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1. INTRODUCTION 

The Intel microcontroller family now has three new 
members - the Intel® R031, R051, and R751 singlc-chip 
microcomputers. These devices, shown in Figure I, will 
allow whole new classes of products to benefit from recent 
advances in Integrated Electronics. Thanks to Intel's new 
H MOS® technology, they provide larger program and 
data memory spaces, more flexible I/O and peripheral 
capabilities, greater speed, and lower system cost than any 
previous-generation single-chip microcomputer. 
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Figure 1. 8051 Family Pinout Diagram. 

Table I summarizes the quantitative differences between 
the members of the MCS-48™ and 8051 families. The 875 I 
contains 4K bytes of EPROM program memory fabri­
cated on-chip, while the 805 I replaces the EPROM with 
4K bytes of lower-cost mask-programmed ROM. The 
803 I has no program memory on-chip; instead, it accesses 
up to 64K bytes of program memory from external 
memory. Otherwise, the three new family members are 
identical. Throughout this Note, the term "805 I" will 
represent all members of the 8051 Family, unless specifi­
cally stated otherwise. 

The CPU in each microcomputer is one of the industry's 
fastest and most efficient for numerical calculations on 
byte operands. But controllers often deal with bits, not 
bytes: in the real world, switch contacts can only be open 
or closed, indicators should be either lit or dark, motors 
are either turned on or off, and so forth. For such control 
situations the most significant aspect of the M CS-5I'M 
architecture is its complete hardware support for one-bit, 
or Boolean variables (named in honor of Mathematician 
George Boole) as a separate data type. 

The 805 I incorporates a number of special features which 
support the direct manipulation and testing of individual 
bits and allow the use of single-bit variables in performing 
logical operations. Taken together, these features are 
referred to as the M CS-51 ™ Boolean Processor. While the 
bit-processing capabilities alone would be adequate to 
solve many control applications, their true power comes 
when they are used in conjunction with the microcompu­
ter's byte-processing and numerical capabilities. 

Many concepts embodied by the Boolean Processor will 
certainly be new even to experienced microcomputer sys­
tem designers. The purpose of this Application Note is to 
explain these concepts and show how they are used. It is 
assumed the reader has read Application Note AP-69, An 
Introduction to the Intel® MCS-Sl'M Single-Chip Micro­
computer Family, publication number 121518, or has 
been exposed to Intel's single-chip microcomputer pro­
duct lines. 

For detailed information on these parts refer to the Intel 
MCS-Sl'M Family User's Manual, publication number 
12 I 5 17. The instruction set, assembly language, and use of 
the 805 I assembler (ASM5!) are further described in the 
MCS-Sl'M Macro Assembler User's Guide, publication 
number 9800937. 

2. BOOLEAN PROCESSOR OPERATION 
The Boolean Processing capabilities of the 805 I are based 
on concepts which have been around for some time. Dig­
ital computer systems of widely varying designs all have 
four functional elements in common (Figure 2): 

Table 1. Features of Intel's Single-chip Microcomputers. 

EPROM ROM External Program Data Instr. Input/ Interrupt Reg. 
Program Program Program Memory Memory Cycle Output Sources Banks 
Memory Memory Memory (Int/Max) (Bytes) Time Pins 

- 8021 - IKjlK 64 10,..Sec 21 0 I 
- 8022 - 2Kj2K 64 10,..Sec 28 2 I 

8748 8048 8035 IKj4K 64 2.5,..Sec 27 2 2 
- 8049 8039 2Kj4K 128 1.36,..Sec 27 2 2 

8751 8051 8031 4Kj64K 128 1.0 ,..Sec 32 5 4 
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• a central processor (CPU) with the control, timing, 
and logic circuits needed to execute stored 
instructions; 

• a memory to store the sequence of instructions 
making up a program or algorithm; 

• data memory to store variables used by the program; 
and 

• some means of communicating with the outside 
world. 

PROGRAM 
MEMORY 

DATA 
MEMORY 

INPUT! 
OUTPUT 
PORTS 

REAL 
WORLD 

Figure 2. Block Diagram for Abstract Digital 
Computer. 

The CPU usually includes one or more accumulators or 
special registers for computing or storing values during 
program execution. The instruction set of such a proces­
sor generally includes, at a minimum, operation classes to 
perform arithmetic or logical functions on program vari­
ables, move variables from one place to another, cause 
program execution to jump or conditionally branch based 
on register or variable states, and instructions to call and 
return from subroutines. The program and data memory 
functions sometimes share a single memory space, but this 
is not always the case. When the address spaces are separ­
ated, program and data memory need not even have the 
same basic word width. 

A digital computer's flexibility comes in part from com­
bining simple fast operations to produce more complex 
(albeit slower) ones, which in turn link together eventually 
solving the problem at hand. A four-bit CPU executing 
mUltiple precision subroutines can, for example, perform 
64-bit addition and subtraction. The subroutines could in 
turn be building blocks for floating-point multiplication 
and division routines. Eventually, the four-bit CPU can 
simulate a far more complex "virtual" machine. 

In fact, any digital computer with the above four func­
tional elements can (given time) complete any algorithm 
(though the proverbial room full of chimpanzees at word 
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processors might first re-create Shakespeare's classics 
and this Application Note)! This fact offers little consola­
tion to product designers who want programs to run as 
quickly as possible. By definition, a real-time control algo­
rithm must proceed quickly enough to meet the preor­
dained speed constraints of other equipment. 

One of the factors determining how long it will take a 
microcomputer to complete a given chore is the number of 
instructions it must execute. What makes a given compu­
ter architecture particularly well-or poorly-suited for a 
class of problems is how well its instruction set matches 
the tasks to be performed. The better the "primative" 
operations correspond to the steps taken by the control 
algorithm, the lower the number of instructions needed, 
and the quicker the program will run. All else being equal, 
a CPU supporting 64-bit arithmetic directly could clearly 
perform floating-point math faster than a machine 
bogged-down by multiple-precision subroutines. In the 
same way, direct support for bit manipulation naturally 
leads to more efficient programs handling the binary input 
and output conditions inherent in digital control problems. 

Processing Elements 
The introduction stated that the 8051 's bit-handling capa­
bilities alone would be sufficient to solve some control 
applications. Let's see how the four basic elements of a 
digital computer - a CPU with associated registers, pro­
gram memory, addressable data RAM, and 110 capabil­
ity - relate to Boolean variables. 

cpu. The 8051 CPU incorporates special logic devoted to 
executing several bit-wide operations. All told, there are 
17 such instructions, all listed in Table 2. Not shown are 94 
other (mostly byte-oriented) 8051 instructions. 

Program Memory. Bit-processing instructions are fetched 
from the same program memory as other arithmetic and . 
logical operations. In addition to the instructions of Table 
2, several sophisticated program control features like mul­
tiple addressing modes, subroutine nesting, and a two­
level interrupt structure are useful in structuring Boolean 
Processor-based programs. 

Boolean instructions are one, two, or three bytes long, 
depending on what function they perform. Those involv­
ing only the carry flag have either a single-byte opcode or 
an opcode followed by a conditional-branch destination 
byte (Figure 3.a). The more general instructions add a 
"direct address" byte after the opcode to specify the bit 
affected, yielding two or three byte encodings (Figure 3.b). 
Though this format allows potentially 256 directly addres­
sable bit locations, not all of them are implemented in the 
8051 family. 
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Table 2. MCS-51'M Boolean Processing Instruction 
Subset. 

Mnemonic Description Byte Cyc 

SETB C Set Carry flag I 
SETB bit Set direct Bit 2 
CLR C Clear Carry flag I 
CLR bit Clear direct bit 2 
CPL C Complement Carry flag I 
CPL bit Complement direct bit 2 

MOY Cbit Move direct bit to Carry flag 2 I 
MOY bit,C Move Carry flag to direct bit 2 2 

ANL Cbit AND direct bit to Carry flag 2 2 
ANL C/bit AND complement of direct bit to 2 2 

Carry flag 
ORL Cbit OR direct bit to Carry flag 2 2 
ORL C/bit OR complement of direct bit to 2 2 

Carry flag 

JC reI Jump if Carry is flag is set 2 2 
JNC reI Jump if No Carry flag 2 2 
JB bit,rel Jump if direct Bit set 3 2 
JNB bit,rel Jump if direct Bit Not set 3 2 
JBC bit,rel Jump if direct Bit is set & Clear bit 3 2 

Address mode abbreviations: 

C Carry flag. 

bit 128 software flags, any I/O pin, control or status 
bit 

reI ~ All conditional jumps include an 8-bit offset byte. 
Range is + 127/ -128 bytes relative to first byte of 
the following instruction. 

All mnemonics copyrighted© Intel Corporation 1980 

Data Memory. The instructions in Figure 3.b can operate 
directly upon 144 general purpose bits forming the Boo­
lean processor "RAM."These bits can be used as sofware 
flags or to store program variables. Two operand instruc­
tions use the CPU's carry flag ("C") as a special one-bit 
register; in a sense, the carry is a "Boolean accumulator" 
for logical operations and data transfers. 

Input/Output. All 32 I/O pins can be addressed as indi­
vidual inputs, outputs, or both, in any combihation. Any 
pin can be a control strobe output, status (Test) input, or 
serial I/O link implemented via software. An additional 
33 individually addressable bits reconfigure, control, and 
monitor the status of the CPU and all on-chip peripheral 
functions (timer/ counters, serial port modes, interrupt 
logic, and so forth). 

3 

I opcode I 
SETBC 
CLR C 
CPL C 

I opcode II displacement I 
JC rei 
JNC rei 

a.) Carry Control and Test Instructions. 

I opcode II bit address I 
SETB bit 
CLR bit 
CPL bit 
ANLC, bit 
ANL C,I bit 
ORLC, bit 
ORL C,I bit 
MOVC, bit 
MOV bit,C 

I opcode II bit address II displacement I 
JB bit, rei 
JNB bit, rei 
JBC bit. rei 

b.) Bit Manipulation and Test Instructions. 

Figure 3. Bit Addressing Instruction Formats. 

Direct Bit Addressing 
The most significant bit of the direct address byte selects 
one of two groups of bits. Values between 0 and 127 (OOH 
and 7FH) define bits in a block of 32 bytes of on-chip 
RAM, between RAM addresses 20H and 2FH (Figure 
4.a). They are numbered consecutively from the lowest­
order byte's lowest-order bit through the highest-order 
byte's highest-order bit. 

Bit addresses between 128 and 255(80H and OFFH) cor­
respond to bits in a number of special registers, mostly 
used for I/O or peripheral control. These positions are 
numbered with a different scheme than RAM: the five 
high-order address bits match those of the register's own 
address, while the three low-order bits identify the bit 
position within that register (Figure 4.b). 
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RAM 
Byte (MSB) 

7FH£ 
'C:-

2FH 

2EH 

20H 

2CH 

2BH 

2AH 

29H 

28H 

27H 

26H 

25H 

24H 

23H 

22H 

21H 

20H 

1FH 

18H 
17H 

10H 
OFH 

08H 
07H 

00 

7F 

77 

6F 

67 

SF 

57 

4F 

47 

3F 

37 

2F 

27 

1F 

17 

OF 

07 

7E 

76 

6E 

66 

5E 

56 

4E 

46 

3E 

36 

2E 

26 

1E 

16 

OE 

06 

70 7C 7B 

75 74 73 

60 6C 6B 

65 64 63 

50 5C 5B 

55 54 53 

40 4C 4B 

45 44 43 

3D 3C 3B 

35 34 33 

20 2C 2B 

25 24 23 

10 1C 1B 

15 14 13 

00 OC OB 

05 04 03 

Bank 3 

Bank 2 

Bank 1 

Bank 0 

a.) RAM Bit Addresses. 

7A 

72 

6A 

62 

SA 

52 

4A 

42 

3A 

32 

2A 

22 

1A 

12 

OA 

02 

(lSB) 

I'C. 

79 78 

71 70 

69 68 

61 60 

59 58 

51 50 

49 48 

41 40 

39 38 

31 30 

29 28 

21 20 

19 18 

11 10 

09 08 

01 00 

Direct 
B)lte 
Address (MSB) 

OFFH 

OFOH F7 

OEOH E7 

OOOH 07 

OB8H 

OBOH B7 

OA8H AF 

OAOH A7 

98H 9F 

90H 97 

88H 8F 

80H 87 

Bit Addresses Hardware 
Register 

(lSB) Symbol 

FO B 

EO ACC 

DO PSW 

B8 IP 

BO P3 

A8 IE 

AO P2 

98 SCON 

90 P1 

88 TCON 

80 PO 

b.) Special Function Register Bit Addresses. 

Figure 4. Bit Address Maps. 

Notice the column labeled "Symbol" in Figure 5. Bits with 
special meanings in the PSW and other registers have 
corresponding symbolic names. General-purpose (as 
opposed to carry-specific) instructions may access the 
carry like any other bit by using the mnemonic CY in place 
of C, PO, PI, P2, and P3 are the 8051's four I/O ports; 
secondary functions assigned to each of the eight pins of 
P3 are shown in Figure 6. 

4 

Figure 7 shows the last four bit addressable registers. 
TCON (Timer Control) and SCON (Serial port Control) 
control and monitor the corresponding peripherals, while 
IE (Interrupt Enable) and IP (Interrupt Priority) enable 
and prioritize the five hardware interrupt sources. Like the 
reserved hardware register addresses, the five bits not 
implemented in IE and IP should not be accessed; they can 
not be used as software flags. 
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(MSB) (lSB) 

I Cy I AC I FO I RS1 I RSO I OV P 

Symbol Position Name and significance 
CY PSW.7 Carry flag. 

AC 

FO 

RS1 
RSO 

Set/cleared by hardware or soft­
ware during certain arithmetic and 
logical instructions. 

PSW.6 Auxiliary Carry flag. 
Set/cleared by hardware during 
addition or subtraction instruc­
tions to indicate carry or borrow 
out of bit 3. 

PSW.5 Flag O. 
Set/cleared/tested by software as 
a user-defined status flag. 

PSWA Register bank Select control bits 
PSW.3 1 & O. Set/cleared by software to 

determine working register bank 
(see Note). 

OV 

P 

PSW.2 Overflow flag. 
Set/cleared by hardware during 
arithmetic instructions to indicate 
overflow conditions. 

PSW.1 (reserved) 

PSW.O Parity flag. 
Set/cleared by hardware each in­
struction cycle to indicate an odd/­
even number of "one" bits in the 
accumulator, i.e., even parity. 

Note - the contents of (RS1, RSO) enable 
the working register banks as 
follows: 

(0,0) - Bank 0 
(0,1) - Bank 1 
(1,0) - Bank 2 
(1,1)-Bank3 

(00H-07H) 
(OBH-OFH) 
(10H-17H) 
(1BH-1 FH) 

Figure 5. PSW - Program Status Word organization. 

(MSB) (lSB) 

I RD I WR I T1 TO IINT111NTO I TXD I RXD I 
Symbol Position Name and significance 
RD P3.7 Read data control output. 

Active low pulse generated by 
hardware when external data 
memory is read. 

WR P3.6 Write data control output. 
Active low pulse generated by 
hardware when external data 
memory is written. 

T1 P3.5 Timer/counter 1 external input or 
test pin. 

TO P3A Timer/counter 0 external input or 
test pin. 

INT1 

INTO 

TXD 

RXD 

P3.3 

P3.2 

P3.1 

P3.0 

Interrupt 1 input pin. 
Low-level or falling-edge 
triggered. 

Interrupt 0 input pin. 
Low-level or falling-edge 
triggered. 

Transmit Data pin for serial port 
in UART mode. Clock output in 
shift register mode. 

Receive Data pin for serial port in 
UART mode. Data I/O pin in shift 
register mode. 

Figure 6. P3 - Alternate I/O Functions of Port 3. 
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(MSB) (LSB) 

I TF1 I TR1 I TFO I TRO IIE1 IIT1 lEO ITO 

Symbol Position Name and significance 
TF1 TCON.? Timer 1 overflow Flag. 

Set by hardware on 
timer/counter overflow. Cleared 
when interrupt processed. 

TR1 TCON.6 Timer 1 Run control bit. 
Set/cleared by software to turn 
timer/counter on/off. 

TFO TCON.5 Timer 0 overflow Flag. 
Set by hardware on 
timer/counter overflow. Cleared 
when interrupt processed. 

TRO TCON.4 Timer 0 Run control bit. 
Set/cleared by software to turn 
timer/counter on/off. 

a.) TCON - Timer/Counter Control/status register. 

(MSB) (LSB) 

'SMO , SM1 , SM2' REN I TBal RBal TI I RI I 
Symbol Position Name and significance 
SMO SCON.? Serial port Mode control bit o. 

Set/cleared by software (see 
note). 

SM1 SCON.6 Serial port Mode control bit 1. 
Set/cleared by software (see 
note). 

SM2 SCON.5 Serial port Mode control bit 2. 
Set by software to disable recep­
tion of frames for which bit 8 is 
zero. 

REN SCON.4 Receiver Enable control bit. 
Set/cleared by software to 
enable/disable serial data 
reception. 

TB8 SCON.3 Transmit Bit 8. 
Set/cleared by hardware to deter­
mine state of ninth data bit trans­
mitted in 9-bit UART mode. 

b.) SCON - Serial Port Control/status register. 

IE1 

IT1 

lEO 

ITO 

TCON.3 Interrupt 1 Edge flag. 
Set by hardware when external 
interrupt edge detected. Cleared 
when interrupt processed. 

TCON.2 Interrupt 1 Type control bit. 
Set/cleared by software to 
specify falling edge/low level 
triggered external interrupts. 

TCON.1 Interrupt 0 Edge flag. 
Set by hardware when external 
interrupt edge detected. Cleared 
when interrupt processed. 

TCON.O Interrupt 0 Type control bit. 
Set/cleared by softrware to 
specify falling edge/low level 
triggered external interrupts. 

RB8 SCON.2 Receive Bit 8. 
Set/cleared by hardware to indi­
cate state of ninth data bit 
received. 

TI SCON.1 Transmit Interrupt flag. 
Set by hardware when byte 
transmitted. Cleared by software 
after servicing. 

RI SCON.O Receive Interrupt flag. 
Set by hardware when byte re­
ceived. Cleared by software after 
servicing. 

Note - the state of (SMO,SM1) selects: 
(0,0) - Shift register I/O expansion. 
(0,1) - 8 bit UART, variable data rate. 
(1,0) - 9 bit UART, fixed data rate. 
(1,1) - 9 bit UART, variable data rate. 

Figure 7. Peripheral Configuration Registers. 
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(MSB) (lSB) 

ES I ET1 I EX1 I ET1 I EXO I 
Symbol Position Name and significance 
EA IE.? Enable All control bit. 

ES 

ET1 

IE.6 
IE.5 

IE.4 

IE.3 

Cleared by software to disable all 
interrupts, independent of the 
state of 1E.4 - IE.O. 

(reserved) 

Enable Serial port control bit. 
Set/cleared by software to 
enable/ disable interrupts from 
TI or RI flags. 

Enable Timer 1 control bit. 
Set/cleared by software to 
enable/ disable interrupts from 
timer/counter 1. 

c.) IE - Interrupt Enable Register. 

(MSB) (lSB) 

I-I PS I PT1 I PX1 I PTO I PXO I 
Symbol Position Name and significance 

PS 

IP.? (reserved) 
I P.6 (reserved) 
I P.5 (reserved) 

IP.4 Serial port Priority control bit. 
Set/cleared by software to 
specify high/low priority 
interrupts for Serial port. 

EX1 IE.2 

ETa IE.1 

EXO IE.O 

PX1 IP.2 

PTa IP.1 

Enable External interrupt 1 
control bit. Set/cleared by 
software to enable/disable 
interrupts from INT1. 

Enable Timer a control bit. 
Set/cleared by software to 
enable/ disable interrupts from 
timer/counter O. 

Enable External interrupt a 
control bit. Set/cleared by 
software to enable/disable 
interrupts from INTO. 

External interrupt 1 Priority 
control bit. Set/cleared by 
software to specify high/low 
priority interrupts for INT1. 

Timer a Priority control bit. 
Set/cleared by software to 
specify high/low priority 
interrupts for timdr/counter O. 

PT1 IP.3 Timer 1 Priority control bit. PXO IP.O 
Set/cleared by software to 

External interrupt a Priority 
control bit. Set/cleared by 
software to specify high/low 
priority interrupts for INTO. 

specify high/low priority 
interrupts for timer/counter 1. 

d.) IP - Interrupt Priority Control Register. 

Figure 7. (continued) 

Addressable Register Set. There are 20 special function 
registers in the 8051, but the advantages of bit addressing 
only relate to the II described below. Five potentially 
bit-addressable register addresses (OCOH, OC8H, OD8H, 
OE8H, & OF8H) are being reserved for possible future 
expansion in microcomputers based on the MCS-5J'M 
architecture. Reading or writing non-existent registers in 
the 8051 series is pointless, and may cause unpredictable 
results. Byte-wide logical operations can be used to 
manipulate bits in all non-bit addressable registers and 
RAM. 

7 

The accumulator and B registers (A and B) are normally 
involved in byte-wide arithmetic, but their individual bits 
can also be used as 16 general software flags. Added with 
the 128 flags in RAM, this gives 144 general purpose 
variables for bit-intensive programs. The program status 
word (PSW) in Figure 5 is a collection of flags and 
machine status bits including the carry flag itself. Byte 
operations acting on the PSW can therefore affect the 
carry. 
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Instruction Set 
Having looked at the bit variables available to the Boolean 
Processor, we will now look at the four classes of instructions 
that manipulate these bits. It may be helpful to refer back to 
Table 2 while reading this section. 

State Control. Addressable bits or flags may be set, cleared, 
or logically complemented in one instruction cycle with the 
two-byte instructions SETB, CLR, and CPL. (The "B" 
affixed to SETB distinguishes it from the assembler "SET" 
directive used for symbol definition.) SETB and CLR are 
analogous to loading a bit with a constant: I or O. Single 
byte versions perform the same three operations on the 
carry. 

The MCS_5ITM assembly language specifies a bit address in 
any of three ways: 

• by a number or expression corresponding to the direct 
bit address (0-255); 

• by the name or address of the register containing the 
bit, the dot operator symbol (a period: ". "), and the 
bit's position in the register (7-0); 

• in the case of control and status registers, by the prede­
fined assembler symbols listed in the first columns 
of Figures 5-7. 

Bits may also be given user-defined names with the assembler 
"BIT" directive and any of the above techniques. For exam­
ple, bit 5 of the PSW may be cleared by any of the four 
instructions, 

USILFLG BIT PSW.5 User Symbol Definition 

CLR OD5H Absolute Addressing 
CLR PSW.5 Use of Dot Operator 
CLR FO Pre-Defined Assembler 

Symbol 
CLR USlLFLG User-Defined Symbol 

Data Transfers. The two-byte'MOV instructions can trans­
port any addressable bit to the carry in one cycle, or copy the 
carry to the bit in two cycles. A bit can be moved between 
two arbitrary locations via the carry by combining the two 
instructions. (If necessary, push and pop the PSW to preserve 
the previous contents of the carry.) These instructions can 
replace the multi-instruction sequence of Figure 8, a program 
structure appearing in controller applications whenever flags 
or outputs are conditionally switched on or off. 

Logical Operations. Four instructions perform the logical­
AND and logical-OR operations between the carry and 
another bit, and leave the results in the carry. The instruction 
mnemonics are ANL and 0 RL; the absence or presence of a 

8 

YES 

SET 
DESTINATION 

BIT 

CLEAR 
DESTINATION 

BIT 

Figure 8. Bit Transfer Instruction Operation . 

slash mark ("j") before the source operand indicates whether 
to use the positive-logic value or the logical complement of 
the addressed bit. (The source operand itself is never 
affected.) 

Bit-test Instructions. The conditional jump instructions "JC 
rei" (Jump on Carry) and "JNC reI" (Jump on Not Carry) 
test the state of the carry flag, branching if it is a one or zero, 
respectively. (The letters "rei" denote relative code address­
ing.) The three-byte instructions "JB bit, reI" and "JNB 
bit,rel" (Jump on Bit and Jump on Not Bit) test the state of 
any addressable bit in a similar manner. A fifth instruction 
combines the Jump on Bit and Clear operations. "JBC 
bit,rel" conditionally branches to the indicated address, then 
clears the bit in the same two cycle instruction. This opera­
tion is the same as the MCS-48™ "JTF" instructions. 

All 8051 conditional jump instructions use program 
counter-relative addressing, and all execute in two cycles. 
The last instruction byte encodes a signed displacement 
ranging from -128 to + 127. During execution, the CPU adds 
this value to the incremented program counter to produce 
the jump destination. Put another way, a conditional jump 
to the immediately following instruction would encode OOH 
in the offset byte. 

A section of program or subroutine written using only rela­
tive jumps to nearby addresses will have the same machine 
code independent of the code's location. An assembled rou­
tine may be repositioned anywhere in memory, even crossing 
memory page boundaries, without having to modify the 
program or recompute destination addresses. To facilitate 
this flexibility, there is an unconditional "Short Jump" 
(SJMP) which uses relative addressing as wel1. Since a pro-
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grammer would have quite a chore trying to compute rela­
tive offset values from one instruction to another, ASM5l 
automatically computes the displacement needed given only 
the destination address or label. An error message will alert 
the programmer if the destination is "out of range." 

(The so-called "Bit Test" instructions implemented on many 
other microprocessors simply perform the logical-AND 
operation between a byte variable and a constant mask, and 
set or clear a zero flag depending on the result. This is 
essentially equivalent to the 8051 "MaV C,bit" instruction. 
A second instruction is then needed to conditionally branch 
based on the state of the zero flag. This does not constitute 
abstract bit-addressing in the MCS-5 I'M sense. A flag exists 
only as a field within a register; to reference a bit the pro­
grammer must know and specify both the encompassing 
register and the bit's position therein. This constraint 
severely limits the flexibility of symbolic bit addressing and 
reduces the machine's code-efficiency and speed.) 

Interaction with Other Instructions. The carry flag is also 
affected by the instructions listed in Table 3. It can be rotated 
through the accumulator, and altered as a side effect of 
arithmetic instructions. Refer to the User's Manual for 
details on how these instructions operate. 

Simple Instruction Combinations 
By combining general purpose bit operations with certain 
addressable bits, one can "custom build" several hundred 
useful instructions. All eight bits of the PS W can be tested 
directly with conditional jump instructions to monitor 
(among other things) parity and overflow status. Pro­
grammers can take advantage of 128 software flags to keep 
track of operating modes, resource usage, and so forth. 

The Boolean instructions are also the most efficient way to 
control or reconfigure peripheral and II a registers. All 32 
II a lines become "test pins," for example, tested by condi­
tional jump instructions. Any output pin can be toggled 
(complemented) in a single instruction cycle. Setting or clear­
ing the Timer Run flags (TRO and TRI) turn the timer­
I counters on or off; polling the same flags elsewhere lets the 
program determine if a timer is running. The respective 
overflow flags (TFO and TFI) can be tested to determine 
when the desired period or count has elapsed, then cleared in 
preparation for the next repetition. (For the record, these 
bits are all part of the TCaN register, Figure 7.a. Thanks to 
symbolic bit addressing, the programmer only needs to 
remember the mnemonic associated with each function. In 
other words, don't bother memorizing control word layouts.) 

In the MCS-48® family, instructions corresponding to some 
of the above functions require specific opcodes. Ten different 
opcodes serve to clear I complement the software flags FO 
and FI, enablel disable each interrupt, and startl stop the 
timer. In the 8051 instruction set, just three opcodes (SETB, 
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Table 3. Other Instructions Affecting the Carry 
Flag. 

Mnemonic Description Byte Cyc 

ADD A.Rn Add register to 
Accumulator 

ADD A,direct Add direct byte to 
Accumulator 2 

ADD A,@Ri Add indirect RAM to 
Accumulator 

ADD A,#data Add immediate data to 
Accumulator 2 

ADDC A,Rn Add register to 
Accumulator with Carry 
flag 

ADDC A, direct Add direct byte to 
Accumulator with Carry 
flag 2 

ADDCA,@Ri Add indirect RAM to 
Accumulator with Carry 
flag 

ADDC A,#data Add immediate data to 
Acc with Carry flag 2 

SUBB A,Rn Subtract register from 
Accumulator with 
borrow 

SUBB A,direct Subtract direct byte 
from Acc with borrow 2 

SUBB A,@Ri Subtract indirect RA M 
from Acc with borrow 

SUBB A,#data Subtract immediate data 
from Acc with borrow 2 I 

MUL AB Multiply A & B I 4 
DIY AB Divide A by B 1 4 
DA A Decimal Adjust 

Accumulator 

RLC A Rotate Accumulator 
Left through the Carry 
flag 

RRC A Rotate Accumulator 
Right through Carry flag 

CJNE A,direct,rel Compare direct byte to 
Acc & Jump if Not 
Equal 3 2 

CJNE A,#data,rel Compare immediate to 
Acc & Jump if Not 
Equal 3 2 

CJNE Rn,#data,rel Compare immed to 
register & Jump if Not 
Equal 3 2 

CJNE @Ri,#data,reICompare immed to 
indirect & Jump if Not 
Equal 3 2 

All mnemonics copyrighted © Intel Corporation 1980 
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CLR, CPL) with a direct bit address appended perform the 
same functions. Two test instructions (JB and JNB) can be 
combined with bit addresses to test the software flags, the 
8048 I/O pins TO, TI, and INT, and the eight accumulator 
bits, replacing 15 more different instructions. 

Table 4.a shows how 8051 programs implement software 
flag and machine control functions associated with special 

using awkward sequences of other basic operations. As 
mentioned earlier, any CPU can solve any problem given 
enough time. 
Quantitatively, the differences between a solution allowed 
by the 8051 and those required by previous architectures 
are numerous. What the 8051 Family buys you is a faster, 
cleaner, lower-cost solution to microcontroller 
applications. 

The opcode space freed by condensing many specific 8048 

Table 4.a. Contrasting 8048 and 8051 Bit Control and Testing Instructions. 

8048 8x51 
Instruction Bytes Cycles uSec Instruction Bytes Cycles & uSec 

Flag Control 
CLR C I I 2.5 CLR C I I 
CPL FO I I 2.5 CPL FO 2 I 

Flag Testing 
JNC offset 2 2 5.0 JNC rei 2 2 
JFO offset 2 2 5.0 JB FO,rel 3 2 
JB7 offset 2 2 5.0 JB ACC.7,rel 3 2 

Peripheral Polling 
JTO offset 2 2 5.0 JB TO,rel 3 2 
JNI offset 2 2 5.0 JNB INTO,rel 3 2 
JTF offset 2 2 5.0 JBC TFO,rel 3 2 

Machine and Peripheral Control 
STRT T I I 2.5 SETB TRO 2 I 
EN I I I 2.5 SETB EXO 2 I 
DIS TCNT! I I 2.5 CLR ETO 2 I 

Table 4.b. Replacing 8048 instruction sequences with single 8x51 instructions. 

8048 
Instructions Bytes Cycles uSec 

Flag Control 
Set carry: 

CLR C 
CPL C = 2 2 5.0 

Set Software Flag: 
CLR FO 
CPL FO = 2 2 5.0 

opcodes in the 8048. In every case the MCS-5ITM solution 
requires the same n!Imber of machine cycles, and executes 
2.5 times faster. 

3. BOOLEAN PROCESSOR APPLICATIONS 
So what? Then what does all this buy you? 

Qualitatively, nothing. All the same capabilities could be 
(and often have been) implemented on other machines 
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8051 
Instructions Bytes Cycles & uSec 

SETB C I I 

SETB FO 2 I 

instructions into a few general operations has been used to 
add new functionality to the M CS-51 ™ architecture - both 
for byte and bit operations. 144 software flags replace the 
8048's two. These flags (and the carry) may be directly set, 
not just cleared and complemented, and all can be tested 
for either state, not just one. Operating mode bits pre­
viously inaccessible may be read, tested, or saved. Situa­
tions where the 8051 instruction set provides new capabili­
ties are contrasted with 8048 instruction sequences 
in Table 4.b. Here the 8051 speed advantage ranges from 
5x to 15x! 
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Table 4b (Continued) 
8048 
Instructions Bytes Cycles uSec 

Turn Off Output Pin: 
ANL PI,#OFBH = 2 2 5.0 

Complement Output Pin: 
IN A,PI 
XRL A,#04H 
OUTL PI,A = 4 6 15.0 

Clear Flag in RAM: 
MOV RO,#FLGADR 
MOV A,@RO 
ANL A,#FLGMASK 
MOV @RO,A = 6 6 15.0 

Flag Testing 
Jump if Software Flag is 0: 

JFO $+4 
JMP offset = 4 4 10.0 

Jump if Accumulator bit is 0: 
CPL A 
JB7 offset 
CPL A = 4 4 10.0 

Peripheral Polling 
Test if Input Pin is Grounded: 

IN A,PI 
CPL A 
JB3 offset = 4 5 12.5 

Test if Interrupt Pin is High: 
JNI $+4 
JMP offset = 4 4 10.0 

Combining Boolean and byte-wide instructions can pro­
duce great synergy. An MCS-5]TM based application will 
prove to be: 

• simpler to write since the architecture correlates more 
closely with the problems being solved; 

• easier to debug because more individual instructions 
have no unexpected or undesirable side-effects; 

• more byte efficient due to direct bit addressing and 
program counter relative branching; 

• faster running beca use fewer bytes of instruction need 
to be fetched and fewer conditional jumps are 
processed; 

• lower cost because of the high level of system­
intergration within one component. 

These rather unabashed claims of excellence shall not go 
unsubstantiated. The ~est of this chapter examines less 
trivial tasks simplified by the Boolean processor. The first 
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8x51 
Instructions Bytes Cycles & uSec 

CLR Pl.2 2 I 

CPL Pl.2 2 I 

CLR USER_FLG 2 I 

JNB FO,rel 3 2 

JNB ACC.7,rel 3 2 

JNB P1.3,rel 3 2 

JB INTO,rel 3 2 

three compare the 8051 with other microprocessors; the last 
two go into 805J-based system designs in much greater 
depth. 

Design Example #1 - Bit Permutation 
First off, we'll use the bit-transfer instructions to permute 
a lengthy pattern of bits. 

A steadily increasing number of data communication 
products use encoding methods to protect the security of 
sensitive information. By law, interstate financial transac­
tions involving the Federal banking system must be 
transmitted using the Federal Information Processing 
Data Encryption Standard (DES). 

Basically, the DES combines eight bytes of "plaintext" 
data (in binary, ASCII, or any other format) with a 56-bit 
"key", producing a 64-bit encrypted value for transmis­
sion. At the receiving end the same algorithm is applied to 
the incoming data using the same key, reproducing the 
original eight byte message. The algorithm used for these 
permutations is fixed; different user-defined keys ensure 
data privacy. 
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I t is not the purpose of this note to describe the DES in any 
detail. Suffice it to say that encryption/ decryption is a 
long, iterative process consisting of rotations, exclusive 
-OR operations, function table look-ups, and an extensive 
(and quite bizarre) sequence of bit permutation, packing, 
and unpacking steps. (For further details refer to the June 
21,1979 issue of Electronics magazine.) The bit manipula­
tion steps are included, it is rumored, to impede a general 
purpose digital supercomputer trying to "break" the code. 
Any algorithm implementing the DES with previous gen­
eration microprocessors would spend virtually all of its 
time diddling bits. 

..... 

The bit manipUlation performed is typified by the Key 
Schedule Calculation represented in Figure 9. This step is 
repeated 16 times for each key used in the course of a 
transmission. In essence, a seven-byte, 56-bit "Shifted Key 
Buffer" is transformed into an eight-byte, "Permutation 
Buffer" without altering the shifted Key. The arrows in 
Figure 9 indicate a few of the translation steps. Only six 
bits of each byte of the Permutation Buffer are used; the 
two high-order bits of each byte are cleared. This means 
only 48 of the 56 Shifted Key Buffer bits are used in anyone 
iteration. 

PERMUTED AND SHIFTED 56-BIT KEY BUFFER 

~ ~ 

-----------------~----------------- -----------------~-----------------

PERMUTATION BYTE 1 PERM BYTE 2 PERM BYTE 3 PERM BYTE 4 BYTE 5 BYTE 6 PERM BYTE 7 PERM BYTE 8 

48-BIT KEY KI 

Figure 9. DES Key Schedule Transformation. 

SET PERMUTATION 
BUFFER BIT 

PC2(1) 

CLEAR ALL BITS 
OF PERMUTATION 

BUFFER 

ISOLATE 
SKB BIT (0 

(LEAVE PERMUTATION 
BUFFER BIT 
CLEARED) 

REPEAT 
FOR EACH 
BIT OF 
SHIFTED 
KEY 
BUFFER 
(48 TIMES) 

Figure 10.a. Flowchart for Key permutation attemp­
ted with a byte processor. 
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Different microprocessor architectures would best imple­
ment this type of permutation in different ways. Most 
approaches would share the steps of Figure lO.a: 

• Initialize the Permutation Buffer to default state 
(ones or zeroes); 

• Isolate the state of a bit of a byte from the Key Buffer. 
Depending on the CPU, this might be accomplished 
by rotating a word of the Key Buffer through a carry 
flag or testing a bit in memory or an accumulator 
against a mask byte; 

• Perform a conditional jump based on the carry or 
zero flag if the Permutation Buffer default state is 
correct; 

• Otherwise reverse the corresponding bit in the permu­
tation buffer with logical operations and mask bytes. 

Each step above may require several instructions. The last 
three steps must be repeated for all 48 bits. Most micropro­
cessors would spend 300 to 3,000 microseconds on each of 
the 16 iterations. 

Notice, though, that this flow chart looks a lot like Figure 8. 
The Boolean Processor can permute bits by simply moving 
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them from the source to the carry to the destination-a 
total of two instructions taking four bytes and three 
microseconds per bit. Assume the Shifted Key Buffer and 
Permutation Buffer both reside in bit-addressable RAM, 
with the bits ofthe former assigned symbolic names S KB_l, 
SKR...2, ... SKB.-56, and that the bytes of the latter are 
named PB_I, ... PB_8. Then working from Figure 9, the 
software for the permutation algorithm would be that of 
Example I.a. The total routine length would be 192 bytes, 
requiring 144 microseconds. 

The algorithm of Figure lO.b is just slightly more efficient 
in this time-critical application and illustrates the synergy 
of an integrated byte and bit processor. The bits needed for 
each byte of the Permutation Buffer are assimilated by 
loading each bit into the carry (I usec.) and shifting it into 
the accumulator (I usec.). Each byte is stored in RAM 
when completed. Forty-eight bits thus need a total of 112 
instructions, some of which are listed in Example I.b. 

I 

LOAD BIT MAPPED ONTO BIT 5 OF 
PERMUTATION BYTE INTO CARRY 

LOAD BIT MAPPED ONTO BIT 4 
OF PERMUTATION BYTE INTO CARRY 

, 
LOAD BIT MAPPED ONTO BIT 0 
OF PERMUTATION BYTE INTO CARRY 

+ 
ROTATE LEFT INTO ACC. 

+ 
STORE ACC. INTO PERMUTATION 
BUFFER 

I 
I 
I 

t 

J 

REPEAT 
FOR EACH 
BYTE OF 
PERMUTATION 
BUFFER 
(STIMES) 

Figure 10.b. DES Key Permutation 
with Boolean Processor. 
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Worst-case execution time would be 112 microseconds, 
since each instruction takes a single cycle. Routine length 
would also decrease, to 168 bytes. (Actually, in the context 
of the complete encryption algorithm, each permuted byte 
would be processed as soon as it is assimilated-saving 
memory and cutting execution time by another 8 usec.) 

Example I. DES Key Permutation Software. 

a.) "Brute Force" technique. 

Mav C,SKB_I 
MaV PB_I.I,C 
MaV C,SKR2 
MaV PB_4.0,C 
MaV C,SKB-.3 
MaV PB-2.5,C 
MaV C,SKB_4 
MaV PB_I.O,C 

MaV C,SKB.-55 
MaV PB.-5.0,C 
MaV C,SKB_56 
MaV PB_7.2,C 

b.) Using Accumulator to Collect Bits. 

CLR A 
MaV C,SKB_14 
RLC A 
MaV C,SKB_17 
RLC A 
MaV C,SKB_II 
RLC A 
MaV C,SKB-24 
RLC A 
MaV C,SKB_I 
RLC A 
MaV C,SKB_5 
RLC A 
MaV PB_I,A 

MaV C,SKB-29 
RLC A 
MaV C,SKB_32 
RLC A 
MaV PRll,A 

To date, most banking terminals and other systems using 
the DES have needed special boards or peripheral con­
troller chips just for the encryption/ decryption process, 
and still more hardware to form a serial bit stream for 
transmission (Figure II.a). An 8051 solution could pack 
most of the entire system onto the one chip (Figure Il.b). 
The whole DES algorithm would require less than one-

01489A-15 



AP-70 

fourth ofthe on-chip program memory, with the remaining 
bytes free for operating the banking terminal (or whatever) 
itself. 

Moreover, since transmission and reception of data is 
performed through the on-board U AR T, the unencrypted 
data (plaintext) never even exists outside the micro­
computer! Naturally, this would afford a high degree of 
security from data interception. 

~ONTROLAN-D A-DDR~SSE~ - - l 
=;-;::=~~~~;-;= I 

I ! TO 

~ MODEM 

L SYSTEM DATA BUS -------
a.) Using Multi-chip processor technology. 

DISPLAY P2 

T,D 

8051 I TO MODEM 
PO 

.,D 

KEYBOARD 

PI 

b.) Using one Single-chip Microcomputer. 

Figure 11. Secure Banking Terminal Block Diagram. 

Design Example #2 - Software Serial I/O 
An exercise often imposed on beginning microcomputer 
students is to write a program simulating a UART. (See, 
for example, Application Notes AP24, AP29, and AP49.) 
Though doing this with the 8051 Family may appear to be 
a moot point (given that the hardware for a full U AR T is 
on-chip), it is still instructive to see how it would be done, 
and maintains a product line tradition. 

As it turns Out, the 8051 microcomputers can receive or 
transmit serial data via software very efficiently using the 
Boolean instruction set. Since any I/O pin may be a serial 
input or output, several serial links could be maintained at 
once. \ 

Figures 12.a and 12.b show algorithms for receiving or 
transmitting a byte of data. (Another section of program 
would invoke this algorithm eight times, synchronizing it 
with a start bit, clock signal, software delay, or timer 
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interrupt.) Data is received by testing an input pin, setting 
the carry to the same state, shifting the carry into a data buffer, 
and saving the partial frame in internal RAM. Data is 
transmitted by shifting an output buffer through the carry, 
and generating each bit on an output pin. 

a.) Reception. 

b.) Transmission. 

Figure 12. Serial 110 Algorithms. 

A side-by-side comparison of the software for this common 
"bit-banging" application with three different micro­
processor architectures is shown in Table 5.a and 5. b. The 
8051 solution is more efficient than the others on every 
count! 
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a.) Input Routine. 

8085 

IN SERPORT 
ANI MASK 
JZ LO 
CMC 

LO: LXI HL,SERBUF 
MOV A,M 
RR 
MOV M,A 

RESULTS: 

8 INSTRUCTIONS 
14 BYTES 
56 STATES 
19 uSEe. 

b.) Output Routine. 

8085 

LXI HL,SERBUF 
MOV A,M 
RR 
MOV M,A 
IN SERPORT 
JC HI 

LO: ANI NOT MASK 
JMP CNT 

HI: ORI MASK 
CNT:OUT SERPORT 

RESULTS: 

10 INSTRUCTIONS 
20 BYTES 
72 STATES 
24 uSEe. 

AP-70 

Table 5. Serial I/O Programs 
for Various Microprocessors. 

8048 

CLR C 
JNTO LO 
CPL C 
MOV RO,#SERBUF 
MOV A,@RO 
RRC A 
MOV @RO,A 

7 INSTRUCTIONS 
9 BYTES 
9 CYCLES 

22.5 uSEe. 

8048 

MOV RO,#SERBUF 
MOV A,@RO 
RRC A 
MOV @RO,A 

JC HI 
ANL SERPRT,#NOT MASK 
JMP CNT 

HI: ORL SERPRT,#MASK 
CNT: 

8 INSTRUCTIONS 
13 BYTES 
II CYCLES 
27.5 uSEe. 

8051 

MOV C,SERPIN 

MOV A,SERBUF 
RRC A 
MOV SERBUF,A 

4 INSTRUCTIONS 
7 BYTES 
4 CYCLES 
4 uSEe. 

8051 

MOV A,SERBUF 
RRC A 
MOV SERBUF,A 

MOV SERPIN,C 

4 INSTRUCTIONS 
7 BYTES 
5 CYCLES 
5 uSEe. 

Design Example #3 - Combinatorial Logic 
Equations 
Next we 11 look at some simple uses for bit-test instructions 
and logical operations. (This example is also presented in 
Application Note AP-69.) 

Figure 13 shows TTL and relay logic diagrams for a 
function of the six variables U through Z. Each is a 
solution of the equation, 

Virtually all hardware designers have solved complex 
functions using combinatorial logic. While the hardware 
involved may vary from relay logic, vacuum tubes, or TTL 
or to more esoteric technologies like fluidics, in each case 
the goal is the same: to solve a problem represented by a 
logical function of several Boolean variables. 
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Q = (U . (V + W)) + (X· y) + Z . 

Equations of this sort might be reduced using Karnaugh 
Maps or algebraic techniques, but that is not the purpose 
of this example. As the logic complexity increases, so does 
the difficulty of the reduction process. Even a minor 
change to the function equations as the design evolves 
would require tedious re-reduction from scratch. 
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Figure 13. Hardware Implementations of Boolean functions. 

U-------r-., 
v---, ..... 
W ---1..--./ 

x 
y ----<lL_~ 

z 

Q = (u·(V + W)) + (X. Vi + i 

a.) Using TTL: 

r-- Q 

Forthe sake of comparison we will implement this function 
three ways, restricting the software to three proper subsets 
of the M CS-51 ™ instruction set. We will also assume that 
U and V are input pins from different input ports, Wand X 
are status bits for two peripheral controllers, and Y and Z 
are software flags set up earlier in the program. The end 
result must be written to an output pin on some third port. 
The first two implementations follow the flow-chart shown 
in Figure 14. Program flow would embark on a route down 
a test-and-branch tree and leaves either the "True" or "Not 
True" exit ASAP - as soon as the proper result has been 
determined. These exits then rewrite the output port with 
the result bit respectively one or zero. 

Other digital computers must solve equations of this type 
with standard word-wide logical instructions and condi­
tionaljumps. So for the first implementation, we won't use 
any generalized bit-addressing instructions. As we shall 
soon see, being constrained to such an instruction subset 
produces somewhat sloppy software solutions. MCS-51'M 
mnemonics are used in Example 2.a; other machines might 
further cloud the situation by requiring operation-specific 
mnemonics like INPUT, OUTPUT, LOAD, STORE, etc., 
instead of the MOV mnemonic used for all variable trans­
fers in the 8051 instruction set. 

The code which results is cumbersome and error prone. It 
would be difficult to prove whether the software worked for 
all input combinations in programs of this sort. Further­
more, execution time will vary widely with input data. 

Thanks to the direct bit-test operations, a single instruc­
tion can replace each move/ mask/ conditionaljump 
sequence in Example 2.a, but the algorithm would be 
equally convoluted (see Example 2.B). To lessen the con­
fusion "a bit" each input variable is assigned a symbolic 
name. 

A more elegant and efficient implementation (Example 2.c) 
strings together the Boolean ANL and ORL functions to 
generate the output function with straight-line code. 
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v 

U 

x y 

CR1 

CR2 

z 

b.) Using Relay Logic: 

FUNCTION 
IS FALSE 

CLEAR Q 

Q 

FUNCTION 
IS TRUE 

Figure 14. Flow chart for tree-branching algorithm. 
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When finished, the carry flag contains the result, whieh is 
simply copied out to the destination pin. No flow chart is 
needed-code can be written directly from the logic dia­
grams in Figure 14. The result is simplicity itself: fast, 
flexible, reliable, easy to design, and easy to debug. 

An 80S1 program can simulate an N-input AND or OR 
gate with at most N+ I lines of source program-one for 
each input and one line to store theresults. To simulate 
NAND and NOR gates, complement the carry after com­
puting the function. When some inputs to the gate have 
"inversion bubbles," perform the ANL or OR L operation 
on inverted operands. When the first input is inverted, 
either load the operand into the carry and then complement 
it, or use DeMorgan's Theorem to convert the gate to a 
different form. 

Example 2. Software Solutions to Logic Function of Fig­
ure 13. 

a.) Using only byte-wide logical instructions. 

;BFUNCI SOLVE RANDOM LOGIC FUNCTION 
OF 6 VARIABLES BY LOADING AND 
MASKING THE APPROPRIATE BITS 
IN THE ACCUMULATOR, THEN 
EXECUTING CONDITIONAL JUMPS 
BASED ON ZERO CONDITION. 
(APPROACH USED BY BYTE­
ORIENTED ARCHITECTURES.) 
BYTE AND MASK VALUES 
CORRESPOND TO RESPECTIVE BYTE 
ADDRESS AND BIT POSITIONS. 

O{]TBUF DATA 22H ;OUTPUT PIN STATE MAP 

TESTV; MOV A,P2 
ANL A,#OOOOO I 00 B 
JNZ TESTU 
MOV A,TCON 
ANL A,#OO 100000 B 
JZ TESTX 

TFSTU: MOV A,PI 
ANL A,#OOOOOOIOB 
JNZ SETQ 

lTSTX: MOV A,TCON 
ANL A,#OOOO I 000 B 
JZ TESTZ 
MOV A,20H 
ANL A,#OOOOOOO I B 
JZ SETQ 

TESTZ: MOV A,2IH 
ANL A,#OOOOOO lOB 
JZ SETQ 
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CLRQ: MOV A,OUTBUF 
ANL A,# II 110 I I I B 
JMP OUTQ 

SETQ: MOV A,OUTBUF 
ORL A,#OOOO I OOOB 

OUTQ: MOV OUTBUF,A 
MOV P3,A 

b.) Using only bit-test instructions. 

;BFUNC2 SOLVE A RANDOM LOGIC FUNCTION 
OF 6 VARIABLES BY DIRECTLY 
POLLING EACH BIT. 

U 
V 
W 
X 
Y 
Z 
Q 

(APPROACH USING MCS-SI UNIQUE 
BIT-TEST INSTRUCTION CAPABILITY.) 
SYMBOLS USED IN LOGIC DIAGRAM 
ASSIGNED TO CORRESPONDING 8xSI 
BIT ADDRESSES. 

BIT PI. I 
BIT P2.2· 
BIT TFO 
BIT lEI 
BIT 20H.0 
BIT 21H.1 
BIT P3.3 

TEST_V: JB V,TEST_U 
JNB W,TEST_X 

TEST_U: JB U,SET_Q 
TEST_X: JNB X,TEST-Z 

JNB Y,SET_Q 
TEST-Z: JNB Z,SET_Q 
CLR_Q: CLR Q 

JMP NXTTST 
SET_Q: SETB Q 
NXTTST: ;(CONTINUATION OF 

;PROGRAM) 

c.) Using logical operations on Boolean variables. 

;FUNC3 SOLVE A RANDOM LOGIC FUNCTION 
OF 6 VARIABLES USING 
STRAIGHT_LINE LOGICAL 
INSTRUCTIONS ON MCS-SI BOOLEAN 
VARIABLES. 

MOV C,V 
ORL C,W ;OUTPUT OF OR GATE 
ANL C,U ;OUPUT OF TOP AND GATE 
MOV FO,C ;SAVE INTERMEDIATE STATE 
MOV C,X 
ANL C,/Y ;OUTPUT OF BOTTOM AND GATE 
ORL C,FO ;INCLUDE VALUE SAVED ABOVE 
ORL C,/Z ;INCLUDE LAST INPUT VARIABLE 
MOV Q,C ;OUTPUT COMPUTED RESULT 
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An upper-limit can be placed on the complexity of software 
to simulate a large number of gates by summing the total 
number of inputs and outputs. The actual total should be 
somewhat shorter, since calculations can be "chained," as 
shown above. The output of one gate is often the first 
input to another, bypassing the intermediate variable to 
eliminate two lines of source. 

Design Example #4 - AlJtomotive Dash­
board Functions 

N ow let's apply these techniques to designing the software 
for a complete controller system. This application is 
patterned after a familiar real-world application which 
isn't nearly as trivial as it might first appear: automobile" 
turn signals. 

Imagine the three pOSitIOn turn lever on the steering 
column as a single-pole, triple-throw toggle switch. In its 
central position all contacts are open. In the up or down 
positions contacts close causing corresponding lights in 
the rear of the car to blink. So far very simple. 

Two more turn signals blink in the front of the car, and 
two others in the dashboard. All six bulbs flash when an 
emergency switch is closed. A thermo-mechanical relay 
(accessible under the dashboard in case it wears out) 
causes the blinking. 

Applying the brake pedal turns the taillight filaments on 
constantly ... unless a turn is in progress, in which case the 
blinking taillight is not affected. (Of course, the front turn 
signals and dashboard indicators are not affected by the 
brake pedal.) Table 6 summarizes these operating modes. 

But we're not done yet. Each of the exterior turn signal 
(but not the dashboard) bulbs has a second, somewhat 
dimmer filament for the parking lights. Figure 15 shows 
TTL circuitry which could control all six bulbs. The 
signals labeled "High Freq." and "Low Freq." represent 
two square-wave inputs. Basically, when one of the turn 
switches is closed or the emergency switch is activated the 
low frequency signal (about I Hz) is gated through to the 
appropriate dashboard indicator(s) and turn signal(s). 
The rear signals are also activated when the brake pedal is 
depressed provided a turn is not being made in the same 
direction. When the parking light switch is closed the 
higher frequency oscillator is gated to each front and rear 
turn signal, sustaining a low-intensity background level. 
(This is to eliminate the need for additional parking light 
filaments.) 

L. TURN --r--.....,--....'---_.r-...... 
EMERG r.--...---- L. DASH 

L. FRNT 

BRAKE --+-1>-+--r---..,l---f-___ -+-I L. REAR 

R. TURN ---H--+---r"""----L.---I----... 
1--........ +---- R. DASH 

PARK --------+---r--.., 

LO. 
FREQ. 

OSCILLATOR 

HI. 
FREQ. 
OSCILLATOR 

Figure 15. TTL logic implementation of 
automotive turn signals. 

R. FRNT 

R. REAR 

Table 6. Truth table for turn-signal operation. 

INPUT SIGNALS OUTPUT SIGNALS 
BRAKE EM ERG. LEFT RIGHT LEFT RIGHT LEFT RIGHT 

SWITCH SWITCH TURN TURN FRONT FRONT REAR REAR 
SWITCH SWITCH & DASH & DASH 

0 0 0 0 OFF OFF OFF OFF 
0 0 0 I OFF BLINK OFF BLINK 
0 0 I 0 BLINK OFF BLINK OFF 
0 I 0 0 BLINK BLINK BLINK BLINK 
0 I 0 I BLINK BLINK BLINK BLINK 
0 I I 0 BLINK BLINK BLINK BLINK 
I 0 0 0 OFF OFF ON ON 
I 0 0 I OFF BLINK ON BLINK 
I 0 I 0 BLINK OFF BLINK ON 
I I 0 0 BLINK BLINK ON ON 
I I 0 I BLINK BLINK ON BLINK 
I I I 0 BLINK BLINK BLINK ON 
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I n most cars, the switching logic to generate these func­
tions requires a number of multiple-throw contacts. As 
ma ny as 18 conductors thread the steering column of some 
alltomobiles solely for turn-signal and emergency blinker 
fllnctions. (The author discovered this recently to his 
astonishment and dismay when replacing the whole 
assemhly because of one burned contact.) 

A multiple-conductor wiring harness runs to each corner 
of the car, behind the dash, up the steering column, and 
down to the blinker relay below. Connectors at each ter­
mination for each filament lead to extra cost and labor 
d uri ng construction, lower reliability and safety, and more 
costly repairs. And considering the system's present com­
plexity, increasing its reliability or detecting failures 
would be quite difficult. 

There are two reasons for going into such painful detail 
describing this example. First, to show that the messiest 
part of many system designs is determining what the 
controller should do. Writing the software to solve these 
functions will be comparatively easy. Secondly, to show 
the many potential failure points in the system. Later we'll 
see how the peripheral functions and intelligence built into 
a microcomputer (with a little creativity) can greatly 
reduce external interconnections and mechanical part 
count. 

The Single-chip Solution 
The circuit shown in Figure 16 indicates five input pins to 
the five input variables-left-turn select, right-turn select, 
brake pedal down, emergency switch on, and parking 
lights on. Six output pins turn on the front, reltr, and 
dashboard indicators for each side. The microcomputer 
implements all logical functions through software, which 
periodically updates the output signals as time elapses and 
input conditions change. 

Figure 16. Microcomputer Turn-signal Connections. 
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CONTROLLER OUTPUT SIGNAL 
BUFFERS BULBS 
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Design Example #3 demonstrated that symbolic address­
ing with user-defined bit names makes code and documen­
tation easier to write and maintain. Accordingly, we'll 
assign these I/O pins names for use throughout the pro­
gram. (The format of this example will differ somewhat 
from the others. Segments of the overalI program will be 
presented in sequence as each is described.) 

INPUT PIN DECLARATIONS: 
(ALL INPUTS ARE POSITIVE-TRUE LOGIC) 

BRAKE BIT PI.O : BRAKE PEDAL DEPRESSED 
EMERG BIT PI. I : EMERGENCY BLINKER 

ACTIVATED 
PARK BIT PI.2 : PARKING LIGHTS ON 
LTURN BIT P1.3 : TURN LEVER DOWN 
R_TURN BITPl.4 : TURN LEVER UP 

OUTPUT PIN DECLARATIONS: 

LFRNT BIT P1.5 : FRONT LEFT-TURN 
INDICATOR 

R_FRNT BIT PI.6 : FRONT RIGHT-TURN 
INDICATOR 

LDASH BIT PI.7 : DASHBOARD LEFT-TURN 
INDICATOR 

R_DASH BIT P2.0 : DASHBOARD RIGHT-TURN 
INDICATOR 

LREAR BIT P2.l : REAR LEFT-TURN 
INDICATOR 

R_REAR BIT P2.2 : REAR RIGHT-TURN 
INDICATOR 

Another key advantage of symbolic addressing will 
appear further on in the design cycle. The locations of 
cable connectors, signal conditioning circuitry, voltage 
regulators, heat sinks, and the like alI affect P.c. board 
layout. It's quite likely that the somewhat arbitrary pin 
assignment defined early in the software design cycle wilI 
prove to be less than optimum; rearranging the I/O pin 
assignment could welI allow a more compact module, or 
eliminate costly jumpers on a single-sided board. (These 
considerations apply especially to automotive and other 
cost-sensitive applications needing single-chip con­
trolIers.) Since other architectures mask bytes or use 
"clever" algorithms to isolate bits by rotating them into 
the carry, re-routing an input signal (from bit I of port 1, 
for example, to bit 4 of port 3) could require extensive 
modifications throughout the software. 

The Boolean Processor's direct bit addressing makes such 
changes absolutely trivial. The number of the port contain­
ing the pin is irrelevent, and masks and complex program 
structures are not needed. Only the initial Boolean varia-
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; INTERRUPT RATE SUBDIVIDER 
SUB_DIV DATA 20H 
; HIGH-FREQUENCY OSCILLATOR BIT 
HLFREQ BIT SUB-DIV.O 
; LOW-FREQUENCY OSCILLATOR BIT 
LOYREQ BIT SUB_DIV.7. 

ORG OOOOH 
JMP INIT 

ORG IOOH 
; PUT TIMER 0 IN MODE I 
INIT: MOV TMOD,#OOOOOOOIB 
; INITIALIZE TIMER REGISTERS 

MOV TLO,#O 
MOV THO,#-16 

; SUBDIVIDE INTERRUPT RATE BY 244 
MOV SUB_DIV,#244 

; ENABLE TIMER INTERRUPTS 
SETB ETO 

; GLOBALLY ENABLE ALL INTERRUPTS 
SETB EA 

; START TIMER 
SETB TRO 

; (CONTINUE WITH BACKGROUND PROGRAM) 

; PUT TIMER 0 IN MODE I 
; INITIALIZE TIMER REGISTERS 

; SUBDIVIDE INTERRUPT RATE BY 244 
; ENABLE TIMER INTERRUPTS 
; GLOBALLY ENABLE ALL INTERRUPTS 
; START TIMER 

ble declarations need to be changed; ASM51 automati­
cally adjusts all addresses and symbolic references to the 
reassigned variables. The user is assured that no addi­
tional debugging or software verification will be required. 

Timer 0 (one of the two on-chip timer/ counters) replaces 
the thermo-mechanical blinker relay in the dashboard 
controller. During system initialization it is configured as 
a timer in mode I by setting the least significant bit of the 
timer mode register (TMOD). In this configuration the 
low-order byte (TLO) is incremented every machine cycle, 
overflowing and incrementing the high-order byte (THO) 
every 256 IASec. Timer interrupt 0 is enabled so that a 
hardware interrupt will occur each time THO overflows. 
(For details of the numerous timer operating modes see 
the MCS-5ITM User's Manual.) 

An eight-bit variable in the bit-addressable RAM array 
will be needed to further subdivide the interrupts via 
software. The lowest-order bit of this counter toggles very 
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fast to modulate the parking lights; bit 7 will be "tuned"to 
approximately I Hz for the turn- and emergency­
indicator blinking rate. 

Loading THO with - I 6 will cause an interrupt after 4.096 
msec. The interrupt service routine reloads the high-order 
byte of timer 0 for the next interval, saves the CPU regis­
ters likely to be affected on the stack, and then decrements 
SUB_DIV. Loading SUB_DIV. with 244 initially and 
each time it decrements to zero will produce a 0.999 
second period for the highest-order bit. 

ORG OOOBH ; TIMER 0 SERVICE VECTOR 
MOV THO,#-16 
PUSH PSW 
PUSH ACC 
PUSH B 
DJNZ SUB_DIV,TOSERV 
MOV SUB_DIV,#244 

The code to sample inputs, perform calculations, and 
update outputs-the real "meat" of the signal controller 
algorithm-may be performed either as part of the inter­
rupt service routine or as part of a background program 
loop. The only concern is that it must be executed at least 
several dozen times per second to prevent parking light 
flickering. We will assume the former case, and insert the 
code into the timer 0 service routine. 

First, notice from the logic diagram (Figure 15) that the 
subterm (PARK, H_FREQ), asserted when the parking 
lights are to be on dimly, figures into four of the six output 
functions. Accordingly, we will first compute that term 
and save it in a temporary location named "DIM". The 
PSW contains two general purpose flags: FO, which cor­
responds to the 8048 flag of the same name, and PSW.1. 
Since The PSW has been saved and will be restored to its 
previous state after servicing the interrupt, we can use 
either bit for temporary storage. 

DIM BIT PSW.I ; DECLARE TEMP. 
STORAGE FLAG 

MOV C.PARK ; GATE PARKING 
LIGHT SWITCH 

ANL HLFREQ ; WITH HIGH 
FREQUENCY 
SIGNAL 

MOV DIM,C ; AND SAVE IN 
TEMP. VARIABLE. 

This simple three-line section of code illustrates a remark- I 

able point. The software indicates in very abstract terms 
exactly what function is being performed, independent of 
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the hardware configuration. The fact that these three bits 
include an input pin, a bit within a program variable, and 
a software flag in the PSW is totally invisible to the 
programmer. 

Now generate and output the dashboard left turn signal. 

MOV C,LTURN 

ORL C,EMERG 

MOV LDASH,C 

; SET CARRY IF 
TURN 

; OR EMERGENCY 
SELECTED. 

;GATEINIHZ 
SIGNAL 

; AND OUTPUT TO 
DASHBOARD. 

To generate the left front turn signal we only need to add 
the parking light function in FO. But notice that the func­
tion in the carry will also be needed for the rear signal. We 
can save effort later by saving its current state in FO. 

MOV FO,C 

ORL C,DIM 

MOV LFRNT,C 

; SAVE FUNCTION 
SO FAR. 

; ADD IN PARKING 
LIGHT FUNCTION 

; AND OUTPUT TO 
TURN SIGNAL. 

Finally, the rear left turn signal should also be on when the 
brake pedal is depressed, provided a left turn is not in 
progress. 

MOV C,BRAKE ; GATE BRAKE 
PEDAL SWITCH 

A:'IJL C,/L_TURN ; WITH TURN 
LEVER. 

ORL C,FO ; INCLUDE TEMP. 
VARIABLE FROM 
DASH 

ORL C,DIM ; AND PARKING 
LIGHT FUNCTION 

MOV L_REAR,C ; AND OUTPUT TO 
TURN SIGNAL. 

Now we have to go through a similar sequence for the 
right-hand equivalents to all the left-turn lights. This also 
gives liS a chance to see how the code segments above look 
whell combined. 

MOV C,R_TURN ; SET CARRY IF 
TURN 

OR!. C,EMERG ; OR EMERGENCY 
SELECTED. 

ANI. C,LO_FREQ ; IF SO, GATE IN I 
HZ SIGNAL 
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MOV R_DASH,C ; AND OUTPUT TO 
DASHBOARD. 

MOV FO,C ; SAVE FUNCTION 
SO FAR. 

ORL C,DIM ; ADD IN PARKING 
LIGHT FUNCTION 

MOV R_FRNT,C ; AND OUTPUT TO 
TURN SIGNAL. 

MOV C,BRAKE ; GATE BRAKE 
PEDAL SWITCH 

ANL c'/R_TURN ; WITH TURN 
LEVER. 

ORL C,FO ; INCLUDE TEMP. 
V ARIABLE FROM 
DASH 

ORL C,DIM ; AND PARKING 
LIGHT FUNCTION 

MOV R_REAR,C ; AND OUTPUT TO 
TURN SIGNAL. 

(The perceptive reader may notice that simply rearranging 
the steps could eliminate one instruction from each 
sequence.) 

Now that all six bulbs are in the proper states, we can 
return from the interrupt routine, and the program is 
finished. This code essentially needs to reverse the status 
saving steps at the beginning of the interrupt. 

POP B 

POP ACC 
POP PSW 
RETI 

; RESTORE CPU 
REGISTERS. 

Program Refinements. The luminescence of an incan­
descent light bulb filament is generally non-linear; the 50% 
duty cycle of HLFREQ may not produce the desired 
intensity. If the application requires, duty cycles of 25%, 
75%, etc. are easily achieved by ANDing and ORing in 
additional low-order bits ofSUB_DIV. For example, 30 
Hz signals of seven different duty cycles could be pro­
duced by considering bits 2-0 as shown in Table 7. The 
only software change required would be to the code which 
sets-up variable DIM: 

MOV DIM,C 

; START WITH 50 
PERCENT 

; MASK DOWN TO 25 
PERCENT 

; AND BUILD BACK TO 
62 PERCENT 

; DUTY CYCLE FOR 
PARKING LIGHTS. 
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Table 7. Non-trivial Duty Cycles. 

SUB-DIV BITS 
7 6 5 4 3 2 1 0 12.5% 
X X X X X 0 0 0 OFF 
X X X X X 0 0 I OFF 
X X X X X 0 I 0 OFF 
X X X X X 0 I I OFF 
X X X X X I 0 0 OFF 
X X X X X I 0 I OFF 
X X X X X I I 0 OFF 
X X X X X I I I ON 

Interconnections increase cost and decrease reliability. 
The simple buffered pin-per-function circuit in Figure 16 
is insufficient when many outputs require higher-than­
TTL drive levels. A lower-cost solution uses the 8051 
serial port in the shift-register mode to augment 1/ O. In 
mode 0, writing a byte to the serial port data buffer 
(SBUF) causes the data to be output sequentially through 
the "RXD" pin while a burst of eight clock pulses is 
generated on the "TXD" pin. A shift register connected to 
these pins (Figure 17) will load the data byte as it is shifted 
out. A number of special peripheral driver circuits com­
bining shift-register inputs with high drive level outputs 
have been introduced recently. 

Cascading multiple shift registers end-to-end will expand 
the number of outputs even further. The data rate in the 
I/O expansion mode is one megabaud, or 8 usec. per byte. 
This is the mode which the serial port defaults to following 
a reset, so no initialization is required. 

The software for this technique uses the B register as a 
"map" corresponding to the different output functions. 
The program manipulates these bits instead of the output 
pins. After all functions have been calculated the B register 
is shifted by the serial port to the shift-register/ driver. 
(While some outputs may glitch as data is shifted through 
them, at I Megabaud most people wouldn't notice. Some 
shift registers provide an "enable" bit to hold the output 
states while new data is being shifted in.) 

This is where the earlier decision to address bits symbol­
ically throughout the program is going to payoff. This 
major I/O restructuring is nearly as simple to implement 
as rearranging the input pins. Again, only the bit declara­
tions need to be changed. 

L_FRNT BIT B.O ; FRONT LEFT-TURN 
INDICATOR 

R_FRNT BIT B.I ; FRONT RIGHT-TURN 
INDICATOR 

LDASH BIT B.2 ; DASHBOARD LEFT-TURN 
INDICATOR 

R_DASH BIT B.3 ; DASHBOARD RIGHT-TURN 
INDICATOR 

DUTY CYCLES 
25.0% 37.5% 50.0% 62.5% 75.0% 87.5% 
OFF OFF OFF OFF OFF OFF 
OFF OFF OFF OFF OFF ON 
OFF OFF OFF OFF ON ON 
OFF OFF OFF ON ON ON 
OFF OFF ON ON ON ON 
OFF ON ON ON ON ON 
ON ON ON ON ON ON 
ON ON ON ON ON ON 
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Figure 17. Output expansion using serial port. 

L_REAR BIT B.4 ; REAR LEFT-TURN 
; INDICATOR 

R_REAR BIT B.5 ; REAR RIGHT-TURN 
; INDICATOR 

The original program to compute the functions need not 
change. After computing the output variables, the control 
map is transmitted to the buffered shift register through 
the serial port: 

MOY SBUF,B ; LOAD BUFFER AND TRANSMIT 

The Boolean Processor solution holds a number of advan­
tages over older methods. Fewer switches are required. 
Each is simpler, requiring fewer poles and lower current 
contacts. The flasher relay is eliminated entirely. Only six 
filaments are driven, rather than 10. The wiring harness is 
therefore simpler and less expensive-one conductor for 
each of the six lamps and each of the five sensor switches. 
The fewer conductors use far fewer connectors. The whole 
system is more reliable. 

And since the system is much simpler it would be feasible 
to implement redundancy and/ or fault detection on the 

. four main turn indicators. Each could still be a standard 
double filament bulb, but with the filaments driven in 
parallel to tolerate single-element failures. 

Even with redundancy, the lights will eventually fail. To 
handle this inescapable fact current or voltage sensing 
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circuits on each main drive wire can verify that each bulb 
a nd its high-current driver is functioning properly. Figure 
111 shows one such circuit. 

P1.7 

P2.0 

Po.1 

P2.2 

+sv 

TO 1-----... __ 

WIRING 
HARNESS 

I 

+12V 

Figure 18. 

Assume all of the lights are turned on except one; i.e., all 
but one of the collectors are grounded. For the bulb which 
is turned off, ifthere is continuity from + 12 V through the 
bulb base and filament, the control wire, all connectors, 
and the P.c. board traces, and if the transistor is indeed 
not shorted to ground; then the collector will be pulled to 
+ 12 V. This turns on the base of Q8 through the corres­
ponding resistor, and grounds the input pin, verifying that 
the bulb circuit is operational. The continuity of each 
circllit can be checked by software in this way. 

Now t urn all the bulbs on, grounding all the collectors. Q7 
should be turned off, and the Test pin should be high. 
H owcver, a control wire shorted to + 12 V or an open­
circuited drive transistor would leave one ofthe collectors 
at the higher voltage even now. This too would turn on Q7, 
ind icating a different type of failure. Software could per­
form these checks once per second by executing the rou­
tine every time the software counter SUB_DIVis reloaded 
by the interrupt routine. 

D.lNZ SUB_DIV,TOSERV 
MOV SUB_DIV,#244 
ORL PI,#IIIOOOOOB 

ORL P2,#OOOOOIIIB 
CLR LFRNT 

.IS TO,FAULT 

SETB LFRNT 

; RELOAD COUNTER 
; SET CONTROL 

OUTPUTS HIGH 

; FLOAT DRIVE 
COLLECTOR 

; TO SHOULD BE 
PULLED LOW 

; PULL COLLECTOR 
BACK DOWN 
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CLR LDASH 
JB TO,FAULT 
SETB LDASH 
CLR LREAR 
.IB TO,FAULT 
SETB LREAR 
CLR R_FRNT 
.IB TO,FAULT 
SETB R_FRNT 
CLR R_DASH 
.IB TO,FAULT 
SETB R_DASH 
CLR R_REAR 
'/B TO,FAULT 
SETB R_REAR 

; WITH ALL COLLECTORS GROUNDED, TO 
SHOULD BE HIGH 

; IF SO, CONTINUE WITH INTERRUPT ROUTINE. 
'/B TO,TOSERV 

FAULT: 

TOSERV: 

; ELECTRICAL FAILURE 
;PROCESSING ROUTINE 
; (LEFT TO READER'S 
; IMAGINATION) 
; CONTINUE WITH 
;(NTERRUPT PROCESSING 

The complete assembled program listing is printed in 
Appendix A. The resulting code consists of 67 program 
statements, not counting declarations and comments, 
which assemble into 150 bytes of object code. Each pass 
through the service routine requires (coincidently) 67 usec, 
plus 32 usec once per second for the electrical test. If 
executed every 4 msec as suggested this software would 
typically reduce the throughput of the background pro­
gram by less than 2%. 

Once a microcomputer has been designed into a system, 
new features suddenly become virtually free. Software 
could make the emergency blinkers flash alternately or at 
a rate faster than the turn signals. Turn signals could 
override the emergency blinkers. Adding more bulbs 
would allow multiple taillight sequencing and 
syncopation - true flash factor, so to speak. 

Design Example #5 - Complex Control 
Functions 
Finally, we'll mix byte and bit operations to extend the use 
of 8051 into extremely complex applications. 

Programmers can arbitrarily assign 110 pins to input and 
output functions only if the total does not exceed 32, 
which is insufficient for applications with a very large 
number of input variables. One way to expand the number 
of inputs is with a technique similar to multiplexed­
keyboard scanning. 
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Figure 19 shows a block diagram for a moderately com­
plex programmable industrial controller with the follow­
ing characteristics: 

• 64 input variable sensors; 
• 12 output signals; 
• Combinational and sequential logic computations; 
• Remote operation with communications to a host 

processor via a high-speed full-duplex serial link; 
• Two prioritized external interrupts; 
• Internal real-time and time-of-day clocks. 

While many microprocessors could be programmed to 
provide these capabilities with assorted peripheral sup­
port chips, an 8051 microcomputer needs no other inte­
grated circuits! 

The 64 input sensors are logically arranged as an 8x8 
matrix. The pins of Port I sequentially enable each 
column of the sensor matrix; as each is enabled Port 0 
reads in the state of each sensor in that column. An 
eight-byte block in bit-addressable RAM remembers the 
data as it is read in so that after each complete scan cycle 
there is an internal map of the current state of all sensors. 
Logic functions can then directly address the elements of 
the bit map. 

The computer's serial port is configured as a nine-bit 
UART, transferring data at 17,000 bytes-per-second. The 
ninth bit may distinguish between address and data bytes. 

12M.Z € 
SERIAL { 
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RETURN 
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Figure 19. Block diagram of 64-input machine 
controller. 
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The 8051 serial port can be configured to detect bytes with 
the address bit set, automatically ignoring all others. Pins 
INTO and INTI are interrupts configured respectively as 
high-priority, falling-edge triggered and low-priority, low­
level triggered. The remaining 12 I/O pins output TTL­
level control signals to 12 actuators. 

There are several ways to implement the sensor matrix 
circuitry, all logically similar. Figure 20.a shows one possi­
bility. Each of the 64 sensors consists of a pair of simple 
switch contacts in series with a diode to permit mUltiple 
contact closures throughout the matrix. 

The scan lines from Port I provide eight un-encoded 
active-high scan signals for enabling columns of the 
matrix. The return lines on rows where a contact is closed 
are pulled high and read as logic ones. Open return lines 
are pulled to ground by one of the 40 kohm resistors and 
are read as zeroes. (The resistor values must be chosen to 
ensure all return lines are pulled above the 2.0 V logic 
threshold, even in the worst-case, where all contacts in an 
enabled column are closed.) Since PO is provided open­
collector outputs and high-impedance MOS inputs its 
input loading may be considered negligible. 

The circuits in Figures 20.b-20.d are variations on this 
theme. When input signals must be electrically isolated 
from the computer circuitry as in noisy industrial environ­
ments, phototransistors can replace the switch/ diode 
pairs and provide optical isolation as in Figure 20.b. Addi­
tional opto-isolators could also be used on the control 
output and special signal lines. 

The other circuits assume that input signals are already at 
TTL levels. Figure 20.c uses octal three-state buffers 
enabled by active-low scan signals to gate eight signals 
onto Port O. Port 0 is available for memory expansion or 
peripheral chip interfacing between sensor matrix scans. 
Eight-to-one multiplexers in Figure 20.d select one of 
eight inputs for each return line as determined by encoded 
address bits output on three pins of Port I. (Five more 
output pins are thus freed for more control functions.) 
Each output can drive at least one standard TTL or up to 
IO low-power TTL loads. without additional buffeting. 

Going back to the original matrix circuit, Figure 21 shows 
the method used to scan the sensor matrix. Two complete 
bit maps are maintained in the bit-addressable region of 
the RAM: one for the current state and one for the pre­
vious state read for each sensor. If the need arises, the 
program could then sense input transitions and/ or 
debounce contact closures by comparing each bit with its 
earlier value. 
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b.) Using optically-coupled isolators. 
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d.) Using TTL data selectors. 

Figure 20. Sensor Matrix Implementation Methods. 

ThL' code in Example 3 implements the scanning algo­
ri t h 111 for the circuits in Figure 20.a. Each column is 
enaolcd by setting a single bit in a field of zeroes. The bit 
maps are positive logic; ones represent contacts that are 
closed or isolators turned on. 
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Example 3. 

INPUT.-SCAN: ; SUBROUTINE TO READ 
CURRENT STATE 

; OF 64 SENSORS AND 
SAVE IN RAM 20H-27H. 

MOV RO,#20H ; INITIALIZE 
; POINTERS 

MOV RI,#28H ; FOR BIT MAP 
; BASES. 
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SCAN: 

MOV A,#80H ; SET FIRST BIT IN 
ACe. 

MOV PI,A ; OUTPUT TO SCAN 
LINES. 

RR A ; SHIFT TO ENABLE 
NEXT COLUMN 
NEXT. 

MOV R2,A ; REMEMBER CUR-
RENT SCAN 
POSITION. 

MOV A,PO ; READ RETURN 
LINES. 

XCH A,@RO ; SWITCH WITH 
PREVIOUS MAP 
BITS. 

MOV @RI,A ; SAVE PREVIOUS 

INC 
INC 
MOV 

JNB 

RET 

STATE AS WELL. 
RO ; BUMP POINTERS. 
RI 
A,R2 ; RELOAD SCAN LINE 

MASK 
ACe.7,sCAN ; LOOP UNTIL ALL 

EIGHT COLUMNS 
READ. 

INITIALIZE MAP 
BUFFER POINTERS 
AND SCAN MASK 

OUTPUT SCAN 
MASK TO SCAN 

LINES; 
STORE SHIFTED 

MASK 

READ RETURN 
LINES AND UPDATE 

BIT MAPS 

Figure 21. Flowchart for reading in sensor matrix. 
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What happens after the sensors have been scanned 
depends on the individual application. Rather than 
inventing some artificial design problem, software corres­
ponding to commonplace logic elements will be discussed. 

Combinatorial Output Variables. An output varia ble 
which is a simple (or not so simple) combinational func­
tion of several input variables is computed in the spirit of 
Design Example 3. All 64 inputs are represented in the bit 
maps; in fact, the sensor numbers in Figure 20 correspond 
to the absolute bit addresses in RAM! The code in Exam­
ple 4 activates an actuator connected to P2.2 when sensors 
12, 23, and 34 are closed and sensors 45 and 56 are open. 

Example 4. 

Simple Combinatorial Output Variables. 

; SET P2.2 = (12) (23) (34) (/45) (/56) 
MOV C,12 
ANL C,23 
ANL C,34 
ANL C,j45 
ANL C,j56 
MOV P2.2,C 

Intermediate Variables. The examination of a typical 
relay-logic ladder diagram will show that many of the 
rungs control not outputs but rather relays whose con­
tacts figure into the computation of other functions. In 
effect, these relays indicate the state of intermediate varia­
bles of a computation. 

The MCS-5I'M solution can use any directly addressable 
bit for the storage of such intermediate variables. Even 
when all 128 bits of the RAM array are dedicated (to input 
bit maps in this example), the accumulator, PSW, and B 
register provide 18 additional flags for intermediate 
variables. 

For example, suppose switches 0 through 3 control a 
safety interlock system. Closing any of them should deac­
tivate certain outputs. Figure 22 is a ladder diagram for 
this situation. The interlock function could be recomputed 
for every output affected, or it may be computed once and 
saved (as implied by the diagram). As the program pro­
ceeds this bit can qualify each output. 

Example 5. Incorporating Override signal into actuator 
outputs. 

CALL INPUT .-SCAN 
MOV C,O 
ORL C,l 
ORL C,2 
ORL C,3 
MOV FO,C 
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COMPUTE FUNCTION a 

ANL C,/FO 
MOY PI.O,C 

COMPUTE FUNCTION I 

ANL C,/FO 
MOY PI.I,C 

COMPUTE FUNCTION 2 

ANL C,/FO 
MOY PI.2,C 

"0" 

I 
"1" 

~-+---1II--"'----I 
"2" 

"3" 

Figure 22. Ladder diagram for output override 
circuitry. 

i.alching Relays. A latching relay can be forced into either 
the ON or OFF state by two corresponding input signals, 
where it will remain until forced onto the opposite state­
analogous to a TTL Set/ Reset flip-flop. The relay is used 
as an intermediate variable for other calculations. In the 
previous example, the emergency condition could be 
remembered and remain active until an "emergency 
cleared" button is pressed. 

Any flag or addressabl"e bit may represent a latching relay 
with a few lines of code (see Example 6). 
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Example 6. Simulating a latching relay. 

;L-SET SET FLAG a IF C=I 
LSET: ORL C,FO 

MOY FO,C 

;LRSET RESET FLAG 0 IF C=I 
LRSET: CPS C 

ANL C,FO 
MOY FO,C 

Time Delay Relays. A time delay relay does not respond 
to an input signal until it has been present (or absent) for 
some predefined time. For example, a ballast or load 
resistor may be switched in series with a D.C, motor when 
it is first turned on, and shunted from the circuit after one 
second. This sort of time delay may be simulated by an 
interrupt routine driven by one of the two 8051 timer/ 
counters. The procedure followed by the routine depends 
heavily on the details of the exact function needed; time­
outs or time delays with resettable or non-resettable inputs 
are possible. If the interrupt routine is executed every 10 
milliseconds the code in Example 7 will clear an inter­
mediate variable set by the background program after it 
has been active for two seconds. 

Example 7. Code to clear USRFLG after a fixed time delay. 

JNB USR_FLG,NXTTST 
DJNZ DLA Y _COUNT,NXTTST 
CLR USR_FLG 
MOY DLAY_COUNT,#200 

NXTTST: , .. 

Serial Interface to Remote Processor. When it detects 
emergency conditions represented by certain input com­
binations (such as the earlier Emergency Override), the 
controller could shut down the machine immediately 
and/ or alert the host processor via the serial port. Code 
bytes indicating the nature of the problem could be trans­
mitted to a central computer. In fact, at 17,000 bytes-per­
second, the entire contents of both bit maps could be sent 
to the host processor for further analysis in less than a 
millisecond! If the host decides thatconditions warrant, it 
could alert other remote processors in the system that a 
problem exists and specify which shut-down sequence 
each should initiate. For more information on using the 
serial port, consult the MCS-5I™ User's Manual. 

Response Timing. 
One difference between relay and programmed industrial 
controllers (when each is considered as a "black box") is 
their respective reaction times to input changes. As 
reflected by a ladder diagram, relay systems contain a 
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large number of "rungs" operating in parallel. A change in 
input conditions will begin propagating through the sys­
tem immediately, possibly affecting the output state 
within milliseconds. 

Software, on the other hand, operates sequentially. A 
change in input states will not be detected until the next 
time an input scan is performed, and will not affect the 
outputs until that section of the program is reached. For 
that reason the raw speed of computing the logical func­
tions is of extreme importance. 

Here the Boolean processor pays off. Every instruction 
mentioned in this Note completes in one or two micro­
seconds-the minimum instruction execution time for 
many other microcontrollers! A ladder diagram contain­
ing a hundred rungs, with an average of four contacts per 
rung can be replaced by approximately five hundred lines 
of software. A complete pass through the entire matrix 
scanning routine and all computations would require 
about a millisecond; less than the time it takes for most 
relays to change state. 

A programmed controller which simulates each Boolean 
function with a subroutine would be less efficient by at 
least an order of magnitude. Extra software is needed for 
the simulation routines, and each step takes longer to 
execute for three reasons: several byte-wide logical 
instructions are executed per user program step (rather 
than one Boolean operation); most of those instructions 
take longer to execute with microprocessors performing 
multiple off-chip accesses; and calling and returning from 
the various subroutines requires overhead for stack 
operations. 

In fact, the speed of the Boolean Processor solution is 
likely to be much faster than the system requires. The 
CPU might use the time left over to compute feedback 
parameters, collect and analyze execution statistics, per­
form system diagnostics, and so forth. 

Additional functions and uses. 

With the building-block basics mentioned above many 
more operations may be synthesized by short instruction 
sequences. 

Exclusive-OR. There are no common mechanical devices 
or relays analogous to the Exclusive-OR operation, so this 
instruction was omitted from the Boolean Processor. 
However, the Exclusive-OR or Exclusive-NOR operation 
may be performed in two instructions by conditionally 
complementing the carry or a Boolean variable based on 
the state of any other testable bit. 
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; EXCLUSIVE-OR FUNCTION IMPOSED ON CARR Y 
; USING FO IS INPUT VARIABLE. 
XOR_FO: JNB FO,XORCNT ; ("J8" FOR X-NOR) 

CPL C 
XORCNT: ... 

XCH. The contents of the carry and some other bit may be 
exchanged (switched) by using the accumulator as tempo­
rary storage. Bits can be moved into and out of the accu­
mulator simultaneously using the Rotate-through-carry 
instructions, though this would alter the accumulator 
data. 

; EXCHANGE CARRY WITH USRFLG 
XCHBIT: RLC A 

MOV C,USR_FLG 
RRC A 
MOV USR_FLG,C 
RLC A 

Extended Bit Addressing. The 8051 can directly address 
144 general-purpose bits for all instructions in Figure 3.h. 
Similar operations may be extended to any bit anywhere 
on the chip with some loss of efficiency. 

The logical operations AND, OR, and Exclusive-OR are 
performed on byte variables using six different addressing 
modes, one of which lets the source be an immediate 
mask, and the destination any directly addressable byte. 
Any bit may thus be set, cleared, or complemented with a 
three-byte, two-cycle instruction if the mask has all bits 
but one set or cleared. 

Byte variables, registers, and indirectly addressed RA M 
may be moved to a bit addressable register (usually the 
accumulator) in one instruction. Once transferred, the bits 
may be tested with a conditional jump, allowing any bit to 
be polled in 3 microseconds-still much faster than most 
architectures-or used for logical calculations. (This 
technique can also simulate additional bit addressing 
modes with byte operations.) 

Parity ofbytes or bits. The parity of the current accumu­
lator contents is always available in the PSW, from 
whence it may be moved to the carry and further pro­
cessed. Error-correcting Hamming codes and simila r 
applications require computing parity on groups of iso­
lated bits. This can be done by conditionally complement­
ing the carry flag based on those bits or by gathering the 
bits into the accumulator (as shown in the DES example) 
and then testing the parallel parity flag. 

Multiple byte shift and CRC codes. 

Though the 8051 serial port can accommodate eight- or 
nine-bit data transmissions, some protocols involve much 
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longer bit streams. The algorithms presented in Design 
Example 2 can be extended quite readily to 16 or more bits 
by using multi-byte input and output buffers. 

Many mass data storage peripherals and serial communi­
cations protocols include Cyclic Redundancy (CRC) 
codes to verify data integrity. The function is generally 
computed serial1y by hardware using shift registers and 
Exclusive-OR gates, but it can be done with software. As 
each bit is received into the carry, appropriate bits in the 
multi-byte data buffer are conditional1y complemented 
based on the incoming data bit. When finished, the CRC 
register contents may be checked for zero by ORing the 
two bytes in the accumulator. 

4. SUMMARY 
A truly unique facet of the Intel MCS-5 I'M microcomputer 
fa mily design is the col1ection offeatures optimized for the 
ollc-bit operations so often desired in real-world, real-time 
conI wi applications. Included are 17 special instructions, 
a !ioolcan accumulator, implicit and direct addressing 
modcs. program and mass data storage, and many 1/0 
opt io1lS. These are the world's first single-chip micro­
L'Olllpulcrs able to efficiently manipulate, operate on, and 
t ra Ilsfcr either bytes or individual bits as data. 
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This Application Note has detailed the information 
needed by a microcomputer system designer to make ful1 
use of these capabilities. Five design examples were used 
to contrast the solutions allowed by the 8051 and those 
required by previous architectures. Depending on the 
individual application, the 8051 solution will be easier to 
design, more reliable to implement, debug, and verify, use 
less program memory, and run up to an order of magni­
tude faster than the same function implemented on pre­
vious digital computer architectures. 

Combining byte- and bit-handling capabilities in a single 
microcomputer has a strong synergistic effect: the power 
of the result exceeds the power of byte- and bit-processors 
laboring individually. Virtually all user applications will 
benefit in some ways from this duality. Data intensive 
applications will use bit addressing for test pin monitoring 
or program control flags; control applications will use 
byte manipulation for parallel 110 expansion or arith­
metic calculations. 

It is hoped that these design examples give the reader an 
appreciation of these unique features and suggest ways to 
exploit them in his or her own application. 
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ISIS-II MCS-51 MACRO ASSEMBLER Vl.0 
OBJECT MODULE PLACED IN :FO:AP70.HEX 
ASSEMBLER INVOKED BY: : fl:asm51 ap70. src date(328) 

LOC OBJ LINE SOURCE 

0090 
0091 
0092 
0093 
0094 

0095 
0096 
0097 
OOAO 
OOAI 
OOA2 

00A3 

0020 
0000 
0007 

OODI 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 +1 

$XREF TITLE(AP-70 APPENDIX) 
i******************************************************** 

THE FOLLOWING PROGRAM USES THE BOOLEAN INSTRUCTION SET 
OF THE INTEL 8051 MICROCOMPUTER TO PERFORM A NUMBER OF 
AUTOMOTIVE DASHBOARD CONTROL FUNCTIONS RELATING TO 
TURN SIGNAL CONTROL, EMERGENCY BLINKERS, BRAKE LIGHT 
CONTROL, AND PARKING LIGHT OPERATION. 
THE ALGORITHMS AND HARDWARE ARE DESCRIBED IN DESJGN 
EXAMPLE #4 OF INTEL APPLICATION NOTE AP-70, 

"USING THE INTEL MCS-51<TM) 
BOOLEAN PROCESSING CAPABILITIES" 

i********************************************************* 

INPUT PIN DECLARATIONS: 
(ALL INPUTS ARE POSITIVE-TRUE LOGIC. 

INPUTS ARE HIGH WHEN RESPECTIVE SWITCH CONTACT IS CLOSED. ) 

BRAKE BIT 
EMERG BIT 
PARK BIT 
L_TURN BIT 
R_TURN BIT 

P1. 0 
PI. 1 
Pl. 2 
P1. 3 
P1. 4 

BRAKE PEDAL DEPRESSED 
EMERGENCY BLINKER ACTIVATED 
PARKING LIGHTS ON 
TURN LEVER DOWN 
TURN LEVER UP 

OUTPUT PIN DECLARATIONS: 
(ALL OUTPUTS ARE POSITIVE TRUE LOGIC. 
BULB IS TURNED ON WHEN OUTPUT PIN IS HIGH. ) 

LJRNT BIT 
R_FRNT BIT 
L_DASH BIT 
R_DASH BIT 
L_REAR BIT 
R_REAR BIT 

S_FAIL BIT 

PI.5 
PI. 6 
PI. 7 
P2.0 
P2. 1 
P2.2 

P2. 3 

FRONT LEFT-TURN INDICATOR 
FRONT RIGHT-TURN INDICATOR 
DASHBOARD LEFT-TURN INDICATOR 
DASHBOARD RIGHT-TURN INDICATOR 
REAR LEFT-TURN INDICATOR 
REAR RIGHT-TURN INDICATOR 

ELECTRICAL SYSTEM FAULT INDICATOR 

INTERNAL VARIABLE DEFINITIONS: 

SUB_DIV DATA 
HI_FREG BIT 
LO_FREG BIT 

DIM BIT 

20H 
SUB_DIV.O 
SUB_DIV. 7 

PSW.l 

INTERRUPT RATE SUBDIVIDER 
HIGH-FREGUENCY OSCILLATOR BIT 
LOW-FREGUENCY OSCILLATOR BIT 

PARKING LIGHTS ON FLAG 

i======================================================= 
$EJECT 

"'O~ 
... "C 
0"C co CD 
iil ~ 
32: 
,->< 
ii' ~ -, 
5" ~ cp c -° 3 

° 2: 
i" 
-t c ... 
~ 
I 

S' 
Q. 
n 
111 -0 ... 
0 
0 
~ -... 2-
i" ) ... 

"I 
I .. 
C 



LOC OBJ LINE SOURCE 

49 ORG OOOOH RESET VECTOR 
0000 020040 50 LJMP INIT 

51 
OOOB 52 ORG OOOBH TIMER 0 SERVICE VECTOR 
OOOB 758CFO 53 MOV THO, #-16 HIGH TIMER BYTE ADJUSTED TO CONTROL INT. RATE 
OOOE CODO 54 PUSH PSW EXECUTE CODE TO SAVE ANY REGISTERS USED BELOW 
0010 0154 55 AJMP UPDATE (CONTINUE WITH REST OF ROUTINE) 

56 
0040 57 ORG 0040H 
0040 758AOO 58 INIT: MOV TLO,#O ZERO LOADED INTO LOW-ORDER BYTE AND 
0043 758CFO 59 MOV THO, #-16 -16 IN HIGH-ORDER BYTE GIVES 4 MSEC PERIOD 
0046 758961 60 MOV TMOD,#01100001B 8-BIT AUTO RELOAD COUNTER MODE FOR TIMER I, 

61 16-BIT TIMER MODE FOR TIMER 0 SELECTED 
0049 7520F4 62 MOV SUB_DIV,#244 SUBDIVIDE INTERRUPT RATE BY 244 FOR 1 HZ 
004C D2A9 63 SETB ETO USE TIMER 0 OVERFLOWS TO INTERRUPT PROGRAM 
004E D2AF 64 SETB EA CONFIGURE IE TO GLOBALLY ENABLE INTERRUPTS 
0050 D28C 65 SETB TRO KEEP INSTRUCTION CYCLE COUNT UNTIL OVERFLOW 
0052 80FE 66 SJMP $ START BACKGROUND PROGRAM EXECUTION 

67 
68 

0054 D52038 69 UPDATE: DJNZ SUB_DIV,TOSERV EXECUTE SYSTEM TEST ONLY ONCE PER SECOND 
0057 7520F4 70 MOV SUB_DIV,#244 GET VALUE FOR NEXT ONE SECOND DELAY AND 

71 GO THROUGH ELECTRICAL SYSTEM TEST CODE: » 005A 4390EO 72 ORL PI, #11100000B SET CONTROL OUTPUTS HIGH 
U) 0050 43A007 73 ORL P2,#00000111B "U ...... I 

0060 C295 74 CLR L_FRNT FLOAT DRIVE COLLECTOR ....... 
0062 20B428 75 JB TO, FAULT TO SHOULD BE PULLED LOW 0 
0065 D295 76 SETB L_FRNT PULL COLLECTOR BACK DOWN 
0067 C297 77 CLR L_DASH REPEAT SEGUENCE FOR L_OASH, 
0069 20B421 78 JB TO, FAULT 
006C D297 79 SETB L_DASH 
006E C2Al 80 CLR L_REAR L REAR, 
0070 20B41A 81 JB TO, FAULT 
0073 D2Al 82 SETB L_REAR 
0075 C296 83 CLR R_FRNT R_FRNT, 
0077 20B413 84 JB TO, FAULT 
007A D296 85 SETB R_FRNT 
007C C2AO 86 CLR R_DASH R_DASH, 
007E 20B40C 87 JB TO, FAULT 
0081 D2AO 88 SETB R_DASH 
0083 C2A2 89 CLR R_REAR AND R __ REAR. 
0085 20B405 90 JB TO, FAULT 
0088 D2A2 91 SETB R_REAR 

92 
93 WITH ALL COLLECTORS GROUNDED, TO SHOULD BE HIGH 
94 IF SO, CONTINUE WITH INTERRUPT ROUTINE. 
95 

008A 20B402 96 JB TO, TOSERV 
008D B2A3 97 FAULT: CPL S_FAIL ELECTRICAL FAILURE PROCESSING ROUTINE 

98 (TOGGLE INDICATOR ONCE PER SECOND) 
99 +1 $EJECT 



LOC OBJ LINE SOURCE 

100 CONTINUE WITH INTERRUPT PROCESSING: 
101 
102 1) COMPUTE LOW BULB INTENSITY WHEN PARKING LIGHTS ARE ON. 
103 

008F A201 104 TOSERV: MOV C, SUBJ>IV. 1 START WITH 50 PERCENT, 
0091 8200 105 ANL C,SUB_DIV.O MASK DOWN TO 25 PERCENT, 
0093 7202 106 ORL C,SUB_DIV.2 BUILD BACK TO 62. 5 PERCENT. 
0095 8292 107 ANL C,PARK GATE WITH PARKING LIGHT SWITCH, 
0097 92Dl 108 MOV DIM,C AND SAVE IN TEMP. VARIABLE. 

109 
110 2) COMPUTE AND OUTPUT LEFT-HAND DASHBOARD INDICATOR. 
111 

0099 A293 112 MOV C,L_TURN SET CARRY IF TURN 
009B 7291 113 ORL C.EMERG OR EMERGENCY SELECTED. 
009D 8207 114 ANL C,LO_FREG IF SO, GATE IN 1 HZ SIGNAL 
009F 9297 115 MOV L_DASH.C AND OUTPUT TO DASHBOARD. 

116 
117 3) COMPUTE AND OUTPUT LEFT-HAND FRONT TURN SIGNAL. 
118 

OOAI 92D5 119 MOV FO,C SAVE FUNCTION SO FAR. 
00A3 72Dl 120 ORL C.DIM ADD IN PARKING LIGHT FUNCTION 
00A5 9295 121 MOV LJRNT,C AND OUTPUT TO TURN SIGNAL. 

122 
123 4) COMPUTE AND OUTPUT LEFT-HAND REAR TURN SIGNAL. ):I 

(..) 124 "t 
N 00A7 A290 125 MOV C.BRAKE GATE BRAKE PEDAL SWITCH I 

00A9 B093 126 ANL C,/L_TURN WITH TURN LEVER. 
.... 
C 

OOAB 72D5 127 ORL C,FO INCLUDE TEMP. VARIABLE FROM DASH 
OOAD 72Dl 128 ORL C,DIM AND PARKING LIGHT FUNCTION 
OOAF 92Al 129 MOV L_REAR, C AND OUTPUT TO TURN SIGNAL. 

130 
131 5) REPEAT ALL OF ABOVE FOR RIGHT-HAND COUNTERPARTS. 
132 

OOBI A294 133 MOV C. R_TURN SET CARRY IF TURN 
00B3 7291 134 ORL C.EMERG OR EMERGENCY SELECTED. 
00B5 8207 135 ANL C,LO_FREG IF SO, GATE IN 1 HZ SIGNAL 
00B7 92AO 136 MOV R_DASH,C AND OUTPUT TO DASHBOARD. 
00B9 92D5 137 MOV FO,C SAVE FUNCTION SO FAR. 
OOBB 72Dl 138 ORL C.DIM ADD IN PARKING LIGHT FUNCTION 
OOBD 9296 139 MOV R_FRNT,C AND OUTPUT TO TURN SIGNAL. 
OOBF A290 140 MOV C,BRAKE GATE BRAKE PEDAL SWITCH 
OOCI B094 141 ANL C,/R_TURN WITH TURN LEVER. 
00C3 72D5 142 ORL C.FO INCLUDE TEMP. VARIABLE FROM DASH 
00C5 72Dl 143 ORL C,DIM AND PARKING LIGHT FUNCTION 
00C7 92A2 144 MOV R_REAR. C AND OUTPUT TO TURN SIGNAL. 

145 
146 RESTORE STATUS REGISTER AND RETURN. 
147 

00C9 DODO 148 POP PSW RESTORE PSW 
OOCB 32 149 RETI AND RETURN FROM INTERRUPT ROUTINE 

150 
! 51 END 



XREF SYMBOL TABLE LISTING 
------ -------

NAME TYPE VALUE AND REFERENCES 

BRAKE N BSEG 0090H 20# 125 140 
DIM. N BSEG 00D1H 45# 108 120 128 138 143 
EA. N BSEG OOAFH 64 
EMERG N BSEG 0091H 21# 113 134 
ETO . N BSEG 00A9H 63 
FO. N BSEG 00D5H 119 127 137 142 
FAULT L CSEG 008DH 75 78 81 84 87 90 97# 
HI_FREQ N BSEG OOOOH 42# 
INIT. L CSEG 0040H 50 58# 
L_DASH. N BSEG 0097H 32# 77 79 115 
L_FRNT. N BSEG 0095H 30# 74 76 121 
L_REAR. N BSEG 00A1H 34# 80 82 129 
L_TURN. N BSEG 0093H 23# 112 126 » 

c.:> LO_FREQ N BSEG 0007H 43# 114 135 "'a 
c.:> P1. N DSEG 0090H 20 21 22 23 24 30 31 32 72 I 

P2. N DSEG OOAOH 33 34 35 37 73 ..... 
PARK. N BSEG 0092H 22# 107 

0 

PSW . N DSEG OODOH 45 54 148 
R_DASH. N BSEG OOAOH 33# 86 88 136 
RJRNT. N BSEG 0096H 31# 83 85 139 
R_REAR. N BSEG 00A2H 35# 89 91 144 
R_TURN. N BSEG 0094H 24# 133 141 
S_FAIL. N BSEG 00A3H 37# 97 
SUB_DIV N DSEG 0020H 41# 42 43 62 69 70 104 105 106 
TO. N BSEG 00B4H 75 78 81 84 87 90 96 
TOSERV. L CSEG 008FH 69 96 104# 
THO. N DSEG 008CH 53 59 
TLO . N DSEG 008AH 58 
TMOD. N DSEG 0089H 60 
TRO . N BSEG 008CH 65 
UPDATE. L CSEG 0054H 55 69# 

ASSEMBLY COMPLETE, NO ERRORS FOUND 
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