
8080/8085 I\SSEMBL Y LANGUAGE
PROGRi\MMING MANUAL

Order Number 9800301 C

Copyright © 1977, 1978 Intel Corporation

I Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051 I

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited to, the implied

warranties of merchantability and fitness for a partiClJar purpose. Intel Corporation (lssumes no responsibility for any

errors that may appear in this document. Intel Corpu-ation makes no commitment to update nor to keep current the

information contained in this document.

The software described in this document is furnished under a license and may be used or copied only in accordance with

the terms of such license.

Intel Corporation assumes no responsibility for the u',e or reliability of its software on equipment that is not supplied by

I n tel.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent
of Intel Corporation.

The following are trademarks of Intel '(:orporation and may be used only to de~cribe Intel products:

ICE 30 LIBRARY MANAGER
ICE-A8 MCS
ICE- 80 MEGACHASSIS

ICE 85 MICROMAP

INSITE MUL TIBUS
INTEL PROMPT

INTELLE:C UPI

ii PRINTED IN U.S.A./B-144/1178/15K/CP

PREFACE

This manual describes programming with Intel's assembly language. It will not teach you how to program a computer.

Although this manual is designed primarily for referen:e, it also contains some instructional material to help the beginning

programmer. The manual is organized as follows:

Chapter 1.

Chapter 2.

Chapter 3.

Chapter 4.

Chapter 5.

Chapter 6.

Chapter 7.

ASSEMBLY LAi'JGUAGE AND PROCESSORS

Description of the assembler

Overview of 8080 hardware and instruction set
Description of 8D80/8085 differences

ASSEMBLY LANGUAGE CONCEPTS

General assembly language coding rules

INSTRUCTION SET

Description~ of each instruction (these are listed alphabetically
for quick reference)

ASSEMBLER DIRECTIVES

Data definition

Conditional assembly

Relocation

MACROS

Macro directives

Macro examples

PROGRAMMING TECHNIQUES

Programming examples

INTERRUPTS

Description of the interrupt system.

Chapters 3 and 4 will fill most of the experienced programmer's reference requirements. Use the table of contents or the
index to locate information quickly.

The beginning programmer should read Chapters 1 anc 2 and then skip to the examples in Chapter 6. As these eXdmples
raise questions, refer to the dppropriate information in Chapter 3 or 4. Before writing a program, you will need to read

Chapter 4. The 'Programming Tips' in Chapter 4 are intended especially for the beginning progrdmmer.

III

RELATED PUBLICATIONS

iv

To u,e your Intellec development system ef~ectively, you should be familiar with the following Intel

publications:

ISIS-II 8080/8085 MACRO ASSEMBLER OPERATOR'S MANUAL, 9800292

When you dctivdte the assembler, you have the option of specifying a number of controls. The operator's

manual describes the activation sequence fQ:" the assembler. The manual also describes the debugging tools

and the error me,sages supplied QY the assembler.

ISIS-II SYSTEM USER'S GUIDE, 9800306

User programs Me commonly stoled on diskette files. The ISIS·II User'., Guide describes the use of the text

editor for entering and maintaining program,. The manual <llso describes the procedures for linking and

locating relocat<lble program modules.

Hardware References

For additional information about processor, and their reid ted components, refer to the <lppropriate User's

Manual:

8080 MICROCOMPUTER SYSTEMS USER'S MANUAL, 9800153

8085 MICROCOMPUTER SYSTEMS USER'S MANUAL, 9800366

TABLE OF CONTENTS

Chapter 1. ASSEMBLY LANGUAGE AND PROCESSORS

Introduction
What Is An Assembler?

What the Assembler Does

Object Code

Program Listing

Sy mbol-Cross-Reference Listing

Do You Need the Assembler?

Overview of 8080/8085 Hardware

Memory

ROM

RAM

Program Counter
Work Registers

Internal Work Registers

Cond ition Flags

Carry Flag

Sign Flag
Zero Flag
Parity Flag

Auxiliary Carry Flag

Stack and Stack Pointer
Stack Operations
Saving Program Status

Input/Output Ports ..
Instruction Set

Addressing Modes
Implied Addressing

Register Addlessing
Immediate Addressing
Direct Addressing
Regi,ter I ndirect Addressing

Combined Addressing Modes

Timing Effects of Addressing Modes

Instruction Naming Conventions

Data Transfer Group

Arithmetic Group

Logical Group

Branch Group
Stack, I/O, and Machine Control Instructions

Hardware/Instruction Summary
Accumulator Instructions
Register Pair (Word) Instructions

Branching Instructions

Instruction Set Guide

1-1

1 -1
1-1

1-1

1-2
1-2

1-3
1-3

1-5

1-5

1-5

1-5
1-6

1-7

1-9

1-9

1-10
1-10

1-11
1-11
1-11

1-12
1-l3
1-l3

1-14
1-15

1-15
1-15

1-15
1-15
1-15
1-16

1-16

1-16

1-16

1-16

1-17

1-17

1-18
1-19

1-19

1-19
1-21
1-22

1-23

v

Chapter 2.

Chapter 3.

vi

8085 Proces~or Differences

Programming for the 8085

Conditional Instructions

ASSEMBLY LANGUAGE CONCEPTS

Introduction

Source Line Format

Character Set

Delimiters

Label/Name Field

Opcode Field

Operand Field

Comment Field

Coding Operand Field Information

Hexadecimal Data

Decimal Data

Octal Data

Binary Data

Location Counter

ASCII Constant

Labeb Assigned Values

Labels of Instruction or Date

Expressions

Instructions as Operands

Register-Type Operands

Two's Complement Representation of Data

Symbols and Symbol Tables

Symbolic Addressing

Symbolic Characteristics

Reserved, User-Defined, ,1Ild As,embler-Generated Symbol,

Global and Limited Symbols

Permanent and Redcfinable Symbols

Absolute and Relocatablc Symbols

Assembly-Time Expression Evaluation

Operators

Arithmetic Operator~

Shift Operators

Logical Operators

Compare Operators

Byte Isolation Operators

Permissible Range of Values

Precedence of Opera tors

Relocatable Expressions
Chaining of Symbol Definitions

INSTRUCTION SET

How to Use this Chapter

Timing Information

Instructions are listed in alphabetical order

1-24

1-24

1-25

2-1

2-1

2-1

2-1

2-2

2-3

2-4

2-4
2-4

2-4

2-5

2-5

2-5

2-5

2-6
2-6
2-6
2-6
2-6
2-7
2-7

2-7
2-9
2-9
2-9
2-9
2-10

2-11

2-11

2-11

2-11

2-12

2-12

2-13

2-13
2-14
2-15

215

2-16
2-18

3-1

3-1

3-1

Chapter 4. ASSEMBLER DIRECTIVES

Symb.ol Definition
EQU Directive

SET Directive
Data Definition

DB Directive

DW Directive

Memory Reservation

DS Directive

Programming Tips: Data De,cription and Access

Random Access Versus Read Only Memory

Data Description

Data Access
Add Symbols for Data Access

Conditional Assembly
IF, ELSE, ENDIF Directives

Assembler Termination
END Directive

Location Counter Control and Relocation

Location Counter Control (Non-Relocatable Mode)

ORG Directive

Introduction to Relocatability
Memory Management

Modular Program Development

Directives Used for Relocation
Location Counter Control (Relocatable Programs)

ASEG Directive

CSEG Directive

DSEG Directive
ORG Directive (Relocatable Mode)

Program Linkage Directives
PUBLIC Directive

EXTRN Directive

NAM E Directive

STKLN Directive

STACK and MEMORY Reserved Words

Programming Tips: Testing Relocatable Modules

Chapter 5. MACROS

Initialization Routines

Input/Output
Remove Coding Used for Testing

Introduction to Macros

Why Use Macros?

What Is A Macro?

Macros Vs. Subroutines

4-1

4-2

4-2

4-3

4·3

4-3

4-4

4-5

4-5

4-6

4-6

4-6

4-6

4-7

4-8

4-8

4-10

4-10

4-11

4-11

4-11

4-12

4-12

4-12

4-14

4-14
4-14

4-15
4-15

4-16
4-16

4-17
4-17

4-18
4-18

4-19
4-19

4-19

4-20

4-20

5-1

5-1

5-1

5-1

5-3

vii

Using Macros

Macro Definition

Macro Definition Directives

MACRO Directive

ENDM Directive

LOCA L Directi ve

RE PT Directive

I RP Directive

I RPC Directive

EXITM Directive

Special Macro Opera tors

Nested Macro Definitions

Macros Cd II,

Macro Call Format

Nested Macro Calls

Macro EXPd mion

Null Macrm

Sample Macrm

5-3
5-3
5-4

5-4

5-5
5-5

5-6

5-8

5-8

5-9

5-10

5-12

5-12

5-12

5-14

5-15

5-16

5-16

Chapter 6. PROGRAMMING TECHNIQUES 6-1

Bra nch Tables P,>eudo-S ubroutine

Tran'>ferring Data to Subroutine

Software Multiply and Divide

Multibyte I\ddition dnd Subtraction

Decimal Addition

Decimal Subtrdction

Chapter 7.INTERRUPTS

Appendix

Appendix

Appendix

Appendix

viii

Interrupt Concept'>

Writing Interrupt Subroutine,

A

B

C

D

INSTRUCTION SUMMARY

ASSEMBLER DIRECTIVE SUMMARY

ASCII CHARACTER SET

BINARY-DECIMAL-HEXADECI'v1AL CONVERSION TABLES·

6-1
6-3

. 6-7
6-11

6-12

6-14

7-1

7-1

7-4

1\-1

B-1
(,1

D-l

Figure

1-1

1-2

1-3

1-4

1-5

LIST OF ILLUSTRATIONS

ASSEMBLER OUTPUTS

COMPARISON OF ASSEMBLY LANGUAGE WITH PUM

8080/8085 INTERNAL REGISTERS ...

INSTRUCTION FETCH

EXECUTION OF MOV M,e: INSTRUCTION

1-2

1-4

1-6

1-8

1-9

ix

1. ASSEMBLY LANCUAGE AND PROCESSORS

INTRODUCTION

Almost every line of source coding in an assembly language ~ource program translates directly into a machine

instruction for a pdrticular processor. Therefore, the assembly language programmer must be familiar with both

the assembly language and the processor for which he is programming.

The first part of this chapter describes the assembler. The second part describes the features of the 8080 micro­

processor from a programmer's point of view. Programming differences between the 8080 and the 8085 micro­

processors are relatively minor. These differences are described in a short section at the end of this chapter.

WHAT IS AN ASSEMBLER?

An assembler is a software tool -~ a program designed to simplify the task of writing computer programs. If

you have ever written a computer program dil-ectly in a machine-recognizable form such as binary or hexadecimal

code, you will appreciate the advantages of programming in a symbolic assembly language.

Assembly language operation codes (opcodes) are easily remembered (MOV for move instructions, IMP for jump).

You can also symbolically express addresses and values referenced in the operand field of instructions. Since you

assign these names, you can make them as meaningful as the mnemonics for the instruction5. For example, if your

program rrust manipulate a date as data, you :an assign it the symbolic name DATE. If your program contains a

set of in5tructions used as a timing loop (a set of instructions executed repeatedly until a specific amount of time

has passed), you can name the instruction grcup TIMER.

What the Assembler Does

To use the assembler, you first need a source program. The source program consists of programmer-written

assembly language instructions. These instructions are written using mnemonic opcodes and labels as described

previously.

Assembly language source programs must be in a machine-readable form when passed to the assembler. The

Intellec development system includes a text editor that will help you maintain source programs a~ paper tape

files or diskette files. You can then pa~s the resulting source program file to the assembler. (The text editor is

described in the ISIS-II System User's Guide.)

The dssembler program performs the clerical task of translating symbolic code into object code which can be

executed by the 8080 and 8085 microprocessors. Assembler output consi<.ts of three po~sible files: the object

file containing your program translated into object code; the list file printout of your source code, the assembler­

generated object code, and the symbol table; and the symbol-crass-reference file, a listing of the symbol-cross­

reference records.

1-1

Chapter J, Assembly Language and Processors

OBJECT

FILE

SOURCE ASSEMBLER PROGRAM
PROGRAM

FILE PROGRAM LISTING

CROSS
REFERENCE

LISTING

Figure ,-,. Assembler Outputs

Object Code

For most microcomputer applications, you probably will eventually load the object program into some form of

read only memory, However, do not forget that the Intellec development system is an 8080 microcomputer

system with random access memory. In most cases you can load and execute your' object program on the

development system for testing and debugging. This allows you to test your program before your prototype

application system is fully developed.

A special feature of this assembler is that it allows you to request object code in a relocatable format. This frees

the programmer from worrying about the eventual mix of read only and random access memory in the application

system; individual portions of the program can be relocated as needed when the application design is final. Also,

a large program can be broken into a number of separately assembled modules. Such modules arc both easier to

code and to test. See Chapter 4 of this manu.ll for a more thorough description of the advantages of the relocation

feature.

Program Listing

'-2

The program listing provides a permanent rec:xd of both the ,ource program and the object code. The assembler

al,o provides diagnostic message, for common programming errors in the program listing. For example, if you

,pecifya J 6-bit value for an instruction that can usc only an 8-bit value, the assembler tells you that the value

exceeds the permis,ible range.

Chapter 1. Assembly language and Processors

Symbol-Cross-Reference Listing

The symbol-cross-reference listing is another of the diagnostic tools provided by the assembler. Assume, for

example, that your program manipulates a data field named DATE, and that testing reveals a program logic

error in the handling of this data. The symbol-cross-reference listing simplifies debugging this error because it

points you to each instruction that references the symbol DATE.

Do You Need the Assembler?

The assembler is but one of several tools available for developing microprocessor programs. Typically, choosing

the most suitable tool is based on cost restraints versus the required level of performance. You or your company

must determine cost restraints; the required level of performance depend, on a number of variables:

• The number of programs to be wl'itten: The greater the number of programs to be written, the more

you need development support. A.lso, it must be pointed out that there can be penalties for not
writing programs. When your application has access to the power of a microprocessor, you may be

able to provide customers with custom featur'es through program changes. Also, you may be able to

add features through programmin:~.

• The time allowed for progr'amming: As the time allowed for programming decreases, the need for

programming support increases.

• The level of support for existing programs: Sometimes programming errors are not discovered until

the program has been in use for quite a while. Your need for programming support increases if you

agree to correct such errors for your customers. The number of supported programs in use can

mUltiply this requirement. Also, program support is frequently subject to stringent time constraints.

If none of the factors described above apply to your' situation, you may be able to get along without the

assembler. Intel", PROMPT-80, for example, ,lllows you to enter' programs directly into programmable read only

memory. You enter the program manually as a string of hexJdecimal digits. Such mJnual programming is relatively

slow and more prone to human error than computer-assisted programming. However, manual systems are one of

the least expensive tools available for micropmce,sor programming. Manual sy<;1ems may be suitable for limited

applications, hobbyists, and those who want to explore possible applications for microprocessors.

If most of the factors listed previously apply to you, you should explore the advantages of PL(M. PL(M is

Intel's high-level language for program development. A high-level language is directed more to problem solving

than to a particular" microprocessor. This allows you to write programs much more quickly than a hardware­

oriented language such as assembly language. As an example, assume that a program must move five characters

from one location in memory to another". The following example illustrates the coding differences between

assembly language and PL(M. Since instructions have not yet been de,cribed, the a,sembly language instructions

are represented by a flowchart.

1-3

Chapter L Assembly Language and Processors

ASSEMBLY LANGUAGE CODING

LOAD REGISTER WITH NUMBER

OF CHARACTERS TO BE MOVED

I
LOAD REGISTER PAIR B WITH

ADDRESS OF SOURCE (FLD1)

I
LOAD REGISTER PAIR 0 WITH

ADDRESS OF DESTINATION

(FLD2)

J

LOAD ACCUMULATOR WITH 1

BYTE FROM SOURCE FIELD

I
MOVE CHARACTER FROM

ACCUMULATOR TO DESTINA-

TION FIELD

I
INCREMENT SOURCE ADDRESS

I
INCREMENT DESTINATION

ADDRESS

I
DECREMENT CHARACTER COUNl

NO
IS

CHARACTER
COUNT

=O?

YES

(CONTINUE

]
]
]
]
]
]
]
]

PLjMCODING

CALL MOVE(S,FLD2,FLD1);

CONTINUE

Figure 1-2. Comparison of Assembly Language with PLjM

1-4

Chapter 1. Assembly Language and Processors

OVERVIEW OF 8080/8085 HARDWARE

To the programmer, the computer comprises the following parts:

• Memory

• The program cou nter

• Work registers

• Condition flags

• The stack and stack pointer

• Input/output ports

• The instruction set

Of the components listed above, memory is not part of the processor, but is of interest to the programmer.

Memory

Since the program required to drive a microprocessor resides in memory. all microprocessor applications require

some memory. There Me two general types of memory: read only memory (ROM) and random access memory

(RAM).

ROM

As the name implies, the processor can only read instructiom and data from ROM; it cannot alter the contents

of ROM. By contrast, the processor can both read from and write to RAM. Instructions and unchanging data

are permanently fixed into ROM and remain intact whether or not power is applied to the system. For this

reason, ROM is typically used for program <.torage in single-purpose microprocessor applications. With ROM you

can be certain that the program is ready for execution when power is applied to the system. With RAM a program

must be loaded into memory each time power is applied to the processor. Notice, however, that storing programs

in RAM allows a multi·purpose system since different programs can be loaded to serve different needs.

Two special types of ROM - PROM (Programmable Read Only Memory) and EPROM (Eraseable Programmable

Read Only Memory) .. are frequently used during program development. These memories are useful during

program development since they can be altered by a special PROM programmer. In high-volume commercial

applications, these special memories are usu.llly replaced by less expensive ROM's.

RAM

Even if your program resides entirely in ROM, your application is likely to require some random access memory.

Any time your program attempts to write any data to memory, that memory must be RAM. Also, if your pro­

gram uses the stack, you need RAM. If your program modifies any of its own instructions (this procedure is

discou raged), those instructions must reside in RAM.

The mix of ROM and RAM in an applicaticn is important to both the system designer and the programmer.

Normally, the programmer must know the physical addresses of the RAM in the system so that data variables

1·5

Chapter 1. Assembly Language and Processors

can be assigned within those addresses. However, the relocation feature of this a'isembler allows you to code a

program without concern for the ultimate placement of data and instructions; these program elements can be
repositioned after the program has been tested and after the system's memory layout is final. The relocation

feature is fully explained in Chapter 4 of this manual.

Program Counter

1-6

With the program counter, we reach the first of the 8080's internal registers illustrated in Figure 1·3.

NOTE

Except for the difference<, listed at the end of this chapter,

the information in this chapter applies equally to the 8080

dnd the 8085.

The program counter keeps track of the next instruction byte to be fetched from memory (which may be either
ROM or RAM). Each time it fetches an instruction bytc from memory, tlcc processor increments thc program
counter by one. Therefore, the program counter always indicates the next byte to be fetched. This proccss
continues as long a'> program instructions are executed sequentially. To alter the flow of program execution as

with a jump instruction or a call to d ,>ubrouti ne, the processor overwrites the current contents of the program
counter with the addrcss of thc new instruction. The next in<,truction fetch occur>; from the new address.

IACCUMULATORI FLAGS

INSTRUCTION
DECODER

DATA BUS LATCH

8·bit
bidirectional

data bus

ROM

INSTRUCTIONS

CONSTANT
DATA

B

D

H

RAM

INSTRUCTIONS

VARIABLE
DiHA

STACK

C

E

L

HIGH LOW

[STACK POINTER

[PROGRAM COUNTER

[ADDRESS BUS LATCH

INPUT

PORTS

16·bit
address bus

OUTPUT

PORTS

Figure 1-3. 8080/8085 I nternal Registers

8080
8085

Chapter 1. Assembly Language and Processors

Work Registers

The 8080 provides an 8-bit accumulator and six other general purpose work registers, as shown in Figure 1-3.

Programs reference these registers by the letters A (for the accumulator), B, C, D, E, H, and L. Thus, the
instruction ADD B may be interpreteu as 'add the contents of the B register to the contents of the accumu­
lator.

Some instructions reference a pair of registers as shown in the following:

Symbolic Reference

B
D

H

M

PSW

Registers Referenced

Band C
D and E

Hand L

Hand L (as a memory reference)
A and condition flags (explained

later in this section)

The symbolic reference for a single register is often the same as for a register pair. The instruction to be executed

determines how the processor interprets the reference. For example, ADD B is an 8-bit operation. By contrast

PUSH B (which pushes the contents of the Band C registers onto the stack) is a 16-bit operation.

Notice that the letters Hand M both refer to the Hand L register pair. The choice of which to use depends on

the instruction. Use H when an instruction ae:s upon the Hand L register pair as in INX H (increment the

contents of Hand L by one). Use M when an instruction addresses memory via the Hand L register, as in ADD

M (add the contents of the memory location ';pecified by the Hand L registers to the contents of the accumu­

lator) .

The general purpose registers B, C, D, E, H, and L can provide a wide variety of functions such as storing 8-bit

data values, storing intermediate results in arithmetic operations, and storing 16-bit address pointers. Because of
the 8080's extensive instruction set, it is usually possible to achieve a common result with any of several
different instructions. A simple add to the accumulator, for example, can be accomplished by more than half a
dozen different instructions. When possible, it is generally desirable to select a register-to-register instruction
such as ADD B. These instructions typically require only one byte of program storage. Also, using data already
present in a register eliminates a memory access and thus reduces the time required for the operation.

The accumulator also acts as a general-purpose register, but it has some special capabilities not shared with the
other registers. For example, the input/output instructions IN and OUT transfer data only between the accumu­

lator and external 1/0 devices. Also, many operations involving the accumulator affect the condition flags as ex­
plained in the next section.

Example:

The following figures illustrate the execution of a move instruction. The MOV M,C moves a copy of the contents

of register C to the memory location specified by the Hand L registers. Notice that this location must be in
RAM since data is to be written to memory.

1-7

Chapter 1. Assembly language and Processors

1-8

8080
IACCUMULATORI FLAGS I 8085

HIGH LOW

I I I I ! I B C STACK POINTER
INSTRUCTION

DECODER I D
I

E I I PROGRAM 1 COUNTER i

Y DATA BUS LATCH I H I L I I ADDRESS : BUS LATCH

I •
ROM RAM

Figure 1-4. I nstruction Fetch

The processor initiates the instruction fetch by latching the contents of the program counter on the address bus,

and then increments the program counter by one to indicate the address of the next instruction byte. When the
memory responds, the instruction is decoded into the series of actions shown in Figure 1-5.

NOTE

The following description of the execution of the
MOV M ,C instl·uction is conceptually correct, but

does not aCCOL nt for normal bus control. For details

concerning memory interface, refer to the User's

Manual for your processor.

Chapter 1. Assembly Language and Processors

8080
8085

IACCUMULATORl FLAGS I
I B I C I HIGH LOW

INSTRUCTION I I STACK ! POINTER I
DECODER

I D I E I I PROGRAM ! COUNTER I
DATA BUS LATCH J.- I H I L ADDRESS I BUS LATCH J

+ •
ROM RAM

Figure 1-5. Execution of MOV M,C Instruction

To execute the MOV M,C instruction, the processor latches the contents of the C register on the data bus and

the contents of the Hand L registers on the address bus. When the memory accepts the data, the processor

terminates execution of this in5truction and initiates the next instruction fetch.

Internal Work Registers

Certain operations are destructive. For example, a compare is actually a subtract operation; a zero result indicates

that the opreands are equal. Since it is unacceptable to destroy either of the operands, the processor includes

several work registers reserved for its own use. The programmer cannot access these registers. These registers are

used for internal data transfers and for preserving operands in destructive operation5.

Condition Flags

The 8080 provide5 five flip flops used as condition flags. Certain arithmetic and logical instructions alter one or

more of these flags to indicate the result of an operation. Your program can test the setting of four of these

flags (carry, sign, Lero, and parity) using one of the conditional jump, call, or return instruction5. This allows you

to alter the flow of program execution based on the outcome of a previou5 operation. The fifth flag, auxiliJrY

carry, i5 reserved for the usc of the DAA instruction, as will be explained later in thi5 5ection.

It i'i important for the programmer to know which fldgs Jre set by a pdrticular instruction. A5'>urlle, fur ex,lmpic,

that your program is to test the parity of In input byte Jnd then execute one instructiun 'ol'qUl'ncl' il pdrity i,

even, a different instruction set if parity i5 odd. Coding a jPE (jump if parity i5 even) or jPO (jump il parity IS

1-9

Chapter 1. Assembly Language and Processors

1-10

odd) instruction immediately following the IN (input) instruction produces false results since the IN instruction

does not affect the condition flags. The jump executed by your program reflects the outcome of some previous

operation unrelated to the IN instruction. For the operation to work correctly, you must include some instruc·

tion that alters the parity flag after the IN instruction, but before the jump instruction. For example, you can

add zero to the accumulator. This sets the parity flag without altering the data in the accumulator.

In other cases, you will want to set a flag with one instruction, but then have a number of intervening instruc­

tions before you use it. In these cases, you must be certain that the intervening instructions do not affect the

desired flag.

The flags set by each instruction are detailed In the individual instruction descriptions in Chapter 3 of thi,

manual.

Carry Flag

NOTE

When a flag is 'set' it is set ON (has the value one);

when a flag is 'reset' it is re,et OFF (ha, the value

zero) .

As its name implies, the carry flag i, commonly u,ed to indicate whether an addition causes a 'carry' into the

next higher order digit. The ca'rry flag is also used as a 'borrow' flag in subtractiom, as expl,lined under 'Two's

Complement Representation of Data' in Chdpter 2 of this manual. The G.my fidg i, <11,0 affected by the logical

AND, OR, and exclusive OR instruction,. These instructions set ON or OFF rarticuldT bits of the dccumulator.

See the description> of the ANA, ANI, ORA, ORI, XRA, and XRI instructioll'i in Charter 3.

The rotate instructions, which move the contents of the accumulator one position to the Ielt or right, tredt the

carry bit as though it were a ninth bit of the ,lccumulator. See the descliption, of the RAL, RAR, RLC, and RRC

instructions in Chapter 3 of this manual.

Example:

Addition of two one-byte number., can produce a carry out of the high·order bit:

Bit Number:

AE=

+74=

7654 3210

1010 1110

0111 0 I 00

00100010 = 22 carry flag =

An addition that causes a carry out of thc high order bit ,ets the carry fI,lg to I; an dddition that duc, not cause

a carry resets the flag to zero.

Sign Flag

As explained under 'Two's Complement Representation of Data' in Chap!er 2, bit 7 of a result in the accumulator

can be interpreted as a sign. Instructions that affect the sign flag set the flag equal to bit 7. A zero in bit 7

Chapter 1. Assembly language and Processors

indicates a positive value; a one indicates a negdtive v,ilue. This value i, duplicated in the sign fldg so thdt

conditional jump, cdll, and return instr"uctiollS can test fm positive and negative value'>.

Zero Flag

Certain instructions set the zero flag to one to indicate that the result in the accumulator contains all zeros.

These instructions. reset the flag to zero if the result in the accumulator is o~her than zero. A result that has a

carry and a zero result also sets the zero bit as shown below:

Parity Flag

1010 0111

+01 01 1001

0000 0000 Carry Flag = 1

Zero Flag = 1

Parity is determined by counting the number of one bits set in the re')ult in the dccumuldtor. In'itructiom lhdt

affect the parity flag set the fldg to one fm even pdrity ,md reset the flag to zero to indicdte odd pdrity.

Auxiliary Carry Flag

The auxiliary carry flag indicates a carry out of bit 3 of the accumulator. You cannot test this flag directly in

your program; it is present to enable the DAA (Decimal Adjust Accumulator) to perform its function.

The auxiliary carry flag and the DAA imtruction allow you to treat the value in the accumulator a'> two 4-bit

binary coded decimal numbers. Thus, the vdlue 0001 1001 i'> equivalent to 19. (If this value is interpreted a'> d

binary number, it has the value 25.) Notice, however, that adding one to this value produces a non·decirn,iI

result:

0001 1001

+0000 0001

000110lD=lA

The DAA instruction converts hexadecimal values such as the A in the preceding example back into binary coded

decimal (BCD) fmmat. The DAA instruction requires the auxiliary carry flag since the BCD tormat make'i it

po'>sible for arithmetic operations to generate a carry from the low-order 4-bit digit into the high·order 4·bit

digit. The DAA performs the following addition to cmrect the preceding eXdmple:

0001 10lD

+00000110

0001 0000

+0001 0000 (auxiliary carry)

0010 0000 = 20

1-11

Chapter 1. Assembly Language and Processors

The auxiliary carry flag is affected by all add, subtract, increment, decrement, compare, and all logical AND,

OR, and exclusive OR instructions. (See the descriptions of these instructions in Chapter 3.) There is some

difference in the handling of the auxiliary carry flag by the logical AND instructions in the 8080 processor and

the 8085 processor. The 8085 logical AN D instructions always set the auxiliary flag ON. The 8080 logical AN D

instructions set the flag to reflect the logical OR of bit 3 of the values involved in the AND operation.

Stack and Stack Pointer

1-12

To understand the purpose and effectiveness of the stack, it is useful to understand the concept of a subroutine.

Assume that your program requires a multiplication routine. (Since the 8080 has no multiply instructions, this
can be performed through repetitive addition. For example, 3x4 is equivalent to 3+3+3+3.) Assume further that

your program needs this multiply routine seve:al times. You can recode this routine inline each time it is needed,

but this can use a great deal of memory. Or, you can code a subroutine:

Inline Coding Subroutine

1 1
inline routine CALL

I I
inline routine CALL subroutine

I I
inline routine CALL

I I
The 8080 provides instructions that call and return from a subroutine. When the cdll instruction is executed, the

address of the next instruction (the contents of the program counter) is pushed onto the stack. The contents of

the program counter are replaced by the address of the desired subroutine. At the end of the subroutine, a

return instruction pops that previously-stored address off the stack and puts it back into the program countcr.
Program execution then continues as though the subroutine had been coded inline.

The mechanism that makes this possible is, of course, the stack. The stack i~ simply an arCd of random acee,s

memory addressed by the stack pointer. The ',tack pointer is a hdrdware register maintained by the proce,>sor.

However, your program must initialize the stack pointer. This means that your program mu~t load the base

address of the stack into the stack pointer. The base address of the stack is commonly assigned to the highest

available address in RAM. This is because the stack ,expands by decrementing the stack pointer. As items are

Chapter 1. Assembly Language and Processors

added to the stack, it expands into memory locations with lower addresses. As items are removed from the

stack, the stack pointer is incremented back toward its base address. Nonetheless, the most recent item on the
stack is known as the 'top of the stack.' Stack is still a most descriptive term because you can always put

something else on top of the stack. In terms of programming, a subroutine can call a subroutine, and so on.

The only limitation to the number of items that can be added to the stack is the amount of RAM available for
the stack.

The amount of RAM allocated to the stack is important to the programmer. As you write your program, you

must be certain that the stack will not expand into areas reserved for other data. For most applications, this

means that you must assign data that requires RAM to the lowest RAM addresses available. To be more precise,

you must count up all instructions that add data to the stack. Ultimately, your program should remove from
the stack any data it places on the stack. Therefore, for any instruction that adds to the stack, you can sub­

tract any intervening instruction that remove, an item from the stack. The most critical factor is the maximum

size of the stack. Notice that you must be sure to remove data your program adds to the stack. Otherwise, any

left-over items on the stack may cause the stack to grow into portions of RAM you intend for other data.

Stack Operations

Stack operations transfer sixteen bits of data between memory and a pair of processor registers. The two basic
operations are PUSH, which adds data to the stack, and POP, which removes data from the stack.

A call instruction pushes the contents of the program counter (which contains the address of the next instruction)
onto the stack and then transfers control to the desired subroutine by placing its address in the program counter.
A return instruction pops sixteen bits off the stack and places them in the program counter. This requires the

programmer to keep track of what is in the ',tack. For example, if you call a subroutine and the subroutine
pushes data onto the stack, the subroutine must remove that data before executing a return instruction. Other­

wise, the return instruction pops data from the stack and places it in the program counter. The results are

unpredictable, of course, but probably not what you want.

Saving Program Status

It is likely that a subroutine requires the use of one or more of the working registers. However, it is equally
likely that the main program has data stored in the registers that it needs when control returns to the main
program. As general rule, a subroutine should save the contents of a register before using it and then restore

the contents of that register before returning control to the main program. The subroutine can do this by
pushing the contents of the registers onto tre stack and then popping the data back into the registers before

executing a return. The following instruction sequence saves and restores all the working registers. Notice that

the POP instructions must be in the opposite order of the PUSH instructions if the data is to be restored to its

original location.

1-13

Chapter 1. Assembly language and Processors

SUBRTN: PUSH

PUSH

PUSH

PSW

B
[)

PUSH H

subroutine coding

POP H

POP [)

POP B

POP PSW

RETURN

The letters B, D, and H refer to the Band C, D and E, and Hand L register pairs, respectively. PSW refers to

the program status word. The program status word is a 16-bit word comprising the contents of the accumulator

and the five conpition flags. (PUSH PSW adds three bits of filler to expand the condition flags into a full

byte; POP PSW strips out these filler bits.)

Input/Output Ports

1-14

The 256 input/output ports provide communication with the outside world of peripheral devices. The IN and

OUT instructions initiate data transfers.

The IN instruction latches the number of the de,ired port onto the address bus. As soon as a byte of data is

returned to the data bu,> latch, it is transferred into the accumulator.

The OUT instruction latches the number of the desired port onto the address bus and latches the data in the

accumulator onto the data bus.

The specified port number is duplicated on the address bus. Thus, the instruction IN 5 latches the bit configura­

tion 00000101 00000101 onto the add res', bus.

Notice that the IN and OUT instructions simply initiate a data transfer. It is the responsibility of the peripheral

device to detect tha tit has been addressed. \Jo tice al so that it is possible to ded ica te any nu m ber of ports to

the same peripheral device. You might use a number of ports a, control signals, for example.

Because input and output are almost totally application dependent, a discussion of design techniques is beyond

the scope of this manual.

For additional hardware information, refer to the 8080 or 8085 Microcomputer Systems User's Manual.

For related programming information, see the descriptions of the IN, OUT, DI, EI, RST, and RIM and SIM

instructions in Chapter 3 of this manual. (The RIM and SIM instructiom apply only to the 8085.)

Chapter 1. Assembly Language and Processors

Instruction Set

The 8080 incorporates a powerful array of instructions. This section provides a general overview of the instruc­

tion set. The detailed operation of each instruction is described in Chapter 3 of this manual.

Addressing Modes

Instructions can be categorized according to their method of addressing the hardware registers and/or memory.

Implied Addressing. The addressing mode of certain instructions is implied by the instruction's function. For

example, the STC (set carry flag) instruction deals only with the carry flag; the DAA (decimal adjust accumu­

lator) instruction deals with the accumulator.

Register Addressing. Quite a large set of instructions call for register addre<;sing. With these instructions, you

must specify one of the registers A through E, H or L as well as the operation code. With these instructions,

the accumulator is implied as a second operand. For example, the instruction CMP E may be interpreted as

'compare the contents of the E register with the contents of the accumulator.'

Most of the instructions that use register addressing deal with 8-bit values. However, a few of these instructions

deal with 16-bit register pairs. For example, the PCHL instruction exchanges the contents of the program counter

with the contents of the Hand L registers.

Immediate Addressing. Instructions that use immediate addressing have data assembled as a part of the instruction

itself. For example, the instruction CPI 'C' may be interpreted as 'compare the contents of the accumulator with

the letter c.' When assembled, this instruction has the hexadecimal value FE43. Hexadecimal 43 is the internal

representation for the letter C. When this instruction is executed, the processor fetches the first instruction byte

and determines that it must fetch one more :lyte. The processor fetches the next byte into one of its internal

registers and then performs the compare ope'ation.

Notice that the names of the immediate instructions indicate that they use immediate data. Thus, the name of an

add instruction is ADD; the name of an add immediate instruction is AD!.

All but two of the immediate instructions use the accumulator as an implied operand, as in the CPI instruction

shown previously. The MVI (move immediat'~) instruction can move its immediate data to any of the working

registers, i ncl udi ng the accu mulator, or to m<~mory. Th us, the instruction MVI D ,OF FH moves the hexadecimal

value FF to the D register.

The LXI instruction (load register pair immediate) is even more unu,ual in that its immediate data is a 16-bit

value. This instruction is commonly used to load addresses into a register pair. As mentioned previously, your
program must initialize the stack pointer; LXI i, the instruction most commonly used for this purpose. For ex­

ample, the instruction LXI SP,30FFH loads the ,tack pointer with the hexadecimal value 30FF.

Direct Addressing. Jump instructions include a 16-bit address as part of the instruction. For example, the

instruction J MP 1000H causes a jump to the hexadecimal address 1000 by replacing the current contents of the

program coun ter with the new val ue 1000.

1-15

Chapter T. Assembly Language and Processors

Instructions that include a direct address require three bytes of storage: one for the instruction code, and two

for the 16·bit address.

Register Indirect Addressing. Register indirect instructions reference memory via a register pair. Thus, the

instruction MOV M,C moves the contents of the C register into the memory address stored in the Hand L

register pair. The instruction LDAX B load, the accumulator with the byte of data specified by the address

in the Band C register pair.

Combined Addressing Modes. Some instructions use a combination of addressing modes. A CALL instruction,

for example, combines direct addressing and register indirect addressing. The direct address in a CALL instruction
specifies the address of the desired subroutine; the register indirect address is the stack pointer. The CALL
instruction pushes the current contents of the program counter into the memory location specified by the stack

pointer.

Timing Effects of Addressing Modes. Addressing modes affect both the amount of time required for executing

an instruction and the amount of memory required for its storage. For example, instructions that use implied or
register addressing execute very quickly since they deal directly with the processor hardware or with data already

present in hardware registers. More important, however, is that the entire instruction can be fetched with a
single memory access. The number of memory accesses required is the single greatest factor in determining
execution timing. More memory accesses require more execution time. A CALL instruction, for example, requires

five memory accesses: three to access the entire instruction, and two more to push the contents of the program

counter onto the stack.

The processor can access memory once during each processor cycle. Each cycle comprises a variable number of

states. (The individual instruction descriptions in Chapter 3 specify the number of cycles and states required for

each instruction.) The length of a state depends on the clock frequency specified for your system, and may

range from 480 nanoseconds to 2 microseconds. Thus, the timing of a four state instruction may range from

1.920 microseconds through 8 microseconds. (The 8085 has a maximum clock frequency of 320 nanoseconds

and therefore can execute instructions aboJt 50% faster- than the 8080.)

Instruction Naming Conventions

The mnemonics assigned to the instructions are ~esigned to indicate the function of the instruction. The instruc­

tions fall into the following functional categories:

Data Transfer Group. The data transfer instructions move data between registers or between memory and
registers.

MOV
MVI

LOA

STA
LHLD
SHLD

Move
Move Immediate
Load Accumulator Directly from Memory

Store Accumulator Directly in Memory
Load Hand L Registers Directly from Memory
Store Hand L Registers Directly in Memory

ALL MNEMONICS © 7974, 7975, 7976, 7977 INTEL CORPORA nON

1·16

Chapter 1. Assembly Language and Processors

An 'X' in the name of a data transfer instruction implies that it deals with a register pair:

LXI

LDAX

STAX
XCHG
XTHL

Load Register Pair with Immediate data

Load ACCL.,mulator from Address in Register Pair
Store Accumulator in Address in Register Pair

Exchange Hand L with D and E
Exchange Top of Stack with Hand L

Arithmetic Group. The arithmetic instructions add, suhtract, increment, or decrement data in registers or

memory.

ADD

ADI

ADC

ACI

SUB
SUI

SBB
SBI

INR

DCR

INX

DCX

DAD

Add to Accumulator

Add Immediate Data to Accumulator

Add to Accumulator U~ing Carry Flag

Add Immediate Data to Accumulator Using Carry Flag

Subtract from Accumulator

Subtract Immediate Data from Accumulator

Subtract from Accumulator Using Borrow (Carry) Flag
Subtract Immediate from Accumulator Using Borrow

Increment Specified Byte by One

Decrement Specified Byte by One

Increment Register Pair by One

Decrement Register Pair by One

Double Register Add: Add Contents of Register

Pair to Hand L Register Pair

Logical Group. This group performs logical (Boolean) operations on data in registers and memory and on

condition flags.

The logical AND, OR, and Exclusive OR instructions enable you to set specific bits in the accumulator ON or
OFF.

ANA

ANI

ORA

ORI
XRA

XRI

Logical AND with Accumulator

Logical Ar-JD with Accumulator Using Immediate Data

Logical OR with Accumulator

Logical OR with Accumulator Using Immediate Data

Exclusive Logical OR with Accumulator

Exclusive OR Using Immediate Data

The compare instructions compare the contents of an 8-bit value with the contents of the accumulator:

CMP

CPI

Compare

Compare Using Immediate Data

ALL MNEMONICS © 7974, 7975, 7976, 7977 INTEL CORPORATION

1-17

CllJpCer 1. Assembly Language and Processors

The rotate instrucliom '>hift the contents of the accumulator one bit po,>ition to the lett or right:

RLC

RRC

RAL

RAR

Rotate Accumulator Left

Rotate Accumulator Right

Rotate Left Through Carry

Rotate Rght Through Carry

Complement and carry flag instructiolls:

CMA

CMC

STC

Complement Accumulator

Complement Carry Flag

Set Carry Flag

BrcJl7ch Group. The branching instruction,> alter normal sequential pr"ogram flow, either unconditionally or

conditionally. The unconditional branching instructions arc dS follows:

jMP

CALL

RET

jump

Call

Ret urn

Conditional brdnching imtructions examine the ,tatus of one of four" condition flags to determine whether the

,>pecified br,lflch i, to be executed. The conditiolls that may be specified are as follows:

NZ Not Zero (Z = 0)

Z Zero (Z " 1)

NC No CarTY (C = 0)

C Carry (C = 1)

PO Parity Oeld (P = 0)

PE Parity Evell (P = 1)
P Pill'> (S = O)

M Minus (S = I)

T;lu,>, the conciitiunal branching in'Multiolls are specified as follows:

Two other"

Jumps Calls Returns

jC CC RC (Cmy)

jNC CNC RNC (No Carry)
jZ CZ RZ (Zero)

JNZ CNZ RNZ (Not Zero)
jP CP RP (Plus)
jM CM RM (Minus)
jPE CPE RPE (Parity Even)

jPO CPO RPO (Parity Odd)

instructions Cdn effect a branch ay replacing the contents of the program counter:

PCHL

RST

Move Hmd L to Pmgram Counter"

Special Rer,tart InstructJon Used with Interrupts

ALL MNEMONICS © 7974, 7975, 7976, 7977 INTEL CORPORA TlON

1-18

Chapter 1. Assembly Language and Processors

Stack, I/O, and Machine Control Instructions. The following instructions affect the stack and/or stack pointer:

PUSH

POP

XTHL

SPHL

The [/0 imtructiom Me dS follows:

IN

OUT

Push Twu Bytes of Data onto the Stack

Pop Two Bytes of Data off the Stack

Exch'lIlge Top of Stack with Hand L

Move content'> of Hand L to Stack Pointer

Initiate Input Operation

Initiate Output Operation

The machine contlo[imtructiom arc as follows:

EI

DI

HLT

NOP

Enab[e I nterrupt System

Disable Interrupt System

Ha[t

No Operdtion

HARDWARE/INSTRUCTION SUMMARY

The following illustrations gl'aphic,!I[y summarize the instruction '>et by showing the hardware acted upon by

,>pecific in'>truction'>. The type of operanu al[owed for each instruction is inuicateu through the use of a code.

When no (oue i'> given, the instruction uoes not a[low operands.

Code Meaning

REGM S The operand may specify one of the S-bit registers A,B,C,D,E,H, or L or M

(a memo -y reference via the 16-bit address in the Hand L registers). The

MOV instruction, which calls for two operands, can specify M for only one

of it<, operands.

Accumulator Instructions

Designates S-bit immediate operand.

Designates a 16-bit audress.

De,>ignates an 8-bit port number.

De,>ignatc'> a 16-bit register pair (B&C,D&E,H&L, or SP).

Designate,> a 16-bit immediate operand.

The fo[lowing illustration shows the instructions that can affect the accumulator. The instructions listed above

the accumu[dtor a[1 act on the data in the accumulator, and a[[except CMA (complement accumulator) affect

one or mmc of the conditioll flag'>. The instructions listed below the accumulator move data into or out of the

accLlmu[dtor, but do not affect conditioll flags. The STC (set carry) and CMC (comp[ement carry) instructions

arc also shown here.

ALL MNEMONICS © 7974, 7975, 7976, 7977 INTEL CORPORA TlON

1·19

Chap[er 1. As~embly Language and Processors

ADD

ADC

SUB

SBB
ANA REGM S

XRA

ORA

CMP

RLC RAL

RAR CMA

INR}
OCR

ACCUMULATOR

B

ADI

ACI

SUI

SBI

ANI Os
XRI

ORI

CPI
RRC

DAA

R.EGM
S

FLAGS

C

E MOV REGM S.' REG MSIL. ___ D ___ L-_. ___ --'

H L

LDAX}
STAX BC,DE

MEMORY

LOA}
STA A'6

STACK

STC CMC
HIGH LOW

STACK POINTER

I PROGRAM COUNTER I

I I
IN Ps OUT Ps
INPUT

PORTS

OUTPUT

PORTS

ALL MNEMONICS © 1974, 1975, 1976, 1977 INTEL CCRl'n.R.A TlON

1-20

Chapter 1. Assembly language and Processors

Register Pair (Word) Instructions

The following instructions all deal with 16-bit words. Except for DAD (which adds thecontents of the B&C or

D&E register pair to H&L), none of these instructions affect the condition flags. DAD affects only the carry

flag.

IACCUMULATORI FLAGS]
INX)

1
B C] DCX

DAD

I D E ~-XCHG
I H L .. -

I-- XTHL--

LHLD

SHLD

~I-----,
MEMORY

HIGH

REG'6 SPHL -I STACK

PCHL ... 1 PROGRAM !

STACK ... PUSH)
POP B,D,H,PSW

ALL MNEMONICS © 7974, 7975, 7976, 7977 INTEL CORPORA nON

LOW

POINTER

COUNTER I

1-21

Chapter 1. Assembly Language and Processor,

Branching Instructions

The following instructions can alter the con:ents of the program counter, thereby altering the normal sequential

execution flow. Jump instructions affect only the program counter. Call and Return instructions affect the
program counter, stack pointer, and stack.

IACCUMULATORI FLAGS

B C

D E

H L

MEMORY

STACK

I HIGH LOW

I
STACK POINTER

I JPCHL~RAM COUNTER RST

~
JMP CALL RET

~~ ~~~) A ~~ ~~~) A :~ :~~} A
JP JM 16 CP CM 16 RP RM 16

J PE J PO CPE CPO RPE RPO

CONTROL INSTRUCTIONS

RST
NOP
HLT
EI
DI

SIM\
RIMJ 8085 only

ALL MNEMONICS© 7974,7975,7976, 7977 INTEL CORPORATION

1-22

Chapter 1. Assembly language and Processors

Instruction Set Guide

The following is a summary of the instruction set:

ADD
ADC ACI

SUB SUI

ADll
SBB REGM g ~~l f D8 ANA

XRA)(RI

ORA ORI
CMP CPI

RLC RAL RRC
RAR CMA DAA

INR} DCR REGMg

~ACCUMULATORI FLAGS

MOY REGMg,REGMgl B I C

I I D I
LXI REG 16,D 16

E

H L

]STC CMC

INX} JDCX REG 16 SPHL
DAD I

~ PCHL

k XCHG I
JMP

HIGH LOW

STACK

RST

CALL RET

JC
JZ
JP
JPE

JNZ A JNC}
JM 16

CZ CNZ A
CC CNC}

CP CM 16
RZ RNZ A
RC RNC}

RP RM 16

/
A ,

LDAX} BC,DE
STAX

LDA}
STA A

16

MYI Dg

MOY REGMg,REGM g

CODE

REGM g

LHLD}
STHD A16

MEMORY
[

INPUT
PORTS

JPO

I
OUT Pg

OUTPUT
PORTS

f---STACK--- ... __ ~~~H} B,D,H,PSW

MEANING

CPE CPO RPE RPO

CONTROL
INSTRUCTIONS

RST
NOP
HLT
EI
DI

SIM} gOg5 ONLY
RIM

The opcrand may specify one of thc g-bit registers A,B,C,D,E,H, or L or M (a memory
refercnce via thc 16-bit addrcss in the Hand L registers). The MOY instruction, which
calls for two operands, can ~pecify M for only one of its operands.
Designates g·bit immcdiatc operand.
Dcsigna tes a 16-bit address.
Dcsignates an g-bit port numbcr.
Dcsignates a 16-bit rcgisTer pair (B&C,D&E.H&L,or SP).

Dcsignatcs a 16 -bit immediatE' opcrand.

ALL MNEMONICS © 7974, 7975, 7976, 7977 INTEL CORPORA TlON

1-23

Chapter 1. Assembly Language and Processors

8085 PROCESSOR DIFFERENCES

The differences between the 8080 proces'>or and the 8085 processor will be mme obviou,> to the system designer

than to the programmer. Except for two additional instructions, the 8085 in'>truction set is identical to and fully

compatihle with the 8080 instruction '>et. Mo,;t programs written for the 8080 should operate on the 8085 with­

out modification. The only programs that may require changes arc those with critical timing routines; the higher

system <;peed of the 8085 may alter the time values of ,>uch routines.

A partial listing of 8085 de,ign fcature,> includes the following:

• A ,ingll' 5 volt power ,uppl),.

• Execution speed, ap.PI-oximately 50% fa,ter than the 8080.

• Incorporation in the proce'><;()1 of the featurc<; of the 8224 Clock Geneldtor and Driver and the

8228 Sy,tem Controller and Bu'> Drivel-.

• A non·maskable TRAP interrupt fOl" h,mdling serious problems such as power failul-e'>.

• Three separately maskablc interrupt<, that gcnel-ate internal RST imtructions.

• Input/output line, for serial data transfer.

Programming for the 8085

1-24

For the programmer, the new featLlI-es of the 8085 all' summ,niLed in the two new instructions SIM and RIM.

These instructions differ from 'the 8080 instr JctioJl', in that each has multiple function'>. The SIM in<,lruction

sets the interrupt mask and/O! writes out a bit of serial delta. The proglammCl" must place the desiled interrupt

mask and/or scrial output in the dccumulatClI prior to execution of the SIM instruction. The RIM imtruction

reads a bit of serial data if one is present a III I the interrupt ma<;k into the accumuLitor. Details of these instruc­

tions arc covered in Chapter 3.

Despite the new interl-upt features of the 80B5, programming for intenupts i., little ch,mged. Notice, however, that

8085 hardware interrupt RESTART addre,<;e, fall hetween the existing 8080 REST ART addresses. Therefore,

only four bytes arc available for certain RST instruction'>. AI<;o, the TRAP interrupt input i, non-maskable and

cannot be di,ahled. If your application usc, his input, he certdin to plw:ide ,iI) intclTupt routine for it.

The interrupt<; have the following priority:

TRAP

RSn.5

RST6.5

RST5.5

INTR

higheq

lowe'>t

When more than one interrupt is pending, the processor always recognizes the higher priority interrupt first.

These priorities apply only to the ,>equence in which interrupts arc recogni/ed. Program routines that service

interrupts have no special priority. Thus, an RST5.5 interrupt can interl-upt the service routine for an RST7.5

interrupt. If you want to protect a service routine from interruption, either disable the interrupt system (DI

instruction)' or mask out other potential interrupts (SIM instruction).

Chapter 1. Assembly Language and Processors

Conditional Instructions

Execution of conditional instructions on the 8085 differs from the 8080. The 8080 fetches all three instruction

bytes whether or not the condition is satisfied. The 8085 evaluates the condition while it fetches the second
instruction byte. If the specified condition is not satisfied, the 8085 skips over the third instruction byte and

immediately fetches the next instruction. Skipping the unnecessary byte allows for faster execution.

1-25

2. ASSEMBLY LANGUAGE CONCEPTS

INTRODUCTION

Just as the English languJge has its rules of grammar, assembly IJngUJge has certain coding rule'>. The source line

is the assembly IJnguage equivalent of a sentence.

Thi,> Jssembler recognize'> three types of source lines: instructions, directive'>, and controls. This manual describes

instructions and directive'>. Control'> <ire described in the operJtor's mJnual for your version of the Jssembler.

This chapter describes the generdl rules for coding source lines. Specific instructions (see Chapter 3) and

directives (see ChJpters 4 and 5) may have >pecific coding rules. Even '>0, the coding of such instructions and

directives must conform to the general rule'. in this chapter.

SOURCE LINE FORMAT

Assembly language instructions and a'>sembler directives may comist of up to four fields, as follows:

{
Label:}
Name

Opcode Operand ;Comment

The field,> may be ~eparated by any number· of blanks, but must be separated by at least one delimiter. Each

instruction and directive must be entered on a si:rgle line terminated by a carriage return and a line feed. No

continuation lines arc poS'>ible, but you may have line'> consisting entirely of comments.

Character Set

The following characters are legal in a'>Sembly language source statements:

• The letter·s of the alphabet, A through Z. Both upper- and lower-case letter, <ire allowed. Internally,

the assembler treats all letters as though they were upper-case, but the characters arc printed exactly

as they were input in the assembly li·,ting.

• The digits 0 through 9.

• The following special characters:

2-1

Chapter 2. Assembly Language Concepts

2·2

Character

+

*

&

$
@

<
>
%

blank

CR

FF

HT

Meaning

Plus sign

Minus sign

Asterisk

Slash

Comma

Left pdrenthesis

Right parenthesis

Single quote

Ampersand

Colon

Dolldr sign

Commercidl 'dt' sign

Question mdrk

Eq ual sign

Less than sign

Greater than sign

Percent sign

Exclamation point
Blank or SPdce

Semicolon

Period

Carridge return

Form feed

Horizontal tdb

• In addition, any ASCII chdrdcter mdY appear in d qring enclo'>ed in ~ingle quotes or in d comment.

Delimiters

Certain chdracters have specidl meaning to the dssembler in that they function as delimiters. Delimiter~ define

the end of a source statement, a field, or d component of a field. The following list defines the delimiters

recognized by the assembler. Notice that many delimiters dre related to the macro feature explained in Chapter

5. Delimiters used for macros are shown her2 so that you will not dccidentdlly use a delimiter improperly.

Refer to Chapter 5 for a description of macro'>.

Character(s)

blank

(...)

CR

HT

&

< ... >

%

Label/Name Field

Meaning

one or more

blan ks

comma

pair of single

quote characters

pair of paren­

theses

carriage return

horizontal tab

semicolon

colon

ampers(lrid

pair of angle

brackets

per-cent ',ign

excldmation

point

double semi­

colon

Chapter 2. Assembly Language Concepts

Use

field separator or symbol terminator

separate operands in the operands field,

including macro pardmeters

delimit a character string

delimit an expression

statement terminator

field separator or symbol terminator

comment field delimiter

delimiter for ,ymbols used dS labels

delimit macro prototype text or formdl

pardmeters for concdtenation

delimit macro pJrdmeter text which

contains commdS or embedded blank,;

also used to delimit a pJrameter list

delimit a macro pdrameter thdt is to be

evaludted prior to sub,ti.tution

an escape character used to pass the

following chdrdcter dS pdrt of d mdcro

parameter when the character might

otherwise be interpreted as d delimiter

delimiter for comments in macro definitions

when the comment is to be suppressed when

the macro is expanded

Labels arc alwdys optional. An instruction label is d symbol name whose value is the locdtion where the imtruc­

tion is assembled. A label may contain from one to six alphdnumeric chdracters, but the first chJrdcter mu,t be

alphabetic or the specidl characters '7' or '@'. The label name must be terminated with a colon. A symbol used

as a label can be defined only once in your program. (See 'Symbols and Symbol Tables' later in this chapter.)

2-3

Chapter 2. Assembly Language Concepts

Alphanumeric characters include the letters of the alphabet, the question mark character, and the decimal

digits 0 through 9.

A name is required for the SET, EQU, and MACRO directives. Names follow the same coding rules as labels,

except that they must be terminated with a blank rather than a colon. The label/name field must be empty for

the LOCAL and EN OM directives.

Opcode Field

This required field contains the mnemonic operation code for the 8080/8085 instruction or assembler directive

to be perfor med.

Operand Field

The operand field identifies the data to be operated on by the specified opcode. Some instructions require no

operands. Others require one or two operands. As a general rule, when two operands are required (as in data

transfer and arithmetic operations), the fir,t operand identifies the destination (or target) of the operation's

result, and the second operand specifies the ',ource data.

Examples:

MOV

MVI

A,C
A,'B'

;MOVE CONTENTS OF REC; C TO ACCUMULATOR

;MOVE B TO ACCUMULATOR

Comment Field

The optional comment field may contain an'! information you deem useful for annotating your program. The

only coding requirement for this field is that it be preceded by a semicolon. Because the ,emicolon i, a delimiter,

there is no need to separate the comment from the previous field with one or more space,>. However, spaces are

commonly used to improve the readability of the comment. Although comments arc alway, optional, you should

usc them liberally since it is easier to debug and maintain a well documented program.

CODING OPERAND FIELD INFORMATION

2-4

There are four types of information (a through d in the following list) that may be requested as items in the

operand field; the information may be specified in nine ways, each of which is described below.

Chapter 2. Assembly Language Concepts

OPERAND FIELD INFORMATION

Information required Ways of specifying

(a) Register (1) Hexadecimal Data
(b) Register Pair (2) Decimal Data

(c) Immediate Data (3) Octal Data
(d) 16-bit Address (4) Binary Data

(5) Location Counter ($)
(6) ASCII Constant
(7) Labels assigned values

(8) Labels of instructions or data

(9) Expressions

Hexadecimal Data. Each hexadecimal number mu'>l begin with a numeric digit (0 through 9) and must be

followed by the letter H.

Label Opcode Operand Comment

HERE: MVI C,OBAH ;LOAD REG C WITH HEX BA

Decima! Data. Each decimal number may be identified by the letter D immediately after its last digit or may

stand alone. Any number not specifically identified as hexadecimal, octal, or binary is assumed to be decimal.
Thus, the following statements are equivalent:

Label

ABC:

Opcode

MVI

MVI

Operand

E,15

E,15D

Comment

;LOAD E WITH 15 DECIMAL

Octo! Data. Each octal number must be followed by the letter 0 or the letter O.

Lobe! Opcode Operand

LABEL: MVI A,720

Binary Data. Each binary number must be followed by the letter B.

Lobe! Opcode Operand

NOW: MVI D,11110110B

Comment

;LOAD OCTAL 72 INTO ACCUM

Comment

;LOAD REGISTER D

;WITH OF6H

2-5

Chapter 2. Assembly Language Concepts

2-6

Location Counter. The $ character refers to the current location counter. The location counter contains the

address where the current instruction or data statement will be assembled.

Label Opcode

GO:)MP

Operand

$+6

Comment

;) UMP TO ADDRESS 6 BYTES BEYOND

;THE FIRST BYTE OF THIS

;INSTRUCTION

ASCII Constant. One or more ASCII characters enclosed in singte quotes define an ASCII constant. Two
successive single quotes must be used to represent one single quote within an ASCII constant.

Label Opcode

MVI

DATE: DB

Operand

F '*' - ,

Comment

;LOAD E REG WITH 8-BIT ASCII

;REPRESENTATION OF *
'TODAY"S DATE'

Labels Assigned Values. The SET dnd EQU directives can a,sign values to label'.. In the following example,

assume that VALUE has been assigned the \alue 9FH; the two stdtement, Me equivalent:

Label

A1:

A2:

Opcode

MVI

MVI

Operand

D,9FH

D,VALUE

Comment

Labels of Instruction or Data. The label as<igned to an instruction or a data definition ha'> as its vdlue the

address of the first byte of the instruction or data. Instructions elsewhel'e in the progrdm can refer to this

address by its symbolic label name.

Label Opcode Operand Comments

HERE:)MP THERE ;)UMP TO INSTRUCTION AT THERE

THERE: MVI D,9FH

Expressions. All of the operand types discllssed previously can be comlJined by operators to form an expression.
In fact, the example given for the location counter ($+6) i, dn expression that combines the location counter
with the decimal number 6.

Becduse the rule, for coding expressions are rather extensive, further discu"ion of expressions is deferred until
later in this chapter.

Chapter 2. Assembly Language Concepts

Instructions as Operands. One operand type was intentionally omitted from the list of operand field infor­

mation: Instructioll'> enclosed in parentheses may appear in the operands field. The operand has the value of

the left-most byte of the assembled instruction.

Label Opcode Operand

INS: DB (ADD C)

The statement above defines a byte with the value 81 H (the object code for an ADD C instruction). Such

coding is typically used where the object program modifies itself during execution, a technique that is strongly

discouraged.

Register-Type Operands. Only instructions that allow registers as operands may have register-type operands.

Expressions containing register-type operands are flagged as errors. Thus, an instruction like

IMP A

i, flagged a, an illegal use of J register.

The only assemblC'r directives that may contain register-type operands arc EQU, SET, and actual parameters in

macro calls. Registers can be a,signed alternate names only by EQU or SET.

TWO'S COMPLEMENT REPRESENTATION OF DATA

Any 8-bit byte contains one of the 256 possible combinations of zeros and ones. Any particular combination may

be interpreted in J number of ways. For example, the code 1 FH may be interpreted as an instruction (Rotate

Accumuiator Right Through Carr'y), as the hexadecimal value 1 F, the decimal value 31, or simply the bit

pattern 00011111.

Arithmetic instructions as,ume that the data byte, upon which they operate arc in the 'two's complement'
format. To understand why, let u, first examine two examples of decimal arithmetic:

35

-12

23

35

+88

123

Notice that the results of the two examples are equal if we disregard the carry out of the high order position in

the second example. The second example illustrates subtraction performed by adding the ten's complement of

the subtrahend (the bottom number) to the minuend (the top number). To form the ten's complement of a

decimal number, first subtract each digit of the subtrahend from 9 to form the nine's complement; then add one

to the resul t to form the ten's complement. Thus-, 99--12=87; 87+ 1 =88, the ten's complement of 12.

The ability to perform subtraction with a form of addition is a great advantage in a computer since fewer cir-

cuit, are required. Also, arithmetic operations within the computer are binary, which simplifies matters even more.

2·7

Chapter 2. Assembly Language Concepts

2·8

The processor forms the two's complement of a binary value simply by reversing the value of each bit and then
adding one to the result. Any carry out of the high order b!t is ignored when the complement is formed. Thu"
the subtraction shown previously is pel'formed as follows:

35 = 0010 0011
-12 = 0000 11 00 = 1111 0011

23 +

1111 01 00

0010 0011
+1111 01 00

1 0001 0111 = 23

Again, by disregarding the carry out of the high order position, the subtraction is performed through a form of
addition. However, if this operation were performed by the 8080 or the 8085, the carry flag would be set OFF

at the end of the subtraction. This is because the processors complement the carry flag at the end of a subtract

operation so that it can be u,ed as a 'borrow' flag in multibyte subtractions. In the example shown, no borrow
is required, so the carry flag is set OFF. By contrast, the carry flag is set ON if we subtract 35 from 12:

1 2 = 0000 11 00

-35 = 0010 0011 11 01 11 00

0000 1100

+1101 1101

+ 11101001=2330r105

1 1 01 1 1 01

In this case, the absence of a carry indicates that a borrow is required from the next higher order byte, if any.
Therefore, the processor sets the carry flag ON. Notice also that the result is stored in a complemented form.
If you want to interpret this result as a decimal value, you must again form its two's complement:

1110 1001 =0 0001 0110
,. 1

0001 0111 = 23

Two's complement number, may also be sig:led. When a byte is interpreted as a signed two's complement number,
the high order bit indicates the sign. A zero in this bit indicate, a positive number, a one d negative number. The
seven low order bits pmvide the magnitude .)f the number. Thus, 0111 1111 equal, + 127.

At the beginning of this description of two\ complement arithmetic, it was stated that any 8·bit byte may con·

tain one of the 256 possible combinations of zews and ones. It must also be stated that the proper interpretation
of data is a progrdmming responsibility.

As an example, consider the compJre instru:tion. The compare logic cOIhiders only the LIW bit values of the

items being compared. Therefore, a negative two's complement number alway, compMes higher than a positive

number, because the negative number's high order bit is always ON. A, a result, the meanings of the flags set by

the compare instruction Me reversed. Your program must account for this condition.

Chapter 2. Assembly Language Concepts

SYMBOLS AND SYMBOL TABLES

Symbolic Addressing

If you have never done symbolic programming before, the following analogy may help clarify the distinction

between a symbolic and an ab,olute address.

The locations in program memory can be compared to a cluster of post office boxes. Suppose Richard Roe

rents box 500 for two months. He can then ask for his letters by saying 'Give me the mail in box 500,' or

'Give me the mail for Roe.' If Donald Smith late(rents box 500, he too can ask for his mail by either box

number 500 or by his name. The content of the post office box can be accessed by a fixed, absolute address

(500) or by a symbolic, variable name. The postal clerk correlates the symbolic names and their absolute values

in his log book. The assembler performs the same function, keeping track of symbols and their values in a

symbol table. Note that you do not have to assign values to symbolic addresses. The assembler references its

location counter during the assembly proce5S to calculate these addresses for you. (The location counter does

for the as~embler what the program counter does for the microcomputer. It tells the assembler where the next

instruction or operand is to be placed in memory.)

Symhol Characteristics

A symbol can contain one to six alphabetic (A-Z) or numeric (0-9) characters (with the first character alphabetic)

or the '>pecial character '?' or '@'. A dollar ';ign can be used as a symbol to denote the value currently in the

location counter. For eXample, the command

JMP $+6

forces a jump to the imtruction residing six memory locations higher than the JMP instruction. Symbols of the

form '??nnn' are generated by the as>;embler to uniquely name symbols local to macros.

The a'>sembler regdrds symbols as having the following attribute>;: re'>erved or user-defined; global or limited;

permanent or reddinable; <lnd absolute or rclocatable.

Reserved, User-Defined, and Assembler-Generafed Symbols

Reserved symbol<, are those that already have special meaning to the assembler and therefore cannot appear as

user-defined '>ymbols. The mnemonic names for machine instructions and the assembler directives are all reserved

symbol.,.

2-9

Chapter 2. Assembly language Concepts

2-10

The following instruction operand symbols arc also reserved:

Symbol

$

A

B

C

D

E
H

L

SP

PSW

M

Meaning

Location counter reference

Accumulator register

Register B or register pair Band C

Register C

Register D or register pair D and E

Register E

Register H or register pair Hand L

Register L
Stack pointer register

STACK
MEMORY

Program status word (Contents of A and status flags)
Memory reference code using address in Hand L

Special relocatability feature
Special relocatability feature

NOTE

The STACK Jnd MEMORY symbols arc fully discussed
in Chapter 4.

User-defined symbols arc symbols you create to reference instruction and data addresses. These symbols arc
defined when they appear in the label field (If an instruction or in the name field of EQU, SET, or MACRO
directives (see Chapters 4 and 5).

Assembler·generated ~ymbols arc created by the assembler to replace usel'-defined symbols whose scope is limited

to a macro definition.

Global and Limited Symbols

Most symbols arc global. This means that they have meaning thl"Oughout your program. Assume, for example,

that you assign the symbolic name RTN to a routine. You may then code a jump or a call to RTN from any

point in your program. If you assign the symbolic name RTN to a second routine, an error results since you

have given multiple definitions to the same name.

Certain symbol~ have meaning only within a macro definition or within a call to that macro; these symbols are
'local' to the macro. Macros require local ~ymbols because the same macro may be used many times in the

program. If the symbolic name~ within mJcro~ were global, each use of the macro (except the first) would cause
multiple definitions for those symbolic names.

See Chapter 5 for additional information ab,)ut macros.

Chapter 2. Assembly Language Concepts

Permanent and Redefl'nable Symbols

Most symbol~ drc permanent since their vdlue cannot chdnge during the a~sembly operation. Only symbols

defined with the SET and MACRO assembler directives arc redefinable.

Absolute and Relocatable Symbols

An important attribute of symbols with this dssembler is that of relocatability. Relocatable programs arc

assembled relative to memory location zero. These progrdms arc Idter relocated to some other set of memory

locations. Symbols with addresses that change during relocation arc relocatdble symbols. Symbols with

addres,e, that do not change durillg relocltion are absolute symbols. Thi,> distinction becomes important when

the symbols arc used within expressions, a'> will be explained Idter.

External and public symbol, arc '>pecial types of relocatdble ,ymbols. These ,ymbols <Ire required to establish

program lillkdge when sever,iI relocatdble program module, arc boulld together to form a single application

program. ExternJI symbols arc those used in the current program module, but defined in ,lIlother module.

Such symbols must appear in dn EXTRN ';tatelTlellt, or the assembler will fidg them as undefined.

Conversely, PUBLIC <,ymbols arc defined in thc current progr·am module, but mdY be dccessed by other

module,>. The dCldresses for the,c ,>ymbols dre resolved·when the module, Me boulld together.

Absolute and r·clocatable ,ymbols mdY both appear in d relocatable module. References to any of the assembler­

defined register) A through E, H dnd L, PSW, SP, and M arc absolute since they refer to hardware locations.

But these refercllccs arc valid in allY module.

ASSEMBLY-TIME EXPRESSION EVALUATION

An expression i, d combination of numbers, symbols, and operators. Each clement of an expression is a term.

Expressions, likc ,ymbols, may be db,olute or relocatable. For the sake of readers who do not require the

relocation fedture, absolute expre,sions are described first. However, users of relocation should read all the

following.

Operators

The dssembler include, five groups of opcr ators which per·mit the following assembly·time operations: arithmetic

operations, shift operations, logical operations, comp<lre operations, and byte isolation operations. It is important

to keep in mind thdt these arc all assembly·tillle operations. Once the assembler has evaluated an expression, it

becomes a permanent part of your prograill. Assume, for example, that your program defines a list of ten con­

stants starting at the label LIST; the following instruction loads the address of the seventh item in the list into

the Hand L registers:

LXI H,LlST+6

Notice that LIST addresses the first item, LlST+ 1 the second, and so on.

2·11

Chapter 2. Assembly Language Concepts

2-12

Arithmetic Operators

The arithmetic operators are as follows:

Operator

+

*

MOD

Examples:

Meaning

Unary or binary addition
Unary or binary subtraction
Multiplication
Division. Any remainder is discarded (7/2=3).
Division by zero causes an error.

Modulo. Result is the remainder caused by a

division operation. (7 MOD 3=1)

The following expressions generate the bit pattern for the ASCII character A:

5+30*2
(25/5)+30'2
5+(-30*-2)

Notice that the MOD operator must be separc.ted from its operands by spaces:

NUMBR MOD 8

Assuming that NUMBR has the value 25, the previous expression evaluates to the value 1.

Shift Operators

The shift operators are as follows:

Operator Meaning

y SHR x Shift operand 'y' to the right 'x' bit positions.

Y SHL x Shift operand 'y' to the left 'x' bit positions.

The shift operators do not wraparound any bits shifted out of the byte. Bit positions vacated by the shift
operation are zero·filled. Notice that the shift operator must be separated from its operands by spaces.

Example:

Assume that NUMBR has the value 0101 0101. The effects of the shift operators is as follows:

NUMBR S,HR 2 0001 0101

NUMBR SHL 1010 1010

Chapter 2. Assembly Language Concepts

Notice that a shift one bit position to the left has the effect of multiplying a value by two; a shift one bit

position to the right has the effect of dividing a value by two.

Logical Operators

The logical operators are as follows:

Operator Meaning

NOT Logical one's complement

AND Logical AND (=1 if both ANDed'bits are 1)

OR Logical OR (=1 if either ORed bit is 1)

XOR Logical EXCLUSIVE OR (=1 if bits are different)

The logical operators act only upon the least significant bit of values involved in the operation. Also, these

operators are commonly used in conditional IF directives. These directives are fully explained in Chapter 4.

Example:

The following I F directive tests the least significant bit of three items. The assembly language code that follows
the IF is assembled only if the condition is TRUE. This means that all three fields must have a one bit in the

least significant bit position.

IF FLD1 AND FLD2 AND FLD3

Compare Operators

The compare operators are as follows:

Operator

EQ
NE

LT
LE

GT

GE

NUL

Meaning

Equal

Not equal

Less than

Less than or eq ual

Greater than

Greater than or equal
Special operator used to test for null (missing) macro
parameters

2-13

Chapter 2. Assembly La'nguage Concepts

2-14

The compare operators yield a yes-no result. Thus, if the evaluation of the relation is TRUE, the value of the

result is all ones. If false, the value of the resJlt is all zeros. Relational operations are based strictly on magni­

tude comparisons of bit values. Thus, a two's complement negative number (which always has a one in its high

order bit) is greater than a two's complement positive number (which always has a zero in its high order bit).

Since the NUL operator applie) only to the rlacro feature, NUL is described in Chapter 5.

The compare operators arc commonly used in conditional IF directives. These directives arc fully explained in

Chapter 4.

Notice that the compdre operator must be sepdrated from its operands by spaces.

Example:

The following IF directive te'>ts the values of FLOl and FL02 for equality. If the result of the comparison is

TRUE, the assembly Idnguage coding follo.wilg the IF directive is assembled. Otherwise, the code is skipped over.

IF FLOl EO FL02

Byre Isolarion Operarors

The byte isolation operators dre as follows:

Operaror Meaning

HIGH Isolate high-order 8 bits of 16-hit value

LOW Isolate low-order 8 bih of 16-bit vdlue.

The assembler tredts expl"Cssiom d~ 16-bit acidresses. In certdill cases, you need to dedi only with a part of an

address, or you need to gellerdte all 8-bit va ue. This is the functioll of the HIGH and LOW operators.

The assembler\ relocation feature treats all external and relocatable ,>ymhols as 16-bit addresses. When one of

these symbols appedrS in the operdnd expre~,sion of an immediate instructioll, it must be preceded by either the

HIGH or LOW operator to specify which byte of the address is to be used in the evaluation of the expression.

When neither operator is present, the assembler assumes the LOW operator Jild issues an error message.

NOTE

Any program segment containing a symbol used as the

argument of a HIGH operator should be located only on

a page boundary. This is done using the PAGE option

with the CSEG or DSEG directives described in Chapter

4. Carries are not propagated from the low-order byte

when the assembler object code is relocated and the

carry flag will be lost. Using PAGE ensures that this

flag is O.

Chapter 2. Assembly Language Concepts

Examples:

Assume that ADRS is an address manipulated at assembly-time for building tables or lists of items that must all

be below address 255 in memory. The following IF directive determine, whether the high-order byte of ADRS
i, zero, thu,> indicating that the address is still les~ 'han 256:

IF HIGH ADRS EQ 0

Permissible Range of Values

Internally, the assembler treats each term of an expression as a two-byte, 16-bit value. Thus, the maximum

range of values is OH through OFFFFH. All arithmetic operations are performed using unsigned two's comple­

ment arithmetic. The assembler performs no overflow detection for two-byte values, so these values are evaluated

modulo 64K.

Certain in'>tructions require that their operands be an eight-bit value. Expressioll'> for these instructions must

yield values in the range 256 through +255. The assembler generates an error message if an (>xpression for one

of these instructions yield,> an out-of-range value.

Precedence of Operators

NOTE

Only instructions that allow registers as operands may have

register-type operands. Expressions containing register-type

operands are flagged as errors. The only assembler directives

that may contain register-type operands are EQU, SET, and

actual parameters in macro calls. Registers can be assigned

alternate names only by EQU or SET.

Expressions are evaluated left to right. Operators with higher precedence are evaluated before other operators

that immediately precede or follow them. When two operators have equal precedence, the left-most is evaluated

first.

Parentheses can be used to override normal rules of precedence. The part of an expression enclosed in paren­

the,e, i, evaluated fir,t. If pdrenthese, are nested, the innermost are evaluated first.

15/3+18/9

15/(3 + 18/9)

= 5 + 2 = 7

= 15/(3 + 2) 15/5 = 3

2-15

Chapter 2. Assembly Language Concepts

The following list describes the classes of operators in order of precedence:

• Parenthesized expressions

• NUL
• HIGH, LOW
• Multiplication/Division: *, /, MOD, SHL, SHR

• Addition/Subtraction: -t, - (unary and binary)

• Relational Operators: E(), L T, LE, GT, GE, NE

• Logical NOT

• Logical AND

• Logical OR, XOR

The relational, logical, dnd HIGH/LOW operators mu'>t be sepdrated from their operdnds by at least one blank.

Relocatable Expressions

2-16

Determining the relocatdbility of an expression requires that you understand the relocdtdbility of each term used

in the expression. This is edsier than it sounds since the number of allowdble operdtor, is '>ubstdntidlly reduced.

But first it is necessary to know whdt determines whether d symbol i, absolute or relocdtable.

Absolute ,>ymbols can be defined two ways:

• A symbol that appears in a label field when the ASEG directive is in effect is an absolute symbol.

• A symbol defined as equivalent tJ an absolute expression u,>illg the SET or EQU directive is an

ab'>oiute ,>ymbol.

Relocatable symbols Cdn be defined a number of ways:

• A symbol that appears in a label field when the DSEG or CSEG directive is in effect i, d relocatable

symbol.

• A ,>ymbol defined a'> equivalent to a relocatable expression u',ing the SET or EQU directive is

relocdtable.

• The special assembler symbols STACK and MEMORY Me r-elucltdblc.

• External symbols Me considered relocatable.

• A reference to the location counter hpecified by the $ character) is rclocaUble when the CSEG or

DSEG directive i'> in effect.

The expres,ions shown in the fullowing list <lIT the only expreS'>ion'> tilat yield a rclocltdble rc'>ult. A'>sume that

ABS i, an dbsolutc symbol ,md RELOC is a rCIOc,ltablc ,ymbol:

ABS + RELOC

RELOC + ABS

RELOC ABS

{
HIGH".) RELOC + ABS
LOW /

{
HIGH) RELOC ABS
LOW)

(HIGH)
RELOC + ~ LOW ABS

{
HIGH)

RELOC: LOW ABS

Chapter 2. Assembly Language Concepts

Remember tlut number, arc absolutc terms. Thlh the expression RELOC

is not.

I ()O i, legal, but 100 RELOC

When two relocatable symbols have both been defined with the ,dme type oj reiocaLlbility, they m,lY appedr in

cerLlin expressiollS that yield an dbsulutl' result. Symbols have the '>dme type of rclocltability when both Ml'

rcLltive to the CSEG locdtion counter, both die reldtive to the DSEG luclli()n counter, both <lrc reldtivc to
MEMORY, or both arc relative to STACK. The following cxpressions arc valid and produce absolute results:

RELOCl .- RELOC2

r EQ

1
LT

RELOCl LE RELOC2

GT

GE

NE

Relocatdble symbols may not appear in expressions with any other operdtors.

The following list shows dll pmsible combinations of operators with absolute and relocatable terms. An A in the

table indicdtes that the resulting dddress is absolute; an R indicdtes d relocatable address; an I indicates an

illegdl combination. Notice that only one term may dppear with the laq five operators in the list.

I Op"'!o>
X dbsolutc X absul u te X relucaUble X relocatable

Y dbsolutc Y reloclldblc Y absolute Y I"Clocatdblc

Y A R R I X +

X Y A I R A

X * Y A I I I

X / Y A I I I

I
X MOD Y A I I I

I X SHL Y A I I I
,

X SHR Y A I I I

X EQ Y A I I A

X LT Y A I I A
X LE Y A I I A

X GT Y A I I A

X GE Y A I I A

X NE Y A I I A

X AND Y A I I I

X OR Y A I I I

X XOR Y A I I I
NOT X A I
Hl(:;H X A R
LOW X A R

unary+ X A R

undrY X A I

2-17

Chapter 2. Assembly Language Concepts

Chaining of Symbol Definitions

The ISIS-II 8080/8085 Macro Assembler is e<,sentially a 2-pass assembler. All symbol table entries must be
resolvable in two passes. Therefore,

X EQU Y
Y EQU

is legal, but in the series

X EQU Y
Y EQU z
z EQU

the first line is illegal as X cannot be resolved in two passes and remains undefined.

2-18

3. INSTRUCTION SET

HOW TO USE THIS CHAPTER

This chapter is a dictionary of 8080 and 8085 instructions. The instruction descriptions are listed alphabetically
for quick reference. Each description is complete so that you are seldom required to look elsewhere for addition­
al information.

This reference format necessarily requires repetitive information. If you are readinr this manual to learn about
the 8080 or the 8085, do not try to read this chapter from ACI (add immediate with Carry) to XTHL (exchange
top of stack with Hand L registers). Instead, read the description of the processor and instruction set in
Chapter 1 and the programming examples in Chapter 6. When you begin to have questions about particular
instructions, look them up in this chapter.

TIMING INFORMATION

The instruction descriptions in this manual do not explicitly state execution timings. This is because the basic

operating speed of your processor depends on the clock frequency used in your system.

The 'state' is the basic unit of time measurement for the processor. A state may range from 480 nanoseconds

(320 nanosecond~ on the 8085) to 2 microseconds, depending on the clock frequency. When you know the

length of a state in your system, you can determine an instruction's basic execution time by multiplying that
figure by the number of states required for the instruction.

Notice that two sets of cycle/state specifications are given for 8085 conditional call and jump instructions. This
is because the 8085 fetches the third instruction byte only if it is actually needed; i.e., the specified condition

is sa tisfied.

This basic timing factor can be affected by the operating speed of the memory in your system. With a fast

clock cycle and a slow memory, the processor can outrun the memory. In this case, the processor must wait
for the memory to deliver the desired instruction or data. In applications with critical timing requirements, this
wait can be significant. Refer to the appropriate manufacturer's literature for memory timing data.

3-1

Chapter 3. Instruction Set

ACI

ADC

3-2

ADD IMMEDIATE WITH CARRY

ACI adds the contents of the second instruction byte and the carry bit to the contents of the accumulator and

stores the result in the accumulator.

Opcode Operand

ACI data

The operand specifies the actual data to be added to the accumulator except, of course, for the carry bit. Data

may be in the form of a number, an ASCII constant, the label of a previously defined value, or an expression.

The data may not exceed one byte.

The assembler's relocation feature treats all e)(ternal and relocatable symbols as 16-bit addresses. When one of

these symbols appears in the operand expression of an immediate instruction, it must be preceded by either the
HIGH or LOW operator to specify which byte of the address is to be used in the evaluation of the expression.

When neither operator is present, the assembl~r assumes the LOW operator and issues an error message.

Example:

~_o __ ~o
~ data

Cycles:

States:

Addressing:
Flags:

2

7
immediate

Z,S,P,CY,AC

Assume that the accumulator contains the value 14H and that the carry bit is set to one. The instruction ACI 66

has the following effect:

Accumulator = 14H

Immediate data = 42H

Carry

00010100

01000010

1

01010111 57H

ADD WITH CARRY

The ADC instruction adds one byte of data ~Ius the setting of the carry flag to the contents of the accumulator.
The result is stored in the accumulator. ADC then updates the setting of the carry flag to indicate the outcome
of the operation.

The ADC instruction's use of the carry bit enables the program to add multi-byte numeric strings.

Chapter 3. Instruction Set

Add Register to Accumulator with Carry

Opccde Operand

ADC reg

The operand must specify one of the registers A through E, H or L. This instruction adds the contents of the

specified register and the carry bit to the accumulator and stores the result in the accumulator.

000

Cycles:

States:

Addressings:
Flags:

Add Memory to Accumulator with Carry

Opcode Operand

ADC M

5 5 5\

1

4
register

Z,S,P,CY,AC

This instruction adds the contents of the memory location addressed by the Hand L registers and the carry

bit to the accumulator and stores the result in the accumulator. M is a symbolic reference to the Hand L

registers.

000

Cycles:
States:
Addressing:
Flags:

Example:

2
7
register indirect

Z,S,P,CY,AC

Assume that register C contains 3DH, the accumulator contains 42H, and the carry bit is set to zero. The

instruction ADC C performs the addition as follows:

3DH
42H

CARRY

The condition flags are set as follows:

Carry

Sign

Zero
Parity
Aux. Carry

00111101

01000010

o
01111111 =7FH

0

0

0
0

= 0

3·3

Chapter 3. Instruction Set

ADD

34

If the carry bit is set to one, the instruction has the following results:

3DH 00111101

42H 01000010

CARRY -
10000000 80H

Carry 0
Sign 1
Zero 0
Parity 0
Aux. Carry

ADD

The ADD instruction adds one byte of data to the contents of the accumulator. The result is stored in the
accumulator. Notice that the ADD instruction excludes the carry flag from the addition but sets the flag to
indicate the outcome of the operation.

Add Register to Register

Opcode Operand

ADD reg

The operand must specify one of the registe~s A through E, H or L. The instruction adds the contents of the

"pecified register to the contents of the accLmulator and stores the result in the accumulator.

Add From Memory

11 0 0 0 0 Iss sl
Cycles:

S ta tes:
Addressing:
Flags:

Op co de

ADD

Operand

M

4
register

Z,S,P,CY,AC

This instruction adds the contents of the m-~mory location addressed by the Hand L registers to the contents of
the accumulator and stores the result in the accumulator. M is a symbolic reference to the Hand L registers.

o 0 0 0

Cycles:

States:

Addressing:
Flags:

2
7
register indirect

Z,S,P,CY,AC

ADI

Chapter 3. Instruction Set

Examples:

Assume that the accumulator contains 6CH and register D contains 2EH. The instruction ADD D performs the

addition as follows:

2EH 001 0111 0

6CH 011011 00

9AH 1001 1010

The accumulator contains the value 9AH following execution of the ADD D instruction. The contents of the D

register remain unchanged. The condition flags are set as follows:

Carry 0

Sign 1

Zero 0

Parity =::

Aux. Carry

The following instruction double~ the contents of the accumulator:

ADD A

ADD IMMEDIATE

ADI adds the contents of the second instruction byte of the contents of the accumulator and stores the result

in the accumulator.

Opcode Operand

ADI data

The operand specifies the actual data to be added to the accumulator. This data may be in the form of a number,

an ASCII constant, the label of a previously defined value, or an expression. The data may not exceed one byte.

The assembler's relocation feature treats all external and relocatable symbols as 16-bit addresses. When one of

these symbols appears in the operand expression of an immediate instruction, it must be preceded by either

the HIGH or LOW operator to specify which byte of the address is to be used in the evaluation of the expression.

When neither operator is present, the assembler assumes the LOW operator and issues an error message.

000

data

Cycles:

Sta tes:

Addressing:

Flags:

o

2
7
immediate

Z,S,P,CY,AC

3-5

Chdpter 3. Instruction Set

ANA

3-6

Example:

A~sume that the accumulator contains the value 14H. The i,nstruction ADI 66 has the following effect.

Accumulator
Immediate data

14H
42H

00010100
01000010
01 01 011 0 ,= 56H

Notice that the assembler converts the decimal value 66 into the hexadecimal value 42.

LOGICAL AND WITH ACCUMULATOR

ANA performs a logical AND operation using the content> of the specified byte and the accumulator. The result

is placed in the accumulator.

Summary of Logical Operations

AND produces a one bit in the result only W:len the corresponding bits in the test data and the mask data arc

ones.

OR produces d one bit in the result when the corresponding bits in eithel~ the test data or the mask data are
ones.

Exclusive OR produces a one bit only when the corresponding bits in the test data and the mask data are
different; i.e., a one bit in either the test dau or the mask data - but not both - produces a one bit in the
result.

AND

1010 1010
0000 1111

0000 1010

AND Register with Accumulator

Opcode

ANA

OR

1010 1010
00001111

1010 1111

Operand

reg

EXCLUSIVE OR

1010
0000

1010

1010
1111

0101

The operand must specify one of the register·s A through E, H or L. This instruction ANDs the contents of the

specified register with the accumulator and stores the result in the accumulator. The carry flag is reset to zero.

! 1 0 0 0 I S S sl
Cycles:

States: 4
Addressing: register
Flags: Z,S,P,CY,AC

ANI

Chapter 3. Instruction Set

AND Memory with Accumulator

Opcode Operand

ANA M

This instruction ANDs the contents of the specified memory location with the accumulator and stores the re~ult

in the accumulator. The carry flag is reset to zero.

Example:

~ll ___ 0 ______ 0 __ 0 ______ l~
Cycles:

Sta tes:
Addressing:

Flags:

2
7
register indirect

Z,S,P,CY,AC

Since any bit ANDed with a zero produces a zero and any bit ANDed with a one remains unchanged, AND is

frequently used to zero particular groups of bits. The following example ensures that the high-order four bits of
the accumulator are zero, and the low-order four bits ar~ unchanged. Assume that the C register contain-; OFH:

Accumulator

C Register

1 1 1

o 000
000 0

o 0
1

o 0

OFCH

OFH

OCH

AND IMMEDIATE WITH ACCUMULATOR

ANI performs a logical AND operation using the contents of the second byte of the instruction and the accumu­

lator. The result is pldced in the accumulator. AN I also resets the carry flag to zero.

Op co de Operand

ANI data

The operand must specify the data to be used in the AND operation. This data may be in the form of a number,

an ASCII constant, the label of some previously defined value, or an expression. The data may not exceed one

byte.

The assembler's relocation feature treats all external and relocatable symbols as 16-bit addresses. When one of

these symbols appears in the operand expres<;ion of an immediate instruction, it must be preceded by either the

HIGH or LOW operator to specify which byte of the address is to be used in the evaluation of the expression.

When neither operator is present, the assembler assumes the LOW operator and issues an error message.

3-7

Chapter J. Instruction Set

CALL

3-8

[

._0_0 ~
data]

Cycles:

Sta tes:

Addressing:

Flags:

Summary of Logical Operations

2

7

immediate

Z,S,P,CY,AC

AND produce~ a one bit in the result only when the corresponding bits in the test data and the mask data are

ones.

OR produces a one bit in the result when the corresponding bits in either the test data or the mask data arc

ones.

Exclu~ive OR produces a one bit only when the corrcsponding bits in the test data and the mask data are

different; i.e., a one bit in eithcr thc test data or the mask data - but not both produces a onc bit in thc

result.

Example:

AND

1010 1010
0000 1111

0000 1010

OR

10101010
0000 1111
1010 1111

EXCLUSIVE OR

1010 1010
0000 1111
1010 OlOl

The following instruction is u'>ed to re~et OFF bit six of the byte in the accumulator:

ANI 101111118

Since any bit ANDed with d one remains unchanged and a bit ANDed with d zero i, rc'>t to lcro, thc ANI

instruction shown above scts bit six OFF and ledvc~ the othcr', unchangcd. This tcchniquc is u,eful when a

program uscs individual bits a<; slatus flags.

CALL

Thc CALL imtruction combincs functions of thc PUSH and J\1P instruction~. CALL pushcs the contents of the

program counter (the address of the ncxt sequential instruction) onto the stack and thcn jumps to the address

spccificd in the CALL instruction.

Edch CALL il1'.tructioll or one of it<; variant~ implie, thc use of a subsequent RET (return) imtruction. Whcn a

call hds no corre~pollding return, exccss addres'>c'> arc built up in thc stack.

Chapter 3. Instruct"lon Set

Opcode Operand

CALL address

The address may be specified as a number, a label, or an expression. (The label is most common.) The as'>embler

inverts the high and low address bytes when it assembles the instruction.

1 1 0

Cycles:

S ta tes:

Addressing:

Flags:

Example:

0 1 q 0 1

lowaddr

high addr

5
17 (18 on 8085)

immediate/register indilTct

none

When a given coding sequence is required several times in'a program, you can usually conserve memory by coding

the sequence as a subroutine invoked by the CALL instruction or one of it<, varianI',. For example, assume that

an application drives a six-digit L.ED display; the display is updated as a result of dn operator input or because

of two different calculations that occur in the program. The coding required to drive the display can be included

in-line at each of the three point, where it is needed, or it can be coded as a subroutine. If the label DISPL. Y is

assigned to the first instruction of the display driver, the following CAL.L. instruction is used to invoke the

display subroutine:

CAL.L. DISPL Y

This CALL. instruction pushes the addle)s of the next proglam instruction onto the stack and then transfers

control to the DISPL. Y subroutine. The DISPL. Y ,uilroutine must execute a return instruction or one of its

variants to resume normal program flow. The following is a graphic illustration of the effect of CAL.L and return

instructions:

CAL.L.
--

_; DISPL. Y:

CAL.L. ~ -f2..I~~Y_-_-_~~~ ___ ~
------~RET

CA L. L. DISPL. Y

Consideration for Using Subroutlt7es

The larger the code segment to be repeated and the greater the number of repetitions, the greater the potential

memory savings of using a subroutine. Thu" if the display driver in the previou, example requires one hundrecl

3-9

Chapter 3. Instruction Set

CC

CM

3-10

bytes, coding it in-line would require three hundred bytes. Coded as a subroutine, it requires one hundred bytes

plus nine bytes for the three CALL instructions.

Notice that subroutines require the use of the stack. This requires the application to include random access

memory for the stack. When an application has no other need for random access memory, the system designer

might elect to avoid the use of subroutines.

CALL IF CARRY

The CC instruction combines functions of the jC and PUSH instructions. CC tests the setting of the carry flag.
If the flag is set to one, CC pushes the contents of the program counter onto the stack and then jumps to the
address specified in bytes two and three of the CC instruction. If the flag is reset to zero, program execution

continues with the next sequential instruction.

Opcode Operand

CC address

Although the use of a label is most common, the address may also be specified as a number or expression.

Example:

o o 0

~---------------------------

Cycles:

States:

Addressi ng:

Flags:

lowaddr

high addr

3 or 5 (2 or 5 on 8085)
11 or 17 (9 or 18 on 8085)
immediate/register indirect

none

For the sake of brevity, an example is given for the CALL instruction but not for each of ItS closely related

variants.

CALL IF MINUS

The CM instruction combines functions of the J M and PUSH instructions. CM tests the setting of the sign flag.
If the flag is set to one (indicating that the contents of the accumulator are minus), CM pushes the contents

of the program counter onto the stack and then jumps to the address specified by the CM instruction. If the

flag is set to zero, program execution simply continues with the next sequential instruction.

Opcode Operand

CM address

CMA

Chapter 3. Instruction Set

Although the use of a label is most common, the address may also be specified as a number or an expression.

Example:

I--0~
lowaddr l

high addr]
L--_

Cycles:

States:

Addressing:

Flags:

3 or 5 (2 or 5 on 8085)

11 or 17 (9 or 18 on 8085)

immediate/register indirect

none

For the sake of brevity, an example is given for the CALL instruction but not for each of its closely related

variants.

COMPLEMENT ACCUMULATOR

CMA complements each bit of the accumulator to produce the one's complement. All condition flags remain

unchanged.

Opcode Operand

CMA

Operands are not permitted with the CMA instruction.

L-I 0_0 __ 0 ___ ~
Cycles:

States: 4
Flags: none

To produce the two's complement, add one to the contents of the accumulator after the CMA instructions has

been executed.

Example:

Assume that the accumulator contains the value 51 H; when complemented by CMA, it becomes OAEH:

51 H

OAEH

01010001

1010111 0

3-11

Chapter 3. Instruction Set

CMC

CMP

3·12

COMPLEMENT CARRY

If the carry flag equal,> zero, CMC set'> it to one. If the carr"y flag is one, CMC resets it to zero. All other flags

remain unchanged.

Opcode Operand

CMe

Operdnd~ Me not permitted with the CMC in'>truction.

Cycle'>:

States: 4

Flags: CY only

Example:

Assume thdt d program u'>es bit 7 of d byte to control whether" a ,>ubroutine i, called. To test the bit, the pro­

gram loads the byte into the dccumulator, rotates bit 7 into the Cdrry flag, and execute, a CC (Call if Carry)

instruction. Before returning to the calling program, the subroutine reiniti,difes the flag byte u,>ing the following

code:

CMC

RAR

RET

;SET BIT 7 OFF

;ROTATE BIT 7 INTO ACCUMULATOR

;RETURN

COMPARE WITH ACCUMULATOR

CMP compar-e'> the ,>pecified byte with the content'> of the accumulator ,ltlel indicate'> the rC'>Lllt by '>etling the

carry dnd fero fidgS. The valuc~ being compdred remain unchanged.

The zero flag indicates equality. No carry indicates that the accumulator i'> greater than the specified byte; a

carry indicates that the accumulator is leS'> than the byte. However, the meaning of the CMrv flag is rever'>cd

when the values have different signs or one of the values i, complemented.

The program tests the condition flag'> using one of the conditional Jump, Cdl, m Return in<,lruction'>. For

example, JZ (jump if Zero) tcst', for equdlity.

Functional Description:

Compari.,ons are performed by subtracting the specified byte from the contents of the accumulator", which

is why the zero ,md cMry flags indicate the result. This subuaction uses the processor", interndl registers

so that source data is preserved. Because subtraction uscs two's complement addition, the CMP instruction

recomplements the carry flag generated by the subtraction.

Chapter 3. Instruction Set

Compare Register with Accumulator

Opcode Operand

CMP reg

The operand must name one of the registers A through E, H or L.

o S s]
Cycles:

States: 4
Addressing: regis ter

Flags: Z ,S ,P ,CY ,AC

Compare Memory with Accumulator

Opcode Operand

CMP M

This instruction compares the contents of the memory location addressed by the Hand L registers with the

contents of the accumulator. M is a symbolic reference to the Hand L register pair.

Example 1:

I '--1_0 _____ 1_~
Cycles:

States:

Addressing:

Flags:

2
7

register indirect

Z,S,P,CY,AC

Assume that the accumulator contains the value OAH and regi,ter E contains the value OSH. The instruction
CMP E performs the following internal subtraction (remember that subtraction is actually two's complement

addition) :

Accumulator
+(-E Register)

00001010
11111011

00000101 +(-carry)

After the carry is complemented to account for the subtract operation, both the zero and carry bits arc zero,
thus indicating A greater than E.

Example 2:

As'>ume that the accumulator contains the value --1 BH and register E contains OSH:

Accumulator
+(E Register)

11100101

11111011
11100000 + (--carry)

3-13

Chapter 3. Instruction Set

CNC

CNZ

3·14

After the CMP instruction recomplements the carry flag, both the carry flag and zero flag are zero. Normally

this indicates that the accumula.tor is greater than register E. However, the meaning of the carry flag is reversed

since the values have different ~,igns. The user program is responsible for proper interpretdtion of the cdrry flag.

CALL IF NO CARRY

The CNC instruction combines functions of the JNC and PUSH instructions. CNC tesh the setting of the carry

flag. If the flag is set to lero, CNC pushes the contents of tre program counter onto the stack and then jumps

to the address specified by the CNC instruction. If the flag i'i set to one, program execution simply continue~

with the next sequential instruction.

Opcode. Operand

CNC address

Although the use of a Idbel is most common, the adclre~s may also be <,pecified as d number or an expression.

1 1 0

Cycles:

States:

Addressing:

Fldg.,:

Example:

1 0 1 (l 0

low dddr

high addr

3 or 5 (2 or 5 on 8085)

11 or 17 (9 or 18 on 8085)

immediate/register indirect

none

For the sake of brevity, an example is given for the CALL instructioJl but not fOl edch of ih clo'iely related

vdriants.

CALL IF NOT ZERO

The CNZ instruction combines functions of the JNZ and PUSH in,tructions. CNZ te'its the setting of the fero

fldg. If the flag is off (indicating that the contents of the accumulator are other than zero)' CNZ pushes the

contents of the program counter onto the stack and then jump'> to the address specified in the instruction's

second and third bytes. If the fldg is set to one, program execution 'iimplv continues with the next sequenti,li

instruction.

Op co de Operand

CNZ address

Although the use of d Idbel is most common, the address mel) also be "pccified d'i a number or an expression.

CP

Chapter 3. Instruction Set

1 1 0

Cycles:

States:

Addressing:

Flags:

Example:

0 0 1 0 0

low addr

high addr

3 or 5 (2 or 5 on 8085)

11 or 17 (9 or 18 on 8085)

immediate/register indirect

none

For the sake of brevity, an example is given for the CALL im.truction but not for each of its closely related

variants.

CALL IF POSITIVE

The CP instruction combines features of the J P and PUSH instructions. CP tests the setting of the sign flag. If
the flag is set to zero (indicating that the contents of the accumulator are positive), CP pushes the contents of
the program counter onto the stack and then jumps to the address specified by the CP instruction. If the flag
is set to one, program execution simply continues with the next sequential instruction.

Opcode Operand

CP address

Although the use of a label is more common, the address may also be specified as a number or an expression.

1 1 1

Cycles:

S ta tes:

Ad dressi ng:

Flags:

Example:

1 0 1 0 0

low address

high addr

3 or 5 (2 or 5 on 8085)

11 or 17 (9 or 18 on 8085)

im mediate/register indirect

none

For the sake of brevity, an example is given for the CALL instruction but not for each of its closely related
variants.

3-15

Chapter 3. Instruction Set

CPE

CPI

3-16

CALL IF PARITY EVEN

Parity is even if the byte in the accumulator has an even number of one bits. The parity flag is set to one to

indicate this condition. The CPE and CPO instructions are useful for testing the parity of input data. However,

the IN instruction does not set any of the condition flags. The flags can be set without altering the data by

adding OOH to the contents of the accumulator.

The CPE instruction combines functions of the J PE and PUSH instructions. CPE tests the setting of the parity

flag. If the flag is set to one, ePE pushes the contents of the program counter onto the stack and then jumps

to the address specified by the ClPE instruction. If the flag i, set to zero, program execution simply continues

with the next sequential instruction.

Opcode Operand

CPE address

Although the use of a label is more common, the address may also be <,pccified as a number or an expression.

1 1 1

Cycles:

States:

Ad dressi ng:

Flags:

Example:

0 1 1 0 0

low addr

high addr

3 or 5 (2 or 5 on 8085)

11 or 17 (9 or 18 on 8085)

immediate/register indirect

none

For the sake of brevity, an example is given for the CALL instruction but not for each of its closely related
variants.

COMPARE IMMEDIATE

CPI compares the contents of the second instruction byte with the contents of the accumulator and sets the zero

and carry flags to indicate the result. The values being compared remain unchanged.

The zero flag indicates equality. hlo carry indicates that the contents of the accumulator are greater than the

immediate data; a carry indicates that the accumulator is less than the immediate data. However, the meaning

of the carry flag is reversed when the values have different signs or one of the values is complemented.

Op co de Operand

CPI data

CPO

Chapter 3. Instruction Set

The operand must specify the data to be compared. This data may be in the form of a number, an ASCII

constant, the label of a previously defined value, or an expression. The data may not exceed one byte.

The assembler's relocation feature treats all external and relocatable symbols as 16-bit addresses. When one of

these symbols appears in the operand expression of an immediate instruction, it must be preceded by either

the HIGH or LOW operator to specify which byte of the address is to be used in the evaluation of the

expression. When neither operator is present, the assembler assumes the LOW operator and issues an error

message.

Example:

J-----1.~
data ~

Cycles:

States:

Addressing:

Flags:

2
7
register indirect

Z,S,P,CY,AC

The instruction CPI 'C' compares the contents of the accumulator to the letter C (43H).

CALL IF PARITY ODD

Parity is odd if the byte in the accumulator has an odd number of one bit,. The parity flag is set to zero to

indicate this condition. The CPO and ePE instructions are useful for testing the parity of input data. However,

the IN instruction does not set any of the condition flags. The flags can be ,e1 without dltering the data by

adding OOH to the contents of the accumulator.

The CPO instruction combines functions of the J PO and PUSH instructions. CPO tests the setting of the parity

flag. If the flag is set to zero, CPO pushes the contents of the program counter onto the slack and then jumps

to the address specified by the CPO instruction. If the flag is set to one, program execution simply continues

with the next sequential instruction.

Op co de Operand

CPO address

Although the use of a label is more common, the address may also be specified as a number or an expression.

1 1 1 0 0 1 0 0

lowaddr

high addr

Cycles: 3 or 5 (2 or :5 on 8085)

States: 11 or 17 (9 or 18 on 8085)

Addressing: immediate/register indirect

Flags: none
3-17

Chapter 3. Instruction Set

CZ

DAA

3-18

Example:

For the sake of brevity, an example is given for the CALL in';truction but not for each of its closely related

variants.

CALL IF ZERO

The CZ instruction combines fU:lctions of the jZ and PUSH instructiom. CZ tests the setting of the zero flag.

If the flag is set to one (indicating that the contents of the accumulator arc lero), CZ pushes the contents of

the program counter onto the stack and then jumps to the address specified in the CZ instruction. If the flag

is set to tero (indicating that the content'> of the accumulator arc other tha.n leroj, program execution simply

continues with the next sequential instruction.

Opwde Operand

CZ address

Although the usc of a label is most common, the address may also be "pecified as a number or an expression.

Example:

o 0 o 0

~------------------------------

low addr
~-----------------------------

Cycles:

States:

Ad dressi ng:

Flags:

high addr

3 or 5 (2 or 5 on 8085)

1 I or 17 (9 or 18 on 8085)

immediate/register indirect

none

For the sake of brevity, an exalTlple is given for the CALL imtruction but not for each of its closely related

variants.

DECIMAL ADJ UST ACCUMULATOR

The DAA instruction adjusts the eight-bit value in the accumulator to form two four-bit hindry coded decimal

digits.

Opcode Operand

DAA

Operands arc not permitted with the DAA imtruction.

DAA is used when adding decimal numbers. It is the only instruction whose function requires use of the auxiliary

carry flag. In multi-byte arithmetic operations, the DAA instruction typically is coded immediately after the arith­

metic instruction so that the auxiliary carry flag is not altered unintentionally.

Chapter 3. Instruction Set

DAA operates as follows:

1. If the least significant four bits of the accumulator have a value greater than nine, or if the auxiliary

carry flag is ON, DAA adds six to the accumulator.

2. If the most significant four bits of the accumulator have a value greater than nine, or if the carry

flag is ON, DAA adds six to the most significant four bits of the accumulator.

Example:

I L(_) __ O ______ O ___ O _____ l_~
Cycles:
States:

Addressing:
Flags:

4

register

Z,S,P,CY,AC

Assume that the accumulator contains the value 9BH as a result of adding 08 to 93:

CY AC

o 0

1001 0011

0000 1000

1001 1011 = 9BH

Since OBH is greater than nine, the instruction adds six to contents of the accumulator:

CY AC

o
1001 1011
0000 0110
1010 0001 = AI H

Now that the most significant bits have a value greater than nine, the instruction adds six to them:

CY AC
1

1010 0001
0110 0000

0000 0001

When the DAA has finished, the accumulator contains the value 01 in a BCD format; both the carry and auxiliary

carry flags are set ON. Since the actual result of this addition is 101, the carry flag is probably significant to the

program. The program is responsible for recovering and using this information. Notice that the carry flag setting is

lost as soon as the program executes any subsequent instruction that alters the flag.

3-19

Chapter 3. Instruction Set

DAD

OCR

3-20

DOUBLE REGISTER ADD

DAD adds the 16·bit value in the specified register pair to the contents of the Hand L regi.,ter pair. The result

is stored in Hand L.

Op co de Operand

DAD

DAD may add only the contents of the B&C, D&E, H& L, or the SP (Stack Pointer) register pairs to the contents

of H&L. Notice that the letter H must be used to specify thdt the H&L register pair is to b~ added to itself.

DAD sets the carry flag ON if there is a carlY out of the Hand L registers. DAD ,tffects none of the condition

flags other than carry.

[0 0 R P

Cycles:

States:

Addressing:

Flags:

Examples:

3

10

register

CY

The DAD instruction provides a meam for '>dving the current contents of the stack pointer.

LXI H,OOH

DAD SP

SHLD SAVSP

;CLEAR H& L TO ZEROS

;GET SP INTO H&L

;STORE SP IN MEMORY

The instruction DAD H doubles the number in the Hand L registers except when the opeldtion Cduses a carry

out of the H register.

DECREMENT

DCR subtracts one from the contents of the specified byte. DCR dffects all the condition flags except the cdrry

f1dg. Because DCR preserves the carry f1dg, it Cdn be used within multi·byte arithmetic routines for decrementing
chardcter counts and similar purposes.

Decrement Register

Op co de Operand

DCR reg

Chapter 3. Instruction Set

The operand must specify one of the registers A through E, H or L. Th~ instruction subtracts one from the

contents of the specified register ..

Cycles:

States:

Addressing:

Flags:

Decrement Memory

Orcade

DCR

5 (4 on 8085)

register

Z,S,P,AC

Operand

M

This instruction subtracts one from the contents of the memory location addressed by the Hand L registers.

M is a symbol ic reference to the Hand L registers.

Cycles:

States:
Addressing:
Flags:

Example:

o

3
10

O~

register indirect

Z,S,P,AC

The DCR instruction is frequently used to control multi-byte operations such as moving a number of characters
from one area of memory to another:

MVI B,5H
LXI H,260H

LXI D,900H
LOOP: MOV A,M

STAX D
DCX D
DCX M

DCR B
jNZ LOOP

;SET CONTROL COUNTER

;LOAD H,&L WITH SOURCE ADDR

;LOAD D&E WITH DESTINATION ADDR

;LOAD BYTE TO BE MOVED

;STORE BYTE

;DECREMENT DESTINATION ADDRESS
;DECREMENT SOURCE ADDRESS

;DECREMENT CONTROL COUNTER

;REPEAT LOOP UNTIL COUNTER=O

This example also illustrates an efficient programming technique. Notice that the control counter is decremented
to zero rather than incremented until the desired count is reached. This technique avoids the need for a compare

instruction and therefore conserves both memory and execution time.

3-21

Chapter 3. Instruction Set

DCX

DI

3·22

DECREMENT REGISTER PAIR

OCX decrements the contents of the specified register pair qy one. OCX affects none of the condition flags.

Because OCX preserves all the flags, it can be used for address modification in any instruction sequence that

relies on the passing of the flags.

Op co de Operand

OCX

OCX may decrement only the B&C, O&E, H&L, or the SP (Stack Pointer) register pairs. Notice that the letter

H must be used to specify the Hand L pair.

Exercise care when decrementing the stack pointer as this causes a loss of synchronization between the pointer

and the actual contents of the stack.

Example:

~J __ O----'-_R __ P----'-__ O_ 1 3
Cycles:

States:

Addressing:

Flags:

5 (6 on 8085)

register·

none

A,sume that the Hand L registers contain the address 9800H when the instruction OCX H is executed. OCX

considers the contents of the two registers to be a single 16-bit value and therefore performs a borrow from the

H register to produce the value 97FFH.

DISABLE INTERRUPTS

The inter·rupt sy,tem is disabled when the processor recognizes an interrupt or immediately following execution

of a 01 instruction.

In applications that use interrupts, the 01 instruction is commonly used only when a code sequence must not be

interrupted. For example, time-dependent code sequences become inaccurate when interrupted. You can disable

the interrupt system by including a 01 imtruction at the beginning of the code sequence. Because you cannot

predict the occurrence of an IIlterrupt, include an E I instruction at the end of the time·dependent code sequence.

Opcode Operand

01

Operands are not permitted with the 01 instruction.

EI

Chapter 3. Instruction Set

IL1 ____________ 0 ___ 0 ___ l ~
Cycles:

States: 4

Flags: none

NOTE

The 8085 TRAP interrupt cannot be disabled. This special interrupt is

intended for serious problems that must be serviced regardless of the

interrupt flag such as power failure or bus error. However, no interrupt

including TRAP can interrupt the execution of the 01 or EI instruction.

ENABLE INTERRUPTS

The EI instruction enables the interrupt system following execution of the next program instruction. Enabling
the interrupt system is delayed one instruction to allow interrupt subroutines to return to the main program

before 2 subsequent interrupt is acknowledged.

In applications that use interrupts, the interrupt system is usually disabled only when the processor accepts an

interrupt or when a code sequence must not be interrupted. You can disable the interrupt system by including
a 01 instruction at the beginning of the code sequence. Because you cannot predict the occurrence of an

interrupt, include an EI instruction at the end of the code sequence.

Op co de Operand

EI

Operands are not permitted with the EI instruction.

Example:

Cycles:

States: 4

Flags: none

NOTE

The 8085 TRAP interrupt cannot be disabled. Thi'i special interrupt i'i

intended for serious problems that must be serviced regard Ie,., of the

interrupt flag such as power failure or bus failure. However, no interrupt
including TRAP can interrupt the execution of the 01 or EI instruction.

The EI instruction is frequently used as part of a start-up sequence. When power is first applied, the processor
begins operating at some indeterminate address. Application of a RESET signal forces the program counter to

3-23

Chapter 3. Instruction Set

HLT

IN

3-24

zero. A common instruction sequence at this point is EI, HL T. These instructions enable the interrupt system

(RESET also disables the interrupt system) and halt the processor. A subsequent manual or automatic interrupt

then determines the effective start-up address.

HALT

The HL T instruction halts tht~ processor. The program counter contains the address of the next sequential

instruction. Otherwise, the flags and registers remain unchanged.

[~ 0 13
Cycles:

States: 7 (5 on 8085)

Flags: none

Once in the halt state, the processor can be restarted only by an external event, typically an interrupt. Therefore,

you should be certain that interrupts are enabled before the HL T in'>truction i'> executed. See the description of

the EI (Enable Interrupt) instruction.

If an 8080 HL T instruction is executed while interrupts are disabled, the only way to restart the processor i,

by application of a RESET '>ignal. This forces the program counter to zero. The same is true of the 8085, except

for the TRAP interrupt, which i'i recognized even when the interrupt system is disabled.

The processor can temporarily Icave the halt state to service a direct memory access request. However, the pro·

cessor reenters the halt state once the request has been serviced.

A basic purpo,>e for the HL T instruction is to allow the processor to pause while waiting for an interrupt from a

peripheral device. However, a halt wastes processor resources dnd should be used only when there i'> no useful

processing task dVdilable.

INPUT FROM PORT

The IN instruction read'> eight bit'> of data from the specified port and load,> it into the dccumulator.

NOTE

This description is restricted to the exact function of the IN in'>truction.

Input/output structures are described in the 8080 or 8085 Microcomputer

Systems User's Manual.

Opcode Operand

IN exp

The operand expression may be a number or any expression that yield,> d value in the range OOH through OFFH.

INR

Chapter 3. Instruction Set

[

__ 1 0 _011

exp J
Cycles:

States:
Addressing:
Flags:

3

10
direct
none

INCREMENT

INR add, one to the contents of the specified byte. INR affects all of the condition flags except the carry flag.

Because INR preserves the carry flag, it can be used within multi-byte arithmetic routines for incrementing

character counts and similar purposes.

Increment Register

Opcode Operand

INR reg

The operand must specify one of the registers A through E, H or L. The instruction adds one to the contents of

the specified register.

Increment Memory

[_O ___ O~_D ___ D ___ D~ ___ ~
Cycles:

Sta tes:
Addressi ng:

Flags:

Opcode

INR

5 (4 on 8085)

register

Z,S,P,AC

Operand

M

This instruction increments by one the contents of the memory location addressed by the Hand L registers. M

is a ,ymbolic reference to the H Jnd L registers.

LIO ___ O _______ O _____ O~
Cycles:

States:

Addressing:

Flags:

3

10
register indirect

Z,S,P,AC

3-25

Chapter 3. IJntructioo Sct

INX

JC

3-26

Example:

If register C contains 99H, the instruction INR C increments the contents of the register to 9AH.

INCREMENT REGISTER PAIR

INX adds one to the contents of the specified register pair. INX affects none of the condition flags. Because

INX preserves all the condition flags, it can be used for address modification within multi-byte arithmetic

rou ti nes.

Opcode Operand

INX

INX may increment only the B&C, D&E, H& L, or the SP (Stack Pointer) register pairs. Notice that the letter H
must be used to specify the Hand L register pair.

Exercise care when incrementing the stack pointer. Assume, for example, that INX SP is executed after a number

of item'> have been pushed onto ,he stack. A subsequent POP in'>truction accesses the high-order byte of the m,)st

recent stdck entry and the low-order byte of the next older entl·Y. Similarly, a PUSH instruction add,> the two

new bytes to the '>tack, but overlays the low-order byte of the most recent entry.

Cycles:

States:

Ad dressi ng:

Flags:

Example:

P 0 0

1
S (6 on SOSS)

regis ter

none

Assume that the D and E registers contain the value 01 FFH. The instruction INX D increments the value to

0200H. By contrast, the IN R E instruction ignores the carry out of the low-order byte and produces a result of

01 OOH. (This condition can be detected by testing the Zero condition flag.)

If the stack pointer regi'>ter contain'> the value OFFFFH, the instruction INX SP increments the contents of SP

to OOOOH. The INX in'>truction '>ets no flags to indicate this condition.

JUMP IF CARRY

The lC instruction tests the setting of the carry flag. If the flag is set to one, program execution resumes at thl!

address specified in the JC instruction. If the flag is reset to zero, execution continues with the next sequential

instruction.

JM

Chapter 3. Instruction Set

Opcode Operand

JC addres~

The address may be specified as a number, a label, or an expression. The assembler inverts the high and low

address bytes when it assembles the instruction.

1 1 0

Cycles:

States:

Addressing:

Flags:

Example:

1 1 0 1 0

lowaddr

high addr

3 (2 or 3 on 8085)

10 (7 or 10 on 8085)

immediate

none

Examples of the variations of the jump instruction appear in the description of the J PO instruction.

JUMP IF MINUS

The J M instruction tests the setting of the sign flag. If the contents of the accumulator are negative (sign flag = 1),

program execution re~umes at the address specified in the J M instruction. If the contents of the accumulator are
positive (sign flag = 0), execution continues with the next sequential instruction.

Opcode Operand

JM address

The addres~ may be specified a~, a number, a label, or an expression. The assembler invert~ the high and low

address bytes when it assembles the instructions.

1 1 1

Cycles:

States:

Addressing:

Flags:

Example:

1 1 0 1 0

lowaddr

high addr

3 (2 or 3 on 8085)

10 (7 or 10 on 8085)

immediate

none

Examples of the variations of the jump instruction appear in the description of the J PO instruction.

3-27

Chapter 3. I nstruction Set

JMP

JNC

3-28

JUMP

The J MP instruction alters the execution sequence by loading the address in its second and third bytes into the

program cou nter.

Opcode Operand

JMP address

The address may be specified as a number, a label, or an expression. The as~embler inverts the high and low

address bytes when it assembles the address.

Example:

~.---------------------------,

o 0 0 0

low addr

high addr
L... ___ •. ________________ _

Cycles:

States:

Ad dressi ng:

Flags:

3
10

immediate

none

Examples of the variations of the jump in<;truction appear in the description of thc J PO instruction.

JUMP IF NO CARRY

The JNC instruction tests the setting of the carry flag. If there is no carry (carry flag = 0), program execution

resumes at the address specified in the JNC instruction. If thcre is a carry (cdrry flag = 1), execution cuntinue'

with the next sequential instruction.

Opcode Operand

JNC addre~~

The address may be specified as a number, a label, or an expression. The assembler invert, the high dnd low

address bytes when it assembles the instruction.

I 1 0

Cycles:

States:

Addressing:

Flags:

1 0 0 I 0

low addr

high addr

3 (2 or 3 on 8085)

10 (7 or 10 on 8085)

immediate

none

JNZ

JP

Chapter 3. Instruction Set

Example:

Examples of the variations of the jump instruction appear in the description of the J PO instruction.

JUMP IF NOT ZERO

The J NZ instruction tests the setting of the zero flag. If the contents of the accumulator are not zero (zero

flag = 0), program execution resumes at the address specified in the JNZ instruction. If the contents of the

accumulator are zero (zero flag = 1), execution continues with the next sequential instruction.

Opcode Operand

JNZ address

The address may be specified as a number, a label, or an expression. The assembler inverts the high and low

address bytes when it assembles the instruction.

Example:

o 0 0 0 0

~-----------------------------

Cycles:

States:

Addressing:

Flags:

lowaddr

high addr

3 (2 or 3 on 8085)
10 (7 or 10 on 8085)
immediace

none

Examples of the variation'> of the jump instruction appear in the description of the J PO instruction.

JUMP IF POSITIVE

The J P instruction te'>t<, thc setting of the sign flag. If thc contcnts of the accumulator are positive (sign flag c= 0),

program cxccution rcsumes at the address specified in thc JP in~truclion. If the contents of the accumulator arc

minus (sign flag = 1), cxecution continues with thr, next sequential instruction.

Op co de Operand

JP addre'>s

The addrcs,> may bc specificd a, a number, a label, or an expre.,,,ion. Thc asscmblcr invert'> the high and low urdcl

audrc'>s bytcs when it assembles the instruction.

3-29

Chapter 3. Instruction Set

JPE

3-30

Cycles:

States:

Addressi ng:

Flags:

Example:

o 0 0

low addr

high addr

3 (2 or 3 on 8085)

10 (7 or 10 on 8085)

immediate

none

EXJmples of the variations of the jump instruction dPpear in the description of the J PO instruction.

JUMP IF PARITY EVEN

Parity is even if the byte in the accumulator has an even number of one bit>. The parity fldg i~ set to one to

indicate this condition.

The J PE instruction tests the setting of the pdrity flag. If the parity flag is set to one, program execution resumes

dt the dddress specified in the J PE instruction. If the flag is re~et to fero, execution continues with the next

sequential instruction.

Opcode Operand

JPE

The dddress may be specified as a number, d Idbel, or an expres,>ion. The ds>embler inverts the high and low

addre'>s bytes when it dssembles the instruction.

The J PE dnd J PO (jump if parity odd) instructions dre especidlly useful for te<,\ing the parity of input data.

However, the IN imtruction docs not set dny of the condition flag,. The flag'> can be '>et by adding OOH to the

contents of the accumulator.

Cycle,:

Stdte,>:

Addres,ing:

Flags:

Example:

o o o

low addr

high addr

3 (2 or 3 on 8085)

10 (7 or 10 on 8(85)

immediate

none

Examples of the variations of the jump instruction appear In the description of the JPO instruction.

JPO

Chapter 3. Instruction Set

JUMP IF PARITY ODD

Parity is odd if the byte in the accumulator has an odd number of one bits. The parity flag is set to zero to

indicate this condition.

The J PO instruction tests the setting of the parity flag. If the parity flag is reset to zero, program execution

resumes at the address specified in the J PO instruction. If the flag is set to one, execution continues with the

next sequential instruction.

Opcode Operand

JPO address

The address may be specified as a number, a label, 01" an expre,,>ion. The as'>embler invert, the high and low

address bytes when it assembles the instruction.

The J PO and J PE (jump if parity even) instruction~ are especi,lIly u,ciul tor tf'qing the parity of input data.

However, the IN instruction does not set any of the condition flag'>. The flag, Cdn be ,et by adding OOH to the

contents of the accumulator.

1 1 1

Cycles:

States:

Addressing:

Flags:

Example:

0 0 0 I 0

low addr

high addr

3 (2 or 3 on 8085)

10 (7 or 10 on 8085)

immediate

none

This example shows three different but equivalent rTlethod,> fur jumping to one of two poinh in a prograrTl hd'cd

upon whether or not the Sign bit of a number is '>et. A<;sume that the hyte to be te'>tcd i~ the C regi<;ter.

Label Code Operand

ONE: MOV A,C

ANI 80H

JZ PLUS
jNZ MINUS

TWO: MOV A,C

RLC

jNC PLUS

jMP MINUS

THREE: MOV A,C
ADI 0

JM MINUS

PLUS: ;SIGN BIT RESET

MINUS: ;SIGN BIT SET
3-31

Chapter 3. Instruction Set

JZ

LOA

3-32

The AND immedidte instruction in block ONE zeroes all hils of the ddta byte except the Sign bit, which re­

maim unchanged. If the Sign bit WdS 1ero, the Zero condition bit will he set, and the JZ instruction will cause

progrdm control to be trdnsferred tu the instruction dt PLUS. Otherwi.,e, the JZ in,truction will merely update

the progrdm counter hy three, dnd the JNZ instruction will he executed, causing control to be transferred to

the instruction at MINUS. (The Zero bit is undffected by dll jump instructions.)

The RLC instruction in block TWO cau,e, the Carry bit tu be set equal to the Sign bit of the data byte. If the

Sign bit was reset, the JNC instrllction causes a iump To PLUS. Otherwise the JMP instruction is executed,

unconditionally transferring control to MINUS. (Note that, in thi'i instdnce, a JC instruction could he suh­

'itituted for the unconditional iump with identical results.)

The add immedidte instruction in block THREE causes the condition hits to be set. If the sign bit was set, the

J M instruction Cd uses program control to he trdnsferred to MINUS. Otherwise, program control flows auto­

mdtically into the PLUS routine.

JUMP IF ZERO

The JZ instruction te.,ts the '>etting of the zero tllg. If the fldg is set to one, program execution resumes at the

dddres'i specified in the JZ instruction. If the flag i, reset to lero, execution continues with the next sequentidl

ins tr uc t ion.

Op co de Operand

JZ

The address may he specified as a number, d label, or dn expre<,sion. The dssemhler invert<; the high dnd low

address bytes when it assemble'i the instruction.

Example:

o 0 o o

Cycles:

States:

Addre<"ing:

Flags:

low addr

high addr

3 (2 or 3 (In 8085)

10 (7 or 10 on 8085)

immediate

none

EXMnple., of the vdridtions of the iump instruction dPpear in the description of the JPO instruction.

LOAD ACCUMULATOR DIRECT

LDA loads the accumuldtor with a copy of the byte at the location specified in bytes two and three of the

LDA instruction.

LDAX

Chapter 3. I nstruction Set

Opcode Operand

LOA address

The addre55 may be stated as a number, a previously defined label, or an expre55ion. The assembler inverts the

high and low addre55 bytes when it builds the instruction.

0 0 1

Cycles:
States:

Addressing:
Flags:

Examples:

1 1 0

lowaddr

high addr

4

13
direct

none

1 0

The following instructions are equivalent. When executed, each replaces the accumulator contents with the byte

of data stored at memory location 300H.

LOAD: LOA

LOA
LOA

300H
3*(16*16)
200H+256

LOAD ACCUMULATOR INDIRECT

L OAX loads the accumulator with a copy of the byte stored at the memory location addressed by register pair

B or register pair O.

Opcode Operand

LOAX

The operand B specifies the Band C register pair; 0 specifie<, the 0 and E register pair. This instruction may

specify only the B or 0 register pair.

loooirl 0 1~

Cycles:

States:
Addressing:

Flags:

~

II.....-___ fo := register pair B

l1 := register pair 0

2

7
register indirect

none

3-33

cnarHer 3. Instruction .set

Example:

Assume that register D contains 93H and register E contains SBH. The following instruction loads the accumulator

with the contents of memory location 938BH:

LDAX D

LHLD LOAD HAND L DIRECT

3·34

LHLD loads the L register with a copy of the byte stored itt the memory location specified in bytes two and

three of the LHLD instruction. LHLD then loads the H register with a copy of the byte stored at the next

higher memory location.

Opcode Operand

LHLD address

The address may be stated as a number, a label, or an expression.

Certain instructions usc the symbolic reference M to access the memory location currently specified by the Hand

L registers. LH LD is one of the instructions provided for loading new addresses into the H dnd L registers. The

user may also load the current top of the stack into t.he Hand L regiqers (POP instruction). Both LHLD and

POP replace the contents of the Hand L registers. You can also exchange the content> of H ,lnd L with the D

and E registers (XCHG instruction) or the top of the stack (XTHL instruction) if you need to ,ave the current

Hand L register'> fur subsequent use. SHLD stores Hand L in memury.

0 0 0 0

~ luw addr

high addr j
Cycles: 5

States: 16

Addres<,i ng: direct

Flags: none

Example:

Assume that location<, 3000 and 3001 H contain the addre'>, 064EH ,tored in the form.!t 4EO('. In the following

sequence, the MOV instruction moves J copy of the byte stored at address Oh4E into the aC(Jmulator:

LHLD

MOV

3000H

A,M

;SET UP ADDRESS

;LOAD ACCur\1 FROM ADDRESS

LXI

Chapter 3. Instruction Set

LOAD REGISTER PAIR IMMEDIATE

LXI is a three-byte instruction; its second and third bytes contain the source data to be loaded into a register

pair. LXI loads a register pair by copying its second and third bytes into the specified destination register pair.

Opcode Operand

LXI

The first operand must specify the register pair to be loaded. LXI can load the Band C register pair, the D and

E register pair, the Hand L register pair, or the Stack Pointer.

The second operand specifies the two bytes of data to be loaded. This data may be coded in the form of a num­

ber, an ASCII constant, the label of some previously defined value, or an expression. The d,fta must not exceed

two bytes.

LXI is the only immediate instruction that accepts a 16-bit value. All other immediate instructions require 8-bit

values.

Notice that the assembler inverts the two bytes of data to create the format of an address stored in memory.

LXI loads its third byte into the first register of the pair and its second byte into the second register of the

pair. This has the effect of reinverting the data into the format required for an address stored in registers. Thus,

the instruction LXI B,'AZ' loads A into register Band Z into register C.

Examples:

o olR plo 0 0

low-order data

~--------------------------

high -order data

Cycles:
S ta tes:
Addressing:

Flags:

3

10
immediate
none

A common use for LXI is to establish a memory address for use in subsequent instructions. In the following

sequence, the LXI instruction loads the address of STRNG into the Hand L registers. The MOY instruction then

loads the data stored at that address into the accumulator.

LXI H,STRNG ;SET ADDRESS

MOY A,M ;LOAD STRNG INTO ACCUMULATOR

The following LXI instruction is used to initialize the stack pointer in a relocatable module. The LOCATE pro­

gram provides an address for the special reserved label STACK.

LXI SP,STACK

3-35

Chapt~T 3. ImtTu~tion Set

MOV

3-36

MOVE

The MOV instruction moves one byte of data by copying the source field into the destination field. Source data

remains unchanged. The instruction's operands specify whether the move is from register to register, from a

register to memory, or from memory to a register.

Move Register to Register

Op co de Operand

MOV regl,reg2

The instruction copies the contents of reg2 into regl. Each operand must specify one of the registers A, B, C, D,
E, H, or L.

When the same register is specified for both operands (as in MOV A,A), the MOV functions as a NOP (no opera­
tion) since it has no other noticeable effect. This form of MOV requires one more machine state than NOP, and
therefore has a slightly longer execution time than NOP. Since M addresses a register pair rather than a byte of
data, MOV M,M is not allowed.

D

Cycles:

States:

Addressing:

Flags:

Move to Memory

Opcode

MOV

D D 5 5 5 I

5 (4 on 8085)
register

none

Operand

M,r

This instruction copies'the contents of the specified register into the memory location addressed by the Hand L

registers. M is a symbolic reference to the Hand L register pair. The <,econd operand must address one of the
registers.

[0 0 5 5 51

Cycles: 2
5 ta tes: 7
Addressing: regis ter indirect
Flags: none

Move from Memory

Op co de Operand

MOV r,M

MVI

Chapter 3. Instruction Set

This instruction copies the contents of the memory location addressed by the Hand L regi,ters into the specified

·register. The first operand must name the destination register. The second operand must be M. M is a symbolic

reference to the Hand L registers.

1
0 ID
Cycles:

States:

Addressing:

Flags:

Examples:

Label Opcode

LDACe: MOV

MOV

NULOP: MOV

D D

2
7

register

none

Operands

A,M

E,A

C,C

~

indirect

Comment

;LOAD ACCUM FROM MEMORY

;COPY ACCUM INTO E REG

;NULL OPERATION

MOVE IMMEDIATE

MVI is a two-byte instruction; its second byte contains the source data to be moved. MVI moves one byte of

data by copying its second byte into the destination field. The instruction's operands specify whether the move

is to a register or to memory.

Move Immediate to Register

Opcode Operand

MVI reg,data

The first operand must name one of the registers A through E, H or L as a destination for the move.

The second operand specifies the actual data to be moved. This data may be in the form of a number, an ASCII

constant, the label of some previously defined value, or an expression. The data must not exceed one byte.

The assembler's relocation feature treats all external and relocatable symbols as 16·bit addresses. When one of

these symbols appears in the operand expression of an immediate instruction, it must be preceded by either the

HIGH or LOW operator to specify which byte of the address is to be used in the evaluation of the expression.

When neither operator is present, the assembler assumes the LOW operator and issues an error message.

0 0 D D D j data

Cycles: 2
States: 7
Addressing: immediate

Flags: none

3-37

ChdlJlCr 3. Instructi"n Set

NOP

ORA

3-38

Move Immediate to Memory

Opcode Operand

MVI M,data

This instruction copies the data stored in its second byte into the memory location addressed by Hand L. M is

a symbolic reference to the Hand L register pair.

Examples:

~_·1 __ 0 _----;0

C data

Cycles:

S ta tes:

Addrcs,ing:

Flag,:

3

10

immedia te/register indirect

none

The following examples show a number of methods for defining immediate data in the MVI instruction. All of

the examples generate the bit pattern for the ASCII character A.

MVI

MVI

MVI

MVI

MVI

MVI

M,01000001 B

M,'A'

M,41H

M,101Q

M,65

M,5+30*2

NO OPERATION

NOP performs no operation and affeels none of the condition flags. NOP is useful as filler in a timing loop.

Opcode Operand

NOP

Operands are not permitted with the NOP instruction.

INCLUSIVE OR WITH ACCUMULATOR

ORA performs an inclusive OR logical operation using the content<; of the specified byte and the accumulator. The

result is placed in the accumulator.

Chapter 3. Instruction Set

Summary of Logical Operations

AN D produces a one bit in the result only when the corresponding bits in the test data and the mask data are

one.

OR produces a one bit in the result when the corresponding bits in either the test data or the mask data are

ones.

Exclusive OR produces a one bit only when the corresponding bits in the test data and the mask data are
different; i.e., a one bit in either the test data or the mask data - but not both - produces a one bit in the

result.

AND

1010 1010

0000 1111

0000 1010

OR Register with Accumulator

Op co de

ORA

OR

10101010

0000 1111

1010 1111

Operand

reg

EXCLUSIVE OR

10101010

0000 1111

10100101

The operand must specify one of the registers A through E, H or L. This instruction ORs the contents of the

specified register and the accumulator and stores the result in the accumulator. The carry and auxiliary carry

flags are reset to zero.

o

Cycles:

States:
Addressing:

Flags:

OR Memory with Accumulator

Opcode

ORA

o S <~
1

4

register

Z,S,P,CY,AC

Operand

M

The contents of the memory location specified by the Hand L registers are inclusive-ORed with the contents of
the accumulator. The result is stored in the accumulator. The carry and auxiliary carry flags are reset to zero.

~ ___ 0 ________ 0 ______ 1_~
Cycles:
States:
Addressing:

Flags:

2
7

register indirect

Z,S,P,CY,AC

3-39

Chapter 3. Instruction Sct

ORI

3-40

Example:

Since any bit inclusive·ORed with a one produces a one and any bit ORed with a zero remains unchanged, ORA

is frequently used to set ON particular bits or groups of bits. The following example ensures that bit 3 of the

accumulator is set ON, but the remaining bits are not disturbed. This is frequently done when individual bits

are used as status flags in a program. Assume that I·egister D contains the value 08H:

Accumulator

Register D

o 0 0 0 0 1
o 0 0 0 000
000 0

INCLUSIVE OR IMMEDIATE

ORI performs an inciu,ive OR logical operation using the contents of the second byte of the instruction and the

contents of the accumulator. The re,ult is placed in the accumulator. ORI also resets the carry and auxiliary

carry flags to zero.

Opcode Operand

ORI data

The operand must specify the data to be used in the inclusive OR operation. This data may be in the form of a

number, an ASCII constant, the label of some previously defined value, or an expression. The data may not

exceed one byte.

The assembler's relocation feature treats all external and relocatable symbols a, 16·bit addresses. When one of

these symbols appears in the operand expression of an immediate instruction, it must be preceded by either the

HIGH or LOW operator to specify which byte of the address is to be used in the evaluation of the expression.

When neither operator is present, the assembler assume the LOW operator and i,sues (In error message.

Cycles:

S ta te'):

Addressing:

Flags:

Summary of Logical Operations

o

data

o

2

7

immediate

Z,S,P,SY,AC

AND produce, a one bit in the result only when the corresponding bib in both the test data and the mask data
are ones.

OR produce, a one bit in the result when the corresponding bits in either the test data or the ma,k data arc ones.

Exclusive OR produce" a one bit only when the corresponding bit> in the test data and the ma,k data arc

different; i.e., a one bit in either the test data or the mask data ... but not both produces a one bit in the
re,ult.

OUT

Chapter 3. Instruction Set

Example:

AND

1010 1010
0000 1111
0000 1010

OR

1010 1010
00001111
1010 1111

EXCLUSIVE OR

1010 1010
0000 1111
1010 0101

Sec the description of the ORA instruction for an example of the use of the inclusive OR. The following

examples show a number of methods for defining immediate data in the ORI instruction. All of the examples

generate the bit pattern for the ASCII character A.

ORI

OR!

ORI

OR!

OR!

OR!

010000018

'A'

41H

101Q

65
5+30*2

OUTPUT TO PORT

The OUT instruction places the contents of the accumulator on the eight-bit data bus and the number of the
selected port on the sixteen-bit address bus. Since the number of ports ranges from 0 through 255, the port
number is duplicated on the address bus.

It is the responsibility of external logic to decode the port number and to accept the output data.

NOTE

Because a discussion of input/output structures is beyond the scope of
this manual, this description is restricted to the exact function of the

OUT instruction. Input/output structures are described in the 8080 or

8085 Microcomputer Systems User's Manual.

Opcode Operand

OUT exp

The operand must specify the number of the desired output port. This may be in the form of a number or an

expre<,sion in the rdnge OOH through OFFH.

[_0 ,-xpo ° 1 j.

Cycles:

States:
Addressing:
Flags:

3
10
direct

none
3-41

Chapter 3. Instruction Set

PCHL

POP

3-42

MOVE H&L TO PROGRAM COUNTER

PCHL loads the contents of the Hand L registers into the program counter register. Because the processor

fetches the next instruction from the updated program counter address, PCHL has the effect of a jump instruc·

tion.

Opcode Operand

PCHL

Operands are not permitted with the PCHL instruction.

PCHL moves the contents of the H register to the high-order' eight bits of the program counter and t.he contents
of the L register to the low·order eight bits of the program counter.

The user program must ensure tl.at the Hand L registers contain the addres~ of an executable instructio 1 when
the PCHL instruction is executed.

Cycles:

States:

Addressi ng:
Flags:

Example:

000

1

5 (6 on 8085)

register

none

One technique for passing data to a subroutine is to place the data immediately dfter the subroutine call. The

return address pu~hed onto the stack by the CALL instruction actually addresses the data rather than the next
instruction after the CALL. For this example, assume that two bytes of data follow the subroutine call. The
following coding sequence performs a return to the next instruction after the call:

GOBACK: POP H
INR L
INR L

PCHL

;GET DATA ADDRESS
;ADD 2 TO FORM

;RETURN ADDRESS

;RETURN

POP

The POP instruction removes two bytes of data from the stack and copies them to a register pair or copies the
Program Status Word into the accumulator and the condition flags.

POP Register Pair

POP copies the contenb of the memory location addressed by the stack pointer into the low·order regis .er of the
regi,ter pair. POP then increments the stack pointer by one and copies the contents of the resulting addl'ess into

Chapter 3. Instruction Set

the high-order register of the pair. POP then increments the stack pointer again so that it addresses the next

older item on the stack.

Opcode Operand

POP {L}
The operand may specify the B&C, D&E, or the H&L register pairs. POP PSW is explained '>eparately.

Cycles:

States:

Addressing:

Flags:

POP PSW

P 0 0 ~

3
10

register indirect

none

POP PSW use'> the contents of the memory location specified by the stack pointer to restore the condition flags.

POP PSW increments the stack pointer by one and restores the contents of that address to the accumulator.

POP then increments the stack pointer again so that it addresses the next older item on the stack.

Example:

c==_1 _________ 0 0 ~
Cycles:

Stdles:

Addressing:

Flag'>:

3
10

register indirect

l,S ,P ,CY ,AC

A"ume that a 'iubroutine is called because of an externdl interrupt. In generdl, such subroutines should SJve and

restore any registers it uses so that main program Cdn continue normally when it regaim control. The foliowing

sequence of PUSH and POP instructions save and re,tore the Program Status Word and all the registers:

343

Chapter 3. Instruction Set

PUSH

344

PUSH PSW

PUSH B

PUSH D

PUSH H

subroutine coding

POP

POP

POP

POP

RET

H

D
B
PSW

Notice that the ;equence of the POP instructions is the opposite of the PUSH instruction <,equence.

PUSH

The PUSH instruction copies two bvtes of data to the ,tdck. Thi~ ddta may be the contenh of a register pair or

the Program Status Word, d, explained below:

PUSH Register Pair

PUSH decrement, the stack pointer register- by one and copies the content, of the high-order regi,tcr of the

register pdir to the resulting address. PUSH then decrement; the pointer again dnd copie<, the low-order regi<,ter

to the resulting addre<'s. The source registers remain unchanged.

Opcode Operand

PUSH

The operand may specify the B&C, D&E, or- H&L register pair,. PUSH PSW is explained ,cpdrdtely.

Example:

~ __ I~1 _R __ P~O ____ O __ ~1 I
Cycle,>:

States:

Addressi ng:

Flags:

3

11 (13 on 8085)

register indirect

none

Assume that register B contains 2AH, the C register- cont,dins 4CH, and the stack pointer is set at 9AAF. The

instruction PUSH B stores the B register at memory addre,s 9AAEH and the C register at 9AADH. The stack

pointer is set to 9AADH:

RAL

Chapter 3. Instruction Set

Stack Stack

Before PUSH Address After PUSH

SP before .. xx 9AAF xx

xx 9AAE 2A

xx 9AAD 4C ... SP after

xx 9AAC xx

PUSH PSW

PUSH PSW copies the Program Status Word onto the stack. The Program Status Word comprises the contents
of the accumulator and the current settings of the condition flags. Because there are only five condition flags,
PUSH PSW formats the flags into an eight-bit byte as follows:

7 6 543 2 0

~S~_z~_o~I_AC_I_o~l_p~~I~c_Y~l

On the 8080, bits 3 and 5 are always zero; bit one is always set to one. These filler bits are undefined on the

8085.

PUSH PSW decrements the stack pointer by one and copies the contents of the accumulator to the resulting

address. PUSH PSW again decrements the pointer and copies the formatted condition flag byte to the resulting

address. The contents of the accumulator and the condition flags remain unchanged.

Cycles:

States:

Addressing:

Flags:

Example:

o o 2J
3

11 (12 on 8085)

register indirect

none

When a program calls subroutines, it is frequently necessary to preserve the current program status so the calling
program can continue normally when it regains control. Typically, the subroutine performs a PUSH PSW prior to
execution of any instruction that might alter the contents of the accumulator or the condition flag settings.
The subroutine then restores the pre-call system status by executing a POP PSW instruction just before returning
control to the calling program.

ROTATE LEFT THROUGH CARRY

RAL rotates the contents of the accumulator and the carry flag one bit position to the left. The carry flag, which

is treated as though it were part of the accumulator, transfers to the low-order bit of the accumulator. The high­

order bit of the accumulator transfers into the carry flag.

Opcode Operand

RAL

Operands are not permitted with the RAL instruction.

345

Chapter 3. Instruction Set

RAR

3-46

Example:

I ° ° ° __ o ___ -----i' I

Cycles:

States:

Flag'>:

4

CYonly

Assume that the dccumulator contains the I'alue OAAH and the carry flag is zero. The following diagrams illus­

trate the effect of the RAL instruction:

Before: Carry

.---------. ° f--------------,
Accumulator

_o ____ o ___ o __ -----i°l

After: Carry

[i]

Accumulator

1
0

° ° ° 01

ROTATE RIGHT THROUGH CARRY

RAR rotates the content, of the accumulator and the carry flag one bit pmition to the right. The carry flag,

which is treated a, though it were pdrt of the accumulator, trdnsfer', to the high-order bit of the accumulator.

The low-order bit of the dccumulator transfers into the carry flag,

Opcode Operand

RAR

Operand, are not permitted with the RAR imtr'uction,

10 ° 0

Cycles:

States:

Flags:

4

CYonly

RC

Chapter 3. Instruction Set

Example:

Assume that the accumulator contains the value OAAH and the carry flag is Lero. The following diagrams illus­

trate the effect of the RAR in',truction:

Before: Carry

o

Accumulator·

o o o o

After: Carry

Accumulator

1
0 o o o

RETURN IF CARRY

The RC instruction tests the carry flag. If the fldg is set to one to indicate a Cdrry, the instruction pops two

bytes off the stack and places them in the program counter. Program execution resumes at the new address in

the program counter. If the flag i, Lero, program execution simply continue, with the next ,equential instruction.

Op co de Opemnd

RC

Operands are not permitted with the RC instruction.

o

Cycles:

Stdtes:

Addressing:

Flags:

Example:

o 0 0 I
1 or 3

5 or 11 (6 or 12 on 8(85)

register indirect

nOlle

For the sake of brevity, an example i, given for the RET instruction but not for each of ib closely related
variants.

347

Chapter 3. Instruction Set

RET RETURN FROM SUBROUTINE

The RET in~truction pops two bytes of data off the stack and places them in the program counter register.

Program execution resumes dt the new address in the program counter.

Typically, RET instructions are used in conjunction with CALL instructions. (The same is true of the variants

of these instructions.) In thi'; case, it is assumed that the data the RET instruction pops off the stack is a

return address placed there by a previous CALL. This has the effect of returning control to the next instruction

after the CALL. The user must be certain that the RET instruction finds the address of executable code on the

stack. If the instruction finds the addre~, of data, the proce';sor attempts to execute the data as though it were

code.

Opcode Operand

RET

Operands are not permitted with the RET instruction.

Example:

o 0 o (~ L-__________________ _

Cycles:

States:

Ad dressi ng:

Flags:

3

10

register indirect

none

As mentioned previously, ~ubroutines un be nested. That is, a ~ubroutine can cdll a subroutine that calls

another subroutine. The only practical limit on the number of ne')ted cdlb is the amount of memory available

for stacking return addresse". A nested subroutine can even call the subroutine that called it, as shown in the

following example. (Notice that the program must contdin logic th.!t eventually returns control to the main

program. Otherwise, the two subroutines will cdll edch othel indefinitely.)

MAIN PROGRAM 1 SUBA t~~~~~~ ~~S~BB 1
~ 7- ~~CALLSUBA

CALL SUBA CNZ SUBI3 ., ~ T
T~ T~~

___________ ., ., ., ., ., RET

RET .,

RIM (8085 PROCESSOR ONLY) READ INTERRUPT MASK

348

The RIM instruction loads eight bits of data into the accumulator. The resulting bit pattern indicates the current

setting of the interrupt mask, the setting of the interrupt flag, pending interrupts, and onl:' bit of serial input data,

if any.

RLC

Opcode Operand

RIM

Operands arc not permitted with the RIM instruction.

The RIM instruction loads the dccumu!:ator with the following information:

~~
~~ 5

3

IE

2

7.5

1 0

6.5 5.5

"-v-/ ~/ V '----y----/ L L '"Io""pl M,,,'"
Interrupt Enable Flag:

-Pending Interrupts: = pending

'------Serial !Input Data Bit, if any

Chapter 3. Instruction Stl

1 = masked

= enabled

The mask and pending flags refer only to the RSTS.S, RST6.S, dnd RST7.S hdrdwdre interrupts. The IE flag

refers to the entire interrupt system. Thus, the IE flag is identical in fur.ction and level to the INTE pin on the

8080. A I bit in this fldg indicates thdt the entire interrupt system i, enabled.

~ 0 0 0 0 01

Cycles: 1

Stdtes: 4
Fldgs: none

ROTATE ACCUMULATOR LEFT

RLC ,ets the Cdrry flag equal to the high-order bit of the accumulator, thus overwriting ib previous setting. RLC

then rotate'> the contents of the accumuldtor one bit position to the left with the high-order bit trdnsferring to

the low-order position of the accumulator.

Opcode Operand

RLC

Operdnds are not allowed with the RLC instruction.

10 0 0 0 0

Cycles:

States:

Flags:
4
CYonly

349

Chapter 3. Instruction Set

RM

3-50

Example:

Assume that the accumulatol' contains the vdlue OAAH and the carry fldg is zero. The following diagrams illus­

trate the effect of the RLC Instruction.

Before: Carry

G
Accumulator

0 0 ~~
After: Carry

Q
Accumulator

1
0 o o o

RETURN IF MINUS

The RM instruction tests the sign fldg. If the fidg i, set to one to indicate negative data in the dccumulator, the

instruction pops two bytes off the stack and places them in the progrdm counter. Progrdm execution resume, dt

the new dddress in the progl am counter. If the fidg is set to zero, progrdm execution ,imply continues with the

next sequential instruction.

Opcode Operand

RM

Operands are not permitted with the RM instruction.

Example:

1~1 ___________ 0_(~
Cycles:

States:

Ad dressi ng:

Flags:

1 or 3

5 or 11 (6 or 12 on 8085)

register indirect

none

For the sake of brevity, an example is given for the RET instruction but not for each of it> closely related

variants.

RNC

RNZ

Chapter 3. Instruction Set

RETURN IF NO CARRY

The RNC instruction tests the cJrry flag. If the flag is set to zero to indicate that there has been no cJrry, the

in'>truction pops two bytes off the ctack and places them in the program counter. Program execution resumes at

the new address in the program counter. If the flag is one, program execution simply continues with the next
sequential in<;truction.

Opcode Operand

RNC

Operand,> are not permitted with the RNC instruction.

o

Cycles:

State',:

Addressing:

Flag'>:

Example:

o 0 0 0\

or 3

5 or 11 (6 or 12 on 8085)

register indirect

none

For the sake of brevity, an example i', given for the RET instruction but not for each of its closely related

varian ts.

RETURN IF NOT ZERO

The RNZ instruction tests the zero flag. If the flag is set to zero to indicate that the contents of the accumulator

are other than lero, the instruction pops two bytes off the stack and places them in the program counter. Pro­

gram execution resume, at the new address in the program counter. If the flag is '>et to one, program execution

,imply continue, with the next '>equential imtruction.

Opcode Operand

RNZ

Operand, are not permitted with the RNZ instruction.

Example:

o 0 0 0 0 01

Cycles:

State',:

Addressing:

Flags:

or 3

5 or 11 (6 or 12 on 8085)

register indirect

none

For the ,>ake of brevity, an example i', given for the RET instruction but not for each of its closely related

varian ts.

3-51

Chapter 3. Instruction Set

RP

RPE

3-52

RETURN IF POSITIVE

The RP instruction tests th(' sign flag. If the flag is reset to zero to indicate positive ddta in the accumuldtor,

the instruction pop, two byte'; off the stack and places them in the program counter. Program execution

resumes at the new dddress in the progrdm counter. If the fhg is set to one, progrdm execution simply continues

with the next sequential in5.trunion.

Op co de Operand

RP

Operdnds dre not permitted with the RP instruction.

Cycles:

Std tes:

Addressing:

Fldgs:

Example:

o 0 ~
or 3

5 or 11, (6 or 12 on 8085)

register indirect

none

For the sdke of brevity, an example i, given for the RET irl'>truction but not for each of II'> clo,ely related

vdriants.

RETURN IF PARITY EVEN

Pdrity i, even if the byte in the accumulator has an even number of one bits. The pdrity flag is set to one to

indicate this condition. Thl' RPE dnd RPO imtructiom are useful for testing the parity of input ddtd. However,

the IN instruction does not set any of the condition flag,. The flags Cdn be set without altering the ddta by

ddding OOH to the content'·, of the accumulator.

The RPE imtruction te,ts the parity flag. If the fldg is set 1.0 one to indicate even pdrity, the instruction pops

two byte, off the stack and pldce, them in the progrdm counter. Program execution resumes ,1t the new dddrcS'>

in the program counter. If the fldg is zero, program execut,on simply continue, with the next ,equential imtruc·
tion.

Opcode Operand

RPE

Operands are not permitted with the RPE instruction.

I '--1 ___ 0 __ 0_~
Cycles:

Sta tes:

Addre'>5ing:

Flags:

or 3

5 or 11 (6 or 12 on 8085)

register indirect

none

RPO

RRC

Chapter 3. Instruction Set

Example:

For the sake of brevity, an example is given for the RET instruction but not for each of its closely related

varia nts.

RETURN IF PARITY 000

Parity is odd if the byte in the accumulator has an odd number of one bits. The parity flag is reset to zero to

indicate this condition. The RPO and RPE instructions are useful for testing the parity of input data. However,

the IN instruction does not set any of the condition flags. The flags can be set without altering the data by

adding OOH to the contents of the accumulator.

The RPO instruction tests the parity flag. If the flag is reset to zero to indicate odd parity, the instruction pops

two bytes off the stack and places them in the program counter. Program execution resumes at the new addre<,s

in the program counter. If the flag is set to one, program execution simply continues with the next sequential

instruction.

Opcode Operand

RPO

Operands are not permitted with the RPO instruction.

[I 0 0 0 0 3
Cycles: or 3

States: 5 or 11 (6 or 12 on 8085)

/\ddressing: register indirect

Flags: none

Example:

For the sake of brevity, an example is given for the RET instruction but not for each of its closely related

variants.

ROTATE ACCUMULATOR RIGHT

RRC sets the carry flag equal to the low-order bit of the accumulator, thus overwriting its previous setting. RRC

then rotates the contents of the accumulator one bit position to the right with the low-order bit transferring to

the high order position of the accumulator.

Opcode Operand

RRC

Operands are not permitted with the RRC instruction.

3-53

Chapter 3. Instruction Set

RST

3-54

Example:

[_O ___ O ___ O __ O _________ l~
Cycles:

States:

Flags:

1

4
CY only

Assume that the accumulator contains the value OAAH and the carry flag is zero. The following diagrams illus­

trate the effect of the RRC instruction:

Before: Carry

G.-
Accumulator

r' 0 0 0

After: f\r Carry
r

G
Accumulator

\~O ______ O _____ O __ ~
5' 5'

RESTART

RST is a ,pecial purpose CALL instruction designed primarily for use with interrupts. RST pushes the contents

of the program counter ontc) the stack to provide a return address and then jumps to one of eight predetermined

addresses. A three-bit code can-ied in the opcode of the RST instruction specifies the jump address.

The restart instruction is unique because it seldom appears as source code in an applications program. More often,

the peripheral devices seeking interrupt service pass this one·byte instruction to the proces<,or.

When a device reque,ts interrupt service and interrupts are enabled, the processor acknowledges the request and

prepare, it> data line, to accept anyone-byte in,truction frum the device. RST is generally the instruction of

choice because its special purpose CALL establishes a return to the main program.

The proces,or moves the three-bit address code from the RST instruction into bits 3, 4, and 5 of the program

counter. In effect, this multiplies the code by eight. Program execution resumes at the new address where eight

bytes are available for code to service the interrupt. If eight bytes are too few, the program can either jump to

or call a subroutine.

RZ

Chapter 3. Instruction Set

8085 NOTE

The 8085 processor includes four hardware inputs that generate intrrnal RST

instructions. Rather than send a RST instruction, the interrupting device need

only apply a signal to the RST5.5, RST6.5, RST7.S, or TRAP input pin.

The processor then generates an internal RST instruction. The execution

depends on the input

INPUT RESTART
NAME ADDRESS

TRAP 24H

RST5.5 2CH

RST6.5 34H

RST7 .5 3CH

Notice that these addre'>ses are within the same portion of rr,ernory u'>ed by the RST instruction, and therefore

allow only four byte'> - enough for a call or jump and a return for the interrupt service routine.

If included in the program code, the RST instruction ha'> the following format:

Opcode Operand

RST code

The addre5'> code must be a number or expre,>,>ion within the range OOOB through 111 B.

1=:3
Progr am ~------.
Cou nter 15 14 13 12 11 10 9 8 7 (j 5 4 3 2

After RST Eo 0 0 0 0 0 0 0 0 C C C 0 0

Cycles: 3

Std tes: 11 (12 on 8085)

Addre'>',ing: register indirect

Flag';: none

0

01

RETURN IF ZERO

The RZ imtruction test, the zero flag. If the flag is set to one to indicate that the contents of the accumulator are

zero, the instruction pops two bytes of data off the stack and places them in the program counter. Program

execution resumes at the new address in the program counter. If the flag is zero, program execution simply

continues with the next sequential instruction.

3-55

Chapter 3. Instruction Set

SBB

3-56

Opcode Operand

RZ

Operands are not permitted with the RZ instruction.

o 0

Cycles:

States:

Addressing:
Flags:

Example:

o O~
or 3

5 or 11 (6 or 12 on 8085)

register indirect

none

For the sake of brevity, an example is given for the RET instruction but oot for each of its closely related

variants.

SUBTRACT WITH BORROW

SBB subtracts one byte of data and the setting of the carry flag from the contents of the accumulator. The

result is stored in the accumulator. SBB then updates the setting of the carry flag to indicate the outcome of

the operation.

SBB's use of the carry flag enables the program to subtract Ilulti-byte strings. SBB incorporates the carry flag by

adding it to the byte to be subtracted from the accumulator. It then subtracts the result from the accumulator

by using two's complement addition. These preliminary operations occur in the processor's internal work registel

so that the source data remains unchanged.

Subtract Register from Accumulator with Borrow

Opcode Operand

SBB reg

The operand must specify one of the registers A through E, H or L. This instruction subtracts the contents of

the specified register and the carry flag from the accumulator and stores the result in the accumulator.

o 0

Cycles:

States:

Addressing:
Flags:

S s3
4
register

Z,S,P,CY,AC

SBI

Chapter 3. Instruction Sel

Subtract Memory from Accumulator with Borrow

Opcode Operand

SBB M

This imtruction subtracts the carry flag and the contents of the memory location addres,>ed by the Hand L

regi'>ters from the accumulatOl" and stores the result In the accumulator.

Example:

1_1 _0 _0 ____ 1 01

Cycles:

States:

Addressing:

Flags:

2
7
register i.1direct

Z,S,P,CY,AC

Assume that register B contains 2, the accumulator contains 4, and the carry flag is set to 1. The instruction

SBB B operate,> as follows:

2H + carry = 3H

2\ complement of 3H = 11111101

Ac:urnulator = 00000100
11111101

00000001 = 1 H

Notice that thi, two\ complement addition produces a carry When SBB complements the carry bit generated

by the ,Iddition, the carry flag is re,et OFF. The flag ,>cttings resulting from the SBB B in,truction arc as

follows:

Carry 0

Sign 0

Zero 0
Parity 0

Aux. Clrry

SUBTRACT IMMEDIATE WITH BORROW

SBI ,uhtract<, the contenb of the second instruction hyte and the ,citing of the carry flag from the contents of

the accumul,ltor. The result i, stored in the accumulator.

SBI.., u,e of the Cdrry flag enables the program to subtract multi·byte ,tring'>. SBI incorpordtes the carry flag by

adding it to the hyte to he subtracted from the accumulator. It then ,ubtrach the result from the accumulator

by u,ing two's complement addition. These preliminary operations occur in the proce'>sor\ internal work regi'>1ers

,0 that the immediate ,OtIrce dilta remaim unchanged.

3-57

Chapter 3. Instruction Set

SHLID

3-58

The assembler's relocation feature treats all external and relocatable symbols as 16-bit addresses. When one of

these symbols appears in the operand expression of an immediate instruction, it must be preceded by either the

HIGH or LOW operator to specify which byte of the address is to be used in the evaluation of the expression.

When neither operator is pre~ent, the a'>sembler assumes the LOW operator and issues an error message.

Opcode Operand

SBI data

The operand mu'>t specify the data to be subtracted. This data may be in the form of a number, an ASCII

constant, the label of some perviously defined value, or an expression. The data may not exceed one byte.

Cycles:

S ta tes:

Addressing:

Flags:

Example:

2
7
immediate

Z,S,P,CY,AC

The following sequence of instruction> enables the program to test the setting of the carry flag:

XRA A
581

The exclusive OR with the accumulator clears the accumulator to zeros but doe,> not affect the setting of the
carry flag. (The XRA instruction is explained later in this chapter.) When the carry flag i'> OFF, S81 I yields
a minus one. When the flag ,s <,et ON, SBI 1 yields a minus 'woo

NOTE

This eXJmple i'> included for illustrative purposes. In most

ca,e" the carry flag can be tested more efficiently by u'iing

th~ J NC in>truction (jump if no carry).

STORE H AN D L DIRECT

SHLD stores a copy of the 1_ register in the memory location specified in bytes two Jnd three of the SHLD

instruction. SHLD then Stori~S a copy of the H register in the next higher memory location.

Op co de Operand

SHLD address

The address may be stated J'> it number, a previously defined label, or an expression.

Chapter 3. Instruction Set

SHLD is one of the instructions provided for saving the contents of the Hand L registers. Alternately, the H

and L data can be placed in the D and E registers (XCHG instruction) or placed on the stack (PUSH and XTHL

instructions) .

0 0 1 0 0 0 1 0

low addr

high addr

Cycles: 5
States: 16
Addressing: di rect
Flags: none

Example:

Assume that the Hand L registers contain OAEH and 29H, respectively. The following is an illustration of the

effect of the SHLD IOAH instruction:

Memory Before SHLD

Memory After SHLD

MEMORY ADD RE

109 lOA

00 00

00 29

10

0

B

o
AE

SS

IOC
00

00

SIM (81085 PROCESSOR ONLY) SET INTERRUPT MASK

SIM is a multi-purpose instruction that uses the current contents of the accumulator to perform the following

functions: Set the interrupt mask for the 8085's RST5.5, RST6.5, and RST7.5 hardware interrupts; reset

RST7.5'<, edge sensitive input; Ind output bit 7 of the accumulator to the Serial Output Data latch.

Operand

SIM

Operands are not permitted wi'h the SIM instruction. However, you must be certain to load the desired bit
configurations into the accumulator before executing the SIM instruction. SIM interprets the bits in the accumu·
lator as follows:

3-59

Chapter 3. Instruction Set

3-60

v

L{ RSn.S MASK

RST6.S MASK

RSTS.S MASK
{

o = available

1 = masked

flf 0, bits 0 .. 2 ignored

Mask Set Enable \If 1, mask is set

RESET RSn.S: If 1, RSn.S flip flop is reset OFF

ignored

If 1, bit 7 is ou tput to Serial Output Data Latch
Serial Output Data: ignored if bit 6 = 0

Accumulator bits 3 and 6 fUllction as enable switches. If bit 3 is set ON (set to 1), the set mask function is

enabled. Bits 0 through 2 then mask or leave available the corresponding RST interrupt. A 1 bit masks the

interrupt making it unavailable; a 0 bit leaves the interrupt available. If bit 3 is set OFF (reset to 0), bits 0

through 2 have no effect. Usc this option when you want L) send a serial output bit without affecting the

interrupt mask.

Notice that the 01 (Disable Interrupts) instruction overrides the SI M instruction. Whether masked or not, RSTS.S,

RST6.S, and RST7.S are disdblcd when the 01 instruction i'> in effect. Use the RIM (Read Interrupt Ma,k)

instruction to determine the current setting'> of the interrupt flag and the interrupt mdsks.

If bit 6 is ,et to 1, the serial output datd function is enabled. The processor Idtche'> dccumuldtor bit 7 into the

SOD output where it can be accessed by a peripheral device. If bit 6 is re,et to 0, bit 7 is ignored.

A 1 in accumulator bit 4 res.?ts OFF the RST7.S input flip flop. Unlike RSTS.S dnd 6.S, RST7.S is '>ensed Vld a

processor flip flop that is set when a peripheral device issues d pulse with a rising edge. This edge triggered input

supports devices that cannot maintain an interrupt request until serviced. RST7.S is also u'>eful when a device

does not require any explicit hardware service for each interrupt. For example, the program might increment and

test an event cou nter for each interrupt rather than service the device directly.

The RST7.S flip flop remains set l.Intil reset by 1) issuing a RESET to the 808S, 2) recogni/ing the interrupt, or

3) setting accumulator bit 4 and executing a SIM instruction. The Reset RST7.S feature of the SIM instruction

allows the program to override the interrupt.

The RST7.S input flip flop is not affected by the setting of the interrupt mask or the 01 instruction and there·

fore can be set at any time. However, the interrupt cannot be ,erviced when RST7.S is masked or d 01 instruction

is in effect.

10 0

Cycles:

States:

Flags:

o 0 c~
1

4
none

Example 1: Assume that the accumulator contains the bit pattern 00011100. The SIM instruction resets the

RST7.S flip flop and sets the RST7.S interrupt mask. If an RST7.S interrupt i'> pending when this SI M instructio

is executed, it is overridden without being serviced. Also, anv subsequent RST7.S interrupt is masked and cannot

be serviced until the interrupt mask is reset.

SPHL

STA

Chapter 3. Instruction Set

Example 2: Assume that the accumulator contains the bit pdttern 11001111. The SI M instruction masks out the

RST5.5, RST6.5, dnd RST7.S level interrupts and latches a 1 bit into the SOD input. By contrast, the bit pattern

10000111 has no effect since the enable bits 3 and 6 are not set to ones.

MOVE H& L TO SP

SPHL 10dds the contents of li1C Hand L registers into the SP (Stack Pointer) register.

Operand

SPHL

Operands are not permitted with the SPHL instruction.

SP is a special purpose 16-bit register used to address the stack; the stack must be in random access memory

(RAM). Because different applications use different memory configurations, the user program must load the SP

register with the suck'., beginning address. The stack is usually a'>signed to the highest dvailable location in RAM.

The hardware decrements the stack pointer as items are ddded to the stdck and increments the pointer as items

are removed.

The stdck pointer must be initialized before dny instruction attempts to access the <,tack. Typically, stack

initialization occurs very early in the program. Once estdbli,hed, the stack pointer should be altered with

caution. Arbitrary use of SPHL can cause the loss of stdck ddtd.

Example:

[_1 ____ 0_03

Cycles:

Sta tes:

Addressing:

Flags:

5 (6 on 8085)

register

none

A'>sume that the H dnd L registers contain 50H and OFFH, respectively. SPHL IOdds the stack pointer with the

vdlue 50FFH.

STORE ACCUMULATOR DIRECT

STA stores d copy of the current dccumuldtor contents intu the memory location srecified in bytes two and

three of the STA instruction.

Ope ode Operand

ST}, address

The address may be stated as d number, a previously defined label, or <in expression. The ds~embler inverts the

high dnd low dddress bytes when it builds the instruction.

3-61

Chaptl'r 3. Instruction Set

STAX

3-62

0 0 1 1 0 0 1 0

low addr

high addr

Cycles: 4

States: l3

Addressing: direct

Flags: none

Example:

The following instruction stores a copy of the contents of the accumulator at memory location SB3H:

STA SB3H

When assembled, the previous instruction has the hexadecimal value 32 B3 05. Notice that the assembler inverts
the high and low order addr·ess bytes for proper storage in memory.

STORE ACCUMULATOR INDIRECT

The STAX instruction stores a copy of the contents of the accumulator into the memory location addressed

by register pair B or register pair D.

Opcode Operand

STAX

The operand B specifies the Band C register pair; D specifies the D and E register pair. This instruction may

specify only the B or D register pair.

Example:

10001 10 0 ~

Cycles:
States:

Addressing:

Flags:

'-v-"

l{o = register pair B
1 = register pair D

2
7
register indirect

none

If register B contains 3FH .and register C contains 16H, the following instruction stores a copy of the contents

of the accumulator at memory location 3F16H:

STAX B

STC

SUB

STC sets the Cdrry flag to one. No other flags arc affected.

Opcode Operand

STC

Operands arc not permitted '.Ivith the STC instruction.

\0 0

Cycles:

States:

Flags:

o

4
Cy

Chapter 3. Instruction Set

SET CARRY

When u'>ed in combination with the rotate accumulator through the carry flag in'>tructions, STC allows the pro­

gram to modify individudl bits.

SUBTRACT

The SUB in<,truction subtrac1s one byte of data from the contents of the accumulator. The result is stored in the

accullluLltor. SUB u'>('s two"> complement representation of data as explained in Chapter 2. Notice that the SUB

ill'>tructioll excludes the Cdrrv flag (actually a 'borrow' flag for the purposes of subtraction) but sets the flag to

indicate the outcome of the :>peration.

Subtract Register from Accumulator

Opcode Operand

SUB reg

The operands mu,t specifY O;le of the registers A through E, H or L. The imtruction subtr.lcts the contents of

the '>pecified regi,ter from the contents of the accumuldtor using two\ complement data representation. The

re'>ult is stored in the accumulator.

o 0 o S ~
Cycles:

States: 4

Addressing: register

Flag.,: Z ,S ,P ,CY ,AC

Subtract Memory from Accumulator

Opcode Operand

SU8 M

3-63

Chapter 3. Instruction Set

SUI

3·64

This instruction subtracts the contents of the memory location addressed by the Hand L registers from the

contents of the accumulator and stores the result in the accumulator. M is a symbolic reference to the Hand L

registers.

~11 ___ 0 ___ 0 ______ 0 ______ 1 ~
Cycles:
States:
Addressing:
Flags:

Example:

2
7
register indirect
Z,S,P,CY,AC

Assume that the accumulator contains 3EH. The instruction SUB A subtracts the contents of the accumulator

from the accumulator and produces a result of zero as follows:

3EH
+(-3EH)

carry out = 1

00111110

11000001

1

00000000

The condition flags are set as follows:

Carry

Sign

Zero
Parity

Aux. Carry

one's complement

add one to produce two's complement

result = 0

o
o

Notice that the SUB in>truction complements the carry generated by the two's complement addition to form a
'borrow' flag. The auxiliary carry flag is set because the particular value used in this example causes a carry out
of bit 3.

SUBTRACT IMMEDIATE

SUI subtracts the contents of the second instruction byte from the contents of the accumulator and stores the

result in the accumulator. Notice that the SUI instruction di5.regards the carry ('borrow') flag during the sub­

traction but sets the flag to indicate the outcome of the operation.

Opcode Operand

SUI data

The operand must specify the data to be subtracted. This data may be in the form of a number, an ASCII

constant, the label of some previously defined value, or an expression. The data must not exceed one byte.

The assembler's relocation feature treats all external and relocatable symbols as 16-bit addresses. When one of

these symbols appears in the operand expression of an immediate instruction, it must be preceded by either the

XCH<:;

Chapter 3. Instruction Set

HIGH or LOW operator to specify which byte of the address is to be used in the evaluation of the expression.

When neither operator is present, the assembler assumes the LOW operator and issues an error message.

a

Cycles:

Sta tes:

Addressing:

Flags:

Example:

a a

2

7

immediate

Z,S,P,CY,AC

Assume that the accumulator contains the value 9 when the instruction SUI 1 is executed:

;\c(umulator

I Tlrnediate data (2'5 camp)

00001001 = 9H

11111111 =-lH

00001000 = 8H

Notice that this two's complement addition results in a carry. The SUI instruction complements the carry

generated by the addition to form a 'borrow' flag. The flag settings r'esulting from this operation are as follows:

Carry a
Sign a
Zero a
Parity a
f\UX. Carry

EXCHANGE HAND L WITH D AND E

XCHG exchange~ the content', of the Hand L registers with the contents of the D and E registers.

Op co de Operand

XCHG

Operand, are not allowed with the XCHG instruction.

XCHG both saves the current Hand L and load" a new addre.,., into the Hand L register' •. Since XCHG i" a

register·to·regi,tcr instruction, it provides the quickest means of saving and/or altering the Hand L registers.

Cycles:

Sta tes:

Addressing:

Flags:

a a

4

register

none

3-65

Chapter 3. Instruction Set

XRA

3-66

Example:

Assume that the Hand L registers contain 1234H, and the D and E registers contain OABCDH. Following

execution of the XCHG instruction, Hand L contain OABCDH, and D and E contain 1234H.

EXCLUSIVE OR WITH ACCUMULATOR

XRA performs an exclusive OR logical operation using the contents of the specified byte and the accumulator.

The result is pldced in the accumulator.

Summary of Logical Operations

AND produces a one bit in the I"esult only when the corresponding bits in the test data and the mask data are

ones.

OR produces a one bit in the result when the corresponding bits in either the test data or the mask data are

ones.

Exclusive OR produces a one bit only when the corresponding bits in the test data and the mask data are
different; i.e., a one bit in either the test data or the mask data -- but not both - produces a one bit in the
resu I t.

AND

1010 1010

0000 1111
0000 1010

XRA Register with Accumulator

Opcode

XRA

OR

1010 1010
0000 1111

1010 1111

Operand

reg

EXCLUSIVE OR

10101010
0000 1111

10100101

The operand must specify one of the registers A through E, H or L. This instruction performs an exclusive OR

using the contents of the specified register and the accumuldtor and stores the result in the accumulator. The

carry and auxiliary carry flags are reset to zero.

o

Cycles:
States:

Addressing:
Flags:

o S S~

4

regis ter

Z,S,P,CY,AC

XRI

Chapter 3. Instruction Set

XRA Memory with Accumulator

Opcode Operand

XRA M

The contents of the memory location specified by the Hand L registers is exclusive-ORed with the contents of

the accumulator. The result is stored in the accumulator. The carry and auxiliary carry flags are reset to zero.

Examples:

[_1 _O __ O ___ .~
Cycles:

S ta tes:

Ad dressing:

Flags:

2

7
register indirect

Z,S,P,CY,AC

Since any bit exclusive-ORed with itself produces zero, XRA is frequently used to zero the accumulator. The

following instructions zero the accumulator and the Band C registers.

XRA A

MOV B,A

MOV C,A

Any bit exclusive·ORed with a one bit is complemented. Thus, if the ,lccumulator contains all one~ (OFFH),

the instruction XRA B produce', the one's complement of the B register in the accumulator

EXCLUSIVE OR IMMEDIATE WITH ACCUMULATOR

XRI performs an exclusive OR operation using the contenb of the second instruction byte ,1Ild the contents of

the accumulator. The result is placed in the accumulator. XRI also resets the carry dnd auxiliary carry flags to

zero.

Opcode Operand

XRI data

The operand must specify the data to be used in the OR operation. This data may be in the form of a number,

an ASCII constant, the label of some previously defined value, or an expression. The data may not exceed one

byte.

The assembler's relocation feature treats all external and relocatable symboh as 16-bit addresse'>. When one of

these symbols appears in the operand expression of an immediate instruction, it must be preceded by either the

HIGH or LOW operator to specify which byte of the address is to be used in the evaluation of the expression.

When neither operator is present, the assembler assumes the LOW operator and issues an error message.

3-67

Chapter 3. Instruction Set

3-68

1---0_1~
data ~

Cycles:

States:

Addressing:

Flags:

2

7
immediate

Z,S,P,CY,AC

Summary of Logical Operations

AND produces a one bit in the result only when the corresponding bits in the test data and the mask data are

ones.

OR produces a one bit in the result when the corresponding bit~ in either the test data or the mask datd dre

ones.

Exclusive OR produces a one bit only when the corresponding bits in the test data dnd the mask datd are

different; i.e., a one bit in either the test data or the mask data ~ but not both produces a one bit in the

resu I t.

Example:

AND

1010101lO
0000 1111

0000 1010

OR

10101010
00001111
1010 1111

EXCLUSIVE OR

10101010
0000 1111
1010 0101

Assume that a program uses bits 7 and 6 of a byte as flags that control the cdlling of two subroutines. The

program tests the bits by rotdting the contents of the accumulator until the de'>ired bit is in the Cdrry fldg; a

CC instruction (Call if Carry) tests the flag and calls the subroutine if required.

Assume that the control flag byte i~ positioned normally in the accumulator, and the program must <,et OFF hit

6 and ~et bit 7 ON. The remaining bits, which are status flag'; used for other purposes, must not be ,litered.

Since any bit exciusive-ORed with a one is complemented, and any bit exciusive-ORed with a zero remdins

unchanged, the following instruction is used:

XRI

The instruction has the following results:

Accumulator

Immediate data

11000000B

01001100
11000000

10001100

XTHL

Chapter 3. Instruction Set

EXCHANGE H&L WITH TOP OF STACK

XTHL exchanges two bytes from the top of the stack with the two bytes stored in the H dnd L registers. Thus,

XTHL both saves the current contents of the Hand L registers and loads new values into Hand L.

Opcode Operand

XTHL

Operands are not allowed with the XTHL instruction.

XTHL exchanges the contents of the L register with the contents of the memory location specified by the SP

(Stack Pointer) register. The contents of the H register are exchanged with the contents of SP+1.

Cycles:

States:

Addressing:

Flags:

Example:

o 0 0 I I
5
18 (16 on 8085)

register indirect

none

Assume that the ~tdck pointer register contains 1 OADH; register H contains OBH dnd L contains 3CH; and

memory locations 10ADH and 10AEH contain FOH and ODH, respectively. The following i'; dn illustrdtion of

the effect of the XTHL instruction:

Before XTHL

After XTHL

10AC

FF

FF

MEMORY ADDRESS

lOAD 10AE

FO 00

3C 08

H L

lOAF

FF OB 3C

FF 00 Fe

The stack pointer register remains unchanged following execution of the XTHL instruction.

Hi9

4. ASSEMBLER DIRECTIVES

This chapter describes the il'isembler directives used to control the 8080/85 assembler in its generation of object

code. This chapter excludes the macro directives, which are discussed as a separate topic in Chapter 5.

Generally, directives have the same format as instructions and can be interspersed throughout your program.

Assembler directives discussed in this chapter are grouped as follows:

GENERAL DIRECTIVES:

• Symbol Definition

EQU

SET

• Data Definition

DB
DW

• Memory Reservation

DS

• Conditional Assembly

IF

ELSE

ENDIF

• Assembler Termination

END

LOCATION COUNTER COI\JTROL AND RELOCATION:

• Location Counter Control

ASEG
DSEG
CSEG
ORG

• Program Linkage

PUBLIC

EXTRN

NAME

STKLN

4-1

Chapter 4. Assembler Directives

Three assembler directives· E.QU, SET, and MACRO -- have a slightly different format from assembly

language instructions. The EQU, SET, and MACRO directives require a name for the symbol or macro being

defined to be present in the label field. Names differ from labels in that they must not be terminated with a

colon (:) as labels arc. Also, the LOCAL and ENDM directive', prohibit the usc of the label field.

The MACRO, ENDM, and LOCAL directives are explained in Chapter 5.

SYMBOL DEFINITION

The assembler automatically assigns values to symbols that appear as instruction labels. This value is the current

setting of the location counter when the instruction is assembled. (The location counters arc explained under

'Address Control and Relocation,' later in this chapter.)

You may define other symbols and assign them values by using the EQU and SET directives. Symbols defined

using EQU cannot be redefined during assembly; those defined by SET can be assigned new values by subsequent

SET directive.,.

The name required In the label field of an EQU or SET directive must not be terminated with a colon.

Symbol> defined by EQU dnd SET have meaning throughout the remainder of the program. This may cause the

symbol to have illegal multiple definitions when the EQU or SET directive appears in a macro definition. Usc

the LOCAL directive (described in Chapter 5) to avoid this problem.

EQU Directive

4-2

EQU a.,signs the value of 'expression' to the name specified in the label field.

Label Opcode Operand

name EQU expres.,ion

The required name in the label Field may not be terminated with a colon. This name cannot be redefined by a

subsequent EQU or SET diret.:tive. The EQU expression cannot contain any external .,ymbo!. (External .,ymbols

are explained under 'Location Counter Control and Relocation,' later in this chapter.)

As.,embly-time evaluation of EQU expres.,ions always generate., a modulo 64K address. Thu5, the expression

always yields a value in the rclnge 0-65,536.

Example:

The following EQU directive enters the name ONES into the .,ymbol uble and as,igns the binary value

1111 1111 to it:

ONES EQU OFFH

Chapter 4. Assembler Directives

The value assigned by the EQU directive can be recalled in subsequent source lines by referr'ing to its dssigned

name as in the following IF directive:

IF TYPE EQ ONES

ENDIF

SET Directive

SET as,>igns the value of 'expre~si()n' to the name specified In the label field.

Label Opcode Operand

name SET

The assembler enters the vdlue of 'expression' into the symbol table. Whenever 'ndmc' is encountered sub­

sequently in the dssembly, the ""sembler substitutes its vdlue from the .,ymbol tdble. This value remain<; unchdnged

until dltered by a ,1Ih,equent SET directive.

The function of the SET directive is identicdl to EQU except thdt 'name' Cdn appCdr in multiple SET directives

In the same plogrdm. Therefore, you Cdll alter the vdlue a,signed to 'name' throughout the d'>sembly.

A,sembly-time evaludtion of SET expression<; always getlCldte'i d modulo 64K addre',',. ThLlS, the expre'>"ion

dlwdY'> yield,> a value in the rdllge 0-65,536.

Lahel Opcode Operand /Issembled Code

IMMED SET 5
ADI IMMED (605

IMMED SET lOH-6

ADI IMMED (60A

DATA DEFIN ITION

The DB (define byte) and DW (define word) directives enable you to define data to be <;tored In your program.

Data can be specified in the form of 8-bit or 16-bit values, or ' s a stl'ing of text characters.

DB Dirflctive

The DB directive stores the specified data in consecutive memory locations starting with the current setting of the

location counter.

4-3

Chapter 4. Assembler Directives

Label Opcode Operands

optional: DB expression(s) or string(s)

The operand field of the DB directive can contain a list of expressions and/or text strings. The list can contain

up to eight total items; list items must be separated by commas. Because of limited workspace, the assembler

may not be able to handle a total of eight items when the list includes a number of complex expressions. If

you ever have this problem, it is easily solved: simply use two or more directives to shorten the list.

Expressions must evalua te to l-byte (8-bit) numbers in the I-ange ~ 256 through 255. Text strings may comprise
a maximum of 128 ASCII characters enclosed in quotes.

The assembler's relocation feature treats all external and relocatable symbols as 16-bit addresses. When one of

these symbols appears in an operand expression of the DB directive, it must be preceded by either the HIGH or

LOW operator to specify which byte of the address is to be used in the evaluation of the expression. When

neither operator is present, the assembler assumes the LOW operator and issues an error message.

If the optional label is present, it is assigned the starting value of the location counter, and thus references
the first byte stored by the DB directive. Therefore, the label STR in the following examples refers to the letter
T of the string TIME.

Examples:

Label Opcode Operands Assembled Code

STR: DB TIME' 54494D45

HERE: DB OA3H A3

WORD1: DB ~03H,5*2 FDOA

DW Directive

4-4

The DW directive stores each 16-bit value from the expression list as an address. The values are stored starting

at the current setting of the location counter.

Label Opcode Operands

optional: DW expression list

The least significant eight bits of the first value in the expression list are stored at the current setting of the
location counter; the most significant eight bits are stored at the next higher location. This process is repeated
for each item in the expression list.

Expressions evaluate to 1 ~word (16-bit) numbers, typically addresses. If an expression evaluates to a single byte,
it is assumed to be the low order byte of a 16-bit word where the high order byte is all zeros.

Chapter 4. Assembler Directives

List items must be separated by commas. The list can contain up to eight total item,. Bec.Ju,e of limited work­

space, the assembler may not be able to handle eight complex expression,. If you ever havc this problem, ,imply

use two or more OW directive, to shorten the list.

The reversed order for slLOring the high and low order bytes is the typical format for addrc''ies stored In memory.

Thus, the OW directive is commonly used for storing address constants,

Strings containing one or two ASCII characters enclmed in quotation marK> may <11,0 appcar In the expression

list. When using such strings in your program, remember that the chJJ"acter's are storcd in reversed order.

Specifying a string longer thdn two characters cau,es an error.

If the optional label is present, it is assigned the starling address of the location counter, and thus references the

first byte ,tored by the OW directive. (This is the low order byte of the first item in the expression Ii,!.)

Examplcs:

Assu me that COM P and F ILL arc label, defined elsewhere in the program, COM P addre))e~. memory location

3B1CH. FILL addresses memory location 3EB4H,

Label Opcode Operands Assembled Code

AODR 1 . OW COMP 1C3B

AODR2 OW FILL B43E

STRNG OW 'A','AB' 41004241

FOUR: DW 4H 0400

MEMORY RESERVATION

DS Directive

The OS directive can be used to define a block of storage.

Label Opcode Operand

optional: OS expression

The value of 'expre'>sion' specifie, the number of byte, to be reserved for data stordge. In theory, this value may

range from OOH through OFFFFH; in practice, you will re',erve no more '>torage than will fit in your availdble

memory and still leave room for the program.

Any ,ymbol appearing in the operand expression must be defined before the a,sembler reaches the OS directive.

Unlike the DB and OW ciirectives, OS assembles no ciata into your program. The content<. of the reserved storage

are unpredictable when program execution is initiated.

4-5

Chapter 4. Assembler Directives

If the optional label is present, it is assigned the current value of the location counter, and thus references the

first byte of the reserved memory block.

If the value of the operand expression is zero, no memory is reserved. However, if the optional label is present,

it is assigned the current value of the location counter.

The OS directive reserves memory by incrementing the location counter by the value of the operand expression.

Example:

TIVBUF: OS 72 ;RESERVE 72 BVTES FOR
;A TERMINAL OUTPUT BUFFER

Programming Tips: Data Description and Access

4-6

I?andom Access Versus Read Only Memory

When coding data descriptions, keep in mind the mix of ROM and RAM in your application.

Generally, the DB and OW directives define constants, items that can be assigned to ROM. Vou can use the~e

items in your program, but you cannot modify them. If these items are assigned to RAM, they have an initial

value that your program can ,modify during execution. Notice, however, that the,e initial values must be reloaded

into memory prior to each execution of the program.

Variable data in memory must be assigned to RAM.

Data Description

Before coding your program, you must have a thorough understanding of its input and output data. But you'll

probably find it more convenient to postpone coding the data descriptions until the remainder of the program is
fairly well developed. This way you will have a better idea of the constants and workareas needed in your program.
Also, the organization of a typical program places instructions in lower memory, followed by the data, followed

by the stack.

Data Access

Accessing data from memory i, typically a two-step process: First you tell the processor where to find the data,

then the processor fetches the data from memory and loads it into a register, usually the accumulator. Therefore,

the following code sequences have the identical effect of loading the ASCII character A into the accumulator.

AAA: DB 'A'

LXI B,AAA

LDAX B

ALPHA: DB

LXI

LDAX

'ABC'

B,ALPHA

B

Chapter 4. Assembler Directives

In the examples, the LXI instructions load the address of the desired data into the Band C registers. The LDAX

instructions then load the accumulator with one byte of data from the address specified in the Band C registers.

The assernbler neither knows nor cares that only one character from the three-character field ALPHA has been

accessed. The program must account for the characters at ALPHA+l and ALPHA+2, as in the following coding

sequence:

ALPHA: DB 'ABC' ;DEFINE ALPHA

LXI B,ALPHA ;LOAD ADDRESS OF ALPHA

LDAX B ;FETCH 1 ST ALPHA CHAR

INX B ;SET B TO ALPHA+l
LDAX B ;FETCH 2ND ALPHA CHAR

INX B ;SET B TO ALPHA+2

LDAX B ;FETCH 3RD ALPHA CHAR

The coding above is acceptable for short data fields like ALPHA. For longer fields, you can conserve memory

by setting up an instruction sequence that is executed repeatedly until the source data is exhausted.

Add Symbols for Data Access

The following example was presented earlier as an illu5tration of the OS directive:

Label Opcode Operand Comment

TTYBUF: OS 72 ;RESERVE TTY BUFFER

To access data in this buffer using only expressions such as TTYBUF+l, TTYBUF+2, ... TTYBUF+72 can be

a laborious and confusing chore, especially when you want only selected fields from the buffer. You can simplify
this task by subdividing the buffer with the EQU directive:

Label Opcode Operand Comment

TIYBUF: OS 72 ;RESERVE TTY BUFFER

10 EQU TTYBUF ;RECORD IDENTIFIER

NAME EQU TTYBUF+6 ;20-CHAR NAME FIELD

NUMBER EQU TTYBUF+26 ;10-0-lAR EMPLOYEE NUMBER

DEPT EQU TTYBUF+36 ;5-CHAR DEPARTMENT NUMBER

SSNO EQU TTYBUF+41 ;SOCIAL SEC. NUMBER

DOH EQU TTYBUF+50 ;DATE OF HIRE

DESC EQU TTYBUF+56 ;)OB DESCRIPTION

4-7

Chapter 4. Assembler Directives

Subdividing data as shown in the example simplifies data access and provides useful documentation throughout

your program. Notice that these EQU directives can be inserted anywhere within the program as you need them,

but coding them as shown in the example provides a more useful record description.

CONDITIONAL ASSEMBLY

The IF, ELSE, and ENDIF directives enable you to assemble portions of your program conditionally, that is,

only if certain cond itions th,lt you specify are sa tisfied.

Conditional assembly is especially useful when your application requires custom programs for a number of com­

mon options. As an example, assume that a basic control program requires customizing to accept input from

one of six different sensing devices and to drive one of five different control devices. Rather than code some

thirty separate programs to account for all the possibilities, you can code a single program. The code for the in­

dividual sensors and drivers must be enclosed by the conditional directives. When you need to generate a custom

program, you can insert SET directives near the beginning of the source program to select the desired sensor and

driver routines.

IF, !ELSE, ENDIF Directives

4-8

Because these directives are used in conjunction, they are described together here.

Label Opcode Operand

optional: IF expression

optional: ELSE

optional: ENDIF

The assembler evaluates the expression in the operand field of the IF directive. If bit 0 of the resulting value is

one (TRUE), all instruction'; between the IF directive and the next ELSE or ENDIF directive are assembled.

When bit 0 is zero (FALSE) these instructions are ignored. (A TRUE expression evaluates to OFFFFH and

FALSE to OH; only bit zero need be tested.)

All statements included between an IF directive and its required associated ENDIF directive are defined as an

IF·ENDIF block. The ELSE directive is optional, and only one ELSE directive may appear in an IF-ENDIF

block. When included, ELSE is the converse of IF. When bit 0 of the expression in the IF directive is zero, all

statements between ELSE and the next ENDIF are assembled. If bit 0 is one, these statements are ignored.

Operands are not allowed with the ELSE and ENDIF directives.

An IF-ENDIF block may appear within another IF·ENDIF block. These blocks can be nested to eight levels.

Macro definitions (explained in the next chapter) may appear within an IF·ENDIF block. Conversely, IF-ENDIF

blocks may appear within macro definitions. In either case, you must be certain to terminate the macro definition

Chapter 4. Assembler Directives

or IF-ENOl F block so that it can be assembled completely. For example, when a macro definition begins in an

I F block but terminates after an ELSE directive, only a portion of the macro can be assembled. Similarly, an

I F-ENDIF block begun within a macro definition must terminate within that same macro definition.

NOTE

Caution is required when symbols are defined in IF-ENDIF
blocks and referenced elsewhere within the program. These

symbols are undefined when the evaluation of the IF ex­
pression suppresse,> the assembly of the IF-ENDIF block.

Example 1. Simple IF-ENDIF Block:

COND1: IF TYPE EQ 0

ENDIF

Example 2. IF-ELSE-Er~DIF Block:

COND2: IF TYPE EQ 0

ELSE

ENDIF

;ASSEMBLED IF 'TYPE = 0'

;IS TRUE

;ASSEMBLED IF 'TYPE = O·

;IS TRUE

;ASSEMBLED IF 'TYPE = O·
;IS FALSE

4-9

Chapter 4. Assembler Directives

Example 3. Nested IF's:

COND3: IF TYPE EO 0

;ASSEMBLED IF 'TYPE = 0'

;IS TRUE

IF MODE EO 1

LEVEL ;ASSEMBLED IF 'TYPE = 0'

;AND 'MODE = l' ARE BOTH

;TRUE

ENDIF

ELSE

LEVEL ;ASSEMBLED IF 'TYPE = 0'

2 ;IS FALSE

IF MODE EO 2

;ASSEMBLED IF 'TYPE = 0'

;IS FALSE AND 'MODE = 2'

;IS TRUE
LEVEL ELSE

;ASSEMBLED IF 'TYPE = 0'
;AND 'MODE = 2' ARE BOTH
;FALSE

ENDIF

ENDIF

ASSEMBLER TERMINATION

END Directive

4-10

The END directive identifies the end of the source program and terminates each pass of the assembler.

Label Opcode Operand

optional: END expression

Only one END statement ma)! appear in a source program, and it must be the last source statement.

If the optional expression is present, its value is used as the starting address for program execution. If no ex­

pression is given, the assembler assumes zero as the starting address.

When a number of separate program modules are to be joined together, only one may specify a program ~tarting
address. The module with a starting address is the main module. When source files are combined using the IN­
CLUDE control, there are no restrictions on which source file contains the END.

Chapter 4. Assembler Directives

END-OF-TAPE INDICATION

The EOT directive allows you to specify the physical end of paper tape to simplify assembly of multiple-tape source

programs.

EOT Directive

Label Opcode Operand

optional: EOT

When EOT is recognized by the assembler, the message 'NEXT TAPE' is sent to the console and the assembler pauses.

After the next tape is loaded, a 'space bar' character received at the console signals continuation of the assembly.

Data in the operand field caU5.es an error.

LOCATION COUNTER CONTROL AND RELOCATION

All the directives discussed in the remainder of this chapter relate directly to program relocation except for the

ASEG and ORG directives. These directives are described first for the convenience of readers who do not use the

relocation feature.

Location Counter Control (Non-Re·locatable Mode)

When you elect not to use the relocation feature, an assembler default generate, an ASEG directive for you. The

ASEG directive specifies that the program is to be assembled in the non-relocatable mode dnd cstablishe, a

location counter for the assembly.

The location counter performs the same function for the assembler as the program counter performs during

execution. It tells the as',emblel- the next memory location availdble for in'>truction or data assembly.

Initially, the location countel- i:; set to Lero. The location counter can be altered by the ORG (origin) directive.

ORG Directive

The ORG directive sets the location counter to the value specified by the operand expre'>sion.

Label Opcode Operand

optional: ORG expression

The location counter is ',et to the value of the operand expre,sion. Assembly-time evaluation of ORG expressions

always yields a modulo 64K address. Thus, the expression always yield, an address in the range 0 through

65,535. Any symbol in the expression must be previously defined. The next machine instruction or data item is

assembled at the specified address.

4-11

Chapter 4. Assembler Directives

If no ORG directive is included before the first imtruction or data byte in your program, assembly begins at

location zero.

Your program can include any number of ORG directives. Multiple ORG's need not specify addresse,> in

ascending ,equence, but if you fail to do so, you may instruct the assembler to write over some previously

a'>5embled portion of the program.

If the optional label is present, it is a,signed the current value of the location counter before it is updated by the

ORG directive.

Example:

Assume that the current value of the location counter is OFH (decimal 15) when the following ORG directive is

encou n tered :

PAG1: ORC OFFH ;ORG ASSEMBLER TO LOCATION

;OFFH (decimal 225)

The symbol PAG 1 is assigned the addl'es'i OFH. The next instruction or data byte is assembled at location

OFFH.

Introduction to Relocatability

4-12

A major feature of thi, assembler i'> ih system for creating relocatable object code modules. Support for this new

feature include,> a number of !lew directives for the a'>5embler and three new program'> included in ISIS·II. The

three new programs LIB, LINK, and LOCATE arc de,>cribed in the ISIS·II System User'., Guide. The new

assembler directives arc described later in this chapter.

lRelocatability allows the prograrnmer to code programs or '>ections of rrograms without worrying about the

final arrangement of the object code in memory. Thi, offers developer,> of microcomputer systems major ad·

vantage'> in two areas: memol y management and modulal' program development.

Memory Management

When developing, testing, and debugging a system on your Intellec miclocomputer development system, your

only concern with locating a program i, that it doesn't overlap the resident routines of ISIS·II. Because the

I:ntellec system has 32K, 48K, or 64K of random acce", memory, the loc,ltion of your future program i, not a

great concern. However, the p'ogram you arc developing will ,{Immt certainly u,e ,orne mix of random dCCe'iS

memory (RAM), read·only memory (ROM), and/or programmable reaclonly memory (PROM). Therefore, the

location of your program affech both cost and performance iii your application. The relocaLlbility feature allow,

'Iou to develop, test, Jnd debllg your program on the Intelil:c development ,>ystcm ,lIld then simply relocate the

object code to suit your application.

The relocdtability fcature also has a major advantJge at assembly·time: often, large programs with many symbols

cannot be assembled because of limited work ,pace for the symbol table. Such a program can be divided into a

number of modules that can be assembled 'ieparately and then linked together to form d single object program.

Chapter 4. Assembler Directives

Modular Program Development

Although 'relocatdbility' may seem to be d formidable term, what it really meam i, that you Cdn subdivide d

complex progrdm into a number c;f smdller, simpler programs. Thi, concept i, best illustrated through the usc of

an eXdmple. Assume that a microcomputer program i, to control the spark advance on an Jutomobile engine.

This requires the program to sample the ambient air temperdture, engine air intdke temperature, coolant tempera­

ture, manifold vacuum, idle ,ensor, and throttle sensor.

Let us examine the approaches two different programmers might take to solve this problem. Both programmers

want to calculdte the degr-ee of ,park advance or retarddtion that provide, the beq fuel economy with the lowest

emissions. Programmer A codes d single program that '>ense, all inputs ,md cdlculdte, the correct ,park ddvance.

Programmer Buses d modular dpproach dnd codes separdte programs for edch input pill, one program to calculate

spark advance.

Although Programmer A avoids the need to learn to usc the relocatdbility feature, the modular approach used
by Programmer B has a number of advantages you should consider:

• Simplified Progrdm Development

It i, gener,tlly ea'.ier to code, teq, dnd debug sev('r,tI simple program' tlMn one complex progrdm.

• ShMing the Progrdmming T d,k

If ProgrcHnmer B find., thdt he i., fdlling behind schedule, he can d'>Sign one or more of his sub­

progr,lms to another programmer-. Becau,e of hi, single program concept, Pro:4rammer A will

probably hdve to complete the progralll him',clf.

Progrdmmcr B Ldn teq and debug mo,t of hi, modules .IS soun as they .Ire as'>cmblcd; Programmer

;\ must teq hi" program as d whole. Notice that Progr,tmmcr B hJS ,tn extr,t ddvantagc if the

,cmOlS ,tre being developed at the ,ame time dS the prograrTl. If one of the scmor., is behind

schedule, Programmer B can continue developltlg ,tnd testing progr,lIn, for till' sensor, that dle

ready. Bec.tuse ProgrdmrTler A Cdnnot te<"(hi·, progrdrTl until all the)ensor, ar,.:: developed, his

testing schedule i, dependent on events beyond his control.

• ProgramrTling Changes

Civen the nature of automotive design, it is ICd,onablc to expect SOrTle chang.::s during ,y,tem

developrTlent. If a change to one of the '>cll)or., require., a prugr.lmrTling change, ProgrdrTlmCr A

must se.lrch through hi~ entire program to find and .lIter the coding for that ',emor. Then he rTlust

rete\(the entire prograrTl to be certdin that tho,c change'. do not affect .lny of the other semors.

By contrdst, Progrdllllller B need be conccr-ned only with the module for thdt one sensor. This

ddvdnt.tge continucs throughout the lifc ()f the progralll.

4-13

Chapter 4. Assembler Directives

DIRECTIVES USED FOR RELOCATION

Several directive,> have been ,1dded to the dssembler to ,>upport the relocation feature. These fdll into the general

categories of locdtion counter control and program linkage.

Location Counter Control (Relocatable Programs)

4-14

Relocatable progrdms or program modules may use three locdtion counter'>. The ASEG, OSEG, and CSEG

directives specify which location counter is to be used.

The ASEG dircctive specific" an absolute code segmcnt. Even in a relocatable program module, you may want

to assign certain codc '>egments to specific dddresse'>. For eXdmple, re,tdrt routines invoked by the RST instruc­

tion require specific addreS'>cs.

The CSEG directive spccifie" a relocatable codc segment. In general, thc CSEG location counter is used for por­

tions of the program that are to be in some form of rcad-only memory, such d'> mach inc instructions and pro­

gram constants.

The OSEG location counter spccifies d relocatable data segment. This location counter is used for program

elements that must be located in random access memory.

Thcse directives allow you to control program segmentation at assembly time. The LOCATE program, described

in the ISIS-II System User's Guide, gives you control over program segment location. Therefore, the guidelines

given above are only general sincc they can be overridden by the LOCATE program.

Regardless of how many times the ASEG, CSEG, and OSEe; directives appcar in your program, the assembler

produces a single, contiguous modulc. This module comprises four segments: code, data, ,;tack and memory.

The LINK dnd LOCATE programs are used to combine segments from individual modules and relocate them in

memory. These programs are explained in the ISIS·II System User's Guide.

ASEG Directive

ASEG directs the a'>sembler to use the location counter for the absolute progrdm segment.

Label Opcode Operand

optional: ASEG

Operands are not permitted with the ASEG directive.

All irv,Uuctions dnd data to lowing the ASEG directive are dssembled in the absolute mode. The ASEG directive

remaim in effect until a CSEG or OSEG directive is encountered.

The ASEG locdtion counter h.1'> dn initial value of zero, The ORG directive can be used to assign a new value to

the ASEG location counter.

Chapter 4. Assembler Directives

When assembly begins, the assembler assurr.es the ASEG directive to be in effect. Therefore, a CSEG or DSEG

must precede the first instruction or data definition in a relocatable module. If neither of these directives

appears in the program, the entire program is assembled in absolute mode and can be executed immediately

after assembly without using the LINK or LOCATE programs.

CSEG Directive

CSEG directs the assembler tOo a-,semble subsequent instructions and data in the relocatable mode using the code

segment location counter.

Label Opcode Operand

optional: CSEG
{

blank }
PAGE

INPAGE

When a program contains multiple CSEG directives, all CSEG directives throughout the program must specify

the same operand. The operand of a CSEG directive has no effect on the current assembly, but is stored with
·the object code to be pas>ed 10 the LINK and LOCATE programs. (These programs arc described in the ISIS-II

System User's Guide.) The LOCATE program uses this information to determine relocation boundaries when it

joins this code segment to code segments from other programs. The meaning of the operand is as follows:

• blank This code segment may be relocated to the next available byte boundary.

• PAGE This code segment must begin on a page boundary when relocated. Page boundaries

occur in multiple<_ of 256 bytes beginning with zero (0,256, 512, etc.).

• INPAGE -- Thi, code segment must fit within a single page when relocated.

The CSEG directive remains in effect until an ASEG or DSEG directive is encountered.

The code segment location counter ha, an initial value of zero. The ORG directive can be u';ed to assign a new

value to the CSEG location counter.

DSEG Directive

DSEG directs the assembler to assemble <;ubsequent instructions and data in the relocatable mode using the data

segment location counter.

Label Opcode Operand

optional: DSEG f blank I
PAGE ;>

lINPAGE)

When multiple DSEG directives appear in a program, they must all specify the same operand throughout the

program. The operands for the DSEG directive have the same meaning a, for the CSEG directive except that

they apply to the data segment.

4-15

Chapter 4. Assembler Directives

There is no interaction between the operands specified for the DSEG and CSEG directives. Thus, a code segment

can be byte relocatable while the data segment is page relocatable.

The DSEG directive remains in effect until an ASEG or CSEG directive is encountered.

The data segment location counter has an initial value of zero. The ORG directive can be used to assign a new

value to the DSEG location counter.

ORG Directive (Re!ocatable Mode)

The ORG directive can be u<,ed to alter the value of the location counter presently in use.

Label Opcode Operand

optional: ORG expression

There are three location counters, but only one location counter is in use at any given point in the program.

Which one depends on whether the ASEG, CSEG, or DSEG directive is in effect.

Any symbol used in the operand expression must have been previously defined. An exception causes phase

errors for all labels that follow the ORG and a label error if the undefined error is defined later.

When the ORG directive appears in a relocatable program segment, the value of its operand expression must be

either absolute or relocatablc within the current segment. Thus, if the ORG directive appedrS within a data seg­

ment, the value of its expression must be relocatable within the data segment. An error occurs if the expression

evaluates to an address in the code segment.

If the optional label is present, it is assigned the current value of the location counter presently in use before

the ORG directive is executt~d.

Program Linkage Directives

4-16

Modular programming and the relocation feature enable you to assemble and test a number of separate programs
that are to be joined together and executed as a single program. Eventually, it becomes necessary for these
separate programs to communicate information among themselves. Establishing such communication is the
function of the program linkage directives.

A program may share its data addresses and instruction addresses with other programs. Only items having an

entry in the symbol table can be shared with other program',; therefore, the item must be assigned a name or a

label when it i, defined in the program. Items to be shared with other program'> must be declared in a PUBLIC
directive.

Your program can directly access data or instructions defined in another program if you know the actual

address of the item, but this is unlikely when both programs use relocation. Your program can also gain access

to data or instructions declared as PUBLIC in other programs. Notice, however, that the assembler normally

Chapter 4. Assembler Directives

flags as an error any reference to a name or label that ha, not been defined in your program. To avoid this,

you must provide the assembler with a list of items used in your program but defined in some other program.

These items must be decldred in an EXTRN directive.

The two remaining program linkage directives, NAME and STKLN, Me individually explained later in this chapter.

PUBLIC Directive

The PUBLIC directive makes each of the symbol, listed In the operand field available for access by other programs.

Label Opcode Operands

optional: PUBLIC

Each item in the operand ndme list must be the name or Idbel assigned to ddta or an inqruction elsewhere in

this program. When multiple names appear in the list, they must be separated by comm~IS. Edch name may be

declared PUBLIC only once in a pJ"Ogram module. Reserved words and external symbols (see the EXTRN

directive below) cannot be declared to be PUBLIC symbols.

PUBLIC directives may appear anvwhere within a program module.

If an item in the operand l1amelist has no corresponding entry in the ,ymbol table (implying that it is unde­

fined), it is flagged dS an error.

Example:

PUBLIC SIN,COS,TAN,SQRT

EXTRN Directive

The EXTRN directive provides the assembler with a list of ,ymbol., referencec.l in this program but defined in a

different program. Because of t.his, the assembler establishes linkdge to the other program and does not flag the

undefined references as errors.

Label Opcode Operands

optional: EXTRN name li,t

Each item in the name list identifies a symbol that may be referenced in thi, program but is defined in another

program. When multiple items JPpear in the list, they must be 'CpJI,ltec.l bi c:ommJs.

If a symbol in the operand name-list is also defined in this program by the user, or is a reserved symbol, the effect

is the same as defining the same symbol more than once in a pmgram. The assembler flags this error.

EXTRN directives may appear anywhere within a program module.

A symbol may be declared t.o be external only once in a program module. Symbols declared to be PUBLIC cannot

also be declared to be EXTRN symbols.

4-17

Chapter 4. Assembler Directives

4-18

If you omit a symbol from the name--li'>t but reference it in the program, the symbol is undefined. The assembler

flags this error. You may include symbols in the operand name-list that are not referenced in the program with­

out causing an error.

Example:

EXTRN ENTRY,ADDRTN,BEGIN

NAME Directive

The NAME directive assigns a name to the object module generated by this assembly.

Label Opcode Operand

optional: NAME module-name

The NAME directive requires the presence of a module-name in the operand field. This name must conform to

the rules for defining symbols.

Module names are necessary so that you can refer to a module and specify the proper sequence of modules

when a number of modules are to be bound together.

The NAME directive must precede the first data or instruction coding in the source program, but may follow

comments and control lines.

If the NAME directive is missing from the program, the assembler supplies a default NAME directive with the

module--name MODULE. This will cause an error if you at1.empt to bind together several object program

modules and more than onf' has the name MODULE. Also, if you make an error coding the NAME directive,

the default name MODULE is assigned.

The module name as,>igned by the NAME directive appears as part of the page heading in the assembly listing.

Example:

NAME MAIN

STKLN Directive

Regardless of the number of object program modules you may bind together, only one stack is generated. The

STKLN directive allows you to specify the number of byte~; to be reserved for the stalk for each module.

Label Opcode Operand

optional: STKLN expres,>ion

The operand expre,>,>ioll must evaluate to a number which will be used as the maximum size of the stack.

Chapter 4. Assembler Directives

When the STKLN directive is omitted, the dssembler provides it defdult STKLN of tero. This i'> useful when

multiple pmgrams Me bound together; only one stack will be generated, so only one progrdm module need

specify the stack size. However, you should provide d STKLN if your module i'> to be te'>ted ,epdrdtely and

uses the stdck.

If your program include, more than one STKLN directive, only the Idst value a~,igned i, retained.

Example:

STKLN 100

ST ACK and MEMORY Reserved Words

The reserved word, STACK dnd MEMORY arc not directive'> but dre of intere~t to programmer, u~ing the

relocdtion fedture. The,e reserved words arc external reference, whose dddre"es Me supplied by the LOCATE

progrdm.

STACK is the symbolic reference to the stdck origin address. You need thi5 dddress to initidli/e the stdck

pointer regi,ter. AI'll, you can ba'>e data <;tructures on this acldress using ~ymbolic reference5 "uch dS STACK+l,

STACK+2, etc.

MEMORY is the ~ymbolic reference to the fir,t byte of unused memory Pdst the end of your program. AgJin,

you CJn base data '>Iluctures on this addre,>,> using symbolic references ,uch a~ MEMORY, MEMORY+l, etc.

Programming Tips: Testing Relocatable Modules

The dbility to te,t individu.JI program modules I, a major advJrttJge of moduldr progrJmming. However, mdny

pl'ogrdm module5 dre not logically self-sufficient dnd require ,ome modificdtion before they C.ln be te,ted. The

following is d cbcu""ion of ,ome of the morc common modificdtions thdt may be required.

Initioli/otion Routines

In most complete progldm~, d number of hou~ekeeping or initidli/dtion procedure, Me performed when execution

fir,t begins. If the progrJm module you dre te,ting relic> on initidlitation procedures ds>igned to a different

module, you mu,t duplicdtc tho,e procedul·C's in the module to be tL''>ted. (Notice, however, that you can link

any number of module,> together For te'>ting.)

One of the mo'>\ impurtant initidi?Jtion procedures i" to set the '>IJck pointer. The LOCATE progrdm determine,>

the origin of the '>lack.

Your program should include the following in'>truction to initialize the stack pointer:

LXI SP,STACK

4-19

Chapter 4. Assembler Directives

Input/Output

When testing program modules, it is likely that some input or output procedures appear in other modules. Your

program must simulate any of these procedures it needs to operate. Since your Intellec development sY',lem

probably has considerably more random access memory than you need to test a program module, you may be

able to simulate input and output data right in memory. The LOCATE program supplies <In address for the

reserved word MEMORY; thi·; i'. the address of the first byte of unused memory past the end of your program.

You can access this memory using the symbolic reference MEMORY, MEMORY+l, and so on. This memory
can be used for storing test data or even for a program that generate, test data.

Remove Coding Used for Testin:7

4-20

After testing your program, be certain to remove any code you inserted for testing. In particular, make certain

that only one module in the complete program initializes the stack pointer.

5. MACROS

INTRODUCTION TO MACROS

Why Use Macros?

A macro is e'>sentially a facility for replacing one set of parameters with another. In developing your program,

you will frequently find that [T,any instruction sequences ale repedted several times with only certain parameters

changed.

As an eXdmple, suppose that you code a routine that moves five bytes of ddta from one memory locdtion to

another. A little later, you find yourself coding dnother routine to move four bytes from a different source

field to a different destination field. If the two routine,> u'>e the same coding techniques, you will find that

they Me identic.al except for three pMameters: the characler count, the source field '>tarting addre'>s, and the

destination field stdlting addre'>S. Certainly it would be handy it there were some way to regenerate that origindl

routine substituting the new parameters rather than rewrite that code your,>elf. The macro facility provides this

capability and offers ,>everal other advantages over writing code repetit iously:

• The tedium of frequent rewrite (and the probdbility of error) is reduced.

• Symbols used in macros can be restricted so thdt they have medning only within the macro i[<;elf.

Therefore, as you code your program, you need not worry thdt you will ace dentally duplicate a

symbol u'>ed in a mdcro. Also, a macro can be u'>ed dny number of times in the same program

without duplicdt:ng any of it<, own symbol'>.

• An erl"Or c.letected in a macro need be corrected unly once regdrdless uf huw mdny times the macro

appedl, in the progrdm. Thi,> reduce,> debugging time.

• Duplicatiun of effurt between programmer'> can be reduced. Useful functium can be collected in a
library tu alluw macru,> to be cupied intu different programs.

In addition, mallo> can be u',eci tu improve program readability and to credte structured programs. U,>ing macros

to segment code blocks provic.les clear progr,lIn notation dnd simplitie'> trdcing the flow of the progrdm.

What Is A Macro?

A mdcro can be de,>cribed as a routine defined in a formal sequence of prototype instructions thdt, when culled

within a program, re'>ults in the replacement of each ,>uch c;1I1 with d cude expansion consi<;ling of the dctu.!1

instructions represented.

5·1

Chapter 5. Macros

5-2

The concepts of macro definition, call, and expansion can be illustrated by a typical business form letter, where

the prototype instructions consist of preset text. For example, we could define a macro CNFIRM with the text

Air Flight welcomes you as a passenger.

Your flight number FNO leaves at DTIME and arrives in DEST at ATIME.

This macro has four dummy pdrameters to be replaced, when the macro is called, by the actual flight number,

departure time, de<;tination, and arrival time. Thus the macro call might look like

CNFIRM 123, '10:45', 'Ontario', '11 :52'

A second macro, CAR, could be called if the passenger has requested that a rental car be reserved at the desti­

nation airport. This macro might have the text

Your automobile reservation has been confirmed with MAKE rent-a-car agency.

Finally, a macro GREET could be defined to specify the passenger name.

Dear NAME:

The entire text of the busines', letter (source file) would then look like

GREET 'Ms. Scannel'
CNFIRM 123, '10:45', 'Ontario', '11 :52'

CAR 'Blotz'

We trust you will enjoy your flight.

Sincerely,

When this source file i, passed through a macro processor, the mdcro cdlls are expdnded to produce the following

letter.

Dear Ms. Scannel:

Air Flight welcomes ',IOU as a passenger. Your flight number 123 leaves at 10:45 and arrives

in Ontario at 11 :52. Your automobile reservation has been confirmed with Blotz rent-a-car

agency.

We trust you will enjoy your flight.

Sincerely,

While this example illustrates the substitution of parameters in a macro, it overlooks the relationship of the macro
processor and the assembler. The purpose of the macro processor is to generate source code which is then
assembled.

Chapter 5. Macros

Macros Vs. Subroutines

At this point, you may be wondering how macros differ from subroutines invoked by the CALL instruction.

Both aid program structuring and reduce the coding of frequently executed routines.

One distinction between the two is that subroutines necessarily branch to another part of your program while

macros generate in-line code. Thus, a program contains only one version of a given subroutine, but contains as

many versions of a given macro as there are calls for that macro.

Notice the emphasis on 'versions' in the previous sentence, for this is a major difference between macros and

subroutines. A macro does not necessarily generate the same source code each time it is called. By changing the

parameters in a macro call, you can change the source code the macro generates. In addition, macro parameters

can be tested at assembly-time by the conditional assembly directives. These two tools enable a general-purpose

macro definition to generate customized source code for a particular programming situation. Notice that macro

expansion and any code customization occur at assembly-time and at the source code level. By contrast, a

generalized subroutine resides in your program and requires execution time.

It is usually possible to obtain similar results using either a macro or a subroutine. Determining which of these
facilities to use is not always an obvious deci~ion. In some cases, using a single subroutine rather than multiple

in-line macros can reduce the overall program size. In situations involving a large number of parameters, the use

of macros may be more efficient. Also, notice that macros can call subroutines, and subroutines can contain
macros.

USI NG MACROS

The assembler recognizes the following macro operations:

• MACRO directive

• ENDM directive

• LOCAL directive

• REPT directive

• I RP directive

• I RPC directive

• EXITM directive

• Macro call

All of the directives listed above are related to macro definition. The macro call initiates the parameter sub­
stitution (macro expansion) process.

Macro Definition

Macros must be defined in your program before they can be used. A macro definition is initiated by the MACRO
assembler directive, which lists the name by which the macro can later be called, and the dummy parameters to

be replaced during macro expansion. The macro definition is terminated by the ENDM directive. The prototype

instructions bounded by the MACRO and ENDM directives are called the macro body,

5-3

Chapter.5. Macros

5-4

When label symbols used in a macro body have 'global' scope, mul tiply-defined symbol errors result if the macro

is called more than once. A label can be given limited scope using the LOCAL directive. This directive assigns a

unique value to the symbol each time the macro is called and expanded. Dummy parameters also have limited

~cope.

Occasionally you may wish to duplicate a block of code several times, either within a macro or in line with

other source code. This can be accomplished with minimal coding effort using the REPT (repeat block), IRP
(indefinite repeat), and IRPC (indefinite repeat character) directives. Like the MACRO directive, these directives

are terminated by ENDM.

The EXITM directive provides an alternate exit from a macro. When encountered, it terminates the current macro

just as if EN OM had been encountered.

Macro Definition Directives

MA eRO Directive

Label Opcode Operand

name MACRO optional dummy parameter(s)

The name in the label field specifies the name of the macro body being defined. Any valid user-defined symbol

name can be used as a macro name. Note that this name must he present and must not be terminated by a colon.

A dummy parameter can be any valid user-defined symbol name or can be null. When multiple parameters are listed,

they must be separated by commas. The scope of a dummy parameter is limited to its specific macro definition. If a

reserved symbol is used as a dummy parameter, its reserved value is not recognized. For example, if you code

A,B,C as a dummy parameter list, substitutions will occur properly. However, you cannot use the accumulator

or the Band C registers within the macro. Because of the limited scope of dummy parameters, the use of these

registers is not affected outside the macro definition.

Dummy parameters in a comment are not recognized. No substitution occurs tor such parameters.

Dummy parameters may appear in a character string. However, the dummy parameter must be adjacent to an
ampersand character (&) as explained later in this chapter.

Any machine instruction or applicable assembler directive can be included in the macro body. The distinguishing

feature of macro prototype text is that parts of it can be made variable by placing substitutable dummy param­

eters in instruction fields. These dummy parameters are the same as the symbols in the operand field of the

MACRO directive.

Example:

Define macro MACl with dummy parameters Gl, G2, and G3.

Chapter 5. Macros

ENDM Directive

NOTE

The following macro definition contains a potential error

that is clarified in the description of the LOCAL directive

later in this chapter.

MACl MACRO G 1 ,G2,G3 ;MACRO DIRECTIVE

MOVES: LHLD Gl ;MACRO BODY

MOV A,M

LHLD G2

MOV B,M

LHLD G3
MOV C,M
ENDM ;ENDM DIRECTIVE

Label Opcode Operand

ENDM

The ENDM directive is required to terminate a macro definition and follows the last prototype instruction. It is

also required to terminate code repetition blocks defined by the REPT, IRP, and IRPC directives.

Any data appearing in the label or operand fields of an ENDM directive causes an error.

LOCA L Directive

NOTE

Because nested macro calls are not expanded during macro

definition, the ENDM directive to close an outer macro can­

not be contained in the expansion of an inner, 'nested'

macro call. (See 'Nested Macro Definitions' later in this

chapter .)

Label Opcode Operand

LOCAL label name(s)

The specified label name, are defined to have meaning only within the current macro expamion. Each time the
macro is called and expanded, the assembler assigns each local symbol a unique 5ymbol in the form 77nnnn.

The assembler assigns nOOOl to the first local symbol, 770002 to the second, and \0 on. The most recent symbol
name generated always indicates the total number of symbols created for all macro expansion,. The as,embler

never duplicate, these symbols. The u,er should avoid coding symbol<., in the form)7 nnn n so that there will not

be a conflict with these assembler-generated symbols.

5-5

Chapter 5. Macros

5-6

Dummy parameters included in a macro call cannot be operands of a LOCAL directive. The scope of a dummy

parameter is always local to its own macro definition.

Local symbols can be defined only within a macro definition. Any number of LOCAL directives may appear in

a macro definition, but they must all follow the macro call and must precede the first line of prototype code.

A LOCAL directive appearing outside a macro definition causes an error. Also, a name appearing in the label

field of a LOCAL directive causes an error.

Example:

The definition of MAC1 (used as an example in the description of the MACRO directive) contains a potential
error because the symbol MOVES has not been declared local. This is a potential error since no error occurs if

MAC1 is called only once in the program, and the program itself does not use MOVES as a symbol. However,

if MAC1 is called more than once, or if the program uses the symbol MOVES, MOVES is a multiply·defined

symbol. This potential error is avoided by naming MOVES in the operand field of a LOCAL directive:

MAC1 MACRO Gl,G2,G3
LOCAL MOVES

MOVES: LHLD Gl
MOV A,M
LHLD G2

MOV B,M
LHLD G3
MOV C,M
ENDM

Assume that MAC1 is the only macro in the program and that it is called twice. The first time MACl is expanded,

MOVES is replaced with the symbol ??OOOl; the second time, MOVES is replaced with ??0002. Because the

assembler encounters only these special replacement symbols, the program may contain the symbol MOVES

without causing a multiple definition.

REPT Directive

Label Opcode Operand

optional: REPT expression

The REPT directive causes a sequence of source code lines to be repeated 'expression' times. All lines appearing

between the REPT directive and a subsequent ENDM directive constitute the block to be repeated.

When 'expression' contains symbolic names, the assembler must encounter the definition of the symbol prior to
encou nteri ng the expression.

The insertion of repeat blocks is performed in·line when the assembler encounters the REPT directive. No
explicit call is required to cause the code insertion since the definition is an implied call for expansion.

Example 1:

Rotate accumulator right six times.

ROTR6:

Example 2:

REPT
RRC
ENDM

6

Chapter 5. Macros

The following REPT directive generates the source code for a routine that fills a five-byte field with the character
stored in the accumulator:

Example 3:

PROGRAM CODE

LHLD
REPT
MOY
INX
ENDM

CNTR1
5
M,A

H

GENERA TED CODING

LHLD CNTR1
MOY M,A
INX H
MOY M,A
INX H
MOY M,A
INX H
MOY M,A
INX H
MOY M,A
INX H

The following example illustrates the use of REPT to generate a multiplication routine. The multiplication is
accomplished through a series of shifts. If this technique is unfamiliar, refer to the example of multiplication
in Chapter 6. The example in Chapter 6 uses a program loop for the multiplication. This example replaces the
loop with seven repetitions of the four instructions enclosed by the REPT -ENDM directives.

Notice that the expansion specified by this REPT directive causes the label SKIPAD to be generated seven times.
Therefore, SKIPAD must be declared local to this macro.

FSTMUL:

SKIPAD:

MYI
L.XI

REPT
LOCAL
RLC

INC
DAD
DAD
ENDM
RLC
RNC

D,O
H,O

7

SKIPAD

SKIPAD
D

H

DAD D
RET

;FAST MULTIPLY ROUTINE
;MULTIPLY E*A - 16-BIT RESULT
;IN H&L

;;GET NEXT MULTIPLIER BIT

;;DON'T ADD IF BIT =: °
;;ADD MULTIPLICAND INTO ANSWER

5-7

Chapter 5. Macros

5·8

This example illustrates a classic programming trade-off: speed versus memory. Although this example executes

more quickly than the example in Chapter 6, it requires more memory.

I RP Directive

Label Opcode Operand

optional: IRP dummy param, dist>

The operand field for the I RP (indefinite repeat) directive must contain one macro dummy parameter followed

by a list of actual parameters enclosed in angle brackets. I RP expands its associated macro prototype code sub­
stituting the first actual parameter for each occurrence of the dummy parameter. IRP then expands the proto­
type code again substituting the second actual parameter from the list. This process continues until the list is
exhausted.

The list of actual parameters to be substituted for the dummy parameter must be enclosed in angle brackets

« ». Individual items in the list must be separated by commas. The number of actual parameters in the list
controls the number of times the macro body is repeated; a list of n items causes n repetitions. An empty list

(one with no parameters coded) specifies a null operand list. IRP generates one copy of the macro body sub­

stituting a null for each occurrence of the dummy parameter. Also, two commas with no intervening character

create a null parameter within the list. (See 'Special Operators' later in this chapter for a description of null

operand s.)

Example:

The following code sequence gathers bytes of data from different areas of memory and then stores them in

consecutive bytes beginning at the address of STORIT:

PROGRAM CODE GENERA TED CODING

LXI H,STORIT LXI H,STORIT
IRP X,<FL01,3E20H,FL03> LOA FLOl
LOA X MOV M,A
MOV M,A INX H
INX H LOA 3E20H
EN OM MOV M,A

INX H
LOA FL03

MOV M,A

INX H

IRPC Directive

Label Opcode Operand

optional: IRPC dummy param,text

Chapter 5. Macros

The I RPC (indefinite repeat character) directive causes a sequence of macro prototype instructions to be repeated

for each text character of the actual parameter specified. If the text string is enclosed in optional angle brackets,

any delimiters appearing in the text string are treated simply as text to be substituted into the prototype code.
The assembler generates one iteration of the prototype code for each character in the text string. For each
iteration, the assembler substitutes the next character from the string for each occurrence of the dummy param­

eter. A list of n text characters generates n repetitions of the IRPC macro body. An empty string specifies a

null actual operand. I RPC generates one copy of the macro body substituting a null for each occurrence of the

dummy parameter.

Example:

PROGRAM CODE GENERA TED CODING

LHLD DATE-l LHLD DATE-l
MVDATE: IRPC X,1977 INX H

INX H MVI M,l

MVI M,X INX H
ENDM MVI M,9

INX H

MVI M,7
INX H

MVI M,7

IRPC provides the capability to treat each character of a string individually; concatenation (described later in this

chapter) provides the capability for building text strings from individual characters.

EXITM Directive

Label Opcode Operand

optional: EXITM

EXITM provides dn alternate method for terminating a macro expansion or the repetition of a REPT, IRP, or
IRPC code sequence. When [XITM is encountered, the assembler ignores all macro prototype instructions
located between the EXITM and ENDM directive for this macro. Notice that EXITM may be used in addition
to ENDM, but not in place (If ENDM.

When used in nested macros, EXITM cause~ an exit to the previous level of macro expansion. An EXITM within
a REPT, IRP, or IRPC terminates not only the current expansion, but all subsequent iterations as well.

Any data appearing in the operand field of an EXITM directive causes an error.

Example:

EXITM is typically used to suppress unwanted macro expansion. In the following example, macro expansion is
terminated when the EXITM directive is assembled because the condition X EO 0 is true.

5-9

Chapter 5. Macros

MAC3 MACRO X,Y

IF X EO 0
EXITM

ENDM

Special Macro Operators

5-10

In certain special cases, the normal rules for dealing with macros do not work. Assume, for example, that you

want to specify three actual parameters, and the second parameter happens to be the comma character. To the

assembler, the list PARMl II,PARM3 appears to be a list of four parameters where the second and third param­

eters are missing. The list can be passed correctly by enclosing the comma in angle brackets: PARM1,<,),PARM3.
These special operators instruct the assembler to accept the enclosed character (the comma) as an actual param­
eter rather than a del im iter.

The assembler recognizes a number of operators that allow special operations:

&

<>

..
II

Ampersand. Used to concatenate (link) text and dummy parameters. See the further

discussion of ampersands below.

Angle brackets. Used to delimit text, such as lists, that contain other delimiters.
Notice that bfanks are usually treated as delimiters. Therefore, when an actual

parameter contains blanks (passing the instruction MOV A,M, for example) the
parameter must be enclosed in angle brackets. Th is is also true for any other de­
limiter that is· to be passed as part of an actual parameter. To pass such text to

nested macro calls, use one set of angle brackets for each level of nesting. (See
'Nested Macro Definitions,' below.)

Double semicolon. Used before a comment in a macro definition to prevent

inclusion of the comment in expansions of the macro and reduce storage

requirements. The comment still appears in the listing of the definition.

Exclamation point (escape character). Placed before a character (usually a

delimiter) to be passed as literalized text in an actual parameter. Used primarily

to pass angle brackets as part of an actual parameter. To pass a literalized

exclamation point, issue!!. Carriage returns cannot be passed as actual parameters.

The '!' is always preserved while building an actual parameter. It is not

echoed when an actual parameter is substituted for a dummy parameter,

except when the substitution is being used to build another actual parameter.

Chapter 5. Macros

NUL In certain cases it is not necessary to pass a parameter to a macro. It is

necessary, however, to indicate the omission of the parameter. The omitted

(or null) parameter can be represented by two consecutive delimiters as in

the list PARMl "PARM3. A null parameter can also be represented by two
consecutive single quotes: ",PARM2,PARM3. Notice that a null is quite
different from a blank: a blank is an ASCII character with the hexadecimal
representation 20H; a null has no character representation. In the assembly
listing a null looks the same as a blank, but that is only because no substi·
tution has taken place. The programmer must decide the meaning of a null

parameter. AI though the mechan ism is somewha t d ifferen t, the defaults taken
for assembler controls provide a good example of what a null parameter can
mean. For example, coding MOD85 as an assembler control specifies that

the assembler is to generate object code for the 8085. The absence of this

control (which in effect is a null parameter) specifies that the assembler

is to generate only 8080 object code.

Assembler controls are explained in the 1515-1/ 8080/8085 Macro Assembler

Operator 5 Manual, 9800292.

Example'

In a macro with the dummy parameters W ,X,Y ,Z it is acceptable for either

the X or Y parameter to be null, but not both. The following IF directive

tests for the error condition:

IF NUL X&Y

EXITM

When a macro is expanded, any ampersand preceding or following a dummy parameter in a macro definition is
removed and the substitution of the actual parameter occurs at that point. When it is not adjacent to a dummy

parameter, the ampersand is not removed and is passed as part of the macro expansion text.

NOTE

The ampersand must be immediately adjacent to the text being

concatenated; intervening blanks are not allowed.

If nested macro definitions (described below) contain ampersands, the only ampersands removed are those adjacent
to dummy parameters belonging to the macro definition currently being expanded. All ampersands must be re­

moved by the time the expansion of the encompassing macro body is performed. Exceptions force illegal character

errors.

Ampersands placed inside strings are recognized as concatenation delimiters when adjacent to dummy parameters;
similarly, dummy parameters within character strings are recognized only when they are adjacent to ampersands.

Ampersands are not recognized as operators in comments.

5·11

("hdp rer 5. Macros

Nested Macro Definitions

A macro definition can be contained completely within the,body of another macro definition (that is, macro

definitions can be nested). The body of a macro consists of all text (including nested macro definitions)

hounded by matching MACRO and ENDM directives. The assembler allows any number of macro definitions to

be nested.

When a higher-level macro is called for expansion, the next lower-level macro is defined and eligible to be called

for expansion. A lower-level macro cannot be called unless all higher-level macro definitions have already been
called and expanded.

A new macro may be defined or an existing macro redefined by a nested macro definition depending on whether
the name of the nested macro i, a new label or has previously been established as a dummy parameter in a
!llghcr-level macro definition. Therefore, each time a higher-level macro is called, a lower-level definition can be
ddined difterently if the two contain common dummy parameter'>. Such redefinition can be costly, however, in
tel inS 01 assembler execution ,>peed.

Since IRP, IRPC, and REPT blocks con'>titute macro definitions, they also can be nested within another definition
Cleated by IRP, IRPC, REPT, or MACRO directive'>. In addition, an element in an IRP or IRPC actual parameter

li.,t (enclosed in angle brackets) may itself be a list of bracketed parameters; that is, lists of parameters can contain
elements that arc also lists.

Example:

LISTS MACRO PARAM1,PARAM2

EN OM

MACRO CALLS

Once a macro has been defined, it can be called any number of times in the program. The call consists of the

macro name and any actual parameters that are to replace dummy parameters during macro expansion. During
assembly, each macro call is replaced by the macro definition code; dummy parameters are replaced by actual
parameters.

Macro Call Format

Label

optional:

5·12

Opcode

macro name

Operand

optional actual

parameter(s)

Chapter 5. Macros

The assembler must encounter the macro definition before the first call for that macro. Otherwise, the macro

call is assumed to be an illegal opcode. The assembler inserts the macro body identified by the macro name
each time it encounters a call to a previously defined macro in your program.

The positioning of actual parameters in a macro call is critical since the substitution of parameters is based

solely on position. The first-listed actual parameter replaces each occurrence of the first-listed dummy param­
eter; the second actual parameter replaces the second dummy parameter, and so on. When coding a macro call,

you must be certain to list actual parameters in the appropriate sequence for the macro.

Notice that blanks are usually treated as delimiters. Therefore, when an actual parameter contains blanks
(passing the instruction MOY A,M, for example) the parameter must be enclosed in angle brackets. This is also

true for any other delimiter that is to be passed as part of an actual parameter. Carriage returns cannot be passed
as actual parameters.

If a macro call specifies more actual parameters than are listed in the macro definition, the extra parameters
are ignored. If fewer parameters appear in the call than in the definition, a null replaces each missing parameter.

Example:

The following example shows two calls for the macro LOAD. LOAD is defined as follows:

LOAD MACRO Gl,G2,G3
LOCAL MOYES

MOYES: LHLD Gl
MOY A,M
LHLD G2
MOY B,M
LHLD G3
MOY C,M
ENDM

LOAD simply loads the accumulator with a byte of data from the location specified by the first actual parameter,
the B register with a byte from the second parameter, and the C register with a byte from the third parameter.

The first time LOAD is called, it is used as part of a routine that inverts the order of three bytes in memory.

The second time LOAD is called, it is part of a routine that adds the contents of the B register to the accumu­
lator and then compares the result with the contents of the C register.

5-13

Chapter 5. Macros

MAIN PROGRAM SUBSTITUTION

JNZ NEXT JNZ NEXT

LOAD FLD,FLD+1,FLD+2 ??OOOl : LHLD FLD
MOY M,A ;INYERT BYTES MOY A,M

DCX H LHLD FLD+1

MOY M,B MOY B,M

DCX H LHLD FLD+2

MOY M,G MOY C,M

LOAD 3EOH ,BYTE ,CHECK MOY M,A ;INYERT BYTES

ADD B ;CHECK DIGIT DCX H

CMP C MOY M,B

CNZ DGTBAD DCX H
MOY M,C

??0002: LHLD 3EOH

MOY A,M

LHLD BYTE

MOY B,M
LHLD CHECK

MOY C,M
ADD B ;CHECK DIGIT

CMP C
CNZ DGTBAD

Nested Macro Calls

5·14

Macro calls (including any combination of nested IRP, IRPC, and REPT constructs) can be nested within macro
definitions up to eight levels. The macro being called need not be defined when the enclosing macro is defined;
however, it must be defined before the enclosing macro is called.

A macro definition can also contain nested calls to itself (recursive macro calls) up to eight levels, as long as the
recursive macro expansions can be terminated eventually. This operation can be controlled using the conditional
assembly directives described in Chapter 4 (IF, ELSE, ENDIF).

Example:

Have a macro call itself five times after it is called from elsewhere in the program.

PARAM1

RECALL

PARAM1

SET
MACRO

5

IF PARAM1 NE 0
SET PARAM 1-1
RECALL
ENDIF

ENDM

;RECURSIYE CALL

Chapter 5. Macros

Macro Expansion

When a macro is called, the actual parameters to be substituted into the prototype code can be passed in one of

two modes. Normally, the substitution of actual parameters for dummy parameters is simply a text substitution.

The parameters are not evaluated until the macro is expanded.

If a percent sign (%) precedes the actual parameter in the macro call, however, the parameter is evaluated

immediately, before expansion occurs, and is passed as a decimal number representing the value of the paramo

eter. In the case of I RPC, a '%' preceding the actual parameter causes the entire text string to be treated as a

single parameter. One IRPC iteration occurs for each digit in the decimal string passed as the result of immediate

evaluation of the text string.

The normal mechanism for passing actual parameters is adequate for most applications. Using the percent sign

to pre-evaluate parameters is necessary only when the value of the parameter is different within the local con·

text of the macro definition as compared to its global value outside the macro definition.

Example:

The macro shown in this example generates a number of rotate instructions. The parameters passed in the macro

call determine the number of positions the accumulator is to be rotated and whether rotate right or rotate left

instructions are to be generated. Some typical calls for this macro are as follows:

SHIFTR

SHIFTR

'R',3

L,%COUNT -1

The second call shows an expression used as a parameter. This expression is to be evaluated immediately rather
than passed simply as text.

The definition of the SH 1FT R macro is shown below. This macro uses the conditional I F directive to test the
validity of the first parameter. Also, the REPT macro directive is nested within the SHIFTR macro.

SHIFTR MACRO X,Y
IF X EO 'R'

REPT Y

RAR

ENDM

ENDIF
IF X NE 'L'

EXITM

ELSE

REPT Y

RAL
ENDM

ENDIF

ENDM

The indentation shown in the definition of the SHIFTR macro graphically illustrates the relationships of the IF,

ELSE, ENDIF directives and the REPT, ENDM directives. Such indentation is not required in your program, but
may be desirable as documentation.

5-15

Chapter S. Macros

The SHIFTR macro generates nothing if the first parameter is neither R nor L. Therefore, the following calls

produce no code. The result in the object program is as though the SHIFTR macro does not appear in the

source program.

SHIFTR 5
SHIFTR 'B',2

The following call to the SHIFTR macro generates three RAR instructions:

SHIFTR 'R',3

Assume that a SET directive elsewhere in the source program has given COUNT the value 6. The following call
generates five RAL instructions:

SHIFTR 'L ',%COUNT -1

The following is a redefinition of the SHIFTR macro. In this definition, notice that concatenation is used to

form the RAR or RAL operation code. If a call to the SHIFTR macro specifies a character other than R or L,
illegal operation codes are generated. The assembler flags all illegal operation codes as errors.

SHIFTR MACRO

REPT

RA&X

ENOM

ENOM

X,Y
Y

NULL. MACROS

A macro may legally comprise only the MACRO and ENOM directives. Thus, the following is a legal macro
definition:

NAOA MACRO
ENOM

Pl,P2,P3,P4

A call to this macro produces no source code and therefore has no effect on the program.

Although there is no reason to write such a macro, the null (or empty) macro body has a practical application.
F or example, all the macro prototype instructions might be enclosed with I F -END I F condi tional directives.
When none of the specified conditions is satisfied, all that remains of the macro is the MACRO directive and
the ENOM directive.

SAMPLE MACROS

The following sample macros further demonstrate the use of macro directives and operators.

5·16

Chapter 5. Macros

Example 1: Nested I RPC

The following macro definition contains a nested IRPC directive. Notice that the third operand of the outer
macro becomes the character string for the I RPC:

MOVE MACRO
IRPC
LHLD
SHLD

ENDM
ENDM

X,Y,Z
PARAM,Z
X&&PARAM
Y&&PARAM

Assume that the program contains the call MOVE SRC,DST,123. The third parameter of this call is passed to

the I RPC. This has the same effect as coding I RPC PARAM,123. When expanded, the MOVE macro generates
the following source code:

LHLD SRC1
SHLD DST1
LHLD SRC2

SHLD DST2
LHLD SRC3
SHLD DSn

Notice the use of concatenation to form labels in this example.

Example 2: Nested Macros U,ed to Generate DB Directives

This example generates a number of DB 0 directives, each with its own label. Two macros are used for this
purpose: INC and BLOCK. The INC macro is defined as follows:

INC
$ SAVE GEN

F1 &F2:
$ RESTORE

MACRO

DB

ENDM

F1,F2

o ;GENERATE LABELS & DB's

The BLOCK macro, which accepts the number of DB's to be generated (NUMB) and a label prefix (PREFIX), is

defined as follows:

$

BLOCK MACRO
SAVE NOGEN
COUNT

COUNT

SET

REPT

SET
INC
ENDM

$ RESTORE
ENDM

NUMB,PREFIX

o
NUMB
COUNT+1
PREFIX,%COUNT ;NESTED MACRO CALL

S-17

Chapter 5. Macros

5-18

The macro call BLOCK 3,LAB generates the following source code:

LAB1:
LAB2:
LAB3:

BLOCK
DB
DB
DB

3,LAB
o
o
o

The assembler controls specified in these two macros (the lines beginning with $) are used to clean up the
assembly listing for easier reading. The source code shown for the call BLOCK 3,LAB is what appears in the
assembly listing when the controls are used. Without the controls, the assembly listing appears as follows:

BLOCK 3,LAB
COUNT SET 0

REPT 3
COUNT SET COUNT+1

INC LAB,%COUNT
ENDM

COUNT SET COUNT+1
INC LAB,%COUNT

LAB1 : DB 0
COUNT SET COUNT+l

INC LAB,%COUNT
LA,B2: DB 0
COUNT SET COUNT+l

INC LAB,%COUNT
LAB3: DB 0

Example 3: A Macro that Converts Itself into a Subroutine

In some cases, the in-line coding substituted for each macro call imposes an unacceptable memory requirement.
The next three examples show three different methods for converting a macro call into a subroutine call. The
first time the SBMAC macro is called, it generates a full in-line substitution which defines the SUBR subroutine.
Each subsequent call to the SBMAC macro generates only a CALL instruction to the SUBR subroutine.

Within the following examples, notice that the label SUBR must be global so that it can be called from outside
the first expansion. This is possible only when that part of the macro definition contai ning the global label is
called only once in the entire program.

Method #1: Nested Macro Definitions

Macros can be redefined during the course of a program. In the following example, the definition of SBMAC
contains its own redefinition as a nested macro. The first time SBMAC is called, it is full expanded, and the
redefinition of SBMAC replaces the original definition. The second time SBMAC is called, only its redefinition
(a CALL instruction) is expanded.

Chapter S. Macros

SBMAC MACRO
SBMAC MACRO

CALL SUBR ;;REDEFINITION OF SBMAC
ENDM
CALL SUBR

LINK: IMP DUN
SUBR:

RET
DUN:

ENDM

Notice that both versions of SBMAC contain CALL SUBR instructions. This is necessary to provide a return
address at the end of the SUBR routine. The jump instruction labelled LINK is required to prevent the SUBR
subroutine from executing a return to itself. Notice that the return address for the second CALL SUBR
instruction would be SUBR if the jump instruction were omitted. The IMP DUN instruction simply transfers
control past the end of the subroutine.

NOTE

The assembler allows the use of a source line consisting
only of a label. Such a label is assigned to the next source
line for which code or data is generated. Notice that

neither code nor data is generated for an ENDM directive,
so the label DUN is assigned to whatever instruction follows
the ENDM directive. This construct is required because the
ENDM directive itself may not be given a label.

Method #2: Conditional Assembly

The second method for altering the expansion of the SBMAC macro uses conditional assembly. I n this example,
a switch (FIRST) is set TRUE just before the first call for SBMAC. SBMAC is defined as follows:

TRUE
FALSE
FIRST

SBMAC

FIRST
LINK:

SUBR:

DUN:

EQU
EQU

SET
MACRO
CALL SUBR
IF
SET

JMP

RET

ENDIF
ENDM

OFFH
0
TRUE

FIRST
FALSE
DUN

5·19

Chapter 5. Macros

5-20

The first call to SBMAC expands the full definition, including the call to and definition of SUBR:

SBMAC
CALL SUBR

LINK:
SUBR:

DUN:

IF
JMP

RET

ENDIF

FIRST
DUN

Because FI RST is TRUE when encountered during the first expansion of SBMAC, all the statements between
IF and ENDIF are assembled into the program. In subsequent calls, the conditionally-assembled code is skipped
so that the subroutine is not regenerated. Only the following expansion is produced:

SBMAC
CALL
IF

Method #3: Conditional Ass,embly with EXITM

SUBR
FIRST

The third method for altering the expansion of SBMAC also uses conditional assembly, but uses the EXIT M
directive to suppress unwanted macro expansion after the first call. EXITM is effective when FI RST is FALSE,
which it is after the first call to SBMAC.

TRUE
FALSE
FIRST
SBMAC

FIRST

SUBR:

DUN:

EQU
EQU
SET
MACRO
CALL
IF
EXITM
ENDIF
SET
JMP

RET

ENDM

OFFH
o
TRUE

SUBR
NOT FIRST

FALSE
DUN

Chapter S. Macros

Example 4: Computed GOTO Macro

This sample macro presents an implementation of a computed GOTO for the 8080 or 8085. The computed
GOTO, a common feature of many high level languages, allows the program to jump to one of a number of
different locations depending on the value of a variable. For example, if the variable has the value zero, the
program jumps to the first item in the list; if the variable has the value 3, the program jumps to the fourth
address in the list.

In this example, the variable is placed in the accumulator. The list of addresses is defined as a series of DW
directives starting at the symbolic address TABLE. This macro (T I UMP) also modifies itself with a nested
definition. Therefore, only the first call to the T I UMP macro generates the calculated GOTO routine. Subse­
quent calls produce only the jump instruction IMP T ICODE.

TIUMP
TICODE:

TIUMP

MACRO
ADD
MVI
MOV
DAD
MOV
INX
MOV
XCHG
PCHL
MACRO
IMP
ENDM
ENDM

;IUMP TO A-TH ADDR IN TABLE
A ;MULTIPLY A BY 2
D,O ;CLEAR DREG
E,A ;GET TABLE OFFSET INTO D&E
D ;ADD OFFSET TO TABLE ADDR IN H&L
E,M ;GET 1 ST ADDRESS BYTE
H
D,M ;GET 2ND ADDRESS BYTE

;1 UMP TO ADDRESS
;REDEFINE TIUMP TO SAVE CODE

TICODE ;NEXT CALL JUMPS TO ABOVE CODE

Notice that the definition of the T I UMP~: does not account for loading the address of the address t <,Ie
into the Hand L registers; the user must load this address just before calling the T JUMP macro. The following
shows the coding for the address table (TABLE) and a typical call sequence for the T I UMP macro:

TABLE:

MVI
LXI
TIUMP

DW

A,2
H,TABLE

LOCO
DW LOCl
DW LOC2

The call sequence shown above causes a jump to LOC2.

5-21

Chapter 5. Macros

5-22

Example 5: Using IRP to Define the Jump Table

The T JUMP macro becomes even more useful when a second macro (GOTO) is used to define the jump table,

load the address of the table into the Hand L registers, and then call TJ UMP. The GOTO macro is defined as
follows:

GOTO

JTABLE:

MACRO
LOCAL

LOA

LXI

TJUMP
IRP

OW
ENDM
ENDM

INDEX,LlST

JT ABLE
INDEX

H,jTABLE

FORMAL,<LlST>

;LOAD ACCUM WITH INDEX
;LOAD H&L WITH TABLE ADDRESS
;CALL TJUMP MACRO

FORMAL ;SET UP TABLE

A typical call to the GOTO macro would be as follows:

GOTO CASE,<COUNT,TIMER,DATE,PTDRVR>

This call to the GOTO macro builds a table of OW directives for the labels COUNT, TIMER, DATE, and
PTDR VR. It then loads the base address of the table into the Hand L registers and calls the T JUMP macro.
If the value of the variable CASE is 2 when the GOTO macro is called, the GOTO and T JUMP macros
together cause a jump to the address of the DATE routine.

Notice that any number of addresses may be specified in the list for the GOTO routine as long as they all fit
on a single source line. Also, the GOTO macro may be called any number of times, but only one copy of the

coding for the TJUMP is generated since the TJUMP macro redefines itself to generate only a JMP TJCODE
instruction.

6. PROGRAMMING TECHNIQUES

This chapter describes some techniques that may be of help to the programmer.

BRANCH TABLES PSEUDO-SUBROUTINE

S:.Jppose a program consists of several separate routines, any of which may be executed depending upon some

initial condition (such as a number passed in a register). One way to code this would be to check each condition

sequentially and branch to the routines accordingly as follows:

CONDITION = CON DillON 1?
IF YES BRANCH TO ROUTINE 1
CONDITION::: CONDITION 2?
IF YES BRANCH TO ROUTINE 2

BRANCH TO ROUTINE N

A sequence as above is inefficient, and can be improved by using a branch table.

The logic at the beginning of the branch table program loads the starting address of the branch table into the H
and L registers. The branch table itself consists of a list of starting addresses for the routines to be branched to.
Using the Hand L registers as a pointer, the branch table program loads the selected routine's starting address
into the program counter, thus effecting a jump to the desired routine. For example, consider a program that
executes one of eight routines depending on which bit of the accumulator is set:

Jump to routine 1 if the accumulator holds 00000001
2" " " 0000001 0

3 " " " 00000100
4 " " " 00001000
5 " " " 00010000

6 " " " 00100000
7 " " " 01000000

8 " " " 10000000

A program that provides such logic follows. The program is termed a 'pseudo-subroutine' because it is treated as a
subroutine by the programmer (i.e., it appears just once in memory), but is entered via a regular JUMP instruction
rather than via a CALL instruction.

6-1

Chapter 6. Programming Techniques

6-2

Main Program

~­ - - -

normal subroutine return

sequence not followed by
branch table program

Branch Table

Program
Jump

Routines

Chapter 6. Programming Techniques

Label Code Operand

START: LXI H,BTBL ;REGISTERS HAND L WILL
;POINT TO BRANCH TABLE

GTBIT: RAR

IC GETAD
INX H ;(H,L)=(H,L)+2 TO
INX H ;POINT TO NEXT ADDRESS

;IN BRANCH TABLE

JMP GTBIT
GETAD: MOV E,M ;BIT FOUND

INX H ;LOAD I UMP ADDRESS
;INTO 0 AND E REGISTERS

MOV D,M
XCHG ;EXCHANGE 0 AND E

;WITH HAND L
PCHL ;1 UMP TO ROUTINE

;ADDRESS

BTBL: OW ROUTl ;BRANCH TABLE. EACH
OW ROUT2 ;ENTRY IS A TWO-BYTE
OW ROUn ;ADDRESS
OW ROUT4 ;HELD LEAST SIGNIFICANT
OW ROUTS ;BYTE FIRST
OW ROUT6
OW ROUn
OW ROUT8

The control routine at START uses the Hand L registers as a pointer into the branch table (BTBL) corresponding
to the bit of the accumulator that is set. The routine at GET AO then transfers the address held in the corres­
ponding branch table entry to the Hand L registers via the 0 and E registers, and then uses a PCHL instruction,
thus transferring control to the selected routine.

TRANSFERRING DATA TO SUBROUTINES

A subroutine typically requires data to perform its operations. In the simplest case, this data may be transferred

in one or more registers.

Sometimes it is more convenient and economical to let the subroutine load its own registers. One way to do this
is to place a list of the required data (called a parameter list) in some data area of memory, and pass the address
of this list to the subroutine in the Hand L registers.

6-3

Chapter 6. Programming Techniques

6-4

For example, the subroutine ADSUB expects the address of a three-byte parameter list in the Hand L registers.

It adds the first and second bytes of the list, and stores the result in the third byte of the list:

Label Code

LXI

CALL

RET1 :

PLlST: DB
DB

DS

LXI

CALL

RET2:

L1ST2: DB

DB
DS

ADSUB: MOY

INX

MOY

ADD

INX

MOY

RET

Operand

H,PLlST

ADSUB

6
8

H,L1ST2

ADSUB

10

3S

A,M
H

B,M

B

H

M,A

Comment

;LOAD HAND L WITH

;ADDRESSES OF THE PARAM­

;ETER LIST

;CALL THE SUBROUTINE

;FIRST NUMBER TO BE ADDED

;SECOND NUMBER TO BE

;ADDED

;RESULT WILL BE STORED HERE

;LOAD HAND L REGISTERS

;FOR ANOTHER CALL TO ADSUB

;GET FIRST PARAMETER

;INCREMENT MEMORY

;ADDRESS

;GET SECOND PARAMETER

;ADD FIRST TO SECOND

;INCREMENT MEMORY

;ADDRESS

;STORE RESULT AT THIRD

;PARAMETER STORE

;RETURN UNCONDITIONALLY

The first time ADSUB is called, it loads the A and B registers from PLiST and PLlST+l respectively, adds them,

and stores the result in PLiST +2. Return is then made to the instruction at RETl.

Chapter 6. Programming Techniques

First call to ADSUB:

H L

ADSUB: D o

06 PLiST

08 PLiST +1

OEH PLiST +2

The second time ADSUB is called, the Hand L registers point to the parameter list LlST2. The A and B
registers are loaded with 10 and 35 respectively, and the sum is stored at LlST2+2. Return is then made to
the instruction at RET2.

Note that the parameter lists PLiST and LlST2 could appear anywhere in memory without altering the results

produced by ADSUB.

This approach does have its limitations, however. As coded, ADSUB must receive a list of two and only two
numbers to be added, and they must be contiguous in memory. Suppose we wanted a subroutine (GENAD)

which would add an arbitrary number of bytes, located anywhere in memory, and leave the sum in the accumu­
lator.

This can be done by passing the subroutine a parameter list which is a list of addresses of parameters, rather

than the parameters themselves, and signifying the end of the parameter list be a number whose first byte is

FFH (assuming that no parameters will be stored above address FFOOH).

Call to GENAD:

H L

GENAD: D D
~

l PARMI

ADRI PARM4
ADR2
ADR3 PARM3
ADR4
FFFF PARM2

As implemented below, GE NAD saves the current sum (beginning with zero) in the C register. It then loads the
address of the first parameter into the D and E registers. If this address is greater than or equal to FFOOH, it

reloads the accumulator with the sum held in the C register and returns to the calling routine. Otherwise, it

6-5

Chapter 6. Programming Techniques

loads the parameter into the accumulator and adds the sum in the C register to the accumulator. The routine

then loops back to pick up the remaining parameters.

Label

PLlST:

PARM1 :

PARM4:

PARM3:

PARM2:

GENAD:
LOOP:

BACK:

Code

LXI
CALL

HALT

OW

Operand

H,PLlST
GENAD

PARM1

OW PARM2
OW PARM3
OW PARM4

OW

DB
DB

DB

DB

XRA
MOV

MOV

INX

MOV

CPI

JZ
MOV

LDAX

ADD

INX

JMP
MOV

RET
END

OFFFFH

6
16

13

82

A

C,A
E,M

H

A,M

OFFH

BACK
D,A
0

C

H

LOOP

A,C

Comment

;LOAD ADDRESS OF
;PARAMETER ADDRESS LIST

;LlST OF PARAMETER ADDRESSES

;TERMINATOR

;CLEAR ACCUMULATOR
;SAVE CURRENT TOTAL IN C
;GET LOW ORDER ADDRESS BYTE

;OF FIRST PARAMETER

;GET HIGH ORDER ADDRESS BYTE

;OF FIRST PARAMETER

;COMPARE TO FFH

;IF EQUAL, ROUTINE IS COMPLETE
;0 AND E NOW ADDRESS PARAMETER

;LOAD ACCUMULATOR WITH PARAMETER
;ADD PREVIOUS TOTAL
;INCREMENT HAND L TO POINT
;TO NEXT PARAMETER ADDRESS

;GET NEXT PARAMETER
;ROUTINE DONE - RESTORE TOTAL

;RETURN TO CALLING ROUTINE

Chapter 6. Programming Techniques

Note that GENAO could add any combination of the parameters with no change to the parameters themselves.

The sequence:

PLlST:

LXI
CALL

OW
OW
OW

H,PLlST
GENAO

PARM4
PARM1
OFFFFH

would cause PARM1 and PARM4 to be added, no matter where in memory they might be located (excluding
addresses above FFOOH).

Many variations of parameter passing are possible. For example, if it is necessary to allow parameters to be
stored at any address, a calling program can pass the total number of parameters as the first parameter; the
subroutine then loads this first parameter into a register and uses it as a counter to determine when all param­
eters had been accepted.

SOFTWARE MULTIPLY AND DIVIDE

The multiplication of two unsigned 8-bit data bytes may be accomplished by one of two techniques: repetitive
addition, or use of a register shifting operation.

Repetitive addition provides the simplest, but slowest, form of multiplication. For example, 2AH*74H may be
generated by adding 74H to the (initially zeroed) accumulator 2AH times.

Shift operations provide faster multiplication. Shifting a byte left one bit is equivalent to multiplying by 2, and
shifting a byte right one bit is equivalent to dividing by 2,. The following process will produce the correct 2-byte
result of multiplying a one byte multiplicand by a one byte multiplier:

A. Test the least significant bit of multiplier. If zero, go to step b. If one, add the
multiplicand to the most significant byte of the result.

B. Shift the entire two-byte result right one bit position.

C. Repeat steps a and b until all 8 bits of the multiplier have been tested.

For example, consider the multiplication: 2AH*3CH=908H

Step 1:

Step 2:

Step 3:

Test multiplier O-bit; it is 0, so shift 16-bit result right one bit.

Test multiplier l-bit; it is 0, so shift 16-bit result right one bit.

Test multiplier 2-bit; it is 1, so add 2AH to high-order byte of result and shift 16-bit
result right one bit.

6·7

Chapter 6. Programming Techniques

6·8

Step 4: Test multiplier 3-bit; it is 1, so add 2AH to high-order byte of result and shift 16-bit

result right one bit.

Step 5: Test multiplier 4-bit; it is 1, so add 2AH to high-order byte of result and shift 16-bit

result right one bit.

Step 6: Test multiplier S-bit; it is 1, so add 2AH to high-order oyte of result and shift 16-bit

result right one bit.

Step 7: Test multiplier 6-bit; it is 0, so shift 16-bit result right one bit.

Step 8: Test multiplier 7-bit; it is 0, so shift 16-bit result right one bit.

The result produced is 0908.

MULTIPLIER MULTIPLICAND

Start 00111100(3C) 00101 01 0(2A)

Step 1 a

b

Step 2 a

b

Step 3 a

b

Step 4 a

b

Step 5 a

b

Step 6 a

b

Step 7 a
b

Step 8 a

b

HIGH-ORDER BYTE

OF RESULT

100000000

00000000

100000000

00101010

100010101

00111111

00011111

101001001

00100100

101001110

00100111

00010011

00001001

LOW-ORDER BYTE

OF RESULT

00000000

00000000

00000000

00000000

00000000

00000000

10000000

10000000

11000000

11000000

01100000

10110000

11011000(908)

Since the multiplication routine described above uses a number of important programming techniques, a sample

program is given with comments.

The program uses the B register to hold the most significant byte of the result, and the C register to hold the

least significant byte of the result. The 16-bit right shift of the result is performed in the accumulator by two

rotate-right-through-carry i nstruc tions.

Chapter 6. Programming Techniques

Zero carry and then rotate B:

B C

D
Then rotate C to complete the shift:

B C

D
Register D holds the multiplicand, and register C originally holds the multiplier.

MULT: MVI B,O ;INITIALIZE MOST SIGNIFICANT BYTE

;OF RESULT

MVI E,9 ;BIT COUNTE R

MULTO: MOV A,C ;ROTATE LEAST SIGNIFICANT BIT OF

RAR ;MULTIPLIER TO CARRY AND SHIFT

MOV C,A ;LOW-ORDER BYTE OF RESULT

DCR E

jZ DONE ;EXIT IF COMPLETE

MOV A,B

jNC MULTl

ADD D ;ADD MULTIPLICAND TO HIGH-

;ORDER BYTE OF RESULT IF BIT

;WAS A ONE

MULT1: RAR ;CARRY=O HERE SHIFT HIGH-

;ORDER BYTE OF RESULT

MOV B,A

jMP MULTO

DONE:

An analogous procedure is used to divide an unsigned 16-bit number by an unsigned 16-bit number. Here, the

process involves subtraction rather than addition, and rotate-left instructions instead of rotate-right instructions.

6-9

Chapter 6. Programming Techniques

6-10

The following reentrant program uses the Band C registers to hold the dividend and quotient, and the D and E

register to hold the divisor and remainder. The Hand L registers are used to store data temporarily.

DIV: MOV

CMA

MOV

MOV

CMA

MOV

INX

LXI

MVI

DVO: PUSH

DAD

INC

XTHL

DVl: POP

PUSH

MOV

RAL

MOV

MOV

RAL

MOV

MOV

RAL

MOV

MOV

RAL

MOV

POP

DCR

JNZ

;POST-DIVIDE CLEAN UP

A,D

D,A

A,E

E,A

D

H,O

A,I7

H

D

DVI

H

PSW

A,C

C,A

A,B

B,A

A,L

L,A

A,H

H,A

PSW

A

DVO

;NEGATE THE DIVISOR

;FOR TWO'S COMPLEMENT

;INITIAL VALUE FOR REMAINDER

;INITIALIZE LOOP COUNTER

;SAVE REMAINDER

;SUBTRACT DIVISOR (ADD NEGATIVE)

;UNDER FLOW, RESTORE HL

;SAVE LOOP COUNTER (A)

;4 REGISTER LEFT SHIFT

;WITH CARRY

;CY->C>B >L->H

;RESTORE LOOP COUNTER (A)

;DECREMENT IT

;KEEP LOOPING

;SHIFT REMAINDER RIGHT AND RETURN IN DE

ORA A

MOV A,H

RAR

MOV D,A

MOV A,L

RAR

MOV E,A

RET

END

Chapter 6. Programming Techniques

MUL TIBYTE ADDITION AND SUBTRACTION

The carry flag and the ADC (add with carry) instructions may be used to add unsigned data quantities of
arbitrary length. Consider the following addition of two three-byte unsigned hexadecimal numbers:

32AF8A
+84BA90

B76A1A

To perform this addition, add to the low-order byte using an ADD instruction. ADD sets the carry flag for use

in subsequent instructions, but does not include the carry flag in the addition. Then use ADC to add to all
higher order bytes.

32

84

B7

carry = 1

AF

BA

""'Y = IS

8A

90

lA

The following routine will perform this multibyte addition, making these assumptions:

The E register holds the length of each number to be added (in this case, 3).

The numbers to be added are stored from low-order byte to high-order byte beginning at memory locations

FI RST and SECND, respectively.

The result will be stored from low-order byte to high-order byte beginning at memory location FIRST, replacing
the original contents of these locations.

MEMORY
LOCATION before after

FIRST 8A -..+ ~ lA } carry

FIRST+1 AF + ~ 6A ~ carry

FIRSTt2 32 +-. B7

SECND 90 90

SECND+l BA BA

SECND+2 84 84

6-11

Chapter 6. Programming Techniques

The following routine uses an ADC instruction to add the low-order bytes of the operands. This could cause

the result to be high by one if the carry flag were left set by some previous instruction. This routine avoids

the problem by clearing the carry flag with the XRA instruction just before LOOP.

Label

MADD:

LOOP:

DONE:

FIRST:

SECND:

Code

LXI

LXI

XRA

LDAX

ADC

STAX

DCR
]Z
INX

INX

]MP

DB
DB

DB

DB

DB

DB

Operand

B,FIRST

H,SECND

A
B

M

B

E

DONE
B

H

LOOP

90H

OBAH

84H

8AH

OAFH

32H

Comment

;B AND C ADDRESS FI RST

;H AND L ADDRESS SECND

;CLEAR CARRY FLAG

;LOAD BYTE OF FIRST

;ADD BYTE OF SECND
;WITH CARRY
;STORE RESULT AT FIRST
;DONE IF E = 0

;POINT TO NEXT BYTE OF

;FIRST

;POINT TO NEXT BYTE OF
;SECND

;ADD NEXT TWO BYTES

Since none of the instructions in the program loop affect the carry flag except ADC, the addition with carry will

proceed correctly.

When location DONE is reached, bytes FIRST through FIRST+2 will contain lA6AB7, which is the sum shown

at the beginning of this section arranged from low-order to high-order byte.

In order to create a multibyte subtraction routine, it is necessary only to duplicate the multibyte addition routine
of this section, changing the ADC instruction to an SBB instruction. The program will then ,ubtract the number
beginning at SECND from the number beginning at FIRST, placing the re,ult at FIRST.

DECIMAL ADDITION

6-12

Any 4-bit data quantity may be treated as a decimal number a, long as it represents one of the decimal digits
from 0 through 9, and does not contain any of the bit patterns representing the hexadecimal digits A through F.
In order to preserve this decimal interpretation when performing addition, the value 6 must be added to the
4-bit quantity whenever the addition produces a result between 10 and 15. This is because each 4-bit data
quantity can hold 6 more combinations of bits than there are decimal digits.

Chapter 6. Programming Techniques

Decimal addition is performed by letting each 8-bit byte represent two 4-bit decimal digits. The bytes are

summed in the accumulator in standard fashion, and the DAA (decimal adjust accumulator) instruction is then
used to convert the 8-bit binary result to the correct representation of 2 decimal digits. For multibyte strings,

you must perform the decimal adjust before adding the next higher·order bytes. This is because you need the

carry flag setting from the DAA instruction for adding the higher·order bytes.

To perform the decimal addition:

the process works as follows:

2985

+4936

7921

1. Clear the Carry and add the two lowest-order digits of each number (remember that each 2

decimal digits are represented by .one byte).

carry

85 = 10000101 B
36 = 00110110B

o

~Q]10111011B

Carry = 0 , Auxiliary Carry = 0

The accumulator now contains OBBH.

2. Perform a DAA operation. Since the rightmost four bits are greater than 9, a 6 is added to the
accumulator.

Accumulator = 10111011 B

6 = 0110B

11000001 B

Since the leftmost bits are greater than 9, a 6 is added to these bits, thus ~etting the carry flag.

Accumulator = 11000001 B

6 = 0110 B

Carry flag == 1

/]00100001B

The accumulator now contains 21 H. Store these two digits.

6-13

Chapter 6. Programming Techniques

3. Add the next group of two digits:

carry

29 = 00101001 B

49 = 01001001 B

g]01110011B

Carry = 0 ~ 'AUXiliary Carry = 1

The accumulator now contains 73H.

4. Perform a DAA operation. Since the auxiliary carry flag is set, 6 is added to the accumulator.

Accumulator = 01110011B

6= 0110B

Carry flag = 0

/m01111001B

Since the leftmost 4 bits are less than 10 and the carry flag is reset, no further action occurs.

Thus, the correct decimal result 7921 is generdted in two bytes.

A routine which adds decimal numbers, then, is exactly analogous to the multibyte addition routine MADD of

the last section, and may be produced by inserting the instruction DAA after the ADC M instruction of that

example.

Each iteration of the program loop will add two decimal digits {one byte) of the numbers.

DECIMAL SUBTRACTION

6-14

()(~cimal subtraction is considerably more complicated than decimal addition. In general, the process consists of

generating the tens complement of the subtrahend digit, and then adding the result to the minuend digit. For
example, to subtract 34 from 56, form the tens complement of 34 (99-34=65+ 1 =66). Then, 56+66= 122. By
truncating off the carry out of the high order digit, we get 22, the correct result.

The problem of handling borrows arises in multibyte decimal subtractions. When no borrow occurs from a sub­

tract, you want to use the tens complement of the subtrahend for the next operation. If a borrow does occur,
you want to use the nines complement of the subtrahend.

Notice that the meaning of the carry flag is inverted because you are dealing with complemented data. Thus, a

one bit in the carry flag indicates no borrow; a zero bit in the carry flag indicates a borrow. This inverted carry

flag setting can be used in an add operation to form either the nines or tens complement of the subtrahend.

Chapter 6. Programming Techniques

The detailed procedure for subtracting multi-digit decimal numbers is as follows:

1. Set the carry flag = 1 to indicate no borrow.

2. Load the accumulator with 99H, representing the number 99 decimal.

3. Add zero to the accumulator with carry, producing either 99H or 9AH, and resetting the

carry flag.

4. Subtract the subtrahend digits from the accumulator, producing either the nines or tens

complement.

5. Add the minuend digits to the accumulator.

6. Use the OAA instruction to make sure the result in the accumulator is in decimal format, and
to indicate a borrow in the carry flag if one occurred.

7. If there are more digits to subtract, go to step 2. Otherwise, stop.

Example:

Perform the decimal subtraction:

1 . Set carry :: 1.

43580
-13620

29960

2. Load accumulator with 99H.

3. Add zero with carry to the accumulator, producing 9AH.

Accumulator = 10011001 B

= OOOOOOOOB
Carry

10011010B =: 9AH

4. Subtract the subtrahend digits 62 from the accumulatnr.

Accumulator =: 1001101 OB
62 = 1001111 OB

]] 00111000B

6-15

Chapter 6. Programming Techniques

6-16

5. Add the minuend digits 58 to the accumulator.

Accumulator = 001110008

58 = 010110008

~ 100100008 = 90H

Carry = 0 ~ 'AuXiliary Carry = 1

6. DAA converts accumulator to 96 (since Auxiliary Carry = 1) and leaves carry flag = 0

indicating that a borrow occurred.

7. Load accumulator with 99H.

8. Add zero with carry to accumulator, leaving accumulator = 99H.

9. Subtract the subtrahend digits 13 from the accumulator.

Accumulator = 100110018

13=111011018

lJl 000011 08

10. Add the minuend digits 43 to the accumulator.

Accumulator = 100001108

43 = 010000118

~~ 110010018 = C9H

Carry = 0 'AuXiliary Carry = 0

11. DAA converts accumulator to 29 and sets the carry flag'" 1, indicating no borrow occurred.

Therefore, the result of subtracting 1362 from 4358 is 2996.

The following subroutine will subtract one 16-digit decimal number from another using the following assumptions:

The minuend is stored least significant (2) digits first beginning at location MINU.

The subtrahend is stored least significant (2) digits first beginning at location S8TRA.

The result will be stored least significant (2) digits first, replacing the minuend.

Chapter 6. Programming Techniques

Label Code Operand Comment

DSUB: LXI D,MINU ;D AND E ADDRESS MINUEND

LXI H,SBTRA ;H AND L ADDRESS SUBTRA-

;HEND

MVI C,8 ;EACH LOOP SUBTRACTS 2

;DIGITS (ONE BYTE),

;THEREFORE PROGRAM WILL

;SUBTRACT 16 DIGITS.

STC ;SET CARRY INDICATING

;NO BORROW

LOOP: MVI A,99H ;LOAD ACCUMULATOR

;WITH 99H.

ACI 0 ;ADD ZERO WITH CARRY

SUB M ;PRODUCE COMPLEMENT

;OF SUBTRAHEND

XCHG ;SWITCH D AND E WITH

;H AND L

ADD M ;ADD MINUEND

DAA ;DECIMAL ADJ UST

;ACCUMULATOR

MOV M,A ;STORE RESULT

XCHG ;RESWITCH D AND E

;WITH HAND L

DCR C ;DONE IF C = 0

JZ DONE

INX D ;ADDRESS NEXT BYTE

;OF MINUEND

INX H ;ADDRESS NEXT BYTE

;OF SUBTRAHEND

JMP LOOP ;GET NEXT 2 DECIMAL DIGITS

DONE: NOP

6-17

7. INTERRUPTS

INTERRUPT CONCEPTS

The following is a general description of interrupt handling and applies to both the 8080 and 8085 processors.

However, the 8085 processor has some additional hardware features for interrupt handling. For more infor­

mation on these features, see the description of the 8085 processor in Chapter 1 and the descriptions of the
RIM, SIM, and RST instructions in Chapter 3.

Often, events occur external to the central processing unit which require immediate action by the CPU. For

example, suppose a device is sending a string of 80 characters to the CPU, one at a time, at fixed intervals.

There dre two ways to handle such a situation:

A. A program could be written which accepts the first character, waits until the next character is

ready (e.g., executes a timeout by incrementing a sufficiently large counter), then accepts the

next character, and proceeds in this fashion until the entire 80 character string has been received.

This method is referred to as programmed Input/Output.

B. The device controller could interrupt the CPU when a character is ready to be input, forcing a
branch from the executing program to a special interrupt service routine.

The interrupt sequence may be illustrated as follows:

Normal

Program

Execution

INTERRUPT

Interrupt Service

Routine

Program

Execution

Continues

7·1

Chapter 7. Interrupts

7-2

The 8080 contains a bit named INTE w:,ich may be set or reset by the instructions EI and DI described in

Chapter 3. Whenever INTE is equal to 0, the entire interrupt handling system is disabled, and no interrupts

wi II be accepted.

When the 8080 recognizes an interrupt request from an external device, the following actions occur:

1. The instruction currently being executed is completed.

2. The interrupt enable bit, INTE, is reset = O.

3. The interrupting device supplies, via hardware, one instruction which the CPU executes. This

instruction does not appear anywhere in memory, and the programmer has no control over it,
since it is a function of the interrupting device's controller design. The program counter is not

i ncremen ted before this instruct ion.

The instruction supplied by the interrupting device is normally an RST instruction (see Chapter 3), since this

is an efficient one byte call to one of 8 eight-byte subroutines located in the first 64 words of memory. For

instance, the device may supply the instruction:

RST OH

with each input interrupt. Then the subroutine which processes data transmitted from the device to the CPU

will be called into l:xecution via an eight·byte instruction sequence at memory locations OOOOH to 0007H.

A digital input device may supply the instruction:

RST lH

Then the subroutine that processes the digital input signals will be called via a sequence of instructions

occupying memory locations 0008H to OOOFH.

Device 'a'

supplies RST OH

Device 'b'

supplies RST 1 H

Transfers
control to

-------~. 0000
0007

Transfers

control to

• 0008
OOOF

\/~ Beginning of
subroutine for

device 'a'

} Beginning of

subroutine for
device 'b'

Chapter 7. Interrupts

Transfers

} Beginning of
Device 'x' control to 0038 .. subroutine for
supplies RST 7H 003F

device 'x'

Note that any of these 8-byte subroutines may in turn call longer subroutines to process the interrupt, if

necessary.

Any device may supply an RST instruction (and indeed may supply anyone-byte 8080 instruction).

The following is an example of an Interrupt sequence:

ARBITRARY
MEMORY ADDRESS

3COB

3COC

0000

INSTRUCTION

:~~ ~:! ~ {,n"""Pt '<om 0";,, ,

Device 1 supplies

In","";on ,/

RST OH
Program Counter :::

3COC pushed onto

the stack.

Control transferred to

to 0000

Instruction 2

RET-----------------------.,

Stack popped into

program counter

A

B

C

Device 1 signals an interrupt as the CPU is executing the instruction at 3COB. This imtruction is completed.

The program counter remains set to 3COC, and the instruction RST OH supplied by device 1 is executed.

Since this is a call to location zero, 3COC is pushed onto the stack and program control is transferred to

location ooOOH. (This subroutine may perform jumps, calls, or any other operation.) When the RETURN is

executed, address 3COC is popped off the stack and replaces the contents of the program counter, causing

execution to contir.ue at this point.

7·3

Chapter 7. Interrupts

WRITING INTERRUPT SUBROUTINES

74

In general, any registers or condition bits changed by an interrupt subroutine must be restored before returning

to the interrupted program, or errors will occur.

For example, suppose a program is interrupted just prior to the instruction:

jC LOC .

and the carry bit equals 1. If the interrupt subroutine happens to reset the carry bit before returning to the
interrupted program, the jump to LOC which should have occurred will not, causing the interrupted program
to produce erroneous results.

Like any other subroutine then, any interrupt subroutine should save at least the condition bits and restore them

before performing a RETURN operation. (The obvious and most convenient way to do this is to save the data
in the stack, using PUSH and POP operations.)

Further, the interrupt enable system is automatically disabled whenever an interrupt is acknowledged. Except in

special cases, therefore, an interrupt subroutine should include an EI instruction somewhere to permit detection

and handling of future interrupts. One instruction after an EI is executed, the interrupt subroutine may itself be
interrupted. This process may continue to any level, but as long as all pertinent data are saved and restored,
correct program execution will continue automatically.

A typical interrupt subroutine, then, could appear as follows:

Code

PUSH

EI

POP

RET

Operand

PSW

PSW

Comment

;SAVE CONDITION BITS AND ACCUMULATOR

;RE-ENABLE INTERRUPTS

;PERFORM NECESSARY ACTIONS TO SERVICE
;THE INTERRUPT

;RESTORE MACHINE STATUS
;RETURN TO INTERRUPTED PROGRAM

APPENDIX A. INSTRUCTION SUMMARY

This appendix summarizes the bit patterns and number of time states associated with every 8080 CPU

instruction. The instructions are listed in both mnemonic (alphabetical) and operation code (numerical)

sequence.

When using this summary, note the following symbology.

DDD represents a destination register. SSS represents a source register. Both DDD and SSS are interpreted

as follows:

DDD or SSS

000
001

010
011

100

101

110

111

Interpretation

Register B
Register C

Register D
Register E

Register H
Register L

A memory register or stack pointer or PSW
(flags + accumulator)
The accumulator

Instruction execution time equals number of time periods multiplied by the duration of a time period.

A time period may vary from 480 nanoseconds to 2 microseconds on the 8080 or 320 nanoseconds to 2

microseconds on the 8085. Where two numbers of time periods are shown (eq.5/11), it means that the

smaller number of time periods is required if a condition is not met, and the larger number of time periods

is required if the condition is met.

NUMBER OF TIME PERIODS
MNEMONIC D7 D6 D5 D4 D3 D2 Dl DO

8080 8085

CALL 1 1 0 0 1 1 0 I 17 18
CC 1 1 0 1 1 1 0 0 11/17 9/18
CNC 1 1 0 1 0 1 0 0 11 /17 9/18
CZ I 1 0 0 1 1 0 0 11/17 9/18
CNZ 1 1 0 0 0 1 0 0 11/17 9/18
CP 1 1 1 1 0 1 0 0 11/17 9/18
CM 1 1 1 1 1 1 0 0 11/17 9/18
CPE 1 1 1 0 1 1 0 0 11/17 9/17
CPO 1 1 1 0 0 1 0 0 11/17 9/18
RET 1 1 0 0 1 0 0 1 10 10
RC 1 1 0 1 1 0 0 0 5/11 6/12

•
RNC 1 1 0 1 0 0 0 0 5/11 6/12
RZ 1 1 0 0 1 0 0 0 5/11 6/12

ALL MNEMONICS© 1974, 1975, 1976, 1977 INTEL CORPORA nON

A-l

Appendix A. Instruction Summary

MNEMONIC D7 D6 D5 D4 D3 D2 Dl

RNZ 1 1 0 0 0 0 0
RP 1 1 1 1 0 0 0
RM 1 1 1 1 1 0 0
RPE 1 1 1 0 1 0 0
RPO 1 1 1 0 0 0 0
RST 1 1 A A A 1 1
IN 1 1 0 1 1 0 1
OUT 1 1 0 1 0 0 1
LXI B 0 0 0 0 0 0 0
LXI D 0 0 0 1 0 0 0
LXI H 0 0 1 0 0 0 0
LXI SP 0 0 1 1 0 0 0
PUSH B 1 1 0 0 0 1 0
PUSH D 1 1 0 1 0 1 0
PUSH H 1 1 1 0 0 1 0
PUSH PSW 1 1 1 1 0 1 0
POP B 1 1 0 0 0 0 0
POP D 1 1 0 1 0 0 0
POP H 1 1 1 0 0 0 0
POP PSW 1 1 1 1 0 0 0
STA 0 0 1 1 0 0 1
LDA 0 0 1 1 1 0 1
XCHG 1 1 1 0 1 0 1
XTHL 1 1 1 0 0 0 1
SPHL 1 1 1 1 1 0 0
PCHL 1 1 1 0 1 0 0
DAD B 0 0 0 0 1 0 0
DAD D 0 0 0 1 1 0 0
DAD H 0 0 1 0 1 0 0
DAD SP 0 0 I 1 1 0 0
STAX B 0 0 0 0 0 0 1
STAX D 0 0 0 1 0 0 1
LDAX B 0 0 0 0 1 0 1
LDAX D 0 0 0 1 1 0 1
INX B 0 0 0 0 0 0 1
INX D 0 0 0 1 0 0 1
INX H 0 0 1 0 0 0 1
INX SP 0 0 1 1 0 0 1

MOV rl /2 0 1 D D D S S
MOV M,r 0 1 1 I 0 S S
MOV r,M 0 1 D D D 1 1
HLT 0 1 1 1 0 1 1
MVI r 0 0 D D D 1 1
MVI M 0 0 1 1 0 1 1
INR 0 0 D D D 1 0
DCR 0 0 D D D 1 0
ALL MNEMONICS© 7974,7975,7976, 7977 INTEL CORPORATION

A-2

NUMBER OF TIME PERIODS

DO 8080 8085

0 5/11 6/12

0 5/11 6/12
0 5/11 6/12
0 5/11 6/12
0 5/11 6/12
1 11 12

1 10 10

1 10 10
1 10 10
1 10 10

1 10 10

1 10 10
1 11 12

1 11 12

1 11 12

1 11 12

1 10 10
1 10 10

1 10 10

1 10 10
0 13 13
0 13 13
1 4 4

1 18 16

1 5 6

1 5 6
1 10 10

1 10 10

1 10 10
1 10 10

0 7 7
0 7 7

0 7 7
0 7 7
1 5 6
1 5 6
1 5 6
1 5 6

S 5 4

S 7 7

0 7 7

0 7 5

0 7 7

0 10 10
0 5 4

1 5 4

Appendix A. Instruction Summary

NUMBER OF TIME PERIOD5

MNEMONIC D7 D6 D5 D4 D3 D2 Dl DO
8080 8085

INR A 0 0 1 1 1 1 0 0 5 4

DCR A 0 0 1 1 1 1 0 1 5 4

INR M 0 0 1 1 0 1 0 0 10 10

DCR M 0 0 1 1 0 1 0 1 10 10

ADD r 1 0 0 0 0 5 5 5 4 4

ADC r 1 0 0 0 1 5 5 5 4 4

5UB r 1 0 0 1 0 5 5 5 4 4

5BB r 1 0 0 1 1 5 5 5 4 4

AND r 1 0 1 0 0 5 5 5 4 4

XRA r 1 0 1 0 1 5 5 5 4 4

ORA r 1 0 1 1 0 5 5 5 4 4

CMPr 1 0 1 1 1 5 5 5 4 4

ADD M 1 0 0 0 0 1 1 0 7 7

ADC M 1 0 0 0 1 1 1 0 7 7

5UB M 1 0 0 1 0 1 I 0 7 7

5BB M 1 0 0 1 1 1 1 0 7 7

AND M 1 0 1 0 0 1 1 0 7 7

XRA M 1 0 1 0 1 1 1 0 7 7

ORA M 1 0 1 1 0 1 1 0 7 7

CMP M 1 0 1 1 1 1 1 0 7 7

ADI 1 1 0 0 0 1 I 0 7 7

ACI 1 1 0 0 I 1 I 0 7 7

5UI 1 1 0 1 0 1 1 0 7 7

5BI 1 1 0 1 1 1 1 0 7 7

ANI 1 1 1 0 0 1 1 0 7 7

XRI 1 1 1 0 I 1 I 0 7 7

ORI 1 1 1 1 0 1 I 0 7 7

CPI 1 1 1 1 1 1 1 0 7 7

RLC 0 0 0 0 0 1 1 1 4 4

RRC 0 0 0 0 I 1 1 1 4 4

RAL 0 0 0 1 0 1 1 1 4 4

RAR 0 0 0 1 1 1 1 1 4 4

IMP 1 1 0 0 0 0 1 1 10 10

JC 1 1 0 1 1 0 1 0 10 7/10

INC 1 1 0 1 0 0 1 0 10 7/10

IZ 1 1 0 0 1 0 1 0 10 7/10

INZ 1 1 0 0 0 0 1 0 10 7/10

IP 1 1 1 1 0 0 1 0 10 7/10

1M 1 1 1 1 1 0 I 0 10 7/10

IPE 1 1 1 0 1 0 1 0 10 7/10

IPO 1 1 1 0 0 0 1 0 10 7/10
DCX B 0 0 0 0 1 0 1 1 5 6
DCX D 0 0 0 1 1 0 1 1 5 6

DCX H 0 0 1 0 1 0 1 1 5 6

DCX 5P 0 0 1 1 1 0 1 1 5 6

ALL MNEMONICS©7974, 7975, 7976, 7977 INTEL CORPORA TfON A-3

Appendix A. Instruction Summary

NUMBER OF TIME PERIODS

MNEMONIC D7 D6 DS D4 D3 D2 Dl DO
8080 8085

CMA 0 0 1 0 1 1 1 1 4 4

STC 0 0 1 1 0 1 1 1 4 4

CMC 0 0 1 1 1 1 1 1 4 4

DAA 0 0 1 0 0 1 1 1 4 4

SHLD 0 0 1 0 0 0 1 0 16 16

LHLD 0 0 1 0 1 0 1 0 16 16

RIM 0 0 1 0 0 0 0 0 - 4
SIM 0 0 1 1 0 0 0 0 - 4

EI 1 1 1 1 1 0 1 1 4 4

DI 1 1 1 1 0 0 1 1 4 4

NOP 0 0 0 0 0 0 0 0 4 4 _.

A LL MNEMONICS ©1974, 1975, 1976, 1977 INTEL CORPORA nON

A4

Appendix A. Instrl1ction Sl1mmary

The following is a summary of the instruction set:

8080/85 CPU INSTRUCTIONS IN OPERATION CODE SEQUENCE

~If' OP OP
CODE MNEMONIC CODI'. MN EMON IC CODE MNEMONIC

OP
CODE

r---
00 NOP 2B DCX H 56 MOV D,M 81

CI LXI B,DI6 2C INR L 57 MOV D,A 82

02 ST A X B 2D DCR L 58 MOV E,B 83

03 INX B 2E MVI L,D8 59 MOV E,C 84

04 INR B 2f CMA 'iA MOV E,D 85

05 DCR B 30 SIM 'iB MOV E,E 86

06 MVI B,D8 31 LXI Sf'D 16 5C MOV E,H 87

07 RIC 32 5TA Ad.- 5D MOV E,I 88

08 33 INX SP 5E MOV I'.,M 89

09 DAD B 34 INR M Sf MOV E,A 8A

OA IDAXB 35 DCR M 60 MOV H,B 88

OB DCX B 36 MVI M ,Ilk 61 MOV H,C 8e

OC INR c: 37 STC 62 MOV H,D 8D

OD DCR C 38 63 MOV H,E 81::

01'. MVI CD8 39 DAD SP 64 MOV H,H 8F

Of' RRC 3A LDA Ad, 65 MOV H,L ,0
10 38 DCX SP 66 MOV H,M 91

I I LXI D,D 16 3C INR A 67 MOV H,A 92

12 STAX D 3D DCR A 68 MOV L,B 93

13 INX D 3E MVI A ,[)8 G9 MOV L,C 94

14 INR [) 3f' CMC 6A MOV L,D 95

15 DCR D 10 MOV B,B 6B MOV L,E 96

16 MVI D,D8 ·11 MOV B,C 6C MOV L,H 97

17 RAI 12 MOV B ,I) (,D MOV L,L 98

18 ·13 MOV B,I:: 6l MOV L,M 99

19 DAD D H MOV 13,11 (,1 MOV L ,A 9A

IA LDAX D 4') .\10 V B,L 70 MOV .\1,B 913

IB DCX D 46 MOV B.M C I MOV M,C 9C

IC INR E 47 MOV 8,A 72 ,\10V M,D 9D

II) DRC E 48 MOV C,B 73 MOV M,E. 9E

If MVI tc,D8 49 MOV C,C 74 MOV M,H 9F

If RAR 4A MOV C,D 7'J MOV M,L AD

20 RIM 18 MOV C,r-: 76 HLT Al

21 LXI II ,n I 6 4C MOV C,1i 77 MOV M,A A2

22 SHLD Ad, 4D MOV C,L 78 ."10 V A,B A3

23 INX II ·11:: MOV C,M 79 MOV A,C A4

24 INR H 1f' MOV C,A 7A MOV A,IJ AS

2) DCR H SO MOV D,S 78 MOV A ,I: A6

26 MVI II,D8 S I MOV D,C 7C MOV A,H A7

27 DAA 52 MOV D,D 7D MOV A ,L A8

28 53 MOV D,E IE MOV A ,111 A9

29 DAD H 54 MOV D,H 7F MOV A,A AA

2A LHLD Adr 'is MOV D,L 80 ADD B AB
--

D8 = constant, 0' loglcdl/al ithmctic cxpre"ion that evall1ates 016

to an 8 bit data quantity.
Adr = 16-bit address

Of' OP
MNEMONIC COD I:: MNI::MONIC CODE MNEMONIC

ADD C AC XRA H D7 RST 2

ADD D AD XRA L D8 RC

ADD E AE XRA M D9

ADD H AF XRA A DA IC Adr

ADD L BO ORA B DB IN D8

ADD M 81 ORA C DC CC Ad.-

ADD A B2 ORA D DD

ADC B 83 ORA E DE SBI D8

ADC C 84 ORA II DF RST 3

ADC D 85 ORA L EO RPO

ADC E B6 ORA M EI POP H

ADC H B7 ORA A 1'2 IPO Ad r

ADC l_ 138 eMf' B E3 XTHL

ADC M 89 eMP C E4 CPO Ad.-

ADC A 8A CM]> D E5 I)USH H

SUB B 8B eM!> E [6 ANI D8

SUB C BC eMP H E7 RST 4

SUB D IlD eMf' L 1::8 RPI'.

SUB E 8E CMf' M E9 I'CHL

SU8 II BF CMf' A LA I PE Ad,

SUB l. CO RN! EB XCHG

SUB M CI POP 8 LC ePE Adl

SU13 A C2 IN!' Ad.- [0

S8B B Cl IMP Ad, EE XRI D8

S813 C C4 eN! Ad, [f RST 5

SBB D C5 PUSH B FO RP

SBB L (:Ii ADI D8 Fl POP PSW

S813 H C7 R5T 0 12 IP Ad,

5B13 L C8 R! Fe 3 DI

S813 1\1 C9 REI Adr 14 CP Adr

SBB A CA II 15 PUSH PSW

ANA 13 CB F6 ORI D8

ANA C CC Cl Ad, I' 7 RST 6

ANA D CD CALL Ad, F8 RM

ANA E CI'. ACI D8 F9 SPH L

ANA H CF R5T I fA 1M Adr

ANA L 00 RNC FB U

ANA M j)1 POP D FC eM Ad,

ANA A D2 jNC Ad r fD

XRA B D3 OUT D8 IE el'l D8

XRA C D4 CNC Adr F f' RST 7

XRA D DS PUSH D

XRA [D6 SUI D8

constant, or logical/dfithmctic cxplc,sion that evall1ates

to a 16 bit data quantity

ALL MNEMONICS © 7974,7975,7976, 7977 INTEL CORPORATION
A-5

Appendix A. Instruction Summary

Instructioll Set Guide

/\\)1)

.!\DC

SUB

SBB

AN/\

XRA
OR/,

eMf'

RlC;M S

RLC RAL RRC
RAR CMA DAA

INR} DCR RECM g

ADI

ACI

SUI

5131
Dg

AN I

XRI

CRI I
(PI)

1+,cc~ULAl6R[--FLACs=:Jf~~ CMC HIC;II __ ~_()_W_~
MOV RECMg,RlGM g. L __ .-_B- __ u+ ____ ._C =:Jg~S} REG I G SPH1,_~CK : POINl ER 1-:]

I C---~---.L---~--~XCL1(- PCl

J
1L--1 PROC;RA~UNTLR f.--RSI

LXI REG\(i,D IGi- .- H r----- C- -~/ I J __ t ,_._
L..___ -- ,-- J T

I J~1P CALL RtT

I JC JNCl CC CNC RC RNCl

r
XTHL-l)1 JNI CI CNl A R! RNI

~ ______ U~ll)1 -__ ; __ 1_ :~E :~~JI ,\ 1(, ~~E ~~~ 1 (, ~;F ~~oJ
r----~, STHD J AIG IN Ps OUT Ps CONTROL

LDAX'l BC DE ~~ ST Axf ' INPUT OUTPUT INSTRUCTIONS
MEMORY

PORTS I PORTS RST

LDA} I NOP
S T A ;\ I G , i I H U

~--------LL rUSH \ ~:IM} MVI DS

MOV REGMS,RLGM S

CODt

Dg

A16
Ps
REG IG
DIG

STACK POP .f B,D,H,P5W
RIM

SOSS ON L Y

MEANING

The operdnd nld'~ ,pcci'y olle of the g-bit rcgi<,lcr~ A,B,C,D,E,H, or Lor M (a n1l'm"IY

refcrcilce via the I G-bit dddrc~,> in the Hand L regi,tcr,). The MOV in<;lruction, which

cdl\<, fur two operdllLb, can ,>pccify M lUI' only onc of it<, upcr,!nd,>.

De,>igndte'> Sbit immed ate operand.

De,>igndtc'> a IS-bit add·c,>,.

Dc~igndte" Jtl S-bit pm numbcl-.

Designdtcs d ;G-bit regi,ter Pdir (B&C,D&E,H&L,or SP).

De,>ignJtC'" d 16 -bit imrledidte operdnd.

ALL MNEMONICS © 7974, 7975, 7976, 7977 INTEL CORPORA TlON

A-6

APPENDIIX B. ASSEMBLER DIRECTIVE SUMMARY

A,>sembler directive'> arc summdri/ed alphdbeticdlly in thi, appendix. The following tClm, Jre u'>cd to dcscribe

the contents of directive field,>.

NOTATION

Term

Exprc"ion

List

Name

Null

Opldb

ParJ meter

String

Text

Interpretation

Numerical exprcs,>ion evaluated during d,;,embly; mu,t eVdluJte

to 8 or 16 bits depending on directive i"ued.

Seric'> of symbolic vdlue, or cxpres,>ioll'>, sepdrated by comma'>.

Symbol nJme termindted by a ,pace.

Field mu'>t be empty or dn errol re,ulh.

Optiondl Idbel; must be terminJted by a colon.

Dummy pJrameters arc ,ymbul, holding the plcice of actual

pdrdmcter'> (,>ymbolic values or cxpre,,>ioll'» .,pecified elsewhere

in the progrdm.

Series of any ASCII chJrJcter'>, sUIToundcd by single quute mJrks.

Single quote within string is ,>hown d'> two con'>ecutivc '>ingle quutc,>.

Series of ASCII character'>.

Mdcro definitions dlld calls dllow the U'>lO of the '>peciJI characters li,ted below.

Character

&

<)

FUl7clio 17

Ampers;iIld. Used to concatendte '>ymbol,.

Angle bracket,>. Used to delimit text, ,uch d'> hb, thJt contdin

other delimiter,>.

Double ,>emicolon. U"cd befole a cummcnt in d mdcro definition

to prevent inciu,>ion of the comment in edch Illdcro l'xpdmi()ll.

Excldmdtion puint (e.,cape chal Jcter). Pldccd hefore .I delimitel

to be pas,cd cl'> a literal in .111 actual pdl"dmetel. 10 pa" .I litn,lI

excldmdtion point, i'>'>lle 'II.'

Pel·cent ,ign. Precede, dctlldl pdldmetel' to be l'valudtcd imn1l'dic!tcly

when the macro i'> edled.

ALL MNEMONICS © 7974, 7975, 7976, 7977 INTEL CORPORI1T10N

8-1

Appendix B. Assembler Directive Summary

SUMMARY OF DIRECTIVES

FORMAT

Label Opcode Operand(s)

oplab: DB exp(s) or string(s)

oplab: DS expression

oplab: DW exp(s) or str ng(,)

oplab: ELSE null

opldb: END c xpre,>,ion

oplab: ENDIF null

EQU

opldb: IF expres'>lon

oplab: ORG

ndme SET exprC,»loll

MACRO DIRECTIVES

FORMAT

Label Opcode Operund(s)

null ENDM null

oplab: EXITM null

oplab: IRP dummy par.lm,<list>

FUNCTION

Define 8-bit data bytc(s). Expressions must eVdluatc

to olle byte.

Re')erve data storage area of specified length.

Define 16-bit data word(s). Strings limited to 1-2

characters.

Conditional assembly. Code between ELSE and

ENDIF directive') is assembled if expression in IF

clau,e i, F/,LSE. (See IF.)

Terminate ,J'>scmbler pa'>'>. Mu'>t be last ,tatement of

program. Program execution starts at 'exp,' if present;

othcrwi')e, dt locdtion O.

Termindte conditional ds,embly block.

Define ,>ymhol 'n,lme' with value 'exp.' Symbol i'> not

rcdefindhlc.

A.,,>cmhle code hetween IF and following ELSE or

ENDIF dircLlivc if 'exp' i'> true.

Set locatioll c()unter to 'expre,>,>ion.'

Defillc .,ymbol 'n.lme' with v,ilue 'cxprc'>Si()n.'

Svmbol Cd'l be rL'det illL'l1.

FUNCTION

Terminate macro definition.

Alternate terminator of mdcro definition. (See ENDM.)

Repeat instruction '>equence, substituting one character

form 'list' for 'dummy param' in each iteration.

ALL MNEMONIC5©7974, 7975, 1976, 7977 INTEL CORPORA TlON

8-2

FORMAT

Label Opcode

oplab: IRPC

null LOCAL

name MACRO

oplab: REPT

RELOCATION DIRECTIVES

FORMAT

Label Opcode

oplab: ASEG

oplab: CSEG

oplab: DSEG

oplab: EXTRN

oplab: NAME

oplab: PUBLIC

oplab: STKLN

Operand(s)

dummy param,text

label name (s)

dummy param(s)

expression

Operand(s)

null

bou ndary specification

boundary specification

name(s)

module-name

name(s)

expression

Appendix B. Assembler Directive Summary

FUNCTION

Repeat instruction sequence, ~ubstituting one
character from 'text' for 'dummy param' in each

iteration.

Specify label(s) in macro definition to have local

scope.

Define macro 'name' and dummy parameter(s) to be

used in macro definition.

Repeat REPT block 'expression' times.

FUNCTION

Assemble subsequent instructions and data in the

absolute mode.

Assemble subsequent instructions and data in the

relocatable mode using the code location counter.

Assemble subsequent instructions and data in the
relocatable mode using the data location counter.

Identify symbols used in this program module but

defined in a different module.

Assigns a name to the program module.

Identify symbols defined in this module that are to

be available to other modules.

Specify the number of bytes to be reserved for the

stack for this module.

ALL MNEMONICS©7974, 7975, 7976, 7977 INTEL CORPORA TlON

8-3

APPENDIX C. ASCII CHARACTER SET

ASCII CODES

The 8080 and 8085 use the ,>even-tit ASCII code, with the high-order eighth bit
(parity bit) alwJY, rc'>et.

GRAPHIC OR ASCII GRAPHIC OR ASCII GRAPHIC OR ASCII
CONTROL (HEXADECIMAL) CONTROL (HEXADECIMAL) CONTROL (HEXADECIMAL)

NUL 00 + 2B V 56
SOH 0 1 2C W 57
STX 02 2D X 58
ETX 03 2E Y 59
EOT 04 2F Z 5A
ENO 05 0 30 [5B
ACK 06 31 5C
BEL 07 2 32 5D
BS 08 3 33 1\ (11 5E
HT 09 4 34 - (~I 5F
LF DA 5 35 60
VT DB 6 36 a 61
FF DC 7 37 iJ 62
CR OD 8 38 c 63
SO DE 9 39 d 64
SI OF 3A f' 65
DLE 10 38 66
DCl (X-ON) 11 '- 3C lj 67
DC2 (TAPE I 12 3D il 68
DC3 (X-OFFI 13 > 3E 69
DC4 C~A-PB 1,1 3F 6A
NAK 15 Cci~ 40 k 6B
SYN lG A 41 6C
ETB 17 B 42 rT1 6D
CAN 18 C 43 II 6E
EM 1 ~J D 44 CJ 6F
SU B lA E 45 p 70
ESC Hl F 46 q 71
FS lC G 47 72
GS 10 H 48 73
RS 1 E 49 74
US 1 F J 4A II 75
SP 20 K 4B v 76

21 L 4C IN 77

22 M 40 x 78
::::; 23 N 4E Y 79
S 24 0 4F 7A
Cl,b 2:) P 50 7B
& 26 0 51 7C

27 R 52 I (AL T MODEl 70
28 S 53 7E
29 T 54 DEL (RUB OUTI n
2A U 55

C-1

AIPPENDIX D.

BINARY -DECIMAL-HEXA.DECIMAL CONVERSION TABLES.

D·'

Appendix D. Binary·Decimal·Hexadecimal Conversion Tal)les

POWERS OF TWO

1 0 10
2 1 0.5
4 2 0.25
8 3 0.125

16 4 0.062 5
32 5 0.031 25
64 6 0.015 625

128 0.007 812 5

256
512

1 024
2 048

8 0.003 906 25
9 0001 953 125

10 0000 976 562 5
11 0000 488 281 25

4 096 12 0000 244 140 625
8 192 13 0000 122 070 312 5

16)84 14 0000 061 035 156 25
32768150000030517578125

65 536 16 0000 015 258 789 062 5
131 072 17 0000 007 629 394 531 25
262 144 18 0000 003 814 697 265 625
524288 190000001907348632812 5

1 048 576 20 0000 000 953 674 316 406 25
2 097 152 21 0000 000 476 837 158 203 125
4 194 304 22 0000 000 238 418 579 101 562 5
8 388 608 23 0000 000 119 209 289 550 781 25

16 777 216 24 0000 000 059 604 644 775 390 625
33 554 432 25 0000 000 029 802 322 387 695 312 5
67 108 864 26 0000 000 014 901 161 193 847 656 25

134 217 728 27 0000 000 007 450 580 596 923 828 125

268 435 456 28 0000 000 003 725 :290 298 461 914 062 5
536 870 912 29 0000 000 001 862 E45 149 230 957 031 25

1 073 741 824 30 0000 000 000 931 "22 574 615 478 515 625
2 147 483 648 31 0000 000 000 465 E61 287 307 739 257 812 5

4 294 967 296 32 0000 000 000 232 EJO 643 653 869 628 906 25
8 589 934 592 33 0000 000 000 116 ~ 15 321 826 934 814 453 12:)

17179869184340000000000058 <07 66091346740722656;' 5
34 359 738 368 35 0000 000 000 029 103 830 456 733 703 613 28' 25

68 719 476 736 36 0000 000 000 014 :,51 915 228 366 851 806 640 625
137 438 953 472 37 0000 000 000 007 ?75 957 614 183 425 903 320 312 5
274 877 906 944 38 0000 000 000 003 637 978 807 091 712 951 660 156 25
549 755 813 888 39 0000 000 000 001 818 989 403 545 856 475 830 078 125

1 099 511 627 776 40 0000 000 000 000 909 494 701 772 928 237 915 039 062 5
2 199 023 255 :'52 41 0000 000 000 000 "5.4 747 350 886 464 118 95" 519 531 25
4 398046511104420000000000000;>27373675443232059478 759 765625
8 796 093 022 208 43 0000 000 000 000 ·13 686 837 721 616 029 739 379 882 812 5

17592186044416440000 000 000 000 056 843 418 860 808014869689941406 25
35 184 372 088 832 45 0000 000 000 000 028 421 709 430 404 007 43 d 844 970 703 125
70 368 744 177 664 46 0000 000 000 000 014 210 854 715 202 003 717 422 485 351 562 5

140 737 488 355 328 47 0 000 000 000 000 n07 105 427 357 601 001 85H 711 242 675 781 25

281 474 976 710 656 48 0000 000 000 000 n03 552 713 678 800 500 929 355 621 337 890 625
562 949 953 471 312 49 0000 000 000 000 001 776 356 839 400 250 4f>" 677 810 668 945 312 5

1 125 899 906 842 674 50 0000 000 000 000 ODD 888 178 419 700 125 23:2 338 905 334 472 656 25
7 251 799 813685 248 51 0000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 j28 125

4 503 599 627 370 496 52 0000 000 000 000 1)00 222 044 604 925 031 3013 084 726 333 618 164 062 5
9 007 199 254 740 992 53 0000 000 000 000 1)00 111 022 302 462 515 654 042 363 166 809 082 031 25

18 014 398 509 481 984 54 0000 000 000 000 1)00 055 511 151 231 257 827 021 181 583 404 541 015 625
36 028 797 018 963 968 55 0 000 000 000 000 ')00 027 755 575 615 628 913 510 590 791 702 270 507 812 5

72 057 594 037 927 936 56 0000 000 000 000 ')00 013 877 787 807 814 456 755 295 3% 851 135 253 906 25
144 115 188 075 855 872 57 0000 000 000 000 ')00 006 938 893 903 907 228 377 64 7 697 925 567 676 950 125
288 230 376 151 711 744 58 0000 000 000 000 ')00 003 469 446 951 953 614 188 823 848 962 783 813 476 562 5
576 460 752 303 423 488 59 0000 000 000 000 ')00 ')01 734 723 475 976 80 7 094 411 924 481 391 906 738 281 25

1 152 921 504 606 846 976 60 0000 000 000 000)00 000 867 361 737 988 403 547 205 962 240 695 953 369 140 625
2 305 843 009 213 693 952 61 0000 000 000 000)00 000 433 680 868 994 201 773 602 981 120 347 976 684 570 312 5
4 611 686 018 427 387 904 67 0000 000 000 000)00 000 216 840 434 497 100886801 490 560 173 988 342 285 156 25
9 223 372 036 854 775 808 63 0000 000 000 000)00 000 108 420 217 248 550443 400 745 280086 994 171 142 578 125

D-2

Appendix D. Binary-Decimal-Hexadecimal Conversion Tables

POWERS OF 16 (IN BASE 10)

16n
n 16"

1 0 0.10000 00000 00000 00000 X 10

16 1 0.62500 00000 00000 00000 X 10- 1

256 2 0.39062 50000 00000 00000 X 10-2

4 096 3 0.24414 06250 00000 00000 X 10-3

65 536 4 0.15258 78906 25000 00000 x 10-4

048 576 5 0.95367 43164 06250 00000 x 10-1>

16 777 216 6 0.59604 64477 53906 25000 x 10- 7

268 435 456 7 0.37252 90298 46191 40625 x 10-8

4 294 967 296 8 0.23283 06436 53869 62891 x 10-9

68 719 476 736 9 0.14551 91b22 83668 51807 x 10- 10

099 511 627 776 10 090949 47017 72928 23792 x 10- 12

17 592 186 044 416 11 0.56843 41886 08080 14.870 x 10- 13

281 474 976 710 656 12 0.35527 13678 80050 09294 x 10- 14

4 503 599 627 370 496 13 0.22204 46049 25031 30808 x 10- IS

72 057 594 037 927 936 14 o 13877 78780 78144 56755 x 10- 11>

1 152 921 504 606 846 976 15 0.86736 17379 88403 54721 x 10- 11\

POWERS OF 10 (IN BASE 16)

10
n

n lO- n

0 1.0000 0000 0000 0000

A 1 0.1999 9999 9999 999A
64 2 0.28F5 C28F 5C28 F5C3 16 1

x

3E8 3 0.4189 374B C6A7 EF9E x 16 2

2710 4 0.680E: 8BAC 710C B296 x 16 -J

1 86AO 5 O.A 7C~) AC47 1 B47 8423 x 16 4

F 4240 6 0.10C6 F7AO B5EO 8037 x 16 -4

98 9680 7 0_lAO? F29A BCAF 4858 x 16 -5

5F5 El00 8 0.2AF~: lDC4 6118 73BF x 16 -/,

3B9A CAOO 9 0.44B8 2FAO 9B5A 52CC x 16 -,

2 540B E400 10 0.60F~. 7F67 SE F6 EAOF x 16 -1\

17 4876 E800 11 O.AFEB FFOB CB24 AAFF x 16 -9

E8 04A5 1000 12 0.1197 9981 20EA 1119 x 16 -9

918 4E72 AooO 13 0.lC25 C268 4976 81C2 x 16 -10

5AF3 107A 4000 14 0.2009 3700 4257 3604 x 16 -I 1

3 807E A4C6 8000 15 0.480E BElB 9058 5660 x 16 - 12

23 8652 6FCl 0000 16 0.734A CA5F 6226 FOAE x 16 - J3

163 4578 508A 0000 17 0.B877 AA32 36A4 B449 x 16 -14

OEO B6B3 A764 0000 18 0.1272 5001 0243 ABAl x 16 - 14

8AC7 2304 89E8 0000 19 0.1083 C94F B602 AC35 x 16 -IS

0-3

Appendix D. Binary·Decimal·Hexadecimal Conversion Tabl,~s

HEXADECIMAL-DECIMAL INTEGER CONVERSION

The table below provides for direct conversions between hexadecimal integers in the range O·FFF and decimal integers in the
range 0-4095. For conversion of larger integers, the table values may be added to the following figures:

Hexadecimal !Decimal Hexadecimal Decimal

01000 4096 20000 131072

02000 8192 30000 196608
03000 12288 40000 262 144

04000 16384 50000 327680
05000 20480 60000 393216

06000 24576 70000 458 752

07000 28672 80000 524288

08000 32768 90000 589824

09000 36864 AO 000 655360

OA 000 40960 BO 000 720896

OB 000 45056 CO 000 786432

OC 000 49152 DO 000 851 968

00000 53248 EO 000 917 504

OE 000 57344 FO 000 983040

OF 000 61440 100000 1 048576

10000 65536 200000 2097 152

11000 69632 300000 3 145728

12000 73728 400000 4 194304

13000 77 824 500000 5242880

14000 81 920 600000 6291 456

15000 86016 700000 7340032

16000 90112 800000 8388608
17000 94208 900000 9437184

18000 98304 AOO 000 10485760
19000 102400 BOO 000 11 534336
1A 000 106496 COO 000 12582912
1B 000 110592 000000 13631488
1C 000 114688 EOO 000 14680064
10000 118784 FOO 000 15728640
1 E 000 122 880 1 000000 16777 216
1 F 000 126976 2000000 33554432

0 1 2 3 4 5 6 7 8 9 A B C 0 E F

000 0000 0001 0002 0003 0004 0005 0006 0007 0008 0009 0010 0011 0012 0013 0014 0015

010 0016 0017 0018 0019 0020 0021 0022 0023 0024 OOni 0026 0027 0028 0029 0030 0031
020 0032 0033 0034 0035 0036 0037 0038 0039 0040 0041 0042 0043 0044 0045 0046 0047
030 0048 0049 0050 0051 0052 0053 0054 0055 0056 0057 0058 0059 0060 0061 0062 0063

040 0064 0065 0066 0067 0068 0069 0070 0071 0072 0073 0074 0075 0076 0077 0078 0079

050 0080 0081 0082 0083 0084 0085 0086 0087 0088 008H 0090 0091 0092 0093 0094 0095

060 0096 0097 0098 0099 0100 0101 0102 0103 0104 010!; 0106 0107 0108 0109 0110 0111

070 0112 0113 0114 0115 0116 0117 0118 0119 0120 012'1 0122 0123 0124 0125 0126 0127

080 0128 0129 0130 0131 0132 0133 0134 0135 0136 0137 0138 0139 0140 0141 0142 0143

090 0144 0145 0146 0147 0148 0149 0150 0151 0152 0153 0154 0155 0156 0157 0158 0159

OAO 0160 0161 0162 0163 0164 0165 0166 0167 0168 016B 0170 0171 0172 0173 0174 0175

OBO 0176 0177 0178 0179 0180 0181 0182 0183 0184 0185 0186 0187 0188 0189 0190 0191

OCO 0192 0193 0194 0195 0196 0197 0198 0199 0200 0201 0202 0203 0204 0205 0206 0207

000 0208 0209 0210 0211 0212 0213 0214 0215 0216 0217 0218 0219 0220 0221 0222 0223

OEO 0224 0225 0226 0227 0228 0229 0230 0231 0232 0233 0234 0235 0236 0237 0238 0239

OFO 0240 0241 0242 0243 0244 0245 0246 0247 0248 0249 0250 0251 0252 0253 0254 0255

0-4

Appendix D. Binary-Decimal-Hexadecimal Conversion Tables

HEXADECIMAL-DECIMAL INTEGER CONVERSION (Cant'd)

0 1 2 3 4 5 6 7 8 9 A B C 0 E F

100 0256 0257 0258 0259 0260 0261 0262 0263 0264 0265 02Ei6 0267 0268 0269 0270 0271
110 0272 0273 0274 0275 0276 0277 0278 0279 0280 0281 0282 0283 0284 0285 0286 0287
120 0288 0289 0290 0291 0292 0293 0294 0295 0296 0297 0298 0299 0300 0301 0302 0303
130 0304 0305 0306 0307 0308 0309 0310 0311 0312 0313 0314 0315 0316 0317 0318 0319

140 0320 0321 0322 0323 0324 0325 0326 0327 0328 0329 033:0 0331 0331 0333 0334 0335
150 0336 0337 0338 0339 0340 0341 0342 0343 0344 0345 0346 0347 0348 0349 0350 0351
160 0352 0353 0354 0355 0356 0357 0358 0359 0360 0361 036,2 0363 0364 0365 0366 0367
170 0368 0369 0370 0371 0372 0373 0374 0375 0376 0377 0378 0379 0380 0381 0382 0383

180 0384 0385 0386 0387 0381:l 0389 0390 0391 0392 0393 0394 0395 0396 0397 0398 0399
190 0400 0401 0402 0403 0404 0405 0406 0407 0408 0409 0410 0411 0412 0413 0414 0415
lAO 0416 0417 0418 0419 0420 0421 0422 0423 0424 0425 0426 0427 0428 0429 0430 0431
180 0432 0433 0434 0435 0436 0437 0438 0439 0440 0441 0442 0443 0444 0445 0446 0447

lCO 0448 0449 0450 0451 0452 0453 0454 0455 0456 0457 0458 0459 0460 0461 0462 0463
100 0464 0465 0466 0467 0468 0469 0470 0471 0472 0473 0474 0475 0476 0477 0478 0479
lEO 0480 0481 0482 0483 0484 0485 0486 0487 0488 0489 0490 0491 0492 0493 0494 0495
1 FO 0496 0497 0498 0499 0500 0501 0502 0503 0504 0505 0506 050'/ 0508 0509 0510 0511

200 0512 0513 0514 0515 0516 0517 0518 0519 0520 0521 0522 0523 0524 0525 0526 0527
210 0528 0529 0530 0531 0532 0533 0534 0535 0536 0537 0538 0539 0540 0541 0542 0543
220 0544 0545 0546 0547 0548 0549 0550 0551 0552 0553 0554 0555 0556 0557 0558 0559
230 0560 0561 0562 0563 0564 0565 0566 0567 0568 0569 0570 0571 0572 0573 0574 0575

240 0576 0577 0578 0579 0580 0581 0582 0583 0584 0585 0586 0587 0588 0589 0590 0591
250 0592 0593 0594 0595 0596 0597 0598 0599 0600 0601 0602 0603 0604 0605 0606 0607
260 0608 0609 0610 0611 0612 0613 0614 0615 0616 0617 0618 0619 0620 0621 0622 0623
270 0624 0625 0626 0627 0628 0629 0630 0631 0632 0633 0634 0635 0636 0637 0638 0639

280 0640 0641 0642 0643 0644 0645 0646 0647 0648 0649 0650 0651 0652 0653 0654 0655
290 0656 0657 0658 0659 0660 0661 0662 0663 0664 0665 0666 0667 0668 0669 0670 0671

·2AO 0672 0673 0674 0675 0676 0677 0678 0679 0680 0681 0682 0683 0684 0685 0686 0687 ! ::: 0688 0689 0690 0691 0692 0693 0694 0695 0696 0697 0698 0699 0700 0701 0702 0703

0704 0705 0706 0707 0708 0709 0710 0711 0712 0713 0714 0715 0716 0717 0718 0719
200 0720 0721 0722 0723 0724 0725 0726 0727 0728 0729 0730 0731 0732 0733 0734 0735
2EO 0736 0737 0738 0739 0740 0741 0742 0743 0744 0745 0746 0747 0748 0749 0750 0751
2FO 0752 0753 0754 0755 0756 0757 0758 0759 0760 0761 076,2 0763 0764 0765 0766 0767

300 0768 0769 0770 0771 0772 0773 0774 0775 0776 0777 0778 0779 0780 0781 0782 0783
310 0784 0785 0786 0787 0788 0789 0790 0791 0792 0793 0794 0795 0796 0797 0798 0799
320 0800 0301 0802 0803 0804 0805 0806 0807 0808 0809 0810 0811 0812 0813 0814 0815
330 0816 0817 0818 0819 0820 0821 0822 0823 0824 0825 0826 0827 0828 0829 0830 0831

340 0832 0833 0834 0835 0836 0837 0838 0839 0840 0841 0842 0843 0844 0845 0846 0847
350 0848 0849 0850 0851 0852 0853 0854 0855 0856 0857 0858 0859 0860 0861 0862 0863
360 0864 0865 0866 0867 0868 0869 0870 0871 0872 0873 0874 0875 0876 0877 0878 0879
370 0880 0881 0882 0883 0884 0885 0886 0887 0888 0889 0890 0891 0892 0893 0894 0895

380 0896 0897 0898 0899 0900 0901 0902 0903 0904 0905 0906 0907 0908 0909 0910 0911
390 0212 0913 0914 0915 0916 0917 0918 0919 0920 0921 092'2 0923 0924 0925 0926 0927

,3AO 0928 0929 0930 0931 0932 0933 0934 0935 0936 0937 0938 0939 0940 0941 0942 0943
380 0944 0945 0946 0947 0948 0949 0950 0951 0952 0953 0954 0955 0956 0957 0958 0959

3CO 0960 0961 0962 0963 0964 0965 0966 0967 0968 0969 097'0 0971 0972 0973 0974 0975
300 0976 0977 0978 0979 0980 0981 0982 0983 0984 0985 0986 0987 0988 0989 0990 0991

t 3EO 0992 0993 0994 0995 0996 0997 0998 0999 1000 1001 1002 1003 1004 1005 1006 1007
3FO 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023

D-5

Appendix D_ Binary-Decimal-Hexadecimal Conversion Tables

HEXADECIMAL-DEC MAL I~JTEGER CONVERSION (Cant'd)

, ----------~-

0 1 2 3 4 5 6 7 8 9 A B C D E F

400 1024 1025 1026 1027 1028 1028 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
410 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
420 1056 1057 1058 1059 1060 1061 1062 1063 1064 106~) 1066 1067 1068 1069 1070 1071
430 1072 1073 1074 1075 1076 1077 1078 1079 1080 10811 1082 1083 1084 1085 1086 1087

440 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
450 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
460 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
470 1136 1137 1138 1139 1140 1141 1142 1143 1144 114!; 1146 1147 1148 1149 1150 1151

480 1152 1153 1154 1155 1156 1157 1158 1159 1160 116-1 1162 1163 1164 1165 1166 1167
490 1168 1169 1170 1171 1172 1173 1174 1175 1176 1117 1178 1179 1180 1181 1182 1183
4AO 1184 1185 1186 1187 1188 1189 1190 1191 1192 119:3 1194 1195 1196 1197 1198 1199
480 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215

4CO 1216 1217 1218 1219 1220 1221 1222 1223 1224 122!) 1226 1227 1228 1229 1230 1231
4DO 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
4EO 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
4FO 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279

500 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
510 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
520 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
530 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343

540 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
550 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
560 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
570 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407

580 1408 1409 1410 1411 1412 1413 i414 1415 1416 1417 1418 1419 1420 1421 1422 1423
590 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
5AO 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
580 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471

5CO 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
5DO 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
5EO 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
5FO 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535

600 1536 1537 1538 1539 1540 1541 154L 1543 1544 1545 1546 1547 1548 1549 1550 1551
610 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
620 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
630 1584 1585 1586 1587 1588 1589 1590 1591 1592 15913 1594 1595 1596 1597 1598 1599

640 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
650 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
660 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
670 1648 1649 1650 1651 1652 1653 1654 1655 1656 16~i7 1658 1659 1660 1661 1662 1663

680 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
690 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
6AO 1696 1697 1698 1699 1 700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
680 1712 1713 1714 1715 1716 1717 1:718 1719 1720 1721 1722 1723 1724 1725 1726 1727

6CO 1728 1729 1730 1731 1732 1733 1734 1735 1736 17:17 1738 1739 1740 1741 1742 1743
600 1744 1745 1746 1747 1748 1749 1750 1751 1752 17!)3 1754 1755 1756 1757 1758 1759
6EO 1760 1761 1762 1763 1764 1765 1766 1767 1768 171)9 1770 1771 1772 1773 1774 1775
6FO 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791

D-6

0 1

700 1792 1793
7110 1808 1809
no 1824 1825
7:10 1840 1841

740 1856 1857
7!)() 1872 1873
7ElO 1888 1889
no 1904 1905

7BO 1920 1921
790 1936 1937
7AO 1952 1953
7BO 1968 1969

7eO 1984 1985
mo 2000 2001
7EO 2016 2017
71=0 2032 2033

800 2048 2049
8'10 2064 2065
820 2080 2081
8:30 2096 2097

840 2112 2113
8!50 2128 2129
ali 0 2144 2145
870 2160 2161

880 2176 2177
890 2192 2193
8l .. 0 2208 2209
8130 2224 2225

8CO 2240 2241
8DO 2256 2257
8EO 2272 2273
8FO 2288 2289

900 2304 2305
910 2320 2321
920 2336 2337
930 2352 2353

940 2368 2369
9!>O 2384 2385
960 2400 2401
970 2416 2417

980 2432 2433
990 2448 2449
9AO 2464 2465
9BO 2480 2481

9CO 2496 2497
900 2512 2513
9EO 2528 2529
9FO 2544 2545

Appendix D. Binary·Decimal·HexdClecimal Conversion Tables

HEXADECIMAL-DECIM.l~L INTEGER CONVERSION (Cant'd)

2 3 4 5

1794 1795 1796 1797
1810 1811 1812 1813
1826 1827 1828 1829
1842 1843 1844 1845

1858 1859 1860 1861
1874 1875 1876 1877
1890 1891 1892 1893
1906 1907 1908 1909

1922 1923 1924 1925
1938 1939 1940 1941

1954 1955 1956 1957

1970 1971 1972 1973

1986 1987 1988 1989

2002 2003 2004 2005

2018 2019 2020 2021

2034 2035 2036 2037

2050 2051 2052 2053

2066 2067 2068 2069

2082 2083 2084 2085

2098 2099 2100 2101

2114 2115 2116 21 17

2130 2131 2132 2133

2146 2147 2148 2149

2162 2163 2164 2165

2178 2179 2180 2181
2194 2195 2196 2197
2210 221 I 2212 2213
2226 2227 2228 2229

2242 2243 2244 2245

2258 2259 2260 2261
2274 2275 2276 2277

2290 2291 2292 2293

2306 2307 2308 2309
2322 2323 2324 2325
2338 2339 2340 2341
2354 2355 2356 2357

2370 2371 2372 2373
2386 2387 2388 2389
2402 2403 2404 2405
2418 2419 2420 2421

2434 2435 2436 2437
24 !>O 2451 2452 2453
2466 2467 2468 2469
2482 2483 2484 2485

2498 2499 2500 2!>O1
2514 2515 2516 2517
2530 2531 2532 2533
2546 2547 2548 2549

Ii

~8

14
17
18
18: 30
IS. $6

18
18
18
19

132
78
94
10

:26 19
19.

19
19

12
!i8
"74

HO 19
201
20
20

)6
:12
:18

20
20
20
21

!)4
70

U6
02

18
:14
!iO

21
21
21
21 fl6

21
21
22
22

22
22
22
22

23
23
23
23

23
23
24
24

112
!l8
14

:10

·16
li2
78
!l4

10
:l6

·'2
'58

74
~
)6

22

24
24
24
24

38
54
70
B6

25
25
25
25

02
18
34
!>O

7 8

1799 1800
1815 1816
1831 1832
1847 1848

1863 1864
1879 1880
1895 1896
191 I 1912

1927 1928
1943 1944
1959 1960
1975 1976

1991 1992
2007 2008
2023 2024
2039 2040

2055 2056
2071 2072
2087 2088
2103 2104

2119 2120
2135 2136
2151 2152
2167 2168

2183 2184
2199 2200
2215 2216
2231 2232

2247 2248
2263 2264
2279 2280
2295 2296

231 I 2312
2327 2328
2343 2344
2359 2360

2375 2376
2391 2392
2407 2408
2423 2424

2439 2440
2455 2456
2471 2472
2487 2488

2503 2!)()4
2519 2520
2535 2536
2551 2552

9 A B C D E F

1801 1802 1803 1804 1805 1806 1807
1817 1818 1819 1820 1821 1822 1823
1833 1834 1835 1836 1837 1838 1839
1849 I 8!>O 1851 1852 1853 1854 1855

1865 1866 1867 1868 1869 1870 1871
1881 1882 1883 1884 1885 1886 1887
1897 1898 1899 1900 1901 1902 1903
1913 1914 1915 1916 1917 1918 1919

1929 1930 1931 1932 1933 1934 1935
1945 1946 1947 1948 1949 1950 1951
1961 1962 1963 1964 1965 1966 1967
1977 1978 1979 1980 1981 1982 1983

1993 1'994 1995 1996 1997 1998 1999
2009 21010 2011 2012 2013 2014 2015
2025 2026 2027 2028 2029 2030 2031
2041 2042 2043 2044 2045 2046 2047

2057 2058 2059 2060 2061 2062 2063
2073 21074 2075 2076 2077 2078 2079
2089 21090 2091 2092 2093 2094 2095
2105 2106 2107 2108 2109 2110 21 I 1

2121 2122 2123 2124 2125 2126 2127
2137 2138 2139 2140 2141 2142 2143
2153 2154 2155 2156 2157 2158 2159
2169 2170 2171 2172 2173 2174 2175

2185 2186 2187 2188 2189 2190 2191
2201 2202 2203 2204 2205 2206 2207
2217 2218 2219 2220 2221 2222 2223
2233 2234 2235 2236 2237 2238 2239

2249 22!>O 2251 2252 2253 2254 2255
2265 2266 2267 2268 2269 2270 2271
2281 2282 2283 2284 2285 2286 2287
2297 2298 2299 2300 2301 2302 2303

2313 2314 2315 2316 2317 2318 2319
2329 2330 2331 2332 2333 2334 2335
2345 2346 2347 2348 2349 2350 2351
2361 2362 2363 2364 2365 2366 2367

2377 2378 2379 2380 2381 2382 2383
2393 2394 2395 2396 2397 2398 2399
2409 2410 2411 2412 2413 2414 2415
2425 2426 2427 2428 2429 2430 2431

2441 2442 2443 2444 2445 2446 2447
2457 2458 2459 2460 2461 2462 2463
2473 2474 2475 2476 2477 2478 2479
2489 2490 2491 2492 2493 2494 2495

2!>O5 2506 2!>O7 2!>O8 2509 2510 2511
2521 2522 2523 2524 2525 2526 2517
2537 2538 2539 2540 2541 2542 2543
2553 2554 2555 2556 2557 2558 2559

D-7

Appendix D. Binary-Decimal-Hexadecimal Conversion Table-

HEXADECIMAL-DECIMAL INTEGER CONVERSION (Cant'd)

0 1 2 3 4 5 6 7 8 9 A B C 0 E F
AOO 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
Al0 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591
A20 2592 2593 2594 2595 2596 2597 ;!598 2599 2600 2601 2602 2603 2604 2605 2606 2607
A30 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623
A40 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 A50 2640 2641 2642 2643 2644 2645 :?646 2647 2648 2649 2650 2651 2652 2653 2654 2655 A60 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 A70 2672 2673 2674 2675 2676 2677 :W78 2679 2680 2681 2682 2683 2684 2685 2686 2687
A80 2688 2689 2690 2691 2692 2693 :2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 A90 2704 2705 2706 2707 2708 2709 :2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 AAO 2720 2721 2722 2723 2724 2725 :2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 ABO 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751
ACO 2752 2753 2754 2755 2756 2757 2758 2759 2760 4761 2762 2763 2764 2765 2766 2767 ADO 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 AEO 2784 2785 2786 2787 2738 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 AFO 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815

BOO 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 Bl0 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 B20 2848 2849 2850 3851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 B30 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879
B40 2880 2881 2882 2883 2884 2885 2866 2887 2888 2889 2890 2891 2892 2893 2894 2895 B50 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 B60 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 B70 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943
B80 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 B90 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 BAO 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 BBO 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007
BCO 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 BOO 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 1034 3035 3036 3037 3038 3039 BEO 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 BFO 3056 3057 30~.8 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071

~~- ---- ~~------ ---------
COO 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 Cl0 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 C20 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 C30 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135
C40 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 C50 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 C60 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 C70 3184 3185 3186 31H7 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199
C80 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 C90 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 CAO 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 CBO 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263
CCO 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 COO 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 CEO 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 CFO 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327

0-8

0 1

000 3328 3329
010 3344 3345
020 3360 3361
030 3376 3377

040 3392 3393
050 3408 3409
060 3424 3425
D70 3440 3441

D80 3456 3457
D90 3472 3473
DAO 3488 3489
DBO 3504 3505

Deo 3520 3521
DDO 3536 3537
DEO 3552 3553
DFO 3568 3569

EOO 3584 3585
E10 3600 3601
E20 3616 3617
E30 3632 3633

E40 3648 3649
E50 3664 3665
E60 3680 3681
E70 3696 3697

E80 3712 3713
E90 3728 3729
EAO 3744 3745
EBO 3760 3761

EeO 3776 3777
EDO 3792 3793
EEO 3808 3809
EFO 3824 3825

FOO 3840 3841
F10 3856 3857
F20 3872 3873
F30 3888 3889

F40 3904 3905
F50 3920 3921
F60 3936 3937
F70 3952 3953

F80 3968 3969
F90 3984 3985
FAO 4000 4001
FBO 4016 4017

FeD 4032 4033
FDO 4048 4049
FEO 4064 4065
FFO 4080 4081

Appendix D. Binary·Decimal·Hexadecimal Conversion Tables

HEXADECIMAL-DECIMJ~L INTEGER CONVERSION (Cant'd)

2 3 4 5

3330 3331 3332 3333
3346 3347 3348 3349
3362 3363 3364 3365
3378 3379 3380 3381

3394 3395 3396 3397
3410 3411 3412 3413
3426 3427 3428 3429
3442 3443 3444 3445

3458 3459 3460 3461
3474 3475 3476 3477
3490 3491 3492 3493
3506 3507 3508 3509

3522 3523 3524 3525
3538 3539 3540 3541
3554 3555 3556 3557
3570 3571 3572 3573

3586 3587 3588 3589
3602 3603 3604 3605
3618 3619 3620 3621
3634 3635 3636 3637

3650 3651 3652 3653
3666 3667 3668 3669
3682 3683 3684 3685
3698 3699 3700 3701

3714 3715 3716 3717
3730 3731 3732 3733
3746 3747 3748 3749
3762 3763 3764 3765

3778 3779 3780 3781
3794 3795 3796 3797
3810 3811 3812 3813
3826 3827 3828 3829

3842 3843 3844 3845
3858 3859 3860 3861
3874 3875 3876 3877
3890 3891 3892 3893

3906 3907 3908 3909
3922 3923 3924 3925
3938 3939 3940 3941
3954 3955 3956 3957

3970 3971 3972 3973
3986 3987 3988 3989
4002 4003 4004 4005
4018 4019 4020 4021

4034 4035 4036 4037
4050 4051 4052 4053
4066 4067 4068 4069
4082 4083 4084 4085

6

333
335
336
338

339
341
343
344

346
347
349
351

352
354
355
357

359
360
362
363

4
0
6
2

8
4
0
6

2
8
4
0

6

2
B
4

J

5
2
3

~

J

365-
367
368
370

.)

371
373
375
376

378
379
381
383

384
386
387
389

391
392
394
395

397
399
400
402

403
405
407
408

2

8
~

J

5

2
B
4

0

6

2
8
4

0
6
2
8

4

0
6
2

8
4
0
6

7

3335
3351
3367
3383

3399
3415
3431
3447

3463
3479
3495
3511

3527
3543
3559
3575

3591
3607
3623
3639

3655
3671
3687
3703

3719
3735
3751
3767

3783
3799
3815
3831

3847
3863
3879
3895

3911
3927
3943
3959

3975
3991
4007
4023

4039
4055
4071
4087

8 9

3336 3337
3352 3353
3368 3369
3384 3385

3400 3401
3416 3417
3432 3433
3448 3449

3464 3465
3480 3481
3496 3497
3512 3513

3528 3529
3544 3545
3560 3561
3576 3577

3592 3593
3608 3609
3624 3625
3640 . 3641

3656 3657
3672 3673
3688 3689
3704 3705

3720 3721
3736 3737
3752 3753
3768 3769

3784 3785
3800 3801
3816 3817
3832 3833

3848 3849
3864 3865
3880 3881
3896 3897

3912 3913
3928 3929
3944 3945
3960 3961

3976 3977
3992 3993
4008 4009
4024 4025

4040 4041
4056 4057
4072 4073
4088 4089

A B e 0 E F

3338 3339 3340 3341 3342 3343
3354 3355 3356 3357 3358 3359
3370 3371 3372 3373 3374 3375
3386 3387 3388 3389 3390 3391

3402 3403 3404 3405 3406 3407
3418 3419 3420 3421 3422 3423
3434 3435 3436 3437 3438 3439
3450 3451 3452 3453 3454 3455

3466 3467 3468 3469 3470 3471
3482 3483 3484 3485 3486 3487
3498 3499 3500 3501 3502 3503
3514 3515 3516 3517 3518 3519

3530 3531 3532 3533 3534 3535
3546 3547 3548 3549 3550 3551
3562 3563 3564 3565 3566 3567
3578 3579 3580 3581 3582 3583

3594 3595 3596 3597 3598 3599
3610 3611 3612 3613 3614 3615
3626 3627 3628 3629 3630 3631
3642 3643 3644 3645 3646 3647

3658 3659 3660 3661 3662 3663
3674 3675 3676 3677 3678 3679
3690 3691 3692 3693 3694 3695
3706 3707 3708 3709 3710 3711

3722 3723 3724 3725 3726 3727
3738 3739 3740 3741 3742 3743
3754 3755 3756 3757 3758 3759
3770 3771 3772 3773 3774 3775

3786 3787 3788 3789 3790 3791
3802 3803 3804 3805 3806 3807
3818 3819 3820 3821 3822 3823
3834 3835 3836 3837 3838 3839

3850 :;851 \ 3852 3853 3854 3855
3866 3867 3868 3869 3870 3871
3882 3883 3884 3885 3886 3887
3898 3899 3900 3901 3902 3903

3914 3915 3916 3917 3918 3919
3930 3931 3932 3933 3934 3935
3946 3947 3948 3949 3950 3951
3962 3963 3964 3965 3~6 3967

3978 3979 3980 3981 3982 3983
3994 3995 3996 3997 3998 3999
4010 4011 4012 4013 4014 4015
4026 4027 4028 4029 4030 4031

4042 4043 4044 4045 4046 4047
4058 4059 4060 4061 4062 4063
4074 4075 4076 4077 4078 4079
4090 4091 4092 4093 4094 4095

0-9

Absolute symbols

Accumulator

Accumulator Instructions

ACI Instruction

ADC Instruction

ADD Instruction

ADI Instruction

Addressing Modes

Addressing Registers

ANA (AND) Instruction

AN 0 Opera tor

ANI (AND Immediate) Instruction

Arithmetic Expression Operators

Arithmetic Instructions

ASCII Constant

ASEG (Absolute Segment) Directive

Assembler, Need for

Assembler Character Set

Assembler Compared with PL/M

Assembler Function ...

Assembler Termination

Assembly-Time Expression Evaluation

Auxiliary Carry Flag

INDEX

Auxiliary Carry Flag Setting soso/sm;s Differences

Binary Data (Coding Rules)

blank (character)

Branching Instructions

Branch Table

Byte Isolation Operations

CA L L Instruction

Carry Flag

CC (Call if Carry) Instr-uction

CM (Call if Minus) Instruction

CMA (Complement Accumulator) Instruction

CMC (Complement Carry) Instruction

CMP (Compare) Instruction

CNC (Call if no carry) Instruction

CNZ (Call if not Zero) Instruction

Combined Addressing Modes

Comment Field

Compare Oper d tor'>

Comparing Complemented Data

Comparisons in Expressions

Complement U,ed for Subtraction

Complemented DJta

Co nca te na tin n

2-11, 2-16
1-6, 1-7

.7 -7 9

3-2
3-2

3-4

3-5

7 -75

1-7

3-6

2-73

3-7

.2-12
7-77

· 2-6
.4-74

1-3

2-1
1-3

1-1

.4-70

.2-11

.7-77

.7 -7 2

· 2-6
· 2-3

7-78, 7-22

· 6-1
.2-74

· 3-8
.7 -7 a
.3-70

.3-70

.3-77

3-72
3-72

.3-74

.3-74

7 -7 6

· 2-4
.2-73

· 2-8
.2-13

· 2-7
28

5 I 0, S -1 I, 5 -1 5, S 1 ()

\-1

1-2

Condition Flags

Conditional Assembly

CP (Call if Positive) Instruction

CPE (Call if Parity Even) Instruction

CPI (Compare Immediate) Instruction

CPO (Clil if Parity Odd) Instruction

CSEG (Code Segment) Directive

CZ (Call if Zero) Instruction ...

DAA (Decimal Adjust Accumulator) Instruction

DAD (Double Register Add) Instruction

Data Access Example . .

Data Definition .

Ddta Description Example

Data for Subroutine,

Data Label

Data Transfer Instructions

DB (Define Byte) Directive

DCR (Decrement) Instruction

DCX (Decrement Register Pair)

Decimdl Addition Routine

Decimal Data (Coding Rules)

Decimal Subtraction Routine'

Delimiters

DI (Disable hterrupts) In'>truction

Direct Addressing

Divide (Softw,lfe Example)

Division in Expressiom

DS (Define Storage) Directive

DSEG (Data Segment) Directive

Dummy Parameters

DW (Define Word) Directive

EI (Enable Interrupts) Instruction

ELSE Directive .

END Directive

ENDIF Directive

ENDM (End Macro) Directive

EOT Directive

EPROM

EQ Operator

EQU Directive

EXITM (Exit Macro) Directive

Expression Evaluation

Expression Operators

Ex pressio ns

Expressions, Precedence of Operators

Expressions, Range of Val ues

EXTRN Directive

1-9

4-8

3-75

3-76

3-76

3-77
4-75
3-78

3-78

3-20
4-7

4-3
4-6

6-3

2-5

7 -7 6

4-3
3-20

3-22

6-12

2-5

6-14

· 2-2

. 3-22,3-60

7 -7 5

· 6-9

2-12

· 4-5
4-75

5-4

.4-4

3-23

4-8
4-70

· 4-8
5-5,5-6,5-7,5-12

4-77

1-5

2-73

4-2

5-9

2-11

2-11

2-6

2-75

2-75

4-77

GE Operator

General Purpose Registers

GT Operator

Hardware Overview

Hexadecimal Data (Coding Rules)

HIGH Operator

HL T (Halt) Instruction

I F Directive

Immediate Addressing

Implied Addressing

IN (Input) Instruction

INPAGE Reserved Word

Input/Output Ports

INR (Increment) Instruction

Instruction Addressing Modes

Inqruction Execution

Instruction Fetch

Instruction Label

Instruction Naming Conventions

Instruction Set Guide

Instruction Summary

Instruction Timing

Instruction,> as Operands

INTE Pin

Intcrnal Register'>

Interrupt Subruutinc,>

Interrupts

Interrupts (8085)

INX (Increment Register Pair) InstructiollS

IRP (Indefinite Repcat) Directive

IRPC (Indefinite Repeat Character)

jC (J ump if Carry) Instruction

jM (jump if Minus) Instruction

J MP (j ump) In,truction

JNC (Jump if IlO carry) InstructiOIl

J NZ (J ump if nut zero) Instruction

JP (jump if Positive) In<,truction

IPE (jump if parity Even)

I PO (J ump if parity Odd)

J Z (J u mp if Zero) Instruction

Ldbcl Field

Ldbeb

LDA (Load Accumulator Direct) Instruction

LDAX (Load Accumulator Indirect)

2-73

7 -7

2-73

1-5

2-5

2-74,3-2,3-5,3-7,404

3-24

4-8

7 -7 5

7 -7 5

.7-74, 3-24

.4-74,4-75

7 -74

3-25

7 -7 5

1-9

1-8

2-6

1-16

7-23

. 1-19, 7-23

3-7

2-7

3-49

1-6

7-4

7-1

1-2,1

3-26

.5-8, 5-12,5-22

.5-8,5-12,5-17

3-26

3-27

3-28

3-28

3-29

3-29

3-30

3-3/

3-32

2-3

2-6

3-32

3-33

1-3

1-4

LE Operator

LI B Program

LHLD (Load L Direct) Instruction

LINK Program

Lin kage
List File

LOCAL Directive

LOCAL Symbols

LOCATE Program

Location Counter (Coding Rules)

Location Counter Control (Absolute Mode)

Location Counter Control (Relocatable Mode)
Logical Instruction'>

Logical Instructions, Summary

Logical Operators

LOW Operator
L T Operator

LXI (Load Regi'>ter Pair Immediate)

Macros
Macro Calls
Macro Definition
MACRO Directive

Macro Expansion

Macro Parameters
Macros ver,u, Subroutines

Manual Programming .. .

Memory
Memory Management with Relocation
Memory Reservation

ME MOR Y Re<;erved Word

MOD Operator
Modular Programming

MODULE Default Name

MOV (Move) Instruction

Multibyte Addition Routines

Multibyte Subtraction Routine

Multiplication in Expressions

Multiply (Software Example)

MVI (Move Immediate)

NAME Directive
NE Operator

Nested Macro Calls

Nested Macro Definitions
Nested Subroutines
Nine's Complement

NOP (No Operation) Instruction

2-73
4-12

3-34
4-12,4-14,4-15

4-16
1-1

5-5

5-6
.4-12, 4-l3, 4-14, 4-19

2-6

4-71

4-74
7-77

3-6

2-73

2-74, 3-2, 3-5, 3-7, 4-4

2-73

3-35

5-1
5-72

5-4
5-4

5-15
5-5

5-3
1-3
1-5

4-72
4-5

4-79
2-12
4-72

4-17
3-36

6-11

6-11

2-12
6-7

3-37

4-78

2-73
5-14

5-12
3-48

2-7

3-38

NOP via MOV
NOT Operator
NUL Operator

Null Macros
Null Parameter

Object Code

Object File

Octal Data (Coding Rules)

One's Complement
Opcode

Opcode Field

Operand Field

Operand Field (Coding Rules)

Operands

Operators, Expression

OR Operator

ORG (Origin) Dircctive (Absolute Mode)

ORG (Origin) Dircctive (Rclocatablc Mode)

ORA (Inclusive OR) Instruction

ORI (inclu,>ivc OR Immediate)
OUT Instruction

PAGE Re'>erved Word

Parity Flag
PCHL (Move H & L to Program C:-Junler) Instruction
Permanent Symbols

PL/M
PL/M Compared with Assembler
POP Instruction

POP PSW instruction

Precedence of Expre,>,>ion Operator,>

Processor Register'>
Program Counter
Program Linkagc Directivc,>
Program Listing
Program Statu,>
Program Status Word

Programming the 8085

PROM

PSW

PUBLIC Directive

PUSH Instruction

PUSH PSW Instruction

RAM

(PSW)

RAM versus ROM
RAL (Rotate Left through Carry) Instr Jction

3-36
2-73

.2-13,5-17

5-16
5-11

7-2
1-1

2-5
2-7

1-1

2-4

2-4

2-4

2-5

2-11

2-73

4-17

4-76
3-38

3-40

1-14,3-47

.4.-74,4-75
7 -17

3-42
2-11

1-3

1-3
3-42

3-43
2-75

1-9

1-6
4-76

1-2

1-13
7 -7 4

1-24
1-5

7 -7 4 . , 3-45

4-77
3-44

3-45

1·5
4-6
3-45

1-5

1-6

RAR (Rotate Right through Carry) Instru<~tion

RC (Return if Carry) Instruction
Redefinable Symbols

Register Addressing

Register Indirect Addressing

Register Pair Instructions

Register Pairs
Relocatability Defined

Relocatable Expressions

Relocatable Symbols
Relocation Feature
Reserved Symbols
RESET Signal

RET (Return) Instruction

REPT Directive

RI M (Read I nterru pt Mask) 8085 I nstructi:m

RLC (Rotate Accumulator Left) Instruction

RM (Return if Minus) Instruction
RNC (Return if no Carry) Instruction

RNZ (Return if not Zero) Instruction
ROM
RP (Return if Positive) Instruction

RPE (Return if Parity Even) Instruction

RPO (Return if Parity Odd) Instruction
RRC (Rotate Accumulator Right) Instruction

RST (Restart) Instruction

RST5.5

RST6.5

RST7.5

RZ (Return if Zero) I nstruc tion

Savings Program Status
SBB (Subtract with Borrow) Instruction

SBI (Subtract Immediate with Borrow) Instruction

Scope of Symbols
SET Directive

Sh i ft Ex pression Operators

Shift Operations in Expression,
SHL Operator

SHLD (Store H & L Direct) Instruction
SHR Operator
Sign Flag

SIM (Set Interrupt Mask) 8085 Instructiol
Software Divide Routine

Software Multiply Routine

Source Code Format
Source Line Fields

Source Program File

SPHL (Move H & L to Stack Pointer) Instruction

3-46

3-47

2-11

7 -7 5

7 -7 6

7 -27

1-7
4-72

.2-76,2-79
2-11

1-2

2-9
3-24

3-48

5-6,5-12,5-15,5-16,5-17,5-18
3-48

3-49

3-50

3-57

3-57

1-5
3-52

3-52

3-53

3-53

3-54
· 3-49, 3-55, 3-59, 3-60

.3-49, 3-55, 3-59, 3-60

· 3-49, 3-55, 3-59, 3-60
· 3-55

7 -7 3
3-56
3-57

2-10
4-3

2-12

2·12
2-72

3-58

2-72
7 -7 0

3-59

6-7

6-7

2-1
2-1

1-1

3-67

SP (Stack Pointer Register)

ST A (Store Accumulator Direct)

Stack

Instruction

Stack and Machine Control Instructions

Stack Operations

Stack Pointer

ST ACK Reserved Word

Start Execution Address

STAX (Store Accumulator Indirect) Instrllction

STC (Set Carry) Instruction

STKLN Directive

SUB (Subtrdct) In~truction

Subroutine Data

Subroutine,

Subroutines versus Mdcros

Su btractio n for Comparison

SUI (Subtract Immediate) Instruction

Sy mbol-Cross-Reference Fi Ie

Symbol Definition

Symbol Table

Symbolic Addres,>ing

Symbols

Symbols, Absolute

Symbols (Coding Rule,)

Symboh, Global

Symbols, Limited

Symbols, Permanent

Symbols, Redefindble

Symbols, Relocdtdble

Symbob, Reserved

TRAP Interrupt

Ten's Complement

Testing Relocatdble Modules

Timing Effects of Addressing Modes

TRAP (8085)

Two'., Complement Ddta

U'>e of Mdcros

U"ing Symbol, for Data Access

Val ue of Expre<;sions

What is a Mdcro?

Word Instruction,

Word Storage in Memory

Work Register,

3-35

3-67

7 -7 2

7 -7 9

1-13

7 -7 2

4-79, 3-35
4-10

3-62

3-63

4-78

3-63

6-3

7 :l2, 3-9

5-3

3-12

3-64

.1-1, 7-3

4-2

2-9
2-9
2-9

2-11
2-9

2-10

2-10

2-11
2-11
2-11

2-9

3-54

2-7

4-19

1-16

3-23

2-7

5·1
4-7

2-75

5-2

7 -27

4-4

1-7

1-7

1-8

XCHG (Exchange H & L with D & EI Instruction
XOR Operator 0 0 0 0 0 0 0 0 0

XRA (Exclusive OR) Instruction
XRI (Exclusive OR Immediate) Instruction

XTHL (Exchange H & L with Top of Stack) Instruction

Zero Flag

& (ampersand)

< > (angle brackets)
CR (carriage return character)

(colon)

00

"

HT

*
()

+
7?nnnn

space

(comma)
(double semicolon)

(division) Operator
(exclamation point)

(horizontal tab character)

(minus) Operator

(multiplication) Operator

(parentheses)

(pius) Operator

Symbols
(semicolon)

(single quote)

(character)

8080/8085 Differences
8085 Features
8085 Processor
8085 Programming

3-65

2-73

3-66

3-67

3-69

7 -71

5-10

5-10

2-2

2-2
2-2

5-10
2-12

5-10

2-2

2-12

2-12

2-2

2-12
5-5

2-2

2-2

2-2

7-24

1-24
7-24

1-24

inter SOFTWAR:E PROBLEM REPORT

SUBMITTED BY: FOR INTERNAL USE ONLY

Name No. Fix Date
Company Date Vers/System

Address Notes

Phone Date

CHECK ONE ITEM IN EACH CATEGORY Machine Line System

Product Product Type 04004/4040 o Intellec

o Software o Monitor o Simul3tor 08008 o Timeshare Co.

o Manual o Assembler o Editor 08080
o Compiler o Utility 03000 o In-House Computer

0 ___ 0

I Exact Product/Manual Name

Version Number (If not known, give date of receipt)

PROBLEM:

REPLY:

PROBLEM DOCUMENTATION ATTACHED IS: o Output Listing o Paper T ape Program Sou rce

o Program Listing
o ________________ _

BUSINESS REPLY MAil

No Postage Stamp Necessary if Mailed in U.S.A.

Attention: MCS Systems Marketing

Postage will be paid ty:

Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051

First Class
Permit No. 1040
Santa Clara, CA

REQUEST FOR READER'S COMMENTS

8080/8085 Assembly Language
Programming Manual

9800301C

The Microcomputer Division Technical Publications Department attempts to provide documents that meet the needs of all

Intel product users. This form lets you participate dire:tly in the documentation process.

Please restrict your comments to the usability, accuracy, readability, organization, and completeness of this document.

1. Please specify by page any errors you found in this manual.

2. Does the document cover the information you exr:ected or required? Please make suggestions for improvement.

3. Is this the right type of document for your need:;? Is it at the right level? What other types of documents are needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this document on a scale of 1 to 10 wi1h 10 being the best rating. _____ _

NAME _________________ __ _ __________________ DATE _________________________ __

TITLE _________________ _

COMPANY NAME/DEPARTMENT __________ _
ADDRESS ___________________ ___

CITY _______________________________ ___ STATE ZIP CO D E __________________ _

Please check here if you requ ire a written reply. [J

WE'D LIKE YOUR COMMENTS . ..

ThIS document is one of a serIes describIng Intel softy/are products. Your comments on the back of this form

will help us produce better software and manuals. E.Jch reply will be carefully reviewed by the responsible

person. All comments and suggestions become the property of Intel Corporation.

BUSINESS REPLY MAIL

No Postage Stamp Neces;ary if Mailed in U.S.A.

Postage will be paid by:

At1;ention: MCD Technical Publications

Intel Corporation
3065 BOWErS Avenue
Santa Clara, CA 95051

First Class
Permit No. 1040
Santa Clara, CA

	B1_Page_01
	B1_Page_02
	B1_Page_03
	B1_Page_04
	B1_Page_05
	B1_Page_06
	B1_Page_07
	B1_Page_08
	B1_Page_09
	B1_Page_10
	B1_Page_11
	B1_Page_12
	B1_Page_13
	B1_Page_14
	B1_Page_15
	B1_Page_16
	B1_Page_17
	B1_Page_18
	B1_Page_19
	B1_Page_20
	B1_Page_21
	B1_Page_22
	B1_Page_23
	B1_Page_24
	B1_Page_25
	B1_Page_26
	B1_Page_27
	B1_Page_28
	B1_Page_29
	B1_Page_30
	B1_Page_31
	B1_Page_32
	B1_Page_33
	B1_Page_34
	B1_Page_35
	B1_Page_36
	B1_Page_37
	B1_Page_38
	B1_Page_39
	B1_Page_40
	B1_Page_41
	B1_Page_42
	B1_Page_43
	B1_Page_44
	B1_Page_45
	B1_Page_46
	B1_Page_47
	B1_Page_48
	B1_Page_49
	B1_Page_50
	B1_Page_51
	B1_Page_52
	B1_Page_53
	B1_Page_54
	B1_Page_55
	B1_Page_56
	B1_Page_57
	B1_Page_58
	B1_Page_59
	B1_Page_60
	B2_Page_01
	B2_Page_02
	B2_Page_03
	B2_Page_04
	B2_Page_05
	B2_Page_06
	B2_Page_07
	B2_Page_08
	B2_Page_09
	B2_Page_10
	B2_Page_11
	B2_Page_12
	B2_Page_13
	B2_Page_14
	B2_Page_15
	B2_Page_16
	B2_Page_17
	B2_Page_18
	B2_Page_19
	B2_Page_20
	B2_Page_21
	B2_Page_22
	B2_Page_23
	B2_Page_24
	B2_Page_25
	B2_Page_26
	B2_Page_27
	B2_Page_28
	B2_Page_29
	B2_Page_30
	B2_Page_31
	B2_Page_32
	B2_Page_33
	B2_Page_34
	B2_Page_35
	B2_Page_36
	B2_Page_37
	B2_Page_38
	B2_Page_39
	B2_Page_40
	B3_Page_01
	B3_Page_02
	B3_Page_03
	B3_Page_04
	B3_Page_05
	B3_Page_06
	B3_Page_07
	B3_Page_08
	B3_Page_09
	B3_Page_10
	B3_Page_11
	B3_Page_12
	B3_Page_13
	B3_Page_14
	B3_Page_15
	B3_Page_16
	B3_Page_17
	B3_Page_18
	B3_Page_19
	B3_Page_20
	B3_Page_21
	B3_Page_22
	B3_Page_23
	B3_Page_24
	B3_Page_25
	B3_Page_26
	B3_Page_27
	B3_Page_28
	B3_Page_29
	B3_Page_30
	B3_Page_31
	B3_Page_32
	B3_Page_33
	B3_Page_34
	B3_Page_35
	B3_Page_36
	B3_Page_37
	B3_Page_38
	B3_Page_39
	B3_Page_40
	B3_Page_41
	B3_Page_42
	B3_Page_43
	B3_Page_44
	B3_Page_45
	B3_Page_46
	B4_Page_01
	B4_Page_02
	B4_Page_03
	B4_Page_04
	B4_Page_05
	B4_Page_06
	B4_Page_07
	B4_Page_08
	B4_Page_09
	B4_Page_10
	B4_Page_11
	B4_Page_12
	B4_Page_13
	B4_Page_14
	B4_Page_15
	B4_Page_16
	B4_Page_17
	B4_Page_18
	B4_Page_19
	B4_Page_20
	B4_Page_21
	B4_Page_22
	B4_Page_23
	B4_Page_24
	B4_Page_25
	B4_Page_26
	B4_Page_27
	B4_Page_28
	B4_Page_29
	B4_Page_30
	B4_Page_31
	B4_Page_32
	B4_Page_33
	B4_Page_34
	B4_Page_35
	B4_Page_36
	B4_Page_37
	B4_Page_38
	B4_Page_39
	B4_Page_40
	B4_Page_41
	B4_Page_42
	B4_Page_43
	B4_Page_44
	B4_Page_45
	B4_Page_46
	B5_Page_01
	B5_Page_02
	B5_Page_03
	B5_Page_04
	B5_Page_05
	B5_Page_06
	B5_Page_07
	B5_Page_08
	B5_Page_09
	B5_Page_10
	B5_Page_11
	B5_Page_12
	B5_Page_13
	B5_Page_14
	B5_Page_15
	B5_Page_16
	B5_Page_17
	B5_Page_18
	B5_Page_19
	B5_Page_20
	B5_Page_21
	B5_Page_22
	B5_Page_23
	B5_Page_24
	B5_Page_25
	B5_Page_26
	B5_Page_27
	B5_Page_28
	B5_Page_29
	B5_Page_30
	B5_Page_31
	B5_Page_32

