ITI(S 8 Microcomputer Set Intel

NOVEMBER 1973

8008 | S
8 Bit Parallel
Central Processor Unit

USERS MANUAL

N Including:

| infgllec’8

' BareBones8 /. .

- Microcomputer Moclules
-t W o e

’ .V ; | l ﬂ“m\\\:\“\\\t e ‘. 3 ;"‘:‘ -i, : s ¢ 4) 7,
- o ‘ ‘; 7.- W . " _' ; : ; H [y o
i % \! A\ AN \\\\\ i 2 - ; ;‘
J . - \ ; ;2\;“.? \;\j\. MM}‘T“‘“T ;E 2 ; ; ,"‘l. i"yl Il"‘“";} 75“
- v j; : ; - ’ VB \ g
iy _!_.—',—7--_ .2 ‘_ & ,

e

o
e

. e \ -5
-, \%«
e -~
N

© Intel Corp. 1973

INTEL
SUPPORT
MAKES
SYSTEN
BUILDING
EASY.

The MCS-8™ parallel 8-bit microcomputer set is de-
signed for efficient handling of large volumes of data.
It has interrupt capability, operates synchronously or
asynchronously with external memory, and executes
subroutines nested up to seven levels. The 8008 CPU,
heart of the MCS-8, replaces 1256 TTL packs. With it
you can easily address up to 16k 8-bit words of ROM,
RAM or shift registers. Using bank switching techniques,
you can extend its memory indefinitely.

The PL/M™ High Level Language is an easy-to-learn,
systems oriented language derived from IBM’s PL/I by
Intel for programming the MCS-8 and future 8-bit micro-
computers. It gives the microcomputer programmer the
same high level language advantages currently available
in mini and large computers. By actual tests, PL/M pro-
gramming and debugging requires less than 10% of the
time needed for assembly language. The PL/M compiler
is written in Fortran IV for time-share, and needs little
or no alteration for most general purpose computers.

Intellec™8 Development Systems provide flexible, inex-
pensive, and simplified methods for OEM product de-
velopment. They use RAM for program storage instead
of ROM, making program loading and modification
easier. The Intellec features are:

® Display and Control Console
Standard DMA channel

® Standard software package

® Expandable memory and |/0
® TTY interface
°

PROM programming capability

The Intellec control panel is used for system monitoring
and debugging. These features and the many standard
Intellec modules add up to faster turn around and re-
duced costs for your product development.

And, There’s More

Intel’s Microcomputer Systems Group continues to de-
velop new design aids that make microcomputer system-
building easier. They will provide assistance in every
phase of your program development.

For additional information:

Microcomputer Systems Group
INTEL Corporation

3065 Bowers Avenue

Santa Clara, California 95051
Phone (408) 246-7501

intel
dglivers.

8008
8 Bit Parallel Central Processor Unit

The 8008 is a complete computer system central processor unit which may be interfaced with memories
having capacities up to 16K bytes. The processor communicates over an 8-bit data and address bus and
uses two leads for internal control and four leads for external control. The CPU contains an 8-bit
parallel arithmetic unit, a dynamic RAM (seven 8-bit data registers and an 8x14 stack), and complete
instruction decoding and control logic.

Features
m 8-Bit Parallel CPU ona ' ~m Directly addresses 16K x 8
Single Chip bits of memory (RAM, ROM
®m 48 Instructions, Data . or S.R.))
Oriented ® Memory capacity can be
indefinitely expanded
® Complete Instruction . through bank switching
Decoding and Control using I/0 instructions
Included ~ W Address stack contains
® Instruction Cycle Time— eight 14-bit registers
'12.5 us with 80081 or 20 us (including program counter)
with 8008 which permit nesting of
' subroutines up to seven
® TTL Compatible (Inputs, ' levels
Outputs and Clocks) m Contains seven 8-bit
_ . registers
® Can be used with any type -
~ or speed semiconductor Interrupt Capability
memory in any combination B Packaged in 18-Pin DIP
BLOCK DIAGRAM PIN CONFIGURATION
o= RO, oA v
D, <—> COUNTER STACK ‘ Voo O—1 18 |«—0 INTERRUPT
D3 =—>1 110 o (D, own]2 17 }«—o0 READY
34: Dg O<%—>13 16 [«—0 ¢
Dzﬂ—b . » . D50<—> 4 INTEL 15 |*—0 ¢,
D, =—>1 pata |DaO=e»ls 8998 44l oo syne
BUS | D, 0=>]6 13}—>o0s,
T INSTRUCTION DECODING || Timing D O=>17 120 31}37‘”'5
AND CONTROL D, O=>»18 1Mp—0Ss,
RDY = l | Dy 0e>]o 10}—0 Ve
slo S, s{ 31 Jz slec

integllec
A NEW, EASY AND INEXPENSIVE WAY
T0 DEVELOP MICROCOMPUTER SYSTEMS

From Intel, the people who invented the microcom-
puter, comes a new, inexpensive and easy way to
develop OEM microcomputer systems. The wide-
spread usage of low-cost microcomputers is made
possible by Intel's MCS-4 four bit; and MCS-8 eight
bit, microcomputer sets. To make it easier to use
these microcomputer sets, Intel now offers complete
4-bit and 8-bit modular microcomputer development
systems called Intellec 4 and intellec 8. The Intellec
modular microcomputers are self-contained expand-
able systems complete with central processor,
memory, 1/O, crystal clock, TTY interface. power
supplies, standard software, and a control and display
console.

The Intellec microcomputer development systems
feature:
* 4-bit and 8-bit parallel processor systems
* Program development using RAMS for easier
loading and modification
» Standard DMA channel
» Standard software package
* Crystal controlied clocks
* Expandable memory and 1/0
» Control panel for system monitoring and program
debugging ‘
* PROM programming capability
* Less time and cost for microcomputer systems
development

The Intellec 8 is an eight-bit modular microcomputer
development system with 5K bytes of memory, ex-

®

pandable to 16K bytes. At the heart of this system is
the Intel 8008 CPU chip which has a repertoire of 48
instructions, seven working registers, an eight level
address stack, interrupt capability and direct address
capability to 16K bytes of memory.

The Intellec 4 is a four-bit modular microcomputer
development system with 5K bytes of program
memory. At the heart of this system is the intel 4004
CPU chip with a repertoire of 45 instructions, sixteen
working registers, a four level address stack, and the
capability of directly addressing over 43K bits
of memory.

Standard Microcomputer Modules. The individual
modules used to develop the 4-bit and 8-bit micro-.
computer systems are also available as off-the-shelf
microcomputer building blocks. These include 4-bit
and 8-bit CPU modules, I/0 Modules, PROM
Programmer Modules, Data Storage Modules,
Control Modules, a Universal OEM Module and other
standard modules for expanding the Intellec systems
or developing pre-production systems.

With these modules you can tailor the components
to your specific microcomputer needs, buying as little
or as much as you need to do the job.

Write for complete details on the Intellec modular
microcomputer development systems. They will be
available in 120 days, but plan now. Intel Corporation,
3065 Bowers Avenue, Santa Clara, California 95051
(408) 246-7501. :

in
delivers.

Ad Reprint, June 1973\

See Appendix VI

CONTENTS

Page No.
[Introduction e e e e e e e 3
1. Processor Timingt e e 4
A.State Control Coding T 4
B. Timing e e e 4
C.CycleControl Codingt 5
. Basic Functional Blocks, 7
A. Instruction Registerand Control 7
B. Memory e e e R, 7
C. Arithmetic/Logic Unit e, 7
D.I/OBuffer e 7
“IV. BasiclnstructionSet e -... 8
A. Data and Instruction Formats iiuennnnn... - 8
B. Summary of Processor Instructions. e 8
C. Compilete Functional Definition. 10
D. Internal Processor Operation utiiuinannen... 15
V. Processor Control Signals 18
Alldnterrupt Signal e e e e 18
B. Ready Signal 20
VI. Electrical Specifications0.0.... Cieaaae 21
A..DC and Operating Characteristicso iiuunnnennn.. 22
B. AC Characteristicsc..ou.i... e e 23
C. Timing Diagram it it i e e 23
D. Typical DC Characteristics A 23
. E. Typical AC Characteristics e e e e 23
VI The SIM8-01 — An MCS-8 Micro Computer 24
A. SIM8-01 Specifications e 25
B.SIMB-01SchematiC vttt ettt eeaeeeienenn 26
C. System Description e e 28
D.Normal Operationttt ittt et teeee eeeenn 29
E. SIM8-01Pin Description ieeiieninnaennn. 31
VIIL MCS-8 PROM Programming System0uuuuuunn. 33
A. General System Description and Operating Instructions 33
B. MP7-03 PROM Programmercuuuiieuneneensonennennns 39
C. Programming System Interconnectionc.0'uuun.. 40
1X. Micro Computer Program Development, 44
A. MCS-8 Software Library S 44
B. Development of a Microcomputer System. 46
C. Execution of Programs from RAM on SIM8-01 Using
Memory Loader Control Programs e e e e 47
X. MCB8-10 Microcomputer Interconnect and Control Module. 49
X1. Appendices e 56
I. SIM8 Hardware Assemblerttt 56
Il. MCS-8 Software Package — Assembler 71
A. Assembler Specifications 71
B. Tymshare Users Guide for Assembly 81
C. General Electric Users Guide for Assembly 81
D. Sample Program Assemblyt u it 82
11l. MCS-8 Software Package — Simulator 84
CALINEOAUCTION .\ L Lot e 84
B. Basic Elements0ttt e 84
C. INTERP/8 Commandsoiiimiiieeea e 84
D. 1/0 Formatting Commands oo v vn sttt ot e e e e 88
E.Error Messages e e e 89
FoExamples e 90
IV. Teletype Modifications for SIM8-01c.cco... . 95
V. Programming Examples 98
A. Sample Program to Search a String of Characters 98 .
B. Teletype and Tape Reader Control Program 99
C. Memory Chip Select Decodes and Output Test Program 29
D. RAM Test Programttt e e e e e e 99 -
E. Bootstrap Loader Programot i, 100
VI. Intellec 8, Bare Bones 8, and Microcomputer Modules 103
X1 Ordering Information 124
A.Sales Officesiiiiiim e e 124
B. Distributors, e e e e 125
C. Ordering Information/Packaging Information 126

NOTICE: The circuits contained herein are suggested applications only. Intel Corporation makes no warranties whatsoever with respect to.the com-
pleteness, accuracy, patent or copyright status, or applicability of the circuits to a user’s requirements. The user is cautioned to check these circuits
for applicability to his specific situation prior to use. The user is further cautioned that in the event a patent or copyright claim is made against him
as a result of the use of these circuits, Intel shall have no liability to user with respect to any such claim,

8008 Photomicrograph With Pin Designations

I. INTRODUCTION

The 8008 is a single chip MOS 8-bit parallel central processor unit for the MCS-8 micro computer

system. A micro computer system is formed when the 8008 is interfaced with any type or speed

standard semiconductor memory up to 16K 8-bit words. Examples are INTEL's 1101, 1103, 2102 (RAMs),
1302, 1602A, 1702A (ROMs), 1404, 2405 (Shift Registers).

The processor communicates over an 8-bit data and address bus (D, through D) and uses two input leads
(READY and INTERRUPT) and four output leads (Sg, S1, So and Sync) for control. Time multiplexing

of the data bus allows control information, 14 bit addresses, and data to be transmitted between the

CPU and external memory. '

This CPU contains six 8-bit data registers, an 8-bit accumulator, two 8-bit temporary registers, four flag
bits, and an 8-bit parallel binary arithmetic unit which implements addition, subtraction, and logical
operations. A memory stack containing a 14-bit program counter and seven 14-bit words is used internally
to store program and subroutine addresses. The 14-bit address permits the direct addressing of 16K words
of memory (any mix of RAM, ROM or 'S.R.).

The control portion of the chip contains logic to implement a variety of register transfer, arithmetic
control, and logical instructions. Most instructions are coded in one byte (8 bits); data immediate in-
structions use two bytes; jump instructions utilize three bytes. Operating with a 500kHz clock, the
8008 CPU executes non-memory referencing instructions in 20 microseconds. A selected device, the
8008-1, executes non-memory referencing instructions in 12.5 microseconds when operating from an
800kHz clock.

All inputs (including clocks) are TTL compatible and all outputs are low-power TTL compatible.

The instruction set of the 8008 consists of 48 instructions including data manipulation, binary arith-
metic, and jump to subroutine.

The normal progra'm‘ flow of the 8008 may be interrupted through the use of the “INTERRUPT"
control line. This allows the servicing of slow 1/O peripheral devices while also executing the main
program.

The “READY"’ command line synchronizes the 8008 to the memory cycle allowing any type or speed
of semiconductor memory to be used.

~ STATE and SYNC outputs indicate the state of the processor at any time in the instruction cycle.

Il. PROCESSOR TIMING

The 8008 is a complete central processing unit intended for use in any arithmetic, control, or decision-
making system. The internal organization is centered around an 8-bit internal data bus. All communication
within the processor and with external components occurs on this bus in the form of 8-bit bytes of
address, instruction or data. (Refer to the accompanying block diagram for the relationship of all of

the internal elements of the processor to each other and to the data bus.) For the MCS-8 a logic ““1" is
defined as a high level and a logic “0” is defined as a low level.

A. State Control Coding

So S, S, STATE
The processor controls the use of the data bus and 0 1 0 T1
determines whether it will be sending or receiving 0 1 1 Tl
data. State signals Sy, S,, and S,, along with SYNC 0 0 1 T2

inform the peripheral circuitry of the state of the 0 0 0 WAIT

. 1 0 0 T3

processor. A table of the binary state codes and 1 1 0 STOPPED
the designated state names is shown below. 1 1 1 T4
1 0 1 T5

B. Timing

Typically, a machine cycle consists of five states, two states in which an address is sent to memory
(T1 and T2), one for the instruction or data fetch (T3), and two states for the execution of the in-
struction (T4 and T5). If the processor is used with slow memories, the READY line synchronizes the
processor with the memories. When the memories are not available for either sending or receiving data,
the processor goes into the WAIT state. The accompanying diagram illustrates the processor activity
during a sihgle cycle.

21 N N VY W WY O W O WY V7 WY WY WY W WY W
$ n r\A r\ N a'
 \
-\
v

SYNC

s, \ UV "\ /

™ ™ T2 WAIT 3 STOPPED T4 ™
HIGHER
LOWER 6-BITS EXTERNAL INSTRUCTION HALT
CPU 8-BITS ADDRESS, MEMORY OR DATA INSTRUCTION EXECUTION OF
INTERRUPTED | ADDRESS TWO BITS NOT READY FETCH, OR | RECEIVED BY INSTRUCTION
ouT CONTROL (OPTIONAL) DATA OUT cPU
ouTt (8-BITS)

< TYPICAL PROCESSOR CYCLE
’ INCLUDES T1, 72, T3, T4, T

Figure 1. Basic 8008 Instruction Cycle

The receipt of an INTERRUPT is acknowledged by the T11. When the processor has been interrupted,

this state replaces T1. A READY is acknowledged by T3. The STOPPED state acknowledges the receipt
"of a HALT instruction. ‘

Many of the instructions for the 8008 are multi-cycle and do not require the two execution states, T4
and T5. As a result, these states are omitted when they are not needed and the 8008 operates asyn-
chronously with respect to the cycle length. The external state transition is shown below. Note that the
WAIT state and the STOPPED may be indefinite in iength (each of these states will be 2n clock periods).
The use of READY and INTERRUPT with regard to these states will be explained later.

~

INSTRUCTION

JAMMED IN YES

EXECUTION

COMPLETE? INTERRUPTED?

INTERRUPT

STOPPED
110

Figure 2. CPU State Transition Diagram

C. Cycle Control Coding

As previously noted, instructions for the 8008 require one, two, or three machine cycles for complete
execution. The first cycle is always an instruction fetch cycle (PCI). The second and third cycles are
for data reading (PCR), data writing (PCW), or 1/0O operations (PCC).

The cycle types are coded with two bits, Dg and D,, and are only present on the data bus during T2.

D | D, |CYCLE FUNCTION

0 0 PCI Designates the address is for a memory read
(first byte of instruction).

0 1 PCR Designates the address is for a memory read

data (additional bytes of instruction or data).
“PCC Designates the data as a command |/O operation.

PCwW Designates the address is for a memory write
data. '

-t
- 0

INTERNAL DATA BUS

Dg Dy Dp D3 D4 D5 Dg D7

P

INTERNAL DATA BUS

8 BIT DATA BUS

[}

1T

REGISTER @

l

MULTIPLEXER
yyYVYvywey

SCRATCH PAD
ADDRESS DECODER

SCRATCH PAD ADDRESS

ACCUMULATOR
AND
SCRATCH PAD
MEMORY

7 WORDS x 8 BITS

Il

REGISTER b MEMORY CYCLE INSTRUCTION REGISTER ADDRESS)
POINTER
CONTROL _CODIN! (8 BITS) AHL
7 =, XXKARER Y
REGISTER
CARRY AND
LOOK AHEAD
(8 BITS) - - ARITHMETIC INSTRUCTION MEMORY -
UNIT AND
DECODER
CONTROL 170 CONTROL
8 - BIT PARALLEL | < -
ARITHMETIC >
UNIT
‘ A 4 A ¥ YYY !
CONDITION WACHINE crack
FLIP-FLOPS (Z,C,5,P) [<-| CYCLE |»
POINTER
AND CONDITION CONTROL
LoGIC
STATE TIMING >
sTatus |* GENERATOR ~
SIGNALS —»—
CLOCK

MEMORY
MULTIPLEXER AND
REFRESH

AMPLIFIERS

!

-

bod

S2 8 So

YYVVYYVYY

TACK ADDRESS
ULTIPLEXER

LW

l STACK ADDRESS
DECODER

ADDRESS STACK AND

PROGRAM COUNTER
8 WORDS x 14 BITS

GENERATOR

SYNC YS!

y | v

READY INT.
FF EF.

o &

READY INTERRUPT

Figure 3. 8008 Block Diagram

H1l. BASIC FUNCTIONAL BLOCKS

The four basic functional blocks of this Intel processor are the instruction register, memory, arithmetic-
logic unit, and 1/O buffers. They communicate with each other over the internal 8-bit data bus.

A. Instruction Register and Control

The instruction register is the heart of all processor control. Instructions are fetched from memory, stored
in the instruction register, and decoded for control of both the memories and the ALU. Since instruction
executions do not all require the same number of states, the instruction decoder also controls the state
transitions. ‘

B. Memory

Two separate dynamic memories are used in the 8008, the pushdown address stack and a scratch pad.
These internal memories are automatically refreshed by each WAIT, T3, and STOPPED state. In the worst
case the memories are completely refreshed every eighty clock periods.

1. Address Stack

The address stack contains eight 14-bit registers providing storage for eight lower and six higher
order address bits in each register. One register is used as the program counter (storing the effective
address) and the other seven permit address storage for nesting of subroutines up to seven levels.
The stack automatically stores the content of the program counter upon the execution of a CALL
instruction and automatically restores the program counter upon the execution of a RETURN. The
CALLs may be nested and the registers of the stack are used as last in/first out pushdown stack.

A three-bit address pointer is used to designate the present location of the program counter. When
the capacity of the stack is exceeded the address pointer recycles and the content of the lowest
level register is destroyed. The program counter is incremented immediately after the lower order
address bits are sent out. The higher order address bits are sent out at T2 and then incremented

if a carry resulted from T1. The 14-bit program counter provides direct addressing of 16K bytes

of memory. Through the use of an I/O instruction for bank switching, memory may be indefinitely
expanded. -

2. Scratch Pad Memory or Index Registers

The scratch pad contains the accumulator (A register) and six additional 8-bit registers (B, C, D,
E, H, L). All arithmetic operations use the accumulator as one of the operands. All registers are
independent and may be used for temporary storage. In the case of instructions which require
operations with a register in external memory, scratch pad registers H & L provide indirect ad-
dressing capability; register L contains the eight lower order bits of address and register H contains
the: six higher order bits of address (in this case bit 6 and bit 7 are ““don’t cares”).

C. Arithmetic/Logic Unit (ALU)

All arithmetic and logical operations (ADD, ADD with carry, SUBTRACT, SUBTRACT with borrow,
AND, EXCLUSIVE OR, OR, COMPARE, INCREMENT, DECREMENT) are carried out in the 8-bit
parallel arithmetic unit.which includes carry-look-ahead logic. Two temporary resisters, register “‘a”" and
register “‘b’’, are used to store the accumulator and operand for ALU operations. In-addition, they are
used for temporary address and data storage during intra-processor transfers. Four control bits, carry
flip-flop (¢}, zero flip-flop (2) | sign flip-flop (s} , and parity flip-flop (P) , are set as the result of each
arithmetic and logical operation. These bits provide conditional branching capability through CALL,
JUMP, or RETURN on condition instructions. In addition, the carry bit provides the ability to do mul-
tiple precision binary arithmetic.

D. 1/0O Buffer

This buffer is the only link between the processor and the rest of the system. Each of the eight buffers
is bi-directional and is under control of the instruction register and state timing. Each of the buffers is
low power TTL compatible on the output and TTL compatible on the input.

IV. BASIC INSTRUCTION SET
The following section presents the basic instruction set of the 8008.

A. Dataand Instruction Formats

Data in the 8008 is stored in the form of 8-bit binary integers. All data transfers to the system data bus will be
in the same format.

D; Dg Dg D4 D3 D, Dy Dy

DATA WORD
The program instructions may be one, two, or three bytes in length. Multiple byte instructions must be stored
~in successive words in program memory. The instruction formats then depend dn the particular operation
- executed.

One Byte Instructions TYPICAL INSTRUCTIONS

Register to register, memory reference,

Dy Dg Dg Dy D3 D, Dy D . d

[776 7574 "3 "2 0] OP CODE 1/0 arithmetic or logical, rotate or
return instructions

Two Byte Instructions

l°7 Dg Dg D4 D3 Dy Dy Do], OP CODE

Dy D, D4 Dy D, Dy D,
[7 Dg D5 D4 D3 D3 Dy 0! OPERAND Immediate mode instructions

Three Byte Instructions

[P7 Dg D5 Dg D3 D2 Dy Dp| 0P coDE

MP . .
} Dy Dg Dg D4 D3 D, D, Dol LOW ADDRESS JUMP or CALL instructions

[X X D5 D4 D3 D2 Dy Dg| HIGH ADDRESS® *For the third byte of this instruction, Dg and Dy are “don’t care” bits,

For the MCS-8 a logic 1" is defined as a high level and a logic ‘0" is defined as a low level.

B. Summary of Processor Instructions

Index Register Instructions
The load instructions do not affect the flag flip-flops. The increment and decrement instructions affect all flip-
flops except the carry. ’

» MINIMUM INSTRUCTION CODE
MNEMONIC | STATES | D,Dg DgD4D3 D,D;D, DESCRIPTION OF OPERATION
REQUIRED
(Dieqrg (5) 11 DDD S S S |Load index register rq with the content of index register ro.
2 em ©{8) 11 DDD 1 1 1 |Load index register r with the content of memory register M.
LMr {7) 11 1 11 S S S |Load memory register M with the content of index register r.
e @ 00 DDD 110 }5qindex register r with data B . . . B.
B B B B B B B B
Lmi (9 00 L 110 Load memory register M with data B . . . B.
B B B B B B B B
INr ({5) 00 DDD 0 0 O |increment the content of index register r {r # A).
DCr (5) 00 DDD 0 0 1 |Decrement the content of index register r (r # A),

Accumulator Group Instructions

The result of the ALU instructions affect all of the flag flip-flops. The rotate instructions affect only the carry flip-fiop.

ADr (5) 10 000 S S S | Add the content of index register r, memory register M, or data
ADM (8) 10 000 1 1 1 |B...B totheaccumulator. An overflow (carry) sets the carry
ADI (8 00 000 1 0 0 | flip-flop.

B B B 8 B B B B
ACr (5) 10 0 01 § S S |Addthe content of index register r, memory register M, or data
ACM (8) 10 00 1 1 1 1 |B...B tothe accumulator with carry. An overflow (carry)
ACH (8) oo 0 01 1 0 O [setsthe carry flip-flop.

B B B B B B B B
SUr (5) 10 010 S S S | Subtract the content of index register r, memory register M, or
SUM (8) 10 010 1 1 1 |dataB...B from the accumulator. An underflow (horrow)
sSul 8) 00 010 1 0 O |setsthe carry flip-flop.

, B B B B B B B B

SBr (5) 1 0 0 1 1 S S S | Subtract the content of index register r, memory register M, or data
SBM (8) 10 011 1 1 1 |dataB...B from the accumulator with borrow. An underflow
SBI (8) 0 0 01 1 1 0 0 |({(borrow) sets the carry flip-fiop.

B B B B B B B B

MINIMUM INSTRUCTION CODE
MNEMONIC STATES | D;Dg DgDsD; DyDyDy DESCRIPTION OF OPERATION
REQUIRED .

NDr (5) 10 100 S S S | Compute the logical AND of the content of index register r,
NDM (8) 10 100 1 1 1 | memory register M, or data B , .. B with the accumulator,
NDI (8) 00 100 100 -

B B B BB B B B
XRr (5) 10 1.0 1 S S S | Compute the EXCLUSIVE OR of the content of index register
XRBM (8) 1.0 1.0 1 1 1 11| r, memory register M, or data B . . . B with the accumulator,
XRI (8) 00 101 100

B B B B B B B B
ORr (5) 10 110 S S S | Compute the INCLUSIVE OR of the content of index register
ORM (8) 1 0 110 1 1 1 | r, memory register m, or data B . . . B with the accumulator ,
ORI (8) 00 110 -1 0 0

) B B B B B B B B

CPr (5) 10 111 S S S | Compare the content of index register r, memory register M,
cPM (8) 10 111 1 1 1| ordata B ...B with the accumulator. The content of the
CPI (8 00 111 1 0 O | accumulator is unchanged.

B B B B B B B B
RLC (5) 00 0 00 0 1 O | Rotate the content of the accumulator left,
RRC (5) 00 0 01 0 1 0 | Rotate the content of the accumulator right.
RAL (5) 00 010 0 1 0 | Rotate the content of the accumulator left through the carry.
RAR (5) 00 01 1 0 1 O | Rotate the content of the accumulator right through the carry.

Program Counter and Stack Control Instructions

RCNTYTS (11) 01 X X X 1 0 0 | Unconditionally jump to memory address B3...B3B2...B2.
By By B2B2Bz B2 B2BY
X X B3 B3B3 B3B3B3| -
(5) yFc (9 or11) 01 0 CqC3 O O O | JumptomemoryaddressB3...B3B2...B2 if the condition
By B2 By BBy Bg By By flip-flop c.is false. Otherwise, execute the next instruction in sequence.
X X B3 B3B3 B3zB3Bg3
JTc (9 or 11} 0o 1 1 C4C3 0 O O | Jump to memory address B3...B3B2 ... B2 if the condition
B2 By By By By Bo By Bjy| flipfiop cis true. Otherwise, execute the next instruction in sequence.
X X B3 B3B3z B3 B3B3
CAL (11) 01 X X X 1 1 O | Unconditionaily call the subroutine at memory address B3 .
BpBp BBy By By By Bg| B3By...B2. Save the current address (up one level in the stack).
X X B3 B3 Bz B3 B3Bg :
CFc {9 or 11) 01 0 C4C3 O 1 0| Call the subroutine at memory address B3...B3B2...B2if the
Bp By B BaBy Bg By Bg| condition flip-fiop c is false, and save the current address (up one
X X B3z B3 B3 B3 B3 B3| level in the stack.) Otherwise, execute the next instruction in sequence,
CTc (9 or 11) 01 1 C4C3 0 1 0| Call the subroutine at memory address B3...B3B2...Bgif the
B2 Bp BBy By By By Byl condition flip-flop ¢ is true, and save the current address (up one
X X B3 B3B3z B3 B3 B3| level in the stack). Otherwise, execute the next instruction in sequence.
RET (5) 00 X X X 1 1 1 | Unconditionally return (down one level in the stack).
RFc (3 or 5) 00 0 C4C3 O 1 1 | Return (down one level in the stack} if the condition flip-flop ¢ is
false. Otherwise, execute the next instruction in sequence,
RTc {3 or 5} 00 1 C4C3 0 1 1| Return (down one level in the stack) if the condition flip-flop c is
true. Otherwise, execute the next instruction in sequence.
RST (5) 00 A AA 1 0 1 | Call the subroutine at memory address AAAOOO (up one level in the stack).
Input/Output Instructions
INP (8) o 1 00 M M M 1 | Read the content of the selected input port (MMM) into the
accumulator.
ouT (6) 0o 1 R R M M M 1 | Write the content of the accumulator into the selected output
port (RRMMM, RR # 00).
Machine Instruction
HLT (4) 00 000 0 0 X | Enter the STOPPED state and remain there until interrupted,
HLT (4) 1 1 111 1 1 1| Enter the STOPPED state and remain there until interrupted.
NOTES: -

(1}

(2
(3)
(4)
(5)

S8SS = Source Index Register
DDD = Destination Index Register
Memory registers are addressed by the contents of registers H & L.
Additional bytes of instruction are designated by BBBBBBBB.

X = "Don’t Care”.
Flag flip-flops are defined by C4C3: carry {00-overflow or underflow), zero (01-result is zero), sign (10-MSB of result is 1),
parity (11-parity is even).

These registers, rj, are designated “Alaccumulator—000),
B(001), C(010), D(011), E(100), H(101), L{110}.

C. Complete Functional Definition
The following pages present a detailed description of the complete 8008 Instruction Set.

Symbols Meaning
<B2> Second byte of the instruction
<B3> Third byte of the instruction
r One of the scratch pad register references: A, B,C, D, E,H, L
c One of the following flag flip-flop references: C, Z S,' P
C4Cs Flag flip-flop codes Condition for True
00 carry Overflow, underflow
01 zero Result is zero :
10 sign MSB of result is ‘1"
11 parity Parity of result is even
M Memory location indicated by the contents of registers H and L
() Contents of location or register '
A Logical product
V Exclusive “or”
\% Inclusive “or”
A Bit m of the A-register
STACK Instruction counter (P} pushdown register
P Program Counter
- Is transferred to
XXX A ““don’t care”
SSS Source register for data
DDD Destination register for data

Register # Register Name
(SSS or DDD)

000
001
010
011
100
101
110

rImooOw)>

10

INDEX REGISTER INSTRUCTIONS:

LOAD DATA TO INDEX REGISTERS — One Byte -
Data may be loaded into or moved between any of the index registers, or memory registers.

Lryr, 11 DDD SSS (r1}=(ro) Load register r; with the content of r.

(one cycle — PCl) The content of r, remains unchanged. If SSS=DDD,
‘ the instruction is a NOP (no operation).

Lrv 11 DDD 111 (r)=-(M) Load register r with the content of the

(two cycles — memory location addressed by the contents of

PCI/PCR) : registers H and L. (DDD#111 — HALT instr.)

LMr 11 111 SSS (M)=(r) Load the memory location addressed by

(two cycles — the contents of registers H and L with the content

PCI/PCW) of register r. (SSS#111 — HALT instr.)

LOAD DATA IMMEDIATE — Two Bytes
A byte of data immediately following the instruction may be loaded into the processor or into the -

memory

Lel 00 DDD 110 (r)«=—<By> Load byte two of the instruction into
(two cycles — <B,> register r.
PCI/PCR) ‘ .
LMI ‘ 00 111 110 (M) =—<By> Load byte two of the instruction into
(three cycles — <B,> the memory location addressed by the contents of
PCI/PCR/PCW) registers H and L.

INCREMENT INDEX REGISTER — One Byte ‘
INr 00 -DDD 000 (r) = (r)+1. The content of register r is incremented by
(one cycle — PCl) . one. All of the condition flip-flops except carry are

affected by the result. Note that DDD#000 (HALT
instr.) and DDD#111 (content of memory may not
be incremented).

DECREMENT INDEX REGISTER — One Byte

DCr 00 DDD 001 {r}==({r)—1. The content of register r is decremented
{(one cycle — PCI) . by one. All of the condition flip-flops except carry
are affected by the result. Note that DDD#000 (HALT
instr.) and DDD#111 (content. of memory may not be
decremented).

ACCUMULATOR GROUP INSTRUCTIONS

Operations are performed and the status flip-flops, C, Z, S, P, are set based on the result of the operation.
Logical operations (NDr, XRr, ORr) set the carry flip-flop to zero. Rotate operations affect only the
carry flip-flop. Two’s complement subtraction is used. ‘

ALU INDEX REGISTER INSTRUCTIONS — One Byte
(one cycle — PCI)
Index Register operations are carried out between the accumulator and the content of one of the index
registers (SSS=000 thru SSS=110). The previous content of register SSS is unchanged by the operation.

ADr 10 000 SSS (A)=(A)+(r) Add the content of register r to the
content of register A and place the result into
register A. ' '

ACr 10 001 SSS (A)=—{A)+(r)+(carry) Add the content of register r

and the contents of the carry flip-flop to the content
of the A register and place the result into Register A.

SUr 10 010 - SSS (A)=(A)—(r) Subtract the content of register r from
the content of register A and place the result into
register A. Two’s complement subtraction is used.

11

ACCUMULATOR GROUP INSTRUCTIONS - Cont'd.

SBr 10 011 SSS (A)==(A)—(r)—(borrow) Subtract the content of
register r and the content of the carry flip-flop from
the content of register A and place the result into

register A.
NDr 10 100 SSS (A)=~(A)A(r) Place the logical product of the register
A and register r into register A.
XRr 10 101 SSS (A)==(A)¥(r) Place the “exclusive - or"” of the
content of register A and register r into register A.
ORr 10 110 SSS (A)=—=(A)V(r) Place the “inclusive - or” of the
content of register A and register r into register A.
CPr 10 111 SSS (A)—(r) Compare the content of register A with

the content of register r. The content of register A
remains unchanged. The flag flip-flops are set by the
result of the subtraction. Equality (A=r) is indicated
by the zero flip-flop set to ““1”". Less than (A<r) is
indicated by the carry flip-flop, set to *“1”.
ALU OPERATIONS WITH MEMORY — One Byte

(two cycles — PCI/PCR) :

Arithmetic and logical operations are carried out between the accumulator and the byte of data

addressed by the contents of registers H and L.

ADM 10 000 111 (A)—(A)+(M) ADD

ACM 10 001 11 (AF—(A)+(M)+(carry) ADD with carry

SUM 10 010 11 (Ay—(A)—(M) SUBTRACT

SBM 10 01 111 (A~ A)—(M)=(borrow) SUBTRACT with borrow
NDM 10 100 11 (A)J=~(A)A(M) Logical AND

XRM 10 101 111 (A)—(A)¥(M) Exclusive OR

ORM 10 110 11 (Al~A)V(M) Inclusive OR

CPM 10 11 11 (A)—(M) COMPARE

ALU IMMEDIATE INSTRUCTIONS — Two Bytes
“{two cycles —PCI/PCR)
Arithmetic and logical operations are carried out between the accumulator and the byte of data
immediately following the instruction.

ADI 00 000 100 (A)=—(A)+<B2>
<By> ADD
-ACI 00 001 100 (A)=—{A)+<B2>+{carry)
<By> ADD with carry
SuUl 00 010 100 (A)=(A)—<B2>
<By> SUBTRACT
SBI 00 011 100 (A)=-(A)—<B2> —(borrow)
<Bo> SUBTRACT with borrow
NDI 00 100 100 (A)—(A)A<B2>
<B2> Logical AND
XRlI 00 101 100 (A)—(A)¥*<B2>
» <B2> - Exclusive OR
ORI 0C 110 100 (A)=—=(A)V <B2>
<Bjy> Inclusive OR
CPI 00 111 100 (A)— <B2>
<B2> COMPARE

12

ROTATE INSTRUCTIONS — One Byte
{one cycle — PCI)
The accumulator content (register A) may be rotated either right or left, around the carry bit or
through the carry bit. Only the carry flip-flop is affected by these instructions; the other flags are
unchanged. ,
RLC 00 000 010 An+ivAm, AgeA5, (carry)+A;
: Rotate the content of register A left one bit.
- Rotate A; into Ag and into the carry flip-flop.

RRC 00 001 - 010 Ap=Amn+, A7+Ay, (carry)+Ag
Rotate the content of register A right one bit.
Rotate Ag into A7 and into the carry flip-flop.

RAL 00 010 010 A1 —An Ag=(carry),(carry)=A;
Rotate the content of Register A left one bit.
Rotate the content of the carry flip-flop into A,.
Rotate A, into the carry flip-flop.

RAR 00 011 010 Am=Am+1,A7 +(carry), (carry)=Aog
Rotate the content of register ‘A right one bit.

Rotate the content of the carry flip-flop into A,.
Rotate A, into the carry flip-flop.

PROGRAM COUNTER AND STACK CONTROL INSTRUCTIONS

JUMP INSTRUCTIONS — Three Bytes
(three cycles — PCI/PCR/PCR)
Normal flow of the microprogram may be altered by jumping to an address specified by bytes two
and three of an instruction.

JMP 01 XXX 100 (P)=<B3><B2> Jump unconditionally to the
(Jump Unconditionally) <By> instruction located in memory location addressed
<Bgz> by byte two and byte three.

JFc 01 o0c,C, 000 If (c) = 0, (P}=<B3><B,> Otherwise, (P) = (P)+3.
{Jump if Condition <By> If the content of flip-flop ¢ is zero, then jump to
False) <Bs3> the instruction located in memory location <B3><B,>;

otherwise, execute the next instruction in sequence.
JTc 01 1C,C; 000 If (¢) =1, (P)=<B3><By>. Otherwise, (P) = (P)+3.
(Jump if Condmon <By> If the content of flip-flop ¢ is one, then jump to the
True) <B3> ~ instruction located in memory location <B3> <By> ;

otherwise, execute the next instruction in sequence.

" CALL INSTRUCTIONS — Three Bytes
(three cycles — PCI/PCR/PCR)
Subroutines may be called and nested up to seven levels.

CAL 01 XXX 110 (Stack)=(P), (P)=<B3> <By>. Shift the content of P

(Call subroutine <By> to the pushdown stack. Jump unconditionally to the

Unconditionally) <B3y> instruction located in memory location addressed by
byte two and byte three.

CFc 01 0C,C; 010 If (c) =0, (Stack)=(P), (P)=—<B3><B;>. Otherwise,

(Call subroutine <By> (P) = (P)+3. If the content of flip-flop c is zero, then

if Condition False) <B3> shift contents of P to the pushdown stack and jump

to the instruction located in memory location<B;><Bo> ;
otherwise, execute the next instruction in sequence.

- CTc 01 1C,C,; 010 If (c) =1, (Stack)=(P), (P)=<B3z><B,>. Otherwise,
(Call subroutine <By> (P} = (P)+3. If the content of flip-flop c is one, then
if Condition True) <Bz> - shift contents of P to the pushdown stack and jump

to the instruction located in memory location<Bs> <B3>;
otherwise, execute the next instruction in sequence.
In the above JUMP and CALL instructions < B, > contains the least significant half of the address and
<B3> contains the most significant half of the address. Note that Dg and D; of<B3>are “don’t care”
bits since the CPU uses fourteen bits of address.

13

RETURN INSTRUCTIONS — One Byte
{one cycle — PCI)
A return instruction may be used to exit from a subroutine; the stack is popped-up one level at a time.
RET 00 XXX 11 (P)=—(Stack). Return to the instruction in the memory
' location addressed by the last value shifted into the
pushdown stack. The stack pops up one level.

RFc 00 o0c,C, 011 If (c} = 0, (P)=(Stack); otherwise, (P) = (P)+1.
(Return Condition If the content of flip-flop ¢ is zero, then return to
False) the instruction in the memory location addressed by

the last value inserted in the pushdown stack. The stack
pops up one level. Otherwise, execute the next instruction

in sequence. A
RTc 00 1C,C; 011 If (c) =1, (P)=—(Stack); otherwise, (P) = (P)+1.
(Return Condition - If the content of flip-flop c is one, then return to
True) - the instruction in the memory location addressed by

the last value inserted in the pushdown stack. The stack
pops up one level. Otherwise, execute the next instruction
in sequence.
RESTART INSTRUCTION — One Byte
(one cycle — PCI)
The restart instruction acts as a one byte call on eight specified locations of page 0, the first 256 instruction
words. '
RST 00 AAA 101 (Stack)=(P),(P)=(000000 00AAAOD00)
Shift the contents of P to the pushdown stack.
The content, AAA, of the instruction register is
shifted into bits 3 through 5 of the P-counter. All
other bits of the P-counter are set to zero. As a one-
word ““call”, eight eight-byte subroutines may be
accessed in the lower 64 words of memory.

INPUT/OUTPUT INSTRUCTIONS
One Byte
(two cycles — PCI/PCC)
Eight input devices may be referenced by the input instruction

INP 01 ooM MM1 (A)=(input data lines). The content of register A
is made available to external equipment at state T1
of the PCC cycle. The content of the instruction
register is made available to-external equipment at
state T2 of the PCC cycle. New data for the
accumulator is loaded at T3 of the PCC cycle.
MMM denotes input device number. The content of the
condition flip-flops, S,Z,P,C, is output on Dy, D,, D,, Dy

, respectively at T4 on the PCC cycle.
Twenty-four output devices may be referenced by the output instruction.

ouT 01 RRM MMI1 (Output data lines)=(A). The content of register A
is made available to external equipment at state T1
and the content of the instruction register is made
available to external equipment at state T2 of the PCC
cycle. RRMMM denotes output device number (RR #
00).

MACHINE INSTRUCTION
HALT INSTRUCTION — One Byte
(one cycle — PCI)

HLT 00 000 00X On receipt of the Halt Instruction, the activity of the
or processor is immediately suspended in the STOPPED
11 111 111 state. The content of all registers and memory is un-

changed. The P-counter has been updated and the
internal dynamic memories continue to be refreshed.

14

D.

Internal Processor Operation

Internally the processor operates through five different states:

signal distinguishes between the two clock periods

of each state.

Internal State Typical Function
NORMAL Send out lower eight bits of address and increment program counter,
T Send out lower eight bits of address and suppress incrementing of program counter and)
INTERRUPT acknowledge interrupt.
T2 Send out six higher order bits of address and two control bits, Dg and D7. Increment
program counter if there has been a carry from T1.
WAIT Wait for READY signal to come true. Refresh internal dynamic memories while waiting.
1 NORMAL Fetch and decode instruction; fetch data kfrom memory; output data to memory. Refresh
internal memories.
_STOPPED Remain stopped until INTERRUPT occurs. Refresh internal memories.
Execute instruction and appropriately transfer data within processor. Cont_ent of data
T4 and TS5 — bus transfer is available at 1/O bus for convenience in testing. Some cycles do not require
these states, In those cases, the states are skipped and the processor goes directly to T1,
The 8008 is driven by two non-overlapping clocks. ’-—ch‘ﬁ
Two clock periods are required for each state of :
the processor. ¢q is generally used to precharge all o o oo
-data lines and memories and ¢, controls all data
transfers within the processor. A SYNC signal ,
(divide by two of ¢5) is sent out by the 8008. This o bay o2

SYNC j \ ’ [
lq——— ONE MACHINE STATE——-I

Processor Clocks

The figure below shows state transitions relative to the internal operation of the processor. As noted

in the previous table, the processor skips unnecessary execution steps during any cycle. The state

counter within the 8008 operates is a five bit feedback shift register with the feedback path controlled

by the instruction being executed. When the processor is either waiting or stopped, it is internally

cycling through the T3 state. This state is the only time in the cycle when the internal dynamic memories
can be refreshed,

(CYCLE 1) {HLT » INT + RETURN (CF)) + (CYCLE 2) {OUT + LMr) + (CYCLE 3) (LMI + JUMP (CF) + CALL (CF))

CYCLE 1

CYCLE 3
)

CYCLE 2 T

(CYCLE 2) (LMI + JUMP + CALL)

(CYCLE 1) (HLT « INT) +RDY

il |

T3 »{ T4

T2 T5

y
Y
3

(CYCLE 1) (LrM + ALUM + ALUI + INP + OUT + Lrl + JUMP + CALL)

(CYCLE 1) (LMr)

NORMAL RETURN AT END OF MEMORY CYCLE

NOTE: C.F. INDICATES A FAILED CONDITION

Transition State Diagram (Internal)

The following pages show the processor activity during each state of the execution of each instruction.

15

INTERNAL PROCESSOR OPERATION

INDEX REGISTER INSTRUCTIONS

INSTRUCTION CODING #OF STATES MEMORY CYCLE ONE (1)
OPERATION | TO EXECUTE
D;Dg DgD, D3 D;D; Dy INSTRUCTION T1(2) T2 T3 T4(3) T5
11 DDD S S S Lrqry 5 PCLOUT PCHOUT FETCH INSTR.(5)] SSS TO REG.b REG.b TO DDD
: (4 TO IR & REG. b (el
11 DDD 111 Lrm 8 PC OUT PCHOUT | FETCH INSTR. >
TOIR & REG.b (7)
11 111 S S S LMr 7 PCLOUT PCHOUT FETCH INSTR. SSSTO REG.b >
TOIR & REG. b 5
(V] DDD 110 Lrl 8 PCLOUT PCHOUT FETCH INSTR. -
TO IR & REG. b ~
00 111 110 LMt 9 PCL OUT PCHOUT FETCH INSTR, —»
. TO IR & REG.b
00 D DD 000 INr 5 PCLOUT PCHOUT | FETCH INSTR. X ADD OP - FLAGS
TO IR & REG. b AFFECTED
0o0 DDD 00 1 DCr 5 PCLOUT PCHOUT FETCH INSTR. X SUB OP - FLAGS
TO IR & REG.b | AFFECTED
ACCUMULATOR GROUP INSTRUCTIONS
10 P PP S §s ALUOPTr 5 PCLOUT PCHOUT FETCH INSTR, SSS TO REG: b ALUOP - FLAGS
TO IR & REG.b AFFECTED
10 P PP 111 ALUOPM 8 PCLOUT PCHOUT FETCH INSTR. >
TO IR & REG. b
00 P PP 100 ALUOP | 8 PCLOUT PCHOUT FETCH INSTR. >
TO IR & REG. b
o0 000 010 RLC 5 PCLOUT PCHOUT | FETCH INSTR. X ROTATE REG. A
. TOIR®.b CARRY AFFECTED
00 001 010 RRC 5 PCy OUT PCHOUT | FETCH INSTR. X ROTATE REG, A
TO IR & REG.b CARRY AFFECTED
G 0 010 010 RAL 5 PCLOUT PCHOUT | FETCH INSTR. X ROTATE REG. A
TO IR & REG. b CARRY AFFECTED
00 01 1 010 RAR - 5 PCLOUT PCHOUT | FETCH INSTR. X ROTATE REG. A
TO IR & REG. b CARRY AFFECTED
PROGRAM COUNTER AND STACK CONTROL INSTRUCTIONS
01 X X X 100 JMP 11 PCLOUT PCHOUT | FETCH INSTR. -
TO IR & REG. b "~
o1 g CC 000 JFe 9or 11 PCLOUT PCHOUT | FETCH INSTR. -
TO1R & REG. b "
01 1C¢C 000 JTc Sor 11 PCLOUT PCHOUT FETCH INSTR, -
TO IR & REG. b o
0 1 X X X 110 CAL 1 PCLOUT PCHOUT FETCH INSTR. _
TO IR & REG. b o
' 01 0CC 010 CFc 9or 11 PCLOUT PCHOUT FETCH INSTR. o
TO IR & REG. b o
01 1 CCcC 010 CTc 9or 11 PCLOUT PCHOUT | FETCH INSTR. -
TO IR & REG. b i
00 X X X 111 RET 5 PCLOUT PCHOUT FETCH INSTR. POP STACK X
TO IR & REG. b
00 0CCcC 01 1 RFc 3or5 PCLOUT PCHOUT FETCH INSTR. POP STACK (13) X
TO IR & REG. b
[1] 1 CC 01 1 RTc 3or5 PCLOUT PCHOUT | FETCH INSTR. POP STACK (13) X
TO IR & REG. b
00 A A A 10 1 RST 5 PCLOUT PCHOUT | FETCH INSTR. REG. a TOPCH | REG.b TO PC|_
TO REG.b AND (14
PUSH STACK
(0=REG, a)
1/0 INSTRUCTIONS
0 1 00 M MM INP 8 PCLOUT PCHOUT FETCH INSTR, o
TO IR & REG. b T
01 RRM MM ouT 6 PCLOUT PCHOUT | FETCH INSTR. _
TO IR 8 REG. b —
MACHINE INSTRUCTIONS
00 000 00 X HLT 4 PCLOUT PCHOUT | FETCH INSTR.
: TO IR & REG.b
& HALT (18)
11 111 111 HLT 4 PCLOUT PCHOUT FETCH INSTR.
TO IR & REG. b
& HALT (18)
NOTES:
1. The first memory cycle is always a PCI (instruction) cycle. 6. Temporary registers are used internally for arithmetic operations
2. Internally, states are defined as T1 through T5. In some cases and data transfers (Register a and Register b.)
more than one memory cycle is required to execute an instruction. 7. These states are skipped.
3. Content of the internal data bus at T4 and T5 is available at the 8. PCR cycle (Memory Read Cycle).
data bus, This is designed for testing purposes only, 9. X’ denotes an idle state.
4. Lower order address bits in the program counter are denoted 10. PCW cycle {Memory Write Cycle).
by PCy_and higher order bits are designated by PCH. 11. When the JUMP is conditional and the condition fails, states
5. During an instruction fetch the instruction comes from memory T4 and T5 are skipped and the state counter advances to
to the instruction register and is decoded, the next memory cycle.

16

MEMORY CYCLE TWO. MEMORY CYCLE THREE

REG. L OUT REG.H OUT | DATATO
(8 REG. b

REG. L OUT | REG.HOUT | REG.b
(10) TO OUT

PCLOUT (8) DATA TO X

e :
|k

ik
5 Uxm‘ xssﬁ

S
x? il .

i w

i FOANY ey
gl 1 v e B
REG. b el . L,w,»mww‘

PCLOUT (8) DATATO

REG. b

ST g e ‘
B N SRR s
F s “ . ‘:“,N«emx‘ §‘ ‘,X,Umxw”‘ i i
i i -
i G ,mmm;ﬁ i 5 ‘”M,(,ﬂ e

i

L

i

T BT TR & T o Tl e —
e e T ’** T “z;“i"’:s." e
s (e i e e B s S e e R i TR e e R
i . e el o W e v Pl e kS
e e ML,,,,,,mém. A vx»iv))s;;rn!:'i:;):ﬁ(f’\ L U”w:m, B e Bk "M,W bl o ’>;’ x,ﬁ;»»fmw‘ i j{f?‘,s:i,,, g ‘gif a0

st i s e 4,,,«“,“3;‘ G

T uj,r’il’\«xmxmé‘b R R, R T 7 T L BT T - e
e e : e i i i i e i e T i
et o i bitiod o i s el iy o T B S il “W“ b il ‘ it
i "M,s,:::m,x,:g::?kzifff«:ls i ’ f gsm *sgg;;;;:s . e - i e o - e a; ek
s o . . A o §J i e i »ktﬁén”‘“ ' x i e (,xm»)émm«,; i . x»ﬁxxéxh‘!! sx:?ﬂ“*‘
Hdi)] it

3 i
ik s s m) i

ALU OP FLAGS "“’5 ’r‘l w,“,,x“i:’:; §:x mf ? "““"’"‘;f,‘§é’u.§§';”’««4*;3;‘:3;
i e i

AFFECTED e e :
ARITH OP - FLAGS x fﬁﬁﬁ‘ ,’ 5*? R g;),s,nﬂ)«msggg‘) qzzw;muw’is;g:x; ‘,(;;i»;u » &s‘ o yxmxmizﬁsz‘ B ;i;}l,;ﬁiaiquz*
. . i

3 i
sk i p o il
manbd B b o . T
ok s b el i i ! e : e
AFFECTED i ’P‘ sk Nu s gcwm‘ ;““’”“',*T}' " ‘.Q ‘; s ki et ,@N;’ ,“”““‘”““‘”
— T R T WS S Eh e s - T T 7
e i iR ; TaET rE s S "
B i : i i o =)
y Mif%‘ﬁgm?w] D g diin s e il wx’“, §§, i sk 5 : "”‘gﬁ,n;
. %) | W ;,Wmm : ,w» e e g s ‘é‘ g
: i B Sum!i”"" ‘”‘”3‘”’ st “> 2 iR } Qx e ’3”3 A
2 e i e ™ 5 ; Wi m— T i 3 " T i 0
i ymmx ﬁ‘ R M,;ﬁm«,« e v : e mmmv‘*ﬂ e e e ”‘:»fwﬁ i e S S i
vw 4 L L L el ‘*;;;;;:*;::z:;é% i “Z‘,(,:;?_,fﬁﬁm,wm b mn“w - »;x,;,x«
i M“, e L i ' v ,MSW) i o I !‘“‘“““’“’”ﬁ}f&swuwv-x***“ ol P 5’"““,23,‘»& ‘».s’ssa e)t;; W;m&ii!
S i B R e i e G i Gt s A wcm o S S B r ! f’zi‘ nssuww*'#‘“‘”"“"niN i e
e TR e R AT i T S = TR :
SR i wxswcmw i) i S e e R it
e “*“ﬁ";‘i«,, : iR e “‘;’;‘25’:21“ e é‘xii,éfz:’,““‘“’“n“ - “"5;“32"25‘2&»”?‘ e
: o « : xxmm!sm Lo - G e :
L - o i . S W w S e ()ms&xﬁx‘%"" i
S i e f b e 1 “‘““‘,.,,,,“mm e
) 1 e e L R T i T T S
ke S - . iy o i mwwwxx;z;ﬁu}« i i x;";;lwﬁl,mi b i rmsix«*’z‘;‘j,i ci)’wim St
R g o . e e e L o L e e)
s ,,,wmxm R e hio i ~’ s crinis - e g s“?i:mw gkivf“* e “‘3:‘»:":; # i 4e:9§ “;‘V“‘” ‘ ‘;‘ **W*‘““‘“““““ R e ‘m;m i ““‘“‘"Nn 2&“ o
B i s e O i LS e it S S nom!m;ﬁiivw’?g

i
RS

Mt

™ o > " w
, (,Mmiw e mw , i
i i i m,msm i e N i ‘9‘ i f W,y a;w»:zsssg i sh e

PCLOUT(8) |.PCHOUT LOWER ADD. PC_OUT(8) PCHOUT [HIGHER ADD, REG.a REG.b
TO REG.b = REG. a TO PCH TO PC
PCLOUT(8) | PcyouT |LOWERADD. PCLOUT(8) | PCHOUT |HIGHER ADD] REG.a REG. b
TO REG.b REG.a (11)| TOPCH TO PCL
PCLOUT(8) | PCHOUT LOWER ADD. PCLOUTI(8) PCHOUT |HIGHER ADD| REG.a REG. b
TO REG. b REG.a (11)| TOPCH TO PCy_
PCLOUT(8) | PCHOUT LOWER ADD. _ PCLOUT(8) PCHOUT |HIGHER ADD. REG.a REG.b
TO REG. b ' REG.a TO PCy TO PCy
PCLOUT(8) | PCHOUT LOWER ADD. PC|_OUT(8) PCHOUT |HIGHER ADD.| REG.a | REG.b
TO REG.b > REG.a (12| TOPCy TO PCL
PCLOUT(8) | PCHOUT LOWER ADD. » | PCLOUTIS) PCHOUT |HIGHER ADD.| REG.a REG.b
TO REG.b REG.a (12)| TO PCy TO PCL

\/

e -
i R T
o , e P s
o o ¢ w ;ﬂ e
G o s
’§ i i | i

P k , i ity

R I ST G - T T e e - AT S - ™ sy

- M«xm" e W,qx e da ““‘;ﬁ“,.,mss& ks 5”"“‘“ e T e e

Bl T L s e e L i ,myg,xzzkx!*xw“l
il e WG o e et . i el
ws.,uawsst o i f e R i i e (,Wm;w

st e e B b e R e s (e xd‘»*w w"* e "

. o

e PR o 7 i SRR A -~ +
ey ‘,,mw, Wam e 4 '\‘ s ‘:fn a2l ‘f‘;m;sm.»vmﬂ" ; R
Fin m»#‘w“‘“‘“‘ i s & s il i e St e "’
it e e i s e i S e e
p g mm«;w m,‘ e L "gxm”?‘«gx.‘m . ; s mww!*, i i et SR e uwm it

i ‘III»EE S e b “'fi‘f*"“‘“‘” o '*‘”*’r'lf”’ilk» i ”‘*;If?és'ism g v;;“,“%w i m‘*“ﬁi"ﬁ?l?i’i’m«; st R L
Sl e L umw««;x,;g,.,,, TR
i i ,xm“‘,“,‘ g el e et T e RAREIN Ve B T i T e i i e 5

i, ,mrw St el o i L h,m«,»x solprisi O ‘,,vw‘;; R o sw,snw g i
B i e it kG S

i v? 4 B mu i e
. Ew,mmxm“;‘*;f‘;‘g‘ o «m’e::fjj;;m o ,«,Mm 5 ““ A i*} M ‘o
i B o i o o n«msmxsrm e “! i
i nmb i et i " i e
S mm«,zsxiuy; . M,Mm Mm o b nm;:;
s e S ?mf . ";(,ffiﬂx>§;«m»«*“2":’5‘2x
el s e e et i e

i e 0

Y

L i
o s 5,,,,‘,«»»« i
e

o

i

otz
b

w i ,). g
e

e I e B e S
REG. A REG. b DATATO |CONDffl REG.b e P ol e e
Toout'® | TooOUT REG. b TO REG A *ws ﬁﬁs »«:5@:,:5*3\@
REG.A (45 | REG.b X vgérs;kr;' 3**’,!‘33;%‘; (; Fo .J;m;v“:,,“f;x.‘fi i ;,,,x\,,mry,.‘x;;i,ﬁ s ’ ;i::t;;g ‘s,x,ka“».ﬁw;xi‘:zkzmw e
TO OUT TO OUT (17) C ,,,m.“id s ,wfxf, s i &{5‘,,,: SR e

i P R g T AT P T
; ot i s o “fiw Wm»,«mwm i o a w*" ““ S i it
w o i g S w 1 e 9;',,‘,@,,,, .
iy j Hedos ; L : L
& 3 w’ e ,x»muwa«J »;;“;*1 i ,M e ;’* ;m i o ‘ o ;mx!hwmxn*«‘h
e R9E A o iy jae! g ss e i W,,ng;; x;;in
L il e [es xrﬁk e FE e I e T ,“”(:‘Nfﬁ‘ o «,? it
R ORI SOl b e ol ',ntt A 'L”; . o " s ‘:?""‘; ”“‘“'5'
Lt IR pRa s R P e T ‘ sl o
i X DA SR, e e E S e g B G wW"“"“ i s ¢ e Rt A e e G
R ot i # . @8 0 o 2% ~ S e o ot R e m“d 5 v o " £ - ,,mwu G kw "‘v i

12. When the CALL is conditional and the condition fails, states . 156. PCC cycle (1/O Cycle).

T4 and T5 are skipped and the state counter advances to
. the next memory .cycle, If the condition is true, the stack

is pushed at T4, and the lower and higher order address
bytes are loaded into the program counter.

13. When the RETURN condition is true, pop up the stack;
otherwise, advance to next memory cycle skipping T4 and T5.

14, Bits D3 through Dg are loaded into PC_ and all other bits
are set to zero; zeros are loaded into PCH.

16. The content of the condition flip-flops is available at the data bus:
S at Do, Z at Dy, P at Do, C at D3.(D4 — D7 ali ones)

17. A READY command must be supplied for the OUT operation
to be completed. An idle T3 state is used and then the state
counter advances to the next memory cycle.

18. When a HALT command occurs, the CPU internally remains
in the T3 state until an INTERRUPT is recognized. Externally,
the STOPPED state is indicated.

17

V. PROCESSOR CONTROL SIGNALS

A. Interrupt Signal (INT)

1) INTERRUPT REQUEST
If the interrupt line is enabled (Logic ““1’’), the CPU recognizes an interrupt request at the
next instruction fetch (PCI) cycle by outputting S;S; S, = 011.at T1l time. The lower
and higher order address bytes of the program counter are sent out, but the program
counter is not advanced. A successive instruction fetch cycle can be used to insert an
arbitrary instruction into the instruction register in the CPU. (If a multi-cycle or multi-
byte instruction is inserted, an interrupt need only be inserted for the first cycle.)

When the processor is interrupted, the system INTERRUPT signal must be synchronized with
the leading edge of the ¢4 or ¢, clock. To assure proper operation of the system, the interrupt
line to the CPU must not be allowed to change within 200ns of the falling edge of 1. An
example of a synchronizing circuit is shown on the schematic for the SIM8-01 (Section VIl).

$1 / 4 \ / $1 \ b1 l
nL I
I | |
2 . 62 2 m 612
' .
INTERRUPT I \ l
TO SYSTEM
_/ | £4 }
|

14

|

l

[

1
SYNCHRONIZED 45 |
I = —
CcPU >200nsl ' |
T11 INTERRUPT ‘ I l I/
ACKNOWLEDGE % g

INTERRUPT
I I RECOGNIZED

Figure 4. Recognition of Interrupt

If a HALT is inserted, the CPU enters a STOPPED state; if a NOP is inserted, the CPU

- continues; if a “JUMP to 0" is inserted, the processor executes program from location 0,
etc. The RESTART instruction is particularly useful for handling interrupt routines since
it is a one byte call.

18

2)

ADDR. LOCATION PC CONTENTS

N—-1 INTR.N-1 N (INTERRUPT ARRIVES HERE)
— N INSTR.N
N+1 INSTR.N+1 :
| USERSUPPLIES ALTERNATE

INSTRUCTION (RESTART OR
CALL TO SRT), RELEASES
INTERRUPT,
PC IS SAVED IN STACK
(VALUE = N)

SUBROUTINE FOR HANDLING INTERRUPT:

S INSTR. S '

S+1 INSTR. S + 1

S+2 _

S+K RETURN — STACKPOPS — WITH VALUE N

\ AFTER COMPLETION OF SUBROUTINE, 8008 RETURNS TO
EXECUTE ORIGINALLY REQUESTED INSTRUCTION, WHICH
BLOCKING ADVANCE OF PC HAS SAVED.

Figure 5. 8008 Interrupt

START-UP OF THE 8008

When power (Vpp) and clocks (¢1, ¢2) are first turned on, a flip-flop internal to the
8008 is set by sensing the rise of Vpp . This internal signal forces a HALT (00000000)
into the instruction register and the 8008 is then in the STOPPED state. The following
sixteen clock periods after entering the STOPPED state are required to clear (logic “0")
memories (accumulator, scratch pad, program counter, and stack). During this time the
interrupt line has been at logic ““0”’. Any time after the memories are cleared, the 8008

is ready for normal operation.

To reset the flip-flop and also escape from the stopped state, the interrupt line must go to.
a logic “1”"; It should be returned to logic “0”" by decoding the state T11 at some time later
than ¢ ,,. Note that whenever the 8008 is in a T1l state, the program counter is not incre-
mented As a result, the same address is sent out on two successive cycles.

Three possible sequences for starting the 8008 are shown on the following page. The
RESTART instruction is effectively a one cycle call instruction, and it is convenient to use-
this instruction to call an initiation subroutine. Note that it is not necessary to start the
8008 with a RESTART instruction.

The selection of initiation technique to use depends on the sophistication of the system
using the 8008. If the interrupt feature is used only for the start-up of the 8008 use the
ROM directly, no additional external logic associated with instructions from source other
than the ROM program need be considered. If the interrupt feature is used to jam in-
structions into the 8008, it would then be consistent to use it to jam the initial instruction.

The timing for the interrupt with the start-up timing is shown on an accompanying sheet.
The jamming of an instruction and the suppression of the program counter update are

handled the same for all interrupts.

19

EXAMPLE 1:
Shown below are two start-up alternatives where an instruction is not forced into the 8008 during
the interrupt cycle. The normal program flow starts the 8008.
a. 8008 ADDRESS OUT INSTRUCTION IN ROM
000000 O0O0OO0OO0O0O0OO NOP (LAA 11 000 000) |
000000 OOOOO0OOO NOP | Entry Directly To
000000 00000001 INSTR, Main Program
000000 OOOOOO0OT1O0 INSTR, |
b 8008 ADDRESS OUT INSTRUCTION IN ROM
600000 000O0OOQOO RST (RST =00 XYZ 101) |
000000 00XYZOOO INSTR;, - A Jump To The
000000 00XYZOO1 INSTR, Main Program
EXAMPLE 2: .
A RESTART instruction is jammed in and first instruction in ROM initially ignored.
8008 ADDRESS OUT INSTRUCTION IN ROM
000000 0OOOOOOOO INSTR; (RST =00 XYZ 101)
000000 00XYZOOO INSTR, Start-up
000000 00XYZOO1 INSTR, Routine
000000 OOnnnnnn RETURN
000000 O0OOOOOOOO INSTR; (INSTR, executed now) Main Program
000000 0O0O0O0OOO 1 INSTR,
Note that during the interrupt cycle the flow of the instruction to the 8008 either from ROM or
another source must be controlled by hardware external to 8008.
START-UP OF THE 8008

B. Ready (RDY)

The 8008 is designed to operate with any type or speed of semiconductor memory. This flex-
ibility is provided by the READY command line. A high-speed memory will always be ready
with data (tie READY line to V¢) almost immediately after the second byte of the address
has been sent out. As a result the 8008 will never be required to wait for the memory. On the
other hand, with slow ROMs, RAMs or shift registers, the data will not be immediately avail-
able; the 8008 must wait until the READY command indicates that the valid memory data is
available. As a result any type or any combination of memory types may be used. The READY
command line synchronizes the 8008 to the memory cycle. When a program is being developed,
the READY signal provides a means of stepping through the program, one cycle at a time.

20

VI. ELECTRICAL SPECIFICATION

The following pages provide the electrical characteristics for the 8008. All of the inputs are TTL
compatible, but input pull-up resistors are recommended to insure proper V;, levels. All outputs are
‘low-power TTL compatible. The transfer of data to and from the data bus is controlled by the CPU.
During both the WAIT and STOPPED states the data bus output buffers are disabled and the data bus
is floating. ‘

4

FROM 4

INTERNAL , 0
DATA BUS }—414—» DAT/":)BUS

|
|
TO INTERNAL ‘ : |
DATA BUS I—l |-
OUTPUT :
: DISABLE |
Vee Vee Vee |}
: 5
|
L '
8008 Vee : |
Vee
___________________________ _I
Figure 6. Data Bus 1/0 Buffer
Vbp
F——_—t——_—— e —— - — 9
' |
| — |
| |
I |
I ———>OuT
l |
| |
N — [
| .
e — bl — e e ——] L
Vee
Vee)
Input Buffer Output Buffer
(¢4, ¢5, RDY, INT) : (SYNC, S, S;. S,)

Figure 7. 1/0 Circuitry

2

ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature
Under Bias

Input Voltages and Supply
Voltage With Respect
to Ve

Power Dissipation

0°C to +70°C
Storage Temperature —55°C to +150°C

+0.5 to —20V
1.0 W @ 25°C

- D.C. AND OPERATING CHARACTERISTICS

Ta =0°C 10 70°C, Voo =45V £5%, Vpp = —9V £5% unless otherwise specified. Logic “'1 is defined
as the more positive level (Vj, Vo,). Logic “0" is defined as the more negative level (V, , Vj,).

*COMMENT

Stresses above those listed under *Absolute Max-
imum Ratings” may cause permanent damage to
the device. This is a stress rating only and func-
tional operation of the device at these or any other
condition above those indicated in the operational
sections of this specification is not implied.

LIMITS TEST
SYMBOL PARAMETER min. [Tve. | max. | "N'T | conpitions
loo AVERAGE SUPPLY CURRENT-
OUTPUTS LOADED* 30 60 mA | T, =25°C
I INPUT LEAKAGE CURRENT 10 pA |V, =0V
Vv, INPUT LOW VOLTAGE
(INCLUDING CLOCKS) Voo Vee—42 | V
Vi INPUT HIGH VOLTAGE . .
" | (INCLUDING CLOCKS) Vee—15 Veet03 |V Measurements are made while
. the 8008 is executing a typical
' OUTPUT LOW VOLTAGE 0.4 v lo, =0.44mA sequence of instructions. The
C, =200pF test load is selected such that
Vou OUTPUT HIGH VOLTAGE Vee—15 Vv loy =0.2mA at Vo =04V, 15, =0.44mA
on each output.

A.C. CHARACTERISTICS

Ta=0°C 10 70°C; Vo = +6V £5%, Vo = —9V 15%. All measurements are referenced to 1.5V levels.

8008 8008-1
LIMITS LIMITS
SYMBOL PARAMETER UNIT | TEST CONDITIONS
MIN. | MAX. | MIN. | MAX.
toy CLOCK PERIOD 2 3 125 | 3 ps | tgty=50ns
trtr CLOCK RISE AND FALL TIMES 50 50 ns
41 PULSE WIDTH OF ¢, .70 .35 us
192 PULSE WIDTH OF ¢, 55 .35 us
tp CLOCK DELAY FROM FALLING 9 | 1 11 s
EDGE OF ¢, TO FALLING EDGE
OF ¢,
tpo CLOCK DELAY FROM ¢, TO ¢, .40 .35 s
tpa CLOCK DELAY FROM ¢, TO ¢, .20 20 s
top DATA OUT DELAY 1.0 1.0 ps | C_= 100pF
ton HOLD TIME FOR DATABUSOUT | .10 .10 us
tiH HOLD TIME FOR DATA IN il nl us
tsp SYNC OUT DELAY .70) 70 ps | C, =100pF
tsq STATE OUT DELAY (ALL STATES 1.1 1.1 ps | €, =100pF
EXCEPT T1AND T1))!2
tsy STATE OUT DELAY (STATES 1.0 1.0 ps | €, =100pF
T1AND T11) '
taw PULSE WIDTH OF READY DURING | .35 .35 us
¢, TO ENTER T3 STATE
thp READY DELAY TO ENTER WAIT 20 .20 us
STATE
e MINZ tgq 121 1f the INTERRUPT is not used, all states have the same output delay, tg .

22

TIMING DIAGRAM

‘cy
’__‘*\ < o3 2
o o o 6 ,
o £\ / 12 1 12 " o1
—| tm | —»! tpy |le—
/ 921 ~L 022 \ on \ 022 °21
02 / "
ey
| tyy [““SD*’I
W
SYNC _/ \ 1 \ . /
r <~—to1—>{=-ts0 =] —| [#=>0 et
o - —— it
DATA BUS ___._...____.__..._____......._.___.l*. e e e e e
LINES < "
{) | —————] s o et e e > ———
Br - Do Jf ADDRESS OUT ‘) DATA OUT .)‘
—---—--—' 4 \ —— e — e o] - —— -
C top —»|toy I<— tpop — tOH |
- §
S [_
.‘s’ tgy ts2
STATE \ /
LINES
\
s f \
L 1= tpy |
r AY
\
READY < U | teo I
L -
f - § {
T T, T3 T
Notes: 1. READY line must be at “‘0" prior to ¢99 of To to guarantee entry into the WAIT state.

2.

TYPICAL D.C. CHARACTERISTICS

POWER SUPPLY CURRENT (mA)}, ip

POWER SUPPLY CURRENT
VS. TEMPERATURE

T— Voo =
- S oo =147y
L
= Yoo = 14y
-\RVDD =133y T ———
—
0 16 20 30 40 50 60 70 80

AMBIENT TEMPERATURE (°C) -

TYPICAL A.C. CHARACTERISTICS

OUTPUT DELAY fus), 1pp @ Vg, = 04V

DATA OUT DELAY VS.

OUTPUT LOAD CAPACITANCE -

o

/]

/

50 100 150 200 250

DATA 8US CAPACITANCE (pF). Cpy

300

OUTPUT SINKING CURRENT

' VS. TEMPERATURE -

N
N

[
°

o

OUTPUT SINKING CURRENT (mA), I

-

10

\»V\.c“z/m) =1av
I
VoL = 04V
oL \\
20 30 40 50 60 70 80

AMBIENT TEMPERATURE (°C)

INTERRUPT line must not change levels within 200 ns (max.) of falling edge of ¢1.

OUTPUT SOURCE CURRENT {mAl), gy

\

OUTPUT SOURCE CURRENT
VS. OUTPUT VOLTAGE

Vpp = ~9V

Ve =5V
AT, =700C

[

N

20 ao a0

OQUTPUT VOLTAGE (V), Voy

5.0

CAPACITANCE f=1MHz; TA = 25°C; Unmeasured Pins Grounded

SYMBOL TEST o LIMIT (pF) A
C INPUT CAPACITANCE 5 10
Con DATA BUS 1/0 CAPACITANCE 5 10
Cour OUTPUT CAPACITANCE 5 10

23

VIl THE SIM8-01 — AN MCS-8T-M- MICRO COMPUTER

During the development phase of systems using the 8008, Intel’s single chip 8-bit parallel central processor
unit, both hardware and software must be designed. Since many systems will require similar memory and

1/0 interface to the 8008, Intel has developed a prototyping system, the SIM8-01. Through the use of this
system and Intel’s programmable and erasable ROMs (1702), MCS-8 systems can be completely developed
and checked-out before committing to mask programmed ROMs (1301).

The SIM8-01 is a complete byte-oriented computing system including the processor (8008), 1K x 8 memory
(1101), six /O ports (two in and four out), and a two-phase clock generator. Sockets are provided for 2K
x 8 of ROM or PROM memory for the system microprogram. The SIM8-01 may be used with either the
8008 or 8008-1. To operate at clock frequencies greater than 500kHz, former SIM8-01 boards must be
modified as detailed in the schematic and the following system description. Note that all Intel-developed
8008 programs interface with TTY and require system operation at 500kHz. Currently, the SIM8-01 is
supplied with the 8008-1 CPU and the system clock preset to 500kHz.

The following block diagram shows the basic conﬁguratidn of the SIM8-01. All interface logic for the |
8008 to operate with standard ROM and RAM memory is included on the board. The following pages
present the SIM8-01 schematic and detailed system description.

1/0 INPUT PORTS AND
INTERRUPT INSTRUCTION
PORT
MEMORY
BUF;ERS ROM . RAM
8 BITS/BYTE
MPXERS TO 16 K BYTES D
-y
[3 3
1/0
8008 DEVICE — 1/0
DATA MEMORY, $1 SELECT OUTPUT
BUS INTERRUPT = > DATA
& INPUT —]
ENABLES ADDRESS, CONTROL| ADDRESS |
REGISTER - 8 BITS REGISTER - 8 BITS
A
. TS 1
BUFFERS
STATUS
P LOGIC Rm
8008 EXTERNAL INTERRUPT
- INT.
Y cLocK
-~ GENERATOR
READY

Figure 8, MCS-8 Basic System

24

MEMORY
ADDRESS IN

SiM8-01 SPECIFICATIONS

Card Dimensions:
¢ 11.5 inches high
e 9.5 inches deep

System Components Included on Board:
* 8008-1 ' ,
¢ Complete TTL interface to memory
¢ 1K x 8 RAM memory
® Sockets for. 2K x 8 PROM memory
o TTY interface ckts.
e Two input and four output ports (8 bits each)
®* Two phase clock generator -

Maximum Memory Configuration:
e 1K x 8 RAM
¢ 2K x 8 PROM -
® All control lines are provided for
‘memory expansion

Operating Speed
® 2 us clock period
® 20 us typical instruction cycle

D.C. Power Requirement:
e \foltage:
Vee =5V 1b6%
TTL GRD =0V
Vpp = —9V 15%

e Current:
Eight ROMs

Typical Maximum

“lee = 25amps 4.0 amps.

lpp = 1.0amps 1.5 amps.
Connector:

e Wire wrap type- Amphenol 86 pin
connector P/N 261-10043-2

. C57
14 14 14 14 14 14 414 14
cs [cS cs 3 3 3 cs
A A - - —] — — Py Exi
A A s] — — — o) 22
Ay A, — — — -1] ez +5
Ay Ay 1702 —1 12 1702 1702 — 2 — 2 —1 02 | ez \ 15
A, A, —] — — —1 . — 12
A; A: Aq] As Ag A] Ag] Ay _ 1 Ao 1 A ‘ccc 6
Ag Ag — — — — — v:; E_ -9
A7 A7 — — — — - —
o D, Dy
TT— L T TR T, INEDY IR ABY T D,
113 NP 11s I IRDY 118 114 o
P 13 13- 14 IFS 1T 1e
sy 'y ’y 3 3 3 e | DATA FROM
MEMORY
igd
[)
{7, cCS - S cs cs] cs s cs
" DATA =
anm out B B A= B B
2888 101 10 1o 1101 3 101 101 o1
AATA ‘2_1 Az . Az | [- An . An -
RIW
pras T T T T T T
i)) s))) L ow,
112 o 13 3 = b 3 - 3 o s 13
Sam - 3 = = | 3 4 pun 4 = 3 - 3 -
Saunm 1101 3 1101 = 10 o~ 1101 =] 1101 o 1101] 1101 - 101
A 12] = Azg = =] A = -4 A = o
A, 2 s 4 ~ H43 143 = H<3 s 3 = H-d = e 3 ™~ Lo | & o
RIW RW
PPy T T T T T T Tre
L 1 L)))) i1 v,
S]] p b= = = = cs 13
[4 = — [- 4 —5 — - — o —5 e
1"] 110 - 101 = 101 p— o1 = 1101 - 1o - 1nn
3 o o p 3 = 3
N Agy 2| | 3 | {5 Agy | | 13 Ag R A 3 L1 {3 Agz L 2 3 As | 12
7
R/W RW
15L - > & & > - 115
iy
i1 S g g))) 1 —
Lg% s s 3 p = -] m cs
L] = i L | L] | L | - || b | | | i3
L— 1101 = 10 = 101 = 1101 =] 101 = 1101 = 1101 1o
3 p— 3 - 3 A 3 :
Aer 12 = Ags 3 Ags 3 Agt 3 Aga 3 62 3 Agy Aso 12
- 7 rw AW
<)y - - - - & - 1
N I3 15 Lo Dy
L - o
NOTE: 1101’ RAM
+6V ~ PIN 5 DATA IN
-9V - PIN4, 8
PIN 14 NOT USED . DATA OUT o

Figure 9. MCS-8 Memory System

25

Yi-
AW

R62
1002

R60S
10kS RB1

RS57

2.7k a3 A27 A27
[TVV V"k 2N222 7404 7404

> €20
> ‘I'o.1

FROM TTY TRANSMITTER

SYNE Ji-15 @—

g

/A <

3404 /4,,<| /3 :

77 A
70

el

7Y

F63

¥ Jr-52

e I/-12 @
i ALTERMITE

oL0ck

“? C wPUT

CLOCK
ADJUSTMENTS
i R1 *es
Ry, ¢

‘ g; T Rs toz
g T R

cLocx
CENERATOR

tey

7

»nzr

A g? TN CYCLE T1-22
i
#
]

. No TS0

INTERRUPT
PUSH BUITON

A3

<

* me 7153

INTERRUPT JF-! TTY IN

o PEADY i

® J/-t/ Do

RAM *Jr-15 B

DATA IN v

EXPANSION

MPX

469 ~

MEMORY DATA

INPUT PORT ¢

m faltal o Fad

INPUT PORT 1

wJ/-77 MD3
J/-79 TA3

J/-2/ 283

Jr-62 I

% ~
<4

S0 Qe s/
” Z

(vorsearey To +&VIJ/-29 . DATA _COMPLEMENT.
. Tr72 7p

238 4Dy

J7-28 44
T7-26284

? 7

M s SIfa

o MO
mPX 7

-
o
N

A

MPY

MEMORY DATA 5
INPUT PORT ¢ o A

INPUT PORT 1

yAVES

AS5é

4 8267 4

4

/5 6

/2

[

INTERRUPT

INSTRUCTION { § %54

PORT

28

73R

>
~

\!\!\I\ I§1§P N
POSRRREY
Ny

3
=

£y s
Hp

>eoU M OED

772'8[4’4&5 (UORNALI.Y

ael

.gq ¢ Vool 9 verrs
a =g AT)
ﬁ:«‘:: ~
TT7T°%

c/_j_mi

<5

(%4 < 2

VE 2k W]

o7

ASCAEAAL
3 eui-4 (+5voLTs)

.0

"l“’Lflf’-

=

*uZ-l cep

.JS2-3

As

HISH OFDER

loof:.v our

cc ’

J7/- 7.’ ces

AA
W
WA

A
VW

AAA
W

P

coDING

)

FLAag
LATCH

2

a,,o ; w [5J/-3 @
o o 2 e Fr-5 e
22 0% e 5250

493 TH-25

.rz~u As

2-82
Jl- 38 LOW OFOER

AooseSss our

98 A7

o T2-8 RIW

A59-PINY

A7Z-Pirey

Apo- 2w “
{7824 758y 52 WY

22 ‘Jwa__’ 6/ 0-4—3
V7! y2i T2 - &0

)

CYCLE cowTRoL

g,

NdalSifalols
=

47 ln}

AYR-PIN IS
A73-PIN 2415

Zhy g

/3
/2

w

2
,_I_‘
7z

24

Asp

11473(

| FIPIN L5

70 £FLAS £ATCH

XDy -5

Do

D7

A76 w1547
A 922N /.

/ﬁw ¥
L
7.

J2-20 Wz
ocd

w

ourrPuUr

_@m

ZoRT 2

A6 ([

1Z7 ec7

A79-PN 7415
J2-30

Ar2-P/ 7

/3

Dy Do R/ Aol

rRam paTa 'N

w1
24041

IN

MEMORY Ay
ADDRESS

MEMORY ARRAY
2K x 8 ROM
1K x 8 RAM

(Refer to memory
drawing on page 25)

[

CSo

1
Jq 2l 5

& 4 £z
J05 AL £
Os ~
ruam,,,?

& 545

>

.s

e g T IR e ,
iy

be 43

MEMOBY
EXPANS/ION

)

T

1

!
7 Ll llslepoloias,

o]
<

BOM cWIP SELECT

ROM

Cs;

DATA FROM

MEMORY CMj,

RAM

RAM CHIP SELECT

CMg

J

NOTE:

THIS SCHEMATIC
IS INCLUDED FOR
REFERENCE ONLY.

(No, 00014)

- Biiove

27

Figure 10. Complete SIM8-01 Schematic

SYSTEM DESCRIPTION

The 8008 processor communicates over an 8-bit data bus (Dg through D7) and uses two input lines
(READY and INTERRUPT) and four output lines (S, Sq, Sy, and SYNC) for control. Time multi-
plexing of the data bus dllows control information, 14-bit addresses, and data to be transmitted between
the CPU, memory, and 1/0. All inputs, outputs, and control lines for the SIM8-01 are positive-logic
TTL compatible.

Two Phase Clock Generator

The basic system timing for the SIM8-01 is provided by two non-overlapping clock phases generated

by 9602 single shot multivibrators (Aq, Ap). The clocks are factory adjusted as shown in the timing
diagram below. Note that this is the maximum specified operating frequency of the 8008. In addition,
all Intel-developed TTY programs are synchronized to operate with the SIM8-01 at 500kHz. The"
clock widths and delays are set in accordance with the 8008-1 specification since an 8008-1 is provided
on the board. An option is provided on the board for using external clocks. If the jumper wires in box
A are removed, external. clocks may be connected at pins J1-562 and J1-12. (Normally these pins are
the output of the clock generators on the board.) The clock generator may be adjusted for operation
up to 800kHz when using the 8008-1 at maximum speed.

- . tey -
(2pus)
' '\ >N\<—tr tF
o1 ____J<——%~—> /
(500ns) -« tp —— > 10—90% OF INPUT
(1000ns) AMPLITUDE
[—— t|;)2 —
4 \ {500ns)
. -t
{500ns)

Figure 11. SIM8-01 Timing Diagram
Memory Organization

The SIM8-01 has capacity for 2K x 8 of ROM or PROM and 1K x 8 of RAM. The memory can easily
be expanded to 16K x 8 using the address and chip select control lines provided. Further memory
expansion may be accomplished by dedicating an output port to the control of memory bank switching.

In an MCS-8 system, it is possible to use any combination of memory elements. The SIM8-01 is
shipped from the factory with the ROM memory designated from address 0 — 2047, RAM memory
from 2048— 3071, and memory expansion for all addresses 3072 and above. Jumper wires provided
on the board (boxes C, D, E) allow complete flexibility of the memory organization. They may

be rearranged to meet any requirement. the Intel 3205 data sheet provides a complete description of
the one of eight decoder used in this system. the 3205 truth table is shown below.

ADDRESS ENABLE QUTPUTS
A1 E, 3

(=]
N
m
—
m
Ko

XXXXXXXIFICrIrIr >
XXXXXXXTIIF-FIIrr
XXXXXXXITITIIrrrr|>
IrIrIrIr~rrIrrrrrreere
rrrrrrerrrrr
ITTIrr~FIITIITIIIZ
IITTIIIITITIIIIIIICO
ITTITIITIITITIIIIICI| -
ITIIIIIIIIIIICLIINN
IIXIIIITIIIIIICIII
ITIIIIITIIICIIII®
ITIITIITIITIICIITIII|O
IIIiI:IIrI:IIIIm
IITIITITITI-rITITIITIII|

Control Lines
@ Interrupt

The interrupt control line is directly available as an input to the board. For manual control, a normally
open push-button switch may be connected to terminals J1-50 and J1-63. The interrupt may be inserted

28

under system control on pin J1-1. An external flip-flop (A33) latches the interrupt and is reset by T11
when the CPU recognizes the interrupt. Instructions inserted under interrupt control may be set up
automatically or by toggle switches at the interrupt input port as shown on the schematic. Use the
interrupt line and interrupt input port to start up the 8008 .

Note that the interrupt line has two different connections to the input to the board (box B). The path
from J1-1 directly to pin 4 of package A3 is the normal interrupt path (the board is shipped from the
factory with this connection). If the connection from pin 8 of package A15 to pin 4 of package A3 is

-

made instead. the processor will recognize an interrupt on PPED state. Thisis

used to recognize the “‘start character” when entering data from TTY.

® Ready

The ready line on the 8008 provides the flexibility for operation with any type of semiconductor memory.
On the SIM8-01 board, the ready line is buffered: and at the connector (J1-30), the READY line is active
low. During program development, the READY line may be used to step the system through a program.

NORMAL OPERATION OF SYSTEM

The 8008 CPU exercises control over the entire system using its state lines (S o- S1, S2) and two control
bits (CCO, CC1) which are sent onto the data bus with the address. The state lines are decoded by a
3205 (A44) and gated with appropriate clock and SYNC signals. The two control bits form part of the
control for the multiplexers to the data bus (A55, Ab56), the memory read/write line (A33) and the [/0
line (A17). '

In normal operation, the lower order address is sent out of the CPU at state T1, stored in 3404 latches
(AB9, A72) and provided to all memories. The high order address is sent out at a state T2 and stored in
3404 latches (A72, A73). These lines are decoded as the chip selects to the memory. The two highest
order bits (CCO, CC1) are decoded for control. .

- To guarantee that instructions and data are available to the CPU at the proper time, the T3 state is
anticipated by setting a D-type flip-flop (A16) at the end of each T2 state. This line controls the
multiplexing of data to the 8008. This flip-flop is reset at the end of each T3 state. In addition, switched
pull-up resistors are used on the data-bus to minimize data bus loading and increase bus response. The use
of switched resistors on the data bus is mandatory when using the 8008-1. SIM8-01 boards built prior to
October, 1972 must be modified in order to operate with the 8008-1 at clock frequencies greater than 500kHz.

Normally, the 8008 executes instructions and has no interaction with the rest of the system during states |
T4 and T5. In the case of the INP instruction, the content of the flag flip-flops internal to the 8008 is
sent out at state T4 and stored in a 3404 latch (A43).

Instructions and data are multiplexed onto the 8008 data bus through four multiplexers (AB5, AG6, A69,
A70). In normal operation, line J1-29 should be at +5V in order for “true” data to reach the 8008 data bus.

System 1/0

The SIM8-01 communicates with other systems or peripherals through two input ports and four output ports.
All control and 1/0 selection decoding lines are provided for expansion to the full complement of eight input
ports and twenty-four output ports. To expand the number of input ports, break the trace at the output of
Device A68, pin 11, and generate input port decoding external to the SIM8-01. Control the input multi-
plexer through pin J1-69. The output ports latch data and remain unchanged until referenced again under
software control. Note that all output ports complement data. When power is first applied to the board,

the output ports should be cleared under software control to guarantee a known output state. To enable the
1/0 device decoder, pin J2-8 should be at ground. :

Teletype Interface

. The 8008 is designed to operate with all types of terminal devices. A typical example of peripheral interface
is the teletype (ASR-33). The SIM8-01 contains the three simple transistor TTY interface circuits shown on
the following page. One transistor is used for receiving serial data from the teletype, one for transmitting
data back to the teletype, and the third for tape reader control. '

The teletype must be operating in the full duplex mode. Refer to your teletype operating manual for making
connections within the TTY itself. Many models include a nine terminal barrier strip in the rear of

29

the machine. It is at this point where the
connections are made for full duplex G
operation. The interconnections to the o[O
SIM8-01 for transmit and receive are made FULL DUPLEX :
at this same point. ° O
RECEIVE J1-86 ~l @
A complete description of the interconnection FROM SiMg-01 { 2o e[0
of the SIM8-01 and the ASR-33 is presented
in Appendix IV. e @
SEND
TO SIM8-01 1:”37 < @
25 || @
~ O
—

Figure 12. Teletype Terminal Strip

DATA
FROM
Sims-01
J2.27

FROM TTY TRANSMITTER TAPE READER CONTROL TO TTY RECEIVER

Figure 13. SIM8-01 Teletype Interface Circuitry

To use the teletype tape reader with the SIM8-01, the machine must contain a reader power pack.
The contacts of a 10V dc relay must be connected in series with the TTY automatic reader (refer
to TTY manual) and the coil is connected to the SIM8-01 tape reader control as shown.

For all Intel developed TTY programs for the SIM8-01, the following 1/0 port assignments have been made:

1. DATA IN - INPUT PORT O, BIT O (J2-83 connected to J1-11)
2. DATA OUT - OUTPUT PORT 2, BIT 0 (J1-84 connected to J2-36)
3. READER CONTROL -- OUTPUT PORT 3, BIT 0 (J2-27 connected to J2-44)

Note that the SIM8-01 clock generator must remain set at 500kHz. All Intel developed TTY programs
are synchronized to operate with the SIM8-01 at 500kHz. ‘

In order to sense the start character, data in is also sensed at the interrupt input (J2-83 connected to J1-1)
and the interrupt jumper (box B) must be between pin 8 of A15 and pin 4 of A3. It requires approximately
110ms for the teletype to transmit or receive eight serial data bits plus three control bits. The first and last
bits are idling bits, the second is the start bit, and the following eight bits are data. Each bit stays 9.09ms,
While waiting for data to be transmitted, the 8008 is in the STOPPED state; when the start character is
received, the processor is interrupted and forced to call the TTY processing routine. Under software control,
the processor can determine the duration of each bit and strobe the character at the proper time.

A listing of a teletype control program is shown in Appendix V.

SIM8-01 MICRO COMPUTER BOARD PIN DESCRIPTION

Pin No, Connector Symbol Description Pin ho. Connector symbol Description

2,4 a1 +5V +5VDC POWER SUPPLY 57 a D5 RAM DATA IN D

84 & 86 32 -sv -9VDC POMER SUPPLY 55 Ji Dg RAM DATA IN D¢

1,3 72 GND GROUND 54 J1 o, RAM DATA IN D,

60 J1 D DATA FROM MEMORY § BIT § 48 gL WATT STATE COUNTER

63 a1 M, UATA FROM MEMORY 1 BIT 1 49 a1 I3 STATE COUNTER
17 a1 w, DATA FROM MEMORY 2 BIT 2 46 Ji Ty STATE COUNTER

77 g uo, DATA FROM MEMORY 3 BIT 3 45 a1 sT0P STATE COUNTER -
38 32 uD, DATA FROM MEMORY 4 BIT 4 42 J1) STATE COUNTER

41 32 LoN DATA FROM MEMORY 5 BIT 5 44 a1 Tg STATE COUNTER

45 J2 D, DATA FROM MEMORY 6 BIT 6 47 a1 T STATE COUNTER

74 a2 w, DATA FROM MEMORY 7 BIT 7 43 J1 T, STATE COUNTER

1 a1 13, DATA INPUT PORT § BIT § 7 J1 CHy RAM CHIP SELECT §

10 a1 m, DATA INPUT PORT § BIT 1 8l Il oy RAM CHIP SELECT 1

14 a1 m, DATA INPUT PORT g BIT 2 83 I My - RAM CHIP SELECT 2

19 J1 12, DATA INPUT PORT g BIT 3 J2 M3 RAM CHIP SELECT 3

28 J1 1, DATA INPUT PORT § BIT 4 2 J2 ¥y RAM CHIP SELECT 4

33 J1 ‘1A DATA INPUT PORT g BIT 5 .2 Mg RAM CHIP SELECT 5

37 J1 18, DATA INPUT PORT g BIT 6 85 gL Cig RAM CHIP SELECT 6

36 a1 n, DATA INPUT PORY g BIT 7 82 a1 oy RAM CHIP SELECT 7

6 a 18, DATA INPUT PORT 1 BIT g 85 J2 C5g ROM CHIP SELECT g

13 71 18, DATA INPUT PORT 1 BIT 1 7 gL 5, ROM CHIP SELECT 1

16 71 15, DATA INPUT PORT 1 BIT 2 62 J1 5, ROM CHIP SELECT 2

21 a1 18, DATA INPUT PORT 1 BIT 3 64 a 53 RO CHIP SELECT 3

26 a1 18, DATA INPUT PORT 1 BIT 4 70 . a1 8y ROM CHIP SELECT 4

31 J1 1B DATA INPUT PORT 1 BIT 5 35 J2 Csg ROM CHIP SELECT 5 g
34 31 18, DATA INPUT PORT 1 BIT 6 46 J2 CS¢ ROM CHIP SELECT &
39 J1 1B, DATA INPUT PORT 1 BIT 7 72 J2 cs, ROM CHIP SELECT 7

oy 32 =, oureur o g B17 g 5 32 o, 1/0 DECODE ouT o0

67 32 Y OUTBUT PORT g BIT 1 13 Jz 5, 1/0 DECOOE OUT 0

Lo om s B E e

31 72 o3 OUTPUT PORT § BIT 3 14 32 o 1/0 DECODE 0UT o,

53 J2 0_A4 OUTPUT PORT # BIT 4 9 2 63 1/0 DECODE OUT 03

19 J2 Ay OUTPUT PORT # BIT 5 -2) 2

P — 9 J2 5, 1/0 DECOE OUT O,

50 32 O OUSF PORT § BIT 6 ; 32 5 /0 DECODE OUT O ’
47 J2 08, OUTPLT PORT # BIT 7 N n §y FLAG FLIP FLOP.S iﬁgn "
75 J2 355 OUTPUT PORT 1 BIT §) 5 J1 7 FLAG FLIP FLOP-gero -
80 a2 08y OUTPUT PORT 1 BIT 1 23 J1 2 FLAG FLIP FLOP.parity o vl
78 a2 o5, OUTPUT PORT 1 BIT 2 s n - FLAG FLIP FLOP.capry :
60 72 084 OUTPUT PORT 1 BIT 3 7 a1 D INTERRUPT INSTRUCTION INPUT g »
65. 92 OBy OUTPUT PORT 1 BIT 4 9 J1 o) INTERRUPT INSTRUCTION INPUT 1

57 J2 OBy OUTPUT PORT 1 BIT 5 18 J1 o INTERRUPT INSTRUCTION INPUT 2

62 a2 OBg OUEPUT PORY 1 BIT 6 20 J1 i INTERRUPT INSTRUCTION INPUT 3

55 J2 OB, OUTPUT PORT 1 3IT 7 24 5 . INTERRUPT INSTRUCTION INPUT 4

36 J2 Ly OUTPUT PORT 2 BIT § 27 J1 o INTERRUPT INSTRUCTION INPUT 5

34 J2 &, OUTBUT PORT 2 BIT 1 38 J1 Ds INTERRUPT INSTRUCTION INPUT 6

25 a2 5, OUTPUT PORT 2 LIT 2 40 J1 o INTERRUPT INSTRUCTION INPUT 7

2 a2z) OUTPUT PORT 2 BIT 3 59 32 7 FROM TTY TRANSMITTER . IN

22 32 =, OUTPUT PORT 2 BIT 4 a7 2 FROM TTY TRANSMITTER ou‘r} TTY BUFFER X
19 g2 s OUTPUT PORT 2 BIT 5 83 L2 DATA FROM TTY TRANSMITTER BUFFER

16 a2 g OUTPUT PORT 2 BIT 6 27 32 TAPE READER CONTROL IN

21 J2 Cq OUTPUT PORT 2 BIT 7 18 32 TAPE READER CONTROL OUT

a J2 Obg OUTPUT PORT 3 BIT § 28 32 TAPE READER CONTROL (-9VDC) :
43 J2 oDy OUTPUT PORT 3°BIT 1 84 J1 DATA. TO TTY RECEIVER BUFFER

39 a2 %, OUTPUT PORT 3 BIT 2 10 2 do TTY RECEIVER o

42 a2 5, OUTPUT PORT 3 BIT 3 h .71 10 TTY RECEIVER oUT 1% BUPEER

33 72 o, OUTPUT PORT 3 BIT 4 w0 32 0 TTY RECEIVER onm

29 32 o, OUTPUT PORT 3 BIT 5 o1 32 READ/WRITE)
26 J2 Obg OUXPUT PORT 3 BIT 6 72 J1 19 MULTIPLEXER CONTROL LINES N8263 -
31 72 oD, OUTPUT PORT 3 BIT 7 4 J1 sLg MULTIPLEXER CONTROL LINES N8267

&9 o Ag LOW ORDER ADDRESS OUT 69 31 1 MULTIPLEXER CONTROL LINES N8263 ’
82 32 A LOW ORDER ADDRESS OUT 8 Jl SL1 MULTIPLEXER CONTROL LINES N8267

58 J2 A, LOW ORDER ADDRESS OUT 2 n DATA COMPLEMENT

23 g2 A3 LOW ORDLR ADDRESS OUT 52 a1 g, #) CLOCK (alternate clock)

63 J2 Ay LOW ORDER ADDRESS OUT 12 J1 9, #, CLOCK (alternate clock)

17 32 Ag LOW ORDER ADDRESS OUT 75 n SN STRC our

32 - 32 A LOW ORDER AUDRESS OUT 30 - READY Reapy 1IN

48 J2 2, LOW ORDER ADDRESS OUT 1 a1 INTERRUPT INTERRUPT IN

68 J1 Ag HIGH ORDER ADDRESS QUT 8 J2 1/0 ENABLE ENABLE OF I/0 DEVICE DECODER

67 J1 Ay HIGH ORDER ADDRESS OUT ’ 79 J2 % SYSTEM 1/0 CONTROL

80 J1 Ag HIGH ORDER ADDRESS OUT 77 72 N SYSTEM INPUT CONTROL

56 32 A, HIGH ORDER ADDRESS OUT 56 J1 N.O.° PUSH BUTTON smcn} INTERRUPT

7% Jr A, HIGH ORDER ADDRESS OUT 53 J1 N.C. PUSH BUTTON SWITCH

71 Jl A3 HIGH ORDER ADDRESS OUT ' 52 J2 w’ OUTPUT LATCH STROBE PORT # ,
74 J1 CCq CYCLE CONTROL CODING 71 J2 Wy OUTPUT LATCH STROBE PORT 1

73 a1 cc; CYCLE CONTROL CODING " 20 32 W, OUTPUT LATCH STROBE PORT 2

61 Jl Dg RAM DATA IN D 30 J2 LA OUTPUT LATCH STROBE PORT 3

15 a1 b, RAM DATA IN D, 22 a1 INT CICLE INTERRUPT CYCLE INDICATOR

56 Il b, RAM DATA IN D, 32 J1 ﬁA ANTICIPATED 53 OUTPUT

59 J1 o, RAM DATA IN D, s a1 3, ANTICIPATED T, OUTPUT

58 J1 o, RAM DATA IN D,

31

JUMPER
WIRES
1mPrL

INSULATED
JUMPER

WiRES
8 PL

All

Al0

9]

Al

U

AS

Ad

© Intel 1972

b= |l

A29

AS55

A69

ofEi Yo

300031 3
B Hsﬁ

280029

Sims01

i

33

Figure 14. SIM8-01 Assembly Diagram

VIIl. MCS-8 PROM PROGRAMMING SYSTEM

A. General System Description and Operating Instructions

Intel has developed a low-cost micro computer programming system for its electrically programmable
ROMs. Using Intel’s eight bit micro computer system and a standard ASR 33 teletype (TTY), a
complete low cost and easy to use ROM programming system may be assembled. The system features
the following functions: ' :

1) Memory loading

2) Format checking
3) ROM programming
4) Error checking

5) Program listing

For specifications of the Intel PROMs, (1602A/1702A) refer to the Intel Data Catalog.

ROM MEMORY
1
[1

10000} o=
BANK¢[] DD D DD DD PROM ng%gzmmmc
st (11000000
savc2 [[0000000

s [11000000 ﬂ———’l—LT

SIM8-01

’ CONTROL
A0861 -
A0863 PRQG RAM

RAM
MEMORY

Figure 15. MCS-8 PROM Programming System

- This programming system has four basic parts:

1) The micro computer (SIM8-01) :
This is the MCS-8 prototype board, a complete micro-computer which uses 1702A PROMs
for the microprogram control. The total system is controlled by the 8008 CPU.

2) The control program (A0860, A0861, A0863)
These control ROMs contain the microprograms which control the bootstrap loading, pro-
gramming, format and error checking, and listing functions. For programming of Intel’s
1702A PROM, use control PROM A0863. :

3) The programmer (MP7-03) |
This is the programmer board which contains all of the timing and level shifting required to
program the Intel ROMs. This is the successor of the MP7-02.

4) ASR 33 (Automatic Send Receive) Teletype
This provides both the keyboard and paper tape I/0 devices for the programming system.

In addition, a short-wave ultraviolet light is required if the erasable and reprogrammable 1702As
are used.

This system has two modes of operation:

1) Automatic — A paper tape is used in conjunction with the tape reader. on the teletype.
The tape contains the program for the ROM.

2) Manual — The keyboard of the TTY is used to enter the data contént of the word to
be programmed. »

PROGRAMMING THE 1602A/1702A

Information is introduced by selectively programming ““1”’s (output high) and “*0”’s (output low) into the
proper bit locations. Note that these ROMs are defined in terms of positive logic.

Word address selection is done by the same decoding circuitry used in the READ mode. The eight
output terminals are used as data inputs to determine the information pattern in the eight bits of
each word. A low data input level (ground — P on tape) will leave a “1" and a high data input level
(+48V — N on tape) will allow programming of “0". All eight bits of one word are programmed
simultaneously by setting the desired bit information patterns on the data input terminals,

TAPE FORMAT

The tape reader used with a model 33 ASR teletype accepts 1 wide paper tape using 7 or 8 bit
ASCII code. For a tape to correctly program a 1602A/1702A, it must follow exactly the format rules
below:

Start Characterl Stop Character Data Field MSB {Pin 11) LSB (Pin 4)°
Leader: BPPPNNNNNFBNNNNNNPPF...BNPNPPPNNF Traller:
Rubout for at L) N ., Rubout for at
least 25 frames. 1 R Y least 25 frames
Word Field O Word Field 1 Word Field 255
/

The format requirements are as follows:

1) There must be exactly 256 word fields in consecutive sequence, starting with word field O
(all address lines low) to program an entire ROM. If a short tape is needed to program only
a portion of the ROM, the same format requirements apply.

2) Each word field must consist of ten consecutive characters, the first of which must be the
start character B. Following that start character, there must be exactly eight data characters
(P’s or N’s) and ending with the stop character F. NO OTHER CHARACTERS ARE
ALLOWED ANYWHERE IN A WORD FIELD. If an error is made while preparing a tape
and the stop character *‘F’’ has not been typed, a typed “‘B”’ will eliminate the previous
characters entered. This is a feature not available on Intel’s 7600 programmer; the format
shown in the Intel Data Catalog must be used when preparing tapes for other programming
systems. An example of this error correcting feature is shown below:

TYPED ON TTY PROGRAMMED IN ROM
BNNPPNPBNPPPNPNPF —» NPPPNPNP
data word

P eliminated

If any character other than P or N is entered, a format error is indicated. If the stop
character is entered before the error is noticed, the entire word field, including the B
and F, must be rubbed out. Within the word field, a P results in a high level output,
and N results in.a low level output. The first data character corresponds to the desired
output for data bit 8 (pin 11), the second for data bit 7 (pin 10), etc.

3) Preceding the first word field and following the last word field, there must be a leader/
trailer length of at least 25 characters. This should consist of rubout punches.

34

4) Between word fields, comments not PROM PIN CONFIGURATION

containing B’s or F's may be inserted. .) P T VT T Vo
It is important that a carriage return A 2 Bl s
and line feed characters be inserted e E 2|4,
(as a ““comment”) just before each A DATAOUT 144 () 21| A
word field or at least between every *DATA OUT 2 & DI Ay
four word fields. When these carriage ‘ ATAGUT 3 € B
returns are inserted, the tape may be pATAOUT 47 e
. - *DATAOUT 5 8 17 Ay
easily listed on the teletype for Y "
purposes of error checking. It may wonra 00 7 10 [
also be helpful to insert the word woata out s 11 e wa | e
number (as a “comment”) at least veed 1 f]roensn
every four word fields. I

IMPORTANT

It should be noted that the PROM'’s are described in the data sheet with respect to positive
logic (high level = p-logic 1). The MCS-8 system is also defined in terms of positive logic.
Consider the instruction code for LHD (one of the 48 instructions for the MCS-8).

11101011
When entering this code to the programmer it should be typed,
BPPPNPNPPF

This is the code that will be put into the 1302, Intel’s mask programmed ROM, when the
final system is defined. o :

OPERATING THE PROGRAMMER

The SIM8-01 is used as the micro computer controller for the programming. The control program

performs the function of a bootstrap loader of data from the TTY into the RAM memory. It then
presents data and addresses to the PROM to be programmed and controls the programming pulse.

The following steps must be followed when programming a PROM:

1) Place control ROMs in SIM8-01

2) Turn on system power _

3) Turnon TTY to “line” position

4) Reset system with an INTERRUPT (Instr. RST = 00 000 101)

5) Change instruction at interrupt port to a NO OP

6) Start system with an INTERRUPT (Instr NO OP = 11 000 000)

7) Load data from TTY into micro computer memory

8) Insert PROM into MP7-03

9) Program PROM

10) Remove PROM from MP7-03. To prevent programming of unwanted bits,

never turn power on or off while the PROM is in the MP7-03.

- LOADING DATA TO THE MICRO COMPUTER (THE BOOTSTRAP LOADER)
The programming system operates in an interactive mode with the user. After resetting and starting

the system with an INTERRUPT [steps 4), 5), 6}1, a “*" will appear on the TTY. This is the signal
that the system is ready for a command.. To load a data tape, the following sequence must be followed:

K]

TYPED BY SYSTEM TYPED BY USER

Ready for command ‘——j *T ««————— DATA ENTRY command
Request for RAM BANK # Bn 4«————— RAM BANK in which data will be stored.

Enter bank number (@, 1, 2 or 3). Each
bank stores 256 bytes.

Request for address field'/_,___———lp A

within RAM BANK
xxx 4&——————— |nitial address
Address @ through 255

yyy L—— Final address

Start tape reader and load data into RAM
memory. Data entry must be in specified
format. All format checking is done at this
time. If data is entered from the keyboard,
depress the RETURN key after manually
Y) entering each complete word.

Ready for new command ——’——-’"‘r *

This RAM bank may be edited by re-entering blocks of data prior to programming a PROM. More than
one RAM bank may be loaded in preparation for programming several different PROMs or to permit
the merging of blocks of data from different banks into a single PROM. (See the explanation of the
CONTINUE command in section IX.)

FORMAT CHECKING

When the system detects the first format error (data words entered either on tape or manually),
it will stop loading data and it will print out the address where the format error occurred.

At this time, an ’R”’ may be typed and the data can be RE-ENTERED manually. This is shown below.

EXAMPLE 1:
@20 BNPNPNPNPF
021 BPPPPNNNNF
022 BNNNNPPPPN FE
022 = format error indicated at address
#022 (too many characters in
data field).
Listing R = RE-ENTER cpommand
by BNNNNPP PP F-<—— Stop tape reader and manually
TTY RE-ENTER the data word
23 B NP NP NP NP F-<«—— Start the tape reader and continue
024 BPNM FE
024 = Format error indicated at address
: #024 (illegal character in data field).
R = - RE-ENTER command
BPNP NP NP N F<——RE-ENTER data
Continue to completion of data
entry.
B * - : Ready for new command

PROGRAMMING

After data has been entered, the PROM may be programmed. Data from a designated address field
in a designated RAM bank is programmed into correspondung addresses in the PROM. A complete
PROM or any portion of a PROM may be programmed in the following manner:

TYPED BY SYSTEM/r TYPED BY USER

Ready for command *P. 4«——————— Program command

Request for RAM BANK # —————————» Bn 4 RAM BANK in which data has been stored.
I Enter bank number (@, 1, 2 or 3). Each

‘ bank stores 256 bytes.
Request for addressofdata_ 3 A

field within RAM bank
XXX Initial address
' | ~ Address @ through 255
yyy Final address

TTY will list data address as each locatjon
in PROM is programmed.

Ready for new command ——— P *

ERROR CHECKING

After each location in ROM is programmed, the content of the location is read and compared against -
the programming data. In the event that the programming is not correct, the ROM location will be
programmed again. The MCS-8 programming system allows each location of the ROM to be repro-
grammed up to four times. A “$"" will be printed for each reprogramming. If a location in ROM will
_ not accept a data word after the fourth time, the system will stop programming and a “?" will be
printed. This feature of the system guarantees that the programmed ROM will be correct, and in-
completely erased or defective ROMs will be identified.

EXAMPLE 2:

- 1st programming
l l : 2nd programming

;——— 3rd programming

Llsted
006 $ $ $? «—— failure to program
System

If a location in the ROM will not program, a new ROM must be inserted in the programmer. The
system must be reset before continuing. (If erasable ROMs are being used, the ““faulty” ROM should
be erased and reprogrammed).

PROGRAM LISTING

Before or after the programming is finished, the complete content of the ROM, or any portion
may be listed on the teletype. A duphcated programming tape may also be made using the teletype
tape punch. To list the ROM:

37

TYPED BY SYSTEM

Ready for command ——

Request for PROM address

Ready for new command ———

TYPED BY USER

List command

Initial address

Final address

jl———‘ Listing from PROM

The listing feature may also be used to verify that a 1702A is completely erased.

EXAMPLE 3:

Ready for command—> *T =
BO
A
000
910

000
001
002
003
004
005
006
007
008
009
010

|

WWWWWmWomEWW®ED
VZZUZZUVUUT=Z
VZUVUZUVUZUTVTOUTODO
22ZV920TVTZ2T0VO2=2
VZUOZZZTUVTUOUTOTU
TUVODTUVUVZUVUUUZ
TUZVUZUTUTUTTUTUO
TV OUUOUUTOVZT0VUOZ
>>VUVOVVUVOVOUT=
T M T

L

DATA ENTRY

| Specification of RAM
memory address

Loading of data listing of
— tape and verifying correct
format

Ready for command — *P =
B@
A
05
008

005
006
007
008

PROGRAM

L Specification of PROM
locations to be programmed

.__. Programming of PROM and
verifying correct transfer of
data

Ready for command —>*L =
A
000
010

000
o0
002
003
004
005
006
007
008
009
010

Ready for command —» *

|

LIST

—— Address specification

—— Listing of PROM

DWW WoWooowmww
VM UVZ2UVUZ2Z2TVVTTOVTOUTO
VUV UZ2TVZ20VOTVTTUTTO
VU2V ZTVTUVTOTUTVDO
T OV UZFZZ2ZZ22TVUVT0OUTUO
TV OVTVTOVZTUVUUTUTUTO
VU2V Z2UVWVTOTOVTTOUTDO
VU TUVUVUVUUTUTO OO
U UUUUUUOTUTDO
e B W W M B i M M B M |

l

1702A ERASING PROCEDURE

The 1702A may be erased by exposure to high intensity short-wave ultraviolet light at a wavelength
of 2637 A. The recommended integrated dose (i.e., UV intensity x exposure time) is 6W-sec/cm?2.
Example of ultraviolet sources which can erase the 1702A in 10 to 20 minutes is the Model S-52 and
Model UVS-54 short-wave ultraviolet lamps manufactured by Ultra-Violet Products, Inc. (San Gabriel,
California).” The lamps should be used without short-wave filters, and the 1702A to be erased should
be placed about one inch away from the lamp tubes.

MP7-03 PROM Programmer

The MP7-03 is the PROM programming board which easily interfaces with the SIM8-01. All

address and data lines are completely TTL compatible. The MP7-03 requires +5VDC @ 0.8 amps,

-9 VDC @ 0.1 amps, and 50 Vrms @ 1 amp. Two Stancor P8180 (or equivalent) filament transformers
(25.2 Vrms @ 1 amp) with their secondaries connected in series provide the 50 Vrms.

This programmer board is the successor of the MP7-02. The MP7-03 enables programming of Intel’s
1702A, a pin-for-pin replacement for the 1702.

When the MP7-03 is used under SIM8-01 control with control ROM A0862 replaced by A0863, the
1702A may be programmed an order of magnitude faster than the 1702, less than three minutes.

IMPORTANT:
Only use the A0863 control PROM when programming the new 1702A. Never use it when programming
the 1702. The programming duty cycle is too high for the 1702 and it may be permanently damaged.

The MP7-03 features three data control options:

1) Data-in switch (Normal-Complement). If this switch is in the complement position, data
into the PROM is complemented.

2) Data-out switch {Normal-Complement). If this switch is in the complement position, data
read from the PROM is complemented.

3) Data-out switch (Enable-Disable). If this switch is in the enable position, data may be read
from the PROM. In the disable position, the output line may float up to a high level
(logic ““1"). As a result, the input ports on the prototype system may be used for other
functions without removing the MP7-03 card.

MP7-03 Programmer Board Specifications

Features: Connector:

@ High speed programming of Intel’s a. Solder lug type/Amphenol
1702A (three minutes) 72 pin connector

e Inputs and outputs TTL P/'N 225-23621-101
compatible b. Wire wrap type - Amphenol

72 pin connector

- ®Board sold complete with trans-
P/N 261-156636

formers, capacitor and connector
e Directly interfaces with SIM8-01
Board

Dimensions:
8.4 inches high
9.5 inches deep

Power Requirement: .
Vee =+b @ 0.8 amps ’ *This board may be used with a —10V
TTL GRD = 0V ‘ supply because a pair of diodes (i.e. 1N914

or equivalent) are located on the board in
* = e
VDD 9V @ 0.1 amps series with the supply. Select the appropriate -

Ve =50Vrms @ 1 amp : pin for either —9V or —10V operation,

A micro computer bulletin which describes the modification of the MP7-02 for programming the
1602A/1702A is available on request. These modifications include complete failsafe circuitry (now
on MP7-03) to protect the PROMs and the 50V power supply.

Programming System Interconnection

+ GND -8V

[] .
e 13 24 ouTPUT 13,15 19,21 20 ENABLE *5
5As PORT A,
e 1261 =2 > e 33 DATA OUT
'NTERR:'E;— s267) AL > A' 45 DIsaBLE ®]
Y] o 2 =
— M J1-50 J254 0A3 As “ +
- 3.23? R81p— A 4 47K
E i) L v 3 xw
5 -84 J2.49 ois As 53 31
, 0A6 : 8
READY h-30 250 =" e i
s2.47 047 > 40 3
J244 —_ ouTPUT
— [1275 OB¢ PORT 1 NORMAL +5
::i:? J42.80 OE > ap—r""""] DATA IN
J2-78 282 - oomsne"n?j_
§218 — —
OB =
s260 282 COMP. o—— | DATA OUT
oB4 s
TAPE J2.65 = [S
READER SIMB-01 s [MP7.03 L
CONTROL ST — =
42.28 1262988 - NORMAL
1265 OBL 7
)1.86 INPUT
| 1B¢ PORT 1
ne
Tty Ty 81 2.P-8180 STANCOR
PRINTER N3 ™ 8 L
| 16 = t
42:40 nanpe +*
— 311
an nzs [D +
... EN o 4
L1283 ™ \ARE
1 1.1l
——f 237 134 P2 ammE
TTY 187 Liblt
KEYBOARD \ -39 +HH
OR TAPE READER | ¢ o5 L
=250 1243 -
3239— 9 1 S
NOTES: , ' Oz a7k $$$333$S SERER ey
1. SIM8-02 Connector: + 14w b3 {
Wire wrap type/Amphenol NERER !
86 pin connector P/N 261-10043-2. ‘
2. MP7.02 Connectors: odd ot TIHTTI
a. Solder lug type/ Amphenol RERRR _H___M__
72 pin connector P/N 225.23621-101.
b. Wire wrap type/ Ampheno! (shown above) l | I l I '
72 pin connector P/N 261.15636-2. = —D——-{d—ovw——«
3. if the use of the 24 pin socket on the MP7-03 is not desired, the
pin connections for external socket are as follows: l Il Il_ D |1 AA
EXTERNAL SOCKET PROGRAMMING [T
[[S—— —|>——{4———4M,____..
MP7.03 MP7.03
FUNCTION PIN FUNCTION env |11
A, "OUT" DEVICE UNDER TEST 66 Ds 68 |- _D_‘N.___W_a
A, v 58 Ds & I
A g0 b, 8 | t——— —D————-ld——w———«
A3 62 D, 57 I
A 64 CHIP SELECT OUT 72 ———
Ay 66 PROGRAM OUT 2 LED 2200
SN 7407 N
Ag 68 Ve OUT 24 T va-ms uw
A, 70 Vgg OUT 2% IONSANTO
D, "OUT” DEVICE UNDER TEST n Vg OUT 24
69 ou
D, Voo OUT % The complete i ion b the SIMB-01 and the MP7.03
D, 67 #1,62 0UT 2 is provided by the MCBS-10 system interface and contral module.
0, . See the MCBB-10 description.

Figure 16. MP7-03/Sim8-01 PROM Programming System

G 2ia)
€ SRR ¥5

o OlEeto +

9 OEE o c{=310 -
O-{Z5510

N

oFAa1o
1 R20]|
D Q Q o) @ 9 9 @ OXYWNO
inf] || fg NI I XTI I 8l in] ‘ol f-]
AEEE JE s HEEE g&’;&’ﬁaf&' R —
VNN ONO; o b O 0 &b 5 O s e
¢ g } / @
9 @
O M CACED R ; G Rea
0 =
O<EED-O O{EO o
="
G~(E&)-O N {2510
.@ .@ .@ ; G{2eu-0
ﬂ. oo o+
IHEBEDO O Re O E O +©Ocro
QO [6) (@) e
fr‘;' Q ?%ﬂ o) fa 3 I o o (< r (£ 9 % 0} ',’
8 5\3 B & [Ua) In] (& E g é it @] %’ g @ g ﬁ @ | GO cen
{ MO0 o E O O G O+
Oy
e Le. 2 .. 3 ‘ Le. 5 (.Cc. 7 L.c.9
- - - - O

.C.

<Rz

i I
!

e Jo

CEE0D0ERD

Solder Connector P/N 225.23621-101
Wicewrap Connector P/N 261-15636-2
Wicewrap Connector P/N VPBOTESSEQOAT

Solder Connector P/N 225-23621-101
Wirewrap Connector P/N 261156362
Wicewrap Connector PN VPBO1E3GEC0AT

R P NMLIK I HF EDCTSBAZ Y XWVYV UTSRPNMLTIKTUJIHTETETDTCSEBA

f e
71 69 67 65 63 61 59 57 55 53 51 49 47 45 43 41 39 37 35 33 31 29 27 25 23 21 19 17 1513 13 9 7 5 3 1
72 70 68 66 64 62 60 53 56 54 52 50 48 46 44 42 40 38 36 34 32 30 28 26 24 22 20 18 16 4 12 10 8 6 4 2 COC

Figure 17a. Component Side of MP7-03 Card

1.2 3 45 6 7 8 9 1011 12 1314 15 16 17 18 19 20 21 22 23 24 26 26 27 28 20 30 31 32 33 34 35 36

Amphenol
2 4 6 s1o1zv41s1szozz‘z4zszsaase:u:s:awuuwmsoszs‘se5esnezussss1o7z§
1 3 5 7 9 111315 17 19 21 23 25 27 20 31 33 35 37 39 41 43 46 47 43 51 53 55 57 69 61 63 €5 67 69 71 COC

Figure 17b. Pin Definition — Reverse Side of MP7-03 Card

M

POWER SUPPLIY REGULATOR

1
L 11
+11c20, 54F, 50V,
AvA
R3 PRGM
5%, 5W
> VA MJE 1102 D.U.T.
R15
S0k .
103
100K
Vees Vees OUT
PIN 12
D.UT.
an
< EN2907 r;'ﬁ}‘
2 LAN cs {72]
05 VR6 <
1N5242 R52 <SRS3
A 47K a7k PIN 16
= “12v) v D.UT.
Jdcie 52U = 66 EI
T .001uF 1.C.17 Ves
NE 550 {24]
V.R. L
i s S : e
| ADJ FOR Vces (60V) I 200p|
PULSE OF 47.0V 1 L
N4002)
::m EN2907 Voo)
CE T
c3 cR12 PIN 24
E Q10 1N4002 DUT.
I
PROGRAM PULSE TIMING
! 1
+5
Rre3 R25
20k (3.25ms) 5 20K (3.0ms) +80V
R62 R26
12K 47K *5
s (156u3) 4
0BLF o R2 A19
! 165us 108 1K 27K
T |2 Tis jranc | e
+5 1 \
' B
+5 5 30ms
SN7405 CRS
ic 11 1N914 |
c6 R20 R16
'°2“F—F5 14 27K 47K
10 13N, 12
1
e SN7405 =
9 icn
13 R23
470
+5 9 8
SN7405
ic 11

\ Heuus

R22
47K
. L
E 6 N
13 +5 SN7405
+5 + icn
S G R
c1l Jce [cto
17 A1uF| TpF | ApF
GnD J1e 110V L

NOTES: Unless otherwise specified—

1. RESISTORS ARE RATED IN s %W, 10%.
2. TRANSISTORS ARE SE6021, or 2N3658 or 2N3722.

3. PIN NUMBERS ARE SPECIFIED FOR AMPHENOL
WIRE WRAP CONNECTORS.

42

9
nATA:m@-—-_I) 8

DATA IN I :I
CONTROL

DATA OUT

ENABLE

SN7486
5
(] ry ’Ec 1o>6
SN7403
4
[— Sficz: 5
DATA IN [
ENABLE
1. S48
13)!IC10>“
SN7403
13
Doflics [z
DATA OUT ==
CONTROL
SN7486
B2y
1) Jic 10
SN7403

. "

@_

T 7

1
3 iIcgg2

SN7486

SN7403

10
L icejo

SN7486

SN7403

4

SN7486

12

SN7403

13

SN7486

SN7403

R47
6.8K

ADDRESS
CONTROL

Vegs OUT

2

7486N

2 3 R
@ 1'

6.8K

1
ADDRESS DRIVER

A2] 24
A 2 23—
A0 ——13 22—
DATA OUT 1 —— 4 (LSB) 21—
2 5 20—
3 6 19—
4 7 i
5 8 17—
6 9 16
—1w0 15—
DATAOUT 8 |11 (ms8) up—
Ve 12 13

DEVICE TO BE PROGRAMMED

PROGRAM

NOTE:

THIS SCHEMATIC
IS INCLUDED FOR
REFERENCE ONLY.

Figure 18. MP7-03 PROM Programmer Board Schematic

43

IX. MICROCOMPUTER PROGRAM DEVELOPMENT

A.

MCS-8 Software Library

1.0 PL/M™ COMPILER — A High Level Systems Language

It's easy to program the MCS-8 Microcomputer using PL/M, a new high level language concept developed to meet
the special needs of microcomputer systems programming. Programmers can now utilize a true high level language
to efficiently program microcomputers. PL/M is an assembly language replacement that can fully command the
8008 CPU and future processors to produce efficient run-time object code. PL/M was designed to provide addi-
tional developmental software support for the MCS-8 microcomputer system, permitting the programmer to con-
centrate more on his problem and less on the actual task of programming than is possible with assembly language.

Programming time and costs are drastically reduced, and training, documentation and program maintenance are
simplified. User application programs and standard systems programs may be transferred to future computer sys-
tems that support PL/M with little or no reprogramming. These are advantages of high-level language program-
ming that have been proven in the large computer field and are now available to the microcomputer user.

PL/M is derived from IBM's PL/I, a very extensive and sophis- [wss mor ssscrsices eace +

ticated language which promises to become the most widely ' Q?E:zg%?‘?zig:3#2‘75?12‘2?“?;:032'3 s
known and used language in the near future. PL/M is de- §PRINECD = THUE IF 1 IS A PRINE, e/
. - . FINE REG
signed with emphasis on those features that accurately reflect | 2 R T ! OEFINE meGiSTERS
the nature of systems programming requirements for the | &2 € I
- eeos H EQU 3
MCS-8 microcomputer system. 8 Lo s
c200 ;YLRN
L PRIMECL) = YRUE; /e 1 IS A PRINE e/
orBe rool Ay
LucATr ALL Pg?";’LEuzggcz:Ar THEFN 1 AND 58, onos Tl it e
PUT RESULTS 1n TRUTH TaDLC AS FOLLORS: oo 2 ey 48
PRIMECT) = THUE IF 1 IS A PRINE o oos Soen A
DCCLARE PRIME(SH) BYTL: veac 1a oV ok
TECLARE (1,K) BYTE: o800 §EL"1 MV] H:T
DECLARL TRUE LIYTERALLY *1', FALSE LITERALLY t€') eoor " L0l =L:l'° 5?; .
PRIKE(L) = TRUZ; /8 1 IS A PRIME o/ 0013 3032 Ml w2
@15 - LOOPYT
DOP;Y;F?X)O=5";LS(I /% INITIALIZE TADLE TO FALSE o/ gg:? :Z:z;:m :;{ ::33
8218 BF cHp "
°° um“ ! "GJ K € B3 /0 LOOP UNTIL TEST FOR PRIME FAILS o/ :mc CREE L min rEEéE; /o INITLALIZE TABLE 70 FALSE o/
31F 26672070 Lx Ho PRINE
END ~ M an23 86 ADD L
erg .IE :OE D A PRIME o/ ::g; é: :E‘vl ::E
PRINECL) = TRULS ”n28 cCCD AC] 3
ENDI €025 F1 Ldd Bl
e A
EQF /% END OF FROGRAM o/ oKy
BA2C 3I6AR2ERN X1 H K
ee3e see2 a2} He2
. Zo'\p?? WHILE | M0D K <> @5 /e LOOP UNTIL TEST FOR PRIME FAILS o/
PL/M Codlng ::gg 3sazzzina ’ o Het
[MOV A
Program Development Time: 15 minutes HCSO MACRD ASSEMBLER: PLGE 2
ea3? JEAJZEEH Lxy HiK
ee3n HOV .8
Sg;g 91 Loor2: Sup 8
PL/M vs ASSEMBLY LANGUAGE 2039 403009 s Loore
As an example of comparative programming effort between PL /M and assem- 2hes shansa S Ruoes
bly language, this program to computer prime numbers was written twice, - eass o ' RV LN
first in PL/M, and then in assembly language. The PL /M version was written Sais oo v B
in fifteen minutes, compiled correctly on the second try {an "end" was €049 443208 ’u; Z"D'Jnn Loor1
. . . - . P31
omitted the first time) and ran correctly the first time. The program was fose t ° XSy ;:‘:’:u R
then coded in Intel MCS-8 assembly language. Coding took four hours, sauc soaszas bt
program entry and editing another two hours, debug took an hour to find g1 31 ooR :'
incorrect register designation, the kind of problem completely eliminated by 7253 4cs4e0 ;; et ,Lg .
coding in PL/M. Results of this one short test shows a 28 to 1 reduction in 0% O rates ROV
coding time. This ratio may be somewhat high, overall ratio in a mix of pro- |opoea e e
grams is more on the order of 10 to 1. el t PR
€ues ri MOV Bl
8361 £d Ld] ArH
2uo2 3c21 HV.II LITS
vasa zOOD‘IEH !
G354 RELIEJQ (%3} LISt
2868 oF Hov H.B
2269 50 INR 8
B06A FO HOV BeM
. . 2068 441500 "o JHP Loora
PL/M Is An Efficient Language wu OO emogean o
peer 93 HLT
Tests on sample programs indicate that a PL/M program can ! BicLint H R
- . - . - booRCLA VE LIV[;(»LLV t1t, FALSE LITERALLY 8%}
be written in less than 10% of the time it takes to write the enss Lewes o5 - s
same program in assembly language with little efficiency A % A
loss. The main reason for this savings in time is the fact -
that PL/M allows the programmer to define his problem in Assembly Coding
terms natural to him, not in the computer’s terms. Consider - Program Development Time: 7 hours

the following sample program which selects the largest of

two numbers. In PL/M, the programmer might write:

If A>B,thenC=A; else C=B;

Meamng. “If variable A is greater than variable B, then ass&gn A to variable C; otherwise, assign B to C.”

44

A corresponding program in assembly language is twelve separate machine instructions, and conveys little of
original intent of the program.

Because of the ease and conciseness with which programs can be written and the error free translation into
machine language achieved by the compiler, the time to program a given system is reduced substantially over
assembly language.

Debug and checkout time of aPL/M program is also much less than that of an assembly language program, partly
because of the inherent clarity of PL/M, but also because writing a program in PL/M encourages good program-
ming techniques. Furthermore, the structure of the PL/M language enables the PL/M compiler to detect error
- conditions that would slip by an assembler. The PL/M compiler is written in ANSI FORTRAN 1V and thus will
execute on most large scale machines with little alteration.

2.0 MCS-8 CROSS ASSEMBLER SOFTWARE PACKAGE

The MCS-8 cross assembler translates a symbolic representation of the instructions and data into a form which
can be loaded and executed by the MCS-8. By cross assembler, we mean an assembler executing on a machine

other than the MCS-8, which generates code for the MCS-8. Initial development time can be significantly re-

duced by taking advantage of a large scale computer’s processing, editing and high speed peripheral capability.
Programs are written in the assembly language using mnemonic symbols both for 8008 instruction and for special

assembler operations. Symbolic addresses can be used in the source program; however, the assembled program

will use absolute address. {See Appendix il.)

The Assembler is designed to operate from a time shared terminal. The assembled program may be punched

out at the terminal in BNPF format.

The Assembler is written in FORTRAN 1V and is designed to run on a PDP-10. Modlflcatlons to the program
may be required for machines other than PDP-10.

3.0 MCS-8 SIMULATOR SOFTWARE PACKAGE

The MCS-8 Simulator is a computer program written in FORTRAN 1V language and called INTERP/8. This
program provides a software simulation of the Intel 8008 CPU, along with execution monitoring commands to
. aid program development for the MCS-8.

INTERP/8 accepts machine code produced by the 8008 Assembler, along with execution’commands from a
time sharing terminal, card reader, or disk file. The execution commands allow manipulation of the simulated
MCS-8 memory and the 8008 CPU registers. In addition, operand and instruction breakpoints may be set to
stop execution at crucial points in the program.” Tracing features are also available which allow the CPU opera
tion to be monitored. INTERP/8 also accepts symbol tables from either the PL/M compiler or MCS-8 cross
assembler to allow debugging, tracing and braking, and displaying of program using symbolic names.

The PL/M compiler, MCS-8 assembler, and MCS-8 simulator software packages may be procured from Intel on

magnetic tape. Alternatively, designers may contact several nation-wide computer time sharing services for access o

to the programs.

4.0 BOOTSTRAP LOADER FOR SIM8-01
When developing MCS-8 software using the SIM8-01, programs may be loaded, stored, and executed directly from
RAM memory. Aset of three 1702A control PROMs (1702A/860 set) is required for this function. In addition,

this same control PROM set is required when the SIM8-01 is used as the controller for PROM programming.
(See Appendix V.)

5.0 SIM8 HARDWARE ASSEMBLER

The SIM8 Hardware Assembler is a program which translates a symbolic assembly language into an octal repre-
sentation of the SIM8 machine language. An auxilliary program then translates the octal object code into the
“BNPF’* format suitable for bootstrap loading or PROM programming. Eight PROMs and three tapes (1702A/
840 set)!"! containing the assembly program plug into the SIM8-01 prototyping board permitting assembly of
all MCS-8 software when used with an ASR 33 teletype.

The assembler accepts the source text from the paper tape reader on the first of two passes and constructs a
name table. On a second pass the assembler translates the source using the previously determined name values,
creates an octal object paper tape, and if directed, writes the object code into Read/Write memory.

The assembler's commands allow for TTY keyboard manipulation of R/W memory and execution of stored pro-
grams so that program debugging may be undertaken directly after assembly. [fa“BNPF" tape is desired, an
auxilliary ‘“tape generator’’ program may be loaded and executed by the assembler. (See Appendix I.)

6.0 PROGRAM LIBRARY

These program listings are available to all Intel microcomputer users. We encourage all users to submit all non-proprietary
programs to Intel to add to the program library so that we may make them available to other users.

*

MCS-8 bootstrap loader and control program and PROM programming

systems routine for the SIM8-01 and SIM8-01/MP7-03 PROM pro-

gramming system (A0860, A0861, A0863) [1].
Floating point multiply routine for the MCS-8.
Fixed point multiply routine for the MCS-8.

Fast Fourier transform program for the MCS-8 using the algorithm by

G.D. Bergiund (see IEEE Transactions on Computers, April, 1972).

Debug Program

Binary Search Routine

Interrupt Service Routine

Analog to digital controller — MCS-8.

by CALCOMP,

MCS-8 driving an incremental X-Y plotter such as those manufactured

* % o

»*

Three dimensional blackboard stroke generator using MCS-8.
MCS-8 program for saving CPU states on an interrupt.

MCS-8 program for controlling the timing for a serial input
froma teletype.

Fast Fourier transform program for the MCS-8.

MCS-8 Assembler for use on HP 2100

MCS-8 teletype and tape reader control program (A0800) [1],

MCS-8 memory chip select decode and output test program
for the SIM8-01 card (A0801) [1],

MCS-8 RAM test program for the SIM8-01 card {A0802) (1],
Single precision multiply/divide.

Program written by Intel. @ Program submitted by customers.

Note 1. These are the program numbers that should be used when ordering the programs in PROM:s.

B. Development of a Microcomputer System

The flowchart shows the steps required
for the development of a microcomputer
system. The SIM8-01 system can be used
throughout the complete cycle for pro-
gram assembly, PROM programming, and
prototype system hardware. Ultimately,
custom systems using 1702A PROMs may
be delivered. For high volume applications
(100 or more identical systems) lower
cost metal masked ROMs may be used.

To combine the advantages of the metal
masked ROM and the PROMs, subroutines
may be stored in metal masked ROMs
and a customized main program may be
stored in PROM,

\

Determine 1/0
Requirement

\J

Determine RAM
Requirement

\J

Write Sample Programs:
Determine ROM Requirement

\J

Develop System Program
ol Using 1702A PROMs

y

Assemble Program
and Debug

Program
Qperational?

Yes

\

i

Build Pre-production

Systems Using

1702A

PROMs

Order Metal Customize
Masked ROMs Individual Systems
for High Volume Using ,
Production 1702A PROMs

C. Execution of Programs from RAM on SIM8-01 Using Memory Loader Control Programs

The previous section provided a description of the preparation of tapes and the programming of PROMs for permanently
storing the microcomputer programs. During the system development, programs may be loaded, stored, and executed direct-
ly from RAM memory. This section explains these additional features.

ROM MEMORY
r L 1
T2 3 4 5 6. 1 SIM8-01 MEMORY ORGANIZATION
(=] [3]
g 055 @ ROM & . BEP-255
g 2 2 . ROM 1 256511
A0860 t ROM 2 512-767
‘ CONTROL | . . ROM 3 768-1023
222213} PROGRAM fean- 00000000 ROM 4 10241279
ROM § 1280-1535
RAM st 0000000 ROM 6 1536-1791
MEMORY ROM 7 1792-2047
savc2 [00000 RAN BANK @ . 20482303
. RAM BANK 1 2304-2559
eenks[J Q000000 ‘—-——} AR RAM BANK 2 2560-2815
RAM BANK 3 2816-3071
SIM8.01

Figure 19. MCS-8 Operating System

The system has three basic parts:

1. The microcomputer {(SIM8-01)
2. The bootstrap memory loader control program (A0860, A0861, A0863)
3. ASR 33 (Automatic Send Receive) Teletype

The control program provides the complete capability for executing programs from RAM. Two additional program commands
are required; “C’*, the CONTINUE command for loading more than one bank of memory, and “E”, the program EXECU-
TION command.

Operating The - Mucrocomputer System

To use the SIM8-01 as the microcomputer controller for the bootstrap loading of a program from the TTY into RAM memory
and the execution of programs stored in RAM, the followmg steps must be followed:

. Place control ROMs in SIM8-01

. Turn on system power

. Turn on TTY to “line” position ‘

. Reset systeritwith an INTERRUPT (Instr. RST = 00 000 101
Change instruction at interrupt port to a NO OP

. Start system with an INTERRUPT (Instr. NO OP = 11 000 000)
. Load data from TTY into microcomputer RAM memory

. Execute the program stored in RAM

ONDO D WN =

Loading of Multiple RAM Banks TYPED BY SYSTEM TYPED BY USER

' Ready for command t *T <4—— DATA ENTRY command
Through the use of the command “C", Request for RAM BANK = ——#+ Bn f&——— RAM BANK = in which data will be stored. Enter
(CONTINUE) subsequent RAM banks may 3 A bank number (#,1,2,3). Each bank stores 256 bytes.
be loaded with data without entering a new Request for Address FiV xxx Ju— Initial Address
data entry command and new memory bank within RAM BANK 255 q&—— Final Address = 255

and address designations.

Note that the CONTINUE command should
only be used when the subsequent RAM will
be completely loaded with 256 bytes of data.

Data entry must be in specified format. All format
checking is done at this time. If data is entered from

4 the keyboard, depress the RETURN key after manually
entering each complete word.

1 _— Start tape reader and load data into RAM memory.

Ready for new command *C CONTINUE command
For partial loading of RAM banks, always -| T+ Start tape and continue loading data into
use the DATA ENTRY command. The con- RAM memory. Data is loaded into the next RAM

- BANK (n + 1) beginning with address @0 and
Ready for new command ———— ending at address 255.

tent of a RAM bank may be edited by using
the DATA ENTRY command and revising

47

and re-entering sections of the bank. When a program is being stored in memory, the first instruction of the program should
be located at address @00 in a RAM bank. The entire RAM memory with the exception of the last fifteen bytes of RAM
bank 3 may be used for program storage in conjunction with the bootstrap loader.

Program Execution

The program which has been loaded into RAM may be executed directly from RAM,

TYPED BY SYSTEM TYPED BY USER
Ready for command ———— = | *E |<¢«———— Program EXECUTION command

Request for RAM BANK # —— | Bn |-<«——— RAM BANK in which the program has been stored.

The first instruction in a program must be at address
801 in a RAM bank.

Program beginning at address 8009 of RAM BANK # n
will be executed by the MCS-8 system.

To return to the bootstrap control program, the
ending statement of the program being executed
Ready forcommand —— 5| & should be "JMP 462"

CAUTION: When executing a program from a sing’2 RAM bank or multiple RAM banks, care must be taken
to insure that all JUMP addresses and subroutine CALL addresses are appropriately assigned
within the memory storage being used.

Summary of System Commands

Using Intel’s special control ROMs (A0860, A08B61, A0863) the following control commands are available:

COMMAND EXPLANATION

T DATA ENTRY — Enter data from TTY into a RAM bank

c CONTINUE — Continue entering 256 byte blocks of data into subsequent
- RAM banks

R RE-ENTER — Re-enter a data word where a format error has occurred and

continue entering data

E EXECUTE — Execute the program stored in RAM memory
PROGRAM — Program a PROM using data stored in RAM memory
L LIST — List the content of the PROM on the TTY

The complete Bootstrap Loader Program is presented in Appendix V.

X. MCB8-10 MICRO COMPUTER INTERCONNECT AND CONTROL MODULE

The MCB8-10 is a completely assembled interconnect, display and control switch assembly which elim-
inates all hand wiring associated with an MP7-03/SIM8 -01 setup. With the additions noted below, it
becomes a self-contained system featuring the following:

1.
2.

3.

General Purpose Micro Processor with 1/0 and Display (with SIM8-01, power supplies)

Automatic PROM Programming {with SIM8-01, PROM set A0860, A0861, A0863, MP7-03; power
supplies, TTY) "

Test System for checkout of programs, features single-step capability (with SIM8-01, power supplies)

The MCB8-10 shown in Figure 20 includes the following:

1

10.
1.
12.
13.

14,
15.

. All interconnect circuitry necessary to implement the programming system described in Section Vill

of the MCS-8 Users Manual.

2. Connectors for the SIM8-01 and MP7-03 boards.
3.

A zero insertion force 24-pin socket for PROMs to be programmed. Appropnate connectlons to the
MP7-03 connector are provided.

. Teletype, keyboard, printer, tape punch and reader control connections to SIM8-01. Access to these

signals is provided by a 16-pin socket (TTY-J8). A flat cable is provided for the connection.

. Control switches (2) and logic necessary for true-complement of programmer input or output data.
. Breakout of all computer signals to open sockets for easy access. This includes output ports, flags

(carry, sign, parity, zero), 1/0 decode (select 1/0 port 0, 1, 2, 3), I/O selection, cycle control, two
decoded states (stop and wait), lower and higher order address.

. 60 bits of LED display from SIM8-01.
. All control lines are “OR-tied”” to MCB8-10 or its connectors for external control.
. Two toggle switches are provided for the following operations:

42-83

————
Y 4 :
s16 | TTYIN
913 INTERRUPT |
510Q |
1
|
= |
| simgo1
|
|
|
Ty N |
o
s15 L—{ 140
el IN-AD ? :
| .

a. For A0O860 program (Bootstrap L.oader and PROM programmer control ROMs), set the switches
as shown in the figure above.

b. For A0840 program (SIM8 Hardware Assembler) set S16* to “INTERRUPT" and S15* to “TTY",

c. For operation not using teletype as an /O device, set S16 to “INTERRUPT" and S15 to “IN-AQ".

Two memontary pushbutton switches are used for interrupt and single step function.

8 toggle switches are provided for interrupt instruction input.

A toggle switch is provided for “WAIT’’ control.

Two transformers, 115V AC/220V AC, capacitor, fuse holder and AC input jack wired to develop

the unregulated 80V DC which in turn is regulated on MP7-03 to 47V DC programming voltage.

A control switch for disabling the programming voltage.

Input jacks for applying externally supplied +5V DC and —9V DC to the assembly. (Note: internal

supplies are not included).

*See figure 24.

The setup for the PROM programming application is shown in Figure 21. The MP7-03 (rear) and the
SIM8-01 boards are installed in the MCB8-10.

Figure 20. MCB8-10

Figure 21. MCB8-10/MP7-03/SIM8-01 System

A. Micro Processor System

When the MCB8-10 is used as a microprocessor, its features, such as the display (for the output ports,
i/0 decode, flag flip flops, cycle control, step and wait state, and in and out control and input ports),
may be utilized at the discretion of the user. As an example, consider the testing of the SIM8-01 boards
loaded with a PROM containing the following program: Read Port A and Port B, add the two values and
output the results at Port A. The test could be implemented by connecting 8 switches to the A and B
input sockets. The actual switch circuit would consist of a single pole double throw switch wired with
one pole to ground and the wiper wired to the appropriate socket connector pin in accordance with the
MCB8-10 schematic. The SIM8-01 is then inserted into the ““SIM8-01" connector and a bench supply
connected to the +bV DC and the —9V DC input jacks. The actual test may now be performed. The
system is started according to the user’s instructions and the program is executed. The result appears

at the LED display and may be verified for correctness. The display lights of interest are identified on
the system'’s printed circuit board (Figure 22) as “OUTPUT PORTS"” 0, 1, 2, 3 (Bits 0-7).

ARTWORK A o

° GND GND +5V -9V 'u“:&m“
n. teL/ 'YX X B

[
125vmov ‘

G
(I1I]]]]]

@

s

LN

P
® =
<

masenes

T
$
R

sesnanes

=“ a8 ° |
j i

H
o6]
-

3 ssenes

0000 100000 00000000000 0000000000000000 © © © ¢ 00000000 e 0 cosscsse oo
L= =7 - s - . e e e L:??i ‘3 8 8 Bruacs
w oot Ll 8 8 W 0 5652 AWRESS el B i 0 becaoe Seezs
@ PROGRAMMER OATA e 8 22222822 2223223833 282823333 s¢cs3s2zs: ®
N Vo svo’mﬂ‘l7ss‘s:lo,“7!s‘32|o!7(9&5:10‘15!‘5!»0'
TRUE OUTPUT PORT 3 0UTPUT PORT 2 oUTPUT pORT § UTPUT PORT O

ENABLE
O..'O.QO....|O.Q

0
COMPLEMENT ‘DISABLE 7 6 5 4 3 2 1 o INTERRUPT WAIT SINGLE STEP \ . D b
' INTERRUPT INSTRUCTION INPUT . SYSTEM ‘N"ERFAC'\ECQN\C'E\'N'Q L MODULE
R

Figure 22. MCB8-10 Printed Circuit Board

50

B. Programming System

Consider the actual programming (in the hardware sense) of the 17702A PROM in the example above. The system can
perform this function with the addition of an MP7-03 board inserted into the MP7-03 connector. An automatic pro-
gramming system which allows data entry from a keyboard or paper tape, automatic verification, listing of ROM contents,
and hands-off programming is provided by the further addition of three preprogrammed PROMs (A0860, A0861, A0863)
and a modified teletype. The teletype modification consists of the addition of simple relay network described by the
MCS-8 Users Manual. The procedure for programming a PROM, then,is as follows:
1. Insert MP7-03 and SIM8-01 boards (SIM8-01 loaded with PROMs A0860, A0861, A0863).
2. Connect teletype to “TTY" socket.
~ 3. Connect +5V DC, =9V DC and 115/220V AC. Verify 115/220 switch is in proper position.

4. Insert instruction ‘00000101 with the 8 toggle switches provided for interrupt instruction input (i.e., RESTART

to location 0).

Depress “INTERRUPT"

Insert instruction **11000000” (i.e., NOP) with the same 8 toggle switches

Depress “INTERRUPT”
. Set PROG.AC" to “ON”" v
. Set data enable switch to “ENABLE".
. Set the data “IN/OUT" switches to “TRUE" or “COMPLEMENT"
. Place teletype in.“ON-LINE’ mode
. Insert PROM
. Use A0860 program directives as described in Section 1X of this Users Manual.

Cwooo~NO”O

C. Program Debugging

Program debugging may be performed by using the “SINGLE-STEP" switch and LED display provided.
The procedure is as follows:
1. For executing program in ROM (or ROMs):

a. Turn off system power.
b. Set toggle switch to “WAIT",
c. Insert programmed ROM (or ROMs).
d. Turn on system power.
e. Set interrupt instruction input (using the 8 toggle switches provided) with an RST 0 (00000101)

instruction.

. Depress “INTERRUPT” swntch
g. Depress “SINGLE-STEP" switch. This causes the CPU to execute the RST 0 instruction.

h. Continue to depress “SINGLE-STEP " switch to advance the program one location at a time (a
three-byte instruction requires three depressions of the “SINGLE-STEP" switch).

2. For executing program in RAM:

a. Load program in RAM using A0860, A0861, AO863 program.

b. Set toggle switch to “WAIT".

c. Set interrupt instruction input (using the 8 toggle switches provided) with a JMP instruction to
-select the desired RAM bank where the program has been loaded in step a. Enter the three byte .
JMP instruction as follows:

Load 1st byte (01000100).
Depress “INTERRUPT" switch.
Depress “SINGLE STEP'’ switch.
Load 2nd byte.
Depress “SINGLE-STEP" switch.
Load 3rd byte.
Depress “SINGLE-STEP" switch.
Set the 2nd and 3rd bytes according to the following examples:
For BANK 0 —
00000000 (2nd byte)
00001000 (3rd byte)
For BANK 1 —
00000000 (2nd byte)
00001001 (3rd byte)
For BANK 2 —
00000000 (2nd byte)
00001010 (3rd byte)

—h

51

+

OATa TO TTY
RECEWER. BURKER|

B —

DATA. N
FROM MEMORY J2 [

!
—
| I

wi— 3]
=
INTERRUPT N B_

Jz
DATA, EgOM TTT
TRAMSMITTER MEE_ -

|

|

CSTSUNCIE S

PoRT &
| -
g
I5 -
6:37 3‘
b pran U
— ﬁ
Lt Y 32
) = Like
'E‘ iz 5 :
e ‘
r 6K — E!
3z 8 i
DATA INPUT ; £5 T
PORT - i
‘r— 5.6k ':_
o Ladd s

5.0k
5|z

—d
"
@

2

5.
>]
“134] 27 T 124
1
I 5. 0K

[£]

|

g
s
3
rop
pe <.
*

ATF

[3]

[rI P I By '=\
f LD 45
RN
o a4
z
= ess N
L0 43
. ot 2 t (23] N
OUTPU PoRT ’___J e 47
4 f22
L—J ess N
s e &
19
i gs3 "
LED 40
oo
p [N
N Leo 39
]
TAPE PEADER CouUTISL M [Bas
] RS
lnaia Pae .
(2o 37
]
i Trae =
2 [l LE© 30|
L Tese
]

DUTPUT PORT 3 —

Low oeDER
ADDEES S OuT

Hau oroxz |
ADOREDS OUT

4

.u
HBE
=1 5%

8l $8

K

'f-t'/"

«
]

&

s

H

—1} €37 B
P e 32 }
7
— E3s N d
- Leo 3 —
713 ‘{A'
— ey N
N A Ju
?le] =
pod 7
i

Ris

mE
\[B
::é

270 o

N

2Go

i
S EBLE

270

w

3
-]
.
\|
¢

&

>

~

)

8o
[

SENEINERONORE
e
™

&
NE

170 Lep i3
P 5
zaz A d
210 ro 17 +
v 3
esa A d
270 180 i1)
®les —= !
| 248
| 210 wbw —

; |

(23]

‘..
[&]

270 1D 9

3
\

&
-

=
i

ouTPUT PoRT ¢

ouUTPUT PoRT | |

213
\§

H

[HRENEN

BTG R B
5]

IR I

[¢]

" Tess
]
@0 61
! 17
b
t e w0 —
2154 a3
L Res W [
IR
1e0 59 r—
alsy} 4
:: es> N[|
48 Py
(I re > L
¢ L0 57
5
E 2w " L
t: 120 8¢
|80
| e N |
! uo 85
1.
Lt e1r XN
N] r
ot o o 54
L [3ES
[
’ m—1 o 83
=TS
1’ . e 52
8 27
b TN T =L
" e 51 —
£
£ 2es | | 122]
ot LeD 80 f—t
4
\65‘ P ‘\ I 48
s
B
i ger 11
. E‘ *o 48 —
& 22
= lree N1 T
b= LoD 4 —
__7 = [T
wo 4w

"z |
[EL“.-” ©

aYeLe ComTeoL covinG [y

&

f

SXCLE CONTEOL CODIN G

paTa N

=

Bl

Y

¢13
1
9
.

[

&
N
L]

I

BT T

|

|

NN

-
[
S

HOTES: UNLESS OTHEIWISE HPLCIFIED.

[N e

2 Ale
[> Ja
> ey

REDIBTOR VALLES ARK 430 A, 1jew, 1990,

LEDS ARC PART MO AL 35L-3@, RED.

TO J13 ARE WAT CABLE BHoakeT

T4 TZ,220V SOCKET ARE MOUNTED Okl CHASSIS

52

sTare ocountez [4g
T

—
!
STATE CoLNTER
o 230

§

STATE couwr

:
aNENORENEE

T L — J! r T9
7 i
snre_coumee [1] @ !::F 2 ﬂ I3 +s
= !_ . I [-9 |22,
- [b
42

STATE QDUNTER

1[5 . {z] . pie
kd F— K
b | 220 |, . I 3t “7
s e [y s LorelaT oy |) 0
= 1403 =
2|8 - EI +5 i3
STTE. counTeR [0 i 4 - : 219 Py —o\? : ﬁ‘ -
'] ! 1 ptd 59 | g — . &3 to e @12 N
| ' . =1 1403 . 10
snTe wnu:E}_—_—E 3|ze] E = |, ok Bor BoK g
ey WTEZRUPT misTRUCTION t 28 |, T 2 “=
) -1 1 Az H - at =
N g7 meoT i Bk s8 [1 | 3ocour !
&E ! 4 E 7403 E 7 . 18- 100 VOO
L — Lt
! e °— 9
i | I n a E . [{771
e 2 H AhA 2 Il ! GND 2l
7403 57 1
: s[=] S o] %] o5
2 [as) 3 | (33 I} 4 :
& \ o
l;; : : ' 5.0k s sk D. DATA GuT
LA © Dse 3
3| 4
i [i s —o\?‘ '
RAM cHiP SELseT —f 1 1 S
4]2] P [1403 *s EII DATA \N
= 7 [l
L 2. 1 o—e
4 |, 1 i
9 I
e '
st 5ok e s4 ' DaTA SuT
T/ i 14
o =
® _'7.:! 7 XA £ L.
' | J2 78 T
7 a2} :8] FROM TTY TRANSUITTER :: - 3 g3 S
I b | | TTY. BUFFER [1 4[5 >
P . - d — —
Py - . FROM TTY TRAMSMITTER ,11__73 A 2 -
e TTY BUFFER 1 i -y I
g1 [(] ' 4, i
| s 5 TPE araosR conteel eutf g 7 — —
h | T ! APDRESS ouT 43 o] 2! |
! DEVICE UWDRR TasT ™} — —
2| ‘ R (2] a4 fes 122}
- — i - -
i C-9vec) kd N | as oo ,q
3 [ea] [is] ToTTY pemvee R} (] — =
) 1 ' AL |68 18
ROM CHIP SeLecT —~ I}] J2] S =
4 |7 2 Te Y ZI Aq |70} "
- i — F—
— ro rre ' B |7 4
535 it : T E] - —
-
v, [s
J4 C -
Mol ¢ PROM TO BE
© 10 V 2vamena mmrwma o | 12] [rooaga
! L ‘ ! oata out oy {es] 4]
1h2 ————1 9 v g 1O conteon :] DEVICE UNDER TEST o— —
— i +5 1 1 D5 [&3 =3
1 Ji2 [A Ay — =
#o{7 1 EMABLE oF 1/0 E E - 0, [e 9
— 2o W DEViCE DEcoDEZ. 2az " 1 — s
' 1 il o \) S
& E ez Z sYNe ouT . E 1 2 —
; rra N h] Dg |51} n
[r o 1 - -
e 2| — —
1 3 # cnock e sEEeT ouT |12 4
"D 212 N\ L= (avteenste ool — —
.. b D) . i PROGRAM OUT [2Z 3
2 ia oo 4 Fz ok — -
— 270 " h—d (acTegnaTe Qocr) Vae our (26 I
1/c DEcoDE SuT — t — =
=0 19 —
#[5) s : V88 T aa) 5]
; ‘ 5 veo our 2]
w— {4 s - -,
L h PusH BuTTo — si2
1 I SWITCH ITERUOT 0 vea ouT
1] -
i i
|

I
i
WTERRLPT cvee @]I/"" -
] i 5 - SN STEP luE
FAG FLUP FLOP- sicad ._| 3] 5
— eaw NN h
i !
LD 260 -
zzs[g o] Z
L eea X L .
. [
m""‘n} “:\1’ 12| B T
Re2 —
T RuM/wWAIT E eHADY 1N
LES 24 — _
caert[os M
I eso W —
1
DATA INPUT coMPLEMENT kel 1o

5 RM Sex

t z9o _* |

) 1 uoenl
~7 29

wen 2k

53 Figure 23. MCB8-10 Schematic (No. 00026)

For BANK 3 —
00000000 (2nd byte)
00001011 (3rd byte)
The above procedure causes the CPU to execute the JMP instruction that has been jammed in.
d. Continue to depress ‘“SINGLE-STEP” switch to advance the program one location at a time.

D. Procedural Precautions

1. CAUTION: Do not remove DC power while programming AC power is on. Permanent damage to
MP7-03 and PROM may result.

2. The MP7-03 board should be removed when SIM8-01 is not programmed to drive it.

3. Power up and power down for the programming system should be performed-as follows:
a. +bV DC and -9V DC on
b. Restart procedure:
-Restart instruction 00 000 101
-Interrupt
-Restart instruction 11 000 000
~Interrupt
. TTY on
. Programming AC on
. Insert PROM
Execute
. Remove PROM
. Programming AC off
TTY off
+5V DC and —9V DC off

T A0 00

mmmmmm

@ ik
; D I
j { | : QQE@E(E;%@EE@E@EEE éé@ééﬁé{é}é{é}é{é} E%égégégég 1 i%{é}

@ @v,{@@@z@%@c@@figff ohooooooo 00000000 @ S

Figure 24. MCB8-10 Assembly Drawing

54

MCB8-10 INTERCONNECT AND CONTROL MODULE

SIM801 MCES-10 SIM8-01 MCB8-10

Pin No. Symbol Description [+ ion Pin No. _ Connector _Symbol Description Connection
2,4 J1 +5V +5VDC POWER SUPPLY 57 JL Ds RAM DATA IN Dy 956
84 & 86 32 -9v -9VDC POMER SUPPLY 55 Ji Dg RAM DATA IN D¢ 457
13 72 GND GROUND 54 J1 D, RAM DATA IN D, J5-8
60 J1 MDO DATA FROM MEMORY # BIT # J5-16 48 Jl WIAIT STATE COUNTER J4-1
63 J1 MD, DATA FROM MEMORY 1 BIT 1 | J5-15 49 ot T3 STATE COUNTER JH:
17 a1 Mo, DATA FROM MEMORY 2 BIT 2 | J5-14 48 a1 o STATE COUNTER a7
77 n w, DATA FROM MEMORY 3 BIT 3 | 4513 45 J1 $ToP STATE COUNTER Ja-2
38 32 D, DATA FROM MEMORY 4 BIT 4 | J512 42 JL T2 STATE COUNTER 46
a1 32 w, DATA FROM MEMORY 5 BIT 5 | J5-11 44 a1 Ts STATE COUNTER 945
5 2 w, DATA FROM MEMORY 6 BIT 6 | J5:10 a7 Jl T_ll ‘STATE COUNTER J44
74 72 W, OATA FROM MEMORY 7 BIT 7 | J5.9 43 J1 T, STATE COUNTER J4-3
11 J1 1a, DATA INPUT PORT ¢ BIT § (S15) J10-1 79 a1 Mg RAM CHIP SL:LECT g J11
10 Il 1A, DATA INPUT PORT § BIT 1 J10-2 81 gl My RAM CHIP SELECT 1 72
14 J1 Ia, DATA INPUT PORT g BIT 2 J10-3 83 Jll o RAM CHIP SELEF?: 2 973
19 a1 1A, DATA INPUT PORT g SIT 3 J10-4 6 a2 My RAM CHIP SLL'fC"‘ 3 974
28 Jr U\4 DATA INPUT PORT g BIT 4 J10-5 2 g2 C_M4 RAM CHIP SELECY 4 J7-5
33 a1 1, DATA INPUT PORT § BIT 5 5106 s: :i .gs x z:ii z:tiz: i 976
37 J1 Tag DATA INPUT PORT § BIT 6 J10-7 Cig LEC: J77
36 Jl 1A, DATA INPUT PORT g BIT 7 J10-8 22 j;- ;;'7 :2: 2:11; zitizi ; j;-fe
6 J1 1B, DATA INPUT PORT 1 BIT § J10-16 oy ; - -
13 a1 1B, DATA INPUT PORT 1 BIT 1 J10-15 % 7 e ROH CHIP SELECT 1 715
16 J1 1B, DATA INPUT PORT 1 BIT 2 J10-14 62 a1 €5, ROM ChIP SELECT 2 9714
2 n 13, DATA INPUT PORT 1 BIT 3 31013 64 a1 G, ROM CHIP SELECT 3 J7-13
26 J1 1B, DATA INPUT PORT 1 BIT 4 Ji012 70 J1 CS, ROM CHIP SELECT 4 J7-12
31 a1 18, DATA INPUT PORT 1 BIT 5 51011 35 a2 CSs ROM CHIP SELECT 5 4711
34 31 1Bg DATA INPUT PORT 1 BIT 6 J10-10 46 a2 C5¢ ROM CHIP SELECT & 9710
39 5 1B, DATA INPUT PORT 1 BIT 7 | J10-9 72 2 &7 ROM CHIP SELECT 7 N
T T e LB E e
67 32 T, OUTPUT PORT § BIT 1 31315 6 o 6

= 12 J2 g, I/0 DECODE OUT O J12-6
54 J2 A2 OUTPUT PORL § LIt 2 1314 15 J2 5 I/0 DECODE OUT 05 3125
5L J2 OR3 OUTPUT PORT §# BIT 3 1813 14 a2 5 1/0 DECODE OUT 0. J124
53 J2 OA, OUTPUT PORT § BIT 4 J13-16 -3 3

- 11 J2 G I/0 DECODE OUT O. J12-3
49 J2 O_AS OUTPUT PORT ¢ BIT 5 J13-11 . 3 62 /6 bECODE QUT 02 T2e
50 J2 DRg OUZDuY PORT # LIT 6 J13-10 ; 3 61 /0 DECODE OUT 01 g
47 J2 X, OUTPUT POZT # bIT 7 J139 3 Il §ﬂ FLAG FLIP FLOP-Sign 499
73 2 5By OUTPUT PORT 1 BIT § 181 5 a1 z FLAG FLIP FLOP_zelg-o J39-10
80 Jz o8, OUTPUT PORT 1 KIT 1 913-2 23 n - FLAG FLIP FLOR.papity B12
78 a2 fz OUTPUT PORT 1 BIT 2 913-3 25 1 z FLAG FLIP FLOP.Carry 011
60 a2 B4 OUTPUT PORT 1 LIV 3 184 7 J1 D, INTERRUPT INSTRUCTION INPUT # 391
65 Jz 0B, OUTPUT PORT 1 BIT 4 9135 s J1 o, INTERRUPT INSTRUCTION INPUT 1 Jo-2
57 g2 OBg OUTPUT PORT 1 BIT 5 186 18 - J1 0, INTERRUPT INSTRUCTION INPUT 2 J9-3
62 g2 0By OUTPUT FORY 1 BIT 6 a3 20 J1 D INTERRUPT INSTRUCTION INPUT 3 Jo-4
55 Iz 58, OUTPUT PORT 1 sIT 7 J188 24 J1 93 INTERRUPT INSTRUCTION INPUT 4 J95
36 J2 fa QUTPUT PORL 2 BIT § 1116 27 J1 94 INTERRUPT INSTRUCTION INPUT 5 J9-6
34 J2 oy OUTPUT PORT 2 BIT 1 115 38 a1 o INTERRUPT INSTRUCTION INPUT 6 39-7
25 Jz X, OUTPUT PORT 2 bIT 2 1114 40 J1 . INTERRUPT INSTRUCTION INPUT 7 J9-8
24 J2 oc, OUTPUT PORT 2 LIT 3 411-13 59 72 7 FROM TTY TRANSMITTER IN P
22 32 §4 OUTPUT PORT 2 BIT 4 J1112 3 s2 FROM TTY TRANSMITTER OUT} TTY BUFFER | ..
19 J2 OCq OUTPUT PORT 2 BIT 5 Jari 83 J2 DATA FROM TTY TRANSMITTER BUFFER TTY, 516
16 J2 & OUTPUT PORT 2 BIT 6 J11-10 27 32 TAPE READER CONTROL IN J111
21 J2 %, OUTPUT PORT 2 BIT 7 J11-9 18 32 TAPE READCR CONTROL OUT 587
44 J2 °—_ﬁp OUTPUT PORT 3 BIT § Ji1-1 28 32 TAPE READER CONTROL (-9VDC) J8-6
43 2 oDy OUTPUT PORT 3 BIT 1 12 84 J1 DATA TO TTY RECEIVER BUFFER J1116
39 a2 o-pz OQUTPUT PORT 3 BIT 2 J11-3 10 J2 To TTY RECEIVER OUT 4813
42 o2 o, OUTPUT PORT 3 BIT 3 114 86 J1 TO TTY RECEIVER OUT TTY BUFFER Jg.12 ~
33 92 55, OUTPUT PORT 3 BIT 4 115 40 a2 TO TTY RECEIVER OUT J8-11
29 a2 b, OUTPUT PORT 3 BIT 5 J11-6 o1 72 READ/WRITE
26 J2 O_DG OUTPUT PORT 3 BIT & 917 72 Jl v MULTIPLEXER CONTROL LINES N8263
31 Jz b, OUTPUT PORT 3 BIT 7 J11-8 4 J1 5Lg MULTIPLEXER CONTROL LINES N8267
69 J2 Ay LOW ORDER ADDRLSS OUT 969 .69 J1 11 MULTIPLEXER CONTROL LINES N8263
82 J2 A - LOW ORDER ADDRESS OUT 4610 8 Jl SL1 MULTIPLEXER CONTROL LINES N8267
58 J2 a, LOW ORDER ADDRESS OUT J6-11 29 a1 DATA COMPLEMENT 1916
23 J2 A, LOW ORDLR ADDRESS OUT J6-12 52 JL 51 #, CLOCK (alternate clock) J4-16
63 32 a, LOW ORDER ADDRESS OUT J6:13 12 J1 g, #, CLOCK (alternate clock) Ja15
17 J2 Ag LOW ORDER ADDRESS OUT Je-14 75 J1 syNC SYNC oUr J4-10
32 J2 Ag LOW ORDER AUDRESS OUT J46-15 30 J1 READY READY IN
48 a2 A, LOW ORDER ADDRESS OUT J6-16 1 31 INTERRUPT INTERRUPT IN TTY, 816
68 Jl Ag HIGH ORDER ADDRESS OUT J6-1 8 J2 *1/0 ENABLE ENABLE OF I/0 DEVICE DECODER J4-13
67 J1 ay HIGU ORDER ADDRESS OUT J6-2 79 a2 5 SYSTEM 1/0CONTROL Ja9
80 Jl Ao HIGH ORDER ADDRESS OUT J6-3 77 J2 N SYSTEM INPUT CONTROL J4-12
56 J2 A HIGH ORDER ADDRESS OUT Je-4 50 31 N.O. PUSH BUTTON swn‘cx} INTERRUPT S12
76 Jl A, HIGH ORDER ADDRESS OUT J6-5 53 J1 N.C. PUSH BUTTON SWITCH, 512
71 Jl A13 HIGH ORDER ADDRESS OUT J6-6 52 J2 wg OUTPUT LATCH STROBE PORT §
74 JL CCa CYCLE CONTROL CODING J6-7 71 J2 Wy OUTPUT LATCH STROBE PORT 1
73 Jl ccy CYCLE CONTROL CODING J6-8 20 32 W, OUTPUT LATCH STROBE PORT 2
61 Jl Dg _ RAM DATA IN Dy J5-1 30 J2 N OUTPUT LATCH STROBE PORT 3
15 J1 Dy RAM DATA IN D) 45-2 22 J1 INT CYCLE INTERRUPT CYCLE INDICATOR J12-16
56 Jl D, RAM DATA IN D, 953 32 J1 3, ANTICIPATED T, OUTPUT
59 J1 D, RAM DATA IN Dy J54 35 J1 13, ANTICIPATED T, OUTPUT
58 Jl Dy RAM DATA IN D, 355 B

55

APPENDIX I. SIM8 HARDWARE ASSEMBLER

1.0 INTRODUCTION

The SIM8 Hardware Assembler is a program which translates a symbolic assembly language into an octal representation
of the SIM8 machine language. An auxilliary program then translates the octal object code into the “BNPF" format
suitable for bootstrap loading or PROM programming. The program operates on the SIM8-01 micro computer system
with an ASR 33 teletype and utilizes all memory of that system. The components included are the following:

8 PROMs (1702): A0840, A0841,, A0847
8 RAMs 1101): Last 256 bytes of assembler
24 RAMs (1101): Name table or object code

Upon purchase of the assembler the customer will receive the following:

8 PROMs (A0840-A0847) or 8 paper tapes

1 “SIM8 Hardware Assembler - page 8’ paper tape (A0848)
1 “BNPF Tape Generator’’ (OCTAL) paper tape (A0849)

1 “BNPF Tape Generator”” (SOURCE) paper tape (A0850)

1 “BNPF Tape Generator” Listing

1 SIM8 Hardware Assembler Listing

1 8008 Users Manual

A system block diagram is given in Figure 1.1.

ROM MEMORY
]

1
1 2 3 4 5 6 7

<1 121 [s] &l T2 Ts] Tzl [5] ¢ LA
é
< < <« < L < < <

o 0000000 —
w_| |=~ 00000000 ¢ sy
v [10000000
00000000 ¢ N

SIM8-01

Figure 1.1. SIM8 Hardware Assembler System Configuration

The assembler accepts the source text from the paper tape reader on the first of two passes and constructs a name table.
On a second pass the assembler translates the source text using the previously determined name values, creates an octal
object paper tape, and if directed, writes the object code into Read/Write memory.

The assembler’s commands allow for TTY keyboard manipulation of R/W memory and execution of stored programs
so that program debugging may be undertaken directly after assembly. If a “BNPF"’ tape is desired, an auxilliary "tape
generator”’ program may be loaded and executed by the assembler.

2.0 DESCRIPTION
2.1 Assembly Passes

During Pass 1 the assembler reads the paper tape, constructs a name table and generates a listing. The listing consists of
a line by line copy of the source text with each line prompted by an assembly address, When the assembler detects

a source termination the process is stopped and a symbol table listing all labeled lines is generated. At this point

no diagnostics have been acted upon.

56

During pass 2 the assembler generates an object code by reading the source tape and interrogating the name table

for all labeled addresses. The object code is written into pre-assigned R/W memory or onto paper tape at the operator’s
option. Diagnostics performed during pass 2 result in omission of the erroneous line and a printout signaling the error.
Errors detected are given below:

Detectable Errors
1. Unrecegnized mnemonics
2. Unidentified labels
3. lllegal restart instruction
4, Non numeric literals
5. lllegal 1/0O instruction formats

2.2 Operating Procedures

In addition to being an assembler, this program offers some of the features of a teletype operating system. lts commands
offer the operator a useful interactive mode. The commands “LOAD"’, “DUMP”, and “BEGIN" allow the operator to
read, write, and execute small programs directly from the keyboard.

The assembler requires a source text presented via a teletype reader. The first step of the assembly procedure is therefore
the preparation of a punched paper tape version of the source text. (See Section 9 for details.) This is accomplished
in an “‘off line’’ mode.

Before proceeding with the “on line’’ operations the hardware configuration must be correct. This requires a system
equivalent with one exception to the SIM8-Q1 portion of the MP7-02/SIM8-01 PROM programming system described

in the 8008 Users manual. The exception is the teletype connection. On the programming system the teletype transmit
-line drives both the interrupt line and the TTY buffer. The hardware assembler, however, must receive TTY data from
the buffer only, so the interrupt must not be connected. A detaiied description of the required connections for the
Hardware Assembler is given in Section 10.

" The assembler is a program which resides in nine 256 byte blocks or “pages’” of memory. On the SIM8-01 eight pages
are permanently stored in the “read only” section of its memory. The ninth page must be reloaded into R/W memory
at each “power on’’ and becomes the second step in the operating procedure. To accomplish this, the paper tape
containing the octal version of “SIM8 Hardware Assembler - Page 8" is placed in the reader. If the “interrupt” input is
stimulated, the assembler will bootstrap its 9th page into the R/W memory.

The assembler is now ready to execute commands.

The third step of the procedure is pass 1 of the assembly. To accomplish this the source tape is placed into the reader and
the command below is typed.

ASSEMBLE: 032: 000:

The numeric values select the memory origin point for the assembly. When the reader is placed in the “start” mode the
assembler will read the tape, generate a listing, and assemble a name table.

The fourth step is pass 2 during which the assembler rereads the source tape and compiles the object code. Line
addresses and an octal representation of the object code is printed on the TTY and, if desired, simultaneously loaded
into memory. Pass 2 may be initiated by typing “LOAD:" or “LIST:". “LOAD" will result in loading of memory
and “LIST" will not. If the paper tape punch is enabled, an octal tape of the object code is created. Diagnostics are
performed by the assembler during this pass and errors are flagged by a “'?"'.

At this point the errors have been flagged and an edit of the source tape may proceed. If the program has been loaded
into memory interactive editing is possible. This procedure is continued until the assembly is correct.

If the ““BNPF" formatted object tape is required, an auxilliary program must be loaded into memory and executed. The
“OAD:"" command is used to load the program ‘“BNPF Tape Generator’’ into memory. The octal tape (256 character
maximum) is then loaded into another area of the memory with a second “LOAD:" command. The tape generator
program is executed by asserting the command “BEGIN:”. The tape generator program accepts a three digit octal value
terminated by a colon as a start address and begins to translate the memory contents into the “BNPF” format. A print-
out and a paper tape will be generated. Sample listings generated during each step described above are given in Figures
2.1, 2.2,2.3, 2.4, and 2.5. Another example with a step-by-step procedure is given in Section 9.

57

ASTST LAB
LCM
JMP ASTST
END

Figure 2.1. Listing of Source Tape

KEYBOARD -» ASSEMBLE: 032: 000:
032000 ASTST LAB

| ASTST 032 00
KEYBOARD —» LIST:

032 001 LCM
PASS 1 - 032 002 JMP ASTST
032 004 END

PASS 2 [” LOAD: 032: 000:
Octal Object | 032000 301: 327: 104: 032: 000:
Code
Figure 2.2. Assembly Listing
KEYBOARD — LOAD: 013: 000:
013000 106: 326: 000: 106: 237: 000: 354: 066:
Tape ‘ : ' :
Generator o .
013150 153: 007: 050: 357: 361: 007:
Figure 2.3. Load of Tape Generator
KEYBOARD — LOAD: 012: 000:
Octal Object { 032000 301: 327: 104: 032: 000: oo

Code

Figure 2.4. Loading of Octal Object Code

KEYBOARD — BEGIN: 013: 000:

012:

000 BPPNNNNNPF
“BNPF* 001 .
Object 002 .
Code 003 *

004 BNPNPNNPPF

Figure 2.5. Execution of Tape Generator

2.3 Assembly Language

The assembler operates with the 64 character subset of ASCI| generated by the ASR-33 teletype with the commercial
at sign, @, given special significance and control characters, carriage return, and linefeed. Instruction source fields utilize
a subset of the above including numerics, upper case alphabetics, the colon, quote sign, commercial at, and the control

characters.

The MCS-8 instruction mnemonics as described in the MCS-8 manual and pocket guide are recognized by the assembler.
The instructions set is augmented by three pseudo operators, “PAM”, “ADR" and “LOC’’ which simplify the assembly

process,

Symbolic addressing and selection of constants are provided by the definition of labels and use of the pseudo operators,

A comment field is also provided.

3.0 ASSEMBLER COMMANDS

Five commands are used to direct the assembler which provide for teletype/memory interaction, assembly, and execution
of loaded programs. They are defined as follows:

LOAD: The LOAD command is used to store keyboard or paper tape entries into consecutive locations beginning with an
address specified by an address modifier. The modifier consists of 2 three digit octal numbers each terminated by a colon.
The first defines a page address {see memory organization - section 5.0) and the second defines the character address.
The format, described below, requires that leading zeroes be typed. Note that the character address has the range 000 to
3775 =25643. LOAD: 011: 008:

Page Char.]
Characters of the input tape must be 3 digit octal with leading zeroes, terminated with a colon. During an assembly the
LOAD command may be used without a modifier to initiate pass 2. The source tape is then loaded and the object code
is printed on the teletype printer and stored into memory as well.

DUMP: The DUMP command is used to display rhemory contents on the teletype printer. The command requires two
address modifier pairs similar to that described for the LOAD command. The first pair is the address of the last content
to be printed and the second pair is the first. The format is as follows:

Last Alddress First Alddress
1T T 1

LT
DUMP: 011: 008: 011: 000:
Page Char. Page Char.

The printout is 3 digit octal with 8 characters per line. Each line is prompted by a 6 digit octal memory address.

ASSEMBLE: The assemble command initiates pass 1 of the assembly. It is associated with an address modifier which
establishes the origin of the program to be assembled. This address need not be related to the usable memory of the
SIM8-01 card performing the assembly. The format of the command is described below:
Origin

. o an0-!

ASSEMBLE: 032;, ,000:
Page Char.

LIST: The LIST command is recognized only during an assembly. It will initiate pass 2 in such a way that the source
tape is loaded and the object code printed but not stored in memory. The LIST command does not require an address
modifier. Its format is simply:

LIST:

BEGIN: The BEGIN command will initiate execution of a program located at the address specified by its address
modifier. If an RST¢ instruction is hardwired into the interrupt input port, assembler control may be recovered

by generating an external interrupt. /t should be noted that the ninth page of memory is not protectad, hence care in
execution of a secondary program is warranted. The format of the instruction.is as follows:

Address Modifier
BEGIN: !032:' 000:;
Page Char.

4.0 NUMBER SYSTEM

- All numbers used by the assembler are in three digit octal form and require leading zeroes to be typed.

5.0 MEMORY ORGANIZATION

Interaction with memory requires an understanding of its utilization by the assembler. The memory consists of 3000
8 bit bytes each directly addressable by the CPU. It is organized in blocks of 256 bytes called pages as shown in Figure
5.1. Addresses are specified by 2 three digit octal numbers each terminated by colon. The first number presented to
the assembler is interpreted as a page designator and the second as a character designator.

59

1 PAGE = 2566 BYTES = 2K BITS

PAGE CHAR. PAGE CHAR.
T 000: 000: ' T
00 000: 377:
. 001: 0: e
PAGE L
001; 377:
002: 000: :
zjf-_& 2
.. 4 002: 377:
003: 000: e
003: 377: 1702
ASSEMBLER 004: 000: . SRCEA PROM
(DARKY EEEEeeeea S 004: 377:
005: 000: o n
005: 377:
006: 000:
006: 377:
007: 000:
PAGE T
s 007: 377: '
010: 000: == e e
’ = - ZEE 010: 377:
011: 000: f[==
NAME TABLE 012: 000: ' : RMW
AND PAGE 10
OBJECT CODE 012: 37T

013: 000:
! PAGE 11
013: 377:

NAME TABLE BEGINS AT 011: 020:
SPACE AVAILABLE FOR VOLATILE AND
OBJECT CODE LOAD UNPROTECTED
DURING ASSEMBLY =752 — 8X (Number of Names)

MAXIMUM NUMBER OF NAMES = 94

Figure 5.1 Memory Map

The assembler resides in the first 9 pages of memory. Two bytes of the 10th page are also dedicated. The first 8 pages,
number O through 7, are preprogrammed read only meémories and the 9th resides in read write memory, page 8. The last
page is volatile and must be reloaded if power is removed. The memory is unprotected so care must be exercised in
selection of the assembly origin if the object code is to be stored in memory.

The name table created during pass 1 begins at location 011: 020: and displaces 8 contiguous locations for each entry.
The usable R/W memory for loading of object code in pass 2 diminishes as the table develops. The maximum number of
names allowed is 94.

6.0 FORMAT

The assembler is a line-statement, fixed format assembler. Each field of the source statement is defined by its position
in the line. If the positional format is violated the assembler will reject the statement. The format, depicted in Figure
6.1, provides fields for a 6 character label, a 3 character instruction, a 6 character operand, and variable length comment.
The line is terminated by a carriage return followed by a linefeed but may be entirely cancelled by a commercial at

sign, @.

Detailed descriptions of the fields are provided in the following sections.

LABEL MNEMONIC OPERAND COMMENT
| g4l | c
LEFT \ /
MARGIN UNCOMMITTED TERMINATOR

Figure 6.1 Source Line Statement Format

60

6.1 Labels

Any line of the assembly may be assigned a label by placing a one to six character name into the label field. The label
field is the first six positions of each line. If no label is to be assigned to the | ine, the field must be filled with spaces.
Each entry into a label field must satisfy the following requirements:.

1. The name must be left justified in the field.

2. The name can contain any character except the commercial at sign, @.
3. All unused positions in the field must be filled with spaces.

4. The name must appear exactly once in a label field of the source text.

5. The total number of names for a single assembly cannot exceed 94,

6.2 Instruction Mnemonics

All mnemonics defined in the MCS-8 Users Manual and pocket guide are recognized by the assembler. A concise descrip-
tion of each is provided in Appendix A. The reader is referred to the Users Manual for detailed information.

Further explanation and qualifications related to some of the instructions is given below.

JUMP and CALL: The operand field of a JUMP or CALL instruction can contain either a name or an address. Ifa
name is used, it must be defined at some point in the source input or an error message will result. If an address is used,
the assembler expects the first three digits to be the octal value of the page address and the second three to be the value
of the character address. Examples of the two forms are given below:

6 SPACES TO ‘ FILL UNUSED
FILL NAME FIELD INSTRUCTION NAME NAME FIELD

N N)

Mrmrr JMP M START 1 COMMENT

mmommme JMP M 004006 1 COMMENT

/ 2\

PAGE 4 CHARACTER 6

RESTART: The assembler operates on the operand field of a RESTART instruction in the same manner as on the
operand field of a JUMP or CALL instruction. Its assembled value, however, must be consistent with the 6 bit “AAA
000" format utilized by the processor. if not,an error indication will result.

IMMEDIATES: All Immediate instructions such as LAl can have an operand field occupied by a three digit octal
number (left justified within field) or a character surrounded by double quote marks. (See section 6.3) If an octal
number is found, it will be assembled directly as the immediate value. If a quote mark is found in the first position

of the field, the ASCII equivalent of the character in the second position will be used as the operand value. If the first
character of the operand field is neither a number or double quote mark, an error message will result. Examples of the
formats are given below: '

LEFT JUSTIFIED
NUMERIC

\

M rmr LALLM 567 M COMMENT

mmmmror LA “A” 1 mm COMMENT

QUOTE MARK IN IMMEDIATE VALUE IS AN
FIRST POSITION ASCIl A = 11000001

61

INPUT: The INPUT instruction may have either a name or an octal digit with two leading zeroes. The three digit
numeric value is of the form “00X’* where X can vary from zero to seven. The formats are as follows:

MMOOMrr iNe M1 NAME 171 COMMENT

MO NP 007 MM COMMENT
CONSTANTS

The name must assemble to a value between 0 and 7, and numerics must be within the specified range or an error flag will
result.

OUTPUT: The OUTPUT instruction format is similar to the INPUT instruction but range of operand values is larger.
Numeric operands may assume values from octal 010 to octal 037. The leading zero is required. Names must assemble
to values within the specified range or an error flag will result. Examples of the formats are given below:

Mmoo ouT M NAME M1 COMMENT

MOmomm ouT M1 037 M1 i1 COMMENT

\

CONSTANT MAXIMUM
VALUE

HALT: The HALT instruction may be used as a pseudo operator. |f the operand field is blank, it will assemble to its
normal value of 000. If a non-zero value is placed into the first three digits of the operand field, that value will be
assigned. |f a quote mark is found in the first position of the operand field, the ASCII value of the digit in the
second position will be assigned.

6.3 Pseudo Operators

Four additional instructions are provided to simplify the assembly process. These instructions are “pseudo operators”
because they are not included in the MCS-8 instruction set. These instructions provide for name address assignment,
memory block address assignment, a double register load for the H and L registers (see 8008 Manual), and termination
of each pass of the assembly.

Detailed descriptions of these instructions are provided below:

PAM: The instruction “PAM™ will assemble as two instructions, ‘“LHI" followed by an “LLI"". Its operand field will

be interpreted as two 3 digit octal values. The first and second values specify the LH1 and LLI operand fields, respectively.
The values may be numeric or named, but must meet the format requirements of the JMP or CALL instructions. The
realizable range of the first is octal 000 to 077 and 000 to 377 for the second. An example is given below:

h SOURCE
SOURCE MMM PAM 1 010377 COMMENT

EQUIVALENT 111 LHI M1 010 11711 COMMENT

STATEMENT

MO L mo 377 M COMMENT

62

ADR: The instruction “ADR" is non-executable and may appear anywhere in a program except the first instruction.
The address specified in the operand field will be assigned to the name specified in the instruction. With this instruction,
names may be assigned to external subroutines and /O units. An example is given below:

SOURCE
statement START M ADR 1 001377 COMMENT

. RESULT OF

ASSEMBLY START <«—— 001377

LOC: The instruction “LOC" is nonexecutable and must only appear after the last executable instruction. It is used
to reserve blocks of memory locations directly after the assembled programs and to assign a name to the first location.

The name field should contain the desired name and the operand field should contain two three-digit octal numbers to
indicate the length of the array. The form of the number is the same as that used to indicate an address. For example,
the number 001000 would reserve 256 locations and the number 000377 would reserve 255 locations.

‘END: If the instruction END is encountered by the assembler it will terminate the current pass in process.

" HALT: If the operand value of a HLT instruction is non-zero it is treated as a pseudo operator. Section 6.2 provides
a detailed description.

7.0 ERROR FLAGS

Diagnostics performed in pass 1 and pass 2 may result in error flags during pass 2. If an error is detected, the invalid
source entry followed by a question mark is printed. 1f the error exists in the operand field but not in the instruction
field, the object code for the instruction will be printed and punched. The assembly must therefore be repeated after
.source text corrections are made.

The conditions that result in error flags aré described below:

INVALID MNEMONICS

Every mnemonic field must contain three letters which can be exactly identified as an instruction; otherwise, it will be
rejected as an error.

UNDEFINED NAMES

If a referenced name is not found an error message will result.

INVALID RESTART ADDRESS , v .

The RESTART instruction operates on the operand in the same manner as the JUMP and CALL instruction, except that
it requires that the resulting address be one of the valid restart locations. If this is not true, an error message will result.
INVALID OPERAND FIELD FOR IMMEDIATES _

For immediate instructions, the first character of the operand field must be a number or a quote mark.

- INVALID OPERAND FIELD FOR JUMP AND CALL INSTRUCTIONS

Operand fields for JUMP and CALL instructions must be a valid name or an octal number.

INVALID OPERAND FIELDS FOR INPUT/OUTPUT INSTRUCTIONS

Section 6.2 defines valid operands fields for the input and output instructions. I those definitions are violated in the
source text, error flags will result.

8.0 OUTPUT TAPE

The assembler generates an octal output tape representation of the object code. Each byte is represented by three digits

terminated with a colon {see Section 9). Lines of 8 bytes are prefixed by the address of the first byte. The address is
not terminated by a colon and will therefore not be accepted by the assembler “LOAD" instruction.

The octal listing is compact and intended for editing operations. To perform standard Intel programming functions, a
“BNPF" formatted tape version of the octal tape must be prepared. To accomplish this, a “BNPF Tape Generator’’
program supplied by Intel, and a page of the octal object code is loaded into memory. The BEGIN instruction is then
used to execute the ““Tape Generator” program which reads 256 bytes of memory, translates them to a “BNPF” format,
and transmits them to the teletype for printing and punching.

As an option a “BNPF Tape Generator’’ ‘source tape is provided so that the customer may assemble the auxilliary
program with an origin of his choosing. Section 11 provides a detailed, step-by-step description.

A detailed description of the procedure and tape outputs is provided in Section 9.

63

9.0 SAMPLE ASSEMBLY WITH A STEP-BY-STEP PROCEDURE

The sample program used in this description is not executable, but includes every instruction, several register pair selections,
erroneous instructions, and the pseudo operators. '

STEP 1. PREPARE SOURCE TEXT

The first step, after handwriting of the program, in symboli‘c language, is to create a punched paper tape and print out on
an ASR 33 teletype. The result of this transcription applied to the sample program is shown in Figure 9.1.

The procedure for creating the source tape is given below:

1. The TTY was placed in the “offline”” mode.
2. The paper tape punch control was placed in an ““on” condition.
3. Handwritten data was keyed into the teletype keyboard.

Some typographical errors were edited by using the TTY's backspace punch control and rubout character. The rubout is
an all ““1”'s character which effectively deletes any character over which it is superimposed. The procedure is as follows:

1. Determine the number of backspaces required to return the punch to the erroneous character.

2. Depress the paper tape punch backspace control until the erroneous character is reached.

3. Enter a “rubout” from the keyboard. If a new character must be inserted, the previous character and the remaining
line or lines must be deleted with rubouts.

4. Enter the desired character and remaining lines.

The assembler’s recognition of a commercial at sign, @, may be used as an editing feature since it will effectively
delete the line from the assembly process.

Some comments regarding the format are given below.

1. The first line of the source listing must be named.
2. Strict adherence to the positional nature of the format is essential.
3. The source listing is terminated by the pseudo operator END.

STEP 2. PREPARE SIM8-01

Step 2 of the procedure is the preparation of the SIM8-01. This requires loading of the assembler ROMs, presetting the
interrupt instruction, and bootstrap loading of the last page of the assembler into R/W memory. The procedure is as
follows:

1. Wire SIM8-01 connections in accordance with 8008 Users Manual description of MP7-03/SIM8-01 PROM Programming
Systems with exceptions cited in Appendix C of this note.

. Hardwire or select by switch a RESTART instruction (00000101) at the interrupt port (see 8008 Users Manual).

. Install 8 1702 PROMs, A0840 to A0847, into the SIM8-01.

. Connect a teletype and power supplies to the SIM8-01 as described in the section Vi of the 8008 Users Manual.

. Place the teletype in the “ON-LINE" mode and set the reader to “FREE".

. Place the paper tape ““SIM8 Hardware Assembler - page 8 for 1101 RAM” (A0848) in the reader.

. Depress the interrupt switch.

. Place the reader in the start mode.

OoONOOOAWN

Approximately 256 locations will be loaded into RAM starting at location 010: 000: At completion of load the assembler
is ready to receive commands. Note that its readiness to accept a command is not prompted by a special character such
as carriage return,

STEP3. COMPLETE PASS 1

With the reader placed in a *“free’” or “‘off” mode the source paper tape is placed into the reader. The assembler command
and an origin for the program is then input from the keyboard. The command is shown below:

ASSEMBLE: 7-' 032: ~— 000:
l___r__._._l
SIGNIFIESSPACE ORIGIN

/
FIRST CHARACTER /
MUST HAVE NAME

LEFT MARGIN /

AJSEMBLE: 2323 303:
ASTST LAB
LCcM
LMD
LEX
LMI
INH
DCL
ADA
ACB

3 -
N
1w

ADL A"
ASI "B”
113 el riad
3BI "D"
NDl “E"
XR1 "F"
ORl =*g=-
© CP1 "H"

JMP JMP 3423332
JFC JMP
JFZ JMP
JFS JmMp
JFP JMP
JTC JMP
JTZ JMP
JTS JMP
JTP JMP
caL CAL CAL
CFC CAL

PASS
TERMINATOR

CFZ CAL
CF3 CaL
CFP CAL
CTC CAL
CTZ CAL
CTS CAL
CTP 9106919

RST 209979
RST TTYOT
TTYOT ADR 899960
INP @23
INP TYIN
OUT 233 .
OUT TYOT
HLT
HLT 123
HLT "A™
PAM TSTAY
PANM 322123

THE FOLLOVING INSTRUCTIONS ARE IN ERROR 0

INA

RES 033301

CAlL. caL
ADI ‘aA*

THE FOLLOVING INSTRUCTIONS ARE NONEXECUTASLE @

TSTLC LOC 332991
TSTAY LOC 23100Q
ENDLC LOC 922921
TYIN ADR 303339
TYOT ADR 333030

—s END

CONTROL CHARACTER
“DELETING™ LINE

Figure 9.1 Source Listing

65

LINE ADDRESSES

ASSEMBLEs 332: 33083 \

ASSIGNED BY/
ASSEMBLER

a32 30a ASTST LAS KEYBOARD INPUT
232 g0t LecM

@32 382 LMD

932 203 LEI 123
832 89S LMI "
232 047 INH

232 ola DCcL

232 oLt ADA

@32 812 ACB

832 813 suc

332 ol4 SBD

232 915 NDE

232 216 X]H

@32 217 ORL

832 @824 crM

2932 o2l ADY “A"
932 923 AC1 3"
232 925 SUL vC
232 327 SBI "D"
@32 831 NDI “E"
232 933 XR1 *Fe
932 835 ont "Gg*
232 937 CP1 "H"
@32 041 RLC

332 942 RRC

232 243 RAL

232 044 RAR

232 945 JMP JM® 020000
232 859 JFC JMP
232 8s3 Jrz JMp
@32 256 JFS JMe
232 361 JFP JMp
232 264 JTC J¥P
032 067 JTZ JMP
932 872 JTS JMp
32 475 Jre JMP
2832 199 calL CAL CAL
@32 1983 CFC CAL
932 a4 CFZ CAL -
232 111 CFS CAL
2832 L14 CFP CAL
232 117 CTC CAL
632 122 CTZ CAL
332 125 CTS CAL
a32 1323 CTP 313910
832 133 RET

932 134 _TC

932 135 RTZ

232 136 TS

832 137 nTP

832 LAd RFC

232 141 rz

932 142 7rs

332 142 RFP

832 LAA RST @30379
232 145]ST TTYOT
2932 146 TTYOT ADR 833860
2332 146 INP 203
832 147 INP TYIN
232 154 oUT 833
32 151 OUT TYOT
232 152 HLT

932 153 HLT 123
232 154 HLT “A"
232 15% PAM TSTAY
232 161 PAM 320123
332 165 THE FOLLOWING INSTRUCTIONS ARE IN ERIOR @
332 165 INA

332 166 INM

2932 167 DCA

932 174 bcM

032 171 LAS

232 173 JMP ASTSY
@32 17§ CAL

832 231 RES TYOT
232 202 IES 900301
232 203 L™

232 204 CAL CAL
332 287 ADI ‘A’
832 211 THE FOLLOVING INSTRUCTIONS ARE NONEXECUTABLE @
232 211 TSTLC LOC 332001
232 212 TSTAY LOC as1a0@
833 212 ENDLC LOC 908001
833 213 TYIN ADR 883000
833 213 TYOT ADR 333038
833 213 END

ASTST 032 380

Jup 232 A4S

GAL 232 199

TTYOT @03 264

TSTLC 2332 211 SYMBOL TABLE
TSTAY 832 212

EMDLC 033 212

TYIN 003 603

TYOT 833 093

Figure 9.2 Pass 1 Listing
66

The origin may assume any octal value from 000: 000: to 777: 777: without consequence if a load command is not used
to enter pass 2. If a load command is used to start pass 2, the object code will be loaded into memory beginning at the
specified origin. If this is done the operator must be sure that page 9 and the name table created during pass 1 are not
affected. (See Figure 1.) As an example, if 30 names are used, only 512 object code locations remain available (012:
000: to 013: 377:). An example of the listing generated during pass 1 is given in Figure 9.2. The example is a test
program which includes all instructions, pseudo ops, and some erroneous instructions. The assembler reads the source
tape, prompts all assembly lines, ignores comments, and generates a symbol table. The completion of pass1 is
evidenced by the completion of the symbol table.

STEP4. COMPLETE PASS 2

Pass 2 requires a reread of the source paper tape so it must be repositioned with the reader in a “STOP” or “FREE" mode.

A “LOAD" or a “LIST” command is used to initiate pass 2 of the assembly. The load command will cause the object code-
1o be loaded into memory during pass 2. A list command will not affect memory. When the load instruction is used the)
object code must not overlap dedicated memory. (See Figure 5.1.) The commands are entered from the keyboard as follows:

LOAD: or LIST:

A listing generated during pass 2 is shown in Figure 9.3. If the paper tape punch is turned on when the “LOAD:" or
“LIST:"” command is typed, an octal version of the object code is generated.

LIST:

INPUT L0AD: 2321 8293
232 229 390 3273 373: 246t [23: B76: 2561 359)
232 810 @61t 230: 21lc 222: 2333 2441 2553 2663
332 029 2771 094: 331: B14r 3323 924: 383: 3343
832 330 34431 34a: 3aS: 3541 386: 264: 337: 2743
332 246 310: 292: 212: @22: 732: 10643 2233 329:
232 050 1933 845t 3323 1103 4453 032: 127: 345¢
332 360 8323 13%: 345: 2321 143: @453 0323 153
232 479 245: 232: 168¢ @AS: @32: 179: 345: 432: ~ OCTAL OBJECT CODE
332 140 1863 103: 9323 1323 1@3: a32: 112¢ 104t
332 118 932: 122: 138: @323 132: 1993 232: 142:
332 120 193: 932 1523 1083 3323 162: 133: 232:
232 133 172¢ 918: 313 3373 343: 853s A63: 473
232 140 403t 4133 6233 3333 2375: 8653 1073 107:
232 150 167t 167: 239: 1237 301: 3563 832: 266: J
832 168 ° 212: 3553 328: 866: 1233
PARTIAL OUTPUT I8A ? 3
FOR LAI (OPERAND INM ?
IS MISSING) ’
DCA ?
ocM)
8362 :
LAL ?
1943)
JMP ASTSY ?)
tos: . » RESULT OF
AL ? : : DIAGNOSTICS
RES TYOT ?
RES 23809017
. \
LFYM ? \
@32 179 1263 ERROR FLAG
CAL CAL 7
a04s :
. 1]
ADI ‘A ? J

Figure 9.3 Pass 2 Listing

STEP5. EDIT AND REASSEMBLE

If errors occur during the assembly, the source text should be edited and the assembly process repeated. If no assembly
errors occur, the user may elect to load the program into memory, assert the “BEGIN" command, and execute the
program. Caution is warranted in this case because the load of the program or its execution may alter the name table
or the 9th page of the assembler. An example of the load and execute is provided in the next section (“BNPF” tape
generation),

67

STEP6. CREATE A “BNPF” PROGRAMMING TAPE

The octal object tape of the assembler is not suitable for PROM programming or bootstrap loading so the next step is
the conversion of the octal tape into a “BNPF" formatted tape.

In summary, this requires the following:

1. Loading of a “BNPF Tape Generator’* program (Tape A0849) into R/W memory.
2. Loading a block of 256 bytes of_ memory with octal object code.
3. Executing the “BNPF Tape Generator’’ program which creates the desired output tape.

A detailed description is provided below:

The “BNPF Tape Generator” program reads 256 memory locations, translates them, and sends them to the TTY., If the
punch is on, a “BNPF" tape will be generated. The RAM must therefore be loaded with the octal data that must be
translated. The load command; LOAD: 012: 000: was used to load the test tape into locations 012: 000: to 012: 157:
as shown in Figure 9.4. Note that the load instruction does not prefix the data. Also, RAM overlap onto “BNPF" at
013: 000: arid page 8 at 010: 000: must be avoided by proper addressing. With object code loaded a translation may
now be accomplished. The begin instruction is used to jump to the “BNPF"’ program loaded at 013: 000:. The punch
is turned on'and 256 lines of “BNPF" tape are generated. The command; BEGIN: 013: 000: was used as shown in
Figure 9.5. Long tapes must be processed in blocks of 256 eight bit codes.

INPUT

ASSEMBLER OUTPUT/ a3
FOR LATER USE a3
213
213
L3
313
13
213
13
813
aL3
[1%]
o3
a13

f‘/””/’/’/” 932
KEYBOARD @32

INPUT %2
232
a32
232
332
232
832
a32
332
a32
832
232
a3e

296
124

1861

232

341

LOAD:

9292
310
929
239
340
L]
260
479
139
L0
129
138
143
158

299
o109
a28
333
a40
959
360
ar9
La8
Le
L20
139
149
159
160
INA

N

CAL
/5T

/ LOAD: 3133 2309:
KEYBOARD '

313: 0082:

166%¢
2ads
g13s
q221:
156%
254:
1613
2663
a6Ss
1208
313
3172
4653
1533

LOAD: 0123 3ad:

301
asls
277
3384
10
183
832
445
1963
@32;
130
1728
@e3:
1673
2123

TYOT

32613
24613
- J &3]
313s
371
2131
4763
1563
as4s
121¢
2242
als
8563
913

327
2392
g4
3441
232%¢
a4Ss
130:
a32:
1922
1223
3323
3133
Qa13s
16712
8563

?

?

R3T 23923317

LFM

173
CAL

ADI

1262
CAL

A

?

?

?

a9097:
1893
307
207t
6033
3661
o10s
3673
213
313:
314
371:
o913
95912

3733
2tLs
301
3ass
3123
33213
qas:
1622
1321
180:
1522
3193
3238
2893
3283

1363
a96s
1963
325:
1103
1633
126
1963
3663
206
265t
113
96612
357

8463
222%
atas
354
a221s
119s
9323
A45s
1823
432¢
103
0073
233t
1233
[1.1.3]

2373
3772
833:
31682
3473
3791
32614
347
16@1
3201
asas
131
154¢
361z

1233
233
3023
3861
332
3451
1493
[kI-}]
193¢
132
3323
3433
375
301
123

2093
2653
313s
9563
9133
3563
3381
3093
3273
3653
3131
313
317
a07:

9763
244:
8241
254
134:
3323
4453
178¢
4321
133
1623
a53:
8651t
3563

334t
341
36912
3133
9%9:
3132
@563
826
2223
1243
9661
3236
363:

25614
2553
3033
397s
42031
122y
3323
34513
112¢
a3as
182:
46312
1373
3322

a&ss)
L1293
1193
9662
372¢
966t
813s
3323
3733
124
1613
2613
119

111}
266¢
3343
274
8203
4453
159
4323
1333
1423
232
273
137
96612

“BNPF TAPE GENERATOR”
OBJECT CODE. THIS IS
LOADED INTO MEMORY
BEGINNING WITH LOCATION
013: 000:

ASSEMBLY OBJECT
CODE (ERRORS
INCLUDED), THIS

IS LOADED INTO .
MEMORY BEGINNING
WITH LOCATION

012: 000:

Figure 9.4. Loading of “BNPF Tape Generator” and Object Code

68

START OF PROGRAM
TO BE EXECUTED

BRGIN: 8131 @001
KEYBOARD INPUT - 35! START OF DATA BLOCK

o BEPNNNNNDF

291 BPPNPNPPPF

332 BPPPPPNPRF

893 BNNPNNPPNF

384 BNPNPRNPPF

05 BENPPPPRNF

236 BPNPNPPONF

a7 BNNPNPNNNF

a1a BNNPPNNNRF

aul BPNNNNNNNF

312 BONNNPNNPF

213 BPNNPNNPNF

346 BNNNNNNNNF

3a7 SNNNNNNNNF

3sa SUNNNNNNNF

351 - DNNNMNNNNF

3s2 BNNNNMMNPF OUTPUT
353 BNNNNNNBNF /
354 BNNNNNNNNF

3ss BNNNNNNNNF

356 BNNNNUNNNF

3s7 BNNNNNNNNF

362 BNPPMNNNNF

361 BNPNNNNNNF

3s2 BNNNNNNPRF

363 BNNMNNNNNF

64 BNPNNNNHNF
_365 BNNNNNNNNE

366 BNNNNNPNNF

367 SNNNNNNNNF

371 BNNNNNPNPF

371 BNNNNNPNNF

372 - BNNNNNMNNF

313 BNONNNNNNF

374 SNPNNNNNNF

315 BNNNNNNPPF

376 BNPNNNNNNF

3717 BPPPPPPPPF

Figure 9.5. Output of “BNPF Tape Generator”

10.0 HARDWARE CONFIGURATION DETAILS

The basic wiring required for the assembler is shown in Figure 10-1. This is compatible with the PROM programming
system with two exceptions:

1. The auxilliary interrupt input (J1-1) is not used by the assembler and must be grounded. The PROM Programming
System software utilizes this input to initiate a teletype receive sequence. A switched selection is recommended.

2. The interrupt instruction port can be permanently wired as an RST instruction for the assembler but must be
selectable for the Bootstrap. Loader program. To satisfy both, it is recommended that switches be used to drive
inputs J1-7, 9, 18, 20, 24, 27, 38 and 40 between ground and +5V.

BV -10V

J2:84,86
12,4
121,3

ally

AUX. INTERRUPT
e INPUT, (This is an
MANUAL exception to the
INTERRUPT NO PROM programming
system.)

L

J1-50
- 8
J1-30
J11 RESTART

5V J1-9, 20, 24, 27, 38, 40 — | INSTRUCTION

(Recommend use
: of switches to
select these levels)
J1-29

317,18
42-36
1184
J244
32:27
an-n
1283
4218

ASSEMBLER T

_F\'— Jt-1

PROG. J1-11
J283

Optionat Switch for Ji-1.

TAPE
READER
CONTROL

J2-28
J1.86

TTY
PRINTER
| J2-40
J2-37
TTY KEYBOARD
OR TAPE READER

N Hrnono

| 4259 gimg.01

Figure 10.1. SIM8-01 Minimum Configuration Requirement

11.0 ASSEMBLY OF “BNPF TAPE GENERATOR"

The tape “BNPF Tape Generator” (source), tape A0850, may be used to relocate the “BNPF Tape Generator” object
code. The object code, A0849, provided has origin 013: 000: and may be changed if desired.

The assembly process described in Section 9 is applied to the source tape A0850. At Step 3 (Section 9) of the
assembly, the origin is changed to the value desired. When Steps 4 and 5 are completed, an object code for the
relocated tape generator is created. The object tape may then be loaded at the new location using the “LOAD"
command and executed using the “BEGIN’ command. (See Step 6 of Section 9).

70

APPENDIX Il. MCS-8 SOFTWARE PACKAGE — ASSEMBLER

A. Assembler Specification
1.0 GENERAL DESCRIPTION
The 8008 Assembler generates object programs from symbolic assembly language instructions. Programs are written in

the assembly language using mnemonic symbols both for 8008 instruction and for special assembler operations. Symbolic
addresses can be used in the source program; however, the assembled program will use absolute addresses.

The Assembler is designed to operate from a time shared terminal with input by paper tape or directly from the terminal
keyboard. The assembled program is punched out at the terminal in BNPF format paper tape.

This routine is written in FORTRAN V. It may be procured from Intel on magnetic tape. Alternatively, designers
may contact several nationwide timesharing services for access to the programs.

The program specifications are presented first and are followed by a user’s guide for some of the timesharing'yservices.

1.1 Assembler Use and Operation

Source programs are written in assembly language and edited prior to assembling, using the time sharing EDITOR program.
Edited programs can then be assembled. The Assembler processes the source program in two passes.

The Assembler generates a symbol table from the source statement names in the first pass and checks for errors.

In the second pass the Assembler uses the symbol table and the source program to generate both a program listing and an
absolute binary program. Error conditions are indicated in the program listing.

1.2 Symbol Usage

Symbols can represent specific addresses in memory for data and program words, or can be defined as constants, Symbols
are used as labels for locations in the program or as data storage area labels or as constants, ’

Expressions can be formed from a symbol combined by plus or minus operators with other symbols or numbers to
indicate a location other than that named by the symbol. Every symbol appearing as part of an operand must also
appear as a statement label or else it is not defined and will be treated as an error. Symbols that are used as labels for -
two or more statements are also in error.

1.3 Absolute Addressing ‘ i

Object programs use all absolute addresses. The starting address is specified by a pseudo instruction at the beginning of
the source program. All subroutines referenced by symbol in the main program must be assembled as part of the main
program. Subroutines not assembled with the main program must be referenced by their starting addresses.

1.4 Program Addresses

Consecutive memory addresses are generated by the Assembler program counter and assigned to each source statement.
Two byte source statements are assigned two consecutive addresses and three byte source statements are assigned three
consecutive addresses. :

The starting address is set by an ORG pseudo instruction at the beginning of the source program,

1.5 Output Options _

The Assembler output is stored in files and can be read out in several forms under control of the time sharing EXECUTIVE,
Some of the options available are:

a. binary paper tape at the terminal :

b. card output at computer center;

program listing at the terminal;

. program listing at the computer center;

symbol table listing at the terminal;

symbol table listing at the computer center.

o Qe

2.0 INSTRUCTION FORMAT

The Intel Assembly program consists of a sequence of symbolic statements. Each source language statement contains a
maximum of four fields in the following order:

location field;

operation field;

operand field;

comment field.

The format is essentially free field, Fields are delimited by one or more blanks. Blanks are interpreted as field separators
in all cases, except in the comments field or in a literal character string. :

"

Each statement is terminated by an end of statement mark. On punched paper tape a carriage return and a line feed punch
terminates a statement.

The maximum length of any statement is 80 characters, not including the end of statement mark. The instruction must
end prior to character 48 but the comments may extend to column 80.

2.1 Symbols

Symbols are used in the location field and in the operand field. A symbol is a sequence of one to six characters repre-
senting a value. The first character of any symbol must be an alphabetic. Symbols are comprised of the characters A
through Z, and zero through nine.

" The value of a symbol is determined by its use. In the location field of a machine instruction or a data definition, the value
assigned to the symbol is the current value of the program counter. In the location field of an EQU pseudo instruction,
the value of the operand field is assigned to the symbol.

An asterisk is a special purpose symbol. It represents the location of the first byte of the current instruction. Thus if
an operand contains *-1, then the value calculated by the Assembler is one less than the location of the first byte of the
current instruction.

Examples of legal symbols:
MAT START2
MIKE Z148
TED24 RONA3Z
*

2.2 Numeric Constants

Two types of numeric constants are recognized by the Assembler: decimal and octal. A decimal number is represented
by one to five digits (0-9) within the range of 0 to 16383. An octal number contains from one to five digits (0-7) followed
by the letter B. The range of octal numbers is 0 to 377778B. »

Numeric constants can be positive or negative. Positive constants are preceded by a plus sign or no sign. Negative constants
are preceded by a minus sign. There can be no blanks between the sign and the digits. 1f a minus sign precedes the number,
then the complement of the binary equivalent is used.

2.3 Expressions

Expressions may occur in the operand field. The Assembler evaluates the expression from left to right and produces an
absolute value for the object code. There can be symbols and numbers in expressions separated by arithmetic operators +
and — Octal decimal numbers are acceptable. No embedded blanks are allowed within expressions.

Parentheses are not permitted in an expression. Thus terms cannot be grouped as in the expression Z-(4+T). That expres-
sion must be written as Z-4-T to be acceptable to the Assembler.

2.4 Location Field

The location field of a statement contains a symbol when needed as a reference by other statements. If a statement is not
referenced explicityly, then the location field may be blank.

The symbol must start in column 1 of the statement. That is, if a symbol is required it must be punched immediately
following the end of statement mark of the preceding statement. The Assembler therefore assumes that if column 1 is
blank, the location field of that statement does not contain a symbol.

Column 1 of the location field can also indicate that the entire line is a comment. |f an asterisk occurs in column 1, then
positions 2 through 80 contain remarks about the program. These remarks have no effect on the assembled program but
do appear in the output listing.

25 Operation Field ‘
The operation field must be present and is represented by a mnemonic code. The code describes a machine operation or
an Assembler operation.

The operation code follows the location field and is separated by one or more blanks from the location field. The opera-
tion field is terminated by a blank or an end of statement mark when there is no operand field and no comment field.

Examples of machine operations:

LAB Load Register A with the contents of Register B

CPM Compare contents of A register with contents of memory location m.
Example of Assembler operation:

ORG Set program counter to specified origin

72

2.6 Operand Field
The contents and significance of the operand field are dictated by the operation code. The operand field can contain the
following: ‘

blank

symbol

numeric

expression

data list

The operand field follows the operation code and is separated from that code by one or more blanks. The operand is
terminated by a blank or an end of statement mark if no comments follow the operand.

Examples of operands:

DANI MIKE2-MIKE4 + 1
143B 773B + X2

1869 *1

RON+33B AA44-22B

(blank)

2.7 Comment Field

The comment field is optional. It follows the operand field and is separated from that field by at least one blank. If
there is no operand field for a given operation code, then the comment field follows the operation field. Once again at
least one blank separates the operation code and the comments. Comments must terminate on or before the 80th charac-
ter position. 1f the comment extends beyond that position, it will be truncated on the output listing. Comments up to
the 48th character position are printed along with the source code. |f comments are in positions 49 through 80, then
they are printed on the next line,

3.0 MACHINE OPERATION

Each instruction in the 8008 repertoire can be represented by a three letter mnemonic in the 8008 assembly language.
For each source statement in the assembly language (except for some pseudo instructions), the Assembler will generate
one or more bytes of object code. Source language statements use the following notation:

Label — Optional statement label;
Operand — One of the following:
data — A number, symbol or expression used to generate the second byte of an immediate instruction.
address — A number, symbol or expression used to generate the second and third bytes of a call or jump
instruction.
device — A number, symbol or expression used to define input/output instructions to select specific devices.
start — A number, symbol or expression used to define a starting address after a restart instruction.
Comment — Optional comment.
() — Information enclosed- in brackets is optional.

3.1 Move Statements- - 1 byte, or 2 bytes when operand is used.

Move instructions replace the contents of memory or of the A, B, C, D, E, H and L Registers with the contents of one

of the Registers A, B, C, D, E, H or L or with the contents of the memory location specified by H and L or with an
operand from the second byte of the instruction. In what follows, ry can represent A, B, C, D, E,H, L, orM. r, can
represent A, B, C, D, E, H, L, Mor 1. If ry=M, the contents of memory are replaced by the contents of ry. Ifry =M,

- the contents of r, are replaced by the contents of memory. If r, = |, the contents of ry are replaced by the operand from
the second byte of the instruction.

(Label) T Lryr, | data | (Comment)
Move r, tor,. ‘
Examples:
Label | LEH | | Comment
Move H to E.
Label T LAM | T Comment

Load A from memory.

Label | LMB | | Comment

Move B to memory.

73

Label | LCI | 062B T Comment
Load octal 062 into C.

Label [LMI T 135B [Comment

Load octal 135 into memory.

The contents of the sending location are unchanged after each move. An operand is required if and only if r=1.

32 Arithmetic and Logical Operation Statements - - 1 byte, or 2 bytes when operand is used.

These instructions perform arithmetic or logical operations between the contents of the A Register and the contents
of one of the Registers B, C, D, E, H or L or the contents of a memory location specified by H and L or an operand.
The result is placed in the A Register. In what follows, r may be B, C, D, E,Hor L, Mor I, ifr=M, memory location
is specified. If r = I, the operand from the second byte of the instruction is specified.

3.2.1 ~(Label) | ADr | data | (Comment)
Add r to A.
3.2.2 ' * {Label T ACr 1 data T (Comment)

Add r to A with carry.

3.23 (Label) [sUr | data T (Comment)
Subfract r from A.

3.2.4 (Labe) |_SBr | data | {Comment)

Subtract r from A with borrow.

3.25 ' {Label) | NDr | data [(Comment)
Logical AND r with A.

3.2.6 {Label) [XRr | data | (Comment)
Exclusive OR r with A.

327 (Label) | ORr [data | (Comment)
Inclusive OR r with A.

328 (Label) | CPr [data [(Comment)
Compare r with A.
Examples: '
Label | ADB | | Comment
Add B to A.
Label | sSuMm | | Comment

Subtract the contents of the memory Iocatlon
specified by H and L from A.

Label | CPI | 024B T Comment:
Compare octal 024 with A
An operand is required if and only if r = I,
‘ 33 Rotate Statements - - 1 byte

3.3.1 (Label) | RLC 1 T {Comment)
Rotate A_one bit left.

74

3.3.2 (Label) | RRC | [(Comment)
Rotate A one bit right.

3.3.3 (Label) | RAL | [(Comment)
Rotate A through the carry one bit left.

3.34 (Label) | RAR | 1(Comment)
' Rotate A through the carry one bit right.

3.4 Call Statements - - 3 bytes
Call instructions are used to enter subroutines. The second and third bytes of call instructions are generated from source
program operands and are used to address the starting locations for the called subroutines. An operand is always required.

3.4.1 (Label) [CAL T address [(Comment)

Call subroutine unconditionally.

342 (Label) | CTC T address | (Comment)

Call subroutine if carry = 1.

- 3.4.3 (Label) | CFC [address [{Comment)

Call subroutine if carry =0

344 (Label) | CTZ >|_ address | (Comment)

Call subroutine if accumulator = 0.

345 (Label) | CFZ T address | (Comment)

Call subroutine if accumulator # 0.

3.4.6 (Label} | CTP | address | (Comment)

Call subroutine if accumulator parity is even.

3.4.7 ‘ (Label) | CFP | address] {Comment)

Call subroutine if accumulator parity is odd.

348 . (Labe) T CTS 1 address [(Comment)

Call subroutine if accumulator sign is minus.

3.4.9 (Label) | CFS [address [{Comment)
Call subroutine if accumulator sign is plus.
At the conclusion of each subroutine, control returns to the address ‘‘Label + 3",

35 Jump Statements - - 3 bytes

Jump instructions are used to alter the normal program sequence. The second and third bytes of jump instructions are
generated from source program operands and are used as the address of the next instruction. An operand is always
required.

3.5.1 (Label) T JMP T address [(Comment)

Jump to address unconditionally.

35.2 (Label) | JTC | address| (Comment)

Jump to address if carry = 1.

3.5.3 : {Label) | JFC | address T (Comment)
Jump to address if carry = 0.

75

3.5.4 {Label) | JTZ | address | (Comment)

Jump to address if accumulator = 0.

355 (Label) T JEZ | address [{Comment)
Jump to address if accumulator # 0.

3.5.6 (Label) | JTP | address [{Comment)

Jump to address if accumulator parity is even.

35.7 (Label) | JFP | address [{Comment)

Jump to address if accumulator parity is odd.

3.5.8 (Label) | JTS | address {{Comment)

Jump to address if accumulator sign is minus.

35.9 (Label) | JFS [address [{Comment)

Jump to address if accumulator sign is plus.

3.6 Return Statements - - 1 byte

Return instructions are used at the end of subroutines to return control to the address foilowing the call instruction that
entered the subroutine. In what follows, assume a subroutine was called as shown:

MAIN | CAL T SUBRTN [Comment

3.6.1 (Label) | RET | [(Comment)
Return unconditionally to “MAIN + 3"

3.6.2 (Label) | RTC | | (Comment)
Return to “MAIN + 3" if carry = 1.

3.6.3 (Label) | RFC | | {Comment)
Return to “MAIN + 3" if carry = 0.

3.6.4 (Label) | RTZ | | (Comment)

Return to “MAIN + 3’ if accumulator = 0,

3.6.5 (Label) | RFZ | | (Comment)
Return to “MAIN + 3" if accumulator # 0.

3.6.6 {Label) T RTP] ‘ [(Comment)

Return to “MAIN + 3" if accumulator parity is even.

3.6.7 (Label | RFP | [(Comment
Return to “MAIN + 3" if accumulator parity is odd.

3.6.8 (Label) | RTS | [{Comment)

Return to “MAIN + 3" if accumulator sign is minus.

3.6.9 (Label) T RFS | [{(Comment)
Return to “MAIN + 3" if accumulator sign is plus.

76

3.7 Input/Output Statements - - 1 byte
These instructions are used to input or output data, one byte at a time, between the A Register and the external device
selected by the operand. An operand is always required.

3.7.1 (Label) T INP | device | (Comment)
Inputs one byte of data from device to the
A Register.
3.7.2 (Label) | OUT | device | (Comment)
" Outputs one byte of data from the A Register
to device.

The device operand must have a value between 0 and 7 for input instructions and between 10 and 37 octal for output
instructions.

3.8 Increment/Decrement Statements - - 1 byte

These instructions are used to increment by one or decrement by one any of the registers r. In what follows, r can
represent B, C, D, E, H or L. Increment and decrement operations affect the accumulator conditions zero, parity and
sign, but not carry. '

3.8.1 (Label) | INr [I (Comment)
' Add 1tor.
3.8.2 (Label) | DCr | | (Comment)
Subtract 1 from r
Example: . .
Label | INB | [(Comment)
Add 1 to B.
3.9 Halt Statement - - 1 byte

The halt instruction is used to stop the 8008 processor.

{Label) I _HLT T I (Comment)

3.10 Restart Statement - - 1 byte - ,

The restart instruction is used in conjunction with an interrupt signal to start the 8008 after a halt. The program counter
is set to a starting address equal to the operand multiplied by octal 10. A start operand is required which may have a
value from 0 to 7.

(Label) | RST | start | {(Comment)

3.11 Load Address Statement - - 4 bytes

This instruction is used to load H and L with a memory address and is simply an assembly language convention equivalent
to the two separate instructions LHI and LLI. An operand is required.

(Label) | SHL [address | {Comment)

4.0 PSEUDO INSTRUCTIONS

The purpose of pseudo instructions is to direct the Assembler, to define constants used by the object code, and define
values required by the Assembler. The following is a list of pseudo operations.

ASB Define paper tape output

ORG Define origin of program

EQU Define symbol value for Assembler
DEF Define constants for object code
DAD Define two byte address

77

4.1 Program Origin

The program origin can be defined by the user by an ORG pseudo operation. 1f no ORG statement is defined, the origin
is assumed to be zero. The origin can be redefined whenever necessary by including an ORG statement prior to the
section of code which starts at a specific program location.

The format of the ORG statement is:

[ORG | n | (Comment)

The operand n can be a number symbol, or an expression. If asymbol is used it must be predefined in the code.
Example of the ORG statement:

LAB ‘ Instruction starts in LOC 0000
LCD

ORG 1000B .
SAM LCD Instruction stored in LOC 1000

ORG 5000B
SALLY DEF 1,4, 7778, 70008 Data starts in LOC 5000
END

4.2 Equate Symbol

A symbol can be given a value other than the one normally assigned by the program location counter by using the EQU
pseudo operation. The symbol contained in the location field is given the value defined by the operand field.

The EQU statement does not produce a machine instruction or data word in the object code. |t merely assigns a value to
a symbol used in the source code.

Format of the EQU statement:

Symbol | EQU | operand | (Comment)

The operand may contain a numeric, a symbol, or an expression. Symbols which appear in the operand must be pre-
viously defined in the source code.

All fields are required except for the comment field, which is always optional.
Example of EQU statements:

TELET EQU 4
MAGT2 EQU 2
MAGT6 EQU 6
SAM EQU 1000B

INP TELET
LAB

CALL SAM
OUT MAGT2

4.3 Define Constant

Constant data values can be defined using the DEF pseudo statement. The data values are placed in sequential words in
the object code. If a symbol appears in the location field, it is associated with the first data word. That symbol can be
then used to reference the defined data.

Format of the DEF statement:

(Symbol)l DEF | datalist | (Comment)

The data list consists of one or more terms separated by'commas. There can be no embedded blanks in the data list
{except in a literal character string). The:terms can be octal or decimal numerics, literal character strings, symbols or
expressions.

78

A literal character string is enclosed in single quote marks (°). It can contain any ASCII characters, including blanks.
The internal BCD 8 bit codes corresponding to the given characters are stored in sequential bytes, one character per
byte.)

Octal and decimal numbers are stored one per byte in binary.
Octal numbers must be in the range 0 to 377B:

Decimal numbers must be in the range 0 to 255.

Two's complements are stored for minus numbers.

The program counter is incremented by one for each numeric term in the data string and by n for each literal string of n
characters.

Examples of data strings:

MESS1 DEF ‘SYMBOL TABLE OVERFLOWED’, Y-2, SUB2

MESS2 DEF ‘LITERAL STRING 1°, ‘LITERAL STRING 2’

MASKS DEF 778, 1778, 130B, LABEL 3, X + 3 Required masks
DEF 24, 133, 37B, 99, 232, ‘ERROR’ Required constants

4.4 Define Address

Program addresses, defined by alphabetic symbols, are stored as data by the DAD pseudo operation. The 16 bit address
is stored in sequential bytes; the first byte contains the 8 least significant bits and the second byte contains the 8 most
significant bit of the address.

Format of the DAD statement:

(Symbol) | DAD [datalist | {Comment)

The data list consists of one or more symbols separated by commas. There can be no embedded blanks in the data list.
The program counter is incremented by two for each symbol in"the data list.
Examples of DAD statements:

LINK - DAD SUB1, SUB2, SUB3
ERRSUB DAD ERRORX Print Errors
DAD SOCTAL, SPECM, SYMBOL, SEXPR, SLIT

45 End of Source

The end of the source code statements is defined with the END pseudo statement. The END operation code generates
no object code; it merely signals to the Assembler that there is no more source code.

Format of the END statement:

[EnD | | (Comment)

Note that no symbol is allowed in the location field of the END statement.

4 6 Assembler Paper Tape Output

The format of the paper tape output is defined by the ASB pseudo output. The operand specifies the format with the
following mnemonic codes.

F1601— 1601 format described in Intel Data Catalog.
F8008— F8008 Format (This logic is not included in the Assembler but the position of the code is described
in the PAPER Subroutine.)

The entire 80 character statement is written on the paper tape file as the first record. 1t is used to describe the contents.
of the paper tape. If no ASB pseudo operation appears, then format F1601 is assumed and a string of asterisks appear
on the paper tape file as the first record. '

Examples of ASB statements:

ASB F1601 Keyboard Code
ASB F1601 Data Transmission Code

5.0 ERRORS

Various types of errors can be detected by the Assembler. Message is emitted following the statement which contains
the efror. The-error messages and their meanings follow.

$ERROR$ ILLEGAL CHARACTER X .

The special character X (such as $, /.,) appears in the statement (not in the comment) or perhaps a required
operand field is missing.

SERROR$ MULTIPLY DEFINED SYMBOL XXXXXX

The symbol XXXXXX has been defined more than one time.

$ERROR$ UNDEFINED SYMBOL XXXXXX
The symbol XXXXXX has been used but never defined.

$ERRORS$ ILLEGAL NUMERIC CONTAINS CHARACTER X
An octal number includes an illegal digit (such as 8 or 9) or the numeric contains non numeric characters,

SERRORS$ ILLEGAL OPCODE XXX
The operation code XXX is not one of the acceptable mnemonics.

$ERROR$ MISSING OPERAND FIELD
No operand found for an operation code which requires one.

$ERRORS$ ILLEGAL VALUE = YYYYYY, MAXIMUM = XXXXXX
The numeric value of an octal or decimal number of an expression has overflowed its limit.

XXXXXX= 377B for 1 byte operands or data word
XXXXXX= 377778 for 2 byte operands

XAXXXX= 37B for output device numbers
XXXXXX= 7 for input device numbers
YYYYYY= given operand value

$ERRORS$ ILLEGAL SYMBOL
A location field contains a symbol that has more than six characters or that does not start with an alphabetic.

$ERROR$ MISSING LABEL
The label, which is required by the EQU pseudo operation, is missing.

$ERROR$ SYMBOL TABLE OVERFLOW, MAXIMUM = XXXXXX
Too many symbols in source program to fit into allocated symbol table.

$ERRORS$ LINE OVERFLOW, MAXIMUM = XXXX
Input line exceeds 48 characters; or missing carriage return,

$ERROR$ ERRONEOUS LABEL .
Opcodes END and ORG may not have a label.

$ERRORS ILLEGAL ORIGIN XXXXXX is less than XXXXXX
Value of new origin is less than current program count.

$ERRORS$ ILLEGAL OPERAND
DAD opcode requires symbolic operand

6.0 SYSTEM OPERATION

Source programs may be entered directly from the terminal keyboard or through a paper tape reader into a file. The user
can then edit the source program by calling the EDITOR routine. After editing, the user calls and runs the ASSEMBLER
routine, '

6.1 Output Control
At the conclusion of the Assembly process, the user can request the following output:

Local binary object tape
Remote binary object tape
Local program listing

Remote program listing

Local source statement listing
Remote source statement listing
Local symbol table listing
Remote symbol table listing
Remote card object deck

6.2 Binary Output

The formatted object code is punched out on request in sequence on 8 level paper tape.
6.3 Program Listing

The printout of the program listing will have the following format:

Columns ‘
1-5 Location (octal) of first byte of object code
6-7 Blank

8-10 First byte object code word in octal
1 Blank

12-14 Second byte object code word in octal
15 Blank

16-18 Third byte object code word in octal
19 Blank

20-22 Fourth byte object code word in octal
23-24 Blank

25-72 First 48 characters of source statement

B. Tymshare User’s Guide for Assembly

This section contains the operating procedure for the Tymshare PDP-10 version of the assembler, Information on
manipulation and editing of files is contained in the TYMEX and EDITOR reference manuals distributed by Tymshare.

The assembly language is described in Section A of this appendix. In addition to the standard features, the Tymshare
PDP-10 version of the assembler permits the use of tabs in place of blanks.(outside ASCI| string constants), simplifying
formatting of the assembly listings. (*“Tabs” are set in every eighth column in the PDP-10 system.)

To use the assembler, the user must create an assembly language source file on the disk. This file may not contain line
numbers, The file name consists of one to five characters with the file name extension “.DAT".

~ To start the assembly, type:
RUN (UPL) ASM8

in either the TYMEX or PDP-10 mode. The assembler will request the input (source) file name. The user replies by
 typing the file name exclusive of the .DAT file name extension. For example, if the source file is named SRC.DAT, the

reply is SRCQ

When the assembly is complete, the assembler will type a stop message and return to the monitor. Output files from the
assembler may then be listed or punched on the user’s terminal. :

Three output files are produced by the assembler:

LOGOU.DAT contains the assembly listing
LOGBI.DAT contains the 1601/1701 object tape
LOGMI.DAT contains intermediate pass code (this file may be deleted to reduce storage charges)

The oLntput from the assembler is described in Section A of this appendix. Section F contains an example of the assembly
language listing.

C. General Electric User’s Guide for Assembly

This section contains the operating procedure for the General Electric version of the assembler. Information on manipu-
lation and editing of files is contained in the COMMAND SYSTEM and EDITING COMMANDS reference manuals dis-
tributed by General Electric. The assembly language is described in Section A of this appendix.

To use the assembler, the user must create an assembly language source file on the disk. This file may not contain line
numbers. The file name consists of one to eight characters. Output files for the assembler must already exist or be

created before starting the assembler. The files referenced are LOGOUT, LOGMID, and LOGBIN. All of these files are
sequential ASCIIl. No password is permitted for any assembler file.

81

To start the assembler, type:
OLD ASM8 y

When the program prints “READY"’, type:
RUN y

The assembler will request the input file name. The user replies by typing the source file name of the file to be assembled.

When the assembly is complete, the assembler will type a stop message and return to: the monitor. Output files from the
assembler may then be listed or punched on the user’s terminal.

Three output files are produced by the assembler:

LOGOUT contains the assembly listing
LOGBIN contains the object tape
LOGMID contains intermediate pass code (this file may be deleted to reduce storage charges)

The output from the assembler is described in Section A of this appendix. Section D contains an example of the
assembly language listing (leading zeroes are suppressed by the General Electric version of the assembler).

D. Sample Program Assembly

VALY

=T 3SITTSITSSZTSSSSSCSs3

1t MUL 22000

21 MULPOZ 20013

31 MULBOL 30025

41 UMUL 9B236

S: UMULS 00040

61 MULRO 00042

71 UMUL@L 20054

8: DIV 28061

9: DIVaen peR76

10: GlVeo1 @011

11t DIVOe2 20140

123 UDIVS p@144

13: UDIV BPR146

14: UDIVES ©8151

15: UDIVP1 €0173

163 DNEG ~ e@284
::=:==::=:::==::::==::===:::::s:::::::::::i:::::
Loc OBJECT CODE SOURCE STATEMENTS
IE Y CICI RS SIS IS 2 IS RS ITRIIISZISSIZIRT ST ST I 3T
20800 ® MU - SIGNED INTEGER MULTIPLY
#0229 ® CALL: ARGUMENTS IN C 8 D
[2TY] ® EXITt HI ORDER PRODUCT IN B
00200 . LO ORDER PRODUCT IN C
92000 ® REGS! A,8,C.0/E, AND FLAGS ALTERED
20900 * TIMES 1074 TO 1498 MICROSECONDS (889Y)
208008 250 MUL XRA 1) COUNT AND NEGATE
80021 340 LEA NEGATIVE ARGUMENTS
2p@eR2 222 SUC.
00083 160 P13 200 J18 MULBBO
82206 159 813 289 JT2 MUL 602
20011 320 LCA
20012 d4p INE
80913 258 MULOBB XRA
#8014 223 SUD
80815 160 @25 200 JTS MULBB1
BR320 150 925 200 JT2 MULED1
00223 338 LDA
28024 B4R INE
#8825 304 MULBB1 LAE 2) MOVE COUNT MOD 2
20026 232 RAR TO CARRY
20227 106 836 @20 CAL UMUL 3) CALL 'UNSIGNED
20032 142 204 000 c1C DNEG MULTIPLY!, IF CARRY
52835 087 RET NEGATE RESULT? EXIT
¥0 0835 * UMUL = UNSIGNED INTEGER MULTIPLY
20036 @ CALL?! ARGUMENTS IN C &8 D
2e236 # EX1T$ HI ORDER PRODUCT IN B
0oU36 . LO ORDER PRODUCT IN C
20036 » REGS: A,B,BL, AND FLAGS EXCEPT CARRY ALTERED
280836 » TIME! 899 TO 1138 MICROSECONDS (88v8)
82036 ® UMULS - MULTI-PRECISION MULTIPLY ENTRY
208036 . (B&C 13 C * D + B)
¢pB36 B16 8PP UMUuL L8] [}
00040 @46 211 UMULS LEI 9
72242 302 UMULBE LAC 1) ROTATE CARRY INTO
20043 @32 RAR IER

PRODUCT = MULTIPL

82

- 7

aPR 44 328 LCA SHARED REGISTER.

00345 241 OCE FORCING NEXT LS8
BUB46 353 RTZ . TO CARRY

272047 301 LAB 2) EXIT IF 8TH ITERATION
80952 109 254 004 JFC UMUL@L 33 IF STEP (1) SET CARRY
20853 283 ADD ADD MULTIPLICAND TO
20654 832 UMULB1 RAR PRODUCT

20055 310 LBA 4) ROTATE MOST SIGNIFICA

20056 104 @42 009 JMP UMUL 20 PRODUCT AND GO TO (1)

20061 & DIV - SIGNED INTEGER DIVIDE

20061 @ CALL! HI ORDER DIVIDEND IN B

22061 . LO ORDER DIVIDENDG IN C .

22061 . DIVISOR IN D .

L1138 + EXIT! QUOTIENT IN C

22061 - REMAINDER IN B

29061 * OVERFLOW FLAG IN CARRY (Cy=@ad>yv)

20061 * REGS: A,B,C,D.E» AND FLAGS ARE ALTERED

P0B61 * TIME: 922 TO 1416 MICROSECONDS (59#8)

20261 250 DIV XR A 1) COUNT AND NEGATE : .
22062 340 LEA NEGATIVE ARGUMENTS .
00063 221 SUB

00264 160 076 000 JTS D1 ve2e

28067 150 076 222 JTZ DIvoRR

n8272 240 INE

20273 106 204 200 .CAL DNEG

BOR76 250 DIVEB? XRA

20077 223 SuD

00160 165 110 002 JTs DIVeR1

28123 150 119 000 JTZ DIVEBL

p0106 330 LDA

0107 240 INE

P9118 304 DIVBBL LAE 2) MOVE COUNT MOD 2

BB111 232 RAR TO CARRY

Pe112 186 146 080 . CAL uplv 3) CALL 'uDIV'

20115 @32 . RAR EXIT WITH CARY

pe116 348 LEA = @ IF OVERFLOW

00117 250 XRA GCCURRED

20120 262 ORC

20121 863 RTS

29122 301 LAB

90123 223 . SuD

29124 003 RFC

00125 250 . XR A 4) IF CARRY WAS .

0U126 264 . ORE SET IN STEP (2)

92127 120 140 090 JFS D1veg2 NEGATE QUOTIENT

20132 259 XRA AND REMAINDER

28133 222 suc

08134 320 LCA

20135 250 XRA

208136 221 sus

20137 310 LBA

22140 006 207 DIVBP2 LAl 2008 S) SET CARRY AND

00142 022 RAL EXIT

20143 087 RET

20144 & UDIV - UNSIGNED INTEGER DIVIDE

p2144 % CALL: HI ORDER DIVIDEND IN B (R
00144 * LO ORDER DIVIDEND IN C -
90144 . DIVISOR IN D

87144 ® EXIT: QUOTIENT IN C

08144 . “REMAINDER IN B

80144 . _NOTE: OVERFLOW IF B > D

80144 * REGS® A,B,C,E, AND FLAGS EXCEPT CARRY ALTERED

80144 » TIME: 724 TO 1298 MICROSECONDS (808}

p0144 » UDIVS - SINGLE PRECISION DIVIDEND ENTRY

P0La4 916 206 uwiIvs LB! 8 .

20146 P46 211 upl1v LEI 9

20150 301 LAB

80151 310 uplvee LBA .

B#B152 3p2 . LAC 1) ROTATE CARRY INTO ‘

80153 022 RAL DIVIDEND ~ WUOTIENT

#9154 320 , LCA SHARED REGISTER,

eg155 241 DCE ' FORCING NEXT MSB

30156 150 173 @p@. JTZ uplvel TO CARRY

p8161 361 LAB 2) ROTATE MSB INTO

20162 922 : RAL HI ORDER QUOIIEN] . . ;
22163 223 SuD 3) SUBTRACT DIVISORI IF AT
88164 190 151 290 JFC uo1Ives LESS THAN H1 ORDER QU »
P0167 203 ADD - Go TO (1)

pP170 104 151 200 JMP un1ves ELSE ADD IT BACK

20173 @22 UDIVA1 RAL AND GO TO (1)

20174 340 LEA 4) COMPLEMENT QUOTIENT

80175 206 377) LAl 3778 AND EXIT

00177 252 XRC

00200 320 LCA

ga281 324 LAE

22202 232° RAR

29203 P97 RET

20204 * DNEG = DOUBLE PRECISION NEGATE

20204 * CALL! Hl ORDER IN B

09204 . LO ORDER IN C

20204 s EXIT: HI ORDER IN B

20204 . LO ORDER IN C

90204 & REGS! 4,8,C» AND FLAGS ARE ALTERED ' o
08204 * TIME: 76 MICROSECONDS (8208) : :
20204 # NOTE! «32768 CANNOT BE NEGATED -
BB224 250 DNEG XRA

80205 222 suc .

20286 320 LCA

20207 206 B0 LAl [} !

80211 231 SB8

00212 310 LBA

00213 207 RET.

209214 END

APPENDIX I1l. MCS-8 SOFTWARE PACKAGE — SIMULATOR

A. Introduction
This Appendix describes the use of a FORTRAN IV program called INTERP/8. This program provides a software simu-
lation of the INTEL 8008 CPU, along with execution monitoring commands to aid program development for the MCS-8,

INTERP/8 accepts machine code produced by the INTEL 8008 Assembler, along with execution commands from a time-
sharing terminal, card reader, or disk file. The execution commands allow manipulation of the simulated MCS-8 memory
and the 8008 CPU registers. In addition, operand and instruction breakpoints may be set to stop execution at crucial
points in the program. Tracing features are also available which allow the CPU operation to be monitored. INTERP/8
provides symbolic reference to storage locations as well as numeric reference in various number bases. The command
language is described in the paragraphs which follow.

B. Basic Elements

All input to INTERP/8 is ““free form"”. Numbers, symbolic names, and special characters may be placed anywhere within
the input line (see margin commands in Section D). Comments may be interspersed in the input, but must be enclosed
within the bracketing symbols /* and */.

1. Numbers. Numeric input to INTERP/8 can be expressed in binary, octal, decimal or hexadecimal. The letters B, O,
Q, D, and H following the integer number indicates the base, as shown below:

Number Value
11011B 11011,
28D 2849
330 33g
33Q 33g
1CH 1Cqi6
28 2849

A decimal number is assumed if the base is omitted. Note that although O is allowed to indicate octal integers, Q is also
permitted to avoid confusion with the integer 0. Note that the leading digit of a hexadecimal number must be one of
the digits 0, 1, ..., 9. Thus, EF2,¢ must be expressed as 0EF2H.

On output, INTERP/8 indicates octal integers with Q and omits the D on decimal values. The base used on output de-
faults to decimal, but may be changed by the user. (See the BASE command in Section C;)

2. Symbolic Names.. Symbolic names are strings of contiguous alphabetic and numeric characters not exceeding 32
characters in length. The first character must be alphabetic. Valid symbolic names are:

SYMBOLICNAME

X3

G1G2G3

LONGSTRINGOFCHARACTERS
3. Special Characters. The special characters recognized by INTERP/8 are: $=./()+ —"'"*,. All other special charac-
ters are replaced by a blank.

C. INTERP/8 Commands
The commands available in INTERP/8 are summarized briefly below. Full details of each command are given in following
paragraphs.

Command Purpose

LOAD Causes symbol tables and code to be loaded into the simulated MCS-8 memory.
GO Starts execution of the loaded 8008 code.

INTER Simulates an 8008 interrupt.

TIME Displays time used in the 8008 simulation.

CYCLE Allows the simulated CPU to be stopped after a given number of cycles,

TRACE Enables tracing feature when particular portions of the program are executed.
REFER Causes the CPU simulation to stop when a particular storage location is referenced,
ALTER Causes the CPU simulation to stop when the contents of a particular memory location is altered.
CONV Displays the values of numbers converted to the various number bases,

DISPLAY Displays memory locations, CPU registers, symbolic locations, and 10 ports.

SET Allows the values of memory locations, CPU registers, and 10 ports to be altered.
BASE Allows the default number base used for output to be changed.

PUNCH Causes output of machine code in BPNF format.

END Terminates execution of an 8008 program.

84

The commands NOTRACE, NOREFER, and NOALTER.are also defined. These commands negate the effects of TRACE,
REFER, and ALTER, respectively. In all cases, the commands may be abbreviated (but not misspelled!). These abbre-
viations are indicated with the command description.

Commands are typed anywhere on the input line, with as many commands on a line as desired. The symbol **." must
follow each command.

‘The end of data for the execution of INTERP/8 is indicated by a “$EOF"’ starting in column 1 of the last card.

1. Range-Lists. Many of the INTERP/8 commands accept a “range-list”’ as an operand. Tracing, for example, can be
enabled for a specific range of addresses in the program. The range-list specifies a sequence of contiguous addresses in
memory, or a range of numeric values to which the command is applied. .

In its simplest form, a range-list is a number (binary, octal, decimal, or hexadecimal), or it may be a pair of numbers
separated by the symbol “TO:"" Thus, valid range-lists are: '

10 : ‘

63Q

50 TO 63Q

OFH TO 11001111B.

A range-list, however, can also reference a symbolic location, with or without a numeric displacement from the location.
Suppose, for example, the symbols START and INCR appear at locations 10 and 32 in the source program. Valid range-
lists involving these symbols are:

START (Same as 10)
START+6 (Same as 16)
START-101B (Same as b)
10 TO INCR (Same as 10 TO 32)
START+3 TO ,

INCR-2 (Same as 13 TO 30)

The range-list may also contain a reference to the current value of the program counter of the simulated 8008 CPU. The
symbol “**"* represents this value. If the value of the program counter is 16, for example, the following is a valid range-
list: : '
STARTTO * {Same as 10 TO 16)

The exact use of the range-list is illustrated with the individual commands.

2. Notation. The following notation is used to describe the INTERP/8 command structure. Elements enclosed within
braces { and } are optional, while elements enclosed within the brackets [and] are alternatives, where at least one
alternative must be present. ,

A range-list, for example, can be specified as:
range-element { TO range-element }
where a range-element is defined as:

number + number
[symbolic-name {[— number] }]

*
As mentioned previously, command names can always be abbreviated. The required portion of the command is under-
lined in the command description, The symbol ““TO" in the range list can be abbreviated as “’T.””- Thus, the range
list above can be redefined as:

range-element {TO range—element}
Finally, the ellipses * '* indicate a list of indefinite length.

The commands are given alphabetically in the following paragraphs starting with a prototype statement using the above
notation. A brief description is then given, followed by examples.

3.|:AI=TER range list { range-list, range-list, . . . , range-list } .
NOALTER
The ALTER command is an operand breakpoint command which causes the execution of the 8008 CPU to stop when-
ever an attempt is made by the CPU to store values into a memory location specified in the range-list. When the break-
point is.encountered, INTERP/8 prints ALTER x, where x is the value of the program counter. Execution can be
started again with the GO, RUN, or INTER commands. Examples of the command are:

ALTER O

ALTEROTO 10

ALTER 10 TINCR.

ALTER START +2 TO INCR — 0AH

AL 5, START, X2,7T 10, INCR-3

BIN

oCT
4. BASE4|DEC

HEX
This command causes the INTERP/8 system to use the number base specified by the second argument when printing
results. This command has no effect on the number bases which are acceptable in the input.

5. CONV range-list{ ,range-list, range-list, . . . , range—list} .
The conversion command prints the values of the numbers specified in the range-list in binary, octal, decimal, and hexa-
decimal forms. Examples are:

CONV 23

CONV*,

CON 10 TO START +3

CO 10, 30, 28Q, 1101B T 33H

6. CYCLE Number
The cycle command causes a breakpoint to occur when the CPU cycle count reaches its current value plus the number
specified in the cygle command (see the GO command, also).

7. DISPLAY display element { , display-element, . . ., display-element} .

The display command causes the values of memory locations, symbolic names, CPU registers, and 10 ports to be printed.
The output form of these values is determined by the current default base (see the BASE command). The width of the
output line determines the output formatting (see the $WIDTH command of Section D).

In its simplest form, a display-element can be one of the 8008 CPU registers:

CY (carry) D PS (entire program stack)
P4 (zero) E PSO
S (sign) H PS 1 (program stack elements)
P (parity) L -
A HL (H&L) PS7
B SP (program stack pointer)
Cc PC (program counter)
In this case, valid DISPLAY commands are:
DISPLAY CY
DISPCY, Z, H, HL.
DP,A,PSO.

A display-element can also be the symbol CPU, in which case all registers are displayed.

The values latched into the 10 ports can be displayed by using a display element of the form:
PORT range-list
The ports specified in the range-list {between 0 and 31) are printed. Examples are:
DISPLAY PORT 0
DI PO 3,PO 5, PORT5 TO 8, PO 1001B
The contents of the symbol table can be examined by using a display-element of the form:
»*
SYMBOLS symbolic-name
: number
The form
DISPLAY SYMBOLS.
prints the entire symbol table, while the form
DISPLAY SYMBOLS number.
responds with the symbolic name {* a numeric displacement) which is closest to the address specified by the number.
Examples are:
DISPSY.
DI SY OFFH, SY 32

If the symbo! ***"* is used in the command, the symbolic location closest to the current program counter is printed.

The values contained in memory locations can also be displayed. In this case, the display-element takes the form
CODE
BIN
MEMORY range-list OoCT
DEC
HEX
86

The range of elements printed is specified in the range-list, while the form of the elements in the display is controlled by -
the command CODE (decoded instructions) or one of the number bases. If the form is omitted, the default number base
is used in the display (see the BASE command). Valid DISPLAY commands are:

DISPLAY MEMORY 20. ’

DISP MEM 20 TO 30H.

DI M START T START+5.

DI MEM 0 TO 30 CODE.

DMOT30D, M 40 TO INCR+10 OCT.
The various display-elements may be mixed in a single DISPLAY command.

8. END.

The END command reinitializes the INTERP/8 system. |f another program is subsequently loaded into memory, all
break and trace points are reset. Otherwise, the currently loaded program may be rerun with all break and trace
points remaining.

.60 {[}ma].

The GO command causes the execut|on of the loaded program to begin. In the case that a break point was previously

encountered the execution continues through the breakpoint. If the GO is followed by a *, the breakpoint addresses

are printed as they are encountered, but the 8008 CPU does not halt until completion. If the GO is followed by a number,

the effect is exactly the same as o
CYCLE number. GO.

10. INTER {number { number { number }} }
The INTER command simulates the 8008 interrupt system. The numbers whlch follow the INTER command correspond
to an instruction and its operands which will be “jammed"’ into the instruction register. If no instructions follow the
INTER command, the instructions from the last interrupt are used. 1f no previous command has been specified, a LAA
(NOP) instruction is used. The INTER command causes the simulated execution to continue. Examples are:

INTER.

INT.

INTER 00010101B (this is an RST 20Q).

11. LOAD number {number}
The LOAD command reads the symbol table and 8008 machine code into the simulated memory. The form

LOAD number. :
reads only the machine code from the file specified by number (see file numbering in Section D). The form

LOAD number number.
reads the symbol table from the file specified by the first:number and the machine code from the second file. The symbol
table is in the form produced by the 8008 assembler (i.e., the first part of the listing file), and the machine code is in
“BNPF"’ format (see PROM programming specifications in the INTEL Data Catalog). This format is also produced by
the INTEL 8008 assembler. The end of the code file is indicated by a “$" appearing in the input. INTERP/8 responds
to this command by printing the number of locations used by the program. Examples are:

LOAD 1.

LOAD 6 7.
12. [%:EEF::ER] range-list {, range-list, . . . , range-list } .
This command is similar to the ALTER command except that a breakpoint occurs whenever any reference to the memory
location takes place. Thus, an instruction fetch, an operand fetch, or an operand store all cause a breakpoint when this
command is used. Examples are:

REFER 10.

RE 10 TO 30Q.

REF 5, 7, START TO START + 5, 71Q.

NOREF 0 TO 10.

13. RUN.
The RUN command has exactly the same effect as the command GO *,

14, SET. set-element { set-element, set—element}
The SET command allows memory Iocatlons CPU registers, and 10 ports to be set to specific values. The reglster names
described under the DISPLAY command can be used in the set-element:

R number
register = .

87

o

The value of the specified register is set to the number following the or to the value of the program counter if ***"*

is specified. Thus, valid commands are:

SETZ=0
SEA=3,B=77Q, PS 0=0EEH.
SHL =28.

A set-element can also be the symbol ““CPU" in which case all registers are set to zero, including the simulated 8008 timer.
Examples are:

SET CPU.

SCP,PC = 25,

The values of 10 ports can also be set by using a set-element of the form
PORT range-list = number{ number number ... number}
In this case, the 10 ports specified in the range-list are set to the list of numbers following the ““=". If more ports are
spevified than there are numbers in the list, the numbers are reused starting at the beginning. Examples are:
SET PORT 5= 10.
SETPO6TO8=123
SPO10TO 13=77Q2.
SPO 8=10B, PO 12=13H, PO 30Q = 16.
The values contained in memory locations can be altered directly by using a set element of the form
MEMORY range-list = number { number ... number
As in the case of 10 ports, the memory locations are filled from the list to the right of the equal sign, with numbers
being reused if the list is exhausted. Examples of this command are: '
SET MEMORY 0= 0.
SMEMOTO50=0.
The SET command does not change break or trace points which are in effect.

SMSTART TO START+5=11111000B 22Q 33H.
As in the DISPLAY command, set-elements of each type may be intermixed:
SET CP, CY=0, M5 = 10, PO 6=12, PC = 30.

15. TIME.
The TIME command causes INTERP/8 to print the number of states used by the simulated 8008 CPU since the last
LOAD, END, or SET CPU command.

16. | TRACE

NOTRACE
The TRACE command causes the INTERP/8 system to print the CPU register contents and the decoded instruction
whenever an instruction is fetched from the memory region specified in the range-list. The form of the elements in the
trace is defined by the current default base (see BASE command). The trace shows the register contents and operation
code before the instruction is executed. The result of the operation is found in the next line of the trace, or through
the DISPLAY CPU command.

A heading showing the various columns in the trace is printed after each tenth line of the trace. Examples of the TRACE

range—list{ , range-list, . . ., range—list} .

- command are:

TRACE 0 TO 100.

TR START TO START + 111B.

NOTRACE START, INCR, FOUND TO FOUND+3, 7Q.
17. PUNCH range list { number }
The PUNCH command causes the specified region of the simulated memory to be output in the BPNF format. If the
number is present, the code is written into the corresponding INTERP/8 output file; otherwise the currently defined
file is used. Examples are:

PUNCH 0 TO OFFH.

PU START TO FINISH.

D. 1/O Formatting Commands

INTERP/8 has a generalized 1/O formatting interface which is somewhat dependent upon the installation. In general,
a number of files are defined by file numbers (not necessarily corresponding externally to FORTRAN unit numbers).
These file numbers correspond to devices as follows:

INPUT TYMSHARE GE
INTERP/8 No. Device PDP-10 Device File Name File Name
' 1 User’s Console TTYS5 '
2 Card Reader CDR2
3 Paper Tape PAP 6
4 Magnetic Tape MAG 16
5 Magnetic Tape DEC9
6 Disk DISK 20 FOR20.DAT LOGOUT
7 Disk DISK 21 FOR21.DAT LOGBIN
OUTPUT
INTERP/8 No. Device PDP-10 Device File Name
1 User’s Console TTYS
2 Printer PTR3
3 Paper Tape - PAP 7
4 Magnetic Tape MAG 17
5 Magnetic Tape DEC 10
6 Disk DISK 22 FOR22.DAT Disk ¢1.
7 Disk DISK 23 FOR23.DAT Disk ¢2

1/0 functions are controlled through *“$"” commands which may be interspersed throughout the input.

Any input line with a ““$” in column one, followed by a non-blank character is considered an 1/0 command. The card i is
then scanned for an “="" followed by a decimal integer. The character following the ““$'* and the mteger value affect the
1/0 formatting functions as follows:

Control Meaning ‘ Initial Value
$COUNT =n Start the output line count at the value n. T
$DELETE =n Delete all characters after column n of the output 120
$EOF =1 End-of-file on this device 0
$INPUT =n Read subsequen input from file number n 1
$LEFT=n Ignore character positions 1 through n-1 of the input. 1
$OUTPUT =n Write subsequent output to file number n. 1
$PRINT =n Controls listing of the output. If n =0, input lines are not printed; 0
otherwise input is. echoed.
$RIGHT =n Ignore all character positions beyond column n of the input. 80
$TERMINAL =n INTERP/8 assumes conversational usage if n = 1; otherwise batch 1
processing is assumed.
SWIDTH =n This command sets the width of the output line. Note that this affects 72

the format of the DISPLAY MEMORY command.
The default values shown above assume conversational use with a teletype or similar device. The defaults can easily be
changed by recompiling the INTERP/8 program.

In the case of controls which take on only 0 or 1 values (e.g., $PRINT, $TERMINAL, and $EOF), the equal sign and
decimal number may be omitted. The value of the control is complemented in this case.

E. Error Messages

£ R R 0 R ¥ E § S a G E S

EXECUTION ERRORS

1 PROGRAM COUNTER STACK OVERFLOW

2 PROGRAM COUNTER STACK UNDERFLOW

3 PROGRAM COUNTER QUTSIDE SIHULATED MCS-~8 MEMORY
4 MEMORY REFERENCE

COMMAND MQDE ERRORS

REFERENCE OUTSIDE SIMULATED MCS-8 MEMORY

INSUFFICIENT SPACE REMAINING IN SIMULATED MCS-8 MEMORY
END-OF=FILE ENCOUNTERED BEFORE EXPECTED

INPUT FILE NUMBER STACK OVERFLOW (MAX 7 INDIRECT REFERENCES)
UNUSED

Vs

18 10 FORMAT COMMAND ERROR (TOGGLE HAS VALUE OTHER THAN 8 OR 1)
11 UNUSED .
13 INVALID SEARCH PARAMETER IN DISPLAY SYMBOL COMMAND (MUST BE
SYMBOLIC NAME, ADORESS, OR #)
14 DISPLAY SYMBOLS COMMAND INVALID SINCE NO SYMBOL TABLE EXISTS
15 UNUSED
16 UNRECOGNIZED COMMAND OR INVALID FORMAT IN COMMAND MODE
17 MISSING . OR EXTRA CHARACTERS FOLLOWING COMMAND
18 LOWER BOUND EXCEEDS UPPER BOUND OR 1S LESS THAN ZERO
IN RANGE LIST
19 THE FORMAT OF THE SYMBOL TABLE 1S INVALID (MUST BE A
SEQUENCE OF THE FORM N SY AD, WHERE N IS AN INTEGER,
SY IS THE SYMBOLIC NAME, AND AD 1S THE ADDRESS (IN OCTAL))
20 INVALID CHARACTER IN MACHINE CODE FILE.
21 UNUSED

F. Examples

22 UNRECOGNIZED DISPLAY ELEMENT OR INVALID DISPLAY FORMAT

23 SYMBOLIC NAME NOT FOUND IN SYMBOL TABLE

24 INVALID ADDRESS OR NO SYMBOL TABLE PRESENT [N DISPLAY SYMBOL
COMMAND

25 QUTPYUT DEVICE WIDTH TOO NARROW FOR DISPLAY MEMORY COMMAND
(USE SWIDTH = N 10 FORMAT COMMAND TO INCREASE WIDTH)

26 INVALID RADIX IN MEMORY DISPLAY COMMAND (MUST BE CODE, BIN,
oCT, OR DEC)

27 UNRECOGNIZEN SET ELEMENT [N SET COMMAND

28 MISSING SET LIST IN SET COMMAND

29 INVALID SET LIST OR SET VALUE IN SET COMMAND

3e MISSING OR MISPLACED = IN SET COMMAND

31 MISSING PROGRAM STACK ELEMENT NUMBER IN SET PS N
COMMAND -

32 INVALID INTERRUPT CODE SPECIFICATION (EITHER MORE THAN THREE
BYTES, OR ELEMENT EXCEEDS 255)

Two sample INTERP/8 executions are given in this section which illustrate the commands available with the INTERP/8
system. The first example illustrates the basic commands. A simple program is constructed in the simulated MCS-8
memory. This program is then executed, showing the use of break and trace points. The second execution shows the

use of symbol tables and 8008 code which is produced by the INTEL 8008 assembler. In each case, the actual commands
which initiate the INTERP/8 system may vary from installation to installation.

<R INTB

BEGIN
/% TH1S 1S AM EXAMPLE OF THE USE OF THE INTERP/E SYSTEN.

IN THIS EXAMPLE, TEE BASIC CCMMANDS WILL BE DEMCRSTRATEL
OND A SIMFLE PRCGRANM WILL BE CCNSTRUCTED aNC EXECUTED */

/% THE NUMBER CONVERSION CUMMANL 1S USED FIRST »/

CCNV 10.
tg1eB 120 19 AH
CON 12Q.
18068 1860 8 8K
CCN 3 TO 8.

11B 3@ 3 JH
180B 4C 4 4H
161B S@ 5 SH
116B 60 & 6H
111B 7&¢ 7 7H
1egeB 10Q 6 8K

/% NEXT, THE VAR10US DISPLAY AND SET COEMAKDS ARE DEMCNSTRATEL */

_DISPLAY CPU.

CYISP A B c D E H L HL SP Pse
*0000*000%R00 «02@»30B*PAC+A0O+000*B0ROL*0BB +030CA
CISP A,D,HL.

A=0

D=6

HL = 0

DIS PORT 4, PS @, MEM 5.

Pasg
PS® = 8
/% MEMORY LOCATION S WAS NOT DISPLAYED SINCE NO PRCGRAM HAS BEEN

LOADED */

SET H = S, L=12Q. DI1SP CPU.

SET OK
CYZSP A B C D E H L HL SP PSe
$pP0 0OC 0GP0 GBC 080 G0V+P0S*008+g1288 000 20000

/% NOTE THAT THE ELEMENTS WHICh HAVE CHANGED SINCE THE LAST LISPLAY

ARE PRECEDED BY AN ASTERISK %/
SET HL = QEEFH. DIS CP.

SET OK

CYzsp A B C D E H L HL SP pPse
0000 PPP 00O PGP 000 POI*B14+239%03823 000 #2000
CONV 93823

1118111011118 73570 3823 EEFK
/% NOW CHANGE THE DEFAULT NUMBER BASE TO HEXADECIMAL =*/

BASE HEX. DISP CPU.

HEX BASE 0K

CYZSP A B c b E H L HL SP PS8
0068 @0H 0@H BEH @PH @@H OEH EFH GEEFK 00N @G00€H
/% THEN CHANGE BASE TO OCTAL »/

BASE 0C. DI CP.

OCT BASE OK
CYZSP A B c D E H L HL SP PS@
0000 006Q PEGQ 0@8Q P@GQ G0VQ B16Q 3570 873570 ©VEQ 00800Q

/% MNOW PLACE A SINPLE PROGRAM INTO MEMORY STARTING AT LOCATION 10.
THIS PROGRAM VILL ALTER THE VALUE OF MEMCRY CELL 2£@ BY ADDING 1
T0 THE CURRENT VAUNU\LUE OF THE CELL. IN SYMBOLIC FORM, TFE PRO-
GRAM IS AS FOLLOWS... LHl ¢, LLI 208, LbM, INB, LMB, HLT.

THE LOAD OPERATION BELOW 1S A *DUMMY® OPERATICN SO THAT MIMCRY IS
INITIALIZED PROPERLY., %/

LOAD 1.

$

@a LOAD OK
DISPLAY MEMORY 1€ TO 20.

820120 PPOC 0000 0000 GOVQ GOGQ COOQ GG 288Q 020Q G20Q °oeQ
BASE DEC.

DEC BASE OK

SET MEM 1@ TO 26 = 001611108 @ /» THIS 1S LHI @ */
281101188 238 /=* LL1 200 %/

110@1111B /% LBM +/ GB@OI@8E3 /* INB »/

111110818 /= LMB %/ 0 /% HLT */

SET OK
DI ME 1@ TO 28.

00813 046 000 054 200 207 008 249 908 046 088 654
DI M 1@ TO 20 CODE. :

20018 LHI,@0H LLI,C8H LBM INB LMB HLT LH1,00H LLI
/% NOTE THAT THE *,* SEPARATES ELEMINTS WHICH ARE PART OF THE
SAME INSTRUCTION (THE SECON D AND THIRD BYTES ARE IN HEX) */
CONV BCBH.

1108108008 310Q 2086 C8H

/%« WE CAN NOW EXECUTE TH E PROGRAM BY SETTING THE PROGRAM CCUKNTER
TO LOCATION 10 =/
SET PC=]@. DI CP.

SET 0K
cYzsP a B < D E H L KL SP PS8
0000 200 SO0 960 000 200 G614 239 03823 BI6+I00I6

SE HL=8.
SET OK
GO.

HLT CYCLE 56
DI CPU.

CYZSP A B 4 D E H L HL SP Ps@
0000 PPR*0P! 000 000 COC+=GPO*200xD820C GOO*30017
DI MEM 200.

0g290 @01 -
/* MEMORY LOCATION 20€6 HAS BEEN INCREMNTED =-- NOV TURN ON THE

TRACE AND EXECUTE THE PROGRAM AGAIN =/
TRACE @ TO 188. GO.

TRACE 0K
8960 28T 001 000 30 209 300 200 80200 902 28017
HLT
HLT CYCLE 6@
/% CPU MUST FIRST BE INITIALIZED T0 ZERO */ SET CPU. GO.

SET 0K
3000 GN0+000 000 00D 090 000»0G0*20000 PGQ*xP0008
HLT
HLT CYCLE 24
bl CPU,

CYZSP A . B C D E H L HL SP Ps@
S000 030 002 B0 0P OO OPP 908 00800 000 BOVCO
/% FORGOT TO SET PC = 1B, TR\ AGAIN ®/ SET CPU, PC=18. GO.

SET OK o

G080 808 008 060 000 200 800 000 60000 690%02R1Q
LK1 @

8008 000 060 800 000 (GO 009 O0P BOEOD VBV*00012
LLl 280

8000 000 282 000 000 €00 980+280»0] dala
LBM

0400 SOOx001 000 000 000 B0 200 00200 PE9*8001S
N8 .

8000 002+802 SO 090 €60 060 200 00200 0I0+PB016
LMB

G800 000 002 200 000 POE 200 263 60203 OCHO=OER17

HLT

HLT CYCLE 4@

/% NOW TRY THE SAME EXECUTION WITH THE TRACE ENABLED OVER ONLY

PART OF THE PROGRAM »/
NOTRACE @ TO 188+ TRACE 12 TO J4, 17.

TRACE 0K
TRACE OK .
SET CPU, PC=168. GO.

SET OK
9000 (80%300 000 000 800 000+200*BC002Q G2a+00212
LLl 200
2000 00C 000 000 20C 0PC DOO+200*PR200 VOG*BEAI4

91

LBM

*0001 D00»003 D00 200 000 080 200 00208 GOVO*GBC17T
HLT

HLT CYCLE 49

/% SWITCH BACK TO FULL TRACE %/ TR 2 T0 100.

TRACE OK
DISP MEM 200.

28200 003

/% NOW RUN THE CPU FOR ONLY A FEW INSTRUCTIONS AT A& TIME. IN THIS
WAY THE EXECU TION GAN BE MONITORED EASILY =/

GO 2

GO 0K

CY2P A B € D E H L HL SP PS@
906! 000 CP3 000 00C OBF 090 200 80200 300 6GA17
HLT

HLT GYCLE 44

SET CPU, PC=18. GO 2.

SET 0K

GO OK

*0000 020x008 CO0 000 COC CCE+000*P3002 PPO*0O01e
LHI @

2200 000 P30 00C 200 000 OOP £2C 00C0C PEP*BBD12
LLI 200

CYCLE AT 14

D1 CPU.

CYzsP A B € D E K L HL SP PSg
0000 000 000 060 00C 200 000*206+20200 GB0*30314
GO 1.

G0 OK

@600 200 P0G GV0 28C 00D O0Q 200 ©022C 82¢ 00014
LBM

CYCLE AT 15

DI CPU.

CYZsP A B 4 D E H L HL SP Ps@
0000 CO0+003 992 000 800 OG0 200 06200 00002015
GO =*.

0000 200 083 208 08P PG G603 200 00200 008 00A1S
INB
8200 000304 000 282 200 B80C 200 00208 202%00216
LMB
0060 000 004 PAD 200 BPD 03¢ 200 PB20T COGO*GOO17
HLT

HLT CYCLE 40
DI CPU.

CYZzsPp A B c D E H L HL sP PSse
9000 20¢ 904 200 0GP GO0 GO0 200 08200 00D A0B17

/% WE CAN SET BREAK POINTS IN THE CODE SO THT\T\AT EXECUTION STCPS

WHEN A PARTICULAR INSTRUCTION IS FETCHED. */

SET CPU,PCe=18«. TR 8 TO 100+ REFER 12 TO l4.

SET 0K
TRACE 0K
REFER 0K
GO.

*DOBO 000900 00P 000 600 POO*200»B000 P06+006I0
LHI @)

0000 @00 000 200 ©30 000 GO2 800 00000 GAOx00P12
LLI 2068

REFER AT 12

Dl CPU,.

CYzsP a B c D E H. L HL SP PSB
2000 008 800 200 00C CGOP 0RO 0P 08OBC 00 €0612

/* THE EXECUTION CAN ALSO BE STOPPED WHEN THE PROGPAM REFERS

TO MEMORY LOCAT1 ON 200 */

REFER 2@0@0. NOTRACE @ TO 1@0@. SET CPU,PC=l@. GO.

REFER OK
TRACE- 0K
SET OK
REFER AT 14
DI CPU.

CYZSP A B C D E H L HL SP 21
200C 20C 900 PEP 900 200 000+200s00200 DO0+00014
Dl MEM 14 CODE.

28014 LBM
GO 1. DI CP.

GO Ox

CYCLE AT 15

CYZSP A B C] E H L HL SP PSo
2000 O0e+82S 200 P88 P00 090 200 0200 PVB*00815

/% THIS SHOWS THE VALUE FETCHED FROM LOCATICK 20€. WE CAN STOP
THE PROGRAM ON A STORE INTO LOCATION 280 AS WELL x/

NOREF 28@. ALTER 208. SET CP, PC=1D. GO.

REFER 0K
ALTER 0K
SET OK

ALTER AT 16
DI CPU.

CYZSP A B c D E H L HL SP pse

*0001 089006 000 GO0 PAC 008 200 90209 P8B=0016
D M16 CO.

#8816 LMB
/% THE REGISTER DUMP SHOWS THAT 6 VILL BE STORED AT LOCATION 280.

EXAMINE LOCATION 2#8, RUN THE MACHINE FOR ONE CYCLE, AND EXAMINE

THE CELL AGAIN */

DI MEM 282, GO l. DI MEM 2€0.

29208 BOS
GO0 0K

CYCLE AT 17
60208 206

/% NOW GET A COMPLETE MEMORY DUMP IN BINARY =/
Dl MEM € TO 777Q BIN.

@B 8B 6B 00020009B 0000G0O0E 00O6Q800B
20006 eB eB L] @B 021011108 Spceoesos
28012 901101128 116210068 110211118 000010008 111116818 208000008
84018 021011108 EGOOEV00E 281101108 POSOOLECE PRPPEOCPE PAV0ARG0DB

28824 90BR0000B e8 oB 2B eB eB
28198 L)) ()] 1188 o868
202904 S0080080B [2] o8B 8B)]

80510 S00EONLLE 2092S03EB

/% AND THEN PUNCH THE CODE BETWEEN LOCATIONS 1@ AND 28 (VE WILL USE
THE CONSOLE AS THE OUTPUT DEVICE) */
PUNCH 12 T0 28 1.

KRR
& DNNNNNNNKF BNNNNNNNNF BNNPRPPPNF BNNNNNNNNF
BNNPPNPPNF BPPNNPNNNF BPPNNPPRPF BNNNNPNNNF
16 BPPPPPNNPF BNNNNNNNNF BNNPNPPPNF BNNNKNNNNF
BNNPPNPPNF BNNNNNNNNF BNNNNNNNNF BNNNNNNNNF
Ll i *%

ok o ok ok ok ok o ok ke ok

K
END.

SEOF

CPU TIME: 12.93 ELAPSED TIME: 46112.73
NO EXECUTION ERRORS DETECTED

THLIS EXAMPLE SHOWS A COMPLETE ASSEMBLY AND INTERP/8 EXECUTION

TYPE ASMI.DAT)
* SAMPLE MCS-8 PROGRAM (PAGE 47 OF 8888 MANUAL)
START LLI 208

LHI 8
LOOP LAM

CPl 46

JTZ FOUND

CAL INCR

LAL

CP1 220

JFZ LOOP
FOUND RET
INCR INL

RFZ

INH

RET

END

R ASME

PLEASE TYPE INPUT FILE NAME
ASM1

8808 INTEL ASSEMBLER

CPU TIME: 3.72 ELAPSED TIME: 9.73
NO EXECUTION ERRORS DETECTED

EXIT
*w©

~RENAME FOR20.DAT = LOGOU.DAT,
FILES RENAMED:

LOGOU .DAT

LOGBI «DAT

FOR21 +DAT = LOGBI.DAT

+«TYPE FOR2@.DAT
CesmssaEsasEzswsEEssE
SYMBOL VALUE

aSEwEsssEszzEsssEsERES

1: START 00860

2: LOOP [-[J-1-1]

3: FOUND 000823

43 INCR #0024

sussssssasnsswesassnnesas I

tC

»TYPE DOR'U
TYPE FOR21,DAT

B T T T e YT
RS RN
B T T T T L L T T T
P T

& BNNPPNPPNF BPPNNPNNNF BNNPNPPPNF BNNNNNNNNF
BPPNNNPPPF ENNPPPPNNF BNNPNPPPNF BNPPNPNNKNF
8 BNNNPNNPPF BNNNNKNNNNF BNPNNNPPNF BNNNPNPNNF
BNNNNNNNNF BPPNNNPPNF BNNPPPPNKF BPPNPPPNNF
16 BNPNNPNNNF BNNNNNPNNF BNNNNNNNNF BNNNKNPPPF
BNNPPNNNNF BNNNNPNPPF BNNPNPNKNF BNNNNNPPPF
24 BNNNNNNNNF BNNNNNNNNF BNNNNKNNNF BNNNNNNNNF
BNNNNNNNNF BNNNNNNNNF BNNNNKKNNF BNNNNNNNNF

32 BNNNNNNNNF BNNNNNNNNF BNNCC

THE CODE FILE MUST BE TBRMINATED BY A $ IN THE INPUT -- USE TECO
TECO FOR21 .DAT

92

sN 32 $s
*OLSTSS
32 BNNKNNNNNF BNNNNNNNKF BNNNNKNNNF BNNNNNNNNF

*I3
33
*EXS$S

«R INTR
LOADING

LOADER 18K CORE
EXECUTION

BEGIN
/% THE SYMBOL TABLE AND CODE WILL NOW BE LOADED #*/

LOAD 6 7.

32 LOAD OK
DI SYMBOLS.

START
LooP
FOUND
INCR

0000000 G008 0GOBH
200004Q 28804 BG04H
0000230 00019 8813H
2000240 29028 2014H
DI SYMBOL LOOCP.

2000840 08004 POGAH LOOP

DI SYMBOL ZAP.

(BBE27) ERROR 23 NEAR ZAP :
7+ ERROR MESSAGE HAS LINE NUMBER ERROR NUMBER AND ITEM IN ERROR. IN

THIS CASEs THE SYMBOL COULD NOT BE FOUND IN THE TABLE %/

Dl SY 13M.

FOUND
DI SY 12H.

FOUND-1
D! SY 8.

LOOP+4
Dl SY =.

START
/% NOW TAKE A LOOK AT MEMORY IN HEXADECIMAL AND IN CODE FORMAT =/

DI MEM @ TO 168 HEX, MEM @ TO 180 CODE.

22808ad 36H C8H 2EH 08K CTH 3CH 2EH 68H I13H #OH 46H l4aH 08K C6H 3CH DCH
80016 4BH P4AH QGH OTH 3OH OBH 28H B7H OPH 00H 0OH 0PH 0O0H GOH GOH OCH
900632 B0H £3H O2K @eH @8H O0H OCGH Z0H 80H @OH O0H €8H @OH QCH P8K QOH

00096 0OH @8H SOH 0PH @CH

28088 LL1,C8H LHI,8BH LAM CP1,2EH JTZ,13H,08H CAL,!4H,@08H LAL CPI,DCH
82016 JFZ,04H,@0H RET INL RFZ INK RET HLT HLT HLT HLT HLT HLT HLT HLT
98032 HLT HLT HLT HLT HLT HLT HLT HLT HLT HLT HLT HLT HLT HLT HLT HLT

#0896 HLT HLT HLT HLT HLY
/* TH1S PROGRAM SEARCHES FOR A 46 STARTING AT LOCATION 288 IN
MEMORY. WE WILL START BY PLACING A SEQUENCE OF NUMBERS IN THESE

LOCATIONS */

SET MEM 200 TO 218 = 43 46 48 20K 11118806B. DI MEN 280 TO 212.

RATHER THAN A HLT.

SET OK

00200 043 046 P48 P32 120 043 BA6 048 032 120 043
/* GET A COMPLETE TRACE OF THE PROGRAM %/ TR @ TO 61006.

TRACE OK
GO.

CYZsP a B C D E H L

*00a BAR %

LLl 208

0@06 000 000 202 °0C 020 gee L
LHI @

8600 000 500 000 090 000 VOO 200 V8200 0CO*0C004
LaM

POES«343 GO0 0GP0 006 000 009 200 O920¢ E0O*3B0GS i
CP1 46 5
1810 £43 900 080 000 8PP 900 280 00200 COA+06087
JTZ 19

1610 843 089 €00 00¢ 000 000 200 20260 800+80010
CAL 20

101€ 843 008 000 000 000 £00 200 00200+001+308]13+00820
*1011 843 020 000 Q00 000 @8C*201*008201 091.08513#00021
RFZ

1011 943 090 000 000 000 000 201 0020)*600 08013

LAL
1011201 080 000 880 008 200 201 00201 CER+ABG14
CPI 228 ‘
CYzsP A B ¢ D E H L HL SP PS@
1911 201 900 999 20O 002 680 2C1 02281 #88+PE316
JFZ 4
1211 201 000 000 0BG 90C GOP 201 80201 600*00084
Lam
101 1+046 000 000 000 000 0Q0 231 932081 PBA*28ES
CPI 46 :
*0191 846 BB 200 B3 062 300 281 6020! CBO+B2E27
JTZ 19 . i
2101 846 069 000 @00 800 0B2 221 80201 PB0*0019
RET
EXECUTION ERROR 2 AT 22
/* THE ERROR OCCURS BECAUSE THE PROGRAM TERMINATES WITH A RET

FIX TH E INSTRUCTION IN MEMORY */

DI MEM 19.

20019 807
DI MM\M\EM 19 COD.

28019 RET

SET M 19 = 8. DI MEM 19 CO.

SET OK
80219 HLT
NOTR @ TO 188+ SET CPU. GO.

TRACE OK

SET OK

HLT CYCLE 117
DI CPUs

CY2sP A B ¢ D E H 'L HL SP Pse
@101 846 003 €00 OC3 208 €68 281 08201 08¢ 00019
/¢ THE PROGRAM TERMINATES CORRECTLY AFTER 117 MACHINE STATES %/

TIME.

TIME=117
/% SET SELECTIVE BREAK POINTS »/

REF START, INCR#l, LOOPs SET CPUs GOo

REFER OK
SET OK
REFER AT @
DI SY #.

START
Ge

REFER AT &
DI SY #*. GOo

LooOP
REFER AT 21
DI SY =». GO.

INCR+1
REFER AT 4
D SYe.

000PP00 80868 GOGBH START
¢08004Q 20064 ©GBB4H LOOP

2000230 06819 @013H FOUND
2000240 00020 BO14H INCR

NOREF START TO INCR+S.

REFER OK

/% SET SELECTIVE TRACE POINTS (TRACE AND REFER POINTS CAN BE

IN EFFECT

AT THE SAME TIME, IF DESIRED) =%/
TR START, LOOP, FOUND. REFER FOUND. GO«
TRACE OK

REFER OK
*1811+2¢1 000 @00 OCe o0 D@ 201 80201

LAM

*0101+046 000 990 0900 P80 eep 201 00201
HLT

REFER AT 19

DI CPs

CYZSP A B 14 D E H L HL
9181 046 0EO 680 000 008 D00 201 00201
SET CPe GO.

6BO*00004

800*80219

sp PSe
¢eo 00819

SET OK
+0003+800 800 800 000 000 020+000+00000 BOS«B0B3E
LLl 208
8000 900 080 009 200 009 080«200+38200 02000004

LaM

«1011%20]1 000 808 00 OO 00C»201+08201 300 209004
LaM

«3181+046 600 200 000 800 009 201 0281 A0@+00019
HLT

REFER AT 19

GO

H:;‘. 046 000 060 000 000 680 26) S028) 0fe eOBIY

HLT CYCLE 117

/% THE ONLY REMAINING COMMANDS TO ILLUSTRATE ARE HTHE SET AND
ICISPLAY

PORTS COMMANDS »/
DI PORT 4.

Pa=8
DI PORT 4, PO 3, PO 7 TO 1€Q.

Pasg@

P3=g

P7=0 P8=p

DI PO 20 TO 25.

P28=3 P21=3 P22e0 P2I=@ P24e3 PRS=0
SET PORT 5 = 116811808, PO 184 = 55Q.

SET OK
DI POR 5 TO 17.

PS5=2@4 P6s@ P7=@ P8e@ P9=@ P1@=@ Pli=@ P12s0 P13=g Pla=d P1S=0
P16=45 P

1720

END.

SEOF

APPENDIX IV
TELETYPE MODIFICATIONS

The SIM8-01 microcomputer systems and associated software have been designed for interface to a
model ASR 33 teletype wired in accordance with the following description.

The ASR 33 teletype must receive the following internal modifications and external connections:

Internal Modifications

1. The current source resistor value must be changed to 1450 ohms. This is accomplished by moving a
single wire. (See Figures 5 and 6.) .

2. A full duplex hook-up must be created internally. This is accomplished by moving two wires on a
terminal strip. (See Figures 4 and 6.) ’

3. The receiver current level must be changed from 60mA to 20mA. This is accomplished by moving a
single wire, (See Figures 4 and 6.)

4. A relay circuit must be introduced into the paper tape reader drive circuit. The recommended circuit
consists of a relay, a resistor, a capacitor and suitable mounting fixture. An alternate circuit utilizes
a thyractor for suppression of inductive spikes. This change requires the assembly of a small ““vector”
board with the relay circuit on it. It may be mounted in the teletype by using two tapped holes in
the mounting plate shown in Figure 1. The relay circuit may then be added without alteration of
the existing circuit. (See Figures 2, 3, and 6.) That is, wire A", to be connected to the brown wire
in Figure 2, may be spliced into the brown wire near its connector plug. The “line’” and “local” wires
must then be connected to the mode switch as shown. Existing reader control circuitry within the
teletype need not be altered.

External Connections

1. A two-wire receive loop must be created. This is accomplished by the connection of two wires between
the teletype and the “SIM"* board in accordance with Figure 6.

2. A two-wire send’loop similar to the receive loop must be created. (See Figure 6.)

3. A two-wire tape reader loop connecting the reader control relay to the ““SIM" board must be
created. (See Figure 6.)

MOUNTING POSITION
OR CIRCUIT CARD

L. E

Figure 1. Relay Circuit (Alternate)

95

YELLOW WIRE

A MODE SWITCH

Figure 2. Distributor Trip Magnet Figure 3. Mode Switch (Rear View)

Figure 4. Terminal Block Figure 5. Current Source Resistor

aE
E Lpz-szo-l

SIS
JLIaat

CURRENT S0OUPLE CESISTOR

MM s WITHIN DASUHED LINES RePRLSENTS
CUSTOMER EEQUIRED MODIFICATIONS.

=

IM IS INTERNAL MODIFICATION
EC IS 'EXTERNAL CONNECTION

_________ 1=

Figure 6. Schematic

L) TERMINAL STRIP 15141 SEE Fia. 5
ALTERNATE RELAY C\RCWIT SEE FiGa. 4
SEE Fia | /’—\
@
VIS 20 ma_
" -
SM4-01 |4-02 |8-01 |FuLL DuPLEX & YEL e (\/@:_
—t 4 _ | ome ——
9
BLK/ @@ SEE Flda.4
- WHY/ BRN
o9 J2-14 | Ji-Blop— — — — — 2eo/ ae
{4 (=148} N
RECEIVE o WHT [YEL
T s2-10ldz-40— — — — — %
. WHT/ BLK
o WAT/ B U FULL DUPLEY
W ol BRN/ YEL w—
4 N .~
3 53 Si=82 | 1= - — — — — —aew T T T T T T
g SEND Reo HALF DUPLEYX
2 49 27-2 }02-890— — — — al o ey T T T T T T T
2 WET/ RED SEE Fla 4
BLY
u @ e o |
9 wur . ERAFNS
M -l @ wuT
Y @ DIsTRIBUTOR
= D\ _}/ . TRIP MAGNET
Z
Q m_riaa Tl 2
N N o BN
U 55 J2-451.2-18 r o e
TAPFE | 2 ,_é 4710 = IA
KEADER J HzaNd ! | L—H—/\A/\,———]
CCNTROL | r'_') _T o uF I | onwE area
| 42-12 | J2-28 T | I
| - —_—— — — —— 1
l | LT/ — ===
\ H
Z | POTTER ¢ BRUNFIELD | d—-- |
| RELAY NO 12VDC | O |
NOTES. UNLEDS OTHERWISE SPEQIFeD #JR-1005 § .0K IA L D (-l |
5w o R
CUSTOMER EXTERMAL COMMECT OMS L SEE Fla- |

MODE SWITCH
(FRONT VIEW)
SBEE Fld 3

MODE
SWITCH

MOUNT
REED
RELAY

CAPACITOR —

CURRENT _
SOURCE ——— [£ 3
RESISTOR I

POWER
SUPPLY

KEY BOARD

PRINTER UNIT

CisTRIBUTOR '

TRIP MAGNET
ASSEMBLY

O

{moToR)

TERMINAL
STRIP

TAPE
READER

TAPE
PUNCH

TOP VIEW

TELETYPE MODEL 33TC

Figure 7. Block Diagram
97

s Ac
Common

APPENDIX V.

PROGRAMMING EXAMPLES

A. Sample Program to Search A String Of Characters In MemorylLocations 200-219 For A Period (.)

MNEMONIC OPERAND

EXPLANATION

BYTES LOCATION ROM CODE COMMENT

Start: LLi 200 Load L with 200 2 100 00110110
101 11001000 (200)
LHI 0 Load H with 0 2 102 00101110
103 00000000 (0)
Loop: LAM Fetch Character from 1 104 11000111 ASC Il
Memory
CPI "y Compare it with period 2 105 00111100 ASC 1
106 00101110 ()
JTZ Found If equal go to return 3 107 01101000
108 01110111 (119)
109 00000000
CAL INCR Call increment H&L 3 110 01000110
subroutine 11 00111100 (60)
112 00000000
LAL Load Lto A 1 113 11000110
CPI 220 Compare it with 220 2 114 00111100
115 11011100 (220)
JFZ Loop |f unequal go to loop 3 116 01001000
117 01101000 (104)
118. 00000000
Found:RET Return 1 119 00000111
INCR: INL increment L 1 60 00110000
RFZ Return if not zero 1 61 00001011
iNH Increment H 1 62 00101000
RET Return 1 63

00000111

101103

INITIALIZE
H & L TO 200

104

104 FETCH CHARACTER

FROM MEMORY
{H & L ADDRESS)

110112

105-109
COMPARE
WITH
oy

+

CALL

SUBROUTINE TO
INCREMENT

Ha&t

1u9

Subroutine to Search for Period.

98

B. Teletype and Tape Reader Control Program (A0800) CAL DELAY

CAL DELAY
BEGIN LAl 1 SUPPRESS TTY INH H=Ha+ 1
OUT 12B gggngAg INC C =C +1 :
XRA , L , S
ouT 138 OUTPUT 3 - TAPE PEADER CONTROL e peresT
CAL TAPE CALL FCR TAPE READER CONTe RT. DELAY LDI © LOAD O TO RECe D
JMP BECIN _ n IND " De=Ds+1
TAPE LAl 1 TAPE READER ENABLE CODE JFZ D1
OUT 13B OUTPUT 3 - ENABLE TAPE READER RET
CAL TTYDI TAPE READER CONTROL DELAY END
TTY HLT VAIT FOR TTY START PULSE
CAL TTYD2 TTY DELAY - 4+468 MSECe D. RAM Test Program (A0802)
XRA TAPE READER CISAELE CODE
0UT 13B OUTPUT 3» DISABLE TAPE READER BEGIN LAI O LOAD 0 TO AC
INP OB INPUT O» READ START PULSE OUT 10B WRITE TO OUTPUT ©
LCI 255 COMPLEMENT TTY START PULSE OUT 11B . VRITE TO OUTPUT 1|
XRC EXCLUSIVE-OR REGs C OUT 12B - WRITE TO OUTPUT 2
oUT 128 OUTPUT 2s OUTPUT START PULSE ouT 13B WRITE TO QUTPUT 3
LEI 248 TTY CATA SAMPLING COUNTER LBI 8 LOAD 8 TO REC. B
TTYIN CAL TTYD1l TTY DELAY - 9+012 MSECe LCI O LOAD O TO REG. C
INP 0B READ TTY DATA INPUT LHI 8 LOAD 8 TO REG H
LCI 255 COMPLEMENT TTY DATA Lt LL; o éogg oAro REGC. L
XRC XR LEAR AC
OUT 12B QUTPUT 25 TTY DATA OUT LMe LMA - LOAD AC TO MEMORY
RAR . STORE TTY DATA : INL L=L +1
LAB LOAD TTY DATA TO REC. B CPL AC - L
FAR ' JFZ LM2 JUMP IF AC IS NOT ZERO
LBA LOAD AC TO REG. B ~ INH H=H+1
INE E=E + | - LAl 12 LJAD 12 TO AC
JFZ TTYIN QUMP IF ZERO F/F IS NOT SET CPH ac-H flEeE
LaB LOAD REG. B TO AC . JFZ LM1 JUMP IF AC IS NOT ZERO LY
0oUT 11B OUTPUT 1, TTY CHARACTER LHI 8 Ly
SUl i28 REMOVE PARITY BIT . REPT4 LAB LOAD REC. B TO aC
LBA STORE TTY INPUT DATA OUT 10B
CAL TTYD1 : REPT3 LLC . LOAD REC. C TO L .
LAT 1 LaC LOAD RECe C TO AC
OUT 12B SUPPRESS TTY OUT 13B
RET LAl 2558 LOAD 255 TO AC
TTYDPl LDI 115 9012 MSECe. DELAY LMA LOAD AC TC MEMORY
ST IND D=D + 1 . CPM . ac-m
JFZ ST JFZ ERROR JUMP IF AC 1S NOT ZERO
RET REPT2 LAH LOAD EEC. H TO AC
TTYD2 LDI 186 4.468 MSECe DELAY OUT 10B , ca
REPTS XRA CLEAE AC e
ST2 IND D=D+ 1 INL L=1L+1)
JFZ ST2) -) CPL . AC - L
ig; JTZ REPT1 . JUMP IF AC=0
, _ LAL LOAD REC. L TO AC
P OUT 118
C. Memory Chip Select Decodes and *R& CLESR aC
Output Test Program (A0801) CPM AC-M
: ' JFZ ERROR JUMP IF AC 1S NOT ZERO
BEGIN LAl XS LOAD 15 TO AC JMP REPTS . d
OUT 10B WRITE TO OUTPUT 0 REPT1 INH HeHa+i)
OuUT 11B - : La1 12 -
our 120 -
OUT 1aB ;;ﬁ CONT : e
OUT 1SB _ : v
ouT 168 3?2 ERROR
our 178 . JMP REPT2
g:t ggt:: DELAY 16.436 MSEC. CONT LHB LOAD REC. B TO H
XRA
CAL DELAY
CAL DELAY e oGt !
§ﬁ2 108 CLEAR aC JFZ REPT3
OUT 11B- INB B=2B+1
OUT 12B tH? , LOAD REG. P TO H P
Al 12 -
OUT 13B : SR
QUT 15B . JFZ REPT4
OUT 168 . JMP BECIN
OUT 17B ERROR LAl 240 LOAD 240 TO AC =
LCI 240 LOAD 240 TO REGe C : ADB AC=AC+R o
LL1 2528 LOAD 259B(OCTAL) TO RECe C OUT 10B : :
LHI © LOAD 0 TO REC. H LAL LOAD REC. L TO AC pe
CSTEST LAH LOAD H TO AC OUT 11B s
OUT 10B LAM LOAD MEMORY TO aC
LAL LOAD L TO aC ouT 12B
OUT 11B LAC LOAD REG. C TO AC
XRA CLEAR AC OUT 13B
LA YRITE AC TO MEMORY ' gkg

E.

rPLOOOO

V- RCN. W]

13
15
16
19
20
21
22
24
a7
28

30

117

126
128

&5
168
a7

87

30
24
168
87
85
38
70
65
a4
B85S

26
193

26
200

12
193

200

192

30
24

Bootstrap Loader Program

(Intel Tape Numbers A0860, A0861, A0863, Nov. 16, 1972)

194

248

55

255

24

57

a8

48

82
10

71

‘48

98
100

87

11
241

100
115

106
100

48

10
135

uT"

ORG O
BECIN LAI 1

QUT 12B

XRA

OuT 138
EADER CONTROL

HLT

JMP START

SUPPRESS TTY
oUTPUT 2

CLEAR AC

OUTPUT 3 - TAPE R

*
*TELETYPE TAPE READER & 1/0 CONTEOL

*
TAPE - LAL 1
E CODE
oUT 13B
TAPE READER
TTY HLT
T PULSE
LDI 194
C.
sT2 IND
JFZ ST2
XRA
LE CODE
ouT 138
TAPE READER
OUT 12B
START PULSE
LEl 248
COUNTER R
TTYIN CAL TTYDL
SEC.
INP OB

XRI 255
TA
0UT 12B
A OUT
RAR
LAB
REGC. B
RAR
LBA
INE
JFZ TTYIN
1S NOT SET
LAB
NDI 127
LBA
ATA
CAL TTYD!
LAl 1
ouT 12B
RET
Laa
LAA
LAA
LAA
LAA

*
*TTY DELAY - 8.7 MSEC.

*

TTYD1 LDI 121

ST IND
JFZ ST
RET

*

*BCD TO BINARY CONVERSION

=

BCDBIN LAM
SUI as
LBA
DCL
LaM
Sul 48
LEA

- BB1 JTz BB2

LAl 10
ADB
LA
DCE
JMP BB1
BB2 pCL
LaM
sul 48
LEA
BB3 JTZ BB4
LAl 100
ADB
LBA
DCE
J¥P BB3
BB4 RET

*
*BINARY TO BCD CONVERSION
*

BINBCD LHI 11
LLI 241
BNBD Lcr o
LAB
ED1 sUl 100
JTC BD2
INC
JMP BDA
BD2 LE! 100

ADB
LBA
LAl 48
ADC
LMa
Lcr o
LAB

BD3 sul 10
JTC BD4

TAPE READER EVePRL
OUTPUT 3 - ENABLE
¥alT FOR TTY STAR

TTY DELAY - 4 MSE

TAPE READER DIS&B
OUTPUT 3» DISAFLE
QUTPUT 2, OUTPUT

TTY DATA SAMPLING
TTY DELAY =~ 8.7 M
READ TTY DAT& INP
COMPLEMENT TTY DA
QUTPUT 25 TTY DAT

STORE TTY DATA
LOAD TTY DATA TO,

LOAD AC TO REC. B
E=E+ 1 °
JUMP IF ZERO F/F

LOAD REG. B TO AC
REMOVE PARITY BIT
STORE TTY INPUT D

SUPPRESS TTY

NOP

8.7 MSEC. DELAY
D=D+1

LOAD LSD TO A
AC=AC-4B
LOAD A TO B
L=L-1

LOAD M TO A
A=A~-48

LOAD A TO E
IF A=0 JUMP

ac=to0

AC=AC+B

LO&C AC TO REC. B
E=E-1

L=L-1

LOAD M TO &
A=A-48
LOAD A TO E

ACal00

AC=AC+B

LoAD AC TO REG. B
EsE-1

CLEAR REC. C

AC=AC-100
JUMP IF AC<100
C=C+1

LOAD 100 TO REC.

AC=AC+B

LOAD AC TO REG. B
A=p+48

A=A+C

LOAD & TO MEMORY
CLEAR RECs C

LOAD B TO A
ac=AC-10

JUMP IF AC<10

100

131
132
135
137
138
139
141
142
143
144
146
147
148
149
159
150
150
150
152

155
156
159
160
161
163

166
167
168

169
170
172
173
174
175
176

179

182
184
185
186
186
186
186

188
191
193
196
197
197
197
197
199
202
203
203
203
203
206
208
21t

214

215
216
216
216
216
219
e21

224
227
229

232
233

234
235

238
239
239
239
239
242
244
245

248
250
252
254

255
258

260
262
263
266
268
269
272
274
275

278

16
68
14
129
200
6
130
48
248
6
129
48
248

200
26
129
200
72

70

70

70

14
70

70
14
70

22
70

48
249

16
72

70

185
72

a6
sS4

248
70
Sa

185

104

185
104

185
104

126
10

48

48

2853
55

248
55

150
138
150

191
150

186
194
150

12

186
193
150
186
253

12

229

66
239
11

255
248

250
' 80

40
8

a9
66

127

oo

Q@ oo O

INC
JMP BD3
BD4 LBI 10
ADB
LBA
LAI 48
ADC
INL
LMA
LATI 48
ADB
INL
LMA
RET

*
*TTY OUTPUT ROUTINE
*

TTYOUT LCI 253
TTYO CAL TTYD1
Ce

INC

JFZ TTYO

XRA

ouUT 12B

LC1 248
TTY1 caL TTYD!
MSEC.

LAB

0UT 12B

RAR
RY :

LBA

Lal 0

RAR

ADB

LBA

INC

JFZ TTYL
ZERO

CAL TTYD!
MSEC.

LAl 1

OUT 12B

RET

*
*CARRIAGE RETURN & LINE FEED
%

CRLF LBI 215B
CR
CAL TTYOUT
LF LBl 212B
CAL TTYOUT
RET
*
*ERROR SICNAL
*
ERROR LBI 277B
CAL TTYOUT
RET

*
«TYPE B AND IDENTIFY RAM BANK
*

ADRESH CAL CRLF

LBI 30eB
cAL TTYOUT
CAL TTY
NPUT
LMB
MORY
RET

C=C+1

B = 10
AC=AC+B
LOAD AC TO REG B
A=A+48
A=A+C

L=L+1

LOAD A TO ™
A=A+48
A=A+B

L=L+t

LOAD A TO M
RETURN

C=253
DELAY - 9.012 MSE

C=C+1

TTY START PULSE
REG C=248
TTY DELAY ~ 9.012

Loap DATA TO AC
OUTPUT DATA
STORE DATA IN CAR

LoAD A TO P

AC = 0

RESTORE DaTA BIT
RESTORE DATA
STORE

C=C+1

JUMP IF AC IS NOT

TTY DELAY - 9.012

amAt+]
SUPPRESS TTY

CARRIACE RETURN -

TYPE CR
LINE FEED - LF
TYPE LF

o
TYPE ()

LOAD (B)
TYPE (B)
CaLL FOR TTY KB I

STORE INPUT IN ME

*
+TYPE A AND IDENTIFY INITIAL AND FINAL LOCATION
*

ADRESL CAL CRLF

LBl 301B
CAL TTYOUT
ADL CAL CRLF
LCI 253
AD2 CAL TTY
NPUT
INL
LM
O M
INC
JFZ AD2
ZERO
RET
»

*
*DATA INPUT ROUTINE
*
DATAIN CAL TAPE
102B
CPB
JFZ DATAIN
Bl
DATA1 LHI 11
LL1 255
LAl 248
LMA
NTR
DATA2 CAL TAPE
LLI 250
ATA
LAI 120B
CPB
JTZ PDATA
LAI 116R
cpPB
JTZ NDATA
LAL 102B
CPB
JTZ DATAL
T INSTRCTION
LATI 177B

LOAD (A)
TYPE (&)

C=253
CALL FOR TTY KB I

LaL+l
LOAD TTY KB INPUT

C=C+1
JUMP IF C IS NOT

READ TAPE

LOAD (B)

SEARCH FOR (B)
JUMP IF IT IS NOT

H=11

L=255

DATA BIT COUNTER
STORE DATA BIT CO

READ TAPE
MEMORY LOC. FOR D

LOAD (P)

SEARCH FOR (P)

IF (P)> STORE (1)
LOAD (N)

SEARCH FOR (W)

IF (N) STORE (0>
LOAD (B)

SEARCH FOR (B)

IF (B) DELETE LAS

LOAD (RO)

280
28t

284

287
290

293
296

298
299
300
301
302
305

306
307
308
309
311
312

313
314

317

320
322
323

326
328
329

332
334
335

338

341
3aa

3as
346
346
346
3a6
347
348
349
350
351
352
353
354
354
354
354
356
359
361
364
366
369
372
374
375
378
380
381
382
383
385
386
389
390
391

394
396
397
397
397
397
399
401
404

407

410
413
415

418
419
420

423
424
425
427
429
431

432
433

434
43s

185
72

70

68
70

70

185
104

185
104

6
185
72

70

68
168

192
192
192
192
192
192
192

70
70
54
70
209
70
a9
199
20

54
248

48
249

48
250

34

90

255 -

98

89

53

255

255

70
B8
66
248
127
34
90

255

160
150
198
150
197
150
186
253

99
253

11
240
203
216
224
186

246
62

62

48

252

oo

© ©o O oo

cPB

JFZ FMEROR
T

CAL RUBOUT
OUTINE

JMP DATA2

FMEROR CAL FORMAT
RROR ROUTINE

JMP DATAEN -
PDATA LAI 1
>

RAR

LAM

RAL

LMA

JMP DATA3
NDATA XRA
Y
LAM
RAL
Lma
LLI
LBX
INB

DaTA3 255

TER

LMB

JFZ DATA2
ZERO
FDATA
ur

CAL TAPE

Lat
CcPB
JTZ DATA4

106B

1s (F)
Lar
CPB
JTZ DATA1L
UCTION IF IT IS (B)
LAl 177B
CPB
JFZ FMEROR

1028

C(RO)
CAL RUBOUT
TINE
JMP DATA2
DATA4 XRA
Y

DATAEN RET

*

*RUBOUT ROUTINE
*

RUBOUT LAA
LAA
LAA
Laa
LaA
Laa
Laa
RET

*

*FORMAT ERROR ROUTINE
*

FORMAT LBI 240B
CAL TTYOUT
LBI 306B
CAL TTYOUT
LBI 30SB
CAL TTYOUT
LISTA CAL CRLF
PRINTA LLI 253
LBM
CAL BINBCD
LEI 253
DCL
DcL
Lam
ADI
LBa
CAL TTYOUT
INL
- INE
JFZ FM1

128

LaI 1
RET

SEARCH FOR RUBOUT
JUMP IF NOT RUBOU

CALL FOR RUBOUT R

CALL FOR FORMAT E

REPLACE (P) VITH

ROTATE RIGHT

ROTATE LEFT

CLEAR AC AND CARR

ROTATE LEFT

LOAD M TO B
INC DATA BIT COUN

JUMP IF B IS NOT
CALL FOR TAPE INP

LOAD (F)
SEARCH FOR (F)
STORE DATA IF IT

LOAD (B)
SEARCH FOR (B)
DELETE LAST INSTR

LOAD (RO)
SEARCH FOR (RO)
JUMP IF IT IS NOT

CALL FOR (RO)> ROU

CLEAR AC AND CARR

LOAD (SP)
TYPE (SP)
Loap M
TYPE (F)>
LOaD (E>
TYPE (E)

L=253

LOAD MEMORY TO B
BIN TO BCD CONV
E=253

L=L~1

LaL-)

LOAD MSD TO aC
AC=AC+128

LOAD AC TO B
TYPE BCD LOCATION
Lal+]

E=E+1

JUMP IF E IS NOT

FORMAT ERROR FLAG

* .
*ENTER ADDRESS AND CONVERT THEM INTO BINARY REP.
*

ENTERA LHI 11

LLI 240
ENTERH CAL ADRESH
ENTERL CAL ADRESL

CAL AD)

CaL CRLF
LLI 246
CAL BCDBIN

LCB
DCcL
CAL BCDBIN

DCL
LaM

SUl 48
ADl 8
LLI 252
LMA

INL
LMB
ES IN M
INL
LMC

H=11

L=240

ENTER BANK NO.
ENTER INITIAL ADD

ENTER FINAL ADDRE

L8246
FINAL ADRES-BINAR

LOAD B TO C
L=L-1
INITIAL ADRES-BIN

L=L-1

ACaM

AC=AC-48

AC=AC+8

L=252

STORE BANK NO IN

L=L+1=253
STORE INITIAL ADR

LaL+1=254
STORE FINAL ADRES

101

436
437
437
437
437
439
441
442
443
444

445
446
447
448
448
448
448
450
452

453
454
455
458
459
460

a6}

462
462
462
462
465
467
470

473
475
a76
479

481

482
485
487
488
451
493
494
497
499
500
503
505
506

512
515
515
518
518
518

521
522
525
527
528

531
532
533

534
537
540
543
545
547
547
547
547
547

553
554
556
S58
559
561
562
565
567
568
571
573
574
577
579

583
586
589
591
593
594
595
596
597
598
599
600
602
603

46
5S4
199

49
191
104
215

250

70
14
70
70

185
104

185
104

185
104

185
104

185
104

185
104

68

70
70

26
96

215
70

194
248

70
104

46
54

11
252

11
254

186
170
150

12

84

31
82
67

77
76

94
80

181

197
206

141
239

206
250
181

192
206

11
240

203
186

255

oo

-0nN

-

(=N~

10

-0

INM

*

RET

i

*SET ADDRESS TO 1101 RAM
*

SETMA LHI 11

OUT 0

LLI
LDM
INL

2s2

LAM .

our

LLA
LHD
RET

108

*
*ADDRESS CHECKINC
*

ACHECK LRI 11

TO ac

CHECK
*

LLI
Lam

DCL
CPM
JTZ
LCcM
INC
LMC
RET

254

CHECK

*PROGRAM BEGINS
*

START

NPUT

*

caL
LB1
CAL
caL

Lal
CPB
JTZ
ral
CPB
JTZ
Lal1
CPB
JTZ
LAl
CPB
JTZ
LAl
CcPB
JTZ
Lail
CPB
JTZ
CAL
JMP

*LJAD DATA
*

TAPEIN
READIN
OUTINE

RY

EXECUT

BANKO
BANK1
BANK2
BANK3

CONTIN

CAL
caL

RAR
JTC
LLI
LcM
caL

Lac
out
LMa

cAL
JTZ
JMP
LH1

IND

XRA
LMA
INL
Lal1
LMA
JMP

CRLF
2528
TTYOUT
TTY

124B

TAPEIN
10sB

EXECUT
1228

READIN
1038

CONTIN
114B

LISTIN
120R

PROGRM
ERROR
START

INPUT TO 1101 RAM

ENTERA
DATAIN

START
250

SETMA

1B

ACHECK
START
READIN
t1

240
4000B
4400B
5000B
5400B
ADRESH
CRLF

48
8

BANKO
9

BANK1
10

BANK2
11

BANK3
ERROR
START
11
252

255

READIN

H=11

L=250

BANX N0 TO N
L=L+1=253

INIT ADR TO E
WRITE ADDRESS TO

LOAD AC TO L
D TO H = BANK NO

H=11
L=254
LOAD FINAL ADRES.

L=L-1=p583
COMPARE:AF-AT
JUMP IF AF-AI=0
LOAD A1 TO aC
Al=Al+1

LOAD Al TO MEMORY

B=252B
TYPE (%)
CALL FOR TTY KB I

LOAD (T) TO AC
AC-B

JUMP IF AC-B=0
ACa105Bs (E)
AC-B

JUMP IF AC-B=0
AC=122B, (R)
ac-B

JUMP IF AC-B=0Q
AC=103B, ()
AC-R

JUMP IF AC-EB=0
AC=114B, (L)
AC-B

JUMP IF AC-B=0
AC=120B> (P)
AC-B

JUMP IF AC-B=0
TYPE (?)

ENTER ADDRESS
READ TAPE INPUT R

CHECK FOR FE FLAC
JUMP IF CARRY=1
L=250

LOAD MEMORY TO C
SET MEMORY ADDRES

LOAD DATA TO MEMO

COMPARE AF AND Al
JUMP IF A=0

READ INPUT DATA
H=11

L=240

BANK O LOCATION
BANK 1 LOCATION
BANK 2 LOCATION
BANK 3 LOCATION
ENTER BANK NO

LOAD MEMORY TO AC
AC=AC-48

AC=AC+8

LOAD AC TO H

AC=8

AC=AC-H

JUMP IF AC=0

D=D+1
BANK=BANK+ 1
LuL+1

CLEAR AC
INITIAL ADRES=Q

FINAL ACRES=25%5

606
606
606
606
608
610

613
616
618

620
621
624
626
629
631
634
636
637

638
640

641
642
644
645

648
650
653
656
658
661
662
663

666
668
671
673
676
679
682

684
685
686
687

i1
240
148

186
251
252

116
160
150
194

253

248

249
144

206
150
149
208
150

198
150
160
150
192
206
251

n o

*

*PROM LISTING ROUTINE’

*

LISTIN LHI
LLI
caL

INAL ADRe

LISTER CAL
LLI
Lal

LINE
LMA

LIST1 CAL
LBI
CAL
LBI
caL
LLI
LaM
ouT

0
LEI

1T CONTR
e

702

LIST2 RAL
LL1
LMA
JTC

LBI
caL
JMP
PRINTP LBI1
caL
LIST3 LaM
INE
JFZ

LBI
caL
LBI
caL
CAL
JTZ
LLI
TO AC
LCcH
INC
LMC
JTzZ

11
240
ENTERL

CRLF
251
252

PRINTA
240B
TTYOUT
302B
TTYOUT
253

108
248

1B

249
PRINTP

3168
TTYOUT
LIST3
3208
TTYOUT

LIST2

306B
TTYOUT
2408
TTYOUT
ACHECK
START
251

LISTER

H=11
L=240
ENTER INITIAL & F

L=251
NO. OF INSTR. PER

LOAD AC TO MEMORY
PRINT ADDRESS
LOAD [SP1]

PRINT (SP]

LOAD (Bl

PRINT (Bl

L=253

LOAD Al TO AC
OUTPUT A1 TO OUT

READ DELAY/DATA B

READ INPUT FROM 1

L=249
SAVE INPUT DATA
PRINT [P] IF CARR

LOAD (N)
PRINT (N)

LOAD (P]

PRINT (P)

LOAD DATA TO AC
E=E+1

JUMP IF E IS NOT

LOAD (F)
PRINT (F)
LOAD (SP)
PRINT (SP)
AF - Al

LOAD LINE CONTR.

LOAD MEMORY TO C
C=C+1

JUMP IF LINE CONT

102

690
693
693
693
693

696
698
700
701
703
706

709

711
712

713
715

716
718

721
722

725
727

728
729

730
731
734
736
739
741
743
744
745
746
749
752
755
758
761
764

767

68

54
248
14

70
70

175
83
87
‘38
70

32
72

141

255
253

141
150
181

255

197

55

206

246
164
150

255

194
197
13
206
192
206
184

-1

Re=4
JMP LIST!

*
*PROM PROCRAMMER
*

PEOCEM™ CAL ENTERA
ESS

PC1 LLI 255
LAl 253
L¥a
LBI 21SB
CaL TTYOUT
PC2 CAL SETMa
o2
Lal 255
DATA
XEM
oUT 11R
1
Lal 4
OUT 13B
BLE
LEI 197
0 MSEC.

PCa CAL TTYD1
Ce

INE

JFZ PGa

LAl O
ouT 138
ULSE
RST 5
MSEC
VP 1B
o2
CcPM
JTZ PCS
LBI 244B
CAL TTYOUT
LHI 11
LLI 255
LBM
INB
LMB
JFZ PC2
CAL ERROR
CAL LISTA
JMP START
PC5 CAL ACHECK
JTZ START
JMP PC1
XT INSTR.
END

ENTER MEMORY ADDR
REPPOCRAM CONTR.
ac=253

LOAD AC TO MFMORY
CAERIACF RETURN
SET ADDRESS TO 17
COMPLEMENT INPUT

LOAD DATA TO AC
WRITE PATA TG OUT

AC=45 DELAY
PEOCRAM PULSE ENA

E=197,» DELAY - 52
DELAY - B.672 MSE

E=E+1
JUMP IF E IS NOT

AC=0
DISABLE PROCRAM P

DELAY APPROX1. 9
READ DATA FROM 17
COMPARE DATA

JUMP IF COMPARED

LOAD ($]
PRINCS®]

LOAD B TO MEMORY

PRINT (2?2
PRINT ADDRESS

CONTINUE PROC. NE

APPENDIX VI

intcllec’'8

Bare Bones 8

- and
Microcomputer
Modules

'

The widespread usage of low-cost microcomputer systems is made pos-
sible by Intel’s development and volume production of MCS-8 micro-
computer sets. To make it easier to use these sets, Intel now offers
complete 8-bit modular microcomputer development systems called
Intellec 8.

The Intellec modular microcomputers provide a flexible, inexpensive,
and simplified method for developing OEM systems. They are self-
contained, expandable systems complete with central processor, mem-
ory, /0, crystal clock, power supplies, standard software, and a control
and display console.

The major benefit of the Intellec modular microcomputers is that ran-
dom access memories (RAMs) may be used instead of read-only-mem-
ories {(ROMs) for program storage. By using RAMs, program loading
and modification is made much easier. In addition, the Intellec front
panel control and display console makes it easier to monitor and debug
programs. What this means is faster turn-around time during develop-
ment, enabling you to arrive at that finished system sooner.

The Intellec 8 Eight-Bit Microcomputer Development System. The
Intellec 8 is a microcomputer development system designed for applica-
tions which require 8-bit bytes of data to perform either binary arith-
metic manipulations or logical operations. The Intellec 8 comes com-
plete with power supplies, display and control panel, and finished cabi-
net. It can directly address up to 16k 8-bit bytes of memory which can
be any mix of ROMs, PROMs, or RAMs. The Intellec 8 is designed
around the Intel 8008 central processor chip. There are 48 instructions
including conditional branching, binary arithmetic, logical, register-to-
register, and memory reference operations. 1/0O channels provide eight
8-bit input ports and twenty-four 8-bit output ports — all completely
TTL compatible. The unit has interrupt capability and a two-phase
crystal clock that operates at 800kHz providing an instruction cycle
time of about 12.5us.

Bare Bones 8. The Bare Bones 8 has the same capability as the Intellec
8 only it does not include the power supplies, front panel, or finished
cabinet. .1t is designed as a rack-mountable version.

The Intellec 8 system comes with a standard software package which
includes a system monitor, resident assembler, and text editor. The
programmer can prepare his program in mnemonic form, load it into the
Intellec 8, edit and modify it, then assemble it and use the monitor to
load the assembled program.

Other development tools for the Intellec 8 include a PL/M compiler,
cross assembler, and simulator designed to operate on large scale general.
purpose computers. PL/M, a new high-level language, has been develop-
ed as an assembly language replacement. A PL/M program can be writ-
ten in less than 10% of the time it takes to write that same program in
assembly language without loss of machine efficiency.

Standard Microcomputer Modules. Microcomputer Modules, standard
cards that can be purchased individually so that the designer can develop
his system with as little or as much as he needs, are also available.

Additional CPU, Memory, Input/Output, PROM Programmer, Universal
Prototype, and other standard modules provide developmental support
and systems expansion capability.

103

Intellec 8/Bare Bones 8

MICRO
COMPUTERS

intel

- MCS-8 MICROCOMPUTER DEVELOPMENT SYSTEMS

= Intellec 8 (imm8-80A): Compiete Microcomputer
Development System
Central Processor Module
RAM Memory Modules (8192 x 8)
Input/Output Moduie (TTL compatible)
PROM Memory Module {4k x 8 capacity;
1k Resident System Monitor included)
PROM Programmer Module
Control Console and Display
. Power Supplies and Cabinet
® Bare Bones 8: MCS-8 System without power
supplies, cabinet, or control console
® Standard Software
Resident Assembler
System Monitor Text Editor

Requires
8k of RAM

The Intellec 8 is a complete microcomputer development
system for MCS-8 microcomputer systems. Its modular
design allows the development of any size MCS-8 system,
and it has built-in features to make this task easier than
it has ever been before.

The basic Intellec 8 (imm8-80A) consists of six microcom-
puter modules (CPU, 2-RAM, PROM, 1/0 and PROM pro-
grammer), power supplies, and console and displays in a
small compact package. The heart of the system is the
imm8-82 Central Processor Module. It is built around
Intel’s 8008-1, an 8-bit CPU on a chip. It contains all
necessary interface to control up to 16k of memory, eight
8-bit input ports, twenty-four 8-bit output ports, and to
respond to real time interrupts.

The intellec 8 has 9k bytes of memory in its basic con-
figuration and may be expanded up to a maximum of
16,384 bytes of memory. Of the basic 9k bytes of mem-
ory, 8192 bytes are random access read/write memory
located on the imm6-28 RAM Memory Modules and are
addressed as the lower 8k of memory. This memory may
be used for both data storage and program storage. The re-
maining 1024 bytes of memory are located on the imm#6-26
PROM Memory Module and addressed as the upper 1280
bytes of the 16k memory. This portion of memory is a
system monitor in five 1702A PROMs. Eleven additional
sockets are available on the imm6-26 for monitor or pro-
gram expansion. Control for the PROM Programmer
Module (imm6-76) is included with the monitor for system
control.

PROM memory modules and RAM memory modules may
be used in any combination to make up the 16k of direct-
ly addressable memory. Facilities are built into these
modules so that any combination of RAM and ROM or
PROM may be mixed in 256 byte increments.

Input and output in the Intellec 8 is provided by the
imm8-60 1/0O module. It contains four 8-bit input ports,
and four 8-bit output ports. In addition it contains a
universal asynchronous transmitter/receiver chip as well
asa teletype driver, receiver, and reader control. Bit serial
communication using only the teletype drivers, receivers,
and the 1/0 port, is also possible with this module.

The universal asynchronous transmitter receiver chip may

104

® 9k bytes of Memory (expandable to 16,384 bytes
— Intellec 8) .

® bk bytes of Memory (expandable to 16,384 bytes —

Bare Bones 8)

Direct Access to Memory and 1/0

Four 8-bit input ports (expandable to eight)

Four 8-bit output ports (expandable to twenty-four)

Universal Asynchronous Transmitter Receiver for

serial communications interface

Real time interrupt capability

® Crystal controlled master system clock

operate at either 110 baud for standard teletype inter-
face or 1200 baud for communication with a high speed
CRT terminal. Additional 1/0 modules, imm8-60, and
output modules, imm8-62, can expand the 1/0 capability
of the Intellec 8 to eight input ports and twenty-four
output ports, all TTL compatible.

An interrupt line and an 8-bit interrupt instruction port
is built into the imm8-82 Central Processor Module. When
an interrupt occurs, the processor executes the instruction
which is present at the interrupt instruction port. In the
Intellec 8, both the interrupt line and the interrupt instruc-
tion port are connected to the console. The processor
may be interrupted by depressing the switch labeled INT,
and the interrupt instruction is entered in the ADDRESS/
INSTRUCTION/DATA switches.

Additional module locations are available in the Intellec 8
so the user may develop his own custom interface using
the imm6-70 Universal Prototype Module. All necessary
control signals, data, and address buses are present at the
connectors of the unused module locations for this ex-
pansion. When memory, /0, and custom interfaces are
added to the Intellec 8, care should be taken not to ex-
ceed the built-in power supply capability.

Every Intellec 8 comes with three basic pieces of software,
the systems monitor, a resident program located in the
upper 1280 bytes of memory, a symbolic assembler and
a text editor. The resident systems monitor allows the
operator to punch and load tapes, display and alter mem-
ory, and execute programs.

With the PROM Programmer Module, 1702A PROMs may
be programmed and verified under control of the system
monitor.

The text editor is a paper tape editor to allow the oper-
ator to edit his source code before assembly. The assem-
bler takes this source tape and translates it into object
code to run on the Intellec 8 or any MCS-8 system.

The Intellec 8 microcomputer development system is also
available in a Bare Bones 8 version. In this version the
power supply, chassis, console, and display are removed
leaving the user a compact rack mountable chassis to
imbed in his own system.

|nb| ~ Intellec 8/Bare Bones 8 [

SYSTEMS BLOCK DIAGRAM

AND CONTROL
SWITCHES

INTERRUPT INSTRUCTION BUS

CONTROL BUS),

FRONT PANEL
CONTROL LOGIC

CPU
imm8-82

N N

DATA FROM MEMORY

11
MEMORY ADDRESS BUS/OUTPUT DATA

]

DATA TO MEMORY

DATA FROM MEMORY

MEMORY
MODULE ‘
RAM OR PROM
imm6-28 imm6-26
DATA TO MEMORY ™
_L ® ANY COMBINATION TO
o~ ==Ll ~L ~L @ MAX 16k OF MEMORY ==L
T .
DATA FROM MEMORY)
MEMORY
MODULE-
RAM OR PROM
imm6-28 imm6-26 R
DATA TO MEMORY >
DATA INPUT BUS MEMORY ADDRESS BUS/OUTPUT DATA
e [32 DATA LINES _)
4 OUTPUT
PORTS < 32 DATA LINES INPUT/
OUTPUT OUTPUT s
MODULE : MODULE 64 DATA LINES > ouTPUT
TELETYPE OR ‘ imm8-60 imm8-62 PORTS
oM NS < SERIAL > <L MEMORY ADDRESS BUS/OUTPUT DATA>
INTERFACE
CONTROL BUS
omy [_szoataLiNes
4 OUTPUT < -
32 DATA LINES INPUT/
PORTS OUTPUT OUTPUT 8
MODULE MODULE 64 DATA LINES) OUTPUT
TELETYPE OR imm8-60 |@m8~62 PORTS
c O;&%‘;gi'ﬁﬁms < SERIAL > <MEMORY ADDRESS BUS/OUTPUT DATA>
INTERFACE '

105

I Intellec 8

INTELLEC 8 CONTROL CONSOLE AND DISPLAY

The Control Console directs and monitors all activities of the ® CYCLE provides continuous display of the processor's
Intellec 8. Complete processor status, machine cycle condi- machine cycle status.

tions and operational control of all processor activity are 9. FETCH indicates the current machine cycle is fetching an
provided, and additional controls facilitating program de- instruction from memory.) '

bugging and hardware checkout are included on the control 10.MEM indicates the processor is executing a memory read (PCR)
console. or memory write (PCW) cycle, or, under manual control, a

direct access to memory is in progress.
11.1/0 indicates the processor is executing an 1/0 read or write

® STATUS is a display of the operating mode of the pro- cycle (PCC) or, under manual control, a direct access to 1/0 is

cessor. in progress.
1. RUN indicates the processor is running. 12. DA indicates a direct access to memory or 1/0 is in progress.
2.WAIT indicates the processor is waiting for memory or 1/0 to 13. READ/INPUT indicates a memory or input read operation is
be available, in progress.
3. HALT indicates the processor is in a stopped state. 14.WRITE/OUTPUT indicates a memory or output write operation
4. HOLD indicates an 1/0 or memory access is in progress from is in progress.
the Control Console (occurs with WAIT or HALT). 15. INT indicates an interrupt cycle is in progress.
5. SEARCH COMPL indicates the processor has executed instruc- 16. STACK not applicable.
tions until the search address and pass counter settings have ® ADDRESS is a display of memory and 1/O address.
been reached. (See LOAD PASS 26, and SEARCH-WAIT 33) 17.INDICATORS 14-15 not applicable.
6. ACCESS REQ indicates an 1/0O or memory access is pending 18. INDICATORS 0-13 are a display of the address of memory
from the Control Console. being accessed during a Fetch, Read, Write, or during manual
7.INT REQ indicates an interrupt is pending from the Control MEM ACCESS.
Console (see INT 38). 19. INDICATORS 9-13 are a display of the I/0 address during an \
8. INT DISABLE not applicable, input, an output, or during a manual 1/0 ACCESS.

DOOO® O ®

0@0@@0@00@

MCsS

STATUS 1 U T T T e e

SRCH ACCESS INT INT READ/ WRITE J :
RUN WAIT HALT HOLD COMPL REQ ~ REQ DISABLE FETCH MEM (/O DA |NPUT OUTPUT INT STACK

ADDRESS
15

INSTRUCTION / DATA™ REGISTER/FLAG DAJA=————————————————
s / ER/ C P z -
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 (i

ADDRESS / DATA ADDRESS [INSTRUCTION / DATA'
MEM ADDRESS HIGH [/ 1/O ADDRESS / SENSE DATA MEM ADDRESS LOW / INT INST/ DATA / PASS COUNT
15 4 13 12 n 10 9 6 5 4 3 2 Ty

| N .

I
- e
: |

8

® @0 @

ADDRESS CONTROL MODE
LOAD 1/O MEM SRCH-

DECR INCR LOAD SENSE ACCESS ACCESS WAIT WaIT
|

intgl corporation

@ ®® OIDIDIOXED) (39 @) @) () @ @)

Intellec 8

MICRO
COMPUTERS

= INSTRUCTION/DATA is a display of the instruction

or data.

20.INDICATORS 0-7 are a display of the instruction or data
between the processor and memory or |/0.

REGISTER/FLAG DATA is the display of the proces-
sor data bus during executions of an instruction (dis-
play is dependent upon instruction being executed).

21.INDICATORS 0-7 are a display of the contents of the CPU data
bus when the instruction is executed. In the case of move
instructions, the contents of the source register is displayed.
Flags C, P, Z, and S are a special case. The flag status appears
in the lower four bits, only when an input instruction is
executed,

ADDRESS/DATA These eight switches provide entry
of address or data for manual or SENSE operation of
the processor (see SENSE 30).

22. MEM ADDRESS HIGH The upper six bits of memory address
for direct access or search operations are entered here.

23.1/0 ADDRESS The five bit |/O address for manual 1/0 ACCESS
is entered here.

24.SENSE DATA Data to be input during a SENSE mode
operation is entered here (see SENSE 30).

intgllec 8

107

ADDRESS/INSTRUCTION DATA These eight

switches provide entry of data, address, and instruc-

tions during manual or interrupt operation of the

pracessor.

25.MEM ADDRESS LOW The lower eight bits of memory address
for direct access or search mode operation are entered here.
INT INST During an interrupt cycle the interrupt instruction is
fetched from here (see INT 38).
DATA Data for deposit to memory or an output port during
manual operation is entered here (see DEP 36 , and DEP AT
HLT 37).
PASS COUNT Data to be loaded into the pass count register is
entered here (see LOAD PASS 26.).

ADDRESS CONTROL These four switches control

addressing of memory and |1/0 and loading of the

search address during manual operation of the proces-

sor.

26. LOAD PASS Loads pass count into pass count register (PASS
COUNT is the number of times the processor will iterate

* through the search address during a search operation before in-

dicating SEARCH COMPLETE (see SEARCH-WAIT 33 and
SEARCH COMPL 5)

27.DECR decrements the loaded address by one (see LOAD 29).

28. INCR increments the loaded address by one (see LOAD 29).

29.LOAD loads contents of address high and low into memory
access register for manual direct access to memory or search
mode operation (see MEM ACCESS 32, and SEARCH-WAIT
33).

MODE These five switches select the processor’'s mode

of operation.

30. SENSE causes the processor to input data from the SENSE
DATA switches during execution of an input instruction instead
of the addressed input port (see SENSE DATA 24).

31.1/0 ACCESS provides access to any input port and control of
any output port when the processor is in a WAIT mode.

32. MEM ACCESS allows access to and control of any location in
memory when the processor is in the WAIT mode.

33.SEARCH-WAIT provides for execution of a program to a
specific location, where the processor enters a wait mode and
displays current system conditions.

34.WAIT causes the processor to go into a manual WAIT mode.

CONTROL These five switches provide operator con-

trol of the processor.

35.STEP/CONT provides single step execution of a program while
the processor is in a WAIT mode or continuation of a program
from the SEARCH COMPLETE condition.

36. DEP deposits an 8-bit word to memory or output during a
memory or |/O access operation (see DATA 25).

37.DEP AT HLT deposits an 8-bit word to a selected memory lo-
cation or output automatically during a programmed HALT
(see DATA 25).

38. INT causes the processor to execute an interrupt cycle, fetching
the interrupt instruction from the INT INST switches (see INT
INST 25).

39. RESET causes processor to begin execution of program at
memory location zero by resetting program counter to zero.
All other registers remain unchanged.

POWER and PROM PROGRAMMING

40. PRGM PROM PWR Power switch for high voltage used
with PROM programmer.

41.POWER Key operated main power switch

42.PRGM PROM Zero insertion force socket for 1602A or
1702A PROM to be programmed

Intellec 8/Bare Bones 8

“ MIGRO
COMPUTERS |}

intal

SYSTEMS SOFTWARE

The Intellec 8 and Bare Bones 8 Microcomputer Development Systems come with

three pieces of software:
Assembler.
loaded with the System Monitor.

SYSTEM MONITOR

® | oads and punches paper tape

® Displays and alters contents of memory
® Fills memory with constants

® Executes programs in memory

® Moves blocks of data in memory

® Programs 1602A or 1702A PROMs

The System Monitor is contained in five 1702A PROMs
and s assigned to the upper 1280 words of memory,
leaving the lower 15k of memory for program and data
storage. This executive software allows the operator to
load and punch BNPF or hexadecimal format tapes, dis-
play and alter memory, load constants to memory, move
blocks of RAM memory, and execute user programs.

The System Monitor is extended by the control software
for the imm6-76 programmer module, which gives the
monitor the ability to program 1602A to 1702A PROMs
as well as being able to load memory from already pro-
grammed PROMs for duplication and verify the contents
of PROMs against master tapes.

TEXT EDITOR

e Edits symbolic data from paper tape with data from
operator’s terminal

o Edited output is available via paper tape

® Appends text to editor input buffer

® Moves pointer to any desired location

® Finds and inserts or substitutes strings

® Deletes lines selectively

The Text Editor allows the operator to edit his source
code, making corrections and additions. He may append
code, delete code, locate strings, insert strings, substitute
strings and output edited code via paper tape. The text
editor runs on a minimum Intellec 8 system with teletype
/0. (Requires a minimum of 8k x 8 of RAM.)

108

Resident System Monitor, Text Editor and Symbolic
The Text Editor and Assembler are supplied on paper tape and are

ASSEMBLER

¢ Standard symbolic assembler
® [nput via prepunched paper tape
¢ Output in 8008 object code

The Symbolic Assembler is a multiple pass type. During
Pass 1 the assembler reads the source code from the paper
tape and generates a symbol table for later use. During
Pass 2 the assembler generates the assembly listing. Also
at this time, any detectable errors such as undefined jumps
or missing symbols are indicated by a diagnostic printout
on the teletype. Pass 3 may now be run. It generates
object code, and punches it on paper tape. [Requires a
minimum of 8k x 8 of RAM.]

DEVELOPMENT SUPPORT:
PL/M COMPILER, ASSEMBLER and SIMULATOR

In addition to the standard software available with the
Intellec 8, Intel offers a PL/M compiler, cross assembler,
and simulator written in FORTRAN IV and designed to
run on any large scale computer. These routines may be
procured directly from Intel, or alternatively, designers
may contact a number of nation-wide computer time-
sharing services for access to the programs. The output
from both PL/M and the MCS-8 Assembler may be run

directly on the Intellec 8 Microcomputer Development
System.

PL/M Compiler: PL/M is a high level procedure-oriented
systems language for programming the Intel MCS-8 micro-
computer. The language retains many of the features of
a high-level language, without sacrificing the efficiencies
of assembly language. A significant advantage of this
language is that PL/M programs can be compiled for either
the Intel 8008 or future intel 8-bit processors without
altering the original program.

Assembler: The MCS-8 Assembler generates object codes
from symbolic assembly language instructions. It is de-
signed to operate from a timeshared terminal.

Simulator: The MCS-8 Simulator, called INTERP/8, pro-
vides a software simulation of the Intel 8008 CPU, along
with execution monitoring commands to aid program
development for the MCS-8.

|nte[_Intellec 8/Bare Bones 8 | comnens |

Word Size:

SYSTEMS SPECIFICATIONS

Data: 8 bits * Weight: 30 Ib.

Instruction: 8, 16, or 24 bits Standard Software: System Monitor
Memory Size: 9k bytes Intellec 8/5k bytes Bare Bones Resident Assembler

expandable to 16k bytes Text Editor

~ Instruction Set: 48, including: conditional branching, Support Software: PL/M Compiler written in

binary arithmetic, logical, register-to- . Cross Assembler - FORTRAN IV

register and memory reference Simulator]

operations ‘ STANDARD SYSTEMS and OPTIONAL MODULES
Machine Cycle Time: 12.5us Intellec 8 (imm8-80A) Standard System includes the following
System Clock: Crystal controlled at 800kHz +0.01% Modules and Accessories:
1/0 Channels: 4 expandable to ® Central Processor Module ® Control and Display Panel

8 input ports TTL ® [nput/Output Module ® Finished Cabinet

4 expandable to Compatible ® PROM Memory Module ® Standard Software:

24 output ports ® RAM Memory Modules (Two} System Monitor
Interrupt: * Single Level @ Chassis with .Mother. Board Residen’f Assembler
Direct Access to Memory: Standard via control console _.' Power Supplies ° PR;3;E£::;ming Module
Memory Cycle Time: Tus ’ Bare Bones 8 (imm8-81) Standard System includes the following
Operating Temperature: 0°C to 55°C Modules:
DC Power Supplies: Vee =5V, Ige = 12A" . e Central Processor Module e Standard Software:
(standard Intellec 8) Vpp = =9V, Ipp = 1.8A e Input/Output Module System Monitor

. Vag = ~12V. lgq = 0.06A e PROM Memory Module . Resident Assembler *
DC Power Requirement: Vpe =5V£5%, loc = 11A max.,6A typ. e RAM Memory Module Text Editor *
" Vpp =—9+5%, Ipp = 1A max., 0.5A typ. e Chassis (rack mountable “Reaui B
Vgg = —12V56%, I = 0.03A max., 0.016A typ. with Mother Board) gl Juies a minimum of

AC Power Requirement: 60Hz, 115 VAC, 200 Watts

(standard Intellec 8) *Larger power supplies may be required for Optional Modules available for the Intellec 8 and Bare Bones 8:
expanded systems. ® Additional /O or Output Modules
Physical Size: Intellec 8: 7" x 17 1/8" x 12 1/4" ® Additional RAM Memory Modules

® Universal Prototype Module
® Module Extender
® Rack mounting kit for Intellec 8

(table top only)

Bare Bones 8: 6 3/4” x 17" x 12"
(suitable for mounting in standard
RETMA 7’ x 19" panel space)

The standard intellec 8 comes with the modules
shown. Expansion capability of both 1/0 and
Memory to a full MCS-8 system is provided by
using open locations on the motherboard.

BUS INTERFACE
FRONT PANEL CONTROLLER

CUSTOM INTERFACE MAY BE USES\/ PROM, PROGRAMMER MODULE
IN ANY OF THESE LOCATIONS

Inteliec 8 and Bare Bones 8 Module Assignments

109

|nb| Microcomputer Modules

imm 8-82 CENTRAL PROCESSOR MODULE

a Complete Central Processor Module with ® Directly addresses eight input ports and
system clocks, interface and control for twenty-four output ports
memory, |/0 ports, and real time interrupt B Subroutine nesting to seven levels
® The heart of this module is Intel’s 8008-1 ® Real time interrupt capability
processor on a chip — p-channei silicon gate ® Direct memory access capability
Mo_s] u Interface to memory, /O and interrupt ports
® 48 instructions, data oriented through separate TTL buses
® Accumulator and six working registers ® Two phase crystal clock — 800kHz
® Direct addressing of up to 16,384 bytes of ® 12.5us instruction cycle

memory. (PROM, ROM, or RAM)

The imm8-82 Central Processor Module is a complete 8-bit parallel central processor unit. It contains complete
control for interface to memory and 1/0. This is the main module in Intel’s Intellec™ 8 systems.

The imm8-82 is built around Intel’s 8008-1 CPU on a chip. It executes 48 instructions including conditional
branching, register to register transfers, arithmetic, logical and 1/O instructions. Six 8-bit registers and an 8-bit
accumulator are provided. Subroutines may be nested to seven levels. Real time interrupt capability is prowded
and the processor may directly address up to 16,384 bytes of memory.

The imm8-82 has a fourteen bit TTL compatible memory address bus, an 8-bit data output bus and an 8-bit
memory data input bus. Memory read and write signals and the wait request signal provide interface at TTL
levels to any type of memory (including PROM, ROM, and RAM). Asynchronous interface to slower speed
memories (access > 1us) is provided by the wait request signal. This causes the processor to wait for memory
response to a read or write command.

The Central Processor Module directly addresses up to eight 8-bit input ports and twenty-four 8-bit output ports.
The 5-bit |/O address is contained in the upper byte of the memory address bus. Addresses O through 7 are
defined as input ports, and 8 through 31 as output ports. Control signals, 1/0 cycle, I/O in and 1/0 out, define
the 1/0 cycle and its function. An 8-bit data output bus and an 8-bit data input bus, both TTL compatible,
provide data channels in and out of the processor module.

Real time interrupt capability and direct memory access capability complete the list of functional features for
the imm8-82. During an interrupt, the Central Processor Module responds to the instruction presented at the
8-bit interrupt instruction port. Unless the main program flow is altered by the interrupt instruction, the exe-
cution will continue where it left off before processing the interrupt. Eight bits of data including sign, carry,
zero and parity flags are latched on a separate bus during the execution portion of most instructions.

The direct memory access capability allows an alternate source to access memory or |/O while temporarily sus-
pending processor operation. At the end of this alternative access to memory, the processor may return to nor-
mal program execution.

All system timing is derived from a two phase crystal clock running at 800kHz. This gives a machine cycle time
of 12.5us+ 0.01% and provides an accuraté timing source for software delay loops and other timing requirements.

KQM—-‘WWO. N
MW%MNO,*

Central Processor Module

110

ntel

Microcomputer Modules

MICRO
COMPUTERS

Central Processor Module Specifications

Word Size:

Central Processor:

Instruction Set:

Memory Addressing:

Memory Interface:

1/0 Addressing:

. asynchronous operation with memory

Instruction: 8, 16, or 24 bits

Data: 8 bits

8008-1 CPU, 8 bit accumulator, six
8-bit registers, subroutine nesting to
seven levels, interrupt capability,

48 including conditional branching,
binary arithmetic, logical operations,
register-to-register transfers, and 1/0
Any combination of PROM, ROM and
RAM up to 16,384 bytes

Address: 14 bits TTL latching bus
Data: 8-bit TTL bus to and from
memory

Input: Eight 8-bit input ports
Output: twenty-four 8-bit latching
output ports

System Clock:

Connector:

Board Dimensions:

Operating Temp :
DC Power
Requirements:

Support Software:

Crystal controlled, 800kHz = 0.01%

Processor cycle time: 12.5us

Dual 50-pin on 0.125 in. centers.

Connectors in rack must be positioned

on 0.5 in. centers min.

Wirewrap P/N C800100 from SAE
P/N VPBO1C50EOQ0A1

from CDC
6.18 in. x 8.0 in. x 0.062 in. Board to
be on 0.5 in. centers minimum

0°C to +55°C

Vce =15V £ 5%,

lcc = 2.2A max, 1.0A typical
Vpp = -9V .+ 5%,

Ipp = 0.06A max., 0.03A typical

. . PL/M Compiler itten'i
1/0 Interface: 8-bit TTL compatible buses to and from Cross Asserrr:bler Written in
R . r
CPU. 8-bit TTL latched bus with : FORTRAN IV
X K . . Simulator
execution data including flags (sign,
parity, zero, and carry information)
L] -
imm8-82 Block Diagram
(INT'ACK) T11 -—
ﬁ ‘
= DATA FROM
cPU = (MD1 07)
STATE T;‘A? -~ . MEMORY
o A<— Vi INT INST
(HALT ACK) 5TOP <—— 7 DATA MUX | <= pqpy (110:7)
(WAIT ACK) WAIT -— INPUT PORT
CRYSTAL DATA (IN 07)
__ CLOCK
{PCR) MEM READ CYC ——
INT CYC ~——
S OR (FCW) MEW WRITE CVC » 0SC
_ (PCC) 1/0 CYC <a— > SYNCA| cPuCLOCK
(PCi) FETCH CYC ~— - > 01 BUS OUT
» 02
CONTROL Y
LOGIC
[‘ —
WAIT REQ —— .
cpPu HOLD REQ —» READY et ’
cTL INT REQ — INTERRUPT _— MEMORY mAD 013)
BUS |HALT INT REQ —| o STATE LINES 8008 CPU /8 BUS ,8 | aopbress | . ADDRESS
IN JAM ENBL —— SYNC D DRIVER I LATCHES | -
;»
—» (CCO
RAM MOD ENBL —— L :Cm’,
PROM MOD ENBL ——] BUS CTL +
ADDRESS CONTROL +
CYCLE CODING (CCg, CC1)
L8 DATA TO
7 MEMORY (DB 0-7}
— i70 1N —> T40 (5)
——» /0 OUT 8 H—» Ta1 (Z)
— DB IN romi —»- T42 (P)
—»- DB OUT ConTaaE REG/FLAG f— T43 (C)
——> BUS BUSY SIGNALS LATCH | —» T42
—» R/W |—> T45
— HOLD ACK —> T46
— INTREQ LTH | > 727

m

|nU Microcomputer Modules

imm6-28 RAM MEMORY MODULE

& 4096 8-bit bytes per module ® | ow power requirements

m Static memory, no clocks required ® For use in expansion of Intellec 8 systems to 16k

bytes of
® Interfaces with the imm8-82 8-bit ytes of memory

Central Processor Module ® Built-in decoding of module select for expansion

| to 65k bytes of memory
® Single +5V power supply

The imm6-28 RAM Memory Module is a standard 4k x 8 memory module designed for use with the Intellec 8
Microcomputer Development System. This module contains address and data buffers, read/write timing circuits
and is implemented with Intel’s 2102 1k x 1 static RAM. Although the basw memory module is 4096 x 8, con-
figurations as small as 1024 x 8 are also available.

The imm6-28 RAM Memory Module is used with the MCS-8 Micro Processor in configurations of up to 16k bytes
of memory (4 modules). The imm8-82 Central Processor Module directly interfaces with the imm6-28 RAM
Memory Module with all module select decoding done directly on the connector. This allows an imm6-28 to be
moved to any location within the 16k of memory without making any changes in the module. This built-in
decoding allows additional expansion of memory by bank switching.

RO

RAM Memory Module

112

Microcomputer Modules |

ntel

RAM Memory Module Specifications

Memory Size:

Word Size:

Memory Expansion:
Cycle Time:
Interface:

Capacity:

Connector:

Board Dimensions:
Operating Temperature:
DC Power Requirement:

4k bytes
8 bits
To 65k bytes (16 modules)
1us
TTL compatible inputs; open collector outbuts (positive true logic)
4096 bytes
Dual 50-pin on 0.125 in. centers. Connectors in rack must be positioned on 0.5 in. centers min.
Wirewrap P/N C800100 from SAE
P/N VPBO1C50EQ0A1 from CDC
6.18 in. x 8.0 in. x 0.062 in. Board to be on 0.5 in. centers minimum.
0°C t0 55°C
Vee =45V £5%, lcc= 2.5A max., 1.25A typical

imm6-28 Block Diagram

RW
READ/
BYTE 1 WRITE |
CONTROL
BYTE 2
Y
DBy ——————— - » mDO
DBy e} L MDI
[T —— L > MD2
8 8
R ———— -
DB, INPUT / . MEMORY ARRAY / OUTPUT mD3
7 7>
—— e i
DBy BUFFER 4096 x 8 BUFFER MD4
DBg o3 L » MmDS
DBg —————————— - mDs
DBy ———————| - mD7
DATATO DATA FROM

MEMORY / Q [A MEMORY

MAD 12—
MAD 12—
MAD 13 =]
MAD 13 ——
MAD 14 >
MAD 14 4———————

R LOGIC
MAD 15 €——]

MS 12 ——————
MSs 13 ——————————
MS 14 ———————

MS 15 ———————

MODULE
MAD 15 —————————3] SELECT

MODULE SELECT

12

Y

ADDRESS BUFFER

y

MAD 0 MAD 1 MAD 2 MAD 3 MAD 4 MAD 5 MAD 6 MAD 7 MAD 8 MAD 9 MAD 10 MAD 11

MEMORY ADDRESS

RAM } y
MOD ENBL

ADR STB

113

|nte| Microcomputer Modules

imm6-26 PROM MEMORY MODULE

® Provides sockets for up to sixteen PROMs = Accepts Intel 1602A or 1702A PROMs or

(4096 x 8) - 1302 ROMs
m Static memory, no clocks required & Logic to allow any mix of PROM in 256 byte

(8-bits) increments with RAM to 16k when used
with the imm8-82 8-bit Central Processor Module

& Built in decoding of module select for expansion
to 65k of memory

& Interfaces with imm8-82 8-bit Central
Processor Module

The imm6-26 PROM Memory Module may be used with the imm8-82 8-bit Central Processor Module for non-
volatile program storage. Each PROM Memory Module has sockets for from one to sixteen of Intel’s 1602A or
1702A PROMs. In addition, the 1302 mask programmed ROM may be used in place of the PROMs in OEM
applications. v

The PROM Memory Module is used for program storage and look-up-tables with the MCS-8 8-bit Micro Proces-
sor. It interfaces directly with the imm8-82 Central Processor Module and may be used with the imm6-28 RAM
Memory Module in any combination to 16k bytes. Special control logic on the imm6-28 module allows any mix
of PROM and RAM in a system in 256 byte increments.

For memories larger than 4k bytes, decoding on the module allows addressing of up to sixteen imm6-28 modules
for a total of 65k bytes of memory. The decoding is accomplished on the module connector. Any imm6-26
may be plugged in to any memory module connector. ’

PROM Memory Module

114

| : - , | - MICRO
intgl’ Microcomputer Modules

PROM Memory Module Specifications

Memory Size: 4k bytes
Word Length: 8 bits
Memory Expansion: To 65k bytes (16 modules)
Interface: TTL compatible inputs; open collector outputs (positive true logic)
Capacity: ' 256 to 4096 bytes in 256 byte increments
Connector: Dual 50-pin on 0,125 in. centers. Connectors in rack must be positioned on 0.5 in. centers min.
Wirewrap P/N C800100 from SAE

P/N VPBO1C50EQ0A1 from CDC v
Board Dimensions: 6.18 in. x 8.0in. x 0.062 in. Board to be on 0.5 in. centers minimum,
Operating Temperature: 0°C to 55°C
DC Power Requirement: Voo = +5V £5% lcc = 1.6A max., 1.1A typical!

Vpp =—9V 5% Iop = 1.6A max., 1.0A typical"

(1)Board loaded with all 16 PROM:s.

imm6-26 Block Diagram |

MAD 0 >
MAD 1 —————————
MAD 2 > 8
[N T4
MAD 3 ADDRESS
MAD 4 »| BUFFER L MDo
MAD 5 —me 3 ————— » MD1
MAD 6 » o MD2
MAD 7 > ' - MD3
MEMORY /8 DATA
ARRAY 7 BUFFER pb——————p» MD4
—
MAD 8 > MDS
b
MAD 9 »| cHie 16 256 x 8 . mDé
) SELECT v 1O - » mD7
MAD 10 »] LoGiC 4096 x8 -
MAD 11 . DATA FROM
MEMORY
A
MAD 12 >
WAD 12 €——————
MAD 13 > MODULE SELECT
WMAD 13 <———————md

RAM MOD ENBL

MAD 14 P
MAD 14 -
MODULE
MAD 15 > SELECT
LOGIC
MAD 15 &—
MS 12 -
MS 13 -
MS 14 o
MS 15 t
PROM 0D }
ENBL

115

|nteL Microcomputer Modules

imm8-60 INPUT/OUTPUT MODULE

Four 8-bit input ports and four 8-bit latching output ports
TTL compatible

Interfaces directly with imm8-82 Central Processor Module
Teletype asynchronous transmitter/receiver and controls on board
Transmission rates of 110 or 1200 baud

Crystal clock for asynchronous transmitter/receiver

Capable of high speed serial communications to 9600 baud

The imm8-60 1/0 Module provides four 8-bit TTL compatible input ports and four 8-bit TTL compatible latch-
ing output ports. [t interfaces directly with the imm8-82 Central Processor Module. Built-in decoding on the
board provides for expansion of 1/0 to the maximum with the addition of one imm8-60 and two imm8-62 Out-
put Modules (eight input ports and twenty four output ports).

For more efficient use of the imm8-82 Central Processor, an asynchronous transmitter receiver is included in the
module. This frees the processor of time-consuming bit manipulation during bit serial data transmission. The
transmitter receiver operates at either 110 or 1200 baud and by alteration of the basic clock frequency, data
rates to 9600 baud may be obtained. The module contains drivers and receivers for connection to a teletype.
These may be used with the asynchronous transmitter receiver or directly with 1/0 ports for bit serial transmis-
sion and reception of teletype data.

The module is configured with all common control signals bused to the module on the PC connector, while all
1/0 signals are available at the ribbon connectors on the top of the module.

1/0 Module

116

ntel

Microcomputer Modules

MICRO !
COMPUTEFRS @&

1/0 Module Specifications

Word Size:
Capacity:
1/0 Interface:

Serial Communication Rate:
Connector:

Board Dimensions:
Operating Temperature:
DC Power Requirement:

8 bits
Four 8-bit input ports, four 8-bit output ports
Input ports: TTL compatible (complement Data In)
Output ports: TTL compatible (complement Data Out)
Communications Interface: _
Direct: TTL compatible input and output
TTY: 20mA TTY interface with discrete transmitter and receiver
TTY RDR Control: Discrete relay interface

Crystal controlled to 110 or 1200 baud
Dual 50-pin on 0.125 in. centers. Connectors in rack must be positioned on 0.5 in. centers min.
Wirewrap P/N C800100 from SAE
P/N VPB0O1C50EQ0A1 from CDC
Ribbon Type P/N 3417 from 3M ,
6.18 in. x 8.0 in. x 0.062 in. Board to be on 0.5 in. centers minimum.
0°C t0 55°C
Vee = +5V £ 5%, lec = 0.820A max., 0.478A Typical
Vpp = -9V + 5%, Ipp = 0.080A max., 0.050 Typical
Vgg = —12V £ 5%, Igg = 0.030A max., 0.016A Typical

imm 8-60 Block Diagram

SERIAL SERIAL
FROM TTY — DATA IN CRYSTAL DATA OUT — TO TTY
™1 RECEIVER cLOCK TRANSMITTER
Y
. "1 coMmMuNICATIONS i
PARALLEL DATA OUT 8 INTERFACE _ PARALLEL DATA IN
(RECEIVED DATA) (TRANSMITTED DATA)
A A
RESET - TTY RDR | TO READER
g |conTROL RELAY
STATUS OUT /5 : b e)
7
DATA FROM CPU 8
7 ‘ A
ADDRESSBUS 5 8 PORT 0
PORT . 7 [—
CONTROL BUS | sececr L4 8 PORT 1
o 7 ™1 outrur 7 3333&"”
: 8 PORT 2
: LATCHES ~ PORTS
X ,8 PORT 3 _
, >
y
PORTO ,8 Y ,8 DATA TO CPU
v, >
FOUR | PFORTI ,8] 4
A 7
INPUT PORT? 8 'm}f
PORTS va >
FORT3 ,8 _
ve >

117

|nteL Microcomputer Modules |

imm8-62 OUTPUT MODULE

u Eight 8-bit Latching Output Ports
® Interfaces Directly with imm8-82 CPU Module

m Decoding for Expansion to Full Output Complement

s TTL Compatible

The imm8-62 Output Module provides eight 8-bit latching output ports for direct interface with the imm8-82
CPU Module. Each port is individually addressable, and all outputs are TTL compatible. The module address
includes decoding for expansion to a full complement of 24 output ports. This may be accomplished by using
two imm8-60 1/0 Modules and two imm8-62 Output Modules. All output signals are available through a ribbon
connector at the top of the module.

. n a A8
'nte' T MADE N USA

BWA 000138

Output Module

118

MICRO
e COMPUTERS

intel°’ | Microcompute_r‘_wac\)gules

T—

Output Module Specifications

Word Size: 8-bits

Capacity: Eight 8-bit latching output ports

Interface: TTL compatible (complement Data Out)

Connector: Dual 50-pin on 0.125 in. centers. Connectors in rack must be positioned on 0.5 in. centers min.

Wirewrap P/N C800100 from SAE
P/N VPBO1C50EQ0A1 from CDC
Ribbon Type P/N 3417 from 3M
6.18 in. x 8.0 in. x 0.062 in. Board to be on 0.5 in. centers minimum.
Operating Temperature: 0°C t0 55°C
DC Power Requirement: Ve = +5V £ 5%, Icc = 0.840A max., 0.420A typical

Board Dimensions:

imm8-62 Block Diagram

A8 PORTO |
A2 > FORT1
DATA FROM CPU WA ‘ ‘
AL PORT 2
A PORT 3 EIGHT
ouTPUT 8BIT
LATCHES 8 R ouTPUT
- PORT 4 PORTS
,8 ST
v FORT5
L8 5ORTE
- PORT 6
L8 S
- PORT 7
ADDRESS BUS A2 OUTPUT A
PORT
CONTROL BUS SELECT

Microcomputer Modules

MICRO
COMPUTERS

intal

imm6-76 PROM PROGRAMMER MODULE

® High speed programming of Intel’s
1702A or 1602A PROM

= All necessary timing and level
shifting included

The imm6-76 PROM Programmer Module provides all necessary hardware and software to add PROM program-
ming capability to the Intellec 8 microcomputer development system.

The module has been designed to slip into the Intellec 8 and provides all connections to the zero insertion force
socket on the front panel. All required timing and level shifting is accomplished on the module utilizing the high
voltage power supply already located in the Inteliec 8.

Software to control programmer operation is included as part of the Intellec 8 system monitor. This software
is specifically written for the Intellec 8 and allows both programming and verification of 1602A and 1702A
PROMs. In addition, the contents of any PROM may be listed or unloaded into memory for duplication.

The imm6-76 may also be used as a stand alone PROM programmer with toggle switches or with another com-
puter providing data address and control signals.

= Direct interface with Intel’s Intellec 8
Microcomputer Development System

8 Complete software necessary for use
included with Intellec 8 system monitor

imm6-76 Biock Diagram

,8 | ADDREss
ADDR {0-7) 7 *| BUFFERS , 8
AND - ADR OUT
ADDR CTL —»1 LEVEL (0-7)
SHIFTERS Vees
5, CONTROL BUS
4
—_—— — . e
. GND POWER PRGM
v supeLY
CS {0- cC ———————| F————» /GND
S (0-3)——/—> PROGRAM REGULATOR Voo
PULSE Voo ———— | ———— Vg - TO PROM
4 TIMING BUFFERS ’
CONTROL _| STAT (0.3)4—7‘-.— Vp ————————3=] AND LEVEL | V5g
INTERFACE SHIFTERS
———» CS
Vees
ya 8 il
DATA IN (0-7) 7
8
DATA OUT (0.7) < a DATA
B BUFFERS
DATA OUT CTL < AND - WA DATA (07) |
DATA OUT ENBL <& SHITTERS
DATA IN CTL >
DATA IN ENBL »

PROM Programmer Module Specifications

System Interface:

Control Software:
Connector:

Board Dimensions:

Operating Temperature:

DC Power Requirements:

All inputs and outputs are TTL compatible and available at the ribbon connector at the top of the
module. Control for either “‘True” or “False’” data is provided. Direct interface to Intellec 8.

Included in the Intellec 8 executive monitor.

Dual 50-pin on 0.125 in. centers. Connectors in rack must be positioned on 0.5 in. centers min.
Wirewrap P/N C800100 from SAE ‘
P/N VPBO1C50E00A 1 from CDC
Ribbon Type P/N 3417 from 3M

6.18in. x 8.0 in. x 0.062 in. Board to be on 0.5 in. centers min.
0°C to +55°C

Vee = +6V + 5%, lcc = 0.8 A max., 0.5A typical

Vpp = —9V *5%, Ipp = 0.1A max., 0.08A typical

Vp=+50V, Ip = 1.0A max.

120

|nte| Microcomputer Modules oo MICRD.

imm6-70 UNIVERSAL PROTOTYPE MODULE

® Provides breadboard capability for developing ® Capacity for 60 16-pin or 14-pin sockets or 24
custom interfaces ‘ 24-pin sockets
® Standard size of all microcomputer modules u All power is bused on board. Pins on PC

connector and pins to individual sockets are

= 3M 40 pin ribbon connector on top of module g . o
~uncommitted for maximum flexibility

provides direct 1/0 connections

® Will accept standard wirewrap sockets with 0.1 in.
x 0.3 in. or 0.1 in. x 0.6 in lead spacing

The imm6-70 Universal Prototype Module is a standard size microcomputer module with power buses which in-
_terface with the Intellec 8. It provides a standard format for prototyping both customer interface and system
control. 1/0 interface is provided through ribbon-type connectors on top of the module.

The module will accept dual in-line packaged components having pin center-to-center dimensions of 0.100 inch
by 0.300 inch or 0.100 inch by 0.600 inch. These parts should be mounted in standard wirewrap sockets.

=~

TS
BERREIRERIRERRIRRTAEY 2o

T

NI

o

a5
§ o
.

-
-
o
.
-
-
™
| -

oo

Lo D e

§§!§2989§i§¥§i?{fi&ﬁ%éiliifﬁ!iﬁit@ ibio

REERERENES

LAV EIRRLE I I IIEEEEEIRLTE
AR BRI AR IR E R RRCRER ORI

-
-
-
-
-
-
e
-
P
-
-
-
-
-
-
-
- T
e
-
-
-
-
.
-
-
-
P
P
-
P
5
o
o
-
-
o §
Bl
i e |
-
v
"
-
-

I

Universal Prototype Module Specifications

Capacity: 60 16-pin or 14-pin sockets or 24 24-pin sockets. Standard wirewrap sockets with pins on
0.100 in. by 0.300 in. centers or 0,100 in. by 0.600 in. centers. Board spacing dependent on
components and sockets used.

Connector: Dual 50-pin on 0.125 in. centers.
Wirewrap P/N C800100 from SAE
P/N VPBO1C50EQ0A1 from CDC
Ribbon Type P/N 3417 from 3M
Board Dimensions: 6,18 in. x 8.0 in. x 0.062 in. Board to be on 0.5 in. centers minimum,

121

|nte| Microcomputer Modules

imm6-72 MODULE EXTENDER

= Allows any module to be extended for ease of w Standard dual 50-pin configuration for use with
debugging, testing, and maintenance all microcomputer modules

The imm6-72 Module Extender is designed to be used with the Intellec 8 system. It allows the operator to ex-
tend any module out of the cage for servicing while maintaining all electrical connections.

Module Extender

‘Module Extender Specifications

Connector: ' Dual 50-pin on 0.125 in. centers. Connectors in rack must be positioned on 0.5 in. centers min,
Wirewrap P/N C800100 from SAE

P/N VPB0O1C50E00A1 from CDC
.Extending connector is mounted on board.

Board Dimensions: 6.18 in. x 8.0 in. x 0.062 in. Board to be on 0.5 in. centers minimum.

122

123

WESTERN

William T. OBrien

17291 Irvine Blvd., Suite 262
714/838-1126, TWX: 910-585-1114 -
*Tustin, California 92680

ARIZONA
Sales Engineering, Inc.
7155 E. Thomas Road, No. 6
602/945-5781, TWX: 910-950-1288
Scottsdale 85252

CALIFORNIA
Intel Corp.
3065 Bowers Avenue
408/246-7501, TWX: 910-338-0026
*Saita Clara 95051
Intel Corp.
17291 irvine Bivd., Suite 262
714/838-1126, TWX: 910-595-1114
*Tustin 92680
Earle Associates, Inc.
4433 Convoy Street, Suite A
714/278-5441, TWX: 910-335-1585
San Diego 92111

COLORADO

Intel Corp.

1341 South Lima St.
303/755-1335
*Aurora 80010

CANADA
Muitilek, Inc.
4 Barran Street
613/825-4695
Ottawa, Ontario K2C 3H2

*Direct Intel Office

U.S. SALES AND MARKETING OFFICES

U.S. MARKETING HEADQUARTERS

3065 Bowers Avenue

408/246- 7501 TWX: 910-338-0026
Telex: 34-6372

*Santa Clara, California 95051

NATIONAL SALES MANAGER

Hank 0'Hara

3065 Bowers Avenue
408/246-7501, TWX: 910-338-0026
Telex: 34-6372

*Santa Clara, California 95051

U.S. REGIONAL SALES MANAGERS’ OFFICES

MID-AMERICA
Mick Carrier

Suite 110

13333 N. Central Expressway
214/234-1109, TWX: 910-867-4763

NORTHEAST

James Saxton

2 Militia Drive, Suite 4
617/861-1136, Telex: 92-3493
*Lexington, Massachusetts 02173

*Dallas, Texas 75231

FLORIDA

Semtronic Assotiates, Inc.
P.0. Box 1449
305/771-0010

Pompano Beach 33061
Semtronjc Associates, Inc.
685 Chelsea Road
305/831-8233

Longwood 32750

ILLINOIS
Mar-Con Associates, Inc.
4836 Main Street
312/675-6450
Skokie 60076

MARYLAND
Bamhill and Associates
1931 Greenspring Drive
301/252-5610
Timonium 21093 .
Barnhill and Associates
P.0. Box 251
301/252-5610
Glen Arm 21057

MASSACHUSETTS
Intel Corp.
2 Militia Drive, Suite 4
617/861-1136, Telex: 92-3493
*Lexington 02173
Datcom
7A Cypress Drive
617/273-2990
Burtington 01803

U.S. SALES OFFICES
MICHIGAN

Sheridan Associates, Inc.
33708 Grand River Avenue
313/477-3800
Farmington 48024

MINNESOTA
Intel Corp.
800 Southgate Office Plaza
5001 West 78th Street
612/835-6722

*Bloomington 55437

E.C.R., Inc.
5280 W. 74th Street
612/831-4547, TWX: 910-576-3153
Minneapolis 55435

MISSOURI
Sheridan Associates, Inc.
110 S. Highway 140, Suite 10
314/837-5200
Florissant 63033

NEW JERSEY
Addem
Post Office Box 231
516/567-5900
Keasbey 08832

NEW YORK

Ossmann Components Sales Corp.
395 Cleveland Drive
716/832-4271

Buffalo 14215

Addem

37 Pioneer Blvd.

516/567-5900

Huntington Station, L.1. 11746

MID-ATLANTIC
Hank Smith

NEW YORK (Continued)

Ossmann Components Sales Corp.
280 Metro Park

716/442-3290

Rochester 14623

Ossmann Components Sales Corp.
1911 Vestal Parkway E.
607/785-9949

Vestal 13850

Ossmann Components Sales Corp.
132 Pickard Building
315/454-4477

Syracuse 13211

Ossmann Components Sales Corp.
411 Washington Avenue
914/338-5505

Kingston 12401

NORTH CAROLINA

Barnhill and Associates
6030 Bellow Street
919/787-5774

Raleigh 27602

OHIO

Sheridan Associates, Inc.

10 Knollerest Drive

513/761.5432, TWX: 810-461-2670
Cincinnati 15237

Sheridan Associates, Inc.
7800 Wall Street
216/524-8120
Cleveland 44125

Sheridan Associates, Inc.
Shiloh Bldg., Suite 250
5045 North Main Street
513/277-8911

Dayton 45405

30 South Valley Road
215/647-2615, TWX: 510-668-7768
*Paoli, Pennsylvania 19301

PENNSYLVANIA
Vantage Sales Company
21 Bala Avenue
215/667-0990
Bala Cynwyd 19004
Intel Corp.
30 South Valley Road
215/647-2615, TWX: 510-668-7768
*Paoli, Pennsylvania 19301

Sheridan Associates, Inc.
4268 North Pike,

North Pike Pavilion
412/373-1070
Monroeville 15146

TENNESSEE
Barnhill and Associates
206 Chicasaw Drive
615/928-0184
Johnson City 37601

TEXAS

Evans and McDowell Assaciates
13333 N. Centra} Expressway

Room 180

214/238-7157, TWX: 910-867-4763
Dallas 75222

VIRGINIA
Barnhill and Associates
P.0. Box 1104
703/846-4624
Lynchburg 24505

WASHINGTON
SD.R2 Products and Sales
14040 N.E. 8th Stre
206/747-7424, TWX 910 443-2305
Bellevue 98007

DENMARK

John Johansen
Intel Office

Vester Farimagsgade 7
45-1-11 5644, Telex: 13567
DK 1606 Copenhagen V

AUSTRALIA
A.J. Ferguson (Adelaide) PTY. Ltd.
125 Wright Street
51-6895
Adelaide 5000

AUSTRIA
Bacher Elektronische Gerate GmbH
Meidlinger Haupstrasse 78
0222-9301 43, Telex: (01) 1532
A 1120 Vienna

BELGIUM
Inelco Belgium S.A.
Avenue Val Duchesse, 3
(02) 60 00 12, Telex: 25441
B-1160 Bruxelles

EUROPEAN MARKETING OFFICES

FRANCE

Bernard Giroud
Intel thce
Cidex R-141

94-534 Rungis

DENMARK

Sami et

Supply A/S

20, Nannasgade

Telex: 19037

DK-2200 Copenhagen N

FINLAND
Havulinna Oy
P.0. Box 468
90-61451, Telex: 12426

(1) 677-60-75, Telex: 27475

ENGLAND

Keith Chapple

Inte! Office

Broadfield House
4 Between Towns Road
771431, Telex: 837203

GERMANY

- Erling Holst

Intel Office

Cowley, Oxford

INTERNATIONAL DISTRIBUTORS

GERMANY
Alfred Neye Enatachnik GmbH
Schillerstrasse 14
041 06/612-1, Telex: 02-13590
2085 Quickborn-Hamburg

ISRAEL

Telsys Ltd.
54, Jabotinsky Road

25 28 39, Telex: TSEE-IL 333192

NETHERLANDS

Inefco N.V.

Weerdestein 205

Postbus 7815

0204416 66, Telex: 12534
Amsterdam 1011

NORWAY

Nordisk Elektronik (Norge) A/S
Mustads Vei 1
602590, Telex: 16963

SF 00100 Helsinki 10 Ramat - Gan 52 464 Oslo 2
FRANCE 'T‘gl’dm . SOUTHAFRICA
Tﬁi}?gﬁ:ﬁ;‘r{lﬂs ‘(/"’aZ)Ludoww jo Vindane S Eéc-)észnf ‘;TE?SX' 30:81 SA
626-02-35, Telex: 25997 20122 Mitano Pretoria .
92 Sewres
ORIENT MARKETING OFFICES
ORIENT MARKETING ORIENT DISTRIBUTORS
HEADQUARTERS JAPAN
JAPAN Pan Efektron Inc.
Y. Magami N e 14773

Intel Japan Corp.

Kashara Building

1-6-10 Uchikanda, Chiyoda-Ku
03-295-5441, Telex: 781-28426
Tokyo 101

124

Midori-Ku, Yokohama 226

Wolfratshauserstrasse 169
798923, Telex: 5-212870
D8 Munchen 71

SWEDEN
:_‘{orsisk Elektronik AB

ac|
08-24-83-40, Telex: 10547
S-103 Stockholm 7

SWITZERLAND
Industrade AG
Gemenstrasse 2
Postcheck 80 - 21190
01-60-22-30, Telex: 56788
8021 Zurich

UNITED KINGDOM

Walmore Electronics Ltd.
11-15 Betterton Street
Drury Lane

01-836-0201, Telex: 28752
London WC2H 9BS

WEST

U.S. DISTRIBUTORS

MID-AMERICA

NORTHEAST

SOUTHEAST

ARIZONA

Hamilton/Avnet Electronics
2615 South 21st Street
602/275-7851

Phoenix 85034

Cramer/Arizona
2816 N. 16th Street
602/263-1112
Phoenix 85006

CALIFORNIA

Hamilton/Avnet Electronics
* 340 E. Middlefield Road

415/961-7000

Mountain View 94041

Cramer/San Francisco
720 Palomar Avenue
408/739-3011
Sunnyvale 94086

Hamilton Electro Sales
10912 W. Washington Bivd.
213/870-7171

Culver City 90230

Cramer/Los Angeles
17201 Daimler Street
714/979-3000

Irvine 92705

Hamilton/Avnet Electronics
8817 Complex Drive
714/279-2421

San Diego 92123

Cramer/San Diego
8975 Complex Drive
714/565-1881

San Diego 92123

COLORADO

Cramer/Denver

5465 E. Evans Place at Hudson
303/758-2100

Denver 80222

Hamilton/Avnet Electronics
5921 N. Broadway
303/534-1212

Denver 80216

NEW MEXICO

Cramer/New Mexico
137 Vermont, N.E.
505/265-5767
Albuquerque 87108

Hamilton/Avnet Electronics
2450 Baylor Drive S.E.
505/765-1500
Albuquerque 87117

OREGON

Almac/Stroum Electronics
8888 S.W. Canyon Road
503/292.-3534 "

Portland 97225

UTAH

Cramer/Utah

391 W. 2500 South
801/487-3681

Salt Lake City 84115

Hamilton/Avnet Electronics
647 W. Billinis Road
801/262-8451

Salt Lake City 84115

WASHINGTON

Hamilton/Avnet Electronics
13407 Northrup Way
206/746-8750

Bellewue 98005

Almac/Stroum Electronics
5811 Sixth Avenue South
206/763-2300

Seattle 98108
Cramer/Seattle

5602 Sixth Avenue South
206/762-5755

Seattle 98108

ILLINOIS

Cramer/Chicago

1911 South Busse Road
312/593-8230

Mt. Prospect 60056

Hamilton/Avnet Electronics
3901 North 25th Avenue
312/678-6310

Schiller Park 60176

KANSAS

Hamilton/Avnet Electronics
37 Lenexa Industrial Center
913/888-8900
Lenexa 66215

MICHIGAN

Sheridan Sales Co.

33708 Grand River Avenue
313/477-3800
Farmington 43204
Cramer/Detroit

13193 Wayne Road
313/425-7000

Livonia 48150
Hamilton/Avnet Electronics
12870 Farmington Road
313/522-4700

Livonia 48150

MINNESOTA
Cramer/Bonn
7275 Bush Lake Road
612/941-4860
Edina 55435
Hamilton/Avnet Electronics
2850 Metro Drive
612/854-4800
Minneapolis 55420

Industrial Components, Inc.

5280 West 74th Street

612/831-2666

Minneapolis 55435
MISSOURI

Sheridan Sales Co.

110 South Highway 140, Suite 10

314/837-5200

Florissant 63033
Hamilton/Avnet Electronics
392 Brookes Drive
314/731-1144

Hazelwood 63042

OHIO

Cramer/Tri-States, Inc.
666 Redna Terrace
513/771-6441
Cincinnati 45215

Hamilton/Avnet Electronics
118 West Park Road
513/433-0610

Dayton 45459

Sheridan Sales Co.

10 Knollcrest Drive
513/761-5432
Cincinnati 45237
Cramer/Cleveland

5835 Harper Road
216/248-7740
Cleveland 44139
Sheridan Sales Co.
7800 Wall Street
216/524-8120
Cleveland 44125
Sheridan Sales Co.
Shiloh Bldg., Suite 250
5045 North Main Street
513/277-8911

Dayton 45405

TEXAS
Cramer Electronics
2970 Blystone
214/350-1355
Dallas 75220
Hamilton/Avnet Electronics
4445 Sigma Road
214/661-8661
Dallas 75240
Hamilton/Avnet Electronics
1216 West Clay
713/526-4661
Houston 77019

WISCONSIN

Cramer/Wisconsin
430 West Rawson
414/764-1700
Oak Creek 53154

125

CONNECTICUT

Hamilton/Avnet Electronics

643 Danbury Road
203/762-0361
Georgetown 06829

Cramer/Connecticut
36 Dodge Avenue
203/239-5641
North Haven 06473

'MARYLAND

Cramer/EW Baltimore
922-24 Patapsce Avenue
301/354-0100
Baltimore 21230

Cramer/EW Washington
16021 Industrial Drive
301/948-0110
Gaithersburg 20760

Hamilton/Avnet Electronics
7255 Standard Drive
301/796-5000

Hanover 20176

MASSACHUSETTS

Cramer Electronics, Inc.
85 Wells Avenue
617/969-7700

Newton 02159

Hamilton/Avnet Electronics
185 Cambridge Street
617/273-2120

Burlington 01803

NEW JERSEY

Hamilton Electro Sales
218 Little Fafls Road
201/239-0800

Cedar Grove 07009

Cramer/New Jersey
No. 1 Barrett Avenue
201/935-5600
Moonachie 07074 ,

Hamilton/Avnet Electronics
113 Gaither Drive

East Gate Industrial Park
609/234-2133

Mt. Laurel 08057

Cramer/Pennsylvania, Inc.
7300 Route 130 North
609/662-5061
Pennsauken 08110

NEW YORK

Cramer/Binghamton
3220 Watson Boulevard
607/754-6661

Endwell 13760

Cramer/Rochester

3000 Winton Road South
716/275-0300
Rochester 14623

Cramer/Syracuse
6716 Joy Road
315/437-6671

East Syracuse 13057

Hamilton/Avnet Electronics
6400 Joy Road
315/437-2642

Syracuse 13057

Cramer/Long Island

29 Oser Avenue
516/231-5600

Hauppauge, L.I. 11787
Hamilton/Avnet Electronics
70 State Street
516/333-5800

Westbury, L.1. 11590

PENNSYLVANIA
Sheridan Sales Co.
4268 North Pike
North Pike Pavilion
412/373-1070
Monroeviile 15146

ALABAMA

Cramer/EW Huntsville, Inc.
2310 Bob Wallace Avenue
205/539-5722

Huntsville 35805

FLORIDA

Cramer/EW Hollywood
4035 North 29th Avenue
305/923-8181

Hollywood 33020
Hamilton/Avnet Electronics
4020 North 29th Avenue
305/925-5401

Hollywood 33021
Cramer/EW Orlando

345 North Graham Avenue
305/894-1511

Orlando 32814

GEORGIA

Cramer/EW Atlanta

3923 Oakcliff Industrial Court
404/448-9050

Atlanta 30340

Hamilton/Avnet Electronics
6700 Interstate 85 Access Road
404/448-0800

Norcross 30071

NORTH CAROLINA
Cramer Electronics
938 Brke Street
919/725-8711
Winston-Salem 27102

CANADA

BRITISH COLUMBIA

v L.A. VARAH Ltd.
2077 Alberta Street
604/873-3211
Vancouver 10

ORTARIO

Cramer/Canada

920 Alness Avenue, Unit No. 9
Downsview

416/661-9222

Toronto 392
Hamilton/Avnet Electronics
6291 Dormain Rd., No. 19
416/677-7432

Mississauga
Hamilton/Avnet Electronics
880 Lady Ellen Place
613/725-3071

Ottawa

QUEBEC
Hamilton/Avnet Electronics
935 Monte De Liesse
514/735-6393
St. Laurent, Montreal 377

Ordering Information

1. The 8008 {CPU) is available in ceramic only and should be
ordered as C8008 or C8008-1.

2. SIM8-01 Prototyping System
This MCS-8 system for program development provides complete
interface between the CPU and ROMs and RAMs. 1702A elec-
trically programmable and erasable ROMs may be used for the
program development. Each board contains one 8008 CPU,
1k x 8 RAM, and sockets for up to eight 1702As (2k x 8 PROM).
This system should be ordered as SIM8-01 (the number of
PROM s should also be specified).

3. Memory Expansion
Additional memory for the 8008 may be developed from indivi-
dual memory components. Specify RAM 1101, 1103, 2102;
ROM 1702, 1302.

4. MP7-03 ROM Programmer
This is the programmer board for the 1702A. The 1702A control
ROMs used with the SIM8-01 for an automatic programming
system are specified by pattern numbers A0860, A0861, A0863.

5. MCB8-10 System Interface and Control Module
The MCB8-10 is a complete chassis which provides the intercon-
nection between the SIM8-01 and MP7-03. 1n addition, the
MCB8-10 provides the 50 Vrms power supply for PROM program-
ming, complete output display, and single step control capability
for program development.

6. Bootstrap Loader
The same control ROM set used with the PROM programming
system is used for the bootstrap loading of programs into RAM
‘and execution of programs from RAM. Specify 1702A PROMs
programmed to tapes A0860, A0861, and A0863.

Packaging Information

10.

. SIM8 Hardware Assembler

Eight PROMs containing the assembly program plug into the
SiM8-01 prototyping board permitting assembly of all MCS-8
software. To order, specify C1702A/840 set.

. PL/M Compiler Software Package

Programs for the MCS-8 may now be developed in a high level
language and compiled to 8008 machine code. This program is
written in FORTRAN 1V and is available via time sharing service
or-directly from Intel.

. MCS-8 Cross Assembler and Simulator Software Package

This software program converts a list of instruction mnemonics
into machine instructions and simulates the execution of instruc-
tions by the 8008. This program is written in FORTRAN 1V
and is available via time sharing service or directly from Intel.

Intellec 8
The Inteliec 8, Bare Bones 8, and microcomputer modules must
be specified individually by product code.

imm8-80A Intellec 8 (complete table top system)

imm8-81 Bare Bones 8 (complete rack mountable system)

imm8-82 Central Processor — includes 8008-1 CPU crystal
clock and interface logic

imm6-26 PROM Memory — includes sockets for sixteen
1702A PROMs

imm6-28 RAM Memory — 4k x 8 static memory

imm8-60 Input/Output — 4 input and 4 output ports

imm6-76 1702A PROM programmer and control software

imm6-70 Universal prototype module

imm6-72 Module extender

CERAMIC PACKAGE OUTLINE

ALTERNATE PIN =1 IDENT.

{IF NO NOTCH AT END OF PKG.) \\
-

— —r—r— A
? e
215
205
_;— S SR gp S g = g S
890
090 s 045 050 290
oss | A0 e[Max. | ki
150 '
t -
‘ H 4 mTMAX. ' ”
f - \
100/150 | |
32| - - o = %‘:grvr»//* NN P

126

MCS-8™ Instruction Set
INDEX REGISTER INSTRUCTIONS

The load instructions do not affect the flag flip-flops. The i 1t and di i i affect all flip-flops except the carry.
MINIMUM INSTRUCTION CODE
MNEMONIC | STATES D;Dg DgD,D3 D,D, D, DESCRIPTION OF OPERATION
REQUIRED .
("Lr1r2 (5) 11 DDD S S S |Load index register rq with the content of index register 2.
TZm (8) 11 D DD 1 1 1 |Load index register r with the content of memory register M.
LMr {(7) 11 111 S S S | Load memory register M with the content of index register r,
B ® o0 bDD T 10 1) Gad index register r with data B . . . B.
8 B B 8 B B B B
L (9 oo 11 110 |y 5a memory register M with data B . . . B.
8 B B B B B B B
iNe (5 00 D DD 0 0 O !lIncrement the content of index register r {r # A),
DCr {5) 00 DDD 0 0 1 |Decrement the content of index register r (r # A).
ACCUMULATOR GROUP INSTRUCTIONS
The result of the ALU instructions affect all of the flag flip-flops. The rotate instructions affect only the carry flip-flop.
ADr {5) 10 0 0 0 S S S| Add the content of index register r, memory register M, or data
ADM (8 10 0 00 1_1 1 |B...Btotheaccumulator. An overflow (carry) sets the carry
ADI {8) 0 C coc¢ 100 flip-flop.
B B B BB B B8 B
ACr (5) 10 00 1 S S S | Add the content of index register r, memory register M, or data
ACM (8} 10 0 0 1 1 1 1 |B...B totheaccumulator with carry. An overflow (carry}
ACl 8 00 0 01 1 0 O |sets the carry flip-flop.
B B B B B B B B
SUr (s) 10 010 S S S 7 Subtract the content of index register r, memory register M, or
SUM (8) 1.0 010 1 1 1 |dataB...B from the accumulator. An underflow (borrow)
sul (8) 00 010 1 0 O |setsthe carry flip-flop.
B B B B B B B B
SBr (s 10 0 11 S S S
SBM 8 10 011 1 1 1 Subtract the content of index register r, memory register M, or data
SBI 8) 00 01 1 1 0 0 |dataB...B from the accumulator with borrew. An underflow
B B B BB B B8 B |(borrow) sets the carry flip-flop.
NDr (5) 10 100 S S S _|Compute the logical AND of the content of index register r,
NDM (8} 10 100 1 1 1 | memory register M, or data B . . . B with the accumulator.
NDI 8 00 100 100
B B B B B B B B
XRr (5) 10 1.0 1 S S S |Compute the EXCLUSIVE OR of the content of index register
XBM 48) 10 101 1 1 1 [r, memory register M, or data B . . . B with the accumulator.
XRI (8) 00 101 100
8 B B 8 B B B B
ORr {5) 10 110 S S S |Compute the INCLUSIVE OR of the content of index register
ORM {8 10 110 1 1 1 |r, memory register m, or data B . .. B with the accumulator .
ORI 8} 00 110 100
8B B B 8 B B B B
CPr {5) 10 111 S S S |Compare the content of index register r, memory register M,
CPM 8 10 111 1 1 1 jordataB...B with the accumulator. The content of the
[ol] 8) 00 111 1 0 0 |accumulator is unchanged,
B B B B B B 8 B
RLC {5} 00 000 0 1 0 |[Rotate the content of the accumulator left,
RRC (5) 00 001 0 1 0 |Rotate the content of the accumulator right.
RAL (5} 00 010 0 1 0 [Rotate the content of the accumulator left through the carry.
RAR {s) 00 011 0 1 0 |Rotate the content of the accumulator right through the carry.
PROGRAM COUNTER AND STACK CONTROL INSTRUCTIONS
(4 ymp (1) 01 X X X 1 0 0 |Unconditionally jump to memory address B3 ... B3B3 ... Bp.
BBy BaBpBy ByB2By
X X B3 B3B3z B3B3B3
(5) yFc Qor11) 01 0 C4C3 0 0 O |Jumpto memory address B3...B387 ... By if the condition
B2 By Bo B B2 B2 B2 B |tlip-flop c is false. Otherwise, execute the next instruction in sequence.
X X B3B3Bz B3B3B3
JTc {9or11) 01 1 C4C3 0 0 O |Jumpto memory address B3...B387...B> if the condition
B2 By By By By By Bp By |flipflop c is true. Otherwise, execute the next instruction in sequence.
X X B3gB3Bz B3B3B3
CAL (11} o1 X X X 1 1 0 |Unconditionally call the subroutine at memory address B3...
B2 Bz B2B2By By BBy |B3By...Bo.Sawe the current address {up one level in the stack).
X X B3B3B3 BgyB3Bg
CFc (9or11) 01 0 C4C3 0 1 0 |Call the subroutine at memory address B3 ...B3B2 ... By if the
B2 B2 BB Bz Bp By B2 [condition flip-flop ¢ is false, and save the current address (up one
X X B3 B3 B3 B3 B3 B3 |level in the stack.} Otherwise, execute the next instruction in sequence.
CTe Qor11) o1 1 C4C3 0 1 0 |Call the subroutine at memory address B3 ...B3B2...B2 if the
B2Bz By Bp By B2 B By |condition flip-flop c is true, and save the current address (up one
X X B3 B3 Bz B3 B3 B3 [level in the stack). Otherwise, execute the next instruction in sequence.
RET (5) 00 X X X 1 1 1 [Unconditionally return {down one level in the stack).
RFc {3or5) 00 0 C4C3 O 1 1 [Return (down one level in the stack) if the condition flip-flop ¢ is
false. Otherwise, execute the next instruction in sequence,
RTc (3 or 5) 00 1 C4C3 0 1 1 |Return {(down one level in the stack) if the condition flip-flop c is
true. Otherwise, execute the next instruction in sequence.
RST (5) 00 A A A 1 0 1 [Call the subroutine at memory address AAAQOO (up one level in the stack).
INPUT/OUTPUT INSTRUCTIONS
INP 8) o1 00 M M M 1 |Read the content of the selected input port (MMM) into the
accumulator.
ouT {6) o1 RRM M M 1 | Write the content of the accumulator into the selected output
port (RRMMM, RR # 00).
MACHINE INSTRUCTION
[AT [{4 00 000 0 0 X [Enter the STOPPED state and remain there until interrupted. 1
l HLT | (4) 11 111 111 | Enter the STOPPED state and remain there until interrupted. j
NOTES:
(1) SSS = Source Index Register } These registers, r;, are designated Alaccumulator—000), - "
DDD = Destination index Register | B(001}, C(010), D(011), E{100), H(101), L{110).
(2} Memory registers are addressed by the contents of registers H & L. In@
{3 Additional bytes of instruction are designated by BBBBBBBB.

(4) X = “Don't Care”.
(5] Flag flip-flops are defined by C4C3: carry (00-overflow or underflow), zero (01-result is zero}, sign (10-MSB of result is 17},
parity (11-parity is even).

|nte| Microcomputers. First from the beginning.

INTEL CORPORATION ¢ 3065 Bowers Avenue, Santa Clara, California 95051 ¢ (408) 246-7501

©1974/Printed in U.S.A./MCS-056-0574/25K

	0001
	0002
	0003
	0004
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	xBackA
	xBackB

