
intJ

© Intel Corporation, 1980

APPLICATION
NOTE

AP-70

May 1980

01489A-01

Using the
INTEL® MCS-51TM

BOOLEAN PROCESSING
CAPABILITIES

Contents

1. INTRODUCTION

2. BOOLEAN PROCESSOR 1

Processing Elements 2
Direct Bit Addressing 3
Instruction Set 8
Simple Instruction Combinations 9

3. BOOLEAN PROCESSOR APPLICATIONS 10
Design Example #1 11
Design Example #2 14
Design Example #3 15
Design Example #4 18
Design Example #5 23
Additional Functions and Uses 28

4. SUMMARy 29

APPENDIX A 30

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which
may appear in this document nor does it make a commitment to update the information contained herein.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use, duplication or
disclosure is subject to restrictions stated in Intel's software license, or as defined in ASPR 7-104.9 (a) (9). Intel
Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel
product. No other circuit patent licenses are implied.

No part of this document may be copies or reproduced in any form or by any means without the prior written
consent of Intel Corporation.

The following are trademarks of Intel Corporation and may only be used to identify Intel products:

i Inte"ec Multimodule
ICE iSBC PROMPT
ICS Library Manager Promware
im MCS RMX
Insite Megachassis UPI
Intel Micromap J.lScope
Intelevision

and the combinations of ICE, iCS, iSBC, MCS or RMX and a numerical suffix.

Additional copies of this or other Intel literature may be obtained from:

Literature Department
Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051

01489A-02

AP-70

1. INTRODUCTION

The Intel microcontroller family now has three new
members - the Intel® R031, R051, and R751 singlc-chip
microcomputers. These devices, shown in Figure I, will
allow whole new classes of products to benefit from recent
advances in Integrated Electronics. Thanks to Intel's new
H MOS® technology, they provide larger program and
data memory spaces, more flexible I/O and peripheral
capabilities, greater speed, and lower system cost than any
previous-generation single-chip microcomputer.

- vee

- po.o
- PO.1

- PO.2

- PO.3

- PO.4

- PO.5

- PO.6

- PO.7

- VDD/Eli

- PRDG/ALE

- PSEN

- P2.7

- P2.6

- P2.4

- P2.3

- P2.2

- P2.1

- P2.0

Figure 1. 8051 Family Pinout Diagram.

Table I summarizes the quantitative differences between
the members of the MCS-48™ and 8051 families. The 875 I
contains 4K bytes of EPROM program memory fabri­
cated on-chip, while the 805 I replaces the EPROM with
4K bytes of lower-cost mask-programmed ROM. The
803 I has no program memory on-chip; instead, it accesses
up to 64K bytes of program memory from external
memory. Otherwise, the three new family members are
identical. Throughout this Note, the term "805 I" will
represent all members of the 8051 Family, unless specifi­
cally stated otherwise.

The CPU in each microcomputer is one of the industry's
fastest and most efficient for numerical calculations on
byte operands. But controllers often deal with bits, not
bytes: in the real world, switch contacts can only be open
or closed, indicators should be either lit or dark, motors
are either turned on or off, and so forth. For such control
situations the most significant aspect of the M CS-5I'M
architecture is its complete hardware support for one-bit,
or Boolean variables (named in honor of Mathematician
George Boole) as a separate data type.

The 805 I incorporates a number of special features which
support the direct manipulation and testing of individual
bits and allow the use of single-bit variables in performing
logical operations. Taken together, these features are
referred to as the M CS-51 ™ Boolean Processor. While the
bit-processing capabilities alone would be adequate to
solve many control applications, their true power comes
when they are used in conjunction with the microcompu­
ter's byte-processing and numerical capabilities.

Many concepts embodied by the Boolean Processor will
certainly be new even to experienced microcomputer sys­
tem designers. The purpose of this Application Note is to
explain these concepts and show how they are used. It is
assumed the reader has read Application Note AP-69, An
Introduction to the Intel® MCS-Sl'M Single-Chip Micro­
computer Family, publication number 121518, or has
been exposed to Intel's single-chip microcomputer pro­
duct lines.

For detailed information on these parts refer to the Intel
MCS-Sl'M Family User's Manual, publication number
12 I 5 17. The instruction set, assembly language, and use of
the 805 I assembler (ASM5!) are further described in the
MCS-Sl'M Macro Assembler User's Guide, publication
number 9800937.

2. BOOLEAN PROCESSOR OPERATION
The Boolean Processing capabilities of the 805 I are based
on concepts which have been around for some time. Dig­
ital computer systems of widely varying designs all have
four functional elements in common (Figure 2):

Table 1. Features of Intel's Single-chip Microcomputers.

EPROM ROM External Program Data Instr. Input/ Interrupt Reg.
Program Program Program Memory Memory Cycle Output Sources Banks
Memory Memory Memory (Int/Max) (Bytes) Time Pins

- 8021 - IKjlK 64 10,..Sec 21 0 I
- 8022 - 2Kj2K 64 10,..Sec 28 2 I

8748 8048 8035 IKj4K 64 2.5,..Sec 27 2 2
- 8049 8039 2Kj4K 128 1.36,..Sec 27 2 2

8751 8051 8031 4Kj64K 128 1.0 ,..Sec 32 5 4

01489A·03

1

At"-(U

• a central processor (CPU) with the control, timing,
and logic circuits needed to execute stored
instructions;

• a memory to store the sequence of instructions
making up a program or algorithm;

• data memory to store variables used by the program;
and

• some means of communicating with the outside
world.

PROGRAM
MEMORY

DATA
MEMORY

INPUT!
OUTPUT
PORTS

REAL
WORLD

Figure 2. Block Diagram for Abstract Digital
Computer.

The CPU usually includes one or more accumulators or
special registers for computing or storing values during
program execution. The instruction set of such a proces­
sor generally includes, at a minimum, operation classes to
perform arithmetic or logical functions on program vari­
ables, move variables from one place to another, cause
program execution to jump or conditionally branch based
on register or variable states, and instructions to call and
return from subroutines. The program and data memory
functions sometimes share a single memory space, but this
is not always the case. When the address spaces are separ­
ated, program and data memory need not even have the
same basic word width.

A digital computer's flexibility comes in part from com­
bining simple fast operations to produce more complex
(albeit slower) ones, which in turn link together eventually
solving the problem at hand. A four-bit CPU executing
mUltiple precision subroutines can, for example, perform
64-bit addition and subtraction. The subroutines could in
turn be building blocks for floating-point multiplication
and division routines. Eventually, the four-bit CPU can
simulate a far more complex "virtual" machine.

In fact, any digital computer with the above four func­
tional elements can (given time) complete any algorithm
(though the proverbial room full of chimpanzees at word

2

processors might first re-create Shakespeare's classics
and this Application Note)! This fact offers little consola­
tion to product designers who want programs to run as
quickly as possible. By definition, a real-time control algo­
rithm must proceed quickly enough to meet the preor­
dained speed constraints of other equipment.

One of the factors determining how long it will take a
microcomputer to complete a given chore is the number of
instructions it must execute. What makes a given compu­
ter architecture particularly well-or poorly-suited for a
class of problems is how well its instruction set matches
the tasks to be performed. The better the "primative"
operations correspond to the steps taken by the control
algorithm, the lower the number of instructions needed,
and the quicker the program will run. All else being equal,
a CPU supporting 64-bit arithmetic directly could clearly
perform floating-point math faster than a machine
bogged-down by multiple-precision subroutines. In the
same way, direct support for bit manipulation naturally
leads to more efficient programs handling the binary input
and output conditions inherent in digital control problems.

Processing Elements
The introduction stated that the 8051 's bit-handling capa­
bilities alone would be sufficient to solve some control
applications. Let's see how the four basic elements of a
digital computer - a CPU with associated registers, pro­
gram memory, addressable data RAM, and 110 capabil­
ity - relate to Boolean variables.

cpu. The 8051 CPU incorporates special logic devoted to
executing several bit-wide operations. All told, there are
17 such instructions, all listed in Table 2. Not shown are 94
other (mostly byte-oriented) 8051 instructions.

Program Memory. Bit-processing instructions are fetched
from the same program memory as other arithmetic and .
logical operations. In addition to the instructions of Table
2, several sophisticated program control features like mul­
tiple addressing modes, subroutine nesting, and a two­
level interrupt structure are useful in structuring Boolean
Processor-based programs.

Boolean instructions are one, two, or three bytes long,
depending on what function they perform. Those involv­
ing only the carry flag have either a single-byte opcode or
an opcode followed by a conditional-branch destination
byte (Figure 3.a). The more general instructions add a
"direct address" byte after the opcode to specify the bit
affected, yielding two or three byte encodings (Figure 3.b).
Though this format allows potentially 256 directly addres­
sable bit locations, not all of them are implemented in the
8051 family.

01489A-04

AP-70

Table 2. MCS-51'M Boolean Processing Instruction
Subset.

Mnemonic Description Byte Cyc

SETB C Set Carry flag I
SETB bit Set direct Bit 2
CLR C Clear Carry flag I
CLR bit Clear direct bit 2
CPL C Complement Carry flag I
CPL bit Complement direct bit 2

MOY Cbit Move direct bit to Carry flag 2 I
MOY bit,C Move Carry flag to direct bit 2 2

ANL Cbit AND direct bit to Carry flag 2 2
ANL C/bit AND complement of direct bit to 2 2

Carry flag
ORL Cbit OR direct bit to Carry flag 2 2
ORL C/bit OR complement of direct bit to 2 2

Carry flag

JC reI Jump if Carry is flag is set 2 2
JNC reI Jump if No Carry flag 2 2
JB bit,rel Jump if direct Bit set 3 2
JNB bit,rel Jump if direct Bit Not set 3 2
JBC bit,rel Jump if direct Bit is set & Clear bit 3 2

Address mode abbreviations:

C Carry flag.

bit 128 software flags, any I/O pin, control or status
bit

reI ~ All conditional jumps include an 8-bit offset byte.
Range is + 127/ -128 bytes relative to first byte of
the following instruction.

All mnemonics copyrighted© Intel Corporation 1980

Data Memory. The instructions in Figure 3.b can operate
directly upon 144 general purpose bits forming the Boo­
lean processor "RAM."These bits can be used as sofware
flags or to store program variables. Two operand instruc­
tions use the CPU's carry flag ("C") as a special one-bit
register; in a sense, the carry is a "Boolean accumulator"
for logical operations and data transfers.

Input/Output. All 32 I/O pins can be addressed as indi­
vidual inputs, outputs, or both, in any combihation. Any
pin can be a control strobe output, status (Test) input, or
serial I/O link implemented via software. An additional
33 individually addressable bits reconfigure, control, and
monitor the status of the CPU and all on-chip peripheral
functions (timer/ counters, serial port modes, interrupt
logic, and so forth).

3

I opcode I
SETBC
CLR C
CPL C

I opcode II displacement I
JC rei
JNC rei

a.) Carry Control and Test Instructions.

I opcode II bit address I
SETB bit
CLR bit
CPL bit
ANLC, bit
ANL C,I bit
ORLC, bit
ORL C,I bit
MOVC, bit
MOV bit,C

I opcode II bit address II displacement I
JB bit, rei
JNB bit, rei
JBC bit. rei

b.) Bit Manipulation and Test Instructions.

Figure 3. Bit Addressing Instruction Formats.

Direct Bit Addressing
The most significant bit of the direct address byte selects
one of two groups of bits. Values between 0 and 127 (OOH
and 7FH) define bits in a block of 32 bytes of on-chip
RAM, between RAM addresses 20H and 2FH (Figure
4.a). They are numbered consecutively from the lowest­
order byte's lowest-order bit through the highest-order
byte's highest-order bit.

Bit addresses between 128 and 255(80H and OFFH) cor­
respond to bits in a number of special registers, mostly
used for I/O or peripheral control. These positions are
numbered with a different scheme than RAM: the five
high-order address bits match those of the register's own
address, while the three low-order bits identify the bit
position within that register (Figure 4.b).

01489A-05

AP-70

RAM
Byte (MSB)

7FH£
'C:-

2FH

2EH

20H

2CH

2BH

2AH

29H

28H

27H

26H

25H

24H

23H

22H

21H

20H

1FH

18H
17H

10H
OFH

08H
07H

00

7F

77

6F

67

SF

57

4F

47

3F

37

2F

27

1F

17

OF

07

7E

76

6E

66

5E

56

4E

46

3E

36

2E

26

1E

16

OE

06

70 7C 7B

75 74 73

60 6C 6B

65 64 63

50 5C 5B

55 54 53

40 4C 4B

45 44 43

3D 3C 3B

35 34 33

20 2C 2B

25 24 23

10 1C 1B

15 14 13

00 OC OB

05 04 03

Bank 3

Bank 2

Bank 1

Bank 0

a.) RAM Bit Addresses.

7A

72

6A

62

SA

52

4A

42

3A

32

2A

22

1A

12

OA

02

(lSB)

I'C.

79 78

71 70

69 68

61 60

59 58

51 50

49 48

41 40

39 38

31 30

29 28

21 20

19 18

11 10

09 08

01 00

Direct
B)lte
Address (MSB)

OFFH

OFOH F7

OEOH E7

OOOH 07

OB8H

OBOH B7

OA8H AF

OAOH A7

98H 9F

90H 97

88H 8F

80H 87

Bit Addresses Hardware
Register

(lSB) Symbol

FO B

EO ACC

DO PSW

B8 IP

BO P3

A8 IE

AO P2

98 SCON

90 P1

88 TCON

80 PO

b.) Special Function Register Bit Addresses.

Figure 4. Bit Address Maps.

Notice the column labeled "Symbol" in Figure 5. Bits with
special meanings in the PSW and other registers have
corresponding symbolic names. General-purpose (as
opposed to carry-specific) instructions may access the
carry like any other bit by using the mnemonic CY in place
of C, PO, PI, P2, and P3 are the 8051's four I/O ports;
secondary functions assigned to each of the eight pins of
P3 are shown in Figure 6.

4

Figure 7 shows the last four bit addressable registers.
TCON (Timer Control) and SCON (Serial port Control)
control and monitor the corresponding peripherals, while
IE (Interrupt Enable) and IP (Interrupt Priority) enable
and prioritize the five hardware interrupt sources. Like the
reserved hardware register addresses, the five bits not
implemented in IE and IP should not be accessed; they can
not be used as software flags.

01489A-06

AP-70

(MSB) (lSB)

I Cy I AC I FO I RS1 I RSO I OV P

Symbol Position Name and significance
CY PSW.7 Carry flag.

AC

FO

RS1
RSO

Set/cleared by hardware or soft­
ware during certain arithmetic and
logical instructions.

PSW.6 Auxiliary Carry flag.
Set/cleared by hardware during
addition or subtraction instruc­
tions to indicate carry or borrow
out of bit 3.

PSW.5 Flag O.
Set/cleared/tested by software as
a user-defined status flag.

PSWA Register bank Select control bits
PSW.3 1 & O. Set/cleared by software to

determine working register bank
(see Note).

OV

P

PSW.2 Overflow flag.
Set/cleared by hardware during
arithmetic instructions to indicate
overflow conditions.

PSW.1 (reserved)

PSW.O Parity flag.
Set/cleared by hardware each in­
struction cycle to indicate an odd/­
even number of "one" bits in the
accumulator, i.e., even parity.

Note - the contents of (RS1, RSO) enable
the working register banks as
follows:

(0,0) - Bank 0
(0,1) - Bank 1
(1,0) - Bank 2
(1,1)-Bank3

(00H-07H)
(OBH-OFH)
(10H-17H)
(1BH-1 FH)

Figure 5. PSW - Program Status Word organization.

(MSB) (lSB)

I RD I WR I T1 TO IINT111NTO I TXD I RXD I
Symbol Position Name and significance
RD P3.7 Read data control output.

Active low pulse generated by
hardware when external data
memory is read.

WR P3.6 Write data control output.
Active low pulse generated by
hardware when external data
memory is written.

T1 P3.5 Timer/counter 1 external input or
test pin.

TO P3A Timer/counter 0 external input or
test pin.

INT1

INTO

TXD

RXD

P3.3

P3.2

P3.1

P3.0

Interrupt 1 input pin.
Low-level or falling-edge
triggered.

Interrupt 0 input pin.
Low-level or falling-edge
triggered.

Transmit Data pin for serial port
in UART mode. Clock output in
shift register mode.

Receive Data pin for serial port in
UART mode. Data I/O pin in shift
register mode.

Figure 6. P3 - Alternate I/O Functions of Port 3.

014S9A·07

5

AP-70

(MSB) (LSB)

I TF1 I TR1 I TFO I TRO IIE1 IIT1 lEO ITO

Symbol Position Name and significance
TF1 TCON.? Timer 1 overflow Flag.

Set by hardware on
timer/counter overflow. Cleared
when interrupt processed.

TR1 TCON.6 Timer 1 Run control bit.
Set/cleared by software to turn
timer/counter on/off.

TFO TCON.5 Timer 0 overflow Flag.
Set by hardware on
timer/counter overflow. Cleared
when interrupt processed.

TRO TCON.4 Timer 0 Run control bit.
Set/cleared by software to turn
timer/counter on/off.

a.) TCON - Timer/Counter Control/status register.

(MSB) (LSB)

'SMO , SM1 , SM2' REN I TBal RBal TI I RI I
Symbol Position Name and significance
SMO SCON.? Serial port Mode control bit o.

Set/cleared by software (see
note).

SM1 SCON.6 Serial port Mode control bit 1.
Set/cleared by software (see
note).

SM2 SCON.5 Serial port Mode control bit 2.
Set by software to disable recep­
tion of frames for which bit 8 is
zero.

REN SCON.4 Receiver Enable control bit.
Set/cleared by software to
enable/disable serial data
reception.

TB8 SCON.3 Transmit Bit 8.
Set/cleared by hardware to deter­
mine state of ninth data bit trans­
mitted in 9-bit UART mode.

b.) SCON - Serial Port Control/status register.

IE1

IT1

lEO

ITO

TCON.3 Interrupt 1 Edge flag.
Set by hardware when external
interrupt edge detected. Cleared
when interrupt processed.

TCON.2 Interrupt 1 Type control bit.
Set/cleared by software to
specify falling edge/low level
triggered external interrupts.

TCON.1 Interrupt 0 Edge flag.
Set by hardware when external
interrupt edge detected. Cleared
when interrupt processed.

TCON.O Interrupt 0 Type control bit.
Set/cleared by softrware to
specify falling edge/low level
triggered external interrupts.

RB8 SCON.2 Receive Bit 8.
Set/cleared by hardware to indi­
cate state of ninth data bit
received.

TI SCON.1 Transmit Interrupt flag.
Set by hardware when byte
transmitted. Cleared by software
after servicing.

RI SCON.O Receive Interrupt flag.
Set by hardware when byte re­
ceived. Cleared by software after
servicing.

Note - the state of (SMO,SM1) selects:
(0,0) - Shift register I/O expansion.
(0,1) - 8 bit UART, variable data rate.
(1,0) - 9 bit UART, fixed data rate.
(1,1) - 9 bit UART, variable data rate.

Figure 7. Peripheral Configuration Registers.

01489A-08

6

AP-70

(MSB) (lSB)

ES I ET1 I EX1 I ET1 I EXO I
Symbol Position Name and significance
EA IE.? Enable All control bit.

ES

ET1

IE.6
IE.5

IE.4

IE.3

Cleared by software to disable all
interrupts, independent of the
state of 1E.4 - IE.O.

(reserved)

Enable Serial port control bit.
Set/cleared by software to
enable/ disable interrupts from
TI or RI flags.

Enable Timer 1 control bit.
Set/cleared by software to
enable/ disable interrupts from
timer/counter 1.

c.) IE - Interrupt Enable Register.

(MSB) (lSB)

I-I PS I PT1 I PX1 I PTO I PXO I
Symbol Position Name and significance

PS

IP.? (reserved)
I P.6 (reserved)
I P.5 (reserved)

IP.4 Serial port Priority control bit.
Set/cleared by software to
specify high/low priority
interrupts for Serial port.

EX1 IE.2

ETa IE.1

EXO IE.O

PX1 IP.2

PTa IP.1

Enable External interrupt 1
control bit. Set/cleared by
software to enable/disable
interrupts from INT1.

Enable Timer a control bit.
Set/cleared by software to
enable/ disable interrupts from
timer/counter O.

Enable External interrupt a
control bit. Set/cleared by
software to enable/disable
interrupts from INTO.

External interrupt 1 Priority
control bit. Set/cleared by
software to specify high/low
priority interrupts for INT1.

Timer a Priority control bit.
Set/cleared by software to
specify high/low priority
interrupts for timdr/counter O.

PT1 IP.3 Timer 1 Priority control bit. PXO IP.O
Set/cleared by software to

External interrupt a Priority
control bit. Set/cleared by
software to specify high/low
priority interrupts for INTO.

specify high/low priority
interrupts for timer/counter 1.

d.) IP - Interrupt Priority Control Register.

Figure 7. (continued)

Addressable Register Set. There are 20 special function
registers in the 8051, but the advantages of bit addressing
only relate to the II described below. Five potentially
bit-addressable register addresses (OCOH, OC8H, OD8H,
OE8H, & OF8H) are being reserved for possible future
expansion in microcomputers based on the MCS-5J'M
architecture. Reading or writing non-existent registers in
the 8051 series is pointless, and may cause unpredictable
results. Byte-wide logical operations can be used to
manipulate bits in all non-bit addressable registers and
RAM.

7

The accumulator and B registers (A and B) are normally
involved in byte-wide arithmetic, but their individual bits
can also be used as 16 general software flags. Added with
the 128 flags in RAM, this gives 144 general purpose
variables for bit-intensive programs. The program status
word (PSW) in Figure 5 is a collection of flags and
machine status bits including the carry flag itself. Byte
operations acting on the PSW can therefore affect the
carry.

01489A-09

AI-'-{U

Instruction Set
Having looked at the bit variables available to the Boolean
Processor, we will now look at the four classes of instructions
that manipulate these bits. It may be helpful to refer back to
Table 2 while reading this section.

State Control. Addressable bits or flags may be set, cleared,
or logically complemented in one instruction cycle with the
two-byte instructions SETB, CLR, and CPL. (The "B"
affixed to SETB distinguishes it from the assembler "SET"
directive used for symbol definition.) SETB and CLR are
analogous to loading a bit with a constant: I or O. Single
byte versions perform the same three operations on the
carry.

The MCS_5ITM assembly language specifies a bit address in
any of three ways:

• by a number or expression corresponding to the direct
bit address (0-255);

• by the name or address of the register containing the
bit, the dot operator symbol (a period: ". "), and the
bit's position in the register (7-0);

• in the case of control and status registers, by the prede­
fined assembler symbols listed in the first columns
of Figures 5-7.

Bits may also be given user-defined names with the assembler
"BIT" directive and any of the above techniques. For exam­
ple, bit 5 of the PSW may be cleared by any of the four
instructions,

USILFLG BIT PSW.5 User Symbol Definition

CLR OD5H Absolute Addressing
CLR PSW.5 Use of Dot Operator
CLR FO Pre-Defined Assembler

Symbol
CLR USlLFLG User-Defined Symbol

Data Transfers. The two-byte'MOV instructions can trans­
port any addressable bit to the carry in one cycle, or copy the
carry to the bit in two cycles. A bit can be moved between
two arbitrary locations via the carry by combining the two
instructions. (If necessary, push and pop the PSW to preserve
the previous contents of the carry.) These instructions can
replace the multi-instruction sequence of Figure 8, a program
structure appearing in controller applications whenever flags
or outputs are conditionally switched on or off.

Logical Operations. Four instructions perform the logical­
AND and logical-OR operations between the carry and
another bit, and leave the results in the carry. The instruction
mnemonics are ANL and 0 RL; the absence or presence of a

8

YES

SET
DESTINATION

BIT

CLEAR
DESTINATION

BIT

Figure 8. Bit Transfer Instruction Operation .

slash mark ("j") before the source operand indicates whether
to use the positive-logic value or the logical complement of
the addressed bit. (The source operand itself is never
affected.)

Bit-test Instructions. The conditional jump instructions "JC
rei" (Jump on Carry) and "JNC reI" (Jump on Not Carry)
test the state of the carry flag, branching if it is a one or zero,
respectively. (The letters "rei" denote relative code address­
ing.) The three-byte instructions "JB bit, reI" and "JNB
bit,rel" (Jump on Bit and Jump on Not Bit) test the state of
any addressable bit in a similar manner. A fifth instruction
combines the Jump on Bit and Clear operations. "JBC
bit,rel" conditionally branches to the indicated address, then
clears the bit in the same two cycle instruction. This opera­
tion is the same as the MCS-48™ "JTF" instructions.

All 8051 conditional jump instructions use program
counter-relative addressing, and all execute in two cycles.
The last instruction byte encodes a signed displacement
ranging from -128 to + 127. During execution, the CPU adds
this value to the incremented program counter to produce
the jump destination. Put another way, a conditional jump
to the immediately following instruction would encode OOH
in the offset byte.

A section of program or subroutine written using only rela­
tive jumps to nearby addresses will have the same machine
code independent of the code's location. An assembled rou­
tine may be repositioned anywhere in memory, even crossing
memory page boundaries, without having to modify the
program or recompute destination addresses. To facilitate
this flexibility, there is an unconditional "Short Jump"
(SJMP) which uses relative addressing as wel1. Since a pro-

01489A-10

AP-70

grammer would have quite a chore trying to compute rela­
tive offset values from one instruction to another, ASM5l
automatically computes the displacement needed given only
the destination address or label. An error message will alert
the programmer if the destination is "out of range."

(The so-called "Bit Test" instructions implemented on many
other microprocessors simply perform the logical-AND
operation between a byte variable and a constant mask, and
set or clear a zero flag depending on the result. This is
essentially equivalent to the 8051 "MaV C,bit" instruction.
A second instruction is then needed to conditionally branch
based on the state of the zero flag. This does not constitute
abstract bit-addressing in the MCS-5 I'M sense. A flag exists
only as a field within a register; to reference a bit the pro­
grammer must know and specify both the encompassing
register and the bit's position therein. This constraint
severely limits the flexibility of symbolic bit addressing and
reduces the machine's code-efficiency and speed.)

Interaction with Other Instructions. The carry flag is also
affected by the instructions listed in Table 3. It can be rotated
through the accumulator, and altered as a side effect of
arithmetic instructions. Refer to the User's Manual for
details on how these instructions operate.

Simple Instruction Combinations
By combining general purpose bit operations with certain
addressable bits, one can "custom build" several hundred
useful instructions. All eight bits of the PS W can be tested
directly with conditional jump instructions to monitor
(among other things) parity and overflow status. Pro­
grammers can take advantage of 128 software flags to keep
track of operating modes, resource usage, and so forth.

The Boolean instructions are also the most efficient way to
control or reconfigure peripheral and II a registers. All 32
II a lines become "test pins," for example, tested by condi­
tional jump instructions. Any output pin can be toggled
(complemented) in a single instruction cycle. Setting or clear­
ing the Timer Run flags (TRO and TRI) turn the timer­
I counters on or off; polling the same flags elsewhere lets the
program determine if a timer is running. The respective
overflow flags (TFO and TFI) can be tested to determine
when the desired period or count has elapsed, then cleared in
preparation for the next repetition. (For the record, these
bits are all part of the TCaN register, Figure 7.a. Thanks to
symbolic bit addressing, the programmer only needs to
remember the mnemonic associated with each function. In
other words, don't bother memorizing control word layouts.)

In the MCS-48® family, instructions corresponding to some
of the above functions require specific opcodes. Ten different
opcodes serve to clear I complement the software flags FO
and FI, enablel disable each interrupt, and startl stop the
timer. In the 8051 instruction set, just three opcodes (SETB,

9

Table 3. Other Instructions Affecting the Carry
Flag.

Mnemonic Description Byte Cyc

ADD A.Rn Add register to
Accumulator

ADD A,direct Add direct byte to
Accumulator 2

ADD A,@Ri Add indirect RAM to
Accumulator

ADD A,#data Add immediate data to
Accumulator 2

ADDC A,Rn Add register to
Accumulator with Carry
flag

ADDC A, direct Add direct byte to
Accumulator with Carry
flag 2

ADDCA,@Ri Add indirect RAM to
Accumulator with Carry
flag

ADDC A,#data Add immediate data to
Acc with Carry flag 2

SUBB A,Rn Subtract register from
Accumulator with
borrow

SUBB A,direct Subtract direct byte
from Acc with borrow 2

SUBB A,@Ri Subtract indirect RA M
from Acc with borrow

SUBB A,#data Subtract immediate data
from Acc with borrow 2 I

MUL AB Multiply A & B I 4
DIY AB Divide A by B 1 4
DA A Decimal Adjust

Accumulator

RLC A Rotate Accumulator
Left through the Carry
flag

RRC A Rotate Accumulator
Right through Carry flag

CJNE A,direct,rel Compare direct byte to
Acc & Jump if Not
Equal 3 2

CJNE A,#data,rel Compare immediate to
Acc & Jump if Not
Equal 3 2

CJNE Rn,#data,rel Compare immed to
register & Jump if Not
Equal 3 2

CJNE @Ri,#data,reICompare immed to
indirect & Jump if Not
Equal 3 2

All mnemonics copyrighted © Intel Corporation 1980

01489A-l1

AfI-fU

CLR, CPL) with a direct bit address appended perform the
same functions. Two test instructions (JB and JNB) can be
combined with bit addresses to test the software flags, the
8048 I/O pins TO, TI, and INT, and the eight accumulator
bits, replacing 15 more different instructions.

Table 4.a shows how 8051 programs implement software
flag and machine control functions associated with special

using awkward sequences of other basic operations. As
mentioned earlier, any CPU can solve any problem given
enough time.
Quantitatively, the differences between a solution allowed
by the 8051 and those required by previous architectures
are numerous. What the 8051 Family buys you is a faster,
cleaner, lower-cost solution to microcontroller
applications.

The opcode space freed by condensing many specific 8048

Table 4.a. Contrasting 8048 and 8051 Bit Control and Testing Instructions.

8048 8x51
Instruction Bytes Cycles uSec Instruction Bytes Cycles & uSec

Flag Control
CLR C I I 2.5 CLR C I I
CPL FO I I 2.5 CPL FO 2 I

Flag Testing
JNC offset 2 2 5.0 JNC rei 2 2
JFO offset 2 2 5.0 JB FO,rel 3 2
JB7 offset 2 2 5.0 JB ACC.7,rel 3 2

Peripheral Polling
JTO offset 2 2 5.0 JB TO,rel 3 2
JNI offset 2 2 5.0 JNB INTO,rel 3 2
JTF offset 2 2 5.0 JBC TFO,rel 3 2

Machine and Peripheral Control
STRT T I I 2.5 SETB TRO 2 I
EN I I I 2.5 SETB EXO 2 I
DIS TCNT! I I 2.5 CLR ETO 2 I

Table 4.b. Replacing 8048 instruction sequences with single 8x51 instructions.

8048
Instructions Bytes Cycles uSec

Flag Control
Set carry:

CLR C
CPL C = 2 2 5.0

Set Software Flag:
CLR FO
CPL FO = 2 2 5.0

opcodes in the 8048. In every case the MCS-5ITM solution
requires the same n!Imber of machine cycles, and executes
2.5 times faster.

3. BOOLEAN PROCESSOR APPLICATIONS
So what? Then what does all this buy you?

Qualitatively, nothing. All the same capabilities could be
(and often have been) implemented on other machines

10

8051
Instructions Bytes Cycles & uSec

SETB C I I

SETB FO 2 I

instructions into a few general operations has been used to
add new functionality to the M CS-51 ™ architecture - both
for byte and bit operations. 144 software flags replace the
8048's two. These flags (and the carry) may be directly set,
not just cleared and complemented, and all can be tested
for either state, not just one. Operating mode bits pre­
viously inaccessible may be read, tested, or saved. Situa­
tions where the 8051 instruction set provides new capabili­
ties are contrasted with 8048 instruction sequences
in Table 4.b. Here the 8051 speed advantage ranges from
5x to 15x!

01489A-12

AP-70

Table 4b (Continued)
8048
Instructions Bytes Cycles uSec

Turn Off Output Pin:
ANL PI,#OFBH = 2 2 5.0

Complement Output Pin:
IN A,PI
XRL A,#04H
OUTL PI,A = 4 6 15.0

Clear Flag in RAM:
MOV RO,#FLGADR
MOV A,@RO
ANL A,#FLGMASK
MOV @RO,A = 6 6 15.0

Flag Testing
Jump if Software Flag is 0:

JFO $+4
JMP offset = 4 4 10.0

Jump if Accumulator bit is 0:
CPL A
JB7 offset
CPL A = 4 4 10.0

Peripheral Polling
Test if Input Pin is Grounded:

IN A,PI
CPL A
JB3 offset = 4 5 12.5

Test if Interrupt Pin is High:
JNI $+4
JMP offset = 4 4 10.0

Combining Boolean and byte-wide instructions can pro­
duce great synergy. An MCS-5]TM based application will
prove to be:

• simpler to write since the architecture correlates more
closely with the problems being solved;

• easier to debug because more individual instructions
have no unexpected or undesirable side-effects;

• more byte efficient due to direct bit addressing and
program counter relative branching;

• faster running beca use fewer bytes of instruction need
to be fetched and fewer conditional jumps are
processed;

• lower cost because of the high level of system­
intergration within one component.

These rather unabashed claims of excellence shall not go
unsubstantiated. The ~est of this chapter examines less
trivial tasks simplified by the Boolean processor. The first

11

8x51
Instructions Bytes Cycles & uSec

CLR Pl.2 2 I

CPL Pl.2 2 I

CLR USER_FLG 2 I

JNB FO,rel 3 2

JNB ACC.7,rel 3 2

JNB P1.3,rel 3 2

JB INTO,rel 3 2

three compare the 8051 with other microprocessors; the last
two go into 805J-based system designs in much greater
depth.

Design Example #1 - Bit Permutation
First off, we'll use the bit-transfer instructions to permute
a lengthy pattern of bits.

A steadily increasing number of data communication
products use encoding methods to protect the security of
sensitive information. By law, interstate financial transac­
tions involving the Federal banking system must be
transmitted using the Federal Information Processing
Data Encryption Standard (DES).

Basically, the DES combines eight bytes of "plaintext"
data (in binary, ASCII, or any other format) with a 56-bit
"key", producing a 64-bit encrypted value for transmis­
sion. At the receiving end the same algorithm is applied to
the incoming data using the same key, reproducing the
original eight byte message. The algorithm used for these
permutations is fixed; different user-defined keys ensure
data privacy.

01489A-13

".

I t is not the purpose of this note to describe the DES in any
detail. Suffice it to say that encryption/ decryption is a
long, iterative process consisting of rotations, exclusive
-OR operations, function table look-ups, and an extensive
(and quite bizarre) sequence of bit permutation, packing,
and unpacking steps. (For further details refer to the June
21,1979 issue of Electronics magazine.) The bit manipula­
tion steps are included, it is rumored, to impede a general
purpose digital supercomputer trying to "break" the code.
Any algorithm implementing the DES with previous gen­
eration microprocessors would spend virtually all of its
time diddling bits.

.....

The bit manipUlation performed is typified by the Key
Schedule Calculation represented in Figure 9. This step is
repeated 16 times for each key used in the course of a
transmission. In essence, a seven-byte, 56-bit "Shifted Key
Buffer" is transformed into an eight-byte, "Permutation
Buffer" without altering the shifted Key. The arrows in
Figure 9 indicate a few of the translation steps. Only six
bits of each byte of the Permutation Buffer are used; the
two high-order bits of each byte are cleared. This means
only 48 of the 56 Shifted Key Buffer bits are used in anyone
iteration.

PERMUTED AND SHIFTED 56-BIT KEY BUFFER

~ ~

-----------------~----------------- -----------------~-----------------

PERMUTATION BYTE 1 PERM BYTE 2 PERM BYTE 3 PERM BYTE 4 BYTE 5 BYTE 6 PERM BYTE 7 PERM BYTE 8

48-BIT KEY KI

Figure 9. DES Key Schedule Transformation.

SET PERMUTATION
BUFFER BIT

PC2(1)

CLEAR ALL BITS
OF PERMUTATION

BUFFER

ISOLATE
SKB BIT (0

(LEAVE PERMUTATION
BUFFER BIT
CLEARED)

REPEAT
FOR EACH
BIT OF
SHIFTED
KEY
BUFFER
(48 TIMES)

Figure 10.a. Flowchart for Key permutation attemp­
ted with a byte processor.

12

Different microprocessor architectures would best imple­
ment this type of permutation in different ways. Most
approaches would share the steps of Figure lO.a:

• Initialize the Permutation Buffer to default state
(ones or zeroes);

• Isolate the state of a bit of a byte from the Key Buffer.
Depending on the CPU, this might be accomplished
by rotating a word of the Key Buffer through a carry
flag or testing a bit in memory or an accumulator
against a mask byte;

• Perform a conditional jump based on the carry or
zero flag if the Permutation Buffer default state is
correct;

• Otherwise reverse the corresponding bit in the permu­
tation buffer with logical operations and mask bytes.

Each step above may require several instructions. The last
three steps must be repeated for all 48 bits. Most micropro­
cessors would spend 300 to 3,000 microseconds on each of
the 16 iterations.

Notice, though, that this flow chart looks a lot like Figure 8.
The Boolean Processor can permute bits by simply moving

01489A-14

AP-70

them from the source to the carry to the destination-a
total of two instructions taking four bytes and three
microseconds per bit. Assume the Shifted Key Buffer and
Permutation Buffer both reside in bit-addressable RAM,
with the bits ofthe former assigned symbolic names S KB_l,
SKR...2, ... SKB.-56, and that the bytes of the latter are
named PB_I, ... PB_8. Then working from Figure 9, the
software for the permutation algorithm would be that of
Example I.a. The total routine length would be 192 bytes,
requiring 144 microseconds.

The algorithm of Figure lO.b is just slightly more efficient
in this time-critical application and illustrates the synergy
of an integrated byte and bit processor. The bits needed for
each byte of the Permutation Buffer are assimilated by
loading each bit into the carry (I usec.) and shifting it into
the accumulator (I usec.). Each byte is stored in RAM
when completed. Forty-eight bits thus need a total of 112
instructions, some of which are listed in Example I.b.

I

LOAD BIT MAPPED ONTO BIT 5 OF
PERMUTATION BYTE INTO CARRY

LOAD BIT MAPPED ONTO BIT 4
OF PERMUTATION BYTE INTO CARRY

,
LOAD BIT MAPPED ONTO BIT 0
OF PERMUTATION BYTE INTO CARRY

+
ROTATE LEFT INTO ACC.

+
STORE ACC. INTO PERMUTATION
BUFFER

I
I
I

t

J

REPEAT
FOR EACH
BYTE OF
PERMUTATION
BUFFER
(STIMES)

Figure 10.b. DES Key Permutation
with Boolean Processor.

13

Worst-case execution time would be 112 microseconds,
since each instruction takes a single cycle. Routine length
would also decrease, to 168 bytes. (Actually, in the context
of the complete encryption algorithm, each permuted byte
would be processed as soon as it is assimilated-saving
memory and cutting execution time by another 8 usec.)

Example I. DES Key Permutation Software.

a.) "Brute Force" technique.

Mav C,SKB_I
MaV PB_I.I,C
MaV C,SKR2
MaV PB_4.0,C
MaV C,SKB-.3
MaV PB-2.5,C
MaV C,SKB_4
MaV PB_I.O,C

MaV C,SKB.-55
MaV PB.-5.0,C
MaV C,SKB_56
MaV PB_7.2,C

b.) Using Accumulator to Collect Bits.

CLR A
MaV C,SKB_14
RLC A
MaV C,SKB_17
RLC A
MaV C,SKB_II
RLC A
MaV C,SKB-24
RLC A
MaV C,SKB_I
RLC A
MaV C,SKB_5
RLC A
MaV PB_I,A

MaV C,SKB-29
RLC A
MaV C,SKB_32
RLC A
MaV PRll,A

To date, most banking terminals and other systems using
the DES have needed special boards or peripheral con­
troller chips just for the encryption/ decryption process,
and still more hardware to form a serial bit stream for
transmission (Figure II.a). An 8051 solution could pack
most of the entire system onto the one chip (Figure Il.b).
The whole DES algorithm would require less than one-

01489A-15

AP-70

fourth ofthe on-chip program memory, with the remaining
bytes free for operating the banking terminal (or whatever)
itself.

Moreover, since transmission and reception of data is
performed through the on-board U AR T, the unencrypted
data (plaintext) never even exists outside the micro­
computer! Naturally, this would afford a high degree of
security from data interception.

~ONTROLAN-D A-DDR~SSE~ - - l
=;-;::=~~~~;-;= I

I ! TO

~ MODEM

L SYSTEM DATA BUS -------
a.) Using Multi-chip processor technology.

DISPLAY P2

T,D

8051 I TO MODEM
PO

.,D

KEYBOARD

PI

b.) Using one Single-chip Microcomputer.

Figure 11. Secure Banking Terminal Block Diagram.

Design Example #2 - Software Serial I/O
An exercise often imposed on beginning microcomputer
students is to write a program simulating a UART. (See,
for example, Application Notes AP24, AP29, and AP49.)
Though doing this with the 8051 Family may appear to be
a moot point (given that the hardware for a full U AR T is
on-chip), it is still instructive to see how it would be done,
and maintains a product line tradition.

As it turns Out, the 8051 microcomputers can receive or
transmit serial data via software very efficiently using the
Boolean instruction set. Since any I/O pin may be a serial
input or output, several serial links could be maintained at
once. \

Figures 12.a and 12.b show algorithms for receiving or
transmitting a byte of data. (Another section of program
would invoke this algorithm eight times, synchronizing it
with a start bit, clock signal, software delay, or timer

14

interrupt.) Data is received by testing an input pin, setting
the carry to the same state, shifting the carry into a data buffer,
and saving the partial frame in internal RAM. Data is
transmitted by shifting an output buffer through the carry,
and generating each bit on an output pin.

a.) Reception.

b.) Transmission.

Figure 12. Serial 110 Algorithms.

A side-by-side comparison of the software for this common
"bit-banging" application with three different micro­
processor architectures is shown in Table 5.a and 5. b. The
8051 solution is more efficient than the others on every
count!

01489A-16

a.) Input Routine.

8085

IN SERPORT
ANI MASK
JZ LO
CMC

LO: LXI HL,SERBUF
MOV A,M
RR
MOV M,A

RESULTS:

8 INSTRUCTIONS
14 BYTES
56 STATES
19 uSEe.

b.) Output Routine.

8085

LXI HL,SERBUF
MOV A,M
RR
MOV M,A
IN SERPORT
JC HI

LO: ANI NOT MASK
JMP CNT

HI: ORI MASK
CNT:OUT SERPORT

RESULTS:

10 INSTRUCTIONS
20 BYTES
72 STATES
24 uSEe.

AP-70

Table 5. Serial I/O Programs
for Various Microprocessors.

8048

CLR C
JNTO LO
CPL C
MOV RO,#SERBUF
MOV A,@RO
RRC A
MOV @RO,A

7 INSTRUCTIONS
9 BYTES
9 CYCLES

22.5 uSEe.

8048

MOV RO,#SERBUF
MOV A,@RO
RRC A
MOV @RO,A

JC HI
ANL SERPRT,#NOT MASK
JMP CNT

HI: ORL SERPRT,#MASK
CNT:

8 INSTRUCTIONS
13 BYTES
II CYCLES
27.5 uSEe.

8051

MOV C,SERPIN

MOV A,SERBUF
RRC A
MOV SERBUF,A

4 INSTRUCTIONS
7 BYTES
4 CYCLES
4 uSEe.

8051

MOV A,SERBUF
RRC A
MOV SERBUF,A

MOV SERPIN,C

4 INSTRUCTIONS
7 BYTES
5 CYCLES
5 uSEe.

Design Example #3 - Combinatorial Logic
Equations
Next we 11 look at some simple uses for bit-test instructions
and logical operations. (This example is also presented in
Application Note AP-69.)

Figure 13 shows TTL and relay logic diagrams for a
function of the six variables U through Z. Each is a
solution of the equation,

Virtually all hardware designers have solved complex
functions using combinatorial logic. While the hardware
involved may vary from relay logic, vacuum tubes, or TTL
or to more esoteric technologies like fluidics, in each case
the goal is the same: to solve a problem represented by a
logical function of several Boolean variables.

15

Q = (U . (V + W)) + (X· y) + Z .

Equations of this sort might be reduced using Karnaugh
Maps or algebraic techniques, but that is not the purpose
of this example. As the logic complexity increases, so does
the difficulty of the reduction process. Even a minor
change to the function equations as the design evolves
would require tedious re-reduction from scratch.

01489A-17

Figure 13. Hardware Implementations of Boolean functions.

U-------r-.,
v---,
W ---1..--./

x
y ----<lL_~

z

Q = (u·(V + W)) + (X. Vi + i

a.) Using TTL:

r-- Q

Forthe sake of comparison we will implement this function
three ways, restricting the software to three proper subsets
of the M CS-51 ™ instruction set. We will also assume that
U and V are input pins from different input ports, Wand X
are status bits for two peripheral controllers, and Y and Z
are software flags set up earlier in the program. The end
result must be written to an output pin on some third port.
The first two implementations follow the flow-chart shown
in Figure 14. Program flow would embark on a route down
a test-and-branch tree and leaves either the "True" or "Not
True" exit ASAP - as soon as the proper result has been
determined. These exits then rewrite the output port with
the result bit respectively one or zero.

Other digital computers must solve equations of this type
with standard word-wide logical instructions and condi­
tionaljumps. So for the first implementation, we won't use
any generalized bit-addressing instructions. As we shall
soon see, being constrained to such an instruction subset
produces somewhat sloppy software solutions. MCS-51'M
mnemonics are used in Example 2.a; other machines might
further cloud the situation by requiring operation-specific
mnemonics like INPUT, OUTPUT, LOAD, STORE, etc.,
instead of the MOV mnemonic used for all variable trans­
fers in the 8051 instruction set.

The code which results is cumbersome and error prone. It
would be difficult to prove whether the software worked for
all input combinations in programs of this sort. Further­
more, execution time will vary widely with input data.

Thanks to the direct bit-test operations, a single instruc­
tion can replace each move/ mask/ conditionaljump
sequence in Example 2.a, but the algorithm would be
equally convoluted (see Example 2.B). To lessen the con­
fusion "a bit" each input variable is assigned a symbolic
name.

A more elegant and efficient implementation (Example 2.c)
strings together the Boolean ANL and ORL functions to
generate the output function with straight-line code.

16

v

U

x y

CR1

CR2

z

b.) Using Relay Logic:

FUNCTION
IS FALSE

CLEAR Q

Q

FUNCTION
IS TRUE

Figure 14. Flow chart for tree-branching algorithm.

01489A-18

AP-70

When finished, the carry flag contains the result, whieh is
simply copied out to the destination pin. No flow chart is
needed-code can be written directly from the logic dia­
grams in Figure 14. The result is simplicity itself: fast,
flexible, reliable, easy to design, and easy to debug.

An 80S1 program can simulate an N-input AND or OR
gate with at most N+ I lines of source program-one for
each input and one line to store theresults. To simulate
NAND and NOR gates, complement the carry after com­
puting the function. When some inputs to the gate have
"inversion bubbles," perform the ANL or OR L operation
on inverted operands. When the first input is inverted,
either load the operand into the carry and then complement
it, or use DeMorgan's Theorem to convert the gate to a
different form.

Example 2. Software Solutions to Logic Function of Fig­
ure 13.

a.) Using only byte-wide logical instructions.

;BFUNCI SOLVE RANDOM LOGIC FUNCTION
OF 6 VARIABLES BY LOADING AND
MASKING THE APPROPRIATE BITS
IN THE ACCUMULATOR, THEN
EXECUTING CONDITIONAL JUMPS
BASED ON ZERO CONDITION.
(APPROACH USED BY BYTE­
ORIENTED ARCHITECTURES.)
BYTE AND MASK VALUES
CORRESPOND TO RESPECTIVE BYTE
ADDRESS AND BIT POSITIONS.

O{]TBUF DATA 22H ;OUTPUT PIN STATE MAP

TESTV; MOV A,P2
ANL A,#OOOOO I 00 B
JNZ TESTU
MOV A,TCON
ANL A,#OO 100000 B
JZ TESTX

TFSTU: MOV A,PI
ANL A,#OOOOOOIOB
JNZ SETQ

lTSTX: MOV A,TCON
ANL A,#OOOO I 000 B
JZ TESTZ
MOV A,20H
ANL A,#OOOOOOO I B
JZ SETQ

TESTZ: MOV A,2IH
ANL A,#OOOOOO lOB
JZ SETQ

17

CLRQ: MOV A,OUTBUF
ANL A,# II 110 I I I B
JMP OUTQ

SETQ: MOV A,OUTBUF
ORL A,#OOOO I OOOB

OUTQ: MOV OUTBUF,A
MOV P3,A

b.) Using only bit-test instructions.

;BFUNC2 SOLVE A RANDOM LOGIC FUNCTION
OF 6 VARIABLES BY DIRECTLY
POLLING EACH BIT.

U
V
W
X
Y
Z
Q

(APPROACH USING MCS-SI UNIQUE
BIT-TEST INSTRUCTION CAPABILITY.)
SYMBOLS USED IN LOGIC DIAGRAM
ASSIGNED TO CORRESPONDING 8xSI
BIT ADDRESSES.

BIT PI. I
BIT P2.2·
BIT TFO
BIT lEI
BIT 20H.0
BIT 21H.1
BIT P3.3

TEST_V: JB V,TEST_U
JNB W,TEST_X

TEST_U: JB U,SET_Q
TEST_X: JNB X,TEST-Z

JNB Y,SET_Q
TEST-Z: JNB Z,SET_Q
CLR_Q: CLR Q

JMP NXTTST
SET_Q: SETB Q
NXTTST: ;(CONTINUATION OF

;PROGRAM)

c.) Using logical operations on Boolean variables.

;FUNC3 SOLVE A RANDOM LOGIC FUNCTION
OF 6 VARIABLES USING
STRAIGHT_LINE LOGICAL
INSTRUCTIONS ON MCS-SI BOOLEAN
VARIABLES.

MOV C,V
ORL C,W ;OUTPUT OF OR GATE
ANL C,U ;OUPUT OF TOP AND GATE
MOV FO,C ;SAVE INTERMEDIATE STATE
MOV C,X
ANL C,/Y ;OUTPUT OF BOTTOM AND GATE
ORL C,FO ;INCLUDE VALUE SAVED ABOVE
ORL C,/Z ;INCLUDE LAST INPUT VARIABLE
MOV Q,C ;OUTPUT COMPUTED RESULT

01489A-19

AP-70

An upper-limit can be placed on the complexity of software
to simulate a large number of gates by summing the total
number of inputs and outputs. The actual total should be
somewhat shorter, since calculations can be "chained," as
shown above. The output of one gate is often the first
input to another, bypassing the intermediate variable to
eliminate two lines of source.

Design Example #4 - AlJtomotive Dash­
board Functions

N ow let's apply these techniques to designing the software
for a complete controller system. This application is
patterned after a familiar real-world application which
isn't nearly as trivial as it might first appear: automobile"
turn signals.

Imagine the three pOSitIOn turn lever on the steering
column as a single-pole, triple-throw toggle switch. In its
central position all contacts are open. In the up or down
positions contacts close causing corresponding lights in
the rear of the car to blink. So far very simple.

Two more turn signals blink in the front of the car, and
two others in the dashboard. All six bulbs flash when an
emergency switch is closed. A thermo-mechanical relay
(accessible under the dashboard in case it wears out)
causes the blinking.

Applying the brake pedal turns the taillight filaments on
constantly ... unless a turn is in progress, in which case the
blinking taillight is not affected. (Of course, the front turn
signals and dashboard indicators are not affected by the
brake pedal.) Table 6 summarizes these operating modes.

But we're not done yet. Each of the exterior turn signal
(but not the dashboard) bulbs has a second, somewhat
dimmer filament for the parking lights. Figure 15 shows
TTL circuitry which could control all six bulbs. The
signals labeled "High Freq." and "Low Freq." represent
two square-wave inputs. Basically, when one of the turn
switches is closed or the emergency switch is activated the
low frequency signal (about I Hz) is gated through to the
appropriate dashboard indicator(s) and turn signal(s).
The rear signals are also activated when the brake pedal is
depressed provided a turn is not being made in the same
direction. When the parking light switch is closed the
higher frequency oscillator is gated to each front and rear
turn signal, sustaining a low-intensity background level.
(This is to eliminate the need for additional parking light
filaments.)

L. TURN --r--.....,--....'---_.r-......
EMERG r.--...---- L. DASH

L. FRNT

BRAKE --+-1>-+--r---..,l---f-___ -+-I L. REAR

R. TURN ---H--+---r"""----L.---I----...
1--........ +---- R. DASH

PARK --------+---r--..,

LO.
FREQ.

OSCILLATOR

HI.
FREQ.
OSCILLATOR

Figure 15. TTL logic implementation of
automotive turn signals.

R. FRNT

R. REAR

Table 6. Truth table for turn-signal operation.

INPUT SIGNALS OUTPUT SIGNALS
BRAKE EM ERG. LEFT RIGHT LEFT RIGHT LEFT RIGHT

SWITCH SWITCH TURN TURN FRONT FRONT REAR REAR
SWITCH SWITCH & DASH & DASH

0 0 0 0 OFF OFF OFF OFF
0 0 0 I OFF BLINK OFF BLINK
0 0 I 0 BLINK OFF BLINK OFF
0 I 0 0 BLINK BLINK BLINK BLINK
0 I 0 I BLINK BLINK BLINK BLINK
0 I I 0 BLINK BLINK BLINK BLINK
I 0 0 0 OFF OFF ON ON
I 0 0 I OFF BLINK ON BLINK
I 0 I 0 BLINK OFF BLINK ON
I I 0 0 BLINK BLINK ON ON
I I 0 I BLINK BLINK ON BLINK
I I I 0 BLINK BLINK BLINK ON

01489A-20

18

AP-70

I n most cars, the switching logic to generate these func­
tions requires a number of multiple-throw contacts. As
ma ny as 18 conductors thread the steering column of some
alltomobiles solely for turn-signal and emergency blinker
fllnctions. (The author discovered this recently to his
astonishment and dismay when replacing the whole
assemhly because of one burned contact.)

A multiple-conductor wiring harness runs to each corner
of the car, behind the dash, up the steering column, and
down to the blinker relay below. Connectors at each ter­
mination for each filament lead to extra cost and labor
d uri ng construction, lower reliability and safety, and more
costly repairs. And considering the system's present com­
plexity, increasing its reliability or detecting failures
would be quite difficult.

There are two reasons for going into such painful detail
describing this example. First, to show that the messiest
part of many system designs is determining what the
controller should do. Writing the software to solve these
functions will be comparatively easy. Secondly, to show
the many potential failure points in the system. Later we'll
see how the peripheral functions and intelligence built into
a microcomputer (with a little creativity) can greatly
reduce external interconnections and mechanical part
count.

The Single-chip Solution
The circuit shown in Figure 16 indicates five input pins to
the five input variables-left-turn select, right-turn select,
brake pedal down, emergency switch on, and parking
lights on. Six output pins turn on the front, reltr, and
dashboard indicators for each side. The microcomputer
implements all logical functions through software, which
periodically updates the output signals as time elapses and
input conditions change.

Figure 16. Microcomputer Turn-signal Connections.

......
PEDAL

EMERGENCY
SWITCH

PARKING
LIOHTS

TURN
SWITCH

MODE
SENSORS

+12Y

SIGNAL
CONDITIONING

+12Y

8051
LEFT
FRONT

RIGHT
FRONT

LEFT
DASHBOARD

RIGHT
DASHBOARD

LEFT

P~1
REAR

RIGHT
REAR

CONTROLLER OUTPUT SIGNAL
BUFFERS BULBS

19

Design Example #3 demonstrated that symbolic address­
ing with user-defined bit names makes code and documen­
tation easier to write and maintain. Accordingly, we'll
assign these I/O pins names for use throughout the pro­
gram. (The format of this example will differ somewhat
from the others. Segments of the overalI program will be
presented in sequence as each is described.)

INPUT PIN DECLARATIONS:
(ALL INPUTS ARE POSITIVE-TRUE LOGIC)

BRAKE BIT PI.O : BRAKE PEDAL DEPRESSED
EMERG BIT PI. I : EMERGENCY BLINKER

ACTIVATED
PARK BIT PI.2 : PARKING LIGHTS ON
LTURN BIT P1.3 : TURN LEVER DOWN
R_TURN BITPl.4 : TURN LEVER UP

OUTPUT PIN DECLARATIONS:

LFRNT BIT P1.5 : FRONT LEFT-TURN
INDICATOR

R_FRNT BIT PI.6 : FRONT RIGHT-TURN
INDICATOR

LDASH BIT PI.7 : DASHBOARD LEFT-TURN
INDICATOR

R_DASH BIT P2.0 : DASHBOARD RIGHT-TURN
INDICATOR

LREAR BIT P2.l : REAR LEFT-TURN
INDICATOR

R_REAR BIT P2.2 : REAR RIGHT-TURN
INDICATOR

Another key advantage of symbolic addressing will
appear further on in the design cycle. The locations of
cable connectors, signal conditioning circuitry, voltage
regulators, heat sinks, and the like alI affect P.c. board
layout. It's quite likely that the somewhat arbitrary pin
assignment defined early in the software design cycle wilI
prove to be less than optimum; rearranging the I/O pin
assignment could welI allow a more compact module, or
eliminate costly jumpers on a single-sided board. (These
considerations apply especially to automotive and other
cost-sensitive applications needing single-chip con­
trolIers.) Since other architectures mask bytes or use
"clever" algorithms to isolate bits by rotating them into
the carry, re-routing an input signal (from bit I of port 1,
for example, to bit 4 of port 3) could require extensive
modifications throughout the software.

The Boolean Processor's direct bit addressing makes such
changes absolutely trivial. The number of the port contain­
ing the pin is irrelevent, and masks and complex program
structures are not needed. Only the initial Boolean varia-

014S9A-21

AP-70

; INTERRUPT RATE SUBDIVIDER
SUB_DIV DATA 20H
; HIGH-FREQUENCY OSCILLATOR BIT
HLFREQ BIT SUB-DIV.O
; LOW-FREQUENCY OSCILLATOR BIT
LOYREQ BIT SUB_DIV.7.

ORG OOOOH
JMP INIT

ORG IOOH
; PUT TIMER 0 IN MODE I
INIT: MOV TMOD,#OOOOOOOIB
; INITIALIZE TIMER REGISTERS

MOV TLO,#O
MOV THO,#-16

; SUBDIVIDE INTERRUPT RATE BY 244
MOV SUB_DIV,#244

; ENABLE TIMER INTERRUPTS
SETB ETO

; GLOBALLY ENABLE ALL INTERRUPTS
SETB EA

; START TIMER
SETB TRO

; (CONTINUE WITH BACKGROUND PROGRAM)

; PUT TIMER 0 IN MODE I
; INITIALIZE TIMER REGISTERS

; SUBDIVIDE INTERRUPT RATE BY 244
; ENABLE TIMER INTERRUPTS
; GLOBALLY ENABLE ALL INTERRUPTS
; START TIMER

ble declarations need to be changed; ASM51 automati­
cally adjusts all addresses and symbolic references to the
reassigned variables. The user is assured that no addi­
tional debugging or software verification will be required.

Timer 0 (one of the two on-chip timer/ counters) replaces
the thermo-mechanical blinker relay in the dashboard
controller. During system initialization it is configured as
a timer in mode I by setting the least significant bit of the
timer mode register (TMOD). In this configuration the
low-order byte (TLO) is incremented every machine cycle,
overflowing and incrementing the high-order byte (THO)
every 256 IASec. Timer interrupt 0 is enabled so that a
hardware interrupt will occur each time THO overflows.
(For details of the numerous timer operating modes see
the MCS-5ITM User's Manual.)

An eight-bit variable in the bit-addressable RAM array
will be needed to further subdivide the interrupts via
software. The lowest-order bit of this counter toggles very

20

fast to modulate the parking lights; bit 7 will be "tuned"to
approximately I Hz for the turn- and emergency­
indicator blinking rate.

Loading THO with - I 6 will cause an interrupt after 4.096
msec. The interrupt service routine reloads the high-order
byte of timer 0 for the next interval, saves the CPU regis­
ters likely to be affected on the stack, and then decrements
SUB_DIV. Loading SUB_DIV. with 244 initially and
each time it decrements to zero will produce a 0.999
second period for the highest-order bit.

ORG OOOBH ; TIMER 0 SERVICE VECTOR
MOV THO,#-16
PUSH PSW
PUSH ACC
PUSH B
DJNZ SUB_DIV,TOSERV
MOV SUB_DIV,#244

The code to sample inputs, perform calculations, and
update outputs-the real "meat" of the signal controller
algorithm-may be performed either as part of the inter­
rupt service routine or as part of a background program
loop. The only concern is that it must be executed at least
several dozen times per second to prevent parking light
flickering. We will assume the former case, and insert the
code into the timer 0 service routine.

First, notice from the logic diagram (Figure 15) that the
subterm (PARK, H_FREQ), asserted when the parking
lights are to be on dimly, figures into four of the six output
functions. Accordingly, we will first compute that term
and save it in a temporary location named "DIM". The
PSW contains two general purpose flags: FO, which cor­
responds to the 8048 flag of the same name, and PSW.1.
Since The PSW has been saved and will be restored to its
previous state after servicing the interrupt, we can use
either bit for temporary storage.

DIM BIT PSW.I ; DECLARE TEMP.
STORAGE FLAG

MOV C.PARK ; GATE PARKING
LIGHT SWITCH

ANL HLFREQ ; WITH HIGH
FREQUENCY
SIGNAL

MOV DIM,C ; AND SAVE IN
TEMP. VARIABLE.

This simple three-line section of code illustrates a remark- I

able point. The software indicates in very abstract terms
exactly what function is being performed, independent of

01489A-22

AP-70

the hardware configuration. The fact that these three bits
include an input pin, a bit within a program variable, and
a software flag in the PSW is totally invisible to the
programmer.

Now generate and output the dashboard left turn signal.

MOV C,LTURN

ORL C,EMERG

MOV LDASH,C

; SET CARRY IF
TURN

; OR EMERGENCY
SELECTED.

;GATEINIHZ
SIGNAL

; AND OUTPUT TO
DASHBOARD.

To generate the left front turn signal we only need to add
the parking light function in FO. But notice that the func­
tion in the carry will also be needed for the rear signal. We
can save effort later by saving its current state in FO.

MOV FO,C

ORL C,DIM

MOV LFRNT,C

; SAVE FUNCTION
SO FAR.

; ADD IN PARKING
LIGHT FUNCTION

; AND OUTPUT TO
TURN SIGNAL.

Finally, the rear left turn signal should also be on when the
brake pedal is depressed, provided a left turn is not in
progress.

MOV C,BRAKE ; GATE BRAKE
PEDAL SWITCH

A:'IJL C,/L_TURN ; WITH TURN
LEVER.

ORL C,FO ; INCLUDE TEMP.
VARIABLE FROM
DASH

ORL C,DIM ; AND PARKING
LIGHT FUNCTION

MOV L_REAR,C ; AND OUTPUT TO
TURN SIGNAL.

Now we have to go through a similar sequence for the
right-hand equivalents to all the left-turn lights. This also
gives liS a chance to see how the code segments above look
whell combined.

MOV C,R_TURN ; SET CARRY IF
TURN

OR!. C,EMERG ; OR EMERGENCY
SELECTED.

ANI. C,LO_FREQ ; IF SO, GATE IN I
HZ SIGNAL

21

MOV R_DASH,C ; AND OUTPUT TO
DASHBOARD.

MOV FO,C ; SAVE FUNCTION
SO FAR.

ORL C,DIM ; ADD IN PARKING
LIGHT FUNCTION

MOV R_FRNT,C ; AND OUTPUT TO
TURN SIGNAL.

MOV C,BRAKE ; GATE BRAKE
PEDAL SWITCH

ANL c'/R_TURN ; WITH TURN
LEVER.

ORL C,FO ; INCLUDE TEMP.
V ARIABLE FROM
DASH

ORL C,DIM ; AND PARKING
LIGHT FUNCTION

MOV R_REAR,C ; AND OUTPUT TO
TURN SIGNAL.

(The perceptive reader may notice that simply rearranging
the steps could eliminate one instruction from each
sequence.)

Now that all six bulbs are in the proper states, we can
return from the interrupt routine, and the program is
finished. This code essentially needs to reverse the status
saving steps at the beginning of the interrupt.

POP B

POP ACC
POP PSW
RETI

; RESTORE CPU
REGISTERS.

Program Refinements. The luminescence of an incan­
descent light bulb filament is generally non-linear; the 50%
duty cycle of HLFREQ may not produce the desired
intensity. If the application requires, duty cycles of 25%,
75%, etc. are easily achieved by ANDing and ORing in
additional low-order bits ofSUB_DIV. For example, 30
Hz signals of seven different duty cycles could be pro­
duced by considering bits 2-0 as shown in Table 7. The
only software change required would be to the code which
sets-up variable DIM:

MOV DIM,C

; START WITH 50
PERCENT

; MASK DOWN TO 25
PERCENT

; AND BUILD BACK TO
62 PERCENT

; DUTY CYCLE FOR
PARKING LIGHTS.

01489A-23

AP-IU

Table 7. Non-trivial Duty Cycles.

SUB-DIV BITS
7 6 5 4 3 2 1 0 12.5%
X X X X X 0 0 0 OFF
X X X X X 0 0 I OFF
X X X X X 0 I 0 OFF
X X X X X 0 I I OFF
X X X X X I 0 0 OFF
X X X X X I 0 I OFF
X X X X X I I 0 OFF
X X X X X I I I ON

Interconnections increase cost and decrease reliability.
The simple buffered pin-per-function circuit in Figure 16
is insufficient when many outputs require higher-than­
TTL drive levels. A lower-cost solution uses the 8051
serial port in the shift-register mode to augment 1/ O. In
mode 0, writing a byte to the serial port data buffer
(SBUF) causes the data to be output sequentially through
the "RXD" pin while a burst of eight clock pulses is
generated on the "TXD" pin. A shift register connected to
these pins (Figure 17) will load the data byte as it is shifted
out. A number of special peripheral driver circuits com­
bining shift-register inputs with high drive level outputs
have been introduced recently.

Cascading multiple shift registers end-to-end will expand
the number of outputs even further. The data rate in the
I/O expansion mode is one megabaud, or 8 usec. per byte.
This is the mode which the serial port defaults to following
a reset, so no initialization is required.

The software for this technique uses the B register as a
"map" corresponding to the different output functions.
The program manipulates these bits instead of the output
pins. After all functions have been calculated the B register
is shifted by the serial port to the shift-register/ driver.
(While some outputs may glitch as data is shifted through
them, at I Megabaud most people wouldn't notice. Some
shift registers provide an "enable" bit to hold the output
states while new data is being shifted in.)

This is where the earlier decision to address bits symbol­
ically throughout the program is going to payoff. This
major I/O restructuring is nearly as simple to implement
as rearranging the input pins. Again, only the bit declara­
tions need to be changed.

L_FRNT BIT B.O ; FRONT LEFT-TURN
INDICATOR

R_FRNT BIT B.I ; FRONT RIGHT-TURN
INDICATOR

LDASH BIT B.2 ; DASHBOARD LEFT-TURN
INDICATOR

R_DASH BIT B.3 ; DASHBOARD RIGHT-TURN
INDICATOR

DUTY CYCLES
25.0% 37.5% 50.0% 62.5% 75.0% 87.5%
OFF OFF OFF OFF OFF OFF
OFF OFF OFF OFF OFF ON
OFF OFF OFF OFF ON ON
OFF OFF OFF ON ON ON
OFF OFF ON ON ON ON
OFF ON ON ON ON ON
ON ON ON ON ON ON
ON ON ON ON ON ON

22

+12V

8051

P3.01----t

P3.1 f---___.-i elK

Figure 17. Output expansion using serial port.

L_REAR BIT B.4 ; REAR LEFT-TURN
; INDICATOR

R_REAR BIT B.5 ; REAR RIGHT-TURN
; INDICATOR

The original program to compute the functions need not
change. After computing the output variables, the control
map is transmitted to the buffered shift register through
the serial port:

MOY SBUF,B ; LOAD BUFFER AND TRANSMIT

The Boolean Processor solution holds a number of advan­
tages over older methods. Fewer switches are required.
Each is simpler, requiring fewer poles and lower current
contacts. The flasher relay is eliminated entirely. Only six
filaments are driven, rather than 10. The wiring harness is
therefore simpler and less expensive-one conductor for
each of the six lamps and each of the five sensor switches.
The fewer conductors use far fewer connectors. The whole
system is more reliable.

And since the system is much simpler it would be feasible
to implement redundancy and/ or fault detection on the

. four main turn indicators. Each could still be a standard
double filament bulb, but with the filaments driven in
parallel to tolerate single-element failures.

Even with redundancy, the lights will eventually fail. To
handle this inescapable fact current or voltage sensing

01489A-24

AP-70

circuits on each main drive wire can verify that each bulb
a nd its high-current driver is functioning properly. Figure
111 shows one such circuit.

P1.7

P2.0

Po.1

P2.2

+sv

TO 1-----... __

WIRING
HARNESS

I

+12V

Figure 18.

Assume all of the lights are turned on except one; i.e., all
but one of the collectors are grounded. For the bulb which
is turned off, ifthere is continuity from + 12 V through the
bulb base and filament, the control wire, all connectors,
and the P.c. board traces, and if the transistor is indeed
not shorted to ground; then the collector will be pulled to
+ 12 V. This turns on the base of Q8 through the corres­
ponding resistor, and grounds the input pin, verifying that
the bulb circuit is operational. The continuity of each
circllit can be checked by software in this way.

Now t urn all the bulbs on, grounding all the collectors. Q7
should be turned off, and the Test pin should be high.
H owcver, a control wire shorted to + 12 V or an open­
circuited drive transistor would leave one ofthe collectors
at the higher voltage even now. This too would turn on Q7,
ind icating a different type of failure. Software could per­
form these checks once per second by executing the rou­
tine every time the software counter SUB_DIVis reloaded
by the interrupt routine.

D.lNZ SUB_DIV,TOSERV
MOV SUB_DIV,#244
ORL PI,#IIIOOOOOB

ORL P2,#OOOOOIIIB
CLR LFRNT

.IS TO,FAULT

SETB LFRNT

; RELOAD COUNTER
; SET CONTROL

OUTPUTS HIGH

; FLOAT DRIVE
COLLECTOR

; TO SHOULD BE
PULLED LOW

; PULL COLLECTOR
BACK DOWN

23

CLR LDASH
JB TO,FAULT
SETB LDASH
CLR LREAR
.IB TO,FAULT
SETB LREAR
CLR R_FRNT
.IB TO,FAULT
SETB R_FRNT
CLR R_DASH
.IB TO,FAULT
SETB R_DASH
CLR R_REAR
'/B TO,FAULT
SETB R_REAR

; WITH ALL COLLECTORS GROUNDED, TO
SHOULD BE HIGH

; IF SO, CONTINUE WITH INTERRUPT ROUTINE.
'/B TO,TOSERV

FAULT:

TOSERV:

; ELECTRICAL FAILURE
;PROCESSING ROUTINE
; (LEFT TO READER'S
; IMAGINATION)
; CONTINUE WITH
;(NTERRUPT PROCESSING

The complete assembled program listing is printed in
Appendix A. The resulting code consists of 67 program
statements, not counting declarations and comments,
which assemble into 150 bytes of object code. Each pass
through the service routine requires (coincidently) 67 usec,
plus 32 usec once per second for the electrical test. If
executed every 4 msec as suggested this software would
typically reduce the throughput of the background pro­
gram by less than 2%.

Once a microcomputer has been designed into a system,
new features suddenly become virtually free. Software
could make the emergency blinkers flash alternately or at
a rate faster than the turn signals. Turn signals could
override the emergency blinkers. Adding more bulbs
would allow multiple taillight sequencing and
syncopation - true flash factor, so to speak.

Design Example #5 - Complex Control
Functions
Finally, we'll mix byte and bit operations to extend the use
of 8051 into extremely complex applications.

Programmers can arbitrarily assign 110 pins to input and
output functions only if the total does not exceed 32,
which is insufficient for applications with a very large
number of input variables. One way to expand the number
of inputs is with a technique similar to multiplexed­
keyboard scanning.

01489A-25

At'-fU

Figure 19 shows a block diagram for a moderately com­
plex programmable industrial controller with the follow­
ing characteristics:

• 64 input variable sensors;
• 12 output signals;
• Combinational and sequential logic computations;
• Remote operation with communications to a host

processor via a high-speed full-duplex serial link;
• Two prioritized external interrupts;
• Internal real-time and time-of-day clocks.

While many microprocessors could be programmed to
provide these capabilities with assorted peripheral sup­
port chips, an 8051 microcomputer needs no other inte­
grated circuits!

The 64 input sensors are logically arranged as an 8x8
matrix. The pins of Port I sequentially enable each
column of the sensor matrix; as each is enabled Port 0
reads in the state of each sensor in that column. An
eight-byte block in bit-addressable RAM remembers the
data as it is read in so that after each complete scan cycle
there is an internal map of the current state of all sensors.
Logic functions can then directly address the elements of
the bit map.

The computer's serial port is configured as a nine-bit
UART, transferring data at 17,000 bytes-per-second. The
ninth bit may distinguish between address and data bytes.

12M.Z €
SERIAL {
LINK

RETURN
LINES

\
0 • 16124132140 4856

1 '7

I I I 2 58 ,r- .. 'x' _f- SENSOR - 60
,I- jATj'X 1_ '61
6 I I I 62

7 15 231311'9147 55 6'

t t

/
SCAN
LINES

XTAL1

XTAl2

RXC

TXD

PO.O

PO.1

PO.2

PO.3

PO.4

PO.S

PO.6

PO,7

Pl.Q

P1.1

P1.2

P1'.3

P1.4

P1,5

P1.6

P1.7

+5V

it 1.0uF

vee RST

iNTo
7im

8051

P3.4

P3.'

P3.6

P3.7

P2.0

P2.1

P2.2

P2.3

P2._

P2.5

P2.6

P2.7

ALE
__ N.C.

PSEN ~N.C.

VSS EA

r

I ASYNCHRONANS
INTERRUPTS

MACHINE
ACTUATORS

Figure 19. Block diagram of 64-input machine
controller.

24

The 8051 serial port can be configured to detect bytes with
the address bit set, automatically ignoring all others. Pins
INTO and INTI are interrupts configured respectively as
high-priority, falling-edge triggered and low-priority, low­
level triggered. The remaining 12 I/O pins output TTL­
level control signals to 12 actuators.

There are several ways to implement the sensor matrix
circuitry, all logically similar. Figure 20.a shows one possi­
bility. Each of the 64 sensors consists of a pair of simple
switch contacts in series with a diode to permit mUltiple
contact closures throughout the matrix.

The scan lines from Port I provide eight un-encoded
active-high scan signals for enabling columns of the
matrix. The return lines on rows where a contact is closed
are pulled high and read as logic ones. Open return lines
are pulled to ground by one of the 40 kohm resistors and
are read as zeroes. (The resistor values must be chosen to
ensure all return lines are pulled above the 2.0 V logic
threshold, even in the worst-case, where all contacts in an
enabled column are closed.) Since PO is provided open­
collector outputs and high-impedance MOS inputs its
input loading may be considered negligible.

The circuits in Figures 20.b-20.d are variations on this
theme. When input signals must be electrically isolated
from the computer circuitry as in noisy industrial environ­
ments, phototransistors can replace the switch/ diode
pairs and provide optical isolation as in Figure 20.b. Addi­
tional opto-isolators could also be used on the control
output and special signal lines.

The other circuits assume that input signals are already at
TTL levels. Figure 20.c uses octal three-state buffers
enabled by active-low scan signals to gate eight signals
onto Port O. Port 0 is available for memory expansion or
peripheral chip interfacing between sensor matrix scans.
Eight-to-one multiplexers in Figure 20.d select one of
eight inputs for each return line as determined by encoded
address bits output on three pins of Port I. (Five more
output pins are thus freed for more control functions.)
Each output can drive at least one standard TTL or up to
IO low-power TTL loads. without additional buffeting.

Going back to the original matrix circuit, Figure 21 shows
the method used to scan the sensor matrix. Two complete
bit maps are maintained in the bit-addressable region of
the RAM: one for the current state and one for the pre­
vious state read for each sensor. If the need arises, the
program could then sense input transitions and/ or
debounce contact closures by comparing each bit with its
earlier value.

01489A·26

AP-70

"7"

,---
8051

+--+---+---t-+---.--l PO.O

-+---.+-++----.+--I PO.l

-+---+-1--/ PO.2
I PD.3

--.:.: --+1 t-y 1---.-----++--_++++--1 po.'

_-+--__ 1+ 1-+1 ::
"15" "63"

>-.-'-~ ~-.l-~ >--e-'-~
-I--+--+'---+-h+++-~I--I PO.7

8,40K t
1...---++------1 P ,.O

1...-----1-"-------4 P1.1

'------++-----1 Pl.2
1...-____ ---1+-___ --/.'.3

'--------H-----IP1.4
'--------++-------i P1 .5

1...-----------t-+-------j.,.S
-----------I-"-------4Pl.7

SCAN'
LINES

a.) Using switch contact/diode matrix.

.-.

c.)

4-+-I-I--I-I---e-+-+-+-+-"---I----<l-+-+-+-+-+--I PO.2

4-HH--+----e-+-+-++---!----<l-+-+-+_+_~ PO.3
4-+-1+----<1-+-+-+-+-----...4>-1-+-1--1 PO.'

4-H-----e-+-+--+------<lH-+---I po.s
4-1----_____ -+----,"--------<l-+----I PO.6

'-+-------4~-+-----_o---iPO.7

I I I I I

I
III Pl.0

Pl.1

Pl.2

P1.3

Pl.4

Pl.S

P1.7

'--

Using TTL three-state buffers.

l

+5V

+8x4K

~'O,.~,.

~ .. ~t r -+---+--<~~' "5lT'~PO.'
-+----t-i 1 -+----++--......,+-1PO.2
_,-__ - - I PO.a

: 1 H-t 1 :::
_+-__ 1 -+ 1+ po.s

~,~.I.., r- I,--t~_~ -=--,.8·~'t-+--ttH+ttt-1PO.7
8k40K llimH

'----++------1 Pl.D

'------++-------1 P'.'
'------++-----1 P1 .2

1...------H------i P1 .3

'--------++-------1 Pl.4

'---------++-----jP1.5

I...----------t+-------i P,.S
L......------------t+------jP1.7

SCA.!
LINES

b.) Using optically-coupled isolators.

lJJllJl1
1
00 01 02 03 04 Os 06 07

74151

C B A V S

I~

d.) Using TTL data selectors.

Figure 20. Sensor Matrix Implementation Methods.

ThL' code in Example 3 implements the scanning algo­
ri t h 111 for the circuits in Figure 20.a. Each column is
enaolcd by setting a single bit in a field of zeroes. The bit
maps are positive logic; ones represent contacts that are
closed or isolators turned on.

25

Example 3.

INPUT.-SCAN: ; SUBROUTINE TO READ
CURRENT STATE

; OF 64 SENSORS AND
SAVE IN RAM 20H-27H.

MOV RO,#20H ; INITIALIZE
; POINTERS

MOV RI,#28H ; FOR BIT MAP
; BASES.

01489A-27

AP-70

SCAN:

MOV A,#80H ; SET FIRST BIT IN
ACe.

MOV PI,A ; OUTPUT TO SCAN
LINES.

RR A ; SHIFT TO ENABLE
NEXT COLUMN
NEXT.

MOV R2,A ; REMEMBER CUR-
RENT SCAN
POSITION.

MOV A,PO ; READ RETURN
LINES.

XCH A,@RO ; SWITCH WITH
PREVIOUS MAP
BITS.

MOV @RI,A ; SAVE PREVIOUS

INC
INC
MOV

JNB

RET

STATE AS WELL.
RO ; BUMP POINTERS.
RI
A,R2 ; RELOAD SCAN LINE

MASK
ACe.7,sCAN ; LOOP UNTIL ALL

EIGHT COLUMNS
READ.

INITIALIZE MAP
BUFFER POINTERS
AND SCAN MASK

OUTPUT SCAN
MASK TO SCAN

LINES;
STORE SHIFTED

MASK

READ RETURN
LINES AND UPDATE

BIT MAPS

Figure 21. Flowchart for reading in sensor matrix.

26

What happens after the sensors have been scanned
depends on the individual application. Rather than
inventing some artificial design problem, software corres­
ponding to commonplace logic elements will be discussed.

Combinatorial Output Variables. An output varia ble
which is a simple (or not so simple) combinational func­
tion of several input variables is computed in the spirit of
Design Example 3. All 64 inputs are represented in the bit
maps; in fact, the sensor numbers in Figure 20 correspond
to the absolute bit addresses in RAM! The code in Exam­
ple 4 activates an actuator connected to P2.2 when sensors
12, 23, and 34 are closed and sensors 45 and 56 are open.

Example 4.

Simple Combinatorial Output Variables.

; SET P2.2 = (12) (23) (34) (/45) (/56)
MOV C,12
ANL C,23
ANL C,34
ANL C,j45
ANL C,j56
MOV P2.2,C

Intermediate Variables. The examination of a typical
relay-logic ladder diagram will show that many of the
rungs control not outputs but rather relays whose con­
tacts figure into the computation of other functions. In
effect, these relays indicate the state of intermediate varia­
bles of a computation.

The MCS-5I'M solution can use any directly addressable
bit for the storage of such intermediate variables. Even
when all 128 bits of the RAM array are dedicated (to input
bit maps in this example), the accumulator, PSW, and B
register provide 18 additional flags for intermediate
variables.

For example, suppose switches 0 through 3 control a
safety interlock system. Closing any of them should deac­
tivate certain outputs. Figure 22 is a ladder diagram for
this situation. The interlock function could be recomputed
for every output affected, or it may be computed once and
saved (as implied by the diagram). As the program pro­
ceeds this bit can qualify each output.

Example 5. Incorporating Override signal into actuator
outputs.

CALL INPUT .-SCAN
MOV C,O
ORL C,l
ORL C,2
ORL C,3
MOV FO,C

01489A-28

AP-70

COMPUTE FUNCTION a

ANL C,/FO
MOY PI.O,C

COMPUTE FUNCTION I

ANL C,/FO
MOY PI.I,C

COMPUTE FUNCTION 2

ANL C,/FO
MOY PI.2,C

"0"

I
"1"

~-+---1II--"'----I
"2"

"3"

Figure 22. Ladder diagram for output override
circuitry.

i.alching Relays. A latching relay can be forced into either
the ON or OFF state by two corresponding input signals,
where it will remain until forced onto the opposite state­
analogous to a TTL Set/ Reset flip-flop. The relay is used
as an intermediate variable for other calculations. In the
previous example, the emergency condition could be
remembered and remain active until an "emergency
cleared" button is pressed.

Any flag or addressabl"e bit may represent a latching relay
with a few lines of code (see Example 6).

27

Example 6. Simulating a latching relay.

;L-SET SET FLAG a IF C=I
LSET: ORL C,FO

MOY FO,C

;LRSET RESET FLAG 0 IF C=I
LRSET: CPS C

ANL C,FO
MOY FO,C

Time Delay Relays. A time delay relay does not respond
to an input signal until it has been present (or absent) for
some predefined time. For example, a ballast or load
resistor may be switched in series with a D.C, motor when
it is first turned on, and shunted from the circuit after one
second. This sort of time delay may be simulated by an
interrupt routine driven by one of the two 8051 timer/
counters. The procedure followed by the routine depends
heavily on the details of the exact function needed; time­
outs or time delays with resettable or non-resettable inputs
are possible. If the interrupt routine is executed every 10
milliseconds the code in Example 7 will clear an inter­
mediate variable set by the background program after it
has been active for two seconds.

Example 7. Code to clear USRFLG after a fixed time delay.

JNB USR_FLG,NXTTST
DJNZ DLA Y _COUNT,NXTTST
CLR USR_FLG
MOY DLAY_COUNT,#200

NXTTST: , ..

Serial Interface to Remote Processor. When it detects
emergency conditions represented by certain input com­
binations (such as the earlier Emergency Override), the
controller could shut down the machine immediately
and/ or alert the host processor via the serial port. Code
bytes indicating the nature of the problem could be trans­
mitted to a central computer. In fact, at 17,000 bytes-per­
second, the entire contents of both bit maps could be sent
to the host processor for further analysis in less than a
millisecond! If the host decides thatconditions warrant, it
could alert other remote processors in the system that a
problem exists and specify which shut-down sequence
each should initiate. For more information on using the
serial port, consult the MCS-5I™ User's Manual.

Response Timing.
One difference between relay and programmed industrial
controllers (when each is considered as a "black box") is
their respective reaction times to input changes. As
reflected by a ladder diagram, relay systems contain a

01489A-29

large number of "rungs" operating in parallel. A change in
input conditions will begin propagating through the sys­
tem immediately, possibly affecting the output state
within milliseconds.

Software, on the other hand, operates sequentially. A
change in input states will not be detected until the next
time an input scan is performed, and will not affect the
outputs until that section of the program is reached. For
that reason the raw speed of computing the logical func­
tions is of extreme importance.

Here the Boolean processor pays off. Every instruction
mentioned in this Note completes in one or two micro­
seconds-the minimum instruction execution time for
many other microcontrollers! A ladder diagram contain­
ing a hundred rungs, with an average of four contacts per
rung can be replaced by approximately five hundred lines
of software. A complete pass through the entire matrix
scanning routine and all computations would require
about a millisecond; less than the time it takes for most
relays to change state.

A programmed controller which simulates each Boolean
function with a subroutine would be less efficient by at
least an order of magnitude. Extra software is needed for
the simulation routines, and each step takes longer to
execute for three reasons: several byte-wide logical
instructions are executed per user program step (rather
than one Boolean operation); most of those instructions
take longer to execute with microprocessors performing
multiple off-chip accesses; and calling and returning from
the various subroutines requires overhead for stack
operations.

In fact, the speed of the Boolean Processor solution is
likely to be much faster than the system requires. The
CPU might use the time left over to compute feedback
parameters, collect and analyze execution statistics, per­
form system diagnostics, and so forth.

Additional functions and uses.

With the building-block basics mentioned above many
more operations may be synthesized by short instruction
sequences.

Exclusive-OR. There are no common mechanical devices
or relays analogous to the Exclusive-OR operation, so this
instruction was omitted from the Boolean Processor.
However, the Exclusive-OR or Exclusive-NOR operation
may be performed in two instructions by conditionally
complementing the carry or a Boolean variable based on
the state of any other testable bit.

28

; EXCLUSIVE-OR FUNCTION IMPOSED ON CARR Y
; USING FO IS INPUT VARIABLE.
XOR_FO: JNB FO,XORCNT ; ("J8" FOR X-NOR)

CPL C
XORCNT: ...

XCH. The contents of the carry and some other bit may be
exchanged (switched) by using the accumulator as tempo­
rary storage. Bits can be moved into and out of the accu­
mulator simultaneously using the Rotate-through-carry
instructions, though this would alter the accumulator
data.

; EXCHANGE CARRY WITH USRFLG
XCHBIT: RLC A

MOV C,USR_FLG
RRC A
MOV USR_FLG,C
RLC A

Extended Bit Addressing. The 8051 can directly address
144 general-purpose bits for all instructions in Figure 3.h.
Similar operations may be extended to any bit anywhere
on the chip with some loss of efficiency.

The logical operations AND, OR, and Exclusive-OR are
performed on byte variables using six different addressing
modes, one of which lets the source be an immediate
mask, and the destination any directly addressable byte.
Any bit may thus be set, cleared, or complemented with a
three-byte, two-cycle instruction if the mask has all bits
but one set or cleared.

Byte variables, registers, and indirectly addressed RA M
may be moved to a bit addressable register (usually the
accumulator) in one instruction. Once transferred, the bits
may be tested with a conditional jump, allowing any bit to
be polled in 3 microseconds-still much faster than most
architectures-or used for logical calculations. (This
technique can also simulate additional bit addressing
modes with byte operations.)

Parity ofbytes or bits. The parity of the current accumu­
lator contents is always available in the PSW, from
whence it may be moved to the carry and further pro­
cessed. Error-correcting Hamming codes and simila r
applications require computing parity on groups of iso­
lated bits. This can be done by conditionally complement­
ing the carry flag based on those bits or by gathering the
bits into the accumulator (as shown in the DES example)
and then testing the parallel parity flag.

Multiple byte shift and CRC codes.

Though the 8051 serial port can accommodate eight- or
nine-bit data transmissions, some protocols involve much

01489A-30

AP-70

longer bit streams. The algorithms presented in Design
Example 2 can be extended quite readily to 16 or more bits
by using multi-byte input and output buffers.

Many mass data storage peripherals and serial communi­
cations protocols include Cyclic Redundancy (CRC)
codes to verify data integrity. The function is generally
computed serial1y by hardware using shift registers and
Exclusive-OR gates, but it can be done with software. As
each bit is received into the carry, appropriate bits in the
multi-byte data buffer are conditional1y complemented
based on the incoming data bit. When finished, the CRC
register contents may be checked for zero by ORing the
two bytes in the accumulator.

4. SUMMARY
A truly unique facet of the Intel MCS-5 I'M microcomputer
fa mily design is the col1ection offeatures optimized for the
ollc-bit operations so often desired in real-world, real-time
conI wi applications. Included are 17 special instructions,
a !ioolcan accumulator, implicit and direct addressing
modcs. program and mass data storage, and many 1/0
opt io1lS. These are the world's first single-chip micro­
L'Olllpulcrs able to efficiently manipulate, operate on, and
t ra Ilsfcr either bytes or individual bits as data.

29

This Application Note has detailed the information
needed by a microcomputer system designer to make ful1
use of these capabilities. Five design examples were used
to contrast the solutions allowed by the 8051 and those
required by previous architectures. Depending on the
individual application, the 8051 solution will be easier to
design, more reliable to implement, debug, and verify, use
less program memory, and run up to an order of magni­
tude faster than the same function implemented on pre­
vious digital computer architectures.

Combining byte- and bit-handling capabilities in a single
microcomputer has a strong synergistic effect: the power
of the result exceeds the power of byte- and bit-processors
laboring individually. Virtually all user applications will
benefit in some ways from this duality. Data intensive
applications will use bit addressing for test pin monitoring
or program control flags; control applications will use
byte manipulation for parallel 110 expansion or arith­
metic calculations.

It is hoped that these design examples give the reader an
appreciation of these unique features and suggest ways to
exploit them in his or her own application.

01489A-31

ISIS-II MCS-51 MACRO ASSEMBLER Vl.0
OBJECT MODULE PLACED IN :FO:AP70.HEX
ASSEMBLER INVOKED BY: : fl:asm51 ap70. src date(328)

LOC OBJ LINE SOURCE

0090
0091
0092
0093
0094

0095
0096
0097
OOAO
OOAI
OOA2

00A3

0020
0000
0007

OODI

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48 +1

$XREF TITLE(AP-70 APPENDIX)
i**

THE FOLLOWING PROGRAM USES THE BOOLEAN INSTRUCTION SET
OF THE INTEL 8051 MICROCOMPUTER TO PERFORM A NUMBER OF
AUTOMOTIVE DASHBOARD CONTROL FUNCTIONS RELATING TO
TURN SIGNAL CONTROL, EMERGENCY BLINKERS, BRAKE LIGHT
CONTROL, AND PARKING LIGHT OPERATION.
THE ALGORITHMS AND HARDWARE ARE DESCRIBED IN DESJGN
EXAMPLE #4 OF INTEL APPLICATION NOTE AP-70,

"USING THE INTEL MCS-51<TM)
BOOLEAN PROCESSING CAPABILITIES"

i***

INPUT PIN DECLARATIONS:
(ALL INPUTS ARE POSITIVE-TRUE LOGIC.

INPUTS ARE HIGH WHEN RESPECTIVE SWITCH CONTACT IS CLOSED.)

BRAKE BIT
EMERG BIT
PARK BIT
L_TURN BIT
R_TURN BIT

P1. 0
PI. 1
Pl. 2
P1. 3
P1. 4

BRAKE PEDAL DEPRESSED
EMERGENCY BLINKER ACTIVATED
PARKING LIGHTS ON
TURN LEVER DOWN
TURN LEVER UP

OUTPUT PIN DECLARATIONS:
(ALL OUTPUTS ARE POSITIVE TRUE LOGIC.
BULB IS TURNED ON WHEN OUTPUT PIN IS HIGH.)

LJRNT BIT
R_FRNT BIT
L_DASH BIT
R_DASH BIT
L_REAR BIT
R_REAR BIT

S_FAIL BIT

PI.5
PI. 6
PI. 7
P2.0
P2. 1
P2.2

P2. 3

FRONT LEFT-TURN INDICATOR
FRONT RIGHT-TURN INDICATOR
DASHBOARD LEFT-TURN INDICATOR
DASHBOARD RIGHT-TURN INDICATOR
REAR LEFT-TURN INDICATOR
REAR RIGHT-TURN INDICATOR

ELECTRICAL SYSTEM FAULT INDICATOR

INTERNAL VARIABLE DEFINITIONS:

SUB_DIV DATA
HI_FREG BIT
LO_FREG BIT

DIM BIT

20H
SUB_DIV.O
SUB_DIV. 7

PSW.l

INTERRUPT RATE SUBDIVIDER
HIGH-FREGUENCY OSCILLATOR BIT
LOW-FREGUENCY OSCILLATOR BIT

PARKING LIGHTS ON FLAG

i===
$EJECT

"'O~
... "C
0"C co CD
iil ~
32:
,-><
ii' ~ -,
5" ~ cp c -° 3

° 2:
i"
-t c ...
~
I

S'
Q.
n
111 -0 ...
0
0
~ -... 2-
i") ...

"I
I ..
C

LOC OBJ LINE SOURCE

49 ORG OOOOH RESET VECTOR
0000 020040 50 LJMP INIT

51
OOOB 52 ORG OOOBH TIMER 0 SERVICE VECTOR
OOOB 758CFO 53 MOV THO, #-16 HIGH TIMER BYTE ADJUSTED TO CONTROL INT. RATE
OOOE CODO 54 PUSH PSW EXECUTE CODE TO SAVE ANY REGISTERS USED BELOW
0010 0154 55 AJMP UPDATE (CONTINUE WITH REST OF ROUTINE)

56
0040 57 ORG 0040H
0040 758AOO 58 INIT: MOV TLO,#O ZERO LOADED INTO LOW-ORDER BYTE AND
0043 758CFO 59 MOV THO, #-16 -16 IN HIGH-ORDER BYTE GIVES 4 MSEC PERIOD
0046 758961 60 MOV TMOD,#01100001B 8-BIT AUTO RELOAD COUNTER MODE FOR TIMER I,

61 16-BIT TIMER MODE FOR TIMER 0 SELECTED
0049 7520F4 62 MOV SUB_DIV,#244 SUBDIVIDE INTERRUPT RATE BY 244 FOR 1 HZ
004C D2A9 63 SETB ETO USE TIMER 0 OVERFLOWS TO INTERRUPT PROGRAM
004E D2AF 64 SETB EA CONFIGURE IE TO GLOBALLY ENABLE INTERRUPTS
0050 D28C 65 SETB TRO KEEP INSTRUCTION CYCLE COUNT UNTIL OVERFLOW
0052 80FE 66 SJMP $ START BACKGROUND PROGRAM EXECUTION

67
68

0054 D52038 69 UPDATE: DJNZ SUB_DIV,TOSERV EXECUTE SYSTEM TEST ONLY ONCE PER SECOND
0057 7520F4 70 MOV SUB_DIV,#244 GET VALUE FOR NEXT ONE SECOND DELAY AND

71 GO THROUGH ELECTRICAL SYSTEM TEST CODE: » 005A 4390EO 72 ORL PI, #11100000B SET CONTROL OUTPUTS HIGH
U) 0050 43A007 73 ORL P2,#00000111B "U I

0060 C295 74 CLR L_FRNT FLOAT DRIVE COLLECTOR
0062 20B428 75 JB TO, FAULT TO SHOULD BE PULLED LOW 0
0065 D295 76 SETB L_FRNT PULL COLLECTOR BACK DOWN
0067 C297 77 CLR L_DASH REPEAT SEGUENCE FOR L_OASH,
0069 20B421 78 JB TO, FAULT
006C D297 79 SETB L_DASH
006E C2Al 80 CLR L_REAR L REAR,
0070 20B41A 81 JB TO, FAULT
0073 D2Al 82 SETB L_REAR
0075 C296 83 CLR R_FRNT R_FRNT,
0077 20B413 84 JB TO, FAULT
007A D296 85 SETB R_FRNT
007C C2AO 86 CLR R_DASH R_DASH,
007E 20B40C 87 JB TO, FAULT
0081 D2AO 88 SETB R_DASH
0083 C2A2 89 CLR R_REAR AND R __ REAR.
0085 20B405 90 JB TO, FAULT
0088 D2A2 91 SETB R_REAR

92
93 WITH ALL COLLECTORS GROUNDED, TO SHOULD BE HIGH
94 IF SO, CONTINUE WITH INTERRUPT ROUTINE.
95

008A 20B402 96 JB TO, TOSERV
008D B2A3 97 FAULT: CPL S_FAIL ELECTRICAL FAILURE PROCESSING ROUTINE

98 (TOGGLE INDICATOR ONCE PER SECOND)
99 +1 $EJECT

LOC OBJ LINE SOURCE

100 CONTINUE WITH INTERRUPT PROCESSING:
101
102 1) COMPUTE LOW BULB INTENSITY WHEN PARKING LIGHTS ARE ON.
103

008F A201 104 TOSERV: MOV C, SUBJ>IV. 1 START WITH 50 PERCENT,
0091 8200 105 ANL C,SUB_DIV.O MASK DOWN TO 25 PERCENT,
0093 7202 106 ORL C,SUB_DIV.2 BUILD BACK TO 62. 5 PERCENT.
0095 8292 107 ANL C,PARK GATE WITH PARKING LIGHT SWITCH,
0097 92Dl 108 MOV DIM,C AND SAVE IN TEMP. VARIABLE.

109
110 2) COMPUTE AND OUTPUT LEFT-HAND DASHBOARD INDICATOR.
111

0099 A293 112 MOV C,L_TURN SET CARRY IF TURN
009B 7291 113 ORL C.EMERG OR EMERGENCY SELECTED.
009D 8207 114 ANL C,LO_FREG IF SO, GATE IN 1 HZ SIGNAL
009F 9297 115 MOV L_DASH.C AND OUTPUT TO DASHBOARD.

116
117 3) COMPUTE AND OUTPUT LEFT-HAND FRONT TURN SIGNAL.
118

OOAI 92D5 119 MOV FO,C SAVE FUNCTION SO FAR.
00A3 72Dl 120 ORL C.DIM ADD IN PARKING LIGHT FUNCTION
00A5 9295 121 MOV LJRNT,C AND OUTPUT TO TURN SIGNAL.

122
123 4) COMPUTE AND OUTPUT LEFT-HAND REAR TURN SIGNAL.):I

(..) 124 "t
N 00A7 A290 125 MOV C.BRAKE GATE BRAKE PEDAL SWITCH I

00A9 B093 126 ANL C,/L_TURN WITH TURN LEVER.
....
C

OOAB 72D5 127 ORL C,FO INCLUDE TEMP. VARIABLE FROM DASH
OOAD 72Dl 128 ORL C,DIM AND PARKING LIGHT FUNCTION
OOAF 92Al 129 MOV L_REAR, C AND OUTPUT TO TURN SIGNAL.

130
131 5) REPEAT ALL OF ABOVE FOR RIGHT-HAND COUNTERPARTS.
132

OOBI A294 133 MOV C. R_TURN SET CARRY IF TURN
00B3 7291 134 ORL C.EMERG OR EMERGENCY SELECTED.
00B5 8207 135 ANL C,LO_FREG IF SO, GATE IN 1 HZ SIGNAL
00B7 92AO 136 MOV R_DASH,C AND OUTPUT TO DASHBOARD.
00B9 92D5 137 MOV FO,C SAVE FUNCTION SO FAR.
OOBB 72Dl 138 ORL C.DIM ADD IN PARKING LIGHT FUNCTION
OOBD 9296 139 MOV R_FRNT,C AND OUTPUT TO TURN SIGNAL.
OOBF A290 140 MOV C,BRAKE GATE BRAKE PEDAL SWITCH
OOCI B094 141 ANL C,/R_TURN WITH TURN LEVER.
00C3 72D5 142 ORL C.FO INCLUDE TEMP. VARIABLE FROM DASH
00C5 72Dl 143 ORL C,DIM AND PARKING LIGHT FUNCTION
00C7 92A2 144 MOV R_REAR. C AND OUTPUT TO TURN SIGNAL.

145
146 RESTORE STATUS REGISTER AND RETURN.
147

00C9 DODO 148 POP PSW RESTORE PSW
OOCB 32 149 RETI AND RETURN FROM INTERRUPT ROUTINE

150
! 51 END

XREF SYMBOL TABLE LISTING
------ -------

NAME TYPE VALUE AND REFERENCES

BRAKE N BSEG 0090H 20# 125 140
DIM. N BSEG 00D1H 45# 108 120 128 138 143
EA. N BSEG OOAFH 64
EMERG N BSEG 0091H 21# 113 134
ETO . N BSEG 00A9H 63
FO. N BSEG 00D5H 119 127 137 142
FAULT L CSEG 008DH 75 78 81 84 87 90 97#
HI_FREQ N BSEG OOOOH 42#
INIT. L CSEG 0040H 50 58#
L_DASH. N BSEG 0097H 32# 77 79 115
L_FRNT. N BSEG 0095H 30# 74 76 121
L_REAR. N BSEG 00A1H 34# 80 82 129
L_TURN. N BSEG 0093H 23# 112 126 »

c.:> LO_FREQ N BSEG 0007H 43# 114 135 "'a
c.:> P1. N DSEG 0090H 20 21 22 23 24 30 31 32 72 I

P2. N DSEG OOAOH 33 34 35 37 73
PARK. N BSEG 0092H 22# 107

0

PSW . N DSEG OODOH 45 54 148
R_DASH. N BSEG OOAOH 33# 86 88 136
RJRNT. N BSEG 0096H 31# 83 85 139
R_REAR. N BSEG 00A2H 35# 89 91 144
R_TURN. N BSEG 0094H 24# 133 141
S_FAIL. N BSEG 00A3H 37# 97
SUB_DIV N DSEG 0020H 41# 42 43 62 69 70 104 105 106
TO. N BSEG 00B4H 75 78 81 84 87 90 96
TOSERV. L CSEG 008FH 69 96 104#
THO. N DSEG 008CH 53 59
TLO . N DSEG 008AH 58
TMOD. N DSEG 0089H 60
TRO . N BSEG 008CH 65
UPDATE. L CSEG 0054H 55 69#

ASSEMBLY COMPLETE, NO ERRORS FOUND

intJ
INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, CA 95051 (408) 987-8080

Printed in U.S.A.lTP-40/0580/30K RG IL

