

.. inter

MCS® -80/85 FAMILY
USER'S MANUAL

Jan uary 1983 .

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which may
appear in this document nor does it make a commitment to update the information contained herein.

The following are trademarks of Intel Corporation and may only be used to identify Intel Products:

BXP, CREDIT, i, ICE, 1
2-ICE, iCS, iLBX,im, iMMX, Insite, INTEL,

intel, Intelevision, Intellec, inteligent IdentifierTM, inteligent
Programming™, Intellink, iOSP, iPDS, iRMS, iSBC,
iSBX, iSXM, Library Manager, MCS, Megachassis,
Micromainframe, MULTI BUS, Multichannel™ Plug-A-Bubble,
MULTIMODULE, PROMPT, Promware, RMXJ80, RUPI, System
2000, and UPI, and the combination of ICE, iCS, iRMX, iSBC,
MCS, or UPI and a numerical suffix.

MDS is an ordering code only and is not used as a product name or trademark. MDS® is a registered trademark of
Mohawk Data Sciences Corporation.

* MULTIBUS is a patented Intel bus.

Additional copies of this manual or other Intel literature may be obtained from:

©INTEl CORPORATION, 1982

Intel Corporation
Literature Department
3065 Bowers Avenue
Santa Clara, CA 95051

Table of Contents

CHAPTER 1

Part 1: Introduction to the Functions of a Computer 1-1
Part 2. Introduction to MCS®-85 ... 1-6

CHAPTER 2

Functional Description .. 2-1

CHAPTER 3

System Operation and Interfacing .. 3-1

CHAPTER 4

The 8080 Central Processor Unit ... 4-1

CHAPTER 5

The Instruction Set ... 5-1
Instruction Set Index .. 5-19

*CHAPTER 6

Device Specifications
8080A/8080A-1 /8080A-2 8-Bit N-Chcimnel Microprocessor. .. 6-1
8085AH/8085AH-2/8085AH-1 8-Bit HMOS Microprocessors 6-10
8085A/8085A-2 Single Chip 8-Bit N-Channel Microprocessors 6-26

APPENDIX

Applications of MCS®-85 .. A1-1

WORKSHOPS

* For complete data sheets on all microprocessor and peripheral products, refer to the Micro­
processor and Peripherals Handbook. See inside front cover to order.

iii

Introduction

CHAPTER 1
PART 1: INTRODUCTION TO

THE FUNCTIONS OF A COMPUTER

This chapter introduces certain basic computer con­
cepts. It provides background information and definitions
which will be useful in later chapters of this manual. Those
already familiar with computers may skip this material, at
their option.

A TYPICAL COMPUTER SYSTEM

A typical digital computer consists of:

a) A central processor unit (CPU)
b) A memory
c) I nput/output (I/O) ports

The memory serves as a place to store Instructions,
the coded pieces of information that direct the activities of
the CPU, and Data, the coded pieces of information that are
processed by the CPU. A group of logically related instruc­
tions stored in memory is referred to as a Program. The CPU
"reads" each instruction from memory in a logically deter­

mined sequence, and uses it to initiate processing actions.
If the program sequence is coherent and logical, processing
the program will produce intelligible and useful results.

The memory is also used to store the data to be manip­
ulated, as well as the instructions that direct that manipu­
lation. The program must be organized such that the CPU
does not read a non-instruction word when it expects to
see an instruction. The CPU can rapidly access any data
stored in memory; but often the memory is not large enough
to store the entire data bank required for a particular appli­
cation. The problem can be resolved by providing the com­
puter with one or more Input Ports. The CPU can address
these ports and input the data contained there. The addition
of input ports enables the computer to receive information
from external equipment (such as a paper tape reader or
floppy disk) at high rates of speed and in large volumes.

A computer also requires one or more Output Ports
that permit the CPU to communicate the result of its pro­
cessing to the outside world. The output may go to a dis­
play, for use by a human operator, to a peripheral device
that produces "hard-copy," such as a line-printer, to a

1-1

peripheral storage device, such as a floppy disk unit, or the
output may constitute process control signals that direct the
operations of another system, such as an automated assembly
line. Like input ports, output ports are addressable. The
input and output ports together permit the processor to
communicate with the outside world.

The CPU unifies the system. It controls the functions
performed by the other components. The CPU must be able
to fetch instructions from memory, decode their binary
contents and execute them. It must also be able to reference
memory and I/O ports as necessary in the execution of in­
structions. In addition, the CPU should be able to recognize
and respond to certain external control signals, such as
INTERRUPT and WAIT requests. The functional units
within a CPU that enable it to perform these functions are
described below.

THE ARCHITECTURE OF A CPU

A typical central processor unit (CPU) consists of the
following interconnected functional units:

• Registers
• Arithmetic/Logic Unit (ALU)

• Control Circuitry

Registers are temporary storage units within the CPU.
Some registers, such as the program counter and instruction
register, have dedicated uses. Other registers, such as the ac­
cumulator, are for more general purpose use.

Accumu lator:

The accumulator usually stores one of the operands
to be manipulated by the ALU. A typical instruction might
direct the ALU to add the contents of some other register to
the contents of the accumulator and store the result in the
accumulator itself. In general, the accumulator is both a
source (operand) and a destination (result) register.

Often a CPU will include a number of additional
general purpose registers that can be used to store operands
or intermediate data. The availabil ity of general purpose

registers eliminates the need to "shuffle" intermediate re­
sults back and forth between memory and the accumulator,
thus improving processing speed and efficiency.

Program Counter (Jumps, Subroutines
and the Stack):

The instructions that make up a program are stored
in the system's memory. The central processor references
the contents of memory, in order to determine what action
is appropriate. This means that the processor must know
which location contains the next instruction.

Each of the locations in memory is numbered, to dis­
tinguish it from all other locations in memory. The number
which identifies a memory location is called its Address.

The processor maintains a counter which contains the
address of the next program instruction. This register is
called the Program Counter. The processor updates the pro­
gram counter by adding "1" to the counter each time it
fetches an instruction, so that the program counter is always
current (pointing to the next instruction).

The programmer therefore stores his instructions in
numerically adjacent addresses, so that the lower addresses
contain the first instructions to be executed and the higher
addresses contain later instructions. The only time the pro­
grammer may violate this sequential rule is when an instruc­
tion in one section of memory is a Jump instruction to
another section of memory.

A jump instruction contains the address of the instruc­
tion which is to follow it_ The next instruction may be
stored in any memory location, as long as the programmed
jump specifies the correct address. During the execution of
a jump instruction, the processor replaces the contents of its
program counter with the address embodied in the Jump.
Thus, the logical continuity of the program is maintained.

A special kind of program jump occurs when the stored
program "Calls" a subroutine. In this kind of jump, the pro­
cessor is required to "remember" the contents of the pro­
gram counter at the time that the jump occurs. This enables
the processor to resume execution of the main program
when it is finished with the last instruction of the subroutine.

A Subroutine is a program within a program. Usually
it is a general-purpose set of instructions that must be exe­
cuted repeatedly in the course of a main program. Routines
which calculate the square, the sine, or the logarithm of a
program variable are good examples of functions often
written as subroutines. Other examples might be programs
designed for inputting or outputting data to a particular
peripheral device.

The processor has a special way of handling sub­
routines, in order to insure an orderly return to the main

program. When the processor receives a Call instruction, it
increments the Program Counter and stores the counter's
contents in a reserved memory area known as the Stack.
The Stack thus saves the address of the instruction to be
executed after the subroutine is completed. Then the pro-

1-2

cessor loads the address specified in the Call into its Pro­
gram Counter. The next instruction fetched will therefore
be the first step of the subroutine.

The last instruction in any subroutine is a Return. Such
an instruction need specify no address. When the processor
fetches a Return instruction, it simply replaces the current
contents of the Program Counter with the address on the
top of the stack. This causes the processor to resume execu­
tion of the calling program at the point immediately foLlow­
ing the original Call Instruction.

Subroutines are often Nested; that is, one subroutine
will sometimes call a second subroutine. The second may
call a third, and so on. This is perfectly acceptable, as long
as the processor has enough capacity to store the necessary
return addresses, and the logical provision for doing so. In
other words, the maximum depth of nesting is determined
by the depth of the stack itself. If the stack has space for
storing three return addresses, then three levels of subrou­
tines may be accommodated.

Processors have different ways of maintaining stacks.
Some have facilities for the storage of return addresses built
into the processor itself_ Other processors use a reserved
area of external memory as the stack and simply maintain a
Pointer register which contains the address of the most
recent stack entry. The external stack allows virtually un­
limited subroutine nesting. In addition, if the processor pro­
vides instructions that cause the contents of the accumulator
and other general purpose registers to be "pushed" onto the
stack or "popped" off the stack via the address stored in the
stack pointer, multi-level interrupt processing (described
later in this chapter) is possible. The status of the processor
(i.e., the contents of all the registers) can be saved in the
stack when an interrupt is accepted and then restored after
the interrupt has been serviced. This ability to save the pro­
cessor's status at any given time is possible even if an inter­
rupt service routine, itself, is interrupted.

Instruction Register and Decoder:

Every computer has a Word Length that is characteris­
tic of that machine. A computer's word length is usually
determined by the size of its internal storage elements and
interconnecting paths (referred to as Busses); for example,
a computer whose registers and busses can store and trans­
fer 8 bits of information has a characteristic word length of
8-bits and is referred to as an 8-bit parallel processor. An
eight-bit parallel processor generally finds it most efficient
to deal with eight-bit binary fields, and the memory asso­
ciated with such a processor is therefore organized to store
eight bits in each addressable memory location. Data and
instructions are stored in memory as eight-bit binary num­
bers, or as numbers that are integral multiples of eight bits:

16 bits, 24 bits, and so on. This characteristic eight-bit field
is often referred to as a Byte.

Each operation that the processor can perform is
identified by a unique byte of data known as an Instruction

Code or Operation Code. An eight-bit word used as an in­
struction code can distinguish between 256 alternative
actions, more than adequate for most processors.

The processor fetches an instruction in two distinct
operations. First, the processor transmits the address in its
Program Counter to the memory. Then the memory returns
the addressed byte to the processor. The CPU stores this
instruction byte in a register known as the Instruction
Register, and uses it to direct activities during the remainder
of the instruction execution.

The mechanism by which the processor translates an
instruction code into specific processing actions requires
more elaboration than we can here afford. The concept,
however, should be intuitively clear to any logic designer.
The eight bits stored in the instruction register can be de­
coded and used to selectively activate one of a number of
output lines, in this case up to 256 lines. Each line repre­
sents a set of activities associated with execution of a par­
ticular instruction code. The enabled line can be combined
with selected timing pulses, to develop electrical signals that
can then be used to initiate specific actions. This transla­
tion of code into action is performed by the Instruction
Decoder and by the associated control circu itry.

An eight-bit instruction code is often sufficient to
specify a particular processing action. There are times, how­
ever, when execution of the instruction requires more infor­
mation than eight bits can convey.

One example of this is when the instruction refer­
ences a memory location. The basic instruction code iden­
tifies the operation to be performed, but cannot specify
the object address as well. In a case like this, a two- or three­
byte instruction must be used. Successive instruction bytes
are stored in sequentially adjacent memory locations, and
the processor performs two or three fetches in succession to
obtain the full instruction. The first byte retrieved from
memory is placed in the processor's instruction register, and
subsequent bytes are placed in temporary storage; the pro­
cessor then proceeds with the execution phase. Such an
instruction is referred to as Variable Length.

Address Register(s):

A CPU may use a register or register-pair to hold the
address of a memory location that is to be accessed for

data. If the address register is Programmable, (i.e., if there
are instructions that allow the programmer to alter the
contents of the register) the program can "build" an ad­
dress in the address register prior to executing a Memory
Reference instruction (i.e., an instruction that reads data
from memory, writes data to memory or operates on data
stored in memory).

Arithmetic/Logic Unit (ALU):

All processors contain an arithmetic/logic unit, which
is often referred to simply as the ALU. The ALU, as its
name implies, is that portion of the CPU hardware which

1-3

performs the arithmetic and logical operations on the binary

data.

The ALU must contain an Adder which is capable of
combining the contents of two registers in accordance with
the logic of binary arithmetic. This provision permits the
processor to perform arithmetic manipulations on the data
it obtains from memory and from its other inputs.

Using only the basic adder a capable programmer can
write routines which will subtract, multiply and divide, giv­
ing the machine complete arithmetic capabilities. In practice,
however, most ALUs provide other built-in functions, in­
cluding hardware subtraction, boolean logic operations, and
shift capabilities.

The ALU cqntains Flag Bits which specify certain
conditions that arise in the course of arithmetic and logical
manipulations. Flags typically include Carry, Zero, Sign, and
Parity. It is possible to program jumps which are condi­
tionally dependent on the status of one or more flags. Thus,
for example, the program may be designed to jump to a
special routine if the carry bit is set following an addition
instruction.

Control Circuitry:

The· control circuitry is the primary functional unit
within a. CPU. Using clock inputs, the control circuitry
'maintains the proper sequence of events required for any
processing task. After an instruction is fetched and decoded,
the control circuitry issues the appropriate signals (to units
both internal and external to the CPU) for initiating the
proper processing action. Often the control circuitry will be
capable of responding to external signals, such as an inter­
rupt or wait request. An Interrupt request will cause the
control circuitry to temporarily interrupt main program
execution, jump to a special routine to service the interrupt­
ing device, then automatically return to the main program.
A Wait request is often issued by a memory or I/O element
that operates slower than the CPU. The control circuitry
will idle the CPU until the memory or I/O port is ready with
the data.

COMPUTER OPERATIONS

There are certain operations that are basic to almost
any computer. A sound understanding of these basic opera­
tions is a necessary prerequisite to examining the specific
operations of a particular computer.

Timing:

The activities of the central processor are cycl ical. The
processor fetches an instruction, performs the operations
required, fetches the next instruction, and so on. This
orderly sequence of events requires precise timing, and the
CPU therefore requires a free running oscillator clock which
furnishes the reference for all processor actions. The com­
bined fetch and execution of a single instruction is referred
to as an Instruction Cycle. The portion of a cycle identified

with a clearly defined activity IS called a State. And the inter­
val between pulses of the timing oscillator is referred to as a
Clock Period. As a general rule, one or more clock periods
are necessary for the completion of a state, and there are
several states in a cycle.

Instruction Fetch:

The first state(s) of any instruction cycle will be
dedicated to fetching the next instruction. The CPU issues a
read signal and the contents of the program counter are sent
to memory, which responds by returning the next instruc­
tion word. The first byte of the instruction is placed in the
instruction register. If the instruction consists of more than
one byte, additional states are required to fetch each byte
of the instruction. When the entire instruction is present in
the CPU, the program counter is incremented (in prepara­
tion for the next instruction fetch) and the instruction is
decoded. The operation specified in the instruction will be
executed in the remaining states of the instruction cycle.
The instruction may call for a memory read or write, an
input or output and/or an internal CPU operation, such as
a register-to-register transfer or an add-registers operation.

Memory Read:

An instruction fetch is merely a special memory read
operation that brings the instruction to the CPU's instruc­
tion register. The instruction fetched may then call for data
to be read from memory into the CPU. The CPU again issues
a read signal and sends the proper memory address; memory
responds by returning the requested word. The data re­
ceived is placed in the accumulator or one of the other gen­
eral purpose registers (not the instruction register).

Memory Write:

A memory write operation is similar to a read except
for the direction of data flow. The CPU issues a write
signal, sends the proper memory address, then s~nds the data
word to be written into the addressed memory location.

Wait (memory synchronization):

As previously stated, the activities of the processor
are timed by a master clock oscillator. The clock period
determines the timing of all processing activity.

The speed of the processing cycle, however, is limited
by the memory's Access Time. Once the processor has sent a
read address to memory, it cannot proceed until the memory
has had time to respond. Most memories are capable of
responding much faster than the processing cycle requires.
A few, however, cannot supply the addressed byte within
the minimum time established by the processor's clock.

Therefore a processor should contain a synchroniza­
tion provision, which permits the memory to request a Wait

state. When the memory receives a read or write enable ~ig­
nal, it places a request signal on the processor'sR EADY f.ine,

causing the CPU to idle temporarily. After the memory has

1-4

had time to respond, it frees the processor's READY line,
and the instruction cycle proceeds.

Input/Output:

InpLJt and Output operations are similar to memory
read and write operations with the exception that a peri­
pherall/O device is addressed instead of a memory location.
The CPU issues the appropriate input or outppt control
signal, sends the proper device address and either receives
the data being input or sends the data to be output.

Data can be input/output in either parallel or serial
form. All data within a digital computer is represented in
binary coded form. A binary data word consists of a group
of bits; each bit is either a one or a zero. Parallel I/O con­
sists of transferring all bits in the word at the same time,
one bit per line. Serial I/O consists of transferring one bit
at a time on a single line. Naturally serial I/O is much
slower, but it requires considerably less hardware than does
parallel I/O.

Interrupts:

Interrupt provisions are included on many central
processors, as a means of improving the processor's effi­
ciency. Consider the case of a computer that is processing a
large volume of data, portions of which are to be output
to a printer. The CPU can output a byte of data within a
single machine cycle but it may take the printer the equiva­
lent of many machine cycles to actually print the character
specified by the data byte. The CPU could then remain idle
waiting until the printer can accept the next data byte. If
an interrupt capability is implemented on the computer, the
CPU can output a data byte then return to data processing.
When the printer is ready to accept the next data byte, it
can request an interrupt. When the CPU acknowledges the
interrupt, it suspends main program execution and auto­
matically branches to a routine that will output the next
data byte. After the byte is output, the CPU continues
with main program execution. Note that this is, in principle,
quite similar to a SUbroutine call, except that the jump is
initiated externally rather than by the program.

More complex interrupt structures are possible, in
which several interrupting devices share the same processor
but have different priority levels. Interruptive processing is
an important feature that enables maximum untilization of
a processor's capacity for high system throughput.

Hold:

Another important feature that improves the through­
put of a processor is the Hold. The hold provision enables

Direct Memory Access (DMA) operations.

In ordinary input and output operations, the processor
itself supervises the entire data transfer. Information to be
placed in memory is transferred from the input device to the
processor, and then from the processor to the designated

memory location. In similar fashion, information that goes

from memory to output devices goes by way of the
processor.

Some peripheral devices, however, are capable of
transferring information to and from memory much faster
than the processor itself can accomplish the transfer. If any
appreciable quantity of data must be transferred to or from
such a device, then system throughput will be increased by

CPU
MODULE

1·5

having the device accomplish the transfer directly. The pro·
cessor must temporarily suspend its operation during such a
transfer, to prevent conflicts that would arise if processor
and peripheral device attempted to access memory simul·
taneously. It is for this reason that a hold provision is in·
cluded on some processors.

PART 2: INTRODUCTION TO MCS-85™

THE MCS·SS™ MICROCOMPUTER
SYSTEM

The basic philosophy behind the MCS·85
microcomputer system is one of logical, evolu­
tionary advance in technology without the
waste of discarding existing investments in
hardware and software. The MCS-85 provides
the existing 8080 user with an increase in per­
formance, a decrease in the component count,
operation from a single 5-Volt power supply, and
still preserves 100% of his existing software in­
vestment. For the' new microcomputer user, the
MCS-85 represents the refinement of the most
popular microcomputer in the industry, the Intel
8080, along with a wealth of supporting soft­
ware, documentation and peripheral com­
ponents to speed the cycle from prototype to
production. The same development tools that
Intel has produced to support the 8080
microcomputer system can be used for the
MCS-85, and additional add-on features are
available to optimize system development for
MCS-85~

This section of the MCS-80/85 User's Manual
will briefly detail the basic differences between
the MCS-85 and MCS-80 families. It will illus­
trate both the hardware and software compati­
bilities and also reveal some of the engineering
trade-ofts that were met during the design 'of
the MCS-85. More detailed discussion of the
MCS-85 bus operation and component
specifications are available in Chapters: 2, 3, 4,
and 5. The information provided in Chapter 1
will be helpful in understanding the basic con­
cepts and philosophies behind the MCS-85.

EVOLUTION

In December 1971, Intel introduced the first
general purpose, 8-bit microprocessor, the
8008. It was implemented in P-channel MOS
technology and was packaged in a single 18
pin, dual in-line package (DIP). The 8008 used
standard semiconductor ROM and RAM and,
for the most part, TTL components for I/O and
general interface. It immediately found applica­
tions in byte-oriented end products such as ter­
minals and computer peripherals where its in­
struction execution (20 micro·seconds), general

1·6

60

30

15

3
1

1\
\ 8080

~
~ 80SOA

"-
8080A AND

PERIPHERALS

\ 8085

1971 1972 1973 1974 1975 1976 1977

8-BIT SMALL SYSTEM COMPONENT COUNT 1971 - 1977

INTRODUCTION TO MCS-85™

purpose organization and instruction set
matched the requirements of these products.
Recognizing that hardware was but a small part
in the overall system picture, Intel developed
both hardware and software tools for the
design engineer so that the transition from pro­
totype to production would be as simple and
fast as possible. The commitment of providing
a total systems approach with the 8008 micro­
computer system was actually the basis for the
sophisticated, comprehensive development
tools that Intel has available today.

THE 8080A MICROPROCESSOR

With the advent of high-production N-channel
RAM memories and 40 pin DIP packaging, Intel
designed the 8080A microprocessor. It was
designed to be software compatible with the
8008 so that the existing users of the 8008 could
preserve their investment in software and at the
same time provide dramatically increased per­
formance (2 micro-second instruction execu­
tion), while reducing the amount of components
necessary to implement a system. Additions
were made to the basic instruction set to take
advantage of this increased performance and
large system-type features were included on­
chip such as DMA, 16-bit addressing and exter­
nal stack memory so that the total spectrum of
application could be significantly increased.
The 8080 was first sampled in December 1973.
Since that time it has become the standard of
the industry and is accepted as the primary
building block for more microcomputer based
applications than all other microcomputer sys­
tems combined.

A TOTAL SYSTEMS COMMITMENT

The Intel® 8080A Microcomputer System en­
compasses a total systems commitment to the
user to fully support his needs both in develop­
ing prototype systems and reliable, high volume
production. From complex MOS/LSI peripheral
components to resident high level systems
language (PUM) the Intel® 8080 Microcom­
puter System provides the most comprehen­
sive, effective solution to today's system pro­
blems.

1-7

20

15

10 ~\ rl
r \

1

r
o
1973

l
\
\

1974

PROTOTYPE

1975

YEAR

1976 1977

PRODUCTION

:::

--
1978

INTRODUCTION TO MCS-85™

SOFTWARE COMPATIBILITY

As with any computer system the cost of soft­
ware development far outweighs that of hard­
ware. A microcomputer-based system is tradi­
tionally a very cost-sensitive application and
the development of software is one of the key
areas where success or failure of the cost ob­
jectives is vital.

8080A 808SA
PROGRAMS SYSTEM

The 8085A CPU is 100% software compatible
with the Intel® 8080A CPU. The compatibility is
at the object or "machine code" level so that ex­
isting programs written for 8080A execution will
run on the 8085A as is. The value of this
becomes even more evident to the user who has
mask programmed ROMs and wishes to update
his system without the need for new masks.

PROGRAMMER TRAINING

A cost which is often forgotten is that of pro­
grammer training. A new, or modified instruc­
tion set, would require programmers to relearn
another set of mnemonics and greatly affect
the productivity during development. The 100%
compatibility of the 8085A CPU assures that no
re-training effort will be required.

BOBOA
DEVELOPMENT

TOOLS

MCS_85™

8080A
PROGRAM
LIBRARIES

1·8

For the new microcomputer user, the software
compatibility between the 8085A and the 8080A
means that all of the software development
tools that are available for the 8080A and all
software libraries for 8080A will operate with
the new design and thus save immeasurable
cost in development and debug.

The 8085A CPU does however add two instruc­
tions to initialize and maintain hardware
features of the 8085A. Two of the unused op­
codes of the 8080A instruction set were
designated for the addition so that 100% com­
patibility could be maintained.

HARDWARE COMPATIBILITY

The integration of auxiliary 8080A functions,
such as clock generation, system control and
interrupt prioritization, dramatically reduces
the amount of components necessary for most
systems. In addition, the MCS-85 operates off a
single + 5 Volt power supply to further simplify
hardware development and debug. A close ex­
amination of the AC/DC specifications of the
MCS-85 systems components shows that each
is specified to supply a minimum of 400ltA of
source current and a full TTL load of sink cur­
rent so that a very substantial system can be
constructed without the need for extra TTL buf­
fers or drivers. Input and output voltage levels
are also specified so that a minimum of 350mV
noise margin is provided for reliable, high­
performance operation.

PC BOARD CONSIDERATIONS

The 8085A CPU and the 8080A are not pin­
compatible due to the reduction in power sup­
plies and the addition of integrated auxiliary
features. However, the pinouts of the MCS-85
system components were carefully assigned to
minimize PC board area and thus yield a
smooth, efficient layout. For new designs this
incompatibility of pinouts presents no pro­
blems and for upgrades of existing designs the
reduction of components and board area will
far offset the incompatibility.

MCS·S5™ SPECIAL PERIPHERAL
COMPONENTS

The MCS-85 was designed to minimize the
amount of components required for most
systems. Intel designed several new peripheral
components that combine memory, 110 and
timer functions to fulfill this requirement. These
new peripheral devices directly interface to the
multiplexed MCS-85 bus structure and provide
new levels in system integration for today's
designer.

101;;;----1

*---.. ,
AlE----1

AD---....

ViiR---.. '

RESET---",

TIMER IN

256 X 8

STATIC

RAM

TIMER

TIMER OUT-------'

~Vee(+5V)
Vss (OV)

*: 8155 = CE, 8156 = CE

8155/8156 RAM, 1/0 and Timer

256 bytes RAM
Two 8·bit ports
One 6·bit port (programmable)
One 14·bit programmable interval timer
Single + 5 Volt supply operation
40 pin DIP plastic or cerdip package

8355 ROM and 1/0

2K bytes ROM

~VCCI+5VI
vss IOVI

Two 8·bit ports (direction programmable)
Single + 5 Volt supply operation
40 pin DIP plastic or cerdip package

1·9

ClK

READY

ADo-7

As- lO

CE

101M

ALE

AD

iOW

RESET

lOR

2K x 8
EPROM

PROG/CE~
Voo

8755A EPROM and I/O

Socket compatible with 8355
2K bytes EPROM

0
G

Vee (+5V)

L..---Vss (OV)

Two 8·bit ports (direction programmable)
Single + 5 Volt supply read operation
U.V. Erasable
40 pin DIP package

One of the most important advances made with
the MCS-85 is the socket-compatibility of the
8355 and 8755A components. This allows the
systems designer to develop and debug in
erasable PROM and then, when satisfied,
switch over to mask-programmed ROM 8355
with no performance degradation or board
relayout. It also allows quick prototype produc­
tion for market impact without going to a com­
promise solution.

TIMER IN

TIMER OUT

1/0 PORTS

SYSTEM EXPANSION

1/0 PORTS

I/O PORTS

Each of these peripheral components has
features that allow a small to medium system
to be constructed without the addition of buf­
fers and decoders to maintain the lowest possi­
ble component count.

11

INTERRUPTS
I

!
RST 7.5 RST6.5 RST 5.5

X,

X2

r
TRAP

SERIAL
DATA
LINES

~
'! r
SIO SOO

8085A CPU

101

! t t
RESET IN SI SO

CLK HOLD
INTR J!1j M I RESET

AOo---- ---ADl As-------A,5 ALE 1 WR 1 ROY OUT HLDA IfmI

ALE

AD
Wii

IIOIM
READY

CLK

RESET

HOLD

HLDA

INTR

INTA

11
1

TES ROM 2K BY
256 BY
llNTE
48·BIT
16·BIT
41NTE
2SERI

TES RAM
RVAL TlMERIEVENT COUNTER
I/O PORTS
I/O·ST ATUS PORT

RRUPT LEVELS
AL I/O LINES

+5V

L

Il

PORT A
I

I

PAO- - - - ----PAl

I

PORT C
I

J
PCO- - - - - --PCs

I

PORT B
I

1

POo- - - :... - - - -POl

8156 RAM -I/O - TIMER/COUNTER
(256 x 81

101
iili M

ADD· - - - - - - -ADl CE ALE I Wii RESET

1
1

CE I Ag I RESETI ROY WR
A,o As CLK 101M J!1j

ALE ADo-------ADl

CE 8355 ROM - I/O
8755A EPROM - I/O

2K X 8

PAo----------PAl POo- - - - - - - - - .P07

I I
I

PORT A

II 1 J I
1

PORT B

J I

Figure 1·1. MCS·SS™ Basic System

1-10

TIMER
N -I

- TIMER
OUT

} ADR
DATA

} ADR

-

- CONTROL

-

INTERFACING TO MCS·80/8S™
PROGRAMMABLE PERIPHERAL
COMPONENTS

The MCS·85 shares with the MCS-80 a wide
range of peripheral components that solve
system problems and provide the designer with
a great deal of flexibility in his I/O, Interrupt and
DMA structures. The MCS-85 is directly com·
patible with these peripherals, and, with the ex·
ception of the 8257-5 DMA controller, needs no
additional circuitry for their interface in a
minimum system. The 8257-5 DMA controller
uses an 8212 latch and some gating to support
the multiplexed bus of MCS-85.

PROGRAMMABLE PERIPHERALS

The list of programmable peripherals for use
with the 8085A includes:

8251A Programmable Communications
Interface

8253-5 Programmable Interval Timer
8255A-5 Programmable Peripheral Inter·

8257-5
8259-5

8271
8273

8275
8278
8279

face
Programmable DMA Controller
Programmable Interrupt Con·

troller
Diskette Controller
Synchronous Data Link Con-

troller
CRT Controller
Keyboard/Display Controller
Keyboard/Display Controller

The MCS-80/85 peripheral compatibility assures
the designer. that all new peripheral com­
ponents from Intel will interface to the MCS-85
bus structure to further expand the application
spectrum of MCS-85.

BOB5A

BOB5A

ALE

1-11

CONTROL BUS

SERIAL I/O

MEMil. lOR.

M"EMw. lOW

INTERFACING TO STANDARD MEMORY

The MC5-85 was designed to support the full
range of system configurations from small 3
chip applications to large memory and 110 ap­
plications. The 8085A CPU issues advanced
READIWRITE status signals (SO, 51, and 101M)
so that, in the case of large systems, these
signals could be used to simplify bus arbitra­
tion logic and dynamic RAM refresh circuitry.

In large, memory-intensive systems, standard
memory devices may provide a more cost­
effective solution than do the special 8155 and
8355 devices, especially where few 110 lines are
required.

DEMULTIPLEXING THE BUS

In order to interface standard memory com­
ponents such as Intel® 2114,2142,2716, 2316E,
2104A and 2117 the MeS-85 bus must be
"demultiplexed". This is accomplished by con­
necting an Intel® 8212 latch to the data bus and
strobing the latch with the ALE signal from the
8085A CPU. The ALE signal is issued to indicate
that the multiplexed bus contains the lower
8-bits of the address. The 8212 latches this in­
formation so that a full 16-bit address is
available to interface standard memory com­
ponents.

USE OF 8212

Larg~, memory intensive systems are usually
multi-card implementations and require some
form of TIL buffering to provide necessary cur­
rent and voltage levels. Frequently, 8212s are
used for this purpose. The 8212 has the advan­
tage of being able to latch and demultiplex the
address bus and provide extra address drive
capability at the same time.

BOBSA

ALE

1-12

INTRODUCTION TO MCS-85™

SYSTEM PERFORMANCE

The true benchmark of any microcomputer­
based system is the amount of tasks that can
be performed by the system in a given period of
time. Increasing speed of CPU instruction ex­
ecution has been the common approach to in­
creasing system throughput but this puts a
greater strain on the memory access require­
ment and bus operation than is usually prac­
tical for most applications. A much more
desirable method would be to distribute the
task-load to peripheral devices.

DISTRIBUTED PROCESSING

The concept of distributed task processing is
not new to the computer deSigner, but until
recently little if any task distribution was
available to the microcomputer user. The use of
the n~w programmable MCS-80/85 peripherals
can rel:leve the central processor of many of the
bookk~ping I/O and timing tasks that would
otherwise have to be handled by system soft­
ware.

INSTRUCTION CYCLE/ACCESS TIME

The basic instruction cycle of the 8085A is 1.3
microseconds, the same speed as the 8080A-1.
A close look at the MCS-85 bus operation shows
that the access requirement for this speed is
only 575 nanoseconds. The MCS-80 access re­
quirements for this speed would be under 300
nanoseconds. This illustrates the efficiency
and improved timing margins of the MCS-85 bus
structure. The new 8085A-2, a high-speed
selected version of the 8085A with a .8 micro­
second instruction cycle, provides a 60% per­
formance improvement over the standard
8085A.

CONCLUSIONS: THROUGHPUT/COST •

When a total system throughput/cost analysis
is taken, the MCS-85 system with its advanced
processor will yield the most cost-effective,
reliable and producible system.

1·13

20

15

10 ~\
~\
r l

1

o
1973

\
\
\

1974

I/O

1975

YEAR

8085A
CPU

1976

1977 1978

MEMORY

Functional Description 2

CHAPTER 2
SOSSA FUNCTIONAL DESCRIPTION

2.1 WHAT TH E 808SA IS
The 8085A is an 8-bit general-purpose micro­
processor that is very cost-effective in small
systems because of its extraordinarily low hard­
ware overhead requirements. At the same time
it is capable of accessing up to 64K bytes of
memory and has status lines for controlling
large systems.

2.2 WHAT'S IN THE 808SA
In the 8085A microprocessor are contained the
functions of clock generation, system bus con­
trol, and interrupt priority selection, in addition
to execution of the instruction set. (See Figure
2-1.) The 8085A transfers data on an 8-bit, bi­
directional 3-state bus (ADo-7) which is time­
multiplexed so as to also transmit the eight
lower-order address bits. An additional eight
lines (Aa.15) expand the MCS-85 system memory
addressing capability to 16 bits, thereby allow­
ing 64K bytes of memory to be accessed direct­
ly by the CPU. The 8085A CPU (central process­
ing unit) generates control signals that can be
used to select appropriate external devices and

POWER{-+5V
SUPPLY _GND

X,
X2

INTA RST6.5 TRAP

.s TIMING AND CONTROL

functions to perform READ and WRITE opera­
tions and also to select memory or 1/0 ports.
The 8085A can address up to 256 different 1/0
locations. These addresses have the same
numerical values (00 through FFH) as the first
256 memory addresses; they are distinguished
by means of the 101M output from the CPU. You
may also choose to address 1/0 ports as
memory locations (Le., memory-map the 1/0,
Section 3.2).

2.2.1 Registers
The 8085A, like the 8080, is provided with inter­
nal 8-bit registers and 16-bit registers. The
8085A has eight addressable 8-bit registers. Six
of them can be used either ~s 8-bit registers or
as 16-bit register pairs. Register pairs are
treated as though they were single, 16-bit
registers; the high-order byte of a pair is located
in the first register and the low-order byte is
located in the second. In addition to the register
pairs, the 8085A contains two more 16-bit
registers.

B (8) C (8)
REG. REG.

D (8) E (8)
REG. REG.

H (8) L (8)
REG. REG.

STACK POINTER (16)

PROGRAM COUNTER (16)

As-,s
ADDRESS BUS

REGISTER
ARRAY

ADo•7
ADDRESSIDATA BUS

FIGURE 2·1 808SA CPU FUNCTIONAL BLOCK DIAGRAM

2-1

The 8085A's CPU registers are distinguished as
follows:

• The accumulator (ACC or A Register) is
the focus of all of the accumulator in­
structions (Table 4-1), which include
arithmetic, logic, load and store, and I/O
instructions. It is an 8-bit register only,
(However, see Flags, in this list.)

• The program counter (PC) always points
to the memory location of the next in­
struction to be executed. It always con­
tains a 16-bit address.

• General-purpose registers BC, DE, and
HL may be used as six 8-bit registers or
as three 16-bit registers, interchangeably,
depending on the instruction being per­
formed. HL functions as a data pointer to
reference memory addresses that are
either the sources or the destinations in
a number of instructions. A smaller
number of instructions can use BC or DE
for indirect addressing.

• The stack pointer (SP) is a special data
pointer that always points to the stack
top (next available stack address). It is
an indivisible 16-bit register.

• The flag register contains five one-bit
flags, each of which records processor
status information and may also control
processor operation. (See following
paragraph.)

2.2.2 Flags
The five flags in the 8085A CPU are shown
below:

06

Is z

The carry flag (Cy) is set and reset by arithmetic
operations. Its status can be directly tested by
a program. For example, the addition of two
one-byte numbers can produce an answer that
does not fit into one byte:

HEXIDECIMAL BINARY

. An addition operation that results in an
overflow out of the high-order bit of the ac­
cumulator sets the carry flag. An addition
operation that does not result in an overflow
clears the carry flag. (See 8080/8085 Assembly
Language Programming Manual for further
details.) The carry flag also acts as a "borrow"
flag for subtract operations.
The auxiliary c~rry flag (AC) indicates overflow
out of bit 3 of -the accumulator in the same way
that the carry flag indicates overflow out of bit
7. This flag is commonly used in BCD (binary
coded decimal) arithmetic.
The sign flag is set to the condition of the most
significant bit of the accumulator following the
execution of arithmetic or logic instructions.
These instructions use bit 7 of data to represent
the sign of the number contained in the ac­
cumulator. This permits the manipulation of
numbers in the range from -128 to + 127.

The zero flag is set if the result generated by
certain instructions is zero. The zero flag is
cleared if the result is not zero. A result that has
a carry but has a zero answer byte in the ac­
cumulator will set both the carry flag and the
zero flag. For example,

HEXADECIMAL BINARY
A7H

+59H
100H

1010011 1
+01011001

~1,0 0 0 0 0 000,
Carry bit I

Eight zero bits set zero flag to 1

Incrementing or decrementing certain CPU
registers with a zero result will also set the zero
flag.
The parity flag (P) is set to 1 if the parity
(number of 1-bits) of the accumulator is even. If
odd, it is cleared.

2.2.3 Stack
The stack pointer maintains the address of the
last byte entered into the stack. The stack
pointer can be initialized to use any portion of
~ead-write memory as a stack. The stack pointer
IS decremented each time data is pushed onto
the stack and is incremented each time data is
popped off the stack (Le., the stack grows

AEH
+74H

1 0 1 0 1 1 1 0 downward in terms of memory address, and the
o 1 1 1 0 1 0 0 stack "top" is the lowest numerical address

1 0 0 1 0 0 0 1 0 represented in the stack currently in use). Note
I that the stack pointer is always incremented or

. decremented by two bytes since all stack
Carry bit sets carry flag to 1.- .. ~ __ ~rations apply to register pairs .

...... ..-............_-...-,.,

122H

2-2

FUNCTIONAL DESCRIPTION

2.2.4 Arlthmetlc·Loglc Unit (ALU)
The AlU contains the accumulator and the flag
register (described in Sections 2.2.1- and 2.2.2)
and some temporary registers that are inac­
cessible to the programmer.
Arithmetic, logic, and rotate operations are per­
formed by the AlU. The results of these opera­
tions can be deposited in the accumulator, or
they can be transferred to the internal data bus
for use elsewhere.

2.2.5 Instruction Register and Decoder
During an instruction fetch, the first byte of an
instruction (containing the opcode) is trans­
ferred from the internal bus to the 8-bit instruc­
tion register. (See Figure 2-1.) The contents of
the instruction register are, in turn, available to
the instruction decoder. The output of the
decoder, gated by timing signals, controls the
registers, ALU, and data and address buffers.
The outputs of the instruction decoder and in­
ternal clock generator generate the state and
machine cycle timing signals.

2.2.6 Internal Clock Generator
The 8085A CPU incorporates a complete clock
generator on its chip, so it requires only the ad­
dition of a quartz crystal to establish timing for
its operation. (It will accept an external clock in­
put at its X1 input instead, however.) A suitable
crystal for the standard 8085A must be parallel­
resonant at a fundamental of 6.25 MHz or less,
twice the desired internal clock frequency. The
8085A-2 will operate with crystal of up to 10
MHz. The functions of the 8085A internal clock
generator are shown in Figure 2-2. A Schmitt
trigger is used interchangeably as oscillator or

8085A

Q t----_..-"'_1_

at----_+"'_2_

",1

*EXTERNAL CAPACITORS REQUIRED ONLY FOR CRYSTAL FREQUENCIES s4MHz.

FIGURE 2·2 8085A CLOCK LOGIC

2-3

as input conditioner, depending upon whether a
crystal or an external source is used. The clock
circuitry generates two nonoverlapping internal
clock signals, <P1 and tP2 (see Figure 2-2). <P1 and
<P2 control the internal timing of the 8085A and
are not directly available on the outside of the
chip. The external pin ClK is a buffered, in­
verted version of <P1. ClK is half the frequency of
the crystal input signal and may be used for
clocking other devices in the system.

TRAP

lIST 7.5
lIST 1.5
lIST 5.5

MEMORY ADDRESSES
RSTO

r--------,OOH

:J------I08H

..r---------I10H

1-------l18H

.:.i------I20H

~---~28H

~~----I2CH

--I-------I30H

........ -----i34H
~------~~~~----~.H

8085A
EXECUTING
SOFTWARE

RST INSTRUCTIONS
IN RESPONSE TO INTR

--.t---o--i 3CH

8085A
SYSTEM
MEMORY

FIGURE 2·3 8085A HARDWARE AND SOFT·
WARE RST BRANCH LOCATIONS

2.2.7 Interrupts
The five hardware interrupt inputs provided in
the 8085A are of three types. INTR is identical
with the 8080A INT line in function; i.e., it is
maskable (can be enabled or disabled by EI or
01 software instructions), and causes the CPU
to fetch in an RST instruction, externally placed
on the data bus, which vectors a branch to any
one of eight fixed memory locations (Restart ad­
dresses). (See Figure 2-3.) INTR can also be
controlled by the 8259 programmable inte=r t
controller, which generates CAll instruct" ns
instead of RSTs, and can thus vector oper tion
of the CPU to a preprogrammed subroutine
located anywhere in your system's memory
map. The RST 5.5, RST 6.5, and RST 7.5 hard­
ware interrupts are different in function in that
they are maskable through the use of the SIM

FUNCTIONAL DESCRIPTION

instruction, which enables or disables thes.e in­
terrupts by clearing or setting corresponding
mask flags based on data in the accumulator.
(See Figure 2-4.) You may read the status of the
interrupt mask previously set by peforming a
RIM instruction. Its execution loads into the ac­
cumulator the following information. (See
Figure 2-5.)

• Current interrupt mask status for the
RST 5.5,6.5, and 7.5 hardware status.

• Current interrupt enable flag status (ex­
cept that immediately following TRAP,
the I E flag status preceding that inter­
rupt is loaded).

• RST 5.5,6.5, and 7.5 interrupts pending.

SIM - SET INTERRUPT MASK
(OPCODE = 30)

CONTENTS OF ACCUMULATOR BEFORE EXECUTING SIM:

RESET INTERRUPT 7.5
FLlp·FlOP

MASK SET ENABLE

I
INTERRUPT MASKS

FIGURE 2·4 INTERRUPT MASKS SET USING
SIM INSTRUCTION

RIM - READ INTERRUPT MASK
(OPCODE = 20)

CONTENTS OF ACCUMULATOR AFTER EXECUTING RIM:

I I
PENDING INTERRUPTS INTERRUPT MASKS

INTERRUPT ENABLE FLAG

FIGURE 2·5 RIM - READ INTERRUPT MASK

2-4

RST 5.5, 6.5, and 7.5 are also subject to being
enabled or disabled by the EI and 01 instruc­
tions, respectively. INTR, RST 5.5, and RST 6.5
are level-sensitive, meaning that these inputs
may be acknowledged by the processor when
they are held at a high level. RST 7.5 is edge­
sensitive, meaning that an internal flip-flop in
the BOB5A registers the occurrence of an inter­
rupt the instant a rising edge appears on the
RST 7.5 input line. This input need not be held
high; the flip-flop will remain set until it is
cleared by one of three possible actions:

• The BOB5A responds to the interrupt,
and sends an internal reset signal to the
RST 7.5 flip-flop. (See Figure 2-6A.)

RST 7.5

! SET 808SA I

I Ry~51' (IN~~~A~
INTERRUPT
REQUEST

(INTERNAL)

FIGURE 2·6A RST 7.5 FLIP FLOP

8085A

TRAP

REsET1iii SCHMIIT
TRIGGER

RESET

ClK
+5V D ClK

o
F/F

CLEAR

Q

TRAP F.F.
INTERNAL

TRAP
ACKNOWLEDGE

FIGURE 2·68 TRAP INTERRUPT INPUTS

TRAP
INTERRUPT
REQUEST

(INTERNAL)

FIGURE 2·6 RST 7.5 AND TRAP INTERRUPT
INPUTS

Iii,'. I
Ii
I

I

I

I
I

I

FUNCTIONAL DESCRIPTION

• The 8085A, before respondin~ to the RST
7.5 interrupt, receives a RES T IN signal
from an external source; this also ac­
tivates the internal reset.

• The 8085A executes a SIM instruction,
with accumulator bit 4 previously set to
1. (See Figure 2-4.)

The third type of hardware interrupt is TRAP.
This input is not subject to any mask or inter­
rupt enable/disable instruction. The receipt of a
positive-going edge on the TRAP input triggers
the processor's hardware interrupt sequence,
but the pulse must be held high until
acknowledged internally (see Figure 2-68).
The sampling of all interrupts occurs on the
descending edge of CLK, one cycle before the
end of the instruction in which the interrupt in­
put is activated. To be recognized, a valid inter­
rupt must occur at least 160 ns before sampling
time in the8085A, or 150 ns in the 8085A-2. This
means that to guarantee being recognized, RST
5.5 and 6.5 and TRAP need to be held on for at
least 17 clock states plus 160 ns (150 for
8085A-2), assuming that the interrupt might ar­
rive just barely too late to.be acknowledged dur­
ing a particular instruction, and that the follow­
ing instruction might be an 18-state CALL. This
timing assumes no WAIT or HOLD cycles are
used.
The way interrupt masks are set and read is
described in Chapter 4 under the RIM (read in-

2.2.8 Serial Input and Output
The SID and SOD pins help to minimize chip
count in small systems by providing for easy in­
terface to a serial port using software for timing
and for coding and decoding of the data. Each
time a RIM instruction is executed, the status of
the SID pin is read into bit 7 of the accumulator.
RIM is thus a dual-purpo~e instruction. (See
Chapter 4.) In similar fashion, SIM is used to
latch bit 7 of the accumulator out to the SOD
output via an internal flip-flop, providing that bit
6 of the accumulator is set to 1. (See Figure 2-7.)
Section 2.3~8 describes SID and SOD timing.

SID can also be used as a general purpose
TEST input and SOD can serve as a one-bit con­
trol output.

2-5

terrupt mask) and SIM (set interrupt mask) in-
struction listings. Interrupt functions and their
priorities are shown in the table that follows.

Address (1) Type Name Priority Branched to
when Inter· Trigger

rupt occurs

TRAP 24H Rising edge
AND high
level until
sampled

RST 7.5 2 3CH Rising edge
(latched)

RST 6.5 3 34H High level
until sam-
pled

RST 5.5 4 2CH High level
until sam-
pled

INTR 5 (2) High level
until sam-
pled

NOTES:
(1) In the case of TRAP and RST 5.5-7.5, the

contents of the Program Counter are
pushed onto the stack. before the branch
occurs.

(2) Depends on the instruction that is pro­
vided to the 80S5A by the 8259 or other
circuitry when the interrupt is acknowl­
edged.

EFFECT OF RIM INSTRUCTION
SID

+
B08SA

I
ACCUMULATOR

EFFECT OF SIM INSTRUCTION
SOD

B08SA
F.F.

ACCUMULATOR

FIGURE 2-7 EFFECT OF RIM AND SIM
INSTRUCTIONS ON SERIAL DATA LINES

FUNCTIONAL DESCRIPTION

2.3 HOW THE MCS·85 SYSTEM WORKS

The 8085A CPU generates signals that tell
peripheral devices what type of information is
9n the multiplexed Address/Data bus and from
that point on the operation is almost identical
to the MCS-80™ CPU Group. A multiplexed bus
structure was chosen because it freed device
pins so that more functions could be integrated
on the 8085A and other components of the fami­
ly. The multiplexed bus is designed to allow
complete compatibility to existing peripheral

FIGURE 2·SA MC8-S0™ cPU GROUP

DATA/ADDRESS BUS

ADDRESS

components with improved timing margins and
access requirements. (See Figure 2-8.)
To enhance the system integration of MCS-85,
several special components with combined
memory and I/O were designed. These new
devices directly interface to the multiplexed
bus of the 8085A. The pin locations of the 8085A
and the special peripheral components are
assigned to minimize PC board area and to
allow for efficient layout. The details on
peripheral components are contained in subse­
quent paragraphs of this chapter and in
Chapters 5 and 6.

INTR-·----I

INTA -----<II

RESET IN --------I
RESET OUT -------I

SOSSA

ADDRESS BUS

1---_ ALE

MULTIPLEXED
ADDRESS/DATA BUS

IC>--- AD
10--- WR
1---- IO/M

FIGURE 2·SB MCS·S5™ cPU/SOS5A (MCS-SO COMPATIBLE
FUNCTIONS)

DATA IN OR OUT = =)(__ A7_.AO_...JX ___ ~_·D_o __ L
TIME MULTIPLEX DATA BUS

FIGURE 2·SC MULTIPLEXED BUS TIMING

FIGURE 2·8 BASIC CPU FUNCTIONS

2-6

FUNCTIONAL DESCRIPTION

2.3.1 Multiplexed Bus Cycle Timing
The execution of any 8085A program consists
of a sequence of READ and WRITE operations,
of which each transfers a byte of data between
the 8085A and a particular memory or 1/0 ad­
dress. These READ and WRITE operations are
the only communication between the processor
and the other components, and are all that is
necessary to execute any instruction or pro­
gram.

Each READ or WRITE operation of the 8085A is
referred to as a machine cycle. The execution of
each instruction by the 8085A consists of a se­
quence of from one to five machine cycles, and
each machine cycle consists of a minimum of
from three to six clock cycles (also referred to
as T states). Consider the case of the Store Ac­
cumulator Direct (STA) instruction, shown in
Figure 2-9. The STA instruction causes the con­
tents of the accumulator to be stored at the
direct address specified in the second and third
bytes of the instruction. During the first
machine cycle (M1), the CPU puts the contents
of the program counter (PC) on the address bus
and performs a MEMORY READ cycle to read
from memory the opcode of the next instruction
(STA). The M1 machine cycle is also referred to
as the OPCODE FETCH cycle, since it fetches
the operation code of the next instruction. In
the fourth clock cycle (T 4) of M1, the CPU inter­
prets the data read in and recognizes it as the
opcode of the STA instruction. At this point the

CPU knows that it must do three more machine
cycles (two MEMORY READs and one MEMORY
WRITE) to complete the instruction.

The 8085A then increments the program
counter so that it points to the next byte of the
instruction and performs a MEMORY READ
machine cycle (M2) at address (PC + 1). The ac­
cessed memory places the addressed data on
the data bus for the CPU. The 8085A temporarily
stores this data (which is the low-order byte of
the direct address) internally in the CPU. The
8085A again increments the program counter to
location (PC + 2) and reads from memory (M3)
the next byte of data, which is the high­
order byte of the direct address.

At this point, the 8085A has accessed all three
bytes of the STA instruction, which it must now
execute. The execution consists of placing the
data accessed in M2 and M3 on the address bus,
then placing the contents of the accumulator
on the data bus, and then performing a
MEMORY WRITE machine cycle (M4). When M4
is finished, the CPU will fetch (M1) the first byte
of the next instruction and continue from there.

State Transition Sequence
As the preceding example shows, the execution
of an instruction consists of a series of
machine cycles whose nature and sequence is
determined by the opcode accessed in the M1

~------------ INSTRUCTION CYClE--------------.I

MACHINE
CYCLE

T STATE

ClK

TYPE OF
MACHINE CYCLE

ADDRESS BUS

MEMORY READ MEMORY READ MEMORY READ MEMORY WRITE

THE ADDRESS (CONTENTS OF THE THE ADDRESS (PC+ 1) POINTS THE ADDRESS (PC + 2) POINTS THE ADDRESS IS THE DIRECT
PROGRAM COUNTER) POINTS TO THE TO THE SECOND BYTE OF TO THE THIRD BYTE OF THE ADDRESS ACCESSED IN M2
FIRST BYTE (OPCODE) OF THE THE INSTRUCTION INSTRUCTION AND M3
INSTRUCTION

DATA BUS lOW ORDER BYTE OF THE HIGH ORDER BYTE OF THE CONTENTS OF THE
INSTRUCTION OPCODE (STA) DIRECT ADDRESS DIRECT ADDRESS ACCUMULATOR

FIGURE 2·9 CPU TIMING FOR STORE ACCUMULATOR DIRECT (STA) INSTRUCTION

2-7

FUNCTIONAL DESCRIPTION

MACHINE CYCLE
STATUS CONTROL
101M S1 so RD WR INTA

OPCODE FETCH (OF) 0 1 1 0 1 1
MEMORY READ (MR) 0 1 0 0 1 1
MEMORY WRITE (MW) 0 0 1 1 0 1
1/0 READ (lOR) 1 1 0 0 1 1
110 WRITE (lOW) 1 0 1 1 0 1
INTR ACKNOWLEDGE (INA) 1 1 1 1 1 0
BUS IDLE (81l: DAD 0 1 0 1 1 1

INA(RST/TRAP) 1 1 1 1 1. 1
HALT TS 0 0 TS TS 1

O=Logic"O" 1=Logic"1" TS=High Impedance X=Unspecified

FIGURE 2·10 808SA MACHINE CYCLE CHART

machine cycle. While no one instruction cycle
will consist of more than five machine cycles,
every machine cycle will be one of the seven
types listed in Figure 2-10. These seven types of
machine cycles can be differentiated by the
state of the three status lines (101M, 5.9.L!.nd 51)
and the three control signals (RD, WR, and
INTA).

Most machine cycles consist of three T states,
(cycles of the ClK output) with the exception of
OPCODE FETCH, which normally has either
four or six T states. The actual number of states
required to perform any instruction depends on
the instruction being executed, the particular
machine cycle within the instruction cycle, and
the number of WAIT and HOLD states inserted
into each machine cycle through the use of the
READY and HOLD inputs of the BOB5A. The
state transition diagram in Figure 2-11 il­
lustrates how the BOB5A proceeds in the course
of a machine cycle. The state of various status
and control signals, as well as the system
buses, is shown in Figure 2-12 for each of the
ten possible T states that the processor can be
in.

Figure 2-11 also shows when the READY, HOLD,
and interrupt signals are sampled, and how
they modify the basic instruction sequence (T 1-
T 6 and T WAIT). As we shall see, the timings for
each of the seven types of machine cycles are
almost identical.

OPCODE FETCH (OF):
The OPCODE FETCH (OF) machine cycle is
unique in that it has more than three clock
cycles. This is because the CPU must interpret
the opcode accessed in Th T2, and T3 before it
can decide what to do next.

NOTE: SYMBOL DEFINITION

2-8

fT,;\ = CPU STATE Tx' ALL CPU STATE TRANSITIONS OCCUR
~ ON THE FALLING EDGE OF CLK.

~ = A DECISION (X) THAT DETERMINES WHICH OF SEVERAL
~ ALTERNATIVE PATHS TO FOLLOW. o = PERFORM THE ACTION X.

CC

= FLOWLINE THAT INDICATES THE SEQUENCE OF EVENTS.

= FLOWLINE THAT INDICATES THE SEQUENCE OF EVENTS
IF CONDITION X IS TRUE.

= NUMBER OF CLOCK CYCLES IN THE CURRENT MACHINE
CYCLE.

BIMC = "BUS IDLE MACHINE CYCLE" = MACHINE CYCLE WHICH
DOESN'T USE THE SYSTEM BUS.

VALIDINT = "VALID INTERRUPT" - AN INTERRUPT IS PENDING
THAT IS BOTH ENABLED AND UNMASKED (MASK·
ING ONLY APPLIES FOR RST 5.5, 6.5, AND 7.5
INPUTS).

HLDA FF = INTERNAL HOLD ACKNOWLEDGE FLIP FLOP. NOTE
THAT THE BOB5A SYSTEM BUSES ARE 3·STATED ONE
CLOCK CYCLE AFTER THE HLDA FLIP FLOP ISSET.

FIGURE 2·11 808SA CPU STATE TRANSITION

FUNCTIONAL DESCRIPTION

Status & Buses Control
Machine

State S',SO 101M As-A1S ADo-AD7 Ro,WR INTA ALE

T1 X X X X 1 1 1t

T2 X X X X X X 0

TWAIT X X X X X X 0

T3 X X X X X X 0

T4 1 0* X TS 1 1 0

Ts 1 0* X TS 1 1 0

Ts 1 0* X TS 1 1 0

TRESET X TS TS TS TS 1 0

THALT 0 TS TS TS TS 1 0

THOLD X TS TS TS TS 1 0

O=Logic"O" 1 = Logic "1" TS=High Impedance X=Unspecified

tALE not generated during 2nd and 3rd machine cycles of DAD
instruction.

*IO/iiii = 1 during T 4-TS states of RST and INA cycles.

FIGURE 2·12 808SA MACHINE STATE CHART

Figure 2-13 shows the timing relationships for
an OF machine cycle. The particular instruction
illustrated is DCX, whose timing for OF differs
from other instructions in that it has six T
states, while some instructions require only
four T states for OF. In this discussion, as well
as the following discussions, only the relative
timing of the signals will be discussed; for the
actual timings, refer to the data sheets of the in­
dividual parts in Chapters 5 and 6.

The first thing that the SOS5A does at the begin­
ning of every machine cycle is to send out three
status signals (101M, S1, SO) that define what
type of machine cycle is about to take place.
The 101M signal identifies the machine cycle as
being either a memory reference or inputloutput
operation. The S1 status signal identifies
whether the cycle is a READ or WRITE opera­
tion. The SO and S1 status signals can be used
together (see Figure 2-10) to identify READ,
WRITE, or OPCODE FETCH machine cycles as
well as the HALT state. Referring to Figure 2-13,
the SOS5A will send out 101M = 0, S1 = 1, SO = 1
at the beginning of the machine cycle to iden­
tify it as a READ from a memory location to ob­
tain an opcode; in other words, it identifies the
machine cycle as an OPCODE FETCH cycle.

2-9

The SOS5A also sends out a 16-bit address at the
beginning of every machine cycle to identify the
particular memory location or I/O port that the
machine cycle applies to. In the case of an OF
cycle, the contents of the program counter is
placed on the address bus. The high order byte
(PCH) is placed on the A8~A15Iines, where it will
stay until at least T 4. The low order byte (PCl) is
placed on the ADo-AD7 lines, whose three-state
drivers are enabled if not found already on.
Unlike the upper address lines, however, the in­
formation on the lower address lines will re­
main there for only one clock cycle, after which
the drivers will go to their high impedance state,
indicated by a dashed line in Figure 2-13. This is
necessary because the ADo-AD7 lines are time
mulitplexed between the address and data
buses. During T1 of every machine cycle, ADo­
AD7 output the lower S-bits of address after
which ADo-AD7 will either output the desired
data for a WRITE operation or the drivers will
float (as is the case for the OF cycle), allowing
the external device to drive the lines for a READ
operation.

Since the address- information on ADo-AD7 is of
a transitory nature, it must be latched either in­
ternally in special multiplexed-bus components
like the S155 or externally in parts like the S212
S-bit latch. (See Chapter 3.) The SOS5A provides
a special timing signal, ADDRESS lATCH
ENABLE (ALE), to facilitate the latching of Ao-A7;
ALE is present during T1 of every machine cycle.

After the status signals and address have been
sent out and the ADo-AD7 drivers have been
disabled, the SOS5A provides a low level on RD
to enable the addressed memory device. The
device will then start driving the ADo-AD7 lines;
this is indicated by the dashed line turning into
a solid line in Figure 2-13. After a period of time
(which is the access time of the memory) valid
data will be present on ADo-AD7' The SOS5A dur­
ing T3 will load the memory data on ADo~A!?Lin­
to its instruction register and then raise RD to
the high level, disabling the addressed memory
device. At this point, the SOS5A will have fin­
ished accessing the opcode of the instruction.
Since this is the first machine cycle (M1) of the
instruction, the CPU will automatically step to
T4, as shown in Figure 2-11.

During T4, the CPU will decode the opcode in
the instruction register and decide whether to
enter T 5 on the next clock or to start a new
machine cycle and enter T1. In the case of the
DCX instruction shown in Figure 2-13, it will
enter T5 arid then T6 before going to T1.

FUNCTIONAL DESCRIPTION

SIGNAL

eLK

101M,

S1,SO

ALE

FIGURE 2·13 OPCODE FETCH MACHINE CYCLE (OF DCX INSTRUCTION)

During T 5 and T 6, of DCX, the CPU will decre­
ment the designated register. Since the As-A15
lines are driven by the address latch circuits,
which are part of the incrementerldecrementer
logic, the Aa-A15 lines may change during T 5 and
T 6. Because the value of As-A15 can vary during
T 4-T 6, it is most important that all memory and
1/0 devices on...!De system bus qua~ their
selection with RD. If they don't use RD, they
may be spuriously selected. Moreover, with a
linear selection technique (Chapter 3), two or
more devices could be simultaneously enabled,
which could be potentially damaging. The
generation of spurious addresses can also oc­
cur momentarily at address bus transitional
periods in T1. Therefore, the selection of all
memolY.!.nd 1/0 devices must be qualified with
AD or WR. Many new memory devices like the
8155 and 8355 have the RD input that internally
is used to enable the data bus outputs, remov­
ing the need for externally qualifying the chip
enable input with RD.

Figure 2-14 is identical to Figure 2-13 with one
exception, which is the use of the READY line.
As we can see in Figure 2-11, when the CPU is in
T2, it examines the state of the READY line. If
the READY line is high, the CPU will proceed to
T 3 and finish executing the instruction. If the
READY line is low, however, the CPU will enter
T WAIT and stay there indefinitely until READY
goes high. When the READY line does go high,
the CPU will exit T WAIT and enter T 3, in order to
complete the machine cycle. As shown in

2-10

Figure 2-14, the external effect of using the
READY line is to preserve the exact state of the
processor signals at the end ofT 2 for an integral
number 01.. clock periods, before finishing the
machine Gycle. This "stretching" of the system
timing has the further effect of increasing the
allowabl~ access time for memory or 1/0
devices. By inserting T WAIT states, the 8085A
can accommodate even the slowest of
memories. Another common use of the READY
line is to singe-step the processor with a
manual switch.

2.3.2 Read Cycle Timing
MEMORY READ (MR):
Figure 2-15 shows the timing of two successive
MEMORY READ (MR) machine cycles, the first
without a T WAIT state and the second with one
TWAIT state. The timing during T1-T3 is absolute­
ly identical to the OPCODE FETCH machine cy­
cle, with the exception that the status sent out
during T1 is 101M = 0, S1 = 1, SO = 0, identify­
ing the cycles as a READ from a memory loca­
tion. This differs from Figure 2-13 only in that SO
= 1 for an OF cycle, identifying that cycle as an
OPCODE FETCH operation. Otherwise, the two
cycles are identical during T1-T3'
A second difference occurs at the end of T 3. As
shown in Figure 2-11, the CPU always goes to T 4
from T 3 during M1, which is always an OF cycle.
During all other machine cycles, the CPU will
always go from T3. to T1 of the next machine
cycle.

FUNCTIONAL DESCRIPTION

M1 (OF)

SIGNAL T1 T2 TWAIT T3 T4 TS TS

-LI LI LI LI L.I L..I LJ ClK

101M, I--tx IO/M-0,S1-1,SO-1
S1,SO I--

I--tx AS-A16 PCH UNSPECIFIED
I--

I--
OUT IN

ADO·AD7 tx PCl ~< DO.[)7 (DCX));------~--- -~---I-- ! j
ALE v---\ J I--

1
iffi

'~

......
READY "'C..---~ ,....

"C---~

FIGURE 2·14 OPCODE FETCH MACHINE CYCLE WITH ONE WAIT STATE

MR OR lOR MR OR lOR
SIGNAL

T1 T2 T3 T1 T2 TWA IT T3

....
'---.I' ~ LI '---.I' '---' ~ U-~ C~K

-101M,
101M = 0 (MR) OR 1 (lOR), S1 = 1, SO = 0 101M = 0 (MR) OR 1 (lOR), S1 = 1,SO = 0

S1,SO -- :x AS"A1S - OUT IN OUT -)(r>--{ >- 1>(AOo·AD7 AO-A7 DO·D7 Ao-A7 !) ALE 1\ 1\
~

1.. ~ iffi I~
....,

READY 'L--N

FIGURE 2·15 MEMORY READ (OR 1/0 READ) MACHINE CYCLES
(WITH AND WITHOUT WAIT STATES)

2·11

""""
""C---

IN

DO·D7

'C---~
~
~

)(

)(

7 1-<
V-

f-~

FUNCTIONAL DESCRIPTION

The memory address used in the OF cycle is
always the contents of the program counter,
which pOints to the current instruction, while
the address used in the MR cycle can have
several possible origins. Also, the data read in
during an MR cycle is placed in the appropriate
register, not the instruction register.

110 READ (lOR):

Figure 2-15 also shows the timing of two suc­
cessive I/O READ (lOR) machine cycles, the first
without aT WAIT state. As is readily apparent, the
timing of an lOR cycle is identical to the timing
of an MR cycle, with the exception of 101M = 0
for MR and 101M = 1 for lOR; recall that 101M
status signal identifies the address of the cur­
rent machine cycle as selecting either a
memory location or an I/O port. The address
used in the lOR cycle comes from the second
byte (Port No.) of an INPUT instruction. Note
that the I/O port address is duplicated onto both
ADo-AD7 and As-A15. The lOR cycle can occur
only as the third machine cycle of an INPUT in­
struction.
Note that the READY signal can be used to
generate T WAIT states for I/O devices as well as
memory devices. By gating the READY signal
with the proper status lines, one could generate
T WAIT states for memory devices only or for I/O
devices only. By gating in the address lines, one
can further qualify TWAIT state generation by the
particular devices being accessed.

MWOR lOW
81GNAl

T1 T2 T3

2.3.3 WRITE Cycle Timing
MEMORY WRITE (MW):
Figure 2-16 shows the timing for two successive
MEMORY WRITE (MW) machine cycles, the first
without a T WAIT state, and the second with one
TWAIT state. The BOB5A sends out the status dur­
ing T1 in a similar fashion to the OF, MR and
lOR cycles, except that 101M =0,51 = 0, and
50 = 1, identifying the current machine cycle as
being a WRITE operation to a memory location.
The address is sent out during T1 in an identical
manner to MR. However, at the end of T1I there
is a difference. While the ADo-AD7 drivers were
disabled during T2-T3 of MR in expectation of
the addressed memory device driving the ADo­
AD7 lines, the drivers are,not disabled for MW.
This is because the CPU must provide the data
to be written into the addressed memory loca­
tion. The data is placed on ADo-AD7 at the start
of T 2. The WR signal is also lowered at this time
to enable the writing of the addressed memory
device. During T 2, the READY line is checked to
see if a T WAIT state is required. If READY is low,
T WAIT states are inserted until READY goes
high. During T3, the WR line is raised, disabling
the addressed memory device and thereby ter­
minating the WRITE operation. The contents of
the address and data lines are not changed un­
til the next T 11 which directly follows.
Note that the data on ADo-AD7 is not
guaranteed to be stable before the falling edge

MWOR lOW

T1 T2 TWA IT T3

I--l..J l..J l..J l..J LI l..J l..J ~ elK

--101M, ex 101M = 0 {MWI OR 1 {lOWI.81 = 0, so = 1 101M = 0 {MWI OR 1 (lOWI,81 = 0, so = 1
81,80 I--

I--P< A8"A15

~
OUT OUT OUT

I--:x ADO·AD7 AO-A7 0 0.07 AO·A7

I--

ALE r-\ 1\ I--

WR

,..

READY C-
~ ~

FIGURE 2·16 MEMORY WRITE (OR 110 WRITE) MACHINE CYCLES
(WITH AND WITHOUT WAIT STATES)

2-12

OUT

0 0 .07

""(

~ ..

)

)

)(

r
r -

,

FUNCTIONAL DESCRIPTION

~f WR. The ADo-AD7 lines are guaranteed to be
stable both before and after the rising edge of
WR.
1/0 WRITE (lOW):

As Figure 2-16 shows, the timing for an 1/0
WRITE (lOW) machine cycle is the same as an
MW machine cycle except that 101M = 0 during
the MW cycle and 101M = during the lOW cycle.
As with the lOR cycle discussed previously, the
address used in an lOW cycle is the 1/0 port
number which is duplicated on both the high
and low bytes of the address bus. In the case of
lOW, the port number comes from the second
byte of an OUTPUT instruction as the instruc­
tion is executed.
2.3.4 Interrupt Acknowledge (INA) Timing
Figures 2-17 and 2-18 (a continuation of 2-17)
depict the course of action the CPU takes in
response to a high level on the INTR line if the
INTE FF (interrupt enable flip-flop) has been set

M2(MR)
SIGNAL

T2 T3 T1 T2

by the EI instruction. The status of the TRAP
and RST pins as well as INTR is sampled during
the second clock cycle before M1 • T1. If INTR
was the only valid interrupt and if INTE FF is
set, then the CPU will reset INTE FF and then
enter an INTERRUPT ACKNOWLEDGE (INA)
machine cycle. The INA cycle is identical to an
OF cycle with two exceptions. INTA is sent out
instead of RD. Also, 101M = 1 during INA,
whereas 101M = 0 for OF. Although the con­
tents of the program counter are sent out on the
address lines, the address lines can be ignored.

When INTA is sent out, the external interrupt
logic must provide the opcode of an instruction
to execute. The opcode is placed on the data
bus and read in by the processor. If the opcode
is the first byte of a multiple-byte instruction,
additional INTA pulses will be provided by the
8085A to clock in the remaining bytes.
RESTART and CALL instructions are the most

M1 (INA) M2 (INA)

T3 - T4 TS TS Tl T2 T3

ClK u: ~lr Lr U-U-U-U-U-V Lr U-
~

INTR V ~ --- -
~ INTA I

IO/M,S1,SO (0,1,0) ~ (1,1,1)

AS-A1S (PC·llH ~ PCH X
IN OUT ~

AOO·A07 00 .07 } IE:)- 00.[)7 (CAll}- --- ---
ALE n

RD I
WR

FIGURE 2-17 INTERRUPT ACKNOWLEDGE MACHINE CYCLES
(WITH CALL INSTRUCTION IN RESPONSE TO INTR)

2·13

-
\ r

X (1,1,1)

X PCH

€
IN

---)- 0 0 -07 (82) }

n

FUNCTIONAL DESCRIPTION

logical choices, since they both force the pro­
cessor to push the contents of the program
counter onto the stack before jumping to a new
location. In Figure 2-17 it is assumed that a
CALL opcode is sent to the CPU during M1• The
CALL opcode could have been placed there bya
device like the 8259 programmable interrupt
controller.

After receiving the opcode, the processor then
decodes it and determines, in this case, that the
CALL instruction requires two more bytes. The
CPU therefore performs a second INA cycle (M2)
to access the second byte of the instruction
from the 8259. The timing of this cycle is iden­
tical to M1, except that it has only three .T
states. M2 is followed by another INA cycle (M3)
to access the third byte of the CALL instruction
from the 8259.

M3 (INA)

SIGNAL
Tl T2 T3 Tl

M4(MW)

T2

Now that the CPU has accessed the entire in­
struction used to acknowledge the interrupt, it
will execute that instruction .. Note that any in­
struction could be used (except EI or 01, the in-·
structions which enable or disable interrupts),
but the RESTART and CALL instructions are the
most logical choices. Also notice that the CPU
inhibited the incrementing of the program
counter (PC) during the three INA cycles, so
that the correct PC value can be pushed onto
the stack during M4 and M5'

During M4 and Ms, the CPU performs MEMORY
WRITE machine cycles to write the upper and
then lower bytes of the PC onto the top of the
stack. The CPU then places the two bytes ac­
c,essed in M2 and M3 into the lower and upper
bytes of the PC. This has the effect of jumping
the execution of the program to the location
specified by the CALL instruction.

MS(MW) Ml (OF)

T3 Tl T2 T3 Tl T2

ClK V V V' lJ' V V V V V V U-
INTR

1--- -
INTA \\

IOIM,Sl,SO [X (1,1,1) oc (0,0,1) D<

AS·A1S [X PCH IX (SP·l)H)(
OUT IN OUT OUT OUT

AOO·A07 k=: X 00.07 (B3) > E 0 0.07 (PCH) E
ALE r\ " Jf\.
AD

WR

FIGURE 2·18 INTERRUPT ACKNOWLEDGE MACHINE CYCLES
(WITH CALL INSTRUCTION IN RESPONSE TO INTR)

2·14

(0,0,1) X (0,1,1)

(SP·2)H X PCH(B3)

OUT OUT

00 .07 (PCL) K:: K
V\

L

FUNCTIONAL DESCRIPTION

2.3.5 Bus Idle (BI) and HALT State

Most machine cycles of the SOS5A are
associated with either a READ or WRITE opera­
tion. There are two exceptions to this rule. The
first exception takes place during M2 and M3 of
the DAD instruction. The SOS5A requires six in­
ternal T states to execute a DAD instruciton,
but it is not desirable to have M1 be ten (four
normal plus six extra)· states long. Therefore,
the CPU generates two extra machine cycles
that do not access either the memory or the 1/0.
These cycles are referred to as BUS IDLE (BI)
machine cycles. In the case of DAD, they are
identical to MR cycles except that RD remains
high and ALE is not generated. Note that
READY is ignored during M2 and M3 of DAD.

SIGNALS
Ml I0F)

T3 T4 Tl T2

ClK V\ Lr \F Lr
RST 7.5 A:::. >-~

101M I

SI, so

C A8'A15 IPC·I)H)(PCH

~

IN OUT
~

~--E)---ADO·AD7

~

ALE 1\
INTA

RD U
WI!

READY \ >

The other time when the BUS IDLE machine cy­
cle occurs is during the internal opcode genera­
tion for the RST or TRAP interrupts. Figure 2-19
illustrates the BI cycle generated in response to
RST 7.5. Since this interrupt is rising-edge­
triggered, it sets an internal latch; that latch is
sampled at the falling edge of the next to the
last T-state of the previous instruction. At this
pOint the CPU must generate its own internal
RESTART instruction which will (in subsequent
machine cycles) cause the processor to push
the program counter on the stack and to vector
to location 3CH. To do this, it executes an OF
machine cycle without issuing RD, generating
the RESTART opcode instead. After M1, the
CPU continues execution normally in all
respects except that the state of the READY
line is ignored during the BI cycle.

MllBII M2 IMW)

T3 T4 T5 T6 Tl T2

Lr U-U-U-U-U

\.

X ISP·l)H

OUT IN

-- ------ --E K=:
n

L
~ I
~

FIGURE 2·19 RST 7.5 BUS IDLE MACHINE CYCLE

2-15

FUNCTIONAL DESCRIPTION

Figure 2-20 illustrates the 81 cycle generated in
response to RST 7.5 when a HALT instruction
has just been executed and the CPU is in the
T HALT state, with its various signals floating.
There are only two ways the processor can com­
pletely exit the T HALT state, as shown in Figure
2-11. The first way is for RESET to occur, which
always forces the 8085A to T RESET. The second
way to exit T HALT permanently is for a valid in­
terrupt to occur, which will cause the CPU to
disable further interrupts by resetting INTE FF,
and to then proceed-to M1 • T1 of -the next in­
struction. When the HOLD input is activated,
the CPU will exit T HALT for the duration of T HOLD
and then return to T HALT.

M1 (OF) M2 (HALT)

SIGNALS

T3 T4 T1 THAlT THAlT

ClK V-V-\J li\ Lr
RST 7.5 ~

[>--

T1

In Figure 2-20 the RST 7.5 line is pulsed during
T HALT. Since RST 7.5 is a rising-edge-triggered
interrupt, it will set an internal latch which is
sampled during CLK = "1" of every T HALT state
(as well as during CLK = "1" two T states
before any M1 • T1') The fact that the latched in­
terrupt was high (assuming that INTE FF = 1
and the RST 7.5 mask = 0) will force the CPU to
exit the T HALT state at the end of the next CLK
period, and to enter M1 • T1.

This completes our analysis of the timing of
each of the seven types of machine cycles.

M1 (81) M2(MW)

T2 T3 T4 T5 T6 T1 T2

V V-U V u u u U-
~

101M 1,--r--_.lf \
51, SO \ II

AS·A15 (PC·1)H ~ ~--1----K PCH

IN OUT

~
I---

~--8 ~--ADO·AD7 HALT 1--_. 1---- pel ---
t---

ALE r\ n
INTA

RD U ~--r..--- V

WR ~-- ---V

READY \ ~ ~
~

FIGURE 2·20 HALT STATE AND BUS IDLE MACHINE CYCLE
RST 7.S TERMINATES T HALT STATE

2-16

D< X (SP·1)H '

OUT

~ E 1--- ------
'r\

L
I

FUNCTIONAL DESCRIPTION

2.3.6 HOLD and HALT States
The 8085A uses the T HOLD state to momentarily
cease executing machine cycles, allowing ex­
ternal devices to gain control of the bus and
peform DMA cycles. The processor internally
latches the state of the HOLD line and the un­
masked interrupts during ClK = "1" of every
T HALT state. If the internal latched HOLD signal
is high during ClK = "1" of any T HALT state, the
CPU will exit T HALT and enter T HOLD on the
following ClK = "1". As shown in Figure 2-21
this will occur even if a valid interrupt occurs
simultaneously with the HOLD signal.

The state of the HOLD and the unmasked inter­
rupt lines is latched internally during ClK = 1
of each T HOLD state as well as during T HALT
states. If the internal latched HOLD signal is
low during ClK = 1, the CPU will exit T HOLD and
enter T HALT on the following ClK = 1.

SIGNALS To THOLD CT.>* THOLDCTsI*

ClK u- '----1

ALE

HOLD

HLDA ~

INTERRUPT

The 8085A accepts the first unmasked, enabled
interrupt sampled; thereafter, all interrupt
sampling is inhibited. The interrupt thus ac­
cepted will inevitably be executed when the
CPU exits the HOLD state, even at the expense
of holding off higher-priority interrupts
(including TRAP). (See Figure 2-22.)

When the CPU is not in T HALT or T HOLD, it inter­
nally latches the HOLD line only during ClK =
1 of the last state before T 3 (T 2 or T WAIT) and dur­
ing ClK = ·1 of the last state before T 5 (T 4 of a
six T-state M1). If the internal latched HOLD
signal is high during the next ClK = 1, the CPU
will enter T HOLD after the following clock. When
the CPU is not in T HALT or THOLD, it will internally
latch the state of the I-Inmasked interupts only
during ClK of the next to the last state before
each M1 • T1.

THOLD CTa)* THOLD THOLD T,

~ ~ L-.r-L-1
-II L

\\ \\

I INTERRUPTS SAMPLED
1 HERE REGARDLESS
1 __ OF HOLD

1

1\
1

--It'H-

1
--t,s-!

START OF INTERRUPT ___
CYCLE DELAYED

*SIGNIFIES THAT T.·Ta MAY TAKE PLACE INSIDE THE 8085A EVEN WHILE THE PROCESSOR IS IN A HOLD STATE. BY HOLD

FIGURE 2·21 HOLD VS INTERRUPT - NON HALT

2-17

FUNCTIONAL DESCRIPTION

SIGNALS THALT THALl THAll THOLD THOLD Tl

CLK ~ ~ ~ ~ ~ ~

ALE J L-
LOW PRIORI". -=-'

HOLD I \
IJ INTERRUPT CYCLE

EXITS HALT
IMMEDIATELY AFTER

HLDA I -r""' HOLD REMOVED

INTERRUPT ACCEPTED HERE CAUSES SAMPLING TO BE INHIBITED -

LOW PRIORITY
--INHIBITING HIGHER INTERRUPTS (EVEN TRAP)

INTERRUPT(S) I \
V

HIGH PRIORITY 'I
INTERRUPT(S)

FIGURE 2-22 SOSSA HOLD VS INTERRUPTS - HALT MODE

2_3.7 Power On and RESET IN

The SOS5A employs a special internal circuit to
increase its speed. This circuit, which is called
a substrate bias generator, creates a negative
voltage which is used to negatively bias the
substrate. The circuit employs an oscillator and
a charge pump which require a certain amount
of time after POWER ON to stabilize. (See
Figure 2-23.)

Taking this circuit into account, the SOS5A is
not guaranteed to work until 10 ms after Vcc
reaches 4.75V. For this reason, it is suggested
that RESET IN be kept low during this period.
Note that the 10 ms period does not include the
time it takes for the power supply to reach its
4.75V level - which may be milliseconds in
some systems. A simple RC network (Figure 3-6)
can satisfy this requirement.

The RESET IN line is latched every ClK = 1.
This latched signal is recognized by the CPU
during ClK = 1 of the next T state. (See Figure
2-24.) If it is low, the CPU will issue RESET OUT
and enter T HALT for the next T state. RESET IN
should be kept low for a minimum of three clock
periods to ensure proper synchronization of the
CPU. When the RESET IN signal goes high, the

2-18

CPU will enter M1 • T1 for the next T state. Note
that the various signals and buses are floated in
T RESET as well as T HALT and T HOLD. For this
reason, it is desirable to provide pull-up
resistors for the main control signals (par­
ticularly WR).

Specifically, the RESET IN signal causes the
following actions:

RESETS
PROGRAM COUNTER
INSTRUCTION REGISTER
INTE FF
RST 7.5 FF
TRAP FF
SOD FF
MACHINE STATE FF's
MACHINE CYCLE FF's
INTERNAllY lATCHED

FF's for HOLD, INTR,
and READY

SETS

RST 5.5 MASK
RST 6~5 MASK
RST 7.5 MASK

RESET IN does not explicitly change the con­
tents of the SOS5A registers (A, B, .C, 0, E, H, l)
and the condition flags, but due to RESET IN oc­
curring at a random time during instruction ex­
ecution, the results are indeterminate.

FUNCTIONAL DESCRIPTION

M,(OF)
POWER SUPPLY

TRESET T, T,

+5V .~ 4.7SV

Vee .7J==-> 10ms.c -

OV

Vaa (INTERNAL)

-2V.1-

2.4V ...

RESET IN

OV. .. _----

FIGURE 2·23 POWER·ON TIMING

SIGNAL

ClK

RESET OUT

ALE

101M

As-!s

READ MODE

ADo.7

RD,

WRITE MODE

ADo.7

..........

*NOTE THAT FROM T2 TO HERE THE 808S's BUS IS IN THE INPUT MODE AND
IT IS FLOATING. THE DEVICE DRIVING THE BUS WILL CONTINUE TO DRIVE
THE BUS UNTIL RD GOES HIGH.

FIGURE 2·24 RESET IN TIMING

,,-"-

2·19

,,-~ ~

,,-"-

Following RESET, the SOS5A will start executing
instructions at location 0 with the interrupt
system disabled, as shown in Figure 2-24.

Figure 2-24 also shows READ and WRITE opera­
tions being terminated by a RESET signal. Note
that a RESET may prematurely terminate any
READ or WRITE operation In process when the
RESET occurs.

2.3.8 SID and SOD Signals:
Figure 2-25 shows the timing relationship of the
SID and SOD signals to the RIM and SIM instruc­
tions. The SOS5A has the ability to read the SID
line into the accumulator bit 7 using RIM instruc­
tions. The state of the SID line is latched inter­
nally during T 3 • elK = 0 of the RIM instruction.
Following this, the state of the interrupt pins
and masks are also transferred directly to the
accumulator.

The SOS5A can set the SOD flip-flop from bit 7 of
the accumulator using the SIM instruction. (See
Figure 2-26.) The data is transferred from the ac­
cumulator bit 7 to SOD during M1 • T2 • elK = 0
of the instruction following SIM, assuming that
accumulator bit 6 is a 1. Accumulator bit 6 is a
"serial output enable" bit.

FUNCTIONAL DESCRIPTION

M1 (OF) M1 (OF) M1 (OF)
SIGNAL

T1 T2 T3 T4 T1 T2 T3 T4 Tl T2 T3 T4

CLK V V </ V V V V V V ;-1\/ V
4~

SOD 4~ / I
~ (4~

SID 1\

~ \
ACCUMULATOR W "-(BIT7)

A B-A 15 ~ K= ~ LX K=
OUT IN OUT IN OUT IN

ADO-AD7 C -(RIM I}---C ~-{ SIM ~--rc ~- RIM I}----

ALE V\ V\ V\
AD 1\

FIGURE 2·25 RELATIONSHIP OF SID AND SOD SIGNALS TO RIM AND SIM INSTRUCTIONS

EFFECT OF RIM INSTRUCTION
SID

FIGURE 2·26 EFFECT OF RIM AND SIM INSTRUCTIONS

2.4 COMPARISON OF MCS·80 AND MCS·85
SYSTEM BUSES
This section compares the MCS-80 bus with the
MCS-85 bus. Figure 2-28 details the signals and
general timing of the two buses; the timing
diagrams are drawn to the same scale (8080A
clock cycle = 480 ns and 8085A clock cycle =
320 ns) to facilitate comparison.

2-20

EFFECT OF SIM INSTRUCTION
SOD

FUNCTIONAL DESCRIPTION

MCS·80™ System Bus
The MCS-80 bus is terminated on one end by the
CPU-GROUP (consisting of the 8080A, 8224,
8228) and on the other end by the various
memory and 1/0 circuits. The following figure
shows the major signals of the MCS-80 bus.

INT

INTA 16 Ao-A,s

HOLD 8080A

HlDA 8224
8228 l' • 00 -07 i 8

READY

RESET

q,2(TIl)
MEMR, MEMW
lOR, lOW

FIGURE 2·27 COMPARISON OF SYSTEM BUSES

MCS·80™ System Bus

SIGNAL(S) FUNCTION

MEMR, MEMW,
lOR, lOW, INTA

READY, RESET,
HOlD,HlDA
cJ>2 (TTl), I NT

The 16 lines of the address
bus identify a memory or 1/0
location for a data transfer
operation.
The 8 lines of the data bus
are used for the parallel
transfer of data between
two devices.
These five control lines
(MEMORY READ, MEMORY
WRITE, 1/0 READ, 1/0 WRITE,
and INTERRUPT ACKNOWL­
EDGE) identify the type and
timing of a data transfer
operation.
These signals are used for
the synchronization of slow
speed memories, system
reset, DMA, sytem timing,
and CPU interrupt.

FIGURE 2·28 COMPARISON OF SYSTEM BUSES

2-21

MCS·85™ System Bus

The MCS-85 bus is terminated on one end by the
8085A and the other end by various memory and
1/0 devices. The MCS-85 bus may be optionally
de-multiplexed with an 8212 eight bit latch to
provide an MCS-80 type bus. The following
figure shows the major signals of the MCS-85
bus.

INTR

INTA

HOLD

HlDA SOS5A

READY

RESET OUT

elK

mEt ,--1 (0

-18212

8

8

8
/
4

AS-A1S

ADo-AD7

RD,WR
101M, ~lE

MCS·85™ System Bus

SIGNAL(S) FUNCTION

101M

ALE

These are the high order
eight bits of the address,
and are used to identify a
memory or I/O location for a
data transfer cycle.
These eight lines serve a
dual function. During the
beginning of a data transfer
operation, these lines carry
the low order eight bits of
the address bus. During the
remainder of the cycle,
these lines are used for the
parallel transfer of data be­
tween two devices.
These signals identify the
type and timing of a data
transfer cycle.
The I/OIMEMORY line iden­
tifies a data transfer as be-
ing in the I/O address space
or the memory address
space.
ADDRESS lATCH ENABLE
enables the latching of the
Ao-A7 signals.

READY, RESET These signals are used for
OUT, HOLD, the synchronization of slow
HlDA, elK, INTR speed memories, system

reset, DMA, system timing
and CPU interrupt.

FUNCTIONAL DESCRIPTION

MCS·80™ System Bus for READ CYCLE
The basic timing of the MCS-80 BUS for a READ
CYCLE is as follows:

The MCS-80 first presents the address CD and
shortly thereafter the control signal ®. The
data bus, which was in the high impedance
state, is driven by the selected device ®. The
selected device eventually presents the valid
data to the processor 0. The processor raises
the control signal ®, which causes the select­
ed device to put the data bus in the high impe­
dance state ®. The processor then changes
the address (]) for the start of the next data
transfer.

MCS·80™ System Bus for WRITE CYCLE

The basic timing of the MCS-80 BUS for a
WRITE CYCLE is as follows:

MCS·85™ System Bus for READ CYCLE

The basic timing of the MCS-85 BUS for a READ
CYCLE is as follows:

Aa-AI5' IC?/M ==>< __________ >C
(OPTIONALLY=>()(

Ao-A7 LATCHED
SIGNALS) -'---_____ --<

ALE

Ri5 or INTA

At the beginning of the READ cycle, the 8085A
sends out all 16 bits of address CD. This is
followed by ALE ® which causes the lower
eight bits of address to be latched in either the
8155/56,8355, 8755A, or in an external 8212. RD
is then dropped ® by the 8085A. The data bus is
then tri-stated by the 8085A in preparation for
the selected device driving the bus 0; the
selected device will continue to drive the bus
with valid data ®, until RD is raised ® by the
8085A. At the end of the READ CYCLE (]), the
address and data lines are changed in prepara­
tion for the next cycle.

MCS·85™ System Bus for WRITE CYCLE

The basic timing of the MCS-85 BUS for a
WRITE CYCLE is as follows:

AS-AI5 • 101M =x'---______ >C
(OPTIONALLY=>()(

Ao-~ LATCHED
SIGNALS) -------

ALE

WR

The MCS-80 first presents the address CD, then The timing of the WRITE CYCLE is identical to
enables the data bus driver ®, and later the MCS-85 READ CYCLE with the exception of
presents the data ®. Shortly thereafter, the the ADo-AD7 lines. At the beginning of the
MCS-80 drops the control signal 0 for an inter- cycle CD, the low order eight bits of address are
val of time and then raises the signal ®. The on ADo-AD7' After ALE drops, the eight bits of
MCS-80 then changes the address ® in data ®are put on ADo-AD7' They are removed ®
preparation for the next data transfer. The ad- at the end of the WRITE CYCLE, in anticipation
vance write signal of the 8238 is also shown (]). of the next data transfer.

FIGURE 2·28 (Continued) COMPARISON OF SYSTEM BUSES

2-22

FUNCTIONAL DESCRIPTION

The following observations of the two buses
can be made:
1. The access times from address leaving

the processor to returning data are almost
identical, even though the SOS5A is
operating 50% faster than the SOSO.

2. With the addition of an S212 latch to the
SOS5A, the basic timings of the two
systems are very similar.

3. The SOS5A has more time for address
setup to FfO than the SOSO.

4. The MCS-SO has a wider RD signal, but a
narrower WR signal than the SOS5A.

5. The MCS-SO provides stable data setup to
the leading and trailing edges of WR,
while the SOS5 provides stable data setup
to only the trailing edge of WA.

6. The MCS-SO control signals have different
widths and occur at different points in the
machine cycle, while the S085A control
signals have identical timing.

7. While not shown on the chart, the MCS-SO
data and address hold times are adversely
affected by the processor preparing to
enter the HOLD state. The SOS5A has iden­
tical timing regardless of entering HOLD.

S. Also not shown on the chart is the fact
that all output signals of the 80S5A have
- 400l'a of source current and 2.0 rna of
sink current. The SOS5A also has input
voltage levels of V1L = O.SV and V1H = 2.0V.

CONCLUSION:
The preceding discussion has clearly shown
that the MCS-S5 bus satisfies the two restric­
tions of COMPATIBILITY and SPEED. It is com­
patible because it requires only an S212 latch to
generate an MCS-SO type bu~f the four control
signals MEMR, MEMW, lOR and lOW are
desired, they can be generated from RD, WR,

2-23

and 101M with a decoder or a few gates. The
MCS-85 bus is also fast. While running at 3MHz,
the SOS5A generates better timing signals than
the MCS-80 does at 2M Hz. Furthermore, the
multiplexed bus structure doesn't slow the
SOS5A down, because it is using the internal
states to overlap the fetch and execution por­
tions of different machine cycles. Finally, the
MCS-S5 can be slowed down or sped up con­
siderably, while still providing reasonable
timing.

TO USE. The AD, WR, and INTA control signals
all have identical timing, which isn't affected by
the CPU preparing to enter the HOLD state. Fur­
thermore, the address and data bus have good
setup and hold times relative to the control
signals. The voltage and current levels for the
interface signals will all drive buses of up to 40
MOS devices, or 1 schottky TIL device.

The MCS-S5 system bus is also EFFICIENT. Effi­
ciency is the reason that the lower eight ad­
dress lines are multiplexed with the data bus.
Every chip that needs to use both Ao-A7 and 00-
07 saves 7 pins (the eighth pin is used for ALE)
on the interface to the processor. That means
that 7 more pins per part are available to either
add features to the part or to use a smaller
package in some cases. In the three chip
system shown in Figure 3-6, the use of the
MCS-S5 bus saves 3 x 7 = 21 pins, which are
used for extra I/O and interrupt lines. A further
advantage of the MCS-S5 bus is apparent in
Figure 3-7, which shows a printed circuit layout
of the circuit in Figure 3-6. The reduced number
of pins and the fact that compatible pinouts
were used, provides for an extremely compact,
simple, and efficient printed circuit. Notice that
great care was taken when the pinouts were
assigned to ensure that the signals would flow
easily from chip to chip to Chip.

System Operating and 3
Interfacing

CHAPTER 3
SOSSA SYSTEM OPERATION AND INTERFACING

3.1 INTERFACING TO THE 8085A
The 8085A interfaces to both memory and 1/0
devices by means of READ and WRITE machine
cycles, the timing of which are identical. During
each machine cycle the 8085A issues an address
and a control signal, then either sends data out on
the bus or reads data from the bus. The 8085A may
be performing a READ machine cycle, but what
it reads could be a ROM, RAM, I/O device, periph·
eral device, or nothing.
There is no distinction between data, instruction
opcodes, and 1/0 port numbers except the way the
CPU interprets what it reads from the bus. If an op­
code is what would logically appear on the bus, the
CPU will treat as an opcode whatever does appear
there; if an 110 port number is to be expected, what
appears will be interpreted as a port number. The
same is true for a WRITE cycle. The 8085A issues
an address, data, and a control signal. Unless it is
requested to WAIT (by use of the READY line) it will
complete the cycle and proceed to the next. Regard­
less of whether there is a device present to accept
the data, the CPU executes one instruction at a
time, in sequence, until told to do otherwise. The
program controls the sequence and nature of all
machine cycles until an interrupt occurs.
There are two ways of addressing 1/0 devices in the
MCS85 system. If the 101M output from the CPU is
used to distinguish between 1/0 and memory
READ and WRITE cycles, then that system is said
to employ standard, or I/O-mapped, 1/0. If 101M is
not so used, the CPU does not distinguish between
1/0 and memory, and its system employs memory­
mapped 1/0. Each method of addressing 1/0 has ad­
vantages and disadvantages.

3.2 MEMORY·MAPPED 110
3.2.1 Advantages of Memory·Mapped 110
Since the processor doesn't distinguish 110 from
memory using this addressing scheme, you can
take advantage of the larger instruction set that
references the memory address space. Instead of
only being able to transfer a byte of data between
the accumulator and the 1/0 port (using INPUT and
OUTPUT instructions), you can now program

3-1

arithmetic and logic operations on port data as well
as move data between any internal register and the
1/0 port. Consider the new meaning of the following
instructions:

Examples:
MOVr,M
MOV M,r
MVIM
LOA
STA
LHLD
SHLD
ADDM
ANAM

(Input Port to any Register)
(Output any Register to Port)
(Output immediate data to Port)
(Input Port to ACC)
(Output from ACC to Port)
(16-Bit Input)
(16-Bit Output)
(Add Port to ACC)
(AN 0 Port with ACC)

3.2.2 Disadvantages of Memory·Mapped 110
While memory instructions may increase the flex­
ibility of the 1/0 system, there are some drawbacks.
Since 1/0 devices are now addressed as memory,
there are fewer addresses available for memory. A
common practice is to use address bit 15 (A15) to
distinguish memory from 1/0. (See Figure 3-2 and
accompanying discussion.) If A15 = 0 then memory
is being addressed; if A15 = 1, 1/0 is being ad­
dressed. This particular scheme limits the max­
imum amount of memory that can be used to 32k
bytes. A further disadvantage of memory-mapped
I/O is that it takes 3 bytes of instruction and 13
clock cycles using the LOA or STA instructions
to specify moving a byte of data between the ac­
cumulator and an 1/0 device, whereas the INPUT
and OUTPUT instructions require only two bytes
and 10 clock cycles. This is because the I/O ad­
dress space is smaller (only 256 bytes) and there­
fore requires fewer bits to completely specify
an address. A futher advantage of using the IN­
PUT and OUTPUT Instructions is that it allows
the easy connection of the MCS-80 peripherals
to the MCS-85 multiplexed bus. If you memory­
map the MCS-80 peripherals to the MCS-85 bus,
you must either latch the lower address bits
with an 8212 or use a portion of the memory ad­
dress space by connecting the chip selects and
address lines of the ports to the unmultiplexed
upper eight lines of the address bus.

SYSTEM OPERATION

3.3 ADDRESS ASSIGNMENT

3.3.1 Decoding
Besides memory-mapped I/O, another practice
is to only partially decode the address bus
when generating chip selects. Every device has
a given number of unique addresses associated
with it. The 8355, for instance, has 2k bytes of
ROM and therefore has 2k addresses associated
with the ROM. Anyone of these 2k addresses
can be uniquely specified by a pattern on the 11
(211 = 2k) address lines. However, since the 8355
must work with other devices in a system, it
isn't enough to simply specify the 11 bits; fur­
ther bits of information must be used to locate
the 2k bytes within the 65k address space. The
2k bytes are located by the use of chip enable
(CE) inputs to the 8355 chip. If the 8355 were to
occupy the first 2k bytes of the memory address
space, it would, strictly speaking, be necessary
to decode the fact that A15-A11 were all zeroes,
and use that condition as a chip enable. Then
the 8355 would be selected only when the ad­
dress bus was less than 2k.

However, if other 2k blocks of addresses aren't
being used, you may combine those addresses
and not decode all of the upper five address
lines for chip enables. In fact, in a small system
you may need to decode only one bit of address,
which is to say connect that bit of the address
bus to the chip enable line of the 8355. If you
connect A11 to the CE line of the 8355 and tie CE
to V cc, then the 8355 would be selected when­
ever the memory address was less than 2k. (See
Figure 3-1A.)

However, it will also be selected whenever
memory locations 4k-6k, 8k-10k, 61 k-63k (Le.,
whenever bit A11 = 0) is addressed. If the pro­
grammer is aware of this, and if there are no
other devices assigned to the other address
spaces, then it may be an acceptable condition.
Care must be taken, however, to ensure that at
no time will two different devices be selected
simultaneously. Whenever one device is
selected, that memory address must deselect
all other devices. If two devices are selected
Simultaneously for a READ operation, the elec­
trical conflict on the bus may damage one or
both parts. Note also that the address bus may
reflect an undesired address during T5, T6 of an
opcode fetch cycle and during address bus
transitional periods in T 1 (this is illustrated in
Chapter 2). Therefore, all memory and I/O
devices must qualify their selection with RD or
WR, or the address on the bus at the falling
edge of the ALE, so as to ignore all spurious ad­
dresses.

3-2

3.3.2 Linear Selection
Using an address bit as a chip select is referred
to as linear selection. The direct consequence
of linear selection is that you cut the available
address space in half for each single address
bit used as a chip enable. If this penalty is too
high, you can always use an 8205 one-of-eight
decoder. Also, some chips have multiple chip
enables, which allows for some automatic
decoding of the address. (See Figures 3-1 Band
3-1C.)
One drawback to linear selection is that the
memory addresses of the different parts are not
contiguous. For example, if three 8355s are ad­
dressed using linear selection, one might be
located at 0-2k, the next at 6k-8k, and the next at
10k·12k. The programmer must recognize these
page boundries and jump over them.

3.4 INTERFACING TO THE 8155/8156,
8355/8755A

3.4.1 1/0 Mapped 1/0:

This section describes some of the techniques
involved in connecting the MCS-85 combination
memory and I/O chips to the 8085A as I/O
devices.
Figure 3.1A shows one 8355 connected to the
8085A bus. (In the inlerest of simplicity, only the
chip enable and 101M lines are shown; the other
lines are connected as shown in Figures 3.~3.7
or 3.8.) Notice that CE is tied to Vcc and CE is
connected to A11. This is because after RESET
the processor always starts executing at loca­
tion O. Since the ROM normally contains the
program, it must be selected when the address
is all zeroes.
One consequence of the ROM being selected
by an all-zero address is that the I/O ports on
the chip will be selected only when A11 = O. This
is because the I/O ports and the memory have
common chip enables, therefore forCing the
selection conditions of one onto the other. Fur­
thermore, since th~ 101M line of the chip is con­
nected to the 101M line of the 8085A, the port
has I/O mapped I/O. The I/O ports can be ac­
cessed only by use of the INPUT and OUTPUT
instructions; since !!lese are the only instruc­
tions that cause 101M to go high.
The boxes to the right of the chip in Figure 3.1A
indicate the memory addresses and I/O Port
numbers required to access the chip. As a
result of the linear selection technique used,
there are many "don't care" bits (marked by
"X"s) in the address. While they don't affect the
addressing of this device, they may affect other

SYSTEM OPERATION

FIGURE 3-1A SINGLE CHIP 8355/8755A
A" _______ ----1 ~

vee----~CE

10/~-------__I10/M

FIGURE 3-1 B MULTIPL ECHIPS 8156

A13

101M

Vee-I---
'-----

CE

101M

8355/8755A

EE
CE

101M

8355/8755A

EE
CE

101M #1
I-

#0

FIGURE 3-1C FULLY DECODED AND EXPANDED

8205

A'3

A,2

A2 07
I

A,

A'l Ao

I--

MEMORY ADDRESS

{

I X X X X I 0 A,o- - 1- - I -

1/0 PORT

IX X X X lox A, Aol

MEMORY ADDRESS

rX x> 'I X X X X I"· . . I·
1/0 PORT

IX X 1 1 1 X A2 A, Aol

MEMORY ADDRESS

{

IX X 0 1 1 X A,o- - 1 - - - - 1 -

1/0 PORT

IX X 0 1 I X X A, Aol

MEMORY ADDRESS t X ° ° 1 XA,,· . 1 . . 1
1/0 PORT

IX X 0 0 I X X A, Aol

8155

CE
101M

Aol

MEMORY ADDRESS
A'4
A'5

101M

A,3
A,2
A11

A'5
A'4

101M

~

A 2

-----tAl
------lAo

vee E3
----<lI E2
----<lIE,

8205
0 7

E3
E2

I
E, 00

8355/8755A
EE
CE

.------1 101M

8355/8755A

0 0 P-+-----I EE
Vee CE #7

101M I

8155

CE
~ 101M ~

to , , 'I' X X X I., . . 1 .
1/0 PORT

I
I

/~
#0 / 10

MEMORY ADDRESS

olooloXXXI~- -1-

MEMORY ADDRESS

ilo PORT
fO",'A'11

I MEMORY ADDRESS

/
11~~IO~O~O~O~I~O~A=l~~~-~I-~~~-~I------~Ao~1

1/0 PORT

FIGURE 3·1D SEPARATE CHIP ENABLES FOR 1/0 AND MEMORY

~ % QUAD
2TO 1 MUX

CE-IO I, 8156

OUT CE

10 101M
Ao

I 1
CE-MEM

101M

FIGURE 3·1 MCS·85™ PERIPHERALS WITH 110 MAPPED 110

3-3

SYSTEM OPERATION

devices in the system, which would force them
to be either ones or zeroes. Remember that two
devices may not be selected simultaneously;
thus each device must have an address that not
only selects itself, but also deselects all other
devices. If there are any bits which are truly
"don't cares," they are customarily assigned to
be zero. If all the "X" bits in Figure 3.1A were
"don't cares," then the chip could be addressed
as memory locations 0-2k, and 1/0 Ports 0-3.

Figure 3.1 B shows a slightly larger system of
two 8355s and one 8156. Notice that 8355 No.1
uses its two chip enable lines to decode A12 = 1,
A13 = O. It is possible to address each of the
chips without selecting any of the others. Also
notice that there are some illegal addresses
(e.g., A12 = 0, A13 = 1) that would cause two of the
devices to turn on simultaneously. The pro­
grammer must not use these addresses.
Figure 3.1C shows a larger MCS-85 system. Two
8205s are used to completely decode the ad­
dresses. There are some interesting points to
observe here. First, while some of the devices
have multiple possible address (Le., they have
some "don't care" bits), there aren't any ad­
dresses which can cause simultaneous selec­
tion of two or more parts. Second, the 1/0 and

FIGURE 3·2A SINGLE CHIP

8355/8755A

A,,---------tCE

vee----~CE

A'5 ---------tIO/M

FIGURE 3·2B MULTIPLE CHIPS
8156

CE

101M

8355/8755A

CE
CE

101M

8355/8755A -

memory portions of the 8x55 components share
chip enables, so they are forced to live with
each other's constraints. Third, only one 8205 is
required per eight chips for the decoding; that's
an overhead of only 1/8 of a chip per part.
Figure 3.1 D shows a remedy to the problem il­
lustrated in Figure 3.1 C, namely that I/O and
memory portions of the chip are forced to live
with each other's chip enable constraints. By
using a quad 2 to 1 multiplexer, the chip enables
of the I/O and memory portions of four chips
can be independently assigned.

3.4.2 Memory·Mapped 110:

Figure 3.2A shows all 8355 connected to the
8085A. Since the 101M pin of the 8355 is con­
nected to A15, whenever A15 = 1 the 1/0 ports will
be accessed. While A15 could be set to 1 either
by a memory or by an I/O instruction, in this
situation the port is usually accessed only by
the memory instructions. You may access ports
either as memory locations (where A15 = 1
refers to a memory address of 32k or higher) or
as 1/0 ports (where A15 = 1 refers to an 110 ad­
dress of 128 or higher, since bits Aa-A15 are a

MEMORY ADDRESS

{
10 X X X I 0 A,o' . I· . . . I·

1/0 ADDRESS

11 X X xlo X ·-·-1- X A,Aol

MEMORY ADDRESS

t
l lox 1 1 I X X X X I A7 - . . I .

1/0 ADDRESS

11 X 1 1 1 X X . . I· . . . I X A2 A, Aol

MEMORY ADDRESS

CE
Vee CE

"--- 101M - {

IO X 0 11 x Ala- -1- .. -1- . - Aol

1/0 ADDRESS

11 X 0 1 I X X . ·1- - . . I· X A, Aol

MEMORY ADDRESS

1

1
{

: X 0 0 I 'A,," "I" " " "I" " " "'I
1/0 ADDRESS

X 0 0 1 o· . . I . . I: X A, Aol

FIGURE 3-2 MC8-8S™ PERIPHERALS WITH MEMORY-MAPPED 1/0

3-4

SYSTEM OPERATION

replication of bits Ao-A7). Assuming that
memory-mapped 1/0 is used, the addresses are
shown in the boxes to the right in Figure 3-2. If
you want to be sure that neither the 1/0 nor the
memory is ever selected by any INPUT or OUT­
PUT instruction, then the chip enable must be
conditioned by 101M = O.
Figure 3.2B shows a somewhat larger system,
also using memory-mapped 1/0. As in Figure
3.1 B care must be exercised to ensure that no
two devices are accessed simultaneously. You
can see that considerable memory address
space is used up as a result of using memory­
mapped 1/0.

3.5 INTERFACING TO MCS·80™ PERIPHERALS

3.5.1 1/0 Mapped 1/0:

For want of a better name, the Intel® 825x, 827x,
and 829x series peripherals are referred to here
as MCS-80 peripherals because unlike the 81551
56, 8355 and 8755A, they are compatible with
the nonmultiplexed MCS-80 system bus.
To interface to an MCS-80 peripheral, you must
provide a constant address, a chip select, and
RO or WR. Since the upper address lines (As-A15)
of the 8085A are nonmultiplexed, they can be
tied directly to the peripherals, as shown in
Figure 3.3A. To provide 1/0 mapped 1/0, use
either linear selection (keeping the 1/0 and
memory addresses noncoincidental), or condi­
tion the chip selects WR with 101M = 1. Figure
3.3A shows a teQ.hnique of gating the chip
selects with 101M = 1, using an 8205. This
technique also allows more 1/0 devices to be
used than linear selection would. Note that this
technique relies on the fact that the 1/0 Port
number is copied onto As-A15 as well as Ao-A7
during an INPUT or OUTPUT instruction.
Figure 3.3B shows an alternative approach to
interfacing to MCS-80 components. By latching
the lower 8 bits of address with an 8212, and
decoding the control signals with an 8205, you
create an exact copy of the MCS-80 (8080A,
8224,8228) bus. You may then use whatever cir­
cuits have been previously developed for the
8080. The total cost is one 8212 and one 8205.
Since the same signals might have needed buf­
fering anyway (and the 8212 and 8205 provide
buffering of their outputs), the extra component
overhead ranges from little to nothing.

3.5.2 Memory·Mapped 1/0:

Exactly the same techniques used to memory
map the MCS-85 apply to the MCS-80 1/0 devices.
Figure 3.4 shows an 8205 used to qualify the
chip select of the 110 device with 101M = O. Since

3-5

the MCS-80 peripherals require nonmultiplexed
address lines, linear select is not too useful
unless the address lines are latched. This is
because connecting both the chip selects and
the address lines of the MCS-80 peripherals to
As-A15 would deplete all the useful addresses
very quickly.

3.6 INTERFACING TO STANDARD BUS
MEMORIES

Standard bus memory devices are designed to
be used with nonmultiplexed address and data
buses. Interfacing to standard memories is very
similar to interfacing to MCS-85 memories with
the exception that Ao-A7 must be latched. Once
this requirement is met, all the tricks discussed
earlier can be used. Since the address lines
would eventually require buffering as the
system size grew, the overhead of the 8212
latch again becomes negligible.
Figure 3.5 shows the interface of the 8085A to a
large block of memory, specifically 16k bytes of
ROM and 8k bytes of RAM. Besides the
memories, the circuit requires only 2-1/6 other
parts for logical gating. If MCS-80 1/0 parts were
used, the 8212 latch could be shared between
the two groups, further reducing the gating
overhead per IC. Sixteen 2142 chips and eight
2316E chips are used in this deSign. The data
bus, address lines 8-10, and control signals in
this system all should be buffered. This applies
to any system with the number of memory
devices represented here.
Wherever two or more parts are paralleled on
the same bus, they must be 3-state devices
such as the 2142 RAM, 2316E ROM, 2716
EPROM, 2332 ROM, 2732 EPROM, and 2364
ROM, which have either an output disable (00)
input or multiple chip select (CS) inputs. To pre­
vent bus contention, only one memory device
may be output-enabled at a time in this con­
figuration; the ou~ts of all others must be
deselected during RD.
For additional information on interfacing stan­
dard memory devices, please read Section 2 of
Appendix I and the Intel applications note AP-30
"Application of Intel's 5V EPROM and ROM
Family for Microprocessor Systems" available
from: Intel, Literature Dept., 3065 Bowers Ave.,
Santa Clara, CA 95051.

3.7 DYNAMIC RAM INTERFACE:
For interfacing the dynamic RAM, Intel makes a
single-component dynamic RAM refresh con­
troller, the 8202, which interfaces the 8085A to
multiplexed-address-bus dynamic RAMs like

FIGURE 3·3A DECODED CHIP SELECTS

A.

A.

A,.
A'3

A'2

101M

A,s

A,

A,

Ao

E3

E, r E
,

8205

0, F>---r
I

O.
I
I

0 3 :>
0,

0,

0 0

SYSTEM OPERATION

les

I lA,
Ao

yes
82535

A,

I
Ao

8251A

es

-Ao

J~ 8259-5

.8255A-5

1/0 PORT

10 1 0 OIX X X Aol
~

1/0 PORT

r-- 1
0 0 1 OIX X A, Aol

1/0 PORT

RD 10 0 0 -WR
.A I.

1/0 PORT
.; 0 0 -0,

10 0 0 OIX "I
ADo-AD,

FIGURE 3·3B DECODED CONTROLS AND LATCHED ADDRESS (Mcs·ao™ TYPE BUS)

~ ________ ~KI~W __________ ~WR

~ ________ ~R)~R __________ ~RD

~----MEMW

Ir----- MEMR

A,s---------------------------------qcs

r----------~ Ao

11 X

X X

8251A

ADo-AD, '-r-------..., Do-D7

8212

00, .• 1--_______ --,/ Ao-A,

ALE -----------1

FIGURE 3·3 MCS·80™ PERIPHERALS WITH 110 MAPPED 110

A14

A,3

A12

A,s

101M

A.

ADo-AD,
A

(,
"I

8205

A,

A,

Ao

E3

E2 r E
,

0,:-
I
I

I
I
I

I 8251A
cs

Oo~

I
Ao .

RD

WR
I\. J 0 0 -0,

X A, Aol

Aol

1/0 PORT

10 X -1- X Aol

1/0 ADDRESS

Xl

FIGURE 3·4 MCS·80™ PERIPHERALS WITH MEMORY·MAPPED 110 AND DECODED CHIP SELECTS

3-6

11

I:
I

I

SYSTEM OPERATION

the Intel 2104A and 2117. The 8202 provides the
necessary refreshing for such dynamic RAMs,
and also provides the control signals required
for accessing, selecting, and address clocking.
It allows for the use of the 8085A's full capabili­
ty of 64k bytes of address space with no addi­
tional buffering devices. As with other standard
memory interfaces, it is necessary to demulti­
plex the lower 8 bits of address from the multi­
plexed 8085A bus, ADo-7•

3.8 MINIMUM MCS-85™ SYSTEM

The Schematics of Figure 3.6 depict a minimum
system core. In actual use, some of the pro­
cessor control signals (TRAP, INTR, and HOLD)
would have to be terminated. Also, interface
logic to external devices as well as more
memory and 1/0 devices may be desirable. The
first thing one notices about the system in
Figure 3.6 is the scarcity of parts required to
build this system. With a minimum of parts, we

have constructed a microcomputer system that
has the following functions:
PARTS FUNCTIONS
1 8085A 1 CPU (Clock cycle
1 8355/8755A :s 320 ns)
1 8156 2048 Bytes of either
1 Crystal
4 Resistors
1 Capacitor
1 Diode
1 + 5 Power Supply

EPROM or ROM
256 Bytes of RAM
38110 Lines
5 Interrupts
1 Programmable Timerl
Counter
1 Crystal and Oscillator
1 Clock
1 Power-on Reset

By looking at the printed circuit layout of Figure
3.7, we can see that not only are there just 3 ICs,
but that the interconnection of these p-arts is
extremely easy and provides a very dense
layout. Expecially notice the easy flow of the
system bus on the solder side of the board.

2 X 2142

WR

A13

A"

All

Vee

A,s

101M

ADo ·AD7

Vee

ALE

As"A 1O

RD

A"

----------_~---ICS2

,.------t-------QCSI

CS2

,..-------<l CSI

---------~~-----~~
OD

8205

A, 0,
A g ,9

A,

Ao

2 X 2142

=0 /

/
/

2316E
E, t-+------<lCSl

E, t------<lCS2

E, 0 0

8212

Ao·A?

01 1_8 00 1.8

MD
I

STB I

DS,
=0 /

DS1

=7

I
/

/

=7

/
/

/

MEMORY ADDRESS

/11 0 1 1 1 I 1 X A. I-

I
I

/
/ MEMORY ADDRESS

/
/

/

MEMORY ADDRESS

/ 1 0 0 1 1 I 1 AlO - - I

/ MEMORY ADDRESS

I 0 0 0 0 I 0 AlO - - I - I -

- I- Ao I

/

Ao 1/

/
/

/

- I - Ao

Ao i/

/
I

/

FIGURE 3·5 STANDARD MEMORIES WITH LATCHED ADDRESS AND DECODED CHIP SELECTS

3-7

SYSTEM OPERATION

t 1 t t t 1 1 1 ! ! 1 1 ~~ MANUAL RESET

'" 0 o .. o 0 II! It! It> "- ..L...

GND

1« " RESeT 0 ...J en en 5l iii I- I- It> <.D ~ «

~
...J 0 ~ ~ l- I- " iN -:x :x en en en I-- " " " f 8085A Xl

I- ~-::---- :;)

Q 0

~ ~ I- 0 >
I:E w .r 0 X2 0 w

I~ I~
en ~ « N M ~ I.t) 0 ...J § W 00 ...J W :;(:;(:;(:;(:;(« '" " « u " .. iI-

1 ! lh (8) ¢ (3) z: (
o·

I) ISEE NOTE 2

()
: Vee t

PROG/CE

Vee- CE

READY

• CLK

Vee~ i'6R
A S·A lO ..

8355/8755A

RESET

101M

WR
RO
ALE PAo·PA 7

A

\.. ADo·AD7 y PBO·PB7

I I
GND Vee

CE

VCC VCC

~))
8156

SEE
NOTE

4

RESET

101M

WR

RD

ALE

A "-

"IIi
~ / ADO·AD7

.... ..
I

NOTE 1: TRAP,INTR,AND HOLD MUST BE GROUNDED IF THEY AREN'T USED.
GND

NOTE 2: USE 101M FOR STANDARD 110 MAPPING. USE A15 FOR MEMORY MAPPED I/O.

NOTE 3. CONNECTION IS NECESSARY ONLY IF ONE TWA IT STATE IS DESIRED.
NOTE 4: PULL·UP RESISTORS RECOMMENDED TO AVOID SPURIOUS SELECTION WHEN AD AND WR ARE

3·STATED. THESE RESISTORS ARE NOT INCLUDED ON THE PC BOARD LAYOUT OF FIGURE 3·7.

FIGURE 3·6 MINIMUM 8085 SYSTEM

3·8

PAo·PA7

pBo'p~

PCo,PCs

TIMER IN

TIMER OUT

I
VCC

..
PORT A (8)

PORT B (8) ..

PORTA (8)

...
PORT B (8) ..
PORT C (6)

...

..
) ..

SYSTEM OPERATION

L

•••••••••••

-- -
COMPON ENT SI DE
SCALE: "='1:1

I i······· .. ··
~~

- -- --- -~ -~ -~ ------" ------" ------" ------" ------" -
~

--~ --

- -~\ ---
-, -, -, -, -, -, ---~

~

-- -- -- -), - -" - -" - -----

SOLDER SIDE
SCALE: "='1:1

FIGURE 3·7 PRINTED CIRCUIT LAYOUT

3-9

••

••

0:
o

~g
",Z
NZ

8

'" It)

co

COMPONENT LAYOUT

SYSTEM OPERATION

l! rr r j r j j j l!
<t 0 o ... o 0

l<t CC
III III III "" 0 -' CIl CIl o - ~ ~ Ili to " <t

-' 0 CIl CIl
~ ~ ~ ~ ~

cc
J: J: ~

GND -- cc cc cc

8085A
~
:::l - I"- 0 0 0 >

~ ~

W I:!: W ~ 0

8 CIl ~ ~ N M <t
-' I~ I~ Q W

~ ::(~ ::(<t <t cc U cc <t

VCC

/).

on w,
~I o· z:
W : VCC
~(

(81 \31

K
'I

Vcc Vcc

~
SEE NOTE 4

..A

(
7

NOTE 1-_ TRAP,INTR, AND HOLD MUST BE GROUNDED IF THEY AREN'T USED_

I T E NOTE 2: N THIS CONFIGURA ION, TH 1/0 CAN T BE MEMORY MAPPED (WITHOUT

EXTRA LOGICI BECAUSE ALL OF THE ADDRESS LINES ARE IN USE_

NOTE 3: CONNECTION IS NECESSARY ONLY IF ONE TWAIT STATE IS DESIRED_

NOTE 4: PULL-UP RESISTORS RECOMMENDED TO AVOID SPURIOUS SELECTION

WHEN iffi AND WR ARE 3-STATED_

FIGURE 3·8 EXPANDED SYSTEM

VCC

~~ MANUAL RESET

-1...
RESET

iN ~

1 I X1~

c::J

III X2 -----=r
::(

; PROG/CE
8355/8755A

ICE

; PROG/CE
8355/8755A

ICE

PROG/CE

VCC- CE

READY

ClK

VCC lOR

AS-A 10
y

8355/8755A
V

'I
RESET

101M .A

WR "-
~ AD

A

ALE PAO-PA7 r-...

~
AI:b-AD7

PBO-PB7
'I

JD
I

VCC
..A

ICE 8156 "-I '" ..A

CE
...
.A

('

S156 'I

RESET

101M PAO-PA 7

WR
AD A.

PSo-PB7
ALE 'I

A

PCO-PC5

~
I-

ADO-AD7
TIMER IN

I" TIMER OUT

I I
GND VCC

3·10

10..

PORT A (81
~ I'

A 10..

PORT B (SI
'I y

...
PORT A (SI

..
PORT B (SI

I'

PORT A (SI
y

PORT B (SI
Y

PORT C (81
y

...
PORT C (SI

I'

..
PORT C (61

Y

"-
PORT A (SI

y

.Jo..
PORT B (SI

Y

10..

PORT C (61

SYSTEM OPERATION

3.9 EXPANDED MCS·85™ SYSTEM
Figure 3.8 shows the circuit Figure 3.6 ex·
panded to its maximum size without the use of
any extra logic. In an extremely small board
area we can fit:
PARTS FUNCTION
18085A
3 8355/8755A
28156
1 Crystal
4 Resistors
1 Capacitor
1 Diode

1 CPU (Clock cycle
~ 320ns) .
ROM/EPROM
6144 Bytes
512 Bytes RAM
76 110 Lines
5 Interrupts
2 Programmable
Timer/Counters
2 Serial 110 Lines
1 Crystal and
Oscillator
1 Clock
1 Power·on Reset

3.10 MCS·85™ SYSTEM WITH 8185
The 8185 1 K-byte static RAM chip is another
multiplexed-bus component that insures that
the most highly integrated systems can be
built with MCS-85 components. Figure 3.9
shows a 4-chip MCS-85 system schematic with
the following characteristics:
PARTS FUNCTION
18085A 1 CPU
1 8185 ROM/EPROM
1 8156 2048 Bytes
1 8355/8755A 1280 Bytes RAM

38 I/O Lines
5 Interrupts
1 Timer/Counter
2 Serial I/O Lines

The 8185 alsJLhas pow~r-down capability. By
connecting CE1 to 10/M from the 8085A the
8185 will be powered down during I/O
operations and Interrupt Acknowledge cycles.

3-11

_ TRAP X, x, ~ HOLD _

_ RST7,S HlDA ~

- RST6,S 808SA SOD ~
_ RSTS,S SID I-
- INTR S, f----
_ INTA R6~~T So f----

ADDR -m.~~1 ALE AD WR 101M ROY ClK

(8) Y T vr
c+-

t+­

Ie-+-

+-+-I--\--+~--+--+-.I ~ PORr KV
~+----l-+--+--+-+-I ;: POR~ ~

I A II'\. ALE 8156 POR~ ~
V·L.L.-.l..-....J'--1.--L.---'-....JJ- '\ DATAl Iy::;.v
I "-"---.---,---.---,--r--n- / ADDR
~ IV IN~

""'_+--I---+-IIO/M TIMER

'-+---i-I RESET OUT t--

~I-+-+--+-·IIOW

.....-t--I-+-+-t-+-I AD
~+---1I--1-+-+-I-+-1 ALE

1---1-1--1--1-4-+-+- CE

1--...........,r---r---,---,--,-......,....,,/1 AB.,o

I. • 83SS/87SSA

(L.L.-.l..-....Ji-...J..----L..---'--.lJ..u", OAT AI

: ~rr-,--,r-r--,----.--ny ADDR

101M KV POR~ (8)

....._-1---1-1 RESET

ROY

....... ClK fOR

t t t t
Vss Vee VDD PROG

'-~-+--+-+-I WR
....._t---ir--+-+-I--t AD

~+---1I-+-+-+-I-+-1 ALE

I---+-I--I--+-+--+--+-+-I CS. CE,

AB• A9

> ADo.,

t
Vss

,AA

~AA yv

t
Vee

Vee

Vee

FIGURE 3·9 MeS·85 SYSTEM WITH 8185

Functional Description 4

CHAPTER 4
THE 8080 CENTRAL PROCESSOR UNIT

The 8080 is a complete 8-bit parallel, central processor
unit (CPU) for use in general purpose digital computer sys­
tems. It is fabricated on a single LSI chip (see Figure 1·1).
using Intel's n-channel silicon gate MOS process. The 8080
transfers data and internal state information via an 8-bit,
bidirectional 3-state Data Bus (00-07). Memory and peri­
pheral device addresses are transmitted over a separate 16-

Figure 4-1. 8080 Photomicrograph With Pin Designations

4-1

bit 3-state Address Bus (AO-A 15). Six timing and control
outputs (SYNC, OBIN, WAIT, WR, HLOA and INTE) eman­
ate from the 8080, while four control inputs (READY,
HOLD, INT and RESET), four power inputs (+12v, +5v,
-5v, and GNO) and two clock inputs (4)1 and 4>2) are ac­
cepted by the 8080 ..

AIO 40 All

GND 39

38

37

36

35

34

INTEl! 33

8080
32 A6

10 31 As

11 30

12 29 A3

HOLD 13 28 +12V

INT 14 27 A2

15 26 Al

16 25 Ao

17 24 WAIT

WR 18 23 READY

SYNC 19 22 01

+5V 20 21 HLDA

ARCHITECTURE OF THE 8080 CPU

The 8080 CPU consists of the following functional
units:

• Register array and address logic
• Arithmetic and logic unit (ALU)
• Instruction register and control section
• Bi-directional, 3-state data bus buffer

Figure 4·2 illustrates the functional blocks within
the 8080 CPU.

Registers:

The register section consists of a static RAM array
organized into six 16·bit registers:

• Program counter (PC)
• Stac::k pointer (SP)
• Six 8-bit general purpose registers arranged in pairs,

referred to as B,C; D,E; and H,L
• A temporary register pair called W,Z

The program counter maintains the memory address
of the next program instruction and is incremented auto-

POWER 1- +12V SUPPLIES _ +5V

_-5V

-GND

(8 BITI
INTERNAL DATA BUS

Figure 4-2. 8080 CPU Functional Block Diagram

matically during every instruction fetch. The stack pointer
maintains the address of the next available stack location in
memory. The stack pointer can be initialized to use any
portion of read·write memory as a stack. The stack pointer
is decremented when data is "pushed" onto the stack and
incremented when data is "popped" off the stack (Le., the
stack grows "downward").

The six general purpose registers can be used either as
single registers (8·bit) or as register pairs 06·bit). The
temporary register pair, W,Z, is not program addressable
and is only used for the internal execution of instructions.

Eight-bit data bytes can ~e transferred between the
internal bus and the register array via the register-select
multiplexer. Sixteen-bit transfers can proceed between the
register array and the address latch or the incrementer /
decrementer circuit. The address latch receives data from
any of the four register pairs and drives the 16 address
output buffers (AO-A1Sl. as well as the incrementerl
decrementer circu it. The incrementer /decrementer circu it
receives data from the address latch and sends it to
the register array. The 16-bit data can be increm~nted or

decremented or simply transferred between registers.

BI·DIRECTIONAL
DATA BUS

(81 (81

INSTRUCTION D (81 (81
DECODER

AND
MACHINE

CYCLE
ENCODING

TIMING
AND

CONTROL

4-2

REG.

H (el
REG.

STACK POINTER

PROGRAM COUNTER

A 15 • Ao
ADDRESS BUS

(81 REGISTER
ARRAY

1161

1161

Arithmetic and Logic Unit (ALU):

The ALU contains the following registers:

• An 8-bit accumulator

• An 8-bit temporary accumulator (ACT)

• A 5-bit flag register: zero, carry, sign, parity and
auxiliary carry

• An 8-bit temporary register (TMP)

Arithmetic, logical and rotate operations are per­
formed in the ALU. The ALU is fed by the temporary
register (TMP) and the temporary accumulator (ACT) and
carry flip-flop. The result of the operation can be trans­
ferred to the internal bus or to the accumulator; the ALU
also feeds the flag register.

The temporary register (TMP) receives information
from the internal bus and can send all or portions of it to
the ALU, the flag register and the internal bus.

The accumulator (ACC) can be loaded from the ALU
and the internal bus and can transfer data to the temporary
accumulator (ACT) and the internal bus. The contents of
the accumulator (ACC) and the auxiliary carry flip-flop can
be tested for decimal correction during the execution of the
DAA instruction (see Section 5).

Instruction Register and Control:

During an instruction fetch, the first byte of an in­
struction (containing the OP code) is transferred from the
internal bus to the 8-bit instruction register.

The contents of the instruction register are, in turn,
available to the instruction decoder. The output of the
decoder, combined with various timing signals, provides

the control signals for the register array, ALU and data
buffer blocks. In addition, the outputs from the instruction
decoder and external control signals feed the timing and
state control section which generates the state and cycle

timing signals.

Data Bus Buffer:

This 8-bit bidirectional 3-state buffer is used to
isolate the CPU's internal bus from the external data bus

(DO through D7). In the output mode, the internal bus
content is loaded into an 8-bit latch that, in turn, drives the
data bus output buffers. The output buffers are switched
off during input or non-transfer operations.

During the input mode, data from the external data bus
is transferred to the internal bus. The internal bus is pre­

charged at the beginning of each internal state, except for
the transfer state (TW and T3-described later in this
chapter).

4-3

THE PROCESSOR CYCLE

An instruction cycle is defined as the time required
to fetch and execute an instruction. During the fetch, a
selected instruction (one, two or three bytes) is extracted
from memory and deposited in the CPU's instruction regis­
ter. During the execution phase, the instruction is decoded

and translated into specific processing activities.

Every instruction cycle consists of one, two, three,
four or five machine cycles. A machine cycle is required

each time the CPU accesses memory or an I/O port. The
fetch portion of an instruction cycle requires one machine
cycle for each byte to be fetched. The duration of the execu­
tion portion of the instruction cycle depends on the kind
of instruction that has been fetched. Some instructions do
not require any machine cycles other than those necessary
to fetch the instruction; other instructions, however, re­
quire additional machine cycles to write or read data to/
from memory or I/O devices. The DAD instruction is an
exception in that it requires two additional machine cycles
to complete an internal register-pair add (see Section 5).

Each machine cycle consists of three, four or five

states. A state is the smallest unit of processing activity and
is defined as the interval between two successive positive­

going transitions of the <1>1 driven clock pulse. The 8080
is driven by a two-phase clock oscillator. All processing activ­
ities are referred to the period of this clock. The two non­

overlapping clock pulses, labeled <1>1 and <1>2, are furnished
by external circuitry. It is the <1>1 clock pulse which divides
each machine cycle into states. Timing logic within the
8080 uses the clock inputs to produce a SYNC pulse,
which identifies the beginning of every machine cycle. The
SYNC pulse is triggered by the low-to-high transition of <1>2,
as shown in Figure 4-3.

FIRST STATE OF
'EVERY MACHINE

CYCLE

SYNC _+-__ ...1

'SYNC DOES NOT OCCUR IN THE SECOND AND THIRD MACHINE
CYCLES OF A DAD INSTRUCTION SINCE THESE MACHINE CYCLES
ARE USED FOR AN INTERNAL REGISTER-PAIR ADD.

Figure 4-3. <1>1, <1>2 and SYNC Timing

There are three exceptions to the defined duration of

a state. They are the WAIT state, the hold (H LDA) state
and the halt (H L TA) state, described later in this chapter.

Because the WA IT, the H LDA, and the H L TA states depend
upon external events, they are by their nature of indeter­
minate length. Even these exceptional states, however, must

be synchronized with the pulses of the driving clock. Thus,
the duration of all states are integral multiples of the clock

period.

To summarize then, each clock period marks a state;
three to five states constitute a machine cycle; and one to

five machine cycles comprise an instruction cycle. A full
instruction cycle requires anywhere from four to eight­

teen states for its completion, depending on the kirKl of in­

struction involved.

Machine Cycle Identification:

With the exception of the DAD instruction, there is
just one consideration that determines how many machine
cycles are required in any given instruction cycle: the num­
ber of times that the processor must reference a memory
address or an addressable peripheral device, in order to
fetch and execute the instruction. Like many processors,
the 8080 is so constructed that it can transmit only one
address per machine cycle. Thus, if the fetch and execution
of an instruction requires two memory references, then the
instruction cycle associated with that instruction consists of
two machine cycles. If five such references are called for,
then the instruction cycle contains five machine cycles.

Every instruction cycle has at least one reference to
memory, during which the instruction is fetched. An in­

struction cycle must always have a fetch, even if the execu­
tion of the instruction requires no further references to
memory. The first machine cycle in every instruction cycle
is therefore a FETCH. Beyond that, there are no fast rules.
It depends on the kind of instruction that is fetched.

Consider some examples. The add-register (ADD r)
instruction is an instruction that requires only a single
machine cycle (FETCH) for its completion. In this one-byte
instruction, the contents of one of the CPU's six general

purpose registers is added to the existing contents of the
accumulator. Since all the information necessary to execute

the command is contained in the eight bits of the instruction

code, only one memory reference is necessary. Three states
are used to extract the instruction from memory, and one
additional state is used to accomplish the desired addition.
The entire instruction cycle thus requires only one machine
cycle that consists of four states, or four periods of the ex­
ternal clock.

Suppose now, however, that we wish to add the con­
tents of a specific memory location to the existing contents
of the accumulator (ADD M). Although this is quite similar
in principle to the example just cited, several additional
steps will be used. An extra machine cycle will be used, in
order to address the desired memory location.

The actual sequence is as follows. First the processor
extracts from memory the one-byte instruction word ad­
dressed by its program counter. This takes three states.
The eight-bit instruction word obtained during the FETCH

machine cycle is deposited in the CPU's instruction register

and used to direct activities during the remainder of the
instruction cycle. Next, the processor sends out. as an address,

4-4

the contents of its Hand L registers. The eight-bit data
word returned during this MEMORY READ machine cycle
is placed in a temporary register inside the 8080 CPU. By
now three more clock periods (states) have elapsed. I n the
seventh and final state, the contents of the temporary regis­

ter are added to those of the accumulator. Two machine
cycles, consisting of seven states in all, complete the
"ADD M" instruction cycle.

At the opposite extreme is the save Hand L registers
(SHLD) instruction, which requires five machine cycles.
During an "SH LOU instruction cycle, the contents of the

processor's Hand L registers are deposited in two sequen­
tially adjacent memory locations; the destination is indi­
cated by two address bytes wh ich are stored in the two

memory locations immediately following the operation code
byte. The following sequence of events occurs:

(1) A FETCH machine cycle, consisting of four
states. During the first three states of this
machine cycle, the processor fetches the instruc­

tion indicated by its program counter. The pro­

gram counter is then incremented. The fourth

state is used for internal instruction decoding.

(2) A MEMORY READ machine cycle, consisting
of three states. During this machine cycle, the
byte indicated by the program counter is read
from memory and placed in the processor's

Z register. The program counter is incremented
again.

(3) Another MEMORY READ machine cycle, con­
sisting of three states, in which the byte indica­

ted by the processor's program counter is read
from memory and placed in the W register. The
program counter is incremented, in anticipation

of the next instruction fetch.

(4) A MEMORY WRITE machine cycle, of three
states, in which the contents of the L register
are transferred to the memory location pointed
to by the present contents of the Wand Z regis­
ters. The state following the transfer is used to
increment the W,Z register pair so that it indi­
cates the next memory location to receive data.

(5) A MEMORY WRITE machine cycle, of three

states, in which the contents of the H register
are transferred to the new memory location
pointed to by the W,Z register pair.

In summary, the "SHLD" instruction cycle contains
five machine cycles and takes 16 states to execute.

Most instructions fall somewhere between the ex­
tremes typified by the "ADD r" and the "SHLD" instruc­
tions. The input (I N) and the output (OUT) instructions,

for example, require three machine cycles: a FETCH, to
obtain the instruction; a MEMORY READ, to obtain the

address of the object peripheral; and an INPUT or an OUT­
PUT machine cycle, to complete the transfer.

Ii
I

While no one instruction cycle will consist of more

then five machine cycles, the following ten different types

of machine cycles may occur within an instruction cycle:

(1) FETCH (M1)

(2) MEMORY READ

(3) MEMORY WR ITE

(4) STACK READ

(5) STACK WRITE

(6) INPUT

(7) OUTPUT

(8) INTERRUPT

(9) HALT

(10) HALT .INTERRUPT

The machine cycles that actually do occur in a par­

ticular instruction cycle depend upon the kind of instruc­

tion, with the overriding stipulation that the first machine
cycle in any instruction cycle is always a FETCH.

The processor identifies the machine cycle in prog­

ress by transmitting an eight-bit status word during the first

state of every machine cycle. Updated status information is

presented on the 8080's data lines (00-07), during the
SYNC interval. This data should be saved in latches, and

used to develop control signals for external circuitry. Table
4-1 shows how the positive-true status information is dis­
tributed on the processor's data bus.

Status signals are provided principally for the control

of external circuitry. Simplicity of interface, rather than

machine cycle identification, dictates the logical definition
of individual status bits. You will therefore observe that
certain processor machine cycles are uniquely identified by

a single status bit, but that others are not. The M 1 status

bit (05), for example, unambiguously identifies a FETCH

machine cycle. A STACK READ, on the other hand, is
indicated by the coincidence of STACK and MEMR sig­
nals. Machine cycle identification data is also valuable in

the test and de-bugging phases of system development.

Table 4-1 I ists the status bit outputs for each type of

machine cycle.

State Transition Sequence:

Every mach ine cycle within an instruction cycle con­

sists of three to six active states (referred to as T1, T2, T3,
T 4, T5 or TW). The actual number of states depends upon

the instruction being executed, and on the particular ma­

chine cycle within the greater instruction cycle. The state

transition diagram in Figure 4-4 shows how the 8080 pro­

ceeds from state to state in the course of a machine cycle.

The diagram also shows how the READY, HOLD, and

INTERRUPT lines are sampled during the machine cycle,

and how the conditions on these lines· may modify the

4-5

basic transition sequence. In the present discussion, we are

concerned only with the basic sequence and with the
READY function. The HOLD and INTERRUPT functions
will be discussed later.

The 8080 CPU does not directly indicate its internal

state by transmitting a "state control" output during
each state; instead, the 8080 supplies direct control output

(INTE, HLDA, DBIN, WR and WAIT) for use by external
circu itry.

Recall that the 8080 passes through at least three
states in every machine cycle, with each state defined by
successive low-to-high transitions of the ¢1 clock. Figure

4-5 shows the timing relationships in a typical FETCH
machine cycle. Events that occur in each state are referenced

to transitions of the ¢1 and ¢2 clock pulses.

The SYNC signal identifies the first state (T 1) in
every machine cycle. As shown in Figure 4-5, the SYNC

signal is related to the leading edge of the ¢2 clock. There is

a delay (tDC) between the low-to-high transition of ¢2 and

the positive-going edge of the SYNC pulse. There also is a

corresponding delay (also tDC) between the next ¢2 pulse

and the falling edge of the SYNC signal. Status information
is displayed on 00-07 during the same ¢2 to ¢2 interval.
Switching of the status signals is likewise controlled by ¢2.

The rising edge of ¢2 during T 1 also loads the pro­

cessor's address lines (AO-A15). These lines become stable

within a brief delay (tDA) of the ¢2 clocking pulse, and

they remain stable until the first ¢2 pulse after state T3.
Th is gives the processor ample time to read the data re­

turned from memory.

Once the processor has sent an address to memory,

there is an opportunity for the memory to request a WAIT.

This it does by pulling the processor's READY line low,

prior to the "Ready set-up" interval (tRS) which occurs

during the ¢2 pulse within state T2 or TW. As long as the
READY line remains low, the processor will idle, giving the

memory time to respond to the addressed data request.

Refer to Figure 4-5.

The processor responds to a wait request by entering
an alternative state (TW) at the end of T2, rather than pro­

ceeding directly to the T3 state. Entry into the TW state is
indicated by a WAIT signal from the processor, acknowledg­

ing the memory's request. A low-to-high transition on the

WAIT line is triggered by the rising edge of the ¢1 clock and

occurs within a brief delay (toe) of the actual entry into

the TW state.

A wait period may be of indefinite duration. The pro­

cessor remains in the waiting condition until its READY line
again goes high. A READY indication must precede the faIl­

ing edge of. the ¢2 clock by a specified interval (tRsL in
order to guarantee an exit from the T W state. The cycle

may then proceed, beginning with the rising edge of the

next ¢1 clock. A WAIT interval will therefore consist of an

integral number of TW states and will always be a multiple

of the clock period.

Instructions for the 8080 require from one to five machine
cycles for complete execution. The 8080 sends out 8 bit of
status information on the data bus at the beginn ing of each
machine cycle (during SYNC time). The following table defines
the status information.

Symbols

INTA*

STATUS INFORMATION DEFINITION
Data Bus

Bit Definition

DO Acknowledge signal for I NTE R R UPT re­
quest. Signal should be used to gate a re­
start instruction onto the data bus when
DBIN is active.

Dl

8080 STATUS LATCH /too o 9
D,
D 8
27

D3 3

8080
D, 4

D5 5

~! 6

SYNC ~
DBIN r22-, 2 STATUS

22 15 LATCH Indicates that the operation in the current
machine cycle will be a WR ITE memory
or OUTPUT function (WO = 0). Otherwise,
a READ memory or INPUT operation will
be executed.

--4- D
5 '
~

Do t--
~

STACK

HLTA

OUT

M,

INP*

MEMR*

D2

D3
D4

D5

De

D7

Indicates that the address bus holds the
pushdown stack address from the Stack
Pointer.
Acknowledge signal for HALT instruction.

I ndicates that the address bus contains the
address of an output device and the data
bus will contain the output data when
WR is active.
Provides a signal to indicate that the CPU
is in the fetch cycle for the first byte of
an instruction.
Indicates that the address bus contains the
address of an input device and the input
data should be placed on the data bus
when DBIN is active.
Designates that the data bus will be used
for memory read data.

------g
16
18 8212

20
--~ 22

CLOCK GEN I lTTLI

& DRIVER ~ g~; MO OS,

13 12 '(1

~

SYNC

*These three status bits can be used to control
the flow of data onto the 8080 data bus.

ST A TUS f------f.J'-----1

STATUS WORD CHART
TYPE OF MACHINE CYCLE

Do INTA 000000010

WO 1 1 0 1 0 1 0 1 1

STACK 000 1 100 0 0 o
HLTA o 0 0 0 0 0 0 0 1

OUT o 0 000 0 1 0 0 o
1 0 0 0 0 0 0 1 0

De INP o 0 000 1 000 o
MEMR 110100001 o

Table 4-1. 8080 Status Bit Definitions

4-6

Ta-r,s-
'17""
~
:tt=

INTA

WD
STACK
HLTA
OUT
M1

INP
MEMR

DBIN

NO

NO

Gj_RESET Till
T2

READY+HLTA

121

<$.> YES
HLTA -

NO

READY. HLTA

READY ~_
I----------------<~ READY

YES

~

SET I NTE RNAL
HOLD F/F

1 131

I HOLD
I MODE
I

? ____________ .J

YES

NO

Figure 4-4. CPU State Transition Diagram

4-7

IlllNTE F/F IS RESET I F INTERNAL INT F/F IS SET.

1211NTERNAL INT F/F IS RESET IF INTE F/F IS RESET.

131SEE PAGE4-13.

The events that take place during the T3 state are

determined by the kind of machine cycle in progress. In a

FETCH machine cycle, the processor interprets the data on

its data bus as an instruction. During a MEMORY READ or

a STACK READ, data on this bus is interpreted as a data

word. The processor outputs data on this bus during a
MEMORY WRITE machine cycle. During I/O operations,
the processor may either transmit or receive data, de­

pending on whether an OUTPUT or an INPUT operation

is involved.

Figure 4-7 illustrates the timing that is characteristic
of a data input operation. As shown, the low-to-high transi­

tion of ¢2 during T2 clears status information from the pro­
cessor's data lines, preparing these lines for the receipt of

incoming data. The data presented to the processor must

have stabilized prior to both the "¢1-data set-up" interval

(tDS1), that precedes the falling edge of the ¢1 pulse defin­

ing state T3, and the "¢2-data set-up" interval (tDS2),

that precedes the rising edge of ¢2 in state T 3. This same

T, T2 Tw

n Irr\ n
LJ \ --.l ~ I -

@ X

data must remain stable during the "data hold" interval

(tDH) that occurs following the rising edge of the ¢2 pulse.

Data placed on these lines by memory or by other external

devices will be sampled during T3.

During the input of data to the processor, the 8080

generates a DBIN signal which should be used externally to
enable the transfer. Machine cycles in which DBIN is avail­

able include: FETCH, MEMORY READ, STACK READ,

and INTERRUPT. DBIN is initiated by the rising edge of 1>2

during state T2 and terminated by the corresponding edge of

¢2 during T3· Any TW phases intervening between .T2 and
T3 will therefore extend DBIN by one or more clock

periods.

Figure 4-7 shows the timing of a machine cycle in

wh ich the processor outputs data. Output data may be des­

tined either for memory or for peripherals. The rising edge

of 1>2 within state T2 clears status information from the
CPU's data lines, and loads in the data which is to be output

to external devices. This substitution takes place within the

T3 T4 T5

n n h
J L W l W L

'/.. UNKNOWN

------------L-. WRITE MODE FLOATING
- ___ -t- ___

~ FLOATING
...J

L..-. READ MODE DATA
STABLE

SYNC

READY 1\
WAIT 1\
DBIN

DATA

WR II
STATUS
INFORMATION

DATA

A'5·0 SAMPLE READY OPTIONAL FETCH DATA OPTIONAL
MEMORY ADDRESS HOLD AND HALT OR
OR HALT INSTRUCTION INSTRUCTION
1/0 DEVICE NUMBER OR OR EXECUTION

DH MEMORY WRITE DATA IF REQUIRED
STATUS INFORMATION ACCESS TIME

INTA OUT ADJUST
HLTA W6
MEMR M,
INP STACK

NOTE: ® Refer to Status Word Chart on Page 4-6.

Figure 4-5. Basic 8080 Instruction Cycle

4-8

SYNC

DBIN

READY

WAIT

WR

STATUS
INFORMATION

Ml

Tl T2 T3 T4 Tl

_rL-"rL-rL.-h-rL-
_-.-1\ ~~ Wt Wt.Jl

- -------' BYTE
\UNKNOWNJ

ONE - -- --'t----l \. 11-
j I FLOATING

-~ \ J
1

1 \
"'"
"0"

"'"

18

NOTE: @ Refer to Status Word Chart on Page 4-6.

M2 M3

T2 T3 Tl T2 T3

h-h-rL-rL-r-L-
Jt ~ Jt ~I~ --

BYTE X INP~T DATA TO
TWO ACCUMULATOR

\. ~J ----, .
\. _J

\ I \

I \ I '-

X0 X0

Figure 4-6. Input Instruction Cycle

<1>,

0]'0

SYNC

DBIN

READY

WAIT

STATUS
INFORMATION

T,

_fL-

--.Il
_-.1

---'
---'

"'"
"0"

M,

T2 T3

fL-rL-
--.Il l-.J\.

BYTE
ONE

'L. I __ J

~

,-1\

1/8

M2

T4 T, T2 T3

rL-rL-rL-fL-
Ul u--1 u--1 Jl --UNKNOW 1 BYTE

---- '-- I TWO

FLOATING 'u r __ J

r ~
,-\

1~0
NOTE: @ Refer to Status Word Chart on Page 4-6.

Figure 4-7. Output Instruction Cycle

4-9

MJ M,

T, T2 T3 T,

rL-fL-rL-V"L
Ul L-Fl Ul U-

X' 110 DEVICE \ NUMBER

-- X ACCUMULATOR

r 1\

\ Ir--

~0

"data output delay" interval (tOO) following the 1>2 clock's

leading edge. Data on the bus remains stable throughout
the remainder of the machine cycle, until replaced by up­

dated status information in the subsequent T 1 state. Observe
that a READY signal is necessary for completion of an
OUTPUT machine cycle. Unless such an indication is pres­
ent, the processor enters the TW state, following the T2
state. Data on the output lines remains stable in the
interim, and the processing cycle will not proceed until

the READY line again goes high.

The 8080 CPU generates a WR output for the syn­
chronization of external transfers, during those machine
cycles in which the processor outputs data. These include
MEMORY WR ITE, STACK WR ITE, and OUTPUT. The
negative-going leading edge of WR is referenced to the rising

edge of the first 1>1 clock pulse following T2, and occurs
within a brief delay (tOC) of that event. WR remains low

until re-triggered by the leading edge of 1>1 during the
state following T 3. Note that any T W states intervening
between T 2 and T 3 of the output machine cycle will neces-

sarily extend WR, in much the same way that DBIN is af­
fected during data input operations.

All processor machine cycles consist of at least three

states: T" T2, and T3 as just described. If the processor has
to wait for a response from the peripheral or memory with
which it is communicating, then the machine cycle may
also contain one or more TW states. During the three basic
states, data is transferred to or from the processor.

After the T3 state, however, it becomes difficult to
generalize. T 4 and T5 states are available, if the execution
of a particular instruction requires them. But not all machine
cycles make use of these states. It depends upon the kind of

instruction being executed, and on the particular machine
cycle within the instruction cycle. The processor will termi­
nate any mach ine cycle as soon as its processing activities
are completed, rather than proceeding through the T 4 and
T5 states every time. Thus the 8080 may exit a machine
cycle following the T3, the T 4, or the T5 state and pro­
ceed directly to the T1 state of the next machine cycle.

STATE ASSOCIATED ACTIVITIES

TW
(optional)

T3

T4
T5

(optional)

A memory address or I/O device number is

placed on the Address Bus (A15-0); status
information is placed on Data Bus (D7-0J.

The CPU samples the READY and HOLD in­
puts and checks for halt instruction.

Processor enters wait state if READY is low
or if HALT instruction has been executed.

An instruction byte (FETCH machine cycle),
data byte (MEMORY READ, STACK READ,
INPUT) or interrupt instruction (INTERRUPT

machine cycle) is input to the CPU from the
Data Bus; or a data byte (MEMORY WRITE,

STACK WRITE or OUTPUT machine cycle)
is output onto the data bus.

States T 4 and T5 are available if the execu­
tion of a particular instruction requires them;
if not, the CPU may skip one or both of
them. T 4 and T5 are only used for internal
processor operations.

Table 4-2. State Definitions

4-10

INTERRUPT SEQUENCES

The 8080 has the built-in capacity to hand Ie external
interrupt requests. A peripheral device can initiate an inter­
rupt simply by driving the processor's interrupt (lNT) line
high.

The interrupt (INT) input is asynchronous, and a
request may therefore originate at any time during any
instruction cycle. I nterna I logic re-clocks the external re­
quest, so that a proper correspondence with the driving
clock is established. As Figure 4-8 shows, an interrupt
request (INT) arriving during the time that the interrupt
enable line (INTE) is high, acts in coincidence with the ¢2
clock to set the internal interrupt latch. This event takes
place during the last state of the instruction cycle in which
the request occurs, thus ensuring that any instruction in
progress is completed before the interrupt can be processed.

The INTERRUPT machine cycle which follows the
arrival of an enabled interrupt request resembles an ordinary
FETCH machine cycle in most respects. The M 1 status bit
is transmitted as usual during the SYNC interval. It is
accompanied, however, by an INTA status bit (DO) which
acknowledges the external request. The contents of the
program counter are latched onto the CPU's address lines
during T 1, but the counter itself is not incremented during
the INTERRUPT machine cycle, as it otherwise would be.

Ml

T3 Tl T2 T3

_h Irn r~ VL-

SYNC

DBIN

WR

RETURN Ml
(INTERNAL)

INTE

INT

INT F/F
(INTERNAL)

INHIBIT STORE OF
PC+l (INTERNAL)

STATUS
INFORMATION

-u---t ur--L
pc·, I

I

I

-w \

\

-~

r-~ n Ln
PC

~~TA} RST

\

r f--1\

\

1\

1\

1/ 0-~

In this way, the pre-interrupt status of the program counter
is preserved, so that data in the counter may be restored by
the interrupted program after the interrupt request has been
processed.

The interrupt cycle is otherwise indistinguishable from
an ordinary FETCH machine cycle. The processor itself
takes no further special action. It is the responsibility of the
peripheral logic to see that an eight-bit interrupt instruction
is "jammed" onto the processor's data bus during state T3.
In a typical system, this means that the data-in bus from
memory must be temporarily disconnected from the pro­
cessor's main data bus, so that the interrupting device can
command the main bus without interference.

The 8080's instruction set provides a special one-byte
call which facilitates the processing of interrupts (the ordi­
nary program Call takes three bytes). This is the RESTART
instruction (RST). A variable three-bit field embedded in
the eight-bit field of the RST enables the interrupting device
to direct a Call to one of eight fixed memory locations. The
decimal addresses of these dedicated locations are: 0,8, 16,
24, 32, 40, 48, and 56. Any of these addresses may be used
to store the first instruction (s) of a routine designed to
service the requirements of an interrupting device. Since
the (RST) is a call, completion of the instruction also
stores the old program counter contents on the STACK.

M2 M3

T4 Ts Tl T2 T3 Tl T2 T3

n-n-n-rL-rL-n-~ rL-
Ln Ln Ln Ln Ln Ln U\. Lf1

--- ~ J \ sp·, X SP·2

-7 ro-- ~

1.. PCti X X PCL

r 1\ .r \

1'--' L-
r-

Il 0 IX0

NOTE: ® Refer to Status Word Chart on Page 4-6.

Figure 4-8_ Interrupt Timing

4-11

Mn

Tl T2 Tw T3 (T4)* (TS)*

...... I'--OR,

_h h n ~ h h
_--1t pfl --1 WL If- ~ UL

1>]·0

HOLD
REQUEST

HOLD

READY

HOLD F/F
INTERNAL

HLDA

I

I

-1
I

1

1

I

\.- ---)
I

I'- T
(1)

I

I

II
(1) SEE ATTACHED ELECTRICAL CHARACTERISTICS.

Figure 4-9. HOLD Operation (Read Mode)

Mn

T3 T4 Tl

91 j""\ h h h

----- -----
FLOATING

----- -----

\
-\

I

M n+1

T2 T3

h n

Mn+1

T Tl T2

n n h
--IrL ~U--L L--rL
--------I
--- -- ----

\

r\
*T4 AND TS OPERATION CAN BE
DiNE INTERNALlY'

M n+2

Tl

h n
-W"L ~ '-FL .--r-L L-FL ~L-FL WL-

A1S·0

HOLD
REQUEST

HOLD

READY

HOLD F/F
INTERNAL

HLDA

!-1------ ----
-I---...J

-u
I

Figure 4-10. HOLD Operation (Write Mode)

X

X

I

4-12

I - ----- ---y-
! FLOATING .,.- ----- ---y-

r\ I

\

\

\

I 1\
WRITE DATA

HOLD SEQUENCES

The S080A CPU contains provisions for Direct Mem­
ory Access (DMA) operations. By applying a HOLD to the

appropriate control pin on the processor, an external device
can cause the CPU to suspend its normal operations and re­

linquish control of the address and data busses. The proces­
sor responds to a request of this kind by floating its address
to other devices sharing the busses. At the same time, the
processor acknowledges the HO LD by placing a high on its

HLDA outpin pin. During an acknowledged HOLD, the
address and data busses are under control of the peripheral
which originated the request, enabling it to conduct mem­
ory transfers without processor intervention.

Like the interrupt, the HO LD input is synchronized
internally. A HOLD signal must be stable prior to the "Hold

set-up" interval (tHS), that precedes the rising edge of <1>2.

Figures 4-9 and 4-10 illustrate the timing involved in
HOLD operations. Note the delay between the asynchronous
HOLD REQUEST and the re-clocked HOLD. As shown in

the diagram, a coincidence of the READY, the HOLD, and
the <1>2 clocks sets the internal hold latch. Setting the latch

enables the subsequent rising edge of the <1>1 clock pulse to
trigger the H LDA output as described below.

Acknowledgement of the HOLD REQUEST precedes
slightly the actual floating of the processor's address and

data lines. The processor acknowledges a HO LD at the begin­
ning of T3, if a read or an input machine cycle is in progress
(see Figure 4-9). Otherwise, acknowledgement is deferred
until the beginning of the state following T3 (see Figure
4-10). In both cases, however, the HLDA goes high within

a specified delay (tDC) of the rising edge of the selected <1>1

clock pulse. Address and data lines are floated within a
brief delay after the rising edge of the next <1>2 clock pulse.
This relationship is also shown in the diagrams.

To all outward appearances, the processor has suspend­
ed its operations once the address and data busses are floated_

Internally, however, certain functions may continue. If a
HOLD REQUEST is acknowledged at T3, and if the pro­
cessor is in the middle of a machine cycle which requires
four or more states to complete, the CPU proceeds through
T 4 and T5 before coming to a rest. Not until the end of the
machine cycle is reached will processing activities cease.
Internal processing is thus permitted to overlap the external
DMA transfer, improving both the efficiency and the speed
of the entire system.

The processor exits the holding state through a
sequence similar to that by which it entered. A HOLD
REQUEST is terminated asynchronously when the external

device has coll1pleted its data transfer. The H LDA output

4-13

returns to a low level following the leading edge of the next
<1>1 clock pulse. Normal processing resumes with the ma­
chine cycle following the last cycle that was executed.

HALT SEQUENCES

When a halt instruction (HL T) is executed, the CPU

enters the ha It state (T WH) after state T 2 of the next ma­
chine cycle, as shown in Figure 4-11. There are only three
ways in which the 8080 can exit the halt state:

form.

• A high on the RESET line will always reset the
8080 to state T1; RESET also clears the program
counter.

• A HOLD input will cause the 8080 to enter the
hold state, as previously described. When the
HOLD line goes low, the 8080 re-enters the halt

state on the rising edge of the next <1>1 clock
pulse.

• An interrupt (i.e., INT goes high while INTE is
enabled) will cause the 8080 to exit the Halt state
and enter state T 1 on the rising edge of the next
<1>1 clock pulse. NOTE: The interrupt enable (INTE)
flag must be set when the halt state is entered;
otherwise, the 8080 will only be able to exit via a

RESET signal.

Figure 4-12 illustrates halt sequencing in flow chart

START-UP OF THE 8080 CPU

When power is applied initially to the 8080, the pro­
cessor begins operating immediately. The contents of its
program counter, stack pointer, and the other working regis­

ters are naturally subject to random factors and cannot be
specified. For this reason, it will be necessary to begin the
power-up sequence with RESET.

An external RESET signal of three clock period dura­
tion (minimum) restores the processor's internal program

counter to zero. Program execution thus begins with mem­
ory location zero, following a RESET. Systems which re­
quire the processor to wait for an explicit start-up signal
will store a halt instruction (EI, HL T) in the·first two loca­
tions. A manual or an automatic INTER RUPT will be used

for starting. In other systems, the processor may begin ex­
ecuting its stored program immediately. Note, however, that
the RESET has no effect on status flags, or on any of the
processor's working registers (accumulator, registers, or
stack pointer). The contents of these registers remain inde­
terminate, until initialized explicitly by the program.

SYNC

OBIN

WAIT

STATUS
INFORMATION

T,

_n
-~
_~PC

-~

-~

M,

T2 T3 T4

n n r1

~ ~ ~

- - - - --

\

I \

V8

NOTE ® Refer to Status Word Chart on Page 4-6

Figure 4-11. HALT Timing

TO STATE

TW or T3

TO STATE
T,

Figure 4-12. HALT Sequence Flow Chart

TO STATE T,

4-14

M2

T, T2 TWH TWH

n h r1 h

w---t. ~ ~ u----t.
I - - --- - f----

f--- - - - - -- I- - - --

I \

IT

~0

II

M,

Tn Tn+1 Tn+2 Tn+ 3 Tn+(;-1) Tn+i T, T2

n i\ n n h rl r1 n
"

----1L r--IL ----1L ~ ~ ----1L ~----1L

RESET

INTERNAL
RESET

----1

'--'
~

-- - - ~~

"

"

t:: FLOATING
PC= 0

- -- - -\ UNKNOWN I

\

SYNC I ~
DBIN r-

STATUS
INFORMATION

"

" X0
I1IWHEN RESET SIGNAL IS ACTIVE, ALL OF CONTROL OUTPUT SIGNALS WILL BE RESET IMMEDIATELY OR SOME

CLOCK PERIODS LATER. THE RESET SIGNAL MUST BE ACTIVE FOR A MINIMUM OF THREE CLOCK CYCLES. IN
THE ABOVE DIAGRAM N AND I MAY BE ANY INTEGER.

NOTE: ® Refer to Status Word Chart on Page 4-6,

Figure 4-13. Reset

Tw'H TWH TWH TWH TWH TWH

rL-rL-rL-rL-~ '\L-L--

SYNC

DBIN

HOLD

HOLD F/F
(INTERNAL)

HLDA

INTE

INT

INT F/F
(INTERNAL)

STATUS
INFORMATION

~ Wl ~ ~ JrL
- --- -- ::::..~--- 1---- - r--

FLOATING

"" - --- - -~--- 1---- -r-

II ,\

1\'

II

I INHIBIT
INT

)

0
I

NOTE: ® Refer to Status Word Chart on Page 4-6.

Figure 4-14. Relation between HOLD and INT in the HALT State

4-15

W"l

M,

TWH T, T2 T3

rL-rL-rL-rL.-
Wn. ~ ~4:
- -.'1 I FLO

1- _ --1--
~ !!ST_ J I

I :---\ i
I h-

1
,/

I

r-
\

INHIBIT
HOLD

K@

ATING

4-16

4-17

4-18

4-19

NOTES:

1. The first memory cycle (M 1) is always an instruction
fetch; the first (or only) byte, containing the op code, is
fetched during this cycle.

2. If the READY input from memory is not high during
T2 of each memory cycle, the processor will enter a wait
state (TW) until READY is sampled as high.

3. States T4 and T5 are present, as required, for opera·
tions which are completely internal to the CPU. The con­
tents of the internal bus during T4 and T5 are available at
the data bus; this is designed for testing purposes only. An
"X" denotes that the state is present, but is only used for
such internal operations as instruction decoding.

4. Only register pairs rp = B (registers B and C) or rp= D
(registers D and E) may be specified.

5. These states are skipped.

6. Memory read sub-cycles; an instruction or data word
will be read.

7. Memory write sub-cycle.

8. The READY signal is not required during the second
and third sub·cycles (M2 and M3). The HOLD signal is
accepted during M2 and M3. The SYNC signal is not gene­
rated during M2 and M3. During the execution of DAD,
M2 and M3 are required for an internal register-pair add;
memory is not referenced.

9. The results of these arithmetic, logical or rotate in­
structions are not moved into the accumulator (A) until
state T2 of the next instruction cycle. That is, A is loaded
while the next instruction is being fetched; this overlapping
of operations allows for faster processing.

10. If the value of the least significant 4-bits of the accumu­

lator is greater than 9 ~ if the auxiliary carry bit is set, 6
is added to the accumulator. If the value of the most signifi­
cant 4-bits of the accumulator is now greater than 9, ~ if
the carry bit is set, 6 is added to the most significant
4-bits of the accumulator.

11. This represents the first sub-cycle (the instruction
fetch) of the next instruction cycle.

12. If the condition was met, the contents of the register
pair WZ are output on the address lines (A()'15) instead of
the contents of the program counter (PC).

13. If the condition was not met, sub-cycles M4 and M5
are skipped; the processor instead proceeds immediately to
the instruction fetch (Ml) of the next instruction cycle.

14. If the condition was not met, sub-cycles M2 and M3
are skipped; the processor instead proceeds immediately to
the instruction fetch (Ml) of the next instruction cycle.

15. Stack read sub-cycle.

16. Stack write sub-cycle.

17. CONDITION CCC

NZ not zero (Z = 0) 000
Z zero (Z = 1) 001

NC no carry (CY = 0) 010
C carry (CY = 1) 011

PO parity odd (P = 0) 100
PE parity even (P = 1) 101

P plus (S = 0) 110
M minus (S = 1) 111

18. I/O sub-cycle: the I/O port's 8-bit select code is dupli­
cated on address lines 0-7 (A()'7) and 8-15 (A8-15).

19. Output sub-cycle.

20. The processor will remain idle in the halt state until
an interrupt, a reset or a hold is accepted. When a hold re­
quest is accepted, the CPU enters the hold mode; after the
hold mode is terminated, the processor returns to the halt
state. After a reset is accepted, the processor begins execu·
tion at memory location zero. After an interrupt is accepted,
the processor executes the instruction forced onto the data
bus (usually a restart instruction).

SSS or DDD Value rp Value
A 111 B 00
B 000 D 01
C 001 H 10
D 010 SP 11
E 011
H 100
L 101

4-20

II
II
IIII
I

I

I'

Instruction Set 5

:.' ~ .. ,
~'.,' :"

<,~~ ',',: :.\~~.~: .. ':'~ ',', ':

;.~; f~!;~r<.< .
,("I,

,
I

I

I
\

I

CHAPTER 5
THE INSTRUCTION SET

5.1 WHAT THE INSTRUCTION SET IS

A computer, no matter how sophisticated, can
do only what it is instructed to do. A program is
a sequence of instructions, each of which is
recognized by the computer and causes it to
perform an operation. Once a program is placed
in memory space that is accessible to your
CPU, you may run that same sequence of in­
structions as often as you wish to solve the
same problem or to do the same function. The
set of instructions to which the 8085A CPU will
respond is permanently fixed in the design of
the chip.

Each computer instruction allows you to ini­
tiate the performance of a specific operation.
The 8085A implements a group of instructions
that move data between registers, between a
register and memory, and between a register
and an 110 port. It also has arithmetic and logic
instructions, conditional and unconditional
branch instructions, and machine control in­
structions. The CPU recognizes these instruc­
tions only when they are coded in binary form.

5.2 SYMBOLS AND ABBREVIATIONS:

The following symbols and abbreviations are
used in the subsequent description of the
8085A instructions:

SYMBOLS

accumulator
addr
data
data 16
byte 2

byte 3

port
r,r1,r2

MEANING

Register A
16-bit address quantity
8-bit quantity

16-bit data quantity

The second byte of the instruc­
tion
The third byte of the instruc­
tion

8-bit address of an 110 device

One of the registers A,B,C,
D,E,H,L

* All mnemonics copyrighted © Intel Corporation 1976. 5-1

DDD,SSS

rp

RP

rh

rl

The bit pattern designating
one of the registers A,B,C,D,
E,H,L (DOD = destination,
SSS = source):

DOD or
SSS

111
000
001
010
011
100
101

REGISTER
NAME

A
B
C
o
E
H
L

One of the register pairs:
B represents the B,C pair with
B as the high-order register
and C as the low-order
register;

o represents the D,E pair with
o as the high-order register
and E as the low-order
register;

H represents the H,L pair with
H as the high-order register
and L as the low-order
register;
SP represents the 16-bit stack
pointer register.

The bit pattern designating
one of the register pairs
B,D,H,SP:

RP

00
01
10
11

REGISTER
PAIR
B-C
D-E
H-L
SP

The first (high-order) ~egister
of a designated register pair.
The second (low-order)
register of a designated
register pair.

THE INSTRUCTION SET

PC

SP

LABEL

s
p

~y

1\

+

\JNN

16-bit program counter
register (PCH and PCl are
used to refer to the high-order
and low-order 8 bits respec­
tively).
16-bit stack pointer register
(SPH and SPl are used to refer
to the high-order and low-order
8 bits respectively).
Bit m of the register r (bits are
number 7 through 0 from left
to right).
16-bit address of subroutine.
The condition flags:
Zero
Sign
Parity
Carry
Auxiliary Carry

The contents of the memory
location or registers enclosed
in the parentheses.
"Is transferred to"
logical AND
Exclusive OR
Inclusive OR
Addition

Two's complement subtraction
Multiplication
"Is exchanged with"
The one's complement (e.g., (A))
The restart number 0 through 7

The binary representation 000
through 111 for restart number
o through 7 respectively.

rhe instruction set encyclopedia is a detailed
jescription of the 8085A instruction set. Each
nstruction is described in the following man­
ler:

I. The MCS-85 macro assembler format, con­
sisting of the instruction mnemonic and
operand fields, is printed in BOLDFACE on
the first line.

~. The name of the instruction is enclosed in
parentheses following the mnemonic.

3. The next lines contain a symbolic description
of what the instruction does.

t This is followed by a narrative description of
the operation of the instruction.

All mnemonics copyrighted © Intel Corporation 1976. 5-2

5. The boxes describe the binary codes that
comprise the machine instruction.

6. The last four lines contain information about
the execution of the instruction. The number
of machine cycles and states required to ex­
ecute the instruction are listed first. If the in­
struction has two possible execution times,
as in a conditional jump, both times are
listed, separated by a slash. Next, data ad­
dressing modes are listed if applicable. The
last line lists any of the five flags that are af­
fected by the execution of the instruction.

5.3 INSTRUCTION AND DATA FORMATS

Memory used in the MCS-85 system is organ­
ized in 8-bit bytes. Each byte has a unique location in
physical memory. That location is described by one of
a sequence of 16-bit binary addresses. The 8085A can
address up to 64K (K = 1024, or 210; hence, 64K
represents the decimal number 65,536) bytes of
memory, which may consist of both random-access,
read-write memory (RAM) and read-only memory
(ROM), which is also random-access.
Data in the 8085A is stored in the form of 8-bit
binary integers:

DATA WORD

I
I I I I I I I I

0 7 06 05 04 03 O2 0 1 Do

MSB lSB

When a register or data word contains a binary
number, it is necessary to establish the order in which
the bits of the number are written. In the Intel 8085A,
BIT 0 is referred to as the Least Significant Bit (LSB),
and BIT 7 (of an 8-bit number) is referred to as the
Most Significant Bit (MSB)_

An 8085A program instruction may be one, two or
three bytes in length. Multiple-byte instructions must
be stored in successive memory locations; the address
of the first byte is always used as the address of the in­
struction. The exact instruction format will depend
on the particular operation to be executed.

Single Byte Instructions

I
I I I I I I I I

0 7 Do Op Code

Two-Byte Instructions

Byte I 0 I I 0 I Data or
Two 7 0 Address

~--------------------~

II
I

THE INSTRUCTION SET

Three-Byte Instructions

Byte I I I I I I I I 0 I
One . 0 7 O. Op Code

Byte 1 0 I I I
Two. 7 Do } Data L-_________ ---I or

Byte l_I ________ I_D---JO I Address
Three 0 7 .

5.4 ADDRESSING MODES:

Often the data that is to be operated on is stored in
memory. When multi-byte numeric data is used, the
data, like instructions, is stored in successive memory
locations, with the least significant byte first, follow­
ed by increasingly significant bytes. The 8085A has
four different modes for addressing data stored in
memory or in registers:

• Direct - Bytes 2 and 3 of the instruction
contain the exact memory ad­
dress of the data item (the low­
order bits of the address are in
byte 2, the high-order bits in
byte 3).

• Register - The instruction specifies the
register or register pair in which
the data is located.

• Register Indirect - The instruction
specifies a register pair which
contains the memory address
where the data is located (the
high-order bits of the. address
are in the first register of the
pair the low-order bits in the
second).

• Immediate - The instruction contains
the data itself. This is either an
8-bit quantity or a 16-bit quanti­
ty (least significant byte first,
most significant byte second).

Unless directed by an interrupt or branch in­
stitution, the execution of instructions pro­
ceeds through consecutively increasing
memory locations. A branch instruction can
specify the address of the next instruction to be
executed in one of two ways:

• Direct - The branch instruction contains
the address of the next instruc­
tion to be executed. (Except for
the "RST' instruction, byte 2
contains the low-order address
and byte 3 the high-order ad­
dress.)

*AII mnemonics copyrighted©lntel Corporation 1976. 5-3

• Register Indirect - The branch instruc­
tion indicates a register-pair
which contains the address of
the next instruction to be ex­
ecuted. (The high-order bits of
the address are in the first
register of the pair, the low­
order bits in the second.)

The RST instruction is a special one-byte call in­
struction (usually used during interrupt se­
quences). RST includes a three-bit field; pro­
gram control is transferred to the instruction
whose address is eight times the contents of
this three-bit field.
5.5 CONDITION FLAGS:
There are five condition flags associated with
the execution of instructions on the 8085A.
They are Zero, Sign, Parity, Carry, and Auxiliary
Carry. Each is represented by a 1-bit register (or
flip-flop) in the CPU. A flag is set by forCing the
bit to 1; it is reset by forCing the bit to O.
Unless indicated otherwise, when an instruc­
tion affects a flag, it affects it in the following
manner:

Zero:

Sign:

Parity:

If the result of an instruction
has the value 0, this flag is set;
otherwise it is reset.
If the most significant bit of the
result of the operation has the
value 1, this flag is set; other­
wise it is reset.
If the modulo 2 sum of the bits
of the result of the operation is
0, (Le., if the result has even
parity), this flag is set; other­
wise it is reset (Le., if the result
has odd parity).

Carry: If the instruction resulted in a
carry (from addition), or a bor­
row (from subtraction or a com­
parison) out of the high-order
bit, this flag is set; otherwise it
is reset.

Auxiliary Carry: If the instruction caused a
carry out of bit 3 and into bit 4
of the resulting value, the aux­
iliary carry is set; otherwise it is
reset. This flag is affected by
single-precision additions, sub­
tractions, increments, decre­
ments, comparisons, and logi­
cal operations, but is principal­
ly used with additions and in­
crements preceding a DAA
(Decimal Adjust Accumulator)
instruction.

THE INSTRUCTION SET

5.6 INSTRUCTION SET ENCYCLOPEDIA
In the ensuing dozen pages, the complete
8085A instruction set is described, grouped in
order under five different functional headings,
as follows:

1. Data Transfer Group - Moves data be­
tween registers or between memory
locations and registers. Includes moves,
loads, stores, and exchanges. (See
below.)

2. Arithmetic Group - Adds, subtracts, in­
crements, or decrements data in
registers or memory. (See page 5-13.)

3. Logic Group - ANDs, DRs, XDRs, com­
pares, rotates, or complements data in
registers or between memory and a
register. (See page 5-16.)

4. Branch Group - Initiates conditional or
unconditional jumps, calls, returns, and
restarts. (See page 5-20.)

5. Stack, 110, and Machine Control Group
- Includes instructions for maintaining
the stack, reading from input ports,
writing to output ports, setting and
reading interrupt masks, and setting and
clearing flags. (See page 5-22.)

The formats described in the encyclopedia
reflect the assembly language processed by
Intel-supplied assembler, used with the Intellec@
development systems.

5.6.1 Data Transfer Group
This group of instructions transfers data to and
from registers and memory. Condition flags are
not affected by any instruction in this group.

MOV r1, r2 (Move Register)
(r1) - (r2)
The content of register r2 is moved to
register r1.

O. o 0

Cycles:
States:

Addressing:
Flags:

o S S

1
4 (8085), 5 (8080)
register
none

S

*AII mnemonics copyrighted©lntel Corporation 1976. 5-4

MOV r, M (Move from memory)
(r) - ((H) (L»
The content of the memory location, whose
address is in registers Hand L, is moved to
register r.

o 1 o o

Cycles:
States:

Addressing:
Flags:

o

2
7

1 1

reg. indirect
none

MOV M, r (Move to memory)
((H» (L» - (r)

o

The content of register r is moved to the
memory location whose address is in
reg isters Hand L.

0 1 1 0 S S S

Cycles: 2
States: 7

Addressing: reg. indirect
Flags: none

MVI r, data (Move Immediate)
(r) - (byte 2)
The content of byte 2 of the instruction is
moved to register r.

o o o o o 1

data

Cycles:
States:

Addressing:
Flags:

2
7
immediate
none

1 o

MVI M, data (Move to memory immediate)
((H) (L» - (byte 2)
The content of byte 2 of the instruction is
moved to the memory location whose ad­
dress is in registers Hand L.

o o 1 1

data

Cycles:
States:

Addressing:
Flags:

o

3
10

1 1

o I

immed./reg. indirect
none

11

11
II
I

! I

I'
I

I
I

I

THE INSTRUCTION SET

LXI rp, data 16 (Load register pair immediate)
(rh) - (byte 3),
(rl) - (byte 2)
Byte 3 of the instruction is moved into the
high-order register (rh) of the register pair
rp. Byte 2 of the instruction is moved into
the low-order register (rl) of the register pair
rp.

o I 0 I I I I
I

R P 0 0

low-order data

high-order data

Cycles: 3
States:

Addressing:
10
immediate
none Flags:

I
0

LDA addr (Load Accumulator direct)
(A) - ((byte 3)(byte 2»

1

The content of the memory location, whose
address is specified in byte 2 and byte 3 of
the instruction, is moved to register A.

I
0

I I , 1 I
0 1 1 0

low-order addr

high-order addr

Cycles: 4
States:

Addressing:
13
direct
none Flags:

I I
1

STA addr (Store Accumulator direct)
((byte 3)(byte 2» - (A)

0

The content of the accumulator is moved to
the memory location whose address is
specified in byte 2 and byte 3 of the instruc­
tion.

I
0 0

I I
1 ' 0

I
1 0

low-order addr

high-order addr

Cycles: 4
States:

Addressing:
13
direct
none Flags:

I I
1 0

*AII mnemonics copyrighted©lntel Corporation 1976. 5-5

LHLD addr (Load Hand L direct)
(L)-((byte 3)(byte 2»
(H)-((byte 3)(byte 2) + 1)
The content of the memory location, whose
address is specified in byte 2 and byte 3 of
the instruction, is moved to register L. The
content of the memory location at the suc­
ceeding address is moved to register H.

I
0 0

, , I I
1 0 1 0

low-order addr

high-order addr

Cycles: 5
States:

Addressing:
16
direct
none Flags:

I

SHLD addr (Store Hand L direct)
((byte 3)(byte 2»-(L)
((byte 3)(byte 2)+ 1)-(H)

' I
1 0

The content of register L is moved to the
memory location whose address is
specified in byte 2 and byte 3. The content
of register H is moved to the succeeding
memory location.

0
1

0
I

1 ' 0 ' 0 I 0

low-order addr

high-order addr

Cycles: 5
States:

Addressing:
16
direct
none Flags:

I
1 I 0

LDAX rp (Load accumulator indirect)
(A) - ((rp»
The content of the memory location, whose
address is in the register pair rp, is moved
to register A. Note: only register pairs
rp = B (registers B and C) or rp = 0
(registers 0 and E) may be specified.

Cycles:
States:

Addressing:
Flags:

2
7
reg. indirect
none

THE INSTRUCTION SET

STAX rp (Store accumulator indirect)
«rp» - (A)
The content of register A is moved to the
memory location whose address is in the
register pair rp. Note: only register pairs
rp = B (registers B and C) or rp = 0
(registers 0 and E) may be specified.

0 0 R P 0 0 0

Cycles: 2
States: 7

Addressing: reg. indirect
Flags: none

XCHG (Exchange Hand L with 0 and E)
(H) - (0)
(L) - (E)
The contents of registers Hand L are ex­
changed with the contents of registers 0
and E.

1 1 0 0

Cycles: 1
States: 4

Addressing: register
Flags: none

5.6.2 Arithmetic Group
This group of instructions performs arithmetic
operations on data in registers and memory.
Unless indicated otherwise, all instructions in
this group affect the Zero, Sign, Parity, Carry,
and Auxiliary Carry flag&. according to the stan­
dard rules.
All subtraction operations are performed via
two's complement arithmetic and set the carry
flag to one to indicate a borrow and clear it to
indicate no borrow.

ADD r (Add Register)
(A) - (A) + (r)
The content of register r is added to the
content of the accumulator. The result is
placed in the accumulator.

1 0 0 0 0 S S S

Cycles: 1
States: 4

Addressing: register
Flags: Z,S,P,CY,AC

*AII mnemonics copyrighted©lntel Corporation 1976. 5-6

ADD M (Add memory)

1

(A) - (A) + «H) (L»
The content of the memory location whose
address is contained in the Hand L
registers is added to the content of the ac­
cumulator. The result is placed in the ac­
cumulator.

o o o

Cycles:
States:

Addressing:
Flags:

o

2
7

1 1

reg. indirect
Z,S,P,CY,AC

o

ADI data (Add immediate)

1

(A) - (A) + (byte 2)
The content of the second byte of the in­
struction is added to the content of the ac­
cumulator. The result is placed in the ac­
cumulator.

o o

Cycles:
States:

Addressing:
Flags:

o 1 1

2
7
immediate
Z,S,P,CY,AC

o

ADC r (Add Register with carry)
(A) - (A) + (r) + (CY)
The content of register r and the content of
the carry bit are added to the content of the
accumulator. The result is placed in the ac­
cumulator.

o o o

Cycles:
States:

Addressing:
Flags:

1 S S

1
4
register
Z,S,P,CY,AC

S

THE INSTRUCTION SET

ADC M (Add memory with carry)
(A) - (A) + «H) (L)) + (CY)
The content of the memory location whose
address is contained in the Hand L
registers and the content of the CY flag are
added to the accumulator. The result is
placed in the accumulator.

0 0 0 1 1 0

Cycles: 2
States: 7

Addressing: reg. indirect
Flags: Z,S,P,CY,AC

ACI data (Add immediate with carry)
(A) - (A) + (byte 2) + (CY)
The content of the second byte of the in­
struction and the content of the CY flag are
added to the contents of the accumulator.
The result is placed in the accumulator.

SUB M (Subtract memory)
(A) - (A) - «H) (L))
The content of the memory location whose
address is contained in the Hand L
registers is subtracted from the content of
the accumulator. The result is placed in the
accumulator.

0 0 1 0 1 0

Cycles: 2
States: 7

Addressing: reg. indirect
Flags: Z,S,P,CY,AC

SUI data (Subtract immediate)
(A) - (A) - (byte 2)
The content of the second byte of the in­
struction is subtracted from the content of
the accumulator. The result is placed in the
accumulator.

r--------o---o-d-at-a-----------o~1 1~-1--~-·----O----d-at-a-O---1----1---0~
Cycles:
States:

Addressing:
Flags:

2
7
immediate
Z,S,P,CY,AC

SUB r (Subtract Register)
(A) - (A) - (r)
The content of register r is subtracted from
the content of the accumulator. The result
is placed in the accumulator.

o o

Cycles:
States:

Addressing:
Flags:

o S S

1
4
register
Z,S,P,CY,AC

S

*AII mnemonics copyrighted©lntel Corporation 1976. 5-7

Cycles:
States:

Addressing:
Flags:

2
7
immediate
Z,S,P,CY,AC

SBB r (Subtract Register with borrow)
(A) - (A) - (r) - (CY)
The content of register r and the content of
the CY flag are both subtracted from the
accumulator. The result is placed in the ac­
cumulator.

o o

Cycles:
States:

Addressing:
Flags:

1 S I S I S

1
4
register
Z,S,P,CY,AC

THE INSTRUCTION SET

SBB M (Subtract memory with borrow)
(A) - (A) - «H) (L» - (CY)
The content of the memory location whose
address is contained in the Hand L
registers and the content of the CY flag are
both subtracted from the accumulator. The
result is placed in the accumulator.

0 0 1 0

Cycles: 2
States: 7

Addressing: reg. indirect
Flags: Z,S,P,CY,AC

SBI data (Subtract immediate with
borrow)

(A) - (A) - (byte 2) - (CY)
The contents of the second byte of the in­
struction and the contents of the CY flag
are both subtracted from the accumulator.
The result is placed in the accumulator.

1 o

data

Cycles:
States:

Addressing:
Flags:

1

2
7
immediate
Z,S,P,CY,AC

o

INR r (Increment Register)
(r) - (r) + 1
The content of register r is incremented by
one. Note: All condition flags except CY
are affected.

o o D D

Cycles:
States:

Addressing:
Flags:

D 1 o

1
4 (8085), 5 (8080)
register
Z,S,P,AC

o

*AII mnemonics copyrighted©lntel Corporation 1976. 5-8

INR M (Increment memory)
«H) (L) - «H) (L» + 1
The content of the memory location whose
address is contained in the Hand L
registers is incremented by one. Note: All
condition flags except CY are affected.

o o 1 o o o

Cycles: 3
States: 10

Addressing: reg. indirect
Flags: Z,S,P,AC

DCR r (Decrement Register)
(r) - (r) - 1
The content of register r is decremented by
one. Note: All condition flags except CY
are affected.

o o D D

Cycles:
States:

Addressing:
Flags:

o 1 o

1
4 (8085), 5 (8080)
register
Z,S,P,AC

DCR M (Decrement memory)
«H) (L» - «H) (L» - 1

1

The content of the memory location whose
address is contained in the Hand L
registers is decremented by one. Note: All
condition flags except CY are affected.

o o 1 1

Cycles:
States:

Addressing:
Flags:

o

3
10

o

reg. indirect
Z,S,P,AC

1

TH E INSTRUCTION SET

INX rp (Increment register pair)
(rh) (rl) .- (rh) (rl) + 1
The content of the register pair rp is in­
cremented by one. Note: No condition flags
are affected.

o o R P

Cycles:
States:

Addressing:
Flags:

o o

1
6 (8085), 5 (8080)
register
none

DCX rp (Decrement register pair)
(rh) (rl) .- (rh) (rl) - 1
The content of the register pair rp is
decremented by one. Note: No condition
flags are affected.

o o R P

Cycles:
States:

Addressing:
Flags:

o

1
6 (8085), 5 (8080)
register
none

DAD rp (Add register pair to Hand L)
(H) (L) .- (H) (L) + (rh) (rl)
The content of the register pair rp is added
to the content of the register pair Hand L.
The result is placed in the register pair H
and L. Note: Only the CY flag is affected. It
is set if there is a carry out of the double
precision add; otherwise it is reset.

o o R P

Cycles:
States:

Addressing:
Flags:

o

3
10
register
CY

o

* All mnemonics copyrighted © Intel Corporation. 1976. 5-9

DAA (Decimal Adjust Accumulator)
The eight-bit number in the accumulator is
adjusted to form two four-bit Binary-Coded­
Decimal digits by the following process:

1. If the value of the lease significant 4 bits
of the accumulator is greater than 9 or if
the AC flag is set, 6 is added to the ac­
cumulator.

2. If the value of the most significant 4 bits
of the accumulator is now greater than 9,
or if the CY flag is set, 6 is added to the
most significant 4 bits of the ac­
cumulator.

NOTE: All flags are affected.

o o o

Cycles:
States:
Flags:

5.6.3 Logical Group

o

1
4
Z,S,P,CY,AC

This group of instructions performs logical
(Boolean) operations on data in registers and
memory and on condition flags.
Unless indicated otherwise, all instructions in
this group affect the Zero, Sign, Parity, Auxiliary
Carry, and Carry flags according to the stan­
dard rules.

ANA r (AND Register)
(A) .- (A) /\ (r)
The content of register r is logically ANDed
with the content of the accumulator. The
result is placed in the accumulator. The CY
flag is cleared and AC is set (8085). The CY
flag is cleared and AC is set to the OR'ing
of bits 3 of the operands (8080).

0 0 0 S S S

Cycles: 1
States: 4

Addressing: register
Flags: Z,S,P,CY,AC

TH~INSTRUCTION SET

ANI da.fa

1

(A) (A)' N;"fllM8;rll
The~ cc>mteht " secQnd byte of' the hi­
str4Jction is . c.a~1y· ANOed with the con­
te~ts o:f·~he 'ace3mufator.'The result is
pl~aee~ in'tr~;:acci.tm,u'atGt. the CV flag is
c:le •• andAc,s .Ht(8oati}. The CV f'lag is
cleared andAC is.elto the OR'ing of bits 3
of the operaftds (8080).

Q-yGI$S:
Staltes:'

Add:ress,jng:
Flags:

1
4
register
Z,S,P,CY,AC

• All mnemonics copyrighted © Intel Corporation 1976, 5-10

XRA M (Exclusive OR Memory)
(A) - (A) -v- «H) (L))
The content of the memory location whose
address is contained in the Hand L
registers is exclusive-OR'd with the con­
teotof the accumulator. The result is
P'taced in the accumulator. The CY and AC

. ' e cleared.

1 o 1 o

Cycles:
States:

Addressing:
Flags:

1

2
7

1 1

reg. indirect
Z,S,P,CY,AC

o

XRI data (Exclusive OR immediate)
(A) - (A).-v- (byte 2)
The content of the second byte of the in­
struction is exclusive-OR'd with the con­
tent of the accumulator. The result is
placed in the accumulator. The CY and AC
flags are cleared.

1 1 1 o

data

Cycles:
States:

Addressing:
Flags:

1 1

2
7
immediate
Z,S,P,CY,AC

o

ORA r (OR Register)

1

(A) - (A) V (r)
The content of register r is inclusive-OR'd
w.ith the content of the accumulator. The
resuH is placed in the accumulator. The CY
and AC flags are cleared.

o 1 1 o

Cycles:
States:

Addressing:
Flags:

S S

1
4
register
Z,S,P,CY,AC

S

11
Ii
I

THE INSTRUCTION SET

ORA M (OR memory)
(A) -- (A) V ((H) (L»
The content of the memory location whose
address is contained in the Hand L
registers is inclusive-OR'd with the content
of the accumulator. The result is placed in
the accumulator. The CY and AC flags are
cleared.

o 1 1

Cycles:
States:

Addressing:
Flags:

o

2
7

1

reg. indirect
Z,S,P,CY,AC

ORI data (OR Immediate)
(A) -- (A) V (byte 2)

o

The content of the second byte of the in­
struction is inclusive-OR'd with the content
of the accumulator. The result is placed in
the accumulator. The CY and AC flags are
cleared.. .

CMP M (Compare memory)
(A) - ((H) (L)
The content of the memory location whose
address is contained in the Hand L
registers is subtracted from the ac­
cumulator. The accumulator remains un­
changed. The condition flags are set as a
result of the subtraction. The Z flag is set
to 1 if (A) = «H) (L)). The CY flag is set to 1 if
(A) < «H) (L)).

o

Cycles:
States:

Addressing:
Flags:

2
7

1 1

reg. indirect
Z,S,P,CY,AC

CPI data (Compare immediate)
(A) - (byte 2)

o

The content of the second byte of the in­
struction is subtracted from the ac­
cumulator. The condition flags are set by
the result of the subtraction. The Z flag is
set to 1 if (A) = (byte 2). The CY flag is set to
1 if (A) < (byte 2).

~ ____________ 1_da_t_a_o ___________ o~11 ~----_1--------1d-a-ta---------1----0~
Cycles:
States:

Addressing:
Flags:

2
7
immediate
Z,S,P,CY,AC

CMP r (Compare Register)
(A) - (r)
The content of register r is subtracted from
the accumulator. The accumulator remains
unchanged. The condition flags are set as
a result of the subtraction. The Z flag is set
to 1 if (A) = (r). The CY flag is set to 1 if (A)
< (r).

o

Cycles:
States:

Addressing:
Flags:

S S

1
4
register
Z,S,P,CY,AC

S

* All mnemonics copyrighted ©Intel Corporation 1976. 5-11

Cycles:
States:

Addressing:
Flags:

2
7
immediate
Z,S,P,CY,AC

RLC (Rotate left)
(An + 1) -- (An) ;(Ao) -- (A7)
(CY) -- (A7)
The content of the accumulator is rotated
left one position. The low order bit and the
CY flag are both set to the value shifted out
of the high order bit position. Only the CY
flag is affected.

o o o o

Cycles:
States:
Flags:

o

1
4
CY

1 1 1

THE INSTRUCTION SET

RRC (Rotate right)
(An) - (An + 1); (A7) - (Ao)
(CY) - (Ao)
The content of the accumulator is rotated
right one position. The high order bit and
the CY flag are both set to the value shifted
out of the low order bit position. Only the
CY flag is affected.

o o o 0

Cycles:
States:
Flags:

1

1
4
CY

RAL (Rotate left through carry)
(An+ 1)-(An); (CY)-(A7)
(Ao)-(CY)
The content of the accumulator is rotated
left one position through the CY flag. The
low order bit is set equal to the CY flag and
the CY flag is set to the value shifted out of
the high order bit. Only the CY flag is af·
fected.

o o o 1

Cycles:
States:
Flags:

o

1
4
CY

1 1

RAR (Rotate right through carry)
(An) - (An + 1);(CY) - (Ao)
(A7) - (CY)
The content of the accumulator is rotated
right one position through the CY flag. The
high order bit is set to the CY flag and the
CY flag is set to the value shifted out of the
low order bit. Only the CY flag is affected.

o o 1 1 1 1 1

Cycles: 1
States: 4
Flags: CY

*AII mnemonics-copyrighted-©lnteLCorporatiqn j976. 5-12

CMA (Complement accumulator)
(A) - (A)
The contents of the accumulator are com­
plemented (zero bits become 1, one bits
become 0). No flags are affected.

o o 1

Cycles:
States:
Flags:

o 1

1
4
none

1

CMC (Complement carry)
(CY) - (CY)

1 1

The CY flag is complemented. No other
flags are affected.

o o 1 1 1 1 1

Cycles: 1
States: 4
Flags: CY

STC (Set carry)
(CY) - 1
The CY flag is set to 1. No other flags are
affected.

o o 1 1 0 1 1 1

Cycles: 1
States: 4
Flags: CY

THE INSTRUCTION SET

5.6.4 Branch Group
This group of instructions alter normal sequen­
tial program flow.
Condition flags are not affected by any instruc­
tion in this group.
The two types of branch instructions are uncon­
ditional and conditional. Unconditional
transfers simply perform the specified opera­
tion on register PC (the program counter). Con­
ditional transfers examine the status of one of
the four processor flags to determine if the
specified branch is to be executed. The condi­
tions that may be specified are as follows:

CONDITION CCC
NZ- not zero (Z = 0) 000
Z- zero (Z = 1) 001

NC- no carry (CY = 0) 010
C- carry (CY = 1) 011

Po- parity odd (P = 0) 100
PE- parity even (P = 1) 101
P- plus (S =0) 110
M- minus (S = 1) 111

JMP addr (Jump)
(PC) - (byte 3) (byte 2)
Control is transferred to the instruction
whose address is specified in byte 3 and
byte 2 of the current instruction.

I
1 1

I
0

1
0 I 0 10

1

low-order addr

high-order addr

Cycles: 3
States:

Addressing:
10
immediate
none Flags:

I
1 1

*AII mnemonics copyrighted©lntel Corporation 1976. 5-13

Jcondition addr (Conditional jump)
If (CCC),

1

(PC) - (byte 3) (byte 2)
If the specified condition is true, control is
transferred to the instruction whose ad­
dress is specified in byte 3 and byte 2 of the
current instruciton; otherwise, control con­
tinues sequentially.

I 1 I c I C I C I a I 1 I 0

low-order addr

high-order addr

Cycles: 2/3 (8085), 3 (8080)
States: 7/10 (8085), 10 (8080)

Addressing: immediate
Flags: none

CALL addr (Call)

1

«SP) - 1) - (PCH)
«SP) - 2) - (PCl)
(SP) - (SP) - 2
(PC) - (byte 3) (byte 2)
The high-order eight bits of the next in­
struction address are moved to the
memory location whose address is one
less than the content of register SP. The
low-order eight bits of the next instruction
address are moved to the memory location
whose address is two less than the content
of register SP. The content of register SP is
decremented by 2. Control is transferred to
the instruction whose address is specified
in byte 3 and byte 2 of the current instruc­
tion.

I
1

I o I 0 I 1
I I 0 I 1 1

low-order addr

high-order addr

Cycles: 5
States: 18 (8085), 17 (8080)

immediatel
Addressing: reg. indirect

Flags: none

THE INSTRUCTION SET

Ccondition addr (Condition call)
If (CCC),

«SP) - 1) - (PCH)
«SP) - 2) - (PCl)
(SP) - (SP) - 2
(PC) - (byte 3) (byte 2)
If the specified condition is true, the ac­
tions specified in the CAll instruction (see
above) are performed; otherwise, control
continues sequentially.

I
1 1 1 C I C I C 11

1 I.
0 0

low-order addr

high-order addr

Cycles: 2/5 (8085),315 (8080)
States: 9/18 (8085), 11/17 (8080)

immediatel
Addressing: reg. indirect

Flags: none

RET (Return)
(PCl) - «SP»;
(PCH) - «SP) + 1);
(SP) - (SP) + 2;
The content of the memory location whose
address is specified in register SP is moved
to the low-order eight bits of register PC.
The content of the memory location whose
address is one more than the content of
register SP is moved to the high-order eight
bits of register PC. The content of register
SP is incremented by 2.

1 o o

Cycles:
States:

Addressing:
Flags:

1

3
10

o o

reg. indirect
none

1

*AII mnemonics copyrighted © Inte1 Corporation 1976. 5-14

Rcondition (Conditional return)
If (CCC),

1

(PCl) - «SP»
(PCH) - «SP) + 1)
(SP) - (SP) + 2
If the specified condition is true, the ac­
tions specified in the RET instruction (see
above) are performed; otherwise, control
continues sequentially.

1 C C C o o o

Cycles: 1/3
States: 6/12 (8085),5/11 (8080)

Addressing: reg. indirect
Flags: none

RST n (Restart)

1

«SP) - 1) - (PCH)
«SP) - 2) - (PCl)
(SP) - (SP) - 2
(PC) - 8 * (NNN)
The high-order eight bits of the next in­
struction address are moved to the
memory location whose address is one
less than the content of register SP. The
low-order eight bits of the next instruction
address are moved to the memory location
whose address is two less than the content
of register SP. The content of register SP is
decremented by two. Control is transferred
to the instruction whose address is eight
times the content of NNN.

1 N N N 1 1 1

Cycles: 3
States: 12 (8085), 11 (8080)

Addressing: reg. indirect
Flags: none

151413121110 9 8 7 6 5 4 3 2 1 0

JoJololoJoJoJoJOJOJOJNJNJNJOJOJOJ

Program Counter After Restart

THE INSTRUCTION SET

PCHL (Jump Hand l indirect -

1

move Hand l to PC)
(PCH) - (H)
(PCl) - (l)
The content of register H is moved to the
high-order eight bits of register PC. The
content of register l is moved to the low­
order eight bits of register PC.

o 1 o o

Cycles: 1
States: 6 (8085), 5 (8080)

Addressing: register
Flags: none

5.6.5 Stack, 1/0, and Machine Control Group
This group of instructions performs 110, manipu­
lates the Stack, and alters internal control
flags.
Unless otherwise specified, condition flags are
not affected by any Instructions in this group.

PUSH rp (Push)

«SP) - 1) - (rh)
«SP) - 2) - (rl)
«SP) - (SP) - 2
The content of the high-order register of
register pair rp is moved to the memory
location whose address is one less than
the content of register SP. The content of
the low-order register of register pair rp is
moved to the memory location whose ad­
dress is two less than the content of
register SP. The content of register SP is
decremented by 2. Note: Register pair rp =
SP may not be specified.

I I I I I I 1 R P 0 1 0

Cycles: 3
States: 12 (8085), 11 (8080)

Addressing: reg. indirect
Flags: none

PUSH PSW (Push processor status word)
«SP) - 1) - (A)
«SP) - 2)0 - (CY) ,«SP) - 2)1 - X
«SP) - 2)2 - (P) , «SP) - 2)a - X
«SP) - 2)4 - (AC) ,«SP) - 2)5 - X
«SP) - 2)6 (Z) , «SP) - 2h - (S)
(SP) - (SP) - 2 X: Undefined.

* All mnemonics copyrighted © Intel Corporation 1976. 5-15

The content of register A is moved to the
memory location whose address is one
less than register SP. The contents of the
condition flags are assembled into a pro­
cessor status word and the word is moved
to the memory location whose address is
two less than the content of register SP.
The content of register SP is decremented
by two.

1 o 1 o

Cycles: 3
States: 12 (8085), 11 (8080)

Addressing: reg. indirect
Flags: none

FLAG WORD

1

0 7 0 6 05 04 03 02 01 Do

S Z X I AC I X P X I Cy I
X: undefined

POP rp (Pop)

1

(rl) - «SP»
(rh) - «SP) + 1)
(SP) - (SP) + 2
The content of the memory location, whose
address is specified by the content of
register SP, is moved to the low-order
register of register pair rp. The content of
the memory location, whose address is one
more than the content of register SP, is
moved to the high-order register of register
rp. The content of register SP is in­
cremented by 2. Note: Register pair rp =
SP may not be specified.

1 R P 0 0 0 1

Cycles: 3
States: 10

Addressing: reg.indirect
Flags: none

THE INSTRUCTION SET

POP PSW (Pop processor status word)

(CY) - «SP))o
(P)- «SP))2
(AC)- «SP))4
(Z) - «S P))6
(S) - «SP))7
(A) - «SP) + 1)
(SP) - (SP) + 2
The content of the memory location whose
address is specified by the content of
register SP is used to restore the condition
flags. The content of the memory location
whose address is one more than the con­
tent of register SP is moved to register A.
The content of register SP is incremented
by 2.

1

Cycles:
States:

Addressing:
Flags:

o

3
10

o o

reg. indirect
Z,S,P,CY,AC

XTHL (Exchange stack top with H
and L)

(L) - «SP))
(H) - «SP) + 1)
The content of the L register is exchanged
with the content of the memory location
whose address is specified by the content
of register SP. The content of the H register
is exchanged with the content of the
memory location whose address is one
more than the content of register SP.

1 1 o o o 1

Cycles: 5
States: 16 (8085), 18 (8080)

Addressing: reg. indirect
Flags: none

1

* All mnemonics copyrighted © Intel Corporation 1976. 5-16

SPH L (Move H L to SP)

1

(SP) - (H) (L)
The contents of registers Hand L (16 bits)
are moved to register SP.

o o

Cycles: 1
States: 6 (8085), 5 (8080)

Addressing: register
Flags: none

1

IN port (Input)
(A)-(data)
The data placed on the eight bit bi­
directional data bus by the specified port is
moved to register A.

1 o 1 o 1

port

Cycles: 3
States: 10

Addressing: direct
Flags: none

OUT port (Output)
(data) - (A)
The content of register A is placed on the
eight bit bi-directional data bus for
transmission to the specified port.

1 0 1 0 0

port

Cycles: 3
States: 10

Addressing: direct
Flags: none

THE INSTRUCTION SET

EI (Enable interrupts)
The interrupt system is enabled following
the execution of the next instruction. Inter·
rupts are not recognized during the EI
instruction.

1 1 1 1 o 1 1

Cycles: 1
States: 4
Flags: none

NOTE: Placin~ EI instruction on the bus in
response to INTA during an INA cycle is pro­
hibited. (8085)

01 (Disable interrupts)
The interrupt system is disabled immedi·
ately following the execution of the 01 in·
struction. Interrupts are not recognized
during the 01 instruction.

1 1 1 1 o o 1 1

Cycles: 1
States: 4
Flags: none

NOTE: Placin~ 01 instruction on the bus in
response to INTA during an INA cycle is pro­
hibited. (8085)

HLT (Halt)
The processor is stopped. The registers
and flags are unaffected. (8080) A second
ALE is generated during the execution of
HL T to strobe out the Halt cycle status in­
formation. (8085)

o 1

NOP

1 o 1

Cycles: 1 + (~m85), 1 (8080)
States: 5 (8085), 7 (8080)
Flags: none

(No op)

o

No operation is performed. The registers
and flags are unaffected.

* All mnemonics copyrighted © Intel Corporation 1976. 5-17

o o o 0 o 0 o o

RIM

Cycles:
States:
Flags:

1
4
none

(Read Interrupt Masks) (8085 only)
The RIM instruction loads data into the ac­
cumulator relating to interrupts and the
serial input. This data contains the follow­
ing information:

• Current interrupt mask status for the
RST 5.5, 6.5, and 7.5 hardware inter­
rupts (1 = mask disabled)

• Current interrupt enable flag status (1
= interrupts enabled) except im­
mediately following a TRAP interrupt.
(See below.)

• Hardware interrupts pending (i.e.,
signal received but not yet serviced),
on the RST 5.5,6.5, and 7.5 lines.

• Serial input data.
Immediately following a TRAP interrupt,
the RIM instruction must be executed as a
part of the service routine if you need to
retrieve current interrupt status later. Bit 3
of the accumulator is (in this special case
only) loaded with the interrupt enable (IE)
flag status that existed prior to the TRAP
interrupt. Following an RST 5.5,6.5, 7.5, or
INTR interrupt, the interrupt flag flip-flop
reflects the current interrupt enable status.
Bit 6 of the accumulator (17.5) is loaded
with the status of the RST 7.5 flip-flop,
which is always set (edge-triggered) by an
input on the RST 7.5 input line, even when
that interrupt has been previously masked.
(See SIM Instruction.)

7 0

Opcode: I 0 0 0 0 0 0 I
Accumulator
Content
After RIM:

Lnterru~t Masks
Interrupt Enable Flag

Interrupts Pending

Serial Input Data

Cycles: 1
States: 4
Flags: none

THE INSTRUCTION SET

SIM (Set Interrupt Masks) (8085 only)
The execution of the SIM instruction uses
the contents of the accumulator (which
must be previously loaded) to perform the
following functions:

• Program the interrupt mask for the
RST 5.5, 6.5, and 7.5 hardware inter­
rupts.

• Reset the edge-triggered RST 7.5 in­
put latch.

• Load the SOD output latch.
To program the interrupt masks, first set ac­
cumulator bit 3 to 1 and set to 1 any bits 0,
1, and 2, which disable interrupts RST 5.5,
6.5, and 7.5, respectively. Then do a SIM in­
struction. If accumulator bit 3 is 0 when the
SIM instruction is executed, the interrupt
mask register will not change. If ac­
cumulator bit 4 is 1 when the SIM instruc­
tion is executed, the RST 7.5 latch is then
reset. RST 7.5 is distinguished by the fact
that its latch is always set by a rising edge
on the RST 7.5 input pin, even if the jump to
service routine is inhibited by masking.
This latch remains high until cleared by a
RESET IN, by a SIM Instruction with ac­
cumulator bit 4 high, or by an internal pro­
cessor acknowledge to an RST 7.5 interrupt
subsequent to the removal of the mask (by
a SIM instruction). The RESET IN signal
always sets all three RST mask bits.
If accumulator bit 6 is at the 1 level when
the SIM instruction is executed, the state
of accumulator bit 7 is loaded into the SOD
latch and thus becomes available for inter­
face to an external device. The SOD latch is
unaffected by the SIM instruction if bit 6 is
O. SOD is always reset by the RESET IN
signal.

7 0

Opcode: I 0 0 0 o. 0 0

Accumulator 7
Content

6 5 4 3 2 0

Before
SIM:

RST 5.5 Mask
RST 6.5 Mask
RST 7.5 Mask

'-----Mask Set Enable
~----Reset RST 7.5 Fllp·Flop

'--------Undefined
'---------SOD Enable

'-----------Serial Output Data

Cycles: 1
States: 4
Flags: none

• All mnemonics copyrighted (c-, Intel Corporation 1976. 5-18

Instruction Code

ACI DATA CE data

ADC REG 1000 lSSS

ADC M 8E

ADD REG 10000SSS

ADD M 86

ADI DATA C6 data

ANA REG 10100SSS

ANA M A6

ANI DATA E6 data

CALL LABEL CD addr

CC LABEL DC addr

CM LABEL FC addr

CMA 2F

CMC 3F

CMP REG 10111SSS

CMP M BE

CNC LABEL 04 addr

CNZ LABEL C4 addr

CP LABEL F4 addr

CPE LABEL EC addr

CPI DATA FE data

CPO LABEL E4 addr

CZ LABEL CC addr

DAA 27

DAD RP OORP 1001

OCR REG OOSS S101

OCR M 35

DCX RP OORP 1011

01 F3

EI FB

HLT 76

IN PORT DB data

INR REG OOSS S100

INR M 34

INX RP OORP 0011

JC LABEL DA addr

JM LABEL FA addr

JMP LABEL C3 addr

JNC LABEL 02 addr

JNZ LABEL C2 addr

JP LABEL F2 addr

JPE LABEL EA addr

JPO LABEL E2 addr

JZ LABEL CA addr

LOA ADDR 3A addr

LDAX RP OOOX 1010

LHLD ADDR 2A addr

8085A

8080Al8085A INSTRUCTION SET INDEX
Table 5·1

Bytes
T States

Machine Cycles
BOB5A BOBDA

2 7 7 F R

1 4 4 F

1 7 7 F R

1 4 4 F

1 7 7 F R

2 7 7 F R

1 4 4 F

1 7 7 F R

2 7 7 F R

3 18 17 SRRWW*

3 9/18 11/17 S R-/S R RWW*

3 9/18 11/17 SR_/SRRWW*

1 4 4 F

1 4 4 F

1 4 4 F

1 7 7 F R

3 9/18 11/17 SR-/SRRWW*

3 9/18 11/17 SR-/SRRWW*

3 9/18 11/17 SR_/SRRWW*

3 9/18 11/17 SR-/SRRWW*

2 7 7 FR

3 9/18 11/17 S R-/S R RWW*

3 9/18 11/17 SR_/SRRWW*

1 4 4 F

1 10 10 FBB

1 4 5 F*

1 10 10 F R W

1 6 5 S*

1 4 4 F

1 4 4 F

1 5 7 F B

2 10 10 F R I

1 4 5 F*

1 10 10 F R W

1 6 5 S*

3 7/10 10 F R/F R Rt

3 7/10 10 F R/F R Rt

3 10 10 F R R

3 7/10 10 F R/F R Rt

3 7/10 10 F R/F R Rt

3 7/10 10 F R/F R Rt

3 7/10 10 F R/F R Rt

3 7/10 10 F R/F R Rt

3 7/10 10 F R/F R Rt

3 13 13 F R R R

1 7 7 F R

3 16 16 F R R R R

Mach ine cycle types:

Four clock period instr fetch
Six clock period instr fetch
Memory read
lID read

W Memory write
lID write

X

DOD
SSS

RP

Bus idle
Variable or optional binary digit
Binary digits identifying a destination register
Binary digits identifying a source register

Register Pair
BC~00,HL~10

DE~OI,SP~11

* Five clock period instruction fetch with aOaOA.

Instruction Code

LXI RP,DATA16 OORP 0001 data16

MOV REG,REG 0100 DSSS

MOV M,REG 01110SSS

MOV REG,M 01000110

MVI REG,DATA 00000110 data

MVI M,DATA 36 data

NOP 00

ORA REG 10110SSS

ORA M B6

ORI DATA F6 data

OUT PORT 03 data

PCHL E9

POP RP llRPOOOl

PUSH RP llRP 0101

RAL 17

RAR IF

RC 08

RET C9

RIM (8085A only) 20

RLC 07

RM F8

RNC DO

RNZ CO

RP FO

RPE E8

RPO EO

RRC OF

RST N llXX XIII

RZ C8

SBB REG 10011SSS

SBB M 9E

SBI DATA DE data

SHLD ADDR 22 addr

SIM (8085A only) 30

SPHL F9

STA ADDR 32 addr

STAX RP OOOX 0010

STC 37

SUB REG 1001 OSSS

SUB M 96

SUI DATA 06 data

XCHG EB

XRA REG 1010 ISSS

XRA M AE

XRI DATA EE data

XTHL E3

B ~ 000, C ~ 001, D ~ 010 Memory ~ 110
E ~ OIl, H ~ 100, L ~ 101 A ~ 111

tThe longer machine cycle sequence applies regardless of condition evaluation with a080A.
_An extra READ cycle (R) will occur for this condition with a080A.

"All mnemonics copyrighted <0lntel Corporation 1976.

5-19

Bytes
T States

Machine Cycles
BOBSA BOBDA

3 10 10 F R R

1 4 5 F*

1 7 7 FW

1 7 7 F R

2 7 7 F R

2 10 10 F R W

1 4 4 F

1 4 4 F

1 7 7 F R

2 7 7 F R

2 10 10 FRO

1 6 5 S*

1 10, 10 F R R

1 12 11 SWW*

1 4 4 F

1 4 4 F

1 6/12 5/11 SIS R R*

1 10 10 F R R

1 4 - F

1 4 4 F

1 6/12 5/11 SIS R R*

1 6/12 5/11 SIS R R*

1 6/12 5/11 SIS R R*

1 6/12 5/11 SIS R R*

1 6/12 5/11 SIS R R*

1 6/12 5/11 SIS R R*

1 4 4 F

1 12 11 SWW*

1 6/12 5/11 SIS R R*

1 4 4 F

1 7 7 F R

2 7 7 F R

3 16 16 F R RWW

1 4 - F

1 6 5 S*

3 13 13 F R R W

1 7 7 FW

1 4 4 F

1 4 4 F

1 7 7 F R

2 7 7 F R

1 4 4 F

1 4 4 F

1 7 7 F R

2 7 7 F R

1 16 18 FRRWW

OP
CODE

00
01
02
03
04
05
06
07
08
09
OA
OB
OC
OD
OE
OF
10
11
12
13
14
15
16
17
18
19
1A
1B
1C
1D
1 E
1F
20
21
22
23
24
25
26
27
28
29
2A

SOSSA

8085A CPU INSTRUCTIONS IN OPERATION CODE SEQUENCE
Table 5·2

OP OP OP OP
MNEMONIC CODE MNEMONIC CODE MNEMONIC CODE MNEMONIC CODE MNEMONIC

NOP 2B DCX H 56 MOV D,M 81 ADD C AC XRA H
LXI B,D16 2C INR L 57 MOV D,A 82 ADD D AD XRA L
STAX B 2D DCR L 58 MOV E,B 83 ADD E AE XRA M
INX B 2E MVI L,D8 59 MOV E,C 84 ADD H AF XRA A
INR B 2F CMA 5A MOV E,D 85 ADD L 80 ORA B
DCR B 30 SIM 5B MOV E,E 86 ADD M B1 ORA C
MVI B,D8 31 LXI SP,D16 5C MOV E,H 87 ADD A B2 ORA D
RLC 32 STA Adr 5D MOV E,L 88 ADC B B3 ORA E
- 33 INX SP 5E MOV E,M 89 ADC C B4 ORA H
DAD B 34 INR M 5F MOV E,A 8A ADC D B5 ORA L
LDAX B 35 DCR M 60 MOV H,B 8B ADC E B6 ORA M
DCX B 36 MVI M,D8 61 MOV H,C 8C ADC H B7 ORA A
INR C 37 STC 62 MOV H,D 8D ADC L B8 CMP B
DCR C 38 - 63 MOV H,E 8E ADC M B9 CMP C
MVI C,D8 39 DAD SP 64 MOV H,H 8F ADC A BA CMP D
RRC 3A LDA Adr 65 MOV H,L 90 SUB B BB CMP E
- 3B DCX SP 66 MOV H,M 91 SUB C BC CMP H
LXI D,D16 3C INR A 67 MOV H,A 92 SUB D BD CMP L
STAX D 3D DCR A 68 MOV L,B 93 SUB E BE CMP M
INX D 3E MVI A,D8 69 MOV L,C 94 SUB H BF CMP A
INR D 3F CMC 6A MOV L,D 95 SUB L CO RNZ
DCR D 40 MOV B,B 6B MOV L,E 96 SUB M C1 POP B
MVI D,D8 41 MOV B,C 6C MOV L,H 97 SUB A C2 JNZ Adr
RAL 42 MOV B,D 6D MOV L,L 98 SBB B C3 JMP Adr
- 43 MOV B,E 6E MOV L,M 99 SBB C C4 CNZ Adr
DAD D 44 MOV B,H 6F MOV L,A 9A SBB D C5 PUSH B
LDAX D 45 MOV B,L 70 MOV M,B 9B SBB E C6 ADI D8
DCX D 46 MOV B,M 71 MOV M,C 9C SBB H C7 RST 0
INR E 47 MOV B,A 72 MOV M,D 9D SBB L C8 RZ
DCR E 48 MOV C,B 73 MOV M,E 9E SBB M C9 RET Adr
MVI E,D8 49 MOV C,C 74 MOV M,H 9F SBB A CA JZ
RAR 4A MOV C,D 75 MOV M,L AO ANA B CB -
RIM 4B MOV C,E 76 HLT A1 ANA C CC CZ Adr
LXI H,D16 4C MOV C,H 77 MOV M,A A2 ANA D CD CALL Adr
SHLD Adr 4D MOV C,L 78 MOV A,B A3 ANA E CE ACI D8
INX H 4E MOV C,M 79 MOV A,C A4 ANA H CF RST 1
INR H 4F MOV C,A 7A MOV A,D A5 ANA L DO RNC
DCR H 50 MOV D,B 7B MOV A,E A6 ANA M D1 POP D
MVI H,D8 51 MOV D,C 7C MOV A,H A7 ANA A D2 JNC Adr
DAA 52 MOV D,D 7D MOV A,L A8 XRA B D3 OUT D8
- 53 MOV D,E 7E MOV A,M A9 XRA C D4 CNC Adr
DAD H 54 MOV D,H 7F MOV A,A AA XRA D D5 PUSH D
LHLD Adr 55 MOV D,L 80 ADD B AB XRA E D6 SUI D8

OP
CODE MNEMONIC

D7 RST 2
D8 RC
D9 -
DA JC Adr
DB IN D8
DC CC Adr
DD -
DE SBI D8
DF RST 3
EO RPO
E1 POP H
E2 JPO Adr
E3 XTHL
E4 CPO Adr
E5 PUSH H
E6 ANI D8
E7 RST 4
E8 RPE
E9 PCHL
EA JPE Adr
EB XCHG
EC CPE Adr
ED -
EE XRI D8
EF RST 5
FO RP
F1 POP PSW
F2 JP Adr
F3 DI
F4 CP Adr
F5 PUSH PSW
F6 ORI D8
F7 RST 6
F8 RM
F9 SPHL
FA JM Adr
FB EI
FC CM Adr
FD -
FE CPI D8
FF RST 7

D8 = constant, or logical/arithmetic expression that evaluates
to an a-bit data quantity.

D16 = constant, or logical/arithmetic expression that evaluates
to a 16-bit data quantity.

Adr = 16-bit address .

• All mnemonics copyrighted C0lntel Corporation 1976.

5-20

II·
\

,I

\'1
,I,

808SA

8085A INSTRUCTION SET SUMMARY BY FUNCTIONAL GROUPING
Table 5·3

Instruction Code (1) Instruction Code (1)
Mnemonic Description D7 D6 D5 D4 D3 D2 Dl DO Page Mnemonic Description D7 06 D5 D4 D3 02 DIDO Page

MOVE, LOAD, AND STORE
MOVrl r2

MOVM.r

MOVr.M

MVlr

MVI M

LXI B

LXID

LXI H

STAX B

STAX 0

Move register to register

Move register to memory

Move memory to register

Move immediate register

Move immediate memory

Load immediate register
Pair B & C

Load immediate register
Pair 0 & E

Load immediate register
Pair H & L

Store A indirect

Store A indirect

LDAX B Load A indirect

LDAX 0 Load A indirect

STA Store A direct

LOA Load A direct

SH LD Store H & L direct

LHLD Load H & L direct

XCHG Exchange 0 & E. H & L
Registers

STACK OPS
PUSH B

PUSH 0

Push register Pair B &

C on stack

Push register Pair 0 &
E on stack

PUSH H Push register Pair H &

L on stack

PUSH PSW Push A and Flags

POP B

POP 0

POP H

POP PSW

XTHL

SPHL

LXI SP

INX SP

DCX SP

JUMP
JMP

JC

JNC
JZ

JNZ

JP

JM

JPE

JPO

PCHL

CALL
CALL

CC

CNC

on stack

Pop register Pair B &

C off stack

Pop register Pair 0 &

E off stack

Pop register Pair H &

L off stack

Pop A and Flags
off stack

Exchange top of
stack. H & L

H & L to stack pointer

Load immediate stack
pointer

Increment stack pointer

Decrement stack
pointer

Jump unconditional

Jump on carry

Jump on no carry

Jump on zero

Jump on no zero

Jump on positive

Jump on minus

Jump on parity even

Jump on parity odd

H & L to program
counter

Call unconditional

Call on carry

Call on no carry

• All mnemonics copyrighted © Intel Corporation 1976.

5·4

5·4

5-4

5-4

5·4

5·5

5·5

5·5

5·6

5·6

5·5

5·5

5·5

5·5

5·5

5·5

5·6

5·15

5·15

5·15

5·15

5·15

5·15

5·15

5·15

5·16

5·16

5·5

5·9

5·9

5·13

5·13

5·13

5·13

5·13

5·13

5·13

5·13

5·13

5·15

5·13

5·14

5·14

5-21

CZ

CNZ

CP
CM

CPE

CPO

RETURN
RET

RC

RNC

RZ

RNZ

RP

Call on zero

Call on no zero

Call on positive
Call on minus

Call on parity even

Call on parity odd

Return

Return on carry

Return on no carry

Return on zero

Return on no zero

Return on positive

RM Return on minus

RPE Return on parity even

RPO Return on parity odd

RESTART
RST Restart

INPUT/OUTPUT
IN Input

OUT Output

INCREMENT AND DECREMENT
INR r Increment register

OCR r Decrement register

INR M Increment memory

OCR M Decrement memory

INX B Increment B & C
registers

INX 0

INX H

DCX B

OCX 0

DCX H

ADD
ADD r

AOC r

ADD M

ADC M

AOI

ACI

DAD B

DAD 0

DAD H

DAD SP

Increment 0 & E
registers

Increment H & L
registers

Decrement B & C

Decrement 0 & E

Decrement H & L

Add register to A

Add register to A
with carry

Add memory to A

Add memory to A
with carry

Add immediate to A

Add immediate to A
with carry

Add B & C to H & L

Add 0 & E to H & L

Ad d H & L to H & L

Add stack pointer to
H&L

SUBTRACT
SUB r

SBB r

SUB M

SBB M

SUI

Subtract register
from A

Subtract register from
A with borrow

Subtract memory
from A

Subtract memory from
Awith borrow

Subtract immediate
from A

A A A

o
o

5·14

5·14

5·14
5·14

5·14

5·14

5·14

5·14

5·14

5·14

5·14

5·14

5·14

5·14

5·14

5·14

5·16

5·16

5·8

5·8

5·8

5·8

5·9

5·9

5·9

5·9

5·9

5·9

5·6

5·6

5·6

5·7

5·6

5·7

5·9

5·9

5·9

5·9

5·7

5-7

5·7

5·8

5·7

808SA

808SA INSTRUCTION SET SUMMARY (Cont'd)
Table 5·3

Instruction Code (1)
Mnemonic Description D7 D6 D5 D4 D3 D2 D1 DO Page

S81 Subtract immediate 5·8
from A with borrow

LOGICAL
ANA r • And register with A 5·9

XRA r Exclusive a R register 5·10
with A

ORA r a R register with A 5·10

CMPr Compare register with A 5·11

ANA M And memory with A 5·10

XRA M Exclusive OR memory 5·10
with A

ORA M OR memory with A 5·11

CMPM Compare memory with A 5·11

ANI And immediate with A 5·10

XRI Exclusive a R immediate 5·10
with A

ORI OR immediate with A 5·11

CPI Compare immediate 5·11
with A

ROTATE
RLC Rotate A left 5·11

NOTES: 1. DOS or SSS: B 000, COOl, 0 010, EOll, H 100, L 101, Memory 110, A 111.

2. Two possible cycle times. (S/12) indicate instruction cycles dependent on condition flags .

• All mnemonics copyrighted © Intel Corporation 1976.

5-22

Mnemonic Description

RRC Rotate A right

RAL Rotate A left through
carry

RAR Rotate A right through
carry

SPECIALS

CMA Complement A

STC Set carry

CMC Complement carry

DAA Decimal adjust A

CONTROL

EI Enable Interrupts

01 Disable Interrupt

NOP No·operation

HLT Halt

NEW BOB5A INSTRUCTIONS

RIM

SIM

Read Interrupt Mask

Set Interrupt Mask

Instruction Code (1)
07 06 05 D4 03 02 01 00 Page

5·12

5·12

5·12

5·12

5·12

5·12

5·9

5·17

5·17

5·17

5·17

5·17

5·18

Device Specifications 6

inter 8080A/8080A·1/8080A·2
8·BIT N·CHANNEL MICROPROCESSOR

• TTL Drive Capability

• 2 lAS (- 1 :1.3 lAs, - 2:1.5 lAs) Instruction
Cycle

• Powerful Problem Solving Instruction
Set

• 6 General Purpose Registers and an
Accumulator

• 16·Bit Program Counter for Directly
Addressing up to 64K Bytes of
Memory

• 16·Bit Stack Pointer and Stack
Manipulation Instructions for Rapid
Switching of the Program Environment

• Decimal, Binary, and Double Precision
Arithmetic

• Ability to Provide Priority Vectored
Interrupts

• 512 Directly Addressed 1/0 Ports

• Available in EXPRESS
- Standard Temperature Range

The Intel® 8080A is a complete 8-bit parallel central processing unit (CPU). It is fabricated on a single LSI chip using
Intel's n-channel silicon gate MOS process. This offers th~ user a high performance solution to control and processing
applications.

The 8080A contains 6 8-bit general purpose working registers and an accumulator. The 6 general purpose registers may be
addressed individually or in pairs providing both single and double precision operators. Arithmetic and logical instructions
set or reset 4 testable flags. A fifth flag provides decimal arithmetic operation.

The 8080A has an external stack feature wherein any porti'on of memory may be used as a last in/first out stack to
store/retrieve the contents of the accumulator, flags, program counter, and all of the 6 general purpose registers. The 16-bit
stack pointer controls the addressing of this external stack. This stack gives the 8080A the ability to easily handle multiple
level priority interrupts by rapidly storing and restoring processor status. It also provides almost unlimited subroutine
nesting.

This microprocessor has been designed to simplify systems design. Separate 16-line address and a-line bidirectional data
busses are used to facilitate easy interface to memory and I/O. Signals to control the interface to memory and I/O are
provided directly by the 8080A. Ultimate control of the address and data busses resides with the HOLD signal. It provides
the ability to suspend processor operation and force the address and data busses into a high impedance state. This permits
OR-tying these busses with other controlling devices for (DMA) direct memory access or multi-processor operation.

NOTE:
The 8080A is functionally and electrically compatible with the Intel® 8080.

Figure 1. Block Diagram

6-1

RESET

HOLD

INT

WR
SYNC

+5V

A3

+,2V

A2

A,

Ao
WAIT

READY

0,

HLDA

Figure 2. Pin Configuration

inter

Symbol Type

A1S;Ao 0

Dr Do I/O

SYNC 0

DBIN 0

READY I

WAIT 0

WR 0

HOLD I

HLDA 0

INTE 0

INT I

RESET1 I

Vss

Voo

Vee

VSB

cP1, cP2

8080Al8080A·118080A·2

Table 1. Pin Description

Name and Function

Address Bus: The address bus provides the address to memory (up to 64K 8-bit words) or denotes the I/O
device number for up to 256 input and 256 output devices. Ao is the least significant address bit.

Data Bus: The data bus provides bi-directional communication betweeen the CPU, memory, and I/O
devices for instructions and data transfers. Also, during the first clock cycle of each machine cycle, the
8080A outputs a status word on the data bus that describes the current machine cycle. Do is the least
significant bit.

Synchronizing Signal: The SYNC pin provides a signal to indicate the beginning of each machine cycle.

Data Bus In: The DBIN signal indicates to external circuits that the data bus is in the input mode. This
signal should be used to enable the gating of data onto the 8080A data bus from memory or I/O.

Ready: The READY signal indicates to the 8080A that valid memory or input data is available on the 8080A
data bus. This signal is used to synchronize the CPU with slower memory or I/O devices. If after sending
an address out the 8080A does not receive a READY input, the 8080Awill enter a WAITstate for as long as
the READY line is low. READY can also be used to single step the CPU.

Wait: The WAIT signal acknowledges that the CPU is in a WAIT state.

Write: The WR signal is used for memory WRITE or I/O output control. The data on the data bus is stable
while the WR signal is active low (WR = 0).

Hold: The HOLD signal requests the CPU to enter the HOLD state. The HOLD state allows an external
device to gain control of the 8080A address and data bus as soon as the 8080A has completed its use of
these busses for the current machine cycle. It is recognized under the following conditions:
• the CPU is in the HALT state.
• the CPU is in the T2 or TW state and the READY signal is active. As a result of entering the HOLD state

the CPU ADDRESS BUS (A1S-Ao) and DATA BUS (D7-DO) will be in their high impedance state. The CPU
acknowledges its state with the HOLD ACKNOWLEDGE (HLDA) pin.

Hold Acknowledge: The HLDA Signal appears in response to the HOLD signal and indicates that the data
and address bus will go to the high impedance state. The HLDA signal begins at:
• T3 for READ memory or input.
• The Clock Period following T3 for WRITE memory or OUTPUT operation.
In either case, the HLDA signal appears after the rising edge of cP2.

Interrupt Enable: Indicates the content of the internal interrupt enable flip/flop. This flip/flop may be set
or reset by the Enable and Disable Interrupt instructions and inhibits interrupts from being accepted by
the CPU when it is reset. It is automatically reset (disabling further interrupts) at time T1 of the instruction
fetch cycle (M1) when an interrupt is accepted and is also reset by the RESET signal.

Interrupt Request: The CPU recognizes an interrupt request on this line at the end of the current
instruction or while halted. If the CPU is in the HOLD state or if the Interrupt Enable flip/flop is reset it will
not honor the request.

Reset: While the RESETsignal is activated, the content of the program counter is cleared. After RESET,
the program will start at location 0 in memory. The INTE and HLDA flip/flops are also reset. Note that the
flags, accumulator, stack pOinter, and registers are not cleared.

Ground: Reference.

Power: +12 :+:5% Volts.

Power: +5 :+:5% Volts.

Power: -5 :+:5% Volts.

Clock Phases: 2 externally supplied clock phases. (non TTL compatible)

6-2 AFN-00735C

I

I

I

I,
I

8080Al8080A·1/8080A·2

ABSOLUTE MAXIMUM RATINGS·

Temperature Under Bias O°C to +70° C
Storage Temperatu re -65° C to + 150° C
All Input or Output Voltages

With Respect to Vss -0.3V to +20V
VCC. Voo and Vss With Respect to Vss -0.3V to +20V
Power Dissipation 1.5W

"NOTICE: Stresses above those listed under "Absolute
Maximum Ratings" may cause permanent damage to the
device. This is a stress rating only and functional opera­
tion of the device at these or any other conditions above
those indicated in the operational sections of this
specification is not implied. Exposure to absolute maxi­
mum rating conditions for extended periods may affect
device reliability.

D.C. CHARACTERISTICS (TA = O°C to 70oe, Voo = +12V ±5%,

Vee = +5V ±5%, Vee = -5V ±5%, Vss =OV; unless otherwise noted)

Symbol Parameter Min. Typ. Max. Unit Test Condition

VILC Clock Input Low Voltage VSS-1 Vss+O.S V

VIHC Clock Input High Voltage 9.0 Voo+1 V

VIL Input Low Voltage Vss-1 Vss+O.S V

VIH Input High Voltage 3.3 Vcc+1 V

VOL Output Low Voltage 0.45 V } 10L • 1.9mA on all ou'puts.

VOH Output High Voltage 3.7 V IOH = -150I1A.

100 (AV) Avg. Power Supply Current (Voo) 40 70 mA

ICC (AV) Avg. Power Supply Current (Vce) 60 SO mA
} Op.,,';oo

T Cy = .48 psec
Iss (AV) Avg. Power Supply Current (Vss) .01 1 mA

IlL Input Leakage ±10 pA Vss < VIN < VCC

ICL Clock Leakage ±10 pA Vss < VCLOCK < VOO

IOL [2) Data Bus Leakage in I nput Mode -100 pA VSS<VIN<VSS+O.SV

f

-2.0 mA
VSS +O.SV<VIN <VCC

IFL
Address and Data Bus Leakage +10

pA VAOOR/OATA = Vec
During HOLD -100 V AOOR/OATA = VSS + 0.45V

1.5

CAPACITANCE (TA = 25°C, Vee = Voo =Vss = ov, Vee = -5V)

Symbol Parameter Typ. Max. Unit Test Condition
1.0 ----

C<I> Clock Capacitance 17 25 pf fc = 1 MHz ----r----
CIN I nput Capacitance 6 10 pf Unmeasured Pins

COUT Output Capacitance 10 20 pf Returned to Vss
0.5

NOTES:
0 +25 +50 +75

1. The RESET signal must be active for a minimum of 3 clock cycles. AMBIENT TEMPERATURE (OC)

2. ~I supply / ~ T A = -0.45%f c.
Typical Supply Currentvs.

Temperature, Normalizedl3J

6-3 AFN·OO735C

8080Al8080A·1/8080A·2

A.C. CHARACTERISTICS (8080A) (TA = O°C to 70°C, VOO = +12V ±5%, Vee = +5V ±5%,
Vee = -5V ±5%, Vss =OV; unless otherwise noted)

·1 ·1 ·2 ·2
Symbol Parameter Min. Max. Min. Max. Min. Max. Unit Test Condition

tCy(3) Clock Period 0.48 2.0 0.32 2.0 0.38 2.0 "sec

tr,tl Clock Rise and Fall Time 0 50 0 25 0 50 nsec

t01 01 Pulse Width 60 50 60 nsec

t02 02 Pulse Width 220 145 175 nsec

tD1 Delay 01 to 02 0 0 0 nsec

tD2 Delay 02 to 01 70 60 70 nsec

tD3 Delay 01 to 02 Leading Edges 80 60 70 nsec

tDA Address Output Delay From 02 200 150 175 nsec
}CL=100 pF

too Data Output Delay From 02 220 180 200 nsec

tDC Signal Output Delay From 02 or 02 (SYNC, WR, WAIT, HLDA) 120 110 120 nsec
} CL=50pF

tDF DBI N Delay From 02 25 140 25 130 25 140 nsec

tOl[11 Delay for Input Bus to Enter Input Mode tDF tDF tDF nsec

tDS1 Data Setup Time During 01 and DBIN 30 10 20 nsec

tDS2 Data Setup Time to 02 During DBIN 150 120 130 nsec

tDH(1) Data Holt time From 02 During DBIN (1) (1) (1) nsec

tiE INTE Output Delay From 02 200 200 200 nsec CL=50 pF

tRS READY Setup Time During 02 120 90 90 nsec

tHS HOLD Setup Time to 02 140 120 120 nsec

tiS INT Setup Time During 02 120 100 100 nsec

tH Hold Time From 02 (READY, INT, HOLD) 0 0 0 nsec

tFO Delay to Float During Hold (Address and Data Bus) 120 120 120 nsec
-

tAW Address Stable Prior to WR (5) (5) (5) nsec

tow Output Data Stable Prior to WR (6) (6) (6) nsec

two Output Data Stable From WR (7) (7) (7) nsec

tWA Address Stable From WR (7) (7) (7) nsec
CL = 100 pF: Address, Data
CL = 50 pF: WR,HLDA,DBIN

tHF HLDA to Float Delay (8) (8) (8) nsec

tWF WR to Float Delay (9) (9) (9) nsec

tAH Address Hold Time After DBIN During HLDA -20 -20 - 20 nsec -

A.C. TESTING LOAD CIRCUIT

DEVICE
UNDER

lC'~"'"
TEST

Cl~ 100pF
Cl INCLUDES JIG CAPACITANCE

--

6-4 AFN-00735C

WAVEFORMS

°2
------+-~

A,.-AO ----------t---''f-

SYNC ________ --+......11

8080A/8080A·1/8080A·2

DBIN

---------------------~......I

READY

_ I I 'H -- .2>-+--+=~ +--; --+t-I:!:

~111~1' - 'RS --- -I ~-=:1~ --:11 WAIT ---------------:.;....H---..;.;.--+-1. l~--+t--I ---r ill
toe·--+- 4-- t H ·.., , -

HOLD ___________________________________ I~IgI* 1".-.1_-++--11
---I ~H: 1:"- I

HLDA

--~~
INT

INTE

NOTE:
Timing measurements are made at the following reference voltages: CLOCK "1" = 8.0Y,
"0" = 1.0V; INPUTS "1" = 3.3V, "0" = 0.8V; OUTPUTS "1" = 2.0V, "0" = 0.8\1.

6-5 AFN·OO735C

inter
WAVEFORMS (Continued)

WAIT

HOLD I-

___ t nr

HlDA

INT

INTE

8080Al8080A·1/8080A·2

6-6

NOTES: (Parenthesis gives -1, -2 specifications, respectively)
1. Data input should be enabled with DBIN status. No bus con­

flict can then occur and data hold time is assured.
tOH = 50 ns or tOF, whichever is less.

2. tCY = t03 + tr<f>2 +t,p2 + tf<f>2 + t02 + tr<f>1 ;;. 4BO ns (- 1 :320
ns, - 2:3BO ns).

TYPICAL A OUTPUT DELAY VS. A CAPACITANCE

>-

~
o
I-

12
I­
:::l
o ..,

..\ CAPACITANCE (pI)

(CACTUAL - CSPEC)

+100

3. The following are relevant when interfacing the BOBOA to
devices having V,H = 3.3V:
a) Maximum output rise time from .BV to 3.3V = 100ns @ CL
= SPEC.
b) Output delay when measured to3.0V = SPEC +60ns@CL
= SPEC.
c) If CL = SPEC, add .6ns/pF if CL > CSPEC, subtract .3ns/pF
(from modified delay) if CL < CSPEC.

4. tAW = 2 tCY- t03 - t r<f>2 - 140 ns (- 1 :110 ns, - 2:130 ns).
5. tow = tCY - t03 - tr<f>2 - 170 ns (- 1 :150 ns, - 2:170 ns).
6. If not HLDA, two = tWA = tD3 + tr<f>2 + 10 ns. If HLDA, two

= tWA = tWF·
7. tHF = t03 + tr<f>2 -50 ns).
B. tWF = t03 + tr<f>2 - 10ns.
9. Data in must be stable for this period during DBIN T3.

Both tOS1 and tOS2 must be satisfied.
10. Ready signal must be stable for this period during T2 or Tw.

(Must be externally synchronized.)
11. Hold signal must be stable for this period during T 2 or Tw

when entering hold mode, and during T3, T4, Ts and TWH
when in hold mode. (External synchronization is not re­
quired.)

12. Interrupt signal must be stable during this period of the last
clock cycle of any instruction in order to be recognized on the
following instruction. (External synchronization is not re­
quired.)

13. This timing diagram shows timing relationships only; it does
not represent any specific machine cycle.

AFN·00735C

!1

I',

inter 8080Al8080A·1/8080A·2

INSTRUCTION SET

The accumulator group instructions include arithmetic and
logical operators with direct, indirect, and immediate ad­
dressing modes_

Move, load, and store instruction groups provide the ability
to move either 8 or 16 bits of data between memory, the
six working registers and the accumulator using direct, in­
direct, and immediate addressing modes.

The ability to branch to different portions of the program
is provided with jump, jump conditional, and computed
jumps. Also the ability to call to and return from sub­
routines is provided both conditionally and unconditionally.
The RESTART (or single byte call instruction) is useful for
interrupt vector operation.

Double precision operators such as stack manipulation and
double add instructions extend both the arithmetic and
interrupt handling capability of the 8080A. The ability to

Data and Instruction Formats

increment and decrement memory, the six general registers
and the accumulator is provided as well as extended incre­
ment and decrement instructions to operate on the register
pairs and stack pointer. Further capability is provided by
the ability to rotate the accumulator I~ft or right through
or around the carry bit.

Input and output may be accomplished using memory ad­
dresses as I/O ports or the directly addressed I/O provided
for in the 8080A instruction set.

The following special instruction group completes the 8080A
instruction set: the NOP instruction, HALT to stop pro­
cessor execution and the DAA instructions provide decimal
arithmetic capability. STC allows the carry flag to be di­
rectly set, and the CMC instruction allows it to be comple­
mented. CMA complements the contents of the accumulator
and XCHG exchanges the contents of two 16-bit register
pairs directly.

Data in the 8080A is stored in the form of 8-bit binary integers. All data transfers to the system data bus will be in the
same format.

ID7 D6 D5 D4 D3 D2 D1 Dol

DATA WORD

The program instructions may be one, two, or three bytes in length. Multiple byte instructions must be stored
in successive words in program memory. The instruction formats then depend on the particular operation
executed.

One Byte Instructions

I D7 D6 D5 D4 D3 D2

Two Byte Instructions

I D7 D6 D5 D4 D3 D2

I D7 D6 D5 D4 D3 D2

Three Byte Instructions

I D7 D6 D5 D4 D3 D2

I D7 D6 D5 D4 D3 D2

I D7 D6 D5 D4 D3 D2

DtYDJ

D1 Do I
D1 Do I

D1 Do I
D1 Do I
D1 Do I

OP CODE

OP CODE

OPERAND

OP CODE

LOWADDRESSOR OPERAND 1

HIGH ADDRESSOR OPERAND 2

TYPICAL INSTRUCTIONS

Register to register, memory refer­
ence, arithmetic or logical, rotate,
return, push, pop, enable or disable
Interrupt instructions

Immediate mode or I/O instructions

Jump, call or direct load and store
instructions

For the 8080A a logic "1" is defined as a high level and a logic "0" is defined as a low level.

6-7 AFN·OO735C

inter I~
! 1
II

8080Al8080A·118080A·2

Table 2. Instruction Set Summary

Clock
Instruction Code [1] Operations Cycles

Mnemonic [ry 06 Os 04 03 02 01 DO Description [2]

JPO 1 1 1 0 0 0 1 0 Jump on parity odd 10
PCHL 1 1 1 0 1 0 0 1 H & L to program 5

counter

II
I

'I

I

Clock
Instruction Code [1] Operations Cycles

Mnemonic [ry 06 Os 04 03 02 01 DO Description [2]

MOVE, LOAD, AND STORE
MOVr1,r2 0 1 0 0 0 S S S Move register to register 5
MOVM,r. 0 1 1 1 0 S S S Move register to

CALL
CALL 1 1 0 0 1 1 0 1 Cali unconditional 17
CC 1 1 0 1 1 1 0 0 Cali on carry 11/17

memory 7
MOVr,M 0 1 0 0 0 1 1 0 Move memory to regis-

ter 7 I ..

MVlr 0 0 D 0 0 1 1 0 Move immediate regis- CNC 1 1 0 1 0 1 0 0 Cali on no carry 11/17
ter 7 CZ 1 1 0 0 1 1 0 0 Cali on zero 11/17

MVIM 0 0 1 1 0 1 1 0 Move immediate CNZ 1 1 0 0 0 1 0 0 Cali on no zero 11/17
memory 10 CP 1 1 1 1 0 1 0 0 Cali on positive 11/17

LXIB 0 0 0 0 0 0 0 1 Load immediate register 10 CM 1 1 1 1 1 1 0 0 Cali on minus 11/17
PairB & C CPE 1 1 1 0 1 1 0 O. Cali on parity even 11/17

LXI 0 0 0 0 1 0 0 0 1 Load immediate register 10 CPO 1 1 1 0 0 1 0 0 Cali on parity odd 11/17
PairO& E RETURN

LXI H 0 0 1 0 0 0 0 1 Load immediate register 10 RET 1 1 0 0 1 0 0 1 Return 10
PairH&L RC 1 1 0 1 1 0 0 0 Return on carry 5/11

STAXB 0 0 0 0 0 0 1 0 Store A indirect 7 RNC 1 1 0 1 0 0 0 0 Retu rn on no carry 5/11
STAXO 0 0 0 1 0 0 1 0 Store A indirect 7 RZ 1 1 0 0 1 0 0 0 Return on zero 5/11

LDAXB 0 0 0 0 1 0 1 0 Load A indirect 7 RNZ 1 1 0 0 0 0 0 0 Return on no zero 5/11

LOAXO 0 0 0 1 1 0 1 0 Load A indirect 7 RP 1 1 1 1 0 0 0 0 Return on positive 5/11

STA 0 0 1 1 0 0 1 0 Store A direct 13 RM 1 1 1 1 1 0 0 0 Return on minus 5/11

LOA 0 0 1 1 1 0 1 0 Load A direct 13 RPE 1 1 1 0 1 0 0 0 Return on parity even 5/11

SHLO 0 0 1 0 0 0 1 0 Store H & L direct 16 RPO 1 1 1 0 0 0 0 0 Return on parity odd 5/11

LHLD 0 0 1 0 1 0 1 0 Load H & L direct 16 RESTART
XCHG 1 1 1 0 1 0 1 1 Exchange 0 & E, H & L 4 RST 1 1 A A A 1 1 1 Restart 11

Registers INCREMENT AND DECREMENT
STACKOPS INRr 0 0 D D D 1 0 0 Increment register 5

PUSHB 1 1 0 0 0 1 0 1 Push register Pair B & 11 DCRr 0 0 D D D 1 0 1 Decrement register 5
C on stack INRM 0 0 1 1 0 1 0 0 Increment memory 10

PUSH 0 1 1 0 1 0 1 0 1 Push register Pair 0 & 11 DCRM 0 0 1 1 0 1 0 1 Decrement memory 10
E on stack INXB 0 0 0 0 0 0 1 1 Increment B & C 5

PUSHH 1 1 1 0 0 1 0 1 Push register Pair H & 11 registers
L on stack INXD 0 0 0 1 0 0 1 1 Increment D & E 5

PUSH 1 1 1 1 0 1 0 1 Push A and Flags 11 registers
PSW on stack INXH 0 0 1 0 0 0 1 1 Increment H & L 5

POPB 1 1 0 0 0 0 0 1 Pop register Pair B & 10 registers
C off stack OCXB 0 0 0 0 1 0 1 1 Decrement B & C 5

POP 0 1 1 0 1 0 0 0 1 Pop register Pair 0 & 10 OCXO 0 0 0 1 1 0 1 1 Decrement 0 & E 5
E off stack OCXH 0 0 1 0 1 0 1 1 Decrement H & L 5

POPH 1 1 1 0 0 0 0 1 Pop register Pair H & 10 ADD
Lofl stack AOOr 1 0 0 0 0 S S S Add register to A 4

POPPSW 1 1 1 1 0 0 0 1 Pop A and Flags 10 AOCr 1 0 0 0 1 S S S Add register to A 4

off stack with carry

XTHL 1 1 1 0 0 0 1 1 Exchange top of 18 AOOM 1 0 0 0 0 1 1 0 Add memory to A 7

stack, H & L AOCM 1 0 0 0 1 1 1 0 Add memory to A 7

SPHL 1 1 1 1 1 0 0 1 H & L to stack pointer 5 with carry

LXI SP 0 0 1 1 0 0 0 1 Load immediate stack 10 AOI 1 1 0 0 0 1 1 0 Add immediate to A 7
pointer ACI 1 1 0 0 1 1 1 0 Add immediate to A 7

INXSP 0.0 1 1 0 0 1 1 Increment stack pointer 5 with carry

OCXSP 0 0 1 1 1 0 1 1 Decrement stack 5 DADB 0 0 0 0 1 0 0 1 Add B & C to H & L 10

pointer DADO 0 0 0 1 1 0 0 1 Add 0 & E to H & L 10

JUMP OAOH 0 0 1 0 1 0 0 1 Add H & Lto H & L 10

JMP 1 1 0 0 0 0 1 1 Jump unconditional 10 DAOSP 0 0 1 1 1 0 0 1 Add stack pointer to 10

JC 1 1 0 1 1 0 1 0 Jump on carry 10 H&L

JNC 1 1 0 1 0 0 1 0 Jump on no carry 10
JZ 1 1 0 0 1 0 1 0 Jump on zero 10
JNZ 1 1 0 0 0 0 1 0 Jump on no zero 10
JP 1 1 1 1 0 0 1 0 Jump on positive 10
JM 1 1 1 1 1 0 1 0 Jump on minus 10
JPE 1 1 1 0 1 0 1 0 Jump on parity even 10

6-8 AFN-00735C

inter 8080A/8080A·1/8080A·2

Summary of Processor Instructions (Cont.)

Clock
Instruction Code [1) Operations Cycles Instruction Code 11 J

Mnemonic D] D6 Ds D4 D3 D2 D1 Do Description [2) Mnemonic D] D6 Ds D4 D3 D2 D1 Do

SUBTRACT ROTATE
SUBr 1 0 0 1 0 S S S Subtract register 4 RLC 0

from A RRC 0
SBB r 1 0 0 1 1 S S S Subtract register from 4 RAL 0

A with borrow
SUBM 1 0 0 1 0 1 1 0 Subtract memory 7 RAR 0

from A
SBBM 1 0 0 1 1 1 1 0 Subtract memory from 7 SPECIALS

A with borrow CMA 0
SUI 1 1 0 1 0 1 1 0 Subtract immediate 7 STC 0

from A CMC 0
SBI 1 1 0 1 1 1 1 0 Subtract immediate 7 OM 0

from A with borrow INPUT/OUTPUT
LOGICAL IN
ANA r 1 0 1 0 0 S S S And register with A 4 OUT
XRA r 1 0 1 0 1 S S S Exclusive Or register 4 CONTROL

with A EI
ORAr 1 0 1 1 0 S S S Or register with A 4 01
CMPr 1 0 1 1 1 S S S Compare register with A 4 NOP
ANAM 1 0 1 0 0 1 1 0 And memory with A 7 HLT
XRAM 1 0 1 0 1 1 1 0 Exclusive Or memory 7

with A
ORAM 1 0 1 1 0 1 1 0 Or memory with A 7
CMPM 1 0 1 1 1 1 1 0 Compare memory with

A 7
ANI 1 1 1 0 0 1 1 0 And immediate with A 7
XRI 1 1 1 0 1 1 1 0 Exclusive Or immediate 7

with A
ORI 1 1 1 1 0 1 1 0 Or immediate with A 7
CPI 1 1 1 1 1 1 1 0 Compare immediate 7

with A

NOTES:
1. DOD orSSS: B=OOO, C=OOl, 0=010, E=011, H=100, L=101, Memory=110, A=111.
2. Two possible cycle times (6/12) indicate instruction cycles dependent on condition flags.
'AII mnemonics copyright ©Intel Corporation 1977

6-9

1
1

1
1
0
0

0 0 0 0 1 1 1
0 0 0 1 1 1 1
0 0 1 0 1 1 1

0 0 1 1 1 1 1

0 1 0 1 1 1 1
0 1 1 0 1 1 1
0 1 1 1 1 1 1
0 1 0 0 1 1 1

1 0 1 1 0 1 1
1 0 1 0 0 1 1

1 1 1 1 0 1 1
1 1 1 0 0 1 1
0 0 0 0 0 0 0
1 1 1 0 1 1 0

Clock
Operations Cycles
Description 12J

Rotate A left 4
Rotate A right 4
Rotate A left through 4
carry
Rotate A right through 4
carry

Complement A 4
Set carry 4
Complement carry 4
Decimal adjust A 4

Input 10
Output 10

Enable Interrupts 4
Disable Interrupt 4
No-operation 4
Halt 7

AFN·OO735C

intJ
SOSSAH/SOSSAH-21S0SSAH-1

S-BIT HMOS MICROPROCESSORS
• Single +SV Power Supply with 10%

Voltage Margins

• 3 MHz, S MHz and 6 MHz Selections
Available

• 20% Lower Power Consumption than
SOSSA for 3 MHz and S MHz

• 1.3 J-ts Instruction Cycle (SOSSAH); O.S
J-ts (SOSSAH-2); 0.67 J-ts (SOSSAH-1)

• 100% Compatible with SOSSA

• 100% Software Compatible with 80S0A

• On-Chip Clock Generator (with
External Crystal, LC or RC Network)

• On-Chip System Controller; Advanced
Cycle Status Information Available for
Large System Control

• Four Vectored Interrupt Inputs (One is
Non-Maskable) Plus an
SOSOA-Compatible Interrupt

• Serial In/Serial Out Port
• Decimal, Binary and Double Precision

Arithmetic
• Direct Addressing Capability to 64K

Bytes of Memory
• Available in EXPRESS

- Standard Temperature Range
- Extended Temperature Range

The Intel® 8085AH is a complete 8 bit parallel Central Processing Unit (CPU) implemented in N-channel,
depletion load, silicon gate technology (HMOS). Its instruction set is 1 00% software compatible with the8080A
microprocessor, and it is designed to improve the present 8080A's performance by higher system speed. Its
high level of system integration allows a minimum system of three IC's [8085AH (CPU), 8156H (RAM/I 0) and
8355/8755A (ROM/PROM/IO)] while maintaining total system expandability. The 8085AH-2 and 8085AH-1 are
faster versions of the 8085AH.

The 8085AH incorporates all of the features that the 8224 (clock generator) and 8228 (system controller)
provided for the 8080A, thereby offering a high level of system integration.

The 8085AH uses a multiplexed data bus. The address is split betw~en the 8 bit address bus and the 8 bit data
bus. The oli-chip address latches of 8155H/8156H/8355/8755A memory products allow a direct interface with
the 8085AH.

POWER {_"'v
SUPPLY -GND

X,
x,

tNi"

Als-Aa
ADDRESS BUS

Figure 1. 8085AH CPU Functional Block Diagram

AD7-ADO
ADDR ESS/OAT A BUS

Xl
X2

RESET OUT
SOD

Vee
HOLD

HlDA
elK lOUT)

RESET IN
READY
101M

51
RST 55 AD

INTR WR
INTA ALE

ADO So
ADl A15

AD2 A14
AD3 A13

AD4 A12
AD5 All

AD6 Al0
AD7 Ag

.... __ ,.,J"""A8

Figure 2. 8085AH Pin
Configuration

Intel Corporation Assumes No Responsibilty for the Use of Any Circuitry Other Than Circuitry Embodied in an Intel Product. No Other Circuit Patent Licenses ale Implied.

'"INTEL CORPORATION, 1981.
6-10

Symbol Type

o

ADO_7 I/O

ALE o

So, S1, and 10/M 0

RD o

WR o

8085AH/8085AH-2/8085AH-1

Table 1.
Name and Function

Address Bus: The most significant
8 bits of the memory address or the
8 bits of the I/O address, 3-stated
during Hold and Halt modes and
during RESET.

Multiplexed Address/Data Bus:
Lower 8 bits of the memory address
(or I/O address) appear on the bus
during the first clock cycle (Tstate)
of a machine cycle. It then becomes
the data bus during the second and
third clock cycles.

Address Latch Enable: It occurs
during the first clock state of a ma-
chine cycle and enables the address
to get latched into the on-chip latch
of peripherals. The falling edge of
ALE is set to guarantee setup and
hold times for the address informa-
tion. The falling edge of ALE can
also be used to strobe the status
information. ALE is never 3-stated.

Machine Cycle Status:

10/M S1 So Status
0 0 1 Memory write
0 1 0 Memory read
1 0 1 I/O write
1 1 0 I/O read
0 1 1 Opcode fetch
1 1 1 Opcode fetch
1 1 1 Interrupt

Acknowledge
0 0 Halt
X X Hold
X X Reset

= 3-state (high impedance)
X = unspecified

S1 can be used as an advanced R/Vii
status. IO/M, SO and S1 become
valid at the beginning of a machine
cycle and remain stable throughout
the cycle. The falling edge of ALE
may be used to latch the state of
these lines.

Read Control: A low level on RD
indicates the selected memory or
I/O device is to be read and that the
Data Bus is available for the data
transfer, 3-stated during Hold and
Halt modes and during RESET.

Write Control: A low level on WR
indicates the data on the Data Bus is
to be written into the selected
memory or I/O location. Data is set
up at the trailing edge of WR. 3-
stated during Hold and Halt modes
and during RESET.

Pin Description

6-11

Symbol

READY

HOLD

HLDA

INTR

INTA

RST 5.5
RST 6.5
RST 7.5

Type

I

I

0

I

o

Name and Function

Ready: If READY is high during a
read or write cycle, it indicates that
the memory or peripheral is ready to
send or receive data. If READY is
low, the cpu will wait an integral
number of clock cycles for READY
to go high before completing the
read or write cycle. READY must
conform to specified setup and hold
times.

Hold: Indicates that another master
is requesting the use of the address
and data buses. The cpu, upon
receiving the hold request, will
relinquish the use of the bus as
soon as the completion of the cur­
rent bus transfer. Internal process­
ing can continue. The processor
can regain the bus only after the
HOLD is removed. When the HOLD
is acknowledged, the Address,
Data RD, WR, and 10/M lines are
3-stated.

Hold Acknowledge: Indicates that
the cpu has received the HOLD re­
quest and that it will relinquish the
bus in the next clock cycle. HLDA
goes low after the Hold request is
removed. The cpu takes the bus one
half clock cycle after HLDA goes
low.

Interrupt Request: Is used as a
general purpose interrupt. It is
sampled only during the next to the
last clock cycle of an instruction
and during Hold and Halt states. If it
is active, the Program Counter (PC)
will be inhibited from incrementing
and an INTA will be issued. During
this cycle a RESTART or CALL in­
struction can be inserted to jump to
the interrupt service routine. The
INTR is enabled and disabled by
software. It is disabled by Reset and
immediately after an interrupt is ac­
cepted.

Interrupt Acknowledge: Is used in­
stea~of (and has the same timing
as) RD during the Instruction cycle
after an INTR is accepted. It can be
used to activate an 8259A Interrupt
chip or some other interrupt port.

Restart Interrupts: These three in­
puts have the same timing as INTR
except they cause an internal
RESTART to be automatically
inserted.

The priority of these interrupts is
ordered as shown in Table 2. These
interrupts have a higher priority
than INTR. In addition, they may be
individually masked out using the
SIM instruction.

AFN·01835C

intJ 8085AH/8085AH-2/8085AH-1

Table 1. Pin Description (Continued)
,-------,-----,----------------------,

Symbol

TRAP

Type Name and Function

I Trap: Trap interrupt is a non­
maskable RESTART interrupt. It is
recognized at the same time as
INTR or RST 5.5-7.5. It is unaffected
by any mask or Interrupt Enable. It
has the highest priority of any inter­
rupt. (See Table 2.)

Reset In: Sets the Program
Counter to zero and resets the Inter­
rupt Enable and HlDA flip-flops.
The data and address buses and the
control lines are 3-stated during
RESET and because of the asyn­
chronous nature of RESET, the pro­
cessor's internal registers and flags
may be altered by RESET with un­
predictable results. RESET IN is a
Schmitt-triggered input, allowing
connection to an R-C network for
power-on RESET delay (see Figure
3). Upon power-up, RESET IN must
remain low for at least 10 ms after
minimum Vee has been reached.
For proper reset operation after the
power-up duration, RESET IN
should be kept Iowa minimum of
three clock periods. The CPU is held
in the reset condition as long as
RESET IN is applied.

Symbol

RESET OUT

X1 ,X2

ClK

SID

SOD

Vee

Vss

Type

a

I

a

I

a

Name and Function

Reset Out: Reset Out indicates cpu
is being reset. Can be used
as a system reset. The signal is
synchronized to the processor
clock and lasts an integral number
of clock periods.

X 1 and X2: Are connected to a
crystal, le, or RC network to drive
the internal clock generator. X1 can
also be an external clock input from
a logic gate. The input frequency is
divided by 2 to give the processor's
internal operating frequency.

Clock: Clock output for use as a sys-
tem clock. The period of ClK is
twice the X1, X2 input period.

Serial Input Data Line: The data on
this line is loaded into accumulator
bit 7 whenever a RIM instruction is
executed.

Serial Output Data Line: The out-
put SOD is set or reset as specified
by the SIM instruction.

Power: +5 volt supply.

Ground: Reference.

Table 2. Interrupt Priority, Restart Address, and Sensitivity

Address Branched To (1)
Name Priority When Interrupt Occurs Type Trigger

TRAP 1 24H Rising edge AND high level until sampled.

RST 7.5 2 3CH Rising edge (latched).

RST 6.5 3 34H High level until sampled.

RST 5.5 4 2CH High level until sampled.

INTR 5 See Note 121. High level until sampled.

NOTES:
1. The processor pushes the PC on the stack before branching to the indicated address.
2. The address branched to depends on the instruction provided to the cpu when the interrupt is acknowledged.

vee 0 c~1
c,

I~
TYPICAL POWER-ON RESET RC VALUES'
Rl = 75Kn
Cl =1 !iF
'VALUES MAY HAVE TO VARY DUETO
APPLIED POWER SUPPLY RAMP UP TIME.

Figure 3. Power-On Reset Circuit

6-12 AFN·01835C

i1 \1"

I
:1

8085AH/8085AH-2/8085AH-1

FUNCTIONAL DESCRIPTION

The 8085AH is a complete 8-bit para"el central pro­
cessor. It is designed with N-channel, depletion
load, silicon gate technology (HMOS), and requires
a single +5 volt supply. Its basic clock speed is
3 MHz (8085AH), 5 MHz (8085AH-2), or 6 MHz
(8085AH-1), thus improving on the present 8080A's
performance with higher system speed. Also it is
designed to fit into a minimum system of three IC's:
The CPU (8085AH), a RAM/IO (8156H), and a ROM or
EPROM/IO chip (8355 or 8755A).

The 8085AH has twelve addressable 8-bit registers.
Four of them can function only as two 16-bit register
pairs. Six others can be used interchangeably as
8-bit registers or as 16-bit register pairs. The 8085AH
register set is as follows:

Mnemonic Register Contents

ACC or A Accumulator 8 bits

PC Program Counter 16-bit address

BC,DE,HL General-Pu rpose 8 bits x 6 or
Registers; data 16bitsx3
pointer (HL)

SP Stack Pointer 16-bit address

Flags or F Flag Register 5 flags (8-bit space)

The 8085AH uses a multiplexed Data Bus. The
address is split between the higher 8-bit Address
Bus and the lower 8-bit Address/Data Bus. During
the first T state (clock cycle) of a machine cycle the
low order address is sent out on the Address/Data
bus. These lower 8 bits may be latched externally by
the Address Latch Enable signal (ALE). During the
rest of the machine cycle the data bus is used for
memory or I/O data.

The 8085AH provides RD, WR, So, S1, and 101M
signals for bus control. An Interrupt Acknowledge
signal (INTA) is also provided. HOLD and a" Inter­
rupts are synchronized with the processor's internal
clock. The 8085AH also provides Serial Input Data
(SID) and Serial Output Data (SOD) lines for simple
serial interface.

In addition to these features, the 8085AH has three
maskable, vector interrupt pins, one nonmaskable
TRAP interrupt, and a bus vectored interrupt, INTR.

INTERRUPT AND SERIAL 1/0

The 8085AH has 5 interrupt inputs: INTR, RST 5.5,
RST 6.5, RST 7.5, and TRAP. INTR is identical in
function to the 8080A INT. Each of the three RE­
START inputs, 5.5,6.5, and 7.5, has a programmable
mask. TRAP is also a RESTART interrupt but it is
nonmaskable.

6-13

The three maskable interrupts cause the internal
execution of RESTART (saving the program counter
in the stack and branching to the RESTART address)
if the interrupts are enabled and if the interrupt mask
is not set. The nonmaskable TRAP causes the inter­
nal execution of a RESTART vector independent
of the state of the interrupt enable or masks. (See
Table 2.)

There are two different types of inputs in the restart
interrupts. RST 5.5 and RST 6.5 are high leve/­
sensitive like INTR (and INT on the 8080) and are
recognized with the same timing as INTR. RST 7.5 is
rising edge-sensitive.

For RST 7.5, only a pulse is required to set an inter­
nal flip-flop which generates the internal interrupt
request (a normally high level signal with a low
going pulse is recommended for highest system,
noise immunity). The RST 7.5 request flip-flop
remains set until the request is serviced. Then
it is reset automatically. This flip-flop may also be
reset by using the SIM instruction or by issuing a
RESET IN to the 8085AH. The RST 7.5 internal flip­
flop wi" be set by a pulse on the RST 7.5 pin even
when the RST 7.5 interrupt is masked out.

The status of the three RST interrupt masks can only
be affected by the SIM instruction and RESET IN.
(See SIM, Chapter 5 of the MCS-80/85 User's
Manual.)

The interrupts are arranged in a fixed priority that
determines which interrupt is to be recognized if
more than one is pending as follows: TRAP­
highest priority, RST 7.5, RST 6.5, RST 5.5, INTR­
lowest priority. This priority scheme does not take
into account the priority of a routine that was started
by a higher priority interrupt. RST 5.5 can interrupt
an RST 7.5 routine if the interrupts are re-enabled
before the end of the RST 7.5 routine.

The TRAP interrupt is useful for catastrophic events
such as power failure or bus error. The TRAP input is
recognized just as any other interrupt but has the
highest priority. It is not affected by any flag or mask.
The TRAP input is both edge and level sensitive. The
TRAP input must go high and remain high until it is
acknowledged. It will not be recognized again until it
goes low, then high again. This avoids any false
triggering due to noise or logic glitches. Figure 4
illustrates the TRAP interrupt request circuitry
within the 8085AH. Note that the servicing of any
interrupt (TRAP, RST 7.5, RST 6.5, RST 5.5, INTR)
disables a" future interrupts (except TRAPs) until an
EI instruction is executed.

AFN·01835C

inter 8085AH/8085AH-2/8085AH-1

INSIDE THE
EXTERNAL 8085AH
TRAP
INTERRUPT
REQUEST TRAP

RESET IN SCHMITT
TRIGGER

RESET

+5V D ClK

D
F/F

INTERNAL TRAP F.F.
TRAP

ACKNOWLEDGE

Figure 4. TRAP and RESET IN Circuit

The TRAP interrupt is special in that it disables inter­
rupts, but preserves the previous interrupt enable
status. Performing the first RIM instruction follow­
ing a TRAP interrupt allows you to determine
whether interrupts were enabled or disabled prior to
the TRAP. All subsequent RIM instructions provide
current interrupt enable status. Performing a RIM
instruction following INTR, or RST 5.5-7.5 will
provide current Interrupt Enable status, revealing
that Interrupts are disabled. See the description of
the RIM instruction in the MCS-80/85 Family User's
Manual.

The serial I/O system is also controlled by the RIM
and SIM instructions. SID is reaq by RIM, and SIM
sets the SOD data.

DRIVING THE X1 AND X2 INPUTS

You may drive the clock inputs of the 8085AH,
8085AH-2, or 8085AH-1 with a crystal, an LC tuned
circuit, an RC network, or an external clock source.
The crystal frequency must be at least 1 MHz, and
must be twice the desired internal clock frequency;
hence, the 8085AH is operated with a 6 MHz crystal
(for 3 MHz clock), the 8085AH-2 operated with a 10
MHz crystal (for 5 MHz clock), and the 8085AH-1 can
be operated with a 12 MHz crystal (for 6 MHz clock).
If a crystal is used, it must have the following
characteristics:

6-14

Parallel resonance at twice the clock frequency
desired
CL (load capacitance) :0:::; 30 pF
Cs (shunt capacitance) :0:::; 7 pF
Rs (equivalent shunt resistance) :0:::; 75 Ohms
Drive level: 10 mW
Frequency tolerance: ± .005% (suggested)

Note the use of the 20 pF capacitor between X2 and
ground. This capacitor is required with crystal fre­
quencies below 4 MHz to assure oscillator startup at
the correct frequency. A parallel-resonant LC circuit
may be used as the frequency-determining network
for the 8085AH, providing that its frequency
tolerance of approximately ±10% is acceptable. The
components are chosen from the formula:

f = ----!..----

To minimize variations in frequency, it is recom­
mended that you choose a value for Cext that is at
least twice that of Cinb or 30 pF. The use of an LC
circuit is not recommended for frequencies higher
than approximately 5 MHz.

An RC circuit may be used as the frequency­
determining network forthe 8085AH if maintaining a
precise clock frequency is of no importance. Var­
iations in the on-chip timing generation can cause a
wide variation in frequency when using the RC
mode. Its advantage is its low component cost. The
driving frequency generated by the circuit shown is
approximately 3 MHz. It is not recommended that
frequencies greatly higher or lower than this be
attempted.

Figure 5 shows the recommended clock driver cir­
cuits. Note in 0 and E that pullup resistors are re­
quired to assure that the high level voltage of the
input is at least 4V and maximum low level voltage
of 0.8V.

For driving frequencies up to and including 6 MHz
you may supply the driving signal to X1 and leave X2
open-circuited (Figure 50). If the driving frequency
is from 6 MHz to 12 MHz, stability of the clock
generator will be improved by d rivi ng both X1 and X2
with a push-pull source (Figure 5E). To, prevent
self-oscillation of the 8085AH, be sure that X2 is not
coupled back to X1 through the driving circuit.

AFN-01835C

!
II
1.1

1\

8085AH/8085AH-2/8085AH-1

X, B085AH
----,

I
I
I CINT

...L ~ 15 pF
'T"
I
I

X2 I ___ --1

a. Quartz Crystal Clock Driver

x, 8085AH

----,
I
I CINT

...J.... ~15pF

T
I

X2 ___ -.J

b. LC Tuned Circuit Clock Driver

8085AH
x,

f" \...--_6K_--t

c. RC Circuit Clock Driver

+5V

4700
TO
1KO

·X2 LEFT FLOATING

LOW TIME> 60 n8

/ x,

d. 1-6 MHz Input Frequency External Clock
Driver Circuit

+5V

LOW TIME> 40 ns

.mil /

.,.....------1 X,

4700

e. 1-12 MHz Input Frequency External Clock
Driver Circuit

Figure 5. Clock Driver Circuits

GENERATING AN 8085AH WAIT STATE

If your system requirements are such that slow
memories or peripheral devices are being used, the
circuit shown in Figure 6 may be used to insert one
WAIT state in each 8085AH machine cycle.

The 0 flip-flops should be chosen so that
• CLK is rising edge-triggered
• CLEAR is low-level active.

6-15

~

~ CLEAR B085AH
AlE'- ClK CLKOUTPUT' __ ClK TO

8085AH
"D" "D" READY
F/F

Q
F/F 0: INPUT

+5V -- D D

'ALE AND CLK (OUT) SHOULD BE BUFFERED IF CLK INPUT OF LATCH
EXCEEDS 8085AH IOL OR IOH.

Figure 6. Generation of a Wait State for 8085AH
CPU

AFN·O,835C

8085AH/8085AH-2/8085AH-1

As in the 8080, the READY line is used to extend the
read and write pulse lengths so that the 8085AH can
be used with slow memory. HOLD causes the CPU to
relinquish the bus when it is through with it by float­
ing the Address and Data Buses.

SYSTEM INTERFACE

The 8085AH family includes memory components,
which are directly compatible to the 8085AH CPU.
For example, a system consisting of the three chips,
8085AH, 8156H, and 8355 will have the following
features:

• 2K Bytes ROM
• 256 Bytes RAM
• 1 Timer/Counter
• 4 8-bit I/O Ports
• 1 6-bit I/O Port
• 4 Interrupt Levels
• Serial In/Serial Out Ports

This minimum system, using the standard I/O tech­
nique is as shown in Figure 7.

In addition to standard I/O, the memory mapped I/O
offers an efficient I/O addressing technique. With
this technique, an area of memory address space is
assigned for I/O address, thereby, using the memory
address for I/O manipulation. Figure 8 shows the
system configuration of Memory Mapped I/O using
8085AH.

The 8085AH CPU can also interface with the stan­
dard memory that does not have the multiplexed
address/data bus. It will require a simple 8212 (8-bit
latch) as shown in Figure 9.

6-16

riD~ vrvr 1

- TRAP
X, X2 RESET IN

HOLD I-- RST7.5 HLDA f-- RST6.5
8085AH

SOD f--- RST5.5 SIOI-- INTR s,f-- jjij'fA
ADDRI

RESET
So f--OUT

ADDR DATA ALE AD ii'iR 101M ROY eLK

181 18/ VI' Vr

h- ~ POR:W

WR ~ _ PORT 181
RD 8156H 8

... ALE PORT~
DATAl C 161

ADDR

" IN
101M TIMER -

~)--I- RESET OUT I----

lOW

AD

ALE

~ PORT Ih- CE A

'-- ~A8.10
r-

h 8355/
8755A

DATAl
ADDR

~

~ 101M PORT

_l- f- RESET 8

- -- ROY Vee

~ CLK IOR-1

t tt 1
Vss Vee Voo PROG

Vee

Vee

~v
Vee

'NOTE: OPTIONAL CONNECTION

Figure 7. 8085AH Minimum System (Standard I/O
Technique)

AFN-01835C

8085AH

8085AH/8085AH-2/8085AH-1

J\
A8-15 T"'-

V

/1
ADO·7
'J /). ALE

)
A

"-
RD

"- Vee
WR

101M
"- - Vee

"-
ClK

RESET OUl r "-
I---

READY i
I
I.

i TIMER

• IN

~~~~--~--~+--I-V~-vee 

I· 

RESET WR RD ALE 101M 

8156H 
[RAM + I/O + COUNTERITIMER] 

A8- AD _ 101 _I."" I 'Z 7A1'~'\707 CE MALE RDlowelKRST!RDY 

8355 [ROM + I/O] 
OR 

8755A [PROM + I/O] 

8 8 
Figure 8. MCS-85® Minimum System (Memory Mapped I/O) 

- x, x2 RESET IN -TRAP HOLD - RSTl HlDA I--- RST6 SOD I--- RST5 8085AH 510_ 

- INTR s,l--- INTA 
RESET 

Sol--ADDRI OUT 
ADDR DATA ALE RD iNA 101M ROY ClK 

;>. 
181 181 

8212 f-

t-. 

V 
1161 

~ 

~ 1-1----

A 

" 
I 

001 liT 

-v 

I 

101M ICSI 

iNA 

RD 

DATA 

STANDARD 
MEMORY 

ADDR lesl 

ClK . 

RESET 

101M leSI liD POR 

WR 

RJj 

DATA 

TS, 
OlS 

~ 
STANDARD 

liD 

ADDR 

Vee 

Vee 

Vee 

Figure 9. MCS-85® System (Using Standard Memories) 

6-17 AFN-01835C 



intJ 8085AH/8085AH-2/8085AH-1 

BASIC SYSTEM TIMING 

The 8085AH has a multiplexed Data Bus. ALE is used 
as a strobe to sample the lower 8-bits of address on 
the Data Bus. Figure 10 shows an instruction fetch, 
memory read and I/O write cycle (as would occur 
during processing of the OUT instruction). Note that 
during the I/O write and read cycle that the I/O port 
address is copied on both the upper and lower half 
of the address. 

There are seven possible types of machine cycles. 
Which of these seven takes plac~ is defined by the 
status of the three status lines (IO/M, S1, So) and the 
three control signals (RD, WR, and INTA). (See Table 
3.) The status lines can be used as advanced con­
trols (for device selection, for example), since they 
become active at the T1 state, at the outset of each 
machine cycle. Control lines RD and WR become 
active later, at the time when the transfer of data is to 
take place, so are used as command lines. 

A machine cycle normally consists of three T states, 
with the exception of OPCODE FETCH, which nor­
mally has either four or six T states (unless WAIT or 
HOLD states are forced by the receipt of READY or 
HOLD inputs). Any T state must be one of ten 
possible states, shown in Table 4. 

ClK T, 

PCH (HIGH ORDER ADDRESS) 

PC l ~----
(LOW ORDER DATA FROM 

ADDRESS) MEMORY 
(INSTRUCTION) 

ALE 

WR 

S,So (FETCH) 

Table 3. 8085AH Machine Cycle Chart 

STATUS CONTROL 
MACHINE CYCLE 

101M S1 so RD WR 

OPCODE FETCH (OF) 0 1 1 0 1 
MEMORY READ (MR) 0 1 0 0 1 
MEMORY WRITE (MW) 0 0 1 1 0 
1/0 READ (lOR) 1 1 0 0 1 
I/OWRITE (lOW) 1 0 1 1 0 
ACKNOWLEDGE 
OFINTR (INA) 1 1 1 1 1 

BUS IDLE (BI): DAD 0 1 0 1 1 
ACK.OF 
RST,TRAP 1 1 1 1 1 
HALT TS 0 0 TS TS 

Table 4. 8085AH Machine State Chart 

Machine 

State S1.S0 

T, 

T2 

TWAIT 

T3 

T4 

T5 

Ts 

T RESET I 

THALT I 
THOLD 

0= logic "0" 

, = logic "'" 

X 

X 

X 

X 

1 

1 

1 

X 

0 

X 

Status & Buses 

101M As-A15 ADo-AD7 

X X X 

X X X 

X X X 

X X X 

0' X TS 

0' X TS 

o t I 
X TS I 

TS TS TS 

TS TS TS 

TS TS TS 

TS = High Impedance 
x = Unspecified 

Control 

Ro,WR INTA ALE 

1 1 1" 

X X 0 

X X 0 

X X 0 

1 1 0 

1 1 0 

1 1 0 

TS 1 

I 

0 

TS 1 0 

TS 1 0 

* ALE not generated during 2nd and 3rd machine cycles of DAD instruction. 

t 101M = , during T4-T6 of INA machine cycle. 

10 (READ) 01 WRITE l' 

Figure 10. 8085AH Basic System Timing 

INTA 

1 
1 
1 
1 
1 

0 
1 

1 

1 

6-18 AFN·01835C 

II', 
I.' 
I 
I" 

I'!I 
I, 

I'I 
I) 

I 

I 

I' 
I·, 



SOS5AH/SOS5AH-2/S0S5AH-1 

ABSOLUTE MAXIMUM RATINGS· 

Ambient Temperature Under Bias ......... DOC to 70°C 
Storage Temperature ............... -65°C to +150°C 
Voltage on Any Pin 

With Respect to Ground .............. -0.5V to +7V 
Power Dissipation ........................... 1.5 Watt 

D.C. CHARACTERISTICS 

*NOTlCE: Stresses above those listed under "Absolute 
Maximum Ratings" may cause permanent damage to the 
device. This is a stress rating only and functional opera­
tion of the device at these or any other conditions above 
those indicated in the operational sections of this specifi­
cation is not implied. Exposure to absolute maximum 
rating conditions for extended periods may affect device 
reliability. 

8085AH,8085AH-2: (TA = DoC to 70°C, Vee = 5V ±10%, VSS =OV; unless otherwise specified)* 
8085AH-1: (TA = DoC to 70°C, Vee = 5V ±5%, Vss = OV; unless otherwise specified) 

Symbol Parameter Min. Max. 

VIL Input low Voltage -0.5 +0.8 

VIH Input High Voltage 2.0 Vee +0.5 

VOL Output low Voltage 0.45 

VOH Output High Voltage 2.4 

135 

lee Power Supply Current 
200 

IlL Input leakage ±10 

ILO Output leakage ±10 

VILR Input low level, RESET -0.5 +0.8 

VIHR Input High level, RESET 2.4 Vee +0.5 

VHY Hysteresis, RESET 0.25 

A.C. CHARACTERISTICS 
8085AH,8085AH-2: (TA = DoC to 70°C, Vee = 5V ±10%, Vss = OV)* 
8085AH-1: (TA = DoC to 70°C, Vee = 5V ±5%, Vss = OV) 

8085AH[2] 

Symbol Parameter 
(Final) 

Min. Max. 

teye ClK Cycle Period 320 2000 

t1 ClK low Time (Standard ClK loading) 80 

t2 ClK High Time (Standard ClK loading) 120 

t r , tf ClK Rise and Fall Time 30 

tXKR X1 Rising to ClK Rising 25 120 

tXKF X1 Rising to ClK Falling 30 150 

tAe Aa-15 Valid to leading Edge of Control[1] 270 

tAeL AO-7 Valid to leading Edge of Control 240 

tAD AO-15 Valid to Valid Data In 575 

tAFR 
Address Float After leading Edge of 

0 
READ (INTA) 

tAL Aa-15 Valid Before Trailing Edge of ALE [1] 115 

*Note: For Extended Temperature EXPRESS use M8085AH Electricals Parameters. 

6-19 

Units Test Conditions 

V 

V 

V IOL = 2mA 

V IOH = -400/-tA 

mA 8085AH, 8085AH-2 

mA 8085AH-1 (Preliminary) 

/-tA 0",; VIN ",; Vee 

/-tA 0.45V ",; Your ",; Vee 

V 

V 

V 

8085AH-2[2] 8085AH-1 
(Final) (Preliminary) 

Units 
Min. Max. Min. Max. 

200 2000 167 2000 ns 

40 20 ns 

70 50 ns 

30 30 ns 

25 100 20 100 ns 

30 110 25 110 ns 

115 70 ns 

115 60 ns 

350 225 ns 

0 0 ns 

50 25 ns 

AFN·01835C 



8085AH/8085AH-2/8085AH-1 

A.C. CHARACTERISTICS (Continued) 

8085AH[2] 8085AH-2[2] 8085AH-1 

Symbol Parameter 
(Final) (Final) (Preliminary) 

Units 
Min. Max. Min. Max. Min. Max. 

tAll AO-7 Valid Before Trailing Edge of ALE 90 50 25 ns 

tARY READY Valid from Address Valid 220 100 40 ns 

tCA Address (Aa-1S) Valid After Control 120 60 30 ns 

tcc 
Width of Control low (RD, WR, INTA) 

400 230 150 ns 
Edge of ALE 

tCl 
Trailing Edge of Control to leading Edge 

50 25 0 ns 
of ALE 

tow Data Valid to Trailing Edge of WRITE 420 230 140 ns 

tHABE HlDA to Bus Enable 210 150 150 ns 

tHABF Bus Float After HlDA 210 150 150 ns 

tHACK HlDA Valid to Trailing Edge of ClK 110 40 0 ns 

tHOH HOLD Hold Time 0 0 0 ns 

tHOS HOLD Setup Time to Trailing Edge of ClK 170 120 120 ns 

tlNH INTR Hold Time 0 0 0 ns 

tiNS 
INTR, RST, and TRAP Setup Time to 

160 150 150 ns 
Falling Edge of ClK 

tlA Address Hold Time After ALE 100 50 20 ns 

tlC 
Trailing Edge of ALE to leading Edge 

130 60 25 ns 
of Control 

tlCK ALE low During ClK High 100 50 15 ns 

tLOR ALE to Valid Data During Read 460 270 175 ns 

tlOW ALE to Valid Data During Write 200 120 110 ns 

tll ALE Width 140 80 50 ns 

tlRY ALE to READY Stable 110 30 10 ns 

tRAE 
Trailing Edge of READ to Re-Enabling 

150 90 50 ns 
of Address 

tRO READ (or INTA) to Valid Data 300 150 75 ns 

tRV 
Control Trailing Edge to leading Edge 

400 220 160 ns 
of Next Control 

tROH Data Hold Time After READ lNTA 0 0 0 ns 

tRYH READY Hold Time 0 0 5 ns 

tRYS 
READY Setup Time to leading Edge 

110 100 100 ns 
ofClK 

two Data Valid After Trailing Edge of WRITE 100 60 30 ns 

tWOL lEADING Edge of WRITE to Data Valid 40 20 30 ns 

6-20 AFN·01,835C 



8085AH/8085AH-2/8085AH-1 

NOTES: 
1. Aa-A15 address Specs apply 101M, SO' and Sl except Aa-A15 

are undefined during T4-Ts of OF cycle whereas 101M, SO, and 
Sl are stable. 

3. For all output timing where CL =f 150 pF use the following 
. correction factors: 

25 pF ~ CL < 150 pF: -0.10 ns/pF 
150 pF < CL ~ 300 pF: +0.30 ns/pF 

2. Test Conditions: tCYC = 320 ns (8085AH)/200 ns (8085AH-2);/ 
167 ns (8085AH-1); CL = 150 pF. 

4. Output timings are measured with purely capacitive load. 
5. To calculate timing specifications at other values of tCYC use 

Table 5. 

A.C. TESTING INPUT, OUTPUT WAVEFORM A.C. TESTING LOAD CIRCUIT 

INPUT/OUTPUT 

'.'=X x= 2.0 2.0 > TEST POINTS < 
0.8 0.8 

0.45 

A.C TESTING INPUTS ARE DRIVEN AT 2.4V FOR A LOGIC ,. AND 0.45V FOR 
A LOGIC 0 TIMING MEASUREMENTS ARE MADE AT 2.0V FOR A LOGIC , 
AND O.8V FOR A LOGIC 0 

DEVICE 
UNDER 

-r" TEST 

-= 
CL 150 pF 
CL INCLUDES JIG CAPACITANCE 

Table 5. Bus Timing Specification as a T eye Dependent 

Symbol 8085AH 8085AH-2 8085AH-1 

tAL (1/2) T - 45 (1/2) T - 50 (1/2) T - 58 

tlA (1/2) T - 60 (1/2) T - 50 (1/2) T - 63 

tLl (1/2) T - 20 (1/2) T - 20 (1/2) T - 33 

tlCK (1/2) T - 60 (1/2) T - 50 (1/2) T - 68 

tlC (1/2) T - 30 (1/2) T - 40 (1/2) T - 58 

tAD (5/2 + N) T - 225 (5/2 + N)T -150 (5/2 + N)T -192 

tRD (3/2 + N) T - 180 (3/2 + N) T - 150 (3/2 + N)T -175 

tRAE (1/2) T - 10 (1/2) T - 10 (1/2) T - 33 

tCA (1/2) T - 40 (1/2) T - 40 (1/2) T - 53 

tow (3/2 + N) T - 60 (3/2 + N) T - 70 (3/2 + N) T - 110 

two (1/2) T - 60 (1/2) T - 40 (1/2) T - 53 

tcc (3/2 + N) T - 80 (3/2 + N) T - 70 (3/2 + N) T - 100 

tCl (1/2)T-110 (1/2) T - 75 (1/2) T - 83 

tARY (3/2) T - 260 (3/2) T - 200 (3/2) T - 210 

tHACK (1/2) T - 50 (1/2) T - 60 (1/2) T - 83 

tHABF (1/2) T + 50 (1/2) T + 50 (1/2) T + 67 

tHABE (1/2) T + 50 (1/2) T + 50 (1/2) T + 67 

tAC (2/2) T - 50 (2/2) T - 85 (2/2) T - 97 

t1 (1/2) T - 80 (1/2) T - 60 (1/2) T - 63 

t2 (1/2) T - 40 (1/2) T - 30 (1/2) T - 33 

tRV (3/2) T - 80 (3/2) T - 80 (3/2) T - 90 

tlDR (4/2) T - 180 (4/2) T - 130 (4/2) T - 159 

NOTE: N is equal to the total WAIT states. T = tCyc. 

6-21 

150 pF 

Minimum 

Minimum 

Minimum 

Minimum 

Minimum 

Maximum 

Maximum 

Minimum 

Minimum 

Minimum 

Minimum 

Minimum 

Minimum 

Maximum 

Minimum 

Maximum 

Maximum 

Minimum 

Minimum 

Minimum 

Minimum 

Maximum 

AFN·01835C 



WAVEFORMS 

CLOCK 

X, INPUT 

ClK 
OUTPUT 

READ 

WRITE 

HOLD 

ClK \ 

HOLD 

HlDA 

8085AH/8085AH-2/8085AH-1 

------.. tXKF ........--

T, 1 T2 1 T3 I T, 

/ ClK \~-----J/ ~~----,r--\,-------, \ 
-4------ tLcK---+--1 I. tCA -I 

ADDRESS 

,--- tel __ ---

ALE 

RD/INTA 

5 ). ADDRESS X 
I---- tlDW- L tCA

-
1 

7 ) ADDRESS >- DATA OUT X 
I-i-- tLL _I ----- tLA-----I tow +--twD-1 

AL E 
--. I--- tWDL 1/ 

I--tAL -

ICC 

_'LC ~ ..-tCl ----+-

i----- 'AC =1 
WR 

T2 T3 THOLO T HOLD 

/ \ 
.... \ 

t \ .~ 

t HOS '" -.l--tHDH l-tHAcK -

I \ 
l-tHABF-j+ 

1-- t HABE -

~ (ADDRESS, CONTROLS) ~ No.. BUS 

1 

6-22 

T, 

AFN·01835C 



8085AH/8085AH-2/8085AH-1 

WAVEFORMS (Continued) 

READ OPERATION WITH WAIT CYCLE (TYPICAL) - SAME READY TIMING APPLIES 
TO WRITE 

T, T, T3 T, 

_teA ___ 

AS "A 15 

~~----4-------------4-------------~I~--------------+-----~-----

• .-./--- III ----- -- -- 'LA -

tAFR 

'RD 

ICC 

~~L~_;l~Ry~l"---+--------m ... -------;I> 
--~tAC- -

-tARY--

READY 

NOTE 1 READY MUST REMAIN STABLE DURING SETUP AND HOLD TIMES. 

INTERRUPT AND HOLD 

-~.-- BUS FLOATING' --~~---J 

RD----------------t-----~~------------------~ 

INTA 

HOLD 

HLDA 

'101M IS ALSO FLOATING DURING THIS TIME. 

AFN-01835C 



intJ 8085AH/8085AH-2/8085AH-1 

Table 6. Instruction Set Summary 

Instruction Code Operations 
Mnemonic D7 D6 Ds D4 D3 D2 D1 Do Description 

I Instruction Code Operations 
Mnemonic D7 D6 Ds D4 D3 D2 D1 Do Description 

MOVE, LOAD, AND STORE CZ 1 1 0 0 1 1 0 0 Cali on zero 
CNZ 1 1 0 0 0 1 0 0 Cali on no zero 
CP 1 1 1 1 0 1 0 0 Cali on positive 
CM 1 1 1 1 1 1 0 0 Cali on minus 
CPE 1 1 1 0 1 1 0 0 Cali on parity even 
CPO 1 1 1 0 0 1 0 0 Cali on Daritv odd 
RETURN 
RET 1 1 0 0 1 0 0 1 Return 

MOVr1 r2 0 1 D 0 0 S S S Move register to register 
MOVM.r 0 1 1 1 0 S S S Move register to memory 
MOVr.M 0 1 0 0 0 1 1 0 Move memory to register 
MVI r 0 0 0 0 0 1 1 0 Move immediate register 
MVIM 0 0 1 1 0 1 1 0 Move immediate memory 
LXIB 0 0 0 0 0 0 0 1 Load immediate register 

Pair B & C 
RC 1 1 0 1 1 0 0 0 Return on carry 
RNC 1 1 0 1 0 0 0 0 Return on no carry 

LXID 0 0 0 1 0 0 0 1 Load immediate register 
Pair 0 & E 

RZ 1 1 0 0 1 0 0 0 Return on zero 
RNZ 1 1 0 0 0 0 0 0 Return on no zero 

LXIH 0 0 1 0 0 0 0 1 Load immediate register 
Pair H & L 

RP 1 1 1 1 0 0 0 0 Return on positive 
RM 1 1 1 1 1 0 0 0 Return on minus 
RPE 1 1 1 0 1 0 0 0 Return on parity even 

STAX B 0 0 0 0 0 0 1 0 Store A indirect 
STAX D 0 0 0 1 0 0 1 0 Store A indirect 
LDAXB 0 0 0 0 1 0 1 0 Load A indirect 
LDAXD 0 0 0 1 1 0 1 0 Load A indirect RPO 1 1 1 0 0 0 0 0 Retu rn on parity odd 

RESTART 
RST 1 1 A A A 1 1 1 Restart 

STA 0 0 1 1 0 0 1 0 Store A direct 
LOA 0 0 1 1 1 0 1 0 Load A direct 
SHLD 0 0 1 0 0 0 1 0 Store H & L direct INPUT/OUTPUT 

IN 
I ~ 

1 0 1 1 0 1 1 Input 
OUT 1 0 1 0 0 1 1 Output 

LHLD 0 0 1 0 1 0 1 0 Load H & L direct 
XCHG 1 1 1 0 1 0 1 1 Exchange 0 & E, H & L 

INCREMENT AND DECREMENT 
INR r 0 0 0 0 0 1 0 0 Increment register 
OCR r 0 0 0 0 0 1 0 1 Decrement register 
INR M 0 0 1 1 0 1 0 0 Increment memory 

Registers 
STACK OPS 
PUSH B 1 1 0 0 0 1 0 1 Push register Pair B & 

C on stack 
OCR M 0 0 1 1 0 1 0 1 Decrement memory 
INX B 0 0 0 0 0 0 1 1 Increment B & C 

PUSH 0 1 1 0 1 0 1 0 1 Push register Pair 0 & 
E on stack 

registers 
INX D 0 0 0 1 0 0 1 1 Increment 0 & E 

PUSH H 1 1 1 0 0 1 0 1 Push register Pair H & 
L on stack 

registers 
INX H 0 0 1 0 0 0 1 1 Increment H & L 

PUSH PSW 1 1 1 1 0 1 0 1 Push A and Flags 
on stack 

registers 
DCX B 0 0 0 0 1 0 1 1 Decrement B & C 

POP B 1 1 0 0 0 0 0 1 Pop register Pair B & 
C off stack 

DCX D 0 0 0 1 1 0 1 1 Decrement D & E 
DCX H 0 0 1 0 1 0 1 1 Decrement H & L 

POP D 1 1 0 1 0 0 0 1 Pep register Pair D & 
E off stack 

ADD 
ADD r 1 0 0 0 0 S S S Add register to A 

POP H 1 1 1 0 0 0 0 1 Pop register Pair H & 
L off stack 

ADC r 1 0 0 0 1 S S S Add register to A 
with carry 

POP PSW 1 1 1 1 0 0 0 1 Pop A and Flags 
off stack 

ADDM 1 0 C 0 0 1 1 0 Add memory to A 
ADCM 1 0 0 0 1 1 1 0 Add memory to A 

with carry 
ADI 1 1 0 0 0 1 1 0 Add immediate to A 

XTHL 1 1 1 0 0 0 1 1 Exchange top of 
stack, H & L 

SPHL 1 1 1 1 1 0 0 1 H & L to stack pointer 
LXI SP 0 0 1 1 0 0 0 1 Load immediate stack 

ACI 1 1 0 0 1 1 1 0 Add immediate to A 
with carry 

DAD B 0 0 0 0 1 0 0 1 Add B & C to H & L 

pointer 
INX SP 0 0 1 1 0 0 1 1 Increment stack pointer 
DCXSP 0 0 1 1 1 0 1 1 Decrement stack 

DAD 0 0 0 0 1 1 0 0 1 Add 0 & E to H & L 
DADH 0 0 1 0 1 0 0 1 Add H & L to H & L 

pointer 
JUMP 

DADSP 0 0 1 1 1 0 0 1 Add stack pointer to 
H&L 

JMP 1 1 0 0 0 0 1 1 Jump unconditional 
JC 1 1 0 1 1 0 1 0 Jump on carry 

SUBTRACT 
SUB r 1 0 0 1 0 S S S Subtract register 

from A 
SBB r 1 0 0 1 1 S S S Subtract register from 

A with borrow 
SUBM 1 0 0 1 0 1 1 0 Subtract memory 

from A 
SBBM 1 0 0 1 1 1 1 0 Subtract memory from 

A with borrow 

JNC 1 1 0 1 0 0 1 0 Jump on no carry 
JZ 1 1 0 0 1 0 1 0 Jump on zero 
JNZ 1 1 0 0 0 0 1 0 Jump on no zero 
JP 1 1 1 1 0 0 1 0 Jump on positive 
JM 1 1 1 1 1 0 1 0 Jump on minus 
JPE 1 1 1 0 1 0 1 0 Jump on parity even 
JPO 1 1 1 0 0 0 1 0 Jump on parity odd 
PCHL 1 1 1 0 1 0 0 1 H & L to program 

counter 
CALL SUI 1 1 0 1 0 1 1 0 Subtract immediate 

CALL 1 1 0 0 1 1 0 1 Cali unconditional from A 

CC 1 1 0 1 1 1 0 0 Cali on carry SBI 1 1 0 1 1 1 1 0 Subtract immediate 
CNC 1 1 0 1 0 1 0 0 Cali on no carry from A with borrow 

6-24 AFN·0183SC 



I 8085AH/8085AH-2/8085AH-1 

Table 6. Instruction Set Summary (Continued) 

Instruction Code Operations Instruction Code Operations 
Mnemonic 07 06 05 04 03 02 01 Do Description Mnemonic 07 06 Os 04 03 02 0, Do Description 

LOGICAL 
I And register with A ANA r 1 0 1 0 0 S S S 

SPECIALS 
CMA 0 0 1 0 1 1 1 1 Complement 

XRA r 1 0 1 0 1 S S S Exclusive OR register A 
with A STC 0 0 1 1 0 1 1 1 Set carry 

ORAr 1 0 1 1 0 S S S OR register with A CMC 0 0 1 1 1 1 1 1 Complement 
CMPr 1 0 1 1 1 S S S Compare register with A carry 
ANAM 1 0 1 0 0 1 1 0 And memory with A OM 0 0 1 0 0 1 1 1 Decimal adjust A 
XRAM 1 0 1 0 1 1 1 0 Exclusive OR memory CONTROL 

with A EI 1 1 1 1 1 0 1 1 Enable Interrupts 
ORAM 1 0 1 1 0 1 1 0 OR memory with A 01 1 1 1 1 0 0 1 1 Disable Interrupt 
CMPM 1 0 1 1 1 1 1 0 Compare 

memory with A 
NOP [g 0 0 0 0 0 0 0 No-operation 
HLT 1 1 1 0 1 1 0 Halt 

ANI 1 1 1 0 0 1 1 0 And immediate with A 
XRI 1 1 1 0 1 1 1 0 Exclusive OR immediate 

with A 

NEW 8085A '1STRUCTIONS 
RIM 0 0 1 0 0 0 0 0 Read Interrupt Mask 
SIM 0 0 1 1 0 a a a Set Interrupt Mask 

ORI 1 1 1 1 0 1 1 0 OR immediate with A 
CPI 1 1 1 1 1 1 1 0 Compare immediate 

with A 
ROTATE 
RLC 0 0 0 0 0 1 1 1 Rotate A left 

RRC 0 0 0 0 1 1 1 1 Rotate A right 
RAL 0 0 0 1 0 1 1 1 Rotate A left through 

carry 
RAR 0 0 0 1 1 1 1 1 Rotate A right through 

carry 

NOTES: 
1. DOS or SSS: 8000, C 001,0010, E011, H 100, L 101, Memory 110, A 111. 
2. Two possible cycle times (6/12) indicate instruction cycles dependent on condition flags. 

"All mnemonics copyrighted ©Intel Corporation 1976. 

6-25 
AFN·01835C 



808SA/808SA-2 
SINGLE CHIP 8-BIT N-CHANNEL MICROPROCESSORS 

• Single +5V Power Supply • Four Vectored Interrupt Inputs (One is 

• 100% Software Compatible with SOSOA Non-Maskable) Plus an SOSOA-.. 1.3 p,s Instruction Cycle (SOS5A); 
Compatible Interrupt 

O.S p,s (SOS5A-2) • Serial In/Serial Out Port 

• On-Chip Clock Generator (with External 
Decimal, Binary and Double Precision Crystal, LC or RC Network) • 
Arithmetic 

• On-Chip System Controller; Advanced 
Cycle Status Information Available for • Direct Addressing Capability to 64k 
Large System Control Bytes of Memory 

The Intel@ 8085A is a complete 8 bit parallel Central Processing Unit (CPU). Its instruction set is 100% software compatible 
with the 8080A microprocessor, and it is designed to improve the present 80BOA's performance by higher system speed. 
Its high level of system integration allows a minimum system of three IC's [8085A (CPU), 8156 (RAM/IO) and 8355/8755A 
(ROM/PROM/IO)] while maintaining total system expandability. The 8085A-2 is a faster version of the 8085A. 

The 8085A incorporates all of the features that the 8224 (clock generator) ,and 8228 (system controller) provided for the 
8080A, thereby offering a high level of system integration. 

The 8085A uses a multiplexed data bus. The address is split between the 8 bit address bus and the 8 bit data bus. The 
on-chip address latches of 8155/8156/8355/8755A memory products allow a direct interface with the 8085A. 

X, 
X2 

IN'TA RST6.5 

1~::~)!: ~ }~~~I!~ER 
INCREMENTER/DECREMENTER 

ADDRESS LATCH 116) 

A1S-AS 
ADDRESS BUS 

Figure 1. 8085A CPU Functional Block Diagram 

6-26 

AD7-ADO 
ADDRESS/DATA BUS 

Xl 
X2 

,RESET OUT 
SOD 

SID 
TRAP 

Vee 
HOLD 

HlDA 
elK (OUT) 

RESET IN 
READY 

RST 7.5 101M 

RST 6,5 Sl 
RST 5.5 AD 

INTR WR 
INTA ALE 

ADO So 
ADI A15 

AD2 A14 
AD3 A13 

AD4 A12 
AD5 All 

AD6 AlO 
AD7 Ag 
VSS ... ___ r AS 

Figure 2. 808SA Pin 
Configuration 

AFN-01242C 



inter 8085A/8085A-2 

ABSOLUTE MAXIMUM RATINGS* 

Ambient Temperature Under Bias ......... O°C to 70°C 
Storage Temperature .............. _65°C to +150°C 
Voltage on Any Pin 

With Respect to Ground ............ -O.5V to +7V 
Power Dissipation. . . . . . . . . . . . . . . . . . 1.5 Watt 

*NOTICE: Stresses above those listed under "Absolute 
Maximum Ratings" may cause permanent damage to the 
device. This is a stress rating only and functional opera­
tion of the device at these or any other conditions above 
those indicated in the operational sections of this 
specification is not implied. Exposure to absolute 
maximum rating conditions for extended periods may 
affect device reliability. 

D.C. CHARACTERISTICS (TA = O°C to 70°C, Vee = ov ±5%, Vss = OV; unless otherwise specified) 

Symbol Parameter Min. Max. Units Test Conditions 

VIL Input Low Voltage -0.5 +0.8 V 

VIH Input High Voltage 2.0 Vee·+0.5 V 

VOL Output Low Voltage 0.45 V IOL = 2mA 

VOH Output High Voltage 2.4 V IOH = -400JLA 

lee Power Supply Current 170 mA 

IlL Input Leakage ±10 JLA 0"" VIN ""Vee 

ILO Output Leakage ±10 JLA 0.45V ~ V out ~ Vee 

VILR Input Low Level, RESET -0.5 +0.8 V 

VIHR Input High Level, RESET 2.4 Vee +0.5 V 

VHY Hysteresis, RESET 0.25 V 

6-27 AFN-01242C 



inter 808SA/808SA-2 

A.C. CHARACTERISTICS (TA = O°C to 70°C, Vee = ov ±5%, vss = OV) 

Symbol Parameter 
8085AI2J 

Min. Max. 

tCYC ClK Cycle Period 320 2000 
t1 ClK low Time (Standard ClK loading) 80 

t2 .. ClK High Time (Standard ClK loading) 120 

tnt, ClK Rise and Fall Time 30 
tXKR X1 Rising to ClK Rising 30 120 
t yle!: Xi Rising to ClK Falling 30 150 
t AC AS_15 Valid to leading Edge of Control l1 ! 270 
tACL AO-7 Valid to leading Edge of Control 240 
tAD AO-15 Valid to Valid Data In 575 
tAFR Aaaress Float After leaalng Edge Of 

READ"ciNTA) 0 
tAL AS-15 Valid Before Trailing Edge of AlE[1] 115 
tALL AO-7 Valid Before Trailing Edge of ALE 90 
tARy READY valla from Aaaress valla 220 
tr.A Aaaress (AS-15) valla After control 120 
tcc Width of Control low (RD, WR, INTA) 

Edge of ALE 400 
tCl Trailing Edge of Control to leading Edge . 

of ALE 50 
tow Data Valid to Trailing Edge of WRITE 420 

tHABE HlDA to Bus Enable 210 
tHABF Bus Float After HlDA 210 
t HACK HlDA Valid to Trailing Edge of ClK 110 
tHDH HOLD Hold Time 0 
t HDS HOLD Setup Time to Trailing Edge of ClK 170 
tlNH INTA HOla Time 0 
tINS INTR, RS1, and TRAP Setup Time to 

Falling Edge of ClK 160 
tLA Address Hold Time After ALE 100 
t LC Trailing Edge of ALE to leading Edge 

of Control 130 
tLCK ALE low During ClK High 100 
tLDR ALE to valla Data During Read 460 
tLDW ALE to Valid Data During write 200 
tLL ALE Width 140 
t LRy ALE to READY Stable 110 

6-28 

8085A·212J 

Min. Max. 

200 2000 
40 

70 

30 
30 100 
30 110 
115 
115 

350 

0 
50 
50 

100 
60 

230 

~ 
230 

150 
150 

40 
0 

120 
0 

150 
50 

60 
50 

270 
120 

80 
30 

Units 

ns 
ns 

ns 

ns 
ns 
ns 
ns 
ns 
ns 

ns 
ns 
ns 
ns 
ns 

ns 

ns 
ns 
ns 
ns 
ns 
ns 
ns 
ns 

ns 
ns 

ns 
ns 
ns 
ns 
ns 
ns 

AFN-01242C 

I .... 
II 
II 

I, 

I 

I 

I 

I 



intJ 8085A18085A·2 

A.C. CHARACTERISTICS (Continued) 

Symbol Parameter 8085A(2) 8085A·2(2) 

Min. Max. Min. 

tRAE Trailing Edge of READ to Re·Enabling 150 90 
of Address 

tRD READ (or INTA) to Valid Data 300 

tRV Control Trailing Edge to leading Edge 400 220 
of Next Control 

tRDH Data Hold Time After READ INTA(7) 0 0 

tRYH READY Hold Time 0 0 

tRYS READY Setup Time to leading Edge 110 100 
of ClK 

tWD Data Valid After Trailing Edge of WRITE 100 60 

tWDl lEADING Edge of WRITE to Data Valid 40 

NOTES: 
1. Aa-A15 address Specs apply to 101M, So' and S1 except Aa-A15 are undefined during T 4-T 6 of OF cycle 

whereas 101M, So' andS1 are stable. 

2. Test conditions: tCYC = 320ns (8085A)/200 ns (8085A-2); CL = 150 pF. 

3. For all output timing where CL = 150pF use the following correction factors: 
25pF .. CL < 150pF: -0.10ns/pF 
150pF < CL" 300pF: +0.30ns/pF 

4. Output timings are measured with purely capacitive load. 

Max. 

150 

20 

5. All timings are measured at output votage VL = 0.8V, VH = 2.0V, and 1.5V with 20 ns rise and fall time on inputs. 

6. To calculate timing specifications at other values of tCYC use Table 7. 
7. Data hold time is guaranteed under all loading conditions. 

A.C. TESTING INPUT, OUTPUT WAVEFORM 

INPUT/OUTPUT 

"=X )C 2.0 2.0 '? TEST POINTS < 
0.8 0.8 

0.45 

A.C. TESTING: INPUTS ARE DRIVEN AT 2.4V FOR A LOGIC "1" AND 0.45V FOR 
A LOGIC "0." TIMING MEASUREMENTS ARE MADE AT 2.0V FOR A LOGIC "1" 
AND O.SV FOR A LOGIC "0." 

6-29 

A.C. TESTING LOAD CIRCUIT 

DEVICE 
UNDER 

1"'""'" 
TEST 

CL = 150 pF 
CL INCLUDES JIG CAPACITANCE 

Units 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

AFN-01242C 



II 
I 



Appendix 
Applications of MCS®-85 





APPENDIX 1 
AP.PLICATIONS OF MCS-85™ 

SECTION 1 
INTRODUCTION TO MCS-85™ APPLICATIONS 

When the first microprocessor was introduced 
about five years ago, it was largely ignored by 
the electronics industry. However, since that in­
asupicious beginning, this new device has 
become the hottest topic in current technology. 
As more and more product designers become 
familiar with the capabilities of microcom­
puters, the number of new applications in­
creases geometrically. In most of these applica­
tions, the new technology has been used to 
replace designs which were formerly im­
plemented with TTL logic and under-utilized 
minicomputers. However, an increasing number 
of products are surfacing which would have 
been impractical prior to the microcomputer 
era. 

Microcomputers are being applied to a wide 
range of data communications tasks. The field 
of telephone equipment is being invaded by 
systems which control and monitor calls. Point 
of sale terminals are increasing daily with the 
addition of interface to coin changers, elec­
tronic scales and remote computers. Small 
stand-alone computers are relying heavily upon 
microcomputers in teleprocessing, time­
sharing, data base management and similar in­
teractive applications. An increasing number of 
microcomputer-based data terminals are pro­
viding local interactive intelligence with pro­
grammable character sets, vector generation 
and the pre-processing of data. 

A1-1 

Instrumentation is widely utilizing the micro­
processor for a variety of control and arithmetic 
processing functions. Microcomputers are con­
trolling laboratory equipment such as oscillo­
scopes, DVM's, network analyzers and frequen­
cy synthesizers. Medical electronics are 
crediting microcomputers with tasks such as 
patient monitoring, blood analysis and X-ray 
scanning. Travel is becoming microcomputer­
ized by automotive control, air and ocean 
navigation equipment and rapid transit 
systems. 

MeS-85™ SYSTEM 

Many possible microcomputer applications 
have been overlooked because of the design 
tasks required to build the microcomputer. 
These tasks include the system clock, readl 
write memory, 110 ports, serial communications 
interface and bus control logic. The MCS-85 
system will enable the design engineer to con­
centrate on the application of the microcom­
puter, rather than on the implementation 
details. 

The MCS-85 is yet another family of com­
ponents which has the potential to provide a 
solution to the three problems which will 
always plague designers: cost, size and power. 
The reduced component count of an MCS·85 
microcomputer, coupled with the increased in­
tegration of functions reduces both cost and 
size while increasing power. 



Sample Applications 
Calculating Oscilloscope 
Blood Analyzer 
Programmable Video Game 
Process Control System 
Line Printer 

APPLICATION 

Intelligent Terminals 

Gaming Machines 

Cash Registers 

Accounting and Billing Machines 

Telephone Switching Control 

Numerically Controlled Machines 

Process Control 

MCS-85™ APPLICATIONS 

Intelligent Terminal 
N.C. Machine 
Digital Multimeter 
Graphic Terminal 
Automotive Control 

Navigation Equipment 
Vending Machine 
Spectrum Analyzer 
Front End Processor 
Credit Verifier 

PERIPHERAL DEVICES ENCOUNTERED 

Cathode Ray Tube Display 
Printing Units 
Synchronous and Asynchronous data lines 
Cassette Tape Unit 
Keyboards 

Keyboards, push buttons and switches 
Various display devices 
Coin acceptors 
Coin dispensers 

Keyboard or Input Switch Array 
Change Dispenser 
Digital Display 
licket Printer 
Magnetic Card reader 
Communication interface 

Keyboard 
Printer Unit 
Cassette or other magnetic tape unit 
"Floppy" disks 
Telephone Line Scanner 
Analog Switching Network 
Dial Registers 
Class of Service Parcel 

Magnetic or Paper Tape Reader 
Stepper Motors 
Optical Shaft Encoders 
Analog-to-Digital Converters 
Digital-to-Analog Converters 
Control Switches 
Displays 

Disk Controller 
Patient Monitor 
Network Analyzer 
Frequency Synthesizer 

MCS-85™ COMPONENTS 

8275 8085A 
8155 8355 
8251 

8279 

8279 8085A 
8355 

8155 

8279 8085A 
8155 8355 

8273 

8279 8085A 
8155 8355 
8257 
8271 

8253 8085A 
8355 

8155 

8155 8085A 
8355 

8155 8085A 
8355 

8279 

Baud Rate Generator 
Shown in Figure 2 is a minimum system con­
figuration with the 8156 timer output connected 
to an 8085 interrupt input. 

the required baud rate. As shown in Figure 1, 
the minimum system supports serial com­
munications with only the addition of the send 
and receive interface circuits. 

This configuration allows convenient use of the 
timer as a baud rate generator. A 6.144 MHz 
crystal is used as the frequency control ele­
ment of the 8085A, providing integral divisors 
for the standard baud rates (300, 600, 1200, 
2400,4800,9600 baud). The timer is programmed 
with the appropriate divisor (Figure 1) for the 
selected baud rate resulting in one pulse on the 
timer output for each bit cell time. The clock 
output (elK) of the 8085A is used to clock the 
timer (TIMERIN). The frequency of this clock is 
one-half the crystal frequency or in this exam­
ple 3.072 MHz. TIMEROUT now provides a 
crystal controlled pulse train at the baud rate 
selected. 

Serial Communications 
By feeding the TIMEROUT signal of the 8156 
back to the edge triggered RST 7.5 input of the 
8085A, the processor can be interrupt driven at 

A1-2 

The SID (SERIAL INPUT DATA) line and the SOD 
(SERIAL OUTPUT DATA) line are connected 
directly to a TTY or RS232 interface circuit. 
Assuming inverted data at the SID input, a 
direct connection is made to the RST6.5 input 
for detection of the start bit. 
Additional insight into using the 8085's serial I/O 
lines in communications application can be found 
in Section 2 of this Appendix. 

BAUD RATE COUNT (DECIMAL) 

300 10,240 
600 5,120 

1200 2,560 
2400 1,280 
4800 640 
9600 320 

FIGURE 1. BAUD RATES 



MCS-85™ APPLICATIONS 

r l 
TRANSMITJ 

INTERFACE 
RECEIVE ,I 

INTERFACE 

Vec 

111J r ! ! ! 
<I: o ~ 0 0 ex: "' D-

GRND 

n .'"".1:"" 9 I~ o CI) CI) Sl in .. .,; <I: RESF.T 
-J 0 !~ ~ ~ 

ex: iN J: J: .. - c
C 1 

8085A X1~ ~ -= .. - ::l c- o c::J 
t i 

0 > 
X2--:l'" UJ 

I~ I~ I§ 
~ 0 

.... N M ~ \t) 0 -J Go :5 ~ :;( :;( :;( :;( :;( <I: <I: ex: <I: u 

,h ! ! ! 
(8) < 13) z: ( 

I ~(' I SEE NOTE 2 

<> 
~ VCC 

f 
VCC-

VCC-? 

... 
I' 

" " 

VCC VCC 

Q ~ 

? SEE NOTE 4 

~ 

A j.. 

... 'I 

NOTE1: TRAP, INTR, AND HOLD MUST BE GROUNDED IF THEY AREN'T USED, 
NOTE 2: USE 101M FOR STANDARD 1/0 MAPPING. USE A15 FOR MEMORY MAPPED I/O. 
NOTE 3. CONNECTION IS NECESSARY ONLY IF ONE TWA IT STATE IS DESIRED. 

PROG/CE 

CE 

READY 

ClK 

lOR 

A a·A lO 

8355/8755A 
RESET 

101M 

iNA 
iffi 

ALE PAo·PA 7 

ADO·AD7 
PBO·PB7 

GJND 
I 

VCC 

CE 

8156 

RESET 

101M PAo·PA7 

WR 

RD 

ALE 
PBO'P~ 

PCa-PC5 

ADO·AD7 
TIMER IN 

TIMER OUT 

G)ND 
I 

VCC 

NOTE 4: PUll·UP RESISTORS RECOMMENDED TO AVOID SPURIOUS SelECTION WHEN iW AND WR ARE 
3-STATED. 

FIGURE 2. MINIMUM SYSTEM CONFIGURATION 

A1-3 

PORT A (8) 

PORT B (8) 

PORT A (8) 

PORT B 18) 

PORTC 16) 

.. 

> 

) 

> 



____ J2 ________ M_C_S_-S_5_TM_A_P_P_L_I_C_A_T_IO_N_S ____ ---------:l~ 

READY '1 

TX 
TX RET 

RX 
RX RET 

INTR 
RST IN 

2 

j 

:~ R4 R6 
~ 1K 2.7K 

R5 
J7 47 

~ 

2N2907 13 vv Q2 
25 

I I R8 
I I 430 UR' I I 1W 3K 
I I 
I I -10V 

I I 
I I 
I I 

R11 
I I : 100 C5 Y1 

I I . 1/2WT1/-lf 
Q1 lD~ 12 vvv 2N2907 

24 5.1K 
40_t I I .> R7 R2 .---

~ 
.>200 ~ X1 X2 SOD R3 RDY 
• 1W > 1.6K 

'"{I 
-10V ~ 2:~ 

TTY 
) _ 23 5 

SID 
S251. -

24-= KEYBOARD 

R"L 1K 
S2 

m. 7 RST 7.5 

-LC13 
A8 

"VECT" 

1"" 
A9 

INTR 
J.1/-lf 

-= 3.9K 
A10 

A11 A11 
8085A A12 

RST 5.5 9 A13 RST 5.5 
RST 6.5 8 A14 

RST 6.5 A15 
HOLD 

39 HOLD 101M 
ALE 

RST OUT 

21~-120 
AD 
WR 

J1 CLK OUT 
18 10 INTR INTA 

36 RESET IN 24 HLDA 

~ TRAP 
SO 
S1 

VSS 
R33 

S1 
lK t #0 

~~T" 
AA 

lC22 

R34 
50K 1M 

DO 
D1 
D2 
D3 
D4 
D5 
D6 
07 

I 

4 r--
12 
13 
14 
15 
16 
17 
18 
19 

21 
22 
23 
24 
25 
26 
27 
28 

34 
30 

3 
32 
31 
37 
11 
38 

~ 
~ 

<l: 

~:3 0 I-wCiE U')"'ltMN ..... 
~o...J 1~1~ ~:iQ :;;::;;::;;::;;::;;: UlUlI !':u 

FIGURE 3. SMALL SYSTEM SCHEMATIC (similar to the schematic of Intel's SDK·8S) 
A1-4 

III 

1'1 
I 

I,' 

eLK 1,1' 

WRI I 
RDI I, 
RST I' 
ALE I 
101M 

, 

I 

I 

i 

I 

I 

I 
I 
I 
I 
I 

" 

I 
I 

I 

t16 
1 ~ AO VCC 
2 

A1 ~p* 
3 

2 P-l+ A2 

~ 
A10 3P-tt 
8205 :~ E3 

4 E2 6~ 
E1 VSS 7 p2-

~ 

0 
~"'oo 
<l:<l:« 



H MCS-85™ APPLICATIONS 
,I 

1 

I W lt t40 

I' '~~voov~ov~-~ 
13 1 A14 24 J3 ", "'~ r" ~ 

!),o"" 
:~ 3 AD ~ 26 ~ 

~ 
17 : PA 3 ~~ ~ 
18 6 4 29 4 
1~ 7 ~ 30 -¥-
10 CLK 7 31 -fa 

:! r~ 
,..:.;;..., 

+ 

l)'ORT, 
11 ALE 2 34 ~ 
7 - 35 ~ 

21 101M PB 3 36 ~ 
22 ~~ : 37 -+ 
~ Al0 6 38 -4-

--b-,I 2 CE 7 39 

1.2...1 1 CSO ~ PROG VSS~ 

I 
1 I G lt t40 - I I 

8 iOR VDD VCC ~-~ 1 I 

:~ 'I ." r' 1r"ji"'1 

I} ~RTO 
14 1 8755A 1 25 

2 26 ~ 15 3 2 27 r-ro-16 4 AD PA 3 28 rv 17 5 4 29 
18 6 5 30 fTs" 

~ 
1; 7 ~ 31 '26 

': f.i; r :~ 
.;:;;:, 
~ 

i},oRTO 
4 RD 1 34 ~ 

11 ~~~ ~ 35 ,4 
7 lolM PB 4 36 4 

AS 21 A8 5 37 4 
A9 22 A9 6 3S ..l!L 
Al0 23 Al0 7 39 ~ 

2 CE VSS~ ...llL 
CSl ~ PROG ':' 

CS31 

~VCC ~ r' 0 
A16 1;~ r+1-

~ 1 

Cs4 8CE 
8155 2 24 ~ 2 

PA ; 25 ~ 3 PORT 21H 

J 
5 26 ,..g.. 4 

"} 
~ 5 

6 27 
~ 6 

13 1 7 28 

~< :: 2 

f~ 
~ 
~ 0 

16; AD 1 31 r14- 1 

17 5 2 32 ,..g... 2 

18 6 PB 3 33 r-¥- 31- PORT 22H 

19 7 4 34 +a 4 

5 35 5 

3 6 36 'r-7 6 

10 T/IN f:i t:t 7 

9 WR ~ 0< 
4 RD 1 39 ~ 1 

11 ~~~ PC ; 1 e-L ~ I- PORT 23H 
7 101M 4 2 ~ 

5 5 --1- 4 

-# VSS 
__ 6 -L 5 

T/OUT~ 

~VCC 
,..4;. 21 

r 
22 ~ 0 

A17 1 23 r4 1 

CS5 SCE 
8155 2 24 ~ 2 

PA 3 25 ~ ; -PORT 29H 

:; O} 
4 26 ~ 
5 27 ~ 5 

14 1 6 28 ~ 6 

15 2 7 29 ~ 7 

16 3 AD 

roo 
~ 0 

17 4 1 31 ~ 1 
18 5 2 32 r+.1- 2 

19 ~ PB 3 33 ~ 3 PORT 2AH 
4 34 +0 4 

1; 101M 
5 35 r-J 5 
6 36 ra- 6 

4 ALE 

r~ 
7 

9 ~T 1--5 0 

10 ~~ 1 39 r-s 1 

PC 2 1 f-J 2 PORT 2BH 
3 2 ~ 3 
4 5 r-t- 4 

18.,(-),,17 ~ 5 3 
TIIN 

5 6 _19 ~ TIMEROUTI - - I T/OUT -
~20 I 

.1i. TIMER IN 

A1-5 



MCS-85™ APPLICATIONS 

Small System Block Move, Block Search 
The schematic in Figure 3 is of a complete 
microcomputer with only 6 ICs. The system con­
tains its own serial 1/0 communication lines, 
multi-level interrupt, two programmable timers, 
and power-on reset. System capacity is 512 
bytes of RAM, 4K bytes of PROM, and 76 lines 
of programmable 1/0. 

In a large system application high speed block 
moves may be necessary. The addition of an 
8257 Direct Memory Access (DMA) controller 
and an 8255 Programmable Peripheral Interface 
(PPI) device with some miscellaneous logic 
removes the task from the' 8085 and results in a 
very high speed capability. The addition of an 
eight bit comparator also permits block sear­
ches. (See Figure 4.) 

-----+- T RAP 

_ RST7,5 

- RST6,5 

--.. INTR 

AD DR ADDR/DATA 

181 181 

8212 l~ 
DS1) -

Vss Vcc 

~ ~ 
RESET IN 

HOLD 

HlDA 

SOD 

8085A 
SID 

S1 

RESET 
OUT 

So 

ALE AD WR 101M ROY elK 

'~ 

I 3TO 8 I 
DECODER I 

I~ 19 I~ 15 .....--t---t--.. IREADy ORO --------, 

.....--t-+--I--I--__+_liOW 

..__/----1 ClK 

+-t-+-+-+-+--__ IMEMW 

'-'-'+--+--+--.-1 RESET 

.-.-.+--+--+--+-+--11--1-----1 MEMR 

.-.-.+--+--+-__ RESET 

+-t-+-t-----+-IWR 

+-t-+-+-+-t-------IAD 

o 
DACK--

1 ORO I-.----t---------. 

DACK ____ 

2 
ORO I-.---t--t-----, 

L>ACK -

PAt:(8~~P-
8BIT 

COMPo 

PB 18~ / B 

8255 - V ~~ 

FIGURE 4. BLOCK MOVE, BLOCK SEARCH addition of an 8257 Direct Memory Access (DMA) con­
troller and an 8255 Programmable Peripheral Interface (PPI) device permits block searches, high 
speed block moves. (2.5 I1s/word). 

A1-6 

! 
I 

I 

I 

I 



MCS-85™ APPLICATIONS 

Basic operation, for a block move, is that the 
CPU loads the 8257 with the starting address of 
the source block and the length * of the block in­
to Channel O. Channel 1 is programmed with the 
starting location of the destination block and 
the length. A bit in Port C of the 8255 is set by 
the CPU which initiates a DMA request on 
Channels 0 and 1. Because the 8257 is initial­
ized to the rotating priority mode, the first DMA 
cycle is from Channel 0 which latches the data 
from the' first location of the source block into 
the 8212. The second cycle will be from Channel 
1 which will store the latched data into the first 
location of the destination block. The next cycle 
will return to Channel 0 and the sequence will 
start over again until the length (terminal count) 
is reached. Programming the 8257 stop bit in­
sures that each channel will be disabled when 
its respective terminal count is reached. 

This configuration also supports a block fill. 
DMA Channel 0 point.s to a location containing 
the fill value and has a length of one. Channel 1 
points to the starting location of the destination 
block and contains the length. When the se­
quence is initiated the value will be loaded into 
the latch by Channel O. Channel 0 reaches TC 
and is disabled. Priority rotates to Channel 1 
which will repeatedly write into the destination 
block the value stored in the latch until TC is 
reached. 

Block search operations use the 8-bit compara­
tor and Ports A & B of the 8255 and Channel 2 of 
the 8257. The CPU loads Port B with the search 
value and the DMA channel with the search 
area (starting address and length). A Port C bit 
initiates the DMA READ r~quest. Channel 2 
DMA Acknowledge sets Port A of the 8255 up as 
the receiver for the DMA READ cycle by 
multiplexing Ao, A1, and CS. Each cycle of the 
DMA then loads Port A with the value of the 

-(The value loaded into the low-order 14-bits of the terminal count 
register specifies the number of DMA cycles minus one before the 
Terminal Count (TC) output is activated. For instance, a terminal 
count of 0 would cause the TC output to be active in the first DMA 
cycle for that channel. In general, if Length = the number of 
desired DMA cycles, load the value Length-1 into the low-order 
14-bits of the terminal count register.) 

A'-7 

pointed-to location in the block. When Port A 
equals Port B, the output of the cqmparator will 
gate off the DMA request. The requesting pro­
gram can now read the Channel 2 address 
which is pointing to the search value plus one. 
However, if the status register of the 8257 in­
dicates that TC of Channel 2 has been reached, 
then no match was found. 

RST 7 

On the 8080Al8228 system if one tied INTA out 
of the 8228 to + 12 volts through a 1 KO resistor, 
the 8228 would generate a RST 7 instruction to 
the 8080A upon interrupt. This was a very inex­
pensive mechanism. 
The 8085A has expanded this facility with the 
RST 5.5, 6.5, 7.5 inputs but is not compatible 
with the RST 7 generated by the 8228. (Figure 5) 
To maintain this compatibility it can be achieved 
by adding an 8212 which will force a RST 7 in­
struction into the bus upon interrupt acknowl­
edge (INTA). (Figure 6) 

RESTART VECTOR LOCATION 

RST 7 38'6 
RST 5.5 2C'6 
RST 6.5 34'6 
RST 7.5 3C'6 
TRAP 24'6 

FIGURE 5_ ADDITIONAL 808SA INTERRUPTS 

- RST7.5 

INTR-"RST7" 

DB2 

STB 

FIGURE 6. 808SA "RST 7" IMPLEMENTATION 



SECTION 2 
DETAILED APPLICATION EXAMPLES 

Memory Addressing 

One of the necessary functions of the microprocessor bus is 
to interface with the memory where the program is stored. 
ROM and EPROM memories are typically used to store pro­
grams while static and dynamic RAMS are generally used for 
data memory. The following discussions cover the interfacing 
to be used for these types of memory. 

ROM - EPROM ADDRESSING 

Later in this Appendix a section is devoted to an ap­
proach for developing a chart showing memory device 
compatibility for the 8085A. However, there is one area not 
included that will be discussed here, that is, unbuffered inter­
facing to standard ROM or EPROM memories. To use an 
unbuffered interface to ROM or EPROM it is necessary to 
understand a particular characteristic of the 8085A. 

The 8085A has a period of time, T4 through T6 of the op code 
fetch cycle and certain instructions, where addresses A8 
through A15 are undefined. Be careful about this. Not having 
addresses stable and using an address. select method that 
would randomly turn on memory devices will cause bus 
contention and reliability problems in the unbuffered system. 
In the memory compatibility section of this Application Note, 
a minimum (unbuffered MCS-85 family and medium system 
(at least one level of buffering) configurations are considered. 
These configurations do not have bus contention problems. 
In the minimum system only MCS-85 components will be 
discussed where addresses are latched on the falling edge of 
ALE, thus ignoring any extraneous address transitions. The 
medium system is assumed to have data buffers that are 
enabled only at the proper time, thus again preventing any 
bus contention problems. What about the user who wants to 
use standard ROM or EPROM without buffering? 

8K 
(8 x 1K) 

16K 
(8 x 2K) 

32K 
(8 x 4K) 

2708 2716 2732 

Vee vee 
AS AS 

Ag Ag_ -
Vpp Vpp 

OE DE 
GND A10 

CE CE 
07 07 
06 

05 

04 

03 

Figure 7. Intel\!) EPROM/ROM Compatible Family 

A1·8 

As an example let's look at Intel's ROM/EPROM family (Fig. 
7) and develop a system block diagram. This system should 
allow upward compatibility for these particular devices and 
avoid any bus contentions due to undefined addresses. In 
Figure 8 a traditional decoding scheme is shown that uses 
the time difference between tacc (address access) and tco 
(chip select access) to allow for decoding of the EPROM/ROM 
to be selected. Connecting only these signals, however, in an 
unbuffered system will result in data contention because of 
the spurious addresses during opcode fetch. The proper in­
terconnect for this type of interface is shown in Figure 9 
where an output enable (OE) Signal will prevent any bus 
contention. This output enable is controlled by the read con­
trol signal, RD, of the 8085A. This signal only occurs after 
addresses have stabilized.* 

Note also that a PROM is recommended for the 
decoding function vs. an 8205 (1 of 8 decoder). Why? 
This PROM allows the user to easily upgrade his system 
to the 32 and 64K versions with minimum rewiring. As 
seen in Figure 3, only 4 pins are being altered (18-21) in 
the Intel ROM/EPROM family to a.llow for this upward 
compatibility; All a user would need to do is initially 
design his layout for 28 pin devices, thereby allowing 
total flexibility from 8K through 64K with the ease of 
only changing a decoding PROM and· a few wires. t 
Application Note Ap·30 can be ordered at no charge 
which fully discusses the application of Intel's 5 Volt 
EPROM and ROM family for microprocessor systems. 

• Both AD and WR signals should be pulled up to + 5V through a resistor to 
avoid random selection during 3·state. 

tAnother method is shown later in Figure 15 that facilitates the use of a 
decoder, such as the Intel S205. 

NC 

AS 

Ag 

A11 

OElVpp 

A10 

CE 

07 

64K 
(8 x 8K) 

~g -} A11 

OE PINS THAT 

A 
CHANGE 

10 

CE 

07 



! ADDRESS 
- -L L L L 

'--- EPROMi --- EPROMi - EPROMi '--- EPROMi 
ROM ROM ROM ROM 
= 1 r-- = 2 - = 3 r-- = 4 -

r- - r- -

CS 1 CS 2 CS 3 CS 4 

I I I I '----
DATA 

.J 
I 

---- DECODE 

POSSIBLE BUS CONTENTION 

/ 
I AS.1S 

I 
ADO•7 

8212 
Vee ADDRESS 

LATCH 

~ 
As . AlO -

ALE 
r-

-1- I I 

"'" 
Ao . A7 

2716 
00.7 - ,~ 

8085A 

~ r--~ 
PDiPGM I-

A11 .13 
~ ~-GSo I-~~ 

~GSI ~~r--
1:8 tCS2 BINARY I ~ , 

DECODE :CS3 

~ 
+5V 

I I -8205 
CS4 

Ihl CSS :es6 

j -1-IOiM IC~ 
Vee 

j' lAce 

ADDRESS 

CS \ 
~ 

//////////1 
\.\\\\\\\\" 

DATA OUT 

teo 

Figure 8. Traditional 16K EPROM System 

A1-9 



ADDRESS 

; CONTROL 

DATA 

'--

'---
DECODE 

A g.15 

ADO.7 

ALE 

l 8085A 
R5 

+5V 

101M 

I 

~ j 

I 

1 
8212 

Vee ADDRESS 
LATCH 

~ 
As' A10 

I- I OE QUALIFIES ~ 
Ao· A7 

DATA OUT OF 2716 2716 0 0.7 
/ BE 

~ As 

~ 
CEo 

~ ~CEl 

~ 512X8 I CE2 OC 

~ PROM l -: CE3 

~ 3604A I 
~ I ~ 51 

'YT~~ 

-

-

CE4 

EPROM I 
ROM 
#4 

-
-~ I-- ~-

I-~ 
-

~CE5 
I CE6 

I CE7 

I""-

~ -

ADDRESS ~ ________________________________ ~ 

SELECTION \~----------I/ 
OUTPUT ENABLE 

(READ) \~---/ 
DATAOUT-------------------~(~ ______ __J)~---------

Figure 9. Correct 16K EPROM System 

A1-10 

II 

-
~ 

~ I""-



STATIC MEMORIES 

The same consideration must be applied to standard static 
memories as with the ROMs/EPROMs in an unbuffered sys­
tem. Memory device selection must be qualified by a memory 
read or write to prevent spurious selection. Some Intel static 
RAM devices have an Output Enable for this purpose, such 
as the 2142 (1k x 4). This part was designed to be specifically 
used with a microprocessor bus. For other standard static 
RAMs, the chip selects must be qualified by RD, WR or ALE 
to prevent random selection. 

DYNAMIC RAM INTERFACE 

An earlier Intel Application Report (APR-1) extensively cov­
ered dynamic RAM interface with different types of memory 
and refresh in the MCS-80 system. This dynamic RAM section 
was taken from the most memory intensive example in APR-1, 
the 2116, modified to be compatible with the 808SA bus. 
These minor modifications are such that an S080 system can 
be converted without much trouble. Before discussion of this 
section, however, a strong word of advice is in order. At 
about the same time this Application Note is published, Intel 
will be sampling an 8202 dynamic RAM refresh controller 
which does all dynamic RAM interfacing (except the data 
bus) and refreshing in one packaged component. It is highly 
recommended that the reader investigate this before using 
the attached schematic. Reading this section will still be use­
ful in terms of understanding the 80SSA bus. 

This section uses the APR-1 2116 (multiplexed address 16K) 
example modified for the 2117-4 dynamic RAM. These 
devices have some differences from the 2116. One is that the 
output is not latched and is 3-stated during a write operation. 
This allows a user to tie both the data in and data out pins 
together at the device and at the data buffers, saving board 
traces. The 2117 also have hidden refresh capabilities where 
if CAS is held low, RAS can be toggled to refresh the device. 

The schematic shown in Figure 10 is aimed at a high 
performance, relatively inexpensive solution (disregard­
ing the S202). Refresh circuitry is not shown, but can be 
implemented in a variety of ways. This will be discussed 
later in an upcoming section. In this refresh section, 
code for a simple, very low cost refresh controller that 
requires no special hardware, other than an 8155 timer, 
is presented. 

For system timing, a 4x clock is used to obtain the resolution 
necessary to provide the clocks for the multiplexed address 
2117's. Other solutions are possible with delay lines, one 
shots, etc., but are relatively expensive and don't provide for 
a nice baud rate source for any peripherals that may be in the 
system as does this 4x clock. Another approach can use the 
clock edges from the S08SA CLKOUT to interface to dynamic 
RAM. To facilitate this type of approach, Clock related timing 
parameters are listed later in this note. 

To aid in understanding the operation of this circuit, the ex­
planation is broken into a discussion of the main signal paths. 
2117-4 Spec compatibility with the 80S SA will be discussed in 
detail in the dynamic RAM section of the Memory Compatibil­
ity section. 

A1-11 

Addresses 

The lower 14 addresses (AO-A13) are used to select one of 
the 16,384 8-bit bytes in each 16K byte data bank. The lower 
8 of these 14 addresses (AO-A7) flow through an 8212 and 
are latched by ALE, effectively demultiplexing the address/ 
data bus. These lower 8 addresses with the next 6 (AS-A13) 
enter the 3242 multiplexer/refresh controller. The Row Enable 
of the 3242 controls which half of the addresses are presented 
to the dynamic RAM memory. Looking at the row enable on 
the 3242, it is seen that the row and column addresses are 
swapped with respect to convention.· The higher order ad­
dresses are used as row addresses and the lower order 
addresses are used as column addresses. This does not 
create problems because this is invisible to the CPU. Re­
freshing is done properly as the 3242 controls the addressing 
for this. The upper two address lines (A14-A,s) are decoded to 
qualify one of the four RAS (Row Address Strobe) lines to 
select one of the four 16K byte data banks of memory. 

Cycle Requests 

Cycle requests are generated from several sources; ALE 
automatically initiates a request when S1 indicates that there 
is a read taking place (flip-flop C), WR during write cycles (D) 
and refresh delayed (Q output of refresh flipflop (B)) when 
there is a refresh. ALE is used to starfa read (qualified by S1) 
to provide ample time for access from the memories. This 
cycle request signal (A) immediately creates a RAS and 
starts a timing chain (74S174 shift register ,(E)) to generate 
the remaining signals. Synchronization between this cycle 
request pulse and the 4x clock is accomplished by the first D 
flip-flop in the 'S174 shift register (timing chain). 

RAS/CAS 
When RAS is enabled by a cycle request, it is qualified with 
either a refresh request (all RAS's turn on) or the decoded 
upper two bits of the address bus. A careful reader may 
question whether address is valid prior to RAS being enabled. 
This question can be answered by noting that the 8212 passes 
the address through before the falling edge of ALE latches it. 
TALt (115 ns for 320 ns 808SA processor cycle), which is the 
time from address to the falling edge of ALE, gives ample 
time for addresses to be valid at the 3242 outputs before 
RAS is valid. RAS is extended past the clearing of the cycle 
request flip-flop by ORing this enabling signal with a tap from 
the D flip-flop shift register. 

CAS (Column Address Strobe) is produced between 123 and 
164 ns after RAS, depending upon when the first D flip-flop in 
the shift register synchronizes with the cycle request signal 
(C). Since this is greater than the specified maximum delay 
from RAS to CAS, this memory system is CAS access limited 
and RAS access no longer has any meaning. The CAS tap 
can't move up one D flip-flop to provide more time for memory 
access as this would not provide sufficient data set up time 
with respect to CAS during a write. 

t Note that TAL now only applies to the high order address byte. TALL, for the 
lower address byte equals 90 ns, This was done to allow for additional T RAE 
time for data float. 



~ 
N 

!--;; 
~ , , 

+5V 

r---

48-64K 

Vee 

OO,-OOS 

8212 

OI,-OIS 32-48K L..--

I, 16-32K 

A!,O 

AD7 

~O 

~ 
A'5 

ALE 

1---.---""''-

x, 

HLOA 

CLK 

8085A s, 
101M 

WR 
R5 

RESET 

X2 

~AA~ 
-4~ru~1 L....r 

47011" 

'804 

+5V 

24.576 MHZ 

6D~ 
'S04 680p! '804 

~ ~ 

Figure 10. 8085A·2117 Dynamic RAM Interface 

+5V 
+5V 

Q 

r<1 Cs 

.. 

64K x 8 

2117 ARRAY 

IIIIII 

EJ 
EJ 
EJ 
r---

2117-4 

L....--.. 

~ 

r<1cs 
8216 

OiEN 

A - Cycle Requests 
B - Refresh Request Flip-Flop 
C - Read Request Flip-Flop 
o - Write Request Flip-Flop 
E - Timing Chain, Shift Register 

-------~ 



Data 
The data path to the 2117s is through two sets of buffers to 
account for memory being off board. To determine bus timing 
it is helpful to know that Write data is not guaranteed to be 
valid from the BOB5A until 40 ns after the leading edge of the 
write control signal. On account of this and the delay times for 
the buffers it i~ecessary to delay the cycle request on a 
write until the WR signal goes low. The solution shown still 
does not require wait states. An inhibit memory signal is also 
involved. This is useful when using memory address space 
overlap such as the case with bootstrap ROM (which would 
be necessary in this system if a full 64K of dynamic RAM is 
used). 

Refresh 

Dynamic RAMs are generally refreshed in two different 
modes; burst (Le., all at once every 2 ms) and distributed 
(one row every (2 ms/number of rows) period of time). The 
schematic shown provides for a distributed refresh where 
refresh requests are applied to the Hold request input of the 
BOB5A (not shown). This signal needs to occur at least once 
every 15 jJsec ((2ms/12B rows to be refreshed) - HOLD to 
HLDA delay) and can be generated through a baud rate 
timing chain, Intel 3222, one shots or other similar devices. 
Another approach to refresh could qualify the refresh cycles 
with program fetch cycles (use status lines). If program mem­
ory is in static RAM or ROM and the dynamic RAM bus can 
be isolated, refresh cycles can be performed with no over­
head. Instead of using the HOLD feature of the BOB5A, refresh 
can be hidden in the program fetch and decode. Further 
considerations for refresh include proper handling of resets 
and excessive hold times from other peripherals to be certain 
the memory is being refreshed adequately. 

Some applications don't require high CPU efficiency and re­
quire a very inexpensive method to refresh their dynamic 
RAM. Since writing, reading or performing special refresh 
cycles all refresh a particular row, why not do "dummy" reads 
to refresh? To use this technique memory must be mapped 
on a one to one correspondence with the address space. 
This will allow the programmer to read one byte in each 
physical row in the 2117s, thereby refreshing that row. A 
simple software routine can be devised to refresh 16K bytes 
of RAM. If more dynamic RAM than this is desired it can be 
accomplished by specially enabling all the desired RAS sig­
nals via an BOB5A output port. First let's analyze how many 
CPU cycles are available in the 2ms period: 

2ms/(320 ns/cycle) = 6,250 cycles 
for BOB5A@ 3.125 MHz 

2ms/(200 ns/cycle) = 10,000 cycles 
for BOB5A-2@ 5.0 MHz 

A1-13 

If there is a convenient component that can count BOB5A 
cycles (BOB5A CLKOUT) and interrupt the BOB5A, you're 
home free. An example of such a device is the B155 in the 
MCS-B5 family. On the B155 one can use the TO (timer out) 
pin to interrupt the CPU everytime a refresh needs to be 
performed and an interrupt service routine could dummy read 
12B consecutive locations and return to CPU operation. (12B 
reads are necessary to completely refresh the full 16K bytes 
of 2117 memory.) The highest priority interrupt should be 
used for this to insure that refresh occurs. Figure 11 is an 
example program to perform this burst dummy read refresh. 
This routine basically uses 64 pops of the stack, each reading 
two consecutive locations in the memory. Note that this rou­
tine destroys the contents of registers B, C and D in the 
BOB5A. The user may want to save these registers in the 
routine before performing the software refresh. If memory 
space is more valuable than CPU efficiency, the POPs can 
be performed in a loop instead of a string, saving additional 
memory. 

This routine requires 690 cycles which is about 11 % of the 
available BOB5A CPU cycles, or 7% of the available BOB5A-
2 cycles. If this is acceptable and there is a counter available, 
you can't find a cheaper way to do refresh. Note that as 
processor speeds become faster, this overhead becomes 
proportionately less and more attractive as an alternative. 
Again, as with any refresh routine, reset and excessive holds 
must be dealt with to guarantee proper refresh. 

DMA (Direct Memory Access) 

DMA is becoming more common in the microcomputer sys­
tem for many applications. Some examples include the B271 
floppy disk controller and refreshing a CRT via an B275 CRT 
Controller. It is always helpful to reduce the overhead of the 
DMA (as DMA can tie up the system bus) whenever possible. 
In many applications, where program memory is resident in 
ROM or PROM, DMA cycles can be performed in coincidence 
with op code fetch. This will make them invisible to the CPU 
as described for Refresh in the Refresh section of the 2117 
dynamic RAM example. 

In the dynamic Ram system, Refresh requests can be 
made on the DMA controller via the DRO lines, with the 
B237 in a rotating priority mode to insure refreshing is 
done. Another technique would be to devise an arbiter 
for DMA and refresh requests at the processor hold in­
put. With this technique the designer must not allow 
DMA to monopolize the bus when refresh is needed. 



During initialization: 

MVI A, D5H SET TIMER COUNT TO 5550* FOR REFRESH COUNT 
OUT TIMER MSBYTE 
MVI A, A4H INTERRUPT CPU AT TO (TIMER OUT) 
OUT TIMER LSBYTE 
MVI A, COH START COUNTER, PLACE CO IN 8155 STATUS REG. 
OUT TIMER COMMAND 
Program 

AT RST 7.5 RETURN ADDRESS CALL RFRS (REFRESH SERVICE) 

TOTAL #CYCLES 
CYCLES 

10 
10 

RFRS: LXIHL,O SAVE STACK POINTER IN HL 
DADSP 

30 10 LXI Sp, 0080 32K - 48K REFRESH 

10 
10 

POP BC 
POP BC REFRESH, DUMMY READ 

6 
4 

20 10 

SPHL 
EI 
RET 

64 TIMES 

RESTORE STACK POINTER 
ENABLE INTERRUPTS 
RETURN 

690 TOTAL CYCLES (round up to 700) 

Figure 11. Software Refresh 

The standard technique for interfacing the 8085A proc­
essor to the 8237 DMA controller is shown in the 
MCS·85 User's Manual and is reproduced in Figure 12. 
This configuration is set up to interface with standard 
memories or peripherals; i.e., one~ that don't share their 
data bus with addresses, not the MCS-85 family com· 
ponents (8155, 8355, 8755A, etc.). DMA is unlikely with 
these MCS·85 components as they are intended for 

*6,250 available cycles - 700 to do refresh. Counter should count 5550 
= 15A4H for 8085A; for 8085A-2 must count 10,000-700 = 9300 = 2454H. 
To set counter to automatic reload, most significant bits in timer of 8155 
must be set to 1. Therefore, for 808SA use D5A4H and for 8085A-2 use 
E454H. 

A1·14 

minimum system applications. If the system has both 
MCS·85 and standard addressed components, and DMA 
is used for the standard addressed components, ALE 
must be or'ed with ADSTB from the 8257. This is 
necessary to deselect the MCS-85 components from the 
bus. Due to the latching feature of the MCS·85 com· 
ponents, bus contention may result if this is not done 
and DMA tries to use the bus. 

11. 

\'11 

i 
I' 
1 

I 

I 
I 

I 



I , 
A1

5 

A8 

11 
STB 

D08--DOl 
13 ALE r---- DS2 

-f MD 

8212 
CUi ~ 

DI8 -- Dll DSl 

AD7 '-I 
I 

ADO 

74LS36~ B08SA 
7~ RD 

J I 
MEMR 

~~ lOR 

WR - ~ MEMW I 1>-=11 
~~ D-~ lOW 

101M 

74LS04 
74LS04Lt 

~ 

HOLD 

HLDA 

CLK(OUn 

RESET IN r------ RESET 

RESET OUT f--- '-

~ 

-
74LS04~ -

Figure 12. Detailed System Interface Schematic 

VCC 

CHIP 
SELECT READY 

116 
16 

=> 
CS READY 

A,O 
D,7 

A'7 I 
DO 

8237 

~ MEMR DREao 

~ iOR DACKO 

~ MEMW DREOl 

t----2o lOW DACKl 

DRE02 

~ HRa DACK2 

r-----2- HLDA DREa3 

DACK3 

r---E-- CLK EOP 

~ RESET 

AEN ADSTB 

9 8 

13 I 14 11 

DS2 CLR STB 

~ 
DI8 D08 

I 
8212 

I 
I I 

Dll DOl 

MD DSl 

J.2 .1.1 

A1-15 

.--- ~ 

r---- " 
f---

r----

r----

r---

r--

'----

I---

19 

25 

18 

24 

17 

14 

16 

15 

36 

5 

·RESET INITIALIZES 
LINES AS ACTIVE L 

A15 
I 
I 

AO 

D7 
I 
I 

Do 

MEMR 

lOR 

MEMW 

lOW 

DRao 

DACKO· 

DROl 

DACKl 

DR02 

DACK2 

DR03 

DACK3 

EOP 

Vee 

DACK 
OW. 

ADDRESS 
BUS 

DATA BUS 

CONTROL 
BUS 



SYSTEM TIMINGS 

808SA elK-IN vs. ClK-OUT vs. Control Timings 

This section shows timing characteristics that relate the input 
clock to the control signals and the output clock. These timings 
can be treated as constants, that is, within the normal opera­
tive range of the processor, they are cycle or SOS5A, A-2 
speed independent. 

Be careful about manipulating the timings given in this section 
with the specifications in the data sheet. The specifications 
on the SOS5A, A-2 are not mutually exclusive; that is, you 
can't add minimums to minimums and obtain a valid mini­
mum for some other timing parameter. Where the timing 
parameter is specified directly, this takes precedence over 
any other method you come up with to find that specification 
(through adding and subtracting others). This was not done 
to confuse the user, but to provide him with the most optimal 
timings for his system! 

To understand the timing parameters in this section it 
would be helpful to understand how the internal signals 
are generated in the SOS5A. Referring to Figure 13, it is 

Parameter Description 

t</>AL Time from C.F. to next Address valid (Ao - A7) 

seen that the rising edge of the X1 input causes flip·flop 
A to toggle. From this flip-flop two internal signals are 
generated that drive all functions in the SOS5A, A-2 and 
produce the output control signals and clock. Referring 
to Figure 15, it is seen that clock output is derived from 
the internal <1>1 signal in the schematic of Figure 14. This 
output Signal is a MOS output unlike the bipolar outputs 
of the S224 in the SOSOA system. This restricts the user 
to the loading limitations of a MOS driver (for further 
details see bus loading section). The rest ofthe output 
control signals with their respective internal controlling 
edges are also shown in Figure 14. 

Since the path between the X1 input and the clock out­
put can have a considerable amount of variance, the 
relationships of these two clocks vary significantly. 
Figures 15 and 16 are a set of timing diagrams il­
lustrating the relationship of the clock input to the clock 
output to the various control signals. For designs that 
require these relationships to synchronize different 
systems, components, etc; the designer must allow for 
these variances in the rel3tionships. 

Min Max Units 

130 ns 

t</>ALU Time from C.F. to next Address valid (AS - A15 only) 70 ns 

t</>AT Time from C.F. to present Address remaining valid (AS - A15 only) 

t</>CL Time from C.F. to control low (L.E.) 

t</>CT Time from C.R. to control low (T.E.) 

t</>OL Time from C.F. to Data Out becoming valid 

t</>OT Time from C.F. to Data Out remaining valid 

t</>os Data-in set up time to C.R. 

t</>OH Data-in hold time to C.R. 

t</>LL Time from C.F. to ALE high (L.E.) 

t</>LT Time from C.R. to ALE high (T.E.) 

tXKF Time from X 1 input to C.F. 

tXKR Time from X1 input to C.R. 

C.F. = Clock Falling, C.R. = Clock Rising, L.E. = Leading Edge, T.E. = Trailing Edge 
NOTE: These numbers are guaranteed by design and are not tested by Intel. 

808SA, 808SA-2 Clock Parameters 

Figure 13. Clock and Sample Control Logic 

OTHER INTERNAL 
L~ 

A1-16 

TRI-STATE 
CONTROL 

-20 ns 

-10 60 ns 

-10 60 ns 

65 ns 

-20 ns 

100 ns 

0 ns 

-60 0 ns 

0 70 ns 

30 150 ns 

30 120 ns 



I 
Tl ---T2 T3 

Xl 

r (INTERNAL) ':'2 

elK 
OUT 

ALE 

ADDRESS 
AS.15 

STATUS 

RD, mi, INTA 

91 

ADDRESS 
ADDRESS DATA 

ADO·7 

Figure 14. Clock In (X1) to Output Relationship 

Xl INPUT 

"'O"T~_ i 
~1""-~~~~~~~tCYC ~~~------i.r~-

Figure 15. 8085A·2 Clock In/Clock Out Timing 

A1-17 



1---------Tl--------~--------T2--------~--------T3--------1 

elK 
OUT 

ALE 

ADDR8-15 
STATUS 

ADO·7 
(READ MODE) 

ADO·7 
(WRITE MODE) 

Figure 16. 8085A·2 Clock Related Timing 

3.125 vs. 5 MHz Considerations 
The SOB5A (with maximum internal clock frequency of 3.125 
MHz) and SOS5A-2 (5 MHz) have some differences in their 
bus operation. There are two sets of peripherals that can be 
used with both the SOS5A and A-2. There are the dedicated 
peripherals in the MCS-S5 family that directly interface with 
the S085A, A-2 bus and the standard MCS-BO peripherals 
that Intel also provides. The standard peripherals that are 
denoted B25X-5 (also the S251A and B27X peripherals) are 
peripherals that can be used with an SOS5A or SOS5A-2. In 
the B085A-2 system a wait state is required for proper I/O 
operation, but even with this wait state system speed is still 
30% higher than the BOS5A without wait states. An example 
wait state generator for this purpose is shown at the end of 
the peripheral compatibility section in this Application Note 
(Figure 19). 

The main timing differences to consider when using an SOB5A 
vs. an A-2 are listed in Table 1. 

Cycle dependent timings are listed in Table 2. These are very 
useful when the user is not operating at the full bus speed. 
Remember that each SOS5A, A-2 device divides its clock 
input frequency by 2. Therefore, a 10 MHz crystal will produce 
a 200ns output cycle (denoted as T in the cycle dependent 
timings). A timing diagram showing the relationships of the 
timing parameters given in Table 2 can be found on the data 
sheets. 

A1-18 

-Clock (crystal) requirements. The BOS5A, A-2 re­
quires the following crystal specifications to run 
at top bus speed: 

8085A 6.25 MHz frequency, parallel resonant, 
fundamental, 10 mwatt drive level, RS < 
75 ohms, CL=20·35 pf, and CS < 7 pf. 

8085A-2 10 MHz frequency, all other specifications 
the same as 8085A. 

-Memory and Peripheral Compatibility - Discussed 
in detail in upcoming sections. 

-Cycle dependent timings (Table 2) 

Table 1. 8085A VS. 8085A-2. 

i!l"I." I', 
I 

I' 
II, 
!I 

I' 



3.125 MHz (8085A) 5 MHz (8085A-2) 

(ns) (ns) 

Parameter Min Max Cycle Dependencies Min Max Cycle Dependencies 

tcyc 320 2000 200 2000 

t1 80 1/2T-80 40 1/2T -70 

t2 120 1/2T-40 70 1/2T -50 

tr 30 30 

tf 30 30 

tAL 115 1/2T -45 50 1/2T -50 

tlA 100 1/2T -60 50 1/2T -50 

tll 140 1/2T -20 80 1/2T -20 

tlCK 100 1/2T -60 50 1/2T -50 

tlC 130 1/2T -30 60 1/2T -40 

tAFR 0 0 

tAD 575 (5/2+N)T -225 350 (5/2+N)T -150 

tRD 300 (3/2+N)T -180 150 (3/2+ N)T -150 

tRDH 0 0 

tRAE 150 1/2T -10 90 1/2T-10 

tCA 120 1/2T -40 60 1/2T-40 

tDW 420 (3/2+N)T -60 230 (3/2+N)T -70 

tWD 100 1/2T -60 60 1/2T-40 

tCC 400 (3/2+N)T -80 230 (3/2+N)T -70 

tCl 50 1/2T -110 25 1/2T -75 

tARY 220 3/2T -260 100 3/2T-200 

tRYS 110 100 

tRYH 0 0 

tHACK 110 1/2T -50 40 

tHABE 210 1/2T +50 150 1/2T +50 

tRV 400 3/2T -80 220 3/2T-80 

tAC 270 T-50 115 T-85 

tHDS 170 120 

tHDH 0 0 

tiNS 360 1 /2T +200 150 1/2T +50 

tlNH 0 0 

tlDR 460 2T -180 270 4/2T -130 

Where T = tcyc and N = th'e number of wait states that are incorporated. 
All mathematical operations in Table 2 are performed from left to right. except where qualified with parenthesis. 

Table 2. 808SA and 8085A-2 Cycle Dependencies 

A1-19 



Memory Device Compatibility 

Determining What Memory to Select For Your Application 
When developing a system which will use sufficient memory 
to require buffering (see the capacitive loading section to 
determine when it is needed), it is important to understand 
how to select the slowest, lowest cost memory and still be 
compatible with the bus timings with minimum wait states. A 
generalized procedure has been developed in the following 
section for determining the memory access needed for dif­
ferent applications and the number of wait states required 
(if any). In general the amount oftime available for access­
ing the memory can be obtained from the following formula: 
Available memory access = 8085A access time (from con­
trol Signal of interest) - Buffering/Decoding delay (to and 
from memory) 

The three main "control" signals of interest which determine 
memory access are that of tRD (read to valid data in), tAD 
(valid address to valid data in) and tLDR (address latch enable 
to valid data in). When dealing with different types of 
memories, one or more of these Signals becomes important. 

Even though memory access compatibility is probably one of 
the most important parameters to consider, as this is directly 
reflected in the price of the memory, it is not the only param­
eter that is important. Some of the other major timing con­
siderations are as follows: 
WRITE ENABLE - Is the write enable signal sufficiently long 
to guarantee a write? 
Is data set up properly with respect to this write to be compat­
ible with the memory's requirements? 
Is data held long enough? 
DATA FLOAT - Does your system have sufficient margin to 
prevent bus contention? 
(Le., Does the memory let go of the data bus in time for the 
processor to use it? Remember that the 8085A shares its 
Data Bus with the lower 8 addresses.) 

ALE 

RD 

WR I 
101M 1 I 

J ~ ~ 

8355 
OR 

A L 

As -Al0 
B755A 

'{ 
~ 

ADo-AD7 I'r-- r---v' 

B085A 

... 
~ 8155 

!-

8156 ~ 

I 3.125MHz I 5MHz 

tRD \ 300n, \ 150n, 

tAD I 575 I 350 

Figure 17. Minimum System 

We will first go through the minimum system which can be 
represented by the dedicated set of components Intel has 
developed for the 8085A (Fig. 17). The two timing specs were 
taken from the data catalog for tRD and tAD (tLDR is irrele­
vant here). Looking at the 8155/6 and 8355/8755A, a com­
parison can be made for the access times: 

8085A (3.125 MHz) 8155/6 8355/8755A 
tRD 300 (max) 170 (max) 170 (max) 
tAD 575 (max) 400 (max) 4001450 (max) 

This shows that there is plenty of bus margin for the 3.125 
MHz minimum application of the 8085A. Access time for the 
processor can be interpreted as the time from when the con­
trol signal is presented on the bus to the time when the pro­
cessor will expect the data to be valid so it can sample it. 
Conversely, memory access times show the amount of time 
that will elapse between when it is told to present its informa­
tion to when it actually does it. As long as the memory access 
spec is less than the processor access spec (minus appro­
priate buffering delays) the memory is access time compatible. 

In more complicated systems where one level of data, 
address and control buffering is required (such as the case 
when there are many Signal paths and device loading on 
one card), the delays of the latches and bidirectional 
drivers must be taken into consideration. 

First consider a ROM, EPROM or static RAM configura· 
tion as shown in Figure 18. Using the generalized 
available memory access formula, tAD, tRD and tLDR for 
the memory can be determined using the data sheet tim­
ing delays for the buffers. 

3.125MHz 5MHz 

TRD 250 100 

TAD 500 275 

(BUFFERS) 
TLDR 390 200 

Figure 18. Medium Buffered System 

A1-20 



tAD MEMORY = tAD8085A - (8282 + 8205 delay) - (8286 
delay) + transitional gain due to buffering* 

= tAD85 - (TIVOV + t--) - (TIVOV) + tCAPB * 
= (5/2+N)T - 225 - 55 - 35 + 15 

= (5/2+ N)T - 300 (for 8085A) 
(5/2+N)T - 225 (for 8085A-2) 

where N = number of wait states and T = cycle time, 
For minimum 8085A timing 500ns = tAD memory 

8085A-2 timing 275ns = tAD memory 

The 8085A timing parameter tAL was not taken into consider­
ation as the 8282 transfers information directly through with­
out concern of the address latch enable. tRD can be obtained 
in a similar manner. 

The read signal RD goes through a buffer before it reaches 
the memory. This must be taken into consideration when 
calculating effective tRD for the memory. 

tRD MEMORY = tRD 8085A - (buffer delay) - (8286 
delay) + transitional gain due to buffering 

= tRD 85 - (delay) - (TIVOV) + tCAPB 
= (3/2+N)T - 180 - 30 - 35 + 15 

(3/2+ N)T - 230 (for 8085A) 
(3/2 + N)T - 200 ns (for 8085A-2) 

'tCAPB is additional time thrown back in for improvement in signal transi­
tions. This is because buffering the signals reduces the capacitive loading 
considerably. The data sheet gives timings for maximum capacitive loading. 
Characterization has shown change in delay versus capacitive loading as 
.12 nslpf min (under 20 pF loading) and .24 ns/pF max (under 150 pF 
loading). To take into consideration the effects of this loading two param­
eters are defined: 

tCAPA - delay for a signal to leave the old logic level 
tCAPS - delay for a signal to complete the transition from the old to new 

logic level 

where tCAPA = 1/2 tCAPB 

MIN MAX 
tCAPA 
tCAPB 

7 ns 
15 ns 

15 ns 
30 ns 

In the memory compatibility calculations tCAPB min is added on as spec sheet 
values assume 150 pF loading and this system is not worst case, i.e., it has 
buffering that reduces this loading to approximately 20 pf. Since the CAP = 
130 pF and change in delay versus capacitance is 1/2 ns/pF min, tCAPSMIN = 
(.1 ns/pF) 130 pF = approx. 15 ns. 

MINIMUM SYSTEM: 

For minimum 8085A timing 
8085A-2 timing 

250ns = tRD memory 
100ns = tRD memory 

Therefore for tLDR: 
tLDR MEMORY = tLDR 8085 - (buffer delay) - (8205) 

- (8286) + tCAPB 

= tLDR-(delay)-(t--)-(TIVOV)+tCAPB 
= 2T -180 -30 -20 -35 +15 

= 2T - 250 for 8085A 

= 2T -200 for 8085A-2 

For minimum 8085 timing 
8085A-2 timing 

= 390ns 
= 200ns 

To obtain memory access parameters for a multicard system 
(which would have buffering at both ends of the system bus), 
it is a simple matter of subtracting off the additional buffering 
delays. 

With these timings a memory compatibility table can be de­
veloped from the data sheets (Table 3). With most of these 
memories it is relatively straightforward to determine the con­
trolling signal used to select and enable the device. To illus­
trate this, listed below are the contrOlling signals of interest 
for the different memories as they are used in a typical con­
figuration: 

RAM 
2114 

2142 

ROM 

AddreS? access 
Chip select access 

Address access 
Chip select access 
Output enable 

Relevant 
Control Signal 

- tAD MEM 
- tLDR MEM** 

-tAD MEM 
- tLDR MEM** 
- tRD MEM 

"Chip selects for these static RAMs need not be qualified with ALE. If 2114 
or 2142 chip selects are generated directly from the address lines, the 
relevant timing is tAD MEM. 

3.125 MHz 5 MHz 

STATIC RAM 8155/8156, (256x8) 8155-2/8156-2 
8185 (1 Kx8) 8185-2 

ROM/EPROM 8355 (2Kx8) 8355-2 
8755A (2Kx8) 8755A-2 

BUFFERED SYSTEM: 
2114 (1Kx4) 2114-2 

STATIC RAM 2142 (1 Kx4) 2142-2 

ROM/EPROM 2732 (4Kx8) 
2716-2 (2Kx8) 2716-2** 

'Contact Intel for high performance EPROM/ROM Family. 
"With 1 wait state. 

Table 3. BOSSA, A-2 Memory Compatibility. 

A1-21 



In general, tAD MEM and tLDR MEM are the parameters 
needed for chip enabling, selection and address access 
times, and probably are the most important considerations 
when determining which memory device to use. When there 
is an output enable, tRD MEM is also used. All relevant access 
times must be met by the resulting system configuration to be 
compatible. 

This note will not attempt to generalize a procedure that deals 
with the interface to dynamic RAM, but the 2117 example 
shown earlier is described below. In the dynamic RAM sys­
tem, many variables come into play upon which the memory 
access is dependent. Among these are refresh controllers, 
decoding, whether or not the system is designed for minimum 
hardware or maximum performance, and consideration for 
nonmultiplexed vs. multiplexed address dynamic RAMs. 

For the Intel 2107C, which has nonmultiplexed addresses, 
tAD is the important parameter as it generates the chip selects 
and chip enables. However, with a multiplexed address part, 
things are different and both a RAS and CAS access time 
must be considered. Note that since RAS is applied before 
CAS, RAS access time is effective only while the CAS signal 
stays within the specified RAS to CAS delay time. If it is not 
possible to do this, CAS access becomes the limiting factor 
for memory selection. Don't be mislead by the RAS to CAS 
maximum delay (tRCD: RAS to CAS delay time) spec'd on 
dynamic RAM data sheets! This maximum only applies to 
guarantee RAS access. 

For a specific example the following shows how the speed 
versions were selected for previous 2117 dynamic RAM inter­
face. 

RAS path (from ALE) 

5 gates 
1 Flip Flop 

(return path) 2 8216s 

CAS path (from ALE) 

3 gates 
1 Flip Flop 
4 D Flip Flops 

approximate delay 

7 ns ea 
15 ns 
25 ns ea 

approximate delay 

7 ns ea 
15 ns 
41 ns ea 

tACCESS AVAILABLE FOR RAS = 

tLDR - 5(7) - 15 - 2(25) = 360 ns 

tACCESS AVAILABLE FOR CAS = 

tLDR - 3(7) - 15 - 4(41) - 2(25) = 210 ns 

Since RAS available time - CAS available time is greater 
than the spec value for RAS to CAS delay on ~117 specs, 
CAS access becomes the limiting factor. A CAS access of 
165ns of the 2117-4 is well within the time available. 

To verify the other 2117 specs such that there is certainty 
that this sytem will play, a comparison can be made of the 
timing specs in the 2117 data sheet to the timings that 
result in the circuit configuration in Figure 12. When look­
ing at the following timing comparisons, remember that 
the read cycle is initiated by the falling edge of ALE (Ad­
dress Latch Enable) and the write from the falling edge of 
WR (Write). For descriptions of the parameters in Table 4, 
please refer to a 2117-4 data sheet. Delay assumptions 
used are shown in Table 5. 

'There are two parameters that the processor "sees". One is memory ac­
cess, which has already been covered. The other is when the memory will let 
go of the bus. To show compatibility here, the following analysis is done: 

2117 tOFF 70 ns max 
8085A tRAE 150 ns min 

Therefore compatible as WR is used to deselect the 8216's. 

Table 4. Bus Compatibility Analysis (see Figure 11) 

A1-22 



TAKEN FROM 2117-4 DATA SHEET DYNAMIC RAM CONFIGURATION 

WRITE 
CYCLE MIN MAX MIN MAX 

tRC 410 ns 720 ns 
tRAS 250 ns 307 ns 
tCAS 165 ns 198 ns 
tWCS -20 ns 34 ns 
tWCH 75 ns 164 ns 
tWCR 160 ns 287 ns 
tWP 75 ns 205 ns 
tRWL 100 ns 205 ns 
tCWL 100 ns 205 ns 
tDS o ns 23 ns •• 
tDH 75 ns Data held until next cycle 
tDHR 160 ns Data held until next cycle 

•• Data is not valid from the 8085A 

until 40 ns after WR falls. 

I 
Table 4. Bus Compatibility Analysis (see Figure 11) (Cont'd) 

The numbers in Table 4 were obtained by using the following 
delay assumptions (Table 5) and very conservative tech­
niques of obtaining minimum 8085A timings. Where no direct 
specification applied, minimum specs were added assuming 
o ns for any rise or fall times. This is more conservative than 
necessary. Another approach can be made from the clock 
related timings discussed in an earlier section. 

DELAY 
MIN MAX 

Gates o ns 7 ns 
Flip Flops o ns 15 ns 
8216s o ns 30 ns 
D flip flop 41 ns 41 ns 

(Timing Chain) 
3242 o ns 25 ns (Min Ons for 
8212 o ns 30 ns synchronization D FF) 

Table 5. Delay Assumptions 

An exhaustive approach as Table 4 will more than pay itself 
back in terms of debugging the circuit. However, while this 
analysis may be helpful in understanding an existing circuit, it 
won't help as much in creating a new one. A general proce­
dure for designing with memories is itemized below: 

1. Determine how much processor time is available for mem­
ory access. Access from addresses is the most important 
parameter. 

2. Determine how much buffering will be used (both to and 
from the memory) and how much delay there will be due 
to decode or qualifications in the circuit (in the memory 
design in Fig. 11, WR qualifies a write). Subtract these 
resulting delays from step 1 to get an effective access for 
the memory. If multiplexed address RAM is used go to 3, if 
not go to 4. 

3. Determine how the RAS and CAS timings will be gener­
ated, be it one shots, delay lines, shift registers, etc. Adjust 
memory access available for the method chosen. 

4. Select a memory that meets this criterion. 

5. Design the system to meet all the specified parameters of 
the memory and verify. 

A1-23 

Steps 1, 2 and 4 have been done for you in the Memory 
Compatibility Table for ROM, EPROM and Static RAM mem­
ories in a medium and minimum system. Remember - for 
dynamic RAM, Intel will soon be providing an 8202, a refresh, 
dynamic RAM controller that generates all RAS, CAS control 
signals for a 64 kByte memory (made of 2117s). 

Peripheral Compatibility - 3.125 and 5 MHz 
Intel supports its processors with many LSI peripheral com­
ponents that do a wide range of functions to simplify circuit 
design. The 8085A compatible peripherals have been denoted 
the "-5" notation to show compatibility. The "-5" notation 
also signifies that these devices are compatible with the 
8085A-2 with one wait state interjected. This wait state is 
produced by taking the ready line low at the proper time as 
shown in Figure 19. 

A list of these peripherals is shown in Table 6 with corres­
ponding relevant specifications to illustrate 8085A-2 compat­
ibility. The analYSis for determining the resulting timings is 
similar to the analysis in the previous memory compatibility 
section. 

60n, AS_A15(] 
SO,Sl 

101M ROM 

etc. 

+5V 

ALE-----t) 

WAIT 

100 n' AVAILABLE TIME TO 
SET-UP READY 

1------10 

74S74 

Q 

tpd - 15n, tpd - 15ns 

CLKOUT-----------~ 

Figure 19. 8085A·2 Wait State Generator 

-lOn, 



Part No. AC. Parameter Min. Max. 
(ns) (ns) 

tRO 200 

tRA & tWA 0 
8251A tow 150 

two 0 

tRR & tww 250 

tAR & tAw 0 

tRO 200 

tRA 5 

tWA 30 

8253-5 tow 250 

two 30 

tRR & tww 300 

tRV 1000 

tAR & tAW 50 

tRO 200 

tRA 0 

tWA 20 

8255A-5 tow 100 

two 30 

tRR & tww 300 

tRV 850 

tAR & tAw 0 

tRO 200 

tRA& tWA 0 

tow 200 

8257-5 two 0 

tRR 250 

tww 200 

tAR 0 

tAW 20 

tAD 200 

tRO 150 

tCA 0 

8271 & tow 150 

8273 two 0 

tRR& tww 250 

tAC 0 

tRO 200 

tRA& tWA 0 

8275 tow 150 

two 0 

tRR&tww 250 

tAP & tAW 0 

tAD 250 

tRO 150 

tRA & tWA 0 
8279-5 tow 150 

two 0 

tRR&tww 250 

tRCY 1000 

tAP & tAW 0 

Table 6. Peripherals vs. 8085A-2 

A1-24 

808SA-2 
AC. Parameter 

tRO 

tCA 

tow 

two 

tcc 

tAC 

tRO 

tCA 

tCA 

tow 

two 

tcc 

tRV 

tAC 

tRO 

tCA 

tCA 

tow 

two 

tcc 

tRV 

tAC 

tRO 

tCA 

tow 

two 

tcc 

tcc 

tAC 

tAC 

tAD 

tRO 

tCA 

tow 

two 

tcc 

tAC 

tRO 

tCA 

tow 

two 

tcc 

tAC 

tAD 

tRO 

tCA 

tow 

two 

tcc 

tRV 

tAC 

Margin 
vs. -2 Spec. 

(ns) 

*150 

60 

80 

60 
*180 

*150 

55 

60 

*180 

30 

*130 

** 
65 

*150 

60 

40 

130 

30 

*130 
** 

115 

*150 

60 

30 

60 

*180 

30 

115 

95 
*350 

*200 

60 

80 

80 

*180 

115 

*150 

60 

80 
60 

*180 

115 

300 

200 

60 

80 

60 
*180 

** 

115 
'With 1 "Wait State" 

**Must allow for in Software 



Taking note of asterisked margins shown on the comparison 
sheet: tAD, tRD, tRR and tDW, it is seen that they are all 
taken care of by introducing a wait state. The double aster­
isked margins deal with the tRV spec on the 8255A-5, 
8253-5 and 8279-5 peripherals. tRV is the time from the rising 
edge of WR or RD to the next falling edge. To allow sufficient 
time for this spec it is necessary to delay the commands sent 
to these three peripherals. Enough dead time must occur to 
make up for the entire negative portion of the margin (for 
example: 790ns in the 8253-5 medium system). Since in the 
8085A-2 every machine cycle is at least 200ns long, 4 ma­
chine cycles are sufficient time to allow peripheral control 
signal recovery (tRV). 

One may notice that all of the 8085A instructions take at least 
4 T-states (providing a minimum of 800ns) giving ample time 
to meet this requirement, just by programming one instruc­
tion in between every command sent to the peripheral. I/O 
mapped I/O, which results in using the Input, Output instruc­
tions has this delay time built in when moving the data to be 
transferred into the accumulator. With memory mapped I/O, 
any instruction that accesses memory for data will provide 
the time necessary to not violate tRV as a second fetch 
is performed. 

Bus· Loading Considerations· Oecoupllng 

For the cost conscious designer it is always helpful to know 
when buffering is needed and when it is not. How much can I 
load the 8085A output pins down? To answer this it is helpful 
to first list the DC requirements of the common types of logic 
loading and compare this to the capabilities of the 8085A. 

TIL (single load) 
Schottky or HTIL 
MOS 
LSTIL (single load) 

Maximum 
High-Level 

Input Current 

40p,A 
40p,A 
10p,A 
20p,A 

Maximum 
Low-Level 

Input Current 

1.6mA 
2.0mA 
10p,A 

400p,A 

The 8085A is capable of an 10L of 2mA (low) and 10H of 
- 400p,A. With this spec it 'is easy to come up with the pos­
sible combinations of D.C. loading that the designer can use 
without bufferi ng: 

LOADS 

1 TIL + 1 LSTIL 
1 TIL + 36 MOS* 
1 SCHOTIKY or 1 HTIL 
40 MOS (various combinations possible)' 
5 LSTIL 

8085A, 
A-2 limiting factor 

(level) 

LOW 
HIGH 
LOW 
HIGH 
LOW 

• Exceeds capacitive loading limit, to be discussed 

If a user exceeds these DC loading limitations he must buffer 
that particular signal. Another factor that the designer must 
consider is the capacitive load that is seen by the 8085A 
outputs, which may very well be excessive even if DC loading 
is not. One may note that even though the 8085A can handle 
a DC load of 40 MOS devices or 36 MOS + 1 TIL, their 
collective input capacitances exceed the 150 pF max spec. 

A1-25 

The timing specs of the 8085A are guaranteed as long as the 
150 pF maximum loading is not exceeded, which includes the 
wires, components and parasitics. If the user exceeds this 
value and wants to guarantee his system timing he must 
either derate the system timings or use buffering. 

What if you choose to ignore this limit and say you can live 
with the performance degradation? First the timing perfor­
mance is not all that would degrade, a user must be willing to 
give up some reliability of his components (All MOS devices 
have this restraint). This is caused by the excessive switching 
currents that are needed for this extra loading capacitance. If 
reliability is not an important consideration, the user can load 
up to 300 pF on the 8085A bus, but the following correction 
factors must be used to adjust the timings: 

for 150 pF < 300 pF add .13 ns/pF 

conversely if less than 150 pF: 

for 25 < CL < 150 pF you can subtract .1/ns/pF. 

What happens after 300 pF? If the user exceeds this, the 
noise levels become excessive and problems will result. How 
much is to much noise? 350 mvolts zero to peak. Prudent 
designers will always buffer when noise approaches this level, 
especially in the case of going from orie board to another. 

The above takes into consideration the actual specification 
considerations of when to buffer, but there are also transmis­
sion line and noise effects that must be considered. When 
working with dynamiC RAMs small (20-30 ohm) resistors are 
commonly put in series in the address lines to help match 
impedance levels and reduce reflections. Note that this re­
sistor should be chosen such that it does not severely degrade 
the voltage levels of the signal. Long parallel board traces 
with signals that could adversely affect each other should 
also be avoided to prevent cross talk problems. 

By-passing is very important to prevent intermittent problems 
which often plague the board designer. Large bulk capacitors 
should be used at strategic locations on the board to prevent 
power supply droop. This becomes a major factor when there 
are many devices that can turn on at once and produce a 
considerable drain from the power supply (such as burst re­
fresh in dynamic RAM). 

To help smooth out the current spikes that naturally occur 
when devices turn on and off, it is recommended to liberally 
use small capacitors such as the monolithic and other ceramic 
capacitors which have low inherent inductance. Attached in 
the 2117 data sheet is a suggested layout of capacitors to 
effectively bypass the supply lines to ensure proper system 
operation. Cutting corners here will often times turn around 
and bite you. 

Proper layout is an important consideration. Power supply 
lines should be well gridded to supply sufficient current to all 
areas of the board. A strong ground layout is advised to offset 
noise problems. Remember if the ground plane moves up in 
voltage because of. excessive charge dumping in a particular 
area, the supply will drift up correspondingly. Sensing low 
levels often becomes an intermittent problem when proper 
ground is not provided. 



APPLICATION EXAMPLE 1 
MINIMUM SYSTEM APPLICATION AS A TEMPERATURE SENSOR 
Overview 

Following is an application example that illustrates the use of 
the interrupt and SOD pins on the 8085A, software for a block 
search routine, and the procedure for using and reading the 
8155 counter. It is a simple application showing the use of the 
small but powerful 3-chip MCS-85 system as a temperature 
sensor (SDK-85 board used). This example can be modified 
to be an accurate industrial temperature controller, for several 
locations if desired. 

The basic operation behind this application is a monostable 
multivibrator having its timing pulse duration controlled by a 
thermistor. The counter in the 8155 converts this timing pulse 
to a decimal count that is software mapped into a temperature 
and displayed in degrees C in the address field of the display 
in the .SDK-85 Kit. For the purpose of keeping the software 
relatively simple, many approximations were incorporated into 
the code. 

Detailed Hardware 

The basic SDK kit was used for the initial hardware. This Kit 
provides for everything necessary to develop and debug a 
program through the use of the SDK-85 monitor, keyboard 
and display board. The kit provides for 256 bytes of RAM 
resident in the 8155 and 2K bytes of ROM or EPROM where 
the SDK-85 monitor is placed. (See the Intel SDK-85 User's 
Manual for copy of monitor software code.) 

Figure 20 is a schematic of the SDK-85 Kit with only one 8155 
and 8355. There is no buffering in this system as all compo-

nents are on the same board and far below the maximum 
component loading. A monostable multivibrator (74121) is also 
shown with a thermistor connected to RE/CE. 

The SOD output pin from the B085A is used for the purpose of 
starting the monostable multivibrator in generating its tem­
perature controlled timing pulse. This pulse is created by the 
RC time constant provided for by the thermistor acting as a 
variable resistor and a .1 J.lF capacitor to put the timing pulse 
in the desired timing range. 

The inverted output of the monostable multivibrator (one 
shot) has been directly connected to the RST 6.5 pin on the 
8085A. Since this pin is high level sensitive, it is necessary to 
disable interrupts in the program until after the pulse from the 
one shot goes low. 

The hardware addressing in the configuration shown allows 
for several code spaces that could be used. The RST and 
TRAP interrupt lines on the 8085A also have hardware start 
addresses but many of these are altered by the SDK monitor. 
Table 7 should be useful in understanding the addresses 
used in the software that follows. Each memory/ I/O compo­
nent in the basic SDK-85 system is enabled by a signal com­
ing from the 8205 address decoder. Since no expansion chips 
are used, output enables 00 (8355 monitor ROM), 03 (8279 
Keyboard) and 04 (8155 RAM) were the only ones needed. 
Additional memory and/or I/O could have been incorporated 
using other output enables from the 8205. 

Memory/ I/O Device Function Output from 8205 code space 

8155 RAM space 04 2000 - 20FF 
(20 - 20FF are reserved 
for monitor RAM locations) 

8355 ROM space 00 0000 - 07FF 

8279 Keyboard/display 03 1800 - 1 FFF 
controller 

stack pointer 

Since the monitor uses locations 10C8 through 20FF, 
the stack pointer must be initialized to 20C8 or less. 

8085A jump address Usage monitor mapped address 

0157 trap 
RST 5.5 
RST 6.5 
RST 7.5 

I/O ports address 
00 
01 
02 
03 
20 
21 
22 
23 
24 
25 

24H TO of 8155 
2CH 8279 interrupt 
34H oneshot interrupt 
3CH vector interrupt 

Function 
Monitor ROM Port A (8355) 
Monitor ROM Port B (8355) 

028E 
20CE 

Monitor ROM Port A (8355) Data direction register 
Monitor ROM Port B (8355) Data direction register 
Basic command/status register 
Basic RAM Port A 
Basic RAM Port B 
Basic RAM Port C 
Basic RAM LOW order byte of timer count 
Basic RAM HIGH order byte of timer count 

Table 7. Addressing 

A1-26 



~ 
Iv 
-..J 

111[' 6.144MHz 

D 
NC-a NC GND ~ 1 8 
NC-g Ri 74121 0 T NC 

ADD 

F~ CE B 4 SOD 8085A AD7 5 

0 RE/CE A2~ 
NC12 NC Al~ 101M 

NC---;J NC NC T NC ALE 
RST RESET OUT 

30 
+5 ---;:t Vee a 

1 8 6.5 3 

35 READY AD 
32 

.111 

-::=-5 SID WR 
31 +5V 

~ HOLD CLK (OUT) 
THERMISTOR 37 
(10K ohms @25 C) 9 

RST 5.5 ~ 
A;o RST 7.5 

TO VECTOR INTR 7 
A,l1 

? INTR 
A;s 

RESET INTA ~ TO RESET 36 IN 
HLDA ~ 

""6 TRAP S07 
S1 7 Vee Vss 

1
40 go 

+5 

TO KEYBOARD ':I 

Figute 20. Detailed SDK·8S Kit with Temperature Sensor 

V 
3 

8205 

/5 Ao-A2 
00 15 .. El-E2 

Vss ~ - 0, Vee ~+5 - 02 E3 - 05 - 06 
04fl 

03 

12 

22 

.. 
FROM KEYBOARD \ 

4 
+5 40 74LS156 
A~ 

/6 
lYO-olYl B 333 
2YO-2Y3 le 

~ 2C 
15 35 

5"""" 1Y2 

....... 1Y3 

Vee "";"ii'S 
Vss~ 

/6 

As 

r---

21 3 11 10 9 

AoCLK WRRDRE-
8279 SET 

~ CS D,Bo 
R,Lo D'B7 

Ri7 SHIFT Ts IRQ 
CNTLlSTB ~ Voo 

Ao-A3 -SLo 
OUT 

SLl Bo-'B3 " 
SL2 

BO"23 
SL3 GND 

~ 

") 
-

7 101M 8355 
11 ALE 
4 RST 

P~ 

9 RD 
PA7 

10 
lOW NC 

3 
CLK 

CE 

A.S iORl--
-v Al0 Vee 

~OO P:Bo 

A07 PB7 

CE 
ROY Vss 

f6 --to 

8155 

Aoo P~ 

Ao7 PA7 

3 
TIMER IN 

WR 
10 P~ 

RD 
PB7 9 

4 
RESET 

ALE 
11 

7 
101M 

PCo 

8 
CE : 
____ PCs 

6 
TIMER OUT 

Vss Vee 

~O 140 

-= +5 

f- TO DISPLAY 

V 

ROM 
PORT A 

ROM 
PORTB 

RAM 
PORT A 

RAM 
PORT B 

RAM 
PORTC 



Software 
The software (at end of section) for this application illustrates 
several features of ·the 8085A, such as the programming of 
the SOD line, interrupts and 8155 counter. Additionally, an 
example of a block search routine is illustrated. 

Figure 21 is a flow diagram of the program. It has been cross 
referenced with program lines to the actual software for the 
reader's convenience. Following through the flow diagram it 
is seen that the interrupts are disabled in the beginning as the 
one shot is outputting a high level on its a output and interrupt 
pin 6.5 is high level sensitive. However, this high level will not 
be recognized until the level goes low and then high again. If 
the user would prefer a positive pulse interrupt the 8085A a 
dual one shot can be used with one triggering the other, or 
just a simple inverter. Starting and loading the counter is as 
described in the 8155 data sheet with the Port addresses 
being given in the previous Table (7). Code lines 18-23 repre­
sent placing the counter in the counter mode (single terminal 
count pulse at the end of count) and starting the count, having 
the count clocked by the 8085A clock out pin. Reading the 
counter is not as straight forward and will be approached 
shortly. Code lines 28-32 are representative of programming 
the SOD line to output a pulse. This pin is intended for serial 
I/O interfaces such as a teletype, but as seen in this applica­
tion, it can also be used as a single I/O port. 

After the pulse is presented to the one shot, the interrupts 
enabled, the processor idles (lines 36, 37; Halt could have 
just as easily been used) until interrupted. Through the design 
of this application it was known that the down counter would 
never reach terminal count, as it is only being used as a pulse 
to digital count converter. 

To read in the count value it is best that the counter is first 
stopped. The least and most significant bytes of the count 
length register in the 8155 are read using the same port 
addresses as was used during loading the counter, as seen 
in code lines 42-47. If one looks at this value and knows how 
many pulses occurred, he would come to the conclusion that 
there is a gross discrepancy! The reason for this is that the 
counter in the 8155/6 was designed to make its square wave 
function generation easy and when used in the counter mode, 
it counts by two's. For this application (where length of time is 
mapped into a temperature) and other similar event timing 
applications it is imperative to have an intelligible count re­
turned from the 8155. 

The counter in the 8155 is essentially a count down by 2 
counter. After it counts down by 2 the initial value loaded by 
the user, it reloads the initial count (initial count -1 if odd) and 
counts down by 2 again until terminal count is reached. When 
reading the counter, the least significant bit of the counter 
does not represent the least significant bit of the count, but 
which half of the countdown operation you are in. If this bit 
equals 1, the 8155/6 counter is counting down by 2 in the first 
half, and if it is zero you are in the second half of the opera­
tion. Because of this method of down counting there are two 
restrictions placed on its use: 

A1-28 

1. The user can not use the initial value of 1 to detect only 
one pulse. 

2. The user can not discern (through reading the counter) 
whether exactly one or two pulses on the timer input pin 
has occurred if he loaded in an initial odd count (does not 
apply to even). After three pulses the user can determine 
exactly how many pulses occurred. Note that this restric­
tion only applies to reading the counter, the TO pin pulses 
correctly after the correct number of pulses regardless of 
what is read from the counter. 

The first pulse to the 8155/6 counter (high level sensitive) 
loads the count length register, which says that the counter is 
not readable until a pulse occurs. If the user tries to read 
before a pulse is provided he will read a previous or old 
value. Now what is done with the value read? 

Good question. An adjustment routine to convert this value 
read to an actual count can be summarized as follows: 

1. Read in 16 bit count length register. 
2. Reset the upper two bits (mode bits). 
3. Reset carry and rotate right all 16 bits through carry. 
4. If carry is set add 1/2 of full original count (1/2 (full count 

-1) if full count is odd). 

In the software for this application is a general purpose rou­
tine to do this; lines 179-199. To call this routine it is assumed 
that the lower order byte of the counter is in register C, higher 
order byte in register B and full original count is,in HL. Con­
tents of H, L, Band C are destroyed returning actual count 
in BC register pair. To obtain the number of pulses that 
occurred, subtract this number from full original count and 
add 1. 

Converting this remaining count to an actual temperature can 
be done by various methods but it was chosen to do a soft­
ware map through the use of a block search routine. Table 8 
presents approximations of what the remaining count should 
be for each temperature. To keep the software simple it was 
only necessary to compare the most significant byte to a list 
to find the appropriate temperature. This search routine is set 
up to find a "less than" match, incrementing the HL register 
as a pointer when a compare is made. The code for this 
search routine is in lines 118-144 and is optimized to be a fast 
8 byte block search. This search routine can be made to 
search for a match by replacing all return on carry with return 
on zero. The performance of this subroutine is as follows: 

Byte time = (11 + (166/8) N) CC/N = (11/N + 20.8) CC 
where: CC = microseconds per clock cycle 

N = total number of bytes searched 
Byte time = time per byte searched 

I.~ 
I ~ 

I, i 
I 

I'I 
Iii 
! 

I' 

I 

I 

I 
I 

I 



'~ 
Ii 
r I' 
i 

179-199 

CODE LINES 

t 
18-23 

, 
28-32 

I"~ 
Ii 
~ 

36-37 
118-144 

42-47 

79-82 

101-105 

Figure 21. Temperature Sensor Flow Diagram 

A1-29 



~ 
IN 
o 

THERMISTOR 

DEG.C OHMS 

20 12,490 

21 11,940 

22 11,420 

23 10,920 

24 10,450 

25 10,000 

26 9,573 

27 9,167 

28 8,777 

29 8,407 

30 8,057 

31 7,723 

32 7,403 

33 7,097 

34 6,807 

35 6,530 

36 6,267 

37 6,017 

38 5,747 

39 5,547 

40 5,327 

41 5,117 
-

8085A Cycle Time = 326 ns 

Oneshot Approx. Time = 

LN2 (CEXT) (REXT) 

"" (.7) (.1,u) RTHERMISTOR 

(.7) (.1,u) (RT) 

APPROX. TIME (ms) 

.874 

.836 

.799 

.764 

.732 

.7 

.670 

.642 

.614 

.588 

.564 

.541 

.518 

.497 

.476 

.457 

.439 

.421 

.402 

.388 

.373 

.358 

Table 8. Thermistor Resistance Mapping 

START WITH 3FFEH 

APPROX. COUNT LEFT (HEX) 

3585 

35FA 

366A 

3605 

373A 

3772 

3700 

3840 

38A1 

38F1 

393C 

3984 

39C8 

3AOA 

3A48 

3A84 

3ABC 

3AF2 

3B2C 

3B57 

3B86 

3BB3 

= 
'" w 
m 
m 

~ 

91"3 
W' 
~o 

em3 
~, 

l1Q.J 

~J 

~J 
_. 
~. _. 
-, 
~. 
_. 
_0 -, 
~J -, _. 
~. w. 
ml 
3~~ 
~. 
~~ 
~u 
~a 

=ro _ro 
m~ 

_a 
m~ 

-~I 

_f __ ~~-=.:~.~-:-~. 

UNI·CURVE IHH'CHANGEABlE THERMISTOR 
~ j.IO~~ .. '" oilJ",,,' .. te., i'r .. u~· ," """' ...... , '" ~!.lnj .. "1 
'led ·p"~I .. nrp '.""'''".Jl- ' .. ,urv .. I"~ )".01'''10( ,,'('0,1" I 

:,~. 1:::;~;;~.I~r~·v;~ '~'~"~;I::;"~~,:":.~I~~: ':::.~I(; .I'u~~ 
NOT[- Md, t,,. -.r'·.· .. Ot ... 1.,,,, " .. eye' .'P ,1' 

cyr'mp ... :."." ~ r. rn~v ,"~, ...... r~' ,,,, .. p'.r I', 
eHee<l,lhp '.pe, ,1".1 1<1'''',." t 

~~-':~"7::~~'~~.:-:;:1 
l;~?~'.8~t~I._ II~/'C _1 I~_K m •• J 

'('J t; _ po_, ,~ ..,," .... ,,~ '""w"'" to , •• ,~ ,h~ .... , .. O' 

"T C !.=:::~::~..:~' ,:'::;';::,'::: 

IU'STANCfTOlt_ANCE 

... --~-=p I . 

$.0 '" 

. -, 
~ ~ J W ~ ~,~ 

"of---+--+- 1 ~. 1 

~ ·1 I I 

' .. 
.~,._'i.:. 

- -~- c"""'-= 



For an example with N = 256, CC = .32 f.Lsec at 3.125 MHz; 
Byte time = 6.7 f.Lsec. A match search routine with minimum 
memory usage is given below: 

Search Cmp M compare byte 
RZ return if match 

INX H else increment pointer 
OCR C has the entire 
JNZ search block been searched? 
STC If so set no match flag 
RET and return. 

In this application, a user may want to have several tempera­
ture ranges which can be swapped in and out with a block 
move subroutine. Similar code can be developed for this as 
shown below for a 4 byte move group: 

BLKMV LXI H, OOOH clear HL 

Loop 

DAD SP move SP to HL 
SHLD SAVESP save sP 
MOV H, B move Block move 
MOV L, C Source address 
SPHL To SP 
XCHG Move Block move 

POPB 
POP 0 
MOV M, C 
INX H 
MOV M, B 
INX H 
MOV M, E 
INX H 
MOV M. 0 
INX H 
OCR A 
JNZ Loop 
LHLD SAVESP 
SPHL 
RET 

address to HL 

fetch four bytes from 
source store 1st byte 
at destination 

2nd 

3rd 

4th 

check for end of 
Block move 
return old 
SP 
return 

Once the count less than match is found in the application the 
HL register has 10 added to it which points it at the corre­
sponding temperature (lines 79-82). This temperature is then 
displayed in the address field of the SDK 85 display using 
user available monitor routines. If the temperature is out of 
range the code detects it (lines 69-74) and outputs 1's on Port 
A or Port B if the temperature was too low or too high respec­
tively (lines 101-105 "too low" and lines 108-112 "too high"). 

A1-31 



APPLICATION EXAMPLE 2 
CRT INTERFACE 
Most microprocessor systems require some sort of 
serial communications. This may be selected for 
reasons of economy (to reduce the number of 
interconnections required in a distributed system), 
or it may be necessary in order to communicate 
with such common peripherals as CRT's or tele­
typewriters. 

These ,peripherals all use a standard convention for 
transmitting serial ASCII code. Each data byte is 
transmitted as a series of 10 or II bits. The uni­
form time per bit corresponds to the data trans­
mission rate. For example, if the transmission rate 
is to be 2400 baud (2400 bits per second), each bit 
time must be 1/2400 bps = 416.7 J.lsec/bit. The 
standard IO-bit sequence consists of a logically 
zero "Start" bit, 8 data bits (least significant bit 
first), and one or more stop bits (logic I). An 
II-bit sequence with two stop bits is used for 110 
baud TTY's. The logic one level continues until the 
start bit of the next byte to ensure that each 10-bit 
sequence is initiated with a one-to-zero transition. 
The 8 bits transferred might be raw binary data or 
alphanumeric characters using the standard ASCII 
code. In this case, the most significant bit - the 
last data bit transmitted - will depend on the 
parity convention being used. This sequence is 
illustrated for the ASCII "space" character in 
Figure 22. 

6 BITS 

The algorithm for receiving serial code involves 
sampling the incoming data at the middle of each 
bit time. The eight sampled values are shifted into 
a serial byte corresponding to the data originally 
transmitted. The one-to-zero transition at the 
beginning of each byte makes it possible to syn­
chronize the sampling points relative to the start 
of each data sequence. 

Hardware Interface 

In general, any serial communications system will 
require both hardware and software interfaces. 
Since the SOD line can drive only one TTL load, 
additional current and voltage buffering is required 
to be compatible with the RS-232C interface 
standard used by most peripherals. A schematic for 
achieving this buffering is shown in Figure 23. The 
MC1488 and MC1489 circuits interface positive 
logic TTL signals with the RS-232 high voltage 
inverted logic levels. 

Software Package 

The software needed to drive the CRT interface is 
divided into three parts. All three use software 
timing and delay loops, with fixed and variable 
parameters. In conjunction, they are able to 
identify incoming signals at any rate from below 
I 10 to over 9600 baud and respond at the same 
rate. 

I I I I I I I I I I 
5;':;0; D, 0; 0; 0; Os 0; 0; :; 

BIT BITS 

Figure 22. ASCII Space Character 

A1-32 

11," 
I" 

Ii 
I 

I 

I 

I': 
I' 



SID 6 

8086 

SOD 4 

+6V 

14 

N.C. 
2 

3 

12 

11 

MCI489 

7 

"::" 

+12V -12V 

10...----.... __ 

121--..... ----... 
13...----.... __ 

MCI488 

Jl 

CRT DATA OUT 

0 CRT DATA IN 

10 

13 SIGNAL o 0 0 0 000 0 0 0 
GROUND 00000000 0 

0 0< 

330pF 

GNDr~~------------~--------~--~ 

Figure 23. RS·232C Interface Schematic 

Upon power-up or reset, or when the console 
device baud rate is changed, the baud rate identifi­
cation subroutine (BRIO) is called. This routine 
waits until an ASCII space character (20H) is 
received from the console. (Any other character 
will result in a case of mistaken identification.) 
When a space character is received, two time 
parameters are computed which correspond to the 
bit time and one-half the bit time of the baud rate 
being used. These are stored as variables BITTIME 
and HALFBIT. To output a character to the con­
sole, the character code is placed in register C, and 
the subroutine COUT is called. This routine uses 
BITTIME as a parameter for the software delay 
loop which determines the baud rate. To accept r. 
character from the keyboard, CIN is called. CI1\I 
returns after the next key is typed, with the corre­
sponding character code in register C. CIN uses 
both parameters BITTIME and HALFBIT. 

Since COUT and CIN use time parameters com­
puted by BRIO, they will function at a rate the 
same as that of the initial space character input. 
Because of the nature of the software, the rate 
does not depend on the CPU clock frequency. This 

A1-33 

results in additional flexibility in the following 
respects: 

1. The software does not need to be modified 
if the 8085 crystal frequency is changed or 
Wait states are added. 

2. Since the time base is no longer critical, the 
quartz crystal could be replaced by a less 
expensive RC network, provided the fre­
quency does not drift by more than a few 
percent during a session. Additional drift can 
be accommodated by periodically recalling 
the BRIO routine. 

3. Communication is possible at non-standard 
baud rates which relaxes the constraints on 
system peripherals. 

It should be noted, though, that slowing down the 
CPU clock will decrease its throughput proportion­
ately. In addition, it will degrade the maximum 
resolution of the delay loops, with the result that 
the highest baud rates may no longer be achievable. 

A more detailed analysis of the CRT interface 
routines will be presented in the order of increasing 
complexity: COUT, CIN, and BRIO. Since SIO and 



SOD are ideal for many applications which involve 
critical I/O timing, the timing techniques used here 
may be of interest to software designers. Accord­
ingly, the mathematical derivation of the timing 
parameters is included in this analysis, as well as a 
justification for the BRID algorithm. The algebra 
involved might be a bit too tedious for designers 
unconcerned with generating software delays. If so, 
they (and other bored readers) have the freedom of 
choice to skip over the sections they find objec­
tionable. 

OUTPUT ROUTINE 

It would seem natural to write data in the standard 
format in three stages: output a zero start bit, then 
the 8 data bits (using a loop sequence), then the 
stop bits. Each stage would incorporate its own 
appropriate delay and output sections, leading to 
unnecessary duplication. Instead, the code below 
executes the same main loop 11 times. Its bit 
manipulation routine inherently results in the cor­
rect data sequence being formed. It accomplishes 
this by using the carry and C register as a 9-hit 
pseudo-circular shift register. Initially CY=O. The 
algorithm outputs CY, waits one bit time, sets 
CY=I, and then rotates the pseudo-register right 
one bit. This repeats for 11 cycles. On the tenth 
and all subsequent loops, the output bit will be a 
logical one, since that bit had been set nine loops 
earlier while in the CY (see Figure 24). 

When COUT is called the registers to be used must 
be preserved and interrupts disabled so the timing 
loop will not be disrupted. Clear the CY in prepara­
tion for outputting the start bit, and set the loop 
counter for 11 bits (if 110 baud will never be used, 
the counter could be set to 10): 

COUTo PUSH e 
PUSH H 
fi1 
:v:RP. R 
t~VI e.11 

Output of the contents of the CY: 

COl' MVI 
PAR 

The numbers in brackets indicate how many ma­
cine cycles are req uired for each instruction. They 
will be referred to in the timing analysis section. 

A1-34 

REGISTER C: 

STC 

CV: 

OUTPUT 

START BIT 

OUTPUT 

DO 

OUTPUT 

01 

OUTPUT 

06 

OUTPUT 

STOP BITS 
-----------------~ 

Figure 24. Data Serialization Algorithm 

Get stuck in a loop for the appropriate time (don't 
worry for now how "BITTIME" is determined): 

LHlC' 8IiTIl~E (1t.:: 
CO2 [:t(:R . [I 

.TNZ CO2 •. :[1 ! 

(lCP H '. [.:. 

JN2 CO2 I,D.! 

Rotate the contents of register C right into the CY, 
while moving a one into the left end. Continue 
until all bits have been transmitted: 

STC 
MOV A.·C 
PAP 
t'10~' C.R 
(:OCF.: B 
.J~t2 COl 

Restore processor status and return: 

! 
I 

I, 

I'"~ 
I 
I 
II 

I 

I 

I 

, 

I' 



I 
I' 
~~ 

" II, 

POP H 
POP !? 
EI 
RFT 

INPUT ROUTINE 

The console input routine uses the opposite pro­
cedure; instead of moving a bit from register C to 
the CY, then to A7, then to SOD, CIN loads a bit 
from SID into A7, then moves it to CY, then into 
register C. 

First, set up the CPU as before: 

CHI PUSH H 
PI 
!,!\,1I B.:? 

When a start bit transition arrives, the first sam­
pling should not be taken until the middle of the 
first data bit, one and one-half bit times after the 
transition. Await the start bit transition, then set 
up the delay parameter for one-half bit time: 

CIi' RIl'l (4) 

')PA A <4> 
m (Ii <7~.\ 

LHU' HALFPrT '-::1t:> 

Loop for one-half bit time before starting to 
sample data: 

CI2' [:ofF.' L ((i:. 

mz (12 ([I) 

DCP H .:[: . .., 
..TN: CI2 ,:.[:,':, 

Wait until the middle of the next bit before sam­
pling SID, then move the data bit into CY: 

eB: LHLf:t BITTH1E <16) 
C14: C(:P L ;;c·) 

.m: Cf4 <O:i 
[oCP- H <e') 
.m: (:14 W) 
RIM <4) 
PP-l <:4> 

Decrement the bit counter. If this is the ninth 
cycle, the 8 data bits are in register C, so quit (the 
first stop bit will already have been received, and 
be in CY): 

[)CP P <4) 
..1: CIS (7) 

A1-35 

Otherwise, continue. Rotate the data bit right into 
register C, and repeat the cycle: 

~10Y A,C {4> 
RAR <.f> 
NOli C.F! {,~) 

NOP <4) 
..Tt1P CE <113::' 

(A NOP is needed to make the COUT and CIN 
loops exactly equal in number of machine cycles, 
so that each can use the same delay parameter.) 
Restore status and return. 

CI5 POP 
E1 
FH 

TIMING ANALYSIS 

H 

COUT and CIN now need to be provided with 
parameters for BITTIME and HALFBIT. It can be 
seen from the above code that each routine uses 
61 + D machine cycles per input or output bit, 
where D is the number of cycles spent in either 
four line delay segmen t. If (H) and (L) are the 
contents of the Hand L registers going into this 
section of code, then: 

D = 22+«U-I)X 14+«H)-l)X 

[(255 X 14)+25] 

If (H)' - (H) - I, (U' == (U - I, and 

(HU' == 256 (H)' + (U' 
then 

D 22 + 14 (U' + 3595 (H)' 

This can be approximated by: 

D = 22 + 14 (HU' 

(1) 

(2) 

(3) 

(4) 

This approximation is exact for (H)' = 0; otherwise, 
it is accurate to within 0.3%. Thus each loop of 
COUT or CIN uses a total of: 

C = 61 + D = 83 + 14 (HU' machine cycles (5) 

Each machine cycle uses two crystal cycles in the 
8085, so the resulting data rate is: 

B = cycle frequency 
C 

(crystal frequency) +2 

83 + 14 (HU' 
(6) 



For a typical calculation, see the example below. 

EXAMPLE 

To produce 2400 baud with the standard 6.144 MHz 
crystal: 

2400 
(6.144 X 106) + 2 

83 + 14 (HO 

14 (HO (6.144 X 106 +2) 
2400 - 83 

(HO' [( 61442~O~06 + 2)_ 83J 

+ 14 = 85.5 ~ 86 

(HO' 8610 = 0056H 

(HO 0157H = BITTIME 

To determine the true data rate this parameter will 
produce, substitute into equation (6): 

6.144 X 106 + 2 
Date Rate = 83 + 14(86) 

= 2387 baud, which is 0.54% slow. 

For 9600 baud, the same calculations will yield (HO' 
= 17, which is actually 0.3% slow; a sizzling 19200 
baud or 38400 baud could each be generated to with­
in 5% if (HU' = 6 or O! Table 9 presents the param­
eters for several standard baud rates. 

Notice that the resolution of the delay algorithm -
the difference between bit times resulting from 
parameters which differ by one - is 14 machine 
cycles. As a result, the true bit delay produced can 
always manage to be within ±2.3 fJsec of the delay 

Table 9 

desired. This guarantees that at rates up to 9600 
baud, where each bit time is at least 104 fJsec wide, 
some value of BITTIME can be found which will 
be accurate to within 2.2%. 

BAUD RATE IDENTIFICATION ROUTINE 

The function of BRID is to compute the appropri­
ate parameters BITTIME and HALFBIT. It accom­
plishes this by observing the data pattern received 
when the space bar is pressed on the console 
device. Since a space character has the ASCII code 
20H = 001 OOOOOB, the pattern represented back in 
Figure 4 is transmitted. Notice that the initial Zero 
level is 6 bits wide. Suppose it could be determined 
that this corresponds to M machine cycles. Then 
one bit would correspond to (M+6) machine 
cycles. The reason for dividing down a space 
several bits long is so that any distortion caused by 
the signal rise and fall times, or any lack of pre­
cision in detecting the two transitions, will be 
reduced by a factor of six. Since the bit period of 
COUT and CIN is 83 + 14 (HO', BRID must gener­
ate a value (HOi such that: 

M + 6 = 83 + 14 (HOi 

(HOi (M + 6) - 83 
14 

(7) 

(8) 

I M 
(HO = 84 - 6 (approximately) (9) 

This value can be determined by setting register 
pair HL to -6, then incrementing it once every 84 
machine cycles during the period that the incom-

DELAY PARAMETERS FOR STANDARD BAND RATES USING 6.144 MHz CRYSTAL 

TARGET (HL)'10 (HL)' 16 (HL) or ACTUAL 
% 

BAUD BITTIME HALFBIT BAUD RATE 
RATE 

(See Text) (See Text) 
(See Text) PRODUCED ERROR 

110 1989 07C5 08C6 04E3 109.99 -0.006 
150 1457 05Bl 06B2 0309 149.99 -0.005 
300 726 0206 0307 026C 299.80 -0.068 
600 360 0168 0269 01A5 599.65 -0.059 

1200 177 OOBl 01B2 0159 1199.5 -0.039 
2400 86 0056 0157 012C 2386.9 -0.547 
4800 40 0028 0129 0115 4777.6 -0.469 
~600 17 0011 0112 0109 9570.1 -0.312 

19200 6 0006 0107 0104 18395.2 -4.37 

A1-36 

1",1.,'.' 

f 

\: 
I:, 
I 

! 
I 

II 
!, 
I 



I ing signal is zero. BITTIME is then obtained by 
individually incrementing registers Hand L. To 
obtain HALFBIT, divide the value of (HU' deter­
mined above by two before incrementing each 
register. 

In order to implement this algorithm, set HL to -6, 
verify that the incoming signal is a logic one, then 
wait for the start bit transition. 

BP.ID: MVI A, eCeH 
SIP'! 
LXI H.-€H 

BP.I1: RIM 
ORft A 
..Ip BRI! 

BF'I2: RI!1 
ORA A 
..IM BPI2 

Increment register pair HL, then delay so that each 
cycle will require 84 machine cycles: 

Bf?E' II";': H <6> 
MYI E. 01H (7) 

BRl4 ' DCR E "51.) 
..TNZ BP.I4 I } 

Check if SID is still low. If so, repeat: 

PHI <4> 
OPR Ii <4} 
JP BPI:: <113) 

A1-37 

Otherwise continue. Store HL temporarily for the 
HALFBIT calculation. Obtain and store BITTIME: 

PUSH H 
INP H 
TNR L 
SHLD BITTIME 

Restore HL, calculate HALFBIT, and return: 

ppp H 
ORA A 
MOil ,A.H 
RAP. 
b10V H.H 
MO',,.' A·l 
PAf;' 
~IO"'! L· A 
WP H 

HIP L 
::HLf:o HAlJE' IT 
PET 

The assembled listings for these subroutines, along 
with a simple test program, is presented in the CRT 
and Cassette Code. 



APPLICATION EXAMPLE 3 
CASSETTE RECORDER INTERFACE 
There are many situations where data has to be 
transmitted through a non-ideal medium. To give 
three typical examples, a system with electrically 
isolated elements might require that signals be AC 
coupled, communications through an audio net­
work (such as telephone or radio) are greatly band­
width limited, and some applications (such as a 
distributed network in an industrial environment) 
must tolerate random electrical noise. Attempting 
to record data on a cheap cassette recorder (the 
one used for this note cost $17.00) will reveal all 
of these shortcomings, plus one: The tape speed 
fluctuates significantly and varies as the batteries 
fun down, hence the data rate is inconsistent. 

The recording scheme used here makes very few 
demands on the transmission medium. It makes no 
attempt to transmit DC voltage levels. Instead, data 
is transmitted by a series of variable length tone 
bursts. The dominant frequency of the tone used 
can be selected to be within the passband of the 
particular medium. Data is transmitted with each 
bit composed of a tone burst followed by a pause. 
The first third of a bit period is always a tone 
burst, the middle third is either a tone burst con­
tinuous with the first or a pause corresponding to, 
respectively, a one or zero, and the final third is 
always a pause, as shown in Figure 25. Thus, data 
is distinguished by the burst/pause ratio. 

Hardware Design 

These tone bursts are obtained from the 8085 SOD 
line, using analog signal conditioning to eliminate 
the DC component of the waveform. (This low 
frequency component is due to the single-ended 
nature of the SOD line: it's deviations from ground 
are all positive, which unbalances the capacitive 
input stage of the recorder.) A suggested interface 

A1-38 

circuit is shown in Figure 26, using one LM324 
quad op amp and a few standard value discrete 
components which should be available in even a 
digital design laboratory. On playback, analog cir­
cuitry is again used to detect the presence of a tone 
burst. In Figure 26, A2 buffers the incoming signal, 
and A3 inverts it. The peaks of these two signals 
are transmitted through 0 I or 02 and are filtered 
by an RC network. Comparator A4 then squares 
up the output and produces the logic signal read 
by the SID pin. Since the op amps are powered by 
the single 5-volt supply, a 2.0-volt reference level 
is obtained from a resistive voltage divider. The 
waveforms present at several points in the circuit 
are shown in Figure 27. 

Software 

The algorithm for reading a data bit off the tape is 
simple and straightforward: If the tone burst is 
longer than the pause, the bit is a one. Otherwise, 
it is a zero. Since only the time ratio is considered, 
any variation in tape speed will not affect the data 
determination. 

VOLUME CONTROL 

A question that arises with any audio cassette inter­
face is how to set the volume control. (Recording 
level is usually determined internally.) When the play­
back level is correct. the logk signal output from A4 
will have either a one-third or two-thirds du ty cycle. 
This can be readily observed with an oscilloscope. In 
the field, an old-fashioned mechanical-type voltmeter 
could be connected to the A4 output, and the volume 
adjusted until the mete~ needle hovered somewhere 
between 1/3 and 2/3 the high level output voltage. 
With random data, the reading would be about 2 
volts. There will be a fairly wide range of acceptable 
volume settings. (Since the quivering meter needle is 
being used here for inertial signal averaging, a digital 
voltmeter would not be very helpful in this applica­
tion.) 



VOH 

SOD OUTPUT 

VOL 

I 

DATA "0" DATA"'" 

Figure 25. Tape Interface Data Recording Scheme 

0---­
~--~~--~------------~~~--------------~------------------~soo 

8085 

o 
">--------=-----ISIO 

NOTES: Al - A4: % LM324 QUAD OP AMP 
01 - 02: ANY LOW CURRENT DIODE 
ALL RESISTORS ±5% 

Figure 26. One Chip Magnetic Tape Interface Schematic 

A1-39 

TIME 



\--TONE BURST---I 

VOH 

lUI @ 
VOL 

3V 
® 1V '-..r\.J 

@ GND ------, 

( RECORDING OR TRANSMISSION MEDIUM) 

+1V 

@ GND----~ 
-1V 

@ 2.0V----­

GND 

CD 2.0V----_ 

GND 

+4V 

@ 2.0V ~ \ , \ I k::::::: COMPARATOR 
~LEVEL 

W 

GND ____ --' L 
, • RECONSTRUCTED SIGNAL ., 

Figure 27. Analog Signal Waveforms 

After the CRT software analysis, the tape routines 
are almost trivial. TAP EO is a subroutine for out­
putting the contents of register C to a cassette 
recorder. TAPEIN reads 8 bits into register C. 

OUTPUT ROUTINE 

T APEO calls a subroutine named BURST three 
times for each bit. If A6 (the SOD enable bit) is set 
when BURST is called, a square-wave tone burst 
will be transmitted. If A6 is not set, BURST 
simply delays for exactly the same amount of time 
before returning. The three calls are used to, 
respectively, output the initial burst, output the 
data burst/space, and create the space at the end of 
each bit. Nine bits will be output: the eight data 
bits (LSB first) followed by a zero bit. The start of 
the initial burst of the trailing zero is needed to 
mark the end of the final space of the preceding 
data bit. 

Start each bit by outputting a tone burst: 

TAPEI]: 1'1'.11 B·9 
T01: ~1V! A..OCeH 

CALL BURST 

Al-40 

Rotate register C through CY: 

MOil R .• C 
RAR 
MOIl C, fI 

Move CY to the SOD enable bit position, A6. 
Simultaneously set A7 to one, and clear all other 
bits. Output a tone burst or space, depending on 
the previous contents of CY: 

Mill A, 01H 
RAR 
RAR 
CALL BURST 

Clear the accumulator, and output a space: 

XRA A 
CALL BURST 

Keep cycling until the full 9-bit sequence is fin­
ished: 

B 
T01 

The BURST subroutine executes the SIM in­
struction CYCNO times, at intervals of 29 + 14 
(HALFCYC> machine cycles. In between each SIM, 
bit A7 is complemented. CYCNO should be an 
even number. If A6 is set upon calling BURST a 
square-wave will be created. Otherwise, the same 
code sequence is followed but SOD does not 
change - thus a spac~ results. 

BURST. 11..,.1 (/. ('feNO (7) 

But SIN <4} 

t'lVI E.. HHLFCYC (7) 
BLl2. ()CR E (4) 

JNZ BtJ2 {7 ... '10) 
:<;RI 8€lH (7) 

DCR [j (4) 

JNZ SUi <7/1e> 
RET (10) 

INPUT ROUTINE 

T APEIN uses a subroutine called BITIN to move 
the data at the SID pin into the CY. The maximum 
rate at which SID is read is limited by a delay loop 
in BITIN. 

Initialize the bit counter and the register D, which 
will keep track of the tone burst time. If a tone 

It 
\'1 
I':· 

\' 

I ... 
I, 
i 



'-I" I, 

I, 

i,' ~' 
1'1 

burst is being received when T APEIN is called, 
wait until the burst is over: 

TAPEIN: Mill B,8 
~1\lI O .. eeH 

TI1: CflLl SiTIN 
JC TIl 
CALL SIiIN 
JC Til 

(Throughout this subroutine, a level transition is 
recognized only after it has been read once initially 
and then verified on the next reading. This pro­
vides some degree of software noise immunity.) 
Now await the start of the next burst: 

TI2 CFlLL BHIN 
.TNC TI2 
Ctill E:I,W 
,me TI2 

The next burst has now arrived. Keep reading the 
SID pin, decrementing register D (thus making it 
more negative), each cycle until the pause is 
detected: 

T13 nCR [:t 

CRLL 8iTIN 
JC TIl 
CRlL E:ITiH 
JC H2 

Now continue reading the SID pin, incrementing 
the D register (back towards zero), each cycle until 
the next burst is received: 

TI4 rt-JR 0 
(FILL SITYN 
JNC TI4 
CRll SHIN 
JNC TI4 

Now, if the burst lasted longer than the space, D 
was not incremented all the way back to zero; it is 
still negative. If the space was longer, D was incre­
mented up through zero; it is now positive. In 
other words, the sign bit of D will now correspond 
to the data bit that would lead to each of these 
results. Move the sign bit into the CY, then rotate 
it into register C: 

I'tIV ltD 
~AL 

MOV A,C 
RAR 
l1GV CA 
Mill D,0l1r1 

A1-41 

Continue until the last bit has been received: 

[.oCR B 
JNZ TI3 
RET 

(Notice that the first half of this subroutine is 
incorporated in the second half. In fact, the as­
sembled listing included in the Appendix makes 
use of this fact to eliminate 24 bytes of duplicated 
code.) 

BITIN waits a short time in order to regulate the 
sampling rate, then reads SID and moves the data 
bit into the CY: 

BITW: l'tVi E, CI(RATE (7" I~ 

8I1: OCR E (4) 

JNZ Bf1 (7/1iD 
PIM (4) 

RAL (4) 

RET <1.0> 

The tone burst frequency and duration, and 
the T APEIN sampling rate are determined by 
HALFCYC, CYCNO, and CKRATE. Tables 10 and 
11 give typical values. 

Table 10 

EXAMPLE COMBINATIONS OF HALFCYC AND CYCNO. 

APPROXIMATE 
TONE 

FREQUENCY 

500 Hz 
1 kHz 
2 kHz 
5 kHz 

10 kHz 

ALL VALUES IN DECIMAL 

CORRESPONDING RESULTING DATA RATE 

HALFCYC 8 20 100 
VALUE 4 10 50 

217 42 17 3.3 
108 83 33 6.6 

53 166 66 13 
20 414 166 33 

9 826 330 66 

Table 11 

MAXIMUM SAMPLING RATES 
FOR VARIOUS VALUES OF 

CKRATE 

CKRATE 
SAMPLING RATE 

VALUE 
(INCLUDING 
CALL & RET) 

1 17.6 J..lsec 
20 104 J..lsec 
80 378 J..lsec 

250 1.14 msec 

CYCNO 
CYC/BURST 

bps 

bps 

bps 
bps 

bps 



The CRT and Cassette Code also includes a simple 
block record routine utilizing T APEO. Before 
calling BLKRCD, HL must be set to the start of 
the desired block, and the recorder turned on 
manually. Successive bytes will be recorded until 
the end of that page, i.e., until L is incremented to 
zero. The playback routine requires presetting HL 
to the target address and turning on the recorder 
before PLA YBK is called. These routines incorpor­
ate a long tone burst before each data block to 
allow a recorder with Automatic Gain Control to 
stabilize before the data starts. 

ADDITIONAL COMMENTS 

The two design examples given so far were built up 
using an SDK-85 System Design Kit. Both hard­
ware interfaces were wire-wrapped on the ample 
breadboarding area provided on the board. The 
connections between SID and SOD and the on­
board TTY interface were broken, so as not to 
affect the 8085 1/0 electrical characteristics. 

The CRT interface was tested with a Beehive Mini­
Bee II Terminal in the full duplex mode at each of 
its 14 possible transmission rates, from 110 to 
9600 baud. It was also checked out at 19200 baud 
using a Beehive B-IOO terminal. In addition, the 
software was exercised using an SBC 80/20 system 
as a variable baud rate character generator and 
receiver. 

An additional advantage to having software select­
able communications rates is that it would be pos­
sible to communicate with several system periper­
als; each at its own preferred rate, without having 
to duplicate hardware. For example, the addition 
of a single 7408 AND gate and an output port 
(such as on the 8155) would make it possible to 
use the same two RS-232 circuits to interface with 
up to seven I/O devices (see Figure 28). Three of the 
MC1488 drivers have Enable inputs which can be 
controlled by the output port. One AND gate can 
be used to buffer the SOD line and drive the 
MC1488 Data inputs. The rest of the 7408 can be 
configured as a four input AND gate. This would 
act as an inverted logic OR gate to reduce the four 
MC1489 receiver outputs to a single line, which 
could be read by the SID. This assumes that only 
one input device (CRT, PTR) at a time will be used 
(which is usually the case in a non-time shared, 
interactive application), and that the unused 
devices are transmitting a logic one level (which 
should also be the case). 

A1-42 

+12V -12V 

8085 7408 MCl489 

ITO 
PERIPHERAL 
OUTPUTS 

Figure 28. Interfacing 8085 to Multiple Peripherals 

The software needed to support additional periph­
erals would be simple and straightforward. A 
routine intended to dump a section of memory to 
a paper tape punch, for example, would first have 
to store BITTIME and HALFBIT somewhere (per­
haps on stack), load the variables with new param­
eters corresponding to the paper tape punch rate, 
and then write a bit pattern to the output port 
which would disable the console driver and enable 
the punch (and perhaps a typewriter). After the 
dump was over, the original time parameters and 
driver status would be restored. 

As explained before, the BRID routine computed 
rate parameters based on the fact that an ASCII 
"space" character resulted in a zero level 6 bits 
long. Conceivably, some obscure peripherals might 
produce a transient between successive zero bits. 
(This might be the case, for example, if the signal 
was produced by mechanical rather than electronic 
means.) If so, the BRID algorithm used here prob­
ably would not work reliably. Once the two time 
parameters were identified, though, COUT and 
CIN could still be used. An alternate algorithm for 
baud rate identification would require a table in 
ROM (note the fifth and final RIS-I/O-M/D permu­
tation). This table would contain a list of delay 
parameters corresponding to the standard transmis-



1 
1

', 
,I 

, 

, 
t 
t 

i 
t 

sion rates, as computed for the selected crystal 
freq uency. Initialization would req uire the oper­
ator to hit a specific key several times (usually the 
"U" key, which generates a pattern of alternating 
ones and zeros). The identification routine would 
attempt to "read" this pattern at each baud rate, 
in turn, until finding the rate at which the read 
was successful. 

The cassette recorder used to develop the tape 
interface was a Lloyd's push-button model which 
cost $17 in 1972. Empirical testing has indicated 
that for this application, the quality of the cassette 
recorder is less critical than the quality of the tape 
itself. In other words, some 33~ cassettes were not 
very reliable, even when used with more expensive 
recorders. 

When using a cassette at the beginning of a side, 
allow the tape to run for about 10 seconds until 
the leader has passed before starting to write data. 
Otherwise, data will be lost to the leader. 

Depending on the recorder quality, the tone burst 
freq uency and duration can be optimized for 
higher data rates by modifying HALFCYC and 
CYCNO. If so, CKRATE should also be reduced, 
so that between about 10 and 80 data samplings 
are made during a single (one-third width) tone 
burst. At greatly increased frequencies, some of the 

A1·43 

components in the analog interface might also be 
modified. 

The two simple routines for recording and playing 
back blocks of data were intended to illustrate one 
way of using TAPEIN and TAPEO, and therefore 
do not contain any provisions for error detection 
or correction. Depending on the nature of a partic­
ular application, these routines could be aug­
mented with parity bit or checksum comparison, 
or an error correcting code technique. 

Funny things happen when recording and playing 
back a page of RAM which includes the subroutine 
stack. Eventually, PLA YBK will start writing over 
the data at the top of the stack, destroying the 
subroutine traceback sequence. The next RET 
instruction will then cause a jump to a place where 
you'd rather not be. 

The printout reproduced in the CRT Code inchides 
the assembled listings for the CRT and magnetic 
tape interfaces discussed in this application note. 
The object code produced was programmed into 
an 8755 EPROM, which was installed in the expan­
sion PROM socket of the SDK-85 board. Some 
very minor differences exist between this listing 
and the code segments presented earlier, which 
were written for maximum clarity. 



Temperature Sensor Code 

ASI!88 : F1: TEST. SRC IlOO85 

ISIS-II 8888/8885 IR:RO RSSEI'IBlER, V2. {I 

LOC (EJ 

826C 
8287 
85F1 

2894 JEBF 
28116 D325 
2898 JEFF 
289A [1324 
28IlC JEC{I 
29IIE D329 

2818 JEca 
2812 39 
2813 JE48 
2815 39 
2816 FB 

2817 88 
2818 01729 

2918 JE48 
281D D329 
281F DB24 
2821 4F 
2822 0825 
2924 47 
2825 263F 
2827 2EFF 

SEQ ~ STATEJ£NT 

1 ; 
2 ; 
3 HXDSP Eoo 
4 OOTPUT Eoo 
5 DElAY Eoo 
6 ; 
7~ 
8 ; 
9 ; 

18 ; 
11; 
12 
13 
14 ; 

LXI 
DI 

Il26CH 
8287H 
1l5F1H 

; EXPfN) lEX TO DISPl.AY, SI)I( ~IT~ ROOTIt£ 
;OOTPUT TO DISPI.AY, SI)I( ~IT~ ROOTII£ 
;DElAY DISPI.AY, SI)I( ~n~ ROOTII£ 

; INITIfl.IZE STOCKPOINTER 
; DiSABlE INTERRI1'TS 

15; INITIfl.IZE CWflER IN 8155 F~ CIJMT~ 10)£. L(WI) COlMER 
16; WITH HIGI£ST YIIJ£ (lFFF> 
17 ; 

IIYI A,8BFH 
OOT 25H ; fl>DRESS F~ T~ Hfl.F OF cru.TER 
IIYI A. IIFFH 
OUT 24H LIllER Hfl.F OF CWflER 
IIYI A.8C8H 
OOT 29H ; CIJMT ~ 10)£ START 

18 
19 
28 
21 
22 
23 
24 ; 
25; 
26; 
27 .; 
28 
29 
39 
31 

PI.l.SE TIE M 5I(IT WITH A POSITIVE GOII«i PLlSE ON 11£ SOD 
OOTPUT PIN OF 11£ 8885. 

32 
33 ; 

ft,8C8H 

A,48H 
; OOTPUT A HIGH ON SOD LII£ 

; OOTPUT A LOW ON SOD LII£ 
; EIRILE INTERRlf'TS(AFTER PLlSE) 

34; IDlE oolL (HSHOT INTERR\J'TS TIE RST 6. 5 PIN ON 11£ 8885. 
35 .' 
36tf'O 
37 
38, 

I«JP 
JI1P ; IDlE ~TIL INTERRt...,T 

~. If'TER INTERR\J'T, STOP COlMER AND REf{) IN FItfll CWlT FRIJI 
48; 8155, STORE IN REGISTER PAIR Be. 
41; 
42 CNTIJ 
43 
44 
45 
46 
47 
48 
49 
59. 

IIYI 
OOT 
IN 
let' 
IN 
PKlY 
IWI 
",,'I 

28H 
24H 
C,A 
25H 
B,ft 
H, lFH 
LIIFFH 

;ST~ COooER 

; STORE LOWER ORDER BYTE IN C 

; STORE HIIHR ORDER BYTE IN B 
; L(WI) Hl WITH FLU START CWlT 

51; f{)JUST TIE COUNT Yfl.L( IN REGISTER Be TO REPRESENT ACTlA 
52. .CWlT (SEE TEXT F~ EXPLANATION) 

A1-44 

\1 
III i I 
1 ~' 
I,' 

II 
I, 

\ 

I 

I 



Temperature Sensor Code (Cont'd) 

I S I s-II 8888/8885 Ift:RO RSSEPllLER, Y2. 9 

LOC OOJ SEQ 5(U(CE STATEIENT 

53 ; 

1:,1 

2829 CD6828 54 CALL fl>JUST ; caMRTS 8155 rom TO ~TlR. ~T 
55; 
56; SETlf INITIILIZATI~ F~ SEARCH ROOTINE. ROOTINE LOOCS F~ TEIFERfITlRE 

II 
57 .; RfNlE IF emn (SEE TEXT). SEARCH MV F~ Lfm< IR.F TO SIIRIFV COOE. 
58; 

II 282C 2E88 59 ""I L88H ; SET II. TO BEGII.UI«l IF SEARCH 

:1 

292E 2628 68 ""I H,28H ; STRII«l IN IEIGV. 
2839 88 61 ~ B ; CLE~ CARRV F~ ROUTINE. 
2831 78 62 I«lY A,B ; PUM:E B INTO ACCtJU..AT~ 
2832 8E91 63 ""I e,iH ; SET TIlES ~ SEARCH 
2834 Cl>9228 64 CALL SEARCH ; LOOCS F~ TEfF RAta: rom IS IN 

I 
65; 
66; Cl£eI( IF SEARCH IfIS SOCCESSfU.. IF NOT TI£N OUTSIDE InEPTABLE 
67.; RfNE. 
68; 

28373E88 69 ""I A,88H ; DID L FIN> LESS 1WW AT 
2939 f() 78 XRA l ; AT. BEGIIfHI«l IF STRII«l? 
283A CM29 71 JZ TL~ ; TEfF BEL~ ILLMD Ll"ITS, SET ~l A 
2930 3E98 72 ""I fl.llllH ; DID e GET DECRB£NTED? 
293F B9 n CIF e ; IF SO, SEARCH DID NOT FIN> 
2948 CfIl829 74 JZ lHlGH ; TEfF fIB(M LI"ITS, SET ~l B 

75; 
76 ; 5(fTIftE IIAP TIE IftTCH TO A TEIFERfIME IN DEGREES C BV fl>Dll«l 
n; 18 TO SEARCH fl>DRESS PLtU TEIflERATlft IN REGISTER E. 
78; 

2943 JEeR 79 ""I A,8fIl ; SHIFT II. BV 11l (S!FT1ftE 1flP) 
2945 85 88 ADD L 
2946 6F' 81 I«lY LA 
28475E 82 I«lY E," ; REfI> IN TEIflERAME 

83 ; 
84; SET If INITIALIZATION F~ DISPLAVII«l TElFERATlft USII«l SOl( 
85; I()NIT~ ROOTINES. FIRST EXPAIIi DE REGISTER AN) TIEN DISPLAV 
86; F~ OELAV PER I 00. 
87; 

2848 9689 88 ""I B,88H ; CLEAR DOT AT fl>DRESS FIELD 
284A eD6C82 89 (;ALL HXl)SP ; CILL EXPAI() 
2840 3E98 98 ""1 A,8(!H 
294F Cl>B782 91 CALL OUTPUT ; \)JTPUT TO SOl( DISPLAV 
2852 l1FF911 92 LXI D,8FFH ; SET DELAY PERIOD 
2955 CDF185 93 CILL DELAY ; DIg>LAV F~ DElAY PERIOO 
2858 CF 94 RST 1 ; 5(FTIfIRE RESTAI<T 

95; 
96 .; stmJUTlNES 
97; 

28ff" 98011G 28AFH 
99; 

1911 ; 
29AF 3Efj} 191 TlOW 11\11 A,83H 
2f.IB1 D329 192 ooT 29H 
2883 3EFF 193 ""I A,9FFH ; SET PORT A AS 1'5 
2885 D321 184 OUT 21H 
2887 CF 195 RST 1 

186 ; 
1fj7 ; 

A1-45 



Temperature Sensor Code (Cont'd) 

ISIS-II 888eI8885 IflCRO ASSEIfIt.ER, V2. e IQ)llE PI&: 

LOC r.eJ SEQ 5(UC£ STATE/DT 

2888 lElll 1118 THIGH' ItVI A,93H 
28IIA 0329 199 em 28H 
298C JEFF 119 ItVI A. 9FFH iSET ~T B AS 1'S 
2eI:IE ()322 111 em 22H 
2la CF 112 I1ST 1 

113 ; 
114 i 

2992 115 ~ 21192H 
116 i 
117 ; 

2992 BE 118 SEARCH CIt? 
21193 DB 119 RC 
2894 23 129 INX i ELSE IraEI£NT POINTER 
21195 BE 121 ClIP i CMARE 2M) BYTE 
21196 DB 122 RC 
21197 23 123 INX 
2898 BE 124 ClIP i CMARE 3RI) BYTE 
21199 DB 125 RC 
2II9fI 23 126 INX 
2II9B BE 127 ClIP i CMARE 4TH BYTE 
289C DB 128 RC 
2II9D 23 129 INX 
299E BE 139 ClIP ; CMIft 5TH BYTE 
2II9F DB 131 RC 
28A9 23 132 INX 
28A1 BE 133 ClIP • ((WARE 6TH BYTE 
2IIR2 DB 134 RC 
211Rl 23 135 INX 
2IIR4 BE 136 CIt? ;C~ 7TH BYTE 
2IIR5 DS 137 RC 
29A6 23 138 INX 
211R7 BE 139 (.'If' i C(WARE 8TH BYTE 
29A8 DS 1411 Rt 
2fIA9 23 141 INX 
29ffi lID 142 Dl"R C i HAS ENTIRE BlOCK BEEN 
28A9 C29228 143 JNZ SEARCH • SEARCI£D? IF so SET NO 
2ft C9 144 RET i LESS TIfII AND RETlRN. 

145. 
146 .' RESTART 6. 5 J\.If' IlJOI1ESS 
147. 

20CE 148 ~ 211CEH 
149. 
159 i 

29CE G1S29 151 ,11f' CNTU 
152· 
153 , 
154. 
155. 
156 . 
157 , 
158. SEAllCH C(w~E DHTA STRINJ (SEE m:n 
159. 
1611 i 

2e..QlJ 161 ORG 2f.I88H 
162 . 

A1-46 



1 
" 

1,1 

I I 

I 

" 

Temperature Sensor Code (Cont'd) 

ISIS-II 888818885 lIDO AS5eIl.ER, Y2.8 

LOC taJ 

2888 35 
2881 36 
2882 37 
2883 38 
2884 39 
2885 3fI 
2886 38 
2887 3C 

2888 

2888 21 
288C 23 
2881) 25 
288E 28 
298F 31 
2898 35 
2991 39 

2868 

2868 78 
2861 E6JF 
2863 iF 
2864 47 
2865 79 
2966 iF 
2867 4F 
2868 [)8 

2869 JF 
286A 7C 
296B iF 
286C 67 
2860 7D 
286E lF 
286F 6F 
2879 89 
2971 44 
297241) 
2873 C9 

PlIllllC SYII8Il.S 

EXTERNAL SYm.5 

IJSEII SYII80LS 

SEQ SOJa STAIDENT 

163 ; 
164 

165 ; 

De 

166; sa=TWARE PW TO TElftRATlft 
167 ; 
168 II1G 28B8H 
169 ; 
178 ; 
171 De 21H, 23H, 25ij, 2811, 31H, 35H, 39H 

172 ; 
173 ; 
174 IJ!(j 286eH 
175 ; 
176 .; 
177; SlIIROOTlI£ fl)JUST F~ ClOT IN 8155 
178 ; 
179 fl)JUST lIlY A, £I 
188 ANI lFH 
181 Rf¥1 
182 II)Y 8, A 
183 
184 
185 
186 
187 
188 
189 
1ge 
191 
192 
193 
194 
195 
196 
197 
198. 
199; 
289 

~v A,C 
RAR 
lIlY 
RNC 
CK; 

C, A 

lIlY A, H 
Rf¥1 
lIlY H, A 
lIlY A, L 
Rf¥1 
lIlY LA 
[)fI) B 
lIlY £I, H 
lIlY C, L 
IU 

EM) 

i LOll) fl:ClfU.AT~ WITH lJ'PER IR.F 
; RESET lJlPER 00 BITS, ClEII1 CARRY 
; ROTRTE RIGHT ~ CARRY 
i STORE SHIFTED YfLl.( IIA)( IN £I 
i LOll) RCWU.AT~ WITH LIllER IR.F 
; ROTRTE WITH CARRY RIGHT 
; STORE SHIFTED YfLl.( IN C 
i 1ST IR.F ~ SECOI(I? IF SECOI(I RETlB 
i CLEAR CARRY 
i (IlTAIN M IR.F OF FLU C(oJ 
i IF It. IS (01) THIS CONTRINS 
i (1£ IR.F(FlILL CWfl-1), IIHCH 
; IS W/RECl 

i Drul.E ~CISION fI)I) 

; RESTORE Be REGISTERS WITH WMT 

ISIS-II 8888/8985 IlA(;IW f6SEI'IBLH:. "2 e 

fli."JSl A 296f1 CHllI A 2818 lRAY A 95F1 HX{,SP R 926C NPO A 2817 ooTPI)T A 9287 SEARCH A 2892 
THIGH A 2(188 TLOII A 2llff 

ASSEII8l Y COlf'LE TE, I(i ERRfJRS 

A1-47 



CRT and Cassette Code 

PAGE 1 

LOC OeJ SEO 

A1-48 



CRT and Cassette Code (Cont'd) 
ISIS- II 80:313/8118'5 ASSEMBLER. '"'1 0 
:?e85 SEPIAL i/O 1·10r.E APPHIOI >:: 

PAGE 2 

lOC 08J 

2OC8 
2eCA 
aOOB 
0099 

0see 

02.013 11C0213 
e80? ?Ece 
aees ?B 
08e6 CP1RI?t8 
98139 W470S 
98ac weAes 
B:?eF 79 
13810 87 

13814 C[l6908 
13817 cace8 

aS1A 29 
e81B 87 
ee1C F21Ae8 
galF 29 
13829 B7 
13821 FMF0S 
~824 21FHF!=' 
13827 lE04 
13829 1(, 

eS2A (:229138 
eB2D 2? 
i382E 2i3 

SOIJRCE STATEMHlT 

1 
2 .: THE FOLLO~~ING P~O(JRA~lS At-ID SUBROUTINES ARE DESCRIBED IN DETAIL 
: .. ' IN HITEL CORPERATIOWS APPLICATION NOTE AP-29, "USING THE a0S5 
4 .: SERlf'tI.. I/O LINES". THE FIF.:Si SECTION IS A GENERIiL PURPOSE CRT 
5 . INTERFACE tHTH ~UTt)MATIC BAt!!) RATE WENTIFICATION.: THE ~.ECOND 

S . ~J:TTWN IS H MAGNETIC TAPE INTERFACE FOR STORING OftTA ON CASSETTE 
? : TAPES THE CODE PRESENTED HERE IS ORIGINED AT LOCATION BOOH, 
8 : fmC! MIGHT 8E PART OF AN E::-~PANSION PP.O~l IN AN INTEL SDK-85 
9 : S'.'ST£M (:f.S IGN n T 

1~~ : 
11 
12 
E BITTIt1E Eo.lI 20C8H : Af'ORESS OF SiORAfJE FOR COP1PUTEv B IT DELAY 
14 HAlFB IT EQlJ 23CAH : ADDRESS OF STORAl3E FOR HALF BIT DELAY 
15 8ITSO EO!J 11 .... .: ['ATA BITS POT OI.lT (INCLUDING TWO STOP BITS) 
16 8ITS! EI)U 9 .: DATA BITS TO BE RECIEVE[' (INCLUDING ONE STOP BID 
17 
18 ORG ~:eeH .: STARTING AODRESS OF SCoK-S5 E:~PANSION PROI'l 
19 
213 .: eRTTST CPT HITEPFACE TEST. lHN CALLED, AWAITS THE SPACE BAR BEING PRESSED ON 
21; THE ';'r'STEt'l CONSOLE .. AND THtN RESPONDS WITH Po [,ATA R~TE YERIFICATION 
22 : ~1ESSAGE THERE AFTER. CHARt=!CTERS T'tPE(! ON THE KE'''SOARD ARE ECHOED 
21; O~~ THE £:tISPLP.Y TUBE. ~iHEN A BREFW KE'" IS WPED, THE I':OIJTHlE 15 
24: Pf-STAPTED. AlLC~mlG A DIFFERENT BAtiE) RATE TO BE SELECTED ON THE CRT. 
2~ CRTT'::r· Ln SP .. 28C:)H 
26 CPT!' Wi! fl.OC€tH .: 50(:0 MtlST BE HIGH BETWEal CHARACTERS 
27 SIt1 
2::: CALL BRIO .; WENTIF'r' DATA RATE USED B'" TERtlIHAL 
29 CALL SrGNO~l ; OUTPUT ':IG~ION MESSAGE AT RATE OETEGTEL' 
:a 1=CI10' CALI.. CHi: REAr) NE:':T k:EYSTRorE INTO REGISTER C 
?-1 ~101/ 8. ~: 
:2 ORA A .~ CHEer. IF CHARAI::TER ~lAS A <:BREAIC' (ASCI I OOH) 

(RH : rF 50. RE-IDENTIF't' DATA RATE 
.. TH I 5 ALUJl.1S ~~jTHER RATE TO BE SELECTED ON CRT 

CALL COUT ; OT4ERmSE COpy REGISTER C TO THE SCREEN 
36 
~7 

.IMP ECHO .: CO~ITINUE IN[IEFINITEL'r' (UNTIL 8REAIO 

?-8.:BPW BAfJ[i RATE Ir.tEHTIFICATION SUBROUTTNE 
1.9 ; 
413; 
41 ; 

E:~PECTS A '::CR) (Poser r 2i3l{:, TO E:E PECIEVEfi FRO/'! THE CONSOLE. 
THE LENGTH (f THE WITIAL ZERO LEVEL '.:51i<, BITS tHDE) IS ~1EP'SIjREO 

IN .ORDER TI) [lETEP~1INE THE DATA RRTE FOR FUTURE COMt1IJNICATIONS. 
42 BRIO' PIt1 .: VEPIFY THAT THE "Ot-lE" LEVEL HAS E'.EEN ESTflBLISHED 

ORA 
44 jp 

45 PoPIi RIM 
46 ORA 
47 J1'! 

·48 U':I 
49 BP.E.: 11vr 
:.e ep! 'l . [:{R 

51 JNZ 
52 w;': 
51 RIM 

P­
BRm 

fi 

: \ AS THE CRT I S PO~lER LNG UP 

.; ~~JN nOR 5 W L HIE STATlIS 

eR!1 .; LOOP UNTIL STA~:T BIT 15 RECIE'·/ED 
H .. -6: BIAS COUNTER USED IN [:t£TERtofINING ZERO [JURATION 
E. tt.iH 
E .: 51 MRCHINE C'r'CLE DELAY LOOP 
8RI4 
H, m::RHlENT COUNTER EVER" 84 C'r'CLE5 WHILE SID IS l!lol 

A1-49 



CRT and Ca~M,tte Code (Cont'd) 
!S!'~-II ·313S€l/:?0S5 ASSEMBLEP. Vi I~ 

31385 SEPIAl T/O NOTE HPPE~IDI:": 
MODl!Lg',i i::~;l: '~' 

~; ":"" ' 

PAGE 

LOC 08,.1 

eS2F 87 
~81e F22708 

138B E5 
13814 24 
1383:5 2C 
eS?6 22C829 
0829 E1 
e8ZA B7 
13838 7C 
eS3e 1F 
1383:[1 t·;' 

e81E 70 
138?F iF 
e94fl !SF 
0341 24 
13842 :": 
ee4? 22(A2e 
0046 C9 

0847 21'55tl8 
084A 4E 
e84B AF 
eNC 81 
8S4[i ce 
1384E CD69ge 
ee51 2: 
13852 C?4AA'? 

tiPS,) aD 
e~5£ eH 
0857 42415~-44 
0:?58 213524154 
eE~'5F 452-34~:48 

138t.~ 454148 
~3:?'65 0(1 
ee67 13A 
0868 013 

0869 F1 
9BbA C5 
0868 ES 
08£C 06£18 
086E AF 
e86F ZE80 
0871 iF 
0872 :e 
0S71 2At82e 
0876 2D 

SEa 

!54 
55 
56 
57 
5e 
59 
69 
£1 
62 
6:? 
64 
65 
66 
67 
f,:~: 

69 
70 
71 
72 
7~: 

SOURCE STATEMENT ,'. 

ORA A 
JP eRE 

PIJSH H 
IHR H 
H~ L 
SHL[:O B!TTIt'!E 

; <Hi.> ~lO~l CORRESPON[iS TO INCOMING DATA RATE 
: :':AVE COUNT FOP. HALFBIT TIriE COMPIJTATION 
; eITn~lE IS [iETEP.tlINEO B~' !NCRENE~mNG 

,: \ HAND L nmI'JWUALLY 

POP H . PESTOPE COUNT FOR HALFBIT CHERllINFtTION 
ORA A ; CLEAF.: CARRY 
NOV Ft.. H: ROTATE RIGHT E::-~THl[:t£D <:HL> 
PAl"' , '. TO ['!\,;!OE COIJNT B'~ 2 
"lOll HA 
~10V A· L 
PAR 
~101J LA 
!NR H : PUT H fiNO L HI PROPER FOR~1HT FOR DELAY 
INP. L ,:"" SEGI'lENTS (: HKRE~lE~IT EACH::' 
SHlP HALFEIT; SA'·iE AS HflLF-BIT TUlE DELAY PARAMETER 
PET 

74 ,SIGt-ION HF.'IT£S A SIGN-ON t'lESSAGE TO THE CRT AT WHAT SHOIJLD BE THE CORRECT RATE. 
7'5; IF THE ~lESSHGE IS UNINTELLIGIBLE. WELL. SO IT GOES. 
76 SIGNON' L:"I HI '::TRNG· ; LOAD START OF SIGN-ON MESSAGE 

C .. M .' GET NEi~T CHARACTER 
.,., 

51 1'10\,1 ,'i 

78 :,:RR A . CLEAR ACC'-~1fJLATOR 
79 ')RA C .: CHEO': IF CHAF.:ACTER IS END OF STRING 
!:'(! t: . ., .,.;. .: PETUPN IF 5 I GN-(ltl COt~PLETE 
:31 CAl.L COUi , ELSE cmpUT CHARACTER TO CPT 
:::2 IN:-: H; INI)£>~ Pi) I NTEF.: 
S1: HiP 51 ; ECH;J NE~T CHAP-ACTER 
84 
:35 STRNlj' ('8 f(IH. 0AH ; <CR><LF} 

!?6 DE: 'BAUC' PATE CHECK·' 

:::7 oe 

(tI)H ,HlO-(lF-STRING ESCAPE e(!(iE 
89 
ge ,: COUT CONSOLE OUTPUT SUBROUTINE 
9'1 : WPITES THE CONTENTS OF THE C REGISTER TO THE CRT OISPLAY SCREEN 
92 COIJT C'l 
?3: PUSH E: 
94 PUSH H 
95 t·W! 8, BITSO .. SET t'U'1BEP OF BITS TO BE TRANSMITTED 
96 ;,":RA A ,; CLEAF: CAF.:R'T' 
97 COl W·:'l A .. SOH ,SEi ~lHAT HILL BECOI'IE SOC' E~lABLE BIT 
?8 PAP; "lI)VE CARP'r' INTO 50( .. rlATA BIT OF ACC 
99 

lee 
101 C02: 

SIt-! ; OliTPUT CoRTA BIT TO SOD 
LHLC' E'!TT!l4E 
r,eR L .d4AIT UNTIL APPROPR lATE TIriE HAS PA55ECI 

A1-50 

II 
II:~ 

I': 
I, I 

I 



CRT and Cassette Code (Cont'd) 
IS I 5-I I 8080/8085 ASSEMBLER, \/1, 8 
8085 SERIAL I/O NOTE APPENDI:~ 

1100ULE PAGE 4 

LO(: OB! SEQ SOURCE STATEMENT 

eS77 C2760S 102 .INZ CO2 
eS7A 25 le? [iCP H 
e87B C2760S 104 .JNZ CO2 
087E 7,7 
8a7F 79 
98se 1F 
13881 4F 
0882 as 
0SS? C26Fe8 
e886 E1 
98S7 C1 
B888 FB 
1.3889 C9 

eeSA F~: 

e88B E5 
eS8C et.09 
088E 213 
eB8F B7 
eS90 FA8Eee 
13891 2ACP.;)3 
e8?S 2[:' 
13897 C29608 
eS9A 25 
e898 C2?~e::: 

(!89E 28C82e 
138Ft1 2[) 
e8A2 e2A1es 

1388£ CAi0::: 
0889 213 
aSA'! :17 
H:?AE: 135 
eSAC CABt:B8 
eSAF 79 
eSBe lF 
13881 4F 
13882 1:10 
!?~~e~: r:?:?E!~8 

i38Bf E1 
l3::::E? FE' 
08B:? C9 

1as 
106 
1137 
1e8 
1139 
1113 
111 
112 
lE 
114 
115 
116: I::IN 
:117; 
118 eIN 
1!9 
1.29 
121 CIi. 
122 
122 
124 
125 C12 
:126 
127 
128 
:129 en 
D3 CI4 
121 
.j 7'~' 

154 

1::6 

1 :'9 
141:1 
141 
14~ 

14:, (15 
144 
14':. 
146 

STC 
MOil 
RAR 
~10V 

DCR 
JNZ 
POP 
POP 
EI 
RH 

H, ,~ 

C,R 
e 
COi 
H 
e 

,: SET ~IHflT ~HLL EVENTUALLY BECONE A STOP BIT 
,: ROTATE CHARACTER RIGHT ONE BIT, 
; \, MOVING NEi<:T r,ATA BIT !NTO CARRY 

,; CHECK IF CHARACTER (At-I[i STOP BIHS) DONE 
,: IF NOL CdJTPlIT ClJRRENT CAF.:R'r' 
,: RESTORE STATUS AND RETURN 

CC!N';OL INPUT SUBROUTINE HAITS FOR A r::E'r'STROKE AND 
PET!JP.NS ~JIiH :3 8ITS IN PEG C 
DI 
PUSH H 
1'11l! 
PIN 
ORA 
,TN 

UU' 

i'10'··: 
PAP 
1'10'·" 

EI 
REi 

B,. enSI .: C'AT" BITS TO 8E REACt (LAST F.:ETURNED IN CY) 
: HAIT FOR s'me BIT TRANSITION 

H 

CIi 
HALFBiT 
L .' ;·JAIT UNTIL MIOfU OF START BIT 
C!2 
H 
C!2 
8 I TT Hlf .; HA IT OUT BiT TH'lf 
L 
l'!4 
H 
CI4 

CIS 

H 

: CHECr: S IL' L WE LEVEL 
: C'PTA BIT IN CY 
. CHERrmlE IF THIS IS FIRST STOP BIT 
,: ! F SO.' JUt1P OUT OF L.OOP 
. ELSE ~OT'lTE INTO PHHIHL CHARACTER IN C 
'ACe HOLl'S UP[iATEO CtlARACTER 

.. E(llJALI2ES COUT AND CIN LOOP TH'lES 

; CHARAC rEF.' CO~lPLEiE 

14" : '!"+"H"H't':t-'r:t-:+ +",""n"r"'f'Ho: f·H·+ .. h·~:·h .. t:·i<:+·f:t':H':+ .. f*';t':H·f:n·t:'f.:n >t:h;;-'+:ljo,'" H:,t:!t';f.****:+::t:**'>j-.:i<·+:* 

148 
149 ,; THE' FC'L.!..mm·jG II)['E IS USEr', E',' THE CASSETTE INTERFACE. 
lSi! ' SUE:RO!)TINES TAFE' AN[' THPEIN ARE USEC; RESPECTIVELY 
151 TO OUTPUT (IF RECEI'.,.'E AN EI!3HT Bli !.WTE (iF [lRTA, REGISTER C 
15::' 40LPS T~E DAT~ IN EITHE;;' CAS£: ~:EGi5TERS M., E:.I S.C ARE tiLL OEST~:O'r'E(;. 

1S: rS!)·iO FOI! 
154 HALFC'r't"' EC'U 

nHCE THE Ni.i~lBER OF CYCLES PER TONE BURST 
(:OETEPf'HNES TONE FRmJENC~! 

A1-51 



CRT and Cassette Code (Cont'd) 
ISIS-I I S0:?0/:::0:35 HSSE~lE:LEP,. 1.11 13 
::~)85 SERIAL I/O NOTE' APPENl'1:''': 

PAGE 5 

LOC !~'.r 

13:::89 !3EFA 
0888 sEce 
esec, COF1313:?' 
13::::)3 eo 
98C1 C2B[{t:: 
13~~[:4 AF 
e8(:5 C(:HI(f::: 
e8C8 4E 
0:3C9 eWEI:? 
e:?cc 2(: 
138CD C2C8i3S 
138[013 (:9 

13801 n 

e80s 06e9 
138[15 AF 

esc,:? (rHtlt8 
08CoB 79 
08(:{: iF 
08C{' 4F 
08CtE 3:E01 
aSEe 1F 
138El 1F 
08E2 C:(:fl3t18 
e8E5 AF 
e8£6 CDFeee 
e:?E9 €IS 
e8EA C2[!S0S 
98E(:' Dl 
e8EE FB 
08EF ("9 

08F0 16113 
0SF2 313 
eBF11E1E 
eSFS 1(:' 
0SF 6 C2F5€I:?, 
08F9 EEes 
0SFB 15 
e8FC C2F29S 

EOU i2 1.'5:' CP;'F!TE . SETS SA!'lPLE RRTE 
EOU 25f3 156 LEADEP . '·jU:'18ER OF SUCCES!VE rm4£ BURSTS CO~lPF:ISING LEfKiR 
EO!.! 250 1'57 LC'F'C'Hf', U'::E[) Hi PLP,'T'E:t' TO '.l£RIF'T' PF.'ESENCE OF LEADER 

158 
159 : EUPCD 
~ . .:,e 
161 
1£2 : 

, iE: E!U:'PCf:o MVI 
1f.4 r~V1 

1tS BPl' CflLL 
166 C'CR 
it? ,TN: 
1f:? :,:RA 
1'=0 
17ft P.P2 
171 
172 
17: 
174 
175 
176 
177; TAPEI) 
178 

CALL 
~10\·' 

CAL.L 
INF 
,TN: 
RET 

179 TAPE(! 01 
1813 
181 
le2 TO:!. 

184 
185 
1:?€ 
1E? 
1:::~: 

18'? 
190 
:191 
192 
191 
194 
195 
1% 
197 
198 
199 

CALL 
f,CP 
.INZ 
POP 
£1 
RET 

290 E:t~Q5T: Wi! 
201 Blil. SI~l 

2(12 ~lVI 

2e3 FL!2' etCF-' 
2134 .TNZ 
2135 
206 
2e? 

CiijTPUTS A "/ER~' LijNG TONE BUF.:ST ',<lEA['fR> TIMES 
THE ~'ltjPt'lAL 8URST [.'UF:AT!O~P TO ALLO~'1 RECOF.:DER ELECTRuNiCS 
fiNE, AGe TO STAE;ILIZE, THEN OUTPUTS THE REr'lAINDER OF HiE 
:::'56 F:'T'TE PAGE POWTED TO B'y' ':!-(:" STARTING AT 8'y'T£ (L), 

C, LF:A[)EP.: SET UP LEACH' BURST LPIGTH 
A .. iX:€!H .; SET ACCUl'lfJl..fiTOP TO PESULT IN TONE BURST 
2UPST .; OUTPUT TC~'iE 

c 
PPl ; SUSTAIN LEADER TONE 
P. : CLEPR ACCUI'!UlATOi': .~, OUTPUT SPACE. SO THAT 
BUJ:;ST 
eN 
TAPEO 
L 

; ... START OF =!RST DATA E"r'TE CAN BE ['ETECTED 
· GET ['ATR B'T'TE TO BE RECORDE[:' 
.: OUTPUT F:EGISTER C TO RECOF.fH: 
,: PO INT TO NE:<:T E~'tTE 

· AFTER BLOCi'. IS COI'lPi..ETE 

i)UTpIJTS THE 8'r'TE IN REG!SiEF.· C TO THE RECOF.:DER. 
PEG!';'TERS A, 8, C. [' .. ~E ARE ALL USE£i, 

D 
E .:; 

A,oem.: 
PUPST 

Po. i:jlH 

BURST 
A 

BIJPST 
e 
TOl 
(:, 

: N.E USED AS CDlINTERS 8'~ SIJBROUTINE 8URST 
· ~HLL RESULT IN ::: DATA BITS AND ONE STOP BIT 
,ClEAP ACCU~lULHTOR 
.. SET ACCU~liJlATOF.: TO CAUSE A TONE BURST 

,: CARR'T ~lllL BECOf'lE 50[:0 ENABLE IN BUF:Si ROUTINE 
; ':'ET BIT TO 8E REPEATEOL'r' C0l'1PLH1ENTED IN BURST 

.; CmpUT EITHEP H TONE OR A PAUSE 
,: CLEAR FlCCUt'lULATOR 
,: OUTPUT PAUSE 

.: REPEAT UNTIL 8'T'TE FINISHED 
: RESTOPE STATUS AND F.:EiURN 

[J, C'r'eNO; SET NU~1BEF.: OF C 'felES 
,: COf1PLHlENT SOD LINE IF SOD Et-lABLE BIT SET 

E. HP.LFCYC 
E ; PEG!JLRTE TONE FREOUENC'r' 
BU2 
eeH 
(i 

8Ul 

.: COf1PLEtiENT 50(:' C'ATA BIT IN ACCUMULATOR 

,; CONTINlJE UNTIL BURST (OR EQUIVILENT PAUSE) F UHSHED 

A1·52 

I: 
I,' 



1 
:1 .. 

1

. ~. 

CRT and Cassette Code (Cont'd) 
ISIS-I I 8980.'OOSS ASSEMBLER. V1. 13 

8985 SERIAL I/O HOTE APPENDJ:': 
MOOULE PAGE ;; 

LOC OSJ 

08FF (:9 

0900 0EFA 
9992 C01D99 
9905 D2gee9 
a90S 91) 

9989 C29299 
990C CD1589 
egeF 71 
99"19 2C 
0911 C2OC99 
9914 C9 

13915 0609 
9917 1600 
9919 15 
091A (:03009 
9910 OA1909 
ana CD3De9 
9923 Cofl1909 
9926 14 
9927 CD3D09 
092A D22699 
e92r, C03D09 
9930 D22699 
9931. 7A 
9934 17 
9915 79 
9936 1F 
9937 4F 
9938 95 
9939 C21709 
893C C9 

993D 1H6 
093F 1D 
0949 C23F99 
8943 20 
8944 17 
9945 C9 

PUBLIC SYt1BOLS 

SEO SOURCE STATEMEm 

2ea RET 
2139 
2113 .: PLAYBK ~JAITS FOR THE LONG LEADER BURST TO ARRIVE, THEN CONTINUES 
211 .; READING BYTES FROM THE RECORDER ANCo STORING THE~l 

212 ; IN ~1Et~OPY STAIHINI3 AT LOCATION (HD. 
213 .: CONTINUES UNTIL THE END OF THE CURRENT PAGE (L>=0FFH) IS REACHED. 
214 PLAYBK' r~vI C' lDRCH~: .: (LORCHf:'> SUCCESSIVE HIGHS tiUST BE REArl 
215 PB1' CAll eITm .: ". TO ',.'ERIFY THAT THE LEADER IS PRESENT 
216 JNC PLAYS~; : .... AUf' ELECTRONICS HAS STABILIZE[; 
217 
218 
219 PB2: 
2213 
221 

223 
224 

DCR 
JNZ 
CALL 
MOl,! 
nIP 
.mz 
P.ET 

C 
PSi 
TAPE! t-j: GET (:,ATA B~'TE FRC*1 PECOF.HR 
M .. C ; STORE IN "IH!OR'T' 
L .: I~rpHl£NT PC!ir-ITER 
P82 .: REPER"r FOR REST OF CUf.:REm PAGE 

225: TAPEIN CASSETTE TAPE INPUT SUBROUTINE. PEA[;'s ONE 8'r'TE OF OATH 
226 .: FROM THE RECOP('ER INTERFACE flN(:' RETURNS ~HT~ THE BYTE IN REGISTER C. 
227 TAPEIN: ~1IJr 8,9 .. RERn EIGHT OPTA ens 
228 TIt: N";'I O .. 1313H.: CLEAR Uf':'[)I}JN C,JUNTEF.: 
229 TI2: DCR [0 . [ERH1ENT ceUNTER EACH TUIE ONE LEVEL IS REHfI 
2]13 CALL BITIlj 
211 .Ie TI2; REPEPT IF STILL AT ONE LEVEL 
232 
233 
2J4 TE. 
2:'5 
236 
237 
238 
219 
249 
241 
242 
243 
244 
245 
246 
247 

CALL BlrrN 
JC TI2 
iNR [! i HKRHIENT COIJNTEF.: EACH TINE ZERO IS READ 
CALL SITIN 
JNC TE : REPEAT EACH nNE ZERO IS REACt 
CALL BIT!N 
.JNC TI3 
~10V A, [! 
RAL i t10YE COUNTER f'lOST SIGNIFICANT BIT INTO CARRY 
MOV A., C 
RAP.. MOVE [,ATA BIT FE I EVEC' (CY) INTO B'fiE REGISTER 
MOV C. A 
OCR e 
.JNZ TIl.: REPEAT UNTIL FULL Br'TE ASSEt-18LEr' 
RET 

248 BITW: Mill E! C~:RATE 
E 249 SI1: DCR 

250mz 
251 PJl1 
252 RAL 
25: RET 
254 
255 END 

Bli: LINIT INPUT SAt-fLING RATE 
: SANPLE SID LINE 
: ~10VE OATA INTO CY BIT 

A1·53 



CRT and Cassette Code (Cont'd) 
ISIS-II 913SI3,..'SOS5 RSSEJ'lEtEF.'., ... ·'1 !J 
8085 SEF'i~L !/Ct NOTE AF'PPIH:': 

LHP S'T'1'1BOLS 
BIl Po !3??:F 8ITHI Po !)?::[:t 

BR2 A (i'?C? E:Pll A 1)81F 
8URST Po \38FI~ CI'l t1 138:3E 
(YRATE A (tfti6 COl A @86F 
ECHO A t3:3(1( HALJ:"81 A .2HCA 
PLA'.'Sr.· A IHel3 ':'1 A (l:?4A 
TI2 A 13919 TE t1 :~~1?2S 

ASSENEt Y CO~lF'LETE. NO ERPOP', ':::, 

PAGE ? 

PIE! A !)(l09 E:ITSO A tu30B BlnIN A ,)3(8 
BPI? A 1)::;:2::- SPI4 A £t829 8RI[! A 13%A 
02 A ';1896 CE A 089E C14 A f18A1 
CO2 A ~38;'t. COUT H 0869 CRH A 0803 
HALFC'.' A l:'u3:1E LC'PCHI< A i3€lFA LEA['ER A (t0FA 
SIGNON A i:1:::47 STP~~3 H oe55 TAPEIN A ~91'5 
T0t A ~::~8D5 

.A 1-54 

EU:RCD A 0889 BRi A 088[, 
BUi A €18F2 BLl2 A 0SF5 
CIS A 9886 GIN A 0S8A 
CRTTST A 080e CYCNO A 0010 
PBi A (1902 PE:2 A 090C 
TAPEO Po ~38r'1 TI1 A 13917 



] ,I. 
CRT and Cassette Code (Cont'd) I 

I 
I 

~' 
!SIS-! I ASSEHBLER SY~lp'ol CROSS REFERENCE '.11. e PAGE 1 

1?J1 24? 25-8 
erTIN 21S 23:9 222 23'5 2:7 248it 
BITSr 16t 120 
BITS(l 1~t 9S 
8ITHM Btl 60 100 129 
a.rRcr! lf~tI 

f' 
BPl 165t1 167 
BR2 1713* F' l.j 

I; 

BRI1 '1st 47 
BPI? 491 55 

I 8914 ~r0t 51 
BRJrt 28 42. 44 
BUi 2eu 2137 
BIJ2 2e1i1 2134 
BURST 165 169 184 191 1"'" ... -!o 200t 
Cll 12ft 12? 
C12 125. 126 128 
en 1291 142 
C14 Eet El 131 
CIS 127 141lt 
C!N :e 1181 
CfRATE 155t1 248 
COl 97ft 1113 
CO2 10U 102 1134 
(OUT 15 81 92t 
CRH 261 ]:]: 

CRTTST 25t 
C'T'CNO 1511 2ee 
ECHO :et ?€. 
HAlFB! 14lt 71 124 
HALFCY 1541 2132 
lDRCHr: 157ft 214 
LEADER 1561 16: 
PBl 21St 218 
PB2 219. .,,, ... 

~'"" 
PlAYBK 214t 216 
51 77. 81 
S1GNON 29 76t 
STRNG 76 851 
TAPE IN 219 227' 
TAPE(t 171 1791 
Ttl 22:~t 245 
TI2 2291 211 .23:]: 
TE 2?-4,' 23:6 238 
T01 182t1 195 

CPOSS REFERENCE COMPLETE 

A1·55 



I~ 
I~" I, 
II 

I

, , 

" 

I 
Ii 

I, 



'I. 

Workshops 



I 
i 

I' 
i '" 

I 

I, 



Training in 
Microcomputers 
Whether your present 
involvement with micro­
computers is a result of 
long-term planning or 
simply an exploratory proj­
ect undertaken by your 
company in response to 
external circumstances, 
there exists an obvious 
and urgent need for you to 
familiarize yourself with this 
exciting new technology. If 
the microcomputer is, or is 
destined to become, a part 
of your working scene, then 
the importance of carefully 
planned training cannot be 
over-emphasized. A modest 
outlay in time and money 
now can save many weeks 
of self-study and could well 
prevent some very expen­
sive mistakes during the 
initial development of 
your systems. 

Why Intel Training? 
EXPERIENCE 
Intel has been training engi­
neers in the application of 
microprocessors and the 
development of microcom-

Intel Workshops 

puter systems since the 
early '70s, and there are 
now many thousands of en­
gineers creating the most 
advanced microcomputer 
systems as a direct result of, 
successful training with us. 

VARIETY OF COURSES 
Intel offers a wide spectrum 
of workshops covering all 
Intel microprocessor 
families from components 
to the board and system 
levels. Microcontroller and 
microprocessor workshops 
cover assembly language 
programming; high level 
languages are covered in 
separate intense courses. 
Your particular training re­
quirement may involve just 
one or several courses, so 
we have taken care to en­
sure that each workshop is 
a high-quality training mod­
ule that can either stand 
independently or integrate 
with other modules to com­
pletely cover the subject. 
The workshops are fre­
quently updated to include 
the latest developments in 
devices, boards, software, 
and development tools, and 
reviewed on a regular basis 
for clarity and content. 

PRODUCT KNOWLEDGE 
As the designers and 
manufacturers of the most 
widely accepted microcom­
puter products in the world, 
our knowledge is both com­
prehensive and topical. Re­
member the saying about 
"the horse's mouth"! 

EXTENSIVE MATERIAL 
Teaching aids include slide 
and video tape equipment, 
student notebooks and a 
wide range of printed ma­
terials which are designed 
to provide post-training as­
similation and act as practi­
cal reference manuals in 
your own laboratory. 

"HANDS-ON" EXPERIENCE 
We believe that students 
learn better by doing than 
by listening, so a sizeable 
proportion of course time is 
devoted to dynamic training 
via the INTELLEC develop­
ment System, appropriate 
single-board computers, In­
Circuit Emulators (ICE), I/O 
units for programming exer­
cises, and computer kits for 
design and debugging ses­
sions. Each student there­
fore receives valuable 
"hands-on" experience of 
the principles and tech­
niques featured in the 
lecture sessions. 

Accreditation for 
Workshops 
Intel Customer Training 
offers Continuing Educa­
tion Units (CEUs) for com­
pletion of our workshops. 
Attendees of our 5-day 
workshops receive 3.5 
CEUs, while attendees o( 
our 4-day and 3-day work­
shops receive 3.0 CEU and 
2.0 CEUs respectively. 
Education Units provide 
recognition of pro­
fessional growth and 
achievement. 

AFN-0160BC 



Where Is Intel Training? 

Workshops are presented in the local language. 

FOR MORE 
INFORMATION 
For more information, or to 
schedule a Customer Site 
Workshop at your facility, 
call your local Intel Field 
Sales Engineer or Sales 
Representative. Or contact 
the customer site coordi­
nator at your nearest Intel 
training center. 

Intel Customer Training is 
a worldwide organization 
with workshops scheduled 
nearly every week of the 
year in our training centers: 

BOSTON AREA 
(617) 256-1374 
TWX 710-343-6333 

CHICAGO AREA 
(312) 981-7250 
TWX 910-651-5881 

DALLAS AREA 
(214) 241-8087 
TWX 910-860-5617 

SAN FRANCISCO 
BAY AREA 
(408) 734-8395 
Telex 352-005 
TWX 910-338-7811 

WASHINGTON, D.C. AREA 
(617) 256-1374 
TWX 710-343-6333 

LONDON AREA 
SWINDON (0793) 488-388 
Telex 444447 

MUNICH AREA 
(089) 5389-1 
Telex 523177 

PARIS AREA 
RUNGIS (01) 687-22-21 
Telex 270475 

STOCKHOLM AREA 
BROMMA (08) 98.53.85 
Telex 12261 

TOKYO AREA 
03-437-6611 

BENELUX AREA 
Rotterdam (10) 149-122 
Telex 844-22283 

COPENHAGEN AREA 
(1) 182-000 
Telex 19567 

ISRAEL 
(972) 452-4261 
Telex 46511 

AFN-01608C 

Ii 
I
i 
I 

I 

I 

I' 
I 

I 



Included in the price of the 
course is an SDK-8S kit which 
includes: 

3 MHz 8085 CPU 
(enhanced 8080) 

Keyboard-24 keys 
Display-6 digits 
Monitor ROM 2048 bytes 
RAM Memory 256 bytes 
381/0 Lines 
Teletype interface 
Complete documentation 

Course Description 
• Fundamental computer 

concepts and termin­
ology introduced 

• Operation of the Intel 
8085 microprocessor 
explained 

• 8085 assembly language 
programming 

• Stacks, subroutines, 
interrupts and I/O 
interfacing introduced 

• Lab sessions on SDK-8S 
System Design Kit 

• An SDK-8S Kit (valued at 
$300) is yours to keep 

Attendees 
• Engineers, scientists, or 

other technical people 
with limited computer 
or digital electronics 
background. 

Length: 4 Days 

Tuition: $895 (includes 
SDK-8S Kit) 

AFN-01608C 

Introduction to Microprocessors 

Course Outline 

DAY 1 
Introduction to 

Microelectronics 
Computer Concepts 
Computer Languages 
Using the SDK-8S 
Lab: Kit Operation and 

Programming 
Moving Data 

DAY 2 
Delay Loops 
Lab: Audio Oscillator Using 

Digital Techniques 
Subroutines 
Stack Operation 
Lab: Using Subroutines 

Introductory 

DAY 3 
Logic Instructions 
Lab: Handshaking Techniques 
Addition 
Lab: Multi-Function Programs 
Microprocessor Operation 

DAY 4 
Interrupts 
Memory Operation and 

Address Decoding 
Programmable Peripheral 

Chips 
Lab: Chip Programming 

Exercises 
Introduction to the 

Development System, 
ICE, Assembler, and 
High Level Languages 
Course Summary and 

Review 



MCS®-80/85 Microprocessors 

Course Description 
• 8085 architecture 

explained in detail 
• Assembly language 

programming for 
8080/8085 

• Design and development 
of systems using Intel 
8080,8085 chips 

• Interfacing and 
programming techniques 

• "Hands-on" lab sessions 
using the Intellec Micro­
computer Development 
System 

• ICE-85 In-Circuit 
Emulator used to 
debug programs 

Attendees 
• Design engineer or pro­

grammer who is familiar 
with binary numbers and 
logic functions 

• Prior attendance at Intro­
duction to Microcom­
puters Workshop or 
equivalent knowledge is 
recommended 

Length: 5 Days 

Tuition: $995 
$850 (Group rate) 

8080,8085 

Course Outline 

DAY 1 
Introduction to 

Microprocessors 
Assembly Language 

Instructions 
Programmed Input and Output 
Microcomputer Development 

System Monitor 
Lab: Using System Monitor 

DAY 2 
Microcomputer Development 

System 
Disk Operating System 
CREDIT Text Editor and Macro 

Assembler 
The Processors 
Lab: Using Text Editor 

and Assembler 

DAY 3 
Stacks and Subroutines 
Interrupts 
In-Circuit Emulator 
Lab: In-Circuit Emulator 

Introduction 

DAY 4 
Input and Output Techniques 
Programming Techniques 
Lab: Using 8085 In-Circuit 

Emulator 

DAYS 
8555,8355, 8185, 8251A 

Peripherals 
Tools for Modular Program 

Development 
Lab: Multimodule 

Programming 

AFN-01608C 



1 
ALABAMA 
Intel Corp. 
303 Williams Avenue, S. W. 
Suite 1422 
Huntsville 35801 
Tel: (205) 533-9353 

ARIZONA 
Intel Corp. 
11225 N. 28th Drive 
Suite 2140 
Phoenix 85029 
Tel: (602) 869-4980 

CAUFORNIA 

Intel Corp. 
10tO Hurley Way 
Suite 300 
Sacramento 95825 
Tel: (916) 929-4078 

Intel Corp. 
~~~ Pit"rtunlty Road 

~t,~) D~~3:J"
Inlsi Corp."
2000 East 4th Street
Suite 100
Santa Ana 92705

~: (7J:~_5~~~\'l't2
Intel Corp."
1350 Shorebird Way
MI. View 94043

~:(4J~~-3~~~
910-338-0255

Intel Corp."
5530 Corbin Avenue
Suite 120
Tarzana 91356

~: (2J~~1s~~2~~3
COLORADO

Intel Corp.
4445 Northpark Drive
Suite 100

~1:or~'lf3) S~~~~s"s2~0907
Intel Corp."
650 S. Cherry Street
Suite 720
Denver 80222

~:(3~tJ_9~~~~~
CONNECTICUT

Intet Corp.
36 Padanaram Road

~(2?,sJ:!~1~66
EMC Corp.
393 Center Street

~~:IIi'l~~;? ~6S:~~91
FLORIDA

\~~ ~~: 6200 Street
Suite 104
FI. lauderdale 33309
Tel: (305) 771-0600
lWX: 510-956-9407

~~I ~taiflaoo
Suite 205
Maitland 32751

~: (3~'~-8~~~9~~~3
GEORGIA
Intel Corp.
3300 Holcombe Bridge Road
Suite 225
Norcroaa 30092
Tel: (404) 449-0541

DOMESTIC SALES OFFICES

IWNOIS

Intel Corp."
2550 Golf Road
Suite 815
Rolling Meadows 60008

~:(3J~~_:S~~~~'r
INDIANA

Intel Corp.
9100 Purdue Road
Suite 400
Indianapolis 46268
Tel: (317) 875-0623

IOWA

Intel Corp.

~J30An~r~~~."!I"8rlve N.E.
Cadar Rapids 52402
Tel: (319) 393-5510

KANIIAS
Intel Corp.
8400 W. l10th Street
Suite 170
Overtand Park 66210
Tel: (913) 642-8080

LOUISIANA

Industrial Digital Systems Corp.
2332 Severn Avenue
Suite 202
Metairie 7000t
Tel: (504) 831-8492

MARYLAND

Intel Corp."

~~~~v:,a~r~'6 Drive 

~: (3~1'6.k~~~~~0 
Intel Corp. 
1620 Elton Road 

~~~er(3gf>rI"i31~~~3 
MASSACHUSETTS

Intel Corp."
27 Industrial Avenue
Chelmsford 01824

~:(6ng~~1jI:
EMC Corp.
385 Elliot Street
Newton 02164
Tel: (617) 244-4740
lWX: 922531

MICHIGAN

Intel Corp."
26500 Northwestern Hwy.
Suite 401
Southfield 48075

~,caJ~~_2~~~~%0
MINNESOTA
Intel Corp.
3500 W. 80th Street
Suite 360

~~~~l~;~~~W;l 
MISSOURI 

Intel Corp. 
4203 Earth City Expressway 

~~ g' 63045 
Tel: (3t4~ 291-1990 

NEW JERSEY 

~!~lta~flI~a III 
Raritan Center 
Edison 06837 

~: (2~I'L~~:e~~~0 

NEW MEXICO 

Intel Corp. 
1120 Juan Tabo N.E. 
Albuquerque 87112 
Tel: (505) 292-8086 

NEW YORK 

Intel Corp." 
300 Vanderbilt Motor Parkway 
HauppaUr 11788 
Tel: (516 231-3300 
lWX: 51 -227-6236 

Intel Corp. 
80 WashingtOn Street 
Poughkeepsie 12601 

~:(9J:6_2~~~~~3 
Intel Corp." 
211 White Sprucs Boulevard 
Rochester 14623 

~: (7J~~_21~~71Jli,° 
T-S~uared 

~~cu~~i1~~0~oad 
~: (3m_5~~~~~~2 

~3~~uap?:.ford 
Victor Road 
Victor 14564 

~YJ~~-2~~8~i 
NORTH CAROLINA 

Intal Corp. 
2306 W. Meadowview Road 
Suite 206 
Greensboro 27407 
Tel: (919) 294-1541 

OHIO 

Intel Corp.' 
6500 Poe Avenue 
Dayton 45414 

~: (5J~~-4~~~2~~~0 
Intel Corp." 
Chagrln-Brainard Bldg.. No. 300 
~~~ve1a~hal~i,n22 Boulevard 
Tel: (216) 464-6915
lWX: 810-427-9298

OKLAHOMA

Intel Corp.
4157 S. Harvard Avenue
Suite 123
Tulsa 74135
Tel: (918) 749-8688

OREGON

Intel Corp.
10700 S.W. Beaverton
Hillsdale Highway
Suite 22
Beaverton 97005

~:(5~'~_4~~~~~6
PENNSYLVANIA

Intel Corp,'
510 Pennsylvania Avenue
Fort Washington 19034

~:(2J~~_6ss\~ig~~
Inlel Corp,'
201 Penn Center Boulevard
Suite 301W

~~~b~~~) ~ll~970 
Q.E.D. Electronics 
300 N. York Road 
Hatboro 19040 
Tel: (215) 674-9600 

TEXAS 

Intel Corp.' 
12300 Ford Road 
Suite 380 
Dallas 75234 

~(2J:~_8~b~t~'V 
Intel Corp." 
7322 S.w. Freeway 
Suite 1490 
Houston 77074 

~: (7J~~-8~~~2~gg6 
Industrial Digital Systems Corp. 
5925 Sovereign 
Suite 101 
Houston 77036 
Tel: (713)988-9421 

~~t;' ~rxnderson Lane 
SullO 314 
Austin 78752 
Tel: (512) 454-3628 

UTAH 
Intel Corp. 
268 West 400 South 
Salt lake City 84101 
Tel: (801) 533-8086 

VIRGINIA 

Intel Corp. 
1603 Santa Rosa Rosd 
Suite 109 
Richmond 23288 
Tel: (804) 282-5668 

WASHINGTON 
Intel Corp. 
110 110th Avenue N.E. 
Suite 510 
Bellevue 98004 
Tel: (206) 453-8086 
lWX: 910-443-3002 

WISCONSIN 

Intel Corp. 
450 N. Sunnyslope Road 
Suite 130 
Brookfield 53005 
Tel: (4t4) 784-9060 

CANADA 
ONTARIO 

Intel Semiconductor of Canada, ltd. 
39 Hwy. 7, Bell Mews 
Nepsan K2H 8R2 
Tel: (613) 829-9714 
TELEX: 053-4115 

Intel Semiconductor of Canada, ltd. 
50 Galaxy Boulevard 
Suite 12 
Rexdale M9W 4Y5 
Tel: (416) 675-2105 
TELEX: 06983574 

Intel Semiconductor of Canada, Ltd. 
201 Consumers Road 
Suite 200 
Willowdale M2J 4G8 
Tel: (416) 494-6831 
TELEX: 4946831 

QUEBEC 

Intel Semiconductor of Canada, ltd. 
3860 ColO Vertu Road 
Suite 210 
SI. laurent H4R 1V4 
Tel: (514) 334-0560 
TELEX: 05-824172 

"Field Application location 



intJ 

AI.A8AMA 

tArrow Electronics, Inc. 

~~~\.v~~mg~~:arkway So. 
Tel: (205) 882·2730

tHamitton/ Avnet Electronics
48t2 Commercial Drive N.W.
Huntsville 35805

~: (2~~.7~r2~~JO
tPioneer /Huntsville
1207 Putnam Drive N.W.
Huntsville 35805
Tel: (205) 837·9300
1WX: 810·726-2197

ARIZONA
tHamiltonl Avnet Electronics
505 S. Madison Drive
Tempe 85281

~:{~l~9~O~j4.,D
t~~e ~i1l~u1i~7r.;'{OUP
Phoenix 85021

~: {~lJ.9~~~~~~2
CAUFORNIA

tArrow Electronics, Inc.
521 Weddell Drive
Sunnyvale 94086

~:{4~m.31~~~0
tArrow Electronics, Inc.
19748 Dearborn Street
Chatsworth 91311

~: (2J~6-41~~t~
tHamilton! Avnet Electronics
350 McCormick Avenue
Costa Mesa 92626
Tel: (714) 754-6051
1WX: 910·595·1928

tHamiiton/ Avnet Electronics
19515 So. Vermont Avenue
Torrance 90502

~:(2J~6.3~~t::
tHamittonl Avnet Electronics
1175 Bordeaux Drive
Sunnyvale 94096
Tel: (408) 743·3300
1WX: 910·339·9332

tHamiHonl Avnet Electronics

~~5 Dy:'~ri~~Mvenue

~: {7J~.5rs~ig~
tHammonl AVnet Electronics
10812 W. Washington Boulevard
CUlver City 20230
Tel: (213) 558·2458
1WX: 910-340·6364

tHamiiton Avnet/Electronics
21050 Erwin Street
Woodland Hills 91367

~:(2J~6-4~~~0
tHamiHon Electro Sales
3170 Pullman Street
Costa Mesa 92626

~: (7J16.5~~tJg~
tHamiitonl Avne1 Electronics
4103 Northgate Boulevard
Sacramento 95834
Tel: (916) 920-3150

Kierulff ElectroniCS. Inc.

~~; Ino ~x~ggre Road

~:{~~6.3~~~2
Kierulff Electronics, Inc.
14101 Franklin Avenue
Tustin 92680

~:(7J16.Jg~fJJJ
Kierulff Electronics, Inc.
2585 Commerce Way

i:~~rl~~~
rr'l~~~~~u1ig~~roup
f~ls~~~032~lito
1WX: 91~.348.7140 or 7111

DOMESTIC DISTRIBUTORS

. CAUFORNIA (ConI'cI)

~'fl~e g::~~~ ~?:f
~:I~ 8\"Jl° 5~~§~71
1WX: 910·335·1590

~~66e ~!~~ut~~en~~OUP
Santa Clara 95051
Tel: (408) 727·2500
1WX: 910·338·0296

tWyle Distribu1ion Group
17872 Cowan Avenue
Irvine 92714
Tel: (714) 641·1600
1WX: 910·595·1572

COLORADO

tWyle Distribution Group
451 E. 124th Avenue
Thornton 80241
Tel: (303) 457·9953
1WX: 910·936-0770

tHamihon/Avnet Electronics
8765 E. Orchard Road
Suite 708
Englewood 80111

~: (3~1~.91~~oj~11
CONNECTICUT

tArrow Electronics, Inc.
12 Beaumont Road

f.f:IIi,(%Oa? 2~~~~ 41
1WX: 710-476·0162

tHamiitonl Avnet Electronics
Commerce IndUstrial Park
Commerce Drive
Danbury 06810
Tel: (203) 797·2800
1WX: 710-456-9974

tHarvey ElectroniCS
112 Main Street
Norwalk 06851
Tel: (203) 853·1515
1WX: 710·468·3373

FLORIDA

tArrow ElectroniCS. Inc.
1001 N.w. 62nd Street
Suite 108
Ft. Lauderdale 33309
Tel: (305) 776-7790
1WX: 510·955·9456

tArrow ElectroniCS, Inc.
50 Woodlake Drive W.
Bldg. B
Palm Bey 32905
Tel: (305) 725·1480
1WX: 510·959-6337

tHamiitonl Avnet Electronics
6801 N.W. 15th Way
Ft. Lauderdale 33309

~.(3g15J.9~~3~~~0
tHamiitonl Avnet Electronics
3197 Tech. Drive North
St. Petersburg 33702

~:{8~~6-8~~~~~0
tPioneer I AHa Monte Springs
221 N. Lake Blvd.
Su"e 412
AltaMonte Springs 32701

~. (3~15J.8~~~O~~~0
tPioneer 1Ft. Lauderdale
1500 62nd Street N.W.
Suite 506
Ft. Lauderdale 33309
Tel: (305) 771·7520
1WX: 510-955-9653

GEORGIA

tArrow Electronics, Inc
2979 Pacific Drive
Norcross 30071
Tel: (404) 449·8252
1WX: 810·766-0439

tHamiltonl Avnet Electronics
5825 D. Peachtree Corners
Norcross 30092
Tel: (404) 447·7500
1WX: 810·766·0432

tPioneer/Gecrgia
5835B Peachtree Corners E
Norcross 30092
Norcross 30092
Te;' (404) 448·1711
1WX: 810·766·4515

IWNOIS
tArrow Electronics, Inc.
2000 E. Alonquin St,eet
Schaumberg 60195

~. {3J~~2~~?3~!0
tHamiHonl Avnet ElectroniCS
1130 Thorndale Avenue
Bensenville 60106

~:{3J~6.2~~J6s~0

m~n~~~~~~~ive
~13nE~i=~0007
INDIANA

tArrow Electronics. Inc.
2718 Rand Road

~r~3~~~~1::
tHamihon/ Avnet Electronics
485 Gradle Drive
Carmel 46032

~:(3Jf6.2~~3~3
tPioneer Iindiana
6408 Castklpklce Drive
Indianapolis 46250

~: (3~J~2~~:ij~~0
KANSAS
tHamiHon/ Avnet Electronics
9219 Quivera Road
Overland Park 66215
Tel: (913) 888·8900
1WX: 910·743·0005

MARYLAND

tHamiltonl Avnet ElectroniCS
6822 Oak Hall Lane
Columbia 21045

~: {3~1l8~~i~~~0

r~o~~a 1~~~t~rI5riV~rporation
Gaithersburg 20877
Tel: (301) 948-43501WX: 710·828·9702

tPioneer
9100 Gaither Road
Gaithersburg 20877

~:{3~1l8~~~O~~
MASSACHUSETTS

tArrow ElectroniCS, Inc.
1 Arrow Drive
Woburn 01801

~:(6m.3~33~:71ig
tHamiltonl Avnet Electronics
50 Tower Office Park
Woburn 01801
Tel: (617) 935·9700
1WX: 710·393·0382

tHarvey IBoston
44 Hartwell Avenue
Lexington 02173
Tel: (617) 863·1200
1WX: 710·326-6617

MICHIGAN
tArrow Electronics, Inc.
3810 Varsity Drive
Ann Arbor 48104
Tel: (313) 971-8220
1WX: 810·223-6020

tPioneer IMichigan
13485 Stamford
Livonia 48150

~. (3~~6.2~~:S1Jl~,o
tHamiltonl Avnet ElectroniCS
32487 SChoolcraft Road
Livonia 48150

~: (3J~6.2~~~-4h~0
tHamilton/ Avnet ElectroniCS
2215 29th Street S.E.
Space A5
Grand Rapids 49508
Tel: (616) 243·6805
1WX: 810·273·6921

MINNESOTA

tArrow ElectroniCS, Inc.
5230 W. 73rd Street
Edina 55435
Tel: (612) 830-1800
1WX. 910·576·3125

tHamiHonl Avnet Electronics
10300 Bren Road East
Minnetonka 55343
Tel: (612) 932·0600
1WX: (910) 576-2720

tPioneer/Twin Cities
10203 Bren Road East
Mlnnetonke 55343
Tel: (612) 935-5444
1WX: 910·576-2738

MISSOUrtl

tArrow Electronics, Inc.
2380 SchUetz
St. Louis 63141

~(3J{6.7~~O~~8
tHamiHonl Avnet Electronics
13743 Shoreline Court

f:l~h (3~::r ~:2j~00
1WX: 910·762·0684

NEW HAMPSHIRE

t Arrow Electronics, Inc.
1 Perimeter Road
Manchester 03103
Tel: (603) 668-6968
1WX: 710·220·1684

NEW JERSEY

tArrow Electronics, Inc.
Pleasant Valley Avenue
Moorestown 08057
Tel': (215) 928·1800
1WX: 710·897·0829

tArrow Electronics, Inc.
2 Industrial Road
Fairfield 07006
Tel: (201) 575-5300
1WX: 710·998·2206

tHamittonl Avnet Electronics
1 Keystone Avenue
Bldg. 36
Cherry Hill 08003
Tel: (609) 424·0110
1WX: 710·940·0262

tHamiHon/ Avnet Electronics
10 Industrial
Fairfield 07006
Tel: (201) 575-3390
1WX: 710·734-4388

tHarvey Electronics
45 Route 46
Pinebrook 07058
Tel: (201) 575·3510
1WX: 710·734·4382

tMTI Systems Sales
383 Route 46 W
Fairfield 07006
Tel: (201) 227·5552

NEW MEXICO

tAliiance ElectroniCS Inc.
11030 Cochiti S.E.
Albuquerque 87123
Tel: (505) 292·3360
1WX: 910·989·1151

tHamiHonl Avnet Electronics
2524 Beyler Drive S.E.
Albuquerque 87106
Tel: (50S) 765-1500
1WX: 910·989·0614

NEW YORK

tArrow Electronics, Inc.
900 Broad Hollow Road
Farmingdale 11735
Tel: (516) 694·6800
1WX: 510·224·6126

t Arrow Electronics, Inc.
3000 Sou1h Winton Road
Rochester 14623

~(7Jf6.2~~~~~0
tArrow Electronics, Inc.

l~~~rl~ro88Drive
Tel: (315) 652·1000
TWX: 710-545-0230

tArrow Electronics, Inc.
20 Oser Avenue

~~~pFs'\6~e 211!ftoo 
1WX: 510·227-6623 

tMicrocomputer System Technical Demonstrator centers 

\i 
I' 

I 

\ 

I 

I, 



"'~; 
I, 
'i 
~' 

,I 

intJ 

NEW YORK (ConI'II) 

tHamlnon/ Avnet Electronics 
333 Metro Park 
Rochester 14623 

~:(7Jf~2~~~1fg 
tHamlhon/ Avnel Electronics 
16 Corporale Circle 
E, Syracuee 13057 

~,<3:~6_~~~1~' 
tHamlnon/ Avnet Electronics 
5 Hub Drive 

~:\~jft.!E 11747 

tHarvey Elec1ronlcs 
P,O. Box 1208 
Blnghamlon 13902 

~:(eg'~2~~~~1' 
~a~~:,¥>~~ West 

rr,(~J~L~~~:,~and 11797 

tHarvey/Rochest.r 
840 Fairport Park 
Fairport 14450 

~?J~~2~~~1&i,° 
tMTI Systems Sales 
38 Harbor Park Drive s:: (~n~~~~¥050 
NOImt CAROLINA 

tArrow Electronics, Inc. 
938 Burke Slr88t 
Wins1on-Salem 27101 

~:(9Jf~~l~~~' 
tHamlnon/ Avnel Electronics 
~~. ~p~~orest Orlve 

~;9Jf6_9rt,~~9 
tPionesr /Cerolina 
103 Industrial Avenue 
Gresnsboro 27406 

~: (9Jf~9~~it't' 
OHIO 

tArrow Electronics, Inc. 
7620 McEwen Road 
Centerville 45459 

~: (5J~6-4~;~~~3 
tArrow Electronics, Inc. 
6238 Cochran Road 
Solon 44139 

~(2J~6-4~~~= 
tHamihon/ Avnet Electronics 
954 Senate Drive 
Daylon 45459 

~:(5J~6-4~t~~0 
tHamiHon/ Avnet Electronics 
4588 Emery Industrial Parkway 

~r'lmille83~~~ 44128 
TWX: 810-427-9452 

DOMESTIC DISTRIBUTORS 

OHIO (Cont'1I) 

tPloneer /Dayton 
4433 Interpolnt Boulevard 

~~(~J;l:~~~ 
tPioneer /Cleveland 
4800 E. 131.t Strest 
Cleveland 44105 
Tel (216) 587-3600 
TWX: 810-422-2211 

OKLAHOMA 
tArrow Electronics, Inc. 
4719 S. Memorial Drive 
Tulsa 74145 
Tel: (918) 665-7700 

OREGON 

tAlmac Electronics Corporation 
8022 S.w. Nimbus, Bldg. 7 
Beaverton 97005 

~:(5~'~_4~~~~0 
tHamliton/ Avnet Electronics 
6024 S.W. Jean Road 
Bldg. C. Sune 10 

~:(~£!~~8~~:~4 
PENNSYLVANIA 

tArrow ElectronicS, Inc. 
650 Seco Road 
Monroeville 15146 
Tel: (412) 856-7000 

tPlonesr /PllIsburgh 
259 Kappa Drive 

$:~(;m-%{?3~~go 
~~\0'mti~~~w~~:d Valley 
Horsham 19044 

~:(2J~6_~~6~~~0 
TEXAS 
tArrow Electronics, Inc. 
13715 Gama Road 
Dallas 75234 

~: (2Jn_8~~~~~~0 
tArrow Electronics, Inc. 
10899 Kinghurst 
Suite 100 
Houston 77099 

~:(7J~6~~~4~~~ 
tArrow Electronics, Inc. 10125 
Metropolitan 
Austin 78756 

~: (5Jf6-8~~~;~~~0 
tHamihon/ Avnet ElectroniCs 
2401 RuUand 
Allstin 78757 
Tel: (512) 837-8911 
TWX: 910-874-1319 

tHamlhon/ Avnet ElectroniCS 
2111 W. Walnut Hill Lane 
Irving 75062 
Tel: (214) 659-4100 
TWX: 910-860-5929 

TEXAS (Cont'1I) 

tHamliton/ Avnet Electronics 
8750 West Park 
Hosuton 77063 

~: (7J~6_~~~~~' 
tPlonesr/Austln 
9901 Burnet Road 
Austin 78756 

~: (5Jf~~~~ri~ 
tPloneer/Dalias 
t3710 Omega Road 
Dallas 75234 

~:(2J1U5~~ls~~ 
tPionesr/Houston 
5653 Point West Drive 
Houston 77036 

~: (7J~6_~~igg~5 
UTAH 

tHamliton/ Avnet Electronics 
1565 West 2100 South 

i:~~!J}~~~9 
Wyle Distribution Group 
1959 South 4130 West, Unit B 
Salt Lake City 84104 
Tel: (801) 974-9953 

WASHINGTON 

tAlmac Electronics Corporation 
14360 S.E. Eastgate Way 
Bellevue 98007 

~:(2:J-4~~2~rr2 
tArrow Electronics, Inc. 
14320 N.E. 21st Street 
Bellevue 98007 

~: (2~'~-4~~26~~0 
tHamiiton/ Avnet Electronics 
14212 N.E. 21st Street 
Bellevue 98005 
Tel: (206) 453-5674 
TWX: 910-443-2469 

WISCONSIN 
tArrow ElectroniCS, Inc. 
430 W. Rausson Avenue 
Oakcreek 53154 

~: (4J:6_2~~i~go 
tHaminon/ Avnet Electronics 
2975 Moorland Road 
New Berlin 53151 

~: (4J:6_2~~~~g1° 

CANADA 
ALBERTA 

tHamiiton! Avnet Electronics 
2816 21st Strest N.E. 
Celgary T2E 623 
Tel: (403) 230-3566 
TWX: 03-827-642 

tl.A. Varah, Ltd. 
4742 14th Street N.E. 
Calgary T20 6L 7 

~: (4g;~~~8~~~5 

ALBERTA (ConI'II) 

Zentronics 

~ ~~Ih Avenue N.E. 

~~~ga(103j2~7t\~21 
BAmIH COLUMBIA

LA Varah, Ltd.
2077 Albarta Strest
Vancouver V5Y lC4

~: (sg;'J_9~~~ig~'
Zentronics

k~h~~~~ e~~g~~ Road
Tel: (604) 273-5575
TWX: 04-5077-89

MANITOBA

l.A. Varah, Ltd,

Wi~~i~9 K~~R Eg~~rd Street
Tel: (204) 633-6190
TWX: 07-55-365

Zentronics
590 Berry Street

~rnl~) ~~5-~~\
ONTARIO

Hamihon! Avnet ElectroniCS
6845 Rexwood Road
UnltsG&H
Mississauga L4V lR2

~:(4J~6-4W~~l
Hamilton! Avnet Electronics
210 Colonnade R08d South
Nepean K2E 7L5
Tel: (613) 226-1700
TWX: 05-349-71

l.A. Varah, Ltd.
505 Kenora Avenue
Hamilton L8E 3P2
Tel: (416) 561-9311
TWX: 061-8349

Zentronics
8 Tilbury Court
Brampton L6T 3T 4
Tel: (416) 451-9600
TWX: 06-976-78

Zentronics
564/10 Webar Street North
Waterloo N2L 5C6
Tel: (519) 864-5700

Zentronics
590 Berry Strest
Winnipeg R3H OSI
Tel: (204) 775-866t

QUEBEC

Hamilton! Avnet Electronics
2670 Sabourin Street
St. Laurent H4S 1M2

~(5Jn_4~~~3~~3
Zentronlcs
505 Locke Street
St. Laurent H4T lX7
Tel: (514) 735-5361
TWX: 05-827-535

tMicrocomputer System Technical Demonstrator Centers

BELGIUM

Intel Corporation SA .

~~:,c !uen~Oulin a Papler 5t
BoHe 1
B·1160 Brussels

~tJ~2)~'407 11

DENMARK

Intel Denmark AlS'

~K,~ej~~n~":e/lfa~t
Tel: (01) 18 20 00
TELEX: 19567

FINLAND

Intel Finland OY
Hameentie 103
SF • 00550 Helsinki 55
Tel: W716 955 •
TELEX: 123 332

FRANCE
Inlel Corporation, S.A.R.L.'
5 Place de la Balance
Sillc 223

~:~2101~u~~ ~f
TELEX: 270475

EUROPEAN SALES OFFICES

FRANCE (Cont'd)

Intel Corporation, SAR.L.
Immeuble BBC
4 Quai des Etroits
69005 Lyon
Tel: (7) 842 40 89
TELEX: 305153

WEST GERMANY

Intel Semiconductor GmbH·
Seldlstrasse 27
0·8000 Muenchen 2
Tel: (89) 53891
TELEX: 05·23177 INTL 0

Intel Semiconductor GmbH­
Malnzer Slra",e 75
0·6200 Wiesbaden 1
Tel: (6121) 70 08 74
TELEX: 04186183 INTW 0

Intel Semiconductor GmbH
Brueckstrasse 61
7012 Fellbach
West Germany

i~tE!l11J2~82~ I~fs 0
Intel Semiconduclor GmbH'
Hohenzollern Strasse 5'
3000 Hannover 1

mE~~'~2;:254~N~~ 0

Intel Semiconduclor GmbH
Obar·Aalherstrasse 2
04000 Dusseldorf 30
Tel: (211) 65 10 54
TELEX: 08·58977 INTL 0

ISRAEL

Intel Semiconductor Ltd.'
P.O. Box 1659
Haifa
Tel: 4/524
TELEX: 46511

ITALY

Intel Corporation lIalia Spa'
Milanotlori, Palazzo E
20094 Assago (Milano)
Tel: (02) 824 00 06
TELEX: 315183 INTMIL

NETHERLANDS

Inlel Semiconduclor Nederland B.V.'
Alexanderpoort Building
Marten Meeswag 93
3068 Aonerdam
Tel: (10) 21 23 77
TELEX: 22283

NORWAY

~~I ~~~2 AlS
Hvamvelen 4
N·2013

f:i~tt&) 742 420
TELEX: 18018

SWEDEN

Intel Sweden A.B.'
Box 20092
Archimedesvagen 5
S·16120 Bromma
Tel: (08) 98 53 85
TELEX: 12261

SWITZERLAND

Intel Semiconduclor A.G.'
Forchstrasse 95
CH 8032 Zurich
Tel: (01) 55 45 02
TELEX: 57989 ICH CH

UNITED KINGDDM

Intel Corporation (U.K.) Ltd.'
5 Hospilal Streel
Nantwlch, Cheshire CW5 5RE
Tel: (0270) 626 560
TELEX: 36620

Inlel Corporation (U.K.) Ltd.'
Pipers Way
Swindon, Willshire SN3 lRJ
Tel: (0793) 488 388
TELEX: 444447 INT SWN

'Field Application Location

EUROPEAN DISTRIBUTORS/REPRESENTATIVES

AUSTRIA FRANCE (Cont'd) ITALY (Cont'd) SWEDEN (Cont'd)

Bacher Elektronlsche Geraete GmbH Tekelec Alrtronic Intesi Nordisk Electronik AB
Rotemuehl~asse 26 Cite des ..aruyeres Milanfiori Pal. E/5 Box 27301
A 1120 V,enna Rue Cane Vernel 20090 Assago Sandhamnsgalan 71

:::~tJ~2~15~~ ~S~¥ A
F·92310 Sevres Milano S·10254 Stockholm
Tel: (01) 534 75 35 Tel: (02) 82470 Tel: (8) 635 040
TELEX: 204552 TELEX: 311351 TELEX: 10547

BELGIUM

lnelco Balglum SA
WEST GERMANY NETHERLANDS SWITZERLAND

Ave. des Croix de Guerre 94 Electronic 2000 Vertriebs A.G. Koning & Hartman Induslrade AG
B1120 Brussels Neumarkter Strasse 75 ~~~~ i~220 Gemsenstrasse 2
Tel: (02) 216 01 60 0·8000 Munich 80 Postcheck 80 . 21190
TELEX: 25441 mJ89~2:~6140EI:6 D

2544 EN's Gravenhage CH-8021 Zurich
mE~' J~g18 2fO.l0l Tel: (01) 363 23 20

DENMARK
Jermyn GmbH

TELEX: 56788 INOEL CH

MuHIKomponent AtS PosHach 1180 NORWAY UNITED KINGDOM
Fabriksparken 31 Schulstrasse 48
OK·2600 Gloskrup 0·6277 Bad Camberg Nordisk Elektronic (Norge) 'AtS Bytech Ltd.
Tef: (02) 45 66 45 Tel: (06434) 231 Postoffice Box 122 Unil 57
TX: 33355 TELEX: 484426 JERM 0 ~3~s~~a~:I~d 4 London Road

Scandinavian Semiconductor Celdis Enatechnik Syslems GmbH
Earley, Reading

Tel: (2) 786 210 Berkshire
Supply AtS Gutenbergstrasse 4 TELEX: 77546 Tel: (0734) 61031

~~~~~a'b"o:nha~n 2359 Henstedt·Ulzburg 1 TELEX: 848215 
Tel: (04193) 4026 PORTUGAL 

Tel: (01) 83 50 TELEX: 2180260 Comway Microsyslems Ltd. 
TELEX: 19037 

Proeleclron Vertriebs GmbH 
Ollram Market Street 
Componentes E Eleclronica LOA UK·Bracknell, Barkshire 

FINLAND Max Planck Stmsse 1·3 ~roo~t~:I.,~mbarda, 133 Tel: 44 (344) 55333 
6072 Dreieich bei Frankfurt TELEX: 847201 

Oy Fintronic AB Tel: (6103) 33564 Tel: (19) 545 313 
Melkonkatu 24 A TELEX: 417983 TELEX: 14182 Brieks·P Jermyn Industries 
SF·OO210 Vestry Eslate 
Helsinki 21 IRELAND SPAIN Sevenoaks. Kent 
Tel: (0) 692 60 22 

Micro Marketi0:\9 
Tel: (0732) 450144 

TELEX: 124 224 Ftron SF Interface S.A. TELEX: 95142 

FiIANcE 
Glenageary onoce Park Ronda San Pedro 22,3 

M.E.O.L. Glenageary Barcelona 10 

Generlm 
Co. Dublin ~(3~,lgJ 78 51 

Easl Lane Road 
Tel: (1) 85 62 88 ~?~e~~m~~~ 7PP Z.t. de Courtsbceuf TELEX: 31584 

:r:~r L~: ~~I. ~~~:.B.P.88 ITT SESA Tel: (01) 904 93 07 
ISIIAEL Miguel Angel 23·3 TELEX: 28817 

Tel: (6) 907 78 79 
Eastronics Ltd. 

Madrid 10 
Rapid Recall, Ltd. TELEX: F691700 Tel: (1) 419 54 00 

11 Rozanls Streel TELEX: 27707 Rapid House/Denmark St 
Jermyn SA P.O. Box 39300 High w~comba 
rue Jules Ferry 35 Tel Aviv 61390 SWEDE" r.,'ki'049~~la~~ . ~f,11 2ER 
~:~7~,)~~~01~ 04 

Tel: (3) 47 51 51 
TELEX: 33638 AB Gosla Backstrom TELEX: 837931 

TELEX: 21810 F Box 12009 

Metroiogle 
ITALY Alstrcemergatan 22 YUGOIILAVIA 

S·10221 Stockholm·,2 
La Tour d' Asnieres Eledrs 3S S.P.A. Tel: (8) 541 060 H. R. MicroelectrQnics Enterprises 
I, Avenue Leurent Coly Vlale Elvezia, 18 TELEX: 10135 P.O. Box 5604 
92606-Asnleres I 20154 Milano San Jose, Colifornia 95150 
Tel: (1) 791 44 44 Tel: (2) 34 97 51 Tel: 408/978·8000 
TELEX: 611448 TELEX: 332332 TELEX: 278·559 

I!': \.,1 
I' 

\1 

\1,: 

I, 
II: 

\1 
I' 

I 
I 
I 

I 

! 



inter 
AUSTRAUA 

Intel Semiconductor Pty. Ltd 

~~~~~fi~U~?~~o.,ay 
Level 6
Crows Ne.t, NSW, 2089
Australia
Tel: 01t·6t·2-436·2744
TELEX: 790·20097
FAX: Ott·6t·2·923·2632

INTERNATIONAL SALES OFFICES

HONG KONG

Intel Semiconductor Ltd.
t3/F Hong Kong Trade Centre
t6t· t67 Des Voeux Road Central
Tel: 011·852·5·450·885
TELEX: 63869 ISLHKHX

JAPAN

Intel Japan K.K.
5·6 Tokodal, Toyosato·machl
i:~k~~9~~~:a~~raki.ken 300·26

TELEX: 03656·160

JAPAN (Cont'd)

Intel Japan KK.·
2·1·15 Naka·machl
Atsugl, Kanagawa 243
Tel: 0462·23·3511

k~~Liara~m~:';;'
Chofu, Tokyo 182
Tel: 0424-88·3151

Intel Japan K.K.'
2·69 Hon-cho

~~I~a84alg:2l~~ra 360

JAPAN (Cont'd)

Intel Japan K.K.·
2·4·1 Terauchi

i~r:o~t~63~a 560

Intel Japan K.K.
1·5·1 Marunouchi
Chlyoda·ku, Tokyo 100
Tel: 03·201·362113681

\~k~.ia~~~m~~ti~
~:,~ag31~~~2J:YO 154

'Field Application Location

INTERNATIONAL DISTRIBUTORS/REPRESENTATIVES

ARGENTINA

VLC S.A.L.
Sarmiento 1630, 1 Piso
1042 Buenos Aires
Tel: 35·1201/9242
TELEX: Public Booth 9900 or 9901

Mailing Address
Soimex International Corporation
15 Park Row, Room #1730
New York, New York 10038

~J~! J~~i;~5~riones
AUSTRAUA

Total Electronics
9 Harker Street
Burwood
Victoria 3125
Tel: 61 3 288·4044
TELEX: AA 31261

Mailing Address

~~';'!~~eic~;r?a 3125
Australia

Total Electronics
1 Johnstone Lane
Lane Cove, N.S.W. 2066
TELEX: 26297

BRAZIL

Icotron SA
05110 Av. Mutinga 3650·6 Andar
Pirituba Sao Paulo
Tel: 261·0211
TELEX: 1122274/1COTBR

CHILE
DIN
AV. VIC MCKENNA 204
Casilla 6055

¥:,~ti~~~ 554
TELEX: 352 003

COLUMBIA

~!~~~~~io9al N~.O~~~e.: Machines
Apdo. Aereo 19403
Bogota 1
Tel: 211·7282
TELEX: 45716 ICM CO

HONG KONG

Schmidt & Co. Ltd.
Wing on Centre, 28th Floor
t~,: ~n~~2phk2~oad Central
TELEX: 74766 SCHMC HX

INDIA

Micronic Devices
104/109C, Nirmal Industrial Estate
Sion (E)

~~~~"l6. t?g022 
TELEX: 01t·71447 MDEV IN 

JAPAN 

Asahl Electronics Co. Ltd. 
KMM Bldg. Room 407 
2·14·1 Asano, Kokura 
Kila·Ku, Kitakyushu City 802 
Tel: (093) 51t·5471 
TELEX: AECKY 7126·16 

JAPAN (Cont'd) 

~~m~~~'~&fJt ~~trof!~s H~~~~m;.td. 
Cho 
Nihonbashi Chuo-Ku, Tokyo 103 
Tel: (03) 662·9911 
TELEX: 2523774 

Ayoyo Electric Corp. 
Konwa Bldg. 
1·12·22, Tsukiji 
Chuo-Ku, Tokyo 104 
Tel: (03) 543·7711/541·7311 

Tokyo Electron Ltd. 
Shin Juku, Nomura Bldg. 
26·2 Nishi·Shin Juku·lchome 
Shin Juku·Ku, Tokyo 160 
Tel. (03) 343·4411 
TELEX: 232·2220 LABTEL J 

KOREA 
Koram Digital 
2nd Floor, Government Pension Bldg. 
1·589, Yoido-Dong 

~~~~pdlu;6lpo-Ku 
Tel: 782·8039 or 8049
TELEX: KODIGIT K25 299

NEW ZEALAND

McLean Information Technology Ltd.
459 Kybsr Pass Road, Newmarket,
P.O. Box 9464, Newmarket
Auckland I, New Zealand
Tel: 501-801, 501·219, 587·037
TELEX: NZ21570 THERMAL

SINGAPORE

General Engineers Corporation Pty.
Lid.

l~.o~n~ ~~~a~UH~~~Orey Complex

¥~7:gaJf,~~5~W3163
TELEX: RS23987 GENEACO

SO\ITH AFRICA

Electronic Building Elements, Pty. Ltd.
P.O. Box 4609
Hazelwood, Pretoria 0001
Tel: 011·27·12-46-9221 or 9227
TELEX: 3'()181 SA

TAIWAN

Taiwan Automation Corp.-
3rd Floor # 75, Section 4
Nanking East Road
Taipei
Tel: 771·0940 or 0941
TELEX: 11942 TAIAUTO

YUGOSLAVIA

H. A. Microelectronics Enterprises
P.O. Box 5604
San Jose, California 95150
Tel: (408) 978·8000
TELEX: 278·559

-Field Application Location

u.s: SERVICE OFFICES

CALIFORNIA GEORGIA NEW JERSEY PENNSYLVANIA
Intel Corp. Intel Corp. Intel Corp. Intel Corp.
1350 Shorebird Way 3300 Holcombe Bridge Road 385 Sylvan Avenue 500 Pennsylvania Avenue
MI. View 94043 Suite 225 EngleWood Cliffs 07632 Fort Washington 19034
Tel: (415) 968·8211 Norcross 30092

twx: (2?116.is~!8~~0 twx: (2J~6~~2W~ TWX: 910·339·9279 Tel: (404) 441·1171
910·338·0255

Intel Corp.
Intel Corp.

IWNOIS NEW YORK
201 Penn Cenler Bouleyard

2000 E. 4th ·Street Intel Corp. Intel Corp. Suile 301 W
Suile 110 2550 GoW Road 2255 Lyell Avenue ~~~b~¥;) ':m540 Santa Ana 92705 Suite 815 Rochester 14606

~:(7J~6.5~~~~W ~"r3J~~l\%%~0008
Tel: (716) 254,6120

TEXAS
Intel Corp.

NORTH CAIIOLINA
~,t;1 f"Ktiderson Lane ~:~O D~rt~~jr, . Road KANSAS Intel Corp.

5600 Executive Drive Suite 314
Tel: (71 . 268-3563 Intel Corp. Suite 113 Austin 78752

Intel Corp.
8400 W. 110th Street Charlotte 282t2 Tel: (512)454·3628
Suite 170 Tel: (704) 568·8966 TWX: 910-874·1347

5530 ·N. Corbin Avenue Overland Park 66210
Suite 120 Tel: (913) 642-8080 Intel Corp. Intel Corp.
Tarzana 91356 2306 W. Meadowview Road 12300 Ford Rosd
Tel: (213) 708·0333 MARYLAND Suite 206 SUite 380

Greensboro 27407 Dallas 75234
COLORADO Intel Corp. 7257 Parkway Drive Tel: (919) 294·1541 ~:(2J{~~t~~7
Intel Corp.

Hanover 21076

650 South Cherry twx:(3?1'6~~~~ OHIO
~n~~ ~~'. Freeway Suite 720 ~~~g~n~lfr.lnard Bldg. Denver 80222 IWISACItUIIETTS Suite 1490

twx: (3gfJ.9~~~2ra~ Suite 305 Houston 77074
Intel Corp. 28001 Cha~rin Boulevard ~: (7J~6-8~~2~~8 27 Industrial Avenue

~~l~J;6..~~9~15 .
CONNECTICUT Chelmsford 01824

VIRGINIA
Intel Corp. ~:(6jr6.:A~~'::
36 Padanaram Rosd Intel Corp. Intel Corp ..

v~n'(~3~~Jg.8366 MICHIGAN 6500 Poe Avenue 7700 Leesburg Pike
. Dayton 45414 Suite 412

Intel Corp.
twx: (8:J..~~~~~5 Falls Church 22043

FLORIDA 26500 Northwestern Highway ~: (7~fJ.9~ttJ~g7 Suite 401

\~ ~~: ·62nd Street Southfield 48075 OKLAtIOIIA
Suite 104 ~:(3J~6'2~~.4~50 Intel Corp.

WASHINGTON
Ft. Lauderdale 33309 4157 S. Harvard Intel Corp.

~:(3gfJ.91~~,o MINNESOTA Suite 123 "0 l10th Avenue N.E.
Tulsa 74101 Suite 510

~~ ~\:1altland Avenue

Intel Corp. Tel: (918) 744·8068 Bellevue 98004
7401 Metro Boulevard Tel: 1·800·538·0662
Suite 355 OREGON TWX: 910·443·3002

Suite 205 Edina 55435
MalUand 32751

~:(6Jr6.~~~~W
Intel Corp. W18COH8IH

~:(3g,~.8~~9~~~3 10700 SW. Beaverton·Hlllsdale
HIQhway \~I ~("~un~YSlope Road

Intel Corp. MISSOURI SUite 22
Beaverton 97005 Suite 148

5151 Adanson Street Intel Corp. ~: (5~?J..rr~8~~6 Brookfl8ld 53005
Ortando 32804 4203 Earth City Expressway Tel: (414) 784·9060
Tel: (305) 628·2393 Suite 143

f:r\3~::r ~~~~'5

,I:

