
© Intel Corporation 1972

®

INTEL CORP. 3065 Bowers Avenue, Santa Clara, California 95051 • (408) 246-7501

MICRO COMPUTER SYSTEMS

SIM4-02 Hardware Simulator

Nine PROMs (A0750 to A0758) plug into the SIM4-02 prototyping
board, enabling your micro computer prototype to simulate and debug
its own program. The Simulator when used in conjunction with the
SIM4 Hardware Assembler and the MCB4-20 System Interface and
Control Module provides complete program assembly, simulation and
debugging.

DECEMBER 1972

CONTENTS

Page

1.0 Introduction .. .

2.0 Number Systems .. .

3.0 Description

4.0 Directives ... 2

5.0 Error Messages 4

6.0 Operating Instructions 4

6.1

6.2

6.3

6.4

6.5

6.6

6.7

Assemble Program

Prepare SI M4-02 Hardware

Load Program .. .

Execute Program Simulation

Edit Program .. .

Punch New "BNPF" Tape

Simulation of Segmented Programs

4

4

4

5

5

5

5

7.0 Jumps to Page 0 ... 5

8.0 RAM Usage 7

9.0 Examples _. 8

SIM4-02 HARDWARE SIMULATOR

1.0 INTRODUCTION

The SIM4-02 Hardware Simulator is a program written for the MCS-4 ™ series Micro Computer System. This program
will provide interactive control over the debugging of other MCSA ™ programs.

The minimum configuration requited is a SI M4-02 prototype card with three 4002 RAMs and a Teletype. When fully stuffed
with 16 RAMs, test programs up to 512 bytes (locations) in length may be accomodated. The hardware simulation program
itself occupies nine full ROMs.

The Hardware Simulation Program has two basic functions:

1. To simulate the execution of a test program, tracing its progress, and apprehending gross errors.

2. To allow the user to dynamically interact with and/or modify his test program, in order to facilitate the debugging
process.

These two functions are implemented by means of a set of directives or commands which the user types in at the teletype
keyboard. Some of the directives call for typeouts by the simulator program, some of the directives signal the input of data
or program modifications, and some of the directives involve both typeouts and input response or data.

A directive is identified by a single letter of the alphabet (except the arithmetic conversion directives = and It). If the
directive is associated with output only, the typing (or punching) will commence immediately. If input is allowed or re­
quired with the directive, the simulation program will enable the paper tape reader control, and wait for valid input data.

2.0 NUMBER SYSTEMS

Two number radices are standard with the hardware simulation program: binary and decimal. Index register values, pro­
gram counter and instruction location values, chip numbers, and some pointers are handled in decimal for convenience.
ROM instructions, the accumulator value, and one-bit indicators are handled in binary. Any input number may be entered
in either radix by prefixing it with a suitable indentifier ("0" for decimal, "8" for binary), regardless of the expectations of
the program. Unless so identified, however, all input should be in the radix used in the corresponding typeout.

To facilitate working with program tapes in the "BNPF" format, the hardware simulation program will accept binary num­
bers coded either as strings of ones and zeroes, or as strings of "P"s and "N"s, where the letter P is interpreted as a zero, and
the letter N is interpreted as a one.

All input numbers are right-justified into the receiving register or field. If the number is smaller than the receiving field,
leading zeroes are implied as necessary. If the number is larger than the receiving field, the excess bits are lost from the most­
significant end of the number. Thus, if it is attempted to load an index register with the value 20, the result will be 4 in the
register. This may be used to advantage in the event of an inadvertant error typein, by typing in as many zeroes as there are
bits in the receiving field, then re-typing the number, all as one string of digits. A number typed in may end with a carriage
return, a comma, a space, or the letter "F", or in the case of the = directive, with plus or minus sign. Any other characters
will give unpredictable results, and should be avoided. Rubouts are the only non "numeric" characters which may be imbed­
ded within the input number strings with no adverse effects. Rubouts are ignored in all cases.

3.0 DESCRIPTION

The hardware simulation program allocates a user-selected block of RAM main memory locations to hold the ROM instruc­
tions to be simulated, assigning two RAM locations for each simulated ROM location. Thus, to simulate 512 locations of
ROM, all 16 RAMs must be used. Any RAM locations not allocated for program storage may be accessed in the normal way
by the test program. In addition, the hardware simulation program uses the status characters in twelve consecutive RAM
registers (equivalent to three RAM chips) to hold simulation parameters. RAM is assumed to be organized as four consecu­
tive banks (with wraparound) of sixteen registers each, so that if less than 16 RAMs are used, those allocated to program and
parameter storage must be in one block of contiguous banks and registers within banks.

The program to be tested may have an address anywhere in the 4096 locations of addressable, ROM, since the hardware
simulator program adds a bias value to all addresses which reference the simulated ROM. If the program attempts to jump or
increment to outside the range of the simulated ROM, an error interrupt occurs.

Another error interrupt occurs in the event of an illegal instruction op code during simulated execution. The op codes which
cause this interrupt are: 11111110, 11111111, 11100011, and all instructions with aPR = 0000 except for 00000000 (NaP).

A breakpoint register is associated with the simulated execution mode of operation, allowing the user to pre-set a location
which will cause an interrupt before execution. The BREAK key on the teletype may also be used to interrupt execution and
some other types of output.

During'simulated execution, a count is kept of the number of simulated machine cycles (i.e., sync pulses) used by the test
program, to assist in checking out programs with critical timing problems.

4.0 DIRECTIVES

lin Binary conversion
This directive accepts a single (decimal) number, and types out its equivalent in binary. A maximum of 12 bits (num­
bers to 4095) may be accomodated at once.

=n Decimal adder
This directive accepts a string of (decimal) numbers separated by plus and minus signs, and types out the algabraic
sum, modulo 4096. If the algebraic sum is negative, 4095 is logically added to it to give a positive result. This directive
may be used to perform binary to decimal conversion thus: =Bnnnn

Or,s,e RAM/ROM chip assignment
This directive must be entered before any other letter directive. If the first character after the 0 is a space or comma,
the current values are typed out. Then, or immediately after the Q, three parameters separated by commas or spaces
are required. If any of the three parameters is omitted, or if a RETURN is typed instead of the first parameter, the
current values will be unchanged. r is the (decimal) RAM register number (0-63) which is used as the lowest in the
block allocated to ROM. The simulation program has no way of preventing the test program from accessing RAM loca­
tions allocated to simulated ROM, so the user must use care in selecting a value for this parameter which will reduce
the likelihood of improper access. If r is greater than 63, the previous value is used. s is the starting address of the
ROM segment to be simulated. Any attempt to execute an instruction with an address less than this number will result
in an out-of-bounds interrupt. e is the (decimal) ending address of the ROM segment to be simulated. Any program
access to ROM locations greater than this address will result in an out-of-bounds interrupt. This directive clears the
option word to zeroes.

Z Zero
This directive simulates the hardware reset function, and clears to zero all simulated registers, counters, and all RAMs
not allocated to program. The Q directive executes a Z each time the parameters are changed.

In Input
This directive accepts a sequence of (binary) numbers and stores them in consecutive simulated ROM locations, begin­
ning with location n. Spaces, commas, returns, and linefeeds may occur with any frequency or pattern between the
individual numbers. Input is terminated by a free-standing letter F in the sequence. An ASCII SOH (control A) may be
used to introduce a (decimal) number which, like n, becomes the new starting address for subsequent instruction bytes.
The program counter in the current stack level is altered by this directive.

Pn,m Punch
This directive will punch out, in "BNPF" format with location numbers, the contents of the simulated ROM beginning
at location n (decimaJ), and ending with location m. The currently selected program counter, and the breakpoint regis­
ter are altered by this directive. Four inches of leader and trailer are punched on the tape, with an "F" after the last
location. If the BREAK key on the teletype is depressed between locations, the typeout will be aborted, with no trailer.
Both the breakpoint register and the program counter in the current stack level are altered by this directive.

Mn,i Memory input
This directive accepts a sequence of (decimal) numbers (0-15) and stores them sequentially in consecutive RAM loca­
tions, beginning in register n (decimal, 0-63) and location i (decimal, 0-19). If the starting location is in main memory
(i less than 16), only main memory locations are filled. The next number after the one which goes into register r, digit
15, goes into register r + 1, digit O. If the starting location is a status character (i greater than 15), only status characters
are filled. The sequence ends with a carriage return following the terminal delimiter of the last number.

Dr, n Dump RAM
This directive types out in decimal the contents of each RAM location (both main memory and status) of n registers,
beginning with register r. The typeout may be ended prematurely by depressing the BREAK key.

2

A Accumulator
This directive may be used to display and/or alter the contents of the simulated accumulator. A space or comma follow­
ing the A will display in binary, the contents of the simulated accumulator. This or the A may be followed either by a
new value to be entered, or by a carriage return to end the directive.

C Carry/Link
This directive may be used to display and/or alter the contents of the simulated Carry/Link bit. The use of this direct­
ive is the same as for A.

Xn Index
This directive may be used to display and/or alter the contents of anyone or pair of the simulated index registers. If
a space or comma follows the X, all 16 index registers are displayed (in decimal). Otherwise, if the (decimal) number
n is followed by a space, index register n may be displayed and/or altered as in A. If the number n is followed by a
comma, slash, or period, index pair number n may be displayed (in decimal) and/or altered as a unit. (Index registers
2n and 2n + 1 are handled together as a single 8-bit number.)

S Stack pointer
This directive may be used to display and/or alter the contents of the subroutine stack pointer. The current loca­
tion counter is the one pointed to by this pointer. This pointer is incremented by JMS instructions and decremented
by BBl instructions.

l location Counter
This directive may be used to display and/or alter the contents of the current location counter. Note that altering
the value of the stack pointer will cause a different register to be current location counter.

E Examine Everything
This directive combines the display functions of the C, A, S, l, R, and X directives. All four program counters in the
stack are displayed. No modification is possible.

R RAM/ROM selection
This directive may be used to display and/or modify the simulated memory chip/location seleetion. A space or comma
after the R types out an 11-bit binary number, of which the most-significant 3 bits represent the command line
selection effected by the last DCl instruction, and the least-significant 8 bits represent the contents of the index pair
as last used by an SRC instruction.

B Breakpoint
This directive may be used to display and/or modify the contents of the breakpoint register. The simulated execution
will always be interrupted before processing the instruction pointed to by the breakpoint. If the breakpoint points to
the second byte of a two-byte instruction, no breakpoint action will occur during instruction simulation.

W When
This directive may be used to display and/or alter the contents of the simulated sync cycle counter. This is a 12-bit
(decimal) counter used to tally the number of instruction cycles used during instruction simulation.

T Trace
This directive causes the simulation program to begin simulated execution of the test program, beginning at the address
in the current location counter. If instruction execution simulation is interrupted by a breakpoint, the keyboard
BREAK key, or an illegal instruction, the T directive will cause the program to resume where it left off, just as if the
program was never interrupted, except insofar as program parameters or registers were modified while interrupted. The
basic format of the trace listing is

pppp:iiiiiiii c aaaa rr
where pppp is the decimal location counter; iiiiiiii is the binary representation of the (first byte of the) instruction
being simulated; c is the resultant carry/I ink bit; aaaa is the resultant accumulator value; and rr is the resultant (decimal)
index or index pair used in the instruction. (value, not index number) Any or all of the last three numbers may be
omitted on instructions which do not reference their respective registers.

N Non-trace
This directive is identical to the T directive, except that execution proceeds without tracing.

o Options
This directive may be used to display and/or alter the current option status bits. This is a 4-bit binary number with the
following significance;

1 Input, Output, and CPU test instructions are executed directly when this bit is on, instead of typing out
on the teletype the port number and then typing or accepting the data.

10 No interrupt for subroutine stack overflow or underflow will occur when this bit is on.
1000 Unconditional jumps and subroutine jumps to ROM page 0 (chip 0) are executed directly instread of

interpretively, permitting direct byte I/O during checkout.

3

5.0 ERROR MESSAGES

Most of the errors which can be detected by the simulation program are identified by a single character typeout, followed
by ringing the bell once. Six different types of errors are identified this way:

CODE SIGNIFICANCE

? This is not a valid directive. Any printed graphic normally generated by the ASR33, which is not a valid directive,
evokes this response. A question mark-bell combination also calls attention to a simulated input request.

Break condition recognized. This occurs normally, either when the location counter reaches the value in the break
register in execution simulation, or when the BREAK key is depressed in simulation or ROM or RAM dumping.

> Location counter out of range. This error occurs in simulation or ROM punching, if an attempt is made to access an
address out of the range specified in the most recent Q directive.

Invalid op code. This error occurs and is recognized during execution simulation, after the instruction byte is
typed out, but before the location counter is incremented, so that if it occurs under the control of the N directive,
the T directive may be entered to examine the error by trying to execute it again.

% Location counter stack overflow or underflow. This error is unique in that the interruption occurs after the instruc­
tion has been executed in simulation. A T or an N directive will resume execution with the next instruction (jumped
or retu rned to).

Cancel. This is the program response to a Cancel (Control "X" or ESCAPE) typein, during data input. Except for
I, M, T, and N directives, it cancels the entire directive. If used in the I or M directives, only the current datum is
canceled, and the directive is terllJinated at that point. Previous values, if any, have already been stored in memory.
If used while the simulation program is requesting input data from a simulated ROM port or the simulated CPU
Test line, it is equivalent to a break at the beginning of the instruction. In each case the simulation program returns
to accept another directive.

6.0 OPERATING INSTRUCTIONS

6.1 Assemble Program

First assemble the test program on the Hardware Assembler (A0740 to A0743). Important: the Hardware Simulation
Program will not accept ROM program tapes created by the FORTRAN assembler, ASM4, as these tapes have bit patterns
and addresses together, with no identifier for the addresses. It is not necessary to assemble the program in one contiguous
block of ROM locations, since the I directive in the simulation program is able to recognize the address fields (by the
Control "A", SOH preceding them), and place the instruction patterns into the proper simulated ROM locations.

6.2 Prepare SIM4-02 Hardware

Remove ROM chips A0740 through A0743 and plug in the Hardware Simulation Program chips, A0750-A0758. Press
RESET. The teletype should type out a carriage return-linefeed, and an asterisk to show that the simulation program is
ready to accept a directive.

Determine how much simulated ROM is needed to test the program, and which RAMs are least likely to be accessed by the
test program, using if necessary the = and" directives. Then type in the Q directive for this program. From now until the
testing of this program has been completed and the amended program tape has been punched out, DO NOT touch the
RESET button. If the RESET button is pressed, the simulation parameters and any program in the simulated ROM will be
destroyed.

6.3 Load Program

Place the object tape in the teletype reader, and type in I. The simulation program will read both the addresses and the
instructions from the tape and store them in the proper locations. Reading will be terminated by any error or by the
terminal F punched by the assembler. Note that any illstructions or data which fall outside the limits defined in the Q

directive will be ignored. Note also that if the Q directive defines the ROM limits to be more than 512 bytes, wraparound
overlap is possible. Thus, location 100 would be overwritten by instructions going into location 612. When the program is
loaded, a simulated RESET may be effected by the Z directive. If starting at other than location zero, or with registers pre­
loaded with data, the appropriate directives may be used to set these up. A breakpoint may be set if desired, and RAM may
be loaded up with data if desired. If a subroutine or a part of a subroutine is being tested, the stack may be loaded with a

4

return address using the L directive. That may then be pushed down with the S directive, so that the starting address may
be loaded into the first subroutine level, or the process may be repeated up to three times. If it is desired to force an inter~
rupt at the first occurrence of a JMS instruction, the stack pointer may be set to 3 initially, so that the first JMS instruction
causes a stack overflow. If it is desired to achieve more than one breakpoint, illegal instructions may be assembled or in­
serted into the program at the desired points. When the simulation attempts execution of one of these locations, an inter­
rupt occurs, and the instruction may be replaced, or the program counter incremented around it to proceed.

6.4 Execute Program Simulation

To start the execution simulation, type a T (for Trace mode) or an N (for non-Trace mode). If at any time it is desired to
stop execution simulation, whether because of program errors, to examine register contents, or to make corrections, the
BREAK key may be depressed, and the simulation will be interrupted at the completion of the current instruction. Execu­
tion will resume as if uninterrupted, if the T or N directive is typed in after a break.

6.5 Edit Program

To make corrections to the program, the I directive is used, giving an address, and the value(s) to be entered. The I directive
alters the contents of the current location counter. Thus, it should either be noted and restored, or the stack pointer may
be incremented first and decremented afterwards - (unless of course, the simulation is interrupted at subroutine nest level 3).

6.6 Punch New "BNPF" Tape

After the program works correctly, an amended ROM tape may be punched in the "BNPF" format using the P directive.
Four inches of leader and trailer are punched by this directive. If more is needed, rubouts or nulls (shift-control-P) may be
punched while the simulation program is waiting for a directive. This will not in any way interfere with normal operation
of the program. The user should remember to turn on the paper tape punch after typing in the second address in the P
directive if a tape is to be made. If it is desired only to examine the contents of a simulated ROM location, this is not
necessary.

6.7 Simulation of Segmented Programs

If a program is not very large, but is scattered over a wide range of addresses, it may be possible to accomodate the program
in segments. Suppose the program occupies the first 32 locations in each of four ROMs. 128 locations must be reserved
by the 0 directive to hold all of this. Suppose further that the program accesses only bank zero in RAM. The 0 directive
would be something like this:

016,0,127
Then the first 32 locations of the program tape are read in using the I directive. The entire tape may be read with no
deleterious effects, if that is convenient, or an F may be typed in manually at the end of the first 32 locations' worth of
data. Then the 0 directive is used again, to re-assign the same locations to the next block of addresses:

099,224,355
Note that the address limits have been offset by 32, to prevent the obliteration of the first 32 locations. The object tape
may be read in again, or at least that part of it which includes the next block of data or instructions. Then the area is
reassigned again:

099,448,575
The process is repeated until the whole program is loaded. To execute, the 0 directive for the starting block of code is
typed in again. If the segments are placed correctly, each time a jump is made to another segment, an out-of-range interrupt
occurs. The 0 directive for the segment jumped to is entered; and the program may proceed. This technique may also be
used to relocate a program in ROM: for example, the following sequence of commands will effectively move (shift) a
program up one position in ROM:

00,0,255
10 (program)
00,1,256
P1,256

7.0 JUMPS TO PAGE 0

Because of the nuisance of doing serial-to parallel conversion, and properly timing the bit frames in teletype input and output,
the simulation program is provided with an option to perform subroutine calls and unconditional jumps to ROM page 0
directly, returning to simulation mode upon return. ROM page 0 contains subroutines to perform teletype reader and
keyboard input, 7 bits wide (the parity bit is ignored), teletype output 8 bits wide, binary to decimal conversion and output,

5

the typing of some specializ~d sequences of characters, partial decimal to binary conversion on input, and 6-bit teletype char­
acter input with control character checking. A test program may use these subroutines to facilitate checkout of complex
programs, or the ROM may be included in the final program if teletype interface and the same ancillary routines are needed.

The following is a summary of the subroutines and their calling parameters:

NAME ADDRESS (X) FUNCTION

KEY 120 (11-15) This routine inputs one 7-bit character from the teletype keyboard, and returns it, left-justified,
in index registers 14 and 15. I ndex registers 12 and 13 are cleared to zero. The least significant bit of
register 11 determines whether the character is echoed back (0 = yes, 1 = no). The carry is set if the
character typed in is printable.

TTl 117 (11-15) This routine inputs one 7-bit character from the teletype paper tape reader or keyboard (the
reader control is enabled), and is otherwise exactly the same as KEY.

TXX 234 (10, 11, 14, 15) This routine examines the carry bit set by KEY or TTl as well as the accumulator value
and the character in registers 14 and 15 to determine if one of the following conditions obtains:

1. The character is some printable graphic between "0" and '+". If so, the character is biased to a six­
bit value, centered in the byte. The carry is turned on if it is a letter. A normal return is taken, acc=O.

2. The character is a control character between null and ETB (control-Y) or a printable graphic between
space and slash. An indirect jump to the address in ROM page 1 contained in index registers 10 and 11
is taken.

3. The character is a control between CAN (Control-X) and US (Shift-Control-O). An unconditional jump
to location 256 is taken.

4. The character is one of those not generated by a KSR33 teletype, or a rubout. A normal return is taken,
with the accumulator non-zero.

T6R 205 (10-15) This routine combines TTl and TXX such that normal return occurs only on characters "0"
through ' ... ". Characters in group (4) above are ignored, and the alternate exits are taken for control
characters and delimiters. Note that if the address to which the delimiter return is to be made is odd,
no echo occurs. On normal return, the character is right-justified in registers 14 and 15, and the carry
is set if the character is a letter or higher.

T6l 220 (10-15) This routine is the same as T6R, except that on normal return the carry is always zero, and the
character is left-justified in registers 14 and 15, leaving the lower two bits zero. Both T6R and T6l
contain subroutine calls nested three deep, and may only be called from the main program, except
during simulation.

010 183 (4-7, 10-15) This subroutine multiplies the 12-bit binary number in registers 5-7 times ten, and adds the
number in register 15 to the product, then goes to T6R to input another digit. This routine may be
called repeatedly to input and convert to binary a decimal number. A terminal delimiter takes the
alternate exit in registers 10 and 11. Register 4 is used for scratch.

Z47 6 (4-7) This routine clears registers 4 through 7 to binary zero in preparation for 010.

PUN 80 (11-15) This routine prints or punches the character in registers 14 and 15 out on the teletype. Registers
11 through 15 are cleared to zero on return.

IPR 70 (11-15) This routine does the same as PUN, except that if register 11 is initially even (echo mode on input),

RETN

MSG

SPACE

DIGIT

PDN

BCD

a 15 ms delay occurs to allow the teletype printer to settle.

107 (11-15) This routine types out a carriage return, a null, and a linefeed. It may only be called from the
main routine.

66 (11-15) This routine types out the character in registers 14 and 15, then follows it with a bell.

63 (11-15) This routine types one space.

53 (10-15) This routine types an ASCII digit corresponding to the BCD number in the accumulator. If it is
zero, and the register 10 contains 15, a space is typed instead. Unless a space is typed, register 10 is
incremented.

40 (4-7, 10-15) This routine will print, with zero suppression, the four-digit decimal number in registers
4 through 7.

11 (1-7,10-15) This routine converts the 12-bit binary number in registers 1-3 into decimal, and prints the
four digits with zero suppression.

6

8.0 RAM USAGE

The simulation program, to facilitate full usage of the RAM, has organized it into a nominal block of 64 registers, each
containing 16 main memory locations and four status locations. Directives which reference RAM as such (i.e., 0, M, and 0),
always address it by a register number, and sometimes by a character position within the register. The following chart
illustrates this addressing scheme:

Bank 0
RAMO
(Port 0)

Bank 0
RAM 1

Bank 1
RAMO
(Port 4)

Bank 2
RAM 3
(Port 11)

Bank 4
RAMO
(Port 12)

Bank 4
RAM 3
(Port 15)

REGISTER
(selected by
even index
in SRC instr.)

0

1

2

3

4

5

6

7

8

9

·

·
16

17

18

19

20

·
·
·

44

45

46

47

48

49

50

51

52

·
·
·

60

61

62

63

0

DIGIT (selected by odd index in SRC instr.)

[Status]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

7

The bank number in the chart above is the value of the accumulator during a DCl instruction, needed to address that bank
of RAMs. The port number given corresponds to the number typed out during simulation of the WMP instruction. Register
positions 16-19 (Le., the status locations) are normally addressed in the program by the RDO/WRO, RD 1 /WR 1, etc.,
instructions, respectively.

The Q directive is used to define and set aside some part of RAM for use by the simulation program as simulated ROM and
other registers and parameters. Whole RAM registers are taken by the Q directive, beginning with the register identified in
the first parameter. The status locations from exactly 12 registers are used by the simulator. The number of main memory
locations used is determined by the difference between the second and third parameters of the Q directive. Where sand e
represent the values in the second and third parameters of the Q directive, the number of registers used is determined by the
formula: n = (s + e}/8 + 1
This value may be more or less than 12, the number of registers whose status locations are used, with no ill effects.

RAM main memory locations reserved by the Q directive are used solely for program storage. The instruction with an
address equal to the second parameter of the Q instruction is loaded into digits 0 and 1 of the register designated by the
first parameter of the Q directive; subsequent instructions are loaded into the following digit pairs, according to the
addresses.

The RAM status locations reserved by the simulation program are allocated to the following functions:

Relative
REGISTER lOC'N. FUNCTIONS

r + 0 0 Simulated Accumulator
0 1-3 low ROM address limit

0 Option word
1 1-3 High ROM address limit
2 0 Execution parameters
2 1-3 Breakpoint address
3 0 Simulated Carry
3 1-3 Simulation Cycle counter
4 0 Simulated Stack pointer
4-7 1-3 Simulated Stack
5 0 Simulated Command line selection
6,7 0 Simulated ROM or RAM chip selection
8-11 0-3 Simulated index registers

9.0 EXAMPLES

Figures 9.1, 9.2 and 9.3 are annotated listings generated during actual simulation. Figure 9.1 is a simulation of the "ANO"
program described in figures 9.4 and 9.5. Figures 9.2 and 9.3 represent the simulator's response to various directives
entered via a TTY keyboard.

8

ASTERISK IS SIMULATOR OUTPUT
INITIALIZE ~ ~EADY INDICATION

.L.
MEMORY BLOCK *Q0 ., 12!j

IS ASSIGNED /r .10

01 0:BPP~PNPPPF BPPPPPPPNF 2:BPP~P~PPNF 31BNNNPNPNPF
INPUT COMMAND 4:8."POl~PPPPF 518P.'J:-JPNPPPF 618PPNPNPPNF 71BNNNPNPNPF

SPECIF IES OR IGI N 1 ~::~~~~~~::~: 1 ~:::~:~:~::~ ::~~;~::;:. : ~::~:~~;~~~~
SIMULATOR ASSIGNS ADDRESS
IN ACCORDANCE WITH DATA
DELIMITED BY "CONTROL A"
CHARACTERS (HARDWARE
ASSEMBLER)

16: 1041 104IBNN~~PPPPF 1051BNPNNPPNPF 1061BNNPNPNPPF 1071BNPNNPPPP
1081BNNNNPNNPF 109 I BNPNNPPPPF I 101BPPPNNPNPF 8PNNNNPNPF
112:BNPNOlPPP~F 1131BNNNNPNNPF 114:BNPNNPPPNF 115:BNPN~PP~PF

I 161BNNNNPNNPF 117:B~PNNPPNPF 1181BNNNNNPPPF 1191BPPPNNNPPF
8P~NpNPNNF 121:8NNPPPPPPF 122:BNPNNPPPNF 1231BNNNNPNNPF
124:aNPNNPpP~F 125:BNNNOlPPPNF 126:BPNPPPPPPF BPNNNPPNNF'
128: 128: 1281

F

*8 0 TAPE INPUT
:~ \/~8_0 _____ ~ PRE-PUNCHED

TRACE MODE IS INITIATED __ -;::.-=*~T __ _
AFTER PROGRAM COUNTERS ::~:!:!::~ LOCATION COUNTER
HAVE BEEN SET 3: 11101010 HAS ADVANCED TO

RDR INSTRUCTION IS ----+......:.;R~.,-::-4:,;.;:~;-;;!~!-:-!.~0000 0 0000 128. RESET TO 0
EXECUTED. REQUEST 5101101000 0 0000

STACK IS RESET TO 0
FOR DATA IS REPLIED
TO WITH "0111" ENTRY
FROM KEYBOARD

6100101001 17----'"
7111101010

R I 11110
8110110001 0 0000 14
9101010000

104111110000 0 0000
105:10110010 0 0000 0
106111010100 0 0100 0
107110110000 0 0111 4
108:11110110 I 0011

BREAKPOINT IS LEFT AT 0

CONTENTS OF PAIR 4 (DECIMAL)

109110110000 II 0
0

1
1

0
0

0
0
/3 ACCUMULATOR (BINARY)

110100011010
112110110001 I 1110 4
113111110110 0 1111
114110110001 0 0100 IS
115110110010 0 0000 4

!!~:!!!!:!!: :':~:: 0 CARRY
I1S111111000 1 0011
119100011100 1 0011
107110110000 1 0011 3
108111110110 1 1001
109110110000 1 0011 9 ------ CONTENTS OF REGISTER

! :~:~:~:!:!~ : ~~:! 3 OPERATED ON (DECIMAL)
113111110110 1 1111

INSTRUCTION _________ +-_~!:-:!~~:!:!!::~! ! ::!! 1;
ADDRESS TRACE MODE :- 116111110110 1.3 1000

117110110010 0 0011 8
118111111000 1 0010
119100011100 1 0010

FIRST BYTE 107110110000 1 1001 2

OF I NSTR UCT I ON --------t--T-:~ :;;.;~~::-;:~~~:7:~:0;i;1 ~~:;...: !!~: 12

OUTPUT TO

110:00011010 1 0010
112110110001 1 1111 2
113111110110 1 1111
114:10110001 1 0010 15
115110110010 1 1000 2
116111110110 Ii} 1100
117:10110010 0 0010 12
118111111000 1 0001
119:00011100 1 0001
107110110000 1 1100
108111110110 0 1110
109110110000 0 0001 14
110:0001101000001
122:10110001 0 1111
123:11110110 10111
124110110001 1 0001 7
125111110001 Ii} 0001
126:01000000
115:1011001001100
116:1111011000110
117110110010 0 0001 6
118:11111000 1 0000

MEMORY PORT ~ 119100011100 I 0000
121 : 11000000

11:10110010 1 0110 0
12111100001

" M 0 0110

TO STOP TRACE MODE AT A
POINT OTHER THAN THE BREAK­
POINT, DEPRESS BREAK KEY
NEAR COMPLETION OF A LINE.

13101000000 I ---------- BREAKPOINT AT

NON-TRACE MODE
IS INITIATED

NON-TRACE MODE

*L
*5 "
*8 0

*N
R 0 10111
R 1 11110
M 0 0110 I

Figure 9.1. Trace and Nontrace Modes.

9

NEXT LOCATION
TERMINATES TRACE

FIRST LINE
DUMP RAM
COMMAND £ LOCATION 3

1110 1010 = RDR

*Z
*00 20

2 8 0 1 2 9 14 10 11 0 6 8 2 9 14
11 1 5 0 6 8 11 2 14 1 4 0 0 0 " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 " 0 0 0 0 0 " 0 " " 0 " 0 0 0 0 11) 11) " 0 0 0 0 " " 0 " 0 0 0 " 0 0 " 0 0 " 11

'" " " " 0 0 '" 0 0 0 0 0 0 0 0 I!l 0 " 0
0 0 '" " 0 0 0 0 " 0 0 0 0 0 0
0 ., 0 "

., ., 0 " 0 0 0 0 0 (,) 0
(3

'" 0 0 0 0 0 0 0 0 0 0 0 " " 0 0 0 " " 0 " " " " 0 0 " 0 0

" 0 0 0 " " 0 0 0 0 0 0 " 0 0 ., 0 " " 0 0 0 0 " 0 0 0 0 0 " 15 0 11 2 13 4 11 " 15 6 11 0 1 10 7
11 1 15 6 11 1 11 2 15 6 11 2 15 8 1

6 11 12 " 11 1 15 6 11 1 15 1 4 " 7 USED FOR STATUS WORD SIMULATION Ii! " 0 " 0 0 0 Ii! 0 0 " 0 0 0 " '" '"
0 (,) " " " 0 0 " " 0 0 " " 0 " " 0 0 " 0 "

.,
" 0 0 " 0 0

0 "
., 0 " 0 " 0 0 0 " " " " 0

*M4 5 55 6' SAMPLE PROGRAM LOCATED
*1'14 5 5 6 7 8 9 10 11 12 13 14 15 *1'118 1 1 234 5 6 7 8 9 10 11 12 13 14 AT 000 TO 015 AND 104 TO 128
*D0 20

2 8 11) 1 2 9 14 leI 11 11) 6 8 2 9
11 1 5 0 6 8 11 2 14 1 4 ;0 0 0

0 0 0 0 " 0 " 0 " 0 0 0 0 " 0

" " 0 0 0 0 " 11) " 11) " 0 0 0 0 " 11) 0 0 11) 11) 5 6 7 8 9 10 11 12 13 14 15 ERRONEOUS ENTRY CANCELED

" " 0 " " 0 " 0 0 0 0 0 " 0 0 0 WITH CONTROL "X"
" 0 " " 0 0 0 " 0 0 0 " 0 0 0 0

" " 0 0 0 " 0 0 " 0 " 0 0 0 0 " MEMORY INPUT TO 0 0 0 0 0 0 0 " 0 0 0 0 0 0 0 0
0 0 0 0 " 0 0 0 0 0 0 0 0 " " " LINES 4 AND 18
0 0 0 (3 0 0 0 " 0 0 " "

., 0 " " 0 " " " 0 0 " " " " " 0 0 0 " " " " (3 " " " 0 0 " " " " " " 0 " 15 0 11 2 13 4 11 0 15 6 11 0 1 10 7 10 RESULT OF MEMORY INPUT
11 1 15 6 11 1 11 2 15 6 11 2 15 8 1 12

6 11 12 0 11 1 15 6 11 1 15 1 4 0 7 3
0 0 0 " 0 " 0 0 0 " 0 0 0 0 0 o " 0_0
0 0 0 " " " " 0 " " 0 0 0 " " 1~--Y: 0 " 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 0 0
0 0 0 0 " e e e " 0 0 0 " " " " " " " "

Figure 9.2 Memory Dump/Input.

10

01BPPNPNPPPF
41BNPNNPPPPF
81BNPNNPPPPF

121BPPPPPPPPF

9 14 10 0 0 0 0

2 I BPPNPNPPNF
61 BPPNPNPPNF

10 I BPPPPPPPPF
141BPPPPPPPPF

Figure 9.3 Miscellaneous Directives.

11

fiH/
0:START. rIM 4P 0
2: SRC 4P
3: RDR
4ft: XCH 0
5% INC 8
6: SRC 4P
7: RDR
8: XCH I
9: JMS AND

II: XCH 2
12: WMP
13: JUN START
IS: NOP
16: =104ft

104:/
104: AND. Cl.B
105: XCH 2
106: l.DM 4
107: XCH 0
108: RAR
109: XCH 0
110: JCN CZ ROTRI
112: XCH I
113: RAR
114: XCH I
liS: ROTR2. XCH 2
116: RAR
117: XCH 2
118: DAC
I 19: JCN AN Z AN D+ 3
121: B8L 0
122:ROTR1, XCH 1
123: RAR
1-24: XCH I
125: CLC
126: JUN ROTR2
128:CZ =10
128:ANZ -=12
128:$

fOUR 81 T nAND" ROUTINE
/ LOAD ROM PORT 0 ADDRESS
/ SEND ROM PORT ADDRESS
/ READ INPUT A
/ A TO REGISTER 0
/ LOAD ROM PORT 1 ADDRESS
/ SEND ROM PORT ADDRESS
/ READ INPUT 8
/ B TO REGISTER
/ EXECUTE "AND··
/ l.OAD RESUL T C
/ STORE AT MEMORY PORT 0
/ RESTART

"AND" SUBROUTINE
/ CLEAR ACCUMUl.ATOR AND CARRY
/ CLEAR REGISTER 2
/ LOAD LOOP COUNT (l.C>
/ LOAD A, LC TO REGISTER 0
/ ROTATE LEAST SIGNIfICANT BIT TO CARRY
/ RETURN ROTATED A TO REG 0# LC TO ACC.
/ JUMP TO ROTRI If CARRY ZERO
/ LOAD B. LC TO ACCUMUl.ATOR
/ ROTATE LEAST SIGNIfICANT BIT TO CARRY
/ RETURN ROTATED B TO REG. I. LC TO ACC.
/ LOAD PARTIAl. RESULT C. LC TO REGISTER 2
/ ROTATE CARRY INTO PARTIAL RESULT MSB
/ LOAD l.C. RETURN C TO REGISTER 2
/ DECREMENT THE ACCUMULATOR (l.C>
/ LOOP IF LC NON ZERO
/ RETURN
/ LOAD B. LC TO REGISTER I
/ ROTATE 8
/ RETURN ROTATED B TO REG. I" LC TO ACC.
/ CLEAR CARRY
/ RETURN TO LOOP

Figure 9.4. Pass 1 Listing.

01 0:BPPNPNPPPF BPPPPPPPNF 2: BPPNPNPPNF 31BNNNPNPNPF
4:8NPNNPPPPf 5: BPNNPNPPPF 6: BPPNPNPPNF 7:BNNNPNPNPF
8:BNPNNPPPNf 9:BPNPNPPPPF BPNNPNPPPF 11:BNPNNPPNPF

12:BNNNPPPPNf 13:BPNPPPPPPF BPPPPPPPPf LS:BPPPPPPPPf
16: 10~: 10~:BNNNNPPPPf 10S:BNPNNPPNPf 106:BNNPNPNPPf 107lBNPNNPPPP

108aBNNNNPNNPF 109:8NPNNPPPPF 1 lOa BPPPNNPNPf BPNNNNPNPF
112:BNPNNPPPNF 113tBNNNNPNNPf I I 4ft I BNPNNPPPNF IIS:BNPNNPPNPF
116:BNNNNPNNPF tI7:BNPNNPPNPf 118:BNNNNNPPPF 119aBPPPNNNPPF

BPNNPNPNNF 121aBNNPPPPPPf 122aBNPNNPPPNF 1 23aBNNNNPNNPF
124:BNPNNPPPNf 125:BNNNNPPPNf 126:BPNPPPPPPf BPNNNPPNNF
128 : 1 28 : 128 :

F

Figure 9.5 Programming Tape Listing.

12

