MNEMONIC INDEX I =
| I"tel
Mnemonic Page Mnemonic Page Mnemonic Page
AAA 6 JG 15 MOV 3
AAD __ 8 JGE _______ 14 MOVS 12
AAM JLU 14 MUL 8

8
AAS 8 JLE 14 NEG 7
ADC 6 JMPp 13 MOP 17
ADD 5 JNA 14 MOT 9

AND _______ 10 JNAE
CALL

4 o ——un | MCS-86"
Gow s anee 15 ror —_——: | ASSEMBLY

oS T n ame 1 msn_—s | LANGUAGE

e 1w me__——u re—_—w | REFERENCE l ‘
CMP JNLE ________ 16 RCR 10

7

CMPS ____ 12 wo 15 ree 11 QUIDE

cwD 9 JNP 15 RET ____ 13 |

DAA 6 NS 15 ROL 9 |

DAS 8 INZ 14 ROR _____ 10 |

DEC 7 Jo 14 SAHF ____ 5 |

DIV 8 P 14 SAL 9

ESC 17 JE _______ 14 SAR 9 |

HLT 17 JO 15 sBB 7

DIV 8 S 14 SCAS 2

IMUL 8 Jz 13 SHL 9

IN 4 LAHF 5 SHR 9

INC 6 tbs 5 STC 17

INT 16 LEA ___ 5 STD 17

INTO 16 LES 5 STl 17

IRET 16 LOCK 17 STOS 12

JA 15 LoDS 12 SUB 6

JAE 15 LOOP 15 TEST 10

B 14 LOOPE ____ 15 WAIT 17

JBE 14 LOOPNE ___ 15 XCHG 4

JCXZ 16 LOOPNZ ___ 15 XLAT 5

JE 13 LooPZ ____ 15 XOR 1
Mnemonics © Intel, 1978. October 1978

me”@'u?@'ff 32‘35 SOFTWARE | ©Intel Corporation 1978

1084/2K/0386/PTW/AD ,1 9800749-1

RG-2

8086 OPERAND SUMMARY
REGISTER MODEL “reg” field Bit Assignments:
16-Bit (w = 1) 8-Bit (w = 0) Segment
Ax: | aH AL ACCUMULATOR] 000 AX 000 AL 00 ES
001 CX 001 CL 01 CS
BX: BH BL BASE w 010 DX 010 DL 10 SS
CXx: CH CL COUNT 0 011 BX 011 BL 11 DS
Zu 100 SP 100 AH
. <
DX: DH DL DATA [od {f, 101 BP 101 CH
9 110 SI 110 DH
SP STACK POINTER 3(‘% 111 DI 111 BH
BP BASE POINTER g
Si SOURCE INDEX SECOND INSTRUCTION BYTE SUMMARY
(8]] DESTINATION INDEX
mod XXX r/m
IP INSTRUCTION POINTER mod| Displacement
FLAG STATUS FLAGS
FLAGSH [S 00 | DISP = 0*, disp-low and disp-high are absent
w 01 | DISP = disp-low sign-extended to 16-bits, disp-high is absent
CS CODE SEGMENT - 10 | DISP = disp-high: disp-low
DS DATA SEGMENT é x 11 | r/m is treated as a “reg’ field
SS STACK SEGMENT O r/m | Operand Address
ES EXTRA SEGMENT | w9 000 [(BX + (SI) + DISP
o 001 (BX, (DI + DISP
010 | (BP) + (SI) + DISP
Instructions which reference the flag register file as a 16-bit object (1)(1)(1) EBP)++D%|;+ DIsP
use the symbol FLAGS to represent the file: 101 (DI) + DISP
15 7 0 110 | (BP) + DISP*
111 1 (BX) + DISP

x | x |x | x|oF |oF|iF|TF|sF|zF | x AF[x]prlxlcr]

DISP follows 2nd byte of instruction (before data if required).
X = Don't Care
‘except if mod = 00 and r/m = 110 then EA = disp-high: disp-low.

AF: AUXILIARY CARRY — BCD

CF: CARRY FLAG
PF: PARITY FLAG
SF: SIGN FLAG

ZF: ZERO FLAG —

DF: DIRECTION FLAG (STRINGS) |

IF: INTERRUPT ENABLE FLAG
OF: OVERFLOW FLAG (CF @ SF)
TF: TRAP — SINGLE STEP FLAG

— 8080 FLAGS

— 8086 FLAGS

Operand Address (EA) Timing (clocks):

Add 4 clocks for word operands at ODD ADDRESSES.
Immed Offset = 6

Base (BX, BP, SI, DI) =5

Base + DISP =9

Base + Index (BP + DI, BX +SI) =7

Base + Index (BP + SI, BX + DI) =8

Base + Index (BP + DI, BX + SI) + DISP = 11

Base + Index (BP + SI, BX + DI) + DISP =12

18

ASSEMBLER DIRECTIVES

Symbol Definition:
EQU
LABEL
PURGE

Memory Reservation and
Data Definition:

DB

Dw

DD

RECORD

Location Counter and
Segmentation Control:
SEGMENT/ENDS
ORG
GROUP
ASSUME
PROC/ENDP
CODEMACROQ/ENDM

Program Linkage:
NAME
PUBLIC
EXTRN
END

PROCESSOR RESET
REGISTER INITIALIZATION

- (to disable interrupts
Flags = OOOOH {and single-stepping)

CS = FFFFH . .)

IP = OOOOH (to begin execution at FFFFOH)
DS = OOOOH

§S = OO0OO0OH

ES = OOOOH

No other registers are acted upon during reset.

MCS-86™ RESERVED LOCATIONS

Reserved Memory Locations

Intel Corporation reserves the use of memory locations FFFFOH
through FFFFFH (with the exception of FFFFOH - FFFF5H for JMP
instr.) for Intel hardware and software products. If you use these
locations for some other purpose, you may preclude compatibility of
your system with certain of these products.

Reserved Input/Output Locations

Intel Corporation reserves the use of input/output locations F8H
through FFH for Intel hardware and software products. Users who
wish to maintain compatibility with present and future Intel products
should not use these locations.

Reserved Interrupt Locations

Intel Corporation reserves the use of interrupts 0-31 (locations O0H
through 7FH) for Intel hardware and software products. Users who
wish to maintain compatibility with present and future Intel products
should not use these locations.

Interrupts O through 4 (00H-13H) currently have dedicated hardware
functions as defined below.

Interrupt Location Function
0 00H-03H Divide by zero
1 04H-07H Single step
2 08H-0BH Non-maskable interrupt
3 0CH-0FH One-byte interrupt instruction
4 10H-13H Interrupt on overflow

INTERRUPT POINTER TABLE

7 0
3FFH
— CSzs5
® — 1P255 —
[
L4 -~ .
ZT T
INTERRUPT TYPE VECTOR
L cs,] l x 4 IS LOCATION FOR
TYPE, ADDRESS OF INTERRUPT
- P, _ SERVICE ROUTINE
- CSy -
TYPEg
- 1Py —_
——

OH

19

8086 INSTRUCTION ggT MATRIX

A\ Lo Lo
Hi 0 1 2 3 4 5 6 7 Hi 8 0 A 5 ¢ . g ;
o apoD | ADD | ADD | ADD [ADD | AOD | PUSH | Pop
btr/m | wir/m | btr/im| wtr/m b.ia w,ia ES ES 0 b.l(.]r’)m w.lo,rR/m b,t(,)rF."m w.??/m 8? 3“' ng“
1| aoc | aoc ADC ADC | ADC | ADC | PUSH | PoP : :
bfr/m | wfr/im| btr/m| wtr/m b w,i SS SS ! b.?.??m w_s'??m b‘?.?IBm wiﬁ?m SDB.IB i?? ngH %OSP
2| AND | AND | AND | AND | AND | AND | SEG
bir/m | wirim | bte/m | wte/m | bi wi | =Es | DAL 2| 5ue S bf}f?m wus SUB | sus SES | oas
3 [XOR XOR XOR XOR XOR XOR SEG
bfrim | wfr/im | btr/im| wtr/m b.i Wi =S8S AAA 3 bETme w?xfm b??fm wctr‘:rm C;vl'P C‘mp Sgg AAS
4 INC INC INC INC ING INC INC INC - :
AX_ | ox | ox | Bx | sp | B | s o | . Y%L B | %C | b) Dec | DEC ofC | DEC
5| PUSH | PUSH | PUSH | PUSH | PUSH | PUSH | PUSH | PUSH
AX CX DX BX SP BP i Dl SRR | ko] pop | | e POP | PoP
6 6
7 JE/ JNE/ | JBE/ | JNBE/
Jo JINO 7 I UNPS | UL | UNL | B | UNLE/
. T;gT T"ENSZT X"CN:G xé:e S L NS e | e | anee | ueE | une | g
8| mov | mMov | mMov | mov | mov MOV POP
b.r/m w.r/m b.r/m w.rim bir/m | wihr/m | btr/m | wtr/m |srtr/m LEA srir/m r‘m

9 [Nop | XCHG | XCHG | XCHG | XCHG | XCHG | XCHG | XCHG o

ox DX BX sp 8P) DI o | caw | owo | CALL | wair | pusF | POPF | SAHF | LaHF

A MOV | MOV | MOV | MOV | MOVS | MOVS | CMPS | CMPS '
b

m ALl m = AX AL — ml AX — m w b W A TES;T TEJSiT STDOS STv?S LObDS L(\)’?S scl:\s S(“,:\S
§ M - -
’ FTOXL xh-n-ogl. ibf-ol‘;L in—d-ﬂgL i A—H-OXH i zl‘OgH i |iA-OI\JIH i %H B | MOV MoV Mov MOV MoV MoV MoV MOV
. RET MOV MoV b=~ AX] i —=CX|i—=DX|i—-BX|i—=SP|i—~BP| i~Sl |i-D
; RET LES LDS ; ; (4 RET, RET INT INT
bir/m | wir/m LGi+SP) | Type 3 | (Any) INTO IRET
: . AAM AAD 0 ESC ESC ESC ESC ESC ESC ESC ESC
£ [LOOPNZ/| LOOPZ/ T TN IN : 1 2 . ! 3 6 d
LOOP JCXZ E CALL JMP JMP JMP IN IN ouT out
i LOOPNE | LOOPE - b w d d Id si.d v.b v.W
LocK REP R Floce | st | cu | sn | co | s
b = byte operation m = memory where: g
d = direct rim = EA is second byte . mod[Jr/m | 000 001 010 011 100 101 110 m
f = from CPU reg si = short intrasegment ADD OR ADC SB8 AND SuB XOR CMP
i = immediate sr = segment register ROL ROR RCL RCR | SHL/SAL | SHR - SAR
ia = immed. to accum. t = to CPU reg TEST - NOT | NEG | MUL [IMUL | DIV 101V
id = indirect , v=variable INC | DEC | CALL | CALL| JMP | JMP | PUSH | —
is = immed. byte, sign ext. w = word operation id 1.id id 1.id
| = long ie. intersegment Z = zero
20

Mnemonics © Intel, 1978 Mnemonics @ Intel, 1978,

MEMORY SEGMENTATION MODEL

LOGICAL:
MEMORY SPACE

0
| FFFFFH

3

64 KB

—-CODE SEGMENT

— XXXXOH

DISPLACEMENT

>

—STACK SEGMENT

0
{4

ms8

LSB — DATA SEGMENT

BYTE _J

15 0
O bhcss | DISPLACEMENT |
O bhass [DisPLACEMENT
i i
!]
1]
SELECTED |2t : : WORD{
SEGMENT cs || Joooo b
REGISTER S5 0000
DS
cs, $S, DS, ES - 0000
OR NONE 0000
FOR 1/0, INT

\
1
1
1
'
| ADDER

1

I

(]

1

0
PHYSICAL

ADDRESS
LATCH

SEGMENT OVERRIDE PREFIX

001reg110

Timing: 2 clocks

)
&

| EXTRA DATA
SEGMENT

e

00000H

USE OF SEGMENT OVERRIDE

Operand Register Default| With Override Prefix
IP (code address) CS |[Never

SP (stack address) SS |Never

BP (stack address or stack marker)| SS |BP + DS orES, orCS
Si or DI (not incl. strings) DS |ES, SS, or CS

SlI (implicit source addr for strings) DS |ES, SS, or CS

DI (implicit dest addr for strings) ES |Never

2

DATA TRANSFER

MOV = Move
Register/memory to/from register

u0001ﬂdwlmod reg r/m]

Timing (clocks): register to register 2
memory to register 8+EA
register to memory 9+EA

Immediate to register/memory

(110001 1w][mod 000 r/m | data_ | dataifw=1 |

Timing: 10+EA clocks

Immediate to register

(1011w reg | data__ | dataif w=1]

Timing: 4 clocks

Memory to accumulator

[1010000w] addrlow | addr-nigh |

Timing: 10 clocks

Accumulator to memory

[1010001w] addrlow | addr-high |

Timing: 10 clocks
Register/memory to segment register
(10001110 [mod0reg r/m |

Timing (clocks): register to register
memory to register

Segment register to register/memory
(10001100 [mod0reg rim]
Timing (clocks):

register to register
register to memory

PUSH = Push
Register/memory

(11111111 [mod 110 r/m |
Timing (clocks):

register
memory

Register

01010 reg

Timing: 10 clocks

(Continued on following page)

Mnemonics © Intel, 1978.

8+EA

9+EA

10
16+EA

Segment register

[000rg 110 I

T|m}|:1gz 10 clocks

POP = Pop

Register/memory
(10001111 [mod000 r/m

Timing (clocks): register 8
memory 17+EA

Register

Timing: 8 clocks
Segment register
Timing: 8 clocks

XCHG = Exchange
Register/memory with register

[1000011w]mod reg rlmJ

Timing (clocks): register with register 4
memory with register 17+EA

Register with accumulator
10010 reg
Timing: 3 clocks

IN = Input to AL/AX from
Fixed port

[1110010w] port |
Timing: 10 clocks
Variable port (DX)
Timing: 8 clocks

OUT = Output from AL/AX to
Fixed port

[111001?w] port
Timing: 10 clocks
Variable port (DX)

11101 11w

Timing: 8 clocks
4 Mnemonics © Intel, 1978.

' XLAT = Translate byte to AL

11010111

Timing: 11 clocks

LEA = Load EA to register
(10001101 [mod reg r/m |
Timing: 2+EA clocks

LDS = Load pointer to DS
(11000101 [mod reg r/m |
Timing: 16+EA clocks

LES = Load pointer to ES
(11000100 [mod reg r/m |
Timing: 16+EA clocks

LAHF = Load AH with flags
10011111

Timing: 4 clocks

SAHF = Store AH into flags

Timing: 4 clocks

PUSHF = Push flags
10011100

Timing: 10 clocks

v
o
°
"
°
]
©
=
o
«Q
w

Timing: 8 clocks

ARITHMETIC
ADD = Add
Reg./memory with register to either

[000000dw[mod reg r/m |

Timing (clocks): register to register 3
memory to register 9+EA
register to memory 16+EA
Immediate to register/memory
1000005 w[mod000 r/m | data | dataif sw-01 |
Timing (clocks): immediate to register 4

‘ immediate to memory 17+EA

L(Continued on following page) Mnemonics © Intel, 1978.

Immediate to accumulator

0000010w] data

data if w=1_|

Timing: 4 clocks

ADC = Add with carry
Reg./memory with register to either
[000100dw][mod reg r/m |

register to register
memory to register
register to memory

Timing (clocks):

Immediate to register/memory

3
9+EA
16+EA

data if s:w=(M

[100000sw][mod010 1/m data

Timing (clocks): immediate to register 4
immediate to memory 17+EA

Immediate to accumulator

[0001010w| data data if w=1_|

Timing: 4 clocks

INC = Increment

Register/memory

[(711111w[mod000 r/m_|

Timing (clocks): register 2
memory 15+EA

Register

Timing: 2 clocks

AAA = ASCII adjust for add

Timing: 4 clocks

DAA = Decimal adjust for add

Timing: 4 clocks

SUB = Subtract

Reg./memory and register to either

[001010dw[mod-reg r/m

Timing (clocks): register from register 3
memory from register 9+EA
register from memory 16+EA

6 Mnemonics © Intel, 1978.

(Continued of following page)

Immediate from register/memory

[100000sw|mod101 /m | data data if s:w=01
Timing (clocks): immediate from register 4
immediate from memory 17+EA
Immediate from accumulator
[0010110w | data data if w=1
Timing: 4 clocks
S$BB = Subtract with borrow
Reg./memory and register to either
[000110d w[mod reg r/im |
Timing (clocks): register from register 3
memory from register 9+EA
register from memory 16+EA
Immediate from register/memory
[100000sw|mod011 r/m data data if 5:w=01
Timing (clocks): immediate from register 4
immediate from memory 17+EA
Immediate from accumulator
[0001110w] data | dataif w=1
Timing: 4 clocks
DEC = Decrement
Register/memory
111111 1w | mod001 r/m
Timing (clocks): register 2
memory 15+EA
Register
01001 reg
Timing: 2 clocks
NEG = Change sign
[1111011w{mod0 11 r/m
Timing (clocks): register 3
memory 16+EA
CMP = Compare
Register/memory and register
001110dw[mod reg r/m
Timing (clocks): register with register 3
memory with register 9+EA
register with memory 9+EA
(Continued on following page) Mnemonics © Intel, 1978. 7

N N

Immediate with register/memory

100000sw |mod111 r/m

data

data it sw=01 |

Timing (clocks):

immediate with register

4

immediate with memory 17+EA

Immediate with accumulator

(00111 10w] data | daaitw=1 |

Timing: 4 clocks

AAS = ASCII adjust for subtract

Timing: 4 clocks

DAS = Decimal adjust for subtract

Timing: 4 clocks

MUL = Multiply (unsigned)

[1111011w][mod100 r/m]

Timing (clocks): 8-bit 7T1+EA
16-bit 124+EA

IMUL = Integer multiply (signed)

P11 t011w]mod101 rm |

Timing (clocks): 8-bit 90+EA
16-bit 144+EA

AAM = ASCI! adjust for multiply

[1101010000001010 |

Timing: 83 clocks

DIV = Divide (unsigned)

[1111011w[mod110 r/m |

Timing (clocks): 8-bit 90+EA
16-bit 155+EA

Iblv = Integer divide (signed)

(111101 1w|mod111 r/m

Timing (clocks): 8-bit 112+EA
16-bit 177+EA

AAD = ASCII adjust for divide

[11010101J00001010 |

Timing: 60 clocks

8 Mnemonics © Intel, 1978.

‘ CBW = Convert byte to word

|10011000,

Timing: 2 clocks
CWD = Convert word to double word
Timing: 5 clocks

LOGIC
NOT = Invert

(1111011 w[modo10 /m |
Timing (clocks):

register
memory

SHL/SAL = Shift logical/arithmetic left
[110100vw[m0d100 r/m

Timing (clocks): single-bit register
single-bit memory
variable-bit register
variable-bit memory
SHR = Shift logical right
[110100vw][mod101 r/m

Timing (clocks):

single-bit register
single-bit memory
variable-bit register
variable-bit memory

SAR = Shift arithmetic right
[110100vw([med111 om
single-bit register
single-bit memory
variable-bit register
variable-bit memory

ROL = Rotate left
[110100vw|mod000 r/m |
single-bit register
single-bit memory
variable-bit register
variable-bit memory

Timing (clocks):

Timing (clocks):

Mnemonics © Intel, 1978.

16+EA

2

15+EA
8+4/bit
20+EA+4/bit

2

15+EA
8+4/bit
20+EA+4/bit

2

15+EA
8+4/bit
20+EA+4/bit

2

15+EA
8+4/bit
20+EA+4/bit

ROR = Rotate right
[110100vw]|modoo1 r/m

Timing (clocks): single-bit register 2
single-bit memory 15+EA
variable-bit register 8+4/bit
variable-bit memory 20+EA+4/bit

RCL = Rotate through carry left
[110100vw|modo10 r/m |
Timing (clocks):

single-bit register

single-bit memory 15+EA
variable-bit register 8+4/bit
variable-bit memory 20+EA+4/bit

RCR = Rotate through carry right

[110100vw][modo11 r/m |

Timing (clocks): single-bit register 2
single-bit memory 15+EA
variable-bit register 8+4/bit
variable-bit memory 20+EA+4/bit

AND = And

Reg./memory and register to either

[001000d w([mod reg r/m |

Timing (clocks): register to register 3
memory to register 9+EA
register to memory 16+EA

Immediate to register/memory

[1000000wlm0d100 r/m I data data if w=1 I

Timing (clocks): immediate to register 4
immediate to memory 17+EA

Immediate to accumulator

[o010010w data data if w-1

Timing: 4 clocks

TEST = And function to flags, no result

Register/memory and register

1000010w |mod reg r/m J

Timing (clocks): register to register 3

register with memory 9+EA

(Continued on following page)

10 Mnemonics © Intel, 1978.

Immediate data and register/memory

[1111011w [modooo r/m | data data if w=1_|
Timing (clocks): immediate with register 4
immediate with memory 10+EA
Immediate data and accumulator
[1010100w | data | dataif w-1 |
Timing: 4 clocks
OR =Or
Reg./memory and register to either
[000010d w[mod reg r/m |
Timing (clocks). register to register 3
memory to register 9+EA
register to memory 16+EA
Immediate to register/memory
1000000w [mod0 01 r/m datla | dataif w-1
Timing (clocks): immediate to register 4
immediate to memory 17+EA
Immediate to accumulator
[0000110w] data [dataitw-1 |
Timing: 4 clocks
XOR = Exclusive or
Reg./memory and register to either
1001100dw mod reg r/m J
Timing (clocks): register to register 3
memory to register 9+EA
register to memory 16+EA
Immediate to register/memory
[1000000w [mod1 10 1/m data | dataif w1
Timing (clocks): immediate to register 4
immediate to memory 17+EA
Immediate to accumulator
[oor1010w] data | dataifw-1 |
Timing: 4 clocks
STRING MANIPULATION
REP = Repeat
Timing: 6 clocks/loop
Mnemonics © Intel, 1978. 11

MOVS = Move String
[1010010w

Timing: 17 clocks
CMPS = Compare String
Timing: 22 clocks
SCAS = Scan String
Timing: 15 clocks
LODS = Load String
Timing: 12 clocks
STOS = Store String

‘10!0101wl

Timing: 10 clocks

CONTROL TRANSFER

NOTE: Queue reinitialization is not included in the timing
information for transfer operations. To account for
instruction loading, add 8 clocks to timing numbers.

CALL = Call
Direct within segment
[11101000] disp-low |

Timing: 11 clocks

disp-high |

Indirect within segment

[T111 1111 mod010 r/m |

Timing: 13+EA clocks

Direct intersegment

[10011010] offset-high |
Timing: 20 clocks [seg-low]: seg-high |

offset-low |

Indirect intersegment
[11111111[modo11 v/m |
Timing: 29+EA clocks

12 Mnemonics © Intel, 1978.

JMP = Unconditional Jump
Direct within segment

(11101001] displow | disp-high

Timing: 7 clocks

Direct within segment-short
(1t1101011] disp |
Timing: 7 clocks

Indirect within segment
[t11111 11 md 100 r/m |

Timing: 7+EA clocks
Direct intersegment

[11101010] offset-low

offset-high |

Timing: 7 clocks [seg-low seg-high

]

Indirect intersegment
[111111 11 mod 101 o/m
Timing: 16+EA clocks

RET = Return from CALL
Within segment

11000011

Timing: 8 clocks

Within seg. adding immed to SP

[110000710] datadow | data-high |

Timing: 12 clocks

Intersegment

Timing: 18 clocks

Intersegment, adding immediate to SP

[11001010] datalow | data-high

Timing: 17 clocks

JE/JZ = Jump on equal/zero

[01110100] disp |

Timing (clocks): Jump is taken 8
Jump is not taken 4

Mnemonics © Intel, 1978.

JL/JNGE = Jump on less/not greater or equal
01111100 disp |

Timing (clocks): Jump is taken
Jump is not taken

JLE/JNG = Jump on less or equal/not greater
01111110] disp |

Timing (clocks): Jump is taken
Jump is not taken

JB/JNAE = Jump on below/ not above or equal

01110010 disp

Timing (clocks): Jump is taken
Jump is not taken

JBE/JNA = Jump on below or equal/not above
[o1110110 disp |

Timing (clocks): Jump is taken
Jump is not taken

JP/JPE = Jump on parity/parity even
[or111010] disp

Timing (clocks): Jump is taken
Jump is not taken

JO = Jump on overflow

[01110000 disp

Timing (clocks): Jump is taken
Jump is not taken

J8 = Jump on sign
(01111000 disp |

Timing (clocks): Jump is taken
Jump is not taken

JNE/JNZ = Jump on not equal/not zero
[o11101071 disp |

Timing (clocks): Jump is taken
Jump is not taken

JNL/JGE = Jump on not less/greater or equal
[01111101] disp

Timing (clocks): Jump is taken
Jump is not taken
(Continued on following page)

14 Mnemonics © Intel, 1978.

JNLE/JG = Jump on not less or equal/greater

[o1111117 disp |

Timing (clocks): Jump is taken
Jump is not taken

JNB/JAE = Jump on not below/above or equal

[01110011] disp |

Timing (clocks): Jump is taken
Jump is not taken

JNBE/JA = Jump on not below or equal/above
01110111 disp |

Timing (clocks): Jump is taken
Jump is not taken

JNP/JPO = Jump on not parity/parity odd
[o1111011] disp |

Timing (clocks): Jump is taken
Jump is not taken

JNO = Jump on not overflow
[o1110001] disp |

Timing (clocks): Jump is taken
Jump is not taken

JNS = Jump on not sign
[011110001] disp

Timing (clocks): Jump is taken
Jump is not taken

LOOP = Loop CX times

[11100010] disp |

Timing (clocks): Jump is taken
Jump is not taken

LOOPZ/LOOPE = Loop while zero/equal
[11100001] disp |

Timing (clocks): Jump is taken
Jump is not taken

11
5

LOOPNZ/LOOPNE = Loop while not zero/ not equal

[11100000 | disp

Timing (clocks): Jump is taken
Jump is not taken

Mnemonics @ Intel, 1878.

1"
5

15

JCXZ = Jump on CX zero

(11100

011[

disp j

Timing (clocks):

Jump is taken

Jump is not taken

8086 CONDITIONAL TRANSFER OPERATIONS

Instruction | Condition Interpretation

JE or JZ ZF =1 "equal” or “zero”

JL or JNGE | (SF xor OF) = 1| “less” or "not greater or equal”

JLE or NG | ((SP xor OF) or | "less or equal” or “not greater”
ZF) =1

JB or JNAE | CF = 1 "below"” or “not above or equal”

JBE or JNA | (CF or ZF) = 1 | “below or equal” or “not above”

JP or JPE PF =1 “parity” or “parity even”

Jo OF =1 "overflow"

Js SF=1 “sign”

JNEor JNZ | 2ZF = 0 “not equal” or “not zero”

JNL or JGE | (SF xor OF) = 0| “not less" or “greater or equal”

JNLE or JG | ((SF xor OF) or | "not less or equal” or "greater”
ZF) =0

JNB or JAE | CF =0 “not below" or "above or equal”

JNBE or JA | (CF or ZF) = 0 | “not below or equal” or “above"”

JNP or JPO | PF = 0 “not parity” or "parity odd”

JNO OF =0 “not overflow"

JNS SF=0 “not sign”

‘"Above” and "below" refer to the relation between two unsigned

values, while

greater” and “less” refer to the relation between
two signed values

INT = Interrupt
Type specified

[11001101]

type j

Timing: 50
Type 3

clocks

11001100

Timing: 51

clocks

INTO = Interrupt on overflow
11001110

Timing: 52

PROCESSOR CONTROL

11111000

(]
-
(e]
|
o
o©
»
-
o
(-]
3
<

=
3
]
Q
)
Q
o]
5]
=
w

11110101

0
4
0

|
3
5
a
n
Q
[o]
5]
=
w

CLD = Clear direction
11111100

|
3
5
Q
)
Q
(=}
o
=
(7]
=
3
E]
©
n
Q
o
5]
x
[/}

CLI = Clear interrupt
11111010

=
3
5
e
o
Q
o
5]
=
7]

HLT = Halt
11110100

Timing: 2 clocks

LOCK = Bus lock prefix

11110000
Timing: 2 clocks

(@]
o
3
Q
®
3
®
2
o
Y
2
3

<

[/}
-
(2]
|
[
Q
0
o
=
<

11111001

4
3
5
Q
~
2}
=]
5]
=
@

NOP = No operation
10010000

Timing: 3 clocks

STD = Set direction
11111101

S$TI = Set interrupt
11111011
Timing: 2 clocks
WAIT = Wait
10011011
Timing: 3 clocks
ESC = Escape (to external device)
[11011xxx[modxxxr/m

Timing: 7+EA clocks

Footnotes:

if d =1 then “to”; if d = 0 then “from"”

if w =1 then word instruction; if w = 0 then byte instruction

if s;w = 01 then 16 bits of immediate data form the operand

if s:w = 11 then an immediate data byte is sign extended to form the

16-bit operand

if v=0 then "count” = 1; if v =1 then “count” in (CL)

x = don't care

z is used for some string primitives to compare with ZF FLAG

AL = 8-bit accumulator

AX = 16-bit accumulator

CX = Count register
DS = Data segment

DX = Variable port register

ES = Extra segment

clocks if pass 4 clocks if fail

IRET = Interrupt return
11001111

Timing: 24
16

clocks

Mnemonics © Intel, 1978.

Above/below refers to unsigned value
Greater = more positive;

Less = less positive (more negative) signed values

See page 1 for Operand Summary.
See page 2 for Segment Override Summary.
Mnemonics © Intel, 1978.

17

