 X X X 
X X X 1 X 
1 X X X X 
1 X X X X 
1 X X X X 

X X X X 

X X X X 

o 0 0 0 0 0 0 0 XXX X X X X X 
(OS A = SCG 1\ MSA) 
(OTA = TAG 1\ MTA) 

(PCG = ACG v UCG v LAG v TAG) 
Y 0 0 0 0 1 0 1 XXX 1 X X X X 
Y 1 1 0 S P P P XXX 1 X X X X 

Y 
321 

D D D D XXX 
4 3 2 1 

X X X X X X X 1 XXX 
X X X X X X 1 X XXX 
X X X X X 1 X X XXX 
X X X X 1 X X X XXX 
X X X 1 X X X X XXX 
X X 1 X X X X X XXX 
X 1 X X X X X X XXX 
1 X X X X X X X XXX 
Y 0 0 1 0 1 0 1 XXX 
X X X X X X X X XXX 
X X X X X X X X XOX 
X 1 X X X X X X XXX 
Y 1 1 X X X X X XXX 
Y 0 0 0 0 1 0 0 XXX 
Y 0 0 1 1 0 0 1 XXX 
Y 0 0 1 1 0 0 0 XXX 
X X X X X X X X XXX 
S X S S S S S S XXX 
8 654 3 2 1 
Y 0 0 0 1 0 0 1 XXX 
Y 1 0 X X X X X XXX 
Y 0 0 1 X X X X XXX 
Y 0 1 1 1 1 1 1 XXX 
Y 1 0 1 1 1 1 1 XXX 

X X X X 

X X X 
X X X 
X X X 
X X X 
X X X 
X X X 
X X X 

1 X X X 
1 X X X X 
X X X X 1 
X X X X X 
o X X X X 
1 X X X X 
1 X X X X 
1 X X X X 
1 X X X X 
X X 1 X X 
o X X X X 

X X X X 
X X X X 
X X X X 
X X X X 
X X X X 

The 1/0 coding on ATN when sent concurrent with multiline messages has been added to this revision for interpre· 
tive convenience. 

7-29 Q0741C 



8292 

NOTE5: 

1. 01-08 specify the device dependent data bits. 
2. E1-E8 specify the device dependent code used to indicate the E05 message. 
3. L 1-L5 specify the device dependent bits of the device's listen address. 
4. T1-T5 specify the device dependent bits of the device's talk address. 
5. 81-85 specify the device dependent bits of the device's secondary address. 
6. 8 specifies the sense of the PPR. 

Response = 5 Ef> ist 

P1-P3 specify the PPR message to be sent when a parallel poll Is executed. 

P3 P2 P1 PPR Message 
o 0 0 PPR1 

PPR8 

7. 01-04 specify don't-care bits that shall not be decoded by the receiving device. It is recommended that all zeroes 
be sent. 

8. 51-86,58 specify the device dependent status. (0107 is used for the RQ5 message.) 
9. The source of the message on the ATN line is always the C function, whereas the messages on the 010 and EOI 

lines are enabled by the T function. 
10. The source of the messages on the ATN and EOI lines is always the C function, whereas the source of the 

messages on the 010 lines Is always the PP function. 
11. This code is provided for system use, see 6.3. 

7-30 007410 



inter 
8294 

DATA ENCRYPTION UNIT 

• Certified by National Bureau of 
Standards 

• 80 Byte/Sec Data Conversion Rate 

• 64·Blt Data Encryption Using 56· Bit 
Key 

• DMA Interface 

• 3 Interrupt Outputs to Aid In Loading 
and Unloading Data 

DESCRIPTION 

• 7·Bit User Output Port 

• Single 5V :!: 10% Power Supply 

• Peripheral to MCS·86™, MCS·S5™, 
MCS·SOTM and MC8-48™ Processors 

• Implements Federal Information 
Processing Data Encryption Standard 

• Encrypt and Decrypt Modes Available 

The Intele 8294 Data Encryption Unit (DEU) Is a microprocessor peripheral device designed to encrypt and decrypt 
64-bit blocks of data using the algorithm specified in the Federal Information Processing Data Encryption Standard. 
The DEU operates on 64-blt text words using a 56-bit user-specified key to produce 64-bit cipher words. The operation 
is reversible: if the cipher word Is operated upon, the original text word is produced. The algorithm itself is perma­
nently contained in the 8294; however, the 56-bit key is user-defined and may be changed at any time. 

The 56·bit key and 64-blt message data are transferred to and from the 8294 in 8-bit bytes by way of the system data 
bus. A DMA Interface and three interrupt outputs are available to minimize software overhead associated with data 
transfer. Also, by using the DMA interface two or more DEUs may be operated in parallel to achieve effective system 
conversion rates which are v·irtuaJly any multiple of 80 bytes/second. The 8294 also has a 7-bit TTL compatible output 
port for user-specified functions. 

Because the 8294 implements the NBS encryption algorithm it can be used in a variety of Electronic Funds Transfer 
applications as well as other electronic banking and data handling applications where data must be encrypted. 

PIN 
CONFIGURATION 

NC 
X, 
X2 DACK 

RESET DRO 

NC SRO 
Oil DAV 

GND NC 
RD PO 

AD P6 
Wi! P4 

SYNC P3 
DO P2 

P' 
PO 

D3 VDD 
NC 

ceMP 
D6 NC 
D7 NC 

GND NC 

BLOCK DIAGRAM 

DATA 
BUS 

SRO 

DAV 
ceMP 

Po·p, 
RESET 
SYNC 

X, 
X. 

+5V-
INTERNAL POWER-_ 

GND--
BUS 

7-31 OO23DB 



8294 

Pin # Pin Name I/O Pin Description 

1 NC 

2 X1 
3 X2 

4 RESET 

5 NC 

6 CS 

7 GNO 

8 

9 

10 

11 

12 
13 
14 
15 
16 
17 
18 
19 

20 

Ao 

SYNC 

0 0 
0 1 
O2 
0 3 
0 4 
0 5 
0 6 
0 7 

GNO 

No connection. 

Inputs for crystal, L-C or exter­
nal timing signal to determine 
internal oscillator frequency. 

A low signal to this pin resets 
the 8294. 

No connection or tied high. 

A low signal to this pin enables 
reading and writing to the 8294. 

This pin must be tied to ground. 

An active low read strobe at 
this pin enables the CPU to 
read data and status from the 
internal OEU registers. 

Address input used by !he CPU 
to select OEU registers during 
read and write operations. 

An active low write strobe at 
this pin enables the CPU to 
send data and commands to 
the OEU. 

o High frequency (Clock.;. 15) 
output. Can be used as a strobe 
for external circuitry. 

I/O Three-state, bi-directional data 
bus lines used to transfer data 
between the CPU al1d the 8294. 

This pin must be tied to ground. 

Pin # Pin Name 110 Pin Description 

7-32 

40 Vee 

39 NC 

38 OACK 

37 

38 

35 

34 

33 
32 
31 
30 
29 
28 
27 

26 

25 

24 

23 
22 
21 

C'RO 

SRO 

OAV 

NC 

P6 
P5 
P4 
P3 
P2 
P1 
PO 

Voo 

NC 

CCMP 

NC 
NC 
NC 

o 

+ 5 volt power input: + 5V 
± 10%. 

No connection. 

OMA acknowledge. Input 
signal from the 8257 OMA Con­
troller acknowledging that the 
requested OMA cycle has been 
granted. 

OMA request. Output signal to 
the 8257 OMA Controller 
requesting a OMA cycle. 

o Service Request. Interruot to 
the CPU indicating that the 
8294 is awaiting data or com­
mands at the input buffer. 
SRO = 1 implies ISF = O. 

o Output Available. Interrupt to 
the CPU indicating that the 
8294 has data or status avail­
able in its output buffer. 
OAV=1 impliesOSF=1. 

No connection. 

o User output port lines. Output 
lines available to the user via a 
CPU command which can as­
sert selected port lines. These 
lines have nothing to do with 
the encryption function. At 
power-on, each line is in a 1 
state. 

+ 5V power input. (+ 5V ± 10%) 
Low power standby pin. 

No connection. 

o Conversion Complete. Interrupt 
to the CPU indicating that the 
encryption/decryption of an 
8-byte block is complete. 

No connection. 
No connecticn. 
No connection. 

002308 



8294 

BASIC FUNCTIONAL DESCRIPTION 
OPERATION 

The data conversion sequence is as follows: 

1. A Set Mode command is given, enabling the desired 
interrupt outputs. 

2. An Enter New Key command is issued, followed by 8 
data inputs which are retained by the DEU for encryp· 
tion/decryption. Each byte must have odd parity. 

3. An Encrypt Data or Decrypt Data command sets the 
DEU in the desired mode. 

After this, data conversions are made by writing 8 data 
bytes and then reading back 8 converted data bytes. Any 
of the above commands may be issued between data 
conversions to change the basic operation of the DEU; 
e.g., a Decrypt Data command could be issued to 
change the DEU from encrypt mode to decrypt mode 
without changi,lg either the key or the interrupt outputs 
enabled. 

INTF.RNAL DEU REGISTEI1S 

Four internal registers are addressable by the master 
processor: 2 for input, and 2 for output. The following 
table describes how these registers are accessed. 

RD WR CS Ao Register 

1 0 CI 0 Data input buffer 
o 1 0 0 Data output buffer 

o 0 1 Command input buffer 
o 1 0 1 Status output buffer 
X X X Don't care 

The functions of each of these registers are described 
below. 

Data Input Buffer - Data written to this register is inter· 
preted in one of three ways, depending on the preceding 
command sequence. 

1. Part of a key. 
2. Data to be encrypted or decrypted. 
3. A DMA block count. 

Data Output Buffer - Data read from this register is the 
output of the encryption/decryption operation. 

Command Input Buffer - Commands to the DEU are 
written into this register. (See command summary 
below.) 

Status Output Buffer - DEU status is available in this 
register at all times. It is used by the processor for poll­
driven command and data transfer operations. 

STATUS BIT: 

FUNCTION, rr~5 3 2 a I 
x x X KPE CF DEC IBF OBF 

----------------------~ 

OBF Output Buffer Full; OBF = 1 indicates that output 
from the encryption/decryption function is 
available in the Data Output Buffer. It is reset 
when the data is read. 

7-33 

IBF Input Buffer Full; A write to the Data Input Buffer 
or to the Command Input Buffer sets IBF = 1. The 
DEU resets this flag when it has accepted the 
input byte. Nothing should be written when 
IBF= 1. 

DEC Decrypt; indicates whether the DEU is in an en­
crypt or a decrypt mode. DEC = 1 implies the 
decrypt mode. DEC = 0 implies the encrypt 
mode. 

CF Completion Flag; This flag may be used to indi­
cate any or all of three events in the data transfer 
protocol. 

1. It may be used in lieu of a counter in the 
processor routine to flag the end of an 8-
byte transfsr. 

2. It must be used to indicate the validity of 
the KPE flag. 

3. It may be used in lieu of the CCMP interrupt 
to indicate the completion of a DMA oper­
ation. 

KPE Key Parity Error; After a new key has been 
entered, the DEU uses this flag in conjunction 
with the CF flag to indicate correct or incorrect 
parity. 

COMMAND SUMMARY 

1 - Enter New Key 

OP CODE: 'I a'! '1 1'0'1-0 1'0'1'0 1'0'1'0 I 
MSB LSB 

This command is followed by 8 data byte inputs which 
are retained in the key bUTfer (RAM) to be used in 
encrypting and decrypting data. These data bytes must 
have odd parity represented by the LSB. 

2 - Encrypt Data 

OP CODE: 'I 0'1'0 1'1'1'1 1'0'1'0 1-0'1'0 I 
MSB LSB 

This command puts the 8294 into the encrypt mode. 

3 - Decrypt Data 

OP CODE: '10'1-0 1'1'1-0 l'o'WiJiJ'o '0"0 
MSB LSB 

This command puts the 8294 into the decrypt mode. 

4 - Set Mode 

OPCODE: 

where: 

MSB LSB 

A is the OAV (Output Available) interrupt enable 
B is the SRQ (Service Request) interrupt enable 
C is the DMA (Direct Memory Access) transfer enable 
D is the CCMP (Conversion Complete) interrupt enable 

002308 



8294 

This command determines which interrupt outputs will 
be enabled. A "1" in bits A, B, or D will enable the OAV, 
SRQ, or CCMP interrupts respectively. A "1" in bit C will 
allow DMA transfers. When bit C is set the OAV and 
SRQ Interrupts should also be enabled (bits A,B = 1). 
Following the command in which bit C, the DMA bit, is 
set, the 8294 will expect one data byte to specify the 
number of 8-byte blocks to be converted using DMA. 

5 - Write to Output Port 

op CODE: '11'I-p-s r-I p-s--rl-p 4-'-I-P3-I'-p-2 -'1 p-1"TI-po'l 
MSB LSB 

This command causes the 7 least significant bits of the 
command byte to be latched as output data on the 8294 
output port. The Initial output data is 1111111. Use of 
this port is independent of the encryption/decryption 
function. 

PROCESSORIDEU INTERFACE PROTOCOL 
ENTERING A NEW KEY 

The timing sequence for entering a new key is shown in 
Figure 1. A flowchart showing the CPU software to 
accommodate this sequence is given in Figure 2. 

(IFENAB~:~ LIUL __ J-l ... _____ _ 

CF :oJ L 
KPE ______ 'N_VA_L_'D ____ ~~ 

AoJL--U--L.J---LS------IL 

~---u WR KEY KEY KEY 
DATA DATA DATA 

NEW 
KEY 
COMMAND 

Figure 1. Entering a New Key 

CHECKU KPE 

7-34 

After the Enter New Key command is issued, 8 data 
bytes representing the new key are written to the data 
input buffer (most significant byte first). After the eighth 
byte is accepted by the DEU, CF goes true (CF = 1). The 
CF bit goes false again when KPE is valid. The CPU can 
then check the KPE flag. If KPE = 1, a parity error has 
been detected and the DEU has not accepted the key. 
Each byte is checked for odd parity, where the parity bit 
is the LSB of each byte. 

Since the CF bit is used in this protocol to indicate the 
validity of the KPE flag, it may not be used to flag the 
end of the 8 byte key entry. CF = 1 only as long as KPE is 
inv.aHd. Therefore, the CPU might not detect that CF = 1 
and the key entry is complete before KPE becomes 
valid. Thus, a counter should be used, as in Figure 2, to 
flag the end of the new key entry. Then, CF is used to 
indicate a valid KPE flag. 

1---1+1 

NO 1=8? 

YES 

!'I~ KPE(O? ) 
YES 

8 

Figure 2. Flowchart for Entering a New Key 

002308 



8294 

ENCRYPTING OR DECRYPTING DATA 

Figure 3 shows the timing sequence for encrypting or 
decrypting data. The CPU writes a data bytes to the 
DEU's data Input buffer for encryption/decryption. CF 
then goes true (CF: 1) to Indicate that the DEU has 
accepted the a·byte block. Thus, the CPU may test for 
IBF ... a and CF = 1 to terminate the Input mode, or It 
may use a software counter. When the encryptlon/· 
decryption Is complete, the CCMP and OAV Interrupts 
are asserted and the OBF flag Is set true (OBF= 1). OAV 
and OBF are set false again after each of the converted 
data bytes Is read back by the CPU. The CCMP Interrupt 
Is set false, and remains false, after the first read. After 
a bytes have been read back by the CPU, CF goes false 
(CF = 0). Thus, the CPU may test for CF = 0 to terminate 
the read mode. Also, the CCMP Interrupt may be used to 
Initiate a service routine which performs the next series 
of a data reads and a data writes. 

COMP r-r ('. ENABLEDl _________ -'1 1'--___ _ 

(I.ENAI~:& UL_Jl _________ _ 
'". JLJl_~'__ __ _ 

OAV rI rI rI 
(lFENAILED) __________ 1 LJ L_J L 

OIF r1 r1 rI 
::::;-_---;:::==..'__==_ LJ-=.: L_=-J--=; L 

c.] I 
LnJ-Lf 

--------~~~--8 DATA WRITES 100 ml _ MAXIMUM • DATA READS 

Figure 3. Encrypting/Decrypting Data 

Figure 4 offers two flowcharts outlining the alternative 
means of Implementing the data conversion protocol. 
Either the CF flag or a software counter may be used to 
end the read and write modes. 

SRQ: 1 implies IBF=O, OAV= 1 Implies OBF= 1. This 
allows Interrupt routines to do data transfers without 
checking status first. However, the OAV service routine 

USING SOFTWARE COUNTER 

USING CF FLAG 

must detect and flag the end of a data conversion. Figure 4. Data Conversion Flowcharts 

7·35 oo23OB 



8294 

USING DMA 

The timing sequence for data conversions using DMA is 
shown in Figure 5. This sequence can be better 
understood when considered in conjunction with the 
hardware DMA interface in Figure 6. Note that the use of 
the DMA feature requires 3 external AND gates and 2 
DMA channels (one for input, one for output). Since the 
DEU has only one DMA request pin, the SRO and OAV 
outputs are used in conjunction with two of the AND 
gates to create separate DMA request outputs for the 2 
DMA channels. The third AND gate combines the two 
active-low DACK inputs. 

CCMP r (IF ENABLED) ________________ --1 

CF =rll.....-____ ---...JI 
SRQ Lf1J1f--l'--__ _ 
OAY Il_JL 
DMAR~-Lrl __ JL 
DACK --U--UU--U-

Aij U---lj 
WfiUlJU--lJ 

SET DMA 
DMA BLOCK 8 DMA READS 8DMAWRITES 
MODE COUNT (n) 

---~----
REPEATED n TIMES 

Figure 5. DMA Sequence 

Do-D, 

8257 

\,---';.;-::.-----.11 Ao-A, 
,.----..::..jDACK1 

INT----_<"I 
iffi _____ ~!.<>1 

DACKO 
DMAR1 
DMARO 

WR-----~~_.J 

Figure 6. DMA Interface 

To initiate a DMA transfer, the CPU must first initialize 
the two DMA channels as shown in the flowchart in 
Figure 7. It must then issue a Set Mode command to the 
DEU enabling the OAV, SRO, and DMA outputs. The 
CCMP Interrupt may be enabled or disabled, depending 
on whether that output is desired. Following the Set 
Mode command, there must be a data byte giving the 
number of a-byte blocks of data (n<256) to be converted. 
The DEU then generates the required number of DMA 
requests to the 2 DMA channels with no further CPU 
intervention. When the requested number of blocks 
has been converted, the DEU will set CF and assert the 
CCMP interrupt (if enabled). CCMP then goes false 
again with the next write to the DEU (command or data). 
Upon completion of the conversion, the DMA mode is 
disabled and the DEU returns to the encrypt/decrypt 
mode. The enabled interrupt outputs, however, will 
remain enabled until another Set Mode command is 
issued. 

7-36 

USING DMA 

INITIALIZE DMA READ CHANNEL POINTER 

INITIALIZE DMA WRITE CHANNEL POINTER 

Figure 7. DMA Flowchart 

SINGLE BYTE COMMANDS 

Figure a shows the timing and protocol for single byte 
commands. Note that any of the commands is effective 
as a pacify command in that they may be entered at any 
time, except during a DMA conversion. The DEU is thus 
set to a known state. However, if a command is issued 
out of sequence, an additional protocol is required 
(Figure 9). The CPU must wait until the command is 
accepted (IBF = 0). A data read must then be issued to 
clear anything the preceding command sequence may 
have left in the Data Output Buffer. 

00230B 



8294 

CPUIOEU INTERFACES 

Figures 10 through 13 Illustrate four interface confIgura­
tions used In the CPUIDEU data transfers. In all cases 
SRQ will be true (it enaNed) and IBF will be false when 
the DEU is ready to accept data or commands. 

SRO 
(IF ENABLED) U 

IBF n 
----------~~--------

WR u 
U..-----

COMMAND REGISTER COMMAND 

8 
Figure 8. Single Byte Commands 

PACIFY 

COMMAND REGISTER-OOH 

READ DATA REGISTER 

8 

D7~ 

INTERFACE TO 8086, 8088, ViR - 8294 {OO'~G 8080,8085, 8048, OR RD _ OEU 
OTHER PROCESSOR 

cs-o 
Ao----

Figure 10. Polling Interface 

~-----------------, 

MASTER 
PROCESSOR 
INTERFACE 

Oo·~ 
07~ 
RD-

8294 
WR- DEU 

cs_o 
AO----I 

Figure 11. Single Interrupt Interface 

INTl 
INT2 

MASTER '00<=4 
PROCESSOR 

0, 8 SRQ 

INTERFACE RD 

Wii 
8294 
OEU 

C§ 

Ao OAV OC 

Figure 9. Pacify Protocol Figure 12. Dual Interrupt Interface 

7-37 002308 



8294 

8257 

INT-----«l 
RD __________ ~~ 
WR-----4!!:.---1 

DMARO IS FOR MEMORY TO DEU DATA TRANSFER 
DMARI IS FOR DEU TO MEMORY DATA TRANSFER 
USE OF CCMP IS OPTIONAL 

Figure 13. DMA Interface 

OSCILLATOR AND TIMING CIRCUITS 
The 8294's Internal timing generation is controlled by a 
self·contalned oscillator and timing circuit. A choice of 
crystal, L-C or external clock can be used to derive the 
basic oscillator frequency. 

The resident timing circuit consists of an OSCillator, a 
state counter and a cycle counter as illustrated in Figure 
14. 

SYNC 
t-.-t-0UTPUT 

(2.5,.. •• c) 

'---v----' 
INTERNAL TIMING 

Figure 14. Oscillator Configuration 

OSCILLATOR 

The on-board oscillator is a series resonant circuit with 
a frequency range of 1 to 6 MHz. Pins X1 and X2 are 
Input and output (respectively) of a high gain amplifier 
stage. A crystal or inductor and capacltator connected 
between X1 and X2 provide the feedback and proper 
phase shift for oscillation. Recommended connections 
for crystal or L-C are shown In Figure 15. 

7-38 

r - J.1-8 MHz XI 
<15pF J.. 

SOCKET, STRAy) 8294 
(INCLUDES XTAL, T TE::! 

L--+--=-JX2 
15-25 pF :!: 

(INCLUDES I 
SOCKET, _ 

STRAy) -

20pF 

.D 

..d -=- 20 pF 

2 x, 

L 

3 x2 

8294 

Figure 15. Recommended Crystal and L-C Connections 

A recommended range of Inductance and capacitance 
combinations is given below: 

L= 120llH corresponds to 3MHz 
L= 451lH corresponds to 5MHz 

An external clock signal can also be used as a frequency 
reference to the 8294; however, the levels are not com­
patible. The signal must be in the 1 MHz-6MHz fre­
quency range and must be connected to pins X1 and X2 
by buffers with a suitable pull-up resistor to guarantee 
that a logic "1" is above 3.8 volts. The recommended 
connection is shown In Figure 16. 

002308 



8294 

+5V 

te 
2 

X1 
+5V 

8294 

3 
X2 

STANDARD TTL OR 
OPEN COLLECTOR 

Figure 16. Recommended Connection for External Clock Signal 

ABSOLUTE MAXIMUM RATINGS· 
Ambient Temperature Under Bias ........ O·C to 70·C 
Storage Temperature ............ -65·C to + 150·C 
Voltage on Any Pin With 

Respect to Ground .................. 0.5V to + 7V 
Power Dissipation ........................ 1.5 Watt 

'COMMENT 
Stresses above those listed under ..... bsolute Maximum Ratings" may 
cause permanent damage to the device. This is a stress fating only and 
functional operation of the device at these or any other conditions above 
those Indicated in the operational sections of this specification is not 
implied. Exposure to absolute maximum rating conditions for extended 
periods may affect device reliability. 

D.C. AND OPERATING CHARACTERISTICS 
TA= o·c to 70·C, VCC= Voo= +5V± 10%, VSS= OV 

Symbol Parameter Limits Unit Test Conditions 
Min. Typ. Max. 

VIL Input Low Voltage (All -0.5 0.8 V 
Except X1, X2, RESET) 

VIL1 Input Low Voltage (X1, X2, -0.5 0.6 V 
RESET) 

VIH Input High Voltage (All 2.2 Vee V 
Except X1, X2, RESET) 

VIH1 Input High Voltage (X1, X2, 
REsETj 

3.8 Vee V 

VOL Output Low Voltage (00-07) 0.45 V IOL=2.0mA 
VOL1 Output Low Voltage (All 0.45 V IOL= 1.6mA 

Other Outputs) 

VOH Output High Voltage (00-07) 2.4 V IOH= -400,..A 
VOH1 Output High Voltage (All 2.4 V IOH= -50,..A 

Other Outputs) 

IlL l.!!E.ut Lea~e~urrent 
(RO, WR, CS, ArYl 

±10 ,..A Vss" VIN" Vee 

loz Output Leakage Current ±10 ,..A Vss+ 0.45 .. VIN" Vee 
(00-07, High Z State) 

100 Voo Supply Current 5 15 mA 

100+ lee Total Supply Current 60 125 rnA 

III Low Input Load Current 0.5 rnA VIL=0.8V 
(Pins 24, 27-38) 

ILI1 Low Input Load Current 0.2 rnA VIL=0.8V 
(RESET) 

7-39 002308 



8294 

A.C. CHARACTERISTICS 
TA=O·C to 70·C, VCc=VOO= +5V± 10%, Vss=OV 

DBB READ 

Symbol Parameter Min. Max. Unit Test Conditions 

tAR OS, Ao Setup to RD ~ 0 ns 

tRA OS, Ao Hold After 11[1 t 0 ns 

tRR 1m Pulse Width 250 ns 

tAD CS, Ao to Data Out Delay 225 ns CL=150pF 

tRo 110 ~ to Data Out Delay 225 ns CL=150pF 

tDF 1m t to Data Float Delay 100 ns 

tCY Cycle Time 2.5 15 fls 6MHz Crystal 

DBB WRITE 

Symbol Parameter Min. Max. Unit Test Conditions 

tAw C"S, Ao Setup to WR ~ 0 ns 

tWA C"S, Ao Hold After WR t 0 ns 

tww WR Pulse Width 250 ns 

tDW Data Setup to WR t 150 ns 

two Data Hold to WR t 0 ns 

DMA AND INTERRUPT TIMING 

Symbol Parameter Min. Max. Unit Test Conditions 
tAcC DACK Setup to Control 0 ns 

tCAC DACK Hold After Control 0 ns 

tACO DACK to Data Valid 225 ns 

tCRQ Control L.E. to DRQ T.E. 200 ns 

tCI Control T.E. to Interrupt T.E. tCY+ 500 ns 

7-40 002308 



8294 

WAVEFORMS 

1. READ OPERATION - OUTPUT BUFFER REGISTER. 

cs OR AD 

DATA BUS 
(OUTPUT) 

] 
_IA"J 0 

~ 
-tRD 

0 lAD 

IRR i _IRA-

I-- ID' 
0 

2. WRITE OPERATION - INPUT BUFFER REGISTER. 

K 

~ 

(SYSTEM'S 
ADDRESS BUS) 

(READ CONTROL) 

1 f (SYSTEM'S 
____ ..I \.. _______________ ADDRESS BUS) 

+-IAW1_ rt------: - do~+,.----twA+ __ 

Cs OR Ao 

WR 

DATA BUS 
(INPUT) 

"i _ (WRITE CONTROL) 

-tDW --.two 

DATA \i , __ _ rv DATA 
MAY CHANGE ~ -DATA VALlD-~ MAY CHANGE ______ ~~~~ ____ _J ~ ______ ~~==~ ________ _ 

DMA AND INTERRUPT TIMING 

"'-i+-tACC-

f'- - tCAe 

'\ 
/ 

V 
['\. 

DRO 

~ -tcRQ . tACD . 
\/ VALID 
/\. 

DATA BUS 

OAV SRO 

-TCI-

7-41 002308 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 

I 
I 
I 

I 

I 
I 
I 
I 



8295 
DOT MATRIX PRINTER CONTROLLER 

• Interfaces Dot Matrix Printers to 
MCS·48™, MCS.8018S™, MCS·86™ 
Systems 

• 40 Character Buffer On Chip 

• Programmable Print Intensity 

• Single or Double Width Printing 

• Serial or Parallel Communication with 
Host 

• Programmable Multiple Line Feeds 

• DMA Transfer Capability 

• Programmable Character Density (10 or 
12 Chararcters/lnch) 

• 3 Tabulations 

• 2 General Purpose Outputs 

The Intel'" 8295 Dot Matrix Printer Controller provides an interface for microprocessors to the LRC 7040 Series dot 
matrix impact printers. It may also be used as an interface to other similar printers. 

The chip may be used in a serial or parallel communication mode with the host processor. In parallel mode, data 
transfers are based on polling, interrupts, or DMA. Furthermore, It provides Internal buffering of up to 40 characters 
and contains a 7 x 7 matrix character generator accommodating 64 ASCII characters. 

PIN 
CONFIGURATION 

7-43 

OATA 
au. 

WR-_ 
01-_ 

~ISIN~~_ 

ORQICTs 

1i!SEi--

BLOCK DIAGRAM 
INTERNAL. 

au. 

002318 



8295 

PIN DESCRIPTION 

Name 

PFEEO 

XTAL1 
XTAL2 

NC 

CS 

GNO 

RO 

Vee 

WR 

SYNC 

0 0 
0 1 

O2 
0 3 
0 4 
0 5 
06 
0 7 
GNO 

Vee 

1/0 Pin# Description 

1 Paper feed input switch. 

2 Inputs for a crystal to set internal 
3 oscillator frequency. For proper 

operation use 6 MHz crystal. 

4 Reset input, active low. After 
reset the 8295 will be set for 12 
characterslinch single width 
printing, solenoid strobe at 320 
msec. 

5 No connection or tied high. 

6 Chip select input used to enable 
the RO and WR inputs except dur­
ing OMA. 

7 This pin must be tied to ground. 

8 Read input which enables the 
master CPU to read data and 
status. In the serial mode this pin 
must be tied to Vee. 

9 + 5 volt power input: + 5V ± 10%. 

10 Write input which enables the 
master CPU to write data and 
commands to the 8295. In the 
serial mode this pin must be tied 
to Vss. 

o 11 2.5 I-'s clock output. Can be used 
as a strobe for external circuitry. 

1/0 12 Three-state bidirectional data bus 
13 buffer lines used to interface the 
14 8295 to the host processor in the 
15 parallel mode. In the serial mode 
16 0 0 - O2 sets up the baud rate. 
17 
18 
19 
20 This pin must be tied to ground. 

40 +5voltpowerinput: +5V±10%. 

7-44 

Name 

HOME 

OACK/SIN 

1/0 Pin# Description 

39 Home input switch, used by the 
8295 to detect that the print head 
is in the home position. 

38 In the parallel mode used as OMA 
acknowledgement; in the serial 
mode, used as input for data. 

ORQ/CTS 0 37 In the parallel mode used as OMA 
request output pin to indicate to 
the 8257 that a OMA transfer is re­
quested; in the serial mode used 
as clear-to-send signal. 

IRQ/SER 

MOT 

STS 

NC 

GP1 

GP2 

TOF 

o 36 In parallel mode it is an interrupt 
request input to the master CPU; 
in serial mode it should be 
strapped to Vss. 

o 35 Main motor drive, active low. 

o 34 Solenoid strobe output. Used to 
determine duration of solenoids 
activation. 

o 33 Solenoid drive outputs; active 
32 low. 
31 
30 
29 
28 
27 

26 + 5V power input (+ 5V ± 10%). 
Low power standby pin. 

25 No connection. 

o 24 General purpose output pins. 

o 23 

22 Top of form input, used to sense 
top of form signal for type T 
printer. 

o 21 Paper feed motor drive, active 
low. 

002318 



8295 

FUNCTIONAL DESCRIPTION 

The 8295 interfaces microcomputers to the LRC 7040 
Series dot matrix impact printers, and to other similar 
printers. It provides internal buffering of up to 40 char· 
acters. Printing begins automatically when the buffer is 
full or when a carriage return character is received. It 
provides a modified 7x7 matrix character generator. The 
character set includes 64 ASCII characters. 

COMMAND SUMMARY 
Hex Code Description 

00 Set GP1. This command brings the GP1 pin 
to a logic high state. After power on it is 
automatically set high. 

01 Set GP2. Same as the above but for GP2. 

02 Clear GP1. Sets GP1 pin to logic low state, 
inverse of command 00. 

03 Clear GP2. Same as above but for GP2. In­
verse command 01. 

04 Software Reset. This is a pacify command. 
This command is not effective immediately 
after commands requiring a parameter, as 
the Reset command will be interpreted as a 
parameter. 

05 Print 10 characters/in. density. 

06 Print 12 characters/in. density. 

07 Print double width characters. This com­
mand prints characters at twice the normal 
width, that is, at either 17 or 20 characters 
per line. 

08 Enable DMA mode; must be followed by 
two bytes specifying the number of data 
characters to be fetched. Least significant 
byte accepted first. 

PROGRAMMABLE PRINTING OPTIONS 
CHARACTER DENSITY 

The character density is programmable at 10 or 12 char· 
acterslinch (32 or 40 characters/line). The 8295 is auto­
matically set to 12 characters/inch at power-up. Invoking 
the Print Double-Width command halves the character 
density (5 or 6 characterslinch). The 10 char/in or 12 
char/in command must be re-issued to cancel the 
Double·Width mode. Different character density modes 
may not be mixed within a single line of printing. 

PRINT INTENSITY 

The intensity of the printed characters is determined by 
the amount of time during which the solenoid is on. This 
on-time is programmable via the Set Strobe-Width com­
mand. A byte following this command sets the solenoid 
on-time according to Table 1. Note that only the three 
least significant bits of this byte are important. 

7-45 

Communication between the 8295 and the host proc· 
essor can be implemented in either a serial or parallel 
mode. The parallel mode allows for character transfers 
into the buffer via DMA cycles. The serial mode features 
selectable data rates from 110 to 4800 baud. 

The 8295 also offers two general purpose output pins 
which can be set or cleared by the host processor. They 
can be used with various printers to implement such 
functions as ribbon color selection, enabling form 
release solenoid, and reverse document feed. 

Hex Code Description 

09 Tab character. 

OA Line feed. 

08 Multiple Line Feed; must be followed by a 
byte specifying the number of line feeds. 

OC Top of Form. Enables the line feed output 
until the Top of Form input is activated. 

00 Carriage Return. Signifies end of a line and 
enables the printer to start printing. 

OE Set Tab #1, followed by tab position byte. 

OF Set Tab #2, followed by tab position byte. 
Should be greater than Tab #1. 

10 Set Tab #3, followed by tab position byte. 
Should be greater than Tab #2. 

11 Print Head Home on Right. On some 
printers the print head home position is on 
the right. This command would enable nor· 
mal left to right printing with such printers. 

12 Set Strobe Width; must be followed by 
strobe width selection byte. This command 
adjusts the duration of the strobe activa· 
tion. 

D7-D3 D2 D1 DO Solenoid On 
(microsec) 

x 0 0 0 200 
x 0 0 1 240 
x 0 1 0 280 
x 0 1 1 320 
x 1 0 0 360 
x 1 0 1 400 
x 1 1 0 440 
x 1 1 480 

Table 1. 

TABULATIONS 

Up to three tabulation positions may be specified with 
the 8295. The column position of each tabulation is 
selected by issuing the Set Tab commands, each fol· 

002318 



8295 

lowed by a byte specifying the column. The tab posi­
tions will then remain valid until new Set Tab commands 
are issued. 

Sending a tab character (09H) will automatically fill the 
character buffer with blanks up to the next tab position. 
The character sent immediately after the tab character 
will thus be stored and printed at that position. 

CPU TO 8295 INTERFACE 
Communication between the CPU and the 8295 may 
take place in either a serial or parallel mode. However, 
the selection of modes is inherent in the system hard· 
ware; it is not software programmable. Thus, the two 
modes cannot be mixed in a single 8295 application. 

PARALLEL INTERFACE 

Two internal registers on the 8295 are addressable by 
the CPU: one for input, one for output. The following 
table describes how these registers are accessed. 

1 0 
o 

o 
o 

Register 

Input Data Register 
Output Status Register 

Input Data Register- Data written to this register is 
interpreted in one of two ways, depending on how the 
data is coded. 

1. A command to be executed (OXH or 1XH). 
2. A character to be stored in the character buffer for 

printing (2XH, 3XH, 4XH, or 5XH). See the character 
set, Table 2. 

Output Status Register-8295 status is available in this 
register at all times. 

STATUS BIT: 

FUNCTION: PA DE IBF ~ I 

PA-Parameter Required; PA = 1 indicates that a com· 
mand requiring a parameter has been received. After the 
necessary parameters have been received by the 8295, 
the PA flag is cleared. 

DE-DMA Enabled; DE = 1 whenever the 8295 is in DMA 
mode. Upon completion of the required DMA transfers, 
the DE flag is cleared. 

IBF-Input Buffer Full; IBF = 1 whenever data is written 
to the Input Data Register. No data should be written to 
the 8295 when I BF = 1. 

A flow chart describing communication with the 8295 is 
shown in Figure 1. 

The interrupt request output (IRQ, Pin 36) is available on 
the 8295 for interrupt driven systems. This output is 
asserted true whenever the 8295 is ready to receive data. 

To improve bus efficiency and CPU overhead, data may 
be transferred from main memory to the 8295 via DMA 
cycles. Sending the Enable DMA command (08H) acti­
vates the DMA channel of the 8295. This command must 
be followed by two bytes specifying the length of the 
data string to be transferred (least significant byte first). 
The 8295 will then assert the required DMA requests to 

7-46 

the 8257 DMA controller without further CPU interven­
tion. Figure 2 shows a block diagram of the 8295 in DMA 
mode. 

DONE 

Figure 1. Host to 8295 Protocol Flowchart 

8257 
DMA 

CONTROLLER 

r------,,~ DACK. 

ORO. 

g: r------I CS ORO 
.. 1m DACK 1-----' 

I :Et 
"!.ref 

8295 

1------; IRO 

OPTIONAL 

HOME 1--------; 

Figure 2. Parallel System Interface 

PRINTER 

Data transferred in the DMA mode may be either com· 
mands or characters or a mixture of both. The procedure 
is as follows: 

1. Set up the 8257 DMA controller channel by sending a 
starting address and a block length. 

2. Set up the 8295 by issuing the "Enable DMA" com· 
mand (08H) followed by two bytes specifying the 
block length (least significant byte first). 

The DMA enabled flag (DE) will be true until the 
assigned data transfer is completed. Upon completion 
of the transfer, the flag is cleared and the interrupt re­
quest (IRQ) signal is asserted. The 8295 then returns to 
the non-DMA mode of operation. 

00231B 



8295 

SERIAL INTERFACE 

The 8295 may be hardware programmed to operate in 
a serial mode of communication. By connecting the 
IRQ/SER pin (pin 36) to logic zero, the serial mode is 
enabled immediately upon power-up. The serial Baud 
rate is also hardware programmable; by strapping pins 
14, 13, and 12 according to Table 2, the rate is selected. 
CS, RD, and WR must be strapped as shown in Figure 3. 

Pin 14 Pin 13 Pin 12 Baud Rate 

0 0 0 110 
0 0 1 150 
0 1 0 300 
0 1 1 600 

0 0 1200 
0 1 2400 

0 4800 
4800 

Table 2_ 

The serial data format is shown in Figure 3. The CPU 
should wait for a clear to send signal (CTS) from the 
8295 before sending data. 

SERIAL 
INPUT 

BAUD 
RATE 

SELECT 

+5 

PFEED 1---------1 
HOME 1-------1 

Figure 3. Serial Interface to UART (8251A) 

8295 TO PRINTER INTERFACE 

PRINTER 

STOP 
BIT 

The strobe output signal of the 8295 determines the 
duration of the solenoid outputs, which hold the data to 
the printer. These solenoid outputs cannot drive the 
printer solenoids directly. They should be buffered 
through solenoid drivers as shown in Figure 4. Recom­
mended solenoid and motor driver circuits may be found 
in the printer manufacturer's interface guide. 

7-47 

STB 

51 

sa 

55 

S4 
8295 

53 

52 

51 

MOT 

PFM 

+5 

TO 
SOLENOID 
DRIVERS 

} 
TO MOTOR 
DRIVERS 

Figure 4. 8295 To Printer Solenoid Interface 

OSCILLATOR AND TIMING CIRCUITS 
The 8295's internal timing generation is controlled by a 
self-contained oscillator and timing circuit. A 6 MHz 
crystal is used to derive the basic oscillator frequency. 
The resident timing circuit consists of an oscillator, a 
state counter and a cycle counter as illustrated in Figure 
5. The recommended crystal connection is shown in 
Figure 6. 

Figure 5. Oscillator Configuration 

2 XTAL. 

'-8 MHz ri1!!!iJ 8295 

r-_~_~3 XTAL2 

20 PF:J 

Figure 6. Recommended Crystal Connection 

SYNC 
OUTPUT 
(2.5 jJsec) 

002318 



8295 

8295 CHARACTER SET 
Hex Code Print Char. Hex Code Print Char. 

20 space 30 0 
21 ! 31 1 
22 32 2 
23 # 33 3 
24 $ 34 4 
25 % 35 5 
26 & 36 6 
27 37 7 
28 38 8 
29 39 9 
2A 3A 
2B + 3B 
2C 3C < 
2D 3D 
2E 3E > 
2F 3F ? 

ABSOLUTE MAXIMUM RATINGS· 
Ambient Temperature Under Bias ......... O°C to 70°C 
Storage Temperature ............... - 65° to + 150°C 
Voltage on Any Pin With 

Respect to Ground ................... 0.5V to + 7V 
Power Dissipation ......................... 1.5 Watt 

Hex Code Print Char. Hex Code Print Char. 

40 @ 50 P 
41 A 51 Q 

42 B 52 R 
43 C 53 S 
44 D 54 T 
45 E 55 U 
46 F 56 V 
47 G 57 W 
48 H 58 X 
49 I 59 Y 
5A J 5A Z 
4B K 5B [ 
4C L 5C \ 
4D M 5D 1 
4E N 5E t 
4F 0 5F 

·COMMENT: Stresses above those listed under "Absolute Maximum 
Ratings" may cause permanent damage to the device. This is a stress 
rating only and functional operation of the device at these or any other 
conditions above those indicated in the operational sections of this 
specification is not implied. Exposure to absolute maximum rating con· 
ditions for extended periods may affect device reliability. 

D.C. AND OPERATING CHARACTERISTICS 
T A= O°C to 70°C, Vee = Voo= +5V ± 10%, Vss= OV 

Symbol Parameter 
Limits 

Unit Test Conditions 
Min. Typ. Max. 

VIL Input Low Voltage (All -0.5 0.8 V 
Except X1, X2, RESET) 

VIL1 Input Low Voltage (X1, X2, -0.5 0.6 V 
RESET) 

VIH Input High Voltage (All 2.2 Vee V 
Except X1, X2, RESET) 

VIH1 Input High Voltage (X1, X2, 3.8 Vee V 
RESET) 

VOL Output Low Voltage (Do-D7) 0.45 V IOL=2.0mA 

VOL1 Output Low Voltage (All 0.45 V 10L= 1.6mA 
Other Outputs) 

V:)H Output High Voltage (Do-D7) 2.4 V 10H= -400!-'A 

VOH1 Output High Voltage (All 2.4 V 10H= -50!-,A 
Other Outputs) 

IlL Input Leakage Current ±10 !iA Vss" VIN" Vee 
(RD, WR, CS, Ao) 

loz Output Leakage Current ±10 !-,A Vss+ 0.45 .. VIN" Vee 
(Do-D7, High Z State) 

100 V DO Supply Current 5 15 mA 

100+ Icc Total Supply Current 60 125 mA 

III Low Input Load Current 0.5 mA VIL=0.8V 
(Pins 24, 27 -38) 

ILl1 Low Input Load Current 0.2 mA VIL=0.8V 
(RESET) 

7-48 002318 



8295 

A.C. CHARACTERISTICS 
TA= o·c to 70·C, VCC= VOO= +5V:t 10%, VSS= OV 

DBB READ 

Symbol Parameter Min. Max. Unit Test Conditions 

tAR CS, Ao Setup to RD ~ 0 ns 

tRA CS, Ao Hold After RD t 0 ns 

tRR RD Pulse Width 250 ns 

tAO CS, Ao to Data Out Delay 225 ns CL= 150 pF 

tRO RD ~ to Data Out Delay 225 ns CL= 150 pF 

tOF RD t to Data Float Delay 100 ns 

tCY Cycle Time 2.5 15 ",5 

DBB WRITE 

Symbol Parameter Min. Max. Unit Test Conditions 

tAW CS, Ao Setup to WR ~ 0 ns 

tWA CS, Ao Hold After WR t 0 ns 

tww WR Pulse Width 250 n5 

tow Data Setup to WR t 150 ns 

two Data Hold to WR t 0 ns 

DMA AND INTERRUPT TIMING 

Symbol Parameter Min. Max. Unit Test Conditions 

tACC DACK Setup to Control 0 ns 

tCAC DACK Hold After Control 0 ns 

tCRQ WR to DRO Cleared 200 ns 

tAco DACK to Data Valid 225 ns 

7-49 002318 



8295 

WAVEFORMS 

1. READ OPERATION - OUTPUT BUFFER REGISTER. 

CS OR Ao ) K 
!--IAR1 . 'RR -'RA-

"\ 
-tRD- I--"DF 

1-----1. -lAD -~. __ ---1.1 
DATA BUS 1'\ 
(OUTPUT)------------ +--DATA VALID----=v-------------

2. WRITE OPERATION - INPUT BUFFER REGISTER. 

(SYSTEM'S 
ADDRESS BUS) 

(READ CONTROL) 

CSOR Ao ~ ~ (SYSTEM'S 
ADDRESS BUS) 

- --'··11~IWW~.[-'WA--'--~~~~~=== 
WR '\ (WRITE CONTROL) 

~----------,-DW----.--- ---.tWD 

DATA BUS DATA \; ____ DATA VALID -K DATA 
(INPUT) _____ MA_Y_C_H_A_N_GE ____ .Jf! '-______ M_A_Y_C_HA_N_G_E _____ _ 

DMA AND INTERRUPT TIMING 

-IACC- tcAC~ -
~ 

DRQ ~ . t'CRQ 

tACO 

D:J: ____________ ~-------V-A-LI-D-------J)(~-------

7-50 002318 



8295 

PRINTER INTERFACE TIMING AND WAVEFORMS 

\ I 
MotOR DRIVE 

HOME 
1/ 

SOLENOID DATA ). K 
- ~SDS - MHH ~ 

~~~F 
~PDH-

SOLENOID STROBE

PFmi_;~
ffM ~

Symbol Parameter Typical

POH Print delay from 1.8 ms
home inactive

Sos Solenoid data 25 J.ls
setup time before
strobe active

SHS Solenoid data >1 ms
hold after strobe
inactive

MHA Motor hold time 3.2 ms
after home active

PSP PFEED setup time 58 ms
after PFM active

PHP PFM hold time 9.75 ms
after PFEED active

7-51 002318

ICE·41A™
UPI·41A IN·CIRCUIT EMULATOR

Extends Intellec microcomputer develop·
ment system debug power to user con·
figured system via external cable and
40·pin plug, replacing user UPI·41A™
devices

Emulates user system UPI·41ATM devices
in real time

Allows user configured system to use
static RAM memory for program debug

Provides hardware comparators for user
designated break conditions

Eliminates need for extraneous debug·
ging tools residing in user system

Collects address, data, and UPI·41A™
status information on machine cycles
emulated

Provides capability to examine and alter
UPI·41ATM registers, memory, and flag
values, and to examine pin and port
values

Integrates hardware and software efforts
early in engineering cycle to save devel·
opment time

The ICE·41A UPI·41A In·Circuit Emulator module is an Intellec system resident mOdule that interfaces to any user con·
figured UPI·41A system. The ICE·41A mOdule interfaces with a UPI·41A pin·compatible plug which replaces the UPI·
41A device in the system. With the ICE·41A plug in place, the designer has the capability to execute the system in real
time while collecting up to 255 instruction cycles of real time trace data. In addition, he can single step the system pro·
gram during execution. Static RAM memory is available through the ICE·41A module to store UPI·41A programs. The
designer may display and alter the contents of program memory, internal UPI·41A registers and flags, and 1/0 ports.
Powerful debug capability is extended into the UPI·41A system while ICE·41A debug hardware and software remain in·
side the Intellec system. Symbolic reference capability allows the designer to use symbols rather than absolute values
when examining and modifying memory, registers, flags, and 1/0 ports in the system.

8·1 00804A

ICE·41A™

FUNCTIONAL DESCRIPTION

Debug Capability Inside User System
Intellec memory Is used for the execution of the ICE·41A
software. The Intellec CRT console and the file handling
capabilities provide the designer with the ability to com·
munlcate with the ICE·41A module and display Informa·
tion on the operation of the prototype system. The ICE·
41A module block diagram is shown in Figure 1.

Symbolic Debugging
Symbol Table - ICE·41A software allows the user to
make symbolic references to I/O ports, memory ad·
dresses, and data In his program. The user symbol table
which is generated along with the object file during a
program assembly can be loaded to Intellec memory for
access during emulation. The user may add to this sym·
bol table any additional symbolic values for memory ad·
dresses, constants, or variables that he may find useful
during system debugging. By referring to symbol
memory addresses, the user can examine, change or
break at the intended location. In addition, ICE·41A pro­
vides symbolic definition of all UPI·41A registers and
flags.

Symbolic Reference - Symbolic reference Is a great
advantage to the system designer. He Is no longer
burdened with the need to recall or look up addresses of
key locations In his program which can change with
each assembly. Meaningful symbols from his source
program can be used instead. For example, the com·
mand:

SYNO

SVN1

USER SOCKET

CABLE
BUFFER

P1 P2

8741A
w/INTERNAL

MONITOR
POM

DBB

Figure 1. ICE-41A Modqle Block Diagram

8-2

GO FROM .START TILL CODE. RSL T

begins execution of the program at the address refer·
enced by the label START in the designer's assembly
program. A breakpoint Is set to occur the first time the
microprocessor executes the program memory location
referenced by RSLT. The designer does not have to be
concerned with the physical locations of START and
RSLT. The ICE·41A software driver supplies them
automatically from Information stored In the symbol
table.

Memory Replacement
The 8741/8741A and 804118041A contain Internal pro·
gram and data memory. When the UPI·41A microcom·
puter is replaced by the ICE·41A socket in a system, the
ICE·41A module supplies static RAM memory as a
replacement for the Internal microcomputer memory.
The ICE·41A module has enough RAM memory available
to emulate up to the total1K control memory capability
of the system.

Real·Tlme Trace
The ICE·41A module captures trace Information while
the designer is executing programs In real time. The In­
structions executed, program counter, port values for
port 1 and port 2, and the values of selected UPI·41A
status lines are stored for the last 255 instruction cycles
executed. When retrieved for display, code is dis·
assembled for user convenience. This provides data for
determining how the user system was reacting prior to
emulating break.

INTERNAL
TIMER

CONTROL
PROGRAM

808DA
CONTROL

PROCESSOR

CONTROL
SCRATCH

PAD

ooa04A

ICE·41A™

Integrated Hardware/Software Development
The user prototype systems need no more than a UPI-
41A socket and timing logic to begin integration of soft­
ware and hardware development efforts. Through the
ICE-41A module, Intellec system resources can be ac­
cessed to replace the prototype system. UPI-41A soft­
ware development can proceed without the prototype
hardware. Hardware designs can be tested using
previously tested system software.

Hardware
The ICE·41A module is a microcomputer system utiliz­
ing Intel's UPI-41A microprocessor as its nucleus. This
system communicates with the Intellec system 8080A
processor via direct memory access. Host processor
commands and ICE-41A status are interchanged
through a DMA channel. ICE-41A hardware consists of
two printed circuit boards, the controller board and the
emulator board, which reside in the Intellec system
chassis. A cable assembly interfaces the ICE-41A
module to the user's UPI-41A system. The cable ter­
minates in a UPI-41A pin-compatible plug which
replaces any UPI-41A device in the user system.

Controller Board
The ICE-41A module interfaces to the Intellec systems
as a peripheral device. The controller board receives
commands from the Intellec system and responds
through a DMA port. Three 10-bit hardware breakpoint
registers are available which can be loaded by the user.
While in emulation mode, a hardware comparator Is con­
stantly monitoring address lines for a match which will
terminate an emulation. The controller board returns
real-time trace data, UPI-41A registers, flag and port
values, and status information to a control block in the
Intellec system when emulation is terminated. This in­
formation is available to the user through the ICE-41A
interrogation commands. Error conditions, when
detected, are automatically displayed on the Intellec
system console.

Emulator Board
The emulator board contains the 8741A and peripheral
logic required to emulate the UPI-41A device in the user
system. A 6 MHz clock drives the emulated UPI-41A
device. This clock can be replaced with a user supplied
TTL clock in the user system or can be strapped inter­
nally for 3 MHz operation.

Cable Card
The cable card is included for cable driving. It transmits
addreSs and data bus information to the user system
through a 40-pin connector which plugs into the user
system in the socket designed for the UPI-41A device.

Software
The ICE-41A software driver is a RAM-based program
which provides the user with command language (see
Table 1, Table 2, and Table 3) for defining breakpoints,
initiating real-time emulation or single step operation,
and interrogation and altering user system status
recorded during emulation. The ICE-41A command

vide the user with maximum flexibility in defining the
operation to be performed. The ICE-41A software driver
is available on diskette and operates in 32K of Intellec
RAM memory.

Command Operation

Enable Activates breakpoint and display reg-
isters for use with go and step com-
mands.

Go Initiates real-time emulation and al-
lows user to specify breakpoints and
data retrieval.

Step Initiates emulation in single instruc-
tion increments. Each step is followed
by register dump. User may optionally
tailor other diagnostic activity to his
needs.

Interrupt Emulates user system interrupt

Table 1. ICE·41A Emulation Commands

Command Operation

Display Prints contents of memory, UPI-41A
device registers, 110 ports, flags, pins,
real-time trace data, symbol table, or
other diagnostic data on list device.

Change Alters contents of memory, register,
output port, or flag. Sets or alters
breakpoints and display registers.

Base Establishes mode of display for output
data.

Suffix Establishes mode of display for input
data.

Table 2. ICE·41A Interrogation Commands

Command Operation

Load Fetches user symbol table and object
code from input device.

Save Sends user symbol table and object
code to output device.

Define Enters symbol name and value to user
symbol table.

Move Moves block of memory data to an·
other area of memory.

Print Prints user specified portion of trace
memory to selected list device.

List Defines list device.

Exit Returns program control to ISIS-II.

Evaluate Converts expression to equivalent val-
ues in binary, octal, decimal, and hex.

Remove Deletes symbols from symbol table.

Reset Reinltializes ICE-41A hardware.

language contains a broad range of modifiers which pro- Table 3. ICE·41A Utility Commands

8-3 00804A

ICE·41A™

SPECI FICATIONS

ICE·41A Operating Environment

Required Hardware
Intellec microcomputer development system
System console
Intellec diskette operating system
ICE-41A module

Required Software
System monitor
ISIS-II
ICE-41A diskette-based software

System Clock

Crystal controlled 6.0 MHz or 3.0 MHz internal or user
supplied TTL external

Physical Characteristics

Printed Circuit Boards

Width: 12.00 in. (30.48 cm)
Height: 6.75 in. (17.15 cm)
Depth: 0.50 in. (1.27 cm)
Weight: 8.00 Ib (3.64 kg)

Cable Buffer Box

Width: 8.00 in. (20.32 cm)
Height: 4.00 in. (10.16 cm)
Depth: 1.25 in. (3.17 cm)
Flat Cable: 4.00 ft (121.92 cm)
User Cable: 15.00 in. (38.10 cm)

Electrical Characteristics
DC Power Requirements

Vee= + 5V, ± 5%
lee = 10A max; 8A typ

ORDERING INFORMATION

Part Number Description
MDS-41A-ICE UPI-41A (8741, 8041, 8741A, 8041A)

CPU
In-circuit emulator, cable assembly
and interactive diskette software
included

8-4

Voo= + 12V, ± 5%
100= 100 mA max; 60 mA typ
VBB = -10V
IBB =30 mA

Input Impedance
@ ICE-41A user socket pins:
VIL =0.8V max; IIL= 1.6 mA
VIH=2.0V min; IIH=40,..A
@ Bus:
VIL = 0.8V max; IlL = 250 ,..A
VIH = 2.0V min; VIH = 20 ,..A

Output Impedance
@ P1, P2:
VoL =0.5V max; IOL= 16 mA
VOH = Vee (10K pullup)

@ Bus:
VoL =0.5V max; IOL=25 mA
VOH = 3.65V min; IOH = 1 mA

Others
VOL = 0.5V max; IOL = 16 mA
VOH = 2.4V max; IOH = 400,..A

Equipment Supplied
Controller board
Emulator board
Interface cables and buffer module
Operator's manual
ICE-41A diskette based software

Reference Manuals
9800465 - ICE-41A Operator's Manual (SUPPLIED)

Reference manuals are shipped with each product only
if designated SUPPLIED (see above). Manuals may be
ordered from any Intel sales representative, distributor
office or from Intel Literature Department, 3065 Bowers
Avenue, Santa Clara, California 95051.

00804A

MULTI-ICE™ SOFTWARE
MULTIPLE-IN-CIRCUIT-EMULATOR \

Facilitates software and hardware debug·
ging of multi·processor systems.

Allows two In·Circuit Emulators to
operate simultaneously in a single
Intellec Microcomputer Development
System.

Provides enhanced software features:
Symbolic Display of Addresses, Macro
Commands, Compound Commands,
Software Synchronization of Processes,
and INCLUDE File Capability.

Supports In·Circuit Emulator combina·
tions, 85/85 Emulators, 85/49 Emulators
(ICE.49™ Emulator supports the design
using MCS·48™ chip family), and 85/41A
Emulators.

Functions under the supervision of ISIS·
II Disk Operating System.

Supports ICE·85™ Emulator Hold
Request/Hold Acknowledgement hand·
shake while in both emulation and inter·
rogation modes. (Can be used for
Dynamic RAM refresh.)

Multi-ICE In-Circuit Emulator is a software product which allows two Intel In-Circuit Emulators to run simultaneously
in a single Intellec Microcomputer Development System . Multi-ICE software used in lieu of the standard ICE software
gives users full control of the Intellec Microcomputer Development System , and th e two ICE modules for hardware
and software debugging of multi-processor systems.

Enhancement features available with Multi-ICE software include a compound command capabilit y which enables the
user to " program " a diagnostic or exercise sequence . Also included are repeat and conditional execution of ICE
commands, and the ability to invoke the macro commands by name.

A special EPROM set for the ICE-85 Emulator is included . The new firmware will enable the ICE-85'Emulator to support
Hold-Request and Hold-Acknowledgement hand-shake protocol both while in emulation and while in interrogation
mode . This allows the ICE-85 Emulator to support typical dynamic RAM and DMA application s.

I. ICE. ies. Insile. lnleL Intellec , 'S SG. Library Manager. MeS . Megachassis . Micromap. Mutt ibus. Mutt imod ule . PROMPT. Promw are . AM X. UP!. j.!Scope . and the combination of
ICE. les . iSSC. MeS , or AMX and a nume ric al suff ix are t rademarks of Intel Corporation

Intel Corporafion 1979
8-5 01 390A

MULTI-ICE™ SOFTWARE

MUL TI·ICE OPERATION
Multi-ICE software is a debug tool which allows two ICE
emulators to begin and stop in sequence. Once started,
two ICE emulators emulate simultaneously and
independently. Thus, Multi-ICE software permits the
debugging of asynchronous or synchronous multi­
processor systems.

A conceptual model for the Multi-ICE software can be
illustrated with the following block diagram.

Block Diagram of Multi_ICE™ Operation

There are three processes in the Multi-ICE environ­
ment: the Host process and the two ICE processes to
control the two ICE hardware modules. The processor
for these three processes is the microcomputer in the
Intellec Microcomputer Development System. Only the
Host process is active when Multi-ICE software is
invoked. The Parser interfaces with the console,
receives commands from the console or from a file,
translates them into intermediate code, and loads the
code into the Host command code buffer or ICE com­
mand code buffers.

The Host process executes commands from its com­
mand code buffer using the execution software and
hardware of the Host's current environment, either
environment 1 or environment 2 (EN1 or EN2), as
required. EN1 and EN2 are the operating environments
of the two In-Circuit Emulators.

The user can change the execution environment (from
EN1 to EN2 or vice versa) with the SWITCH command.
Once the environment is selected, ICE operation is the
same as with standard ICE software. In addition, the
enhanced software capabilities are available to the
user.

The two ICE processes (PR1 and PR2) execute com­
mands from their command code buffers in their own
environments (PR1 in EN1 and PR2 in EN2). The main
functions of the two ICE execution processes are to
control the operations of the two ICE hardware sets.
The ACTIVATE command controls the execution of the
ICE processes. Commands are passed on to each ICE
unit to initiate the desired ICE functions.

The two ICE hardware units accept commands from the
Host process or ICE processes. Once emulations start,
the two ICE hardware sets will operate until a break con­
dition is met or processing is interrupted by commands
from the ICE execution processes.

8-6

ENHANCED DIAGNOSTIC SOFTWARE
FUNCTIONS

Single ICE™ Module Operation
Multi-ICE software can be used for Single ICE operation.
The operating procedures will be identical to the Multi­
ICE operation. All the enhanced software functions will
be available. The performance will be the same as if the
standard ICE software is being used.

Symbolic Display of Addresses
The user has the option of displaying a 16-bit address in
the form of a symbol name or line number plus a hex
n umber offset.

Macro Command
A macro is a set of commands which is given a name.
Thus, a group of commands which is executed fre­
quently may be defined as a macro. Each time the user
wants to execute that group of commands, he may just
invoke the macro by typing a colon followed by the
macro name. Up to ten parameters may be passed to
the macro.

Macro commands may be defined at the beginning of a
debug session and then can be used throughout the
whole session. If the user wants to save the macros for
later use, he may use the PUT command to save the
macro on diskette, or the user may edit the macro file
off-line using the Intellec text editor. Later, the user
may use the INCLUDE command to bring in the macro
definition file that he created.

Example:

'DEFINE MACRO INITMEM

. 'SWITCH = EN1

.' BYTE 0 TO 100=0

.'LOAD :F1:DRIVER

.'SWITCH = EN2

.' LOAD :F1 :DR2

.'EM

Compound Command

;This macro clears the
memory and then loads the
programs.

;Select environment 1 (ICE
Module 1)

;Initialize memory to O .
;Load user program into
memory for ICE Module 1.

;Select environment 2 (ICE
Module 2)

;Load user program into
memory for ICE Module 2.

; End of Macro
;To execute this Macro, user
types :INITMEM

Compound commands provide conditional execution of
commands (IF Command) and execution of commands
repeatedly until certain conditions are met (COUNT,
REPEAT Commands).

Compound commands and Macro commands may be
nested any number of times.

Example:

'DEFINE.I = 0
'COUNT 100H

.'IF .1 AND 1 THEN

. .'BYT .1=.1

.. 'END

.'.1 = .1+1
'END

;Define symbol .1 to 0
;Repeat the following
commands 100H times.

;Check if .1 is odd
;Fill the memory at 10cation.1
to value.1

; Increment .1 by 1 .
;Command executes upon
carriage-return after END

01390A

MULTI-ICE™ SOFTWARE

Software Synchronization of Processes

up to three processes (Host, PR1 and PR2) can be
active simultaneously in the system, An ICE process
can be activated (ACTIVATE), suspended (SUSPEND),
killed (KILL), or continued (CONTINUE), The Host pro­
cess can wait for other processes to become dormant
before it becomes active again, Through these syn­
chronization commands, the user can create a system

test file off-line yet be able to synchronize the three pro­
cesses when the actual system test is executed,

PROCESSOR 1

PROCESSOR 1 I
DORMANT

PROCESSOR 1
ACTIVE

I

Example:

The capability of the software synchronization com­
mands is demonstrated by the following example, The
flowchart shows the synchronization requirements, The
program steps show the actual implementation,

HOST PROCESSOR PROCESSOR 2

HOST PROCESSOR I
IS IN WAIT STATE •

ACTIVE

HOST r------'
PROCESSOR

ACTIVE

I PROCESSOR 2 I DORMANT

I PROCESSOR 2 I DORMANT

Flowchart of the Example for Demonstrating Multi-ICE ™ Synchronization Capability

'ACTIVATE PR1
,'GO FROM 800
,'END
PR1 EMULATION BEGUN
'SWI=EN2
'REPEAT
,'WHILE PC < > ,LOOP
,'ACT PR2
,,'GOTILL ,LOOP OR ,END
,,'REGISTER
,,'END
,'WAITPR2
,'IF PC=,LOOP THEN
,,'SUSPEND PR1
,,'END
,'END

;Activate PR1
;Start ICE Module 1
;End of Activate block

;Switch execution Environment to EN2
;Repeat the following block of commands while PC is not equal to ,Loop

;Activate PR2
;Go till instruction at location ,Loop or at location ,END is executed
;Display the registers
;End of Activate block
;Wait until PR2 is dormant

;End of IF block
;End of REPEAT block

8-7 01390A

MULTI;.ICE™ SOFTWARE

INCLUDE File Capability

The INCLUDE command causes input to be taken from
the file specified until the end of the file is encountered,
at which point, input continues to be taken from the
previous source. Nesting of INCLUDES is permitted.
Since the command code file can be complex, the
ability to edit offline becomes desirable. The INCLUDE
command allows the user to pull in command code files
and Macro commands created offline which can then be
used for the particular debugging session.

SPECIFICATIONS
Equipment Supplied:

- Multl·ICE Flexible diskettes
(one each in single and double density)

Contains software that supports 85/85 Emulators,
85/49 Emulators, and 85/41A Emulators

- Special EPROM set for one ICE·85 Emulator

- Operator's Manual

MULTI-ICE™ OPERATING ENVIRONMENT

Required Hardware:

Intellec Microcomputer Development System

-Model-BOO, Model·BBB

-Series II Model 220, Model 230, and Expansion
Chassis

ORDERING INFORMATION:

Product Code
MDS'·350

Description
Multi·ICE Software

Example:

'INCLUDE :F1:PROG1

'MAP 0 LENGTH 64K=USER

'MAP 10 0 TO FF = USER
'SWITCH = EN2
'LOAD :F2:LED.HEX
'SWITCH = EN1

;Cause input to be taken
from file PROG1
;Contents of the file PROG1
are listed on screen as they
are executed.

;End of the file PROG1
;After the end of file is
reached, control is returned
to console.

Required Hardware: (Cont'd.)

64K bytes of RAM memory

Flexible disk drivels)

-Single or double density

System Console

-CRT or hard copy interactive device

ICE·85 Emulator(s), ICE·49 Emulator or ICE·41A
Emulator

Optional Hardware:

Printer

Additional flexible disk drives

Required Software:

Intel Systems Implementati.on Supervisor (ISIS-II)

'''MDS'' is used as an ordering code only, and is not used as a product name or trademark. MDSI!l is a registered trade·
mark of Mohawk Data Sciences Corp.

8-8 01380A

MCS·4S™
DISKETTE·BASED SOFTWARE

SUPPORT PACKAGE

Extends Intellec@ Microcomputer Development
System to support MCS.48 ™ development

Takes advantage of powerful 1515·11 file handling
and storage capabilities

MCS·48 Assembler provides conditional assem·
bly and macro capability

The MCS·48™ Diskette·based Software Support Package (MDS·D48) comes on an Intel® ISIS-II System Diskette and
contains the MCS-48 Assembler (ASM48), and the diskette version of the Universal PROM Mapper.

The MCS-48 Assembler (ASM48) translates symbolic 8048 assembly language instructions into the appropriate
machine operation codes. In addition to eliminating the errors of hand translation, the ability to refer to program ad­
dresses with symbolic names makes it easier to modify programs when adding or deleting instructions_ Conditional
assembly permits the programmer to specify portions of the master source document which should be included or
deleted in variations on a basic system design, such as the code required to handle optional external devices_

Macro capability allows the programmer to define a routine through the use of a single label. ASM48 will assemble the
code required by the reserved routine whenever the Macro label is inserted in the text.

Output from the ASM48 is in standard Intel® Hex format. It may be loaded directly to an ICE-48 module for integrated
hardware/software debugging. It may also be loaded into the Intellec Development System for 8748 PROM programm­
ing using the Universal PROM Programmer.

8-9

MCS·48™ DISKETTE·BASED SOFTWARE SUPPORT PACKAGE

FUNCTIONAL DESCRIPTION

The MCS-48 assembler translates symbolic 8048
assembly language instructions into the appropriate
machine operation codes. The ability to refer to program
addresses with symbolic names eliminates the errors of
hand translation and makes it easier to modify programs
when adding or deleting instructions. Conditional
assembly permits the programmer to specify which por­
tions of the master source document should be includ­
ed or deleted in variations on a basic system design,
such as the code required to handle optional external
devices. Macro capability allows the programmer use of
a single label to define a routine. The MCS-48 assembler
will assemble the code required by the reserved routine
whenever the macro label is inserted in the text. Output
from the assembler is in standard Intel hex format. It
may be either loaded directly to an in-circuit emulator
(ICE-49) module for integrated hardware/software
debugging, or loaded into a Universal PROM Program­
mer for 8748 PROM programming. A sample assembly
listing is shown in Table 1.

SPECI FICATIONS

Operating Environment
Required Hardware

Intellec Microcomputer Development System
32K RAM (non-macro use)
48K RAM (use of macro facility)
One or two Floppy disk drives

- Single or Double density
System Console

- CRT or interactive hardcopy device

Required Software

ISIS-II Diskette Operating System

Optional Hardware

ICE-49 In-Circuit Emulator
Line Printer
Universal PROM Programmer with 8748 personality card

ORDERING INFORMATION

Product Code Description
MDS-D48 Diskette-based assembler for MCS-48

family of microprocessors.

181&11 8048 MA.CAOASSEMSLEA, Vl ,0

lOC OBJ

000"
00"
0032
0000

0000 881E
0102 8928
0104 8A32
00'" 97
0107 " 0108 " 0108 57
O1OA A>
0108 " 010e " 0100 EAD!

USER SYMBOLS

SEQ

PAGEl

;DECIMAL ADDITION ROUTINE. ADD BCD NUMBER
;AT LOCAnON 'BETA' TO BCD NUMBER AT 'ALPHA' WITH
;RESULT IN 'ALPHA.' LENGTH OF, NUMBER IS 'COUNT' DIGIT
;PAIRS. (ASSUME BOTH BETA AND ALPHA ARE SAME LENGTH
:ANO HAVE EVEN NUMBER OF DIGITS OR MSD IS 0 IF
;000)

7 INIT MACRO
MOV
MOV
MOV
ENOM

AUGND,AODNO,CNT
RO,IIIAUGND ,

9 "
R1, .ADOND

" R2, HGNT

" 12

" ALPHA EQU 30

" BETA EQU 40

" COUNT EQU 5
16 ORG 100H

" INIT ALPHA, BETA, COUNT
MOV RO, "ALPHA

19+ Ll MOV Rl. if BETA ,0. Mav R2, .COUNT

" eLR C

" " MOV A,@AO

" ADOC A. @Rl

" OA A
25 MOV @AO.A
26 INC RO

" INC Rl
28 DJNZ R2, LP

END

ALPHA 000" COUNT 0005 LP0107

" 0102

ASSEMBLY COMPLETE. NO ERRORS

ISIS·II ASSEMBLER SYMBOL CROSS REFERENCE, Vl.0 PAGE 1

SYMBOL CROSS REFERENCE

ALPHA 138 17
BETA 148 17
COUNT 158 17
INIT 78 17
L1 19'
LP 22' 28

Table 1. Sample MCS-48 Diskette-Based
Assembly Listing

Shipping Media

Diskette

Reference Manuals

9800255 - MCS-48 and UPI-41 Assembly Language Pro­
gramming Manual (SUPPliED)

9800236 - Universal PROM Mapper Operator's Manual

9800306 - ISIS-II User's Guide

Reference manuals are shipped with each product only
if designated SUPPLIED (see above). Manuals may be
ordered from any Intel sales representative, distributor
office or from Intel Literature Department, 3065 Bowers
Avenue, Santa Clara, California 95051.

8-10 00819A

MODEL 230
INTELLEC® SERIES II

MICROCOMPUTER DEVELOPMENT SYSTEM
Complete microcomputer development
center for Intel 80/85, 8086, and 8048
microprocessor families

LSI electronics board with CPU, RAM,
ROM, I/O, and interrupt circuitry

64K bytes RAM memory

Self-test diagnostic capability

Eight-level nested, maskable priority
interrupt system

Built-in interfaces for high speed paper
tape reader/punch, printer, and universal
PROM programmer

Integral CRT with detachable upper/
lower case typewriter-style full ASCII
keyboard

Powerful ISIS-II Diskette Operating
System software with relocating
macroassembler, linker, and locater

1 million bytes (expandable to 2_5M
bytes) of diskette storage

Supports PLIM and FORTRAN high level
languages

Standard MUL TIBUS™ with
multiprocessor and DMA capability

Compatible with standard Intellec/iSBC™
expansion modules

Software compatible with previous
Intellec® systems

The Model 230 Intellec Series II Microcomputer Development System is a complete center for the development of
microcomputer-based products. It includes a CPU, 64K bytes of RAM, 4K bytes of ROM memory, a 2000-character CRT,
a detachable full ASCII keyboard, and dual double density diskette drives providing over 1 million bytes of on-line data
storage. Powerful ISIS-II Diskette Operating System software allows the Model 230 to be used quickly and efficiently
for assembling andlo r compiling and debugging programs for Intel's 80185, 8086, or 8048 microprocessor
families without the need for handling paper tape. ISIS-II performs all file handling operations, leaving the user free to
concentrate on the details of his own application. When used in conjunction with an optional in-circuit emulator (ICE)
module, the Model 230 provides all the hardware and software development tools necessary for the rapid development
of a microcomputer-based product.

8-11 00823A

MODEL 230

FUNCTIONAL DESCRIPTION

Hardware Components

The Intellec Series II Model 230 is a packaged, highly
integrated microcomputer development system consist­
ing of a CRT chassis with a 6-slot cardcage, power sup­
ply, fans, cables, and five printed circuit cards. A
separate, full ASCII keyboard is connected with a cable.
A second chassis contains two floppy disk drives capa­
ble of double-density operation along with a separate
power supply, fans, and cables for connection to the
main chassis. A block diagram of the Model 230 is
shown in Figure 1.

CPU Cards - The master CPU card contains its own
microprocessor, memory, I/O, interrupt and bus inter­
face circuitry fashioned from Intel's high technology LSI
components. Known as the integrated processor board
(lPB), it occupies the first slot in the cardcage. A second
slave CPU card is responsible for all remaining I/O con­
trol including the CRT and keyboard interface. This card,
mounted on the rear panel, also contains its own micro­
processor, RAM and ROM memory, and I/O interface
logic, thus, in effect, creating a dual processor environ­
ment. Known as the I/O controller (10C), the slave CPU

card communicates with the IPB over an 8-bit bidirec­
tional data bus.

Memory and Control Cards - In addition, 32K bytes of
RAM (bringing the total to 64K bytes) is located on a
separate card in the main cardcage. Fabricated from
Intel's 16K RAMs, the board also contains all necessary
address decoding and refresh logic. Two additional
boards in the cardcage are used to control the two
double-density floppy disk drives.

Expansion - Two remaining slots in the cardcage are
available for system expansion. Additional expansion of
4 slots can be achieved through the addition of an Intel­
lec Series II expansion chassis.

System Components
The heart of the IPB is an Intel NMOS 8-bit microproces­
sor, the 8080A-2, running at 2.6 MHz. 32K bytes of RAM
memory are provided on the board using Intel 16K
RAMs. 4K of ROM is provided, preprogrammed with sys­
tem bootstrap "self-test" diagnostics and the Intellec
Series II System Monitor. The eight-level vectored prior­
ity interrupt system allows interrupts to be individually
masked. Using Intel's versatile 8259 interrupt controller,
the interrupt system may be user programmed to
respond to individual needs.

Figure 1_ Intellec Series II Model 230 Microcomputer Development System Block Diagram

8·12 00823A

MODEL 230

Input/Output
IPB Serial Channels - The I/O subsystem in the Model
230 consists of two parts: the 10C card and two serial
channels on the IPB itself. Each serial channel is RS232
compatible and is capable of running asynchronously
from 110 to 9600 baud or synchronously from 150 to 56K
baud. Both may be connected to a user defined data set
or terminal. One channel contains current loop
adapters. Both channels are implemented using Intel's
8251 USART. They can be programmatically selected to
perform a variety of I/O functions. Baud rate selection is
accomplished progammatically through an Intel 8253
interval timer. The 8253 also serves as a real-time clock
for the entire system. I/O activity through both serial
channels is signaled to the system through a second
8259 interrupt controller, operating in a polled mode
nested to the primary 8259.

IOC Interface - The remainder of system I/O activity
takes place in the 10C. The IOC provides interface for
the CRT, keyboard, and standard Intellec peripherals
including printer, high speed paper tape reader/punch,
and universal PROM programmer. The lac contains its
own independent microprocessor, also an 8080A·2. The
CPU controls all I/O operations as well as supervising
communications with the IPB. 8K bytes of ROM contain
all I/O control firmware. 8K bytes of RAM are used for
CRT screen refresh storage. These do not occupy space
in Intellec Series II main memory since the 10C is a
totally independent microcomputer subsystem.

Integral CRT
Display - The CRT is a 12·inch raster scan type monitor
with a 50/60 Hz vertical scan rate and 15.5 kHz horizontal
scan rate. Controls are provided for brightness and con­
trast adjustments. The interface to the CRT is provided
through an Intel 8275 single chip programmable CRT
controller. The master processor on the IPB transfers a
character for display to the laC, where it is stored in
RAM. The CRT controller reads a line at a time into its
line buffer through an Intel 8257 DMA controller and
then feeds one character at a time to the character gen·
erator to produce the video signal. Timing for the CRT
control is provided by an Intel 8253 interval timer. The
screen display is formatted as 25 rows of 80 characters.
The full set of ASCII characters are displayed, including
lower case alphas.

Keyboard - The keyboard interfaces directly to the 10C
processor via an 8-bit data bus. The keyboard contains
an Intel UPI-41 Universal Peripheral Interface, which
scans the keyboard, encodes the characters, and buf­
fers the characters to provide N·key rollover. The key­
board itself is a high quality typewriter style keyboard
containing the full ASCII character set. An upper/lower
case switch allows the system to be used for document
preparation. Cursor control keys are also provided.

Peripheral Interface
A UPI-41 Universal Peripheral Interface on the 10C board
performs similar functions to the UPI-41 on the Pia
board in the Model 210. It provides interface for other
standard Intellec peripherals including a printer, high
speed paper tape reader, high speed paper tape punch,

8-13

and universal PROM programmer. Communication
between the IPB and 10C is maintained over a separate
8-bit bidirectional data bus. Connectors for the four
devices named above, as well as the two serial chan­
nels, are mounted directly on the 10C itself.

Control
User control is maintained through a front panel, con­
sisting of a power switch and indicator, reset/boot
switch, run/halt light, and eight interrupt switches and
indicators. The front panel circuit board is attached
directly to the IPB, allowing the eight interrupt switches
to connect to the primary 8259, as well as to the Intellec
Series II bus.

Diskette System
The Intellec Series II double density diskette system
provides direct access bulk storage, intelligent control­
ler, and two diskette drives. Each drive provides 1/2 mil­
lion bytes of storage with a data transfer rate of 500,000
bits/second. The controller is implemented with Intel's
powerful Series 3000 Bipolar Microcomputer Set. The
controller provides an interface to the Intellec Series II
system bus, as well as supporting up to four diskette
drives. The diskette system records all data in soft sec­
tor format. The diskette system is capable of performing
seven different operations: recalibrate, seek, format
track, write data, write deleted data, read data, and verify
CRC.

Diskette Controller Boards - The diskette controller
consists of two boards, the channel board and the inter­
face board. These two PC boards reside in the Intellec
Series II system chassis and constitute the diskette
controller. The channel board receives, decodes and
responds to channel commands from the 8080A-2 CPU
in the Model 230. The interface board provides the
diskette controller with a means of communication with
the diskette drives and with the Intellec system bus. The
interface board validates data during reads using a
cyclic redundancy check (CRG) polynomial and gener­
ates CRC data during write operations. When the disk­
ette controller requires access to Intellec system mem­
ory, the interface board requests and maintains DMA
master control of the system bus, and generates the
appropriate memory command. The interface board also
acknowledges I/O commands as required by the Intellec
bus. In addition to supporting a second set of double
density drives, the diskette controller may co-reside
with the Intel single density controller to allow up to 2.5
million bytes of on-line storage.

MULTIBUS Capability

All Intellec Series II models implement the industry
standard MULTIBUS. MULTIBUS enables several bus
masters, such as CPU and DMA devices, to share the
bus and memory by operating at different priority levels.
Resolution of bus exchanges is synchronized by a bus
clock signal derived independently from processor
clocks. Read/write transfers may take place at rates up
to 5 MHz. The bus structure is suitable for use with any
Intel microcomputer family.

00823A

MODEL 230

SPECIFICATIONS

Host Processor (IPB)
RAM - 64K (system monitor occupies 62K through 64K)
ROM - 4K (2K in monitor, 2K in boot/diagnostic)

Diskette System Capacity (Basic Two Drives)

Unformatted
Per Disk: 6.2 megabits
Per Track: 82.0 kilobits

Formatted
Per Disk: 4.1 megabits
Per Track: 53.2 ki lobits

Diskette Performance
Diskette System Transfer Rate - 500 kilobitslsec
Diskette System Access Time
Track·to·Trac.k: 10 ms
Head Settling Time: 10 ms
Average Random Positioning Time - 260 ms

Rotational Speed - 360 rpm
Average Rotational Latency - 83 ms
Recording Mode - M2FM

Physical Characteristics
Width - 17.37 in. (44.12 cm)

Height - 15.81 in. (40.16 cm)

Depth - 19.13 in. (48.59 cm)

Weight - 73 Ib (33 kg)

Keyboard

Width - 17.37 in. (44.12 cm)

Height - 3.0 in. (7.62 cm)
Depth - 9.0 in. (22.86 cm)

Weight - 6 Ib (3 kg)

Dual Drive Chassis
Width - 16.88 in. (42.88 cm)

Height - 12.08 in. (30.68 cm)
Depth - 19.0 in. (48.26 cm)

Weight - 64 Ib (29 kg)

Electrical Characteristics
DC Power Supply

Volts Amps Typical
Supplied Supplied System Requirements

+ 5±5% 30 14.25
+12±5% 2.5 0.2
-12±5% 0.3 0.05
-10±5% 1.5 15
+ 15± 5% 1.5 1.3
+ 24± 5% 1.7

* Not avai lable on bus.

ORDERING INFORMATION
Part Number Description
MDS·230 Intellec Series II Model 230

microcomputer development system
(110V/60 Hz)

MDS·231 Intellec Series II Model 230
microcomputer development system
(220V/50 Hz)

AC Requirements - 50/60 Hz, 115/230V AC

Environmental Characteristics
Operating Temperature - 0° to 35°C (95°F)

Equipment Supplied
Model 230 chassis
Integrated processor board (IPB)

I/O controller board (laC)

32K RAM board
CRT and keyboard

Double density floppy disk controller (2 boards)
Dual drive floppy disk chassis and cables

2 floppy disk drives (512K byte capacity each)

ROM·resident system monitor

ISIS·II system diskette with MCS·80/MCS·85
macroassembler

Reference Manuals
9800558 - A Guide to Microcomputer Development

Systems (SUPPLIED)

8·14

98005:;0 - Intellec Series II Installation and Service

Guide (SUPPLIED)

9800306 - ISIS·II System User's Guide (SUPPLIED)

9800556 - Intellec Series II Hardware Reference Man·
ual (SUPPLIED)

9800555 - Intellec Series II Hardware Reference Man·
ual (SUPPLIED)

9800301 .,.. 8080/8085 Assembly Language Program·
ming Manual (SUPPLIED)

9800292 - ISIS·II 8080/8085 Assembler Operator's Man·
ual (SUPPLIED)

9800605 - Intellec Series II Systems Monitor Source
Listing (SUPPLIED)

9800554 - Intellec Series II Schematic Drawings
(SUPPLIED)

Reference manuals are shipped with each product only
if designated SUPPLIED (see above). Manuals may be
ordered from any Intel sales representative, distributor
office or from Intel Literature Department, 3065 Bowers
Avenue, Santa Clara, California 95051.

00823A

UPP-103*
UNIVERSAL PROM PROGRAMMER

'Replaces UPP·101, UPP·102 Universal PROM Programmers

Intellec® development system peripheral
for PROM programming and verification

Provides personality cards for program­
ming all Intel PROM families

Provides zero insertion force sockets for
both 1S-pin and 24-pin PROMs

Universal PROM mapper software pro­
vides powerful data manipulation and
programming commands

Provides flexible power source for
system logic and programming pulse
generation

Holds two personality cards to facilitate
programming operations using several
PROM types

The UPP·103 Universal PROM Programmer is an Intellec system peripheral capable of programming and verifying all of
the Intel programmable ROMs (PROMs). In addition, the UPP·103 programs the PROM memory portions of the 8748
microcomputer, 8741 UPI, the 8755 PROM and 1/0 chip and the 2920 signal processor. Programming and verification
operations are initiated from the Intellec development system console and are controlled by the universal PROM map·
per (UPM) program.

8·15 00799A

UPP·103

FUNCTIONAL DESCRIPTION

Universal PROM Programmer
The basic Universal PROM Programmer (UPP) consists
of a controller module, two personality card sockets, a
front panel, power supplies, a chassis, and an Intellec
development system interconnection cable. An Intel
4040·based intelligent controller monitors the com·
mands from the Intellec System and controls the data
transfer interface between the selected PROM persona·
lity card and the Intellec memory. A unique personality
card contains the appropriate pulse generation func·
tions for each Intel PROM family. Programming and veri·
fying any Intel PROM may be accomplished by selecting
and plugging in the appropriate personality card. The
front panel contains a power·on switch and indicator, a
reset switch, and two zero·force insertion sockets (one
16·pin and one 24·pin or two 24-pin). A central power
supply provides power for system logic and for PROM
programming pulse generation. The Universal PROM
Programmer may be used as a table top unit or mounted
in a standard 19·inch RETMA cabinet.

SPECIFICATIONS
Hardware Interface
Data - Two 8·bit unidirectional buses
Commands - 3 write commands, 2 read commands,
one initiate command

Physical Characteristics
Width - 6 in. (14.7 cm)
Height - 7 in. (17.2 cm)
Depth - 17 in. (41.7 cm)
Weight - 18 Ib (8.2 kg)

Electrical Characteristics
AC Power Requirements - 50-60 Hz; 115/230V AC: 80W

Environmental Characteristics
Operating Temperature - O°C to 55°C

Optional Equipment
Personality Cards

UPP·816: 2716 personality card
UPP·833: 2732, 2732A personality card
UPP-848: 8748, 8741 personality card with 40-pin adaptor
socket
UPP-865: 3602, 3622, 3602A, 3622A, 3621, 3604, 3624,
3604A, 3624A, 3604AL, 3604A-6, 3605, 360SA, 3625,
3625A, 3608, 3628, 3636
UPP-872: 8702A/1702A personality card
UPP·878: 8708/8704/2708/2704 personality card

ORDERING INFORMATION

Part Number Description
UPP·103 Universal PROM programmer with

16·pin/24·pin socket pair and
24·pin/24-pin socket pair.

Universal PROM Mapper

The Universal PROM Mapper (UPM) is the software pro­
gram used to control data transfer between paper tape
or diskette files and a PROM plugged into the Universal
PROM Programmer. It uses Intel lee system memory for
intermediate storage. The UPM transfers data in 8·bit
HEX, BNPF, or binary object format between paper tape
or diskette files and the Intellec system memory. While
the data is in Intellec system memory, it can be dis·
played and changed. In addition, word length, bit posi·
tion, and data sense can be adjusted as required for the
PROM to be programmed. PROMs may also be dupli·
cated or altered by copying the PROM contents into the
Intellec system memory. Easy to use program and com·
pare commands give the user complete control over pro­
gramming and verification operations. The UPM elimi·
nates the need for a variety of personalized PROM pro­
gramming routines because it contains the program­
ming algorithms for all Intel PROM families. The UPM
(diskette based version) is included with the Universal
PROM Programmer.

UPP-955: 875SA personality card with 40-pin adaptor
socket

PROM Programming Sockets
UPP·501: 16·pin/24-pin socket pair
UPP-502: 24·pin/24·pin socket pair
UPP·562: Socket adaptor for 3621, 3602, 3622, 3602A,
3622A

UPP·555: Socket adaptor for 3604AL, 3604A-6, 3608,
3628, 3636
UPP-566: Socket adaptor for 3605, 360SA, 3625, 362SA

Equipment Supplied

Cabinet
Power supplies
4040 intelligent controller module
Specified zero insertion force socket pair
Intellec development system interface cable
Universal PROM Mapper program (diskette-based ver­
sion)

8·16

Reference Manuals

9800819 - Universal PROM Programmer User's Manual
(SUPPLIED)

00799A

inter
3065 Bowers Avenue
Santa Clara, California 95051
Tel: (408) 987·8080
TWX: 91 ().338·0026
TELEX: 34-6372

ALABAMA

Inlel Corp.
3322 S. Parkway, Sle. 71
Holiday Office Center
Huntsville 35802
Tel: (205) 883·2430

Pen·Tech Associates, Inc
Holiday Office Genter
3322 Memorial Pkwy .. S.W.
Huntsville 35801
Tel: (205) 881·9298

ARIZONA

Inlel Corp
10210 N, 25th Avenue, Suite 11
Phoenix 85021
Tel: (602)997·9695

BFA
4426 North Saddle Bag Trail
Scottsdale 85251
Tel: (S02) 994·5400

CALIFORNIA

Inlel Corp
7610 Opportunity Rd.
Suite 135
San Diego 9211 1
Tel: (714) 268·3563

Intal Corp,'
1651 East 4th Street
SUite 105
Santa Ana 92101
TeJ: (714) 835·9642
TWX: 910-595·1114

Inlel Corp.'
15335 Morrison
Suite 345
Sherman Oaks 91403
Tel: (213) 986·9510
TWX- 910·495·2045

Intel Corp.'
3375 Scott Blvd.
Santa Clara 95051
Tel: (408) 987·8086
TWX: 910-339·9279

910·338·0255

Earle Associales, Inc
4617 Rullner Street
SUite 202
San Diego 92111
Tel: (714) 278-5441

Mac·1
2576 Shattuck Ave.
Suite 4B
Berkeley 94704
Tel: (415) 643·7625

Mac·!
P.O. Box 1420
Cupertino 95014
Te!: (408) 257·9880

Mac·!
11725 Espen Circle
P.O. Box 6763
Fountain Valley 92708
Tel: (714) 839·3341

1321 Centinela Avenue
Suite 1
Santa Monica 90404
Tel: (213) 829·4797

Mac·1
20121 Ventura Blvd., Suite 240E
Woodland Hills 91364
Tel: (213) 347·5900

COLORADO

Intel Corp."
650 S. Cherry Street
Suite 720
Denver 80222
Tel: (303) 321·6086
TWX: 910·931·2289

Westek Data Products, Inc
25921 Fern Gulch
P.O. Box 1355
Evergreen 80439
Tel: (303) 674·5255

Westek Data Products, Inc
1322 Arapahoe
Boulder 80302
Tel: (303) 449·2620

Westek Data Products, Inc
1228 W. Hinsdale Dr
LiUleton 80120
Tel: (303) 797,0482

CONNECTICUT

Intel Corp.
Peacock Alley
1 Padanaram Road, Suite 146
Danbury 06810
Tel: (203) 792-8366
TWX: 710-456·1199

FLORIDA

Intel Corp.
1001 N.W. 62nd Streel, Suite 406
Ft. Lauderdale 33309
Tel: (305) 771.()600
TWX: 510·956·9407

Intel Corp
5151 Adanson Street. Su,le 203
Orlando 32804
Tel: (305) 628·2393
TWX: 810·8!:13·9219

U.S. AND CANADIAN SALES OFFICES

FLORIDA (cont)

Pen·Tech ASSOCiates, Inc
201 S.E. 15th Terrace, SUite K
Deerfield Beach 33441
Tel: (305) 421·4989

Pen·Tech Associates, Inc
111 So. Maitland Ave., Sulle 202
P.O. Box 1475
Maitland 32751
Tel: (305) 645-3444

GEORGIA

Pen Tech Associales, Inc.
Cherokee Center, SUite 21
627 Cherokee Street
MarieUa 30060
Tel: (404) 424·1931

ILLINOIS

Intel Corp."
2250 Golf Road, Suite 815
Rolling Meadows 60008
Tel: (312)981·7200
TWX: 910-651·5881

Technical Representatives
1502 North Lee Sireet
Bloomington 61701
Tel: (309) 829-8080

INDIANA

Intel Corp
2212 Maplecrest Rd
FI. Wayne 46815
Tel: (219) 493·2571

Intel Corp.
9101 WeSleyan Road
Suite 204
Indianapolis 46268
Tel: (311) 299·0623

IOWA

Technical Representatives, Inc
SI. Andrews Building
1930 SI. Andrews Drive N.E
Cedar Rapids 52405
Tel: (319) 393·5510

KANSAS

Intel Corp.
9393 W. 110th St., Ste. 265
Overland Park 66210
Tel: (913) 642·8080

Technical Representatives, Inc.
6245 Nieman Road, Suite 100
Lenexa 66214
Tel: (913) 888·0212, 3, & 4
TWX: 910·749·6412

Technical Representatives, Inc.
360 N. Rock Road
Suite 4
Wichita 67206
Tel: (316) 681·0242

KENTUCKY

Lowry & Associates Inc
Lexington 40593
Tel: (606) 273-3711

MARYLAND

Intel Corp.'
7257 Parkway Drive
Hanover 21076
Tel: (301) 796·7500
TWX: 710·862·1944

Glen White Associates
57 W. Timonium Road, Suite 307
Timonium 21093
Tel: (301) 252·6360

Mesa Inc.
11900 Parklawn Drive
Rockville 20852
Tel: Washington (301) 881·8430

Baltimore (301) 792-0021

MASSACHUSETTS

Intel Corp.'
27 Industrial Ave
Chelmsford 01824
Tel: (617) 667·6126
TWX: 710-343-6333

EMC Corp.
381 Elliot Street
Newton 02164
Tel: (617) 244·4740
TWX' 922531

MICHIGAN

Intel Corp."
26500 Northwestern Hwy
Suite 401
Southfield 48075
Tel: (313) 353..Q920
TWX: 910·420·1212
TELEX: 231143

Lowry & Associates, Inc.
135 W. North Street
Suile 4
Brighton 48116
Tel: (313) 221·7061

Lowry & ASSOCiates, Inc.
3902 Costa NE
Grand Repids 49505
Tel: (616) 363-9839

MINNESOTA

Intel Corp
7401 Metro Blvd.
SUite 355
Edina 55435-
Tel: (612) 835-6122
TWX: 910·576·2861

Dylec North
1821 University Ave.
Room 163N
St. Paul 55104
Tel: {612)645·5816

MISSOURI

Intel Corp
502 Ear1h City Plaza
SUite 121
Ear1h City 63045
Tel: (314) 291·1990

Technical Representatives, Inc
320 Brookes Drive, SUite 104
Hazelwood 63042
Tel: (314) 731-5200
TWX: 910·762·0618

NEW JERSEY

Intel Corp.'
Raritan Plaza
2nd Floor
Rantan Center
Edison 08817
Tel: (201) 225·3000
TWX: 710·480·6238

NEW MEXICO

BFA Corporation
P.O. Box 1231
Las Cruces 88001
Tel: (505) 523·0601
TWX: 910·983-0543

BFA Corporation
3705 Westerfield, N.E
Albuquerque 87111
Tel: (505) 292·1212
TWX: 910·989·1157

NEW YORK

Intel Corp."
350 Vanderbilt Motor Pkwy
Suite 402
Hauppauge 11787
Tel: (516) 231·3300
TWX: 510·227·6236

Intel Corp.
80 Washington SI.
Poughkeepsie 12601
Tel: (914) 473·2303
TWX: 510·248·0060

Intel Corp.'
2255 Lyell Avenue
Lower Floor East Suite
Rochester 14606
Tel: (716) 254-6120
TWX: 510·253·7391

Measurement Technology, Inc.
159 Northern Boulevard
Great Neck 11021
Tel: (516) 482·3500

T·Squared
4054 Newcourt Avenue
Syracuse 13206
Tel: (31S) 463·8592
TWX: 710·541·0554

T-5quared
2 E. Main
Victor 14564
Tel: (116) 924·9101
TWX; 510·254·8542

NORTH CAROLINA

Intel Corp
154 Hullman Mill Rd.
Burlington 27215
Tel: {919} 584·3631

Pen·Tech ASSOCiates, Inc
1202 Eastchester Dr.
Highpoint 27260
Tel: {919} 883·9125

Glen White Associates
4009 Barrett Dr.
Raleigh 27609
Tel: (919) 787-7016

OHIO

Intel Corp."
6500 Poe Avenue
Dayton 45415
Tel: (513) 890·5350
TWX: 810·450·2528

Intel Corp."
Chagrin.Bralnard Bldg., No. 210
28001 Chagrin Blvd
Cleveland 44122
Tel: (216) 464·2738

Lowry & Associates Inc
1440 Snow Aoad
Suite 216
Cleveland 44134
Tel: (216) 398·0506

Lowry & Associates, Inc
2194 Hewitt Avenue
Dayton 45440
Tel: (513) 429·9040

OHIO (cont.)

Lowry & Associates, Inc.
Columbus 43224
Tel: (614) 436·2051

OREGON

Intel Corp
10100 S.W. Beaverton
Hillsdale Highway
Suite 324
Beaverton 91005
Tel: (503) 641·8086

PENNSYLVANIA

Intel Corp.'
275 Commerce Or.
200 Olfil;e Center
Suite 300
For1 WaShington 19034
Tel: (215) 542·9444
TWX: 510·661·2071

Lowry & ASSOCiates, Inc.
Seven Parkway Center
Suite 455
Pittsburgh 15520
Tel: (412) 922·5110

Q.E.D. ElectroniCS
300 N. York ROad
Hatboro 19040
Tel: (215) 674·9600

TEXAS

Intel Corp.'
2925 L.B.J. Freeway
Suile 175
Dallas 75234
Tel: (214)241·9521
TWX: 910·860·5487

Intel Corp."
6420 Richmond Ave
Suite 280
Houston n057
Tel: {113} 784·3400

Industrial Digital Systems Corp.
5925 Sovereign
Suite 101
Houston 71036
Tel: (713)988·9421

Intel Corp
313 E. Anderson lane
Suite 314
Austin 78152
Tel: (512) 454·3628

VIRGINIA

Glen While Associates
Route 2, Box 193
Charlottesville 22901
Tel: (804) 295·7686

Glen White Associates
P.O. Box 10186
Lynchburg 24506
Tel: (804) 384·6920

Glen White ASSOCiates
Aoute 1, Box 322
Colonial Beach 22442
Tel: (804) 224·7164

WASHINGTON

Intel Corp.
Suite 114, Bldg. 3
1603116th Ave. N.E.
Bellevue 98005
Tel: {206)453·8086

WISCONSIN

Intel Corp.
150 S. Sunnyslope Rd.
Brookfield 53005
Tel: (414) 784·9060

CANADA

Intel Semiconductor Corp.
Suite 233, Bell Mews
39 Highway 7, Bells Corners
Ottawa, OntariO K2H 8R2
Tel: (613) 829·9114
TELEX: 053·4115

Intel Semiconductor Corp.
50 Galaxy Blvd.
Unit 12
Rexdale, Ontario
M9W4YS
Tel: (416) 615·2105
TELEX: 06983574

Multilek, Inc.'
15 Grenfell Crescent
Ottawa, OntariO K2G OG3
Tel: (613) 226·2365
TELEX: 053·4585

Multilek, Inc.
Toronto
Tel: (416) 245·4622

Multllek, Inc
Montreal
Tel: (514) 481-1350

"Field Application Location

3065 Bowers Avenue
INTERNATIONAL SALES AND MARKETING OFFICES

Santa Clara, C4l1fomia 95051
Tel: (408) 987-8080
TWX: 91()'338-0026
TELEX: 3«1372

INTEL'" MARKETING OFFICES

AUSTRALIA FRANCE

Inlftl AustraUa Intel Corporation, S.A.R.L.·
Suite 2, Level 15, North Point 5 Place de la Balance
100 Mllter Street Silic223
North Sydney, NSW, 2060 94528 Rungls Cedell
Tel: 45().647 Tel: (01) 6872221
TELEX: AA 20087 TELEX: 270475

IELGIUM GERMANY

Intel Corporalion S.A- Intel Semiconductor GmbH"
Rue du Moulin a Papiar 51 Seidlstrasae 27
Bolte, 8000 Muenchen 2
&1180 Brussels Tel: (089)53891
Tel: (02) 660 30 10 TELEX: 523177
TELEX: 24814 Intel Semiconductor GmbH

Malnzer Sirasse 75
DENMARK 6200 Wlesbaden 1
Intel Denmark AJS' Tel: (06121) 700874
Lyngbyvej 32 2nd Floor TELEX: 04186183
DK·2100 Copenhagen East Intel Semiconductor GmbH
T.,: (01) 18 20 00 Wernerstrasse 67
TELEX: 19567 P.O. Box 1460

7012 FeUbach
FINLAND Tel: (0711) 580082
IntelScandlnaYIa TELEX: 7254826
Sentnerlkuja 3 Inlel Semiconductor GmbH
SF . 00400 Helsinki 40 Hlndenburgstrasse 28129
Tel: (0) 558531 3000 HannOYer 1
TEL.EX: 123332 Tet: (0511)852051

TELEX: 923625

INTERNATIONAL DISTRIBUTORS/REPRESENTATIVES

ARGENTINA

Micro Sistemas S.A.
9 De Julio 561
Cordoba
Tel: 54-61·32-880
TELEX: 51837 BICCO

AUSTRAL.IA

A.J.F. Systems .. Components Pty. Ltd.
310 Queen Strest
Melboume
Vlclorla 3000
Tel:
TELEX:

Warburton Frankl
Corporate Headquarters
372 Eastem Valley Way
Chatswood, New South Wales 2067
Tel: 407-3261
TELEX: AA 21299

AUSTRIA

BaCher Elektronlache Geraele GmbH
Rolenmulgasae 26
A 1120 Vienna
Ttl: (0222) 83 63 96
TELEX: (01) 1532

Reldrsch Elektronlk Gereete GmbH
Llchtenstelnstrasse 97
A1090 Vienna
Tel: (222)347646
TELEX: 74759

IELGIUM

Inelco Belgium S.A.
Avenue ValOur-hesse, 3
B·ll80 Brussels
Tel: (02) 660 00 12
TELEX: 25441

IRAZIL

Icotron S.A.
0511·Ay. Mutlnga 3650
6 Andar
Plrltuba·Sao Paulo
Tel: 261'()211
TELEX: (011) 222ICO BR

CHILE

DIN
Ay. Vic. Mc kenna 204
Casilia 6055
santiago
Tel: 227564
TELEX: 3520003

CHINA

C.M. Technologies
525 Uniyerslty AYenue
SuiteA·40
Palo Alto, CA 94301

COLOMllA

International Computer Machines
Adpo. Aereo 19403
Bogota 1
Tel: 232..e835
TELEX: 43439

CY'"US

Cyprus Eltrom Electronics
P.O. Box 5393
Nicosia
Tel: 21-27982

DENMARK

STL·Lyngso Komponent AlS
Ostmaf't(en4
DK·2860 Soborg
Tel: (01)670077
TELEX: 22990

ScandlnaYlan Semiconductor
Supply AJS
Nannasgade 18
DK·2200 Copenhagen
Tel: (01) 83 50 90
TELEX: 19037

FINLAND

Oy Flnlronic AB
Melkonkatu 24 A
SF.()0210
Helsinki 21
Tel: 0-692 6022
TELEX: 124 224 Ftron SF

FRANCE

Celdls S.A.·
53, Rue Charles Frerot
94250 Gentilly
Tel: (1) 581 00 20
TELEX: 200 485

Feuttier
Rue des Trois Glorleuses
F--42270 51. Prlest·en·Jarez
Tel: 167 7746733

Metrologle"
La Tour d'Asnferes
4. AYenue Laurent Cely
9261J6.Asnferes
Tel: 7914444
TELEX: 611 448

Tekelec Alrtronlc'
Cite des Bruyeres
Rue Carle Vernet
92310 Seyres
Tel: (1)534 75 35
TELEX: 204562

GERMANY

Electronic 2000 Vertrlebs GmbH
Neumaf't(ter Straaae 75
O..aooo Munich 80
Tel: (089) 434061
TELEX: 522561

Jermyn GmbH
Postlach 1180
0-6277 Cam berg
Tel: (06434) 231
TELEX: 484426

Kontron Elektronik GmbH
Breslauerstrasse2
8057 Echlng B
0-8000 Munich
Tel: (89) 319.011
TELEX: 522122

Neye Enstechnlk GmbH
Schilierstrasse 14
0·2085 Quickbom.Hamburg
Tel: (04106) 8121
TEL.EX: 02·13590

GREECE

American Technical Enterprises
P.O. Box 156
Athens
Tel: 30.1-8811271

30-1-8219470

HONG KONO

Intel Trading Corporation
99·105 Des Voeux Ad., Central
!8F, Unit B
Hong Kong
Tel: 5-450·847
TELEX: 63869

ISRAEL

Inlel Semiconductor lid.'
P.O. Box 2404
Haifa
Tel: 9721452 4261
TELEX: 92246511

ITALY

Inlel Corporation Itall8, S.p.A.
Corso Semplone 39
1·20145 Milano
Tel: 2/34.93287
TELEX: 311271

JAPAN

Inlel Japan K.K.'
Flower HIII·Shlnmachi East Bldg.
1·23-9, Shinmachl, Setagaya·ku
Tokyo 154
Tel: (03) 426·9261
TELEX: 761-28426

HONO KONG

Schmldl&Co.
281F Wing on Cenler
Connaught Road
Hong Kong
Tel: 5-455·844
TELEX: 74786 Schmc Hx

INDIA

Micronic Deylces
1041109C, Nlrmal Industrial Estate
Slon(E)
Bombay 400022, India
Tel: 486·170
TELEX: 011·5947 MDEV IN

ISRAEL

Eastromcs Lid.'
11 Rozanis Street
P.O. Box 39300
Tel Ayly 61390
Tei: 475151
TELEX' 33838

ITALY

Eledra 3S S.P.A.'
Vlale Elyezia, 18
120154 Milan
Tel' (02) 34.93,041·31.85.441
TELEX: 332332

JAPAN

Asahl Electronics Co. Ltd,
KMM Bldg. Room 407
2·14·1 Asano, Kokura
Klta·Ku, Kltokyushu City 802
Tel: (093)511-6471
TELEX: AECKY 7126·16

Hamliton-Aynet Electronics Japan Ltd.
YU and YOU Bldg. 1-4 Horidome·Cho
Nlhonbashl
Tel: (03) 662·9911
TELEX: 2523774

Nippon Micro Computer Co. Ltd.
Mutsumi Bldg. 4·5·21 KOJimschi
Chlyoda·ku;Tokyo 102
Tel: (03) 230-0041

Ryoyo Electric Corp.
Konwa Bldg.
,., 2·22, TsuklJi, I·ChOme
Chuo·Ku, Tokyo 104
Tel: (03)543·7711

Tokyo Electron Lid.
No.1 Higashikala-Machl
Midorl·Ku, Yokohama 226
Tel: (045) 471·8811
TELEX: 781·4473

KOREA

Koram Digital
Room 411 Ahil Bldg.
49-4 2·GA Hoehyun·Dong
Chung.Ku Seoul
Tel: 23-8123
TELEX: K23542 HANSINT

Leewood International, Inc.
C.P.O. Box 4046
112·25, Sokong·Dong
Chung·Ku, Seoul 100
Tel: 28-5927
CABLE: "LEEWOOD" Seoul

NETHERLANDS

Inlel Semiconductor B.V.
Cometongebouw
Wastblaak 106
3012 Km Rotterdam
Tel: (10) 149122
TELEX: 22283

NORWAY

Inlel Norway AlS
P.O. Box 158
N·2040
Klofta, Norway
Tel: 4721981068
TELEX: 18018

SWEDt.N

Inlel Sweden A.B.'
Box 20092
EnighetsYagen,5
S·1812O Bromma
Tel: (08)985390
TELEX: 12261

SWITZERLAND

Intel Semiconductor A.G.
Forchastrasse95
CH 8032 Zurich
Tel: 1-564502
TELEX: 55789 Ich ch

NETHERLANDS

Inelco Nether. Compo 5ys. BV
Turfstekerstraat 63
Asismeer 14310
Tel: (2977) 28855
TELEX: 14693

Koning & Hartman
Koperwerf30
2544 EN Den Haag
Tel: (70)210.101
TELEX: 31528

NEW ZEALAND

W. K. McLean Ltd.
P.O. Box 18-065
Glenn Innes, Auckland, 6
Tel: 567·037
TELEX: NZ2763 KOSFY

NORWAY

Nordlsk Elektronlk (Norge) AIS
Postofllce Box 122
SmedsYlngen 4
1364 HYalstad
Tel: 02786210
TELEX: 17546

PORTUGAL

Dltram
Componentes E Electronica LOA
Ay. Miguel Bombarda, 133
Lisboa 1
Tel: (19) 545313
TELEX: 14347 GESPIC

SINGAPORE

General Engineers Associales
Blk 3, 1003·1008, 10th Floor
P.S.A. Multl·Storey Complex
Telok BlangahlPasir Paniang
Singapore 5
Tel: 271·3163
TELEX: RS23987 GENERCO

SOUTH AFRICA

Electronic Building Elements
Pine Square
18th Street
Hazelwood, Pretoria 0001
Tel: 789221
TELEX: 30181SA

SPAIN

Interface
AY.GeneraIiSlm0519"
E·Madrld 16
Tel: 4563151

ITT SESA
Miguel Angel 16
Madrid 10
Tel: (1) 4190957
TELEX: 27707127461

SWEDEN

AB Gosta Backstrom
Box 12009
10221 Siockliolm
Tel: (08) 541 080
TELEX: 10135

Nordlsk Electronlk AB
Box 27301
S·10254 Stockholm
Tel: (08) 835040
TELEX: 10547

UNITED KINGDOM
Intel Corporation (U.K.) I..Id.·
8roadfleld House
.. Batwaen Towns Road
Cowley, Oxford OX4 3NB
Tel: (0865) 77 14 31
TEL.EX: 837203

Intel Corporation (U.K.) Ltd.
5 Hospital Street
Nanlwich, Cheshire CW5 5RE
Tel: (0270) 62 65 60
TELEX: 36620

SWITZERLAND

IndustradeAG
Gemsenstrasse 2
Postcheck 80 . 21190
CH-8021 Zurich
Tel: (01) 60 22 30
TELEX: 56788

TAIWAN

Taiwan Automation Co.'
3d Floor '75. Section 4
Nanking East Road
Taipei
Tel: 771.Q940
TELEX: 11942 TAIAUTO

TURKEY

Turkelek Electronics
Apapurk Bouleyard 169
Ankara
Tel: 189483

UNITED KINGDOM

Comway Microsyetems Ltd.
Maf't(et Street
58·Bracknell, Berkshire
Tel: 44·34451654

G.E.C. Semiconductors Lid.
East Lane
North Wembley
Middlesex HA9 7PP
Tel: (01) 904·9303/9Q8.411 t
TELEX: 28817

Jermyn Industries
Vestry Estate
Seyenoaks, Kent
Tel: (0732) 501.44
TELEX: 95142

Rapid Recall, Ltd.
6 Soho Mills Ind. Park
Woburn Green
Bucks, England
Tel: (6285) 24961
TELEX: 849439

Smtrom Eleclronlcs Ltd.'
Arkwright Road 2
Reading, Ber1l.shlre RG2 OLB
Tel: (0734) 85464
TELEX: 847396

VENEZUELA

Componentes y Circultos
Electronlcos TTlCA C.A.

Apartado3223
Caracas 101
Tel: 718-100
TELEX: 21795 TELETIPOS

'Fleld Application Location

