APPLICATION AP-62
NOTE

November 1979

81

APPLICATIONS

1. INTRODUCTION

The purpose of this application note is to provide the
reader with the design concepts and factual tools
needed to integrate Intel peripherals and microproc-
essors into a low cost raster scan CRT terminal. A
previously published application note, AP-32, pre-
sented one possible solution to the CRT design
question. This application note expands upon the
theme established in. AP-32 and demonstrates how
to design a functional CRT terminal while keeping
the parts count to a minimum.

For convenience, -this application note is divided
into seven general sections:
1. Introduction
. CRT Basics
. 8275 Description
. Design Background
. Circuit Description
. Software Description
7. Appendix

A bh WN

There is no question that microprocessors and LSI
peripherals have had a significant role in the evolu-
tion of CRT terminals. Microprocessors have
allowed design engineers to incorporate an abun-
dance of sophisticated features into terminals that
were previously mere slaves to a larger processor. To
complement microprocessors LSI peripherals have
reduced component count in many support areas. A

typical LSI perxphera] easily replaces between 30.
" and 70 SSI and MSI packages, and offers features
and flexibility that are usually not available in most
hardware designs. In addition to replacing a whole
circuit board of random logic, LSI circuits also
reduce the cost and increase the reliability of design.
Fewer interconnects increases mechanical reliability
and fewer parts decreases, the power consumption
and hence, the overall reliability of the design. The
reduction of components also yields a circuit that is
easier to debug during the actual'manufacturing
phase of a product.

Until the era of advanced LSI cucultry, a typical
CRT terminal consisted of 80 to 200 or more SSI
and MSI packages. The first microprocessors and
peripherals dropped this component count to be-
tween 30 and 50 packages. This application note
describes a CRT terminal that uses 20 packages.

2. CRT BASICS

The raster scan display gets its name from the fact
that the image displayed on the CRT is built up by

generating a series of lines (raster) across the face of

the CRT. Usually, the beam starts in the upper left
hand corner of the display and simultaneously
moves left to right and top to bottom to put a series

N

| N A\ — —— — — — i w——S—

D T\ e —— — — — — T

\\\\
— — — — -\——————

= =mee RETRACE LINES
DISPLAYED LINES
Figure 2-1. Raster Scan

of zig-zag lines on the screen (Fig. 2.1). Two simul-
taneously operating independent circuits control the
vertical and horizontal movement of the beam.

As the electron beam moves across the face of the
CRT, a third circuit controls the current flowing in
the beam. By varying the current in the electron
beam the image on the CRT can be made to be as
bright or as dark as the user desires. This allows any
desired pattern to be displayed. .

"When the beam reaches the end of a line, it is

brought back to the beginning of the next line at a
rate that is much faster than was used to generate
the line. This action is referred to as “retrace”.
During the retrace perlod the electron beam is
usually shut off so that it doesn’t appear on the
screen.

As the electron beam is moving across the screen
horizontally, it is also moving downward. Because
of this, each successive line starts slightly below the
previous line. When the beam finally reaches the
bottom right hand corner of the screen, it retraces
vertically back to the top left hand corner. The time
it takes for the beam to move from the top of the
screen to the bottom and back again to the top is

“usually referred to as a “frame”. In the United
. States, commercial television broadcast use 15,750

Hz as the horizontal sweep frequency (63.5 micro-
seconds per horizontal line) and 60 Hz as the vertical
sweep frequency or “frame” (16.67 milliseconds per
vertical frame).

Although, the 60 Hz vertical frame and the 15,750 Hz
horizontal line are the standards used by commercial
broadcasts, they are by no means the only frequency
at which CRT’s can operate. In fact, many CRT
displays use a horizontal scan that is around 18 KHz
to 22 KHz and some even exceed 30 KHz.-As the

AFN-01304A |

APPLICATIONS

horizontal frequency increases, the number of hori-
zontal lines per frame increases. Hence, the resolution
on the vertical axis increases. This increased resolu-
tion is needed on high density graphic displays and
on special text editing terminals that display many
lines of text on the CRT.

Although many CRT’s operate at non-standard
horizontal frequencies, very few operate at vertical
frequencies other than 60 Hz. If a vertical frequency
other than 60 Hz is chosen, any external or internal
magnetic or electrical variations at 60 Hz will
modulate the electron beam and the image on the
screen will be unstable. Since, in the United States,
the power line frequency happens to be 60 Hz, there
is a good chance for 60 Hz interference to exist.
Transformers can cause 60 Hz magnetic fields and
power supply ripple can cause 60 Hz electrical
variations. To overcome this, special shielding and
power supply regulation must be employed. In this
design, we will assume a standard frame rate of 60 Hz
and a standard line rate of 15,750 Hz.

By dividing the 63.5 microsecond horizontal line
rate into the 16.67 millisecond vertical rate, it is
found that there are 262.5 horizontal' lines per
vertical frame. At first, the half line may seem a bit
odd, but actually it allows the resolution on the CRT
to be effectively doubled. This is done by inserting a
second set of horizontal lines between the first set
(interlacing). In'an interlaced system the line sets are
not generated simultaneously. In a 60 Hz system,
first all of the even-numbered lines are scanned: 0, 2,
4,...524. Then all the odd-numbered lines: 1, 3, 5, ...
525. Each set of lines usually contains different data
(Fig. 2.2).

EVEN FIELD
e = ODD FIELD

'RETRACE LINES
NOT SHOWN

Figure 2-2. Interlaced Scan

Although interlacing provides greater resolution, it
also has some.distinct disadvantages. First of all, the
circuitry needed to generate the extra half horizontal
line per frame is quite complex when compared to a
noninterlaced design, which requires an integer
number of horizontal lines per frame. Next, the
overall vertical refresh rate is half that of a noninter-
laced display. As a result, flicker may result when the
CRT uses high speed phosphors. To keep things as
simple as possible, this design uses the noninterlaced
approach:

The first thing any CRT controller must do is
generate pulses that define the horizontal line timing
and the vertical frame timing. This is usually done by
dividing a crystal reference source by some appro-
priate numbers. On most raster scan CRT’s the
horizontal frequency is very forgiving and can vary
by around 500 Hz or so and produce no ill effects.
This means that the CRT itself can track a horizontal
frequency between 15250 Hz and 16250 Hz, or in
other words, there can be 256 to 270 horizontal lines
per vertical frame. But, as mentioned earlier, the
vertical frequency should be 60 Hz to insure stability.

The characters that are viewed on the screen are
formed by a series of dots that are shifted out of the
controller while the electron beam moves across the
face of the CRT. The circuits that create this timing
are referred to as the dot clock and character clock.
The character clock is equal to the dot clock divided
by the number of dots used to form a character along
the horizontal axis and the dot clock is calculated by
the following equation:

DOT CLOCK (Hz) =(N+R)*D*L*F
where N is the number of displayed characters per
row,

R is the number of retrace character time
increments,

D is the number of dots per character,
L is the number of horizontal lines per frame and
F is the frame rate in Hz.

In this design N =80, R =20, D =7, L =270, and
F = 60 Hz. If the numbers are plugged in, the dot
clock is found to be 11.34 MHz.

The retrace number, R, may vary from system to
system because it is used to establish the margins on
the. left and right hand sides of the CRT. In this
particular design R =20 was empirically found it be
optimum. The number of dots per character may
vary depending on the character generator used and
the number of dot clocks the designer wants to place
between characters. This design uses a 5 X 7 dot
matrix and allows 2 dot clock periods between
characters (see Fig. 2.3); since 5 + 2 equals 7, we find
that D = 7.

AFN-01304A

APPLICATIONS

~ OECE] CONOECED

_LDIDDIL_JI EOCRECERC

OROOOR0OCRER000R000E0
Figure 2-3. 5 X 7 Dot Matrix

The number of lines per frame can be determined by
the following equation:

L=(H*Z)+V

where, H is the number of horizontal lines per

character, :

Z is the number of character lines per frame and

V is the number of horizontal lines during vertical
retrace. In this design, a 5 X 7 dot matrix is to be
placed on a 7 X 10 field, so H = 10. Also, 25 lines are
to be displayed, so Z = 25. As mentioned before,
V = 20. When the numbers are plugged into the

" equation, L is found to be equal to 270 lines per
frame.

The designer should be cautioned that these numbers

'

are interrelated and that to guarantee proper opera-
tion on a standard raster scan CRT, L should be
between 256 and 270. If L does not-lie within these
bounds the horizontal circuits of the CRT may not
be able to lock onto the driving signal and the image
will roll horizontally. The chosen L of 270 yields a
horizontal frequency of 16,200 KHz on a 60 Hz
frame and this number is within the 500 Hz tolerance
mentioned earlier.

The V number is chosen to match the CRT in much
the same manner as the R number mentioned earlier.
When the electron beam reaches the bottom right
corner of the screen it must retrace vertically to the
top left corner. This retrace action requires time,
usually between 900-1200 microseconds. To allow
for this, enough horizontal sync times must be
inserted during vertical retrace. Twenty horizontal
sync times at 61.5 microseconds yigld a total of
1234.5 microseconds, which is enough time to allow
the beam to return to the top of the screen.

The choices of H and Z largely relate to system
design preference. As H increases, the character size
along the vertical axis increases. Z is simply the
number of lines of characters that are displayed and
this, of course, is entirely a system design option.

’

BLOCK DIAGRAM

CHARACTER

COUNTE ceLk

Ev-
T
DISPLAY '
ROW COUNTERS
DATA BUFFER BUFFER
C> BUS <—_—> INPUT OUTPUT
Dee7 BUFFER C> CON- CON- :> CCo6
TROLLER | | TROLLER
']
FIFO !
4 L
DRQ e
LINE L
DACK *———1 COUNTER 0-3
mu-———l ,
[Ao
RD —=Jd READ/ > HRTC
wg',‘“, RasTERTIMING | veTe
WA A —
9 conTroL C> Q VIDEO L RW
o LOGIC CONTROL e ,_);N
—] [~
::) GPAG 4
s
. LIGRTPEN ¢
(— REGISTERS _ LPEN

PIN CONFIGURATION

e O ~ a0 vee
w2 [§2 39 [LA
w1 3 3817 LAy
e O 4 37 [J LTEN
ora []s 36 [J RVV
BACR (] 6 35 [] vsp
HRTC [7 34 [J 6pPaq
vrTc [8 33 [0 apag
RO o 32 [HeT
WR []10 s275 31{] IRQ
ween (11 7 307 couk
oBp [] 12 29 1 cce
o8 []13 28] ccs
oB2 (J 14 27{7 ccq
ps3 [15 26{] cc3
pes [16 257 cc2
oss [17 247 ccq
pBg [18 23[] cco
oey (] 19 2]
eno [20 210] Ag

Figure 3-1. 8275 Block Diagram/Pin Configuration N

) &

AFN-01304A

APPLICATIONS

3. 8275 DESCRIPTION

A block diagram and pin configuration of the 8275
are shown in Fig. 3.1. The following is a description
of the general capabilities of the 8275.

3.1 CRT DISPLAY REFRESHING

The 8275, having been programmed by the designer
to a specific screen format, generates a series of
DMA request signals, resulting in the transfer of a
row of characters from display memory to the 8275’s
row buffers. The 8275 presents the character codes
to an external character generator ROM by using
outputs CCO-CC6. External dot timing logicis then
used to transfer the parallel output data from the
character generator ROM serially to the video input
of the CRT. The character rows are displayed on the
CRT one line at a time. Line count outputs LC0-LC3
are applied to the character generator ROM to
perform the line selection function. The display
process is illustrated in Figufe 3.2. The entire
process is repeated for each display row. At the
beginning of the last displayed row, the 8275 issues
an interrupt by setting the IRQ output line. The
8275 interrupt output will normally be connected to
the interrupt input of the system central processor.

The interrupt causes the CPU to execute an interrupt
service subroutine. The service subroutine typically
re-initializes DMA controller parameters for the
next display refresh cycle, polls the system keyboard
controller, and/or executes other appropriate func-
tions. A block diagram of a CRT system implemented
with the 8275 CRT Controller is provided in Figure
3.3. Proper CRT refreshing requires that certain
8275 parameters be programmed prior to the begin-
ning of display operation. The 8275 has two types of
programming registers, the Command Registers

-(CREG) and the Parameter Registers (PREG). It

also has a Status Register (SREG). The Command
Registers may only be written to and the Status
Registers may only be read. The 8275 expects to
receive a command followed by a sequence of from 0
to 4 parameters, depending on the command. The
8275 instruction set consist of the eight commands
shown in Figure 3.4.

To establish the format of the display, the 8275
provides a number of user programmable display
format parameters. Display formats having from 1
to 80 characters per row, 1 to 64 rows per screen, and
1 to 16 horizontal lines per row are available.

In addition to transferring characters from memory

st 2nd 3rd
Ch Ch Ch

5th 6th 7th
Ch Character Character

S e, o —. p— . e e, e~ e e s e~
OONeeR00Cs0COOE0OREESE 000000000 000000000080

First Line of a Character Row

1st 2nd 3rd

5th 6th 7th

Character Character Character Character Character Character Character
— m—. p—— p—— —a— r—w— p—— p———

ODsmREsOCORCOCORCONERE
[n| wiaiwiul winl | seel wis] Jeis{u]s]
<

[njuinlulsisjuiuin] } |]| Islujsju] { | juju)
ulujsialsinlsluln) Iulslu] Iuis] juisis] j=is)

n] Iuislu] =)
[]sjulw] ju)

d Line of a Ch Row

° 1st. 2nd 3rd
Character Ch Ch

5th 6th 7th
Ch Ch Ch

e ., e ~t——., p——— [— e~ — . f——— ——
OONeesOC0S0000e0OeEEREN0D000000NSRNC00ONERC00OR00

OR00D0s0CORe000RC0OR000000

ooocoocom00

] Y]
ja] uis] juinin] juis] jsisis] i=)
omp

OE0000s00e0000E00e0000000000000A000N008000R00OA00
Third Line of a Character Row

st 2nd 3rd
Ct Ch Ch

5th 6th 7th f
Ch. Ct Ch

juin’ 1 1 e wisiwis wia] TY V] Jalsialalululals{al TT Y falsiaial T | Jululs] Jululs] Ju}
Os000OmCOss000NCOMG00000000000CM000R0COR000e00N0C0N0
ORO0OOE0OONON00RCONCO00000000000RCO0RCON000R0CORO00OR0
OROOCOROONOOO0E0UNREEO000000000CaEEECO0ORCOORO0RON 080
OEO0CORO0R008OS00R00000000000008080000R000DR0O0OROA0RD
OE00OUMCORDO0SNCON 0000000000000 O0N000N000N00N0R0R0
OOseesCOCROO0ON0ONNRREOC000000C0N000R000ERR000080R00
S h Line of a Ch Row

Figure 3-2. 8275 Row Display

AFN-01304A

APPLICATIONS

level greater than normal. The fifth timing signal,
RVV (Reverse Video) will, when enabled, cause the
system video output to be inverted.

LCo-3 VIDEO SIGNAL
HOLD DRQ
g [e e
PROCESSOR| HACK LOGIC DACK . ROM :> spEED | HORIZONTAL SYNC_
CRT T Tocat
— CONTROLLER LOGIC VERTICAL SYNC
cCcLK AND
INTERFACE INTENSITY
~ VIDEO CONTROLS v ‘
I
SYSTEM BUS
<
82635 8251 PROGRAM/ 8255A-5
COUNTER/ USART DISPLAY KEYBOARD
TIMER MEMORY CONTROLLER
SERIAL @
COMMUNICATIONS KEYBOARD STATUS
CHANNEL
) \
Figure 3-3. CRT System Block Diagram
to the CRT screen, the 8275 features cursor position
control. The cursor position may be programmed, :
. s . NO. OF |
via X and Y cursor position registers, to any PARAMETER
character position on the display. The user may
1t COMMAND BYTES NOTES
select from four cursor formats. Blinking or non- - -
blinking underline and reverse video block cursors RESET 4 Display format pa-'
are available. rameters required
' START 0 DMA operation pa-
3.2 CRT TIMING . DISPLAY rameters included
The 8275 provides two timing outputs, HRTC and _in command
VRTC, which are utilized in synchronizing CRT .
. : . SYTC sTOP 0 -
horizontal and vertical oscillators to the 8275 DISPLAY"
refresh cycle. In addition, whenever HRTC or VRTC
is active, a third timing output, VSP (Video Sup- . READ ‘ 2 -
press) is true, providing a blinking signal to the dot LIGHT
timing logic. The dot timing logic will normally PEN
inhibit the video output to the CRT during the time LOAD 2 Cursor X,Y posi-
when video suppress signal is true. An additional CURSOR tion parameters re-
timing output, LTEN (Light Enable) is used to quired
provide the ability to force the video output high
. . ENABLE 0 -
regardless of the state of VSP. This feature is used
. INTERRUPT
by the 8275 to place a cursor on the screen and to
control attribute functions. Attributes will be DISABLE 0 -
considered in the next section. INTERRUPT
The HLGT (Highlight) output allows an attribute PRESET 0 Clears all internal
function to increase the CRT beam intensity to a COUNTERS counters

Figure 3-4. 8275’s Instruction Set

S

AFN-01304A

APPLICATIONS

Character attributes were designed to produce the following graphics:

CHARACTER ATTRIBUTE
CODE “cccC”

(=
-

PUTS

2

SYMBOL

g
2

VSP

DESCRIPTION

Above Underline

0000 Underline

o =

elow Underline

Top Left Corner

iAbove Underlihe

0001 Underline

elow Underline

Top Right Corner

bove Underline

0010 Underline

Below Underline

Bottom Left Corner

lAbove Underline

0011 Underline

Below Underline

Bottom' Right Corner

lAbove Underline

0100 Underline

Below Underline

Top, Intersect

IAbove Underline

0101 Underline

Right Intersect

4§slow Underline
[Above Underline

0110 Underline

Below Underline

Left Intersect

|JAbove Underline

0111 Underfine

Below Underline

Bottom Intersect

/Above Underline

1000 Underline

Below Underline

Horizontal Line

Above Underline

1001 " Underline

Below Underline

- Vertical Line

Above Underline

1010 Underline

= HT A A 1

Below Underline

Crossed Lines

|Above Underline

1011 Underline

[Below Underline

Not Recommended *

Above Underline

1100 Underline

Below Underline

olo|ojo|o|olo|jo|ojo|o|o|o|olo|o|o|o|o|=|o|o]=|olo|o|o|o|-|olo]|=|o|o|=|o|o|=|e

olo|olo|o|o|=|ol=m|=|=|=|olo|olo|Oo]|=|=|Olw|w|as|=|s|O|O|0|=|={0|O|=|=|=|0O|=|0|C Eo
—=lmi—OlololOo|0|jOo|0|0|O|=|0O|=| =000 |0|0|0|0|0|0|0|==|0|0|=I0|0|0|0| =0
o|ojojojolo|o|=|0o|0o|o|o|o|=|o|o|=|O|o|o|o|0|0o|ojo|=|0OjOo|o|olojO|O|0|o|o|o|ojo

Special Codes

Above Underline

1101 Underline

"~ Undefined,

Below Underline

|

{llegal

AbBove Underline

l

1110 Underline

Below Underline

Undefined

Illegal

Above Underline

I
l

1 Underline

Undefined

Below Underline

lHlegal

*Character Attribute Code 1011 is not recommended for
normal operation. Since none of the attribute outputs are
active, the character Generator will not be disabled, and
an indeterminate character will be generated.

N

Figure 3-5. Character Attributes

Character Attribute Codes 1101, 1110, and 1111 are illegal. -
Blinking is active when B = 1.
Highlight is.ac;i,ve whenH =1,

87

AFN-01304A

APPLICATIONS i | *

< — N
ABCDE FGHI JKLM
NOPQRSTUYV

12345 67 8
NS —— ? J

123456789
k—

EXAMPLE OF THE VISIBLE FIELD ATTRIBUTE MODE
(UNDERLINE ATTRIBUTE)

EXAMPLE OF THE INVISIBLE FIELD ATTRIBUTE MODE

(UNDERLINE ATTRIBUTE)

Figure 3-6. Fleld Attribute Examples

3.3 SPECIAL FUNCTIONS

VISUAL ATTRIBUTES—Visual attributes are
special codes which, when retrieved from display
memory by the 8275, affect the visual characteristics
of a character position or field of characters. Two
types of visual attributes exist, character attributes
and field attributes. ‘

Character Attribute Codes: Character attribute
codes can be used to generate graphics symbols
without the use of a character generator. This is
accomplished by selectively activating the Line
Attribute outputs (LAO-LA1), the Video Suppres-
sion -output (VSP), and the Light Enable output

(LTEN). The dot timing logic uses these signals to

generate the proper symbols. Character attributes
can be programmed to blink or be highlighted
individually. Blinking is accomplished with the
*Video Suppression output (VSP). Blink frequency is
equal to the screen refresh frequency divided by 32.
Highlighting is accomplished by activating the
Highlight output (HGLT). Character attributes

were designed to produce the graphic symbols

shown in Figure 3.5.

Field Attribute Codes: The field attributes are
“control codes which affect the visual characteristics
for a field of characters, starting at the character
following the field attribute code up to, and includ-
ing, the character which precedes the next field
attribute code, or up to the end of the frame.

There are six field attributes:

1. Blink — Characters following the code are
caused to blink by activating the Video Sup-
pression output (VSP). The blink frequency is
equal to the screen refresh frequency divided
by 32.

2. Highlight — Characters following the code are
caused to be highlighted by activating the
Highlight output (HGLT).’

3. Reverse Video — Characters following the
code are caused to appear in reverse video
format by activating the Reverse Video output
(RVV).

4. Underline — Characters following the code are
caused to be underlined by activating the Light
Enable output (LTEN).

S. General Purpose — There are two additional

- 8275 outputs which act as general purpose,
independently programmable field attributes.
These attributes may be used to select colors or
perform other desired control functions.

The 8275 can be programmed to provide visible or
invisible field attribute characters as shown in Figure
3.6. If the 8275 is programmed in the visible field
attribute mode, all-field attributes will occupy a
position on the screen. They will appear as blanks
caused by activation of the Video Suppression
output (VSP). The chosen visual attributes are
activated after this blanked character. If the 8275 is
programmed in the invisible field attribute mode,
the 8275 row buffer FIFOs are activated. The FIFOs
effectively lengthen the row buffers by 16 characters,
making room for up to 16 field attribute characters
per display row. The FIFOs are 126 characters by 7
bits in size. When a field attribute is placed in the
row buffer during DMA, the buffer input controller
recognizes it and places the next character in the
proper FIFO. When a field attribute is placed in the -
buffer output controller during display, it causes the
controller to immediately put a character from the
FIFO on the Character Code outputs (CCO-6). The
chosen attributes are also activated.

\

AFN-01304A

APPLICATIONS

LIGHT PEN DETECTION — A light pen consists
fundamentally of a switch and-light sensor. When
the light pen is pressed against the CRT screen, the
switch enables the light sensor. When the raster
sweep coincides with the light sensor position on the
display, the light pen output is input and the row and
character position coordinates are stored in two
8275 internal registers. These registers can be read
by the microprocessor.

SPECIAL CODES — Four special codes may be
used to help reduce memory, software, or DMA
overhead. These codes are placed in character
positions in display memory.

1. End Of Row Code - Activates VSP. VSP
remains active until the end of the line is
reached. While VSP is actxve the screen is
blanked.

2. End Of Row-Stop DMA Code - Causes the
. DMA Control Logic to stop DMA for the rest
of the row when it is written into the row buffer.
It affects the display in the same way as the End

of Row Code.

3. End Of Screen Code - Activates VSP. VSP
remains active until the end: of the frame is
reached.

4. End Of Screen-Stop DMA Code - Causes the
DMA Control Loglc to stop DMA for the rest
of the frame when it is written into the row
buffer. It affects the display in the same way as
the End of Screen Code.

PROGRAMMABLE DMA BURST CONTROL —
The 8275 can be programmed to request single-byte
DMA transfers of DMA burst transfers of 2, 4, or 8
characters per burst. The interval between bursts

is also programmable. This allows the user to tailor -

the DMA overhead to fit the system needs.

4. DESIGN BACKGROUND
4.1 DESIGN PHILOSOPHY

Since the cost,of any CRT system is. somewhat
proportional to parts count, arriving at a minimum
part count solution without sacrificing performance
has been the motivating force throughout this design
effort. To successfully design a CRT terminal and
keep the parts count to a minimum, a few things
became immediately apparent.

‘1. An 8085 should be used. ,
2. Address and data buffering should be eliminated.
3. Multi-port memory should be ehmmated
4. DMA should be eliminated.)
Decision 1 is obyious, the 8085’s on-board clock

generator, bus controller and vectored interrupts
greatly reduce the overall part count considerably.

Decision 2 is fairly obvious; if a circuit can be
designed so that loading on the data and address
lines is kept to a minimum, both the data and address
buffers can be eliminated. This easily saves three to
eight packages and reduces the power consumption
of the design. Both decisions 3 and 4 require a basic
understanding of current CRT design concepts.

In any CRT design, extreme time conflicts are created
because all essential elements require access to the
bus. The CPU needs to access the memory to control
the system and to handle the incoming characters,
but, at the same time, the CRT controller needs to
access the memory to keep the raster scan display
refreshed. To resolve this conflict two common
techniques are employed, page buffering and line
buffering.

In the page buffering approach the entire screen
memory is isolated from the rest of the system. This
isolation is usually accomplished with three-sta
buffers or two line to one line multiplexers. Of
course, whenever a character needs to be manipu-
lated the”CPU must gain access to the buffered
memory and, again, possible contention between the
CPU and the CRT controller results. This contention
is usually resolved in one of two ways, (1) the CPU is
always given priority, or; (2) the CPU is allowed to
access the buffered memory only during horizontal
and vertical retrace times.

Approach 1 is the easiest to implement from a hard-
ware point of view, but if the CPU always has
priority the display may temporarily blink or
“flicker” while the CPU accesses the display memory.
This, of course, occurs because when the CPU
accesses the display memory the CRT controller is
not able to retrieve a character, so the display must
be blanked ‘during this time. Aesethlcally, this
“flickering” is not desirable, so.approach 2 is often
used.

The second approach eliminates the display flicker-
ing encountered in the previously mentioned tech-
nique, but additional hardware is required. Usually
the vertical and horizontal blank signals are gated
with the buffered memory select lines and this line is
used to control the CPU’s ready line. So, if the CPU
wants to use the buffered memory, its ready line is
asserted until horizontal or vertical retrace times.
This, of course, will impact the CPU’s- overall
through put. .

Both page buffered approaches require a s1gmf1cant
amount of additional hardware and for the most -
part are not well suited for a minimum parts count
type of terminal. This guides us to the line buffered
approach. This approach eliminates the separate
buffered memory for the display, but, at the same
time, introduces a few new problems that must be
solved.

AFN-01304A

APPLICATIONS

DISPLAY
MULTI= VIDEO
cry PLEXER C:)\ue.umonv K ciacurr |- Vioeo out
g U ™ {
- S
SYSTEM BUS :
*OPTIONAL
svaTEm svaTem ‘
MEMORY 10 PAGE BUFFERING
TECHNIQUE
ne VIDEO
surrer K S M L »viDEO OUT
Loaic MEMORY

]
U

)) 3

SYSTEM

AND .m(;m
DISPLAY " LINE BUFFERING
| MEMORY TECHNIQUE

v

Figure 4-1. Line Buffering Technique

CLOCK CYCLES 2] SOUPCE STATEENT
10 1 PUSH P JSAVC R RID FLAGS
10 2 FEH H FSVE H RID L
10 3 S D JSRYE D RKD E
1t 4 IXL H.e08cH S ZT0 K AD L
18 s [4 JHUT STRCK FOINTER IN H RO L
‘ 6 XHG JHUT STROK IN D D E
L6 ? [C JGET FONTER :
6 [SPHL JPUT CURZER) LINE INTO SP
7 9 WL RECER JSET MK FOR STH
‘ 10 SIH JSEY SHECIRL TRANSFER BIT °
42 1 PP H 400 49 MFS
4 12 RRC JSET UP A
4 13 sin 60 BAK 10 NORMAL MIDE
18 u WX KO RO WL
16 15 w P JRUD SIRCK
4 16 XCHG SPUT SIACK IN H AID L
6 17 SPHL AFESWRE S1Fh.
10 12 W1 HLHET JPUT BOTION DISPLAY T H,RD L
4 19« XHG JSURP RCGISTERS
‘ 2 MY pd JFUT HIGH OFDER IN R
4 2 o H JSEE IF SRIE AS H
e 2 m KK 51F NOT LERVE
4 F3 m o RE JPUT LO ORDER IN A
‘ 2 oW L JSEE IF SE RS L
13 3 MWK JIF WOT LERVE
1 % Wl H RIS /L0 H-AD L HITH TOP OF SCREEN KEWGRY
16 WP SHD ORED JFUT BRCK CURRENT AOORESS
7 % W Rl i6C1 FRSK BYTE
4 2 SIn JSET INTEPRUPT HASK
19 k] P D GED D R E
19 3 [] S6ET H RO L
18 2 PP P JGET A RD FLAGS
4 B €l JENRBLE INTERRUPTS
19 4 RET 560 BACK

TOTRL CLOCK CYOLES = 630 (MOFST CASE
WITH A 6 144 {2 CRYSTAL TOTAL TIME TO FILL
RON BUFFER ON 8275 = 630 # . 325 = 244 25 NICROSECONDS

Figure 4-2. Routine To Load 8275's Row Buffers

810

In the line buffered approach both the CPU and the
CRT controller share the same memory. Every time
the CRT controller needs a new character or line of
data, normal processing activity is halted and the
CRT controller accesses memory and. displays the
data. Just how the CRT controller needs to acquire
the display data greatly affects the performance of
the overall system. Whether the CRT controller
needs to gain access to the main memoryto acquirea
single character or a complete line of data depends
on the presence or absence of a separate line or row
buffer.

If no row buffer is present the CRT controller must
go to the main memory to fetch every character. This
of course, is not a very efficient approach because
the processor will be forced to relinquish the bus
70% to 80% of the time. So much processor
inactivity greatly affects the overall system perform-
ance. In fact terminals that use this approach are
typically limited to around 1200 to 2400 baud on
their serial communication channels. This low baud
rate is in general not acceptable, hence this approach
was not chosen.

If a separate row buffer is employed the CRT
controller only has to access the memory once for
each displayed character per line. This forces the
processor to relinquish the bus only about 20% to
359% of the time and a full 4800 to 9600 baud can be
achieved. Figure 4.1 illustrates these different
techniques.

The 8275 CRT controller is ideal for implementing
the row buffer approach because the row buffer is
contained. on the device. itself.. In fact, the 8275
contains two 80-byte row buffers. The presence of
two row buffers allow one buffer to be filled while
the other buffer is displaying the data. This dual row
buffer approach enhances CPU performance even
further.

4.2 USING THE 8275 WITHOUT DMA

Until now the process of filling the row buffer-has
only been alluded to. In reality, a DMA technique is
usually used. This approach was demonstrated in
AP-32 where an 8257 DMA controller was mated to
an 8275 CRT controller. In order to minimize
component count, this design eliminates the DMA
controller and its associated circuitry while replac-
ing them with a special interrupt-driven transfer.

The only real concern with using the 8275 in an
interrupt-driven . transfer ‘mode is speed. Eighty
characters must be loaded into the 8275 every 617
microseconds and the processor must also have time
to perform all the other tasks that are required. To
minimize the overhead associated with loading the
characters into the 8275 a special technique was
employed. This technique involves setting a special

AFN-01304A

APPLICATIONS

transfer bit and executing a string of POP instruc-
tions. The string of POP instructions is used to
rapidly move the data from the memory into the
8275. Figure 4.2 shows the basic software structure.

In this design the 8085’s SOD line was used as the
special transfer bit. In order to perform the transfer
properly this special bit must do two things: (1) turn
processor reads into DACK plus WR for the 8275
and (2) mask processor fetch cycles from the 8275, so
that a fetch cycle does not write into the 8275.
Conventional logic could have been used to imple-
ment this special function, but in this design a small
bipolar programmable read only memory was used.
Figure 4.3 shows a basic version of the hardware..

BIPOLAR

PROM | 8275 DACK

mA:I:_FEn_,____ Ag > 8275Rd

Ag———Ay |————» 8275 Wr

Ap——{ay |— > 8275Cs
Ajp—a———]A3

My
(FETCH —»——JA4
CYCLE)

Figure 4-3. Simplified Version of Hardware Decoder

At first, it may seem strange that we are supplying a
DACK when no DMA controller exist in the
system. But the reader should be aware that all Intel

eripheral devices that have DMA lines actually use
BA%K as a chip select for the data. So, when you
want to write a command or read status you assert
CS and WR or RD, but when you want to read or
write data you assert DACK and RD or WR. The
peripheral device doesn’t “know” if a DMA control-
ler is in the circuit or not. In passing, it should be
mentioned that DACK and CS should not be
asserted on the same device at the same time, since
this combination yields an undefined result.

This POP ‘technique actually compares quite
-favorably in terms of time to the DMA technique.
One POP instruction transfers two bytes of data to
the 8275 and takes 10 CPU clock cycles to execute,
for a net transfer rate of one byte every five clock
cycles. The DMA controller takes four clock cycles
to transfer one byte but, some time is lost in
synchronization. So the difference between the two
techniques is one clock cycle per byte maximum. If
we compare the overall speed of the 8085 to the

81

speed of the 8080 used in AP-32, we find that at 3
MHz we can transfer one byte every 1.67 micro-
seconds using the 8085 and POP technique vs. 2
microseconds per byte for the 2 MHz 8080 using
DMA.

5. QIRCUIT'DESCRIPTION
5.1 SCOPE OF THE PROJECT

A fully functional, microprocessor-based CRT
terminal was designed and constructed using the
8275 CRT controller and the 8085 as the controlling
element. The terminal had many of the functions
found in existing commercial low-cost terminals and
more sophisticated features could easily be added
with a modest amount of additional software. In
order to minimize component count LSI devices
were used whenever possible and software was used
to replace hardware. '

5.2 SYSTEM TARGET SPECIFICATIONS

The design specifications for the CRT terminal were
as follows:

Display Format
® 80 characters per display row
® 25 display rows

A

Character Format

® 5 X 7 dot matrix character contained within a
7 X 10 matrix

o First and seventh columns blanked

® Ninth line cursor position

e Blinking underline cursor

Special Characters Recognized

e Control characters

® Line feed

® Carriage Return

e Backspace '

e Form feed

Escape Sequences Recognized

e ESC, A, Cursor up

e ESC, B, Cursor down

e ESC, C, Cursor right

e ESC, D, Cursor left

e ESC, E, Clear screen

e ESC, H, Home cursor

®.ESC, J, Erase to the end of the screen

e ESC, K, Erase the current line

Characters Displayed

® 96 ASCII alphanumeric characters

® Special control characters :

AFN-01304A

APPLICATIONS

CHARACTER
GENERATOR ROM

CENTRAL' SPECIAL CRT CRT MONITOR
roctsstn (] st () covtmmuen A wenror
SYSTEM BUS
SERIAL . - BAUD KEYBOARD DISPLAY PROGRAM
. cggmggl&glsn GENERATOR INTERFACE M(E:IAc::)Y ‘ N:lsg‘gls)v
CRT TERMINAL
SERIAL OUTPUT LINE
CRT TERMINAL
SERIAL INPUT LINE d
KEYBOARD oeh
Flgu;e 5-1. CRT Terminal Block Diagram

Characters Transmitted Worst case bus loading:

e 96 ASCII alphanumeric characters Data Bus: 8275 20pf

e ASCII control characters 8255A-5 20pf

Program Memory gggg'g ggpI

Display | Buffer/ Stack Memory ‘ 2x 2114 10pf

e 2K bytes 2114 static memory (4 packages) 2716 12pf
. 8212 12pf

Data Rate ' brysranw

¢ 9600 BAUD using 3MHz 8085 114pf max

CRT Monitor
e Ball Bros TV-12, 12MHz B.W.

Keyboard
® Any standard un-encoded ASCII keyboard

Screen Refresh Rate
e 60 Hz

5.3 HARDWARE DISCRIPTION

.A block diagram of the CRT terminal is shown in
Figure 5.1. The diagram shows only the essential
system features. A detailed schematic of the CRT is
contained in the Appendix. The terminal was
constructed on a simple 6” by 6” wire wrap board.
Because of the minimum bus loading no buffering of
any kind was needed (see Figure 5.2).

The “heart” of the CRT terminal is the 8085
microprocessor. The 8085 initializes all devices in
the system, loads the CRT controller, scans the
keyboard, assembles the characters to- be trans-

812

Only As - Ats are important since Ao - A7 are
latched by the 8212

Address Bus: 4x 2114 20pf
2716 6pf

26pf max

This loading assures that all components will be
compatible with a 3MHz 8085 and that no wait
states will be required

Figure 5-2. Bus Loading

mitted, decodes the incoming characters and deter-
mines where the character is to be placed on the
screen. Clearly, the processor is quite busy.

A standard list of LSI peripheral devices surround
the 8085. The 8251A is used as the serial communi-
cation link, the 8255A-5 is used to scan the keyboard
and read the system variables through a set of

AFN-01304A

" APPLICATIONS

N3

switches, and the 8253 is used as a baud rate
generator and as a “horizontal pulse extender” for
the 8275. :

The 8275 is used as the CRT controller in the system,
and a 2716 is used as the character generator. To
handle the high speed portion of the terminal the
8275 is surrounded by a small handful of TTL. The
program memory is contained in.one 2716 EPROM
and the data and screen memory use four 2114-type
RAMs.

All devices in this system are memory mapped. A
bipolar PROM is used to decode all of the addresses
for the RAM, ROM, 8275, and 8253. As mentioned
earlier, the bipolar prom also turns READ:s into
DACK’s and ’s for the 8275. The 8255 and 8253
are decoded by a simple address line chip select
method. The total package count for the system is
20, not including the serial line drivers. If this same
terminal were designed using the MCS-85 family of
integrated circuits, additional part savings could
have been realized. The four 2114’s could have been
replaced by two 8185’s and the 8255 and the 2716
program PROM could have been replaced by one
8755. Additionally, since both the 8185 and the
2716 have address latches no 8212 would be needed,
so the total parts count could be reduced by three
or four packages.

5.4 SYSTEM OPERATION

The 8085 CPU initializes each peripheral to the
appropiate mode of operation following system
reset. After initialization, the 8085 continually polls
the 8251A to see if a character has been sent to the
terminal. When a character has been received, the
8085 decodes the character and takes appropriate
action. While the 8085 is executing the above “fore-
ground” programs, it is being interrupted once every
617 microseconds by the 8275. This “background”
program is used to load the row buffers on the 8275.
The 8085 is also interrupted once every frame time,
or 16.67 ms, to read the keyboard and the status of
the 8275.

As discussed earlier, a special POP technique was
used to rapidly move the contents of the display
RAM into the 8275’s row buffers. The characters are
then synchronously transferred to the character code
outputs CC0-CC6, connected to the character
generator address lines A3-A9 (Figure 5.3). Line
count outputs LC0-LC2 from the 8275 are applied
to the character generator address lineslAO-AZ. The
8275 displays character rows one-line at a time. The
line count outputs are used to determine which line
of the character selected by A3-A8 will be displayed.
Following the transfer of the first line to the dot

timing logic, the line count is incremented and the *

second line of the character row is selected. This

813

process continues until the last line of the row is
transferred to the dot timing logic.

The dot timing logic latches the output of the
character generator ROM into a parallel in,serial
out synchronous shift register. This shift register is
clocked at the dot clock rate (11.34 MHz) and its
output constitutes the video input to the CRT.

CHAR CLOCK

: r————-—-———— -
A —-{—OVIDEO

LCO-LC2

LINE COUNT
I N
| SPEED

|
HORI. R
V| DOT TIMING ORIZ D
| Rom LOGIC \
L
cco-ccs

HRTC |
VRTC !
vsp

LTEN o ———— _I

Figure 5-3 Character Generator/Dot Timing Logic
Block Diagram

8275

wc® p-4»0

|- VERT DR

3 b

MARACTER .
CoDE

Table 5-1

PARAMETER RANGE

Vertical Blanking Time 900 usec nominal
(VRTC)

Vertical Drive Pulsewidth 300 usec <PW < 1.4 ms

Horizontal Blanking Time 11 usec nominal

(HRTC)
Horizontal Drive Pulsewidth 25 usec < PW < 30 usec

156,750 +500 pps

Horizontal Repetition Rate

5.5 SYSTEM TIMING

Before any specific timing can be calculated it is
necessary to determine what constraints the chosen
CRT places on the overall timing. The requirements
for the Ball Bros. TV-12 monitor are shown in Table
5.1. The data from Table 5.1, the 8275 specifications,
and the system target specifications are all that is
needed to calculate the system’s timing.

|«—7DOTS—»]|
LINEl——— 0000000 0ccvcccscccccccn
©00000000000000000008®
0000000000000 8000008
0000000000000 800000®

cooooe
coconoe
cocooe
secsce
CHARACTER 1 CHARACTER 2 CHARACTER 3

UNDERLINE
POSITION —
LINE 10 ————»

Figure 5-4. Row Format

AFN-01304A

APPLICATIONS

First, let’s select and “match” a few numbers. From
our target specifications, we see that each character
is displayed on a 7 X 10 field, and is formed bya 5 X
7 dot matrix (Figure 5.4). The 8275 allows the
vertical retrace time to be only an integer multiple of

the horizontal character line; This means that the
total number of horizontal lines in a frame equals 10
times the number of character lines plus the vertical
retrace time, which is programmed to be either 1, 2,
3, or 4 character lines. Twenty-five display lines

CHARACTER
COUNTER
STATE

DoT
CLOCK

QA=

745163
COUNTER
OUTPUTS

Qc =
CHARACTER
CLOCK

1]

—n]
CHARACTER

CLOCK TO
8275

8275 -
CHARACTER

617ns

lgi""lll

449ns

LT
o

[

| [

1
1= 152 Max

tec

JUISRERERERERERERRRE
L
|
l

1
mipiiy

OUTPUT X FIRST CHARACTER X SECOND CHARACTER X THIRD CHARACTER
(€Co-CC6) l | |
SHIFT -\ \ .
REGISTER & FIRST CHARACTER VIDEO OUT X SECOND CHARACTER VIDEO OUT
OUTPUT / /
(74166) | "
1)
11.38 MHz © 0pF
——
XTAL 1,34 MHz
7404 7404 DOT cLOCK
o001 BCDEFGH
CK 74166 Qy
SHIFT/LOAD I
por l SHIFT REGISTER '
cLocK
3300 3300
LCo-LC2
o cco-cCs
A S 2
T 10 1. 07 L
A 7 1]
16
B
o HARACTER
s TARAC L .
GENERATOR =7 COUNTER : LK VERTICAL
- VRTC D w3 ORve
(8275) 3 .
b P cK VRTC DELAVED g
= qQ
cLK

Figure 5-5. Dot Timing Logic

CRT
MONITOR

814

AFN-01304A

APPLICATIONS

require 250 horizontal lines. Seo, if we wish to have be allowed for horizontal retrace. Unfortunately,
a horizontal frequency in the neighborhood of this number depends almost entirely on the monitor
15,750 Hz we must choose either one or two used. Usually, this number lies somewhere between
character lines for vertical retrace. To allow for a 15 and 30 percent of the total horizontal line time,
little more margin at the top and bottom of the which in this case is 1/16,200 Hz or 61.73
screen, two character lines were chosen for vertical microseconds. Since in most designs a fixed number
retrace. This choice yields a net 250 + 20 = 270 of characters can be displayed on a horizontal line, it
horizontal lines per frame. So, assuming a 60 Hz is often useful to express retrace as a given number
frame: of character times. In this design, 80 characters can
_ . be displayed on a horizontal line and it was
60 Hz * 270 = 16,200 Hz (horizontal frequency) empirically found that allowing 20 horizontal
This value falls within our target specification of character times for retrace gave the best results. So,
15,750 Hz with a 500 Hz variation and also assures in reality, there are 100 character times in every
timing compatibility with the Ball monitor since, 20 given horizontal line, 80 are used to display
horizontal sync times yield a vertical retract time of: characters and 20 are used to allow for retrace. It
61.7 microseconds X 20 horizontal sync times = should be noted that if too many character times are
1.2345 milliseconds used for retrace, less time will be left to display the
) . characters and the display will not “fill out” the
This number meets the nominal VRTC and vertical scteen. Conversely, if not enough character times
drive pulse width time for the Ball monitor. A are allowed for retrace, the display may “run off” the
horizontal frequency of 16,200 Hz implies a screen.

1/16,200 = 61.73 microsecond period. One hundred character times per complete horizontal

It is now known that the terminal is using 250 line means that each character requires

horizontal lines to display data and 20 horizontal . . _

lines to allow for vertical retrace and that the 61.73 microseconds /100 character times = 617.3
horizontal frequency is 16,200 Hz. The next thing nanoseconds. -

that needs to be determined is how much time must If we multiply the 20 horizontal retrace times by the

e]

......

CMARACTER
cLoct ’_T r ,—1
! .
BRRR
CHAR 1 CHAR 2 CHAR 3 CHAR 4 CHAR 80 ‘ CHAR 1
|
MRTC SAMPL d ¢ T !
18275) 'l HRTC ' I bz l
~ " | |
13 |
150ns MAX I } |
— | i | '

N /4 Vi /A VS VA Vil VA Vsl VA NP

ROW
N

TN Y e hXA M ‘4VﬂVrX X
' CHAR CODE FIRST ECOND THIRD FOURT) 80th i i FIRST .
8275) CHARACTE H

NS
T

LINE COUNT
18275)

| |

SHIFT =)T {a—
REGISTER LOAD LOAD LOAD LOAD LOAD {

LOADING CHAR X CHAR 1 CHAR 2 * CHAR 3 CHAR 80 N \

T O

|

1 1

vioeo l | e | L |

oureur VIDEO VIDEO I VIDEO l I VIDEO]
FOR st FOR 2nd FOR 3rd FOR 80th

CHAR CHAR CHAR

|
|

Figure 5-6. CRT System Timing

815 : AFN-01304A

APPLICATIONS .

617.3 nanoseconds needed for each character, we find

617.3 nanoseconds * 20 retrace times = 12.345
microseconds

This value falls short of the 25 to 30 microseconds
required by the horizontal drive of the Ball monitor.
To correct for this, an 8253 was programmed in the
one-shot mode and was used to extend the horizontal
drive pulsewidth.

Now that the 617.3 nanosecond character clock
period is known, the dot clock is easy to calculate.
Since each character is formed by placing 7 dots
along the horizontal. o

DOT CLOCK PERIOD =617.3 ns
(CHARACTER CLK PERIOD)/ 7 DOTS

DOT CLOCK PERIOD = 88.183 nanoseconds

DOT CLOCK FREQUENCY = 1/PERIOD =
11.34 MHz

Figures 5.5 and 5.6 illustrate the basic dot timing
and the CRT system timing, respectively.

6. SYSTEM SOFTWARE
6.1 SOFTWARE OVERVIEW

As mentioned earlier the software is structured on a
“foreground-background” basis. Two interrupt-
driven routines, FRAME and POPDAT (Fig. 6.1)
request service every 16.67 milliseconds and 617
microseconds respectively, frame is used to check
the baud rate switches, update the system pointers
and decode and assemble the keyboard characters.
POPDAT is used to move data from the memory
into the 8275’s row buffer rapidly.

The foreground routine first examines the line-local
switch to see whether to accept data from the
USART or the keyboard. If the terminal is in the
local mode, action will be taken on any data that is
entered through the keyboard and the USART will
be ignored on both output and input. If the terminal
is in the line mode data entered through the
keyboard will be transmitted by the USART and
action will be taken on any data read out of the
USART.

When data has been entered in the terminal the
software first determines if the character received
was an escape, line feed, form feed, carriage return,
back space, or simply a printable character. If an
escape was received the terminal assumes the next
received character will be a recognizable escape
sequence character. If it isn’t no operation is
performed. '

After the character is decoded, the processor jumps
to the routine to perform the required task. Figure
6.2 is a flow chart of the basic software operations;
the program is listed in Appendix 6.8.

<

816

FRAME
- INTERRUPT

3

SET UP
POINTERS

SWITCHED
CHANGED

SET BAUD
RATE

L

READ KEYBOARD
RAM

WRITE KEYBOARD
RAM

READ
KEYBOARD

]

WRITE KEYBOARD
RAM

'

ASSEMBLE
CHARACTER

v

EXIT

POPDAT
INTERRUPT

|

SET UP
POINTERS

DO 40
POPS

|

RESTORE
POINTERS

1

EXIT

. Figure 6-1. Frame and Popdat Interrupt Routines

AFN-01304A

APPLICATIONS

INITIALIZE
SYSTEM

DECODE
CHARACTERS

TAKE ACTION ON
DECODED CHARACTER

TRANSMIT
CHARACTER

Figure 6-2. Basic Terminal Software

. 1st Column 2nd Column 80th Column
ROW 1 | 0800H O0801H............. 084FH
ROW2 | 0850H 0851H............. 089FH
ROW 3 | 08A0OH O08A1H 08EFH
ROW 4 | 08FOH O8F1H...:......... 093FH
ROWS5 |0940H 0941H............. 098FH |
ROWG6 (0990H 0991H............. 090FH
ROW 7 | 09EOH O09E1H............ 0A2FH
ROWS8 | 0A30H OA31H ‘0A7FH
ROW9 | 0A80H O0A81H OACFH
ROW 10 | OADOH OAD1H 0B1FH
ROW11 | 0B20H 0B21H 0B6FH |
ROW 12 | 0B70H O0B71H 0BBFH
ROW 13 | 0BCOH O0BC1H........... 0COFH
ROW 14 | 0OC10H OC11H............ OC5FH
ROW 15 | 0C60H O0C61H 0CAFH
ROW 16 | OCBOH OCB1H OCFFH
ROW 17 | ODOOH ODO1H OD4FH
ROW 18 | 0OD50H OD51H 0D9FH
ROW 19 | ODAOH ODA1H O0DEFH
ROW 20 | ODFOH ODF1H -...0E3FH
ROW 21 | OE40H OE41H............. OE8FH
ROW 22 | OEQOH OE91H............ OEDFH
ROW 23 | OEEOH OEE1H OF2FH
ROW 24 | OF30H OF31H............. OF7FH |
ROW 25 | OFBOH OF81H............ OFCFH

Figure 6-3. Screen Display After Initialization

6.2 SYSTEM MEMORY ORGANIZATION

The display memory organization is shown in
Figure 6.3. The display begins at location 0800H in
memory and ends at location OFCFH. The 48 bytes
of RAM from location OFDOH to OFFFH are
used as system stack and temporary system storage.
2K bytes of PROM located at 0000H through
07FFH contain the systems program.

6.3 MEMORY POINTERS AND SCROLLING

To calculate the location of a character on the
screen, three variables must be defined. Two of these
variables are the X and Y position of the cursor
(CURSX, CURSY). In addition, the memory
address defining the top line of the display must be
known, since scrolling on the 8275 is accomplished
simply by changing the pointer that loads the 8275s
row buffers from memory. So, if it is desired to
scroll the display up or down all that must be
changed is one 16-bit memory pointer. This pointer
is entered into the system by the variable TOPAD
(TOP Address) and always defines the top line of the
display. Figure 6 4 details screen operation diiring
scrolling.

Subroutines CALCU (Calculate) and ADX (ADd X
axis) use these three variables to calculate a::
absolute memory address.: The subroutine CALCU -

- is used whenever a location in the screen memory

must be altered.
6.4 SOFTWARE TIMING

" One important question that must be asked about ‘

the terminal software is, “How fast does it run”. This
is important because if the terminal is running at -
9600 baud, it must be able to handle each received
character in 1.04 milliseconds. Figure 6.5 is a
flowchart of the subroutine execution times. It
should be pointed out that all of the times listed are
“worst case” execution times. This means that all
routines assume they must do the maximum amount
of data manipulation. For instance, th¢ PUT-routine
assumes that the character is being placed in the last
column and that a line feed must follow the placmg :
of the character on the screen. i

How fast do the routmes need to execute in order to..
assure operation at 9600 baud? Since POPDAT
interrupts occur every 617 microseconds, it is
possible to receive two complete interrupt requests
in every character time (1042 microseconds) at 9600

AFN-01304A

APPLICATIONS

ROW1 |0800H O0801H............. 084FH ROW?2 |0850H O0851H............. 089FH
ROW 2 |0850H 0851H........ FU 089FH ROW3 |08A0OH O08A1H 08EFH
ROW3 |08A0H O08A1H 08EFH ROW4 |08FOH O08F1H............. 093FH
ROW4 |08FOH O8F1H............. 093FH ROWS5 |0940H 0941H..... P 098FH
LROW S J0940H O0941H............. 098FH ROWG6 |0990H O0991H............. 090FH
'ROW 6 |0990H 0991H............. 090FH ROW?7 [09EOH O09E1H:........... 0A2FH|
ROW7 |09EOH O09E1H............ 0A2FH ROWS8 |0A30H O0A31H 0A7FH!|
ROW S8 [0A30H O0A31H OA7FH ROW9 |0A80H O0A81H OACFH'
ROWY9 |0A80H O0A81H 0ACFH ROW 10 | OADOH OAD1H 0B1FH
ROW.10 | OADOH OAD1H OB1FH ROW 11 |0B20H 0B21H 0B6FH
ROW 11 {|0B20H O0B21H 0B6FH ROW 12 |0B70H 0B71H0BBFH
ROW 12 |0OB70H OB71H 0BBFH ROW 13 |OBCOH OBCi1H........... 0COFH
| ROW 13 | 0BCOH OBC1H O0COFH ROW 14 [0C10H OC11H 0C5FH
ROW 14 |0C10H OC11H PR O0CS5FH ROW 15 | 0€60H O0C61H OCAFH
ROW 15 |0C60H O0C61H 0CAFH ROW 16 | 0CBOH OCB1H OCFFH
ROW 16 |0OCBOH OCB1H OCFFH ROW 17 | ODOOH ODO1H OD4FH
ROW 17 |ODOOH ODO1H OD4FH ROW 18 | OD50H OD51H 0D9FH
ROW 18 | OD50H ODS51H OD9FH ROW 19 | ODAOH ODA1H........... ODEFH
ROW 19 | ODAOH ODA1H e ODEFH ROW 20 | ODFOH ODF1H 0E3FH
ROW 20 |ODFOH ODF1H OE3FH ROW 21 | OE40H OE41H....... s .0E8FH
ROW 21 |OE40H OE41H............. OE8FH ROW 22 | OEQOH OE91H............ OEDFH
ROW 22 | OEQOH OE91H............ OEDFH ROW 23 [OEEOH OEE1H OF2FH
ROW 23 | OEEOH OEE1H OF2FH ROW 24 | OF30H OF31H............. OF7FH
ROW 24 |OF30H OF31H............. OF7FH ROW 25 [OF80H OF81H............ OFCFH
ROW 25 | OFBOH OF81H............ OFCFH ROW1 |[0800H O0801H............. 084FH
After Initialization After 1 Scroll
ROW3 |08A0OH O08A1H 08EFH ROW4 |08FOH Q8F1H............. 093FH
ROW4 |08FOH O08F1H............. 093FH ROWS5 |0940H 0941H............. 098FH
ROWS5 |0940H 0941H............. 098FH ROWG6 |0990H O0991H............. 090FH
ROW®6 |0990H O0991H......... o .090FH ROW7 |09EOH O9E1H............ 0A2FH
ROW7 J09EOH O09E1H.......... .. 0A2FH ROW S8 |0A30H OA31H 0A7FH
ROWS8 |0OA30H O0A31H OA7FH ROW9 |0A80H OA81H OACFH
ROW9 |0A80H OA81H OACFH ROW 10 | OADOH OAD1H........... 0B1FH
ROW 10 | OADOH OAD1TH OB1FH ROW 11 |0B20H OB21H 0B6FH
ROW 11 |0B20H O0B21H 0B6FH ROW 12 |OB70H O0B71HOBBFH
ROW 12 |0B70H OB71H 0BBFH ROW 13 |0BCOH OBC1iH OCOFH
JROW 13 |0BCOH OBC1H 0COFH ROW 14 |0OC10H OC11H 0C5FH
ROW 14 |0C10H OC11H 0C5FH ROW 15 | 0C60H 0C61H OCAFH.
ROW 15 | 0C60H O0C61H O0CAFH : ROW 16 |QCBOH OCB1H........... OCFFH
ROW 16 | 0OCBOH OCB1H OCFFH ROW 17 | ODOOH ODO1H OD4FH
ROW 17 |ODOOH ODO1H O0D4FH) . | ROW 18 | OD50H - OD51H OD9FH
ROW 18 | OD50H OD51H OD9FH ROW 19 | ODAOH .ODA1H ODEFH
ROW 19 | ODAOH ODA1H ODEFH ROW 20 |ODFOH ODFiH OE3FH
ROW 20 | ODFOH ODF1H e OE3FH ROW 21 {OE40H OE41H............. OE8FH
ROW 21 |OE40H OE41H............. OESFH ROW 22 |OE90H OE91H............ OEDFH
ROW 22 | OE9QOH OE91H............ OEDFH ROW 23 | OEEOH 'OEE1H OF2FH
ROW 23 | OEEOH OEE1H OF2FH ROW 24 |OF30H . OF31H............. OF7FH
ROW 24 |OF30H OF31H.............. OF7FH ROW 25 |OF80H OF81H............ OFCFH
ROW 25 | OF80OH OF81H............ OFCFH ROW 1 |0800H O0801H..... ceveeees 084FH
ROW1 |0800H O801H............. 084FH ROW 2 [0850H O0851H............. 089FH
ROW2 | 0850H 0851H............. 089FH ROW3 |08ApH 08A1H 08EFH
After 2 Scrolls ‘ After 3 Scrolls :

Figure 6-4. Screen Memory puﬂhg Scrolling

818 ‘ AFN-01304A

APPLICATIONS

baud. Each POPDAT interrupt executes in 211 By adding up the times for any loop, it is clear that
microseconds maximum. This means that each all routines meet this speed requirement, with the
routine must execute in: exception of ESC J. This means that if the terminal
is operating at 9600 baud, at least one character time

1042 - 2 * 211 = 620 microseconds must be inserted after an ESC J sequence.

START

INITIALIZE

YES
515us
[
PO11 NO
53Ius 338.us 1
CHREC
43us

T T T T T T T 11

esc A escB escC escD escE escH escJ escK LF CR OuUT
78.7us 3248 107us 119u8 316us 105us 862us 310us 306us 42us 456

U N G G G G

Figure 6-5. Timing Flowchart

819 | AFN-O1304A

8212
ic2

vee |
oA
o
st

oy

00

0oy

00

005

00;

00g

oy
Ol
vl
AL
g -2

5

3

[
0y

El
[RELY T p—

XTALC—] !
T0 g —See— 3

2
8253 z

CLKE 376k our

M

iccio
7474 2085
10K

35 neser

TSHF Ic1

5
LINE
LOCAL
o 5 sin

TO ALL 3
RESETS <] RESET 0UT

DRQ 8275 RST65

8
8
10
15
i
19
21
L - ——
P

|

ics

2716

2 |3

4

5

ETJBH

7 Ag A5 Ay A3hg My Ao Ag ;g‘ln“""“l“z“a D4 D 0607 CE A
U 1

9

Ill,ll 13114{15(16(17\{g

5]
@

S S

ADDRESS [~
DECODE 4 ho o
PROM

825123

ic3

CE 2716 47K

CS 2114 HIGH STK

— V
CS 2114 LOW ATK

8275 DACK

—» 8275 WR

» 8275 CS
> 8275 RD

32 x 8 PROM

Appendix 7.1

CRT TERMINAL SCHEMATICS

» CS 8255

AFN-01304A

APPLICATIONS

A7 Ag Ag Ag Ay Ay Ay Ay Ag Ag10; 10510310, WE A A Ay Ry AyAg Ag Agl0;i0! 7 Mg hs Ag A3 Ay Ay Ag Ag AglD; 105103104 WE A7 Ag As Ag Ag Ay Ay Ag Ag AgiD 10710310, WE
TTT 12 13 14 17 |6 15 N6 15[ia[i3a[izh o T EP P E el e)e HRASAE080EORELT T T o sl n

>
=k

ice c7 l ics ico
o 2114 s 2114 o 2114 s 2114
0 WE
. 11710

Aq
Az
A3

D4
Dy
D3
Dy

Dg

A0
- Aqq
A2
T A3

Ass

> WR

7404 7404

8] 7| 6 5] 4] 3 2 1 21{28) 1) 2) 8} 6] 7
Og Oy Oz 03 04 05 05 07§ ,, Il,,n, D004 050507] |
s jo— Hen cs jo—!
a8 8253 3480 8251A
i 0l IC19 10

GATE 0 }¢————PG 21C 14 . TX0 f—> SERIAL OUT

GATE 2 wrofl—mpG2iC 1
2

3
CLK 0 [-«——— PG 2IC 10 TO RESET OUT <@————— RESET RXD {<¢——— SERIAL IN
8085

47K
47K

+5

Bl it

TOIC 10 TO CLK OUT
8085 CLK — 2 » ON 8085

821

APPLICATIONS

Ag SHEET 1

Aq SHEET 1
Dg SHEET 1

Dy SHEET 1

Dy SHEET 1
D3 SHEET 1
D4 SHEET 1
D5 SHEET 1
Dg SHEET 1
D; SHEET 1
RD SHEET 1
WR SHEET 1

0'0'0'0'0' 000

BAUD RATE SENSE

SWITCHES AND
LINE-LOCAL ',
SWITCH

1
N ‘
27 |28 |20 oo o1 {32 |33 |oa
|o; 0g 05 0 O3 Dy Dy Dgf
[S
e
‘ sl TonsIc3
L] ML
18] e, NE
16 b, 1Ic17 8 s 7O RESET OUT 8085
1 pe, 8255A-5 N L ' AL
] My pa, |12 AL
12]pe. (29 LU AL,
g, . pagf2! - Alg
W1pe, T Ay
Pag |2 Rlg
Ve —28] pag |24 1—blg
7 po; |Eg Rl
= [pag Pa, Pay Phg Pay Pag PGPl L

FERYRER "

Sy 8Ly SLp Siy Sy Slg Sig Siy

KEYBOARD
KEYBOARD SCAN LINES
RETURN LINES -

Appendix 7.1
CRT TERMINAL SCHEMATICS

82

AFN-01304A

APPLICATIONS

11.34 MHz
XTAL 10pF
° . +5
| Lo
1h 3 4 5| 7 w0
CLR A" c T IC18
2o @ @ e ool
74163
LD QA QC QD
@)
. .9
DOT OSC
7
DOT cLOCK
IC 10 7474
10
Mok " PRESETo—@
)
] =412 9 ,
10 18 [17 |16 |15 [14 |13 |12 1Ic15 7| 1c16
D706 05 04 D3 D, Dy Dy TLK
L afy ’ eoq [2—22] ool—14] 4 .
| i < ofo 12 i
T0 163 07 <«—q] RD ocy fl—Ua, P L1
%2 1310
10 CC3 Ag L s L
T0163 na<—<;wn N I PP I7 B 74166 o e
24 4 154
2 & M % ¢ s 8275
70 13 06 <229 CS 6275 o I | P Py LI
Ic13 ef—8m, (Y L Y ‘,__________,'87205;:::2’
70163 04 <—“J-nncx a1,
. olt—8x .
T0 1C1 RST 65 <—2]oRo . 0y -
)
7 4 2 TO GATEO
HRTE .
10101 AST 55 <= Rg) A 8253 PG 1 +5
VRTC{— CLK
30 ren 2 1K
T01L10 PIN 5 < ccik - %
= | oo &—> VERTICAL DRIVE
1c13 .
I L T
) IZI,‘ 0 1
o2 VIDEO OUT
P)
13 4
L) o
] Y
74175 K
outo + IC14 HORIZONTAL
8253PG 1 ~ CRTTERMINAL . (5) DRIVE

IC 11

'APPLICATIONS |

Appendix 7.2
KEYBOARD INTERFACE

The keyboard used in this design was a simple
unencoded ASCII keyboard. In order to keep the
cost to a minimum a simple scan matrix technique
was implemented by using two ports of an 8255
parallel I/O device.

When the system is initialized the contents of the
eight keyboard RAM locations are set to zero, Once
every frame, which is 16.67 milliseconds the contents
of the keyboard ram is read and then rewritten with
the contents of the current switch matrix. If a non-
zero value of one of the keyboard RAM locations is
found to be the same as the corresponding current
switch matrix, a valid key push is registered and

action is taken. By operating the keyboard scan in
this manner an automatic debounce time of 16.67
milliseconds is_provided.

Figure 7.2A shows the actual physical layout of the
keyboard and Figure 7.2B shows how the individual
keys were encoded. On Figure 7.2B the scan lines are
the numbers on the bottom of each key position and
the return lines are the numbers at the top of each
key position. The shift, control, and caps lock key
were brought in through separate lines of port C of
the 8255. Figure 7.3 shows the basic keyboard
matrix.

In order to guarantee that two scan lines could not
be shorted together if two or more keys are pushed
simultaneously, isolation diodes could be added as
shown in Figure 7.4.

.

, /
tl@| # s | % | A& | Cl)]|—]*+
Blq|2(3|a|5]|6| 78|09 fo]-]=|"\]|BS|
]
™| Q| W E R T Y §) | (o) P :l! \ LF-| DEL
CAPS : "] not
e |k | A | S|D|F|G]|H K {L|: | osem | P
NOT <{>1?], NOT
e [MFT| Z | X | C|lV|B|N|M "} | ST e
SPACE BAR

Figure 7-2A. Keyboard Layout

6 6 6 6 6 6 5 1 1 1 1 1 1 1 1
0 1 2 4 5 6 0 0 1 2 3] 4 5 6 7
PORT | PORT | 4 6 5 5 5 5 2 2 2 2 2 3 2
c c 1 3 4 5 6 7 0 1 2 3 4 5 6
4 |prorT| 4 4| 4 4 | 4 4 3 3 3 3 |porT| 3
0 H 2 3 4 5 6 7 0 1 2 c 6
5 :
3

TOP NUMBER = RETURN LINE
BOTTOM NUMBER = SCAN LINE,

Figure 7-2B. Keyboard Encoding

8-24.

AFN-01304A

APPLICATIONS

Appendix 7.3
ESCAPE/CONTROL/DISPLAY CHARACTER SUMMARY

CONTROL DISPLAYABLE ESCAPE'
CHARACTERS CHARACTER SEQUENCE
0 0 0 0 1 1 1 1 0 0 . 1 1 1
BIT 0o 0, 19191 |"og | oy 110|114 10 1 0 0, 19
@ P
0000 NUL DLE SP ¢ |@ | P P
A [DCI Q
0001 SOH ! | A Q AlaQ A
] R)
0010 STX DC2 " 2 |B R B |R L B
[5
0011 ETX | DC3 # 3 |C S c|Ss ? c
D T .
0100 EOT DC4 $ 4 |D T D|T -— D
E U
0101 ENQ NAK % | 5 |E U E|uU CLR ¢
F \"
0110 ACK SYN & 6 | F \ FlV
w
0111 ETB ! 7 |G w G|WwW
X
1000 CAN (8 | H X H | X HOME 4
1001) 9 | Y| I Y
1010 * : J P4 J z EOS
101 + K [K EL
L /
1100 FF ES , < L \ L
1101 - =M If ™
N A
1110 SO RS . > N Al N
o]
1M S1 us - / 210 -10
NOTE Shaded blocks = functions terminal will react to Others can be generated but are ignored up on receipt

\

825

APPLICATIONS

SCAN LINES
0 1 2 3 4 5 6 7
. +5]
8 Lo - - = 0_\' BS | sreak < 10K
*~— — *r— [ot —
ol 14 1TJ Z
0 Vi i3
u | o P [\ LF | DeLeTE < 10K
— p— p— [p— p— p—
i o2 vl ik v il v vl
J K L ; . CR 7 <10k
b <
N o728 o2 o2 w28 w2l DU W b
»n +
Ly |_ M |comma]peRioD] sLasH %10!(
=N o2 o2 /2 o
2 +5
e«
2 A z X C v B N #‘WK
[- p—
W, "~ v 7/ Y7 Y ;
+
‘ ’_Y | ﬁncz’_b |_F ’_G _H %wx
i il /i o/l v o
i . : +5¢
TAB Q w] E R T < 10K
—— — p— p— — p— <
el T/ /L I/ T/ >
+5
(esc | 1| 2 | 3 | 4 P_s | 6 < 10K
B o/l w2 /20 /2 20 w2
Figure 7-3. Keyboard Matrix
Appendix 7.4
PROM DECODING -
As stated earlier, all of the logic necessary to convert SCAN LINES
the 8275 into a non-DMA type of device was
performed by a single small bipolar prom. Besides
turning certain processor READS into DACKS and
WRITES for the 8275, this 32 by.8 prom decoded
addresses for the system ram, rom, as well as for the /
8255 parallel I/O port. " ok
Any bipolar prom that has a by eight configuration ANV SV
could function in this application. This particular SR —
device was chosen simply because it is the only “by
eight” prom available in a 16 pin package. The RETURN LINES
connection of the prom is shown in detail in Figure
7.5 and its truth table is shown in Figure 7.6. Note 10k
that when a fetch cycle (M 1) is not being performed, AAN 5V
the state of the SOD line is the only thing that

determines if memory reads will be written into the
8275’s row buffers. This is done by pulling both
DACK and WRITE low on the 8275.

Also note that all of the outputs of the bipolar prom
MUST BE PULLED HIGH by a resistor. This
prevents any unwanted assertions when the prom is
disabled.

826

Figure 7-4. Isolating Scan Lines With Diodes

AFN-01304A

APPLICATIONS

(n¢~Wr)~AT,4___—I
)

ENABLE
Dy |——>» CE2716
SOD «—— A Dy p——» CE2114
(8085) 0800H-OBFFH
A —d A Dy — o
(8085)
Ay —— A ‘D3 p— Wr
(8085) 8275
Az —— Ay D4 }——> DACK
(8085) 8275
My 1A Ds ——» C8
(8085) 8255
My =8p 8¢ Dg }—» C8
8275
Vee — Vee
D7 |— D
GND ————] GND 8275
Figure 7-5. Bipolar Prom (825123) Connection
- |§ % I
- e g B R T e
s < <6 88 & & &
A4 A3 A1 A0 D7 D D2 D1 DO

PO NN NNy e e k= le fedeReX=Te te ket Re R =R =)

_,E - 1 L1 e 00000000O A AL a2 L0000 P
MM 4000042440000~ 42 20000~ 4==20000 & A
M A A OO C RSt A A A A OO aaaaaaaaaa

P r OO A OO A 0O —4A—- OO0 A0 0~-—200 =200 —~-—=-00
RN R R o I SN SN NG SN o G R N R Yo R W o SN QY N

Figure 7-6. Truth Table Bipolar Prom

: o]
OO Ot ddd 4 O OOOaaaaaaaaaaaa & 8255C8

[Py S Y -

B e O O OOttt ittt w B 8275 DACK

B L e L e A O OO G O O a & s A OO aaa 3 8I5WR

[N N o X = T Gt QU QU G G QP QUG QNN INY, Y o JE S QR GGy

ok ok ke A O O b b bk ko ko ok kb A O O b b

NN NPV X = T = R = T G N Y o e N o

Appendix 7.5
CHARACTER GENERATOR

As previously mentioned, the character generator
used in this terminal is a 2716 or 2758 EPROM. A
1K by 8 device is sufficient since a 128 character S by
7 dot matrix only requires 8K of memory. Any
“standard” or custom character generator could
have been used.

The three low-order line count outputs (LC0-LC2)
from the 8275 are connected to the three low-order
address lines of the character generator and the
seven character generator outputs (CC0-CC6) are
connected to A3-A9 of the character generator. The
output from the character generator is loaded into a
shift register and the serial output from the shift
register is the video output of the terminal.

Now, let’s assume that the letter “E” is to be
displayed. The ASCII code for “E” is 45H. So, 45H
is presented to address lines A2-A9 of the character
generator. The scan lines will now count each line
from zero to seven to “form” the character as shown
in Fig. 7.7. This same procedure is used to form all
128 possible characters.

It should be obvious that “custom” character fonts
could be made just by changing the bit patterns in
the character generator PROM. For reference,
Appendix 7.6 contains a’' HEX dump of the
character generator used in this terminal.

45H = 01000101
Address to Prom = 01000101 SL2 SL1 SLO

= 228H - 22FH
Depending on state of Scan
lines.

Character generator output

Rom Address Rom Hex Output Bit Output*

228H 3E 012345€67
229H 02
22AH 02
22BH OE
22CH 02
22DH 02
22EH 3E
22FH 00

Bits 0, 6 and 7 are not used.
* note bit output is backward from convention.

Figure 7-7. Character Generation .

827

AFN-01304A

APPLICATIO’NS ‘

Appendix 7.6
"HEX DUMP OF CHARACTER GENERATOR

1092000001 0208308000300026300030330003303EF
10301 033003030300000300033003303430333209E0
020200003330009330333333033003303030333D@
0203029028000000003330303020093030333393CH
2230402908932002090823003003000330300033350
2239500030900333933333033033300030303039A0
290602332302230038033008230039333003233293
2007323030909300039330030203003033300923083
02083323303230020030300033300000000333330003
90092300000000993037 82A1CA31C2A033390338C
B33A00003003330093300300000030033333033 53
207800323020299003000300923330333930303
920C3033003330330007330302020092290300
20DAJGIBAND 20333332002 333AA3AABIAD
PIEAIBAN3AA3 2333320333333 3A333333
12023220099330329 206723939
2020002000230038383328932338%
41400020003%31 41 43E143E1414%
2283COA1C281EA8303345261 07334323043
1302034 0A0AG42A122CAAA8A83 33093333037 23

[
8
S
S
S
(=
S
S

()

S

[

[
[V

Q
w

SESESY
2

NN
ISISES)
-

)

=

=

=
=
[
N
[
S

=
=

991632203032333 300 33804 3023733CAP3AAAADIF
901723230300093090733180283201 00834 320837329
991800921C22322A26221CA3A30CAIPRIRA81CAZ21
9231992331C22201CH202 3EGA3E 201 91 8203221CFIBF
271A903101814123£19103338021E2023221C33C7
221809038340921E22221CAA3E 201308%4 34 340301
891C3291C22221C22221CAA1C22223C20199EAAT9
291D033306330309023833093003383 3933830 4F 3
A21E323731 3333402040810 3EAIIEAFIAF59
221F 3232340810201 0980409 1C2220] 07833233821
09203831C222A3A1A023CARAS1 4222232222091 2
82216851324241C24241EGZ1C22@2ﬁ2@2221€@074
)
)
)
2
)
)
')

2220091E2424242 4241E333EA2020E02(2 3E334C
22309793E02020E020202333C02023A22223CHAAE
92409322222238222222031C03283838331CAA44
2250297920202 3202 21CA2221 20A053A1 2223 9ER
2268020232023202 323EAP223652A2A2222226%332
027380922262A32222222031C22222222221C3792
0280221522221 E020202071C2222222A122CANFE
2290031E22221EAA1222033C32021C20201EGIES
902A0203EA3083874838331342222222222221CAFFS
02289092222222222] 408392222222 22A3522005E
0092C009222214081422220%2222221 498380 SABES
002D03033E 201 098340235831CA4040404941CA218
922E03202320403102 3AA3333202 3202 320333CH
92F 330081C2A03387838202003909333A303 TEL2
23020293901 1030093030303033C203C223CANAE
93102902021A262222]1 EA33320 38348404 380938
93200920202C322222 3CA3009733824BC34383358
333000382 4040E74 0404 030@3ABC22223C2A3CAB
93400292021A26222222 3088390339838 33933348
2353303200302032 320A4241 80232221 20A162209C3
3368@38898080808289@@00@%036
23
2

1
1
1
1
1
1

2A2A2222097F
702098001A262222223903331824242418393B
80330203 1E22221 EA20203931C22223C23209D
3923309091A26020282 33A993383418231CH387
93A02003281CA308039930A3733222222324CA7%95
2380022990222222140392030322222A3E1403F8
03C022232322143314220393032222223C20383F
43D0330 3023 3E 109804 3E071883899388891 934 2F
23E24303038280 30833983328 3C9791 219391803351
93rp0398333C2330013330303920330033093295

o o0 . oo oo . . . oo oo 06 o0 o0 08 o0 00 09 00 o0
. €0 00 90 00 00 00 so ®0 00 00 00 00 99 00 00 00 50 00 00 40 00 66 S0 20 50 00 96 90 00 06 00 00 S0 S0 0 00.00 90 4 40 00 00 00 20 40 S0
00 00 00 00

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

)
)
)
')
)
)
2
)
)
)
a
2
2
a
)
2
7

828
\

AFN-01304A

APPLICATIONS

Appendix 7.7 [!
COMPOSITE VIDEO ,,K:EJ 3 ax $ 10k L: 50K

. 1 9 74LS221 9
In this design, it was assumed that the monitor 7 5,
required a separate horizontal drive, vertical drive, HRTC) s i1 VRTC
and video input. However, many monitors require a 22K ¢ ": & Sax
composite video signal. The schematic shown in 1 'J“(odex exfe “"
Figure 7.8 illustrates how to generate a composite o R
video signal from the output of the 8275. E‘ @ B :I“'
The dual one-shots are used to provide a small delay
and the proper horizontal and vertical pulse to the s
composite video monitor. The delay introduced in sson’ 213804
the vertical and horizontal timing is used to “center” v A
the display. VR1 and VR2 control the amount of +5 1
delay. IC3 is used to mix the vertical and horizontal VIDED y————ar— CoMmPosITE
retrace and Q1 along with the R1, R2, and R3 mix 1500 out
the video and the retrace signal and provide the _
proper DC levels. ' =

Figure 7-8. Composite Video

Appendix 7.8
SOFTWARE LISTINGS

ISIS-II 8080/8885 MACRO ASSEMBLER, X108

LOC 0BJ SEQ SOURCE STATEMENT
1 $MODB5 MACROFTLE
2 ;NO DMA 8275 SOFTWARE ALL I/O IS MEMORY MAPPED
3 $SYSTEM ROM 0@@@H TO @7FFH
a FSYSTEM RAM 0800H 1O OFFEFH
5 $8275 WRITE_19@H TO 13FFH
5 78275 READ 14@@H TO 17FFH
7 8255 READ/WRITE 180@H TO 1FFF
8 8253 ENABLED BY Al4
9 :825] ENABLED BY Al5
1809 18 PORTA £ 18901 ;8255 PORT A ADDRESS
1801 11 PRTB E 1801H 8255 PORT B ADDRESS
18a2 12 PORTC . 18324 8255 PORT C ADDRESS
1843 13 CNWDSs 18834 #8255 CONTROL PORT ADDRESS
Agal 14 USTF #A001H 38251 FIAGS
AG0@ 1505 E AAGAH 18251 DATA
6080 16 CNTg - 6000H %8253 COUNTER 0@
6991 17 CNT1 EQU 6881H 18253 COUNTER 1
6002 18 CNT2 6802H 8253 COUNTER 2
6903 19 68034 +8253 MODE WORD
1081 20 CRTS 10014 . 18275 CONTROL ADDRESS
1800 21 CRTM 10004 38275 MODE ADDRESS
1401 2 INI75 E 14014 18275 I UPT C
3800 23 TPDIS 2842H :TOP OF DISPLAY RAM
@F8g 24 BTDIS' E AF80H :BOTTOM OF DISPLAY RAM
gFDg 25 E o :FIRST BYTE AFTER DISPLAY
9018 26 CURBOT E 184 :BOTTOM Y CURSOR
20 27 E 8850 {LENGTH OF ONE LINE .
gFEQ g SR E OFEBH $LOCATION OF STACK POINTER
’
3 $START PROGRAM
3 ALL VARIABLES ARE INITIALIZED BEFORE ANYTHING ELSE
2009 F3 33 bt ;DISABLE INTERRUPTS
9001 31EgeF 33 LXI SP,STPTR ;LOAD STACK POINTER
9004 210808 35 LXI H,TPDIS ;LOAD HsL WITH T0P OF DISPLAY
#0087 22E30F 3% SHLD TOPAD $SET TOP = TOP O
@00A 22EBQF 37 SHLD CURAD os'roaa THE CORRENT AD
3E00 38 MVI A, 090 :ZERO A
@agF 32E10F 39 STA clrsy :ZERO CURSOR Y POINTER
9812 RE20F . STA CURSX- $ZERO CURSOR X POINTER
@015 32EB@F a1 STA KBCHR $ZERO KB RACTER
@018 32E70F 42 STA -USCHR 3:ZERO lBART CHAR BUFFER
9618 32EAGF a3 STA KEYDWN ZERO KEY DOWN

829 AFN-01304A

APPLICATIONS

@aLE 32EDGF 44 STA KEYOK ;ZERO KEYOK
9021 32EEQF 15 STA ESCP $ZERO ESCABE
8824 39807 g . e LPKBD - :JUMP AND SET EVERYTHING UP
418 {THIS JUMP VECTOR IS LOCATED AT THE RST 5.5 LOCATION'
49 :OF THE 8085. IT IS USED TO READ THE 8275 STANE AND
5@ $READ THE KEYBOARD. THIS ROUTINE IS EXBCUTED ONCE EVERY
g% -16 667 MILLISECONDS
#02C 53 bre ~ @92CH
892C C36701] JMP FRAME
58 é'rms nourmz IS LOCATED AT THE RST 6.5 LOCATION -OF THE
57 78085 IS USED TO LOAD THE DATA TO BE DISPLAYED INTO
gg ;THE 8275. THIS ROUTINE IS EXECUTED ONCE EVERY 617 MICROSECONDS.
8034 60 org 38H :
8034 F5 61 POPDAT: PUSH PSW ;SAVE A AND mm :
#0835 E5 62 PUSH H iSAVE H AND L
#0936 D5 63 PBUSH D SAVE D AND E
0037 210000 64 LXI H,#000H ZERO H
993A 39 5 DAD sh :PUT STACK POINTER IN H AND L
@938 BB 66 XCHG }PUT STACK IN D
#03C 2AES@F 67 LHLD CURAD {GET POINTER
#03F F9 68 SPHL ;PUT CURRENT LINE INTO SP
9040 3ECO 69 MVI A,0CoH sSET MASK FOR
8042 30 78 SIM
il REPT (LNGTH/2)
2 POP H
3 ENDM -
9943 E 74+ POP H
#0344 E 75+ POP H
9045 E 76+ POP H
9046 E 77+ POP H
#0847 E] 78+ POP H
2248 E POP H
9049 E1 80+ POP H
#94A E) 81+ POP . H
8048 E 82+ POP I
@94C El 83+ POP H
#84D E1 POP d
@P4E E] 85+ POP [
@04F E 86+ POP H
9950 E1 87+ POP H \
#0851 E 88+ POP [
8952 E1 89+ POP H
9053 E P+ POP H
3954 E 91+ POP q
9855 E 92+ POP H
#9856 E 93+ POP H
3957 E 91+ POP H
9858 E + POP H
9859 E %+ POP H
@05A E 97+ POP I
@858 E 98+ POP H
@05C E 99+ POP. H
395D E 100+ POP H
BO5E E 101+ POP H
#95F E] 102+ POP H
9960 E 193+ POP H
3861 E 104+ POP H ‘
9062 E 185+ POP H
#0963 E1 106+ POP H
9064 E 107+ POP H -
9065 E1 188+ POP H
9066 E1 199+ ‘pOP i
9867 E1 116+ POP - - H
9068 E1 11+ POP H
2969 E1 112+ POP H
@96A El 113+ POP H
9068 OF 114 RRC ;SET_UP A
@06C 30 15 SIM ;GO BACK TO NORMAL MODE
886D 210000 16 LXI H, 8000H ZERO HL
2079 39 17 DAD sp ;ADD STACK
971 EB 18 . XCHG ‘ $PUT STACK IN H AND L
9872 F9 19 SPHL » RESTORE STACK
8073 21D@0F 20 LXI H,LAST $PUT BOTTOM DISPLAY IN H AND L
1 T AR ABES
D
Bl 0 G b L R
7B 25 - MOV A,E $PUT LOW ORDER IN A
GG;E 28400 Vi Ne Kerk SR 6; SL%K‘EJ:BAS L
I
3081 219008 28 LXI H, TPDIS LOAD WITH TOP OE‘ SCREEN MEM(BY
@084 22E8QF 29 KPTK: SHID C(RAD :PUT BACK O cmamr ADDRES!
#0887 3E18 30 . MVI A,18H +SET MASK
131 SIM ;OUTPUT MASK

830 . AFN-01304A

APPLICATIONS

@p8A D1 132 . pOP D GET D AND E
seee £l BB A SNk,
@98D FB 135 EL ' . $TURN ON INTERRUPTS
@O8E C9 3% RET :GO BACK
ng $THIS IS THE EXIT ROUTINE FOR THE FRAME INTERRUPT
#a8F 3E18 43 BYPASS: MVI A,184 sSET MASK
@991 39 41 SIM ' OUTPUT THE MASK
8992 C1 142 POP B iGET B AND C
9293 DL 143 PP .D $GED D AND E
0033 Fl 14 BOb bow iGET A AND Fracs
9095 FB 146 EI ;ENABLE INTERRUPTS
9097 C9 4 RET :
49 ' PHIS CLEARS THE AREA OF RAM THAT IS USED
Lgeln ;FOR KEYBOARD DEBOUNCE.
9098 32EFOF 152 LPKBD: STA SHCON JZERQ SHIPT CONTROL
@998 32FQQF 153 STA RETLIN ZERO RETURN L
wgz 32F10F 542 STA SCNLIN iZERO SCAN e
| THIS ROUTINE CLEARS THE ENTIRE SCREEN BY PUTTING
tg’é ESPACB CODES (2@H) IN EVERY LOCATION ON THE SCREEN.
gpAl 210008 59 fxt H, TPDIS ;PUT TOP OF SCREEN IN HL
e w8 EF EEREE
@pR9 23 162 ©OINX H ;INCREMENT POINTER
GBAA 7% 163 MOV A,H iGET H
#PAB B ‘ 164 CMP B ;SEE IF SAME AS B
BAC C2A780 65 Jnz LOOPF ;F NOT LOOP AGAIN
@aAF 7D 165 MOV AL iGET L \
@98@ B9 167 P ¢ :SEE IF SAME AS C
881 C2A790 ng JNZ - [oOPF :IF NOT LOOP AGAIN
178 8255 INITIALIZATION '
#0B4 3IESB 172 MvI A,8BH sMOVE_8255 CONTROL WORD INTO A
9086 320318 ;3 STA CRWDS5 ;PUT CONTROL WORD INTO 8255
tzl.g ;8251 INITIALIZATION
9089 2101A0 77 £x1 H,USTF iGET 8251 FIAG ADPRESS
908C 3680 78 MVI M, 80H : iy S TORE 7O 8251
@0BE 3600 79 MVI = M,00H FRESET 8251
20Ca 3640 188 MVl M40 iR mm‘ 8251
35,’8% ggEA Lgflé :'135 M, BEAH LOAD 8251 MODE WORD
#8C5 3695 183 MVI M, B5H ;LOAD 8251 COMMAND WORD
185 38253 INITIALIZATION
20C7 3E32 : 87 MvI A,32H ;CONTROL WORD FOR 8253
#3C9 320360 188 STA CRTM #PUT CONTROL WORD INTO 8253
98CC 3E32 89 MVI A, 324 ;LSB 8253
#0CE 320060 93 STA CNTa ;PUT IT IN 8235
gapl 3£ 91 M1 A,0pH $MSB 8253
go3 320060 92 STA CNTO 1BUT IT IN 8253
#0D6 CDDCAd 93 CALL STBAUD : BAUD RATE
@009 C3F930 % Jup IN7S H 8275
196 ITHIS ROUTINE READS THE BAUD RATE SWITCHES ERM PRT C
197 iOF ‘THE 8255 AND LOOKS UB THE M NUMBERS NEEDED TO LOAD
198 ,'me 8253 TO PROVIDE THE PROPER BAUD RATE.
@oDC 3A@218 200 STBAUD: fma PORTC BAUD RATE SWITCHES
@0DF E6BF 201 ANI @FH -s'mp OFF 4 MSB'S
A0E] 32ECOF 202 ‘STA BAUD SAVE IT
80E4 37 203 RLC IMOVE BITS OVER ONE PLACE
@0E5 21C505 204 LXI H,BDLK ;GET BAUD RATE LOOK UP TABLE
POES 1600 205 MVI D, B0H $ZERO D
BOEA 5F 206 - MOV E,A iPUT A IN E
@0EB 19 207 DAD D iGET OFFSET
@9EC 110360 208 LXI D,CNTM :POINT DE TO 8253
@OEF 3EB 289 MVI A,@86H iGET CONTROL WORD
@oF1 12 219 STAX D :STORE IN 8253
goF2 18 211 DCX D $POINT AT #2 COUNTER
BOF3 7E 212 MOV AM GET LSB BAUD
P0F4 12 213 STAX D ;PUT IT IN 825
gaFs 23 213 INX H ;EOINT AT MS3BAUD RATE
90F6 TE 215 MOV . A,M © :GET MSB BAUD RA
@oF7 12 216 STAX D $PUT IT IN 8253 i
29F8 T 217 RET ;GO BACK
218 ; ' :

8-31 : AFN-01304A

APPLICATIONS

@oF9 210110
garFc 3500

@OFE

POFF 364F
2101 3658
2103 3689
2185 36DD
0107 23
0108 CDB8A3
0108 36EQ
910D 3623

=z

o

ggg
©

eRENeS
s ot e bttt
mOVHBW
OF
N
N %8
]
=]

NN
3
8o
I
=
1Y
-

SOEEBEEOSHKEEHRERBERRE
) wwOmE
N N
) o
S S
3]

0AD
59 C30Fal
5C 3A@0AQ

B1SF E67F
2161 32E70F
0164 C34E92

@16A C5
2168 3A0114

6E 2AE30F
0171 22E80F"

@174 3A0218

9177 E6OF

8179 47

@17A 3AECOF
7D

@17E C4DC@O
0181 3AEAGF
218

2189 21
018C C38rga

BRRREEBE
NSO 00~ W

NN
QL0

N
28

IN75:

SETUP

o

RXRDY:

KEYINP:

KEYS:

FRAME:

:8275 INITIALIZATION
fxr

MVT g,gggs
"GoH
DCX H
VI M,4FH
MVT M, 58H
MVI ,89H
MVI M,
INX
CALL R
M, 0EQH
MVI M, 23H
‘ -'rms ROUTINE READS B
;Sﬂ
)
vt a,18H
SIM
EI
iy
{READ THE USART
RimM
ANI 80H .
INZ KEYINP
LDA USTF
ANI 92H
INZ OK7
LA KE
ANI 8aH
INZ KEYS
MvI A, a0
STA KEYOK
JMP RXRDY
E B
LDA KBCHR
cMp c
Jz RXRD
ST KEYOK
g USCHR
RIM
ANT 8OH |
Jz
JMp CHREC
Us
ANI g1H
Jz
LDA USCHR

USTD
JMP SETUP
LDA USTD
ANI O7FH

USCHR
JMP CHREC

'THIS ROUTINE CHECKS THE BAUD RATE SWITCHES, RESETS THE
;SCREEN POINTERS AND REA% AND LOOKS UP THE KEYBOA

busu pow

PUSH H

PUSH D ~

PUSH « B -

LDA. INT7S

iSET UP THE POINTERS

fHLp TOPAD

SHLD CURAD

‘$SET UP BAUD RATE
BORTC

ANI - @FH

MOV B,A

LDA BAUD

cMP B

onz STBAUD

tREAD KEYBOARD

foa KEYDWN

ANI 4¢H

JINZ

CALL R

-#SCREEN PARAMETER
7SCREEN PARAMETER BYTE
,SCR PARAMETER

;RESET AND STOP DISPLAY
sHL=1000H
$SCREEN PARAMETER BYTE 1
" Yl‘ %

BYTE 4

-START DISPLAY

OTH THE KEYBOARD AND THE USART '
TAKES PROPE:R ACTION IEPENDING ON HOII THE LINE-LOCAL

;SET MASK
3 LOAD MASK
;ENABIE INTERRUPTS

<o w

. ;GET LINE I.OCAL

OFF?
-LEAVE IF IT IS ON

$GET KEYBOARD CHARACTER
°IS IT ’I‘HE SAME AS KEYOK
F SAME P_AGAIN

P
;PUT IT IN MEMORY
iLEAVE

ggzzg

;LOAD TOPINHAND
;'I‘GIETOPINCURREN'I'ADmﬁs

READ BAUD RATE SWITCHES
'S‘H‘}EI:P ISFF 4 MSB'S

:GET BAUD RATE
iSEE IF SAME AS B
STIF 01‘ SAME DO SCME'IHING

(2]

B

-

F A KEY IS DOWN
IS DOWN JUMP AROUND
THE KEYBOARD -

Q=0
0'953
B3

é

~e we we N e

:

AFN-01304A

APPLICATIONS

N

W) W L LW W R I
Fehetatattotot ettt 3
WO O VNN B W RO D!

)
N
N

323 SAVKEY: me)lc'
CMA

k]

B B 0 () Ld L) L L L) W L) WD)|

N FSRINO 00 I WN)

||
o BB B o
~N oy Wi

10 () (ad G L A Lad Lad L (L G G L (i L K L)) L L K L W L A () L A L L (i L L W
~JOWN B WN RO

NN}
Ui

H
R

A feen
i
pORT8

A
SAVKEY
A,B

by
KEYDWAN
.
M,A

H

M,B

A 40
KEYDWN
A, 90H
KEYDWN
BYPASS
H, SCNLIN
géam
FORTB
M

A
KYCHNG
KEYDAN
Q1H
BYPASS
PORTB
B, 0FFH
B

up

I

AM
8, OFFH

.

KEY IS DOWN
iGET SCAN LINE BPCK
;ROTATE IT OVER ONE -

;00 IT AGAI

sZERO A

SAVE KEY DOWN

;LEAVE

sPOINT AT RE'NRN LINE

;PUT A BaC

+SAVE RENRN LINE IN MEMORY

INT H AT SCAN LINE
'SAVE &AN LINE IN MEMORY
SET A
'SAVE KEY DOWN
'ZERO [}

.

- ~o o w8

’ 'REET KEY DOWN
;LEAVE

iGET SCAN LINE

;PUT SCAN LINE IN A

OUI‘PU’I' SCAN LINE N PORT A
$POINT AT RETURN L

iGET RE'I'URN LIN ES

;ARE THEY THE SAME?

; INVERT A

iSET FLAGS

;IF DIFFERENT KEY HAS CHANGED
7GET KEY DOWN

’

;HAS THIS BEEN DONE BEFQRE?
; EAVE: IF

; RETURN LINE

G 'READY TO ZERO B
;2 ER
’

ROI‘A'IE A

;D0 _IT AGAIN

;POI T H AT SCAN LINES
sGET SCAN LINES

,‘%E R

’

iSAVE A

;GET SHIFT CONTROL

;IS C(NTROL SET .
;SAVE A

;GET SHIFT C(N’I‘ROL

7SAVE A IN

;SETIP CONTROL

.

;IF SET I'..EAVE

g
-3
g

°§°§§
(¢]

283

35 9
g

;PUT CHARACTER INB
;GET_POR'
'S‘DRIP BIT '

;GET A BACK
;SAVE CHA

~o

So

:SET A
;SAVE KEY m
;LEAVE

{IF THE CAP LOCK BUTTON IS PUSHED THIS ROUTINE ssss IF
$THE CHARACTER IS

BETWEEN 61H AND 7AH AND IF IT IS THIS

AFN-01304A

APPLICATIONS‘ NS

022E 78
022F FE60
0231 3\2302
ﬂ236 D22302

9238 C32302

3%35 3E80
0241 EGBF

0243 47
0244 C31102 -

0247 3E40
0249 Bg
2924A 47
9248 C31102

024E 3AEEQF
@251 FE8Q -
0253 CA7802
[} 3AE7,

08273 C6EQ
@275 DA7704
9278 C30Fa1

9278 3E09
027D 32EEQF
[} 3AE73F

@2AB C30Fg1

92AE 3AE10F
9281 FE18

EZBg CAQFo1
@287 32E10F
@2BA CDB8J3
EZBD (7‘11\504

ﬂ2C3 CZﬂgﬂl
282C6

22ES50F .
92C9 CD1544

82CC C30r01

Ab?hbhbbhhhhbhbb >
BRSO N =
SNH&OQQO\U’M&WN

BERRERSE

abbbbnbbbhbh
WNH@\Dg SNV WN RN

B o B B B B B
B o8 o i 1 B L () (ad L L L L L)

T G A S

hhab&bbbbb
<

AR
2888

28

ESSQ:

.
.
o
'3
’

CPI
Jc
CPL

JNC
SUI
JMP

.

";ROUTINE ASSUMES THAT
AND SUBTRACTS
UPPER CASE ‘ASCIT

N

CHARACTER IS LOWER CASE ‘ASCIT
2an, wmcn CONVERTS THE CHARACTER TO

, ;ca'r A spcx
- 7HON BIG IS IT? ‘
STKEY LEAVE m IT'S T00 SMALL
7BH . i1S IT Too BIG)
%m : LEAVE IAF TOO BIG
STKEY FSTORE THE KEY

3"8“ ’gnmw%}% diatren

@BFH iMAKE SURE sam' IS NOT SET
B,A :PUT 0 BACK IN

SCR GO K
x 3,403 +SET B'{"ll‘i 6 IN A

B,A ;PUT IT BACK IN B

SéR ;

°THIS ROUTINE CHECKS FOR ESCAPE CHARACTERS, LF, CR,
-FF, AND BACK SPACE

CPI
Jz
LDA
CPIL
Jz
CPI

JMP

ESCP \ H SE

8aH ;SEE IF IT IS

ESS ;LEAVE IF IT IS

USC ;GET CHARAC

‘OAH ;LINE FEED

INFD :C) TO_LINE FEED

aCH ; FEED .
- FMFD +GO 'TO FORM FEED

ADH iCR,

.OGRT. ;DO A ‘CR .
@8H ;BPCK

[]gg‘l‘ A BPCK SPACE

ESKAP ;IX) AN ESCAPE

:Cl CARRY

gEaH sSEE _IF CHARACTER IS PRINTABLE
CHRPUT ;IF PRINTABLE, DO IT

SETUP ;GO BACK AND READ USART AGAIN

'THIS ROUTINE RESETS THE ESCAPE LOCATION AND DECODES
;THE CHARACTERS FOLLONING AN ESCAPE. COMMANDS ARE
'C(MPATABLB WITH INTELS CREDIT TEXT EDITOR

fvr goH ; A
STA 22 :RESET ESCP
LDA USCHR :
CPL 421 :
MOVE_CURSOR
CPL 454 FCLEAR SCREEN® CHARACTER
Jz_ - CLEAR :CLEAR
CPI 4AH CLEAR REST OF SC
Jz CLRST GO _CLEAR THE REST OF THE SCREEN
CPI 4BH - ;CLEAR LINE CHARA(
Jz . CLRLIN GO CLEAR A LINE
CPI 418 +CURSOR UP CHARACTER
Jz UBCUR iMOVE CURSOR UP
CPr 3§ *CURSOR RIGHT C
Jz RIGHT iMOVE CURSOR TO THE RIGHT
CPI 48H. :CURSOR LEFT CHARACTER .
Jz LEFT - JMOVE CRSOR T0 THE LEPT
ceI 48H . tHOM HARACTER
Jz HOME ° -HOME FHE CURSOR
JMP_ SETUP . LEAVE
-'rxus ROUTINE MOVES, THE cuasoa DOWN ONE CHARACTER LINE
fon cmsy ;PUT CURSOR Y IN A
CPl CURBOT +SEE IF ON BOTTOM OF SCREEN
Jz SETUP . :LEAVE IF ON BOTTOM
IR A + INCREMENT Y CURSOR
STA CURSY :SAVE NEW Cl
CALL . LICIR ILOAD THE CURSOR
T e iger les"sr TOCATION OF LINE
cPr gfgH ;s% SCROEN CHARACTEN
JNZ SETUP ;LEAVE IS
SHLD 30 :SAVE BEGINNING OF THE LINE
CALL LLINE :CLEAR THE LINE
Jvp SETuP LEAVE]

834 ' AFN-01304A

APPLICATIONS

@2CF CDE403
92D2 C30F@1

@2D5 CDASG4
092D8 CDCDB4

02E8 B8
@2E9 C2E582
@2EC B1DPoF
B2EF 23
02Fg g
02?2 C2FD@2
@2F5 79

@2F7 C2FDA2
02FA 210P08
@2FD 3AE10F
0300 FE18
332 Cagrgl

0367 IISg

0324 C34A03

0327 CDASG4
932A 22[-250[-‘
032D CD15@4
09330 C30Fal

2333 3AE1QF
08336 FEB9
2338 CAGFp1
2338 3D

DB
@368 C30F01

485 CLEAR:

98
491 CLRST:

497 LLP:

U o il
RO
WSRO

OVR1:

RN Y

VU LWIN) = RO CO~J WD

CLOOP:

i gt

DN
N SR\ O ~J

535 CLRLIN:

UPCUR:

252 RIGHT:

;THIS ROUTINE CLEARS THE SCREEN. i

€ALL CISCR
Jup SETUP

;OF

EaLL cawcu
GALL ADX
LXI 8, AF20H
LDA clrsx
CvP B

Jz OWR1
INR A
INX H

MOV M,C
cMP B

Nz LLP
LXT B, LAST
INX H

MOV A,B
CMP H

JNz CONCL
MOV A,C
JNz ConcL
LXI f, TBDIS
LDA clRsY
CPT . CURBOT
Jz SETUP
INR A

MOV B,A
LXI D,
MVI M, GFPH
MOV A,B
CcPI CURBOT
Jz SETUP
INR A

DAD D

MOV B8,A
MOV AH
cPL 13
R el
cet gbou
JNZ CLOOP
LXT H, TPDIS
Jup cloop

;GO CLEAR THE SCREEN
;GO BACK

;THIS ROUTINE CLEARS ALL LINES BENEATH THE LOCATION
THE CURSOR.

;CALCULATE ADDR
$ADD X POSITION

,MSPACLEANDLASTXINBMDC

SEE IF AT END

'
$LEAVE IF
sMOVE

+ INCREMENT MEM

;PUl‘ A SPACE IN MEMORY
;SEB IF A = 4FH

'I LOOP

OMPARE TO LOW
LEAVE IF IT

i IS NOT
;PUT TOP DISPLAY IN H AND L
;LOOP AGAIN

‘THIS ROUTINE CLEARS THE LINE THE CURSOR IS ON.

EacL cawcu
SHLD LOC8%
CALL CLLINE
JMp SETUP .
$THIS ROUTINE MOVES THE

toa CURSY
CPI agH
SETUP

Jz
DCR A
CURSY

STA

CALL LDCR
Jup SETUP
iTHIS ROUTINE MOVES THE

1
13

LDA CURSX
CPL 4FH
JINZ NTOVER
&t GlRoe
GD18

A
STA CURSY
MVIL A, @0H
CURSX

STA

CALL LDCIR
Jvp SETUP
INR A

STA CURSX
CALL LDCUR

JMp SETUP

$THIS ROUTINE MOVES THE CURSOR LEFT ONE CHARACTER POSITION

'CA[CUIATB
STORE
'CLEAR THE LINE
GO BACK

CURSOR UP ONE LINE.

OF LINE
X IS AT END OF LINE
ONE X POSITION
(RY POINTE

ADDRESS ‘
H AND L TO CLEAR LINE

AFN-01304A

APPLICATIONS

036E 3AE20F

B837F 32E10F
382 3E4F
384 32E20F
387 CDB8A3
%84\ 53!?”1
38E 3232ﬂF

3391 CDB8A3
1394 C 30F91

3200
0399 SZEZIF
239C 32E10F
B39F CDB803
P3A2 C3@Fgl

@3A5 3E8@
@3A7 32EEQF
P3AA C3@F@1
@3AD 3E@9
@3AF 32E2|
0382 CDB8@3
9385 C30Fa1

0388 3E89
03C6 320010
23C9

@3CA CDE443

@3DE CDB8A3
93E1 C30Fal

03E4 3EF@
@3E6 2618
03E8 24
@3E9 210008
@3EC 115090
@3EF 77
a3F9 19

a3F1 @5
93F2 C2EF@3
@3F5 C9

93F6 CDECO3
@3F9 C30Fal

@3FC 3AE10F
@3FF FE18
g«m CAS5304

9405 32E10F

WWWNNNNINNIN
W RO RNINB W

DA NNDANNANNANNNIN NN NNNNANOY

B i i W LW W W W W

22

oo
b
WO WSRO DI

648

LEFT:

HOME:

ESKAP:

CGRT:

FMFD:

CLSCR:

LNFD:

LNFD1:

foa CURSX
CPI g2
JNZ NOVER
LDA CURSY
CPI - @@H
Jz- SETUP
DCR A

STA CURSY
MVI A, 4FH
STA clrsx
CALL LDCUR
JMP SETUP
DCR A
STA CURSX
CALL

NOT JUMP AROUND
SOR

ADJUST X CURSOR
SAVE CURSOR X
URSOR

.
’
-
’
.
’

:THIS ROUTINE HOMES THE CURSOR.

MvVI A, @04
STA clrsx
STA CUR

CALL LDCUR
JMP SETUP

;THIS ROUTINE SETS THE ESCAPE BIT
;LOAD A WITH ESCAPE BIT
ESCAPE

MVI A,80H

STA P SET

me SETUP :GO BACK AND READ USART

:THIS ROUTINE DOES A CR

MVL A,00H ;ZERO A

STA clrsx ZERO . CURSOR X

CALL LDCHR ILOAD CURSOR INTO 8275

JMP SETUP :POLL USART AGAIN

:THIS ROUTINE LOADS THE CURSOR

MVI A,82H iPUT 80H INTO A

STA chTs ;LOAD CURSOR INTO 8275
CURSX :GET CUR

STA CRM $PUT IT IN 8275

LDA CURSY iGET CURSOR ¥

STA CR™M :PUT IT IN 8275

RET

$THIS ROUTINE DOES A FORM FEED

CALL CISCR ;CALL CLEAR SCREEN

LXI H,TPDIS :PUT TOP DISPLAY IN HL

SHLD LOC8 ;PUT IT IN LOCS@

CALL CLLINE -CLEAR TOP LINE

MVT A,@H ZERO A

STA clr iZERO CURSOR X

STA CURSY . 3ZERO CURSOR Y

CALL LDCIR ;LOAD THE CURSOR

Jvp SETUP #BACK TO USART

'THIS ROUTINE CLEARS THE SCREEN BY WRITING END OF ROW
;CHARACTERS INTO S ON

THE FIRST IDCATION OF ALL LINE!

:THE SCREEN.
fvr A, OFgH

;PUT EOR CHARACTER IN A

%

LOAD B W.
'GOTOMAXPL
LOAD H

:MOVE EOR INTO MEMORY
CHAI‘GB POINTER BY 80D
COUNT THE

°CON1‘INUE IF NOT ZERO
GO BACK

;CALL ROUTINE
POLL FLAGS

.
’

IF AT BOTTOM OF
LEAVE

MVI B, CURBOT
INR B
LXI H, TPDIS
LXI D, INGTH
MOV M,A
DAD D
DCR B
JNZ LOADX
RET
i rars murms DOES A LINE FEED
éa. LEDL
JMP SETUP
SLINE FEED

" CURSY
cpI CURBOT
Jz ONBOT
INR A

STA CURSY

S

IF WE ARE,
INCREMENT A
SAVE NEW CURSOR

°GE'EI:' Y LOCATION OF CURSG?

' ONE
AND L WITH TOP OF RAM
'MOVE S52H = 88D INTO D AND E

SCREEN

AFN-01304A

APPLICATIONS

0408 CDAS@4
0408 22ESQF

F3
2416 2AESQF
2419 I%SEGD

EB
G41E 210000
39

F9
24 212020

0453 2AE3gF
0456 22ESOF
ﬂdgg 115000

245D ﬂlDGﬂF

668 CLLINE:

723+

~J NI
o qﬁNNNN

WWWN
NSO 0~ICWL

ONBOT:

N~
) !
W

CALL

SHLD LOC89
CALL CLLINE
CALL LDCUR
RET

"I‘HIS ROUI‘INE CLEARS THE LINE WHOSE FIRST ADDRES!
°IS WSG.NENSH INSTRUCTIONS ARE USED TO RAPIII.Y

LHLD LOcsg
LXI D, INGTH
DAD D
HG
LXI H, 06024
sp

LXI H,20204

REPT (LNSI‘H/Z)

&
2 2
:I::x::ﬁm::n:n::m:n:x: 0 0 o i S 0 S o S T U 0 o S T s SR

HH

f4LD TOPAD
SHLD LOC8d
LXI D, INGTH
DAD

LXI B LAST
MOV

AJH
CMP 8

JNZ ARND

MOV A,L

cMP G

Xt Apors
Shio TeeAp

- ;NO INTERRUPTS HERE
:GET

iGET OFFSET

H T IN
'PUT SPACES IN HL

; DO 48 PUSH INSTRUCTIONS TO CLEAR THE LINE

2

T STACK IN HL

F CURSOR IS ON THE BOTTOM OF THE SCREEN THIS ROUTINE
S USED TO IMPLEMENT THE LINE FEED

;GET TOP ADDRESS
7SAVE IT IN :LOC83
LINE

7SAME AS
LEAVE IE‘ NUI‘ SAME

'SAME AS C
;LEAVE IF NOT SAME
HL WITH I‘OP OE‘ DISPLAY

3LOAD '
~ iSAVE NEW TOP AD

AFN-01304A

APPLICATIONS

2478 CD1534 745 . CALL ' ' CLLINE ;CLEAR LINE
@473 CDB823 746 GALL EDCIR LOAD THE CURSOR
9475 C9 147 RET
. 749 {THIS ROUTINE PUTS A CHARACTER ON THE SCREEN AND
750 ; INCREMENTS 'THE X CLRSCR FOSITION. A LINE FEED IS
;g% ,INSERTED IF 'I'HE mcnmmmn CURSOR 'EQUALS 8
477 CDA5d4 725 creuT: EALL cALcu ALCULATE SCREEN POSITION
47A TE 754 MOV AM ;c;r-."r FIRST CHARACTE
478 FEFQ 755 CPI ofau ;IS IT A CLEAR e
47D 22E50F 756 SHLD . LOCS? SAVE LINE TO C
489 CC1504 757 cz CLLINE *CLEAR LINE
483 2AESQF 758 LHLD LOC8d {GET LINE
Y486 CDCD 759 CALL $ADD CURSOR X
489 3AE7 760 USCR $GET CHARACTE
48C 77 761 MOV M,A :PUT IT ON SCREEN
48D 3AE20F 762 clrsx GET CURSOR X
498 3C 763 INR A INCREMENT CURSOR X
49] FESP 764 CPI INGTH HAS IT GONE TOO FAR?
5498 copca3 788 e DNED i56 A LINE PEED
’
9499 C3AD@3 767 JMP GGRT “DO A CR
#49C " 32E20F 768 OKl: STA CURSX ;SAVE CLR
@49F CDB8Y 769 CALL UR $LOAD THE CURSOR
#4A2 C3gFal 118 Jmp SETUP ;
72 {THIS ROUTINE TAKES THE TOP ADDRESS AND THE Y CURSOR
773 # LOCATION AND CALCULATES, THE ADDRESS OF THE LINE
774 i THAT THE CURSOR IS ON. THE RESULT IS RETURNED IN H
;;g . sAND L AND ALL REX;ISTERS ARE USED
45 21D! 777 calcu: £xr LINTAB JGET LINE TABLE INTO H AND L
4A8 3AE10F 778 LDA RSy iGET CURSOR INTO A
4AB 37 779 RLC ;ETUPAFORIOOKUPTABLE
4AC 3600 789 MVT B, 80H $ZERO_B
4AE 4F 781 MOV cia :PUT CURSOR INTO A
4AF 99 782 DAD B 7ADD LINE TABLE TO Y CURSOR
4Bg 7E 783 MOV AM +PUT LOW.LINE TABLE INTO A
1 4F 784 MOV ciA tPUT LOW LINE TABLE INTO C
482 23 785 INX H ; MEMORY POINTER
483 7E 785 MOV a,M $PUT HIGH LINE TABLE INTO A
481 47 787 MOV BlA :PUT HIGH LINE TABLE INTO B
4B5 2100F8 788 LXI H,0F8a%H ;s TWOS COMPLEMENT SCREEN U)CATION
488 39 789 DAD B $SU ET
408 SAE30F Lt 5t TopAD IORY OB ADDRESS IN H AND L
48D 19 792 DAD D :GET DISPLACED ADDRESS
4BE E3 793 XCHG iSAVE IT IN D
4BF 21 30F0 794 LXI H,0F@30H TWOS COMPLEMENT SCREEN LOCATION
4C2 795 DAD D’ iSEE IF WE ARE OFF THE SCREEN
4C3 DAC8PA4 795 Jc FIX :IF WE ARE FIX I
4C6 EB 797 XCHG ,uET DISPLACED ADDRESS BACK
84C7 C9_ ; 798 RET GO BACK
94C8 2130F8 799 FIX: LXI H,0F830H SCREEN BOUNDRY
@4CB 19 800 DAD D ;sADJUST SCREEN
24¢C C9 801 RET $GO BACK
893 $THIS ROUTINE ADDS THE X CURSOR LOCATION TO THE ADDRESS
884 PTHAT IS IN THE H AND L REGISTERS AND RETURNS THE RESULT
8096 o
94CD 3AE20F 897 ADX: LDA CURSX iGET URSOR
3459 8600 808 MVI 8,004 ERO-B
24D2 4F 89 MOV C,A -pur "CURSOR X' IN C
84D3 99 819 DAD 8 +ADD CURSOR X TO H AND L
24D C9 189 RET . - $LEAVE
813 ;THIS TABLE CONTAINS THE OFFSET ADDRESSES FOR EACH
812 iOF THE .25 DISPLAYED LINES.
2000 sis LINTAB: frnn
817 REDT (CLRBO'I‘+1)
818 DW S+ (LT THALINNUM)
819 LINNUY SET (LI UML)
94D5 2008 821+ . TPDIS+ mcm*unum)
2081 822+ x.mnum sm* (LI +1)
94D7 5008 823+ rSrb.l.uc-rﬂ*L.mul»i) '
@002 824+ LINNLM o {u 1 .
#4D9 Ap28 825+ TPD s+}$ﬂmc-m LINNUY)
2003 826+ LINNUM SET_(LINNUM
94D8 F008 827+ S4 (LNCTHALINNU)
2004 828+ LrNNuvn SET BT (LINNWt41)
94DD 4809 + 82 S+ (INGTHYLINNUY)
83g+ LINNLM SET (LINNUM4L) :
@4DF 9909 831+ '+ (LNGTH*LINNUM)
AFN-01304A

APPLICATIONS

2026 832+ . LINNUM SET (LTNNUM4L Hl
94E1 E089 833+ DW TPDIS LINNUM)
2007 832+ LINNUM SET { %! +1) ‘
B4E3 300A 33651 %mm i >}- wm'uw LINNUM)
g4E5 800A 837 oW sgof imﬂm HALINNUY)
0487 Daga 338 gfnm'“' srgx;:f S+ mcrw?lnmum)
ogss 2008 7148 DW oIS mcrul:.mnmy .
3908 842+ LINNM SET (L
g4ES 7008 843+ DW TEDLS+ (LNGTHVLINNUM)
49 844+ LINNUM SET (LINNUM+L
@4ED Cogs 845+ DW LINNUM)
846+ LINNUM SET EL (LIt
@4EF 100C 847+ W St (LNCTHYLINNUY)
800E 848+ LINNUM SEr (LT
84F) 600C 849+ DW TPDIS+ n"riucr LINNUM) .
900F - 850+ LINNUM SET (LINNU+]
#4F3 BoaC 851+ DN TPDIS+ LINNUM)
@ 852+ LINNUM SET (LINNUM Npt)
@4FS 08D g3+ DN o o FEPES+ (LNGTHALINNUM)
84F7 508D 855+ W FoDIS (mcrulmmm)
856+ LINNUM SET SLINNUM4L)
#4F9 Ag@D 857+ DW TPDIS+ (LNGTH*LINNUM)
9813 858+ LINNUM SET. ET_(LINNG#41)
o914 PoD 7 DINNM SER SET_ m&umgnum)
Rg%n 400E 32& DW éu TH*LINNUM)
381 862+ CINNUM SET_ EL (LN
OAFF 999E 863+ DW H*LINNUM)
@016 864+ LINNUM SET (L INNUPt41
8531 EGOE 865+ DW S+ (LNGTHYLINNUM)
2017 866+ LINNUM SET L L
3583 300F 857+ S+ (INGTHELINNUY)
9018 868+ DINNUM SET (LENHMeS
@585 8A0F 869+ DW S+ (LNGTHYLINNUM)
8619 g1g+ LINNLM SET (LINNUM+1)
872 KEYBOARD LOOKUP TABLE
873 {THIS TABLE CONTAINS ALL THE ASCIT cmmcmns
874 ; THAT ARE ARE TRANSMITTED BY THE TERMINAL
875 STEE C ARE ORGANIZED SO THAT 8IS 0,1
876 _ $ARE TH scmum:-:s BITS 3,4 AND S A PE RETORN CINES
3_7,; IBIT ST AR BIT 7 1§ ¢
gse7 gg 879 KYLKUP: DB 38H,39H 38 AND 9
4589 39 880 ; -
BRE m m wmian e
258 3 DB 3DH, 5CH ;= AND \
g5 ag 882 DB @8H, 00H ;BS AND BREAK
g5e 75 883 D8 75H, 69H ;LOWER CASE U AND I
g5l eF 884 DB 6FH, 70H ;LOWER CASE O AND P
2513 E 885 DB SBH, 5CH ;[AND \
8515 g 886 D8 GAH, 7FH ;LF AND DELETE
2517 6A 887 DB 6AH, 6BH ;LOWER CASE J AND K
8519 &C 888 D8 6CH, 3BH sLOWER CASE L AND ;
#4518 27 9 D8 H, ;!
o518 27 88 27H,00H ;' AND NOTHING
g510 oD 892 DB ODH,37H ;CR AND 7
gg% gg 891 DB 6DH, 2CH ;LOWER CASE M AND COMMA
gg%% %g " 892 DB 2EH, 2FH ;PERIOD AND SLASH
0523 o 893 D8 O0H, 00H ;BLANK AND NOTHING
9525 98 894 DB @9H, O0H - ;NOTHING AND NOTHING
gg%g gg 895 DB 0%H, 61H ;NOTHING AND LOWER CASE A
9529 7 896 D8 7AH, 78H ;LOWER CASE Z AND X
0528 & 897 DB 634, 76H ;LOWER CASE C AND V
@520 62 898 DB 62H ; LOWER
9520 62 9) ,2 ,6EH ; CASE B AND N

839) AFN-01304A

APPLICATIONS

354

EILL LT
WN

ESTSTS IS TSI TS TS TS TS TS
U%W OO

£

2584
2585

SoWEBBIIRERY

5E

899
900
931
992
923
904
985
996
987
908
909
910
911
912
913

914 -

915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
939
931
932
933
934
935
936
937
938
939
940
941
942

8—888888'88888%888‘888888888888%883888888888888

79H, 00H

90H, 204

' 64H,66H

674,684
004, 71H
774,734
65H, 72H

744,008

184, 314
324,334
34H,358
364,000
ZAHIZBH
29, 5FH

2BH, 004

08H, #aH
55H,49H
4FH, 50H
5DH, 8H
OAH, 7FH
4AH, 4BH

4CH,3AH -

224,004
@DH, 26H
4DH, 3CH
3EH, 3FH
00H, BoH
@oH, 00H
@0H, 41
SAH, 58H

(434, 56H

42H,4EH
S9H, 80H
80H, 204
44H,46H
47H,48H
00H, 51H
57H,53H
45H,52H
S4H,B0H
1BH,21H
40H,234
24H,254
SEH, 80H

;LOWER CASE Y AND NOTHING

;NOTHING AND SPACE
;LONER CASE D AND F
;LONER CASE G AND H
sTAB AND LOWER. CASE Q
;LOWER CASE W AND S

;

LOWER CASE E AND R

sLOWER CASE T AND NOTHING

" ;ESCAPE AND I
.3 2AND 3

; 4AND 5
; 6 AND NOTHING
;* AND)

";(AND -

3+ AND NOTHING

;BS. AND BREAK

;U AND I

;0 AND P

7] AND NO CHARACTER
;LF AND DELETE

;J AND K

;L AND :

;" AND NO CHARACTER
;CR AND & '
;M AND <

;> AND ?

;BLANK AND NOTHING
;NOTHING AND NOTHING

~ ;NOTHING AND A

3Z AND X
;CAND V

;B AND N

;Y AND NOTHING
;NO CHARACTER AND SPACE
;D AND F

3G AND H

;TAB AND Q

sW AND S

;E AND R

;T AND NO CONNECTION
;ESCAPE AND !

;@ AND #

;S AND &

;" AND NO CONNECTION

AFN-01304A

APPLICATIONS

NI
RaBeRaTaTan
AEEESRRRGIS

S|
Iete!
W
Shs

95C4 09

REBeEaRs

g [HL|/OIERS
S[-|_VRWONS

VRS
eieis
g:ﬂ

25D9 @89
25D1 28
25D2 00
2503 14
25D4 00
95D5 BA
@5D6 09

oW

8
9

2 2 8 2288

951
952
953
954
955
956
957
958
959
969

982
983
984
985
986

EEEEEIEEREEREEREBE BEBEEEREEREREERBERE O

004, 00H
00H, 3eH
00oH, 60H
06H, 0gH
15H,09H
@FH, 104
@BH, OCH
OAH, 7FH
@AH,PBH
OCH, AgH
00H ,00H
@DH, AoH
@DH, ot
00H,00H
00H,00H

@3H,16H
@2H,0EH
194, 4¢H
@94, 20H
04H,06H
07H,08H
B0H,11H
174,134
@6H,12H
14H,00H
1BH, 1DH
1EH, 1CH
14H, 1FH
P04, 6oH

. vo e

be

DB

DB BAGH , 00H
DB 50H,080H
DB 28H,00H
DB 144,004
DB @AH, BoH

00H,80H -
1AH,184

80H,@2H,40H,01H

IS IS WHERE THE CONTROL CHARACTERS ARE LOOKED UP

sNOTHING

;NOTHING

;NOTHING

sNOTHING

;CONTROL U AND I
;CONTROL O AND P
7CONTROL [AND \

;LF AND DELETE
;CONTROL J AND K
;CONTROL L AND NOTHING
sNOTHING

;CR AND NOTHING
;CONTROL M AND COMMA
sNOTHING

sNOTHING

;NOTHING AND NOTHING
sCONTROL Z AND X

;CONTROL C AND V

;CONTROL B AND N
;CONTROL Y AND NOTHING
;NOTHING AND SPACE

;CONTROL D AND F

;CONTROL G AND H

;NOTHING AND CONIROL Q
;CONTROL W AND S

;CONTROL E AND R

;CONTROL W AND NOTHING
;ESCAPE AND HOME (CREDIT)
CURSOR UP AND DOWN (CREDIT)
iCURSOR RIGHT AND LEFT(CREDIT)
sNOTHING

LOOK UP TABLE FOR 8253 BAUD RATE GENERATOR
AeH,d5H, 69H, 334

;75 AND 11@ BAUD
;150 AND 308 BAUD

7600 BAUD
71200 BAUD
12408 BAUD
14800 BAUD
19500 BAUD

84

AFN-01304A

APPLICATIONS

987 ;
388 {DATA AREA
OFEL ' 998 bé oFm1
‘ v E1H
0081 39 CRSY: IS
9001 992 CURSX: IE.
0002 993 TOPAD: I6 2 .
9092 994 LOCBA: B 5
0001 995 USCHR: DB i
0002 995 CURAD: I8 2
001 997 KEYDWN: DS i
3001 398 KBCHR: DB 1
9001 999 BAUD: B 1
001 1908 KEYOk: DB 1
001 1001 ESCp:. IS 1
ag01 1093 Revrra: BB 1
0061 1004 SONLIN: DB 1
1005 END

PUBLIC SYMBOLS

EXTERNAL SYMBOLS . :

USER SYMBOLS
ADX A 94CD ARND A 946D BAUD A QFEC BDLK A 95C5 BTDIS A 0F80 BYPASS A 048F
CAPLOC A 022E CGRT A @3AD CHREC A @24E CHRPUT A 0477 CLEAR A @2CF CLLINE A 0415
GNAE Tein So il S ite of i HE
CURSX A @FE2 CURSY A @FEl A B2AE ESCP A ﬂggﬁ ESKAP A @3AS ESSQ A 9278
FMFD A G%CA E_ A 4167 GD18 A @359 HOME A 0% 7 IN75 A A0OF9 INT75 A 1401
A @ KEYINP A @121 KEYOK A @FED KEYS A @131 KPTK A @084 KYCHNG A 41
KYLKUP A @587 A OFD LDCUR A 43BS LEFT A G36E LINNUM A @919 LINTAB A 04D5
A 23 LNFD1 A @3FC TH A 0952 A Q3EF LOC83 A @FES LOOPF A G@A7
LPKBD A 0098 NO' A 938D N A 9364 OK1 A #49C OK7 A 015C 53
POPDAT A 0034 A 1897 A 188 A 1802 RDKB A 018F RETLIN A @FF@
A @1 SAVKEY A g1AF . . SCNLIN A @FF1 SCR A @211 SETUP A g10F SHCON EF
STBAUD A @gDC STKEY A 0223 STPTR A OFEQ TOPAD A @FE3 TPDIS A 0809 TRANS A @148
uPl A 01E9 UPCUIR A 9333 USCHR A @FE7 USTD A A@G0Q USTF A AGAl ‘ .

ASSEMBLY COMPLETE, NO ERRORS

842 AFN-01304A

