Ak .
iAPX 88 BOOK
| WITH AN INTRODUCTION TO THE iAPX 188

J ’

/

Intel Order Number: 210200-002

intal

IAPX 88 BOOK
WITH AN INTRODUCTION TO THE iAPX 188

1983

Published for Intel
by
Reston Publishing Company, Inc.
(A Prentice-Hall Company)
Reston, Virginia 22090

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which may
appear in this document nor does it make a commitment to update the information contained herein.

The following are trademarks of Intel Corporation and may only be used to identify Intel Products:

BXP, CREDIT, i, ICE, IZICE, ICS, iDBP, iDIS, iLBX, im, iIMMX,
Insite, INTEL, intel, Intelevision, Intellec, intgligent Identifier™,
intglBOS, inteligent Programming™, Intellink, iOSP, iPDS,
iRMS, iSBC, iSBX, iSDM, iSXM, Library Manager, MCS,
Megachassis, Micromainframe, MULTIBUS, Multichannel™
Plug-A-Bubble, MULTIMODULE, PROMPT, Ripplemode,
RMX/80, RUPI, System 2000, and UPI, and the combination of .
ICE, iCS, iRMX, iSBC, MCS, or UPI and a numerical suffix.

MDS is an ordering code only and is not used as a product name or trademark. MDS® is a registered trademark of
Mohawk Data Sciences Corporation.

* MULTIBUS is a patented Intel bus.

Additional copies of the iAPX 88 Book can be purchased through Reston Publishing Company, Inc.
ATTN: Special Sales, 11480 Sunset Hills Road, Reston, Virginia 22090. Phone: (703) 437-8900.

Copies of all other Intel literature may be obtained from:

Intel Corporation
Literature Department
3065 Bowers Avenue
Santa Clara, CA 95051

© INTEL CORPORATION, 1983

ABOUT THIS BOOK

This book describes the unique Intel 8088
microprocessor, the outstanding choice for 8-
bit microcomputer applications requiring
both high performance and low cost.

The Intel 8088 is the most powerful 8-bit
microprocessor available today, yet as easy to
use as other 8-bit microprocessors designers
have used for years.

Chapter 1 introduces the 8088 CPU with its
key features that give it high performance,
with overviews on the following topics:

Pipelined architecture

Register resources

Memory addressing

Instruction set

System interfacing

Functional extensions

Also an iAPX 188 overview is given.

Chapter 2 provides a detailed discussion of
the programmer’s architecture including:

Register set

Addressing modes

Instruction set

Assembly language

At the end of Chapter 2 is a complete set of
instruction set reference pages that describe
each instruction fully, one at a time.

Chapter 3 provides necessary information for
the hardware designer to incorporate the
8088 microprocessor into cost effective
iAPX* 88 microcomputer systems. Included
is a discussion of the following:

® Bus Timing and Status

© Bus Interface including interface to MUX
bus devices

® Memory and Peripheral Interface
Wait States

*]APX stands for Intel Advanced Processor System

Interrupts

Direct Memory Access
Reset

Building Large Systems

Chapter 4 gives some specific 8088 system
design examples for the simple to complex
systems:

Multiplexed bus small systems

® Demultiplexed systems with standard mem-
ories and peripherals

e S100 Bus System
iAPX 88 based CRT

e MULTIBUS™ System

The Supplement provides an introduction to
microcomputer concepts and terminology
including:

What is a microcomputer?

What’s inside the CPU?

© What are machine cycles?

® What are addressing modes?

The Appendix contains the following data
sheets and comparison benchmark reports:

Data Sheets

iAPX 88/10 data sheet
© 8284A data sheet
8282/8283 data sheet
8286/8287 data sheet

o iAPX 188

Benchmark Reports
e iAPX 88 vs. 6809
e jAPX 88 vs. Z80

Related Documentation:

® TheiAPX 86,88 User's Manual
Contains complete design information on
building iAPX 86 and iAPX 88 systems,
including the use of 8089 I/O processor
and 8087 numerics processor extension.
Several Application Notes are included.

® The Peripheral Design Handbook
Contains data sheets and application
notes featuring Intel peripheral devices.

® The Intel Component Data Catalog
Contains data sheets for all Intel semi-
conductor components, including mem-
ories and peripherals.

Additional copies of the iAPX 88 Book can be
purchased by contacting:

Reston Publishing

Special Sales

11480 Sunset Hills Road

Reston, Virginia 22090

All other documentation is available from:

Literature Department
Intel Corporation
3065 Bowers Ave.
Santa Clara, CA 95051

The material in the Assembly Language sec-
tion of Chapter 2 was edited and reprinted
with permission of Hayden Book Company,
from The 8086 Primer, by Stephen P. Morse.
Copyright 1980.

Furthermore, selected material was extracted
from the following articles:

1) S.P. Morse, W.B. Pohlman, B.W. Ravenel,
“The Intel 8086 Microprocessor: A 16-Bit
Evolution of the 8080,” Computer, June
1978.

2) S.P. Morse, B.W. Ravenel, S. Mazor,
W.B. Pohlman, “Intel Microprocessors —
8008 to 8086,” Computer, October 1980.

Table of Contents

CHAPTER 1 Page
Introduction to iAPX 88/188
What is the 80887t i i e s 1-1
8088 Pipelined ArchiteCtureeeunui it ees 1-2
Efficient Program Codingo i i i 1-3
iAPX 88 Megabyte Memory Addressingc.eueuuriniueinannannn 1-5
The 8088’s 16-Bit Instruction Set i 1-10
Interfacing the 8088ottt e e e 1-13
Processor EXtENSIONS . .. oottt 1-17
ROV I BW oot e 1-19
The IAPX 188 CPU ...ttt e 1-20
. CHAPTER 2
iAPX 88 Architecture and Instructions
IAPX 88 ArChitecturet e e i e, 2-1
Register StrUCIUre ot e e e e e 2-2
Addressing MOdesttt e 2-5
Organization of Instruction Set i 2-10
Assembly Language Programmingooiiiuiiiiiiiiiiiiiiiinneeneeann. 2-18
INStrUCHION St . . e e 2-45
CHAPTER 3
iAPX 88 Hardware Design
CPU Pin FUNCHONS ..ottt et ettt e ettt ettt e e 3-1
8088 Bus Timing and Minimum Mode Status o 3-6
BUS INterface ...t e e e 3-8
Memory and Peripheral Interface i i 3-9
CloCK GENEratioN ..ottt it et e e 3-13
RSt .t e e e 3-14
Ready Implementation and Timing ...ttt 3-16
] (T 0T] £ PP 3-18
Bus Control Transfero e e 3-24
Maximum Mode SysStemSttt et 3-24
CHAPTER 4
Application Examples
Multiplexed Systemt e e 41
IAPX 88 Demultiplexed Systemot e e 4-10
iAPX 88-Based S100 Bus Systemottt 4-14
iAPX 88-Based CRT Controllerouiiiii it eie e 4-14
IAPX 88 Multiprocessing Systemso vttt e e 4-16
SUPPLEMENT
What is a Microcomputer? it e S-1
What are Data, Address and Control Busses? ..., S-2
Machine Cycles, Interrupts, and Direct Memory Accesscccevevvvvnnnn S-3
What's Inside the CPU? it e ettt eas S-4
APPENDIX
Benchmark Reports and Data Sheets
Benchmark Report: Intel® iAPX 88 vs. Zilog Z80coviiiiiiiiiiiiiienn., 1
Benchmark Report: Intel® iAPX 88 vs. Motorola MC6809............ovvvvvinnn... 20
iAPX 88/10 16-Bit HMOS MIiCrOproCEeSSOruvttteniiiieeeeniiieeaneeenn s 37
8284A Clock Generator and Driver for iAPX 88/10, iAPX 88/10 Processors 64
8282/8283 Octal LatChttt i e 72
8286/8287 Octal Bus TranSCeIVEN .. .uuvuu ettt it i iiiiiaee s 77

List of Figures

CHAPTER 1 Page
1-1 Microcomputer Block Diagramooiiiiriiiiiiiiiniieieneeiannanas 1-1
T-2 B0B8 CPU .ottt e e e e e e e 1-1
1-83 Program Execution in Standard Microprocessorcccvveiiiienin.... 1-2
1-4 Pipelined Internal Architecture ...t 1-2
1-5 Parallel Operation in 8088 CPUttt 1-3
1-6 8088 Register Setttt e 1-4
1-7 Data Group Registerso.iiiiiiti i e 1-4
1-8 Baseand Index Registersooeiiiiiiii i 1-4
1-9 Control Registers ...t e e e 1-5

1-10 iAPX 88 Architecture Quick Access to Four Segment Types 1-6

1-11 Segment Registers ..ot e ... 1-6

1-12 Howan Addressis Built ...ttt 1-6

1-13 Process Relocation oo e 1-8

1-14 iAPX 88 Addressing Modesciiiniiiiiii i 1-8

1-15 Four-Component Addressing Exampleccooiiiiiiniiiiinnnenennnn... 1-9

1-16 Data Transfer Instructions ... 1-10

1-17 Arithmetic InStructions oot 1-10

1-18 Bit Manipulation INStructionsottt 1-11

1-19 String INStruCtioNs i e e 1-11

1-20 Program Transfer Instructionsccoiiiiiiiiiiiiiii it e, 1-12

1-21 Processor Control Instructions ...ttt 1-13

1-22 8088 Bus Interface is Similarto 8085ccoiviiiiiiiiiiii i 1-14

1-23 Multiplexed Bus Components for Low Chip-Count Applications 1-15

1-24 iAPX 88 Bipolar Support Componentsciuiiiiiiiiiiiiiiiiann. 1-16

1-25 iAPX 88 Longer Memory Access Timeouiniiiiiiiiiiiniiiininainnns 1-17

1-26 iAPX 88 Processor EXtensionscouiiiuiiii it 1-18

CHAPTER 2
2-1 How to Address One Million Bytescoiiiiiiiiiiiiiiiiiiiiiniann. 2-2
2-2 8088 Register Structureot e 2-3
2-3 Implicit Use of General Registersc.oiiiiiiiiiiiiii i 2-4
2-4 Defining Bits in Instructions with One and Two Operands ~................... 2-6
2-5 Determing First Operandttt 2-7
2-6 Effective Addresses Used with Different Data Structures 2-7
2-7 8088 AdAress CoOmMPONENtS ...i.tiitiit ittt e et aiaieanns 2-7
2-8 Reserved and Dedicated Memory Locationsocoviiiiiiiin., 2-8
2-9 Interrupt Vector Tablein Memoryo 2-9

2-10 Effective Address Calculation Timeccoviiiiiiii i, 2-17

2-11 Translation Process A 2-19

2-12 Assemblers and Compilersooiiiiiiiii i 2-19

2-13 Delimiters in ASM-86 ittt i e e 2-24

2-14 ASM-86 Reserved Wordsvuiuinintiii i iei e 2-43,44

References for Instruction Set i 2-4547
(continued)

List of Figures (cont.)

CHAPTER 3 Page
-1 8088 CPU PiNs .ttt et e 3-1
3-2 Time Multiplexing of Addressand Data coiiiiiiiiniiiininann.. 3-2
3-3 Decoding of Status Signals S3-S coiiiiiiiii i 3-2
3-4 IAPX 88 Multiplexed BUs Systemcoiuiniiiiii i 3-4
3-5 iAPX 88 With Buffered Demultiplexed Bussesc.coeiiiiiiainenn.. 3-5
3-6 IAPX 88 Status DeCodiNg ...ouitii i e e e 3-5
3-7 iAPX88Basic Machine CycClecciiiiiiiiiii ittt 3-7
3-8 iAPX 88 Compatible Multiplexed Bus Componentsc.cocvivin.n. 3-8
3-9 Multiplexed Bus CONNECLIONS ... ittt ci et i e 3-10

3-10 Demultiplexed Bus CONNECLIONS uiniiiiii it 3-11

3-11 iAPX 88 With Buffered Demultiplexed Bussesc.cociiiiinin.... 3-12

3-12 How 16-bit Data is Arranged in 8-bit Memory 3-13

3-13 Generating Clock Signal With 8284A ittt 3-13

3-14 CPU State Following ReSetiiiiiiiii it 3-14

3-15 iAPX 88 Bus Condition During Reset ... 3-15

3-16 IAPX 88 Bus DUrNg ReSetc.iiiiniiiii i 3-15

3-17 8284A Reset CirCUit ...ttt e 3-16

3-18 Constant Current on Reset Circuit, 3-16

3-19 Normally READY Wait State Timing ...t 3-17

3-20 Normally Not READY Wait State Timing c.oiiiiiiiiiiiiiiiiaaen, 3-18

3-21 Using RDY 1/RDY 2to Generate READY ..ottt 3-19

3-22 Using AEN1/AEN2 to Generate READYciitiriiiiii i neiienens 3-19

3-23 Single Wait State Generatoro.iuiiiiiiiii i 3-19

3-24 Interrupt Acknowledge SeqUENCEei.iiiiiiiiii e 3-20

3-25 Interrupt Vector Table in Memory ...t 3-21

3-26 Interrupt Priorities ... s 3-23

3-27 iAPX 88 Bus Condition During HOLDttt 3-24

3-28 IAPX 88 and 8237A ConNNECLiONSiuiiutiti i e e 3-25

3-29 HOLD/HLDA TimiNg .ttt et e ie e 3-26

3-30 iAPX 88 Using Maximum Modeoiuiiiiiiiii e 3-26

3-31 Min./Max. Mode Pin Assignments ...t 3-27

3-32 Queue Status Decodingc.iiiii e 3-27

3-33 Request Grant Sequence Time (Max. Mode Only)c...coiiiae... 3-28

3-34 iIAPX 88/21 Configurationot e 3-29

CHAPTER 4
4-0 iAPX 88 Multiplexed System Design Examplecoiiiiiiiiniiininenn, 4-2
4-1 iAPX 88 Demo Board AdAress Mapovviiinriiiiei it 4-4
4-2 Vest Pocket Computer Component Layoutc.coviiiiiiieiiiiiennnnn. 4-5
4-3 Vest Pocket Schematico 4-6
4-4 iAPX 88 Demultiplexed Bus Systemo 4-8
4-5 2114 Chip Select Connection ..ottt et e it 4-11
4-6 IAPX 88 S100 BUS SyStem ..ottt s 4-11
4-7 IAPX 88 S100 SChematiCiuiniitt et 4-12
4-8 CRT Controller Block Diagraminiiiiiriiiit i iiireaneannns 4-15
4-9 8276 Row Buffer Loadingc.oiiiiiiiiiii i e 4-16

4-10 Escape Character Recognition Codeciiiiiiiiiiiiiiiiininn., 4-17

4-11 iAPX 88 Multiprocessing Systemoiiiiiiiii it 4-18

4-12 Typical iAPX 88 Local Mode Configurationc.coiiiiiiiiniinann... 4-19

4-13 Typical 8089 Remote Mode Configurationc.oiiiiiiiiiiniinn.. 4-21

4-14 i{APX 86,88 Multiprocessing Systemottt 4-22

(continued)

List of Figures (cont.)

SUPPLEMENT Page
S-1 - Microcomputer Block Diagramoveiriieinriiiii i S-1
APPENDIX

IAPX 88 vS. ZIlog Z80 i 1
Table 1 Architecture Featuresooiiiiniiiiiiiiie it iiinieeaannanns 2
Table 2 Execution Times iAPX 88 vs. ZBOAottt it aannanas 5
Table 3 Execution Times iAPX88vs. Z80Bciiiiiiiiiiiiii i iiieieiians 6
Table 4 Execution Times with Comparable Memory Accessccoevvvivnen... 6
Table 5 Execution Times with Comparable Memory Accesscccovvvuen... 7
Table 6 Ease of Programming iAPX 88vs. Z80ccciuiiiviiniiiniaiiainennn.. 7
Table 7 Memory Utilization (ByteS)couiiiiiiiiiii i i iei e 8
Table 8 Performance BreakdOWniiiniiiiiiii it e e 9
Fig. 1 16-bit Multiply Flowchart i e e 11
Fig. 2 Block Translate Flowchart ...t it enans 14
Fig. 3 Bubble Sort ' ... o 17
iAPX 88 vs. Motorola MC6809ccoiiiiiiiiiiiiieeean, 20
Table 1 Architecture Featuresciiiiiiiiiiii it 21
Table 2 Execution Times (5 MHz 88/10vs. 2 MHz 6809)c.ccovvininnnnn.. 24
Table 3 Execution Times with “Equal” Memory Access Times 25
Table 4 Memory Utilization (Bytes)ccoiiiiiiiiiiiiiii it iiee e 25
Table 5 Ease of Programmingo.iioiiiiiiint e 26
Table 6 Performance Breakdown ittt 27
Fig. 1 16-bit Multiply Flowchart i i e 28
Fig.2 Block Move Flowchartoiniiiiiiiii it it 31
Fig. 3 Character Search Flowchart ... i 34

vi-

ction
iAPX 88

CHAPTER 1
INTRODUCTION

WHAT IS THE 80882

AniAPX 88* Microcomputer system has the
three main elements typical to most compu-
ter systems: The central processor (8088
CPU), the input/output ports, and memory
(Fig. 1-1).

The iAPX 88 is unique in many ways, how-
ever, and the remainder of this chapter
describes the basics of the 8088 CPU and
iAPX 88 Microcomputer systems.

One of the most unique aspects of the 8088
is shown in the simple block diagram (Fig.
1-2). The 8088 combines the powerful resour-
ces of a 16-bit microprocessor internal
architecture with an easy-to-use 8-bit bus
interface. The bus interface is easy for hard-
ware designers because it is similar to other
8-bit microprocessors. In particular, most of
the bus lines are identical in function to the
popular 8085A. Those designers who have
interfaced memories and I/ O devices to 8085

*]APX refers to the entire microsystem built around
the 8088 CPU.

microprocessors will find it easy to incorpo-
rate the 8088 into new systems.

16-BIT POWER ON AN 8-BIT BUS

The 16-bit internal architecture provides 16-
bit wide registers, data paths, a 16-bit ALU,
and a set of powerful 16-bit instructions iden-
tical to the ones found in the popular 16-bit
8086 microprocessor.

With this new internal architecture, the 8088
has features that were never before available
with an 8-bit microprocessor. Among these
features is a 20-bit memory address range
and a 16-bit input/output port address range
for I/O cycles. This gives the 8088 a full
megabyte (1,000,000-plus bytes) of memory

BRINGS 16-BIT CAPABILITY TO 8-BIT
ENVIRONMENTS

16-BIT

8085A
ARg\ll-.lrﬁ'E'é‘%bRE BUS INTERFACE

Figure 1-2. 8088 CPU

< ADDRESS BUS

L

MEMORY

170

¢

2\

C

DATA BUS >

< CONTROL BUS

Figure 1-1. Microcomputer Block Diagram

1-1

INTRODUCTION

addressability and 64,000 bytes of I/0
addressability.

The iAPX 88 instruction set includes a full
complement of arithmetic operations includ-
ing addition, subtraction, multiplication, and
division, on 8-bit or 16-bit quantities. This
gives the 8088 the highest computational
throughput of any 8-bit microprocessor for
numerics intensive applications. The 8088
also has a complete set of string manipula-
tion operations for performance and flexi-
bility in applications where large amounts of
data are involved.

To make efficient use of its megabyte of
memory addressing, the 8088 provides the
most powerful range of addressing modes
available to the programmer; from simple
immediate addressing (data contained in the
instruction) to complex addressing built from
four components (three registers plus imme-
diate data). More details are provided on
addressing modes later on in this chapter.

The 8088 has built-in hardware support for
multi-processor systems to coordinate re-
source sharing of memory or peripheral
devices among multiple processors.

Finally, and possibly the most powerful
advantage: the 8088 is 100% code compatible
with the 16-bit 8086 CPU. All the power of
the 8086 16-bit instruction set is available in
the 8-bit 8088. So, IAPX 88 systems are easily
upgradable to iAPX 86 16-bit systems because
of this complete instruction set compatibility.

HOW THE 8088 PIPELINED
ARCHITECTURE INCREASES SYSTEM
PERFORMANCE

Figure 1-3 shows how programs are executed
over time in a standard microprocessor.
First, the microprocessor must fetch the
instruction to be performed, then it executes
the instruction. Only after the execution is
complete is the CPU ready to fetch in the
next instruction, execute that instruction, etc.
as the program proceeds from beginning to
end.

The CPU hardware that executes instruc-
tions must obviously wait until the
instruction is fetched and decoded before
execution begins. Therefore, in standard
microprocessors, the execution hardware
(primarily the control circuitry and the
arithmetic and logic unit) spends a lot of time
waiting for instructions to be fetched. The
8088 eliminates this wasted time by dividing
the internal CPU into two independent func-
tional units (Fig. 1-4).

BUS
EXECUTION
INTERFACE
UNIT UNIT

SYSTEM BUS
PIPELINED ARCHITECTURE DELIVERS HIGHER
PERFORMANCE WITH REDUCED BUS ““DEAD
TIME”

Figure 1-4. Pipelined Internal Architecture

FETCH EXECUTE

FETCH

EXECUTE FETCHe oo

TIME —

Figure 1-3. Program Execution in Standard Microprocessor

1-2

INTRODUCTION

Bus Interface and Execution Units

Work in Parallel

The 8088 has a separate bus interface unit
called the BIU whose only job is to fetch
instructions from memory and pass data to
and from the execution hardware to the out-
side world over the bus interface. Since the
execution unit and the bus interface unit are
independent, the bus interface unit fetches
additional instructions while the execution
unit (sometimes called the EU) executes a
previous instruction. This is made possible
by the instruction pipeline (or queue)
between the bus interface unit and the execu-
tion unit; the bus interface unit fills this
pipeline with instructions awaiting execu-
tion. Thus, whenever the execution unit
finishes executing a given instruction, the
next instruction is usually ready for imme-
diate execution without delays caused by
instruction fetching. Figure 1-5 shows paral-
lel fetching and executing in the 8088 CPU.

BENEFITS OF PIPELINING

Because the BIU is usually busy fetching
instructions for the pipeline, the 8088 bus is
more fully utilized making efficient use of
the iAPX 88 system bus structure. Parallel
fetching and executing also gives the 8088
almost as much performance as a micropro-
cessor that moves data 16-bits at a time.

Another benefit of the parallel operation is
that since the execution unit seldom needs to
wait for the BIU to fetch the next instruc-
tion, there is less need for the BIU to fetch
data quickly. Thus, the 8088 BIU allows
maximum performance and processing
power without high speed memory devices in
the system.

The only time instruction fetch time is not
totally transparent is when program execu-
tion transfers to a new, non-sequential
address. When this happens, the bus inter-
face unit is given the new address by the
execution unit; it then begins fetching instruc-
tions sequentially from the new address. The
execution unit must wait for the next
instruction to be fetched the way most
microprocessor units wait for every instruc-
tion to be fetched. After the first instruction
is fetched from the new location the bus
interface unit again continues to fill the pipe-
line with instructions and fetch-time be-
comes transparent.

HOW THE 8088 REGISTER RESOURCES
PROVIDE EFFICIENT PROGRAM CODING
Figure 1-6 provides an overview of the regis-
ters available in the 8088 CPU. The 8088
provides the largest number of continuously
available registers of any 8-bit microproces-

BIU | FETCH FETCH FETCH FETCH FETCH SET
EU | war EXECUTE EXECUTE EXECUTE

Figure 1-5. Parallel Operation in 8088 CPU

1-3

INTRODUCTION

sor. Within the general register group there
are eight 16-bit registers. Four of these can be
referenced alternately as either 16-bit or as
eight 8-bit registers. All of these registers are
available to the programmer for general pur-
pose activities.

In addition to the general registers, there are
two 16-bit control registers and four 16-bit
segment registers. The function of all 8088
registers is described in more detail in the
following paragraphs.

Data Registers

The data group registers which, in their 16-bit
form, are the AX, BX, CX and DX registers
(Fig. 1-7). For 8-bit operations they are
broken up into a high byte and low byte. AH
is the high byte of the AX register, AL is the
low byte of the AX register, and so on. As

register is used as a base register in some of
the more powerful addressing modes.

Pointer and Index Registers

Figure 1-8 shows the pointer and index regis-
ters. The BP and SP registers both point to
the 8088’s stack, a linear array in the 8088’s
memory used for subroutine parameters,
subroutine return addresses, or other data
temporarily saved during execution of an
8088 program.

Most microprocessors have a single stack
pointer register called the SP. The 8088 has
an additional pointer into the stack called the
BP or the base pointer register. While the SP
is used similar to stack pointers in other
machines (for pointing to subroutine and

1-4

" mentioned, these registers have general usage
for simple arithmetic and logical operations. AH AL AX
Some registers have additional special func-
tions which are performed in the execution of BH BL BX
certain instructions. For example, the CX
register is frequently used to contain a count
value during repetitive instructions. The BX CH CL 2
DH DL DX
5
- DATA -
i]
k GENERAL Figure 1-7. Data Group Registers
INDEX A REGISTERS
BP & SP FOR BP
- POINTER - STACK PARAMETER
/ PASSING Sp
L CONTROL - } CONTROL
REGISTERS SI & DIFOR sl
STRING MANIP. &
] DATA STRUCTURES DI
L i 'SEGMENT
SEGMENT 1 > REGISTERS
THESE CAN ALSO BE USED AS GENERAL
REGISTERS
Figure 1-6. 8088 Register Set Figure 1-8. Base and Index Registers

INTRODUCTION

interrupt return addresses), the BP register is
available to the programmer for whatever use
he desires. The BP register can contain an old
stack pointer value, or it can mark a place in
the subroutine stack independent of the SP
register. Using the separate BP register to
mark the stack saves the juggling of a single
stack pointer to reference subroutine parame-
ters and addresses.

The two index registers are the SI (source
index) register and the DI (destination index)
register (Fig. 1-8). These are both 16-bits
wide and are used by string manipulation
instructions and in building some of the more
powerful 8088 data structures and addressing
modes. Both the SI and DI registers have
auto-incrementing and auto-decrementing capa-
bilities. All base and index registers have
general arithmetic and logical capabilities in
addition to their special functions. '

Control Registers

Figure 1-9 shows two 16-bit control registers.
First is the IP or instruction pointer which
points to the next instruction the bus inter-
face unit will fetch. (The instruction pointer is
similar to a Program Counter used in other
microprocessors, except that the IP points to
the next instruction being fetched, whereas
the traditional program counter points to the
next instruction to be executed). The second
16-bit control register (Fig. 1-9) contains flags
or condition codes that reflect the results of

arithmetic or logical operations as they are
performed by the execution unit.

Segment Registers

The fourth group of registers, called the seg-
ment registers, are used by the 8088 in the
formulation of memory addresses. Segment
register usage is described in the following
section on memory addressing.

THE iAPX 88 MEGABYTE MEMORY
ADDRESSING MEANS QUICK ACCESS
TO COMPLEX DATA STRUCTURES

As mentioned, the 8088 generates a 20-bit
memory address during every memory refer-
ence operation, to address one million
(1,048,576) bytes of memory. These bytes are
stored sequentially starting from byte 0 to
byte FFFFF in hexidecimal or base 16 nota-
tion. The 8088 has three uses for the memory
it addresses: programs, data and stack. The
8088 may separate data into “local data” used
by a particular program segment and “global
data’ accessible to all program segments. Al-
ternately, you may have two data areas acces-
sible to a given program at any point in time.

Every 20-bit memory address points either to
program code, data, or stack area in memory
(Fig. 1-10). For each of the four different
memory spaces, the 8088 has a segment base
register. Each segment register points to the
base address of the corresponding area in

INSTRUCTION
POINTER

FLAGS OF | DF

TF [SF | zF AF PF CF

Figure 1-9. Control Registers

1-5

INTRODUCTION

memory (Fig. 1-11). The code segment regis-
ter points to the base of the program
currently running. The stack segment register
points to the base of the 8088’s stack, the data
segment register points to the base of one
data area, and the extra segment register
points to the base of another area where data
can be stored. Each segment register is 16-bits
wide, and one of the four is used in the com-
putation of every memory address that the
8088 generates.

How are Addresses Generated?

Every time the 8088 needs to generate a
memory address, one of the segment registers
is automatically chosen and added to a logi-
cal address (Fig. 1-12).

For an instruction fetch, the code segment
register is automatically added to the logical
address (in this case the contents of the
instruction pointer) to compute the value of
the instruction address.

For an operation referencing the 8088’s stack,
the stack segment register is automatically
added to the logical address (the SP register
contents) to compute the value of the stack
address.

For data reference operation, where either
the data or extra segment registers are chosen

MEMORY
T
STACK
cooE 1 W%
STACK clallal
DATA | %
DATA 1
EXTRA >
VA
REGISTERS .| PROGRAM
Vi
CONTENTS OF 8088 SEGMENT REGISTERS
POINT TO THE BASE ADDRESS OF THE
CORRESPONDING AREAS IN MEMORY.

IMPLICIT
SELECTION
CODE [> seament
STACK
& | Locicar
DATA ADDRESS
| A |
EXTRA
SEGMENT 20 BIT
REGISTERS PHYSICAL
ADDRESS

Figure 1-12. How an Address is Built

MODULE
DATA

MODULE
STACK

SYSTEM
DATA

Figure 1-10. iAPX 88 Architecture Quick Access to Four Segment Types

INTRODUCTION

as the base, the logical address can be made
up of many different types of values: it can be
just the immediate data value contained in
the instruction, or, it can be the sum of an
immediate data value, plus a base register,
plus an index register.

For the sum of the addition to be 20-bits
wide, the segment register value is automati-
cally shifted left by four binary bits before it
is added to the 16-bit logical address. The
result is always 20-bits of physical address.

Note that since logical addresses are always
16-bits wide, you can address up to 64K bytes
in a given segment without changing the value
of the segment base register. In systems that do
not have more than 64K bytes of program plus
64K bytes of stack, plus 64K bytes in each of
two different data areas, it is possible to set the
segment registers at the beginning of the pro-
gram and then forget them. In a system where
the fotal amount of memory is 64K bytes or
less, it is possible to set all segment registers
equal and have fully overlapping segments.

On the other hand, segment registers are very
useful when you have a large programming
task and you want isolation between your
program code and the data area or isolation
between module data and the stack informa-
tion, etc. Segmentation also makes it easy to
build relocatable and/ or reentrant programs.

RELOCATABLE AND REENTRANT
PROGRAMS

In many cases, the task of relocating an 8088
program (relocation means having the ability
to run the same program in several different
areas of memory without changing the pro-
gram itself) simply requires moving the
program code and then adjusting of the code
segment register to point to the base of the
new code area. Since programs can be writ-
ten for the 8088 where branches or jumps in
program flow may occur using new locations

relative only to the instruction pointer, the
program does not care what value is kept in
the code segment register. Figure 1-13 shows
how an entire process, consisting of code,
stack and data areas, can be relocated.

Likewise in a reentrant program, a single
program uses multiple data areas. Before the
reentrant code is entered the second time, the
data segment register value is changed so that
a different data area is made available to the
program.

ADDRESSING MODES

Now, let’s continue our discussion of address-
ing modes, providing more detail about how
addresses are formed.

The 8088 has 24 different addressing modes
to generate logical addresses. Figure 1-14
shows the different logical address combina-
tions, from the simplest immediate data
mode to the register addressing mode, where
a selected register contains the data being
used by the instruction. In the direct address-
ing mode, the instruction itself contains the
address of the data. In the register indirect
mode, the instruction points to a register con-
taining the memory address of the desired
data. There are both indexed and based
addressing modes where the contents of an
index or based register is added to an imme-
diate data value contained in the instruction
to form the memory address.

Exactly how the 8088 selects an addressing
mode for a given instruction is encoded
within the bits of the instruction code. This is
discussed in more detail in Chapter 2.

If we examine the most complex and power-
ful of the addressing modes, which includes
base register, index register, and displace-
ment in the logical address, it can be seen that
some fairly complex data structures can be
easily addressed in a single instruction by the
8088.

INTRODUCTION

MEMORY
BEFORE RELOCATION

MEMORY
AFTER ELOCATION

V% 7
CODE i
/SEGMENT CODE CODE
//// STACK STACK
Lizc 4 DATA i DATA
SEGMENT — 1 ExTRaA EXTRA |—
Z //
DATA CODE
SEGMENT | ' | SEGMENT
- STACK
/ | SEGMENT
DATA
/ . SEGMENT
EXTRA
SEGMENT | _ . SEQMENT
Y% E Y%

TO RELOCATE AN ENTIRE PROCESS MOVE THE CODE,
STACK, AND DATA, AND UPDATE THE SEGMENT REGISTER
CONTENTS TO POINT TO THE NEW AREAS.

Figure 1-13. Process Relocation

MODE LOCATION OF DATA
IMMEDIATE WITHIN INSTRUCTION
REGISTER IN REGISTER
DIRECT AT MEMORY LOCATION POINTED TO BY ADDRESS CONTAINED IN

INSTRUCTION.

REGISTER INDIRECT

AT MEMORY LOCATION POINTED TO BY ADDRESS CONTAINED IN
REGISTER.

INDEXED OR BASED

AT MEMORY LOCATION POINTED TO BY SUM OF INDEX REGISTER
OR BASE REGISTER CONTENTS AND IMMEDIATE DATA CONTAINED
IN INSTRUCTION.

BASED AND INDEXED
WITH DISPLACEMENT

MEMORY ADDRESS IS SUM OF BASE REGISTER CONTENTS AND
INDEX REGISTER CONTENTS AND IMMEDIATE DATA.

THE LOCATION OF DATA IS REALLY THE LOGICAL ADDRESS, WHICH IS ADDED TO THE SEGMENT
REGISTER VALUE TO FORM THE PHYSICAL MEMORY ADDRESS.

Figure 1-14. iAPX 88 Addressing Modes

1-8

INTRODUCTION

FOUR-COMPONENT ADDRESSING

An example of four-component addressing
(three-component logical address plus seg-
ment base) is shown in Figure 1-15, and is
described as follows:

Suppose you’re writing a program to com-
pute the payroll for a large corporation. This
corporation has several groups of employees.
Within each group there are multiple em-
ployees, and for each employee certain data
is kept in a record of information. Included
in this data are the employee’s address, social
security number, and a wage code indicating
how much that employee is being paid.

The task at hand is to select the wage code for
a particular employee from the entire com-
plex array of employee data. The 8088 can do
it with a single instruction after the registers
are set up. Here’s how: First, set the data
segment register to the base of the employee
data, set a base register such as BX to contain
the offset number of bytes between the
employee data base address and the start of
the data that applies only to the desired
group of employees. Next we set an index
register such as SI to index to the desired
employee’s information within the given
group of employees. Finally, we use an abso-

lute displacement value to point to the given
employee’s wage code within the employee’s
data record.

The single instruction MOV AX, [BX + SI+ 12]
then, will select the appropriate employee’s
wage code. To implement the same function
with any other 8-bit microprocessor would
require multiple instructions to build the
address.

Symmetric Use of Memory

Another way these powerful addressing
modes work is that memory locations can be
used as either source or destination operand
of most instructions. A single 8088 instruc-
tion can perform a logical AND between the
contents of a given memory address and an
immediate data value, and store the results
back in the same memory address. The equi-
valent function would take multiple
instructions on an 8-bit processor such as
an 8080. It is as though you can treat any
memory location as a CPU register for sim-
ple arithmetic and logic operations. Follow-
ing are several operations which can be
performed directly on memory locations.

AND [memory address], 7FH
OR [BX + ST+ 12], 1F80H
ADD [memory address], 2500

PAYROLL
DATA

I

DISPLACEMENT = 12 (WAGE CODE)

INDEX = S| (EMPLOYEE #N)
BASE = BX(EMPLOYEE GROUP)
SEGMENT = DS (PAYROLL SEGMENT)

MOV AX,[BX +SI+12];GET WAGE CODE

Figure 1-15. Four-Component Addressing Example

1-

9

INTRODUCTION

THE 8088’s POWERFUL 16-BIT
INSTRUCTION SET

The 8088 has the most powerful instructions
of any 8-bit microprocessor. In addition to
the standard instruction types you would find
on other 8-bit machines, the 8088 offers
powerful 16-bit instructions that perform the
function of multiple instructions on older
8-bit architectures. Figure 1-16 through 1-21
show the various groupings and the instruc-
tion names.

The 14 data transfer instructions (Fig. 1-16)
move single bytes and words between memory
and registers as well as between registers AL
or AX and I/O ports. The stack manipula-
tion instructions are included in this group as
are instructions for transferring flag contents
and for loading segment registers.

8088 arithmetic operations (Fig. 1-17) may be
performed on four types of numbers: un-
signed binary, signed binary integers,
unsigned packed decimal and unsigned

unpacked decimal numbers. Binary numbers
may be 8-bits or 16-bits long, decimal
numbers are stored in bytes, two digits per
byte for packed decimal, and one digit per
byte for unpacked decimal.

The 8088 provides three groups of bit manip-
ulation instructions (Fig. 1-18) for
manipulating bits within bytes and words
and for performing logical shifts and rotates.
The logical instructions include the Boolean
operators NOT, inclusive OR, exclusive OR,
plus a TEST instruction that sets the flags
but does not alter either of its operands.

The bits in bytes or words may be shifted
arithmetically or logically by the shift instruc-
tions. Up to 255 shifts may be performed
according to the value of the count operand
coded in the instruction. The count may be
specified as the constant “1” or as the con-
tents of register CL, allowing the shift count
to be a variable supplied during program

ADDITION
GENERAL PURPOSE ADD Add byte or word
ADC Add byte or word with carry
MoV Move byte or word INC Increment byte or word by 1
PUSH Push word onto stack AAA ASCI| adjust for addition
POP Pop word off stack DAA Decimal adjust for addition
XCHG Exchange byte or word SUBTRACTION
XLAT Translate byte SUB Subtract byte or word
SBB Subtract byte or word with borrow
INPUT/OUTPUT DEC Decrement byte or word by 1
IN input byte or word 25‘; lélegate bybtetor word 2
ompare byte or wor
out Output byte or word AAS | ASCIladjust for subiraction
ADDRESS OBJECT DAS Decimal adjust for subtraction
LEA Load effective address MULTIPLICATION
LDS Load pointer using DS mllliJLL IMim'p'y by:tg o'r Vt\)lotrd unsngr;ed
- - nteger multiply byte or wor
LES Load pointer using ES AAM | ASCITadjust for multiply
FLAG TRANSFER DIVISION
LAHF Load AH register from flags DIV Divide byte or word unsigned
- - IDIV Integer divide byte or word
SAHF Store AH registerin flags
9 g AAD | ASCIladjust for division
PUSHF Push flags onto stack CBW Convert byte to word
POPF Pop flags off stack CWD Convert word to doubleword

Figure 1-16. Data Transfer Instructions

Figure 1-17. Arithmetic Instructions

INTRODUCTION

execution. Bytes and words also may be
rotated. Bits rotated out of an operand are
not lost as in a shift but are circled back into
the other end of the operand.

POWERFUL STRING PROCESSING

Five basic string instructions called primitives
allow a string of bytes or words to be oper-
ated on, one byte or word at a time. Strings
of up to 64K bytes may be manipulated with
these instructions. Instructions are available
to move data from a source string to a desti-
nation string, or to compare two strings, or
to scan one string for a given value. In addi-
tion, string instructions are provided to move
string elements to and from the AX register
in the 8088 (Fig. 1-19).

The specified operation is performed only
once when the string primitive is encountered
in the program. If the programmer desires
the operation to be performed repetitively,

such as in a block or string manipulation
operation, the basic string primitive may be
proceeded by a special one byte “prefix” that
causes the instruction to be repeated by the
hardware. This prefix is called REPEAT.
The use of the REPEAT prefix allows long
strings to be processed much faster than
would be possible with a software loop. The
repetitions can be terminated by a variety of
conditions and a repeated operation may be
interrupted and resumed. The CX register
counts the number of times the string opera-
tion is performed.

When the 8088 moves a 16-bit quantity, it
does so 8 bits at a time automatically in the
hardware. Because of the variety of string
operations and the fact the 8088 can move
both 8-bit and 16-bit quantities using its
string instructions, the 8088 has the most
powerful string processing capabilities of any
8-bit microprocessor.

The program transfer instructions are shown
LOGICALS in Figure 1-20. These instructions redirect the
NOT “Not” byte or word flow of instruction execution to other loca-
AND “And” byte or word t10n§ in memory apd many 9f them are
— - - equivalent to instructions found in other 8-bit
OR Inclusive or’’ byte or word .
on e o o - microprocessors. The 8088, however, offers
X Xclusive or byte or wor much more flexibility in how an instruction is
TEST Test” byte or word performed. The unconditional transfer instruc-
SHIFTS tions may transfer control to a target
SHL/SAL Shift logical/arithmetic left MOVS Move byte or word string
byte or word
SHR Shift logical right byte or word CMPS Cc;rm):é'e byte orword
SAR Shift arithmetic right byte or ‘
word SCAS Scan byte or word string
ROTATES LODS Load byte or word string
ROL Rotate left byte or word STOS Store byte or word string
ROR Rotate right byte or word REP Repeat
RCL Rotate through carry left byte
rworg gncarry ety REPE/REPZ Repeat while equal/zero
RCR Rotate through carry right REPNE/REPNZ | Repeatwhile not
byte or word equal/not zero

Figure 1-18. Bit Manipulation Instructions

Figure 1-19. String Instructions

INTRODUCTION

instruction within the current code segment
for an intrasegment transfer, or to a different
code segment with an intersegment transfer.
The transfer is made unconditionally any
time the instruction is executed. An intra-
segment transfer is always made relative to
the current value of the instruction pointer.
Program segments which only use intraseg-
ment transfers are, therefore, relocatable in
memory. The conditional transfer instruc-
tions may or may not transfer control,
depending on the state of the CPU flags at
the time the instruction is executed.

The 18 instructions (Fig. 1-20), each test a
different combination of flags for a condi-
tion. If the condition is true, control is
transferred to the target address specified for
the instruction. If the condition is false, then
control passes to the instruction that follows
the conditional jump.

The iteration control instructions regulate the
repetition of software loops. These instruc-
tions use the CX register as a counter. The
LOOPNE instruction for instance decre-
ments a count, checks to see if the count is
zero, and branches back to the beginning of
the program loop. The equivalent function
would require multiple instructions in an
older 8-bit instruction set, such as the 8080’s.

The interrupt instructions allow interrupt
service routines to be activated by both pro-
grams and external hardware devices. The
effect of software initiated interrupts is sim-
ilar to hardware initiated interrupts.

The processor control instructions (Fig. 1-21)
allow programs to control various CPU func-
tions to update flags and to synchronize the
8088 with external events. Finally, the NOP
instruction causes the 8088 CPU to do
nothing,

CONDITIONAL TRANSFERS

UNCONDITIONAL TRANSFERS

JA/JNBE Jump if above/not below nor equal CALL Call procedure
JAE/INB Jump if above or equal/not below RET Return from procedure
JB/JNAE Jump if below/not above nor equal JMP Jump

JBE/JNA Jump if below or equal/not above

JC Jumpif carry ITERATION CONTROLS

JE/JZ Jump if equal/zero /

JG/INLE Jump if greater/not less nor equal LOOP Loop

JGE/JNL Jump if greater or equal/not less LOOPE/LOOPZ Loop if equal/zero
JL/INGE Jump if less/not greater nor equal LOOPNE/LOOPNZ Loop if not equal/not zero
JLE/UNG Jump if less or equal/not greater JCXZ Jump if register CX =0
JNC Jump if not carry

JNE/JINZ Jump if not equal/not zero INTERRUPTS

JNO Jump if not overflow

JNP/JPO Jump if not parity/parity odd INT Interrupt

JNS Jump if not sign INTO Interrupt if overflow
JO Jump if overflow IRET Interrupt return
JP/JPE Jump if parity/parity even

JS Jump if sign

NOTE:

“Above” and “below” refer to the relationship of two unsigned values. “Greater” and “less” refer to the

relationship of two signed values.

Figure 1-20. Program Transfer Instructions

1-12

INTRODUCTION

Well-Planned Instructions

The 8088 instructions can be from one byte
to seven bytes in length, depending on the
number of operands and immediate data
fields included in the instruction. Great care
has been taken in the design of the instruc-
tion set to allow for efficient programs to be
written. The 8088 instructions need not be
word aligned (starting at even addresses) con-
trary to many other 16-bit instruction sets,
therefore saving bytes otherwise wasted. It is
also possible to use one-byte constants, one-
byte displacements, and jump offsets, saving
code when compared with other machines
that always require 16-bit quantities be used.

The 8088 instruction set also has been
designed such that some registers are always
used for certain functions. The CX register,
for example, is used for a count value by
some repetitive instructions. This implied use
of registers allows shorter programs because
the register address need not be contained in
those instructions.

FLAG OPERATIONS
STC Setcarry flag
CLC Clear carry flag
CMC Complement carry flag
STD Setdirection flag
CLD Clear direction flag
STI Setinterrupt enable flag
CLlI Clear interrupt enable flag
EXTERNAL SYNCHRONIZATION
HLT Halt until interrupt or reset
WAIT Wait for TEST pin active
ESC Escape to external processor
LOCK Lock bus during next instruction
NO OPERATION
NOP [No operation

Figure 1-21. Processor Control Instructions

Because of the symmetric use of memory and
the ability to build sophisticated data struc-
tures using the 8088 addressing modes, the
8088’s instruction set is ideal for the imple-
mentation of higher level languages. And
because the instruction set is bit-efficient, the
higher level language programs consume less
memory. Benchmarks have shown that the
8088 can generate both assembly language
and higher level language programs with 30%
less source and object code than other 8- and
16-bit microprocessors. This code savings
results in both higher performance and lower
memory cost. The instruction set of the 8088
is discussed in more detail in Chapter 2.

INTERFACING THE 8088 IS EASY,
FLEXIBLE

We have talked at some length about what
goes on inside the 8088, what its instruction
set is and the resources available for the pro-
grammer. Following is a brief overview of
how the 8088 interfaces with other compo-
nents in an iAPX 88 system.

Figure 1-22 is a simple diagram showing
some of the bus interface lines that are pro-
vided on the 8088 CPU chip. The 8088 is
shown here opposite the 8085A, another
popular 8-bit microprocessor, to emphasize
the similarity between the two interfaces.
Both the 8088 and the 8085A time-multiplex
the low order 8 bits of the address bus with
the 8- bits of the data bus. This means that
during part of an 8088 machine cycle, the 8
bits of the multiplexed bus (ADy-AD7) con-
tain address information, and during the
remainder of the machine cycle the same 8
lines contain data being transferred to/from
the 8088. On both the 8088 and the 8085A
there is a control line, called ALE, which sig-
nals when the multiplexed address and data
lines contain address information. ALE can
be used to enable an external latch to latch
up the address for the remainder of the
machine cycle.

INTRODUCTION

The next higher order address lines, Ag
through Ajs, are present throughout the
machine cycle on both the 8088 and the
8085A. Note that the 8088 has four other
address lines, Aq through A|g not present
on the 8085A and which the 8088 time-
multiplexes with status information during
the machine cycle.

The three control lines RD, WR, and IO/M
signal the actual data transfer during a
machine cycle, whether the 8088 is reading or
writing, and whether that transfer is taking
place with respect to I/ O devices or memory

devices. Also, the 8088, like the 8085A, has
other lines containing cycle status infor-
mation available at the beginning of the
machine cycle to inform other devices in the
system what type of machine cycle is being
performed.

There are several other control lines used
with the 8088 such as interrupts, HOLD,
READY. See Chapter 3 for details.

Using Special Multiplexed Bus Parts

Because the 8088 is so much like the 8085A,
you may connect the 8088 directly to a whole
family of multiplexed bus components de-

8088 8085A
WR
10/M
DT/R S1
STATUS
SSO S0

g
(it

8088 IS AN EASY UPGRADE FOR EXISTING 8-BIT SYSTEMS

Figure 1-22. 8088 Bus Interface is Similar to 8085

1-14

INTRODUCTION

signed for the 8085A, without additional
interface logic. Figure 1-23 shows just a small
system. The multiplexed bus components are
the 8155, the 8355, 8755A, and the 8185.
Each of these contains an internal address
latch that demultiplexes internally the 8088’s
bus. The multiplexed bus devices are highly
integrated as they combine multiple functions
to provide a low cost, high-functionality sys-
tem in a very small number of components.
The 8155 contains 256 bytes of static RAM,
22 parallel 1/O lines, and a 14-bit timer/
counter. The 8355 and 8755A contain 2K
(2048) bytes of either ROM or EPROM, and
16 parallel I/O lines. The 8185 is a 1K byte
static RAM in a narrow 18-pin package.
Note also in Figure 1-23 that the 8088 uses an
external clock generator chip called the
8284A.There is another multiplexed-bus
memory called the 21821, brand new, that
adds 4K bytes of RAM memory to an iAPX
88 system.

BUILDING A STANDARD INTERFACE

Most applications, of course, require more
memory or I/ O capacity than provided by a
multiplexed bus system like the one just des-
cribed. In the average system, the designer
would like to use some commonly available
non-multiplexed RAM chips for data stor-
age, some standard EPROM or ROM chips
for program storage and some special peri-
pheral devices. To build a standard non-
multiplexed bus structure, a whole family of
support components are provided for use
with the 8088. These support devices are
shown in Figure 1-24.

The 8088’s bus can be demultiplexed very
easily using an 8282 or 8283 latch as shown in
Figure 1-24. The 8282 is a non-inverting 8-bit
latch in a narrow 20-pin package. The 8283
provides inverted outputs over the bus (“1”
inputs become “0” outputs and vice versa).

8284A
CLOCK

8088

T

8088 MULTIPLEXED BUS

0

=

8355/8755A

815%_
RAM/IO/TIMER ROM/EPROM/IO

8185
RAM

=

{

Figure 1-23. Multiplexed Bus Components for Low Chip-Count Applications

1-15

INTRODUCTION

To provide extra drive capability for the data
-~ lines, the 8286 and 8287 8-bit transceivers are
available; the 8287 being the inverting version
of the 8286. Also shown in Figure 1-24 is the
8288 bus controller. This optional system
device decodes some status information
coming from the 8088 CPU to provide
special control signals for the bus. The 8288
provides separate memory read, memory
write, I/O read, and I/O write control
signals. Without the 8288, the 8085A-
compatible RD, WR, and 10/M signals
would be used.
Also shown in Figure 1-24 is the 8289 bus
arbiter. It is also an optional component used
in multi-master iAPX 88 systems. A multi-
master system could be one where multiple

8088’s share control of the multi-master bus.
At any one point in time, only one of the
several 8088’s would be allowed to take
control of the bus to access a shared resource
such as a memory. Each 8088 would have its
own 8289 bus arbiter. Handshaking signals
between the 8289’s ensure that only one of
the possible masters takes control of the bus
at a time, thus preventing conflicts between
them.

Once the standard bus structure is created,
the 8088 interfaces easily with standard
memory and peripheral devices. In fact, the
performance requirement on memory devices
and peripherals imposed by an 8088 is much
lighter than any other high-performance 8-bit
MIiCroprocessor.

= 8284A
T CLOCK
8088
8286/87 8282/83 8288 8289
TRANSCEIVER LATCH CONTROLLER ARBITER

U U

MULTIMASTER BUS

Figure 1-24. iAPX 88 Bipolar Support Components

INTRODUCTION

iAPX 88 PERFORMANCE IS

COST EFFECTIVE

Figure 1-25 shows the 8088’s memory speed
requirements compared to other 8-bit micro-
processors. The memory access times listed
refer to the time available from when the
address first comes out of the CPU during a
memory read machine cycle until the data
must be available coming back from the
memory into the CPU.

The 8088 running at SMHz allows 460ns for
memory devices to receive the address and
return the data. The fastest Z80 and the fas-
test 6809 allow only 140ns and 320ns
respectively for the same activity to take
place. This means that the 8088 can offer its
full performance while using slower and pre-
sumably cheaper memories than any other
high-performance 8-bit micropro-
Cessor. ‘

Note that according to the benchmark
reports in the Appendix, the SMHz 8088 use
slower memories while offering an average of
30% more performance than either the
2MHz 6809 or the 6MHz Z80B.

How does the 8088 offer higher performance
yet use slower memory devices? The main
reason is that parallel instruction fetch and
execute using the instruction pipeline allows

the bus interface to be much more relaxed
while execution takes place at the full speed.
The 8088 can run at full speed using readily
available 450ns EPROM devices whereas its
counterparts, the 68B09 and Z80B require
wait states in their machine cycles to do the
same.

PROCESSOR EXTENSIONS FOR
FLOATING POINT ARITHMETIC

AND HIGH SPEED I/0

Up to now, we have justified that the 8088 CPU
itself offers a lot of performance, and many
systems will be built around the 8088 as the
only central processing unit. Note that there
are other ways to expand on the 8088 architec-
ture to add additional processing power to the
basic CPU. These additional processing mod-
ules are called processor extensions. There are
two processor extension chips that can be
added to the iAPX 88 system (Fig. 1-26).

Numerics Processor Extension

The iAPX 88/20 is an optional numerics
processor extension (NPX) added alongside
the 8088 CPU. This configuration has the
effect of adding the additional set of numerics
instructions to the 8088 instruction set. The
NPX picks its own instructions out of the

CPU 8088 68B09 Z80A Z80B
5MHz 2MHz 4MHz 6MHz
MEMORY
ACCESS 460 NS 320NS 250 NS 140 NS
TIME
LONGER ACCESS TIME MEANS SLOWER (AND
CHEAPER) MEMORIES CAN BE USED WITH iAPX 88

Figure 1-25. iAPX 88 Longer Memory Access Time

INTRODUCTION

8088 instruction stream. The instructions that
the NPX interprets as special purpose numer-
ics instructions are regarded almost like
“no-operations” for the 8088. The NPX con-
tains an additional register set of eight 80-bit
floating point registers which are mani-
pulated with by the additional numerics
instructions. Together, the 8088 with the
NPX have approximately 100 times the per-
formance of a standalone iAPX 88 system
for numerics-intensive applications.

1/0 Processor

The 8089 IOP, on the other hand, does not
receive instructions from the 8088 instruction
stream. It is a separate microprocessor with its
own instruction set. The IOP is an input/output
channel processor and off-loads I/O interfac-
ing from the 8088 general purpose CPU. The
IOP’s instruction set, different from the 8088,
is specifically tailored for peripheral control
and high speed data transfer. With the IOP, it is

(

possible to configure a dual-bus system, where
the 8089 interfaces with peripheral devices on
a separate “‘local’”’ bus while the 8088 runs its
application programs in parallel, interfacing
with memories over the system bus.

The IOP has a high-speed direct memory
access (DMA) mode that transfers data
between memory and peripherals or between
memory and memory at 1.25 megabytes per
second. The IOP is also capable of on-the-fly
processing activities such as masked com-
parison operations or data translations. If
you have an application that requires very
high performance floating point numerics
capabilities, numerous peripheral devices, or
very high performance peripheral devices, the
NPX and IOP should be considered for
inclusion in your system. More information
on these devices is contained in other manu-
als from Intel. This book will focus on single
CPU-systems build around the 8088 alone.

8088
CPU

8087
NPX

o3
°3

LOCAL /0 BUS

g

=

g 0

ARBITRATION

ARBITRATION

PERIPHERALS PERIPHERALS

g

=

< SYSTEM BUS

ARCHITECTURE EXTENDS FOR EVEN MORE PERFORMANCE

D

Figure 1-26. iAPX 88 Processor Extensions

, 1-18

INTRODUCTION

REVIEW

This chapter has provided a basic intro-
duction to the 8088 CPU and iAPX 88
systems.

The 8088’s pipelined architecture efficiently
uses the available bus time to maximize CPU
performance and make it possible to get
increased performance, even with slower
memory devices.

The 8088’s register set makes a large number
of 16-bit registers available and some registers
have special functions allowing more efficient
instruction encoding for compact programs.

The 8088’s addressing modes provide quick
access to complex data structures.

The 8088’s instruction set includes powerful
16-bit instructions that lead to smaller pro-
grams because many 8088 instructions replace
multiple instruction sequences in other 8-bit
machines.

The smaller 8088 programs run faster.

With the 8088, it is possible to build lower-
cost systems than with other 8-bit micro-
processors because the 8088 requires less
code memory and runs at high performance
with less expensive memories than other 8-bit
machines.

Interfacing the 8088 to 8-bit systems is easy
with processor extension chips that further
increase the 8088’s performance through
parallel processing using specialized I/ O and
numeric instructions and registers.

The 8088 is a unique CPU with optimal
combination of performance, ease of use, and
system economy that meets the needs of sys-
tem designers in the 1980’s.

The following chapters describe iAPX 88
software, hardware, and system design in
more detail.

THE iAPX 188 CPU

The iAPX 188 is a highly integrated CPU
board-on-a-chip. Most previous highly in-
tegrated microprocessors were optimized for
real-time control applications and supported
relatively small programs in their integrated
memory. Examples of this type of chip are
Intel’s 8048 and 8051 and Zilog’s Z8. The iAPX
188, however, is optimized for computing ap-
plications. It retains all the bus interface capa-
bilities of multi-chip microprocessors, yet it
integrates common peripheral functions used
in computer applications. As shown in Figure
1, the integrated functions on the iAPX 188
include the CPU, clock generator, timers,
DMA channels, interrupt controller, I/O and
memory chip selects, ready generation, and
added internal registers to control these
devices (Figure 2). The iAPX 188 can replace
15-20 of the most common chips found in a
typical microcomputer system.

[oh L1 AA] 1Al
[1 / vyvyy vlv]
clock P~ cpu INTER TIMERS
{ @ INTERNAL BUS @ @ {
CHIP
CHANNELS SELECT
? ? < J L

Figure 1. iAPX 188 CPU (80188) Block Diagram

Clock Generator

The 80188 provides an internal clock oscil-
lator, which requires a single external crystal
or TTL-level frequency source. The system
clock output is a standard 8 MHz, 50% duty
cycle clock at half the 16 MHz crystal fre-
quency. This output can be used to drive the
clock inputs of other system components and
hence makes additional clock generation
devices unnecessary. Synchronous and asyn-
chronous ready inputs are supplied for flexible
peripheral-device synchronization.

)

Timers

Two independent 16-bit programmable
timer/counters are provided to count or time
external events and generate nonrepetitive
waveforms. A third 16-bit programmable
timer, not connected externally, is useful for
implementing time delays and as a prescaler
for the two externally connected timers. The
iAPX 188 integrated timers are very flexible
and can be configured to time/count a variety
of distributed I/O activities.

Each of the three timers is equipped with a
16-bit timer register that contains the current
value of the timer. It can be read or written at
any time, independent of whether the timer is
running. Each timer is also equipped with a
16-bit count register containing the maximum
value the timer will reach. In addition, the two
externally connected timers each have a
second 16-bit count register which enables the
timers to alternate their count between two
different max count values as programmed by
the user. When a terminal count is reached, an
interrupt may be generated, and the timer
value is reset to zero.

The timers have several flexible programmable
modes of operation. All three timers can be 'set
to halt or continue on a terminal count value,
so no external event or device need wait for a
timer reset. The two externally connected
timers can select between internal and exter-
nal clocks, alternate between max count regis-
ters or use only one, and be set to retrigger on
external events.

DMA Channels

1-20

The on-chip DMA controller unit in the iAPX
188 contains two independent high-speed
DMA channels. DMA transfers can occur be-
tween memory and I/O spaces (i.e., M-I/O) or
within the same space (i.e., M—M, I/O-1/0).
The latter feature allows I/O devices and
memory buffers to be freely located anywhere
in the distributed system. For example,
memory-mapped I/O can be handled without

iAPX 188 CPU

15 80188 REGISTER BLOCK 0

———————— — 15 0

DMA CONTROL

CHIP SELECT
CONTROL

256
BYTES

TIMER
CONTROL

L

|
|
|
|
I P
|
I
|
|
|

INTERRUPT
CONTROL

THE MEMORY
OR I/0 MAPPED

I RELOCATION REGISTER}

Figure 2. iAPX 188 Register Architecture

any external decode logic to select the re-
quired I/O space or device. Each DMA chan-
nel maintains two 20-bit source and
destination pointers that can be incremented,
decremented, or left unchanged after each
transfer. Data transfers occur a byte at a time
and can be anywhere in the 1 megabyte of
directly addressable memory space. This al-
lows a maximum transfer rate of 1 megabyte
per second. The user can specify several differ-
ent modes of DMA operation via the on-chip
16-bit DMA channel control word.

By using the 80188 DMA facilities, data can be
input onto local system memory, processed,
passed on to the host computer (if needed),
and output to another I/O device, all by the use
of the two independent, high-speed, on-chip
DMA channels.

Interrupt Controller

The 80188 interrupt controller resolves
priority among interrupt requests that arrive
simultaneously. It can accept interrupts from
up to five external hardware sources (NMI +
4) and internal sources as well (timers, DMA
channels). Each interrupt source has a pro-
grammable priority level and a preassigned
interrupt vector type, used to derive an ad-
dress to a table in memory where interrupt

1-21

service routine addresses are located. This en-
hancement of predefined vector types makes
the interrupt response time about 50% faster
than the typical iAPX 88 response time. The
8259A programmable interrupt controller
(PIC) interrupt modes, such as fully nested
and specially fully nested, are provided by the
80188 as well. In addition, multiple 8259As can
be cascaded to provide the system with up to
128 external interrupts.

Chip Select/Ready Generation

The iAPX 188 contains programmable chip
select logic to provide chip select signals for
memory components, peripheral components,
and programmable ready (wait state) genera-
tion logic. The result of this integrated logic is a
lower system part count, since as many as 11
TTL packs will be saved. In addition to a lower
system cost, the performance of the system
will improve as a result of the elimination of
external propagation delays. Another advan-
tage involves flexibility in the choice of
memory component size and speed. Three
memory ranges (lower, middle, upper) can be
programmed to variable lengths (1K, 2K,
4K, . .. 256K) so that a variety of memory
chip sizes can be used. Further, anywhere
from zero to three wait states can be pro-
grammed so either high-speed or low-cost,
slower memories can be used. With respect to
the peripheral chip selects, as many as seven
different peripheral components can be ad-
dressed via I/O or memory space. Again, pro-
grammable wait states may be injected to
synchronize slower peripherals with the 80188
itself or memory.

The chip select/ready logic contributes to mak-
ing the iAPX 188 an optimum, low-cost choice
for a distributed processing node. In the past,
this necessary logic had to be designed, de-
bugged, and programmed. Now, with the
80188, the design, debug, and programming
are done by initializing the associated 16-bit
on-chip control registers.

iAPX 188 CPU

CPU Internal Registers

The added functionality of the iAPX 188 (i.e.,
timers, DMA, interrupt controller, and chip
selects) uses on-chip 16-bit control registers
for each integrated device. They are contained
in a 256-byte control block (see Figure 2) in-
cluded in the 80188 CPU register architecture.
The control register block may be either I/O or
memory-mapped, based on initialization for a
new control block pointer in the CPU. Except
for these additions, the register architecture of
the iAPX 188 is identical to the iAPX 88.

The iAPX 188 is similar to the recently
announced iAPX 186. The major difference is
in the data bus width (8 vs. 16 bits). Sixteen-bit

1-22

operands are fetched or written in two con-
secutive bus cycles. Both processors will ap-
pear identical to the software engineer, with
the exception of execution time. The internal
register structure is identical and all instruc-
tions have the same end result. The queue
length is shortened to four bytes rather than
six to prevent overuse of the bus when pre-
fetching instructions. To further optimize the
queue, the 80188 will prefetch an instruction
each time there is a one-byte space available in
the queue, rather than waiting for a two-byte
space for a 16-bit instruction in the 80186. The
relationship between the 80188 and 80186 is
similar to the relationship between the 8088
and 8086.

o T W R ‘?“:35"55553?5
e R

IAPX 88 Architecture 2
And Instructions

CHAPTER 2
THE iAPX 88 ARCHITECTURE AND INSTRUCTIONS

INTRODUCTION

This chapter describes the programmer’s
architecture of the 8088 CPU. The pro-
gramming model is presented first, including
the memory and I/ O port organizations and
the CPU registers. The addressing modes are
described next, followed by an introduction
to the instruction set and the iAPX 88
assembly language. The iAPX 88 instruction
set reference pages that describe each instruc-
tion in detail conclude the chapter.

iAPX 88 ARCHITECTURE

The iAPX 88 processor architecture com-
prises a memory structure, a register structure,
an instruction set, and a set of addressing
modes. The 8088 CPU can access up to one
million bytes of memory and up to 64K input/
output ports.

The 8088 has three register files:

1) data registers to hold intermediate results;
2) pointer and index registers to reference
within specified portions of memory;

3) segment registers used to specify these por-
tions of memory.

The 8088 has nine flags that are used to
record the state of the processor and to con-
trol its operations.

The 8088 instruction set and addressing
modes are richer and more symmetric than
the 8080. And the 8088 external interface,
providing such things as interrupts, multip-
rocessor synchronization, and resource shar-
ing, exceeds the facilities provided in the
8080, the 8085, or the Z80®.

Memory Structure

The 8088 input/output space and memory
space are treated in parallel and are collec-
tively called the memory structure. Code and
data reside in the memory space while (non-
memory-mapped) peripheral devices reside in
the I/ O space.

Z80is a registeredvtrademark of Zilog Corp.

Memory Space

The memory in an iAPX 88 system is a
sequence of up to one million bytes (a 64-fold
increase over the 8080). An 8088 word is any
two consecutive bytes in memory. Like the
8080, words are stored in memory with the
most significant byte at the higher memory
address.

The one-megabyte memory can be conceived
of as an arbitrary number of segments, each
containing at most 64K bytes. The starting
address of each segment is evenly divisible by
16 (the four least significant address bits are
0). At any moment, the program can imme-
diately access the contents of four such
segments:

1) Current code segment
2) Current data segment
3) Current stack segment
4) Current extra segment

Each of these segments can be identified by
placing the 16 most significant bits of the
segment starting address into one of the four
16-bit segment registers. By contrast, the
8080 memory structure is simply the 8088
memory structure with all four of the current
segments starting at 0.

An 8088 instruction can refer to bytes or
words within a segment by using a 16-bit
offset address. The processor constructs the
20-bit byte or word address automatically by
adding the 16-bit offset address (also called
the logical address) to the contents of a 16-bit
segment register, with four low-order zeros
appended (Fig. 2-1).

Input/Output Space

The 8088 I/ O space consists of 64K ports (a
256-fold increase over the 8080). Ports are
addressed the same way as memory except
there are no port segment registers. That is,
all ports are considered to be in one segment.
Like memory, ports may be 8- or 16-bits in
size.

ARCHITECTURE AND INSTRUCTIONS

The first 256 ports are directly addressable
(address in the instruction) by some input/
output instructions, other instructions let you
address the total 64K ports indirectly (address
in a register).

REGISTER STRUCTURE

The 8088 processor contains the thirteen 16-
bit registers and nine 1-bit flags shown in
Figure 2-2. Notice that the thirteen registers
are divided into three files of four registers
each plus the thirteenth register, namely the
instruction pointer (IP) (called the program
counter in earlier processors). The IP is
not directly accessible to the programmer;
it is manipulated with control-transfer
instructions.

Data Register File

The data registers (top file Fig. 2-2) can be
addressed as either 8- or 16-bit registers.
(Note vertical line showing byte divisions).

15 0
| LocicaLADDREss |QEFSEL.
;ﬁ r—J
15 0
[SEGMENTREGISTER | [0 0 0 0|3EGMENT
—— J
ADDER
19 0
20-BIT
PHYSICAL MEMORY ADDRESS

Figure 2-1. How to Address One Million Bytes

2-2

The data registers handle both byte and word
quantities with equal ease. Figure 2-2 shows
that the 16-bit registers are named AX, BX,
CX, and DX; and the 8-bit registers are
named AL, AH, BL, BH, CL, CH, DL, and
DH (the L or H suffix designates high-order
or low-order byte).

Generally, the data registers participate inter-
changeably in both arithmetic and logical
operations of the 8088. However, some
instructions (e.g. string instructions) require
certain general registers for specific uses. Fig-
ure 2-3 shows which registers are implicitly
used for special operations. Notice how Fig-
ure 2-3 relates to Figure 2-2.

To review, data registers may be addressed as
either 8-bit or 16-bit registers as shown in
Figure 2-2. The registers in the next 2 files are
addressed only as 16-bit registers.

Pointer and Index Register File

The pointer and index registers of the 8088
consist of the 16-bit registers SP, BP, SI, and
DI as shown in Figure 2-2. These registers
usually contain offset addresses for address-
ing within a segment. They reduce program
size by eliminating the need for each instruc-
tion to specify frequently used addresses.
These registers serve another (and perhaps
more important) function; they provide for
dynamic logical address computation as des-
cribed in the section on operand addressing
below. To accomplish this, the pointer and
index registers participate in arithmetic and
logical operations along with the 16-bit data
registers described above.

Figure 2-2 shows this file divided into the
pointer subfile (SP and BP) and the index
subfile (SI and DI). The pointer registers
provide convenient access to the current
stack segment (as opposed to the data seg-
ment). Unless otherwise specified in the
instruction, pointer registers refer to the cur-
rent stack segment while index registers refer
to the current data segment.

ARCHITECTURE AND INSTRUCTIONS

In certain instances, specific uses of these
four registers are indicated by the mnemonic
phrases “stack pointer,” “base pointer,”
“source index,” and “destination index.” (Fig.
2-2).

Segment Register File

The segment registers of the 8088 are 16-bit
registers. These registers specifically identify
the four currently addressable memory seg-
ments: CS (code segment), DS (data segment),
SS (stack segment), and ES (extra segment).

All instructions are fetched from the current

code segment offset by the instruction pointer
(IP) register. The segment for operand
fetches can usually be designated by append-
ing a special one-byte prefix to the instruc-
tion. This prefix, and other prefixes described
later, has unique encoding that distinguishes
it from the opcodes. In the absence of such a
prefix (the usual case), the operand is usually
fetched from the current data segment or cur-
rent stack segment, depending on whether
the offset address was calculated from the
contents of a pointer register.

DATA REGISTERS

7 07 0
AX AH AL
BX BH BL
CcX CH CL
DX DH DL

POINTER AND INDEX REGISTERS

15 0
SP STACK POINTER
BP BASE POINTER
SI SOURCE INDEX
DI DESTINATION INDEX

SEGMENT REGISTERS

15 0
CS CODE
DS DATA
SS STACK
ES EXTRA

INSTRUCTION POINTER AND FLAGS
P r : INSTRUCTION
POINTER
FLAGS lo[o|i]t]s|z] [a] |p| |c
15 11109 8 7.6 5 4 3 2 1 0

Figure 2-2. 8088 Register Structure

ARCHITECTURE AND INSTRUCTIONS

Programs can be dynamically relocated by
changing the segment registers, provided the
program itself does not load or manipulate
the segment registers.

Flag Register File

Six flags provide processor status informa-
tion (Fig. 2-2). Five are the 8080/8085 flags
and usually reflect the status of the latest
arithmetic or logical operation. The sixth, an
OVERFLOW flag, reflects a signed overflow
condition. '

The 8088 also contains three flags that con-
trol processor operations. These are the
DIRECTION flag, which controls the direc-
tion of the string manipulations; the INTER-
RUPT FLAG, which enables or disables
external interrupts; and the TRAP flag,
which puts the processor into a single-step
mode for program debugging.

A more detailed discussion of the flags
follows:

1) If AF (the auxiliary carry flag) is set, there
has been a carry out of the low nibble (the
low order 4-bits of a byte) into the high nib-
ble or a borrow from the high nibble into the

REGISTER OPERATIONS .

AX Word Multiply, Word Divide,
Word 1/0

AL Byte Multiply, Byte Divide, Byte
I/0O, Translate, Decimal
Arithmetic

AH Byte Multiply, Byte Divide

BX Translate

CX String Operations, Loops

CL Variable Shift and Rotate

DX Word Multiply, Word Divide,
Indirect /O

SP Stack Operations

SI String Operations

DI String Operations

Figure 2-3. Implicit Use of General Registers

low nibble of an 8-bit quantity (low-order
byte of a 16-bit quantity). This flag is used by
decimal arithmetic instructions.

2) If CF (the carry flag) is set, there has been
a carry out of, or a borrow into, the high-
order bit of the result (8- or 16-bit). The flag
is used by instructions that add and subtract
multibyte numbers. Rotate instructions can
also isolate a bit in memory or a register by
placing it in the carry flag.

3) If OF (the overflow flag) is set, an arith-
metic overflow has occurred; that is, a signifi-
cant digit has been lost because the size of the
computation exceeded the capacity of its des-
tination location. An optional Interrupt On
Overflow instruction generates an interrupt
in this situation.

4) If SF (the sign flag) is set, the high-order
bit of the result is a 1. Since negative binary
numbers are represented in the 8086 and 8088
in standard two’s complement notation, SF
indicates the sign of the result (0 = positive, 1
= negative).

5) If PF (the parity flag) is set, the result has
even parity, an even number of 1-bits. This
flag can be used to check for data transmis-
sion errors.

6) If ZF (the zero flag) is set, the result of the
operation is 0.

Three additional control flags (Fig. 2-2) can
be set and cleared by programs to alter pro-
cessor operations:

1) Setting DF (the direction flag) causes
string instructions to auto-decrement, that is,
to process strings from high addresses to low
addresses, or from “right to left”. Clearing
DF causes string instructions to auto-
increment, or to process strings from “left to
right.”

2) Setting IF (the interrupt-enable flag)
allows the CPU to recognize external (mask-
able) interrupt requests. Clearing IF disables
these interrupts. IF has no effect on either
nonmaskable external or internally generated
interrupts.

ARCHITECTURE AND INSTRUCTIONS

3) Setting TF (the trap flag) puts the proces-
sor into single-step mode for debugging. In
this mode, the CPU automatically generates
an internal interrupt after each instruction,
allowing a program to be inspected as it exe-
cutes instruction by instruction.

Instruction Pointer

The 16-bit instruction pointer (IP), as shown
in Figure 2-2, is analogous to the program
counter (PC) in the 8080/8085 CPUs and
points to the next instruction. The instruction
pointer contains the offset (distance in bytes)

of the next instruction from the beginning of -

the current code segment. During normal
execution, IP contains the offset of the next
instruction to be fetched. Whenever IP is
saved on the stack, however, it first is auto-
matically adjusted to point to the next

instruction to be executed. Programs do not .

have direct access to the instruction pointer,
but instructions cause it to change and to be
saved on and restored from the stack.

Stack Implementation

The 8088’s stack is implemented in memory
and is located by the stack segment register
(SS) and the stack pointer register (SP). A
system may have an unlimited number of
stacks, and a stack may be up to 64K bytes
long, the maximum length of a segment. (An
attempt to expand a stack beyond 64K bytes
overwrites the beginning of the stack). One
stack is directly addressable at a time; this is
the current stack often referred to simply as
“the” stack. SS contains the base address of
the current stack and SP points to the top of
the stack (TOS). In other words, SP contains
the offset of the top of the stack from the
stack segment’s base address. Note, however,
that the stack’s base address (contained in
SS) is not the “bottom” of the stack.

Instructions that operate on a stack add or
remove one word (2 bytes) at a time. An item
is pushed onto the stack by decrementing SP
by 2 and writing the item at the new TOS. An

item is popped off the stack by copying it
from TOS and incrementing SP by 2. In
other words, the stack grows down in
memory toward its base address: Stack oper-
ations never move items on the stack, nor do
they erase them. The top of the stack changes
only as a result of updating the stack pointer.

ADDRESSING MODES |

Instructions in the 8088 usually perform
operations on one or two source operands,
with the result overwriting one of the oper-
ands. The first operand of a two-operand
instruction can be usually either a register or
a memory location; the second operand can
be either a register or a constant within the
instruction. (The terms first and second oper-
and are used to distinguish the operands only

- — their use does not imply directionality for

data transfers). Typical formats for two-
operand instructions are shown in Figure 2-4.

Single-operand instructions generally allow
either a register or a memory location to
serve as the operand. Figure 2-4 also shows a
typical one-operand format. Virtually all
8088 operators may. specify 8- or 16-bit
operands.

Memory Operands.

An instruction may address an operand resid-
ing in memory in one of the following ways,
as determined by the “mod” and “r/m” field
in the instruction (Fig. 2-5):

DIRECT ADDRESSING — 16-bit offset address
contained in the instruction.

INDIRECT ADDRESSING — optionally with
an 8- or 16-bit displacement contained in the
instruction: B

1) through a base register (BP or BX)

2) through an index register (SI or DI)

3) through the sum of a base register and an
index register

ARCHITECTURE AND INSTRUCTIONS

° TWO OPERAND FORMAT, SECOND OPERAND IS REGISTER

[oot TseG T 110] [opcobe [p[w] [moD [REG [RiM]

(optional)
C_—ospio _ 7] [__bisPhi_]
(optional) . (optional)

TWO OPERAND FORMAT, SECOND OPERAND IS CONSTANT

[Coo1 T sea [110] [opPCobE_[S[W] [MOD [OPCODE [R/M]

(optional) ‘

[Z”Tospio 7] [_ToiseHi_] [oatato]
(optional) (optional)

[_oatasi]
(optional)

" ONE OPERAND FORMAT

[Coo1] seG T 110] [opcobE [w] [moD [oPCODE [R/M]
: optlonal :
[Toseio —7 [__DiSpH__]
(optional) (optional)

FOR DEFINITION OF MOD AND R/M FIELDS, SEE FIGURE 2-5.
OTHER BIT-FIELDS:

W =0: 8-BIT OPERAND(S)
1:16-BIT OPERAND(S)
D =0: DESTINATION IS FIRST OPERAND
1: DESTINATION IS SECOND OPERAND
S =0: DATA =DATAHI, DATALO APPLIES IF
' 1. DATA = DATA-LO SIGN EXTENDED W=1
SEG: SEGMENTREG REGISTER
00 ES 8-BIT 16-BIT
01 CS REG: (W=0) (W=1)
10 SS -
1. DS i “ - oo0 AL AX
001 CL o CX
010 DL DX
011 “ BL BX
100 AH SP:
101 - CH BP
110 DH Si
111 BH DI

Figure 2-4. Defining Bits in Instructions with One and Two Operands

2-6

ARCHITECTURE AND INSTRUCTIONS

FIRST OPERAND CHOICE DEPENDS ON ADDRESSING MODE:"

FIRST OPERAND IN MEMORY FIRST OPERAND
INDIRECT ADDRESSING DIRECT ADDRESSING IN REGISTER
00*: DISP =0 » MOD = 00
MOD =01 :DISP = DISP-LO SIGN AND MOD = 11
10 :DISP D%ngDElgp LO RIM =110
: . | OPERAND EFFECTIVE REGISTER
OPERAND " ADDRESS = R/M: [&BIT 16-BIT
R/M: | EFFECTIVE ADDRESS DISP-HI, DISP-LO W=0 | (W=1)
000 (BX) + (Sl) + DISP 000 AL AX
001 | (BX) + (DI) + DISP 001 cL CX
010 | (BP) + (SI) + DISP 010 DL DX
011 | (BP) + (DI) + DISP Con BL BX
100 | (SI)'+ DISP 100 AH SP
101 (DI) + DISP 101 CH BP
110 |(BP) + DISP 110 DH SI
111 | (BX) + DISP 111 BH. DI
Where () means ‘‘contents of”’
*Exception—direct addressing mode
Figure 2-5. Determining First Operand
) DATA MEMORY
STR[L%TTQJRE STACK
WITHOUT BASE WITH BASE <
SIMPLE o
VAR RELE DIRECT BX + OFFSET BP + OFFSET
S| BX + Sl BP + S
ARRAYS DI BX + DI BP + DI
ARRAYS SI + OFFSET BX + S| + OFFSET BP + S| + OFFSET
OF RECORDS DI + OFFSET BX + DI + OFFSET BP + DI + OFFSET

Figure 2-6. Effective Addresses Used with Different Data Structures

TYPE OF MEMORY REFERENCE gfgﬁghTr Aslo-géﬁn'\éﬁTrE LOGICAL ADDR'ESS
BASE BASE :

Instruction Fetch Cs NONE . P

Stack Operation SS NONE SP

String. Source DS CS,ES,SS Sl

String Destination ES NONE DI o

BP Used As Base Register SS CS,DS,ES Effective Address

General Data Read/Write - --DS CS,ES,SS Effective Address

Figure 2-7. 8088 Address Components

2-7

ARCHITECTURE AND INSTRUCTIONS

Register Operands

An instruction may address an operand resid-

ingin one of the general registers or in one of

the pointer or index registers. Fig. 2-5 shows -

the register selection as determined by the
“r/m” field (first operand) or the “reg” field
(second operand) in the instruction.

Immediate Operands

In general, one of the two operands of a two-
operand instruction can be “immediate” data
contained within the instruction. These oper-
ands are represented in 2’s-complement form
and may be 8-bits or 16-bits in length.

Addressing Mode Usage

The addressing modes were des1gned to per-
mit efficient implementation of high-level
language features. For example, a simple var-
iable is accessed with the direct mode,
whereas an array element in a based record
(at a memory address pointed to by some
other base variable) may be accessed within
the indirect-through-BX-plus-SI-plus-offset
mode (where BX points to start-of-record,
offset points to the start of the array within

the record, and index register SI contains the

index into the array).

The addressing modes involving the BP base
register allow accessing data in the stack
segment instead of in the data segment. Rec-
ursive procedures and block-structured langu-
ages frequently store data in the stack.
Address modes for accessing data elements
use effective addresses shown in Fig. 2-6.

Addressing Summary

Fig. 2-7 summarizes the address components
that are combined to: generate memory
addresses. The Default segment base is the
segment register automatically chosen by the
8088 for the corresponding type of memory
reference. The Alternate segment base may
replace the Default segment if a special “seg-
ment override” prefix precedes the instruction.
The Logical address is automatically added
to the chosen segment register to form the

2-8

memory address. The 8088 Assembly lan-
guage simplifies the task of selecting the
desired addressing modes for use with basic
8088 instruction types.

Dedicated and Reserved Memory Locations
Two areas in extreme low and high memory
are dedicated to specific processor functions
or are reserved by Intel Corporation for use
by Intel hardware and software products. As
shown in Figure 2-8, the locations are: 0H
through 7FH (128 bytes) and FFFFOH
through FFFFFH (16 bytes). These areas are
used for interrupt and system reset process-
ing. iAPX 88 systems should not use these
areas for any other purpose. Doing so may
make these systems 1ncompat1b1e with future
Intel products.

FFFFFH
RESERVED
FFFFCH
FFFFBH
DEDICATED
FFFFOH
FFFEFH
\E OPEN R
80H
7FH
RESERVED
14H
13H
DEDICATED
OH
MEMORY

‘Figure 2-8. Reserved and Dedicated Memory
Locations

ARCHITECTURE AND INSTRUCTIONS

The interrupt pointer (or interrupt vector)
table (Fig. 2-9) is the link between an inter-
rupt type code and the procedure designated

to service interrupts associated with that
code. The interrupt pointer table occupies up
to 1K bytes of low memory. There may be up

AVAILABLE
INTERRUPT
POINTERS
(224)

RESERVED
INTERRUPT
POINTERS
(27)

3FFH
| TYPE255POINTER: __|
(AVAILABLE)
3FCH
5 N
9 M
<
| TYPE33POINTER: __|
(AVAILABLE)
084H
| TYPE32POINTER: __|
(AVAILABLE)
080H
07FH
| TYPE31POINTER: __|
(RESERVED)
P, w v
| TYPE5POINTER: __|
(RESERVED)
: 014H
| TYPEA4POINTER: __|
OVERFLOW
010H
I YPE 3 POINTER
1-BYTE INT INSTRUCTION
00CH
s TYPE 2 POINTER 1
3 NON-MASKABLE
008H
| TYPE1POINTER —]
SINGLE-STE
004H
. TYPE 0 POINTER — _ESESEAD?B_ESE_ —_
000H DIVIDE ERROR IP OEFSET

le—16BITS——>|

Figure 2-9. Interrupt Vector Table in Memory

2-9

ARCHITECTURE AND INSTRUCTIONS

to 256 4-byte entries in the table, one for each
interrupt type that can occur in the system.
Each entry is a doubleword pointer (4 bytes)
containing the address of the procedure. The
higher-addressed word of the pointer con-
tains the base address of the segment
containing the procedure. The lower-
addressed word contains the procedure’s
offset from the beginning of the segment.
Since each entry is four bytes long, the CPU
can calculate the location of the correct entry
for a given interrupt type by simply multiply-
ing (type*4).

Memory location FFFFOH, sixteen bytes
from the absolute top of the 8088’s address
range is the first location from which the
8088 fetches an instruction following a sys-
tem RESET (the activation of the RESET
pin on the 8088 CPU chip, usually at the time
system is powered up). This memory location
usually contains a jump (JMP) instruction to
the actual beginning of the system program
somewhere else in memory.

ORGANIZATION OF THE INSTRUCTION
SET

Instructions are described here in six func-
tional groups:

1) Data transfer

2) Arithmetic

3) Logic

4) String manipulation
5) Control transfer

6) Processor control

Each of the first three groups mentioned in
the preceding list is further subdivided into
an array of codes that specify whether the
instruction is to act upon immediate data,
register or memory locations, whether 16-bit
words or 8-bit bytes are to be processed, and
what addressing mode is to be employed. All
of these codes are listed and explained in
detail in this book, but when you are writing
assembly-language programs you do not
have to code each one individually. The con-

2-10

text of your program automatically causes
the assembler to generate the correct code.

There are three general categories of instruc-
tions within each of the three functional
groups mentioned:

1) Register or memory space to or from
register

2) Immediate data to register or memory

3) Accumulator to or from registers, mem-
ory, or ports

The details of the syntax of the 8088 instruc-
tion set are described fully in Intel’s iAPX 86,
88 assembly language programming manual.

Data Transfer Instructions
Data transfer instructions are divided into
four classes:

1) General purpose

2) Accumulator-specific

3) Address-object

4) Flag

None affect flag setting except SAHF and
POPF.

General Purpose Transfers

Four general purpose data transfer opera-
tions are provided and may be applied to
most operands, though there are specific
exceptions. The general purpose transfers
(except XCHG) are the only operations
which allow a segment register as an operand.

MOV performs a byte or word transfer from
the source operand to the destination operand.

PUSH decrements the SP register by two
and then transfers a word from the source
operand to the stack element currently
addressed by SP.

POP transfers a word operand from the
stack element addressed by the SP register to
the destination operand and then increments
SP by 2.

XCHG exchanges the byte or word source
operand with the destination operand. The
segment registers may not be operands of
XCHG.

ARCHITECTURE AND INSTRUCTIONS

Accumulator-Specific Transfers
Three accumulator-specific transfer opera-
tions are provided:

IN transfers a byte (or word) from an input
port to the AL register (or AX register for a
word). The port is specified either with an
inline data byte, allowing fixed access to
ports 0 through 255, or with a port number in
the DX register, allowing variable access to
64K input ports.

OUT is similar to IN except that the transfer
is from the accumulator to the output port.

XLAT performs a table lookup byte transla-
tion. The AL register is used as an index into
a 256-byte table whose base is addressed by
the BX register. The byte operand so selected
is transferred to AL.

Address-Object Transfers

Three address-object transfer operations are
provided:

LEA (load effective address) transfers the off-
set address of (rather than its value) to the
destination operand. The source operand must
be a memory operand and the destination
operand must be a 16-bit general, pointer, or
index register.

LDS (load pointer into DS) transfers a
“pointer-object” (i.e., a 32-bit object contain-
ing an offset address and a segment address)
from the source operand (which must be a
memory operand) to a pair of destination
registers. The segment address is transferred
to the DS segment register. The offset
address must be transferred to a 16-bit gen-
eral, pointer, or index register.

LES (load pointer into ES) is similar to LDS
except that the segment address is transferred
to the ES segment register.

Flag Register Transfers
Four flag register transfer operations are
provided:

LAHF (load AH with flags) transfer the flag
registers SF, ZF, AF, PF, and CF (the 8080

flags) into specific bits of the AH register.

SAHF (store AH into flags) transfers specific
bits of the AH register to the flag register, SF,
ZF, AF, PF, and CF.

PUSHF (push flags) decrements the SP reg-
ister by two and transfers all of the flag
registers into specific bits of the stack element
addressed by SP.

POPF (pop flags) transfers specific bits of the
stack element addressed by the SP register to
the flag registers and then increments SP by
two.

Arithmetic Instructions

The 8088 provides the four basic mathemati-
cal operations in a variety of instructions.
Both 8- and 16-bit operations and both
signed and unsigned arithmetic are provided.
Standard twos complement representation of
signed values is used. The addition and sub-
traction operations serve as both signed and
unsigned operations to be made (see Condi-
tional Transfer). Correction operations allow
arithmetic to be performed directly on
packed or unpacked decimal numbers.

Flag Register Settings

Six flag registers are set or cleared by arith-
metic operations to reflect results of the
operation. They generally follow these rules:

CF is set if the operation results in a carry out

-of (from addition) or a borrow into (from

subtraction) the high-order bit of the result;
otherwise CF is cleared.

AF is set if the operation results in a carry
out of (from addition) or a borrow into (from
subtraction) the low-order four bits of the
result; otherwise AF is cleared.

ZF is set if the result of the operation is zero;
otherwise ZF is cleared.

SF is set if the high-order bit of the result of
the operation is set; otherwise SF is cleared.

ARCHITECTURE AND INSTRUCTIONS

PF is set if the modulo 2 sum of the low-
order eight bits of the operation is 0 (even
parity); otherwise PF is cleared (odd parity).

OF is set if the operation results in a carry
into the high-order bit of the result but not a
carry out of the high-order bit, or vice versa;
otherwise OF is cleared.

Addition
Five addition operations are provided:

ADD performs an addition of the two source
operands and returns the result to one of the
operands.

ADC (add with carry) performs an addition
of the two source operands, adds one if the
CF flag is found previously set, and returns
the result to one of the operands.

INC (increment) performs an addition of the
source operand and returns the result to the
operand.

AAA (unpacked BCD [ASCII] adjust for
addition) performs a correction of the result
in AL of adding two unpacked decimal ope-
rands, yielding an unpacked decimal sum.

DAA (decimal adjust for addition) performs
a correction of the result in AL of adding two
packed decimal operands, yielding a packed
decimal sum.

Subtraction
Seven subtraction operations are provided:

SUB performs a subtraction of the two
source operands and returns the result to one
of the operands.

SBB (subtract with borrow) performs a sub-
traction of the two source operands, subtracts
one if the CF flag is found previously set, and
returns the result to one of the operands.

DEC (decrement) performs a subtraction of
one from the source operand and returns the
result to the operand.

NEG (negate) performs a subtraction of the
source operand from zero and returns the
result to the operand.

2-12

CMP (compare) performs a subtraction of
the two source operands causing the flags to
be affected but does not return the result.

AAS (unpacked BCD [ASCII] adjust for
subtraction) performs a correction of the
result in AL of subtracting two unpacked
decimal - operands, yielding an unpacked
decimal difference.

DAS (decimal adjust for subtraction) per-
forms a correction of the result in AL of
subtracting two packed decimal operands,
yielding a packed decimal difference.

Muiltiplication
Three multiplication operations are
provided: ‘

MUL performs an unsigned multiplication of
the accumulator (AL or AX) and the source
operand, returning a double length result to
the accumulator and its extension (AL and
AH for 8-bit operation, AX and DX for
16-bit operation). CF and OF are set if the
top half of the result is non-zero.

IMUL (integer multiply) is similar to MUL
except that it performs a signed multiplica-
tion. CF and OF are set if the top half of the
result is not the sign-extension of the low half
of the result.

AAM (unpacked BCD [ASCII] adjust for
multiply) performs a correction of the result
in AX of multiplying two unpacked decimal
operands, yielding an unpacked decimal
product.

Division

Three division operations are provided and
two sign-extension operations to support
signed division:

DIV performs an unsigned division of the
accumulator and its extension (AL and AH
for 8-bit operation, AX and DX for 16-bit
operation) by the source operand and returns
the single length quotient to the accumulator
(AL or AX), and returns the single length
remainder to the accumulator extension (AH

ARCHITECTURE AND INSTRUCTIONS

or DX). The flags are undefined. Division by
zero generates an interrupt of type 0.

IDIV (integer division) is similar to DIV
except that it performs a signed division.

AAD (unpacked BCD [ASCII] adjust for divi-
sion) performs a correction of the dividend in
AL before dividing two unpacked decimal
operands, so that the result will yield an un-
packed decimal quotient.

CBW (convert byte to word) performs a sign
extension of AL into AH.

CWD (convert word to double word) per-
forms a sign extension of AX into DX.

LOGIC INSTRUCTIONS

The 8088 provides the basic logic operation
for both 8- and 16-bit operands.

Single-Operand Operations
Three single-operand logical operations are
provided: ‘

NOT forms the ones complement of the
source operand and returns the result to the
operand. Flags are not affected.

Shift operations of four varieties are pro-
vided for memory and register operands,
SHL (shift logic left), SHR (shift logic right),
SAL (shift arithmetic left), and SAR (shift
arithmetic right). Single bit shifts, and vari-
able bit shifts with the shift count taken from
the CL register are available. The CF flag
becomes the last bit shifted out; OF is defined
only for shifts with count of 1, and set if the
final sign bit value differs from the previous
value of the sign bit; and PF, SF, and ZF are
set to reflect the result value.

Rotate operations of four varieties are pro-

vided for memory and register operands, -

ROL (rotate left), ROR (rotate right), RCL
(rotate through CF left), and RCR (rotate
through CF right). Single bit rotates, and vari-
able bit rotates with the rotate count taken
from the CL register are available. The CF
flag becomes the last bit rotated out; OF is
defined only for shifts with count of 1, and is

2-13

set if the final sign bit value differs from the
previous value of the sign bit.

Two-Operand Operations

Four two-operand logical operations are
provided. The CF and OF flags are cleared
on all operations; SF, PF, and ZF reflect the
result.

AND performs the bitwise logical conjunc-
tion of the two source operands and returns
the result to one of the operands.

TEST performs the same operations as AND
causing the flags to be affected but does not
return the result.

OR performs the bitwise logical inclusive dis-
junction of the two source operands and
returns the result to one of the operands.

XOR performs the bitwise logical exclusive
disjunction of the two source operands and
returns the result to one of the operands.

STRING MANIPULATION INSTRUCTIONS

One-byte instructions perform various primi-
tive operations for the manipulation of byte
and word strings (sequences of bytes or
words). Any primitive operation can be per-
formed repeatedly in hardware by preceding
its instruction with a repeat prefix. The
single-operation forms may be combined to
form complex string operations with repeti-
tion provided by iteration operations.

Hardware Operation Control

All primitive string operations use the SI reg-
ister to address the source operands, which
are assumed to be in the current data seg-
ment. The DI register addresses the desti-
nation operands, which reside in the current
extra segment. If the DF flag is cleared, the
operand pointers are incremented after each
operation (once for byte operations and twice
for word operations). If the DF flag is set, the
operand pointers are decremented after each
operation. See Processor Control for setting
and clearing DF.

ARCHITECTURE AND INSTRUCTIONS

Any-of the primitive string instructions may
be preceded with a one-byte prefix indicating
that the operation is to be repeated until the
operation count in CX is satisfied. The test
for completion is made prior to each repeti-
tion of the operation. Thus, an initial
operation count of zero will cause zero exe-
cutions of the primitive operation.

The repeat prefix byte also designates a value
to compare with ZF flag. If the primitive
operation is one which affects the ZF flag,
and the ZF flag is unequal to the designated
value after any execution of the primitive
operation, the repetition is terminated. This
permits the scan operation to serve as a scan-
while or a scan-until.

During the execution of a repeated primitive
operation the operand pointer registers (SI
and DI) and the operation count register
(CX) are updated after each repetition,
whereas the instruction pointer will retain the
offset address of the repeat prefix byte
(assuming it immediately precedes the string
operation instruction). Thus, an interrupted
repeated operation will be correctly resumed
when control returns from the interrupted
task. ‘

You should avoid using the two other prefix
bytes with a repeat-prefixed string instruc-
tion. One overrides the default segment
addressing for the SI operand and one locks
the bus to prohibit access by other bus
masters. Execution of the repeated string
operation will not resume properly following
an interrupt if more than one prefix is present
preceding the string primitive. Execution will
resume one byte before the: primitive (pre-
sumably where the repeat prefix resides), thus
ignoring the additional prefixes.

anltlve String Operations
Five prlmmve string operatlons are prov1ded

MOYVS transfers a byte or ‘word operand
from the source operand to the destination
operand. As a repeated operation this moves

2-14

a string from one location in memory to
another.

CMPS subtracts the destination byte or word
operand from the source operand and affects
the flags but does not return the result. As a
repeated operation this compares two strings.
With the appropriate repeat prefix it is pos-
sible to determine after which string element
the two strings become unequal, thereby
establishing an ordering between the strings.

SCAS subtracts the destination byte or word
operand from AL (or AX) and affects the
flags but does not return the result. As a
repeated operation this scans for the occur-
rence of, or departure from a given value in
the string.

LODS transfers a byte or word operand
from the source operand to AL (or AX). This
operation ordinarily would not be repeated.

STOS transfers a byte or word operand from
AL (or AX) to the destination operand. As a
repeated operation this fills a string with a
given value.

In all cases above, the source operand is
addressed by SI and the destination operand
is addressed by DI.

Software Operation Control

The repeat prefix provides for rapid iteration
in a hardware-repeated string operation. The
iteration control operations: provide this
same control for implementing software
loops to perform complex string operations.
These iteration operations provide the same
operation count update, operation comple-
tion test, and ZF flag tests that the repeat
prefix provides.

By combining the prlmmve string operations
and iteration control operations with other
operations, it is possible to build sophisti-
cated yet efficient string manipulation
routines. One instruction that is particularly
useful in this context is XLAT; it permits a
byte fetched from one string to be translated

ARCHITECTURE AND INSTRUCTIONS

before being stored in a second string, or
before being operated upon in some other
fashion. The translation is performed by
using the value in the AL register as an index
into a table pointed at by the BX register.
The translated value obtained from the table
then replaces the value initially in the AL
register.

Here is an example problem solved by use of
primitive string operations and iteration con-
trol operations. to implement a complex
string operation: An input driver must trans-
late a buffer of EBCDIC characters into
ASCII, and transfer characters until one of
several EBCDIC control characters is encoun-
tered. The transferred ASCII string is to be
terminated with an EOT character.

To initialize the translation sequence, SI
points to the beginning of the EBCDIC
buffer, DI points to the beginning of the
receiving ASCII buffer, BX points to an
EBCDIC-to-ASCII translation table, and
CX contains the length of the EBCDIC
buffer (possibly empty). The translation table
contains the ASCII equivalent for each
EBCDIC character, perhaps with ASCII
NULs for illegal characters. The EOT code is
placed into the table corresponding to
EBCDIC stop characters. The 8088 instruc-
tion sequence to implement this example is
the following:
Next:

JCXZ Empty
LODS Ebcbuf
XLAT Table
CMP AL, EOT

STOS Ascbuf
LOOPNE Next

;skip if input buffer empty
;fetch next EBCDIC character
;translate it to ASCII

;test for the EOT

;transfer ASCII character
;continue if not EOT

Empty:

The body of this loop requires seven bytes of
code. ‘

CONTROL TRANSFER INSTRUCTIONS
Four classes of control transfer operations

may be distinguished:

1) calls, jumps, and returns;
2) conditional transfers;

3) iteration control; and

4) interrupts.

All control transfer operations cause the pro-
gram execution to continue at some new
location in memory, possibly in a new code
segment.

Calls, Jumps, and Returns

Two basic varieties of call jumps, and returns
are provided — those which transfer control
within the current code segment, and those
which transfer control to an arbitrary code
segment, which then becomes the current
code segment. Both direct and indirect
transfers are supported; indirect transfers
make use of the standard addressing modes.

The three transfer operations are described
below:

CALL pushes the offset address of the next
instruction onto the stack (in the case of an
inter-segment transfer the CS segment regis-
ter is pushed first) and then transfers control
to the target operand.

JMP transfers control to the target operand.

RET transfers control to the return address
saved by a previous CALL operation, and
optionally may adjust the SP register to dis-
card stacked parameters.

Intra-segment direct calls and jumps specify a
self-relative direct replacement, thus allowing
position independent code. A short jump
instruction (optional use) transfers —128 to
+127 bytes from the current instruction for
code compaction.

Conditional Jumps

The conditional transfers of control perform
a jump continuing upon various Boolean
functions of the flag registers. The destination
must be within —128 to +127 bytes from the
instruction.

2-15

ARCHITECTURE AND INSTRUCTIONS

Iteration Control

The iteration control transfer operations per-
form leading- and trailing-decision loop con-
trol. The destination of iteration control
transfers must be within —128 to +127 bytes
from the instruction. These operations are par-
ticularly useful with string manipulation oper-
ations.

There are four iteration control transfer
operations provided:

LOOP decrements the CX (“count”) register
by one and transfers if CX is not zero.

LOOPZ (dlso called LOOPE) decrements the
CX register by one and transfers if CX is not
zero and the ZF flag is set (loop while zero or
loop while equal). _ :

LOOPNZ (also called LOOPNE) decre-
ments the CX register by one and transfers if
CX is not zero and the ZF flag is cleared
(loop while not zero or loop while not equal).

JCXZ transfers if the CX register is zero.

Interrupts

Program execution control may be trans-
ferred by means of operations similar in
effect to that of external interrupts. All inter-
rupts transfer by pushing the flag registers
onto the stack (as in PUSHF), and perform
an indirect call (of the inter-segment variety)
through an interrupt vector table located at
absolute locations 0 through 3FFH. This vec-
tor contains a four-byte element for each of
up to 256 different interrupt types.

There are three interrupt transfer operations
provided:

INT pushes the flag registers (as in PUSHF),
clears the TF and IF flags, and transfers con-
trol with an indirect call through any one of
the 256 vector elements. A one-byte form of
this instruction is available for interrupt
type 3.

INTO pushes the flag registers (as in
PUSHPF), clears the TF and IF flags, and
transfers control with an indirect call through
vector element 4 if the OF flag is set (trap on

2-16

overflow). If the OF flag is cleared no opera-
tion takes place.

IRET transfers control to the return address
saved by a previous interrupt operation and
restores the saved flag register (as in POPF).

See Chapter 3 for further details on interrupt
operations.

PROCESSOR CONTROL INSTRUCTIONS
Various instructions and mechanisms control
the processor and its interaction with its
environment.

Flag Operations
Seven operations provided operate directly
on individual flag registers:

CLC clears the CF flag.
CMC complements the CF flag.
STC sets the CF flag.

CLD clears the DF flag, causing the string
operations to auto-increment the operand
pointer.

CLI clears the IF flag, disabling external
interrupts (except for the non-maskable
external interrupt.

STI sets the IF flag, enabling external
interrupts after the execution of the next
instruction.

Processor Halt

The HLT instruction causes the 8088
processor halt. The halt state is cleared by
RESET, or an enabled external interrupt, or
NMI.

Processor Wait

The WAIT instruction causes the processor
to enter a wait state if the signal on its TEST
pin is not asserted. The wait state may be
interrupted by an enabled external interrupt.
When this occurs the saved code location is
that of the WAIT instruction, so that upon
return from the interrupting task the wait
state is reentered. The wait state is asserted.
Execution resumes without allowing external
interrupts until after the execution of the next

ARCHITECTURE AND INSTRUCTIONS

instruction. This instruction allows the pro-
cessor to synchronize itself with external
hardware.

Processor Escape

The ESC instruction provides a mechanism
by which other processors (such as the
Numeric Processor Extension) may receive
their instructions from the 8088 instruction
stream and make use of the 8088 addressing
modes. The 8088 processor does no opera-
tion for the ESC instruction other than to
access a memory operand.

Bus Lock

A special one-byte lock prefix may precede
any instruction to cause the processor to
assert its bus-lock signal for the duration of
the operation caused by that instruction. This
has use in multiprocessing applications.
Single Steb

When the TF flag register is set, the processor
generates a type 1 interrupt after execution of
each instruction. During interrupt transfer
sequences caused by any type of interrupt,
the TF flag is cleared after the pushflags step
of the interrupt sequence. No instructions are
provided for setting or clearing TF directly.
Rather, the flag register image saved on the
stack by a previous interrupt operation must

be modified, so the subsequent interrupt’

return operation (IRET) restores TF set. This
allows a diagnostic task to single-step through
a task under test, while still executing nor-
mally itself.

If the single-stepped instruction itself clears
the TF flag, the type 1 interrupt will still
occur upon completion of the single-stepped
instruction. If the single-stepped instruction
generates an interrupt or if an enabled exter-
nal interrupt occurs prior to the completion
of the single-stepped instruction, the type 1
interrupt sequence will occur after the inter-
rupt sequence of the generated or external
interrupt, but before the first instruction of
the interrupt service routine is executed.

2-17

INSTRUCTION TIMINGS

Instruction timings are included with the
detailed instruction set pages at the back of
this chapter. They are provided as the
number of clock periods required to execute
a particular form (register-to-register,
immediate-to-memory, etc.) of the instruc-
tion. If a system is running with a 5 MHz
maximum clock, the maximum clock period
is 200 ns. Where memory operands are used,
“+EA” denotes a variable number of addi-
tional clock periods needed to calculate the
operand’s effective address. Fig. 2-10 lists all
effective address calculation times.

For control transfer instructions, the timings
given include any additional clocks required
to reinitialize the instruction queue as well
as the time required to fetch the target
instruction.

Note that four clocks are required for each
memory reference. Therefore, the execution
time of memory reference instructions will
depend on the number of byte transfers.

Several additional factors can increase actual
execution time over the figures shown in the
instruction set reference pages. The time pro-
vided assumes that the instruction has already

EACOMPONENTS CLOCKS*
Displacement Only 6
Base or Index Only (BX,BP,SI,Dl) 5
Displacement

+ 9
Base or Index (BX,BP,SI,DI)
Base BP + DI, BX+SI 7
+
Index BP + S|, BX+ DI 8
Displacement BP + DI+ DISP 1
+ BX +SI+DISP
Base
+ BP +Sl+DISP 12
Index BX+DI+DISP

*Add 2 clocks for segment override

Figure 2-10. Effective Address Calculation Time

ARCHITECTURE AND INSTRUCTIONS

been prefetched and that it is waiting in the
instruction queue, an assumption that is valid
under most, but not all operating conditions.
A series of fast executing (fewer than two
clocks per opcode byte) instructions can
drain the queue and increase execution time.

Execution time also is slightly impacted by
the interaction of the CPU’s internal instruc-
tion execution unit (EU) and BU’s interface
unit (BIU) when memory operands must be
read or written. If the EU needs access to
memory, it may have to wait for up to one
clock if the BIU has already started an
instruction fetch bus cycle. The EU can
detect the need for a memory operand and
post a bus request far enough in advance of
its need for this operand to avoid waiting a
full 4-clock bus cycle. Of course, the EU does
not have to wait if the instruction queue be-
tween the BIU and EU is full, because the BIU
is idle. (Note: 8088 queue contains 4 bytes.)

With typical instruction mixes, the time actu-
ally required to execute a sequence of
instructions will typically be within 5-10% of
the sum of the individual timings given in the
instruction set sequence. Cases can be con-
structed, however, in which execution time
may be much higher than the sum of the
figures provided. The execution time for a
given sequence of instructions, however, is
always repeatable, assuming comparable ex-
ternal conditions (interrupts, coprocessor
activity, etc.) If the execution time for a given
series of instructions must be determined
exactly, the instructions should be run on an
actual system hardware implementation.

ASSEMBLY LANGUAGE PROGRAMMING!"

This section, while not meant to be a com-
pendium of all features and rules of ASM-86
(the Intel assembler for 8088 instructions)
covered in detail by the Intel iAPX 86,88
Assembly Language Reference Manual, pre-

sents most of the ASM-86 features in a form

[1] Edited and reprinted with permission of Hayden Book Co. from
The 8086 Primer, by Stephen P. Morse. Copyright 1980.

2-18

to enable you to write meaningful programs.
Not covered are many advanced ASM-86
features; attention is focused on underlying
concepts of the language.

Object Code

Let’s first consider a simple program that
reads in word values from input port 5,
increments each value read, and writes the
results to output port 2. The program is as
follows:

Memory Address Memory Contents

(Hexadecimal) (Binary) Comments
00000 11100101 read word into AX...
00001 00000101 ...from input port 5
00002 01000000 increment AX
00003 11100111 write word from AX...
00004 00000010 ...to output port 2
00005 11101011 repeat by jumping...
00006 11111001 ...back seven bytes
00007

The first two columns specify the address and
contents of each relevant memory location
and, as such, constitute the only form of the
program comprehensible to the processor.
This is called object code, and the language
of I’s and 0’s in which the object code is writ-
ten is called machine language. Once we have
the program in object code form, we can
store it in memory and then have the 8088
execute it.

Source Code

Writing a program in I’s and 0’s is tedious
and repetitive, a task that computers do well.
So, instead of writing the program in
machine language, we write the program in a
language more familiar to us and then use a
computer to translate it into the 8088’s lan-
guage. A program written in this more
familiar language is called source code, and
the computer program that translates source
code into object code. is called a transiator.
(Fig. 2-11)

There are two kinds of translator languages
for writing source code: assembly languages
and high-level languages described below and
illustrated in Fig. 2-12

ARCHITECTURE AND INSTRUCTIONS

The process of translation might involve per-
forming some additional activities before the
output is truly machine code. These activities,
like relocation and linkage, are part of the
translation process. Throughout this text,
references to translation (assembling, compil-
ing) imply all necessary activities to produce
object code.

A program written in assembly language is a
symbolic representation of the machine-
language program.

The relation between the assembly-language
program statements and the resulting object
code is usually obvious while the relation
between high-level language statements and
the resulting object code is often not obvious.
Assembly language gives you complete con-
trol over the resulting object code and
thereby allows you to generate very efficient
object code (providing you’re a very efficient
programmer).

A high-level language compiler frees you
from thinking about the object code and lets

OBJECT
[~ CODE

(MACHINE
LANGUAGE)

SQURCE | TRANSLATOR

Figure 2-11. Translation Process

SOURCE OBJECT
CODE —>»| ASSEMBLER _’CODE
ASSEMBLY (MACHINE
ANGUAGE) LANGUAGE)
SOURCE OBJECT
QODE - ™ COMPILER —>GODE
(HIGH-LEVEL (MACHINE
LANGUAGE) LANGUAGE)

Figure 2-12. Assemblers and Compilers

2-19

you concentrate on the task you are pro-
gramming. The compiler may generate less
efficient object code, but good compilers can
sometimes generate more efficient object
code than you could have written in assembly
language.

SYMBOLIC NAMES

The primary advantage of using assembly
language instead of machine language is the
ability to use symbolic names. Let’s illustrate
this point using assembly-language source
code: :

CYCLE:

IN AX,5 ;read word from port 5 into AX
INC AX sincrement AX

ouT 2AX ;write result to port 2

JMP CYCLE ;keep repeating

The above program is simpler to read and
understand because it uses symbolic names
instead of numbers as much as possible. The
opcodes of the four instructions are 1110010-,
01000---, 1110011-, and 11101011 in the
object code. They are IN, INC, OUT, and
JMP in the assembly-language source code.
Symbolic names for opcodes are called
instruction mnemonics. The symbolic opcode
names used throughout this book are the
instruction mnemonics of ASM-86 that gen-
erate corresponding bit patterns for object
code.

Register Names

Besides the opcode fields, there are other
fields in the object code (see above example).
The contents of these fields must be specified
in the assembly-language source code, so the
assembler can generate the appropriate bit
patterns in the object code.

For example, the INC instruction has a 3-bit
reg field, indicating which register is to be
incremented when the instruction is executed.
The contents of this reg field are specified in
the source code by indicating the symbolic
name of the register, as in “INC AX.”

ARCHITECTURE AND INSTRUCTIONS

The symbolic register names used in ASM-86
are the names that are used for the registers
throughout this book —

AX BL = CH DI
BX CL DH CS
CX DL BP DS
DX AH SP ES
AL BH SI SS

Input/Output

Both the IN and OUT instructions have a
1-bit w field and an 8-bit port number field.
The port numbers are simply specified in the
source code by “IN AX,5” and “OUT 2,AX”.
The w field is specified more subtly by the
presence of the AX in “IN AX,5” and “OUT
2,AX”. Input/output always uses AX when
words are involved and AL when bytes are
involved. So the appearance of AX instead of
AL in the IN and OUT instructions indicates
that the w field is a 1. (The AMS-86 conven-
tion is to place the destination before the
source; hence AX precedes port number on
the IN instruction and follows it on the OUT
instruction).

Jump Cycle

Another example of a symbolic name in the
above program is the label CYCLE on the IN
instruction. This permits the JMP instruction
to refer to the location of the IN instruction
by name as in “JUMP CYCLE.” The
assembler now has enough information to

determine that this'is a jump backwards of
seven bytes and can generate a -7 in the
appropriate field of the JMP instruction.

A Completé Program
In the previous section, we used a fragment
of an ASM-86 program. To make that frag-

ment into a complete program, we need some
additional statements (see below).

This entire program will reside in a single
segment in the 8088 memory. During the
assembly process, we don’t know (nor do we
care) where that segment will be located; that
decision will be made prior to loading the
segment into memory.

During the assembly process, we refer to the
starting address of the segment by the sym-
bolic name IN_AND OUT. Lines 1 and 7
delimit the extent of the segment; line 1
introduces the segment name IN_AND__
OUT, and line 7 marks the end of the segment
(ENDS).

Line 8 flags the end of the source program,
thereby telling the assembler that there are no
more lines to assemble. Furthermore, it indi-
cates that when the program is executed, it
should start with the instruction labeled
CYCLE (line 3).

The object code generated by the assembler
specifies the contents of all relevant memory
locations plus this starting address.

1. IN.AND.OUT SEGMENT ;start of segment

2. - ASSUME CS: INNAND.OUT ;that’s what's in CS
3. CYCLE: IN AX,5

4, INC AX

5. ouT 2,AX

6. JMP CYCLE -

7. IN.AND_OUT ENDS ,end of segment

8. END CYCLE ;end of assembly

ARCHITECTURE AND INSTRUCTIONS

The ASSUME statement on line 2 complies
with the following rule:

at the very beginning of any segment contain-
ing code, we must tell the assembler what to
assume is in the CS register when that code is
executed. This will always be the starting
address, without the last four “0” bits of the
segment, so we must include the statement:

ASSUME CS: Name_of_segment

ASM-86 Program Structure

Now consider a more detailed ASM-86 pro-
gram (shown below) to understand the
structure of such programs in general. This
program will be referred to as the “sample
program” throughout this chapter.

Line 1 introduces a segment somewhere ih
the 8088 memory (we don’t care where) and
gives it the name MY_DATA.

Line 3 ends the segment. The only thing in

the segment is SUM, defined to be a byte
(DB) of data. '

The question mark on line 2 indicates that
the generated object code needs to reserve a
place in memory for SUM, but it need not
specify any particular initial contents for that
location. MY_DATA is apparently going to
be used as a data segment.

Lines 4-18 define another segment with the
name MY_CODE. An examination of lines 7

- to 17 reveals that the segment contains

instructions for use as a code segment.

Line 19 flags the end of the source program
and indicates that when the program is exe-
cuted, execution should start with the instruc-
tion labeled GO (line 7).

Assumption About DS

The ASSUME statement on line 5 tells the
assembler what it should assume will be in
the CS and DS register when the segment of
code is executed.

1. MY_DATA SEGMENT ;data segment
2. SUM DB ? ;reserve a byte for SUM
3. MY_DATA ENDS :
4. MY_CODE SEGMENT ;code segment
5. ASSUME CS:MY_CODE, DS:MY_ DATA
;contents of CS and DS
6. PORT_VAL EQU 3 ;symbolic name for port number
7. GO: MOV AX,MY_DATA ;initialize DS to MY_DATA
8. MOV DS,AX :
9. MOV SUM,0 ;clear sum
10. CYCLE: CMP SUM,100 ;if SUM exceeds 100
11. JNA NOT_DONE
12. MOV - AL,SUMthen output SUM to port 3
13. ouT PORT_VAL,AL
14. HLT ;...and stop execution
15. NOT_DONE: IN AL, PORT_VAL ;otherwise add next input
16. ADD SUM,AL o '
17. JMP CYCLE ;and repeat the test
18. MY_CODE ENDS :
19. END GO ;this is the end of the assembly

ARCHITECTURE AND INSTRUCTIONS

The need for an assumption about DS is that
some assembly-language instructions in the
code segment access data directly, particu-
larly, the byte SUM. The assembler must
generate machine-language instructions that
address SUM "using the direct addressing
mode. These generated instructions specify
the offset of SUM and some segment register,
typically DS, containing the starting address
of the segment (namely MY_DATA) contain-
ing SUM.

The assembler needs to know which segment
registers (if any) will contain MY_DATA’s
starting address, at the time these instructions
are executed. With this information, the
assembler can determine if a segment-over-
riding prefix is required on these instructions,
and if so, which segment register should be
specified by the prefix. It would be the case if,
for example, MY_DATA'’s starting address
were contained only in ES. Furthermore, if
none of the registers will contain MY_

DATA’s starting address at instruction-
execution time, the assembler knows that it
cannot generate any instructions capable of
accessing SUM and will be able to report this
error at instruction-assembly time.

SUMMARY :
So, why assume some segment register would
contain MY_DATA’s starting address at
instruction-execution time? So that SUM can
be accessed. Why is DS used? Because no
segment-overriding prefix is necessary. Make
sure this assumption is satisfied by executing
certain instructions (lines 7 and 8) prior to the
first access to SUM. .

PORTS 3 AND 4

Line 6 specifies that PORT_VAL is equiva-
lent to the constant 3. This permits PORT_
VAL to be used in place of 3 on succeeding
lines. This makes PORT_VAL a symbolic
name for port 3 and refers to PORT_VAL
whenever port 3 is wanted. Now if we decide

2-22

to rewrite the prdgram to use port 4 instead,
we need make only one change: line 6 is
changed to:

PORT_VAL EQU 4

The instructions on lines 7 through 17 will
keep adding inputs from port 3 until the sum
exceeds 100, output that sum to port 3, then
halt. This is accomplished as follows: The
instruction on line 7 puts — the 16 most-
significant bits of — the starting address of
segment MY_DATA into register AX; on line
8 this value is moved from AX to DS. This
makes SUM accessible . in succeeding in-
structions. ‘

The instruction on line 9 initializes SUM to
0. Observe that on lines 7, 8, and 9, the desti-
nations, such as SUM on line 9, are always
written before the sources, as 0 on line 9.

Line 10 compares (CMP) the value in SUM
to 100 and sets processor flags, indicating
comparison results.

Line 11 tests the flags and jumps, if SUM was
not above 100 (JNA). The target of the jump
is the instruction labeled NOT_DONE (line
15). If the jump on line 11 is not taken (SUM
> 100), the SUM is moved into AL (line 12);
the contents of AL is sent to output port 3
(line 13), and the processor halts (line 14).

If the jump on line 11 is taken (SUM' < 100),
the value on input port 3 is sent to AL (line
15), added to SUM (line 16), and the jump on
line 17 transfers control back to line 10.

General Conclusions B

Now, from the above example, what can be
noticed about the structure of an ASM-86
program? It consists of one or more segment
blocks followed by an END statement. Each
segment block starts with a SEGMENT
statement and ends with an ENDS (end-of-
segment) statement. Between the SEGMENT
and ENDS statements is a sequence of other

ARCHITECTURE AND INSTRUCTIONS

statements. Each statement normally occu-
pies one line. If succeeding lines are needed,
they start with “&”. The structure of an
ASM-86 program is:

NAME1 SEGMENT
statement

: statement
NAME1 ENDS
NAME2 SEGMENT
statement

statement
NAME?2 ENDS

END

The programs presented here all display a
consistent tabular pattern.

Such tabulation is not part of the program
structure; it is optional to the assembler, but
highly recommended to make programs eas-
ier to read and understand.

In the untabulated version of the IN AND__

OUT program below, the assembler would
assemble faster, but the program would be
much less-comprehensible to us.

Tokens

Before examining the kinds of statements
from which ASM-86 programs are built, we
must - become familiar with the building
blocks of statements. Statements are com-
posed of such things as identifiers, reserved
words, delimiters, constants, and comments.
These building blocks, sometimes called tok-
ens, are described below.

IDENTIFIERS

Identifiers are names that you, the pro-
grammer, are free to make up. Identifiers in
the sample program are SUM, CYCLE, and
PORT __VAL. An identifier is a sequence of
letters, numbers, and underscore characters
(—), but may not start with a number. An
identifier may be up to 31 characters long,
which means the length is practically unlim-
ited. Examples of identifiers are:

X

GAMMA
JACKS

THIS _NODE
THISNODE

The last two examples are indeed different
identifiers.

IN_AND_OUT SEGMENT
ASSUME CS:IN.AND_OUT
CYCLE:IN AX,5

INC AX

OUT2,AX

JUMP CYCLE
IN_AND_OUT ENDS

END CYCLE

;start of segment
:that’s what's in CS

;end of segment
;end of assembly

2-23

ARCHITECTURE AND INSTRUCTIONS

RESERVED WORDS

Reserved words, look like identifiers, but
they have a special meaning in the language,
and you must not use them as identifier
names (Fig. 2-14). The sample program uses
reserved words like SEGMENT, MOV,
EQU, and AL. Thus, it would be perfectly
acceptable for us to make up a name like
EQUAL as in:

EQUAL DB

but it would be improper for us to write:

EQU DB ?
Refer to pg. 2-43, Fig. 2-14 for complete list

of ASM-86 Reserved Words.

DELIMITERS

Delimiters are non-alphanumeric characters
that have special meaning in the 8088 assem-
bly language. In the sample program, we saw
such delimiters as : and ;. In this chapter we
will use many of the delimiters. For a com-
plete list of delimiters in ASM-86, see Fig.
2-13.

2-24

CONSTANTS ‘
Constants are fixed values appearing in
ASM-86 programs. In the sample program
there are constants 0, 3, and 100. These are
whole-number constants. The assembly lan-
guage also allows for string constants.

A whole-number constant is any non-
fractional number between 0 and 65535 (216
— 1). It is normally written as a decimal
number, but can also be written in binary,
ending with a B, octal, ending with a Q, or
hexadecimal, ending with an H.

To avoid confusion with identifiers, a hexa-
decimal constant must start with a numeric
digit; a leading zero would suffice. Examples
of whole-number constants are 15, 1010B,
27Q, 3A0H, and 0BFA3H.

&

Figure 2-13. Delimiters in ASM-86

ARCHITECTURE AND INSTRUCTIONS

String Constant

A string constant is one or two characters
enclosed with apostrophes. Strings of more
than two characters are permitted in res-
tricted cases, but are not discussed here. An
apostrophe itself may be included in a string
constant by writing it as two consecutive
apostrophes. Examples of string constants
are ‘A’, ‘AB’, and ””. The last example is the
string consisting of the apostrophe character.

The value of a string constant is the ASCII
code of the character(s) in the string. For
example, the value of ‘A’ is 41H and the value
of ‘AB’ is 4142H. Thus, string constants and
whole-number constants can be used inter-
changeably.

COMMENTS

Any sequence of characters following a semi-
colon (;) up to the end of the line are com-
ments. They are ignored by the assembler
and should be used generously in your pro-
gram to document what you are doing. While
comments like

INC CX :increment CX

convey little information, comments like

INC CX ;increment outer

loop counter

make a program more readable.

Expressions

One more building block, namely expres-
sions, must be introduced before we can
build statements. Expressions are built up
from some of the tokens just described.

Loosely speaking, an expression is a sequence
of operands and operators combined to pro-
duce a value at program assembly time. How
are operands and operators combined to
produce the value of an expression?

OPERANDS
An operand is something that has either a
numeric value or a memory address value.

2-25

Operands with numeric values are constants,
or identifiers that represent constants. Some
numeric-valued operands, appearing in our
sample program are 100 and PORT_VAL.
The permissible range of values for such oper-
ands is from -65,535 to +65,535.

Note that the value of an operand may be
negative, but a constant is never negative. A
minus sign can be written in front of a con- .
stant, but is never considered a part of the
constant; it is an arithmetic operator.

Memory-address operands are frequently
identifiers, such as SUM and CYCLE in the
sample program. The value of a memory
address is not simply a number; it is a set of
components, each component generally being
a number. One component is the 16 most-
significant bits of the segment starting address
where the memory address is contained. The
four least-significant bits of a segment start-
ing address are always zeros.

Another component is the offset address
within the segment. These two components
are referred to as the segment and offset of
the memory-address operand.

Another operand is an expression itself,
enclosed in parentheses, and used in some
bigger expression, as in 3*(PORT_VAL+S).

OPERATORS

An operator takes the value of one or more
operands and produces a new value. There
are five kinds of operators in ASM-86

1) arithmetic operators
2) logical operators

3) relational operators
4) analytic operators
5) synthetic operators

Arithmetic Operators

Arithmetic operators are the familiar addi-
tion operator (+), subtraction operator (—),
multiplication operator (*), and division
operator (/). Another arithmetic operator,
MOD, produces the remainder after doing a

ARCHITECTURE AND INSTRUCTIONS

division. Thus 19/7is 2, whereas 19 MOD 7is 5.

Arithmetic operators may always be applied
to a pair of numeric operands, and the result
will be numeric. The rules for applying
arithmetic operators on memory-addressing
operands are more restrictive: such opera-
tions are valid only if the result has a
meaningful physical interpretation.

For example, the product of two memory
addresses has no meaningful interpretation.
What segment would it be in? What offset
would it have? Hence, it is a prohibited
operation.

The difference of two memory addresses in
the same segment is the numeric distance
between them — the difference in their offsets.

The only other meaningful arithmetic opera-
tion on a memory address is adding or
subtracting a numeric value. Thus SUM+2,
CYCLE-5, and NOT_DONE-GO would all
‘be valid expressions in the sample program.
SUM —CYCLE would not be a valid expres-
sion because they are in different segments.

NOTE: The value of SUM+2 is a memory
address two bytes beyond SUM in the MY
—_DATA segment; it is not the numeric value
that is 2 plus-the-contents-of-location-SUM.
Such contents are not known until program
execution, whereas expressions are evaluated
at assembly time.

Logical Operators
The logical operators are bit-by-bit AND,
OR, XOR (exclusive-or), and NOT.

The operands of logical operators must be
numeric only — memory-address operands
are not allowed — and the result will be
numeric. This is shown by:

1010101010101010B AND 1100110011001100B
is 10001000100010008B;

1100110011001100B OR 1111000011110000B
is 1111110011111100B

NOT 1111111111111111B is 0000000000000000B
and

1111000011110000B XOR SUM is invalid.

2-26

As an example of logical operators, consider:

IN
ouT

AL,PORT_VAL
PORT_VAL AND OFEH,AL

The IN instruction gets input from PORT
_ VAL, wherever that is.

Execution of the OUT instruction sends out-
put to port PORT_VAL AND O0FEH, which
is either the same port, if PORT_VAL is even,
or the next lower-numbered port, if PORT
__VAL is odd. The actual port value of the
OUT instruction is determined when the
instruction is assembled, not when it is
executed.

Observe that AND, OR, XOR, and NOT are
instruction mnemonics as well as ASM-86
operators. As ASM-86 operators, they cause
a value to be computed when the program is
being assembled. As instruction mnemonics,
they perform their roles when the program is
being executed:

AND DX,PORT_VAL AND OFEH

will cause the assembler to compute the value
of PORT_VAL AND OFEH and then gener-
ate an AND-immediate instruction contain-
ing that value in its data field. When this
instruction is later executed, it will cause the
contents of the DX register to be ANDed
with that value and the result placed in the
DX register.

Relational Operators

1) Equal (EQ)

2) not-equal (NE)

3) less-than (LT)

4) greater-than (GT)

5) less-than-or-equal (LE)

6) greater-than-or-equal (GE)

PORT_VAL LT 5 is a relational operator.
The two operands must both be numeric or
must both be memory addresses in the same
segment. The result is always a numeric
value. It will be 0 if the relationship is false,

ARCHITECTURE AND INSTRUCTIONS

and OFFFFH (16 bits of 1’s) if the relation-
ship is true.

Using a relational operator:

MOV BX,PORT_VAL LT 5
The assembler will assemble

MOV BX,0FFFFH

if the value of PORT_VAL is < 5;
otherwise the assembler will assemble
MOV BX,0

At first it may appear that relational opera-
tors are not useful. It’s not often that you
want to generate an instruction with a field
that contains either 0 or OFFFFH, and no
other choices. However, by combining rela-
tional operators with logical operators, the
two relational results of 0 and OFFFFH can
be molded into any numeric values you
desire:

MOV BX,((PORT_VAL LT 5)AND 20)
& OR ((PORT_VAL GES5) AND 30)

will assemble

MOV BX,20

if PORT_VAL is less than 5, and
MOV BX,30

otherwise.

Note the generous use of parentheses to force
the order that operators are applied. If you
always use parentheses to make the ordering
explicit, you won’t have to memorize the
rules about which operators get evaluated
first.

Analytic and Synthetic Operators

The analytic operators decompose memory-
address operands into their components,
while synthetic operators build memory-
address operands from their components. A
discussion of these operators is presented
after we learn more about memory-address
operands. (see page 2-30)

2-27

Statements

There are two kinds of ASM-86 program
statements: instruction statements (MOV,
ADD, JMP, etc.) and directive statements
(DB, SEGMENT, EQU, etc.)

Each instruction statement causes the assem-
bler to generate an instruction in the object
code. Directive statements tell the assembler
what kind of code to generate for succeed-
ing instruction statements. The directive
statement

MY_PLACE DB

tells the assembler that MY_PLACE is
defined as a byte. The assembler allocates a
memory address for MY_PLACE. Later,
when the assembler encounters the instruc-
tion statement

INC MY_PLACE

it will generate an object code instruction to
increment the contents of MY_PLACE.
Because of the previously-encountered direc-
tive statement, the assembler will know to
place a ‘0’ (to indicate a byte) in the w field of
the increment instruction.

?

The formats of the two kinds of statement are
similar. The instruction statements are of the
form

label: mnemonic argument,...,argument ;comment

The directive statements are of the form

name directive argument,...argument ;comment

The label in an instruction statement is fol-
lowed by a colon, whereas the name in a
directive statement is not. This highlights
the difference between the two kinds of
statements.

A label associates a symbolic name with the
location of an instruction. A label can be
used as an operand in a jump or call
instruction.

The name in a directive statement has no
relation to an instruction location and can
never be jumped to.

ARCHITECTURE AND INSTRUCTIONS

Labels in instruction statements are always
optional; names in directive statements can
be mandatory, optional, or prohibited, depend-
ing on the particular directive.

Mnemonics in instruction statements specify
the purpose of the statement. Directives, in
directive statements, specify the purpose of
the statement. The instruction mnemonics
correspond to the set of approximately 100
opcodes available in the 8088. The directives
correspond to the set of some 20 functions
provided by the ASM-86 assembler (Fig.
2-14). ‘

The mnemonic or directive may require addi-
tional information to define its purpose

completely. This information is provided by

a sequence of arguments.

Optional comments make the program more
readable; when present they must be pre-
ceded by a semicolon.

Directive Statements

The various directive statements in ASM-86
are:

1) symbol-definition

2) data-definition

3) segmentation-definition

4) procedure-definition

5) termination

Symbol-Definition Statements

The EQU statement provides a means for
defining symbolic names to represent values
or other symbolic names. The two forms of
the EQU statement are illustrated:

Some examples are:

BOILING_.POINT EQU 212
BUFFERSIZE EQU 32
NEW_PORT EQU PORTVAL+1
COUNT EQU ¢Cs ‘

The last example differs from the other three in
that COUNT does not represent a value; it is a
synonym for the CX register.

A symbolic name can be “undefined” by a
PURGE statement so it may later represent
something entirely different:

PURGE BUFFER_SIZE

Data-Definition Statements

Data-definition allocates memory for a data
item, associates a symbolic name with that
memory address, and optionally supplies an
initial value for the data. Symbolic names
associated with data items are called vari-
ables. Examples of data-definition statements
are: (see below)

In the example below, THING is a symbolic
name associated with a byte in memory,
BIGGER_THING with two consecutive
bytes in memory, and BIGGEST_THING
with four consecutive bytes in memory.

Initial Values »
Before we can discuss the question marks (?),
we need to introduce the concept of initial
values of data items.

The object code produced by the assembler
contains the I’s and 0’s that make up each
instruction and the memory address at which

name EQU expression
newname EQU old.name each instruction should reside. After the
object code is produced, the instructions are
THING DB ? ;defines a byte
BIGGER_THING DW ? ;defines a word (2 bytes)
BIGGEST_THING DD ? ;defines a doubleword (4 bytes)

2-28

ARCHITECTURE AND INSTRUCTIONS

loaded into memory at the indicated addresses
and then executed.

At the time the instructions are loaded, initial
values for data items could also be loaded
into memory. This means that the object
code, besides containing instructions and
their addresses, may also contain initial
values for data items and their addresses.
These initial values are specified to. the
assembler in the data definition statements.

The following statement will cause the
assembler to produce object code that, when
loaded into memory, will result in a 25 being
placed in the memory address allocated to
THING;

THING DB 25 :byte initially contains 25

A question mark in place of an initial value
means that we do not choose to specify an
initial value for that data item; we will be
satisfied with whatever initially appears in the
corresponding memory location.

When the assembler sees the question mark,
it still allocates memory for the data item, but
does not produce object code to initialize the
memory location (although it could).

In general, the initial value could be specified
by an expression, since expressions are eval-
uated at assembly time. So we can write
statements like:

IN.PORT DB
OUT_PORT DB

PORT.VAL
PORT.VAL+1

Recall that expressions come in two varieties
— numeric and memory address. It is mean-
ingful to initialize either a byte, or a word, or
a double-word with a numeric value. But,

what about a memory-address value? It won’t
fit into a byte, but the offset component fits
into a word; and, both the segment and address
components fit into a double word. So we can
write initialization statements like those
shown at the bottom of this page.

The initialization of LITTLE_CYCLE per-
mits an indirect intrasegment jump or call to
use the date item named LITTLE CYCLE to
transfer control to the label named CYCLE.

Similarly, an intersegment jump or call
transfers control to CYCLE by using the data
item named BIG CYCLE.

Tables

So far we have used data-definition state-
ments to define one byte, word, or double-
word at a time. Often, we deal with tables of
bytes, words, or double words. For example,
the 8088 XLAT instruction uses a table of
bytes to translate an encoded value into the
same value under a different encoding. The
8088 interrupt mechanism uses a table of
double-words, starting at memory location 0
to point to the starting addresses of the inter-
rupt service routines. And, the 8088 string
instructions operate on tables of bytes or
words containing the string elements.

A table is defined by placing several initial
values on a data-definition statement. The
following statement defines a table of bytes
containing powers of 2:

POWERS_2 DB 1,2,4,8,16
The byte at the memory address correspond-
ing to POWERS_2 will be initialized to 1

(when the object code is loaded into memory).

LITTLE.CYCLE DW CYCLE
BIG.CYCLE DD CYCLE
CYCLE MOV BX AX

;offset of CYCLE
;offset and segment of CYCLE

2-29

ARCHITECTURE AND INSTRUCTIONS

The next four bytes will be initialized to 2,4,8,
and 16, respectively. A table of bytes, all
initialized to zero, can be defined by

ALL_ZERO DB 0,0,0,0,0,0
or by the shorthand notation
ALL_ZERO DB 6 DUP (0)

And, finally, an un-initialized table can be
defined by either of the following equivalent
statements:

DONT_CARE DB ?,2,2,2,2,2,2,?

DONT_CARE DB 8 DUP (?)

TYPES OF MEMORY LOCATIONS

ASM-86 associates a type with every memory
location referred to in the program so it can
generate the correct code for instructions that
accesses memory. For example, the data-
definition statement ‘

SUM DB ?

informs the assembler that the memory loca-
tion SUM is of type BYTE. Later, when the
assembler encounters an instruction state-
ment such as

INC SUM

the assembler will know to generate a byte-
increment instruction, rather than a word-
increment instruction.
A memory location can be one of the follow-
ing types:
1) BYTE of data, as in:
SUM DB ?

2) WORD of data (two consecutive bytes), as
in:

BIGGERSUM DW ?
3) DWORD of data (four consecutive bytes),
as in:

BIGGEST_SUM DD ? defining a doubleword

;defining a byte

;defining a word

4) NEAR instruction location, as in:
CYCLE: CMP SUM,100

5) FAR instruction location:
(means of defining such locations will
be discussed shortly)

2-30

An instruction location can appear in a jump
or call instruction statement. The assembler
will generate an intrasegment jump or call if
the location type is NEAR, and an interseg-
ment jump or call if it is FAR. For example,
the labeled instruction statement

CYCLE: CMP SUM,100

informs the assembler that the memory loca-
tion CYCLE is of type NEAR. (We will see
shortly how the synthetic operators PTR and
THIS are used to define a memory location
of type FAR). Later, when the assembler
encounters an instruction such as

JMP CYCLE

the assembler will know to generate an intra-
segment jump .instruction, rather than an
intersegment jump instruction.

A memory address built by adding or sub-
tracting a numeric value fo or from some
other memory address has the same type as
the original memory address. For example,
SUM+2 is a BYTE, BIGGER_SUM-3 is a
WORD, and CYCLE+I is a NEAR instruc-
tion location.

ANALYTIC AND SYNTHETIC OPERATORS
We now know enough about memory addres-
ses to complete the discussion of operators.

The analytic operators decompose memory-
address operands into their components.
These operators are:

1) SEG
2) OFFSET
3) TYPE
4) SIZE
5) LENGTH

The SEG operator returns the segment com-
ponent of the memory-address operand. The
OFFSET operator returns the offset compo-
nent. Both of these components are generally
numeric values.

The TYPE operator returns a numeric value,
which is the type component of the memory-
address operand. The value of the type

ARCHITECTURE AND INSTRUCTIONS

component for the various memory-address
operands is:

Type
Memory Address Operand | Component
BYTE of data 1
WORD of data 2
DWORD of data 4
NEAR instruction location -1
FAR instruction location -2

Notice that the type component for bytes,
words, and double words corresponds to the
number of bytes that each occupies. The
value of the type component for instruction
locations does not have a physical interpreta-
tion.

The LENGTH and SIZE operators apply
only to data-memory-address operands
(BYTE, WORD, or DWORD).

The LENGTH operator returns a numeric
value for the number of units (bytes, words,
or double words) associated with the memory-
address operand.

The SIZE operator returns a numeric value
for the number of bytes allocated for the
memory-address operand. For example, if
MULTI_WORDS is defined by

MULTILWORDS Dw 50 DUP (0)
then LENGTH MULTLWORDS is 50 and
SIZE MULTL WORDS is 100. Notice that

SIZE X is equal to (LENGTH X)* (TYPE
X).

PTR and THIS

The synthetic operators build memory-
address operands from their components.
These operators are PTR and THIS.

The PTR operator builds a memory-address
operand that has the same segment and offset
of some other memory-address operand, but
has a different type. Unlike a data-definition
statement, the PTR operator does not allo-

_ cate memory; it merely gives another mean-

ing to previously-allocated memory. For
example, if TWO_BYTE were defined by,

TWOBYTE DW ?

then we could name first the byte in the word
as follows:

ONEBYTE EQU BYTEPTRTWOBYTE

In this example, the PTR operator creates a
new memory-address operand having the
same segment and offset components as
TWO_BYTE, but having a type component
of BYTE. We can name the second byte of
TWO_BYTE either as

OTHER_BYTE EQU BYTE PTR (TWO_BYTE+1)
or more simply as
OTHER.BYTE EQU ONE_BYTE+1

The PTR operator can also create words and
double-words as illustrated below:

MANY BYTES
FIRST WORD
SECOND DOUBLE EQU

DB

100 DUP (?)
EQU WORD PTR MANY_BYTES
DWORD PTR (MANY_BYTES +4)

;an array of 100 bytes

2-31

ARCHITECTURE AND INSTRUCTIONS

Further, the PTR operator can create loca-
tions of instructions:

INCHES: CMP SUM,100 ;type of INCHES is NEAR
JMP INCHES ;intrasegment jump

MILES EQU FAR PTR INCHES ;type of MILES is FAR
JMP MILES ;intersegment jump

Notice that the above shows ways to build this example, MY_BYTE could have been
new memory-address operands from old built with the PTR operator instead:

ones by . MY BYTE EQU BYTE PTR MY_WORD
1) using the PTR operator asin BYTE PTR

TWQBYTE The THIS operator is convenient for defining
2) using expressions as in ONE BYTE+1 FAR instruction locations:

3) using a combination of PTR and expres- MILES EQU THIS FAR
sions as in BYTE PTR (TWQ_BYTE+1) CMP SUM.100

Expressions are useful when we wish to
change the offset component but leave the

type component unchanged. JMP MILES

Neither expressions, nor PTR, changes the Note that the use of the THIS operator in the
segment component. And the new memory- example made it unnecessary to have a
address operand, created by either expres- NEAR instruction location with the same

sions or PTR, will have a length component segment and offset as MILES. If we used the
of 1 (providing it’s not an instruction PTR operator instead of the THIS operator,

location). such a NEAR instruction would have been
The synthetic operator THIS, like PTR, necessary.
builds a memory-address operand of a speci- Segmentation-Definition Statements
fied type, without allocating memory for it. The segmentation-definition statements orga-
The segment and offset component of the nize our program to use the 8088 memory
new memory-address operand is the segment segments. These directives are: '
and offset of th_e next memory location avail- 1) SEGMENT
able for allocation. For example: 2) ENDS
3) ASSUME

. 4) ORG

MY BYTE EQU THIS BYTE

The SEGMENT and ENDS statement sub-

MY—WORD DW ? divide the assembly-language source pro-
‘ gram into segments. Such segments

correspond to the memory segments where

would create MY_BYTE with type compo- the resulting object code will eventually be
nent of BYTE, and with the same segment loaded. The assembler is concerned with pro-
and offset components as MY_WORD. In gram segmentation for the following reasons.

2-32

ARCHITECTURE AND INSTRUCTIONS

First, intrasegment jump and call instructions
require only the offset (16-bits) of the new
location. Intersegment jump and call instruc-
tions require the segment (another 16-bits) in
addition to the offset.

Second, data-accessing instructions that use
the current data segment and current stack
segment in the manner most optimal for the
8088 architecture contain only the offset
(16-bits) of the data location. Any other
instruction that accesses a data location
within one of the four currently-addressable
segments must contain a segment-overriding
prefix (another 8-bits) in addition to the

offset. Here, current refers to when the
instruction is executed, not assembled.

Therefore, to assemble the correct object
code, the assembler must know the segment
structure of the program and which segments
will be addressable — pointed at by segment
registers — when various instructions are
executed. This information is supplied by the
ASSUME directive.

The following example shows how the
SEGMENT, ENDS, and ASSUME direc-
tives can be used to define a code, data, extra,
and stack segment:

MY_DATA SEGMENT
X DB ?
Y DW ?
Z DD ?
MY_DATA ENDS
MY_EXTRA SEGMENT
ALPHA DB ?
BETA DwW ?
GAMMA DD ?
MY_EXTRA ENDS
MY_STACK SEGMENT
DW 100 DUP (?) ;this is the stack
TOP EQU THIS WORD
MY_STACK ENDS
MY_CODE SEGMENT
ASSUME CS:MY_CODE,DS:MY_DATA
ASSUME ES:MY_EXTRA,SS:MY_STACK
START: MOV AX,MY_DATA ;initializes DS
MOV DS,AX
MOV AX,MY_EXTRA sinitializes ES
MOV ES,AX
MOV AX,MY_STACK ;initializes SS
MOV SS,AX
MQV SP,OFFSET TOP ;initializes SP
MY_CODE ENDS
END START

2-33

ARCHITECTURE AND INSTRUCTIONS

Observe that the code at the head of the
MY_CODE segment will, at program execu-
tion, initialize the various segment registers to
point to the appropriate segments, and the
code will initialize the stack pointer to point
to the end of the stack segment.

The ASSUME statement makes the assem-
bler aware of segment register values when
the code is executed.

To illustrate the purpose of the ASSUME
statement, let’s consider code (within SEG-
MENT MY_CODE) that moves the contents
of byte X to byte ALPHA. To do this, we
need an instruction that moves the contents
of X into a register, say BL, and an instruction
that moves the contents of the register into
ALPHA. How about:

MOV BLX
MOV ALPHABL

;from X to BL
;from BL to ALPHA

During execution of such MOV instructions,
the 8088 processor would normally use the
DS register to find the starting address of the

segment where the specified item (X or
ALPHA) is located. This will work fine when
accessing X — the first instruction — because
DS will indeed contain the starting address of
segment MY_DATA where X is located.

But, this will not work when accessing
ALPHA — the second instruction — because
the starting address of segment MY EXTRA,
where ALPHA is located, will not be con-
tained in DS.

The ASSUME statement has made the
assembler aware that the first instruction will
execute properly. The assembler is also aware
(thanks to the ASSUME statement) that the
starting address of MY_EXTRA, although
not in DS, will be in one of the other segment
registers — namely ES. The assembler, there-
fore, generates a segment-overriding prefix
for the second instruction so that it too, will
execute properly.

It’s not always possible to know what will be
in the segment registers when a particular
instruction will be executed. Consider:

OLD_DATA SEGMENT

OLD_BYTE DB ?

OLD_DATA ENDS

NEW_DATA SEGMENT

NEW_BYTE DB ?

NEW_DATA ENDS

MORE_CODE SEGMENT
ASSUME CS:MORE_CODE
MOV AX,OLD_DATA ;put OLD_DATA into
MOV DS,AX ;...DS and
MOV ' ES,AX ;.. ES
ASSUME DS:OLD_DATA ES:OLD_DATA

CYCLE: INC OLD_BYTE ;what's in DS now?
MOV AX,NEW_DATA ;put NEW_DATA
MOV DS,AX ;...into DS

JMP CYCLE

MORE_CODE ENDS

ARCHITECTURE AND INSTRUCTIONS

The first time the INC instruction is exe-
cuted, DS will contain OLD DATA and the
indicated assumption on DS will be correct.
But then DS will be changed to NEW
__DATA, and the same INC instruction will
be executed a second time. Therefore, it
would be wrong for the assembler to make
assumptions about the contents of DS when
the INC instruction is executed. The assem-
bler must generate a segment-override prefix
— specifying the extra segment — on the
INC instruction, even though this prefix
would be unnecessary on the first execution
of INC.

In order to tell the assembler not to make any
assumptions about DS, we must place the
following assumption just before the INC
instruction:

AéSUME DS:NOTHING

CYCLE: INC OLDBYTE

Prior to, or at the very beginning of any seg-
ment containing code, we must tell the
assembler (via an ASSUME statement) what
it should assume will be in the CS register
when that segment of code is executed.

Instead of using an ASSUME statement, we
could tell the assembler which segment regis-
ter should be used for the execution of each
instruction. For example, the move of X to
ALPHA in the previous example could be
written as:

MOV
MOV

BX, DS:X
ES:ALPHA,BX

This says that DS should be used when X is
accessed, and ES should be used when
ALPHA is accessed. Since the processor

2-35

would normally use DS when executing these
instructions, the assembler produces a segment-
overriding prefix when generating object
code for the second instruction, but not for
the first instruction.

Efficient Prdgramming
Now let’s look at one of the shortcomings of
memory segments to see how to get around it.

Memory segments a/ways start on 16-byte
boundaries. Remember that the last 4 bits of
segment starting addresses are zero. A seg-
ment can be up to 216 bytes long. If a
segment does not use all of its approximately
65,000 bytes, some other segment can start
just beyond the last byte used by the first
segment. But the second segment must also
start on a 16-byte boundary, and, therefore,
may not start immediately after the last byte
used by the first segment. This means there
could be up to 15 bytes wasted between
segments.

Suppose the first segment starts at address
10000 (hexadecimal) and uses only 6D
(hexadecimal) bytes. So the last byte used is at
address 1006C. The closest the second seg-
ment could start would be at address 10070,
thereby wasting the bytes at 1006D, 1006E,
and 1006F.

Now, instead of starting the second segment
at the lowest 16-byte boundary beyond the
last byte used by the first segment, start the
second segment at the highest 16-byte boun-
dary that does not cause any bytes to be
wasted: thus, we could start the second seg-
ment at address 10060. This resuits in the last
few bytes — 13 to be exact — used by the
first segment to be also in the second
segment.

But the second segment would then simply
not use its first few bytes, which is efficient.
So, if the second segment starts at 10060, the
bytes in the second segment below offset
000D are simply not used by the second seg-
ment. Therefore, no bytes are wasted.

ARCHITECTURE AND INSTRUCTIONS

Ordinarily, it doesn’t matter where in mem-
ory segments are located, so we let the
translator make that choice. However, we
might want to give the translator some con-
straints such as “don’t overlap this segment
with any other segment,” “make sure the first
byte used by this segment is at an even
address” or ‘‘start this segment at the follow-
ing address.” We can write these constraints
into the source program:

1) Don’t overlap. First usable byte in seg-
ment is on a 16-byte boundary and has an
offset of 0000.

MY_SEG SEGMENT ;this is the normal case

MY_SEG ENDS

2) Overlap if you must, but first usable byte
must be on a word boundary.

MY_SEG SEGMENT WORD ;word aligned

MY_SEG ENDS

3) Overlap if you must, and place first usable
byte anywhere you like.

MY_SEG SEGMENT BYTE ;byte aligned

MY_SEG ENDS

4) Start segment at specified 16-byte boun-
dary. First usable byte is at specified offset.

MY_SEG SEGMENT AT 1A2BH ;address 1A2B0
ORG 0003H ;address 1A2B3

MY_SEG ENDS

The last example introduced another state-
ment, ORG (for origin). It specifies the next
offset to be used in the segment.

Procedure-Definition Statements

Procedures are sections of code that are
called into execution from various places in
the program. Each time a procedure is called
upon, the instructions that make up the
procedure are executed, then control is
returned to the place from which the proce-
dure was originally called.

The 8088 instructions to call and return from
a procedure are CALL and RET. These
instructions come in two flavors — intraseg-
ment and intersegment.

The intersegment instructions push (CALL)
and pop (RET) both the segment and the
offset of the place where the procedure
should return. \

The intrasegment ones push and pop only the
offset.

Near and Far

Procedures called with intrasegment CALLs
must return with intrasegment RETurns.
Such procedures are known as NEAR
procedures. Similarly, procedures that are
called with intersegment CALLs must return
with intersegment RETurns and are known
as FAR procedures.

The procedure-definition statements, PROC
and ENDP (end procedure), delimit a proce-
dure and indicate whether it is a NEAR or
FAR procedure. This helps the assembler in
two ways. First, when assembling CALLs to
that procedure, the assembler will know
which kind of CALL to assemble. Secondly,
when assembling RETs from that procedure,
the assembler will know which kind of RET
to assemble: (see table on next page)

Since UP_COUNT is declared to be NEAR
procedure, all CALLs to it are assembled as
intrasegment CALLs, and all RETurns with-
in it are assembled as intrasegment returns.

This example points out some similarities
between the RET instructions and the HLT
instruction. There may be more than one

ARCHITECTURE AND INSTRUCTIONS

MY_CODE SEGMENT

URP_COUNT PROC NEAR
ADD CX,1
RET

UR_COUNT ENDP

START: .
CALL UPCOUNT
CALL UPCOUNT
HLT

MY_CODE ENDS
END START

RET in a procedure, just as there may be
more than one HLT in a program.

The last instruction in a procedure (program)
need not be a RET or (HLT); but, if it isn’t, that
instruction should be a jump back to some-
where within the procedure (program).

The ENDP (END) tells the assembler where
the procedure (program) ends, but does not
cause the assembler to generate a RET (HLT)
instruction.

Termination Statements

With one exception, each terminating state-
ment is paired up with some beginning
statement. For example, SEGMENT and
ENDS, PROC and ENDP. These terminat-
ing statements are described with their
corresponding beginning statements.

The one exception is END, which flags the
end of the source program. It tells the
assembler that there are no more instruc-
tions to assemble. The form of the END
statement is

END expression

where the expression must yield a memory-
address value. That address is the address of
the first instruction to be executed when the
program is executed.

The following example illustrates the use of
the END statement:

2-37

START:

END START

Instruction Statements

The instruction statements, for the most part,
correspond to the instructions of the 8088
processor. Each instruction statement causes
the assembler to generate one 8088 instruc-
tion. An 8088 instruction consists of an
opcode field and fields specifying the operand-
addressing mode (mod field, r/m field, reg.
field).

So the instruction statements in ASM-86
must contain an instruction mnemonic as
well as sufficient addressing information to
permit the assembler to generate the instruc-
tion.

INSTRUCTION MNEMONICS

Most of the instruction mnemonics are the
same as the symbolic opcode names for the
8088 instructions. Some additional instruc-
tion mnemonics, NIL and NOP, make the
assembly language more versatile.

No-Operation

The instruction mnemonic NOP causes the
assembler to generate the l-byte instruction
that exchanges the contents of the AX
register with the contents of the AX register
(hexadecimal opcode 90). Besides not doing
anything, NOP doesn’t waste any time not
doing it, since it doesn’t make any memory
accesses. Does it seem strange to waste
precious memory locations on instructions
that do nothing? There are good reasons for
doing so.

The NOPs might serve as placeholders for
instructions to be filled in later, possibly
when the program is executing — an old trick.

ARCHITECTURE AND INSTRUCTIONS

They might also be used to slow down a
portion of the program where precise timing
relationships are important.

Placeholder

NIL is the only instruction mnemonic that
does not cause the assembler to generate any
instructions. In contrast to NOP, which
causes the assembler to generate an instruc-
tion that does nothing when executed, NIL
doesn’t even cause an instruction to be
generated.

NIL serves as a convenient placeholder for
labels in the assembly-language program:

CYCLE: NIL
INC AX

Although this is equivalent to
CYCLE: INC AX

the NIL makes it much easier to insert
instructions ahead of the INC instruction in
the source program, if the need arises later.

INSTRUCTION PREFIXES

The 8088 instruction set permits instructions
to start off with one or more prefix bytes. The
three possible prefixes are:

1) segment-override
2) repeat
3) lock

ASM-86 permits the following prefixes to be
included with the instruction mnemonic:

LOCK

REP (repeat)

REPE (repeat while equal)
REPNE (repeat while not equal)
REPZ (repeat while zero)
REPNZ (repeat while non-zero)

A sample instruction statement using a prefix
is:
CYCLE:

LOCK DEC COUNT

The segment-overriding prefix is generated
automatically by the assembler whenever the
assembler realizes that a memory access
requires such a prefix. The asembler makes
this decision in two steps.

First, it selects a segment register that will
make the instruction execute properly. The
assembler selects the segment register based
on information it received from previous
ASSUME statements. However, we can
force the assembler to select a particular
segment register by including that register in
the instruction as in:

MOV BX,ES:SUM

Secondly, the assembler determines if a
segment-overriding prefix is necessary to
force execution of the instruction to use the
selected segment register.

OPERAND-ADDRESSING MODES

The 8088 processor provides various operand-
addressing modes. ASM-86 must therefore
provide a means of expressing each mode
when writing instruction statements: For
example:

1) Immediate:

MOV AX,15 ;15 is an immediate operand

2) Register:

MOV AX,15

3) Direct:
SUM DB ?

;AX is a register operand

MOV SUM,15 ;SUM is a direct memory
operand

4) Indirect through base register:

MOV
MOV

AX,(BX)
AX,(BP)

5) Indirect through index register:

MOV
MOV

AX,(SI)
AX,(DI)

ARCHITECTURE AND INSTRUCTIONS

6) Indirect through base register plus index
register:

MOV AX,(BX) (Sh)
MOV AX,(BX) (DI
MOV AX,(BP) (S
MOV AX,(BP) (DI)

7) Indirect through base or index register
plus offset:

MANY_BYTES DB 100 DUP(?)

MOV

AX,MANY BYTES(BX)
MOV AX,MANY_BYTES(BP)
MOV AX,MANY_BYTES(SI)
MOV AX,MANY_BYTES(DI)

8) Indirect through base register plus index
register plus offset:

MANY BYTES DB 100 DUP(?)

MOV

AX,MANY_BYTES(BX) (Sl)
MOV AX,MANY BYTES(BX) (DI)
MOV AX,MANYBYTES(BP) (S)
MOV AX,MANY BYTES(BP) (DI)

The assembler uses its knowledge about a
memory location’s type when generating
instructions that reference that memory
location. For example, the assembler gen-
erates a byte-increment when encountering
the following:

SUM DB ? ;type is BYTE

INC SUM ;a byte increment

However, with indirect operand-addressing
modes, it is not always possible for the

2-39

assembler to know the type of the memory
location, as illustrated by:

MOV AL,(BX)

Even though the assembler does not know
the type of the source operand in the above
instruction, it does know that the type of the
destination operand, AL, is BYTE. So the
assembler assumes that (BX) is also of
type BYTE and generates a byte-move
instruction.

But now consider the statement:
INC (BX)

There is no second memory location here to
help the assembler determine the type of
(BX). So the assembler cannot decide whether
to generate a byte-increment instruc-
tion or a word-increment instruction. The
above statement must therefore be written as
shown so the assembler can determine the
type:

INC BYTE PTR (BX) ;a byte-increment
or

INC WORD PTR (BX) ;a word-increment

STRING INSTRUCTIONS

The assembler can usually discern the type of
an operand from its declaration, and hence
know what kind of code to generate for
accessing that operand.

However, we have just seen that, when using
an indirect-addressing mode, we might have
to supply the assembler with additional
information so it can determine the type.

String Primitives
String instructions also need such additional
information. Consider the string instruction

‘MOVS.

This instruction moves the contents of the
memory address whose offset is in ST into the
memory address whose offset is in DI. We
should not need to specify any operands,
since the instruction has no choice as to
which items to move and where.

ARCHITECTURE AND INSTRUCTIONS

However, the instruction could move either a
byte or a word. The assembler must know
which is being moved, so it can generate the
correct instruction. For this reason, the
ASM-86 statement for the MOVS instruc-
tion must specify the items that have been
moved into SI and DI.

For example:

ALPHA DB ?
BETA DB ?
MoV SI,OFFSET ALPHA

MOV
MOVS

DI,OFFSET BETA
BETA,ALPHA

The presence of BETA and ALPHA in the
MOVS statement tells the assembler to gen-
erate a MOVS instruction that moves bytes,
because the TYPE components of both
BETA and ALPHA are BYTE. Further,
from the SEG components of BETA and
ALPHA, the assembler determines if the

operands of the MOVS instruction are inac-
cessible segments. The OFFSET components
of ALPHA and BETA are ignored.

Like MOVS, the other four string primitives
contain operands, MOVS and CMPS have
two operands, while SCAS, LODS, and
STOS have one. For example:

CMPS BETA,ALPHA
SCAS ALPHA
LODS ALPHA
STOS BETA

XLAT also requires an operand; the item
that was moved into BX to serve as the trans-
lation table. The SEG component of this
operand enables the assembler to determine
if the translation table is in a currently access-
ible segment; the OFFSET component is
ignored. An example of an XLAT statement
is as follows:

MOV BX,OFFSET TABLE
XLAT TABLE

Details of ASM-86

Sample One:
Translate the values from input port 1 into a
Gray code and send result to output port 1.

MY _DATA SEGMENT
GRAY DB 18H,34H,05H,06H,09H,0AH,0CH,11H,12H,14H
MY _DATA ENDS
MY _CODE SEGMENT
ASSUME CS:MY_CODE, DS:MY __DATA
GO: MOV AX,MY _DATA ;establish data segment
MOV DS,AX
MOV BX,OFFSET GRAY ;translation table into BX
CYCLE: IN AL,1 ;read in next value
XLAT GRAY ;translate it
ouT 1,AL ;output it
JMP CYCLE ;and repeat
MY_CODE ENDS
END GO

2-40

ARCHITECTURE AND INSTRUCTIONS

Sample Two:

Add two unpacked BCD (ASCII) strings

together.
MY _DATA SEGMENT
STRING _1 DB 1,752 ;value is 2571
STRING_2 DB ‘3,814 ;value is 4183
MY_DATA ENDS
MY _CODE SEGMENT
ASSUME CS:MY_CODE, DS:MY_DATA
GO: MOV AX,MY_DATA ;establish data segment
MOV DS,AX
MoV ES,AX
CLC ;no carry initially
CLD ;forward strings
MOV SI,OFFSET STRING—-1 ;establish string pointers
MOV DI,OFFSET STRING_-2
MoV CX,LENGTH STRING_1
JCXZ FINISH
CYCLE: LODS STRING_-1 ;get STRING_1 element
ADC AL,[DI] ;add STRING_2 element
AAA ;correct for ASCII
STOS STRING_2 ;result into STRING_2
LOOP CYCLE ;repeat for entire element
FINISH: HLT
MY_CODE ENDS
END GO
Sample Three:
Decimal multiplication algorithm.
MY_DATA SEGMENT
A DB 3,754’9’
B DB 6’
C DB LENGTH (A) DUP (?)
MY_DATA ENDS
MY_CODE SEGMENT
ASSUME CS:MY_CODE,DS:MY _DATA
GO: MOV AX,MY_DATA ;establish data segment
MOV ES,AX
CLD ;forward strings
MOV SI,OFFSET A ;establish pointers
MOV DI,OFFSET C
MOV CX,LENGTH A ;establish count
AND B,0FH ;clear upper haif of b
MOV BYTE PTR [SI],0 ;clear cfl]
JCXZ FINISH
CYCLE: LODS A ;get ali]
AND AL,0FH ;clear its high-order bits
MUL AL,B ;multiply by b
AAM ;correct for ASCII
ADD AL,[DI] ;add to cli]
AAA ;adjust for ASCII
STOS C ;store in c[i]
MOV [DI],AH ;...and c[l]
LOOP CYCLE ;repeat for entire string
FINISH: HLT
MY_CODE ENDS
END GO

2-41

ARCHITECTURE AND INSTRUCTIONS

Sample Four:
Move 50 bytes between two overlapping
strings.
MY _DATA SEGMENT
STRING DB 1000 DUP (?)
STRING _1 EQU STRING+7
STRING_2 EQU STRING+25
MY _DATA ENDS
MY_CODE SEGMENT
: © ASSUME CS:MY_CODE, DS:MY_DATA
STRING _SIZE EQU 50 ;number of bytes to move
GO: MOV AX,MY_DATA ;establish data segment
MoV DS,AX :
MoV ES,AX
MOV CX,STRING_SIZE
MOV SI,OFFSET STRING _1 ;source string
MOV DI,OFFSET STRING _2 ;destination string
CLD ;assume a forward move
CMP SI,DI ;if source string comes first
JLT OK
STD ;---we need backwards move
ADD SI,STRING _SIZE—1 ;set Sl and DI to
ADD DI, STRING_SIZE—1 ;-..end of strings
OK: REPEAT MOVS STRING_2,STRING _1 ;move the string
HLT
MY_CODE ENDS
END GO

2-42

ARCHITECTURE AND INSTRUCTIONS

DUAL FUNCTION KEYWORD

AND NOT OR SHL SHR XOR
SYMBOLS

AAA ES FLD1 FSUBRP JNGE PUSH
AAD ESC FLDCW FTST JNL PUSHF
AAM F2XM1 FLDENV FWAIT JNLE RCL
AAS FABS FLDL2E FXAM JNO RCR
ADC FAC FLDL2T FXCH JNP REP
ADD FADD FLDLN2 FXTRACT | JNS REPE
AH FADDP FLDLG2 FYL2X JNZ REPNE
AL FALC FLDPI FYL2XPI JO REPNZ
ARPL FBLD FLDZ HLT JP REPZ
AX FBSTP FMUL IDIV JPE RET
BH FCHS FMULP IMUL JPO ROL
BL FCLEX FNCLEX IN JS ROR
BOUND FCOM FNDISI INC JZ SAHF
BP FCOMP FNENI INT LAHF SAL
BX FCOMPP FNINIT INTO LDS SAR
CALL FDECSTP | FNOP IRET LEA SBB
CBW FDISI FNSAVE JA LES SCAS
CH FDIV FNSTCW JAE LOCK SCASB
CL FDIVP FNSTENV | JB LODS SCASW
CLC FDIVR FNSTSW JBCZ LODSB Sl
CLD FDIVRP FPATAN JBE LODSW SP
CLI FENI FPREM JC LOOP SS
CLTS FFREE FPTAN JCXE LOOPE ST
CMC FIADD FRNDINT | JE LOOPNE | STC
CMP FICOM FRSTOR JG LOOPNZ | STD
CMPS FICOMP FSAVE JGE LOOPZ STI
CMPSB FIDIV FSCALE JL MOV STOS
CMPSW | FIDIVR FSQRT JLE MOVS STOSB
CS FILD FST JMP MOVSB STOSW
CWD FMUL FSTCW JNA MOVSW SUB
CX FINCSTP FSTENV JNAE MUL TEST
DAA FINIT FSTP JNB NEG WAIT
DAS FIST FSTSW JNBE NIL XCHG
DEC FISTP FSUB JNC ouT XLAT
DH FISUB FSUBP JNE POP XLATB
DI FISUBR FSUBR JNG POPF ?77SEG
DIV FLD

DL

DS

DX

Figure 2-14. ASM-86 Reserved Words

2-43

ARCHITECTURE AND INSTRUCTIONS

NON-CONFLICTING KEYWORDS HANDS-OFF KEYWORDS

DA NOPR ABS NE
DATE NOPRINT ASSUME NEAR
DEBUG NOSB AT NOSEGFLX
EJ NOSYMBOLS BYTE NOTHING
EJECT NOXR COMMON OFFSET
EP NOXREF CODEMACRO ORG
ERRORPRINT OBJECT DB PAGE
GEN OoJ DD PARA
GENONLY PAGELENGTH DQ PREFX
GO PAGEWIDTH DT PROC
IC PAGING DUP PROCLEN
INCLUDE Pl DW PTR
LI ' PL DWORD PUBLIC
LIST PR END PURGE
MACRO PRINT ENDM QWORD
MEMORY PW ENDP RECORD
MR RESTORE ENDS RELB
NODB RS EQ RELW
NODEBUG SA EQU RFIX
NOEP SAVE EVEN RFIXM
NOERRORPRINT | SB EXTRN FNFIX
NOGE STACK FAR FNFIXM
NOGEN SYMBOLS GE RWFIX
NOLI TITLE GROUP SEG
NOLIST T GT SEGFIX
NOMACRO WF HIGH SEGMENT
NOMR WORKFILE INPAGE SHORT
NOOBJECT S LABEL SIZE
NOOJ ES LE STRUC
NOPAGING XR LENGTH TBYTE
NOPI XREF LOW THIS

LT TYPE

MASK WIDTH

MOD WORD

MODRM ?

NAME

Figure 2-14. ASM 86 Reserved Words (Continued)

2-44

REF

REFERENCES
FORINSTRUCTION SET

REF

Key to following Instruction Set Reference Pages

IDENTIFIER USED IN EXPLANATION
destination data transfer, A register or memory location that may contain data
bit manipulation operated on by. the instruction, and which receives (is
replaced by) the result of the operation.
source data transfer, A register, memory location or immediate value that is

source-table

target

short-label

accumulator

port

source-string

dest-string

count

interrupt-type
optional-pop-value
external-opcode

above-below

greater-less

arithmetic,

bit manipulation
XLAT

JMP, CALL
cond. transfer,
iteration control
IN, OUT

IN, OUT

string ops.

string ops.

shifts, rotates

INT
RET
ESC

conditional jumps

conditional jumps

used in the operation, but is not altered by the
instruction.

Name of memory translation table addressed by
register BX.

A label to which control is to be transferred directly, or
a register or memory location whose content is the
address of the location to which control is to be
transferred indirectly.

A label to which control is to be conditionally
transferred; must lie within —128 to +127 bytes of the
first byte of the next instruction.

Register AX for word transfers, AL for bytes.

An 1/0O port number; specified as an immediate value of
0-255, or register DX (which contains port number in
range 0-64k).

Name of a string in memory that is addressed by
register SI; used only to identify string as byte or word
and specify segment override, if any. This string is
used in the operation, but is not altered.

Name of string in memory that is addressed by register
DI; used only to identify string as byte or word. This
string receives (is replaced by) the result of the
operation.

Specifies number of bits to shift or rotate; written as
immediate value 1 or register CL (which contains the
count in the range 0-255).

Immediate value of 0-255 identifying interrupt pointer
number.

Number of bytes (0-64k, ordinarily an even number) to
discard from stack.

Immediate value (0-63) that is encoded in the instruction
for use by an external processor.

Above and below refer to the relationship of two unsigned
values.

Greater and less refer to the relationship of two signed
values.

2-45

REF

REFERENCES

FORINSTRUCTION SET

Key to Operand Types
IDENTIFIER EXPLANATION
(nooperands) | No operands are written
register An 8- or 16-bit general register
reg 16 An 16-bit general register
seg-reg A segment register
accumulator Register AX or AL
immediate A constant in the range
0-FFFFH
immed8 A constantin the range 0-FFH
memory An 8- or 16-bit memory
location™
mem38 An 8-bit memory location®
mem16 A 16-bit memory location
source-table Name of 256-byte translate

source-string

table

Name of string addressed by
register Sl :

dest-string Name of string, addressed by
register DI

DX Register DX)

short-label A label within -128 to +127
bytes of the end of the
instruction

near-label A label in current code
segment

far-label A label in another code
segment

near-proc A procedure in current code
segment

far-proc A procedure in another code
segment

memptri6 A word containing the offset of
the location in the current code
segment to which control is to
be transferred™

memptr32 A doubleword containing the
offset and the segment base
address of the location in
another code segment to
which control is to be trans-
ferred"

regptri6 A 16-bit general register

, containing the offset of the
location in the current code
segment to which control is to
be transferred

repeat A string instruction repeat
prefix

M Any addressing mode—direct, register

indirect, based, indexed, or based indexed—
may be used (see section 2.8).

15 14 13 12 11 10

7.6

9 8 5432 10
[T T T Tor[or[iFre[sFzF] Tar[Jp¢] cF]

REF

CARRY

PARITY
AUXILIARY CARRY
ZERO

SIGN

TRAP

INTERRUPT
DIRECTION
OVERFLOW

Effective Address Calculation Time

EA COMPONENTS CLOCKS*
Displacement Only 6
Base or Index Only (BX,BP,SI1,DI) 5
Displacement

+ 9
Base or Index (BX,BP,SI,DI)
Base BP + DI, BX+ Sl 7
+
Index BP + Sl, BX + DI 8
Displacement BP +DI+DISP 11
+ BX + Sl + DISP
Base
+ BP + Sl+ DISP 19
Index BX+ DI+ DISP

*Add 2 clocks for segment override

Notation Key

+ Addition

— Subtraction

* Multiplication
/ Division

% Modulo
: Concatenation
& And

< Assignment

2-46

REF

REFERENCES
FOR INSTRUCTION SET REF

““reg’’ Field Bit Assignments:

Segment

000
001
010
011
100
101
110
111

AX
CX
DX
BX
SP
BP
S|
DI

16-Bit (w = 1) 8-Bit (w = 0)
000 AL
001 CL
010 DL
011 BL
100 AH
101 CH
110 DH
111 BH

00 ES
01 CS
10 SS
11 DS

““mod’’ Field Bit Assignments:

[mod XXX r/mJ

mod

Displacement

00
01
10
11

DISP =0*, disp-low and disp-high are absent

DISP = disp-low sign-extended to 16-bits, disp-high is absent
DISP = disp-high: disp-low

rimis treated asa ‘‘reg’’ field

“r/m’’ Field Bit Assignments:

r/m Operand Address
000 (BX) + (Sl) + DISP
001 (BX) + (DI) + DISP
010 (BP) + (SI) + DISP
011 (BP) + (DI) + DISP
100 (Sl) + DISP
101 (DI) + DISP
110 (BP) + DISP
111 (BX) + DISP

DISP follows 2nd byte of instruction (before data if required).
*exceptif mod =00 and r/m =110 then EA = disp-high: disp-low.

2-47

2-48

ASCII ADJUST
AAA FOR ADDITION AAA

Operation: Flags Affected:
if ((AL) & OFH) >9 or (AF) = 1 then AF, CF.
(AL) < (AL) + 6 OF, PF, XF, ZF undefined
(AH) < (AH) + 1
(AF) < 1
(CF) < (AF)

(AL) < (AL) & OFH

Description:

AAA (ASCII Adjust for Addition) changes
the contents of register AL to a valid unpacked
decimal number; the high-order half-byte is
zeroed. AAA updates AF and CF; the content
of OF, PF, SF and ZF is undefined following
execution of AAA.

Encoding:

00110111 |

AAA Operands Clocks | Transfers|Bytes| AAA Coding Example
(no operands) 4 — 1 AAA

2-49

AAD

ASCII ADJUST
FOR DIVISION AAD

Operation: Flags Affected:

(AL) < (AH) * OAH + (AL) PF, SF, ZF.

(AH) <0 AF, CF, OF undefined
Description:
AAD (ASCII Adjust for Division) modifies for the subsequent DIV to produce the correct
the numerator in AL before dividing two valid result. The quotient is returned in AL, and the
unpacked decimal operands so that the quo- remainder is returned in AH; both high-order

tient produced by the division will be a valid half-bytes are zeroed. AAD updates PF, SF
unpacked decimal number. AH must be zero and ZF; the content of AF, CF and OF is

Encoding:

11010101 /00001010 |

undefined following execution of AAD.

AAD Operands

Clocks

Transfers|Bytes|AAD Coding Example

(no operands)

60

— 2 |AAD

2-50

AAM

ASCIlI ADJUST

AAM

FOR MULTIPLY

Operation:

(AH) < (AL) / OAH
(AL) < (AL) % OAH

Description:

AAM (ASCII Adjust for Multiply) corrects
the result of a previous multiplication of two
valid unpacked decimal operands. A valid 2-
digit unpacked decimal number is derived
from the content of AH and AL and is

Encoding:

11010100 [00001010 |

Flags Affected:

PF, SF, ZF.
AF, CF, OF undefined

returned to AH and AL. The high-order half-
bytes of the multiplied operands must have
been OH for AAM to produce a correct result.
AAM updates PF, SF and ZF; the content of
AF, CF and OF is undefined following execu-
tion of AAM.

AAM Operands Clocks

Transfers|Bytes| AAM Coding Example

(no operands) 83

2 |AAM

2-51

AAS

Operation:

if ((AL) & OFH) >9 or (AF) = 1 then
(AL) < (AL)-6
(AH) < (AH) -1
(AF) <1

(CF) < (AF)

(AL) < (AL) & OFH

Description:

AAS (ASCII Adjust for Subtraction) corrects
the result of a previous subtraction of two
valid unpacked decimal operands (the destina-
tion operand must have been specified as

ASCII ADJUST
FOR SUBTRACTION

Flags Affected:

AAS

AF, CF.
OF, PF, SF, ZF undefined

register AL). AAS changes the content of AL
to a valid unpacked decimal number; the high-
order half-byte is zeroed. AAS updates AF
and CF; the content of OF, PF, SF and ZF is
undefined following execution of AAS.

Encoding:
[00111111]
AAS Operands Clocks | Transfers|Bytes|AAS Coding Example
(no operands) 4 1 AAS

2-52

ADC ADD WITH CARRY ADC

Operation: Flags Affected:
if (CF) = 1 then (DEST) < (LSRC) AF, CF, OF, PF, SF, ZF
+ (RSRC) + 1

else (DEST) < (LSRC) + (RSRC)

Description:

ADC destination,source

ADC (Add with Carry) sums the operands,
which may be bytes or words, adds one if CF is
set and replaces the destination operand with
the result. Both operands may be signed or
unsigned binary numbers (see AAA and
DAA). ADC updates AF, CF, OF, PF, SF and
ZF. Since ADC incorporates a carry from a
previous operation, it can be used to write
routines to add numbers longer than 16 bits.

2-53

ADC

Encoding:

ADD WITH CARRY

ADC

Memory or Register Operand with Register Operand:

[000100dw [modregr/m |

ifd=1then LSRC = REG, RSRC = EA, DEST = REG
else LSRC =EA, RSRC = REG, DEST =EA

Immediate Operand to Memory or Register Operand:

[100000sw [mod010r/m]|

data

|data if s:w=01]

LSRC =EA, RSRC =data, DEST = EA

Immediate Operand to Accumulator:

[0001010w |

data

| dataifw=1 |

if w=0then LSRC = AL, RSRC = data, DEST = AL
else LSRC = AX, RSRC = data, DEST = AX

ADC Operands Clocks* |Transfers|Bytes| ADC Coding Examples
register, register 3 — 2 | ADC AX, SI
register, memory 9(13)+ EA 1 2-4 | ADC DX, BETA [SI]
memory, register 16(24) + EA 2 2-4 | ADC ALPHA [BX] [SI], DI
register, immediate 4 — 3-4 | ADC BX, 256
memory, immediate 17(25) + EA 2 3-6 | ADC GAMMA, 30H
accumulator, immediate 4 — 2-3 |ADCAL,5

*b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

2-54

ADD ADDITION ADD

Operation: Flags Affected:
(DEST) < (LSRC) + (RSRC) AF, CF, OF, PF, SF, ZF
Description:

ADD destination,source

The sum of the two operands, which may be
bytes or words, replaces the destination
operand. Both operands may be signed or
unsigned binary numbers (see AAA and
DAA). ADD updates AF, CF, OF, PF, SF and
ZF.

2-55

ADD

Encoding:

ADDITION

ADD

Memory or Register Operand with Register Operand:

1000000dw | modregr/m |

if d=1then LSRC = REG, RSRC = EA, DEST = REG
else LSRC = EA, RSRC = REG, DEST = EA

Immediate Operand to Memory or Register Operand:

[100000sw [mod000r/m|

data

|data if s:w=01|

LSRC = EA, RSRC = data, DEST = EA

Immediate Operand to Accumulator:

[0000010w |

data

| dataifw=1 |

if w=0then LSRC = AL, RSRC = data, DEST = AL
else LSRC = AX, RSRC =data, DEST = AX

ADD Operands Clocks* |Transfers|Bytes| ADD Coding Examples
register, register 3 — 2 | ADDCX, DX
register, memory 9(13)+ EA 1 2-4 | ADD DI, [BX].ALPHA
memory, register 16(24) + EA 2 2-4 | ADD TEMP, CL
register, immediate 4 — 3-4 |ADDCL,?2
memory, immediate 17(25)+ EA 2 3-6 |ADD ALPHA,?2
accumulator, immediate 4 — 2-3 | ADD AX, 200

*b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

2-56

AND AND LOGICAL

Operation: Flags Affected:
(DEST) < (LSRC) & (RSRC) CF, OF, PF, SF, ZF.
(CF)<0 AF undefined
(OF) <0

Description:

AND destination,source

AND performs the logical ‘“‘and”’ of the two
operands (byte or word) and returns the result
to the destination operand. A bit in the result
is set if both corresponding bits of the original
operands are set; otherwise the bit is cleared.

2-57

AND AND LOGICAL AND

Encoding:

Memory or Register Operand with Register Operand:

1001000dw |[modregr/m |

ifd=1then LSRC = REG, RSRC = EA, DEST = REG
else LSRC =EA, RSRC = REG, DEST =EA

Immediate Operand to Memory or Register Operand:

[1000000w [mod100r/m| data | dataifw=1 |

LSRC = EA, RSRC = data, DEST =EA

Immediate Operand to Accumulator:

10010010w | data | dataifw=1 |

if w=0then LSRC = AL, RSRC = data, DEST = AL
else LSRC = AX, RSRC = data, DEST = AX

AND Operands Clocks* |Transfers|Bytes| AND Coding Examples
2 |ANDAL,BL

register, register

register, memory 9(13)+ EA 1 2-4 | AND CX, FLAG_WORD
memory, register 16(24) + EA 2 2-4 | AND ASCII [DI], AL
register, immediate 4 — 3-4 | AND CX, OFOH

memory, immediate 17(25) + EA 2 3-6 |AND BETA, 01H
accumulator, immediate 4 — 2-3 | AND AX, 01010000B

*b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

2-58

CALL

Operation:

if Inter-Segment then
(SP) < (SP)-2
((SP)+1:(SP)) < (CS)
(CS) < SEG

(SP) < (SP)-2

((SP)+1:(SP)) < (IP)

(IP) < DEST

Description:

CALL procedure-name

CALL activates an out-of-line procedure, sav-
ing information on the stack to permit a RET
(return) instruction in the procedure to
transfer control back to the instruction follow-
ing the CALL. The assembler generates a dif-
ferent type of CALL instruction depending on
whether the programmer has defined the pro-
cedure name as NEAR or FAR. For control to
return properly, the type of CALL instruction
must match the type of RET instruction that
exits from the procedure. (The potential for a
mismatch exists if the procedure and the
CALL are contained in separately assembled
programs.) Different forms of the CALL
instruction allow the address of the target pro-
cedure to be obtained from the instruction
itself (direct CALL) or from a memory loca-
tion or register referenced by the instruction
* (indirect CALL). In the following descrip-
tions, bear in mind that the processor auto-
matically adjusts IP to point to the next
instruction to be executed before saving it on
the stack.

For an intrasegment direct CALL, SP (the
stack pointer) is decremented by two and IP is
pushed onto the stack. The target procedure’s
relative displacement (up to +32k) from
the CALL instruction is then added to the
instruction pointer. This CALL instruction

CALL PROCEDURE

CALL

Flags Affected:

2-59

None

form is ‘‘self-relative’” and appropriate for
position-independent (dynamically relocat-
able) routines in which the CALL and its
target are moved together in the same segment.

An intrasegment indirect CALL may be made
through memory or a register. SP is decre-
mented by two; IP is pushed onto the stack.
The target procedure offset is obtained from
the memory word or 16-bit general register
referenced in the instruction and replaces IP.

For an intersegment direct CALL, SP is decre-
mented by two, and CS ‘is pushed onto the
stack. CS is replaced by the segment word con-
tained in the instruction. SP again is
decremented by two. IP is pushed onto the
stack and replaced by the offset word in the
instruction.

For an intersegment indirect CALL (which
only may be made through memory), SP is
decremented by two, and CS is pushed onto
the stack. CS is then replaced by the content of
the second word of the doubleword memory
pointer referenced by the instruction. SP again
is decremented by two, and IP is pushed onto
the stack and replaced by the content of the
first word of the doubleword pointer refer-
enced by the instruction.

CALL PROCEDURE

CALL

Encoding:

CALL

Intra-segment direct:

111101000 | disp-low
DEST = (IP) + disp

| disp-high |

Intra-Segment Indirect:

[11111111 [mod010r/m]|

DEST = (EA)

Inter-Segment Direct:

[10011010 | offset-low | offset-high |

| seg-low | seg-high |

DEST = offset, SEG = seg

Inter-Segment Indirect:

11111111 [mod011r/m|

DEST = (EA), SEG = (EA + 2)
CALL Operands | Clocks Transfers | Bytes | CALL Coding Examples
near-proc (23) 1 3 [CALLNEAR__PROC
far-proc - (36) 2 5 |CALLFAR_PROC
memptr 16 (29) + EA 2 2-4 |CALL PROC__TABLE [S]]
regptr 16 (24) 1 2 CALL AX
memptr 32 (53) + EA 4 2-4 |CALL [BX].TASK [SI]

2-60

CONVERT BYTE
CBW TO WORD CBW

Operation: Flags Affected:
if (AL) < 80H then (AH) < 0 else (AH) < FFH None
Description:

CBW (Convert Byte to Word) extends the sign
of the byte in register AL throughout register
AH. CBW does not affect any flags. CBW can
be used to produce a double-length (word)
dividend from a byte prior to performing byte
division.

Encoding:

10011000 |

CBW Operands Clocks | Transfers| Bytes| CBW Coding Example

(no operands) 2 - 1 |CBW

2-61

CLC CLEAR CARRY CLC

Operation: Flags Affected:
(CF) <0 CF
Description:

CLC (Clear Carry flag) zeroes the carry flag
(CF) and affects no other flags. It (and CMC
and STC) is useful in conjunction with the
RCL and RCR instructions.

- Encoding:

11111000 |

CLC Operands Clocks | Transfers Bytes CLC Coding Example

(no operands) 2 — 1 |CLC

2-62

CLD

CLEARDIRECTION CLD

FLAG

Operation: Flags Affected:
(DF)<0 DF
Description:
CLD (Clear Direction flag) zeroes DF causing
the string instructions to auto-increment the SI
and/or DI index registers. CLD does not
affect any other flags.
Encoding:
11111100 |
CLD Operands Clocks | Transfers|Bytes|CLD Coding Example
(no operands) 2 — 1 CLD

2-63

CLEAR INTERRUPT-
CLI ENABLE FLAG CLI

Operation: Flags Affected:
(IF)<0 IF
Description:

CLI (Clear Interrupt-enable flag) zeroes IF.
When the interrupt-enable flag is cleared, the
8086 and 8088 do not recognize an external
interrupt request that appears on the INTR
line; in other words maskable interrupts are
disabled. A non-maskable interrupt appearing
on the NMI line, however, is honored, as is a
software interrupt. CLI does not affect any
other flags.

Encoding:

(11111010 |

CLI Operands Clocks | Transfers |Bytes|CLI Coding Example

(no operands) 2 — 1 CLI

2-64

CMC COMPLEMENT CMC

CARRY FLAG
Operation: Flags Affected:

if (CF)=0then (CF) <1 else (CF) <0 CF

Description:

CMC (Complement Carry flag) ‘‘toggles’ CF
to its opposite state and affects no other flags.

Encoding:

[11110101 |

CMC Operands Clocks | Transfers|Bytes|CMC Coding Example

(no operands) 2 — 1 CMC

2-65

CMP COMPARE CMP

Flags Affected:

Operation:
(LSRC) - (RSRC)

Description:

CMP destination,source

CMP (Compare) subtracts the source from the
destination, which may be bytes or words, but
does not return the result. The operands are
unchanged, but the flags are updated and can
be tested by a subsequent conditional jump
instruction. CMP updates AF, CF, OF, PF,

2-66

AF, CF, OF, PF, SF, ZF

SF and ZF. The comparison reflected in the
flags is that of the destination to the source. If
a CMP instruction is followed by a JG (jump
if greater) instruction, for example, the jump
is taken if the destination operand is greater
than the source operand.

CMP

Encoding:

COMPARE

CMP

Memory or Register Operand with Register Operand:

[001110dw|modregrlm|

ifd=1then LSRC = REG, RSRC =EA
else LSRC = EA, RSRC = REG

Immediate Operand with Memory or Register Operand:

[100000sw |mod111r/m|

data

|data if s:w=01]

LSRC = EA, RSRC = data

Immediate Operand with Accumulator:

[0011110w |

data

| dataifw=1 |

if w=0then LSRC = AL, RSRC = data
else LSRC = AX, RSRC = data

CMP Operands Clocks* |Transfers|Bytes| CMP Coding Examples
register, register 3 — 2 |CMPBX, CX
register, memory 9(13)+ EA — 2-4 | CMP DH, ALPHA
memory, register 9(13) + EA — 2-4 |CMP[BP + 2], SI
register, immediate 4 - 3-4 |CMP BL, 02H
memory, immediate 10(14) + EA — 3-6 g)M(I)DH [BX].RADAR [DlI],

42

accumulator, immediate 4 — 2-3 |CMP AL, 00010000B

*b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

2-67

CMPS

COMPARE STRING

CMPS

(BYTE OR WORD)

Operation:

(LSRC) - (RSRC)

if (DF) =0 then
(SI) < (SI) + DELTA
(D) < (DI) + DELTA

)
)-DELTA
)-DELTA

Description:

CMPS destination-string, source-string

CMPS (Compare String) subtracts the destina-
tion byte or word (addressed by DI) from the
source byte or word (addressed by SI). CMPS
affects the flags but does not alter either
operand, updates SI and DI to point to the
next string element and updates, AF, CF, OF,
PF, SF and ZF to reflect the relationship of the
destination element to the source element. For
example, if a JG (Jump if Greater) instruction
follows CMPS, the jump is taken if the des-

Encoding:

1010011 w |

Flags Affected:

AF, CF, OF, PF, SF, ZF

tination element is greater than the source
element. If CMPS is prefixed with REPE or
REPZ, the operation is interrupted as ‘‘com-
pare while not end-of-string (CX not zero) and
strings are equal (ZF = 1).” If CMPS is
preceded by REPNE or REPNZ, the operation
is interrupted as ‘‘compare while not end-of-
string (CX not zero) and strings are not equal
(ZF = 0).”” Thus, CMPS can be used to find
matching or differing string elements.

if w=0then LSRC = (Sl), RSRC = (DI), DELTA =1
else LSRC = (SI) +1:(Sl), RSRC = (DI) +1:(DI), DELTA =2

CMPS Operands Clocks* |Transfers | Bytes | CMPS CodingExamples
dest-string, source-string 22(30) 2 1 |CMPS BUFF1, BUFF2
(repeat) dest-string, source-string | 9+22(30)/rep | 2/rep 1 |REPCOMPSID, KEY

*b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

2-68

CONVERT WORD
Cwbh TO DOUBLEWORD CWD

Operation: Flags Affected:

if (AX) < 8000H then (DX) < 0 None
else (DX) < FFFFH

Description:

CWD (Convert Word to Doubleword) extends
the sign of the word in register AX throughout
register DX. CWD does not affect any flags.
CWD can be used to produce a double-length
(doubleword) dividend from a word prior to
performing word division.

Encoding:

110011001 |

CWD Operands Clocks | Transfers|Bytes|CWD Coding Example

(no operands) 5 — 1 CwD

2-69

DECIMAL ADJUST
DAA FOR ADDITION DAA

Operation: Flags Affected:

if (AL) & OFH) > 9 or (AF) = 1 then AF, CF, PF, SF, ZF
(AIIE) - %AL) + 6 OF undefined’

>9FH or (CF) =1 then

(AL) + 60H

-1

if (AL
AL
CF

Description:

DAA (Decimal Adjust for Addition) corrects
the result of previously adding two valid
packed decimal operands (the destination
operand must have been register AL). DAA
changes the content of AL to a pair of valid
packed decimal digits. It updates AF, CF, PF,
SF and ZF; the content of OF is undefined
following execution of DAA.

Encoding:

[00100111 |

DAA Operands Clocks | Transfers |Bytes| DAA Coding Example

(no operands) 4 — 1 DAA

2-70

DECIMAL ADJUST
DAS FOR SUBTRACTION DAS

Operation: Flags Affected:
if (AL) & OFH) >9 or (AF) = 1 then AF. GF, PF, SF, ZF.
(AL) < (AL)-6 OF undefined

(AF) <1

if (AL) >9FH or (CF) =1 then
(AL) < (AL) - 60H
(CF) <1

Description:

DAS (Decimal Adjust for Subtraction) cor-
rects the result of a previous subtraction of
two valid packed decimal operands (the desti-
nation operand must have been specified as
register AL). DAS changes the content of AL
to a pair of valid packed decimal digits. DAS
updates AF, CF, PF, SF and ZF; the content
of OF is undefined following execution of
DAS.

Encoding:

(00101111 |

DAS Operands Clocks | Transfers|Bytes|DAS Coding Example

(no operands) 4 — 1 DAS

271

DEC DECREMENT DEC

Operation: Flags Affected:
(DEST) < (DEST) -1 AF, OF, PF, SF, ZF
Description:

DEC (Decrement) subtracts one from the
destination operand. The operand may be a
byte or a word and is treated as an unsigned
binary number (see AAA and DAA). DEC
updates AF, OF, PF, SF and ZF; it does not
affect CF.

Encoding:

Memory or Register Operand:

[1111111w [mod001r/m]|

DEST=EA

16-Bit Register Operand:

[01001reg |
DEST =REG

DEC Operands Clocks* |Transfers|Bytes|DEC Coding Example

reg16 2 — 1 DEC AX
reg8 3 — 2 |DECAL
memory 15(23) + EA 2 2-4 |DEC ARRAY [SI]

*b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

2-72

DIV

Operation:

(temp) < (NUMR)

if (temp) / (DIVR) > MAX then the
following, in sequence
(QUO), (REM) undefined

(SP) < (SP)-2
E|(I§)P)+1(SP)) FLAGS
(TF)<0

(SP)*—(SP) 2

§(SP) (SP)) (CS)

)
(SP)) < (IP)
P) < (0)i.e., the contents of
locations 0 and 1
else
(QUO) « (temp) / (DIVR), where
/ is unsigned division
(REM) < (temp) % (DIVR) where
% is unsigned modulo

Description:

DIV source

DIV (divide) performs an unsigned division of
the accumulator (and its extension) by the
source operand. If the source operand is a
byte, it is divided into the two-byte dividend
assumed to be in registers AL and AH. The
byte quotient is returned in AL, and the byte
remainder is returned in AH. If the source
operand is a word, it is divided into the two-
word dividend in registers AX and DX. The
word quotient is returned in AX, and the word

DIVIDE

DIV

Flags Affected:

2-73

AF, CF, OF, PF, SF, ZF undefined

remainder is returned in DX. If the quotient
exceeds the capacity of its destination register
(FFH for byte source, FFFFH for word
source), as when division by zero is attempted,
a type O interrupt is generated, and the
quotient and remainder are undefined. Nonin-
tegral quotients are truncated to mtegers The
content of AF, CF, OF, PF, SF and ZF is un-
defined following execution of DIV.

DIV DIVIDE DIV

Encoding:

11111011 w [mod110r/m|

if w=0then NUMR = AX, DIVR = EA, QUO = AL, REM = AH, MAX = FFH
else NUMR = DX:AX, DIVR = EA, QUO = AX, REM = DX, MAX = FFFFH

DIV Operands Clocks Transfers|Bytes| DIV Coding Example

reg8 80-90 — 2 |DIVCL

reg16 144-162 — 2 |DIVBX

mems§ (86-96) + EA 1 2-4 |DIV ALPHA
mem16 (154-172) + EA 1 2-4 |DIV TABLE [SI]

2-74

ESC ESCAPE ESC

Operation: ~ Flags Affected:
if mod # 11 then data bus < (EA) None
Description:

The ESC (Escape) instruction provides a
mechanism by which other processors
(coprocessors) may receive their instructions
from the 8086 or 8088 instruction stream and
make use of the 8086 or 8088 addressing
modes. The CPU (8086 or 8088) does a no
operation (NOP) for the ESC instruction other
than to access a memory operand and place it
on the bus.

Encoding:
| 11011x | modxrim |
ESC Operands Clocks* | Transfers|Bytes|ESC Coding Example
immediate, memory | 8(12)+EA 1 2-4 |ESC 6,ARRAY [SI]
immediate, register 2 — 2 |ESC20,AL

*b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

2-75

HLT HALT HLT

Operation: Flags Affected:
None None
Description:

HLT (Halt) causes the CPU to enter the halt able interrupt request on INTR. HLT does not
state. The processor leaves the halt state upon affect any flags. It may be used as an alterna-
activation of the RESET line, upon receipt of a tive to an endless software loop in situations
non-maskable interrupt request on NMI, or, if where a program must wait for an interrupt.
interrupts are enabled, upon receipt of a mask-

Encoding:

[11110100 |

HLT Operands Clocks | Transfers|Bytes| HLT Coding Example

(no operands) 2 — 1 HLT

2-76

IDIV

Operation:

(temp) < (NUMR)
if (temp) / (DIVR) >0 and (temp)
| (DIVR) > MAX
or (temp) / (DIVR) < 0 and (temp)
/ (DIVR) < 0-MAX-1then
QUO), (REM) undefined
SP) < (SP)-2
(S)P)+1 :(SP)) < FLAGS
F) <
P) < (SP) 2
(SF;)+2 ()SP))<—(CS)

P) < (SP)-2
(SP) +1:(SP)) < (IP)
IP) < (0)

QUO) < (temp) / (DIVR), where
| is signed division

REM) < (temp) % (DIVR) where
% is signed modulo

els

(
(
(
(IF
(T
(S
(
(CS
(S
(
(
e
(
(

Description:

IDIV source

IDIV (Integer Divide) performs a signed divi-
sion of the accumulator (and its extension) by
the source operand. If the source operand is a
byte, it is divided into the double-length divi-
dend assumed to be in registers AL and AH;
the single-length quotient is returned in AL,
and the single-length remainder is returned in
AH. For byte integer division, the maximum
positive quotient is +127 (7FH) and the
minimum negative quotient is —127 (81H). If
the source operand is a word, it is divided into
the double-length dividend in registers AX and
DX; the single-length quotient is returned in

INTEGER DIVIDE

IDIV

Flags Affected:

2-77

AF, CF, OF, PF, SF, ZF undefined

AX, and the single-length remainder is
returned in DX. For word integer division, the
maximum positive quotient is +32,767
(7FFFH) and the minimum negative quotient
is —32,767 (8001H). If the quotient is positive
and exceeds the maximum, or is negative and
is less than the minimum, the quotient and
remainder are undefined, and a type O inter-
rupt is generated. In particular, this occurs if
division by 0 is attempted. Nonintegral quo-
tients are truncated (toward 0) to integers, and
the remainder has the same sign as the divi-
dend. The content of AF, CF, OF, PF, SF and
ZF is undefined following IDIV.

IDIV

Encoding:

INTEGER DIVIDE IDIV

[1111011w [mod111r/m|

if w=0then NUMR = AX, DIVR = EA, QUO = AL, REM =‘AH, MAX =7FH
else NUMR = DX:AX, DIVR = EA, QUO = AX, REM = DX, MAX = 7FFFH

IDIV Operands Clocks Transtfers | Bytes | IDIV Coding Example

regs 101-112 — 2 |IDIVBL

reg16 165-184 — 2 |IDIVCX

mem3 (107-118) + EA 1 2-4 | IDIV DIVISOR__BYTE [SI]
mem16 (175-194) + EA 1 2-4 [IDIV [BX].DIVISOR__WORD

2-78

IMUL

Operation:

(DEST) < (LSRC) * (RSRC) where
* is signed multiply

if (ext) = sign-extension of (LOW)
then (CF) <0

else (CF) < 1;

(OF) < (CF)

Description:

IMUL source

IMUL (Integer Multiply) performs a signed
multiplication of the source operand and the
accumulator. If the source is a byte, then it is
multiplied by register AL, and the double-
length result is returned in AH and AL. If the
source is a word, then it is multiplied by
register AX, and the double-length result is
returned in registers DX and AX. If the upper

Encoding:

[1111011w |[mod101r/m|

INTEGER MULTIPLY

IMUL

Flags Affected:

CF, OF
AF, PF, SF, ZF undefined

half of the result (AH for byte source, DX for
word source) is not the sign extension of the
lower half of the result, CF and OF are set;
otherwise they are cleared. When CF and OF
are set, they indicate that AH or DX contains
significant digits of the result. The content of
AF, PF, SF and ZF is undefined following exe-
cution of IMUL.

if w=0then LSRC = AL, RSRC = EA, DEST = AH, EXT = AH, LOW = AL
else LSRC = AX, RSRC = EA, DEST = DX:AX, EXT = DX, LOW = AX

IMUL Operands | Clocks Transfers | Bytes | IMUL Coding Example

reg8 80-98 - 2 |IMULCL

reg16 128-154 — 2 |[IMULBX

mem8 (86-104) + EA 1 2-4 |IMUL RATE_BYTE

mem16 (138-164) + EA 1 2-4 | IMUL RATE_WORD [BP] [DI]

2-79

IN INPUTBYTE ORWORD IN

Operation: Flags Affected:
(DEST) < (SRC) None
Description:

IN accumulator,port

IN transfers a byte or a word from an input 255, or with a number previously placed in the
port to the AL register or the AX register, DX register, allowing variable access (by
respectively. The port number may be speci- changing the value in DX) to ports numbered
fied either with an immediate byte constant, from O through 65,535.

allowing access to ports numbered 0 through

Encoding:
Fixed Port:

1110010w port
L]

if w=0then SRC = port, DEST = AL
else SRC = port+1:port, DEST = AX

Variable Port:

[1110110w |

if w=0then SRC = (DX), DEST = AL
else SRC = (DX) +1:(DX), DEST = AX

IN Operands Clocks* | Transfers|Bytes |IN Coding Example

accumulator, immed8| 10(14) 1 2 |IN AL,0EAH
accumulator, DX 8(12) 1 1 IN AX, DX

*b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

2-80

INC INCREMENT

Operation: Flags Affected:
(DEST) < (DEST) + 1 AF,OF, PF, SF, ZF
Description:

INC destination

INC (Increment) adds one to the destination
operand. The operand may be a byte or a word
and is treated as an unsigned binary number
(see AAA and DAA). INC updates AF, OF,
PF, SF and ZF; it does not affect CF.

Encoding:

Memory or Register Operand:

[1111111w [mod 000r/m]
DEST =EA

- 16-Bit Register Operand:

| 01000reg |
DEST = REG

INC

INC Operands Clocks* |Transfers|Bytes|INC Coding Example

reg16 2 — 1 |INCCX
reg8 3 — 2 |INCBL
memory 15(23) + EA 2 2-4 | INC ALPHA [DI] [BX]

*b(w): where b denotes the number of clock cycles for byte operands and

w denotes the number of clock cycles for word operands.

2-81

INT

Operation:

<(TYPE*4 + 2)
< (SP)-2
P)+1:(SP)) < (IP)
) < (TYPE * 4)

Description:

INT interrupt-type

INT (Interrupt) activates the interrupt pro-
cedure specified by the interupt-type operand.
INT decrements the stack pointer by two,
pushes the flags onto the stack, and clears the
trap (TF) and interrupt-enable (IF) flags to
disable single-step and maskable interrupts.
The flags are stored in the format used by the
PUSHEF instruction. SP is decremented again
by two, and the CS register is pushed onto the
stack. The address of the interrupt pointer is
calculated by multiplying interrupt-type by
four; the second word of the interrupt pointer
replaces CS. SP again is decremented by two,
and IP is pushed onto the stack and is replaced

INTERRUPT

INT

Flags Affected:

2-82

IF, TF

by the first word of the interrupt pointer. If
interrupt-type = 3, the assembler generates a
short (1 byte) form of the instruction, known
as the breakpoint interrupt.

Software interrupts can be used as ‘‘supervisor
calls,”” i.e., requests for service from an
operating system. A different interrupt-type
can be used for each type of service that the
operating system could supply for an applica-
tion program. Software interrupts also may be
used to check out interrupt service procedures
written for hardware-initiated interrupts.

INT

Encoding:

INTERRUPT

[1100110v | typeifv=1 |

ifv=0then TYPE=3

else TYPE =type

INT

INT Operands Clocks | Transfers|Bytes|INT Coding Example
immed8 (type = 3) (72) 5 1 INT 3
immed8 (type # 3) (71) 5 2 |INT67

2-83

INTO

Operation:
if

s — P~ P~ S~ P, P, S, o, o,

Description:

INTO (Interrupt on Overflow) generates a
software interrupt if the overflow flag (OF) is
set; otherwise control proceeds to the follow-
ing instruction without activating an interrupt
procedure. INTO addresses the target inter-
rupt procedure (its type is 4) through the inter-

INTERRUPT ON
OVERFLOW

INTO

Flags Affected:

None

rupt pointer at location 10H; it clears the TF
and IF flags and otherwise operates like INT.
INTO may be written following an arithmetic
or logical operation to activate an interrupt
procedure if overflow occurs.

Encoding:

[11001110 |

INTO Operands | Clocks [Transfers|Bytes|INTO Coding Example
(no operands) (73)or 4 1 INTO

2-84

IRET INTERRUPTRETURN IRET

FLAGS < ((SP) + 1:(SP))
(SP) < (SP

Operation: Flags Affected:
(I) ((SP)+1:(SP)) All
(SP) < (S)+2
(CS) < ((SP)+1:(SP))
(SP)«(SP%+)2
) + 2

Description:

IRET (Interrupt Return) transfers control
back to the point of interruption by popping
IP, CS and the flags from the stack. IRET thus
affects all flags by restoring them to previously
saved values. IRET is used to exit any inter-
rupt procedure, whether activated by hard-
ware or software.

Encoding:

11001111 |

IRET Operands | Clocks | Transfers|Bytes|IRET Coding Example

(no operands) (44) 3 1 IRET

2-85

JA JUMP ON ABOVE JA
JNBE JUMPONNOTBELOW JNBE

OR EQUAL
Operation: Flags Affected:
if (CF) & (ZF) =0 then None
(IP) < (IP) + disp (sign-extended

to 16-bits)

Description:

Jump on Above (JA)/Jump on Not Below or
Equal (JNBE) transfers control to the target
operand (IP + displacement) if CF and ZF = 0.

Encoding:

01110111 | disp |

JA/JNBE Operands Clocks | Transfers|Bytes|JA Coding Example

short-label 16or4 — 2 |JAABOVE

JNBE Coding Example

JNBE ABOVE

2-86

JUMP ON ABOVE
JAE OR EQUAL

JNB JUMPONNOTBELOW JNB

Operation:
if (CF) = 0 then

(IP) < (IP) + disp (sign-extended

to 16-bits)

Description:

JAE

Flags Affected:

None

JAE (Jump on Above or Equal)/JNB (Jump ‘

on Not Below) transfers control to the target

operand (IP + displacement) if CF = 0.

Encoding:

lo1110011 | disp |

JAE/JNB Operands

Clocks

Transfers

Bytes

JAE Coding Example

short-label

16or4

JAE ABOVE__EQUAL

2-87

JB JUMP ON BELOW JB
JNAE JUMPONNOT JNAE

ABOVE OR EQUAL

Operation: Flags Affected:
if (CF)=1then None
(IP) < (IP) + disp (sign-extended
to 16-bits)

Description:

JB (Jump on Below)/JNAE (Jump on Not
Above or Equal) transfers control to the target
operand (IP + displacement) if CF = 1.

Encoding:

|o1110010 | disp |

JB/JNAE Operands | Clocks | Transfers|Bytes|JB Coding Example
JB BELOW

short-label 16or4 — 2

2-88

JUMP ON BELOW
JBE 'OREQUAL
JUMP ON

JNA NOT ABOVE
Operation: Flags Affected:

IF (CF) or (ZF) =1 then None

(IP)<(IP) + disp (sign-extended
to 16-bits)

Description:

JBE (Jump on Below or Equal)/JNA (Jump
on Not Above) transfers control to the target
operand (IP + displacement) if CF or ZF = 1.

Encoding:

lo1110110] disp |

JBE
JNA

JBE/JNA Operands Clocks | Transfers Bytes [JNA C'o*ding Example

short-label 16 or4 — 2 |JNANOT_ABOVE

2-89

JC JUMP ON CARRY JjC

Operation: Flags Affected:
if (CF) = 1 then None
(IP) < (IP) + disp (sign-extended
to 16-bits)
Description:

JC (Jump on Carry) transfers control to the
target operand (IP + displacement) on the con-
dition CF = 1.

Encoding:

01110010 | disp |

JC Operands | Clocks | Transfers | Bytes | JC Coding Example

short-label 16or4 — 2 JC CARRY__SET

2-90

JCXZ pecisterzero ICXZ

Operation: Flags Affected:
if (CX)=0then None
(IP) < (IP) + disp <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>