
• In
• In
• In

INTRODUCTION I nstruction Fetch (PCI) 22
GENERAL DESCRIPTION v Memory Reference Operations (PCR and PCW) 22
SPECIFICATIONS v I/O Operations 22
THE SCOPE OF THIS MANUAL vi Interrupt Cycle 23

Hold Operation 23
CHAPTER 1 UTILIZATION 24
INTELLEC 8/MOD 8 SYSTEM OVERVIEW Installation Requirements 24

FUNCTIONAL DESCRIPTION OF MODULES 1 Signal Requirements 24
FRONT PANEL CONSOLE OPERATIONS 2 Pin List 24
MEMORY REFERENCE OPERATIONS 2

Memory Read Operations 2 CHAPTER 3
Memory Write Operations 2 THE imm8-60 INPUT/OUTPUT CARD 29

INPUT/OUTPUT OPERATIONS 2 THE imm8-60 INPUT/OUTPUT CARO-
I nput Operations 3 GENERAL FUNCTIONAL DESCRIPTION 29
Output Operations 3 The Functional Units 29
Teletype Operations 3 Module and Port Select Operations 30

INTERRUPT OPERATIONS 3 Input Operation 30
PROM PROGRAMMING OPERATIONS 3 Output Operation 30

Teletype Input Operation 30
CHAPTER 2 Teletype Output Operation 30
THE imm8-82 CENTRAL PROCESSOR MODULE 5 THE imm8-60 INPUT/OUTPUT CARD-

THE FUNCTION OF A CPU 6 THEORY OF OPERATION 31
The Computer System 6 Module Selection 31
The Architecture of a CPU 7 Input Operations 32

FUNCTIONAL ORGANIZATION OF THE Output Operations 32
CENTRAL PROCESSOR MODULE 10 Teletype Communications 32
8008-1 EIGHT-BIT PARALLEL THE imm8-60 INPUT/OUTPUT CARD-
CENTRAL PROCESSOR UNIT 12 UTILIZATION 34

Capabilities of the 8008-1 12 User-Available Options 35
Clock Timing 13 Installation Data 36
The Processor Cycle 13 Teletype Modifications 36
Arch itectu re of the 8008-1 15
8008-1 Instruction Set 18 CHAPTER 4
Interrupt 18 THE imm8-62 OUTPUT CARD 39
Start-Up of the 8008-1 19 GENERAL FUNCTIONAL DESCRIPTION 39

Electrical Characteristics and Timing of DETAILED FUNCTIONAL THEORY 39
The 8008-1 19 Module Decoding 39

PERIPHERAL LOGIC 19 Port Decodi ng 40
Timing Logic 19 Output Operations 40

CARD UTILIZATION 42 Search/Wait Operations 61

User Options 42 Processor Control Operations 61

CHAPTER 5 CHAPTER 8
THE imm6-28 RANDOM ACCESS MEMORY CARD 43 THE CHASSIS, MOTHER BOARD, AND

GENERAL FUNCTIONAL DESCRIPTION 43 POWER SUPPLIES 65

The Four Functional Units 43
Memory Addressing Operations 43 CHAPTER 9
Memory Write Operations 44 THE imm8-76 PROM PROGRAMMER MODULE 67
Memory Read Operations 44 THE 1602A AND 1702A PROGRAMMABLE

THEORY OF OPERATION 44 READ ONLY MEMORY 67

Physical Memory Implementation 44 FUNCTIONAL DESCRIPTION 68

Memory Address Decoding 44 Interface to the Intellec 8/MOD 8 68
Memory Read Operations 45 THEORY OF OPERATION 69
Memory Write Operations 45 Data Distribution 69

UTILIZATION 47 Control and Timing 69
Memory Address Coding 47 Power Supply 69
I nstallation Data and Requirements 47 UTILIZATION 73

Installation 73
CHAPTER 6 Pin List 73
THE imm6-26 PROGRAMMABLE READ-ONLY
MEMORY CARD 49 CHAPTER 10

GENERAL FUNCTIONAL DESCRIPTION 49 INTELLEC 8/MOD 8 SYSTEM UTI LlZATION 77
The Four Functional Units 49 INTELLEC 8/MOD 8 INSTALLATION 77
Memory Read Operation 50 SYSTEM I/O INTERFACING 77

THEORY OF OPERATION 50 INTELLEC 8/MOD 8 SYSTEM
Physical Memory Implementation 50 OPERATING REQUIREMENTS 77
Memory Address Decoding 50 EXTERNAL DEVICE CONTROLLER
Memory Read Operations 51 INTERFACING 82
Random Access Enable 51

UTILIZATION 51

Memory Address Coding 53
PROM Installation, Removal, Programming, APPENDIX A

and Eri:lsure 53 8008 INSTRUCTION SET vii

Installation Data and Requirements 53
APPENDIX B

CHAPTER 7 ELECTRICAL CHARACTERISTICS OF
THE INTELLEC 8/MOD 8 CONTROL CONSOLE 55 LOGIC ELEMENTS USED IN THE

FUNCTIONAL DESCRIPTION 55 INTELLEC 8/MOD 8 xv
Data Display Operations 55
Manujll Memory Access Operations 56 APPENDIX C
Manual I/O Access 57 INSTRUCTION MACHINE CODES xxxvii·
Interrupt Operations 57
Sense Operations 57 APPENDIX D
Search-Wait Operations 57 INSTRUCTION EXECUTION TIMES xxxxiii
Processor Control Operations 58

THEORY OF OPERATION 58 APPENDIX E
Data Display Operations 58 ASCII TABLE xxxxv
Manual Memory Access Operations 60
Manual I/O Access Operations 60 APPENDIX F
I nterrupt Operations 61 BINARY-DECIMAL-HEXADECIMAL
Sense Operations 61 CONVERSION TABLES xxxxvii

ii

1·1 A Simplified INTELLEC 8/MOD 8 Block Diagram 1 4·1 Output Module Functional Block Diagram 39
2·1 Program Jump 7 4·2 Output Module Timing 40
2·2 CPU Module Functional Block 11 4·3 Output Module Schematic Diagram 41
2·3 CPU State Transition Diagram 14 5·1 RAM Module Functional Block Diagram 43
2-4 8008·1 CPU Block Diagram 15 5·2 RAM Memory Module Timing 45
2·5 Interrupt Timing 19 5·3 RAM Memory Module Schematic Diagram 46
2-6 CPU Clock Timing 19 6·1 PROM Memory Module Functional Block Diagram49
2·7 CPU Module Timing 20 6·2 PROM Memory Module Timing 51
2·8 Central Processor Module Schematic 21 6·3 PROM Memory Module Schematic Diagram 52
3·1 I/O Functional Block Diagram 29 7·1 Front Panel Logic Schematic Diagram 62
3·2 I/O Module Timing 31 7·2 Front Panel Controller Schematic Diagram 64
3·3 I/O Module Schematic Diagram 33 8·1 INTELLEC 8/MOD 8 Module Assignments 65
3·4 Relay Circuit (Alternate) 34 9·1 PROM Programmer Schematic Diagram 70
3·5 Distributor Trip Magnet 34 9·2 PROM Programmer Timing 71
3·6 Mode Switch 35 9·3 Power Supply Functional Block 72
3·7 Terminal Block 35 9-4 Voltage Regulator Loop: Simplified
3-8 Current Source Resistor 36 Schematic Equivalent 73
3·9 TTY Modification 37 10·1 INTELLEC 8/MOD 8 Rear Panel 78
3·10 Teletype Layout 36

iii

a INTELLEC 8/MOD 8 Specifications 9-1 P1 Pin List 74
2-1 Cycle Control Coding 13 9-2 J1 Pin List 75
2-2 State Control Encoding 14 9-3 J2 Pin List 75
2-3 State Transition Sequence 16,17 9-4 J3 Pin List 76
2-4 imm8-82 Central Processor Card Installation 10-1 I/O Port Assignments-Module I/O 0 79

Requirements 24 10-2 I/O Module to Back Panel Interface Chart 81
2-5 Processor Module Output Connector 25

iv

GENERAL DESCRIPTION
The INTELLEC S/MOD S is a low-cost computer

system, designed to simplify the development of micro­
computer systems which employ Intel SOOS CPU chip
processors.

The INTELLEC S/MOD S uses the 800S-1 as its cen­
tral processing unit. The SOOS-1 is a selected version of the
BOOS, chosen for its high speed characteristics. The SOOS-1
has a basic cycle time of 12.5 microseconds, whereas that of
the SOOS is 20 microseconds. The system contains a control
console and provides read-write program memory as a sub­
stitute for read-only memory. Thus the SOOS-1 chip can be
accessed via the control console, and programs debugged
before being committed to read-only memory. Turn around
time from initial system concept to finished product is short­
ened, and systems development costs are thus reduced.

The INTELLEC B/MOD S (part #immB-80A) has its
own power supply, cabinet, display and control panel, S192
bytes (SK) of Random Access M.emory, a Programmable
Read-Only Memory Module with 4K capacity, and an Input!
Output Module which contains four B-bit input ports and
four S-bit output ports as well as provision for serial com­
munications interface and a PROM Programmer.

The Bare Bones S is an INTELLEC S/MOD S without
the power supply, display and control console, or cabinet,
and is designed for rack-mounting.

Either the INTELLEC S/MOD S or the Bare Bones S
can be expanded up to a total of 16K bytes of memory,
eight input ports, and twenty-four output ports.

The standard software for the INTELLEC S includes
a resident System Monitor, a Text Editor, and an Assembler.
In addition to these INTELLEC S resident programs, there
are available three development programs, which. are de­
signed for operation on large-scale, general-purpose com­
puters. These are a macro cross-assembler (MAC/S), a
microcomputer simulator (lNTERP/S). and a PLIM com­
piler. PL/M is a high-level language that can shorten pro­
gram development time significantly.

v

SPECIFICATIONS

The INTELLEC S/MOD S is made up of separate
units, each of which performs a different task in making up
a complete system. These units are:

1) The immS-82 Central Processor Module, which op­
erates as the Central Processor for the INTELLEC
S/MOD B. In this capacity, it performs the fol­
lowing functions.

a) It controls the execution of program instruc­
tions, sending the appropriate control signals to
the other modules which make up the INTEL­
LECS/MOD S.

b) It performs all of the necessary airthmetic, logi­
cal, and data manipulation operations necessary
for program operation.

c) It controls overall system timing.

2) The imm6-2S Random Access Memory Module,
which provides 4,096 S-bit words of ReadtWrite
memory for system use. As many as four cards can
be used in a system, for a memory capacity of 16K_.
In the immS-80A Intellec, two 6-2B modules are
included for SK of memory capacity.

3) The imm6-26 Programmable Read-only Memory
Module, which provides up to 4,096 words of Read­
only memory in increments of 256 words, and
which may be operated in parallel with the system
Random Access Memory. Again, more than one
card may be used, giving a total Read-only mem­
ory capacity of 16K words.

4) The immS-60 Input/Output Module, which pro­
vides four eight-bit input ports and four eight-bit
output ports for system Input/Output operations.
In addition, two of the input ports and two of the
output ports may be used with integral Teletype
communications circuits to provide Teletype I/O.
Up to two of these cards may be used in a system,

giving a total of eight input ports and eight output
ports.

all of the modules together.

A summary of the specifications of the INTELLEC 8
/MOD 8 and Bare Bones 8 is given in Table a. Specific in­
formation relating to setting-up and operating the INTEL­
LEC 8/MOD 8 is contained in Chapter 10 of this manual,
and in the INTELLEC 8/MOD 8 Operator's Manual.

5) The imm8-62 Output Module, which provides eight
latching output ports for system Output operations.
Up to two of these cards may be used in a system,
giving a total capability of twenty-four output ports
(including the eight output ports provided by the
two possible imm8-60 Input/Output Modules). THE SCOPE OF THIS MANUAL

6) The imm6-76 PROM Programmer Card, which
gives the INTELLEC a/MOD 8 system the capa­
bil ity of programm ing Intel 1602A or 1702A Pro­
grammable Read-only Memory chips.

This manual provides an understanding of the design

concepts and capabilities of the INTELLEC 8/MOD 8 as a
whole and its individual modules, and in addition provides
detailed theory of operation and implementation informa­
tion for each module.

7) The Front Panel Controller and Display Console,
which provides a means of controlling program ex­
ecution, program debugging, and I NTELLEC 8/
MOD 8 operation. It also provides displays of
system status and information.

For a detailed description of INTELLEC 8/MOD 8
operating procedures, including software operation, see the
INTELLEC 8/MOD 8 Operator's Manual. For a detailed
examination of programming at an elementary level, suitable
for an engineer with no previous programming experience,
see the INTELLEC 8/MOD 8 Programmer's Manual. 8) The chassis and power supplies, which serve to hold

SPECI FICATIONS

Word Length

Registers

I nstruction Set

Arithmetic

Memory

Addressing

Cycle Time

Environment

Power Requirements

AC Requirement

Size

Weight

Table a.

INTELLEC a/MOD a Specifications

8 bits

Seven 8-bit general purpose registers, two of which are used to hold Memory
Addresses during Memory Reference operations, and one used as the accumulator.

Forty-eight instructions, including memory-register, register-memory, register-to­
register, single register, immediate, and memory arithmetic and logic instructions,
conditional and unconditional jump, subroutine handling, input/output, and ma­
chine halt instructions.

8-bit parallel, binary, fixed point, twos complement.

8,192 eight-bit words, Read/Write; 1,280 eight-bit words, Read-only. (Combina­
tion of Read/Write and Read-only memories is expandable to 16,384 words).

Direct-up to 16K eight-bit words

12.5 microseconds

OOto +55°C.

5V @ 12 A (max); 6 A (typ)
-9V @ 1.8 A (max); 0.5 A (typ)
±12V @0.06A (max); 0.016 A (typ)
(More power may be required for expanded INTELLEC 8 systems).

60 Hz; 115 VAC, 200 Watts

INTELLEC 8: 7" x 17-1/8" x 1/4"
Bare Bones 8: 6·3/4" x 17" x 12" (suitable for standard R ETMA 7" x 19"
panel space)

30 lb.

vi

The INTELLEC 8/MOD 8 microcomputer develop­
ment system consists of seven independent functional mod­
ules and a power supply, housed in a single chassis and
enclosure. This section describes the interrelationship of the
seven INTELLEC 8/MOD 8 functional modules, afld shows
the part played by each module during typical operations.

en
'::J

'" >­cr:
o
:;
w
:;
:;
o
cr:
u.
«
f­«
Cl

--.
-

en
::J

'" >-
cr:
Cl

as
:;

~ -
f-
«
f-«
Cl

-
~

FRONT PANEL

CONSOLE
r--

(1

r--- Cl
z

"" s: JJ
m 0
s: r

Z 0 III

"" JJ C
m -< en
JJ

l> JJ
C 0
-0 0 - "" JJ

MEMORY r-- m en
(RAM, PROMi en

z III

en C

"" !'!.
JJ 0
c l>
(") "" j l>
0 0
Z C

"" -0
C
--1 -CPU -

r
INPUT/OUTPUT OUTPUT

MODULE MODULE

I DATA INPUT BUS

PROM
PROGRAMMER

MODULE

Figure 1-1. A Simplified I NTEL LEe 8/MOD 8 Block Diagram

FUNCTIONAL DESCRIPTION OF MODULES

Figure 1-1 illustrates the seven functional modules of
the I NTE LLEC a/MOD 8 system, and shows interconnect­
ing busses. The seven functional modules are:

1) A Central Processing Unit (CPU) which performs
arithmetic, logical and data manipulation operations.

2) Memory module, which can be Programmable Read­
Only (PROM), Random Access (RAM), ,or a combi­
nation of the two. Though Figure 1-1 illustrates
memory as a single module, it can be physically im­
plemented as one or more modules, depending on the
amount of memory included in a system. The memory
module provides data and program storage. The I N­
TELLEC 8/MOD 8 system includes two of these

3)

modules for a capacity of 8K bytes.

I nput/Output module. Physically there can be one or

two Input/Output modules in an INTELLEC 8/MOD
8 system. Each Input/Output module provides four
8-bit input and four 8-bit output ports.
communications facility which the INTELLEC 8 uses
for teletype interface.

4) Output module. Physically there can be one or two
Output modules in an I NTELLEC 8/MOD 8 system.
Each Output module provides eight individually ad­
dressable 8-bit output ports.

5) A Front Panel Display and Control Console, which is
most accurately visualized as a peripheral device,
placed in parallel with the CPU. The Control Console
provides means for manually monitoring and control­
ling INTELLEC 8/MOD 8 operations.

6) PROM Programmer Module used for programming I n­
tel 1602A or 1702A PROMs via a socket on the front
panel.

The functional units of the INTELLEC 8/MOD 8
are interconnected by the following busses:

The Memory Address and Data Output Bus carries

memory addresses from the console or the CPU to memory,
and carries output data from the console or CPU to output
ports, and thence to external peripheral devices (e.g., a
teletype printer).

The Data to Memory Bus carries data from the con­
sole or CPU to the memory.

The Data from Memory Bus carries data from memory
to the console and the CPU.

The Data Input Bus carries data from input ports to
the CPU but not the console.

The Interrupt Instruction Bus allows the console to
transmit a program interrl;lpt to the CPU.

The Control Bus is used to control instruction execu­
tion. Since the console is connected to the control bus, in­
struction execution can be controlled from the console.

The busses may be visualized as having three way
switches that allow information to be routed to/from the
CPU or the console. Since the console operates in parallel
to the CPU, it contains a considerable amount of parallel
logic, including its own data and address registers; thus there
are certain states in which the CPU remains in control and
the console temporarily suspends operations, and there are
other states in which the console completely takes over
machine operations.

Conceptually, the CPU module provides the INTEL·
LEC a/MOD a with its "computer" capabilities. This mod­
ule performs arithmetic, logical and data manipulation
operations as directed by a stored program.

A stored program is a sequence of numbers (eight
binary digits per number) which encode a sequence of indio
vidual CPU operations. (Frequently an instruction code is
written as two hexadecimal digits rather than eight binary
digits). The sequence of individual instructions that consti·
tute a program are stored in the Memory module. If the
memory module includes Random Access Memory (RAM),
it can also be used to store temporary data that may be
generated in the course of executing a program.

Almost all computer applications require information
to be transferred between the CPU module and external
devices. Such transfers take place via the I nput/Output and
Output modules, as described in the section on Memory
Reference Operations later in this chapter.

Communications between the INTELLEC a/MOD a
and an operator occur via the Front Panel Console, as
described in the next section,

FRONT PANEL CONSOLE OPERATIONS

Consider how console operations must be performed,
given the hardware organization illustrated in Figure 1-1.

Since the console has its own address and data regis·
ters, and since there is a bus link between the console and
memory, data can be read from memory to console, and
written from console directly to memory.

2

Although there is no direct path for data from input
ports to the console, performing an input access operation
from the console causes the input data to be sent through
Data from Memory Bus where is displayed on the console.

There is no direct link between CPU registers and the
console. In order to examine register contents, (a common
program debugging operation), it is necessary to execute
an instruction that causes the register contents to be placed
on an external bus. Commonly, to examine the contents of
a CPU register, a memory reference instruction is executed
(see following section).

MEMORY REFERENCE OPERATIONS

This section describes memory reference operations as
performed by the INTELLEC a/MOD a system, and is
divided into two subsections. The first describes memory
input or read operations, and the second describes memory
output or write operations.

Memory Read Operations

A Memory Read operation is performed in order to
obtain data from a certain location in the system memory,
and to bring that data to the CPU. It is performed via the
following steps:

1) The CPU sends a Memory Address to the Memory
modules on the Memory Address Bus.

2) The Memory modules send the data contained in
the selected memory location to the CPU on the
Data from Memory Bus.

The Front Panel can perform a manual Memory Read
operation by 'taking over' the Memory Data Buses, and by
sending a manually entered Memory Address, rather than a
CPU-generated Address, to the memory modules.

Memory Write Operations

A Memory Write operation is performed in order to
send data from the CPU to a certain selected location in
memory. It is performed in the following steps:

1) The CPU sends a Memory Address to the memory
modules on the Memory Address Bus.

2) The CPU sends the data which are to be stored in
memory to the memory modules on the Data to
Memory Bus.

3) The CPU sends a control signal to the memory
modules which causes the data to be written into
the selected memory location.

The Front Panel can perform a manual memory write
operation by taking over the Memory Address and Data
Buses, and by sending manually entered Memory Address
and Memory Data to the memory module.

INPUT/OUTPUT OPERATIONS

This section describes I nput and Output operations

as performed by the INTELLEC a/MOD a system, and is
divided into three subsections. The first describes Input
operations, the second describes Output operations, and the
third describes Teletype operations.

Input Operations

An I nput operation is performed in order to obta in
data from some external device and to bring it into the CPU,
where it can be processed. It is performed via the following
steps:

1) The CPU sends an I/O Address, which specifies
wh ich device is to be used for the I nput operation,
to the Input/Output modules on the Memory Ad­
dress bus.

2) The Input/Output module responds by sending the
data which is present on the selected Input port
back to the CPU on the Data I nput bus.

An I nput operation can also be performed manually
by giving the Front Panel control over the Memory Address
bus. It then sends a manually entered I/O Address to the
Input/Output module.

Output Operations

An Output operation is performed in order to send
data from the CPU to an external device. It is performed
via the following steps:.

1) The CPU sends an I/O Address, which specifies
the device to be used for the Output operation,
to the Input/Output and Output modules on the
Memory Address bus.

2) The CPU sends the data which are to be output
to the Input/Output and Output modules-on the
Output Data bus.

3) The Input/Output or Output module sends the data
which the CPU has supplied to the selected output
device.

An Output operation may also be manually executed
by giving control of the Memory Address/Data Output bus
to the Front Panel. The Front Panel sends a manually
entered I/O Address and manually entered data to the I n­
put/Output and Output modules.

Teletype Operations

Teletype operations are performed in exactly .the
same fashion as normal, non-teletype Input and Output
operations, with the exception that the external device used
in the case of Teletype operations is an integral Teletype
communications circuit in the Input/Output module. Tele­
type data enter the Input/Output module, and utilize Input
ports 0 and 1 and Output ports 8 and 9.

Chapter 3 explains how to install the Teletype ASR33.

INTERRUPT OPERATIONS

An I nterrupt operation is performed when an external

3

device which requires servicing (e.g. to transmit data via the
CPU to memory) sends an Interrupt sig·nal to the CPU.
This causes the CPU to interrupt its normal operating
sequence, perform the operations required by the external
device, and then to return to the point at which it was
interrupted and resume normal operations. An Interrupt
operation is performed in the following steps:

1) The external device sends an Interrupt signal to
the CPU. The CPU completes the execution of the
current instruction and acknowledges the I nter­
rupt signal.

2) The external device sends the Interrupt Instruction
to the CPU.

3) The CPU executes the Interrupt Instruction exactly
as if it were a normal instruction.

Usually, the Interrupt Instruction will be a RESTART
instruction. A RESTART instruction causes the CPU to
branch to a certain location in memory, where an interrupt
service routine can be stored.

An Interrupt operation can be performed manually
from the Control Console. I n order to accomplish this,
the Interrupt Instruction is manually entered into the
Front Panel. When the Interrupt switch is depressed, the
Front Panel generates an Interrupt signal, and sends the
manually entered Interrupt Instruction to the CPU.

I n the basic system, only the Control Console initiates
interrupts. An interrupt is used to start the processor. The
interrupt operation may be extended, however, to the user's
peripheral devices, in order to simplify system programming
and to increase system throughput.

PROM PROGRAMMING OPERATIONS

The INTELLEC a/MOD a has been designed to offer
an easy means of programming Intel 1602A and 1702A Pro­
grammable Read-Only memory chips. This is done with the
use of the PROM-Programming module, and is accomplished
by performing three successive Output operations:

1) Send the address to the P ROM which is to be
programmed.

2) Send the data which is to be written into the se­
lected address.

3) Send a control word which is used by the PROM
Programmer module to initiate programming.

The PROM Programmer is used as the external device
for each of these Output operations. When it receives the
control word, it causes the data specified to be written into
the PROM address selected.

4

The imm8-82 Central Processor Module is designed
to serve as the central processing unit of the INTELLEC 8

/MOD 8 Microcomputer Development System. However, the
module's general-purpose architecture permits its use in other
eight-bit systems. Inputs and outputs are TTL compatible.

The basic capabilities of the module are obtained
through the use of Intel's 8008-1 monol ith ic CPU. The ch ip
processor provides 48 command instructions, the ability
to access over 16K memory bytes directly, 6 working index
registers, a seven-level subroutine stack, and interrupt hand­
ling capability. The CPU's instruction set permits I/O and
register-to-register transfer, arithmetic and logical opera­
tions. Four internal status bits permit conditional jumps
based on carry (overflow-underflow), sign, zero, and parity
(even) .

The Central Processor Module contains a crystal con­
trolled clock oscillator which provides a stable timing refer­
ence for all circuitry on the board. The use of a selected
8008 (the 8008-1) and an 800 kHz clock permits a basic
processor cycle of 12.5 microseconds.

Memcry interface and control logic are included on
the module. The imm8-82 contains a latched fourteen-bit
address bus, an eight-bit input bus for data from memory,
and an eight-bit output bus for data to memory. The module
generates signals which identify a memory read, a memory
write, or an instruction fetch cycle. These are avai lab Ie for
the control of external circuitry. A wait request line per­
mits interfacing the processor module with slow memories.
If minimum access time exceeds one microsecond, the mem­
ory controller can request a temporary pause in the processing
cycle, causing the processor to wait for the memory's re­
sponse to read or a write command.

I/O interface and control are also built into the Cen­
tral Processor Module. Five digits on the address bus (A9 -

A13) are used during I/O operations, to specify one of 32
addressable peripherals. The lower eight addresses (0-7) are
reserved for input devices, while the remaining twenty-four
(8-31) are used for .output. An eight-line data bus for pe-

5

ripheral inputs is included on the module. The output de­
vices share an eight-line output bus with the external mem­
ory. Signals generated on the module identify and synchro­
nize I/O operations. These are available for the control of
external circuitry.

The imm8-82 is able to process external interrupts.
It is equipped with an INTERRUPT request line and with
an eight-bit interrupt port. An external device may request
service by placing an appropriate instruction code on the
interrupt port's lines and activating the INTERRUPT line.

The Central Processor Module is also equipped with a
hold request line, which enables external devices to access
memory directly. By issuing a wait request, and following

the acknowledged wait with a hold, the memory controller
can cause the processor to suspend its operation and relin­
quish control of the main data bus. This allows an external
device to command the bus and to effect memory transfers
directly.

The imm8-82 is largely self-contained. It requires DC
power of:

+5 ± 5% VDC at 2.2 A (max)
-9 ± 5% VDC at 60 mA (max)

All circuitry is mounted on a 6.18" x 8.00" printed
circuit board. Signal and power connections enter the mod­
ule by means of a dual 50-pin double-sided PC edge con­
vertor (0.125" centers). No special installation is necessary.

The following sections furnish a complete description
of the imm8-82 Central Processor Module. The first de­
scribes a processing system at a fairly elementary level. This
material is intended as background for those who are
relatively unfam il iar with processors and with the language
used to describe them. Users who feel competent to discuss
processors at an advanced level might skip this section. The
second describes the functional organization of the proces­
sor module. In the third we give some detailed information
on the 8008·1 CPU. And in the fourth we show how the
peripheral logic supports the functions that the 8008-1

must perform. Finally, in the fifth, we give reference infor­
mation which will be of value to those who are planning to
use the module outside the INTELLEC 8/MOD 8 system_

THE FUNCTION OF A CPU (The reader already
familiar with basic computer concepts may skip
this section.)

This section is intended for those who are unfamil­
iar with basic computer concepts. It provides background
information and definitions which may be useful in later
sections of this chapter. Those already famil iar with com­
puters may skip this material, at their option. It is organized
to permit quick reference, should you later become con­
fused and decide to refer to it.

The Computer System

The INTELLEC 8/MOD 8 is a modular computer sys­
tem. This means that the processing functions, the memory
functions, and the input/output functions are built into
separate plug-in cards which are then combined to form a
system. Because the functions of each of the modules are
fairly well-defined, individual plug-ins enjoy a certain degree
of independence. They are specified as having stand-along
capabil ity, mean ing that they are generally capable of
performing their functions in any system similar to the

INTELLEC 8/MOD 8. The modular organization of this ref­
erence manual intentionally reflects the modularity of the
system it describes.

You must keep in mind, however, that modularity
confers a very limited degree of independence. None of these
modules can do anything useful outside a system. As a re­
sult, the discussion.of any individual module must refer con­
tinually to the activities of other modules in the same sys­
tem. It is therefore very important to know something
about the functions that each component in a system must
perform, before discussing the processor module in detail.

A digital computer consists of:

(a) A central processing unit (CPU)
(b) A memory
(c) I nput and output provisions (I/O)

This appl ies, in essence, to all such computers. It ap­
plies to the INTELLEC 8/MOD 8.

Memory and I/O are relatively simple functions and
are fairly easy to rationalize. The memory serves primarily
as a place to store instructions, the coded pieces of data
that direct the activities of the CPU. A group of logically
related instructions stored in memory is referred to as a
program. The CPU extracts these instructions singly in a
logically determinate sequence, and uses them to initiate
processing actions. If the program structure is coherent and
logical, processing produces intelligible and useful results.

Processing is a complex activity, and one which re­
quires a lot of explanation. For the moment, we shall have
to be content with an intuitive understanding of what is
meant by the term. Assume for the moment the machine

6

somehow manipulates data arithmetically to produce the
desired result. We shall describe the process later, in detail.

Program instructions are a form of input. The com­
puter can generate an output entirely on the basis of instruc­
tions and data stored in its memory by the programmer_
In most cases, however, it is desirable to have input pro­
visions which augment the program as a source of data. This
is not difficult to understand. One of the most useful
features of the computer is its speed, its abil ity to react
quickly to changes in its data environment or to process
large volumes of data. In o~e case, the machine must have
access to information much more rapidly than a human
operator can supply it. In the other, it requires access to a
data bank which can easily exceed its memory capacity.
Both problems can be solved partially by providing the
machine with one or more input ports. The machine can
address these ports and read the data contained there, in
a manner very similar to that used to read from its memory.
The addition of input ports enables the computer to receive
information from external sources, at high rates of speed
and in large volumes.

Central processing units operate so rapidly that their
responses often seem instantaneous to human operators,
but processing usually requires several stages. Many individ­
ual instructions can intervene between the input of data
and the output of results. Consider the simple addition of
two numbers presented to two different input ports. The
machine must read the number at one port first. It stores
the value obtained in a temporary location, while it reads
the number at the second port. Then the number in tem­
porary storage at some time during the execution of the
program. Thus a secondary function of the memory
becomes apparent, the storage of intermediate data. I n the
course of a processing task, the CPU may write data into
memory, and retrieve it at some later point in the program.
The processor will generally write into a portion of the
memory not occupied by program instructions, although
the machine can "program itself" under certain exceptional
circumstances. Reading and writing in memory are accom­
plished by means of program instructions known as memory
referencing instructions, so called because they specify or
imply a memory address as an integral part of the instruc­
tion. Memory referencing operations will be explained more
fully when we describe the CPU itself.

One or more output ports permit the computer to
communicate the results of its processing to the outside
world. The output may go to a display, for use by human
operators, or it may go directly to other machines whose
responses are controlled by the processor. The output ports
are necessary in either event, if the processor is to perform
any useful function. Output ports are addressable, in much
the same manner as inputs. The input and output ports
together permit the processor to interact with the outside
world.

The central processor unifies the system. It controls
the functions performed by the other components. The

CPU must be able to fetch instructions from memory and
execute them, and it must be able to reference memory
and I/O ports as necessary in the execution of instructions.
It must also be able to recognize and respond to external
control signals, including INTERRUPT, HOLD, and WAIT
requests. These apparently straightforward requirements im­
ply a certain complexity in the way that the CPU operates.
Some of the features that enable a processor to perform
these functions are described below.

The Architecture of a CPU

TIMING

The activities of the central processor are cyclical.
The processor fetches an instruction, performs the opera~
tions required, fetches the next instruction, and so on. An
orderly sequence of events like this requires timing, and the
CPU therefore contains a clock oscillator which furnishes
the reference for all processor actions. The combined fetch
and execution of a single instruction is referred to as a
machine cycle. The portion of a cycle identified with a
clearly defined activity is called a state. And the interval
between pulses of the timing oscillator is referred to as the
clock period. As a general rule, one or more clock periods
are necessary to the completion of a state, and there are
several states in a cycle.

PROGRAM COUNTER

The instructions that make up a program are stored
in the system's memory. The central processor examines
the contents of the memory, in order to determine what
action is appropriate. This means that the processor must
know which location contains the next instruction.

Each of the locations in memory is numbered, to
distinguish it from all other locations in memory. The
number which identifies a memory location is called its
address.

The processor maintains a counter which contains the
address of the next program instruction. This register is
called the program counter. The processor updates the
program counter by adding "1" to the counter each time it
fetches a word of an instruction, so that the program
counter is always current.

The programmer therefore stores his instructions in
numerically adjacent addresses, so that the lower addresses
contain the first instructions to be executed and the higher
addresses contain later instructions. The only time the pro­
grammer may violate this sequential rule is when the last in­
struction in one location of memory is a jump instruction to
another location of memory.

A jump instruction contains the address of the in­
struction which follows it. Since this is the case, the next
instruction may be stored in any memory location, as long
as the programmed jump specifies the correct address. During
the execution of a "jump," the processor replaces the con­
tents of its program counter with the addresses embodied

7

in the jump instruction. Thus, the logical continuity of the
program is maintained.

Program jumps are a convenience for programmers,
and the description of their use can become complicated.
However, a basic use of the jump can be illustrated here:
that where the programmer must interleave program steps
with data upon which the processor is directed to operate:

ADDRESS MEMORY

M OPERATE ON M+3

M+l OPERATE ON M+4

M+2 JUMP TO M+5

M+3 DATA FOR M

M+4 DATA FOR M+l

M+5 DO SOMETHING ELSE

Figure 2-1: Program Jump

\
\
~

~

(PROGRAM f INSTRUCTIONS

}
PROGRAM

DATA

PROGRAM
INSTRUCTIONS

If the jump at location M + 2 were omitted, the pro­
cessor would continue to operate on the assumption that
the program structure was sequential. It would attempt to
execute the data in location M + 3 and M + 4 as though
those locations contained instructions. The program would
most probably produce results quite contrary to those that
the programmer expected.

THE STACK

A special kind of program jump occurs when the stored
program "calls" a subroutine. In this kind of jump, the pro­
cessor is logically required to "remember" the contents of
the program counter at the time that the jumpoccurs. This
enables the processor later to resume execution of the main
program, when it is finished with the last instruction of the
subroutine.

A subroutine is a program within a program. Usually
it is a general-purpose set of instructions that must be exe·
cuted repeatedly in the course of a main program. Routines
which calculate the square, the sine, or the logarithm of a
program variable are good examples of the functions often
written as subroutines. Other examples might be programs
designed for inputting or outputting data to a particular
peripheral device.

~To understand the value of subroutines, consider the
case where it is necessary to output five characters to a line
printer, in the course of a 200 step segment of the main
program. Suppose that the program which outputs the
character is the same, regardless of the actual identity of
the character; in other words that it is possible to write a
generalized program which can output any character that
the main program supplies. And assume further that 20

steps are required for such an operation. We then have two
possible ways of coding this problem.

One possibility is to write the 20 output steps into
the main program, each time we desire to output a charac­
ter. The total length of the program will be 200 plus 5x20,
or 300 steps in all. The other possibility is to write the 20
step output program as a subroutine, and cause the main
program to jump to the address of the subroutine whenever
it is necessary to output a character. In this case, the 20
step program need be stored only once. The total number of
instructions stored in memory will be 200 + 20, or 220.

Observe that the subroutine in this example will still
be executed five times. The processor will still have to per­
form 300 operations, regardless of how we choose to code
the problem. The subroutine structure, however, is pre­
ferred. For one thing, it conserves the programmer's time,
since he need only code the output routine once. For
another, it conserves memory space, for the actual output
instructions occupy only 20 memory locations, rather than
100. These are significant advantages.

The processor has a special way of handling sub­
routi nes, in order to ensure an orderly return to the main
program. When the processor receives a call instruction, it
increments the program counter and stores the counter's
contents in a reserved memory area known as the stack.
The stack thus saves the address of the instruction to be
executed after the subroutine is completed. Then the
processor stores the address specified in the call· in its
program counter. The next instruction fetched will there­
fore be the first step of the subroutine.

The last instruction in any subroutine is a return.
Such an instruction need specify no address. When the
processor fetches a return instructi.on, it simply replaces the
current contents of the program counter with the address on
the top of the stack. This causes the processor to resume
execution of the calling program at the point immediately
following the original call.

Subroutines are often nested; that is, one subroutine
will sometimes call a second subroutine. The second may
call a third, and, so on. This is perfectly acceptable, as long
as the processor has enough capacity to store the necessary
return addresses, and the logical provision for doing so. In
other words, the maximum depth of nesting is determined
by the depth of the stack itself. If the stack has space for
storing three return addresses, then three levels of subrou­
tines may be accommodated.

Processors have different ways of maintaining stacks.
Some have facilities for the storage of return addresses
built into the processor itself. Other processors use a
reserved area of memory as the stack and simply maintain a
pointer register which contains the address of the most
recent stack entry. The integral stack is usually more
efficient, since fewer steps are involved in the execution
of a call or a return. The external stack, on the other hand,
allows virtually unlimited subroutine nesting.

8

INSTRUCTION REGISTER AND DECODER

Every computer has a word length that is characteris­
tic of that machine. An eight-bit parallel processor generally
finds it most efficient to deal with eight-bit binary fields,
and the memory associated with such a processor is there­
fore organized to store eight bits in each addressable
memory location. Data and instruction are stored in mem­
ory as eight bit binary numbers, or as numbers that are
integral multiples of eight bits: 16 bits, 24 bits, and so on.

Th is characteristic eight bit field is sometimes referred
to as a byte.

Each operation that the processor can perform is
identified by a unique binary number known as an instruc­
tion code. An eight-bit word used as an instruction code
can distinguish among 256 alternative actions, more than
adequate for most processors.

The processor fetches an instruction in two distinct
operations. I n the first, it transmits the address in its
progr\lm counter to the memory. In the second, the mem­
ory returns the addressed byte to the processor. The CPU
stores this instruction byte in a register known as the
instruction register, and uses it to direct activities during the
execution of the instructions.

The mechanism by which the processor translates an
instruction code into specific processing actions requires
more elaboration than we can here afford. The concept,
however, will be intuitively clear to any experienced logic
designer. The eight bits stored in the instruction register
can be decoded and used to selectively activate one of a
number of output lines, in this case up to 256 lines. Each
line represents a set of activities associated with execution
of a particular instruction code. The enabled line can be
combined coincidentally with selected timing pulses, to
develop electrical signals that can then be used to initiate
specific actions. This translation of code into action is per­
by the instruction decoder and by the associated control
circuitry.

MULTIPLE WORD INSTRUCTION

As we have just seen, an eight-bit field is more than
sufficient, in most cases to specify a particular processing
action. There are times, however, when execution of the
instruction code requires more information than eight bits
can convey.

One example of this is when the instruction refer­
ences a memory location. The basic instruction code
identifies the operation to be performed, but cannot specify
the object address as well. In a case like this, a two or three
word instruction must be used. Successive instruction bytes
are stored in sequentially adjacent memory locations, and
the processor performs two or three fetches in succession to
obtain the full instruction. The first byte retrieved from
memory is placed in the processor's instruction register, and
subsequent bytes are placed in temporary storage, as appro­
priate. When the entire instruction is fetched, the processor
can proceed to the execution phase.

MEMORY SYNCHRONIZATION

As previously stated, the activities of the processor
are referred to a master clock oscillator. The clock period
determines the timing of all processing activity.

The speed of the processing cycle, however, is limited
by the memory's access time. Once the processor has sent
a fetch address to memory, it cannot proceed until the
memory has had time to respond. Many memories are cap­
able of responding much faster than the processing cycle
requires. A few, however, cannot supply the addressed byte
within the minimum time established by the processor's
clock.

Therefore, many processors contain a synchronization
provisioh, which permits the memory to request a wait
phase. When the memory receives a fetch address, it places
a request signal on the processor's READY line, causing the
CPU to idle temporarily. After the memory has had time to
respond, it frees the processor's READY line, and the ma­
chine cycle proceeds.

ARITHMETIC LOGIC UNIT

All processors contain an arithmetic/logic unit, which
is often referred to simply as the ALU. By way of analogy,
the ALU may be thought of as a super adding machine with
its keys commanded automatically by the control signals
developed in the instruction decoder. This is essentially how
the first stored-program digital computer was conceived.

. The ALU naturally bears little resemblance to a desk­
top adder. The major difference is that the ALU calculates
by creating an electrical analogy, rather than by mechanical
analogy_ Another important difference is that the ALU uses
binary techniques-rather than decimal methods-for repre­
senting and manipulating numbers.

The fundamental operational unit in the ALU is the
accumulator. This is the basic register in which binary
quantities are represented symbolically. Different machines
use slightly. different approaches, but in general the accu­
mulator is both a source and a destination register. A typical
instruction will direct the ALU to add the contents of some
other register to the contents of the accumulator, and to
store the result in the accumulator itself.

The ALU must contain a complex adder, which is
capable of combining the contents of two registers in
accordance with the logic of binary arithmetic_ This pro­
vision permits the processor to perform arithmetic manipu­
lations on the data it obtains from memory and from its
other inputs.

The adder is a minimum provision, but a compre­
hensive one as well. Using only the basic adder, a capable
programmer can write routines which will subtract, multiply
and divide, giving the machine complete arithmetic capa­
bilities. In practice, however, most ALUs provide other
built-in functions, including hardware subtraction, boolean
logic operations, and shift capabilities_

The ALU contains flag bits which register certain

9

conditions that arise in the course of arithmetic manipula­
tions. Flags typically include carry, zero, sign, and parity.
It is possible to program jumps which are conditionally
dependent on the status of one or more flags. Thus, for
example, the program may be designed to jump to a special
routine, if the carry bit is set following an addition instruc­
tion. The presence of a carry generally indicates an overflow
in the accumulator, and sometimes calls for special pro­
cessing actions.

We have touched very briefly on some of the features
of an ALU, in an attempt to explain its function. However,
most of the ALU's operations are really outside the prov­
ince of the logic designer. He never sees their results directly.
It is the programmer who is chiefly concerned with the
capabilities of the ALU, since they directly effect his ability
to construct programs that produce the desired results.
Readers who require a more detailed explanation of the
arithmetic logic unit are referred to a good programming text,
such as the INTELLEC a/MOD a Programmer's Manual.

INTERRUPTS

Interrupt provIsions are included on many central
processors, as a method of improving the processor's effi­
ciency. To understand the mechanism of an interrupt, con­
sider the hypothetical situation where two separate pro­
cessors are working simultaneously on two separate jobs.
One processor is working steadily at a low priority job. The
other is working at infrequent intervals on a high priority
assignment. We may readily improve the efficiency of this
configuration, as follows.

We use a single processor, but one which is equipped
to sense an external request for service; in other words, to
recognize an interrupt. We set this processor to work on the
low priority job, with the provision that it jump to a
routine designed to service the high priority channel when­
ever it receives an interrupt. The processor resumes the low
priority task when it is finished handling the interrupt. Note
that this is, in principle, quite similar to a subroutine call,
except that the jump is initiated externally rather than by
the pro!Jram.

This is quite acceptable, if the low priority task does
not consume 100% of the processor's time; that is, if the
processor is not required to run at top speed continuously
in order to meet the requirements of the job. No problem,
since teal-time systems are generally designed with a consid­
erable safety margin in mind. The average load on a properly
designed system is well below its peak capacity, to allow for
statistically infrequent bursts of activity.

The interrupt feature in this simple example permits
us to increase processing efficiency. More complex interrupt
structures are possible, in which several interrupting devices
share the same processor but have diffe~ent priority levels.
Interruptive processing is an important feature, that enables
us to maximize the utilization of a processor's capacity.

HOLD

Another important feature that improves the through­
put of a processor is the Hold. The hold provision enables
Direct Memory Access operation (DMA).

I n ordinary input and output operations, the processor
itself supervises the entire transfer. Information to be placed
in memory'is transferred from the input to the processor,
and then from the processor to the designated memory lo­
cation. In similar fashion, information that goes from mem­
ory to output goes by way of the processor.

Some peripheral devices, however, are capable of
transferring information to and from memory much faster
than the processor itself can accomplish the transfer. If any
appreciable quantity of data must be transferred to or
from such a device, then system throughout will be in­
creased by having the device accomplish the transfer directly.
The processor must temporarily suspend its operation during
such a transfer, to prevent conflicts that would arise if pro­
cessor and peripheral attempted to access memory simul­
taneously. It is for this reason that a hold provision is in­
cluded on some processors.

FUNCTIONAL ORGANIZATION OF THE
CENTRAL PROCESSOR MODULE

The imm8-82 contains the 8008-1 CPU and the logic
that supports the chip. I n addition to the processor chip, the
module contains the following logical blocks:

a) timing generator
b) cycle decoder
c) bus switching logic
d) address latches
e) read/write control
f) wait logic
g) interrupt logic
h) hold logic
j) status latches

The functional relationship between these blocks is
shown in Figure 2-2.

The 8008-1 exercises complete control over the rest
of the logic on the module, according to the instructions it
receives from memory.

The timing generator consists ofa crystal controlled
clock oscillator, a state decoder, logic on the CPU chip itself,
and auxiliary timing logic.

The oscillator section generates two non-overlapping
800 kHz clock phases, which drive the processor chip as well
as other timing circuitry on the board. Logic contained in
the CPU chip derives a symmetrical 400 kHz SYNC signal
from the 1/J2 clock, and this too is made available to the
auxiliary timing logic.

The state decoder receives a three-line signal from the
processor chip (So-52), indicating the processor's internal
phase. The state decoder produces the following logically
exclusive outputs:

I

10

T1, T11, T2, T3, T4, T5, WAIT, and STOPPED

The auxiliary timing logic receives I/Jl' 1/J2, and SYNC.
It also receives T2 and T3 signals from the state decoder.
The auxiliary timing logic uses these inputs to generate:

1/J12, SYNCA, and T3A

The control signals produces by the state decoder
and the timing logic then synchronize and govern all the
other internal operations of the Central Processor Module.

The cycle decoder receives the two sub-cycle identifi­
cation bits that the processor chip boradcasts during the T2
interval. Sub-cycle information is an internal function of the
8008-1, used to indicate which portion of a machine cycle
is in progress. There are four possible sub-cycles: instruction
fetch (PC!); memory read (PCR), memory write (PCW), or
input/output (PCC). This will be explained more fully in the
next section, where we describe the processor chip itself.
For now, it is sufficient to know that the portions of a
machine cycle are so differentiated.

The cycle decoder produces a four-line exclusive out­
put, indicating the kind of sub-cycle in progress. The pew
and PCC outputs are used by the processor module's control
logic. All four signals are available, for controll ing external
circuitry.

The bus switching logic coordinates the use of the
processor chip's main data bus. This function is necessary,
as we noted earlier, if we are to prevent conflict among
the many devices that ultimately share the main data bus.
Bus switching logic consists of the input multiplexer, the
input and output gating sections, and the logic that controls
these functions.

Control logic for the bus switching section receives
signals from the timing generator and from the cycle de­
coder. Inputs include T3A, PCC, and PCW, as well as
signals from the interrupt logic and the hold logic. From
these, the control logic is able to sense an input or an out­
put operation and can determine which of the external
devices should be granted access to the main data bus.

The input multiplexer is a three-way switch which
selects one of three eight-line input channels and forwards
it to the input gating section. Input signals from the control
logic enable the multiplexer to select data from memory,
data from the input peripherals, or data fram the interrupt
bus for input to the processor.

The input gating section receives T3A and PCW sig­
nals, from the timing generator and the cycle decoder
respectively. These allow the gate to forward the mUltiplex­
er's output to the processor, at precisely the right moment.

The output gating section controls the output data
bus, which is shared by memory and by the output periph­
erals. The output data bus will normally be enabled con­
tinuously. The only time that the module's output bus is
inhibited is during direct memory access (DMA) operations.
A control signal from the hold logic disables the output
gating section when such an operation is in progress.

The address latch consists of two eight-bit latch sec­
tions, both of which receive their data inputs from the
processor's main data bus_ One latch receives the Tl timing
signal as a strobe, and the other receives T2. These latches
thus register and hold the address which the processor sends
out, during the Tl and T2 intervals of all processor sub­
cycles. The address stored in the latches is presented to
memory and to the peripherals continuously during the
phase in progress.

The read/write control logic commands a two-state
output line. This line signals memory when a write opera­
tion is in progress_ If no write signal is present, a read
occurs. The read/write control uses T3 and PCW to develop
its output.

The wait logic monitors the WAIT REQUEST line
from the system memory. If the memory is slow to respond
to the processor's read or write command, the wait logic
causes the processor to idle until the memory can complete
the transaction. A WAIT signal is available to external
circuitry, during the time that the processor is idling; this
serves to acknowledge the wait request. A wait request may
be of indefinite length, but the actual wait interval is always
an even multiple of the processor's clock period.

The interrupt logic monitors the INTERRUPT RE­
QUEST and the HALT INTERRUPT REQUEST lines from
external devices_ This section also receives a SYNCA signal
from the timing logic. The interrupt section uses these in­
puts to develop an INTERRUPT signal which is correctly

CLOCK

WAIT
WAIT
LOGIC

MEMORY

I/O PORT

INT DATA

INTERRUPT

HOLD

</>1

<fa

T2

T3

INPUT
MPX

INT
LOGIC

HOLD
LOGIC

SYNC

iji12 T3 SYNC A

IN
GATING

Figure 2-2. CPU Module Functional Block

CPU

ROY INT

T3

PCW

11

iji12

T1

,...---':L--1~ T2

FROM
INTERRUPT

LOGIC

WAIT

T3

STOPPED

T4

T5

T11

OUT
GATING

1------------- DATA ,-_________ OUT

R/W
LOGIC

T1 T2

ADDRESS
LATCH

CYCLE
DECODER

STATUS
LATCH

T4

ADDRESS
OUT

PCI

PCR

PCC

PCW

REG/FLAG
DATA
OUT

READ/WRITE

synchronized with the processor module's 1>1 and 1>2 clock
signals. An INTERRUPT REQUEST LATCH output is avail­
able externally, to acknowledge the interrupt request.

The processor module responds to an interrupt by
altering the sequence of events that occurs during the next
instruction fetch. The processor enters a special alternate
phase (T11), rather than going into the T1 phase as it
normally would. As it customarily does, the processor
sends out the lower eight bits in its program counter, but
the counter itself is not incremented. This is the only dif­
ference in the fetch, as far as the processor chip is con­
cerned. The T2 and T3 intervals which follow T11 are identi­
cal to those that occur in any other PCI sub-cycle.

However, peripheral logic is equipped to sense the
entry into the T11 phase. It responds by sending a control
signal to the input multiplexer, causing the multiplexer to
select the interrupt instruction port instead of the proces­
sor's memory data in port. Thus the eight-bit word jammed
into the interrupt port gets interpreted as an instruction by
the processor.

Any instruction may be inserted, single or multiple
byte. Synchronizing the presentation of successive bytes of
a multiple byte instruction, however, requires some addi­
tional logic. For this reason, single byte instructions are pre­
ferred for interrupts. There are several possibilities.

A HALT instruction may be used to stop the proces­
sor upon completion of some task, manually or automati­
cally. Or an output instruction may be used to output the
accumulator's contents during a critical phase of the pro­
gramming. Control and de-bugging are therefore two pos­
sible uses of the interrupt feature.

But by far the most convenient instruction for use
with interrupts is the RESTART (abbreviated RST). The
RST is a one byte call instruction especially intended for
use with interruptive processing. The binary instruction
field contains three variable digits that permit the program­
mer to specify a jump to one of eight memory locations.
The decimal ctddresses of these dedicated locations are: 0, 8,
16, 24, 32, 40, 48, 56. One of these locations can be used
to store the first instruction of a program designed to
service the interrupting device. Or it can store the first byte
of an ordinary three byte jump, to a location where such a
program is stored.

An important use of the RST instruction is the start­
up of the processor chip, which always comes to rest in a
HALT state after power is initially applied. The machine is
started by means of an interruptive jump to memory loca­
tion zero (or to some other desired location).

Note that in the INTELLEC 8/MOD 8 system the
operator's console is the only device for which interrupt
capability is provided.

The hold logic receives a HOLD R EQU EST signal
from one or more peripheral devices. It also receives WAIT
and STOP signals from the timing generator. When a HOLD

12

REQUEST coincides with a WAIT or a STOP, the hold logic
issues a HOLD ACKNOWLEDGE signal to the peripheral.
At the same time the hold logic:

a) floats the module's address bus
b) floats the module's data out bus
c) floats the read/write I ine to memory
d) floats the I/O OUT output line
e) floats the I/O IN output line
f) disables the output from the state decoder

This action prevents the processor from exerting any
influence on memory, either via the data bus or by means
of external control signals. The peripheral originating the
HOLD REQUEST is therefore free to command the memory
until the WAIT REQUEST is retracted. Note that it is the
WAIT REQUEST, notthe HOLD REQUEST, that maintains
the holding state.

The status latch is an eight-bit latch which receives
its data input from the processor's output data bus. The
strobe input to this banked latch is the T4 signal from the
timing section. During the T4 interval, the 8008-1 broad­
casts the state of its four status flags (carry, sign, zero, and
parity). This information is saved in the latch and made
available to external circuitry. It has no effect on the inter­
nal operation of the Central Processor Module.

8008-1 EIGHT-BIT PARALLEL
CENTRAL PROCESSOR UNIT

A brief description of the 8008-1 CPU chip is essen­
tial to a thorough understanding of the imm8-82 Central
Processor Module.

Capabilities of the 8008-1

The 8008-1 is a selected version of Intel's 8008 CPU.
The device is chosen for its ability to run at high speed, and
has a basic cycle time of 12.5 microseconds. By way of con­
trast, the basic cycle of the standard 8008 is 20 microseconds.

The list of the 8008's capabilities reads much like a
description of the imm8-82 Central Processor Module itself.
I n a very real sense, it is the chip processor that gives the
module its "personality." The CPU chip has a repertoire of
48 instructions, with provision for arithmetic and logical
operations, register-to-register and register-to-memory trans­
fers, subroutine handling, and I/O transactions. Four status
flags permit conditional branching, based on carry, sign,
zero, and parity.

The 8008 can access 16,384 memory locations di­
rectly, and this inherent ability can be extended further
through the use of bank-switching. The chip has six index
registers (scratchpad). An eight-level, fourteen-bit stack and
program counter permits the nesting of subroutines up to
seven levels. Built-in interrupt capability and synchroniza­
tion provision for slow memories round out the chip's
capabilities.

Clock Timing

The 8008-1 is driven by a two-phase TTL oscillator,
at a maximum frequency of 800 kHz_ All processing activ­
ities are referred to the period of this clock_ Ten clock
periods establish the basic system cycle of 12_5 micro­
seconds_

The two clock phases are labeled rf>l and rf>2 _ External
circuitry provides these reference signals. The processor chip
contains divide-by-two logic which derives the SYNC signal

from rf>2'

Observe that a state is defined roughly as one full
cycle of the SYNC pulse, and that two cycles of rf>l and rf>2
occur during each processor state. The positive-going lead­
ing edge of the rf>l clock precedes that of the rf>2 clock. For
this reason, rf>l is generally used to pre-charge bus and
signal lines, preparatory to a data transfer. The rf>2 clock is
then used as the strobe that pulses the destination register.

The Processor Cycle
,

As we mentioned before, a machine cycle consists of
two parts. The first is the instruction fetch, and the second
is the execution. The 8008, however, uses a variable-length
machine cycle. The fetch routine is the same for all instruc­
tions, but the duration of the execution portion depends
upon the kind of instruction that is fetched. Many uses find
this variable cycle confusing, and it is therefore worthwhile
to spend a little time on this subject.

Every machine cycle consists of one, two, or three
sub-cycles. Each sub-cycle, in turn, consists of three, four,
or five states. A state is defined as a constant interval,
equal to two periods of the clock oscillator. That is, a
state is so defined in all but two cases. Exceptions to the
rule are the WAIT state and the STOPPED state, already
described in earlier sections. A moment's consideration
assures us that this is reasonable, since the halt and the wait
are by nature indeterminate in length. It is worth noting,
however, that even the STOPPED and WAIT states must be
synchronized with the clock pulses. Both states occur in
even multiples of the integral clock period.

To summarize then, two clock periods make a state;
three to five states make a sub-cycle; and one to three sub­
cycles make a complete machine cycle. A full cycle requires
anywhere from threfl to eleven states for its completion
(7.5 microseconds to 27.5 microseconds), depending on the
kind of instruction involved.

CYCLE ENCODING

Let's concentrate for the moment on the question of
sub-cycles. Just one consideration determines how many
sub-cycles are required for a given instruction cycle: the
number of times that the processor must reference a mem­
ory address, or an addressable peripheral device. The 8008,
transmits one address during any given sub-cycle. Thus, if an
instruction requires two memory references, then the ma­
chine cycle requires two sub-cycles. If three such references

13

are necessary, then the machine has three sub-cycles.

Every machine cycle has at least one memory refer­
ence, used to fetch the instruction. A cycle must always
have a fetch, even if the instruction requires no further ref­
erences to memory during its execution. The first sub-cycle
in every machine cycle is therefore a PCI, or instruction
fetch. Beyond that, there are no fast rules. It depends on
the kind of instruction.

Consider some examples. The halt instruction (HL T)
is an instruction that requires only a single sub-cycle (PCI)
for its completion. Once the processor has fetched and de­
coded this instruction, the only executive action required is
to suspend the output from the processor's internal timing
section. This is quickly accomplished. The fetch of the in­
struction and its execution require only four states, and
only one reference to memory is necessary.

At the other extreme is the jump instruction (JMP).
Execution of the jump requires three sub-cycles (PCI/
PCR/PCR). This is true, because the jump is a three-byte
instruction. The first byte contains the definitive instruction
code. The second and third bytes contain the lower eight
bits and the upper six bits of the jump address, respectively.
These three bytes are stored in three successive memory lo­
cations, and the processor must access memory three times
in order to obtain the information that it needs. The first
and second sub-cycles require three states each, while the
third requires five. The entire machine cycle takes eleven
states (27.5 microseconds).

Most instructions fall between the extremes typefied
by the halt and the jump instructions. The input (I N) and
output (OUT) instructions, for example, require only two
sub-cycles: one to fetch the instruction from memory, and
one to address the object peripheral (PCI/PCC).

To reiterate information given previously, there are
four possible sub-cycles that may occur in a machine cycle.
They are identified as the PCI (instruction fetch), the PCR
(memory read), the PCW (memory write), and the PCC (in­
put/output). The sub-cycles that occur in any particular ma­
chine cycle depend upon the instruction type, with the over­
riding stipulation that the first sub-cycle is always a PCI.

The processor identifies the sub-cycle in progress, by
sending out two CYCLE bits during the second state of
every sub-cycle. These may be latched and decoded, and
used to develop control signals for external circuitry. The
identification bits are carried on the D6 and D7 lines of the
processor's main data bus. The encoding is shown in Table
2-1.

Cycle Control Coding

CYCLE D6 D7

PCI 0 0
PCR 0
PCC 0
PCW

Table 2-1.

STATE ENCODING

Every sub-cycle within the machine cycle consists of
from three to five states. The number of states depends upon
the instruction being performed and on the particular sub­
cycle within the greater machine cycle.

The processor indicates its internal state by means of
three encoded lines which emanate from the chip. T-hese
STATE lines (So - S2) are decoded by external circuitry, to
determine which state is in progress. Table 2-2 shows how
information on the STATE lines is encoded.

State Control Encoding

STATE So SI S2

T1 0 1 0
T11 0 1 1
T2 0 0 1
WAIT 0 0 0
T3 1 0 0
STOPPED 1 1 0
T4 1 1 1
T5 1 0 1

Table 2-2.

Every sub-cycle within the machine cycle passes
through at least three states. During the first, the lower
eight bits of a memory address are sent out onto the main
data bus. In the second, the processor transmits a field con­
sisting of six address bits and two CYCLE control bits on
the eight lines of the main data bus. Bus outputs Do through
D 5 carry the upper six bits of the referenced memory ad­
dress. D6 and D7 carry the cycle control bits, as described
in the previous section. External circuitry must capture this
address information and present it to the memory, in parallel.

Once the processor has sent an address to memory,
there is an opportunity for the memory to request a WAIT.
This is done by pulling the processor's READY line low,
prior to the trailing edge of the last <f>2 clock pulse in T2
(<f>22)' As long as the line remains low, the processor will
idle. During this state, the STATE lines boradcast a WAIT
condition to the external circuitry.

The WAIT period may be of indefinite duration, but
always consists of an even number of integral clock periods.
In order to guarantee an exit from the WAIT state, the pro­
cessor's READY line must go high at least 350 nanoseconds
prior to the trailing edge of <f>22' When this condition is ful­
filled, the processor proceeds to the T3 state, beginning
with the next <f>1 clock pulse.

The events that take place during the T3 state depend
upon the kind of sub-cycle in progress. I n a PCI cycle, the
processor interprets the data on its bus as an instruction.
During PCR, the bus contents is construed as data. The pro­
cessor itself outputs data during a PCW sub-cycle. And in a
PCC sub-cycle, the processor may either transmit or receive
data, depending on the kind of I/O instruction.

14

After the T3 state, it becomes extremely difficult to
generalize. Almost every instruction has a unique sequence
of events. If a halt (H L T) instruction is fetched, the proces­
sor enters the STOPPED state at the end of T3. While the
machine is halted, the STATE lines indicate this condition
to the external logic circuitry. An INTERRUPT is required
to restart the machine (this is explained in a later section).

The T4 and the T5 states are available, if the execu­
tion of a particular instruction requires them. If not, the pro­
cessor may skip one or both states and proceed directly to
Tl of the next sub-cycle. Again, this depends upon the kind
of instruction fetched, and on the particular sub-cycle in
progress. T4 and T5 are reserved in all cases for internal pro­
cessor operations. No external device is ever referenced dur­
ing T4 or T5.

The chart contained in Table 2-3 shows the state
sequence involved in the execution of each kind of instruc­
tion. You should refer to that table, if you have questions on
how a specific instruction is executed. The processing activi­
ty associated with each state is briefly summarized.

The T11 state is an alternative to the T1 state. It is
used only for interrupts. An INTERRUPT request is always
acknowledged at the beginning of a machine cycle, to pre­
vent the abort of any instruction that may have been in
progress when the request arrived. The 8008-1 responds to
an INTERRUPT by entering the T11 state, rather than T1,
during the PCI sub-cycle. The program counter is not incre­
mented during T11, as it normally would be in T1, a provi­
sion which permits the interrupted program to be resumed
following the INTERRUPT. The processor indicates the T11
condition on its STATE lines, but that is the only other de­
parture from a normal PCI sub-cycle.

The remainder of the INTERRUPT handling is dele­
gated to external logic. It is up to external circuitry to inter­
pret T11 as an acknowledgement of the I NTE R R UPT re­
quest. Upon receipt of this acknowledgement, the external
logic is required to disconnect the processor from the mem­
ory data in bus. This permits the interrupting device to

Figure 2-3. CPU State Transition Diagram

"jam"an eight-bit instruction word directly onto the pro­
cessor's data bus during T3. For multi-byte interrupt in­
structions, the CPU continues to generate T11 instead of T1.

Architecture of the 8008-1

Internally, the 8008-1 consists of:

a) timing generator
b) program counter/stack
c) instruction register and decoder
d) arithmetic logic unit (ALU)
e) index registers (scratchpad)
f) I/O buffer
g) memory refresh circuitry

Figure 2-4 is a functional block diagram of the 8008-1.

The timing generator accepts the ct>l and ct>2 inputs
from the external clock oscillator, and uses them to develop
the SYNC output. From these signals, the timing logic devel­
ops an array of timing signals that coordinate the activities
of all other functional blocks, as well as producing the coded
STATE outputs to external circuitry. The timing generator
consists of the CLOCK GENERATOR, STATE TIMING
GENERATOR, MACHINE CYCLE CONTROL, and STAT­
US SIGNALS blocks shown in Figure 2-4_

INTERNAL DATA BUS

Figure 2-4. 8008-1 CPU Block Diagram

15

The program counter and stack is a dynamic memory
array containing 8 fourteen-bit registers, pointer logic, and
cou nter incrementation facil ities. I t is configured as a revolv­
ing pushdown stack, with a wrap-around pointer. This sec­
tion maintains the memory address of the current program
instruction, as well as the return addresses for up to seven
nested subroutines. The program counter is incremented
automatically during every PCI sub-cycle, and the stack is
managed through the use of ten specialized instructions that
include conditional jumps and returns. A short-form call in­
struction (RST) is available for use with interrupts.

The instruction register stores the eight-bit instruction
word that is returned to the processor during PCI-T3. This
instruction code is presented to the instruction decoder,
which also receives inputs from the timing section. The tim­
ing signals are combined with the decoder's output, to de­
velop the command signals that control the chip's other
circuitry.

The arithmetic logic section contains the accumulator
register, the two temporary holding registers (a and b), the
adder, and the status bit logic. This section is equipped to
perform both arithmetic and boolean logic operations, in
parallel, on eight-bit binary quantities. All logical. manipula­
tion of data takes place in the ALU, under supervision of
the instruction control logic.

READY INTERRUPT

INDEX REGISTER INSTRUCTIONS

INSTRUCTION CODING #OF STATES
OPERATION TO EXECUTE

0 7 0 6 0 5 0 4 0 3 D:l 0, DO INSTRUCTION n(2)

1 1 0 0 0 S S S MOV'j,'2 5 PC LOUT
(4)

1 1 D D D 1 1 1 MOV" M 8 PC LOUT

1 1 1 1 1 S S S MOV M,' 7 PCLOUT

0 0 D D D 1 1 0 MVI, 8 PClOUT

0 0 1 1 1 1 1 0 MVIM 9 PC LOUT

0 0 0 0 0 0 0 0 INR, 5 PCLOUT

~- D 0 D 0 0 1 OCR, 5 PClOUT

ACCUMULATOR GROUP INSTRUCTIONS

1 0 P P P S S S ALU OP r 5 PCLOUT

1 0 P P P 1 1 1 ALU OP M 8 PCLOUT

0 0 P P P. 1 0 0 AlU OP I 8 PC LOUT

0 0 0 0 0 0 1 0 RLC 5 PC LOUT

0 0 0 0 1 0 1 0 RRC 5 PC LOUT

V 0 0 1 0 0 1 0 RAL 5 PCLOUT

0 0 0 1 1 0 1 0 RAR 5 PCLOUT

PROGRAM COUNTER AND STACK CONTROL INSTRUCTIONS

0 1 X X X 1 0 0 JMP 11

0 1 U C C 0 0 0 JNC, JNZ, 9 or 11
JP, JPO

0 1 1 C C 0 0 0 JC, JZ, 9 or 11
JM, JPE

0 1 X X X 1 1 0 CALL 11

0 1 0 C C 0 1 0 CNC, CNZ, 9 or 11
CP,CPO

0 1 1 C C 0 1 0 CC,CZ, 9 or 11
CM, CPE

0 0 X X X 1 1 1 RET 5

0 0 0 C C 0 1 1 RNC, RNZ, 30r 5
RP,RPO

0 0 1 C C 0 1 1 RC, RZ, 30r 5
RM, RPE

0 0 A A A 1 0 1 RST 5

I/O INSTRUCTHlNS

0 1 0 0 M M M 1 IN 8

0 1 R R M M M 1 OUT 6

MACHINE INSTRUCTIONS

o 0 000 o 0 X

NOTES:
1. The first su b· cycle is always a PCI (instruction) cycle.
2. Internally, states are defined as Tl through T5. IR some cases

more than one su b-cycle is required to execute an instruction.
3. Content of the internal data bus at T4 and T5 is available at the

data bus. This is designed for testing purposes only.
4. Lower order address bits in the program counter are denoted

by PCl arid higher order bits are designated by PCH.
5. During an instruction fetch the instruction comes from memory

to the instruction register and is decoded.

Table 2-3. State Transition Sequence

PC LOUT

PCLOUT

PClOUT

PCLOUT

PCLOUT

PC LOUT

PCLOUT

PC LOUT

PCLOUT

PCLOUT

PC LOUT

PCLOUT

16

STATE TRANSITION

T2

PCHOUT

PCHOUT

PCHOUT

PCHOUT

PCHOUT

PCHOUT

PCHOUT

PCHOUT

PCHOUT

PCHOUT

PCHOUT

PCHOUT

PCHOUT

PCHOUT

PCHOUT

PCHOUT

PCHOUT

PCHOUT

PCHOUT

PCHOUT

PCHDUT

PCHOUT

PCHOUT

PCHOUT

PCHOUT

PCHOUT

SUB·CYCLE ONE IH

T3

FETCH INSTR.(5
TO IR & REG. b
FETCH INSTR.
TO IR & REG.b
FETCH INSTR.
TO IR& REG.b
FETCH INSTR.
TO IR & REG.b
FETCH INSTR.
TO IR & REG.b
FETCH INSTR.
TO IR & REG.b
FETCH INSTR.
TO IR & REG.b

FETCH INSTR.
TO IR & REG.b
FETCH INSTR.
TO IR & REG.b
FETCH INSTR.
TO IR & REG. b
FETCH INSTR.
TO IR & REG.b
FETCH INSTR.
TO IR & REG.b
FETCH INSTR.
TOIR®.b
FETCH INSTR.
TO IR & REG.b

FETCH INSTR.
TO IR & REG.b
FETCH INSTR.
TO IR & REG. b
FETCH INSTR.
TO IR & REG.b
FETCH INSTR.
TO IR & REG. b
FETCH INSTR.
TO IR & REG.b
FETCH INSTR.
TO IR & REG.b
FETCH INSTR.
TO IR & REG.b
FETCH INSTR.
TO IR & REG.b
FETCH INSTR.
TO IR & REG. b
FETCH INSTR.
TO REG.bAND
PUSH STACK
(O-REG.a)

FETCH INSTR.
TO IR & REG.b
FETCH INSTR.
TO IR & REG. b

FETCH INSTF!.
TO IR & REG.b
& HALT (18)

T4(3)

SSSTO REG. b
(6)

\1)

SSSTO REG.b

X

X

SSS TO REG.b

X

X

X

X

POP STACK

POP STACK (13)

POP STACK (13)

REG. a TOPCH

T5

REG. b TO DOD

..

..

..

..
ADD OP • FLAGS
AFFECTED
SUB OP • FLAGS
AFFECTED

AlU OP. FLAGS
AFFECTED

...

..
ROTATE REG. A
CARRY AFFECTED
ROTATE REG. A
CARRY AFFECTED
ROTATE REG. A
CARRY AFFECTED
ROTATE REG. A
CARRY AFFECTED

..

...

..

...

..

..
X

X

X

REG. bTO PCl
(14)

...

...

6. Temporary registers are used internally for arithmetic operations
and data transfers (Register a and Register b.)

7. These states are skipped.
8. PCR cycle (Memory Read Cycle).
9: "X" denotes an idle state.

10. PCW cycle (Memory Write Cycle).
11. When the JUMP is conditional and the Condition fails, states

T4 and T5 are skipped and the state counter advances to
the next memory cycle.

SEQUENCE

PClOUT(8} PCHOUT

PClOUT(8} PCHOUT

PClOUT(81 PCHOUT

PClOUT(81 PCHOUT

PClOUT(8} PCHOUT

PClOUT(8}

12. When the CAll is conditional and the condition fails, states
T4 and TS are skipped and the state counter advances to
the next memory' cycle. If the condition is true, the stack
is pushed at T4, and the lower and higher order address
bytes are loaded into the program counter.

13. When the RETURN condition is true, pop up the stack;
otherwise, advance to next memory cycle skipping T4 and TS.

14. Bits 03 through Os are loaded into PCl and all other bits
are set to zero; zeros are loaded into PCH.

Table 2-3. State Transition Sequence (continued)

~

~

~

~

~

17

lS. PCC cycle (1/0 Cycle).
16. The content of the condition flip.flops is available at the data bus:

S at DO, Z at 01, Pat 02, C at 03.(04 - 07 all onesl
17. A READY command must be supplied for the OUT operation

to be CQmpleted. An idle T3 state is used and then the state
counter advances to the next memory cvcle.

18. When a HALT command occurs, the CPU internally remains
in the T3 state until an INTERRUPT is recognized. Externally,
the STOPPED state is indicated.

BYTES

2

2

2

3

3

3

3

3

3

The 8008-1 contains six general purpose, eight-bit
index registers_ These serve as convenient working storage
for the intermediate results of the ALU's operations. The
registers are designated B, C, D, E, H, and L. The Hand L
registers are also provided with logic that permits them to
serve as pointers during the execution of memory reference
instructions. The H register holds the upper six bits, and the
L register holds the lower eight. The contents of these regis­
ters are sent out as an address in lieu of the program counter,
during the PCR and PCW sub-cycles of memory referencing
operations_

The I/O buffer controls the flow of data, between the
processor's internal data bus and the external data bus. It
receives signals from the tim ing and control sections that
permit it to perform the necessary gating functions.

All storage on the 8008-1 is of the dynamic type. That
is, it consists of capacitor-like elements which are charged
to specific levels in order to store a binary "1" or "0." This
is true of the accumulator, the index registers, the stack
pointer, and all other similar provisions. Leakage would
soon destroy the information stored in these elements, if
they were not scanned periodically and "refreshed" as nec­
essary. Active circuits on the chip perform this function.
That is the purpose of the refresh provision. The internal
memories are scanned automatically during WAIT, T3, and
STOPPED phases. Under worst-case conditions, a complete
refresh cycle occurs every eighty clock periods.

8008-1 Instruction Set

The instruction set of the 8008-1 consists of 48 in­
structions, in four logical groups.

Seven index register instructions permit the ,transfer
of data, between individual registers and between registers
and memory. Two instructions enable the programmer to
increment and decrement the contents of any register (=R6.).

Twenty-eight accumulator group instructions permit a
variety of arithmetic and logical manipulations. There are
twenty-four ALU instructions, divided into three groups of
eight. The three groups are: a) those operations that ref­
erence index registers, b) those operations that reference
memory via the Hand L pointer, and c) those operations
that reference "immediate" memory locations. ALU op­
erations in each category allow for add and subtract opera­
tions (with or without carry/borrow), boolean AND, OR,
and EXCLUSIVE-OR operations, and equality tests involv­
ing the accumulator. Four shift instructions permit shifting
the accumulator left and right, through or around the
CARRY bit.

Ten stack control instructions provide for jumps, calls,
and returns, both unconditionally and based upon tests of
the four status bits (carry, sign, zero, and parity). A special
one-word call, the restart (RST), is provided for use with
interrupts.

The instruction set of the 8008-1 contains two I/O in­
structions. I N provides for transferring an eight-bit word to

18

the accumulator, from one of eight input ports implied in
the instruction field. OUT causes the contents. of the accu­
mulator to be output to one of 24 implicit output addresses.

Also included in the 8008's repertoire are two machine
instructions: the no-operation (NOP) and the halt (HL T).
The NOP is actually a register-to-register transfer, in which
the source and the destination registers specified are the
same. The HL T causes the processor to enter the STOPPED
state (an INTERRUPT is required to exit from STOPPED
state.)

Interrupt

The 8008-1 contains a built-in interrupt facility. An
INTERRUPT request is initiated by pulling the processor's
INTERRUPT line high.

Transitions on the INTERRUPT line must be syn­
chronized to impulses of the clock used to drive the chip.
Specifications state that the INTERRUPT line must not be
permitted to change within 200 nanoseconds of the high-to­
low transition of the <PI clock. The most convenient syn­
chronizing impulse thus becomes the low-to-h igh leading
edge of the <P2 clock. Synchronization of the I NTE R R UPT
request in this fashion produces an INTERRUPT signal that
precedes the falling edge of <P2 . by more than 200 nano­
seconds, and one that at the same time allows more than
200 nanoseconds between the <PI clock's trailing edge and
the high-to-Iow transition fo the INTERRUPT request. The
timing of an INTERRUPT is illustrated in Figure 2-5.

A properly synchronized INTERRUPT request is ac­
knowledged at the beginning of a machine cycle. Instead of
entering the PCI-T1 state, as usual, the interrupted proces­
sor enters an alternative state: PCI-Tll. The only difference
between T11 and T1 is that the processor's internal program
counter is not incremented during a T11 state. Thus, the
program does not advance during an INTERRUPT cycle.
This permits the interrupted program to resume its execu­
tion following the INTER R UPT. The processor acknowl­
edges the INTERRUPT by placing So-SrS2 on the STATE
output lines, during the T11 state.

The interrupt cycle is otherwise indistinguishable from
an ordinary PCI subcycle. The processor itself takes no
further special action. It is the responsibility of the periph­
eral logic to see that the desired interrupt instruction is
"jammed" onto the processor's data bus at PCI-T3. I n a
typical system, this means that the data in bus from memory
must be temporarily disconnected from the processor's main
data bus, so that the interrupting device can command the
main bus without interference.

The processor will treat the code jammed onto the
main bus at T3 just like any other fetched instruction. Thus,
any of the 48 processor instructions may be inserted during
an INTERRUPT. If the code is the first byte of a multiple­
word instruction, however, a special problem is encountered.
The processor will perform succeeding memory reference
sub-cycles (PCR), fully expecting that the proper informa-

tion will be on the bus at the proper time. Providing such
data at the right time will involve some additional peripheral
logic. For this reason, one· byte instructions are preferred
for use with interrupts.

A special one·byte call is provided for use with in·
terrupts (the ordinary program call takes three bytes). This
is the restart instruction (RST). The eight bits of the RST
contain a variable three·bit field, which enables the inter­
rupting device to direct a jump to one of eight memory lo­
cations. The decimal addresses of these dedicated locations
are: 0,8,16,24,32,40,48, and 56. One of these addresses
may be used to store the first byte of a routine designed to
service the requirements of an interrupting device.

Start-Up Of The 8008-1

When power is initially applied to the 8008-1, the
processor enters the STOPPED state automatically. The
next sixteen clock periods are used to clear all dynamic
storage, including accumulator, index registers, and the
stack. The processor may then be started.

An INTERRUPT is always required, in order to exit
the STOPPED state. The use of the INTERRUPT is des­
cribed in the preceding section.

Electrical Characteristics and Timing of the 8008-1

The next two pages provide a complete electrical des­
cription of the Intel 8008/80OB-1, for those who require
this information.

PERIPHERAL LOGIC

I n this section, we describe the peripheral logic on the
imm8-82 Central Processor Module, the logic which supports
the activities of the 8008-1 CPU. We begin by explaining
the timing logic, since all the operations of the module are
ultimately referred to signals generated in that section. Then
we give a few descriptive examples of module operations,
showing how the peripheral logic extends the basic capa­
bilities of the 8008-1 CPU chip.

t" ~;l I' ~C!i

~"." ~"7 ~-~""'''.

INTERRUPT SERVICE ROUTINE

Figure 2-5. Interrupt Timing.

19

Timing Logic

The timing logic consists of a crystal controlled clock
oscillator, the state decoder, and auxiliary timing logic.
These provisions are shown on the module schematic,
Figure 2-8.

The clock oscillator furnishes two non-overlapping
clock phases, at 800 kHz, to the TTL-level inputs of the
8008-1 CPU. The clock outputs are also used by the auxili­
ary timing logic, to develop other necessary timing signals.
The clock oscillator consists of components shown in the
upper central portion of the module schematic.

CLOCK
5.587 MHz

B7 - "A"

B7 - "B"

B7 - "C"

B7 - 9

Jl

J2

JH

J = Jl·J2·iH

Kl

K2

KH

K = Kl·K2·KH

1t.z (01

CPl (aB'OcI

Note (1):

012345678

I I I I I I I I I

l L

I 1---- 1.25j.LS ----il

J "",------<I

_-----JnL..... ___ _

l L

______ ~IlL __ _

LJ

(1 I (11 (11
--I 179 r--358~r--358-1

Clock Generator Designed for Specially Selected 80OB·1 Device.

Figure 2-6. CPU Clock Timing

The 5.587 MHz quartz crystal Y1 is the basic fre­
quency reference. A portion of the crystal's signal output is
developed across C1 and appl ied to a 74H04 inverter sec­
tion. Two cascaded inverters are used here, and each has a
feedback resistor connected between its input and its out­
put. Both inverters are thus operating as operational ampli­
fiers, at a reduced gain. Together, they provide the amplifi­
cation and the phase shift necessary to sustain oscillation in
the crystal.

The output of the oscillator is applied to the input of
a Fairchild 9316 binary counter, through a NAND-gate used
as an inverter. A second NAND-gate section senses the coin­
cidence of 0B and 0c outputs, and clamps the PE input
(#9) low on the sixth count following reset. This enables
the seventh clock pulse to reset the 9316. The output of the
counter is used to produce two non-overlapping clocks at
800 kHz.

The OB and OC outputs of the 9316 are ANDed, to
generate the rf>1 clock. A different technique is used to
create 1/>2' The OA, OB, and OC outputs are applied to the
"Ju inputs of a 7470 J-K flip-flop. Inputs to the uK" sec­
tion of the flip-flop are OA, OB, and OC. Operating as it is,
in the steered mode, the flip-flop reacts to the third and
fifth clock pulses in each counter cycle. The output of the
flip-flop is 1/>2' The timing relationships within the clock sec­
tion are diagrammed in Figure 2-6.

The 1/>1 and the 1/>2 clock phases are appl ied to the
clock inputs of the CPU chip, which produces a SYNC out­
put derived from 1/>2' Then SYNC and clock signals are fed
to the auxiliary timing logic.

{
1>1 R

CLOCK

1>2

SYNC

8008

STATE

IS1> - S2)

SYNC A

1>12

TIMING
LOGIC

T2L

T3A

Figure 2-7. CPU Module Timing

I
R

20

I n the auxil iary logic section the SYNC is applied to
the D input of a 7474 latch section which is also clocked by
the low-to-high transition of 1/>2' This produces the SYNCA
signal which stands in a predictable relationship to the 1/>2
clock (note that the relationship between the trailing edge
of 1/>2 and the leading edge of the processor's SYNC output
varies from chip to chip, as shown in Figure 2-7). SYNCA
is used to synchronize external interrupt requests, and in
the derivation of other timing signals on the module.

SYNCA and the 1/>1 clock are ANDed in a 74HOO
NAND-gate section, to obtain the half frequency clock 1/>12'
The derivation of this signal is shown in the module timing
diagram, Figure 2-7. fP12 is an intermediate signal, used in
the derivation of other timing pulses.

The ($12 clock is applied to the ENABLE input of a
3205 Three-to-Eight Line Converter, used as the module's
state decoder. The DATA inputs to the 3205 are the
STATE lines emanating from the processor ship. This
produces a pulsed, exclusive eight-I ine output which is used
directly to control and time many of the module's activi­
ties. Outputs from the state decoder include: Tl, TTl, T2,
WAIT, T3, STOPPED, and T4 (a T5 output is available, but
not used).

The T2 output of the state decoder is forwarded to
the D input of a 3404 latch section, which is strobed by the
negative-going transition of (512' The intermediate timing
signal produced at the latch's output is called T2L. It oc­
cupies the interval between the leading edge of the T2 pulse
and the leading edge of T3, as shown in Figure 2-7. T2L is
used solely to derive the T3A timing signal.

2.5/1S - I
R R r;L

."
cE'
e
~
CD

N
I

!lO
C')
CD
:::I
~

!!!.

H

"tI G
~

o
~
'" '" o
~

s:: o
Co
e
CD F
(I)

g.
CD

3
~,
n

E

c

B

6

-IZV.{Iffi==:t (N.t:.)

-IZV.

7 6 5 4

+ v.

L'-;;"'" "",,'ii'X""". A8A

"~,,.

3 2

~ucn()t.,lIU.!!o

ECO OOOS7. AlICEO R'2'3.,
TPI TPl ANOTP3 .

C.- n:.o 0011., DCLE.T£D II.. '1

D

B

J ~~~-~~~--~~~-i·-~-i~~~~~~==~_~A ~ I.u: IOU: ~ _... _/ "II COMPU

... IC~ A~----~O---------'--------'7'--------'---------'6'--------'---------'5--------Cf--------C4'---------.--------,3.-~~il~~t:=====;2==~~~~~!<~~;;~,,:Js 8

;: :;;:./~";= ~:::..:~ ::$
ISrC~"''''I;1"",,,,,~,,.AN>~,,,,_
JII , .. ;rf' ~4~ Ihf.

A 7474 latch section is used to generate T3A. The
clocking input to the latch is the low-to-high transition of
the SYNCA signal. The 0 input is T2L. T3A and T3A sig­
nals are produced at the latch's Q outputs.

Refer to the module timing diagram, Figure 2-7, and
observe that the so-called T3A signal precedes the actual T3
signal, by some 1608 nanoseconds. By using T3A as a gating
signal during I/O input operations, we allow ample time for
the input device to precharge the processor's data bus prior
to the actual transfer of data.

Instruction Fetch (PCI)

An instruction fetch (PCI sub-cycle) is the first part
of every machine cycle. The events that take place during
an instruction fetch are as follows.

The processor chip transmits the lower eight bits of
the referenced location during T1. This byte is sent out on
the eight lines of the main data bus and presented to the
address latches, A 1 through A4. Two of the latches are
strobed by the T1 output of the state decoder, causing
them to register and hold the address byte.

During T2, the processor chip sends out the six high
order bits of the referenced address, pi us the two CYCLE
bits, in similar fashion, The T2 output of the state decoder
is used to strobe the remaining two address latches, and
these elements save this information.

The fourteen low order bits held in the address latches
point the location of the instruction that the processor in­
tends to fetch. The two remaining bits indicate that a PCI
sub-cycle is in progress. The CYCLE information is applied
to the cycle decoder (010).

The cycle decoder is an Intel 3205 Three-to-Eight
Line Converter, used here to provide an exclusive four-line
output. Each of the decoder's output lines indicates when
one of the four sub-cycles (PCI, PCR, PCW, or PCC) is in
progress. This information is available, for the control of
external devices. In addition, the PCC and PCW outputs are
furnished to circuitry on the PCU module itself, permitting
the module's control logic to generate I/O IN, I/O OUT,
and RM control signals.

Under ordinary conditions, the two 12-to-4 line
multiplexers, A7 and A9 select and forward the information
on the memory data in bus to the processor module's eight­
I ine input gate section. This tri-state buffer bank is enabled
by the T3A timing signal, operating through a 74HOO
NAND-gate and an 8093 section used here as a coincidence
indicator. The output of the buffer is the DB IN signal, and
this enables the gate to forward the information from the
multiplexer section to the processor. During T3, the pro­
cessor reads this bus, and the information on these lines is
transferred to the processor's instruction register. This com­
pletes the fetch portion of the machine cycle.

Memory Reference Operations (PCR and PCW)

Every operation that the CPU performs is preceded

22

by an instruction fetch sub-cycle (PCI) as just described. In
the case of certain instructions, it may be necessary to ref­
erence memory one or more additional times in order to
execute the command.

I nstructions that reference memory in the course of
their execution do so in a manner very similar to that used
to fetch instructions. During a PCR or a PCW cycle, the
addressing, input multiplexing, and bus gating functions are
handled in much the same way as for an instruction fetch.

As far as the peripheral logic is concerned there is one
important difference. A PCR or a PCW signal wi" be broad­
cast by the processor chip during T2. If the CYCLE code
indicates a PCR sub-cycle, then external conditions are ex­
actly the same as for an instruction fetch from memory. If
a PCW is indicated, tWO special actions are taken.

First, the cycle decoder activates the PCW line, and
this level is applied to pin #5 of C8. The presence of a low
inhibits the gate, disabling the DB IN signal and preventing
the input devices from affecting data that is going out on
the main bus.

And secondly, the PCW output is applied to a 7402
section used as a coincidence indicator. The coincidence of
PCW and T3 at the inputs to this gate generate a WR ITE
pulse on the R/W command line. The W signal indicates to
the external memory that data on the module's output bus
is to be stored in the addressed location.

I/O Operations

A" input and output operations requ ire two processor
sub-cycles: A PCI to fetch the instruction, and a PCC to
execute. The PCI sub-cycle is described in a previous section.

The instruction that the processor fetches from mem­
ory contains a five-bit field which specifies one of 32 pe­
ripherals. I n order to distinguish an input from an output
instruction, the lower eight addresses are reserved for input
devices, and the upper 24 for outputs.

The address of the object I/O device is sent to the A9
through A 13 address latches during T2, to identify the ob­
ject peripheral. Since only the lower eight addresses are used
for input, the A12 and A 13 lines wi" never be high unless
an output operation is in progress. These two lines are there­
fore applied to the inputs of a 7402 section (C7-4/5/6)
which produces a low during input operations and a high
during output. The remaining circuitry uses this signal, in
conjunction with PCC, T3, and T3A, to produce I/O IN and
I/O OUT control signals.

If an input operation is indicated, C7-4 wi" be high.
The coincidence of a T3A signal and a PCC produces a high
at C7-10. The outputs of these two gates are applied to the
input of a 74HOO NAND-gate section, where they are
AN Oed to produce the I/O IN control signal. The I/O IN is
buffered in an 8093 section and made available at the edge
connector for use by the object peripherals.

On the Central Processor Module itself, the I/O IN is
routed through a 74HOO section (used as OR) and a 7405

section and applied to the pin #17 inputs of the two inpUt
multiplexers, A7 and A9. This causes the multiplexers to
select data from the external input ports, and forward this
to the input gating section. The input gates are enabled by
the presence of T3A, and the data from the addressed input
device therefore passes to the processor, via the main data
bus.

If an output operation is indicated, on the other hand,
C7-4 will be low. This low is ANDed with T3 in a 7402
section, to produce a positive-going pulse output at C7 -1.
This output is applied to one input of a 7400 NAND-gate.
The other input to the gate is the output of C7-10 which,
as we have seen, is high during the coincidence of T3A and
the PCC cycle. As a result of the signals applied, D6-6 goes
low during the T3 phase of output, producing the I/O OUT
command. This signal is buffered in an 8093 section, and
made available for the control of external devices.

Interrupt Cycle
From the point of view of the CPU chip, the interrupt

cycle is simply a modified PCI. Externally, the function of
the processor chip appears much the same.

Peripheral logic does the bulk of the work during an
interrupt. It is the function of the peripheral logic to syn­
chronize the external INTERRUPT REQUEST with the
processor module's clocks. The instruction word presented
to the module's interrupt port must also be switched onto
the main data bus, at the appropriate time.

An incoming INTERRUPT REQUEST is applied to
the clock input of a 7474 section, labelled INTERRUPT
REQUEST LATCH on the module schematic. The latch
stores the request, until such time as the module's logic can
acknowledge it.

The resultant high at pin #fJ of the INTERRUPT RE­
QUEST LATCH is applied to the D input of the INTER­
RUPT LATCH itself. The clock input to this latch is the
positive-going transition of the SYNCA signal, which coin­
cides with the trailing edge of </>22' Thus, the INTERRUPT
LATCH registers the INTERRUPT REQUEST in proper
synchronization with the module's reference clocks. The Q
output of the INTERRUPT LATCH goes directly to the
processor chip's INTERRUPT input pin.

. As explained previously, the processor chip acknowl­
edges the INTERRUPT by going into an alternate phase
IT11) at the beginning of the next PCI cycle. At this time,
the processor chip's STATE lines indicate the T11 state to
the state decoder.

The T11 output from the state decoder is used direct­
ly to set the INTERRUPT CYCLE LATCH, shown just be­
low the processor chip on the module schematic. The Q
output from the 7474 is available to external circuitry, in­
dicating that the processor itself has honored the interrupt
request. The output of the INTERRUPT CYCLE LATCH is
also directed to the pin #16 control inputs of the A7 and
A9 mUltiplexers, causing them to select and forward the

23

data presented to the module's interrupt instruction port.
This data passes through the input gating logic during T3A,
onto the main data bus.

The INTERRUPT CYCLE LATCH is reset, immedi­
ately following the interrupt cycle, by a signal applied to its
clock input. The latch may be reset by either the T1 or the
IT or the STOPPED outputs of the state decoder.

Hold Operations

A HOLD REQUEST must always be preceded by a
WAIT REQUEST applied to pin #21 of the module. The
processor module must be waiting or stopped, before it can
acknowledge a HOLD REQUEST.

If the 'state decoder indicates that the processor is in
the WAIT or the STOPPED state, a negative-going 400 kHz
pulse will be applied to the clock input of the HOLD RE­
QUEST LATCH. The coincidence of a low-to-high transition
at the clock input and a HOLD REQUEST at the D input
resets this latch.

The resulting high at pin 8 of the 7474 is applied to a
7405 inverter section, and the inverter's output furnishes a
HOLD ACKNOWLEDGE to external circuitry. The output
of the 7405 is also directed in parallel to the inputs of two
more 7405s. The outputs of these inverters perform the fol­
lowing control functions:

a) float the address bus
b) float the module's data output bus
c) float the i76IN control line
d) float the I/O OUT control line
e) float the R/W control line
f) disable the cycle decoder

These actions ensure that the peripheral Originating
the HOLD REQUEST will have complete control of the
memory's busses and control lines.

The HOLD REQUEST may be removed as soon as the
module has acknowledged the request. The processor module
will continue to hold, until the WAIT REQUEST is removed
or until the module receives an INTERRUPT REQUEST.

When the clamp on the WAIT REQUEST line is lifted,
at the end of the DMA operation, D8-4 goes from high to
low. The output of this inverter is coupled through C12 to
one input of a 7400 NAND-gate. The gate's output passes
through a 7405 inverter to the preset input of the HOLD
REQUEST LATCH, setting the latch and terminating the
hold.

An INTERRUPT REQUEST can also set the HOLD
REQUEST latch. When the INTERRUPT LATCH registers
an interrupt, its Q output goes from high to low. The low is
coupled to D4-9, causing the hold latch to be set and im­
mediately terminating the HOLD ACKNOWLEDGE.

Whenever two or more peripherals in the same system
have DMA capability, there is always a chance of conflict.
One device may request a hold while the other is already in
the process of conducting a transfer. Finding the HOLD

ACKNOWLEDGE line enabled, the requesting device is
liable to proceed with its intention to transfer data. It will
come into direct conflict with the first device.

To prevent this possibility, the processor module
maintains a BUS BUSY state status line. Pin #53 of the
module is returned internally to the +5 Volt supply,
through a 1 K pullup resistor. It becomes the logical respon­
sibility of a device controller to monitor this line before
requesting a hold. If the line is high, the operation may
proceed. If not; it must wait. Any controller requesting a
hold must clamp the BUS BUSY line, in order to protect
its prior right of access.

UTILIZATION

This section provides installation and utilization infor­
mation for the imm8-82 Central Processor Card application.

I nstallation Requirements

The installation requirements for the imm8-82 Central
Processor Card are given in Table 2-4.

immS-S2 Central Processor Card
Installation Requirements

Connector: Dual 50-pin on 0.125 in.
centers. Connectors in rack
must be positioned at 0.5
in. centers minimum.

Operating Temperature: OOC to +55°C

DC Power Requirements: +5v +5% @ 2.2A max
(1.0 A typical)

Table 2-4.

-9v +5% @ Q.06A max
(0.03A typical)

24

Signal Requirements

All signal inputs and outputs on the Central Processor
Module are TTL compatible. However, the load/drive speci­
fications for certain signals vary from standard. Observe the
following specifications:

Input Signals Maximum Load Conditions

WAIT REO 5.5 mA@O.4V VCC=5.25V
HLT INT REO 5.5 mA@0.4V VCC=5.25V
DBIN 5.5 mA@O.4 V VCC=5.25V
All other inputs 5.5 mA@0.4V VCC=5.25V

Output Signals Maximum Load Conditions

MADo-u 32 mA@0.4V VCC=4·75V
MAD 1:HS 30 mA@0.4V VCC=4·75V
STATE &
CYCLE OUTPUTS 6.4 mA @ 0.4 V VCC=4·75V
All other outputs 8 mA@OAV VCC=4.75V

Pin List

This section provides all of the signals to be input and
output from the imm8-82 Central Processor Card and the
associated pin numbers on the imm8-82 edge connector.
Any special requirements will be noted, as will the section
number in which the associated signal is dealt with in detail.

Processor Module Output Connector

INPUT SIGNALS

NAME PIN# FUNCTION NOTE

MD10 23
MD11 25
MD12 29
MD13 27 Memory data
MD14 33 input (8 bits)
MD15 31
MD16 37
MD17 35

INO 70
IN1 72
IN2 78
IN3 76 > I nput port data
IN4 84 Input (8 bits)
IN5 79
IN6 81
IN7 86

110 69
111 71
112 77
113 73 Interrupt
114 80 instruction input
115 83 (8 bits)
116 85
117 87

WAIT REQ 21 Request processor 1
WAIT mode

HALT INT REQ 56 Request interrupt 1
when processor enters
STOPPED state

INT REQ 42 Requests interrupt 1
HOLD REQ 51 Requests HOLD 1

Operation
INT JAM ENBL 57 Enables I NPUT JAM 1

operation

POWER SUPPLIES

+5v 99,100 Vcc
GND 3,4 Ground
+12v 49,50 Not used on imm8-82
-9v 43,44 Vdd
-12v 47,48 Not used on imm8-82

Table 2-5.

25

Processor Module Output Connector

OUTPUT SIGNALS

NAME PIN # FUNCTION NOTE

OSC 55 Output of clock
oscillator

</>1 98 } Timing
</>2 89 signals

MADO 11
MAD1 12
MAD2 13 Low-order
MAD3 14 Memory Address
MAD4 15 (8 bits)
MAD5 16
MAD6 17
MAD7 18

MAD8 19
MAD9 20 High-order
MAD10 96 Memory Address
MAD11 94 (6 bits)
MAD12 60
MAD13 59)

MAD14 66 } Tied to ground on basic 2
MAD15 65 imm8-82

DBO 24
DB1 26
DB2 30
DB3 28 Data Out Bus
DB4 34 (8 bit)
DB5 32
DB6 38
DB7 36
-

40 T40 Sta'"' Flag S } -
T41 39 Status Flag Z
T42 41 Status Flag P for input instruction -
T43 45 Status Flag C
-
T44 90

} T45 91
T4 State Data Out -

T46 92
T47 8
-

10 T1

}
-

Mach ine State T2 1
-

63 Code Signals T3
T3A 88

Table 2-5. (Continued)

26

Processor Module Output Connector

NAME PIN # FUNCTION

HALT ACK 62 Indicates STOPPED state
INT ACK 5 Indicates Tll state

WAIT ACK 61 Indicates WAIT state

SYNCA 7 Timing signal

R/W 95 Memory Write strobe
HOLD ACK 46 Indicates HOLD operation
INT REQ LTH 9 I ndicates I nterrupt received

I/O OUT 54 Indicates I/O Output cycle

I/O IN 82 Indicates I/O Input cycle

FETCh! CYCLE 68 Indicates Instruction Fetch cycle

I/O CYCLE 64 I ndicates I nput/Output cycle

MEM READ CYCLE 67 Indicates Memory Read cycle

MEM WRITE CYCLE 58 I ndicates Memory Write cycle
INT CYCLE 75 I nd icates I nterrupt cycle
DB OUT 2 Enables data output from CPU
--
DBIN 22 Enables data input to CPU

There are also three jumpers which may be changed
by the user for special applications:

(1) If a Write strobe of the opposite polarity from

the standard strobe, R/W (low when Write). is
desired, the jumper marked C in Figure 2-8 may
be changed to the position shown in dotted
lines. This will give signal R/W as a Write strobe,
high when true.

(2) The edge pins corresponding to MAD14 and

MAD 15 are tied to ground in the basic system.
They can be changed to reflect the cycle con­
trol bits CCO-CCl by changing their respective
jumpers.

Table 2-5_ (Continued)

27

NOTE

28

The immS-60 I nput/Output Card has been designed
to provide the user with an input/output facility containing
four individually addressable input ports, two of which pro­
vide built-in Teletype interfacing and control, and four indi­
vidually addressable output ports, again with two of the
ports providing Teletype interfacing. The need for separate
external Teletype controllers is thereby eliminated, as is the
need to design input and output facilities.

The immS-60 Card has been designed to allow two
cards to be used in a system, with each card having a unique

To TTY
~

TELETYPE
TT~Y_D_AT_A_IN-I COMMUNICATIONS I-T_T_Y_D_AT_A_O.,UT

r------. INPUT

INPUT

INPUT DATA
(8 BITS)

PORT
SELECT

MODULE
ENABLE

OUTPUT DATA
(8 BITS)

MEMORY ADDRESS
DATA FROM

CENTRAL PROCESSOR
116 BITS)

Figure 3-1. I/O Functional Block Diagram

-0
"'c

</> '" -I -"1l
1 -I c

00-1
2 m"1l

3 l> 0
O:xJ
~cA

29

address by which it is referenced. The immS-60 Card includes
all logic necessary to support a multi-card implementation.

Although the immS-60 Card has been designed to
support the Intel immS-S2 Central Processor Card, it may
be used in any application which can use its easily imple­
mented input/output sub-system, its integral Teletype com­
munications facilities, its great flexibility, and its low cost.

This sectioh describes the operation and implementa­
tion of the immS-60 Input/Output Cprd at three levels; the
operation of the immS-60 is described on a basic functional
level in the first section; the theory of operation is provided
in the second; necessary information to effectively use the
immS-60 card is given in the third. This last section covers
such areas as user-available options, signal and installation
requirements, etc.

THE immS-60 INPUT/OUTPUT CARD -
GENERAL FUNCTIONAL DESCRIPTION

This section describes the operations of the immS-60
Input/Output Card in general functional terms, and is divid­
ed into six subsections. The first subsection describes the
five functional units which enable all of the operations per­
formed by the card. The second subsection describes the
Module Select and Port Select operations, as these two
operations are common to all other operations performed
by the card. The third subsection describes a typical input
operation, showing the interrelationship of the functional
blocks in that operation. The fourth subsection describes an
output operation in similar terms, while the fifth and sixth
subsections describe, respectively, Teletype input and Tele­
type output operations.

The Functional Units

In order to describe its operation, the immS-60 Card
can be divided into five functional units:

1) The Module Decode Block, which determines which
card is to be utilized for an operation when more
than one card has been installed in a system.

2) The Port Decode Block, which determines which
of the eight possible input and output ports is to
be used for an operation.

3) The Input Block, which contains the four input
ports and their associated logic.

4) The Output Block, which contains the four output
ports and their associated logic.

5) The Teletype Control Block, which receives data
from, and transmits data to the Teletype, and
which performs the necessary conversion of the
data (serial to parallel in the case of Teletype
I nput, and parallel to serial in the case of Teletype
output).

Each operation performed by the imm8-60 Card uses
one or more of these units in its execution.

A block diagram of the imm8-60 Input/Output Card,
showing the five functional units and their interrelation­
ships, is given in Figure 3-1, and should be referred to
when reading the rest of this section.

Module and Port Select Operations

The first operation performed by the imm8-60 Card
is always a Module and Port Select operation. A Module and
Port Select operation is performed via the following steps:

1) The Central Processor (I ntel imm8-82 or equiva­
lent) sends an 110 Address to the Module Select
and Port Select Blocks. This I/O Address contains
the information necessary to specify which card is
to be used for an operation (in a multi-card sys­
tem), what type of operation is to be performed
(Input or Output), and which port is to be used
for that operation.

2) The selected card is identified by the card's
Module Select Block, which generates an enable
signal which is transmitted to the rest of the card
logic.

3) The Port Decode Block, on the selected card, de­
termines which of the eight ports is being addressed
by the I/O Address. It then sends enabling signals
to either the Input or the Output block, depending
on whether an Input or Output port Was addressed.

This sequence of operations takes place before every
I/O operation.

Input Operation

An input operation is performed in order to obtain
data from an external source and to present it to the Cen­
tral Processor. The imm8-60 Input/Output Card performs
an input operation in the following steps:

1) The data from the external device is brought into
the Input block.

2) When the proper enabling signals .are generated by
the Module Decode and Port Decode blocks, the

30

data which has been input from the external device
to the Input block is sent out to the Central Pro­
cessor on the I nput Data bus.

Output Operation

An output operation is performed in order to receive
data which is sent out from the Central Processor and to
hold it for use by an external device. The imm8-60 Card
executes an output operation in the following steps:

1) The Central Processor sends the I/O Address to the
imm8-60 Card, and a Module and Port Select
operation is performed, as described earlier in the
section on Module and Port Select Operations.

2) The Central Processor sends the data which is to be
output to the Output block.

3) The data is placed into the selected output port,
under control of enabling signals generated during
the Module and Port Select operations.

4) The data is held in the selected output port for use
by the external device associated with that port.

Note that data is held in an output port until another
output operation is performed using the same output port.

Teletype Input Operation

A Teletype Input operation is performed in order to
accept information from an ASR-33 Teletype or Teletype­
compatible device, and to send that data to the Central Pro­
cessor. It is performed in the following steps:

1) Data from the Teletype is sent to the Teletype
Control block.

2) The Teletype Control block converts the data to a
form usable by the I nput block, and sends the data
and status signals to the Input block on input ports
o and 1.

3) When the proper enabling signals are sent to the
Input block by a Module and Port Select operation
as described earlier, the Teletype data is sent out to
the Central Processor on the I nput Data bus.

Note that a Teletype I nput operation differs from a
non-Teletype I nput operation only in that the Teletype
Control block acts as a buffer between the Teletype and the
I nput block.

Teletype Output Operation

The Teletype Output operation is performed i,n order
to send information from the Central Processor to the
ASR-33 Teletype or Teletype-compatible device, and is
performed in the following steps:

1) The Central Processor sends an I/O Address speci­
fying output port 8 to the imm8-60 Card, and a
Module and Port Select operation is performed as
described earlier.

2) Teletype output data is sent by the Central Pro-

cessor to the Output block via the Output Data
bus.

3) The Teletype data is placed into output port 8
under control of the enabling signals generated by
the Module and Port Decode blocks during the
Module and Port Select operation.

4) The data in output port 8 is sent to the Teletype
Control block, which converts it into a form usable
by the Teletype.

5) The Teletype Control block sends the converted
data to the Teletype.

Note that an output operation to the Teletype is equiv­
alent to a normal non-Teletype Output operation in which
the Teletype Control block is used as the external device.

immS-60 INPUT/OUTPUT CARD -
THEORY OF OPERATION

This section describes, in detail, the theory of opera­
tion of the imm8-60 Input/Output Card. The circuit-level
implementation of the features described in the General
Functional Description will be given.

Due to difference between the functional description
and the actual implementation of imm8-60 operations, this
section's organization differs from that of the last. First the

Module Select operation is described. Port Selection opera­
tions are discussed in the second and third sections which
deal with input and output operations, respectively. The
fourth deals with all Teletype communications, which
utilize the Teletype communications circuits as an external
device, but otherwise are the same as non-Teletype Input/
Output operations.

Module Selection

If two imm8-60 Cards are present in a system, pro­
visions must be made for an operation to select one card.
This capability is provided by the Module Decoding Circuits.

Module address information is brought to imm8-60
Card edge pins; the module address is complemented by a
series of inverting latches and the complemented address is
present at additional imm8-60 Card edge pins. The user
selects an address for each imm8-60 Card, and implements
the address by selecting a set of Address and Complemented
Address signals; select signals are externally jumpered to the
Module Selection circuits, which combine the. incoming
signals through a NAND gate to provide the enabling signal
which is sent to other circuitry on the card.

Note that there isa wide choice of signals with which
to select Address information. RRO and RR1 (as generated
by the Intel imm8-82 Central Processor Card) may be used,

¢1---Fl ~ n n n n n n IL
~ ~ ~ n n n n n n ~

SYNCA IL-_~

STATE STROBE

T3A

ADDRESS ________________ ~x~ ________________________ _

1 INPUT

J
\ -------- /

INO_7

} '"~"' u
OUTPUTPORTX __________________________________ ~X~ ____________________ __

Figure 3-2. I/O Module Timing

31

or alternatively, signals DA 1 O-DA 15 may be used. I neither
case, the function of the Module Decoding Circuits remains
the same. For more details on the options available to the
user, see the section on Utilization later in th is chapter.

To illustrate use of the Module Decoding Circuits,
consider an application in which the immS-60 Card has
been given the arbitrary designation of Module L5. If it is
desired to select this module for an operation, the Central
Processor would send line DA 11 TR UE, DA 12 FALSE,
DA13 TRUE, DA14 FALSE, and DA15 FALSE (binary
00101). These signals would be complemented by the in­
verting latches to produce DA11 FALSE, DA12 TRUE,
DA13 FALSE, DA14 TRUE, and DA15 TRUE. The DA11,
DA12, DA13, DA14, and DA15 signals would be tied to
DS11, DS12, DS13, DS14, and DS15, respectively, causing
the enabling signal to go TRUE. Any other combination of
signals could have been selected, I imited only by the re­
quirement that each card must have a unique address in
order to prevent simultaneous addressing of more than
one card.

Input Operations

Input operations on the immS-60 Input/Output Card
are handled with the Input Circuits. These are shown on the
left in the I/O Module Schematic, Figure 3-3.

The first step in an input operation is the transmission
of an I/O Address to the immS-60 Card from the Central
Processor. This I/O Address contains Module and Port Se­
lection information which is necessary to determine which
port is to be used for a particular operation.

The Module Selection information is processed by the
Module Select Circuits as discussed in the last section, and
causes the Module Enable signal to be produced. This signal
is led to the Input Decoder chip, where it is used as an en­
abling signal, along with signal M2S.

When it is enabled by the Module Enable signal, and
the I/O IN signal sent by the Central Processor, and signal
M2S, the Input Decoder uses the Port Selection information
contained in the I/O Address to produce one of four Port
Enable signals. The Port Selection information comes onto
the immS-60 Card on lines MAD9 and MAD10.

The Port Enable signals are led to the four I nput Port
Multiplexers, and are used to gate one set of input signals
through the Input Port Multiplexers onto the Input Data
Bus, where the data is available for use by the Central Pro­
cessor. Input timing is shown in Figure 3-2.

Output Operations

Output operations on the immS-60 I nput/Output Card
are handled by the Output Circuits, shown on the right in
Figure 3-3.

An Output operation begins with the transmission of
an I/O Address to the immS-60 Card from the Central Pro­
cessor. This I/O Address contains Module and Port Selection
information which is used to determine which input or out-

32

put port is to be used for a particular operation.

The Module Selection information is processed by the
Module Select Circuits as discussed earlier, and cause the
Module Enable signal to be produced. This signal is led to
the Output Decoder chip, where it is used, along with signal
M2S, as an enabling signal to that chip.

The Central Processor then sends the data which are
to be output to the immS-60 Card, lines MADO - MAD7.
Along with the output data is sent the I/O OUT signal,
which is led to the Output Decoder and is used as a third
enabling signal.

When the Output Decoder is enabled by the three
enabling signals Module Enable, M2S, and I/O Out, it
uses the Port Selection information contained in the I/O Ad­
dress to produce one of four Port Enable signals. The Port
Selection comes into the immS-60 Card on lines MAD9 and
MAD10.

The Port Enable signals are used to gate the output
data sent by the Central Processor into the proper Output
Port Latches. The data is held in the Output Port Latches
until another output operation is executed using that output
port.

Teletype Communications

Teletype communications can be handled directly by
the immS-60 Input/OUtput Card, rather than requiring a
separate Teletype communications interface and controller.
This function is performed by the Teletype Communications
Circuits, shown in the upper central section of Figure 3-3.

Teletype Communications on the immS-60 Card are
handled through Input Ports 0 and 1 and Output Ports Sand
9. Input Port 0 handles Teletype data which are to be input
to the Central Processor; Input Port 1 handles Teletype
status information. Output Port S holds the data which are
output from the Central Processor to the Teletype, and
Output Port 9 holds the control data used to control Tele­
type communications. All Teletype input and output opera­
tions are handled by the immS-60 Card as normal input and
output operations, with the exception that the on-card
Teletype Communications Circuits are used as the input
and output device for Teletype operations.

The heart of the Teletype Communications Circuits
of the immS-60 Card is the Universal Asynchronous Trans­
mitter/Receiver chip, or UART. This device receives the
serial data word which is sent by the Teletype, and con­
verts it to the eight-bit parallel data format used by the
immS-60 Card. It also translates the eight-bit data output
by the immS-60 Card into the serial data word which is
used by the Teletype.

The UART requires a clock with a frequency of six­
teen times the baud (bits per second) rate at which it is to
transmit. The clock is provided on the immS-60 Card by a
crystal clock generator which provides a 4.9562 MHz signal.
This signal is used to clock a series of two cynchronous count­
ers, each of which provides a "divide-by-sixteen" function,

"T1 cEo
c::: ...
CD

'f
~ 0

-o
s:
o
Il.
c:::
CD
(I)
n
::r­
CD

!
C;"
o C
iii"
cg ...
I»

3

B

A

8 7

NOTE.' UNLESS OTHERWISE SPECIFIED.
I. SYMBOL- "CSCf--.r;o SOL/DLINE INDICATES A

pc. TRACE FROM PAD 4 TO 5, AIJD [)ASfi LINE Pf?DM
570" INDICArES tiN ALTERNATE CONNEr:rION.

8 7

6

Z .$OI • .lD JumPER. Cf)NJoI~TlONS AfIf /JB£D IIIml
6008 CPU {PIvAoOOOJ33)Drn1E.DII~ tE;E:;D
WfT4 &l80 Z. cpu (PWA QO:l:)2.44)

®SOLID ;JUfIlPlid';.5 AR£ USED WI1)..I UART(!1Z0)

6 5

4 3

tobOI'3G:>"

4 3

t ,
I

,~i:J 7 l!

D,34Oti:i.
$ D>AS.~,

f:+ 00 D~ ~ 9

~~,~.~
.s~Al~g:4 I-'-
~~

7~

1

I
:
"~ I
D,J404~,
Oa AbQz

~D~ Q~ 9
' 04 -- (01+- i

:~: A\~g: P~H-
"'D, ;i /:I, 9 I

~;
I
I
I

2

-~

EC.O COIl-tO
ECD 00189-

OfT CHIC. t4GA

Jt'l-U r. /.­, . ,

W1PUT PD1?TS

o

B

thus producing a 19.36KHz signal. This signal can be used
directly, providing a 1200 baud transmission rate suitable for
Teletype·compatible high ·speed terminals, or it may be used
to clock another synchronous counter . This th ird counter
is set up to provide a "divide·by·eleven" capabil ity, and will
provide a 1.76KHz signal which, when used as the UART
clock, will provide a 100 baud transmission rate, the stan­
dard rate for ASR·33 Teletype communications .

A Teletype input operation begins with the trans­
mission by the Teletype of a data word. This Teletype data
is brought onto the imm8·60 Card by way of edge pins as
signal TTY XMITR . Since the Teletype information is en­
coded as variations in current flow, while the UART operates
with changes in voltage , the Teletype signal must be con·
verted to form acceptable to the UART. This is done with
transistor 02 and its associated circu itry. The signal from
transistor 02 is led to the UART Receive Data Input, and
the UART converts it into the parallel data used by the
imm8-60 and then sends the converted data word to Input
Port O. It also sends status information to Input Port 1. This
status information includes Parity Error (PE), Overflow
Error (OE), Framing Error (FE), and Data Available (DA).
The Central Processor can then execute a normal input
operation as described in the section on Output Operations
in order to obtain the Teletype data.

A Teletype output operation is executed simply by
sending the data which are to be output to the Teletype to
Output Port 8 via an output operation. The data which are
to be sent to the Teletype are latched into Output Port 8
Latch, and sent to the UART. The same enabling signal
which was used to latch the data into the Output Port Latch
is used to enable transmission by the UART. The Parallel
data will be translated to the serial data format required by
the Teletype, and will then be sent to 03 and 04, where

Figure 3-4. Relay Circuit (Alternate)

34

the necessary conversion from voltage to current coding
takes place. The converted signal is then sent to the Tele­
type as TTY RCVR .

A special feature has been implemented on the
imm8·60 Card in order to simplify Teletype paper tape
reader operations . Provisions have been made to enable
strobing of the paper tape reader one character at a time.
This operation is performed when the Central Processor
outputs a 1 in the high-order bit of Output Port 1. This
signal sets a latch made up of two NAND gates, which in
turn produce a signal which is sent to the Teletype paper
tape reader as TTY RDR CTL. When a character is read by
the Teletype paper tape reader and transmitted to the
imm8-60 Card, the signal generated by that transmission,
TTY XMITR, resets the latch, causing the TTY, RDR CTL
signal to fall.

The Teletype Communications Circuits may be reset
by a system reset signal. This is done by bringing the signal
RESET onto the card , inverting it through an inverting
latch , and applying it to the Master Clear input of the
UART . This will initialize the UART, and prepare it for
further operations.

immS-60 INPUT/OUTPUT CARD
UTILIZATION

This section describes the options available to the
user of the immB-60 I nput/Output Card, and also gives the
information necessary to the user for proper installation
and operation of the card . There is a wide range of user­
available options on the immB·60 Card, including the
choice of Module Address, the choice of which lines to use
as address input lines, which signals to use as the Module
Enable signals, which I ines to use as the Data Output lines,

Figure 3-5. Distributor Trip Magnet

and even whether or not to use the Teletype Communica·
tions Circu its. Each of these will be discussed in the next
section .

User-Available Options

The user has the choice of Module Coding, with the
RRO and RRl lines for use as the Module Select lines, d is·
cussed earlier . When the imm8·60 Input/Output Card is
used as a peripheral device with Intel's imm8·82 Central
Processor Card, the RRO and RRl lines are used, and the
standard module coding is:

Module Number Module Select Pins Jumped

I/O 0 Input: MM2 5·7, 10·8, 41 .39}
Output : MM2,R RO,

RRl Pl

Input: MM2 5·6,10·8,41·39 I/O 1
Output: MM2,RRO,

RRl

If the DA lines were used as the Module Select lines,
similar arrangements would be used.

When the R R lines are used as the Module Select
lines, the enable line which is generated by the DA lines
should be tied to ground, in order to permanently enable
it. Similarly, the output generated by the RR lines should
be tied to the enable signal generated by the DA lines if the
DA lines are to be used . In addition, signal M2S may be
permanently enabled, if it is desired. Each of these options
is enabled by the positioning of on·card jumpers, as shown
in the Schematic Diagram, Figure 3-3.

The second choice which is available to the user is
that of the lines to be used as Port Enable lines. This choice
is also determined by the positioning of on·card jumpers.

Figure 3-6. Mode Switch

35

If lines MAD9 and MAD 1 0 are to be used , as would be the
case if the imm8·82 Central Processor Card were used, the
jumpers would be positioned as follows:

31 -32,33-34

Likewise, if it were desired to use lines MAD8 and
MAD9, the jumpers would be positioned as follows:

30- 31,32-33

The third option available to the user is the choice of
the lines which are to carry the data from the Central Pro·
cessor to the Output Ports. The user has the choice of using
either lines MADO·7 or lines DBO·7. Again, the choice is
implemented by properly positioning jumpers on the card
itself. The imm8·82 Central Processor Card uses lines MAD
0-7 for purposes of output.

If it is desired, the imm8·60 Input/Output Card's in ·
ternal Teletype Communications Circuits may be disabled
by removing the UART chip . If this is done, pull ·up resistors
must be added to the input data lines on Input Ports 0 and
1. The UART may also be disabled by tying its output en·
able lines RDE and FDE to +5V.

Teletype input and output can be accomplished with·
out the use of the UART ; that is, on a serial basis, by
positioning jumpers as follows:

Output: 14-15 instead of 13-14
Input: 10-11 instead of 11-12

When the I nput/Output Module is used for Teletype
operations, the user must ensure that no device other than
the Teletype is connected to I nput Ports 0 and 1 or Output
Ports 8 and 9.

The imm8·60 Card has been designed to optionally
interface with the Intel imm8·76 PROM Programmer Card .
This card uses I nput Port 2 for a PROM Data Out port, and

Figure 3-7. Terminal Block

Output Ports 9, 10, 11 as PROM Control IN, PROM Ad­
dress IN, and PROM Data IN, respectively. It is necessary
to ensure, if this option is used, that no other device will
attempt to use these ports while PROM programming op­
erations are in progress.

Installation Data

Operating Temperature:
DC Power Requirements:

0°_55°C

+5v ± 5%, .820A Max
-9v ± 5%, .030A Max
-12v ± 5%, .030A Max

Connector: Dual 50-pin, 0 .125 in . centers

Teletype Modifications

The ASR-33 Teletype must receive the following in­
ternal modifications and external connections:

I nternal Modifications

1) The current source resistor value must be changed
to 1450 ohms. This is accomplished by moving a
single wire. (See Figure 3-8).

2) A full duplex hook-up must be created internally.
This is accomplished by moving two wires on a
terminal strip. (See Figures 3-7 and 3-9).

3) The receiver current level must be changed from

Figure 3-8. Current Source Resistor

36

60mA to 20mA. This is accomplished by moving a
single wire. (See Figures 3-7 and 3-9) .

4) A relay circuit must be introduced into the paper
tape reader drive circuit. The circuit consists of a
relay, a diode, a thyractor and a suitable mounting
fixture . This change requires the assembly of a
small "vector" board with the relay circuit on it.
It may be mounted in the Teletype by using two
tapped holes in the base plate. (See Figure 3-4l.
The relay circuit is added by cutting the brown
wire, from the distributor trip magnet, at its con­
nector plug and then splicing it to wire "A." (See
Figures 3-5 and 3-9). The "line" and "local" wires
must then be connected to the mode switch. (See
Figures 3-6 and 3-9).

External Connections

1) A two-wire receive loop must be created . This is
accomplished by the connection of two wires be­
tween the Teletype and the SYSTEM in accordance
with Figure 3-9.

2) A two-wire send loop similar to the receive loop
must be created . (See Figure 3-9) .

3) A two-wire tape reader loop connecting the reader
control relay to the SYSTEM must be created.
(See Figure 3-9).

MOOE
SWITCH

MOUNT
REED

RE LAY

CAPACITOR

CURRENT
SOURCE

RESISTOR

POWER
SUPP LY

~
®

TOP V IEW

I
KEY BOARO

PRINTER UNIT

DISTAl SUTOR
TRIP MAGNET
ASSEMBL Y

Qa

TAPE
READER

TAPE
PUNCH

TERMINAL _-t~==~ _______ i. ___ -.J STRIP

TELETYPE MODE L 33TC

Figure 3-10. Teletype Layout

NOTES: UNLESS OTHERWISE SPECIFIED

~ CUSTOMER EXTERNAL CONNECTIONS
2 ITEMS WITHIN DASHED LINES REPRESENTS

CUSTOMER REQUIRED MODIFICATIONS

1M IS INTERNAL MODIFICATION
EC IS EXTERNAL CONNECTION

..,--1
1

BLU

TERMINAL BLOCK 151411

SEE FIG. 3-7 8 CURRENT SOURCE RESISTOR

SEE FIG. 3-8

110
MODULE

(J,)

REAR PANEL
CINCH-JONES

(J43)
FULL DUPLEX

VIO 20 rnA

I----=~=I_-_I_-_-~E_= __ 6~m~ _____ L /'
SEE FIG. 3-7

@------0-------- WHTIBRN
RECEIVE REDIGRN :j:-; __ ~~:::l~~~-f~~~~B~L[K~IGllRlN ____ ~",,,",,,,-___

r.;:;'\ ~. WHT!YEL
~----\.3F------- WHT/BLK U

EC
, WHT/BLU FULL DUPLEX

V BRNIYEL

0--- - --0- -- - - -SEN-D - -t---1-1=~~=t-=-=r-=-=~~~- - - - - - --
HALF DUPLEX

@------@------ - -1-8~E=C=2~1-1=~~~=f==~;;IRED SEE FIG. 3-7

WHT
WHT

CONNECTOR
SEE FIG. 3-5

WIRE "A"

r--_+ _________ -'-_____ -:-r-_--.---_-, - - - - - - - - - - -l

I GE" 1 TAPE
READER

CONTROL

IN9,4 6RS20· I I 1

8

1 SP4B4 I I I 0.11 J-lF 470n

)-----ir-------------:I-~---' 1 I L - - - - - - ------,

115AC
COMMON

*ALTERNATE CONTACT PROTECTION CIRCUIT

~ I 470n'I2W

8 ~8: POTTER~E~~~MFIELD i L:-----------1:
I - I I

IM4 I {'2VDC 600nCOIL I I I <'-"LOCAL"
I JR·' 005 'A 600V \. I I
I SEE FIG. 3-4 NORMAL OPEN J L _ _ _ _ 1 I

L T .,200V

Figure 3-9. TTY Modification

I CONTACTS I
~-----------------L ______ ~

37

MODE SWITCH
(FRONT VI EWI
SEE FIG. 3-6

38

The imm8-62 Output Card contains logic which en­
ables its use as a self-contained output module with eight (8)
individually addressable output ports, each of which holds
an eight-bit byte of data sent by a Central Processor (such
as Intel's imm8-82) for use by an external device. It also
contains logic which enables the use of more than one card
in any system, with each card individually addressable_

A superficial functional description of the imm8-62
Output Card logic is provided in the first section. A more
detailed functional theory is given in the second; specific
instructions describing the use of the imm8-62 Card are
given in the third.

GENERAL FUNCTIONAL DESCRIPTION

The imm8-62 Output Card may be divided into three
functional units as shown in Figure 4-1:

• The Module Decode Block
• The Port Decode Block
• The Output Port Block

The Output Port Block contains eight output ports,
each of which can communicate with a separate external

OUTPUT
OUTPUT
PORTS

181

Figure 4-1. Output Module Functional Block Diagram

39

device. The Port Decode Block determines which of the
eight ports is to be used for an operation.

During an output operation, the Central Processor or
equivalent device, sends an I/O Address to the Output Card.
This information is used by the Module Decode Block to
enable output operations (for the particular module being
addressed, if there is more than one in the system) and is
also used by the Port Decode Block to enable the specific
output port which is to be used for output.

The Central Processor then sends the data which is to
be output to the imm8-62 Card. The data is routed to the
Output Port block and is gated into the particular port
which was enabled previously by the Port Decode Block.
The data are then latched and held for use by the externai
device associated with that output port.

DETAILED FUNCTIONAL THEORY

This section describes in detail the operation of the
imm8-62 Card. Actual circuit-level implementation of the
features described as functional blocks in the previous sec­
tion are given.

The first section deals with Module Decoding, the
second with Port Decoding, and the third describes an actual
output operation.

Module Decoding

I.f it is desired to use more than one imm8-62 Output
Card in a given system, some provision must be made to en­
able selection of the particular card which is to be used, out
of all of those available. This function is provided by the
Module Decoding Circuits, shown in detail in Figure 4-3.

As shown in Figure 4-3, the Module Address infor­
mation is brought to the imm8-62 Card edge pins and is led
to a series of inverting latches. These latches invert the in­
coming information and supply it, in turn, to another set of
card edge pins. The user then selects the proper set of
Address and inverted Address signals, and uses external wire

jumpers to tie this information to the Module Selection
circuits which combine the incoming signals to provide
either the MOD SEL signal or the OUT MOD SEL signal.
These signals are then used to enable operations of the Out­
put Card.

Note that the user has a wide range of choices regard­
ing which signals to use as the Address information. Signals
R RO and R R 1, as generated by the Intel imm8- 62 Central
Processor Card, may be used, or, as an alternative, signals
DA 1 O-DA 15 may be used. I n either case, the function of
the Module Decoding circuits remains the same. (See the
section on CPU in Chapter 2 for more details on the options
available to the user.)

As an example of the functioning of the Module
Decoding Circuits, consider an application in which the
imm8-62 Card has been given the arbitrary designation of
Module 5. If it was desired to select this module for an
operation, the Central Processor would send an address
corresponding to the module's designation, such as, perhaps,
line DA11 TRUE, DA12 FALSE, DA13 TRUE, DA14
FALSE, DA 15 FALSE (binary 00101). These signals would
be input to the imm8-62 Card and inverted, producing
DA11 FALSE, DA12 TRUE, DA13 FALSE, DA14 TRUE,
DA15 TRUE. The DA10, DA11, DA12, DA13, and DA14
signals would be tied to DS11, DS12, DS13, DS14, and
DS15, respectively, causing the OUT MOD SEL signal to go
LOW, enabling operations. Any other combination of sig­
nals could have been selected, limited only by the require­
ment that each card must have a unique address to prevent
simultaneous addressing of more than one card.

Port Decoding

Once the proper module has been selected, as dis-

cussed in the previous subsection, an additional selection
must be made: that of one of the eight output ports which
are on each imm8-62 Card. This function is performed by
the Port Selection circuits, shown in detail in Figure 4-3.

I n order to select one of the eight output ports, three
data lines are led to the Port Decoder. When enabled by the
MOD SEL or OUT MOD SEL signals, the Port Decoder will
decode the three incoming Port Select signals and will issue
an enabling signal to one of the eight output ports.

Output Operations

In a typical output operation, the following steps will
be executed (refer to Figure 4-3, the Schematic Diagram):

1) The Central Processor sends an I/O Address to the
imm8-62 Module on lines MAD9-13.

2) The Module Decoding and Port Decoding circuits
decode the incoming I/O Address.

3) The Central Processor sends the data which are to
be output to the imm8-62 Card, along with an
Output enabling signal, I/O OUT. I/O OUT acti­
vates the internal signal OUT STB.

4) The data which have been sent to the imm8-62
Card are latched into the proper output port by
signal OUT STB, where they are held for use by
external equipment. The data are held until another
output operation using the selected port takes
place, at which time they are replaced by the new
incoming data.

The timing of the output operation is shown in Fig­
ure 4-2.

¢1~ R n n n n n nIL
¢2y;l Pl n n n n n n ~

SYNCA 1'-_---'
STATE STROBE

T3A

AOORESS ______________ ~x~ ________________ _

1/0 OUT u
OUTPUT PORT x ________________ ~x~ ______________ __

Figure 4-2. Output Module Timing

40

8
'T1 =' C ...
(1)

.j:>o

I
~ 0

0
c

'CI
C
s:
0
Co
c
iii
en
n :r
(1)

3
I»
~, C
n
C
iii'

u::a ...
I»
3

:::

B

A

8

"",0 •

"",'" M.-.o ~

'""'" " ""'" . M"P ~

>Me '" "-"07
ollO
DB'
D ••
OS,
ca.
0'"
D ••
D07

MAD 8
\-1Ab9
..-1AD 1¢
MAD It
~

'<.~
{~~~
f~~
(MlOt5!DAJ3
(~",....

(~~
0\'IADI5) OA \5
(mIm) tp;""j"!

" ~z:: I '" M

14

"
" If-
Ifl~

7 6 5

4

NoTE6;
/ • .')')1...1[; ruMPER CONNECTfOIl.I8 ;:::oR. OSE

2~r;;TTs:gJU~~~R ~;;:c~ FtJIt
USE /llfT'Il WWJICPtJ. (l",rn8-8'3)

.:3. SOLID JUNIPERS ARE MADE WITI.-/
P.c. TRACES. DASI-I LINES ARE

ALTERNATE. JlJMPER COt.JNECnONS.

4

3 2

IOJ..! o~ 181-1 o

II H OIl 19H , "8
" -y,

7

------;! "."

.~ '" .
~- .~ ", 12 Ii '" IAH

C
131-1 OR leH

5 , ,

141-! DR leI-!

~
z
3
4 151-1 OR IDH

B

161-! OR IEH

17H OR IFH

r-____ ,-____ -+ __ ~~~'rr~~~'~M='~"'~O--_r--_=~ __ --~~,r~~~--_=~~.~=~~.="---;A

T~l, 2PlC

CHI\BY~

nIGR,
Appe',;

2

CAUf'.95051

CARD UTILIZATION

There are several options available to the user of the
imm8-62 Card. Among these are the choice of the Module
Address, the choice of which lines to use as address input
lines, which signals to use as Card Enabling signals, and
which lines to use as data lines holding the data to be out­
put. This section will cover the options available to the
user, and also supplies a complete list of the imm8-62 Card
edge pins and their associated signals.

User Options

The user has a wide range of options available on the
imm8-62 Output Card. Each option is implemented by
means of jumpers, either mounted on the card itself or ex­
ternal, between card edge pins.

The first option is the choice of Module Coding. The
user has his choice of either the DA 11-DA 15 lines or the
RRO-RR1 lines for use as the Module Select lines. When the
imm8-62 Output Card is used as a peripheral device with
the Intel imm8-82 Central Processor Card, the R RO and
RR1 lines are used, and the standard module coding is:

Module Number

OUT2
OUT3

Module Select Pins Jumped

RRO, RR1
RRO, RR1

5-6, 10-9,41-42
5-7,10-8,41-42

If the DA lines were used as the Module Select lines,
similar arrangements would be used.

When the R R lines are used as the Module Select
lines, signal OUT MOD SEL must be tied to GROUND in

42

order to permanently enable it, and, similarly, signal MOD
SEL must be tied to +5v. when the DA lines are used.

The secolld choice available to the user is the choice
of the three lines used as Port Select lines. These lines are
determined by the positioning of jumpers mounted on the
imm8-62 Card itself. If it is desired to use lines MAD9-11,
as would be desired when using the imm8-82 Central Pro­
cessor Card, the jumpers would be positioned as follows:

1-2, 5-6, 8-9

Likewise, if it were desired to use lines MAD8-1 0, the
jumpers would be positioned as follows:

2-3,4-5, 7-8

The third user option enabled on the imm8-62 Card is
the choice of the lines which are to carry the data from the
CPU to the Output Card. The user has his choice of lines
MADO-7, or lines DBO-7. If the MAD lines are to be used,
the jumpers on the imm8-62 Card would be positioned
as follows:

23-24, 26-27, 29-30, 32-33, 35-36, 38-39,
41-42, and 44-45

Similarly, if the DB lines are to be used, the jumpers
are positioned as follows:

24-25,27-28,30-31,33-34,36-37,39-40,
42-43, and 45-46

Again, if the imm8-62 Output Card is used as periph­
eral device with the imm8-82 Central Processor Card, lines
MADO-7 would be used.

The imm6-28 Random Access Memory Card has been
designed to provide a user with a 4,096 (4K) 8-bit words of
random-access memory, which may be used asa computer
system's memory device.

More than one imm6-28 card may be included in a
system, for example, the imm8-82 Central Processor card
can address up to 16,384 words of memory on fbur separate
imm6-28 cards.

Although the imm6-28 Random Access Memory Card
has been designed to support the Intel imm8-82 Central
Processor Card, it can be used in any other system which
requires 4K x 8 bits of RAM storage.

This section describes the operation and implementa­
tion of the imm6-28 card on three levels: first, the operation
of the card is described at a basic functional level. The
theory of operation is provided in the second section. Nec­
essary information to effectively use the imm6-28 card is
given in the third.

MEMORY
(4096 S-BIT

WORDS)

AD DR ESS I I BLOCK
ENABLE

ADDRESS

CONTROL

r
MEMORY ADDRESS

FROM CPU

READ/
WRITE

BUFFERS

i
OPERATION

CONTROL

I
READ/WRITE

CONTROL
SIGNAL

FROM CPU

I+--

t-----+

MEMORY DATA
FROM CPU (S BITS)

MEMORY DATA
TO CPU (S BITS)

Figure 5-1. RAM Module Functional Block Diagram

43

THE imm6-28 RANDOM ACCESS MEMORY
CARD - GENERAL FUNCTIONAL
DESCRIPTION

The Four Functional Units

I n order to describe its operation, the imm6-28 card
has been divided into four functional units:

1) The Address Control Block, which determines
which card is to be used for a memory operation,
and which memory location on that card is being
addressed.

2) The Operation Control Block, which controls the
execution of all operations performed by the card.

3) The Read/Write Buffers, which buffer the data
which is read from or written into memory.

4) The Memory Block, which contains the actual
memory components.

Each operation performed by the imm6-28 card uses
at least one of these functional units.

A block diagram of the imm6-28 card, showing the
four functional units and their interrelationship, is given in
Figure 5-1, and should be referred to when read ing the rest
of this section.

Memory Addressing Operations

I n order to send data to a memory location, or to read
data from a location, it is necessary to specify the location
which is to be accessed. This function is provided by the
Memory Address, a group of signals which represent a binary
number and which are sent to the imm6-28 card by the
Central Processor. Once the Memory Address is received
by the imm6-28 card, however, it must be decoded in
order to select the correct location for a Memory Read or
Write operation.

The Address Control Block performs Memory Address
decoding on the imm6-28 card; it receives the Memory
Address, and translates it into three types of signals: Module

Enabling signals, which enable the selected 4K segment of
the memory; Block Enabling signals, which enable one 1024
word block within the larger 4K segment; and Address sig­
nals, which access one word within the 1024 word block_

Memory Write Operations

A Memory Write Operation is executed in order to
load data into a selected memory word; it is executed in
the following steps:

1) The Memory Address for the word wh ich is to be
written into is sent to the imm6-28 card by the
Central Processor.

2) The Address Control Block receives the Memory
Address and generates the signals necessary to
access the addressed memory location, as described
in the last section.

3) The Central Processor sends a data word to the
imm6-28 card, where it is received by the Read/
Write Buffer. The Central Processor also sends con­
trol signals to the Operation Control Block which
indicate a Memory Write operation.

4) The Operation Control Block generates signals
which cause data in the ReadlWrite Buffer to be
written into the selected memory location in the
Memory Block.

Memory Read Operations

A Memory Read operation is performed in order to
read data from a selected memory location into the Central
Processor; it is executed via the following steps:

1) The Memory Address which is-to be read is sent to
the imm6-28 card by the Central Processor.

2) The Address Control Block receives the Memory
Address and generates signals necessary to access
the addressed memory location, as discussed in the
section on Memory Addressing Operations.

3) The Central Processor sends control signals to the
Operation Control Block which indicate a Memory
Read operation.

4) The Operation Control Block generates the con­
trol signals necessary to cause the contents of the
selected memory location to be sent from the
Memory Block to the ReadlWrite Buffer, whence
they are sent on to the Centrol Processor.

THE imm6-28 RANDOM ACCESS MEMORY
CARD - THEORY OF OPERATION

This section describes the theory of operation of the
imm6-28 card in detail, giving the circuit-level implementa­
tion of the features discussed previously. It is divided into
four subsections. The first describes the physical implemen­
tation of the imm6-28 memory. The second describes the
Address Decoding operation, as this operation is common to
both Memory Read and Memory Write operations. The third

44

and fourth describe Memory Read and Memory Write op­
erations, respectively.

Physical Memory Implementation

The actual memory of the imm6-28 card is made up
of thirty-two Intel 2102 Random Access Memory chips,
each having a capacity of 1024 one bit words_ Since the
data word used by the imm6-28 card has a total of eight
bits, the 2102 memory chips are tied together in blocks of
eight, with each of the eight chips in the block handling
one of the eight data bits; th is results in a basic block of
1024 eight-bit words_ Since there are four blocks per card,
each imm6-28 card has a capacity of 4096 eight-bit words_

By combining more than one card in a system, mem­
ory size can be increased in increments of 4096 words.

Memory Address Decoding

Since more than 4096 words of memory can be ad­
dressed by a Central Processor, the imm6-28 card includes
address decoding circuits (see Figure 5-2) which allows a
Central Processor to select one imm6-28 memory card.

The Memory Address which the Central Processor
sends to the imm6-28 cards consists of sixteen bits of infor­
mation, organized as a sixteen digit binary number, with the
low order bit on line MADO and the highest order bit on
line MAD15. The Address Decoding Circuits use this sixteen­
bit address as follows:

1)

2)

Since the high-order four bits of the Memory Address
effectively divide the possible memory locations into
sixteen units of 4096 words each, they are used to en­
able the particular card which is to be used for a given
memory operation_ This is accomplished by bringing
lines MAD12-MAD15 onto the imm6-28 card edge
pins, inverting them to form MAD12-MAD15, and
then sending these inverted Memory Address signals
out on another set of card edge pins. External jumpers
are then used to tie the proper combination of Mem­
ory Address and inverted Memory Address signals to
the four input lines to the Access Enable Gate, MOD
SEL 12-MOD SEL 15. When the proper Memory Ad­
dress is sent to the imm6-28 card by the Central Pro­
cessor, the Access Enable Gate will produce a Module
Enable signal which is used to enable all memory op­
erations for that card.

The next two bits of the Memory Address, MAD10
and MAD 11, select one of the four 1024 word blocks.
These two signals are fed to Address Latches which
are enabled by the Access Enable Gate's Module En­
able signal. The two signals are then latched into the
Address Latches by signal ADR STB, sent by the
Central Proce$sor, and are sent to a group of four
NAND gates in both their original and their inverted
form. The four NAND gates decode the two Memory
Address bits into one of four Chip Enable signals. The
Chip Enable signals are used to enable the proper

block of eight chips (1024 eight-bit words) out of the
four blocks available on each imm6-28 card_

3) The ten low-order bits of the Memory Address, MADO­
MAD9, are tied to Address Latches which are enabled
by tne Access Enable Gates. They are then sent to all
of the individual memory chips, which use them to
enable the proper location out of the 1024 available.

Memory Read Operations

A Memory Read operation is initiated by the Central
Processor. It sends a sixteen-bit Memory Address to the
imm6--28 card, which decodes the address to select one
particular memory location, as described in the last section.

The Central Processor also sends signal Write/Read to
the imm6-28 card. In its FALSE state, this signal indicates
a Write operation, therefore, during a Read operation, it will
be TRUE. Signal Write/Read is inverted and applied to a
NAND gate along with the Module Enable signal. The NAND
gate produces a signal which indicates a Read operation. The
Read operation signal is used as the second input to the
series of Output Buffer NAND gates, and causes the memory
data to be gated through the Output Buffer NAND gates
and onto the Data Out lines DATA OUTO-DATA OUT7.
Timing is shown in Figure 5-2.

SYNCA

STATE STROBE ~

T3A

Memory Write Operations

A Memory Write operation is initiated by the Central
Processor. It sends a sixteen bit Memory Address to the
imm6-28 card, which decodes the address to select one
particular memory location for access, as described earlier.
When the memory chips receive the Memory Address, they
immediately respond by sending the contents of the address­
ed location to the Output Buffers, which are series of eight
NAND gates.

The Central Processor then sends the data wh ich is to
be written into memory to the imm6-28 card, where it is led
to the Input Latches. The Central Processor also sends out
signal Write/Read, which indicates a Write operation. This
signal is NANDed with the Module Enable signal to produce
signal WDENBL, which indicates that a Write operation is
taking place. This signal causes the data sent by the Central
Processor to be latched into the Input Latches.

Signal WDENBL is also used to trigger a pair of one­
shot multivibrators. These multivibrators produce a delayed
Write Enable signal. The delay is necessary to ensure that
the data has been completely latched into the Input Latches
before attempting to write it into memory. When the delay­
ed Write Enable signal becomes TRUE, the data will be
written into the selected memory location.

ADDRESS
__________ ~x~ __________________ __

READ _-_-_-_-_-_-_-_-_-_~_==_-t=-----~-6~-O .::.-, _-_-_-_-_----
CHIP ENABLE

DATA OUT

ADDRESS _________ ~x~ _________ _
CHIP ENABLE

\ -------------
WRITE

DATA IN x
R/W u

Figure 5-2. RAM Memory Module Timing

45

."
eE·
I:
~
UI
I
~
:xl » s:
s:
(I)

3
o
-< u
s:
&.
I:
iii"
W
::r
(I)

3
II> ...
c;"
o
iii·
ce ...
II>

3

L

4
2102.

~'>Y I 'OL

100 ~ + 2.I-,,\t

'0'

:~

4

3

~
III-- I. I.

"
ii

,.

10 "

'" 1f

"

"

"

'0

"2To'2
"r­

"

12 11

2

~n~'t' jj=Ti~3 :±"'=tt==n='~tjj~J1J"-lt-=ti='ntl;-i:±' =l:::t=:Ti="ntTi::' ±"=l:::tiJ
-

,5
" p

19 '0

,.-

11 16 "

3 2

nVISIONS

I I I

MAO LO

u

L

~_~5

____________ ='~=~~~,~'O~ ______ ~ ~~O'5 , ,

THE imm6-28 RANDOM ACCESS MEMORY
CARD - UTILIZATION

This section provides the information necessary to
efficiently use the imm6-28 card in an appl ication. I n par­
ticular, the requirements for interfacing with the Intel imm
8-82 Central Processor Card are stressed.

Memory Address Coding

In order to enable Memory operations, the imm6-28
card must have an encoded address designation. The proper
positioning of the external jumpers for each block of mem­
ory is as follows:

Module No. Memory Addresses Memory Address Code Jumpers

RAMO 0-4095 MAD12 MAD13 MAD14 MAD15 57-58,62-61,63-64,67-68
RAM 1 4096 - 8191 MAD12 MAD13 MAD14 MAD15 58-60,62-61,63-64,67-68
RAM 2 8192 -12287 MAD12 MAD13 MAD14 MAD15 57-58,59-61,63-64,67-68
RAM3 1 2288 -16383 MAD12 MAD13 MAD14 MAD15 58-60,59-61,63-64,67-68

Installation Data and Requirements

Connector: Dual 50-pin, .125 in. centers
Input Voltage: +5v ± 5% @ 2.5A. Max
Operating Temperature: O°C - 55°C

47

48

The imm6-26 Programmable Read-Only Memory
(PROM) Card has been designed to provide a user with
4,096 (4K) words of read-only memory, which may be used
as non-volatile program or data storage.

The imm6-26 Card uses Intel 1702A Programmable
Read-Only Memory chips as its storage medium. These
chips represent a considerable advance in the field of read­
only memory, as they can be erased and reprogrammed as
the need arises. This capability makes the imm6-26 Card a
valuable addition to a system in which the stored data is oc­
casionally subject to change, for example, during the devel­
opment of mask-programmed read-only memory. The imm6-
26 PROM Card can be used to store programs in final stages
of correction, before the program is well enough defined to
justify the expense of creating masks. Also, the imm6-26
PROM Card can be used instead of read-only memory in pre­
production equipment that may have to be shipped before
mask-programmed read-only memory is available.

More than one imm6-26 Card may be used in a sys­
tem. For example, the imm8-82 Central Processor Card can

MEMORY
14096 8-BI T

WORD
CAPACITY}

8t
MEMORY

DATA

BUFFER

1
PROM DATA OUT

BLOCK
ADDRESS

WORD
ADDRESS

PROM
DISABLE

ADDRESS

CONTROL

MODl
ENBL.

CONTROL

1
RAM ENABLE

-4---

MEMORY

ADDRESS

DATA

Figure 6-1. PROM Memory Module Functional Block
Diagram

49

address up to 16,384 words of memory on four separate
imm6-26 cards.

The imm6-26 Card may also be used in parallel with
an imm6-28 Random Access Memory Card.

THE imm6-26 PROGRAMMABLE READ-ONLY
MEMORY CARD - GENERAL
FUNCTIONAL DESCRIPTION

This section describes the operation of the imm6-26
Programmable Read-Only Memory Card in general function­
al terms, and is divided into two subsections. The first de­
scribes the four functional units which enable all of the
operations performed by the card; the second describes a
Memory Read operation.

The Four Functional Units

I n order to describe its operation, the imm6-26 Card
has been divided into four functional units:

1)

2)

3)

The Address Control Block, which determines
which card is to be used for a memory opera­
tion, and which memory location on that card
is being addressed.

The Operation Control Block, which cpntrols
the execution of all operations performed by
the card.

The Memory Data Buffer, which buffers the
data being read from memory.

4) The Memory Block, which contains the actual
memory components.

A block diagram of the imm6-26 Card, showing the
four functional units arid their interrelationship, is given in
Figure 6-1, and should be referred to when read ing the rest
of this section.

Memory Read Operation

In order to obtain data from a memory location, it is
necessary to perform a Memory Read operation. This opera­
tion can be divided into two phases:

1)

2)

The Addressing Phase, in which the desired
memory address is sent to the imm6-26 Card,
where it is decoded and used to enable the speci­
fic memory location which is to be accessed.

The Data Phase, where the data is sent out from
the imm6-26 Card.

The Addressing Phase is executed in the following
steps:

a)

b)

c)

The Central Processor sends a Memory Address
to the imm6-26 Card Address Control Block.

The Address Control Block translates the Mem­
ory Address into three types of signals: Module
Enabling signals, which enable the selected 4K
segment of the memory; Block enabling signals,
which enable one 256 word block within the
larger 4K segment; and Address signals, which
access one word within the 256 word block.

The Control Block checks the selected memory
address, and determines if it exists on the imm6-
26 Card. If it finds that it does not exist, it sends
out disabling signals which prevent further oper­
ations with the imm6-26 Card. At the same
time, it sends out an enabl ing signal which can
be used by an imm6-2S Random Access Mem­
ory Card to enable its operation.

The Operation Control Block generates the control
signals necessary to cause the contents of the selected mem­
ory location to be sent from the Memory Block to the Mem­
ory Data Buffers, whence they are sent on to the Central
Processor.

THE imm6-26 PROGRAMMABLE
READ-ONLY MEMORY CARD
THEORY OF OPERATION

This section describes the theory of operation of the
imm6-26 Card in detail, giving the circuit-level implementa­
tion of the features described in the last section. It is divided
into four subsections. The first describes the physical imple­
mentation of the imm6-26 memory. The second describes
the Address Decoding operation. The third describes the
Memory Read operation, and the fourth describes the Ran­
dom Access Enable operation.

Physical Memory Implementation

The actual memory of the imm6-26 Card is made up
to sixteen Intel 1702A Erasable Programmable Read-Only
Memory ch ips, each havi ng a capacity of 256 eight-bit words.
This results in a basic memory block of 256 words. Each
256 word block is a separate unit, and can be changed by
removing the existing PROM chip and installing a new

50

PROM, or omitted by removing the existing PROM without
replacement.

Since there are sixteen 256 word PROMs on each
imm6-26 card, each card has a total capacity of 4,096
words. Memory size can be increased in increments of 256
words.

Memory Address Decoding

Since more than 4,096 words of memory can be ad­
dressed by a Central Processor, the imm6-26 card includes
address decoding circuits which allow a Central Processor to
select one imm6-26 memory card.

The Memory Address which the Central Processor
sends to the imm6-26 card consists of sixteen bits of infor­
mation, organized as a binary number, with the low order
bit on line MADO and the high order bit on line MAD15.
The Address Decoding circuits use this sixteen-bit address as
follows:

1)

2)

3)

Since the high order four bits of the Memory
Address effectively divide the possible memory
locations into sixteen units of 4,096 words each,
they are used to enable the particular card which
is to be used for a given memory operation. This
is accomplished by bringing lines MAD12-MAD
15 onto the imm6-26 card edge pins, inverting
them to form MAD 12-MAD 15, and then send­
ing these inverted memory Address signals out
on another set of card edge pins. External jump­
ers are then used to tie the proper combination
of Memory Address and inverted Memory Ad­
dress signals to the four inputs to the Access
Enable Gate, MS12-MS15. When the proper
Memory Address is sent to the imm6-26 card
by the Central Processor, the Access Enable
Gate will produce a Module Enable signal which
is used to enable memory operations for that
card.

The next four bits of the Memory Address,
MADS-MAD 11, select one of the sixteen 256
word blocks. These two signals are led to two
three-to-eight line decoders. Signal MAD11 is
then used to enable one of the two decoders,
while MADS-MAD10 are used as inputs to the
decoders. The decoders produce Chip Enable
signals which are used to enable one of the six­
teen 256 word PROM chips on the imm6-26
card.

The eight low-order bits of the Memory Ad­
dress, MADO-MAD7, are tied to Address Latches
which are enabled by the Module Enable Access
Enable Gate. They are then sent to all of the
available memory chips, which use them to en­
able the proper location out of the 256 available.

Memory Read Operations

A Memory Read operation is initiated by the Central
Processor, which sends a sixteen bit Memory Address to the
imm6-26 card. The address decoding circuits decode the ad­
dress to select one particular memory location, as described
in the last section.

The Central Processor also sends signal P ROM MOD
ENBL to the imm6-26 card, enabling operations from that
card. This signal is used as an input to the Module Enable
Gate along with the Access Enable Gate signal MOD DE­
CODE, as shown in Figure 6-2. When all of the inputs to the
Module Enable Gate are TRUE, it generates the PROM MOD
SEL signal, which is sent to the two low-order Address De­
coders. It enables the decoders, and the proper chip is en­
abled. The chip reads the low-order eight bits of the Memory
Address, and sends the data contained in the selected mem­
ory location to the Memory Data Buffers on lines 00-07.
The Memory Data Buffers are also enabled by the PROM
MOD SEL signal, and will gate the data onto the Memory
Data Out lines MD10-MD17. Timing is shown in Figure 6-2.

Random Access Enable

Since it may be desired to mix Random Access and
Read-Only memories in a system, the imm6-26 card has
been designed to determine, for each memory operation,
whether or not PROM memory exists for the selected Mem­
ory Address. If PROM memory does not exist for that loca­
tion, the imm6-26 card will generate an enabling signal for
Random Access memory which uses the same address. If the
two types of memories share common locations, however,
the Random Access enabling signal will not be issued, giving
the PROM memory priority.

<p, ---R R n n
<P2 ..Fl r;1 n n

SYNC A I
STATE STROBE

T3A

ADDRESS x

Each PROM location on tl:1e imm6-26 card has a cor­
responding switch which is tied to one input of an eight input
multiplexer. In its normal position, this switch, and thus its
associated multiplexer input, is tied to +5v. When a PROM
is installed on the card, its corresponding switch is depressed,
causing the input to the multiplexer to be tied to GROUND.
When a memory operation is executed, the four Memory
Address lines MADS-MAD11, which are used by the address
decoding circuits to generate chip enable signals as described
earlier, are used as addressing inputs to the multiplexer. If a
PROM exists at the addressed location, the multiplexer out­
put will be HIGH. This output is led to the PROM Resident
Latch, which produces the PROM RESIDENT signal. This
signal is used as an enabling signal to the Module Enable
Gate, and thus enables PROM operations when there is a
PROM present. Likewise, if there is no PROM present in the
addressed location, the output of the multiplexer will be
LOW, the PROM RESIDENT signal will be FALSE, the Mod­
ule Enable Gate output will be FALSE, and imm6-26 oper­
ations will be disabled.

When the Module Enable Gate output signal, PROM
MOD SEL, is FALSE, signal RAM MOD ENBL is produced
by the RAM Module Enable Latch. This signal may be used
to enable a Random Access memory device which has the
same address as the PROM module.

THE imm6-26 PROGRAMMABLE READ-ONLY
MEMORY CARD - UTILIZATION

This section provides the information necessary to
efficiently use the imm6-26 card in an application. It is
divided into four subsections. The first describes the Mem­
ory Address Coding for the imm6-26 card. The second de-

n n n n IL
n n n n ~

--------=t-_-C 'V-700-ns --

------------------~-- .

CHIP SELECT

DATA OUT

Figure 6-2. PROM Memory Module Timing

51

U1
N

"T1
~' ..
(I) H
en
~
" ::D o s::
s::
(I)

3G
o ..
<
s::
8.
c
CD
(I)
n
ifF
3
III ...
i:;"
C
iii'

ICI
iil
3

E

o

(3~ .,
"'~~~Y9
" 0' I ,. ..

·,5 •.
~

F ,~ ,.

'" .1:
':r'
~

L.!!...t

MAD ~ LLJ

MAD I.!!...J

aU!.

3 ,
I

i
M(M MAO • r,.~
,DR
to

5 ll.

, ;7

MAD 7 ,.
•
:3 .,~

o~
MAD

h1AO I

MAD I 100--1-0

7

I k
742D

'I.~' :. -r

. .
i ,

11-~ ... ~ :; -

~ ~ ...
'T T 2.41<:

I r-"l - -Ii ' • ,
."

..
2 ••. (;

' ..----. ,o~ ~
1<:7 'if' 'if

I I
:Z,f..oI:"

L= .fi ~ /if'S 'r .""
i~ .~ 4f" • '?IS" "f'

rc:-:-:1 I~\ l1Trl .M.
." .'T. 'T' 2.1-K

~
.,.,.., ,oPn':,

R.u \Y' MK..

~-'::'.. ,!m ~j;'
!

~ A r ~ e
~ Z ~.= ,
~ ... , ,~zO§ ~ IS

I ~- r14:1 .,c;~ r

, .
Mo4C Ie.
~~:~ li"- t9 11

C MAO 13 1
MI/O"

[~

B

.f. .,".!AD l,'i "R
HI MAD/II-

MAfiI

r~~ ~_

,~
4- .-, ~ .IS --;-.. ~;:..J

MAC I

::;:;;;;51

5ri~
'5[~~!9 ,~

,

J
[~=J~' t/..~*:.t:.f~

"""* .tIOO --- .. 74Z0 I!>-
.\. 'r=,. IZ~~1

~'~~'l ~ ~~l'AIMImllQl'

,sv
~\I!t! ill!t

"-.5'1

11< IV +

~ .,m1!I~

:~'i~
. .
I~

~¢~ All , ~ .g,.,.,.
'=-.',-Slr

~ ..
I, ~~t ,

f1;~ I

I 'c0::-

! aru ,~

~ rQ. • 10
' AI3

I
.~ ,~. I

~ ~ ZaAi fI •
AI'/.

i

3~'
I~

I
.i~.

I ~
i

~ Ii ~7 Ab
Ii ! I AIS

I] II I

. .,JiG. ~

II !i1 ~ 13
I Alb

i Ii

'~
,

• JiE;1iIi: • ,

JI ~ 170~ ~ 14 ., 6 ~
I AI7 ~1.48 ~

4 " Ii ~
.,Jim

~J
J~

~ 1702A ~/~2A~
I /5

AlB ' ~ M ~
~ ~ .. , ...

4

~ l:·/!> ~ l t, ' .. -.t.L

t:=~ t= ..
l=~

-_a ~f''"- -. " ,

~ .
l=! ..

14ISI , I ,
'!r

_.

." Ok .. ~
+sv rn ~ AI II ~l . ..

~

~~9~14lZ5

lIDL'~
~

i'51

PA'!~ -f29l

!~ -!ill

--~!~
~

..
~ . ..
,~ 3-i'

~
,O.1 __ .,~'l.412fJ

-f<5l
"t-

2

RAM MOD £NaL

"'''

1'.10-,-:::: u'lLe!> ~~\5e ~: ~,"IEC
[,::> U50 PJR :rw'&'u..!.: 4 ON1..Y.

~ USEO R>R :r. . .rt1lu..:.:. I!'. otoI1..'I'.
$. BQt.\tt) $~~~I"'CC """.",, ,,,,~,,<.,.Iit""

CCII"",~a PC>:'L'N"T~u...!te. e.

-" --'.J:,.-,,;'

H

G

F

E

o

c

B

AL~_9::~~. __ ~~~::::~~~ __ ~~~~iii!~~· ___ ~_A ~ .1'1.1: _ ... t./t. FREM 6-a _

--.
-~

8 7 854 3 2

! ~"1~" u. " ,." J. "

""
"£OO-~-,,

scribes PROM installation, removal, programming, and era­
sure. The third given installtion data and requirements.

Memory Address Coding

In order to enable memory operations, the imm6-26
card must have an encoded address designation. The proper
positioning of external jumpers for each block of memory is
as follows:

Module No. Memory Address Card Select Coding Jumper Pin Connections

PROM 0 0-4095 MAD12, MAD13, MAD14, MAD15 57-58,61-62,63-64,67-68
PROM 1 4096 -8191 MAD12, MAD13, MAD14, MAD15 58-60,61-62,63-64,67-68
PROM 2 8192 - 12287 MAD12, MAD13, MAD14, MAD15 57-58,59-61,63-64,67-68
PROM3 12288 -16383 MAD12, MAD13, MAD14, MAD15 58-60,59-61,63-64,67-68

Prom Installation, Removal,
Programming, and Erasure

In order to provide flexibility in memory assignment,
the imm6-26 card can be of any size desired, from 256
words to 4,096 words, in 256 word increments. This flexi­
bility is achieved by enabl ing installation and removal of the
individual PROM chips which make up the imm6-26 card's
memory.

When installing PROM chips on the imm6-26 card,
the corresponding PROM Resident switch must be depress­
ed. If this is not done, the imm6-26 card will not be
enabled when that group of memory addresses is accessed.
To install a PROM, merely insert it into the socket provided
on the imm6-26 card. Likewise, to remove a PROM, merely
pull it from the socket. Again, if removing a PROM, ensure
that the corresponding switch is disabled. If this is not done,
faulty memory operations will ensue. If all of the sixteen
PROMs are installed on an imm6-26 card, the PROM Resi-

53

dent signal can be permanently enabled by installing the
ALL PROMS RESIDENT patch between points 1 and 2, as
shown in Figure 6-3.

The Intel 1702A PROMs used by the imm6-26 card
may be programmed by using the imm8-76 PROM Program­
mer card in conjunction with the Intellec 8 system, or by
using an Intel PROM Programmer. They may be erased by
exposing them to high intensity short-wave ultraviolet light
at a wavelength of 2537 A. After ten minutes of such expo­
sure, the PROM will be erased to all zeros. No more expo­
sure than is necessary should be used, to avoid damaging the
PROM. (See the Intel Memory Design Handbook for more
information regarding 1702A PROM programming and era­
sure). CAUTION: When using an ultraviolet source to erase
the PROM, be careful not to expose your skin or eyes to the
ultraviolet rays because of the damage which these rays can
cause. In addition, short-wavelength ultraviolet light gener­
ates considerable amounts of ozone, which is also poten­
tially hazardous.

Installation Data and Requirements

Connector:

Input Voltage:

Operating Temperature:

Dual 50-pin, .125 in.
centers

+5V ± 5% @ 1.6A (max)

-9V ± 5% @ 0.96A (max)

O°C -55°C

54

The INTELLEC 8/MOD 8 Control Console is designed
to provide a user of the INTELLEC 8/MOD 8 microcom­
puter development system with an easy to use means of
monitoring and controlling machine operation, manually
moving data to or from memory or input/output devices,
and running or debugging programs. Since the INTELLEC 8
/MOD 8 System is specifically designed for microcomputer
systems development, the Control Console has several fea­
tures which are not usually found on "traditional" com­
puter control consoles, e.g., extensive status displays and
special debugging aids.

This section describes the operation of the INTELLEC
8/MOD 8. Control Console on two levels: first, on a general
functional level; second, on a more detailed theory of
operation level.

Since the INTELLEC 8/MOD 8 Control Console has
been designed to support the imm8-82 Central Processor
card, many of its operations cannot be described without
referring to the operation of that card. It is an absolute
necessity, therefore, that Chapter 2 of this manual be read
and fully understood before attempting to read this section,
as it is in Chapter 2 that many of the basic concepts neces­
sary for a proper und~rstanding of Control Console opera­
tion are developed. If a more detailed description of
operational procedures using the Control Console is desired,
refer to the INTELLEC 8/MOD 8 Operator's Manual.

THE INTELLEC 8/MOD 8 CONTROL
CONSOLE - FUNCTIONAL DESCRIPTION

This section provides a basic, functional overview of
INTELLEC 8/MOD 8 Control Console operation. The oper­
ations performed by the Control Console can be divided
into seven groups, as follows:

1) Data display operations, including:

Memory Data display operations, in which the con­
tents of a selected memory location are displayed;

I/O Data display operations, in which data used for
an input or output operation is displayed;

55

Status display operations, which display indications
of the operating mode of the Central Processor;

Cycle display operations, which provide a contin­
uous display of the 8008 machine cycle.

2) Manual Memory Access operations, in which data
is read from or written into a selected memory lo­
cation from the Control Console rather than the
Central Processor.

3) Manual I/O Access operations, in which an input or
output operation is performed from the Control
Console rather than from the Central Processor.

4) Interrupt operations, in which an interrupt cycle is
initiated from the Control Console by the user.

5) Processor Control operations, which allow the user
to directly control the operation of the Central
Processor.

6) Sense operations, which allow the user to manually
enter data during a programmed input operations.

7) Search/Wait operations, which allow a selected in­
struction to be executed a given number of times,
after which the Central Processor enters a WAIT
mode.

Each of these operational groups is discussed in a sep­
arate subsection of this section.

Data Display Operations

The INTELLEC 8/MOD 8 Control Console can per­
form five distinct data display operations:

• Status Display
• Cycle Display
• Address Display
• Instruction/Data Display
• Register/Flag Display

The Status Display functions provide a visual indica­
tion of the Processor's mode of operation. There exist eight
status display functions:

• Run
• Wait
• Halt
• Hold
• Search Complete
• Access) Request
• Interrupt Request
• Interrupt Disable

The'INTELLEC 8/MOD 8 at present has no Interrupt
Disable capability, so this display is reserved for future ex­
pansion. The other seven functions are performed in the
following manner:

1) The RUN status display is I it whenever the Central
Processor is not waiting or stopped.

2) The WAIT status display is lit whenever the Pro­
cessor is in a WAIT state (i.e., waiting for data to
be input).

3) The HALT status display is lit whenever the Pro­
cessor is in a STOPPED state.

4) The HOLD status display is lit whenever the Pro­
cessor has acknowledged a Hold Request (as for a
direct memory or I/O access operation).

5) The SEARCH COMPLETE status display is lit
whenever a SearchIWait operation has been com­
pleted, and the passcounter has been counted down
to zero.

6) The ACCESS REQUEST display is lit whenever a
Direct Memory or I/O Access request has been

. made by depressing the Console Mem Access or
I/O Access switches.

7) The INTERRUPT REQUEST display is I·it when­
ever an Interrupt Request has been made via the
Control Console Interrupt or Reset switches, and
is extinguished when the Processor acknowledges
the interrupt request.

The cycle display functions provide a visual indication
of the Processor machine state. There are eight cycle display
functions:

• Fetch
• Memory

• I/O
• DA
• Read/Input
• Write/Output
• Interrupt
• Stack

The Stack display is not used by the present INTEL:
LEC 8/MOD 8, and is reserved for future expansion. The
other seven cycle functions operate as follows:

1) The FETCH cycle display is lit when the processor
is executing an Instruction Fetch operation.

2) The MEM cycle dispiay is lit when the processor or

the Control Console is executing a Memory Access
operation.

3) The I/O cycle display is lit when the processor or
the Control Console is executing an I/O Access
operation.

4) The DA cycle display is lit when a Memory or I/O
Access operation is being performed from the Con­
trol Console rather than by the processor.

5) The Read/Input cycle display is fit when either a
Memory Read or I/O Input operation is executed.

6) The Write/Output cycle display is I.it when either a
Memory Write or I/O Output operation is executed.

7) The INT cycle display is lit when a processor In­
terrupt cycle is in progress.

The Address display function provides a visual display
of the address data used for a Memory or I/O operation.
There are sixteen address display lights, corresponding to
the sixteen address lines. On the present INTELLEC 8/MOD
8 System, however, only the first fourteen of these are used.

The Address display function is performed by tying
the processor memory address lines to the display lights
through a series of buffers.

I

The Instruction/Data display provides a visual indica-
tion of the instruction or data fetched from memory or the
data which is read from memory or an I/O device. There are
eight Instruction/Data display lights, tied to the processor
data bus.

The Register/Flag display function provides a visual
indication of the contents of the processor Register/Flag
latch.

Manual Memory Access Operations

A Manual Memory Access operation is performed in
order to read or write data to or from memory. It is accom­
plished via the following steps:

1) The processor enters a WAIT state when the
console WAIT switch is depressed, giving control
of the memory address and control busses to the
Control Console.

2) The Mem Access switch on the Control Console
is depressed, sending a control signal to the
processor.

3) The memory addressed to be accessed is loaded
into the Address/Instruction/Data switches on
the Control Console.

4) The LOAD switch on the Control Console is
depressed,loading the Address/Instruction/Data
data intothe Address Register.

5) The address held in the Address Register is sent
to the memory module on the memory address
bus.

6) The memory module responds by sending the

7)

data currently held in the selected memory loca­
tion to the Control Console, where it is dis­
played by the Instruction/Data display as dis­
cussed in Section 8.1.1.

If it is desired to write data into memory, the
byte to be written is loaded into the lower
eight Address/I nstruction/Data switches. Switch
DEP is then depressed, sending a control signal
to the memory module which causes the switch
data to be loaded into the memory address
held by the Address Register.

The address held in the Address Register can be
incremented by one, by depressing the INC switch, or de­
cremented by one by depressing the DEC switch.

A special form of memory access is the Deposit at
Halt function. When this function is performed, the Control
Console waits until the processor enters a STOPPED state,
and then causes the data held in the Address/lnstruction/
Data switches to be written into the memory location
addressed by the contents of the Control Console Address
Register.

Manual 1/0 Access

A Manual I/O Access operation is performed to allow
the user to send data to an output device, or read data from
an input device, by using the Control Console, rather than
the Central Processor. It is executed in the following steps:

1) The processor enters a WAIT state when the
console WAIT switch is depressed, giving control
of the Memory Address and Control busses to
the Control Console.

2)

3)

4)

5)

6)

7)

The I/O Access switch on the Control Console
is depressed, sending a control signal to the
processor.

The I/O Address signifying the I/O device to be
used for the manual I/O access operation is
loaded into Address/Instruction/Data switches
8-14 on the Control Console.

If an Output operation is to be performed, the
data byte which is to be output is loaded into
Address/I nstruction/Data switches 0-7.

The DEP switch is depressed.

The I/O Address and data are sent to the Input/
Output and Output modules, which then per­
form the designated input or output operation.

In the case of an Input operation, the data from
the selected input port is displayed in the data
display light, as discussed earlier.

I nterrupt Operations

An interrupt operation is performed in order to cause
the Central Processor to interrupt its normal sequence of
operations and to execute an interrupt instruction. This

57

interrupt instruction can be such that processor operation is
directed to a routine which will service the device originating
the interrupt.

I n the case of the Control Console, an interrupt is
generally executed in order to start INTELLEC 8/MOD 8
operations, as the CPU requires an interrupt in order to exit
from a STOPPED state. A Control Console interrupt is exe-

. cuted in the following steps:

1)

2)

3)

4)

The I nterrupt Instruction wh ich is to be exe­
cuted during the Interrupt operation is loaded
into Address/Instruction/Data switches 0-7 on
the Control Console.

The I nterrupt switch is depressed, generating an
Interrupt signal which is sent to the Central
Processor.

The Central Processor enters an Interrupt cycle.

The Interrupt Instruction loaded into Address/
Instruction/Data switches 0-7 is sent to the
Central Processor, which executes it as a normal
i nstructi on.

A RESET operation is a special case of Interrupt
operation, in which a hardwired instruction is presented to
the CPU instead of the contents of the Address/lnstruction/
Data switches. This instruction is a RESTART to zero
instruction, causing program execution to begin at mem­
ory location O. A RESET operation also generates a RESET
signal which may be used to initialize peripheral devices
attached to the INTELLEC 8/MOD 8 System.

Sense Operations

A Sense operation is performed in order to manually
input data to the Central Processor while it is running a user
program. It is executed in the following steps:

1)

2)

3)

The data which is to be input is loaded into the
Address/Instruction/Data 8-15 switches on the
Control Console.

The SENSE switch is depressed, generating a con­
trol signal which is sent to the Central Processor.

The control signal causes the CPU to input the
data from the switches, rather than from an
input device, each time an Input instruction is
executed.

Search-Wait Operations

Search-Wait operations are a powerful debugging tool
which allows the user to execute a statement in his program
a certain specified number of times, from 1 to 256, and then
cause the Central Processor to enter a WAIT state, wherein
the contents of memory can be examined to ensure proper
program operation.

A Search-Wait operation is executed in the following
steps:

1) The PASS COUNT, or number of times that an

2)

3)

4)

instruction is to be executed, is loaded into Ad­
dress/Instruction/Data switches 0-7.

The LOAD PASS switch is depressed, causing
the PASS COUNT to be loaded into the PASS
register.

The address which is to be monitored is entered
into the Address/Instruction/Data switches and
the LOAD switch is depressed, loading the ad­
dress into the Address Register.

Each time the referenced instruction address is
encountered by the CPU, a control signal is gen­
erated. This control decrements the Pass Counter
Register.

5) When the Pass Counter Register counts down to
zero, the processor will be forced into a WAIT
state if the Search/Wait switch has been de·
pressed, allowing the user access to the system
memory. This also causes theSRCH/COMP li!Jht
to light, as discussed earlier.

Processor Control Operations

The Processor Control operations allow the user to
control the operation of the iNTELLEC 8/MOD 8 from the
Control functions:

1) Sense
2) SearchlWait
3) Deposit
4) Deposit at Halt
5) Interrupt
6) Reset
7) Step/Continuous, which allows the user to cause

program execution to be performed one machine
cycle at a time.

8) Wait, which causes the processor to enter a WAIT
state.

The WAIT function is executed by depressing the
WAIT switch on the Control Console. A control signal is
then produced which causes the Central Processor to enter
a WAIT state. Normal operations are resumed when the
switch is reset to its original position.

The Step/Cont function is dependent on the WAIT
function. Single·step operation cannot be performed unless
the WAIT mode is entered. Depressing the STEP/CONT
switch generates a control signal which causes the CPU to
leave the WAIT state and execute one machine cycle. After
the cycle has been executed, the WAIT mode is reentered.

THE INTELLEC S/MOD S FRONT PANEL
CENTRAL CONSOLE-THEORY OF OPERATION

This section describes the physical implementation of
the features described in the last section. Again, it is neces­
sary that Chapter 2 of this manual be understood in order
to benefit from this section.

58

The INTELLEC 8/MOD 8 Control Console is made up
of three modules:

• The Front Panel Logic board, which holds Address
Registers, data multiplexers, data buffers, and the
Address Comparator.

• The Display board, which holds the circuitry which
enables the Light-Emitting Diode displays.

• The Front Panel Controller, which holds the logic
necessary to enable the proper performance of Con­
trol Console function.

These three modules work together in order to per­
form all of the Control Console operations, and so in this
section they will be discussed as one unit.

The seven operational groups discussed in this section
are:

1) Data Display operations
2) Manual Memory Access operations
3) Manual I/O Access operations
4) Interrupt operations
5) Processor Control Operations
6) Sense Operations
7) SearchlWait operations

Data Display Operations

As stated earlier in this chapter, there are five distinct
data display operations:

• Status display
• Cycle display
• Address display
• Instruction/Data display
• Register/Flag display

All of these display operations utilize Light-Emitting
Diodes as their active display element. These diodes are
triggered by their input signal going to a LOW level.

The Status display function are as follows:

• Run
• Wait
• Halt
• Hold
• Search Complete
• Access Request
• Interrupt Request
• Interrupt Disable

The Interrupt Disable display is not used in the pres­
ent Intellec 8 system.

The other seven display functions are executed as
follows:

1) The RUN status display is lit when the Central
Processor is running: i.e., when it is not in the
WAIT or STOPPED state. This is accomplished
by combining the two signals WAIT ACK, indi­
cating the WAIT state, and HALT ACK, indi­
cating a STOPPED state, through a NAND gate.

2)

3)

The resulting signal is inverted, producing the
RUN STATUS DISP signal which will go LOW
when the processor is running.

The WAIT status display is lit when the Central
Processor is in the WAIT state. This is accom­
plished by using the WAIT ACK signal to pro­
duce the WAIT STATUS DISP signal, which
will go LOW when the processor is in the WAIT
state.

The HALT status display is lit when the Central
Processor is in the STOPPED state. This is ac­
complished by using the HALf ACK signal to
produce the HALT STATUS DISP signal, which
goes LOW when the processor enters the
STOPPED state.

4) The HOLD status display is lit when the Central
Processor has acknowledged a Hold Request.
This is indicated by the presence of signal HOLD
ACK. This signal is used to form the HOLD
STATUS DISP signal, which goes LOW when a
hold request is acknowledged.

5) The Search Complete status display is let when­
ever a Search/Wait operation has been com­
pleted. This condition is indicated by the pres­
ence of signal SRCH CMPL, which is inverted
to form SRCH CMPL DISP.

6) The Access Request status display is lit when­
ever a manual memory or I/O access has been
requested from the front panel. The two signals
which are produced by such requests are I/O
Access Mode and Mem Access Mode. These two
signals are combined by a NOR gate and a
NAND gate to produce the ACCESS REQUEST
DISP signal.

7) The Interrupt Request status display is lit when
an I nterrupt Request is made from the Control
Console, and extinguished when the request is
processed. This is accomplished by using the
I NT CTL SW ~ignal produced by the Interrupt
Request switch, to set a D fl ip-flop, producing
the INTR REQ signal, indicating an interrupt
request. This signal is inverted to form I NT R EQ
DISP.

When the Central Processor acknowledges the inter­
rupt request, it enters an interrupt cycle, indicated by sig­
nal INTCYCLE. This signal is used to clear the flip-flop set
by the request, thus extinguishing the Interrupt Request
display.

The cycle display functions are:

• Fetch
• Memory

• I/O
• DA
• Read/I nput

59

• Write/Output
• Interrupt

• Stack

The Stack display is not used on the present Intellec
8 system. The other seven displays are produced as follows:

1) The FETCH display is lit during a processor In­
struction Fetch operation. This is indicated by
the FETCH CYCLE signal, which is passed
through a buffer to produce signal FETCH
CYCLE DISP.

2) The Memory Cycle display is lit when either
the processor or the Control Console is execut­
ing a Memory Access Operation. In the case of
the processor, this is indicated by signal MEM
RD CYCLE or MEM WR CYCLE. These two
signals are separately buffered and tied to a
common point as signal MEM CYCLE DISP.
This is possible as both signals cannot occur
simultaneously with a processor memory access,
so it is combined with DA ENBL, which indi­
cates a memory access in progress, and is then
tied to the same point as the two processor
memory access signals.

3)

4)

5)

6)

The I/O Cycle display is lit when a processor or
Control Console I/O Access operation is in pro­
gress. The processor indicates this operation
with signal I/O CYCLE, which is buffered and
tied to a common point with the Console I/O
Access Cycle signal, which is produced by com­
bination signals I/O Access Mode and DA ENBL
in a fashion similar to that described above for
memory access display operations. This pro­
duces the I/O CYCLE DISP signal.

The DA cycle display is lit during the Control
Console memory or I/O access operations. A
Control Console Access operation is always be­
gun by requesting a HOLD operation. This fact
is used to produce the proper signal by buffering
the HOLD ACK signal, which indicates a HOLD
operation, to produce the DA CYCLE DISP
signal.

The Read/Input cycle display is lit whenever a
Memory Read or I/O Input operation is exe­
cuted. This is indicated by three signals: I/O
IN, produced during a Control Console I/O
input operation, MEM RD CYCLE, produced
during a Processor memory read operation, and
also by the combination of the Memory Access
Mode and DA ENBL signals as described in the
discussion of the Memory Cycle display. The
first two of these three signals are buffered and
then tied to a common point along with the
third, producing signal RD/IN CYCLE DISP.

The Write/Output cycle display is lit when
either a memory write or I/O output operation

is executed. This is indicated by two signals:
MEM WR CYCLE, produced during a memory
write operation, and then the combination of
I/O IN and I/O CYCLE, which is true only
during an I/O OUT cycle. These signals are tied
to a common point to produce signal WR/OUT
DISP.

7) The Int cycle display is lit when an interrupt
cycle is in progress, which is accomplished by
inverting the INT CYCLE signal and combining
it through a NAND gate with the HOLD ACK
signal which indicates a HOLD operation, thus
producing signal INTCYCLE DISP.

The Address display lights are lit either by the data
held in the Control Console Address Register, during a
Memory Access operation, or by the data appearing on the
Address/Data/Instruction switches, during an I/O Access
operation. The choice of which set of data to use is made at
a two-input multiplexer. If neither operation is being per­
formed, the Address display is activated by the data on the
Processor Memory Address Lines MADD-MAD13.

The Instruction/Data display lights are lit by the data
appearing on the Processor Data Out lines DBD-DB7 except
during a Control Console data deposit operation, when they
reflect the contents of the first eight Address/lnstruction/
Data switches.

The Register/Flag display lights reflects the contents
of the Processor Register/Flag flip-flops.

Manual Memory Access Operations

Manual Memory Access operations are executed in the
following manner, after the WAIT switch is depressed:

1) The Mem Access switch on the front panel is
depressed. This causes the Request Multiplexer
to generate a HOLD REO signal, which is sent
to the Processor.

2) The Processor responds to the HOLD request
by giving control of tne memory address and
control buses to the Control Console, and
issuing signal HOLD ACK.

3) The memory address to be accessed is loaded
into the Address/I nstruction/Data switches on
the front panel.

4) The LOAD switch on the front panel is de­
pressed, causing the switch data to be gated
into the Address Register, a sixteen-bit up/down
counter.

5) The data held by the address register are gated
through a multiplexer and fed onto the Mem­
ory Address bus, and thence to the memory
modules.

6) The memory module responds by sending the
data currently held in the addressed memroy

60

location back on the Memory Data Input bus.
The data is then gated onto the Data Out bus,
and is displayed by the Control Console as
described in ,the last section.

7) If it is desired to write data into memory the
memory the data byte to be written is loaded
into the lower eight Address/Instruction/Data
switches, and the DEP switch is depressed. This
causes the DEPosit flip-flop to produce the
DEPREO signal, which is combined with the
SYNCA and MEM ACCESS mode signals to
produce the memory write signal R/W. R/W is
then used to clear the Deposit flip-flop, pro­
ducing a pulsed write signal. The data held in
the switches is gated onto the Data Out bus at
the same time, by signal DEP DAEN, produced
by combining the DEP REO and DA ENBL
signals. The data will thus be written into the
selected memory location.

A special case of memory access, Deposit at Halt, is
enabled by the DEP AT HL T switch, which produces the
DEP @ HL T MODE signal.

This signal is combined with the RUN signal which
indicates that the processor is running. When the processor
enters a WAIT or STOPPED state, a deposit cycle will
automatically be initiated.

Manual 1/0 Access Operations

A Manual I/O access operation is performed as fol­
lows, after the WAIT switch is depressed:

1) The I/O Access switch on the Control Console
is depressed, causing signal HOLD REO to be
generated by the Request Multiplexer and sent
to the processor.

2) The processor gives control of the memory ad­
dress and control buses to the Control Console,
and issues signal HOLD ACK.

3) The I/O Address signifying the I/O device to be
accessed is loaded into A/D/I switches 9-13.
This data is immediately gated onto the Mem­
ory Address bus, and sent to the I/O .modules.
Data which appears on the selected I/O device
will be read onto the Data In lines, gated onto
the Data Out lines by signal I/O IN, produced
by the I/O ACCESS MODE signal, and will be
displayed,6s discussed earlier in this chapter.

4) If an I/O Output operation is to be performed
the data to be output is loaded into the first
eight A/I/D switches, and switch DEP is de­
pressed. This causes a deposit operation to be
performed as described in Section 8.2.2, except
that I/O OUT is produced rather than R/W.

Interrupt Operations

An Interrupt operation is executed as follows:

1) The I nterrupt Instruction wh ich is to be exe­
cuted during the Interrupt Cycle is loaded into
the first eight Address/Instruction/Data switches
on the Control Console.

2) The I nterrupt switch is depressed, producing
signal INT CTL SW, which sets the Interrupt
flip-flop. This flip-flop produces signal INT
REO. This signal causes the Request Multi­
plexer to issue signal INT REO, which is sent
to the processor. It is also used to produce
signal INT REOEN, which causes the data
placed in the switches to be gated through a
multiplexer and onto the Interrupt Instruction
bus.

3) The processor enters an Interrupt Cycle, pro­
ducing signal INT CYCLE, which resets the In­
terrupt flip-flop.

A Reset operation is executed in the same
fashion as an Interrupt operation, except that
the Reset switch is depressed, producing signal
RST CTL SW. This signal causes the Request
Multiplexer to issue signal RESET, and also
produces RST REOEN. RST REOEN causes
a hard wired REST ART to the instruction at
memory location zero to be gated onto the
I nterrupt I nstruction bus.

Sense Operations

A Sense operation is executed in the following
manner:

1)

2)

The data which is to be input is loaded into the
upper 8 Address/Instruction/Data switches.

The Sense switch is depressed. This causes signal
SENSE REOEN to be generated, which causes
the switch data to be placed on the Input Data
bus. It also produces signal IN JAM ENBL,
which causes the switch data to be input during
an input operation, rather than the normal input
source data.

61

Search/Wait Operations

A Search/Wait operation is performed in the following
manner:

1)

2)

3)

4)

5)

The pass count is loaded into the lower eight
Address/ I nstructi on/Data switches.

The LOAD PASS switch is depressed, loading
the pass count into the Pass Counter, an eight­
bit counter.

The address which is to be monitored is loaded
into the Address/I nstruction/Data switches. The
LOAD switch is depressed, loading the switch
data into the Address Registers.

The contents of the Address Register is com­
pared with the Memory Address buss by the
SRCH ADR comparator. Each time they coin­
cide, signal ADR CMP is produced. This signal
is used to produce PC STB, which is in turn
used to count down the Pass Counter by one.

When the Pass Counter reaches zero, it pro­
duces signal SA CMP. This signal is used to set
the Search Complete flip-flop. This flip-flop's
output causes the Request Multiplexer to issue
signal WAIT REO, which causes the processor
to enter a WAIT mode.

Processor Control Operations

Most of the processor control operations have been
previously discussed. Those which remain are the WAIT and
STEP/Continuous functions.

The wait function is executed by depressing the
WAIT switch on the Control Console. This produces the
WAIT MODE signal, which causes the Request Multi­
plexer to issue signal WAITREO, which causes the proces­
sor to enter the WAIT mode.

The WAIT mode is entered, the Step/Continuous
function becomes valid. Depressing the STEP/CONT switch
causes the WAIT R EO signal to go TRUE for approximately
4,us, which enables the ;:>rocessor to execute one cycle of
operation, after which it again enters the WAIT mode.

en
N

" cQ'
c ...
~ H
-.J
I

" ... o
::I ...
"tI
III
::I
!!.G
r-o
rg c:;.
CI)
n
::I"
~

3
III g. F

C
0;"
rg ...
III

3

E

o

c

G

~':" ,~ !

- ~ , 14 ... u:. .. "',,<>E. ... <:\
-!FO .. ~l

F

~:"
~t'5 ¢

~."'T ,:-' ,10 u..J/I"..,. "Of. Sow
7'O'_~L

E

o

_.

c
I
i

i A~''''
..... ",'S . ,. = 0'4 = = . '"

::::::: "
"

=
~ L= = B

.,

D~
r--

~~~~~~~=====-----~~~:~~-,~ __ ~ __ ~_~,"_~_i-:3~_~~i-~~f.~~~~~"~"-~f:i=~w;~"~~~~ 
::::: ::::::: 

::::::: ~ t 
= ~ ~ = = 

:::::: = ::::::: = :=:= 
= 

X -. 

~. 

. 4 5 6 



8 7 8 5 
." 
cE' 
e ... 
CD 
-..J 
I 
!'J 
." ... 
0 
:I .... 
"tI 
I» 
:I 
~ 
(') 
0 
:I .... ... 
2-
CD ... 
(I) 
n 
:T 
CD 
3 
I» .... 
c:r 
c 
iii' 

eg ... 
I» 

3 

Ol 
w 

B 

4 3 2 

A . 
e 
c. 

~DI 
~}11i!i===== 
-~. ~~~~~ "~ 
~~ ~ 

" 

~"'''' .. 
.. "". !I 
.......... lD 
......... '0 '" 
"AD ., 

SI-4EET I OF" Z. IS USED rOR CPU TYPE 8-82-

SIlEE.T 2-D(:- Z. IS uS£ij RJI? CPU 7YFE 8-83 

G 

F 

E 

o 

c 

B 



64 



The INTELLEC 8/MOD 8 Chassis, Mother Board, and 
Power Supplies are designed to provide the housing, inter­
connection, and power services which bring separate circuit 
cards together as an I NTELLEC 8/MOD 8 system. 

Since these three components of the INTELLEC 8/ 
MOD 8 are, essentially, very simple, they will not be de­
scribed in detail. 

The INTELLEC 8/MOD 8 uses OEM power supplies. 
One supplies -9V at 1.8 Amperes. A second furnishes +5V 

BUS INTERFACE 
FRONT PANEL CONTROLLER 

CPU 
RAM 3 

RAM 2 
RAM 1 

RAM 0 
PROM 3 OUT 3 

at 12 Amperes. And the third supplies ±12V at 60 milli­
amperes. If greater expansion is planned, an external power 
supply must be installed to replace the internal supplies. 

The Mother Board is, simply, a printed circu it board 
which has mounted on it the connectors which hold the 
various cards which make up the INTELLEC 8/MOD 8 
System. The layout of these connectors is such that certain 
modules must occupy certain locations on the Mother Board. 
The suggested arrangement is shown in Figure 8-1. 

PROM 2 OUT 2 

PROM 1 ~/01 
PROM 0 1/00 

CUSTOM INTERFACE MAY BE USEO L-----PROM. PROGRAMMER MOOULE 

IN ANY OF THESE LOCATIONS 

Figure 8-1. INTELLEC 8/MOD 8 Module Assignments 

65 



66 



The imm8-76 PROM Programmer Module is an op­
tional addition to the INTELLEC 8/MOD 8 system. When 
used in conjunction with the INTELLEC 8/MOD 8 System 
Monitor, the Programmer Module permits rapid, automatic 
loading of Intel 1602A and 1702A Programmable Read 
Only Memories. 

The program to be transferred to a PROM is first stored 
in the INTELLEC's program RAM memory. The PROM to 
be programmed is erased, if necessary, and inserted in the 
programming socket on the Control and Display Panel. The 
PRGM PROM PWR switch is. turned on, and the console op­
erator types a 'P' followed by parameters which indicate the 
first and the last RAM addresses to be transferred, as well as 
the starting address in the PROM. 

The software does the rest. It transfers the eight bits 
of the PROM address to output port cpA. It sets up the data 
to be written into the PROM, at output port cpB (in Hex). 
It pulses the power supply the required number of times, at 
the required duty cycle. And it checks the results of its 
programming by reading the PROM's output through input 
port 2. If improper programming is indicated, the System 
Monitor prints an exception notice at the teletype console. 
This programming cycle is repeated at each of the memory 
locations bracketed by the initial and the terminal param­
eters. Complete programming involves the loading of 256 
individual locations, a process which requires approximately 

2 minutes. The procedure is described fully in the INTEL· 
LEC 8/MOD 8 Operator's Manual. 

The imm8-76 is designed for plug·in installation in 
the INTELLEC 8/MOD 8 mainframe. It makes use of exist­
ing connectors and other provisions. No special installation 
is necessary. 

The chapter describes the immS-76 PROM Program­
mer. The first subsection contains a brief description of the 
1602A/1702A PROM. The second describes the sequence 
of operations performed by the m"odule during program­
ming. The third gives the detailed theory of operation. The 
fourth contains util ization information. 

67 

THE 1602A AND 1702A PROGRAMMABLE 
READ ONLY MEMORY 

Both the 1602A and the 1702A are programmed by 
the momentary application of high amplitude pulses on 
selected pins of the chip. But the 1702A is cleared by a 
controlled exposure to high intensity ultraviolet. The 1702A 
may be reloaded as often as desired, making it suitable for 
use in program development. 

Programming of the 1602A or the 1702A requires a 
carefully controlled sequence of operations. The safety of 
the ch ip demands that both the interelement voltages and 
the duty cycle of the programming pulses be maintained 
within specific limits. This insures against breakdown and 
overheating. On the other hand, insufficient power levels will 
lead to programming failures. An accurate balance is neces" 
sary. The PROM Programmer Module is designed to provide 
pulses of the correct level and duration, automatically. 

Appendix B of this manual contains full electrical 
specifications for the I n'tel 1602A and 1702A. Do not 
confuse these devices with the 1602 and 1702 versions 
which preceded them. The 1602 and 1702 PROMs have 
quite different characteristics, and in particular will not 
tolerate the power levels used to program the 1602A and 
1702A. The imm8·76 is designed to program both the 
earl ier and the later versions, but the util ity program con· 

tained in the INTELLEC S/MOD 8 System Monitor is not 
set up for the programming of 1602 and 1702 PROMs. As a 
result, any attempt to load 1602 or 1702 memories with the 
INTELLEC S/MOD S System Monitor will damage the 
PROM. Such programming is possible, with the proper pre­
cautions, but you will have to provide your own software 
functions. Refer to the INTEL MEMORY DESIGN HAND· 
BOOK for instructions, if you plan to use the imm8-76 for 
this purpose. 

Both the 1602A and 1702A are sh ipped to the cus­
tomer in a "cleared" condition; that is, with zeros in all 
memory locations. An internal zero-state is indicated by a 
LOW on the output pins of an enabled chip. During pro-



gramming, ones are loaded selectively into each of the chip's 
memory locations. 

A 1702A which has been programmed previously 
must be erased prior to reloading. Erasure is accomplished 
by exposing the sil icon die to ultraviolet I ight. The device 
is made with a transparent quartz lid, to permit such ex­
posure. Conventional room light, flourescent light, and sun­
light have no measureable effect on data stored in the 
1702A, even after years of exposure. But the device is 
quickly cleared by a brief exposure to high intensity ultra­
violet at a wavelength of 2537 Angstroms. The Model 
UVS-11 (Ultraviolet Products, Incorporated: San Gabriel, 
California) is a cheap and effective source for this purpose. 
Its accompanying filter must first be removed. The recom­
mended integrated dose (the produce of intensity and the 
exposure time) is 6 W-sec/cm 2 • Ten minutes exposure to 
the UVS-11, at a distance of 1 inch, will clear the PROM 
completely. Avoid unnecessary or prolonged exposures, 
which are potentially damaging to the PROM. 

-WARNING -

High intensity ultraviolet can cause serious burns. 
Ultraviolet radiation can also generate potentially hazardous 
amounts of ozone. Observe the following precautions, when 
using the source to erase a PROM. 

1) Never expose skin or eyes to the source directly_ 

2) Do not stare fixedly at an object which is under 
ultraviolet illumination. The light is invisible, but is 
nevertheless injurious to eye tissues. 

3) Use the source only in a well-ventilated area. 

FUNCTIONAL DESCRIPTION 
OF THE MODULE 

An eight-line input, applied to the PROM's addressing 
lines, specifies the location to be programmed. Data to be 
written in that location is applied to the chip's eight output 
lines. Then address lines, data lines, the PRGM pin, and all 
four power lines (Vcc, Vbb' Vgg, and VDD) are pulsed, to 
fix the data in location. The procedure requires about 
3 milliseconds, and the cycle is repeated 32 times at each 
of the 256 memory locations. To prevent overheating of the 
1702A, the Programmer Module maintains a 20% duty 
cycle, and it therefore takes approximately 123 seconds to 
program the entire chip. 

To perform the required functions, the imm8-76 
contains an addr.ess driver bank, a data driver bank, four 
electronically controlled power supplies, and a control and 
timing section. 

The sequence of events is as follows: 

1) Data to be programmed into the PROM is placed 
on the input I ines, in complement (negative-true) 
form. 

2) Address to be programmed is placed on the address 
lines, in complement (negative-true) form. 

68 

3) When the programming cycle begins, the following 
changes in the static conditions occur: 

(a) Vcc switches from 5 to 47 Volts. 

(b) Vbb switches from 5 to 59 Volts. 

(c) V gg switches from -9 to 12 Volts. 

(d) VDD switches from -9 to 0.6 Volts. 

(e) The programming signal (PRGM) goes from 
o to 47 Volts. 

(f) Address data changes from 0-5 Volts to 0-47 
Volts. 

4) 60 microseconds after the cycle begins, the address 
data is switched from its complement form to its 
positive-true form. 

5) 155 microseconds after the cycle begins, the PRGM 
signal dips from 47 Volts to approximattlly 9 Volts. 

6) 3 milliseconds later, the PRGM signal returns to 
47 Volts. 

7) 3.25 mill iseconds after the beginning of the cycle, 
all voltages and signals are switched back to their 
normal quiescent levels. 

8) 15 milliseconds after the beginning of the first 
cycle, the second cycle begins. 

Interface to the INTELLEC a/MOD a 

Note that the timing relationships above are deter­
mined by control circuitry on the PROM Programmer 
Module itself. The number of pul~ed repetitions, however, 
is determined by the controlling program. The INTELLEC 
8/MOD 8 System Monitor contains a timing routine which 
holds the PROM Programmer enabled for approximately 
520 milliseconds, or 35 programming cycles, before stepping 
to the next memory location. 

The ADDRESS IN lines on the Programmer Module 
are connected to the INTELLEC's output port #</>A. The 
DATA IN lines are connected internally to output port #</>B. 
The INTELLEC 8/MOD 8 System Monitor writes into these 
ports when a PROM is being programmed. 

When the Programmer Module is not actively pro­
gramming a memory location, the contents of that loca­
tion are available at the module's DATA OUT pins. These 
outputs are connected in turn to input port #2, so that the 
INTELLEC 8/MOD 8 System Monitor can check the results 
of its programming. 

The PROM programmer module also has two nega­
tive-true enabling inputs, which initiate the proqramming 
cycle. A LOW applied to pin #32 of the module selects 
a 20% programming duty cycle. This input is used when 
programming 1602A or 1702A PROMs. A LOW applied to 
pin #30 selects a 2% duty cycle, used when programming 
1602 and 1702 devices. In the INTELLEC 8/MOD 8 system, 
pin #32 of the module is connected to the BIT #7 line of 
output port #9. Pin #20 is connected to the BIT #6 line 



of the same output port. The INTELLEC System Monitor 
controls the Programmer Module by writing into that port. 

THEORY OF OPERATION 
OF THE MODULE 

Refer to Figure 9-1, the PROM Programmer Schematic. 

Data Distribution 

The data to be programmed into the PROM enter 
originates at output port #1>8. This eight-line signal enters 
the Programmer Module through a ribbon cable which runs 
from J2 on the INTELLEC I/O Module 1> to Jl at the top 
of the module. Each of the input lines is applied to one in· 
put of an XOR-gate. The alternate inputs of these eight 
gates are returned through a common line to the +5 Volt 
supply, so that each gate acts as an inverter to the incoming 
data. 

Each ofthe XOR-gate outputs is directed to one input 
of a 7403 N.AND-gate. The alternate inputs to this bank of 
gates are driven in common by a signal originating in the 
control and timing section of the module. At the appropri­
ate time in the cycle, these inputs are perm itted to swing 
HIGH, causing data from the XOR-gate bank to pass through 
to the bases of eight driver transistors: 019,015,011,07, 
017, A13, A9, and 05. The signal at the collectors of these 
drivers is conducted out of the assembly through a ribbon 
cable which attaches to J2 at the top of the module. It goes 
from there to the programming socket on the front panel of 
INTELLEC. This data undergoes three successive inver­
sions, between entering and leaving the imm8-76. 

Observe that the bases of the PROM data driver tran­
sistors are returned through pull-up resistors to the +5 Volt 
supply. As a result, these transistors will be conducting when­
ever the input NAND-gates are inhibited. Under these cir­
cumstances, the signal at each of the PROM's data pins will 
be applied to the base of a transistor, through a divider con­
sisting of a 100-ohm resistor, the DC collector resistance of 
a driver transistor, and 9 1 K resistor. Transistors 020, 016, 
012,08,018,014,010, and 06 amplify this eight-line sig­
nal and forward it to an XOR-gate bank which is used as an 
eight-line data inverter. The outputs of the XOR-gates are 
applied to eight NAND-gates which have their alternate in­
puts tied in common to the +5 Volt supply. These gates are 
permanently enabled, and also act as data inverters. The 
output of these gates is in positive-true form. It is routed 
out of the assembly at J2, through a ribbon cable to J3 on 
the INTELLEC's I/O Module 1>, and terminates at input 
port #2. The I NTELLEC System Monitor reads this port, 
to determine the results of its programming. 

Address data enters the module at Jl, through a ribbon 
cable connecting it to J2 of the INTELLEC's I/O Module cp 
board. Data originating at output port #<p 8 is therefore ap­
plied to the eight-line XOR-gate banks, shown on the right 
in Figure 9-1. The outputs of these gates are directed to the 
bases of eight driver transistors, whose outputs command the 

69 

PROM address I ines. Note that the alternate inputs of the 
XOR-gates are tied in common to a signal line from the con­
trol and timing section. This line swings LOW when the pro­
gramming cycle begins. It returns to a HIGH condition 60 
microseconds later. As a result, the address forwarded to 
the PROM is in complementary form initially. Sixty micro­
seconds after the programming cycle begins, the address 
data will switch to its positive-true form, in accordance with 
the PROM's programming requirements. 

Control and Timing 

As shown in Figure 9-1, the programming cycle may 
be initiated by a LOW applied to pin #32 or to pin #30 of 
the card. The INTELLEC System Monitor enables the pin 
#32 input, selecting a duty cycle of 20% (3 mS/15 mS). The 
pin #30 input is set up for the 2% duty cycle used to pro· 
gram 1602 and 1702 devices. 

When a LOW is applied to pin #32 of the module, the 
15 millisecond input multivibrator re-triggers itself repeti­
tively, until the enabling signal is removed. This provides a 
series of positive-going excursions with a period of 15 mill i­
seconds, which are used to trigger the 3.25 millisecond pro­
gram cycle one-shot. 

The output of the program cycle one-shot: 

1) Complements the address to the PROM. 

2) Enables the data drivers. 

3) Pulses all four power suppl ies. 

4) Triggers a 155 microsecond cascaded one-shot 
delay. 

Sixty microseconds after the program cycle one-shot 
fires, the negative-going pulse output at A11-7 subsides, and 
the address data returns to its positive-true form. 

One hundred fifty-five microseconds after the program 
cycle one-shot fires, A12-9-10-11-12-13-14 fires, causing 
the power supply to apply a 3 millisecond PRGM pulse to 
the PROM. 

Three and a quarter milliseconds after the beginning 
of the programming cycle, all signals return to their quies­
cent levels. 

The Programmer Module's control timing is illustrated 
in Figure 9-2. 

Power Supply 

The power supply section of the PROM Programmer 
Module performs the level switching functions required to 
program PROMs, in response to signals which are generated· 
in the timing and control section of the module. The power 
supply contains a rectifier section, a voltage regulator sec­
tion, a regulator control section, and six output switches. 
The relationship among these is shown in a simplified form, 
in Figure 9-3. 



8 

B 

!<..lCYTES: Ut..\LES,S OTI.IE.L ... :II'~E. ':'>;>"-<:.I<,£.D 
I A.LL Z:E6'~TO~ -:"e..E.. ,.., C>l->.M~ 1!4.w ~Ioa/o. 

2.. 4.Li... C.A.PAC.,-ol!:.~ ~e.E.. ,IO,J !-",\c.a£:l~~D~< 

'!I ~ ;':-:'~~'~""'OI2."" t>.R..E. S~IbO"Z-I~ VU~5loB, 

7 6 5 

S,G.I..lA.L e£.~£.Q:.OuL(.. c"\'\Arc!.'T 

:>~"'M£..e. 1,.r'tE1..!-£L.-4 
'1:>1.1_8 eo.<cotRJ"Tl'O;oo<..L2> 

01--8. \1..l>\)T~2."'~ 

Ofl?UT POIZJ I ~',-,- i 

Tru,."'o ........ ~.,.~ 

4 

2 

o 5£'£ ECD .",. 0012.'3 ". ,-.- • J" i ~~,. 

o 

r------------------...,....v.::..:..:; 

c 
+--f--DOJ J..'Z...I.:>~\ 

B 



RECTIFIER AND REGULATOR: 

The Programmer Module receives a 50 VAC/60 Hz in­
put, from two 25 Volt transformers which are located on 
the INTELLEC's chassis. The secondaries of these trans­
formers are connected so that their outputs are series addi­
tive, and the 50 Volt output thus obtained is routed to the 
Programmer Module through J3. A full-wave bridge consist­
ing of diodes CR3-CR6 rectifies the 50 Volt input to pro­
duce a +80 Volt DC output. 

The +80VDC output of the rectifier is applied to a 
series regulator, 030, shown in the upper left hand corner 
of Figure 9-1. The output voltage at the emitter of 030 de­
pends upon the signal at its base. This level is determined in 
turn by a regulator loop which consists of an integrated volt­
age regulator (A17), 033, and 030 itself. 

Figure 9-1 shows a simplified equivalent of the regu­
lator loop. Components within the broken lines are part of 
the Signetics 550 monolithic voltage regulator. 

The loop input is obtained from the regulator's out­
put, through an adjustable resistive divider (R91 and R100). 
This level is applied to the non-inverting input of an opera­
tional amplifier which is incorporated into A 17. The output 
of the amplifier drives a common-emitter stage, also con­
tained within A17, and the inverted output at A 17-11 is ap­

plied externally to the emitter of 033. 033's collector drives 

3.25 mS 

155¢l -----.. 3.0mS 

PRGM (#13) 
n 

~ 

\ 

Vees (#12) --.! 

the base of the series regulator 030, completing the nega­
tive feedback loop. 

I n a stabilized configuration such as this, the opera­
tional amplifier tends to maintain an output which results in 
zero error, where the error is the potential difference between 
the amplifier's inverting and non-inverting inputs. Note that 
the inverting input is tied to the 550's internal reference 
(approximately 1.63 Volts). In order to obtain the desired 
output from the regulator, the resistive divider is adjusted 
for a zero error when the regulator's output is approximately 
+47.6 Volts. 

Refer to the schematic for the PROM Programmer 
Module, Figure 9-1. Observe that the series regulator 030 is 
protected against short-circuit overloads, by a bias protec­
tion circuit consisting of 029 and the Zener diode VR2. 
Under ordinary operating conditions, 029 will be off, and 
the reverse voltage applied to V R2 will be insufficient to 
cause this diode to conduct. I n the event of a short-circuit, 
however, the voltage drop across 030 will rise sharply. VR2 
will begin conducting when the voltage across 030 ap­
proaches 36 Volts, applying a forward bias to 029. As a re­
SUlt, the voltage at 029's collector will crop, clamping the 
base of 030 to a relatively low level, and limiting the current 
output from the supply. 

SCR1 is a crowbar switch, used to protect the PROM 
being programmed from an over-voltage condition in the 

15/150 mS 

II' 
t, 

r- +47 V 

+4.7 V 

OV 

+47 V 

\L-_________ +4.7 V 

\ +59 V 

. +4.7 V 

Vgg (#16) I \--~------ +12V 

--1 . -9V 

VDD (#24) 

All (7) 

ADDRESS 

DATA 

--.! \L-_________ :.~ v 

n60~S 

-f nL=--------.,---------- +47V 

~~------------~------------ +4.7 V 

OV 

Figure 9-2. PROM Programmer Timing 

71 



supply. The normal voltage level on the Vccs line (+47.6 
Volts) is insufficient to cause conduction in Zener diode 
VR3. Should V ccs rise above +56 Volts, however, the diode 
will conduct, forward biasing the gate of the SCR. SCR1 
short-circuits the output of the rectifier, and the over-current 
condition blows fuse F2, interrupting AC power to the Pro­
grammer Module. Capacitor C16 provides an alternate gate 
current path, to prevent dv/dt triggering of the SCR when 
power is initially applied. 

REGULATOR CONTROL: 

Refer again to Figure 9-3, the power supply function­
al block. Note that the bias on 030 is subject to the condi­
tion of a clamp. The clamp circuit consists of 032, 034, 
CR10, and associated components. These are used to switch 
the regulator output on and off, producing the pulses re­
quired for the programming of the PROM. 

The base of 034 is returned to the +80 Volt source, 
through pull-up resistor R92 (refer to Figure 9-1)_ Under 
static conditions, this transistor will conduct through CR10, 
clamping the base of 030 to a low value. As a result of the 
low forward bias, 030 displays a high impedance, and the 
output of the regulator will therefore drop to a very low 
value. 

The PRGM PROM PWR switch is located on the Con­
sole and Display Panel of the INTELLEC. Contacts of the 

PROG 

(3mSI 

,----. 
VR5 

035 

CR11-CR12 

REGULATOR 
CR7 

50 VAC 

PROG 

CYCLE 

(3.25 mS I 

-- RECTIFIER 

CR3-CR6 

BIAS 

PROTECT 

VR2/029 

PRGM PROM 
PWR __ 

(FRONT PANELI 

030 

~/. 
~ 

BIAS 

CLAMP 

032/034 

CR10 

Figure 9-3. Power Supply Functional Block 

"-
'I 

V/REG 

A17/033 

PRGM PROM PWR switch ground the base of 034 when 
that switch is turned on. This turns 034 off, enabling the 
regulator. 

The regulator's output remains clamped, however, by 
the conduction of 032. This transistor is commanded by the 
control and timing section of the Programmer Module. The 
3.25 mill isecond output of the program cycle one-shot turns 
032 off at the start of the programming cycle. With both 
032 and 034 disabled, the bias on 030 rises to the stable 
level established by the characteristics of the regulator loop. 
The output of the regulator rises in consequence. 

OUTPUT SWITCHES: 

When no program cycle pulse is present, the regula­
tor's output is at a low level. Diode CR7 is reverse biased, 
and the output voltage on the Vccs line is determined by 
the clamp circuit consisting of 026 and 028. Under these. 
conditions, 026 operates in the reverse beta mode, holding 
V ccs to approximately +4.7 Volts. When the program c~cle 
begins, the control and timing section applies a negatlve­
going 3.25 millisecond pulse to the base of 026, turning 
that transistor off. 026 now operates in a conventional man­
ner, turned off by the low bias developed across R88. With 
the clamp removed, the V ccs line is free to follow the rising 
output of the regulator section. CR7 conducts, and the V ccs 
line rises to approximately +47 Volts. 

Vbb (+5/+59 VOCI 

027 PRGM (+47/+9 VDCI 

Vee (+5/+47 VDCI 

~ 025 I-- Cs (0/+47 VDCI 

VR1 !2~ 

Vgg (-9/+12 VDCI 

+5V 

CLAMP 

026/028 
~-10V 

036 

037 VDD (-9/10.5 VDCI 
CR8 

72 



Observe that the collectors of both the address drivers 
and the data drivers are returned to the V ccs I ine, through 
their individual load resistors. Thus the normal 0 to 5 Volt 
logic excursion which prevails under static conditions chang· 
es to a 0 to 47 Volt excursion during programming. This is 
in accord with the electrical requirements of the PROMs. 

As V ccs rises, 025 goes into conduction, causing the 
level at the CS output to go from 0 Volts to +47 Volts. 

Under static conditions, conduction through R89 
holds the Vgg output to approximately -10 Volts. The 15 
Volt drop across V R 1 is not sufficient to induce an avalanche 
in the Zener. During programming, however, V ccs rises to 
+47 Volts and the diode goes into conduction. As a result, 
V gg rises to +11 Volts, approximately 36 Volts below the 
level on the V ccs line. 

The VDD output is held to a static level of -10 Volts, 
by conduction through 036. When programming begins, a 
negative-going program cycle signal is appl ied to the emitter 
of 037. The negative-going transition at its collector is cou­
pled to the base of 036, and 036 turns off. CR8 conducts. 
causing VDD to rise to about 0.6 Volts. 

Under static conditions, the clamp transistor 032 is 
conducting, and 035 is turned off by the low voltage ap­
plied to its base through diode CR12. The Vbb output line 
is tied to V ccs through R87, and the qu iescent voltage level 
at this point is approximately +4.7 Volts. When the program 
cycle pulse turns 032 off, CR5 conducts, and the voltage at 
the base of 035 rises to the vicinity of +60 Volts. The emit­
ter of 035 follows this excursion, and CR5conducts, pull­
ing Vbb up to a level of +59 Volts. 

The PRGM line is connected to V ccs through R78, and 
the static level at this output is approximately +4.7 Volts. 
When V ccs rises to +47 Volts, at the beginning of the pro­
gramming cycle, the PRGM output follows. 0ne hundred 
fifty-five microseconds after the start of the cycle, the con-

030 CR7 +47.6 V 
+80V~p----, -{>>l-I---<ll.--------- OUT 

033 
'--'\,I\f\r-......., ~-i------__, 

Figure 9-4. Voltage Regulator Loop: Simplified Schematic 
Equivalent 

73 

trol and timing section sends a 3 millisecond program pulse 
to the base of 027. This positive-going pulse turns the tran­
sistor on, and the voltage at its collector falls to approxi­
mately +9 Volts. Three milliseconds later, the PRGM output 
returns to +47 Volts, where it remains until the end of the 
programming cycle. 

UTILIZATION 

This section describes the util ization of the imm8-76. 

Install ation 

The PROM Programmer Module is designed for plug­
in installation in the INTELLEC. No speCial installation is 
necessary. 

Plug the printed circuit board into J16 on the INTEL­
LEC's mother board. A ribbon cable connects J1 at the top 
of the module to J1 on the mother board. A second ribbon 
cable connects J2 on the module to the programming socket 
on the front panel of the INTELLEC. 

An umbilical cable, permanently attached to the mod­
ule, plugs into J34 on the INTELLEC's mother board. This 
connection supplies AC power and enabling to the Pro­
grammer Module. 

Refer to the INTELLEC 8/MOD 8 Operator's Manual 
for instructions on the programming of PROMs using the 
INTELLEC 8/MOD 8 System Monitor. 

POWER REOUI REMENTS 

This module requires power at the following levels: 

(a) 50 VAC 
(b) +5 ± 5% VDC @ 1.0 A (max) 
(c) -9 ± 5% VDC @ 0.2 A (max) 

The 50 VAC source shares a fuse with the -9 Volt 
supply in the INTELLEC. This 0.5 Ampere fuse, F2, is 
located on the INTELLEC's rear panel. 

Pin List 

Connector pin allocations on the PROM Programmer 
Module are given in Tables 9-1, 9-2, and 9-3 and 9-4. 



Pl PIN LIST 

PIN SIGNAL FUNCTION PIN SIGNAL FUNCTION 

1 51 
2 52 
3 GROUND 53 
4 GROUND 54 
5 55 
6 56 
7 57 
8 58 
9 59 

10 60 
11 61 
12 62 
13 63 
14 64 
15 65 
16 66 
17 67 
18 68 
19 69 
20 ·70 
21 71 
22 72 
23 73 
24 74 
25 75 
26 76 
27 77 
28 78 
29 79 
30 ·80 
31 81 
32 82 
33 83 
34 84 
35 85 
36 86 
37 87 
38 88 
39 89 
40 90 
41 91 
42 92 
43 -9 VDC 93 
44 -9VDC 94 
45 95 
46 96 
47 97 
48 98 
49 99 +5VDC 
50 100 +5 VDC 

Table 9-1 

74 



J1 PIN LIST J2 PIN LIST 

PIN SIGNAL FUNCTION PIN SIGNAL FUNCTION 

1 DATA 0 IN 1 PROM DATA OUT 0 
2 ADDRESSO IN 2 PROM ADDRESS OUT 0 
3 DATA 1 IN 3 PROM DATA OUT 1 
4 ADDRESS 1 IN 4 PROM ADDRESS OUT 1 
5 DATA 2 IN 5 PROM DATA OUT 2 
6 ADDRESS 2 IN 6 PROM ADDRESS OUT 2 
7 DATA 31N 7 PROM DATA OUT 3 
8 ADDRESS 31N 8 PROM ADDRESS OUT 3 
9 DATA 41N 9 PROM DATA OUT 4 

10 ADDRESS 4 IN 10 PROM ADDRESS OUT 4 
11 DATA 51N 11 PROM DATA OUT 5 
12 ADDRESS 51N 12 PROM ADDRESS OUT 5 
13 DATA 61N 13 PROM DATA OUT 6 
14 ADDRESS 61N 14 PROM ADDRESS OUT 6 
15 DATA 71N 15 PROM DATA OUT 7 
16 ADDRESS 7 IN 16 PROM ADDRESS OUT 7 
17 TEST DATA OUT 0 
18 

17 } GROUND 
18 

19 TEST DATA OUT 1 19 
20 20 
21 TEST DATA OUT 2 21 
22 22 
23 TEST DATA OUT 3 23 
24 24 
25 TEST DATA OUT 4 25 
26 26 
27 TEST DATA OUT 5' 27 
28 28 
29 TEST DATA OUT 6 29 
30 30 
31 TEST DATA OUT 7 31 
32 RNVA (1702A) 32 
33 
34 

33 } GROUND 
34 

35 35 
36 36 
37 GROUND 37 

38 38 
39 39 
40 40 

Table 9-2. Table 9-3 

75 



J3 PIN LIST (6-pin Molex Connector) 

PIN SIGNAL FUNCTION 

1 50 VAC (01) 
2 
3 50 VAC (02) 

4 +80 VDC OUT 
5 PROGRAM PROM POWER 
6 GROUND 

Table 9-4 

76 



This section gives the information necessary to install 
and operate the INTELLEC B/MOD B system in an applica­
tion. It is divided into four subsections as follows: the first 
covers INTELLEC B/MOD B installation; the second de­
scribes the requirements for system input/output; the third 
describes system operation requirements; and the fourth de­
scribes the implementation of external device controllers. 

INTELLEC a/MOD a INSTALLATION 

Installation of the INTELLEC B/MOD B is a very sim­
ple matter, as it is delivered in a ready-to-use condition. 
Simply set it on a convenient surface, plug the 110v supply 
cord into the nearest 11 Ov AC socket, and connect any de­
sired peripherals, and it is ready to use. 

The Bare Bones B is almost as simple to install, as it 
has been designed to mount in any standard 19%-inch 
RETMA panel. 

SYSTEM I/O INTERFACING 

This section provides the information necessary to 
properly interface external input and output equipment to 
the INTELLEC B/MOD B. Since most of the interfacing re­
quirements are supplied by the internal Input/Output and 
Output cards, interfacing is not a complex task; however, 
there are certain procedures which must be followed in order 
to assure the proper operation of any external devices used. 

The INTELLEC B/MOD B can handle up to eight input 
. ports and twenty-four output ports. These ports are assigned 

to specific modules as follows: 

Module Ports 

1/00 INPUT Ports 0-3 
OUTPUT Ports OB-OBH 

I/O 1 I NPUT Ports 4-7 
OUTPUT Ports OC-OFH 

OUT2 Output ports 10-17 H 

OUT3 Output ports 1B-1 FH 

77 

All of the data ports complement data to and from 
the CPU, and are TTL compatible. Note that the two input 
ports (0 and 2) and two output ports (OB & OAH) are not 
available to the user. The data from the other ports is 
brought, via flat cables, to the back panel of the INTELLEC, 
where it is made available on 37 pin jacks (see Figure 10-1). 
External devices may connect to these jacks using AMP 
205210-1 plugs. 

The standard INTELLEC B/MOD B comes equipped 
with only one Input/Output card, providing four input ports 
and four output ports. A table of the data signals associated 
with these ports is given in Table 10-1. 

A table of the back panel jack pins and their associated 
signals is provided in Table 10-2. 

I n order to ensure the proper transmission of data 
through a twisted cable of 12 feet (maximum), the user 
should provide circuitry which will assist in reducing signal 
noise. It is suggested that each output line be provided with 
a filter network and pullup resistors. The filter is made up of 
a 200 ohm resistor and a .001 uf capacitor, and the pullup 
resistor should be 1 Kohm. 

. Also, 7404-type drivers are suggested for each input 
data line. These drivers should, preferably, be open-collector 
type devices. If input ports 2 or 3 are used, open-collector de­
vices must be used, as these ports are shared with the PROM 
Programmer during programming, transfer, and compare 
PROM operations. The user must disable his input drivers 
when PROM programming operations are being performed. 

INTELLEC a/MOD a SYSTEM 
OPERATING REQUIREMENTS 

In order to ensure proper performance, certain require­
ments must be met in operating the INTELLEC S/MOD B. 

First,never operate the INTELLEC B/MOD S with the 
cover off. If this is done, the proper flow of air will be dis­
rupted, resulting in the burning-out of the internal power 
supplies. 

Second, use extreme care when removing or installing 



8 
"11 
ca' e ... 
(I) 

-' 
C 
I 0 ... 
Z 
-I 
m 
r-
r-
m 
n-
co --s: 
0 
c 
co 
::lJ 
(I) 

C DI ... 
." 
DI 
:::s 
!!!.. 

..... .. 00 

B 

-

A 

8 

I 

I 
@ 

7 

TO 

1/0 MOO. 1 J~ 
(OUT~ 

110 1,10.0. 1 .]4 
Ln .... ). 

=-rJOMoDdl 
I'!:>02.T .. ,I\!;,LJ4-IJ:D 

a.;TPUT MoC.'/. J!> 
(14') 

CUTPUT MOO. '3 J 2 
l '-D"":l 

+~" f'we ........ @ACk:: "'''>.JILl. 

AU; :2"<4T &co:"-4;".",.01. 
P48 .J4e 

T,y COf...JU e,J>.C.i:. ""'>.IE-I.. 
P4':> J-4~ 

t>.c.. ~<:.PT !!lAc":: PAI.I"'~ 
J ~D 1"'3. 0 

I 
@ 

i' 
2::]° @\.~:7 ~c.\OUT @ 

®\ 110 J IN ]® I.oe. 2. 

I 7 

I 

~J40 
~ 

I 

6 I 5 4 I 3 I 2 I 
OfT CHI( [NGR 

"/UJP~ ,7,1;,: . .: 
i",J 

o 

f-

c 

,-
I I 

r-

[]]] @ e> \:':7 ~~: 1-"'~ \ 20
1
:/ClJ 

0 @\ )@ 
@ @( )e 

0 ~\::7 U,l:)@ 
@ 

B 

@Q@ I @ @ I 

I-
Bb.C.IC. PC>.NE.L 

'1'- Y CHK BY j. U -", \' -{, TITLE 

MATERIAl.'X ~~ BAc:.~ PA.\-.J~L 

6 I 5 4 3 I 2 I 



I/O Port Assignments - Module I/O 0 

SIGNAL SYMBOL COMMENTS 

OUTPUT PORT OB, BIT 0 OPOB, 0 UART XMIT DATA 0 
1 
2 
3 
4 
5 
6 

OUTPUT PORT OB, BIT 7 OPOS, 7 UART XMIT DATA 7 

OUTPUT PORT 09, BIT 0 OP09,O RDR ADV-1 
1 1 PUNCH COMMAND 
2 2 READER COMMAND 
3 3 DATA OUT ENBL 
4 4 DATA IN 
5 5 DATA OUT 
6 6 Rm 

OUTPUT PORT 09, BIT 7 OP09, 7 RiWA 

OUTPUT PORT OA, BIT 0 OPOA,O PROM ADR IN 0 
1 1 1 
2 2 2 
3 3 3 
4 4 4 
5 5 5 
6 6 6 

OUTPUT PORT OA, BIT 7 OPOA,'7 PROM ADR IN 7 

OUTPUT PORT OB, BIT 0 OPOB,O PROM DATA IN 0, PUNCH DATA 0 
1 1 1, 1 
2 2 2, 2 
3 3 3, 3 
4 4 4, 4 
5 5 5, 5 
6 6 6, 6 

OUTPUT PORT OB, BIT 7 OPOB,7 PROM DATA IN 7, PUNCH DATA 7 

GROUND 

NOTES: 
(1) Dedicated to UART!TTY operations and unavailable to user. 
(2) Dedicated to PROM Programming Operation and unavailable to user. 
(3) Back Panel Connector Signals appear at both LOC 3 and LOC 4. 

Table 10-1. 

79 

BACK PANEL MODULE 
CONN. PIN # PIN # 

(3) J5 

(1 ) 2 
3 
4 
5 
6 
7 
B 

(1) 9 

10 11 
11 12 
29 13 
30 14 
12 15 
13 16 
31 17 
32 1B 

(2) 20 
21 
22 
23 
24 
25 
26 

(2) 27 

14 29 
15 30 
33 31 
34 32 
16 33 
17 34 
35 35 
36 36 

1, 1B, 19,20,37 37-40 



SIGNAL 

INPUT PORT 0, BIT 0 
1 
2 
3 
4 
5 
6 

INPUT PORT 0, BIT 7 

INPUT PORT 1, BITO 
1 
2 
3 
4 
5 
6 

INPUT PORT 1, BIT 7 

INPUT PORT 2, BIT 0 
1 
2 
3 
4 
5 
6 

INPUT PORT 2, BIT 7 

INPUT PORT 3, BIT 0 
1 
2 
3 
4 
5 
6 

INPUT PORT 3, BIT 7 

GROUND 

NOTES: 

I/O Port Assignments - Module I/O 0 

SYMBOL 

IPO,O 
1 
2 
3 
4 
5 
6 

IPO, 7 

IP1,0 
1 
2 
3 
4 
5 
6 

m,7 

IP2,0 
1 
2 
3 
4 
5 
6 

IP2,7 

IP3,0 
1 
2 
3 
4 
5 
6 

--L 

IP3,7 

COMMENTS 
BACK PANEL MODULE 
CONN. PIN # PIN # 

J4 

TTY RCVDATAO 
1 
2 
3 
4 
5 
6 

(1) 2 
3 
4 
5 
6 
7 
8 

TTY RCV DATA 7 (1) 9 

DATA AVAILABLE 
OVERRUN ERROR 
TRANSMIT BUFFER EMPTY 

2 11 
3 12 

21 13 
FRAMMING ERROR 22 
PARITY ERROR (INHIBITED) 4 
DATA AVAILABLE (TAPE READER) 5 
PUNCH READY 23 

24 

PROM DATA OUT (J3-16) (2) 
( 15) 
( 14) 
( 13) 
( 12) 
( 11 ) 
( 10) 

PROM DATA OUT (J3- 9) (2) 

READER DATA 0 6 
7 

2 25 
3 26 
4 8 
5 9 
6 27 

READER DATA 7 28 

14 
15 
16 
17 
18 

20 
21 
22 
23 
24 
25 
26 
27 

29 
30 
31 
32 
33 
34 
35 
36 

1,18,19,20,37 37-40 

(1) Dedicated to UART!TTY operations and unavailable to user. 

(2) Dedicated to PROM PGMR and unavailable to user. 
(3) Back Panel CONNECTOR Signats appear at both LOC 3 and LOC 4. 

Table 10-1. (Continued) 

80 



I/O Module To Back Panel Interface Chart 

SIGNAL/MODULE CONNECTOR 

I/O 1 OUT 2 OUT 3 

IN OUT OUTL OUTH OUTL OUTH BIT BACK PANEL MODULE 
(J4) (J5) (J2) (J3) (J2) (J3) No. CONN PIN # CONN PIN # 

(Flat Cable) 

LOC3 LOCl LOC8 LOC6 LOC9 LOC7 

IP4 OPOC OP10 OP14 OP18 OP1C 0 2 2 
1 3 3 
2 21 4 
3 22 5 
4 4 6 
5 5 7 
6 23 8 

- --
IP4 OPOC OP10 OP14 OP18 OP1C 7 24 9 

-- --
IP5 OPOD OPll OP15 OP19 OPlD 0 6 11 

1 7 12 
2 25 13 
3 26 14 
4 8 15 
5 9 16 
6 27 17 

--
IP5 OPOD OP11 OP15 OP19 OPlD 7 28 18 

--
IP6 OPOE OP12 OP16 OP1A OP1E 0 10 20 

1 11 21 
2 29 22 
3 30 23 
4 12 24 
5 13 25 
6 31 26 

--
IP6 OPOE OP12 OP16 OP1A OP1E 7 32 27 

IP7 OPOF OP13 OP17 OP1B OP1F 0 14 29 
1 15 30 
2 33 31 
3 34 32 
4 16 33 
5 17 34 

IP7 OPOF OP13 OP17 OP1B OP1F 6 35 35 
7 36 36 

GND 1,18,19,20,37 37-40 

Table 10-2 

81 



individual circuit cards in the INTELLEC 8/MOD 8, espe­
cially Input/Output board #1. The PROM Programmer and 
Teletype connectors to I/O board 0 are very easily damaged, 
and are located very close to I/O board #1. 

EXTE RNAL DEVICE 
CONTROLLER INTERFACING 

The INTELLEC 8/MOD 8 may be used with external 
devices such as disks, etc., which require a Direct Memory 
Access capability. This is accomplished by the TRI-State 
capability of the processor memory address and control 
busses, which can relinquish their control of INTELLEC 8/ 
MOD 8 operations to an external device. 

82 

In order to make use of this capability, two require­
ments must be met: a HOLD request must be issued, and 
the BUS BUSY line must be monitored and controlled. 

An external device controller performs a Direct Ac­
cess operation by requesting a HOLD state of the processor. 
When the processor acknowledges this request, it goes into a 
WAIT state, and gives control of the Memory Address and 
control buses to the device controller. The controller then 
issues a BUS BUSY signal, which prevents other devices 
from assuming control of the buses until its operation is 
complete. A user device controller, therefore, must have the 
circuitry necessary to generate a HOLD REO signal and also 
to check BUS BUSYand, if the bus is not busy, to issue BUS 
BUSY. See Section 8, the Control Console, for a representa­
tive peripheral device controller with these facil ities. 



This appendix provides a summary of INTELLEC a/MOD a assembly language instructions. Abbreviations used are as follows: 

A The accumulator (register A) 

An Bit n of the accumulator contents, where n may have any value from 0 to 7. 

ADDR Any memory address 

Carry The carry bit 

CODE An operation code 

DATA Any byte of data 

DST Destination register or memory byte 

EXP A constant or mathematical expression 

LABEL: Any instruction label 

M A memory byte 

Parity The parity bit 

PC Program Counter 

REGM Any register or memory byte 

sign The sign bit 

SRC Source register or memory byte 

STK Top stack register 

zero The zero bit 

An optional field enclosed by brackets 

Contents of register or memory byte enclosed by brackets 

+- Replace left hand side with right hand side of arrow 

vii 



A.l SINGLE REGISTER INSTRUCTIONS 

Format: 

[ LABEL: 1 
Note: REGM F A or M 

CODE 

CODE REGM 

DESCRIPTION 

INR ( REGM ) +-( REGM ) +1 Increment register REGM 

DCR ( REGM ) +-( REGM) -1 Decrement register REGM 

Condition bits affected: Zero, sign, parity 

A.2 MOV INSTRUCTIONS 

Format: 

[LABEL: 1 MOV DST,SRC 

Note: SRC and DST not both = M 

CODE DESCRIPTION 

MOV ( DST ) +- ( SRC ) Load register DST from register SRC 

Condition bits affected: None 

A.3 REGISTER OR MEMORY TO ACCUMULATOR INSTRUCTIONS 

Format: 

[LABEL: 1 CODE REGM 

CODE DESCRIPTION 

ADD ( A ) +- ( A) + ( R EGM ) Add REGM to accumulator 

ADC (A) +- (A) + ( REGM ) + (carry) Add REGM plus carry bit to accumulator 

SUB ( A) +- ( A ) - ( REGM ) Subtract REGM from accumulator 

SBB ( A ) +- (A) - ( REGM ) - (carry) Subtract REGM minus carry 

ANA ( A) +- ( A ) AND ( REGM ) AND accumulator with REGM 

XRA (A) +- (A) XOR ( REGM ) Exclusive-OR accumulator with REGM 

ORA (A) +- (A) OR ( REGM ) OR accumulator with REGM 

CMP Condition bits set by ( A ) - ( REGM ) Compare REGM with accumulator 

Condition bits affected: 

ADD, ADC, SUB, SBB: Carry, sign, zero, parity 

ANA, XRA, DRA: Sign, zero, parity. Carry is reset to zero. 

CMP; Carry, sign, zero, parity. Zero set if ( A ) = ( REGM ) 
Carry reset if ( A) < ( REGM ) 
Carry set if ( A) ~ (REGM) 

viii 



A.4 ROTATE ACCUMULATOR INSTRUCTIONS 

Format: 

[LABEL: 1 CODE 

CODE DESCRIPTION 

RLC (carry) +-A7, An + 1, +-An, Ao +-A7 Set carry = A 7• rotate accumulator left 

RRC (carry) +-Ao, An +-An + 1, A7 +-Ao Set carry = Ao, rotate accumulator right 

RAL An + 1 +- An. ( carry) +- A7• Ao +- ( carry) Rotate accumulator right through the carry 

RAR An +- An + 1. ( carry) +- Ao, A7 +- ( carry) Rotate accumulator left through the carry 

Condition bits affected: Carry 

A.5 IMMEDIATE INSTRUCTIONS 

Format: 

[ LABEL: 1 MVI REGM, DATA 

or 

[LABEL: 1 CODE REGM 

CODE DESCRIPTION 

MVI ( REGM ) +-DATA Move immediate DATA into REGM 

ADI ( A ) +- ( A ) + OAT A Add immediate data to accumulator 

ACI ( A ) +- ( A ) + DATA + ( carry) Add immediate data + carry to accumulator 

SUI ( A ) +- ( A ) - DATA Subtract immediate data from accumulator 

SBI ( A ) +- ( A ) - DATA - ( carry) Subtract immediate data and carry from accumulator 

ANI (A) +-( A) AND DATA AND accumulator with immediate data 

XRI (A) +-( A) XOR DATA Exclusive-OR accumulator with immediate data 

ORI (A)+-(A)ORDATA OR accumulator with immediate data 

CPI Condition bits set by ( A ) - DATA Compare immediate data with accumulator 

Condition bits affected: 

MVI: None 

ADI, ACI, SUI. SBI: Carry, sign, zero, parity 

ANI, XRI, ORI: Zero, sign, parity. Carry is reset to zero. 

CPI: Carry, sign, zero, parity. Zero set if (A) = DATA 

Carry reset if (A) <DATA 

Carry set if (A) ~DATA 

ix 



A.6 JUMP INSTRUCTIONS 

Format: 

[ LABEL 1: CODE ADDR 

CODE DESCRIPTION 

JMP ( PC) +-ADDR Jump to location ADDR 

JC If (carry) =1, (PC) +-ADDR 
If (carry) =0, (PC) +-( PC )+3 Jump to ADDR if carry set 

JNC If ( carry) =0, ( PC) +-ADDR 
If (carry) =1, (PC) +-( PC )+3 Jump to ADDR if carry reset 

JZ If ( zero) =1, ( PC) +-ADDR 
If (zero) =0, ( PC) +-( PC )+3 Jump to ADDR of zero set 

JNZ If (zero) =0, ( PC) +-ADDR 
If (zero) =1, ( PC) +-( PC )+3 Jump to ADDR if zero reset 

JP If (sign) =0, ( PC) +-ADDR 
If (sign) =1, (PC) +-( PC )+3 Jump to ADDR if plus 

JM If (sign) =1, (PC) +-ADDR 
If ( sign) =0, ( PC ) +-( PC )+3 Jump to ADDR if minus 

JPE If ( parity) =1, ( PC ) +- ADDR 
If ( parity) =0, ( PC ) +- ( PC )+3 Jump to ADDR if parity even 

JPO If ( parity) =0, ( PC ) +- ADDR 
If ( parity) =1, ( PC ) +- ( PC )+3 Jump to ADDR if parity odd 

Condition bits affected: None 

A.7 CALL INSTRUCTIONS 

Format: 

[ LABEL: 1 CODE ADDR 

CODE DESCRIPTION 

CALL (STK ) +-( PC ), ( PC) +-ADDR Call subroutine and push return address onto stack 

CC If (carry) =1, (STK) +-( PC). (PC) +-( ADDR) 
If (carry) =0, (PC) +-( PC )+3 Call subroutine if carry set 

CNC If (carry) =0, (STK) +-( PC). ( PC) +-( ADDR ) 
If (carry) =1, (PC) +-( PC )+3 Call subroutine if carry set 

CZ If (zero) =1, (STK) +-( PC l. (PC) +-( ADDR) 
If (zero) =0, (PC) +-( PC )+3 Call subroutine if zero set 

CNZ If (zero) =0, (STK ) +-( PC), ( PC) +-( ADDR ) 
If (zero) =1, (PC) +-( PC )+3 Call subroutine if zero reset 

CP If (sign) =0, (STK) +-( PC), ( PC) +-( ADDR ) 
If (sign) =1, (PC) +-( PC )+3 Call subroutine if sign plus 

CM If (sign) =1, (STK) +-( PC), (PC) +-( ADDR) 
If ( sign) =0, ( PC) +-( PC )+3 Call subroutine if sign minus 

CPE If (parity) =1, (STK) +-( PC). (PC) +-( ADDR) 
If ( parity) =0, ( PC ) +- ( PC )+3 Call subroutine if parity even 

CPO If ( parity) =0, ( STK ) +-( PC l. ( PC) +-( ADDR ) 
If (parity) =1, (PC) +-( PC )+3 Call subroutine if parity odd 

Condition bits affected: None 

x 



A.S RETURN INSTRUCTIONS 

Format: 

[ LABEL: 1 CODE 

CODE DESCRIPTION 

RET (PC) +-STK 

RC If ( carry) =1, ( PC ) +- STK 
If (carry) =0, ( PC) +-( PC )+3 

RNC If ( carry) =0, ( PC) +-STK 
If ( carry) =1, ( PC ) +- ( PC )+3 

RZ If (zero) =1, (PC) +-STK 
If ( zero) =0, (PC) +-( PC )+3 

RNZ If ( zero) =0, ( PC ) +-STK 
If (zero) =1, (PC) +-( PC )+3 

RM If (sign) =1, (PC) +-STK 
If (sign) =0, ( PC) +-( PC )+3 

RP If ( sign) =0, ( PC ) +-STK 
If ( sign) =1, ( PC) +-( PC )+3 

RPE If ( parity) =1, ( PC ) +-STK 
If ( parity) =0, ( PC ) +- ( PC )+3 

RPO If ( parity) =0, ( PC) +-STK 
If ( parity) =1, ( PC ) +- ( PC )+3 

Condition bits affected: None 

A.9 RST INSTRUCTION 

Format: 

[ LABEL: 1 
Note: O:O:;;;;EXP:O:;;;;7 

RST EXP 

Return from subroutine 

Return if carry set 

Return if carry reset 

Return if zero set 

Return if zero reset 

Return if minus 

Return if plus 

Return if parity even 

Return if parity odd 

CODE DESCRIPTION 

RST ( STK ) +- ( PC ) 
( PC) +-OOOOOOOOEXPOOOB Call subroutine at address specified by EXP 

Condition bits affected: None 

A.10 INPUT/OUTPUT INSTRUCTIONS 

Format: 

[ LABEL: 1 
Note: For IN, 0:0:;;;; EXP:O:;;;;7 

For OUT, 8:0:;;;; EXP :0:;;;;31 

CODE 

CODE 

IN ( A) +-input device 

OUT output device +- ( A ) 

Condition bits affected: None 

EXP 

DESCRIPTION 

Read a byte from device EXP into the accumulator 

Send the accumulator contents to device EXP 

xi 



PSEUDO-INSTRUCTIONS 

A.11 ORG PSEUDO-INSTRUCTION 

Format: 

ORG EXP 

CODE DESCRIPTION 

ORG LOCATION COUNTER +-EXP Set Assembler location counter to EXP 

A.12 EQU PSEUDO-INSTRUCTION 

Format: 

LABEL EQU EXP 

CODE DESCRIPTION 

EQU LABEL +-EXP Assign the value EXP to the symbol LABEL 

A.13 SET PSEUDO-INSTRUCTION 

Format: 

LABEL SET EXP 

CODE DESCRIPTION 

SET LABEL +-EXP Assign the value EXP to the symbol LABEL, which may have been 
previously SET.' 

A.14 END PSEUDO-INSTRUCTION 

Format: 

END 

CODE DESCRIPTION 

END End the assembly. 

xii 



A.15 CONDITIONAL ASSEMBLY PSEUDO-INSTRUCTIONS 

Format: 

IF EXP 

and 

ENDIF 

CODE DESCRIPTION 

IF If EXP =0, ignore assembler statements until ENDIF is reached. Otherwise continue 
assembling statements. 

ENDIF End range of preceding IF. 

A.16 MACRO DEFINITION PSEUDO-INSTRUCTIONS 

Format: 

NAME MACRO LIST 

and 

ENDM 

CODE DESCRIPTION 

MACRO Define a macro named NAME with parameters LIST. 

ENDM End macro definition. 

xiii 



xiv 



xv 



inte_I® __ S_il_iC_On_G_at_e_M_o_S_8_0_08_,_8_0_0_8_-1 __ 

SINGLE CHIP EIGHT-BIT PARALLEL 
CENTRAL PROCESSOR UNIT 

• Heart of MeS-8T.M, Microcomputer Set 

• 8-Bit Parallel CPU on a 
Single Chip 

• 48 Instructions, Data 
Oriented 

• Complete Instruction 
Decoding and Control 
Included 

• Instruction Cycle Time-
12.5 fLs with 8008-1 or 20 fLs 
with 8008 

• TTL Compatible (Inputs, 
Outputs and Clocks) 

• Can be used with any type 
or speed semiconductor 
memory in any combination 

The 8008 is an 8-bit central processor designed 
especiaUy to handle large volumes of data, When 
used with any combination of Intel RAMs, ROMs and 
shift registers, the 8008 CPU forms the MCS-8 ™ 
micro computer system, a system which can directly 
address and retrieve as many as 16,000 8-bit bytes 
stored in the memory devices, 

This single chip 8008 CPU fabricated with I ntel's stan­
dard P-channel silicon-gate MaS process contains an 
8-bit accumulator, two 8-bit temporary registers, four 
flag bits and eight 14-bit address registers, It operates 
under a powerful set of 48 instructions, has interrupt 
capability, operates asynchronously or synchronously 
with external memory, and can execute subroutines 
nested up to seven levels. 

All inputs, including clocks, are TTL compatible, All 
outputs are low-power TTL signals, Using standard 
TTL packages, the CPU may be interfaced with ROMs, 
RAMs, and SRs, A complete functioning computer 
system may be built with one CPU, one ROM and 20 
standard TTL devices, 

The 8008 CPU combines with Intel memory devices 
to provide complete computing and control functions 
for test systems, data terminals, billing machines, 
scientific calculators, measuring systems, numeric con­
trol systems and process control systems, 

• Directly addresses 16K x 8 
bits of memory (RAM, ROM, 
or S.R.) 

• Memory capacity can be 
indefinitely expanded 
through bank switching 
using 1/0 instructions 

• Address stack contains 
eight 14-bit registers 
(including program counter) 
which permit nesting of 
subroutines up to seven 
levels 

• Contains seven 8-bit 
registers 

• Interrupt Capability 
• Packaged in 18-Pin DIP 

MICRO 
COMPUTERS 

8008 Photomicrograph With Pin Designations 

xvi 



in~LI@ __________ S_ili_cO_n __ G_at_e_M_O __ S_8_0_0_8~,_80_0_8_-_1 __________ ~~~ 

(Note: The detailed functional specifications describing the operation of the CPU, the instruction set, and programming and hard­
ware examples are published separatelv and are available upon request) 

The 8008 is a single chip MOS 8-bit parallel central processor unit for the MCS-8 micro computer system. A 
micro computer system is formed when the 8008 is interfaced with any type or speed standard semiconductor 
memory up to 16K x 8-bit words. Examples are Intel's 1101, 1103, and 2102 (RAMs); 1302, 1602A, 1702A, 
8316 (ROMs). 

The processor communicates over an 8-bit data and address bus (DO through 07) and uses two input leads 
(R EADY and INTE R RUPT) and four output leads (SO, S 1, S2, and Sync) for control. Time multiplexing of the 
data bus allows control information, 14 bit addresses, and data to be transmitted between the CPU and external 
memory. 

This CPU contains six 8-bit data registers, an 8-bit accumulator, two 8-bit temporary registers, four flag bits 
(carry, zero, sign, parity), and an 8-bit parallel binary arithmetic unit which implements addition, subtraction, 
and logical operations. A memory stack containing a 14-bit program counter and seven 14-bit words is used in­
ternally to store program and subroutine addresses. The 14-bit address permits the direct addressing of 16K 
words of memory (any mix of RAM, ROM or S.R.l. 

The control portion of the chip contains logic to implement a variety of register transfer, arithmetic control, 
and logical instructions. Most instructions are coded in one byte (8 bits); data immediate instructions use two 
bytes; jump instructions utilize three bytes. The 8008 operates with a 500 k Hz clock, and executes non-memory 
referencing instructions in 20 microseconds: the 8008-1 operates with an 800 k Hz clock and executes non­
memory referencing instructions in 12.5 microseconds. 

All inputs (including clocks) are TTL compatible and all outputs are low-power TTL compatible. 

The instruction set of the 8008 consists of 48 instructions including data manipulation, binary arithmetic, and 
jump to subroutine. 

The normal program flow of the 8008 may be interrupted through the use of the I NTE R RUPT control line. 
This allows the servicing of slow I/O peripheral devices while also executing the main program. 

The READY command line synchronizes the 8008 to the memory cycle allowing any type or speed of semi­
conductor memory to be used. 

Pin Configuration 

xvii 

8008 Block Diagram 

AODRESS STACK AND 

PROGRAM COUNTER 



Silicon Gate MOS 8008,8008-1 

System Timing 
Typically, a processor instruction cycle consists of five states, two states in which an address is sent to memory 
(T1 and T2), one for the instruction or data fetch (T3), and two states for the execution of the instruction (T4 
and T5). If the processor is used with slow memories, the READY line synchronizes the processor with the 
memories. When the memories are not avialable for either sending or receiving data, the processor goes into the 
WAIT state. The accompanying diagram i~lustrates the processor activity during a single cycle. 

S, 

T1I T1 12 WAIT T3 STOPPED 14 T5 

HIGHER 

LOWER a-BITS EXTERNAL INSTRUCTION HALT 
CPU a-BITS ADDRESS, MEMORY OR DATA INSTRUCTION EXECUTION OF 

INTERRUPTED ADDRESS TWO BITS NOT READV FETCH, OR RECEIVED BY INSTRUCTION 
OUT·· CONTROL (OPTIONAL) DATA OUT CPU 

OUT (8-BITSI , 
1----------- TYPICAL PROCESSOR CYCLE ----------+1 

INCLUDES T1, T2. T3, n, T5 

Basic 8008 Instruction Cycle 

Instructions for the 8008 require one, two, or three machine cyclesfor complete execution. The first cycle is 
always an instruction fetch cycle (PCI). The second and third cycles are data reading (PCR), data writing (PCW) 
or I/O operations (PCC). The processor controls the use of the data bus and determines whether it will be send­
ing or receiving data. State signals SO, S1' and S2, along with SYNC inform the peripheral circuitry of the state 
of the processor. Manv of-the multi-cycle instructions for the 8008 do not require the two execution states, 
T 4 and T5. As a result, these states are omitted when they are not needed, and the 8008 operates asynchronously 
with respect to the cycle length. The state transition diagram for the processor is shown below. Refer to the 
8008 manual for the detailed operation of the CPU during each state of each instruction. 

State Control Coding 

So S, S2 STATE 

0 1 0 TI 
0 1 1 TIl 
0 0 1 T2 
0 0 0 WAIT 
1 0 0 T3 
1 1 0 STOPPED 
1 1 1 T4 
1 0 1 T5 

Cvcle Control Coding 

06 07 CYCLE 

0 0 PCI 

0 1 PCR 

1 0 PCC 
1 1 PCW 

CPU State Transition Diagram 

xviii 



· I Silicon Gate MOS 8008,8008-1 

Basic Instruction Set 
Data and I nstruction Formats 

Data in the 8008 is stored in the form of 8-bit binary integers. All data transfers to the system data bus will be 
in the same format. 

I D7 DS D5 D4 D3 D2 D1 DO 

DATA WORD 

The program instructions may be one, two, or three bytes in length. Multiple byte instructions must be stored 
in successive words in program memory. The instruction formats then depend on the particular operation 
executed. 

One Byte Instructions 

! 0 7 0 6 0 5 0 4 0 3 O2 0, D~ I 
Two Byte Instructions 

[07 0 6 0 5 -04 0 3 O2 0, DO I 

0 7 0 6 0 5 0 4 0 3 O2 0, DO] 

Three Byte Instructions 

~7 0 6 0 5 0 4 0 3 O2 0, DO I 
, 0 7 0 6 0 5 0 4 0 3 O2 0, Dol 

!X X 0 5 0 4 0 3 O2 0, DO I 
I 

OPCODE 

OP CODE 

OPERAND 

OP CODE 

LOW ADDRESS 

HIGH ADDRESS' 

TYPICAL INSTRUCTIONS 

Register to register, memory reference, 

1/0 arithmetic or logical, rotate or 
return instructions 

Immediate mode instructions 

JUMP or CALL instructions 

*For the third byte of this instruction, 06 and 07 are "don't care" bits. 

For the MCS-8 a logic "1" is defined as a high level and a logic "0" is defined as a low level. 

Index Register Instructions 
The load instructions do not affect the flag flip-flops. The increment and decrement instructions affect all flip­
flops except the carry. 

MINIMUM INSTRUCTION CODE 
MNEMONIC STATES ~DS 0 5 0 4 0 3 ~Dl DO DESCRIPTION OF OPERATION 

REQUIRED 

(1) MOV '1, '2 (5) 1 1 D D D S S S Load index register r1 with the content of index register r2. 

ILl MOV" M (8) 1 1 D D D 1 1 1 Load index register r with the content of memory register M. 

MOV M,' (7) 1 1 1 1 1 S S S Load memory register M with the content of index register r. 
(3) MVI, (8) 0 0 D D D 1 1 0 Load index register r with data B ... B. 

B B B B B B B B 

MVIM (9) 0 0 1 1 1 1 1 0 Load memory register M with data B •. , B. 
B B B B B B B B 

INR, (5) 0 0 D D D 0 0 0 I ncrement the content of index register r (r f Al. 

OCR, (5) 0 0 D D D 0 0 1 Decrement the content of index register r (r f Al. 

Accumulator Group Instructions 

The result of the ALU instructions affect all of the flag flip-flops, The rotate instructions affect only the carry flip-flop. 

ADDr (5) 1 0 0 0 0 S S S Add the content of index register r, memory ,egister M, or data 

ADDM (8) 1 0 0 0 0 1 1 1 B ... B to the accumulator. An overflow (carry) sets the carry 
ADI (8) 0 0 0 0 0 1 0 0 flip-flop. 

B B B B B B 8 B 

ADCr (5) 1 0 0 0 1 S S S Add the content of index register r, memory register M, or data 

ADCM (8) 1 0 0 0 1 1 1 1 B ... B from the accumulator with carry. An overflow (carry) 

ACI (8) 0 0 0 0 1 1 0 0 sets the carry fl ip-flop. 

B B B B B B B B 

SUB r (5) 1 0 0 1 0 S S S Subtract the content of index register r, memory register M, or 

SUB M (8) 1 0 0 1 0 1 1 1 data B . , . B from the accumulator. An underflow (borrow) 

SUI (8) 0 0 0 1 0 1 0 0 sets the carry flip-flop. 

B B B B B B B B 

SBB r (5) 1 0 0 1 1 S S S Subtract the content of index register r, memory register M, or data 

S8S M (8) 1 0 0 1 1 1 1 1 data 8 .•. 8 from the accumulator with borrow. An underflow 

S81 (8) 0 0 0 1 1 1 0 0 (borrow) sets the carry flip-flop. 

8 B B B B B B B 

xix 



in~_I@ __________ S_ili_co_n_._G_at_e_M_O_S __ 8_0_0_8_,8_0_0_8_-_1 _________ 1 

MICRO 
COMPUTERS 

Basic Instruction Set 
MINIMUM INSTRUCTION CODE 

MNEMONIC STATES 0 7 0 6 Os 0 4 0 3 0 2 0, Ib DESCRIPTION OF OPERATION 

REQUIRED 

ANAr (5) 1 0 1 0 0 S S S Compute the logical AND of the content of index register r, 

ANAM (8) 1 0 1 0 0 1 1 1 memory register M, or data B ... B with the accumulator. 

ANI (8) 0 0 1 0 0 1 0 0 

8 8 8 8 8 8 8 8 
XRAr (5) 1 0 1 0 1 S S S Compute the EXCLUSIVE OR of the content of index register 
XRAM (8) 1 0 1 0 1 1 1 1 r, memory register M, or data B ... B with the accumulator. 

XRI (8) 0 0 1 0 1 1 0 0 

8 8 8 8 8 8 8 8 
ORAr (5) 1 0 1 1 0 S S S Compute the INCLUSIVE OR of the content of index register 

ORAM (8) 1 0 1 1 0 1 1 1 r, memory register m, or data B ... B with the accumulator. 

ORI (8) 0 0 1 1 0 1 0 0 

8 8 8 8 8 8 8 8 

CMPr (5) 1 0 1 1 1 S S S Compare the content of index register r, memory register M, 
CMPM (8) 1 0 1 1 1 1 1 1 or data 8 , .. B with the accumulator. The content of the 

CPI (8) 0 0 1 1 1 1 0 0 accumulator is unchanged. 

8 8 8 8 8 8 8 8 

RLC (5) 0 0 0 0 0 0 1 0 Rotate the content of the accumulator left. 

RRC (5) 0 0 0 0 1 0 1 0 Rotate the content of the accumulator right. 
RAL (5) 0 0 0 1 0 0 1 0 Rotate the content of the accumulator left through the carry. 

RAR (5) 0 0 0 1 1 0 1 0 Rotate the content of the accumulator right through the carry. 

Program Counter and Stack Control Instructions 
(4)JMP (11 ) 0 1 X X X 1 0 0 UnconditionallY jump to memory address 83 ..• 8382 ... 82. 

82 82 82 8 2 8 2 82 8 2 8 , 
X X 83 8 3 8 3 83 8 3 83 

(5) JNC, JNZ, (9 or 11) 0 1 0 C4 C3 0 0 0 Jump to memory address 83 ... 8382 ..• 82 if the condition 
JP, JPO 

82 8 2 82 8 2 8 2 82 82 8 2 flip-flop c is false. Otherwise, execute the tlext in-:tl-uction in sequence. 
X X 83 8 3 83 83 83 8 

JC, JZ (90r11) 0 1 1 C4 C3 0 0 0 Jump to memory address 83 .•. 8382 ... 82 " t~,e cordition 
JM, JPE 82 82 82 ~ 82 82 82 82 flip-flop c is true. Otherwise, execute the next instructi<-n in sequence. 

X X 83 83 83 83 83 83 
CALL ( 11) 0 1 X X X 1 1 0 Unconditionally call the subroutine at memory address 83 .•. 

82 82 82 82 82 82 82 82 8382 ... 82. Save the current address (up one level in the stack), 
X X 83 83 83 83 83 83 

CNC, CNZ, (9 or 11) 0 1 0 C4 C3 0 1 0 Call the subroutine at memory address 83 ... 8382 ... 82 if the 
cP,cPo 

82 82 82 82 82 ~ 82 82 condition flip-flop c is false, and save the current address (up one 
X X 83 83 83 83 83 83 level in the stack') Otherwise, execute the next instruction in sequence. 

CC, CZ, (9 or 11) 0 1 1 C4 C 3 0 1 0 Call the subroutine at memory address 83 ... 8382 ••• 82 if the 
CM, CPE 82 82 82 82 82 82 82 82 condition flip-flop c is true, and save the current address (up one 

X X 83 83 83 83 83 83 level in the stack). Otherwise, execute the next instruction in sequence. 

RET (5) 0 0 X XX 1 1 1 Unconditionally return (down one level in the stack), 

RNC, RNZ, (3 or 5) 
RP, RPO 

0 0 0 C4 C3 0 1 1 Return (down one level in the stack) if the condition fl ip-flop c is 

false. Otherwise, execute the next instruction in sequence. 

RC,RZ (3 or 5) 0 0 1 C4 C3 0 1 1 Return (down one level in the stack) if the condition flip-flop c is 
RM, RPE 

true. Otherwise, execute the next instruction in sequence. 

RST (5) 0 0 A A A 1 0 1 Call the subroutine at memory address AAAOOO (up one level in the stack). 

Input/Output Instructions 
IN (8) 0 1 0 0 M M M 1 Read the content of the selected input port (MMM) into the 

accumulator. 

OUT (6) 0 1 R R M M M 1 Write the content of the accumulator into the selected output 

port (RRMMM, RR j OO)' 

o 0 000 o 0 X Enter the STOPPED state and remain there until interrupted. 

NOTES: 
(1) SSS ~ Source Index Register } These registers, r" are designated A(accumulator-OOO), 

DOD ~ Destination Index Register 8(001), C(010), 0(011), E(100), H(101), L(11O}' 
(2) Memory registers are addressed by the contents of registers H & L. 
(3) Additional bl'tes of instruction are designated by 88888888. 
(4) X ~ "Don't Care". 
(5) Flag flip-flops are defined by C4C3: carry (oO-overflow or underflow), zero (01·result is zero), sign (1 0-MS8 of result is "1 "), 

parity (11-parity is even). 

xx 



Silicon Gate MOS 8008, 8008-1 

ELECTRICAL SPECIFICATION 

The following pages provide the electrical characteristics for the 8008. All of the inputs are TTL 
compatible, but input pull-up resistors are recommended to insure proper VIH levels. All outputs are 
low-power TTL compatible. The transfer of data to and from the data bus is controlled by the CPU. 
During both the WAIT and STOPPED states the data bus output buffers are disabled and the data bus 
is floating. 

- - - -- - --, 
VDD 

FROM -------4 .... ------1 
I 
I 
I 

INTERNAL 
DATABUS------~--~ ........ t-II ....... DATA BUS 

1/0 

TO INTERNAL _+-_---, 
DATA BUS 

8008 vee 

OUTPUT ---4I----t-... 
DISABLE 

Vee 

vee 
---------------------------~ 

,---
I 
I 
I , 
I , 
I 

----

IN U!---+---' 
-~; Vee 

---

Vee 
Input Buffer 

(CP1' CP2' ROY, INT) 

Data Bus I/O Buffer 

I/O Circuitry 

xxi 

VDD 

----- --, 
I 

---4 I 
I 
I 

I 

---i 
I 
I 
I 

----- _-1 

Output Buffer 

(SYNC, So' Sl' S2) 

OUT 

MICRO 



MICRO in~LI@ ________ ~S~ili~co~n~G~at~e~M~O~S~8~O~O~8~,~80~O~8~-~1 __________ .~11!~~!~~~\~3;~t. 

ABSOLUTE MAXIMUM RATINGS* 
Ambient Temperature 

Under Bias 

Storage Temperature 

I nput Voltages and Supply 
Voltage With Respect 
to Vee 

Power Dissipation 

O°C to +70°C 

-55°C to +150°C 

+0.5 to -20V 
1.0 W @ 25°C 

D.C. AND OPERATING CHARACTERISTICS 

*COMMENT 

Stresses above those listed under "Absolute Max­
imum Ratings" may cause permanent damage to 
the device. This is a stress rating only and func­
tional operation of the device at these or any other 
condition above those indicated in the operational 
sections of this specification is not implied. 

TA ~ O°C to 70°C, Vcc ~ +5V ±5%, Voo ~ -9V ±5% unless otherwise specified. Logic "1" is defined 
as the more positive level (VIH , VOH I. Logic "0" is defined as the more negative level (VIL , VOL I. 

SYMBOL PARAMETER 
LIMITS 

MIN. TYP, 

100 AVERAGE SUPPLY CURRENT-
OUTPUTS LOADED* 30 

----~- ----- -_._-.-

III INPUT LEAKAGE CURRENT 

VIL INPUT LOW VOLTAGE 
(INCLUDING CLOCKSI Voo 

VIH INPUT HIGH VOLTAGE 
(INCLUDING CLOCKS) 

r------
Vcc -1.5 

VOL OUTPUT LOW VOL TAGE 

VOH OUTPUT HIGH VOLTAGE Vcc -'·5 

A.C. CHARACTERISTICS 

MAX. 
UNIT 

60 mA 
-----,- - -- .-

10 ~A 

Vcc -4.2 I V 

Vcc+0.3 V 

0.4 V 

V 

TEST 
CONDITIONS 

T ~ 25°C 
-~-.-.-
VIN ~ OV 

10L ~ 0.44mA 
CL ~ 200 pF 

10H ~ 0.2mA 

*Measurements are made while 
the 8008 is executing a typical 
sequence of instructions. The 
test load is selected such that 
at VOL ~ OAV, IOL~ OA4mA 
on each output. 

TA = O°C to 70°C; VCC = +5V ±5%, VDD = -9V ±5%. All measurements are referenced to 1.5V levels. 

8008 8008·1 
LIMITS LIMITS 

SYMBOL PARAMETER UNIT TEST CONDITIONS 
MIN. MAX. MIN. MAX. 

tCY CLOCK PERIOD 2 3 1,25 3 }.IS tR,t F = 50ns 

t R,t F CLOCK RISE AND FALL TIMES 50 50 ns 

tl/>l PULSE WIDTH OF 1/>, .70 ,35 }.IS 

tl/>2 PULSE WIDTH OF 1/>2 .55' .35 }.IS 

t D' CLOCK DELAY FROM FALLING ,90 1.1 1.1 }.Is 

EDGE OF 1/>1 TO FALLING EDGE 

OF 1/>2 

tD2 CLOCK DELAY FROM 1/>2 TO 1/>, .40 .35 }.IS 

t D3 CLOCK DELAY FROM 1/>, TO 1/>2 .20 .20 }.IS 

tDD DATA OUT DELAY 1.0 1,0 }.IS C L = 100pF 

tOH HOLD TIME FOR DATA BUS OUT .10 .10 }.Is 

tlH HOLD TIME FOR DATA IN [1 J [1] }.Is 

tSD SYNC OUT DELAY .70 .70 }.Is C L=100pF 

t s, STATE OUT DELAY (ALL STATES 1.1 1.1 }.IS C L = 100pF 

EXCEPT T1 AND Tll) [2J 

tS2 STATE OUT DELAY (STATES 1.0 1.0 }.Is C L= 100pF 

Tl AND Tll) 

tRW PULSE WIDTH OF READY DURING .35 .35 }.IS 

1/>22 TO ENTER T3 STATE 

tRD READY DELAY TO ENTER WAIT .20 .20 }.IS 

STATE 

i2J If the INTERRUPT is not used, all states have the same ootput delay, tS1 ' 

xxii 



• 
I Silicon Gate MOS 8008,8008-1 

TIMING DIAGRAM 

r:;'\121 
~--~i~ ~I -----

I 

STATE I LINES 

~ 
_tS2_~ 5, 1---',,-

52 

H'RWI--

",~,{ -IJ 
1'1 ------, 
~ 

'RO r.=.1,.._-+ __ ....,. 
I 

r-------·I-------------------------II-------------------;Ir-------~~ 
T, T2 T3 T, 

Notes: 1. READY line must be at "0" prior to "'22 of T2 to guarantee entry into the WAIT state. 
2. INTERRUPT line must not change levels within 200ns (max.) of falling i.dge of "'1. 

TYPICAL D. C. CHARACTERISTICS 

'. 

POWER SUPPLY CURRENT 
vs. TEMPERATURE 

AMBIENT TlEMPEFIATURE (" C) 

TYPICAL A. C. CHARACTERISTICS 
DATA OUT DELAY VS. 

OUTPUT LOAD CAPACITANCE 
1 

· 1/ 
V , 

V 
· 
, LV 

· 
, , ~ 100 I~ ... ~ .. 

O .... TA aUSCAPACiTA<'4CE IpFl.CUII 

, 

, 

.. 
,r--... 

. 

. 
, 

OUTPUT SINKING CURRENT 
vs. TEMPERATURE. 

...... 
1'---~-VDD ·14\1 

v" ·1,v t-l-

AMBIENT TEMPERATURE r CI 

I--

, 
, . 
, 
, 
, 
, 
, . 

OUTPUT SOURCE CURRENT 
vs. OUTPUT VOLTAGE 

v}._,; 
vcc~sv-

TA '10"C 

t-... 

'" "" " -.... 

OUTPUT VOLTAGE IVI. VOtI 

CAPACITANCE f = lMHz; TA = 25°C; Unmeasured Pins Grounded 

SYMBOL TEST 
LIMIT (pFI 

TYP. MAX. 

C 'N INPUT CAPACITANCE 5 10 

COB DATA BUS 110 CAPACITANCE 5 10 

COUT OUTPUT CAPACITANCE 5 10 

xxiii 

I 



xxiv 



I 

e Silicon Gate MOS 1602A/1702A--S714 ROMs 
INTEL CORP. 3065 Bowers Ave., Santa Clara, California 95051 • (408) 246-7501 

2048 BIT FULLY DECODED 
READ ONLY MEMORY 

• Erasable and Field Programmable 
(1702A --5714) 

• 2 ,..S Access Time 

• Field Programmable (1602A --5714) 
• Compatible with 

Intel's MC5-8 ™ 

The 1602A/1702A--S714 is ideally suited for use with Intel's MCS-8 Micro Computer Set. It may also be used with 

systems requiring 2J.1sec access time. 

Absolute Maximum Ratings * 
Ambient Temperature Under Bias ...... -ooC to +850 C 
Storage Temperature ............. -65°C to +1250 C 
Soldering Temperature of Leads (10 sec) ........ +300oC 
Power Dissipation ....................... 2 Watts 
Normal Operation: Input Voltages and Supply 

Voltages with respect to Vee .......... +0.5V to -20V 
Program Operation: Input Voltages and Supply 

Voltages with respect to Vee ................ -48V 

READ OPERATION 
D.C. and Operating Characteristics 

*COMMENT 

Stresses above those listed under "Absolute Maximum Rat­
ings" may cause permanent damage to the device. This is a 
stress rating only and functional operation of the device at 
these or at any other condition above those indicated in 
the operational sections of this specification is not implied. 
Exposure to Absolute Maximum Rating conditions for ex­
tended periods may affect device reliability. 

TA = ooe to +7oo e, VCC = +5V ± 5%, VDO = -9V ± 5%, VGG(2) = -9V ± 5%, unless otherwise noted. 

SYMBOL TEST MIN. Typ!31 MAX. UNIT CONDITIONS 

III Address and Ch ip Select 10 fJA VIN = O.OV 
Input Load Current 

ILO Output Leakage Current 10 fJA VOUT = O.OV, CS = Vee -2 

1000 Power Supply Current 5 16 mA VGG=Vee. CS=Vee -2 
IOL = O.OrnA, T A = 25°C 

1001 Power Supply Current 35 60 mA CS=Vee -2 
IOL =O.OmA.TA = 25°C 

1002 Power Supply Current 32 55 mA- CS=O.O 
IOL =O.OrnA, TA = 25°C 

1003 Power Supply Current 38.5 70 mA CS-Vee -2 
IOL =O.OmA • T A = ooC 

ICFl Output Clamp Current 8 19 mA VOUT - -1.0V. TA = ooC 

ICF2 Output Clamp Current 18 mA VOUT = -1.0V, TA = 25°C 

IGG Gate Supply Current 10 fJA 

VIL1 Input Low Voltage -1 0.55 V 
for TTL Interface 

VIL2 Input Low Voltage VOO VCC -6 V 
for MOS Interface 

VIH Address and Chip Select Vee -2 Vee +0.3 V 
Input High Voltage 

10L Output Sink Current 1.6 mA VOUT = 0.45V 

10H Output Source Current -350 /lA VOUT = O.OV 

VOL Output Low Voltage -.7 0.45 V IOL = 1.6mA 

VOH Output High Voltage 3.5 4.5 V IOH = -100fJA 

Note 1: In the programming mode, the data inputs 1-8 are PinS 4-11 respectively. 
Note 2: VGG may be clocked to reduce power dISSipation. In thiS mode average 100 tncreases In proportion to VGG duty cycle. 
Not. 3: Tvpical values are at nominal voltages and T A = 250C. 

Continuous 
Operation 

APRIL 1973 

CA UTlON: The 1702A is a quartz-lid device. The device environment should not exceed that to which a plastic package 
would be subjected_ 

@ Intel Corporation, 1973 

xxv 



• 
I Silicon Gate MOS 1602A/1702A--S714 

A.C. Characteristics 
TA = ooe to +7ooe, VCC = +5V ± 5%, VDD = -9V ± 5%, VGG = -9V ± 5%, unless otherwise noted. 

SYMBOL TEST MINIMUM TYPICAL MAXIMUM UNIT 

Freq. Repetition Rate 0.5 MHz 

tOH Previous read data valid 0 ns 

tAee Address to output delay .700 2 IlS 

tOVGG Clocked VGG set up 0.5 IlS 

tcs Chip select delay 1.1 Ils 

teo Output delay from CS 0.9 IlS 

too Output deselect 0.6 IlS 

t oHe Data out hold in clocked VGG mode (Note 1) 5 IlS 
Note 1. The outPut will remain valid for tOHC as long as clocked VGG IS at Vee. An address change may occur as soon 81 the output Issen_d 

(clocked VGG may still be at Vee). Data becomes invalid for the old address when clocked VGG Is returned to VGG. 

Capacitance * T A = 25°C 

SYMBOL TEST MINIMUM TYPICAL 

C IN I nput Capacitance 

COUT Output Capacitance 

C VGG VGG Capacitance 
(Clocked VGG Mode) 

'Th,s parameter IS periodIcally sampled and IS not 100" .. tested. 

Switching Characteristics 

Conditions of Test: 
I nput pulse amplitudes: 0 to 4V; tR . tF ::::: 50 ns 
Output load is 1 TTL gate; measurements made 

at output of TTL gate (tpD ::::: 15 ns) 

A) Constant VGG Operation 

I------CYCLE TIME l/FREO ~ 

ADD~:~~~~~m<~ ________________ ~)x(1 \,1 ______ ___ 

V1L 1-

-I 'es r- I 
_ V'H i-V I-'OH-I 

cs : \ I I 
~L : ~ 

1 I 

V
OH 
•. =tILJi' DATA .. 

OUT 

VOL ~I.~_-'-_ tAce ___ --< ',DATA OUT 
INVALID 

DESElECTlON OF DATA OUTPUT IN OR·TlE OPERATION 

AD:':::{: x~ 

VOH ~l--';-'"\ 

OATA 
OUT 

VOL 

1m< 

B 

10 

xxvi 

MAXIMUM UNIT CONDITIONS 

15 pF All 

15 pF CS = Vee unused pins 
~N- V~ } 

30 pF 
VOUT = Vee are at A.C. 

VGG = Vee ground 

B) Clocked V GG Operation r-- CYCLE TIME ~ l/FREQ ===-i 
ADDRE:~H ~ :: C 

Vil I I 
VIH I I 

rr \{ k-,o",~ 
Vil I I 

-II-. I 

I' OVGG :,.,---------Vee I 
CLOCKED I I 
VGG I"'~ ____ J 

DATA 
OUT 

V'H x' DESELECTION OF DATA OUTPUT 'N OR TIE OPERATION 

ADDRESS I 

VOl l-----------------------,-------
I NOTE 2 ~ r-! an, 

ff V'H \~ /u~ ___ 1 
~l ~ 

-j l-'ovGG 

Vce I I 
CLOCKED I I 

VOH 

DATA OUT 

" I I I 
I \i i[ l-tAce -\\. __________________ ..J. 

NOTE 1: The output will remain valid for tOHe as long as clocked VGO 
is at Vee- An address change may occur a •• oon a. the output i. sensed 
(clocked VGG may still be at Vee). Data becomes invalid for thtI old 
address when clocked VGO is returned to VOO-

NOTE 2: If CS makes a transition from Vil to VIH while clocked VaG 
is at VOG. then de.e'ection of outPut occurs al too as shown in statie 
operation With constant VOO' 



Silicon Gate MOS 1602A/1702A--S714 

PROGRAMMING OPERATION 

D.C. and Operating Characteristics for Programming Operation 
TA = 25°C, Vee = OV, Vee = +12V ± 10%, CS = OV unless otherwise noted 

SYMBOL TEST MIN. TYP. MAX. UNIT CONDITIONS 

ILII P Address and Data Input 10 rnA VIN = -48V 
Load Current 

lu2P Program and VGG 10 rnA VIN = -48V 
Load Current 

lee Vee Supply Load Current .05 rnA 
IOOplll Peak 100 Supply 200 rnA Voo = V pro,,= -48V 

Load Current VGG = -35 
VIHP Input High Voltage 0.3 V 
VILlP Pulsed Data Input -46 -48 V 

Low Voltage 
VIL2P Address I nput Low -40 -48 V 

Voltage 
VIL3P Pulsed Input Low Voo 

and Program Voltage 
-46 -48 V 

VIL4P Pulsed Input Low -35 -40 V 
VGG Voltage 

Note 1: lOOp flows only during VOO. VGG on time. lOOp should not be allowed to exceed 300mA for greater than 1001'sec. Average power 
supply current lOOp is typically 40mA at 20% duty cycle. 

A.C. Characteristics for Programming Operation 
TAMelENT = 25°C, Vee = OV, Vee = + 12V ± 10%, CS = OV unless otherwise noted 

SYMBOL TEST MIN. TYP. MAX. UNIT CONDITIONS 

Duty Cycle (Voo , V GG ) 20 % 

tt/lPW Program Pulse Width 3 ms VGG = -35V, Voo = 
Vprog = -48V 

tow Data Set Up Time 25 J,ls 

tOH Data Hold Time 10 J,ls 

tvw Voo , VGG Set Up 100 J,lS 

tvo Voo , VGG Hold 10 100 J,ls 

tACW (2) Address Complement 25 J,ls 
Set Up . 

tACH (2) Address Complement 25 J,lS 
Hold 

tATW Address True Set Up 10 J,ls 

tATH Address True Hold 10 J,lS 

Note 2. All 8 address bits must be in the complement state when pulsed Vee and V GG move to their negative levels. The addresses (0 through 
255) must be programmed as shown in the timing diagram for a minimum of 32 times. 

xxvii 



in~I_@ ________ S_il_iC_on __ Ga_t_e_M_O_S_1_6_0_2A_I_1_7_0_2A_-_-S_7_1_4 ____ ~ 

Switching Characteristics for Programming Operation 
PROGRAM OPERATION 

Conditions of Test: 

Input pulse rise and fall times :s lJlsec 
CS = OV 

PROGRAM WAVEFORMS 

---i t ACH :--­
'I 

~---tAcw----'~1 I I 
I I : 

o 

ADDRESS 

--40 to-48 

BINARY COMPLEMENT 
ADDRESS OF WORD 

TO BE PROGRAMMED 

r---------------~~ 

I 

BINARY ADDRESS 
OF WOPD TO BE 

PROGRAMMED 

I I' 
I ---,tvoi 

0----------------------, ~ I---tATW 

PULSED Voo 
POWER SUPPLY 

-46 to-48 

I I 
I I 
I I 
I I 
I I 
I I I 
I : I 

0----'----------""111 I I I 

'""~~~w~~ \ i! i 
-35to-40 ,- I I' : 

'r-tVW"': : I 

0 __ \1 0" .: 
PROGRAMMING !--t¢pw-: i : 

PULSE i : itATH----t 

I 
-46to-48 I I I I 

-46 to 

Programming Operation 

f-tow-: ~-:tDH~ 
I I 

DATA STABLE 
TIME 

ADDRESS 

When the Data I nput for Then the Dat. Output 
the Program Mod. is: during the Reed Mode is: 

WORD A7 AS A5 A4 A3 

0 0 0 0 0 0 

VILIP = --48V pulsed Logic 1 = VOH = 'P' on tape 1 0 0 0 0 0 

I I I I I I 
I I I I I I 

VIHP=-OV Logic 0 = VOL ='N' on tape 255 1 1 1 1 1 

Addr_ Logic L ... I During Read Mod.: Logic 0 = V I L (- .3VI Logic 1 = V I H ( - 3VI 

Add,_ Logic L ... I During Program Mod.: Logic 0 = VIL2P I --40VI Logic 1 = VIHP (-OVI 

Ordering Information 
1. The erasable and field programmable ROM should be ordered as the 1702A/S714. 
2. The field programmable ROM should be ordered as the 1602A/S714. 

A2 Al 

0 0 

0 0 

I I 
I I 
1 1 

ROMs 

AO 

0 

1 

I 
I 
1 

Note: Intel's liability shall be limited to replacing any unit which fails to program as desired. 

xxviii 



• 
I Silicon Gate MOS 2102 

1024 BIT FULLY DECODED STATIC MOS 
RANDOM ACCESS MEMORY 

• Single +5 Volts Supply Voltage 

• Directly TTL Compatible - All 
Inputs and Output 

• Static MOS - No Clocks or 
Refreshing Required 

• Low Power - Typically 150 mW 

• Access Time - Typically 500 nsec 

• Three - State Output - OR-Tie 
Capability 

• Simple Memory Expansion - Chip 
Enable Input 

• Fully Decoded - On Chip Address 
Decode 

• Inputs Protected - All Inputs Have 
Protection Against Static Charge 

• Low Cost Packaging -16 Pin Plastic 
Dual-In-Line Configuration 

The Intel 2102 is a 1024 word by one bit static random access memory element using normally off 
N-channel MOS devices integrated on a monolithic array. It uses fully DC stable (static) circuitry and therefore 
requires no clocks or refreshing to operate. The data is read out nondestructively and has the same polarity 
as the input data. 

The 2102 is designed for memory applications where high performance, low cost, large bit storage, and simple 
interfacing are important design objectives. 

It is directly TTL compatible in all respects: inputs, output, and a single +5 volt supply. A separate chip enable 
(CE) lead allows easy selection of an individual package when outputs are OR-tied. 

The Intel 2102 is fabricated with N-channel silicon gate technology. This technology allows the design and 
production of high performance easy to use MOS circuits and provides a higher functional density on a mono­
lithic chip than either conventional MOS technology or P-channel silicon gate technology. 

Intel's silicon gate technology also provides excellent protection against contamination. This permits the use of 
low cost silicone packaging. 

PIN CONFIGURATION LOGIC SYMBOL 

Ao 

A, 

A J DIN 

A, 

A. 

A, 

A, 
A, 

As DOUT 

'" 
R!W • CE 

PIN NAMES 

DIN DATA INPUT CE CHIP ENABLE 

AO- Ag ADDRESS INPUTS DOUT DATA OUTPUT 

R/W READ/WRITE INPUT vcc POWER (+5V) 

xxix 

DATA 

'N 

o ~ PIN NUMBERS 

BLOCK DIAGRAM 

CEll 
ARRAY 

32 ROWS 
32 COLUMNS 

@I 
----..::--0 Vee 

~GND 

DATA 
OUT 



in~,I~~ ____________ S_il_iC_On __ G_a_te_M_O __ S_2_1_0_2_-1_,_2_10_2 __________ __ RAMs 

Absolute Maximum Ratings* 

Ambient Temperature Under Bias 

Storage Temperature 

Voltage On Any Pin 
With Respect To Ground 

Power Dissipation 

-O.5V to +7V 

1 Watt 

D. C. and Operating Characteristics 

*COMMENT: 

Stresses above those listed under" Absolute Maxi­
mum Rating" may cause permanent damage to the 
device. This is a stress rating only and functional 
operation of the device at these or at any other 
condition above those indicated in the operational 
sections of this specification is not implied. Expo­
sure to absolute maximum rating conditions for 
extended periods may affect device reliability. 

TA = O°C to +70 0 C, vcc = 5V ±5% unless otherwise specified 

SYMBOL PARAMETER 
MIN. 

III INPUT LOAD CURRENT 
(ALL INPUT PINS) 

I LOH OUTPUT LEAKAGE CURRENT 

ILOL OUTPUT LEAKAGE CURRENT 

ICC1 POWER SUPPLY CURRENT 

ICC2 POWER SUPPLY CURRENT 

VIL INPUT "LOW" VOLTAGE -0.5 

VIH INPUT "HIGH" VOLTAGE 2.2 

VOL OUTPUT "LOW" VOLTAGE 

VOH OUTPUT "HIGH" VOLTAGE 2.2 

111 Typical values are for T A = 250C and nominal supply voltage. 

Typical D.C. Characteristics 
POWER SUPPLY CURRENT VS. 

AMBIENT TEMPERATURE 
80 ...---r---;----;---r-.--I"TJ --, 
70.r.-~-+-~----+--+--- Vee = 5.25V_ 

I~" • 1\ ..... 
« 60 \ f.-' 
.s SPEC. - 1--
w 50 r---POINTS---+--+---+--+---I 
~ I 
a:: 
w 
~ 40~-+-~-+----+--+-~-~ 

tl 1r---=t=~::::":TFY~PI~CA~L_-+-.Jbd 
30 t-

201------I---f---+---I--+--f----1 

10 L---L_....l-_-'----L_....I.-_L-.--.J 
o 10 20 30 40 50 60 70 

AMBIENT TEMPERATURE ('C) 

LIMITS 

Typ.llI 
UNIT TEST CONDITIONS 

MAX. 

10 /JA VIN = 0 to 5.25V 

10 /JA CE = 2.2V, VOUT = 4.0V 

-100 /JA CE = 2.2V, VOUT = 0.45V 

30 60 rnA ALL INPUTS = 5.25V 
DATA OUT OPEN 
TA = 25°C 

70 rnA ALL INPUTS = 5.25V 
DATA OUT OPEN 
TA = OOC 

+0.65 V 

Vcc V 

+0.45 V 10L = 1.9rnA 

V lOW -100/JA 

POWER SUPPLY CURRENT VS. 
SUPPLY VOLTAGE 

50 1--------+-AM-B--1I~-NT-T-E+--Mlp-E-RA+IT-UR-E-+~-25-'C+--I 

4 5 

Vee (VOLTS) 

xxx 



Silicon Gate MOS 2102 

Typical D. C. Characteristics 
INPUT CURRENT VS. EFFECTIVE INPUT OUTPUT SINK CURRENT VS. 

INPUT VOLTAGE CHARACTERISTIC OUTPUT VOLTAGE 
;fi 8 

Vee J 5.0V AMBI~NT TE~PERA~URE 2 ooy t:/ Vcc-I5.OV 

5 
'5 ~ +2,6 

V 
4 

~ 25°C 

~ / ~ / 
V 

c o , TYPICAL 3 C '0 

W V ! ~ ! 70°C 

-! 
5 2 j 

-2.5 7 [7 VCC '4.75V 
,f , 5 

V -6 J rUTPU\ "L," TyprAl 

0 
. !w!r'CE ~~~ JI' -7.5 

VIL MAX. SPEC VIH MIN. 

-, 0 +' +2 +3 +4 ;fi +8 0 , 2 3 0 0.5 '.0 '.5 

VON (VOLTSI VON (VOLTSI VOL (VOLTSI 

RElATIONSHIP BETWEEN OUTPUT 

OUTPUT SOURCE CURRENT VS. OUTPUT CURRENT VS. OUTPUT SINK CURRENT, NUMBER OF OR·TIES, 

OUTPUT VOLTAGE VOLTAGE WITH CHIP DISABLED AND OUTPUT VOLTAGE 

AMBlkNT T~MPER1TuRE 
;fi 4.3 

Vee'" 4.16V 
\\ -'5 

1\' 
O"C 3 .• 

c-:::: 25"C 0 
70°C 

TVPICAL 

'\ \ 
3.5 

/ 
20 lfi 

C -6 
;:: 

:i -10 1 '6 
a: 

! \\ ! 3.' 

V 
0 

% 5 ~ 
~ _0 -10 ~ a: 

'\ 
2.7 

V 
'2 .. .. 

l\ Vcc .4.75V 
:IE 

-5 " 
l'\.iUTPj "HIT TVI'CAL 

C • 2.2V 2.3 

V 
8 z 

-15 r=T-
" 

,.91/ 4 

0 -20 1.5 , 2 3 4 -, 0 +1 +2 +3 +4 +5 +6 AD .45 .50 .55 .50 .65 .70 .75 

VOH (VOLTS) VOUT (VOLTS) VOL (VOLTS) 

Typical A. C. Characteristics 
ACCESS TIME VS. ACCESS TIME VS. 

LOAD CAPACITANCE AMBIENT TEMPERATURE 
'400 '400 

TA "'2SOC Vee· 4.7SV 

'200 
Vee '" 4.75V 

1200 
1TTL LOAD 

SPEC.'POINT 

1 TTL LOAD CL = 100pF 

'000 '000 

! 
800 ! 800 

~ ~ .. 600 
.. 600 

TYPICAL TVP'CAL 

406 400 

200 200 

00 50 '00 '50 200 250 300 350 °D '0 20 30 40 50 60 70 

LOAD CAPACITANCE (pf"1 AMBIENT TEMPERATURE (OC) 

xxxi 



• 
I Silicon Gate MOS 2102 

A. C. Characteristics TA = ooe to 70oe, vcc = 5V ±5% unless otherwise specified 

LIMITS 
SYMBOL PARAMETER 

TYP.(1} 
UNIT 

MIN. MAX. 
READ CYCLE 

t RC READ CYCLE 1000 ns 

tA ACCESS TIME 500 1000 ns 

teo CHIP ENABLE TO OUTPUT TIME 500 ns 

tOHl PREVIOUS READ DATA VALID WITH RESPECT 50 ns 
TO ADDRESS 

tOH2 PREVIOUS READ DATA VALID WITH RESPECT 0 ns 
TO CHIP ENABLE 

WRITE CYCLE 

twc WRITE CYCLE 1000 ns 

tAW ADDRESS TO WRITE SETUP TIME 200 ns 

twp WRITE PULSE WIDTH 750 ns 

tWR WRITE RECOVERY TIME 50 ns 

tow DATA SETUP TIME 800 ns 

tOH DATA HOLD TIME 100 ns 

tcw CHIP ENABLE TO WRITE SETUP TIME 900 ns 

(1) Typical values are for TA=250 C and nominal supply voltage. 

CapacitanceTA = 25°e, f = 1 MHz 

A.C. CONDITIONS OF TEST SYMBOL TEST 
LIMITS (pF) 

Input Pulse Levels: +0.65 Volt to 2.2 Volt 

Input Pulse Rise and Fall Times: 20nsec 

1.5 Volt Timing Measurement Reference Level: 

Output Load: 1 TTL Gate and CL = 100 pF 

Waveforms 

READ CYCLE 

CHIP 
ENABLE 

DATA 
DUT 

TYP. MAX. 

CIN INPUT CAPACITANCE 
3 5 

(ALL INPUT PINS) VIN = OV 

COUT OUTPUT CAPACITANCE 
7 10 

VOUT = OV 

WRITE CYCLE 

~------------'we------------~ 

CHIP 'ew 
ENABLE 

'wP 

READ/ 
WRITE 

tow 

DATA DATA CAN 
DATA STABLE IN CHANGE 

xxxii 



• 
I Schottky Bipolar 3205, 3404 

3205 HIGH SPEED 1 OUT OF 8 BINARY DECODER 
3404 HIGH SPEED 6-BIT LATCH 

• 18 ns max. Delay Over 0° C 
to 75° C Temperature -- 3205 

• 12 ns max. Data to Output 
Delay Over 0° C to 75° C 
Temperature -- 3404 

• Directly Compatible with DTL and 
TTL Logic Circuits. 

3205 

• Low Input Load Current -- .25 mA 
max., 1/6 Standard TTL Input Load. 

• Minimum Line Reflection -- Low 
Voltage Diode Input Clamp. 

• Outputs Sink 10 mA min. 

• 16-Pin Dual In-Line Ceramic or 
Plastic Package. 

• Simple Expansion -- Enable Inputs. 

The 3205 decoder can be used for expansion of systems which utilize memory components with active low 
chip select input. When the 3205 is enabled, one of its eight outputs goes "low", thus a single row of a memory 
system is selected. The 3 chip enable inputs on the 3205 allow easy memory expansion. For very large memory 
systems, 3205 decoders can be cascaded such that each decoder can drive 8 other decoders for arbitrary memo­
ry expansions. 

3404 
The Intel 3404 contains six high speed latches organized as independent 4-bit and 2-bit latches. They are 
designed for use as memory data registers, address registers, or other storage elements. The latches act as high 
speed inverters when the "Write" input is "low". 

The Intel 3404 is packaged in a standard 16-pin dual-in-line package; and its performance is specified over the 
temperature range of oDe to +75De, ambient. The use of Schottky barrier diode clamped transistors to obtain 
fast switching speeds results in higher performance than equivalent devices made with a gold diffusion process. 

3205 

1 B BINARY 
DECODER 

PIN CONFIGURATION 

3404 

xxxiii 



Schottky Bipolar 3205, 3404 

Absolute Maximum Ratings* 

Temperature Under Bias: Ceramic -65°C to +125"C *COMMENT 
Plastic -65°C to +75°C 

Storage Temperature 

All Output or Supply Voltages 

All Input Voltages 

Output Currents 

-65°C to +160oC 

-0.5 to +7 Volts 

-1.0 to +5.5 Volts 

125mA 

Stresses above those listed under "Absolute Maximum Rat· 
ing" may cause permanent damage to the device. This is a stress 
rating only and functional operation of the device at these or at 
any other condition above those indicated in the operational 
sections of this specification is not implied. Exposure to absolute 
maximum rating conditions for extended periods may affect 
device reliability. 

D.C. Characteristics TA = ooc to +75°C, Vee = 5.0V ±5% 
3205,3404 

SYMBOL PARAMETER 
LIMIT 

MIN. MAX. 

IF INPUT LOAD CURRENT -0.25 

IR INPUT LEAKAGE CURRENT 10 

Ve INPUT FORWARD CLAMP VOLTAGE -1.0 

VOL OUTPUT "LOW" VOLTAGE 0.45 

VOH OUTPUT HIGH VOLTAGE 2.4 

V1L INPUT "LOW" VOLTAGE 0.85 

V1H INPUT "HIGH" VOLTAGE 2.0 

Ise OUTPUT HIGH SHORT -40 -120 
CIRCUIT CURRENT 

Vox OUTPUT "LOW" VOLTAGE 0.8 
@ HIGH CURRENT 

3205 ONLY 

I lee I POWER SUPPLY CURRENT 70 

3404 ONLY 

lee POWER SUPPLY CURRENT 75 

IFW1 WRITE ENABLE LOAD CURRENT -1.00 
PIN 7 

IFW2 WRITE ENABLE LOAD CURRENT -0.50 
PIN 15 

IRW WRITE ENABLE LEAKAGE CURRENT 10 

Typical Characteristics 
OUTPUT CURRENT VS. OUTPUt CURRENT VS. 

OUTPUT "LOW" VOLTAGE OUTPUT "HIGH" VOLTAGE 
100 o 

TA = 75"C _ ~ n r 

UNIT 

mA 

fJA 

V 

V 

V 

V 

V 
---

mA 

V 

mA 

mA 

mA 

mA 

fJA 

5.0 

4.0 
TA = 25°C_ ..... ~ 

I-~ee J5.0~ 
I UJ. t;; =25°C 

80 -10 

1 
I-
Z 60 
w 
a: 
a: 
:> 
u 
I- 40 
:> 

~ 
o 

20 

o 
o 

vee = 5.0V , 
J 

II 
TA = 75"C ..... ~ 

/. f..- I- TA = O'C 

N - f-TA = 25°C 

.2 .4 .6 

~ TA -:: O'C 

1 
~ -20 
w 
a: 
a: 
:> 
u 30 
~ -
!:; 
o -40 

-50 
.8 1.0 0 

OUTPUT "LOW" VOLTAGE (V) 

~ 
w 
Cl 3.0 c( 
I-... 

-TA = O'C-~V TA = 75"C 

II , 
g 
I- 2.0 ~ ... 
I-
~ 
0 

1.0 

I 
I( 

j 
If 

/J o 
1.0 2.0 3.0 4.0 5.0 

OUTPUT "HIGH" VOLTAGE (V) 

xxxiv 

TEST CONDITIONS 

Vee = 5.25V, VF = 0.45V 

Vee = 5.25V, VR = 5.25V 

Vee = 4.75V, Ie = -5.0 mA 

Vee = 4.75V, IOL = 10.0 mA 

Vee = 4.75V, IOH = -1.5 mA 

Vee = 5.0V 

Vee = 5.0V 

Vee = 5.0V, VOUT = OV 

Vee = 5.0V, lox = 40 mA 
_. 

Vee = 5.25V 

Vee =5.25V 

Vee =5.25V, Vw =0.45V 

Vee =5.25V, Vw =0.45V 

VR-5.25V 

DATA TRANSFER FUNCTION 

1 .1. 
vee = 5.0V I--I--

TA = O'C 

\ ~ 
TA = 25"C -\ -\~ 
TA = 75"C_ -1 \ 

\ 
\\ 
\. \. ~ 

o .2 .4 .6 .8 1.0 1.2 1.4 1.6 I.B 2.0 

INPUT VOLtAGE (V) 



• 
I Schottky Bipolar 3205, 3404 

3205-HIGH SPEED 1 OUT OF 8 BINARY DECODER 
Switching Characteristics 

Vee 

CONDITIONS OF TEST: TEST LOAD: ~ 

Input pulse amplitudes: 2.5V 
390Q 

Input rise and fall times: 5 nsec Cl rJ 1J between 1 V and 2V rJ " ...... 

-"1 ........ 
Measurements are made at 1.5V 

2K 

~ -= 
All Transistors 2N2369 or Equivalent. e L = 30 pF 

TEST WAVEFORMS 

ADDRESS OR ENABLE 
INPUT PULSE 

OUTPUT 

A.C. Characteristics T A = ooe to + 75°C, Vee = 5.0V ±5% unless otherwise specified. 

SYMBOL PARAMETER MAX. LIMIT UNIT TEST CONDITIONS 

t++ 18 ns 

t_+ ADDRESS OR ENABLE TO 18 ns 

t+_ 
OUTPUT DELAY 18 ns 

t 18 ns ----

CIN 
(1) INPUT CAPACITANCE P3205 4(typ.1 pF f = 1 MHz, Vee = ov 

C3205 5(typ.1 pF vBIAS = 2.0V, T A = 25°C; 

1. This parameter is periodically sampled and is not 100% tested . 

• 
Typical Characteristics 

ADDRESS OR ENABLE TO OUTPUT ADDRESS OR ENABLE TO OUTPUT 
DELAY VS. LOAD CAPACITANCE DELAY VS. AMBI-:NT TEMPERATURE 

20 
L 

20 
I 

Vee = 5.0V Vee = 5.0V 
TA = 25"C .... .... 

CL = 30 pF .... .... 
a 'v ,\_-"" ............ a 15 15 .... -:c--....- .... 
w 

~ 
w 

-' -' t+_, t __ 

'" ~ '" ------ ------ ------<{ <{ t , 2 

-----
2 w w 

0:: 10 0:: 10 a ~ a 
en f...-- en '++ en - en w w 
0:: 0:: a a a a 
<{ 5 <{ 5 

0 0 
0 50 100 150 200 0 25 50 75 

LOAD CAPACITANCE IpFI AMBIENT TEMPERATURE lOCI 

xxxv 



in~,_I@ ___________ S_C_h_o_tt_kY __ B_ip_OI_a_r_3_20_5_,_3_4_0_4 ________ __ MEMORY 
PERIPHERALS 

3404-6-BIT LATCH 
Switching Characteristics 

CONDITIONS OF TEST: 

Input pulse amplitudes: 2.5V 

Input rise and fall times: 5 nsec 
between 1 V and 2V 

Measurements are made at 1.5V 

TEST LOAD: 

2K 

VCC 

390 r1 

-= All Transistors 2N2369 or Equivalent. CL = 30pF 

TEST WAVEFORMS 
MEASUREMENT FOR DATA DELAY MEASUREMENT FOR WRITE ENABLE DELAY 

DATA 
INPUT 

WRITE 
ENABLE 

OUT 

-tSETUP- t HOLD -

---:f"-'-' , ,r-~~~;~-------------
--------..1 

DATA 
INPUT 

WRITE 
ENABLE 

OUT 

NOTE 1: Output Data is valid after t+~, t ~+ NOTE 2: Output Data is valid after t ~~, t _+ 

A.C. Characteristics TA = O°C to +75°C, VCC= 5.0V ±5%; unless otherwise specified. 

SYMBOL PARAMETER 
LIMITS 

MIN. TYP. MAX. 

t+~,t~+ DATA TO OUTPUT DELAY 12 

t~~,t~+ WRITE ENABLE TO OUTPUT DELAY 17 

tSET UP TIME DATA MUST BE PRESENT BEFORE 12 
RISING EDGE OF WRITE ENABLE 

tHO LD TIME DATA MUST REMAIN AFTER 8 
RISING EDGE OF WRITE ENABLE 

twp WRITE ENABLE PULSE WIDTH 15 

C,ND (3) DATA INPUT CAPACITANCE P3404 4 

C3404 5 

CINW(3) WRITE ENABLE CAPACITANCE P3404 7 

C3404 8 

NOTE 3: This parameter is periodically sampled and is not 100% tested. 

Typical Characteristics 

UJ .... 
'" 

DATA INPUT, WRITE ENABLE 
TO OUTPUT DELAY VS. 

LOAD CAPACITANCE 
20r---,-----,-----,-~~ 

15 

UJ .... 
'" 

20 

15 

DATA INPUT, WRITE ENABLE 
TO OUTPUT DELAY VS. 

AMBIENT TEMPERATURE 

J Vee - 5.0V 
CL = 30 pF 

I 

UNIT 

ns 

ns 

ns 

ns 

ns 

pF 

pF 

pF 

pF 

20 

E. 

TEST CONDITIONS 

f = 1 MHz, VCC = OV 

VBIAS = 2.0V.TA =250 C 

f = 1 MHz, VCC = OV 

VBIAS = 2.0V, TA = 25°C 

WRITE ENABLE PULSE WIDTH 
VS. LOAD CAPACITANCE 

I 
Vee = 5.0V 

TA =25"C 

WRITE ENABLE t -
<t <t 
z z 
UJ UJ 

UJ UJ 

i: 15 
c 
~ 
UJ 

'" .... ~ 
/ .... ~ cr co 

;:: 10 ;:: 10 
..... ..... 
:::> :::> 
0.. 0.. 

~ ~ 
<t <t .... .... 
<t <t 
C C 

o 
o 100 200 300 400 o 

LOAD CAPACITANCE (pFI 

J 
DATA OR WRITE ENABLE '-+ 

DATA t+_ 

25 50 

AMBIENT TEMPERATURE ('CI 

xxxvi 

75 

~ 10 
UJ .... 
'" <t 
Z 
UJ 

UJ 5 
~ 
co 
;:: 

--~ 
o 100 200 300 400 

LOAD CAPACITANCE (pFI 



In order to help the programmer examine memory when debugging programs, this appendix provides the assembly 
language instruction represented by each of the 256 possible instruction code bytes. 

Where an instruction occupies two bytes (immediate instruction) or three bytes (jump instruction). only the first (code) 
byte is given. 

DEC OCTAL HEX MNEMONIC COMMENT 

0 000 00 HLT 
00'1 01 

2 002 02 RLC 
3 003 03 RNC 
4 004 04 ADI EXP 
5 005 05 RST EXP 
6 006 06 MVI A, EXP 
7 007 07 RET 
8 010 08 INR B 
9 011 09 DCR B 
10 012 OA RRC 
11 013 OB RNZ 
12 014 OC ACI EXP 
13 015 OD RST EXP EXP =1 
14 016 OE MVI B, EXP 
15 017 OF 
16 020 10 INR C 
17 021 11 DCR C 
18 022 12 RAL 
19 023 13 RP 
20 024 14 SUI EXP 
21 025 15 RST EXP EXP =2 
22 026 16 MVI C, EXP 
23 027 17 
24 030 18 INR D 
25 031 19 DCR D 
26 032 1A RAR 
27 033 1B RPQ 
28 034 1C SBI EXP 
29 035 10 RST EXP EXP =3 
30 036 1E MVI D, EXP 
31 037 1F 

xxxvii 



DEC OCTAL HEX MNEMONIC COMMENT 

32 040 20 INR E 
33 041 21 DCR E 
34 042 22 
35 043 23 RC 
36 044 24 ANI EXP 
37 045 25 RST EXP EXP =4 
38 046 26 MVI E, EXP 
39 047 27 
40 050 28 INR H 
41 051 29 DCR H 
42 052 2A 
43 053 2B RZ 
44 054 2C XRI EXP 
45 055 2D RST EXP EXP =5 
46 056 2E MVI H, EXP 
47 057 2F 
48 060 30 INR L 
49 061 31 DCR L 
50 062 32 
51 063 33 RM 
52 064 34 ORI EXP 
53 065 35 RST EXP EXP =6 
54 066 36 MVI L, EXP 
55 067 37 
56 070 38 
57 071 39 
58 072 3A 
59 073 3B RPE 
60 074 3C CPI EXP 
61 075 3D RST EXP EXP =7 
62 076 3E MVI M, EXP 
63 077 3F 
64 100 40 JNC EXP 
65 101 41 IN EXP EXP =0 
66 102 42 CNC EXP 
67 103 43 IN EXP EXP =1 
68 104 44 JMP EXP 
69 105 45 IN EXP EXP =2 
70 106 46 CALL EXP 
71 107 47 INEXP EXP =3 
72 110 48 JNZ EXP 
73 111 49 IN EXP EXP =4 
74 112 4A CNZ EXP 
75 113 4B IN EXP EXP =5 
76 114 4C 
77 115 4D IN EXP EXP =6 
78 116 4E 
79 117 4F IN EXP EXP =7 
80 120 50 JP EXP 
81 121 51 OUT EXP EXP =8 
82 122 52 CP EXP 
83 123 53 OUT EXP EXP =9 
84 124 54 
85 125 55 OUT EXP EXP =10 
86 126 56 
87 127 57 OUT EXP EXP =11 

xxxviii 



DEC OCTAL HEX MNEMONIC COMMENT 

88 130 58 JPO EXP 
89 131 59 OUT EXP EXP =12 
90 132 5A CPO EXP 
91 133 58 OUT EXP EXP =13 
92 134 5C 
93 135 5D OUT EXP EXP =14 
94 136 5E 
95 137 5F OUT EXP EXP =15 
96 140 60 JC EXP 
97 141 61 OUT EXP EXP =16 
98 142 62 CC EXP 
99 143 63 OUT EXP EXP =17 
100 144 64 
101 145 65 OUT EXP EXP =18 
102 146 66 
103 147 67 OUT EXP EXP =19 
104 150 68 JZ EXP 
105 151 69 OUT EXP EXP =20 
106 152 6A CZ EXP 
107 153 68 OUT EXP EXP =21 
108 154 6C 
109 155 60 OUT EXP EXP =22 
110 156 6E 
111 157 6F OUT EXP EXP =23 
112 160 70 JM EXP 
113 161 71 OUT EXP EXP =24 
114 162 72 CM EXP 
115 163 73 OUT EXP EXP =25 
116 164 74 
117 165 75 OUT EXP EXP =26 
118 166 76 
119 167 77 OUT EXP EXP =27 
120 170 78 JPE EXP 
121 171 79 OUT EXP EXP =28 
122 172 7A CPE EXP 
123 173 78 OUT EXP EXP =29 
124 174 7C 
125 175 70 OUT EXP EXP =30 
126 176 7E 
127 177 7F OUT EXP EXP =31 
128 200 80 ADDA 
129 201 81 ADD 8 
130 202 82 ADDC 
131 203 83 ADD 0 
132 204 84 ADD E 
133 205 85 ADD H 
134 206 86 ADD L 
135 207 87 ADDM 
136 210 88 ADCA 
137 211 89 ADC 8 
138 212 8A ADCD 
139 213 88 ADC E 
140 214 8C ADC E 
141 215 80 ADCH 
142 216 8E ADC L 
143 217 8F ADCM 

xxxix 



DEC OCTAL HEX MNEMONIC COMMENT 

144 220 90 SUB A 
145 221 91 SUB B 
146 222 92 SUBC 
147 223 93 SUB D 
148 224 94 SUB E 
149 225 95 SUB H 
150 226 96 SUB L 
151 227 97 SUB M 
152 230 98 SBBA 
153 231 99 SBB B 
154 232 9A SBB C 
155 233 9B SBB D 
156 234 9C SBB E 
157 . 235 9D SBB H 
158 236 9E SBB L 
159 237 9F SBB M 
160 240 AO ANAA 
161 241 A1 ANAB 
162 242 A2 ANAC 
163 243 A3 ANAD 
164 244 A4 ANAE 
165 245 A5 ANAH 
166 246 A6 ANAL 
167 247 A7 ANAM 
168 250 A8 XRAA 
169 251 A9 XRAB 
170 252 AA XRAC 
171 253 A8 XRAD 
172 254 AC XRAE 
173 255 AD XRAH 
174 256 AE XRAL 
175 257 AF XRAM 
176 260 BO ORAA 
177 261 B1 ORAA 
178 262 B2 ORAC 
179 263 B3 ORAD 
180 264 B4 ORA E 
181 265 B5 ORAH 
182 266 B6 ORAL 
183 267 B7 ORAM 
184 270 B8 CMPA 
185 271 B9 CMP B 
186 272 BA CMPC 
187 273 BB CMPD 
188 274 BC CMP E 
189 275 BD CMP H 
190 276 BE CMP L 
191 277 BF CMPM 
192 300 CO NOP 
193 301 C1 MOV A,B 
194 302 C2 MOV A,C 
195 303 C3 MOV A,D 
196 304 C4 MOV A,E 
197 305 C5 MOV A,H 
198 306 C6 MOV A,L 
199 307 C7 MOV A,M 

xxxx 



DEC OCTAL HEX MNEMONIC COMMENT 

200 310 C8 MaV B,A 
201 311 C9 MaV B,B 
202 312 CA MaV B,C 
203 313 CB MaV B,O 
204 314 CC MaV B,E 
205 315 CO MaV B,H 
206 316 CE MaV B,L 
207 317 CF MaV B,M 
208 320 DO MaV C,A 
209 321 01 MaV C,B 
210 322 02 MaV C,C 
211 323 03 MaV C,O 
212 324 04 MaV C,E 
213 325 05 MaV C,H 
214 326 06 MaV C,L 
215 327 07 MaV C,M 
216 330 08 MaV O,A 
217 331 09 MaV O,B 
218 332 OA MaV O,C 
219 333 DB MaV 0,0 
220 334 DC MaV O,E 
221 335 DO MaV O,H 
222 336 DE MaV O,L 
223 337 OF MaV O,M 
224 340 EO MaV E,A 
225 341 E1 MaV E,B 
226 342 E2 MaV E,C 
227 343 E3 MaV E,O 
228 344 E4 MaV E,E 
229 345 E5 MaV E,H 
230 346 E6 MaV E,L 
231 347 E7 MaV E,M 
232 350 E8 Mav H,A 
233 351 E9 MaV H,B 
234 352 EA MaV H,C 
235 353 EB MOV H,O 
236 354 EC MaV H,E 
237 355 ED MaV H,H 
238 356 EE MaV H,L 
239 357 EF MaV H,M 
240 360 FO MaV L,A 
241 361 F2 MaV L,B 
242 362 F2 MaV L,C 
243 363 F3 MaV L,O 
244 364 F4 MaV L,E 
245 365 F5 MaV L,H 
246 366 F6 MaV L,L 
247 367 F7 MaV L,M 
248 370 F8 MaV M,A 
249 371 F9 MaV M,B 
250 372 FA MaV M,C 
251 373 FB MaV M,O 
252 374 FC MaV M,E 
253 375 FO MaV M,H 
254 376 FE MaV M,L 
255 377 FF 

xxxxi 



xxxxii 



The number of machine cycles needed to complete each INTELLEC 8/MOD 8 instruction is given in this appendix. The 
time required to complete an INTELLEC 8/MOD 8 machine cycle is 12.5 microseconds. 

INSTRUCTION 

ACI 
ADD 
ADC 
ADI 
ANA 
ANI 
All CALL instructions 
CMP 
CPI 
OCR 
HLT 
IN 
INR 
All JUMP instructions 
MOV 
MVI 
ORA 
ORI 
OUT 
RAL 
RAR 
All RETURN instructions 
RLC 
RRC 
RST 
SBB 
SBI 

SUB 
SUI 
XRA 
XRI 

CYCLES 

2 

2 
1 
2 
3 
1 
2 

1 
2 
1 
3 
1 
2 
1 
2 
2 

1 
2 

1 
2 

xxxxiii 

; 2 cycles if memory is referenced 
; 2 cycles if memory is referenced 

; 2 cycles if memory is referenced 

; 2 cycles if memory is referenced 

; 2 cycles if memory is referenced 
; 3 cycles if memory is referenced 
; 2 cycles if memory is referenced 

; 2 cycles if memory is referenced 

; 2 cycles if memory is referenced 

; 2 cycles if memory is referenced 



xxxxiv 



The I NTELLEC 8 uses a seven-bit ASCII code, which is the normal 8 bit ASCII code with the parity (high order) bit 
always reset. 

GRAPHIC OR CONTROL ASCII (HEXADECIMAL) GRAPHIC OR CONTROL ASCII (HEXADECIMAL) 

NULL 00 ACK 7C 
SaM 01 Alt. Mode 7D 
EOA 02 Rubout 7F 
EOM 03 I 21 
EaT 04 22 
WRU 05 # 23 
RU 06 $ 24 
BELL 07 % 25 
FE 08 & 26 
H. Tab 09 27 
Line Feed OA 28 
V. Tab DB 29 
Form DC * 2A 
Return OD + 2B 
SO OE 2C 

SI OF 2D 

DCa 10 2E 

X-On 11 / 2F 

Tape Aux. On 12 3A 
X-Off 13 3B 
Tape Aux. Off 14 < 3C 
Error 15 3D 
Sync 16 > 3E 
LEM 17 ? 3F 
SO 18 [ 5B 
S1 19 / 5C 
S2 1A 1 5D 
S3 1B t 5E 
54 1C ~ 5F 
S5 10 @ 40 
S6 1E blank 20 
S7 1F 0 30 

xxxxv 



GRAPHIC OR CONTROL ASCII (HEXADECIMAL) 

1 31 
2 32 
3 33 
4 34 
5 35 
6 36 
7 37 
8 38 
9 39 
A 41 
B 42 
C 43 
D 44 
E 45 
F 46 
G 47 
H 48 
I 49 
J 4A 
K 4B 
l 4C 
M 4D 
N 4E 
0 4F 
P 50 
Q 51 
R 52 
S 53 
T 54 
U 55 
V 56 
W 57 
X 58 
Y 59 
Z 5A 

xxxxvi 



HEXADECIMAL ARITHMETIC 

ADDITION TABLE 

0 1 2 3 4 5 6 7 8 9 A B C D E F 

1 02 03 04 05 06 07 08 09 OA OB OC OD OE OF 10 
2 03 04 05 06 07 08 09 OA OB OC OD OE OF 10 11 
3 04 05 06 07 08 09 OA OB OC OD OE OF 10 11 12 

4 05 06 07 08 09 OA OB OC OD OE OF 10 11 12 13 
5 06 07 08 09 OA OB OC OD OE OF 10 11 12 13 14 
6 07 08 09 OA OB OC OD OE OF 10 11 12 13 14 15 

7 08 09 OA OB OC OD OE OF 10 11 12 13 14 15 16 
8 09 OA OB OC OD OE OF 10 11 12 13 14 15 16 17 
9 OA OB OC OD OE OF 10 11 12 13 14 15 16 17 18 

A OB OC OD OE OF 10 11 12 13 14 15 16 17 18 19 
B OC OD OE OF 10 11 12 13 14 15 16 17 18 19 1A 
C OD OE OF 10 11 12 13 14 15 16 17 18 19 1A 1B 

D OE OF 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 
E OF 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 
F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 

MULTIPLICATION TABLE 

1 2 3 4 5 6 7 8 9 A B C D E F 

2 04 06 08 OA OC OE 10 12 14 16 18 1A 1C 1E 
3 06 09 OC OF 12 15 18 1B 1E 21 24 27 2A 2D 

4 08 OC 10 14 18 1C 20 24 28 2C 30 34 38 3C 
5 OA OF 14 19 1E 23 28 2D 32 37 3C 41 46 4B 
6 OC 12 18 1E 24 2A 30 36 3C 42 48 4E 54 5A 

7 OE 15 1C 23 2A 31 38 3F 46 4D 54 5B 62 69 
8 10 18 20 28 30 38 40 48 50 58 60 68 70 78 
9 12 1B 24 2D 36 3F 48 51 5A 63 6C 75 7E 87 

A 14 1E 28 32 3C 46 50 5A 64 6E 78 82 8C 96 
B 16 21 2C 37 42 4D 58 63 6E 79 84 8F 9A A5 
C 18 24 30 3C 48 54 60 6C 78 84 90 9C A8 B4 

D 1A 27 34 41 4E 5B 68 75 82 8F 9C A9 B6 C3 
E 1C 2A 38 46 54 62 70 7E 8C 9A A8 B6 C4 D2 
F 1E 2D 3C 48 5A 69 78 87 96 A5 B4 C3 D2 E1 

xxxxvii 



POWE RS 0 F TWO 

1 a 1.0 
2 1 0.5 
4 2 0.25 
8 3 0.125 

16 4 0.062 5 
32 5 0.031 25 
64 6 0.015 625 

128 7 0.007 812 5 

256 8 0.003 906 25 
512 9 0.001 953 125 

1 024 10 0.000 976 562 5 
2 048 11 0.000 488 281 25 

4 096 12 0.000 244 140 625 
8 192 13 0.000 122 070 312 5 

16 384 14 0.000 061 035 156 25 
32 768 15 0.000 030 517 578 125 

65 536 16 0.000 015 258 789 062 5 
131 072 17 0.000 007 629 394 531 25 
262 144 18 0.000 003 814 697 265 625 
524 288 19 0.000 001 907 348 632 812 5 

1 048 576 20 0.000 000 953 674 316 406 25 
2 097 152 21 0.000 000 476 837 158 203 125 
4 194 304 22 0.000 000 238 418 579 101 562 5 
8 388 608 23 0.000 000 119 209 289 550 781 25 

16 777 216 24 0.000 000 059 604 644 775 390 625 
33 554 432 25 0.000 000 029 802 322 387 695 312 5 
67 108 864 26 0.000 000 014 901 161 193 847 656 25 

134 217 728 27 0.000 000 007 450 580 596 923 828 125 

268 435 456 28 0.000 000 003 725 290 298 461 914 062 5 
536 870 912 29 0.000 000 001 862 645 149 230 957 031 25 

1 073 741 824 30 0.000 000 000 931 322 574 615 478 515 625 
2 147 483 648 31 0.000 000 000 465 661 287 307 739 257 812 5 

4 294 967 296 32 0.000 000 000 232 830 643 653 869 628 906 25 
8 589 934 592 33 0.000 000 000 116 415 321 826 934 814 453 125 

17 179 869 184 34 0.000 000 000 058 207 660 913467 407 226 562 5 
34 359 738 368 35 0.000 000 000 029 103 830 456 733 703 613 281 25 

68 719 476 736 36 0.000 000 000 014 551 915 228 366 851 806 640 625 
137 438 953 472 37 0.000 000 000 007 275 957 614 183 425 903 320 312 5 
274 877 906 944 38 0.000 000 000 003 637 978 807 091 712 951 660 156 25 
549 755 813 888 39 0.000 000 000 001 818 989 403 545 856 475 830 078 125 

1 099 511 627 776 40 0.000 000 000 000 909 494 701 772 928 237 915 039 062 5 
2 199 023 255 552 41 0.000 000 000 000 454 747 350 886 464 118 957 519 531 25 
4 398 046 511 10442 0.000 000 000 000 227 373675443 232 059 478 759 765625 
8 796 093 022 208 43 0.000 000 000 000 113 686 837 721 616 029 739 379 882 812 5 

17 592 186 044 416 44 0.000 000 000 000 056 843 418 860 808 014 869 689 941 406 25 
35 184 372 088 832 45 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 
70 368 744 177 664 46 0.000 000 000 000 014 210 854 715 202 003 717 422 485 351 562 5 

140 737 488 355 328 47 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 

281 474 976 710 656 48 0.000 000 000 000 003 552 713 678 800 500 929 355 621 337 890 625 
562 949 953 421 312 49 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 

1 125 899 906 842 624 50 0.000 000 000 000 000 888 178 419 700 125 232 338 905 334 472 656 25 
2 251 799 813 685 248 51 0.000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125 

4 503 599 627 370 496 52 0.000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5 
9 007 199 254 740 992 53 0.000 000 000 000 000 111 022 302 462 515 654 042 363 166 809 082 031 25 

18 014 398 509 481 984 54 0.000 000 000 000 000 055 511 151 231 257 827 021 181 583 404 541 015 625 
36 028 797 018 963 968 55 0.000 000 000 000 000 027 755 575 615 628 913 510 590 791 702 270 507 812 5 

72 057 594 037 927 936 56 0.000 000 000 000 000 013 877 787 807 814 456 755 295 395 851 135 253 906 25 
144 115 188 075 855 872 57 0.000 000 000 000 000 006 938 893 903 907 228 377 647 697 925 567 676 950 125 
288 230 376 151 711 744 58 0.000 000 000 000 000 003 469 446 951 953 614 188 823 848 962 783 813 476 562 5 
576 460 752 303 423 488 59 0.000 000 000 000 000 001 734 723 475 976 807 094 411 924 481 391 906 738 281 25 

1 152 921 504 606 846 976 60 0.000 000 000 000 000 000 867 361 737 988 403 547 205 962 240 695 953 369 140 625 
2 305 843 009 213 693 952 61 0.000 000 000 000 000 000 433 680 868 994 201 773 602 981 120 347 976 684 570 312 5 
4 611 686 018 427 387 904 62 0.000 000 000 000 000 000 216 840 434 497 100 886 801 490 560 173 988 342 285 156 25 
9 223 372 036 854 775 808 63 0.000 000 000 000 000 000 108 420 217 248 550 443 400 745 280 086 994 171 142 578 125 

xxxxviii 



TABLE OF POWERS OF SIXTEEN lO 

16" 

16 

256 

4 096 

65 536 

048 576 

16 777 216 

268 435 456 

4 294 967 296 

68 719 476 736 

099 511 627 776 

17 592 186 044 416 

281 474 976 710 656 

4 503 599 627 370 496 

72 057 594 037 927 936 

152 921 504 606 846 976 

" 
o 
1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

0.10000 

0.62500 

0.39062 

0.24414 

0.15258 

0.95367 

0.59604 

0.37252 

0.23283 

0.14551 

0.90949 

0.56843 

0.35527 

0.22204 

0.13877 

0.86736 

16-" 

00000 00000 00000 x 10 

00000 00000 00000 X 10-1 

50000 00000 00000 X 10-2 

06250 00000 00000 X 10-3 

78906 25000 00000 x 10-4 

43164 06250 00000 x 10-6 

64477 53906 25000 x 10-7 

90298 46191 40625 x 10-8 

06436 53869 62891 x 10-9 

91522 83668 51807 x 10-10 

47017 72928 23792 x 10-12 

41886 08080 14870 x 10-13 

13678 80050 09294 x 10-14 

46049 25031 30808 x 10-15 

78780 78144 56755 x 10-16 

17379 88403 54721 x 10-18 

TABLE OF POWERS OF 1016 

3 

23 

163 

OEO 

8AC7 

2 

17 

E8 

918 

5AF3 

807E 

8652 

1 

F 

98 

5F5 

3B9A 

540B 

4876 

04A5 

4E72 

107A 

A4C6 

6FC1 

4578 508A 

B6B3 A764 

2304 89E8 

10" " 
1 0 1.0000 

A 0.1999 

64 2 0.28F5 

3E8 3 0.4189 

2710 4 

86AO 5 

4240 6 

9680 7 

E100 8 

CAOO 9 

E400 10 

E800 11 

1000 12 

AOOO 13 

4000 14 

8000 15 

0000 16 

0000 17 

0000 18 

0000 19 

0.680B 

0.A7C5 

0.10C6 

0.1A07 

0.2AF3 

0.44B8 

0.60F3 

O.AFEB 

0.1197 

0.1C25 

0.2009 

0.480E 

0.734A 

0.B877 

0.1272 

0.1083 

0000 0000 0000 

9999 9999 999A 

C28F 5C28 F5C3 x 16- 1 

374B C6A7 EF9E x 16-2 

8BAC 710C B296 X 16-3 

AC47 1 B47 8423 X 16-4 

B5EO 8037 

BCAF 4858 

6118 73BF 

9B5A 52CC 

X 16-4 

X 16-5 

X 16-6 

X 16-7 

F7AO 

F29A 

1DC4 

2FAO 

7F67 

FFOB 

SEF6 

CB24 

EAOF X 16-8 

AAFF X 16-9 

9981 20EA 1119 X 16-9 

C268 4976 81C2 X 16-10 

3700 4257 

BE7B 9058 

CA5F 6226 

AA32 36A4 

5001 0243 

C94F B602 

3604 

5660 

FOAE 

B449 

ABA1 

AC35 

X 16-11 

X 16-12 

X 16-13 

X 16-14 

X 16-14 

X 16-15 

xxxxix 



HEXADECIMAL-DECIMAL INTEGER CONVERSION 

The table below provides for direct conversions between hexadecimal integers in the range O-FFF and decimal integers in the 
range 0-4095. For conversion of larger integers, the table values may be added to the following figures: 

Hexadecimal Decimal Hexadecimal Decimal 
01000 4096 20000 131 072 
02000 8192 30000 196608 
03000 12288 40000 262144 
04000 16384 50000 327680 
05000 20480 60000 393216 
06000 24576 70000 458752 
07000 28672 80000 524288 
08000 32768 90000 589824 
09 000 36864 AO 000 655360 
OAOOO 40960 BO 000 720896 
OB 000 45056 CO 000 786432 
OC 000 49152 DO 000 851 968 
OD 000 53248 EO 000 917504 
DE 000 57344 FO 000 983040 
OF 000 61440 100000 1 048576 
10 000 65536 200 000 2097152 
11000 69632 300000 3145728 
12000 73728 400000 4194304 
13 000 77 824 500000 5242880 
14000 81920 600000 6291 456 
15000 86016 700000 7340032 
16000 90112 800000 8388608 
17000 94208 900000 9437 184 
18000 98304 AOO 000 10485760 
19000 102400 BOO 000 11 534336 
lAOOO 106496 COO 000 12582912 
lB 000 110 592 DOO 000 13631 488 
lCOOO 114688 EOO 000 14680064 
lD 000 118784 FOO 000 15728640 
lE 000 122880 1 000000 16777 216 
1 FOOD 126976 2000000 33554432 

0 1 2 3 4 5 6 7 8 9 A B C D E F 

000 0000 0001 0002 0003 0004 0005 0006 0007 0008 0009 0010 0011 0012 0013 0014 0015 
010 0016 0017 0018 0019 0020 0021 0022 0023 0024 0025 0026 0027 0028 0029 0030 0031 
020 0032 0033 0034 0035 0036 0037 0038 0039 0040 0041 0042 0043 0044 0045 0046 0047 
030 0048 0049 0050 0051 0052 0053 0054 0055 0056 0057 0058 0059 0060 0061 0062 0063 

040 0064 0065 0066 0067 0068 0069 0070 0071 0072 0073 0074 0075 0076 0077 0078 0079 
050 0080 0081 0082 0083 0084 0085 0086 0087 0088 0089 0090 0091 0092 0093 0094 0095 
060 0096 0097 0098 0099 0100 0101 0102 0103 0104 0105 0106 0107 0108 0109 0110 0111 
070 0112 0113 0114 0115 0116 0117 0118 0119 0120 0121 0122 0123 0124 0125 0126 0127 

080 0128 0129 0130 0131 0132 0133 0134 0135 0136 0137 0138 0139 0140 0141 0142 0143 
090 0144 0145 0146 0147 0148 0149 0150 0151 0152 0153 0154 0155 0156 0157 0158 0159 
OAO 0160 0161 0162 0163 0164 0165 0166 0167 0168 0169 0170 0171 0172 0173 0174 0175 
OBO 0176 0177 0178 0179 0180 0181 0182 0183 0184 0185 0186 0187 0188 0189 0190 0191 

OCO 0192 0193 0194 0195 0196 0197 0198 0199 0200 0201 0202 0203 0204 0205 0206 0207 
ODO 0208 0209 0210 0211 0212 0213 0214 0215 0216 0217 0218 0219 0220 0221 0222 0223 
OEO 0224 0225 0226 0227 0228 0229 0230 0231 0232 0233 0234 0235 0236 0237 0238 0239 
OFO 0240 0241 0242 0243 0244 0245 0246 0247 0248 0249 0250 0251 0252 0253 0254 0255 

L 



HEXADECIMAL-DECIMAL INTEGER CONVERSION (Cont'd) 

0 1 2 3 4 5 6 7 8 9 A 8 C D E F 
100 0256 0257 0258 0259 0260 0261 0262 0263 0264 0265 0266 0267 0268 0269 0270 0271 
110 0272 0273 0274 0275 0276 0277 0278 0279 0280 0281 0282 0283 0284 0285 0286 0287 
120 0288 0289 0290 0291 0292 0293 0294 0295 0296 0297 0298 0299 0300 0301 0302 0303 
130 0304 0305 0306 0307 0308 0309 0310 0311 0312 0313 0314 0315 0316 0317 0318 0319 

140 0320 0321 0322 0323 0324 0325 0326 0327 0328 0329 0330 0331 0331 0333 0334 0335 
150 0336 0337 0338 0339 0340 0341 0342 0343 0344 0345 0346 0347 0348 0349 0350 0351 
160 0352 0353 0354 0355 0356 0357 0358 0359 0360 0361 0362 0363 0364 0365 0366 0367 
170 0368 0369 0370 0371 0372 0373 0374 0375 0376 0377 0378 0379 0380 0381 0382 0383 

180 0384 0385 0386 0387 0388 0389 0390 0391 0392 0393 0394 0395 0396 0397 0398 0399 
190 0400 0401 0402 0403 0404 0405 0406 0407 0408 0409 0410 0411 0412 0413 0414 0415 
lAO 0416 0417 0418 0419 0420 0421 0422 0423 0424 0425 0426 0427 0428 0429 0430 0431 
180 0432 0433 0434 0435 0436 0437 0438 0439 0440 0441 0442 0443 0444 0445 0446 0447 

lCO 0448 0449 0450 0451 0452 0453 0454 0455 0456 0457 0458 0459 0460 0461 0462 0463 
100 0464 0465 0466 0467 0468 0469 0470 0471 0472 0473 0474 0475 0476 0477 0478 0479 
1 EO 0480 0481 0482 0483 0484 0485 0486 0487 0488 0489 0490 0491 0492 0493 0494 0495 
1 FO 0496 0497 0498 0499 0500 0501 0502 0503 0504 0505 0506 0507 0508 0509 0510 0511 

200 0512 0513 0514 0515 0516 0517 0518 0519 0520 0521 0522 0523 0524 0525 0526 0527 
210 0528 0529 0530 0531 0532 0533 0534 0535 0536 0537 0538 0539 0540 0541 0542 0543 
220 0544 0545 0546 0547 0548 0549 0550 0551 0552 0553 0554 0555 0556 0557 0558 0559 
230 0560 0561 0562 0563 0564 0565 0566 0567 0568 0569 0570 0571 0572 0573 0574 0575 

240 0576 0577 0578 0579 0580 0581 0582 0583 0584 0585 0586 0587 0588 0589 0590 0591 
250 0592 0593 0594 0595 0596 0597 0598 0599 0600 0601 0602 0603 0604 0605 0606 0607 

I 260 0608 0609 0610 0611 0612 0613 0614 0615 0616 0617 0618 0619 0620 0621 0622 0623 
270 0624 0625 0626 0627 0628 0629 0630 0631 0632 0633 0634 0635 0636 0637 0638 0639 

280 0640 0641 0642 0643 0644 0645 0646 0647 0648 0649 0650 0651 0652 0653 0654 0655 
290 0656 0657 0658 0659 0660 0661 0662 0663 0664 0665 0666 0667 0668 0669 0670 0671 
2AO 0672 0673 0674 0675 0676 0677 0678 0679 0680 0681 0682 0683 0684 0685 0686 0687 
280 0688 0689 0690 0691 0692 0693 0694 0695 0696 0697 0698 0699 0700 0701 0702 0703 

2CO 0704 0705 0706 0707 0708 0709 0710 0711 0712 0713 0714 0715 0716 0717 0718 0719 
2DO 0720 0721 0722 0723 0724 0725 0726 0727 0728 0729 0730 0731 0732 0733 0734 0735 
2EO 0736 0737 0738 0739 0740 0741 0742 0743 0744 0745 0746 0747 0748 074~ 0750 0751 
2FO 0752 0753 0754 0755 0756 0757 0758 0759 0760 0761 0762 0763 0764 0765 . 0766 0767 

300 0768 0769 0770 0771 0772 0773 0774 0775 0776 0777 0778 0779 0780 0781 0782 0783 
310 0784 0785 0786 0787 0788 0789 0790 0791 0792 0793 0794 0795 0796 0797 0798 0799 
320 0800 0301 0802 0803 0804 0805 0806 0807 0808 0809 0810 0811 0812 0813 0814 0815 
330 0816 0817 0818 0819 0820 0821 0822 0823 0824 0825 0826 0827 0828 0829 0830 0831 

340 0832 0833 0834 0835 0836 0837 0838 0839 0840 0841 0842 0843 0844 0845 0846 0847 
350 0848 0849 0850 0851 0852 0853 0854 0855 0856 0857 0858 0859 0860 0861 0862 0863 
360 0864 0865 0866 0867 0868 0869 0870 0871 0872 0873 0874 0875 0876 0877 0878 0879 
370 0880 0881 0882 0883 0884 0885 0886 0887 0888 0889 0890 0891 0892 0893 0894 0895 

380 0896 0897 0898 0899 0900 0901 0902 0903 0904 0905 0906 0907 0908 0909 0910 0911 
390 0212 0913 0914 0915 0916 0917 0918 0919 0920 0921 0922 0923 0924 0925 0926 0927 
3AO 0928 0929 0930 0931 0932 0933 0934 0935 0936 0937 0938 0939 0940 0941 0942 0943 
380 0944 0945 0946 0947 0948 0949 0950 0951 0952 0953 0954 0955 0956 0957 0958 0959 

3CO 0960 0961 0962 0963 0964 0965 0966 0967 0968 0969 0970 0971 0972 0973 0974 0975 
3DO 0976 0977 0978 0979 0980 0981 0982 0983 0984 0985 0986 0987 0988 0989 0990 0991 
3EO 0992 0993 0994 0995 0996 0997 0998 0999 1000 1001 1002 1003 1004 1005 1006 1007 
3FO 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 

Li 



HEXADECIMAL-DECIMAL INTEGER CONVERSION (Cont'd) 

0 1 2 3 4 5 6 7 8 9 A 8 C 0 E F 
400 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 
410 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 
420 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 
430 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 

440 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 
450 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 
460 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 n30 1131 1132 1133 1134 1135 
470 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 

480 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 
490 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 
4AO 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 
480 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 

4CO 1216 1217 1218 1219 1220 1221 1222 1223 ·1224 1225 1226 1227 1228 1229 1230 1231 
400 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 
4EO 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 
4FO 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 

500 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 
510 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 
520 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 
530 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 

540 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 
550 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 
560 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 
570 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 

580 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 
590 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 
5AO 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 
5BO 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 

5CO 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 
500 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 
5EO 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 
5FO 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 

600 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 
610 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 
620 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 
630 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 

640 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 
650 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 
660 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 
670 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 

680 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 
690 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 
6AO 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 
6BO 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 

, 
6CO 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 
600 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 
6EO 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 
6FO 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 

Lii 



HEXADECIMAL-DECIMAL INTEGER CONVERSION (Cent'd) 

0 1 2 3 4 5 6 7 8 9 A 8 C D E F 

700 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 
710 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 
720 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 
730 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 

740 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 
750 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 
760 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 
770 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 

780 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 
790 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 
7AO 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 
780 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 

7CO 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 
7DO 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 
7EO 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 
7FO 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 

800 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 
810 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 
820 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 
830 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 

840 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 
850 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 
860 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 
87(1 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 

880 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 
890 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 
8AO 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 
880 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 

8CO 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 
8DO 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 
8EO 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 
8FO 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 

900 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 
910 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 
920 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 
930 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 

940 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 
950 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 
960 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 
970 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 

980 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 
990 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 
9AO 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 
980 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 

9CO 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 
900 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 
9EO 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 
9FO 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 

Liii 



HEXADECIMAL-DECIMAL INTEGER CONVERSION (Cont'd) 

0 1 2 3 4 5 6 7 8 9 A B C D E F 
AOO 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 
A10 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 
A20 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 
A30 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 

A40 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 
A50 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 
A60 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 
A70 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 

A80 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 
A90 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 
AAO 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 
ABO 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 

ACO 2752 2753 2754 2755 2756 2757 2758 2759 2760 4761 2762 2763 2764 2765 2766 2767 
ADO 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 
AEO 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 
AFO 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 

BOO 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 
B10 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 
B20 2848 2849 2850 3851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 
B30 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 

B40 2880 2881 2882 ·2883 2884 2885 2866 2887 2888 2889 2890 2891 2892 2893 2894 2895 
B50 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 
B60 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 
B70 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 

B80 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 
B90 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 
BAO 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 
B80 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 

BCO 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 
BDO 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 
BEO 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 
BFO 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 

COO 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 
Cl0 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 
C20 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 
C30 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 

C40 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 
C50 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 
C60 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 
C70 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 

C80 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 
C90 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 
CAO 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 
CBO 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 

CCO 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 
CDO 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 
CEO 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 
CFO 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 

Liv 



HEXADECIMAL-DECIMAL INTEGER CONVERSION (Cont'd) 

0 1 2 3 4 5 6 7 8 9 A B C D E F 

DOO 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 
Dl0 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 
D20 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 
D30 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 

D40 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 
D50 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 
D60 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 
D70 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 

D80 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 
D90 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 
DAO 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 
DBO 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 

DCO 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 
CCO 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 
DEO 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 
DFO 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 

EOO 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 
El0 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 
E20 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 
E30 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 

E40 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 
E50 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 
E60 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 
E70 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 

E80 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 
E90 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 
EAO 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 
EBO 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 

ECO 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 
EDO 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 
EEO 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 
EFO 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 

FOO 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 
F10 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 
F20 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 
F30 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 

F40 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 
F50 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 
F60 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 
F70 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 

F80 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 
F90 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 
FAO 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 
FBO 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 

FCO 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 
FDO 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 
FEO 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 
FFO 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 

Lv 



INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, CA 95051 (408) 246-7501 

'1974 Printed In U.S.A MCS-'134-0674-2500 


	0001
	0002
	001
	002
	003
	004
	005
	006
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77
	78
	79
	80
	81
	82
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	A-19
	A-20
	A-21
	A-22
	A-23
	A-24
	A-25
	A-26
	A-27
	A-28
	A-29
	A-30
	A-31
	A-32
	A-33
	A-34
	A-35
	A-36
	A-37
	A-38
	A-39
	A-40
	A-41
	A-42
	A-43
	A-44
	A-45
	A-46
	A-47
	A-48
	A-49
	A-50
	A-51
	A-52
	A-53
	A-54
	A-55
	xBack

