Memory Management on the
StrongARM** SA-110

Application Note

September 1998

Order Number: 278191-001

Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or otherwise, to any intellectual
property rights is granted by this document. Except as provided in Intel's Terms and Conditions of Sale for such products, Intel assumes no liability
whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to
fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not
intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The SA-110 may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current
characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be obtained by calling
1-800-548-4725 or by visiting Intel's website at http://www.intel.com.

Copyright © Intel Corporation, 1998
*Third-party brands and names are the property of their respective owners.

Application Note

intel.

Memory Management on the StrongARM** SA-110

Contents

1.0 T g o [N Tl o] o PP POTPPRRR 1
1.1 Memory Management CONCEPLSuuuuuuueaaaaaaa e e e e et ee e 1
2.0 The ARM Architecture - MMU ... e e e e e e e e e e e e e eeeeaaanes 3
2.1 The CoproCesSor INTEIFACEuiei e 5
3.0 The SA-110 IMPIEMENTALION........oiiiiiieie e e 7
3.1 MMU and the CAChES........ccuiieiie it e e re e e e e ae e e e ennes 7
0 0 R [0 1~ 1 £ 0 Tox 1 o o I =T 111 o PR 8
3.1.2 Data CacChing......ccocoiiiiiiieieece e ———— 8
700 I B OF- ol [I 1V oY g =T =T 1= o | SO 8
3.2 LI 1Y = T = Vo 1T T o PP 9
3.3 MMU Fault HANAING.ueeiiiiieee e s e r e e e e e e e e s e nnes 9
3.3.1 PrefetCh ADOIoooiiiiee e 10
3.3.2 DAtA ADOI e 10
4.0 MMU Initialization and RESEL.........coiiiiiiiiie it e e e 11
4.1 A WOTKEA EXAMPIE. ...ttt e e e e e e e e e aaaes 12
A MMU Initialization @nd RESEL...........ooviiiiiiiiiccrii e et e e 13
B COPrOCESSON ACCESS IMBICIOS.eeeiieieeeiie ittt ettt e e e e e s et e e e e e e e s s s bbb e ee e e e e e s s e e snnnnes 19
Figures
1 Virtual-to-Physical Address Translationc..eueeiiiiiiiiiiiiiiiee e 2
2 Level 1 Page Table FOIMAL..........c.uuuiiiiiiiiaiaaeei e 4
3 Level 2 Page Table FOrMaALt..........c.uuuiiiiiiiiaaiei et 4
Tables
1 Exception Vectors and Their Prioritiesuvveiiiiiiiiiiiieeiee et 4
2 CP15 REQISEr SUMMAIY.......uuvuiiiiieiieeesesissiitireeerreeeeeessssssssstarearrreeaeseesaansnsnreeseeees 5
3 ACCESS PEIMUSSIONS ...eeiiiiiiiiiesitiiee e sttt ettt e ettt e e s st e e e s st e e eeessanbeeeesssnbeeeeenas 5
4 DOMAIN ACCESS VAIUES ...ttt 6
5 Cp15 Fault Status Register FOrmMat...........oooccvviiiiieiiee e 6
6 Fault Status ENCOAINGvvviiiiiiiiie e e e e e e e e e e e e e e e e ee s 6
7 Cache Control OPEratiONS.........uuuiiiiieeei i e e e e e e e e e e e e ssrarreaeees 8
8 TLB CoNtrol OPEratiONS.........ccceieiiiiieieeiee e e s e e st e e e e e e e s s r e e e e ee e e s e e snnenneees 9

Application Note

1.1

Memory Management on the StrongARM SA-110

Introduction

The SA-110 isthe first StrongARM** implementation of the ARM** architecture. This document
provides an overview of memory management followed by details specific to the ARM
architecture and the SA-110 implementation itself. The MMU (memory management unit) model
for the ARM architecture is described along with its relationship to cache and write buffer control.
Behavior of the SA-110 is then discussed and sample code provided for a simple one-to-one
mapped virtual-to-physical translation.

Remember that the ARM Systems Architecture Manual and the SA-110 Technical Reference
Manual remain the definitive texts for how the device operates, and provide fuller explanationsin
many Cases.

Memory Management Concepts

Memory management can be described as the ability to manage the system address space, typically
using a blend of software and dedicated hardware. A memory-managed address space as seen by
the program is often referred to as a virtual address (VA) space, which isthen translated into a
physical address (PA) prior to accessing memory or |O.

Memory management provides three functions:
* Access control
¢ Relocation (address translation)

* Consistent state allowing afaulting access to be corrected and replayed by an exception
handler with the same result as a normally completing access. This isthe key feature required
for a demand-paged memory system.

Translation is performed using page tables and may involve multiple steps, each step providing
finer granularity on the trandlated page size. Figure 1 illustrates atwo-level lookup. A predefined
tranglation base is merged with the first-level index to provide the address of a page table entry
(PTE). The entry contains the base of the second-level table along with any associated control
information required by the MMU. Combining this base with the second-level index from the
original VA provides an address for the second-level PTE. This entry then provides the physical
base, which is concatenated with the PA index to provide the required physical address. Other
fieldsin the PTE are used for access control according to the MMU model.

Application Note 1

Memory Management on the StrongARM SA-110

Figure 1.

Virtual-to-Physical Address Translation

intel.

| Translation base l 0s |
1%-level index | 2"-level index | PA index
Translation base l 1°level index | 0s |
| Page tabIeIZ base l Control (entry type, permissions, etc.)
| Page table 2 base l 2"Jevel index | Os |
| Physical base address | Control fields/flags
| Physical base address | PA index |

MMU register

Virtual address

1%"-level table address

PTE (1st level)

2"-level table address

PTE (2"-level)

Physical address

The process of performing the above translation is commonly known as table walking, and may be
performed in hardware or software. For performance reasons, microprocessors implement a cache
of VA=>PA entries in trandlation lookaside buffers (TLBs) as part of the MMU.

Many schemes can be implemented using the principles outlined. Multitasking systems can

implement virtual address spaces on a per-process basis, each with their own pagetables, or sharea
single space across all processes. Protection can be used to prohibit access for both privileged and
nonprivileged program execution. Page faults result in access aborts whereit is up to the exception
handler to determine the cause of the fault, and take the appropriate corrective action (for example,
map in the requested page from disk to physical memory on an application page miss). Theonusis
normally on MMU software to keep al the TLBs and translation tables consistent and avoid

trand ation conflicts.

Application Note

Memory Management on the StrongARM SA-110

2.0 The ARM Architecture - MMU

The ARM architectureis currently at Version 4. The evolution through the four versionsis
summarized in the preface to the ARM Architecture Reference Manual. Version 4 of the
architecture introduced support for what is known as the Harvard Architecture - a computer
architecture model with separate instruction and data paths to memory.

The main features of the ARM MMU architecture are as follows:

Application Note

All system architecture functions are controlled by reading or writing an ARM register (Rd)
from/to ablock of sixteen 32-bit registers (Rn) accessed at coprocessor number (cp_num) 15.
Control bits are transferred within the opcode_1, opcode 2, and Rm instruction fields where
necessary.
Theinstruction format is:

MRC/MCR p<cp_num>, <opcode 1>, Rd, cRn, cRm, <opcode 2>
A single set of tablesis used for both instruction and data fetches irrespective of whether a

Harvard or Von Neumann (unified address and data access stream) architecture is
implemented.

Caches (instruction, data, or unified) are controlled through a combination of the system
control coprocessor register and control bitsin the page tables.

1 MB sections are supported through a single-level lookup.
64 KB or 4 KB pages are supported by a second-level lookup.
Level 1 page tables consist of 4096, 32-bit entries (16 KB table size).

Level 2 page tables consist of 256, 32-bit entries (1 KB table size) for each section. 64 KB
page table entries are replicated sixteen times each within the table. Thisis because the level 2
table and PA page indices overlap by four bitsin the VA.

Sections and pages can be protected using access permissions (AP bits) with no_access,
read_only, or read write for supervisor and user modes.

Domains can be used to provide an additional level of protection across arbitrary PTEs.
Domain settings determine whether accessis enabled or not, and if enabled, whether the
access permission checks are invoked or bypassed.

Control bits are provided in the PTEs for enabling caching and write buffering on a
section/page basis.

Memory Management on the StrongARM SA-110

Figure 2.

Figure 3.

Table 1.

intel.

The first- and second-level page table entries are asillustrated in Figure 2 and Figure 3,

respectively.
Level 1 Page Table Format
Fault SBZ 0|0
Page S
J Page Table Base Address B Domain IMP 0|1
Table z
S |
Section Section Base Address SBZ AP B Domain M[C|B|1]|O0
Z P
Reserved SBZ 1|1
Level 2 Page Table Format
Fault SBZ 0|0
Large Large Page Base Address SBZ AP3 | AP2 | APL | APO [C|B|O]|1
Page
Small
Page Small Page Base Address AP3 AP2 AP1 APO |C|B|1]|0
Reserved SBZ 1)1

Apart from the performance impact, translation is transparent to the program until an exception
occurs, when the processor will enter abort mode and start executing from either the prefetch_abort or
data_abort exception vectors. Table 1 provides asummary of al exceptions and their priorities.

Exception Vectors and Their Priorities

Exception Type Exception Mode Vector Address Priority
Reset SvC 0x00000000 1 (highest)
Undefined instruction UNDEF 0x00000004 6
SW interrupt (SWI) sSvC 0x00000008 6
Prefetch abort
(instruction fetch memory | ABORT 0x0000000C 5
abort)
ﬁtﬁﬁr@(’éﬁﬁta access | ABORT 0x00000010 2
IRQ (interrupt) IRQ 0x00000018 4
FIQ (fast interrupt) FIQ 0x0000001C 3

The ordering of data abort and FIQ exceptions are to ensure the correct capture of any faulting

status that may happen coincident with the fast interrupt. Fast interrupt status is unchanged on entry
to the data abort exception, meaning that a FIQ exception (assuming FIQs is enabled) will execute
immediately on entry to the data abort handler, should this scenario occur.

Application Note

Memory Management on the StrongARM SA-110

2.1 The Coprocessor Interface
Thefirst 9 of 16 coprocessor 15 (cpl5) registers are architected as shown in Table 2.
Table 2. CP15 Register Summary
Register Reads Writes MMU Function
0 ID register UNPREDICTABLE —
1 Control Control X
2 Translation Table Base Translation Table Base X
3 Domain Access Control Domain Access Control X
4 UNPREDICTABLE UNPREDICTABLE —
5 Fault Status Fault Status X
6 Fault Address Fault Address X
7 Cache Operations Cache Operations X
8 TLB Operations TLB Operations X
The contral register includes bits for:
* Enabling the MMU
* Enabling address alignment fault checking
* Cache enables - unified/data and instruction (when separate | & D) bits
* Write buffer enable
¢ System (S) and ROM (R) protection hits.
Please see the SA-110 reference manual for afuller description and complete listing of this register.
The S and R hits are used in conjunction with the AP bitsin the page table entries to resolve the
protection for a given mode within a domain according to Table 3.
Table 3. Access Permissions
AP S R Supervisor_Mode User_Mode
00 0 0 No Access No Access
00 1 0 Read only No Access
00 0 1 Read only Read Only
00 1 1 UNPREDICTABLE | UNPREDICTABLE
01 X X Read/Write No Access
10 X X Read/Write Read Only
11 X X Read/Write Read/Write

Application Note 5

u
Memory Management on the StrongARM SA-110 I nt9| ®

The Domain Access Control Register provides sixteen pairs of control bits, which are used to
qualify the domain field in a PTE according to Table 4.

Table 4. Domain Access Values
Domain_crl Access Description
00 NO AcCCess All accesses will cause a domain
fault exception
: Accesses checked against the AP
01 Client bits (see Table 3)
10 Reserved UNPREDICTABLE
11 Manager No access permission checks

Data aborts update two cpl5 registers. Cpl5_6 isupdated with the faulting virtual address. Cp15 5
is updated with fault status as summarized in Table 5 and Table 6.

Table 5. Cp15 Fault Status Register Format
[31:9] [8] [7:4] [3:0]
UNPREDICTABLE/SBZ 0 domain status (FS)
Table 6. Fault Status Encoding
Priority Sources Domain FS[3:0]
highest Terminal exception invalid 0b0010
Vector exception invalid 0b0000
Alignment invalid 0b00x1
Ext. abort on translation 1st level invalid 0b1100
2nd level valid 0b1110
Translation section invalid 0b0101
page valid 0b0111
Domain section valid 0b1001
page valid 0b1011
Permission section valid Obl1101
page valid Ob1111
Ext. abort on linefetch section valid 0b0100
page valid 0b0110
Ext. abort on non-linefetch section valid 0b1000
lowest)
page valid 0b1010

Processors may only implement a subset of these encodings.

6 Application Note

3.1

Memory Management on the StrongARM SA-110

The SA-110 Implementation

The SA-110 has been implemented to V4 of the ARM architecture. It isthefirst ARM processor to
adopt a Harvard Architecture and has the following features:

* A virtually addressed, 16 KB instruction cache. The instruction cache is 32-way set
associative, with a 32-byte cache line size. No coherence is maintained with main memory.
Replacement uses a round-robin algorithm.

¢ A virtualy addressed, 16 KB data cache. The data cacheis 32-way set associative writeback
cache, with a 32-byte cache line size. Each entry has an associated valid bit and two dirty bits,
allowing victim writes to be resolved to half lines for more efficient usage of system bandwidth
to main memory. All victim writes occur through the write buffer. Data cache entries are only
allocated on reads and use a round-robin replacement algorithm. The cache entries also include
physical tag bitsto allow writebacks without additional address trandation.

* Fully associative instruction TLBs. These are updated using a round-robin algorithm.
* Fully associative data TLBs. These are updated using a round-robin algorithm.

¢ FEight 16-byte entry write buffers. These are used by the writeback cache as well asfor
handling buffered writes that miss the data cache. Each entry includes physical address, data,
and byte mask information.

The SA-110 implements a five-stage pipe:

Fetch fetches an instruction from Icache or memory. An Icache misswill stall the fetch stage
of the pipeline until the full cacheline (eight memory fetches) is completed. Instruction
fetch permission checks occur here and will be flagged, however, the exception will
only execute if the instruction enters the decode stage. Branching may mean that the
faulting condition never occurs.

Decode decodes the instruction and reads input values from the register file.
Execute executes shifts and arithmetic operations. Multiplies start in this stage.

Buffer data cache or memory accesses. The integer multiplier completes execution in this
stage; it retires 12 bits per clock. Results from the execute stage are buffered here, but
available via bypasses in most cases. Translation and permission checks occur in this
stage for data accesses, and will fault immediately if an exception is generated.

Writeback theregister fileis updated with memory or result data.

All translation occurs automatically once the tables have been set up, the coprocessor registers
initialized, and the MMU enabled. Any of the control register functions (cpl5_1 register writes)
can be enabled in paralld; it is not necessary to perform a separate read-modify-write sequence to
enable the MMU. Table walks will generate 32-bit reads from external memory. These reads do not
check the write buffer, assuming that any updates to the tables have been flushed before translation
uses the modified entries.

MMU and the Caches

The PTEs contain C and B bits for enabling caching and write buffering, respectively. While parts
of the memory subsystem can be set up as bufferable but noncachable, the B bit should always be
set for cachable D-space. Thisis because the write buffer is inherently used for writebacks. The
SA-110 will automatically buffer cachable writes irrespective of the state of the B bit.

Application Note 7

u
Memory Management on the StrongARM SA-110 I nt9| ®

3.1.1

3.1.2

3.1.3

Table 7.

Instruction Caching

The Icache is always checked, even when disabled. Permission checks will occur if the MMU is
enabled, otherwise, all hitswill be taken. The Icacheis enabled by setting bit 12 in cpl5 1.

If the MMU is enabled, instruction caching is dependent on the state of the C bit in the PTE. If the
MMU isdisabled, instruction fetches are considered cachable by default; instruction fetches from
memory are allocated to an entry if the Icache is enabled.

Instructions can be locked into the |cache by running a program with the |cache enabled, then
disabling the Icache to stop any Icache updates. The other option is to bound cachable codein VA
space such that no reallocation occurs, or it is minimized to a system-defined subset of the code.
Additional code paths are then always fetched from noncachable VA space.

Data Caching

Aswith the Icache, the Dcache is always checked, even when disabled. It is enabled by setting bit
2incpl5 1.

The MMU must be enabled and the C bit set for entries to be allocated in the Dcache. Dcache
entries can be locked in asimilar manner to the Icache, or by disabling the MMU with valid entries
in the Dcache. It is not possible to lock portions of the cache.

Cache Management

When the MMU is disabled, the cache TAGs equate to physical addresses. Any mapping changes
of virtual to physical addresses must ensure that the caches are flushed appropriately. Remapping
can occur when the MMU is enabled, when it is disabled, or whileit is enabled. Coprocessor writes
to cpl5_7 provide mechanisms to manage the caches as summarized in Table 7.

Cache Control Operations

Function Opcode_2 Rm Data
Flush 1+D 0b000 0b0111 Ignored
Flush | 0b000 0b0101 Ignored
Flush D 0b000 0b0110 Ignored
Flush Dcache entry 0b001 0b0110 Virtual address
Clean Dcache entry 0b001 0b1010 Virtual address
Drain write buffer 0b100 0b1010 Ignored

Thewhole Icacheisflushed by asingleinstruction, whereas the Dcache can be flushed collectively
or on asingle-entry basis. To ensure that memory coherence is maintained, Dcache entries need to
be cleaned prior to flushing. A loop isrequired to clean all Dcache entries. A fetch from a
read_only of virtual addresses can be used as an aternative to a coprocessor clean instruction for
this purpose. A clean loop needs to be terminated with a drain write buffer command to ensure that
al the victims are written to main memory.

Cache flushes may be necessary for several reasons:
¢ Copying code from ROM to RAM prior to execution.

¢ Self-modifying code. In this case the modifications will occur as data, but execution will occur
from the separate instruction stream.

¢ Context switches involving changes to the memory map.

Application Note

u
I nt9| ® Memory Management on the StrongARM SA-110

3.2 TLB Management

Aswith the caches, it isimportant to flush potentially conflicting entries when a context switch
occurs. Four coprocessor write instructionsto cpl5 8 are provided to manage the TLBs as
illustrated in Table 8. It isagain up to the MMU software to ensure that translation correctnessis
maintained when PTEs are modified.

Table 8. TLB Control Operations
Function Opcode_2 Rm Data
Flush 1+D 0b000 0b0111 Ignored
Flush | 0b000 0b0101 Ignored
Flush D 0b000 0b0110 Ignored
Flush Dcache entry 0b001 0b0110 Virtual address
3.3 MMU Fault Handling

ARM supports five types of exceptions as summarized in Table 1.
* Two levelsof interrupt (IRQ and FIQ)
* Memory aborts
¢ Undefined instruction
¢ Software interrupts (SWIs used for OS syscalls)

Memory abort is the exception mechanism applicable here. The abort mode may be entered from
one of two exception vectors, depending on whether it was an instruction or data fetch that caused
the fault. The MMU can generate a memory abort for four reasons.

¢ Anaignment fault on word or halfword loads or stores when two/one | east significant address
bits are nonzero, respectively.

Alignment faults are enabled using bit 1 of cpl5 1.
* A trandation fault when the PTE accessed is marked invalid.
¢ A domain fault when access is disallowed by the domain protection in the current mode.

* A permission fault when access is disallowed by the access permission (AP) bitsin the current
mode.

An external abort pin can also be used to cause a data abort for instruction reads, data reads, PTE
reads, unbuffered writes, or lock cycles on the system bus.

Application Note 9

u
Memory Management on the StrongARM SA-110 I nt9| ®

3.3.1

3.3.2

10

Prefetch Abort

Prefetch aborts occur as aresult of an external abort, translation fault, or protection violation. They
areflagged at the fetch stage, but will only cause an exception if it is about to execute. Itisup to the
prefetch exception handler to recover the faulting address from the link register (R14[value-4] for
the SA-110) and use this in conjunction with the relevant cpl5 registers to determine the cause of
the fault and how to recover. The fault status (cp15_5) or the fault address (cp15_6) are not updated
on prefetch aborts.

Once the fetch stage has seen an abort, no other instructions will be prefetched until the program
counter (PC) has been changed by an exception, branch, or explicit write to R15.

When returning from the prefetch abort fault handler, the following instruction will reload the PC
and CPSR, then replay the previously faulting instruction:

SUBS PC, R14_abt, #4

Data Abort

The cpl5 fault status and address registers are used to determine the VA and cause of the abort. The
registers can also be written by MCR instructions, which is useful for test and debug purposes. The
saved PC for data aborts is the actual_PC+8.

The SA-110 supports only a subset of the architected fault status encodings listed in Table 6. The
terminal exception is not supported.

When returning from the data abort fault handler, the following instruction will reload the PC and
CPSR, then replay the previously faulting data access:

SUBS PC, R14_abt, #8

Application Note

u
I nt9| ® Memory Management on the StrongARM SA-110

4.0 MMU Initialization and Reset

To enable the MMU, the following steps are necessary:
* Initialize the domain and tranglation base address registers.
* Initializethelevel 1 and level 2 (where appropriate) page tables.
* Enablethe MMU (and optionally, alignment faults, WB, and | and D caches).

To disable the MMU:
* Clean the Dcache as appropriate.
¢ Disable write buffering and the caches.
* Disablethe MMU.

* Ensurethat al cache entries are flushed where VA address conflicts may exist (valid entries
will match as physical addresses when the MMU is disabled).

Note: When enabling or disabling the MMU, up to three ingtructions will be fetched and executed prior to
the change taking effect. The actual number is dependent on whether the instructions hit in the Icache
or not. Icache hitswill propagate down the pipeline while the MCR instruction is executing, and will
be drained through the execution path prior to the trand ation change taking effect. | cache misses will
introduce pipeline bubbles that effectively introduce NOPs to the pipeline. This must be accounted
for in any MM U management routines where the trandated and untrandlated addresses differ. It is
normal practice to enablethe MMU with adirect-mapped (VA = PA) trandlation, at |east for the pages
used within the MMU control code. If it is necessary to change these specific pages, program control
should enable the MMU, switch to another area of memory, then modify these pages from there.
Similar careis required when disabling the MM U, should that be necessary.

If the page with the MMU_enable is changed as part of this step, the MM U enabling/disabling
routine must ensure the cpl5_1 write instruction isimmediately followed by the ITB and Icache
flushes, and that they all reside on the same cacheline. Thisis bad programming practice, which
should be avoided for code building/crafting reasons.

Application Note 11

u
Memory Management on the StrongARM SA-110 I nt9| ®

4.1 A Worked Example

A worked example isincluded as Appendix A. This code was written for the EBSA-110, a
verification and example design available as an HDK (hardware design kit) through Intel’s sales
channels.

HDK order number: QR-21A81-11

This reference manual and other Intel literature may be obtained by calling 1-800-332-2717 or by
visiting Intel’s website for developers at:http://developer.intel.com. The HDK includes the relevant
technical documentation, the hardware database (diskettes), and a firmware tree (diskette).

The code illustrates the following:
¢ A one-to-one mapping of VA and PA address spaces
* 1 MB sectionsfor 16 MB of DRAM (2 SIMM dlots)
* 64 KB pages for synchronous SRAM, ROM, and FLASH
* Cachable, bufferable accessto SRAM and DRAM
* Read only user accessto ROM and FLASH (supervisor’s have write access, too)
¢ Invalid accesses configured for nonsupported memory space
¢ Simple noncachable, nonbufferable, aliased accessto IO space

Note: The code assumes the MMU is disabled. It modifies the base address register before it generates
the page table entries.

The code was designed as part of atest harness for running demonstrations and software benchmarks
from demon, the remote debugger supplied with ARM’s Software Development Tool kit (SDT)
V2.0x. Thisrequired an extralevel of link register preservation when entering supervisor mode from
the demon environment, which should be self-explanatory from the comments in the code.

The reset code used to flush the caches and TBs runs aread |oop from an area of VA space reserved
specifically for this purpose. The areais mapped to SSRAM because this provides the fastest
access path. All other valid VA addresses are direct mapped to the same physical address. The
original code (as shipped in the early versions of the HDK) read ROM. Thisisavery slow path that
includes 8-bit to 32-bit packing.

The flushes immediately following the disable command are only guaranteed because the VA and
PA trandations are the same (as described as described at the beginning of this section).

The code iswritten in ARM assembl er.

Appendix B includes source code definitions plus macro calls for all coprocessor accesses.

12 Application Note

intel.

Memory Management on the StrongARM SA-110

Appendix A MMU Initialization and Reset

Application Note

Mernory Managenent and Cache Initialization Routines for EBSA-110

Hi story:

V0.1 31-Jan-1996 DB first draft
V0.2 11-Apr-1996 DB wupdate include file references and add conditional assembly options
V0.3 02-Aug-1996 DB cleanups and "fast path" clean |oop exanple for appnote rel ease

Rout i nes which can be conditionally assenbled to enabl e nenory managenent
with the follow ng cache options:

no caches enabl ed

no caches with wite buffering

I cache only

Icache only with wite buffering
Dcache only with wite buffering
| and Dcache with wite buffering

PLEASE NOTE:

1) Dcache with no wite buffering is a nonsupported node
2) Base register updated before tables assumes MW i s DI SABLED
3) MW enabled with S and R bits in CP15_1 both cleared
(AP bits govern the access nmaking S & R "don’t cares")
4) Page tables require to be naturally aligned to their size
level 1 tabl es occupy 16KB
I evel 2 tabl es occupy 1KB
this is stricter/nore efficient than an alignnment restriction to the page size

RO used as the default scratch data register for these routines
Rl used as the default scratch address register for these routines

Argunent s: mmu_init(argl)- | C/ DO/ WB enabl es passed as a val ue
mmu_reset()- nil

| NCLUDE address_map_h. s

| NCLUDE EBSA 110 defs_h.s

EXPORT MMU_i ni t
EXPORT MWU_r eset

KEEP

13

Memory Management on the StrongARM SA-110

AREA MMU_code, CODE, READONLY

; wite the translation base register

; set the donmmin register:

;*** PLEASE NOTE***

domai n0 CLI ENT, domai nl1-15 NO_ACCESS

- reassigning the base register before the tables***

B are set up assumes the MMJ is DI SABLED ***

set up the page tables - all
DRAM - Read/wite all

16 x 1MB sections for

- cachabl e,

for domainO, flat address nap

buf f erabl e

2 x 64KB | arge pages for SSRAM - Read/Wite all

; - cachabl e, bufferable

; 1MB section for FLASH - Read/Wite spvr, Read-_only user
; - cachable, bufferable

; 8 x 64KB | arge pages for ROM - access as per FLASH

; - cachabl e

; *SPECI AL SECTI ON* reserved for clean |oops
; ***dedi cated VA space (1MB @ CLEAN BASE)
; ***mapped to SSRAM for fastest access

; ***exception to flat
al i ased DRAM SSRAM FLASH and ROM
; 10 map enabl ed noncachabl e,

; no access for

; Flush 1 TBs and DTBs
; Flush the Icache

; Enable MMJ, alignnent faulting,

; ...Dcache and Wite Buffer

7o, next

;5 comment out when used with.c files

;3 ENTRY

GBLACP15_1_MASK

MW_ini tMOV R2, LR ;

; needed to ensure the correct

map translation rule

nonbuf ferable incl. aliases

and conditionally the Icache,

line required for standal one execution only

save Link Register prior to denpn syscall

return address

i ...in a denobn environnent

MRS R1, CPSR)

SW SW _EnterCs

; Denon syscal |

reinstate Link Register for
reinstate saved status to the *SPSR* for

need to save the status too!!!

to switch to spvr node

return

correct return

save APCS register variables on the stack

MV LR R2 :
MBR SPSR, RI1 ;
STMDB sp!, {R4-R8}
LDR Rl, =(1C_ON + DC_ON + WB_ON)

AND RO, RO, R1

14

;sanitize argunent passed to only valid bits

Application Note

TTCLR

DRAM

Application Note

Memory Management on the StrongARM SA-110

STMDB sp!, {RO};then save the argunent on the stack

LDR RO, =Level 1tab ; TTB address is 2**14 aligned
WRCP15_TTBase RO ;Initialize Translation Tabl e Base reg.
LDR RO, =1

WRCP15_DAControl RO ;Initialize Domain Access Control

;;First clear all TT entries - FAULT

LDR RO, =0 ; 1 oop count
LDR R1, =Level 1tab
LDR R2, =0

LDR R3, =L1_TABLE_ENTRIES + 2*L2_TABLE_ENTRI ES

LoopSTR R2, [R1], #4

ADD RO, RO, #1 ; increnment |oop count
CW R3, RO

BNE TTCLRLoop

;; Configure DRAM section accesses

LDR R1, =Level 1tab
LDR R2, =DRAM SI ZE
LDR R3, =0 ;1 oop count

LoopLDR RO, =DRAM BASE + DRAM ACCESS

ADD RO, RO, R3, LSL #20 ;. add section nunber field
STR RO, [R1], #4 ; store TT entry

ADD R3, R3, #1 ;increnent | oop count

CW R2, R3

BNE DRAM.oop

; Configure CLEAN_LOOP speci al section access

’

’

LDR R1, =Level 1tab + CLEAN BASE: SHR: (20- 2)
LDR RO, =SSRAM BASE + FLASH_ACCESS ;;mp to SSRAM with

;; read_only user space
STR RO, [Ri1]

; Configure SSRAM section access

LDR R1, =Level 1tab + SSRAM BASE: SHR: (20- 2)
LDR RO, =Level 2t ab_SSRAM + L2_CONTROL
STR RO, [RIi]

;; Configure FLASH section access

LDR RL, =Level 1tab + FLASH BASE: SHR (20-2)
LDR RO, =FLASH BASE + FLASH ACCESS
STR RO, [Ri]

15

Memory Management on the StrongARM SA-110

LDR R1,
LDR RO,
STR RO,

; Configure ROM section access

=Level 1t ab + EPROM BASE: SHR: (20- 2)
=Level 2t ab_ROM + L2_CONTROL
[R1]

;Configure 10 section accesses to the end of nenory

LDR R1, =Level 1tab + | O BASE: SHR: (20-2)
LDR R2, =L1_TABLE_ENTRI ES/ 4 ; update top quartile of TT entries
LDR R3, =0 ; loop count
I O _LoopLDR RO, =IO BASE + | O ACCESS
ADD RO, RO, R3, LSL #20 ; add section field
STR RO, [R1], #4 ; store TT entry
ADD R3, R3, #1 ; increnent |oop count
CW R2, R3
BNE | O Loop

1

;; Configure SSRAM | arge page accesses -

LDR R1,
LDR R2,
LDR R3,
LDR R4,
SSRAMLoOpP2LDR R5,
LDR RO,
ADD RO,
SSRAML00pP1STR RO,
ADD RS,
CWP R3,

BNE SSRAML.oopl ;

ADD R4,
CWP R2,

BNE SSRAM.oop2 ;

1

;; Configure ROM | arge page accesses -

LDR R1,
LDR R2,
LDR R3,
LDR R4,
EPROMLoOp2LDR RS,
LDR RO,
ADD RO,

EPROMLOOpP1STR RO,

ADD RS,
CWP R3,

16

16 aliases per entry

=Level 2t ab_SSRAM
=SSRAM PAGE_COUNT
=16
=0
=0
=SSRAM BASE + SSRAM ACCESS
RO, R4, LSL #16)

; loop countl (pages)
; loop count2 (aliases)

add page field

[R1], #4 ; store TT entry
R5, #1 ; increnent alias count
R5

| arge page entry alias |oop

R4, #1;
R4

i ncrenment page count

page count | oop

16 aliases per entry

=Level 2t ab_ROM
=EPROM_PAGE_COUNT
=16
=0

=0
=EPROM BASE + EPROM ACCESS
RO, R4, LSL #16)

; loop countl (pages)
; loop count2 (aliases)

add page field

[R1], #4 ;store TT entry
R5, #1 ;increnent alias count
R5

Application Note

Memory Management on the StrongARM SA-110

BNE EPROMLoopl ;1 oop aliases

ADD R4, R4, #1 ;increment page count
CW R2, R4

BNE EPROMLoop2 ;loop for all pages
WRCP15_Fl ushl TB_DTB RO ; Flush | TBs + DTBs
WRCP15_Fl ushl C RO ; Flush | Cache

; Enable MW, alignment faults and | C/ DC/WB as required

LDM A sp!, {R0}; recover argunent fromthe stack

LDR R1, =Enabl eMWJ ; NOTE: no alignment checks enabled in this
; exanpl e

ORR RO, RO, R1

WRCP15_Cont r ol RO ; Update control register

LDM A sp!, {R4-R8};recover APCS register variables fromthe stack
MOVS PC, LR ; return to user node

;end of MMUJ config code

next |ine used when running this source file as standal one
SW SW_Exit; Halt execution - exit back to denon

Function used to reset the MMJ after a benchmark
Fl ushes the lIcache, cleans & flushes the Dcache, disabled IC, DC, WB and
MW returning the nenory systemto its powerup state (flat map allows this)

Requi red by denon to allow nultiple | oads/execution of tests w thout resetting

t he debugger.

As with MMU_init, this function requires privileged node to execute the

necessary coprocessor accesses

MW _reset MOV R2, LR, save Link Register prior to denobn syscall

Application Note

; needed to ensure the correct return address
i ...in a denobn environnent
MRS R1, CPSR; need to save the status too!!!

SW SW _EnterCS; Denpn syscall to switch to spvr node

MRS RO, CPSR
ORR RO, RO, #0xCO

17

Memory Management on the StrongARM SA-110

MSR CPSR, RO ;

INlgl.

di sabl e interrupts

MV LR R2; reinstate Link Register for return

MSR SPSR, R1 ;

;5 First clean the Dcache

reinstate saved status to the *SPSR* for correct return
(this will inherently reinstate interrupts on return too)

;5 Use reads fromROMto evict any dirty entries

LDR RO, =CLEAN_BASE
ADD R1, RO, #DCACHE_SIZE

CLEAN 00pLDR R2, [RO], #DCACHE LINE
TEQ R1, RO ;
BNE CLEAN oop ;
WRCP15_Drai nWiteBuffer RO ;

;; Reset MMU control register

address for dcache | oads
conpare address for dcache clean
conpl etion

| oad a dcache line and increnent address pointer
IF clean still in progress

THEN | oop on dcache fills

Drain the wite buffer

LDR RO, =0
WRCP15_Cont r ol RO ; reset the control register in CP15
WRCP15_Fl ushl TB_DTB RO ; Flush 1 TBs + DTBs
WRCP15_FlushIC_DC RO ; Flush | Cache + Dcache
NOP
NOP
NOP
NOP ; make sure the pipeline clear of any cached entries
MOVS PC, LR ; return to user node

;;end of MW config code

LTORG

AREA TTentries, DATA, NO NI T, ALI G\=14

Level 1t ab % 1: SHL: 14 ;
Level 2t ab_SSRAM % 1: SHL: 10 ;
Level 2t ab_ROM % 1: SHL: 10 ;
exit

END

18

4-byte entries, IMB sections

4-byte entries, 64KB pages; x16 alias
4-byte entries, 64KB pages; x16 alias

Application Note

u
I nt9| ® Memory Management on the StrongARM SA-110

Appendix B Coprocessor Access Macros

;Macros, constants and systemvariabl es associated with SA-110 and the EBSA-110 platform

;s History:
s V0. 1 02_Feb- 1996
- V0. 2 11- Apr-1996 Add denon SW call nunber definitions

;0 V0.3 12- Apr - 1996 Merge definition and coprocessor macro files

SR

- \O. 4 05- Aug- 1996 Add CLEAN BASE for new cl ean | oop code

;;; EBSA-110 platform data
;;; DRAM SI ZE assunmes 2 x 8MB SIMs fitted -

DRAM S| ZE EQU 16 ; 16MB in 2 x SI M
SSRAM_PAGE_COUNT EQU 2 ;2 x 64k = 128KB
EPROM_PAGE_COUNT EQU 8 ; 8 x 64k = 512KB

DCACHE_SI ZE EQU 0x4000 ; 16KB Dcache

DCACHE_LI NE EQU 0x20 ; 32B cache line entry
L2_CONTROL EQU Ox1 ; donmi n0, page table pointer
L1 _TABLE_ENTRI ES EQU 0x1000 ; 16KB table (word entries)
L2_TABLE_ENTRI ES EQU 0x100 ; 1KB table (word entries)

| O_BASE EQU 0xC0000000 ; top quartile of address space
CLEAN_BASE EQU Ox3FF00000 ; reserve VA of last section in bottomquartile
DRAM_ACCESS EQU 0xCOE ; AP=11, donminO, C=1, B=1
SSRAM_ACCESS EQU OxOFFD ; AP=11, donminO, C=1, B=1
FLASH_ACCESS EQU 0x80A ; AP=10, donmi n0, C=1, B=0
EPROM_ACCESS EQU 0x0AA9 ; AP=10, donmin0, C=1, B=0

I O_ACCESS EQU 0xC02 ; AP=11, donmi nO, C=0, B=0

;; Definitions used in conditional assenbly of Icache, Dcache and Wite Buffer

;5 options
I C_ON EQU 0x1000
| C_OFF EQU 0x0

Application Note 19

Memory Management on the StrongARM SA-110 I n ®
DC_ON EQU Ox4
DC_CFF EQU 0x0
VB_ON EQU 0x8
WB_OFF EQU 0x0

20

R R R R R
’

;* Duplicate of information in denon subdirectory' s level1l_h.s*

;* (too many redundant dependencies for reuse directly)*

- % *
,

. SW nunbers as used in denon *

R R R R R R R
,

SW_WiteC EQU &0
SW_Wite0 EQU &2
SW _ReadC EQU &4
SW _CLI EQU &5
SW _Get Env EQU &10
SW _Exit EQU &11
SW _EnterCsS EQU &16
SW _Get Errno EQU &60
SW _d ock EQU &61
SW _Ti ne EQU &63
SW _Renove EQU &64
SW _Renane EQU &65
SW _Open EQU &66
SW _d ose EQU &68
SW_Wite EQU &69
SW _Read EQU &6a
SW _Seek EQU &6b
SW _Fl en EQU &6¢
SW _IsTTY EQU &be
SW _TnpNam EQU &6f
SW _I nstal | Handl er EQU &70
SW _Gener at eError EQU &71

;Definitions and Macros for SA-110 Coprocessor Access

Application Note

I n Memory Management on the StrongARM SA-110

; SA-110 *onl y* supports Coprocessor nunber 15
; Only MCR and MRC coprocessor instructions are supported - the others

; ...generate an UNDEFI NED exception

; CP15 registers are architected as per the ARM V4 architecture spec

; Regi ster0 I D register READ_ONLY

; Regi sterl Cont r ol READ VRl TE
; Regi ster2 Transl ati on Tabl e Base READ_W\RI TE
; Regi ster3 Donmi n Access Control READ VRl TE
; Regi ster4 Reser ved

; Regi ster5 Faul t Status READ_W\RI TE
; Regi ster 6 Faul t Address READ V\RI TE
; Regi ster7 Cache Operations VRI TE_ONLY
; Regi ster8 TLB Operati ons WRI TE_ONLY
| Regi st er9- 14 Reserved

; Regi st er 15 SA-110 specific tst/clk/idle WRI TE_ONLY

; Bit definitions for the control register:

; enables are logically ORd with the control register

;; use bit clears (BICs) to disable functions

- *** gl| bits cleared on RESET ***

Enabl eMVJ EQU Ox1

Enabl eAl i gnFaul t EQU 0x2

Enabl eDcache EQU O0x4

Enabl eV\B EQU 0x8

Enabl eBi gEndi an EQU 0x80

Enabl eMMU_S EQU 0x100 ; selects MWJ access checks
Enabl eMMJ_R EQU 0x200 ; selects MMJ access checks
Enabl el cache EQU 0x1000

;. Defined Macros:
; RDCP15_1 D read of 1D register
; RDCP15_Cont r ol read of Control register

; WRCP15_Contr ol wite of Control register

I LI

; RDCP15_TTBase read of Transl ation Tabl e Base reg.

Application Note 21

Memory Management on the StrongARM SA-110

22

WRCP15_TTBase
RDCP15_DACont r ol
WRCP15_DACont r ol
RDCP15_Faul t St at us
WRCP15_Faul t St at us
RDCP15_Faul t Addr ess
WRCP15_Faul t Addr ess
WVRCP15_Fl ushl C_ DC
WRCP15_Fl ushl C
WRCP15_Fl ushDC

WRCP15_CacheFl ushDentry

WRCP15_Cl eanDCent ry

WRCP15_dl ean_Fl ushDCent ry

WRCP15_Dr ai nWi t eBuf f er
WRCP15_FI ushl TB_DTB

WRCP15_Fl ushl TB

1

WRCP15_FI ushDTB
WRCP15_Fl ushDTBent ry
WRCP15_Enabl e ockSW

WRCP15_Di sabl edl ockSW

’

WRCP15_Di sabl enMCLK

1

WRCP15_Wai t | nt

’

Coprocessor read of |D register

MACRO

RDCP15_I D $reg_nunber

MRC pl15, 0, $reg_nunber, cO,
MEND

I I I RIID

wite of Translation Table Base reg.
read of Dommi n Access Control reg.
wite of Domain Access Control reg.
read of Fault Status register

wite of Fault Status register

read Fault Address register

wite of Fault Address register

cache control - Flush | Cache + DCache

Rx redundant but rqud for MACRO
cache control - Flush I Cache

Rx redundant but rqud for MACRO
cache control - Flush DCache

Rx redundant but rqud for MACRO
cache control - Flush DCache entry,
Rx source for VA

cache control - O ean DCache entry,

Rx source for VA

cache control - Oean + Flush DCache entry,

Rx source for VA

Drain Wite Buffer

Rx redundant but rqud for MACRO
TLB control - Flush I TBs + DTBs
Rx redundant but rqud for MACRO
TLB control - Flush I TBs

Rx redundant but rqud for MACRO
TLB control - Flush DTBs

Rx redundant but rqud for MACRO

TLB control - Flush DTB entry, Rx source for VA

test/clock/idl e control - Enable C ock Switching

Rx redundant but rqud for MACRO

test/clock/idl e control - Disable Cl ock Switching

Rx redundant but rqud for MACRO

test/clock/idl e control - Disable nMCLK out put

Rx redundant but rqud for MACRO

test/clock/idl e control - WAit for Interrupt

Rx redundant but rqud for MACRO

Application Note

I n Memory Management on the StrongARM SA-110

; Coprocessor read of Control register
MACRO
RDCP15_Cont rol $reg_nunber
MRC pl15, 0, $reg_nunber, cl1l, c0 ,0

MVEND

; Coprocessor wite of Control register

MACRO
WRCP15_Control $reg_nunber
MCR pl5, 0, $reg_nunber, cl1l, c0 ,0

VEND

; Coprocessor read of Translation Tabl e Base reg.

MACRO
RDCP15_TTBase $reg_nunber
MRC pl5, 0, $reg_nunber, c2, c0 ,0

MEND

; Coprocessor wite of Translation Tabl e Base reg.
MACRO
WRCP15_TTBase $reg_nunber
MCR pl15, 0, $reg_nunber , c2, c0 ,0
MEND
; Coprocessor read of Domain Access Control reg.
MACRO
RDCP15_DACont rol $reg_nunber
MRC pl5, 0, $reg_nunber, c3, c0 ,0
MEND

; Coprocessor wite of Donmain Access Control reg.

MACRO

Application Note 23

Memory Management on the StrongARM SA-110 I n

WRCP15_DACont rol $reg_nunber
MCR pl5, 0, $reg_nunber, c3, cO0 ,0

MEND

; Coprocessor read of Fault Status register

MACRO
RDCP15_Faul t St at us $reg_nunber
MRC pl15, 0, $reg_nunber, c5, c0 ,0

MEND
; Coprocessor wite of Fault Status register

MACRO
WRCP15_Faul t Stat us $reg_nunber
MCR pl15, 0, $reg_number, c5, c0 ,0

MVEND

; Coprocessor read of Fault Address register
MACRO
RDCP15_Faul t Addr ess $reg_nunber
MRC pl5, 0, $reg_nunber, c6, cO ,0

MVEND

; Coprocessor wite of Fault Address register

MACRO
WRCP15_Faul t Addr ess $reg_nunber
MCR p15, 0, $reg_nunber, c6, cO ,0

MEND

; Coprocessor cache control

; Flush | Cache + DCache

MACRO
WRCP15_FI ushl C_DC $r eg_nunber
MCR p15, 0, $reg_nunber, c7, c7 ,0

24 Application Note

I n Memory Management on the StrongARM SA-110

MVEND

; Coprocessor cache control

;Fl ush | Cache

MACRO
WRCP15_Fl ushl C $reg_nunber
MCR pl15, 0, $reg_nunmber, c7, c5,0

MVEND

; Coprocessor cache control

; Fl ush DCache

MACRO
WRCP15_F| ushDC $r eg_nunber
MCR pl15, 0, $reg_nunber, c7, c6 ,0

VEND

; Coprocessor cache control

; Flush DCache entry
MACRO
WRCP15_CacheFl ushDentry $reg_nunber
MCR pl15, 0, $reg_nunmber, c7, c6 ,1

MVEND

; Coprocessor cache control

; O ean DCache entry
MACRO
WRCP15_C eanDCentry $reg_nunber
MCR pl15, 0, $reg_nunber, c7, c10 ,1

MVEND

; Coprocessor cache control

;0 ean + Flush DCache entry

MACRO

Application Note 25

Memory Management on the StrongARM SA-110

WRCP15_Cl ean_Fl ushDCentry $reg_nunber
MCR pl15, 0, $reg_nunber, c7, cl4 ,1

MEND

; Coprocessor Drain Wite Buffer
MACRO
WRCP15_Dr ai nWit eBuf fer $reg_nunber
MCR pl15, 0, $reg_nunber, c7, cl10 ,4

MEND

; Coprocessor TLB control

; Flush 1 TB + DIB
MACRO
VRCP15_Fl ushl TB_DTB $r eg_nunber
MCR pl15, 0, $reg_nunber, c8, c7 ,0

MVEND

; Coprocessor TLB control
;Flush I TB
MACRO
WRCP15_Fl ushl TB $reg_nunber
MCR pl15, 0, $reg_nunber, c8, c5,0

MVEND

; Coprocessor TLB control
;Flush DTB
MACRO
WRCP15_Fl ushDTB $reg_nunber
MCR pl15, 0, $reg_nunber, c8, c6 ,0

MVEND

; Coprocessor TLB control

; Flush DTB entry

26

Application Note

I n Memory Management on the StrongARM SA-110

MACRO
WRCP15_Fl ushDTBentry $reg_nunber
MCR pl15, 0, $reg_number, c8, c6 ,1

MEND

; Coprocessor test/clock/idle control

; Enabl e C ock Switching
MACRO
WRCP15_Enabl eCl ockSW $r eg_nunber
MCR pl15, 0, $reg_nunber, cl1l5, cl1 ,2

MEND

; Coprocessor test/clock/idle control

; Disabl e Clock Switching
MACRO
WRCP15_Di sabl eCl ockSW $r eg_nunber
MCR pl15, 0, $reg_nunber, cl1l5, c2 ,2

MEND

; Coprocessor test/clock/idle control
; Di sabl e nMCLK out put
MACRO
WRCP15_Di sabl enMCLK $r eg_nunber
MCR pl15, 0, $reg_nunber, cl1l5, c4 ,2

MEND

; Coprocessor test/clock/idle control
;Wait for Interrupt

MACRO

WRCP15_Wai t I nt $reg_nunber

MCR pl15, 0, $reg_nunber, cl1l5, c8 ,2

MEND
END

Application Note 27

intel.

Support, Products, and Documentation

If you need technical support, aProduct Catalog, or help deciding which documentation best meets
your needs, visit the Intel World Wide Web Internet site:

http://www.intel .com

Copies of documents that have an ordering number and are referenced in this document, or other
Intel literature may be obtained by calling 1-800-332-2717 or by visiting Intel's website for
developers at:

http://developer.intel.com

You can also contact the Intel Massachusetts Information Line or the Intel Massachusetts Customer
Technology Center. Please use the following information lines for support:

For documentation and general information:

Intel Massachusetts Information Line

United States: 1-800-332-2717
Outside United States: 1-303-675-2148
Electronic mail address: techdoc@intel.com

For technical support:

Intel Massachusetts Customer Technology Center
Phone (U.S. and international): 1-978-568-7474
Fax: 1-978-568-6698

Electronic mail address: techsup@intel.com

	Memory Management on the StrongARM** SA-110
	Copyright Page
	Contents
	Figures
	Tables
	1.0 Introduction
	1.1 Memory Management Concepts

	2.0 The ARM Architecture - MMU
	2.1 The Coprocessor Interface

	3.0 The SA-110 Implementation
	3.1 MMU and the Caches
	3.1.1 Instruction Caching
	3.1.2 Data Caching
	3.1.3 Cache Management

	3.2 TLB Management
	3.3 MMU Fault Handling
	3.3.1 Prefetch Abort
	3.3.2 Data Abort

	4.0 MMU Initialization and Reset
	4.1 A Worked Example

	Appendix A MMU Initialization and Reset
	Appendix B Coprocessor Access Macros
	Support, Products, and Documentation

