A Low Cost CRT Terminal
Using the 8275

Contents

1. INTRODUCTION
2. CRT BASICS

3. 8275 DESCRIPTION »

3.1 CRT Display Refreshing

3.2 CRT Timing ‘

3.3 Special Functions
4. DESIGN BACKGROUND

4.1 Design Philosophy

4.2 Using the 8275 without DMA
5. CIRCUIT DESCRIPTION

5.1 Scope of the Project

5.2 System Target Specifications
5.3 Hardware Descriptions

5.4 System Operation

5.5 System Timing

6. SYSTEM SOFTWARE

6.1 Software Overview
. 6.2 System Memory Organization
6.3 Memory Pointers and Scrolling
" 6.4 Software Timing

APPENDIX 7.1
CRT Terminal Schematics

APPENDIX 7.2
Keyboard Interface

APPENDIX 7.3)
Escape/Control/Display Character Summary

APPENDIX 7.4
PROM Decoding

APPENDIX 7.5
Character Generator

APPENDIX 7.6
HEX Dump of Character Generator

APPENDIX 7.7 .
Composite Video

APPENDIX 7.8
Software Listings

2-439

2-440
2-440
2-443

2-447

2-449

2-454

2-458

2-460

2-461

2-462

2-463

. 2-464

2-465

2-465

AFN-01304A

APPLICATIONS

1. INTRODUCTION

The purpose of this application note is to provide the

reader with the design concepts and factual tools

needed to integrate Intel peripherals and microproc- -
essors into a low cost raster scan CRT terminal. A

previously published application note, AP-32, pre-

sented one possible solution to the CRT design -

question. This application note expands upon the
theme established in AP-32 and demonstrates how

to design a functional CRT terminal while keeping

the parts count to a minimum.

For convenience, this applicatipn note is divided
into seven general sections: o
Introduction

CRT Basics

8275 Description

Design Background

. Circuit Description

Software Description

Appendix

LA =

7.

There is no question that microprocessors and LSI
peripherals have had a significant role in the evolu-
tion of CRT terminals. Microprocessors have
allowed design engineers to incorporate an abun-
dance of sophisticated features into terminals that
were previously mere slaves to a larger processor. To
complement microprocessors, LSI peripherals have

m—
._.g_\i_.._.___‘__

_———m
N
N

N
N

—

= == RETRACE LINES
DISPLAYED LINES
Figure 2-1. Raster Scan

of zig-zag lines on the screen (Fig. 2.1). Two simul-

- taneously operating independent circuits control the

reduced component count in many support areas. A

typical LSI peripheral easily replaces between 30
and 70 SSI and MSI packages, and offers features
and flexibility that are usually not available in most
hardware designs. In addition to replacing a whole

circuit board of random logic, LSI circuits ‘also -

reduce the cost and increase the reliability of design.
Fewer interconnects increases mechanical reliability

and fewer parts decreases the power consumption -

and hence, the overall reliability of the design. The
reduction of components also yields a circuit that is
easier to debug during the actual manufacturing
phase of a product.

Until the era of advanced LSI circuitry, a typical
CRT terminal consisted of 80.to 200. or more SSI
and MSI packages. The first microprocessors and
peripherals dropped this component count to be-
tween 30 and 50 packages. This application note
describes a CRT terminal that uses 20 packages.

2. CRT BASICS

The raster scan display gets its name from the fact
that the image displayed on the CRT is built up by
generating a series of lines (raster) across the face of
the CRT. Usually, the beam starts in the upper left
hand corner of the display and simultaneously
moves left to right and top to bottom to put a series

2-440

vertical and horizontal movement of the beam.

As the electron beam moves across the face of the
CRT, a third circuit controls the current flowing in
the beam. By varying the current in the electron
beam the image on the CRT can be made to be as
bright or as dark as the user desires. This allows any
desired pattern to be displayed. -

When the beam reaches the end of a line, it is
brought back to the beginning of the next line at a
rate that is much faster than was used to generate
the line. This action is referred to as “retrace”.
During the retrace period the electron beam is
usually shut off so that it doesn’t appear on the
screen.

As the electron beam is moving across the screen
horizontally, it is also moving downward. Because
of this, each successive line starts slightly below the
previous line. When the beam finally reaches the
bottom right hand corner of the screen, it retraces
vertically back to the top left hand corner. The time
it takes for the beam to move from the top of the
screen to the bottom and back again to the top is
usually referred to as a “frame”. In the United
States, commercial television broadcast use 15,750
Hz as the horizontal sweep frequency (63.5 micro-
seconds per horizontal line) and 60 Hz as the vertical
sweep frequency or “frame” (16.67 milliseconds per

" vertical frame).

Although, the 60 Hz vertical frame and the 15,750 Hz
horizontal line are the standards used by commercial
broadcasts, they are by no means the only frequency
at which CRT’s can operate. In fact, many CRT
displays use a horizontal scan that is around 18 KHz
to 22 KHz and some even exceed 30 KHz. As the

AFN-01304A

FEE 3 EmI W R LW s e

horizontal frequency increases, the number of hori-
zontal lines per frame increases. Hence, the resolution
on the vertical axis increases. This increased resolu-
tion is needed on high density graphic displays and
on special text editing terminals that display many
lines of text on the CRT.

Although many CRT’s operate at non-standard
horizontal frequencies, very few operate at vertical
frequencies other than 60 Hz. If a vertical frequency
other than 60 Hz is chosen, any external or internal
magnetic or electrical variations at 60 Hz will
modulate the electron beam and the image on the
screen will be unstable. Since, in the United States,
the power line frequency happens to be 60 Hz, there
is a good chance for 60 Hz interference to exist.
Transformers can cause 60 Hz magnetic fields and
power supply ripple can cause 60 Hz electrical
variations. To overcome this, special shielding and
power supply regulation must be employed. In this
design, we will assume a standard frame rate of 60 Hz
and a standard line rate of 15,750 Hz.

By dividing the 63.5 microsecond horizontal line
rate into the 16.67 millisecond vertical rate, it is
found that there are 262.5 horizontal lines per
vertical frame. At first, the half line may seem a bit
odd, but actually it allows the resolution onthe CRT
to be effectively doubled. This is done by inserting a
second set of horizontal lines between the first set
(interlacing). In an interlaced system the line sets are
not generated simultaneously. In a 60 Hz system,
first all of the even-numbered lines are scanned: 0, 2,
4,...524. Then all the odd-numbered lines: 1, 3, 5, ...
525. Each set of lines usually contains different data
(Fig. 2.2).

RETRACE LINES
NOT SHOWN

EVEN FIELD
e we ODD FIELD

Figure 2-2. Interlaced Scan

Although interlacing provides greater resolution, it
also has some-distinct disadvantages. First of all, the
circuitry needed to generate the extra half horizontal
line per frame is quite complex when compared to a
noninterlaced design, which requires an integer
number of horizontal lines per frame. Next, the
overall vertical refresh rate is half that of a noninter-
laced display. As aresult, flicker may result when the
CRT uses high speed phosphors. To keep things as
simple as possible, this design uses the noninterlaced
approach.

The first thing any CRT controller must do is
generate pulses that define the horizontal line timing
and the vertical frame timing. This is usually done by
dividing a crystal reference source by some appro-
priate numbers. On most raster scan CRT’s the
horizontal frequency is very forgiving and can vary
by around 500 Hz or so and produce no ill effects.
This means that the CRT itself can track a horizontal
frequency between 15250 Hz and 16250 Hz, or in
other words, there can be 256 to 270 horizontal lines
per vertical frame. But, as mentioned earlier, the
vertical frequency should be 60 Hz to insure stability.

The characters that are viewed on the screen are
formed by a series of dots that are shifted out of the
controller while the electron beam moves across the
face of the CRT. The circuits that create this timing
are referred to as the dot clock and character clock.
The character clock is equal to the dot clock divided
by the number of dots used to form a character along
the horizontal axis and the dot clock is calculated by
the following equation:

DOT CLOCK (Hz) =(N+R)*D*L*F
where N is the number of displayed characters per
row,

R is the number of retrace character time
increments,

D is the number of dots per character,
L is the number of horizontal lines per frame and
F is the frame rate in Hz.

In this design N =80, R =20, D =7, L =270, and
F = 60 Hz. If the numbers are plugged in, the dot
clock is found to be 11.34 MHz.

The retrace number, R, may vary from system to
system because it is used to establish the margins on
the left and right hand sides of the CRT. In this
particular design R = 20 was empirically found it be
optimum. The number of dots per character may
vary depending on the character generator used and
the number of dot clocks the designer wants to place
between characters. This design uses a 5 X 7 dot
matrix and allows 2 dot clock periods between
characters (see Fig. 2.3); since 5 + 2 equals 7, we find
that D = 7.

2-441 AFN-01304A

ArrLiVAIIVND

2
5 Dots——"Dots

are interrelated and that to guarantee proper opera-

m | | | mmme | | @ w88 E tion on a standard raster scan. CRT, L should be
] mmm mw | BOOE [m] between 256 and 270. If L. does not lie within these
yn mmml mn |mnw (w5 | [[mi bounds the horizontal circuits of the CRT may not
N E=E=EH 1IDdDIE ___IIDIEII=E|' be able to lock onto the driving signal and the image
OROORC0O0OROOOROOEECEEC] will roll horizontally. The chosen L of 270 yields a

OROO0OROO0OREECOORCOOE0
Figure 2-3. 5 X 7 Dot Matrix B

The number of lines per frame can be determined by
the following equation:

L=(H*Z)+V o

where, H is the number of horizontal lines per

character, .

Z is the number of character lines per frame and

V is the number of horizontal lines during vertical
retrace. In this design, a 5 X 7 dot matrix is to be
placed on a 7 X 10 field, so H = 10. Also, 25 lines are
to be displayed, so Z = 25. As mentioned before,
V = 20. When the numbers are plugged into the

equation, L is found to be equal to 270 lines per
frame.

The designer should be cautioned that these numbers

horizontal frequency of 16,200 KHz on a 60 Hz
frame and this number is within the 500 Hz tolerance
mentioned earlier. '

The V- number is chosen to match the CRT in much
the same manner as the R number mentioned earlier.
When the electron beam reaches the bottom right
corner of the screen it must retrace vertically to the
top left corner. This retrace action requires time,
usually between 900-1200 microseconds. To allow
for this, enough horizontal sync times must be
inserted during vertical retrace. Twenty horizontal
sync times. at 61.5 microseconds yield a total of
1234.5 microseconds, which is enough time to allow
the beam to return to the top of the screen.

The choices of H and Z largely relate to system
design preference. As H increases, the character size
along the vertical axis increases. Z is simply the
number of lines of characters that are displayed and
this, of course, is entirely a system design option.

' BLOCK DIAGRAM

CHARACTER cCLK
COUNTER PIN CONFIGURATION
DISPLAY e
ROW COUNTERS ez ~ 40 [J vee
l ez 2 39 [] Lap
et 3 387 1A
DATA 8UFFER | [BUFFER 1 E g 1
o BUS INPUT ouTPUT Lo [4 37 [0 LTen
B°7<Z> BUFFER t:) <:> CON- CON- 3 Ceos ora s 1 Ry
TROLLER | | TROLLER
DACK [16 35 [vsp
HRTC [] 7 34 [araq
FIFO vrtc (8 330 cprag
m Qe 320 et
WR[J1wo s 311 IR
DRQ - LeeN] 11 30 1 ccrk
__ LINE w©
DACK COUNTER 03 oo [12 29 cce
1RQ <—‘ b8y [13 28] ccs
pB2 [] 14 277 cca
A6 —=d ReAD/ : :4';?,; oB3 [15 26[1 cca
—_—
WRITE/ RASTERTIMING | vRTC - oes [16 2|1 ccz
. DMA L~ HLGT
W —d comtpor e () VIDEO L AW oss [] 17 240 cer
" LOGIC CONTROL [—= LTEN oeg [] 18 23[1 ceo
— [~ vsp
:> GPAg 4 pey [19 2
I ano [20 210 Ao
cs
LIGAT PEN
REGISTERS LPEN

Figure 3-1. 8275 Block Diagram/Pin Configuration

2-442 AFN-01304A

AFPFLIVAIIVUND

3. 8275 DESCRIPTION

A block diagram and pin configuration of the 8275
are shown in Fig. 3.1. The following is a description
of the general capabilities of the 8275.

3.1 CRT DISPLAY REFRESHING

The 8275, having been programmed by the designer
to a specific screen format, generates a series of
DMA request signals, resulting in the transfer of a
row of characters from display memory to the 8275’s
row buffers. The 8275 presents the character codes
to an external character generator ROM by using
outputs CCO-CC6. External dot timing logicis then
used to transfer the parallel output data from the
character generator ROM serially to the video input
of the CRT. The character rows are displayed on the
CRT one line at a time. Line count outputs LC0-LC3
are applied to the character generator ROM to
perform the line selection function. The display
process is illustrated in Figure 3.2. The entire
process is repeated for each display row. At the
beginning of the last displayed row, the 8275 issues
an interrupt by setting the IRQ output line. The
8275 interrupt output will normally be connected to
the interrupt input of the system central processor.

The interrupt causes the CPU to execute an interrupt
service subroutine. The service subroutine iypically
re-initializes DMA controller parameters for the
next display refresh cycle, polls the system keyboard
controller, and/or executes other appropriate func-
tions. A block diagram of a CRT system implemented
with the 8275 CRT Controller is provided in Figure
3.3. Proper CRT refreshing requires that certain
8275 parameters be programmed prior to the begin-
ning of display operation. The 8275 has two types of
programming registers, the Command Registers
(CREG) and the Parameter Registers (PREG). It
also has a Status Register (SREG). The Command
Registers may only be written to and the Status
Registers may only be read. The 8275 expects to
receive a command followed by a sequence of from 0
to 4 parameters, depending on the command. The
8275 instruction set consist of the eight commands
shown in Figure 3.4.

To establish the format of the display, the 8275
provides a number of user programmable display
format parameters. Display formats having from [
to 80 characters per row, 1 to 64 rows per screen, and
1 to 16 horizontal lines per row are available.

In addition to transferring characters from memory

1st
Character

2nd
Character

3rd

4th

Character Character

5th 6th
Character Character

7th
Character

P e e S SR S S S
OOssaa000s0000etONsERE000000000NNER0000RRR0DON000N0

First Line of a Character Row

1st
Character

2nd
Character

3rd
Character

4th

Character

5th
Character

6th 7th
Character Character

P e e I SR S S S S—

OOEEER000s000080eNERRCO0000000ResR0000RRN000OR000ON
OROO000RCORRCO0R0 0N 0000000000000N000800R000N00R000

a
[Ju]

Second Line of a Character Row

1st
Character

2nd
ch

Sth 6th 7th

Character Character

OOmmasO00N0000s00REE

" Character

[nuisisiuinisisin] | | | sl

[1] [ajuis] 1] Jululs| Jsluin] Jui
OE0000ecOseC00R0080C000000000000CR000ON00DR000OR00OR000ORD0D
‘Om000De00e000080080000000000000000800R000R00RcC0o0e0

Third Line of a Character Row

1st
Character

2nd
Character

3rd
Character

e

4th

Character

6th
Character

5th
Character

7th
Character

M,—h—\,——",—f\—-\,—-"—\’-—-‘—\

OONeNsC00R0000N00DeRERR000000000NeRN 0000000000

Oe0000800seCOORCON0000000000000N000R00R0CO0CAOOCE DDDID
OR0ODOOND0ONON008COR 0000000000000 000800R000R0OORO00ON0
OECO0Oe00R0000RCONNER 000000000 0ONeee 000R000N0C0ONOR0ONR0
Oe000UR0Os0OR0ON008 0000000000000eOR0000R000R00N0OR0ON0
ON00O0s00OR000sRC0R 0000000000000 COR0008000B00CRDRDB0
OOssesC0080000R00eNEER0000000008000RM000 IIIDDDDIE\IDD

Seventh Line of a Character Row

Figure 3-2. 8275 Row Display

2-443

AFN-01304A

APPLICATIONS

! LCo-3 =] VIDEO SIGNAL
. HOLD - | DRQ | . . i -
sosSA TRANSFER CHARACTER i
. MICRO- . -.| DECODE . GENERATOR . !
processor| wace | tooie | ORR | ge |28 N Rom) 8% [soneovrase,
.’ . CRT ~ X 1'34?;5 s ‘ TO CRT
N CONTROLLER | © LOGIC VERTICAL SYNC
| VERTICALSYNC
’ o ’ CcCLK AND f . .
S R I : ‘ INTERFACE INTENSITY
3 —————ee>
‘ ' : VIDEG CONTROLS :
] k SYSTEM BUS
JL ‘ ,
82535 st | PROGRAM/ 8255A5
COUNTER/ USART DISPLAY KEYBOARD
TIMER MEMORY CONTROLLER
SERIAL ‘
COMMUNICATIONS KEYBOARD STATUS
CHANNEL

Figure 3-3. CRT System Block Diagram

to the CRT screen, the 8275 features cursor position
control. The cursor position may be programmed,

via X and Y cursor position registers, to any p AI;“EI;A(;:ER

character position on the display. ‘Th.e user may COMMAND BYTES NOTES

select from four cursor formats. Blinking or non-

blinking underline and reverse v1deo block cursors RESET 4 Display format pa-

are available. - rameters required
) ' START 0 DMA operation pa-

3.2 CRT TIMING DISPLAY rameters included

The 8275 provides two timing outputs, HRTC and in command

VRTC, which are utilized in synchronizing CRT STOP 0 e

horizontal and vertical oscillators to the 8275 DISPLAY

refresh cycle. In addition, whenever HRTC or VRTC

is active, a third timing output, VSP (Video Sup- READ 2 -

press) is true, providing a blinking signal to the dot LIGHT

timing logic. The dot timing logic will normally PEN

inhibit the video output to the CRT during the time LOAD 2 Cursor XY posi-

when video suppress signal is true. An additional CURSOR tion parameters re-

timing output, LTEN (Light Enable) is used to quired

provide the ability to force the video output high ENABLE 0 . L

regardless of the state of VSP. This feature is used INTERRUPT '

by the 8275 to place a cursor on the screen and to | , .

control attribute functions. Attributes will: be DISABLE L0 -

considered in the next section. INTERRUPT

The HLGT (Highlight) output allows an attribute PRESET 0" Clears all internal

function to increase the CRT beam intensity to a COUNTERS counters

level greater than normal. The fifth timing signal,

RVYV (Reverse Video) will, when enabled, cause the: - : Figure 3-4. 8275’s Instruction Set

system video output to be inverted.

2-444 AFN-01304A

APPLICATIONS

Character attributes were designed to produce the following graphics:

CHARACTER ATTRIBUTE
CODE “CCCC”

QUTPUTS

,_
>

LAg | VSP

LTEN

SYMBOL

DESCRIPTION

bove Underline

0000 Underline

Below Underline

Top Left Corner

IAbove Underlihe

0001 Underline

Below Underline

Top Right Corner

bove Underline

0010 Underline

Below Underline

Bottom Left Corner

/Above Underline

0011 ._Underline

Below Underline

Bottom Right Corner

Above Underline

0100 Underline

Below Underline

Top Intersect

Above Underline

0101 Underline

Below Underline

Right Intersect .

Above Underline

0110 Underline

Below Underline

Left Intersect

Above Underline

0111 Underline

Below Underline

H Y

Bottom Intersect

lAbove Underline

1000 Underline

Below Underline

Horizontal Line

Above Underline

1001 Underline

Below Underline

Vertical Line

Above Underline

1010 Underline

Below Underline

t‘__

Crossed Lines

Above Underline

1011 Underline

Below Underline

Not Recommended *

Above Underline

1100 Underline

Below Underline

oO|o(0ol0|0j0|0jo|0|O|0|0|o|o|o|jo|o|o|o|=|0|0|=|0Oj0|0|o|0|=|0O|o|=|Oo|0|=|0|0|=|0O

= |=—=00|0|0|0|0(0|0|O|—=|0O|=|—=I0O|0|0|0|0|0|0I0I0|0|=—=0|0|=|0|0|0|0|=|O|0| =

o|0|o|0|o|O|=|o|=|=|=|=lOo(Oo|0o|o|O|=|=|O|=|=|=|=|=|0|0|0|= —=|o|Oo|=|=|=|O|=|0|O

o|o|o|olo|jolo|=|o|o|o|Oo|jo|=|O|0|=|0|0|0|0o|0|0|0|0o|=|0j0|0|0O|0o|0o|O|0|0ojo|o|o]o

Special Codes

‘|Above Underline

Below Underline

1101 Underline Undefined lllegal
Below Underline |
Above Underline |

1110 Underline Undefined Illegal
Below Underline |
Above Underline I

1mn Underline Undefined 1llegal

*Character Attribute Code 1011 is not recommended for Character Attribute Codes 1101, 1110, and 1111 are illegal.
normal operation. Since none of the attribute outputs are
active,” the character Generator will not be disabled, and
an indeterminate character will be generated.

Blinking is active when B = 1.
Highlight is active when H = 1.

Figure 3-5. Character Attributes

2-445 AFN-01304A

APPLICATIONS

12345

. _J

67809

L 1234567829

EXAMPLE OF THE VISIBLE FIELD ATTRIBUTE MODE
(UNDERLINE ATTRIBUTE) |

EXAMPLE OF THE INVISIBLE FIELD ATTRIBUTE MODE
(UNDERLINE ATTRIBUTE)

Figure 3-6. Field Attribute Examples

3.3 SPECIAL FUNCTIONS"

VISUAL ATTRIBUTES— Visual attributes are

special codes which, when retrieved from display
memory by the 8275, affect the visual characteristics
of a character position or field of characters. Two
types of visual attributes exist, character attributes
and field attributes.

Character Attribute Codes: Character attribute
codes can be used to generate graphics symbols
without the use of a character generator. This is
accomplished by selectively activating the Line
Attribute outputs (LAO-LAL), the Video Suppres-
sion: output (VSP), and the Light Enable output
(LTEN). The dot timing logic uses these signals to
generate the proper symbols. Character attributes
can be programmed to blink or be highlighted
individually. Blinking is accomplished with the
Video Suppression output (VSP). Blink frequency is
equal to the screen refresh frequency divided by 32.
Highlighting is accomplished by activating the
Highlight output (HGLT). Character attributes
were designed to produce the -graphic symbols
shown in Figure 3.5. ‘

Field Attribute Codes: The field attributes are
control codes which affect the visual characteristics
for a field of characters, starting at the character
following the field attribute code up to, and includ-
ing, the character which precedes the next field
attribute code, or up to the end of the frame.

There are six field attributes:

1. Blink — Characters following the code are
caused to blink by activating the Video Sup-
pression output (VSP). The blink frequency is
equal to the screen refresh frequency divided
by 32. ‘

2-446

2. Highlight — Characters following the code are
caused to be highlighted by activating the
Highlight output (HGLT).

Reverse Video — Characters following the
code are caused to appear in reverse video
format by activating the Reverse Video output
(RVV).

Underline — Characters following the code are
caused to be underlined by activating the Light
Enable output (LTEN).

. General Purpose — There are two additional
8275 outputs which act as general purpose,
independently programmable field attributes.
These attributes may be used to select colors or
perform other desired control functions.

The 8275 can be programmed to provide visible or
invisible field attribute characters as shown in Figure
3.6. If the 8275 is programmed in the visible field
attribute mode, all field attributes will occupy a
position on the screen. They will appear as blanks
caused by activation of the Video Suppression
output (VSP). The chosen visual attributes are
activated after this blanked character. If the 8275 is
programmed in the invisible field attribute mode,
the 8275 row buffer FIFOs are activated. The FIFOs
effectively lengthen the row buffers by 16 characters,
making room for up to 16 field attribute characters
per display row. The FIFOs are 126 characters by 7
bits in size. When a field attribute is placed in the
row buffer during DMA, the buffer input controller
recognizes it and places the next character in the
proper FIFO. When a field attribute is placed in the
buffer output controller during display, it causes the
controller to immediately put a character from the
FIFO on the Character Code outputs (CCO-6). The
chosen attributes are also activated.

AFN-01304A

APPLICATIONS

LIGHT PEN DETECTION — A light pen consists
fundamentally of a switch and light sensor. When
the light pen is pressed against the CRT screen, the
switch enables the light sensor. When the raster
sweep coincides with the light sensor position on the
display, the light pen output is input and the row and
character position coordinates are stored in two
8275 internal registers. These registers can be read
by the microprocessor.

SPECIAL CODES — Four special codes may be
used to help reduce memory, software, or DMA
overhead. These codes are placed in character
positions in display memory.

1. End Of Row Code - Activates VSP. VSP
remains active until the end of the line is
reached. While VSP is active, the screen is
blanked.

2. End Of Row-Stop DMA Code - Causes the
DMA Control Logic to stop DMA for the rest
of the row when it is written into the row buffer.
It affects the display in the same way as the End
of Row Code.

3. End Of Screen Code - Activates VSP. VSP
remains active until the end of the frame is
reached.

4. End Of Screen-Stop DM A Code - Causes the
DMA Control Logic to stop DMA for the rest
of the frame when it is written into the row
buffer. It affects the display in the same way as
the End of Screen Code.

PROGRAMMABLE DMA BURST CONTROL —
The 8275 can be programmed to request single-byte
DMA transfers of DMA burst transfers of 2, 4, or 8
characters per burst. The interval between bursts
is also programmable. This allows the user to tailor
the DMA overhead to fit the system needs.

4. DESIGN BACKGROUND
4.1 DESIGN PHILOSOPHY

Since the cost of any CRT system is somewhat
proportional to parts count, arriving at a minimum
part count solution without sacrificing performance
has been the motivating force throughout this design
effort. To successfully design a CRT terminal and
keep the parts count to a minimum, a few things
became immediately apparent.

1. An 8085 should be used.
2. Address and data buffering should be eliminated.
3. Multi-port memory should be eliminated.
4. DMA should be eliminated.
Decision 1 is obyious, the 8085’s on-board clock

generator, bus controller and vectored interrupts
greatly reduce the overall part count considerably.

Decision 2 is fairly obvious; if a circuit can be
designed so that loading on the data and address
lines is kept to a minimum, both the data and address
buffers can be eliminated. This easily saves three to
eight packages and reduces the power consumption
of the design. Both decisions 3 and 4 require a basic
understanding of current CRT design concepts.

In any CRT design, extreme time conflicts are created
because all essential elements require access to the
bus. The CPU needs to access the memory to control
the system and to handle the incoming characters,
but, at the same time, the CRT controller needs to
access the memory to keep the raster scan display
refreshed. To resolve this conflict two common
techniques are employed, page buffering and line
buffering. ’

In. the page buffering approach the entire screen
memory is isolated from the rest of the system. This
isolation is usually accomplished *with three-state
buffers or two line to one line multiplexers. Of
course, whenever a character needs to be manipu-
lated the CPU must gain access to the buffered
memory and, again, possible contention between the
CPU and the CRT controller results. This contention
is usually resolved in one of two ways, (1) the CPU is
always given priority, or; (2) the CPU is allowed to
access the buffered memory only during horizontal
and vertical retrace times.

Approach 1 is the easiest to implement from a hard-
ware point of view, but if the CPU always has
priority the display may temporarily blink or
“flicker” while the CPU accesses the display memory.
This, of course, occurs because when the CPU
accesses the display memory the CRT controller is
not able to retrieve a character, so the display must
be blanked during this time. Aesethically, this
“flickering” is not desirable, so approach 2 is often
used. :

The second approach eliminates the display flicker-
ing encountered in the previously mentioned tech-
nique, but additional hardware is required. Usually
the vertical and horizontal blank signals are gated
with the buffered memory select lines and this line is
used to control the CPU’s ready line. So, if the CPU
wants to use the buffered memory, its ready line is
asserted until horizontal or vertical retrace times.
This, of course, will impact the CPU’s overall
through put. :

Both page buffered approaches require a significant
amount of additional hardware and for the most
part are not well suited for a minimum parts count
type of terminal. This guides us to the line buffered
approach. This approach eliminates the separate
buffered memory for the display, but, at the same
time, introduces a few new problems that must be
solved.

2-447 AFN-01304A

APPLICATIONS

DISPLAY
MuLTI- VIDEO
cru pLexen K MEMORY K\ circurr [->-Vipeo our

ﬁ |READY* H

SYSTEM BUS
; *OPTIONAL
SYSTEM SYSTEM
MEMORY vo PAGE BUFFERING
TECHNIQUE
e VIDEO
cpu surrer K SR aUrrer |~ VIDEO OUT
Loaic MEMORY

]

U

g

]

SYSTEM
AND
DISPLAY
MEMORY

SYSTEM
Vo

v 1

LINE BUFFERING
TECHNIQUE

Figure 4-1. Line Buffering Technique

-
=

N .
reaBasrsnaeBBasdavnia

SED
1 PUSH
2 FUSH
3 PUSH
4 LXI
$ bR
6 XCHG
? LHLD
e SFHL
9 w1
1 SIH
11 POP
12 RRC
13 sm
4 LXI
15 DAD
1 NCHG
by Sl
18 I
19 XCHG
20 L
2 [»i4
2 N
2 v
24 oe
3 nz
% L1
27 ¥PTK: . SHLD
i L5
23 sin
38 FoP
3t Fip
32 POP
3 EI
4 RET

SOUPCE STRTEFENT

=]

H

D

H, 850H
P
CLRAD
A, BC2H

H

“H 0291
12

HLAST
RD

KPTK
RE

KPIK

H, TFDIS
CURHD
A 18H

TOTAL CLOCK CYCLES = €38 (HORST CRSE)

NITH'A 6. 144 MHZ CRYSTAL TOTAL TIME TO FILL

JSAYE R OAND FLAGS
FSAVE HAND L
PSRYE D AID E
SZERG H AW L
FPUT STRIK FOINTER IN H HHD L
FFOT STROE IN D RO E
R

LINE INTO SP
FOR 1

#SET SHECIAL TRANSFER BIT
i00 49 POFS

JET UM A

5G0 BRLK 10 KORHAL WODE
JZERQ HL

ifibD SIACK

SPUT SIATKC TN H ARD L
FRESIORE STHCE

PPUT BOTION DISPLAY IN H AND L
P SURP RTGIZIERS

FFUT RIGH OFDER INR
JSEE IF SRHE A5 I

3+ IF NOT LERVE

SPUT LON ORDER TN #

iSEE IF SAVE B3 L

IF NOT LERYE

SLORD H AND L MITH TOP OF SCREEN HERORY

3PUT BRCK CURRENT ADDRESS
SGET HASK BYTE

+SLT INTERRUFT HASK

iGED D AN E

SGET H AN L

SCET R AKD FLAGS

JENRELE INTERRUPTS

G0 BACK

ROW BUFFER ON 8275 = 50 # . 225 = 211 25 MICROZECONDS

Figure 4-2. Routine To Load 8275's Row Buffers

2-448

In the line buffered approach both the CPU and the
CRT controller share the same memory. Every time
the CRT controller needs a new character or line of
data, normal processing activity is halted and the
CRT controller accesses memory-and displays the
data. Just how the CRT controller needs to acquire
the display data greatly affects the performance of
the overall system. Whether the CRT controller
needs to gain access to the main memory to acquirea
single character or a complete line of data depends
on the presence or absence of a separate line or row
buffer.

If no row bulffer is present the CRT controller must
go to the main memory to fetch every character. This
of course, is not a very efficient approach because
the processor will be forced to relinquish the bus
70% to 80% of the time. So much processor
inactivity greatly affects the overall system perform-
ance. In fact terminals that use this approach are
typically limited to around 1200 to 2400 baud on
their serial communication channels. This low baud
rate is in general not acceptable, hence this approach
was not chosen.

If a separate row buffer is employed the CRT
controller only has to access the memory once for
each displayed character per line. This forces the
processor to relinquish the bus only about 209% to
359%, of the time and a full 4800 to 9600 baud can be
achieved. Figure 4.1 illustrates these different
techniques.

The 8275 CRT controller is ideal for implementing
the row buffer approach because the row buffer is
contained on the device itself. In fact, the 8275
contains two 80-byte row buffers. The presence of
two row buffers allow one buffer to be filled while
the other buffer is displaying the data. This dual row
buffer approach enhances CPU performance even
further.

4.2 USING THE 8275 WITHOUT DMA

Until now the process of filling the row buffer has
only been alluded to. In reality, a DMA technique is
usually used. This approach was demonstrated in
AP-32 where an 8257 DMA controller was mated to
an 8275 CRT controller. In order to minimize
component count, this design eliminates the DMA
controller and its associated circuitry while replac-
ing them with a special interrupt-driven transfer.

The only real concern with using the 8275 in an
interrupt-driven transfer mode is speed. Eighty
characters must be loaded into the 8275 every 617
microseconds and the processor must also haye time
to perform all the other tasks that are required. To
minimize the overhead associated with loading the
characters into the 8275 a special technique was
employed. This technique involves setting a special

AFN-01304A

APPLICATIONS

transfer bit and executing a string of POP instruc-
tions. The string of POP instructions is used to
rapidly move the data from the memory into the
8275. Figure 4.2 shows the basic software structure.

In this design the 8085’s SOD line was used as the
special transfer bit. In order to perform the transfer
properly this special bit must do two things: (1) turn
processor reads into DACK plus WR for the 8275
and (2) mask processor fetch cycles from the 8275, so
that a fetch cycle does not write into the 8275.
Conventional logic could have been used to imple-
ment this special function, but in this design a small
bipolar programmable read only memory was used.
Figure 4.3 shows a basic version of the hardware.

BIPOLAR

CE PROM | 8275 DACK

Rd
wr

TRANSFER___,. | | » 8275Rd
BIT

Ao

Ajp———1Aq | > 8275 Wr

[ST NG— ' Y | » 8275Cs
Ajp—»——A3

My
(FETCH —»———Ag
CYCLE)

Figure 4-3. Simplified Version of Hardware Decoder

At first, it may seem strange that we are supplying a
DACK when no DMA controller exist in the
system. But the reader should be aware that all Intel
peripheral devices that have DMA lines actually use
DACK as a chip select for the data. So, when you
want to write a command or read status you assert
CS and WR or RD, but when you want to read or
write data you assert DACK and RD or WR. The
peripheral device doesn’t “know” if a DMA control-
ler is in the circuit or not. In passing, it should be
mentioned that DACK and CS should not be
asserted on the same device at the same time, since
this combination yields an undefined result.

This POP technique actually compares quite
favorably in terms of time to the DMA technique.
One POP instruction transfers two bytes of data to
the 8275 and takes 10 CPU clock cycles to execute,
for a net transfer rate of one byte every five clock
cycles. The DMA controller takes four clock cycles
to transfer one byte but, some time is lost in
synchronization. So the difference between the two
techniques is one clock cycle per byte maximum. If
we compare the overall speed of the 8085 to the

2.449

speed of the 8080 used in AP-32, we find that at 3
MHz we can transfer one byte every 1.67 micro-
seconds using the 8085 and POP technique vs. 2
microseconds per byte for the 2 MHz 8080 using
DMA.

5. CIRCUIT DESCRIPTION
5.1 SCOPE OF THE PROJECT

A fully functional, microprocessor-based CRT
terminal was designed and constructed using the
8275 CRT controller and the 8085 as the controlling
element. The terminal had many of the functions
found in existing commercial low-cost terminals and
more sophisticated features could easily be added
with a modest amount of additional software. In
order to minimize component count LSI devices
were used whenever possible and software was used
to replace hardware.

5.2 SYSTEM TARGET SPECIFICATIONS
The design specifications for the CRT terminal were
as follows:

Display Format

® 80 characters per display row

e 25 display rows

Character Format

® 5 X 7 dot matrix character contained within a

7 X 10 matrix

e First and seventh columns blanked

e Ninth line cursor position

® Blinking underline cursor

Special Characters Recognized
e Control characters

e Line feed

e Carriage Return

e Backspace

e Form feed

Escape Sequences Recognized

e ESC, A, Cursor up

e ESC, B, Cursor down

ESC, C, Cursor right

ESC, D, Cursor left

ESC, E, Clear screen

ESC, H, Home cursor

ESC, J, Erase to the end of the screen
ESC, K, Erase the current line
Characters Displayed

® 96 ASCII alphanumeric characters
e Special control characters

AFN-01304A

APPLICATIONS

CHARACTER
GENERATOR ROM

CENTRAL
PROCESSOR
<

(=)

SPECIAL
TRANSFER

LOGIC

<::> CRT CRT MONITOR
& MONITOR
CONTROLLER ELECTRONICS

i

i

|l

SYSTEM BUS

|

|

|

T]

SERIAL - BAUD KEYBOARD DISPLAY PROGRAM
COEVICE (UsART) SeneRATOR INTERFACE “iaan erom)
éRT TERMINAL H
SERIAL OUTPUT LINE
CRT TERMINAL
SERIAL INPUT LINE
KEYBOARD SPS:,A:,ELF;
Figure 5-1. CRT Terminal Block Diagram
Characters Transmitted ‘ Worst case bus loading: _
® 96 ASCII alphanumeric characters Data Bus: 8275 20pf
e ASCII control characters 8255A-5 20pf
Program Memory. gggg'g 3881
e 2K bytes of 2716 EPROM 8951 A 20pf
Display/ Buffer/Stack Memory 2x 2114 10pf
e 2K bytes 2114 static memory (4 packages) 2716 12pf
Data Rate 8212 —12—Fi——
e 9600 BAUD using 3MHz 8085 114pf max
CRT Monitor Only As - Ats are |mportant since Ao - A7 are
e Ball Bros TV-12, 12MHz B.W. latched by the 8212
Kevboard Address Bus: 4x 2114 20pf
- 2716 o6pf
e Any standard un-encoded ASCII keyboard _p—
26pf max

Screen Refresh Rate
e 60 Hz

5.3 HARDWARE DISCR[PTION

A block diagram of the CRT terminal is shown in
Figure 5.1. The diagram shows only the essential
system features. A detailed schematic of the CRT is
contained in the Appendix. The terminal was
constructed on a simple 6” by 6” wire wrap board.
Because of the minimum bus loading no buffering of
any kind was needed (see Figure 5.2).

The “heart” of the CRT terminal is the 8085
microprocessor. The 8085 initializes all devices in
the system, loads the CRT controller, scans the
keyboard, assembles the characters to be trans-

2-450

This loading assures that all components will be
compatible with a 3MHz 8085 and that no wait
states will be required

Figure 5-2. Bus Loading

mitted, decodes the incoming characters and deter-
mines where the character is to be placed on the
screen. Clearly, the processor is quite busy.

A standard list of LSI peripheral devices surround
the 8085. The 8251A is used as the serial communi-
cation link, the 8255A-5 is used to scan the keyboard
and read the system variables through a set of

AFN-01304A

APPLICATIONS

switches, and the 8253 is used as a baud rate
generator and as a “horizontal pulse extender” for
the 8275.

The 8275 is used as the CRT controller in the system,
and a 2716 is used as the character generator. To
handle the high speed portion of the terminal the
8275 is surrounded by a small handful of TTL. The
program memory is contained in one 2716 EPROM
and the data and screen memory use four 21 14-type
RAMs.

All devices in this system are memory mapped. A
bipolar PROM is used to decode all of the addresses
for the RAM, ROM, 8275, and 8253. As mentioned
earlier, the bipolar prom also turns READs into
DACK'’s and WR’s for the 8275. The 8255 and 8253
are decoded by a simple address line chip select
method. The total package count for the system is
20, not including the serial line drivers. If this same
terminal were designed using the MCS-85 family of
integrated circuits, additional part savings could
have been realized. The four 2114’s could have been
replaced by two 8185’s and the 8255 and the 2716
program PROM could have been replaced by one
8755. Additionally, since both the 8185 and the
2716 have address latches no 8212 would be needed,
so the total parts count could be reduced by three
or four packages.

5.4 SYSTEM OPERATION

The 8085 CPU initializes each peripheral to the
appropiate mode of operation following system
reset. After initialization, the 8085 continually polls
the 8251A to see if a character has been sent to the
terminal. When a character has been received, the
8085 decodes the character and takes appropriate
action. While the 8085 is executing the above “fore-
ground” programs, it is being interrupted once every
617 microseconds by the 8275. This “background”
program is used to load the row buffers on the 8275.
The 8085 is also interrupted once every frame time,
or 16.67 ms, to read the keyboard and the status of
the 8275.

As discussed earlier, a special POP technique was
used to rapidly move the contents of the display
RAM into the 8275’s row buffers. The characters are
then synchronously transferred to the character code
outputs CC0-CC6, connected to the character
generator address lines A3-A9 (Figure 5.3). Line
count outputs LCO-LC2 from the 8275 are applied
to the character generator address lines,A0-A2. The
8275 displays character rows one line al atime. The
line count outputs are used to determine which line
of the character selected by A3-A8 will be displayed.
Following the transfer of the first line to the dot

timing logic, the line count is incremented and the .

second line of the character row is selected. This

2-451

process continues until the last line of the row is
transferred to the dot timing logic.

The dot timing logic latches the output of the
character generator ROM into a parallel in,serial’
out synchronous shift register. This shift register is
clocked at the dot clock rate (11.34 MHz) and its
output constitutes the video input to the CRT.

CHAR CLOCK .

3 -
Lco-Lc2 A0 - A2 VIDEO
o LINE COUNT |
T 8 | 2708 7 HIGH. |
cuaRACTERI—/N sPeeD | |
A 8275 ' GenerATORL/ A por T[T~ O™ OF
3 | ROM LoGIC |
s LI A
cco—ces A3-Ag |+~ vERT DR
cHARACTER |
HRTC CODE
VRTC 4 L ’
VSP
LTEN T _J

Figure 5-3 Character Generator/Dot Timing Logic
Block Diagram ‘

Table 5-1

PARAMETER RANGE

Vertical Blanking Time
(VRTC)
Vertical Drive Pulsewidth

900 usec nominal

300 usec < PW < 1.4 ms

Horizontal Blanking Time
(HRTC)

Horizontal Drive Pulsewidth

11 usec nominal

25 usec < PW < 30 usec

Horizontal Repetition Rate 15,750 £500 pps

5.5 SYSTEM TIMING

Before any specific timing can be calculated it is
necessary to determine what constraints the chosen
CRT places on the overall timing. The requirements
for the Ball Bros. TV-12 monitor are shown in Table
5.1. The data from Table 5.1, the 8275 specifications,
and the system target specifications are all that is
needed to calculate the system’s timing.

|=—7 DOTS—>|

@0c00000c000cccccssccne

00000 e@NONO N
eo0coc00eeCO0OC O

UNDERLINE
POSITION o
LINE 10 ———»

CHARACTER 1 CHARACTER 2 CHARACTER 3

Figure 5-4. Row Format

AFN-01304A

APPLICATIONS

First, let’s select and “match” a few numbers. From
our target specifications, we see that each character
is displayed on a 7 X 10 field, and is formed by a 5 X
7 dot matrix (Figure 5.4). The 8275 allows the
vertical retrace time to be only an integer multiple of

the horizontal character line. This means that the
total number of horizontal lines in a frame equals 10
times the number of character lines plus the vertical
retrace time, which is programmed to be either 1, 2,
3, or 4 character lines. Twenty-five display lines

CHARACTER | 617ns
89.9ns .) .
copren [| | | L R N N N A
CLOCK 4 gna ! | - -
QA= ‘
wo | L LT L L L L L
COUNTER l ‘ .
OUTPUTS
qc=)9c—
CHARACTER] I
cLock
. | | N
—j=| __'pd l
CHARACTER = 15ns MAX l . '
CLOCK TO I“‘—'—I r"—"l
I ’
[l o ‘
'cc
150NS
8275 "
c%?:,ﬂ,“ X FIRST CHARACTER X SECOND CHARACTER X THIRD CHARACTER
(CC0-CC6) I | |
SHIFT \/ N/~
R:g}iﬁrﬂ . J‘ FIRST CHARACTER VIDEO OUT)\ SECOND CHARACTER VIDEO OUT
(74166) | i
11.36 MHz 10pF
XTAL 1134 MRz v
7408 7404 DOT CLOCK
001 BCDEFGH
CK 74166 Qy VIDEO OUT
SHIFT/LOAD
pot SHIFT REGISTER
cLock vsp
3300 33001 (8275)
LCo-LC2
o €CO0-CC6 (';’;5;‘) cRT
Als]s 2 MONITOR
T 2 10 .17) :
A 7 A : HRTC
1 &
8 5 ©275>T1° a
u CcK
s CHARACTER =7 COUNTER :
GENERATOR i CLK VERTICAL
VRTC b - 1K "DRIVE
e (8275) 3 ;
={o P CK VRTC DELAYED
= Q
CLK

Figure 5-5. Dot Timing Logic

2-452

AFN-01304A

- APPLICATIONS

require 250 horizontal lines. So, if we wish to have be allowed for horizontal retrace. Unfortunately,
a horizontal frequency in the neighborhood of this number depends almost entirely on the monitor
15,750 Hz we must choose either one or two used. Usually, this number lies somewhere between
character lines for vertical retrace. To allow for a 15 and 30 percent of the total horizontal line time,
little more margin at the top and bottom of the which in this case is 1/16,200 Hz or 61.73
screen, two character lines were chosen for vertical microseconds. Since in most designs a fixed number
retrace. This choice yields a net 250 + 20 = 270 of characters can be displayed on a horizontal line, it
horizontal lines per frame. So, assuming a 60 Hz is often useful to express retrace as a given number
frame: of character times. In this design, 80 characters can

be displayed on a horizontal line and it was

60 Hz * 270 = 16,200 Hz (horizontal frequency) empirically found that allowing 20 horizontal

This value falls within our target specification of character times for retrace gave the best results. So,
15,750 Hz with a 500 Hz variation and also assures in reality, there are 100 character times in every
timing compatibility with the Ball monitor since, 20 given horizontal line, 80 are used to display
horizontal sync times yield a vertical retract time of: characters and 20 are used to allow for retrace. It

61.7 microseconds X 20 horizontal sync times = should be noted that if too many character times are

a0 used for retrace, less time will be left to display the

1.2345 milliseconds . . -)

))) characters and the display will not “fill out” the
Tbls number meets the nominal VRTC and vertical screen. Conversely, if not enough character times
drive pulse width time for the Ball monitor. A are allowed for retrace, the display may “run off” the
horizontal frequency of 16,200 Hz implies a screen.

1/16,200 = 61.73 microsecond period. . .

One hundred character times per complete horizontal
It is now known that the terminal is using 250 line means that each character requires
horizontal lines to display data and 20 horizontal
lines to allow for vertical retrace and that the
horizontal frequency is 16,200 Hz. The next thing
that needs to be determined is how much time must If we multiply the 20 horizontal retrace times by the

61.73 microseconds /100 character times = 617.3
nanoseconds.

e bl] b -
gigigigigipipipinipipipipiiph

|
LATCH LATCH LATCH LATCH LATCH LATCH
CHAR 1 CHAR 2 CHAR 3 CHAR 4 CHAR 80 CHAR 1

HRTC SAMPLE

(8275) | HRTC T |
4

150ns MAX

|

2 Winew 4
CHAR CODE FIRST ECOND THIRD FOURT X som N
(8275) CHARACTER RACTER CHARAC
\ /\ /N { ¢

ROW
N

CHARACTER
cLock

3
>

.

+ 4
<

FIRST
ARACTER

S

LINE COUNT
(8275)

>

HIFT —
REGISTER LOAD LOAD LoAD LOAD LOAD
LOADING CHAR X CHAR 1 CHAR 2 CHAR 3 CHAR 80
VIDEO | _L 1} (' I
ouTPUT VIDEO VIDEO [vioeo | vioko |
FOR 15t FOR 2nd FOR 3rd FOR 80th
CHAR CHAR CHAR

Figure 5-6. CRT System Timing

2-453 AFN-01304A

APPLICATIONS

617.3 nanoseconds needed for each character, we find

617.3 nanoseconds * 20 retrace times = 12.345
microseconds

This value falls short of the 25 to 30 microseconds
required by the horizontal drive of the Ball monitor.
To correct for this, an 8253 was programmed in the
one-shot mode and was used to extend the horizontal
drive pulsewidth.

Now that the 617.3 nanosecond character clock
period is known, the dot clock is easy to calculate.
Since each character is formed by placing 7 dots
along the horizontal.

DOT CLOCK PERIOD =617.3 ns
(CHARACTER CLK PERIOD)/ 7 DOTS

DOT CLOCK PERIOD = 88.183 nanoseconds

DOT CLOCK FREQUENCY = 1/PERIOD =
11.34 MHz .

Figures 5.5 and 5.6 illustrate the basic dot timing
and the CRT system timing, respectively.

6. SYSTEM SOFTWARE
6.1 SOFTWARE OVERVIEW

As mentioned earlier the software is structured on a
“foreground-background” basis. Two interrupt-
driven routines, FRAME and POPDAT (Fig. 6.1)
request service every 16.67 milliseconds and 617
microseconds respectively, frame is used to check
the baud rate switches, update the system pointers
and decode and assemble the keyboard characters.
POPDAT is used to move data from the memory
into the 8275’s row buffer rapidly.

The foreground routine first examines the line-local
switch to see whether to accept data from the
USART or the keyboard. If the terminal is in the
local mode, action will be taken on any data that is
entered through the keyboard and the USART will
be ignored on both output and input. If the terminal
is in the line mode data entered through the
keyboard will be transmitted by the USART and
action will be taken on any data read out of the
USART.

When data has been entered in the terminal the
software first determines if the character received

was an escape, line feed, form feed, carriage return,

back space, or simply a printable character. If an
escape was received the terminal assumes the next
received character will be a recognizable escape
sequence character. If it isn’t no operation is
performed.

After the character is decoded, the processor jumps
to the routine to perform the required task. Figure

6.2 is a flow chart of the basic software operations;

the program is listed in Appendix 6.8.

FRAME
INTERRUPT

Y

SET UP
POINTERS

SWITCHED -

CHANGED

SET BAUD
RATE

L

WRITE KEYBOARD

RAM

READ
KEYBOARD

!

WRITE KEYBOARD
RAM

!

ASSEMBLE
CHARACTER

POPDAT
INTERRUPT

SET UP
POINTERS

DO 40
POPS

RESTORE
POINTERS

EXIT

Figure 6-1. Frame and Popdat Interrupt Routines

AFN-01304A

APPLICATIONS

RESET

INITIALIZE
SYSTEM

LINE
OR
LOCAL?

DECODE
CHARACTERS

TAKE ACTION ON
DECODED CHARACTER

TRANSMIT
CHARACTER

Figure 6-2. Basic Terminal Software

1st Column 2nd Column 80th Column
ROW 1 | 0800H O0801H............. 084FH
ROW 2 | 0850H 0851H............. 089FH
ROW.3 | 08A0H O08A1TH 08EFH
ROW 4 | 08FOH O8F1H............. 093FH
ROW S5 | 0940H 0941H............. 098FH
ROW 6 | 0990H 0991H............. 090FH
ROW 7 | 09EOH O9E1H............ 0A2FH
ROW 8 | 0A30H OA31H O0A7FH
ROW 9 | OABOH O0A81H 0ACFH
ROW 10 | OADOH OAD1H OB1FH
ROW 11| 0B20H O0B21H 0B6FH
ROW 12 | 0B70H OB71H 0BBFH
ROW 13 | 0BCOH OBC1H 0COFH
ROW 14 | 0C10H OC11H 0C5FH
ROW 15 | 0C60H O0C61H 0CAFH
ROW 16 | 0OCBOH OCB1H O0CFFH
ROW 17 | ODOOH ODO1H OD4FH
ROW 18 | OD50H OD51H OD9FH
ROW 19 | ODAOH ODA1TH ODEFH
ROW 20 | ODFOH ODF1H OE3FH
ROW 21 | OE40H OE41H............. OE8FH
ROW 22 | OEQOH OE91H............ OEDFH
ROW 23 | OEEOH OEE1H OF2FH
ROW 24 | OF30H OF31H............. OF7FH
ROW 25 | OF80H OF81H............ OFCFH

Figure 6-3. Screen Display After Initialization

6.2 SYSTEM MEMORY ORGANIZATION

The display memory organization is shown in
Figure 6.3. The display begins at location 0800H in
memory and ends at location OFCFH. The 48 bytes
of RAM from location OFDOH to OFFFH are
used as system stack and temporary system storage.
2K bytes of PROM located at 0000H through
07FFH contain the systems program.

6.3 MEMORY POINTERS AND SCROLLING

To calculate the location of a character on the
screen, three variables must be defined. Two of these
variables are the X and Y position of the cursor
(CURSX, CURSY). In addition, the memory
address defining the top line of the display must be
known, since scrolling on the 8275 is accomplished
simply by changing the pointer that loads the 8275’s
row buffers from memory. So, if it is desired to
scroll the display up or down all that must be
changed is one 16-bit memory pointer. This pointer
is entered into the system by the variable TOPAD
(TOP Address) and always defines the top line of the
display. Figure 6.4 details screen operation during
scrolling.

2-455

Subroutines CALCU (Calculate) and ADX (ADd X
axis) use these three variables to calculate an
absolute memory address. The subroutine CALCU
is used whenever a location in the screen memory
must be altered.

6.4 SOFTWARE TIMING

One important question that must be asked about
the terminal software is, “How fast does it run”. This
is important because if the terminal is running at
9600 baud, it must be able to handle each received
character in 1.04 milliseconds. Figure 6.5 is a
flowchart of the subroutine execution times. It
should be pointed out that all of the times listed are
“worst case” execution times. This means that all
routines assume they must do the maximum amount
of data manipulation. For instance, the PUT routine
assumes that the character is being placed in the last
column and that a line feed must follow the placing
of the character on the screen.

How fast do the routines need to execute in order to
assure operation at 9600 baud? Since POPDAT
interrupts occur every 617 microseconds, it is
possible to receive two complete interrupt requests
in every character time (1042 microseconds) at 9600

AFN-01304A

APPLICATIONS

ROW 1 |0800H 0801H............. 084FH ROW?2 |0850H O0851H............. 089FH
ROW2 |0850H 0851H............. 089FH ROW 3 |08AOH O08A1H 08EFH
ROW 3 |08A0OH O08A1H ...0........ 08EFH ROW 4 |08FOH O8F1H............. 093FH
ROW 4 |08FOH O08F1H............. 093FH| ~ |ROWS5 |0940H 0941H............. 098FH
ROWS5 |0940H 0941H............. 098FH |- ROW 6 |0990H O0991H 090FH
ROW6 |0990H 0991H............. 090FH ROW 7 |09EOH O9ETH............ 0A2FH
ROW 7 |09EOH Q9E1H............ 0A2FH ROW 8 |0A30H OA31H 0A7FH
ROW S8 |O0A30H- OA31H 0A7FH ROW 9 |0A80H O0A81H OACFH
ROWS9 |0A80H OA81H O0ACFH ROW 10 | OADOH - OAD1IH OB1FH
ROW 10 | OADOH OAD1H 0B1FH ROW 11 [0B20H O0B21H: 0B6FH
ROW 11 |0B20H O0OB21H 0B6FH ROW 12 | 0B70H OB71H 0BBFH
ROW 12 |OB70H OB71H 0BBFH ROW 13 [0BCOH OBC1H 0COFH
ROW 13 |0BCOH OBC1H OCOFH |- ROW 14 { 0C10H OC11H 0C5FH
ROW 14 |0C10H OC11H 0C5FH ROW 15 | 0C60H O0C61H 0CAFH
ROW 15 [0C60H O0C61H0CAFH ROW 16 | 0OCBOH O0CB1H OCFFH
ROW 16 |OCBOH OCB1H OCFFH ROW 17 | ODOOH ODO1H 0D4FH
ROW 17 [ODOOH ODO1H OD4FH ROW 18 | OD50H OD51H OD9FH
ROW 18 | OD50H OD51H OD9FH ROW 19 | ODAOH ODA1H ODEFH
ROW 19 | ODAOH ODA1H ODEFH ROW 20 | ODFOH ODF1H OE3FH
ROW 20 | ODFOH ODFt1H OE3FH ROW 21 | OE40H OE41H............. OE8FH
ROW 21 | OE40H OE41H............. OE8FH ROW 22 | OEQOH OEQ1H............ OEDFH
ROW 22 [OEQOH OE91H............ OEDFH ROW 23 | OEEOH OEE1H OF2FH
ROW 23 [OEEOH OEE1H o...0F2FH ROW 24 [OF30H- OF31H............. OF7FH
ROW 24 [OF30H OF31H............. OF7FH ROW 25 | OF80H OF81H............ OFCFH
ROW 25 [OF80H OF81H............ OFCFH | ROW 1 [0800H 0801H............. 084FH
After Initialization After 1 Scroll
ROW 3 |[08AOH O08A1H 08EFH ROW 4 |08FOH O8F1H............. 093FH
ROW 4 | 08FOH O8F1H............. 093FH ROW 5 |0940H 0941H 098FH
ROWS5 |0940H 0941H............. 098FH ROW 6 [0990H 0991H 090FH
ROW 6 |0990H 0991H............. 090FH ROW 7 |Q9EOH O9E1H............ 0A2FH
ROW 7 | 09EOH OQ9E1H..... P 0A2FH ROW 8 | 0A30H OA31H 0A7FH
ROW 8 |0A30H OA31H 0A7FH ROW 9 . | 0A80H O0A81H O0ACFH
ROW 9 | 0A80H OA81H 0ACFH ROW 10 | OADOH OAD1H 0B1FH
ROW 10 { OADOH OAD1TH OB1FH ROW 11 | 0B20H O0OB21H 0B6FH
ROW 11 | 0B20H 0B21H 0B6FH ROW 12 | 0B70H OB71H 0BBFH
ROW 12 { OB70H OB71H OBBFH ROW 13 [OBCOH OBC1H 0COFH
ROW 13 { 0OBCOH OBC1H O0COFH ROW 14 | 0C10H OC1Ht1H 0C5FH
ROW 14 | OC10H OC11H O0C5FH ROW 15 | 0C60H O0C61H O0CAFH
ROW 15 | 0C60H O0C61H OCAFH ROW 16 | 0OCBOH O0CB1H OCFFH
ROW 16 | OCBOH 0CB1H OCFFH ROW 17 { ODOOH ODO1H OD4FH
ROW 17 | ODOOH ODO1H 0D4FH ROW 18 | OD50H OD51H 0D9FH
ROW 18 | OD50H OD51H O0D9FH ROW 19 | ODAOH ODA1H ODEFH
ROW 19 | ODAOH - ODATH ODEFH ROW 20 | ODFOH ODF1H OE3FH
ROW 20 [ODFOH ODF1H OE3FH ROW 21| OE40H OE41H.............0E8FH
ROW 21 | OE40H OE41H............. OE8FH ROW 22 |OEQOH OES1H............ OEDFH
ROW 22 | OEQOH OE91H............ OEDFH ROW 23 | OEEOH OEE1H OF2FH
ROW 23 | OEEOH OEE1H OF2FH ROW 24 |OF30H OF31H.........0F7FH
ROW 24 | OF30H OF31H............. OF7FH ROW 25 |OF80H OF81H............. OFCFH
ROW 25 [OF80H OF81H............ OFCFH ROW 1 |0800H O0801H............. 084FH
ROW 1 |0800H 0801H............. 084FH ROW 2. [0850H 0851H 089FH
ROW2 |0850H 0851H............. 089FH ROW 3 |[08AOH O08A1TH 08EFH

After 2 Scfolls

After 3 Scrolls
Figure 6-4. Screen Memory During Scrolling

2-456 AFN-01304A

APPLICATIONS

baud. Each POPDAT interrupt executes in 211
microseconds maximum. This means that each
routine must execute in:

1042 - 2 * 211 = 620 microseconds

By adding up the times for any loop, it is clear that
all routines meet this speed requirement, with the
exception of ESC J. This means that if the terminal
is operating at 9600 baud, at least one character time
must be inserted after an ESC J sequence.

INITIALIZE

53us.

|
CHREC
43us

NO

338us

|

T T T

esc A escB escC esc D escE esc H escJ esc K
78.7us 324us 107us 119us 316us 105us 862us 310us 306us 42us

O D U G W e

1

CR OUT
456

LF

Figure 6-5. Timing Flowchart

2-457

AFN-01304A

86v-¢

VYOEL0-N4V

+5

SHEET 1
:osneer 1[3 4 5| 7 10
1 N CLR 1 T Ic18
Do SHEET 1 i ST UL
74163
Dy SHEET 1 w 0A 0c 0 =
Dy SHEET 1) T[T
Dy SHEET 1 DOT 0SC i
D4 SHEET 1 ic 12 | 7410
D5 SHEET 1
Dg SHEET 1 12
D SHEET 1 DOT CLOCK
D SHEET 1 IC 10 7474
WR SHEET 1 " 0
o PRESET fo—
0
L2 9
21 28 | 31 Ja2 fa3 [34 | 19 {18 [17 16 {15 [14 J13 |12 IC15 1l Icte
7 Tg U5 U U3 0 0 g 07 05 3 0 D 0 TLK
Vee *— (— 13 L2,0 P LEL]
[Wh w12 15
=5 0 6 LOAD O—
23 $3% :E 33 o To1c3 07 <—J a0 y F '
T TTITTS 59— 1005103 2
A Py LEHT
N 10
> e 10163 na<—<J wR 2716 - ot —Elo 74168
ofs 4 — >
> c17 15 TORESET OUT 8085 - 2 13 ;
70163 06 ~—229CS 0
o— 8255A-5 pag |18 ™ 0123 06 .’c"fa I :
o 23 Lt ALy o R ? >
» 70 163 D4 <—2g0AcK
[o; PBy ALy
2
" AL
[& 83 2 2 10161 AST 6.5 <—2{oRg Ul
fo SN A Ay 13
2 AL warcl af; 2 TOGATEO
BAUD RATE SENSE PBg| 5 3 o Q>
= SWITCHES AND yo._ % e |22 g TOIC1 RST 5.5 IR 5 9 8253 PG 1 +5
LINE-LOCAL 7 % . r
PB- Ri
SWITCH i [7 TO1L10 PIN 5 2 *
S LT S 30 S IS 3 3 9 3 | .
NEEREEEE ? $3 <>§<> S Ske o
Vee
Slg SLy Slp Slg Sly Slg Sig Sy
N B W B e B e B 97 KEYBOARD
KEYBOARD SCAN LINES

RETURN LINES

Appendix 7.1
CRT TERMINAL SCHEMATICS

ouTo0

1K

7404

8253 PG 1

CRT TERMINAL

icn

TO CCLK
8275

TO CLK 0
8253 PG 1

VERTICAL DRIVE

VIDEO OUT

HORIZONTAL
DRIVE

SNOILLYOINddVY

APPLICATIONS

2 %10 s808

SOILVIWIHOS TVNIWHIAL LHD

1'2 xipuaddy

5808 NO d o7y
100 ¥10 0L oLoI 0L g v 5+
» v
s» g WOHd 8 X 2¢
o
m - ay siz8 fa
s9 128 9%
Tij e w YL s+ 5528 32 , g
&
AOvasizs K}
s808 wpo— .
NI WIH3S —— 018 1353 ——> 10 13531 0L 01012 9d ——»loxm @ En M sz ‘a
P
1101 ¢ Dd=— 0 100 23w frr— w MOTFIIZSD _a €ot
ANO VYIS w— 011 ¥1 012 9d——»0 31w v | | HOIH v11Z 52 °
o 6101 (] 1 o0zol
Y i
N v wul £
0 0 v f— » I Wod
Lg% 5 ¥o &g 2g g O 12 ug9g5q ey 20 1p % 300030
ssayaav
B e PP L e
vovL vave,
it 101
s O
e 59 194 |—» 5228 Ol
L 59158 k—>~ 5128 D¥a
vy 190 13535 | —- SLISTY
] € TwvoL
o 0|W|0\Ou|
w001
[ann
s+
Lo m;mﬁ
3
Mou
s808 & wwe
01 201
|4
€528
yf oL
ol Eax
:u ZHI YY19
L
I I
P
SUhT
ot ool ool o] el o]] stal o o ef of oy éa_nm_h.nu_: 9 1oy of of of of ef of o 9 6{0¢94eefez] of sl vfef g |
m Yo% 201 TorBy By Oy Iy 2y B] EEEERE By By DTy 2y By Py B 9y Iy mP0iEoiZg: ToiBy By Oy Ty Zy Ty Py Sy By Ly 30 a% Su%g to %o o 0030 Ty By By Oy Ty 2yt Py Sy 0y L
[sl [@ vz s vz slo-4 9z
1
691 CE] 201 LET] EE] e
zzs

AFN-01304A

2-459

APPLICATIONS

Appendix 7.2
KEYBOARD INTERFACE

The keyboard used in this design was a simple
unencoded ASCII keyboard. In order to keep the
cost to a minimum a simple scan matrix technique
was implemented by using two ports of an 8255
parallel I/O device.

When the system is initialized the contents of the
eight keyboard RAM locations are set to zero. Once
every frame, which is 16.67 milliseconds the contents
of the keyboard ram is read and then rewritten with
the contents of the current switch matrix. If a non-
zero value of one of the keyboard RAM locations is
found to be the same as the corresponding current
switch matrix, a valid key push is registered and

action is taken. By operating the keyboard scan in
this manner an automatic debounce time of 16.67
milliseconds is provided.

Figure 7.2A shows the actual physical layout of the
keyboard and Figure 7.2B shows how the individual
keys were encoded. On Figure 7.2B the scan lines are
the numbers on the bottom of each key position and
the return lines are the numbers at the top of each

- key position. The shift, control, and caps lock key

were brought in through separate lines of port C of
the 8255. Figure 7.3 shows the basic keyboard
matrix.

In order to guarantee that two scan lines could not
be shorted together if two or more keys are pushed
simultaneously, isolation diodes could be added as
shown in Figure 7.4.

/
'@ # | $ | % | AN| &] ™ () | —
ESC 1 2 3 4 5 6 7 8 9 0 - = \ BS | BREAK
) 1
M| Q| W E R T Y U | (0] P :[| \ LF | DEL
CAPS : "1 NoT
o k| A | S| D|F|G|H| I KL || ®
< > ?
NOT : NOT
USED SHIFT| Z X C \') B N M , / SHIFT USED
SPACE BAR
Figure 7-2A. Keyboard Layout
7 7 7 7 7 7 7 2 0 0 0 0 0 0 0 0
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
6 6 6 6 6 6 5 1 1 1 1 1 1 1 1
0 1 2 4 5 6 0 0 1 2 3 4 5 6 7
poRT [porT| 4 | 6 {5 [5 |5 | 5|2 |2 (|2]|2]|2]3 2
c c 1 3 4 5 6 7 0 1 2 3 4 5 6
4 |porT | 4 4 4 | 4 4 4 3| 3| 3| 3 |pomT| 3
0 c 2 3 4 | 5 6 7 0 1 2 c 6
5
3
TOP NUMBER = RETURN LINE
BOTTOM NUMBER = SCAN LINE
‘ Figure 7-2B. Keyboard Encoding
2-460 AFN-01304A

APPLICATIONS

Appendix 7.3

ESCAPE/CONTROL/DISPLAY CHARACTER SUMMARY

CONTROL DISPLAYABLE ESCAPE
CHARACTERS CHARACTER SEQUENCE
0 0 o, lo, |14 |14 |15 |1 0 0 1 1 1 1
BIT 0o o, 19 (%14 [Tog [Toq {11 |14 1 1 0o 0, 1o 1
@
0000 NUL DLE sp ¢ @ |e P
4
A |DCI Q
0001 SOH {1t lalalAala A
B
0010 STX DC2 1218 | RrR|BI[R ¢ 8
o} S
0011 ETX DC3 # 3f{c|slc|s —>¢
D T
0100 EOT DC4 $ 4 D T D T <~D
E
0101 ENQ NAK % |5 |E|Uu|lE|U CLR ¢
F \%
0110 ACK SYN & |e|F | v]Flv
0111 71l |lwiac|w
1000 (|8 |H | x]H]|X HOME 4
1001 INEEE v |y
1010 * J z|J |z EOS
1011 1+ K S EL
L /
1100 FF FS <L) v]L
1101 - =l m] 1]m
N A
1110) RS > | N|] Al N
)
1111 S1 us - / ? (0] - (0]
NOTE: Shaded blocks

functions terminal will react to. Others can be generated but are ignored up on receipt.

2-461

AFN-01304A

APPLICATIONS

SCAN LINES
0 1 2 3 4 5 6 7
+5
8 L FO - = LN " BS | BREAK émx
[— ”— r— [—
I vy VAl vl
o+
\ 0—.;‘ — /I »——‘/o — /P +— /[»——) o-—/LF F?LET‘E‘S 10K
— J ’_K ’_L - H - CR 7 %10K
R VAR VAR VAR WAR W ya
o 2 - - +5
g | M |comma| pERioD| sLAsH }mx
=R A 0V V2R V4 :
z &
E P—A ’_Z X . Cc \'} B - N $1OK
W, VAR 2 V2 AR AR VR W ~
- Y | JP_s_pAcs D - F ._G - H %10
N o728 VAl /28 2R VIR Vi
+5
_TAB P__O ’_w ,’__s |_E P—R - éwK
N 2 V28 28 28 VAR 2R 5
+!
:sc - 1 - 2 ’_3 ._4 P_s %WK
N o/l /2 /2 /20 /20 /AR
Figure 7-3. Keyboard Matrix
Appendix 7.4
PROM DECODING
SCAN LINES

As stated earlier, all of the logic necessary to convert
the 8275 into a non-DMA type of device was
performed by a single small bipolar prom. Besides
turning certain processor READS into DACKS and
WRITES for the 8275, this 32 by 8 prom decoded
addresses for the system ram, rom, as well as for the
8255 parallel 1/0O port.

Any bipolar prom that has a by eight configuration
could function in this application. This particular
device was chosen simply because it is the only “by
eight” prom available in a 16 pin package. The
connection of the prom is shown in detail in Figure
7.5 and its truth table is shown in Figure 7.6. Note
that when a fetch cycle (M 1) is not being performed,
the state of the SOD line is the only thing that
determines if memory reads will be written into the
8275’s row buffers. This is done by pulling both
DACK and WRITE low on the 8275.

Also note that all of the outputs of the bipolar prom
MUST BE PULLED HIGH by a resistor. This
prevents any unwanted assertions when the prom is
disabled.

2-462

10k

RETURN LINES

MY 5V

10k

M 5V

Figure 7-4. Isolating Scan Lines With Diodes

AFN-01304A

AFPPLICATIONS

(Rd-Wr)~A_13<—————l

ENABLE
Dg |—— CE2r16
SOD «—{ Ag Dy p——> CE 2114
(8085) 0800H-OBFFH
Ag —— A Dy \—-b CE 2114
(8085) OCOOH-OFFFH
At —— A D3 |—> wr
(8085) 8275
A2 —— A3 D4 —> DACK
(8085) 8275
My A Ds ——» Cs
(8085) 8255
My=Sg-$y Dg |——> Cs
8275
Vec — Ve
b7 b— RD
GND ———| GND 8215
Figure 7-5. Bipolar Prom (825123) Connection
4
< '
E |8 0o 3 T .
- o g 2 g R e Ixe
S < T8 99 8 ¥ 3 83K
A4 A3 At A0 D7 Di D4 D3 D2 D1 DC

JEGUEEN N ENI NEN e E e e o ke e o feo o fe o fo Reo ol o o X o)

-4 -4 -20000—--~~-0000===2=20000====0000 Z AN

HH 4000000000000 222 A2 22000000000 P
=400+ - 00—+ —+00 =+ -+ 00 —~+—-0 0+~ 00 —+—=-00—+—-+00

-0 04020 —-0 -0 -0 -0 -0 -0 -0+ 0—+0—+0—=-0—=20

o e A O O ek e e O O b kb ek ke

_ b,
5O OO &ttt f A A O OOO A aaaahaaaa. & 8265T8

e o L P O A O RO Otk b —h

A 3 OO0 4O OO e d a0 = i aa
o L B OO = = A OO Ak —
o A A O O Sk b kL O O -k
e L4000 H A A a s aa g s a0 000

Figure 7-6. Truth Table Bipolar Prom

Appendix 7.5
CHARACTER GENERATOR

As previously mentioned, the character generator
used in this terminal is a 2716 or 2758 EPROM. A
1K by 8 device is sufficient since a 128 character 5 by
7 dot matrix only requires 8K of memory. Any
“standard” or custom character generator could
have been used.

The three low-order line count outputs (LC0-LC2)
from the 8275 are connected to the three low-order
address lines of the character generator and the
seven character generator outputs (CC0-CC6) are
connected to A3-A9 of the character generator. The
output from the character generator is loaded into a
shift register and the serial output from the shift
register is the video output of the terminal.

Now, let’s assume that the letter “E” is to be
displayed. The ASCII code for “E” is 45H. So, 45H
is presented to address lines A2-A9 of the character
generator. The scan lines will now count each line
from zero to seven to “form” the character as shown
in Fig. 7.7. This same procedure is used to form all
128 possible characters.

It should be obvious that “custom” character fonts
could be made just by changing the bit patterns in
the character generator PROM. For reference,
Appendix 7.6 contains a HEX dump of the
character generator used in this terminal.

45H = 01000101
Address to Prom = 01000101 SL2 SL1 SLO

= 228H - 22FH
Depending on state of Scan
lines.

Character generator output

Rom Address Rom Hex Output Bit Output*
228H 3E 01234567

229H 02
22AH . .. 02
22BH 0E
22CH 02
22DH 02
22EH 3E
22FH 00

Bits 0, 6 and 7 are not used.
* note bit output is backward from convention.

Figure 7-7. Character Generation

2-463

AFN-01304A

APPLICATIONS

Appendix 7.6

HEX DUMP OF CHARACTER GENERATOR

232000001 830033003233098330020009203000EF
322103290303330003330003000330023032333E0
020202300232302200033307330022293202338333D0
129302233002000003330230320309933300933CA
3204022333422390200320333230000203300030589
A32537322090033230333333303333303930360IAG
20263222233229030933083300229332333333399
02073223032300033230033300033032008320037
28822333 302222000033309339000323233000378
229230909022003933A332A1CH31C2AA3IFAFAARC
A2AQ233203032000233030033003003323339353
22820229302020033373323033030093233092334 ¢
22C3299309320230007323032200033332000023330
30D390300300 203303033 30A3A63333A3AIBFAIE20
23E2200033002993230A33A0333333A3AAFL 0
233002330343 303323002300 30AFAAABAR
9102032309928 7332A237333389398433 3083 IBF
21109214141 40023300303031 41 43£143E141496C3
212073333CAA1C281EABAAAA261333343230035D
01302324 9A0AN42A1 22CA 338982 33003333333 23
2140229334 ¢G23202 34 3330381 32023201 3384301
215323382A1CA31C2AG34023 838 3EASASANAI9D
0916023330230308230 83804 302333 3CAANANIAAIF
2917023330392893733180393201 0333432339329
A318080931C22322A25221CAAA30CH33]38381CAA21
92198331C22201CH202 3EAA3E 24101820221 CAABF
231A299101814123E10103035021E2028221C92C7
21809038734021E22221CAA3E 20130894 34 343031
91CP3@1C22221C22221CARIC22223C 201 AAEAATI
21D000333003323338330923303280 A3 3ISASHAR3
21E231093340234081 3336330 3EAFIEAAAAFASO
21F 020349810201 03834 0% 1C22201 93833330821
109203021C222A381A023CAAAR1 422223E22220412
10221 0221824241C24241EAF1C 22020208222 1CA%74
102220091 52424242 4241 EG33EA2020E0202 3EA74C
109233093E02020E320202333CA2023A22223CAA6E
10924023022222238222222301C03383838331CAR44
102250207323202 3232 21CA2221 20A353A1 2223 FEE
100263020202029232823EA222362A2A2222220%32
1092733322262A32222222001C22222222221C3792
100283921 E2222]1 EA20202331C2222222A122CA0FE
109290991E22221E9A1222003CH2621C 20201EQIES
1092A0203E030893878 783 3039222222222222 1CHIFS
1022800022222222221 43309222222222A3522005E
1002C29932222140814222209222222 1408380 823E4
1082D02083E20190804023E031CA4040434941Ca718
1022E09202320403102 30039382023202 320380050
%ﬂﬂZFﬂ@ﬂ@BlCZAQSGSﬂSﬂBﬂﬂZﬂ@ﬂﬂ@ZﬂﬂZﬂ@ﬂﬂ7E12
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

S IS S I IS N S S T R R I A

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

SIESTITo BT

2983028233991 10900333303 320A3C 203C223CANAE
331033320821A2622221 EJR2093 3874 8404383833
93200320202C322222 3CARAI3A3824BC4B884053
330993824040E9404940300003C22223C203CAR
202021A25222222303 809083838 2393334B
22000202 320A4241 83202221 20A162203C3
2830808933893993900900 362A2A222 2007k
A2B231A26222222000333318242424183%38

202021E22221£0202083931C22223C28209D
220233ALA26023282323393383418201CH237
3A02003281CH3083893380330222222324CAA9S
23800293202222221483330337322222A3E1 40AFB
93Ca93333022148314220929092222223C20383F
43DA3330733E 108334 3EGF1 883899338891 93 4 2F

2
23
23
a3
23
23
23
2

s 00 S0 00 80 20 o0 00 oo
€0 00 00:04 40 90 00 06 Se 00 OV G0 TO G0 G0 ©0 €6 00 G0 25 20 G0 G0 G0 04 00 20 ¢ 50 $5 40 90 90 00 00 08 ue G0 G0 00 00 0 09 0 45 00 S0 00 €5 00 00
v 50 o0

B S S S I I s IS S IS S S S

93ro@930098C2380081932020232037330333383295

23E0719878A 3087137983 39873C9491 2197191 9DAA51

2-464

AFN-01304A

APPLICATIONS

Appendix 7.7
COMPOSITE VIDEO

In this design, it was assumed that the monitor
required a separate horizontal drive, vertical drive,
and video input. However, many monitors require a
composite video signal. The schematic shown in
Figure 7.8 illustrates how to generate a composite
video signal from the output of the 8275.

The dual one-shots are used to provide a small delay
and the proper horizontal and vertical pulse to the
composite video monitor. The delay introduced in
the vertical and horizontal timing is used to “center”
the display. VR1 and VR2 control the amount of
delay. 1C3 is used to mix the vertical and horizontal
retrace and Q1 along with the R1, R2, and R3 mix
the video and the retrace signal and provide the
proper DC levels.

bS
50K ‘ S 4 50K
3 7418221
I8y 20f
HRTC) L VRTC
M 3
> Ay H
22K = 22K
> 470pF 001.F
|8 cX CX s Il
1\Us RXCX 7 IV
. 0
o By|s 7ese
H

COMPOSITE
VIDEO
out

VIDEO

Figure 7-8. Composite Video

Appendix 7.8
SOFTWARE LISTINGS

ISIS-II 80809/8885 MACRO ASSEMBLER, X108

LoC g SEQ SOURCE STATEMENT
1 $MOD85 MACROFILE
2 sNO DMA 8275 SOFTWARE ALL I/O IS MEMORY MAPPED
3 }SYSTEM ROM §O@@H TO @7FFH
4 ;SYSTEM RAM @8(0H TO QFFFH
5 78275 WRITE 1@@9H TO 13FFH
6 78275 READ 1400H FFH
7 :8255 READ/WR 8A9H TO 1FFF
8 78253 ENABLED BY Al4
9 ;8251 ENABLED BY Al5 .
1800 18 PORTA ﬁ% 839H ;8255 PORT A ADDRES!
1801 11 PORTB E 1801H 78255 PORT B AD[RESS
1882 12 PORTC B&.} 18024 ;8255 PORT C ADDR
1803 13 CNWD55 E 18034 :8255 CONTROL PORT ADMESS
AgQl 14 USTF E&lj BAGILH 18251 FLAGS
Agoa 15 UsTD B BAGAAH ;8251 DATA
6000 16 CNT@ EQU 60089H 78253 COUNTER ¢
6901 17 CNT1 EQU 6001H $8253 COUNTER 1
60082 18 CNT2 EQU 63024 78253 COUNTER 2
6083 19 CNTM E 600834 78253 MODE WOR
1001 26 C E 1001H ;8275 CONTROL ADDRESS
1009 21 C EQU 1200H 78275 MODE ADDRES!
1401 22 INT75 E&i’ 1401H H INTERR AR
2800 23 TPDIS 28024 ;TOP OF DISPLAY RAM "
PF8a 24 BTDIS E& AF8aH ;BOTTOM OF DISPLAY RA!
OFDO 25 E PFDOH $FIRST BYTE AFTER DISP[AY
2018 26 CURBOT EQU 8H ;B Y URSOR
02059 27 E& 2350 ;LENGTH OF ONE L
OFEQ %g STPTR E OFEQH ;LOCATION OF S’I‘ACK POINTER
30 ’S'I‘A.RT PROGRAM
g% -ALL VARIABLES ARE INITIALIZED BEFORE ANYTHING ELSE
2009 £3 33 DI ;DISABLE INTERRUPTS
0001 31EQQF 34 LXI sP,STPTR +LOAD STACK POINTER
00084 210998 35 LXI H, TPDIS -I’..OAD H&L WITH TOP OF DISPLAY
2007 22E30F 36 SHLD TOPAD ET TOP = TOP OF DISPLAY
0@0A 22E89F 37 SHLD CURAD 'STCRE THE CURRENT ADDRESS
900D 3EQ992 38 MVI A, 094 ;ZER
@00F 32E10F 39 STA CURSY .ZERO CURSOR Y POINTER
2012 20 49 STA CURSX 3 ZERO CURSOR X POINTER
9015 32EBOF 41 STA KBCHR $ZERO KBD CHARACTER
@018 32E7AF 42 STA HR °ZERO USART CHAR BUFFER
2418 32EAQF 43 STA KEYDWN ;ZERO KEY DOWN

AFN-01304A

APPLICATIONS

@Q1E 32EDOF
0021 32EEQF
0024 C39809

002C
892C C36701

)

SV

Y
DOOINUD W

=
=
>

=2
2
moo®

[03 09 090 090 093 £ 030 63 09 £ 1) 3 13 093 £ 3 3.0 073 693 6 03 03 03 £ 63 3 63 63 £ £ £ 0 03 £ 0 £ 00 £

T2 bt ot bt et et bt

=
[
>

S

gd\d\d\d\

SNV S
S QQ@QQ&GQQGSQQQ&@QQQ@ D]/
U N

BOEC 30
096D 210000
2079 39
0471 EB
08072 F9
6073 21D@OF
0076 EB
2077 TA

-

207 7B
#@7D

007E C28405

2081 210028
0084 22E80F
0087 3E18

61 POPDAT:

STA KEYOK ;ZERO KEYOK
STA ESCP ; ZERO ESCAPE
JMP LPKBD ;JUMP AND SET EVERYTHING UP

'THIS JUMP VECTOR IS [.OCATED AT THE RST 5.5 LOCATION

'OF THE 8085, IT IS USED READ THE 8275 STATUS AND
THE KEYBOARD. THIS ROUI‘INE IS EXECUTED ONCE EVERY

,16 667 MILLISECONDS.

bR gpoch
JMP FRAME

‘ ;THIS ROU’I‘INE IS LOCATED AT THE RST 6.5 LOCATION OF THE

78085 AND IS USED TO LOAD THE DATA TO BE DISPLAYED

INTO '
JTHE 8275, LFHTS ROUPING ‘TS EXECOTED ONCE Pyny D N1 e sconDs.

344 : ‘ :
PUSH PSW ;SAVE.A AND FIA
PUSH H :SAVE H AND L s
PUSH D *SAVE D AND E
LXI H, 00004 7ZERO H AND L
paD s _ ;PUT STACK POINTER IN H AND L
XCHG 3PUT STACK IN D AND E
IégHLE ¢ ' ’%% glomnsnr LINE INTO S|
’ : ! p
MVI A,0CoH :SET MASK FOR SIM
REPT (LNGTH/2)

L]
MITIXIT :::n:::::n:::nia:::::::a::::n:n::::::::m:::n:: TDTITMIITNE I

sSET UP A

SIM - GO BACK TO NORMAL MODE

LXI H, 08AaH ERO HL

DA sp °ADD STACK

XCHG °PUT S'I'ACK IN H AND L
RESTORE STACK

LXI - H,LAST PUT BOTTOM DISPLAY IN H AND L

XCHG °SWAP REGISTERS

MOV~ A,D ;PUT HIGH ORDER IN A

CMP H ;SEE IF SAME AS H
JNZ KPTK NOT LEAVE
M ORDER IN A

1F

AE PUT LOW

L SEE IF SAME AS L
IF NOT

JIN KPTK LEAVE

LXI H, TPDIS LOAD H AND L WITH TOP OF SCREEN MEMQRY
SHLD c{rRAD ;PUT BACK CURRENT ADDRESS

MVI A,18H #SET MASK

SIM 'OUTPUT MASK

2
&332

2-466 AFN-01304A

APPLICATIONS

0998 32EFQF
2098 32FQ30F
@99E 32F10F

2109908
@0A4 @1DAGF
BaAT 3520

B8
BOAC C2A730
7D

B9
@081 C2A790

3E8B
@86 320318

20B9 2101A0
3580

@@BE 3600
20Co 3640
2]

23C3 36EA
8aC5 3635

7 3E32
A2C9 320360
3E32
POCE 320060
3E09
20D3 320369
D6 CDDCAJ
#@D9 C3F920

29DC 3A@218
E6QF

20E1 %%ECEF

00ES5 21C505
600

00F7 12
AoF8 C9

W
15}

209

NN NN NE
= et st ottt
LS WS

NN
= =
Q0 ~J

BYPASS:

LPKBD:

LOOPF':

STBAUD:

POP D iGET D AND E
POP H ;GET H AND L
POP PSW JGET A AND F
EI TUFW ON INI'ERRUPPS
RET ‘GO
’
;THIS IS THE EXIT ROUTINE FOR THI:. FRAME INTERRUPT
[
[i
MVL A,18H SET MASK
SIM ;OUTPUT THE MASK
POP B ;GET B AND C
POP D ;GED D AND E
POP H ;GET H AND L
POP PSW sGET A AND FLAGS
EI 'ENABLF‘ IN'I‘ERRUPI‘&
RET 'GO

"I‘HIS CLEARS THE AREA OE‘ RAM THAT IS USED
; FOR KEYBOARD DEBOUNCE

Sta SHCON ;ZERO SHIFT CONI‘ROL
STA RETLIN +ZERO RETURN L
STA SCNLIN $ZERO SCAN LINB

-THIS ROUTINE CLEARS THE ENTIRE SCREEN BY PUTTING
+SPACE CODES (2@H) IN EVERY LOCATION ON THE SCREEN.

fxt H, TDIS ;PUT TOP OF SCREEN IN HL
LXI 8, LAST :PUT BOTTOM IN BC

MVI ™, 28H ;BUT SPACE IN M

INX H + INCREMENT POINTER

MOV AH iGET H

cMp 8’ ;SEE IF SAME AS B

JNZ LOOPF :IF NOT LOOP AGAIN

MOV A,L WGET L

cMp c +SEE IF SAME AS C

JNZ LOOPF ;IF NOT LOOP AGAIN

;8255 INITIALIZATION

VI A,8BH sMOVE 8255 CONTROL WORD INTO A
STA CRWDS5 ; PUT CONTROL WORD INTO 8255
8251 INITIALIZATION

fx1 H,USTF GET 8251 FLAG ADIRESS

i M,40H -RE‘%E’I‘ 8251

MVI M, BEAH ;LOAD 8251 MODE WORD

MVI ™M, @5H :LOAD 8251 COMMAND WORD
8253 INITIALIZATION

MVL A,32H ;CONTROL WORD FOR 8253

STA CNTM :PUT CONTROL WORD INTO 8253
MVI A, 324 ;LSB 8253

B Ephe

B St BTl e

Jup IN7S ;GO DO 8275

-THIS ROUTINE READS THE BAUD RATE SWITCHES FROM FORT C
;OF THE 8255 AND LOOKS UP THE NUMBERS NEEDED TO LOAD
"I’HE 8253 TO PROVIDE THE PROPER BAUD RATE.

fpa PORTC ;READ BAUD RATE SWITCHES
ANI @FH ;STRIP OFF 4 MSB'S

STA BAUD iSAVE IT

RLC iMOVE BITS OVER ONE PLACE
LXI H, BDLK ;GET BAUD RATE LOOK UP TABLE
MVI D, #0H +ZERO D

MOV E,A ;PUT A IN E

DAD D iGET OFFSET

LXI D,CNT™ ;POINT DE TO 8253

MVI A, 0B6H :GET CONTROL WORD

STAX = D i5' IN 8253

DCX D {POINT AT #2 COUNTER

MOV AM :GET LSB BAUD

STAX D :PUT IT IN 8253

INX H ;POINT AT MSB BAUD RATE
MOV A,M {GET MSB BAUD RA

STAX D SPUT IT IN 8253

RET GO BACK

~

2-467 AFN-01304A

APPLICATIONS

2181
2184
0186
7189
918C

9 210110
3609

1 32E70F

C34E02

F5
ES
D5

A C5
3A0114

2AE39F
22E80F

3A0218
E6gF

9 47
3AECOF
D B8

C4DC@9g

3AEAQF

E640

C2C201
CD8Fa1
C38Fa9

IN75:

SETUP:

xr

H 8275 INITIALIZATION

HCR’I’S

M 2oH

’

; ESET AND S'I'OP DISPLAY
*HL=1700H
+SCREEN PARAMETER BYTE

. :SCREEN PARAMETER BYIE

1
2
;SCREEN DARAMETER BYTE 3
'SCREB‘I PARAMETER- BYTE 4
;HL=10p1H

;LOAD THE CURSOR

PRESET COUNTERS

°START DISPLAY

°THIS K)UI‘INE 'READS BOTH THE KEYBOARD AND THE USART
'AND TAKES PRE%PER ACTION DSPENDING ON HOW THE LINE-LOCAL

; SNITCH

l

MVL
SIM.

i EI ;
'READ THE USART

‘RXRDY:

KEYINP:

KEYS:

TRANS:

OK7:

FRAME:

busn psw
PUSH H
" PUSH D
. PUSH
LA IN’I‘7S e
{SET up THE POINTERS
‘fap ToOPAD
SHLD = CURAD
, -ss'r UP BAUD RATE
PORTC
WV BA
LDA BAUD
cMP .
Nz S'I'BAUD
i READ KEYBO\RD
fpa KEYDN
ANI . . 4@H
INZ
CALL RIK8
JMP BYPASS

hm
ANT
JINZ
LDA
ANI
INZ

DA

ANT
JNZ
MVI

STA

JMP -

Jmp'

A, 18H

USCHR
.CHREC
' 'THIS ROUTINE CHECKS THE BAUD RATE: SNITCHES, RESE‘I‘S THE

;SET MASK
;LOAD MASK
;ENABLE INTERRUPTS

;GET LINE LOCAL
SIS IT ON OR OFF?
tLEAVE IF IT IS ON
{READ 8251 FLAGS

‘°LO0K AT RXRDY

;IF HAVE CHARACTER GO 'I'O WORK
HARACTE!

; LEAVE
- ;READ USART

;STRIP MSB
;P'd‘l‘ IT IN MEMORY
;LEAVE

,SCREEN POINTERS AND READS-AND LOOKS UP THE KEYBOARD.

2-468

;SAVE A AND F[A@
;SAVE H AND L
;SAVE D AND E
7

iSAVE B
READ 8275 'I‘O CLEAR INTERRUP’I‘

LOAD TOP INHAND

: L
{STORE TOP IN CURRENT ADDRESS

;READ BAUD'RATE SWITCHES-
;STRIP OFF 4 MSB'S

'-SAVE IN B
~'GET BAUD RA'IE

'SEE IF SAME AS B
-IF NO'I' SAME DO SCME'IHING

;SEE IF A KEY IS DOWN
+SET F|

;1IF KEY IS DOWN JUMP AROJND
;GO READ THE KEYBOARD
;LEAVE

AFN-01304A

APPLICAIIUNS

@18F 21EFQF 397 RDKB: LXI SHC * ;POINT HL AT KEYBOARD RAM
3192 3A@218 308 LDA péR 7GET CONTROL AND SHIFT
9195 399 MOV M,A *SAVE IN MEMORY
@196 3EFE 313 MVI A, BFEH SET Up A
4198 320018 311 LOOPK: STA - p6 ;OUTRUT A
#4198 37 312 MOV }SAVE A IN B
#19C 3AP118 313 LDA pésma #READ KEYBOARD
@19F 2F 314 CMA ;INVERT A
glAg B7 315 ORA +SET THE F
#1A1 C2AFp1 316 INZ SAVKEY ;LEAVE IF KEY IS DOWN
91A4 78 317 , iGET SCAN LINE BACK
@1a5 g7 318 RLC {ROTATE IT OVER
#1A6 DA98A1 319 Jc LOOPK ;D0 IT AGAIN
#1A9 3E00 320 MVT A,30H $ZERD A
32EAGF 321 STA KEYDNN $SAVE KEY DOWN
91AE C9 322 RET A :LEA
1AF 23 323 SAVKEY: - INX H *POINT AT RETURN LINE
g1Bg 2F 324 cMA +PUT A BACK
a1Bl1 77 325 MOV M,A 'SAVE RETURN LINE IN MEMORY
@182 23 3% INX H ;POINT H AT SCAN LINE
9183 72 327 MOV M,B -sms scm LINE IN MEMORY
#4184 3E40 328 MVI 49H
@186 32EABF 329 STA . KEYDAN °SAVE. KEY DOWN
#1B9 CO 330 RET a EAVE
#1BA 3Eg0 331 KYCHNG: MVI A,B0H -zano
@1BC 32EAQF 332 STA KEYDAN ,-RESET KEY DOWN
@1BF C38F@0 333 JMp BYPASS
g1C2 21F16F 334 KYDOAN: LXI H,SCNLIN -GET SCAN LINE
91C5 7E 335 MOV AIM +PUT SCAN LINE IN A
91C6 320018 336 STA PORTA JOUTPUT SCAN LINE TO PORT A
g1C9 28 337 DCX H +POINT AT RE’I‘URN LINE ,
g1CA 3ag118 338 LDA PORTB :GET RETURN LIN
g1CD B6 3 ORA $ARE THEY THE SAME?
a1CE 320 CMA : INVERT
gICF B7 ORA A }SET FLAGS
21D@ CABAGL 342 Jz KYCHNG :IF DIFFERENT KEY HAS CHANGED
@1D3 3AEAQF 343 LDA KEYDWN: iGET KEY DOWN
@1D5 E6@1 344 ANI g1H {HAS THIS BEEN [ONE BEFCRE?
#1D8 C28Fp@ 345 INZ BYPASS iLEAVE IF IT HAS
#1DB 3A@118 346 LDA PORTB iGET RETURY LINE
gIDE B6FF 347 MVI B, @FFH- c;m' READY TO ZERO B
g1ES 24 348 up: INR B ERO B
#1EL 349 ;RO_I‘A'IE A
B1E2 DAEAQL 359 Jc . yp :DO IT AGAIN
@lES 23 351 INX H -POINT H AT SCAN LINES
#1E6 TE 352 MOV AM ~"E‘I‘ SCAN LINES
P1E7 QEFF 353 MVI C, @FFH :GET READY TO LOOP
B1E9 354 ypl: INR ¢’ $START C COUNTING
J1EA 355 RRC : +ROTATE A
#1EB DAE9AL 356 JC upl °JUMP o Loop s
Fg @7 359 RLC °MOVE OVER itk _
F1 @7 352 RIC :MOVE OVER THREE TIMES
F2 Bl 361 ORA c -OR SCAN AN AND'RETURN LINES
F3 47 362 MOV. . B,A . +SAVE
F4 3A@218 363 LDA " pdrTC iGET SAIET CON]‘ROL
F7 E648 364 _ANI 4gH ;1S CONTRO L SET
1F9 365 MOV C,A FSAVE A
FIFA 3AEFQF 366 LDA shcon SGET snm' CONTROL
FD 57 367 MOV D,A iSAVE A
FE E640 368 ANI - apH -s'mp com-aor.
200 Bl 359 ORA ¢
201 CA3EQ2 379 Jz CNTDAN ;m SET LEAVE
204 3Ap218 371 LDA PORTC ;READ IT AGAIN
9207 372 ANI 26H :STRIP SHIFT
3209 373 MOV g,A iSA
@20A A 373 MOV AD. . iGET SHIFT CONTROL
@208 E620 375 ANI 201 $STRIP CONTROL
820D 376 ORA c *ARE THEY THE SAME?
@20E CA4702 377 Jz SHDAN :IF SET LEAVE
#211 58 378 SCR: MOV E,B ;PUT TARGET IN E
9212 160 379 D.@ ZERO ~
8214 219705 389 - LXI H,KYLKUP *GET LOOKUP TABLE
2217 19 381 DAD GET OFFSET
9218 £ 392 MOV A,M :GET CHARACTER
8219 47 383 MOV B,A iPUT CHARACTER IN 8
921A 3Ap218 384 LDA BORTC $GET PORTC
@21D E618 385 ANI 10H -smm BIT
@21F CAJE®2 386 JZ - CAPLOC APS [OCK
8222 78 387 MOV A,B -GB’I‘ A BACK
@223 32EBOF 388 STKEY: STA KACHR iSAVE CHARACTER
8226 3EC1 389 MVI A,0C1H $SET.
3228 32EAQF 399 _STA . kEYDWN -SAVE _KEY DOWN
9228 C38F@0 %3% ~ Jue BYPASS
393 i1¢ THE cap LOCK BUITON IS PUSHED THIS ROUTINE SEES IF
392 ;THE CHARACTER IS BETWEEN 61H AND 7AH AND IF IT IS THIS

2-469 ‘ AFN-01304A

APPLICATIONS

78
FE6@
mzsuz
FE7B
D22382
D620
C32302
3E80
B
EGBF
C31102
3E40

4
C31102

CA9743
C30Fal

3AE1QF
FE18
CApFg1
3¢

C30ral

W00 0 0 o 0 o 5 8 o 0 8 D 2 o8 0 B B o P 0 o o o 0 o o s 0 e o8 o8 o o i D o o B o B B

B o0 o 0 i o 1 o8 L L (L L L L L L L N N N N DN N0 IND NN N bt ot et e ot et ot o ol O

WRNAVIBWNFRQO R0 YAV WN RO R NAVLB WNFRO O JINANB WO D

BEIRRLTRZES

wn

CAPLOC

CNTDAN:

SHOWN:

CHREC:

ESSQ:

DOANN:

sROUTINE ASSUMES THAT THE CHARACTER IS LOWER CASE ASCII
AND SUBTRACTS 20H, WHICH CONVERTS THE CHARACTER
‘UPPER CASE ASCII

MOV A,B ;GET A BACK

CP1 60H $HON BIG IS IT?

JC STKEY °L VE IF IT'S TOO SMALL
(01 784 $IS IT TOO BIG

JNC STKEY ;LEAVE IF TOO BIG

SUL 20H ;ADJUST A

JMP STKEY ;STORE THE KEY

~THE Rguggéas SHDAN AND CNTDAN SET BIT 6 AND 7 RESPECTIVLY

A,82H ;sm' BIT 7 IN A

ORA B 7OR WITH CHARACTER

ANT @BFH iMAKE SURE SHIFT IS NOT SET
MOV B,A $PUT IT BACK IN

JMP SER iGO BACK

MVI A, 4od ;sr:r BIT 6 IN A

ORA B ;OR WITH CHARACTE

MOV B,A ,pu'r IT BACK IN B

Jup SERr GO BACK

'THIS ROUTINE CHECKS FOR ESCAPE CHARACTERS, LF, CR,
F + AND BACK SPACE

ESCP ;ESCAPE SET?
CPI 80H SEE IF
Jz ESS :LEAVE IF IT IS
L usC iGET
CPI @AH ;LINE FEED
Jz LNFD :CY TO LINE FEED
CpI @cH ;FORM FEED
FMFD :GO TO FORM FEED
CPI @DH iCR
CGRT ;DO A CR
Cet 98d iBACK SPACE
Jz LEFT DO A BACK SPACE
CPI 1BH $ESCA
Jz ESKAP ;DO AN ESCAPE
ORA A iC CARRY
ADI GE@H ;SEE IF CHARACTER IS PRINTABLE
JC CHRPUT :IF PRINTABLE DO
Jnp SETUP ;GO BACK AND READ USART AGAIN
-'mIs ROUTINE RESETS THE ESCAPE LOCATION AND DECODES
THE CHARACTERS FOLLONING AN THE COMMANDS AR
-COMPATABLE WITH INTELS CREDIT TEXT EDITOR
: ,
MvI 2H ;ZERO A
STA 2422 +RESET ESCP
LDA USCHR :GET CHARACTER
cpI 424 :DONN
Jz DONN *MOVE CURSOR DOWN
CPI 454 'CLEAR SCREEN CHARACTER
Jz CLEAR CLEAR THE SCREEN
CPI 4AH {CLEAR RE’.ST OF SCREEN
Jz CLRST GO CLEAR m‘gﬁr OF THE SCREEN
CPI 4BH ;CLEAR LINE €
Jz CLRLIN GO CLEAR A LINE
CPI 418 iCURSOR UP CHARACTER
Jz UPCUR MOVE CURSOR UP
CPI a3H »cuasca RIGHT CHARACTER
Jz RIGHT MOVE CURSOR TO THE RIGHT
CpI 44H iCURSOR LEFT CHARACTER
Jz LEFT iMOVE CURSOR TO THE LEPT
CPI 48H +HOME CURSOR 'CHARAC
Jz HOME -aom: THE CURSOR
JMp SETUP LEAVE
ITHIS ROUTINE MOVES THE CURSOR DOWN ONE CHARACTER LINE
'
Loa CURSY ;PUT CURSOR Y I
cet CURBOT iSEE IF ON aorrom OF SCREEN
Jz SETUP iLEAVE IF ON BO
INR A + INCREMENT Y CURSOR
STA CURSY iSAVE NEW CUR
CALL :LOAD THE CURSOR
CALL CALCU ;CALCULATE ADDRESS
A M :GET FIRST LOCATION OF THE LINE
cer oFoH ;SEE IF CLEAR SCREEN CHARACTER
Nz SETUP ;LEAVE IF IT IS NOT
HLD 30 :SAVE BEGINNING OF THE LINE
CALL CLLINE ;CLEAR THE LIN
Jup SETUP LEAVE

2-470 AFN-01304A

APPLICATIONS

48 ;THIS ROUTINE CLEARS THE SCREEN.
@2CF CDE4@3 485 CLEAR: CALL CISCR ;GO CLEAR THE SCREEN
@202 C30ral 33(; JMP SETUP :GO BACK :
488 {THIS ROUTINE CLEARS ALL LINES BENEATH THE LOCATION
333 {OF THE CURSOR.
@2D5 CDA504 49] CIRST: &ALL calcu ;CALCULATE ADDRESS
@2D8 CDCD@A 492 CALL ADX $ADD X OB TTTON
@2DB g1204F 493 LXI 8, 4F20H RUT SPACE AND LAST X IN B AND C
3AE20F 194 LDA clrsx iGET X CURS(R
#2E] B8 495 cmp B {SEE IF AT END OF LINE
@2E2 CAECE2 495 Jz OVR1 {LEAVE IF X IS AT END OF LINE
@2E5 3C 497 LLP: INR A iMOVE A OVER ONE X POSITION
@2E6 23 498 INX H : INCREMENT MEMORY POINTER
@2E7 71 499 MOV 4,C iPUT A SPACE IN MEMORY
@2E8 B8 530 cMp B {SEE IF A = 4F
@2E9 C2E502 551 JNz LLP {IF NOT LOOP AGAIN
@2EC @1DBAF 532 OVRl: LXI B, LAST $PUT LAST LINE IN BC
@2EF 23 533 INX H POINT HL TO LAST LINE
@2Fg 78 534 MOV A,B {GET
@oF1 BC 505 CMP {8AME AS H?
@2F2 C2FDA2 506 JNZ CONCL {LEAVE IF NOT
@2F5 79 537 A,C iGET C
@2F6 BD 538 cMP L {SAME AS L?
@27 C2F 539 concL {LEAVE IF
@2FA 210988 518 LXI H, TODIS {GET TOP OF DISPLAY
@2FD 3AEL 511 CONCL: LDA CORSY $GET Y CUR
3300 FE18 512 cpr CURBOT {IS IT ON THE BOITOM
2392 CAGFO1 513 Jz SETUP ‘LEAVE IF IT IS
8385 3C 514 INR A iMOVE TT DOWN ONE LINE
2306 47 515 MOV B,A {SAVE CURSOR IN B FOR LATER
2367 115020 516 LXI D, INGTH PUT LENGTH OF ONE LINE IN D
@307 35F0 517 CLOOP: MVI M, @F@H {BUT EOR IN MEMORY
33eC 78 518 MOV A,B ‘GET CURSOR Y
330D FE18 519 cPL cURBOT iARE WE QN THE BOTTOM
@30F CABFO1 520 Jz SETUP iLEAVE IF WE A
9312 3¢ 521 INR A MOVE CURSOR DOAN ONE
8313 19 522 DAD D iGET NEXT LINE
2314 47 523 B,A ISAVE A
@315 5224 MOV A :PUT H
@316 FEQF 525 Pl oFH -COMPARE 'ro HIGH [AST
@318 C20A@3 526 INZ CLOOP {LEAVE T S NOT
527 MOV AL BT E N
528 CPI gbad FCuPR TO LOW
@31E C20AR3 529 INZ CLOOP LEAVE IF IT IS NOT
3321 210098 53p LXI H, TPDIS iBUT TOP DISPLAY IN H AND L
8324 C30n03 53 Jvp cloop :LOOP AGAIN
’
B {THIS ROUTINE CLEARS THE LINE THE CURSOR IS ON.
I
8327 CDAS04 535 CLRLIN: CALL CALCU ;CALCULATE ADDRESS
932A 22E50F 536 SHLD LOCS@ :STORE H AND L TO CLEAR LINE
332D CD1504 537 CALL CLLINE :CLEAR THE LINE
9339 C3aFa1 ggg JMP SETUP :G0 BACK
4
55,‘41? {THIS ROUTINE MOVES THE CURSOR UP ONE LINE.
I3
9333 3AELQF 542 UPCUR: LDA CURSY ;GET ¥ CURSOR
@336 FE0D 543 CPI aeH IS IT ZERO
8338 CAGFAL 541 Jz SETUP {IF IT IS LEAVE
8338 3D 545 DCR A iMOVE CURSOR UP
@33C 32E10F 546 STA CURSY {SAVE NEW CURSOR
@33F CDBBA3 547 CALL LDCR {LOAD THE CURSOR
@342 C30F@l gzg JMP . SETUP ;LEAVE
5% iTHIS ROUTINE MOVES THE CURSOR ONE LOCATION TO THE RIGHT
9345 3AE20F 552 RIGHT: LDA CURSX ;GET X C
3348 FEAF 553 CPI iFH (IS IT RESONE WAy OVER?
@34A C25403 554 JNZ $IF NOT JUMP AROUND
834D oF 555 LDA CURSY $GET Y CURSOR
3350 F 556 ceL GURBOT *SEE IF ON BOTTOM
8352 CA59a3 557 Jz Gp18 {IF WE ARE JUMP
9355 3 558 INR , ; INCREMENT Y CURSOR
@356 32E10F 559 STA CURSY {SAVE IT
8359 3£03 568 GD18: MVIL A,B0H :ZERO A
@358 32E20F 561 STA ClRsX {ZERO X CURSOR
@35E CDBBA3 562 CALL LDCIR ;LOAD THE CURSOR
@361 C3gFal 563 Jvp SETUP LEAVE
9364 3C 561 NTOVER: INR A ? INCREMENT X CURSOR
3365 32E20F 565 STA CURSX :SA
8368 CDB303 566 CALL . LDCR $LOAD THE CURSOR
3368 C3@F0l ggg JMP SETUP ; LEAVE
’
569 THIS ROUTINE MOVES THE CURSOR LEFT ONE CHARACTER POSITION

2-471 AFN-01304A

APPLICATIONS

@37F 32E10F
3E4F

0384 32E20F

7 CDB8A3

B38A ggﬂFﬂl

038E 32E20F

CDB8433

9394 C3pFgl

3E60
2399 32E20F
939C 32E10F

CDB8A3
B#3A2 C3pF@1

3AS 3E8d
93A7 32EEQF
@3AA C30Fa1

DE a3
@3E1 C30r@l

03E4 3EF@
A3E6 9618

24
A3E9 210088

@3Fg 19
105
03F2 C2EF@3

@3F5 C9

B3F6 CDFCA3
@3F9 C3pFal

A3FC 3AEL1QF
@3FF FE18
2401 CA5304

8405 32E10F

@3EC 115099
F 77 .

LEFT:

NOVER:

HOME:

ESKAP:

CGRT:

LDCUR:

FMFD:

CLSCR:

LNFD:

LNFD1:

toa CURSX
CPI g9
JNZ NOVER
LDA CURSY
CPI god
Jz SETUP
DCR A

STA CURSY
MVI A,4FH
STA clrsx
CALL LDCUR
JMp SETUP
DCR A
STA CURSX
CALL L[DCR
JMp SETUP
’

THIS ROUTINE HOMES THE
MVI A, 80H
STA clrsx
STA CURSY
CALL = LICUR

;GET X CURSOR
;IS IT ALL THE WAY OVER
NOT JUMP AROUND

~

L

=3

-

=0

3

2

[e]

Y

F IT IS JUMP
:MOVE CURSOR Y UP

AVE . IT
iGET IAI'%T X LOCATION

AVE
'LOAD THE CURSOR

;ADJUST X CURS(P
'SAVE CURSOR X
:LOAD THE CURSOR
'L VE

CURSOR.

;ZEROA

'ZERO X CURSOR
'ZERO Y CURSOR
.LOA\?hTHE CURSOR

;LEA

So No Nene ve e

$THIS ROUTINE SETS THE ESCAPE BIT

17
MvI a,80H
STA EScp

JMp SETUP

+THIS ROUTINE DOES A CR

MVT A,00H
STA clrsx
CALL = LDCIR

JMP SETUP
‘$THIS ROUTINE LOADS THE

MVI A,89H
STA - CRTS
LDA CURSX
STA CRMM
LDA CURSY
STA CRTM
RET

'LOAD A WITH ESCAPE BIT
ESCAPE TION
;GO BACK AND READ USART

;2ERO A

7ZERO CURSOR X

$LOAD CURSOR INTO 8275
'POLL USART AGAIN

CURSOR

;PUT 83H INTO A
GgAD CURSOR INTO 8275

T CURSOR X -
$PUT IT IN 8275
;GET CURSOR Y
;PUT IT IN 8275

';THIS ROUTINE DOES A FORM FEED

CALL CISCR
LXI H, TPDIS
SHLD 80
CALL CLLINE
MVT A,@H
STA clrsx
STA CURSY

LDCUR
JMP SETUP

";CALL CLEAR SCREEN

'PUI‘ TOP DISPLAY IN HL
{PUT IT IN LOCS@
'CLEAR TOP LINE

ERO A

;ZERO

°ZERO CURSOR X
$ZERO CURSOR Y
,LOAD THE CURSOR
;BACK TO USART

°THIS ROU’I‘INE CLEARS THE SCREEN BY WRITING END OF ROW

+ CHARACTERS

+THE SCREEN.
vt A, OFgH
MVI B, CURBOT
INR B

LXI H, TPDIS
LXI D, LNGTH
MoV MJA

DAD D

: B .
JNZ LOADX
RET

INTO THE FIRST LOCATION OF ALL LINES ON

;PUT EOR CHARACTER N A
'LOAD B WITH MAX Y

'GO TO MAX PLUS ONE

'LOAD H AND L WITH TOP OF RAM
‘MOVI:. 52H = 83D INTO D AND E
:MOVE EOR INTO MEMORY

:CHANGE POINTER BY 84D

'COWT THE LOOPS

,CONI‘}];NCUE IF NOT ZERO

;GO B

;THIS‘ ROUTINE DOES A LINE FEED

EALL LNFD1
JMP - SETUP
SLINE FEED
foa CURSY
CpI CURBOT
Jz ONBOT
INR A

STA CURSY

2472

;CALL ROUTINE
;POLL FLIAGS

;GET Y UX:ATION OF CURSOR -
iSEE IF AT BOTTOM OF SCREEN
;IF WE

; INCREM]

;SAVE NEW CURSOR

E,

AFN-01304A

APPLICATIONS

3408 CDAS534
0408 22ESQF
@40E CD1504
2411 CDB833
2414 C9

F3
0416 2AESQF
9419 115000

19

EB
B41E 210000

1 39
B

F9

0424 212929

xR
"
N
N
=

0453 2AE30F

08456 22ES50F

8459 115000
5C 1

9
245D @1DOJF
c
1 B8
08462 C26D@4
7D

B9
8467 C26D24
246A 2100908
046D 22E30F

669

73% ONBOT:

CALCU
LOC802
CLLINE
LDCWR

;CALCULATE ADDRESS
iSAVE TO CLEAR LINE
;CLEAR THE LINE
:LOAD THE CURSOR
;LEAVE

;THIS ROUTINE CLEARS THE LINE WHOSE FIRST ADDRESS

;IS IN LOC8@. PUSH INSTRUCTIONS ARE USED TO RAPIDLY
;CLEAR THE LINE

LOC8g
8, INGTH

H, 009
sb

H, 20204

;NO_INTERRUPTS HERE
iGET LOC8%

i{GET OFFSET

$ADD OFFSET

$PUT START IN DE
{ZERO_HL

iGET STACK

:PUT STACK IN DE

;PUT START IN SP
;PUT SPACES IN HL

DO 43 PUSH INSTRUCTIONS TO CLEAR THE LINE

(mﬁl‘ﬂ/Z)

o ofe of« ofe ofa sfe ofa v oo ofe ot oo vte o ofa o= feste ofe sfa cfa sfevfe ofe ofe ofa oo ofe hc e ofe ofe ofe o ofe of ofarfa oo ofe o

;PUT STACK IN HL
{PUT IT BACK IN SP
;ENABLE INTERRUPTS
:GO BACK

:IF CURSOR IS ON THE BOITOM OF THE SCREEN THIS ROUTINE
;IS USED TO IMPLEMENT THE LINE FEED

fHLD
S

TOPAD
LoC89
g, INGTH

2-473

;GET TOP ADDRESS
;SAVE IT IN LOC8a
;LINE LENGTH

;ADD HL + DE

;GET BOTTOM LINE

;GET H

;SAME AS B

;LEAVE IF NOT SAME
JGET L

;SAME AS C

;LEAVE IF NOT SAME
;LOAD HL WITH TOP OF DISPLAY
;SAVE NEW TOP ADDRESS

AFN-01304A

APPLICATIONS

0479 CD1534
9473 CDB833
#8476 C9

0477 CDA5@4
047A

496
28499 3
249C 32E20F
B49F

CDB8d3
B4A2 C30FQ1

@#4A5 21D504
04A8 3AEl10F

a7
B4AC 0600

4F
B4AF 99
94Bg 7E
2481 4F
2482 23
2483 7E

47
@485 2100F8

29

EB
@4BA 2AE3QF
#4BD 19

B3
@4BF 2130F0
PAC3 DAC804

EB

c9
@34C8 2130F8
19

94CD 3AE20F
84Dg ggﬂﬂ

084D3 29
84D4 C9

0000

24D5 2408
2001

94D7 5008

0092
@4D9 A@28

02003

24DB F008
3004
@84DD 4009
20

B4DF 9899

753 CHRPUT:

768 OK1:
9

77; CALCU:

799 FIX:

6
27 ADX:

LINTAB:

CALL CLLINE ;CLEAR LINE -
CALL LDCUR ;LOAD THE CURSOR

"I'HIS ROUTINE PUTS A CHARACTER ON THE SCREEN AND
+ INCREMENTS THE X CURSOR POSITION, A LINE FEEB Is

fINSER’ED IF THE INCREMENTED D CURSOR EQUALS

EaLL cacu CALCULATE SCREEN POSITION
MoV A M {GET FIRST CHARACTER
CPI afon ;IS IT A CLEAR LINE
SHLD LOC8% ;SAVE LIN
cz CLLINE *CLEAR LIN
LHLD LOC8@ :GET LIN
CALL ADX :ADD GURSOR X
LDA USCR iGET C
MOV M, A ?PUT IT ON SCREEN
clrsx ;GET CURSOR X
A ; INCREMENT CURSOR X
CPL INGTH FHAS LT CONE T00 FAR?
z OK1 :IF NOT GOOD
CALL® LNFD1 ;D0 A'LINE FEED
JMP CGRT ;DO A CR
STA CURSX ;SAVE CURSOR
ALL LDCUR :LOAD THE CURSOR
Jup SETUP : LEAVE

$THIS ROUTINE TAKES THE TOP ADDRESS AND THE Y CURSOR

;LOCATION AND CALCULATES THE ADDRESS OF THE LINE

'THAT THE CURSOR IS ON, THE RESULT IS RETURNED INH
D L AND ALL REGISTERS ARE USED.

LxI LINTAB ;GET LINE TABLE INTO H AND L
LDA SUREY {GET CURSOR INTO A

RLC :SET UP A FOR LOOKUP TABLE
MVI 8, #0H :ZERO B

MOV CIA :PUT CURSOR INTO A

DAD B $ADD LINE TABLE TO Y CURSOR
MOV AM :PUT LON LINE TABLE INTO A
MOV cA :PUT LOW LINE TABLE INTO C
INX H :CHANGE MEMORY POINTER

MOV A,M ;YT HIGH LINE TASLE TNTO A
MOV BIA :PUT HIGH LINE TABLE INTO B
LXI H, 0F8aoH $TWOS COMPLEMENT SCREEN LOCATION
DAD B 'SUBTRACT OFFSET

XCHG :SAVE HL IN DE

LHLD TOPAD :GET TOP ADDRESS IN H AND L
DAD D GET DISPLACED ADIRESS

XCHG iSAVE IT IN D

LXI H,0F830H -‘IW(E COMPLEMENT SCREEN LOCATION
DAD D SEE IF WE ARE OFF THE SCREEN
Jc FIX :IF WE ARE FIX IT

XCHg ,ugT DISPLACED ADDRESS BACK
LXI H,0F8304 3SCREEN BOUNDRY

DAD D tADJUST SCREEN

RET GO BACK

i THIS ROUTINE ADDS THE X CURSOR LOCATION TO THE

. ADDRESS
;THAH I{ED IN THE H AND L REGISTERS AND RETURNS THE RESULT
i1

i

LDA CURSX ;GET CURSOR

MVI B,@2H +ZERO B

MoV c,A ;PUT CURSOR X IN C

DAD B ; DCURSORXTOHANDL
RET ; LEAVE

!THIS TABLE CONTAINS THE OFFSET ADDRESSES FOR EACH
{OF THE 25 DISPLAYED LINES

{oey ET @
REPT (cmaor
DW (LNGI‘H;‘LINNLN)‘

. LINNUM SET (LINNLM 1
ENDHM

DW TPDIS+ LNGTH*LINNUW)
LINNUM SET (LINNUM+L)

Dw TPDIS+ LNGTH*LINNLM)
LINNUM SET LI l

DW h‘NLNGPH LINNUM)
LINNUM SE’I‘ LI 1)

DW TPDIS+ (LNGTH*LINNUM)
LINNUM SET {LI UM+1

DW bsNLNGrH LINNUM)
LINNUM SET {

DW TPDIS+ (LNGTH*LINNUM)

2-474

AFN-01304A

APPLICATIONS

i~
SNBABSHSAEIRBIT AR

LT

SIS IS IS IS S TS TS IS ST TS

251D

20
052E

E@29
300A
800A
DogA
2008

EB 7408

CaaB
1geC
608C
BpAC
220D
530D
AQ2D
FaoD
400E
930E
E@QE
300F
800F

27

6E

879 KYLKUP:
889
881
882
883
884
885
886
887
888
889
899
891
892
893
894
895
896
897
898

LINNUM SET
DW

LINNUM S
DW
LINNUM S
DW
LINNUM S|
DW
LINNUM
DwW
LINNUM
DW
LINNUM
LINNUM
DW
LINNUM S
DW
LINNUM
DW
LINNUM S
DW
LINNUM S
DW
LINNUM
DW
LINNUM
DW
LINNUM
DW
LINNUM
DW
LINNUM
DwW
LINNUM S
DW
LINNUM S
Dw
LINNUM
; KE

'THIS TABLE CONTAINS ALL THE ASCII CHARACTERS
"I‘HAT ARE TRANSMITTED BY THE TERMINAL

$THE CHARACTERS ARE (RGANIZED SO THAT BITS #,1 AND

4 AND S ARE THE RETURN LINES

i
)
DB
DB

EEEEEERBREBEEREREERE S

](.é}'b:g%l‘ﬂlLINNUVl)

{S+(LNGI‘H LINNUM)
{LIN L
S+(LNGI‘H LINNUM)

FDIST (INGTAb
TPD:! S+(LNGTH LINNUM)

SET f ll
YSNLNGTH LINNUM)
SET (LINNUM+1
TPD! S+‘${.l.NG1‘ LINNUM)
SET LINNUM+L
S+ 'sN[NGTH*LIN'\IUVl)

‘I‘PD{S+ (LNG’I‘H LINNUM)

TPD S+ LNG‘I‘H*LINNUW)
SET (LI
I‘PD S+(LNGTH*LINNU‘4)
{LINN
PDIS+ (LNGl‘il*LINNUﬂ)

{S-O- (LNGTH*LINNUM)
4

1
’I‘PDfS-O- (LNG‘I‘H)‘LINNUVI)
SET (LINNUM+: ll
TPDLS+ (LNGTH*LINNUM)
SE'I‘ LINN ll
(LNG‘I‘H LINNUM)

SET { UM+1

S+ LNGTH*LINNUM)

SET UM+1

Tm S LNGTH*LINNU”I)
{S+ (LNGI'H*LINNUM)

TPD](.S+ (LNG‘I‘H LINNUM)
SET (LINNUM+1)

RD LOOKUP TABLE

E SCAN LINES, BITS 3
IS SHIFT AND'BIT 7 I3

6DH, 2CH ;LOWER CASE M AND COMMA

@04, 61H ;NOTHING AND LOWER CASE A

384, 39H ;8 AND 9

30H, 2DH ;@ AND -

3DH, 5CH ;= AND \

@8H,00H ;BS AND BREAK
75H,69H ;LONER CASE U AND I
6FH, 70H ;LOWER CASE O AND P
SBH, 5CH ;[AND \

@AH, 7FH ;LF AND DELETE

6AH, 6BH ;LONER CASE J AND K
6CH, 3BH ;LONER CASE L AND ;
274,00H ;' AND NOTHING

@DH, 374 ;CR AND 7

2EH, 2FH ;PERIOD AND SLASH
@0H, 3oH ;BLANK AND NOTHING
@04, 0H ;NOTHING AND NOTHING
7AH, 78H ;LONER CASE Z AND X
63H, 76H ;LOWER CASE C AND V
62H,6EH ;LOWER CASE B AND N

2-475

AFN-01304A

APPLICATIONS

E
A53F

A A 4 e
WO WN -

3542
[}

899
909
901
992
943
904
965
906
997
928
909
919
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
939
931
932
933
934
935
936
937
938
939
949
941
942

FEEBEEBEBEREEREE R

DB
DB

BEEBE

DB.

EBESBEEEEEER B8

E2B8ERE

DB

DB

79H,00H
04,204
64H,65H
57H,68H

@oH,71H

774,734
65H, 72H
744,004
1BH,31H
324,334
34H,35H
36H,00H
2AH, 284
29H, 5FH
28H,00H
38H,09H
55H,49H
4FH, 504
SDH, 3aH
OAH, 7FH
4AH, 4BH

4CH,3AH

224,094

@DH, 26H
4DH, 3CH
3EH, 3FH
004,804
004, 90H
994,414
S5AH, 58H
43H,56H
42H,4EH
59H, 00H
30H,20H
44H,46H

47H,484
@0H, 51H
574,534
45H,52H
54H,80H
1BH, 21H
404,234
24H,25H
5EH, 004

2-476

;LOWER CASE Y AND NOTHING
sNOTHING AND SPACE
7LOWER CASE D AND F
;LONER CASE G AND H
;TAB AND LOWER CASE Q
;LOWER CASE W AND S
;LOWER CASE E AND R
;LOWER CASE T AND NOTHING
;ESCAPE AND 1

; 2AND 3

; 4AND 5

; 6 AND NOTHING

i* AND)

i (AND -

;+ AND NOTHING

;BS AND BREAK

;U AND I

;O AND P

;1 AND NO CHARACTER
;LF AND DELETE

;J AND K

;L AND E

;" AND NO CHARACTER
iCR AND &

;M AND <

;> AND ?

;BLANK AND NOTHING
;NOTHING AND NOTHING
;NOTHING AND A

:Z AND X

;C AND V

;B AND N

;Y AND NOTHING

;NO CHARACTER AND SPACE
;D AND F

;G AND H

;TAB AND Q

;W AND S

;E AND R

;T AND NO CONNECTION
;ESCAPE AND !

;@ AND ¢

;S AND §

;" AND NO CONNECTION

AFN-01304A

APPLICATIONS

Y T

=
;!
s
o
QR s b =
ssmbﬂmsmsbwmqusmSmE

&

(o]
HR|VOWR
[VRWOUNR

@506 90

S 8 8XER
[S)10 PNV}

949
950
951
952
953
954
955
956
957
958
959
968
961
962

982
983
984
985
986

BDLK:

$THIS IS WHERE THE CONTROL CHARACTERS ARE LOOKED UP

FEEREEEZREREEPEEEEEREEEREBEERERRREEEREE

o we we

¥

¥

BESEER

00H,00H
00H,d0H
204,304
@04, poH
15H,09H
@FH, 104
@BH, 3CH
0AH, 7FH
0AH, 3BH
ACH, AoH
904, 80H
@DH, AGH
aDH, god
@0H,00H
o4, 804
004,004
1AH, 184
@34,16H
@24, 0EH
194, d0H
204, 204
#4H,06H
@74, 08H
04,114
174,134
A6H,12H
14H,00H
1BH, 1DH
1EH, 1CH
14H,1FH
P24, 804

80H,02H,40H,01H

OAQH, BoH
50H,08H
28H,00H
144,094
@AH, aoH

LOOK UP TABLE FOR 8253
A0H, 35H, 69H, B3H

2-477

;NOTHING

;NOTHING

;NOTHING

;NOTHING

;CONTROL U AND I
;CONTROL O AND P
;CONTROL [AND \

;LF AND DELETE
;CONTROL J AND K
;CONTROL L AND NOTHING
;NOTHING

;CR AND NOTHING
;CONTROL M AND COMMA
sNOTHING

;sNOTHING

;NOTHING AND NOTHING
;CONTROL Z AND X

;CONTROL C AND V

;CONTROL B AND N

;CONTROL Y AND NOTHING
;NOTHING AND SPACE
;CONTROL D AND F

;CONTROL G AND H

;NOTHING AND CONTROL Q
;CONTROL W AND S

;CONTROL E AND R

;CONTROL W AND NOTHING
;ESCAPE AND HOME (CREDIT)
;CURSOR UP AND DOWN (CREDIT)
;CURSOR RIGHT AND LEFT(CREDIT)
;NOTHING

BAUD RATE GENERATOR
;75 AND 118 BAUD

7158 AND 3¢9 BAUD

;600 BAUD

;1200 BAUD
;2408 BAUD
;4800 BAUD
19508 BAUD

AFN-01304A

APPLICATIONS

PUBLIC SYMBOLS

EXTERNAL SYMBOLS

UP1 A

ASSEMBLY COMPLETE,

’
938 ;DATA AREA
359 bk e
@FE1H

991 CURSY: DS 1

992 CURSX: DS 1

993 TOPAD: DS 2

994 LOC8g: DS 2

995 USCHR: DS 1

996 CURAD: - DS 2

997 KEYDWN: DS 1

998 KBCHR: DS 1

999 BAUD: DS 1
1000 KEYOK: DS 1
1601 ESCP: DS 1
1092 SHCON: DS 1
1003 RETLIN: DS 1
1004 SCNLIN: DS 1
1085 END
ARND A 946D BAUD A QFEC
CGRT A @3AD CHR A (24E
CLRST A 92D5 CLSCR A @3E4
CNWD55 A 1803 CONCL A 92FD
CURSY A QFEl A 02AE
FRAME A 0167 GD18 '~ A 9359
KEYINP A 0121 KEYOK A QFED

ST A QFDg LDCUR A 9388
LNFD1 A Q3FC LNGTH A 0953
OVER A 938D NTOVER A 0364
PORTA A 1897 PORTB A 1801
SAVKEY A 21 SCNLIN A @FF1
STKEY A §223 S A OFEQ
UPCUR A @333 USCHR A @FE7

NO ERRORS

2-478

b e ok b g e g
D

e g e g gt geg

e e e e e g Qe e d
R
—
ok
>

AFN-01304A

