
n p'ONEEe~2!:'!!!cs.'NC.
6408 CASTL.EPLACE DRdINDIANAPOLlS. IN 46250 (317) 849-7300
TOLL FREE • IN 1-800-38.2-5503 • KY 1-800-428-9128

LITERATURE

In addition to the product line Handbooks listed below, the INTEL PRODUCT G U I DE (no charge, Order
No. 210846) provides an overview of Intel's complete product line and customer services.

Consult the INTEL L1TERATU RE GU IDE for a complete listing of Intel literature. TO ORDER literature
in the United States, write or call the Intel Literature Department. 3065 Bowers Avenue, Santa Clara, C A
95051. (800) 538-1876, or (800) 672-1833 (California only). TO ORDER literature from international
locations, contact the nearest Intel sales office or distributor (see listings in the back of most any Intel
literature).

1984 HANDBOOKS

Memory Components Handbook (Order No. 210830)
Contains all application notes, article reprints, data sheets, and other design information
on RAMs, DRAMs, EPROMs, E2pROMs, Bubble Memories.

Telecommunication Products Handbook (Order No. 230730)
Contains all application notes, article reprints, and data sheets for telecommunication
products.

Microcontroller Handbook (Order No. 210918)
Contains all application notes, article reprints, data sheets, and design information for the
MCS-48, MCS-51 and MCS-96 families.

Microsystem Components Handbook (Order No. 230843)
Contains application notes, article reprints, data sheets. technical papers for micropro­
cessors and peripherals. (2 Volumes) (Individual User Manuals are also available on the
8085, 8086. 8088. 186, 286. etc. Consult the Literature Guide for prices and order
numbers.)

Military Handbook (Order No. 210461)
Contains complete data sheets for all military products. Information on Leadless Chip
Carriers and on Quality Assurance is also included.

Development Systems Handbook (Order No. 210940)
Contains data sheets on development systems and software. support options. and design
kits.

OEM Systems Handbook (Order No. 210941)
Contains all data sheets, application notes, and article reprints for OEM boards and
systems.

Software Handbook (Order No. 230786)
Contains all data sheets, applications notes, and article reprints available directly
from Intel, as well as 3rd Party software.

* Prices are for the U.S. only.

U.S. PRICE*

$15.00

7.50

15.00

20.00

10.00

10.00

15.00

10.00

APPLICATION FOR FREE SUBSCRIPTION TO
SOLUTIONS MAGAZINE
Solutions is a bimonthly customer magazine covering all of Intel's new product announce­
ments and offering useful application information. If you wish to receive SOLUTIONS
regularly, please fill in the requested information and mail it back to:

Intel SC6-714
3065 Bowers Avenue
Santa Clara, CA 95051

See reverse side for European return addresses.

There is no charge-just your continued interest in Intel products.

1. Your principal responsibility (please check one box only).
AA 0 General Management AG 0 Marketing or Sales
BB 0 Engineering Management AH 0 Purchasing/Buyer
AC 0 Hardware Design Engineer AJ 0 Educator
AD 0 So.ftware Design Engineer AK 0 Computer Hobbyist
AE 0 Technician AL 0 Data Processing
AF 0 Manufacturing, Reliability or QA AM 0 Other __________ ---,-____ _

2. Your company's principal business or industry (please check one box onlyi.
AN 0 Manufacturer of computers or peripheral equipment
AP 0 Manufacturer of control equipment
AQ 0 Manufacturer of test/measurement equipment or instruments
AR 0 Manufacturer of communication/telecommunication equipment
AS 0 Manufacturer of office/business equipment
AT 0 System integration
AU 0 User of computer equipment
AV 0 Research lab/consultant
AW 0 Software house
AX 0 Government/military agency
AZ 0 Sales office or distributor
BA 0 Other __ __

3. Your company's/division's products fall primarily into:
BB 0 Inciustrial BC 0 Military BD 0 Consumer

4. DC' "ou own or use an Intel microcomputer development system or design aid?
BE 0 Yes BF 0 No

5. Are products that are purchased to your specifications incorporated into proqucts to be sold or are they
used in-house?
BG 0 Incorporated into products to be sold BJ 0 Both
BH 0 Used in-house ,

6. Who do you usually buy from?
BK 0 Distributor BL 0 Manufacturer

7. I am interested in the following product areas:
70 0 Microcomputer Components
71 0 Microcomputer Boards and Systems
72 0 Memory Components

Name
Title

73
74
75

o Memory Boards and Systems
o Military Products
o Telecommunications Products

Company __ __

Phone
Address ____________ ~ __ ___
City ___________ State ___________ Zip __________ Country __________ _
CORP 164C

For a free subscription to the European edition of SOLUTIONS
please mail this card to one of the regional offices listed below:

Intel Corporation (UK) Ltd
Piper's Way
Swindon, SN31RJ
Wiltshire, England

Intel Corporation S.A.R.L.
5 Place de la Balance
Silic 223
94528 Rungis Cedex
France

Intel Corporation Italia Spa
Milanofiori, Palazzo E
20094 Assago (Milano)
Italy

Intel Semiconductor GmbH
Seidlstrasse 27
0-8000 Munchen 2
West Germany

Intel Sweden AB
Box 20092
Archimedesvagen 5
S-16120 Bromma
Sweden

intel~

MICROCONTROLLER HANDBOOK

1984

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which may appear in
this document nor does it make a commitf]1ent to update the information contained herein.

Intel retains the right to make changes to these specifications at any time, without notice.

Contact your local sales office to obtain the latest specifications before placing your order.

The following are trademarks of Intel Corporation and may only be used to identify Intel Products:

BITBUS, COMMputer, CREDIT, Data Pipeline, GENIUS, i, ~, ICE, iCS, iDBP,
iDIS, 121CE, iLBX, im, iMMX, Insite, Intel, intel, intelBOS, Intelevision, inteligent
Identifier, inteligent Programming, Intellec, Inteliink, iOSP, iPDS, iSBC, iSBX,
iSDM, iSXM, Library Manager, MCS, Megachassis, MICROMAINFRAME, MUL­
TIBUS, MULTICHANNEL, MULTIMODULE, Plug-A-Bubble, PROMPT,
Promware, QUEST, QUEX, Ripplemode, RMX/SO, RUPI, Seamless; SOLO,
SYSTEM 2000, and UPI, and the combination of ICE, iCS, iRMX, iSBC, MCS, or
UPI and a numerical suffix.

MDS is an ordering code only and is not used as a product name or trademark. MDS@ is a registered trademark of Mohawk Data
Sciences Corporation. .

• MULTIBUS is a patented Intel bus.

Additional copies of this manual or other Intel literature may. be obtained from:

(0) INTEL CORPORATION. 1963

Intel Corporation
Literatu re Department
3065 Bowers Avenue
Santa Clara, CA 95051

MCS®-96 FAMILY
CHAPTER 1

Table of Contents

Introduction to MCSQl)-96 ... 1-1
CHAPTER 2

Architectural Overview .. 2-1
CHAPTER 3

MCS®-96 Software Design Information .. 3-1
CHAPTER 4

Hardware Design Information ... 4-1
CHAPTER 5

MCS®-96 Data Sheet .. '" 5-1

MCS®-51 FAMILY
CHAPTER 6

MCS®-51 Architecture ... 6-1
CHAPTER 7

MCS®-51 Memory Organization, Addressing
Modes and Boolean Processor ... 7,1

CHAPTER 8
MCS®-51 Instruction Set ... 8-1

CHAPTER 9
MCS®-51 Application Examples .. 9-1

CHAPTER. 10
Article Reprints .. 10-1

CHAPTER 11
MCS®-51 Data Sheets

8031 AH/8051 AH .. 11-1
8032AH/8052AH ... , .. 11-13
8751 H .. 11-25

CMOS
CHAPTER 12

Design Considerations When Using CHMOS ... 12-1
Inside CMOS Technology ... 12-6

MCS®-4B FAMILY
CHAPTER 13

The Single Component MCS'Bl_48 System .. 13-1
CHAPTER 14

Expanded MCS®-48 System ... 14-1
CHAPTER 15

MCS®-48 Instruction Set ... 15-1
CHAPTER 16

MCS®-48 Data Sheets
8243 ... 16-1
8048AH/8748H/8035AHU8049AH
8749H/8039AHU8050AH/8040AHL .. 16-7
MCS®-48 Express .. : ~ 16-20
80C39-7/80C49-7 .. 16-24

THE RUPpM FAMILY: MICROCONTROLLER
WITH ON-CHIP COMMUNICATION CONTROLLER

CHAPTER 17'
The RUPI'"-44 Family " " .. " ... " " .. " ; .. ".".".""." " ... ",'"" 17-1

CHAPTER 18
8044 Architecture ... " " 18-1

CHAPTER 19
8044 Serial Interface "" ... "." ""."" .. "."""."" "." "" ,,"",, ,, " .. "" """".".".19-1

CHAPTER 20
8044 Applications Examples " "." ... ""."""" """."" .. " .. " ""."."" "." ... ,,,, " .. , .. ; ".20-1

CHAP.TER 21
RUPP" Data Sheets

8044AH/8344AH " " " " "." 21-1
8744 " : " " " ... " 21-20

CHAPTER 22
RUPI'" Article Reprint " " ... " " 22-1

PACKAGING INFORMATION
CHAPTER 23 " .. " ... " " 23-1

Introduction to MCS® ... 96 1

CHAPTER 1
INTRODUCTION TO MCS®-96

1.0 CONTINUING MICROCONTROLLER
EVOLUTION

Beginning with the introduction of the world standard
8048 (MCS@-48) Microcontroller in 1976, Intel has con­
tinued to drive the evolution of single chip microcontroll­
ers. In 1980, Intel introduced the 8051 (MCS-51) offering
perfonnance levels significantly higher than the 8048.
With the advent of the 8051, the microcontroller appli­
cations base took a marked vertical leap. These versatile
chips are used in applications from keyboards and ter­
minals to controlling automobile engines. The 8051
quickly gained the position of the second generation world
standard microcontroller.

Now that the semiconductor process technologies are

z o
~
a:
Cl
w

~
::ii
w
Iii
~
ill
o
~
::ii
a:
o
IL
a: w
11.

8048

8049
8050
8021

MCS'-48

.8 BIT CPU

• 1/2/4K ROM

8051
8052

• 64/128/256 BYTE RAM
• TIMER/COUNTER
• PARALLEL I/O

8022 • 8 BIT AID

1976

being pushed to new limits, it has become possible to
integrate more than 100,000 transistors onto a single sil­
icon chip. Microcontroller designers at Intel have taken
today's process technology achievements and forged a
new generation of single chip microcontrollers called the
MCS-96. The 8096 (generic part number for MCS-96)
offers the highest level of system integration ever achieved
on a single chip microcontroller. It uses over 120,000
transistors to implement a high performance 16-bit CPU,
8K bytes of program memory, 232 bytes of data memory
and both analog and digital types of 110 features. Figure
I-I shows the evolution of single chip microcontroller at
Intel.

MCS'-51

8394
8395
8396
8397

.8 BIT CPU

• 4/8K ROM
• 128/256 BYTE RAM
• TIMER/COUNTER
• PARALLEL VO
• SERIAL I/O

1980

o 16 BIT CPU

• 8K ROM
• 232 BYTE RAM
• TIMER/COUNTER
o PARALLEL I/O

• SERIAL VO
• 10 BIT AID
• HIGH SPEED I/O
o PWM
• WATCH DOG TIMER

1983

Figure 1-1. Evolution of Microcontrollers at Intel

1-1

INTRODUCTION TO MCS®-96

1.1 INTRODUCTION TO THE MCS®-96

The 8096 consists of a 16-bit powerful CPU tightly cou­
pled with program and data memory along with several
1/0 features all integrated onto a single piece of silicon.
The CPU supports bit, byte, and word operations. 32-bit
double words are also supported for a subset of the in­
struction set. With a 12 MHz input frequency, the 8096
can perform a 16-bit addition in 1.0 MS and 16 x 16
multiply or 32/16 divide in 6.5 MS.

16-bit softw~e timers can be in operation at once in ad­
dition to the two 16-bit hardware timers.

An optional on-chip AID converter converts up to four
(in the 48-pin version) or 8 (in the 68-pin version) analog
input channels into lO-bit digital values. Also provided
on-chip, is a serial port, a watchdog timer, and a pulse­
width modulated output signal. Table 1.1' shows the fea­
tures and benefits summary for the MCS-96.

Four high-speed trigger inputs are provided to record the
times at which external events occur with a resolution of
2 MS (at 12 MHz crystal frequency). Up to six high-speed
pulse generator outputs are provided to trigger external
events at preset times. The high speed output unit can
simultaneously perform timer functions, up to four such

The 8096 with its 16-bit CPU and all the 1/0 features and
interface resources on a single piece of silicon represents
the highest level of system integration in the world of
microcontrollers. It will open up new applications which
had to use multiple chip solutions in the past.

Table 1-1 MCS®-96 Features and Benefits Summary

FEATURES BENEFITS
16-Bit CPU Efficient machine with higher throughput.

8K Bytes ROM Large program space for more complex, larger programs.

232 Bytes RAM Large on-board register file.

Hardware MUL/DIV Provides good math capability 16 by 16 multiply or 32 by 16 divide
in 6.5 ILS @ 12 MHz ..

6 Addressing Modes Provides greater flexibility of programming and data manipulation.

High Speed I/O Unit Can measure and generate pulses with high resolution (2 ILs @
4 dedicated 110 lines 12 MHz).
4 programmable I10 lines

lO-Bit AID Converter . Reads the external analog inputs.

Full Duplex Serial Port Provides asynchronous serial link to other proc,essors or systems.

Up to 40 I10 Ports Provides TTL compatible digital data 110 including system expansion
with standard 8 or 16-bit peripherals.

Programmable 8 Source Priority Respond to asynchronous events.
Interrupt System

Pulse Width Modulated Output Provides a programmable pulse train with variable duty cycle. Also
used to generate analog output.

Watchdog Timer Provides ability to recover from software malfunction or hardware
upset.

48 Pin (DIP) & 68 Pin (Flatpack, Pin Offers a variety of package types to choose from to better fit a specific
Grid Array) Versions application need for number of IIO's and package size.

1-2

INTRODUCTION TO MCS®·96

1.2. MCS®·96 APPLICATIONS

The MCS-96 products are stand-alone high performance
single chip microcontrollers designed for use in sophis­
ticated real-time demanding applications such as industrial
control, instrumentation and intelligent computer periph­
erals. The wide base of applications cut across all industry
segments (see table 1.2). With the 16-bit CPU h~rse­
power, high-speed math processing and high-speed lIO,
the 8096 is ideal for complex motor control and axis con­
trol systems. Examples include three phase, large horse­
power AC motors and robotics.

With its 10-bit AID converter option, the device finds
usage in data acquisition systems and closed-loop analog
controllers. It permits considerable system integration by

Table 1·2 MCS®·96 Broad Base of Applications

INDUSTRIAL
Motor Control
Robotics
Discrete and Continuous Process Control
Numerical Control
Intelligent Transducers

INSTRUMENTATION
Medical Instrumentation
Liquid and Gas Chromatographs
Oscillioscopes

CONSUMER
Video Recorder
Laser Disk Drive
High-end Video Games

GUIDANCE & CONTROL
Missile Control
Torpedo Guidance Control
Intelligent Ammunition
Aerospace Guidance Systems

DATA PROCESSING
Plotters
Color and B&W Copiers
Winchester Disk Drive
Tape Drives
Impact and Non-Impact Printers

TELECOMMUNICATIONS
Modems
Intelligent Line Card Control

AUTOMOTIVE'
Ignition Control
Transmission Control
Anti Skid Braking
Emission Control

1-3

combining analog and digital Iio processing in the single
chip.

This chip is ideally suited in the area of instrumentation
products such as gas chromatographs, which combine an­
alog processing with high speed number crunching. The
same features make it a desirable component for aerospace
applications like missile guidance and control.

1.3. MCS®·96 FAMILY DEVELOPMENT
SUPPORT TOOLS

The product family is supported by a range of Intel soft­
ware and hardware development tools. These tools shorten
the product development cycle, thus bringing the product
to the market sooner.

1.3.1. MCS®·96 Software Development
Package

The 8096 software development package provides devel­
opment system support specifically designed for the MCS-
96 family of single chip microcontrollers. The package
consists of a symbolic macro assembler ASM-96, Linkerl
Relocator RL-96 and the librarian LIB-96. Among the
high level languages, PLM-96 is offered along with a
floating point math package. Additional high level lan­
guages are being developed for the MCS-96 product
family.

1.3.2. ASM·96 MACRO Assembler
The 8096 macro assembler translates the symbolic assem­
bly language instructions into the machine executable ob­
ject code. ASM-96 enables the programmer to write the
program in a modular fashion. The modular programs
divide a rather complex program into smaller functional
uni\s, that are easier to code, to debug, and to change.
The separate modules can then be linked and located into
one program module using the RL-96 utility. This utility
combines the selected input object modules into a single
output object module. It also allocates memory to input
segments and binds the relocatable addresses to absolute
addresses. It then produces a print file that consists of a
link summary, a symbol table listing and an intermediate
cross-reference listing. LIB-96 , another utility helps to
create, modify, and examine library files. The ASM-96
runs on Intellec Series III or IV.

1.3.3. PUM·96
The PLlM-96 compiler translates the PLlM-96 language
into 8096 relocatable object modules. This allows im­
proved programmer productivity and application reliabil­
ity. This high level language has been efficiently designed
to map into the machine architecture, so as not to trade
off higher programmer productivity with inefficient code.
Since the language and the compiler are optimized for the
8096 and its application environment, developing software
with PLlM-96 is a 'low-risk~ project.

INTRODUCTION TO MCS®-96

1.3.4. Hardware Development Support:
ISBE-96,

The iSBE-96 is a hardware execution and debug tool for
the MCS-96 products. It consists of a monitorldebugger
resident in an 8096 system. This development system in­
terfaces with the user's 8096 system via two ribbon cables,
one for the 8096 110 ports, and the other for the memory
bus. The iSBE-96 is controlled by an Intellec Series III
or other computer system over a serial link . Power for the
iSBE-96 can be supplied by plugging it into the MUL­
TIBUS® card slot, or by an extern!!1 power supply. The
iSBE-96 is contained on one standard MULTIBUS board.

The iSBE-96 provides the most often used features for
real-time' hardware emulation. The user can display and
modify memory, set up break points, execute with or
without breakpoints and change the memory map. In ad­
dition, the user can single step through the system
program.

1.3.5. MCS®-96 Workshop
The workshop provides the design engineer or system
designer hands-on experience with the MCS-96 family of
products. The course includes an explanation of the Intel
8096 architecture, system timing, inpuUoutput design.
The lab sessions allow the attendees to gain in-depth
knowledge of the MCS-96 product family and support
tools.

1.3.6. Inslte ™ Library
The Intel Insite Library contains several application pro­
grams. A very useful program contained in the Insite is
SIM-96, the software simulator for 8096. It allows soft­
ware simulations of user's system. The simulator,provides
the ability to set breakpoints, examine and modify mem­
ory, disassemble the object code and single step through
the code.

1-4

1.4. MCS®-96 FAMILY OF PRODUCTS

Although 8096 is the generic part number often used for
the MCS-96 products throughout this manual, the product
family consists of eight configurations with eight' part
numbers including the 8096. This wide variety of products
is offered to best meet user'sapplication requirements in
terms of number of 110's and package size. The options
include on-board 8K bytes of mask programmed memory,
lO-bit AID converter, and 48 or 68 pin package type.

Table 1-3 summarizes all the current products in the
MCS®-96 product family.

Table 1·3 MCS®·96 Family of Products

OPTIONS 68 PIN 48 PIN

ROMLESS 8096 8094
DIGITf.-L
1/0

ROM 8396 8394

ANALOG ROMLESS 8097 8095
AND
DIGITAL
110 ROM 8397 8395

The 48 pin version is available in a DIP (dual inline)
package.

The 68 pin version comes in two packages, the Plastic
Flatpack and the Pin Grid Array.

Architectural Overview 2

CHAPTER 2
ARCHITECTURAL OVERVIEW

2.0. INTRODUCTION

The 8096 can be separated into several sections for the
purpose of describing its operation. There is a CPU, a
programmable High Speed VO Unit, an analog to digital
converter, a serial port, and a Pulse Width Modulated
(PWM) output for digital to analog conversion. In addition
to these functional units, there are some sections which
support overall operation of the chip such as the clock
generator and the back-bias generator. The CPU and the
programmable 110 make the 8096 very different from any
other microcontroller, let us first examine the CPU.

2.1. CPU OPERATION

The major components of the CPU on the 8096 are the
Register File and the RALU. Communication with the
outside world is done through either the Special Function
Registers (SFRs) or the Memory Controller. The RALU
(Register/Arithmetic Logic Unit) does not use an accu­
mulator, it operates directly on the 256-byte register space
made up of the Register File and the SFRs. Efficient 110

VREF

ANGND
I
I
I
I
I
I
I
I
I
I
I
I

VSS

L __________ _

VBB

operations are possible by directly controlling the
I/O through the SFRs. The main benefits of this structure
are the ability to quickly change context, the absence of
accumulator bottleneck, and fast throughput and I/O
times.

2.1.1. CPU Buses
A "Control Unit" and two buses connect the Register
File and RALU. Figure 2-1 shows the CPU with its major
bus connections. The two buses are the "A-Bus" which
is 8-bits wide, and the "D-Bus" which is 16-bitswide.
The D-Bus transfers data only between the RALU and the
Register File or Special Function Registers (SFRs). The
A -B us is used as the address bus for the above transfers
or as a multiplexed address/data bus connecting to the
"Memory Controller". Any accesses of either the internal
ROM or external memory are done through the Memory
Controller.

Within the memory controller is a slave program counter
(Slave PC) which keeps track of the PC in the CPU. By
having most program fetches from memory referenced to

READY

~--':;==l==--+- RESET

I
I __________ ..1

P3)

(ADOR/DATA

(BUS

P.)

POiACH P1 P2/ALT. FUNCTIONS HS1 HSO "

Figure 2-1. Block Diagram (For simplicity, lines connecting port registers to port buffers are not shown.)

2-1

ARCHITECTURAL OVERVIEW

the slave PC, the processor saves time as addresses seldom
have to be sent to the memory controller. If the address
jumps sequence then the slave PC is loaded with a new
value and processing continues. Data fetches from mem­
ory are also done through the memory controller, but the
slave PC is bypassed for this operation.

2.1.2. CPU Register File
The Register File contains 232 bytes of RAM which can
be accessed as bytes, words, or double-words. Since each
of these locations can be used by the RALU, there are
essentially 232 "accumulators". The first word in the
Register File is reserved for use as the stack pointer so
it can not be used for data when stack manipulations are
taking place. Adcb;esses for accessing the Register File
and SFRs are temporarily stored in two 8-bit address reg­
isters by the CPU hardware.

2.1.3. RALU Control
Instructions to the RALU are taken from the A-Bus and
stored temporarily in the instruction register. The Control

UPPER WORD REGISTER/SHIFTER

LOWER WORD REGISTER/SHIFTER

Unit decodes the instructions and generates the correct
sequence of signals to have the RALU perform the desired
function. Figure 2-1 shows the instruction register and the
control unit. .

2.1.4. RALU
Most calculations performed by the 8096 take place in the
RALU. The RALU, shown in Figure 2-2, contains a 17-
bit ALU, the Program Status Word (PSW), the Program
Counter (PC), a loop counter, and three temporary reg­
isters. All of the registers are l6-bits or 17-bits (16 + sign
extension) wide. Some of the registers have the ability to
perform simple operations to off-load the ALU.

A separate incrementer is used for the PC; however, jumps
must be handled through the ALU. Two of the temporary
registers have their own shift logic. These registers are
used for the operations which require logical shifts, in­
cluding Normalize, Multiply, and Divide. The "Lower
Word" register is used only when double-word quantities
are being shifted, the "Upper Word" register is used

8-BIT
A-BUS

1------""7''-1:..:6'------+-1 TEMPORARY REGISTER .. --r-8=------""1

CONSTANTS (0,1,2)

t-7"-~~'-I DELAY t----~.,

16 8 LOWER

Figure 2-2. RALU Block Diagram

2-2

ARCHITECTURAL OVERVIEW

whenever a shift is perfonned or as a temporary register
for many instructions. Repetitive shifts are counted by the
5-bit "Loop Counter".

A temporary register is used to store the second operand
of two operand instructions. This includes the multiplier
during multiplications and the divisor during divisions.
To perform subtractions, the output of this register can be
complemented before being placed into the "B" input of
the ALU.

The DELAY shown in Figure 2-2 is used to convert the
16-bit bus into an 8-bit bus. This is required as all ad­
dresses and instructions are carried on the 8-bit A bus.
Several constants, such as 0, 1 and 2 are stored in the
RALU for use in speeding up certain calculations. These
come in handy when the RALU needs to make a 2's
complement number or perfonn an increment or decre­
ment instruction.

2.2. BASIC TIMING

The 8096 requires an input clock frequency of between
6.0' MHz and 12 MHz to function. This frequency can be
applied directly to XTALI. Alternatively, since XTALI
and XTAL2 are inputs and outputs of an inverter, it is also
possible to use a crystal to generate the clock. A block
diagram of the oscillator section is shown in Figure 2-3.
Details of the circuit and suggestions for its use can be
found in section 4.1.

2.2.1. Internal Timings
The crystal or external oscillator frequency is divided by

XTAL 1

PHASE A
(CLOCKOUT)

PHASE B

PHASE C

...------------_.

INTERNAL
CIRCUITRY

8096

XTAL 1 XTAL 2
t----tOIr---t

Figure 2-3. Block Diagram of Oscillator

3 to generate the three internal timing phases as shown
in Figure 2-4. Each of the internal phases repeat every 3
oscillator periods: 3 oscillator periods are referred to as
one "state time", the basic time measurement for 8096
operations. Most internal operations are synchronized to
either Phase A, B or C, each of which have a 33% duty
cycle. Phase A is represented externally by CLKOUT, a
signal available on the 68-pin part. Phases Band Care
not available externally. The relationships of XTALl,
CLKOUT, and Phases A, B, and C are shown in Figure
2-4. It should be noted that propagation delays have not

Figure 2-4. Internal Timings Relative to XTAL 1

2-3

ARCHITECTURAL OVERVIEW

been taken into account in this diagram. Details on these
and other timing relationships can be' found in sections
4.1, 4.4 and 4.6.

The RESET line can be used to start the 8096 at an exact
time to provide for synchronization of test equipment and
multiple chip systems. Use of this feature is fully ex­
plained under RESET, sections 2.15 and 4.1.

2.3. MEMORY SPAC,E

The addressable memory space on the 8096 consists of
64K bytes, most of which is available to the user for
program or data memory. Locations which have special
purposes are OOOOH through OOFFH and I FFEH through
201OH. All other locations can be used for either program
or data storage or for memory mapped peripherals. A
memory map is shown in figure 2-5.

2.3.1. Register File
Locations OOH through OPFH contain the Register File
and SFRs. Complete information on this section of mem­
ory space can be found in section "RAM SPACE". No
code can be executed from this internal RAM section. If
an attempt to execute instructions from locations OOOH
through OFFH is made, the instructions will be fetched
from external memory. This section of external memory
is reserved for use by Intel development tools. Execution
of a nonmaskable interrupt (NMI) will force a call to

65535

16384

8320

8210

8192

8190

256
255

00

EXTERNAL MEMORY
OR
1/0

~

INTERNAL PROGRAM
STORAGE ROM

FACTORY TEST CODE

8
INTERRUPT t
VECTORS 0

PORT 4
PORT 3

EXTERNAL MEMORY
OR
1/0

INTERNAL RAM
REGISTER FILE

STACK' POINTER
SPECIAL FUNCTION REGISTERS

(WHEN ACCESSED AS
DATA MEMORY)

external location OOOOH, therefore, the NMI instruction
is also reserved for Intel development tools.

2.3.2. Reserved Memory Spaces
Locations IFFEH and IFFFH are reserved for Ports 3 and
4 respectively, This is to allow easy reconstruction of these
ports if external memory is used in the system.; An ex­
ample of reconstructing the 110 ports is given in section
4.6.7. If ports 3 and 4 are not going to be reconstructed
then tjl.ese locations can be treated as any other external
memory location.

The' 9 interrupt vectors are stored in locations' 2000H
through 2011H. The 9th vector is used by lntel devel­
opment systems, as explained in section 2.5. Internal 10-
cations 2012H through 2077H are reserved for Intel's fac­
tory test code. These locations may be used in external
memory.

Resetting the 8096 causes instructions to be fetched start­
ing from location 2080H. This . location was chosen to
allow a system to have up to 8K of RAM continuous with
the register file. Further information on reset can be found
in section 2.15.

2.3.3. Internal ROM
When a ROM part is ordered, the internal memory lo­
cations 2080H through 3FFFH are user specified as are
the interrupt vectors in locations 2000H through 2011H.

FFFFH

4000H

2080H <- RESET

2012H

2000H

lFFEH

0100H
OOFFH

OOOOH

r-------------,255

EXTERNAL MEMORY RESERVED
FOR USE BY INTEL DEVELOPMENT
SYSTEMS
(WHEN ACCESSED AS PROGRAM
MEMORY)
~ __________ ~OO

Figure 2-5. Memory Map

2-4

ARCHITECTURAL OVERVIEW

Instruction and data fetches from the internal ROM occur
only if the part has a ROM, EA is tied high, and the
address is between 2000H and 3FFFH. At all other times
data is accessed from either the internal RAM space or
external memory and instructions are fetched from exter­
nal memory.

2.3.4. Memory Controller
The RALU talks to the memory (except for the locations
in the register file and SFR space) through the memory
controller which is connected to the RALU by the A-bus
and several control lines. Since the A-bus is eight bits
wide, the memory controller uses a Slave Program
Counter to avoid having to always get the instruction lo­
cation from the RALU. This slave PC is incremented after
each fetch. When ajump or call occurs, the slave PC must
be loaded from the A-bus before instruction fetches can
continue.

In addition to holding a slave PC, the memory ~ontroller
contains a 3 byte queue to help speed execution. This
queue is transparent. to the RALU and to the user unless
wait states are forced during external bus cycles. The
instruction execution times shown in Tables 3-3 and 3-4
show the normal execution times with no wait states

PHASE A
(CLKOUn

PHASE B

PHASE C

added. Reloading the slave PC and fetching the first byte
of the new instruction stream takes 4 state times. This is
reflected in the jump taken/not-taken times shown in Table
3-4.

2.3.5. System Bus
External memory is addressed through lines ADO through
ADl5 which form a l6-bit multiplexed (address/data) data
bus. These lines share pins with I/O ports 3 and 4. The
falling edge of the Address Latch Enable (ALE) line is
used to provide a clock to a transparent latch (74LS373)
in order to demultiplex the bus. A typical circuit and the
required timings are shown in section 4.6. Since the
8096' s external memory can be addressed as either bytes
or words, the decoding is controlled with two lines, Bus
High Enable (BHE) and AddressslData Line 0 (ADO).
The BHE line must be transparently latched, just as the
addresses are.

To avoid confusion during the explanation of the memory
system it is reasonable to give names to the de multiplexed
address/data signals. The address signals will be called
MAO through MA15 (Memory Address), and the data
signals will be called MDO through MD15 (Memory
Data).

READY ~~ __________________ __

ALE -1\ n

RD ,'--__ --I,

, ... __ --<, DATA IN

ADDRESS/DATA (ADDRESSX DATA OUT I ~

BHE, INST ~ VALID X ... _____ IN_V_A_LI_D ____ -JX VALID" 'C...
'IF ALE.IS HIGH

Figure 2-6. External Memory Timings

2-5

ARCHITECTURAL OVERVIEW

When BHE is active (low), the memory connected to the
high byte of the data bus should be selected. When MAO
is low the memory connected to the low byte of the data
bus should be selected. In this way accesses to a 16-bit
wide memory can be to the low (even) byte only (MAO­
=0, BHE=l), to the high (odd) byte only (MAO = 1,
BHE=O), or to both bytes (MAO=O, BHE=O). When
a memory block is being used only ,for reads, BHE and
MAO need not be decoded,

Figure 2-6 shows the idealized waveforms related to the
following description of external memory manipulations,
For exact timing specifications please refer to the latest
data sheet. When an external memory fetch begins, the
address latch enable (ALE) line rises, the address is put
on ADO-ADlS and BHE is set to the required state. ALE
then falls, the address is taken off the pins, and the RD
(Read) signal goes low. The READY line can be pulled
10\" to hold the processor in this condition for a few extra
state times.

2.3.6. Ready
The READY line can be used to hold the processor in the
above condition in order to allow access to slow memories
or for DMA purposes. Sampling of the READY line oc­
curs internally during Phase 2,- which is the signal that
generates CLKOUT, There is a minimum time in which
READY must be stable before CLKOUT goes low, If this
set-up time is violated while the part is going to the not­
ready state, the part may fail to operate predictably,

Since READY is synchronized with CLKOUT, the 8096
will be in a not -ready condition for a period equal to some
multiple of CLKOUT, although the READY line can be
brought high at any time. There is a maximum time for
holding the 8096 in the not-ready condition, typically on
the order of 1 ,."S, The exact time is specified in the data
sheet for the particular part and temperature range desired.

The data from the external memory must be on the bus
and stable for a minimum of the specified set-up time
before the rising edge of RD, The rising edge of RD
latches the information into the 8096. If the read is for
data, the INST pin will be low when the address is valid,
if it is for an instruction the INST pin will be high during
this time. The 48-lead part does not have the INST pin.

Writing to external memory requires timings that are sim­
ilar to those required when reading from it. The main
difference is that the write (WR) signal is used instead of
the RD signal. The timings are the same until the falling
edge of the WR line. At this point the 8096 removes the
address and places the data on the bus. The READY line
must be held in the desired state at that time as described
above. When the WR line goes high the data should be
latched to the external memory. INST is always low during
a write, as instructions cannot be written. The exact timing
specifications for memory accesses can be found in the
data sheet.

2-6

19H
18H

17H

16H

15H

14H
13H
12H

llH

10H

OFH

OEH

ODH

OCH

OBH

OAH

09H

OOH

07H

06H

05H

04H

03H

02H

01H

OOH

OFFH 255

POWER·DOWN
RAM

OFOH 240
OEFH 239

INTERNAL
REGISTER FILE ,h

lAHT

(RAM)

I6
STACK POINTER STACK POINTER

PWM_CONTROl

1051 10Cl

1050 lOCO

RESERVED RESERVED

SP_STAT SP_CON

10 PORT 2 10 PORT 2

10 PORT 1 10 PORT 1

10 PORTO BAUD_RATE

TIMER2(HI)

TIMER2 (LO) RESERVED

TIMERl (HI)

TIMERl (LO) WATCHDOG

INT_PENDING INT_PENDING

INT_MASK INT_MASK

SBUF (RX) SBUF (TX)

HSLSTATUS HS~COMMAND

HSLTIME (HI) HSO_TIME (HI)

HSLTIME (LO) HSO_TIME (lO)

AD_RESULT (HI) HSLMODE

AD_RESULT (LO) AD_COMMAND

RO (HI) RO(HI)

RO (LO) RO(lO)

(WHEN READ) (WHEN WRITTEN)

Figure 2-7. Register File Memory Map

2.4. RAM SPACE

25
24

23

22

21

20
19
18

17

16

15

14

13

12

11

10

9

8 '

7

6

4

3

o

The internal register locations on the 8096 are divided into
two groups, a register file and a set of Special Function
Registers (SFRs). The RALU can operate on any of these
256 internal register locations. Locations OOH through
17H are used to access the SFRs. Locations I8H and I9H
contain the stack pointer. There are no restrictions on the
use of the remaining 230 locations except that code cannot
be executed from them.

I

ARCHITECTURAL OVERVIEW

2.4.1. Special Function Registers 7 shows the locations and names of these registers. A
summary of the capabilities of each of these registers is
shown in Figure 2-8, with complete descriptions reserved
for later chapters.

All of the 110 on the 8096 is controlled through the SFRs.
Many of these registers serve two functions; one if they
are read from, the other if they are written to. Figure 2-

Register Description

RO Zero Register - Always reads as a zero. useful for a base when
indexing and as a constant for calculations and compares.

AILRESULT A/D Result Hi/Low - Low and high order Results of the AID
converter

AILCOMMAND AID Command Register - Controls the A/D

HSLMODE HSI Mode Register - Sets the mode of the High Speed Input unit.

HSLTIME HSI Time Hi/Lo - Contains the time at which the High Speed Input
unit was triggered.

HSG....JIME HSO Time HilLo - Sets the time for the High Speed Output to
execute the command in the Command Register.

HSO-COMMAND HSO Command Register - Determines what will happen at the time
loaded into the HSO Time registers.

HSLSTATUS HSI Status Registers - Indicates which HSI pins were detected at the
time in the HSI Time registers.

SBUF (RX) Receive buffer for the serial port, holds contents to be outputed.

SBUF (TX) Transmit buffer for the serial port, holds the byte just received by the
serial port.

INT..Jv1ASK Interrupt Mask Register - Enables or disables the individual
interrupts.

IN'Ll'ENDING Interrupt Pending Register - Indicates when an interrupt signal has
occurred on one of. the sources.

WATCHDOG Watchdog Timer Register - Written to periodically to hold off
automatic reset every 64K state times.

TIMER I Timer I Hi/La - Timer I high and low bytes.

TIMER2 Timer 2 Hi/La - Timer 2 high and low bytes.

10PORTO Port 0 Register - Levels on pins of port O.

BAUIL..RATb Register which contains the baud rate, this register is loaded
sequentially.

IOPORTl Port I Register - Used to read or write to Port I.

IOPORT2 Port 2 Register - Used to read or write to Port 2.

SLSTAT Serial Port Status - Indicates the status of the serial port.

S.LCON Serial port control - Used to set the mode of the serial port.

IOSO I/O Status Register 0 - Contains information on the HSO status.

10SI I/O Status Register I - Contains information on the status of the
timers and of the. HSI.

lOCO I/O Control Register 0 - Controls alternate functions of HSI pins,
Timer 2 reset sources and Timer 2 clock sources.

lOCI I/O Control Register I -- Controls alternate functions of Port 2 pins,
timer interrupts and HSI interrupts.

PWM--.CONTROL Pulse Width Modulation. Control Register - Sets the duration of the
PWM pUlse.

Figure 2-8. SFR Summary

2-7

Chapter

3.2.7

2.9.3

2.9.2

2.7.1

2.7.4

2.8.3

2.8.2

2.7.4

2.11

2.11

2.5.2
3.6.2

2.5.2
3.6.2

(

2.14

2.6.1
2.7-8

2.6.2
2.7-8

2.12.1

2.11.4

2.12.2

2.12.3

2.11.3

2.11.1

2.13.4

2.13.5
3.7.2

2.13.2

2.13.3

2.10
4.3.2

ARCHITECTURAL OVERVIEW

Within the SFR space are several registers labeled as
"RESERVED". These registers are reserved for future
expansion or test purposes. Reads or writes of these reg­
isters may produce unexpected results. For example, writ­
ing to location OOOCH will set both timers to OFFFXH,
this feature is for use in testing the part and should. not
be used in programs.

2.4.2. Power Down
The upper 16 RAM locations (OFOH through OFFH) re­
ceive their power from both the VCC pin and the VPD
pin. If it is desired to keep the memory in these locations
alive during a power down situation, one' need only keep
voltage on the VPD pin. The current required to keep the
RAM alive is approximately 1 milliamp (refer to the data
sheet for the exact speCification).

To place the 8096 into a power down mode, the RESET
pin is pulled low. Two state times later the part will be
in reset. This is necessary to prevent the part from writing
into RAM as the power goe~ down. The power may now
be removed from the VCC pin, the VPD pin must remain
within specifications. The 8096 can remain in'this state
for any amount of time and the 16 RAM bytes will retain
their values.

2.5. INTERRUPT STRUCTURE

2.5.1. interrupt Sources
Eight interrupt sources are available 011 the 8096. When
enabled, an interrupt occurring on any of these sources
will force a call to the location stored in the vector location
for that source. The interrupt sources and their respective
vector locations are listed in Figure 2- IO. In addition to
the 8 standard interrupts, there is a TRAP instruction
which acts as a software generated interrupt. This instruc­
tion is not currently supported by the MCS-96 Assembler
and is reserved. for use by Intel development systems.
Many of the interrupt sources can be activated by several
methods, Figure 2-11 shows all of the possible sources
for interrupts.

Source Vector Location Priority

(High (Low
Byte) Byte)

Software 2011H 2010H Not Applicable
Extint 200FH 200EH 7 (Highest)
Serial Port 200DH 200CH 6
Software Timers 200BH 200AH 5
HSI.O 2009H 2008H 4
High Speed 2oo7H 2006H 3

Outputs
HSI Data 2005H 2004H 2

Available
AID Conversion 2003H 2002H 1

Complete
Timer Overflow 2001H 2000H o (Lowest)

To bring the 8096 out of power down, RESET is held low
while VCC is applied. Two state times after the oscillator
and the back bias generator have stabilized (-1 millise­
cond), the RESET pin can be pulled high. The 8096 will
begin to execute code at location 02080H 10 state times
after RESET is pulled high. Figure 2-9 shows a timing
diagram of the power down sequence. To ensure that the
2 state time minimum reset time (synchronous with
CLKOUT) is met, it is recommended that IO XTALl
cycles be used. Suggestions for actual hardware connec-
tions are given in section 4.1. Reset is discussed in section Figure 2·10. Interrupt Vector Locations
2.15.

VCC POWER DOWN

VPD----------------------~------~~------~-------------------

= S±.SV

RESET---""""

XTALl , r1 n n n n n n n n n n
1IIIIIIIIIIIIIIltllllil
LJ LJ LJ LJ LJ LJ LJ LJ LJ U U L

10 XTALl CYCLES CLOCK NOT NECESSARY 10 XTALl CYCLES
AFTER CLOCK IS STABLE

Figure 2·9. Power Down Timing

2-8

ARCHITECTURAL OVERVIEW

2.5.2. Interrupt Control

A block diagram of the interrupt system is shown in Figure
2-12. Each of the interrupt sources is tested for a 0 to I
transition. If this transition occurs; the corresponding bit
in the Interrupt Pending Register, located at 0009H, is set.
Since this register can be written to, it is possible to gen­
erate software interrupts by setting bits within the register,
or remove pending interrupts by clearing the bits in this
register. The pending register can be set even if the in­
terrupt is disabled.

Caution must be used when writing to the pending register
to clear interrupts. If the interrupt has already been ac­
knowledged when the bit is cleared, a 4 state time
"partial" interrupt cycle will occur. This is because the
8096 will have to fetch the next instruction of the normal
instruction flow, instead of proceeding with the interrupt
processing as it was going to. The effect on the program
will be essentially that of an extra NOP. This can be
prevented by clearing the bits using a 2 operand immediate
logical, as the 8096 holds off acknowledging interrupts
during these "read/modify/write" instructions.

PINS OR FLAGS

,...--- IOC1.1

Enabling and disabling of individual interrupts is done
through the Interrupt Mask Register, located at OOOSH.
If the bit in the mask register is a I then the interrupt is
enabled, otherwise it is disabled. Even if an interrupt is
masked it may still become pending. It may, therefore,
be desirable to clear the pending bit before unmasking an
interrupt.

The Interrupt Mask Register is also the low byte of the
PSW. All of the interrupts may be enabled and disabled
simultaneously by using the "EI" (Enable Interrupt) and
"DI" (Disable Interrupt) instructions. EI and DI set and
clear PSW.9, the interrupt enable bit, they do not effect
the contents of the mask register,

2.5.3. Interrupt Priority Programming
The priority encoder looks at all of the interrupts which
are both pending and enabled, and selects the one with
the highest priority. The priorities are shown in Figure
2-10 (7 is highest, 0 is lowest.) The interrupt generator
then forces a call to the location in the indicated vector
location. This location would be the starting location of
the Interrupt Service Routine (ISR).

INTERRUPT

EXTINT --<40o-------- EXTINT
ACH.7 ---<I

TI FLAG -~--T--------- SERIAL PORT

RI FLAG ----l

SOFTWARE TIMER 0 -~--T--------- SOFTWARE TIMER

SOFTWARE TIMER 1

SOFTWARE TIMER 2

SOFTWARE TIMER 3

HSI.O----------- HSI.O

,...--- HSQ.COMMAND.4

ANY HSO OPERATION --0 ~o--------- HIGH SPEED OUTPUTS

,.---IDC1.7
FIFO IS FULL ----o~o------- HSI DATA AVAILABLE

HOLDING REGISTER LOADED 0

AID CONVERSION COMPLETE ----------- AID CONVERSION COMPLETE

....---IOC1.2
. I

TIMER1 OVERFLOW _ "00-----.-- TIMER OVERFLOW

TIMER2 OVERFLOW ---0 ")ott. _----'

L---IOC1.3

Figure 2-11. All Posslb,e Interrupt Sources

2-9

ARCHITECTURAL OVERVIEW

EXTINT SERIAL PORT

SOFTWARE

TIMERS

I----II~
(PSW.9)

HSI.O

TRANSITION
DETECTOR

HSO HSI AID CONV.

TIMER
OVERFLOW

o

INTERRUPT MASK REG.

PRIORITY ENCODER

INTERRUPT
GENERATOR

D-BUS CONTROL
UNIT

Figure 2-12. Block Diagram of Interrupt System

At least one instruction in the [SR will always be executed
before another interrupt can be acknowledged. Usually
this instruction is "DI" or "PUSHF" (push flags). The
PUSHF instruction pushes the PSW onto the stack and
then clears it.

Clearing the PSW disables all interrupts in two ways; by
clearing PSW. 9, the interrupt enable bit and because the
Interrupt Mask Register is located in bits 0 through '1 of
the PSW. The interrupts which should be pennitted to
interrupt this ISR can then be set in the mask register and
an "EI" instruction executed.

2-10

By selectively detennining which interrupts are enabled
or disabled within which interrupt service routines, it is
possible to configure the interrupt system in any way one
would desire. More infonnation on programming the in­
terrupts can be found under software programming of in­
terrupts, section 3.6.

The last two instructions in an ISR are nonnally a "POPF"
(pop flags), which restores the PSW and, therefore, the
interrupt mask register, followed by a 'RET', which re­
stores the Program Counter. Execution will then continue
from .the point at which the call was forced.

ARCHITECTURAL OVERVIEW

2.5.4. Interrupt Timing
Interrupts are not always acknowledged immediately. If
the interrupt signal does not occur prior to 4 state-times
before the end of an instruction, the interrupt will not be
acknowledged until after the next instruction has been
executed. This is because an instruction is fetched and
prepared for execution a few state times before it is ac­
tually executed.

There are 6 instructions which always inhibit interrupts
from being acknowledged until after the next instruction
has been executed. These instructions are:

EI, DI - Enable and Disable Interrupts
POPF, PUSHF - Pop and Push Flags
SIGND - Prefix to perform signed multiply

and divide
TRAP - Software interrupt

When an interrupt is acknowledged, a call is forced to the
location indicated by the specified interrupt vector. This
call occurs after the completion of the instruction in pro­
cess, except as noted above. The procedure of getting the
vector and forcing the call requires 21 state times. If the
stack is in external RAM an additional 3 state times are
required.

The maximum number of state times required from the
time an interrupt is generated (not acknowledged) until
the 8096 begins executing code at the desired location is
the time of the longest instruction, NORML (Normalize
- 43 state times), plus the 4 state times prior to the end
of the previous instruction, plus the response time (21 to
24 state times). Therefore, the maximum response time
is 71 (43 +4 +24) state times. This does not include the
12 state times required for PUSHF if it is used as the first
instruction in the interrupt routine or additional latency
caused by having the interrupt masked or disabled.

Interrupt latency time can be reduced by careful selection
of instructions in areas of code where interrupts are ex­
pected. Using 'EI' followed immediately by a long in­
struction (e.g. MUL, NORML, etc.) will increase the
maximum latency by 4 state times, as an interrupt cannot
occur between EI and the instruction following EI. The
"DI", "PUSHF", "POPF" and "TRAP" instructions
will also cause the same situation. Typically the PUSHF,
POPF and TRAP instructions would only effect latency
when one interrupt routine is already in process, as these
instructions are seldom used at other times.

2.6. TIMERS

Two 16-bit timers are available for use on the 8096. The
first is designated "Timer 1", the second, "Timer 2".
Timer 1 is used to synchronize events to real time, while
Timer 2 can be clocked externally and synchronizes events
to external occurences.

2.6.1. Timer 1
Timer 1 is clocked once every eight state times and can
be cleared only by executing a reset. The only other way

2-11

to change its value is by writing to OOOCH but this is a
test mode which sets both timers to OFFFXH and should
not be used in programs.

2.6.2. Timer 2
Timer 2 can be incremented by transitions (one count each
transition, rising and falling) on either T2CLK or HSI.I.
The multiple functionality of the timer is determined by
the state of I/O Control Register 0, bit 7 (IOCO.7). To
ensure that all CAM entries are checked each count of
Timer 2, the maximum transition speed is limited to once
per eight state times. Timer 2 can be cleared by: executing
a reset, by setting lOCO. 1 , by triggering HSO channel
OEH, or by pulling T2RST or HSI.O high. The HSO and
CAM are described in section 2.8. IOCO.3 and IOCO.5
control the resetting of Timer 2. Figure 2-13 shows the
different ways of manipulating Timer 2.

IOCO.3 ----1

Figure 2-13. Timer 2 Clock and Reset Options

2.6.3. Timer Interrupts
Both Timer 1 and Timer 2 can be used to trigger a timer
overflow interrupt and set a flag in the I/O Status Register
1 (lOS 1). The interrupts are controlled by IOCI.2 and
IOCI.3 respectively. The flags are set in IOS1.6 and
lOS 1. 7, respectively.

Caution must be used when examining the flags, as any
access (including Compare and Jump on Bit) of IOS1
clears the whole byte, including the software timer flags.
It is, therefore, recommended to write the byte to a tem­
porary register before testing bits. The general enabling
and disabling of the timer interrupts are controlled by the
Interrupt Mask Register bit o. In all cases, setting a bit
enables a function, while clearing a bit disables it.

2.6.4. Timer Related Sections
The High Speed I/O unit is coupled to the timers in that
the HSI records the value on Timer 1 when transitions

ARCHITECTURAL OVERVIEW

2.0 /LS CLOCK

HSI TRIGGER OPTIONS TRIGGERED HSI.O
HSI.1
HSI.2
HSI.3

CHANGE INPUT(S)

L HI TO LO

___ ~r LO TO HI

DETECTOR 16

~
HI OR LO

..rLJ"UUlSl..
EVERY EIGHTH POSITIVE

TRANSITION

20 t, FIFO
CURRENT
STATUS

• PULSE MEASUREMENT WITH 2.0 "SEC RESOLUTION
• INPUT TRANSITIONS TRIGGER THE RECORDING OF THE REFERENCE

TIMER (16-BIn AND TRIGGERED INPUT(S) (4-BIT)

Figure 2-14. High Speed Input Unit

occur and the HSO causes transitions to occur based on
values of either Timer I or Timer 2. The Baud rate gen­
erator can use the T2CLK pin as input to its counter. A
complete listing of the functions ofIOSl, lOCO, and lOCI
are in section 2.13.

2.7. HIGH SPEED INPUTS
The High Speed Input Unit (HSI), can be used to record
the time at which an event occurs with respect to Timer
1. There are 4 lines (HSI.O through HSI.3) which can be
used in this mode and up to a total of 8 events can be
recorded. HSl.2 and HSl.3 share pins with HSOA and
HSO.5. The I/O Control Registers (lOCO and lOCI) are
used to determine the functions of these pins. A block
diagram of the HSI unit is shown in Figure 2-14.

2.7.1. HSI Modes
There 'are 4 possible modes of operation for each of the
HSI. The HSI mode register is used to control which pins
will look for what type of events. The 8-bit register is set
up as shown in Figure 2-15.

High and low levels each need to be held for at least I
state time to ensure proper operation. The maximum input
speed is I event every 8 state times except when the 8
transition mode is used, in which case it is 1 transition
per state time.

The HSI lines can be individually enabled and disabled
using bits in lOCO, at location 0015H. Figure 2-16 shows

2-12

HSI MODE REGISTER (HSLMODE)

LOCATION 03H

HSI.O MODE

L----HSI.1 MODE

L-------HSI.2 MODE

'--------- HSI.3 MODE

WHERE EACH 2-BIT MODE CONTROL FIELD
DEFINES ONE OF 4 POSSIBLE MODES:

00 8 POSITIVE TRANSITIONS
01 EACH POSITIVE TRANSITION
10 EACH NEGATIVE TRANSITION
11 EVERY TRANSITION (POSITIVE AND NEGATIVE)

Figure 2-15. HSI Mode Register Diagram

the bit locations which control the HSI pins. If the pin is
disabled, transitions will not be entered in the FIFO.

2.7.2. HSI FIFO
When an HSI event occurs" a 7x20 FIFO stores the 16
bits of Timer I and the 4 bits indicating the state of the

ARCHITECTURAL OVERVIEW

r----· IOCO.3, IOCO.5

r ~'C!-:_-_-__ -10-c-0-.0---T2 RESET

HSI.O --L ~"C_------HSI
,...----. IOCO.2

, L~"C------HSI r---- IOCO.7

HSI.1 "-0 TIMER2
CLOCK

r----· IOCO.4

HSI.2 ---0 '-1..0'0------- HSI

r---- IOCO.6

HSI.3 ---0 "'-0'0------ HSI

Figure 2-16. lOCO Control of HSI Pin Functions

4 HSI lines at the recorded timer value. It can take up to
8 state times for this information to reach the holding
register. When the FIFO is full, one additional event can
be stored by considering the holding register part of the
FIFO. If the FIFO and holding register are full any ad­
ditional events will not be recorded.

2.7.3. HSllnterrupts
Interrupts can be generated from the HSI unit in one of

CONTROL
LOGIC

2.0 ItS CLOCK

two ways, determined by IOCl.7. If the bit is a 0, then
an interrupt will be generated every time a value is loaded
into the holding register. If it is aI, an interrupt will only
be generated when the FIFO, (independent of the holding
register), has six or seven entries in it. Since all interrupts
are rising edge triggered, if IOC 1. 7 = 1, the processor will
not be re-interrupted until the FIFO first contains 5 or less
records, then contains six or more.

2.7.4. HSI Status
Bits 6 and 7 of the I/O Status register 1 (lOS 1) indicate
the status of the HSI FIFO. If bit 6 is aI, the FIFO
contains at least seven entries. If bit 7 is aI, the FIFO
contains at least 1 entry. The FIFO may be read after
verifying that it contains valid data. Caution must be used
when reading or testing bits in lOS 1, as this action clears
the entire byte, including the software and hardware timer
overflow flags. It is best to store the byte and then test the
stored value.

Reading the HSI is done in two steps. First, the HSI Status
register is read to obtain the current state of the HSI pins
and their state at the recorded time. Second, the HSI Time
registerL is read. Reading the Time register unloads one
word ot the FIFO, so if the Time register is read before
the Status register, the information in the Status register
will be lost. The HSI Status register is at location 06H
and the HSI Time registers are in locations 04H and 05H.

It should be noted that many of the Status register con­
ditions are changed by a reset, see section 2.15.2. A
complete listing of the functions ofIOSO, IOSI, and lOCI
can be found in section 2.13.

HIGH SPEED OUTPUT CONTROLS
6 PINS
4 SOFTWARE TIMERS
2 INTERRUPTS
INITIATE AID CONVERSION
RESET TIMER 2

Figure 2-17. High Speed Output Unit

2-13

ARCHITECTURAL OVERVIEW

2.8. HIGH SPEED OUTPUTS

The High Speed Output unit (HSO) is used to trigger
events at specific times with minimal CPU overhead.
These events include: starting an A to D conversion, re­
setting Timer 2, setting 4 software flags, generating in­
terrupts, and switching up to 6 output lines. Up t08 events
can be pcnding at anyone time.

2.8.1. HSIO Shared Pins
Two of the 6 output lines (HSO.O through HSO.5) are
shared with the High Speed Input (HSI) lines. HSO.4 and
HSO.5 are shared with HSI.2 and HSI.3, respectively:
Bits 4 and 6 of the 1/0 Control Register I (lOCI) are used
to enable HSO.4 and HSO.5 as outputs.

2.8.2. HSIO CAM
A block diagram of the HSO unit is shown in Figure 2-
17. The Content Addressable Memory (CAM) file is the
center of control. One CAM register is compared with a
time value every state time. Therefore, it takes 8 state
times to compare all CAM registers with a timer.

Each CAM register is 23 bits wide. Sixteen bits specify
the time at which the action is to be carried out and 7 bits
specify both thl.! nature of the action and whether Timer
I or Timer 2 is the reference. The format of the command
to the HSO unit shown in Figure 2-18.

To enter a command into the CAM file, write the 7-bit
"Command Tag" into location 0006H followed by the
time at which the action is to be carried out into word
address 0004H. Writing the time value loads the HSO
Holding Register with both the time and the last written
command tag. The command does n.ot actually enter the
CAM file until an empty CAM register becomes available.

Care must be taken when writing the command tag for the
HSO. If an interrupt occurs during the time between writ­
ing the command tag and loading the time value, and the

interrupt service routine writes to the HSO time register,
. the command tag will be loaded into the CAM with the

time value from the interrupt routine.Oile way of avoiding
this problem would be to disable interrupts when writing
commands and times to the HSO unit.

2.8.3. HSO Status
Before writing to the HSO, it is desirable to ensure that
the Holding Register is empty. If it is not, writing to the

. HSO will overwrite the value in the Holding Register.
110 Status Register 0 (lOSO) bits 6. and 7 indicate the
status of the HSO unit. This register is described in section
2.13.4. If IOSO.6 equals 0, the holding register is empty
and at least one CAM register is empty. If 10SO. 7 equals
0, the holding register is empty.

One location in the CAM file is checked each state-time.
Thus, it takes 8 state-times for the Holding Register to
have had access to all 8 CAM registers. Similarly, it takes
8 state-times for the comparator to have had access to all
8 CAM registers. This defines the time-resolution of the
HSO unit to be 8 state-times (2.0 J-Lsec, if the oscillator
frequency is 12 MHz). Note that the comparator does not
look at the holding register, so instructions in the holding
register do not execute.

2.8~4. Clearing The HSO
All 8 CAM locations of the HSO are compared before any
action is taken. This allows a pending event to be cancelled
by simply writing the opposite event to the CAM. How­
ever, once an entry is placed in the CAM, it cannot be
removed until either the specified timer matches the writ­
ten value or the chip is reset.

Timer I is incremented only once every 8 state-times.
When it is being used as the reference timer for an HSO
action, the comparator has a chance to look at all 8 CAM
registers before Timer I changes its value. Following the
same reasoning, Timer 2 has been synchronized to allow
it to change at a maximum rate of once per 8 state-times.
Timer 2 increments on both edges of the input signal.

6 5 4 3 2 0

I x I T 1 01 I 1 CHANNEL J
CHANNEL 0-5 HSO.O - HSO.5

6 HSO.O AND HSO.1
7 HSO.2 AND HSO.3
8-8 SOFTWARE TIMERS
E RESET TIMER
F START AID CONVERSION

'--------INTERRUPT/NO INTERRUPT
'---------- SET/CLEAR

'------------ TIMER 21T1MER 1

Figure 2-18. HSO Command Tag Format

2-14

ARCHITECTURAL OVERVIEW

If Timer 2 is being used as the reference timer, the user
must ensure that it is not cleared before aU references to
it in the CAM have bteen recognized. If this occurs, the
unrecognized references will remain in the CAM, blocking
further entries to those CAM registers until the part is
reset or the references are recognized.

2.8.5. Software Timers
The HSO can be programmed to generate interrupts at
preset times. Up to four such "Software Timers" can be
in operation at a time. As each preprogrammed time is
reached, the HSO unit generates a Software Timer inter­
rupt. The interrupt service routine can then examine
I/O Status register I (lOS I) to determine which software
timer expired and caused the interrupt. When the HSO
resets Timer 2 or starts an A to D conversion, it can also
be programmed to generate a software timer interrupt but
there is no flag to indicate that this has occurred.

Each read or test of any bit in lOS I will clear the whole
byte. Be certain to save the byte before testing it unless
you are only concerned with I bit.

A complete listing of the functions of 10SO, 10SI, and
lOCI can be found in section 2.13. The Timers are de­
scribed in section 2.6 and the HSI is described in section
2.7.

2.9. ANALOG INPUTS

The A to D converter on the 8096 provides a lO-bit result
on one of 8 input channels. Conversion is done using
suc<;essive approximation with a result equal to the ratio
of the input voltage divided by the analog supply voltage.
If the ratio is 1.00, then the result will be all ones. The
AID converter is available on the 8097, 8397, 8095 and
8395 members of the MCS@-96 family.

AID COMMAND REGISTER

(LOCATION 02H)

17161.5141312 I 1 10 1 x x X X GO 1 CH#

2.9.1. AID Accuracy
Each conversion requires 168 state-times (42JLS at 12
MHz) independent of the accuracy desired or value of
input voltage. The input voltage must be in the range of
o to VREF, the analog reference and supply voltage. For
proper operation, VREF (the reference voltage and analog
power supply) must be held at vce ± 0.3V with
VREF= 5.0 ±0.5Y. The AID result is calculated from the
formula:

1023 x (input voltage-AVGND) I (VREF-AVGND)

It can be seen from this formula that changes in VREF
or AVGND effect the output of the converter. This can be
advantageous if a ratiometric sensor is used since these
sensors have an output that can be measured as a pro­
portion of VREF.

If high absolute accuracy is needed it may be desirable
to use a separate power supply, or power traces, to operate
the AID converter. There is no sample and hold circuit
interiml to the chip, so the input voltage must be held
constant for the entire 168 state times. Examples of con­
necting the AID converter to various devices are given in
section 4.3.

2.9.2. AID Commands
Analog signals can be sampled by anyone of the 8 analog
input pins (ACHO through ACH7) which are shared with
Port O. ACH7 can also be used as an external interrupt
if lOCI. 1 is set (see section 2.5). The AID Command
Register, at location 02H, selects which channel is to be
converted and whether the conversion should start im­
mediately or when the HSO (Channel #14) triggers it. A
to D commands are formatted as shown in Figure 2- I 9.

The command register is double buffered so it is possible

~ CHANN~L # SELECTS WHI~H OF THE 8 ANALOG INPUT
CHANNELS IS TO BE CONVERTED TO DIGITAL FORM;

. GO INDICATES WHEN THE CONVERSION IS TO BE
INITIATED (GO=1 MEANS START NOW, GO=O
MEANS THE CONVERSION IS TO BE INITIATED
BY THE HSO UNIT AT A SPECIFIED TIME).

Figure 2·19. AID Command Register

2-15

ARCHITECTURAL OVERVIEW

AID RESULT REGIs'rER

AID CHANNEL NUMBER

~--- STATUS
o = AID CURRENTLY IDLE
1 ,;, CONVERSION IN PROCESS

AID RESULT:
'--------- LEAST SIGNIFICANT 2 BITS

MOST SIGNIFICANT BYTE

Figure 2-20. AID Result Register

to write a command to start a conversion triggered by the
HSO while one is still in progress. Care must be taken.
when this is done since if a new conversion is started
while one is already in progress, the conversion in progress
is cancelled and the new one is started. When a conversion
is started, the result register is cleared. For this reason the
result register must be read before a new conversion is
started or data will be iost.

2.9.3. AID Results
Results of the analog conversions are read from the AID
Result Register at locations 02H and 03H. Although these
addresses are on a word boundary, they must be read as

STATE TIME CLOCK
(F(XTAL 1)/3)

PWM
OUTPUT

• PERIOD = 64 ,.s, FREQUENCY = 15.625 KHz
• DUTY FACTOR PROGRAMMABLE IN 256 STEPS

Figure 2·21. Pulse Width Modulated (D/A) Output

individual byles. Information in the AID Result register
is formatted as shown in Figure 2-20. Note that the status
bit may not be set until 8 state times after the go command.
Information on using the HSO is in section 2.8.

2.10. PULSE WIDTH MODULATION
·OUTPUT (D/A)

Digital to analog conversion can be done with the pulse
. width modulation output; a block diagram of the circuit
is shown in Figure 2-21. The 8-bit counter is incremented
every state time. When it equals 0, the PWM output is
set to a one. When the counter matches the value in the
PWM register, the output is switched low. When the
counter overflows, the output Is once again switched high.
A typical output waveform is shown in Figure 2-22. Note
that when the PWM register equals 00, the output is always
low.

The output waveform is a variable duty cycle pulse which
repeats every 256 state times (64 JJS at 12MHz). Changes
in the duty cycle are made by writing to the PWM register
at location 17H. There are several types of motors which
require a PWM waveform for most efficient operation.
Additionally, if this waveform is integrated it will produce
a DC level. which can be changed in 256 steps by varying
the duty cycle.

Details about the hardware required for smooth, accurate
D/A conversion can be found in section 4.3.2. Typically,
some form of buffer and integrator are needed to obtain
the most usefulness from this feature.

The PWM output shares a pin with Port 2, pin 5 so that
these two features cannot be used at the same time. IOCI;O
equal to I selects the PWM function instead of the standard
port function. More information on lOCI is in section
2.13.3 .

2.11. SERIAL PORT

1)le serial port is compatible with the MCS-51 serial port.
It is full duplex, meaning it can transmit and receive si-

2-16

ARCHITECTURAL OVERVIEW

muItaneously. It is also receive-buffered, meaning it can
commence reception of a second byte before a previously
received byte has been read from the receive register. The
serial port registers are both accessed at location 07H. A
write to this location accesses the transmit register, and
a read accesses a physically separate receive register.

The serial port can operate in 4 modes (explained below).
Selection of these modes is done through the Serial Port
Control register at location IIH. Use of this register will
be described after defining the possible modes of opera­
tion. In addition to setting the proper mode, it is necessary
to enable the TXD output by setting IOC1.5 high before
the serial port is used.

2.11.1. Serial Port Modes

MODE 0
Mode 0 is a shift register mode. The 8096 outputs a train

. of 8 shift pulses to an external shift register to clock 8
bits of data into or out of the register from or to the 8096.
Serial data enters and exits the 8096 through RXD. TXD

DUTY PWM CONTROL
CYCLE REGISTER VALUE

0% 00
HI
LO

10% 25 ~6Jl

50% 128 HI -.J
LO

90% 230 HI
LO...J

HI
99.6% 255

LO

outputs the shift clock. 8 bits are transmitted or received,
LSB first. A timing diagram of this mode is shown in
Figure 2-23. This mode is useful as an 1/0 expander in
which application external shift registers can be used as
additional parallel 1/0 ports. An example of using the port
in this mode is given in section 4.5.

MODE 1
10-bit frames are transmitted through TXD, and received
through RXD: a start bit (0), 8 data bits (LSB first), and
a stop bit (I). This mode is the one commonly used for
CRT terminals. The data frame for Mode I is shown in
Figure 2-24.

MODE 2
II-bit frames are transmitted through TXD and received
through RXD: a start bit (0), 8 data bits (LSB first), a
programmable 9th data bit, and a stop bit (I). On transmit,
the 9th data bit can be assigned the value of 0 or I. On
receive, the serial port interrupt is not activated unless the
received 9th data bit is I. This mode is commonly used
along with mode 3 in a multiprocessor environment.

OUTPUT WAVEFORM

n n

L-.

U U

Figure 2-22. Typical PWM Outputs

TXD

OUT

RXD

IN

Figure 2-23. Serial Port Mode 0 Timing

2-17

ARCHITECTURAL OVERVIEW

STOP STOP

I .. 10-BIT FRAME

Figure 2·24. Serial Port Frame - Mode 1

STOP STOP

Figure 2·25. Serial Port Frame Modes 2 and 3

MODE 3
II-bit frames are transmitted through TXD and received
through RXD: a start bit (0), 8 data bits (LSB first), a
programmable 9th data bit, and a stop bit (I). On transmit,
the 9th data bit can be assigned the value of 0 or 1. On'
receive, the received 9th data bit is stored and the serial
port interrupt is activated regardless of its value. The data
frame for Modes 2 and 3 is shown in Figure 2-25.

2.11.2. Multiprocessor Communications
Mode 2 and 3 are provided for mUltiprocessor commu­
nications. In mode 2 if the received 9th data bit is not I,
the serial port interrupt is not activated. The way to use
this 'feature in multiprocessor systems is described below.

When the master processor wants to transmit a block of
data to one of several slaves, it first sends out an address
frame which identifies the target slave. An address frame
will differ from a data frame in that the 9th data bit is 1
in an address frame and 0 in a data frame. No slave in
mode 2 will be interrupted by a data frame. An address
frame, however, will interrupt all slaves so that each slave
can examine the received byte and see if it is being ad­
dressed. The addressed slave switches to mode 3 to receive
the coming data frames, while the slaves that were not
addressed stay in mode 2 and go on about their business.

2.11.3. Controiling the Serial Port
Control of the Serial Port is done through the Serial Port
Control/Status register. The format for the control word
is shown in Figure 2-26.

When using Mode 0, it is necessary to set up the port with
REN'=O and then write a one' to the REN register before
the port will be to properly initialized. In any mode, it is

2-18

necessary to set IOCl.5 to a 1 to enable the TXD pin.
Some examples of the software involved in using the serial
port can be found in section 3.8. More information on
lOCI is in section 2.13.3. '

2.11.4. Determining Baud Rates
Baud rates in all modes are determined by the contents
of a 16-bit register at location OOOEH. This register must
be loaded sequentially with 2 bytes (least significant byte
first). The MSB of this register selects one of two sources
for the input frequency to the baud rate generator. If it is
a 1, the frequency on the XTALI pin is selected, if not,
the external frequency from the T2CLK pin is used. It
should be noted that the maximum speed of T2CLK is
one transition every 2 state times.

The unsigned integer represented by the remaining 15 bits
of the baud rate register, plus 1, defines a number B,
where B can thus take any value from 1 to 32768. This
'1' is not added if the'T2CLK is used as the time base.
The baud rate for the 4 serial modes is then given by

Mode 0: baud rate = input frequency/(4*B)
Others: baud rate = input frequency/(64*B)

The maximum asynchronous baud rate is ·187.5 Kbaud,
with a 12 MHz clock.

The unsigned integer must not equal zero if mode 0 is
being used.

2.12. 1/0 PORTS 0, 1, 2, 3, AND 4

Tl)ere are five 8-bit 110 ports on the 8096. Some of these
ports are input only, some output only, some bidirectional
and some have alternate functions. Input ports connect to
the internal bus through an input buffer. Output ports

ARCHITECTURAL OVERVIEW

LOCATION 11H

l RB8~RPE I 6 I 5 I 4 3 I 2 I 1 I 0 I RI TI TB8 REN PEN M2 M1

~ I
L M2• M1 SPECIFIES THE MOO E;

-PEN

REN

TB8

TI

RI

RB8

0.0 = MOOE 0
0.1 = MODE 1
1.0= MODE 2
1.1 = MODE 3

ENABLE THE PARITY FUNCTION (EVEN PARITY);

VE FUNCTION; ENABLES THE RECEI

PROGRAMS THE 9TH
TRANSMISSION;
IS THE TRANSMIT INT

DATA BIT (IF NOT PARITY) ON

ERRUPT FLAG;

IS THE RECEIVE INTE RRUPT FLAG;

IS THE 9TH OATA BIT RECEIVED (IF NOT PARITY);
RPE IS THE PARITY ERROR INDICATOR (IF PARITY ACTIVE).

Figure 2-26. Serial Port Control/Status Register

connect through an output buffer to an internal register
that holds the output bits. Bidirectional ports consist of
an internal register, an output buffer, and an input buffer.

When an instruction accesses a bidirectional port as a
source register. the question often arises as to whether the
value that is brought into the CPU comes from the internal
port register or from the port pins through the input buffer.
In the 8096, the value always comes from the port pins,
never from the internal register.

2.12.1. Port 0
Port 0 is an input only port which shares its pins with the
analog inputs to the AID Converter. One can read Port 0
digitally, and/or, by writing the appropriate control bits
to the AID Command Register, select one of the lines of
this port to be the input to the AID Converter. While a
conversion is in process, the impedance of the selected
line is lower than normal. See the data sheet for the spe­
cific values.

2.12.2. Port 1
Port 1 is a quasi-bidirectional I/O port. "Quasi-bidirec­
tional" means the port pin has a weak internal pullup that
is always active and an internal pulldown which can either
be on (to output a 0) or off (to output a 1). If the internal
pulldown is left off (by writing a 1 to the pin), the pin's
logic level can be controlled by an external pulldown
which can either be on (to input a 0) or.off (to input a 1).
From the user's point of view the main distinction is that

2-19

a quasi-bidirectional input will source current while being
externally held low and will pull itself high if left alone.

In parallel with the weak internal pullup, is a much
stronger internal pullup that is activated for one state time
when the pin is internally driven from 0 to 1. This is done
to speed up the O-to-l transition time.

2.12.3. Port 2
Port 2 is a multi-functional port. Six of its pins are shared
with other functions in the 8096, as shown below.

Port Function Alternate Controlled by
Function

P2.0 output TXD (serial port IOC1.5
transmit)

P2.l input RXD (serial port N/A
receive)

P2.2 input EXTINT IOCl.l
(external interrupt)

P2.3 input T2CLK (Timer IOCO.7
2 input)

P2.4 input T2RST (Timer IOCO.3
2 reset)

P2.S output PWM IOCl.O
(pulse' width
modulation)

P2.6 quasi-bidirectional
P2.7 quasi-bidirectional

ARCHITECTURAL OVERVIEW

2.12.4. Ports 3 and 4 2.13. STATUS AND CONTROL REGISTERS

2.13.1. I/O Control Registers
POltS 3 and 4 have two functions. They are either bidi­
rectional ports with open-drain outputs or System Bus pins
which the memory controller uses when it is accessing
off-chip memory. Strong internal pull ups are used during
external memory read or write cycles when the pins are
used as address or data outputs. At any other time, the
internal pullups are disabled. The port pins and their sys-
tem bus functions are shown below: '

There are two I/O Control registers, lOCO and lOCI.
lOCO controls Timer 2 and the HSI lines. lOCI controls
some pin functions, interrupt sources and 2 HSO pins.

2.13.2. lOCO
lOCO is located at OOI5H. The four HSI lines can be
enabled or disabled to the HSI unit by setting or clearing
bits in lOCO. Timer 2 functions including clock and reset
sources are also determined by lOCO. The control bit
locations are shown in Figure 2-27.

Port Pin.

P3.0
P3.1
P3.2
P3.3
P3.4
P3.5
P3.6
P3.7
P4.0
P4.1
P4.2
P4.3
P4.4
P4.5
P4.6
P4.7

System Bus Function

ADO
ADI
AD2
AD3
AD4
AD5
AD6
AD7
AD8
AD9
ADIO
ADII
ADI2
ADI3
ADI4
ADI5

LOCATION 1SH

2.13.3. IOC1
IOC 1 is used to select some pin functions and enable or
disable some interrupt sources. Its location is OOI6H. Port
pin P2.5 can be selected to be the PWM output instead
of a standard output. The external interrupt source can be
selected to be either EXTINT (same pin as P2.2) or Analog
Channel 7 (ACH7, same pin as PO.7). Timer I and Timer
2 overflow interrupts can be individually enabled or dis­
abled. The HSI interrupt can be selected to activate either
when there is I FIFO entry or 7. Port pin P2. 0 can be
selected to be the TXD output. HSO.4 and HSO.5 can
be enabled or disabled to the HSO unit. More information
on interrupts is available in section 2.5. The positions of
the IOC I control bits are shown in Figure 2-28.

17161s141312111 0 1

L HSI.O INPUT ENABLE/DISABLE

TIMER 2 RESET EACH WRITE

HSI.1 INPUT ENABLE/DISABLE

TIMER 2 EXTERNAL RESET ENABLE/DISABLE

HSI.2 INPUT ENABLE/DISABLE

TIMER 2 RESET SOURCE HSI.Orr2 RST

HSI.3 INPUT ENABLE/DISABLE

TIMER 2 CLOCK SOURCE HSI.1rr2CLK

Figure 2·27. 1/0 Control Register 0 (lOCO)

LOCATION 16H

l7J61sJ413121110J

L..:::= SELECT PWM/SELECT P2.S

. EXTERNAL INTERRUPT ACH7/EXTINT

TIMER 1 OVERFLOW INTERRUPT ENABLE/DISABLE

TIMER 2 OVERFLOW INTERRUPT ENABLE/DISABLE

HSO.4 OUTPUT ENABLE/DISABLE

SELECT TXD/SELECT P2.0

HSO.S OUTPUT ENABLE/DISABLE

HSI INTERRUPT FIFO FULL/HOLDING REGISTER LOADED

Figure 2·28. 1/0 Control Register 1 (IOC1)

2-20

ARCHITECTURAL OVERVIEW

2.13.4. 1/0 Status Register 0
There are two 110 Status registers, IOSO and lOS I. IOSO,
located at 0015H, holds the current status of the HSO
lines and CAM. The status bits of IOSO are shown in
Figure 2-29.

2.13.5. 1/0 Status Register 1
IOSI is located at 0016H. It contains status bits for the
timers and the HSI. Every access of this register clears
all of the timer overflow and timer expired bits. It is,
therefore, important to first store the byte in a temporary
location before attempting to test any bit unless only one
bit will ever be of importance to the program. The status
bits of lOS I are shown in Figure 2-30.

2.14. WATCHDOG TIMER

This feature is provided as a means of graceful recovery
from a software upset. If the software fails to reset the
watchdog at least every 64K state times, a hardware reset
will be initiated.

The software can be designed so that the watchdog times
out if the program does not progress properly. The watch­
dog will also time-out if the software error was due to
ESD (Electrostatic Discharge) or other hardware related
problems.' This prevents the controller from having a mal-

LOCATION 1SH

171sls141312111°1

function for longer than 16 mS if a 12 MHz oscillator is
used.

The watchdog timer is a l6-bit counter which is incre­
mented every state time. When it overflows it pulls down
the RESET pin for at least two state times, resetting the
8096 and any other chips connected to the reset line. To
prevent the timer from overflowing and resetting the sys­
tem, it must be cleared periodically. Clearing the timer
is done by writing a "OIEH" followed by an "OElH"
to the WDT register at location OOOAH.

Use of a large reset capacitor on the RESET pin will
increase the length of time required for a watchdog ini­
tiated reset. This is because the capacitor will keep the
RESET pin from responding immediately to the internal
pull-ups and pull-downs. A large capacitor on the RESET
pin may also interfere with the reset of other parts con­
nected to the RESET pin. Under some circumstances, it
may be desirable to use an open collector circuit. See
section 4.1.4.

2.14.1. Disabling The Watchdog
During program development, the watchdog can be dis­
abled by holding the RESET pin at 2.0 to 2.5 volts. Volt­
ages over 2.5 volts on the pin could quickly damage the
part. Even at 2.5 volts, using this technique for other than

l:= HSO.O CURRENT STATE

HSO.1 CURRENT STATE

HSO.2 CURRENT STATE

HSO.3 CURRENT STATE

HSO.4 CURRENT STATE

HSO.S CURRENT STATE

.

CAM AND HOLDING REGISTER NOT EMPTY

HSO HOLDING REGISTER NOT EMPTY

Figure 2-29. HSIO Status Register 0 (IOSO)

LOCATION 1SH

1 7 [sls14131211JoJ l:= SOFTWARE TIMER 0 EXPIRED

SOFTWARE TIMER 1 EXPIRED

SOFTWARE TIMER 2 EXPIRED

SOFTWARE TIMER 3 EXPIRED

TIMER 1 HAS OVERFLOW

TIMER 2 HAS OVERFLOW

HSI FIFO IS FULL

HSI HOLDING REGISTER IS LOADED

Figure 2-30. HSlO Status Register 1 (IOS1)

2-21

"

ARCHITECTURAL OVERVIEW

debugging purposes is not recommended, as it may effect
long term reliability. It is further recommended that any
part used in this way for more than a few minutes, not
be used in production versions of products.

2.15. RESET

2.15.1. Reset Signal
As .with all processors, the 8096 must be reset each time
the power is turned on. To complete a reset, the RESET
pin must be held active (low) for at least 2 state times
after VCC, the oscillator, and the back bias generator have
stabilized (-1. 0 milliseconds). Then when RESET is
brought high again, the 8096 executes a reset sequence
that takes 10 state times. (It initializes some registers,
clears the PSW and jumps to address 2080H.)

The 8096 can be reset using a capacitor, I-shot, or any
other method capable of providing a pulse of at least 2
state times longer than required for VCC and the oscillator
to stabilize.

For best functionality, it is suggested that the reset pin be
pulled low with an open collector device. In this way,
several reset sources can be wire ored together. Remem­
ber, the RESET pin itself can be a reset source (see section
2.14). Details of hardware suggestions for reset can be
found in section 4.1.4.

2.15.2. Reset Status
The 110 lines of the 8096 will be in their reset state within
2 state times after reset is low, with VCC and the oscillator
stabilized. Prior to that time, the status of the 110 lines
is indeterminate. After the 10 state time reset sequence,
the Special Function Registers will be set as follows:

SFR reset value

Port 1 IIII1111B
Port 2 IIOXXXXIB
Port 3 IIIII111B
Port 4 IIIIIIIIB
PWM Control OOH
Serial Port (Transmit) undefined
Serial Port (Receive) undefined
Baud Rate Register undefined
Serial ControllStatus undefined
AID Command undefined
AID Result undefined
Interrupt Pending undefined
Interrupt Mask OOOOOOOOB
Timer I OOOOH
Timer 2 OOOOH
Watchdog Timer OOOOH
HSI Mode I1111111B
HSI Status undefined
IOSO OOOOOOOOB
10SI OOOOOOOOB
lOCO XOXOXOXOB
lOCI XOXOXXXIB

2-22

Other conditions following a reset are:

Register reset value

HSI FIFO empty
HSOCAM empty
HSO lines OOOOOB
PSW OOOOH
Stack Pointer undefined
Program Counter 2080H

It is important to note that the Stack Pointer and Interrupt
Pending Register are undefined, and need to be initialize}!
in software. The Interrupts are disabled by both the mask
register and PSW.9 after a reset.

2.15.3. Reset Sync Mode
The RESET line can be used to start the 8096 at an exact
state time to provide for synchronization of test equipment
and multiple chip systems. RESET is active low. To syn­
chronize parts, RESET is brought high on the rising edge
of XTALI. Complete details on synchronizing parts can
be found in section 4.1.5.

It is very possible that parts which start in sync may not
stay that way. The best example of this would be when
a "jump on 110 bit" is being used to hold the processor
in a loop. If the line changes during the time it is being
tested, one processor may see it as a one, while the other
sees it as a zero. The result is that one processor will do
an extra loop, thus putting it several states out of sync
with the other.

2.16. PIN DESCRIPTION

vee
Main supply voltage (5V).

VSS
Digital circuit ground (OV).There are two VSS pins, both
must be tied to ground.

VPD
RAM standby. supply voltage (5V). This voltage must be
present during normal operation. See section 2.4.2 and
4.1.

VREF
Reference voltage and power supply for the analog portion
of the AID converter. Nominally at 5 volts. See section
2.9.1 and 4.1.

ANGND
Reference ground for the AID converter. Should be held
at nominally the same potential as VSS. See section 2.9.1
and 4.1.

VBB
Substrate voltage from the on-chip back-bias generator.
This pin should be connected to ANGND through a 0.01

ARCHITECTURAL OVERVIEW

uf capacitor (and not connected to anything else). The
capacitor is not required if the AID convertor is not being
used.

XTAL1
Input of the oscillator inverter and input to the internal
clock generator. See sections 2.2 and 4.1.

XTAL2
Output of the oscillator inverter. See section 2.2.

CLKOUT
Output of the internal clock generator. The frequency of
CLKOUT is Y3 the oscillator frequency. It has a 33% duty
cycle. CLKOUT can drive one TTL input. See section
2.2.

RESET
Reset input to the chip, also output to other circuits. Input
low for at least 2 state times to reset the chip. RESET has
a strong internal pullup. See section 2.15 and 4.1.

TEST
Input low enables a factory test mode. The user should
tie this pin to VCC for normal operation.

NMI
A ·Iow to high transition a vector to external memory
location OOOOH. Reserved for use in Intel Development
systems.

INST
Output high while the address is valid during an external
read indicates the read is an instruction fetch. See section
2.3.5 and 4.6.

EA
Input for memory select (External Access). EA = I causes
memory accesses to locations.2000H through 3FFFH to
be directed to on-chip ROM. EA = 0 causes accesses to
these locations to be directed to off-chip memory. EA has
an internal pulldown, so it goes to 0 unless driven to I.
See section 2.3.4.

ALE
Address Latch Enable output. ALE is activated only dur­
ing external memory accesses. It is used to latch the ad­
dress from the multiplexed address/data bus. See section
2.3.5 and 4.6.

RD
Read signal output to external memory. RD is activated
only during external memory reads. See section 2.3.5 and
4.6.

WR
Write signal output to external memory. WR is activated
only during external memory writes. See section 2.3.5
and 4.6.

2-23

BHE
Bus High Enable signal output to external memory. BHE
(0/1) selects/deselects the bank of memory that is con­
nected to the high byte of the data bus. See section 2.3.5
and 4.6.

READY
The READY input is used to lengthen external memory
bus cycles up to the time specified in the data sheet. It
has a weak internal pullup. See section 2.3.5 and 4.6.

HSI
High impedance inputs to HSI Unit. Four HSI pins are
available: HSI.O, HSI.1, HSI.2, and HSI.3. Two of them
(HSI.2 and HSI.3) are shared with the HSO Unit. See
section 2.7.

HSO
Outputs from HSO Unit. .Six HSO pins are available:
HSO.O, HSO.I, HSO.2, HSO.3, HSO.4, and HSO.5.
Two of them (HSO.4 and HSO.5) are shared with the HSI
Unit. All HSO pins are capable of driving one TTL input.
See section 2.8.

PORT O/ANALOG CHANNEL
High impedance input-only port. These pins can be .used
as digital inputs and/or as analog inputs to the on-chip
AID converter. See sections 2.9 and 2.12.1.

PORT 1
Quasi-bidirectional I/O port. All pins of P I are capable
of driving one LS TTL input. See section 2.1.2.

PORT 2
Multi-functional port. Six of its pins are ~hared with other
functions in the 8096, as shown below.

Port Function Alternate Function Reference
section

P2.0 output TXD (serial port 2.11.3
transmit)

P2.1 input RXD (serial port 2.11.3
receive)

P2.2 input EXTINT (external 2.5
interrupt)

P2.3 input T2CLK (Timer 2 2.6.2
input)

P2.4 input T2RST (Timer 2 2.6.2
reset)

P2.5 output PWM (pulse-width 2.10
modulator)

P2.6 quasi-bidirectional
P2.7 quasi-bidirectional

The multi-functional inputs are high impedance. See sec­
tion 2.1.3.

ARCHITECTURAL OVERVIEW

PORTS 3 AND 4
8-bit bidirectional If 0 ports. These pins are shared the
multiplexed addressfdata bus when accessing external
memory, With the Port 3 pins accessing the low byte and
Port 4 pins accessing the high byte. They are open drain
except when being used as system bus pins. See seCtion
2.3.5.

2.17. PIN LIST

The following is a list of pins in alphabetical order. Where
a pin has two names it has been listed under both names,
except for the system bus pins, ADO-ADI5, which are
listed under Port 3 and Port 4.

Name S8-Pin 48-Pin

ACHOfPO.l 4 -
ACHlfPO.2 5 -
ACH2fPO.3 3 -
ACH3fPO.3 6 -
ACH4fPO.4 67 43
ACH5fPO.5 68 42
ACH6fPO.6 2 40
ACH7fPO.7 1 41
ALE 16 34
ANGND 66 44
BHE 37 15
CLKOUT 13 -
EA 7 39
EXTINTfP2.2 63 47
HSI.O 54 3
HSl.l 53 4
HSl.2fHSO.4 52 5
HSl.3fHSO.5 51 6 ,

HSO.O 50 ' 7
HSO.l 49 8
HSO.2 44 9
HSO.3 43 10
HSO.4fHSI.2 52 5
HSO.5fHSI.3 51 6
INST 15 -
NMI 7 -
PWMlP2.5 39 13
PO.OfACHO 4 -
PO.lfACHI 5 -
PO.2fACH2 3 -
PO.3fACH3 6 -
PO.4fAcir4 67 43
PO.5fACH5 68 42
PO.6fACH6 2 40
PO.7fACH7 1 41
PLO 59 -
Pl.1 58 -
Pl.2 57 -
Pl.3 56 -
Pl.4 55 -
Pl.5 48 -
Pl.6 47 -
Pl.7 46 -

2-24

The Following pins are not bonded out in the 48-pin
package:

PLO through P1.7, PO.O through PO.3, P2.3, P2.4, P2,6,
P2.7 CLKOUT, INST, NMI, TEST, T2CLK(P2.3),
T2RST(P2.4).

Name S8-Pin 48-Pin

P2.0fTXD 60 2
P2.lfRXD 61 1
P2.2fEXTINT 63 47
P2.3fT2CLK 34 -

P2.4fT2RST 36 -
P2.5fPWM 39 13
P2.6 45 -
P2.7 40 -
P3.0fADO 18 32
P3.lfADI 19 31
P3.2fAD2 20 30
P3.3fAD3 21 29
P3.4fAD4 22 28
P3.5fAD5 23 27
P3.6fAD6 24 26
P3.7fAD7 25 25
P4.0fAD8 26 24
P4.lfAD9 27 23
P4.2fADlO 28 22
P4. 3fAD 11 29 21
P4.4fADI2 30 20
P4.5fAD13 31 19
P4.6fAD14 32 18
P4.7fAD15 33 17
RD 17 33
READY 35 16
RESET 62 48
RXDfP2.1 61 1
TEST 14 -
TXDfP2.0 60 2
T2CLKfP2.3 34 -
T2RSTfP2.4 36 -
VBB 41 12
VCC 9 38
VPD 64 46
VREF 65 45
VSS 10 11
VSS 42 37
WR 38 14
XTALl 11 36
XTAL2 12 35

MCS® .. 96 Software Design Information 3

CHAPTER 3
MCS®-96 SOFTWARE DESIGN INFORMATION

3.0. INTRODUCTION

This section provides information which will primarily
interest those who must write programs to execute in the
8096. Several other sources of infonnation are currently
available which will also be of interest: .

MCS"-96 MACRO ASSEMBLER USER'S GUIDE
Order Number 122048-001

MCS-96 UTILITIES USER'S GUIDE
Order Number 122049-001

MCS-96 MACRO ASSEMBLER AND UTILITIES
POCKET REFERENCE

Order Number 122050-001

Throughout this chapter short segments of code are used
to illustrate the operation of the device. For these sections
it has been assumed that a set of temporary registers have
been predeclared. The names of these registers have been
chosen as follows:

AX, BX, CX, and DX are 16 bit registers.

AL is the low byte of AX, AH is the high byte.

BL is the low byte of BX

CL is the low byte of CX

DL is the low byte of DX

These are the same as the names for the general data
registers used in 8086. It is important to note however
that in the 8096, these are not dedicated re~isters bu;
merely the symbolic names assigned by the programmer
to an eight byte region within onboard register file.

3.1. OPERAND TYPES

The MCS®-96 architecture provides support for a variety
of data types which are likely to be useful in a control
application. In the discussion of these operand types that
follows, the names adopted by the PLM-96 programming
language will be used where appropriate. To avoid con­
fusion the name of an operand type will be capitalized.
A "BYTE" is an unsigned eight bit variable; a "byte"
is an eight bit unit of data of any type.

3.1.1. Bytes
BYTES are unsigned 8-bit variables which can take on

. the values between 0 and 255. Arithmetic and relational
operators can be applied to BYTE operands but the result
must be interpreted in modulo 256 arithmetic. Logical
operations on BYTES are applied bitwise. Bits within
BYTES are labeled from 0 to 7 with 0 being the least
significant bit. There are no alignment restrictions for
BYTES so they may be placed anywhere in the MCS-96
address space.

3.1.2. Words
WORI!S are unsigned 16-bit variables which can take on
the valueS between 0 and 65535. Arithmetic and relational

3-1

operators can be applied to WORD operands but the result
must be interpreted modulo 65536. Logical operations on
WORDS are applied bitwise. Bits within words are labeled
from 0 to IS with 0 being the least significant bit. WORDS
must be aligned at even byte boundaries in the MCS-96
address space. The least significant byte of the WORD
is in the even byte address and the most significant byte
is in the next higher (odd) address. The address of a word
is the address of its least significant byte.

3.1.3. Short-Integers
SHORT-INTEGERS are 8-bit signed variables which can
take on the values between - 128 and + 127. Arithmetic
operations which generate results outside of the range of
a SHORT-INTEGER will set the overflow indicators in
the program status word. The actual numeric result re­
turned will be the same as the equivalent operation on
BYTE variables. There are no alignment restrictions on
SHORT-INTEGERS so they may be placed anywhere in
the MCS-96 address space.

3.1.4. Integers
INTEGERS are 16-bit signed variables which can take on
the values between -32,768 and 32,767. Arithmetic op­
erations which generate results outside of the range of an
INTEGER will set the overflow indicators in the program
status word. The actual numeric result returned will be
the same as the equivalent operation on WORD variables.
INTEGERS conform to the same alignment and address­
ing rules as do WORDS.

3.1.5. Bits
BITS are single-bit operands which can take on the Boo­
lean values of true and false. In addition to the nonnal
support for bits as components of BYTE and WORD op­
erands, the 8096 provides for the direct testing of any bit
in the internal register file. The MCS-96 architecture re­
quires that bits be addressed as' components of BYTES
or WORDS, it does not support the direct addressing of
bits that can occur in the MCS-SI architecture.

3.1.6. Double-Words
DOUBLE-WORDS are unsigned 32-bit variables which
can take on the values between 0 and 4,294,967 ,29S. The
MCS-96 architecture provides direct support for this op­
erand type only for shifts and as the dividend in a 32 by
16 divide and the product of a 16 by 16 multiply. For
these operations a DOUBLE-WORD variable must reside
in the on-board register file of the 8096 and be aligned
at an address which is evenly divisible by 4. A DOUBLE­
WORD operand is addressed by the address of its least
significant byte. DOUBLE-WORD operations which are
not directly supported can be easily implemented with two
WORD operations. For consistency with INTEL provided
software the user should adopt the conventions for ad­
dressing DOUBLE-WORD operands which are discussed
in section 3.S.

MCS®-96 SOFTWARE DESIGN INFORMATION

3.1.7. Long~lntegers
LONG-INTEGERS are 32-bit signed variables which can
take on the values between - 2,147,483,648 and
2,147,483,64 7. The MCS-96 architecture provides direct
support for this data type only for shifts and as the dividend
in a 32 by 16 divide and the productof a 16 by 16 multiply.

LONG-INTEGERS can also be normalized. For these
operations a LONG-INTEGER variable must reside in the
onboard register file of the 8096 and be aligned at an

3.2. OPERAND ADDRESSING

Operands are accessed within the address space of the
8096 with one of six basic addressing modes .. Some of
the details of how these addressing mopes work are hidden
by the assembly language. If the programmer is to take
full advantage of the architecture, it is important that these
details be understood. This section will describe the ad­
dressing modes as they are handled by the hardware. At
the end of this section the addressing modes will be de-

3.2,1. Register-direct Refere.,ces
The register-direct mode is used to directly access a reg­
ister from the 256 byte on-board register file. The register
is selected by an 8-bit field within the instruction and

address which is evenly divisible by 4. A LONG-INTEGER
is addressed by the address of its least significant byte.

LONG-INTEGER operations which are not directly sup­
ported can be easily implemented with. two INTEGER
operations. For consistency with Intel provided software;
the user should adopt the conventions for addressing
LONG operands, which are discussed in section 3.5.

scribed as they are seen through the assembly language.
The six basic addressing modes which will be described
are termed register-direct, indirect, indirect with auto-in­
crement, immediate, short-indexed, and long-indexed.
Several other useful addressing operations can be achieved
by combining these basic addressing modes with specific
registers such as the ZERO register or the stack pointer.

register address must conform to the alignment rules for
the operand type. Depending on the instruction, up to
three registers can take part in the calculation.

Examples
ADD
MUL
INCB

AX,BX,CX
AX,BX

; AX:=BX+CX
; AX:=AX*BX

CL ; CL:=CL+ I

3.2.2. Indirect References
The indirect mode is used to access an operand by placing
its address in a WORD variable in the register file. The
calculated address must conform to the alignment· rules
for the operand type. Note that the indirect address can
refer to an operand anywhere within the address space .of

the 8096, including the register file. The register which
contaIns the indirect address is selected by an eight bit
field within the instruction. An instruction can contain
only one indirect reference and the remaining operands
of the instruction (if any) must be register-direct references.

Examples
LD
ADDB
POP

AX.[AX] ; AX: = MEM _ WORD(AX)
AL,BL,[CX] ; AL: = BL + MEM _ BYTE(CX)
[AX] ; MEM _ WORD(AX) : = MEM _ WORD(SP); SP: = SP + 2

3.2.3. Indirect with Auto-increment References
This addressing mode is the same as the indirect mode
except that the WORD variable which contains the indirect
address is incremented after it is used to address the op­
erand. If the instruction operates on BYTES or SHORT-

INTEGERS the indirect address variable will be incre­
mented by one, if the instruction operates on WORDS or
INTEGERS the indirect address able will be incremented
by two.

Examples
LD
ADD
PUSH

AX,[BX]+
AL,BL,[CX] +
[AX] +

AX: = MEM _ WORD(BX); BX: = BX + 2
AL: = AL + BL + MEM _ BYTE(CX); CX: = CX + I
SP: = SP -2;

MEM _ WORD(SP): = MEM _ WORD(AX)
AX:=AX+2

3-2

MCS1D-96 SOFTWARE DESIGN INFORMATION

3.2.4. Immediate References
This addressing mode allows an operand to be taken di­
rectly from a field in the instruction. For operations on
BYTE or SHORT-INTEGER operands this field is eight
bits wide, for operations on WORD or INTEGER oper-

AX.#340 ; AX:=AX+340

ands the field is 16 bits wide. An instruction can contain
only one immediate reference and the remaining oper­
andes) must be register-direct references.

Examples
ADD
PUSH
D1YB

1234H ; SP: = SP - 2; MEM _ WORD(SP): = 1234H
AX.#lO ; AL:=AX/IO; AH:=AX MOD 10

3.2.5. Short-indexed References
In this addressing mode an eight bit field in the instruction
selects a WORD variable in the register file which is
assumed to contain an address. A second eight bit field
in the instruction stream is sign-extended and summed
with the WORD variable to form the address of the op­
erand which will take part in the calculation. Since the

Examples

eight bit field is sign-extended the effective address can
be up to 128 bytes before the address in the WORD var­
iable and up to 127 bytes after it. An instruction can
contain only one short-indexed reference and the remain­
ing operand(s) must be register-direct references.

LD AX.12[BXJ ; AX: = MEM _ WORD(BX + 12)
MULB AX.BL.3[CXJ . AX: = BL *MEM _ BYTE(CX + 3)

3.2.6. Long-indexed References
This addressing mode is like the short-indexed mode ex­
cept that a 16-bit field is taken from the instruction and
added to the WORD variable to form the address of the

Examples

operand. No sign extension is necessary. An instruction
can contain only one long-indexed reference and the re­
maining operand(s) must to register-direct references.

AND AX.BX.TABLE[CX]
ST AX.TABLE[BXJ

; AX: = BX AND MEM _ WORD(TABLE + CX)
; MEM _ WORD(TABLE + BX) : = AX

ADDB AL.BL.LOOKUP[CXJ ; AL: = BL+MEM _ BYTE(LOOKUP+CX)

3.2.7. ZERO Register Addressing
The first two bytes in the register file are fixed at zero by
the 8096 hardware. In addition to providing a fixed source
of the constant zero for calculations and comparisons, this
register can be used as the WORD variable in a long-

Examples

indexed reference. This combination of register selection
and address mode allows any location in memory to be
addressed directly.

ADD AX.1234[OJ ; AX: = AX + MEM _ WORD(1234)
POP 5678[OJ ; MEM _ WORD(5678): = MEM _ WORD(SP)

SP: =SP+2

3.2.8. Stack Pointer Register Addressing
The system stack pointer in the 8096 can be accessed as
register 18H of the internal register file. In addition to
providing for convenient manipulation of the stack pointer,
this also facilitates the accessing of operands in the stack.
The top of the stack, for example, can be accessed by

using the stack pointer as the WORD variable in an indirect
reference. In a similar fashion, the stack pointer can be
used in the short-indexed mode to access data within the
stack.

Examples
PUSH
LD

[SPJ ; DUPLICATE TOP _ OF _ STACK
AX,2[SPJ ; AX: = NEXT _ TO _ TOP

3-3

MCS®-96 SOFTWARE DESIGN INFORMATION

3.2.9. Assembly Language Addressing Modes
The 8096 assembly language simplifies the choice of ad­
dressing modes to be used in several respects:

Direct Addressing. The assembly language will choose
between register-direct addressing and long-indexed with
the ZERO register depending on where the operand is in
memory. The user can simply refer to an operarid by its
symbolic name; if the operand is in the register file, a
register-direct reference will be used, if the operand is
elsewhere in memory, a long-indexed reference will be
generated.

3.3 PROGRAM STATUS WORD

The program status word (PSW) is a collection of Boolean
flags which retain information concerning the state of the
user's program. The format of the PSW is shown in figure
3-1. The information in the PSW can be broken down into

Immediate Addressing. The assembly language will
choose between short and long indexing deIJending on the
value of the index expression. If the value can be expressed
in eight bits then short indexing will be used, if it cannot
be expressed in eight bits then long indexing will be used.

The use of these features of the assembly language sim­
plifies the programming task and should be used wherever
possible.

two basic categories; interrupt control and condition flags.
The PSW can be saved in the system stack with a single
operation (PUSHF) and restored in a like manner (POPF).

Figure 3-1. PSW Register

3.3.1. Interrupt Flags
The lower eight bits of the PSW are used to individually
mask the various sources of interrupt to the 8096. A logical
'I' in these bit positions enables the servicing of the cor­
responding interrupt. These mask bits can be accessed as
an eight bit byte (INT-MASK - address 8) in the on­
board register file. Bit 9 in the PSW is the global interrupt
enable. If this bit is cleared then ali interrupts will be
locked out except for the Non Maskable Interrupt (NMI).
Note that the various interrupts are collected in the
INT _ PENDING register even if they are locked out.
Execution of the' corresponding service routines will
procede according to their priority when they become en­
abled. Further information on the interrupt structure of the
8096 can be found in sections 2.5 and 3.6.

3.3.2. Condition Flags
The remaining bits in the PSW are set as side effects of
instruction execution and can be tested by the conditional
jump instructions.

z. The Z (Zero) flag is set to indicate that the operation
generated a result equal to zero. For the add-with-carry
(ADDC) and subtract-with-borrow (SUBC) operations the
Z flag is cleared if the result is non-zero but is never set.
These two instructions are normally used in conjunction
with the ADD and SUB instructions to perform mUltiple
precision arithmetic. The operation of the Z flag for these
instructions leaves it indicating the proper result for the
entire multiple. precision calculation.

N. The N (Negative) flag is set to indicate that the op-

3-4

eration generated a negative result. Note that the N flag
will be set to the algebraically correct state even if the
calculation overflows.

V. The V (oVerflow) flag is set to indicate that the op­
eration generated a result which is outside the range that
can be expressed in the destination data type.

VT. the VT (oVerflow Trap) flag is set whenever the V
flag is set but can only be cleared an instruction which
explicitly operates on it such as the CLRVT or JVT in­
structions. The operation of the VT flag allows for the
testing for a possible overflow condition at the end of a
sequence of related arithmetic operations. This is normally
more efficient than testing the V flag after each instruction.

C. The C (Carry) flag is set to indicate the state of the
arithmetic carry from the most significant bit of the ALU
for an arithmetic operation or the state of the last bit shifted
out of the operand for a shift. Arithmetic Borrow after a
subtract operation is the complement of the C flag (i.e.
if the operation generated a borrow then C = 0).

ST. The ST (STicky bit) set to indicate that during a right
shift a I has been shifted first into the C flag and then
been shifted out. The ST flag is undefined after a multiply
operation. The ST flag can be used along with the C flag
to control rounding after a right shift. Consider multiply­
ing two eight bit quantities and then scaling the result
down to 12 bits:

MULUB
SHR

AX,CL,DL
AX,#4

; AX:=CL*DL
; Shift right 4 places

MCS®-96 SOFTWARE DESIGN INFORMATION

If the C flag is set after the shift it indicates that the bits
shifted off the end of operand were greater-than or equal"
to one half the least significant bit (LSB) of the result. If
the C flag is clear after the shift it indicates that the bits
shifted off the end of the operand were less than half the
LSB of the result. Without the ST flag, the rounding
decision must be made on the basis of this information
alone. (Normally the result would be rounded up if the
C flag is set.) The ST flag allows a finer resolution in the
rounding decision:

CST Value of the bits shifted off

o 0 Value = 0

o I o < Value < '/2 LSB

I 0 Value = 'h LSB

1 1 Value> V2 LSB

Figure 3-2. Rounding Alternatives

Imprecise rounding can be a major source of error in a
numerical calculation; use of the ST flag improves the
options available to the programmer.

3.4 INSTRUCTION SET

The MCS-96 instruction set contains' a full set of arithmetic
and logical operations for the 8-bit data types BYTE and
SHORT INTEGER and for the 16-bit data types WORD
and INTEGER. The DOUBLE-WORD and LONG data
types (32 bits) are supported for the products of 16 by 16
multiplies and the dividends of 32 by 16 divides and for
shift operations. The remaining operations on 32 bit var-

3-5

iables can be implemented by combinations of 16 bit op­
erations. As an example the sequence:

ADD
ADDC

AX,CX
BX,DX

performs a 32 bit addition, and the sequence

SUB
SUBC

AX,CX
BX,DX

performs a 32 bit subtraction. Operations on REAL (i.e.
floating point) variables are not supported directly by the
hardware but are supported by the floating point library
for the 8096 (FPAL-96) which implements a single pre­
cision subset of the proposed IEEE standard for floating
point operations. The performance of this software is sig­
nificantly improved by the 8096 NORML instruction
which normalizes a 32-bit variable and by the existance
of the ST flag in the PSw.

In addition to the operations on the various data types, the
8096 supports conversions between these types. LDBZE
(load byte zero extended) converts a BYTE to a WORD
and LDBSE (load byte sign extended) converts a SHORT­
INTEGER into an INTEGER. WORDS can be converted
to DOUBLE-WORDS by simply clearing the upper
WORD of the DOUBLE-WORD (CLR) and INTEGERS
can be converted to LONGS with the EXT (sign extend)
instruction.

Tables 3-1 and 3-2 summarize the operation of each of
the instructions and Tables 3-3 and 3-4 give the opcode,
byte count, and timing information for e.ach of the
instructions.

MCS®-96 SOFTWARE DESIGN INFORMATION

Table 3-1. Instruction Summary

Oper- Flags

Mnemonic ands Operation (Note 1) Z N C V VT ST Notes
ADD/ADDB 2 D~D+A / j / / / -
ADD/ADDB 3 D~B+A / / / / / -
ADDC/ADDCB 2 D ~D+A+C / / / / / -
SUB/SUBB 2 D~D-A / / / / / -
SUB/SUBB 3 D~B-A / / / / / -
SUBC/SUBCB 2 D~D-A+C- I / / / / / -
CMP/CMPB 2 D-A / / / / / -
MULIMULU 2 D, D + 2 ~ D * A - - - - - ,; 2

MULIMULU 3 D, D + 2 ~ B * A - - - - - / 2

MBLB/MULUB 2 D, D + I ~D * A - - - - - / 3
MULB/MULUB 3 D, D + I ~ B * A - - - - - / 3

DIV/DIVU 2 D ~ (D, D + 2)/A 2
D+2 remainder - - - / / -

DIVB/DIVUB 3 D ~ (D, D + I)/A
D + I remainder - - - / / - 3

AND/ANDB , 2 D ~D and A / / 0 0 - -
AND/ANDB 3 D~BandA / / 0 0 - -
OR/ORB 2 D ~D orA / / 0 0 - -
XORIXORB 2 D ~ D (excl. or) A / / 0 0 - -
LD/LDB 2 D.~A - - - - - -
ST/STB 2 A~D - - - - - -
LDBSE 2 D ~A; D + I ~ SIGN(A) - - - - - - 3,4

LDBZE 2 D ~A;D + I~O - - - - - - 3,4

PUSH I SP ~ SP - 2; (SP) A - - - - - -
POP I A <- (SP); SP ~ SP + 2 - - - - - -
PUSHF 0 SP ~ SP - 2; (SP) ~ PSW; 0 0 0 0 0 0

PSW ~ OOOOH

POPF 0 PSW ~ (SP); SP ~ SP + 2 / / / / / /
SJMP I PC~PC+ II-bit offset - - - - - - 5

UMP I PC ~ PC + 16-bit offset - - - - - - 5

INDJMP I PC <- (A) - - - - - -
SCALL I SP ~ SP - 2; (SP) ~ PC; - - - - - - 5

PC ~ PC + ll-bit offset

LCALL I SP ~ SP - 2; (SP) ~ PC; - - - - - - 5
PC ~ PC + 16-bit offset .

RET 0 PC ~ (SP); SP ~ SP + 2 - - - - - -
J(conditional) I PC ~ PC + 8-bit offset - - - -,- - - 5

JC Jump if C = I - - - - - - 5

JNC Jump ifC = 0 - - - - - - 5

Note
I. If the mnemonic ends in "B", a byte operation is performed, otherwise a word operation is done. Operands D, B, and A must conform

to the alignment rules for the required operand type. D and B are locations in the register file; A can be located anywhere in memory.
2. D, D + 2 are consecutive WORDS in memory; D is DOUBLE-WORD aligned.
3. D, D + 1 are consecutive BYTES in memory; D is WORD aligned.
4. Changes a byte to a word.
S. ·Offset is a 2's complement number.

3-6

MCS®·96 SOFTWARE DESIGN INFORMATION

Table 3-2. Instruction Summary

Oper- Flags

Mnemonic ands Operation (Note 1) Z N C V VT ST Notes

JE Jump if Z = 1 - - - - - - 5

JNE Jump if Z = 0 - - - - - - 5

JGE Jump ifN = 1 - - - - - - 5

JLT Jump ifN = 0 - - - - - - 5

JGT Jump if N = 0 and Z = 0 - - - - - - 5

JLE Jump if N = I or Z = 1 - - - - - - 5

JH Jump if C = 1 and Z = 0 - - - - - - 5

JNH Jump if C = 0 or Z = 1 - - - - - - 5

JV Jump if V = 1 - - - - - - 5

JNV Jump if V = 0 - - - - - - 5

JVT Jump if VT = 1; Clear VT - - - - 0 - 5

JNVT Jump if VT = 0; Clear VT - - - - 0 - 5

JST Jump if ST = 1 - - - - - - 5

JNST Jump if.ST = 0 - - - - - - 5

JBS Jump if ST = 1 - - - - - -- 5;6

JBC Jump if Specified Bit = 0 - - - - - - 5,6

DJNZ 1 D +-D - 1; ifD *" then
PC +- PC + 8-bit offset - - - - - - 5

DECIDECB 1 D+-D-l j j j j j -

NEG/NEGB
,

1 D+-O-D j j j j j -

INC/INCB 1 D+-D+1 j j j j j -
EXT 1 D +- D; D + 2 +- Sign (D) j j 0 0 - - 2

EXTB 1 D +- D; D + 1 +- Sign (D) j / 0 0 - - 3

NOT/NOTB 1 D +- Logical Not (D) j j 0 0 - -
CLRlCLRB 1 D+-O 1 0 0 0 - -

SHL/SHLB/SHLL 1 C +- msb - - - - - lsb +- 0 j j j j j - 7

SHRlSHRB/SHRL 1 o -> msb - - - - - lsb -> C j j j 0 - j 7

SHRAISHRAB/SHRAL 1 msb -> msb - - - - - lsb -> C j j j 0 - j 7

SETC 0 C +-1 - - 1 - - -

CLRC 0 C+-O - - 0 - - -
CLRVT 0 VT +-0 - - - - 0 -

RST 0 PC +- 2080H 0 0 0 0 0 0 8

DJ 0 Disable All Interrupts - - - - - -

EI 0 Enable All Interrupts - - - - - -

NOP 0 PC+-PC+I - - - - - -

SKIP 0 PC+-PC+2 - - - - - -

NORML 2 Normalize (See sec 3.13.66) j 1 - - - - 7

Note
I. If the mnemonic ends in "B", a byte operation is performed, otherwise a word operation is done. Operands D, B and A 'must conform

to the alignment rules for the required operand type. D and B are locations in the register file; A can be located anywhere in memory.
5. Offset is a 2's complement number.
6. Specified bit is one of the 2048 bits in the register file.
7. The "L" (Long) suffix indicates double-word operation.
8. Initiates a Reset by pulling RESET low. Software should re-initialize all the necessary registers with code starting at 2080H.

3-7

MCS@-96 SOFTWARE DESIGN INFORMATION

Table 3-3. Opcode and State Time Listing

DIRECT
INDIRECT® INDEXED®

IMMEDIATE
NORMAL AUTO~INC. SHORT LONG

0 en
Z 0 z w w w 8 en 8 en w 8 en 8 en 0 oCt 0 en 0 en 0 en en 0 en en :::e a: 0 wen 0 wen 0 Ww Ww 0 Ww Ww
w w

!ci: w w
!ci: w w

!ci::::e
w

!ci::::e
w

!ci::::e
w ~:::e w 0 0 !; 0 !; 0 !; !; Z D.. D.. > 1!ll D..1!ll D.. > - - D.. - -:::e 0 0 ID en 0 ID en 0 ID en ID en 0 ID en ID en

ARITHMETIC INSTRUCTIONS

ADD 2 64 3 4 65 4 5 66 3 6/11 3 7/12 67 4 6111 5 7112

ADD 3 44 4 5 45 5 6 46 4 711~ 4 8/13 47 5 7/12 6 8/13

ADDB 2 74 3 4 75 3 4 76 3 6/11 3 7/12 77 4 6/11 5 7/12

ADDB 3 54 4 5 55 4 5 56 4 7112 4 8/13 57 5 7112 6 8/13

ADDC 2 A4 3 4 :.\5 4 5 A6 3 6111 3 7112 A7 4 6/11 5 7/12

ADDCB 2 B4 3 4 B5 3 4 B6 3 6/11 3 7/12 B7 4 6/11 5 7/12

SUB 2 68 3 4 69 4 5 6A 3 6/11 3 7112 6B 4 6/11 5 7/12

SUB 3 48 4 5 49 5 6 4A 4 7/12 4 8/13 4B 5 7/12 6 8/13

SUBB 2 78 3 4 79 3 4 7A 3 6/11 3 7/12 7B 4 6/11 5 7/12

SUBB 3 58 4 5 59 4 5 5A 4 7/12 4 8/13 5B 5 7/12 6 8/13

SUBC 2 A8 3 4 A9 4 5 AA 3 6/11 3 7112 AB 4 6/11 5 7/12

SUBCB 2 B8 3 4 B9 3 4 BA 3 6/11 3 7112 BB 4 6/11 5 7112

CMP 2 88 3 4 89 4 5 8A 3 6/11 3 7/12 8B 4 6/11 5 7/12

CMPB 2 98 3 4 99 3 4 9A 3 6/11 3 7/12 9B 4 6/11 5 7/12

MULU 2 6C 3 25 6D 4 26 6E 3 27/32 3 28/33 6F 4 27/32 5 28/33

MULU 3 4C 4 26 4D 5 27 4E 4 28/33 4 29/34 4F 5 28/33 6 29/34

MULUB 2 7C 3 17 7D 3 17 7E 3 19/24 3 20/25 7F 4 19/24 5 20125

MULUB 3 5C 4 18 5D 4 18 5E 4 20125 4 21126 5F 5 20/25 6 21126

MUL 2 @ 4. 29 @ 5 30 @ 4 31/36 4 32/37 @ 5 31/36 6 32/37

MUL 3 @ 5 30 @ 6 31 @ 5 32/37 5 33/38 @ 6 32/37 7 33/38

MULB 2 @ 4 21 @ 4 21 @ 4 23/28 4 24/29 @ 5 23/28 6 24129

MULB 3 @ 5 22 @ 5 22 @ 5 24129 5 25/30 @ 6 24129 7 25/30

DIVU 2 8C 3 25 8D 4 26 8E 3 27/32 3 28/33 8F 4 27/32 5 28/33

DIVUB 2 9C 3 17 9D 3 17 9E 3 19/24 3 20/25 9F 4 19/24 5 20125

DIV 2 @ 4 29 @ 5 30 @ 4 31/36 4 32/37 @ 5 31/36 6 32/37

DIVB 2 @ 4 21 @ 4 21 @ 4 23/28 4 24/29 @ 5 23128 6 24/29

Notes:
® Long indexed and Indirect + instructions have identical opocodes with Short indexed and Indirect modes, respectively. The second byte

of instructions using any indirect or indexed addressing mode specifies the exact mode used. If the second byte is even, use Indirect
or Short Indexed. If it is odd, use Indirect + or Long indexed. In all cases the second byte of the instruction always specifies an even
(word) location for the address referenced.

(j) Number of state times shown for internaliexternal operands.
® The opcodes for signed multiply and divide are the opcodes for the unsigned functions with an "FE" appended as a prefix.

3-8

MCS@-96 SOFTWARE DESIGN INFORMATION

Table 3-3. Continued

DIRECT IMMEDIATE
INDIRECT@ INDEXED0

NORMAL AUTO-INC. SHORT' LONG

0 Ul
Z c
0 z W W W

8Ul 8Ul
W

8Ul 8Ul « c Ul c Ul c Ul Ul C Ul Ul :E IX 0 W WUl 0 W
WUl 0 W Ww W Ww 0 W Ww W Ww

W W 0 I- !C(W 0 I- !c(w 0 I- !c(:E I- !c(:E 0 I- !c(:E I- !c(:E z D.. D.. > 1-;;!1 D.. > 1-;;!1 D.. > !i;i= > !i;i= D.. > 1-- > 1--
:E 0 0 III Ull- 0 III Ull- 0 III III 0 III Ull- III Ull-

LOGICAL INSTRUCTIONS

AND 2 60 3 4 61 4 5 62 3 6111 3 7112 63 4 6111 5 7112
AND 3 40 4 5 41 5 6 42 4 7112 4 8113 43 5 7112 6 8113
ANDB 2 70 3 4 71 3 4 72 3 6111 3 7112 73 4 6/1\ 5 7112
ANDB 3 50 4 5 51 4 5 52 4 7112 4 8/13 53 5 7/12 6 8113
OR 2 80 3 4 81 4 5 82 3 6111 3 7112 83 4 6/11 5 7/12

ORB 2 90 3 4 91 3 4 92 3 6/11 3 7112 93 4 6/11 5 7/12

XOR 2 84 3 4 85 4 5 86 3 6111 3 7112 87 4 6/11 5 7/12

XORB 2 94 3 4 95 3 4 96 3 6111 3 7112 97 4 6/11 5 7112
DATA TRANSFER INSTRUCTIONS

LD 2 AO 3 4 AI 4 5 A2 3 6111 3 7/12 A3 4 6/11 5 7/12

LDB 2 BO 3 4 Bl 3 4 B2 3 6111 3 7112 B3 4 6/11 5 7/12

ST 2 CO 3 4 - - -- C2 3 7/13 3 8/14 C3 4 7113 5 8114
STB 2 C4 3 4 - - -- C6 3 7/13 3 8/14 C7 4 7/13 5 8114
LDBSE 2 BC 3 4 BD 3 4 BE 3 6/11 3 7112 BF 4 6/1\ 5 7112
LDBZE 2 AC 3 4 AD 3 4 AE 3 6/11 3 7112 AF 4 6111 5 7112

STACK OPERATIONS (internal stack)

PUSH I C8 2 8 C9 3 8 CA 2 11115 2 12/16 CB 3 11115 4 12/16

POP 1 CC 2 12 - - -- CE 2 14/18 2 14/18 CF 3 14118 4 14/18

PUSHF 0 F2 1 8
POPF 0 F3 1 9

STACK OPERATIONS (external stack)

PUSH 1 C8 2 12 C9 3 12 CA 2 15119 2 16/20 CB 3 15/19 4 16/20

POP 1 CC 2 14 - - -- CE 2 16/20 2 16/Z0 CF 3 16/Z0 4 16/20

PUSHF 0 F2 1 12
POPF 0 F3 1 13

JUMPS AND CALLS

MNEMONIC OPCODE BYTES STATES MNEMONIC OPCODE BYTES STATES

LJMP E7 3 8 LCALL EF 3 13/16@

SJMP 20-27@ 2 8 SCALL 28-2F@ 2 13/16@

INDJMP E3 2 8 RET FO 1 lZ116@

Notes:
<D Number of state times shown for internal/external operands.
@ This instruction is generated by the assembler when a branch indirect (BR [Rx]) instruction is reached.
@) The least significant 3 bits of the opcode are concatenated with the following 8 bits to form an II-bit, 2's complement, offset for the

relative call or jump.
® State times for stack located internal/external.

3-9

MCS®-96 SOFTWARE DESIGN INFORMATION

Table 3-4. CONDITIONAL JUMPS

All conditional jumps are 2 byte instructions. They require 8 state times if the jump is taken, 4 if it is not.

MNEMONIC OPCODE MNEMONIC OPCODE MNEMONIC OPCODE MNEMONIC OPCODE

JC DB JE DF JGE D6 JGT D2
JNC D3 JNE D7 JLT DE JLE DA
JH D9 JV DD JVT DC JST D8
JNH D1 JNV D5 JNVT D4 JNST DO

JUMP ON BIT CLEAR OR BIT SET

These instructions are 3-byte instructions. They require 9 state times if the jump is taken, 5 if it is not.

BIT NUMBER

MNEMONIC 0 1 2 3 4 5 6 7

mc 30 31 32 33 34 35 36 37
ms 38 39 3A 3B 3C 3D 3E 3F

lOOP CONTROL

DJNZ OPCODE EO; 3 BYTES; 5/9 STATE TIMES (NOT TAKEN/TAKEN)

SINGLE REGISTER INSTRUCTIONS

MNEMONIC OPCODE BYTES STATES MNEMONIC OPCODE BYTES STATES

DEC 05 2 4 EXT 06 2 4
DECB 15 2 4 EXTB 16 2 4
NEG 03 2 4 NOT 02 2 4
NEGB 13 2 4 NOTB 12 2 4
INC 07 2 4 CLR 01 2 4
INCB 17 2 4 CLRB 11 2 4

SHIFT INSTRUCTIONS

INSTR WORD INSTR BYTE INSTR DBl WD '\

MNEMONIC OP B MNEMONIC OP B MNEMONIC OP B STATE TIMES

SHL 09 3 SHLB 19 3 SHLL OD 3 7 + 1 PER SHIFT<V

SHR 08 3 SHRB 18 3 SHRL OC 3 7 + 1 PER SHIFT<V
SHRA OA 3 SHRAB 1A 3 SHRAL OE 3 7 + 1 PER SHIFT<V

SPECIAL CONTROL INSTRUCTIONS

MNEMONIC OPCODE BYTES STATES MNEMONIC OPCODE BYTES STATES

SETC F9 1 4 DI FA 1 4
CLRC F8 1 4 EI FB 1 4
CLRVT FC 1 4 Nap FD 1 4
RST FF 1 .16 SKIP 00 2 4

NORMALIZE

NORML OF 3 11 + 1 PER SHIFT

Notes:
® This instruction takes 2 states to pull RST low, thenhalds it iow for 2 states to initiate a reset. The reset takes 12 states, at which

time the program restarts at location 2080H.
(l) Execution will take at least 8 states, even for 0 shift.

3-10

MCS®-96 SOFTWARE DESIGN· INFORMATION

3.5. SOFTWARE STANDARDS AND
CONVENTIONS

For a software project of any size it is a good idea to
modularize the program and to establish standards which
control the communication between these modules. The
nature of these standards will vary with the needs of the
final application. A common component of all of these
standards, however, must be the mechanism for passing
parameters to procedures and returning results from pro­
cedures. In the absence of some overriding consideration
which prevents their use, it is suggested that the user
conform to the conventions adopted by the PLM -96 pro­
graming language for procedure linkage. It is a very usable
standard for both the assembly language and PLM-96 en­
vironment and it offers compatibility between these en­
vironments. Another advantage is ·that it allows the user
access to the same floating point arithmetics library that
PLM-96 uses to operate on REAL variables.

3.5.1. Register Utilization
The MCS-96 architecture provides a 256 byte register file.
Some of these registers are used to control register-mapped
I/O devices and for other special functions such as the
ZERO register and the stack pointer. The remaining bytes
in the register file, some 230 of them, are available for
allocation by the programmer. If these registers are to be
used effectively some overall strategy for their allocation
must be adopted. PLM-96 adopts the simple and effective
strategy of allocating the eight bytes between addresses
1 CH and 23H as temporary storage. The starting address
of this region is called PLMREG. The remaining area in
the register file is treated as a segment of memory which
is allocated as required.

3.5.2. Addressing 32-bit Operands
These operands are formed from two adjacent 16-bit words
in memory. The least significant word of the double word
is always in lower address, even when the data is in the
stack (which means that the most significant word must
be pushed into the stack first). A dOl\ble word is addressed
by the address of its least significant byte. Note that the
hardware supports some operations on double words (e.g.
normalize and divide). For these operations the double
word must be in the internal register file and must have
an address which is evenly divisible by four.

3.5.3. Subroutine Linkage
Parameters are passed to subroutines in the stack. Param­
eters are pushed into the stack in the order that they are
encountered in the scanning of the source text. Eight-bit
parameters (BYTES or SHORT-INTEGERS) are pushed
into the stack with the high order byte undefined. Thirty­
two bit parameters (LONG-INTEGERS, DOUBLE­
WORDS, and REALS) are pushed into the stack as two
16 bit values; the most significant half of the parameter
is pushed into the stack first.

3-11

As an example, consider the following PLM-96 procedure:

example_procedure: PROCEDURE (paraml,param2,param3);
DECLARE paraml BYTE,

param2 DWORD,
param3 WORD;

When this procedure is entered at run time the stack will
contain the parameters in the following order:

?????? : paraml

high word of param2

low word of param2

param3

return address <- StacLpointer

Figure 3-3. Stack Image

If a procedure returns a value to the calling code (as
opposed to modifying more global variables) then the re­
sult is returned in the variable PLMREG. PLMREG is
viewed as either an 8, 16 or 32 bit variable depending on
the type of the procedure.

The standard calling convention adopted by PLM-96 has
several key features:

a). Procedures can always assume that the eight bytes
of register file memory starting at PLMREG can be
used as temporaries within the body of the procedure.

b). Code which calls a procedure must assume that
the eight bytes of register file memory starting at
PLMREG are modified by the procedure.

c). The Program Status Word (pSW-see section 3.3)
is not saved and restored by procedures so the calling
code must assumed that the condition flags
(Z,N,V,VT,C, and ST) are modified by the procedure.

d). Function results from procedures are always re­
turned in the variable PLMREG.

PLM-96 allows the definition ofINTERRUPT procedures
which are executed when a predefined interrupt occurs.
These procedures do not conform to the rules of a normal
procedure. Parameters cannot be passed to these proce­
dures and they cannot return results. Since they can ex­
ecute essentially at any time (hence the term interrupt),
these procedures must save the PSW and PLMREG when
they are entered and restore these values before they exit.

3.6. USING THE INTERRUPT SYSTEM

Processing interrupts is an integral part of almost any
control application. The 8096 allows the program to man­
age interrupt servicing in an efficient and flexible manner.
Software running in the 8096 exerts control over the in­
terrupt hardware at several levels.

MCS®-96 SOFTWARE DESIGN INFORMATION

3.6.1. Global Lockout
The processing of interrupts can be enabled or disabled
by setting or clearing the I bit in the PSW. This is accom­
plished by the EI (Enable Interrupts) and DI (Disable
Interrupts) instructions. Note that the I bit only controls
the actual servicing of interrupts; interrupts that occur
during periods of lockout will be held in the pending
register and serviced on a prioritized basis when the lock­
out period ends.

3.6.2. Pending Interrupt Register
When the hardware detects one of the eight interrupts it
sets the corresponding bit in the pending interrupt register
(INT-PENDING-register 09H). This register, which has
the same bit layout as the interrupt mask register (see next
section), can be read or modified as a byte register. This
register can be read to determine which of the interrupts
are pending at any given time or modified to either clear
pending interrupts or generate interrupts under soft­
ware control. Any software which modifies the
INT-PENDING register should ensure that the entire
operation is indivisible. The easiest way of doing this is
to use the logical instructions in the two or three operand
fonnat, as examples:

ANDB INTJENDING,#llllllOlB
ORB ; Clears the AID interrupt

INTJENDING,#OOOOOOIOB
Sets the AID interrupt

lfthe required modification to INT -PENDING cannot be
accomplished with one instruction then a critical region
should be established and the INT-PENDING register
modified from within this region (see section 3.6.5).

3.6.3. Interrupt Mask Register
Individual interrupts can be enabled or disabled by setting
or clearing bits in the interrupt mask register (lNT_
MASK-register 08H). The fonnat of this register is shown
in figure 3-4.

7 I 6 5 i '~I 2~1 °L TIMER OVERFLOW
~ AID COMPLETtON

HSI DATA AVAILABLE
HSO EVENT
HSI BIT 0
SOFTWARE TIMERS

'----------- SERIAL 1/0
EXTERNAL INTERRUPT

Figure 3-4. Interrupt Mask Register

The INT -MASK register can be read or written as a byte
register. A one in any bit position will enable the corre­
sponding interrupt source and a zero will disable the
source. The individual masks act like the global lockout
in that they only control the servicing of the interrupt; the
hardware will save any interrupts that occur in the pending
register even if the interrupt mask bit is cleared. The
INT-MASK registfr also can be accessed as the lower

3-12

eight bits of the PSW so the PUSHF and POPF instructions
save and restore the INT -MASK register as well as the
global interrupt lockout and the arithmetic flags.

3.6.4. Interrupt Vectors
The 8096 has eight sources of hardware intequpt, each
with its own priority and interrupt vector location. Table
3-6 shows the interrupt sources, their priority, and their
vector locations. See section 2.5 for a discussion of the
various interrupt sources.

Table 3-5. Interrupt Vector Information

Source Priority Vector

Timer Overflow O-Lowest 2000H

AID Completion I 2002H

-HSI Data Available 2 2004H

HSO Excution 3 2006H

HSI.O 4 2008H

Software timers 5 200AH

Serial I/O 6 200CH

External Interrupt 7-Highest 200EH

The programmer must initialize the interrupt vector table
with the starting addresses of the appropriate interrupt
service routine. It would be a good idea to vector any
interrupts that are not used in the system to an error han­
dling routine.

The priorities given in the table give the hardware en­
forced priorities for these interrupts. This priority controls
the order in which pending interrupts are passed to the
software via interrupt-calls. The software can implement
its own priority structure by controlling the mask register
(lNT _ MASK-register 08H). To see how this is done
consider the case of a serial I/O service routine which
must run at a priority level which is lower than the HSI
data available interrupt but higher than any other source.
The "preamble" and exit code for this interrupt service
routine would look like this:

serial _ io _ isr:
PUSHF ; Save the PSW

(Includes INT _ MASK)
LD INT _ MASK,#OOOOOlOOB
EI ; Enable interrupts again

! } S~~ '00 '0"=,

POPF
RET

; Restore the PSW

Note that location 200CH in the interrupt vector table
would have to be loaded with the value of the label
serial_ io _ isr and the interrupt be enabled for this rou­
tine to execute.

MCS®-96 SOFTWARE DESIGN INFORMATION

There is an interesting chain of instruction side-effects
Which makes this (or any other) 8096 interrupt service
routine execute properly:

. a). After the hardware decides to process an interrupt
it generates and executes a special interrupt-call in­
struction which pushes the current program counter
onto (he stack and then loads the program counter with
the conten!s of the vector table entry corresponding
to rile interrupt. Thf: h¥dware will not allow another
interrupt to be serviced immediately following the
interrupt-call. This guarantees that once the interrupt­
call starts the fir~t instruction of the interrupt service
routine will execute.

b). The PUSHF instruction, which is now guaranteed
to execute, saves the PSW in the stack and then clears
the psw. The PSW contains, in addition to the arith­
metic flags, the INT-MASK register and the global
enable flag (I). The hardware will not allow an inter­
rupt following a PUSHF instruction and by the time
the LO instruction starts all of the interrupt enable
flags will be cleared. Now there is guaranteed exe­
cution of the LO INT-MASK instruction.

c). The LO INT-MASK instruction enables those
interrupts that the programmer chooses to allow to
interrupt the serial 110 interrupt service routine. In this
example only the HSI data available interrupt will be
allowed to do this but any interrupt or combination of
interrupts could be enabled at this point, even the serial
interrupt. It is the loading of the INT _ MASK register
which allows the software to establish its own prior­
ities for interrupt servicing independently from those
that the hardware enforces.

d). The EI instruction reenables the processing of
interrupts.

e). The actual interrupt service routine executes
within the priority structure established by the software.

f). At the end of the service routine the POPF instruc­
tion restores the PSW to its state when the interrupt­
call occurred. The hardware will not allow interrupts
to be processed following a POPF instruction so the
execution of the last instruction (RET) is guaranteed
before further interrupts can occur. The reason that
this RET instruction must be protected in this fashion
is that it is quite likely that the POPF instruction will
reenable an interrupt which is already pending. If this
interrupt were serviced before the RET instruction,
then the return address to the code th~t was executing
when the original interrupt occurred would be left on
the stack. While this does not present a problem to the
program flow, it could result in a stack overflow if
interrupts are occurring at a high frequency.

Notice that the "preamble" and exit code for the interrupt
service routine does not include any code for saving or
restoring registers. This is because it has been assumed

3-13

that the interrupt service routine has been allocated its
own private set of registers from the on-board register file.
The availability of some 230 bytes of register storage
makes this quite practical.

3.6.5. Critical Regions
Interrupt service routines must share some data with other
routines. Whenever the programmer is coding those sec­
tions of code which access these shared pieces of data,
great care must be taken to ensure that the integrity of the
data is maintained. Consider clearing a bit in the interrupt
pending register as part of a non-interrupt routine:

LOB
ANOB
STB

AL,INT-PENDING
AL,#biLmask
AL,INT-PENDING

This code works if no other routines are operating con­
currently, but will cause occasional but serious problems
if used in a concurrent environment. (All programs which
make use of interrupts must be considered to be part of
a concurrent environment.) To demonstrate this problem,
assume that the INT_PENDING register contains
OOOOl1llB and bit 3 (HSO event interrupt pending) is to
be reset. The code does work for this data pattern but what
happens if an HSI interrupt occurs somewhere between
the LOB and the STB instructions? Before the LOB in­
struction INT JENDING contains 000011 liB and after
the LOB instruction so does AL. IF the HSI interrupt
service routine executes at this point then INTJENOING
will change to OOOOlOIIB. The ANDB changes AL to
OOOOOl1lB and the STB changes INTJENDING to
00000 111B. It should be 000000 lIB. This code sequence
has managed to generate a false HSO interrupt! The same
basic process can generate an amazing assortment of prob­
lems and headaches. These problems can be avoided by,
assuring mutual exclusion which basically means that if
more than one routine can change a variable, then the
programmer must ensure exclusive access to the variable
during the entire operation on the variable.

In many cases the instruction set of the 8096 allows the
variable to be modified with a single instruction. The code
in the above example can be implemented with a single
instruction:

ANOB INT-PENDING,#bit _ mask

Instructions are indivisible so mutual exclusion is ensured
in this case. For more complex situations, such a simple
solution is not available and the programmer must create
what is termed a critical region in which it is safe to
modify the variable. One way to do this is to simply
disable interrupts with a 01 instruction, perform the mod­
ification, and then re-enable interrupts with an EI instruc­
tion. The problem with this approach is that it leaves the
interrupts enabled even if they were not enabled at the
start. A better solution is to enter the critical region with
a PUSHF instruction which saves the PSW and also clears
the interrupt enable flags. The region can then be termi­
nated with a POPF instruction which returns the interrupt
enable to the state it was in before the code sequence. It

MCS®-96 SOFTWARE DESIGN INFORMATION

should be noted' that some system configurations might
require more protection to form a critical region. An ex­
ample is a system in which more than one processor has
access to a common resource such as memory or external
110 devices.

3.7. 1/0 PROGRAMMING
CONSIDERATIONS

The on-board 110 devices are, for the most part, simple
to program. There are some areas of potential confusion

. which need to be addressed:

3.7.1. Programming the 1/0 Ports
Some of the on-board 110 ports can be used as both input
and output pins (e.g. Port 1) When the processor writes
to the pins of these ports it actually writes into a register
which in tum drives the port pin. When the processor
reads these ports, it senses the status of the pin directly.
If a port pin is to be used, as an input then the software
should write a one to that pin, this will cause the low-,
impedance pull-down device to tum off and leave the pin
pulled up with relatively high impedance pull-up device
which can be easily driven down by the device driving
the input. If some pins of a port are to be used as inputs
and some are to be used as outputs the programmer should

'be careful when writing to the port. Consider using PI.O
as an input and then trying to toggle PI.l as an output:

ORB 10PORT! ,#OOOOOOOIB
XORB 10PORT! ,#000000 lOB

; Set PI.O for input
; Complement PI.I

The first instmction will work as expected but two prob­
lems can occur when the second instruction executes. The
first is that even though PI. 1 is being driven high by the
8096 it is possible that it is being held low externally.
This typically happens when the port pin is used to drive
the base of an NPN transistor which in tum drives what­
ever ther,e is in the outside world which needs to be tog­
gled. The base of the transistor will clamp the port pin
to the transistor'S Vbe above ground, typically 0.7 volts.
The 8096 will input this value as a zero even if a one has
been written to the port pin. When this happens the XORB
instmction will always write a one to the port pin and it·
will not toggle. The second problem, which is related to
the first one, is that if PI.O happens to be driven to a zero
when Port 1 is read by the XORB instruction then the
XORB will write a zero to P1.0 and it will no longer be
useable as an input. The first problem can best be solved
by the external driver design. A series resistor between
the port pin and the base of the transistor often works.
The second problem can be solved in the software fairly
easily:

LOB
XORB
ORB
STB

AL,IOPORT!
AL,#OIOB
AL,#OOIB
AL,IOPORT!

A software solution to both problems is to keep a byte in
RAM as an image of the data to be output to the port; any

time the software wants to modify the data on the port it
can then modify the image byte and then copy it to' the
port.

3.7.2. Reading the I/O Status Register 1
This status register contains a collection of status flags
which relate to the timer and high speed I/O functions
(see section 2.12.5). It can be accessed as register 16H
in the on-board register file. The layout of this register is

'shown in figure 3-5.

761514131210

~ug,L ~OFTWARE TIMER 0 EXPIRED
SOFTWARE TIMER 1 EXPIRED
SOFTWARE TIMER 2 EXPIRED
SOFTWARE TIMER 3 EXPIRED
TIMER 1 OVERFLOW FLAG
TIMER 2 OVERFLOW FLAG

'--------- HSI FIFO IS FULL
'---------- HSI DATA AVAILABLE

Figure 3-5. 1/0 Status Register 1

Whenever the processor reads this register all of the time­
related flags (bits 5 through 0) are cleared. This applies
not only to explicit reads such as:

LD AL,IOSI

but also to implicit reads such as:

JB IOS 1. 3, somewhere _ else

which jumps to somewhere _ else if bit 3 ofIOSI is set.
In most cases this situation can best be handled by having
a byte in the register file which is used to maintain an
image of lower five bits of the register. Any time a hard­
ware timer interrupt or a HSO software timer interrupt
occurs the byte can be updated:

ORB 10SI _ image,IOS!

leaving 10SI_ image containing all the flags that were
set before plus all the new flags that were read and cleared
from lOS 1. Any other routine which needs to sample the
flags can safely check 10SI _ image. Note that if these
routines need to clear the flags that they have acted on
then the modification of lOS 1_ image must be done from
inside a critical region (see section 3.6.5).

3.7.3. Sending Commands to the HSO Unit
Commands are sent to the HSO' unit via a byte and then
a word write operation:

LDB
ADD

HSO _ COMMAND,#what _ to _ do
HSO _ TIME ,TIMER 1 ,#when _ to _ do _ it

The command is actually accepted when the HSO _ TIME
register is written. It is important to ensure that this code
piece is not interrupted by any interrupt service routine

3-14

MCS®·96 SOFTWARE DESIGN INFORMATION

plementation of the current members of the MCS-96 fam­
ily place some restrictions on how these registers ~an be
accessed. While these restrictions are not severe, the pro­
granimer must be aware of them. A complete listing of
these registers is shown in figure 2-7 and 2-8. The re-

which might also send a command to the HSO unit. If
this happens the HSO will know when to do it but not
know what to do when it's time to do it. In many systems
this becomes a null problem because HSO commands are
only issued from one place in the code. If this is not the
case then a critical region must be established and the two
instructions executed from within this region (see section
3.6.5).

, strictions are as follows:

Commands in the holding register will not execute even
if their time tag is reached. Commands must be in the
CAM for this to occur. Flags are available in 10SO which
indicate the holding register is empty (IOSO.7) or that
both the holding register is empty and the CAM is not
full (IOSO.6). The programmer should carefully decide
which of these two flags is the best to use for each
application.

It is possible to enter commands into the CAM which
never execute. This occurs if TIMER2 has been set up as
a variable modulo counter and a command is entered with
a time tag referenced to TIMER2 which has a value that
TIMER2 never reaches. The inaccessible command will
never execute and continue to take up room in the CAM
until either the system is reset or the' program allows
TIMER2 increment up to the value stored in the time tag.
Note that commands cannot be flushed from the CAM
without being executed but that they can be cancelled.
This is accomplished by setting the opposite command in
the CAM to execute at the same time tag as the command
to be cancelled. If, as an example, a command has been
issued to set HSO.l whenTIMERl = 1234 then entering
a second command which clears HSO.l when
TIMERI = 1234 will result in a no-operation on HSO.1.
Both commands will remain in the CAM until
TIMER 1 = 1234.

3.7.4. High Speed 1/0 Interrupts
The HSO unit can generate two types of interrupts. The
HSOexecution interrupt (vector;= (2006H)) is generated
(if enabled) for HSO commands which operate on one of
the six HSO pins. The other HSO interrupt is the Software
Timer, interrupt (vector = (200AH)) which is generated
(if enabled) for any other HSO command (e.g. triggering
the AID, resetting Timer2 or generating. a software time
delay).

There are also two interrupts associated with the HSI unit.
The HSI data available interrupt (vector = (2004H)) is
generated if there is data in the HSI FIFO tha,t the program
should read. The other HSI related interrupt is the HSI.O
interrupt which occurs whenever High Speed Input pin 0
makes a zero-to-one transition. This intetplpt will become
pending in the INT _ PENDING register even if the HSI
unit is ,programmed to ignore changes on HSI.O or look
for a one-to-zero transition.

3.7.5. Accessing Register Mapped 1/0
The on-board 1/0 devices such as the serial port or the
AID converter are controlled as register mapped 110. This
allows convenient and efficient 110 processing. The im-

3-15

a). nMERO, TIMERl and HSI _ TIME are word
read only. They cannot be read as bytes or written to
in any format.

b). HSO _ TIME is word write only. It cannot be
written to as individual bytes or read, in any format.

c). RO (the ZERO register) is byte or word read or
write but writing to it will not change its value.

d). All of the other 1/0 registers can be accessed only
as bytes. This applies even to the AD _ RESULT
which is logically a word operand.

MCS®-96 SOFTWARE DESIGN INFORMATION

3.8. EXAMPLE-1 PROGRAMMING THE
SERIAL I/O CHANNEL

MCS-96 MACRO ASSEMBLER SERIAL PORT DEMO PROGRAM

SERIES-III MCS-96 MACRO ASSEMBLER, Vl.O

SOURCE FILE: :Fl:SPX.SRC
OBJECT FILE: :Fl:SPX.OBJ
CONTROLS SPECIFIED IN INVOCATION COMMAND: NOSB DEBUG

ERR LOC OBJECT

OOOE
0011
0011
0016
0015
0007
0009
0018

0000

0000
0001
0002
0003

0000

0000 A1B00018

0004 B12016

0027

0080
0026

0007 B1260E
OOOA B1800E

0000 B14911

'DOlO C40007
0013 B12001

0016 3609FD
0019 7.lBF09

00lC 901101

OOlF
OOlF 360109
0022 C40007
0025 7lBFOl
0028 BlFF03

002B
002B 30030C
002E 350109
0031 B00007
0034 71DFOl
0037 Bl0003

003A
003A 27DA

003C

ASSEMBLY COMPLETED,

LINE
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42'
43
44
45
46
47
48
49

R 50
R 51

52
53
54
55

R 56
57
58
59
60

R 61
R 62
R 63
R 64

65
66

R 67
R 68
R 69
R 70
R 71

72
73
74
75
76

SOURCE STATEMENT
$TITLE (' SERIAL PORT DEMO PROGRAM')
$PAGELENGTH (95)

This program initializes the serial port and echos any
cha"racter sent to it.

BAUD REG
SPCON
SPSTAT
IOCl
lOCO
SBUF
INT PENDING
SP -

[seg,

equ
equ
equ
equ
equ
equ
equ
equ

OEH
llH
111!
16H
15H
07H
09H
18H

CHR: dsb
TEMPO: dsb
TEMP1: dsb
ReV_FLAG:

1
1
1
dsb

cseg

LD

LOB

baud_val

BAUD HIGH
BAUD:::LOW

LOB
LOB

LOB

STB
LOB

wait: JBC
ANDB

ORB

get byte:
- JBC

STB
ANDB
LOB

put byte:
- JBC

JBC
LOB
ANDB
LOB

continue:
BR

END

SP, 40BOH

IOC1, '00100000B , Set P2.0 to TXO

: Baud rate
: baud_val

input frequency / (64*baud val)
(input frequency/64) / baud rate

equ 39 , 2400 baud at 6.0 MHz

equ
equ

((baud val-l) /256) OR SOH ',Set MSB to 1
(baud_val-1) MOD 256

BAUD REG, tBAUD LOW
BAUD:::REG, 'BAUO:::HIGH

SPCON, fQ1001001B Enable receiver, Mode 1.

The serial port is now initialized

SBUF, eRR
TEMPO, 100100000B

Clear serial Port
Set TI-temp

INT PENDING, 6, wait Wait for pending bit to be set
INT:::PENOING, 110111111B Clear pending bit

TEMPO, SPCON

TEMPO, 6, put byte
S8UF, eRR -
TEMPO, flOlll111B
RCVJLAG, fOFFH

RCV FLAG, 0, continue
TEMPO,S, continue
SBUF, CHR
TEMPO, fll0ll111B
RCVJLAG, fOO

wait

Put SPCON into temp register
This is necessary becase reading
SPCON clears '1'1· and RI

If. RI-temp is not set
Store byte
CLR RI-temp
Set bit-received flag

If receive flag is cleared
If TI was not set
Send byte
CLR '1'1 -temp '.
Clear bit-received flag

NO ERROR (S) FOUND.

3-16

MCS®-96 SOFTWARE DESIGN INFORMATION

. 3.9. EXAMPLE-2 GENERATING A PWM
WITH THE HSO UNIT

MCS-96 MACRO ASSEMBLER HSO EXAMPLE PROGRAM FOR PWM OUTPUTS

SERIES-III MCS-96 MACRO ASSEMBLER, Vl.O

SOURCE FILE: :Fl:HS02X.SRC
OBJECT FILE: :Fl;HS02X.OBJ
CONTROLS SPECIFIED IN INVOCATION COMMAND: Nosa DEBUG

ERR LOC OBJECT

0000

0000

0000

0000
0001

0000

0000 3EOOFD
0003 FD
0004 FD
0005 C701000000

OOOA
OODA 510FOO01
OODE 980100
0011 DFEO
0013 940100

0016
0016 300017
0019 38010B

001C
DOle B13000

.001F 470100000000
0025 2009

0027
0027 B11000
n02A 470100000000

0030
0030 310017
0033 39010B

0036
0036 B13100
0039 470100000000
003F 2009

OOH
0041 B11100
0044 470100000000

E

E

E
R

R

R
R

E
E

E
E

R
R

E
E

LINE
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34.
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

SOURCE STATEMENT
$TITLE ('USO EXAMPLE PROGRAM FOR PWM OUTPUTS')
$PAGELENGTH (95)

This program will provide 4 PWM outputs on lisa pins 0-3
The input parameters passed to the program are:

HSO ON N HSO on time for pin N
HSO:=OFF_N HSO off time for pin N

Where; Times are in timerl cycles
N takes values from 0 to 3

iii:;;;;;;;;;;;;;;;;;;;;;;;;;:;;;;;;;;;;;;;;;;;;;;;;;; iii;;;

dseg

D STAT: DSB
eX-trn HSO ON 0 :word
extrn HSO-ON-l :word
extrn HSO-ON-2 :word
extrn HSO-ON-3 :word
extrn HSO-TIME :word
extrn TIMERI :word
extrn SP :word

rseg

'public OLD STAT
OLD STAT: - dsb
NEW=:STAT: dsb

cseg

PUBLIC wait

wait: JBS IOSO, 6, wait
Nap
Nap
STB

1
HSO OFF 0 :word -HSO -OFF 1 :word
HSO-OFF-2 :word
HSO-OFF-3 :word
HSO-COMMAND :byte
1050 : byte

Loop until HSO ho1dil,lg register
is empty

Load byte to external RAM

For opperation with interrupts 'store stat:' would be the

store stat:
- ANOB

CMPB
JE
XORB

set on 0:
- - LDB

ADD
BR

set_off_Z~B

ADD

check_l:
JBC
JBS

se t _on _1 ~DB

ADD
BR

set off 1:
- -LOB

ADD

$EJECT

entry point of the routine. -
Note that a or or PUSHF might have to be added.

NEW STAT, IOSO, t OFH
OLO:=STAT,' NEW STAT
wait
OLD_STAT, NEW_STAT

HSO COMMAND, #001100008
HSO-TIME, TIMERl, HSO~OFF_O
check 1

HSO COMMAND, ,000100008
HSO:TIME, TIMERl, HSO_ON_O

OLD STAT, I, check 2
NEW:=STAT, 1', set_off_1

HSO COMMAND, #'00110001B
HSO-TIME, TIMERl, HSO_OFF 1
check 2

HSO CCMMANO, #000100018
HSO:TIME, TIMERl, HSO_ON._

3-17

Store new status of USO

If status hasn't changed

/
Set HSO for timerl, set pin 0
Time to se t pin = Timerl value

+ Time for pin to be low

Set HSO for timerl, clear pin 0
Time to clear pin = Timer1 value

+ Time for pin to be high

Set HSO for timerl, set pin 1
Time to set pin = Timerl value

+ Time for pin to be low

Set HSO for timerl, clear pin 1
Time to clear pin = Timerl value

+ Time for pin to be high I

MCS®-96 SOFTWARE DESIGN INFORMATION

MCS-96 MACRO ASSEMBLER ,HSO EXAMPLE PROGRAM FOR PWM OUTPUTS

ERR LOC OBJECT

004A
004A 320017
0040 3ADICe

0050
0050 B13200
0053 470100000000
0059 2009

0058
0058 811200
005E 470100000000

0064
0064 330017
0067 380108

006A
a06A B13300
0060 470100000000
0073 2009

0075
0075 B11300
0078 470100000000

007E
007E B00100

0081 FO

0082

R
R

E
E

E
E

R
R

E
E

E
E

R

LINE
85
86
87 '
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122

SOURCE STATEMENT

check 2:
- JBC

JBS

set_on_2~DB

ADD
BR

set off 2:
- -LOB

ADD

check 3:
- J·se

JS-S

set_on_3:
LOB
ADD
8R

set_off 3:
-LOB

ADD

check done:
- LOB

RET

END

OLD STAT, 2, check '3
NEW=:STAT, 2, set_oIf_

HSO COMMAND, :1001100108
HSO-TIME, TIMER!, HSO_OFF_2
cheCk_3

HSO COMMAND, t000100108
HSO:TIME, TIMERl, HSO_DN_2

OLD STAT, 3, check done'
NEW:STAT, 3, set_orf 3

HSO COMMAND, 4001100118
USO-TIME, TIMERl, USO OFF 3
check_done - -

USO COMMAND, 1000100118
HSO:TIME, TIMERl, HSO_ON_3

ASSEMBLY COMPLETED, NO ERROR (5 l FOUND.

3-18

Set HSO for timerl, set pin 2
Time to set pin"" Timerl value

+ Time for pin to be low

Set HSO for timerl, clear pin 2
Time to clear pin = Timerl value

+ Time for pin to be high

Set HSO for timerl, set pin 3
Time to set pin'" Timerl value

+ Time for pin to be low

Set HSO ,for timerl, clear pin 3
Time to clear pin = Timerl value

+ Time for pin to be high

Store current status ·and
wait for interrupt flag

MCS@-96 SOFTWARE DESIGN INFORMATION

3.10. EXAMPLE-3 MEASURING PULSES
WITH THE HSI UNIT

MCS-96 MACRO ASSEMBLER MEASURING PULSES USING THE HSI UNIT

SERIES-III MCS-96 MACRO ASSEMBLER, Vl.O

SOURCE FILE: :F!:PULSEX.SRC
OBJECT FILE: :Fl: PULSEX.OBJ
CONTROLS SPECIFIED IN INVOCATION COMHAND: NOSE DEBUG

ERR LOC OBJECT LINE SOURCE STATEMENT
1 $TITLE ('MEASURING PULSE S
2 $PAGELENGTH (95)
3

USING THE ESI UNIT')

4 This program measures pulsewid ths in TIMERl cycles

0018
0003
0006
0004
DODA
0015
0016

0000

0000
0002
0004
0006
0008

OOOA
OOOA
OOOB

oooe
oooe
OOOD

0000

0000 AleOOOlB
0004 BI0115
0007 BI0F03

OOOA 44020004

OOOE 3716F9

5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

R 41
42
43
44

and retuns the values in exte rnal RAM.

SP equ 18H
HSI MonE equ 03H
HSI STATUS equ 06H
HSr-TIME equ 04H
TIMERl equ OAH
lOCO equ 15H
IOS1 equ 16H

rseg

HIGH TIHE: dsw
LOW TIME: dsw
PERIOD: dsw
HI EDGE: dsw
LO=EDGE: dsw

AX: dsw 1
AL equ AX :byte
AH equ (AX+l) :byte

EX: dsw
BL equ BX :byte
BU equ (BX+l) :byte Note that 'BH' is an opcode

can't be used as a label

cseg

LD SP, # OeOH
LDB lOCO, # 000000018 ; Enable HSI 0
LDB HSI _MODE, # 00001111B ; HSI 0 look for either edge

wait: ADD PERIOD, HIGH_TIME, LOW_TIME

JBe 10SI, 7, wait ; Wait while no pulse is entered

so

0011 B0060A R 45 LDB AL, HSI _STATUS Load status; Note that reading

0014 A0040e

0017 390A09

OOlA eOOBoe
001D 4B060BOO
0021 27E7

0023 e0060e
0026 48080602
002A 27DE

002e

ASSEMBLY COMPLETED,

46
47

R 48 LD
49

R 50 JBS
51

R 52 hsi 10: ST -
R 53 SUB

54 BR
55
56

R 57 hsi hi: ST -
R 58 SUB

59 BR
60
61 END

NO ERROR (5) FOUND.

liST _TIME clears HSI STATUS

BX, HSI TIME Load the HSI TIME

AL, " hsi hi Jump if HSI.O is high

BX, LO EDGE
HIGH_TIME, La _EDGE, HI _EDGE
wait

BX, HI EDGE
LOW TIME, HI _EDGE, LO EDGE
wait

~-1C1

it

MCS@·96 SOFTWARE DESIGN INFORMATION

3.11. ! EXAMPLE-4 SCANNING THE AID
CHANNELS

MCS-96 MACRO ASSEMBLER SCANNING THE A TO D CHANNELS

SERIES-III MCS-96 MACRO ASSEMBLER, ·Vl.O

SOURCE FILE: :Fl:ATODX.SRC
OBJECT FILE: :Fl:ATODX.OBJ
CONTROLS SPECIFIED IN INVOCATION COMMAND: NOSB DEBUG

ERR LOC OBJECT LINE SOURCE STATEMENT
1 $TITLE (I SCANNING THE A TO D CHANNELS I)

0002
0003
0002
0018

0000

0000
0000
0002
0004
0006

0000

0000
0000
0001

0002
0002
0003

0004
0004
0005

0000

0000 I\lC00018
0004 1\00002

0007 910802
OOOA B00202
DODD 710702

0010 FD

0011 3B02FO

0014 B00200
0017 800301

OOlA 54020204
DOlE AC0404
0021 C304000000

0026 1702
0028 710302

0028 27DA

0020

ASSEMBLY COMPLETED,

R

R
R
R

R
R

R
R
R

R
R

NO ERROR(S)

2 $PAGELENGTH (95)
3
4 This program scans 1\ to D lines 0 through 3 and stores the
5 results in RESULT N
6
7 AD RESULT LO equ 02
8 AD-RESULT-HI equ 03
9 AD-COMMAND equ 02

10 SP equ 18H
11
12
13 dseg
14
15 RESULT TABLE:
16 RESULT 1, dsw -17 RESULT 2, dsw -18 RESULT 3, dsw -19 RESULT 4, dsw -20
21 rseg
22
23 AX: dsw
24 I\L equ hX :byte
25 I\H. equ (I\X+1) :byte
26
27 BX: dsw
28 BL equ BX :byte
29 BU equ (BX+l) :byte Note that 'BH' is an opcode
30 can I t be used as a label
31
32
33 ox: dsw
34 OL equ DX :byte
35 OH equ (DX+1) :byte
36
37
38 cseg
39
40
41 start: LD SP, *OCOH Set Stack Pointer
42 LD BX, OOH Use the zero reg ister
43
44 next: ORB BL, HOOOB Start conversion on channel
45 LOB AD COMMAND, BL indicated by BL register
46 ANOB BL-; *0111B
47
48 NOP , Wait for conversion to start
49
50 check: J8S AD _RESULT_LO, 3,
51

check , Wait while A to D is busy

52 LOB AL, AD RESULT LO Load low order result
53 LDB AH, AD-RESULT-HI Load high order result
54
55 ADDB DL, BL, BL DL=BL*2
56 LDBZE OX, OL
57 ST hX, RESULT_TABLE [DX] Store result indexed by BL*2
58
59 INCB BL
60 ANDB BL, *03H
61
62 BR next
63
64 ENO

FOUND.

3-20

so it

MCS "-96 SOFTWARE DESIGN INFORMATION

3.12. EXAMPLE-5 TABLE LOOKUP-AND
INTERPOLATION

MC5-96 MACRO ASSEMBLER TABLE LOOKUP AND INTERPOLATION

SERIES-III MCS-96 MACRO ASSEMBLER, Vl.Q

SOURCE FILE: :Fl: INTERX.SRC
OBJECT FILE: :Fl: INTERX.OBJ
CONTROLS SPECIFIED IN INVOCATION COMMA.'W: NOSE DEBUG

ERR LOC OBJECT

0018

0000

0000
0000

0000

0000
0000
0001

0002
0002
0003

0004
0006
0008
OOOA

DODA
OOOC
OOOE
0010

0000

0000 AIC00018

0004 B00400
0007 180300
OOOA 7lFEOO
DODD ACOOOO

0010 A300420006

0015 A300440008

OOLA 4806080C

DOLE 510F040A
0022 BCDAOA

0025 FE4COCOAI0
002A FE8DI00010

002F 4406100E

0033 08040E

LINE
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

R 56
R 57
R 58
R 59

60
61
62
63
64

R 65
66
67
68
69

R 70
71

R 72
R 73

74
R 75
R 76

77
R 78

79
80

R 81

SOURCE STATDH,1'l'T
$TITLE (' TABLE LOOKUP AND INTERPOLATION ')
$PAGELENGTH (95)

SP

dseg

RESULT

rseg

cseg

start:

look:

labl:

This program uses a lookup table to generate 12-bit function values
uGing 8-bit input values. The table is 16 bytes long and 16 bits · ide.
A linear interpolation is m.3de using the following fomula:

Tl\BLE_HIGH - TABLE_LOW OUT - TABLE_LOW

16 IN_DIF

TAB DIF OUT_DIF

Cross Multiplication is used to solve for OUT_DIF

equ

TABLE:
HESULT:

AX:
AL
All

BX:
BL
BU

IN VAL:

ISH

dsw
equ
equ

dsw
equ
equ

dsw

AX :byte
(AX+l) :byte

BX :byte
(BX+l) :byte Note that I BH' is an opcode so it

can't be used as a label

TABLE LOW:
dsb
dsw
dsw
dsw
equ
dsw
dsw
dsl

1
1
1
1

TABLE-HIGH:
IN nIP:
IN-DIFB
TAB DIF:
OUT:
OUT DIF:

LD

LOB
SHRB
ANDB
LDBZE

LD

LD

SUB

ANDB
LDBSE

MUL
DIV

ADD

SfiR

SP, tOCOH

AL, IN VAL
AL, 13-
AL, i 111111108
AX, AL

IN DIF :byte
1 -
1
1

Set Stack Pointer

place 2 times the upper nibble in byte
Insure AL is a word address

TABLE_LOW, TABLE [AX} TABLE LOW is table output value
of IN-VAL rounded down to the
nearest multiple of 10H.

TABLE_HIGH, (TABLE+2) [AXI : TADLE HIGH is the table output
i value of IN VAL rounded up to the
; nearest multiple of 10H.

TAB_DIF, TABLE_H~GH, TABLE_LOW

IN DIFB, IN VAL, tOFH
IN=DIF, IN J5IFB

OUT DIF, IN DIF, TAB DIF
OUT:::nIF, t l'b

OUT, OUT_OIF, TABLE_LOW

OUT, 14

3-21

Make input difference into a word

Add output. difference to output
generated with truncated IN_VAL
as input
Round to l2-bit answer

MCS- 9 6 MACRO ASSEMBLER

ERR LOC OBJECT
0036 0307
0038 070E
003A C30100000E

003F 27C3

0041

0042 000000200034004C
004A 005D006A00720078
0052 007B 0070007 60060
005A 0050004800340022
0062 0010

0064

ASSEMBLY CCMPLETED, NO

MCS@-96 SOFTWARE DESIGN INFORMATION

TABLE LOOKUP AND

LINE
82

R 83
R 84

85
86 lab2:
87
88
89 cseg
90
91 table:
92
93
94
95
96
97

ERROR (5) FOUND.

INTERPOLATION

SOURCE STATEMENT
JNC lab2
INC OUT
ST OUT, RESULT

BR look

DCW OOOOH, 20DOH,
DCW 500GB, 6AODH,
new 7BOOH, 7000H,
new 5DOOH, 4BQOH r

DCW 1000B

END

3-22

3400H, 4COOH
7 20DH, 7800H
7 600H, 600CH
3400H, 2200H

10/11/83

Round up if Carry

A random non-mon'otonic
function

MCS®-96 SOFTWARE DESIGN INFORMATION

3.13. DETAILED INSTRUCTION SET
DESCRIPTION

This section gives a description of each instruction rec­
ognized by the 8096 sorted alphabetically by the mne­
monic used in the assembly language for the 8096. Note
that the effect on the program counter (PC) is not always
shown in the instruction descriptions. All instructions in­
crement the PC by the number of bytes in the instruction.
Several acronynms are used in the instruction set descrip­
tions which are defined here:

aa. A two bit field within an opcode which selects the
basic addressing mode user. This field is only present in
those opcodes which allow address mode options. The
encoding of the field is as follows:

aa Addressing mode

00 Register direct

01 Immediate

10 Indirect

11 Indexed

The selection between indirect and indirect with auto-in­
crement or betwt;en short and long indexing is done based
on the least significant bit of the instruction byte which
follows the opcode. This type selects the 16-bit register
which is to take part in the address calculation. Since the
8096 requires that words be aligned on even byte bound­
aries this bit would be .otherwise unused.

breg. A byte register in the internal register file. When
confusion could exist as to whether this field refers to a
source or a destination register it will be prefixed with an
"S" or a "D."

baop. A byte operand which is addressed by any of the
address mooes discussed in section 3.2.

bitno. A three bit field within an instruction op-code which
selects one of the eight bits in a byte.

wreg. A word register in the internal register file. When
confusion could exist as to whether this field refers to a
source register or a destination register it will be prefixed
with an "S" or a "D."

waop. A word operand which is addressed by any of the
address modes discussed in section 3.2.

Ireg. A 32-bit register in the internal register file.

BEA. Extra bytes of code required for the address mode
selected.

CEA. Extra state times (cycles) required for the address
mode selected.

cadd An address in the program code.

Flag Settings. The modification to the flag setting is
shown for each instruction. A checkmark (j) means that
the flag is set or cleared as appropriate. A hyphen means
that the flag is not modified. A one or zero (1) or (0)
indicates that the flag will be in that state after the instruc­
tion. An up arrow (t) indicates that the instruction may
set the flag if it is appropriate but will not clear the flag.
A down arrow (t) indicates that the flag can be cleared
but not set by the instruction.

Generic Jumps and Calls. The assembler for the 8096
provides for generic jumps and calls. For all of the con­
ditional jump instructions a "B" can be substituted for
the" J" and the assembler will generate a code sequence
which is logically equivalent but can reach anywhere in
the memory. A JH can only jump about 128 locations
from the current program counter; a BH can jump any­
where in memory. In a like manner a BR will cause a
SJMP or LJMP to be generated as appropriate and a CALL
will cause a SCALL or LCALL to be generated. The
assembler user guide (see section 3.0) should be consulted
for the algorithms used by the assembler to convert these
generic instructions into actual machine instructions.

3-23

MCS®-96 SOFTWARE DESIGN INFORMATION

3.13.1. ADD (Two Operands) - ADD WORDS

Operation: The sum of the two word operands is stored into the destination
(leftmost) operand.

(DEST) ~ (DEST) + (SRC)

Assembly Language Format: DST SRC
ADD . wreg, waop

Object Code Format: [011001 aa 1 [waop 1 [wreg 1

Bytes: 2 + BEA
States: 4 + CEA

3.13.2. ADD (Three Operands) - ADD WORDS

Operation: The sum of the second and third word operands is stored into the
destination (leftmost) operand.

(DEST) ~ (SRC1) + (SRC2)

Assembly Language Format: DST SRC1 SRC2
ADD Dwreg, Swreg; waop

Object Code Format: [010001 aa 1 [waop 1 [Swreg 1 [Dwreg 1

Bytes: 3 +BEA
States: 5 + CEA

z ST

j

3-24

MCS®·96 SOFTWARE DESIGN INFORMATION

3.13.3. ADDB (Two Operands) - ADD BYTES

Operation: The sum of the two byte operands is stored into the destination
(leftmost) operand.

(DEST) ~ (DEST) + (SRC)

Assembly Language Format: DST SRC
ADDB breg, boap

Object Code Format: [011101 aa 1 [baop 1 [breg 1

Bytes: 2 + BEA
States: 4+CEA

z ST
j

3.13.4. ADDB (Three Operands) - ADD BYTES

Operation: The sum of the second and third byte operands is stored into the
destination (leftmost) operand.

(DEST) ~ (SRC1) + (SRC2)

Assembly Language Format: DST SRC1 SRC2
ADDB Dbreg, Sbreg, baop

Object Code Format: [010101 aa 1 [baop 1 [Sbreg 1 [Dbreg 1

Bytes: . 3 + BEA
States: 5+CEA

z
j

3-25

ST

MCS®-96 SOFTWARE DESIGN INFORMATION

3.13.5. ADDC -.ADD WORDS WITH CARRY

Operation: The sum of the two word operands and the carry flag (0 or 1) is
stored into the destination (leftmost) operand.

(DEST) ~ (DEST) + (SRC) + C

Assembly Language Format: DST SRC
AD DC wreg, waop

Object Code Format: [101001 aa 1 [waop 1 [wreg 1

Bytes: 2 + BEA
States: 4 + BEA

3.13.6. ADDCB - ADD BYTES WITH CARRY

Operation: The sum of the two byte operands and the carry flag (0 or 1) is
stored into the destination (leftmost) operand.

(D~ST) ~ (DEST) + (SRC) + C

. Assembly Language Format: DST SRC
ADDCB breg, baop

Object Code Format: [101101 aa 1 [baop 1 [breg 1

Bytes: 2 + BEA
States: 4 + CEA

ST

3·26

MCS®-96 SOFTWARE DESIGN INFORMATION

3.13.7. AND (Two Operands) - LOGICAL AND WORDS

Operation: The two word operands are ANDed, the result having a 1 only in
those bit positions where both operands had a 1, with zeroes in
all other bit positions. The result is stored into the destination
(leftmost) operand.

(DEST) ~ (DEST) AND (SRC)

Assembly Language Format: DST SRC
AND wreg, waop

Object Code Format: [011000aa 1 [waop] [wreg 1

Bytes: 2 + BEA
States: 4 + CEA

3.13.8. AND (Three Operands) - LOGICAL AND WORDS

Operation: The second and third word operands are ANDed, the result having
a 1 only in those bit positions where both operands had a 1, with
zeroes in all other bit positions. The result is stored into the des­
tination (leftmost) operand.

(DEST) ~ (SRC1) AND (SRC2)

Assembly Language Format: DST SRC1 SRC2
AND Dwreg, Swreg, waop

Object Code Format: [010000aa 1 [waop j' [Swreg 1 [Dwreg 1·

Bytes: 3 + BEA
States: 5+CEA

~Flags Affected~

HI~I~I~~

3-27

f .
MCS®-96 SOFTWARE DESIGN INFORMATION

3.13.9. ANDB (Two Operands) - LOGICAL AND BYTES

Operation: The two byte operands are ANDed, the result having a 1 only in
those bit positions where both operands had a 1, with zeroes in
all other bit positions. The res41t is stored into the destination
(leftmost) operand.

Assembly Language Format:

(DEST) ~ (DEST) AND (SRC)

ANDB
DST
breg,

SRC
baop

Object Code Format: [01.1100aa 1 [baop 1 [breg 1

Bytes: 2+BEA
States: 4"1- CEA

3.13.10. ANDB (Three Operands) - LOGICAL AND BYTES

Operation: The second and third word operands are ANDed, the result having
a 1 only in those bit positions where both operands had a 1, with
zeroes in all other bit positions. The result is stored into the des­
tination (leftmost) operand.

Assembly Language Format:

(DEST) ~ (SRC1) AND (SRC2)

DST SRC1
Af.JDB Dbreg, Sbreg,

SRC2
baop

Object Code Format: [0101 OOaa 1 [baop 1 [Sbreg 1 r Dbreg 1

Bytes: 3+BEA
States: 5 + CEA

3-28

MCS®·96 SOFTWARE DESIGN INFORMATION

3.13.11. BR (Indirect) - BRANCH INDIRECT

Operation: The execution continues at the address specified in the operand
word register.

PC ~ (DEST)

Assembly Language Format: BR [wreg]

Object Code Format: [11100011] [wreg]

Bytes: 2
States: 8

3.13.12. CLR - <;LEAR WORD

Operation: The value of the word operand is set to zero.

(DEST) ~O

~ssembly Language Format: CLR wreg

Object Cc;»de Format: [00000001] [wreg]

Bytes: 2
States: 4

3·29

MCS®-96 SOFTWARE DESIGN INFORMATION

3.13.13.' CLRB - CLEAR BYTE

Operation: The value of the byte operand.is set to zero.

(DEST) -0

Assembly Language Format: CLRB brag

Object Code Format: [00010001] [breg]

Bytes: 2
States: 4

3.13.14. CLRC - CLEAR CARRY FLAG

Operation: The value of the carry flag is set to zero.

C-O

Assembly Language Format: CLRC .

Object Code Format: [11111000

Bytes: 1
States: 4

3-30

MCS®-96 SOFTWARE DESIGN INFORMATION

3.13.15. CLRVT - CLEAR OVERFLOW TRAP

Operation: The value of the overflow-trap flag is set to zero.

VT~O

Assembly Language Format: CLRVT

Object Code Format: [11111100

Bytes: 1
States: 4

3.13.16. CMP - COMPARE WORDS

Operation: The source (rightmost) word operand is subtracted from the des­
tination (leftmost) word operand. The flags are altered but the
operands remain unaffected. The carry flag is set as complement
of borrow.

(DEST) - (SRC)

Assembly Language Format: DST SRC
CMP wreg, waop

Object Code Format: [10001 Oaa 1 [waop 1 [wreg 1

Bytes: 2 + BEA
States: 4 + CEA

z ST
j

MCS®-96 SOFTWARE DESIGN INFORMATION

3.13.17. CMPB - COMPARE BYTES

Operation: The source (rightmost) byte operand is subtracted from. the des­
tination (leftmost) byte operand. The flags are altered but the
operands remain unaffected. The carry flag is set as complement
of borrow.

(DEST) -:- (SRC)

Assembly Language Format: DST SRC
CMPB breg. baop

Object Code Format: [10011 Oaa 1 [baop 1 [breg 1

Bytes: 2 + BEA
States: 4 + CEA

z
j

3.13.18. DEC - DECREMENT WORD

Operation: The value of the word operand is decremented by one.

(DEST) +- (DEST) - 1

Assembly Language Format: DEC wreg

Object Code Format: [00000101 1 [wreg 1

Bytes: 2
States: 4

3-32

MCS®-96 SOFTWARE DESIGN INFORMATION

3.13.19. DECB - DECREMENT BYTE

Operation: The value of the byte operand is decremented by one.

(OEST) ~ (OEST) - 1

Assembly language Format: OECB breg

Object Code Format: [00010101 1 [breg 1

Bytes: 2
States: 4

z ST

j

3.13.20. 01- DISABLE INTERRUPTS

Operation: Interrupts are disabled. Interrupt-calls will not occur after this
instruction.

Interrupt Enable (PSW.9) ~ 0

Assembly Language Format: 01

Object Code Format: [11111010

Bytes: 1
States: 4

3-33

MCS®-96 SOFTWARE DESIGN INFORMATION

3.13.21. DIV - DIVIDE INTEGERS

Operation: This instruction divides the contents of the destination LONG­
INTEGER operand by the contents of the INTEGER word oper­
and, using signed arithmetic. The low order word of the destination
(Le., the word with the lower address) will contain the quotient;
the high order word will contain the remainder.

(low word DEST) ~ (DEST) / (SRC)
(high word DEST) ~ (DEST) MOD (SRC)
The above two statements are performed concurrently.

Assembly Language Format: DST SRC
DIV Ireg, waop

Object Code Format: [11111110 1 [100011 aa 1 [waop 1 [Ireq 1

Bytes: 2 + BEA
States: 29 + CEA

3.13.22. DiVe - DIVIDE SHORT-INTEGERS

Operation: This instruction divides the contents of the destination INTEGER
operand by the contents of the source SHORT-INTEGER oper­
and, using signed arithmetic. The low order byte of the destination.
(Le. the byte with the lower address) will contain the quotient; the
high order byte will contain the remainder.

(low byte DEST) ~ (DEST) / (SRC)
(high byte DEST) ~ (DEST) MOD (SRC)
The above two statements are performed concurrently.

Assembly Language Format: DST SRC
DIVB wreg, baop

Object Code Format: [11111110 1 [100111 aa 1 [baop H wreg 1

Bytes: 2+BEA
States: 21 + CEA

3-34

MCS®-96 SOFTWARE DESIGN INFORMATION

3.13.23. DIVU - DIVIDE WORDS

Operation: This instruction divides the contents of the destination DOUBLE­
WORD operand by the contents of the source WORD operand,
using unsigned arithmetic. The low order word will contain the
quotient; the high order byte will contain the remainder.

(low word DEST) ~ (DEST) / (SRC)
(high word DEST) ~ MOD (SRC)
The above two statements are performed concurrently.

Assembly Language Format: DST SRC
DIVU Ireg, waop

Object Code Format: [100011 aa 1 [waop 1 [Ireq 1

Bytes: 2 + BEA
States: 25 + CEA

3.13.24. DIVUB - DIVIDE BYTES

Operation: This instruction divides the contents of the destination WORD
operand by the contents of the source BYTE operand, using un­
signed arithmetic. The low order byte of the destination (Le., the
byte with the lower address) will contain the quotient; the high
order byte will contain the remainder.

(low byte DEST) ~ (DEST) / (SRC)
(high byte DEST) ~ (DEST) MOD (SRC)
The above two statements are performed concurrently.

Assembly Language Format: DST SRC
DIVUB wreg, baop

Object Code Format: [100111 aa 1 [baop 1 [wreg 1

Bytes: 2 + BEA
States: 17 + CEA

3-35

MCS®-96 SOFTWARE DESIGN INFORMATION

3.13.25. DJNZ - DECREMENT AND JUMP IF NOT ZERO

Operation: The value of the byte operand is decremented by 1. If .the result
is not equal to 0, the distance from the end of this instruction to
the target label is added to the program counter, effecting the
jump. The offset from the end of this instruction to the target label
must be in the range of -128 to + 127. If the result of the dec­
rement .is zero then control passes to the next sequential
instruction.

(COUNT) ~ (COUNT) - 1
if (COUNT) < > a then

PC ~ PC + disp (sign-extended to 16 bits)
end_if

Assembly Language Format: DJNZ breg,cadd

Object Code Format: [11100000 1 [breg 1 [disp 1

Bytes: 3
States: Jump Not Taken: 5

Jump Taken: 9

3.13.26. EI- ENABLE INTERRUPTS

Operation: Interrupts are enabled following the execution of the next state­
ment. Interrupt-calls cannot occur immediately following this
instruction .

. Interrupt Enable (PSW.9) ~ 1

Assembly Language Format: EI

Object Code Format: [11111011

Bytes: 1
States: 4

3-36

MCS®-96 SOFTWARE DESIGN INFORMATION

3.13.27. EXT - SIGN EXTEND INTEGER INTO LONG-INTEGER

Operation: The low order word of the operand is sign-extended throughout
the high order word of the operand.

if (low word DEST)<8000H then
(high word DEST) ~ 0

else
(high word DEST) ~ OFFFFH

end_if

Assembly Language Format: EXT Ireg

Object Code Format: [00000110 1 [Ireg 1

Bytes: 2
States: 4

3.13.28. EXTB - SIGN EXTEND SHORT-INTEGER INTO INTEGER

Operation: The low order byte of the operand is sign-extended throughout
the high order byte of the operand.

if (low byte DEST)<80H then
(high byte DEST) ~ 0

else
(high byte DEST) ~ OFFH

end_if

Assel'!lbly Language Format: EXTB wreg

Object Code Format: [00010110 1 [wreg 1

Bytes: 2
States: 4

3-37

MCS®-96 SOFTWARE DESIGN INFORMATION

3.13.29. INC --- INCREMENT WORD

Operation: The value of the word operand is incremented by 1.

(DEST) +- (DEST) + 1

Assembly Language Format: INC wreg

Object Code Format: [00000111 I [wreg I

Bytes: 2
States: 4

3.13.30. INCB - INCREMENT BYTE

Operation: The value of the byte operand is incremented by 1.

(DEST) +- (DEST) + 1

Assembly Language Format: (NCB breg

Object Code Format: [00010111 I [breg I

Bytes: 2
States: 4

3-38

MCS®-96 SOFTWARE DESIGN INFORMATION

3.13.31. JBC - JUMP IF BIT CLEAR

Operation: The specified bit is tested. If it is clear (Le., 0), the distance from
the end of this instruction to the target label is added to the pro­
gram counter, effecting the jump. The offset from the end of this
instruction to the target label must be in the range of - 128 to
+ 127. If the bit is set (i.e., 1), control passes to the next sequential
instruction.

if (specified bit) = 0 then
PC ~ PC + disp (sign-extended to 16 bits)

Assembly Language Format: JBC breg,bitno,cadd

Object Code Format: [00110bbb 1 [breg 1 [disp 1

where bbb is the bit number within the specified register.

Bytes: 3
States: Jump Not Taken: 5

Jump Taken: 9

3-39

MCS®-96 SOFTWARE DESIGN INFORMATION

3.13.32. JBS - JUMP IF BIT SET

Operation: The specified bit is tested. If it is set (Le., 1), the distance from
the end of this instruction to the target label is added to the pro­
gram counter, effecting the jump. The offset from the end of this
instruction to the target label must be in the range of -128 to
+ 127. If the bit is clear (Le., 0), control passes to the next se­
quential instruction.

if (specified bit) = 1 then
PC ~ PC + disp (sign-extended to 16 bits)

. Assembly Language Format: JBS breg,bitno,cadd

Object Code Format: [00111 bbb 1 [breg 1 [disp 1

where bbb is the bit number within the specified register.

Bytes: 3
States: Jump Not Taken: 5

Jump Taken: 9

3.13.33. JC - JUMP IF CARRY FLAG IS SET

Operation: If the carry flag is set (Le., 1), the distance from the end of this
instruction to the target label is added to the program counter,
effecting the jump. The offset from the end of this instruction to
the target label must be in the range of - 128 to + 127. If the
carry flag is clear (Le., 0), control passes to the next sequential
instruction.

if C = 1 then
PC ~ PC + disp (sign-extended to 16 bits)

Assembly Language Format: JC cadd

Object Code Format: [11011011 1 [disp 1

Bytes: 2
States: Jump Not Taken: 4

Jump Taken: 8

3-40

MCS®-96 SOFTWARE DESIGN INFORMATION

3.13.34. JE - JUMP IF EQUAL

Operation: If the zero flag is set (i.e., 1), the distance from the end of this
instruction to the target label is added to the program counter,
effecting the jump. The offset from the end of this instruction to
the target label must be in the range of -128 to + 127. If the zero
flag is clear (i.e., 0), control passes to the next sequential
instruction.

if Z = 1 then
PC ~ PC + disp (sign-extended to 16 bits)

Assembly Language Format: JE cadd

Object Code Format: [11011111 1 [disp 1

Bytes: 2
States: Jump Not Taken: 4

Jump Taken: 8

3.13.35. JGE - JUMP IF SIGNED GREATER THAN OR EQUAL

Operation: If the negative flag is clear (i.e., 0), the distance from the end of
this instruction to the target label is added to the program counter,
effecting the jump. The offset from the end of this instruction to
the target label must be in the range of -128 to + 127. If the
negative flag is set (i.e., 1), control passes to the next sequential
instruction.

if N = 0 then
PC~ PC + disp (sign-extended to 16 bits)

Assembly Language Format: JGE cadd

Object Code Format: [11010110 1 [disp 1

Bytes: 2
States: Jump Not Taken: 4

Jump Taken: 8

3-41

MCStE-96 SOFTWARE DESIGN INFORMATION

3.13.36. JGT - JUMP IF SIGNED GREATER THAN

Operation: If both the negative flag and the zero flag are clear (Le., 0), the
distance from the end of this instruction to the target label is added
to the program counter, effecting the jump. The offset from the
end of this instruction to the target label must be in the range of
- 128 to + 127. If either the negative flag or the zero flag are set
(Le., 1,) control passes to the next sequential instruction.

if N = 0 AND Z = 0 then
PC <--- PC + disp (sign-extended to 16 bits)

Assembly Language Format: JGT cadd

Object Code Format: [11010010 1 [disp 1

Bytes: 2
States: Jump Not Taken: 4

Jump Taken: 8

3.13.37. JH - JUMP IF HIGHER (UNSIGNED)

Operation: If the carry flag is set (Le., 1), but the zero flag is not, the distance
from the end of this instruction to the target label is added to the
program counter, effecting the jump. The offset from the end of
this instruction to the target label must be in the range of -128
to + 127. If either the carry flag is clear or the zero flag is set,
control passes to the next sequential instruction.

if C = 1 and Z = 0 then
PC <--- PC + disp (sign-extended to 16 bits)

Assembly Language Format: JH cadd

Object Code Format: [11011001 1 [disp 1

Bytes: 2
States: Jump Not Taken: 4

Jump Taken: 8

3-42

MCS@·96 SOFTWARE DESIGN INFORMATION

3.13.38. JLE - JUMP IF SIGNED LESS THAN OR EQUAL

Operation: If either the negative flag or the zero flag are set (i.e., 1), the
distance from the end of this instruction to the target label is added
to the program counter, effecting the jump. The offset from the
end of this instruction to the target label must be in the range of
-128 to + 127. If both the negative flag and the zero .flag are
clear (i.e, 0), control passes to the next sequential instruction.

if N = 1 OR Z = 1 then
PC ~ PC + disp (sign-extended to 16 bits)

Assembly Language Format: JLE cadd

Object Code Format: [11011010 1 [disp 1

Bytes: 2
States: Jump Not Taken: 4

Jump Taken: 8

3.13.39. JLT - JUMP IF SIGNED LESS THAN

Operation: If the negative flag is set (Le., 1), the distance from the end of
this instruction to the target label is added to the program counter,
effecting the jump. The offset from the end of this instruction to
the target label must be in the range of -128 to + 127. If the
negative flag is clear (Le., 0), control passes to the next sequential
instruction.

if N = 1 then
PC ~ PC + disp (sign-extended to 16 bits)

Assembly Language Format: JL T cadd

Object Code Format: [11011110 1 [disp 1

. Bytes: 2
States: Jump Not Taken: 4

Jump Taken: 8

3-43

MCS®-96 SOFTWARE DESIGN INFORMATION

3.13.40. JNC - JUMP IF CARRY FLAG IS CLEAR

Operation: If the carry flag is clear (i.e., 0), the distance from the end of this
instruction to the target label is added to the program counter,
effecting the jump. The offset from the end of this instruction to
the target label must be in the range of - 128 to + 127. If the
carry flag is set (i.e., 1), control passes to the next sequential
instruction.

if C = 0 then
PC - PC + disp (si~n-extended to 16 bits)

Assembly Language Format: JNC cadd

Object Code Format: [11010011] [disp]

Bytes: 2
States: Jump Not Taken: 4

Jump Taken: 8

3.13.41. JNE - JUMP IF NOT EQUAL

Operation: If the zero flag is clear (i.e., 0), the distance from the end of this
instruction to the target label is added to the program counter,
effecting the jump. The offset from the end of this instruction to
the target label must be in the range of - 128 to + 127. If the zero
flag is set (i.e., 1), control passes to the next sequential instruction.

if Z = 0 then
PC - PC + disp (sign-extended to 16 bits)

Assembly Language Format: JNE cadd

Object Code Format: [11010111] [disp]

Bytes: 2
States: Jump Not Taken: 4

Jump Taken: 8

3-44

MCS®-96 SOFTWARE DESIGN INFORMATION

3.13.42. JNH - JUMP IF NOT HIGHER (UNSIGNED)

Operation: If either the carry flag is clear (Le., 0), or the zero flag is set (Le.,
1), the distance from the end of this instruction to the target label
is added to program counter, effecting the jump. The offset from
the end of this instruction to the target label must be in the range
of - 128 to + 127. If the carry flag is set (i .e., 1), or the zero flag
is not, control passes to the next sequential instruction.

if C = 0 OR Z = 1 then
PC (- PC + disp (sign-extended to 16 bits)

Assembly Language Format: JNH cadd

Object Code Format: [11010001 1 [disp 1

Bytes: 2
States: Jump Not Taken: 4

Jump Taken: 8

3.13.43. JNST - JUMP IF STICKY BIT IS CLEAR

Operation: If the sticky bit flag is clear (Le., 0), the distance from the end of
this instruction to the target label is added to the program counter,
effecting the jump. The offset from the end of this instruction to
the target label must be in the range of -128 to + 127. If the
sticky bit flag is set (Le., 1), control passes to the next sequential
instruction.

if ST = 0 then
PC (- PC + disp (sign-extended to 16 bits)

Assembly Language Format: JNST cadd

Object Code Format: [11010000 1 [disp 1

Bytes: 2
States: Jump Not Taken: 4

Jump Taken: 8

MCS®-96 SOFTWARE DESIGN INFORMATION

3.13.44. JNV - JUMP IF OVERFLOW FLAG IS CLEAR

Operation: If the overflow flag is clear (Le., 0), the distance from the end of
thisins!ruction to the target label is added to the program counter,
effecting the jump. The offset from the end of this instruction to
the target label must be in the range of -128 to + 12,7. If the
overflow flag is set (Le., 1), control passes to next sequential
instruction.

if V = 0 then
PC ~ PC + disp (sign-extended to 16 bits)

Assembly Language Format: JNV cadd

Object Code Format: [11010101] [disp]

Bytes: 2
States: Jump Not Taken: 4

Jump Taken: 8

3.13.45. JNVT - JUMP IF OVERFLOW TRAP IS CLEAR

Operation: If the overflow trap flag is clear (Le., 0), the distance from the end
of this instruction to the target label is added to the program
counter, effecting the jump. The offset from the end of this in­
struction to the target' label must be in the range of -128 to
+ 127. If the overflow trap flag is set (Le., 1), control passes to
the next sequential instruction.

if VT = 0 then
PC ~ PC + disp (sign-extended to 16 bits)

Assembly Language Format: JNVT cadd

Object Code Format: [11010100] [disp 1

Bytes: 2
States: Jump Not Taken: 4

Jumps Taken: e

MCS®-96 SOFTWARE DESIGN INFORMATION

3.13.46. JST - JUMP IF STICKY BIT IS SET

Operation: If the sticky bit flag is set (i.e., 1), the distance from the end of
this instruction to the target label is added to the program counter,
effecting the jump. The offset from the end of this instruction to
the target label must be in the range of - 128 to + 127. If the
sticky bit flag is clear (i.e., 0), control passes to the next sequential
instruction.

if ST = 1 then
PC +- PC + disp (sign-extended to 16 bits)

Assembly Language Format: JST cadd

Object Code Format: [11011000 1 [disp 1

Bytes: 2
States: Jump Not Taken: 4

Jump Taken: 8

3.13.47. JV - JUMP IF OVERFLOW FLAG IS SET

Operation: If the overflow flag is set (i.e., 1), the distance from the end of this
instruction to the target label is added to the program counter,
effecting the jump. The offset from the end of this instruction to
the target label must be in the range of -128 to + 127. If the
overflow flag is clear (i.e., 0), control passes to the next sequential
instruction.

if V = 1 then
PC +- PC + disp (sign-extended to 16 bits)

Assembly Language Format: JV cadd

Object Code Format: [11011101 1 [. disp 1

Bytes: 2
States: Jump Not Taken: 4

Jump Taken: 8

3-47

MCS®-96 SOFTWARE DESIGN INFORMATION

3.13.48. JVT.- JUMP IF OVERFLOW TRAP IS SET

Operation: If the overflow flag is set (Le., 1), the distance from the el1d of this
instruction to the target label is added to the progra.m counter,
effecting the jump. The offset from the end of this instruction tp
the target label must be in the range of - 128 to + 127. If the
overflow trap flag is clear (i.e., 0), control passes to the next
sequential instruction.

if VT = 1 then
PC +'-- PC + disp (sign-extended to 16 bits)

Assembly Language Format: JVT cadd

Object Code Format: [11011100· 1 [disp 1

Bytes: 2
States: Jump Not Taken: 4

Jump Taken: e

3.13.49. LCALL - LONG CALL

Operation: The contents of the program counter (the return address) is
pushed onto the stack. Then the distance from the eno of this

. instruction to the target label is added to the program counter,
effecting the call. The operand may be any address in the entire
address space.

SP ~SP-2
(SP) ~ PC
PC ~ PC + disp

Assembly Language Format: LCALL cadd

Object Code Format: [11101111 1 [disp-Iow 1 [disp-hi 1

Bytes: 3
States: Onchip stack: 13

Onchip stack: 16

3-48

MCS®-96 SOFTWARE DESIGN INFORMATION

3.13.50. LD - LOAD WORD

Operation: The value of the source (rightmost) word operand is stored into
the destination (leftmost) operand.

(DEST) ~ (SRC)

Assembly Language Format: DST SRC
LD wreg,· waop

Object Code Format: [101 OOOaa 1 [waop 1 [wreg 1

Bytes: 2 + BEA
States: 4 + CEA

3.13.51. LDB - LOAD BYTE

Operation: The value of the source (rightmost) byte operand is stored into
the destination (leftmost) operand.

(DEST) ~ (SRC)

Assembly Language Format: DST SRC
LDB breg, baop

Object Code Format: [1011 OOaa 1 [baop' 1 [breg 1

Bytes: 2 + BEA
States: 4 + CEA

3·49

MCS®-96 SOFTWARE DESIGN INFORMATION

3.13.52. LDBSE - LOAD INTEGER WITH SHORT-INTEGER

Operation: The value of the source (rightmost) byte operand is sign-extended
and stored into the destination (leftmost) word operand.

(low byte DEST) ~ (SRC)
if (SRC) < BOH then

(high byte DEST) ~ 0
else

(high byte DEST) ~ OFFH
end_if .

Assembly Language Format: DST SRC
LDBSE wreg, baop

Object Code Format: [101111 aa 1 [baop 1 [wreg 1

Bytes: 2 + BEA
States: 4 + CEA

3.13.53. LDBZE - LOAD WORD WITH BYTE

Operation: The value of the source (rightmost) byte operand is zero"extended
and stored into the destination (leftmost) word operand.

Assembly Language Format:

(low byte DEST) ~ (SRC)
(high byte DEST) ~ 0

DST SRC
LDBZE wreg, baop

Object Code Format: [101011 aa 1 [baop 1 [wreg 1

Bytes: 2 + BEA
States: 4 + CEA '

3-50

MCS®-96 SOFTWARE DESIGN INFORMATION

3.13.54. LJMP - LONG JUMP

Operation: The distance from the end of this instruction to the target label
is added to the program counter, effecting the jump. The operand
may be any address in the entire address space.

PC ~ PC + ·disp

Assembly Language Format: LJMP cadd

Object Code Format: [11100111 1 [disp-Iow 1 [disp-hi 1

Bytes: 3
States: 8

3.13.55. MUL (Two Operands) - MULTIPLY INTEGERS

Operation: The two INTEGER operands are multiplied using signed arith­
metic and the 32-bit result is stored into the destination (leftmost)
LONG-INTEGER operand. The sticky bit flag is undefined after
the instruction is executed.

(DEST) ~ (DEST) • (SRC)

Assembly Language Format: . DST SRC
MUL Ireg, waop

Object Code Format: [11111110 1 [011011 aa 1 [waop 1 [Ireg 1

Bytes: 3 + BEA
States: 29 + CEA

3-51

MCS®-96 SOFTWARE DESIGN INFORMATION

3.13.56. MUL (Three Operands) - MULTIPLY INTEGERS

Operation: The second and third INTEGER operands are multiplied using
signed arithmetic and the 32-bit result is stored into the destination
(leftmost) INTEGER operand. The sticky bit flag is undefined after
the instruction is executed.

(DEST) - (SRC1) • (SRC2)

Assembly Language Format: DST SRC1 SRC2
MUL Ireg, wreg, waop

Object Code Format: [11111110 1 [010011 aa 1 [waop 1 [wreg 1 [Ireg 1

Bytes: 4 + BEA
States: 3b + CEA

3.13.57. MULB (Two Operands) - MULTIPLY SHORT-INTEGERS

Operation: The two SHORT-INTEGER operands are multiplied using signed
arithmetic and the 16-bit result is stored into the destination (left­
most) INTEGER operand. The sticky bit flag is undefined after the
instruction is executed.

(DEST) - (DEST) • (SRC)

Assembly Language Format: DST SRC
MULB wreg, baop

Object Code Format: [11111110 1 [011111 aa 1 [baop 1 [wreg 1

Bytes: 3 + BEA
States: 21 + CEA

3-52

MCS®-96 SOFTWARE DESIGN INFORMATION

3.13.58. MULB (Three Operands) - MULTIPLY SHORT-INTEGERS

Operation: The second and third SHORT-INTEGER operands are multiplied
using signed arithmetic and the 16-bit result is stored into the
destination (leftmost) INTEGER operand. The sticky bit flag is
undefined after the instruction is executed.

(DEST) ~ (SRC1) • (SRC2)

Assembly Language Format: DST SRC1 SRC2
MULB wreg, breg baop

Object Code Format: [11111110 1 [010111 aa 1 [baop 1 [breg 1 [wreg 1

Bytes: 4 + BEA
States: 22 + CEA

3.13.59. MULU (Two Operands) - MULTIPLY WORDS

Operation: The two WORD operands are multiplied using unsigned arithmetic
and the 32~bit result is stored into the destination (leftmost) DOU­
BLE-WORD operand. The sticky bit flag is undefined after the
instruction is executed.

(DEST) ~ (PEST) • (SRC)

Assembly Language Format: DST SRC
MULU Ireg, waop

Object Code Format: [011011 aa 1 [waop 1 [Ireg 1

Bytes: 2 + BEA
States: 25 + CEA

3-53

MCS®·96 SOFTWARE DESIGN INFORMATION

3.13.60. MULU (Three Operands) - MULTIPLY WORDS

Operation: The second and third WORD operands are multiplied using un­
signed arithmetic and the 32-bit result is stored into the destination
(leftmost) GOUBLE-WORD operand. The sticky bit flag is unde­
fined after the instruction is executed.

(DEST)< - (SRC1) * (SRC2)

Assembly Language Format: DST SRC1 SRC2
MULU Ireg, wreg, waop

Object Code Format: [010011 aa 1 [waop 1 [wreg 1 [Ireg 1

Bytes: 3 + BEA
States: 26 + CEA

3.13.61. MULUB (Two Operands) - MULTIPLY BYTES

. Operation: The two BYTE operands are multiplied using unsigned arithmetic
and the WORD result is stored into the destination (leftmost) op­
era.nd. The sticky bit flag is undefined after the instruction is
executed.

(DEST) ~ (DEST) * (SRC)

Assembly Language Format: DST SRC
MULUB wreg, baop

Object Code Format: [011111 aa 1 [baop 1 [wreg 1

Bytes: 2 + BEA
States: 17 + CEA

5RagS Affected~
rrl~I~I~

3-54

MCS®-96 SOFTWARE DESIGN INFORMATION

3.13.62. MULUB (Three Operands) - MULTIPLY BYTES

Operation: The second and third BYTE operands are multiplied using un­
signed arithmetic and the WORD result is stored into the desti­
nation (leftmost) operand. The sticky bit flag is undefined after the
instruction is executed.

(DEST) ~ (SRC1) • (SRC2)

Assembly Language Format: DST SRC1 SRC2
MULUB wreg, breg, baop

Object Code Format: [010111 aa 1 [baop 1 [breg 1 [wreg 1

Bytes: 3 + BEA
States: 18 + CEA

3.13.63. NEG - NEGATE INTEGER

Operation: The value of the INTEGER operand is negated.

(DEST) ~ - (DEST)

Assembly Language Format: NEG wreg

Object Code Format: [00000011 1 [wreg 1

Bytes: 2
States: 4

3-55

MCS®-96 SOFTWARE DESIGN INFORMATION

3.13.64. NEGB - NEGATE SHORT-INTEGER

Operation: The value of the SHORT-INTEGER operand is negated.

, (DEST) - - (DEST)

Assembly Language Format: NEGB breg

Object Code Format: [00010011 1 [, breg 1

Bytes: 2
States: 4

[ili~S AffedlB
Z ,NlclvlVTST
II II f ~

3.13.65. NOP - NO OPERATION

Operation: Nothing is done. Control passes to the tlext sequential instruction.

Assembly Language Format: NOP

Object Code Format: [11111101

Bytes: 1
States: 4

3-56

MCS®-96 SOFTWARE DESIGN INFORMATION

3.13.66. NORML - NORMALIZE LONG-INTEGER

Operation: The LONG-INTEGER operand is normalized; i.e., it is shifted to
the left until its most significant bit is 1. If the most significant bit
is stili 0 after 31 shifts, the process stops and the zero flag is set.
The number of shifts actually performed is stored in the second
operand.

(COUNT) ~O
do while (MSB(DEST) = 0) AND ((COUNT) < 31)

(DEST) ~ (DEST) • 2
(COUNT) ~ (COUNT) + 1

end_while

Assembly Language Format: NORML Ireg,breg

Object Code Format: [00001111 1 [breg 1 [Ireg 1

Bytes: 3
States: 8 + No. of shifts performed

3.13.67. NOT - COMPLEMENT WORD

Operation: The value of the WORD operand is complemented: each 1 is
replaced with a 0, and each 0 with a 1.

(DEST) ~ NOT(DEST)

Assembly Language Format: NOT wreg

Object Code Format: [00000010 1 [wreg 1

Bytes: 2
States: 4

0jF,a9S AffectediYl
Z· N I C I V I VT ST
j j 0 0 - -

3-57

MCS®-96 SOFTWARE DESIGN INFORMATION

3.13.68. NOTB - COMPLEMENT BYTE

Operation: The value of the BYTE operand is complemented: each 1 is re­
placed with a 0, and each 0 with a 1.

(DEST) ~ NOT (DEST)

Assembly Language Format: NOTB breg

Object Code Format: [00010010 1 [breg 1

Bytes: 2
States: 4

3.13.69. OR - LOGICAL OR WORDS

Operation: The source (rightmost) WORD is ORed with the destination (left­
most) WORD operand. Each bit is set to 1 if the corresponding
bit in either the source operand or the destination operand is 1.
The result replaces the original destination operand.

(DEST) ~ (DEST) OR (SRC)

Assembly Language Format: DST SRC
OR wreg, waop

Object Code Format: [100000aa 1 [waop 1 [wr~g 1

Bytes: 2 + BEA
States: 4 + CEA

3-58

MCS~-96 SOFTWARE DESIGN INFORMATION

3.13.70. ORB - LOGICAL OR BYTES

Operation: The. source (rightmost) BYTE operand is ORed with the desti­
nation (leftmost) BYTE operand. Each bit is set to 1 if the cor­
responding bit in either the source operand or the destination
operand was 1. The result replaces the original destination
operand.

(DEST) ~(DEST) OR (SRC)

Assembly Language Format: ORB breg,baop

Object Code Format: [1001 OOaa 1 [baop 1 [breg

Bytes: 2 + BEA
States: 4 + CEA

3.13.71. POP - POP WORD

Operation: The word on top of the stack is popped and placed at the desti-
nation operand. .

(DEST) ~ (SP)
SP ~SP + 2

Assembly Language Format: POP waop

Object Code Format: [110011 aa 1 [waop 1

Bytes: 1 + BEA
States: Onchip Stack: 12 + CEA

Offchip Stack 14 + CEA

3-59

MCS®-96 SOFTWARE DESIGN INFORMATION

3.13.72. POPF - POP FLAGS

Operation: The word on top of the stack is popped and placed in the PSw.
Interrupt calls cannot occur immediately following this instruction.

(PSW) ~ (SP)
SP~SP + 2

Assembly Language Format: POPF

Object Code Format: [11110011

Bytes:
States: On chip Stack: 9

Offchip Stack: 13

z ST

j j

3.13.73. PUSH - PUSH WORp

Operation: The specified operand is pushed onto the stack.

SP ~SP - 2
(SP) ~ (DEST)

Assembly Language Format: PUSH waop

Object Code Format: [11001 Oaa 1 [waop 1

Bytes: 1+BEA
States: Onchip Stack: 8 + CEA

Offchip Stack: 12 + CEA

3-60

MCS®·96 SOFTWARE DESIGN INFORMATION

3.13.74. PUSHF - PUSH FLAGS

Operation: The PSW is pushed on top of the stack, and then set to all zeroes.
This implies that all interrupts are disabled. Interrupt-calls cannot
occur immediately following this instruction.

SP ~SP - 2
(SP) ~PSW
PSW~O

Assembly Language Format: PUSHF

Object Code Format: [11110010

Bytes:
States: Onchip Stack: 8

Offchip Stack: 12

z ST

o o

3.13.75. RET - RETURN FROM SUBROUTINE

Operation: The PC is popped off the top of the stack.

PC~(SP)

SP ~SP + 2

Assembly Language Format: RET

Object Code Format: [11110000

Bytes:
States: Onchip Stack: 12

Offchip Stack: 16

3-61

MCS®-96 SOFTWARE DESIGN INFORMATION

3.13.76. RST - RESET SYSTEM

Operation: The PSW is initialized to zero, and the PC is initialized to 2080H.
The 110 registers are set to their initial value (see section 2.15.2, .
"Reset Status"). Executing this instruction will cause a pulse to
appear on the reset pin of the 8096.

PSW~O

PC ~2080H

Assembly Language Format: RST

Object Code Format: [11111111

Bytes: 1
States: 16

z
o

3.13.77. SCALL - SHORT CALL

ST

o

. Operation: The contents of the program counter (the return address) is
pushed onto the stack. Then the distance from the end of this
instruction to the target label is added to the program counter,
effecting the call. The offset from the end of this instruction to the
target label must be in the range of -1024 to + 1023 inclusive.

SP~SP-2

(SP) ~ PC
PC ~ PC + disp (sign-extended to 16 bits)

Assembly Language Format: SCALL cadd

Object Code Format: [00101 xxx 1 [disp-Iow 1

where xxx holds the three high-order bits of displacement.

Byles: 2
States: Onchip Stack: 13

Offchip Stack: 16

3-62

,.

MCS®-96 SOFTWARE DESIGN INFORMATION

3.13.78. SETC - SET CARRY FLAG

Operation: The carry flag is set.

C~1

Assembly Language Format: SETC

Object Code Format: [11111001

Bytes: 1
States: 4

3.13.79. SHL - SHIFT WORD LEFT

Operation: The destination (leftmost) word operand is shifted left as many
times as specified by the count (rightmost) operand. The count
may be specified either as an immediate value in the range of 0
to 15 inclusive, or as the content of any register, the address of .
which is 16 to 255. The right bits of the result are filled with zeroes.
The last bit shifted out is saved in the carry flag.

Assembly Language Format:

Temp ~ (COUNT)
do while Temp <>0

C ~ High order bit of (DEST)
(DEST) ~ (DEST)*2
Temp ~ Temp - 1

end_while

SHL wreg,#count
or

SHL wreg,breg

Object Code Format: [00001001 1 [cnt/breg 1 [wreg

Bytes: 3
States: 7 + No. of shifts performed

note: 0 place shifts take 8 states.

z ST
j

3-63

MCS®-96 SOFTWARE DESIGN INFORMATION

3.13.80. SHLB - SHIFT BYTE LEFT

Operation: The destination (leftmost) byte operand is shifted left as many
times as specified by the count (rightmost) operand. The count
may be specified either as an immediate value in the range of 0
to 15 inclusive, or as the content of any register, the address of
which is 16 to 255. The right bits of the result are fille<;l with zeroes.
The last bit shifted out is saved in the carry flag.

Assembly Language Format:

Temp ~ (COUNT)
do while Temp <> 0

C ~ High order bit of (DEST)
(DEST) ~ (DEST)*2
Temp ~ Temp - 1

end_ while

SHLB breg,#count
or

SHLB breg,breg

Object Code Format: [00011001 1 [cnt/breg 1 [breg

Bytes: 3
States: 7 + No. of shifts performed

note: 0 place shifts take 8 states.

3-64

MCS®-96 SOFTWARE DESIGN INFORMATION

3.13.81. SHLL - SHIFT DOUBLE-WORD LEFT

Operation: The destination (leftmost) double-word operand is shifted left as
many times as specified by the count (rightmost) operand. The
count may be specified either as an immediate value in the range
of 0 to 15 inclusive, or as the content of any register, the address
of which is 16 to 255. The right bits of the result are filled with
zeroes. The last bit shifted out is saved in the carry flag.

Assembly Language Format:

Temp ~ (COUNT)
do while Temp <> 0

C ~ High order bit of (DEST)
(DEST) ~ (DEST)*2
Temp ~ Temp - 1

end_while

SHLL Ireg,#count
or

SHLL Ireg,breg

Object Code Format: [00001101 1 [cnt/breg 1 [Ireg

Bytes: 3
States: 7 + No. of shifts performed

note: 0 place shifts take 8 states.

z ST

j

MCS®-96 SOFTWARE DESIGN INFORMATION

3.13.82. SHR - LOGICAL RIGHT SHIFT WORD

Operation: The destination (leftmost) word operand is shifted right as many
times as specified by the count (rightmost) operand. The count
.may be specified either as an immediate value in the range of 0
to 15 inclusive, or as the content of any register, the address of
which is 16 to 255. The left bits of the result are filled with zeroes.

Assembly Language Format:

. The last bit shifted out is saved to the carry. The sticky bit flag
is cleared at the beginning of the instruction, and set if at any time
during the shift a 1 is shifted first into the carry flag, and a further
shift cycle occurs.

Temp ~ (COUNT)
do while Temp <> 0

C ~ Low order bit of (DEST)
(DEST) ~ (DEST) / 2 where / is unsigned division
Temp ~ Temp - 1

end_while

SHR wreg,#count
or

SHR wreg,breg

Object Code Format: [00001000 1 [cnt/breg 1 [wreg 1

Bytes: 3
States: 7 + No. of shifts performed

note: 0 place shifts take 8 states.

z ST

j j

MCS®-96 SOFTWARE DESIGN INFORMATION

·3.13.83. SHRA - ARITHMETIC RIGHT SHIFT WORD

Operation: The destination (leftmost) word operand is shifted right as many
times as specified by the count (rightmost) operand. The count
may be specified either as an immediate value in the range of 0
to 15 inclusive, or as the content of any register, the address of
which is 16 to 255. If the original high order bit value was 0, zeroes
are shifted in. If the value was 1, ones are shifted in. The last bit
shifted out is saved in the carry. The sticky bit flag is cleared at
the beginning of the instruction, and set if at any time during the
shift a 1 is shifted first into the carry flag, and a further shift cycle
occurs.

Assembly Language Format:

Temp ~ (COUNT)
do while Temp <> 0

C ~ Low order bit of (DEST)
(DEST) ~ (DEST) /2 where / is signed division
Temp ~ Temp - 1

end_while

SHRA wreg,#count
or

SHRA wreg,breg

Object Code Format: [00001010 1 [cntlbreg 1 [wreg

Bytes: 3
States: 7 + No. of shifts performed

note: 0 place shifts take 8 states.

MCS®-96 SOFTWARE DESIGN INFORMATION

3.13.84. SHRAB - ARITHMETIC RIGHT SHIFT BYTE

Operation: The destination (leftmost) byte operand is shifted right as many
times as specified by the count (rightmost) operand. The count
may be specified either as an immediate value in the range of 0
t015 inclusive, or as the content of any register, the address of
which is 16 to 255. If the original high order bit value was 0, zeroes
are shifted in. If that value was 1, ones are shifted in. The last bit
shifted out is saved in the carry. The sticky bit flag is cleared at
the beginning of the instruction, and set if at any time during the
shift a 1 is shifted first into the carry flag, and a further .shift cycle
occurs.

Assembly Language Format:

Temp ~ (COUNT)
do while Temp <> 0

C, = Low order bit of (DEST)
(DEST) ~ (DEST) I 2 where lis signed division
Temp ~ Temp - 1

end_while

SHRAB breg,#count
or

SHRAB breg,breg

Object Code Format: [00011010 1 [. cntlbreg 1 [breg

Bytes: 3
States: 7 + No. of shifts performed

note: 0 place shifts take 8 states.

z ST

I I

3-68

MCS"-96 SOFTWARE DESIGN INFORMATION

3.13.85. SHRAL - ARITHMETIC RIGHT SHIFT DOUB.LE-WORD

Operation: The destination (leftmost) double-word operand is shifted right as
many times as specified by the count (rightmost) operand. The
count may be specified either as an immediate value in the range
of 0 to 15 inclusive, or as the content of any register, the address
of which is 16 to 255. If the original high order bit value was 0,
zeroes are shifted in. If the value was 1, ones are shifted in. The
sticky bit is cleared at the beginning of the instruction, and set if
at any time during the shift a 1 is shifted first into the carry flag,
and a further shift cycle occurs.

Assembly Language Format:

Temp (- (COUNT)
do while Temp < > 0

C (- Low order bit of (DEST)
(DEST) (- (DEST) / 2 where/is signed division
Temp (- Temp - 1

end_while

SHRAL Ireg,#count
or

SHRAL Ireg,breg

Object Code Format: [00001110 1 [cnt/breg 1 [Ireg

Bytes: 3
States: 7 + No. of shifts performed

note: 0 place shifts take 8 states.

z ST

j j

3-69

MCS®-96 SOFTWARE DESIGN INFORMATION

3.13.86. SHRB - LOGICAL RIGHT SHIFT BYTE

Operation: TtJe destination (leftmost) byte operand is shifted right as many
times as specified by the count (rightmost) operand. The count
may be specified either as an immediate value in the range of 0
t015 inclusive, or as the content of any register, the address of
which is 16 to 255. The left bits of the result are filled with zeroes.
The last bit shifted out is saved in the carry. The sticky bit flag is
cleared at the beginning of the instruction, and set if at any time
during the shift a 1 is shifted first into the carry flag, and a further
shift cycle occu~s.

Assembly Language Format:

Temp +- (COUNT)
do while Temp < > 0

C +- Low order bit of (DEST)
(DEST) +- (DEST) /2 where/is unsigned division
Temp +- Temp - 1·

end_while

SHRB breg,#count
or

SHRB breg,breg

Object Code Format: [00011000 1 [cntlbreg 1 [breg

Bytes: ·3
States: 7 + No. of shifts performed

note: 0 place shifts take 8 states.

3-70

MCS®-96 SOFTWARE DESIGN INFORMATION

3.13.87. SHRL - LOGICAL RIGHT SHIFT DOUBLE-WORD

Operation: The destination (leftmost) double-word operand is shifted right as
many times as specified by the count (rightmost) operand. The
count may be specified either as an immediate value in the range
of 0 to 15 inclusive, or as the content of any register, the address
of which is 16 to 255. The left bits of the result are filled with
zeroes. The last bit shifted out is saved in the carry. The sticky
bit flag is cleared at the beginning of the instruction, and set if at
any time during the shift a 1 is shifted first into the carry flag, and
a further shift cycle occurs.

Assembly Language Format:

Temp ~ (COUNT)
do while Temp < > 0

C ~ Low order bit of (DEST)
(DEST) ~ (DEST) / 2 where/is unsigned division
Temp ~ Temp - 1

end_while

SHRL Ireg,#count
or

SHRL Ireg,breg

Object Code Format: [00001100 1 [cnt/breg 1 [breg

Bytes: 3
States: 7 + No. of shifts performed

note: 0 place shifts take 8 states.

3-71

MCS®-96 SOFTWARE DESIGN INFORMATION

3.13.88. SJMP - SHORT JUMP

Operation: The distance from the end of this instruction to the'target label
is added to the program counter, effecting the jump, The offset
from the end of this instruction to the target label must be in the
range of- 1024 to + 1023 inclusive.

PC ~ PC + disp (sign-extended to 16 bits)

Assembly Language Format: SJMP cadd

Object Code Format: [00100xxX] [disp-Iow]

where xxx holds the three high order bits of the ~isplacement.

Bytes: 2
States: 8

3.13.89. SKIP - TWO BYTE NO-OPERATION

Operation: Nothing is done. This is actually a two-byte NOP where the second
byte can be any value, and is simply ignored. Control passes to
the next sequential instruction.

Assembly Language Format: SKIP breg

Object Code Format: [00000000] [breg 1

Bytes: 2
States: 4

MCS®-96 SOFTWARE DESIGN INFORMATION

3.13.90. ST - STORE WORD

Operation: The value of the leftmost word operand is stored into the rightmost
operand.

(DEST) - (SRC)

Assembly Language Format: SRC DST
ST wreg, waop

Object Code Format: [110000aa] [waop] [wreg]

Bytes: 2+BEA
States: 4 + CEA

3.13.91. STB - STORE BYTE

Operation: The value of the leftmost byte operand is stored into the rightmost
operand.

(DEST) - (SRC)

Assembly Language Format: SRC DST
STB breg, baop

Object Code Format: [110001 aa] [baop] [breg]

Bytes: 2+BEA
States: 4+CEA

3-73

MCS®-96 SOFTWARE DESIGN INFORMATION

3.13.92. SUB (Two Operands) - SUBTRACT WORDS

Operation: The source (rightmost) word operand is subtracted from the des­
tination(leftmost) word operand, and the result is stored in the
destination. The carry flag is set as complement of borrow.

(DEST) ~ (DEST) - (SRC)

. Assembly Language Format: DST SRC
SUB wreg, waop

Object Code Format: [01101 Oaa 1 [waop 1 [. wreg 1

Bytes: 2+BEA
States: 4+CEA

3.13.93. SUB (Three Operands) - SUBTRACT WORDS

Operation: The source (rightmost) word operand is subtracted from the sec­
ond word operand, and the result is stored in the destination (the
leftmost operand). The carry flag is set as complement of borrow.

(DEST)~ (SRC1) - (SRC2)

Assembly Language Format: DST SRC1 SRC2,
SUB wreg, wreg, waop

Object Code Format: [. 01 001 Oaa 1 [waop] [Swreg 1 [Dwreg]

Bytes: 3 + BEA
States: 5+CEA

3-74

MCS@;-96 SOFTWARE DESIGN INFORMATION

3.13.94. SUBB (Two Operands) - SUBTRACT BYTES

Operation: The source (rightmost) byte is subtracted from the destination
(leftmost) byte operand, and the result is stored in the destination.
The carry flag is set as complement of borrow.

(DEST) <-- (DEST) - (S~C)

Assembly Language Format: DST SRC
SUBB breg, . baop

Object Code Format: [011110aa 1 [baop 1 [breg 1

Bytes: 2 + BEA
States: 4 + CEA

z ST

j

3 .. 13.95. ~UBB (Three Operands) - SUBTRACT BYTES

Operation: The source (rightmost) byte operand is subtracted from the des­
tination (leftmost) byte operand, and the result is stored in the
destination. The carry flag is set as complement of borrow.

(DEST) <-- (DEST) - (SRC).

Assembly Language Format: DST SRC ,
SUBB breg, baop

Object Code Format: [01011 Oaa 1 [baop 1 [Sbreg 1 [Dbreg 1

Bytes: 3 + BEA
States: 5 + CEA

z ST

j

MCS®-96 SOFTWARE DESIGN INFORMATION

3.13.96. SUBC - SUBTRACT WORDS WITH BORROW

Operation: The source (rightmost) word operand is subtracted from the des­
tination (leftmost) word operand. If the carry flag was clear, 1 is
subtracted from the above result. The result replaces the original
destination operand. The carry flag is' set as complement of
borrow.

(DEST) - (DEST) - (SRC) - (1-C) ,

Assembly language Format: DST SRC
SUBC wreg, waop

Object Code Format: [10101 Oaa] [waop] [wreg]

Bytes: 2 + BEA
States: 4 + CEA

3.13.97. SUBCB - SUBTRACT BYTES WITH BORROW

. Operation: The source (rightmost) byte operand is subtracted from the des­
tination (leftmost) byte operand. If the carry flag was clear, 1 is
subtracted from the above result. The result replaces the original
destination operand. The carry flag is set as complement of
borrow.

(DEST) _ (DEST) - (SRC) - (1-C)

Assembly language Format: DST SRC
SUBCB breg, baop

Object Code Format: [10111 Oaa] [baop] [breg]

Bytes: 2 + BEA
States: 4+CEA

ST

\

MCS@-96 SOFTWARE DESIGN INFORMATION

3.13.98. TRAP - SOFTWARE TRAP

Operation: This instruction causes an interrupt-call whfch is vectored through
location 201 OH. The operation of this instruction is not effected
by the state of the interrupt enable flag in the PSW (I). Interrupt­
calls cannot occur immediately following this instruction. This in­
struction is intended for use by Intel provided development tools.
These tools will not support user-application of this instruction.

SP~SP - 2
(SP) ~ PC
PC ~ (2010H)

Assembly Language Format: This instruction is not supported by revision 1.0 of the 8096 as­
sembly language:

Object Code Format: [11110111 1

Bytes:
States: Onchip Stack: 21

Offchip Stack: 24

3.13.99. XOR - LOGICAL EXCLUSIVE-OR WORDS

Operation: The source· (rightmost) word operand is XORed with the desti­
nation (leftmost) word operand. Each bit is set to 1 if the corre­
sponding bit in either the source operand or the destination op­
erand was 1, but not both. The· result replaces the original
destination operand.

(DEST) ~ (DEST) XOR (SRC)

Assembly Language Format: DST SRC
XOR wreg, waop

Object Code Format: [100001 aa 1 [waop 1 [wreg 1

Bytes: 2 + BEA
States: 4+CEA

3-77

MCS®-96 SOFTWARE DESIGN INFORMATION

3.13.100. XORB - LOGICAL EXCLUSIVE-OR BYTES

Operation: The source (rightmost) byte operand is XORed with the desti­
nation (leftmost) byte operand. Each bit is set to 1 if the corre­
sponding bit in either the source operand or the destination op­
erand was 1, but not both. The result replaces the original
destination operand.

(DEST) ~ (DEST) XOR (SRC)

Assembly Language Format: DST SRC
XORB breg, baop

Object Code Format: [100101 aa][baop][breg 1

Bytes: 2+BEA
States: 4 + CEA

3-78

/

Hardware Design Information 4

"

CHAPTER 4
HARDWARE DESIGN INFORMATION

4.0. HARDWARE INTERFACING
OVERVIEW

This section of the manual is devoted to the hardware
engineer. All of the information you need to connect the
correct pin to the correct external circuit is provided. Many
of the special function pins have different characteristics
which are under software control, therefore, it is necessary
to define the system completely before the hardware is
wired-up.

Frequently within this section a specification for a current,
voltage, or time period is referred to; the values provided
are to be used as an approximation only. The exact spec­
ification can be found in the latest data sheet for the par­
ticular part and temperature range that is being used.

4.1. REQUIRED HARDWARE
CONNECTIONS

Although the 8096 is a single-chip microcontroller, it still
requires several external connections to make it work.
Power must be applied, a clock source provided, and some
form of reset circuitry must be present. We will look at
each of these areas of circuitry separately. Figure 4-5
shows the connections that are needed for a single-chip
system.

4.1.1. Power Supply Information
Power for 8096 flows through 6 pins; one vee pin, two
VSS pins, one VREF (analog veC), one ANGND (An­
alog VSS), and one VPD (V Power Down) pin. All six
of these pins must be connected to the 8096 for normal
operation. The vee pin, VREF pin and VPD pin should

TO DIVIDER CIRCUITRY
VCC

Figure 4·1. 8096 Oscillator Circuit

4·1

be tied to 5 volts. When the analog to digital converter
is being used it may be desirable to connect the VREF
pin to a separate power supply, or at least a separate power
supply line.

The two VSS pins should be connected together with as
short a leag as possible to avoid problems due to voltage
drops across the wiring. There should be no measurable
voltage difference between VSSI and VSS2. The 2 VSS
pins and the ANGND pin should all be nominally at 0
volts. The maximum current drain of the 8096 is around
200mA, with all lines unloaded.

When the analog converter is being used, clean, stable
power must be provided to the analog section of the chip
to assure highest accuracy. To achieve this, it may be
desirable to separate the analog power supply from the
digital power supply. The VREF pin supplies 5 volts to
the analog circuitry and the ANGND pin is the ground for
this section of the chip. More information on the analog
power supply is in section 4.3.1.

4.1.2. Other Needed Connections
Several of the pins on the 8096 are used to configure the
mode of operation. In normal operation the following pins
should be tied directly to the indicated power supply.

PIN
NMI

TEST

EA

POWER SUPPLY
vee
vee
vee (to allow internal execution)
VSS (to force external execution)

DIVIDER CIRCUITRY

vcc Q3

Q1

XTAL2

30 pf -= 30pf

Figure 4·2. Crystal Oscillator Circuit

HARDWARE DESIGN INFORMATION

Although the EA pin has an internal pulldown, it is beSt
to tie this pin to the desired level if it is not left completely
disconnected .. This will prevent induced noise from dis­
turbing the system.

4.1.3. Oscillator Information
The 8096 requires a clock source to operate. This clock
can be provided to the chip through the XTALl input or
the' on-chip oscillator can be used. The frequency of op­
eration is from 6.0 MHz to 12 MHz.

The on-chip circuitry for the 8096 oscillator is a single
stage linear inverter as shown in Figure 4-1. It is intended
for use as a crystal-controlled, positive reactance oscillator
with external connections as shown in Figure 4-2. In this
application, the crystal is being operated in its fundamental

DIVIDER CIRCUITRY

VCC

VCC
XTAL1

5K

74S04

XTAL2

FLOAT

Figure 4·3. External Clock Drive

XTAL1

PHASE A
(CLKOUn

PHASE B

PHASE C

response mode as an inductive reactance in parallel res­
onance with capacitance external to the crystal.

The crystal specifications and capacitance values (CI and
C2 in Figure 4-2) are not critical. 30 pF can be used in
these positions at any frequency with good quality crys­
tals. For 0.5% frequency accuracy, the crystal frequency
can be specified at series resonance or for parallel reso­
nance with any load capacitance. (In other words, for, that
degree offrequency accuracy, the load capacitance simply
doesn't matter.) For 0.05% frequency accuracy the crystal
frequency should be specified for parallel resonance with
25 pF load capacitance, if CI and C2 are 30 pF.

A more in-depth discussion of crystal specifications and
the selection of values for C I and C2 can be found in the
Intel Application Note, AP-155, "Oscillators for
Microcontrollers.' ,

To drive the 8096 with an external clock source, apply
the external clock signal to XTALl and let XTAL2 float.
An example, of this circuit is shown in Figure 4-3. The
required voltage levels on XTALl are specified in the data
sheet. The signal on XTALl must be clean with- good
solid levels. It is important that the minimum high and
low times are met.

There is no specification on rise and fall times, but they
should be reasonably fast (on the order of 30 nanoseconds)
to avoid having the XTALl pin in the transition range for
long periods of time. The longer the signal is in the tran­
sition region, the higher the probability that an external
noise glitch could be seen by the clock generator circuitry.
Noise glitches on the 8096 internal clock lines will cause
unreliable operation.

The clock generator provides a 3 phase clock output from
the XTALI pin input. Figure 4-4 shows the waveforms
of the major internal timing signals.

PHASE B-C I LJ LJ

Figure 4·4. Internal Timings

4-2

HARDWARE DESIGN INFORMATION

4.1.4. Reset Information
In order for the 8096 to function properly it must be reset.
This is done by holding the reset pin low for at least 2
state times after the power supply is within tolerance, the
oscillator has stabilized, and the back-bias generator has
stabilized. Typically, the back-bias generator requires one
millisecond to stabilize.

There are several ways of doing this, the simplest being
just to connect a capacitor from the reset pin to ground.
The capacitor should be on the order of I to 2 microfarads
for every millisecond of reset time required. This method
will only work if the rise time of VCC is fast and the total
reset time is less than around 50 milliseconds. It also may
not work if the reset pin is to be used to reset other parts
on the board. An 8096 with the minimum required con­
nections is shown in Figure 4-5.

The 8096 RESET pin can be used to allow other chips on
the board to make use of the watchdog timer or the RST
instruction. When this is done the reset hardware should
be a one-shot with an open-collector output. The reset
pulse going to the other parts may have to be buffered and
lengthened with a one-shot, since the RESET low duration

is only two state times. If this is done, it is possible that
the 8096 will be reset and start running before the other
parts on the board are out of reset. The software must
account for this possible problem.

A capacitor directly connected to RESET cannot be used
to reset the part if the pin is to be used as an output. If
a large capacitor is used, the pin will pull down more
slowly than normal. It will continue to pull down until the
8096 is reset. It could fall so slowly that it never goes
below the internal switch point of the reset signal (I to
1.5 volts), a voltage which may be above the guaranteed
switch point of external circuitry connected to the pin.
Several circuit examples are shown in Figure 4-6.

4.1.5. Sync Mode
If RESET is brought high coincident to the falling edge
of XTALl, the part will start executing the 10 state time
RST instruction exactly 6 XTALI cycles later. This feature
can be used to synchronize several·MCS-96 devices. A
diagram of a typical connection is shown in Figure 4-7.
.It should be noted that parts that start in sync may not stay
that way, due to propagation delays which may cause the
synchronized parts to receive signals at slightly different
times.

+5 VOLTS

SEPARATE VCC TRACE (2)

VPD

VREF NMI
(1)

0.1,,1 TEST

ANGND EA

VCC

VBB 0.1 TO 1.0 "I

VSS1

VSS2

RESET

10 "I + XTAL1
TO

25,,1 C, = c" = 30 pi

XTAL2

SEPARATE GROUND TRACE (2)
'::'

NOTES: 1. THESE CAPACITORS ARE NEEDED ONLY IF A TO D IS USED.
2. VREF & ANGND MAY BE CONNECTED TO THE SAME TRACES AS THE DIGITAL POWER SUPPLY IF THE

A TO D IS NOT USED •

. Figure 4·5. Minimum Hardware Connections

4-3

HARDWARE DESIGN INFORMATION

~ 1.0,.f

VCC

1.0,.f I
(1)

8096

10K

lOOK

OPTIONAL
ONE·SHOT
74LS123

OTHER
CIRCUITRY

OTHER
CIRCUITRY

1000

NOTE: 1 •. THE DIODE WILL PROVIDE A FASTER CYCLE TIME REPETITIVE POWER·ON·RESETS

Figure 4-6. Multiple Chip Reset Circuits

VCC

XTALl

8096

RESET

Figure 4-7. Reset Sync Mode

4.1.6. Disabling the Watchdog Timer
The watchdog timer will pull the RESET pin low when
it overflows. If the pin is being externally held above the
low going threshold, the pull-down transistor will remain
on indefinitely. This means that once the watchdog ov­
erflows, the part must be reset or RESET must be held

4-4

high indefinitely. Just resetting the watchdog timer will
not reset'the flip-flop which keeps the RESET pull-down
on.

The pull-down is capable of sinking on· the order of 30
milliamps if it is held at 2.0 volts. T-his amount of current

HARDWARE DESIGN INFORMATION

may cause some long tenn reliability problems due to
localized chip heating. For this reason, parts that will be
used in production should never have had the watchdog
timer over-ridden for more than a second or two.

Whenever the reset pin is being pulled high while the pull­
down is on, it should be through a resistor that will iimit
the voltage on RESET to 2.5 volts and the current through
the pin to 40 milliamps. Figure 4-8 shows a circuit which
will provide the desired results. Using the LED will pro­
vide the additional benefit of having a visual indicator that
the part is trying to reset itself, although this circuit only
works at room temperature and VCC = 5 Volts.

4.1.7. Power Down Circuitry
Battery backup can be provided on the 8096 with a I rnA
current drain at 5 volts. This mode will hold locations
OFOH through OFFH valid as long as the power to the
VPD pin remains on. The required timings to put the part
into power-down and an overview of this mode are given
in section 2.4.2.

A 'key' can be written into power-down RAM while the
part is running. This key can be checked on reset to de­
tennine if it is a start-up from power-down or a complete
cold start. In this way the validity of the power-down
RAM can be verified. The length of this key detennines
the probability that this procedure will work, however,
there is always a statistical chance that the RAM will
power up with a replica of the key.

Under most circumstances, the power-fail indicator which
is used to initiate a power-down condition must come from
the unfiltered, unregulated section of the power supply.
The power supply must have sufficient storage capacity
to operate the 8096 until it has completed its reset
operation.

MV5020

TO OTHER
CIRCUITS

220

o-VCC

OR
.8096

RESET

4.2. DRIVE AND INTERFACE LEVELS

There are 5 types of I/O lines on the 8096. Of these, 2
are inputs and 3 are outputs. All of the pins of the same
type have the same current/voltage characteristics. Some
of the control input pins, such as XTALl and RESET,
may have slightly different characteristics. These pins are
discussed in section 4.1.

While discussing the characteristics of the I/O pins some
approximate current or voltage specifications will be
given. The exact specifications are available in the latest
version of the 8096 Data Sheet.

4.2.1. Quasi-Bidirectional Ports

The quasi-bidirectional port is both an input and an output
port. It has three states, low impedance current sink, low
impedance current source, and high impedance current
source. As a low impedance current sink, the pin has a
specification of sinking up to around .4 milliamps, while
staying below 0.45 volts. The pin is placed in this con­
dition by writing a '0' to the SFR (Special Function Reg­
ister) controlling the pin.

When a 'I' is written to the SFR location controlling the
pin, a low impedance current source is turned on for one
state time, then it is turned off and the depletion pull-up
holds the line at a logical' I' state. The low-impedance
pull-up is used to shorten the rise time of the pin, and has
current source capability on the order of 100 times that
of the depletion pull-Up. The configuration of a quasi­
bidirectional port pin is shown in Figure 4-9.

While the depletion mode pull-up is the only device on,
the pin may be used as an input with a leakage of around
100 microamps from 0.45 volts to VCC. It is ideal for
use with TTL or CMOS chips and may even be used

r---~~--------VCC

LM313
390

1N4001

3300

-=

NOTE: SEE CAUTIONS IN SECTION 4.1.6.

Figure 4-8. Disabling the WDT

4-5

HARDWARE DESIGN INFORMATION

ONE
STATE TIME

DELAY

INPUT

LOW IMPEDANCE
PULL UP

HIGH IMPEDANCE
PULL UP - ALWAYS ON

LOW IMPEDANCE HIGH IMPEDANCE LOW IMPEDANCE
PULL UP PULL UP PULL DOWN

-50mA -160 p.A 50mA

rE-" TYPICAL

:z: -30 mA
:z: -90 p.A

-'
30mA

.!? .!? .!?

-30 p.A 10mA

OV 2V OV OV 2V 4V
VOH VOH VOL

NOTE: THESE GRAPHS SHOW TYPICAL PIN CAPABILITIES, THEY,ARE NOT GUARANTEED SPECIFICATIONS

Figure 4-9. Quasi-Bidirectional Port

directly with switches, however if the switch option is
used certain precautions should be taken. It is impootant
to note that any time the pin is read, the value returned
will be the value on the pin, not the value placed in the
control register. This could prevent logical operations on
these pins while they are being used as inputs.

4.2.2. Quasi-Bidirectional Hardware
Connections

When using the quasi-bidirectional ports as inputs tied to
switches, series resistors should be used if the ports will
be written to internally after the part is initialized. Every
time any quasi-bidirectional pin is written from a zero to
a cine, the low impedance pull-up is turned on. If many
of the pins are tied directly to ground, a large current
spike will be generated when all of these low impedance
devices are turned on at once.

For this reason, a series resistor is recommended to limit
the current to a maximum of 0.2 milliamps per pin. If

4-6

several pins are connected to a common ground through
switches, it should be sufficient to limit the current through
the common ground to 0.2 milliamps times the maximum
number of pins that could be switched to ground. Many
switches require a minimum amount of current flow
through them to keep them clean. This could cause prob­
lems in long term reliability if it is not considered when
designing a system.

If a switch is used on a long line connected to a quasi­
bidirectional pin, a pull-up resistor is recommended to
reduce the possibility of noise glitches. On extremely long
lines that are handling slow signals a capacitor may be
helpful in addition to the resistor.

4.2.3. Input Ports, Analog and Digital
The high impedance input ports on the 8096 have an input
leakage of a few microamps and are predominantly ca­
pacitive loads on the order,of 10 pf. The Port 0 pins have
an additional function when the A to D converter is being

HARDWARE DESIGN INFORMATION

used. These pins are the input to the A to D converter,
and as such, are required to provide current to the com­
parator when a conversion is in process. This means that
the input characteristics of a pin will change if a conversion
is being done on that pin. See section 4.3.1.

4.2.4. Open Drain Ports
Ports 3 and 4 on the 8096 are open drain ports. There is
no pull-up when these pins are used as 110 ports. These
pins have different characteristics when used as bus pins
as described in the next section. A diagram of the output
buffers connected to ports 3 and 4 and the Bus pins is
shown in Figure 4-10.

When Ports 3 and 4 are to be used as inputs, or as Bus
pins, they must first be written with a 'I', this will put
the ports in a high impedance mode. When they are used
as outputs, a pull-up resistor must be used externally. The
sink capability of these pins is on the order of 0.4 mil­
liamps so the total pull-up current to the pin must be less
than this. A 15k pull-up resistor will source a maximum.

DATA
IN

BUS OUTPUT
ENABLE

BUS DATA

PORT ENABLE

PORT DATA

VCC

of 0.33 milliamps, so it would be a reasonable value to
choose if no other circuits with pullups were connected
to the pin.

4.2.5. HSO Pins, Control Outputs and Bus
Pins .

The control outputs and HSO pins have output buffers
with the same output characteristics as those of the bus
pins. Included in the category of control outputs are; TXD,
RXD (in mode 0), PWM, CLKOUT, ALE. BHE, RD,
and WR. The bus pins have 3 states; output high, output
low, and high impedance input. As a high output, the pins
are specified to source around 200 /-LA to 2.4 volts, but
the pins can source on the order of ten times that value
in order to provide fast rise times. When used as a low
output, the pins can sink around 2 rnA at .45 volts, and
considerably more as the voltage increases. When in the
high impedance state, the pin acts as a capacitive load
with a few microamps of leakage. Figure 4-10 shows the
internal configuration of a bus pin.

PORT 3,4 OPEN DRAIN
"""-DRIVER

BUS PULL UP

BUS

BUS PULL DOWN PORT PULL DOWN

BUS, P1, P2 BUS, P1, P2

SOmA

{i
2SmA

e' -,30 mA 15 mA
,g ~

10mA SmA

OV 2V 4V OV 2V 4V

VOL VOL

NOTE: THESE GRAPHS SHOW TYPICAL PIN CAPABILITIES, THEY ARE NOT GUARANTEED SPECIFICATIONS

Figure 4-10. Bus and Port 3 and 4 Pins

HARDWARE DESIGN INFORMATION

4.3. ANALOG INTERFACE

Interfacing the 8096 to analog signal can be done in several
ways. If the 8096 needs to measure an analog signal the
A to D converter can be used. Creation of analog outputs
can be done with either the PWM output or the HSO unit.

4.3.1. Analog Inputs
The 8096 can have 8 analog inputs and can convert one
input at a time into a digital value. Each conversion takes
42 microseconds with a 12 MHz signal on XTALl. The
input signal is applied to one of the Port 01 Analog Channel
inputs. Since there"is no sample and hold on the A to D,
the input signal must remain constant over the sampling
period.

Whan a conversion' takes place, the 8096 compares the
external signal to that of its internal D to A. Based on the
result of the comparison it adjusts the D to A and compares
again. Each comparison takes 8 state times and requires
the input to the comparator to be charged up. 20 com­
parisons are made during a conversion, two times for each
bit of resolution. An additional 8 states are used to load
and store values. The total number of state times required
is 168 for a 10-bit conversion. Attempting to do other than
a 10-bit conversion is not recommended.

Since the capacitance of the comparator input is around
0.5pf, the sample and hold circuit must be able to charge
a IOpf (20*0.5pf) capacitor without a significant voltage
change. To keep the effect of the sample and hold circuit
below ± V2 Isb on a IO-bit converter, the voltage on the

8096 BUFFER
TO MAKE

HSO OUTPUT
OR SWING

PWM RAIL
TO

RAIL

sample and hold circuit may vary no more than 0.05%
(112048).

The effective capacitance of the sample and hold must,
therefore, be at least 20000pf orO.02 ufo If there is external
leakage on the capacitor, its value must be increased to
compensate for the leakage. At IOJLA leakage; 2.5 mV
(512048) will be lost from a 0.17 uf capacitor in 42 JLS.
The capacitor connected externally to the pin should,
-therefore, be at least 0.2 uf for best results. If the external
signal cllanges slowly relative to 42 JLS, then a larger
capacitor will work well and also filter out unwanted noise.

The converter is a IO-bit, successive approximation, ra­
tiometric converter, so the numerical value obtained from
the conversion will be:

1023 * (VIN-ANGND) 1 (VREF-ANGND)

It can be seen that the power supply levels strongly in­
fluence the absolute accuracy of the conversion. For this
reason, it is recommended that the ANGND pin be tied
to a clean ground, as close to the power supply as possible.
VREF should be well regulated and used only for the A
to D converter. If ratiometric information is derived,
VREF can be connected to VCC, but this should be done
at the power supply not at the chip. It needs to be able
to source around 15 milliamps. Bypass capacitors should
be used between VREF and ANGND. ANGND should
be within about a tenth of a volt of VSS and VREF should
be within a few tenths of a volt of VCC. A 0.01 uf
capacitor should be connected between the ANGND and

FILTER
(PASSIVE POWER

OR AMP f------- ANALOG
ACTIVE) OUTPUT

(OPTIONAL)
(OPTIONAL)

SUGGESTED CIRCUIT FOR NON-CRITICAL APPLICATIONS

8096
HSO R HIGH

_ANALOG
OR

±C

IMPEDANCE OUTPUT
PWM AMP

CD4049

RAND C ARE CHOSEN FOR BEST
FILTERING AT THE USER'S FREQUENCY

Figure 4-11. D/A Buffer Block Diagram

HARDWARE DESIGN INFORMATION

VBB pins to reduce the noise on VBB and provide the
highest possible accuracy. Figure 4-5 shows all of these
connections.

4.3.2. Analog Output Suggestions
Analog outputs can be generated by two methods, either
by using the PWM output or the HSO. Either device will
generate a rectangular pulse training that varies in duty
cycle and (for the HSO only) period. If a smooth analog
signal is desired as an output, the rectangular waveform
must be filtered.

In most cases this filtering is best done after the signal is
buffered to make it swing from 0 to 5 volts since both of
the outputs are guaranteed only to TTL levels. A block
diagram of the type of circuit needed is shown in Figure
4-11. By proper selection of components, accounting for
temperature and power supply drift, a highly accurate 8-
bit D to A converter can be made using either the HSO
or the PWM output. If the HSO is used the accuracy could
be theoretically extended to 16-bits, however the temper­
ature and noise related problems would be extremely hard
to handle.

When driving some circuits it may be desirable to use
unfiltered Pulse Width Modulation. This is particularly
true for motor drive circuits. The PWM output can be
used to generate these waveforms if a fixed period on the
order of 64 uS is acceptable. If this is not the case then
the HSO unit can be used. The HSO can generate a var­
iable waveform with a duty cycle variable in up to 65536
steps and a period of up to 131 milliseconds. Both of these
outputs produce TTL levels.

4.4. 1/0 TIMINGS

The 110 pins on the 8096 are sampled and changed at
specific times within an instruction cycle. The timings
shown in this section are idealized; no propagation delay
factors have been taken into account. Designing a system
that depends on an 110 pin to change within a window of
less than 50 nanoseconds using the information in this
section is not recommended.

4.4.1. HSO Outputs
Changes in the HSO lines are synchronized to Timer I.
All of the HSO lines due to change at a certain value of
a timer will change just prior to the incrementing of Timer
1. This corresponds to an internal change during Phase
C, every eight state times. From an external perspective
the HSO pin should change around the rising edge of
CLKOUT and be stable by its falling edge.

Timer 2 is synchronized to increment no faster than Timer
I, so there will always be at least one incrementing of
Timer 1 while Timer 2 is at a specific value.

4.4.2. HSI Input Sampling
The HSI pins are sampled internally once each state time.
Any value on these pins must remain stable for at least

1 full state time to guarantee that it is recognized: This
restriction applies even if the divide by eight mode is
being used. If two events occur on the same pin within
the same 8 state time window, only one of the events will
be recorded. The 8 state time window, (ie. the amount of
time during which Timer 1 remains constant), is stable
to within about 20 nanoseconds. The window starts
roughly around the rising edge of CLKOUT, however this
timing is very approximate due to the amount of internal
circuitry involved.

4.4.3. Standard 1/0 Port Pins
Port 0 is different from the other digital ports in that it is
actually part of the A to D converter. The port is sampled
once every 8 state times, the same frequency at which the
comparator is charged-up during an A to D conversion.
This 8 state times counter is not synchronized with Timer
I. If this port is used the input signal on the pin must be
stable 8 state times prior to reading the SFR.

Port I and Port 2 have quasi-bidirectional 110 pins. When
used as inputs the data on these pins must be stable one
state time prior to reading the SFR. This timing is also
valid for the' input-only pins of Port 2. When used as
outputs, the quasi-bidirectional pins will change state
shortly after CLKOUT falls. If the change was from ~O'

to a 'I' the low impedance pull-up will remain on for one
state time after the change.

Ports 3 and 4 are addressed as off-chip memory-mapped
I/O. The port pins will change state shortly after the rising
edge of CLKOUT. When these pins are used as Ports 3
and 4 they are open drain, their structure is different when
they are used as part of the bus.

4.5. SERIAL PORT TIMINGS

The serial port on the 8096 was designed to be compatible
with the 8051 serial port. Since the 8051 uses a divide by
2 clock and the 8096 uses a divide by 3, the serial port
on the 8096 had to be provided with its own clock circuit
to maximize its compatibility with the 8051 at high baud
rates. This means that the serial port itself does not know
about state times. There is circuitry which is synchronized
to the serial port and to the rest of the 8096 so that in­
formation can be passed back and forth.

The baud rate generator is clocked by either XTALI or
T2CLK, because T2CLK needs to be synchronized to the
XTALI signal its speed must be limited to VI6 that of
XTAL1. The serial port will not function during the time
between the consecutive writes to the baud rate register.
Section 2.11.4 discusses programming the baud rate
generator.

4.5.1. Mode 0
Mode 0 is the shift register mode. The TXD pin sends
out a clock train, while the RXD pin transmits or receives
the data. Figure 4-12 shows the waveforms and timing.
Note that the port starts functioning when a '1' is written

HARDWARE DESIGN INFORMATION

to the REN (Receiver Enable) bit in the serial port control
register. If REN is already high, clearing' the RI flag will
start a reception.

A schematic of a typical circuit is shown in Figure 4-13.
This circuit inverts the data coming. in, so it must be re­
inverted in software. The enable and latch connections to
the shift registers can be driven by decoders, rather than
directly from the low speed 1/0 ports, if the software and
hardware are properly designed.

In this mode the serial port can be used to expand the
110 capability of the 8096 by simply adding shift registers.

RXD(OUn --{ DO X D1 X D2 X D3 X D4 X D5 X D6 X D7 >-
DO D1 D2 D3 D4 D5 D6 D7

RXD(IN)

EXPANDED:

XTAL1 ~J1nM.I1IU1Il..;uL

TXD ~~!--

RXD(OUn J,---,-_..::;DO.:....-__ C'J-: __;D:;,.:l_· --....... C: D2

DO D1

RXD (IN) --c::J-----irr-1 ---1C]t---..,IJ!f-' --

Figure 4-12. Serial Port Timings In Mode 0

CLOCK INHIBIT

SHIFT/LOAD
PX.X

DATA
RXD

CLOCK
TXD

INPUTS

OUTPUTS 8096
SERIAL IN A

ENABLE
PX.X

Figure 4-13. Mode 0 Serial Port Example

HARDWARE DESIGN INFORMATION

4.5.2. Mode 1 Timings
Mode 1 operation of the serial port makes use of lO-bit
data packages, a start bit, 8 data bits and a stop bit. The
transmit and receive functions are controlled by separate
shift clocks. The transmit shift clock starts when the baud

rate generator is initialized, the receive shift clock is reset
when a 'I to 0' transition (start bit) is received. The trans­
mit clock may therefore not be in sync with the receive
clock, although they will both be at the same frequency.

CLK

i-TCHCH
I I
I I I I

OUT ~ '~: I
~

TCHCL
TYVCL

TCLLH ~ --- !-TCLYX

REA DY) VALID K
TLLCH

TLHLL TYLYH

)r--\ !--TLLYV \ J ALE

TLLRL TRLRH TRHLH

TAVLL)p r- TLLAX

I- !-TRLDV_

-- ADDR OUT DATA IN
,
.J

AD

TAVDV

TLLRL

I-
!-TWLWH TWXLH_

,
TAVLL

~ TLLAX

I- TWXQX
!-TQVWX

AD - ADDR OUT DATA OUT

,INST

" VALID /
. BHE

Figure 4-14, Bus Signal Timings

HARDWARE DESIGN INFORMATION

The TI (Transmit Interrupt) and RI (Receive Interrupt)
flags are set to indicate when operations are complete. TI
is set when the last data bit of the message has been sent,
not when the stop bit is sent.: If an attempt to send another
byte is made before the stop bit is sent the port will hold
off transmission until the stop bit is complete. RI is set
when 8 data bits are received, not when the stop bit is
received. Note that when the serial port status register is
read both TI and RI are cleared.

Caution should be used when using the serial port to cori­
nect more than two devices in half-duplex, (ie. one wire

Tosc - Oscillator Period, one cycle time on XTALI.

Timings The Memory System Must Meet

TYVCL - READY valid to CLKOUT low: This is a
fixed time of around 40 ns, if it is violated the part could
malfunction, necessitating a chip reset.

TLLYV - ALE low to READY VALID: This spec is just
a more convenient form of TYVCL to use.

TYLYH - READY low to READY high: Maximum time
the part can be in the not-ready state. If it is exceeded,
the 8096 dynamic nodes which hold the current instruction
may 'forget' how to finish the instruction.

TAVDV - ADDRESS valid to DATA valid: Maximum
time that the memory has to output valid data after the
8096 outputs a valid address. Nominally, a maximum of
5 Tosc periods.

TRLDV - READ low to DATA valid: Maximum time
that the memory has to output data after READ goes low.
Nominally, a maximum of 3 Tosc periods.

TRXDZ - 'READ not low to DATA float: Time after
READ is no longer low until the memory must float the
bus. The memory signal can be removed as soon as READ
is not low, and must be removed within the specified
maximum time.
Nominally, a maximum of 1 Tosc period.

Timings the 8096 Will Provide

TCHCH - CLKOUT high to CLKOUT high: The period
of CLKOUT and the duration of one state time. Always
3 Tosc average, but individual periods could vary by a
few nanoseconds.

TCHCL - CLKOUT high to CLKOUT low: Nominally
1 Tosc period.

TCLLH - CLKOUT low to ALE high: A help in deriving
other timings, typically plus or minus 5 to IO ns.

for transmit and receive). If the receiving processor does
not wait for one bit time after RI is set before starting to
transmit, the stop bit on the link could be squashed. This
could cause a problem for other devices listening on the
link.

4.5.3. Mode 2 and 3 Timings
Modes 2 and 3 operate in a manner similar to that of mode
1. The only difference is that the data is now made up of
9 bits, so. I I -bit packages are transmitted and received.
This means that TI and RI will be set on the 9th data bit

TLLCH - ALE low to CLKOUT high: Used to derive
other timings, nominally 1 Tosc period.

TLHLL - ALE high to ALE low: ALE pulse width.
Useful in determining ALE rising edge to ADDRESS valid
time. Nominally 1 Tosc period.

TAVLL - ADDRESS valid to ALE low: Length of time
ADDRESS is valid before ALE falls. Important timing
for address latch circuitry. Nominally I Tosc period.

TLLAX - ALE low to ADDRESS invalid: Length of
time ADDRESS is valid after ALE falls. Important timing
for address latch circuitry. Nominally 1 Tosc period.

TLLRL - ALE low to READ or WRITE low: Length
of time after ALE falls before RD or WR fall. Could be
needed to ensure that proper memory decoding takes place
before it is output enabled. Nominally I Tosc period.

TRLRH - READ low to READ high: RD pulse width,
nominally 1 Tosc period.

TRHLH - READ high to ALE high: Time between RD
going inactive and next ALE, also used to calculate time
between RD inactive and next ADDRESS valid. Nom­
inally 1 Tosc period.

TWLWH - WRITE low to WRITE high: Write pulse
width, nominally 2 Tosc periods.

TQVWX - OUTPUT valid to WRITE not low: time that
the OUTPUT data is valid before WR starts to go high.
Nominally 2 Tosc periods.

TWXQX - WRITE not low to OUTPUT not valid: Time
that the OUTPUT data is valid after WR starts to rise.
Nominally 1 Tose period.

TWXLH - WRITE not low to ALE high: Time between
write starting to rise and next ALE, also used to calculate
the time between WR starting to rise and next ADDRESS
valid. Nominally 2 rosc periods .

. Figure 4-15. Timing Specification Explanations

d_1?

HARDWARE DESIGN INFORMATION

rather than the 8th. The 9th bit can be used for parity or
multiple processor communications (see section 2.11).

4.6. BUS TIMING AND MEMORY
INTERFACE

4.6.1. Bus Functionality
The 8096 has a mUltiplexed (address/data) 16 bit bus.
There are control lines provided to demultiplex the bus
(ALE), indicate reads or writes (RD, WR), indicate if the
access is for an instruction (INST), and separate the bus
into high and low bytes (BHE, ADO). Section 2.3.S con­
tains an overview of the bus operation.

4.6.2. Timing Specifications
Figure 4-14 shows the timing of the bus signals and data
lines. Since this is a new part, the exact timing specifi­
cations are subject to change, please refer to the latest
8096 data sheet to ensure that your system is designed to
the proper specifications. The major timing specifications
are described in Figure 4-15.

4.6.3. READY Line Usage
When the processor has to address a memory location that
cannot respond within the standard specifications it is nec­
essary to use the READY line to generate wait states.
When the READY line is held low the processor waits
in a loop for the line to come high. There is a maximum
time that the READY line can be held low without risking
a processor malfunction due to dynamic nodes that have
not been refreshed during the wait states. This time is
shown as TYLYH in. the data sheet.

In most cases the READY line is brought low after the
address is decoded and it is determined that a wait state
is needed. It is very likely ihat some addresses, such as
those addressing memory mapped peripherals, would need
wait states, and others would not. The READY line must
be stable within the TLLYV specification after ALE falls

8096
ADO-AD7

RD

(or the TYVCL before CLKOUT falls) or the processor
could lock-up. There is no requirement as to when
READY may go high, as long as the maximum READY
low time (TYLYH) is not violated. .

4.6.4. INST Line Usage
The INST (Instruction) line is high during the output of
an address that is for an instruction stream fetch. It is low
during the same time for any other memory access. At
any other time it is not valid. This pin is not present on
the 48-pin versions. The INST signal can be used with
a logic analyzer to debug a system. In this way. it is
possible to determine if the fetch was for instructions or
data, making the task of tracing the program much easier.

4.6.5. Address Decoding
The multiplexed bus of the 8096 must be demultiplexed
before it can be used. This ca be done with 2 74LS373
transparent latches. As explained in section 2.3.5, the
latched address signal will be referred to as MAO through
MAIS. (Memory Address), and the data lines will be
called MDO through MDIS. (Memory Data).

Since the 8096 can make accesses to memory for either
bytes or words it is necessary to have a way of deternlining
the type of access desired. The BHE and MAO lines are
used for this purpose. BHE must be latched, as it is valid
only when the address is valid. The memory system is
typically set up as 32K by 16, instead of 64K by 8. When
the BHE line is low, the upper byte is enabled. When
MAO is low, the lower byte is enabled when MAO is high
BHE will be low, and the upper byte is enabled.

When external RAM and EPROM are both used in the
system the control logic can be simplified a little to some
of the addresses. The 8096 will always output BHE to
indicate if a read is of the high byte or the low byte, but
it discards the byte it is not going to use. It is therefore
possible to use the BHE and MAO lines only to control

8

8

2764
UPPER

A7-A14

< AO-A6

2764
LOWER

Figure 4-16. Memory Wiring Example-EPROM Only System

4-13

HARDWARE DESIGN INFORMATION

memory writes, and to ignore these lines during memory
reads. Figure 4-16 and 4-17 show block diagrams of two
memory systems, an external EPROM only system and
a RAM/ROM system.

4.6.6. System Verification Example
To verify that a system such as the one in Figure 4-17 will
work with the 8096, it is necessary to check all of the
timing parameters. Let us examine. this system one pa­
rameter at a time using the proposed 8096 specifications.
These. specifications are subject to change, refer to the
latest 8096 data sheet for the current specifications.

The timings of signals that the processor and memory use
are effected by the latch and buffer circuitry. The timings
of the signal provided by the processor are delayed by
various amounts of time. Similarly, the· signals coming
back from the memory are also delayed. The calculations
involved in verifying this system follow:

Address Valid Delay - 20 nanoseconds

The address lines are delayed by passing them through
the 74LS373s, this delay is specified at 18ns after
Address is valid or 30ns after ALE is high. Since the

ALE

A08-A015 8

8096

AOO-A07 8

VCC OIR

PR 0
OIR

signal may be limited by either the ALE timing or the
Address timing, these two cases must be considered.

If Limited by ALE:

Minimum ALE pulse width = Tosc-lO
(TLHLL)

Minimum Addr set-up to ALE falling = Tosc-20
(TAVLL)

Therefore ALE could occur 10 ns after Address valid.

Total delay from 8096 Address stable to MA (Memory
Address) stable would be:

ALE delay from address - 10
74LS373 clock to output 30

20 nanoseconds

if Limited oy Address Valid:

74LS373 Data Valid to Data Output = 18 nanoseconds

In the worst case, the delay in Address valid is
controlled by ALE and has a value of 20
nanoseconds.

MA8-MA15 8

A7-
A14

UPPER
BYTE OF
MEMORY

(ODD
LOCATIONS)

AO­
A6

A7-
A14

LOWER
BYTE OF
MEMORY

(EVEN
LOCATIONS)

CLR Q~~==~----~==-, MAO
WRLOW

~-t---t----I'"I>CK
ALE

74LS LBHE (LATCHED BHE)

74

WR '----t--<l\ __ ./

Figure 4-17. RAM/ROM Memory System

4-14

HARDWARE DESIGN INFORMATION

Delay of Data Transfer to/from Processor - 12
nanoseconds

The RD low to Data valid specification (TRLDV) is
3 Tosc-50, (200 ns at 12 MHz). The 74LS245 is en­
abled by RD and has a delay of 40 ns from enable.
The enable delay is clearly not a problem.

The 74LS245 is enabled except during a read, so there
is no enable delay to consider for write operaions.

The Data In to Data Out delay of the 74LS245 is
12 ns.

Delay of WR signal to memory - 15 nanoseconds

Latched BHE is delayed by the inverter on ALE and
the 74LS74.

74LS04 delay (Output low to high)
74LS74 delay (Clock to Output)

= 22
= 40

Delay of Latched BHE from ALE falling = 62
nanoseconds

The 74LS74 requires data valid for 20 ns prior to the
clock, the 8096 will have BHE stable Tosc-20 ns
(TAVLL, 63 ns at 12 MHz) prior to ALE falling. There
is no problem here.

MAO is valid prior to ALE falling, since the 20 ns
Address Delay is less than TAVLL.

WR will fall no sooner than Tosc-20 ns (TLLRL, 63
ns at 12 MHz) after ALE goes low. It will therefore
be valid just after the Latched BHE is valid, so it is
the controlling signal.

WR High and WR Low are valid 15 ns after MAO,
Latched BHE and WR are valid. Since WR is the last
signal to go valid, the delay of WR (High and Low)
to memory is 15 ns.

Delay Summary - Address Delay
Data Delay
WR Delay
RD Delay

= 20 ns
12 ns
15 ns
o ns

Characteristics of a 12 MHz 8096 system
with latches:

Required by system:

Address valid to Data in;

TAVDV
Address Delay
Data Delay

386.6 ns maximum
- 20.0 ns maximum
- 12.0 ns maximum

354.6 ns maximum

4-15

Read low to Data in;

TRLDV
RD Delay
Data Delay

Provided by System:

200.0 ns maximum
- 00.0 ns maximum
- 12.0 ns maximum

188.0 ns maximum

Address valid to Control;

TLLRL 63.3 ns minimum
63.3 ns minimum
20.0 ns maximum

TAVLL
Address Delay
WR Delay

Write Pulse Width;
TWLWH

00.0 ns minimum (no spec)

101.6 ns minimum

151.6 ns minimum
Rising WR Delay: - 15.0 ns maximum
Falling WR Delay: 00.0 ns minimum (no spec)

146.6 ns minimum

Data Setup to WR rising;

TQVWX
Data Delay
WR Delay

Data Hold after WR;

TWXQX
Data Delay
WR Delay

136.6 ns minimum
- 12.0 ns maximum

00.0 ns minimum'(no spec)

'124.6 ns minimum

58.3 ns minimum
0.0 ns minimum (no spec)

15.0 ns maximum

43.3 ns minimum

The two memory devices which are expected to be used
most often with the 8096 are the 2764 EPROM and the
2128 RAM. The system verification for the 2764 is simple.

2764 Tac

(Address valid to Output) < Address valid to Data in
250 ns < 354 ns O.K.

2764.Toe

(Output Enable to Output) < Read low to Data in
100 ns < 188 ns O.K.

These calculations assume no address decoder delays and
no delays on the RD (OE) line. If there are delays in these
signals the delays must be added to the 2764's timing.

The read calculations for the 2128 are similar to those for
the 2764.

2128-20 Tac < Address valid to Data in
200 ns < 354 ns O.K.

2128-20 Toe < Read low to Data in
65 ns < 188 ns . O.K.

HARDWARE DESIGN INFORMATION

The write calculations are a little more involved, but still
_straight -forward.

2128 Twp (Write Pulse) < Write Pulse Width
100 ns < 146 ns O.K.

2128 Tds (Data Setup) < Data Setup to WR rising
65 ns < 124 ns O.K.

2128 Tdh (Data Hold) < Data Hold after WR
o ns < 43 ns

All of the above calculations have been done assuming
that no components· are in the circuit except for those
shown in Figure 4-17. If additional components are added,
as may be needed for address decoding or memory bank
switching, the calculations must be updated to reflect the
actual circuit.

4.6.7. 1/0 Port Reconstruction
When a single-ship system is being designed using a mul­
tiple chip system as a prototype, it may be necessary to
reconstruct 110 ports 3 and 4 using a memory-mapped
110 technique. The circuit shown in Figure 4-18 provides

WR lOW -------<01

MDO-MD7-----+--.~8~~

WR HIGH -------~--<)[.

8
MD~MD15--------~----~--~

74lS
04

(Xl '(2)

74lS
04

(xl 'h)

this function on the iSBE-96 emulator board. It can be
attached to any 8096 syStem which has the required ad­
dress decoding and bus demultiplexing.

The output circuitry is basically just a latch that operates
when IFFEH or IFFFH are placed on the MA lines. The
inverters surrounding the latch create an open-collector
output to emulate the open-drain output found on the 8096.
The 'reset' line is used to set the ports to all l' s when the
8096 is reset. It should be noted that the voltage and
current characteristics of this port will differ from those
of the 8096, but the basic functionality will be the same.

The input circuitry is just a bus transceiver that is ad­
dressed at IFFEH or IFFFH. If the ports are going to be
used for either input or output, but not both, some of the
circuitry can be eliminated.

4.7. NOISE PROTECTION TIPS

Designing controllers differs from designing other com­
puter equipment in the area of noise protection. A micro­
controller circuit under the hood of a car, in a photo­
copier, CRT terminal,or a high speed printer is subject

8
P3

ClK

8 8 74lS
74lS 05 P4
273

(Xl 'h)
ClR

RESET--------~--------------------------~--~ INPUT

ADDR = P3, P4 -----_+-Q

RD ------oL_.J

ADO-AD7

AD8-AD15

Figure 4-18. 110 Port Reconstruction

4-16

HARDWARE DESIGN INFORMATION

to many types of electrical noise. Noise can get to the
processor directly through the powef'Supply, or it can be
induced onto the board by electromagnetic fields. It is also
possible for the pc board to find itself in the path of
electrostatic discharges. Glitches and noise on the pc board
can cause the processor to act unpredictably, usually by
changing either the memory locations or the program
counter.

There are both hardware and software solutions to noise
problems, but the best solution is good design practice
and a few ounces of prevention. The 8096 has a watchdog
timer which will reset the part if it fails to execute the
software properly. The software should be set up to take
advantage of this feature.

It is also recommended that unused areas of code be filled
with Naps and periodic jumps to an error routine or RST
(reset chip) instructions. This is particularly important in
the code around lookup tables, since if lookup tables are
executed all sorts of bad things can happen. Wherever
space allows, each table should be surrounded by 7 NOPs
(the longest 8096 instruction has 7 bytes) and a RST or
jump to error routine instruction. This will help to ensure
a speedy recovery should the processor have a glitch in
the program flow.

Many hardware solutions exist for keeping pc board noise
to a minimum. Ground planes, gridded ground and VCC

structures, bypass capacitors, transient absorbers and
power busses with built-in capacitors can all be of great
help. It is much easier to design a board with these features
than to try to retrofit them later. Proper pc board layout
is probably the single most important and, unfortunately,
least understood aspect of project design. Minimizing loop
areas and inductance, as well as providing clean grounds
are very important. More information on protecting
against noise can be found in the Intel Application Note
AP-125, "Designing Microcontroller Systems For Noisy
Environments. "

4.8. PACKAGING PINOUTS AND
ENVIRONMENT

The MCS-96 family of products is offered in many ver­
sions. They are available in 48-pin or 68-pin packages,
with or witllOut ROM, and with or without an A to D
converter. A summary of the available options is shown
in Figure 4-19.

The 48-pin versions are available in a 48-pin DIP (Dual
In-Line) package, in either ceramic or plastic.

The 68-pin versions are available in a ceramic pin grid
array, and a plastic flatpack. A plastic pin grid array will
be available in the near future.

ROMLESS WITH ROM

S8-pin 48-pin S8-pin 48-pin

Without A to D 8096 8094 8396 8394

With A to D 8097 8095 8397 8395

Figure 4-19. The MCS~'-96 Family of Products

4-17

MCS® .. 96 Data Sheets 5

inter
8094/8095/8096/8097
8394/8395/8396/8397

16-BIT MICROCONTROLLERS
• 839X: an 809X with 8K Bytes of On-chip ROM

- High Speed Pulse 1/0 - 232 Byte Register File
- 10-bit AID Converter _ Memory-to-Memory Architecture
- 8 Interrupt Sources _ Full Duplex Serial Port
- Pulse-Width Modulated Output _ Five 8-bit 1/0 Ports
- Four 16-bit Software Timers - Watchdog Timer

The MCS-96 family of 16-bit microcontrollers consists of 8 members, all of which are designed for high-speed
control functions.

The CPU supports bit, byte, and word operations. 32-bit double-words are supported for a subset of the instruction
set. With a 12 MHz input frequency the 8096 can do a 16-bit addition in 1.0 JLsec and a 16 x 16-bit multiply or 321
16-bit divide in 6.5 JLsec. Instruction execution times average 1 to 2 JLsec in typical applications.

Four high-speed trigger inputs are provided to record the times at which external events occur. Six high-speed
pulse generator outputs are provided to trigger external events at preset times. The high-speed output unit can
simultaneously perform timer functions. Up to four such 16-bit Software Timers can be in operation at once.

An on-chip AID Converter converts up to 4 (in the 48-pin version) or 8 (in the 68-pin version) analog input channels
to 10-bit digital values. This feature is only available on the 8095, 8395, 8097 and 8397.

Also provided on-chip are a serial port, a watchdog timer, and a pulse-width modulated output signal.

POWER FREQUENCY

i - - - - - - :w~ ---~':::'~----:;"~ -_
I GEN ON.CHIP
I ~M
I (8396)

AID IN I AID

CONV.

232
BYTE REGISTER

REGISTER ALU
FILE

CONTROL
SIGNALS

}

AD DR,
DATA
BUS

PULSE
WIDTH
MOD.

SERIAL
PORT

BAUD
RATE
GEN. HIGH

SPEED
1;0

I PORT 4

PORT 0 PORT 1 PORT 2,
ALT FUNCTIONS

I
I
I ____ --1

HSI HSO

Figure 1. Block Diagram (For simplicity, lines connecting port registers to port buffers are not shown.)

5-1

Inter

RXD P2,1 48
TXD P2,0 47

HSIO 46
HSll 45

HSI2 HS04 44
HSI3 HS05 43

HSOO 42
HSOl 41
HS02 40
HS03 10 39

VSS 11 38
VSS 12 37

PWM P2,5 13 36
WR 14 35

SHE 15 34
READY 16 33

AD15P4,7 17 32
AD14 P4,6 18 31
AD13 P4,5 19 30
AD12 P4,4 20 29
ADllP4,3 21 28
AD10 P4,2 22 27

AD9 P4,1 23 26
AD8 P4,0 24 25

8096

RESET
EXTINT P2,2
VPD
VREF
ANGND
ACH4 PO,4
ACH5 PO,S
ACH7 PO,7
ACH6 PO,6
Eli
VCC
VSS
XTALl
XTAL2
ALE
AD
ADO P3,0
ADl P3,1
AD2 P3,2
AD3 P3,3
AD4 P3,4
ADS P3,5
AD6 P3,6
AD7 P3,7

Figure 1 shows a block diagram of the MCS-96 parts,
generally referred to as the 8096, The 8096 is available
in 48-pin and 68-pin packages, with and without AID,
and with and without on-chip ROM, The MCS-96 num­
bering system is shown below:

OPTIONS 68 PIN 48 PIN

ROMLESS 8096 8094
DIGITAL .. -
110

ROM 8396 8394

ANALOG ROMLESS 8097 8095
AND
DIGITAL
I/O ROM 8397 8395

Figure 2. 48-Pin Package
Figures 2 and 3 show the pinouts for the 48- and 68-pin
packages,

ACH5 PO,S
ACH4 PO,4

ANGND
VREF

VPD
EXTINT P2,2

RXD P2,1
TXD P2,0

P1.0
Pl,l
Pl,2
Pl,3
Pl,4

, HSIO
HSll

HSI2 HS04

cicic::i a. a. a.
'"-<ON
J:J:J:
uuu

1 234 5 6 7 8 91011121314151617
68 18
67 19
66 20
65 21
64 22
63 23
62 8096 24
61 8396 25
60 26
59 8097 27
58 8397 28
57 29
56 30
55 31
54 32
53 33
52 34
~wuau%u«QO~~nnDn~

Il

Figure 3. 68-Pin Package

5-2

>­

" ..
w
c:

ADO P3,0
ADl P3.1
AD2 P3.2
AD3 P3,3
AD4 P3,4
ADS P3,5
AD6 P3,6
AD7 P3.7
AD8.P4,0
AD9 P4,1
AD10 P4,2
ADll P4,3
AD12 P4,4
AD13 P4,5
AD14 P4,6
AD15 P4,7
T2CLK P2,3

8096

Instruction Summary

Oper- Flags

Mnemonic ands Operation (Note 1) Z N C V VT ST Notes

ADD/ADDB 2 D ~D+A J / / / / -

ADD/ADDB 3 D ~B+A
"

j , I / j -
ADDClADDCB 2 D ~ D+A+C

"
,j v J j -

SUB/SUBB 2 D~D-A / ,/ j j j -
SUB/SUBB ~ 3 D~B-A ; / I I -

" v , v

SUBC/SUBCB 2 D~D-A + C - I , / I I / -v v V v

CMP/CMPB 2 D-A ,/ ,/ ,/ ,/ j -
MUL/MULU 2 D, D + 2 ~ D * A - - - - - ,/ 2

MUL/MULU 3 D, D + 2 ~ B * A - - - - - / 2

MULB/MULUB 2 D, D + I ~D * A - - - - - / 3

MULB/MULUB 3 D, D + I ~B * A - - - - - v
; 3

DIV/DIVU 2 D <- (D, D + 2)/ A 2
D + 2 remainder - - - / vi

,
-

DIVB/DIVUB 3 D ~ (D, D + I)/A
D + I remainder - - - I

v - 3 v

AND/ANDB .2 D ~ D and A v' v' 0 0 - -
AND/ANDB 3 D ~ B and A J

, 0 0 - -v

OR/ORB 2 D <- D or A v ,/ 0 0 - -
XOR/XORB 2 D ~ D (excl. or) A ' .. / ,/ 0 0 - -

LD/LDB 2 D<-A - - - - - -

STlSTB 2 A<-D -- - - - - -
LDBSE 2 D ~ A; D + I ~ SIGN(A) - - - - - - 3,4

LDBZE 2 D ~ A; D + I~O - - - - - - 3,4

PUSH I SP ~ SP - 2; (SP) A - - - - - -
POP I A <- (SP); SP <- SP + 2 - - - - - -

PUSHF 0 SP <- SP - 2; (SP) <- PSW; 0 0 0 0 0 0
PSW <- OOOOH

POPF 0 PSW <- (SP); SP <- SP + 2 ; / ! I j ,/ v v v

SJMP I PC ~PC + II-bit offset - - - - - - 5

LJMP I PC <- PC + 16-bit offset - - - - - - 5

INDJMP I PC <- (A) - - - - - -

SCALL I SP <- SP - 2; (SP) <- PC; - - - - - - 5
PC <- PC + II-bit offset

LCALL I SP <- SP - 2; (SP) <- PC; - - - - - - 5
PC <- PC + 16-bit offset

RET 0 PC <- (SP); SP <- SP + 2 - - - - - -

J(conditional) I PC <- PC + 8-bit offset - - - - - - 5

JC Jump if C = I - - - - - - 5

JNC Jump if C = 0 - - - - - - 5
Note
1. If the mnemonic ends in "B", a byte operation is performed, otherwise a word operation is done, Operands D, B, and A must conform

to the alignment rules for the required operand type, D and B are locations in the register tile; A can be located anywhere in memory,
2, D, D + 2 are consecutive WORDS in memory; D is DOUBLE-WORD aligned,
3, D, D + I are consecutive BYTES in memory; D is WORD aligned.
4. Changes a byte 'to a word,
5. Offset is a 2's complement number,

5-3

8096

Instruction Summary (continued)

Oper- Flags

Mnemonic ands Operation (Note 1) Z N C V VT ST Notes
. JE Jump if Z = I - - - - - - 5

JNE Jump if Z = 0 - - - - - 5
, JGE Jump if N =1 - - - - - - 5

JLT Jump if N = 0 - - - - - - 5

JGT Jump if N = 0 and Z = 0 - - - - - - 5

JLE Jump if N = lor Z = I - - - - - - 5

JH Jump if C = I and Z = 0 - - --;- - - - 5

JNH ,. Jumpif C = 0 or Z = I - - - - - - 5

JV Jump if V = I - - - - - - 5

JNV Jump if V = 0 - - - - - - 5

JVT lump if VT = I; Clear VT - - - - 0 - 5

JNVT lump if VT·= 0; Clear VT - - - - 0 - 5

1ST Jump if ST = t - - - - - - 5

INST Jump if ST = 0 - - - - - - 5

IBS Jump ifST = I - - - - - - 5,6

lBC Jump if Specified Bit = 0 - - - - - - 5,6

DINZ I D ~ D -'I; if D *- then
PC ~ PC + 8-bit offset - - - - - - ,5

DECIDECB I D~D- I / / / / / - "

NEG/NEGB I D~O-D / / / / /
,

v' -'

INClINCB I D,~D + I / / / / / -
EXT I D ~ D; D + 2'~ Sign (D) / / 0 0 - .2

EXTB I D ~D; D + I ~ Sign (D) oj / 0 0 - - 3

NOT/NOTB I D ~ Logical Not (D) / / 0 0 - -
CLRlCLRB I D~b I 0 0 0 - -

SHUSHLB/SHLL I C ~ msb - - - - - Isb ~ 0 / / / / / - 7

SHRlSHRB/SHRL I o~ msb-----Isb~ C / / / 0 - / 7

SHRA/SHRAB/SHRAL I msb ~ msb - -'- - - - Isb ~ C / / / 0 - / 7 v

SETC 0 C~I - - I - - -

CLRC 0 C~O - - 0 - - -

CLRVT 0 VT ~O - - - 0 -
RST 0 PC ~ 2080H 0 0 0 0 0 0 8

DI 0 Disable All Interrupts - - - - - -

EI 0 Enable All Interrupts - - - - - -
Nap 0 PC~PC+I - - - - - -
SKIP 0 PC~PC+2 - - - - - -

NORML 2 Normalize / I - - - - 7
Note
I. If the mnemonic ends in "B", a byte operation is performed. otherwise a word operation is done. Operands·D. B and A must conform

to the alignment rules for the required operand type. D and B are locations in the register file; A can be located anywhere in memory.
5. Offset is a 2' s complement number.
6. Specified bit is one of the 2048 bits in the register file.
7. The "L" (Long) suffix indicates double-word operation.
8. Initiates a Reset by pUlling RESET low. Software should re-initialize all the necessary registers with code starting at 2080H.

5-4

8096

Opcode and State Time Listing

INDIRECT@ INDEXED®
DIRECT IMMEDIATE

NORMAL AUTO-INC. SHORT LONG

0 (I)

z 0 z W W W 8(1) 8(1)
W

8(1) 8(1) 0 c:t 0 (I) 0 (I) 0 (I) (J) 0 (I) (I) :iE a: 0 W(I) 0 W(I) 0 Ww Ww 0 Ww Ww
W W !c(w W !c(w W !c(:iE W !c(:iE W !c(:iE W !c(:J!: W 0 I- 0 I- 0 l- I- 0 l- I-Z 0.. 0.. > I-~ 0.. > I-~ 0.. > 1-- > 1-- D.' > 1-'- > 1--
:iE 0 0 m (1)1- 0 m (1)1- 0 m (1)1- m (1)1- 0 m (1)1- m (1)1-

ARITHMETIC INSTRUCTIONS

ADD 2 64 3 4 65 4 5 66 3 6/11 3 7/12 67 4 6/11 5 7/12

ADD 3 44 4 5 45 5 6 46 4 7/1~ 4 8/13 47 5 7/12 6 8113

ADDB 2 74 3 4 7S 3 4 76 3 6111 3 7112 77 4 6111 S 7/12

ADDB 3 54 4 5 55 4 S 56 4 7/12 4 8/13 57 5 7/12 6 8/13

ADDC 2 A4 3 4 AS 4 5 A6 3 6/11 3 7112 A7 4 6/11 5 7/12

ADDCB 2 B4 3 4 B5 3 4 B6 3 6111 3 7/12 B7 4 6/11 5 7112

SUB 2 68 3 4 69 4 5 6A 3 6111 3 7112 ' 6B 4 6111 5 7/12 .-
SUB 3 48 4 5 49 5 6 4A 4 7/12 4 8113 4B 5 7/12 6 8/13

SUBB 2 78 3 4 79 3 4 7A 3 6/11 3 7/12 7B 4 6/11 5 7112

SUBB 3 58 4 5 59 4 5 5A 4 7/12 4 8/13 5B 5 7/12 6 8113

SUBC 2 A8 3 4 A9 4 5 AA 3 6111 3 7/12 AB 4 6/11 5 7112

SUBCB 2 B8 3 4 B9 3 4 BA 3 6/11 3 7/12 BB 4 6/11 5 7/12

CMP 2 88 3 4 89 4 5 8A 3 6/11 3 7/12 88 4 6/11 5 7112

CMPB 2 98 3 4 99 3 4 9A 3 6/11 3 7112 9B 4 6/11 5 7112

MULU 2 6C 3 25 6D .4 26 6E 3 27/32 3 28/33 6F 4 27/32 5 28/33

MULU 3 4C 4 26 4D 5 27 4E 4 28/33 4 29/34 4F 5 28/33 6 29/34

MULUB 2 7C 3 17 7D 3 17 7E 3 19/24 3 20125 7F 4 19/24 5 20/25

MULUB 3 5C 4 18 5D 4 18 5E 4 20/25 4 21126 5F 5 20/25 6 21/26

MUL 2 @ 4 29 @ 5 30 @ 4 31136 4 32/37 @ 5 31/36 6 32/37

MUL 3 @ 5 30 @ 6 31 @ 5 32/37 5 33/38 @ 6 32/37 7 33/38

MULB 2 @ 4 21 @ 4 21 @ 4 23/28 4 24/29 @ 5 23/28 6 24/29

MULB 3 @ 5 22 @ 5 22 @ 5 24/29 5 25/30 @ 6 24129 7 25/30

DIVU 2 8C 3 25 8D 4 26 8E 3 27/32 3 28/33 8F 4 27132 5 28/33

DIVUB 2 9C 3 17 9D 3 17 9E 3 19/24 3 20/25 9F 4 19/24 5 20/25

DIV 2 @ 4 29 @ 5 30 @ 4 31/36 4 32/37 @ 5 31/36 6 32/37

DIVB 2 @ 4 21 @ 4 21 @ 4 23/28 4 24/29 @ 5 23/28 6 24/29

Notes:
® Long indexed and Indirect + instructions have identical opocodes with Short indexed and Indirect modes. respectively. The second byte

of instructions using any indirect or indexed addressing mode specifies the exact mode used. If the second byte is even, use Indirect
or Short Indexed. Ifit is odd, use Indirect+or Long indexed. In all cases the second byte of the instruction always specifies an even
(word) location for the address referenced.

<D Number of state times shown for internal/external operands.
® The opcodes for signed multiply and divide are the opcode,; for the unsigned functions with an "FE" appended as a prefix.

5-5

8096

Opcodeand State Time Listing (Continued)

DIRECT IMMEDIATE
INDIRECT@ INDEXED@

NORMAL AUTO-INC. SHORT LONG

0 en
Z 0
0 z w w w G en G en

w G en G en c(0 en 0 en 0 en en 0 en en :E II: 0 W wen 0 w Wen 0 w Ww w Ww 0 w Ww w Ww
w ~w I-w ~:::iE ~:::iE ~:::iE ~:E w 0 I- 0 I- ~~

0 l- I- 0 l- I-Z a.. a.. > I-~ a.. > a.. > 1-- > 1-- a.. > 1-- > 1--
:E 0 0 m en I- 0 m en I- 0 m en I- m en I- 0 m en I- m en I-

LOGICAL INSTRUCTIONS

AND 2 60 3 4 61 4 5 62 3 6/11 3 7112 63 4 6!11 5 7112

AND 3 40 4 5 ' 41 5 6 42 4 7112 4 8113 43 5 7iI2 6 8113

ANDB 2 70 3 4 71 3 4 72 3 6/11 3 7112 73 4 6111 5 7112

ANDB 3 50 4 5 51 4 5 52 4 7112 4 8113 53 5 7112 6 8113

OR 2 80 3 4 81 4 5 82 3 6/11 3 7112 83 4 6/11 5 7112

ORB 2 90 3 4 91 3 4 92 3 611 I 3 7112 93 4 6111 5 7112

XOR 2 84 3 4 85 4 5 86 3 6/11 3 7112 87 4 6/1 I 5 7112

XORB 2 94 3 4 95 3 4 96 3 6!1I 3 7112 97 4 6111 5 7112

DATA TRANSFER INSTRUCTIONS

LD 2 AO 3 4 Al 4 5 A2 3 6/11 3 7112 A3 4 6/11 5 7/12

LOB 2 BO 3 4 BI 3 4 B2 3 6111 3 7112 B3 4 6/11 5 7112

ST 2 CO 3 4 - - -- C2 3 7113 3 8114 C3 4 7113 5 8114

STB 2 C4 3 4 - - -- C6 3 7113 3 8114 C7 4 7/13 5 8114

LDBSE 2 BC 3 4 BD 3 4 BE 3 6/11 3 7112 BF 4 6/11 5 7112

LDBZE 2 AC 3 4 AD 3 4 AE 3 6/11 3 7112 AF 4 6111 5 7112

STACK OPERATIONS (internal stack)

PUSH I C8 2 8 C9 3 8 CA 2 11115 2 12116 CB 3 I IllS 4 12116

POP I CC 2 12 - - -- CE 2 14118 2 14118 CF 3 14118 4 14118

PUSHF 0 F2 1 8

POPF 0 F3 1 9

STACK OPERATIONS (external stack)

PUSH 1 C8 2 12 C9 3 12 CA 2 15119 2 16/20 CB 3 15119 4 16/20

POP I CC 2 14 - - -- CE 2 16/20 2 16/20 CF 3 16/20 4 16/20

PUSHF 0 F2 I 12

POPF 0 F3 I 13

JUMPS AND CALLS

MNEMONIC OPCODE BYTES STATES MNEMONIC OPCODE BYTES STATES
LJMP E7 3 ·8 LCALL EF 3 13!l6@

SJMP 20-27® 2 8 SCALL 28-2F®
,

2 13!l6@

INDJMP E3 2 8 RET FO I 12/16@

Notes:
<D Number of state times shown for internal/external operands.
® This instruction is generated by the assembler when a branch indirect (BR [Rx]) instruction is reached.
@) The least significant 3 bits of the ope ode are concatenated with the following 8 bits to form an II-bit. 2's complement. offset for the

relative call or jump. .
@ State times for stack located internal/external.

5-6

8096

CONDITIONAL JUMPS

All conditional jumps are 2 byte instructions. They require 8 state times if the jump is taken, 4 if it is not.

MNEMONIC OPCODE MNEMONIC OPCODE MNEMONIC OPCODE MNEMONIC OPCODE

JC OB JE OF JGE 06 JGT 02
JNC 03 JNE 07 JLT OE JLE OA
JH 09 JV DO JVT OC JST 08
JNH 01 JNV 05 JNVT 04 JNST 00

JUMP ON BIT CLEAR OR BIT SET

These instructions are 3-byte instructions. They require 9 state times if the jump is taken, 5 if it is not.

BIT NUMBER

MNEMONIC 0 1 2 3 4 5 6 7

JBC 30 31 32 33 34 35 36 37
JBS 38 39 3A 3B 3C 30 3E 3F

lOOP CONTROL

DJNZ OPCOOE EO: 3 BYTES: 5/9 STATE TIMES (NOT TAKEN/TAKEN)

SINGLE REGISTER INSTRUCTIONS

MNEMONIC OPCODE BYTES STATES MNEMONIC OPCODE BYTES STATES

OEC 05 2 4 EXT 06 2 4
OECB 15 2 4 EXTB 16 2 4
NEG 03 2 4 NOT 02 2 4
NEGB 13 2 4 NOTB 12 2 4
INC 07 2 4 CLR 01 2 4
INCB 17 2 4 CLRB II 2 4

SHIFT INSTRUCTIONS

INSTR 'WORD INSTR BYTE INSTR DBl WD
MNEMONIC OP B MNEMONIC OP B MNEMONIC OP B STATE TIMES

SHL 09, 3 SHLB 19 3 SHLL 00 3 7 + I PER SHIFf<L)
SHR 08 3 SHRB 18 3 SHRL OC 3 7 + I PER SHIFf<L)
SHRA OA 3 SHRAB IA 3 SHRAL OE 3 7 + I PER SHIFf<L)

SPECIAL CONTROL INSTRUCTIONS

MNEMONIC OPCODE BYTES STATES MNEMONIC OPCODE BYTES STATES
SETC F9 1 4 OJ FA 1 4
CLRC F8 1 4 EJ FB 1 4
CLRVT FC 1 4 Nap FO I 4
RST FF 1 16 SKIP 00 2 4

NORMALIZE

NORML OF 3 II + 1 PER SHIFf

Notes:
@ This instruction takes 2 states to pull RST low, then holds it low for 2 states to initiate a reset. The reset takes 12 states, at which

time the program restarts at location 2080H.
([) Execution will take at least 8 states, even for 0 shift.

5-7

inter

ELECTRICAL CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS

Ambient Temperature Under Bias 0° C to +70° C
Storage Temperature •.••...........• -40°C to +150°C
Voltage from Any Pin to VSS or ANGND ... -0.3V to +7.0V
Average Output Current from Any Pin••.... 10 mA
Power Dissipation •........•............•.. 1.5 Watts

OPERATING CONDITIONS
Symbol Parameter

TA Ambient Temperature Under Bias

VCC Digital Supply Voltage

VREF Analog !3upply Voltage

IOSC Oscillator Frequency

VPD Power-Down Supply Voltage

8096

'NOTICE: Stresses above those listed under "Absolute
Maximum Ratings" may cause permanent damage to the
device. This is a stress rating only and functional operation of
the device at these or any other conditions above those
indicated in the operational sections of this specification is
not implied. Exposure to absolute maximum rating condi­
tions for extended periods may affect device reliability.

Min Max Units

0 +70 C

4.50 5.50 V

4.5 5.5 V
VCC-0.3 VCC+0.3 V

6.0 12 MHz

4.50 5.50 • V

VBB should be connected to ANGND through a 0.01 fJF capacitor. ANGND and VSS should be nominally at the same potential.

DC CHARACTERISTICS

Symbol Parameter Min Max Units Test Conditions

VIL Input Low Voltage -0.3 +0.8 V

VIH Input High Voltage 2.0 VCC+0.5 V

VOL Output Low Voltage 0.45 V See Note 1.

VOH Output High Voltage 2.4 V See Note 2.

ICC VCC Supply Current 200 mA AU outputs
disco·nnected.

IPD VPD Supply Current 1 rnA Normal operation
and Power-Down.

IREF VREF Supply Current 15 mA

III Input Leakage Current to all pins of HSI, PO, ±10 pA Vin = Oto VCC
P3, P4, and to P2.1, P2.2, P2.3, and P2.4 See Note 3

IIH Input High Current to EA 100 pA VIH = 2.4V

IlL Input Low Current to all pins of P1, and to -100 pA VIL = 0.45V
P2.6, P2.7, and READY

ilL 1 Input Low Current to RESET -2 mA VIL = 0.45V

Cs Pin Capacitance (Any Pin to VSS) 10 pF !TEST = 1MHz

NOTES:

1. IOL = 0.36 mA for all pins of Pl, lor P2.6 and P2.7, and for all pins 01 P3 and P4 when used as ports.

IOL = 2.0 mA for TXD, RXD (in serial port mode 0), PWM, CLKOUT, ALE, BHE, RD, WR, and all pins 01 HSO and P3 and P4 when used
as external memory bus (ADO·AD15).

2. IOH = -20 pA lor all pins olPl, for P2.6 ad P2.7.

IOH = -200 pA for TXD, RXD (in serial port mode 0), PWM, CLKOUT, ALE, SHE, WR, and all pins 01 HSO and P3 and P4 when used
as external mernory bus (ADO-AD15).

P3 and P4, when used as ports, have open·drain outputs.

3. Analog Conversion not in process.

5-8

8096

AID CONVERTER SPECIFICATIONS

AID Converter operation is verified only on the 8097,
8397, 8095, 8395.

The absolute conversion accuracy is dependent on the
accuracy of VREF. The specifications given below as­
sume adherence to the Operating Conditions section
of these data sheets. Testing is done at VREF = 5.120
volts.

Resolution ... ± 0.001 VREF
Accuracy .. ± 0.004 VREF
Differential nonlinearity ± 0.002 VREF max
Integral nonlinearity ± 0.004 VREF max
Channel-to-chanel matching ± 1 LSB
Crosstalk (DC to 100kHz) - 60dB max

AC CHARACTERISTICS

Test Conditions; Oscillator Frequency = 12MHz
Load Capacitance on Output Pins = 80pF
Other Operating Conditions as previously described.

Timing Requirements (Other system components must meet these specs.)

Symbol Parameter Min
TYVCL READY Setup to CLKOUT Edge 50'
TCLYX READY Hold afterCLKOUT Edge o _
TLLYV End of ALE to READY Setup
TYLYH Non-ready Time
TAVDV Address Valid to Input Data Valid
TRLDV RIT Active to Input Data Valid
TRXDZ End of Rti to Input Data Float 0

Timing Responses (MCS-96 parts meet these specs.)

Symbol Parameter Min
FXTAL Oscillator Frequency 6.0
TOSC 1/0scillator Frequency 160
TCHCH CLKOUT Period 3Tosc
TCHCL CLKOUT Hirlh Time Tosc-20
TCLLH CLKOUT Low to ALE High -5
TLLCH ALE Low to CLKOUT. High Tose-20
TLHLL ALE Pulse Width Tose-10
TAVLL Address Valid to End of ALE Tose-40
TLLRL End of ALE to fID or WR Active Tosc-20
TLLAX End of ALE to Address Invalid Tosc-20

. TWLWH WR Pulse Width 2Tosc-15
TQVWX Output Data Valid to End of WR 2Tosc-30
TWXQX Output Data Hold after WR Tosc-25
TWXLH End of WR to Next ALE 2Tosc-30
TRLRH fID Pulse Width 3Tosc-30
TRHLH End of fID to Next ALE Tosc-25

5-9

Max Units
nsec

ns~~

2Tosc-50 nsec
1000 nsec

5Tosc-70 nsec
3Tosc-50 nsec
Tosc-20 nsec

Max Units
12.0 MHz
83 nsec

3Tosc nsee --
Tosc + 10 nsec

+20 nsec
Tose +20 nsec

Tose nsee
Tose-15 nsec

nse~

nSl9C
nsec
nsec
nsec
nsec
nsec

8096

CLK

~TCHCH
I I
I I
I I

OUT ~ ~: I
-J J

" TCHCL
TYVCL -TCLLH
~ r---TCLYX

REA DY)(VALID K
TLLCH

TLHLL TYLYH

I~ ... TLLYV
,-

J \ ALE

TLLRL TRLRH TRHLH ,
TAVLL TRXDZ - TLLAX I-

:- _TRLDV_

AD ----1 ADDR OUT DATA IN

TAVDV

TLLRL

_ TWLWH TWXLH _

WR ,
TAVLL
~

TLLAX

~
TWXQX

!-TQVWX

AD ----1 ADDR OUT ~ DATA OUT

,INST

\ VALID /
"

5-10

MCS®~51 Architecture 6

CHAPTER 6
MCS®-51 ARCHITECTURE

6.0 INTRODUCTION

The MCS®-51 family of 8-bit microcontrollers consists
of the devices listed in Table I, all of which are based on
the MCS-51 architecture shown in Figure 6-1. The original
8051 was built in HMOS I technology. The HMOS II
version, which is the device currently in production, is
called the 8051AH. The term "8051," however, is still

PO.O·PO.7

r - - - - - - - - ~'f:H..:~.

~
~
= I

PSEN

ALE

Ell
RST

I
I

P1.0-P1.7

often used to generically refer to all of the MCS-51 family
members. This is the case throughout this manual, except
where specifically stated otherwise. Also for brevity, the
term "8052" is used to refer to both the 8052 and the
8032, unless otherwise noted.

P2.0·P2.7

,.t.-L~~-'--',------------'

~Re5ident in 8052/8032 only.

P3.0-P3.7

Figure 6-1. MCS-S1 Architectural Block Diagram

MCS®-51 ARCHITECTURE

The newest MCS-51 members, the 8032 and 8052, have
more on-chip memory and an additional 16-bit timerl
counter. The new timer can be used as a timer, a counter,
or to generate baud rates for the serial port. As a timerl
counter, it operates in either a 16-bit auto-reload mode or
a 16-bit "capture" mode. This new feature is described
in Section 6.6.2.

Pinouts are shown in the individual data sheets and on the
inside back cover of this handbook.

Table 1. MCS®·51 Family Members

ON·CHIP ON·CHIP
PROGRAM DATA

PART TECHNOLOGY MEMORY MEMORY

8051AH HMOS II 4K~ROM 128

8031AH HMOS II NONE 128

8751H HMOS I 4K~EPROM 128

80C51 CHMOS 4K~ROM 128

80C31 CHMOS NONE 128

8052 ' HMOS II 8K~ROM 256

8032 HMOS II NONE 256

The major MCS®-51 features are:
• 8-Bit CPU
• On-Chip oscillator and clock circuitry
• 32 110 lines '
• 64K address space for external data memory
• 64K address space for external program memory
• Two 16-bit timerlcounters (three on 8032/8052)
• A five-source interrupt structure (six sources on

8032/8052) with two priority levels
• Full duplex serial port
• ~oolean processor

6.1 MEMORY ORGANIZATION

The 8051 has separate address spaces for Program Mem­
ory and Data Memory. The Program Memory can be up
to 64K bytes long. The lower 4K (8K for 8052) may
reside on-chip. The Data Memory can consist of up to
64K bytes of off-chip RAM, in addition to which, it in­
cludes 128 bytes of on-chip RAM (256 bytes for the 8052),
plus a number of "SFRs" (Special Function Registers)
as listed below.

Symbol Name Address

*ACC Accumulator OEOH
*B B Register OFOH
*PSW Program Status Word ODOH
SP Stack Pointer B1H
DPTR Data Pointer (con- B3H

sisting of DPH and DPL B2H
*PO Port 0 BOH
*P1 ' Port 1 90H

Symbol Name Address

*P2 Port 2 OAOH
*P3 Port 3 OBOH
*IP Interrupt Priority Control OBBH
*IE Interrupt Enable Control OABH
TMOD Timer/Counter Mode

Control B9H
+*T2CON Timer/Counter Control BBH
TCON Timer/Counter 2 Control OCBH
THO Timer/Counter 0

(high byte) BCH
TLO Timer/Counter 0

(low byte) BAH
TH1 Timer/Counter 1

(high byte) BDH
TL1 Timer/Counter 1

(low byte) BBH
+TH2 Timer/Counter 2

(high byte) OCDH
+TL2 Timer/Counter 2

(low byte) OCCH
+ RCAP2H Timer/Counter 2 Capture

Register (high byte) OCBH
+ RCAP2L Timer/Counter 2 Capture

Register (low byte)' OCAH
*SCON Serial Control 9BH
SBUF Serial Data Buff 99H
PCON Power Control 97H

The SFRs marked with an asterisk (*) are both bit- and
byte-addressable, The SFRs marked with a plus sign
(+) are present in the 8052 only. The functions of the
SFRs are described as follows.

ACCUMULATOR

ACC is the Accumulator register. The mnemonics for ac­
cumulator-specific instructions, however, refer to the ac­
cumulator simply as A.

B REGISTER

The B register is used during mUltiply and divide opera­
tions. For other instructions it can be treated as another
scratch pad register.

PROGRAM STATUS WORD

The PSW register contains program status information as
detailed in Figure 6-2.

STACK POINTER

The Stack Pointer register is 8 bits wide. It is incremented
before data is stored during PUSH and CALL executions.
While the stack may reside anywhere in on-chip RAM,

MCS®-S1 ARCHITECTURE

the Stack Pointer is initialized to 07H after a reset. This
causes the stack to begin at location 08H.

DATA POINTER

The Data Pointer (DPTR) consists of a high byte (DPH)
and a low byte (DPL). Its intended function is to hold a
16-bit address. It may be manipulated as a 16-bit register
or as two independent 8-bit registers.

PORTS 0 to 3

PO, PI, P2 and P3 are the SFR latches of Ports O. I, 2
and 3, respectively.

SERIAL DATA BUFFER

The Serial Data Buffer is actually two separate registers,
a transmit buffer and a receive buffer register. When data
is moved to SBUF, it goes to the transmit buffer where
it is held for serial transmission. (Moving a byte to SBUF
is what initiates the transmission.) When data is moved
from SBUF, it comes from the receive buffer.

TIMER REGISTERS

Register pairs (THO, TLO), (THI, TLl), and (TH2, TL2)
are the 16-bit counting registers for Timer/Counters 0, I,
and 2, respectively.

CAPTURE REGISTERS

The register pair (RCAP2H, RCAP2L) are the capture
registers for the Timer 2 "capture mode." In this mode,
in response to a transition at the 8052' s T2EX pin, TH2
and TL2 are copied into RCAP2H and RCAP2L. Timer

(MSB)

I CY AC Fa RS1

Symbol Position Name and Significance

CY PSW.7 Carry flag.

AC PSW.6 Auxiliary Carry flag.
(For BCD operations.)

Fa PSW.S Flag 0
(Available to the user for general
purposes.)

RSl PSW.4 Register bank Select contro.! bits 1 & O.
Set/cleared by,software to determine

RSO PSW.3 working register bank (see Note).

2 also has a 16-bit auto-reload mode, and RCAP2H and
RCAP2L hold the reload value for this mode. More about
Timer 2'5 features in Section 6.6.2.

CONTROL REGISTERS

Special Function Registers IP, IE, TMOD, TCON! T2CON,
SCaN, and PCON contain control and status bits for the
interrupt system, the timer/counters, and the serial port.
They are described in later sections.

6.2 OSCILLATOR AND CLOCK CIRCUIT

XTALl and XTAL2 are the input and output of a single­
stage on-chip inverter, which can be configured with off­
chip components as a Pierce oscillator, as shown in Figure
6-3. The on-chip circuitry, and selection of off-chip com­
ponents to configure the oscillator are discussed in Section

30 pi . 10 pi FOR CRYSTALS
40 pi . 10 pi FOR CERAMIC RESONATORS

.---jf
18

1
XTAL2

r I ~E- XTAL 1
19

30 pi . 10 pi FOR CRYSTALS
40 pi 10 pi FOR CERAMIC RESONATORS

Figure 6-3. Crystal/Ceramic Resonator Oscillator

(LSB)

RSO OV p I

Symbol Position Name and Significance

OV PSW.2 Overflow flag.

.PSW.1 (reserved)

p PSW.O Parity flag.
Set/cleared by hardware each instruc-
tion cycle to indicate an odd/even
number of "one" bits in the accumu-
lator, i.e., even parity.

Note- the contents 01 (RS1, RSO) enable the working register
banks as follows:

(O.O)-Bank 0 (OOH-07H)
(0.1)-Bank 1 (08H-OFH)
(1.0)-Bank 2 (10H-17H)
(1.1)-Bank 3 (18H-1FH)

Figure 6-2. PSW: Program Status Word Register

MCS®-51 ARCHITECTURE

6.13. A more detailed discussion will be found in Appli­
cation Note AP-155, "Oscillators for Microcontrollers, "
which is included in this manual.

The oscillator, in any case, drives the internal clock gen­
erator. The clock generator provides the internal clocking
signals to the chip. The internal clocking signals are at
half the oscillator frequency, and define the internal

OSC.
(XTAL2)

ALE

READ OPCODE.

phases, states, and machine cycles, which are described
in the next section.

6.3 CPU TIMING

A machine cycle consists of 6 states (12 oscillator pe­
riods). Each state is divided into a Phase I half, during
which the Phase 1 clock is active, and a Phase 2 half,

- - - - - - r-''---1r----,----,--'-,--,--:----,

_ [_R:~D NEXT OPCODE AGAIN.

______ L...----"'------'_----'_---1._---1._~

(A) l-byte, l-cycle instruction, e.g., INC A.,

I
I READ OPCODE.

I
I
I

--------r-~._--_,----r_~._--_,--_,

_ [_R:~ NEXT OPCODE.

________ !---'-----"'-------''------'---'-----' - - - - - - -

(8) 2-byte, l-cycle instruction, e.g., ADD A, #data

READ OPCODE.
READ NEXT
OPCO'DE (DISCARD).

_______ L...-_'------'_----'_---1._---1._~ _ _L_~_~_~_~~ _____ _
(C) l-byte, 2-cycle instuction, e.g."INC DPTR.

I

READOPCODE
(MOVX). . NO

READ NEXT OPCODE AGAIN. J
NO FETCH. I

l I ____ _

______ L...----"'------'_----'_---1._---1.~~-~-~-~-~-~~------l ADDR DATA
(D) MOVX (l-byte, 2-cycle)

ACCESS EXTERNAL MEMORY

Figure 6-4. 8051 Fetch/Execute Sequences

" A

MCS®-51 ARCHITECTURE

during which the Phase 2 clock is active. Thus, a machine
cycle consists of 12 oscillator periods, numbered SIPI
(State I, Phase I), through S6P2 (State 6, Phase 2). Each
phase lasts for one oscillator period. Each state lasts for
two oscillator periods. Typically, arithmetic and logical
operations take place during Phase I and internal register­
to-register transfers take place during Phase 2.

The diagrams in Figure 6-4 show the fetch/execute timing
referenced to the internal states and phases. Since these
internal clock signals are not user accessible, the XTAL2
oscillator signal and the ALE (Address Latch Enable) sig­
nal are shown for external reference. ALE is normally
activated twice during each machine cycle: once during
SIP2 and S2PI, and.again during S4P2 and SSP!.

Execution of a one-cycle instruction begins at S I P2, when
the opcode is latched into the Instruction Register. If it
is a two-byte instruction, the second byte is read during
S4 of the same machine cycle. If it is a one-byte instruc­
tion, there is still a fetch at S4, but the byte read (which
would be the next opcode), is ignored, and the Program
Counter is not incremented. In any case, execution is

WRITE
TO
LATCH

INT BUS

WRITE
TO
LATCH

ADDR/DATA

(A) PORT 0 BIT

CONTROL

(C) PORT 2 BIT

complete at the end of S6P2. Figures 6-4A and 6-4B show
the timing for a I-byte, I-cycle instruction and for a 2-
byte, I-cycle instruction.

Most 8051 instructions execute in one cycle. MUL (mul­
tiply) and DIV (divide) are the only instructions that take
more than two cycles to complete. They take four cycles.

Normally, two code bytes are fetched from Program Mem­
ory during every machine cycle. The only exception to
this is when a MOVX instruction is executed. MOVX is
a I-byte 2-cycle instruction that accesses external Data
Memory. During a MOVX, two fetches arc skipped while
the external Data Memory is being addressed and strobed.
Figures 6-4C and 6-4D show the timing for a normal 1-
byte, 2-cycle instruction and for a MOVX instruction.

6.4 PORT STRUCTURES AND OPERATION

All four ports in the 8051 are bidirectional. Each consists
of a latch (Special Function Registers PO through P3), an
output driver, and an input buffer.

WRITE
TO
LATCH

(B) PORT 1 BIT

ALTERNATE
OUTPUT

FUNCTION

ALTERNATE
INPUT

FUNCTION

(0) PORT 3 BIT

Figure 6-5. 8051 Port Bit Latches and 1/0 Buffers
* See Figure 6-6 for details of the internal pullup.

" r:

MCS®-S1 ARCHITECTURE

The output drivers of Ports 0 and 2, and the input buffers
of Port 0, are used in accesses 'to external memory, In this
application, Port 0 outputs the low byte of the external
memory address, time-multiplexed with the byte being
written or read. Port 2 outputs the high byte of the external
memory address when the address is 16 bits wide. Oth­
erwise the Port 2 pins continue to emit the P2 SFR content.

All the Port 3 pins, and (in the 8052) two Port I pins are
multifunctional. They are not only port pins, but also serve
the functions of various special features as listed below:

PORT PIN ALTERNATE FUNCTION
*P1.0

P3.0
P3.1
P3.2
P3.3
P3.4

P3.S

P3.6

P3.7

T2 (Timer/Counter 2
external input)
T2EX (Timer/Counter 2
capture/reload trigger)
RXD (serial input port)
TXD (serial output port)
INTO (external interrupt)
INT1 (external interrupt)
TO (Timer/Counter 0 external
input)
T1 (Timer/Counter 1 external
input)
WR (external Data memory.
write strobe)
RD (external Data memory
read strobe)

*PI.O and PI. I serve these alternate functions only on the
8052.

The alternate functions can only be activated if the cor­
responding bit latch in the port SFR contains a I. Oth­
erwise the port pin is stuck at. O.

6.4.1 I/O Configurations

Figure 6-5 shows a functional diagram of a typical bit
latch and I/O buffer in each of the four ports. The bit latch
(one bit in the port's SFR) is represented as a Type D flip­
flop, which will clock in a value from the internal bus in
response to a "write to latch" signal from the CPU. The
Q output of the flip-flop is placed on the internal bus in
response to a "read latch" signal from the CPU. The level
of the port pin itself i's placed on the internal bus in re­
sponse to a "read pin" signal from the CPU. Some in­
structions that read a port activate the "read latch" signal,
and others activate the "read pin" signal. More about that
in Section 6.4.4.

As shown in Figure 6-5, the output drivers of Ports 0 and
2 are switchable to an internal ADDR and ADDRIDATA
bus by an internal CONTROL signal for use in external
memory accesses. During external memory accesses, the
P2 SFR remains unchanged, but the PO SFR gets I s written
to it.

Also shown in Figure 6-5, is that if a P3 bit latch contains
a I, then the output level is controlled by the signal labeled
"alternate output function." The actual P3.X pin level
is always available to the pin's alternate input function,
if any. -

Ports I, 2, and 3 have internal pull-ups. Port 0 has open­
drain outputs. Each 110 line can be independently used
as an input or an output. (Ports 0 and 2 may not be used
as general purpose '110 when being used as the ADDRI
DATA BUS). To be used as an input, the port bit latch
must contain a I, which turns off the output driver FET.
Then, for Ports I, 2, and 3, the pin is pulled high by the
internal pull-up, but can be pulled low by an external
source.

Port 0 differs in not having internal pullups. The pullup
PET in the PO output driver (see Figure 6-5A) is used only
when the Port is emitting 1 s during external memory ac­
cesses. Otherwise the pullup PET is off. Consequently PO
lines that are being used as output port lines are open
drain. Writing a.1 to the bit latch leaves both output FETs
off, so the pin floats. In that condition it can be used as
a high-impedance input. '

Because Ports I, 2, and 3 have fixed internal pullups they
are sometimes called "quasi-bidirectional" ports. When
configured as inputs they pull high and will source current
(IlL, in the data sheets) when externally pulled low. Port
0, on the other hand, is considered "true" bidirectional,
because when configured as an input it floats.

All the port latches in the 8051 have I s written to them
by the reset function. If a 0 is subsequently written to a
port latch, it can be reconfigured as an input by writing
a I to it.

6.4.2 Writing to a Port

In the execution of an instruction that changes the value
in a port latch, the new value arrives at the latch during
S6P2 of the final cycle of the instruction. However, port
latches are in fact sampled by their output buffers only
during Phase I of any clock period. (During Phase 2 the
output buffer holds the value it saw during the previous
Phase 1). Consequently, the new value in the port latch
won't actually appear at the output pin until the next Phase
I, which will be at SIPI of the next machine cycle.

If the change requires a O-to-I transition in Port I, 2, or
3, an additional pull-up is turned on, during S IPI and
SIP2 of the cycle in which the transition occurs. This is
done to increase the transition speed., The extra pull-up
can source about 100 times the current that the normal
pull-up can. It should be noted that the internal pull-ups
are field-effect transistors, not linear resistors. The pull­

,up arrangements are shown in Figure 6-6.

In HMOS versions of the 8051, the fixed part of the pull­
up is a depletion-mode transistor with the gate wired to
the source. This transistor will allow the pin to source

MCS®-51 ARCHITECTURE

Vcc

2 OSC. PERIODS ENHANCEMENT MODE FET

aD (~
A. HMOS Configuration. The enhancement mode transistor Is turned

on for 2 osc. periods after a makes a 1-to-0 transition.

Q
FROM PORT

LATCH

Vcc

INPUT 0---0<
DATA

Vcc Vcc

READ
PORT PIN

B. CHMOS Configuration. pFET 1 is turned on for 2 osc.
periods after a makes a 1-to-0 transition. During this
time, pFET 1 also turns on pFET 3 through the Inverter
to form a latch which holds the 1. pFET 2 is also on.

Figure 6-6. Ports 1, 2 and 3 HMOS and CHMOS Internal Pull-up Configurations

about 0.25 rnA when shorted to ground. In parallel with
the fixed pull-up is an enhancement-mode transistor,
which is activated during S 1 whenever the port bit does
a O-to-l transition. During this interval, if the port pin is
shorted to ground, this extra transistor will allow the pin·
to source an additional 30 rnA.

In the CHMOS versions, the pull-up consists of three
pFETs. It should be noted that an n-channel FET (nFET)
is turned on when a logical 1 is applied to its gate, and
is turned off when a logical 0 is applied to its gate. A p­
channel FET (pFET) is the opposite: it is on when its gate
sees a 0, and off when its gate sees a 1.

6-7

pFET 1 in Figure 6-6B is the transistor that is turned on
for 2 oscillator periods after a O-to-l transition in the port
latch. While it's on, it turns on pFET 3 (a weak pull-up),
through the inverter. This inverter and pFET form a latch
which hold the 1.

Note that if the pin is emitting aI, a negative glitch on
the pin from some external source can tum off pFET 3,
causing the pin to go into a fioat state, pFET 2 is a very
weak pull-up which is on whenever the nFET is off, in
traditional CMOS style. It's only about 1110 the strength
of pFET3. Its function is to restore a 1 to the pin in the
event the pin had a 1 and lost it to a glitch.

MCS®-51 ARCHITECTURE

6.4.3 Port Loading and Interfacing

The output buffers of Ports 1, 2, and 3 can each drive 4
LS TTL inputs. These ports on HMOS versions can be
driven in a nonnal manner by any TTL or NMOS circuit.
Both HMOS and CHMOS versions can be driven by open­
collector and open-drain outputs, without the need for
external pull-ups.

Port 0 output buffers can each drive '8 LS TTL inputs.
They do, however, require external pull-ups to drive
NMOS inputs, except when being used as the ADDRESS/
DATA bus.

6.4.4 Read-Modify-Write Feature

Some instructions that read a port read the latch and others'
read the pin. Which ones do which? The instructions that
read the latch rather than the pin are the ones that read
a value, possibly change it, and then rewrite it to the latch.
These are called "read-modify-write" instructions. The
instructions listed below are read-modify-write instruc­
tions. When the destination operand is a port, or a port
bit, these instructions read the latch rather than the pin:

ANL
ORL
XRL

JBC

CPL

INC
DEC
DJNZ

(logical AND, e.g., ANL P1,A)
(logical OR, e.g., ORL P2,A)
(logical EX-OR, e.g., XRL
P3,A)
(jump if bit = 1 and clear bit,
e.g., JBC P1.1, LABEL)
(complement bit, e.g., CPL
P3.0)
(increment, e.g., INC P2)
(decrement, e.g., DEC P2)
(decrement and jump if not
zero, e.g., DJNZ P3, LABEL)

MOV PX. Y,C (move carry bit to bit Y of
Port X)

. CLR PX.Y (clear bit Y of Port X)
SET PX.Y (set bit Y of Port X)·

It is not obvious that the last three instructions in this list
are read-modify-write instructions, but they are. They read
the port byte, all 8 bits, modify the addressed bit, then
write the new byte back to the latch.

The reason that read-modify-write instructions are directed
to the latch rather than the pin is to avoid a possible
misinterpretation of the voltage level at the pin. For ex:
ample, a port bit might be used to drive the base of a
transistor. When. a 1 is written to the bit, the transistor is
turned on. If the CPU then reads the same port bit at the
pin rather than the latch, it will read the base voltage of
the transistor and interpret it as a O. Reading ·the latch
rather than the pin will return the correct value of 1.

6-8

6.5 ACCESSING EXTERNAL MEMORY

Accesses to external memory are of two types: accesses
to external Program Memory and accesses to external Data
Memory. Accesses to external Program Memory use sig­
nal PSEN (program store enable) as the read strobe. Ac­
cesses to ext~rnal Data Memory use RD or WR (alternate
functions 0(P3..7 and P3. 6) to strobe the memory.

Fetches from external Program Memory always use a 16-
bit address. Accesses to external Data Memory can use
either a16-bit address (MOYX @DPTR) or an 8-bit ad­
dress (MOYX @Ri).

Whenever a 16-bit address is used, the high byte of the
address comes out on Port 2, where it is held for the
duration of the read or write cycle. During this time the
Port 2 latch (the Special Function Register) does not have
to contain 1 s, and the contents of the Port 2 SFR are not
modified. If the external memory cycle is not immediately
followed by another external memory cycle, the undis­
turbed contents of the Port 2 SFR will reappear in the next
cycle.

If an8-bit address is being used (MOYX @Ri), the con­
tents of the Port 2 SFR remain at the Port 2 pins throughout
the external memory cycle. This will facilitate paging.

In any case, the low byte of the address is time-multiplexed
with the data byte on Port O. The ADDRIDATA signal
drives both FETs in the Port 0 output buffers. Thus, in
this application the Port 0 pins are not open-drain outputs,
and do not require external pull-ups. Signal ALE (address
latch enable) should be used to capture the address byte
into an external latch. The address byte is valid at the
negative transition of ALE. Then, in a write cycle, the
data byte to be written appears on Port 0 just before WR
is activated, and remains there until after WR is deacti­
vated. In a read cycle, the incoming byte is accepted at
Port 0 just before the read strobe is deactivated.

. During any access to external memory, the CPU writes
OFFH tothe Port 0 latch (the Special Function Register),
thus obliterating whatever information the Port 0 SFR may
have been holding.

External Program Memory is accessed under two conditions:

1) Whenever signal EA is active; or
2) Whenever the program counter (PC) contains a number

thatis larger than OFFFH (lFFFH for the 8052).

Thisrequires that the ROMless versions have EA wired
low to enable the lower 4K (8K for the 8032) program
bytes to be fetched from external memory.

When the CPU is executing out of external Program Mem­
ory, all 8 bits of Port 2 are dedicated to an output function
and may not be used for general purpose 110. During
external program fetches they output the high byte of the
PC, and during accesses to external Data Memory they

MCS®·51 ARCHITECTURE

output either DPH or the Port 2 SFR (depending on
whether the external Data Memory access is a MOVX
@DPTRor a MOVX @Ri).

6.5.1 PSEN

The read strobe for external fetches is PSEN. PSEN is not
activated for internal fetches. When the CPU is accessing
external Program Memory, PSEN is activated twice every
cycle (except during a MOVX instruction) whether or not
the byte fetched is actually needed for the current instruc­
tion. When PSEN is activated its timing is not the same
as RD. A complete RD ~Ie, including activation and
deactivation of ALE and RD, takes 12 oscillator periods.
A complete PSEN cycle, including activation and deac­
tivation of ALE and PSEN, takes 6 oscillator periods. The

ALE

PsEN

execution sequence for these two types of read cycles are
shown in Figure 6-7 for comparison.

6.5.2 ALE

The main function of ALE is to provide a properly timed
signal to latch the low byte of an address from PO .to an
external latch during fetches from external Program Mem­
ory. For that purpose ALE is activatd twice every machine
cycle. This activation takes place even when the cycle
involves no external fetch. The only time an ALE pulse
doesn't come out is during an access to external Data
Memory. The first ALE of the second cycle of a MOVX
instruction is missing (see Figure 6-7). Consequently, in
any system that does not use external Data Memory, ALE
is activated at a constant rate of 1/6 the oscillator fre­
quency, and can be used for external clocking or timing
purposes.

AD -------+----------~--~------4-----------~----------,_--- (A)
WITHOUT A

MOVX.

PO

ALE

P5EN

,
tPCLOUT

VALID

I
I

tPCLOUT
VALID

r---CYCLE 1 "j4
I 51 I 52 I 53 I 54 I 55 I 56 51

RD ------~----------_+----,

PO -

t. PCL OUT
VALID

I ,
tPCLOUT

VALID

I
I

tPCLOUT
VALID

CYCLE2 ~

I 52 I 53 I 54 I 55 I 56 I

t,PCL OUT
VALID

Figure 6·7. External Program Memory Execution

6-9

(8)
WITH A
MOVX.

MCS®·51 ARCHITECTURE

6.5.3 Overlapping External Program and
Data Memory Spaces

In some applications it is desirable to execute a program
from the same physical memory that is being used to store
data. In the 8051, the external Program and Data Memory
spaces can be combined by ANDing PSEN and RD. A
positive-logic AND of these two signals produces an ac­
tive-low read strobe that can be used for the combined
J2!!ysical memory. Since the PSEN cycle is faster than the
RD cycle, the external memory needs to be fast enough
to accommodate the PSEN cycle.

6.6 TIMER/COUNTERS

The 8051 has two 16-bit timer/counter registers: Timer
o and Timer I. The 8052 has these two plus one more:
Timer 2. All three can be configured to operate either as
timers or event counters.

In the "timer" function, the register is incremented every
machine cycle. Thus, one can think of it as counting
machine ·cycles. Since a machine cycle consists of 12
oscillator periods, the count rate is 11 12 of the oscillator
frequency.

In the "counter" function, the register is incremented in
response to a I-to-O transition at its corresponding external
input pin, TO, TI or (in the 8052) T2. In this function,
the external input is sampled during S5P2 of every ma­
chine cycle. When the samples show a high in one cycle
and a low in the next cycle, the count is incremented. The
new count value appears in the register during S3Pl of
the cycle following the one in which the transition was
detected. Since it takes 2 machine cycles (24 oscillator
periods) to recognize a I-to-O transition, the maximum
count rate is 1124 of the oscillator frequency. There are

no restnctlOns on the duty cycle of the external input
signal, but to ensure that a given level is sampled at least
once before it changes, it should be held for at least one
full machine cycle.

In addition to the "timer" or "counter" selection, Timer
o and Timer 1 have four operating modes from which·to
select. Timer 2, in the 8052, has three modes of operation:
"capture," "auto-reload" and "baud rate generator."

6.6.1 Timer 0 and Timer 1

These timer/counters are present in both the 8051 and the
8052. The "timer" or "counter" function is selected by
control bits Clf in the Special Function Register TMOD
(Figure 6-8). These two timer/counters have four operating
modes, which are selected by bit-pairs (Ml, MO) in
TMOD. Modes 0, 1, and 2 are the same for both timer/
counters. Mode 3 is different. The four operating modes
are described below.

MOOEO

Putting either Timer into mode 0 makes it look like an
8048. Timer, which is an 8-bit counter with a divide-~y-
32 prescaler. Figure 6-9 shows the mode 0 operation as
it applies to Timer 1.

In this mode, the timer register is configured as a 13-bit
register. As the count rolls over from all 1 s to all Os, it
sets the timer interrupt flag TF 1. The counted input is
enabled to the Timer when TRI = 1 and either GATE
= 0 or INTI = 1. (Setting GATE = 1 allows the Timer
to be controlled by external input INTI, to facilitate pulse
width measurements.) TRI is a control bit in the Special
Function Register TCON (Figure 6-lO). GATE is in
TMOD.

(MSB) (LSB)

I GATE CIT M1 MO GATE CIT M1 MO I
~'---------~~--------~~'---------'r~--------~/

TIMER 1 TIMER 0

GATE Gating control When set. Timer/counter
"x" is enabled only while "INTx" pin is
high and "TRx" control pin is set. When
cleared Tlmer"x" Is enabled
whenever "TRx" control bit is set

CIT Timer or Counter Selector Cleared for
Timer operation (input from internal

. system clock). Set for Counter opera­
tion (input from "Tx" input pin).

M1
o

o

MO
o

Operating Mode
MC5-48 Timer "TLx" serves 8S five-bit
presealer.
16 bit Timer/Counter "THx" and
"TLx"are cascaded; there is no prescaler
8·bit auto-reload timer-counter "THx"
holds a value which is to be reloaded
into "TLx" each time it overflOWS.

(Timer 0) TLO is an eight-billimer
c'ounter-controlled by the
standard Timer 0 control bits
THO is an eight-bit timer
only controlled by Timer 1
control bits.

(Timer 1) Timer-counter 1 stopped.

Figure 6·8. TMOO: Timer/Counter Mode Control Register

6-10

MCS®-S1 ARCHITECTURE

The 13-bit register consists of all 8 bits of TH I and the
lower 5 bits of TLl. The upper 3 bits of TLl are inde­
terminate and should be ingored. Setting the run flag (TR I)
does not clear the registers.

Mode 0 operation is the same for Timer 0 as for Timer
l. Substitute :fRO, TFO and 1N10 for the corresponding
Timer I signals in Figure 6-9. There are two different
GATE bits, one for Timer I (TMOD.7) and one for Timer
o (TMOD.3).

MODE 1

Mode I is the same as Mode 0, except that the Timer
register is being run with all 16 bits.

CiT 0 D

MODE 2

Mode 2 configures the timer register as an 8-bit counter
(TLl) with automatic reload, as shown in Figure 6-1l.
Overflow from TLl not only sets TFl, but also reloads
TLl with the contents of TH I , which is preset by software.
The reload leaves THI unchanged.

Mode 2 operation is the same for Timer/Counter O.

MODE 3

Timer I in Mode 3 simply holds its count. The effect is
the same as setting TR I = O. .

INTERRUPT t CIT 01

T1 PIN ------..,..---'-
CONTROL

TR1------f

GATE

Figure 6-9. Timer/Counter 1 Mode 0: 13-bit Counter

(MSB)

TFl TRl TFO TRO

Symbol Position Name and Significance

TFl TCON.7 'Timer 1 overllow Flag. Set by hardware
on timer/counter overflow. Cleared
by hardware ¥l'hen processor
vectors to Interrupt routine.

TRl TCON.6 Timer 1 Run control bit. Set/cleared
by software to turn timer/counter
on/off.

TFO TCON.5 Timer 0 overllow Flag. Set by hardware
on timer/counter overflow. Cleared
by hardware when processor
vectors to Interrupt routine.

TRO TCON.4 Timer 0 Run control bit. Set/cleared by
software to turn timer/counter on/off.

(LSB)

IEl ITl lEO "I ITO 1

Symbol POSition Name and Significance

IEl TCON.3 Interrupt 1 Edge flag. Set by hardware
when external Interrupt edge detected.
Cleared when interrupt processed.

ITl TCON.2 Interrupt 1 Type control bit.,Set/cleared
by software to specify falling edge/low
level triggered external interrupts.

lEO TCON.l Interrupt 0 Edge flag. Set by hardware
when external interrupt edge detected.
Cleared when interrupt processed.

ITO TCON.O Interrupt 0 Type control bit. Set/cleared
by software to specify falling edge/low level
triggered external interrupts.

Figure 6-10. TCON: Timer/Counter Control Register

6-11

MCS®-51 ARCHITECTURE

Timer 0 in Mode 3 establishes TLO and THO as two sep­
arate counters. The logic for Mode 3 on Timer 0 is shown
in Figure 6-12. TLO uses the Timer 0 control bits: clI',
GATE, TRO, INTO, and TFO. THO is locked into a timer
function (counting machine cycles) and takes over the use
of TRI and TFI from Timer I. Thus, THO now controls
the "Timer I" interrupt.

Mode 3 is provided for applications requiring an extra 8-
bit timer or counter. With Timer 0 in Mode 3, an 8051
can look like it has three timer/counters, and an 8052, like
it has four. When Timer 0 is in Mode 3, Timer 1 can be

ciT = 0

______ 1 CiT = 1

T1 PIN -

TR1-----i

GATE

INTO PIN

turned on and off by switching it out of and into its own
Mode 3, or can still be used by the serial port as a baud
rate generator, or in fact, in any application not requiring
an interrupt. .

6.6.2 Timer 2

Timer 2 is a 16-bit timer/counter which is present only
in the 8052. Like Timers 0 and I, it can operate either
as a timer or as an event counter. This is selected by bit
C/T2 in the Special Function Register T2CON (Figure 6-
13). It has three operating modes: "capture," "auto-re-

INTERRUPT

Figure 6-11. Timer/Counter 1 Mode 2: a-bit Auto-reload

osc ~G--- 1/12 IOSC

1/12 IOSC ---'------,

TO PIN -------'....1

GATE

INTO PIN

r--- INTERRUPT

CONTROL

1/12 IOSC ----,----------il-f,i I · ... I_(_:_~_~S_) ...IH ... _T_F1_ ... 1---- INTERRUPT

________ ~CONTROL
TR1 -

Figure 6-12. Timer/Counter 0 Mode 3: Two a-bit Counters

6-12

(MSB)

TF2

Symbol

TF2

EXF2

RCLK

TCLK

EXEN2

TR2

C/T2

CP/RL2

EXF2

Position

T2CON.7

T2CON.6

T2CON.5

T2CON.4

T2CON.3

T2CON.2

T2CON.1

T2CON.O

MCS®·51 ARCHITECTURE

(LSB)

RCLK TCLK EXEN2 TR2 C/T2 CP/RL2

Name and Significance

Timer 2 overflow flag set by a Timer 2 overflow and musl be cleared by soft­
ware. TF2 will not be sel when either RCLK = 1 or TCLK = 1.

Timer 2 external flag set when either a capture or reload is caused by a negative
Iransition on T2EX and EXEN2 = 1. When Timer 2 interruptisenabled, EXF2 = 1
will cause the CPU to veclor to Ihe Timer 2 interrupt rouline. EXF2 must be
cleared by software.

Receive clock flag. When set, causes the serial port 10 use Timer 2 overflow
pulses for its receive clock in modes 1 and 3. RCLK = 0 causes Timer 1 overflow
10 be used for the receive clock.

Transmit clock flag. When set, causes the serial pori to use Timer 2 overflow
pulses for its tr,ansmit clock In modes 1 and 3. TCLK = 0 causes Timer 1 over­
flows to be used for the Iransmit clock.

Timer 2 external enable flag. When set, allows a capture or reload to occur as a
result of a negative transition on T2EX if Timer 2 is nol being used to clock the
serial port. EXEN2 = 0 causes Timer 2 to igno~e events at T2EX.

Start/slop control for Timer 2. A logic 1 starts the timer.

Timer or counter select. (Timer 2)
0= Internal timer (OSC/12)
1 = External event counter (failing edge triggered).

Capture/Reload flag. When set, captures will occur on negative Iransitions at
T2EX if EXEN2 = 1. When cleared, aulo reloads will occur either with Timer 2
overflows or negative transitions at T2EX when EXEN2 = 1. When either RCLK
= 1 or TCLK = 1, this bit is Ignored and the timer is forced to auto-reload on
Timer 2 overflow.

Figure 6-13. T2CON: Timer/Counter 2 Control Register

load" and "baud rate generator," which are selected by
bits in T2CON as shown in Table 2.

In the auto-reload mode there are again two options, which
are selected by bit EXEN2 in T2CON. If EXEN2 = 0,
then when Timer 2 rolls over it not only sets TF2 but also
causes the Timer 2 registers to be reloaded with the 16-
bit value in registers RCAP2L and RCAP2H, which are
preset by software. If EXEN2 = I, then Timer 2 still
does the above, but with the added feature that a I-to-O
transition, at external input T2EX will also trigger the 16-
bit reload and set EXF2.

Table 2. Timer 2 Operating Modes

RCLK+TCLK CP/RL2 TR2 MODE

0 0 1 16-bit auto-reload
0 1 1 16-bit capture
1 X 1 baud rate generator
X X 0 (off) :

In the capture mode there are two options which are se­
lected by bit EXEN2 in T2CON. If EXEN2 = 0, then
Timer 2 is a 16-bit timer or counter which upon over­
flowing sets bit TF2, the Timer 2 overflow bit, which can
be used to generate an interrupt. If EXEN2 = 1, then
Timer 2 still does the above, but with the added feature
that a I-to-O transition at external input T2EX causes the
current value in the Timer 2 registers, TL2 and TH2, to
be captured into registers RCAP2L and RCAP2H, re­
spectively. (RCAP2L and RCAP2H are new Special Func­
tion Registers in the 8052.) In addition, the transition at
T2EX causes bit EXF2 in T2CON to be set, and EXF2,
like TF2, can generate an interrupt.

The capture mode is illustrated in Figure 6-14.

6-13

The·auto-reload mode is illustrated in Figure 6-15.

The baud rate generator mode is selected by RCLK = 1
and/or TCLK = I. It will be described in conjunction
with the serial port.

6.7 SERIAL INTERFACE

The serial port is full duplex, meaning it can transmit and
receive simultaneously. It is also receive-buffered, mean­
ing it can commence reception of a second byte before
a previously received byte has been read from the receive
register. (However, if the first byte still hasn't been read
by the time reception of the second byte is complete, one
of the bytes will be lost). The serial port receive and
transmit registers are both accessed at Special Function
Register SBUF. Writing to SBUF loads the transmit reg-

MCS®-S1 ARCHITECTURE

T2EX PIN

EXEN2

TIMER 2
INTERRUPT

Figure 6-14. Timer 2 In Capture Mode

ister, and reading SBUF accesses a physicalIy separate
receive register.

The serial port can operate in 4 modes:

Mode 0: Serial data enters and exits thiough RXD. TXD
outputs the shift clock. 8 bits are transmitted/received: 8
data bits (LSB first). The baud rate is fixed at 1112 the
oscillator frequency.

Mode 1: 10 bits are transmitted (through TXD) or received
(through RXD): a start bit (0), 8 data bits (LSB first), and
a stop bit (1). On receive, the stop bit goes into RB8 in
Special Function Register SCaN. The baud rate is
variable.

Mode 2: 11 bits are transmitted (through TXD) or received
(through RXD): a start bit (0), 8 data bits (LSB first), a
programmable 9th data bit, and a stop bit (1). On transmit,
the 9th data bit (TB8 in SCaN) can be assigned the value
of 0 or 1. Or, for example, the parity bit (P, in the PSW)
could be moved into TB8. On receive, the 9th data bit
goes into RB8 in Special Function Register SCaN, while
the stop bit is ignored. The baud rate is programmable to
either 1/32 or 1164 the oscillator frequency.

Mode 3: 11 bits are transmitted (through TXD) or received
(through RXD): a start bit (0), 8 data bits (LSB first), a
programmable 9th data bit and a stop bit (1). in fact,
Mode 3 is the same as Mode 2 in alI respects except the
baud rate. The baud rate in Mode 3 is variable.

In all four modes, tranSmission is initiated by any instruc­
. tion that uses SBUF as a destination register. Reception
is initiated in Mode 0 by the condition RI = 0 and REN = 1.
Reception is initiated in the other modes by the incoming
start bit if REN = 1.

6.7.1 Multiprocessor Communications

Modes 2 and 3 have a special provision for multiprocessor
communications. In these modes, 9 data bits are received.
The 9th one goes into RB8. Then comes a stop bit. The
port can be programmed such that when the stop bit is
received, the serial port interrupt wilL be activated only
if RB8 = 1. This feature is. enabled by setting bit SM2
in SCaN. A way to use this feature in multiprocessor
systems is as folIows.

When the master processor wants to transmit a block of
data to one of several slaves, it first sends out an address
byte which identifies the target slave. An address byte
differs from a data byte in that the 9th bit is 1 in an address
byte and 0 in a data byte. With SM2 = 1, no slave will
be interrupted by a data byte. An address byte, however,
will interrupt all slaves, so that each slave can examine
the. received byte and see if it is being addressed. The
addressed slave' will clear its SM2 bit and prepare to re­
ceive the data bytes that will be coming. The slaves that
weren't being addressed leave their SM2s set and go on
about their business, ignoring the coming data bytes.

SM2 has no effect in Mode 0, and in Mode 1 can be used
to check the 'validity of the stop bit. In a Mode 1 reception,
if SM2 = 1, the receive interrupt will not be activated

·unless a valid stop bit is received.

6-14

6.7.2 Serial Port Control Register

The serial port control and status register is the Special
Function Register SCaN, shown in Figure 6-16 .. This
register contains not only the mode selection bits, but also
the9th data bit for transmit and receive (TB8 and RB8),
and the serial port interrupt bits (TI and RJ).

MCS®-S1 ARCHITECTURE

EXEN2

TIMER 2
INTERRUPT

Figure 6-15. Timer 2 In Auto-Reload Mode

(MSB) (LSB)

I SMO SM1 SM2 REN TBB RBB TI RI I
where SMO, SM1 specify the serial port mode, as follows,

SMO SM1 Mode Description Baud Rate

0 0 0 shift register fosc.l12
0 1 1 B-bltUART variable
1 0 2 9-bltUART fosc.l64

or
fosc.l32

3 9-blt UART variable

• SM2 enables the multiprocessor com­
munlcallon feature In modes 2 and
3. In mode 2 or 3, If SM2 II set to 1
then RI will not be activated If the
received 9th data bit (RBB) Is O. In
mode 1, If SM2 = 1 then RI will
not be activated It a valid stop bit
was not received. In mode 0, SM2
should be O.

• REN enables serial recepllon. Set by
software to enable reception. Clear
by software to disable reception.

• TBB Is Ihe 9th data bit that will be
transmlHed in modes 2 and 3. Set
or clear by software as desired.

• RBB In modes 2 and 3, is the 91h data bit
that was received. In mode 1, If
SM2 = 0, RBB Is the stop bit that
was received. In mode 0, RBB Is
not used.

• TI Is transmit Interrupt lIag. Set by
hardware at the end of Ihe Bth bit
lime In mode 0, or at the beginning
of the stop bit In the other modes,
In any serial transmission. Must be
cleared by software.

• RI Is receive Interrupt flag. Set by
hardware at the end of Ihe BIh bit
time In mode 0, or halfway Ihrough
the stop bit time In Ihe other
modes, In any serial reception (ex­
cept see SM2). Must be cleared
by software.

Figure 6-16. SCON: Serial Port Control Register

6.7.3 Baud Rates

The baud rate in Mode 0 is fixed:

Oscillator Frequency
Mode 0 Baud Rate = 12

6-15

The baud rate in Mode 2 depends on the value of bit
SMOD in Special Function Register PeON. If SMOD
= 0 (which is its value on reset), the baud rate is 1164
the oscillator frequency. If SMOD = I, the baud rate is
1132 the oscillator frequency.

2SMOD
Mode 2 Baud Rate = 64" x (Oscillator Frequency)

MCS®-51 ARCHITECTURE

In the 8051, the baud rates in Modes 1 and 3 are deter­
mined by the Timer 1 overflow rate. In the 8052, these
baud rates can be determined by Timer 1, or by Timer 2,
or by both (one for transmit and the other for receive).

Using Timer 1 to Generate Baud Rates

When Timer 1 is used as the baud rate generator, the baud
rates in Modes 1 and 3 are determined by the Timer 1
overflow rate and the value of SMOD as follows:

Modes 1, 3 2SMOD

Baud Rate = ~ x (Timer 1 Overflow Rate)

The Timer 1 interrupt should be disabled in this appli­
cation. The Timer itself can be configured for either
"timer" or "counter" operation, and in any of its 3 run­
ning modes. In the most typical applications, it is confi­
gured for "timer" operation, in the auto-reload mode
(high nibble of TMOD = OOlOB). In that case, the baud
rate is given by the formula

2SMOD Oscillator Frequency
Modes 1,3 Baud Rate = ~ x 12x[256-(THl)]

One can achieve very low baud rates with Timer 1 by
leaving the Timer 1 interrupt enabled, and configuring the
Timer to run as a 16-bit timer (high nibble of TMOD

NOTE:OSC. FREQ. IS DIVIDED BY 2, NOT 12.

_____ ---Jt cm= 1
T2 PIN -

T2EX PIN

EXEN2

= OOOlB), and using the Timer 1 interrupt to do a 16-bit
software reload.

Figure 6-17 lists various commonly used baud rates and
how they canbe obtained from Timer 1.

TIMER 1
BAUD RATE lose SMOD CIT MODE RELOAD

VALUE
MODE 0 MAX: 1MHZ 12 MHZ X X X X
MOOE 2.MAX: 375K 12MHZ 1 X X X
MODES 1,3: 62.5K 12MHZ 1 0 2 FFH

19.2K 11.059 MHZ 1 0 2 FDH
9.6K 11.059 MHZ 0 0 2 FOH
4.8K 11.059 MHZ 0 0 2 FAH
2.4K 11.059 MHZ 0 0 2 F4H
1.2K 11.059 MHZ 0 0 2 E8H
137.5 11.986 MHZ 0 0 2 1DH
110 6MHZ 0 0 2 72H
110 12MHZ 0 0 1 FEEBH

Figure 6-17. Timer 1 Generated Commonly
Used Baud Rates

Using Timer 2 to Generate Baud Rates

In the 8052, Timer 2 is selected as the baud rate generator
by setting TCLK and/or RCLK in T2CON (Figure 6-13).
Note then the baud rates for transmit and receive can be
simultaneously different. Setting 'RCLK arid/or TCLK
puts Timer 2 into its baud rate generator mode, as shown
in Figure 6-18.

"TIMER 2"
INTERRUPT

TIMER 1
OVERFLOW

RX CLOCK

TX CLOCK

L NOTE AVAILABILITY OF ADDITIONAL EXTERNAL INTERRUPT

Figure 6-18. Timer 2 in Baud Rate Generator Mode

6-16

MCS®-51 ARCHITECTURE

The baud rate generator mode is similar to the auto-reload
mode, in that a rollover in TH2 causes the Timer 2 reg­
isters to be reloaded with the 16-bit value in registers
RCAP2H and RCAP2L, which are preset by software.

Now, the baud rates in Modes I and 3 are determined by
Timer 2' s overflow rate as follows:

M d 1 3 B d R Timer 2 Overflow Rate
o es, au ate = 16

The Timer can be configured for either "timer" or
"counter" operation. In the most typical applications, it
is configured for "timer" operation (ClT2 = 0). "Timer"
operation is a little different for Timer 2 when it's being
used as a baud rate generator. Normally as a timer it would
increment every machine cycle (thus at 1112 the oscillator
frequency). As a baud rate generator, however, it incre­
ments every state time (thUS at 112 the oscillator fre­
quency). In that case the baud rate is given by the formula

Modes I, 3 Oscillator Frequency
Baud Rate = __ -=-:..:.::=::::..c:...:.::=="--__

32x[65536 - (RCAP2H, RCAP2L))

where (RCAP2H, RCAP2L) is the content of RCAP2H
and RCAP2L taken as a 16-bit unsigned integer.

Timer 2 as a baud rate generator is shown in Figure 6-18.
This Figure is valid only if RCLK + TCLK = I in
T2CON. Note that a rollover in TH2 does not set TF2,
and will not generate an interrupt. Therefore, the Timer
2 interrupt does not have to be disabled when Timer 2 is
in the baud rate generator mode. Note too, that if EXEN2
is set, a I-to-O transition in T2EX will set EXF2 but will
not cause a reload from (RCAP2H, RCAP2L) to (TH2,
TL2). Thus when Timer 2 is in use as a baud rate gen­
erator, T2EX can be used as an extra external interrupt,
if desired.

It should be noted that when Timer 2 is running (TR2
= 1) in "timer" function in the baud rate generator mode,
one should not try to read or write TH2 or TL2. Under
these conditions the Timer is being incremented every
state time, and the results of a read or write may not be
accurate. The RCAP registers may be read, but shouldn't
be written to, because a write might overlap a reload and
cause write and/or reload errors. Tum the Timer off (clear
TR2) before accessing the Timer 2 or RCAP registers, in
this case.

6.7.4 More AboutMode 0

Serial data enters and exits through RXD. TXD outputs
the shift clock. 8 bits are transmitted/received: 8 data bits
(LSB first). The baud rate is fixed at 1112 the oscillator
frequency.

Figure 6-19 shows a simplified functional diagram of the
serial port in mode 0, and associated timing.

Transmission is initiated by any instruction that uses SBUF
as a destination register. The "write to SBUF" signal at
S6P2 also loads a 1 into the 9th bit position of the transmit
shift register and tells the TX Control block to commence
a transmission. The internal timing is such that one full
machine cycle will elapse between "write to SBUF," and
activation of SEND.

6-17

SEND enables the output of the shift register to the al­
ternate output function line of P3.0, and also enables
SHIFT CLOCK to the alternate output function line of
P3.1. SHIFT CLOCK is low during S3, S4, and S5 of
every machine cycle, and high during S6, SI and S2. At
S6P2 of every machine cycle in which SEND is active,
the contents of the transmit shift register are shifted to the
right one position.

As data bits shift out to the right, zeros come in from the
left. When the MSB of the data byte is at the output
position of the shift register, then the I that was initially
loaded into the 9th position, is just to the left of the MSB,
and all positions to the left of that contain zeros. This
condition flags the TX Control block to do one last shift
and then deactivate SEND and set n. Both of these ac­
tions occur at SIPI of the 10th machine cycle after "write
to SBUF."

Reception is initiated by the condition REN = I and RI
= O. At S6P2 of the next machine cycle, the RX Control
unit writes the bits 11111110 to the receive shift register,
and in the next clock phase activates RECEIVE.

RECEIVE enables SHIFT CLOCK to the alternate output
function line of P3.1. SHIFT CLOCK makes transitions
at S3Pl and S6PI of egvery machine cycle. At S6P2 of
every machine cycle in which RECEIVE is active, the
contents of the receive shift register are shifted to the left
one position. The value that comes in from the right is
the value that was sampled at the P3.0 pin at S5P2 of the
same machine cycle.

As data bits come in from the right, Is shift out to the
left. When the 0 that was initially loaded into the rightmost
position arrives at the leftmost position in the shift register,
it flags the RX Control block to do one last shift and load
SBUF. At SIPI of the 10th machine cycle after the write
to SCON that cleared RI, RECEIVE is cleared and RI is
set.

6.7.5 More About Mode 1

Ten bits are transmitted (through TXD), or received
(through RXD): a start bit (0), 8 data bits (LSB first), and
a stop bit (1). On receive, the stop bit goes into RB8 in
SCON. In the 8051 the baud rate is determined by the
Timer 1 overflow rate. In the 8052 it is determined either
by the Timer 1 overflow rate, or the Timer 2 overflow
rate, or both (one for transmit and the other for receive).

Figure 6-20 shows a simplified functional diagram of the
serial port in Mode 1, and associated timings for transmit
and receive.

MCS®-51 ARCHITECTURE

WRITE

TO ----r--~~7i~r:----~~----1_+-------~ 5BUF

56 ---.-------1

'-------o-lRX CLOCK RI RECEIVE

ALE

-----.l] WRITE TO SBUF

SENl S6P2 I
SHIFT

RXD (DATA OUT) \

TXD (SHIFTCLOCK) \

READ
5BUF

RX CONTROL 5HI FT

RXD
P3.0 ALT
OUTPUT

FUNCTION

RXD
P3.0 ALT

INPUT
FUNCTION

TXD
P3.1ALT
OUTPUT

FUNCTION

TI S3P1 L S6P1
~--~,----
---1l WRITE TO SCON (CLEAR RI)

R/lL;-__ ~==~'---­RECEIVE. ~

SHIFT

R.xci (DATA IN)-----V=-:--{r-~--___lY~-_i~~-_Q~--~.:!----_o~--_!}_':~-­

TXD (SHIFT CLOCK)

Figure 6-19. Serial Port Mode 0

6-18

TRANSMIT

RECEIVE

TIMER 1
OVERFLOW

TCLK-

TIMER2
OVERFLOW

WRITE

MCS®-51 ARCHITECTURE

TO --~r---==~~~~~----~~----1-----r-~ ____ ~~ SBUF

TX CONTROL

TX CLOCK TI SEND

RI LOAD
SBUF
SH I FT 1-------------,

RXD

TXD

TRANSMIT

716 RESET

I RR;~LOCK ISTARTBIT~ 02

RECEIVE BIT DETECTOR SAMPLE TIMES

S~H71~F~T ____________ "~ __ ~' ____ ~L ____ 'L-__ ~' ____ ~L __ ~~~
~R~I __ ~,----

06 I 07 04 I 03 STOP BIT

Figure 6-20. Serial Port Mode 1
TCLK, RCLK, and Timer 2 are present in the 8052/8032 only.

6-19

MCS®-51 ARCHITECTURE

Transmission is initiated by any instruction that uses SBUF
as a destination register. The "write to SBUF" signal also
loads a I into the 9th bit position of the transmit shift
register and flags the TX Control. unit that a transmission
is requested. Transmission actually commences at SIPI
of the machine cycle following the next rollover in the
divide-by-16 counter. (Thus, the bit times are synchro­
nized to the divide-by-16 counter, not to the "write to
SBUF" signal).

The transmission begins with activation of SEND, which
puts the start bit at TXD. One bit time later, DATA is
activated, which enables the output bit of the transmit
shift register to TXD. The first shift p~lse occurs one bit
time after that.

As data bits shift out to the right, zeros are clocked in
fro~ the left. When the MSB of the data byte is at the
output position of the shift register, then the I that was
initially loaded into the 9th position is just to the left of
the MSB, and all positions to the left of that contain
zeroes. This condition flags the TX Control unit to do one
last shift and then deactivate SEND and set T 1. This
occurs at the 10th divide-by-16 rollover after "write to
SBUE"

Reception is initiated by. a detected I-to-O transition at
RXD. For this purpose RXD is sampled at a rate of 16
times whatever baud rate has been established. When a
transition is detected, the divide-by-16 counter is imme­
diately reset, and IFFH is written into the input shift
register. Resetting the divide-by-16 counter aligns its
rollovers with the boundaries of the incoming bit times.

The 16 states of. the counter divide each bit time into
16ths. At the 7th, Sth, and 9th counter states of each bit
time, the bit detector samples the value of RXD. The value
accepted is the value that was seen in at least 2 of the 3
samples. This is done for noise rejection. If the value
accepted during the first bit time is not 0, the receive
circuits are reset and the unit goes back to looking for
another I-to-O transition. This is to provide rejection of
false start bits. If the start bit proves valid, it is shifted
into the input shift register, and reception of the rest of
the frame will proceed.

As data bits come in from the right, I s shift out to the
left. When the start bit arrives. at the leftmost position in
the shift register, (which in mode I is a 9-bit register), it
flags the RX Control blockto do one last shift, load SBUF
and RBS, and set RI. The signal to load SBUF and RBS,
and to set RI, will be generated if, and only if, the fol­
lowing conditions are met at the time the final shift pulse
is generated.

I) RI = 0, and
2) Either SM2 = 0, or the received stop bit =

If either of these two conditions are not met, the received
frame is irretrievably lost. If both conditions are met, the
stop bit goes into RBS, the S data bits go into SBUF, and
RI is activated. At this time, whether the above conditions

are met or not, the unit goes back to looking for a I-to­° transition in RXD.

6.7.6 More About Modes 2 and 3

Eleven bits are transmitted (through TXD), or received
(through RXD): a start bit (0), S data bits (LSB first), a
programmable 9th data bit, and a stop bit (1). On transmit,
the 9th data bit (TDS) can be assigned the value of ° or
1. On receive, the9th data bit goes into RBS in SCON.
The baud rate is programmable to either 1132 or 1164 the
oscillator frequency in mode 2. Mode 3 may have a var­
iable baud rate generated from either Timer- I or 2 de­
pending .on the state of TCLK and RCLK.

Figures 6-21 A and B show a functional diagram of the
serial port in modes 2 and 3. The receive portion isexactly
the same as in mode 1. The transmit portion differs from
mode I only in the 9th bit of the transmit shift register.

Transmission is initiated by any instruction that uses SBUF
as a destination register. The "write to SBUF" signal also
loads TBS into the 9th bit position of the transmit shift
register and flags the TX Control unit that a transmission
is requested. Transmission commences at S IPI of the
machine cycle following the next rollover in the divide­
by-16 counter. (Thus, the bit times are synchronized to
the divide-by-16 counter, not to the "write to SBUF"
signal.)

The transmission begins with activation of SEND, which
puts the start bit at TXD. One bit time later, DATA is
activated, which enables the output bit of the transmit
shift register to TXD. The first shift pulse occurs one bit
time after that. The first shift clocks a I (the stop bit) into
the 9th bit position of the shift register. Thereafter, only
zeroes are clocked in. Thus, as data bits shift out to the
right, zeroes are clocked in from the left. When TBS is
at the output position of the shift register, then the stop
bit is just to the left of TBS, and all positions to the left
of that contain zeroes. This condition flags the TX Control
unit to do one last shift and then deactivate SEND and set
TI. This occurs at the lIth divide-by-16 rollover after
"write to SBUE"

Reception is initiated by \I detected I-to-O transition at
RXD. For this purpose RXD is sampled at a rate of 16
times whatever baud rate has been established. When a
transition is detected, the divide-.by-16 counter is imme­
diately reset; and IFFH is written to the input shift register.

At the 7th, Sth and 9th counter states of each bit time, the
bit detector samples the value of RXD. The value accepted
is the value that was seen in at least 2 of the 3 samples.
If the value accepted during the first bit time is not 0, the

, receive circuits are reset and the unit goes back to looking
for another I-to-O transition. If the start bit proves valid,
it is shifted into the input shift register, and reception of
the rest of the frame will proceed.

6-20

RECEIVE

WRITE
TO

SBUF

PHASE 2 CLOCK
(1/2 fosc)

MODE2

SMOD = 1

SMOD=Q

MCS®-51 ARCHITECTURE

SERIAL
PORT

INTERRUPT

8051 INTERNAL BUS

SEND

(SMOD IS PCON.?) L--.-----I~I

RXD

TX

LOAD
SBUF

~FLOC~~~~=~~L __ ~'L-__ ~L __ ~L ____ IL-__ ~L __ -"L ____ JL-__ ~L __ ~I __ __

_ ~WRITE TO SBUF

~ SEND
DATA L S1P1 I

STOP BIT

S~H~I~F~T _______ ~ __ JL-__ 'L-__ 'L-__ JL-__ 'L-__ JL-__ "L-_~

TXD

TRANSMIT

~R~I __ ~~,-----

Figure 6-21 A. Serial Port Mode 2

6-21

TIMER 1
OVERFLOW

TCLK-

RECEIVE

MCS®-51 ARCHITECTURE

TIMER 2
OVERFLOW

WRITE
TO --~------~1----J
SBUF r---~~----~ __ ~--,

TI

RI LOAD
SBUF
SHIFT 1-----------,

RXD

STOP BIT

TXD

TRANSMIT

~------------------------------------~----------------------------~,-----

Figure 6·21 B. Serial PlJrt MlJde 3
TCLK, RCLK, and Timer 2 are present in the 805218032 only.

6-22

MCS®-51 ARCHITECTURE

As data bits come in from the right, Is shift out to the
left. When the start bit arrives at the leftmost position in
the shift register (which in modes 2 and 3 is a 9-bit reg­
ister), it flags the RX Control block to do one last shift,
load SBUF and RB8, and set RI. The signal to load SBUF
and RB8, and to set RI, will be generated if, and only if,
the following conditions are met at the time the final shift
pulse is generated:

I) RI = 0, and
2) Either SM2 = 0 or the received 9th data bit = I

If either of these conditions are not met, the received
frame is irretrievably lost, and RI is not set. IF both con­
ditions are met, the received 9th data bit goes into RB8,
and the first 8 data bits go into SBUE One bit time later,
whether the above conditions were met or not, the unit
goes back to looking for a I-to-O transition at the RXD
input.

Note that the value of the received stop bit is irrelevant
to SBUF, RB8, or RI.

6.8 INTERRUPTS

The 8051 provides 5 interrupt sources. The 8052 provides
6. These are shown in Figure 6-22.

The External Interrupts INTO and INTI can each be either
level-activated or transition-activated, depending on bits

TFO--------------------~~

TF1------------------~~

TI~
RI~

TF2~
EXF2~~

INTERRUPT
SOURCES

Figure 6·22. MCS·51 Interrupt Sources

6-23

ITO and ITI in Register TCON. The flags that actually
generate these interrupts are bits !EO and IEl in TCON.
When an external interrupt is generated, the flag that gen­
erated it is cleared by the hardware when the service rou­
tine is vectored to only if the intemlpt was transition­
activated. If the interrupt was level-activated, then the
external requesting source is what controls the request
flag, rather than the on-chip hardware.

The Timer 0 and Timer 1 Interrupts are generated by TFO
and TFl, which are set by a rollover in their respective
timer/counter registers (except see Section 6.6.1 for Timer
o in mode 3). When a timer interrupt is generated, the
flag that generated it is cleared by the on-chip hardware
when the service routine is vectored to.

The Serial Port Interrupt is generated by the logical OR
of RI and TI. Neither of these flags is cleared by hardware
when the service routine is vectored to. In fact, the service
routine will normally have to determine whether it was
RI or TI that generated the interrupt, and the bit will have
to be cleared in software.

In the 8052, the Timer 2 Interrupt is generated by the
logical OR of TF2 and EXF2. Neither of these flags is
cleared by hardware when the service routine is vectored
to. In fact, the service routine may have to determine
whether it was TF2 or EXF2 that generated the interrupt,
and the bit will have to be cleared in software.

All of the bits that generate interrupts can be set or cleared
by software, with the same result as though it had been
set or cleared by hardware. That is, interrupts can be
generated or pending interrupts can be canceled in
software.

Symbol

EA

ET2

ES

ET1

EX1

ETO

EXO

(MSB) (LSB)

I EA I x I ET21 ES I ET1 I EX1 I ETa I E~
Position Function

IE.7 disables all Interrupts. If EA ~ 0, no interrupt
will be acknowiedged.1f EA ~ 1, each inter-
rupt source is individually enabled or dis-
abled by setting or clearing its enable bll.

IE.6 reserved

IE.5 enables or disables the Timer 2 overflow
or capture Interrupt. If ET2 = 0, the Tim~r 2:
interrupt Is disabled.

IE.4 enables or disables the Serial Port inter-
rupt. If ES ~ 0, the Serial Port Inlerrup\ Is
disabled.

IE.3 enables or disables the Time, 1 Overflow
interrupt. If ET1 ~ 0, the Timer 1 interrlJp!
is disabied.

IE.2 enables or disables External Interrupt 1.
If EX1 ~ 0, External Interrupt 1 Is disabled.

IE.1 enables or disables the TimeI' 0 Ouerflow
Interrupt. If ETO = 0, the Timer 0 In1errupt
is disabled.

IE.O enables or disables External Interrupt O. II
EXO ~ 0, External Interrupt 0 is disabled.

Figure 6·23. IE: Interrupt Enable Register

MCS®-51 ARCHITECTURE

Each of these interrupt sources can be individually enabled
or disabled by setting or clearing a bit in Special Function
Register IE (Figure 6-23). Note that IE contains also a
global disable bit, EA, which disables all interrupts at
once.

6.8.1 Priority Level Structure

Each interrupt source can also be individually programmed
to one of two priority levels by setting or clearing a bit
in Special Function Register IP (Figure 6-24). A low­
priority interrupt can itself be interrupted by a high-priority
interrupt, but not by another low-priority interrupt. A
high-priority interrupt can't be interrupted by any other
interrupt source.

Symbol

PT2

PS

PTl

PXl

PTO

PXO

(MSB) (LSB)

I X I X I PT2 I PS I PT1 I PXl I PTO I pxo I
Position Function

IP.] reserved

IP.e reserved

IP.S defines the Timer 2 Interrupt priority
level. PT2 ~ 1 programs it to the higher
priority level.

IP.4 defines the Serial Port interrupt priority
level. PS ~ 1 programs it to the higher
priority level.

IP.3 defines the Timer 1 Interrupt priority
level. PTl ~ l'programs it to the higher
priority level.

IP.2 defines the External Interrupt 1 priority
level. PXl ~ 1 programs It to the higher
priority level.

IP.l defines the Timer 0 interrupt priority
level. PTO ~ 1 programs it to the higher
priority level.

IP.O dellnes the External Interrupt 0 priority
level. PXO ~ 1 programs It to the higher
priority level.

Figure 6-24. IP: Interrupt Priority Register

If two requests of different priority levels are received
simultaneously, the request of higher priority level is ser­
viced. If requests of the same priority level are receivdd
simultaneously, an internal polling sequence detennines
which request is serviced. Thus within each priority level
there is a second priority structure dctennined by the poll­
ing sequence, as follows:

SOURCE

1. lEO
2. TFO
3, IEl
4. TFl
5. RI+TI
6. TF2+ EXF2

PRIORITY WITHIN LEVEL

(highest)

(lowest)

Note that the "priority within level" structure is onty used
to resolve simultaneous requests of the same priority level.

6.8.2 How Interrupts Are Handled

.The interrupt flags are sampled at S5P2 of every machine
cycle. The samples are polled during the following ma­
chine cycle. If one of the flags was in a set condition at
S5P2 of the preceding cycle, the polling cycle will find
it and the interrupt system will generate an LCALL to the
appropriate service routine, provided this hardware-gen­
erated LCALL is not blocked by any of the following
conditions:

1. An interrupt of equal or higher priority level is already
in progress.

2. The current (polling) cycle is not the final cycle in the
execution of the instruction in progress.

3. The instruction in progress is RET! or any access to
the IE or IP registers.

Any of these three conditions will block the generation
of the LCALL to the interrupt service routine. Condition
2 ensures that the instruction iii progress will be completed

........ ·_--Cl--oo .. -t-I ---C2--...... ~I---C3---oo ... ooIlf-.. ---C4--....... ~I:---CS--.... ,

IS5P21 S6

........ LJl.Sl..I1--;,,~, ---'--~111:----L.-.---i.1"..~----I.----

G-'t
INTERRUPT INTERRUPT

GOES LATCHED
ACTIVE

INTERRUPTS
ARE POLLED

LONG CALL TO
INTERRUPT

VECTOR ADDRESS

This is the fastest possible response when C2 is the final cycle 01
an instruction other than RETI or an access to IE or IP.

Figure 6-25. Interrupt Response Timing Diagram

6-24

INTERRUPT ROUTINE

MCS®·51 ARCHITECTURE

before vectoring to any service routine. Condition 3 en­
sures that if the instruction in progress is RET! or imy
access to IE or IP, then at least one more instruction will
be executed before any interrupt is vectored to.

The polling cycle is repeated with each machine cycle,
and the· values polled are the values that were present at
S5P2 of the previous machine cycle. Note then that if an
interrupt flag is active but not being responded to for one
of the above conditions, if the flag is not still active when
the blocking condition is removed, the denied interrupt
will not be serviced. In other words, the fact that the
interrupt flag was once active but not serviced is not re­
membered. Every polling cycle is new.

The polling cycle/LCALL sequence is illustrated in Figure
6-25.

Note that if an interrupt of higher priority level goes active
prior to S5P2 of the machine cycle labeled C3 in Figure
6-25, then in accordance with the above rules it will be
vectored to during C5 and C6, without any instruction of
the lower priority routine having been executed.

Thus the processor acknowledges an interrupt request by
executing a hardware-generated LCALL to the appropriate
servicing routine. In some cases it also clears the flag that
generated the interrupt, and in other cases it doesn't. It
never clears the Serial Port or Timer 2 flags. This has to
be done in the user's software. It clears an external in­
terrupt flag (lEO or lEI) only if it was transition-activated.
The hardware-generated LCALL pushes the contents of
the Program Counter onto the stack (but it does not save
the PSW) and reloads the PC with an address that depends
on the source of the interrupt being vectored to, as shown
below.

SOURCE

lEO
TFO
IE1
TF1

RI+TI
TF2+EXF2

VECTOR
ADDRESS

0003H
OOOBH
0013H
001BH
0023H
002BH

Execution proceeds from that location until the RET! in­
struction is encountered. The RET! instruction informs
the processor that this interrupt routine is no longer in
progress, then pops the top two bytes from the stack and
reloads the Program Counter. Execution of the interrupted
program continues from where it left off.

Note that a simple RET instruction would also have re­
turned execution to the interrupted program, but it would
have left the interrupt control system thinking an interrupt
was still in progress.

6-25

6.8.3 External Interrupts

The external sources can be programmed to be level­
activated or transition-activated by setting or clearing bit
IT! or ITO in Register TCON. If ITx = 0, e~ernal in­
terrupt x is triggered by a detected low at the INTx pin.
If ITx = I, external interrupt x is edge-triggered. In this
mode if successive samples of the INTx pin show a high
in one cycle and' a low in the next cycle, interrupt request
flag lEx in TCON is set. Flag bit lEx then requests the
interrupt.

Since the external interrupt pins are sampled once each
machine cycle, an input high or low should hold for at
least 12 oscillator periods to ensure sampling. If the ex­
ternal interrupt is transition-activated, the external source
has to hold the request pin high for at least one cycle, and
then hold it low for at least one cycle to ensure that the
transition is seen so that interrupt request flag lEx will be
set. lEx will be automatically cleared by the CPU when
the service routine is called.

If the external interrupt is level-activated, the external
source has to hold the request active until the requested
interrupt is actually generated. Then it has to deactivate
the request before the interrupt service routine is com­
pleted, or else another interrupt will be generated.

6.8.4 Response Time

The INTO and INTI levels are inverted and latched into
lEO and lEI at S5P2 of every machine cycle. The values
are not actually polled by the circuitry until the next ma­
chine cycle. If a request is active and conditions are right
for it to be acknowledged, a hardware subroutine call to
the requested service routine will be the next instruction
to be executed. The call itself takes two cycles. Thus, a
minimum of three complete machine cycles elapse be­
tween activation of an external interrupt request and the
beginning of execution of the first instruction of the service
routine. Figure 6-25 shows interrupt response timings.

A longer response time would result if the request is
blocked by one of the 3 previously listed conditions. If
an interrupt of equal or higher priority level is already in
progress, the additional wait time obviously dep~nds on
the nature of the other interrupt's service routine. If the
instruction in progress is not in its final cycle, the addi­
tional wait time cannot be more than 3 cycles, since the
longest instructions (MUL .and DIV) are only 4 cycles
long, and if the instruction in progress is RET! or an
access to IE or IP, the additional wait time cannot be more
than 5 cycles (a maximum of one more cycle to complete
the instruction in progress, plus 4 cycles to complete the
next instruction if the instruction is MUL or DIV).

Thus, in a single-interrupt system, the response time is.
always more than 3 cycles and less than 8 cycles.

MCS®-51 ARCHITECTURE \

6.9 SINGLE-STEP OPERATION

The 8051 interrupt structure allows single-step execution
with very little software overhead. As previously noted,
an interrupt request will not be responded to while an
interrupt of equal priority level is still in progress, nor
will it be responded to after RETI until at least one other
instruction has been executed. Thus, once an interrupt
routine has been entered, it cannot be re-entered until at
least once instruction of the interrupted program is exe­
cuted. One way to use this feature for single-step operation
is to program one of the external interrupts (say, INTO)
to be level-activated. The service routine for the interrupt
will terminate with the following code:

JNB P3.2,$;WAIT HERE TILL INTO
GOES HIGH

JB P3.2,$;NOW WAIT HERE TILL
IT GOES LOW

RETI :GO BACK AND
EXECUTE ONE
INSTRUCTION

Now if the INTO pin, which is also the P3.2 pin, is held
normally low, the epu will go right into the External
Interrupt 0 routine and stay there until INTO is pulsed
(from low to high to low). Then it will executeRETI, go
back to the task program, execute one instruction, and
immediately re-enter the External Interrupt 0 routine to
await the next pulsing of P3.2. One step of the task pro­
gram is executed each time P3.2 is pulsed.

6.10 RESET

The reset input is the RST pin, which is the input to a
Schmitt Trigger.

vee

+
10"' =:=

vee t--

S051

RSTIVPD

S.2K!l

VSS

Figure 6-26. Power on Reset Circuit

6-26

A reset is accomplished by holding the RST pin high for
at least two machine cycles (24 oscillator periods), while
the oscillator is running. The epu responds by executing
an internal reset. It also configures the ALE and PSEN
pins as inputs. (They are quasi-bidirectional). The internal
reset is executed during the second cycle in which RST

. is high and is repeated every cycle until RST goes low.
I! leaves the internal registers as follows:

REGISTER CONTENT
PC OOOOH
ACC OOH
B OOH
PSW OOH
SP 07H
DPTR OOOOH
PO-P3 OFFH
IP (XXOOOOOO)
IE (OXOOOOOO)
TMOD OOH
TCON OOH
T2CON OOH
THO OOH
TLO OOH
TH1 OOH
TL1 OOH
TH2 OOH
TL2 OOH
RCAP2H OOH
RCAP2L OOH
SCON OOH
SBUF Indeterminate
PC ON (OXXXOOOO)

The internal RAM is not affected by reset. When vee
is turned on, the RAM content is indeterminate unlessthe
part is returning from a reduced power mode of operation.

POWER-ON RESET

An automatic reset can be ,obtained when vee is turned
on by connecting the RST pin to vee through a 10 /-tf
capacitor and to VSS through an 8. 2K!l resistor, providing
the vee risetime does not exceed a millisecond and the
oscillator start-up time does not exceed 10 ,milliseconds.
This power-on reset circuit is shown in Figure 6-26, When
power comes on, the current drawn by RST commences
to charge the capacitor. The voltage at RST is the differ­
ence between vee and the yapacitor voltage, and de­
creases from vee as the cap charges. The'larger the
capacitor, the more slowly VRST decreases. VRST must
remain above the lower threshhold of the Schmitt Trigger
long enough to effect a complete reset. The time required
is the oscillator start-up time, plus 2 machine cycles.

6.11 POWER-SAVING MODES OF
OPERATION

For applications where power consumption is a critical
factor, both the HMOS and eHMOS versions provide
reduced power modes of operation. For the eHMOS ver-

MCS®-51 ARCHITECTURE

sion of the 8051 the reduced power modes, Idle and Power
Down, are standard features. In the HMOS versions a
reduced power mode is available, but not as a standard
feature. The local sales office will provide ordering in­
formation for users requiring this feature.

6.11.1 HMOS Power Down Mode

The power down mode in the HMOS devices allows one
to reduce VCC to zero while saving the on-chip RAM
through a backup supply connected to the RST pin. To
use the feature, the user's system, upon detecting that a
power failure is imminent, would interrupt the processor
in some manner to transfer relevant data to the on-chip
RAM and enable the backup power supply to the RST pin
before VCC falls below its operating limit. When power
returns, the backup supply needs to stay on long enough
to accomplish a reset, and then can be removed so that
normal operation can be resumed.

6.11.2 CHMOS Power Reduction Modes

CHMOS versions have two power-reducing modes, Idle
and Power Down. The input through which backup power
is supplied during these operations is VCC. Figure 6-27
shows the internal circuitry which implements these fea­
tures. In the Idle mode (IDL = I), the oscillator continues
to run and the Interrupt, Serial Port, and Timer blocks
continue to be clocked, but the clock signal is gated off
to the CPU. In Power Down (PD = I), the oscillator is
frozen. The Idle and Power Down modes are activated by
setting bits in Special Function Register PCON. The ad­
dress of this register is 87H. Figure 6-28 details its
contents.

IDLE MODE

An instruction that sets PC ON .0 causes that to be the last
instruction executed before going into the Idle mode. In

~!~
XTAL 2 = XTAL 1

(MSB)

ISMOD I GFI GFO PO

Svmbol Position Name and Function

SMOD PCON.7 Double Baud rate bit. When sei to a
I, the baud rate is doubled when
the serial port is being used in
either modes 1, 2 or 3.

PCON.S (Reserved)
PCON.S (Reserved)
PCON.4 (Reserved)

GFI PCON.3 General-purpose flag bit.
GFO PCON.2 General-purpose flag bit.
PO PCON.l Power Down bit. Setting this bit

activates power down operation.
IOL PCON.O Idle mode bit. Setting this bit ac-

tivates idle mode operation.

If Is are written to PO and IOLat the same time, PO
takes precedence. The reset value of PCON is
(OXXXOOOO).

(LSB)

IDL

Figure 6-28. PCON: Power Control Register

the Idle mode, the internal clock signal is gated off to the
CPU, but not to the Interrupt, Timer, and Serial Port
functions. The CPU status is preserved in its entirety: the
Stack Pointer, Program Counter, Program Status Word,
Accumulator, and all other registers maintain their data
during Idle. The port pins hold the logical states they had
at the time Idle was activated. ALE and PSEN go to their
inactive levels. '

There are two ways to terminate the Idle. Activation of
any enabled interrupt will cause PCON.O to be cleared by
hardware, terminating the Idle mode. The interrupt will
be serviced, and following RETI the next instruction to
be executed will be the one following the instruction that
put the device into Idle.

The flag bits GFO and GFI can be used to give an indi­
cation if an interrupt occurred during normal operation or

INTERRUPT,
I-_--c:> SERIAL PORT,

TIMER BLOCKS

CPU

IDL

Figure 6-27. Idle and Power Down Hardware

6-27

MCS®·51 ARCHITECTURE

during an Idle. For example, an instruction that activates
Idle can also set one or both flag bits. When Idle is ter­
minated by an interrupt, the interrupt service routine can
examine the flag bits.

The other way of terminating the Idle mode is with a
hardware reset. Since the clock oscillator is still running,
the hardware reset needs to be held active for only two
machine cycles (24 oscillator periods) to cpmplete the
reset.

POWER DOWN MODE

An instruction that sets peON. 1 causes that to be the last
instruction executed before going into the Power Down
mode. In the Power Down mode, the on-chip oscillator
is stopped. With the clock frozen, all functions are
stopped, but the on-chip RAM and Special Function Reg­
isters are held. The port pins output the values held by
their respective SFRs. ALE and PSEN output lows.

The only exit from Power Down is a hardware reset. Reset
redefines all the SFRs, but does not change the on-chip
RAM. '

In the Power down mode of operation, vee can be re­
duced to minimize power consumption. eare must be
taken, however,. to ensure that VCC is not reduced before
the Power Down mode is invoked, and that vee is re­
stored to its normal operating level, before the Power
Down mode is terminated. The reset that terminates Power
Down also frees the oscillator. The reset should not be
activated before vee is restored to its normal operating
level, and must be held active long enough to allow the
oscillator to restart and stabilize (normally less than 10
msec).

ACCR. ---:---:-="
OOOOH­
OFFFH

P2.4
P2.5

P2.6
---iP2.7

r-_--i XTAL2

........ "'4''-t-i XTAL 1

Vss

6.12 8751H

The 8751H is the EPROM member of the MCS-51 family.
This means that the on-chip Program Memory can be
electrically programmed, and can be erased by exposure
to ultraviolet light. The 8751H also has a provision for
denying external access to the on-chip Program Memory,
in order to protect its contents against software piracy.

~.12.1 Programming the EPROM

To be programmed, the 8751H must be running with a
4 to 6 MHz oscillator. (The reason the oscillator needs to
be running is that the internal bus is being used to transfer
address and program data to appropriate internal registers.)
The address of an EPROM location to be programmed is
applied to Port I and pins P2.0-P2.3 of Port 2, while the
data byte is applied to Port O. Pins P2.4-P2.6 and PSEN
should be held low, and P2.7 and RST high. (These are
all TTL levels except RST, which requires 2.5V for a
logic high.) EAlVPP is held normally high, and is pulsed
to +21Y. While EAlVPP is at 21V, the ALE/PROG pin,
which is normally being held high, is pulsed low for 50
msec. Then EAlVPP is returned to high. This setup is
shown in Figure 6.29. Detailed timing specifications are
provided in the 8751H data sheet.

Note: The EA pin must not be allowed to go above the
maximum specified VPP level of21.5V for any amount
of time. Even a narrow glitch above that voltage level can
cause permanent damage to the device. The VPP source
should be well regulated and free of glitches.

6.12.2 Program Verification

If the program security bit has not been programmed, the
on-chip Program Memory can be read out for verification

+5V

Vee
8751H

ALEIPROG

EAlVPP

VIHl

Figure 6-29. Programming the 8751 H

6-28

MCS®-S1 ARCHITECTURE

purposes, if desired, either during or after the program­
ming operation. The required setup, which is shown in
Figure 6.30, is the same as for programming the EPROM
except that pin P2. 7 is held at TTL low (or used as an
active-low read strobe). The address of the Program Mem­
ory location to be read is applied to Port 1 and pins
P2.0-P2.3. The other Port 2 pins and PSEN are held low.
ALE, EA, and RST are held high. The contents of the
addressed location will come out on Port O. External pul­
lups are required on Port 0 for this operation.

6.12.3 Program Memory Security

The 8751H contains a security bit, which, once pro­
grammed, denies electrical access by any external means
to the on-chip Program Memory. The setup and procedure
for programming the security bit are the same as for normal

programming, except that pin P2.6 is held at TTL high.
The setup is shown in Figure 6.31. Port 0, Port I, and
pins P2.0-P2.3 of Port 2 may be in any state.

Once the security bit has been programmed, it can be
deactivated only by full erasure of the Program Memory.
While it is programmed, the internal Program Memory
cannot be read out, the device cannot be further pro­
grammed, and it cannot execute external program mem­
ory. Erasing the EPROM, thus deactivating the security
bit, restores the device's full functionality. It can then be
re-programmed.

6.12.4 Erasure Characteristics

Erasure of the 8751H Program Memory begins to occur
when the chip is exposed to light with wavelengths shorter

+5V

ADDR.
P1

vcc
OOOOH-
OFFFH PGM DATA

P2.0- PO
(USE 1QK PULLUPS)

P2.3 B751H

B051AH
P2.4
P2.5 TTL HIGH

P2.6

ENABLE P2.7

XTAL2 VIH1

XTALl PSEN
VSS '=

'=

Figure 6-30. Program Verification in the 8751H and 8051AH

+5V

, ! Vcc x = "DON'T -CARE"
P1

P2.0-
po X

P2.3

8751H
P2.4

'=
P2.5 ALE ALEIPROG 50 ms PULSE TO GND

P2.6
TTL HIGH P2.7

XTAL2 EA EANPP +21V PULSE

XTALl RST VIHl

VSS PSEN

'= '=

Figure 6-31. Programming the Security Bit in the 8751H

6-29

MCS®·51 ARCHITECTURE

than approximately 4,000 Angstroms. Since sunlight and
fluorescent lighting have wavelengths in this range, ex­
posure to these light sources over an extended time (about
1 week in sunlight, or 3 years in room-level fluorescent
lighting) could cause inadvertent erasure. If ail application
subjects the 8751H to this type of exposure, it is suggested
that an opaque label be placed over the window.

The recommended erasure procedure is exposure to ultra­
violet light (at 2537 Angstroms) to an integrated dose of
at least 15 W/cm2. Exposing the 8751H to an ultraviolet
lamp of 12,000 JLW/cm2 rating for 20 to 30 minutes, at~
a distance of about 1 inch, should be sufficient.

XTAL1

"f
SUBST.

Erasure leaves the array in an all Is state.

6.13 MORE ABOUT THE ON·CHIP
OSCILLATOR

6.13.1 HMOS Versions

The on-chip oscillator circuitry for the HMOS (HMOS-I
and HMOS-II) members of the MCS-5 I family is a single
stage linear inverter (figure 6-32), intended for use as a
crystal-controlled. positive reactance oscillator (Figure 6-
33). In this application the crystal is operated in its fun­
damental response mode as an inductive reactance in par­
allel resonance with capacitance external to the crystal.

TO INTERNAL
TIMING' CKTS

XTAL2

Figure 6-32. On-Chip Oscillator Circuitry In the HMOS Versions of the MCS-S1 Family

VSS

Q2

TO INTERNAL
TIMING CKTS

_-t---QUARTZ CRYSTAL
OR CERAMIC RESONATOR

Figure 6-33. Using the HMOS On-Chip Oscillator

6-30

MCS®-S1 ARCHITECTURE

The crystal specifications and capacitance values (CI and
C2 in Figure 6-33) are not critical. 30 pF can be used in
these positions at any frequency with good quality crys­
tals. A ceramic resonator can be used in place of the 0

crystal in cost-sensitive applications. When a ceramic res­
onator is used, Cl and C2 are normally selected to be of
somewhat higher values, typically, 47 pF. The manufac­
turer of the ceramic resonator should be consulted for
recommendations on the values of these capacitors.

VCC -
8051

EXTERNAL
::X~""'---I XTAL2

OSCILLATOR t
SIGNAL

TTL
GATE

- XTAL1

~ VSS

Figure 6-34. Driving the HMOS MCS-51 Parts
with an External Clock Source

XTAL1

TO INTERNAL
TIMING CKTS

400 (}

r
01

02

A more in-depth discussion of crystal specifications, ce-
o ramic resonators, and the selection of values for Cl and
C2 can be found in Application Note AP-1SS, "Oscillators
for Microcontrollers," which is included in this manual.

To drive the HMOS parts with an external clock source,
apply the external clock signal to XTAL2, and ground
XTALl, as shown in Figure 6-34. A pull-up resistor is
suggested because the logic levels at XTAL2 are not TTL.

6.13.2 CHMOS

The on-chip oscillator circuitry for the SOCS1, shown in
Figure 6-35, consists of a single stage linear inverter in­
tended for use as a crystal-controlled, positive reactance
oscillator in the same manner as the HMOS parts. How­
ever, there are some important differences.

One difference is that the SOCS1 is able to turn off its
oscillator under software control (by writing a 1 to the PD
bit in PCON). Another difference is that in the SOCS1 the
internal clocking circuitry is driven by the signal at
XTALl, whereas in the HMOS versions it is by the signal
at XTAL2.

The feedback resistor Rf in Figure 6-35 consists of par­
alleled n- and p-channel FETs controlled by the PD bit,
such that Rf is opened when PD = 1. The diodes D I and
D2, which act as clamps to VCC and VSS, are parasitic
to the Rf FETs.

vcc

RI
XTAL2

PO

Figure 6-35. On-Chip Oscillator Circuitry in the CHMOS Versions of the MCS·51 Family

6·31

MCS®-51 ARCHITECTURE

TO INTERNAL
TIMING CKTS

VSS

VCC

XTAL1--':"-- XTAL2-----­

_--,--- QUARTZ CRYSTAL
8OC51

OR CERAMIC
RESONATOR

Figure 6-36. Using the CHMOS On-Chip Oscillator

The oscillator can be used with the same external com­
ponents as the HMOS versions, as shown in Figure 6-36.
Typically, CI = C2 = 30 pF when the feedback element
is a quartz crystal, and CI = C2 = 47pF when a ceramic
resonator is used.

To drive the CHMOS parts with an external clock source,
apply the external clock signal to XTALl, and leave
XTAL2 float, as shown in Figure 6-37.

6.14 MCS-51 PIN DESCRIPTIONS

VCC: Supply voltage.

80C51

NC XTAL2

EXTERNAL
XTAL1

OSCILLATOR

t SIGNAL
VSS

TTL GATE
WITH PULL-UP

OR CMOS GATE -=

Figure 6-37. Driving the CHMOS MCS-S1 Parts
with an External Clock Source

6-32

VSS: Circuit ground potential.

Port 0: Port 0 is an 8-bit open drain bidirectional 110 port.
As an open drain output port it can sink 8 LS TTL loads.
Port 0 pins that have Is written to them float, and in that
state will function as high-impedance inputs. Port 0 is also
the multiplexed low,order address and data' bus during
accesses to external memory. In this application it uses
strong internal pullups when emitting Is. Port 0 also emits
code bytes during program verification. In that applica­
tion, external pullups are required.

Port 1: Port 1 is an 8-bit bidirectional I/O port with in­
ternal pUllups. The port 1 output buffers can sink/source
4 LS TTL loads. Port 1 pins that have Is written to them
are pulled high by the internal pullups, and in that state
can be used as inputs. As inputs, Port 1 pins that are
externally being pulled 'low will source current (IlL, on
the data sheet) because of the internal pullups.

In the 8052, pins Pl.0 and PI.l also serve the alternate
functions of T2 and T2EX. T2 is the Timer 2 external
input. T2EX is the input through which a Timer 2 "cap­
ture" is triggered.

Port 2: Port 2 is an 8-bit bidirectional 110 port with in­
ternal pullups. The Port 2 output buffers can sink/source
4 LS TTL loads. Port 2 emits the high-order address byte
during accesses to external memory that use 16-bit ad­
dresses. In this application it uses the strong internal pul­
lups when emitting Is. Port 2 also re,ceives the high-order
address and control bits during 875lH programming and
verification,and during program verification in the 8051AH.

MCS®-51 ARCHITECTURE

Port 3: Port 3 is an 8-bit bidirectional 110 port with in­
ternal pullups. It also serves the functions of various spe­
cial features of the MCS-51 Family, as listed below:

PORT PIN
P3.0
P3.1
P3.2
P3.3
P3.4
P3.5
P3.6

P3.7

ALTERNATE FUNCTION
RXD (serial input port)
TXD (serial output port)
INTO (external interrupt 0)
INT1 (external Interrupt 1)
TO (Timer 0 external Input)
!1JTlmer 1 external Input)
WR (external data memory
write strobe)
RD(external data memory
read strobe)

The Port 3 output buffers can source/sink 4 LS TTL loads.

RST: Reset input. A high on this pin for two machine
cycles while the oscillator is running resets the device.

ALEfPROG: Address Latch Enable output pulse for
latching the low byte of the address during accesses to
external memory. ALE is emitted at a constant rate of
116 of the oscillator frequency, for external timing or
clocking purposes, even· when there are no accesses to

6-33

external memory. (However, one ALE pulse is skipped
during each acces to external Data Memory) This pin is
also the program pulse input (PROG) during EPROM
programming.

PSEN: Program Store Enable is the read strobe to external
Program Memory. When the device is executing out of
external Program Memory, PSEN is activated twice each
machine cycle (except that two PSEN activations are
skipped during accesses to external Data Memory). PSEN
is not activated when the device is executing out of internal
Program Memory.

EA/VPP: When EA is held high the CPU executes out
of internal Program Memory (unless the Program Counter
exceeds OFFFH in the 8051AH, or IFFFH in the 8052).
Holding EA low forces the CPU to execute out of external
memory regardless of the Program Counter value. In the
803lAH and 8032, EA must be externally wired low. In
the 8751H, this pin also receives the 2lV programming
supply voltage (VPP) during EPROM programming.

XTALl: Input to the inverting oscillator amplifier.

XTAL2: Output from the inverting oscillator amplifier.

MCS® ... 51 Memory Organization, 7
Addressing Modes and Boolean Processor

CHAPTER 7
MCS®-S1 MEMORY ORGANIZATION, ADDRESSING

MODES AND BOOLEAN PROCESSOR

7.0 INTRODUCTION

The MCS®-51 architecture. provides on-chip memory
as well as off-chip memory expansion capabilities. Sev­
eral addressing mechanisms are incorporated to allow
for an optimal instruction set.

7.1 MEMORY ORGANIZATION

The 8051 has three basic memory address spaces:

.. 64K-byte Program Memory;

• 64K-byte External Data Program Mcmory; and

• 256-bytc (384 bytes for the. 8032/8052 Internal Data
Memory

Figure 7-1 shows MCS®-51 memory maps.

PROGRAM MEMORY ADDRESS SPACE

The 64K-byte Program Memory space consists of an
internal and an external memory portion. If the EA pin
is held high, the 8051 executes out of internal program
memory unless the address exceeds OFFFH (I FFFH
for the 8052). Locations 1000H through OFFFFH
(2000H through OFFFFH for the 8052), are then
fetched from external Program memory. If the EA pin
is held low, the 8051 fetches all instructions from exter­
nal Program Memory. In either case, the 16-bit Pro­
gram Counter is the addressing mechanism.

Locations 00 through 23H (00 through 2BH for the 80321
8052) in Program Memory are used by interrupt service
routines as indicated in Table 1.

DATA MEMORY ADDRESS SPACE

The Da·ta Memory address space consists of an internal
and an external memory space. External Data Memory
is accessed when a MOYX instruction is executed.

Internal Data Memory is divided into three physically
separate and distinct blocks: the lower 128 bytes of
RAM; the upper 128 bytes of RAM (accessable in the
8032/8052 only); and the l28-byte Special Function
Register (SFR) ·area. While the upper RAM area and
the SFR area share the same address locations, they are
accessed through different addressing modes. These
modes are discussed in a later section.

Figure 7-2 shows a mapping of Internal Data Memory.
Four 8-Register Banks occupy locations o through 31 in
the lower RAM area. Only one of these banks may be
enabled at a time (through a two-bit field in the PSW).
The next sixteen bytes, locations 32 through 47 contain

7-1

128 bit addressable locations. Figure 7-3 shows the
RAM bit addresses. The SFR area also has bit addres­
sable locations. They arc shown in Figure 7-4.

N ate that reading from unused locations in Internal
Data Memory will yield random data.

Table 1.

Source

External Interrupt 0
Timer 0 Overflow
External Interrupt I
Timer I Overflow
Serial Port
Timer 2 Overflow/TZEX
Negative Transition

7.2 ADDRESSING MODES

The 8051 lIses five addressing modes:
.. Register;
.. Direct;
• Register Indirect;
.. Immediate; and

Address

0003H
OOOBH
0013H
OOIBH
0023H
002BH

• Base-Register plus Index-Register Indirect.

Table 2 summarizes which memory spaces may be ac­
cessed by each of the addressing modeS:

Table 2. Addressing Method and Associated
Memory Spaces

Register Addressing

-RO-R7
- ACe, B. CY(bit). DPTR

Direct AddreSSing

Lower 128 bytes of internal RA M
- Special Function Registers

Register Indirect Addressing

-- Internal IU\M (@RI, @RO. SP)
- External Data Memory (@RI, RO. @DPTR)

Immediate Addressing
-- Program Memory

Base-Register plus Index-Register
Indirect Addressing

-- Program Memory (@DPTR + A. @ PC + A)

MCS®-51 MEMORY ORGANIZATION, ADDRESSING MODES AND BOOLEAN PROCESSOR

FFFF

FFFF

EXTERNAL

1000

J...
-

OFFF OFFF

INTERNAL EXTERNAL
(EA = 1) (EA = 0) -

FF SPECIAL
FUNCTION

80 . REGISTERS -
7F INTERNAL

0000 0000 00 DATA RAM 0000 ,
V

J ~ '-----v----'
PROGRAM MEMORY INTERNAL DATA MEMORY EXTERNAL

DATA

A. MCS®-51 MEMORY MAP (EXCLUDING 8032/8052) MEMORY

I
FFFF

FFFF

EXTERNAL

3000

J.
-

:tr-~i' 2FFF

f\..0VERLAPPED
SPACE

INTERNAL EXTERNAL
(EA = 1) (EA = 0) -

FF l F'lfJ~+f6"N J 80
-INTERNAL

REGJS]"ERS
7F

OOGO 0000 00 DATA RAM 0000 -
J ,

V
I \

V ~
PROGRAM MEMORY INTERNAL EXTERNAL

DATA MEMORY DATA
MEMORY

B. 8032/8052 MEMORY MAP --
Figure 7-1. MCS®-51 Memory Maps

7-2

MCS®-S1 MEMORY ORGANIZATION, ADDRESSING MODES AND BOOLEAN PROCESSOR

SPECIAL
FUNCTION
REGISTERS
,---A-,

255""'---'"
FOH-,

EOH-l

ADDRESS-
80321
8052

ONLY
:::3
B8H . ABLE BITS
BOH IN SFR,

A8H

90H
88H

:~H.H~
L_~-;=:~12;i:~~ __ 80H

121

ADDRESS- 48 '-==----,-=-:i
ABLE BITS r - 127 120
IN RAM 'I
(128 BITS) ;> ~ 7 0

24 :~ BANK 3

:~ BANK2

:~ BANK 1

=~BANK 0

'~-------~-----_/
INTERNAL
DATA RAM '8032/8052 ONLY

Figure 7-2_ Internal Data Memory Address Space

REGISTER ADDRESSING

Register Addressing accesses the eight working regis­
ters (RO-R 7) of the selected Register Bank. The least
significant three bits of the instruction op code indicate
which register is to be used. ACC, B, DPTR and CY,
the Boolean Processor accumulator, can also be ad­
dressed as registers.

DIRECT ADDRESSING

Direct Addressing is the only method of accessing the
Special Function Registers. The lower 128 bytes of
Internal RAM are also directly addressable.

REGISTER-INDIRECT ADDRESSING

Register-Indirect Addressing uses the contents of either
RO or R I (in the selected Register Bank) as a pointer to
locations in a 256-byte block: the lower 128 bytes of
internal RAM; the upper 128 bytes of internal RAM
(8032/8052 only); or the lower 256 bytes of external

RAM
Byte

7FH

2FH·

2EH

2DH

2CH

2BH

2AH

29H

28H

27H

26H

25H

24H

23H

22H

21H

20H
1FH

18H
17H

10H
OFH

08H
07H

DOH

(MSB) (LSB)

7F 7E 70 7C 7B 7A 79 78

77 76 75 74 73 72 71 70

6F 6E 60 6C 6B 6A 69 68

67 66 65 64 63 62 61 60

SF 5E 50 5C 5B SA 59 58

57 56 55 54 53 52 51 50

4F 4E 40 4C 4B 4A 49 48

47 46 45 44 43 42 41 40

3F 3E 3D 3C 3B 3A 39 38

37 36 35 34 33 32 31 30

2F 2E 20 2C 2B 2A 29 28

27 26 25 24 23 22 21 20

1F 1E 10 1C 1B 1A 19 18

17 16 15 14 13 12 11 10

OF DE 00 DC OB OA 09 08

07 06 05 04 03 02 01 00

Bank 3

Bank 2

Bank 1

Bank 0

Figure 7-3. SpeCial Function Bit
~ddressable Locations

127

47

46

45

44

43

42

41

40

39

38

37

36

35

34

33

32
31

24
23

16
15

8
7

o

Data Memory. Note that the Special Function Registers
are not accessable by this method. Access to the full 64K
external Data Memory address space is accomplished by
using the l6-bit Data Pointer. .

Execution of PUSH and POP instructions also use
Register-Indirect addressing. The Stack Pointer may
reside anywhere in Internal RAM.

. IMMEDIATE ADDRESSING

7-3

Immediate Addressing allows constants to be part of
the op code instruction in Program Memory.

MCS®-S1 MEMORY ORGANIZATION, ADDRESSING MODES AND BOOLEAN PROCESSOR

BASE-REGISTER PLUS INDEX
REGISTER-INDIRECT ADDRESSING

Base-Register plus Index Register-Indirect Addressing
allows a byte to be accessed from Program Memory via
an indirect move from the location whose address is the
sum of a base register (DPTR or PC) and index register,
ACe. This mode facilitates look-up-table accesses.

7.3 BOOLEAN PROCESSOR

The Boolean Processor is an integrated bit processor
within the 8051. It has its own instruction set, accumu­
lator (the carry flag), and bit addressable RAM and I/O.

The bit-manipulation instructions allow a bit to be set,
cleared, complimented, jump-if~set, jump-if-not-set,
jump-if-set-then-c1eared and moved to /from the carry.
Addressable bits, or their compliments, may be logically
ANDed or ORed with the contents of the carry flag. The
result is returned to the carry register.

7-4

Direct

Byte BIt Addresses

Address (MSB)

Hardware

Register

(LSB) Symbol

240 F7 I F. I FSj F41 F31 F21 FljFO

224 E7 I E. I E5 I E4 I E3 I E2 I E11_ EO Ace

CY AC FO RSl RSO OV P

208 07 1 061 05 1 0.1 031 02 1 011 DO PSW

TF2 EXF2 RCLK TCLK.EXEN2 TA2 em CP/RI.2

200 CF 1 CE 1 co 1 cc 1 CB 1 CA 1 c91 C8 T2CON

PT2 PS PT1 PXl PTO pxo

184 -1 -1 BO 1 BC 1 BB 1 BA 1 B91 B8 IP

176 B7 1 B61 851 •. 1 B31 B21 Bl1 BO P3

EA ET2 ES ETl EXl ETO EXO

168 AF 1 - J AD I AC 1 AB 1 AA 1 .91 A8 IE

160 .7j A6 J A51 A.j A3j A21 All AD P2

SMO SM1 8M2 REN TB8 RB8 TI RI

152 9F I 9E I 90 I 9C I 9B I "9A I 99 I 98 seON

144 97 I 96 I 95 I .. I 93 I 921 91 I 90 Pl

TFl TRl TFO TRO IEl ITl lEO ITO

136 8F j 8E j 801 8e 1 8.j SA 1 .. 1 88 TeON

128 87J 86j .. 1 8.1 83 J 82J 81J so PO

Figure 7-4. Special Function Register Bit Address

MCS®.-51 Instruction Set 8

CHAPTER 8
MCS®-S1 INSTRUCTION SET

8.0 INTRODUCTION

The MCS®-51 instruction set includes III instructions,
49 of which are single-byte, 45 two-byte and 17 three
byte. The instruction op code format consists of a func­
tion mnemonic followed by a "destination, source"
operand field. This field specifies the data type and
addressing method(s) to be used.

8.1 FUNCTIONAL OVERVIEW

The MCS-51 instruction set is divided into four func­
tional groups:

• Data Transfer
• Arithmetic
• Logic
• Control Transfer

8.1.1 Data Transfer

Data transfer operations are divided into three classes:

• General Purpose
• Accumulator-Specific
• Address-Object

None of these operations affect the PSW flag settings
except a POP or MOV directly to the PSW.

GENERAL-PURPOSE TRANSFERS

• MOV performs a bit or a byte transfer from the
source operand to the destination operand.

• PUSH increments the SP register and then transfers
a byte from the source operand to the stack location
currently addressed by S P.

• POP transfer a byte operand from the stack location
addressed by SP to the destination operand and then
decrements SP.

ACCUMULATOR SPECIFIC TRANSFERS

• XCH exchanges the byte source operand with regis­
ter A (accumulator).

• XCHD exchanges the low-order nibble of the byte
source operand with the low-order nibble of A.

8-1

• MOVX performs a byte move between the External
Data Memory and the accumulator. The external
address can be specified by the DPTR register (16-
bit) or the R I or RO regi.ster (8-bit).

• MOVC moves a byte from Program memory to the
accumulator. The operand in A is used as an index
into a 256-byte table pointed to by the base register
(DPTR or PC). The byte operand accessed is trans­
ferred to the accumulator.

ADDRESS-OBJECT TRANSFER

• MOV DPTR, #data loads l6-bitsofimmediate data
into a pair of destination registers, DPH and DPL.

8.1.2 Arithmetic

The 8051 has four basic mathematical operations. Only
8-bit operations using unsigned arithmetic are sup­
ported directly. The overflow flag, however, permits the
addition and subtraction operation to serve for both
unsigned and signed binary integers. Arithmetic can
also be performed directly on 'packed decimal (BCD)
representations.

ADDITION

• INC (increment) adds one to the source operand and
puts the result in the operand.

• ADD adds A to the source operand and returns the
result to A.

• ADDC (add with Carry) adds A and the source
operand, then adds one (I) if CY is set, and puts the
result in A.

• DA (decimal-add-adjust for BCD ,addition) corrects
the sum which results from the binary addition of·
two two-digit decimal operands. The packed decimal
sum formed by DA is returned to A. CY is set if the
BCD result is greater than 99; otherwise, it is cleared.

SUBTRACTION

• SUBB (subtract with borrow) subtracts the second
source operand from the' first operand (the accumu­
lator), subtracts one (I) if CY is set and retl,lrns the
result to A.

• DEC (decrement) subtracts one (I) from the source
operand and returns the result to the operand.

MCS®-51 INSTRUCTION SET

MULTIPLICATION

• M UL performs an unsigned multiplication of the A
register by the B register, returning a double-byte
result. A receives the low-order byte, B receives the
high-order byte. OV is cleared if the top half of the
result is zero and is set if it is non-zero. CY is cleared.
AC is unaffected.

DIVISION

• D I V performs an unsigned division ofthe A register by.
the B register and returns the integer quotient to A and'
returns the fractional remainder to the B register.
Division by zero leaves indeterminate data in registers
A and B and sets OV; otherwise OV is cleared. CY is
cleared. AC is unaffected.

Unless otherwise stated in the above descriptions, the
. flags of PSW are affected as follows: .

• CY is set if the operation causes a carry to or from the
resulting high-order bit. Otherwise CY is cleared.

• AC is set if the operation results- in a carry from the
low-order four bits of the result (during addition), or
a borrow from the high-order bits to the low-order
bits (during subtraction); otherwise AC is cleared.

• OV is set if the operation results in a carry to the
high-order bit of the result but not a carry from the
high-order bit, or vice versa; otherwise OV is cleared,
OV is used in two's-complement arithmetic, because
it is set when the signed result cannot be represented
in 8 bits.

• P is set if the modulo 2 sum of the .eight bits in the
accumulator is I (odd parity); otherwise P is cleared
(even parity). When a value is written to the PSW
register, the P bit remains unchanged, as it always
reflects the parity of A.

8.1.3 Logic

The 8051 performs b~sic logic operations on both bit
and byte operands.

SINGLE~OPERAND OPERATIONS

• CLR sets A or any directly addressable bit to zero (0).

• SETB sets any directly addressable bit to one (I).

• CPL is used to compliment the contents of the' A
register without affecting any flags, or any directly
addressable bit location.

8-2

• RL, RLC, RR, RRC, SWAP are the five rotate
operations that can be performed on A. RL, rotate left,
RR, rotate right, RLC, rotate left t4rough C, RRC,
rotate right through C, and SWAP, rotate left four.
For RLC and RRC the CYflag becomes equal to the
last bit rotated out. SWAP rotates A left four places to
exchange bits 3 through 0 with bits 7 through 4.

TWO-OPERAND OPERATIONS

• ANL performs bitwise logical and of with two source
operands (for both bit and byte operands) and returns
the result to the location of the first operand.

• ORL performs bitwise logical or of two source oper­
ands (for both bit and byte operands) and returns the
result of the location of the first operand.

• XRL performs bitwise logical or of two source oper­
ands (byte operandsland returns the result to the loca­
tion of the first operand.

8.1.4 Control Transfer

There are three classes of'control transfer operations:
unconditional calls, returns and jumps; conditional
jumps; and, interrupts. All control transfer operations
cause, some upon a specific condition, the program
execution to continue at a non-sequential location in
program memory.

UNCONDITIONAL CALLS, RETURNS
AND JUMPS

Unconditional calls, returns and jumps transfer control
from the current value of the Program Counter to the
target address. Both direct and indirect transfers are
supported.

• ACALL and LCALL push the address of the. next
instruction onto the stack and then transfer control
to the target address. ACALL is a 2-byte instruction
used when the target address is in the current 2K
page. LCALL is a 3-byte instruction that addresses
the full 64K program space. In ACALL, immediate
data (i.e. an II bit address field) is concatenated to
the five. most significant bits of the PC (which is
pointing to the next instruction). If ACALL is in the
last 2 bytes of a iK page then the call will be made to
the next page since the PC will have been incre­
mented to the next instruction prior to execution.

MCS®-S1 INSTRUCTION SET

• RET transfers control to the return address saved on
the stack by a previous call operation and decre­
ments the SP register by two (2) to adjust the SP for
the popped address.

• AJ M P, LJ M P and SJ M P transfer control to the target
operand. The operation of AJMP and LJMP are
analogous to ACALLand LCALL. The SJMP (short
jump) instruction provides for transfers within a 256
byte range centered about the starting address of the
next instruction (-128 to + 127).

• JMP @A+DPTR performs a jump relative to the
DPTR register. The operand in A is used as the offset
(0-255) to the address in the D PTR register. Thus, the
effective destination for ajump can be anywhere in the
Program Memory space.

CONDITIONAL JUMPS

Conditional jumps perform a jump contingent upon a
specific condition. The destination will be within a 256-

. byte range centered about the starting address of the
next instruction (-128 to +127).

• JZ performs a jump if the accumulator is zero.

• JNZ performs a jump if the accumulator is not zero.

• JC performs a jump if the carry flag is set.

• JNC performs ajump iftheAcarry flag is not set.

• JB performs ajump if the Direct Addressed bit is set.

• JNB performs a jump if the Direct Addressed bit is
not set.

• JBC performs a jump if the Direct Addressed bit is
set and then clears the Direct Addressed bit.

• CJNE compares the first operand to the second ope­
rand and performs ajump if they are not equal. CY is
set if the first operand is less than the second ope­
rand; otherwise it is cleared. Comparisons can be

8-3

made between A directly addressable pytes in Internal
Data Memory or between an immediate value and
either A, a register in the selected Register Bank, or a
Register-Indirect addressed byte of Internal RAM.

• DJNZ decrements the source operand and returns the
result to the operand. Ajump is performed if the result
is not zero. The source operand of the DJNZ instruc­
tion may be any byte in the Internal Data Memory.
Either Direct or Register Addressing may be used to
address the source operand.

INTERRUPT RETURNS

• RETI transfers control as does RET, but addition­
ally.enables interrupts of the current priority level.

8.2 INSTRUCTION DEFINITIONS

Each of the 51 basic MCS-51 operations, ordered
alphabetically according to· the operation mnemonic
are described beginning page 8-8.

A brief example of how the instruction might be used is
given as well as its effect on the PSW flags. The number
of bytes and machine cycles required, the binary machine­
language encoding, and a symbolic description or restate­
ment of the function is also provided.

Note: Only the carry, auxiliary-carry, and overflow flags
are discussed. The parity bit is computed after every in­
struction cycle that alters the accumulator. Similarly,
instructions which alter directly addressed registers could
affect the other status flags if the instruction is applied to
the PS W. Status flags can also be modified by .bit­
manipulation.

For details on the MCS-51 assembler, ASM51, refer to
the MCS-51 Mac~o Assembler User's Guide, publication
number 9800937.

Table 8-1 summarized the MCS-51 instruction set.

MCS®-S1 INSTRUCTION SET

Table 8·1. 8051 Instruction Set Summary

Interrupt Response Time: To finish execution of curr!mt in­
struction, respond to the interrupt request, push the PC and to
vector to the first instruction of the interrupt service program
requires 38 to 81 oscillator periods (3 to 7,..s @ 12 MHz).

INSTRUCTIONS THAT AFFECT FLAG SETTINGS'

INSTRUCTION

ADD
ADDC
SUBB
MUL
DIV
DA
RRC
RLC
SETBC

FLAG INSTRUCTION

C OVAC
X X X CLRC
X X X CPLC
X X X ANLC,bit
o X ANL C,/bit
o X ORLC,bit
X ORLC,bit
X MOVC,bit
X CJNE
I

FLAG

C OVAC
o
X
X
X
X
X
X
X

IN ote that operations on SFR byte address 208 or Qit ad­
dresses 209-215 (i.e., the PSW or bits in the PSW) will also
affect flag settings.

ARITHMETIC OPERATIONS

Oscillator
Mnemonic Description Byte Period

ADD ' A,Rn Add register to 12
Accumulator

ADD A,direct Add direct byte to 2 12
Accumulator

ADD A,@Ri Add indirect RAM 12
to Accumulator

ADD A,#data Add immediate 2 12
data to
Accumulator

ADDC A,Rn Add register to 12
Accumulator
with Carry

ADDC A,direct Add direct byte to 2 12
Accumulator
with Carry

ADDC A,@Ri Add indirect 12
RAM to
Accumulator
with Carry

ADDC A,#data Add immediate 2 12
data to Ace
with Carry

SUBB A,Rn Subtract register 12
from Ace with
borrow

SUBB A,direct Subtract direct 2 12
byte from Ace
with borrow

8-4

Notes on instruction set and addressing modes:
Rn -Register R 7-RO of the currently selected Register

Bank. .
direct -8-bit internal data location's address. This could be

an Internal Data RAM location (0-127) or a SFR
[i.e., I/O port, control register, status register, etc.
(128-255)].

@Ri -8-bit internal data RAM location(0-255) addressed
indirectly through register R I or RO.

#data -8-bit constant included in instruction.
#data 16 -16-bit constant included in instruction
addr 16 -16-bit destination address. Used by LCALL &

LJMP. A branch can be anywhere within the 64K­
byte Program Memory address space.

addr II -II-bit destination address. Used by ACALL &
AJMP. The branch will be within the same 2K-byte
page of program memory as the first byte of the
following instruction.

rei -Signed (two's complement) 8-bit offset byte. Used
by SJMP and all conditional jumps. Range is -128
to + 127 bytes relative to first byte of the following
instruction.

bit -Direct Addressed bit in Internal Data RAM or
Special Function Register.

-New operation not provided by 8048AH/8049AH.

ARITHMETIC OPERATIONS Cont.

Mnemonic Description

SUBB A,@Ri Subtract indirect
RAM fromAcc
with borrow

SUBB A,#data Subtract
immediate data
from Acc with
borrow

INC A Increment
Accumulator

INC Rn 'Increment register
INC direct Increment direct

byte
INC @Ri Increment indirect

RAM
DEC A Decrement

Accumulator
DEC Rn Decrement

Register
DEC direct Decrement direct

byte
DEC @Ri Decrement

indirect RAM
INC DPTR Increment Data

Pointer
MUL AB Multiply A & B
DIV AB Divide A by B
DA A Decimal Adjust

Accumulator

Oscillator
Byte Period

12

2 12

12

I 12
2 12

12

12

12

2 12

12

24

48
48
12

All mnemonics copyrighted ©Intel Corporation 1980

MCS®-51 INSTRUCTION SET

Table 8-1. 80511nslruction Sel Summary (Continued)

LOGICAL OPERATIONS LOGICAL OPERATIONS ConI.

Oscillator Oscillator
Mnemonic Description Byte Period Mnemonic Description Byte Period

ANL A,Rn AND register to 12 XRL A,@Ri Exclusive-O R 12
Accumulator indirect RA M to

ANL A,direct AND direct byte 2 12 Accumulator
to Accumulator XRL A,#data Exclusive-OR 2 12

ANL A,@Ri AND indirect 12 immediate data to
RAMto Accumulator
Accumulator XRL direct,A Exclusive-OR 2 12

ANL A,#data AND immediate 2 12 Accumulator to
data to direct byte
Accumulator XRL direct,#data Exclusive-OR 24

ANL direct,A AN D Accumulator 2 12 immediate data
to direct byte to direct byte

ANL direct,#data AND immediate 24 CLR A Clear 12
data to direct byte Accumulator

ORL A,Rn OR register to 12 CPL A Complement 12
Accumulator Accumulator

ORL A,direct OR direct byte to 2 12 RL' A Rotate 12
Accumulator Accumulator Left

ORL A,@Ri OR indirect RAM 12 RLC A Rotate 12
to Accumulator Accumulator Left

ORL A,#data OR immediate 2 12 through the Carry
data to RR A Rotate 12
Accumulator Accumulator

ORL direct,A OR Accumulator 2 12 Right
to direct byte RRC A Rotate 12

ORL direct,lIdata OR immediate 3 24 Accumulator
data to direct byte Right through

XRL A,Rn Exclusive-OR 12 the Carry
register to SWAP A Swap nibbles 12
Accumulator within the

XRL A,direct Exclusive-OR 2 12 Accumulator
direct byte to
Accumulator

All mnemonics copyrighted ©Intel Corporation 1980

MCS®-51 INSTRUCTION SET

Table 8-1. 8051 Instruction Set Summary (Continued)
,. ' ~

DATA TRANSFER DATA TRANSFER Cont.

Oscillator Oscillator
Mnemonic . Description Byte Period Mnemonic Description Byte Period

MOV A,Rn Move 12 MOV DPTR,#data16 Load Data 3 24
register to Pointer with a
Accumulator 16-bit constant

MOV A,direct Move direct 2 12 MOVC A,@A+DPTR Move Code 24
byte to byte relative to
Accumulator DPTR toAcc

MOV A,@Ri Move indirect 12 MOVC A,@A+PC Move Code 24
RAMto. byte relative to
Accumulator pC to Ace

MOV A,#data Move 2 12 MOVX A,@Ri Move 24
immediate External
data to RAM (~-bit
Accumulator addr) to Ace

MOV Rn,A Move 12 MOVX A,@DPTR Move 24
Accumulator External
to register RAM (l6-bit

MOV Rn,direct Move direct 2 24 addr) to Acc
byte to MOVX @Ri,A Move Acc to 24
register External RAM

MOV Rn,#data Move 2 12 (8-bit addr)
immediate data MOVX @DPTR,A Mo.veAccto 24
to register External RAM

MOV direct, A Move 2 12 (l6-bit addr)
Accumulator PUSH direct Push direct 2 24
to direct byte byte onto

MOV direct,Rn Move register 2 24 stack ,
to direct byte POP direct Pop direct 2 24.

MOY' direct,direct Move direct' 3 24 byte from
byte to direct stack

MOV direct,@Rl Move indirect 2 24 XCH A,Rn Exchange 12
RAMto register with
direct byte Accumulator

MOV direct,#data Move 24 XCH A,direct Exchange 2 12
immediate data direct byte
to direct byte with

MOV @~i,A. Move 12· Accumulator
Accumulator to XCH A,@Ri Exchange 12
indirect RAM indirect RAM

MOV @Ri,direct Move direct 2 24 with
byte to Accumulator
indirect RAM XCHD A,@Ri, Exchange low- 12

MOV @Ri,#data Move 2 12 order Digit
immediate indirect RAM
data to with Acc
indirect RAM

All mnemonics copyrighted ©Intel Corporation 1980

8-6

MCS®-51 INSTRUCTION SET

Table 8-1. 8051 Instruction Set Summary (Continued)

BOOLEAN'VARIABLE MANIPULATION PROGRAM BRANCHING Cont.

Oscillator Oscillator
Mnemonic Description Byte Period Mnemonic Description Byte Period

CLR C Clear Carry 12 RETI Return from 24
CLR bit Clear direct bit 2 12 interrupt
SETB C Set Carry 12 AJMP addrll Absolute 2 24
SETB bit Set direct bit 2 12 Jump
CPL C Complement 12 LJMP addrJ6 Long Jump 24

Carry SJMP rei Short Jump 2 24
CPL bit Complement 2 12 (relative addr)

direct bit JMP @A+DPTR Jump indirect 24
ANL C,bit AND direct bit 2 24 relative to the

to Carry DPTR
ANL C,/bit AND complement 2 24 JZ rei Jump if 2 24

of direct bit Accumulator
to Carry is Zero

ORL C,bit OR direct bit 24 JNZ rei Jump if 2 24
to Carry Accumulator

ORL C,/bit OR complement 24 is Not Zero
of direct bit CJNE A,direct,rel Compare 3 24
to Carry direct byte to

MaY C,bit Move direct bit 2 12 Ace and Jump
to Carry if Not Equal

MaY bit,C Move Carry to 2 24 CJNE A,#data,rel Compare 24
direct bit immediate to

JC rei Jump if Carry 2 24 Ace and Jump
is set if Not Equal

JNC rei Jump if Carry 2 24 CJNE Rn,#data,rel Compare 24
not set immediate to

JB bit,rel Jump if direct 24 register and
Bit is set Jump If Not

JNB bit,rel Jump if direct 24 Equal
Bit is Not set CJNE @Ri,#data,rel Compare 24

JBC bit,rel Jump if direct 24 immediate to
Bit is set & indirect and
clear bit Jump if Not

Equal
DJNZ Rn,rel Decrement 24

PROGRAM BRANCHING register and

Oscillator Jump if Not

Mnemonic Description Byte Period Zero
DJNZ direct, rei Decrement 24

ACALL addrll Absolute 2 24 direct byte
Subroutine and Jump if
Call Not Zero

LCALL addrl6 Long
Subroutine

24 Nap No Operation 12

Call All mnemonics copyrighted ©Intel Corporation 1980
RET Return from 24

Subroutine

MCS®-S1 INSTRUCTION SET

ACALL addr11

Function:

Description:

Example:

Bytes:
Cycles:

Encoding:

Operation:

Absolute Call

ACALL unconditionally calls a subroutine located at the indicated address.
The instruction increments the PC twice to obtain- the address of the following
instruction, then pushes the 16-bit result onto the stack (low-order byte first)
and increments the stack pointer twice. The destination address is obtained by
successively concatenating the five high-order bits of the incremented PC, op­
code bits 7-5, and the second byte of the instruction. The subroutine called must
therefore start within the same 2K block of the program memory as the first
byte of the instruction following ACALL. No flags are affected.
Initially SP equals 07H. The label "SUBRTN" is at program memory location
0345H. After executing the instruction,

ACALL SUBRTN

at location 0123H, SP will contain 09H, internal RAM locations OSH and 09H
will contain 25H and OlH, respectively, and the PC will contain 0345H.
2
2

I alO a9 as I I 0 0 0 I I I a7 a6 a5 a4 I a3 a2 al aO I
ACALL
(PC) -(PC) + 2
(SP) - (SP) + I
«SP»-(PC7-0)
(SP) - (SP) + I

«SP» -(PCI5-S)
(PClO-O)_page address

MCS®-S1 INSTRUCTION SET

ADD A, <src·byte>

Function:
Description:

Example:

ADD A,Rn
Bytes:

Cycles:

Encoding:

Operation:

ADD A,direct
Bytes:

Cycles:

Encoding:

Operation:

Add
ADD adds the byte variable indicated to the accumulator, leaving the result in
the accumulator. The carry and auxiliary-carry flags are set, respectively, if
there is a carry-out from bit 7 or bit 3, and cleared otherwise. When adding un­
signed integers, the carry flag indicates an overflow occurred.

OV is set if there is a carry-out of bit 6 but not out of bit 7, or a carry-out of bit
7 but not bit 6; otherwise OV is cleared. When adding signed integers, OV in­
dicates a negative number produced as the sum of two positive operands, or a
positive sum from two negative operands.

Four source operand addressing modes are allowed: register, direct, register­
indirect, or immediate.
The accumulator holds OC3H' (11000011B) and register 0 holds OAAH
(lOlOlOlOB). The instruction,

ADD A,RO

will leave 6DH (OllOllOIB) in the accumulator with the AC flag cleared and
both the carry flag and OV set to 1.

10 0 011 r r r I
ADD
(A)- (A) + (Rn)

2

10 0 01 0 1 0 11 1 direct address I

ADD
(A)_ (A) + (direct)

MCS®·51 INSTRUCTION SET

ADD A,@Ri
Bytes:

Cycles:

Encoding: 10 0 01 0 1 1 i 1
Operation: ADD

(A)_ (A) + «Rj»

ADD A,#data
Bytes: 2

Cycles:

Encoding: 10 0 01 0 1 0 01 1 immediate data 1

Operation: ADD
(A)_ (A) + #data

MCS®-51 INSTRUCTION SET

ADDC A, <src·byte>

Function:
Description:

Example:

ADDC A,Rn
Bytes:

Cycles:

Encoding:

Operation:

ADDC A,direct

Add with Carry
ADDC simultaneously adds the byte variable indiCated, the carry flag and the
accumulator contents, leaving the result in the accumulator. The carry and
auxiliary-carry flags are set, respectively, if there is a carry-out from bit 7 or bit
3, and cleared otherwise. When adding unsigned integers, the carry flag in­
dicates an overflow occurred.

OV is set if there is a carry-out of bit 6 but not out of bit 7, or a carryout of bit 7
but not out of bit 6; otherwise OV is cleared. When adding signed integers, OV
indicates a negative number produced as the sum of two positive operands or a
positive sum from two negative operands.

Four source operand addressing modes are allowed: register, direct, register­
indirect, or immediate.
The accumulator holds OC3H (11oooo11B) and register 0 holds OAAH
(1010101OB) with the carry flag set. The instruction,

ADDC A,RO

will leave 6EH (Ol1011lOB) in the accumulator with AC cleared and both the
carry flag and OV set to 1.

1001 111 r r rl

AD DC
(A)-(A) + (C) + (Rn)

Bytes: 2
Cycles:

Encoding:

Operation:

I 0 0 1 1 I 0 1 0 11 I direct address I

ADDC
(A)-(A) + (C) + (direct)

8-11

ADDC A,@Ri
Bytes:

Cy'cles:

Encoding:

Operation:

AD DC A,#data

MCS®-51 INSTRUCTION SET

1001 1101 1

ADDC
(A)--- (A) + (C) + «Rj»

Bytes: 2
Cycles:

Encoding: 1 0 0 1 1 1 0 1· 0 0 1 1 immediate data 1

Operation: ADDC
(A) ___ (A) + (C) + #data

AJMP addr11

Function:
Description:

Example:

Bytes:
Cycles:

Encoding:

Operation:

Absolute Jump
AJMP transfers program execution to the indicated address, which is formed at
run-time by concatenating the high-order five bits of the PC (after incrementing .
the PC twice), opcode bits 7-5, and the second byte of the instruction. The
destination must therefore be within the same 2K block of program membry as
the first byte of the instruction following AJMP.
The label "JMPADR" is at program memo~y location 0123H. The instruction,

AJMP JMPADR

is at location 0345H and will load the PC with 0123H.
2
2

1 alO a9 as 0 I 0 0 0 1 I I a7 a6 a5 a41 a3 a2. al aO I
AJMP
(PC)--- (PC) + 2
(PClO-O)+- page address

8-12

MCS®-51 INSTRUCTION SET

ANL <dest·byte>., <src·byte>

Function:
Description:

Example:

ANL A,Rn
Bytes:

Cycles:

Encoding:

Operation:

Logical-AND for byte variables
ANL performs the bitwise 10gical·AND operation between the variables in­
dicated and stores the results in the destination variable. No' flags are affected.

The two operands allow six addressing mode combinations. When the destina­
tion is the accumulator, the source cart use register, direct, register-indirect, or
immediate addressing; when the destination is a direct address, the source can
be the accumulator or immediate data.

Note: When this instruction is used to modify an output port, the value used as
the original port data will be read from the output data latch, not the input
pins.
If the accumulator holds OC3H (llOOOOllB) and register 0 holds OAAH
(lOlOlOlOB) then the instruction,

ANL A,RO

will leave 4lH (OlOOOOOlB) in the accumulator.

When the destination is a directly addressed byte, this instruction will clear
combinations of bits in any RAM location or hardware register. The mask byte
determining the pattern of bits to be cleared would either be a constant con­
tained in the instruction or a value computed in the accumulator 'at run-time.
The instruction,

ANL Pl,#Oll10011B

will clear bits 7, 3, and 2. of output port 1.

10
ANL
(A) _ (A) /\ (Rn)

8-13

MCS®-51 INSTRUCTION SET

ANL A,direct
Bytes: 2

Cycles:

Encoding:
1 0 0

1 0 1 0 i I I direct address I

Operation: ANL
(A)_ (A) 1\ (direct)

ANL A,@Ri
Bytes:

Cycles:

Encoding: 10 1 0 110 1 1 i I
Operation: ANL

(A)_(A) 1\ «Ri»

ANL A,#data
Bytes: 2

Cycles:

Encoding: I 0 o 11 0 1 0 0 II immediate data I
Operation: ANL

(A) _ (A) 1\ #data

ANL direct,A
Bytes: 2

Cycles: 1

Encoding: I 0 o 1 I 0 0 1 0 I I direct address I
Operation: ANL

(direct) __ (direct) 1\ (A)

ANL direct,#data
Bytes: 3

Cycles: 2

Encoding: I 0 o 1 I 0 0 1 1 I direct address . I immediate data I
Operation: ANL

(direct) ---.: (direct) 1\ #data

8-14

MCS®-51 INSTRUCTION SET

ANL C, <src·bit>

Function:
Description:

Example:

ANL C,bit
Bytes:

Cycles:

Encoding:

Operation:

ANL C,/bit
Bytes:

Cycles:

Encoding:

Operation:

Logical-AND for bit variables
If the Boolean value of the source bit is a logical 0 then clear the carry flag;
otherwise leave the carry flag in its current state. A slash ("I") preceding the
operand in the assembly language indicates that the logical complement of the
addressed bit is used as the source value, but the source bit itself is not affected.
No other flags are affected.

Only direct bit addressing is allowed for the source operand.
Set the carry flag if, and only if, P 1.0 = 1, ACC. 7 = 1, and OV = 0:

MOV C,P1.0 ;LOAD CARRY WITH INPUT PIN STATE
ANL C,ACC.7 ;AND CARRY WITH ACCUM. BIT 7
ANL C,IOV ;AND WITH INVERSE OF OVERFLOW

FLAG

2
2

I 1 0 0 01 0 0 1 01 1 bit address I

ANL
(C)-(C) 1\ (bit)

2
2

11 0 1 I 0 0 0 01 I bit address I

ANL
(C) ~ (C) 1\ I (bit)

CJNE <dest·byte>,<src·byte>, rei

Function:
Description:

Compare and Jump if Not Equal.'
CJNE compares the magnitudes of the first two operands, and branches if their
values are not equal. The branch destination is computed by adding the signed
relative-displacement in the last instruction byte to the PC, after incrementing
the PC to the start of the next instruction. The carry flag is set if the unsigned
integer value of <dest-byte> is less than the unsigned integer value of <src-byte>;
otherwise, the carry is cleared. Neither operand is affected.

Example:

MCS®-51 INSTRUCTION SET

The first two operands allow four addressing mode combinations: the ac­
cumulator may be. compared with any directly addressed byte or immediate
data, and any indirect RAM location or working register can be compared with
an immediate constant.
The accumulator contains 34H. Register 7 contains 56H. The first instruction in
the sequence,

CJNE

NOT--.EQ: JC

R7,#60H, NOT--.EQ

REQ.-LOW
R7 = 6OH.
IF R7 <60H.
R7>60H.

sets the carry flag and branches to the instruction at label NOT--.EQ. By testing
the carry flag, this instruction determines whether R7 is greater or less than
60H.

If the data being presented to port I is also 34H, then the instruction,

WAIT: CJNE A,PI,WAIT

clears the carry flag and continues with the next instruction in sequence, since
the accumulator does equal the data read from Pl. (If some other value was be­
ing input on PI, the program will loop at this point until the PI data changes to
34H.)

CJNE A,dlrect,rel
Bytes: 3

Cycles: 2

Encoding:

Operation:

I I 0 I 0 I I I direct address I .1 reI. address I
CJNE
(PC)- (PC) + 3
IF (direct) < (A)

THEN. (PC)-(PC) + reI and (C)_O
OR

IF (direct) < (A)
THEN (PC)- (PC) + reI and (C)~I

MCS®-51 INSTRUCTION SET

CJNE A,#data,rel
Bytes: 3

Cycles: r=2------r---------,
Encoding: I 1 0 1 I ° 1 0 ° I I immediate datal I reI. address I
Operation: CJNE

(PC) - (PC) + 3
IF #data < (A)

THEN (PC)-(PC) + rei and (C)- 0
OR

IF #data > (A)
THEN (PC)-(PC) + rei and (C)_1

CJNE Rn,#data,rel
Bytes: 3

Cycles: 2

Encoding:

Operation:

1 11 r r r I I immediate data I I reI. address I
CJNE
(PC) - (PC) + 3
IF #data < (Rn)

THEN (PC)-(PC) + rel and (C)_O
OR

IF #data > (Rn)
THEN (PC)-(PC) + rei and (C)-1

CJNE @Ri,#data,rel
Bytes: 3

Cycles: 2

Encoding:

Operation:

1'-1_0 __ I_I-LI_O_l __ --'i I I immediate data I I reI. address I
CJNE
(PC) - (PC) + 3
IF #data < «Ri»

THEN (PC)-(PC) + rei and (C)-1
OR

IF #data > «Ri»
THEN (PC)-(PC) + rei and (C)-O

CLR A

Function:
Description:

Example:

Bytes:
Cycles:

MCS®;.51 INSTRUCTION SET

Clear Accumulator
The accumulator is cleared (all bits set to zero). No flags are affected.
The accumulator contains 5CH (01011100B). The instruction,

CLR A

will leave the accumulator set to OOH (OOOOOQOOB).
1
1

Encoding: L-I _1 ___ 0 .1-1 0_1_0--,01

Operation:

CLR bit

Function:
Description:

Example:

CLR'
(A)-,-O

Clear bit
The indicated bit is cleared (reset to zero). No other flags are affected. CLR can
operate on the carry flag or any directly addressable bit.
Port 1 has previously been written with 5DH (01011101B). The instruction,

CPL A

Function:
Description:

Example:

Bytes:
Cycles:

Encoding:

Operation:

CPL bit

Function:
Description:

Example:

CPL C
Bytes:

Cycles:

Encoding:

Operation:

MCS®-S1 INSTRUCTION SET

Complement Accumulator
Each bit of the accumulator is logically complemented (one's complement). Bits
which previously contained a one are changed to zero and vice-versa. No flags
are affected.
The accumulator contains 5CH (OlOlllOOB). The instruction,

CPL A

will leave the accumulator set to OA3H (1010001IB).
I

II 0 1 0---0]

CPL
(A)_I (A)

Complement bit
The bit variable specified is complemented. A bit which had been a one is
changed to zero and vice-versa. No other flags are affected. CLR can operate
on the carry or any directly addressable bit.

Note: When this instruction is used to modify an output pin, the value used as
the original data will be read from the output data latch, not the input pin.
Port I has previously been written with 5BH (OlOlllOlB). The instruction se­
quence,

CPL Pl.l
CPL P1.2

will leave the port set to 5BH (0101 1011 B).

CPL
(C)..-,(C)

8-19

MCS®-S1 INSTRUCTION SET.

CPL bit
Bytes: 2

Cycles: 1

Encoding: 11 0 1 I 0 0 1 0 I I bit address I
Operation: CPL

DA A

Function:
. Description:

(bit)----, (bit)

Decimal-adjust Accumulator for Addition
DA A adjusts the eight-bit value in the accumulator resulting from the earlier
addition of two variables (each in packed-BCD format), producing two four-bit
digits. Any ADD or ADDC instruction may have been used to perform the. ad­
dition.
If accumulator bits 3-0 are greater than nine (xxxxlOlO-xxxxllll), or if the AC
flag is one, six is added to the accumulator producing the proper BCD digit in
the low-order nibble. This internal addition would set .the carry flag if a carry~
out of the low-order four-bit field propagated through all high-order bits, but it
would not clear the carry flag otherwise.

If the carry flag is now set, or if the four high-order bits now exceed nine
(lOlOxxxx-llllxxxx), these high-order bits are incremented by six, producing
the proper BCD digit in the high-order nibble. Again, this would set the carry
flag if there was a carry-out of the high-order bits, but wouldn't clear the carry.
The carry flag thus indicates if the sum of the original two BCD variables is
greater than 100, allowing mUltiple precision decimal addition. OV is not af­
fected.

All of this occurs during the one instruction cycle. Essentially, this instruction
performs the decimal conversion by adding OOH, 06H, 60H, or 66H to the ac­
cumulator, depending on initial accumulator and PSW 'conditions.

Note: DA A cannot simply convert a hexadecimal number in the accumulator
to BCD notation, nor does DA A apply to decimal subtraction.

8-20

Example:

Bytes:
Cycles:

Encoding:

MCS®-51 INSTRUCTION SET

The accumulator holds the value 56H (0101011OB) representing the packed
BCD digits of the decimal number 56. Register 3 contains the value 67H
(OllOOIIIB) representing the packed BCD digits of the decimal number 67. The
carry flag is set. The instruction sequence,

ADDC A,R3
DA A

will first perform a standard twos-complement binary addition, resulting in the
value OBEH (10111110) in the accumulator. The carry and auxiliary carry flags
will be cleared.

The Decimal Adjust instruction will then alter the accumulator to the value 24H
(00 100 100B) , indicating the packed BCD digits of the decimal number 24, the
low-order two digits of the decimal sum of 56, 67, and the carry-in. The carry
flag will be set by the Decimal Adjust instruction, indicating that a decimal
overflow occurred. The true sum 56, 67, and 1 is 124.

BCD variables can be incremented or decremented by adding 01H or 99H. If
the accumulator initially holds 30H (representing the digits of 30 decimal), then
the instruction sequence,

ADD A,#99H
DA A

will leave the carry set and 29H in the accumulator, since 30 + 99 = 129. The
low-order byte of the sum can be interpreted to mean 30 - 1 = 29.
1
1

~ 01101001

Operation: DA
-contents of Accumulator are BCD
IF [[(A3-0) > 9] v [(AC) = 1]]

THEN (A3-0) ___ (A3-0) + 6
AND

IF [[(A7-4) >9] v [(C) = 1]]
THEN (A7-4)- (A7-4) + 6

8-21

DEC byte

Function:
Description:

Example:

DEC A
Bytes:

Cycles:

MCS®-51 INSTRUCTION SET

Decrement
The variable indicated is decremented by 1. An· original value of OOH will
underflow to OFFH. No flags are affected. Four operand addressing modes are
allowed: accumulator, register, direct, or register-indirect.

Note: When this instruction is used to modify an output port, the value used as
the original port data will be read from the output data latch, not the input
pins.
Register 0 contains 7FH (01111111 B). Internal RAM locations 7EH and 7FH
contain OOH and 40H, respectively. The instruction sequence,

DEC @RO
DEC RO
DEC @RO

will leave register 0 set to 7EH arid internal RAM locations 7EH and 7FH set to
OFFH and 3FH.

Encoding: I 0 . 0 0 1 I 0 1 0 0 I
Operation: DEC

(A) __ (A) -

DEC Rn
Bytes:

Cycles:

Encoding: 1000111 r r r

Operation: DEC
(Rn)_ (Rn) - 1

8-22

MCS®-51 INSTRUCTION SET

DEC direct
Bytes: 2

Cycles:

Encoding: I 0 0 0 1 I 0 1 0 1 I I direct address I
Operation: DEC

DEC @Ri
Bytes:

Cycles:

Encoding:

Operation:

DIV AB

Function:
Description:

Example:

Bytes:
Cycles:

Encoding:

Operation:

(direct)_ (direct) - 1

1000110

DEC
«Ri»_ «Ri» - 1

Divide
DIV AB divides the unsigned eight-bit integer in the accumulator by the un­
signed eight-bit integer in register B. The accumulator receives the integer part
of the quotient; register B receives the integer remainder. The carry andOV
flags will be cleared.

Exception: if B had originally contained OOH, the values returned in the ac­
cumulator and B-register will be undefined and the overflow flag will be set.
The ca~ry flag is cleared in any case.
The accumulator contains 251 (OFBH or 11111011 B) and E contains 18 (12H or
OOOlOOlOB). The instruction,

DIV AB

will leave 13 in the accumulator (ODH or OOOOllOlB) and the value 17 (11H or
OOOlOOOIB) in B, since 251 = (13 x IS) + 17. Carry and OV will both be
cleared.
1
4

1100010100

DIV

(A)15-S_(A) / (B)
(B)7-0

8-23

MCS®-S1 INSTRUCTION SET

DJNZ <byte>, <rel-addr>

Function:
Description:

Example:

Decrement and Jump if Not Zero
DJNZ decrements the location indicated by 1, and branches to the address in­
dicated by the second operand if the resulting value is nqt zero. An original
value of OOH will underflow to OFFH. No flags are affected. The branch
destination would be computed by adding the signed relative-displacement
value in the last instruction byte to the PC, after incrementing the PC to the
first byte of the following instruction.

The location decremented may be a register or directly addressed byte.

Note: When this instruction is used to modify an output port, the value used as
the original port data will be read from the output data latch, not the input
pins.
Internal RAM locations 40H, 50H, and 60H contain the values 01H, 70H, and
15H, respectively. The instruction sequence,

DJNZ
DJNZ
DJNZ

40H,LABEL_1
50H,LABEL-2
60H,LABEL_3

will cause a jump to the instruction at label LABEL-2 with the values OOH,
6FH, and 15H in the three RAM locations. The first jump was not taken
because the result was zero. '

This instruction provides a simple way of executing a program loop a given
number of times, or for adding a moderate time delay (from 2 to 512 machine
cycles) with a single instruction. The instruction sequence,

MOV R2,#8
TOGGLE: CPL Pl.7

DJNZ R2, TOGGLE

will toggle Pl. 7 eight times, causing four output pulses to appear at bit 7 of out­
put port 1. Each pulse will last three machine cycles; two for DJNZ and one to
alter the pin.

8-24

MCS®-S1 INSTRUCTION SET

DJNZ Rn,rel
Bytes: 2

Cycles: 2

Encoding:

Operation:

o 1 11 r r r I I direct address I
DJNZ
(PC)- (PC) + 2
(Rn)_ (Rn) - 1
IF (Rn) > 0 or (Rn) < 0

THEN
(PC)- (PC) + rei

DJNZ direct,rel
Bytes: 3

Cycles: 2

Encoding:

Operation:

INC <byte>

Function:
Description:

o 1 I 0 1 0 1 I I direct address I I reI. address

DJNZ
(PC)- (PC) + 2
(direct)_ (direct) -
IF (direct) > 0 or (direct) < 0

THEN
(PC)- (PC) + rei

Increment
INC increments the indicated variable by 1. An original value of OFFH will
overflow to OOH. No flags are affected. Three addressing modes are allowed:
register, direct, or register-indirect.

Note: When this instruction is used to modify an output port, the value used as
the original port data will. be read from the output data latch, not the input
pins.

8-25

Example:

INC A
Bytes:

Cycles:

Encoding:

Operation:

INC Rn
Bytes:

Cycles:

Encoding:

Operation:

INC direct
Bytes:

Cycles:

Encoding:

Operation:

MCS®·51 INSTRUCTION SET

Register 0 contains 7EH (0111111 lOB). Internal RAM locations 7EH and 7FH
contain OFFH and 40H, respectively. The instruction sequence,

INC @RO
INC RO
INC .@RO

will leave register 0 set to 7FH and internal RAM locations 7EH and 7FH
holding (respectively) OOH and 41H.

1 0 0 0 01 0 1 0 01

IN<=:
(A)_ (A) + 1

1 0 0 0 01 1 r r iJ
INC
(Rn)-(Rn) + 1

2

1 0 0 0 01 0 1 0 1 I I direct address I
INC
(direct)- (direct) +

8-26

INC @Ri
Bytes:

Cycles:

Encoding:

Operation:

INC DPTR

Function:
Description:

Example:

Bytes:
Cycles:

MCS®-S1 INSTRUCTION SET

10000101

INC
((Ri»_ «Ri» + 1

Increment Data Pointer
Increment the 16-bit data pointer by I. A 16-bit increment (modul() 216) is per­
formed; an overflow of the low-order byte of the data pointer (DPL) from
OFFH to OOH will increment the high-order byte (DPH). No flags are affected.

This is the only 16-bit register which can be incremented.
Registers DPH and DPL contain 12H and OFEH, respectively. The instruction
sequence,

INC DPTR
INC DPTR
INC DPTR

will change DPH and DPL to 13H and OIH.

1
2

Encoding: LI _1_0 ___ 0--,--1_0_0 __ 1_1-1

Operation: INC
(DPTR)- (DPTR) + 1

8-27

JB bit,rel

Function:
Description:

Example:

Bytes:
Cycles:

Encoding:

Operation:

JBC bit,rel

Function:
Description:

·Example:

MCS®-S1 INSTRUCTION SET

Jump if Bit set
If the indicated bit is a one, jump to the address indicated; otherwise proceed
with the next instruction. The branch destination is computed by adding the
signed relative-displacement in the third instruction byte to the PC,. after in­
crementing the PC to the first byte of the next instruction. The bit .tested is not
modified. No flags are affected.
The data present at input port 1 is llOOlOlOB. The accumulator holds 56
(010101 lOB). The instruction sequence,

JB Pl.2,LABELl
JB ACC.2,LABEL2

. will cause program execution to branch to the instruction at label LABEL2.
3
2

I 0 0 1 0 I' 0 0 0 0 I I bit address I 1 reI. address I
JB
(PC) - (PC) + 3
IF (bit) = 1

THEN
(PC) -(PC) + rei

Jump if Bit is set and Clear bit
If the indicated bit is one, branch to the address indicated; otherwise proceed
with the next instruction. In either case, clear the designated bit. The branch
destination is computed by adding the signed relative-displacement in the third
instruction byte to the PC, after incrementing the PC to the first byte of the
next instruction. No flags are affected.

Note: When this instruction is used to test an output pin, the value used as the
original data will be read from the output data latch, not the input pin.
The accumulator holds 56H (OlOlOllOB). The instruction sequence,

JBC ACC.3,LABELl
JBC ACC.2,LABEL2

will cause program execution to continue at the instruction identified by the
label LABEL2, with the accumulator modified to 52H (0 10100 lOB).

8-28

MCS®·51 INSTRUCTION SET

Bytes: 3
Cycles: 2

Encoding:

Operation:

JC rei

Function:
Description:

Example:

Bytes:
Cycles:

Encoding:

Operation:

I 0 0 0 1 I 0 0 0 0 I I bit address \ \ reI. address \

JBC
(PC) - (PC) + 3
IF (bit) = I

THEN
(bit)_O
(PC)- (PC) + reI

Jump if Carry is set
If the carry flag is set, branch to the address indicated; otherwise proceed with
the next instruction. The branch destination is computed by adding the signed
relative-displacement in the second instruction byte to the PC, after incremen­
ting the PC twice. No flags are affected.
The carry flag is cleared. The instruction sequence,

JC LABELl
CPL C
JC LABEL2

will set the carry and cause program execution to continue at the instruction
identified by the label LABEL2.
!-
2

10 1 0 010 0 0 0\

JC
(I'c)-(pc) + 2
IF (C) = I

THEN

reI. address \

(PC)- (PC) + reI

8-29

MCS®·51 INSTRUCTION SET

. JMP @A+DPTR

Function:
Description:

Example:

Bytes:
Cycles:

Encoding:

Operation:

Jump indirect
Add the eight-bit unsigned contents of the accumulator with the sixteen-bit data
pointer, and load the resulting sum to the program counter. This will be the ad­
dress for subsequent instruction fetches. Sixteen-bit additio~ is performed
(modulo 216): a carry-out from the low-order eight bits propagates through the
higher-order bits. Neither the accumulator nor the data pointer is altered. No
flags are affected.
An even number from 0 to 6 is in the accumulator. The following sequence of
instructions will branch to one of four AJMP instructions in a jump table start­
ing at JMP _ TBL:

MOV DPTR,#JM~ _TBL
JMP @A+DPTR

JMP_TBL: AJMP LABELO
AJMP LABELl
AJMP LABEL2
AJMP LABEL3

If the accumulator equals 04H when starting this sequence, execution will jump
to label LABEL2. Remember that AJMP is a two-byte instruction, so the jump
instructions start at every other address.
1
2

1 0

JMP
(PC)_(A) + (DPTR)

8-30

JNB bit,rel

Function:
Description:

Example:

Bytes:
Cycles:

Encoding:

Operation:

JNC rei

Function:
Description:

Example:

MCS®-51 INSTRUCTION SET

Jump if Bit Not set
If the indicated bit is a zero, branch to the indicated address; otherwise proceed
with the next instruction. The branch destination is computed by adding the
signed relative-displacement in the third instruction byte to the PC, after in­
crementing the PC to the first byte of the next instruction. The bit tested is not
modified. No flags are affected.
The data present at input port 1 is llOOlOlOB. The accumulator holds 56H
(010101 lOB). The instruction sequence,

JNB P1.3,LABELl
JNB ACC.3,LABEL2

will cause program execution to continue at the instruction at label LABEL2.
3
2

10 0 1 1 0 0 0 0 1 1 bit address I I reI. addres"SJ

JNB
(PC)- (PC) + 3
IF (bit) = 0

THEN (PC) - (PC) + reI.

Jump if Carry not set
If the carry flag is a zero, branch to the address indicated; otherwise proceed
with the next instruction. The branch destination is computed by adding the
signed relative-displacement in the second instruction byte to the PC, after in­
crementing the PC twice to point to the next instruction. The carry flag is not
modified.
The carry flag is set. The instruction sequence,

JNC LABELl
CPL C'
JNC LABEL2

will clear the carry and cause program execution to continue at the instruction
identified by the label LABEL2.

8-31

MCS®-51 INSTRUCTION SET

Bytes: 2
Cycles: 2

Encoding:

Operation:

JNZ rei

Function:
Description:

Example:

Bytes:
Cycles:

Encoding:

Operation:

10 o I I 0 0 0 0 I I reI. address I
JNC
(PC)-(PC) + 2
IF (C) = 0

THEN (PC) - (PC) + reI

Jump if accumulator Not Zero
If any bit of the accumulator is a one, branch to the indi~ated address; other­
wise proceed with the next instruction. The branch destination is computed by
adding the signed relative-displacement in the second instruction byte to the
PC, after incrementing the PC twice. The accumulator is not modified. No
flags are affected.
The accumulator originally holds OOH. The instruction sequence,

JNZ LABELl
INC A
JNZ LABEL2

will set the accumulator to OIH and continue at label LABEL2.
2
2

\0 I I 0 0 0 0 I I reI. address I
JNZ
(PC) - (PC) + 2
IF (A);60

THEN (PC)- (PC) + rei

8-32

JZ rei

Function:
Description:

Example:

Bytes:
Cycles:

Encoding:

Operation:

MCS®-51 INSTRUCTION SET

Jump if Accumulator Zero
If all bits of the accumulator are zero, branch to the address indicated; other­
wise proceed with the next instruction. The branch destination is computed by
adding the signed relative-displacement in the second instruction byte to the
PC, after incrementing the PC twice. The accumulator is not modified. No
flags are affected. (
The accumulator originally contains OlH. The instruction sequence,

JZ LABELl
DEC A
JZ LABEL2

will change the accumulator to OOH and cause program execution to continue at
the instruction identified by the label LABEL2.
2
2

1 0 o 1 0 0 0 0 1 1 reI. address 1

JZ
(PC)-(PC) + 2
IF (A) = 0

THEN (PC) -(PC) + rei

LCALL addr16

Function:
Description:

Long Call
LCALL calls a subroutine located at the indicated address. The instruction
adds three tothe program counter'to generate the address of the next instruc­
tion and then pushes the16-bit result onto the stack (low byte first), increment­
ing the stack pointer by two. The high-order and low-order bytes of the PC are
then loaded, respectively, with the second and third bytes of the LCALL in­
struction. Program execution continues with the instruction at this address. The
subroutine may therefore begin anywhere in the full 64K-byte program memory
address space. No flags are affected.

8-33

Example:

Bytes:
Cycles:

Encoding:

Operation:

MCS®-51 INSTRUCTION SET

Initially the stack pointer equals 07H. The label "SUBRTN" is assigned to pro­
gram memory location 1234H. After executing the instruction,

LCALL SUBRTN

at location OI23H, the stack pointer will contain 09H, internal RAM locations
OSH and 09H will contain 26H and OIH, and the PC will contain 1235H.
3
2

I 0 0 0 I I 0 0 I 0 I I addr15 - addrS I laddr7 - addrO I
LCALL
(PC) ~ (PC) + 3
(SP) 4- (SP) + I
«SP»_ (PC7-0)
(SP)-(SP) + I

«SP» - (PCI5-S)
(PC) ~ addrt 5-0

LJMP addr16

Function:
Description:

Example:

Bytes:
. Cycles:

Long Jump
LJMP causes an unconditional branch to the indicated address, by loading the
high-order and low-order bytes of the PC (respectively) with the second and
third instruction bytes. The destination may therefore be anywhere in the full
64K program memory address space. No flags are affected.
The label "JMPADR" is assigned to the instruction at program memory loca­
tion 1234H. The instruction,

LJMP JMPADR

at location OI23H will load the program counter with 1234H.
3
2

Encoding: I 0 0 0 0 I 0 0 I 0 I I addr15 - addrSI I addr7 - addrO I

Operation: LJMP
(PC)-addrt5-0

8-34

MCS®-S1 INSTRUCTION SET

MOV <dest-byte>,<src-byte>

Function:
Description:

Example:

MOV A,Rn
Bytes:

Cycles:

Encoding:

Operation:

*MOV A,direct
Bytes:

Cycles:

Encoding:

Operation:

Move byte variable
The byte variable indicated by the second operand is copied into the location
specified by the first operand. The source byte is not affected. No other register
or flag is affected.

This is by far tlie most flexible operation. Fifteen combinations of source and
destination addressing modes are allowed. .
Internal RAM location 30H holds 40H. The value of RAM location 40H is
lOH. The data present at input port 1 is 1 lOO lO lOB (OCAH).

MaV RO,#30H ;RO<= 30H
MaV A,@RO ;A<.= 40H
MaV RI,A ;RI < = 40H
MaV R,@RI ;B < = IOH
MaV @RI,PI ;RAM (40H) < = OCAH
MaV P2, PI ;P2 #OCAH

leaves the value 30H in register 0, 40H in both the accumulator and register 1,
lOH in register B, and OCAH (l1001OlOB) both in RAM location 40H and out­
put on port 2.

I 1 o 11 r· r r I
MaV
(A)_(Rn)

2
1

11 01 0 1 0 11 I direct address I

Mav
(A)- (direct)

*MOV A,ACC is not a vaUd instruction.

8-35

MCS®·51 INSTRUCTION SET

MOVA,@Ri
Bytes:

Cycles:

Encoding: 11 0 I 0 1 1
~------~------~

Operation: MOY
(A)_ «Ri»

. MOV A,#data
Bytes: 2

Cycles: 1

Encoding: '1 0 1 1 10 10 01
Operation: MOY

(A)-#data

MOV Rn,A
Bytes:

Cycles:

Encoding: 11 1 1 11 r r r

Operation: MOY
(Rn)_(A)

MOV Rn,direct
Bytes: 2

Cycles: 2

Encoding: 11 0 1 011 r r r

Operation: MOY
(Rn)4.-(direct)

MOV Rn,#data
Bytes: 2

Cycles: 1
Encoding: 10 1 11 r r r

Opera'tlon: MOY
(Rn) +- #data

I immediate data I

I direct addr. I

I immediate data I

8-36

MCS®-S1 INSTRUCTION SET

MOV direct,A.
Bytes: 2

Cycles: 1

Encoding: 11 1 I 0 1 0 1 I I direct address I

Operation: May
(direct)_ (A)

MOV direct,Rn
Bytes: 2

Cycles: 2

Encoding: 11 0 0 01 1 r r r I I direct address I

Operation: May
(direct)- (Rn)

MOV direct,direct
Bytes: 3

Cycles: 2

Encoding: 11 0 0 01 0 1 0 11 I dir. addr. (src) I I dir. addr. (dest) I·
Operation: May

(direct)- (direct)

MOV direct,@Ri
Bytes: 2

Cycles: 2

Encoding: 11 0 0 01 0 1 1 I direct addr.1

Operation: , May
(direct)--«Ri»

MOV direct,#data
Bytes: 3

Cycles: 2

Encoding:
10 1 I 0 1 0 1 I I direct address I I immediate data I

Operation: May
(direct)_ #data

8-37

MOV @Ri,A
Bytes:

Cycles:

Encoding:

MCS®-51 INSTRUCTION SET

1 0 , IIi I

Operation: MOV
«Ri»_(A)

MOV @Ri,direct
Bytes: 2

Cycles: 2

Encoding: ° I ° IIi I I direct addr.1

Operation: MOV
«Ri»_(direct)

MOV @Ri,#data
Bytes: 2

Cycles:

Encoding: I'-o_, ___ ----'I_o ____ i-ll I immediate data I

Operation: MOV
«RI)) - #data

MOV ,<dest·bit>,<src·bit>

Function:
Description:

Example:

Move bit data
The Boolean variable indicated by the second operand is copied into the loca­
tion specified by the first operand. One of the operands must be the carry flag;
the other may be any directly addressable bit. No other register or flag is af­
fected.
The carry flag is originally set. The data present at input port 3 is llOOOlOlB.
The data previously written to output port 1 is 35H (001 10101 B).

MOV P1.3,C
MOV C,P3.3
MOV P1.2,C

will leave the carry cleared and change port 1 to 39H (OOllIOOIB).

8-38

MCS®-S1 INSTRUCTION SET

MOV C,bit
Bytes: 2

Cycles:

Encoding: 11 0 1 01 0 0 1 01 I bit address

Operation: MaV
(C) ---- (bit)

MOV bit,C
Bytes: 2

Cycles: 2

Encoding: 11 0 0 1 10 0 1 01 1 bit address

Operation: MaV
(bit) ____ (C)

MOV DPTR,#data16

Function:
Description:

Example:

Bytes:
Cycles:

Encoding:

Load Data Pointer with a 16-bit constant
The data pointer is loaded with the 16-bit constant indicated. The 16-bit con­
stant is loaded into the second and third bytes of the instruction. The second
byte (DPH) is the high-order byte, while the third byte (DPL) holds the low­
order byte. No flags are affected.

This is the only instruction which moves 16 bits of data at once.
The instruction,

Mav DPTR,#1234H

will load the value 1234H into the data pointer: DPH will hold 12H and DPL
will hold 34H.
3
2

11 0 0 1 I 0 0 0 0 I I immed. data15 - 81 I immed. data7 - 0 I
Operation: MaV

(DPTR) __ #dataI5-0

DPH D DPL-.-#dataI5_8 D #data7_0

8-39

· MCS®-S1 INSTRUCTION SeT

Move A,@A+ <base-reg>

Function:
Description:

Example:

Move Cod~ byte
The MOVC instructions load the accumulator with a code byte, or constant
from program memory. The address of the byte fetched is the sum of the
original unsigned eight-bit accumulator contents and the contents of a sixteen­
bit base register, which may be either the data pointer or the PC. In the latter
case, the PC is incremented to tlie address of the following instruction before
being added with the accumulator: otherwise the base register is not altered.
Sixteen-bit addition is performed so a carry-out from the low-order eight bits
may propagate through higher-order bits. No flags are affected.
A value between 0 and 3 is in the accumulator. The following instructions will
translate the value in the accumulator to one of four values defined by the DB
(define byte) directive.

RELJC: INC A
MOVC A,@A+PC
RET
DB 66H
DB 77H
DB 88H
DB 99H

If the subroutine is called with the accumulator equal to OlH, it will return with
77H in the accumulator. The INC A before the MOVC instruction is needed to
"get around" the RET instruction above the table. If several bytes of code
separated the MOVC from the table, the corresponding number would be add­
ed to the accumulator instead.

Move A,(j!JA + DPTR
Bytes: 1

Cycles: 2

Encoding:

Operation: MOVC
(A)- «A) + (DPTR))

8-40

MCS®-51 INSTRUCTION SET

MOVC A,@A+ PC
Bytes: 1

Cycles: 2

Encoding:

Operation:

110001001

Move
(PC)-(PC) + 1
(A)- «A) + (PC»

MOVX (dest·byte>, <src·byte>

Function:
Description:

Move External
The MOVX instructions transfer data between the accumulator and a byte of
external data memory, hence the "X" appended to MOV. There are two types of
instructions, differing in whether they provide an eight-bit or sixteen-bit in­
direct address to the external data RAM.

In the first type, the contents of RO or RI in the current register bank provide an
eight-bit address mUltiplexed with data on PO. Eight bits are sufficient for exter­
nal 110 expansion decoding or a relatively small RAM array. For somewhat
larger arrays, any output port- pins can be used to output higher-order address
bits. These pins would be controlled by an output instruction preceding the
MOVX.

In the second type of MOVX instruction, the data pointer generates a sixteen­
bit address. P2 outputs the high-order eight address bits (the contents of DPH)
while PO multiplexes the low-order eight bits (DPL) with data. The P2 Special
Function Register retains its previous contents while the P2 output buffers are
emitting the contents of DPH. This form is faster and more efficient when ac­
cessing very large data arrays (up to 64K bytes), since no additional instructions
are needed to set up the output ports.

It is possible in some situations to mix the two MOVX types. A large RAM ar­
ray with its high-order address lines driven by P2 can be addressed via the data
pointer, or with code to output high-order address bits to P2 followed by a
MOVX instruction using RO or RI.

8-41

Example:

MOVX A,@Ri
Bytes:

Cycles:

Encoding:

Operation:

MCS®-51 INSTRUCTION SET

An external 256 byte RAM using multiplexed add~ess/data lines (e.g., an Intel®
8155 RAM/I/O/Timer) is connected to the 8051 Port O. Port 3 provides control
lines for the external RAM. Ports 1 and 2 are used for normal I/O. Registers 0
and 1 contain 12H aJ,ld 34H. Location 34H of the external RAM holds the value
56H. The instruction sequence,

MOVX
MOVX

A,@Rl
@RO,A

copies the value 56H into both the accumulator and external RAM location
12H.

2

1 1 1 1 01 0 0 1

MOVX
(A)_«Ri»

MOVX A,@DPTR
Bytes: 1

Cycles: 2

Encoding: I 1 1 1 01 0 0 0 01

Operation: MOVX
(A)_«DPTR»

MOVX @Ri,A
Bytes:

Cycles: 2

Encoding: 11 1 1 1 I 0 0 1

Operation: MOVX
«Ri»_ (A)

MOVX @DPTR,A
Bytes: 1

Cycles: 2

Encoding: 11 1 1 1 I 0 0 0 01

Operation: MOVX
(DPTR)_(A)

8-42

MUL AB

Function:
Description:

Example:

Bytes:
Cycles:

Encoding:

Operation:

MCS®-51 INSTRUCTION SET

Multiply
MUL AB multiplies the unsigned eight-bit integers in the accumulator and
register B. The low-order byte of the sixteen-bit product is left in the ac­
cumulator, and the high-order byte in B. If the product is greater than 2S S
(OFF H) the overflow flag is set; otherwise it is cleared. The carry flag is always
cleared.
Originally the accumulator holds the value 80 (SOH). Register B holds the value
160 (OAOH). The instruction,

MUL AB

will give the product 12,800 (3200H), so B is changed to 32H (001 100 lOB) and
the accumulator is cleared. The overflow flag is set, carry is cleared.
1

4

010 1 0 0

MUL
(A)7-0---(A) X (B)
(B) IS-8

8-43

NOP

Function:
. Description:

Example:

Bytes:
Cycles:

Encoding:

Operation:

MCS®·51 INSTRUCTION SET

No Operation
Execution continues at the following instruction. Other than the PC, no
registers or flags are affected.
It is desired to produce a low-going output pulse on bit 7 of port 2 lasting exact­
ly 5 cycles. A simple SETB/CLR sequence would generate a one-cycle pulse, so
four additional cycles must be inserted. This may be done (assuming no inter­
ruptsare enabled) with the instruction sequence,

CLR P2.7
NOP
NOP
NOP
NOP
SETB P2.7

\0 0 0 0\0 0 0 0\

NOP
(PC)-(PC) + 1

8-44

MCS®-S1 INSTRUCTION SET

ORL <dest·byte> (src·byte>

FUnction:
Description:

Example:

ORL A,Rn
Bytes:

Cycles:

Encoding:

Operation:

Logical-OR for byte variables
ORL performs the bitwise 10gical·OR operation between the indicated
variables, storing the results in the destination byte. No flags are affected.

The two operands allow six addressing mode combinations. When the destina­
tion is the accumulator, the source can use register, direct, register-indirect, or
immediate addressing; when the destination is a direct address, the source can
be the accumulator or immediate data.

Note: When this instruction is used to modify an output port, the value used as
the original port data will be read from the output data latch, not the input
pins.
If the accumulator holds OC3H (11000011B) and RO holds 55H (010 101 01 B)
then the instruction,

ORL A,RO

will leave the accumulator holding the val~e OD7H (11010111B).

When the destination is a directly addressed byte, the instruction can set com­
binations of bits in any RAM location or hardware register. The pattern of bits
to be set is determined by a mask byte, which may be either a constant data.
value in the instruction or a variable computed in the accumulator at run-time.
The instruction,

ORL Pl,#OQ11001OB

will set bits 5, 4, and 1 of output port 1.

\0 o 0\1 r r r

ORL
(A)_(A) v (Rn)

8-45

-inter MCS®-51 INSTRUCTION SET

ORL A,direct
Bytes: 2

Cycles:

Encoding: 10 0 01 0 1 0 1 I I direct address I
Operation: ORL

(A)_ (A) V (direct)

ORL A,@Ri
Bytes:

Cycles:

Encoding: 10 0 01 0 1 1 i I
Operation: ORL

(A) _ (A) V «Ri»

ORL A,#data
Bytes: 2

Cycles:

Encoding: 10 0 01 0 1 0 01 -I immediate data I

Operation: ORL
(A)_ (A) V #data

ORL direct,A
Bytes: 2

Cycles: 1

Encoding:
10 0 0 10 0 1 01 I direct address I

Operation: ORL
(direct) _(direct) V (A)

ORL direct,Hdata
Bytes: 3

Cycles: 2

Encoding: 10 0 01 0 0 1 1 1 .1 direct addr.j 1 immediate data I

Operation: ORL
(direct)-(direct) V #data

8-46

MCS®-51 INSTRUCTION SET

ORL C, <src·bit>

Function:
Description

Example:

ORL C,bit

Logical-OR for bit variables
Set the carry flag if the Boolean value is a logical I; leave the carry in its current
state otherwise. A slash ("I") preceding the operand in the assembly language
indicates that the logical complement of the addressed bit is used as the source
value, but the source bit itself is not affected. No other flags are affected.
Set the carry flag if and only if P 1.0 = 1, ACe. 7 = 1, or OV = 0:

MOV C,P1.0
ORL C,ACC.7
ORL C,IOV

;LOAD CARRY WITH INPUT PIN PIO
;OR CARRY WITH THE ACC. BIT 7
:OR CARRY WITH THE INVERSE OF OV

Bytes: 2
Cycles: 2

Encoding:
1 0 1 I 0 0 1 0 I I bit address I

Operation: ORL
(C)~ (C) v (bit)

ORL C,/bit
Bytes: 2

Cycles: 2

Encoding:

Operation:

POP direct

Function:
Description:

o I 0 0 0 0 I I bit address I
ORL
(C)- (C) v (bit)

Pop from stack.
The contents of the internal RAM location addressed by the stack pointer is
read, and the stack pointer is decremented by one. The value read is the transfer
to the directly addressed byte indicated. No flags are affected.

8-47

Example:

Bytes:
Cycles:

Encoding:

MCS®-S1 INSTRUCTION SET .

The stack pointer originally contains the value 32H, and internal RAM loca­
tions 30H through 32H contain the values 20H, 23H, and OIH, respectively.
The instruction sequence,

POP DPH
POP DPL

will leave the stack pointer equal to the value 30H and the data pointer set to
OI23H. At this point the instruction,

POP SP

will leave the stack pointer set to 20H. Note that in this special case the stack
pointer was decremented to 2FH before being loaded with the value popped
(20H).
2
2

o I I 0 0 O. 0 I I direct address

Operation: POP

PUSH direct

Function:
Description:

Example:

Bytes:
Cycles:

Encoding:

Operation:

(direct)_ «SP»
(SP)-(SP) - I

Push onto stack
The stack pointer is incremented by one. The contents of the indicated variable
is then copied into the internal RAM location addressed by the stack pointer.
Otherwise no flags are affected.
On entering an interrupt routine the stack pointer contains 09H. The data
pointer holds the value 0123H. The instr.uction sequence,

PUSH DPL
PUSH DPH

will leave the stack pointer set to OBH and stor~ 23H and OIH in internal RAM
locations OAH ahd OBH, respectively.
2
2

o 0\0 0 0 0

PUSH
(SP)-(SP) +
«SP»- (direct)

\ direct address \

8-48

RET

Function:.
Description:

Example:

Bytes:
Cycles:

Encoding:

Operation:

RETI

Function:
Description:

MCS®-S1 INSTRUCTION SET

Return from subroutine
RET pops the high- and low-order bytes of the PC successively from the stack,
decrementing the stack pointer by two. Program execution continues at the
resulting address, generally the instruction immediately following an ACALL
or LCALL. No flags are affected.
The stack pointer originally contains the value OBH. Internal RAM locations
OAH and OBH contain the values 23H and OlH, respectively. Toe instruction,

RET

will leave the stack pointer equal to the value 09H. Program execution will con­
tinue at location 0123H.
1
2

10 0 010 0

RET
(PC15-S)- ((SP»
(SP)-(SP) - 1
(PC7-0)_((SP»
(SP)_(SP) - 1

Return from interrupt

o

RET! pops the high- and low-order bytes of the PC successively from the stack,
and restores the interrupt logic to accept additional interrupts at the same
priority level as the one just processed. The stack pointer is left decremented by
two. No other registers are affected; the PSW is not automatically restored to
its pre-interrupt status. Program execution continues at the resulting address,
which is generally the instruction immediately after the point at which the inter­
rupt request was detected. If a lower- or same-level interrupt had been pending
when the RET! instruction is executed, that one instruction will be executed
before the pending interrupt is processed.

8-49

Example:

Bytes:
Cycles:

Encoding:

Operation:

MCS®-51 INSTRUCTION SET

The stack pointer originally contains the value OBH. An injerrupt was detected
during the instruction ending at location 0122H. Internal RAM locations OAH
and OBH contain the values 23H and OlH, respectively. The instruction,

RETI

will leave the stack pointer equal to 09H and return program execution to loca­
tion 0123H.
1
2

RETI
(PC15-S)---. «SP»
(SP)_ (SP) - 1
(PC7-0) _«SP))
(SP)- (SP) - 1

01

8-50

RL A

Function:
Description:

Example:

Bytes:
Cycles:

Encoding:

MCS®-51 INSTRUCTION SET

Rotate accumulator Left
The eight bits in the accumulator are rotated one bit to the left. Bit 7 is rotated
into the bit 0 position. No flags are affected.
The accumulator holds the value OC5H (11000101B). The instruction,

RL A

leaves the accumulator holding the value 8BH (10001011B) with the carry unaf­
fected.
1

100101001

Operation: RL

RLC A

Function:
Description:

Example:

Bytes:
Cycles:

Encoding:

(An+O_(An)
(AO)-(A7)

n=0-6

Rotate accumulator Left through the Carry flag
The eight bits in the accumulator and the carry flag are together rotated one bit
to the left. Bit 7 moves into the carry flag; the original state of the carry flag
moves into the bit 0 position. No other flags are affected.
The accumulator holds the value OC5H (11000101B), and the carry is zero. The
instruction,

RLC A

leaves the accumulator holding the value 8BH (1000101OB) with the carry set.
1
1

10 0 1 I 0 0 1 11

Operation: RLC
(An + 1)- (An)
(AO)-(C)
(C)--(A7)

n=0-6

8-51

RR A

Function:
Description:

Example:

Bytes:
Cycles:

Encoding:

MCS®-S1 INSTRUCTION SET

Rotate accumulator Right
The eight bits in the accumulator are rotated one bit to the right. Bit 0 is rotated
into the bit 7 position. No flags are affected.
The accumulator holds the value OC5H (llOOOlOIB). The instruction,

RR A

leaves the accumulator holding the value OE2H (11100010B) with the carry
unaffected.
1
1

1000 010 0 1 11

Operation: RR
;'

i
RRC A

Function:
Description:

Example:

Bytes:
Cycles:

Encoding:

Operation:

(An)_ (An + I)
(A7)_(AO)

n=0-6

Rot;:tte accumulator Right through Carry flag
The eight bits in the accumulator and the carry flag are together rotated one bit
to the right. Bit 0 moves into the carry flag; the. original value of the carry flag
moves into the bit 7 position. No other flags are affected.
The accumulator holds the value OC5H (1 1000101 B), the carry is zero. The in­
struction,

RRC A

leaves the accumulator holding the value 62 (OllOOOlOB) with the carry set.
1
1·

10001100111

RRC
(An)_ (An + 1)
(A7)_(C)
(C)-(AO)

n=0-6

8-52

SETB <bit>

Function:
Description:

Example:

SETB C
Bytes:

Cycles:

Encoding:

Operation:

SETB bit
Bytes:

Cycles:

Encoding:

Operation:

SJMP rei

Function:
Description:

MCS®-S1 INSTRUCTION SET

Set Bit
SETB sets the indicated bit to one. SETB can operate on the carry flag or any
directly addressable bit. No other flags are affected.
The carry flag is cleared. Output port 1 has been written with the value 34H
(00110100B). The instructions,

SETB C
SETB Pl.O

will leave the carry flag set to 1 and change the data output on port 1 to 35H
(00110101B).

11 0 1
1 0 0 1 1 I

SETB
(C)-1

2

11 0 1 10 0 1 01 I bit address I

SETB
(bit)--1

Short Jump
Program control branches unconditionally to the address indicated. The branch
destination is computed by adding the signed displacement in the second in­
struction byte to the PC, after incrementing the PC twice. Therefore, the range
of destinations allowed is from 128 bytes preceding this instruction to 127 bytes
following it.

8-53

Example:

Bytes:
Cycles:

Encoding:

Operation:

MCS®-51 INSTRUCTION SET

The label "RELADR" is assigned to an instruction at progra.m memory location
OI23H. The instruction,

SJMP RELADR

will assemble into location OlOOH. After the instruction is executed, the PC will
contain the value 0123H.

(Note: Under the above conditions the instruction following SJMP will be at
102H. Therefore, the displacement ,byte of the instruction will be the relative
offset (OI23H-0102H) = 21H. Put another way, an SJMP with a displacement
of OFEH would be a one-instruction infinite loop.)
2
2

11 0 0 0 I 0 0 0 0 I I reI. address I
SJMP
(PC)-(PC) + 2
(PC) - (PC) + reI

8-54

MCS®-S1 INSTRUCTION SET

SUBB A, <src·byte>

Function:
Description:

Example:

SUBB A,Rn
Bytes:

Cycles:

Encoding:

Operation:

Subtract with borrow
SUBB subtracts the indicated variable and the carry flag together from the ac­
cumulator, leaving the result in the accumulator. SUBB sets the carry (borrow)
flag if a borrow is needed for bit 7, and clears C otherwise. (If C was set before
executing a SUBB instruction, this indicates that a borrow was needed for the
previous step in a multiple precision subtraction, so the carry is subtracted from
the accumulator along with the source operand.) AC is set if a borrow is needed
for bit 3, and cleared otherwise. OV is set if a borrow is needed into bit 6, but
not into bit 7, or into bit 7, but not bit 6.

When subtracting signed integers OV indicates a negative number produced
when a negative value is subtracted from a positive value, or a positive result
when a positive number is subtracted from a negative number.

The source operand allows four addressing modes: register, direct, register­
indirect, or immediate.
The accumulator holds OC9H (11oo1001B), register 2 holds 54H (01010100B),
and the carry flag is set. The instruction,

SUBB A,R2

will leave the val~e 74H (01110100B) in the accumulator, with the carry flag and
AC cleared but OV set.

Notice that OC9H minus 54H is 75H. The difference between this and the above
result is due to the carry (borrow) flag being set before the operation. If the
state of the carry is not known before starting a single or multiple-precision sub­
traction, it should be explicitly cleared by a CLR C instruction.

r r r I
SUBB
(A)_ (A) - (C) - (Rn)

8-55

MCS®-S1 INSTRUCTION SET

SUBB A,direct
Bytes: 2

Cycles: 1

Encoding:

Operation:

SUBB A,@Ri
Bytes:

Cycles:

Encodihg:

11 0 0 1 I 0 1 0 1 I I direct address I
SUBB
(A)_ (A) - (C) - (direct)

[1001[0

Operation: SUBB
(A)_ (A) - (C) - «Ri»

SUBB A,#data
Bytes: 2

Cycles:

Encoding:

Operation:

SWAP A

Function:
Description:

Example:

Bytes:
Cycles:

Encoding:

Operation:

[1 0 0 1 [0 1 0 0 I I immediate data

SUBB
(A)_(A) - (C) -:- #data

Swap nibbles within the Accumulator
SWAP A interchanges the low- and high-order nibbles (four-bit fields) of the
accumulator (bits 3-0 and bits 7-4). The operation can also be thought of as a
four-bit rotate instruction. No flags are affected.
The accumulator holds the value OC5H (11000101B). The instruction,

SWAP A

leaves the accumulator holding the value 5CH (01011100B).
1
1

[1 1 0 0 [0 1 '0 0

SWAP
(A3-0)~(A7-4), (A7-4)-(A3-0)

8-56

MCS®-S1 INSTRUCTION SET

XCH A,(byte>

Function:
Description:

Example:

XCH A,Rn
Bytes:

Cycles:

Encoding:

Exchange Accumulator with byte variable
XCH loads the accumulator with the contents of the indicated variable, at the
same time writing the original accumulator contents to the indicated variable.
The source/destination operand can use register, direct, or register-indirect ad­
dressing.
RO contains the address 20H. The accumulator holds the value 3FH
(00111111B). Internal RAM location 20H holds the value 75H (OlllOlOlB).
The instruction,

XCH A,@RO

will leave RAM location 20H holding the values 3FH (OOlllllIB) and 75H
(OlllOlOlB) in the accumulator.

OOl lrrr l

Operation: XCH
(A)~(Rn)

XCH A,direct
Bytes: 2

Cycles:

Encoding: o 0 I 0 1 0 II I direct address I

Operation: XCH

XCH A,@Ri
Bytes:

Cycles:

Encoding:

Operation:

(A)~(direct)

XCH
(A)~«Ri»

8-57

MCS®-S1 INSTRUCTION SET

XCHD A,@Ri

. Function:
. Description:

Example:

Bytes:
Cycles:

Encoding:

Operation:

Exchange Digit
XCHD exchanges the low-order nibble of the accumulator (bits 3-0), generally
representing a hexadecimal or BCD digit), with that of the internal RAM loca­
tion indirectly addressed by the specified register. The high-order nibbles (bits·
7-4) of each register are not affected. No flags are affected.
RO contains the address 20H. nie accumulator holds the value· 36H
(00I1011OB). Internal RAM location 20H holds the .value 75H (01I10101B).
The instruction,

XCHD A,@RO

will leave RAM location 20H holding the value 76H (01I1011OB) and 35H
(OOl101OlB) in the accumulator.
1

XCHD
(A3-0)~«Ri3-0»

8-58

MCS®-S1 INSTRUCTION SET

XRL <dest·byte> , (src·byte>

Function:
Description:

Example:

XRL A,Rn
Bytes:

Cycles:

Encoding:

Operation:

XRL A,direct

Logical Exclusive-OR for byte variables
XRL performs the bitwise logical Exclusive-OR operation between the in­
dicated variables, storing the results in the destination. No flags are affected.

The two operands allow six addressing mode combinations. When the destina­
tion is the accumulator, the source can use register, direct, register-indirect, or
immediate addressing; when the destination is a direct address, the source can
be the accumulator or immediate data.

(Note: When this instruction is used to modify an output port, the value used as
the original port data will be read from the output data latch, not the input
pins.)
If the accumulator holds OC3H (llOOOOIlB) and register 0 holds OAAH
(1010 10 lOB) then the instruction,

XRL.A,RO

will leave the accumulator holding the value 69H (01 IOlOOIB).

When the destination is a directly addressed byte, this instruction can comple­
ment combinations of bits in any RAM location or hardware register. The pat­
tern of bits to be complemented is then determined by a mask byte, either a con­
stant contained in the instruction or a variable computed in the accumulator at
run-time. The instruction,

XRL PI,#OOIlOOOlB

will complement bits 5, 4, and 0 of output port 1.

1 0 011 r r r I
XRL
(A)-_ (A) 't (Rn)

Bytes: 2
Cycles:

Encoding: o 10 o I direct ad~
Operation: XRL

(A)-(A) 't (direct)

8-59

MCS®-51 INSTRUCTION SET

XRL A,@Ri
Bytes:

Cycles:

Encoding:
10 01 0 i I

,Operation: XRL
(A)-(A) 'V «Ri))

XRL A,#data
Bytes: 2

Cycles: 1

Encoding: 10 01 0 1 0 01 I immediate data,

Operation: XRL
(A)_(A) 'V #data

XRL direct,A
Bytes: 2

Cycles: 1

Encoding: 10 01 0 0 1 01 I direct address I

Operation: XRL
(direct)_ (direct) 'V (A)

XRL direct,#data
Bytes: 3

Cycles: 2

Encoding:
1 0 o I 0 0 1 1 I I direct address I I immediate data I

Operation: XRL
(direct)_ (direct) 'V #data

8-60

MCS® ... 51 Application Examples 9

CHAPTER 9
MCS®-S1 APPLICATION EXAMPLES

Chapter 9 is divided into three sections:

• 8051 Programming Techniques
• Peripheral Interfacing Techniques
• Peripheral Interface Examples

The first section has 8051 software examples for
common routines in controller applications. Some of
the routines are mUltiple-precision arithmetic and table
look-up techniques.

Peripheral Interfacing Techniques include routines for
handling the 8051's I/O ports, serial channel and
timer / counters. Discussed in this section is I/O port
reconfiguration, software delay timing, and transmit­
ting serial port character strings along with other
routines.

The Peripheral Interface examples consist of block
diagram schematics.

9.08051 PROGRAMMING TECHNIQUES

9.0.1 Radix Conversion Routines

The divide instruction can be used to convert a number
from one radix to another. BIN BCD is a short sub­
routine to convert an eight-bit unsigned binary integer
in the accumulator (between 0 & 255) to a three-digit
(two byte) BCD representation. The hundred's digit is
returned in one variable (H U N D) and the ten's and
onc's digits returned as packed BCD in another
(TENON E).'

; BINBCD CONVERT 8-BIT BINARY VARIABLE IN ACCUMULATOR
TO 3-DIGIT PACKED BCD FORMAT.
HUNDREDS' PLACE LEFT IN VARIABLE 'HUND',
TENS' AND ONES' PLACES IN 'TENONE'.

HUND DATA 21H
TENONE DATA 22H

BINBCD: MOV B,#100 ;DIVIDED BY 100 TO
DIV AB ;DETERMINE NUMBER OF HUNDREDS
MOV HUND,A
MOV A,#10 ;DlVIDE REMAINDER BY TEN TO
XCH A,B ;DETERMINE NUMBER OF TENS LEFT
DIV AB ;TEN'S DIGIT IN ACC, REMAINDER IS

;ONE'S DIGIT
SWAP A
ADD A,B ;PACK BCD DIGITS IN ACC
MOV TENONE,A
RET

9-1

, MCS®-S1 APPLICATION EXAMPLES

The divide instruction can also separate data in the
accumulator into sub-fields. For example, dividing
packed BCD data by 16 will separate the two nibbles,
leaving the high-order digit in the accumulator and the
low-order digit (remainder) in B. Each is right-justified,

so the digits can be processed individually. This exam­
ple receives two packed BCD digits in the accumulator,
separates the digits, computes their product, and re­
turns the product in packed BCD format in the
accumulator.

;MULBCD UNPACK TWO BCD DIGITS RECEIVED IN ACCUMULATOR,
FIND THEIR PRODUCT, AND RETURN PRODUCT
IN PACKED BCD FORMAT IN ACCUMULATOR

MULBCD: MOV B,#10H ;DIVIDE INPUT BY 16
DIV AB ;A & B HOLD SEPARATED DIGITS

;(EACH RIGHT JUSTIFIED IN REGISTER).
MUL AB ;A HOLDS PRODUCT IN BINARY FORMAT (0-

;99 (DECIMAL) = 0 - 63H)
MOV B,#10 ;DIVIDE PRODUCT BY 10
DIV AB ;A HOLDS NUMBER OF TENS, B HOLDS

;REMAINDER
SWAP A
ORL A,B ;PACK DIGITS
RET

9.0.2 Multiple Precision Arithmetic

The ADDC and SUBB instructions incorporate the
previous state of the carry (borrow) flag to allow
multiple-precision calculations by repeating the opera­
tion with successively higher-order operand bytes. If
the input data for a multiple-pr~cision operation is an

unsigned string of integers, the carry flag will be set
upon completion if an overflow (for ADDC) or under­
flow (for SUBB) occurs. With two's complement signed
data, the most significant bit of the original input data's
most significant byte indicates the sign of the string, so
the overflow flag (OV) will indicate if overflow or
underflow occurred.

;SUBSTR SUBTRACT STRING INDICATED BY R1
FROM STRING INDICATED BY RO TO
PRECISION INDICATED BY R2.
CHECK FOR SIGNED UNDERFLOW WHEN DONE.

SUBSTR: CLR C ;BORROW=O.

9-2

MCS®-51 APPLICATION EXAMPLES

SUBS1: MOV
SUBB
MOV
INC
INC
DJNZ

A,@RO
A,@R1
@RO,A

;LOAD MINUEND BYTE
;SUBTRACT SUBTRAHEND BYTE
;STORE DIFFERENCE BYTE

RO ;BUMP POINTERS TO NEXT PLACE
R1
R2,SUBS1 ;LOOP UNTIL DONE

WHEN DONE, TEST IF OVERFLOW OCCURRED
ON LAST ITERATION OF LOOP.

JNB OV,OV _OK
(OVERFLOW RECOVERY ROUTINE)
;RETURN

9.0.3 Table Look-Up Sequences

The two versions of the MOVC instructions are used as
part of a thFee-step sequence to access look-up tables in
ROM. To usc the DPTR version, load the Data Pointer
with the starting address of a look-up table; load the
accumulator with (or compute) the index of the entry
desired; and execute MOVC A,@A+DPTR. The data
pointer may be loaded with a constant for short tables,
or to allow more complicated data structures, and
tables with more than 256 entries, the values for DPH
and DPL may be computed or modified with the
standard arithmetic instruction set.

The PC-based version is used with smaller, "local"
tables, and has the advantage of not affecting the data
pointer. This makes it useful in interrupt routines or
other situations where the DPTR contents might be

. significant. Again, a look-up sequence takes three steps:
load the accumulator with the index; compensate for
the offset from the look-up instruction's address to the
start of the table by adding that offset to the accumula­
tor; then execute the MOVC A,@A+PC instruction.

9-3

As a non-trivial situation where this instruction would
be used, consider applications which store large multi­
dimensional look-up tables of dot matrix patterns, non­
linear calibration parameters, and so on in the linear
(one-dimensional) program memory. To retrieve data
from the tables, variables representing matrix indices
must be converted to the desired entry's memory address.
For a matrix of dimensions (MDIMEN x NDIMEN)
starting at address BASE and respective indices IN DEXI
and INDEXJ, the address of element (lNDEXI, INDEXJ)
is determined by the formula,

Entry Address = [BASE + (NDlt,1EN x
INDEXl) +INDEXJ]

The subroutine MATRIX I can access an entry in any
array with less than 255 elements (e.g., an II x 21 array
with 231 elements). The table entries are defined using
the Data Byte ("DB") directive, and will be contained in
the assembly object code as part of the accessing
subroutine itself.

MCS®-51 APPLICATION EXAMPLES

To handle the more general case, subroutine MA TRX2
allows tables to be unlimited in size, by combining the
M U L instruction, double-precision addition, and the

data pointer-based version of M ave. The only restric­
tion is that each index be between 0 and 255.

;MATRX1 LOAD CONSTANT READ FROM TWO DIIII!ENSIONAL LOOK-UP
TABLE IN PROGRAM MEMORY INTO ACCUMULATOR

INDEXI
INDEXJ

MATRX1: '

BASE1:

USING LOCAL TABLE LOOK-UP INSTRUCTION, 'MOVC A,@A+PC'.
THE TOTAL NUMBER OF TABLE ENTRIES IS ASSUMED TO
BE SMALL, I.E., LESS THAN ABOUT 255 ENTRIES.
TABLE USED IN THIS EXAMPLE IS 11 X 21.
DESIRED ENTRY ADDRESS IS GIVEN BY THE FORMULA,

[(BASE ADDRESS) = (21 X. INDEXI) = (INDEXJ)]

EQU RS
DATA 23H

MOV A,INDEXI
MOV B, #21
MUL AB
ADD A,INDEXJ

;FIRST COORDINATE OF ENTRY (0-10).
;SECOND COORDINATE OF ENTRY (0-20).

;(21 X INDEXI)
; ADD IN OFFSET WITHIN ROW

ALLOW FOR INSTRUCTION BYTE BETWEEN "MOVC" AND
ENTRY (0,0).

INC A
MOVC A,@A+PC
RET
DB 1 ;(entry 0,0)
DB 2 ;(entry 0,1)

DB 21 ;(entry 0,20)
DB 22 ;(entry 1,0)

DB 42 ;(entry 1,20)

DB 231 ;(entry 10,20)

9-4

MCS®-S1 APPLICATION EXAMPLES

MATRX2: MOV A,INDEXI ;LOAD FIRST COORDINATE
MOV B,#NDIMEN
MUL AB :INDEXI X NDIMEN
ADD A,#LOW(BASE2) ;ADD IN i6-BIT BASE ADDRESS
MOV DPL,A
MOV A,B
ADDC A,#HIGH(BASE2)
MOV DPH,A ;DPTR=(BASE ADDR) + (INDEXI + NDIMEN)
MOV A,INDEXJ
MOVC A,@A+DPTR ;ADD INDEXJ AND FETCH BYTE
RET

BASE2: DB 0 ;(entry 0,0)
DB 0 ;(entry 0,1)

DB 0 ;(entry 0, NDIMEN-1)
DB 0 ;(entry 1,0)

DB 0 ;(entry 1, NDIMEN-1)

DB 0 ;(entry MDIMEN-1, NDIMEN-1)

9.0.4 Saving CPU Status during Interrupts

When the gOSI hardware recognizes an interrupt re­
quest program control branches automatically to the
corresponding service routine, by forcing the CPU to
process a Long CALL (LCALL) instruction to the
appropriate address. The return address is stored on the
top of the stack. After completing the service routine,
an R ETI instruction returns the processor to the
background program at the point from which it was
interrupted.

Interrupt service routines must not change any variable
or hardware registers modified by the main program, or
else the program may not resume correctly. (Such a
change might look like a spontaneous random error.
An example of this will be given later in this section, in
the second method of I/O port reconfiguration.) Re­
sources used or altered by the service routine (Accumu­
lator, PSW, etc.) must be saved and restored to their
previous value before returning from the service
routine. PUSH and POP provide an efficient and
convenient way to save such registers on the stack.

9-5

MCS®-51 APPLICATION EXAMPLES

;
LOC_TMP EQU $;REMEMBER LOCATION COUNTER

ORG

LJMP

0003H

SERVER

;STARTING ADDRESS FOR INTERRUPT ROUTINE

;JUMP TO ACTUAL SERVICE ROUTINE LOCATE
;ELSEWHERE

ORG LOC_TMP ;RESTORE LOCATION COUNTER
SERVER: PUSH PSW

PUSH ACC ;SAVE ACCUMULATOR (NOTE DIRECT ADDRESS
;NOTATION)

PUSH B
PUSH DPL
PUSH DPH
MOV PSW,#00001000B

;SAVE B REGISTER
:SAVE DATA POINTER
,
;SELECTREGISTER BANK 1

POP DPH ;RESTORE REGISTERS IN REVERSE ORDER
POP DPL
POP B
POP ACC
POP PSW ;RESTORE PSW AND RE-SELECT ORIGINAL

;REGISTER BANK
RETI ;RETURN TO MAIN PROGRAM AND RESTORE

;INTERRUPT LOGIC

If the SP register held I FH when the interrupt was
detected, then while the service routine was in progress
the stack would hold the registers shown in Figure 9-1;
SP would contain 26H. This is the most general case; if
the service routine doesn't alter the B-register and data
pointer, for example, the instructions saving and restor­
ing those registers could be omitted.

9.0.5 Passing Parameters on the Stack

The stack may also pass parameters to and from
subroutines. The subroutine can indirectly address the
parameters derived from the contents of the stack
pointer, or simply pop the stack into registers before
processing.

9-6

RAM
ADDR

7FH

26H

25H

24H

23H

22H

21H

20H

1FH

OOH

DPH _(SP)

DPL

B

ACC

PSW

PC (HIGH)

PC (LOW)

Figure 9-1.

MCS®-S1 APPLICATION EXAMPLES

HEXASC: MOV RO,SP
DEC RO ;ACCESS LOCATION PARAMETER PUSHED

INTO
DEC RO
XCH A,@RO ;READ INPUT PARAMETER AND SAVE AC-

CUMULATOR
ANL A,#OFH ;MASK ALL BUT LOW-ORDER 4 BITS
ADD A,#2 ;ALLOW FOR OFFSET FROM MOVC TO TABLE
MOVC A,@A+PC ;READ LOOK-UP TABLE ENTRY
XCH A,@RO ;PASS BACK TRANSLATED VALUE AND

;RESTORE ACCUMULATOR
RET ;RETURN TO BACKGROUND PROGRAM

ASCTBL: DB '0' ;ASCII CODE FOR OOH
DB '1' ;ASCII CODE FOR 01 H
DB '2' ;ASCII CODE FOR 02H
DB '3' ;ASCII CODE FOR 03H
DB '4' ;ASCII CODE FOR 04H
DB 's' ;ASCII CODE FOR OSH
DB '6' ;ASCII CODE FOR 06H
DB '7' ;ASCII CODE FOR 07H
DB '8' ;ASCII CODE FOR 08H
DB '9' ;ASCII CODE FOR 09H
DB 'A' ;ASCII CODE FOR OAH
DB 'B' ;ASCII CODE FOR OBH
DB 'C' ;ASCII CODE FOR OCH
DB 'D' ;ASCII CODE FOR ODH
DB 'E' ;ASCII CODE FOR OEH
DB 'F' ;ASCII CODE FOR OFH

One advantage here is simplicity. Variables need not be
allocated for specific parameters, a potentially large
number of parameters may be passed, and different
calling programs may use different techniques for
determining or handling the variables.

returns. The accumulator contents' are left unchanged.

The background program may reach this subroutine
with several different calling sequences, all of whicQ
PUSH a value before calling the routine and POP the
result to any destination register or port later. There is
even the option of leaving a value on the stack if it won't
be needed until later. The example below converts the
three-digit BCD value computed in the Radix Conver­
sion example above to a three-character string, calling a
subroutine SP _OUT to output an eight-bit code in the
accumulator.

For example, the subroutine HEXASC converts a
hexadecimal value to ASCII code for its low-order
digit. It first reads a parameter stored on the stack by
calling program, then uses the low-order bits to access a
local l6-entry look-up table holding ASCII codes,
stores the appropriate code back in the stack and then

9-7

MCS®-S1 APPLICATION EXAMPLES

PUSH HUND
CALL HEXASC ;CONVERT HUNDREDS DIGIT
POP ACC
CALL SP_OUT ;TRANSMIT HUNDREDS CHARACTER
PUSH TENONE
CALL HEXASC ;CONVERT ONE'S PLACE DIGIT

;BUT LEAVE ON STACK!
MOV A, TENONE
SWAP A ;RIGHT-JUSTIFY TEN'S PLACE
PUSH ACC ;CONVERT TEN'S PLACE DIGIT
CALL HEXASC
POP ACC
CALL SP_OUT ;TRANSMIT TEN'S PLACE CHARACTER
POP ACC
CALL SP_OUT ;TRANSMIT ONE'S PLACE CHARACTER

9.0.6 N-Way Branching

There are several different means for branching to
sectiOns of code determined or selected at· run time.
(The single destination addresses incorporated into
conditional and unconditional jumps are, of course,
fixed at assembly time.) Each has advantages for
different applications.

In a typical N-way branch situation, the potential
destinations are generally known at assembly time. One
of a number of small routines is selected according to
the value of an index variable determined while the
program is running. The most efficient way to solve this
problem is. with the MOVe and an indirect jump
instruction, using a short table of offset values in ROM
to indicate the relative starting addresses of the several
routines.

1MP @A+DPTR is an instruction which performs an
indirect jump to an address determined during program

9-8

execution. The instruction adds the eight-bit unsigned
accumulator contents with the contents of the sixtccn­
bit data pointer, just like MOVe A,@A+DPTR. The
resulting sum is loaded into the program counter and is
used as the address for subsequent instruction fetches.
Again, a sixteen-bit addition is performed: a carry-out
from the low-order eight-bits may propagate through
the higher-order bits. In this. case, neither the ac­
cumulator contents nor the data pointer is altered.

The example subroutine below reads a byte of RAM
into the accumulator from one of four alternate address
spaces, as selected by the contents of the variable
MEMSEL. The address of the byte to be read is
determined by the contents of RO (and optionally R I).
It might find use in a printing terminal application,
where four different model printers all use. the same
ROM code but use different types (and sizes) of buffer
memory for different speeds and options.

MCS®-51 APPLICATION EXAMPLES

;
MEMSEL EQU R3
;
JUMP_4: MOV A,MEMSEL

MOV DPTR,#JMPTBL
MOVC A,@A+DPTR
JMP @A+DPTR .

JMPTBL: DB MEMSPO-JMPTBL
DB MEMSP1-JMPTBL
DB MEMSP2-JMPTBL
DB MEMSP3-JMPTBL

MEMSPO: MOV A,@RO ;READ FROM INTERNAL RAM
RET

MEMSP1: MOVX A,@RO ;READ 256 BYTE EXTERNAL RAM
RET

MEMSP2: MOV DPL,RO ;READ 64K BYTE EXTERNAL RAM
MOV DPH,R1
MOVX A,@DPTR
RET

MEMSP3: MOV A,R1 ;READ 4K BYTE EXTERNAL RAM
ANL A,#07H
ANL P1,#11111000B
ORL P1,A
MOVX A,@RO
RET

To use this approach, the size of the jump table plus the
length of the alternate routines must be less than 256
bytes. The jump table and routines may be located
anywhere in program memory and are independent of
256-byte program memory pages.

For applications where up to 128 destinations must be
selected, all residing in the same 2K page of program
memory, the following technique may be used. In the
printing terminal example, this sequence could process
128 different codes for ASCII characters arriving via the
8051 serial port.

MCS®-51 APPLICATION EXAMPLES

;
OPTION EQU R3

;
JMP128: MOV A,OPTION

RL A ;MUL TIPLY BY 2 FOR 2-BYTE JUMP TABLE
MOV DPTR,#INSTBL ;FIRST ENTRY IN JUMP TABLE
JMP @A+DPTR ;JUMP INTO JUMP TABLE

; ;
INSTBL: AJMP PROCOO ;128 CONSECUTIVE

AJMP PROC01 ;AJMP INSTRUCTIONS
AJMP PROC02

AJMP PROC7E
AJMP PROC7F

The destinations in thejump table (PROCOO-PROC7F)
are not all necessarily unique routines. A large number
of special control codes could each be processed with
their own uniljue routine, with the remaining printing
characters all causing a branch to a common routine for
entering the character into the output queue.

9.0.7 Computing Branch
Destinations at Run Time

In some rare situations, 128 opti'ons are insufficient, the
destination routines may cross a 2K page boundary, or
a branch destination is not known at assembly time (for
whatever reason), and therefore cannot be easily' in­
cluded in the assembled code. These situations can all

,
RTEMP EQU
,

be handled by computing the destination address at
run-time with standard arithmetic or table look-up
instructions, then performing an indirect branch to that
address. There arc two simple ways to execute this last
step, assuming the 16-bit destination address has al­
ready been computed. The first is to load the address
into the DPH and DPL registers, clear the accumulator
and branch using the JMP @A+DPTR instruction; the
second is to push the destination address onto the stack, .
low-order byte first (so as to mimic a call instruction)
then pop that address into the PC by performing a
return instruction. This also adjusts the stack pointer to'
its previous value. The code segment below illustrates
the latter possibility.

JMP256: MOV
MOV
CLR
RLC
JNC
!NC

R7

DPTR,#ADRTBL
A,OPTION

;FIRST ADDRESS TABLE ENTRY
;LOAD INDEX INTO TABLE

C
A
LOW128
DPH

;MUL TlPLY BY 2 FOR 2-BYTE JUMP TABLE

;FIX BASE IF INDEX>127

MCS®-51 APPLICATION EXAMPLES

lOW128: MOV
INC
MOVC
PUSH
MOV
MOVC
PUSH

RTEMP,A
A
A,@A+DPTR
ACC
A,RTEMP
A,@A+DPTR
ACC

;SAVE ADJUSTED ACC FOR SECOND READ
;READ lOWORDER BYTE FIRST
;GET lOW-ORDER BYTE FROM TABLE

;RElOAD ADJUSTED ACC
;GET HIGH-ORDERED BYTE FROM TABLE

THE TWO ACC PUSHES HAVE PRODUCED
A "RETURN ADDRESS" ON THE STACK WHICH CORRESPONDS
TO THE DESIRED STARTING ADDRESS.
IT MAY BE REACHED BY POPPING THE STACK
INTO THE PC.
RET

ADRTBl: OW PROCOO
PROC01

;UP TO 256 CONSECUTIVE DATA
OW ;WORDS INDICATING STARTING ADDRESSES

OW PROCFF

9.0.8 In-Line-Code Parameter Passing

Parameters can be passed by loading appropriate
registers with values before calling the subroutine. This
technique is inefficient if a lot of the parameters are
constants, since each would require a separate register
to carry it, and a separate instruction to load the register
each time the routine is called.

If the routine is called frequently, a more code-efficient
way to transfer constants .. is "in-line-code" parameter­
passing. The constants are actually part of the program
code, immediately following the call instruction. The
subroutine determines where to find them from the
return address on the stack, and then reads the para­
meters it needs from program memory.

For example, assume a utility named ADDBCD adds
a 16-bit packed-BCD constant with a two-byte BCD

9-11

variable in internal RA M and stores the sum in a
different two-byte buffer. The utility must be given the
constant and both buffer addresses. Rather than using
four working registers to carry this information, all four
bytes could be inserted into program memory each time
the utility is called. Specifically, the calling sequence .
below invokes the utility to add 1234 (decimal) with the
string at internal RAM'address 56H, and store the sum
in a buffer at location 78H.

The ADDBCD subroutine determines at what point
the call was made by popping the return address from
the stack into the data pointer high- and low-order
bytes. A MOVC instruction then reads the parameters
from program memory as they are needed. When done,
ADDBCD resumes execution by jumping to the in­
struction following the last parameter.

ADDBCD:

CALL
OW
DB
DB

POP
POP
MOV
MOVC
MOV
MOV

MOVC
MOV
MOV
MOVC
ADD
DA
MOV
INC
INC
CLR
MOVC
ADDC
DA
MOV
MOV
JMP

MCS®-51 APPLICATION EXAMPLES

ADDBCD
1234H
56H
78H

DPH
DPL
A,#2
A,@A+DPTR
RO,A
A,#3

A,@A+DPTR
R1,A
A,#1
A,@A+DPTR
A,@RO
A
@R1,A
RO
R1
A
A,@A+DPTR
A,@RO
A
@R1,A
A,#4
@A+DPTR

;BCD CONSTANT
;SOURCE STRING ADDRESS
;DESTINATION STRING ADDRESS
;CONTINUATION OF PROGRAM

;POP RETURN ADDRESS INTO DPTR

;INDEX FOR SOURCE STRING PARAMETER
;GET SOURCE STRING LOCATION

;INDEX FOR DESTINATION STRING
;PARAMETER
;GET DESTINATION ADDRESS

;INDEX FOR 16-BIT CONSTANT LOW BYTE
;GET LOW-ORDER VALUE
;COMPUTE LOW-ORDER BYTE OF SUM
;DECIMAL ADJUST FOR ADDITION
;SAVE IN BUFFER

;INDEX FOR HIGH-BYTE = 0
;GET HIGH-ORDER CONSTANT

;DECIMAL ADJUST FOR ADDITION
;SAVE IN BUFFER
;INDEX FOR CONTINUATION OF. PROGRAM
;JUMP BACK INTO MAIN PROGRAM

This example illustrates several points:

I) The"subroutine" does not end with a normal return
statement; instead, an indirect jump relative to the
data pointer returns execution to the first instruc­
tion following the parameter list. The two initial
POP instructions correct the stack pointer contents.

9-12

2) Either an ACALL or LCALL works with the sub­
routine, since each pushes the address of the next
instruction or data byte onto the stack. The call may
be made from anywhere in the full 8051 address space,
since the MOVC instruction access all 64K bytes.

MCS®-S1 APPLICATION EXAMPLES

3) The parameters passed to the utility can be listed in
whatever order is most convenient, which may not
be that in which they're used. The utility has
essentially "random access" to the paramater list, by
loading the appropriate constant into the accumula­
tor before each MOVe instruction.

4) Other than the data pointer, the whole calling and
processing sequence 'only affects the accumulator,
PSW and pointer registers. The utility could have
pushed these registers onto the stack (after popping
the parameter list starting address), and popped
before returning.

Passing parameters through in-line-code can be used in
conjunction with other variable passing techniques.

The utility can also get input variables from working
registers or from the stack, and return output variables
to registers or to the stack.

PORT"Z"

I'ZO I'ZI PZ2 I'Z3 I'Z4 I'Y4 I'Y3
1'2.7 1'2.6 1'2.5 1'2.4 1'2.3 1'2.2 1'2.1 1'2.0

9.1 PERIPHERAL INTERFACING TECHNIQUES

9.1.1 1/0 Port Reconfiguration (First Approach)

I/O ports must often transmit or receive parallel data in
formats other than as eight-bit bytes. For example, if an
application requires three five-bit latched output ports
(called X, Y, and Z), these "virtual" ports could be
mapped onto the pins of "physical" ports I and 2 (see
example at bottom of page).

This pin assignment leaves 1'2.7 free for usc as a test pin,
input data pin, or control output through software.

Notice that the bits of port Z are reversed. The highest­
order port Z pin corresponds to pin 1'2.2, and the
lowest-order pin of port Z is 1'2.6, due to P.c. board
layout considerations. When connecting an 8051 to an
immediately adjacent keyboard column decoder or
another device with weighted inputs, the corresponding
pins may not be aligned. The interconnections must be
"scrambled" to compensate either with interwoven
circuit board traces or through software (as shown on
the next page).

PORT"Y" PORT "X"

I'Y2 I'YI pya I'X4 I'X3 PX2 PXl PXO
1'1.7 P 1.6 P 1.5 1'1.4 1'1.3 1'1.2 1'1.1 1'1.0

9"13

MCS®-51 APPLICATION EXAMPLES

PX_MAP DATA 20H
PY_MAP DATA 21H
PZ_MAP DATA 22H
,
OUT _PX: ANL A,#00011111 B

MOV PX_MAP,A
ACALL OUT _P1
RET

OUT _PY: MOV PY _MAP,A
ACALL OUT _P1
ACALL OUT _P2
RET

OUT _PZ: MOV PZ_MAP,A

OUT_P1:

OUT_P2:

ACALL OUT _P2
RET

MOV A,PY_MAP
SWAP A
RL A
ANL A,#11100000B
ORL A,PX_MAP
MOV P1,A
RET

MOV C,PZ_MAP.O

RLC A
MOV C,PZ_MAP.1
RLC A
MOV C,PZ_MAP.2
RLC A
MOV C,PZ_MAP.3
RLC A
MOV C,PZ_MAP.4
RLC A
MOV C,PZ_MAP.~

RLC A
MOV C,PZ_MAP.3
RLC A
SETB ACC.7
MOV P2.A
RET

;CLEAR BITS ACC.7 - ACC. 5
;SAVE DATA IN MAP BYTE
;UPDATE PORT 1 OUTPUT LATCH

;SAVE IN MAP BYTE
;UPDATE PORT 1
;AND PORT 2 OUTPUT LATCHES

;SAVE DATA IN MAP BYTE
;UPDATE PORT 2.

;OUTPUT ALL P1 BITS

;SHIFT PY _MAP LEFT 5 BITS
;MASK OUT GARBAGE
;INCLUDE PX_MAP BITS

;LOAD CY WITH P2.6 BIT
;AND SHIFT INTO ACC.
;LOAD CY WITH P2.5 BIT
;AND SHIFT INTO ACC.
;LOAD CY WITH P2.4 BIT
;AND SHIFT INTO ACC.
;LOAD CY WITH P2.3 BIT
;AND SHIFT INTO ACC.
;LOAD CY WITH P2.2 BIT
;AND SHIFT INTO ACC.
;LOAD CY WITH P2.1 BIT
;AND SHIFT.INTO ACC.
;LOAD CY WITH P2.0 BIT
;AND SHIFT INTO ACC.
;(ASSUMING INPUT ON P2.7)

9-14

MCS®-S1 APPLICATION EXAMPLES

Writing to the virtual ports must not affect any other
pins. Since the virtual output algorithms are non­
trivial. a subroutine is needed for each port: OUT __ PX,
OUT _PY and OUT _PZ. Each is called with data to
output right-justified in the accumulator, and any data
in bits ACe. 7-ACe.5 is insignificant. Each subroutine
saves the data in a "map" variable for the virtual port,
then calls other subroutines which use the data in the
various map bytes to compute and output the eight-bit
pattern needed for each physical port affected. The two
level structure of the above subroutines can be modified
somewhat if code efficiency and execution speed are
critical: incorporate the code shown as subroutines
OUT_P I and OUT _P2 directly into the code for
OUT_PX and OUT .. PZ, in place of the correspond­
ing ACAll instructions. OUT _PY would not be
changed, but now the destinations for its ACAll
instructions would be alternate entry points in OUT_
PX and OUT _PZ, instead of isolated subroutines.

9.1.2 1/0 Port Configuration
(Second Approach)

A trickier situation arises if two sections of code which
write to the same port or register, or call virtual output
routines like those above, need to be executed at
different interrupt levels. For example, suppose the
background program wants to rewrite Port X (using the
port associations in the previous example), and has

9-15

computed the bit pattern needed for, P I. An interrupt is
detected just before the MaY PI,A instruction, and the
service routine tries to write to Port Y. The service
routine would correctly update P I and P2, but upon
returning to the background program P I is immediate­
ly re-written with the data computed he/lJre the inter­
rupt! Now pins P2.1 and P2.0 indicate (correctly) data
written to port Y in the interrupt routine, but the earlier
data written to PI. 7- PI. 5 is no longer valid. The same
sort of confusion could arise if a high-level interrupt
disrupted such an output sequence.

One solution is to disable interrupts around any section
of code which must not be interrupted (called "critical
section") but this would adversely affect interrupt
latency. Another is to have interrupt routines set or
clear a flag ("semaphore") when a common resource is
altered- a rather complex and elaborate system.

An easier way to ensure that any instruction which
writes the port X field of P I does not change the port Y
field pins from their state al Ihe hegilllling or Ihal
inslruclion. is shown next. A number of 8051 opera­
tions read, modify, and write the output port latches all
in one instruction. These are the arithmetic and logical
instructions (INC, DEC, ANl, ORl, etc.), where an
addressed byte is both the destination variable and one
of the source operands. Using these instructions, in­
stead of data moves, eliminates the critical section
problem entirely.

MCS®-51 APPLICATION EXAMPLES

OUT_PX: ANL P1 ,#111 OOOOOB ;CLEAR BITS P1.4 - P1.0
ORL P1,A ;SET P1 PIN FOR EACH ACC BIT SET
RET

OUT_PY: MOV B#20H
MUL
ANL
ORL
MOV
ANL
ORL
RET

AB
P1,#00011111 B
P1,A
A,B
P2,#11111100B
P2,A

;SHIFT B A LEFT 5 BITS.
;CLEAR PY FIELD OF PORT 1
;SET PY PITS ON PORT 1
;LOAD 2 BITS SHIFTED INTO B
;AND UPDATE P2

OUT_PZ: RRC A ;MOVE ORIGINAL ACC.O INTO CY
;AND STORE TO PIN P2.6. MOV

RRC
MOV
RRC
MOV
RRC
MOV
RRC
MOV
RET

P2.6,C
A
P2.5,C
A
P2.4,C
A
P2.3,C
A
P2.2,C

;MOVE ORIGINAL ACC.1INTO CY
;AND STORE TO PIN P2.5.
;MOVE ORIGINAL ACC.2 INTO CY
;AND STORE TO PIN P2.4.
;MOVE OR,GINAL ACC.3 INTO CY
;AND STORETO PIN P2.3,
;MOVE ORIGINAL ACC.4 INTO CY
;AND STORE TO PIN P2.2.

9.1.38243 Interfacing

The 805 J's quasi, bidirectional port structure lets each
I/O pin input data. output data. or serve as a test pin or
output strobe under software control. An example of
these modes operating in conjunction is the host-

processor interface expected by an 8243 I/O expander.
Even though the 8051 does not include 8048-type
instructions for interfacing with an 8243, the parts can
be interconnected and the protocol may be emulated
with simple software; see Figure 9-2.

;IN8243 INPUT DATA FROM AN 8243 1/0 EXPANDER
CONNECTED TO P23-P20.
P25 & P24 MIMIC CS & PROG.
P27-P26 USED AS INPUTS. CODE FOR
PORT TO BE READ IN ACC.1-ACC.0

9-16

MCS®-51 APPLICATION EXAMPLES

PROG BIT P2.4 ;SYMBOLIC PIN DESCRIPTION

IN8243: ORL A,#11010000B ;SET PROG AND PINS USED AS INPUT
MOV P2,A ;OUTPUT PORT CODE AND OPERATION CODE
CLR PROG ;LOWER PROG TO LATCH ADDRESS
ORL P2,#00001111 B ;SET LOW ORDER PINS FOR INPUT
MOV A,P2 ;READ IN PORT DATA
ORL P2,#00110000B ;SET PROG AND CS HIGH

9.1.4 Software Delay Timing

Many 8051 applications involve exact control over
output timing. A software-generated output strobe, for
instance, might have to be exactly 50!,sec. wide. The

CLR
MOV
DJNZ
SETB

8051AH
8751H

WR
R2,#24
R2,$
WR

P2.7
P2.6

} INPUTS

P2.5 I------..j cs
P2.4 PROG

P2.3 1------1 P23
P2.2 P22
P2.1 P21
P2.0 P20

Figure 9-2. Connecting an 8051 with an 8243 I/O
Expander

The dollar sign in this example is a special character
meaning "the address of this instruction." It can be used
to eliminate instruction labels on nearby source lines.

9.1.5 Serial Port and Timer Configuration

Configuring the 8051's Serial Port for a given data rate
and protocol requires essentially three short sections of

9-17

DJNZ operation can insert an one instruction software
delay into a piece of code, adding a moderate delay of
two instruction cycles per iteration. For example, two
instructions can add a 49-!,sec software delay loop to
code to generate a pulse on the W R pin.

software. On power-up or hardware reset the serial
port and timer control words must be initialized to the
appropriate values. Additional software is also needed
in the transmit routine to load the serial port data
register and in the receive routine to unload the data as
it arrives.

To choose one arbitrary example, assume the 8051
should communicate with a standard CRT operating at
2400 baud (bits per second). Each character is transmit­
ted as seven data bits, odd parity, and one stop bit. The
resulting character rate is 2400 baud/9 bits, approxi­
mately 265 characters per second.

For the sake of clarity, the transmit and receive
subroutines here are driven by simple-minded software
status polling code rather than interrupts. The serial
port must be initialized to 8-bit UART mode (SMO,
SM I = 01), enabled to receive all messages (SM2 = 0,
REN = I). The nag indicating that the transmit register
is free for more data will be artificially set in order to let
the output software know the output register is avail­
able. All this can be set up with instruction at label
SPINIT.

MCS®-51 APPLICATION EXAMPLES

Timer I will be used in auto-reload mode as a baud rate
generator. To achieve a data rate of 2400 baud, the
timer must divide the I MHz internal clock by

; ,

SPINIT:

I x 106
(32) (2400)

INITIALIZE SERIAL PORT
F.OR 8-BIT UART MODE
& SET TRANSMIT READY FLAG.
MOV SCON,#01010010B
INITIALIZE TIMER 1 FOR
AUTO-RELOAD AT 32 X 2400HZ

which equals 13 (actually, 13.02) instruction cycles. The
timer' must reload the value - 13, or OF3H, as shown by
the code at label TIINIT. (ASM51 will accept both the'
signed decimal or hexadecimal representations.)

(TO USED AS GATED 16-BIT COUNTER.)
;TIINIT: MOV TCON,#1101001B

MOV TH1,#13
SETB TR1

9.1.6 Simple Seri~II/O Drivers

SP _OUT is a simple subroutine to transmit the
character passed to it in the accumulator. First it must
compute the parity bit, insert it into the data byte, wait
until the transmitter is available, output the character
and then return.

SP _IN is an equally simple routine which waits until a·
character is received, sets the carry flag if there is an
odd-parity error, and returns the masked seven-bit code
in the accumulator.

;SP_OUT ADD ODD PARITY TO ACC AND
TRANSMIT WHEN SERIAL PORT READY

, .

SP_OUT: MOV
CPL
MOV
JNB
CLR
MOV
RET

C,P
C
ACC.7,C
TI,$
TI
SBUF,A

9-18

MCS®-51 APPLICATION EXAMPLES

;SP_IN INPUT NEXT CHARACTER FROM SERIAL PORT.
SET CARRY IF ODD-PARITY ERROR

JNB RI,$
CLR RI
MOV A;SBUF
MOV C,P
CPL C
ANL A,#7FH
RET

9.1.7 Transmitting Serial Port Character
Strings

Any application which transmits characters through a
serial port to an ASCII output device will on occasion

need to output "canned" messages, including error
messages, diagnostics, or operator instructions. These
character strings are most easily defined with in-line
data bytes defined with the DB directive.

CR
LF
ESC

EQU
EQU
EQU

CALL
DB
DB
DB

ODH
OAH
1BH

XSTRING
CR,LF
'INTEL DELIVERS'
ESC

;ASCII CARRIAGE RET
;ASCII LINE-FEED
;ASCII ESCAPE CODE

;NEW LINE
;MESSAGE
;ESCAPE CHARACTER

(CONTINUATION OF PROGRAM)

XSTRING: POP DPH ;LOAD DPTR WITH FIRST CHARACTER
POP DPL

XSTR_1: CLR A ;(ZERO OFFSET)
MOVC A,@A+DPTR ;FETCH FIRST CHARACTER OF STRING

XSTR_2: JNB TI,$;WAIT UNTIL TRANSMITTER READY
CLR TI ;MARK AS NOT READY
MOV SBUF,A ;OUTPUT NEXT CHARACTER
INC DPTR ;BUMP POINTER
CLR A
MOVC A,@A+DPTR ;GET NEXT OUTPUT CHARACTER
CJNE A,#ESC,XSTR_2 ;LOOP UNTIL ESCAPE READ
MOV A,#1
JMP @A+DPTR ;RETURN TO CODE AFTER ESCAPE

MCS®-S1 APPLICATION EXAMPLES

9.1.8 Recognizing and Processing Special
C~~ .

Before operating on the d<jta it receives, a subroutine
might give "special handling" to certain input values.
Consider a word processing device which receives
ASCII characters through the 8051 serial port and
drives a thermal hard-copy printer. A standard routine

translates most printing characters to bit patterns, but
certain control characters ([DEL], [CR], [LF], [BEL],
[ESC], or [SP]) must invoke corresponding special
routines. Any other character with an ASCII code less
than 20H should be translated into the [NUL] value,
OOH, and processed with the printing characters. The
CJNE operation provides essentially a one-instruction
CASE statement.

MCS@-51 APPLICATION EXAMPLES

9.1.9 Synchronizing Timer Overflows

HOSI timer overil~ws automatically generate all inter­
nal interrupt request, which will vector program execu­
tion to the appropriate interrupt service routine if
interrupts are enabkd and no other service routines are
in progress at the time. However. it is not predictable
('xaC/!1" how long it will take to reach the service routine.
The service routine call takes two instruction cycles. but
I, 2, or 4 additional cycles may be needed to comrlete
the instruction in progress. If the background program
ever disables .interrupts, the response latency could
further increase by a few instruction cycles. (Critical
sections generally involve simple instruction sequences

- rarely multiplies or di\ ides.) Interrupt response
delay is generally negligible, but certain time-critical
applications must take the exact delay into account.
For example, generating interrupts with timer I
every millisecond (lOOn instruction cycles) or so would

normally call for reloading it with the value -1000
(OFC301-1). But if the interrupt interval (average over
timc) must be accurate to I instruction cycle, the l6-hit
value reload into the timer must be computed, taking
into account when the timer actu,llIy overflowed.

This simply requires reading the appropriate timer,
whieh has been incremented each cycle since the
overflow occurred. A sequence like the one below can
stop the timer, compute how much time should elapse
before thc next interrupt. and reload and restart the
timcr. The double-precision calculation shown here
compensates for any amount of timer overrun within
the maximum interval. Note that it also takes into
account that the timer is stopped for seven instruction
cycles in the process. All interrupts arc disabled, so a
higher rriority rcquest will not be able to disrupt the
time-critical code section.

CLR
CLR
MOV
ADD
MOV
MOV
ADDC
MOV
SETB

EA
TR1
A,#LOW(~1000+7)

A,TL1

;DISABlE ALL INTERRUPTS
;STOP TIMER 1

TL1,A
A,#HIGH(-1000+7)
A,TH1
TH1,A
TR1

;LOAD LOW-ORDER DESIRED COUNT
;CORRECT FOR TIMER OVERRUN
;RELOAD LOW-ORDER BYTE.
;REPEAT FOR HIGH-ORDER BYTE.

;RESTART TIMER

9-21

MCS®-51 APPLICATION EXAMPLES

9.1.10 Reading a Timer/Counter
"On-the-Fly"

The preceding example simply stopped the time(before
changing its contents. This is normally done when
reloading a timer so that the time at which the timer is
started (i.e. the "run" flag is set) can be exactly·
controlled. There are situations, though, when it is
desired to read the current count without disrupting the
timing process. The 8051 timer I counter registers can all
be read or written while they are running, but a few
precautions must be taken.

Suppose the subroutine RDTIME should return in
[R I], [RO] a sixteen-bit value indicating the count in
timer O. The instant at which the count was sampled is
not as critical as the fact that the value returned must
have been valid at some point while the routine was in
progress. There is a potential problem· that between
reading the two halves, a low-order register overflow
might increment the high-order register, and the two
data bytes returned would be "out of phase." The
solution is to read the high-order byte first, then the
low-order byte, and then confirm that the high-order
byte has not ch<\nged. If it has, repeat the whole process.

RDTIME: MOV
MOV
CJNE
MOV
RET

A,THO
RO,TLO
A,THO,RDTIME
R1,A

;SAMPLE TIMERO (HIGH)
;SAMPLE TIMERO (LOW)
;REPEAT IF NECESSARY

. ;STORE VALID READ

9.2 PERIPHERAL INTERFACE EXAMPLES
,

This section should give the designer an insight into
connecting external peripherals and memories to the
MCS-51 family.

9-22

MCS®-51 APPLICATION EXAMPLES

+SV

+sv

-::-
40 20

19 XTAL 1 VCC VSS 1 Pl.0

}o Pl.l 2

;PFr Pl.2 3 8243
D Pl.3 4 1/0

Pl.4 5 EXPANOER
30 pF 18 S

XTAL2 Pl.S
Pl.S 7

Pl.7 8

B051AH 11
P2.0 P20
P2.1 10 P21 RESET 9 P2.2 8 P22
P2.3 P23
P2.4
P2.S PROG

31 P2.6
EA P2.7

P3.0 (RXD) PO.O 39
P3.l (TXD) PO.l 12 P3.2 (INTO) PO.2 37 1/0

13 36 C P3.3 (INTl) PO.3
1/0 14 35 P3.4(TO) PO.4 15 34

""1lf P3.5(TIl PO.5
P3.6(WR) PO.6 33

17 P3.7 fRO) PO.7 32
ALE PSEN

30 29

The following software driver Is required to Interface to the 8243.

Mixing Parallel Output, Input, and
Control Strobes on Port 2.

INB243 INPUT DATA FROM AN 8243 110 EXPANDER
CONNECT TO P23-P20
P25 & P24 MIMIC CSI & PROG
P27-P26 USED AS INPUTS
PORT TO BE READ IN ACC

INB243 ORL
MOV
CLR
ORL
MOV
SETB

A#11010000B
P2,A ;OUTPUT INSTRUCTION CODE
P2,4 :FALLING EDGE OF PROG
P2,#OOOOllll B ;SET FOR INPUT
A,P2 ;READ INPUT DATA
P2.4 ;RETURN PROG HIGH

Figure 9-3.1/0 Expansion Using an 8243

9-23

2
3
4
5

PSO 1
23 PSl

PS2 22

PS3 21

20 1/0
PSO
PSl 19

18 PS2 17
PS3

P70 13
P71 14
P72 15

P73 16

<0
I

I\)
.;,.

19

30;{ ds
3~PFT 118

£=. 8.2 K I~
>5V-.1

lOp!

31

4-

r -4.1-
~ 13

1/0 ~
~
:H: _...1...

-

+5V
+5V

~ ~ j20

40 Vee GNO

Vee VSS fl-l 1 13 1
XTALl Pl.0 2 010 000

18 2 Pl.l ~ 011 001
Pl.2 ~ 3 012 8282 002 17 3

4 4t-.--~ Pl.3 5 013 003
1'1.4 014 004

6 14 6 1'1.5 015 005 XTAL2 ttJO
~- .--k 13 7

B031AH 1'1.6 016 006
fL. ~.!!. 017 12 8

RESET

EA

1'3.0 (RXO)
1'3.1 (TXO)
P3.2l1liffih
1'3.3 (INT1)
1'3.4 (TO)
1'3.5 (Tl)
1'3.6 (WR)
1'3.7 (RD)

ALE

1
30

1'1.7 007

1'2.0 21

1'2.1 22
1'2.2 ;-1'2.3
1'2.4 IW- STB 6E
1'2.5 IF .

11 .4:.9 1'2.6 ~. 1'2.7

1'0.0 39
1'0.1 38
1'0.2 37

36 1'0.3
1'0.4 35

1'0.5 34

1'0.6 33
__ 1'0.7 32
pSEN

129

* These pins are not available as 1/0 where any part of Port 2 is
being used as an address bus.

Figure 9-4. External Program Memory Using a 2716

9
10
11

3
14
15
16
17

A7
A6
As
·A4
A3
A2
Al
AO

00
0,
02
03
04
05
06
07

+5\1

h21~
Vee Vpp eE

As

A9
2716

AlO

OE
po

~
,E-

19

s
(')
en
®
I

U1
>
"0
"0
r
o
~
o
Z
m
>< »
3:
"0
r
m
en

'f
J\)
(J1

+5V

U T ~ 20

40 Vee GNO

Vee Vss Pl.0

fi=l
1 010 000 XTAL 1

3;PFt~
Pl.l 2 011 001
P1.2 f}- 3 011 8282 002
P1.3 013 003
P1.4 rs-I/O 5 014

;OPFT T 18 ~J
004

P1.S 6 015 DOS XTAL2 ...------4-8031AH P1.6
~ .------.!!.

016 006
P1.7 017 007

l,f B.2K ~ P2.0~
P2.1~

+5V----;:J RESET P2.2 23
P2.3 ~~ lOp'
P2.4~} STB OE
P2.S f2r •

11 .J;
31 Ell P2.6~

~
P2.7 '"""-_

r
P3.0(RXO) PO.O 39
P3.1 (TXO) PO.1 8 "it P3.2(lNTD) PO.2 37

-1~ P3.3(fiii"i1) PO.3 36
I/O ~ P3.4 ((TO) PO.4 35 -

..Jg. P3.S (T1) PO.S
34

~ P3.6(WR) PO.6 !3
_...11 P3.7tlml __ PO.7 32

ALE PSEN
30

129

• These pins are not available as I/O when any pari o' Pori 2
is being used as an address bus.

Figure 9-5. External Program Memory Using a 2732

+5V

124

Vee

19 1 A7
18 2 A6
17 3 As
16 4 A4
15 5 A3
14 6 A2
13 7 Al
12 8 AO

9 00
10 01
11 02
13 03

1~ 04
16 05
17 06

07

~ -

118
eE

-
2732A

OElVpp

120

f121,

GNO

A8

A9

Al0

All

~
~

~

~

3:
o
en
®
I

U1
>
"0
"0
!:
o
~
o
Z
m
><
>
3:
"0
r­
m
en

MCS®-51 APPLICATION EXAMPLES

+5V

~tID
30 pF 18 XTAL 2

B051AH

31E/i

10 P3.0 (RXD)

{

11 P3.1 (TXD)
12 P3.2 (INTO)

I/O 13 P3.3 (INT1)

P1.0
P1.1 2

3 P1.2 4
P1.3
P1.4 ~
P1.5 7
P1.6 8
P1.7

P2.0 21
P2.1 22
P2.2 23
P2.3 24

P2.4 25

P2.5 26
P2.6 27

P2.7 28

Po.o 39
38 PO.1
37 PO.2

PO.3 36
PO.4 35
PO.5 34

PO.6 33

14 P3.4(TO)
15 P3.5 (!!l
16 P3.6 (WR)
17 P3.7 (lID)

A E
~PO.7

32

30 29

}"
}o +5V

12 ADO
13
14

AD1
AD2 15 AD3

16 AD4
17 AD5
18 AD6
19 AD7

7 IO/M
9

RD

10 WR

11
ALE

B

GND

8155
256x8
RAM

Figure 9-6. Adding a Data Memory and I/O Expander

9-26

I/O

MCS®-S1 APPLICATION EXAMPLES

+5V

19

D
L-__ ","18~ XTAL 2

. 8051AH

RESET

r------!===!~~~ P3.0 (RXD) P3.1 (!!Q)
~3 P3.2 (INTO)
14 P3.3 (INTl)

15 ~~:~ H~l
16 P3.6 (WIi)
17 P3.7 (RD)

ALE
30 29

+5V

40

r---t"--<19"iXTAL 1 Vee

30 pF '--_-'.18~XTAL 2

~_'8.2K +5V
+
10~1

8051AH

9
RESET

'-_--<31"iEA

L ___ ---!===!10~ P3.0 (RXD)
11 P3.1 (TXD)
12 P3.2 (J1iI'I'li)
13 P3.3 (INTI).
14 P3.4(TO)
15 P3.5 (Tl)
16 P3.6(WR)
17 P3.7 (RD)

ALE
29

Pl.0 ~
Pl.l 3
Pl.2 4
Pl.3 5
Pl.4 6
Pl.5 7
Pl.6 8
Pl.7

1/0

1/0

Figure 9-7. Multiple 8051'5 Using Half-Duplex Serial Communication

9-27

MCS®-S1 APPLICATION EXAMPLES

+5V

o
'--_>--....,18~XTAL 2 '

8051AH

Figure 9-8, Multiple Interrupt Sources

9-28

P1.0
P1.1
P1.2
P1.3
P1.4
P1.5
P1.6
P1.7

1
2 '
3
4
5
6
7
8

P2.0 ~~
P2.1 23 I/O
P2.2
P2.3 ~~
P2.4 26

~~:~ 27
P2.7 28

PO.O ~9
PO.1 37
PO.2 36
PO.3 35
PO.4 f.i34i2:------.
PO.5 H3;;:3;----,

~g:~ 32

Article Reprints 10

Putting a new wrinkle in a CMOS process has led to a pair of high-caliber
microcontrollers that limit power dissipation but not speed.

Microcontrollers go CMOS
without slowing down

Long considered a low-speed, complex technology
compared with NMOS, CMOS is on the rise as it
prepares to compete successfully with NMOS for
new, high-speed microprocessor applications. Using
its HMOS-II technology, Intel has developed high­
performance CMOS (C-HMOS) logic and applied it
to two standard NMOS microcontrollers, the S049
and S05l.

The two new members of the MCS-4S and MCS-51
families-the SOC49 and SOC51, respectively-are
out to erase the low-performance image of previou~
CMOS devices while minimizing price differences
and chip sizes compared with their n-channel coun­
terparts. C-HMOS technology borrows many of the
design and performance characteristics of high­
performance MOS (HMOS). However, developing C­
HMOS called for the creation of an n-well CMOS
process (Fig. 1). That had not been done previously
because CMOS technology grew' naturally out of the
older p-channel MOS technology.

N-well CMOS offers two important processing
advantages: First, the substrate remains the same
as in HMOS. Thus n-channeltransistors in C-HMOS
require no new process characterization. Second, the
only new processing necessary are the n well and
a p-channel transistor.

Because they retain the design rules of HMOS-II,
C-HMOS devices realize the high speed and superior
packing density of that process. In addition,

. C-HMOS, like CMOS, dissipates less power than any
other semiconductor technology. One of the best uses
of the combined characteristics is in a microcon­
troller that must operate at low input power levels,
and the number of such applications is growing. They

. include battery-powered equipment and systems

John Kalausky, Technical Marketing Manager
George Leach, Design Engineering Manager
Intel Corp., Microcontroller Operation
5000 W. Williams Field Rd., Chandler, AZ 85224

Reprinted from ELECTRONIC DESIGN - February 18, 1982

10-1

that must keep working when normal ac power is
removed. In fact, this class of applications would not
exist if not for CMOS.

Microcontrollers are an ideal vehicle for the first
use of C-HMOS technology for several reasons. For
one, since they are generally stand-alone devices,
designers can construct a complete one-chip CMOS
microcontroller system. For another, they are widely
used in battery-powered systems, in .which CMOS
devices are mandatory. Also, since they contain
RAM, ROM, and random logic on a single chip,
designers gain experience with the major forms of.
CMOS hardware contained on a single device. As for
the SOC49 and SOC51 in particular, designers already
familiar with the S049 and S051 can gain the benefits
of CMOS with minor software modifications.

In developing the SOC49 and SOC5i, the architec­
tural differences between the NMOS and C-HMOS

1. In the standard CMOS process, a p well resides In an
n-type substrate (a). C-HMOS technology reverses this
process, placing ,an n well In a p-type substrate (b).

Copyri ght 1982 Hayden Pub 1 i 5 hi ng Co., Inc.

CMOS microcontrollers

versions were minimized. As a result, designers need
not relearn instruction sets, development tools, and
existing hardware designs. Existing software can
even be patched with idle instructions to reduce
significantly the part's power consumption in a given
application.

The 80C49 leads the way

The 80C49 is pin- and instruction-set-compatible
with the industry-standard 8049 microcontroller
(Fig. 2a). It contains 2 kbytes of ROM, 128 bytes of
RAM, and an 8-bit timer-counter. Other features
include three 8-bit I/O ports, two test inputs, and
an output structure geared to easy expansion of the
I/O. To cover a range of controller applications, two
companion devices are in the offing. One is the 8OC48
(1 kbyte of ROM, 64 bytes of RAM) and the other
is the 80C50 (4 kbytes of ROM, 256 bytes of RAM).
Both will use the same CPU as the 8OC49 and include
the same power-down and idle features.

The 80C49 operates off 4.0 to 6.0 V. Between 4.5
to 5.5 V, its inputs and outputs match those of TTL
circuits. When interfaced with CMOS circuitry, both
inputs and outputs reach CMOS levels for the logic
1 and 0 states.

The operating frequency in CMOS devices is highly
dependent on supply voltage. In the case of 8OC49,
above 4.5 V it can run at 11 MHz, but below that
the clock rate must be reduced. For example, at the

08,
v ..

.)

maximum supply voltage of 6 V and an operating
frequency of 11 MHz, the chip draws a maximum
current of 15 rnA; with a 4-V power supply and a
frequency of 1 MHz, however, the current drain is
just 1 rnA (see the table).

To reduce power consumption further,. the 80C49
incorporates a very flexible idle mode. "Idle" is a new
instruction added to the 80C49's architecture. Its
function is to stop all CPU activity and allow only
the timer~counter and the interrupt circuitry to
remain active. In hardware, that is accomplished
using two sets of clocks, one for the CPU and the
other for the timer-counter and interrupt circuitry.
Figure 3 shows the logical implementation of the
dual clock. With this setup, the CPU is easily disabled
by selectively stopping its clock.

During idle, the counter-timer clock continues to
run and the entire 80C49 draws but a fraction of its
normal active current. The user can monitor events
or real-time functions while holding the current

. drain to just 500 J.lA at 6 V and 11 MHz.
Either the timer-counter interrupt or an external

interrupt terminates the idle mode. Interrupts are
then handled as though they were received under
normal operating conditions. Moreover, a simple
flag, implemented by the user, can indicate if the
interrupt occurred during the idle condition or dur­
ing normal operation. A hardware' reset also
terminates the idle mode.

POoAo,
PO, AD,

~~er
Ef!Q$>
PSEN
P1t Ata
F'2.Au
P2,A.13

Interrupt and U
clock

CPUtlook

3. The 80C49:s low-power idle mode is
implemented using dual clocks, allowing the
timer-counter and interrupts to remain active while

. the controller draws just 500 JlA operating from a
6-V power supply at an 11-MHz clock rate.

2. The first high-performance CMOS microcontroller, the
80C49, is compatible pin for pin and electrically with the NMOS
8049 (a), but contains features that allow It to dissipate less
power than its NMOS cousin. Like members of the MCS-48
family, the C-HMOS 80C51 executes programs out of its
internal memory or from an external memory. When operating
with an external memory, the chip's pins assume the
functions shown In the outside columl).

10-2

The timer-counter remains active during the idle
mode to allow the idle instruction to be as useful
as possible. For example, the absence of an active
timer-counter forces the user to implement an ex­
ternal hardware interrupt to end the idle mode, a
less than ideal solution in almost all applications.
With an active timer-counter, the user can operate
the 8OC49 in a programmable duty-cycle mode, which
allows the ratio of CPU active time to idle time to
be determined by software.

Holding down power

Power consumption is reduced to an absolute
minimum by placing the 80C49 in a hardware power­
down mode (Fig. 4). During power-down, only the
on-board RAM is kept active. Power-down is ac­
tivated by turning off the Vee supply and reducing
the V DD supply to its minimum value of 2 V. That
cuts the current drain to only 10 JiA.

For some applications, it is useful for the designer
to know whether a power-up condition occurred from
a cold start or from the power-down mode. That is
made possible by software and is accomplished by
inserting a 1- or 2-byte "key" in the RAM before
entering the power-down mode. When the device
resets and comes out of power-down, th.e key bytes
are examined, enabling the CPU to determine from
what condition the reset occurred.

Higher performance with the 80C51

Specifically targeted at high-end 8-bit micropro­
cessor applications requiring low power consump­
tion, the 80C51 has all of the 8051's architectural
features, including its enhanced CPU and I/O func­
tions. The on-chip program memory size remains 4
kbytes, with a full 64-kbyte external range. The 128-
byte on-chip' RAM also is externally expandable­
to 64 kbytes. Also, on board are two 16-bit timer­
counters, a full duplex serial port, and a 1-bit Boolean
processor for control functions. Figure 2b shows the
80C51's pinout for both the expanded rand the port
mode.

Electrically similar to the 80C49, the 80C51 has
aVec range of 4 to 6 V and is TTL-compatible between
4.5 and 5.5 V. Above 4.5 V, the chip operates at clock
rates of up to 15 MHz (see the table).

Like the 80C49, the 80C51 offers an idle mode for
lower power dissipation. This mode is initiated by
setting a bit in a new on-chip register, called the
PCON register, that resides in previously unused
chip area. When the bit is set, the CPU is disabled,
but the timer-counter, interrupts, and serial port
continue to function normally. A reset or any enabled
interrupt terminates the idle mode.

If an interrupt ends the idle mode, all register data
remain unchanged and the interrupt is serviced. Idle

4. Absolute minimum power Is drawn during the
80C49's power-down mode. A fall-safe
power-down mode circuit can be designed with
just a germanium diode, a resistor, and two or
three nickel-cadmium cells.

The current drain for theSOC4918OC51 (mA)
vee At At At At

1 MHz 6 MHz 11/12 MHz' 15 MHz

4V 1/1.3 5.5/8 -/16 -/-

5V 1.2/1.6 7/10 12.5/20 -/26

6 V 1.5/2.0 8.5/12.5 15/25 -/31

*11 MHz for the BOC49, 12 MHz for the BOC51.

is implemented in much the same way as on the
80C49, that is, by splitting the on-chip clocks into
two signals, one for the CPU and the other for the
active idle circuitry. Using this technique, current
drain in the idle mode is about 1 mA at a supply
voltage of 6 V and an operating frequency of 15 MHz.,

Other bits of the PCON registers can be set as flags
to determine whether an interrupt has been used for
its normal function or to terminate the idle mode.
These flags permit an interrupt to do double duty,
instead of having to dedicate a particular interrupt
specifically to this mode.

How the idle mode works

Connecting a number of slave 8OC51s to a common
serial link serves as an example of how to use the
80C51's idle mode. These slave processors would be
controlled by a master computer or a master 80C51.
Each slave processor would contain a unique code
byte that would be stored in on-chip memory. To
conserve power, each of the slave 80C51s could be
in the idle mode. When the master transmitted a code
byte, all of the slaves would receive a serial-port
interrupt terminating the mode. Then each slave
would compare the transmitted code byte with its
internal code byte. The 80C51·whose internal code
matched the transmitted code could then carryon
the task it was programmed for, while the other
slaves would return to the idle mode.

A new power-down mode is incorporated on the

10-3

CMOS mlcrocontrollers

8OC51 (Fig. 5), but unlike that on the 8OC49, it is
achieved through software. As with idle, power­
down is entered by setting a bit in the PCON register.
That disables the clock oscillator, freezing the clocks
and stopping all functions. Therefore all vital
hardware-register data must be stored in the on-chip
RAM before starting the power-down mode. While
powered down, Vee can be lowered to 2 V -at that
level, total curr.ent drain is only 50 p.A. The only way
to terminate power-down is through a hardware
reset. As with the 8OC49, software flags can be used
to determine the state the processor was in when
an interrupt or reset occurred.

C-HMOS for other kinds Ilf circuits

Although the first products are single-chip
microcontrollers, C-HMOS technology can be used
for any product fabricated in HMOS and for some
made with other technologies.

In building CMOS and C-HMOS circuits, p-channel
and n-channel devices are created. Thus n-type and
p-type impurities are routinely doped into the sub­
strate. It is therefore possible to fabricate npn a.nd

. pnp bipolar transistors onthe same substrate. When
high-drive capability is needed, a designer can create
an npn device. In fact, in an experimental ECL­
compatible RAM memory, designers have used an
npn transistor to provide the ECL output levels.

5. The BOC51's power-down mode is activated by a bit in the
new on-board PCON register, Setting the register's PO bit
turns off the chip's oscillator. This bit actually enables a gat.e
that turns off the oscillator.

10-4

The ability to fabricate n-channel, p-channel, and
bipolar devices on the same substrate gives designers
considerable flexibility. It should, for example, be
easier in the future to combine analog and digital
functions on the same chip.

Experiments with memories

C-HMOS has been successfully demonstrated in
laboratory memory devices. One is a 4-k static RAM
that is functionally identical to the 2147. Thechip
exhibits the same address and data access times as
its HMOS counterpart but consumes one-fifth as
much power.

Another experimental 4-k static RAM is com­
patible with 10K series ECL memories. Here, the
memory array was fabricated with six-transistor
CMOS devices, and special conversion circuitry was
fitted to the front and back ends. These converters
change the ECL inputs to MOS inputs and the MOS
outputs to ECL outputs. The resulting performance
rivals that of the chip's bipolar equivalents. More
importantly, the circuit may pave the way for 16-
k, and larger, ECL-compatible memories. At those
levels, working with bipolar technology becomes very
difficult, if not impossible. Thus it may be that
higher-capacity ECL-compatible memories will have
to . be fabricated in an MOS technology.

Lots of room to shrink

Both HMOS and C-HMOS· will no doubt undergo
scaling down in the future. Interestingly, C-HMOS
may have some unique advantages as sizes shrink.
For example, p-channel transistors are typically used
as load devices. At chapnellengths of 2 p.m or more,
these devices have, typically, one-fourth the gain of
n-channel transistors, because of the dominance of
carrier mobility. However, as device dimensions
shrink, saturation velocity becomes more important
than carrier mobility. Therefore, as lengths are
scaled down below 2 p.m, the gain disparity should
improve to about a 2:1 ratio, and the p-channel
transistors will be even better load devices.

With scaling down and 5-V operation, it is likely
that hot-electron trapping will occur and cause a
shift in reference levels. To reduce that effect, it will
probably be necessary to lower the power-supply
levels commensurately. That is no problem, because
with CMOS or C-HMOS technology the reference
point will naturally assume the half-voltage level
between the supply rails. 0

MCS® ... 51 Data Sheets 11

S031 AH/S051 AH
SINGLE-COMPONENT S-BIT MICROCOMPUTER

_ 8031AH - Control-Oriented CPU with RAM and I/O
_ 8051AH - An 8031AH with Factory Mask-Programmable ROM
_ Fabricated with Intel's HMOS II Process

II 4K x 8 ROM (8051AH only) - 128K Accessible External Memory
_ 128 x 8 RAM - Boolean Processor
_ 32 I/O Lines (Four 8-Bit Ports) - 4 IlS Multiply and Divide
_ Two 16-Bit Timer/Counters - 218 User Bit-Addressable Locations
_ Programmable Full-Duplex Serial Channel - 100 mA Typical Supply Current

The 8031AH/8051AH is Intel's HMOS II version of the high performance 8-bit 8031/8051 microcomputer.
While the 8031AH/8051AH features the same powerful architecture and instruction set as its HMOS I
predecessor, it offers the additional benefit of lower power supply current.

The 8031AH/8051AH provides a cost-effective solution for those controller applications requiring up to 64K
bytes of program and/or 64K bytes of data storage. Specifically, the 8031AH contains 128 bytes of read/
write data memory; 32 I/O lines configured as four 8-bit parallel ports; two 16-bit timer/counters; a five­
source, two-priority level, nested interrupt structure; a programmable serial I/O port; and an on-chip oscil­
lator with clock circuitry. The 8051 AH has all of these 8031AH features plus 4K bytes of nonvolatile read
only program memory. Both microcomputers can use standard TTL compatible memories and most byte­
oriented MCS®-80 and MCS-85 peripherals for additional I/O and memory capabilities.

The 8031AH/8051 AH microcomputer, characteristic of the entire MCS-51 family, is efficient in both control and
computational type applications. This results from extensive BCD/binary arithmetic and bit-handling facili­
ties. The 8031AH/8051 AH also makes efficient use of its program memory space with an instruction set consisting
of 44% one-byte, 41% two-byte, and 15% three-byte instructions. At 12MHz CPU operation, over half of
the instructions execute in just 1.0/1s, while the longest instructions, multiply and divide, require only 4/1s.

,- - - - - -- - ~f:H.::~

~

r

Figure 1. Block Diagram

11-1

"n+_I® . II I 'ell 8031AH/8051AH

8031AH/8051AH PIN DESCRIPTIONS

VSS
Circuit ground potential.

VCC
SV power supply input for normal operation and
program verification.

PortO
Port 0 is an 8-bit open drain bidirectional I/O port. It
is also the multiplexed low-order address and data
bus when using external memory. ,It is used for data
output during program verification. Port 0 can sink
(and in bus operations can source) eight LS TTL
loads.

Port 1
. Port 1 is an 8-bit quasi-bidirectional I/O port. It is
also used for the low-order address byte during
program verification. Port 1 can sink/source four
LS TTL loads.

Port 2
Port 2 is an 8-bit quasi-bidirectional I/O port. It
also emits the high-order address byte when
accessing external memory. It is used for the high­
order address and the control signals during
program verification. Port 2 can sink/source four
LS TTL loads.

Port 3
Port 3 is an 8-bit bidirectional I/O port with inter- .
nal pullups. It also serves the functions of various
special features of the MCS-S1 Family. as listed
below: .

Port Pin Alternate Function

P3.0 RXD (serial input port)
P3.1 TXD (serial output port)
P3.2 INTO (external interrupt)
P3.3 INT1 (external interrupt)
P3.4 TO (Timer/counter 0 external input)
P3.S T1 (Timer/counter 1 external input)
P3.6 WR (external Data Memory write strobe)'
P3.7 RD (external Data Memory read strobe)

The output latch corresponding to a secondary
function must be programmed to a one (1) for that

11-2

function to operate. Port 3 can sink/source four LS
TTL loads.

RST

A high on this pin for two machine cycles while the
oscillator is running resets the device. A small exter­
nal pulldown resistor (=8.2kn) from RST to VSS per­
mits power-on reset when a capacitor (= 10 p..f) is also
connected from this pin to Vcc.

ALE
Address Latch Enable .output for latching the low
byte of the address during accesses to external
memory. ALE is activated at a constant rate of 1/6
the oscillator frequency except during an external
data memory access at which time one ALE pulse
is skipped. ALE can sink/source 8 LS TTL inputs.

PSEN
The Program Store Enable output is a control
signal that enables the external Program Memory
to the bus during external fetch operations. It is
activated every six oscillator periods except during
external data memory access. PSEN remains high
during internal program execution.

P1.0
P1.1
P1.2
P1.3
P1.4
P1.5
P1.6
P1.7
RST

RXD/P3.0
TXD/P3.1
iN'f0/P3.2
INT1/P3.3

TO/P3.4
T1/P3.4

WR/P3.6
RD/P3.7

XTAL2
XTAL1

vss

Vee
PO.O/ADO
PO.1/AD1
PO.2/AD2
PO.3/AD3
PO.4/AD4
PO.5/AD5
PO.6/AD6
PO.7/AD7
£A
ALE
PSEN
P2.7/A15
P2.6/A14
P2.5/A13
P2.4/A12
P2.3/A11
P2.2/A10
P2.1/A9
P2.0/A8

Figure 2. Pin Configuration

8031AH/8051AH

EA
When held at a TTL high level, the 8051 AH
executes instructions from the internal ROM when
the PC is less than 4096. When held at a TTL low
level, the 8031AH/8051AH fetches all instructions
from external. Program Memory. Do not float EA
during normal operation.

XTAL1
Input to the inverting 'amplifier that forms part of
the oscillator. This pin should be connected to
ground when an external oscillator is used.

ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature Under Bias ..• O°C to 70°C

Storage Temperature •.•.•••••• -65°C to +150°C

Voltage on Any Pin With
Respect to Ground (VSS) •••.••••• -0.5V to +7V

Power Dissipation .•••.•.••••..•••••.••• 1 Watt

XTAL2
Output of the inverting amplifier that forms part of
the oscillator, and input to the internal clock
generator. XTAL2 receives the oscillator signal
when an external oscillator is used.

'NOTICE: Stresses above those listed under
"Absolute Maximum Ratings" may cause permanent
damage to the device. This is a stress rating only
and functional operation of the device at these or
any other conditions above those indicated in the
operational sections of this specification is not
implied. Exposure to absolute maximum rating
conditions for extended periods may affect device
reliability.

DC CHARACTERISTICS (T A = 0° C to 700 C; VCC = 4.5V to 5.5V; VSS = OV)

Symbol Parameter Min "Max Unit Test Conditions

VIL Input Low Voltage -0.5 0.8 V

VIH Input High Voltage 2.0 VCC +0.5 V
(Except RST and XTAL2)

VIH1 Input High Voltage to 2.5 VCC +0.5 V XTAL1 toVSS
RST For Reset, XTAL2

VOL Output Low Voltage Ports 1,2,3 (Note 1) 0.45 V IOL = 1.6mA

VOL1 Output Low Voltage Port 0, ALE, PSEN 0.45 V IOL=3.2mA
(Note 1)

VOH Output High Voltage Ports 1,2.3 2.4 V 10H = -80/LA

VOH1 Output High Voltage Port O. ALE. PSEN 2.4 V 10H = -400/LA

ilL Logical 0 Input Current Ports 1,2.3 -800 /LA Vin = 0.45V

IIL2 Logical 0 Input Current for XTAL 2 -2.5 mA XTAL 1 = VSS' Vin = 0.45V

III I nput Leakage Current To Port 0, EA ±10 /LA 0.45V< Vin <V CC

IIH1 Input High Current to RSTIVpD For Reset 500 /LA Vin <VCC -1.5V

ICC Power Supply Current 125 mA All outputs disconnected

CIO Capacitance of 1/0 Buffer 10 pF fi; = 1MHz. TA =25°C

See page 4 for Notes.

11-3

inter 8031 AH/8051AH

Note 1: VOL is degraded when the 8031AH/8051AH rapidly discharges external capacitance. This AC noise is most
pronounced during emission of address data. When using external memory, locate the latch or buffer as close to the
8031AH/8051AH as possible.

VOL c

Emitting Degraded (peak)
Datum Ports 1/0 Lines (max)

Address P2,PO P1, P3 0.8V

Write Data PO P1, P3, ALE 0.8V

EXTERNAL CLOCK DRIVE CHARACTERISTICS (XTAL2)

Variable Clock
freq = 3.5 MHz to 12 MHz

Symbol Parameter Min Max Unit

TClCL Oscilla:tor Period 83.3 286 ns

TCHCX High Time 20 ns

TClCX low Time 20 ns

TClCH Rise Time 20 ns

TCHCL Fall Time 20 ns

TCLCH- I_TCHCL

0.8 0.8

~TCLCX---l

I~~~~~-'-TCLCL-~----

11-4

inter 8031 AH/8051 AH

AC CHARACTERISTICS (TA = O°C to 70°C, VCC = 5V ±10%, VSS = OV, CL for PortO, ALE and PSEN
Outputs = 100 pF; CL for all other outputs = 80 pF)

EXTERNAL PROGRAM MEMORY CHARACTERISTICS

Variable Clock
12 MHz Clock 1iTCLCL = 3.5 MHz to 12 MHz

Symbol Parameter Min Max Unit Min Max Unit

TLHLL ALE Pulse Width 127 ns 2TCLCL-40 ns

TAVLL Address Setup to ALE 43 ns TCLCL-40 ns

TLLAX Address Hold After ALE 48 ns TCLCL-35 ns

TLLlV ALE to Valid Instr In 233 ns 4TCLCL-100 ns

TLLPL ALE To PSEN 58 ns TCLCL-25 ns

TPLPH PSEN Pulse Width 215 ns 3TCLCL-35 ns

TPLIV PSEN To Valid Instr In 125 ns 3TCLCL-125 ns

TPXIX Input Instr Hold After PSEN 0 ns 0 ns

TPXIZ Input Instr Float After PSEN 63 ns TCLCL-20 ns

TPXAV Address Valid After PSEN 75 ns TCLCL-8 ns

TAVIV Address To Valid Instr In 302 ns 5TCLCL-115 ns

TAZPL Address Float To PSEN 0 ns 0 ns

EXTERNAL DATA MEMORY CHARACTERISTICS

Variable Clock
12 MHz Clock 1iTCLCL = 3.5 MHz to 12 MHz

Symbol Parameter Min Max Unit Min Max Unit

TRLRH RD Pulse Width 400 ns 6TCLCL-100 ns

TWLWH WR Pulse Width 400 ns 6TCLCL-100 ns

TLLAX Address Hold After ALE 48 ns TCLCL-35

TRLDV RD To Valid Data In 250 ns 5TCLCL-165 ns

JRHDX Data Hold After RD 0 ns 0 ns

TRHDZ Data Float After RD 97 ns 2TCLCL-70 ns

TLLDV ALE To Valid Data In 517 ns 8TCLCL-150 ns

TAVDV Address To Valid Data In 585 ns 9TCLCL-165 ns

TLLWL ALE To WR or RD 200 300 ns 3TCLCL-50 3TCLCL + 50 ns

TAVWL Address To WR or RD 203 ns 4TCLCL-130 ns

TWHLH WR or RD High To ALE High 43 123 ns TCLCL-40 TCLCL + 40 ns

TDVWX Data Valid To WR Transition 23 ." ns TCLCL-60 ns

TQVWH Data Setup Before WR 433 ns 7TCLCL-150 ns

TWHQX Data Hold After WR 33 ns TCLCL-50 ns

TRLAZ Address Float After RD 0 ns 0 ns

11-5

8031 AH/8051 AH

AC TIMING DIAGRAMS

EXTERNAL PROGRAM MEMORY READ CYCLE

~---------------------12TCLCL----------------~------~

ALE

PORTO AO-A7 INSTRIN

PORT 2 ADDRESS A8-A15

EXTERNAL DATA MEMORY READ CYCLE

ALE

PORTO

PORT 2

._--"""'- 1--------TLLDV~~--~--1
T}YHLH

---------------+----------~ ~--~----~TRLRH------~-.-~--r_---

TRLDV

AO-A7

TRLAZ

ADDRESS AS-A15 OR SFR-P2

TRHDX
DATA IN

EXTERNAL DATA MEMORY W'RITE CYCLE

ALE

PSEN

WR

PORTO

PORT 2

TWHLH-

______ ~ ______ +-__________ ~ ~.---------TWLWH--------~t-____ __

K-_~~~:~~~~~~~------T--VW--H-------·=====:J-TWHOX

ADDRESS A8-A15 OR SFR-P2

AC TESTING INPUT/OUTPUT, FLOAT WAVEFORMS

INPUT/OUTPUT

F~~~1--·21-'-0_-_-_-_-_-__ FL_O_/li._T_-_-_-_-:_ -_-...... 2 ... :1--1 2.4

O.45J.8 O:sLO.45

2.4 =x 2.0 2.o)C
TEST POINTS~. .

0.45 .::0.::.8 __________:::0.::.8 ~ .

AC inputs during testing are driven at 2.4V for a logic "1" and 0.45V for a logic "0". Tiniingmeasurements are made at
2.0" for a logic "1" and 0.8V for a logic "0". For timing purposes, t~e float state is defined as the point at which a PO pin
sinks 3.2mA or sources 400 IJA at the voltage test levels.

11-6

CLOCK WAVEFORMS

INTERNAL
CLOCK

XTAl2

ALE

I STATE 4

Pl 1 P2

STATE 5

Pl 1 P2

STATE 6

Pl I P2

S031AH/S051AH

STATE 1

Pl I P2

STATE 2

Pl I P2

STATE 3

Pl 1 P2

STATE 4

Pl 1 P2

I I 1

STATE 5

Pl 1 P2

EXTERNAL PROGRAM MEMORY FETCH ::2 THESE SIGNALS ARE NOT
ACTIVATED DURING THE
EXECUTION OF A MOVX INSTRUCTION

PSEN '-------=:.._----'1 1 '\.. 1 L
PO

P2(EXT) _____ -JIINDICATES ADDRESS TRANSIONS

READ CYCLE

RD

PO

P2
WRITE CYCLE

WR

PO

P2

PORT OPERATION

MOV PORT, SRC

DPl OR Ri
OUT

OOH IS EMITTED PCl OUT (IF PROGRAM
DURING THIS PERIOD MEMORY IS EXTERNAL)

~ FlOATS=D • n~
INDICATES DPH OR P2 SFR TO PCH TRANSITIONS

DPl OR Ri
OUT ! .

1 PCl OUT(EVEN IF PROGRAM
'------------~ MEMORY IS INTERNAL)

DATA OUT

INDICATES DPH OR P2 SFR TO PCH TRANSITIONS

~5 .: tCl OUT ;I~OGRAM
I MEMORY IS EXTERNAL)

OLD DATA I NEW DATA

L..
____________ ~ ________ ~~LPOPINSSAMPlED

MOV DEST, PO ~ !-4t
MOV DEST, PORT (Pl, P2, P3) PO PINS SAMPLED

(INCLUDES INTO, INT1, TO, T1) ~L-------------------------'~
Pl, P2, P3 PINS SAMPLED Pl, P2, P3

SERIAL PORT SHIFT CLOCK PINS SAMPLED

'-------%1
RXD SAMPLED

~~gDE O)----------'~XD SAMPLED

This diagram indicates when signals are clocked internally. The time it takes the signals to propagate to the pins, however,
ranges from 25 to 125 ns. This propagation delay is dependent on variables such as temperature and pin loading. Propagation
also varies from output to output and component to component. Typically though, (TA = 25° C, fully loaded) RD and WR prop­
agation delays are approximately 50 ns. The other signals are typically 85 ns. Propagation delays are incorporated in the AC
specifications.

11-7

inter S031AH/S051AH

Table 1. MCS®·51 Instruction Set Description

ARITHMETIC OPERATIONS LOGICAL OPERATIONS (CONTINUED)

Mnemonic Description Byte Cyc Mnemonic Desiinatlon ,Byte Cyc
ADD A,Rn Add register to ORL A,@Ri OR indirect RAM to

Accumulator 1 1 Accumulator
ADD A,direct Add direct byte to ORL A,#data OR immediate data to

Accumulator 2 1 Accumulator 2
ADD A,@Ri Add indirect RAM to ORL ,direct,A OR Accumulatorto

Accumulator 1 1 direct byte 2
ADD A,#data Add immediate data to ORL' direct,#data OR immediate data to

Accumulator 2 1 direct byte , 3 2
ADDC A,Rn Add register to XRL A,Rn Exclusive-OR register to

Accumulator with Carry 1 1 Accumulator
AD DC A,direct Add direct byte to A XRL A,direct Exclusive-OR direct

with Carry flag 2 1 byte to Accumulator 2
AD DC A,@Ri Add indirect RAM to A XRL A,@Ri Exclusive-OR indirect

with Carry flag 1 1 RAMtoA
ADDC A,#data Add immediate data to XRL A,#data Exclusive-OR

A with Carry flag 2 1 immediate data to A 2
SUBB A,Rn ' Subtract register from A XRL direct,A Exclusive-OR Accumu-

with Borrow 1 1 lator to direct byte 2
SUBB A,direct Subtract direct byte XRL direct,#data Exclusive-OR im-

from A with Borrow 2 1 mediate data to direct 3 2
SUBB A,@Ri Subtract indirect RAM CLR A Clear Accumulator 1 1

from A with Borrow 1 1 CPL A Complement
SUBB A,#data Subtract immed data Accumulator

from A with Borrow 2 1 RL A Rotate Accumulator Left
INC A I ncrement Accumulator 1 1 RLC A Rotate A Left through
INC Rn Increment register 1 1 the Carry flag
INC direct Increment direct byte 2 1 RR A Rotate Accumulator
INC @Ri Increment indirect RAM 1 1 Right
INC DPTR Increment Data Pointer 1 2 RRC A Rotate A Right through
DEC A Decrement Accumulator 1 1 Carry flag
DEC Rn Decrement register 1 1 SWAP A Swap nibbles within the
DEC direct Decrement direct byte 2 1 Accumulator
DEC @Ri Decrement indirect

RAM 1 1 DATA TRANSFER
MUL AB Multiply A & B 1 4
DIV AB Divide A byB 1 4
DA A Decimal Adjust

Accumulator 1 1

Mnemonic Description Byte Cyc
MOV A,F.ln Move register to

Accumulator
MOV A,direct Move direct byte to

LOGICAL OPERATIONS

Mnemonic Destination Byte Cyc

Accumulator 2
MOV A,@Ri Move indirect RAM to

Accumulator
ANL A,Rn AND register to

Accumulator 1 1
MOV A,#data Mov immediate data to

Accumulator 2
ANL A,direct AND direct byte to MOV Rn,A Move Accumulator to

Accumulator 2 1
ANL A,@Ri AND indirect RAM to

Accumulator 1 1
ANL . A,#data AND immediate data to

Accumulator 2 1
ANL direct,A AND Accumulator to

register
MOV Rn,direct Move direct byte to

register 2 2
MOV Rn,#data Move immediate data to

register 2
MOV direct,A Move Accumulator to

direct byte 2 1 direct byte 2
ANL direct,#data AND immediate data to MOV direct,Rn Move register to direct

direct byte 3 2 byte 2 2
ORL A,Rn , OR register to MOV direct,direct Move direct byte to

Accumulator 1 1 direct 3 2
ORL A,direct OR direct byte to MOV direct,@Ri Move indirect RAM to

Accumulator 2 1 direct byte 2 2

11-8

inter S031 AH/SbS1 AH

Table 1. (Cont.)

DATA TRANSFER (CONTINUED) PROGRAM AND MACHINE CONTROL

Mnemonic Descrlpllon Byte Cyc Mnemonic Description Byte Cyc
MOV direct,#data Move immediate data to ACALL addr11 Absolute Subroutine

direct byte 3 2 Call 2 2
MOV @Ri,A Move Accumulator to LCALL addr16 Long Subroutine Call 3 2

indirect RAM RET Return from subroutine 1 2
MOV @Ri,direct Move direct byie to RETI Return from interrupt 1 2

indirect RAM 2 2 AJMP addr11 Absolute Jump 2 2
MOV @Ri,#data Move immediate data to LJMP addr16 LongJump 3 2

indirect RAM 2 SJMP rei Short Jump (relative
MOV DPTR,#data16 Load Data Pointer with addr) 2 2

a 16-bit constant 3 2 JMP @A+DPTR Jump indirect relative to
MOVC A,@A+DPTR Move Code byte relative the DPTR 2

to DPTRtoA 2 JZ rei Jump if Accumulator is
MOVC A,@A+PC Move Code byte relative Zero 2 2

toPCtoA 2 JNZ rei Jump if Accumulator is
MOVX A,@Ri Move External RAM (8- Not Zero 2 2

bit addr) to A 2 JC rei Jump if Carry flag is set 2 2
MOVX A,@DPTR Move External RAM (16- JNC rei Jump if No Carry flag 2 2

bit addr) to A 2 JB bit,rel Jump if direct Bit set 3 2
MOVX @Ri,A Move A to External RAM JNB bit, rei Jump if direct Bit Not

(a-bit addr) 2 set 3 2
MOVX @DPTR,A Move A to External RAM JBC bit,rel Jump if direct Bit is set

(16-bit addr) 2 & Clear bit 3 2
PUSH direct Push direct byte onto CJNE A,direct,rel Compare direct to A &

stack 2 2 Jump if Not Equal 3 2
POP direct Pop direct byte from CJNE A,#data,rel Comp, immed, to A &

stack. 2 2 Jump if Not Equal 3 2
XCH A,Rn Exchange register with CJNE Rn,#data,rel Comp, immed, to reg &

Accumulator Jump if Not Equal 3 2
XCH A,direct Exchange direct byte CJNE @Ri,#data,rel Comp, immed, to ind, &

with Accumulator 2 Jump if Not Equal 3 2
XCH A,@Ri Exchange inpirect RAM DJNZ Rn,rel Decrement register &

with A Jump if Not Zero 2 2
XCHD A,@Ri Exchange low-order DJNZ direct,rel Decrement direct &

Digit ind RAM w A Jump if Not Zero 3 2
NOP No operation 1 1

BOOLEAN VARIABLE MANIPULATION Notes on data addressing modes:
Mnemonic Descrlpllon Byte Cyc Rn -Working register RD-R7
CLR C Clear Carry flag 1 1 direct -128 internal RAM locations, any 1/0 port,

CLR bit Clear direct bit 2 1
control or status register

@Ri -Indirect internal RAM location addressed by
SETB C Set Carry flag 1 1 register RD or R1
SETB bit Set direct Bit 2 1 #data -8-bit constant included in instruction
CPL C Complement Carry flag 1 1 #data16 -16-bit constant included as bytes 2 & 3 of
CPL bit Complement direct bit 2 1 instruction
ANL C,bit AND direct bit to Carry bit -128 software flags, any 1/0 pin, control or

flag 2 2 status bit

ANL C,1 bit AND complement of Notel on program addressing model:
direct bit to Carry 2 2 addr16 -Destination address for LCALL & LJMP may

ORL Clbit OR direct bit to Carry
be anywhere within the 64-K program
memory address space

flag 2 2 Addr11 -Destination address for ACALL & AJMP will be
ORL C,1 bit OR complement of within the same 2-K page of program

direct bit to Carry 2 2 memory as the first byte of the following
MOV Clbit Move direct bit to Carry instruction

flag 2 rei -SJMP and all conditional jumps include an 8-
MOV bit,C Move Carry flag to bit offset byte, Range is +127-128 bytes' relative

direct bit 2 2
to first byte of the following instruction

All mnemonics copyrighted @ Intel Corporation 1979

11-9

S031 AH/S051 AH

Table 2. Instruction Opcodes in Hexadecimal Order

Hex Number Mnemonic Operands Hex Number Mnemonic Operands
Code of Bytes Code of Bytes

00 1 NOP 33 1 RLC A
01 2 AJMP code addr 34 2 ADDC A,#data
02 3 LJMP code addr 35 2 ADDC A,data addr
03 RR A
04 1 INC A
05 2 INC data addr

36 1 ADDC A,@RO
37 1 AD DC A,@R1
38 1 AD DC A,RO

06 INC @RO 39 1 . ADDC A,R1
07 INC @R1 3A 1 ADDC A,R2
08 INC RO 3B 1 ADDC A,R3
09 INC R1 3C 1 ADDC A,R4
OA INC R2 3D 1 ADDC A,R5
OB INC R3 3E 1 ADDC A,R6
OC INC R4 3F 1 ADDC A,R7
OD INC R5 40 2 JC code addr
OE INC R6 41 2 AJMP code addr
OF 1 INC R7 42 2 ORL data addr,A
10 3 JBC bit addr, code addr 43. 3 ORL data addr,#data
11 2 ACALL code addr
12 3 LCALL code addr

44 2 ORL A,#data
45 2 ORL A,data addr

13 RRC A 46 1 ORL A,@RO
14 1 DEC A 47 1 ORL A,@R1
15 2 DEC data addr 48 1 ORL A,RO
16 DEC @RO 49 1 ORL A,R1
17 DEC @R1 4A 1 ORL A,R2
18 DEC RO 48 1 ORL A,R3
19 DEC R1 4C 1 ORL A,R4
1A DEC R2 4D 1 ORL A,R5
1B DEC R3 4E 1 ORL A,R6
1C DEC R4 4F 1 ORL A,R7
10 DEC R5 50 2 JNC code addr
1E DEC R6 51 2 ACALL code addr
1F 1 DEC R7 52 2 ANL dataaddr,A
20 3 JB bit addr, code addr 53 3 ANL data addr,#data
21 2 AJMP code addr 54 2 ANL A,#data
22 RET 55 2 ANL A,dataaddr
23 1 RL A 56 1 ANL A,@RO
24 2 ADD A,#data 57 1 ANL A@R1
25 2 ADD A,dataaddr 58 1 ANL A,RO
26 ADD A,@RO 59 1 ANL A,R1
27 ADD A,@R1 5A 1 ANL A,R2
28 ADD A,RO 58 1 ANL A,R3
29 ADD A,R1 5C 1 ANL A,R4
2A ADD A,R2 50 1 ANL A,R5
28 ADD A,R3 5E 1 ANL A,R6
2C ADD A,R4 5F 1 ANt. A,R7
2D ADD A,R5 60 2 JZ codeaddr
2E 1 ADD A,R6 61 2 AJMP codeaddr
2F 1 ADD A,R7 62 2 XRL dataaddr.A
30 3 JN8 bit addr, code addr 63 3 XRL data addr,#data
31 2 ACALL code addr 64 2 XRL A,#data
32 RETI 65 2 XRL A,dataaddr

11-10

inter 8031AH/8051AH

Table 2. (Cont.)

Hex Number Mnemonic Operands Hex Number Mnemonic Operands
Code of Bytes Code of Bytes

66 1 XRL A,@RO 99 1 SUBB A,R1
67 1 XRL A,@R1 9A 1 SUBB A,R2
68 1 XRL A,RO 9B 1 SUBB A,R3
69 1 XRL A,R1 9C 1 SUBB A,R4
6A 1 XRL A,R2 90 1 SUBB A,R5
6B 1 XRL A,R3 9E 1 SUBB A,R6
6C 1 XRL A,R4 9F 1 SUBB A,R7
60 1 XRL A,R~ AD, 2 ORL C,Ibit addr
6E 1 XRL A,R6 A1 2 AJMP code addr
6F 1 XRL A,R7 A2 2 MOV C,bit addr
70 2 JNZ code addr A3 1 INC OPTR
71 2 ACALL code addr A4 1 'MUL AB
72 2 ORL C,bit addr A5 reserved
73 1 JMP @A+OPTR A6 2 MOV @RO, data addr
74 2 MOV A,#data A7 2 MOV @R1,dataaddr
75 3 MOV data addr,#data A8 2 MOV RO,data addr
76 2 MOV @RO,#data A9 2 MOV R1,data addr
77 2 MOV @R1,#data AA 2 MOV R2,data addr
78 2 MOV RO,#data AB 2 MOV R3, data addr
79 2 MOV R1,#data AC 2 MOV R4,data addr
7A 2 MOV R2,#data AD 2 MOV R5,data addr
7B 2 MOV R3,#data AE 2 MOV R6,data addr
7C 2 MOV R4,#data AF 2 MOV R7,data addr
70 2 MOV R5,#data BO 2 ANL C,Ibit addr
7E 2 MOV R6,#data B1 2 ACALL code addr
7F 2 MOV R7,#data B2 2 CPL bit addr
80 2 SJMP code addr B3 1 CPL C
81 2 AJMP code addr B4 3 CJNE A,#data,code addr
82 2 ANL C,bit addr B5 3 CJNE A,data addr,code addr
83 1 MOVC A,@A+PC B6 3 CJNE @RO,#data,code addr
84 1 OIV AB B7 3 CJNE @R1,#data,code addr
85 3 MOV data addr, data addr B8 3 CJNE RO,#data,code addr
86 2 MOV data addr,@RO B9 3 CJNE R1,#data,code addr
87 2 ty10V data addr,@R1 BA 3 CJNE R2,#data,code addr
88 2 MOV data addr,RO BB 3 CJNE R3,#data,code addr
89 2 MOV data addr,R1 BC 3 CJNE R4,#data,code addr
8A 2 MOV data addr,R2 BO 3 CJNE R5,#data, code addr
BB 2 MOV data addr,R3 BE 3 CJNE R6,#data,code addr
8C \ 2 MOV data addr,R4 BF 3 CJNE, R7,#data,code addr
80 2 MOV data addr,R5 CO 2 PUSH data addr
8E 2 MOV data addr,R6 C1 2 AJMP code addr
8F 2 MOV data addr,R7 C2 2 CLR bit addr
90 3 MOV OPTR,#data C3 1 CLR C
91 2 ACALL code add~ C4 1 SWAP A
92 2 MOV bit addr,C C5 2 XCH A,data addr
93 1 MOVC A,@A+OPTR C6 1 XCH A,@RO
94 2 SUBB A,#data C7 1 XCH A,@R1
95 2 SUBB A,data addr C8 1 XCH A,RO
96 1 SUBB A,@RO C9 1 XCH A,R1
97 1 SUBB A,@R1 CA 1 XCH A,R2
98 1 SUBB A,RO CB 1 XCH A,R3

11-11

inter S031AH/S051AH

Table 2. (Cont.)

Hex Number Mnemonic Operands Hex Number Mnemonic Operands
Code of Byles Code of Bytes

CC 1 XCH A,A4 E6 1 MOV A,@AO
CD 1 XCH A,A5 E7 1 MOV A,@Al
CE 1 XCH A,A6 ' E8 1 MOV A,AO
CF 1 XCH A,A7 E9 1 MOV A,Al
00 2 POP , data addr EA 1 MOV A,A2
01 2 ACALL code addr ES 1 MOV A,A3
02 2 SETS bit addr EC 1 MOV A,A4
03 1 SETS C EO 1 MOV A,A5
04 1 OA A EE 1 MOV A,A6
05 3 DJNZ data addr,code addr EF 1 MOV A,A7
06 1 XCHO A,@RO FO 1 MOVX @DPTA,A
07 1 XCHO A,@Al Fl 2 ACALL code addr
08 2 OJNZ RO,code addr F2 1 MOVX @AO,A
09 2 DJNZ Al,code addr F3 1 MOVX @Al,A
OA 2 DJNZ A2,code addr F4 1 CPL A
OS 2 DJNZ A3,code addr F5 2 MOV data addr,A
OC 2 DJNZ A4,code addr F6 1 MOV @AO,A
00 2 DJNZ AS,code addr F7 1 MOV @Rl,A
OE 2 DJNZ A6,code addr F8 1 MOV AO,A
OF 2 DJNZ A7,code addr F9 1 MOV Al,A
EO 1 MOVX A,@OPTA FA 1 MOV A2,A
E1 2 AJMP code addr FS 1 MOV A3,A
E2 1 MOVX A,@AO FC 1 MOV A4,A
E3 1 MOVX A,@Al FD 1 MOV A5,A
E4 1 CLR A FE 1 MOV A6,A
ES 2 MOV A,data addr FF 1 MOV A7,A

11-12

inter S032AH/S'052AH
SINGLE-COMPONENT S-BIT MICROCOMPUTER

- 8032AH-Control-Orlented CPU with RAM and I/O
- 8052AH-An 8032AH with Factory Mask-Programmable ROM

- 8K x 8 ROM (8052AH only) _ Timer 2 Capture Capability
- 256 x 8 RAM _ 128K Accessible External Memory
- 32 I/O lines (Four 8-Bit Ports) - Boolean Processor
- Three 16-Blt Timer/Counters _ 218 User Bit-Addressable Locations
- Programmable Full-Duplex Serial Channel - Upward Compatible with 8031AH/8051AH
- Variable Transmit/Receive Baud Rate .

Capability

The 8032AH/8052AH is the highest performance member of Intel's MCS®-51 family of 8-bit microcomputers.
It is fabricated with Intel's highly reliable + 5 depletion-load, N-channel, silicon gate HMOS-II technology, and
like the other MCS-51 members is packaged in a 40-pin DIP.

The 8032AH contains 256 bytes of read/write data memory; 32 I/O lines configured as four 8-bit ports; three
16-bit timer/counters; a six-source, two-priority level, nested interrupt structure; a programmable serial I/O port;
and an on-chip oscillator with clock circuitry. The 8052AH has all of these features plus 8K bytes of nonvolatile
read-only program memory. Both microcomputers have memory expansion capabilities of up to 64K bytes of
data storage and 64K bytes of program memory that may be realized with standard TTL compatible memories
and/or byte-oriented MCS-80 and MCS-85 peripherals.

The 8032AH/8052AH microcomputer, characteristic of the entire MCS-51 family, is efficient at both computa­
tional and control-oriented tasks. This results from its extensive BCD/binary arithmetic and bit-handling facilities.
Efficient use of program memory is also achieved by using the familiar compact instruction set of the 8031/
8051. Forty-four percent of the instructions are one-byte, 41 % two-byte and 15% three-byte. The majority of
the instructions execute in just 1.0 p.S at 12 MHz operation. The longest instructions, multiply and divide, require
only 4 p.S at 12 MHz.

("--------~~

~
P!..J
~ I

I
I
I
I
I
I
I
I
I
I

oS<

P-''''-'''LD,--- ------- --,

·R"id~lln8032180S2only.

P3.0.P3.7

Figure 1. Block Diagram

11-13 .

inter 8032AH/8052AH

8032AH/8052AH PIN DESCRIPTIONS

VSS .
Circuit grountJ potential.

Vcc
+5V power supply during operation and program
verification.

PortO
Port 0 is an 8-bit open drain bidirectional 1/0 port. It
is also the multiplexed low-order address and data
bus when using external memory. It is used for data
output during program verification. Port 0 can· sink
(and in bus operations can source) eightLS TTL
loads.

Port 1
Port 1 is an 8-bit quasi-bidirectional I/O port. Pins
P1.0 and P1.1 also correspond to the .. special fu nc­
tions T2, Timer 2 counter trigger input. and T2E;X,
external input to Timer 2. The output latch on these
two special function pins must be programmed to a
one (1) for that function to operate. Port 1"is also
used for the low-order address byte during program
verification. Port 1 can sink/source four LS TTL
loads.

Port 2
Port 2 is an 8-bit quasi-bidirectional I/O port. It also
emits the high-order address byte when accessing
external memory. It is used for the high-order
address and the control signals during program
verification. Port 2 can sink/source four LS TTL
loads ..

Port 3
Port 3 is an 8-bit quasi-bidirectional I/O port. Each
of the P3 pins also correspond to special functions
as listed below:
Port Pin

P3.0
P3.1
P3.2
P3.3
P3.4
P3.5
P3.6
P3.7

Alternate Function

RXD (serial input/output port)
TXD (serial output port)
INTO (external interrupt 0 input)
INT1 (external interru'pt 1 input)
TO (Timer/Counter 0 external input)
T1 (Timer/Counter 1 external input)
WR (external Data Memory write strobe)
RD (external Data Memory' read strobe)

The output latch corresponding to a secondary
function must be programmed to a one (1) for

that function to operate. Port 3 can sink/source
four LS TTL loads.

RST
A high on this pin for two machine cycles while the
oscillator is running' resets the device. A small exter­
nal pulldown resistor (=8.2kO) from RST to VSS per­
mits power-on reset when a capacitor (= 1 0 /.£1) is also
connected from this pin to VCC.

ALE ..
Provides Address Latch Enable output used for
'Iatching the address into external memory during
normal operatiori. It is activated every six oscillator
periods except during an external data memory
access.

'PSEN
The Program Store Enable output is a control signal
that enables the:external Program Memory to the

. bus during external fetch operations. It is activated
every six oscillator periods, except during external
data memory accesses. Remains high during internal
program execution. .

I;A
When held at a TTL high level, the 8052AH executes
instructions from the internal ROM when the PC is
less than 8192. When held at a TTL low level, ihe
8032AH/8052AH fetches all instructions from exter­
nal Program Memory.

T2/P1.0
T2EX/P1.1

P1.2
P1.3
P1.4
P1.5
P1.S
P1.7
RST

RXD/P3.0
TXD/P3.1
INTO/P3.2
INT1/P3.3

TO/P3.4
T1/P3.4

WR/P3.S
RD/P3.7

XTAL2
XTAL1
. vss

vcc
Po.o/ADO
PO.l/ADl
PO.2/AD2
PO.3/AD3
PO.4/AD4
PO.5/AD5
PO.S/ADS
PO.7/AD7
"EA
ALE
PSEN
P2.7/A1S
P2.S/A14
P2.5/A13
P2.4/A12
P2.3/Al1
P2.2/Al0
P2.1/A9
P2.0/AB

. Figure 2. Pin Configuration

11-14

8032AH/8052AH

XTAL1
Input to the inverting amplifier that forms the oscilla­
tor.

ABSOLUTE MAXIMUM RATINGS·

Ambient Temperature Under Bias ... 0° C to 70° C

Storage Temperature -65° C to +150° C

Voltage on Any Pin With
Respect to Ground (VSS) -0.5V to +7V

Power Dissipation ...•................. 2 Watts

XTAL2
Output of the inverting amplifier that forms the
oscillator, and input to the internal clock genera­
tor. Receives the external oscillator signal when an
external oscillator is used.

*NOTlCE: Stresses above those listed under
"Absolute Maximum Ratings" may cause permanent
damage to the device. This is a stress rating only
and functional operation of the device at these or
any other conditions above those indicated in the
operational sections of this specification is not
implied. Exposure to absolute maximum rating
conditions for extended periods may affect device
reliability.

DC CHARACTERISTICS (TA = 0° C to 70° C, VCC = 4.5V to 5.5V, VSS = OV)

Symbol Parameter Min Max Unit Test Conditions

VIL Input Low Voltage -0.5 0.8 V

VIH Input High Voltage 2.0 VCC +0.5 V
(Except RST and XTAL2)

VIH1 Input High Voltage to 2.5 VCC +0.5 V XTAL1 toVSS
RST for Reset, XTAL2

VOL Output Low Voltage Ports 1,2,3 (Note 1) 0.45 V 10L =1.6mA

VOL1 Output Low Voltage Port 0, ALE,PSEN 0.45 V 10L =3.2mA
(Note 1)

VOH Output High Voltage Ports 1,2,3 2.4 V 10H = -8OliA

VOH1 Output High Voltage Port 0, ALE, PSEN 2.4 V 10H = -4OOIiA

ilL LogicalO Input Current Ports 1,2,3 -800 liA Vin = 0.45V

IIL2 Logical 0 Input Current XTAL2 -2.5 mA XTAL 1 at VSS, Vin=0.45V

III Input Leakage Current To Port 0, EA ±10 liA 0.45V < Vin <VCC

IIH1 I nput High Current to RST /vPD For Reset 500 liA Vin = VCC -1.5V

ICC Power Supply Current 175 mA All outputs disconnected;
EA = VCC

CIO Capacitance of I/O Buffer 10 pF fc = 1MHz, TA =25°C

See page 4 for Notes.

11-15

inter S032AH/S052AH

Note 1: Vol is degraded when the 8032AH/8052AH rapidly discharges external capacitance. This AC noise is most pronounced
during emission of address data. When usir:lg external memory, locate the latch or buffer as close to the 8032AH/8052AH as
possible.

VOL
Emitting Degraded (peak)

Datum Ports 1/0 Lines (max)

Address P2,PO P1, P3 0.8V

Write Data PO P1, P3, ALE 0.8V

EXTERNAL CLOCK DRIVE CHARACTERISTICS (XTAL2)

Variable Clock
f = 3.5 MHz to 12 MHz

Symbol Parameter Min Max Unit

TClCl Oscillator Period 83.3 286 ns

TCHCX High Time 20 ns

TClCX Low Time 20 ns

TClCH Rise Time 20 ns

TCHCl Fall Time 20 ns

TCLCH-

0.8 0.8

I-TCLCX--I

• TCLCL-----~I

11-16

inter 8032AH/S052AH

AC CHARACTERISTICS (T A = O°C to 70° C, IICC = 5V ±1 0%, VSS = OV, CL for Port D. ,0,LE and PSEN

Outputs = 100 pF, CL for all other outputs = 80 pF)

PROGRAM MEMORY CHARACTERISTICS _.
Var'i~)bl:::~ C:oc~~

12 MHz Clod, 1 n'CLCL = 3.5 lV1H:! to 12 i\1H:z

Symbol Parameter Min Male Unit r.~i!1 2:: I Uni! r-'--'-- .--.
TLHLL ALE Pulse Width 127 ns 2TCLCL-40 ns

-'--
TAVLL Address Setup to ALE 43 ns TCLCL-40 I I ns

TLLAX Address Hold After ALE 48 ns I TCLCL-35 I "I~
TLLlV ALE to Valid Instr In 233 ns I 4TCLCL-100 I ns

TLLPL ALE To PSEN 58 ns
TCLCL25 I ' 11

TPLPH PSEN Pulse Width 215 ns 3TCLCL-35' . . 'IlS

TPLIV PSEN To Valid Ins!r In 125 ns !3TCLCL-125 ~-
~---j

TPXIX Input Instr Hold After PSEN 0 ns I 0
! HH TPXIZ Input Instr Float After PSEN 63 ns I TC~CL-~_.~

TPXAV Address Valid After PSEN 75 ns TCLCL-8 ~ 1 ns

TAVIV Address To Valid Instr In 302 ns 15TCLCL-115 ~
TAZPL Address Float To PSEN 0 ns 0 I I _ns J

EXTERNAL DATA MEMORY CHARACTERISTICS

Vari8blG ClnG1: ~J
12 MHz Clod, ., ITCLCl = 3.5 1~~H~l 10 i 2 I\m·~;;:

Symbol Parameter Min Mal(Unit IVlin f~la:[I Unil I
TRLRH RD Pulse Width 400 ns 6TCLCL-100 ~
TWLWH WR Pulse Width 400 ns 6TCLCL-100 1 ns

TLLAX Address Hold After ALE 48 ns TCLCL-35

STCLCL-1i ";~ --
T.RLDV RD To Valid Data In 250 ns

TRHDX Data Hold After RD 0 ns 0 , ns

TRHDZ Data Float After RD 97 ns .. 2TCLCL-70 I Il~
TLLDV ALE To Valid Data In 517 ns 8TCLCL-150 I. IlS

TAVDV Address To Valid Data In 585 ns 9TCLCL- 16m
TLLWL ALE To WR or RD 200 300 ns 3TCLCL-50 3TCLCL + 50 ns I
TAVWL Address To WR or RD 203 ns 4TCLCL-130 , ns L-4QT ____ ._t ____ ,

TWHLH WR or RD High To ALE High 43 123 ns TCLCL-·40 TCLCL + 40 I nsJ

TDVWX Data Valid To WR Transition 23 ns TCLCL-60 F-·--T-;;; I
- --j

TQVWH Data Setup Before WR 433 ns 7TCLCL-150 I IlS

TWHQX Data Hold After WR 33 ns TCLCL-50 ~
TRLAZ Address Float After RD 0 IlS L 0 J ns

11-17

inter S032AH/S052AH

AC TIMING DIAGRAMS

EXTERNAL PROGRAM MEMORY READ CYCLE

~----------------------12TCLCL

ALE

PORTO

PORT 2

EXTERNAL DATA MEMORY READ CYCLE

TLLDV
ALE

~ ~
PSEN

RD

PORTO AO-A7

AO-A7 INSTRIN

ADDRESS A8-A15

TRLRH---------4-L~-----

TRHDX
DATA IN

PORT 2 ADDRESS A8-A15 OR SFR-P2

EXTERNAL DATA MEMORY WRITE CYCLE
TWHLH--I

ALE

PSEN

WR ________________ +-__________ ~ ~----------TWLWH--------~.~Ir-------

.. T IIWH----______ LTWHOX

PORTO DATA OUT

PORT 2 ADDRESS A8-A15 OR SFR-P2

AC TESTING INPUT/OUTPUT, FLOAT WAVEFORMS

INPUT/OUTPUT FLOAT

1---- FLOAT --------!
2.4

2.4=>(2.0 2.ox=
TEST POINTS

0.45 ..:0:.:.8 ______ .::0.::.8 _

2.0

0.8 0.45

2.4

0.45

AC inputs during testing are driven at 2.4V for a logic "1" and 0.45V for a logic "0". Timing measurements are made at 2.0Vfor
a logic "1" and O.BV for a logic "0". For timing purposes, the float state is defined as the point at which a PO pin sinks 2.4mA or
sources 400 iJ.A at the voltage test levels.

CLOCK WAVEFORMS

INTERNAL
CLOCK

XTAl2

ALE

STATE 4

Pl I P2

STATE 5

Pl I P2

STATE 6

Pl I P2

S032AH/S052AH

STATE 1

Pl I P2

STATE 2

Pl 1 P2

STATE 3

Pl 1 P2

STATE 4

Pl 1 P2

I 1 I

STATE 5

Pl 1 P2

EXTERNAL PROGRAM MEMORY FETCH ::2 THESE SIGNALS ARE NOT
ACTIVATED DURING THE

PSEN

PO

P2(EXT)

READ CYCLE

RD

PO

P2
WRITE CYCLE

WR

PO

P2

PORT OPERATION

MOV PORT, SRC

EXECUTION OF A MOVX INSTRUCTION

I I" I L '----=--_

DPl OR Ri
OUT

OOH IS EMITTED PCl OUT (IF PROGRAM
DURING THIS PERIOD MEMORY IS EXTERNAL)

LY fDATAl r\L-, . ..q= FLOAT SAMPLED • i \
INDICATES DPH OR P2 SFR TO PCH TRANSITIONS.

DPl OR Ri
OUT !.

I PCl OUT(EVEN IF PROGRAM
'---------------' MEMORY IS INTERNAL)

0: ; I ·L
DATA OUT

INDICATES DPH OR P2 SFR TO PCH TRANSITIONS

. jj . I PCl OUT (IF PROGRAM
I MEMORY IS EXTERNAL)

OLD DATA I NEW DATA
PO PINS SAMPLED

MOVDES" PO ~~~~~~~ ________________ ~~ __ . __ __

MOV DES" PORT (Pl, P2, P3) PO PINS SAMPLED c::::J
(INCLUDES INTO, INTl, TO, Tl! ~L.... _____________________ I- ,- L....-

Pl, P2, P3 PINS SAMPLED :~N~2S:~PlED
SERIAL PORT SHIFT CLOCK

'--------q:]
RXD SAMPLED r~gDE O)--------~XD SAMPLED

This diagram indicates when signals are clocked internally. The time it takes the signals to propagate to the pins, however,
ranges from 25 to 125 ns. This propagation delay is dependent on variables such as temperature and pin loading. Propagation
also varies from output to output and component to component. Typically though, (T A = 25° C, fully loaded) RD and WR prop­
agation delays are approximately 50 ns. The other signals are typically 85 ns. Propagation delays are incorporated in the AC
specifications.

11-19

! B032AH/8052AH

Table 1. 'MCS®-Sllnstruction Se~ Description

ARITHMETIC OPERATIONS LOGICAL OPERATIONS (CONTINUED)

Mnemonic Description Byte Cyc Mnemonic Destination Byte Cyc
ADD A,Rn Add register to ORL A,@Ri OR indirect' RAM to

Accumulator Accumulator l'
ADD A,direct Add direct byte to ORL A,#data OR immediate data to

Accumulator 2 Accumulator 2
AOD A,@Ri Add indirect RAM to ORL direct,A OR Accumulator to

Accumulator direct byte 2
ADD A,#data Add immediate data to ORL direct,#data OR immediate data to

Accumulator 2 direct byte 3 2
ADDC A,Rn Add register to XRL A,Rn Exclusive-OR register to

Accumulator with Carry Accumulator 1,
AD DC A,direct Add direct byte to A XRL A,direci Exclusive-OR direct

with Carry flag 2 byte to Accumulator 2
AD DC A,@Ri Add indirect RAM to A XRL A,@Ri Exclusive-OR indirect

with Carry flag RAMtoA
AD DC A,#oata Add immediate data to XRL A,#data Exclusive-OR

A with Carry flag 2 immediate data to A 2 1
SUBB A.Rn Subtract register from A XRL direct,A Exclusive-OR Accumu-

with Borrow lator to direct byte 2
SUBB A,direct Subtract direct byte XRL direct,#data Exclusive-OR im-

from A with Borrow 2 mediate data to direct 3 2
SUBB A,@Ri Subtract indirect RAM CLR A Clear Accumulator 1 l'

from A with Borrow CPL A Complement
SUBB A,#data Subtract immed data Accumulator

from A with Borrow 2 1 RL A 'Rotate Accumulator Left
INC A Increment Accumulator 1 1 RLC A Rotate A left through
INC Rn I ncrement register 1 1 the Carry flag
INC direct I ncrernent direct byte 2 1 RR

!
A Rotate Accumulator

INC @Ri Increment indirect RAM 1 1 Right
INC DPTR Increment Data Pointer 1 2 RRC A Rotate A Right through
DEC A Decrement Accumulator, 1 1 Carry flag
DEC Rn Decrement register 1 1 SWAP ,A Swap nibbles within the
DEC direct Decrement direct byte 2 1 Accumulator
DEC @Ri Decrement indirect

RAM 1 1 DATA TRANSFER
MUL AB Multiply A & B 1 4 Mnemonic Description' Byte Cyc
DIV AB Divide A byB 1 4 MOV A,Rn Move,register to
DA A Decimal Adjust Accumulator

Accumulator MOV A,direct Move direct byte to

LOGICAL OPERATIONS Accumulator 2
MOV A,@Ri Move indirect RAM to

Mnemonic Destination Byte Cyc Accumulator
ANL A,Rn AN Dreg ister to MOV A,#data Mov immediate data to

Accumulator Accumulator 2
ANL A,direct AND direct byte to MOV Rn,A Move Accumulator to

Accumulator 2 register
ANL A,@Ri AND indirect RAM to MOV Rn,direct Move direct byte to

Accumulator " register 2 2
ANL A,#data AND immediate data to MOV Rn,#data Move immediate data to

Accumulator 2 register 2
ANL direct,A AND Accumulator to MOV direct,A Move Accumulator to

direct byte 2 direct byte 2
ANL direct,#data AND immediate data to MOV direct,An Move register to direct

direct byte 3 2 byte 2 2
ORL A,Rn OR register to MOV direct,direct Move direct byte to

Accumulator direct 3 2
ORL A,direct OR direct byte to , MOV direct,@Ri Move indirect RAM to

Accumulator 2 1, direct byte 2 2

11-20

8031 AH!8052! AH

Table 1. (Cont.)

DATA TRANSFER (CONTINUED) PROGRAM AND MACHINE CONTROL

Mnemonic Description Byte Cyc Mnemonic Description Byte Cyc
MOV direct,#data Move immediate data to ACALL addr11 Absolute Subroutine

direct byte 3 2 Call 2 2
MOV @Ri,A Move Accumulator to LCALL addr16 Long Subroutine Call 3 2

indirect RAM RET Return from subroutine 1 2
MOV @Ri,direct Move direct byte to RETI Return from interrupt 1 2

indirect RAM 2 2 AJMP addr11 Absolute Jump 2 2
MOV @Ri,#data Move immediate data to LJMP addr16 Long Jump 3 2

indirect RAM 2 SJMP rei Short Jump (relative
MOV DPTR,#data16 Load Data Pointer with addr) 2 2

a 16-bit constant 3 2 JMP @A+DPTR Jump indirect relative to
MOVC A,@A+DPTR Move Code byte relative the DPTR 2

to DPTR toA 2 JZ rei Jump if Accumulator is
MOVC A,@A+PC Move Code byte relative Zero 2 2

to PCtoA 2 JNZ rei Jump if Accumulator is
MOVX A,@Ri Move External RAM (8- Not Zero 2 2

bit addr) to A 2 JC rei Jump if Carry flag is set 2 2
MOVX A,@DPTR Move External RAM (16- JNC rei Jump if No Carry flag 2 2

bit addr) to A 2 JB bit,rel Jump if direct Bit set, 3 2
MOVX @Ri,A Move A to External RAM JNB bit,rel Jump if direct Bit Not

(6-bit addr) 2 set 3 2
MOVX @DPTR,A Move A to External RAM JBC bit, rei Jump if direct Bit is set

(16-bit addr) 2 & Clear bit 3 2
PUSH direct Push direct byte onto CJNE A,direct,rel Compare direct to A &

stack 2 2 Jump if Not Equal 3 ,2
POP direct Pop direct byte from CJNE A,#data,rel Comp, immed, to A &

stack 2 2 Jump if Not Equal 3 2
XCH A,Rn Exchange register with CJNE Rn,#data,rel Comp, immed, to reg &

Accumulator Jump if Not Equal 3 2
XCH A,direct Exchange direCt byte CJNE @Ri,#data,rel Comp, immed, to ind, &

with Accumulator 2 Jump if Not Equal 3 2
XCH A,@Ri Exchange in~irect RA'M DJNZ Rn,rel Decrement register &

with A Jump if Not Zero 2 2
XCHD A,@Ri Exchange low-order DJNZ direct, rei Decrement direct &

Digit ind RAM w A Jump if Not Zero 3 2
NOP No operation 1 1

BOOLEAN VARIABLE MANIPULATION Notes on data addressing modes:
Mnemonic Description Byte Cyc Rn -Working register RD-R7

CLR C Clear Carry flag 1 1 direct -128 internal RAM locations, any I/O port,

CLR bit Clear direct bit 2 1
control or status register

@Ri -Indirect internal RAM location addressed by
SETB C Set Carry flag 1 1 register RD or R1
SETB bit Set direct Bit 2 1 #data -8-bit constant included in instruction
CPL C Complement Carry flag 1 1 #data16 -16-bit constant included as bytes 2 & 3 of
CPL bit Complement direct bit 2 1 instruction
ANL C,bit AND direct bit to Carry bit -128 software flags, any I/O pin, control or

flag 2 2 status bit

ANL C,1 bit AND complement of Notes on program addressing modes:

direct bit to Carry 2 2 addr16 -Destination address for LCALL & LJMP may

ORL C/bit OR direct bit to Carry
be anywhere within the 64-K program
memory address space

flag 2 2 Addr11 -Destination address for ACALL & AJMP will be
ORL C,1 bit OR complement of within the same 2-K page of program

direct bit to Carry 2 2 memory as the first byte of the following
MOV C/bit Move direct bit to Carry instruction

flag 2 rei -SJMP and all conditional jumps include an 8-

MOV bit,G Move Carry flag to bit offset byte, Range is +127-128 bytes relative

direct bit 2 2
to first byte of the following instruction

All mnemonics copyrighted © Intel Corporation 1979

11-21

inter S032AH/S052AH

Table 2. Instruction Opcodes in Hexadecimal Order

Hex Number Mnemonic Operands Hex Number Mnemonic Operands
Code of Bytes Code of Bytes

00 1 NOP \ 33 1 RLC A
01 2 AJMP code addr 34 2 AD DC A,#data
02 3 LJMP code addr 35 2 AD DC A,data addr
03· 1 RR A

INC A
,

04 1
36 1 AD DC A,@RO
37 1 ADDC·· A,@R1

05 2 INC data addr 38 1 ADDC A,RO
06 1 INC @RO 39 1 ADDC A,R1
07 1 INC @R1 3A 1 ADDC A,R2
08 1 INC RO 38 1 ADDC A,R3
09 1 INC R1 3C 1 ADDC A,R4
OA 1 INC R2 3D 1 AD DC A,R5
08 1 INC R3 3E 1 ADDC A,R6
OC 1 INC R4 3F 1 AOOC A,R7
OD 1 INC R5 40 2 JC codeaddr
OE 1 INC R6 41 2 AJMP codeaddr
OF 1 INC R7 42 2 ORL data addr,A
10 3 J8C bit addr, code addr 43 3 ORL data addr,#data
11 2 ACALL code addr 44 2 ORL A,#data
12 3 LCALL code addr 45 2 ORL A,data addr
13 1 RRC A 46 1 ORL A,@RO
14 1 DEC A
15 2 DEC data addr

47 1 ORL A,@R1
48 . 1 ORL A,RO

16 1 DEC @RO 49 1 ORL A,R1
17 1 DEC @R1
18 1

,
DEC RO

19 1 DEC R1

4A 1 ORL A,R2
48 1 6RL A,R3 ,

.ORL A,R4 4C 1
1A 1 . DEC R2 40 1 ·ORL A,R5
18 1 DEC R3 4E 1 ORL A,R6
1C 1 DEC R4 4F 1 ORL A,R7
10 1 DEC R5 50 2 JNC code addr
1E 1 DEC R6 51 2 ACALL code addr
1F 1 DEC R7 52 2 ANL data addr,A
20 3 J8 bit addr, code addr 53 3 ANL data addr,#data
21 2 AJMP code addr 54 2 ANL A,#data
22 1 RET 55 2 ANL A,dataaddr
23 1 RL A
24 2 ADD A,#data
25 2 ADD A,dataaddr

56 1
'.

ANL· A,@RO
57 1 ANL A@R1
58 1 Ai'lL A,RO

26 1 ADD A,@RO 59 1 ANL A,R1
27. 1 ADD A,@R1 5A 1 ANL A,R2
28 1 ADD A.RO 58 1 ANL A,R3
29 1 ADD A,R1 5C 1 ANL A,R4
2A 1 .ADD A,R2 50 1 . ANL A,R5

.,

28 1 ADD A,R3 5E 1 ANL A,R6
2C 1 ADD A,R4 5F 1 ANL A,R7
20 1 ADD. A,R5 60 2 JZ codeaddr
2E 1 ADD A,R6 61 2 AJMP codeaddr
2F 1. ADD A,R7 62 2 XRL data addr.A
30 3 JN8 bit addr, code addr 63 3 XRL data addr,#data
31 2 ACALL code addr 64 2 XRL A,#data
32 1 RETI 65 2 XRL A,dataaddr

11-22

inter B032AH/B052AH

Table 2. (Cont.)

Hex Number Mnemonic Operands Hex Number Mnemonic Operands
Code of Bytes Code of Bytes

66 1 XRL A,@RO 99 1 SUBB A,R1
67 1 XRL A,@R1 9A 1 SUBB A,R2
68 1 XRL A,RO 9B 1 SUBB A,R3
69 1 XRL A,R1 9C 1 SUBB A,R4
6A 1 XRL A,R2 90 1 SUBB A,R5
6B 1 XRL A,R3 9E 1 SUBB A,R6
6C 1 XRL A,R4 9F 1 SUBB A,R7
60 1 XRL A,R5 AO 2 ORL C,/bit addr
6E 1 XRL A,R6 A1 2 AJMP codeaddr
6F 1 XRL A,R7 A2 2 MOV C,bit addr
70 2 JNZ code addr A3 1 INC OPTR
71 2 ACALL code addr A4 1 MUL AB
72 2 ORL C,bitaddr A5 reserved
73 1 JMP @A+OPTR A6 2 MOV @RO, data addr
74 2 MOV A,#data A7 2 MOV @R1,data addr
75 3 MOV data addr,#data A8 2 MOV . RO,data addr
76 2 • MOV @RO,#data A9 2 MOV R1,data addr
77 2 MOV @R1,#data AA 2 MOV R2,data addr
78 2 MOV RO,#data AB 2 MOV R3,data addr
79 2 MOV R1,#data AC 2 MOV R4,data addr
7A 2 MOV R2,#data AO 2 MOV R5,data addr
7B 2 MOV R3,#data' AE 2 MOV R6,data addr
7C 2 MOV R4,#data AF 2 MOV R7,dataaddr
70 2 MOV R5,#data BO 2 ANL C,Ibit addr
7E 2 MOV R6,#data B1 2 ACALL code addr
7F 2 Moli R7,#data B2 2 CPL bit addr
80 2 SJMP code addr B3 1 CPL C
81 2 AJMP code addr B4 3 CJNE . A,#data,code addr
82 2 ANL C,bit addr B5 3 CJNE A,data addr,code addr
83 1 MOVC A,@A+PC B6 3 CJNE @RO,#data,code addr
84 1 OIV AB B7 3 CJNE @R1,#data,code addr
85 3 MOV data addr, data addr B8 3 CJNE RO,#data,code addr
86 2 MOV data addr,@RO B9 3 CJNE R1,#data,code addr
87 2 MOV data addr,@R1 BA 3 CJNE R2,#data,code addr
88 2 MOV data addr,RO BB 3 CJNE R3,#data,code addr
89 2 MOV data addr,R1 BC 3 CJNE R4,#data,code addr
8A 2 MOV data addr,R2 BO 3 CJNE R5,#data,code addr
8B 2 MOV data addr,R3 BE 3 CJNE R6,#data,code addr
8C 2 MOV data addr,R4 BF 3 CJNE R7,#data,code addr
80 2 MOV data addr,R5 CO 2 PUSH dataaddr
8E 2 MOV data addr,R6 I C1 2 AJMP code addr
8F 2 MOV data addr,R7 C2 2 CLR bit addr
90 3 MOV OPTR,#data C3 1 CLR C
91 2 ACALL code addr C4 1 SWAP A
92 2 MOV bitaddr,C C5 2 XCH A,data addr
93 1 MOVC A,@A+OPTR C6 1 XCH A,@RO
94 2 SUBB A,#data C7 1 XCH A,@R1
95. 2 SUBB A,data addr C8 1 XCH A,RO
96 1 SUBB A,@RO C9 1 XCH A,R1
97 1 SUBB A,@R1 CA 1 XCH A,R2
98 1 SUBB A,RO CB 1 XCH A,R3

11-23

inter 8032AH/8052AH

. Table 2. (Cont.)

Hex . Number Mnemonic Operands Hex Number Mnemonic Operands
Code of Bytes Code of Bytes

CC 1 XCH A,R4 .E6 1 MOV A,@RO
CO 1 XCH A,R5 E7 1 MOV A,@R1
CE 1 XC,H A,R6 E8 1 MOV A,RO
CF 1 XCH A;R7 E9 1 MOV A,R1
00 2 POP data addr EA 1 MOV A,R2
01 2 ACALL codeaddr EB 1 MOV A,R3
02 2 SETB bit addr EC 1 MOV A,R4
03 1 SETB C EO 1 MOV A,R5
04 1 OA A EE 1 MOV A,R6
05 3 bJNZ data addr,code addr EF 1 MOV A,R7
06 1 XCHO A,@RO FO 1 MOVX @OPTR,A
07 1 XCHO A,@R1 F1 2 ACALL code addr
08 2 OJNZ RO,code addr F2 1 MOVX @RO,A
09 2 OJNZ R1 ,code addr F3 1 MOVX @R1,A
OA 2 OJNZ R2,code addr F4 1 CPL A
OB 2 'OJNZ R3,code addr F5 2 MOV data addr,A
OC 2 OJNZ R4,code addr F6 1 MOV @RO,A
00 2 OJNZ R5,code addr F7 1 MOV @R1,A
OE 2 OJNZ R6,code addr F8 1 MOV RO,A
OF 2 OJNZ R7,codeaddr . F9 1 MOV R1,A
EO 1 MOVX A,@OPTR FA 1 MOV R2,A
E1 2 AJMP code addr FB 1 MOV R3,A
E2 1 MOVX A,@RO FC 1 MOV R4,A
E3 1 MOVX A,@R1 FO 1 MOV R5,A
E4 1 CLR A FE 1 MOV R6,A
E5 2 MOV A,dataaddr FF 1 MOV R7,A

11-24

8751H
8751 H-11/8751 H-10/8751 H-8

SINGLE-COMPONENT 8-BIT MICROCOMPUTERS
• 8751H: 12 MHz Operation
• 8751H-8: 8 MHz Operation

• Program Memory Security • Programmable Full-Duplex Serial Channel
• 4K x8 EPROM • 128K Accessible External Memory
• 128 x 8 RAM • Boolean Processor
• 32 1/0 Lines (Four 8-Bit Ports) • 4}ls Multiply and Divide
• Two 16-Bit Timer/Counters • 218 User Bit-Addressable Locations

The 8751 H is a pin compatible EPROM version of the 8051 AH. Intel's advanced +5 volt, depletion load, N­
channel, HMOS technology allows the 8751 H to remain fully compatible with its 8751/8751-8 predecessor in
addition to incorporating a new program memory security feature. This allows the 8751 H to be a full-speed
MCS®-51 prototyping tool and provides for an effective single component solution for highly sensitive con­
troller applications requiring code modification flexibility.

Specifically, the 8751 H features: 4K byte program memory space; 32110 lines; two 16-bit timerlevent counters;
a 5-source; 2-level interrupt structure; a full duplex serial channel; a Boolean processor; and on-chip oscilla­
tor and clock circuitry. Standard TTL and most byte-oriented MCS-80 and MCS-85 peripherals can b'e used
for 1/0 and memory expansion.

The 8751 H is available in a hermetically sealed, ceramic, 40-lead dual in-line package which includes a window
that allows for EPROM erasure when exposed to ultraviolet light (see Erasure Characteristics). During normal
operation, ambient light may adversely affect the functionality of the chip. Therefore, applications which
expose the 8751 H to ambient light may require an opaque label over the window.

r--------~...L.Lt..L.O

~
~
~ I

'" EA

I
I
I
I
I
I
I
I
I
I

;!:tl:U:tI~.- - - - - - - - - - - - i
I
I
I
I
I
I
I
I
I
I
I

Figure 1. Block Diagram

11-25

8751H

P1.0
P1~1
P1.2
P1.3
P1.4
P1.S
P1.6
P1.7
RST

P3.0/RXD
P3.1/TXD

P3.2/INTO·
P3.3JINT1

P3.4ITO
P3.4IT1

, P3.6/WR
P3.7/RD

XTAL2
XTAL1

viis

Vee
PO.O
PO.1
PO.2
PO.3
PO.4
Po.s
PO.6
PO.7
EAlVpp
ALE/P.ROG
PSEN
P2.7
P2.6
P2.S
P2.4
P2.3
P2.2
P2.1
P2.0

Figure 2. Pin Configuration

8751HPIN DESCRIPTIONS

VSS
Circuit ground potential.

Vcc
Supply voltage during programming, verification,
and normal operation.

Port 0
Port 0 is an 8-bit open drain bidirectional I/O port. It
is also the m_ultiplexed low-order address and data
bus during accesses to external memory. It also re­
ceives the instruction bytes during EPROM program~
ming, and outputs instruction bytes during program
verification. (External pullups are required during pro­
gram verification.) Port 0 ean sink (and in bus oper­
ations can source) eight LS TTL inputs.

Port 1
Port 1 is an a-bit bidirectional 110 port with internal
pull ups. It receives the low-order address byte
during EPROM programming and program verifi­
cation. Port 1 can sink/source four LS TtL inputs.

Port 2
Port 2 is an a-bit bidirectional I/O port with internal
pullups. It emits the high-order address byte during

11-26

accesses to external memory. It also receives the
high-order address bits during EPROM program­
ming and program verification. Port 2 can sink/
source four LS TTL inputs.

Port 3
Port 3 is an a-bit bidirectional I/O port with inter­
nal pull ups. It also serves the functions of various
special features of the MCS®-S1 Family, as listed
below:

Port Pin Alternate Function .

P3.0 RXD (serial input port)
P3.1 . TXD (serial output port)
P3.2 INTO (external interrupt)
P3.3 INT1 ,(external interrupt)
P3.4 TO (Timer/counter 0 external input)
P3.S
P3.6
P3.7

~Timer/counter1 external input)
WR (external Data.Memorywrite strobe)
RD (external Data Memory read strObe)

Port 3 can sink/source four LS TTL inputs.

RST
A high on this pin for two machine cycles while the
oscillator is running resets the device. A small exter­
nal pulldown resistor (""8.2kO) from RST to VSS per­
mits power-on reset when a capacitor (""10 p.t) is also
connected from this pin to Vce.

A.LE/PROG
Address Latch Enable output for latching the low
byte of the address during accesses to external
memory. ALE is activated at a constant rate of 1/6
the oscillator frequency except during an external
data memory access at which time one ALE pulse
is skipped. ALE can sink/sol,lrce a LS TTL inputs.
This pin is also the program pulse input (pROG)
du~ing EPROM programming.

PSEN
Program Store Enable output is the read strobe to
external Program Memory. PSEN is activated twice
each machine cycle during fetches from external
Program Memory. (However, even when executing
out of external Program Memory two activations of
PSEN are skipped during each access to external

8751H

Data Memory.) PSEN is not activated during
fetches from internal Program Memory. PSEN can
sinklsource 8 LS TTL inputs.

EANPP
When EA is held high, the 8751 H executes out of
internal Program Memory (unless the Program
Counter exceeds OFFFH). When EA is held low,
the 8751 H executes only out of external Program
Memory. This pin also receives the 21 V program­
ming supply voltage (VPP) during EPROM pro-

ABSOLUTE MAXIMUM RATINGS·

Ambient Temperature Under Bias ... O°C to 70°C

Storage Temperature -65°C to +150°C

Voltage On Any Pin to VSS
(Except VPP) -0.5V to + 7V

Voltage from Vpp to VSS 21.5V

Power Dissipation 2 W

gramming. This pin should not be floated during
normal operation.

XTAL1
Input to the inverting amplifier that forms the oscil­
lator. XTAL 1 should be grounded when an external
oscillator is used.

XTAL2
Output of the inverting amplifier that forms the
oscillator, and input to the internal clock genera­
tor. Receives the external oscillator signal when an
external oscillator is used.

*NO TICE: Stresses above those listed under "Abso­
lute Maximum Ratings" may cause permanent
damage to the device. This is a stress rating only
and functional operation of the device at these or
any other conditions above those indicated in the
operational sections of this specification is not
implied. Exposure to absolute maximum rating
conditions for extended periods may affect device
reliability.

D.C. CHARACTERISTICS: (T A = 00 C to 70 0 C; VCC = 4.5V to 5.5V, VSS = OV)

Symbol Parameter Min Max Unit Test Conditions

VIL Input Low Voltage -0.5 0.8 V

VIH Input High Voltage (Except XTAL2, RST) 2.0 VCC +0.5 V

VIH1 Input High Voltage to XTAL2, RST 2.5 VCC +0.5 V XTAL1 =VSS

VOL Output Low Voltage Ports 1, 2, 3 (Note 1) 0.45 V 10L = 1.6mA

VOL1 Output Low Voltage Port 0, ALE, PSEN 0.60 V 10L =3.2mA
(Note 1) 0.45 V 10L =2.4mA

VOH Output High Voltage Ports 1, 2, 3 2.4 V 10H - -80J.'A

VOH1 Output High VoltC!ge Port 0 (in External 2.4 V 10H = -400J.'A
Bus Mode), ALE, PSEN

ilL Logical 0 Input Current P1, P2, P3 500 J.'A Vin = 0.45V

IlL 1 Logical 0 Input Current to EAIVpp -15 mA Vin = 0.45V

IIL2 Logical 0 Input Current to XTAL2 -2.5 mA XTAL1 =VSS Vin - 0.45V

III Input Leakage Current to Port 0 100 J.'A 0.45 < Vin < VCC

IIH Logical Input Current to EAIVpp 500 J.'A Vin = 2.4V

IIH1 Input Current to RSTIVPD to activate reset 500 J.'A Vin < (VCC - 1.5V)

ICC Power Supply Current 250 mA 6J! outputs disconnected,
EA =VCC

CIO Capacitance of 1/0 Buffers 10 pF fc=1 MHzTA=25°C

See page 4 for Notes.

11-27

8751H

NOTE: VOL is degraded when the 8751 H rapidly discharges external capacitance. This AC noise is most pronounced
during emission of address data. When using external memory, locate the latch or buffer as close to the 8751 H
as possible.

VOL
Emitting Degraded (peak)

Datum Ports 1/0 Lines (max)

Address P2, PO P1, P3 0.8V

Write Data PO P1, P3, ALE 0.8V

EXTERNAL CLOCK DRIVE CHARACTERISTICS (XTAL2)

Symbol Parameter Min Max Units

TCLCL Oscillator Period: 8751H 83.3 286 ns

TCHCX High Time 20 ns

TCLCX Low Time 20 ns

TCLCH Rise Time 20 ns

TCHCL Fall Time 20 ns

~TCHCL

0.8 0.8

-TCLCX----j

I~~~~~-TCLCL~~~~~-

11-28

8751H

AC CHARACTERISTICS (T A = 0° C to 70°C, VCC = 4.5V to 5.5V, VSS = OV, Load Capacitance for Port 0,
ALE, and PSEN = 100 pF; Load Capacitance for all other outputs = 80 pF)

EXTERNAL PROGRAM MEMORY CHARACTERISTICS

8751H
12 MHz Osc Variable Oscillator

Symbol Parameter Min Max Min Max Units

TCLCL Oscillator Period 83.3 833.3 ns

TLHLL ALE Pulse Width 127 2TCLCL-40 ns

TAVLL Address Valid to ALE 53 TCLCL-30 ns

TLLAX Address Hold after ALE 48 TCLCL-35 ns

TLLlV ALE to Valid Instr In 183 4TCLCL-150 ns

TLLPL ALEto PSEN 58 TCLCL-25 ns

TPLPH PSEN Pulse Width 190 3TCLCL-60 ns

TPLIV PSEN to Valid Instr In 100 3TCLCL-150 ns

TPXIX Input Instr Hold after PSEN 0 0 ns

TPXIZ Input Instr Float after PSEN 63 TCLCL-20 ns

TPXAV PSEN to Address Valid 75 TCLCL-8 ns

TAVIV Address to Valid I nstr In 267 5TCLCL-150 ns

TAZPL Address Float to PSEN 0 0 ns

EXTERNAL DATA MEMORY CHARACTERISTICS

8751H
12 MHz Osc Variable Oscillator

Symbol Parameter Min Max Min Max Units

TRLRH RD Pulse Width 400 6TCLCL-100 ns

TWLWH WR Pulse Width 400 6TCLCL-100 ns

TLLAX Address Hold After ALE 48 TCLCL-35 ns

TRLDV RD to Valid Data In 252 5TCLCL-165 ns

TRHDX Data Hold after RD 0 0 ns

TRHDZ Data Float after RD 97 2TCLCL-70 ns

TLLDV ALE to Valid Data In 517 8TCLCL-150 ns

TAVDV Address to Valid Data In 585 9TCLCL-165 ns

TLLWL ALE to WR or RD 200 300 3TCLCL-50 3TCLCL+50 ns

TAVWL Address to WR or RD 203 4TCLCL-130 ns

TQVWX Data Valid to WR Transition 13 TCLCL-70 ns

TQVWH Data Setup to WR High 433 7TCLCL-150 ns

TWHQX Data Held after WR 33 TCLCL-50 ns

TRLAZ RD Low to Address Float 0 0 ns

TWHLH RD or WR High to ALE High 33 133 TCLCL-50 TCLCL+50 ns

11-29

8751H

AC TIMING DIAGRAMS

EXTERNAL PROGRAM MEMORY READ CYCLE

~---------------------12TClCl------------------------..

ALE

PORTO AO-A7 INSTR IN

PORT2 ADDRESS A8-A 15

EXTERNAL DATA MEMORY READ CYCLE

ALE

~
I----~ TllDV -------.. -11

~
PSEN

RD

PORT °

PORT2

EXTERNAL DATA MEMORY WRITE CYCLE

ALE

TWHlH-1

i

PSEN

WR ______________ +-__________ ~ ~----------TWlWH-------~~-------

-_T VWH--~~_TWHOX
PORTO

PORT 2 ADDRESS A8-A15 OR SFR-P2

AC-TESTING INPUT/OUTPUT, FLOAT WAVEFORMS

INPUT/OUTPUT FLOAT

1------ FLOAT -----____ 1

2.4=>(2.0 2.oX=
TEST POINTS

0.45 -"0;..:.8 ______ ..:.0.;;:.8 _

2.4 -1\2.0 2.0)'r-- 2.4

1/>---------<_\
0.45- 0.8 0.8 ~ 0.45

AC inputs during testing are driven at 2.4V for a logic "1" and 0.45V for a logic "0". Timing measurements are made at 2.0Vfor
a logic "1" and 0.8V for a logic "0". For timing purposes, the float state is defined as the point at which a PO pin sinks 2.4mA or
sources 400 p.A at the voltage test levels.

11-30

CLOCK WAVEFORMS

INTERNAL
CLOCK

XTAL2

ALE

STATE 4

Pl I P2

STATE 5

Pl I P2

STATE 6

Pl 1 P2

8751H

STATE 1

Pl I P2

STATE 2

Pl I P2

STATE 3

Pl I P2

I 1 I

STATE 5

Pl I P2

EXTERNAL PROGRAM MEMORY FETCH ::2 THESE SIGNALS ARE NOT
ACTIVATED DURING THE
EXECUTION OF A MOVX INSTRUCTION

I 1"-.. 1 L L..-_-"'-__

PO

P2(EXT) _____ -,1 INDICATES ADDRESS TRANSIONS '-_____ ~-----_
READ CYCLE

RD

PO

P2
WRITE CYCLE

WR

PO

DPL OR Ri
OUT

OOH IS EMITTED PCl OUT (fF PROGRAM
DURING THIS PERIOD MEMORY IS EXTERNAL)

LY IDATA\ r-\~
I- 4i= FLOAT SAMPLED • i \

INDICATES DPH OR P2 SFR TO PCH TRANSITIONS

I PCL OUT (EVEN IF PROGRAM
L... __________ ----' MEMORY IS INTERNAL)

DPL OR Ri.
OUT ! - DATA OUT .5 . : tCL OUT ~I~OGRAM

-----~---I-N-D-I-C-AT-E-'-S-D-P-H-O-R-P-2-S-F-R-T-O-P-C-H-T--R-A-N-S-I=TI--O--N--S:----'I MEMORY IS EXTERNAL) P2

PORT OPERATION

MOV PORT, SRC OLD DATA I NEW DATA
__ LPO PINS SAMPLED

MOVDEST,PO ~~ ____________________ ~~~

MOV DEST, PORT (Pl, P2, P3) PO PINS SAMPLED c:=::J
(INCLUDES INTO,INTl, TO, Tl! ~'--_____________________ I- ,-~

SERIAL PORT SHIFT CLOCK
Pl, P2, P3 PINS SAMPLED ~~N~2S:~PLED

~----q:r
RXD SAMPLED

J~gDE O)--------~XD SAMPLED

This diagram indicates when signals are clocked internally. The time it takes the signals to propagate to the pins, however,
ranges from 25 to 125 ns. This propagation delay is dependent on variables. such as temperature and pin loading. Propagation
also varies from output to output and component to component. Typically though, (TA = 25° C, fully loaded) RD and WR prop­
agation delays are approximately 50 ns. The other signals are typically 85 ns. Propagation delays are incorporated in the AC
specifications.

11-31

8751H

8751 H EPROM CHARACTERISTICS

Erasure Characteristics
Erasure of the 8751 H Program Memory begins to
occur when the chip is exposed to light }'Vith-wave~
lengths shorter than approximately 4,000 Angstroms.
Since sunlight and fluorescent lighting have wave­
lengths in this range, constant exposure to these
light sources over an extended period of time (about
1 week in sunlight, or 3 years in room-level fluores­
cent lighting) could cause unintentional erasure. If
an application subjects the 8751 H to this type of
exposure, it is suggested that an opaque label be
placed over the window.

The recommended erasure procedure is exposure to
ultraviolet light (at 2537 Angstroms) to an integrated
dose of at least 15 W-sec. Exposing the 8751 H to an
ultraviolet lamp of 12,000 p..W/cm2 rating for 20 to 30
minutes, at a distance of about 1 inch, should be
sufficient.

Erasure leaves the array in an al11s state.

Programming the EPROM
To be programmed, the8751 H must be running with
a 4 to 6 MHz oscillator. (The reason the oscillator
needs to be running is that the internal bus is being
used to transfer address and program data to appro­
priate registers.) The address of an EPROM location
to be programmed is applied to Port 1 and pins
P2.0-P2.3 of Port 2, while the data byte is applied to
Port O. Pins P2.4-P2.6 and PSEN should be held low,
and P2.7 and RST high. (These are all TTL levels
except R::?T, which requires 2.5V for high.) EAIVPP
is held normally high, and is pulsed to +21V. While
EAIVPP 'is at 21 V, the ALE/PROG pin, which is
normally being held high, is pulsed low for 50 msec.
Then EAIVPP is returned to high. This is illustrated
in Figure 3. detailed timing specifications are pro­
vided in the EPROM Programming and Verification
Characteristics section of this data sheet.

11-32

Program Memory Security
The program memory security feature is developed
arounda "security' bit" in the 8751 H EPROM array.
Once this "hidden bit" is programmed, electrical
access to.the contents of the entire program memory
array becomes impossible. Activation of this feature
is accomplished by programming the 8751 H as
described in "Programming the EPROM" with the
exception that P2.6 is held at a TTL high rather than
a TTL low. In addition, Port 1 and P2.0-P2.3 may be
in any state. Figure 4 illustrates the security bit pro­
gramming configuration. Deactivating the security
feature, which again allows programmability of the
EPROM, is accomplished by exposing the EPROM
to ultraviolet light. This exposure, as described in
"Erasure Characteristics," erases the entire EPROM
array. Therefore, attempted retrieval of "protected
code" results in its destruction.

Program Verification
Program Memory may be read only when the
"security feature" has not been activated. Refer to
Figure 5 for Program Verification setup. To read the
Program Memory, the following procedure can be
used. The unit must be running with a 4 to 6 MHz
oscillator. The address of a Program Memory loca­
tion to be read is applied to Port 1 and pins P2.0-
P2.3 of Port 2. Pins P2.4-P2.6 and PSEN are held at
TTL low, while the ALE/PROG, RST, and EAIVPP
pins are held at TTL high. (These are all TTL levels
except RST, which requires 2.5V for high.) Port 0
will be the data output lines. P2.7 can be used as a
read strobe. While P2.7 is held high, the Port 0 pins
float. When P2.7 is strobed low, the contents of the
addressed location will appear at Port O. External
pullups (e.g., 10K) are required on Port 0 during
program verification.

inter 8751H

+5V

I

ADDR. ~-A-O ~ P1
Vee I--J

OOOOH- C 8751 OFFFH

-IA8:~ P2.0- PO -:=PGM DATA

P2.3

....c:::- r-- P2.4

-=- t--- P2.5 ALE ~ --ALEPROG
L_ P2.6

TTLHIGH--~ P2.7

-...e-:J.::-- XTAL2 Ell --EAIVPP

4-6 MHz 0 :::E-, -crt XTAL1 RST i------- V I H 1

VSS PSEN~

Figure 3. Programming Configuration

+5V

I

NC P1
vee ~

8751

P2.0- PO Ne
NC P2.3

....L L
P2.4

P2.5 ALE ____ ALE/PROG 50 ms PULSE TO GND

TTL HIGH -----L
P2.6

P2.7

I--::r:--- XTAL2 Ell --
---- EAIVPP +21V PULSE

4-6 MHz 0 ::E--
L:T -t:= XTAL 1 , RST i------- VIH1

VSS PSEN ~-L -'-- -

Figure 4. Security Bit Programming Configuration

11-33

ENABLE

P1

P2.D-
P2.3·

P2.4

P2.5

P2.6

P2.7

XTAL2

XTAL1

VSS

-

8751H

8751

+5V

Vcc

1--------\ PGM DATA
PO (USE 10K PULLUPS)

ALE --r--- TTL HIGH

EA ---1
RST VIH1

Figure 5. Program Verification Configuration

EPROM PROGRAMMING, SECURITY BIT PROGRAMMING AND VERIFICATION CHARACTERISTICS
(TA = 21 0 C to 270 C, VCC = 4.5V to 5.5V, VSS = OV)

Symbol Parameter Min Max Units

Vpp Programming Supply Voltage 20.5 21.5 V

IPP Programming Current 30 mA

1ITCLCL Oscillator Frequency 4 6 MHz

TAVGL Address Setup toPROG 48TCLCL

TGHAX Address Hold after PROG 48TCLCL

TDVGL Data Setup to PROG 48TCLCL

TGHDX Data Hold after PROG . 48TCLCL

TEHSH ENABLE High to Vpp 48TCLCL

TSHGL Vpp Setup to PROG 10 j.LSec

TGHSL Vpp Hold after PROG 10 ,",sec

.TGLGH PROG Width 45 55 msec

TAVOV Address to Data Valid 48TCLCL

TELOV ENABLE to Data Valid 48TCLCL

TEHOZ' Data Float after ENABLE 0 48TCLCL

11-34

inter 8751H

EPROM PROGRAMMING, SECURITY BIT PROGRAMMING AND
VERIFICATION WAVEFORMS

PROGRAMMING VERIFICATION

P1.0-P1.7
P2.0-P2.3 AODRESS ADDRESS

~I
I I I

i } " PORTO DATA IN
! }

DATA OUT
.A

I

---I
I;G;DX i

I

I TDVGL I

I
.TGHAX"I I

TAVGL i I I

1

ALE PROG
I

I TSHGL • TGHSL

I 1TGi:GH1~-1
I 21V:,: .5V

\
TTL HIGH TTL HIGH TTL HIGH TTL HIGH

EA VPP i
I

~~ma, j""'" 1_ TEHQZ

P2.7) (ENABLE)

FOR PROGRAMMING CONDITIONS SEE FIGURE 3.
FOR SECURITY BIT PROGRAMMING CONDITIONS SEE FIGURE 4.
FOR VERIFICATION CONDITIONS SEE FIGURE 5.

11-35

8751H

Table 1. MCS®-S1Instruction Set Description

ARITHMETIC OPERATIONS LOGICAL OpERATIONS (CONTINUED)

Mnemonic Description Byte Cyc Mnemonic Destination Byte Cyc
ADD A.Rn Add register to ORL A.@Ri OR indirect RAM to

Accumulator Accumulator
ADD A.direct Add direct byte to ORL A.#data OR immediate data to

Accumulator 2 Accumulator 2
ADD A.@Ri Add indirect RAM to ORL direct.A OR Accumulator to

Accumulator direct byte 2
ADD A.#data Add immediate data to ORL direct.#data OR immediate data to

Accumulator 2 direct byte 3 2
ADDC A.Rn Add register to XRL A.Rn Exc;lusive-OR register to

Accumulator with Carry Accumulator
ADDC A.direct Add direct byte to A XRL A.direct Exclusive-OR direct

with Carry flag 2 byte to Accu mu lator 2
AD DC A.@Ri Add indirect RAM to A XRL A.@Ri Exclusive~OR indirect

with Carry flag RAM toA
ADDC A.#data Add immediate data to XRL A.#data Exclusive-OR

A with Carry flag 2 immediate data to A 2
SUBB ARn Subtract register from A XRL direct.A Exclusive-OR Accumu- ,

with Borrow lator to direct byte 2
SUBB A.direct Subtract direct byte XRL direct.#data Exclusive-OR im-

from A with Borrow 2 mediate data to direct 3 2
SUBB A.@Ri Subtract indirect RAM CLR A Clear Accumulator 1 1

from A with Borrow CPL A Complement
SUBB A.#data Subtract immed data Accumulator

from A with Borrow 2 1 RL A Rotate Accumulator Left
INC A Increment Accumulator 1 1 RLC A Rotate A Left through
INC Rn Increment register 1 1 the Carry flag
INC direct Increment direct byte 2 1 RR A Rotate Accumulator
INC @Ri Increment indirect RAM 1 1 Right
INC DPTR I ncrement Data Pointer 1 2 RRC A Rotate A Right through
DEC A Decrement Accumulator 1 1 Carry flag
DEC Rn Decrement register 1 1 SWAP A Swap nibbles within the
DEC direct Decrement direct byte 2 1 Accumulator
DEC @Ri Decrement indirect

RAM 1 1 DATA TRANSFER
MUL AB Multiply A & B 1 4 Mnemonic Description Byte Cyc
DIV AB Divide A by B 1 4 MOV A.Rn Move registerto
DA A Decimal Adjust Accumulator

Accumulator MOV Adirect Move direct byte to

LOGICAL OPERATIONS Accumulator 2
MOV A.@Ri Move indirect RAM to

Mnemonic Destination Byte Cyc Accumulator
ANL A.Rn AND register to MOV A#data Mov immediate data to

Accumulator Accumulator 2
ANL A.direct AND direct byte to MOV Rn.A Move Accumulator to

Accumulator 2 register
ANL A.@Ri AND indirect RAM to MOV Rn.direct Move direct byte to

Accumulator register 2 2
ANL A.#data, AND immediate data to MOV Rn.#dqta Move immediate data to

Accumulator 2 register 2
ANL direct.A AND Accumulator to MOV direct.A Move Accumulator to

direct byte 2 direct byte 2
ANL direct.#data AND immediate data to MOV direct.Rn Move register to direct

direct byte 3 2 byte 2 2
ORL A.Rn OR register to MOV direct.direct Move direct byte to

Accumulator direct 3 2
ORL A.direct OR direct byte to MOV direct.@Ri , Move indirect RAM to

Accumulator 2 direct byte 2 2

11-36,

8751H

Table 1. (Con!.)

DATA TRANSFER (CONTINUED) PROGRAM AND MACHINE CONTROL

Mnemonic Description Byte Cyc Mnemonic Description Byte Cyc
MOV direct,#data Move immediate data to ACALL addrll Absolute Subroutine

direct byte 3 2 Call 2 2
MOV @Ri,A Move Accumulator to LCALL addr16 Long Subroutine Call 3 2

indirect RAM RET Return from subroutine 1 2
MOV @Ri,direct Move direct byte to RETI Return from interrupt 1 2

indirect RAM 2 2 AJMP addrl1 Absolute Jump 2 2
MOV @Ri,#data Move immediate data to LJMP addr16 Long Jump 3 2

indirect RAM 2 SJMP rei Short Jump (relative
MOV DPTR,#data16 Load Data Pointer with addr) 2 2

a 16-bit constant 3 2 JMP @A+DPTR Jump indirect relative to
MOVC A.@A+DPTR Move Code byte relative the DPTR 2

to DPTR toA 2 JZ rei Jump if Accumulator is
MOVC A,@A+PC Move Code byte relative Zero 2 2

to PCtoA 2 JNZ rei Jump if Accumulator is
MOVX A,@Ri Move External RAM (8- Not Zero 2 2

bit addr) to A 2 JC rei Jump if Carry flag is set 2 2
MOVX A,@DPTR Move External RAM (16- JNC rei Jump if No Carry flag 2 2

bit addr) to A 2 JB bit,rel Jump if direct Bit set 3 2
MOVX @Ri,A Move A to External RAM· JNB bit,rel Jump if direct Bit Not

(8-bit addr) 2 set 3 2
MOVX @DPTR,A Move A to External RAM JBC bit, rei Jump if direct Bit is set

(16-bit addr) 2 &Clear bit 3 2
PUSH direct Push direct byte onto CJNE A,direct,rel Compare direct to A &

stack 2 2 Jump if Not Equal 3 2
POP direct Pop direct byte from CJNE A,#data, rei Comp, immed; to A &

stack 2 2 Jump if Not Equal 3 2
XCH A,Rn Exchange register with CJNE Rn,#data,rel Comp, immed, to reg &

Accumulator Jump if Not Equal 3 2
XCH A,direct Exchange direct byte CJNE @Ri,#data,rel Comp, immed, to ind, &

with Accumulator 2 Jump if Not Equal 3 2
XCH A,@Ri Exchange indirect RAM DJNZ Rn,rel Decrement register &

with A Jump if Not Zero 2 2
XCHD A,@Ri Exchange low-order DJNZ direct, rei Decrement direct &

Digit ind RAM w A Jump if Not Zero 3 2
NOP No operation 1 1

BOOLEAN VARIABLE MANIPULATION Notes on data addressing modes:
Mnemonic Description Byte Cyc Rn -Working register RD-R7

CLR C Clear Carry flag 1 1 direct -128 internal RAM locations, any 1/0 port,

CLR bit Clear direct bit 2 1
control or status register

@Ri -Indirect internal RAM location addressed by
SETB C Set Carry flag 1 1 register RD or R1
SETB bit Set direct Bit 2 1 #data -8-bit constant included in instruction
CPL C Complement Carry flag 1 1 #data16 -16-bit constant included as bytes 2 & 3 of
CPL bit Complement direct bit 2 1 instruction
ANL C,bit AND direct bit to Carry bit -128 software flags, any 1/0 pin, control or

flag 2 2 status bit

ANL C'/bit AND complement of Notes on program addressing modes:
direct bit to Carry 2 2 addr16 -Destination address for LCALL & LJMP may

ORL Clbit OR direct bit to Carry be anywhere within the 64-K program
memory address space

flag 2 2 Addr11 -Destination address for ACALL & AJMP will be
ORL C,/bit OR complement of within the same 2-K page of program

direct bit to Carry 2 2 memory as the first byte of the following
MOV C'/bit Move direct bit to Carry instruction

flag 2 rei -SJMP and all conditional jumps include an 8-

MOV bit,C Move Carry flag to bit offset byte, Range is +127-128 bytes relative

direct bit 2 2 to first byte of the following instruction

All mnemonics copyrighted © Intel Corporation 1979

8751H

Table 2. Instruction Opcodes in Hexadecimal Order ,

Hex Number Mnemonic Operands Hex Number Mnemonic Operands
. Code of Bytes Code of Bytes

00 1 NOP 33 1 RLC A
01 2 AJMP code addr 34 2 ADDC A,#data
02 3 LJMP code addr 35 2 ADDC A,data addr
03 1 RR A 36 1 -ADDC A,@RO
04 1 INC A 37 1 ADDC A,@R1
05 2 INC data addr 38 1 AD DC A,RO
06 1 INC @RO 39 1 ADDC A,R1
07 1 INC @R1 3A 1 ADDC A,R2
08 1 INC RO 3B 1 ADDC A,R3
09 1 INC R1 3C 1 ADDC A,R4
OA 1 INC R2 3D 1 ADDC A,R5
OB 1 INC R3 3E 1 ADDC A,R6
OC 1 INC R4 3F 1 AD DC A,R7
00 1 INC R5 40 2 JC code addr
OE 1 INC R6 41 2 AJMP code addr
OF 1 INC R7 42 2 ORL data addr,A
10 3 JBC bit addr, code addr 43 3 ORL data addr,#data
11 2 ACALL code addr 44 2 ORL A,#data
12 3 LCALL code addr 45 2 ORL A,data addr
13 1 RRC A 46 1 ORL A,@RO
14 1 DEC A 47 1 ORL A,@R1
15 2 DEC data addr 48 1 ORL A,RO
16 1 DEC @RO 49 1 ORL A,R1
17 1 DEC @R1 4A 1 ORL A,R2
18 1 DEC RO 4B 1 ORL A,R3
19 1 DEC R1 4C 1 ORL A,R4
1A 1 DEC R2 40 1 ORL A,R5
1B 1 DEC R3 4E 1 ORL A,R6
1C 1 DEC R4 4F 1 ORL A:R7
10 1 DEC R5 50 2 JNC code addr
1E 1 DEC R6 51 2 ACALL code addr
1F 1 DEC R7 52 2 ANL data addr,A
20 3 JB bit addr, code addr 53 3 ANL data addr,#data
21 2 AJMP code addr 54 2 ANL A,#data
22 1 RET
23 1 RI:. A

55 2 ANI., A,data addr
56 1 ANL A,@RO

24 2 ADD A,#data 57 1 ANL A@R1
25 2 ADD A,data addr 58 1 ANL A,RO
26 1 ADD A,@RO 59 1 ANL A,R1
27 1 . ADD A,@R1 5A 1 ANL A,R2
28 1 ADD A,RO 5B 1 ANL A,R3
29 1 ADD A,R1 5C 1 ANL A,R4
2A 1 ADD A,R2 50 1 ANL A,R5
2B 1 ADD A,R3 5E 1 ANL A,R6
2C 1 ·ADD A,R4 5F 1 ANL A,R7
20 1 ADD A,R5 60 2 JZ code addr
2E 1 ADD A,R6 61 2 AJMP code addr
2F 1 ADD A,R7 62 2 XRL dataaddLA
30 3 JNB bit addr, code addr 63 3 XRL data addr,#data
31 2 ACALL code addr 64 2 XRL A,#data
32 1 RETI 65 2 XRL A,data addr

"'1_"20

8751H

Table 2. (Cont.)

Hex Number Mnemonic Operands Hex Number Mnemonic Operands
Code 01 Byles Code 01 Byles

66 1 XRL A,@RO 99 1 SUBB A,R1
67 1 XRL A,@R1 9A 1 SUBB A,R2
66 1 XRL A,RO 9B 1 SUBB A,R3
69 1 XRL A,R1 9C 1 SUBB A,R4
6A 1 XRL A,R2 90 1 SUBB A,R5
6B 1 XRL A,R3 9E 1 SUBB A,R6
6C 1 XRL A,R4 9F 1 SUBB A,R7
60 1 XRL A,R~ AD 2 ORL C,/bit addr
6E 1 XRL A,R6 A1 2 AJMP code addr
6F 1 XRL A,R7 A2 2 MOV C,bit addr
70 2 JNZ code addr A3 1 INC OPTR
71 2 ACALL code addr A4 1 MUL AB
72 2 ORL C,bit addr A5 reserved
73 1 JMP @A+OPTR A6 2 MOV @RO,data adr
74 2 MOV A,#data A7 2 MOV @R1,data addr
75 3 MOV data addr,#data A8 2 MOV RO,data addr
76 2 MOV @RO,#data A9 2 MOV R1 ,data addr
77 2 MOV @R1,#data AA 2 MOV R2,data addr
78 2 MOV RO,#data AB 2 MOV R3,data addr
79 2 MOV R1,#data AC 2 MOV R4,data addr
7A 2 MOV R2,#data AO 2 MOV R5,data addr
7B 2 MOV R3,#data AE 2 MOV R6,data addr
7C 2 MOV R4,#data AF 2 MOV R7,data addr
7D 2 MOV R5,#data, BO 2 ANL C,/bit addr
7E 2 MOV R6,#data B1 2 ACALL code addr
7F 2 MOV R7,#data B2 2 CPL bit addr
80 2 SJMP code addr B3 1 CPL C
81 2 AJMP code addr B4 3 CJNE A,#data,code addr
82 2- ANL C,bit addr B5 3 CJNE A,data addr,code addr
83 1 MOVC A,@A+PC B6 3 CJNE @RO,#data,code addr
84 1 OIV AB B7 3 CJNE @R1,#data,codeaddr
85 3 MOV data addr, data addr B8 3 CJNE RO,#data,code addr
86 2 MOV data addr,@RO B9 3 CJNE R1 ,#data,code addr

- 87 2 MOV data addr,@R1 BA 3 CJNE R2,#data,code addr
88 2 MOV data addr,RO BB 3 CJNE R3,#data,code addr
89 2 MOV data addr,R1 BC 3 CJNE R4,#data,code addr
8A 2 MOV data addr,R2 BO 3 CJNE R5,#data,code addr
8B 2 MOV data addr,R3 BE 3 CJNE R6,#data,code addr
8C 2 MOV data addr,R4 BF 3 CJNE R7,#data,code addr
80 2 MOV data addr,R5 CO 2 PUSH data addr
8E 2 MOV data add r, R6 C1 2 AJMP code addr
8F 2 MOV data addr,R7 C2 2 CLR bit addr
90 3 MOV OPTR,#data C3 1 CLR C
91 2 ACALL code addr C4 1 SWAP A
92 2 MOV bit addr,C C5 2 XCH A,data addr
93 1 MOVC A,@A+OPTR C6 1 XCH A,@RO
94 2 SUBB A,#data C7 1 XCH A,@R1
95 2 SUBB A,data addr C8 1 XCH A,RO
96 1 SUBB A,@RO C9 1 XCH A,R1
97 1 SUBB A,@R1 CA 1 XCH A,R2
98 1 SUBB A,RO CB 1 XCH A,R3

8751H

Table 2. (Cont.)

Hex Number Mnemonic Operands Hex Number Mnemonic Operands
Code . of Bytes Code of Bytes

CC 1 XCH A,R4 E6 1 MOV A,@RO
CO 1 XCH A,R5 E7 1 MOV A,@Rl
CE 1 XCH A,R6 E8 1 MOV A,RO
CF 1 XCH A,R7 E9 1 MOV A,Rl
DO 2 POP data addr EA 1 MOV A,R2
01 2 ACALL code addr EB 1 MOV A,R3
02 2 SETS bit addr EC 1 MOV A,R4
03 1 SETS C ED 1 MOV - A,R5
04 1 OA A EE 1 MOV A,R6
05 3 OJNZ data addr,code addr EF 1 MOV A.R7

.06 1 XCHO A,@RO FO 1 MOVX @OPTR,A
07 1 XCHO A,@Rl Fl 2 ACALL code addr
08 2 OJNZ RO,code addr F2 1 MOVX @RO,A
09 2 OJNZ Rl ,code addr F3 1 MOVX @Rl,A
OA 2 OJNZ R2,code addr F4 1 CPL A
OS 2 OJNZ R3,code addr F5 2 MOV data addr,A
DC 2 OJNZ R4,code addr F6 1 MOV @RO,A
DO 2 OJNZ R5,code addr F7 1 MOV @Rl,A
DE 2 OJNZ R6,code addr F8 1 MOV RO,A
OF 2 OJNZ R7,code addr F9 1 MOV Rl,A
EO 1 MOVX A,@OPTR FA 1 MOV R2,A
E1 2 AJMP code addr FB 1 MOV R3,A
E2 1 MOVX A,@RO FC 1 MOV R4,A
E3 1 MOVX A,@Rl FO 1 MOV R5,A
E4 1 CLR A FE 1 MOV R6,A
E5 2 MOV A,data addr FF 1 MOV R7,A

11·40

Design Considerations
When Using CHMOS

12

CHAPTER 12
DESIGN CONSIDERATIONS WHEN USING CHMOS

12.0 WHAT IS CHMOS?

CHMOS is Intel's n-well CMOS process which is based
on the highly developed HMOS-II technology. There are
three other types of CMOS processes: p-well, twin-tub,
and silicon on sapphire (SOS). All four CMOS structures
are discussed in the accompanying article reprint, "Inside
CMOS Technology." SOS and twin-tub offer superior
performance, but are very costly to manufacture. The
n-well technology offers about the same performance as
p-well and has been chosen for Intel's microcontrollers
because it is more readily adapted to the currently used
and well understood HMOS-II technology. This CMOS
technology also offers a known path to higher performance
products in the future.

Because CMOS tends to have lower gate density and a
higher gate count than an NMOS circuit of the same func­
tionality, the ability to scale down the transistor size in
CMOS processes is essential to improving the price/per­
formance ratio. The penalty paid for the. size reduction,
however, is a departure from the traditional CMOS supply
voltage range of 3 to 18 volts. CHMOS will be limited
to a maximum of 6 volts VCC.

Further reduction in CHMOS die size is accomplished by
using dynamic nodes at appropriate points in the circuit,
whereas, traditional CMOS is fully static. This reduces
the gate count, and therefore, the die size - achieving
lower cost. However, the use of dynamic nodes imposes
a minimum clock frequency requirement on the CHMOS
part.

12.1 NOISE IMMUNITY

CMOS noise immunity is greatly over stated. Noise im­
munity has been described as the amount of noise that can
be induced at the input of a gate that will not change the
logic state of the output. Noise margin, on the other hand,
is the DC levels that will be applied to an input from
another output (Voh,. Vol) and the trip point of that input.

On the surface, CMOS would seem ideal for use in noisy
environments. Output voltages are rail-to-rail, and input
switch points are approximately 50% of VCC. There is
one thing wrong with this analysis - CMOS has high
impedance inputs. High impedance inputs need only volt­
age and very little current (nano Amps) to switch its output
logic state. TTL, on the other hand, needs voltage and at
least 20 /lA (for an LS device) to switch its output logic
state. Because it is a lot more difficult to induce noise in
the form of current than in the form of voltage, CMOS
tends to be more noise sensitive than TTL.

However, NMOS also has high impedance inputs and has
input leakages typically less tha'n I /l-A. Because NMOS
output voltage swings are considerably less than CMOS,

12-1

CMOS has the advantage when inputs and outputs are
noisy. Another advantage of CMOS over NMOS is the
p-channel pullup instead of a depletion pullup. The p­
channel pullup is able to charge up the stray capacitance
faster thus signal rise times are significantly improved.

In conclusion, don't fool yourself into thinking that CMOS
eliminates the need to be concerned about noise problems.
Time is well spent following good design practices and
layout techniques from the earliest phases of a project.

12.2 LATCH·UP

CHMOS is not immune to traditional CMOS latch-up, but
the latch-up threat is highly overrated. Latch-up is usually
the result of unforeseen operating conditions, such as an
unexpected power-up sequence, inadvertent removal and
re-application of a supply voltage, or "hot-socketing" the
part (plugging a chip into its socket while the system is
active). An energetic voltage spike on VCC or the 110
lines might also trigger latch-up, but a little ringing on the
data lines isn't going to cause any problems.

It is helpful to understand the mechanisms involved in the
latch-up phenomenon. Figure 12-1 A shows the circuit
diagram of a typical CMOS output stage. Figure 12-1B
shows a plan view of how this stage might look in n-well
CMOS (with the gate electrodes of the FETs stripped
away, since they are not germane to the discussion). There
are two parasitic bipolar transistors in this structure, one
pnp and the other npn. The n-well forms the base region
of the pnp transistor, which is connected to VCC through
the distributed resistance of the n-well. The source and
drain of the p-channel pullup FET are dual emitters to the
pnp transistor. The p-type substrate is the collector of this
transistor and also serves as the base of the npn transistor
which is connected to VSS through the distributed resis­
tance of the substrate. The collector of this transistor is
the n-well, and the drain and source of the pUlldown
n-channel FET are dual emitters. These parasitic transis­
tors are shown in Figure 12-1 C.

Any pullup FET that shares the same n-well region acts
as additional multiple emitters to the parasitic pnp tran­
sistor. Much worse, ALL pulldown FETs and input pro­
tection devices on the IC act as additional collectors to
the parasitic npn transistor. This has several implications.
Latch-up is not limited to output stages, inputs only pins
and internal gates can also be the cause. So when latch­
up does occur, it's hard to tell which device caused it.

In normal operation, both of these parasitic bipolar junc­
tion transistors are in an off state, and do not hamper the
operation of the FETs. However, if either parasitic junc­
tion transistor should turn on, its collector current might
turn the other parasitic junction transistor on, and an SCR
type effect rapidly ensues which is called latch-up.

DESIGN CONSIDERATIONS WHEN USING CHMOS

G

INPUT

G

VCC OHMIC
/" CONNECTION

S ¥ TON-WELL

~ OHMIC
CONNECTION
TO P-TYPE
SUBSTRATE

VCC

N-WELL

P S

o

OUTPUT

o

OHMIC
CONNECTION

TO N-WELL

~

RSUB

VCC

OUTPUT

NPN

(A) ~s p+

" ~
VSS OHMIC

CONNECTION
TO P-TYPE

SUBSTRATE

r
OHMIC
CONNECTION
TO SUBSTRATE

(C)

(8)

Figure 12-1. CHMOS Inverter

What might tum on one of the parasitic junction transis­
tors? Look at Figure 12-1 e. The base of the parasitic pnp
is at vee, and the base of the npn is at VSS.Ifthe output
line swings a diode drop above vee, or below VSS, it
forward-biases the "0" emitter of either the pnp or the
npn transistor.

Suppose it is the pnp emitter that is forward~biased by the
output line swinging a diode drop above vee. Some of
the current that enters that emitter now exits the parasitic

, device as collector current. It flows down to the juncture
of Rsub and the base of the npn transistor. If Rsub is low,
the current is shunted through it to VSS, and the npn
transistor stays off. If Rsub is high, some of the current
crosses the base-emitter junction of the npn, and that tran­
sistor will likely tum on.

It is important to note that the designer of the integrated
circuit has a certain amount of control over the tum-ori
probabilities. Grounded guard rings placed around the npn
emitters will have the effect of reducing the value of Rsub.

12-2

Reducing the value of Rsub has the effect of increasing
the amount of current that has to enter the pnp 0 emitter
in order to tum the npn transistor on. The eHMOS, the
npn transistor will not tum on if the current entering the
pnp 0 emitter is less than 10 rnA.

A similar sequence of events can occur when the output
line swings a diode drop below VSS. In this case it is the
npn transistor that is in danger of turning on the pnp,
depending on the value of Rwell and how much current
is involved. Again, the 1<;: designer can reduce the value
of Rwell by the judicious placement of guard rings, con­
nected to vee, around the pnp emitters. When the output
line swings a diode drop below VSS, if the current that
exits the output pin does not exceed lOrnA, there will be
no latch"up.

12.3 POWER SUPPLY CONSIDERATIONS

The power supply, as viewed by the microcontroller,
should be low in inductance because of the peak currents

DESIGN CONSIDERATIONS WHEN USING CHMOS

associated with CHMOS switching characteristics. Note
that the repetition rate of these peak currents increases
with the clock frequency. Bypass capacitors of approxi­
mately O.luF should be used with proper PCB layout to
ensure a low inductance, high peak current power source.
Low inductance capacitors are also available that fit under
the package. These capacitors are also advantages for
HMOS in noisy environments (See Application Note
AP125 "Designing Microcontroller Systems For Electri­
cally Noisy Environments" in this manual for detailed
discussion).

Power supply glitches must be filtered to ensure that the
maximum voltage rating of the device is not violated.
Violation may induce an SCR effect between VCCIVDD
and Vss (latch-up).

The polarity of the power supply must never be reversed.
The n-well i.s connected to VCC and the p-type substrate
is connected to ground so normally that pn junction is
reversed biased. If VCC or VDD are ever more negative
than -0.5 volts with respect to Vss, the n-well/substrate
pn junction will be forward biased and short VCCIVDD
to ground.

When the microcontroller is powered separately from the
surrounding circuitry, the microcontroller should always
be powered up before any input signal is applied. The
reverse is true when powering down, input signals first
then the microcontroller.

When separate VCC and VDD power supplies are used
for the 80C49, VDD and VCC must track each other
within 1.5 volts (except during power down) and also
maintain the 5v 20% specification. This ensures that the
CPU, powered by VCC, and the RAM, powered by VDD,
have proper voltage levels to communicate. If VCC and
VDD cannot be powered up simultaneously, VDD should
be applied first.

12.4 MINIMIZING POWER CONSUMPTION

The reason CMOS parts draw considerably less current
than an NMOS part is that there is no direct path between
VCC and ground (refer to figure 1O-1A). When the
p-channel pullup FET is on the n-channel pulldown FET
is off and the output line gets pulled up. The opposite is
true, when the n-channel FET is on the p-channel FET
is off and the output goes low. There is leakage associated
with either the n-channel and p-channel FETs in the off
state. The sum of all the leakages from every inverter on
the chip is what is called the "quiescent current." This
current is in the order of microAmps and is the lesser of
the two currents that add up to the total ICC.

When the inverter is switching in either direction, there
is a moment in time when both FETs are on creating a
low resistance path between VCC and ground. The ca­
pacitance on the output line (pin capacitance, trace ca­
pacitance, and input capacitance to the next stage) is also
charged or discharged which also increases current con-

12-3

sumption. This "dynamic current" is a couple of orders
of magnitude higher than the quiescent current.

Power supply voltage also comes into play with both types
of currents. If VCC is high, the leakage across the off
FET is increased. Output capacitance now has to be
charged up to a higher level. So a higher VCC also con­
tributes to making ICC larger.

Frequency of switch can also affect the amount of current
used. If the inverter stage is switched very slowly, then
the average current is equal to the quiescent current. As
the frequency of switching is increased, the dynamic cur­
rent contributes more and more to the total ICC until the
dynamic current totally swamps the quiescent current.

Now that we are aware of what components make up the
total ICC, we can work on ways of minimizing it. VCC
can playa big roll in minimizing power. If the whole·
purpose in going to ~MOS is to minimize heat dissipation
and the power is drawn from the 110 volt AC socket,
tweak your power supply to the minimum voltage that the
system will run. On the other hand if batteries are used
you must consider types of batteries available, lifetime of
the battery, and voltage drop off at the end of its life to
determine what voltage to start at. Remember the lower
the voltage the lower the current draw.

The application also has to be analyzed for what kind of
response time is needed to determine how fast the micro­
controller needs to run. If the end application is a direct
human interface, then the response time can be relatively
slow and the processor can run at minimum speed. But
if real time decisions need to be made on evaluating in­
coming data, then the microcontroller needs all the time
it can get. The idea is to run the microcontroller as slow
as you can and still get the task accomplished.

Intel has added idle mode and power down features to
help further manage your power consumption. Idle mode
in the 80C51180C31 stops the clock to the CPU while
keeping the oscillator, RAM, interrupts, timer/counter,
and serial port alive. Stopping the clock to the CPU de­
creases the current in the CPU from dynamic to mostly
quiescen~. Idle mode consumes approximately 1I10th the
operating current.

Idle mode allows the microcontroller to minimize its cur­
rent when no processing needs to be done. The live in­
terrupts, timer/counter, and the serial port can wake the
CPU and since the oscillator is running the response time
is quick.

Data on the ports are left in the state they were in when
idle was invoked. If careful attention is given to the logic
state oUhe port, total system current can be reduced. The
state of the port for reduced current is dependent on what
the port is driving. If it is a transistor, the transistor should
be put into its off state. If the port pin is driving another
CMOS gate, the loading of the port pin would be minimal
and a choice of the logic state may be made on what is

DESIGN CONSIDERATIONS WHEN USING CHMOS

BATTERY

AWAKE - ----\ TO MCS48
»~----PIN 4

. R2 27K

R1

RST
BATTERY

VFET
A ~ ~~CO:~~:EL

27 K . TO MCS48

PIN 40

C1 ~ 1 I'F VCC AND
V PERIPHERY

Figure 12·2. MCS®·48 Power Down Circuit

on the outputs of the CMOS gate. If TTL is being driven,
the reduced current would be when the port pin is high.
A little thought in this area can go a long way in mini­
mizing system current.

Power down removes all internal clocks to de.crease the
current to totally quiescent current while the contents of
the RAM are saved. This mode is useful in hand held
applications where data needs to be saved between uses.
On the 80C51, the port pins are left in the same state they
were in when the power down mode was ca:lled. The same
thought processes that were needed for reduced current
in the idle mode are valid for power down also.

Figure 12-2 shows a simple circuit that uses one quad
NOR CMOS integrated circuit and some external resistors
and capacitors to power down the CHMOS MCS48 family
under the control of one input. To activate the operation
of the microcontroller, the AWAKEI signal is pulled low
and in turn, node A goes low turning on the p-channel
VFET. This allows VCC to the microcontroller to be
pulled to the power supply minus Vsd. Node A being low
brings RESET high after a time determined by the RICI
time constant. The RC has been chosen to allow 10 mS
between VCC going high and RESET going high to allow
the oscillator time to stabilize.

Powering down is accomplished by AWAKE! going high
which pulls RESET low. The time delay R2C2 allows the
reset signal enough time to signal the microcontroller to
save the RAM before VCC is shut off.

When idle mode and power down are used in conjunction
with slow operating speed it can reduce your power needs
to a minimum. .

1?-4

Unused input only pins on the MCS48 family such as
SSI, TO, and T1 should not be allowed to float. The inputs
wOQld float about the trip point of the input buffer. This
switching of the input buffer can waste up to .5mA per
input. Tie all unused input only pins high or low.

When the CHMOS units are' being used with external
program or data memory, PortO (Data'Bus on the MCS48
products) is left floating when in idle mode. PortO also
floats on the 80C51 when in the power down mode. The
same condition as described above can happen with the
input gate on those pins. Without tying these pins high
or low at least .5 mA x 8 or 4 mA could be wasted. Tie
the PortO pins high or low through a 500KO or lMO
resistor. A little extra board space is minimal when con­
sidering the extra power savings.

The quasi-bidirectional pins have internal pullups so the
inputs on these pins never float.

12.5 CHMOS 1/0 PORT STRUCTURE

The CHMOS 110 ports have similar drive capability to
their HMOS counterparts, but the differences must be
noted.

12.5.1 As An Output Pin

The 1/0 port structure is implemented as shown in Figure
12-3.

As an output pin latched to a low (0) state, pullups PI,
P2, and P3 are in an off state while the pulldown Nl is
on. This configuration uses little current, since there is no
path between VCC and ground in the output buffer stage.

DESIGN CONSIDERATIONS WHEN USING CHMOS

PULLUP
SIGNAL

Q

LATCH

Vcc

READ
PULSE

INPUT
DATA

Vcc Vcc

Figure 12-3. CHMOS Ouasi-BidirectionalllO Port Structure

IOH

IOH
@2.4V

IOH
@.9VCC1=~==~ __ +--+~4-__

2 3 4 5

VOH

THIS GRAPH IS FOR INFORMATIONAL PURPOSES
ONLY.

Figure 12-4. CHMOS 110 Current Characteristics

When the output pin is to be latched in the high (l) state,
the data line turns Nl off and turns on the weak (5uA)
pullup P2. At the same time PI (a strong pullup) turns on
for one state time pulling the output up very quickly. Once
the output voltage is above approximately 2 volts, P3 turns
on to supply the source current. P3 and the inverter form

a latch. This latch along with the support of P2 keeps the
output high. Figure 12-4 shows the YaH vs IOH curve
for this output structure when PI is off. .

12.5.2 As An Input Pin

To use the I/O port as an input, a one must be written to
the pin first, leaving the pin in a high state. When the
input goes below 2 volts, P3 turns off to avoid any high
sink currents from being presented to the input device.
Note when returning back to a one, P2 is the only internal
pullup that is on. This will result in a long rise time if P2
is the only pullup.

12.5.3 Interfacing Between CHMOS and
Other Logic Families

Interfacing Intel's CHMOS to other logic families is very
simple and straight forward. When YCC is kept within
10% of 5 volts all inputs (except those noted in the data
sheets) and outputs are TTL compatible. CMOS compat­
ibility is achieved as long as YCC is kept within 20% of
5 volts.

When driving a high current load, the output current (Ioh)
must be limited to keep the output voltage (Yoh) at a
minimum of 2 volts. If the voltage is pulled below 2 volts
the output current will be dropped to approximately 5 J-LA.
See Figure 12-4.

Inside CMOS Te~hnology

Photo 1: The die for the 80C51, with the functions of the various sections identified.

How CMOS' devices are manufactured and a look at three of them

by Martin B. Pawloski, Tony Moroyan, and Joe Altnether

Order Number: 230860-001

1 ?_I'l

CMOS (complementary metal­
oxide semiconductor) has often been
called the ideal technology. It has
low power dissipation, high im­
munity to power-supply noise,
symmetric switching characteris­
tics, and a large supply-voltage tol­
erance. But CMOS has rarely been
used for advanced VLSI (very-large­
scale-integration) microcomputer
designs. Because of the complexity
of the CMOS process, the ICs (in­
tegrated circuits)' produced have
traditionally had a relatively poor
price/performance ratio.

As a result, CMOS was used only
in applications that required low
power and were neither perfor­
mance conscious (such as in calcu­
lators and watches) nor cost con­
scious (many military applications,
for example). Suddenly, however,
all major semiconductor companies
have announced either advanced
CMOS products or the intention of
designing their n~xt generation of
high-performance microprocessors
using CMOS technology.

What has happened to make
CMOS both affordable and high
performance? For one thing, the
dominant VLSI technology, NMOS
(n-channel metal-oxide semicon-'
ductor), is rapidly approaching the
process complexity. of standard
CMOS. It is not unusual nowadays
for NMOS technology to have up to
four transistor types with different
operating characteristics. Much of
the complexity of this process is
added simply to help VLSI design­
ers keep the operating power of
their circuits under control.

Second, CMOS circuit designers
are being more selective in the use
of static CMOS logic. Critically
placed dynamic logic, creative cir­
cuit design, and use of modes that
offer varying degrees of power con­
sumption are all tricks designers
are using to maintain the advan­
tages of CMOS.

Finally, aggressive reduction in
CMOS transistor. size is being used
to bring CMOS performance in line
with that of NMOS. As a matter of
fact, many manufacturers are de­
veloping CMOS as a derivative of
their advanced NMOS processes.

AR·302

This not only improves CMOS per­
formance levels but also boosts re­
liability and reduces development
costs.

The Evolution of LSI
Early LSI circuits were built with

p-channel MOS transistors, which
permitted high-circuit densities yet
were relatively slow and difficult to
interface to normal integrated cir­
cuits, such as TTL (transistor­
transistor logic). As an example,
the 1l03-type 1K by I-bit dynamic
RAM (random-access read/write
memory), circa 1971, required its
inputs (ilddress, controls, and data)
to swing between 1 and 15 volts (V)
although its output was measured
in millivolts -hardly TTL compat­
ible! About 1974, NMOS came to
the rescue. It provided faster speed,
and most of its inputs and outputs
were TTL compatible.

low power
requirements are a
major advantage of
designing a system

that uses CMOS.

NMOS was more difficult to
manufacture than PMOS because
contaminants would vary the
thresholds of the n-channel transis­
tors, causing deviations in speed
and performance. But thi? problem
was quickly overcome through ul­
traclean processing rooms, and
NMOS became the workhorse tech­
nology because it cost less to man­
ufacture, was easy to use, and had
good speed-power characteristics.
And NMOS technology had poten­
tial for greater improvement of its
speed-power characteristics through
scaling (or shrinking) of the silicon
devices. The result of this scaling
was HMOS (high-speed NMOS),
which accomplished three objec-.
tives: increased speed, reduced
power, and increased density.

Over the past 10 years, the re­
duction in transistor size has, at the
device level, increased memory
density by a factor of 64, increased

12-7

speed by a factor of 3, and reduced
power consumption by a factor of
100. However, the scaling cannot
continue ad infinitum because of
resolution limitations of the photo­
lithographic equipment used to
make the circuits as well as break­
down mechanisms within the de­
vices. More important, even before
these limitations are reached, heat
dissipation will prohibit major en­
hancements with NMOS. Heat
generation increases exponentially
with transistor count, and, at den­
sities approaching 150,000 transis­
tors per integrated circuit, special
cooling measures are required. This
heat can accelerate failure mecha­
nisms within the silicon, reducing
device and system reliability. To
hurdle this barrier, low-power de­
vices must be used.

The Importance of
Power Consumption

The development of NMOS was
spurred on by the semiconductor .
industry's drive to produce high­
volume, large-capacity memory de­
vices, for which high density, rather
than low power consumption, was
the primary concern. As VLSI be­
gan to emerge, however, power
dissipation became a limiting factor
in continued increases in NMOS
packing densities. Thus, the semi­
conductor industry turned to CMOS
as a potential alternative.

CMOS achieves its low power
dissipation through the use of both
p~ and n-channel transistors (hence
the name "complementary"). Es­
sentially, no DC power is dissipated
in either logical state, and AC power
occurs only during the relatively
short switching period. Because
most circuitry in a complex design
is active only 10 to 20 percent of the
time, CMOS achieves a dramatic re­
duction in power dissipation com­
pared with NMOS, which contin­
ually dissipates DC power whenever
an operating voltage is applied.

Low power requirements are a
major advantage of designing a sys­
tem that uSeS CMOS. Reducing
power requirements has a domino
effect that often substantially re­
duces the cost of the end product:

(tal

(tb)

(te)

NMOS

'--... --..... - .. VOUT

TIME

ENHANCEMENT DEPLETION
CURRENT CURRENT

I
I
I

TIME

QUIESCENT
CURRENT

TIME

AR-302

CMOS

TIME

n-CHANNEl
CURRENT

QUIESCENT
CURRENT

p-CHANNEL
CURRENT

Figure 1: A comparison of NMOS and CMOS technologies. Figure la shows the schematic
diagrams of an inverter as implemented in both NMOS and CMOS. A hypothetical input
waveform and the resulting trmlsistor currents are shown in Ib and lc.

• low power allows smaller, lower­
cost power supplies to be used

• power distribution in the system
is simplified

• cooling fans can be eliminated

• printed-circuit boards can be
packed more densely and, can thus
become smaller

With smaller power supplies,
denser circuit boards, and no fans,
smaller cabinets can be used, re­
sulting in savings in chassis and en­
closure costs. Also, power fail-safe

and hand-held use become possible
if battery operation is feasible.

Basic CMOS Operation
To truly understand the promises

(and problems) facing both the
CMOS VLSI digital designer and
the CMOS systems designer, one
must first understand some CMOS
fundamentals.

Figure 1 compares the circuit dia­
grams and current characteristics of
both an NMOS and a CMOS in­
verter. The NMOS inverter uses an
n-chimnel depletion-mode transis-

12-8

tor as the pull-up device (which
drives the output line high) and an
n-channel enhancement-mode tran­
sistor as the pull-down device

. (which drives the output line low).
The pull-up transistor is used as a
load; its operation approximates thilt
of a constant current source. The
pull-down transistor is used as the
switching device; when active, it
discharges the load, and when in­
active it lets the pull-up charge the
load. MOS loads are primarily ca­
pacitive and include the parasitic
capacitances of the inverter itself,
interconnect capacitances, and the
thin-oxide capacitances of all the
gates the inverter is driving.

Let's note several characteristics
of an NMOS inverter. When the
pull-down device is turned on, it
not only has to sink the current
from the capacitive load, but it also
has to sink the current supplied by
the pull-up load device. Even in the
quiescent state this current compo­
nent from the pull-up device still
exists. Because logic gates spend
most of their time in the quiescent
state, this quiescent current ac.­
counts for up to 90 percent of the
total power dissipated in NMOS
VLSI designs; the remaining 10 per­
cent is switching or dynamic power.

A second related characteristic is
that the inverter's output voltage in
the low state, VOL. is dependent on
the ratio of the impedances of the
pull-down and pull-up devices. This
ratio affects the noise margin and
switching speed and is generally
around 4:1. Such a ratio results in
a VOL on the order of 0.2 V to 0.3 V.
It also causes asymmetric switching
characteristics: the fall time of the
inverter is significantly. faster than
its rise time.

The. CMOS inverter uses a p­
channel enhancement-mode tran­
sistor as the pull-up cievice and an
n-channel enhancement-mode'tran­
sistor as the pull-down device. In a
CMOS inverter, both the pull-up
and pull-down transistors are used
as switching devices. When the in­
put changes from low to high, the
p-channel device shuts off and the
n-channel transistor discharges the.

. load. When the input changes from

1.0

0.9 CMOS NMOS
0.9

~ ~
0.7

GATE 0.6

DELAY 0.5
(ns) 0.4

0.3

0.2

0.1 SCALED CMOS SCALED NMOS

I
0.1 1.0

POWER, GATE (mW)

Figure 2: The speed versus power consump­
tion characteristics of NMOS and CMOS
technologies. Note the advantages gained by
scaling (reducing the size) of the integrated
components.

(3a) powell (original)

(3b) n-well

(3d twin tub

(3d) 50S (no latch up)

AR-302

high to low, the n-channel device
shuts off and the p-channel transis­
tor charges the load. While almos t
all current from the CMOS inverter
is used to charge or discharge the
load, a small current component
does not flow through the load.
This is a result of the fact that both
the p-channel and n-channel tran­
sistors are on for a short period of
time during the input voltage tran­
sition. This current component is
typically less than 10 percent of the
total inverter current, though it de­
pends greatly on the rise and fall
times of the input signal.

With no quiescent power com­
ponent, a CMOS inverter's dy­
namic power dissipation represents
only a small fraction of an equiva-

§ n-SUBSTRATE

o p-SUBSTRATE

ITO poWELL

~ n-WELL

m OXIDE

E3 POLY

Figure 3: Cross sections of transistors formed by each of the four major CMOS processes.
Figure 3a is a p-well bulk CMOS transistor; figure 3b shows an newell bulk device; figure
3c is an example of a twin-tub bulk CMOS transistor; the transistor in figure 3d is formed
using silicon-an-sapphire technology.

12-9

lent NMOS inverter's power dissi­
pation. Also, the CMOS inverter is
a "ratio-less" design, having only
one transistor active after an input
transition. This lets VOL go all the
way to ground potentia\' resulting
in better noise tolerance than NMOS
inverters. It is also a simple matter
to design CMOS circuits with out­
puts that have equal rise and fall
times. While this is important in
some circuits, it is generally not
taken advantage of in VLSI designs
because it requires greater chip area.

For NMOS and CMOS technolo­
gies with similar transistor dimen­
sions and gate oxides, gate delays
are essentially identical. The speed­
power products for such a set of
NMOS and CMOS technologies are
shown in figure 2. This graphically
illustrates the tremendous power
advantage CMOS offers when used
in high-performance VLSI deSigns.

While CMOS enjoys significant
electrical advantages over NMOS,
it does have a cost disadvantage.
One small factor is the larger num­
ber of process steps needed to fab­
ricate a CMOS device. More signif­
icant is the larger die required
because CMOS has lower gate
density.

CMOS Technologies
Figure 3 shows the four major

CMOS technologies in use today:
powell bulk, n-well bulk, twin-tub
bulk, and silicon-an-sapphire (50S).
Powell CMOS uses a p-type diffu­

. sian into an n-type bulk silicon sub­
strate to form an n-channel transis­
tor. The p-channel transistor is built
directly in the bulk. This is the orig­
inal CMOS technology, which has
many years of good performance
and reliability behind it.

The n-well CMOS process starts
with a p-type substrate. N-type ma­
terial is diffused into it to form the
n-well in which p-channel devices
are built. N-channel devices are
built directly in the bulk substrate .
. An n-well CMOS process is usually
derived from an advanced NMOS
process. It also permits a highly op­
timized n-channel transistor, which
yields a slight performance advan­
tage over a powell CMOS process.

Twin-tub CMOS combines n-well
and p-well technologies by diffusing
both an n-well for the p-channel tran­
sistor and a p-well for the n-channel
transistor. The twin wells are usual­
ly formed in a lightly doped n-type
substrate. While it is a slightly more
complex and costly process than
either n-well CMOS or p-well CMOS,
twin-tub CMOS has the advantage of
being able to optimize the perfor­
mance of both the n-channel and p­
channel devices. Thus, this process
gives the highest overall performance
of the bulk CMOS technologies.

The highest performing CMOS
technology is SOS. Silicon islands are
grown on an insulating sapphire sub­
strate. N-channel or p-channel tran­
sistors are then built on the islands.
High performance is achieved due to
the significant reduction of parasitic
capacitance. SOS also offers good
gate density because no parasitic
bipolar transistors are around to
cause a phenomenon called latch up.
Unfortunately, SOS devices are dif­
ficult and expensive to manufacture.
For eXample, unused sapphire wafers
cost approximately 10 times more
than bulk silicon wafers.

While CMOS suffers a cost penal­
ty of about 20 percent due to process
differences, it generally suffers more
significantly because of die size.
(While processing steps have a linear
relationship with cost, die size has an
exponential relationship.) CMOS
dies are larger than equivalent
NMOS designs even when aggres­
sive transistor scaling is employed.
Three major factors contribute to this:
the area used in trying to prevent
latch up, CMOS logic-gate structure,
and static design techniques.

Latch Up Prevention
Bulk CMOS technologies ·have

parasitic bipolar transistors that, if
improperly biased, can cause a phe­
nomenon called latch up. This poten­
tially destructive action results from
triggering an SCR (silicon-controlled
rectifier) formed by the transistors
and can cause extremely large cur­
rents to flow. Figure 4 shows the con­
struction of the parasitic SCR in an
n-well bulk CMOS device.

AR-302

(4b) Vee

RWELL 11

p-5UB
T2

I! RSUB

Figure 4: Parasitic SCR in bulk CMOS can cause latch up. Figure 4a shows how the parasitic
transistors are fanned in the silicon; figure 4b is a diagram of the equivalent circuit.

Two well-defined conditions must
exist before latch up can occur. First,
for the SCR to be triggered, IR,,11 or
IR,"b must be greater than or equal to
0.7 V. This forward-biases the base­
emitter junctions of the parasitic
bipolar transistors. Second, to sustain
the latch up condition, the product
of the {3s (gains) of the two bipolar
transistors must equal at least 1.

In order to minimize the chance of
one of the SCRs transistors being for­
ward-biased, every attempt is made
to reduce the resistance values as
much as is feasible. This has the ef­
fect of requiring significantly larger
injected currents before the SCR can
be triggered. To reduce the resistance
values, guard rings are used in the cir­
cuitry. (Guard rings are low-resistiv­
ity connections to the supply voltages
placed around the CMOS p-channel
and n-channel transistors.) While
guard rings reduce the SCR bias
resistor values, they also increase the

12-10

space between n-channel transistors
and p-channel transistors (thus
reducing the gate density). To some­
what minimize this effect, particular­
ly sensitive areas (like VLSI com­
ponent's I/O pins) are heavily guard
ringed, while the more protected in­
ternal circuitry is less so.

A less controllable method of pre­
venting latch up is to try and de­
crease the {3s of the parasitic tran­
sistors. While the vertical pnp tran­
sistor's {3 is set by the process deSign,
the lateral npn transistor is more
directly controllable. Its {3 can be dras­
tically reduced by increasing the n­
well-to-n + diffusion spacing (or p­
well-to-p + diffusion spacing in p­
well technology). This method re­
duces the {3 by increasing the width
of the transistor's base. While this is
an effective way of decreasing the
gain of the parasitic structure, it also
reduces the gate density.

In bulk CMOS technologies, to

AR-302

(Sa) (5b)

'----.----.- OUT

...----t-.-OUT

A

(5c) (5d)

'---.---" OUT
.... ___ -+-__ OUT

Figure 5: A comparison of typical logic gates hI NMOS alld CMOS form. Figure 5a is an
NMOS NOR gate, while figure 5b is a CMOS version; figure 5c is all NMOS NAND gate,
and figure 5d is a CMOS version.

give absolute protection against latch
up is not only tremendously expen­
sive in silicon area, but it is also vir­
tually impossible. CMOS designers
sacrifice area to ensure there is
enough margin in their design to
protect it from latch up in normal op­
erating-system environments.

Logic-Gate Structures
Gate densities are also reduced in

CMOS because standard CMOS
logic gates are built from more tran­
sistors than their NMOS equiva­
lents. Standard CMOS logic-gate
design has a 1:1 ratio of n-channel
transistors to p-channel transistors.
For example, the two input gates
shown in figure 5 take four trims is­
tors in CMOS and only three in
NMOS. The relative density de­
creases as the number of inputs in­
creases. For example, three-input
gates require six transistors in CMOS
and only four in NMOS; four-input
gates require eight transistors in

CMOS and only five in NMOS, etc.
As a matter of fact, it is rare to have
a standard CMOS gate with more
than three inputs because the seJf­
loading and the transistor stack
make the structure inefficient in
both speed and area. On the other
hand, it is not unusual in NMOS to
have gates with as many as eight
inputs.

Static Design Techniques
A final reason for the lower CMOS

gate densities is the use of static
logic (modern VLSI NMOS micro­
computer designs rely heavily on
dynamic circuitry). Dynamic
circuitry essentially uses a small ca­
pacitor as a latch to store logic val­
ues. This technique saves both area
(by reducing the number of transis­
tors in a gate) and power (by reduc­
ing the number of gates in struc­
tures like latches, flip-flops, sJ:ift
registers, etc.). Employing dynamic
design can reduce an NMOS latch's

12-11

area by 30 percent and its power
consumption by 50 percent. How­
ever, the problem with dynamic cir­
cuitry is that the capacitor used to
store the logic value is leaky and
will, over time, discharge and lose
its data. This is the same problem
faced by dynamic memory design­
ers. The solution is to periodically
refresh the capacitor, which forces
a minimum operating frequency to
be adhered to.

CMOS can also use dynamic cir­
cuitry, especially to increase the ra­
tio of n-channel transistors to p­
channel transistors. Because static
CMOS deSigns have a 1:1 ratio of
n-channel to p-channel transistors,
being able to increase this ratio will
have the effect of giving CMOS a
higher gate density (but the mini­
mum operating-frequency charac­
teristic of dynamic circuitry often
conflicts with the CMOS potential
of absolutely minimizing power).
Therefore, while true static CMOS
design does give the lowest possi­
ble power consumption (by allow­
ing the device to operate at fre­
quencies all the way to DC),
dynamic CMOS designs, being more
dense and resulting in smaller die
sizes, tend to be more cost-effec­
tive. Thus, two trends are devel­
oping in the use of CMOS for VLSI
microcomputer design.

Designers of the next generation
of 16- and 32-bit microprocessors
are choosing CMOS. Here, the goal
is not to operate at the lowest pos­
sible power level but rather to keep
the operating power under a maxi­
mum level for cooler junction tem­
peratures, higher performance lev­
els, and the ability to use standard
low-cost packages. In these de­
signs, extensive use is made of dy­
namic logic. The ratio of n-channel
transistors to p-channel transistors
is often as high as 3:l.

Designers of 4- and 8-bit single­
chip microcomputers are choosing
CMOS to accommodate a host of
new portable; hand-held, and ul­
tra-low-power applications. Here,
the goal is to minimize the operat­
ing power levels consistent with
the performance required by the
application. In the simpler micro-

computers, true CMOS static logic
is used-their simpler structure still
allows a relatively small die size,
while the low-performance appli­
cations they are appropriate for
allow low operating frequenCies.
On the other hand, the more com­
plex, higher-performance, single­
chip VLSI components still make
maximum use of static logic but are
forced into dynamic logic for large
arrays to keep the die cost down.

Future CMOS
CMOS will be the technology of

choice for VLSI microcomputer de­
signs. For one thing, with the advent
of hundreds of thousands of tran­
sistors on a die, CMOS is the only
technology that offers a cost-effective

AR-302

solution to the power-density prob­
lem.

A second and more subtle future
issue is reduced supply voltage. As
MOS transistors continue to be
scaled to smaller dimensions to eke
out further performance and densi­
tyadvances, the standard 5-V supply
voltage must be reduced, if only for
internal circuitry, to limit substrate
current and hot-electron effects.
CMOS is better suited for lower sup­
ply-voltage operation because its
switch point is a fixed percentage of
the supply voltage. Also, due to its
"ratio-less" structures, CMOS enjoys
better noise tolerance than NMOS,
another important factor at lower
supply voltages. .

Finally, CMOS has made and will

continue to make major strides in its
relative cost disadvantage to NMOS.
Where CMOS formerly sold at as
much as a fourfold premium, today.
it is selling at somewhat less than
twice the price of comparable NMOS
devices. With its continued use of
standard, low-cost packaging tech­
nology as well as the more creative
use of dynamic circuitry and hybrid
static/dynamic designs, CMOS will
rapidly approach the cost of NMOS.
As a matter of fact, several major
semiconductor manufacturers have
stated that CMOS/NMOS price pari­
ty will occur this decade, and some
manufacturers say it will happen as
early as 1985. When CMOS and
NMOS cost the same, why would
anyone buy NMOS?

A CMOS Single-Chip Computer:

Intel's 80CSI is an interesting exam­
ple of how the static logic versus·
dynamic logic trade-off was made in
an actual product design. The 8051 is
an 8-bit, single-chip microcomputer
with 4K bytes of ROM, 128 bytes of
RAM, two 16-bit counter/timers,
multilevel interrupt contro!, 32 I/O
pins, full-duplex UART (universal
asynchronous receiver/transmitter),
and on-chip oscillator and clock cir­
cuits. A die with the sections iden­
tified by functions is shown in photo
Ion page 94.

The CMOS version of the 8051,
called the 80CSl, is targeted at a num­
ber of applications that require both
high performance and low power
consumption. In areas like telephony,
automotive control, industrial con­
tro!" and portable instrumentation,
the 80CSI operates at or near its max­
imum speed, even if only for short
intervals. (For example, most real­
time applications need an external­
interrupt response time of less than
100 microseconds (I's); more de­
manding applications require better
than lO-l's response. While the re­
sponse must be quick, and the inter­
rupt routine executed qUickly; the

Intel's SOCS1
by Martin B. Pawloski

Normal
Vee Supply Operating- Operating Power Down
Voltage Frequency Mode Idle Mode Mode

Product Technology Range Range (Icc Max) (Icc Max) (Icc Max)

12 MHz Max 24 mA 3 mA 50 ~A
80C51 CMOS 4-6 V

12 MHz Min 2.4 mA 0.3 mA 50 ~A

8051 HMOS .45-55 V 12 MHz Max 150 mA 20 mA
1.2 MHz Min 130 mA 20 mA

Table 1: A comparison of the CMOS and NMOS versions of tile 8051.

processor spends a significant. por­
tion of its time idle.)

Once the performance require­
lI).ents of the application are known,
it is possible. to specify a minimum
operating frequency. For the 80C5l,
il hybrid static/dynamic design was
proposed that allows a minimum die
size and includes various modes of
operation to minimize power con­
sumption.

First, the only areas of the design
that were made dynamic were the
(very large) ROM and Control arrays.
These arrays contain almost 50,000
transistors and constitute a major
portion of the die. By making them
dynamic, an' area savings on the

12-12

order of 40 to 50 percent was accom­
plished.

Second, the processor, all the pe­
ripheral functions, the RAM, and the
I/O ports were made static. This al­
lowed two modes of operation other
than normal operating mode: Idle
mode and Power Down mode.

Because in many applications the
processor does nothing more than
wait for an event to happen, in the
Idle mode the major clocks of the de­
vice are stopped and only smaller an­
cillary clocks operate to drive the
peripheral counter/timers, external­
interrupt contro!, and the serial chan­
nel. When one of the' peripherals
generates an interrupt, the processor

clocks are restarted and instruction
execution resumes in the interrupt­
service routine. The Idle mode
reduces power consumption by
almost an order of magnitude.

In Power Down mode, all the clocks
inside the device are shut off and
only the internal 128 bytes of RAM
are "kept alive." The only current
consumed is a minute amount due to
pn-junction leakage. Static logic was
designed in the peripheral sections in
order to support this mode because

AR-302

no clocks are available to refresh
dynamic logic. In both the Idle and
Power Down modes, special provi­
sions are made for the dynamic cir­
cuits in the ROM and Control areas
to enter a pseudo static condition that'
prevents any extraneous power con­
sumption due to voltage drift on ca­
pacitive storage nodes.

Table 1 compares the NMOS 8051
to the CMOS 80C51. The 80C5!, de­
signed in Intel's HMOS-derived n­
well process called CHMOS, is less

than 10 percent larger than the
NMOS design and consumes only 15
percent of the normal operating
power. More significant power sav­
ings are possible by operating the
80CS1 at lower frequencies or by
using the Idle mode.

Martill B. Pawloski 15000 West Williams Field
Rd .• Chandler, AZ 85224) is involved in the prod­
lIet planning, definition, and implementation of both
NMOS mid CMOS single-chip microcomputers at

Intel Corp.

A Look at CMOS Dynamic Memory
by Joe Altnether

The fast-growing portable-com­
puter market is placing severe de­
mands on semiconductor memory.
For optimum system performance,
these components must limit their
power dissipation to suit battery
operation and backup, and they must
achieve the high data bandwidths
and increased speeds needed for fast
processing and high-resolution
graphics. As the market reaches a
projected $4.8 billion level by 1987 (a
tenfold increase over 1982 levels),
these requirements will combine to
fuel the use of high-performance
CMOS dynamic RAMs.

One architecture that can increase
the speed of a CMOS dynamic RAM
incorporates static-column address
decoders: static circuits perform the
selection of the column address of
the RAM. Previously, this architec­
ture has not been used with dynamic
RAMs because of the increased
power consumption of the static cir­
cuits over that of the dynamic cir­
cuits, and the advantage of low
power consumption would have
been lost. But with CMOS, the in­
creased power consumption is neg­
ligible.

Memory-device Architecture
RAMs are organized internally as

rows and columns of storage cells.
Data access occurs at the intersection
of a row address and a column ad­
dress. In dynamic RAMs, the row

and column addresses are multi­
plexed to reduce package size and pin
count: the row addresses are clocked
into the device with the RAS (row ad­
dress strobe) signal, causing one row
of data (1 bit from each of the 256 col­
umns in a 64K-bit dynamic RAM) to
be fed into the 256 internal sense
amplifiers. (Because of the low inter­
nal signal levels, each column must
have an associated sense amplifier to
sense and restore memory-cell data.)
Next, column addresses are pre­
sented to the device and clocked into
it with the CAS (column address
strobe) signal. These column ad­
dresses are then decoded to select
one of the 256 bits. Faster access and
cycle times are obtained within a.row
(or "page") after the first access to it
because the 256 bits within the row
continue to reside in the sense ampli­
fiers and need not be refetched. Re­
applying only column addresses,
then, in what is known as Page Mode
operation, provides fast serial ac­
cesses and can increase cycle times by
a factor of 2.

The CMOS dynamic RAM can in­
corporate static-column circuits to
provide performance equivalent to
that of high-speed static RAMs. With
CMOS, the static-decoding circuits
reduce the internal number of clocks
by a factor of 3, eliminating the need
to allow for setup and hold times of
signals with respect to clocks and the
need to compensate for timing skews

12-13

due to process variances. With static­
column circuits, precharge times are
drastically reduced (in Page Mode
operation of the Static-Column-mode
device, precharge time is reduced
from 30 nanoseconds [ns] to 5 ns).
This precharge time reduction and
the faster access times typically in­
crease the memory's bandwidth to 20
MHz. (Performance of memory dis­
cussed here is based on the experi­
mental 64K-bit CMOS dynamic RAM
that Intel presented at the ISSCC
conference in February 1983.)

With static-column architecture,
two different types of . Page Mode
operation are possible: Static Column
mode and Ripplemode. Static Col­
umn mode uses the RAS line and
row addresses in the conventional
manner, but once the row has been
selected, data can be accessed mere­
ly by changing column addresses. As
with a static RAM, column addresses
must remain stable and valid for the
entire address access cycle. Access
time is measured from column ad­
dresses ra'ther than the occurrence of
CAS. (Typically, access from column
addresses is 30 ns; from CAS, it is10
ns.)
. In operation, CAS is used to place

the output in a high-impedance state
or to activate an output buffer. CAS
can be held active during the entire
page cycle. In fact, it is possible to
keep CAS permanently active (i.e.,
grounded). During a write cycle;

however, addresses as well as data
are latched by CAS or WE, whichever
occurs last. Operation is identical to
that of an NMOS dynamic RAM in
this case. This action ensures that the
data is written into the proper mem­
ory location.

Although Static Column mode
provides fast, easy accesses, speed at
the system level is limited by how fast
addresses for the,next cycle become
valid; the time to generate and stabi­
lize the addresses must be added to
the cycle time. Increased system
speed can be obtained by using Rip­
plemode. With this mode, static­
column circuits are again used to ob­
tain access from valid column ad­
dresses, but the addresses are latched
on the falling edge of CAS, removing
the requirement for addresses to re­
main valid throughout the entire cy­
cle. As a result, during the current cy­
cle addresses for the next cycle can
be set up or pipelined.

Column addresses enter the RAM
through the internal address latch.
This latch, controlled by CAS, pro­
vides flow-through operation. When
CAS is inactive, the latch is open, and
addresses pass through continuous­
ly to the static-column decoders. Any
ohange in address is transmitted im­
mediately to the decoder. Conse­
quently, access ito the RAM is again
measured from valid column ad­
dresses. The latch captures the cur­
rent address on the fall of CAS, per­
mitting the system address to change
while the access occurs. CAS also
serves as an output enable on the
data output. Static Column mode
and Ripplemode both permit con­
tinuous data streams up to 20 MHz.

CMOS technology and static­
column architecture provide more
than low power consumption and
high bandwidth. In addition, static­
column decoding simplifies system
design by eliminating critical timing
relationships while providing higher
system speed. Access from column
addresses gives usable speed for
single random accesses within the
RAM. Also, the CMOS technology
enhances reliability by incorporating
a mechanism to Significantly reduce
soft errors. Finally, increased stored
charge creates larger internal signal

AR-302

levels, which can more easily be dif­
ferentiated from noise. As a result,
the CMOS dynamic RAM has wider
operating margins and system reli­
ability is improved.

Power Consumption
At the system level, dynamic mem­

ory has three components of power:
active, standby, and refresh. The
system's power consumption is de­
fined as

where P = system power, V = volt­
age (5.5 V worst case), fA = active cur­
rent, fA = standby current, fR =

refresh current, M = number of ac­
tive devices, K = number of devices
in standby, and N = total number of
devices.

CMOS reduces the first term, the
active current, relative to NMOS by
a factor of 2. In addition, the lower
active current reduces supply voltage
transients, thus simplifying
printed-circuit-board design and
reducing decoupling-capacitor
requirements.

The seco,nd term, standby current,
is also reduced by a factor of 2 at TTL
input levels. Driving the RAS signal
to a CMOS level (VDD -0.5 V) places
the device in ,a low-power-standby
mode and typically draws 10 micro­
amperes (I'A)-a factor of 50 reduc­
tion over NMOS!

Refresh current, the third term in
the equation, is cycle-time depen­
dent. Cu~rent increases with the fre­
quency of refresh. In dynamic RAMs,
data is stored on a capacitor that must
be replenished or recharged every 2
or 4 milliseconds (ms). This refresh
time is a function of the stored charge
and the leakage current. With the
CMOS dynamic RAM, the cell stor­
age capacitance is 0.125 picofarad (pF)
compared to 0.040 pE to 0.085 pF in
an NMOS dynamic RAM. This low
capacitance, coupled with lower leak­
age currents, permits the CMOS re­
fresh period to be extended to 64 ms
in standby.

At the standard 128 refresh cycles/2
'ms (equivalent to a 15.625-l's refresh
period), the NMOS device draws
about 4.8 milliamperes (mA) and

12-14

asymptotically approaches the stand­
by current of 4 mA as the refresh
period approaches infinity. Even
eliminating refresh entirely only re­
duces the current to 4 mA, which is
only a 16 percent improvement. As a
result, extending NMOS refresh does
not significantly reduce the systems
power consumption.

Contrast this characteristic to the
improvement CMOS offers. At 15.625
I'S, the CMOS dynamic RAM draws
approximately 10 percent of the
NMOS current, or 0.42 mA at TTL
levels. Extending the refresh period
reduces the current asymptotically to
the standby current of 0.05 rnA. At a
64-ms refresh period, the current is
reduced to 0.15 rnA, a 300 percent re­
duction. When battery powered, the
CMOS system has a 10 times longer
life than does the NMOS system, and
an extended refresh mode offers
another fivefold improvement. A
256K-byte CMOS memory can retain
data for nearly one week on only AA
nickel-cadmium (nicad) cells-more
than sufficient for most portable
systems.

High-Speed
Applications

Ripplemode and Static Column
mode are ideal for applications in­
volving high-speed buffers, telecom­
munications, and graphics. Bit­
mapped graphics systems would
seem to be a natural fit with Page
Mode operation. However, this was
not always the case. Prior to the In­
tel 2164A 64K by I-bit NMOS
dynamic RAM, it was difficult to re­
trieve all 256 bits ,within a single row
of memory because of the RAS-Iow
time limitation of 10 I'S. Even with a
Page Mode cycle time of 125 ns, to
retrieve all 256 bits would require 32
I's-three times longer than allowed.
The 2164A extended the RAS-low
time to 75 I's, permitting the extrac­
tion of all 256 bits during a single
Page Mode cycle.

At the end of the cycle, the device
cannot be reaccessed again until after
a certain off-time allows internal
nodes to be pre charged to be ready
'for the next cycle. As a result, the
2164A can stream data at greater than

a, 7-MHz rate continuously. This func­
tion matches the timing and opera­
tion of low-performance, bit-mapped
graphics memories. One 2164A, for
example, can map all the data for the
256 by 256 matrix of a graphics dis­
play. During the horizontal scan time,
the RAM performs a Page Mode cy­
cle and one full line is displayed.
During retrace time, the memory
must be refreshed and can be up­
dated with new data if required. This
type of update is relatively slow; con­
sequently, it limits the speed of
animation on the screen because the
processor has access to the memory
only 25 percent of the time.

To increase resolution, more lines,
each with more pixels, must be used.
By performing two sequential Page
Mode cycles from two different
RAMs, pixel densities to 512 bits per
line can be achieved. As pixel densi­
ty increases, the memory cycle time
must decrease to paint more pixels on
a line in the same amount of time.
This cycle-time'limitation plus the
fact that memory can be updated
only during blanking has precluded
dynamic RAMs from use in
higher-resolution graphics displays.
These systems are usually bu'ilt with
high-speed, expensive static RAMs.

With Ripplemode, memory update
during screen display time, also
known as cycle stealing, is possible.
As an example, a 512 by 384 display
requires 512 bits/line and 1 bit every
67 ns. Data is read from four memory
devices in a series of eight Ripple­
mode reads each. Data is temporari­
ly stored in a video-output register
file and then shifted to the video
screen at a rate slower than the Rip­
plemode reads. Following this,
enough time is available to perform
an update cycle before the next eight
Ripplemode reads are performed to
continue screen refresh. Eight was
the number chosen to minimize the
time the processor must wait to up­
date the memory. In addition to this
cycle stealing, which updates during
display time, memory updates are
also performed during blanking.
Along with this system, a similar sys­
tem was built using 2164As with Ex­
tended Page Mode operation. Each
system used an iAPX 86 processor

AR-302

and similar software. A comparison
of both systems showed the CHMOS
(complementary high-speed metal­
oxide semiconductor) system to have
a 42 percent higher drawing speed.
Animation on the CHMOS system
was vastly improved.

Usable Speed
Memory design using dynamic

RAMs has always been a challenge.
Although multiplexing addresses
does reduce the package pin count
and increase system density, it limits
the access and cycle times in the
system. To access a dynamic RAM,
low-order row addresses are pre­
sented and latched into the dynamic
RAM with RAS. Row addresses inust
be held for a period fRAH after the fall
of RAS to guarantee proper opera­
tion. Next, the addresses must be
changed to high-order column ad­
dresses and latched into the dynamic
RAM with CAS, creating a timing
window fRCD , which is the RAS-to­
CAS delay.

Within this window, the designer
must guarantee row address hold
time, change the addresses, and ac­
count for any timing skew on the
CAS signal. If column addresses are
valid at the maximum specified fRCD ,

access time f RAC is measured from the
high-to-low transition of RAS.

The cycle time is the sum of the ac­
cess time and the cycle precharge
time tRP ' The access time is a function
of f RCD, which has contradictory re­
quirements. It must be as long as

. possible to simplify system design
and at the same time as short as
possible to enhance system speed.
Cycle time is affected directly by the
length of fRP•

Static-column operation eliminates
the fRCD problem. After row addresses
have been latched into the RAM, the
second portion of the access begins
from valid column addresses. In
other words, column access does not
wait for CAS to become valid, but
operates in a fashion similar to that
of a static RAM. This is due to the
flow-through operation of the CAS
latch. CAS serves only to latch the
addresses and to provide an output
enable. Access from valid column ad­
dresses simplifies design by remov-

12-15

ing the CAS signal from the critical
timing path.

Systems using dynamic RAMs are
typically CAS access-limited because
controllers generate timing signals in
discrete clock increments. A CMOS
dynamic RAM system might operate
at 8 MHz without Wait states. Using
any other 64K-bit dynamic RAM
would require the injection of one or
two Wait states, resulting in a corre­
sponding performance penalty. Con­
sequently, the advantage of higher
processor speed is negated without
the high-speed dynamic RAM. For
systems incorporating either discrete
or LSI controllers, the CMOS
dynamic RAM simplifies the system
design and offers higher system
performance.

High Reliability
Soft errors are random, nonrecur­

ring failures caused by ionizing radia­
tion present within the environment.
All matter contains small amounts of
radioactive material. Alpha particles
emitted by an Ie's packaging material
can penetrate the enclosed circuit. As
they do so, they generate hole-elec­
tron pairs., Any high-impedance
node in the vicinity sensitive to 1
million electrons may be affected,
because the difference between a 1
and a 0 (known as the critical charge)
;s about 1 million electrons. Conse­
quently, data in one cell could change
from a 1 to a 0 or vice versa. Correct
data can be rewritten into the affected
cell and the memory will again func­
tion correctly. thus the term "soft
error,"

When first discovered during tests
of 16K-bit dynamiC RAMs, soft errors
occurred at a rate five times greater
than catastrophic or hard-error fail­
ures. While device designers worked
to eliminate the alpha-particle sen­
sitivity, systems designers added
error-correcting circuits (ECC), which
increased system reliability, but the
systems were larger and more expen­
sive due to the additional com­
ponents reqUired. Also, the system
had to test and correct the data, slow­
ing the system's performance. All this
was due to soft errors. Obviously,
what is really required is the elimina­
tion of soft errors.

CMOS technology offers such a
solution. The CMOS dynamic RAM
cell is built on an n-well in a p-sub­
strate, creating a p-n junction or
diode at the boundary. When alpha
particles create hole-electron pairs in
a CMOS device, something else oc­
curs. First, the n-well is very shallow,
and the majority of hole-electron
pairs are created in the p-substrate.
Holes cannot transfer across the
reverse-biased p-n junction, which
acts as a barrier to soft-error effects.
Any electrons that do cross the junc­
tion are gathered at the + 5-¥ node
away from the storage cell. The prob­
ability that sufficient hole-electron
pairs are created within the n-well
that cell upset could occur is so low
that the soft-error rate of CMOS
dynamic RAMs is typically orders of
magnitude below that of their NMOS
counterparts.

High storage capacitance also plays
a role in the reduction of soft errors.
The number of stored charged elec­
trons representing a 1 or a 0 is direct­
ly proportional to the storage capac­
itance. Higher capacitance equates

AR-302

to more stored charge, which in turn
increases the critical charge. The
critical charge is the number of par­
ticles that differentiate a 1 from a O.
Increasing the critical charge beyond
1 million electrons significantly
reduces the susceptibility to soft er­
rors. This, in addition to the n-well
inechanism, reduces the soft-error
rate to much less than 0.001 percent
per 1000 hours.

Studies were performed to com­
pare reliability of systems with and
without error correction for both
NMOS and CMOS dynamic RAMs.
The results show one surprise: at
256K bytes and below, the CMOS
system without ECC is more reliable
than the NMOS system with ECC,
because of the. cycle-time depen­
dence of soft errors. In small systems,
the memory is accessed more fre­
quently, and the probability of a soft
error is increased. With a soft-error
rate at the very minimum 100 times
less than NMOS, the CMOS
dynamic RAM does not experience
this effect.

Systems below 256K-byte capacities

benefit by the elimination of ECC cir­
cuits from a cost, performance,. and
simplicity-of-design standpoint. First,
ECC increases the access time of the
system by 50 ns to check and correct
data. Assuming a 120-ns RAM ac­
cess, ECC increases the access by 42
percent. Moreover, the penalty on cy­
cle time is even greater, especially
when you are writing a single byte in­
to a 2-byte word. In this instance,
data must be accessed and corrected,
the new byte merged into the word,
and check bits generated. Finally, the
system must write the new data into
memory. Added to this are any sys­
tem-timing skews. As a result, a
200-ns cycle time stretches to a 335-ns
system cycle time or an increase of 68
percent. Therefore, using a CMOS
dynamic RAM not only improves
system reliability but enhances sys­
tem speed and simplicity of design .•

Joe Altnether is technical marketing manager at
Intel Corp. (2111 N.E. 25th Ave., Hillsboro, OR
97123).

From Inside CMOS Technology by Martin B. Pawloski, Tomy Moroyan, and Joe Altnether appearing in the September 1983 issue of BYTE
magazine. Copyright © 1983 Byte Publications, Inc. Used with the permission of Byte Publications, Inc.

12-16

The Single Component
MCS® .. 48 System

13

CHAPTER 13
THE SINGLE COMPONENT MCS®-48 SYSTEM

13.0 INTRODUCTION

Sections 13.1 through 13.4 describe in detail the func­
tional characteristics of the S74SH and S749H EPROM,
S04SAH/S049AH/S050AH ROM, and S035AHLI
S039AHUS040-AHL CPU only single component micro­
computers. Unless otherwise noted, details within these
sections apply to all versions. This chapter is limited to
those functions useful in single-chip implementations gf
the MCS®-4S. Chapter 14 discusses functions which allow
expansion of program memory, data memory, and input
output capability. .

13.1 ARCHITECTURE

The following sections break the MCS-4S Family into
functional blocks and describe each in detail. The follow­
ing description will use the S04SAH as the representative
product for the family. See Figure 15.1.

13.1.1 Arithmetic Section

The arithmetic section of the processor contains the basic
data manipulation functions of the S04SA H and can be
divided into the following blocks:

• Arithmetic Logic Unit (ALU)

• Accumulator

• Carry Flag

• Instruction Decoder

In a typical operation data stored in the accumulator is
combined in the ALU with data from another source on
the il)ternal bus (such as a register or I/O port) and the
result is stored in the accumulator or another register.

The following is more detailed description of the function
of each block.

INSTRUCTION DECODER

The operation code (op code) portion of each program
instruction is stored in the Instruction Decoder and con­
verted to outputs which control the function of each of
the blocks of the Arithmetic Section. These lines control
the source of data and the destination register as well as
the function performed in the ALU.

ARITHMETIC LOGIC UNIT

The AL U accepts S-bit data words from one or two sources
and generates an 8-bit result under control of the Instruc­
tion Decoder. The ALU can perform the following functions:

13-1

• Add With or Without Carry
• AND, OR, Exclusive OR
• Increment/ Decrement
• Bit Complement
• Rotate Left, Right
• Swap Nibbles
• BCD Decimal Adjust

If the operation performed by the ALU results in a value
represented by more than 8 bits (overflow of most signifi­
cant bit), a Carry Flag is set in the Program Status Word.

ACCUMULA10R

The accumulator is the single most important data register
in the processor, being one of the sources of input to the
AL U and often the destination of the result of operations
performed in the ALU. Data to and from I/O ports and
memory also normally passes through the accumulator.

13.1.2 Program- Memory

Resident program memory consists of 1024, 2048, or 4096
words eight bits wide which are addressed by the program
counter. In the 8748H and the 8749H this memory is user
programmable and erasable EPROM; in the 8048AH/
8049AH/8050AH the memory is ROM which is mask
programinable at the factory. The 8035A H L /8039 A H L/
8040AHL has no internal program memory and is used
with external memory devices. Program code is completely
interchangeable among the various versions. To access
the upper 2K of program memory in the 8050AH, and
other MCS-48devices, a select memory bank and a JUMP
or CALL instruction must be executed to cross the 2K
boundary. See Section 2.3 for EPROM programming
techniques.

There are three locations in Program Memory of special
importance as shown in Figure 13.2.

LOCATION 0
Activating the Reset line of the processor causes the first
instruction to be fetched from location O.

LOCATION 3
Activating the InterrUpt input line of the processor (if
interrupt is enabled) causes a jump to subroutine at lo­
cation 3.

LOCATION 7
A timer/counter interrupt resulting from ·timer counter
overflow (if enabled) causes a jump to subroutine at lo­
cation 7.

Therefore, the first instruction to be executed after ini­
tialization is stored in location 0, the first word of an
external interrupt service subroutine is stored in location
3, and the first word of a timer/counter service routines

"11
rIi c ..
CD
.....
Co)
I

~
~
CO
J:
Cii
C)
~
CO
):0

~
~
ID
J:

(.,) Cii

'" C)
~
ID
):0
J:
Cii
C)
en
C)
):0
J:
ID
0" n
~

S!
DI
IC
iii
3

...££.. PROGRAM SUPPLY
POWER V·

RESIDENT
EPROM ROM

'tV SUPPLY ~+5V (L. OW POWER STANDBY)

~GND· L''-'':==':''-_

INTERRUPT I PROM! CPU!
EXPANDER MEMORY

I 'STROBE SEPARATE

INITIALIZE

OSCILLATOR
XTAL

ADDRESS
LATCH

STROBE
CYCLE
CLOCK

PROGRAM SINGLE
MEMORY STEP
ENABLE

READ
WRITE

STROBES

EXPANSION TO
MORE I/O AND

MEMORY

TEST 0

TEST 1

INT

'" 0
FLAG 0 0

u

'" FLAG 1 0

. TIMER
FLAG

CARRY

ACC

ACCBIT
TEST

REGISTER

REGISTER

REGISTER

REGISTER

REGISTER

REGISTER

REGISTER

REGISTER

8 LEVEL STACK
(VARIABLE LENGTH)

OPTIONAL SECOND
REGISTER BANK -

DATA STORE

RESIDENT
RAM ARRAY

tn
Z
C>
r­m
o
o

's:::
"tI o
Z
m
Z
~

s:::
o
tn
®
I
~
OCI

~
~
m
s:::

SINGLE COMPONENT MCS®-48 SYSTEM

is stored in location 7. Program memory can be used to
store constants as well as program instructions. Instruc­
tions such as MOYP and MOYP3 allow easy access to
data "lookup" tables.

J:
<t
c
on
c
co
a.
J:
CJ
Z J:
0 <t J: Q) <t ..,.

c CD
co ..,.
a. c

CD

J: a.
CJ J:
z CJ
0 Z

0

'~D
2048~~SELMB1
2047~ j SELMBO

1024
1023

a
7
6
5
4
3

2

r------

.

~I-

71615141 3 12j11 O l--" o
ADDRESS

LOCATION 7-
TIMER INTERRUPT
VECTORS
PROGRAM HERE

LOCATION 3-
EXTERNAL
INTERRUPT
VECTORS
PROGRAM HERE

RESET VECTORS
PROGRAM HERE

Figure 13-2. Program Memory Map

13.1.3 Data Memory

Resident data memory is organized as 64, 12S, or 256 by
S-bits wide in the S04SAH, S049AH and S050AH. All
locations are indirectly addressable through either of two
RAM Pointer Registers which reside at address 0 and 1
of the register array. In addition, as shown in Figure 2-3,
the first S locations (0-7) of the array are designated as
working registers and are directly addressable by several
instructions. Since these registers are more easily ad­
dressed, they are usually used to store frequently accessed
intermediate results. The DJNZ instruction makes very
efficient use of the working registers as program loop
counters by allowing the programmer to decrement and
test the register in a single instruction.

By executing a Register Bank Switch instruction (SEL
RB) RAM locations 24~31 are designated as the working

13-3

registers in place of locations O~ 7 and are then directly
addressable. This second bank of working registers may
be used as an extension of the first bank or reserved for use
during interrupt service subroutines allowing the regis­
ters of Bank 0 used in the main program to be instantly
"saved" by a Bank Switch. Note that if this second bank is
not used, locations 24~31 are still addressable as general
purpose RAM. Since the two RAM pointer Registers RO
and R I arc a part of the working register array, bank
switching effectively creates two more pointer registers
(RO I and R I /) which can be used with RO and R I to easily
access up to four separate working areasin RAM at one
time. RA M locations (8-23) also serve a dual role in that
they contain the program counter stack as explained in
Section 2. 1.6. These locations are addressed by the Stack
Pointer during subroutine calls as well as by RA M Pointer
Registers RO and R I. If the level of subroutine nesting
is less than ~, all stack registers are not required and can
be used as general purpose RA M locations. Each level of
subroutine nesting not used provides the user with two
additional RAM locations.

63r---=---______ ~
(127)

«255))
USER RAM

32 x a
(96' 8)

«224 ' all

~~t-----~B~A~N~K-1----~
WORKING

REGISTERS

24
23

a' a -----Rr- - --
- - - - flO' - - - -

a LEVEL STACK
OR

USER RAM
16 x a

~~----~B~A~N~K~O~----i
WORKING

REGISTERS
a x a

------R1- ---

I
DIRECTLY

ADDRESSABLE
WHEN BANK 1
IS SELECTED

I

ADDRESSED
INDIRECTLY
THROUGH
R1 OR RO

(RO' OR R1')

I
DIRECTLY

ADDRESSABLE
WHEN BANKO
ISSELECTj

IN ADDITION RO OR R1 (RO' OR R1')
MAY BE USED TO ADDRESS 256 () a049AH, a749H,
WORDS OF EXTERNAL RAM. «)) a050AH

Figure 13-3. Data Memory Map

SINGLE COMPONENT MCS®-48 SYSTEM

VCC

VCC

INTERNAL
Q

BUS D

D
FLIP
FLOP

LOW
IMPEOANCE
PULLDOWN

CLK Q

WRITE
PULSE -=

IN

MAX

-500

-400

IOH -300 ___ _

(ILA) -200

4V

VOH
OV

1/0
PIN

PORT 1
AND2

2V

VOL

4V

LOW IMPEDANCE PULLUP HIGH IMPEDANCE PULLUP LOW IMPEDANCE PULLDOWN

These graphs are for informational purposes only and are not guaranteed minimums or maximums.

Figure 13-4. "Quasi-bidirectional" Port Structure

13-4

SINGLE COMPONENT MCS®-48 SYSTEM

13.1.4 Input/Output

The 8048A H has 27 lines which can be used for input or
output functions. These lines are grouped as 3 ports of
8 lines each which serve as either inputs, outputs or bi­
directional ports and 3 "test" inputs which can alter
program sequences when tested by conditional jump
instructions.

PORTS 1 AND 2

Ports I and 2 are each 8 bits wide and have identical
characteristics. Data written to these ports is statically
latched and remains unchanged until rewritten. As input
ports these lines are non-latching,. i.e., inputs must be
present until read by an input instruction. Inputs are
fully TTL compatible and outputs will drive one stand­
ard TTL load.

The lines of ports I and 2 are called quasi-bidirectional
because of a special output circuit structure which allows
each line to serve as an input, and output, or both even
though outputs are statically latched. Figure 13-4 shows
the circuit configuration in detail. Each line is continu­
ously pulled up to V CC through a resistive device of
relatively high impedance.

This pullup is sufficient to provide the source current for
a TTL high level yet can be pulled low by a standard TTL
gate thus allowing the same pin to be used for both input
and output. To provide fast switching times in a "0" to
"I" transition a relatively low impedance device is switched
in momentarily (= 1/5 of a machine cycle) whenever a "I"
is written to the line. When a "0" is written to the line a low
impedance device overcomes the light pull up and provides
TTL current sinking capability. Since the pulldown tran­
sistor is a low impedance device a "I" must first be written
to any line which is to be used as an input. Reset initializes
all lines to the high impedance" I" state.

It is important to note that the ORL and the ANL are read/
write operations. When executed, the f.LC "reads" the
port, modifies the data according to the instruction, then
"writes" the data back to the port. The "writing" (es­
sentially an OUTL instruction) enables the low impedance
pull-up momentarily again even if the data was unchanged
from a "I." This specifically applies to configurations
that have inputs and outputs mixed together on the same
port. See also section 3.7.

BUS

Bus is also an 8-bit port which is a true bidirectional port
with associated input and output strobes. If the bidirec­
tional feature is not needed, Bus can serve as either a stati-

13-5

cally latched output port or non-latching inut port. Input
and output lines on this port cannot be mixed however.

As a static port, data is written and latched using the
OUTL instruction and inputted using the INS instruction.
The INS and OUTL instructions generate pulses on the
corresponding RD and WR output strobe lines; however,
in the static port mode they are generally not used. As a
bidirectional port the MOVX instructions are used to read
and write the port. A write to the port generates a pulse
on the WR out~ line and output data is valid at the
trailing edge of WR. A read of the port generates a pulse
on the RD output line and input data must be valid at the
trailing edge of RD. When not being written or read, the
BUS lines are in a high impedance stale. See also sections
14.6 and 14.7.

13.1.5 Test and INT Inputs

Three pins serve as inputs and are testable with the con­
ditional jump instruction. These are TO, Tl, and INT.
These pins allow inputs to cause program branches without
the necessity to load an input port into the accumulator.
The TO, Tl, and INT pins have other possible functions
as well. See the pin description in Section 13.2.

13.1.6 Program Counter and Stack

The Program Counter is an independent counter while the
Program Counter Stack is implemented using pairs of reg­
isters in the Data Memory Array. Only 10, II, or 12 bits
of the Program Counter are used to address the 1024,
2048, or 4096 words of on-board program memory of the
8048AH, 8049AH, or 80S0AH, while the most significant
bits can be used for external Program Memory fetches.
See Figure 13.S. The Program Counter is initialized to
zero by activating the Reset line.

IA1+10J A9J AsJ A7J A6J AsJ A4J A3J A2J A1 J AO I
I I

Conventional Program Counter
• Counts OOOH to 7FFH
• Overflows 7FFH to OOOH

Figure 13-5. Program Counter

An interrupt or CALL to a subroutine causes the contents
of the program counter to be 'stored in one of the 8 register
pairs of the Program Counter Stack as shown in Figure
13-6. The pair to be used is determined by a 3-bit Stack
Pointer which is part of the Program Status Word (PSW).

SINGLE COMPONENT MCS®-48 SYSTEM

POIN

111

110

101

100

011

010

001

000

TER

· ·
•
• :
: · ·
:

psw • PCS-11

PC4-7 • PCO-3

MSB LSB

Figure 13-6. Program Counter Stack

R23

22

21

20

19

1S

17

16

15

14

13

12

11

10

9

RS

Data RAM locations 8-23 are available as stack registers
and are used to store the Program Counter and 4 bits of
PSW as shown in Figure 13-6. The Stack Pointer when
initialized to 000 points to RAM locations 8 and 9. The
first subroutine jump or interrupt results in the program
counter contents being transferred to locations 8 and 9 of
the RAM array. The stack pointer is then incremented by
one to point to locations 10 and 11 in anticipation of
another CALL. Nesting of subroutines within subroutines
can continue up to 8 times without overflowing the stack.
If overflow does occur the deepest address stored (loca­
tions 8 and 9) will be overwritten and lost since the stack
pointer overflows from III to 000. It also underflows
from 000 to 111.

The end of a subroutine, which is signalled by a return
instruction (RET or RETR), causes the Stack Pointer to
be decremented and the contents of the resulting register
pair to be transferred to the Program Counter.

13.1.7 Program Status Word

An 8-bit status word which can be loaded to and from the
accumulator exists called the Program Status Word
(PSW). Figure 13-7 shows the information available in

the word. The Program Status Word is actually a collection
of flip-flops throughout the machine which can be read
or written as a whole. The ability to write to PSW allows
for easy restoration of machine status after a power down
sequence.

SAVED IN STACK
I

STACK POINTER
I

CY I AC I FO I BS I 1 I S2 S1 So

MSB LSB
CY CARRY
AC AUXILIARY CARRY
FO FLAG 0
BS REGISTER BANK SELECT

Figure 13-7. Program Status Word (PSW)

The upper four bits of PSW are stored in the Program
Counter Stack with every call to subroutine or interrupt
vector and are optionally restored upon return with the
RETR instruction. The RET return instruction does not
update PSW.

The PSW bit definitions are as follows:

Bits 0-2: Stack Pointer bits (So' S I' S2)

Bit 3: Not used ("I" level when read)

Bit 4: Working Register Bank Switch Bit (BS)
0= Bank 0
I = Bank I

Bit 5: Flag 0 bit (FO) user controlled flag which can
be complemented or cleared, and tested with
the conditional jump instruction]FO.

Bit 6: Auxiliary Carry (AC) carry bit generated by
an ADD instruction and used by the decimal
adjust instruction DA A.

Bit 7: Carry (CY) carry flag which indicates that the
previous operation has resulted in overflow
of the accumulator.

13.1.8 Conditional Branch Logic

The conditional branch logic within the processor enables
several conditions internal and external to the processor
to be tested by the users program. By using the conditional
jump instruction the conditions that are listed in Table 13-
1 can effect a change in the sequence of the program
execution.

13-6

SINGLE COMPONENT MCS®-48 SYSTEM

Table 13-1

Jump Conditions
Device Testable (Jump On)

not all
Accumulator All zeros zeros
Accumulator Bit - I
Carry Flag 0 I
User Flags (FO, FI) - I
Timer Overflow Flag - I
Test Inputs (TO, TI) 0 I
Interrupt Input (lNT) 0 -

13.1.9 Interrupt

An interrupt sequence is initiated by applying a low "0"
level input to the INT pin. Interrupt is level triggered and
active low to allow "WIRE ORing" of several interrupt
sou~es at the input pin. Figure 13-8 shows the interrupt
logiC of the 8048AH. The Interrupt line is sampled every
instruction cycle and when detected causes a "call to
subroutine" at location 3 in program memory as soon as
all cycles of the current instruction are complete. On 2-
cycle instructions the interrupt line is sampled on the 2nd
cycle only. INT must be held low for at least 3 machine
cycles to ensure proper interrupt operations. as in any
CALL to subroutine, the Program Counter and Program
Status word are saved in the stack. For a description of
this operation see the previous section, Program Counter
and Stack. Program Memory location 3 usuidly contains
an unconditional jump to an interrupt service subroutine
elsewhere in program memory. The end of an interrupt
service subroutine is signalled by the execution of a Return
and Restore Status instruction RETR. The interrupt system
is single level in that once an interrupt is detected all
further interrupt requests are ignored until execution of
an RETR reenables the interrupt input logic. This occurs
at the beginning of the second cycle of the RETR instruC"
tion. This sequence holds true also for an internal interrupt
generated by timer overflow. If an internal timer/counter
generated interrupt and an external interrupt are detected
at the same time, the external source will be recognized.
See the following Timer/Counter section for a description
of timer interrupt. If needed, a second external interrupt
can be created by enabling the timer/counter interrupt,
loading FFH in the Counter (ones less than terminal
count), and enabling the· event counter mode. A "I" to
"0" transition on the TI input will then cause an interrupt
vector to location 7.

INTERRUPT TIMING

The interrupt input may be enabled or disabled under
Program Control using the EN I and DIS I instructions.
Interrupts are disabled by Reset and remain so until en-

abled by the users program. An interrupt request must be
removed before the RETR instruction is executed upon
return from the service routine otherwise the processor
will re-enter the service routine immediately. Many peri­
pheral devices prevent this situation by resetting 'their
interrupt request line whenever the processor accesses
(Reads or Writes) the peripherals data buffer register. If
the interrupting device does not require access by the
processor, one output line of the 8048AH may be desig­
nated as an "interrupt acknowledge" which is activated
by the ser~ice subroutine to reset the interrupt request.
The INT pm may also be tested using the conditionaljump
instruction JNI. This instruction may be used to detect
the presence of a pending interrupt before interrupts are
enabled. If interrupt is left disabled, INT may be used as
another test input like TO and Tl.

13.1.10 Timer/Counter

The 8048AH contains a counter to aid the user in counting
external events and generating accurate time delays with­
out placing a burden on the processor for these functions.
In both modes the counter operation is the same, the only
difference being the source of the input to the counter.
The timer/event counter is shown in Figure 13-9.

COUNTER

The 8-bit binary counter is presettable 1fnd readable with
two MOV instructions which transfer the contents of the
accumulator to the counter and vice versa. The counter
content may be affected by Reset and should be initialized
by software. The counter is stopped by a Reset or STOP
TCNT instruction and remains stopped until started as a
timer by a START T instruction or as an event counter
by a START CNT instruction. Once started the counter
will increment to this maximum count (FF) and over­
flow to zero continuing its count until stopped by a STOP
TCNT instruction or Reset.

The increment from maximum count to zero (overflow)
results in the setting of an overflow flag flip-flop and in
the generation of an interrupt request. The state of the
overflow flag is testable with the conditionaljump instruc­
tion JTF. The flag is reset by executing a JTF or by Reset.
The interrupt request is stored in a latch and then 0 Red
with the external interrupt input INT. The timer interrupt
may be enabled or disabled independently of external
interrupt by the EN TCNT! and DIS TeNTI instructions.
If enabled, the counter overflow will cause a subroutine
call to location 7 where the timer or counter service routine
may be stored.

If timer and external interrupts occur simultaneously, the
external source will be recognized and the Call will be to

13-7

SINGLE COMPONENT MCS®-48 SYSTEM

5

TIMER
FLAG JTF

EXECUTED-----f~~~t_~
RESET R

a
TIMER

OVERFLOW
FF TIMER INT

RECOGNIZED
EXECUTED

~--...jR

RESET

DIS TCNTI ------1r"'l~--~ EXECUTED

RESET

INT~ ____________ ~

PIN

5

R

D

TIMER
INT

ENABLE

INT
FF

CLK
ALE--~-'"

LAST CYCLE l-------------l
OFINST.

DIS I

EN I
EXECUTED

EXECUTED
RESET----#.....-

5

INT
ENABLE

R

a

a

a

a

CONDITIONAL
JUMP LOGIC

INTERRUPT
CALL

EXECUTED

CLR EXTERNAL
~-----------'----l D a INTERRUPT

+---L~"'---' 5
INTERRUPT

IN
PROGRESS

R

RESET

RETR
EXECUTED

FF

RECOGNIZED

TIMER
INTERRUPT

RECOGNIZED

1. WHEN INTERRUPT IN PROGRESS FLIP-FLOP IS SET
ALL FURTHER INTERRUPTS ARE LOCKED OUT
INDEPENDENT OF STATE OF EITHER INTERRUPT
ENABLE FLIP-FLOP.

2. WHILE TIMER INTERRUPTS ARE DISABLED TIMER
OVERFLOW flf WILL NOT STORE ANY OVERFLOW
THAT OCCURS. TIMER FLAG WILL BE SET, HOWEVER.

Figure 13-8. Interrupt Logic

13-8

SINGLE COMPONENT MCS®-48 SYSTEM

PRESCALER

LOAD OR READ

CLEARED ON START TIMER

START
TIMER 1

JUMP ON
TIMER FLAG

EDGE
DETECTOR

START
COUNTER

o
STOPT

8 BIT TIMER/
EVENT COUNTER

ENABLE---------.L-__ ,
INT

Figure 13-9. Timer/Event Counter

location 3. Since the timer interrupt is latched it will re­
main pending until the external device is serviced and
immediately be recognized upon return from the service
routine. The pending timer interrupt is reset by the Call to
location 7 or may be removed by executing a DIS TCNTI
instruction.

AS AN EVENT COUNTER
'J

Execution of a START CNT instruction connects the T1
input pin to the counter input and enables the counter,
The T1 input is sampled at the beginning of state 3 or in
later MCS-48 devices in state time 4. Subsequent high to
low transitions on T I will cause the counter to increment.
T I must be held low for at least I machine cycle to insure
it won't be missed. The maximum rate at which the
counter may be incremented is once per three instruction
cycles (every 5.7 /Lsec when using an 8 MHz crystal)-­
there is no minimum frequency. TI input must remain
high for at least 115 machine cycle after each transition.

ASAT!MER

Execution of a START T instruction connects an internal
clock to the counter input and enables the counter. The
internal clock is derived by passing the basic machine cycle
clock through a .;. 32 prescaler. The prescaler is reset during
the STA R T T instruction. The resulting clock increments
the counter every 32 machine cycles. Various delays from
1 to 256 counts can be obtained by presetting the counter
and detecting overflow. Times longer "than 256 counts
may be achieved by accumulating multiple overflows in a
register under software control. For time resolution less

13-9

than 1 count an external clock can be applied to the T 1
input and the counter operated in the event counter mode.
A LE divided by 3 or more can serve as this external clock.
Very small delays or "fine tuning" oflarger delays can be
easily accomplished by software delay loops.

Often a serial link is desirable in an MCS-48 family mem­
ber. Table 13-2 lists the timer counts and cycles needed
for a specific baud rate given a crystal frequency.

13.1.11 Clock and Timing Circuits

Timing generation for the 8048AH is completely self­
contained with the exception of a frequency reference
which can be XTAL, ceramic resonator, or external
clock source. The Clock and Timing circuitry can be
divided into the following functional blocks.

OSCILLATOR

The on-board oscillator is a high gain" parallel resonant
circuit with a frequency range of 1 to 11 MHz. The Xl
external pin is the input to the amplifier stage while X2 is
the output. A crystal or ceramic resonator connected
between Xl and X2 provides the feedback and phase
shift required for oscillation. If an accurate frequency
reference is not required, ceramic resonator may be used
in place of the crystal.

For accurate clocking, a crystal should be used. An exter­
nally generated clock may also be applied to X l-X2 as the
frequency source. See the data sheet for more information.

SINGLE COMPONENT MCS®-48 SYSTEM

Table 13-2. Baud Rate Generation

Frequency Tcy TO Prr(1/5 Icy) Timer Prescaler
(MHz) (32'Tcy)

4 3. 75/1-s 750ns 120/1-s
6 2.50/1-s 500ns 80/1-s
8 I. 88/1-s 375ns 60.2/1-s

II 1.36/1-s 275ns 43.5/1-s

Baud 4 MHz 6 MHz 8 MHz II MHz
Rate Timer Counts + Timer Counts + Timer Counts + Timer Counts +

Instr. Cycles Instr. Cycles Instr. Cycles I nstr. Cycles

110 75 + 24 Cycles 113 + 20 Cycles 151 + 3 Cycles 208 + 28 Cycles
.01% Error .01% Error

300 27 + 24 Cycles 41 + 21 Cycles
.1% Error .03% Error

1200 6 + 30 Cycles 10 + 13 Cycles
.1% Error .1% Error

1800 4 + 20 Cycles 6 + 30 Cycles
.1% Error .1% Error

2400 3 + 15 Cycles 5 + 6 Cycles
.1% Error .4% Error

4800 I + 23 Cycles 2 + 19 Cycles
1.0% Error .4% Error

STATE COUNTER

The output of the oscillator is divided by 3 in the State
Counter to create a clock which defines the state times of
the machine (CLK). CLK can be made available on the
external pin TO by executing an ENTO CLK instruction.
The output of CLK on TO is disabled by Reset of the
processor.

CYCLE COUNTER

CLK is then divided by 5 in the Cycle Counter to provide
a clock which defines a machine cycle consisting of 5
machine states as shown in Figure 2-10. Figure 2-11
shows the different internal operations as divided into the
machine states. This clock is called Address Latch Enable
(ALE) because of its function in MCS-48 systems with
external memory. It is provided continuously on the
ALE output pin.

13.1.12 Reset

The reset input provides a means for initialization for the
processor. This Schmitt-trigger input has an internal pull­
up device which in combination with an external I fL fd
capacitor provides an internal reset pulse of sufficient

.01% Error .01% E~ror

55 + 13 Cycles 76 + 18 Cycles
.01% Error .04% Error

13 + 27 Cycles 19 + 4 Cycles
.06% Error .12% Error

9 + 7 Cycles 12 + 24 Cycles
.17% Error .12% ~rror

6 + 24 Cycles 9 + 18 Cycles
.29% Error .12% Error

3 + 14 Cycles 4 + 25 Cycles
.74% Error .12% Error

length to guarantee all circuitry is reset, as shown in Figure
13-12. If the reset pulse is generated externally the RESET
pin must be held low for at least 10 milliseconds after the
power supply is within tolerance. Only 5 machine cycles
(6.8 fLs @ II MHz) are required if power is already on
and the oscillator has stabilized. ALE and PSEN (if EA
= 1) are active while in Reset.

Reset performs the following functions:

I) Sets program counter to zero.

2) Sets stack pointer to zero.

3) Selects register bank O.

4) Selects memory bank O.

5) Sets B US to high impedance state (except when
EA = 5V).

6) Sets Ports I and 2 to input mode.

7) Disables interrupts (timer and external).

8) Stops timer.

9) Clears timer flag.

10) Clears FO and F I.

II) Disables clock output from TO.

13-10

SINGLE COMPONENT MCS®-48 SYSTEM

XTAL2,------,
11
MHzD

c~3

STATE
COUNTER

XTAL 1 ~----...1

JUMPON
TEST c 1 OR 0

.273 ~sec (3.67 MHz)

DIAGRAM OF B04BAH CLOCK UTILITIES

, 1.36 Msec CYCLE

1 55 51 52 53 1 54 55

I INPUT DECODE EXECUTION
INST.

INC. PC OUTPUT
ADDRESS

I ~ I
INSTRUCTION CYCLE

.
51 1

INPUT I

I I

(1 BYTE. 2 CYCLE INSTRUCTION ONLY)

PREVIOUS CYCLE:-_.II-".~---1ST CYCLE---.,J.~I-..... ol-----2ND CYCLE---~"I

STATE TIME:

52 I S3 I 54 I 55 I 51 I 52 I 53 I 54 55 I 51 52 I 53 I 54 55 I 51

(02)--TO

52

ALE
~~ _________ r-l~ _________ r-l~ __ ~ __ __

PSEN- - _______ -,

'----_----'I
RD.WR _____________________________________ --,

PROG ------------------------------~

-EXTERNAL MODE
--IF ENABLED

B04BAH/B049AH TIMING

Figure 13-10. MCS®-48 Timing Generati~n and Cycle Timing

13.1.13 Single-Step

This feature, as pictured in Figure 13-13, provides the
user with a debug capability in that the processor can be
stepped through the program one instruction at a time.
While stopped, the address of the next instruction to be
fetched is available concurrently on BUS and the lower

13-11

half of Port 2. The user can therefore follow the program
through each of the instruction steps. A timing diagram,
showing the interaction between output ALE and input
SS, is shown. The BUS buffer contents are .lost during
single step; however, a latch may be added to reestablish
the lost 110 capability if needed. Data is valid at the leading
edge of ALE.

CYCLE 1

INSTRUCTION Sl S2 S3 S4

INA,P FETCH INCREMENT - 'INCREMENT
INSTRUCTION PROGRAM COUNTER TIMER

OUTLP,A FETCH INCREMENT - 'INCREMENT
INSTRUCTION PROGRAM COUNTER TIMER

:!!
ea

ANL P, = DATA FETCH INCREMENT - 'INCREMENT
INSTRUCTION PROGRAM COUNTER TIMER

t::
iil ORL P, = DATA FETCH . INCREMENT - 'INCREMENT

INSTRUCTION PROGRAM COUNTER TIMER ...
'f ... INSA, BUS FETCH INCREMENT - INCREMENT

INSTRUCTION PROGRAM COUNTER TIMER ...
CXI
0

OUTLBUS, A FETCH INCREMENT - INCREMENT
INSTRUCTION PROGRAM COUNTER TIMER

CXI
:J> ANL BUS, = DATA FETCH INCREMENT - 'INCREMENT

INSTRUCTION PROGRAM COUNTER TIMER

~
0

ORL BUS, = DATA FETCH INCREMENT - 'INCREMENT
INSTRUCTION PROGRAM COUNTER TIMER

~
~ ::I:
I\) S'

!!!.

MOVX@R,A FETCH INCREMENT OUTPUT RAM INCREMENT
INSTRUCTION PROGRAM COUNTER ADDRESS TIMER

MOVXA,@R FETCH INCREMENT OUTPUT RAM INCREMENT
INSTRUCTION PROGRAM COUNTER ADDRESS TIMER ...

t::
g,

MOVDA,Pi
FETCH INCREMENT OUTPUT INCREMENT

INSTRUCTION PROGRAM COUNTER OPCODE/ADDRESS TIMER

Cr
:::I MOVD PiA FETCH INCREMENT OUTPUT INCREMENT

INSTRUCTION PROGRAM COUNTER OPCODE/ADDRESS TIMER
....
3' ANLD P,A FETCH INCREMENT OUTPUT INCREMENT

INSTRUCTION PROGRAM COUNTER OPCODE/ADDRESS TIMER s·
ea
C

ORLD P,A FETCH INCREMENT OUTPUT INCREMENT
INSTRUCTION PROGRAM COUNTER OPCODE/ADDRESS TIMER

iii
ea
iiI
3

J(CONDITIONAL) FETCH INCREMENT SAMPLE 'INCREMENT
INSTRUCTION PROGRAM COUNTER CONDITION SAMPLE

STRTT FETCH INCREMENT - , -STRTCNT INSTRUCTION PROGRAM COUNTER

STOP TCNT FETCH INCREMENT - , -INSTRUCTION PROGRAM COUNTER

ENI FETCH INCREMENT - ' ENABLE
INSTRUCTION PROGRAM COUNTER INTERRUPT

FETCH INCREMENT ' DISABLE DISI -
INSTRUCTION PROGRAM COUNTER INTERRUPT

ENTO CLK FETCH INCREMENT ' ENABLE
INSTRUCTION PROGRAM COUNTER CLOCK

------- _._-_ .. - ----- --- ---- --

S5

-
OUTPUT
TO PORT

READ PORT

READ PORT

-
OUTPUT
TO PORT

READ PORT

READ PORT

OUTPUT
DATA TO RAM

-

-
OUTPUT DATA
TO P2LOWER

OUTPUT
DATA

OUTPUT
DATA

-

START
COUNTER

STOP
COUNTER

_.

-

-

CYCLE 2

Sl S2 S3 S4 S5

- READ - , - -PORT

- - - - -
FETCH INCREMENT 'OUTPUT - -IMMEDIATE DATA PROGRAM COUNTER TO PORT

FETCH INCREMENT 'OUTPUT - -IMMEDIATE DATA PROGRAM COUNTER TO PORT

- READ - , - -
PORT

- - - - -~

FETCH INCREMENT 'OUTPUT - -IMMEDIATE DATA PROGRAM COUNTER TO. PORT

FETCH INCREMENT 'OUTPUT - -IMMEDIATE DATA PROGRAM COUNTER TO PORT

, - - - - -

READ , - - - -
DATA

READ P2 , - - - -
LOWER

, - - - - -
, - - - - -

- - - - -
FETCH UPDATE , - - -IMMEDIATE DATA PROGRAM COUNTER

·VALID INSTRUCTION ADDRESSES ARE OUTPUT
AT THIS TIME IF EXTERNAL PROGRAM MEMORY IS
BEING ACCESSED.

(1) IN LATER MCS-48 DEVICES T1 IS SAMPLED IN S4.

~
Z
G)
I"'" m
o o
s::
"tI o
Z
m
Z
~

s::
o
(A
®
I

Q:)

(A

~
~ m
s::

SINGLE COMPONENT MCS®-4S SYSTEM

TIMING

EXTERNAL RESET

ACTIVE
PULLUP

Vcc

POWER ON RESET

-D- lK

[

Figure 13-12

The 8048AH operates in a single-step mode as follows:

I) The processor is requested to stop by applying a low
level on SS.

2) The processor responds by stopping during the ad­
dress fetch portion of the next instruction. If a double
cycle instruction is in progress when the single step
command is received, both cycles will be completed
before stopping.

'j

3) The processor acknowledges it has entered the stop­
ped state by raising ALE high. In this state (which
can be maintained indefinitely) the address of the
next instruction to be fetched.is present on BUS and
the lower half of port 2.

4) SS is then raised high to bring the processor out of
the stopped mode allowing it to fetch the next instruc­
tion. The exit from stop is indicated by the processor
bringing ALE low.

5) To stop the processor at the next instruction SS must
be brought low again soon after A LE goes low. If Ss
is left high the processor remains in a "Run" mode.

A diagram for implementing the single-step function of
the 8748H is shown in Figure 13-13. A D...:!;'pe flip-flop
with preset and clell1" is used to generate SS. In the run
mode SS is held high by keeping the flip-flop preset (preset
has precedence over the clear input). To enter single step,
preset is removed allowing ALE to bring SS low via the

13-13

clear input. ALE should be buffered since the clear input
of an SN7474 is the equivalent of 3 TTL loads. The
processor is now in the stopped state. The next instruction
is initiated by clockl!!g a "I" into the flip-flop. This" I "
will not appear on SS unless ALE is high removing clear
from the flip-flop. In response to SS going high the pro­
cessor be~s an instruction fetch which brings ALE low
resetting SS through the clear input and causing the pro­
cessor to again enter the stopped state.

13.1.14 Power Down Mode
(8048AH, S049AH,' SOSOAH,
8039AHL, 803SAHL, 8040AHL)

Extra circuitry has been added to the 8048A H / 8049A H /
8050AH. ROM version to allow power to be removed
from all but the data RAM array forlow power standby
operation. In the power down mode the contents of data
RAM can be maintained while drawing typically 10%
to 15% of normal operating power requirements.

Vee serves as the 5V supply pin for the bulk of circuitry
while the Voo pin supplies only the RAM array. In
normal operation both pins are a 5V while in standby,
Vee is'at ground and Von is maintained at its standby
value. Applying Reset to the processor through the
RESET pin inhibits any access to the RA M by the pro­
cessor and guarantees that RAM cannot be inadvertently
altered as power is removed from Vee.

A typical power down sequence (Figure 13-14) occurs as
follows:

I) Imminent power supply failure is detected by user
defined circuitry. Signal must be early enough to allow
8048AH to save all necessary data before Vee falls
below normal operating limits.

2) Power fail signal is used to interrupt processor and
vector it to a power fail service routine.

3) Power fail routine saves all important data and
machine status in the internal data RAM array.
Routine may also initiate transfer of backup supply
to the Voo pin and indicate to external circuitry
that power fail routine is complete.

4) Reset is applied to guarantee data will not be altered
as the power supply falls out of limits. Reset must be
held low until Vee is at ground level.

Recovery from the Power Down mode can occur as any
'other power-on sequence with an external capacitor on
the Reset input providing the necessary delay. See the
previous section on Reset.

SINGLE COMPONENT MCS®-48 SYSTEM

+5V

MOMENTARY
PUSHBUTTON 10K

+5V

10K

I 53 I 54 I 55 I 51

ALE~
55

BUS

P20-23 1/0

DEBOUNCE
LATCH

1/27400

SINGLE STEP CIRCUIT

I 52 I 53 I .

PC 0-7 ;
PC 8-11

J

SINGLE STEP TIMING

.

+5V

SINGLE 10K

~U~PN--~------------'
PRESET

+5V o a 55

,------;> CLOCK

ALE

I 53 I 54 I 55 I I 52 I

n
: C

: 1/0

Figure 13-13. Single Step Operation

13·14

SINGLE COMPONENT MCS®-48 SYSTEM

POWER
SUPPLY PROCESSOR : ~~---
POWER
SUPPLY

INTE~RUPTEO 1 :

--------, 1 1 NORMAL
! 1 . POWER ON

FAIL SIGNAL

RESET

1---1- -~- - - SEQUENCE
1 1 FOLLOWS

: LJ ___ _
I

OATA SAVE
ROUTINE
EXECUTED

I
ACCESS TO
DATA RAM
INHIBITED

Figure 13-14. Power Down Sequence

13.1.15 External Access Mode

Normally the first I K (8048AH), 2K (8049AH), or 4K
(8050AH) words of program memory are automatically
fetched from internal ROM or EPROM. The EA input
pin however allows. the user to effectively disable inter­
nal program memory by forcing all program memory
fetches to reference external memory. The following
chapter explains how access to external program mem­
ory is accomplished.

The External Access mode is very useful in system test
and debug because it allows the user to disable his internal
applications program and substitute an external program
of his choice-a diagnostic routine for instance. In ad­
dition, section 13.4 explains how internal program mem­
ory can be read externally, independent of the processor.
A "1" level on EA initiates the external access mode.
For proper operation, Reset should be applied while the
EA input is changed.

13.1.16 Sync Mode

The 8048AH, 8049AH, 8050AH has incorporated a new
SYNC mode. The Sync mode is provided to ease the
design of mUltiple controller circuits by allowing the
designer to force the device into known phase and state
time. The SYNC mode may also be utilized by auto­
matic test equipment (ATE) for quick, easy, and effi­
cient synchronizing between the tester and the D UT
(device under test).

SYNC mode is enabled when SS' pin is raised to a high
voltage level of + 12 volts. To begin synchronization, TO
is raised to 5 volts at least four clocks cycles after SS '.
TO must be high for at least four X I clock cycle1 to fully

reset the prescaler and time state generators. TO may
then be brought down with the rising edge of X I. Two
clock cycles later, with the rising edge of X I, the device
enters into Time State I, Phase I. SS' is then brought
down to 5 volts 4 clocks later after TO. RESET' is allowed
to go high 5 tCY (75 clocks) later for normal execution
of code. See Figure 2-15.

13.1.17 Idle Mode

Along with the standard power down, the 80C48, 80C49,
80C50 has added an IDLE mode instruction (01 H) to
give even further flexibility and power management.
In the IDLE mode, the CPU is frozen while the oscil­
lator, RAM, timer, and the interrupt circuitry remains
fully active .

. When the IDL instruction (01 H) is decoded, the clock
to the CPU is stopped. CPU status is preserved in its
entirety: the Stack Pointer, Program Counter, Program
Status Word, Accumulator, RAM, and all the registers
maintain their data throughout idle.

Externally, the following occurs during idle:

I) The ports remain in the logical state they were in
when idle was executed.

2) The bus remains in the logical state it was in when
idle was executed if the bus was latched.

If the bus was in a high Z condition or if external
program memory is used the bus will remain in the
float state.

3) ALE remains in the inactive state (low).

4) RD', WR', PROG', and PSEN' remains in the in­
active state (high).

5) TO outputs clock if enabled.

There are three ways of exiting idle. Activating any
enabled interrupt (external or timer) will cause the CPU
to vector to the appropriate ihterrupt routine. Follow­
ing a RETR instruction, program' execution will resume
at the instruction following the address that contained
the IDL instruction.

The FO and F I flags may be used to give an indication
if the interrupt occurred during normal program execu­
tion or during idle. This is done by setting or clearing the
flags before going into idle. The interrupt service routine
can examine the flags and act accordingly when idle is
terminated by an interrupt.

Resetting the device can also terminate idle. Since the
oscillator is already running, five machine cycles are
all that is required to insure proper machine operation.

13-15

SINGLE COMPONENT MCS®-48 SYSTEM

Xl

PHASE 1- - - - - - - - - - - - -

PHASE 2- - - - - - - - - - - - -

TIME STATE 2 3

12V I~--------------------------------~ SS 5V~ L-____________________________ _

OV
5V TO OV
5V

5V r--------~
ALE OV--~ L-____ _

RESET OV------~--------------------------------------~--~-----------------

RESET

SINGLE STEP

EXTERNAL
MEM

TEST{

INTERRUPT

BUS 8

8048AH
8049AH
8050AH

SYNC MODE TIMING

Figure 13-15. Sync Mode Timing

PORT
#1

PORT
#2

2.2 PIN DESCRIPTION

The MCS-48 processors are packaged in 40 pin Dual In­
Line Packages (DIP's). Table 2-3 is a summary of the
functions of each pin. Figure 2-16 is the logic symbol for
the 8048AH product family. Where it exists, the second
paragraph describes each pin's function in an expanded
MCS-48 system. Unless otherwise specified, each input
is TTL compatible and each output will drive one standard
TTL load.

Figure 13-16. 8048AH and 8049AH Logic Symbol

13c16

SINGLE COMPONENT MCS®-48 SYSTEM

Table 13-3. Pin Description

Pin
Designation Number· Function

Vss 20 Circuit GND potential

VDD 26 Programming power supply; 21 V during program for the 8748H/8749H; + 5V during
operation for both ROM and EPROM. Low power standby pin in 8048AH and
8049AH/8050AH ROM versions.

Vee 40 Main power supply; +5V during operation and during ~748H and R749H pro-
gramming.

PROG 25 Program pulse; + IHV input pin during 874HH / 8749H programming. Output strobe
for 8243 I/O ex pander.

PIO-PI7 27-34 8-bit quasi-bidirectional port. (Internal Pullup = 50Kfl)
(Port I)

P20-P27 21-24 8-bit quasi-bidirectional port. (Internal Pullup = 50Kfl)
(Port 2) 35-38

P20-P23 contain the four high order program counter bits during an external pro-
gram memory fetch and serve as a 4-bit I/O expander bus for 8243.

00-07 12-19 True bidirectional port which can be written or read synchronously using the RD,
(BUS) WR strobes. The port can also be statically latched.

Contains the 810w order program counter bits during an external program mem-
ory fetch, and receives the addressed instruction under the control of PSEN. Also
contains the address and data during an external RAM data store instruction,
under control of ALE, RD, and WR.

TO I Input pin testable using the conditional transfer instructions .ITO and J NTO. TO
can be designated as a clock output using ENTO ClK instruction. TO is also used
during programming and sync mode.

TI 39 Input pin testable using the JT I, and J NT I instructions. Can be designated the
event counter input using the STRT CNT instruction. (See Section 2.1.10)

INT 6 Interrupt input. Initiates an interrupt if interrupt is enabled. Interrupt is disabled
after a reset. (Active low)

Interrupt must remain low for at least 3 machine cycles to ensure proper operation.
-
RD 8 Output strobe activated during a BUS read. Can be used to enable data onto the

BUS from an external device. (Active low)

Used as a Read Strobe to External Data Memory.

RESET 4 Input which is used to initialize the processor. Also used during EPROM programming
and verification. (Active low) (Internal pullup '" 80K 0)

WR 10 Output strobe during a BUS write. (Active low) Used as write strobe to external
data memory.

ALE II Address latch Enable. This signal occurs once during each cycle and is useful as
a clock output.

The negative edge of ALE strobes address into external data and program memory.

13-17

SINGLE COMPONENT MCS®-48 SYSTEM

Table 13-3. Pin Description (Continued)

Pin
Designation Number" Function

--
PSEN 9 Program Store Enahle. This output occurs only during a fetch to external program

memory. (Active low)
-
SS 5 Single step input can be used in conjunction with A LE to "single step" the processor

through each instruction. (Active low) (Internal pullup = 300Kfl) + 12V for sync
modes (See 2.1.16)

EA 7 External Access input which forces all program memory fetches to reference ex-
ternal memory. Useful for emulation and debug, and essential for testing and pro-

. gram verification. (Active high) +12V for 8048AH/8049AH/8050AH program
verification and + 18V for 8748H /8749H program verification (Internal pullup =
IOMf1 on 8048AH/8049AHj8035AHLj8039AHLj8050AH/8040AHL)

XTALI 2 One side of crystal input for internal oscillator. Also input for external source.

XTAL2 3 Other side of crystal/external source input.

'Unless otherwise stated, inputs do not have internal pullup resistors. 8048AH, 8748H, 8049AH, 8050AH, 8040AHL

13.3 PROGRAMMING, VERIFYING AND
ERASING EPROM

The internal Program Memory of the 8748H and the
8749H may be erased and reprogrammed by the user as
explained in the following sections. See also the 8748H
and 8749H data sheets.

13.3.1 ProgramminglVerification

In brief, the programming process consists of: activating
the program mode, applying an address, latching the
address, applying data, and applying a programming
pulse. T\1is programming algorithm applies to both the
8748H and 8749H. Each word is programmed completely
before moving on to the next and is followed by a veri­
fication step. The following is a list of the pins used for
programming and a description of their functions:

Pin
XTAL I
Reset
Test 0

EA
BUS

P20-1
P20-2
VDD
PROG
PIO-PII

Function
Clock Input (3 to 4 MHz)
Initialization and Address Latching
Selection of Program (OV) or Verify
(5V) Mode
Activation of Program/Verify Modes
Address and Data Input Data Output
During Verify
Address Input for 8748H
Address Input for 8749H
Programming Power Supply
Program Pulse Input
Tied to ground (8749H only)

8~8HAND8~9HERASURE
CHARACTERISTICS

The erasure characteristics of the 8748H and 8749H are
. such that erasure begins to occur when exposed to light

with wavelengths 'shorter than approximately 4000
Angstroms .(A). It should be noted that sunlight and
certain types of fluorescent lamps have wavelengths
in the 3000-4000A range. Data show that constant ex­
posure to room level fluorescent lighting could erase

,the typical 8748H and 8749H in approximately 3 years
while it would take approximately I week to cause era­
sure when exposed to direct sunlight. If the 8748H or
8749H is to be exposed to these types of lighting con­
ditions for extended periods of time, opaque labels
should be placed over the 8748H window to prevent
unintentional erasure.

When erased, bits of the 8748H and 8749H Program
Memory are in the logic "0" state.

The recommended erasure procedure for the 8748H and
8749H is exposure to shortwave ultraviolet light which
has a wavelength of2537 Angstroms (A). The integrated
dose (i.e., UV intensity X exposure time) for erasure
should be a minimum of 15W-sec/cm2• The erasure time
with this dosage is approximately 15 to 20 minutes using
an ultraviolet lamp with a 12000}1W /cm2 power rating.
The 8748H and 8749H should be placed within one
inch from the lamp tubes during erasure. Some lamps ..
have a filter in their tubes and this filter should be re­
moved before erasure.

13-18

SINGLE COMPONENT MCS-48 SYSTEM
I

COMBINATION PROGRAMIVERIFY MODE (EPROM's ONLY)

18V /
EA SV ____ --'

I--------PROGRAM--------t---VERIFY--'t,----PROGRAM-
ITW-~ ~ ____ ___

TO

RESET

DBO-DB7 J--
P20-P22

LAST
ADDRESS

VERIFY MODE (ROM/EPROM)

EA

"TO,

RESET

DBO-DB7

P20-P22

NOTES:

=>---

DATA TO BE
PROGRAMMED VALID

ADDRESS (8-10) VALID NEXT
ADDRESS

ADDRESS
(0-7) VALID

ADDRESS (8-10) VALID

\'---------'----'/
__ --.l NEXT X NEXT DATA)- __ _

,ADDRESS OUT VALID
~----....I

NEXT ADDRESS VALID

1. PROG MUST FLOAT IF EA IS LOW (I.E., cF 18V).

"TO ON EPROM ONLY.

Figure 13-17. ProgramlVerify Sequence for 8749H/8748H

13-19

Expanded MCS® .. 48 System 14

CHAPTER 14
EXPANDED MCS®-48 SYSTEM

14.0 INTRODUCTION

If the capabilities resident on the single-chip 8048AH;
8748H /8035AH L; 8049AH! 8749H / 1I039AH L are not
sufficient for your system requirements, special on-board
circuitry allows the addition of a wide variety of external
rnemory, I/O, or special peripherals you may require.
The processors can be directly and simply expanded in
the following areas:

• Program Memory to 4K words

• Data Memory to 320 words (384 words with
8049AH)

• 110 by unlimited amount

• Special Functions using 8080/8085AH peripherals

By using bank switching techniques, maximum capability
is essentially unlimited. Bank switching is discussed latcr
in the chapter. Expansion is accomplished in two ways:

I) Expander 110 -A special 110 Expander circuit, the
8243, provides for the addition of four 4-bit Input/
Output 'ports with the sacrifice of only the lower half
(4-bits) of port 2 for inter-device communication.
MUltiple 8243's may be added to this 4-bit bus by
generating the required "chip select" lines.

2) Standard 8085 Bus -One port of the l:\048AH! 8049AH
is like the ii-bit bidirectional data bus of the 8085 micro­
computer system allowing interface to the numerous
standard memories and peripherals of the MCS®-
80/85 microcomputer family.

MCS-48 systems can be configured using either or both
of these expansion features to optimize system capabil­
ities to the application.

Both expander devices and standard memories and peri­
pherals can be added in virtually any number and com­
bination required.

14.1 EXPANSION OF PROGRAM MEMORY

Program Memory is expanded beyond the resident I K
or 2K words by using the 8085 BUS feature of the MCS®-
48. All program memory fetches from the addresses less
than 1024 on the 8048A H and less than 2048 on the
8049A H occur internally with no external signals being
generated (except ALE which is always present). At ad­
dress 1024 on the 8048AH, the processor automatically
initiates external program memory fetches.

14.1.1 Instruction Fetch Cycle (External)

As shown in Figure 14-1, for all instruction fetches from
addresses of 1024 (204S) or greater, the following will
occur:

14-1

I) The contents of the 12-bit program counter will be
output on B US and the lower half of port 2.

2) Address Latch Enable (ALE) will indicate the time
at which address is valid. The trailing edge of ALE
is used to latch the address externally.

3) Program Store Enable (PSEN) indicates that an ex­
ternal instruction fetch is in progress and serves to
enable the external memory device.

4) B US reverts to input (floating) mode and the proces- .
sor accepts its 8-bit contents as an instruction word.

ALE J

PSEN

FLOATING

BUS ~FLOATINGO FLOATING

ADDRESS INSTRUCTION

Figure 14·1. Instruction Fetch from
External Program Memory

L

All instruction fetches, including internal addresses, can
be forced to be external by activating the EA pin of the
S04SAH/S049AH/S050AH. The 8035AHLlS039AHLI
S040AHL processors without program memory al­
ways operate in the external program memory mode
(EA = 5V).

14.1.2 Extended Program Memory
Addressing (Beyond 2K)

For programs of2K words or less, the 8048AH /8049AH
addresses program memory in the conventional manner.
Addresses beyond 2047 can be reached by executing a
program memory bank switch instruction (SEL MBO,
SEL MBI) followed by a branch instruction (JMI' or
CALL). The bank switch feature extends the range of
branch instructions beyond their normal 2K range and
at the same time prevents the user from inadvertently
crossing the 2K boundary.

PROGRAM MEMORY BANK SWITCH

The switching of 2K program memory banks is accom­
plished by directly setting or resetting the most significant
bit of the program counter (bit 11); see Figure 14-2. Bit
11 is not altered by normal incrementing of the program
counter but is loaded with the contents of a special flip­
flop each time a JMP or CALL instruction is executed.
This special flip-flop is set by executing an SEL MBI

EXPANDED MCS®-48 SYSTEM

instruction and reset by SEL MBO. Therefore, the SEL
M B instruction may be executed at any time prior to the
actual bank switch which occurs during the next branch
instruction encountered. Since all twelve bits of the pro­
gram counter, including bit II, are stored in the stack,
when a Call is executed, the user may jump to subroutines
across the 2K boundary and the proper bank will be re­
stored upon return. However, the bank switch flip-flop
will not be altered on return.

El+l0 I A9! A81 A71 A61 Asl A4! A3! A2! Al ! Ao I C· I I

Conventional Program Counter
• Co Lints OOOH to 7FFH
• OverflOWS 7FFH to OOOH

JMP or CALL instructions transfer contents
01 internaltlipllop to All .

• Fllpllop set by SEL MBl
• Flipllop reset by SEL MBO

or by RESET

During interrupt service routine
All is 10rced to "0"
All 12 bits are saved in stack

Figure 14-2. Program Counter

INTERRUPT ROUTINES

Interrupts always vector the program counter to location
3 or 7 in the first 2K bank, and bit II of the program

3
PORT 20-22

8048AH ALE
8282

rr=V LATCH

/L
BUS 1"-8

PSEN

counter is held at "0" during the interrupt service routine.
The end of the service routine is signalled by the execution
of an RETR instruction. Interrupt service routines should
therefore be contained entirely in the lower 2K words of
program memory. The execution of a SEL MBO or SEL
M B I instruction within an interrupt routine is not recom­
mended since it will not alter PC II while in the routine,
but will change the internal flip-flop.

14.1.3 Restoring 1/0 Port Information

Although the 19wer half of Port 2 is used to output the
four most significant bits of address during an external
program memory fetch, the I/O information is still out­
puted during certain portions of each machine cycle. I/O
information is always present on Port 2's lower 4 bits at
the rising edge of ALE and can be sampled or latched
at this time.

14.1.4 Expansion Examples

Shown in Figure 3-3 is the addition of 2K words of pro­
gram memory usingan 2716A 2K x 8 ROM to givea total
of 3K words of program memory. In this case no chip
select decoding is required and PSEN enables the mem­
ory directly through the chip select input. If the system
requires only 2K of program memory, the same config­
uration can be used with an 8035AH L substituted for the
8048A H. The 8049A H would provide 4K of program mem­
ory with the same configuration.

.2... ...l'-
11) ADDRESS

v 2716
EPROM

DATA
OUT
CS

USING 2K x 8 EPROM

Figure 14-3. Expanding MCS®-48. Program Memory Using Standard Memory Products

14-2

ALE

PSEN

WR

8048AH RD
8049AH

BUS

P20-P23

TEST 1/0
INPUTS

EXPANDED MCS®-48 SYSTEM

RD

lOW 2K x 8

lOR ROMI
EPROM
WITH

AlDO_7 liD
83551
8755

A8-A1Q. CS

1/0

Figure 14-4 shows how the 8755/8355 EPROM/ROM with
110 interfaces directly to the 8048AH without the need for
an address latch. The 8755/8355 contains an internal
8-bit address latch eliminating the need for an 8212 latch.
In addition to a 2K x 8 program memory, the 8755/8355
also contains 16110 lines addressable as two 8-bit ports.
These ports are addressed as external RAM; therefore the
RD and WR outputs of the 8048AH are required. Sec the
following ection on data memory expansion for more de­
tail. The subsequent section on 110 expansion explains the
operation of the 16 I/O lines.

14.2 EXPANSION OF DATA MEMORY

Data Memory is expanded beyond the resident 64 words
by using the 8085AH type bus feature of the MCS®-48.

14.2.1 ReadIWrite Cycle

Figure 14-4. External Program Memory Interface

All address and data is transferred over the 8 lines of BUS.
As shown in Figure 14-5, a read or write cycle occurs as
follows:

ALE J lL--____ --J L
RD

BUS FLOATING~ ___ F_L_O_A_TI_N_G __ _

FLOATING

READ FROM EXTERNAL DATA MEMORY

ALE J L

BUS FLOATING FLOATING

WRITE TO EXTERNAL DATA MEMORY

Figure 14-5. External Data Memory Timings

14-3

EXPANDED MCS®-48 SYSTEM

I) The contents of register RO or R I is outputed on BUS.

2) Address Latch Enable (ALE) indicates address is valid.
The trailing edge of ALE is used to latch the address
externally.

3) A read (RO) or write (WR) pulseon the corresponding
output pins of the 8048A H indicates the type of data
memory access in progress. Output data is valid at the
trailing edge of WR and input data must be valid at
the trailing edge of RO.

4) Data (8 bits) is transferred in or out over BUS.

14.2.2 Addressing External Data Memory

External Data Memory is accessed with its own two­
cycle move instructions, MOVX A,@Rand MOVX@R,
A, which transfer 8 bits of data between.the accumulator
and the external memory location addressed by the con­
tents of one of the RA M Pointer Registers RO and R I.
This allows 256 locations to be addressed in addition to
the resident locations. Additional pages may be added
by "bank switching" with extra output lines of the 8048AH.

14.2.3 Examples of Data Memory
Expansion

Figure 3-6 shows how the 8048A H can be expanded using
the 8155 memory and I/O expanding device. Since the
8155 has an internal 8-bit address latch, it can interface
directly to the 8048AH without the use of an external latch.
The 8155 provides an additional 256 words of static data
memory and also includes 221/0 lines and a 14-bit timer.
See the following section on I/O expansion and the 8155
data sheet for more details on these additional features.

BUS 8

ALE

8048AH WR

R5
PORT

3 li~:JTS
18 I/O

14.3 EXPANSION OF INPUT/OUTPUT

There arc four possible modes of I / 0 expansion with the
8048A H: one using a special low-cost expander, the 8243;
another using standard MCS-80/85 I/O devices; and a
third using the combination memory /1/0 expander de­
vices the 8155, 8355, and 8755. It is also possible to ex­
pand using standard TTL devices as shown in Chapter 5.

14.3.1 I/O Expander Device

The most efficient means of I/O expansion for small
systems is the 82431/0 Expander Device which requires
only 4 port lines (lower half of Port 2) for communica­
tion with the 8048AH. The ~Q43 contains four 4-bit I/O
ports which serve as an extension of the on-chip I/O and
are addressed as ports #4-7 (see Figure 3-7). The follow­
ing operations may be performed on these ports:

• Transfer Ac~umulator to Port

• Transfer Port to Accumulator

• AND Accumulator to Port

• OR Accumulator to Port

A 4-bit transfer from a port to the lower half of the Ac­
cumulator sets the most significant four bits to zero. All
communication between the 8048AH and the 8243 occurs
over Port 210wer (P20-P23) with timing provided by an
output pulse on the PROG pin of the processor. Each
transfer consists of two 4-bit nibbles: The first containing
the "op code" and port address, and the second contain­
ing the actual 4 bits of data.

ADO_7

ALE 8155
256 x 8

WR RAM

AD
10/M

22 I/O

TIMER IN

TIMER OUT

Figure 14-6. 8048AH Interface to 256 x 8 Standard Memories

14-4

EXPANDED MCS®-48 SYSTEM

liD

CHIP SELECT CONNECTION IF MORE
THAN ONE EXPANDER IS USED

P4 4 liD

PROG

8050AH
8049AH
8048AH

TEST
INPUTS 8243

P5 4 liD

P6 110

DATA IN
P2

P7 4 liD

EXPANDER INTERFACE

BITS 0, 1
PROG \ /

~. ___ ---J

BITS 2, 3

001 OO} READ
01 PORT 01 WRITE
10 . ADDRESS 10 OR

P20-P23 --< ___ ..IX ... __________)>-----
11..J 11 AND

DATA (4-BITS) ADDRESS
ANDOPCODE

(4-BITS)
OUTPUT EXPANDER TIMING

Figure 14-7.8243 Expander 1/0 Interlace

Nibble I

3 2 I 0

II II IA IA I
Instruction

Code

II

00 Read
01 Write
100R
II AND

Port
Address

Nihble 2

2 I 0

did I did I
data

AA
00 - Port #4
01 - Port #5
10- Port #6
II - Port #7

A high to low transition of the PROG line indicates that
address is present, while a low to high transition indicates
the presence of data. Additional 8243's may be added to
the four-bit bus and chip selected using additional output
lines from the 8048A H /8748H.

1/0 PORT CHARACTERISTICS

Each of the four4-bit ports of the 8243 can serve as either
input or output and can provide high drive capability in
both the high and low state.

14-5

14.3.2 I/O Expansion with Standard
Peripherals

Standard M CS-80/ 85 type I/O devices may be added to
the MCS@-48 using the same bus and timing used for
Data Memory expansion. Figure 3-8 shows an example
of how an 8048A H can be connected to an MCS-85
peripheral. I/O devices reside on the Data Memory bus
and in the data memory address space and are accessed
with the same MOVX instructions. (See the previous
section on data memory expansion for a description of
timing.) The following are a few of the Standard MCS-
80 devices which are very useful in MCS@-48 systems:

" 8214 Priority Interrupt Encoder

.. 825 I Serial Communications Interface

.. 8255 General Purpose Programmable I/O

.. 8279 Keyboard / Display Interface

.. 8253 Interval Timer

14.3.3 Combination Memory and
I/O Expanders

As I.nentioned in the sections on program and data mem­
ory expansion, the 8355/8755 and 8155 expanders also
contain I/O capability.

EXPANDED MCS®-48 SYSTEM

8048AH

INT 1---0<4C"

P20r-------1~

8279
KEYBOARD

DISPLAY
4

8 KEYBOARD
INPUTS

SCAN
OUTPUTS

RDr----------1~RD

WR WR
(A) DISPLAY

OUTPUT

(B) DISPLAY
OUTPUT

Figure 14-8. Keyboard/Display Interface

8355/8755: These two parts of RO M and EPRO M equiva­
lents and therefore contain the same I/O structure. I/O
consists of two 8-bit ports which normally reside in the
external data memory address space and are accessed
with MOVX instructions. Associated with each port is
an 8-bit Data Direction Register which defines each bit
in the port as either an input or an output. The data direc­
tion registers are directly addressable, thereby allowing
thc user to define under software control each individual
bit of the ports as either input or output. All outputs are
statically latched and double buffered. Inputs are not
latched.

8155/8156: I/O on the 8155/8156 is configured as two
8-bit programmable I/O ports and one 6-bit program-

BUS 8

PORT 1 8
8048AH

PORT 2 8

mabIe port. These three registers and a Control/Status
register are accessible as external data memory with the
M OVX instructions. The contents of the control register
determines the mode of the three ports. The ports can be
programmed as input or output with or without associated
handshake communication lines. In the handshake mode,
lines of the six-bit port become input and output strobes
for the two 8-bit ports. Also included in the 8155 is a l4-bit
programmable timer. The clock input to the timer and the
timer overflow output are available on external pins. The
timer can be programmed to stop on terminal count or to'
continuously reload itself. A square wave or pulse output
on terminal count can also be specified.

PROGr-------------4---------------+-------__ ----~ ______________ _J

Figure 14·9. Low Cost I/O Expansion

14-6

EXPANPED MCS®-48 SYSTEM

I/O EXPANSION EXAMPLES
(SEE ALSO CHAPTER 5)

Figure 14-9 shows the expansion of I/O using multiple
8243' s. The only difference from a single 8243 system
is the addition of chip selects provided by additional
8048AH output lines. Two output lines and a decoder
could also be used to address the four chips. Large num­
bers of 8243's would require a chip select decoder chip
such as the 8205 to save I/O pins.

AO 8255
A1 PROGRAM- PORT

MABLE A
PERIPHERAL

ALE INTERFACE PORT
8048AH

RD B

WR PORT
C

BUS 00-7
CS

OPTION #1 -=

Figure 14-10 shows the 8048AH interface to a standard
MCS®-80 peripheral; in this case, the 8255 Programmable
Peripheral Interface, a 40-pin part which provides three
8-bit programmable I/O ports. The 8255 bus interface is
typical of programmable MCS®-80 peripherals with an
8-bit bidirectional data bus, a RD and WR input for Read/
Write control, a CS (chip select) input used to enable the
Read/Write control logic and the address inputs used to
select various internal registers. .

P20 AD 8255
P21 A1 PROGRAM- PORT

MABLE A
PERIPHERAL

8048AH _ INTERFACE PORT

RD AD B

WR WR PORT
C

BUS 8 00-7
CS

OPTION #2

Figure 14-10. Interlace to MCS®-80 Peripherals

Interconnection to the 8048A H is very straightforward
with BUS, RD,and WR connecting directly to the cor­
responding pins on the 8255. The only design considera­
tion is the way in which the internal registers of the 8255
are to be addressed. If the registers are to be addressed as
external data memory using the MOVX instructions, the
appropriate number of address bits (in this case, 2) must
be latched on B US using ALE as described in the section
on external data memories. If only a single device is con­
nected to B US, the 8255 mav be continuously selected
by grounding CS. If multiple'8255's are used, additional
address bits can be latched and used as chip selects.

A second addressing method eliminates external latches
and chip select decoders by using output port lines as ad­
dress and chip select lines directly. This method, of
course, requires the setting of an output port with address
information prior to executing a MOVX instruction.

14.4 MULTI-CHIP MCS®-48 SYSTEMS

Figure 14-11 shows the addition of two memory expanders
to the 8048AH, one 8355/8755 ROM and one 8156 RAM.
The main consideration in designing such a system is the
addressing of the various memories and 110 ports. Note

14-7

that in this configuration address .lines AIO and All have
been 0 Red to chip select the 8355. This ensures that the
chip is active for all external program memory fetches in
the IK to 3K range and is disabled for all other addresses.
This gating has been added to allow the 110 port of the
8355 to be used. If the chip was left selected all the time,
there would be conflict between these ports and the RAM
and 110 of the 8156. The NOR gate could be eliminated
and All connected directly to the CE (instead of CE) input
of the 8355; however, this would create a lK word "hole"
in the program memory by causing the 8355 to be active
in the 2K and 4K range instead of the normal IK to 3K
range.

In this system the various locations are addressed as
follows:

• Data RA M-Addresses 0 to 255 when Port 2 Bit 0
has been previously set = I and Bit I set = 0

• RAM I/O --Addresses 010 3 when Port 2 Bit 0=
I and Bit I = I

• ROM I/O-Addresses 0 to 3 when Port 2 Bit 2 or
Bit 3 = I

See the memory map in Figure 14-12.

EXPANDED MCS®-48 SYSTEM

8156/8355

ALE

PSEN
8048AH RD

Wii

BUS 8 8

A8-10

83551
8755
ROM

EPROM

AOO-7

101M

-=-

00-7

8156
RAM

101M

PORT
A

PORT
B

PORT·
C

TIMER
OUT

Figure 14-11. The Three-Component MCS®-48 System

14.5 MEMORY BANK SWITCHING

Certain systems may require more than the 4K words of
program memory which are directly addressable by the
program counter or more than the 256 data memory and
I/O locations directly addressable by the pointer registers
RO and R I. These systems can be achieved using "bank
switching" techniques. Bank switching is merely the selec­
tion of various blocks or "banks" of memory using dedi­
cated output port lines from the processor. In the case of
the 8048AH, program memory is selected in blocks of 4K
words at a time, while data memory and I/O are enabled
256 words at a time.

The most important consideration in implementing two
or more banks is the software required to cross the bank
boundaries. Each crossing of the boundary requires that
the processor first write a control bit to an output port
before accessing memory or I/O in the new bank. Ifpro­
gram memory is being switched, programs should be
organized to keep boundary crossings to a minimum.

14-8

Jumping to subroutines across the boundary should be
avoided when possible since the programmer must keep
track of which bank to return to after completion ofthe
subroutine. Ifthese subroutines are to be nested and ac­
cessed from either bank, a software "stack" should be
implemented to save the bank switch bit just as ifit were
another bit of the program counter. .

From a hardware standpoint bank switching is very
straightforward and involves only the connection of an
I/O line or lines as bank enable signals. These enables
are ANDed with normal memory and I/O chip select
signals to activate the proper bank.

14;6 CONTROL SIGNAL SUMMARY

Table ,3-1 summarizes the instructions which activate the
various control outputs ol;the M CS®-48 processors. During
all other instructions these outputs are driven to the in­
active state.

EXPANDED MCS®-48 SYSTEM

Table 14-1. MCS®-48 Control Signals The latched mode (INS, OOTL)is intended for use in the
single-chip configuration where B US is not being used as
an expander port. 0 UTL and M 0 VX instructions can be
mixed if necessary. However, a previously latched output
will be destroyed by executing a MOVX instruction and
B US will be left in the high impedance state. I NS does not
put the B US in a high impedance state. Therefore, the use
of MOVX after OUTL to put the BUS in a high imped­
ance state is necessary before an INS instruction intended
to read an external word (as opposed to the previously
latched value).

Control
Signal When Active

RD During MOVX A, @R or INS Bus

WR During MOVX @R, A or OUTL Bus

ALE Every Machine Cycle

PSEN During Fetch of external program
memory (instruction or immediate data)

PROG During MOVD A,P ANLD P,A
MOVD P,A ORLD P,A

14.7 PORT CHARACTERISTICS

14.7.1 BUS Port Operations

OUTL should never be used in a system with external
program memory, since latching B US can cause the next
instruction, if external, to be fetched improperly.

The BUS port can operate in three different modes: as a
latched I I 0 port, as a bidirectional bus port, Of.as a pro­
gram memory address output when external memory is
used. The B US port lines are either active high, active
low, or high impedance (floating).

14.7.2 Port 2 Operations

The lower half of Port 2 can be used in three different
ways: as a quasi-bidirectional static port, as an 8243 ex­
pander port, and to address external program memory.

PROGRAM MEMORY
SPACE

MB1

8355
(2K)

BFFH

EXTERNAL DATA
MEMORY SPACE

MBO 1-----l4 OH I I 8~g5
-------- 300H I I 8155
RESIDENT 1 I 10
------- 200H 1-----1

(1K)
-------- 100H 1

'--___I OOOH 1--------1

RESIDENT DATA
MEMORY

(64)

SECTION ADDRESS DESIGNATION

PROG.MEM OOO-BFF
DATAMEM 100-IFF
8155 PORTS 300 CMD/STATUS

301 PORTA
302 PORTB
303 PORTC
304 TIMER LOW

8355 PORTS 305 TIMER HI
400 PORTA
401 PORTB
402 DORA
403 DDRB

Figure 14-12. Memory Map for Three-Component MCS®-48 Family

14-9

EXPANDED MCS®-48 SYSTEM

In all cases outputs are driven low by an active device and
driven high mome'ntarily by a low impedance device and
held high by a high impedance device to vee.

The port may contain latched 110 data prior to its use in
another mode without affecting operation of either. If
lower Port 2 (P20-3) is used to output address for an
external program memory fetch, the 110 information

8749H
8049AH
8048AH
8748H
8035AHL
8039AHL

D
D

1/0 1/0

1/0

previously latched will be automatically removed tem­
porarily while address is present, then restored when the
fetch is complete. However, if lower Port 2 is used to.
communicate with an 8243, previously latched 110 in­
formation will be removed and not restored. After an
input from the 8243, P20-3 will be left in the input mode
(floating). After an output to the 8243, P20-3 will contain
the value written, ANDed, or ORed to the 8243 port.

,-------:-l , _____ -J 0 0

Figure 14-13. MCS®-48 Expansion Capability

14-10

MCS® .. 48 Instruction Set 15

CHAPTER 15
MCS®-48 INSTRUCTION SET

15.0 INTRODUCTION

The MCS')-4~ instruction set is extensive for a machine of
its size and has been tailored to be straightforward and
very efficient in its use of program memory. All instruc­
tions are either one or two bytes in length and over HW'o
are only one byte long. Also, all instructions execute in
either one or two cycles and over 50% of all instructions
execute in a single cycle. pouble cycle instructions include
all immediate instructions, and all Ii 0 instructions.

The MCS-48 microcomputers have been designed to
handle arithmetic operations efficiently in both binary
and BCD as well as handle the single-hit operations re­
quired in control applications. Special instructions have
also been included to simplify loop counters, table look­
up routines, and N-way branch routines.

15.0.1 Data Transfers

As can be seen in Figure 15-1, the 8-bit accumulator is
the central point for all data transfers within the 8048.
Data can be transferred between the 8 registers of each
working register bank and the accumulator directly, i.e.,
the source or destination register is specified by the in­
struction. The remaining locations of the internal RAM
array are referred to as Data Memory and are addressed
indirectly via an address stored in either RO or RI of the
active register bank. RO and R 1 are also used to indirectly
address external data memory when it is present. Transfers
to and from internal RAM require one cycle, while trans­
fers to external RAM require two. Constants stored in
Program Memory can be loaded directly to the accumu­
lator and to the 8 working registers. Data can also be
transferred directly between the accumulator and the on-

i----------l
I PROGRAM DATA I

MEMORY MEMORY

I
(~DATA) MOV I

WORKING REG

I
ADD MOV I
MOV ADD
MOVP ANL

I
M~~ O~ I
ANL XRL
ORL XCH
XRL

EXPANDER /111---:7."'"--'--''\, 1""'"""------------""-------"<, /l::c:-:::',;;::---L-,,\ EXTERNAL
MEMORY

~~ PORTS 'rr--'-"'--.,-,
L-______ ~--------~-------,~------~'r~~~'/ ~~~PHERALS

ANL
ORL

8749H
8048AH
8049AH

8748H I
8035AHL·

~ ____ 8039AH~_J

Figure 15-1. Data Transfer Instructions

15-1

'NO PROGRAM
MEMORY

MCS®-48 INSTRUCTION SET

board timer counter or the accumulator and the Program
Status word (PSW): Writing to the PSW alters machine
status accordingly and provides a means of restoring status
after an interrupt or of alteril).g the stack pointer if
necessary.

15.0.2 Accumulator Operations

I~mediate data, data memory, or th~ w6rking registers
can be added with or without carry to the accumulator.
These sources can also be ANDed, ORed, or Exclusive
ORed to the accumulator. Data may be moved to or fro'm
the accumulator and working registers or data memory.
The two values can also be exchanged in a single operation.

In addition, the lower 4 bits' of the accumulator can be ex­
changed with the lower 4-bits of any of the internal RA M
locations. This instruction, along wit\! an instruction
which swaps the upper and lower 4-bit halves of the ac­
cumulator, provides for easy handling of 4-bit quantities,
including BCD numbers. To facilitate BCD arithmetic, a
Decimal Adjust instruction is included. This instruction is
used to correct the result of the binary' addition of two 2-
digit BCD numbers. Performing a decimal adjust on the re­
sult in the accumulator produces the required BCD result.

Finally, the accumulator can be incremented, decremented,
cleared, or complemented and can be rotated left or right
I bit at a time with or without carry.

Although there is no subtract instruction in the 8048A H,
this operation can be easily implemented with three single­
byte single-cycle instructions.

A value may be subtracted from the accumulator'with
the result in the accumulator by:

• Complementing the accumulator

• Adding the value to the accumulator

• Complementing the accumulator

15.0.3 Register Operations

The working registers can be accessed via the accumula­
tor as explafned above, or can be loaded immediate with
constants from program memory. In addition, they can
be incremented or decremented or used as loop counters
using the decrement and jump, ifnot zero instruction, as
explained under branch instructions. -'

All Data Memory including working registers can be
accessed with indirect instructions via RO and R I and
can be incremented.

15.0.4 Flags

There are four user-accessible flags in the 8048AH: Carry,
Auxiliary Carry, FO; and F I. Carry indicates overflow of
the accumulator, and Auxiliary Carry is used to indicate
overflow between BCD digits and is used during decimal­
adjust operation. Both Carry and Auxiliary Carry are
accessible as part of the program status word and are

, stored on the stack during subroutines. FOand F I are
undedicated general-purpose flags to be used as the pro­
grammer desires. Both flags can be cleared, or comple­
mented and tested by conditional jump instructions. FO is
also accessible via the Program Status word and is stored
on the stack with the carry flags.

15.0.5 Branch Instructions

The unconditional jump instruction is two bytes and
allows jumps anywhere in the first 2K words of program
memory. Jumps to the second 2K of memory (4K words
are directly addressable) are made first by executing a
select memory bank instruction, then executing the jump
instruction. The 2K b04ndary can only be crossed via a
jump or subroutine call instruction, i.e., the bank switch
does not occur until a jump is executed. Once a memory
bank has been selected all subsequent jumps will be to the
selected bank until another select memory bank instruc­
tion is executed. A subroutine in the opposite bank can
be accessed by a select memory bank instruction followed,
by a call instruction. Upon completion of the subroutine,
execution will automatically return to the original bank;
however, unless the original bank is reselected, the next
jump instruction encountered will again transfer execu­
tion to the opposite bank.

Conditional jumps can test the following inputs and
machine status:

• TO Input pin

• TI Input Pin

• INT Input Pin

• Accumulator Zero

• Any·bit of Accumulator

• Carry Flag

• FO Flag

• FI Flag

Conditional jumps allow a branch to any address within
the current page (256 words) of execution. The conditions
tested are the instantaneous values at the time the con­
ditional jump is executed. For instance, the jump on
accumulator zero instruction tests the accumulator itself.
not an intermediate zero flag.

15-2

MCS®-48 INSTRUCTION SET

The decrement register and jump if not zero instruction
combines a decrement and a branch instruction to create
an instruction very useful in implementing a loop counter.
This instruction can designate anyone of the g working
registers as a counter and can effect a branch to any ad­
dress within the current page of execution.

A single-byte indirect jump instruction allows the pro­
gram to be vectored to anyone of several different loca­
tions based on the contents of the accumulator. The con­
tents of the accumulator points to a location in program
memory which contains the jump address. The g-bitjump
address refers to the current page of execution. This in­
struction could be used, for instance, to vector to anyone
of several routines based on an ASC II character which
has been loaded in the accumulator. In this way ASCII
key inputs can be used to initiate various routines.

15.0.6 S~brouti"e~

Subroutines are entered by executing a call instruction.
Calls can be made like unconditional jumps to any ad­
dress in a 2K word bank, andjumps across the 2K bound­
ary are executed in the same manner. Two separate return
instructions determine whether or not status (upper 4-bits
of PSW) is restored upon return from the subroutine.

The return and restore status instruction also signals the
end of an interrupt service routine if one has been in
progress.

15.0.7 Timer Instructions

The g-bit on board timer / counter can be loaded or read
via the accumulator while the counter is stopped or while
counting. The counter can be started as a timer with an
internal clock source or as an event counter or timer with
an external clock applied to the T I input pin. The instruc­
tion executed determines which clock source is used. A
single instruction stops the counter whether it is operat­
ing with an internal or an external clock source. I n ad­
dition, two instructions allow the timer interrupt to be
enabled or disabled.

15.0.8 Control Instructions

Two instructions allow the external interrupt source to be
enabled or disabled. Interrupts an: initially disabled and
are automatically disabled while an interrupt service
routine is in progress and re-enabled afterward.

There are four memory bank select instructions, two to
designate the active working register bank and two to
control program memory banks. The operation of the pro­
gram memory bank switch is !!xplained in section 14.1.2.

The working register bank switch instructions allow the
programmer to immediately substitute a second g-register
working register bank for the one in use. This effectively
provides 16 working registers or it can be used as a means
of quickly saving the contents of the registers in response
to an interrupt. The user has the option to switch or not
to switch banks on interrupt. However, if the banks are
switched, the original bank will be automatically restored
upon execution of a return and restore status instruction
at the end of the interrupt service routine.

A special instruction enables an internal clock, which is
the XTAL frequency divided by three to be output on pin
TO. This clock can be used as a general-purpose clock in
the user's system. This instruction should be used only to
initialize the system since the clock output can be disabled
only by application of system reset.

15.0.9 Input/Output Instructions'

Ports I and 2 are S-bit static I/O ports which can be loaded
to and from the accumulator. Outputs are statically latch­
ed but inputs are not latched and must be read while inputs
are present. In addition, immediate data from program
memory can be AN Ded or ORed directly to Port I and
Port 2 with the result remaining on the port. This allows
"masks" stored in program memory to selectively set or
reset individual bits of the I; 0 ports. Ports I and 2 are
configured to allow input on a given pin by first writing
a "I" out to the pin.

An 8-bit port called BUS can also be accessed via the
accumulator and can have statically latched outputs as
well. It too can have immediate data ANDed or ORed
directly to its outputs, however, unlike ports 1 and 2, all
eight lines of BUS must be treated as either input or output
at anyone time: In addition to being a static port, BUS
can be used as a true synchronous bi -directional port using
the Move External instr,uctions used to access external
data memory. When these instructions are executed, It
corresponding READ or WRITE pulse is generated and
data is valid only at that time. When data is not being
transferred, BUS is in a high impedance state. Note that
the OUTL, ANL, and the ORL instructions for the BUS
are for use with internal program memory only.

. The basic three on-board I/O ports can be expanded via
a 4-bit expander bus using half of port 2. I/O expander
devices on this bus consisit of four 4-bit ports which are
addressed as ports 4 through 7. These ports have their
own AND and OR instructions like the on-board ports
as well as move instructions to transfer data in or out. The
expander AND and OR instructions, however, combine

15·3

MCS®-48 INSTRUCTION SET

the contents of accumulator with the selected port rather
than immediate data as is done with the on-board ports.
I/O devices can also be added externally using the BUS
port as the expansion bus. In this case the I/O ports be­
come,"memory mapped", i.e., they are addressed in the
same way as external data memory and exist in the exter­
nal data memory address space addressed by pointer
register RO or R I.

15.1 INSTRUCTION SET DESCRIPTION

The following pages describe the MCS®-48 instruction
set in detail. The instruction set is first summarized with
instructions grouped functionally. This summary page is
followed by a detailed description listed alphabetically
by mnemonic opcodc.

15-4

The alphabetical listing includes the following information.

• Mnemonic

• Machine Code

• Verbal Description

• Symbolic Description

• Assembly Language Example

The machine code is represented with the most significant
bit (7) to the left and two byte instructions are represented
with the first byte on the left. The assembly language ex­
amples are formulated as follows:

Arbitrary
Label: Mnemonic, Operand;
Descriptive Comment

Mnemonic

Accumulator

ADDA, R
ADDA,@R
ADD A, # data
ADDCA, R
ADDCA,
@R
ADDC A,
data
ANLA, R
ANLA,@R
ANLA, # data
ORLA, R
ORLA@R
ORL A, # data
XRL A, R

XRLA,@R

XRL, A, # data

INCA
DECA
CLRA
CPLA
DAA
SWAP A
RLA
RLCA

RRA
RRCA

Input/Output

INA, P
OUTL P, A
ANL P, # data
ORL P, # data

'INS A, BUS
'OUTL BUS, A
'ANL BUS,
data

'ORL BUS,
data
MOVDA, P

MOVD P, A

ANLD P, A
ORLD P, A

MCS®-48 INSTRUCTION SET

Description

Add register to A
Add data memory to A
Add immediate to A
Add register with carry
Add data memory
with carry
Add immediate
with carry
And register to A
And data memory to A
And immediate to A
Or register to A
Or data memory to A
Or immediate to A
ExclusJve Or register
to A
Exclusive or data
memory to A
Exclusive or
immediate to A
Increment A
Decrement A
Clear A
Complement A
Decimal adjust A
Swap nibbles of A
Rotate A left
Rotate A left
through carry
Rotate A right
Rotate A right
through carry

Input port to A
Output A to port
And immediate to port
Or immediate to port
Input BUS to A
Output A to BUS
And immediate to BUS

Or immediate to BUS

Input Expander port
to A
Output A to Expander
port

8048AH/8748H/8049AH/8749H
Instruction Set Summary

Bytes Cycle Mnemonic

Registers

1 1 INC R
1 1 INC@R
2 2 DEC R
1 1 Branch
1 1

JMP addr

2 2 JMPP@A
DJNZ R, addr

1 1
1 1 JC addr

2 2 JNC addr

1 1 JZ addr

1 1 JNZ addr

2 2 JTO addr
1 1 JNTO addr

JT1 addr
1 1 JNT1 addr

JFO addr
2 2 JF1 addr

1 1
1 1
1 1

JTF addr
JNI addr
JBb addr

1 1
1 1 Subroutine

1 1 CALL addr
1 1 RET
1 1 RETR

1 1
1 1 Flags

CLRC
CPL C
CLR FO

1 2 CPL FO
1 2 CLR F1
2 2 CPL F1
2 2
1 2 Data Moves

1 2 MOVA,R
2 2 MOVA,@R

2 2 MOV A. # data
MOV R, A

1 2 MOV@R,A

1 2 MOV R, # data

And A to Expander port 1 2 MOV@R,
Or A to Expander port 1 2 # data

MOVA, PSW

Mnemonics copyright Intel Corporation 1983.
'For use with internal memory only.

MOV PSW, A

Description Bytes Cycles

I ncrement reg ister 1 1
Increment data memory 1 1
Decrement register 1 1

Jump unconditional 2 2
Jump indirect 1 2
Decrement register 2 2
and jump
Jump on carry = 1 2 2
Jump on carry = 0 2 2
Jump on A Zero 2 2
Jump on A not Zero 2 2
Jump on TO = 1 2 2
Jump on TO = 0 2 2
Jump on T1 = 1 2 2
Jump on T1 = 0 2 2
Jump on FO = 1 2 2
Jump on F1 = 1 2 2
Jump on timer flag = 1 2 2
Jump on INT = 0 2 2
Jump on Accumulator 2 2
Bit

Jump to subroutine 2 2
Return 1 2
Return and restore 1 2
status

Clear Carry 1 1
Complement Carry 1 1
Clear Flag 0 1 1
Complement Flag 0 1 1
Clear Flag 1 1 1
Complement Flag 1 1 1

Move register to A 1 1
Move data memory 1 1
to A
Move immediate to A 2 2
Move A to register 1 1
Move A to data 1 1
memory
Move immediate 2 2
to register
Move immediate to 2 2
data memory
Move PSWto A 1 1
MoveAto PSW 1 1

Mnemonic

Data Moves
(Cont'd)
XCH A, R

XCH A,@R

XCHD A,@R

MOVXA,@R

MOVX@R,A

MOVPA,@A

MOVP3 A,@A

Timer/Counter
MOVA, T
MOVT,A
STRTT
STRT CNT
STOP TCNT
EN TCNTI

DIS TCNTI

MCS®-48 INSTRUCTION SET

Description

Exchange A and
register
Exchange A and
data memory
Exchange nibble of A
and register
Move external data
memory toA
Move A to external
data memory
Move to A from
current page
Move to A from Page 3

Read Timer/Counter
load Timer/Counter
Start Timer
Start Cou nter
Stop Timer/Counter
Enable Timer/Counter
Interrupt

8048AH/8748H/8049AH/8749H
Instruction Set Summary (Con't\

Bytes Cycle Mnemonic

Control
EN I

1 1
DIS I

1 1
SEl RBO

1 1 SEl RB1
SEl MBO

1 2 SEl MB1

1 2
ENTO ClK

1 2 NOP

1 2

1 1
1 1
1 1
1 1
1 1
1 1

Disable Timer/Counter 1 1

Description Bytes

Enable external 1
Interrupt
Disable external, 1
Interrupt
Select register bank 0 1
Select register bank 1 1
Select memory bank 0 1
Select memory bank 1 1
Enable clock output 1
onTO

No Operation 1

Interrupt
Mnemonics copyright Intel Corporati~n 1983.

Cycle

1

1

1
1
1
1
1

1

A
AC
addr
Bb
BS
BUS
C
ClK
CNT
CRR
D
data
DBF
FO, F1
I
P
PC
Pp
PSW
Ri
Rr
SP
T
TF
TO, T1
X

@
$
(X)
((X))

MCS®-48 INSTRUCTION SET
Symbols and,Abbreviations Used

Accumulator
Auxiliary Carry
12-Bit Program Memory Address
Bit Designator (b = 0-7)
Bank Switch
BUS Port
Carry
Clock
Event Counter
Conversion Result Register
Mnemonic for 4-Bit Digit (Nibble)
8-Bit Number or Expression
Memory Bank Flip-Flop
Flag 0, Flag 1
Interrupt
Mnemonic for "in-page" Operation
Program Counter
Port Desig nator (p = 1, 2 or 4-7)
Program Status Word
Data memory Pointer (i = 0, or 1)
Register Designator (r = 0-7)
Stack Pointer
Timer
Timer Flag
Test 0, Test 1
Mnemonic for External RAM
Immediate Data Prefix
Indirect Address Prefix
Current Value of Program Counter
Contents of X .
Contents of location Addressed by X
Is Replaced by

Mnemonics copyright Intel Corporation 1983.

15-7

MCS®-48 INSTRUCTION SET

ADD A,Rr Add Register Contents to Accumulator

Encoding: I 0 1 1 0 I 1 r r r I
Description: The contents of register 'r' are added to the accumulator. Carry is

affected.

Operation: (A) - (A) + (Rr)

Example: ADDREG: ADD A,RS

r = 0-7

;ADD REG S CONTENTS
;TO ACC

ADD A,@R1 Add Data Memory Contents to Accumulator

Encoding; I 0 1 1 0 I 0 0 0 i I SOH-S1H

Description: The contents of the resident data memory iocation addressed by register 'i' bits
0-5** are added ·to the accumulator. Carry is affected.

Operation: (A) - (A) + ((Ri)) i = 0-1

Example: ADDM: MOV RO, #01 FH ;MOVE '1 F HEX TO REG 0
ADD A, @RO ;ADD VALUE OF LOCATION

;31 TO ACC

ADD A,#dala Add Immediate Data 10 Accumulator

Encoding: I 0 0 0 0 I 6 0 1 1 I I d7 dS d5 d4 Id3 d2 d1 dO I 03H

Description: This is a 2-cycle instruction. The specified data is added to the accumulator ..
Carry is affected.

Operation: (A) - (A) + data

Example: ADDID: ADD A,#ADDER: ;ADD VALUE OF SYMBOL
;ADDER' TO ACC

ADDC A,Ri' Add Carry and Register Contents to Accumulator

Encoding: I 0 1 1 1 11 r r r I 78H-7FH

Description: The content of the carry bit is added to accumulator location 0 and the carry
bit cleared. The contentsof register 'r' are then added to the accumulator.
Carry is affected.

Operation: (A) - (A) + (Rr) + (C)

Example: ADDRGC: ADDC A,R4

•• 0-5 in 8048AH/8748H
0-6 in 8049AH/8749H

. 0-7 in 8050AH

15-8

r = 0..:7

;ADD CARRY AND REG 4
;CONTENTS TO ACC

MCS®-48 INSTRUCTION SET

ADDC A,@Ri Add Carry and Data Memory Contents to Accumulator

Encoding: 1 0 1 1 1 1 0 0 0 i 1 70H-71H

Descrl.ptlon: The content of the carry bit is added to accumulator location 0 and the carry bit
cieared. Then the contents of the resident data memory location addressed by
register 'i' bits O-S** are added to the accumulator. Carry is affected.

Operation: (A) - (A) + ((Ri)) + (C)

Example: ADDMC: MOV R1,#40
ADDC A,@R1

i = 0-1

;MOVE '40' DEC TO REG 1
;ADD CARRY AND LOCATION 40
;CONTENTS TO ACC

AD DC A,@data Add Carry and Immediate Data to Accumulator

Encoding: 10 0 0 1 1 0 0 1 1 I I d7 d6 dS d4 I d3 d2 d1 dO I 13H

Description: This is a 2-cycle instruction. The content of the carry bit is added to
accumulator location 0 and the carry bit cleared. Then the specified data is
added to the accumulator. Carry is affected.

Operation: (A) - (A) + data + (C)

Example: ADDC A,#22S ;ADD CARRY AND '225' DEC
;TOACC

ANL A,Rr Logical AND Accumulator with Register Mask

Encoding: 10 1 0 1 11 r r r 1 58H-5FH

Description: Data in the accumulator is logically ANDed with the mask contained in
working register 'r'.

Operation: (A) - (A) AND (Rr)

Example: ANDREG: ANL A,R3

r = 0-7

;'AND' ACC CONTENTS WITH MASK
;IN REG 3

ANL A,@Ri Logical AND Accumulator with memory Mask

Encoding: I 0 1 0 1 1 0 0 0 i I 50H-S1H

Description: Data in the accumulator is logically ANDed with the mask contained in the
data memory location referenced by register 'i' bits 0-5**,

Operation: (A) - (A) AND ((Ri)) i = 0-1

Example: ANDDM: MOV RO,#03FH ;MOVE '3F' HEX TO REG 0
ANL A, @RO ;'AND' ACC CONTENTS WITH

** 0-5 in 6046AH/6746H
0-6 in 6049AH/8749H
0-7 in 6050AH

15-9

;MASK IN LOCATION 63

MCS®-48 INSTRUCTION SET

ANL A,#data Logical AND Accumulator with Immediafe Mask

Encoding: 10 1 0 1 1 0 0 1 1 1 53H

Description: This is a 2-cycle instruction. Data inthe accumulatciris logically ANDed
with an immediately-specified mask.

Operation: (A) +- (A) AND data

Examples: ANDID: ANL A,#OAFH

ANL A,#3 + X/Y

;'AND' ACC CONTENTS
;WITH MASK 10101111
;'AND' ACC CONTENTS
;WITH VALUE OF EXP
;'3 + Xy/y'

ANL BUS,#data* Logical AND BUS with Immediate Mask

Encoding: 11 0 0 1 11 0 0 0 1 . 1 d7 d6 d5 d4 1 d3 d2 d1 dO 1 98H

Description: This is a 2-cycle instruction. Data on the BUS port is logically ANDed
with an immediately-specified mask. This instruction assumes prior
specification of an 'OUTL BUS, A' instruction ..

Operation: (BUS) +- (BUS) AND data·

Example: ANDBUS: ANL BUS,#MASK ;'AND' BUS CONTENTS
;~ITH MASK EQUAL VALUE
;OF SYMBOL 'MASK'

ANL Pp,#data Logical AND Port 1-2 with Immediate Mask

Encoding: 11 0 0 1 11 0 P pi I d7 d6 d5 d4 1 d3 d2 d1 dO 1 99H-9AH

Description: This is a 2-cycle instruction. Data on port 'p' is logically ANDed with an
immediately-specified mask.

Operation: (Pp) +- (Pp) AND DATA

Example: ANDP2: ANL P2,#OFOH

* For use with internal program memory ONLY.

15-10

p = 1-2

;'AND' PORT 2 CONTENTS
;WITH MASK 'FO' HEX
;(CLEAR P20-23)

MCS®-48 INSTRUCTION SET

ANLD Pp,A Logical AND Port 4-7 with Accumulator Mask

Encoding: 11 0 0 1 11 1 P P 1 9CH-9FH

Description: This is a 2-cycle instruction. Data on port 'p' is logically ANDed with the
digit mask contained in accumulator bits 0-3.

Operation: (Pp) - (Pp) AND (AO-3) P = 4-7
Note: The mapping of port 'p' to opcode bits 0-1 is as follows:

1 0 Port

00 4
01 5
1 0 6
1 1 7

Example: ANDP4: ANLD P4,A

CALL address Subroutine Call

;'AND' PORT 4 CONTENTS
;WITH ACC BITS 0-3

Encoding: I alO a9 aa 1 I 0 1 0 0 I I a7 a6 a5 a4 I a3 a2 a1 aO I
Page Hex Op Code

o 14
1 34
2 54
3 74
4 94
5 B4
6 04
7 . F4

Description: This is a 2-cycle instruction. The program counter and PSW bits 4-7 are
saved in the stack. The stack pointer (PSW bits 0-2) is updated. Program
control is then passed to the location specified by 'address'. PC bit 11 is
determined by the most recent SEL MB instruction.

A CALL can'not begin in locations 2046-2047 or 4094-4095. Execution
conti 'lues at the instruction following the CALL upon return from the
subroutine.

Operation: ((SP)) - (PC), (PSW4-7)
(SP) - (SP) + 1
(PCa-10) - (addra_10)
(PCO-7) - (addrO"':7)
(PC11) -DBF

1 !,>-1 1

MCS®-48 INSTRUCTION SET

Example: Add three groups of two numbers. Put subtotals in locations 50, 51 and
total in location 52.

MOV RO,#50

BEGADD: MOV A,R1

ADD A,R2
CALLSUBTOT
AD DC A R3
ADDCA,R4
CALL SUBTOT
ADDC A,R5
AD DC A,R6
CALL SUBTOT

SUBTOT: MOV @RO,A

INC RO
RET

ClR A Clear Accumulator

Encoding: 10 0 1 0 1 0 1 1 I 27H

;MOVE '50' DEC TO ADDRESS
;REG 0
;MOVE CONTENTS OF REG 1
;TO ACC
;ADD REG 2 TO ACC
;CALL SUBROUTINE 'SUBTOT'
;ADD REG 3 TO ACC
;ADD REG 4 TO ACC
;CALL SUBROUTINE 'SUBTOT'
;ADD REG 5 TO ACC
;ADD REG 6 TO ACC
;CALL SUBROUTINE 'SUBTOT'
;MOVE CONTENTS OF ACC TO
;LOCATION ADDRESSED BY
;REGO
;INCREMENT REG 0
;RETURN TO MAIN PROGRAM

Description: The contents of the accumulator are cleared to zero.

Operation: A - 0

ClR C Clear Carry Bit

Encoding: 11 0 0 1 1 0 1 1 1 97H

Description: During normal program execution, the carry bit can be set to one by the
ADD, AD DC, RLC, CPL C, RRC, and DAA insructions. This instruction
resets the carry bit to zero.

Operation: C - 0

ClR F1 Clear Flag 1

Encoding: 11 0 1 0 1 0 1 0 1 I ASH

Description: Flag 1 is cleared to zero.

Operation: (F1) - 0

15-12

MCS®-48 INSTRUCTION SET

CLR FO Clear Flag 0

Encoding: 11 0 0 0 1 0 1 0 1 I 85H

Description: Flag 0 is cleared to zero.

Operation: (FO) - 0

CPL A Complement Accumulator

Encoding: 1 0 0 1 1 I 0 1 1 1 I 37H

Description: The contents of the accumulator are complemented. This is strictly a one's
complement. Each one is changed to zero and vice-versa.

Operation: (A) - NOT (A)

Example: Assume accumulator contains 01101010.
CPLA: CPL A ;ACC CONTENTS ARE COMPLE­

;MENTED TO 10010101

CPL C Complement Carry Bit

Encoding: 11 0 1 01 0 1 1 1 1 A7H

Description: The setting of the carry bit is complemented; one is changed to zero, and
zero is changed to one.

Operation: (C) - NOT (C)

Example: Set C to one; current setting is unknown.
CT01: CLR C ;C IS CLEARED TO ZERO

CPL C ;C IS SET TO ONE

CPL FO Complement Flag 0

• Encoding: 11 0 0 1 1 0 1 0 11 95H

Description: The setting of flag 0 is complemented; one is changed to zero, and zero is
changed to one.

Operation: FO - NOT (FO)

CPL F1 Complement Flag 1

Encoding: 11 0 1 1 1 0 1 0 1/ B5H

Description: The setting of flag 1 is complemented; one is changed to zero, and zero is
changed to one.

Operation: (F1) - NOT (F1)

15-13

MCS®-48 INSTRUCTION SET

DA A Decimal Adjust Accumulator

Encoding: I 0 1 0 1 I 0 1 1 1 I 57H

Description: The 8-bit accumulator value is adjusted to form two 4-bit Binary Coded
Decimal (BCD) digit~ following the binary addition of BCD numbers.
The carry bit C is affected. If the contents of bits 0-3 are greater than nine,
or if AC is one, the accumulator is incremented by six.

The four high-order bits are then checked. If bits 4-7 exceed nine, or if
C is one, these bits are increased by six. If an overflow o~curs, C is set
to one.

Example: Assume accumulator contains 10011011.

c

DA A ;ACC Adjusted to 00000001
;WITH C SET

C AC 7 43 0
0010011011

00000110
01 1 0 1 0 0 0 0 1

o 1 1 0
000 0 0 0 0 0 1

ADD SIX TO BITS 0-7

ADD SIX TO BITS 4-7
OVERFLO,W TO C

DEC A Decrement Accumulator

Encoding: I 0 0 0 0 I 0 1 1 1 I 07H

Description: The contents of the accumulator are decremented by one. The carry flag
is not affected.

Operation: (A) - (A) -1

Example: Decrement contents of external data memory location 63.
MOV RO,#3FH . ;MOVE '3F' HEX TO REG 0
MOVXA,@RO ;MOVECONTENTSOF

DECA
MOVX@RO,A

;LOCATION 63 TO ACC
;DECREMENT ACC
;MOVE CONTENTS OF ACC TO
;LOCATION 63 IN EXPANDED
;MEMORY

DEC Rr Decrement Register

Encoding: 11 .1 0 0 11 r r r 1 C8H-CFH

Description: The contents of working register 'r' are decremented by one.

Operation: (Rr) - (Rr) -1 r = 0-7

Example: DECR1: DEC R1 ;DECREMENT CONTENTS OF REG 1

15-14

MCS®-48 INSTRUCTION SET

DIS I External Interrupt

Encoding: I a a a 1 1 a 1 a 1 1 15H

Description: External interrupts are disabled. A low signal on the interrupt input pin has
no effect.

DIS TCNTI Disable Timer/Counter Interrupt

Encoding: I a a 1 1 1 a 1 a 1 1 35H

Description: Timer/counter interrupts are disabled. Any pending timer interrupt request
is cleared. The interrupt sequence is not initiated by an overflow, but the
timer flag is set and time accumulation continues.

DJNZ Rr• address Decrement Register and Test

Encoding: 11 1 1 a 11 r r r 1 E8H-EFH

Description: This is a 2-cycle instruction. Register 'r' is decremented, then tested for
zero. If the register contains all zeros, program control falls through to the
next instruction. If the register contents are not zero, control jumps to the
specified 'address'.

The address in this case must evaluate to 8-bits, that is, the jump must be
to a location within the current 256-location page.

Example: (Rr) - (Rr) -1 r = 0-7
If Rr not a
(PCO-7) - addr
Note: A 12-bit address specification does not cause an error if the
DJNZ instruction and the jump target are on the same page. If the DJNZ
instruction begins in location 255 of a page, it must jump to a target
address on the following page.

Example: Increment values in data memory locations 50-54.
MOV RO,#50 ;MOVE '50' DEC TO ADDRESS

;REG a
MOV R3,#5 ;MOVE '5' DEC TO COUNTER

;REG 3
INCRT: INC @RO ;INCREMENT CONTENTS OF

;LOCATION ADDRESSED BY
;REG a

INC RO ;INCREMENT ADDRESS IN REG a
DJNZ R3, INCRT ;DECREMENT REG 3 - JUMP TO

;'INCRT' IF REG 3 NONZERO
NEXT - ;'NEXT' ROUTINE EXECUTED

;IF R3 IS ZERO

15-15

MCS®·48 INSTRUCTION SET

EN I Enable External Interrupt

Encoding: 10 0 0 0 10 1 0 1 1 05H

Description: External interrupts are enabled. A low signal on the interrupt input pin
initiates the interrupt sequence.

EN TCNTI Enable Timer/Counter Interrupt

Encoding: 1 0 0 1 0 1 0 1 0 1 1 25H

Description: Timer/counter interrupts are enabled. An overflow of the timer/counter
initiates the interrupt sequence.

ENTO ClK Enable Clock Output

Encoding: 10 1 1 1 1 0 1 0 1 1 75H

Description: The test 0 pin is enabled to act as the clock output. This function is
disabled by a system reset.

Example: EMTSTO: ENTO ClK ;ENABlE TO AS CLOCK OUTPUT

IN A,Pp Input Port or Data to Accumuiator

Encoding: 1 0 0 0 0 11 0 P pi 09H-OAH

Description: This is a 2-cycle instruction. Data present on port 'p' is
transferred (read) to the accumulator.

Operation: (A) _ (Pp)i
INP12: IN A,P1

MOVR6,A
INA,P2
MOV R7,A

INC A Increment Accumulator

p = 1-2
;INPUT PORT 1 CONTENTS TO ACC
;MOVE ACC CONTENTS TO REG 6
;INPUT PORT 2 CONTENTS TO ACC
;MOVE ACC CONTENTS TO REG 7

Encoding: 10 0 0 1 1 0 1 1 11 17H

Description: The contents of the accumulator are incremented by one. Carry is not
affected.

Operation: (A) - (A) +1

15-16

MCS®-48 INSTRUCTION SET

Example: Increment contents of location 100 in external data memory.
INCA: MOV RO,#100 ;MOVE '100' DEC TO ADDRESS REG 0

MOVX A,@RO ;MOVE CONTENTS OF LOCATION
;100 TO ACC

INC A ;INCREMENT A .
MOVX @RO,A ;MOVE ACC CONTENTS TO

;LOCATION 101

INC Rr Increment Register

Encoding: 1 0 0 0 1 11 r r r 1 18H-1FH

Description: The contents of working register 'r' are incremented by one.

Operation: (Rr) - (Rr) + 1

Example: INCRO: INC RO

INC @R1 Increment Data Memory Location

r = 0-7

;INCREMENT CONTENTS OF REG 0

Encoding: 10 0 0 1 1 0 0 0 i 1 10H-11H

Description: The contents of the resident data memory location addressed by register 'i' bits
0-5** are incremented by one.

Operation: ((Ri)) - ((Ri)) + 1

Example: INCDM: MOV R1 ,#03FH
INC @R1

i = 0-1

;MOVE ONES TO REG 1
;INCREMENT LOCATION 63

INS A,BUS· Strobed Input of BUS Data to Accumulator

Encoding: 10 0 0 0 11 0 0 0 1 08H

Description: This is a 2-cycle instruction. Data present on the BUS port is transferred
(read) to thei accumulator when the RD pulse is dropped. (Refer to section
on programming memory expansion for details.)

Operation: (A) - (BUS)

Example: INPBUS:INS A,BUS

• For use with internal program memory ONLY.
··0-5 in S04SAH/S74SH

0-6 in S049AH/S749H
0-7 in S050AH

;INPUT BUS CONTENTS TO ACC

15-17

MCS®·48 INSTRUCTION SET

JBb address Jump If Accumulator Bit Is Set

Accumulator Bit Hex Op Code

0 12
1 32
2 52
3 72
4 92
5 B2
6 D2
7 F2

Description: This is a 2-cycle instruction. Control passes to the specified address if
accumulator bit 'b' is set to one.

Operation:
(PCO-7) - addr
(PC) = (PC) + 2

Example: JB4IS1: JB4 NEXT

JC address Jump If Carry Is Set

b = 0-7
If Bb = 1
If Bb = 0
;JUMP TO 'NEXT' ROUTINE
;IF ACC BIT 4 = 1

Encoding: 11 1 1 1 1 0 1 1 a I 1 a7 a6 a5 a4 1 a3 a2 a1 ,aa F6H

Description: This is a 2-cycle instruction. Control passes to the specified address if the
carry bit is set to one.

,Operation: (PCO-7) - addr
(PC) = (PC) + 2

Example: JC1: JC OVFLOW

JFO address Jump If Flag 0 Is Set

Encoding: 11 0 1 1 I 0 1 1 a I

If C = 1
If C = 0

;JUMP TO 'OVFLOW' ROUTINE
;IF C = 1

B6H

Description: This is a 2-cycle instruction. Control passes to the specified address if
flag 0 is set to one.

Operation: (PCO-7) - addr If FO = 1
(PC) =(PC) +2 If Fa = a

Example: JFOIS1: JFO TOTAL ;JUMP TO 'TOTAL' ROUTINE IF FO = 1

15-18

MCS®-48 INSTRUCTION SET

JF1 address Jump If Flag 1 Is Set

Encoding: 10 1 1 1 I 0 1 1 0 I I a7 a6 a5 a4 I a3 a2 a1 ao I 76H

Description: This is a 2-cycle instruction. Control passes to the specified address if
flag 1 is set to one. .

Operation: (PCo-7) - addr If F1 = 1
(PC) =(PC + 2) If F1 = 0

Example: JF1IS1: JF1 FILBUF

JMP address Direct Jump within 2K Block

Encoding: I a1 0 ag a8 0 I 0 1 0 0 I

;JUMP TO 'FILBUF'
;ROUTINE IF F1 = 1

Page Hex.Op Code

0 04
1 24
2 44
3 (34
4 84
5 A4
6 C4
7 E4

Description: This is a 2-cycle instruction. Bits 0-10 of the program counter are replaced
with the directly-specified address. The setting of PC bit 11 is
determined by the most recent SELECT MB instruction.

Operation: (PC8-1O) - addr 8:-10
(PCO-7) - addr 0-7
(PC11) - DI3i=

Example: JMP SUBTOT
JMP $-6

JMP 2FH

JMPP @A Indirect Jump within Page

~hcodlng: 11 0 1 1 1 0 0 1 1 I B3H

;JUMP TO SUBROUTINE 'SUBTOT'
;JUMP TO INSTRUCTION SIX
;LOCATIONS BEFORE CURRENT
;LOCATION
;JUMP TO ADDRESS '2F' HEX

Description: This is a 2-cycle insruction. The contents of the program memory location
pointed to by the accumulator are substituted for the 'page' portion of the
program counter (PC bits 0-7).

15-19

MCS®-48 INSTRUCTION SET

Operation: (PCO-7) - ((A»

Example: Assume accumulator contains OFH.
JMPPAG: JMPP @A ;JUMP TO ADDRESS STORED IN

;LOCATION 1S IN CURRENT pAGE

JNC address Jump If Carry Is Not Set

Encoding: 11.1 1 0 I 0 1 1 0 I l'a7 as as a41 a3 a2 a1 aO I ESH

Description: This is a 2-cycle instruction. Control passes to the specified address if
the carry bit is not set, that is, equals zero.

Operation: (PCO- 7) - addr
(PC) = (PC) + 2

Example: JCO: JNC NOVFLO

JNI address Jump If Interrupt Input Is Low

If C = 0
If C = 1

;JUMP TO 'NOV FLO' ROUTINE
;IF C = 0

Encoding: 11 0 0 0 I 0 1 1 0 1 1 a7 as as a4 I a3 a2 a1 aO 1 8SH

Description: This is a 2-cycle instruction. Control passes to the specified address if the
interrupt input signal is low (= 0), that is, an external interrupt has been
signaled. (This signal initiates an interrupt service sequence if the external
interrupt is enabled.)

Operation: (PCO-7) - addr
(PC) = (PC) + 2

Example: LOC 3: JNI EXTINT'

JNTO address Jump If Test 0 is Low

Encoding: 0 0 1 0 0 1 1 0

If 1= 0
If I = 1
;JUMP TO 'EXTINT' ROUTINE
;IF I = 0

2SH

Description: This is a 2-cycle instruction. Control passes to the specified address, if the
test 0 signal is low.

Operation: (PCO-7) - addr
(PC) = (PC) + 2

Example: JTOLOW: JNTO 60

15-20

IfTO = 0
IfTO = 1

;JUMP TO LOCATION 60 DEC
;IF TO = 0

MCS®-48 INSTRUCTION SET

JNT1 address Jump If Test 1 Is Low

Encoding: I 0 1 0 0 I 0 1 1 0 I I a7 a6 a5 a4 I a3 a2 a1 aO 1 46H

Description: This is a 2-cycle instruction. Control passes to the specified address, if
the test 1 signal is low.

Operation: (PCO-7) - addr
(PC) = (PC) + 2

JNZ Address Jump If Accumulator Is Not Zero

IfT1 = 0
IfT1 = 1

Encoding: 11 0 0 1 1 0 1 1 0 1 I a7 a6 a5 a4 I a3 a2 a1 aO I 96H

Description: This is a 2-cycle instruction. Control passes to the specified address if the
accumulator contents are nonzero at the time ·this instruction is executed.

Operation: (PCO- 7) - addr
(PC) = (PC) + 2

Example: JACCNO: JNZ OABH

JTF address Jump If Timer Flag Is Set

If A# 0
If A = 0

;JUMP TO LOCATION 'AB' HEX
;IF ACC VALUE IS NONZERO

Encoding: ~O 0 1 I O~1El @La6 a5 a4 I a3 a2 a1 aO I 16H

Description: This is a 2-cycle instruction. Control passes to the specified address if the
timer flag is set to one, that is, the timer/counter register has overflowed.
Testing the timer flag resets it to zero. (This overflow initiates an interrupt
service sequence if the timer-overflow interrupt is enabled.)

Operation: (PCO-7) - addr
(PC) = (PC) + 2

Example: JTF1: JTF TIMER

JTO address Jump If Test 0 Is High

Encoding: I 0 0 1 1 I 0 1 1 0 I

IfTF = 1
If TF = 0

;JUMP TO 'TIMER' ROUTINE
;IF TF = 1

36H

Description: This is a 2-cycle instruction. Control passes to the specified address if
the test 0 signal is high (= 1).

Operation: (PCO- 7) - addr If TO = 1
(PC) = (PC) + 2 If TO = 0

Example: JTOHI: JTO 53

15-21

;JUMP TO LOCATION 53 DEC
;IF TO = 1

!Io'CS®-48 INSTRUCTION SET

JT1 address Jump If Test 1 Is High

Encoding: I 0 1 0 1 I 0 11 0 1 1 a7 a6 as a4 1 a3 a2 a1 aO I S6H

Description: This is a 2-cycle instruction. Control passes to the specified addras!\ jf the
test 1 signal is high (= 1). '

Operation: (PCO-7) -addr If T1 = 1
(PC) = (PC) + 2 If T1 = 0

Example: JT1HI: JT1 COUNT

JZ address Jump If Accumulator 1$ Zero

;JUMP TO 'COUNT' ROUTINE
;IF T1 = 1

Encoding: 11 1 0 0 I 0 1 1 0 1 1 a7 a6 as a4 I a3 a2 a1 aO 1 G6H

Description: This is a 2-cycle instruction. Control passes to the specified address if
the accumulator contains all zeros at the time this instruction is executed.

Operation: (PCO-7) - addr
(PC) = (PC) + 2

Example: JACCO: JZ OA3H

If A = 0
If A¢' 1

;JUMP TO LOCATION 'A3' HEX
;IF ACC VALUE IS ZERO

MOV A,#data Move Immediate Data to Accumulator

En~odlng: 1 0 0 1 0 1 0 0 1 1 1 1 a7 a6 as a4 1 a3 a2 a1 aO 1 23H

Description: This is a 2-cycle instruction. The a-bit value specified by 'data' is loaded
in the accumulator.

Operation: (A) - data

Example: MOV A,#OA3H ;MOVE 'A3' HEX TO ACC

/ . MOV A,PSW Move PSW Contents to ACGumulator

Encoding: 11 1 0 0 I 0 l' 1 1 I C7H

Description: The contents of the program status word are moved to the accumulator. '

Operation: (A) - (PSW)

Example: Jump to 'RB1SET' routine if PSW bank switch,bit 4, i~ set.
BSCHK: MOV A,PSW ;MOVE PSW CbNTENTS TO ACC

JB4 RB1SET ;JUMP TO 'RB1SET' IF ACC BIT 4 = 1

15-22

MCS®-48 INSTRUCTION SET

MOV A,R r Move Register Contents to Accumulator

Encoding: 11 1 1 1 11 r r r I F8H-FFH

Description: 8-bits of data are removed from working register 'r' into the accumulator.

Operation: (A) - (Rr) r = 0-7

Example: MAR: MOV A,R3 ;MOVE CONTENTS OF REG 3 TO ACC

MOV A,@Ri Move Data Memory Contents to Accumulator

Encoding 11 1 1 1 1 0 0 0 i 1 FOH-F1H

Description: The contents of the resident data memory location addressed by bits 0-5** of
register 'i' are moved to the accumulator. Register 'i' contents are unaffected.

Operation: (A) - ((Ri»

Example: Assume R1 contains 00110110.
MADM: MOV A,@R1

i = 0-1

;MOVE CONTENTS OF DATA MEM
;LOCATION 54 TO ACC

MOV A,T Move Timer/Counter Contents to Accumulator

Encoding: I 0 1 0 0 I 0 0 1 0 I 42H

Description: The contents of the timer/event-counter register are moved to the
accumulator.

Operation: (A) - (T)

Example: Jump to "EXIT" routine when timer reaches '64', that is, when bit 6 set­
assuming initialization 64,
TIMCHK: MOV A,T

JB6 EXIT
;MOVE TIMER CONTENTS TO ACC
;JUMP TO 'EXIT IF ACC BIT 6 = 1

MOV PSW,A Move Accumulator Contents ,to PSW

Encoding: 11 1 0 1 I 0 1 1 1 I D7H

Description: The contents ofthe accumulator are moved into the progam status word.
All condition bits and the stack pointer are affected by this move.

Operation: (PSW) - (A)

Example: Move up stack pointer by two memory locations, that is, increment the
pointer by one.
INCPTR: MOV A,PSW ;MOVE PSW CONTENTS TO ACC

•• 0-5 in 8048AH/8748H
0-6 in 8049AH/8749H
0-7 in 8050AH

INC A ;INCREMENT ACC BY ONE
MOV PSW,A ;MOVE ACC CONTENTS TO PSW

15-23

MCS®·48INSTRUCTlqN SET

MOV Rr,A Move Accumulator Contents to Register

Encoding: 11 0 1 0 11 r r r 1- A8H-:-AFH

Description: The contents of the accumulator are moved to register 'r'.
o •

r = 0-7 Operation: (Rr) - (A)

Example: MRA: MOV RO,A ;MOVE CONTENTS OF ACC TO REG 0

MOV Rr,#data Move Immediate Data to Register

Encoding: 11 0 1 1 11 r2 r1 rO 1 B8H-BFH·

Description: This is a 2-cycle instruction. The 8-bit value spec if Jed by 'data'.is moved to
register'r'.

Operation: (Rr) - data

Examples: MIR4: MOV R4,#HEXTEN

MIR S: MOV RS,#PI*(R*R).

MIR 6: MOV R6, #OADH

r = 0-7

;THE VALUE OF THE SYMBOL
;'HEXTEN' IS MOVED INTO REG 4
;THE VALUE OF THE EXPRESSION
;'PI*(R*R)' IS MOVED INTO REG S
;'AD' HEX IS MOVED INTO REG 6

MOV@ Ri,A Move Accumulator Contents to Data Memory

Encoding: 11 0 1 0 I 0 ·0 0 i I AOH-A1H

Description: The contents of the accumulator are moved to the resident data memory
location whose address is specified by bitsO-S** of register 'i'. Register 'i'
contents are unaffected.

Operation: ((Ri)) - (A) i = 0-1

Example: Assume RO contains 00000111.
MDMA: MOV @RO,A ;MOVE CONTENTS OF ACC TO

;LOCATION 7 (REG 7)

MOV @ Ri,#data Move Immediate Data to Data memory

BOH-B1H

Description: This is a 2-cycle instruction. The 8-bit value specified by 'data' is moved
to the resident data memory location addressed QY register 'i', bits O-S**.

Operation: ((Ri)) - data i = 0-1

Examples: Move the hexadecimal value AC3F to locations 62-63.
MIDM: MOV RO,#62 ;MOVE '62' DEC TO ADDR REG 0

** 0-5 in 8048AH/8748H
0-6 in 8049AH/8749H
0-7 in 8050AH

MOV @RO,#OACH ;MOVE 'AC' HEX TO LOCATION 62
INC RO ;INCREMENT REG 0 to '63'
MOV@RO,#3FH;MOVE'3F' HEX TO LOCATION 63

1S-24

MCS®-48 INSTRUCTION SET

MOY T,A Move Accumulator Contents to Timer/Counter

Encoding: I 0 1 1 0 I 0 0 1 0 I 62H

Description: The contents of the accumulator are moved to the timer/event-counter
register.

Operation: (T) - (A)

Example: Initialize and start event counter.
INITEC: CLR A

MOVT,A
START CNT

;CLEAR ACC TO ZEROS
;MOVE ZEROS TO EVENT COUNTER
;START COUNTER

MOYD A,Pp Move Port 4-7 Data to Accumulator

Encoding: 1 0 0 0 0 11 1 P P 1 OCH-OFH

Description: This is a 2-cycle instruction. Data on 8243 port 'p' is moved (read) to
accumulator bits 0-3. Accumulator bits 4-7 are zeroed.

Operation: (0-3) - (Pp)
(4-7) - 0

p = 4-7

Note: Bits 0-7 of the opcode are used to represent ports 4-7. If you are
coding in binary rather than assembly language, the mapping is as
follows:

Bits 1 0

00
01
1 0
1 1

Example: INPPT5: MOVD A,P5

Port

4
5
6
7

;MOVE PORT 5 DATA TO ACC
;BITS 0-3, ZERO ACC BITS 4-7

MOYD Pp,A Move Accumulator Data to Port 4-7

Encoding: I 0 0 1 1 11 1 P P 1 3CH-3FH

. Description: This is a 2-cycle instruction. Data in accumulator bits 0-3 is moved
(written) to 8243 port 'p'. Accumulator bits 4-7 are unaffected. (See NOTE
above regarding port mapping.)

Operation: (Pp) -(AO-3) P = 4-7

Example: Move data in accumulator to ports 4 and 5 ..

OUTP45: MOVD P4,A
SWAP A
MOVD P5,A

15-25

;MOVE ACC BITS 0-3 TO PORT 4
;EXCHANGE ACC BITS 0-3 and 4-7
;MOVE ACC BITS 0-3 TO PORT 5

MCS®-48 INSTRUCTION SET

MOVP A,@A Move Current Page Data to Accumulator

Encoding: [1 0 1 0 I 0 0 1 1 I A3H

Description: The contents of the program memory location addressed by the
accumulator are moved to the accumulator. Only bits 0-7 of the program
counter are affected, limiting the program memory reference to the
current page. The program counter is restored following this operation.

Operation: (PCO-7) - (A)
(A) - ((PC))
Note: This is a 1-byte, 2-cycle instruction. Ifit appears in location 255 of a
program memory page, @A addresses a location in the following page.

Example: MOV128: MOV A,#128
MOVPA,@A

;MOVE '128' DEC TO ACC
;CONTENTS OF 129th LOC~TION IN
;CURRENTPAGE ARE MOVED TO ACC

MOVP3 A,@A Move Page 3 Data to Accumulator

Encoding: ~~i:li:::~ E3H

Description: This is a 2-cycle instruction. The contents of the program memory location
(within page 3) addressed by the accumulator are moved to the
accumulator. The program counter is restored following this operation.

Operation: (PCO-7) - (A)
(PC8-11) - 0011
(A) - ((PC))

Example: Look up ASCII equivalent of hexadecimal code in table contained at the
beginning of page 3. Note that ASCII characters are deSignated by a
7-bit code; the eighth bit is always reset.
TABSCH: MOV A,#OB8H ;MOVE 'B8' HEX TO ACC (10111000)

ANL A,#7FH ;LOGICAL AND ACC TO MASK BIT
;7 (00111000)

MOVP3 A,@A ;MOVE CONTENTS OFLOCATION '38'
;HEX IN PAGE 3 TO ACC (ASCII '8')

Access contents oJ location in page 3 labelled TAB1.
Assume current program location is not in page 3.
TABSCH: MOV A,#LOW TAB 1 ;ISOLATE BITS 0-7 OF LABEL

;ADDRESS VALUE
MOVP3 A,@A ;MOVE CONTENTS OF PAGE 3

;LOCATION LABELED 'TAB1' TO ACC

15-26

MCS®-48 INSTRUCTION SET

MOVX A,@Ri Move External-Data-Memory Contents to Accumulator

Encoding: 11 0 0 0 1 0 0 0 i 1 80H-81 H

Description: This is a 2-cycle instruction. The contents of the external data memory
location addressed by register 'i' are moved to the accumulator. Register 'i'
contents are unaffected. A read pulse is generated.

Operation: (A) - ((Ri)) i = 0-1

Example: Assume R1 contains01110110.
MAXDM: MOVX A,@R1 ;MOVE CONTENTS OF LOCATION

;118TOACC

MOVX @Rj,A Move Accumulator Contents to External Data Memory

Encoding: 11 0 0 1 1 0 0 0 i 1 90H-91H

Description: This is a 2-cycle instruction. The contents of the accumulator are moved to
the external data memory location addressed by register 'i'. Register 'i'
contents are unaffected. A write pulse is generated.

Operation: ((Ri)) - A

Example: Assume RO contains 11000111.
MXDMA: MOVX @RO,A

NOP The NOP Instruction

Encoding: 1 0 0 0 0 I 0 0 0 0 I OOH

i = 0-1

;MOVE CONTENTS OF ACC TO
;LOCATION 199 IN EXPANDED
;DATA MEMORY

Description: No operation is performed. Execution continues with the following
instruction.

ORL A;Rr Logical OR Accumulator With Register Mask

Encoding: I 0 1 0 0 11 r r r I 48H-4FH

Description: Data in the accumulator is logically ORed with the mask contained in
working register 'r'.

Operation: (A) - (A) OR (Rr)

Example: ORREG: ORL A,R4

15-27

r = 0-7

;'OR' ACC CONTENTS WITH
;MASK IN REG 4

MCS®-48 INSTRUCTION SET
--"---""---"." -----

ORL A,@RI Logical OR Accumulator With Memory Mask

Encoding: 10 1 0 0 10 0 0 i I 40H-41H

Description: Data in the accumulator is logically ORed with the mask containd in the
resident data memory location referenced by register 'r', bits 0-5*.

Operation: (A) - (A) OR ((Ri))

Example: ORDM: MOV RO,#3FH
ORL A,@RO

i = 0-1

;MOVE '3F' HEX TO REG 0
;'OR' AC CONTENTS WITH MASK
;IN LOCATION 63

ORL A,#data Logical OR Accumulator"With Immediate Mask

Encoding: 10 1 0 0 I 0 0 1 11 I d7 d6 d5 d4 1 d3 d2 d1 dO 1 43H

Description: This is a 2-cycle instruction. Data in the accumulator is logically ORed with
an immediately-specified mask.

Operation: (A) - (A) OR data

Example: ORID: ORL A,#'X' ;'OR' ACC CONTENTS WITH MASK
;01011000 (ASCII VALUE OF 'X')

ORL BUS,#data* Logical OR BUS With Immediate Mask

Encoding: 11 0 0 0 11 0 0 0 1 88H

Description: This is a 2-cycle instruction. Data on the BUS port is logically ORed with an
immediately-specified mask. This instruction assumes prior specification
on an 'OUTL BUS,A' instruction.

Operation: (BUS) - (BUS) OR data

Example: ORBUS: ORL BUS,#HEXMSK :'OR' BUS CONTENTS WITH MASK
;EQLJAL VALUE OF SYMBOL 'HEXMSK'

ORL Pp, #data Logical OR Port 1 or 2 With Immediate Mask

Encoding: 11 0 0 0 11 0 P pi 89H-8AH

Description: This is a 2-cycle instruction. Data on port 'p' is logically ORed with an
immediately-specified mask.

Operation: (Pp) -(Pp) OR data

Example: ORP1: ORL P1, #OFFH

* For use with internal program memory ONLY.
** 0-5 in 8048AH/8748H

0-6 in 8049AH/8749H
0-7 in 8050AH

15-28

p = 1-2

;'OR' PORT 1 CONTENTS WiTH MASK
;'FF' HEX (SET PORT 1 TO ALL ONES)

MCS®-48 INSTRUCTION SET

ORLD Pp,A Logical OR Port 4-7 With Accumulator Mask

Encoding: 11 0 0 0 11 1 P P 1 8CH-8FH

Description: This is a 2-cycle instruction. Data on port 'po is logically ORed with the
digit mask contained in accumulator bits 0-3.

Operation: (Pp) - (Pp) OR (AO-3)

Example: ORP7: ORlD P7,A

p = 4-7

;'OR' PORT 7 CONTENTS WITH ACC
;BITS 0-3

OUTL BUS,A" Output Accumulator Data to BUS

Encoding: my 0 0 1 0.0 1 0 1 02H

Description: This is a 2-cycle instruction. Data residing in the
accumulator is transferred (written) to the BUS port and
latched. The latched data remains valid until altered by
another OUTl instruction. Any other instruction requiring
use of the BUS port (except INS) destroys the contents of
the BUS latch. This includes expanded memory operations
(such as the MOVX instruction). logical operations on
BUS data (AND, OR) assume the OUTl BUS,A instruction
has been issued previously.

Operation: (BUS) - (A)

Example: OUTlBP: OUTl BUS, A ;OUTPUT ACC CONTENTS TO BUS

OUTL Pp,A Output Accumulator Data to Port 1 or 2

Encoding: I 0 0 1 1 11 0 P pi 39H-3AH

Description: This is a 2-cycle instruction. Data residing in the accumulator is transferred
(written) to port'p' and latched.

Operation: (Pp) - (A)

Example: OUTlP: MOV A,R?
OUTl P2.A
MOV A, R6
Ol:JTl P1,A

• For use with internal program memory ONLY.

15-29

p = 1-2

;MOVE REG? CONTENTS TO ACC
;OUTPUT ACC CONTENTS TO PORT 2
;MOV REG 6 CONTENTS TO ACC
;OUTPUT ACC CONTENTS TO PORT 1

MCS®-48 INSTRUCTION SET

RET Return Without PSW Restore

Encoding: 11 0 0 0 1 0 0 1 11 83H

Descrl~tlon: This is a 2-cycle instruction. The stack painter (PSW bits 0-2) is
decremented. The program counter is then restored from the stack. PSW
bits 4-7 are not restored.

Operation: (SP) - (SP)-1
(PC) - ((SP))

RETR Return with PSW Restore

Encoding: 11 0 0 1 1 0 0 1 1 1 93H

Description: This is a 2-cycle instruction. The stack painter is decremented. The
program counter and bits 4-7 of the PSW are then restored from the stack.
Note that RETR should be used to return from an interrupt, but should
not be used within the interrupt service routine as it signals the end of an
interrupt routine by resetting the Interrupt in Progress flip-flop.

Operation: (SP) - (SP)-1
(PC) - ((SP))
(PSW 4-7) - ((SP))

15-30

MCS®-48 INSTRUCTION SET

RL A Rotate Left without Carry

Encoding: /1 1 1 0 / 0 1 1 1 / E7H

Description: The contents of the accumulator are rotated left one bit. Bit 7 is rotated
into the bit 0 position.

Operation: (An + 1) - (An)
(AO) - (A7) n = 0-6

Example: Assume accumulator contains 10110001.
RLNC: RL A ;NEW ACC CONTENTS ARE 01100011

RLC A Rotate Left through Carry

Encoding: /1 1 1 1 / 0 1 1 1 I F7H

Description: The contents of the accumulator are rotated left one bit. Bit 7 replaces the
carry bit; the carry bit is rotatd into the bit 0 position.

Operation: (An + 1) - (An)
n = 0-6
(AO) - (C)
(C) - (A7)

Example: Assume accumulator contains a 'signed' number; isolate sign without
changing value.
RLTC: CLR C

RLCA

RRA

RR A Rotate Right without Carry

Encoding: / 0 1 1 1 I 0 1 1 1 I 77H

;CLEAR CARRY TO ZERO
;ROTATE ACC LEFT, SIGN
;BIT (7) IS PLACED IN CARRY
;ROTATE ACC RIGHT - VALUE
;(BITS 0-6) IS RESTORED,
;CARRY UNCHANGED, BIT 7
;IS ZERO

Description: The contents of the accumulator are rotated right one bit. Bit 0 is rotated
into the bit 7 position. ~

Operation: (An) - (An + 1)
(A7) - (AO)

n = 0-6

Example: Assume accumulator contains 10110001.
RRNC: RR A ;NEW ACC CONTENTS ARE 11011000

15-31

MCS®-48 INSTRUCTION SEr
--------------------------- ----------- -~-------

RRC A Rotate Right through Carry

Encoding: 10 1 1 0 I 0 1 1 1 1 671-:1

Description: The contents of the accumulator are rotated right one bit Bit 0 replaces the
carry bit; the carry bit is rotated into the bit 7 position.

Operation: (An) - (An + 1) n = 0-6
(A7) - (C)
(C) - (AO)

Example: Assume carry is not set and accumulator contains 10110001.
RRTC: RRC A ;CARRY IS SET AND ACC

;CONTAINS 01011000

SEL MBO Select Memory Bank 0

Encoding: 11 1 1 0 1 0 1 0 1 1 E5H -

Description: PC bit 11 is set to zero on next JMP or CALL instruction. Ail referE;lnces to
program memory addresses fall within the range 0-2047.

Operation: (DBF) - 0

Example: Assume program counter contains 834 Hex.
SEL MBO ;SELECT MEMORY BANK 0
JMP $+20 ;JUMP TO LOCATION 58 HEX

. SEL MB1 Select Memory Bank 1

Encoding: 111 1 1 1 0 1 0 1 IF5H

Description: PC bit 11 is set to one on next JMP or CALL instruction. All references to
program memory addresses fall within the range 2048-4095.

Operation: (DBF) - 1

15-32

MCS®-48 INSTRUCTION SET

SEL RBO Select Register Bank 0

Encoding: 11 1 0 0 I 0 1 0 1 I C5H

Description: PSW bit 4 is set to zero. References to working registers 0-7 address data
memory locations 0-7. This is the recommended setting for normal
program execution.

Operation: (BS) - 0

SEL RB1 Select Register Bank 1

Encoding: 11 1 0 1 I 0 1 ·0 1 I D5H

Description: PSW bit 4 is set to one. References to working registers 0-7 address data
memory locations 24-31. This is the recommended setting for interrupt service
routines, since locations 0-7 are left intact. The setting of PSW bit 4 in'
effect at the time of an interrupt is restored by the RETR instruction when
the interrupt service routine is completed.

Operation: (BS) - 1

Example: Assume an external interrupt has occurred, control has passed to program
. memory location 3, and PSW bit 4 was zero before the interrupt.

Operation: LOC3: JNI INIT

INIT: MOV R7,A

SEL RB1
MOV R7,#OFAH

SEL RBO
MOV A,R7
RETR

STOP TCNT Stop Timer/Event-Counter

Encoding: I 0 1 1 0 I 0 1 0 1 I 65H

;JUMP TO ROUTINE 'INIT' IF
;INTERRUPT INPUT IS ZERO
;MOVE ACC CONTENTS TO
;LOCATION 7
;SELECT REG BANK 1
;MOVE 'FA' HEX TO LOCATION 31

;SELECT REG BANK 0
;RESTORE ACC FROM LOCATION 7
;RETURN - RESTORE PC AND PSW

Description: This instruction is used to stop both time accumulation and event counting.

15-33

MCS®~48 INSTRUCTION SET

Example: Disable interrupt, but jump to interrupt routine after eight overflows and
stop timer. Count overflows in register 7.
START: DIS TCNTI

CLR A
MOVT,A
MOV R7,A
STRTT

MAIN: JTF COUNT

JMP MAIN
COUNT: INC R7

MOV A,R7
JB31NT

JMP MAIN

INT: STOP TCNT
JMP 7H

STRT CNT Start Event Conter .

Encoding: 10 1 0 0 I 0 1 0 1 I 45H

;DISABLE TIMER INTERRUPT
;CLEAR ACC TO ZEROS
;MOVE ZEROS TO TIMER
;MOVE ZEROS TO REG 7
;START TIMER
;JUMP TO ROUTINE 'COUNT'
;IF TF = 1 AND CLEAR TIMER FLAG
;CLOSE LOOP
;INCREMENT REG 7
;MOVE REG 7 CONTENTS TO ACC
;JUMP TO ROUTINE 'INT' IF ACC
;BIT 3 IS SET (REG 7 = 8)
;OTHERWISERETURN TO ROUTINE
;MAIN

;STOP TIMER
;JUMP TO LOCATION 7 (TIMER)
;INTERRUPT ROUTINE

Description: The test 1 (T1) pin is enabled as the event-counter input and the counter
is started. The event-counter register is incremented with each high-to-Iow
transition on the T1 pin.

Example: Initialize and start event counter. Assume overflow is desired with first T1
input.
STARTC: EN TCNTI

MOV A,#OFFH
MOVT,A
STRT CNT

;ENABLE COUNTER INTERRUPT
;MOVE 'FF'HEX (ONES) TOACC
;MOVES ONES TO COUNTER
;ENABLE T1 AS COUNTER
;INPUT AND START

MCS®-48 INSTRUCTION SET

STRT T Start Timer

Encoding: 10 1 0 1 I 0 1 0 1 I 55H

Description: Timer accumulation is initiated in the timer register. The register is
incremented every 32 instruction cycles. The prescaler which counts the
32 cycles is cleared but the timer register is not.

Example: Initialize and start timer.

STARTT: CLR A
MOVT,{'­
EN TCNTI
STRTT

SWAP A Swap Nibbles within Accumulator

Encoding: 10 1 0 0 1 0 1 1 1 1 47H

;CLEAR ACC TO ZEROS
;MOVE ZEROS TO TIMER
;ENABLE TIMER INTERRUPT
;START TIMER

Description: Bits 0-3 of the accumulator are swapped with bits 4-7 of the accumulator.

Operation: (A4- 7) ~ (AO-3)

Example: Pack bits 0-3 of locations 50-51 into location 50.
PCKDI~: MOV RO, #50 ;MOVE '50' DEC TO REG 0

MOV R1, #51 ;MOVE '51' DEC TO REG 1
XCHD A,@RO ;EXCHANGE BITS 0-3 OF ACC

SWAP A
XCHD A,@R1

MOV@RO,A

;AND LOCATION 50
;SWAP BITS 0-3 AND 4-7 OF ACC
;EXCHANGE BITS 0-3 OF ACC AND
;LOCATION 51
;MOVE CONTENTS OF ACC TO
;LOCATION 50

XCH A,Rr Exchange Accumulator-Register Contents

Encoding: 10 0 1 0 11 r r r I 28H-2FH

Description: The contents of the accumulator and the contents of working register 'r'
are exchanged.

Operation: (A) ~ (Rr) r = 0-7

Example: Move PSW contents to Reg 7 without losing accumulator contents.
XCHAR7: XCH A,R7 ;EXCHANGE CONTENTS OF REG 7

MOV A, PSW
XCH A,R7

15-35

;AND ACC
;MOVE PSW CONTENTS TO ACC
;EXCHANGE CONTENTS OF REG 7
'AND ACC AGAIN

MCS®-48 INSTRUCTION SET

XCH A,@Ri Exchange Accumulator'and Data Memory Contents

Encoding: 10 0 1 0 I 0 0 0 i I 20H-21H

Description: The contents of the accumulator and the contents of the resident data
memory location addressed by bits 0-5** of register 'i' are exchanged,
Register 'i' contents are unaffected,

Operation: (A) ~ ((Ri» i = 0-1

Example: Decrement contents of location 52.
DEC52: MOV RO,#52 ;MOVE '52' DEC TO ADDRESS REG 0

XCH A,@RO ;EXCHANGE CONTENTS OF ACC
;AND LOCATION 52

DEC A ;DECREMENT ACC CONTENTS
XCH A,@RO ;EXCHANGE CONTENTS OF ACC

;AND LOCATION 52 AGAIN

XCHD A,@Ri' Exchange Accumulator and Data Memory 4-Bit Data

Encoding: 10 0 1 1 1 0 0 0 i I 30H-31H

Description: This instruction exchanges bits 0-3 of the accumulator with bits 0-3 of
the data memory location addressed by bits 0-5** of register 'i', Bits 4-7 of
the accumulator, bits 4-7 of the data memory location, and the contents of
register 'i' are unaffected,

Operation: (AO-3) ~ ((RiO-3» j = 0-1

Example: Assume program counter contents have been stacked in locations 22-23,

XCHNIB: MOV RO,#23
CLRA
XCHD A,@RO

;MOVE '23' DEC TO REG 0
;CLEAR ACC TO ZEROS
;EXCHANGE BITS 0-3 OF ACC AND
;LOCATION 23 (BTS 8-11 OF PC ARE
;ZERO,ED, ADDRESS REFERS
:TO PAGE 0)

XRL A,Rr Logical XOR Accumulator With Register Mask

Encoding: 11 1 0 1 11 r r !l D8H-DFH

Description: Data in the accumulator is EXCLUSIVE ORed with the mask contained in
working register 'r',

Operation: (A) - (A) XOR (Rr)

Example: XORREG: XRL A,RS

•• 0-5 in 8048AH/8748H
0-6 in 8049AH/8749H
0-7 in 8050AH

15·36

r = 0-7

;'XOR' ACC CONTENTS WITH
;MASK IN REG 5

MCS®-48 INSTRUCTION SET

XRL A,@Ri Logical XOR Accumulator With Memory Mask

Encoding: 11 1 0 1 1 0 0 0 i I DOH-D1 H

Description: Data in the accumulator is EXCLUSIVE ORed with the mask contained in the
data memory location addressed by register 'i', bits 0-5,*'

Operation: (A) +- (A) XOR ((Ri)) i = 0-1

Example: XORDM: MOV R1,#20H ;MOVE '20' HEX TO REG 1
XRL A,@R1 ;'XOR' ACC CONTENTS WITH MASK

;IN LOCATION 32

XRL A,#data· Logical XOR Accumulator With Immediate Mask

Encoding: 11 1 0 1 1 0 0 1 1 1 D3H

Description: This is a 2-cycle instruction. Data in the accumulator is EXCLUSIVE ORed
with an immediately-specified mask.

Operation: (A) +- (A) XOR data

Example: XORID: XOR A,#HEXTEN

•• 0-5 in 8048AH!8748H
0-6 in 8049AH!8749H
0-7 in 8050AH

;XOR CONTENTS OF ACC WITH MASK
;EQUAL VALUE OF SYMBOL 'HEXTEN'

, \

I

MCS® ... 48 Data Sheets 16

PORT 2

8243
MCS®-48 INPUT/OUTPUT EXPANDER

• 0° C to 70° C Operation

Figure 1. 8243
Block Diagram

16-1

PORT 4

PORT 5

PORT6

POAT 7

P50 Vee
P40 P51

1'41 P52

P42 P53

P43 P60

CS P61

PROG P62

P23 P63

P22 P73

P21 P72

P20 P71

GND P70

Figure 2. 8243
Pin Configuration

8243

Table 1. Pin Descriptio'n

Symbol Pin No. Function

PROG 7 Clock Input A high to low transi-
tion on PROG signifies that ad-
dress and control are available on
P20-P23, and a low to high transi-
tion signifies that data is available
on P20-P23,

CS 6 Chip Select Input A high on CS
inhibits any change of output or
internal status,

P20-P23 11-8 Four (4) bit bi-directional port con-
tains the address and control bits
on a high to low transition of
PROG, puring a low to hightran-
sition contains the data for a sel-
ected output port if a write opera-
tion, or the data from a selected
port before the low to high transi-
tion if a read operation,

GND 12 o volt supply,

P40-P43 2-5 Four (4) bit bi-directional 1/0 ports.
P50-P53 1,23-21 May be programmed to be input
P60-P63 20-17 (during read). low impedance
P70-P73 13-16 latched output (after write), or a tri-

state (after read). Data on pins
P20-P23 may be directly written, '
ANDed or ORed with previous
data.

VCC 24 +5 volt supply.

FUNCTIONAL DESCRIPTION
General Operation
The 8243 contains four 4-bit I/O ports which serve
as an extension of the on-chip I/O and are ad-.
dressed as ports 4-7. The following operations may
be performed on these ports:

• Transfer Accumulator to Port.
• Transfer Port to Accumulator.
• AND Accumulator to Port.
• OR Accumulator to Port.

All communication between the 8048 and the 8243
occurs over Port 2 (P20-P23) with timing provided
by an output pulse on the PROG pin of the proces­
sor. Each transfer consists of two 4-bit nibbles:

The first containing the "op code" and port address
and the second containing the actual 4-bits of data.
A high to low transition of the PROG line indicates
that address is present while a low to high transition
indicates the presence of. data. Additional 8243's
lTIay be added to the 4-bit bus and chip selected
USing additional output lines from the 8048/8748/
8035:

Power On Initialization
Initial application of -Power to the. device forces
input/output ports 4, 5, 6, and 7 to the tri-state and
port 2 to the input mode. The PROG pin may be
either high or low when power is applied. The first
high to low transition of PROG causes device to
exit power on mode. The power on sequence is
initiated if vee drops below 1V.

Address Instruction
P21 P20 Code P23 P22 Code

0 0 Port 4 0 0 Read
0 Port 5 0 Write

0 Port 6 0 ORlD
Port 7 ANlD

Write Modes
The device has three write modes. MOVD Pi, A dir­
ectly writes new data into the selected port and old
data is lost. ORlD Pi, A takes new data, OR's it with
the old data and then writes it to the port. ANlD Pi, A
takes new data, AND's it with the old data and then
writes it to the port. Operation code and port ad­
dress are latched from the input port 2 on the high
to low transition of the PROG pin. On the low to high
transition of PROG data on port 2 is transferred to
the logic block of the specified output port.

After the logic manipulation is performed, the data
is latched and outputed. The old data remains
latched until new valid outputs are entered.

Read Mode
The device has one read mode. The operation code
and port address are latched from the input port 2.on
the high to low transiti.on .of the PROG pin. As s.oon
as the read operati.on and port address are decoded,
the appropriate outputs are tri-stated, and the input
buffers switched on. The read .operation is termina­
ted by a low to high transition of the PROG pin. The
port(4, 5, 6 or 7) that was selected is switched to the
tri-stated mode while'port 2 is returned to the input
mode.

Normally, a port will be in an .output (write mode) or
input (read mode). If modes are changed during
operation, the first read following. a write should
be ignored; all following reads are valid: This is to
allow the external driver on the port to settle after
the first read instruction removes the low imped­
ance drive from the 8243 output. A read of any port
will leave that port in a high impedance state.

16-2

8243

ABSOLUTE MAXIMUM RATINGS·
i
I.

Ambient Temperature Under Bias ooe to 70°C
Storage Temperature -65°C to +150oe
Voltage on Any Pin

With Respect to Ground -0.5 V to +7V
Power Dissipation 1 Watt

'NOTICE: Stresses above those listed under "Absolute
Maximum Ratings" may cause permanent damage to the
device. This is a stress rating only and functional opera­
tion of the device at these or any other conditions above
those indicated in the operational sections of this specifi­
cation is not implied. Exposure to absolute maximum
rating conditions for extended periods may affect device
reliability.

D.C. CHARACTERISTICS (TA = ooe to 70°C, Vee = 5V ± 10%)

Test
Symbol Parameter Min Typ Max Units Conditions

VIL Input Low Voltage -0.5 0.8 V

VIH Input High Voltage 2.0 Vee+O.5 V

VOL1 Output Low Voltage Ports 4-7 0.45 V IOL = 4.5 mAo

VOL2 Output Low Voltage Port 7 1 V IOL = 20 mA

VOHl Output High Voltage Ports 4-7 2.4 V IOH = 240,.,A

11L1 Input Leakage Ports 4-7 -10 20 ,.,A Vin = Vee to OV

IIL2 Input Leakage Port 2, es, PROG -10 10 ,.,A Vin = Vee to OV

VOL3 Output Low Voltage Port 2 0.45 V IOL = 0.6 mA

ICC Vee Supply Current 10 20 mA Note 1

VOH2 Output Voltage Port 2 2.4 IOH = 100,.,A

IOL Sum of alilOL from 16 Outputs 72 mA 4.5 mA Each Pin

'See following graph for additional sink current capability

A.C. CHARACTERISTICS (TA = ooe to 70°C, Vee = 5V ± 10%)

Symbol Parameter Min Max Units Test Conditions

tA Code Valid Before PROG 100 ns 80 pF Load

tB Code Valid After PROG 60 ns 20 pF Load

te Data Valid Before PROG 200 ns 80 pF Load

tD Data Valid After PROG 20 ns' 20 pF Load

tH Floating After PROG 0 150 ns 20 pF Load

tK PROG Negative Pulse Width 700 ns

tes es Valid Before/After PROG 50 ns

tpo Ports 4-7 Valid After PROG 700 ns 100 pF Load

tLPl . Ports 4-7 Valid Before/After PROG 100 ns

tAee Port 2 Valid After PROG 650 ns 80 pF Load

Note 1: ICC (-40°C to 85°C EXPRESS options) 15 mA typical/25 mA maximum.

16-3

WAVEFORMS

PROG

PORT2

PORT2

PORTS 4·7

PORTS 4-7

8243

2.4 ------'x. 0
2

•. ,0 > TEST POINTS

0.45----.1

les

A.C. Testing: Inputs are dnven at 2AV for a logic "1"
and Q.45V for a logic "0" Output timing measurements
are made at 2.0V for a logic ''1'' and 0 8V for a logic "0"

~ ________________ IK ______________ ~~

FLOAT

PREVIOUS OUTPUT VALID

INPUT VALID

16-4

IpO

les

FLOAT

OUTPUT
VALID

8243

125

100

;;
!

P
" 75
t-
Z
w
a:
a: GUARANTEED WORST CASE :>
U CURRENT SINKING CAPABILITIES

" OF ANY 110 PORT PIN VI. TOTAL Z
in 50 SINK CURRENT OF ALL PINS
-'
~
0
t-

25

10 11 12 13

MAXIMUM SINK CURRENT ON ANY PIN @ .45V
MAXIMUM IOL WORST CASE PIN (mA)

Figure 3

Sink C~pability

The 8243 can sink 5 mA@.45V on each of its 161/0
lines simultaneously. If, however, all lines are not
sinking simultaneously or all lines are not fully
loaded, the drive capability of any individual line
increases as is shown by the accompanying curve.

For example, if only 5 of the 16 lines are to sink
current at one time, the curve shows that each of
those 5 lines is capable of sinking 9 mA @ .45V (if
any lines are to sink 9 mA the total 10L must not
exceed 45 mA or five 9 mA loads).

Example: How many pins can drive 5 TTL loads (1.6 mAl
assuming remaining pins are unloaded?

lOr:. = 5 x 1.6 mA = 8 mA
• 10l = 60 mA from curve
pins =60 mA+8 mA/pin = 7.5 = 7

In this case, 7 lines can sink 8 mA for a total of
56mA. This leaves 4 mA sink current capability
which can be divided in any way among the
remaining 8 1/0 lines of the 8243.

Example: This example shows how the use of the 20 mA
sink capability of Port 7 affects the sinking
capability of the other 1/0 lines.

An 8243 will drive the following loads simul­
taneously ..

2 loads-20 mA@ 1V (port 7 only)
8 loads-4 mA@ .45V
6 loads-3.2 mA@ .45V
Is this within the specified limits?

.10l = (2 x 20) + (8 x 4) + (6 x 3.2) = 91.2 mAo
From the curve: for 10l = 4 mA, .10l = 93 mAo
since 91.2 mA < 93 mA the loads are within
specified limits .

Although the 20 mA @ 1 V loads are used in
calculating .IOL. it is the largest current re­
quired @ .45V which determines the maximum
allowable .IOL.

NOTE: A10 to 50KO pullup resistor to +5V should be added to 8243 outputs when driving to 5V CMOS directly.
I

16-5

"n+_I® III-e- '

BUS

PORT 1

80'8

8243

0:-

I/O
cs

P'
PROG PROG

TEST P5

8048 INPUTS 8243

P6

P20·P23 DATA"IN
P2

P1

Figure 4. Expander Interface

P20·P23 --<\o",_---JX'-___ ..J)>---
ADDRESS ('·BITS) DATA ('·BITS)

BITS 3,2

00 1 READ
01 WRITE
10 OR
11 . AND

Figure 5. Output Exp.nder Timing

I/O

I/O

I/O

I/O

BITS 1.0

00,
01 ~ PORT
10 ADDRESS
111

PROG~--------------~----------------~----------------~~----------------J

Figure 6. Using Mujtlple 8243's

16·6

S04SAH/S74SH/S035AH L/S049AH
S749H/S039AH L/S050AH/S040AH L

HMOS SINGLE-COMPONENT S-BIT MICROCOMPUTER

• High Performance HMOS II
• Interval Timer/Event Counter
• Two Single Level Interrupts
• Single 5-Volt Supply
• Over 96 Instructions; 90% Single Byte

• Reduced Power Consumption
• Compatible with 8080/8085 Peripherals
• Easily Expandable Memory and I/O
• Up to 1.36 J.lSec Instruction Cycle

All Instructions 1 or 2 cycles

The Intel MCS®-48 family are totally self-sufficient, 8-bit parallel computers fabricated on single silicon chips
using Intel's advanced N-channel silicon gate HMOS process.

The family contains 27 I/O lines, an 8-bit timer/counter, and on-board oscillator/clock circuits~ For systems that
require extra capability, the family can be expanded using MCS®-80/MCS®-85 peripherals.

To minimize development problems and provide maximum flexibility, a logically and functionally pin-compatible
version of the ROM devices with UV-erasable user-programmable EPROM program memory is available with
minor differences.

These microcomputers are designed to be efficient controllers as well as arithmetic processors. They have
extensive bit handling capability as well as facilities for both binary and BCD arithmetic. Efficient use of program
memory results from an instruction set consisting mostly of single byte instructions and no instructions over
2 bytes in length.

Device Internal Memory RAM Standby

8050AH 4K x 8 ROM I 256 x 8 RAM yes
8049AH 2K x 8 ROM I 128 x 8 RAM yes
8048AH 1K x 8ROM I 64 x 8 RAM yes
8040AHL none I 256 x 8 RAM yes
8039AHL none I 128 x 8 RAM yes
8035AHL none I 64 x 8 RAM yes
8749H 2K x 8 EPROM I 128 x 8 RAM no
8748H 1K x 8 EPROM I 64 x 8 RAM no

PORT TO Vcc

B048AH 1 XTAL 1 T1

874BH XTAL 2 P27

B035AHL RESET P26

B049AH PORT 55 P25
B749H 2 INT P24
B039AHL EA PH
B050AH AD P16
B040AHL PSEN P15

WR P14
ALE P13
DBO P12
DB1 P11
DB2 P10
DB3 VDD
DB4 PROG
DB5 P23

BUS DB6 P22
DB7 P21
Vss P20

Figure 1. Figure 2. Figure 3.
Block Diagram Logic Symbol Pin Configuration

Intel Corporation Assumes No Responsibility for the Use of Any Circuitry Other Than Circuitry Embodied in an Intel Product. No Other Circuit
Patent licenses are Implied. . January 1983

© INTEL CORPORATION. 1983. Order Number 210983-001

16-7

Pin
Symbol No.

VSS 20

VDD 26

VCC 40

PROG 25

P10-P17 27-34
Port 1

P20-P23 21-24
P24-P27 35-38
Port 2

DBO- 12-19
DB7
BUS

8048AH/8748H/8035AHL/8049AH
8749H/8039AHLl8050AH/8040AHL

Table 1. Pin Description

Pin
Function Device Symbol No.

Circuit GND All (Con't)
potential

+5V during All
normal operation.

low power 8048AH
standby pin. 8035AHl

8049AH
8039AHl
8050AH
8040AHl

Programming 8748H
power supply 8749H
(+21V) ..

Main power All
supply;. +5V dur-
ing operation and
programming.

TO 1
Output strobe All
for 8243
I/O expander.

Program pulse 8748H
(+18V) input pin 8749H
during (See Note)
programming.

8-bit quasi- All
bid irectional. port.

8-bit quasi- All
bidirectional port. T1 39
P20-P23 contain
the four high
order program
counter bits dur-
ing an external
program memory
fetch and serve
as a 4-bit I/O INT 6
expander bus
for 8243.

True bidirectional All
port which can be
written or read
synchronously
using the RD, WR
strobes. The port
can also be
statically latched.

-

16-8

Function Device

Contains the 8
low order pro-
gram counter bits
during an external
program memory
fetch, and
receives the
addressed in-
struction under
the control of
PSEN. Also con-
tains the address
and data during
an external RAM
data store in-
struction, under
Gontrol of ALE,
RD, and WR.

Input pin testable All
using the con-
ditional transfer
instructions JTO
and JNTO. TO can
be designated as
a clock output
using ENTO ClK
instruction

Used during 8748H
programming. 8749H

Input pin testable All
using the JT1,
and JNT1 instruc-
tions. Can be des-
ignated the timer/
counter input
using the STRT
CNT instruction.

I nterru pt input. All
Initiates an inter-
rupt if interrupt is
enabled. Interrupt
is disabled after a
reset. Also testable
with conditional
jump instruction.
(Active low) inter-
rupt must remain
low for at least 3
maqhine cycles
for proper
operation.

210983

intel"

Pin
Symbol No.

RD 8

RESET 4

WR 10

ALE 11

S04SAH/S74SH/S035AHL/S049AH
S749H/S039AHL/S050AH/S040AHL

Table 1. Pin Description (Continued)

Function Device

Output strobe All
activated during
a BUS read. Can
be used to enable
data onto the bus
from an external
device.

Used as a read
strobe to external
data memory.
(Active low)

Input which is All
used to initialize
the processor.
(Active low)
(Non TTL VIH)

Used during B04BAH
power down. B035AHL

B049AH
B039AHL
B050AH
B040AHL

Used during B74BH
programming. B749H

Used during B04BAH
ROM verification. B74BH

B049AH
B749H
B050AH

Output strobe All
during a bus
write. (Active low)

Used as write
strobe to external
data memory.

Address latch All
enable. This sig-
nal occurs once
during each cycle
and is useful as
a clock output.

The negative edge
of ALE strobes
address into
external data and
program memory.

16-9

Pin
Symbol No. Function Device

PSEN 9 Program store ALL
enable. This out-
put occurs only
during a fetch to
external pro-
gram memory.
(Active low)

SS 5 Sil'lgle step input All
can be used in
conjunction with
ALE to "single
step" the proces-

I sor throug h each
instruction. '.

(Active low) B04BAH
Used in sync B035AHL
mode B049AH

B039AHL
B050AH
B040AHL

EA 7 External access All
input which
forces all pro-
gram memory
fetches to refer-
ence external
memory. Useful
for emulation
and debug.
(Active high)

Used during B74BH
(1BV) B749H
programming

Used during B04BAH
ROM verification B049AH
(12V) B050AH

XTAL1 2 One side of All
crystal input for
internal osci Ilator.
Also input for
external source.
(Non TTL VI H)

XTAL2 3 Other side of All
crystal input.

NOTE: On the8749H, PROG must be clamped to Vee when
not programming. A diode should be used when using an
8243; otherwise, a direct connection is permissible.

210983

inter 8048AH/8748H/8035AHL/8049AH
8749H/8039AHL/8050AH/8040AHL

Table 2. Instruction Set

Accumulator Registers

Mnemonic Description Bytes Cycles Mnemonic Description
ADD A, R Add register to A 1 1 INCR Increment register
ADDA,@R Add data memory to A 1 1 INC@R Increment data memory
ADD A, # data Add immediate to A 2 2 DECR Decrement register
ADDCA, R Add register with carry
ADDCA,@R Add data memory

Branch with carry
ADDC A, # data Add immediate 2 2

Description with carry Mnemonic

ANL A, R And register to A JMP addr Jump unconditional

ANLA,@R And data memory to A 1 JMPP@A Jump indirect

ANL A, # data And immediate to A 2 2 DJNZ R, addr Decrement register

ORL A, R Or register to A and skip

ORLA@R Or data memory to A JC addr Jump on carry = 1

ORL A, # data Or immediate to A 2 2
JNC addr Jump on carry = 0

XRL A, R Exclusive or register
JZ addr Jump on A zero

toA JNZ addr Jump on A not zero

X,RLA,@R Exclusive or data JTO addr Jump on TO = 1
memory to A JNTO addr Jump on TO = 0

XRL, A, # data Exclusive or 2 2 JT1 addr Jump on T1 = 1
immediate to A JNT1 addr Jump on T1 = 0

INCA Increment A JFO addr Jump on FO = 1
DECA Decrement A JF1 addr Jump on F1 = 1
CLRA Clear A JTF addr Jump on timer flag
CPLA Complement A JNI addr ,Jump on INT = 0
DAA Decimal adjust A JBb addr Jump on accumulator
SWAP A Swap nibbles of A bit,
RL A Rotate A left
RLCA Rotate A left

through carry Subroutine
RRA Rotate A right
RRCA Rotate A right Mnemonic Description

through carry CALL addr Jump to subroutine
RET Return
RETR Return and restore

InpuVOutput status

Mnemonic Description Bytes Cycles
INA, P Input port to 'A 1 2 Flags
OUTL P,A Output A to port 1 2
ANL P, # data And immediate to port 2 2

Mnemonic Description

ORL P, # data Or immediate to port 2 2
CLR C Clear carry

INS A, BUS Input BUS to A 2
CPL C Complement carry

OUTL BUS, A Output A to BUS 1 2
CLR FO Clear flag 0

ANL BUS, # data And immediate to BUS 2 2
CPL FO Complement flag 0

ORL BUS, # data Or immediate to BUS 2 2
CLR F1 Clear flag 1

MOVD A, P Input expander port '1 2
CPL F1 Complement flag 1

to A
MOVD P, A Output A to expander 2

port
ANLD P, A And A to expander port 2
ORLD P,A Or A to expander port 2

16-10

Bytes Cycles
1 1

Bytes Cycles
2 2

2
2 2

2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2

Bytes Cycles
2 2

2
2

Bytes Cycles
1 1

1

210983

inter

Data Moves

Mnemonic
MOVA, R
MOVA,@R

MOVA, # data
MOVR,A
MOV@R,A

MOV R, # data

Description
Move reg ister to A
Move data memory
to A

S04SAH/S74SH/S035AH L/S049AH
S749H/S039AHL/S050AH/S040AHL

Table 2. Instruction Set (Continued)

Timer/Counter

Bytes Cycles Mnemonic Description
I I MOVA, T Read timer/counter
I I MOVT, A load timer/counter

STRTT Start timer
Move immediate to A 2 2 STRT CNT Start counter
Move A to register I STOP TCNT Stop timer/counter
Move A to data EN TCNTI Enable timer/counter
memory interrupt
Move immediate 2 2 DIS TCNTI Disable timer/counter
to register interrupt·

MOV @R, # data Move immediate to 2 2
data memory

MOVA, PSW Move PSW toA
Control

MOVPSW,A Move A to PSW
XCH A, R Exchange A and Mnemonic Description

register EN I Enable external
XCHA,@R Exchange A and interrupt

data memory DIS I Disable external
XCHDA,@R Exchange nibble of A interrupt

and register SEl RBO Select register bank 0
MOVXA,@R Move external data 2 SEl RBI Select register bank I memory to A
MOVX@R,A Move A to external 2 SEl MBa Select memory bank a

data memory SEl MBI Select memory bank I

MOVPA,@A Move to A from 2 ENTa ClK Enable clock output
current page on TO

MOVP3A, @A Move to A from page 3 2

Mnemonic Description
NOP No operation

16-11

Bytes Cycles
I I

Bytes Cycles
I I

Bytes Cycles
I I

inter
S04SAH/S74SH/S035AHL/S049AH

S749H/S039AHLlS050AH/S040AHL

ABSOLUTE MAXIMUM RATINGS·

Ambient Temperature Under Bias ... 0° e to 70° e
Storage Temperature ...•...... -65° C to +150° e
Voltage On Any Pin With Respect

to Ground ..•..•.•...•.•...•..• -0.5V to +7V
Power Dissipation. • . • • . .• 1.0 Watt

* NO nCE: Stresses above those listed under "Abso­
lute Maximum Ratings" may cause permanent dam­
age to the device. This is a stress rating only and
functional operation of device at these or any other
conditions above those indicated in the operational
sections of this specification is not implied.

D.C. CHARACTERISTICS: (TA = ooe to 700 e; Vee = VDD = 5V ± 1QO/q; VSS = OV)

Limits·

Symbol Parameter Min Typ Max Unit Test Conditions Device

VIL Input Low Voltage (All
Except RESET, X1, X2) -.5 .8 V All

VIL1 Input Low Voltage
(RESET, X1, X2) -.5 .6 V All

VIH Input High Voltage
(All Except XTAL 1, -
XTAL2, RESET) 2.0 Vee V All

VIH1 Input High Voltage
(X1, X2, RESET) 3.8 Vee V All

VOL Output Low Voltage
(BUS) .45 V 10L = 2.0 mA All

VOL1 Output Low Voltage
(RD, WR, PSEN, ALE) .45 V IOL=1.8mA All

VOL2 Output Low Voltage
(PROG) .45 V 10L = 1.0 mA All

VOL3 Output Low Voltage
(All Other Outputs) .45 V 10L = 1.6 mA All

VOH Output High Voltage
(BUS) 2.4 V 10H = -400 IlA All

VOH1 Output High Voltage
(RD, WR, PSEN, ALE) 2.4 V 10H = -1001lA All

VOH2 Output High Voltage
(All Other Outputs) 2.4 V 10H = -40 IlA All

16-12 ?10QA'=I.

inter
8048AH/8748H/8035AHL/8049AH

8749H/8039AH L/8050AH/8040AHL

D.C. CHARACTERISTICS: (TA = O°C to 70°C; VCC = VOO = 5V ± 10%; VSS = OV) (Continued)

Limits

Symbol Parameter Min Typ Max Unit Test Conditions Device

'L1 Leak~ Current
(T1,INT) ±10 }1A VSS,s;; V,N,s;; VCC All

'Ll1 Input Leakage Current
(P10-P17, P20-P27,
EA, SS) -500 }1A VSS+.45,s;;V,N,s;;VCC All

'Ll2 Input Leakage Current
VSS ~ V,N ~ V,H1 RESET -10 -300 }1A All

'LO Leakage Current
(BUS, TO) (High
Impedance State) ±10 }1A VSS,s;; V,N,s;; VCC All

100 VOO Supply Current 3 5 mA 8048AH

(RAM Standby) 8035AHL

4 7 mA 8049AH
8039AHL

5 10 mA 8050AH
8040AHL

10D+ Total Supply Current 30 65 mA 8048AH
ICC 8035AHL

35 70 mA 8049AH
8039AHL

40 80 mA 8050AH
8040AHL

30 90 mA 8748H

50 110 mA 8749H

VOO RAM Standby Voltage 2.2 5.5 V Standby Mode Reset 8048AH
,s;; V,L 1 8035AH

2.2 5.5 V 8049AH
8039AH

2.2 5.5 V 8050AH
8040AH

16-13 210983

inter
S04SAH/S74SH/S035AHL/S049AH

S749H/S039AHL/S050AH/S040AH L

A.C. CHARACTERISTICS: (TA = O°C to 70°C; VCC = VOO = 5V ± 10%; VSS = OV)

f(t) 11 MHz

Symbol Parameter (Note 3) Min Max Unit

t Clock Period l/xtal freq 90.9 1000 ns

tLL ALE Pulse Width 3.5t-170 150 ns

tAL Addr Setup to ALE 2t-110 70 ns

tLA Addr Hold from ALE t-40 50 ns

tCCl Control Pulse Width (RD, WR) 7.5t-200 480 ns

tCC2 Control Pulse Width (PSEN) 6t-200 350 ns

tow Data Setup before WR 6.5t-200 390 ns

two Data Hold after WR t-50 40 ' ns

tOR Data Hold (RD, PSEN) 1.5t-30 0 110 ns

tRDl RD to Data in 6t-170 350 ns

tRD2 PSEN to Data in 4.5t-170 190 ns

tAW Addr Setup to WR 5t-150 300 ns

tADl Addr Setup to Data (RD) 10.5t-220 730 ns

tAD2 Addr Setup to Data (PSEN) 7.5t-200 460 ns

tAFCl Addr Float to RD, WR 2t-40 140 ns

tAFC2 Addr Float to PSEN .5t-40 10 ns

tLAFCl ALE to Control (RD, WR) 3t-75 200 ns

tLAFC2 ALE to Control (PSEN) 1.5t-75 60 ns

tCA1 Control to ALE (RD, WR, PROG) 1-40 50 ns

tCA2 Control to ALE (PSEN) 4t-40 320 ns

tcp Port Control Setup to PROG 1.5t-80 50 ns

tpc Port Control Hold to PROG 4t-260 100 ns

tpR PROG to P2 Input Valid 8.5t-120 650 ns

tpF Input Data Hold from PROG 1.51 0 140 ns

top Output Data Setup 6t-290 250 ns

tpD Output Data Hold 1.51-90 40 ns

tpp PROG Pulse Width 10.51-250 700 ns

tpL Port 2 I/O Setup to ALE 4t-200 160 ns

tLP Port 2 I/O Hold to ALE 1.5t-120 15 ns

tpv Port Output from ALE 4.5t+100 510 ns

tOPRR TO Rep Rate 3t 270 ns

tCY Cycle Time 15t 1.36 15.0 Ils

Notes:

Conditions
(Note 1)

(Note 3)

(Note 2)

(Note 2)

(Note 2)

1. Control Outputs CL ~ 80pF
BUS Outputs CL ~ lS0pF

2. BUS High Impedance
Load 20pF

3. 1(1) assumes 50% duty cycle on Xl, X2. Max
clock period is lor a 1 MHz crystal input.

16·14 21098.3

inter S04SAH/S74SH/S035AHLlS049AH
S749H/S039AHLlS050AH/S040AHL

WAVEFORMS

ALE

r- tCA2

PSEN

'------ tAD2------

---I tLAFC1 L
L ALE J.--------"L....-._I ___ ----'

RD
:--tCC1--1 tCA1 1-----1, I

tAFC1-!-- --I i-tDR
,FLOATING'

FLOATING

Instruction Fetch From Program Memory Read From External Data Memory

---I tLAFC1 I--
ALE Jr-----,I I L

i--tCC1~ tCA1_

WR

I
ADDRESS I tDW -----'- tWD

I~----

FLOATING

, FLOATING

LtAW----I

Write To External Data Memory

2.4V --------,. r---
0.4SV ___ --'X~:~;TEST POINTS::~:~XI.... __ _

A.C. testing inputs are driven at 2.4V for a logic"1" and
0.45V for a logic "D." Output timing measurements are
made at 2.0V for a logic "1" and O.BV for a logic "D."

Input And Output For A.C. Tests

PORT 1/PORT 2 TIMING

ALE

PSEN

P20-23
OUTPUT

I-- ----l 2ND I tPL. I,.-CY_C_L_E,

I ~ ______ JI

I
PCH P<?RT 20-23 DATA NEW P20-23 DATA

P24-27
P10-17
OUTPUT

~------~------------------------~----~----~

I PCH
'--------~I

tLP

EXPANDER
PORT

OUTPUT

EXPANDER
PORT

INPUT

PORT 24-27, PORT 10-17 DATA NEW PORT DATA
I

-j \-tCA1

~~, ItPD
--+----tLA-----o·-f-I ... ·-tPL~ I tDP T °1

,.------' I PORT 20-23 DATAl OUTPUT DATA I I PCH

I II It)
I I II 1---. -tPR----l°1 n

r.---------~ r----, h--~-' r--~ I I PORT C9NTROL I PCH

I-tcP+tPc~
_________________ -------;1 I---tpp

~I

I I
PROG

1 fi-1!i 210983

inter
S04SAH/S74SH/S035AHLlS049AH

S749H/S039AHL/S050AH/S040AH L

CRYSTAL OSCILLATOR MODE
C1

~(-C-2-:;:-::-'t--:'-_';--c::::J--r---_2-t XTAL
1

-=- I
(---1-----4-----::-1 XTAL2

C3 3

C1 = 5pF ± 1/2pF + (STRAY < 5pF)
C2 = (CRYSTAL + STRAY) < 8pF
C3 = 20pF ± 1pF + (STRAY < 5pF)

Crystal series resistance should be less than 300 at 11 MHz;
less than 7S0 at 6 MHz; less than 180n at 3.6 MHz.

CERAMIC RESONATOR MODE
C1
______ --r-__ ~2 XTAL 1

~(1-11
MHz

-=- C1 = ~2 = 33pF ± 5% c::::J

, C3

XTAL2
3

DRIVING FROM EXTERNAL SOURCE
+5V

470n
2

t>-+-------j XTAL1

TTL OPEN
COLLECTOR
GATES

+5V

47011

'----'---;3;1 XTAL2

For XTAL 1 and XTAL2 define "high" as voltages above 1.6V
and "low" as voltages below 1.6V. The duty cycle require­
ments for externally driving XTAL1 and XTAL2 using the

PROGRAMMING, VERIFYING, AND
ERASING THE S749H (S74SH) EPROM

Programming Verification

In brief, the programming process consists of: acti­
vating the program mode, applying an address,
latching the address, applying data, and applying a
programming pulse. Each word is programmed
completely before moving on to the next and is
followed by a verification step. The following is a
list of the pins used for programming and a descrip­
tion of their functions:

Pin Function

XTAL1 Clock Input (3 to 4.0 MHz)
Reset Initialization and Address Latching
Test 0 Selection of Program or Verify Mode
EA Activation of Program/Verify Modes
BUS Address and Data Input

Data Output During Verify
P20-P22 Address Input
VDD Programming Power Supply
PROG Program Pulse Input

circuit shown above are as follows: XTAL 1 must be high 3S-
6S% of the period and XTAL2 must be high 36-6S% of the
period. Rise and fall times must .be faster than 20 nS.

WARNING:
An attempt to program a missocketed 8749H (8748H) will
result in severe damage to the part. An indication of a
properly socketed part is the appearance of the ALE clock
output. The lack of this clock may be used to disable the
programmer.

The ProgramlVerify sequence is: .
1. VOO = SV, Clock applied or internal oscillator operat­

ing. RESET = OV, TEST 0 = SV, EA = SV, BUS and
PROG floating. Pl0 and Pll must be tied to ground.

2. Insert 8749H (8748H) in programming socket.

3. TEST 0 = OV (select program mode)

4. EA = 18V (activate program mode)

S. Address applied to BUS and P20-22

6. RESET = SV (latch address)

7. Oata applied to BUS

8. VOO = 21V (programming power)

9. PROG = Vce or float followed by one SOms pulse
to 18V

10. VOO'= 5V

11. TEST 0 = SV (verify mode)

12. Read and verify data on BUS

13. TEST 0 = OV

14. RESET = OV and repeat from step S

lS. Programmer should be at conditions of step 1 when
8749H (8748H) is removed from socket.

16-16

8048AH/8748H/8035AHL/8049AH
8749H/8039AHL/8050AH/8040AHL

A.C. TIMING SPECIFICATION FOR PROGRAMMING 8748H/8749H ONLY:
(TA = 25°C ± 5°C; VCC = 5V ± 5%; VOO = 21 ± .5V)

Symbol Parameter Min Max Unit

tAW Address Setup Time to RESETT' 4tCY

tWA. Address Hold Time After RESETT' 4tCY

tow Oata in Setup Time to PROGT 4tCY

tWD Data in Hold Time After PROGI 4tCY

tPH RESET Hold Time to Verify 4tCY

tVOOW VOO Hold Time Before PROGT 0 1.0 ms

tVOOH VOO Hold Time After PROGI 0 1.0 ms

tpw Prograrr Pulse Width 50 60 ms

tTW Test 0 Setup Time for Program Mode 4tCY

tWT Test 0 Hold Time After Program Mode 4tCY

too Test 0 to Oata Out Oelay 4tCY

tww RESET Pulse Width to Latch Address' 4tCY

t r• tf VOO and PROG Rise and Fall Times 0.5 100 /lS

tCY CPU Operation Cycle Time 3.75 5 /ls

tRE RESET Setup Time before EAT' 4tCY

Test Conditions

NOTE: If Test 0 is high. too can be triggered by RESET!. 'Valid for 8048AH/8049AH/8050AH also.

D.C. TIMING SPECIFICATION FOR PROGRAMMING 8748H/8749H ONLY:
(TA = 25°C ± 5°C; VCC = 5V ± 5%; VOO = 21 ± .5V)

Symbol Parameter Min Max Unit

VOOH VOO Program Voltage High Level 20.5 21.5 V

VOOL VOO Voltage Low Level 4.75 5.25 V

VpH PROG Program Voltage High Level 17.5 18.5 V

VpL PROG Voltage Low Level 4.0 VCC V

VEAH EA Program or Verify Voltage High Level 17.5 18.5 V

100 VOO High Voltage Supply Current 20.0 rnA

IpROG PROG High Voltage Supply Current 1.0 rnA

lEA EA High Voltage Supply Current 1.0 rnA

11':.17

Test Conditions

inter

WAVEFORMS

8048AH/8748H/8035AHL/8049AH
8749H/8039AHL/8050AH/8040AHL

COMBINATION PROGRAMIVERIFY MODE (EPROM'S ONLY)

VEAH rtRE1 EA
Vee

Vee
!==tTw--1

TO

PROGRAM ------~.+'.--VERIFY---+I·---PROGRAM­

~---~

VIL1 --tww--
Vee

RESET

VIL1
tAW+--+---t--tWA

~ r--=D""'AT""A'"'T::"::O""B::"::E"'-"""
DBo-DB7 ~ - - PROGRAMMED VALID

__ -{NEXT ADDRK
VALID

LAST
ADDRESS

ADDRESS (8-9) VALID NEXT
ADDRESS

V~~DH--------------~~HDW . :~~T-
Vee , - ------------------

VPH ________________ tD_W--=t=L LJ rttWD -

PR°"vPL _____________ l_V-'J_l _______ ------------_.

VERIFY MODE (ROM/EPROM)

TO RESET \'-_____ ~~

DBO-DB7 J-- ADDRESS
(0-7) VALID

\----
__ .J NEXT X NEXT DATA >- ___ _

"\. ADDRESS OUT VALID
'-------'

_______ J)('_ ___ A_D_D_R_E_S_S_(8_-9_)_VA_L_ID ___ ~)('_ _____ N_E_XT_A_D_D_R_E_SS_V_A_L_ID __ __

1fl-1R

inter
S04SAH/S74SH/S035AHL/S049AH

S749H/S039AHL/S050AH/S040AHL

SUGGESTED ROM VERIFICATION ALGORITHM FOR H-MOS DEVICE ONLY

INITIAL ROM DUMP CYCLE

ALE
(NOTE 1)

+12V I
EA----I

DB-------I ADDRESS H ROM DATA

'-----'("'"IN"'P""'U"'T)---'....J (OUTPUT)

RESET __________ ----1

SUBSEQUENT ROM DUMP CYCLES

: (OUTPUT) ,
,
: (INPUT) , ,
I , H ADDRESS

(INPUT)

II
I (INPUT) , , ,

, , ,

~~---------------
(OUTPUT)'

P2o-P23 _____ -L _______ A_D_D_R_E_SS ______ --lH'--_____ AD_D_R_E_S_S ____ ----'1----------

: (INPUT)

VCC = VDD = + 5V

Al0
All

VSS=OV,

NOTE: ALE is function of Xl, X2 inputs.

16-19 210983

SINGLE-COMPONENT 8-BIT MICROCOMPUTERS
EXPRESS

• 0° C to 70° C Operation
• -40° C to 85° C Operation
• 168 Hr. Burn~ln

• 8048AH/8035AHL • 8748H
• 8049AH/8039AHL • 8243
• 8050AH/8040AHL. • 8749H

The new Inlel EXPRESS family of single-compqnent S-bit microcomputers offers enhanced processing options
to the familiar S04SAH/S035AHL, S74SH, S049AH/S039AHUS749H, S050AH/S040AHL Intel components. These
EXPRESS prodiJcts are designed to meet the needs of those applications whose operating requirements
exceed commercial standards, but fall short of military conditions.

The EXPRESS options include the commercial standard and - 40°C to S5°C operation with or without 16S
±S hours of dynamic burn-in at 125°C per MIL-STO-SS3B, method 1015. Figure 1 summarizes the option
marking designators and package selections.

For a complete description of S04SAH/S035AHL, S74SH, S049AH/S309AHL features and operating character­
istics, refer to the respective standard commercial grade data sheet. This document highlights only the electrical
specifications which differ from the respective commercial part.

PS04SAH TPS04SAH OPS04SAH
OS04SAH TOS04SAH 00804SAH L0804SAH
OS74SH TOS748H OOS74SH L0874SH
P8035AHL TP8035AHL OP8035AHL
OS035AHL TOS035AHL 00S035AHL L08035AHL
P8049AH TPS049AH OP8049AH
OS049AH T08049AH 008049AH L08049AH
08749H T08749H 008749H L08749H
P8039AHL TP8039AHL OP8039AHL
08039AHL T08039AHL d08039AHL L08039AHL
P8050AH TP8050AH OPS050AH
08050AH TOS050AH 008050AH L08050AH
PS040AHL TP8040AHL OPS040AHL
08040AH'L TOS040AHL 008040AHL L08040AHL
P8243 TP8243 OPS243
08243 . T08243 008243 L08243

• Commercial Grade
P Plastic Package
o Cerdip Package

16-20

SINGLE-COMPONENT 8-BIT MICROCOMPUTERS

Extended Temperature Electrical Specification Deviations'

TD8048AH/TD8035AHL/LD8048AH/LD8035AH L

D.C. CHARACTERISTICS: (TA = -40°C to 85°C; VCC = VOO = 5V ± 10%; VSS = OV)

Limits

Symbol Parameter Min Typ Max Unit Test Conditions

VIH Input High Voltage (All Except 2.2 VCC V
XTAL1,XTAL2,RESET)

100 Voo Supply Current 4 8 rnA

100+ Total Supply Current 40 80 rnA
ICC

T08049AH/T08039AH L/L 08049AH/L 08039AH L

D.C. CHARACTERISTICS: (TA = -40°C to 85°C; VCC = Voo = 5V ± 10%; VSS = OV)

. Limits

Symbol Parameter Min Typ Max Unit Test Conditions

VIH Input High Voltage (All Except 2.2 VCC V
XTAL1, XTAL2, RESET)

100 VOO Supply Current 5 10 rnA

100+ Total Supply Current 50 100 rnA
ICC

T08050AH/T08040A H L/L 08050AH/L 08040AH L

D.C. CHARACTERISTICS: (TA = -40°C to 85°C; VCC = VOO = 5V ± 10%; VSS = OV)

Limits

Symbol Parameter Min Typ Max Unit Test Conditions

VIH Input High Voltage (All Except 2.2 VCC V
XTAL 1, XTAL2, RESET)

100 VOO Supply Current 10 20 rnA

100 + Total Supply Current 75 120 rnA
ICC

16-21

inter SINGLE-COMPONENT 8-BIT MICROCOMPUTERS

Extended Temperature Electrical Specification Deviations *

TD8748H/LD8748H·

D.C. CHARACTERISTICS: (TA = -40°C to 85°C; VCC = VOO = 5V ± 10%; VSS = OV)

Limits

Symbol Parameter Min Typ Max Unit Test Conditions

VIH Input High Voltage (All Except 2.2 VCC V
XTAL 1, XTAL2, RESET)

100+ Total Supply Current 50 130 mA
ICC

T08749H/L08749H

D.C. CHARACTERISTICS: (TA = -40°C to 85°C; VCC = VOD= 5V ± 10%; VSS = OV)

Limits

Symbol Parameter Min Typ Max Unit Test Conditions

VIH Input High Voltage (All Except 2.2 VCC V
XTAL 1, XTAL2, RESET)

100 + Total Supply Current 75 150 mA
ICC

TP8243IT08243/LD8243

D.C. CHARACTERISTICS: (TA = -40°C to 85°C; VCC =5V ± 10%; VSS = OV)

limits

Symbol Parameter Min I Typ I Max Unit Test Conditions

ICC VCC Supply Current I 15 I 25 mA

16·22

inter SINGLE-COMPONENT 8-BIT MICROCOMPUTERS

Extended Temperature Electrical Specification Deviations *

TD8022/LD8022

D.C. CHARACTERISTICS: (TA = -40°C to 85°C; VCC = 5.5V ± 1V; VSS = OV)

Limits

Symbol Parameter Min Typ Max Unit Test Conditions

VIL 1 Input Low Voltage (Port 0) -0.5 VTH-0.2 V

VIH Input High Voltage 2.3 VCC V VCC = 5.0V ± 10%
(All Except XTAL 1, RESET) VTH Floating

VIH1 Input High Voltage 3.8 VCC V VCC = 5.5V ± 1V
(All Except XTAL 1, RESET) VTH Floating

VIH2 Input High Voltage (Port 0) VTH+0.2 VCC V

VIH3 Input High Voltage (RESET, XTAL 1) 3.8 VCC V

VIL Input Low Voltage -0.5 0.5 V

VOL Output Low Voltage 0.45 V IOL = O.B'mA

VOL1 Output Low Voltage (P10, P11) 2.5 V IOL = 3 mA

VOH Output High Voltage (All unless 2.4 V IOH = 30 J.'A
open drain option Port 0)

III I n put Cu rrent (T1) ±700 J.'A VCC~VIN~
VSS + 0.45V

ILl1 Input Current to Ports 500 J.'A VIN = O.45V

ICC VCC Supply Current 120 mA

A.C. CHARACTERISTICS: (TA = -40°C to 85°C; VCC = 5.5V ± 1V; VSS = OV)

Symbol Parameter Min Max Unit Test Conditions

tCY Cycle Time 8.38 50.0 J.'s 3.58 MHz XTAL = 8.38 J.'s tCY

VT1 Zero-Cross Detection Input (T1) 1 3 VACpp AC Coupled

AZC Zero-Cross Accuracy ±200 mV 60 Hz Sine Wave

FT1 Zero-Cross Detection Input 0.05 1 kHz
Frequency (T1)

tLL ALE Pulse Width 3.9 23.0 J.'s tCY = 8.38 J.'s for min

NOTE: Control Outputs: CL = 80 pI; TCY = 8.38 J.lsec.

AID CONVERTER CHARACTERISTICS: (AVCC = 5.5V ± 1V; AVSS = OV; AVCC/2,s;; VAREF,s;; AVCC)

Limits

Parameter Min I Typ I Max Unit Test Conditions

Absolute Accuracy I 11.6% FSR ± y, LSB LSB

NOTE: The analog input must be m,aintained at a constant voltage during the sample time (tss + tsh).
'Reler to individual commercial grade data sheets lor complete operating characteristics.

16-23

intJ
80C49-7/80C39-7

CHMOS SINGLE-COMPONENT 8-BIT MICROCOMPUTER

• SOC49-7 Low Power Mask Programmable ROM
• SOC39-7 Low Power, CPU only

• Pln-to-pln Compatible with Intel's
8049AH/S039AHL

• 1.36 p'sec .Instruction Cycle. All Instructions
1 or 2 Cycles

• Ability to Maintain Operation during
AC Power Line Interruptions

• Exit Idle Mode with an External or Internal
Interrupt Signal

• Battery Operation

• 3 Power Consumption Selections
-Normal Operation: 12 mA@ 11 MHz@ SV
-'-Idle Mode: SmA @ 11 MHz @ SV
-Power Down: 2 p.A @ 2.0V

• 11 MHz, TTL Compatible Operation:
VCC = SY.± 10%
CMOS Compatible Operation;
VCC = SV ±: 20%

Intel's 80C49-7/80C39-7 are low power, CHMOS versions of the popular MCSIJ!)-48 HMOS family members. CHMOS is a
. technology built on HMOS II and features high resistivity P substrate, diffused N well, and scaled Nand P channel devices.
The 80C49-7/80C39-7 have been designed to provide low power consumption and high performance.

The 80C49-7 contains a 2K x 8 program memory, a 128 x 8 x 8 RAM data memory, 27 I/O lines, and an 8-bit timer/counter
. in addition to an on-board oscillator and clock circuits. For systems that require extra capability, the 80C49-7 can be expanded
using CMOS external memories and MCSIJ!)-80 and MCSIJ!)-85 peripherals. The 80C39-7 is the equivalent of the 80C49-7 without
program memory on-board. .

The CHMOS design of the 80C49-7 opens new application areas that require battery operation, low power standby, wide
voltage range, and the ability to maintain operation during AC power line interruptions. These applications include portable and
hand-held instruments., telecommunications. consumer, and automotive.

Figure 1.
Block Diagram

•

8OC49-7
8OC39-7

Figure 2.
Logic Symbol

TO 1
PORT XTAL 1

1.
XTAL2
RESET

PORT ss
2 INT

. EA
RD

PSEN
WR
ALE
DBO
DBl
DB2
DB3
DB4
DBS

· DB6
DB7
VSS

Figure 3.

P25
P24
P17
P16
P1S
P14
P13
P12
Pll
Pl0
VDD
PROG
P23
P22
P21
P20

Pin Configuration

Inlel Corporalion Assumes No Responsibility for the Use of Any Circuitry Other Than Circuitry Embodied in an lritel Product. No Other Circuit
Patent Licenses are Implied. January 1983
© INTEL CORPORATION, 1983. Order Number 210936-001

16-24

inter 80C49-7/80C39-7

Table 1. Pin Description

Symbol Pin No. Function Symbol Pin No. Function

VSS 20 Circuit GND potential Can be designated the

VDD 26 low Power standby pin timer/counter input using
the STRT CNT instruction.

VCC 40 Main power supply;
+5V during operation. INT 6 Interrupt input. Initiates an

interrupt if interrupt is en-
PROG 25 Output strobe for 82C43 abled. Interrupt is disabled

I/O expander. after a reset. Also testable

P10-P17 27-34 8-bit quasi-bidirectional with conditional jump in-

Port 1 port. struction. (Active low)

P20-P23 21-24 8-bit quasi-bidirectional
, Interrupt must remain low

for at least 3 machine
port. cycles for proper operation.

P24-P27 35-38 P20-P23 contain the four
Port 2 high order program counter

bits during an external

RD 8 Output strobe activated
during a BUS read. Can be
used to enable data onto

program memory fetch
and serve as a 4-bit I/O
expander bus for 8243.

toe bus from an external
device.

DBO-DB7 12-19 True bidirectional port
BUS which can be written or

read synchronously using

Used as a read strobe to
external data memory.
(Active low)

the RD, WR st'robes. The RESET 4 Input which is used to

port can also be statically initialize the processor.

latched. (Active low) (Non TTL VIH)

Contains the 8 low order WR 10 Output strobe during a bus

program counter bits dur- write. (Active low)

ing an external program Used as write strobe to
memory fetch, and receives external data memory.
the addressed instruction
under the control of PSEN.
Also contains the address
and data during an external
RAM data store instruction,

ALE 11 Address latch enable. This
signal occurs once during
each cycle and is useful as
a clock output.

under control of ALE, RD, The negative edge of ALE
and WR. strobes address into

TO 1 Input pin testable using the
conditional transfer instruc-

external data and program
memory.

tions JTO and JNTo. TO can PSEN' 9 Program store enable. This
be designated as a clock output occurs only during
output usi.ng ENTO ClK a fetch to external program
instruction. memory. (Active low)

T1 39 I nput pin testable using the SS 5 Single step input can be
JT1, and JNT1 instructions. used in conjunction with

16-25 210936

inter 80C49-7/80C39-7

Table 1 .. Pin Description (Continued)

Symbol Pin No. Function Symbol Pin No. Function

88 (Con't) ALE to "single step" the and program verification.
processor through each (Active high)

. instruction (Active low) XTAL1 2 One side of crystal input
EA 7 External access input which for internal oscillator. Also

forces all program memory input for external source.
fetches to reference (Non TTL VIH)
external memory. Useful
for emulation and debug,

XTAL2 3 Other side of crystal input.

and essential for testing

IDLE MODE DESCRIPTION
The BOC49-7, when placed into Idle mode, keeps the oscillator, the internal timer and the external interrupt and
counter pins functioning and maintains the internal register and RAM status.

To place the BOC49-7 in Idle mode, a command instruction (op code 01 H) is executed. To terminate Idle mode,
a reset must be performed or interrupts must be enabled and an interrupt signal generated. There are two
interrupt sources that can restore normal operation. One is an external signal applied to the interrupt pin. The
other is from the overflow of the timer/counter. When either interrupt is invoked, the CPU is taken out of Idle
mode and vectors to the interrupt's service routine address. Along with the Idle mode, the standard MCS®-4B
power-down mode is still maintained.

16-26 210936

80C49-7/80C39-7

Table 2. Instruction Set

Accumulator Registers

Mnemonic Description Bytes Cycles Mnemonic Description Bytes Cycles
ADD A, R Add register to A 1 1 INCR Increment register 1 1
ADD A,@R Add data memory to A 1 1 INC@R Increment data memory
ADD A, # data Add immediate to A 2 2 DECR Decrement register
ADDC A, R Add register with carry
ADDCA,@R Add data memory

Branch with carry
ADDC A, # data Add immediate 2 2

Mnemonic Description Bytes Cycles with carry
ANLA, R And register to A JMP addr Jump unconditional 2 2

ANLA,@R And data memory to A 1 JMPP@A Jump indirect 2

ANL A, # data And immediate to A 2 2 DJNZ R, addr Decrement register 2 2

ORLA, R Or register to A
and skip

ORLA@R Or data memory to A 1
JC addr Jump on carry = 1 2 2

ORL A, # data Or immediate to A 2 2
JNC addr Jump on carry = 0 2 2

XRL A, R Exclusive or register
JZ addr Jump on A zero 2 2

to A JNZ addr Jump on A not zero 2 2

XRL A, @R Exclusive or data JTO addr Jump on TO = 1 2 2
memory to A JNTO addr Jump on TO = 0 2 2

XRL, A, # data Exclusive or 2 2 JTladdr Jump on T1 = 1 2 2
immediate to A JNT1 addr Jump on T1 = 0 2 2

INCA Increment A JFO addr Jump on FO = 1 2 2
DECA Decrement A JF1 addr Jump on F1 = 1 2 2
CLRA Clear A JTF addr Jump on timer flag 2 2
CPLA Complement A JNI addr Jump on INT = 0 2 2
DAA Decimal adjust A JBb addr Jump on accumulator 2 2
SWAP A Swap nibbles of A bit
RLA Rotate A left
RLCA Rotate A left

through carry Subroutine

RRA Rotate A right
Mnemonic Description Bytes Cycles RRCA' Rotate A right

through carry CALL addr Jump to subroutine 2 2
RET Return 1 2
RETR Return and restore 2

Input/Output status

Mnemonic Description Bytes Cycles
IN A, P Input port to A 1 2 Flags

OUTL P, A Output. A to port 1 2 ,
Cycles ANL P, # data And immediate to port 2 2

Mnemonic Description Bytes

ORL P, # data Or immediate to port 2 2
CLR C Clear carry 1 1

INS A, BUS Input BUS to A 2
CPL C Complement carry 1 1

OUTL BUS, A Output A to BUS 1 2
CLR FO Clear flag 0

ANL BUS, # data And immediate to BUS 2 2
CPL FO Complement flag 0

ORL BUS, # data Or immediate to BUS 2 2
CLR F1 Clear flag 1

MOVD A, P Input expander port 2
CPL F1 Complement flag 1

toA
MOVD P, A Output A to expander 2

port
ANLD P, A And A to expander port 2
ORLO P, A Or A to expander port 2

16-27 210936

inter SOC49· 7/S0C39·7

Table 2. Instruction Set (Continued) .

Data Moves Timer/Counter

Mnemonic Description Bytes Cycles Mnemonic Description Bytes Cycles
MOV A, R Move register to A' , , MOVA, T Read timer/counter , ,
MOV A,@R Move data memory , MOVT, A load timer/counter , ,

toA STRTT Start timer
MOV A, # data Move immediate to A 2 2 STRTCNT Start counter
MOVR,A Move A to register STOP TCNT Stop timer/counter
MOV@R,A Move A to data EN TCNTI Enable timer/counter

memory" interrupt
MOV R, # data Move immediate 2 2 DIS TCNTI Disable timer/counter

to register interrupt
MOV @R, # data Move immediate to 2 2

data memory
MOVA, PSW Move PSW to A Control
MOVPSW,.A Move A to PSW
XCH A, R Exchange A and Mnemonic Description Bytes Cycles

register EN I Enable external , ,
XCHA,@R Exchange A and interrupt

data memory DIS I Disable external
XCHDA,@R Exchange nibble of A interrupt

and reg ister SEl RBO Select register bank 0
MOVXA,@R Move external data 2 SEl RB' Select register bank'

memory to A SEL MBO Select memory bank 0
MOVX@R,A Move A to external 2 SEl MB' Select memory bank'

data memory
ENTO ClK Enable clock output

MOVPA,@A Move to A from 2 on TO
current page

MOVP3A, @A Move to A from page 3 2

Mnemonic Description Bytes Cycles
NOP No operation , ,
IDl Select Idle Operation ,

16·28 210936

80C49-7/80C39-7

ABSOLUTE MAXIMUM RATINGS"

Ambient Temperature Under Bias ... ooe to 70°C
Storage Temperature•..... -65°C to +1500 e
Voltage On Any Pin With Respect

to Ground •••.••....•..•... -0.5V to Vee+1V
Maximum Voltage On Any Pin

With Respect to Ground .•.•..•..••.••... 7V
Power Dissipation •.•.................. 1.0 Watt

"NOTICE: Stresses above those listed under "Abso­
lute Maximum Ratings" may cause permanent dam­
age to the device. This is a stress rating only and
functional operation of device at these or any other
conditions above those indicated in the operational
sections of this specification is not implied.

D.C.· CHARACTERISTICS: (TA = 0° e to 70° e; Vee = VDD = 5V ± 20%; I Vee - VDDI ~ 1.5V; VSS = OV)

Limits

Symbol Parameter Min Typ Max Unit Test Conditions

VIL Input Low Voltage -.5 .18 Vee V
(All Except X1, RESET)

VIL1 Input Low Voltage X1, RESET -5 .13 Vee V

VIH Input High Voltage .4 Vee Vee V
(AII·Except XTAL 1, RESET)

VIH1 Input High Voltage (X1, RESET) .7 Vee Vee V

VOL Output Low Voltage (BUS) .6 V 10L = 2.0 mA

VOL1 Output Low Voltage .6 V 10L = 1.8 mA
(RD, WR, PSEN, ALE)

VOL2 Output Low Voltage (PROG) .6 V 10L = 1.0 mA

VOL3 Output Low Voltage .6 V 10L = 1.6 mA
(All Other Outputs)

VOH Output High Voltage (BUS) .75 Vee V 10H = -400 p,A

VOH1 Outp~High Voltage .75 Vee V 10H = -100p,A
(RD, WR, PSEN, ALE)

VOH2 Output High Voltage .75 Vee V 10H = -40 p,A
(All Other Outputs)

1L1 Input Leakage Current (T1, INT, EA) ±5 p,A VSS ~ VIN ~ Vee

ILl1 Input Leakage Current -500 p,A VSS ~ VIN ~ Vee
(P10-P17, P20-P27,SS)

ILO Output Leakage Current (BUS, TO) ±5 p,A VSS ~ VIN ~ Vee
(High Impedance State)

ILR Input Leakage Current (RESET) -10 -300 p,A VSS ".; VIN ".; VIH1

IpD Power Down Standby Current 2 p,A VDD = 2.0V RESET~ VIL

ICC Active Current (rnA) ICC Idle Current (rnA)

Vee 4V 5V 6V Vee 4V 5V 6V

1 MHz 1.5 2.3 3 1 MHz .7 1 1.2

6 MHz 5 6.8 8.5 6 MHz 2 3 4

11 MHz 9 12 15 11 MHz 3.5 4.8 6

Absolute Maximum Unloaded Current

inter 80C49-7/80C39-7

A.C. CHARACTERISTICS: (TA = 00 C to 700 C; VCC = VOO = 5V ± 20%; IVCC - VOOI ~ 1.5V; VSS = OV)

f (I)
Symbol Parameter (Note 3)

t Clock Period 1/xtal freq

tLL ALE Pulse Width 3.5t-170

tAL Addr Setup to AL.E 2t-110

tLA Addr Hold from ALE t-40

tCC1 Control Pulse Width (RO, WR) 7.5t-200

tCC2 Control Pulse Width (PSEN) 6t-200

tow Data Setup before WR 6.5t-200

two Data Hold after WR t-50

tOR Data Hold (RD, PSEN) 1.5t-30

tRD1 RD to Data in \ 6t-170

tR02 PSEN to Data in 4.5t-170

tAW Addr Setup to WR 5t-150

tAD1 Addr Setup to Data (RD) 10.5t-220

tA02 Addr Setup to Data (PSEN) 7.5t-220

tAFC1 Addr Float to RD, WR 2t-40

tAFC2 Addr Float to PSEN .5t-40

tl.AFC1 . ALE to Control (RD, WR) 3t-75

tLAFC2 ALE to Control (PSEN) 1.5t-75

tCA1 Control to ALE (RD, WR, PROG) HIO

tCA2 Control to ALE (PSEN) 4t-40

tcp Port Control Setup to PROG 1.5t-80

tpc Port Control Hold to PROG 4t-260

tpR PROG to P2 Input Valid 8.5t-120

tpF Input Data Hold from PROG 1.5t

top Output Data Setup 6t-290

tpD Output Data Hold 1.5t-90

tpp PROG Pulse Width 10.5t-250

tpL Port 2 I/O Setup to ALE 4t-200

tLP Port 2 I/O Hold to ALE 1.5t-120

tpv Port Output from ALE 4.5t+100

tOPRR TO Rep Rate 3t

tCY Cycle Time . 1St

Noles:

1. Control Outputs CL = 80pF
BUS Outputs CL = 150pF

2. BUS High Impedance
Load 20pF

16-30

11 MHz
Conditions

Min Max Unit (Note 1) .

90.9 1000 ns (Note 3)

150 ns

70 ns (Note 2)

50 ns

480 ns

350 ns

390 ns

40 ns

0 110 ns

350 ns

190 ns

300 ns

730 hs

460 ns

140 ns (Note 2)

10 ns (Note 2)

200 ns

60 ns

50 ns

320 ns

50 ns

100 ns

650 ns

0 140 ns

250 ns
,

40 ns

700 ns

160 ns

15 ns

510 ns

270 ns

1.36 15.0 p's

3. I(t) assumes 50% duty cycle on Xl, X2. Max
clock period is lor a 1 MHz crystal input.

inter BOC49-7/BOC39-7

WAVEFORMS

~ tCY r- tLL -I tLAFC2i-- --1tLAFC1L

ALE J L-I _1 __ ------' L ALE J'---' I __ I ___ ~
i I

tAFC2j I-- tCC1--j tCA 1 1-
----,1 I r- tCA2

RD
PSEN

tAFC1- t---- -I i-tDR

: FLOATING I i~-----
I DATA FLOATING

IADDRESS r---I tRDl
I--- tAD 1 -------i

Read From External Data Memory

ALE J L
i--tCC1-: tCAl - 2.4V ----..., ,-__ _

WR ------,1 1 X~:~:;TEST POINTS:~:~X
0.45V ------'. . . '-. ---

I tow :---~- two
, I~----

ADDRESS

FLOATING

Write To External Data Memory

A.C. testing inputs are driven at 2.4V for a logic "1" and
0.45V for a logic "0." Output timing measurements are
made at 2.0V for a logic "1" and 0.8V for a logic "0."

Input And Output For A.C. Tests

PORT 1/PORT 2 TIMING

ALE

PSEN

P20-23
OUTPUT

P24-27
Pl0-17
OUTPUT

tLP

EXPANDER
PORT

OUTPUT

EXPANDER
PORT

INPUT

1ST CYCLE I I-- --l 2ND I tPL . I ,CYCLE ,~tPv1
L-_________ ~ I~ __ ~--------~

I
PCH PC?RT 20-23 DATA NEW P20-23 DATA I PCH

I
PORT 24-27, PORT 10-17 DATA NEW PORT DATA

I

~ -----o"~I··-tPL~ I

PCH

---l j-tCAl

ItPD ,top ",01
I 'P-O-RT-2-0--2-3-D-A-TA"1 1 PORT CONTROL

L-______________ ~ OUTPUT DATA I I

PCH

I
I

I I Itp)
I II t--. -------t, tPR---t~ I H

,-~----. r----__
.1 PORT C~NTROL 1

I-tcP+tPc~ I I

PROG
-----------\~ltPP-V-

16-31 210936

inter 80C49-7/80C39-7

SUGGESTED ROM VERIFICATION ALGORITHM FOR CHMOS DEVICES ONLY

INITIAL ROM DUMP CYCLE

ALE

DB----I ADDRESS H ROM DATA

L..-~(IN:-::P:-:U-:::T::-)-.J (OUTPUT)

RESET ______ --'

SUBSEQUENT ROM DUMP CYCLES

! (OUTPUT)
I
j

I

: (INPUT)
I
I
I
I H ADDRESS

, (INPUT)
I

! (INPUT)
I ,
I

I

I
I
I

LJROMl I ~,.....--------
(OUTPUT):

P20-P23 ---L ____ A_D_D_RE_S_S ___ ---lH'--___ A_D_D_R_ES_S ___ -r--------
I (INPUT)
I

VCC = VDD = + 5V

A10

A11 VSS = OV

16-32 210936

The RUPITM __ 44 Family 17

CHAPTER 17
THE RUPITM-44 FAMILY:

MICROCONTROLLER WITH ON-CHIP
COMMUNICATION CONTROLLER

17.0 INTRODUCTION

The RUPI-44 family is designed for applications requir­
ing local intelligence at remote nodes, and communica­
tion capability among these distributed nodes. The
RUPI-44 integrates onto a single chip Intel's highest
performance micro controller , the 80S I-core, with an in­

'telligent and high performance Serial communication
controller, called the Serial Interface Unit, or SIU. See
Figure 17-1. This dual controller architecture allows
complex control and high speed data communication
functions to be realized cost effectively.

The RUPI-44 family consists of three pin compatibk
parts:

8344-80S1 Microcontroller with SIU

8044-An 8344 with 4K bytes of on-chip ROM
program memory.

•. 8744-An 8344 with 4K bytes of on-chip
EPROM program memory.

17.1 ARCHITECTURE OVERVIEW

The 8044's dual controller architecture enables the
RUPI to perform complex control tasks and high speed
communication in a distributed network environment.

The 8044 microcontroller is the 80S I-core, and main­
tains complete software compatibility with it. The
microcontroller contains a powerful CPU with on-chip
peripherals, making it capable of serving sophisticated

real-time control applications such as instrumentation,
industrial control, and intelligent computer peripherals.
The microcontrollcr features on-chip peripherals such
as two 16-bit timer/counters and S source interrupt ca­
pability with programmable priority levels. The micro­
controller's high performance CPU executes most
instructions in I microsecond, and can perform an 8 X 8
multiply in 4 microseconds. The CPU features a Bool­
ean processor that can perform operations on 2S6 direct­
ly addressable bits. 192 bytes of on-chip data RAM can
be extended to 64K bytes externally. 4K bytes of on-chip
program ROM can be extended to 64K bytes externally.
The CPU and SIU run concurrently. See Figure 17-2.

The SIU is designed to perform serial communications
with little or no CPU involvement. The SIU supports
data rates up to 2.4Mbps, externally clocked, and 37SK
bps self clocked (i.e., the data clock is recovered by an
on-chip digital phase locked loop). SIU hardware sup­
ports the HDLC/SDLC protocol: zero bit insertion/de­
letion, address recognition, cyclic redundancy check,
and frame number sequence check are automatically
performed.

The SIU's Auto mode greatly reduces communication
software overhead. The AUTO mode supports the
SDLC Normal Response Mode, by performing second­
ary station responses in hardware without any CPU in­
volvement. The Auto mode's interrupt control and
frame sequence numbering capability eliminates soft­
ware overh,ead normally required in conventional sys­
tems. By using the Auto mode, the CPU is free to
concentrate on real time control of the application.

1--------------------,
I I

.~;:::" ~ ~~, . H ' .. 0:' H "" 1 ... ·1---+: --... CO~~L~~~g;~ON
. I I

I __________ -...:.. ___________ J

Figure 17-1. RUPI™_44 Dual Controller Architecture

17-1

"'1'1
cC
c ..
CD ...
';'I
~
rn
3"

"2-..... :::;:

~ &
co
0 ,. ,.
ID
0" n
;II\"

c
iii"

CC
iil
3

r

"--I
I

GRO~_I
I
1
1

I
I
1
1

I
I
I
I
L

REFERENCE
OSCILLATOR

8051
CPU

INTERRUPTS

TWO 4k BYTES
TIMER PROGRAM
COUNTERS MEMORY

BUS PROGRAMMABLE
EXPANSION I/O

2 PORT
DATAAAM

SERIAL

INTERFACE

UNIT (5IU)

________ J

HDLe/SDLe

:u
c:
"tI
ii
I

01=0
01=0

17.2 THE HOLe/SOLC PROTOCOLS

17 .2.1 HOLC/SOLC Advantages Over

Async

The High Level Data Link Control, HDLC, is a stan­
dard communication link control established by the
International Standards Organization (ISO). SDLC is
a subset of HDLC.

HDLC and SDLC are both well recognized standard
serial protocols. The Synchronous Data Link Control,
SDLC, is an IBM standard communication protocol.
IBM originally developed SDLC to provide efficient,
reliable and simple communication between terminals
and computers.

The major advantages of SDLC/HDLC over Asyn­
chronous communications protocol (Async):

o SIMPLE: Data Transparency

I l PRIMARY

I
a) Point to Point, Half Duplex

I PRIMARY I
I i

8044 CONTROLLED
SECONDARY

• EFFICIENT:

o RELIABLE:

Well Defined Message-Level
Operation

Frame Check Sequence and
Frame Numbering

The SDLC ;educes system complexity. HDLC/SDLC
are "data transparent" protocols. Data !ransparency
means that an arbitrary data stream can be sent without
concern that some of data could be mistaken for a pro­
tocol controller. Data transparency relieves the com­
munication controller having to detect special
characters.

SDLC/HDLC provides more data throughout than
Async. SDLC/HDLC runs at Message-level Operation
which transmits mUltiple bytes within the frame.
Whereas Async is based on character-level operation.
Async transmits or receives a character at a time. Since
Async requires start and stop bits in every transmission,
there is a considerable waste of overhead compared to
SDLC/HDLC.

8044 CONTROLLED
SECONDARY

t J
8044 CONTROLLED 8044 CONTROLLED
SECONDARY SECONDARY

b) Multipoint, Half Duplex

L:J PRIMARY ~
8044 CONTROLLED 8044 CONTROLLED
SECONDARY SECONDARY

1. t
8044 CONTROLLED

I-
8044 CONTROLLED

SECONDARY SECONDARY

c) SOLe Loop Configuration

Figure 17·3. RUPI™·44 Supported Network Configurations

17-3

RUPI""-44

Due to SDLC/HDLC's well delineated field (see Figure
17-4) the CPU does not have to interpret character by

, character to determine control field and information
field. In the case of Async, CPU must look at each
character to interpret what it means. The ~ractical ad­
vantage of such feature is straight forward use of DMA
for information transfer.

In addition, SDLC/HDLC further improves Data
throughput using implied Acknowledgement of trans­
ferred information. A station using SDLC/HDLC may
acknowledge previously received information while
transmitting different information in the same frame.
In addition, up to 7 messages may be outstanding before
an acknowledgement is required.

The HDLC/SDLC protocol can be used to realize
reliable data links. Reliable Data transmission is ensured
at the bit level by sending a frame check sequence, cyclic
redundancy checking, within the frame. Reliable frame.
transmission is ensured by sending a frame number
identification with each frame. This means that a
receiver can sequentially count received frames and at
any time infer what the number of the next frame to
be received should be. More important, it provides a
means for the receiver to identify to the sender some
particular frame that it wishes to have resent because
of errors.

17.2.2 HOLC/SOLC Networks

In both the HDLC and SDLC line protocols a (Master)
primary station controls the overall network (data link)
and issues commands to the secondary (Slave) stations.
The latter complies 'Yith instructions and responds by
sending appropriate responses. Whenever a transmit­
ting station must end transmission prematurely, it sends
an abort character. Upon detecting an abort character, a
receiving station ignores the transmission block called a
frame.

RUPI-44 supported HDLC/SDLC network configura­
tions are point to point (half duplex) multipoint (half

duplex), and loop. In the loop configuration the stations
themselves act as repeaters, so that long links can be
easily realized, see Figure 17-3.

17.2.3 Frames

An HDLC/SDLC frame consists of five basic fields:
Flag, Address, Control, Data and Error Detection. A
frame is bounded by flags-opening and closing flags.
An address field is 8 bits wide in SDLC, extendable to 2
or more bytes in HDLC. The control field is aiso 8 bits
wide, extendable to two bytes in HDLC. The SDLC
data field or information field may be any number of
bytes. The HDLC data field mayor may not be on an 8
bit boundary. A powerful error detection code called
Frame Check Sequence contains the calculated CRe
(Cycle Redundancy Code) for all the bits between the
flags. See Figure 17-4.

In HDLC and SDLC are three types of frames; an In­
formation Frame is used to transfer data, a Supervisory
Frame is used for control purposes, and a Non­
sequenced Frame is used for initialization and control of
the secondary stations.

For a more detailed discussion of higher level protocol
functions interested readers may refer to the references
listed in Section 17.2.6.

17.2.4 Zero Bit Insertion

In data communications, it is desirable to transmit data
which can be of arbitrary content. Arbitrary data trans­
mission requires that the data field cannot contain char­
acters which are defined to assist the transmission
protocol (like opening flag in HDLC/SDLC communi­
cations). This property is referred to as "data transpar­
ency". In HDLC/SDLC, this code transparency is
made possible by Zero Bit Insertion (ZBI),

The flag has a unique binary bit pattern: 01111110 (7E
HEX). To eliminate the possibility of the data field con­
taining a 7E HEX pattern, a bit stuffing technique

OPENING
FLAG

ADDRESS CONTROL
FIELD FIELD

INFORMATION
FIELD

FRAME CHECK
SEQUENCE (FCS)

CLOSING
FLAG

,
01111110 BBITS BBITS

VARIABLE LENGTH 16 BITS 01111110 (ONLY IN I FRAMES)

Figure 17-4. Frame Format

17-4

RUPI"'-44

called Zero Bit Insertion is used. This technique speci­
fies that during transmission, a binary U be inserted by
the transmitter after any succession of five contiguous
binary I 'so This will ensure that no pattern of 0 I I I I I
lOis ever transmitted between flags. On the receiving
side, after receiving the flag, the receiver hardware auto­
matically deletes any 0 following five consecutive I's.
The 8044 performs zero bit insertion and deletion
automatically.

17.2.5 Non-return to Zero Inverted (NRZI)
NRZI is a method of clock and data encoding that is
well suited to the HDLC/SDLC protocol. It allows
HDLC/SDLC protocols to be used with low cost asyn­
chronous modems. NRZI coding is done at the trans­
mitter to enable clock recovery from the data at the
receiver terminal by using standard digital phase locked
loop (DPLL) techniques. NRZI coding specifies that
the signal condition does not change for transmitting a
I, while an 0 causes a change of state. NRZI coding en­
sures that an active data line will have a transition at
least every 5-bit times (recall Zero Bit Insertion), while
contiguous O's will cause a change of state. Thus, ZBI
and NRZI encoding makes it possible for the 8044's on­
chip DPLL to recover a receive clock (from received
data) synchronized to the received data and at the same
time ensure data transparency.

17.2.6 References

1. IBM Synchronous Data Link Control General
Information GA27-3093-2, File No. GENL-09.

2. Microcontroller with Integrated High Performance
Communications Interface, By Charles Yager Pro­
fessional Program Session Record 8, WESCONI83.

3. Standard Network Access Protocol Specification,
DATAPAC Trans-Canada Telephone System
CCG111.

4. IBM 3650 Retail Store System Loop Interface OEM
Information, IBM, GA 27-3098-0.

5. Guidebook to Data Communications, Training
Manual, Hewlett-Packard 5955-1715.

6. "Using the 8273 SDLCIHDLC Protocol Con­
troller", Application Note #36. March, 1978.
Intel Corporation.

7. "LSI Devices Control Loop-Mode SDLC Data
Links", Article Reprint #94. August, 1979. Intel
Corporation.

17.3 RUPITM-44 DESIGN SUPPORT

17-5

17.3.1 Design Tool Support
A critical design consideration is time to market. Intel
provides a sophisticated set of design tools to speed hard­
ware and software development time of 8044 based
products. These include ICE-44, ASM-51, and
PL/M-51.

Figure 17·5. RUPITM-44 Development Support
Configuration Intellec@ System,
ICETM-44 Buffer Box, and ICE·44
Module Plugged into a User
Prototype Board.

A primary tool is the 8044 In Circuit Emulator, called
ICE-44. See Figure 17-5. In conjunction with Intel's In­
tellec® Microprocessor Development System, the ICE-
44 emulator allows hardware and software development
to proceed interactively. This approach is more effective
than the traditional method of independent hardware
and software development followed by system integra­
tion. With the ICE-44 module, prototype hardware can
be added to the system as it is designed. Software and
hardware integration occurs while the product is being
developed.

The ICE-44 emulator assists four stages of development:

I) Software Debugging

It can be operated without being connected to the us­
er's system before any of the user's hardware is avail­
able. In this stage ICE-44 debugging capabilities
can be used in conjunction with the Intellec text edi-

tor and 8044 macroassembler to facilitate program
development.

2) Hardware Development

The ICE-44 module's precise emulation characteris­
tics and full-speed program RAM make it a valuable
tQol for debugging hardware, including the time­
critical SDLC serial PQrt, parallel port, and timer
interfaces.

3) System Integration

Integration of sQftware and hardware can begin
when any. functional element .of the ·user system
hardware is cQnnected to the 8044 socket. As each
section .of the user's hardware iscQmpleted, it is add­
ed to the prototype. Thus, each sectiQn .of the hard­
ware and sQftware is system tested in real-time
.operation as it becQmes available.

4) System Test

When the user's prototype is complete, it is tested
with the final version .of the user system software.
The ICE-44 module is then used for real-time emU7
latiQn of the 8044 to debug the system as a completed
unit.

17-6

The final prQduct verification test may be perfQrmed
using the 8744 EPROM version of the 8044 micro­
computer. Thus, the ICE-44 module prQvides the
user with the ability to debug a prototype or produc­
tion system at any stage in its development.

A conversiQn kit, ICE-44 CON, is available to upgrade
an ICE-51 module tQ ICE-44.

Intel's ASM-51 Assembler supports the 8044 special
functiQn registers and assembly program development.
PL/M-51 provides designers with a high level language
fQr the 8044. PrQgramming in PL/M can greatly reduce
development time, and ensure quick time to market:

17.3.2 8051 Workshop

Intel prQvides 8051 training to its custQmers through the
5-day 8051 workshop. Familiarity with the 8051 and
8044 is achieved through a cQmbination of lecture and
labQratQryexercises.

For designers nQt familiar with the 8051, the wQrkshop
is an effective way to become proficient with the 8051
architecture and capabilities.

8044 Architecture 18

CHApTER 18
8044 ARCHITECTURE

18.0 GENERAL

The 8044 is based on the 8051 core. The 8044 replaces
the 8051 's serial port with an intelligent HDLC/SDLC
controller called the Serial Interface or SIU. Thus the
differences between the two result from the 8044's in­
creased on-chip RAM (192 bytes) and additional spe­
cial function registers necessary to control the SIU.
Aside from the increased memory, the SIU itself, and
differences in 5 pins (for the serial port), the 8044 and
8051 are compatible.

This chapter describes the differences between the 8044
,and 8051. Information pertaining to the 8051 core, ego
instruction set, port operation, EPROM programming,
etc. is located in the 8051 sections of this manual.

A block diagram of the 8044 is shown in Figure 18-1.
The pinpoint is shown on the inside front cover.

18.1 MEMORY ORGANIZATION
OVERVIEW

The 8044 maintains separate address spaces for Pro­
gram Memory and Data Memory. The Program Mem­
ory can be up to 64K bytes long, of which the lowest 4K
bytes are in the on-chip ROM.

If the EA pin is held high, the 8044 executes out of inter­
nal ROM unless the Program Counter exceeds OFFFH.
Fetches from locations 1000H through FFFFH are di­
rected to external Program Memory.

If the EA pin is held low, the 8044 fetches all instruc­
tions from external Program Memory.

The Data Memory consists of 192 bytes of on-chip
RAM, plus 35 Special Function Registers, in addition to
which the device is capable of accessing up tcr64K bytes
of external data memory.

The Program Memory uses 16-bit addresses. The exter­
nal Data Memory can use either 8-bit or 16-bit address­
es. The internal Data Memory uses 8-bit addresses,
which provide a 256-location address space. The lower
192 addresses access the on-chip RAM. The Special
Function Registers occupy various locations in the upper
128 bytes of the same address space.

The lowest 32 bytes in the internal RAM (locations 00
through I FH) are divided into 4 banks of registers, each
bank consisting of 8 bytes. Anyone of these banks can be
selected to be the "working registers" of the CPU, and
can be accessed by a 3-bit address in the same byte as the
opcode of an instruction. Thus, a large number of in­
structions are one-byte instructions.

18-1

The next higher 16 bytes of the internal RAM (locations
20H through 2FH) have individually addressable bits.
These are provided for use as software flags or for one­
bit (Boolean) processing. This bit-addressing capability
is an important feature of the 8044. In addition to the
128 individually addressable bits in RAM, twelve of the
Special Function Registers also have individually
addressable bits.

A memory map is shown in Figure 18-2.

18.1.1 Special Function Registers

The Special Function Registers are as follows:

• ACC Accumulator (A Register)
• B B Register
• PSW Program Status Word

SP Stack Pointer
DPTR Data Pointer (consisting of DPH

• PO
* PI
• P2
• P3
• IP
• IE

TMOD
* TCON

THO
TLO
THI
TLi
SMD

• STS
• NSNR

STAD
TBS
TBL
TCB
RBS
RBL
RFL
RCB
DMA CNT
FIFO
SIUST
PCON

AND DPL)
Port 0
Port I
Port 2
Port 3
Interrupt Priority
Interrupt Enable
Timer/Counter Mode
Timer /Counter Control
Timer/Counter 0 (high byte)
Timer/Counter 0 (low byte)
Timer/Counter I (high byte)
Timer/Counter I (low byte)
Serial Mode
S ta tus / Command
Send/Receive Count
Station Address
Transmit Buffer Start Address
Transmit Buffer Length
Transmit Control Byte
Receive Buffer Start Address
Receive Buffer Length
Received Field Length
Received Control Byte
DMACount
FIFO (three bytes)
SIU State Counter
Power Control

The registers marked with * are both byte- and bit­
addressable.

PSEN ALE

CPU
TIMERI ~N'!'~~£1~~T

PROGRAM

COUNTERS.
MEMORY

" cS"
C

iil
!
:0 :II
c: c:
"lJ cp i1 I\)

::E
~

m
0"

I

C"I "'" P1 "'" ~

C
iii"
ce I I

INTERNAL .. TWO PORT

III

11 3 (
DATA

lSI RAM

ADOR/DATA/I/O

II
) P3

I
seLR
DATA

I/O

SIU
RTS
CTS

RUPITM-44

cccc"" ----

FFFF

F X, EHNAL

\

\
1000

J....
(1

OFFF OFFF

A OVERLAPPED
SPACE

INTERNAL EXTERNAL
(EA 11 (EA 01

BF

0000 L-____ 0000 00 L-____ --' 0000 _____ _

'-----------~yr----------~

PROGRAM MEMORY

y
INTERNAL

DATA MEMORY

'----v----'
EXTERNAL

DATA
MEMORY

Figure 18-2. RUPITM-44 Memory Map

Stack Pointer

The Stack Pointer is S bits wide. The stack can reside
anywhere in the 192 bytes of on-chip RAM. When the
S044 is reset, the stack pointer is initialized to 07H.
When executing a PUSH or a CALL, the stack pointer
is incremented before data is stored, so the stack would
begin at location OSH.

18.1.2 Interrupt Control Registers

The Interrupt Request Flags are as listed below:

Source Request Flag Location

External Interrupt 0 INTO, if ITO = 0 P3.2
lEO, if ITO = I TCON.l

Timer 0 Overflow TFO TCON.5

External Interrupt I INTI, ifITI = 0 P3.3
lEI,ifITI=1 TCON.3

Timer 1 Overflow TFI

Serial Interface Unit SI

TCON.7

STSA

18-3

External Interrupt control bits ITO and ITI are in
TCON.O and TCON.2, respectively. Reset leaves all
flags inactive, with ITO and ITI cleared.

All the interrupt flags can be set or cleared by software,
with the same effect as by hardware.

The Enable and Priority Control Registers are shown
below. All of these control bits are set or cleared by soft­
ware. All are cleared by reset.

IE: Interrupt Enable Register (bit-addressable)

Bit: 7 6 5 4 3 2 1 0

/EA/X/X/ES/ETI /EXI/ETO/EXO/

where:

EA disables all interrupts. If EA = 0, no
interrupt will be acknowledged. If EA
= 1, each interrupt source is individ­
ually enabled or disabled by setting or
clearing its enable bit.

ES enables or disables the Serial Inter­
face Unit interrupt. IfES = 0, the Se­
rial Interface Unit interrupt is
disabled.

ETl enables or disables the Timer I Over­
flow interrupt. If ETl = 0, the Timer
1 interrupt is disabled.

EX I enables or disables pxternal Interrupt
1. If EX 1 = 0, External Interrupt 1 is
disabled.

ETO enables or disables the Timer 0 Over­
flow interrupt. If ETO = 0, the Timer
(j interrupt is disabled.

IP: Interrupt Priority Register (bit-addressable)

Bit: 7 6 5 4 3 2 1 0

Ixlxlx IPslPTllpXllPTolpxol
where:

PS

PTl

PXl

defines the Serial Interface Unit in­
terrupt priority level. PS = 1 pro­
grams it to the higher priority level.

defines the Timer 1 interrupt priority
level. PTl = 1 programs it to the
higher priority level.

defines the External Interrupt 1 prior­
ity level. PX 1 = 1 programs it to the
higher priority level.

PTO defines the Timer 0 interrupt priority
level. PTO = 1 programs it to the
higher priority level.

PXO defines the External Interrupt 0 prior­
ity level. PXO = 1 programs it to the
higher priority level.

18.2 Memory Organization Details
In the 8044 family the memory is organized over three
address spaces and the program counter. The memory
spaces shown in Figure 18-2 are the:

64K-byte Program Memory address space

64K-byte External Data Memory address space

320-byte Internal Data Memory address space

The 16-bit Program Counter register provides the 8044
with its 64K addressing capabilities. The Program
Counter allows the user to execute calls and branches to

18-4

any location within the Program Memory space. There
are no instructions that permit program execution to
move from the Program Memory space to any of the
data memory spaces. .

In the 8044 and 8744 the lower 4K of the 64K Program
Memory address space is filled by internal ROM and
EPROM, respectively. By tying the EA pin high, the
processor can be forced to fetch from the internal
ROM/EPROM for Program Memory addresses 0
through 4K. Bus expansion for accessing Program
Memory beyond 4K is automatic since external instruc­
tion fetches occur automatically when the Program
Counter increases above 4095. If the EA pin is tied low
all Program Memory fetches are from external memory.
The execution speed of the 8044 is the same regardless
of whether fetches are from internal or external Pro­
gram Memory. If all program storage is on-chip, byte loc
cation 4095 should be left vacant to prevent an
undesired prefetch from external Program Memory ad­
dress 4096.

Certain locations in Program Memory are reserved for
specific programs. Locations 0000 through 0002 are re­
served for the initialization program. Following reset,
the CPU always begins execution at location 0000. Lo­
cations 0003 through 0042 are reserved for the five in­
terrupt-request service programs. Each resource that
can request an interrupt requires that its service pro­
gram be stored at its reserved location.

The 64K-byte External Data Memory address space is
automatically accessed when the MOVX instruction is
executed.

Functionally the Internal Data Memory is the most
flexible of the address spaces. The Internal Data Mem­
ory space is subdivided into a 256-byte Internal Data
RAM address space and a 128-byte Special Function
Register address space as shown in Figure 18-3.

The Internal Data RAM address space is 0 to 255. Four
8-Register Banks occupy locations 0 through 31. The
stack can be located anywhere in the Internal Data
RAM address space. In addition, 128 bit locations of the
on-chip RAM are accessible through Direct Address­
ing. These bits reside in Internal Data RAM at byte lo­
cations 32 through 47. Currently locations 0 through
191 of the Internal Data RAM address space are filled
with on-chip RAM.

The stack depth is limited only by the available Internal
Data RAM, thanks to an 8-bit reloadable Stack Pointer.
The stack is used for storing the Program Counter dur­
ing subroutine calls and may be used for passing param­
eters. Any byte of Internal Data RAM or Special
Function Register accessible through Direct Addre~sing
can be pushed/popped.

255

RAM

SPECIAL
FUNCTION
REGISTERS

~
255 248

-
191

128 135 128 o
127

127 120

7 0

:~ BANK 3

ADDRESS- ~
ABLE {
BITS IN

~
R7
RO BANK 2

R7
RO BANK 1

REGISTERS :!.i
B

F8H
FOH
E8H
EOH
D8H
DOH
C8H
COH
B8H
BOH
A8H
AOH
98H
90H
BBH
BOH

=~ BANK 0

r~~SBITS) { E

Jl.
~

INTERNAL
DATA RAM

SPECIAL FUNCTION
REGISTERS

ADDRESS­
ABLE
BITS IN
SFRs
(128 BITS)

Figure 18-3. Internal Data Memory
Address Space

The Special Function Register address space is 128 to
255. All registers except the Program Counter and the
four 8-Register Banks reside here. Memory mapping the
Special Function Registers allows them 'to be accessed
as easily as internal RAM. As such, they can be operat­
ed on by most instructions. In the overlapping memory
space (address 128-191), indirect addressing is used to
access RAM, and direct addressing is used to access the
SFR's. The SFR's at addresses 192-255 are also ac­
cessed using direct addressing. The Special Function
Registers are listed in Figure 18-4. Their mapping in the
Special Function Register address space is shown in
Figures 18-5 and 18-6.

Performing a read from a location of the Internal Data
memory where neither a byte of Internal Data RAM
(i.e., RAM addresses 192-255) nor a Special Function
Register exists will access data of indeterminable value.

Architecturally, each memory space is a linear sequence
of 8-bit wide bytes. By Intel convention the storage of
multi-byte address and data operands in program and
data memories is the least significant byte at the low­
order address and the most significant byte at the high­
order address. Within byte X, the most significant bit is

18-5

ARITHMETIC REGISTERS:
Accumulator", B register*,
Progam Status Word"

POINTERS:
Stack POinter, Data Pointer (high &
low)

PARALLEL I/O PORTS:
Port 3*, Port 2*, Port 1 *, Port O'

INTERRUPT SYSTEM:
Interrupt Priority Control",
Interrupt Enable Control"

TIMERS:
Timer MODe, Timer CONtrol', Timer 1
(high & low), Timer 0 (high & low)

SERIAL INTERFACE UNIT:
Transmit Buffer Start,
Transmit Buffer Length,
Transmit Control Byte,
Send Count Receive Count",
DMACount,
Station Address
Fleceive Field Length
Receive Buffer Star!
Receive Buffer Length
Receive Control Byte,
Serial Mode,
Status Register."

" Bits in these registers are bit addressable.

Figure 18-4. Special Function Registers

represented by X.7 while the least significant bit is X.O.
Any deviation from these conventions will be explicitly
stated in the text.

18.2.1 Operand AddreSSing

There are five methods of addressing source operands.
They are Register Addressing, Direct Addressing, Reg­
ister-Indirect Addressing, Immediate Addressing and
Base-Register-plus Index-Register- Indirect Address­
ing. The first three of these methods can also be used to
address a destination operand. Since operations in the
8044 require 0 (NOP only), 1, 2, 3 or 4 operands, these
five addressing methods are used in combinations to pro­
vide the 8044 with its 21 addressing modes.

Most instructions have a "destination, source" field that
specifies the data type, addressing methods and oper­
ands involved. For operations other than moves, the des­
tination operand is also a source operand. For example,
in "subtract-with-borrow A, #5" the A register receives
the result of the value in register A minus 5, minus C.

Most operations involve operands that are located in In­
ternal Data Memory, The selection of the Program
Memory space or External Data Memory space for a

ARITHMETIC REGISTERS:
Accumulator·, B register·,
Progam Status Word'"

POINTERS:
Stack Pointer, Data Pointer (high &
low)

PARALLEL 1/0 PORTS:
Port 3*, Port 2*, Port 1*, PortO·

INTERRUPT SYSTEM:
Interrupt Priority Control"',
Interrupt Enable Control"

TIMERS:
Timer Mode, Timer Control*, Timer 1
(high & low), Timer 0 (high & low)

SERIAL INTERFACE UNIT:
Serial Mode, Status/Command-,
Send/Receive Count·, Station Address,
Transmit Buffer Start Address,
Transmit Buffer Length,
Transmit Control Byte,
Receive Buffer Start Address,
Receive Buffer Length,
Receive field Length,
Receive Control Byte.'
DMACounl,
FIFO (Ihree byles),
SIU Controller State Counter

... Bits in these registers are bit-addressable

Figure 18-5. Mapping of Special Function
Registers

second operand is determined by the operation mne­
monic unless it is an immediate operand. The subset of
the Internal Data Memory being addressed is deter­
mined by the addressing method and address value. For
example, the Special Function Registers can be accessed
only through Direct Addressing with an address of 128-
255. A summary of the operand addressing methods is
shown in Figure 18-6. The following paragraphs describe
the five addressing methods.

18.2.2 Register Addressing

Register Addressing permits access to the eight registers
(R 7-RO) of the selected Register Bank (RB). One of the
four 8-Register Banks is selected by a two-bit field in the
PSW. The registers may also be accessed through Direct
Addressing and Register- Indirect Addressing, since the
four Register Banks are mapped into the lowest 32 bytes
of Internal Data RAM as shown in Figures 18-9 and
18-10. Other Internal Data Memory locations that are
addressed as registers are A, B, C, AB and DPTR.

REGISTER NAMES
SYMBOLIC
ADDRESS BIT ADDRESS

BYTE
ADDRESS

B REGISTER
ACCUMULATOR
·THREE BYTE FIFO

TRANSMIT BUFFER START
TRANSMIT BUFFER LENGTH
TRANSMIT CONTROL BYTE
'SIU STATE COUNTER
SEND COUNT RECEIVE COUNT
PROGRAM STATUS WORD
'DMA COUNT
STATION ADDRESS
RECEIVE FIELD LENGTH
RECEIVE BUFFER START
RECEIVE BUFFER LENGTH
RECEIVE CONTROL BYTE
SERIAL MODE
STATUS REGISTER
INTERRUPT PRIORITY CONTROL
PORT 3
INTERRUPT ENABLE CONTROL
PORT 2
PORT I
TIMER HIGH 1
TIMER HIGH 0
TIMER LOW 1
TIMER LOW 0
TIMER MODE
TIMER CONTROL
DATA POINTER HIGH
DATA POINTER LOW
STACK POINTER
PORTO

~

B
ACC
FIFO
FIFO
FIFO
TBS
TBL
TCB
SIUST
NSNR
PSW
DMA CNT
STAD
RFL
RBS
RBL
RCB
SMD
STS
IP
P3
IE
P2
P1
THI
THO
TL1
TLO
TMOD
TCON
DPH
DPL
SP
PO

247 through
231 Inrougn

223 InrolJlln
215 Inrough

207 throu h
191 throu
183 Inrou h
175 tnrou
167 throu
151 lhrou

143 Inrough

135 Ihrough

"ICE Support Hardware registers. Under normal operating conditions there
is no need for the CPU to access these registers.

240 240 (FOH)
224 224 (EOH)

223 (DFH)
222 (DEH)
221 (DDH)
220 (DC H)
219 (DBH)
218 (DAH)

·217 (D9H)
216 216 (D8H)
208 208 (DOH)

207 (CFH)
206 (CEH)
205 (CDH)
204 (CCH)
203 (CBH)
202 (CAH)
201 (C9H)

200 200 (C8H)
184 184 (B8H)
176 176 (BOH)
168 168 (A8H)
160 160 (AOH)
144 144 (90H)

141 (8DH)
140 (8CH)
139 (8BH)
138 (8AH)
137 (89H)

136 136 (88H)
131 (83H)
130 (82H)
129 (81 H)

128 128 (80H)

18·6. Mapping of Special Function Registers

18-6

SFR's CONTAINING
DIRECT ADDRESSABLE BITS

Direct
Byte

Bit Address

Address (MSB)

Hardware
Register

(LSB) Symbol

240 F7 F6 F5 F4 F3 F2 Fl FO 8

224 E7 E6 E5 E4 E3 E2 El EO ACC
NS2 NSl NSO SES NR2 NRl NRO SER

216 OFIOEIOO DC DB OA 09 08 NSNR
CY AC FO RSl RSO OV P

204 07 06 05 04 03 02 01 DO PSW
TBF RE RTS SI BV CPB AM RBP

200 CF I CE I CD I CC I CB CA C9 C8 STS
PS PTl PXl PTO PXO

184 I I I BC BB BA B9 B8 lP

176 B7 B6 B5 B4 B3 B2 Bl BO P3
EA E5 En EXl ETO EXO

168 AF AC AB AA A9 A8 1E

160 A7 A6 A5 A4 A3 A2 Al AO P2

144 97 ~ 96 L 95 L 94 I 93 I 92 I 91 I 90 Pl
TFl TRl TFO TRO IEl ITl lEO ITO

136 8F 8E 80 8C 8B 8A 89 88 TCON

128 87 86 85 84 83 82 81 80 PO

Figure 18-7. Special Function Register Bit
Address

""
om 1;"""-'-"':" -----------'-"::;":;'1'91

>0"

""

t-------------I~~

Figure 18-9. RAM Bit Addresses

lR-7

• Register Addressing
- R7-RO
-A,B,C (bit), AB (two bytes),

DPTR (double byte)
• Direct Addressing

Lower 128 bytes of Internal Data
RAM
Special Function Registers
128 bits in subset of Special
Function Register address space

• Register-Indirect Addressing
Internal Data RAM [@R1, @RO,
@SP (PUSH and POP only)]
Least Significant Nibbles in
Internal Data RAM (@R1, @RO)
External Data Memory (@R1,
@RO, @DPTR)

• Immediate Addressing
- Program Memory (in-code con­

stant)
• Base-Register-plus Index-Register­

Indirect Addressing
Program Memory (@ DPTR + A,
@ PC+A)

Figure 18-8. Operand Addressing Methods

SPECIAL
FUNCTION
REGISTERS

-----~--,

25-5 255

'" '" m

'" '" '"
,"-' ::: 0 '"

INOIFtECT

"D""["", , __

DIRECT ,.

AOORESSING~

'''''' i

C,"
CO"
OSH

BOH

AOH
98H

'----~ DI~ECT ADD~ESSJNG
STACK·POINTER REGISTER·INDIRECT AND
REGISTER-INDIRECT ADDRESSING

ADDRESS­
'NG
(BITS)

Figure 18-10. Addressing Operands\ in Internal
Data Memory

RUPI"'-44

18.2.3 Direct Addressing •
Direct Addressing provides the only means of accessing
the memory-mapped byte-wide Special Function Regis-
ters and memory mapped bits within the Special Func-
tion Registers and Internal Data RAM. Direct
Addressing of bytes may also be used to access the lower
128 bytes of Internal Data RAM. Direct Addressing of
bits gains access to a 128 bit subset of the Internal Data
RAM and 128 bit subset of the Special Function Regis-
ters as shown in Figures 18-5, 18-6, 18-9, and 18-10.

Register-Indirect Addressing using the content of RI or
RO in the selected Register Bank, or using the content of
the Stack Pointer (PUSH and POP only), addresses the
Internal Data RAM. Register-Indirect Addressing is
also used for accessing the External Data Memory. In
this case, either R I or RO in the selected Register Bank
may be used for accessing locations within a 256-byte
block. The block number can be preselected by the con-
tents of a port. The 16-bit Data Pointer may be used for
accessing any location within the full 64K external ad-
dress space.

18.3 RESET

Reset is accomplished by holding the RST pin high for
at least two machine cycles (24 oscillator periods) while
the oscillator is running. The CPU responds byexecut­
ing an internal reset. It also configures the ALE and
PSEN pins as inputs. (They are quasi-bidirectional.)
The internal reset is executed during the second cycle in
which RST is high and is repeated every cycle until RST
goes low. It leaves the internal registers as follows:

Register Content

PC OOOOH

A OOH

B OOH

PSW OOH

SP 07H

DPTR OOOOH

PO- P3 OFFH

IP (XXXOOOOO)

IE (OXXOOOOO)

TMOD OOH

TCON OOH

THO OOH

TLO OOH

THI OOH

TLl OOH

18-8

SMD OOH

STS OOH

NSNR OOH

STAD OOH

TBS OOH

TBL OOH

TCB OOH

RBS OOH

RBL OOH

RFL OOH

RCB OOH

DMACNT OOH

FIFOI OOH

FIF02 OOH

FIF03 OOH

SIUST OIH

PCON (OXXXXXXX)

The internal RAM is not affected by reset. When VCC
is turned on, the RAM content is indeterminate unless
VPD was applied prior to VCC being turned off (see
Power Down Operation.)

18.4 RUPI™·44 FAMILY PIN DESCRIPTION

VSS: Circuit ground potential.

vee: Supply voltage during programming (of the
8744), verification (of the 8044 or 8744), and normal
operation.

Port 0: Port 0 is an 8-bit open drain bidi~ectional I/O
port. It is also the multiplexed low-order address and
data bus during accesses to external memory (during
which accesses it activates internal pullups). It also out­
puts instruction bytes during program verification.
(External pullups are required during program verifica-
tion.) Port 0 can sink eight LS TTL inputs. .

Port 1: Port I is an 8-bit bidirectional I/O port with in­
ternal pullups. It receives the low-order address byte
during program verification in the 8044 or 8744. Port I
can sink/source four LS TTL inputs. It can drive MOS
inputs without external pullups.

Two of the Port 1 pins serve alternate functions, as listed
below:

Port Pin Alternate Function

P1.6 RTS (Request to Send). In a non-loop config­
uration, RTS signals that the 8044 is ready to
transmit data.

PI.7 CTS (Clear to Send). In a non-loop config­
uration, (; 1 ~ signals to the ~U44 that the re­
ceiving station is ready to accept data.

Port 2: Port 2 is an 8-bit bidirectional I/O port with in­
ternal pull ups. It emits the high-order address byte dur­
ing accesses to external memory. It also receives the
high-order address bits and control signals during pro­
gram verification in the 8044 or 8744. Port 2 can sink/
source four LS TTL inputs. It can drive MOS inputs
without external pullups.

Port 3: Port 3 is an 8-bit bidirectional I/O port with in­
ternal pullups. Port 3 can sink/source four LS TTL in­
puts. It can drive MOS inputs without external pUllups.

Port 3 pins also serve alternate functions, as listed
below:

Port Pin

P3.0

P3.1

P3.2

P3.3

P3.4

P3.5

P3.6

Alternate Function

RXD (serial input port in loop configura­
tion). 1/0 (data direction control in non­
loop configuration).

TXD (serial output port in loop config­
uration). DATA input/output pin in non­
loop configuration.

INTO (external interrupt)

INTI (external interrupt)

TO (Timer 0 external input)

TI (Timer 1 external input) SCLK (Se­
rial Data Clock Input)

WR (external Data Memory write strobe)

P3.7 RD (external Data Memory read strobe)

RST/VPD: A high level on this pin for two machine cy­
cles while the oscillator is running resets the device. An

18-9

internal pulldown permits Power-On reset using only a
capacitor connected to Vce.

ALE/PROG: Address Latch Enable output for latching
the low byte of the address during accesses to external
memory. ALE is activated though for this purpose at a
constant rate of 1/6 the oscillator frequency even when
external memory is not being accessed. Consequently it
can be used for external clocking or timing purposes.
(However, one ALE pulse is skipped during each access
to external Data Memory.) This pin is also the program
pulse input (PROG) during EPROM programming.

PSEN: Program Store Enable output is the read strobe
to external Program Memory. PSEN is activated twice
each machine cycle during fetches from external Pro­
gram Memory. (However, when executing out of exter­
nal Program Memory two activations of PSEN are
skipped during each access to external Data Memory.)
PSEN is not activated during fetches from internal Pro­
gram Memory.

EA/VPP: When EA is held high the CPU executes out
of internal Program Memory (unless the Program
Counter exceeds (OFFFH). When EA is held low the
CPU executes only out of external Program Memory. In
the 8344, EA must be externally wired low. In the 8744,
this pin also receives the 21 V programming supply volt­
age (VPP) during EPROM programming.

XTAL 1: Input to the inverting amplifier that forms the
oscillator. Should be grounded when an external oscilla­
tor is used.

XTAL2: Output of the inverting amplifier that forms the
oscillator, and input to the internal clock generator. Re­
ceives the external oscillator signal when an external os­

.cillator is used.

8044 Serial Interface 19

" A"'lIt.

\"nl-\r- I I:.n I:;'

THE 8044 SERIAL INTERFACE UNIT

19.0 SERIAL INTERFACE

The serial interface provides a high-performance com­
munication link. The protocol used for this communica­
tion is based on the IBM Synchronous Data Link
Control (SDLC). The serial interface also supports a
subset of the ISO HDLC (International Standards Or­
ganization High-Level Data Link Control) protocol.

The SDLC/HDLC protocols have been accepted as
standard protocols for many high-level teleprocessing
systems. The serial interface performs many of the func­
tions required to service the data link without interven­
tion from the 8044's own CPU. The programmer is free
to concentrate on the 8044's function as a peripheral
controller, rather than having to deal with the details of
the communication process.

Five pins on the 8044 are involved with the serial inter­
face (refer to Section 12.4, Family Pin Description, for
details):

Pin 7

Pin 8

Pin 10

Pin II

Pin 15

RTS/PI6

CTS/PI7

I/O/RXD/P30

DATA/TXD /P31

SCLK/Tl/P35

Figure 19-1 is a functional block diagram of the serial
interface unit (SIU). More details on the SIU hardware
are given in Section 19.9.

19.1 DATA LINK CONFIGURATIONS

The serial interface is capable of operating in three se­
rial data link configura tions:

I) Half-Duplex, point-to-point

2) Half-Duplex, mUltipoint (with a half-duplex or full-
duplex primary)

3) Loop

Figure 19-2 shows these three configurations. The RTS
(Request to Send) and CTS (Clear to Send) hand­
shaking signals are available in the point-to-point and
multipoint configurations.

19.2 DATA CLOCKING OPTIONS

The serial interface can operate in an externally clocked
mode or in a self clocked mode.

19-1

Externally Clocked Mode

In the externally clocked mode, a common Serial Data
Clock (SCLK on pin 15) synchronizes the serial bit
stream. This clock signal may come from the master
CPU or primary station, or from an external phase­
locked loop local to the 8044. Figure 19-3 illustrates the
timing relationships for the serial interface signals when
the externally clocked mode is used in point-to-point
and multipoint data link configurations.

Incoming data is sampled at the rising edge of SCLK,
and outgoing data is shifted out at the falling edge of
SCLK. More detailed timing information is given in the
8044 da ta sheet.

Self Clocked (Asynchronous) Mode
The self clocked mode allows data transfer without a
common system data clock. Using an on-chip DPLL
(digital phase locked loop) the serial interface recovers
the data clock from the data stream itself. The DPLL re­
quires a reference clock equal to either 16 times or 32
times the data rate. This reference clock may be exter­
nally supplied or internally generated. When the serial
interface generates this clock internally, it uses either
the 8044's internal logic clock (half the crystal fre­
quency's PH2) or the "timer I" overflow. Figure 19-4
shows the serial interface signal timing relationships for
the loop configuration, when the unclocked mode is
used.

The DPLL monitors the received data in order to derive
a data clock that is centered on the received bits. Center­
ing is achieved by detecting all transitions of the re­
ceived data, and then adjusting the clock transition (in
increments of 1/16 bit period) toward the center of the
received bit. The DPLL converges to the nominal bit
center within eight bit transitions, worst case.

To aid in the phase locked loop capture process, the 8044
has a NRZI (non-return-to-zero inverted) data encod­
ing and decoding option. NRZI coding specifies that a
signal does not change state for a transmitted binary I,
but does change state for a binary O. Using the NRZI
coding with zero-bit insertion, it can be guaranteed that
an active signal line undergoes a transition at least every
six bit times.

19.3 DATA RATES
The maximum data rate in the externally clocked mode
is 2.4M bits per second (bps) a half-duplex configura­
tion, and I.OM in a loop configuration.

RXO

"T1
c"
C ..
CD ...
cp TXO ...

.... rn
(I) C ro

III
0"
n
~

C
iii"

IQ ..
II)

3

SYNCHRONIZED
&

DIGITAL
PHASE
LOCK
LOOP

BIT PROCESSOR

CONTROL

BYTE PROCESSOR

INTERNAL
TWO
PORT
RAM

SIU
HARDWARE
REGISTER
(2 PORT)

lB\~ __________________________________ ~

:u
c
::!!
i!
I

.".

.".

MASTER(
PRIMARY

1) HALF-DUPLEX, POINT-TO-POINT

MASTER(
PRIMARY

2) HALF-DUPLEX, MULTIPOINT

8044
CONTROLLED
SECONDARY

3) LOOP

1
8044

CONTROLLED
SECONDARY

MASTER(
PRIMARY

8044
CONTROLLED
SECONDARY

8044
CONTROLLED
SECONDARY

-

~
8044

CONTROLLED
SECONDARY

8044
CONTROLLED
SECONDARY

Figure 19-2_ RUPI-44 Data Link Configurations

19-3

In the self clocked mode with an external reference
clock, the maximum data rate is 375K bps.

In the self clocked mode with an internally generated
reference clock, and the 8044 operating with a 12 MHz
crystal, the available data rates are 244 bps to 62.5k bps,
187.5K bps and 375K bps.

For more details see the table in the SMD register de­
scription, below.

19.4 OPERATIONAL MODES
The Serial Interface Unit (SIU) can operate in either of
two response modes:

1) AUTO mode

2) FLEXIBLE (NON-AUTO) mode

In the AUTO mode, the SIU performs in hardware a
subset of the SDLC protocol called th'e normal response
mode. The AUTO mode enables the SIU to recognize
and respond to certain kinds of SDLC frames without
intervention from the 8044's CPU. AUTO mode pro­
vides a faster turnaround time and a simplified software
interface, whereas NON-AUTO mo<!e provides a great­
er flexibility with regard to the kinds of operation
permitted.

In AUTO mode, the 8044 can act only as a normal re­
sponse mode secondary station-that is, it can transmit
only when instructed to do so by the primary station. All
such AUTO mode responses adhere strictly to IBM's
SDLC definitions.

In the FLEXIBLE mode, reception or transmission of
each frame by the SIU is performed under the control
of the CPU. In this mode the 8044 can be either a
primary station or a secondary station.

If both AUTO and FLEXIBLE modes, short frames,
aborted frames, or frames which have had CRC's are
ignored by the SIU.

The basic format of an SDLC frame is as follows:

I Flag I Address I Control I Information I FCS I Flag I
Format variations consist of omitting one or more of the
fields in the SDLC frame. For example, a supervisory
frame is formed by omitting the information field. Su­
pervisory frames are used to confirm received frames,
indicate ready or busy conditions, and to report errors.
More details on frame formats are given in the SDLC
Frame Format Options section, below.

19.4.1 AUTO Mode

To enable the SIU to receiv9 a frame in AUTO mode,
the 8044 CPU sets up a receive buffer. This is done by

19-4

writing two registers-Receive Buffer Start (RBS) Ad­
dress and Receive Buffer Length (RBL).

The SIU receives the frame, examines the control byte,
and takes the appropriate action. If the frame is an in­
formation frame, the SIU will load the receive buffer,
interrupt the CPU (to have the receive buffer read), and
make the required acknowledgement to the primary sta­
tion. Details on these processes are given in the· Oper-
ation section, below. .

In addition to receiving the information frames, the SIU
in AUTO mode is capable of responding to the following
commands (found in the control field of supervisory
frames) from the primary station:

RR (Receive Ready): Acknowledges that the Pri­
mary station has correctly received numbered
frames up through N R -1, and that it is ready to re­
ceive frame N R.

RNR (Receive Not Ready): Indicates a temporary
busy condition (at the primary station) due to buf­
fering or other internal constraints. The quantity N R
in the control field indicates the number of the frame
expected after the busy condition ends, and may be
used to acknowledge the correct reception of the
frames up through NR-1.

REJ (Reject): Acknowledges the correct reception
offrames up through NR -1, and requests transmis­
sion or retransmission starting at frame NR. The
8044 is' capable of retransmitting at most the pre­
vious frame, and then only if it is still available in the
transmit buffer.

UP (Unnumbered Poll): Also called NSP (Non­
Sequenced Poll) or ORP (Optional Response Poll).
This command is used in the loop configuration.

To enable the SIU to transmit an information frame in
AUTO mode, the CPU sets up a transmit buffer. This is
done by writing two registers-Transmit Buffer Start
(TBS) Address and Transmit Buffer Length (TBL),
and filling the transmit buffer with the information to
be transmitted.

When the transmit buffer is full, the SIU can automati­
cally (without CPU intervention) send an information
frame (I-frame) with the appropriate sequence num­
bers, when the data link becomes available (when the
8044 is polled for information). After the SIU has trans­
mitted the I-frame, it waits for acknowledgement from
the receiving station. If the acknowledgement is nega­
tive, the SIU retransmits the frame. If the acknowledge­
ment is positive, the SIU interrupts the CPU, to indicate
that the transmit buffer may be reloaded with new
information.

TRANSCEIVER/BUFFER

DATA RECEIVE DATA

I/O

RTS

ers

\.J
RTS

7

CTS
B

I/O 8044

J
10

[>
DATA - <J

11

SCLK
15

XMITDTA RECEIVE DATA

Figure 19·3. Serial Interface Timing-Clocked Mode

19-5

TRANSMIT
ABORTED BY
CTS-1

"11
IC'
c
iil
CD
l:.
en
CD ...
![
:::I

CD
:J-
1\1
n
CD

<0 -I cD 3'
s·

IC
I en
~
0
0"
n
'" CD

["'"
X DATA X GA ONE'S

0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Q.

:s:
0
Q.
CD [,~ DATA (BIT-DELAYED) GA CHANGED TO FLAG

0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1

EXTRA "1"
INSERTED

8044

AXO
10

TXO
11

16Xj32X
15

X SHUT-OFF SEa

1 1 1 1 1 1 0 0 0 o 0 0

TRANSMIT FRAME

0 A 0 0 A E S S CON T

X
Q 0 1 1 1

A 0 l 1 1

DATA

1 1 1

DATA (BIT-DELAYED)

1 1 1 1

TRANSMISSION
ABORTED BY
SHUT-OFF
SEQUENCE

::D
c:
"U
~
I

""" """

T __ ,.l,.l! ... : __ "-_ "- _____ : .. "-! ___ <-1..._ !_.£"~_~~,,-: I'_~'-:"'n ... \..
.l.U U A .. 1Vll .. V .. , U'h.>'.'1 lH6 .. " 'U"'V'" HU \JU ,

SIU in AUTO mode is capable of sending the following
responses to the primary station:

RR (Receive Ready): Acknowledges that the 8044
has correctly received numbered frames up through
NR -I, and that it is ready to receive frame NR.

RNR (Receive Not Ready): Indicates a temporary
busy condition (at the 8044) due to buffering or oth­
er internal constraints. The quantity NR in the con­
trol field indicates the numher of the frame expected
after the busy condition ends, and acknowledges the
correct reception of the frames up through N R - 1.

19.4.2 FLEXIBLE Mode

In the FLEXIBLE (or non-auto) mode, all reception
and transmission is under the control of the CPU. The
full SDLC and HDLC protocols can be implemented, as
well as any bit-synchronous variants of these protocols.

FLEXIBLE mode provides more flexibility than AUTO
mode, but it requires more CPU overhead, and much
longer recognition and response times. This is especially
true when the CPU is servicing an interrupt that has
higher priority than the interrupts from the SIU.

In FLEXIBLE mode, when the SIU receives a frame,
it interrupts the CPU. The CPU then reads the control
byte from the Receive Control Byte (RCB) register. If
the received frame is an information frame, the CPU
also reads the information from the receive buffer, ac­
cording to the values in the Receive Buffer Start (RBS)
address register and the Received Field Length (RFL)
register.

In FLEXIBLE mode, the 8044 can initiate transmissions
without being polled, and thus it can act as the primary
station. To initiate transmission or to generate a
response, the CPU sets up and enables the SIU. The SIU
then formats and transmits the desired frame. Upon
completion of the transmission, without waiting for a
positive acknowledgement from the receiving station,
the SIU interrupts the CPU.

19.5 8044 FRAME FORMAT OPTIONS

As mentioned above, variations on the basic SDLC
frame consist of omitting one or more of the fields. The
choice of which fields to omit, as well as the selection
of AUTO mode versus FLEXIBLE mode, is specified
by the settings of the following three bits in the Serial
Mode Register (SMD) and the Status/Control Register
(STS):

SMD Bit 0: NFCS (No Frame Check Sequence)

19-7

S~.'!!) ~!~!: ~!~ (2'~~~-!!'..!ff~!"-:::~ !'.-!~~-:::~!'T0 C0~!!"0!

Field)

STS Bit 1: AM (AUTO Mode or Addressed Mode)

Figure 19-5 shows how these three bits control the frame
format.

The following paragraphs discuss some properties of the
standard SDLC format, and the significance of omitting
some of the fields.

19.5.1 Standard SOLC Format

The standard SDLC format consists of an opening flag,
an 8-bit addre~s field, and 8-bit control field, an n-byte
information field, a 16-bit Frame Check Sequence
(FCS), and a closing flag. The FCS is based on the
CCITT-CRC polynominal (X16 + X12 + X5 + 1). The
address and control fields may not be extended. Within
the 8044, the address field is held in the Station Address
(STAD) register, and the control field is held in the Re­
ceive Control Byte (RCB) or Transmit Control Byte
(TCB) register. The standard SDLC format may be
used in either AUTO mode or FLEXIBLE mode.

19.5.2 No Control Field (Non-Buffered
Mode)

When the control field is not present, the RCB and TCB
registers are not used. The information field begins im­
mediately after the address field, or, if the address field
is also absent, immediately after the opening flag. The
entire information field is stored in the 8044's on-chip
RAM. If there is no control field, FLEXIBLE mode
must be used. Control information may, of course, be
present in the information field, and in this manner
the No Control Field option may be used for imple­
menting extended control fields.

19.5.3 No Control Field and No Address
Field

The No Address Field option is available only in con­
junction with the No Control Field option. The STAD,
RCB, and TCB registers are not used. When both these
fields are absent, the information field begins immedi­
ately after the opening flag. The entire information field
is stored in on-chip RAM. FLEXIBLE mode must be
used. Formats without an address field have the follow­
ing applications:

Point-to-point data links (where no addressing is
necessary)

Monitoring line activity (receiving all messages re­
gardless of the address field)

Extended addressing

FRAME OPTION

Standard SDLC
FLEXIBLE Mode

Standard SDLC
AUTO Mode

No Control Field
FLEXIBLE Mode

No Control Field
No Address Field
FLEXIBLE Mode

No FCS Field
FLEXIBLE Mode

No FCS Field
AUTO Mode

No FCS Field
No Control,Field
FLEXIBLE Mode

No FCS Field
No Control Field
No Address Field
FLEXIBLE Mode

Key to Abbreviations:

F = Flag (01111110)
A = Address Field
C = Control Field

NFCS

0

0

0

0

NB AM

0 o F

0 F

F

o F

0 o I F

0 I F

F

o F

I = Information Field
FCS = Frame Check Sequence

FRAME FORMAT

A C I FCS I F

A C I FCS I F

A. I FCS I F

I FCS I F

A C F

A C F

A F

F

Note: The AM bit is AUTO mode control bit when NB = 0, and Address Mode control bit when NB = 1.

Figure 19·5. Frame Format Options

19.5.4 No FCS Field

In the normal case (NFCS=O), the last 16 bits before
the closing flag are the Frame Check Sequence (FCS)
field. These bits are not stored in the 8044's RAM.
Rather, they are used to compute a cyclic redundancy
check (CRC) on the data in the rest of the frame. A re­
ceived frame with a CRC error (incorrect FCS) is ig­
nored. In transmission, the FCS field is automatically
computed by the SIU, and placed in the transmitted
frame just prior to the closing flag.

19-8

The NFCS bit (SMD Bit 0) gives the user the capability
of overriding this automatic feature. When this bit is set
(NFCS = I), all bits from the beginning of the informa­
tion field to the beginning of the closing flag are treated
as part of the information field, and are stored in the on­
chip RAM. No FCS checking is done on the. received
frames, and no FCS is generated for the transmitted
frames. The No FCS Field option may be used in con­
junction with any of the other options. It is typically used
in FLEXIBLE mode, althought it does not strictly in­
clude AUTO mode. Use of the No FCS Field option

RUPI"'-44

AIJTO Mocle m"v. however. re,"lt in ~nT r nrot()('()l

violations, since the data integrity is not checked by the
SIU.

Formats without an FCS field have the following
applications:

Receiving and transmitting frames without verify­
ing data integrity

Using an alternate data verification algorithm

Using an alternate CRC-16 polynomial (such as X l6

+ XIS + X 2 + I), or a 32-bit CRC

Performing data link diagnosis by forcing false
CRCs to test error detection mechanisms

In addition to the applications mentioned above, all of
the format variations are useful in the support of non­
standard bit-synchronous protocols.

19.6 HOLC
In addition to its support of SDLC communications, the
8044 also supports some of the capabilities of HDLC.
The following remarks indicate the principal differences
between SDLC and HDLC.

HDLC permits any number of bits in the informa­
tion field, whereas SDLC requires a byte structure
(multiple of 8 bits). The 8044 itself operates on byte
boundaries, and thus it restricts fields to multiples of
8 bits.

HDLC provides functional extensions to SDLC: an
unlimited address field is allowed, and extended
frame number sequencing.

HDLC does not support operation in loop
configurations.

19.7 SIU SPECIAL FUNCTION REGISTERS

The 8044 CPU communicates with and controls the SIU
through hardware registers. These registers are accessed
using direct addressing. The SIU special function regis­
ters (SIU SFRs) are of three types:

Control and Status Registers

. Parameter Registers

ICE Support Registers

19.7.1 Control and Status Registers

There are three SIU Control and Status Registers:

Serial Mode Register (SMD)

Status/Command Register (STS)

19-9

The SMD, STS, and NSNR registers are all cleared by
system reset. This assures that the SIU will power up in
an idle state (neither receiving nor transmitting).

These registers and their bit assignments are described
below (see also the More Details on Registers section).

SMD: Serial Mode Register (byte-addressable)

Bit: 7 6 5 4 3 2 I 0

I SCM21 SCM I I SCMO I NRZI I LOOP I PFS I NB I NFCS I
The Serial Mode Register (Address C9H) selects the
operational modes of the SIU. The 8044 CPU can both
read and write SMD. The SIU can read SMD but can­
not write to it. To prevent conflict between CPU and
SIU access to SMD, the CPU should write SMD only
when the Request To Send (RTS) and Receive Buffer
Empty (RBE) bits (in the STS register) are both false
(0). Normally, SMD is accessed only during
initialization.

The individual bits of the Serial Mode Register are as
follows:

Bit #
SMD.O

SMD.I

SMD.2

SMD.3

SMD.4

SMD.5

SMD.6

SMD.7

Name Description

NFCS No FCS field in the SDLC frame.

NB Non-Buffered mode. No control
field in the SDLC frame.

PFS Pre-Frame Sync mode. In this
mode, the 8044 transmits two bytes
before the first flag of a frame, for
DPLL synchronization. If NRZI is
enabled, OOH is sent; otherwise,
55H is sent. In either case, 16 pre­
frame transitions are guaranteed.

LOOP

NRZI

SCMO

SCMI

SCM2

Loop configuration.

NRZI coding option.

Select Clock Mode - Bit 0

Select Clock Mode - Bit I

Select Clock Mode - Bit 2

The SCM bits decode as follows:

SCM Data Rate
2 1 0 --- Clock Mode (Bits/sec)*

·0 0 0 Externally clocked 0-2.4M**

0 0 Undefined

0 0 Self clocked, timer overflow 244-62.5K

0 I I Undefined

0 0 Self clocked, external 16x 0-375K

RUPI"'-44

SCM

ll~ ~C=lo~ck~M=o~de~ ______ __
Data Rate
(Bits/sec)*

o Self clocked, external 32x 0-IS7.SK

o Self c1ocked,internal fixed 37SK

Self clocked, internal fixed IS7.Sk

*Based on a 12 Mhz crystal frequency
**O-~M bps in loop configuration

STS: Status/Command Register (bit-addressable)

Bit: 7 6 5 4 3 2 I 0

I TBF I RBE I RTS I SI I BOY I OPB I AM I RBP I

The Status/Command Register (Address CSH) pro­
vides operational control of the SIl,] by the S044 CPU,
and enables the SIU to post status information for the
CPU's access. The SIU can read STS, and can alter cer­
tain bits, as indicated below. The CPU can both read
and write STS asynchronously. However, 2-cycle in­
structions that access STS during both cycles ('JBC/B,
REL' and 'MOY /B,C.') should not be used, since the
SIU may write to STS between the two CPU accesses.

The individual bits of the Status/Command Register
are as follows:

Bit #
. STS.O

STS.I

STS.2

STS.3

STS.4

STS.S

Name Description

RBP Receive Buffer Protect. Inhibits
writing of data into the receive buff­
er. In AUTO mode, RBP forces an
RNR response instead of an RR.

AM AUTO Mode/Addressed Mode. Se­
lects AUTO mode where AUTO
mode is allowed. If NB is true,
(= 1), the AM bit selects the ad­
dressed mode. AM may be cleared
by the sm.

OPB Optional Poll Bit. Determines
whether the. SIU will generate an
AUTO response to an optional poll
(UP with P=O). OPB may be set or
cleared by the sm.

BOY Receive Buffer Overrun. BOY may
be set or c1eared·by the SIU.

SI SIU Interrupt. This is one of the five
interrupt sources to the CPU. The
vector location = 23H. SI may be
set by the SIU. It should be cleared
by the CPU before returning from
an interrupt routine.

RTS Request To Send. Indicates that the
S044 is ready to transmit or is trans-

STS.6

STS.7

mitting. RTS may be read or writ­
ten by the CPU. RTS may be read
by the sm, and in AUTO mode
may be written by the sm.

RBE Receive Buffer Empty. RBE can be
thought of as Receive Enable. RBE
is set to one by the CPU when it is
ready to receive a frame, or has just
read the buffer, and to zero by the
SIU when a frame has been
received.

TBF Transmit Buffer Full. Written by
the CPU to indicate that it has filled
the transmit buffer. TBF may be
cleared by the SIU.

NSNR: Send/Receive Count Register (bit-
addressable) .

Bit: 7 6 5 4 3 2 1 0

INS21NSIINSoisESINR21NRIINROIsERI

The Send/Receive Count Register (Address DSH) con­
tains the transmit and receive sequence numbers, plus
tally error indications. The SIU can both read and write
NSNR. The S044 CPU can both read and write NSNR
asynchronously. However, 2-cycle instructions that ac­
cess NSNR during both cycles ('JBC /B, REL', and
'MOY /B,C) should not be used, since the SIU may
write to NSNR bet\veen the two S044 CPU accesses.

The individual bits of the Send/Receive. Count Register
are as follows:

Bit # Name Description

NSNR.O SER Receive Sequence Error:
NS (P) *' NR (S)

NSNR.I NRO Receive Sequence Counter-Bit 0

NSNR.2 NRI Receive Sequence Counter-Bit I

NSNR.3 NR2 Receive Sequence Counter~Bit 2

NSNR.4 SES Send Sequence Error:
NP (P) *' NS (S) and
NP (P) *' NS (S) + 1

NSNR.S NSO Send Sequence Counter - Bit 0

NSNR.6 NSI Send Sequence Counter - Bit I'

NSNR.7 NS2 Send Sequence Counter - Bit 2

19.7.2 Parameter Registers

There are eight parameter registers that are used in con­
nection with SIU operation. All eight registers may be
read or written by the S044 CPU: RFL and RCB are
normally loaded by the SIU.

19-10

STAD: Station Address Register
(byte-addressable)

The Station Address register (Address CEH) contains
the station address. To prevent access conflict, the CPU
should access STAD only when the SIU is idle (RTS=O
and RBE=O). Normally, STAD is accessed only during.
initialization.

TBS: Transmit Buffer Start Address Register
(byte-addressable)

The Transmit Buffer Start address register (Address
DCH) points to the location in on-chip RAM for the be­
ginning of the I-field of the frame to be transmitted. The
CPU should access TBS only when the SIU is not trans­
mitting a frame (when TBF=O).

TBL: Transmit Buffer Length Register
(byte-addressable)

The Transmit Buffer Length register (Address DBH)
contains the length (in bytes) of the I-field to be trans­
mitted. A blank I-field (TBL=O) is valid. The CPU
should access TBL only when the SIU is not transmit­
ting a frame (when TBF=O).

NOTE: The transmit and recieve buffers are not allowed
to "wrap around" in the on-chip RAM. A "buffer end"
is automatically generated if address 191 (BFH) is
reached.

TCB: Transmit Control Byte Register
(byte-addressable)

The Transmit Control Byte register (Address DAH)
contains the byte which is to be placed'in the control
field of the transmitted frame, during NON-AUTO
mode transmission. The CPU should access TCB only
when the SIU is not transmitting a frame (when
TBF=O). The Ns and NR counters are not used in the
NON-AUTO mode.

RBS: Receive Buffer Start Address Register
(byte-addressable)

The Receive Buffer Start address register (Address
CCH) points to the location in on-chip RAM where the
beginning of the I-field of the frame being received is to
be stored. The CPU should write RBS only when the
SIU is not receiving a frame (when RBE=O).

RBL: Receive Buffer Length Register
(byte-addressable)

The Receive Buffer Length register (Address CBH)
contains the length (in bytes) of the area in on-chip

19-11

RAM "l1ocated for the received I-field. RBL=O is val­
id. The CPU should write RBL only when RBE=O.

RFL: Receive Field Length Register
(byte-addressable)

The Received Field Length register (Address CDH)
contains the length (in bytes) of the received I -field that
has just been loaded into on-chip RAM., RFL is loaded
by the SIU. RFL=O is valid. RFL should be accesssed
by the CPU only when RBE=O.

RCB: Receive Control Byte Register
(byte-addressable)

The Received Control Byte register (Address CAH)
contains the control field of the frame that has just been
received. RCB is loaded by the SIU. The CPU can only
read RCB, and should only access RCB when RBE=O.

19.7.3 ICE Support Registers
The 8044 In-Circuit Emulator (ICE-44) allows the user
to exercise the 8044 application system and monitor the
execution of instructions in real time.

The emulator operates with Intel's Intellec® develop­
ment system. The development system interfaces with
the user's 8044 system through an in-cable buffer box.
The cable terminates in a 8044 pin-compatible plug,
which fits into the 8044 socket in the user's system. With
the emulator plug in place, the user can excercise his sys­
tem in real time while collecting up to 255 instruction
cycles of real-time data. In addition, he can single-step
the program.

Static RAM is available (in the in-cable buffer box) to
emulate the 8044 internal and external program mem­
ory and external data memory. The designer can display
and alter the contents of the replacement memory in the
buffer box, the internal data memory, and the internal
8044 registers, including the SFRs.

Among the SIU SFRs are the following registers that
support the operation of the ICE:

DMA CNT: DMA Count Register
(byte-addressable)

The DMA Count register (Address CFH) indicates the
number of bytes remaining in the information block that
is currently being used.

FIFO: Three-Byte (byte-addressable)

The Three-Byte FIFO (Address DDH, DEH, and
DFH) is used between the eight-bit shift register and the
information buffer when an information block is
received.

SIUST: SIU State Counter (byte-addressable)

The SIU State Counter (Address D9H) reflects the
state of the internal logic which is under SIU control.
Therefore, care must be taken not to write into this
register.

The SIUST register can serve as a helpful aid to deter­
mine which field of a receive frame that the SIU expects
next. The table below will help in debugging S044 recep­
tion problems.

SIUST
VALUE FUNCTION

01 H Waiting for opening flag.

OSH Waiting for address field.

10H Waiting for control field.

ISH Waiting for first byte of I field. This state is
only entered if a FCS is expected. It pushes
the received byte onto the top of the FIFO.

20H Wating for second byte of I field. This state
always follows state ISH.

2SH Waiting for I field byte. This sate can be en-

tered from state 20H or from states OIH,
OSH, or 10H depending upon the SID's mode
configuration. (Each time a byte is received,
it is pushed onto the top of the FIFO and the
byte at the bottom is put into memory. For no
FCS formatted frames, the FIFO is collapsed
into a single register).

30H Waiting for the closing flag after having
overflowed the receive buffer. Note that even
if the receive frame overflows the assigned re­
ceive buffer length, the FCS is still checked.

Examples of SIUST status sequences for different
frame formats are shown below. Note that status
changes after acceptance of the received field byte.

19.8 OPERATION

The SID is initialized by a reset signal (on pin 9), fol­
lowed by write operations to the SIU SFRs. Once initial­
ized, the SIU can function in AUTO mode or NON­
AUTO mode. Details are given below.

Table 19-1. SIUST Status Sequences

Example I:

Frame Format

SIDST Value

Example 2:

Frame Format

SIUST Value

Example 3:

Frame Format

SIUSTValue

Example 4:

Frame Format

SIUST Value

Example 5:

Frame Format

SIUSTValue

Example 6:

Frame Format

SIUSTValue

I (I~:e) I F

01

I (I~:e) I F

01

I (I~:e) I F

01

A C

OS 10

I
A

OS IS

IS 20

2S

IS 20 I 2S I F2~S I

I 20 I 2S
I F~sl ~j

I F~S I F

2S 01

F
01

I OVERFLOW

30

19-12

F

01

Frame Option

NFCS NB AM

o 0 1

o

o o

o

o o

RUPI"'-44

1 QA 1 Initialization

Figure 19-6 is the SIU. Registers SMD, STS, and NSNR
are cleared by reset. This puts the 8044 into an idle
state-neither receiving nor transmitting. The follow­
ing registers must be initialized before the 8044 leaves
the idle state:

STAD-to establish the 8044's SDLC station
address.

SMD-to configure the 8044 for the proper operat­
ing mode.

RBS, RBL-to define the area in RAM allocated
for the Receive Buffer.

END·OF·
FRAME

FLEXIBLE
MODE

END·OF·FRAME
AUTO MODE

STRTREC

TBS, TBL-to define the area in RAM allocated for
the Transmit Buffer.

Once these registers have been initialized, the user may
write to the STS register to enable the SIU to leave the
idle state, and to begin transmits and/or receives.

Setting RBE to I enables the SIU for receive. When
RBE = 1, the SIU monitors the received data stream
for a flag pattern. When a flag pattern is found, the SIU
enters Receive mode and receives the frame.

Setting RTS to 1 enables the SIU for transmit. When
RTS = 1, the SIU monitors the received data stream for
a GA pattern (loop configuration) or waits for aCTS

END·OF·
FRAME

STRTXMIT

END·OF·
FRAME

STRT REC ~ RBE. FLAG

AUTO
MODE

FLEXIBLE
MODE

STRT XMIT ~ RTS. (CTS. LOOP + GA. I!.OOP)
WAIT ~ NOT (STRT REC + STRT XMIT)

Figure 19-6. SIU State Diagram

19-13

RUPI™-44

..
(non-loop configuration). When the GA or CTS arrives,
the SIU enters Transmit mode and transmits a frame.

In AUTO mode, the SIU sets RTS to enable automatic
transmissions of appropriate responses.

19.8.2 AUTO Mode

Figure 19-7 illustrates the receive operations in AUTO
mode. The overall operation is shown in Figure 19-7a.
Particular cases are illustrated in Figures 19-7b through
19-7j. If any Unnumbered Command other than UP
is received, the AM bit is cleared and the SIU responds
as if in the FLEXIBLE mode, by interrupting the CPU
for supervision. This will also happen if a BOY or SES
condition occurs. If the received frame contains a poll,
the SIU sets the RTS bit to generate a response.

Figure 19-8 illustrates the transmit operations in AUTO
mode. When the SIU gets the opportunity to transmit,
and if the transmit buffer is full, it sends an I-frame.
Otherwise, it sends an RR if the buffer is free, or an
RNR if the buffer is protected. The sequence counters
NS and NR are used to construct the appropriate con­
trol· fields ..

Figure 19-9 shows how the CPU responds to an SI (serial
interrupt) in AUTO mode.· The CPU tests the AM bit
(in the STS register). If AM = 1, it indicates that the
SIU has received either an I-frame, or a positive
response to a previously transmitted I-frame.

19.8.3 FLEXIBLE Mode
Figure 19-10 illustrates the receive operations in NON­
AUTO mode. When the SIU successfully completes a
task, it clears RBF and interrupts the CPU by setting
SI to 1. The exact CPU response to SI is determined
by software. A typical response is shown in Figure 19-11.

Figure 19-12 illustrates the' transmit .operations in
FLEXIBLE mode. The SIU does not wait for a positive
acknowledge response to the transmitted frame. Rather,
it interrupts the CPU (by setting SI to 1) as soon as it
finishes transmitting the frame. The exact CPU response
to SI is determined by software. A typical response is
shown in Figure 19-13.This response results in another
transmit frame being set up. The sequence of opera­
tions shown in Figure 19-13 can also be initiated by the
CPU, without an SI. Thus the CPU can initiate a
transmission in FLEXIBLE mode without a poll, simply
by setting the RTS bitin the STS register. The RTS bit
is always used to initiate a transmission, but it is ap­
plied to the RTS pin orily when a non-loop configura­
tion is used.

19.8.4 8044 Data Link Particulars

The following facts should be noted:

I) In a non-loop configuration, one or two bits are
transmitted before the opening flag. This is neces­
sary for NRZI synchronization.

2) In a non-loop configuration, one to eight extra drib­
ble bits are transmitted after the closing flag. These
bits are a zero followed by ones.

3) In a loop configuration, when a GA is received and
the 8044 begins transmitting, the sequence is
OlllllIOJOIIIIIIO ... (FLAG, I, FLAG, AD­
DRESS, etc.). The first flag is created from the GA.
The second flag begins the message.

4) CTS is sampled after the rising edge of the serial
data, at about the center of the bit cell, except during
a non-loop, externally clocked mode transmit, in
which case it is sampled just after the falling edge.

5) The SIU does not check for illegal I-fields. In par­
ticular, if a supervisory command is received in
AUTO mode, and if there is also an I-field; it willbe
loaded into the receive buffer (if RBP=O), but it
cannot cause a BOY.

6) In relation to the Receive Buffer Protect facility, the
user should set RFL to 0 when clearing RBP, such
that, if the SIU is in the process ofreceiving a frame,
RFL will indicate the proper value when reception of
the frame has been completed.

19.8.5 Turn Around Timing

In AUTO mode, the SIU generates an RTS immediate­
ly upon being polled. Assuming that the 8044 sends an
information frame in response to the poB, the primary
station sends back an acknowledgement. If, in this ac­
knowledgement, the 8044 is polled again, a response
may be generated even before the CPU gets around to
processing the interrupt caused by the acknowledge. In
such a case, the response would be an RR (or RNR),
since TBF would have been set to Oby the SIU, due to
the acknowledge.

If the system designer does not wish to take up channel
time with RR responses, but prefers to generate a new 1-
frame as a response, there are several ways to accom­
plish this:

I) Operate the 8044 in FLEXIBLE mode.

2) Specify that the master should never acknowledge
and poll in one message. This is typically how a loop
system operates, with the poll operation confined to
the UP command. This leaves plenty of time for the

19-14

ABORT, SHORT FRAME,
OR INVALID
I FRAME

RUPIT"-44

cmL FIELD - ReB

NO

YES

I AELD --+ RFC aUF

BAD

See Figures 13·7cthru 13-71

~-----------,------------~\

Figure 19-7a. SIU AUTO Mode Receive Flowchart-General

19-15

. ,

RUPI"'-44

.. BOV"

.. AM
"Si" ~1
.. RBE
.. SES"
.. SER"

Figure 19-7b. SIU AUTO Mode Receive Flowchart-Unknown Command

19-16

BAD TEST
CRC

RUPITM_44

Figure 19-7c. SIU AUTO Mode Receive Flowchart-Unnumbered Poll

19-17

"AM" 0
"$1" 1
"RBE O
"5£R O
"5E$" 1

"$1" 1
"Ns"=Ns+1

"5£5" 0
"SER" ... O
"TBF" ... O

Figure 19·7d. StU AUTO Mode Receive Flowchart-Supervisory Command

19-18

RUPI"'-44

r-__________________________________ ~BA~O'" 6~ci

I COMMAND
NR{P) = NS(S) + 1
Ns(P) = NR(S)
"AM" = 1, "NB" = e

"ABE" e
"TBF" 0
Ns = Ns + 1
"SES" 0
"SEA" 0
"51" ~1

Figure 19-7e. SIU AUTO Mode Receive Flowchart-I Command: Prior Transmitted I-Field Confirmed,
Current Received I-Field in Sequence .

19·19

BAD

I COMMAND
NR(P) = NS(S)
NS(P) = NR(S)

"AM" = 1, "NB" = 0

"ABE"~0
"SES" e
"SER".,.\!
"51" ~1

Figure 19-7f. SIU AUTO Mode Receive Flowchart-I Command: Prior Transmitted I-Field Not
Confirmed, Current Received I-Field in Sequence

19-20

YES I·FIELD
PRESENT

1

RUPI"'-44

BAD

'COMMAND
NR(P) -Ie- Ns(S) ~ 1

NRIF') -I' Ns(S)
NS(P) = NR(S)

"AM" = 1, "NB" = 0

"AM" 0
"SES"~l
"SER" O
"RBE" O
"51" ~1

Figure 19-7g. SIU AUTO Mode Receive Flowchart-I Command: Sequence Error Send, Current
Received I-Field in Sequence

19-21

BAD

I COMMAND
NR(P) --- NS(S) t" 1
NS(P) -T NR(S)

"AM" = 1, "N8" = 0

"TBF"~0
NS NS + 1
"SES" -<-0
"SER"~1

"SI" """*" 1

Figure 19-7h. SIU f.~UTO Mode Receive Flowchart-I Command: Prior Transmitted I-Field Confirmed
Sequenc0 Error Receive

19-22

RUPiTr'-.tJi~

r---------------------------------------~. eRe /
/' ""D<2'~' ,

r-___ -t(~GO~O~D~ __________________ . __ ~-----

L ____ 'I -I

YES

I cor!.,'.~AND
tlri.(P) = f~s{S)
11s(P) ~ [JIl(S)
"Ar.1" 1,

l
I

~
"50V·'", ... 1 1
"r.n" -:-D
"1l8E" ~.!- \J

51 ~ 1-1

Figure 19-7i. SIU AUTO Mode Receive Flo1a:.:;i'2i"!-! (:Dlrml<:iixl: P;'jm' 'iransmi1t"u 1-Pbld 1\1,1)t
Confirmed, Sequence Errol' rL,cr~i\}3

19-23

..---------'-----------------~----- --_.

BAD

I COMMAND
NR(P) ;0" NS(S) + 1
NR(P) " NS(S)
NS(P) "" NR(P)
"AM" = 1, "NB" = 0

"AM" "
"RBE"~'
"SES"-+-1
"SER"~1
"51" 1

Figure 19-7j. SIU SUTO Mode Receive Flowchart-I Command: Sequence Error Send and Sequence
Error Receive

19-24

XMIT
I

FRAME

RUPJIM_44

XMIT
RR

FRAME

Figure 19-8. SIU AUTO Mode Transmit Flowchart

19-25

XMIT
RNR

FRAME

. PROCESS
INFORMATION

OR
SET "RBP"

LOAD I-FIELD
INTO

XMITBUFFER

Figure 19-9_ AUTO Mode Response to "SI"

19-26

)

ABORT,
SHORT FRAME

OR INVALID I

BAD

YES

RECEIVE MESSAGE
CTRL FIELD RCB,

-----1
I
I
I
I
I RBE ~ ~

I FIElO -.REC BUF,
SET BOV ON OVERRUN

- - - ---I (ABORT FROM CPU)

Figure 19-10. SIU FLEXIBLE Mode Receive Flowchart

19-27

RUPI"'-44

~O

(bulferlull)

Figure 19-11. FLEXIBLE Mode Response to Receive "SI"

19-28

\

BUFEMPTY

CTRL FIELD TCB
I-FIELD XMIT aUF

SET "TBF"
SET "RTS"

XMIT
= 1, PENDING

aUF FULL
TBF INDICATES
LAST TRANSMIT
ABORTED BY CPU
OR PRIMARY.

Figure 19-13. FLEXIBLE Mode Response to Transmit "SI"

19-30

8044 to get its transmit buffer loaded with new infor­
mation after an acknowledge.

3) The 8044 CPU can clear R TS. This will prevent a re­
sponse from being sent, or abort it if it is already in
progress. A system using external RTS/CTS hand­
shaking could use a one-shot to delay RTS or CTS,
thereby giving the CPU more time to disable the
response.

19.9 MORE DETAILS ON SIU HARDWARE

The SIU divides functionally into two sections-a bit
processor (BIP) and a byte processor (BYP)-sharing
some common timing and control logic. As shown in
Figure 19-14, the BIP operates between the serial port
pins and the SIU bus, and performs all functions
necessary to transmit/receive a byte of data to/from
the serial data stream. These operations include shift­
ing, NRZI encoding/decoding, zero insertion/deletion,
and FCS generation/checking. The BYP manipulates
bytes of data to perform message formatting, and other
transmitting and receiving functions. It operates be­
tween the SIU bus (SIB) and the 8044's internal bus (IB).
The interface between the SIU and the CPU involves
an irterrupt and some locations in on-chip RAM space
which are managed by the BYP.

The maximum possible data rate for the serial port is
limited to 1/2 the internal clock rate. This limit is im­
posed by both the maximum rate of OMA to the on-chip
RAM, and by the requirements of synchronizing to an
external clock. The internal clock rate for an 8044 run­
ning on a 12 MHz crystal is 6 MHz. Thus the maximum
8044 serial data rate is 3 MHz. This data rate drops
down to 2.4 MHz when time is allowed for external
clock synchronization.

19.9.1 The Bit Processor

Figure 13- I 5 is a block diagram of the bit processor
(BIP). In the asynchronous (self clocked) modes the
clock is extracted from the data stream using the on-chip
digital phase-locked-loop (OPLL). The OPLL requires
a clock input at 16 times the data rate. This 16X clock
may originate from SCLK, Timer I Overflow, or PH2
(one half the oscillator frequency). The extra divide-by­
two described above allows these sources to be treated
alternatively as 32X clocks.

The OPLL is a free-running four-bit counter running off
the 16 X clock. When a transition is detected in the re­
ceive data stream, a count is dropped (by suppressing
the carry-in) if the current count value is greater than 8.
A count is added (by injecting a carry into the second
stage rather than the first) if the count is less than 8. No

19-31

adjustment is made if the transition occurs at the count
of 8. In this manner the counter locks in on the point at
which transitions in the data stream occur at the count
of 8, and a clock pulse is generated when the count over­
flows to O.

In order to perform NRZI decoding, the NRZI decoder
compares each bit of input data to the previous bit.
There are no clock delays in going through the NRZI
decoder.

The zero insert/delete circuitry (ZID) performs zero in­
sertion/deletion, and also detects flags, GA's(Go­
Ahead's), and aborts (same as GA's) in the data stream.
The pattern I I I I I 10 is detected as an early GA, so that
the GJ\. may be turned into a flag for loop mode
transmission.

The shut-off detector monitors the receive data stream
for a sequence of eight zeros, which is a shut-off com­
mand for loop mode transmissions. The shut-off detector
is a three-bit counter which is cleared whenever a one is
found in the receive data stream. Note that the ZIO log­
ic could not be used for this purpose, because the receive
data must be monitored even when the ZIO is being used
for transmission.

As an example of the operation of the bit processor, the
following sequence occurs in relation to the receive data:

I) RXO is sampled by SCLK, and then synchronized to
the internal processor clock (IPC).

2) If the NRZI mode is selected, the incoming data is
NRZI decoded.

3) When receiving other than the flag pattern, the ZIO
deletes the '0' after 5 consecutive 'I's (during trans­
mission this zero is inserted). The ZIO locates the
byte boundary for the rest of the circuitry. The ZIO
deletes the 'O's by preventing the SR (shift register)
from receiving a clocking pulse.

4) The FCS (which is a function of the data between
the flags-not including the flags) is initialized and
started at the detection of the byte boundary at the
end of the opening flag. The FCS is computed each
bit boundary until the closing flag is detected. Note
that the received FCS has gone through the ZIO
during transmission.

19.9.2 The Byte Processor
Figure 19-16 is a block diagram of the byte processor
(BYP). The BYP contains the registers and controllers
necessary to perform the data manipulations associated
with SOLC communications. The BYP registers may be
read or written by the CPU over the 8044's internal bus

INTERRUPT

IB
,

1
RAM CPU

r - ---- ------- r--------:-----Siij,
I
I
I
I
I
I
I
I
I

H
~

SHARED I
REGISTERS h

~
BVP

I
I
I
I
I

BIP I
SIB I

I

I/O/ RXD

A/TXD OAt

L _____________ ~_~ ___________ J

Figure 19-14. The Bit and Byte Processors

(IB), using standard 8044 hardware register operations.
The 8044 register select PLA controls these operations.
Three of the BYP registers connect to the IB through the
IBS, a sub-bus which also connects to the CPU interrupt
control registers.

Simultaneous access of a register by both the IB and the
SIB is prevented by timing. In particular, RAM access
is restricted to alternate internal processor cycles for the
CPU and the sm, in such a way that collisions do not
occur.
As an example of the operation of the byte processor, the
following sequence occurs in relation to the receive data:

I) Assuming that there is an address field in the frame, .
the BYP takes the station address from the register
file into temporary storage. After the opening flag,

I

the next field (the address field) is compared to the
station address in the temporary storage. If a match
occurs, the operation continues.

2) Assuming that there is a control field in the frame,
the BYP takes the next byte and loads it into the
RCB register. The RCB register has the logic to up­
date the NSNR register (increment receive count,
set SES and SER flags, etc.).

3) Assuming that there is an information field, the next
byte is dumped into RAM at the RBS location. The
DMA CNT (RBL at the opening flag) is loaded
from the DMA CNT register into the RB register
and decremented. The RFL is then loaded into the
RB register, incremented, and stored back into the
register file.

19-32

r---------------------- ---- -------

BIP

ir---------------'
I I
I 1

1 1

1 1

I 1
1 1

I 1

1 I

I 1
1 I

1 I

I 1

1 1

BYP
TIMING

AND
CONTROL

SIB

SHARED
REGISTERS

1

1

'I
I
L ______________ ~~

Figure 19-15. The Byte Processor

RAM

IB

4) This process continues until the DMA CNT reaches
zero, or until a closing flag is received. Upon either
event, the BYP updates the status, and, if the CRC is
good, the NSNR register.

into the received data stream, and the 'write port 3' con­
trol signal is mapped into the SCLK path in place of T 1.
Thus, in test mode, the CPU can send a serial data
stream to the SIU by writing to P3.0. The transmit data
stream can be monitored by reading P3.1. Each suces­
sive bit is transmitted from the SIU by writing to any bit
in Port 3, which generates SCLK. 19.10 DIAGNOSTICS

An SIU test mode has been provided, so that the on-chip
CPU can perform limited diagnostics on the SIU, The
test mode utilizes the output latches for P3.0 and P3.1
(pins 10 and 11). These port 3 pins are not useful as
out-put ports, since the pins are taken up by the serial
port functions. Figure 19-16 shows the signal routing
associated with the SIU test mode.

Writing a 0 to P3.1 enables the serial test mode (P3.1 is
set to 1 by reset). In test mode the P3.0 bit is mapped

19-33

In test mode, the P3.0 and P3.1 pins are placed in a high
voltage, high impedance state. When the CPU reads
P3.0 and P3.1 the logic level applied to the pin will be
returned. In the test mode, when the CPU reads 3.1, the
transmit data value will be returned, not the voltage on
the pin. The transmit data remains constant for a bit
time. Writing to P3.0 will result in the signal being out­
putted for a short period of time. However, since the sig­
nal is not latched, P3.0 will quickly return to a high
voltage, high impedance state.

II
IQ
C
;; ...
cp ...

~

(D ~
~ en
~ 2:

I
a:
0
Do
CII

PIN 15
SCLKI

TIl
P35

PIN 1'<
l{OI

RXD/
P3'

PIN11
DATAl
TXD/
P31

~ ~ I

TIMER 1 OVF

SYSCLK

r:1-_1&..
DATA
STREAM

READ PORT 3

WRITE PORT 3

51U
TRANSMIT

DATA
STREAM

SIU SERIAL
DATA CLOCK

:II
C
'tI
'l
I

"" ""

The serial test mode is disabled by writing a 1 to P3.1.
Care must be taken that a 0 is never written to P3.1 in
the course of normal operation, since this causes the test
mode to be entered.

Figure 19-17 is an example of a simple program seg­
ment that can be imbedded into the user's diagnostic
program. That example shows how to put the 8044
into "Loop-back mode" to test the basic transmitting
and receiving functions of the SIU.

Loop-back mode is functionally equivalent to a hardwire
connection between pins 10 and lion the 8044.

In this example, the 8044 CPU plays the role of the pri­
mary station. The SIU is in the AUTO mode. The CPU
sends the SIU a supervisory frame with the poll bit set
and an RNR command. The SIU responds with a super­
visory frame with the poll bit set and an RR command.

The operation proceeds as follows:

Interrupts are disabled, and the self test mode is enabled
by writing a zero to P3.1. This establishes P3.0 as the
data path from the CPU to the SIU. CTS (clear-to­
send) is enabled by writing a zero to P1.7. The station
address is initialized by writing 08AH into the STAD
(station address register).

The SIU is configured for receive operation in the
clocked mode and in AUTO mode. The CPU then trans­
mits a supervisory frame. This frame consists of an

19-35

opening flag, followed by the station address, a control
field indicating that this is a supervisory frame with an
RNR command, and then a closing flag.

Each byte of the frame is transmitted by writing that
byte into the A register and then calling the subroutine
XMIT8. Two additional SCLKs are generated to guar­
antee that the last bits in the frame have been clocked
into the SIU. Finally the CPU reads the status register
(STS). If the operation has proceeded correctly, the sta­
tus will be 072H. If it is not, the program jumps to the
ERROR loop and terminates.

The SIU generates an SI (SIU interrupt) to indicate
that it has received a frame. The CPU clears this inter­
rupt, and then begins to monitor the data stream that is
being generated by the SIU in response to what it has
received. As each bit arrives (via P3.1), it is moved into
the accumulator, and the CPU compares the byte in the
accumulator with 07EH, which is the opening flag.
When a match occurs, the CPU identifies this as byte
boundary, and thereafter processes the information
byte-by-byte.

The CPU calls the RCV8 subroutine to get each byte
into the accumulator. The CPU performs compare oper­
ations on (successively) the station address, the control
field (which contains the RR response), and the closing
flag. If any of these do not compare, the program jumps
to the ERROR loop. If no error is found, the program
jumps to the DONE loop.

MC5-51 MACRO ASSEMBLER DATA

ISIS-I I MC5-51 MACRO ASSEMBLER V2.0 .
OBJECT MODULE PLACED IN ; Fl: DATA. OIlJ
ASSEMBLER INVOKED BY: aS1ll51: PI: data. man device(44)

LOC OIlJ

0000 75C800
0003 C2Bl
0005 C297
0007 75CESA

OOOA 75DS6A
0000 75C901
0010 7SCSC2

0013 747E
0015 .120066
001S 74SA
001A 120066
0010 7495
OOIF 120066
0022 747E
0024 120066
0027 02BO
0029 0280

002B E5CS
0020 84722A

0030 C2CC
0032 7400
0034 7130C

0036 02BO
0038 A2Bl
003A 13
00313 B47E03
003E 020046
0041 OBF3
0043 02005A

0046 12005C
0049 134SAOE
004C 12005C
004F 134B108
0052 12005C
0055 B47E02

0058 SOFE

005A' SOFE

005C 780S
005E 02130
0060 A2B1
0062 13
0063 DSF9
0065 22

0066 7809
0068 13

0069 0801
006B 22

006C 4004

006E C2BO
0070 BOF6

0072 D2BO
0074 aOF2

LINE

5
6
7
8

•
10
11
12
13
14

" 16
17
18 1.
20
21
22
23
24
25
26
27
28
2.
30
31
32
33
34
3>
36
37
38
3.
40
41
42
43
44

4'
46
47
48
4.
.0
01
'2
>3
54

" '6
57
58
S.
60
6!
62
63
64
65
66
67
68
6.
70
71
72
73
74
75
7.
77
78

7'
80
81
82
83
84

SOURCE

INIT: MOV
eLR
eLR
MOV

STS, _DOH
P3.1
P1. 7
STAD. _BAH

Enable "!lelf test mode
Enable CTS
Initialize address

CONFIQURE RECEIVE OPERATION

MOV
MOV
MOV

NSNR. _6AH
5MD. _OlH
STS •• OC2H

NS(S)"'3. 5ES"0. NR(S)=5. SER""O
NFCB'"'1
TBF~I, RBE"'1. AI1"'1

TRANSMIT A SUPERVISORY FRAME.FROM THE PRIMARY STATION WITH THE POLL
II IT SET AND A RNR COMMAND

SEND: MOV
CALL
MOV
CALL
MOV
CALL
MOV
CALL
SETB
SETS

MOV
C.JNE

A •• iEH
XMITB
A •• SAH
XMIT8
A. _09'H
XI'1IT8
A •• 7EH
XI1ITB
P3.0
P3.0

A. STS
A. .72H. ERROR

The SIU r.ceives a flag first

RNR SUP FRAME with P/F=I. NR(P)-4

j Receive closing flag

J Qemtrate extra SCLK'. to
Initiate retl'ive action

PREPARE TO RECEIVE RUPI '6 RESPONCE TO PRII'IARY'5 RNR

RECV: CLR
MOV
MOV

Clear SI
Clear ACC
Tl'~ 12 tim~u

LDOK FOR THE OPENING FLAG

WFLAG 1: SETS
MOV
RRe
CJNE
JMP

WFLG1: D.JNI
JMP

CNTINU: CALL
C.JNE
CALL
CJNE
CALL
C.JNE

P3.0 SCLK
C. P3.1 Transmitted d .. ta
A
A •• 07EH. WFLQl
CNTINU
R3. WFLAGl
ERROR

Revs j Qet SIU'. Transmitted add" ••• fhld
A. .08AH. ERROR
RCVS Prim"T'1/ •• pects to r.c.iv. RR from stu
A, .0BtH. ERROR
RCVS j Rec.tve closing fla"
A. .07EH. ERROR

DONE' ..IMP DONE

ERROR: JI'1P ERROR

Revs: MOV
GETI3IT: SETD

MOV
RRe
D.JNZ
RET

XMITS MOV

.nO

L3: RRC

D.JNZ
RET

L1: JC

eLR
JMP

L2: SETB
JMP

RO. _OS
P3.0
C. P3.1

•
RO. GETBIT

RO. _9
A

RO. Ll

L2

P3.0
L3

P3.0
L3

Inithli Zl' the bit counter
SCLK
Tr .. nsmi tt.d data

j Initialize the bit count.r
Put the bit to be transmitted
in the Carrl/
When all bit. hav. be.n sent
return

H the carr", bit is s.t. set
port P3.0 .lll'

j clear port P3.0

Figure 19-17. Loop-Back Mode Software

19·36

8044 Application Examples 20

CHAPTER 20
8044 APPLICATION EXAMPLES

20.0 8044 APPLICATION EXAMPLES

20.1 INTERFACING THE 8044 TO A
MICRUt"RU(;,:SSUH

The 8044 is designed to serve as an intelligent controller
for remote peripherals. However, it can also be used as
an intelligent HDLC/SDLC front end for a micropro­
cessor, capapble of extensively off-loading link control
functions for the CPU. In some applications, the 8044
can even be used for communications preprocessing, in
addition to data link control.

This section describes a sample hardware interface for
attaching the 8044 to an 8088. It is general enough to be
extended to other microprocessors such as the 8086 or
the 80186.

OVERVIEW

A sample interface is shown in Figure 20-1. Transmis­
sion occurs when the 8088 loads a 64 byte block of mem­
ory with some known data. The 8088 then enables the
8237A to DMA this data to the 8044. When the 8044
has received all ofthe data from the 8237 A, it sends the
data in a SDLC frame. The frame is captured by the
Spectron Datascope@* which displays it on a GRT in
hex format.

In reception, the Datascope sends an SDLC information
frame to the 8044. The 8044 receives the SDLC frame,
buffers it, and sends it to the 8088's memory. In this ex­
ample the 8044 is being operated in the NON-AUTO
mode; therefore, it does not need to be polled by a prima­
ry station in order to transmit.

THE INTERFACE
The 8044 does not have a parallel slave port. The 8044's
32 I/O lines can be configured as a local microprocessor
bus master. In this configuration, the 8044 can expand
the ROM and RAM memory, control peripherals, and
communicate with a microprocessor.

The 8044, like the 8051, does not have a Ready line, so
there is no way to put the 8044 in wait state. The clock
on the 8044 cannot be stopped. Dual port RAM could
still be used, however, software arbitration would be the
only way to. prevent collisions. Another way to interface
the 8044 with another CPU is to put a FIFO or queue
between the two processors, and this was the method
chosen for this design.

Figure 20-2 shows the schematic of the 8044/8088 inter­
face. It involves two 8 bit tri-state latches, two SR flip­
flops, and some logic gates (6 TTL packs). The circuitry
implements a one byte FIFO. RS422 transceivers are used,
which can be connected to a multidrop link. Figure 20-3
shows the 8088 and support circuitry; the memory and
decoders are not shown. It is a basic 8088 Min Mode

·Datascope is a trademark of Soectron Inc. 20-1

system with an 8237 A DMA controller and an 8259A
interrupt controller.

DMA Channel One transfers a block of memory to the
tri-state latch, while Channel Zero transfers a block of
data from the latch to 8088's memory. The 8044's Inter­
rupt 0 signal vectors the CPU into a routine which reads
from the internal RAM and writes to the latch. The
8044's Interrupt I signal causes the chip to read from
the latch and write to its on-chip data RAM. Both DMA
requests and acknowledges are active low.

Initially, when the power is applied, a reset pulse coming
from the 8284A initializes the SR flip-flops. In this ini­
tialization state, the 8044's transmit interrupt and the
8088's transmit DMA request are active; however, the
software keeps these signals disabled until either of the
two processors are ready to transmit. The software
leaves the receive signals enabled, unless the receive
buffers are full. In this way either the 8088 or the 8044
are always ready to receive, but they must enable the
transmit signal when they have prepared a block to
transmit. After a block has been transmitted or received,
the DMA and interrupt signals return to the initial
state.

The receive and transmit buffer sizes for the blocks of
data sent between the 8044 and the 8088 have a maxi­
mum fixed length. In this case the buffer size was 64
bytes. The buffer size must be less than 192 bytes to en­
able 8044 to buffer the data in its on-chip RAM. This
design allows blocks of data that are less than 64 bytes,
and accommodates networks that allow frames of vary­
ing size. The first byte transferred between the 8088 and
the 8044 is the byte count to follow; thus the 8044 knows
how many bytes to receive before it transmits the SDLC
frame. However, when the 8044 sends data to the 8088's
memory, the 8237 A will not know if the 8044 will send
less than the count the 8237 A was programmed for. To
solve this problem, the 8237A is oPerated in the single
modr. The 8044 uses an I/O bit to generate an interrupt
request to the 8259A. In the 8088's interrupt routine,
the 8237 A's receive DMA channel is disabled,. thus al­
lowing blocks of da ta less than 64 bytes to be received.

THE SOFTWARE

The software for the 8044 and the 8088 is shown in Ta­
ble 20-1. The 8088 software was written in PL/M86,
and the 8044 software was written in assembly
language.

The 8044 software begins by initializing the stack, inter­
rupt priorities, and triggering types for the interrupts.
At this point, the SIU parameter registers are initial­
ized. The receive and transmit buffer starting addresses
and lengths are loaded for the on-chip DMA. This DMA
is for the serial port. The serial station address and the
transmit control bytes are loaded too.

I------------~-----~

DATASCOPE

I
I
I
I
I
I
I
I
I
~

Figure 20-1. Block Diagram of 8088/8044 Interface Test

Once the initialization has taken place, the SIU inter­
rupt is enabled, and the external interrupt which re­
ceives bytes from the 8088 is enabled. Setting the 8044's
Receive Buffer Empty (RBE) bit enables the receiver. If
this bit is reset, no serial data can be received. The 8044
then waits in a loop for either RECEIVE DMA inter­
rupt or the SERIAL INT interrupt.

The RECEIVE DMA interrupt occurs when the 8237A
is transferring a block of data to the 8044. The first time
this interrupt occurs, the 8044 reads the latch and loads
the count value into the R2 register. On subsequent in­
terrupts, the 8044 reads the latch, loads the data irlto the
transmit buffer, and decrements R2. When R2 reaches
zero, the interrupt routine sends the data in an SDLC
frame, and disables the RECEIVE DMA interrupt.
After the frame has been transmitted, a serial interrupt
is generated. The SERIAL INT routine detects that a
frame has been transmitted and re-enables the RE­
CEIVE DMA interrupt. Thus, while the frame is being
transmitted through the SIU, the 8237A is inhibited
from sending data to the 8044's transmit buffer.

The TRANSMIT DMA routine sends a block of data
from the 8044's receive buffer to the 8088's memory.
Normally this interrupt remains disabled. However, if a
serial interrupt occurs, and the SERIAL INT routine
detects that a frame has been received, it calls the
SEND subroutine. The SEND subroutine loads the
number of bytes which were received in the frame into
the receive buffer. Register R I points to the receive buff-

er and R2 is loaded with the count. The TRANSMIT
DMA interrupt is enabled, and immediately upon re­
turning from the SERIAL INT routine, the interrupt is
acknowledged. Each time the TRANSMIT DMA in­
terrupt occurs, a byte is read from the receive buffer,
written to the latch, and R2 is decremented. When R2
reaches 0, the TRANSMIT DMA interrupt is disabled,
the SIU receiver is re-enabled, and the 8044 interrupts
the 8088.

The 8088 software simply transmits a block of data and
receives a block of data, then stops. The software begins
by initializing the 8237 A, and the 8259A. It then loads a
block of memory with some data and enables the 8237 A
to transmit the data. In the meantime the 8088 waits in a
loop. After a block of data is received from the 8044, the
8088 is interrupted, and it shuts off the 8237 A receive
DMA.

CONCLUSION

For the software shown in Table 20-1, the transfer rate
from the 8088's memory to the 8044 was measured at
75K bytes/sec. This transfer rate largely depends upon the
number of instructions in the 8044' s interrupt service rou­
tine. Fewer instructions result in a higher transfer rate.

There are many ways of interfacing the 8044 locally to
another microprocessor: FIFO's, dual port RAM with
software arbitration, and 8255's are just a few. Alterna:
tive approaches, which may be more optimal for certain
applications, are certainly possible.

20-2

OREQl

DREQ0

DACKl

"TI
cC'
I: ..
CD
N L.rj'QW

9 ~
~
CD
0 1= I"~ :II

"" "" 07 Vee
C
"0

N :;'
~! 2732.

e;:> CD ~
I (,) :::l .r:-III ~~ Q1 .r:-n

CD

0' -:::r CD
CD
0
CD
CD

RUPI EXPANSION BUS

+5

2.2K

C5 @) 1K

'TI

MEMR
lOR
MEMW
lOW

PClK jll\ §
~ ClK

+5V
c ...
CD

2K

N
9
~

8237 CS
+5V

III
0

N
III

~
III

iii:
3"
iii:
0

i
en
'<
/I)

CD
3

OREa,

I I
DACKI :D DRE01 c: DACK1
OREQ2 "0
DACK2

~
I

"'" "'" AO·A7

DREoe.~~~~~~~1 ~~~ ~ =
MN/MX RQ 8237-2 g~~~~

IOl~ RESEli DACK2
INTR WA OREQ3 rT- ~MI

C1

8088 AD7!~~~~il~ ADB
(MIN) ADS

~TEST ~g~ ~
INTR ~g~ ~

A13 A1, ADe a)

415 A12 A9

J1
AEN ,.---

'Ls I D DO-07 04)11))11)
'I /7777777 I

•• , A

r---------C> A15-A8

Table 20-1. Transmit and Receive Software for an 8044/8088 System

LOC OBJ LINE SOURCE

0000
00008024

0026

0026 7581AA
0029 75B800
002C 75C954
002F 758844

0032 758DEC
0035 758920

0038 75DC6A
003B 75DB40
003E 75CC2A
0041 75CB40
0044 75CE55
0047 75DAlI

004A 901000
004D 0200

004F P2CE
0051 75A894

0054 80FE

0056 80FE

0058 85C029
005B 7929
005D AACD
005F OA
0060 D2A8
0062 22

0063
0013
0013 020063
0063

2
3

6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

$debug

IN IT:

title (8044/8088 INTERFACE)

ORG 0
SJMP IN IT

ORG 26H

MOY SP, #170
MOY IP,#OO
MOY SMD, #54H
MOY TCON, #44H

MOY THI, #OECH
MOY TMOD, #20H

; INITIALIZE STACK
; ALL INTERRUPTS ARE EQUAL PRIORITY
; TIMER I OYERFLOW, NRZI, PRE· FRAME SYNC
; EDGE TRIGGERED EXTERNAL INTERRUPT I
; LEYEL TRIGGERED EXTERNAL INTERRUPT 0
; TIMER I ON
; INITIALIZE TIMER, 3125 BPS
; TIMER I AUTO RELOAD

MOY
MOY
MOY
MOY
MOY
MOY

TBS, #106 ; SET UP SIU PARAMETER REGISTERS
TBL, #64
RBS, #42
RBL, #64
STAD, #55H
TCB, #OOOIOOOIB ; RR, P/F= I

MOY
SETB

SETB
MOY

DPTR, #IOOOH
FIRSLBYTE

RBE
IE, #1 00 10 100B

SJMP $

; DPTR POINTS TO TRI·STATE LATCH
; FLAG TO INDICATE FIRST BYTE
; FOR RECEIYE INTERRUPT ROUTINE
; READY TO RECEIYE
; ENABLE RECEIYE DMA AND 8IU INTERRUPT

; WAIT HERE FOR INTERRUPTS

ERROR: SJMP ERROR
36 +1 $EJ

37
38
39
40
41
42
43
44
45
46
47

48
49
50
51
52
53
54

;* •••••••••••••••••••••••••

SEND: MOY 41,RFL
MOY RI,#41
MOY R2,RFL
INC R2
SETB EXO
RET

SUBROUTINES •••••••••••••••••••••••••••••••

; FIRST BYTE IN BLOCK IS COUNT
; POINT TO BLOCK OF DATA
; LOAD COUNT

; ENABLE DMA TRANSMIT INTERRUPT

;................... INTERRUPT SERVICE ROUTINES •••••••••••••••••••••

LOLTMPSET
ORG

$
0013H

LJMP RECEIYLDMA
ORG LOC_TMP

; SET UP INTERRUPT TABLE JUMP

55 RECEIYLDMA:

20-5

· RUPITM_44

56
0063 10000E 57 JBC FIRSLBYTE, Ll ; THE FIRST BYTE TRANSFERRED IS THE COUNT

58
0066 EO 59 MOVX A,@DPTR ; READ THE LATCH
0067 F6 60 MOV @RO,A ; PUT IT IN TRANSMIT BUFFER
0068 08 61 INC RO
0069 DA08 , 62 DJNZ R2, L2 ; AFTER READING BYTES,

63
006B D2CF 64 SETB TBF ; SEND DATA
006D D2CD 65 SETB RTS
006F 0200 66 SETB FIRSLBYTE
0071 C2AA 67 CLR EXI

68
0073 32 69 L2: RETI

70
0074 786A 71 Ll: MOV RO, #106 ; RO IS A POINTER TO THE TRANSMIT

72 ; BUFFER STARTING ADDRESS
0076 EO 73 MOVX A,@DPTR ; PUT THE FIRST BYTE INTO
0077 FA 74 MOV R2,A ; R2 FOR THE COUNT
0078 32 75 RETI

76
0079 77 LOCTMPSET $

0003 78 ORG 0003H
0003 020079 79 LJMP TRANSMILDMA
0079 80 ORG LOCTMP

81

82 TRANSMIT _DMA
83

0079 E7 84 MOV A,@RI ; READ BYTE OUT OF THE RECEIVE BUFFER
007A FO 85 MOVX @DPTR,A ; WRITE IT TO THE LATCH
007B 09 86 INC RI
007C DA08 87 DJNZ R2, L3 ; WHEN ALL BYTES HAVE BEEN SENT

88
007E C2A8 89 CLR IE,O ; DISABLE INTERRUPT
0080,C294 90 CLR PI. 4 ; CAUSE 8088 INTERRUPT TO TERMINATE DMA
0082 D294 91 SETB PI. 4
0084 D2CE 92 SETB RBE ; ENABLE RECEIVER AGAIN

93
0086 32 94 L3: RETI

95
96
97

0087 98 LOC_TMPSET $
0023 99 ORG 0023H
0023 020087 100 LJMP SERIALINT
0087 101 ORG LOCTMP

102
103 SERIALINT:
104

0087 30CE06 105 JNB RBE, RCV ; WAS A FRAME RECEIVED
008A 30CFOB 106 JNB TBF,XMIT ; WAS A FRAME TRANSMITTED
008D 020056 107 LJMP ERROR ; IF NEITHER ERROR

108
0090 20CBC3 109 RCV: JB BOV, ERROR ; IF BUFFER OVERRUN THEN ERROR
0093 1158 110 CALL SEND ; SEND THE FRAME TO THE 8088
0095 C2CC III CLR SI
0097 32 112 RETI

113
0098 C2CC 114 XMIT: CLR SI

20-6

RUPITM_44

009A D2AA liS SETB EXI
009C 32 116 RETI

117
liS END

SYMBOL TABLE LISTING

NAME TYPE VALUE ATTRIBUTES

BOV B ADDR 00CSH.3 A
ERROR C ADDR 0056H A
EXO B·ADDR OOASH.O A
EXI B ADDR 00ASH.2 A
FIRSLBYTE B ADDR 0020H.0 A
IE D ADDR OOASH A
INIT C AD DR 0026H A
IP D AD DR OOBSH A
Ll C ADDR 0074H A
L2 C ADDR 0073H A
L3 C AD DR 00S6H A
LOCTMP C ADDR 00S7H A
PI D ADDR 0090H A
RBE B AD DR 00CSH.6 A
RBL D ADDR OOCBH A
RBS D ADDR OOCCH A
RCV C ADDR 0090H A
RECEIVLDMA C ADDR 0063H A
RFL D ADDR OOCDH A
RTS B AD DR 00CSH.5 A
SEND C AD DR 005SH A
SERIALINT C ADDR 00S7H A
SI B ADDR OOCSHA A
SMD D ADDR 00C9H A
SP D AD DR OOSIH A
STAD D ADDR OOCEH A
TBF B ADDR 00CSH.7 A
TBL D ADDR OODBH A
TBS D ADDR OODCH A
TCB D ADDR OODAH A
TCON D ADDR OOSSH A
THI D AD DR OOSDH A
TMOD D AD DR 00S9H A
TRANSMILDMA C ADDR 0079H A
XMIT C ADDR 0098H A

REGISTER BANK(S) USED: 0, TARGET MACHlNE(S): S044

ASSEMBLY COMPLETE, NO ERRORS FOUND

20-7

Table 20-2. PLlM-86 Compiler Rupi/8088 Interface Example

SERIES~III PL/M-86 VI.O COMPILATION OF MODULE RUPI_88
OBJECT MODULE PLACED IN :FI:R88.0BJ
COMPILER INVOKED BY: PLM86.86 :FI:R88.SRC

3

4
5
6

2

2
2
2

SDEBUG
STITLE ('RUPI/8088 INTERFACE EXAMPLE')

RUPI_88: DO.

DECLARE

LIT
TRUE
FALSE

RECV_BUFFER(64)
XMIT_BUFFER(64)
I
WAIT

MASTER_CLEAR_37
COMMAND 37
ALL_MASK_37
SINGLE_MASK_37
STATUS_37
REQUEST _REG_37
MODE_REG_37

LITERALLY
LIT
LIT

BYTE.
BYTE,
BYTE,
BYTE,

1* 8237 PORTS*I

LIT
LIT
LIT
LIT
LIT
LIT
LIT

CLEAR_BYTE]TR _37 LIT

CHO_ADDR LIT
CHO_COUNT LIT
CHI_ADDR LIT
CHI_COUNT LIT
CH2_ADDR LIT
CH2_COUNT LIT
CH3_ADDR LIT
CH3_COUNT LIT

'LITERALLY' •
'OlH',
'OOH',

'OFFDDH',
'OFFD8H',
'OFFDFH',
'OFFDAH',
'OFFD8H',
'OFFD9H',
'OFFDBH',
'OFFDCH',

'OFFDOH',
'OFFDIH',
'OFFD2H',
'OFFD3H',
'OFFD4H',
'OFFD5H',
'OFFD6H' ,
'OFFD7H',

1* 8237 BIT ASSIGNMENTS +1

CHO_SEL LIT 'OOH',
CHI_SEL LIT 'OIH',
CH2_SEL LIT '02H',
CH3_SEL LIT '03H',
WRITE_XFER LIT '04H',
READ_XFER LIT 'OSH',
DEMAND_MODE LIT 'OOH',
SINGLE_MODE LIT '40H',
BLOCK_MODE LIT 'SOH',
SET_MASK LIT '04H',

SEJECT
1* 8259 PORTS *1

STATUS POLL _59 LIT 'OFFEOH',
ICWI_59 LIT 'OFFEOH',
OCWI_59 LIT 'OFFEIH',
OCW2_59 LIT 'OFFEOH',
OCW3_59 LIT 'OFFEOH',
ICW2_59 LIT 'OFFEIH',
ICW3_59 LIT 'OFFEIH',
ICW4_59 LIT 'OFFEIH',

1* INTERRUPT SERVICE ROUTINE *1

PROCEDURE INTERRUPT 32,

OUTPUT (SINGLE_MASK_37)=40H,
WAIT=FALSE,
END,

20-8

7

6
9

10
11
12
13
14
15
16
17
16
19
20
21

22

23
24
25

26

27

26
29
30

31

32

33
34
35

36
37

3B

1
2
2

1
1
2

1
2

THE RUPITM_44

DISABLE,

1* INITIALIZE 6237 *1

OUTPUT(MASTER_CLEAR_37)
OUTPUT(COMMAND_37)
OUTPUT (ALL_HASK_37)
OUTPUT (MODE_REG_37)
OUTf'UT lMODE_HEI.I_;U I
OUTPUT (CLEAR_BYTE-PTR_37)
OUTPUT(CHO ADDR)
OUTPUT(CHO=ADDR)
OUTPUT (CHO_COUNT)
OUTPUT (CHO_COUNT)
OUTPUT(CH1_ADDR)
OUTPUT (CH1_ADDR)
OUTPUT (CHI_COUNT)
OUTPUT (CHI_COUNT)

=01
=040H.
=OFH.
=(SINGLE_MODE OR WRITE_XFER OR CHO_SEL),
-~~INWLt_MUUt un "~HU_AFen un C"l_=~~J;
=0,
=OOHi
D40H,
=64,
=00;
~40H.

=40H,
-64,
-=00;

1* INITIALIZE 62~9 *1

OUTPUT (ICW1_59)

OUTPUT< ICW2_59)
OUTPUT (ICW4_59)
OUTPUT(OCW1_59)

=13H. I*SINGLE MODE. EDGE TRIGGERED
INPUT. 6086 INTERRUPT TYPE*I

=20H, I*INTERRUPT TYPE 32*1
303H, I*AUTO-EOI*I
-OFEH. I*ENABLE INTERRUPT LEVEL 0*1

SEJECT

END,

CALL SETS INTERRUPT (32. OFF_RECV_DMA) , I*LOAD INTERRUPT VECTOR LOCATION*I

XMIT_BUFFER(0)=64, I*THE FIRST BYTE IN THE BLOCK OF DATA IS THE NUMBER
OF BYTES TO BE TRANSFERED, NOT INCLUDING THE FIRST BYTE*I

DO 1= 1 TO 64, 1* FILL UP THE XMIT_BUFFER WITH DATA *1
XMIT _BUFFER (I) =1,
END,

OUTPUT (ALL_MASK_37) =OFCH,

ENABLE,

I*ENABLE CHANNEL 1 AND 2 *1

WAIT=TRUE,
DO WHILE WAIT,
END,

DO WHILE 1,
END,

1* A BLOCK OF DATA WILL BE TRANSFERRED TO THE RUPI.
WHEN THE RUPI RECEIVES A BLOCK OF DATA IT WILL
SEND IT TO THE BOBB MEMORY AND INTERRUPT THE BOB6.
THE INTERRUPT SERVICE ROUTINE WILL SHUT OFF THE DMA
CONTROLLER AND SET 'WAIT' FALSE *1

MODULE INFORMATION:

CODE AREA SIZE c 00D7H 21~D

CONSTANT AREA SIZE = OOOOH OD
VARIABLE AREA SIZE = 00B2H 130D
MAXIMUM STACK SIZE 001EH 300
124 LI NES READ
o PROGRAM WARNINGS
o PROGRAM ERRORS

END OF PL/M-66 COMPILATION

20-9

APPENDIX B
LISTINGS OF SOFTWARE MODULES

20-10

intel'
PL/I'1-51 COMPILER RUPI-44 Secondary Station Driv.,.

ISIS-II PL/I'1-51 VI.O
COMPILER INVOKED BY: : F2: PLt151 : F2: APNOTE. SRC

6

. 'TITLE ('RUPI-44 SeccndaT'1j Station Drivel' ')
.DEBUG
SREGISTERBANK(1)
MAINSMOD: 001
SNOLIST

1* To ~ave paper the RUPI registers are not listed. but this is the statement
used to include them: 'INCLUDE (:F2:REQ44. DeL) *1

DECLARE LIT LITERALLY
TRUE LIT
FALSE LIT
FOREVER LIT

1* SDLe commands and rllsponses -I

DECLARE SNRH LIT
UA LIT
DISC LIT
Oil LIT
FRIIR LIT
REOJ)ISC LIT
UP LIT
TEST LIT

1* Use'" ,tates *1

OPEN_S LIT
CLOSED_S LIT

1* Station states

DISCONNECT _5
FRMR_S

LIT
LIT
LIT I_T_S

*1

'LITERALLY',
'OFFH',
'OOH'.
'WHILE 1';

'B:3H',
'73H',
'43H',
'lFH',
'97H',
'53H',
'33H',
'OE3H',

'OOH',
'01H',

'OOH", 1* LOGICALLY DISCONNE<;:TED STATE*I
'01H'. 1* FRAME REJECT STATE *1
'02H', 1* INFORMATION TRANSFER STATE *1

1* Status valu •• returnlrd from TRANSMIT procedure *1

UBER_STATE_CLOBED LIT
LINK_DISCONNECTED LIT
OVERFLOW LIT
DATA_TRANSMITTED LIT

'OOH',
'OtH~,

'02H',
'03H',

1* Partillmeter'l passed to XHIT _FRMR *1

UNASSIGNED_C LIT
NO_I_FIELD_ALLOWED LIT
BUFF_OVERRUN LIT
SES..ERR LIT

'OOH',
'OtH',
'02H',
'03H',

20-11

20: 24: 47 09/20/83 PAGE

inter
PL/M-:51 COMPILER RUPI-44 S.condary Station Oriv.er

7 2
B 2
9 I

10 " II " 12 I

13 2
14 2
IS " Ii> I

17 "
IB 2
19 " 20 2
21 2
22 2
23 2
24 2

25

26 2

27 2

2B 2

30 2

32 2

34 3

USER_STATE
STATION_STATE
I]RAME_LENGTH

BYTE
BYTE
BYTE

AUXILIARY.
AUXI L I ARY.
AUXILIARY.

1* Buffers *1

DUFFER_LENGTH
SIU_XHIT _BUFFER (BUFFER_LENGTH)
SIU_RECV _BUFFER (BUFFER.;.,.LENGTH)
FRMR_BUFFER (3) BYTE,

BIT PUBLICI

SIU_RECV: PROCEDURE (LENGTH) EXTERNAL,
DECLARE LENGTH BYTE,

END SIU_RECV,

OPEN: PROCEDURE PUBLIC USING 21
USER_STATE=OPEN_Si

END OPEN,

CLOSE: PROCEDURE PUBLIC USING 2,
AM=O,
USER_9TATE-CLOSED_S,

END CLOSE;

POWER_ON_D: PROCEDURE PUBLIC USING 0,

USER_STATE-CLOSED_S,
STATION_STATE-DISCONNECT _6,
T8S-. SIU_Xr'IIT_BUFFER(O),
ReS-. SIU_RECV_BUFFER(O.,
RBl-BUFFER_LENGTH,

LIT
BYTE
BYTE

RBE-II 1* Enable th .. SIU's 1""cei" .. T' *1
XMIT _BUFFER_EMPTY'" 1 I

END POWER_ON»,

'i>0',
PUBLIC
PUBLIC,

lDATA,

TRANSMIT: PROCEDURE (XMIT_8UFFER_LENQTH) BYTE PUBLIC USINg 01

1* User must ch.ck XMIT_BUFFER_EHPTY flag befoT'e calling this pT'Dc .. durlt *1

DECLARE XMIT _BUFFER_LENGTH
I
STATUS

IF USER_STATE-CLOSED_S

BYTE,
BYTE
BYTE

THEN STATUS=USER_STATE_CLOSEDJ
ELSE IF STATION STATE-DISCONNECT S

AUXILIARY,
AUXILIARY;

THEN STATUS-LINK DISCONNECTED;
ELSE IF XMIT _BUFFER_LENGTH>BUFFER_LENGTH

THEN STATUS-OVERFLOW;
ELSE DOl

20-12

20: 24: 47 09/:20/83 PAgE i2

inter
PL/I'1-:U COMP ILER RUPI-44 S.cond(IT·~ Station Driver ilO: 24: 47 09/20/83 PAGE 3

3~ 3
36 3
37 3

38 3
39 3
40 3
41 2
42 1

43 2

44 2

4~ 2
46 2
47 2
48 3
49 3
~o 2

~I

~2 2

53 2
54 2

"" "
57 3
.8 " 59 3
60 "
62 3
63 3
64 3
6~ 2

66

67 2

68 2

69 2

70 " 71 2
72 "
73 " 74 3
75 3

Xt1IT _BUFFER_EMPTY-O,
TBLaXMIT _BUFFER_LENOTH;
I_FRAME_LENQTH-Xt11T_BUFFER_LENOTHI f. Store hngth in case station

is reset bV FRMR. SNRH etc. *1
leF-I,
STATUS-OAT A_ TRANSH I TlED)

ENOl
RETURN STATUS,

END TRANSMIT,

XHI T _UNNUMBERED: PROCEDURE (CONTROL_BYTE)

DECLARE CONTROL_BYTE BYTE;

TCOo::CCNTROL_DVTEJ
TBF-l1
RTS-1,
DO WHILE NOT 51,
ENDI
51-0,

END XMI T _UNNUMBERED;

SNRH_RESPONSE: PROCEDURE J

STAT I ON_STATE'" I_T _5,
NSNR=O,
IF (RCB AND 10H) <> 0 1* Respond if polled *1

THEN DOl
TBL-OJ
CALL XMIT _UNNUMBEREDtUA) J

ENDI
IF XHIT_BUFFER_EMPTY-O 1* If' iIIn I .pTa",. was hft pending tr,ansmission

th.n r.~toT. it *1
THEN 001

TBL=I_FRAME_LENOTH;
TBF"l,

END;

END SNRH~ESPONSEI

XHIT_FRMR: PROCEDURE (REASON)

DECLARE REASON BYTE;

TCB-FRMRJ

TBg FRI'1R_BUFFER(O)I
TBL=31
FRI'1RJUFFER(O)-RCBI
1* SWIlP nibbles in NSNR *1
FRMR_BUFFER(l)-(SHL..«NSNR AND OEH).4) OR SHR«NSNR AND OEOH),4)};
DO CASE REASON!

FRMR_BUFFER(2).OlHI 1* UNASSIONED~C *1

20-13

inter
PL/H-tH COMPILER RUPI-44 Second,-'r\! Station Driver 20: 24: 47 09/20/83 PAGE 4

76 3
77 3
7B 3
79 3

BO "
Bl "
B3 3
B4 3
B~ 4
B6 4
B7 3
BB 3
89 1

90 "
91 "
93 "
95 3
96 3
97 3
9B 1

99 "
100 "
10" 3
103 3
104 3

10~ "
107 3
lOB 3
109 3

111 4
112 4
113 4
114 3

115 3
116 3

11B 4
119 4

ENO,

FRHR_BUFFER (2)-02H,
FRHRJlUFFER (21-04H,
FRf1R_BUFFER (:2) -aSH,

1* NO_I.JIELD_ALLOWED *1 '* BUFF_OVERRUN *1
1* SE8..ERR *1

STATION_STATEaFRHR_S,

IF (RCa AND lOH) <>0
THEN DO,

TBF-1;
RT8-11
DO WHILE NOT 81,
ENOl
81-0,

ENOl

IF (CUSER_BTATEa:OPEN_S) AND «RCB AND OEFH)-SNRM»
THEN CALL SNRMJfESPONSEI

ELSE IF (RCB AND 10H) <> 0
THEN DO,

TBLcOI
CALL XMIT_UNNUMBEREO(OM) ,

ENOl
END IN_DISCONNECT_STATEI

IN_FRMR_STATE: PROCEDURE; 1* Called b\l SIU_INT when a frame has b •• n received
when in the FRHR .tat. *1

IF (RCB AND OEFH)-SNRM
THEN DO,

CALL SNRM_RESPONSe,.
T88-. SIU_XMIT_BUFFER(O'J 1* R •• tol"e transmit buffer .tart addre.s *1

ENOl

ELSE IF (RCB AND OEFHJ-OISC
THEN 00,

STATION_STATE-OISCONNECT_S,
T8S-, SIU_XHIT_BUFFER{OJJ 1* Re.tora transmit buffer start addres5 *1
IF (RCB AND 10H)(> 0

THEN DO,
TBl-O,
CAll XHIT_UNNUHBERED(UAJI

ENOl
ENOl

ELSE DO, 1* Reedve control b",t. is something other than DISC Dr SNRH *1
IF (RCB AND 10H) <> 0

THErt""DOI
TDF ... :lJ
RTS .. l,

20·14

PL/H-"l COMPILER RVPl-44 SecondaT'\I Station DrivE'T' 20: 24: 47 09/20/83 PAQE

120 5
121 5
122 4
123 3

124

125 2

126 2

129 2

130 ·3
131 3

133 4
13. 4
135 4
136 3

137 2

139 3

141 4

143 5
144 5
145 5
146 " 147 5
149 5
149 " 150 5
151 "
152 4

154 5
,"5 5
156 5
157 4
159 3
159 3

160 2

162 3
163 3

165 3

ENOl

DO WHILE NOT SII
END;

ENOl

END IN_FRHR_STATEI

COMMAND_DECODE: PROCEDURE ,

IF (RCB AND OEFH)-SNRH
THEN CALL SNRH_RESPONSE,

ELSE IF (RCB AND OEFH)-DISC
THEN DO;

STATION_STATE-DISCONNECT _5;
IF (RCB AND 10H)<::>O

THEN DO,
TBL-O,
CALL XMIT_UNNUHBERED(UA),

END;
END,

ELSE IF (RCB AND OEFH)-TEST
THEN DO.

IF (RCB AND 10H)::>O 1* R pond if polled *1
THEN DO; 1* FOR BOV-!, SEND THE TEST RESPONSE WITHOUT AN I FIELD *1

IF (ROV-i)
THEN DO.

TBL""O,
CALL XMIT_UNNUHBEREDCTEST OR 10H)1

END;
ELSE DO; 1* If no BOV, send received I field back to primarlj *1

TBL""RFLI
TBS=RRS;
CALL XHIT UNNUHBEREDCTEST OR 10H)1
T8S-. SIU_XI'1IT_BUFFER(O)I 1* Restore TOS *1

ENOl

IF XMIT _BUFFER_EMPTY-O
THEN 001

ENDi

TBL:s:I_FRAME_LENQTHi
TBF=l;

END;

AM=1i
ENOl

ELSE IF (RCB AND 01H) .. 0 1* Kicked out of the AUTO mode because

THEN DO;
AM - 11
IF XMIT _BUFFER_EMPTY" 1

THEN TBL = OJ

T'eceived while RPB - 1 *1

TBF "" 1i 1* Send an AUTO mode response *1

20-15

PL/M-51 COMPILER

166 3
167 3

RUPi-44 Secondary Station DT'iver

RTS = 1;
ENOl

20: 24: 47 09/20/83 PAGE 6

168 . 2 ELSE CALL XMIT_FRMRWNASSIGNED_C)1 1* Received an undeflined OT' not implemented command *1

169

170 2

171 2

172 2
173 2

175 3

177 " 178 5
179 5
IBO " 181 4
182 4
183 3
194 3

185 2

187 3

189 3

191 4
192 4
193 4
194 3

196 3

END COMMAND_DECODE;

SIU_lNT: PROCEDURE INTERRUPT 41

DECLARE BYTE AUXILIARY';

SI=Oi
IF STATION_STATE<> I_T_9 1* Mu~t be j,t'\ NON-AUTO mode *1

THEN 001
IF RBE=O 1* Received a frame? Give response *1

THEN DO;

RETURNl'
END;

DO CASE STATION_STATE;
CALL IN_DISCONNECT_STATEJ
CALL IN_FRMR_STATEI

ENOl
RBE=I,

END;

1* If the program reach .. s this pOint. STATION_STATE-I_T_S
which means the Stu either was. or still 'is in the AUTO MODE *1

IF AM=O
THEN DO.

IF (RCB AND OEFH)-DISC
THEN CALL COMMAND DECODEI

ELSE IF USER_STATE=CLOSEO:=S
THEN DOi

ELSE IF SESe 1

TBL=OJ
CALL XMIT _UNNUMBEREDfREG_DISC) J

ENOl

THEN CALL XMIT _FRMR (SES_ERR);
ELSE IF BOV=l

198
THEN 001 1* DON'T SEND FRMR IF A TEST WAS RECEIVED*I

IF (RCB AND OEFH)=TEST

200 4
201 4
202 3
203 3
204 3

THEN CALL COMMAND_DECODEl
ELSE CALL XMIT _FRMR (BUFF _OVERRUN)J

ENOl
ELSE CALL COMMAND_DECODEI
RBE=1;

END.

205 3
206 3

ELSE DOi 1* MUST STILL. BE IN AUTO MODE *1
IF TBF=O

208 3
THEN XMIT_BUFFER_EMPTY=1, 1* TRANSMITTED A FRAME *1

IF RBE=O
THEN 001

PL/M-~1 COMPILER RUPI-44 Secondarv Station Driver

210 4
211 4
212 4
213 4
214 4
21S 3
216 1 END SIU_INTI

ENO MAIN.MODI

END;

217

WARNINOS:
4 IS THE HIGHEST USED INTERRUPT

MODULE INFORMATION:
CODE SIZE
CONSTANT SIZE
DIRECT VARIABLE SIZE
INDIRECT VARIABLE SIZE
BIT SIZE
BIT-ADDRESSABLE SIZE
AUXILIARY VARIABLE SIZE
MAXIMUM STACK SIZE
REGISTER-BANKes) USED:
460 LI NEB READ
o PROGRAM ERROR(S)

END OF PLll'I-51 COMPILAtION

RBP=1; 1* RNR STATE *1
RBE=l; 1* RE-ENABLE RECEIVER *1
CALL SIU_RECV(RFU;
RBP"OI 1* RR STATE *1

ENDi

(STATIC+QVERLAYABLE)
- OOi!:BFH 6550
... OOOOH 00

3FH+02H 63D+ 20
3CH+00H 60D+ 00
OlH+OOH 10+ 00
OOH+OOH OD+ 00

:0:: 0006H 60
... 0017H 230

o 1 2

20-16

20: 24: 47 09/20/83 PAGE

PL/M-31 COMPILER Application Module: A!i~iH:/SDL.C Protocol convnter

ISIS-II PL/M-51 Vl. 0
COMPILER INVOKED BY: : f2: plmS1 : f2: unote. src

STITL.E
Sd~bug

('Application Modula: AS\lnc/SDLC Protocol converter')

.reg ht.rbank (0)
uS81'$mod: do;
SNDLIST
DECLARE LIT

TRUE
FALSE
FOREVER
ESC
LF
CR
BS
BEL
EMPTY
INUSE
FVLL
USER_STATE_CLOSED
L1NK_D I SCONNECTED
OVERFLOW
DATA_TRANSMITTED

1* BUFFERS *1

LITERALLY
LIT
LIT
LIT
LIT
LIT
LIT
LIT
LIT
LIT
LIT
LIT
LIT
LIT
LIT
LIT

BUFFER_LENGTH LIT
SIUJMITJJUFFER(BUFFER_LENGTHJ
S I U _RECV _BUFFER (BUFFER_LENGTH)
FIFO_T(256) BVTE
IN_PTR_T BYTE
OUT_PTR_T BYTE
aUFFER_STATUS_T BYTE
FIFO_R(25b) BYTE
I Nj'TR_R BYTE
OUT j'TR_R BYTE
BUFFER_STATUS_R BYTE

'LITERALLY' ,
'OFFH',
'OOH',
'WHILE I',
'lBH',
'OAH',
'ODH',
'OSH'.
'07H',
'DOH',
'OtH'.
'02H'.
'DOH',
'OtH',
'02H',
'03H', .-

'60',
BYTE EXTERNAL
BYTE EXTERNAL.

AUXILIARY.
AUXILIARY.
AUXILIARY.
AUXILIARY,
AUXILIARY.
AUXILIARY,
AUXILIARY.
AUXILIARY,

1* Va1'iab les and Parameters *1

LENGTH
CHAR
I .
USART_CMD
DEST! NAT! ON_ADDRESS
SEND_DATA
RESULT
ERRftSSAGE_INDEK
ERR_MESSAGE_PTR

BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
WORD

AUXILIARY.
AUXILIARY.
AUXILIARY,
AUKILIARY,
AUXILIARY.
AUXILIARY.
AUKILIARY,
AUXILIARY.
AUXILIARY •.

1* Messages Sent to the Terminal *1

I DATA.

PARITYC*) BYTE CONSTANTCLF, CR. 'Pa1'it'd E1'ror Detected'.LF.CR,OOH).
FRAME(*) BYTE CONSTANTCLF. CR. 'Framing Error Detectad'. LF. CR. OOH),

20-17

18: SO; 53 09/19/83 PAGE

PL/I"I-51 COMPILER Application Modul,,: A'I~nc/SDLC Protocol converter

OVER_RUN(.) BYTE -CONSTANT (LF. CR. 'Overrun Error Detected'. LF. CR. 0).
LINKe.) BYTE CON9TANT(LF,CR, 'Unable to get Dnline'.LF.CR,OOH),
DEST_ADDR(.) BYTE CONSTANT(CR. LF. LF,

'Enter the de5tination address: " BS. BS. 0).

D_ADDR_ACKC.) BYTE CONSTANnCR, LF. LF.
'The nel&l d •• tination address i5 '.0).

STAT_ADORe.) BYTE CONSTANT (CR. LF. LF.
'Enter the station address:

S_ADDR~CKC*) BYTE CONSTANnCR. LF. LF.

'. BS. BS. 0).

'The nelll station add1'es'& is " 0).

ADDR_ACK_FIN<.) BYTE CDNSTANn'H'.CR.LF,LF.O),

SION_ON(*) BYTE CONSTANT(CR. LF. LF.
'(\/) RUPI-44 Secondaru Station', CR. LF.
, \1'. CR. LF. LF,
'1 - Set the Station Add1'e55',L.F.CR,
'2';" Set the De.tination Addras5',CR.LF.
'3 - go Online',CR,LF,
'4 - 00 Offline',CR.LF.
'5 - Return to terminal mode', CR. LF. LF,
, Ent.r option: _'. BS, ,0).

FINf.) BYTE CONSTANT(CR. LF, LF, 0),

HEX_TABLE (17} BYTE CONSTANT ('OI234567B9ABCDEF'. BEL),
MENU_CHAR (0) BYTE CONSTANTC '12345', BEll.

1* Flags and Bit. *1

18: 50: 53 09/19/83 PAGE 2

XP1IT _DUFFER_EMPTY
STOP _BIT

BIT
BIT
BIT
BIT.
BIT.

EXTERNAL.' 1* Semaphor. 'or RUPI aIOU Transmit Buffer *1
AT(147) REg. 1* Terminal paraml!tl!r • • 1

ECHO ATCOB4H) REO.
WAIT 1* Timeout flag *1
ERROR_FLAQ 1* E1'1'o1' me •• age Flillg *1

UBART_STATUS BYTE ATCOB01H) AUXILIARY,
USART_DATA BYTE AnOBOOH) AUXILIARY.
TIMER_CONTROL BYTE An 1003H> AUXILIARY.
TII'IER_O BYTE AT(10CCH) AUXILIARY.
TIMER_t BYTE AT(tOOtH) AUXILIARY.
TII1ER_2 BYTE AT(1002H) AUXIL.IARY;

1* Externil! Procedure. *1

20-18

PL/M-:U COMPILER Application Module: A51,j'nc/SDLC Protocol conv£lrter

6
7

8

•
10 2
11 I

12 2
13 2
14 I

IS 2
16 2
17

18 2

" 2

20 2
21 2
22 2
23 2

24 2
25 2
2. 2
27 2

POWER_ON_D: PROCEDURE EXTERNAL,
END POWER_ON_oJ

CLOSE: PROCEDURE EXTERNAL USING 2;
END CLOSE I

OPEN: PROCEDURE EXTERNAL USINQ 2,
END OPEN;

TRANSMIT: PROCEDURE (XMIT_BUFFERJ-ENQTH)
DECLARE XMIT _BUFFER_LENQTH BYTE,

END TRANSMITJ

TIMER_O_INT: PROCEDURE INTERRUPT 1 USING 11
WAITaO,

END TIMER_O_INTI

PROCEDURE USINQ OJ

DECLARE TEMP BYTE AUXILIARY.

BYTE EXTERNALJ

SMO""54H, 1* Ul1ng OPLL. NRZI. PFS. TIMER 1. i: 62.5 Kbps *1
TMOD=21Hi 1* Tim~T' 0 16 bit. Timer 1 auto reload *1
THl=OFFH;
TCON-40H,

TIMER_CONTROL ... 37H, 1* Initialize UBART's 51,j'stRm clock; 8254 *1
TIMER_0-04HI
TIMER O"OOHl
TIMER:CONTROL=77HI 1* Inithlin TxC. RxC *1

'* Definition flof dip switch tied to Pi. 0 to Pi. 6

B1 t R.te 3 2

300 on
1200 on on off
2400 on oH on
4800 on off off
9600 off on

19200 0" off

Stop bit 4

on
off

PaT" 1 tl,j'

oH on
odd on off
off off on
even off off

20-19

18: ~O: ~3 09/19/83 PAGE

PL/M-Sl COMPILER Application Module: A~ync/SDLC Protocol converter 19: 50: 53 09/19/83 PAGE 4

29 2
29 2

31 3

32 4
33 4
34 4
35 4

36 4
37 4
39 4
39 4

40 4
41 4
42 4
43 4

44 4
45 4
46 4
47 4

4B 4
49 4
50 4
51 4

52 4
53 4
54 4
,5 4
56 3

57 2
59 2
59 2
60 2

61 2
62 2
63 2

6. 2

66 2
67 2

69 2

Echo

on
oH

on
oH *1

TEMP=Pl AND 07HI 1* Read the dip "lIIitch to determine the bit rate *1
IF TEMP:>5

THEN TEMP=OI
DO CASE TEMPI

1* 300 *1
DO,

TIMER_l-S3HI
TIMER_la:20HI

ENOl

1* 1200 *1 DO.
TIMER_lc20HI
TIMER_l-05HI

END,

1* 2400 *1 001
TIMER_l=60HI
TIMER_l=02Hi

ENOl

1* 4900 *1 001
TIMER_l=30Hi
TIMER I=OIHl

ENDI -

1* 9600 *1 001
TIMER_I-65HI
TIMER 1=0;

ENOl -

1* 19200 *1 001

ENOl

TIMER_l=33Hi
TIMER_l=Oi

ENOl

USART_STATUS-OI 1* SoftwaT'e power-on reset for 8251A *1
USART _STATUS=O;
USART _STATUS=OI
U9ART _STATUSa.40Hi

TEMP-OAHI 1* Determin .. the parity and' of stop bits *1
TEMP-TEMP OR (PI AND 30H)I
IF STOP _BIT=1

THEN TEMP=TEMP OR OtOH.
ELSE TEMP=-TEMP OR 40Hi

USART STATUS=TEMPI 1* USART Mod .. Word *1
USART:STATUS. USART_CMoa27H.I*USART Command Word RTS. RxE. DTR. TxEN=I.1

STAO""'OFFHi

20-20

intJ
PL/I'1-:U COMP I L.ER 18: :50:,3 O'l/19/B3 PAGE

69 ~

70 ~

71 2

7~ ~

73 (2

74 :2

75 2

76

77 2
7B 2

79 2
BO 2

Bl 2

83 3
B4 3
85 3
86 3
87 3
BB 2

90

91 2

92 2

93 2
94 2
95 2

97 3
98 3
99 3

100 2

102 2

103

104 2

IN_PTR_T. OUT_PTR_T. IN_PTR_R. OUT_PTR_R = OJ I*Initialize FIFO PTRs*1

BUFFER_STATUS_T. BUFFER_STATUS_RD EMPTYl

CALL. POWER_DN_DJ

IPc 01HI 1* USART's RxRdlJ is the highest priority *1
1'fI Doth exh'rnal interrupts arlt Iltvel triggered*1

IE-93HI

ERROR_FLAG-O,

I '* Enable USART RIRdg. 51, and Timer 0 intltT'T'upts*'

END POWER_ONI

FIFO_R_IN: PROCEDURE (CHAR) USING Ii
DECLARE CHAR BYTE,

FIFO_R C IN_PTR_R)-CHARI
IN_PTR_R=INYTR_R+l1

IF BUFFER_STATUS_R-EMPTY
THEN 001

EA-Oi
BUFFER_STATUS_R-INUSE,
EXt-Ii 1* Enable USART's T.D interrupt *1
EA-1,

END.
ELSE IF «BUFFER_STATUS_R-INUSE) AND (IN_PTR_R=OUT 'yTR_R)

THEN BUFFER_STATUS_R-FULL.J

END FIFO..R_IN.

FIFO~_OUT: PROCEDURE BYTE USING 11

DECLARE CHAR BYTE

CHAR~FIFO..R(OUT.J'TR_R) ,
OUT _PTR_R-OUT _PTR_R+ll
IF OUT JTR_R-INJTR_R

THEN 001

AUXILIARY.!

EU"'O, 1* Shut off TxD int."rupt *'
BUFFER_STATUS_R-Ef1PTYI

ENOl
ELSE IF «BUFFER_STATUS_R-FULU AND (OUT_PTR_R-20"'IN_PTR_R))

THEN BUFFER_STATUS_R-INUSEI

RETURN CHARI

USART_XHIT_INT: PROCEDURE INTERRUPT 2 USINg 1.

20-21

PL./M-~1 COMPIL.ER Application Module: Async/SDL.C Protocol converter 18:50:53 09/19/83 PAGE 6

105 2

106 2

108 3

110 4
III 4
112 4

113 4
114 4
115 4

117 4
118 3

119 2

120

121 2

122 2

123 3
124 4
125 4
126 3
127 3

128

129 2

130 2

131 2
132 2
133 2

135 2

137 2

139 3
140 3
141 3

143 3
144 I

DECL.ARE

IF ...gRROR_FL.AG
THEN 001

BYTE CONSTANT;

IF MESSAOE(ERR_MESSAGE_INDEX)<:>O 1* Then continue to send the message *1
THEN DO;

USART _DATA = MESSAGE(ERR_MESSAGE_INDEX);
ERR_MESSAGE_I NDEX=ERR_MESSAGE_I NDEX+ 11

END;

EL.SE DOi 1* If: message is done l'eset ERROR_FLAG and st\ut off interrupt if FIFO is empty *1
ERROR_FLAG=Oi
IF BUFFER_STATUS_R ::c EMPTY

THEN EX1=O.
ENOl

END;

END USART _XMIT _INTi

SIU_RECV: PROCEDURE (LENGTH) PUBL.IC USING 11

DECLARE LENOTH BYTE,
I BYTE AUXILIARY;

DO 1=0 TO LENGTH-I;
DO WHILE BUFFER_STATUS_R=FULLJ 1* Ct\eck to see if fifo is full *1
ENOl
CALL FIFO_R_IN(SIU_RECV_BUFFER(1»i

END,

END S I U _RECV.

FIFO_T_IN: PROCEDURE (CHAR) USING 21

DECLARE CHAR BYTE;

FIFO_T(IN_PTR_T)=CHAR;
IN_PTR_T-IN_PTR_T+l1
IF CHAR=LF

THEN SEND _OAT AZ2SEND _OAT A+ 1 J

IF BUFFER_STATUS_T=EMPTY
THEN BUFFER_STATUS_T=INUSEI

ELSE IF «BUFFER_STATUS_T=INUSE) AND (IN_PTR_T+20"OUT _PTR_Tl)
THEN DO; 1* Stop reception using eTS *1

ENOl

USART _STATUS, USART _CMD=USART _CHO AND NOT C20H);
BUFFER_STATUS_T-FULLJ
IF SEND_DATA=O

THEN SEND_DATA""1i I*If the buffer is full and no LF
has been received then s&nd dat. *1

20-22

PL/f1-~l COMPILER Application Module; A5~nc/SDLC Protocol converter 18: ~O: ~3 09/19/83 PAGE

I," 2

146 2

147 2
148 2
149 2

1.1 3
152 3
153 3
154 3
155 3
156 2

1'8 3
1.9 3
160 3
161 2
163 2
164 I

165 2

166 2

167 2

169 2

171 2

173 2

174 2
175 2
176 2

177

178 2

179 2

180 2
181 2
182 2
183 2
184 3

FIFO_T _OUT: PROCEDURE BYTE

DECLARE CHAR BYTE

CHAR",FIFO_T(OUT _PTR_Tl.
OUT _PTR_T-OUT _PTR_T+1J

AUXILIARYI

IF OUT_PTR_TI:IIN_PTR_T 1* Then FIFO_T is .mpt~ *1
THEN DOl

EA"'O;
BUFFER_STATUS_T=EMPTYJ
SEND_DATA""Oj
EA=lJ

ENOl
ELSE IF «BUFFER_STATUS_T-FULL) AND fOUT_PTR_T-BO-IN_PTR_T»

THEN 001
USART _STATUS. USART _CMDaUSART _CMD OR 20H;
BUFFER_STATUS_T-INUSEi

ENOl
IF (CHAR-LF AND SEND DATA>O) THEN SEND_DATA-SEND_DATA-lJ
RETURN CHARI -

END FIFO_T _OUT,

ERROR: PROCEDURE (STATUS) USING 21

DECLARE STATUS BYTEI

IF <STATUS AND OBH)<>O
THEN ERR_MESSAGE_PTR:::z. PARITY,

ELSE IF (STATUS AND 10HJ<)O
THEN ERR_MESSAQE_PTR-. OVER_RUNJ

ELSE IF (STATUS AND 20H)()O
THEN ERR_MESSAGE_PTR"'. FRAME!

USART_STATUSc(USART_CMD OR 10H)J 1* Reset error flags on USART *1

ERR_MESSAGE_INDEX "" OJ
ERROR_FLAG=l i
EX1-!, 1* TUT'n

END ERRORI

LINK_DISC: PROCEDURE i

Til Interrupt *1

1* This pT'ocedure sends the message 'Unable to Get Online' to the terminal *1

DECLARE MESSAGE_PTR WORD
MESSAGE BASED
J BYTE
EX1_STORE BIT.

AUXILIARY.
MESSAGE_PTR (! J
AUX ILIARY.

BYTE CONSTANT.

EX1_STORE=EXll 1* Shut off aSllnc transmit interrupt *1
EX1 ... 01
MESSAGE_PTR". LX NKi
J=Ql
DO WHILE (MESSAGE(J)()O);

20-23

inter
PL/I1-81 CDI1PILER Applil::.tion l1odule: "'.\lnc/SDLt Protocol canve,.teT'

188 4
186 4
187 3
lea 3
189 3
190 2
191 1

192, 2
193 2

194 :3
198 3
196 2

197

198 2

199 3
200 3
201 2

202

203 2

204' :2

208 :2

206 3
207 3

209 3

210 2
211 2

213 2

214

215 2
216 2

217 2

218 3
219 3
220 3

DO WHILE (UBART_STATUS AND OlH)-O, 1* Wait fo1' TxRDY on UBART *'
END,

END,

USART J)ATA"'I'IESSAQE (..J) ;
~,,*11

EXt-EX1_STOREJ '* Resto" ••• unc: transmit interrupt *1
END LINKJ)IBC,

co: PROCEDURE (CHAR) USING 21
DECLARE CHAR BVTE,

DO WHILE (UBART_STATUs AND 01H) • 0,
END,
UBART J>ATAcCHARI

END CO,

CI: PROCEDURE BYTE USINO 2,

DO WHILE (USART _STATUS AND 02H) • 0,
END,
RETURN UBART J)ATA'

END el,

gET_HEX: PROCEDURE BYTE USINg 2,

DECLARE CHAR
I

LO: CHAM-CI,

BYTE
BVTE

DO 1-0 TO l~J

AUXILIARY,
AUXIL.IARV,

IF CHAR-HEX_TABLEII l
THEN OOTo LI,

END,

Lt: ~~L~.~:(fiEX_TABLE(II)),

THEN OoTD LO,

RETURN I,

END OET .JEX,

DUTPUT.)IEIlSAQE: PROCEDURE (I1ESSAOEJ'TRl USINO 2,
DECLARE I1ESSAOEJ'TR WORD.

I1ESSAOE BASED I1ESSAQEJ'TRCl) BYTE CONSTANT.
I BYTE AUXILIARY,

DO WHILE I1ESSAOEII) <> 0,
,CALL CD (I1ESSAOE Ill),
1-1+1,

20-24

18: 50: 53 09119/83 PAQE B

intJ
PL/I1-51 caMP ILER Application Module: As~nc:/9DLC Protocol convn,t.,.

221 3

222

223 2

224 2

225 2

226 2

227 3
229 3

230 3

231 2
232 2

234 3

235 4
236 4

237 4

239 4

239 4

240 4

241 4
242 4

243 4
244 4

245 4

246 4

247 4

249 4

249 4

ENOl

I"IENU: PROCEDURE USINg 2.

DECLARE 1 BYTE AUXILIARY,
AUXILIARY.
AUXILIARY;

CHAR BYTE
STATlON-.ADDRESS BYTE

START:
CALL DUTPUTJlEBSAQEL SlgN_DN),

110: CHAR-CI.

DO 1-0 TO 4.

END,

IF CHAR-MENU_CHAR (Il
THEN OOTO 1'111

111: CALL CDUtENU_CHARCI'),
IF 1=5

THEN OOTO MOl

DO CASE II

DO,

END,

DO,

CALL OUTPUTJ1ESSAGEL STAT_ADDR),

STATION_ADDRESS=(STATION_AODRESS OR GET _HEX) I

STAD=STATION_ADDRESS,

CALL OUTPUT_MESSAGEC, S_ADDR_ACK);

CALL CO (HEX_TABLE C SHR C STATION_ADDRESS. 4»);
CALL CO(HEX_TABLECOFH AND STATION_ADDRESS').

CALL OUTPUT_MESSAGEC. ADDR_ACK_FIN),

CALL OUTPUT_MESSAGE L DEBT _ADDR),

DESTINATION.-ADDRESS-SHLCGET_HEX, 4) I

DESTINATION_ADDRESS"'CDESTINATIONJtDDRESS OR GET_HEX),

CALL OUTPUT_MESSAGEC.D_ADDR_ACKJ;

20-25

IS: 50: 53 09/19/83 PAGE 9

PL/M-S1 COMPILER Applic.'t"ion Module: Async/SOLC Protocol conveT'ter 18: 50: 53 09/19/83 PAGE 10

2~0
251

2~2 4
253 4

254 4
255 4
256 4
257 4

258 4
259 4
260 4
261 4

262 3

263 3

264

265 2

266 2

267 2
269 2
269 2

271 2

273 3
274 3
275 3

277 3

278

279

280 2
291 2

283 4

294 4
28. 3
286 3
297 4

END.

DO,

ENOl

DOi

ENOl

CALL CO(HEX_TABLE(SHR(DESTINATION_ADDR~SS, 4»);
CALL CO(HEX_TABLE(OFH AND, DESTINATION_ADDRESS» I

CALL OUTPUT_MESSAGE(. ADDR_ACKJIN);

CALL OUTPUT _MESSAGE <. FIN);
CALL OPEN;

CALL OUTPUT_MESSAGEL FIN);
CALL CLOSE;

CALL OUTPUT_MESSAGEL FINli

END; 1* 00 CASE *1

END MENUi

USART_RECV_INT: PROCEDURE INTERRUPT 0 USING 21

DECLARE CHAR
STATUS

CHAR-USART_DATA,

BYTE
BYTE

STATUS USART_STATUS AND 38H;
IF STATUS<>O

THEN CALL ERROR (STATUS) ,
EL.SE IF CHAR=ESC

THEN CALL MENU;
ELSE DO,

AUXILIARY,
AUXILIARY;

CALL FIFO_T_IN(CHAR)J
IF ECHO""O

THEN CALL CO(CHAR),
END;

BEGIN:
CALL POWER_ONi

DO FOREVER,
IF SENO_DATA>O

THEN DOi
DO WHILE NOT<XMI,T_BUFFER_EMPTY); I*Wait until SIU_XMIT_BUFFer

is empty *1
END.
LENGTH. CHAR =1.
SlU_XMIT _BUFFER (0)=DESTINATION_ADDRESSI

\

DO WHILE «CHAR<>LF) AND (LENGTH<BUFFER_LENGTH)' AND (BUFFER_STATUS_T<>EMPTV»,

20-26

PL/M-~1 COMPILER Application Module: Async/SDLC Protocol converter 18: 50: 53 09/19/83 PAGE 11

288 4
289 4
290 4
291 4 END)

CHAR=>FIFO_T _OUTI
SIU_XMI T _BUFFER (LENGTH) =CHARJ
LENOTH""'LENOTH+ 1;

1* If! the line entered ;at the terminal is gre;ate'" than BUFFER_LENGTH char. send the
first BUFFER_LENQTH char, then send the restl since the sru buf!fer is only BUFFER_LENGTH bytes *1

292 3 Ll: 11110; 1* Use I to count the number Or unsucce~.pul

293 3 RETRY;
294 3

296 4
297 4
298 4
299 4
300 " 301 5

,302 4
303 4
304 "
306 5
307 5
308 " 309 4
310 4
311 3

312 2 END.
313 1 END USER'MODi

WARNINGS:

tT'amimi ts *1

RE5ULT=TRANSMIT(LENGTH); 1* Send the message *1
IF RESULT<>OATA_TRANSMITTED

THEN DOJ
1* Wait 50 msec for link to connect then try again *1

WAIT=li

ENOl

THOlll3CHI
TLO-OAFHl
TRO=11
DO WHILE WAITJ
END;
TRO""O)
IIZ}+1!
IF 1>100 THEN DO; 1* Wait 5 sec to get on line else

s.nd er ... or message to terminal
and tTIJ again */'

GOTD RETRY;
END;

CALL LINK DISCi
GOTD Lli -

END;

2 IS THE HIGHEST USED INTERRUPT

MODULE I NFORMAT ION:
CODE SIZE
CONSTANT SIZE
DIRECT VARIABLE SIZE
INDIRECT VARIABLE SIZE
BIT SIZE
BIT-ADDRESSABLE SIZE
AUXILIARY VARIABLE 91ZE
MAXIMUM STACK SIZE
REGISTER-BANKeS) USED:
713 LINES READ
o PROGRAM ERROR (5)

END OF PL/M-51 COMP ILATION

(STATIC+QVERLAYABLE)
'" 06B2H 1714D
::: 01CFH 463D

OOH+05H
OOH+OOH
02H+01H
OOH+OOH

= 021FH
= 0028H

o 1 2

00+ 5D
00+ OD
20+ 10
00+ 00

~430

400

20-27

PLlM-51 COMPILER RUPI-44 Prim."" Station

ISIS-II PL/M-51 Vi. 0
COMPILER INVOKED BY; : F2: PLM51 : F2: PNDTE. SRC

6

.TITLE ('RUPI-44 Primal'V Station ')

.DEBUQ
'REGISTERBANK(O)
MAIN.HOD: DO.

'* To .ave paper the RUPI registers are not listed. but this i$ the statement
u.ed to include them: .INCLUDE (:f2:REG44.DCL) *1

.NOLIST

DECLARE LIT
TRUE
FALSE
FOREVER

LITERALLY
LIT
LIT
LIT

'LITERALLY',
'OFFH',
'OOH',
'WHILE l'i

1* SOLe COMMANDS AND RESPONSES *1

DECLARE SNRM
UA
DISC
OM
FRMR
REG_DISC
UP
TEST
RR
RNR

LIT
LIT
LIT
LIT
LIT
LIT
LIT
LIT
LIT
LIT

'93H'.
'73H',
'53H'.
"lFH',
'97H',
'S3H ' ,
'33H'.
'QF3H',
'11H',
'ISH',

1* REMOTE STATION BUFFER STATUS *1

BUFFER_READY
BUFFER_NOT _READY

LIT
LIT

1* STATION STATES *1

'0',
'I',

DISCONNECT _5 LIT 'OOH I, 1* LOGICALLY DISCONNECTED STATE*I
GO_TO_DISC LIT 'OlH',
I_T_S LIT '02H', 1* INFORMATION TRANSFER STATE *1

1* PARAMETERS PASSED TO XMIT_I_T _6 *1
T _I_FRAME LIT 'DOH',
T _RR LIT 'OlH',
T_RNR LIT '02H',

1* SECONDARY STATION IDENTIFICATION *1

NUMBER_OF _STATIONS LIT '2',
SECONDARY _ADDRESSES < NUMBER_OF _STATIONS)

BYTE CONSTANT < 55H, 43H),

20-28

20; 47: 13 09/26/83 PAGE

PL/M-51 COMPILER RUPI-44 Primar~ Station 20: 47: 13 09/26/83 PAQE 2

8

9
10 2
11 2
12 2

13

I' 3 .. 3
I. 3
17 3

18

19 2
20 2
21 2
22 2
23 2

2.

25 2

2. 2

27 2
28 2

1* Remote St.tion Dliltabase *1

RsD(NUMBER_OF _STATIONS) STRUCTURE
(STATION_ADDRESS BYTE.

~~ATION_STATE ~~~~:,

NR BYTE.
BUFFER_STATUS BYTE. 1* Tt.e ~tatu~ of the secondary ,.t.tions buffer *1
INFO_lENGTH BYTE.
DATA(64) BYTE> AUXILIARY.

1* VAR IABlES *1
STATION_NUMBER BYTE
RECV_FIElD_lENQTH BYTE
WAIT BIT.

1* BUFFERS *1

AUXILIARY.
AUXILIARY.

SIU_XMIT _BUFFER (64) BYTE IDATA.
SIU_RECV_BUFFER(64) BYTE;·

POWER_ON: PROCEDURE ;

DECLARE I BYTE AUXILIARY;

Tas=. SIU_XMIT _BUFFER (0);

RBS=. SIU_RECV_BUFFER« 0);
RBL=64; 1* 64 Bilte receive buffer *1
RBE=l; 1* Enable the SIUis receiver *1

DO 10:; 0 TO NUMBER_OF _STATIONS-lJ

RSD(I). STAT ION_ADDRESS""SECONDARY _ADDRESSES (I);
RSD< I). STATION_STATE:::aDISCONNECT _SI
RSD(I). BUFFER_STATUS=BUFFER_NOT _READY;
RSDI I). INFO_LENGTH=O;

ENOl

SMD=54H; 1* Using DPlL, NRZI. PFS, TIMER 1. I! 62.5 Kbps *1
TMOO=21Hl
TH1=OFFH;
TCON=40H; 1* Use timer 0 for receive time out interrupt *1
IE=82H;

END POWER_ON;

XMIT: PROCEDURE (CONTROL_BYTE) i

DECLARE CONTROL_BYTE BYTE;

TCB=CONTROl_BYTE;
TBF=l;

20-29

PL/M-51 COMPILER RUF!I-44 PT'imarl,J Station 20: 47: 13 09/26/83 PAGE 3

29 2
30 3
31 3
32 ·2

33

34 2
35 2
36 I

37 2

38 2

39 3

40 3
41 3
42 3
43 3
44 4
45 4

47 4
48 3

49 2

50 2

51 2

52

53 2

54 2
55 2
56 2

57 3
59 3
60 3
61. 3
62 2

63

64 2

65

RTS-11
DO WHILE NOT 91 I
END,
81=01

END XMIT,

TIMER_O_INT: PROCEDURE INTERRUPT I USING I,
WAIT=DI

END TIMER_O~INT;

TIME,":"OUT: PROCEDURE BYTE, 1* Time_out returns tT'ue if there wasn't
a frame received within 200 mS£lc.
If thel'"e was a frame received within
200 msec then time_out retul'ns false. *1

DECLARE BYTE AUXILIARY;

DO 1=0 TO 31

END,

WAIT-I,
THO=3CHi
TLO=OAFHl
TRO=l, .

DO WHILE WAIT,
IF 51=1

THEN OOTO T _011
ENDI

RETURN TRUE,

51=0;
RETURN~ FALSE;

END TIME_OUT.

SEND_DISC: PROCEDURE;

TBL=O,
CALL XMIT<DISC);
IF TI ME_OUT=F ALSE

THEN IF RCB=UA OR RCB=DM
THEN 00;

RSD (STAT ION_NUMBER). BUFFER_ST ATUScBUFFER_NOT _READY I
RSO(STATION_NUMBER). STATION_STATE=DISCONNECT _8;

END SEND_DISCI

SEND_SNRt1: PROCEDURE;

TBL=O;

ENOl

20-30

PL/M-51 COMPILER RUPI-44 Primar~ Station 20: 47: 13 09/26/83 PAGE

66 CALL XMIT{SNRMl;
67 IF (TIME_OUT=FALSEl AND (RCB=UAl

THEN DO;
69 RSD(STATION NUMBERl. STATION STATE=I T Si
70 RSD(STATION:NUMBERl. NS=O; - - -
71 RSD(STATION_NUMBER l. NR=O;
72 END;
73 RBE=1;

74

75 2

76 2

78

79

80

81 2

83 3
84 3
85 3
86 2

88

89

90 2

91

92 2

93

95 3

97 4
98 4

CHECK_NS: PROCEDURE BYTE;

1* Check the Ns Field of the received frame. If Nr(P)=Ns(S) return true *1

IF (RSD(STATION_NUMBERl. NR=(SHR(RCB. 1) AND 07H) 1
THEN RETURN TRUE;
ELSE RETURN FALSE;

CHECK_NR: PROCEDURE BYTE;

1* Check the Nr i=ield of the received frame. If Ns(P)+1=Nr(S) then the frame
has beE'n ac!<nowledged. else if Ns(P)=Nr(S) then the frame has not been
acknowledged, else reset the 5econdar~ *1

IF «(RSD(STATIDN_NUMBERl.NS + Il AND Q7H) = SHR(RCB,5»
THEN DO;

RSD(STATIor~_f~UMI3ERl.NS=«RSD(STATION_NUM8ER) NS+ll AND 07Hl;
RSD(STATION_NUMBER) INFO_LENGTH=O;

END;
ELSE IF (RSD(STATIDN_NUMBER). NS (> SHR(RC13, 5»

THEN RETURN FALSE;

RETURN TRUE;

RECEIVE: PROCEDURE

DECLARE BYTE AUXILIARY;

RSD(STATION_NUMBER). BUFFER_STATUS=I3UFFER_READY;

1* If an RNR was received buffer_status will be changed In the supervisor~
frame decode section futher down in this procedure, anlj other response
means thE' remote stations buffer is ready *1

IF (RCB AND 01H)=O
THEN DOi 1* I Frame Received *1

IF (CHECK_NS==TRUE AND 80V=Q AND CHECK_NR=TRUEl
THEN DO;

RSO·(STATION_NUMBER) NR=((RSD(STATIDN_NUMBER). NR+l) AND Q7H);
REP=!;

20-31

PL/M-51 COMPILER

99
100

101 3
102 3
103 2

lOS 3

107 3

109 3

110 3
111 3

113 4
114 4
115 4
116 3
117 3

118 2

RUPI-44 PrimarlJ Stat"ion

RECV _F IELD_LENGTH=RFL-l;
ENOl

ELSE RSD(STATION_NUMBER}. STATION_STATE=QO_TO_DISCl
ENDl

ELSE IF (RCB AND 03H}=01H--.
THEN DOl 1* SupervisorlJ frame received *1

IF CHECK_NR=FALSE
THEN RSD{STATION_NUMI3ER). STATION_STATE=GO_TO_DISC;

ELSE IF «RCB AND OFH)=OSH) 1* then RNR *1

20: 47: 13 09/26/83 PAGE

THEN RSD<STATION_NUMBER). I3UFFER_STATUS=BUFFER_NOT _READY;

ELSE DO;

END;

1* Unnumbered -Frame or unknown -Frame received *1
IF RCB=FRMR

THEN DO; 1* If FRMR was received check Nr for an
acknowledged I -Frame *1

RCB=SIU_RECV_BUFFER < 1) j
I=CHECK_NRi

ENOl
RSD(STATION_NUMBER l. STATION_STATE=GO_TO_DISC;

END;

RBEc:l;

119 END RECEIVE;

120 2

121 2

122 2

124
125
126

127 3
128 3
129 3
130 3

132 3

133 3
134 3

136 3

DECLARE TEMP BYTE;

IF TEMP=T I FRAME
THE'" DO;- 1* Transmi t I -Frame *1

END;

1* Transfer the station buffer into internal ram *1

DO TEMP=O TO RSD<STATION_NUMBERl. INFO_LENGTH-li
SIU_XMIT _BUFFER (TEMP)=RSD (STATION_NUMBER). DATAnEMP) j
ENOl

1* Build the I frame control field *1

TEMP=(SHL<RSD<STATION NUMBER). NR, 5) OR SHL<RSD(STATION._NUMBER). NS. 1} OR 10H);
TBL=RSD (STATI ON_NUMBER). INFO_LENGTH)
CALL XMITCTEMP);
IF TIME_OUT=FALSE

THEN CALL RECEIVE;

ELSE DO; 1* Transmi t RR or RNR*I
IF TEMP=T RR

THEN TEMP=RRi
ELSE TEMP"'RNR;

20-32

PL/M-51 COMP ILER RUPI-44 Primary Station

137 3
138 3
139 3
140 3

142
143

144

145

146 3
147 3

149 3

150

152 3
153 3
154 3
155 2

157 3
158 4
159 4
160 4
161 3
162 3

163

164

165

166 3
167 3
168 3

TEMP=(SHL<RSO(STATION NUMBER). NR, 5) OR TEMP).
TBL=O; -
CALL XM IT (TEMP) ,
IF TIME_OUT=FALSE

THEN CALL RECEIVE,
END;

END XMIT _I_T _S,

BUFFER_TRANSFER: PROCEDURE,

DECLARE BYTE
EYTE

AUXILIARY.
AUXILIARY.

DO 1:0 TO NUMBER_OF _STATIONS-I.

ENOl

IF RSO (I). STATION_ADDRESS=SlU_RECV _BUFFER (0)

THEN GOTO T1;

Tl: IF I:::;:r-lUMBER_OF_STATIONS 1* If the addressed station does not exits.

THEN DO;
RBP=O;
RETURN,

END;
ELSE IF RSD(I). INFO LENGTH=O

THEN DO; -

then discard the data *1

RSO (I). INFO_LENGTH=RECV_FIELD_LENGTH.
DO J=1 TO RECV_FIELD_LENGTH;

RSD(I 1. DATA (J-1)=SIU_RECV_BUFFER (J);
END,
RBP=O.

END;

END BUFFER_TRANSFER,

BEGIN;
CALL POWER_ON;

DO FOREVER.

DO STATION_NUMBER:::;:O TO NUMBER_OF _STATIONS-li
STAD=RSD (STATION_NUMBER). STATION_ADDRESS,
IF RSO(STATION_NUMBER1. STATION_STATE'" DISCONNECT_S

THEN CALL SEND_SNRM.
170 ELSE IF RSD(STATION_NUMBER ,. STATION_STATE = GO_TO_DISC

THEN CALL SEND_DISCi
172 3

174

176

177

ELSE IF «RSO(STATION_NUMBERl. INFO_LENGTH>O) AND
(RSD(STATIDN NUMBER) BUFFER STATUS=BUFFER_READYll

THEN CALL XMIT_I_T_S<T_I_FRAME1.-
ELSE IF RBP=O

THEN CALL XMIT_I_T_S<T_RR);
ELSE CALL XMIT_I_T_S<T_RNR)i

IF RBP=1
THEN CALL BUFFER_TRANSFER)

PL/M-51 COMPILER RUPI-44 Primary Station

179 END.

180 END)

181 END MAIN$MODi

WARNINGS:
1 IS THE HIGHEST USED INTERRUPT

MODULE WFORMATION:
CODE SIZE
CONSTANT SIZE
DIRECT VARIABLE SIZE
INDIRECT VARIABLE SIZE
BIT SIZE
BIT-ADDRESSABLE SI ZE
AUXILIARY VARIABLE SIZE
MAXIMUM STACK.SIZE
REGISTER-BANK(S) USED:
456 LINES READ
o PROGRAM ERROR (S)

END OF PL/M-51 COMPILATION

(STATIC+OVERLAYABLE)
= 053DH 13410
= 0002H 20

40H+02H
40H+OOH
01H+OOH
OOH+OOH

0093H
'" 0019H

o I

640+ 20
640+ 00

10+ 00
OD+ OD

1470
250

20-33

20: 47: 13 09/26/83 PAGE 6

20: 47: 13 09/26/83 PAGE

A HIGH PERFORMANCE NETWORK
USING THE 8044

20.2.1 Introduction

This section describes the design of an SDLC data link
using the 8044 (RUPI) to implement a primary station
and a secondary station. The design was implemented
and tested. The following discussion assumes that the
reader understands the 8044 and SDLC. This section is
divided into two parts. First the data link design
example is discussed. Second the. software modules
used to implement the data link are described. To help
the reader understand the discussion of the software,
flow charts and software listings are displayed, in
Appendix A and Appendix B, respectively.

Application Description

This particular data link design example uses a two wire
half-duplex multidrop topology as shown in figure 20-4.
In an SDLC multidrop topology the primary station
communicates with each secondary station. The
secondary stations communicate only to the primary.
Because of this hierarchial architecture, the logical
topology for an SDLC multidrop is a star as shown in
figure 20-5. Although the physical topology of this data
link is multidrop, the easiest way to understand the
information flow is to think of the logical (star)
topology. The term data link in this case refers to the
logical communication pathways between the primary
station and the secondary stations. The data links are
Shown in figure 20-5 as two way arrows.

The application example uses dumb async terminals to
interface to the SDLC network. Each secondary station
has an async terminal connected to it. The secondary
stations are in effect protocol converters which allows
any async terminal to communicate with any other async
terminal on the network. The secondary stations use an
8044 with a UART to convert SDLC to async. Figure
20-6 displays a block diagram of the data link. The
primary station, controls the data link. In addition to
data link control the primary provides a higher level
layer which is a path control function or networking
layer. The primary serves as a message exchange or
switch. It receives information from one secondary sta­
tion and retransmits it to another secondary station.
Thus a virtualend to end connection is made between
any two, secondary stations on the network.

Three separate software modules were written for this
network. The first module is a Secondary Station Driver
(SSD) which provides an SDLC data link interface and
a user interface. This module is a general purpose driver
which requires application software to run it. The user
interface to the driver provides four functions: OPEN,

CLOSE, TRANSMIT, and SIU_RECV. Using these
four functions properly will allow any application soft­
ware to communicate over this SDLC data link without
knowing the details of SDLC. The secondary station
driver uses the 8044's AUTO mode.

The second module is an example of application soft­
ware which is linked to the secondary station driver.
This module drives the 8251A, buffers data, and inter­
faces with the secondary station driver's user interface.

The third module is a primary station, which is a stand-'
alone program (i.e., it is not linked to any other
module). The primary station uses the 8044's NON­
AUTO or FLEXIBLE mode. In addition to controll­
ing the data link it acts. as a message switch. Each time
a secondary station transmits a frame, it places the
destination address of the frame in the first byte of the
information or I field, When the primary station receives
a frame, it removes the first byte in the I field and
retransmits the frame to the secondary station' whose
address matches this byte.

This network provides two complete layers of the OSI
(Open Systems Interconnection) reference model: the
physical layer and the data link layer. The physical layer
implementation uses the RS-422 electrical interface. The
mechanical medium consists of ribbon cable and con­
nectors. The data link layer is defined by SDLC.
SDLC's use of acknowledgements and frame number­
ing guarantees that messages will be received in the same '
order in which they were sent. It also guarantees message·
integrity over the data link. However this network will
not guarantee secondary to secondary message delivery,
since there are acknowledgements between secondary
stations.

20.2.2 Hardware

The schematic of the hardware is given in figure 20-7.
The 8251A is used as an async communications con­
troller, in support of the 8044. TxRDY and RxRDY on
the 8251A are both tied to the two available external
interrupts of the 8044 since the secondary station driver
is totally interrupt driven. The 8044 buffers the data
and some variables in a 2016 (2K x 8 static RAM). The
8254 programmable interval timer is employed as a pro­
grammable baud rate generator and system clock driver
for the 8251A. The third output from the 8254 could
be used as an external baud rate generator for the 8044.
The 2732A shown in the diagram was not used since
the software for both the primary and secondary
stations used far less than the 4 Kbytes provided on the
8744. For the async interface, the standard RS-232

20-34

PRIMARY
STATION

SECONDARY SECONDARY SECONDARY
STATION STATION STATION

Figure 20-4. SOLC Multidrop Topology

mechanical and electrical interface was used. For the
SDLC channel, a standard two wire three state RS-422
driver is used. A DIP switch connected to one of the
available ports on the 8044 allows the baud rate,
parity, and stop bits to be changed on the async inter­
face. The primary station hardware does not use the
USART, 8254, nor the RS-232 drivers.

SECONDARY
STATION

20.2.3 SOLe Basic Repertoire

The SDLC commands and responses implemented in
the data link include the SD LC Basic Repertoire as
defined in the IBM SDLC General Information manual.
Table 20-3 shows the commands and responses that the
primary and the secondary station in this data link
design recognize and send.

SECONDARY
STATION

PRIMARY
STATION

SECONDARY SECONDARY
STATION STATION

Figure 20-5. SOLC Logical Topology

20-35

RUPI™_44

> a:z
i3Q
~~ .-__ ..L._--.
lrllii
III

Figure 20-6. Block Diagram of the Data Link
Application Example

20-36

I-

Figure 20-7. Schematic of Async/SDLC Secondary Station Protocol Converter

20-37

Table 20-3. Data Link Commands and
Responses Implemented for This Design

PRIMARY STATION

Responses Commands
Recognized Sent

Unnumbered UA SNRM
DM DISC

FRMR
'RD

Supervisory RR RR
RNR RNR

Information· I I

SECONDARY STATION

Commands Responses
Recognized Sent

Unnumbered SNRM UA
DISC DM

'TEST FRMR
'RD

'TEST

Supervisory RR RR
RNR RNR
REJ

Information I I

'not included in the SDLC Basic Repertoire

The term command specifically means all frames which
the primary station transmits and the secondary stations
receive. Response refers to frames which the secondary
stations transmit and the primary station receives.

Number of Outstanding Frames

This particular data link design only allows one out­
standing frame before it must receive an acknow­
ledgement. Immediate acknowledgement allows the
secondary station drivers to use the AUTO mode. In
addition, one outstanding frame uses less memory for
buffering, and the software becomes easier to manage.

~O.2.4 Secondary Station Driver using
AUTO Mode

The 8044 secondary station driver (SSD) was written
as a general purpose SDLC driver. It was written to be
linked to an application module. The application soft­
ware implements the actual application in addition to
interfacing to the SSD. The main application could be,
a printer or plotter, a medical intrument, or a terminal.
The SSD is independent of the main application, it just
provides the SDLC communications. Existing 8051

appli~ations could add high performance SDLC com­
munications capability by linking the SSD to the existing
software and providing additional software to be able
to communicate with the SSD.

. Data Link Interface and User Interface States

The SSD has two software interfaces: a data link inter­
face and a user interface as show in Figure 20-8. The
data link interface is the part of the software which con­
trols the SDLC communications. It handles link access,
command recognition/response, acknowledgements,
and error recovery. The user interface provides four
functions: OPEN, CLOSE, TRANSMIT, and
SIU _RECV. These are the only four functions which
the application software has to interface in order to com­
municate using SDLC. These four functions are com­
mon to many I/O drivers like floppy and hard disks,
keyboard/CRT, and async communication drivers.

The data link and the user interface each have their own
states. Each interface can only be in one state at any
time. The SSD uses the states of these two interfaces
to help synchronize the application module to the data
link. .

There are three states which the secondary station data
link interface can be in: Logical Disconnect State
(L_D_S). Frame Reject State (FRMR_S), and the
Information Transfer State (1_ T _S). The Logical
Disconnect State is when a station is physically con­
nected to the channel but either the primary or secon­
dary have not agreed to enter the Information Transfer
State. Both the primary and the secondary stations syn­
chronize to enter into the Information Transfer State.
Only when the secondary station is in the 1_ T _S is
it able to transfer data or information to the primary.
The Frame Reject State (FRMR_S) indicates that the
secondary station has lost software synchr()nization with
the primary or encountered some kind of error condi­
tion. When the secondary station is in the FRMR_S, the
primary station must reset the secondary to resynchronize.

The user Interface has two states, open or closed. In
the closed state the user program does not want to com­
municate over the network. The communications chan­
nel is closed and not available for use. The secondary
station tells the primary this by responding to all com­
mands with OM. The primary continues to poll the
secondary in case it wants to enter the 1_ T _S state.
When the user program begins communication over the
data link it goes into the open state. It does this by call­
ing the OPEN procedure. When the user interface is
in the open state it may transfer information to the
primary.

20-38

SECONDARY STATION

APPLICATION SECONDARY
MODULE STATION

DRIVER
MODULE

DATA
LINK

INTERFACE

SSD
INTERFACE USER DATA LINK

A 1\ INTERFACE STATES

V
1\ 1. LOGICAL
~

t
V USER STATES DISCONNECT

STATE
2. INFORMATION

SSD 1. OPEN TRANSFER
INTERFACE 2. CLOSED STATE
PROCEDURES 3. FRAME

REJECT
STATE

OPEN
CLOSE
TRANSMIT
SIU RECV

Figure 20-8. Secondary ,Station Software Modules

20-39

-' w z z «
J:
u
-' «
u
iii
>
J:
"-

Secondary Stations Commands, Responses and

State Transitions

Table 20-4 shows the commands which the secondary
station recognizes and the responses it generates. The
first row in table 20-4 displays commands the secon­
dary station recognizes and each column shows the
potential responses with respect to secondary station.
For example, if the secondary is in the Logical Discon­
nect State it will only respond with DM, unless it receives
a SNRM command and the user state is open. If this
is the case, then the response will be UA and the secon­
dary station will move into the 1_ T _So

Figure 20-9 shows the state diagram of the secondary
station. When power is first applied to the secondary
station, it goes into the Logical Disconnect State. As
mentioned above, the 1_ T _S is entered when the
secondary station receives a SNRM command and the
user state is open. The secondary responds with UA to'
let the primary know that it has accepted the SNRM
and is entering the 1_ T _So The 1_ T _S can go into
either the L_D _S or the FRMR_S. The 1_ T _S goes
into the L_D _S if the primary sends the secondary
DISC. The secondary has to respond with UA, and t~en
goes into the L_D _So If the user interface changes
from open to close state, then the secondary sends RD.
This causes the primary to send a DISC.

The FRMR_S is entered when a secondary station is
in the I-.-:.T_S and either one of the following
conditions occurs.

- A command can not be recognized by the
secondary station.

- There is a buffer overrun.

~ The Nr that was received from the primary
station is invalid.

The secondary station cannot leave the FRMR_S until
it receives a SNRM or a DISC command.

Software description of the SSD

To aid in following the descHption of the software, the
reader may either look at the' flow charts which are given
for each procedure, or read the PL/M-SJ listing pro­
vided in Appendix A.

A block diagram of the software structure of the SSD
is given in figure 20-10. A complete module is identified
by the dotted box, and a procedure is identified by the
solid box. Therefore the SIU _RECV procedure is not
included in the SSD module, it exists in the application
software. Two or more procedures connected by a solid
line means the procedure above calls the procedure
below. Transmit, Power_on_D, Close, and Open are
all called by the application software. Procedures
without any solid lines connected above are interrupt
procedures. The only interrupt procedure in the SSD
module is the SIU INT.

The entire SSD module is interrupt driven. Its design
allows the application program could handle real time
events or just dedicate more CPU time to the applica­
tion program. The SIU_INT is the only interrupt pro-

Table 20-4. Secondary Station Responses to Primary Station Commands,

Data Link Primary Station Commands
States I RR RNR SNRM DISC TEST

Information I I I
transfer state RR RR RR

RNR RNR RNR RNR
'RD RD RD RD RD
FRMR FRMR FRMR

UA UA
Test

Logical
discon(1ect state OM DM oM OM OM OM

UA
Frame FRMR FRMR FRMR FRMR
reject state UA UA

20-40


~~~ER ____________ ~ 

Figure 20-9. State Diagram of Secondary Station 

20-41 



------------- --------1 
r--

UJ 
l-
e( 
l-
I/) 

1-1 
0 
UJ 
Z 
Z 
0 

r-- 0 
I/) 

c 
1 

:!5 

'--

r--
UJ 
l-
e( 
l-
I/) 

1 
a: 
::E 
a: 
II. 

r- 1 
:!5 

L--

~ 

r--
r- UJ 

r--- C 
0 
0 
UJ 
C 

1 
C 

I- Z 
e( 

:!5 ::E 
1 ::E 

::> 0 
iii 0 

L---

r--
~ 

r--
r-

r-
L..- UJ 

I/) 
z 
0 
D.. 
I/) 
UJ 
a: 

1 
::E 
a: z 
I/) 

~ 

r-....... - a: 
::E 
a: 
II. 

1 
I-
:iii 
>< 
~ 

~ 

~ 

r--

C 
UJ a: 
UJ 
m 
::E 
::> z z 
::> 

1 
I-
:iii 
>< 

I....-.. 

I 
I 
I 
I 
I 
I 
I ----- ----------, 

i 
L ___ -- -; ----- ---1 

....--
> 
0 
UJ 

L- a: 
1 

::> 
iii 

I....-.. 

I 

.L 
I 
i 

r--
I-
:iii 
I/) 
z 
e( 
a: 
l-

L--

c 1 
z 
o 
a:1 

~ 
1.------- _______ _ 

Figure 20-10. Secondary Station Driver 

20-42 

UJ 
I/) 
o 
..J o 

z 
UJ 
D.. o 



cedure in the SSD. It is automatically entered when an 
SIU interrupt occurs. This particular interrupt can be 
the lowest priority interrupt in the system. 

SSD Initialization 

Upon reset the application software is entered first. The 
application software initializies its own variables then 
calls Power_On_D which is the SSD's initialization 
routine. The SSD's initialization sets up the transmit 
and receive data buffer pointers (TBS and RBS), the 
receive bl1ffer length (RBL), and loads the State 
variables. The STATION_STATE begins in the L_ 
D _S state, and the USER_STATE begins in the closed 
state. Finally Power _ On_D initializes XMIT_ 
BUFFER_EMPTY which is a bit flag. This flag serves 
as a semaphore between the SSD and the application 
software to indicate the status of the on chip transmit 
buffer. The SSD does not set the station address. It is 
the application software's responsibility to do this. After 
initialization, the SSD is ready to respond to all of the 
primary stations commands. Each time a frame is receiv­
ed with a matching station address and a good CRC, 
the SIU _INT procedure is entered. 

SIU_INT Procedure 

The first thing the SIU _INT procedure clears the serial 
interrupt _bit (SI) in the STS register. If the SIU_ 
INT procedure returns with this bit set, another SI in­
terrupt will occur. 

The SIU _INT procedure is branches three 
independent cases. The first case is entered' if the 
STATION_STATE is not in the I_T_S. If this is 
true, then the SIU is not in the AUTO mode, and the 
CPU will have to respond to the primary on its own. 
(Remember that the AUTO mode is entered when the 
STATION_STATE enters into I_T_S.) If the 
STATION_STATE is in the I_T_S, then either the 
SIU has just left the AUTO mode, or is still in the 
AUTO mode. This is the second and third case 
respectively. 

In the first case, if the STATION_STATE is not in 
the 1_ T _S, then it must be in either the L_D _S or 
the FRMR_S. In either case a separate procedure is 
called based on which state the station is in. The In_ 
Disconnect_State procedure sends to the primary a DM 
response, unless it received a SNRM command and the 
USER_STATE equals open. In that case the SIU sends 
an UA and enters into the 1_ T _S. The In_FRMR_ 
State procedure will send the primary the FRMR 
response unless it received either a DISC or an SNRM. 
If the primary's command was a DISC, then the secon­
dary will send an UA and enter into the L_D_S. If 
the primary's command was a SNRM, then the secon­
dary will send an UA, enter into the I_T_S, and clear 
NSNR register. 

For the second case, if the STATION_STATE is in 
the 1_ T _S but the SIU left the AUTO mode, then the 
CPU must determine why the AUTO mode was exited, 
and generate a response to the primary. There are four 
reasons for the SIU to automatically leave the AUTO 
mode. The following is a list of these reasons, and the 
responses given by the SSD based on each reason. 

I. The SIU has received a command field it does 
not recognize. 

Response: If the CPU recognizes the command, 
it generates the appropriate response. If neither 
the SIU nor the CPU recognize the command, then 
a FRMR response is sent. 

2. The SIU has received a Sequence Error Sent 
(SES=I in NSNR register). Nr(P) '* Ns(S)+I, and 
Nr(P) '* Ns(S). 

Response: Send FRMR. 

3. A buffer overrun has occured. BOV=1 in STS 
register. 

Response: Send FRMR. 

4. An I frame with data was received while RPB=I. 

Response: Go back into AUTO mode and send an 
AUTO mode response. 

In addition to the above reasons, there is one condi­
tion where the CPU forces the SIU out of the AUTO 
mode. This is discussed in the SSD's User Interface Pro­
cedures section in the CLOSED procedure description. 

Finally, case three is when the STATION_STATE is 
in the 1_ T _S and the AUTO mode. The CPU first 
looks at the TBF bit. If this bit is 0 then the interrupt 
may have been caused by a frame which was trans­
mitted and acknowledged. Therefore the XMIT_ 
BUFFER_EMPTY flag is set again indicating that the 
application software can transmit another frame. 

The other reason this section of code could be entered 
is if a valid I frame was received. When a good I frame 
is received the RBE bit equals O. This means that the 
receiver is disabled. If the primary were to poll the 8044 
while RBE=O, it would time out since no response would 
given. Time outs reduce network throughput. To 
improve network performance, the CPU first sets RBP, 
then sets RBE. Now when the primary polls the 8044 
an immediate RNR response is given. At this point the 
SSD calls the application software procedure SIU_RECV 
and passes the length of the data as a parameter. The 
SIU _RECV procedure reads the data out of the receive 
buffer then returns to the SSD module. Now that the 
receive information has been transfered, RBP can 
be cleared. 

20-43 

Command_Decode Procedure 

The Command_Decode procedure is called from the 
SIU_INT procedure when the STATION_STATE = 
1_ T S and the SIU left the AUTO mode as a result 



C-FIELD OF THE REJECTED COMMAND, AS RECEIVED 

j 
THIS STATION'S PRESENT Ns 

THIS STATION'S PRESENT Nr 

~ j 
r , 

o o W X y Z o o o o 

HIGH-ORDER 1 I 
RECEIVED DISAGREES WITH TRANSMITTED Ns -------------+-If-4---' 

BUFFER OVERRUN (I-FIELD IS TOO LONG) --------------1--+---1 

PROHIBITED I-FIELD RECEIVED 

INVALID OR NONIMPLEMENTED COMMAND --------------.1 
Figure 20_11_ Information Field of the FRMR Response, as Transmitted 

of not being able to recognize the receive control byte. 
Commands which the SIU AUTO mode does not 
recognize are handled here. The commands recogniz­
ed in this procedure are: SNRM, DISC, and TEST. Any 
pther command received will generate a Frame Reject 
with the nonimplemented command bit set in the third 
data byte of the FRMR frame. Any additional un­
numbered frame commands which the secondary sta­
tion is going to implement, should be implemented in 
this procedure. 

If a SNRM is received the command_decode procedure 
calls the SNRM_Response procedure. The SNRM_ 
Response procedure sets the STATION_STATE = I_ 
T _S, clears the NSNR register and responds with an 
UA frame. If a DISC is received, the command_decode 
procedure sets the STATION_STATE = L_D:...S, 
and responds with an UA frame. When a TEST frame 
is received, and there is no buffer overrun, the 
command_decode procedure responds with a TEST 
frame retransmitting the same data it received. However 
if a TEST frame is received and there is a buffer over­
run, then a TEST frame will be sent without any data, 
instead of a FRMR with the buffer overrun bit set. 

Frame Reject Procedures 

There are two procedures which handle the FRMR state: 
XMIT_FRMR and IN_FRMR_STATE. XMIT 
FRMR is entered when the secondary station first goes 
into the FRMR state. The frame reject response frame 
contains the FRMR response in the command field plus 
three additional data bytes in the I field. Figure 20-11 
displays the format for the three data byte in the I field 

of a FRMR response. The XMIT _FRMR procedure 
sets up the Frame Reject response frame based on the 
parameter REASON whiCh is passed to it. Each place 
in the SSD code that calls the XMIT _FRMR pro­
cedure, passes the REASON that this procedure was 
called, which in turn is communicated to the primary 
station. The XMIT _FRMR procedure uses three bytes 
of internal RAM which it initializes for the correct 
response. The TBS and TBL registers are then chang­
ed to point to the FRMR buffer so that when a response 
is sent these three bytes will be included in the I field. 

The IN_FRMR_STATE procedure is called by the 
SIU_INT procedure when the STATION_STATE 
already is in the FRMR state and a response is 

. required. The IN_FRMR_STATE procedure will only 
allow two commands to remove the secondary station 
from the FRMR state: SNRM and DISC. Any other 
command which is received while in the FRMR state 
will result a FRMR response frame. 

XMIT _UNNUMBERED Procedure 

This is a general purpose transmit procedure, used 
only in the FLEXIBLE mode, which sends unnumbered 
responses to the primary. It accepts the control byte as 
a parameter, and also expects the TBL register to be 
set before the procedure is called. This procedure waits 
until the frame has been transmitted before returning. 
If this procedure returned before the transmit interrupt 
was generated, the SIU _INT routine would be entered. 
The SIU _INT routine would not be able to distinguish 
this condition. 

20-44 



SSD's User Interface Procedures -- OPEN, CLOSE, 
TRANSMIT, SIU_RECV -- are discussed in the 
following section. 

The OPEN procedure is the simplest of all, it changes 
the USER_STATE to OPEN_S then returns. This lets 
the SSD know that the user wants to open the channel 
for communications. When the SSD receives a SNRM 
command, it checks the USER_STATE. If the 
USER_STATE is open, then the SSD will respond with 
an UA, and the STATION_STATE enters the 
I_T_S. 

The CLOSE procedure is also simple, it changes the 
USER_STATE to CLOSED_S and sets the AM bit 
to O. Note that when the CPU sets the AM bit to 0 it 
puts the SIU out of the AUTO mode. This event is asyn­
chronous to the events on the network. As a result an 
I frame can be lost. This is what can happen. 

1. AM is set to 0 by the CLOSE Procedure. 

2. An I frame is received and a SI interrupt occurs. 

3. The SIU_INT procedure enters case 2. 
(STATION_STATE = I_T_S, and AM = 0) 

4. Case 2 detects that the USER_STATE = 
CLOSED_S, sends a RD response and ignores 
the fact that an I frame was received. 

Therefore it is advised to never call the CLOSE pro­
cedure or take the SIU out of the AUTO mode when 
it is receiving I frames or an I frame will be lost. 

For both the TRANSMIT and SIU_RECV procedures, 
it is the application software's job to put data into the 
transmit buffer, and take data out of the receive buf­
fer. The SSD does not transfer data in or out of its 
transmit or receive buffers because it does not know 
what kind of buffering the application software is im­
plementing. What the SSD does do is notify the applica­
tion software when the transmit buffer is empty, 
XMIT _BUFFER_EMPTY = 1, and when the receive 
buffer is full. 

One of the functions that the SSD performs to syn­
chronize the application software to the SDLC data link. 
However some of the synchronization must also be done 
by the application software. Remember that the SSD 
does not want to hang up the application software 
waiting for some event to occur on the SDLC data link, 
therefore the SSD always returns to the application soft­
ware as soon as possible. 

For example, when the application software calls the 
OPEN procedure,the SSD returns immediately. The 
application software thinks that the SDLC channel is 
now open and it can·transmit. This is not the case. For 
the channel to be open, the SSD must receive a SNRM 
from the primary and respond with a UA. However, 
the SSD does not want to hang up the application soft­
ware waiting for a SNRM from the primary before 
returning from the OPEN procedure. When the 

TRANSMIT procedure is called, the SSD expects the 
STATION_STATE to be in the I_T_S. If it isn't, 
the SSD refuses to transmit the data. The TRANSMIT 
procedure first checks to see if the USER_STATE is 
open, if not the USER_ST ATE_CLOSED parameter 
is passed back to the application module. The next thing 
TRANSMIT checks is the STATION_STATE. If this 
is not open, then TRANSMIT passes back LINK_ 
DISCONNECTED. This means that the USER 
STATE is open, but the SSD hasn't received a SNRM 
commmand from the primary yet. Therefore, the 
application software should wait awhile and try again. 
Based on network performance, one knows the 
maximum amount of time it will take for a station to 
be polled. If the application software waits this length 
of time and tries again but still gets a LINK_ 
DISCONNECTED parameter passed back, higher level 
recovery must be implemented. 

Before loading the transmit buffer' and calling the 
TRANSMIT procedure, the application software must 
check to see that XMIT _BUFFER_EMPTY = 1. This 
flag tells the application software that it can write new 
data into the transmit buffer and call the TRANSMIT 
procedure. After the application software has verified 
that XMIT _BUFFER_EMPTY = 1, it fills the 
transmit buffer with the data and calls the TRANSMIT 
procedure passing the length of the buffer as a 
parameter. The TRANSMIT procedure checks for three 
reasons why it might not be able to transmit the frame. 
If any of these three reasons are true, the TRANSMIT 
procedure returns a parameter explaining why it 
couldn't send the frame. If the application software 
receives one of these responses, it must rectify the pro­
blem and try again. Assuming these three conditions 
are false, then the SSD clears XMIT _BUFFER_ 
EMPTY, attempts to send the data and returns the 
parameter DATA_TRANSMITTED. XMIT_ 
BUFFER_EMpTY will not be set to 1 again until the 
data has been transmitted and acknowledged. 

The SIU_RECV procedure must be incorporated 
into the application software module. When a vaild I 
frame is received by the SIU, it calls the SIU _RECV 
procedure and passes the length of the received data as 
a parameter. The SIU_RECV procedure must remove 
all of the data from the receive buffer before returning 
to the SHJ _INT procedure. 

Linking up to the SSD 

Figure 20-12 shows necessary parts to include in a 
PLlM-51 application program that will be linked to the} 
SSD module. RL51 is used to link and locate the SSD 
and application modules. The command line used to 
do this is: 

20-45 



RLSI SSD.obj,filename.obj,PLM51.LIB TO filename 
& RAMSIZE(192) 

$registerbank(O) 
user$mod: do; 
$include (reg44.dcl) 
declare 
lit 
buffer_length 
siu_xmit_buffer 
(buffer _length) 
siu_recv_buffer 
(buffer _length) 
xmit_buffer_empty 

1* external procedures *1 

literally 
lit 

byte 

,byte 
bit 

'literally' , 
'60', 

external idata, 

external, 
external; 

power_on_d: procedure 
end power_on_d; 

external; 

clos'e: procedure 
end close; 

open: procedure 
end open; 

transmit: procedure 

external 

external 

(xmit_buffer_length) byte' 
declare xmit_buffer_length 

end transmit; 

1* local procedures *1 

siu_recv: procedure (length) public 
declare length byte, 

using 1; 

using 1; 

external; 
byte; 

using 1; 

Figure 20-12. Applications Module Link 
Information 

PL/M-51 and Register Banks 

. The 8044 has four register banks. PLlM-51 assumes that 
an interrupt procedure never uses the same bank as the 
procedure it, interrupts. The USING 
attribute of a procedure, or the $REGISTERBANK 
control, can be used to ensure that. • 

The SSD module uses the $REGISTERBANK(l), 
attribute. Some procedures are modified with the 
USING attribute based on the register bank level of the 
calling procedure. 

20.2.5 APPLICATION MODULE; Async to 
SD1.C protocol converter 

One of the purposes of this application module is to 
demonstrate how to interface software to the SSD. 
Another purpose is to implement and test a pratical ap­
plication. This application software performs 110 with 
an async terminal through a USART, buffers data, and 
also performs I/O with the SSD. In addition, it allows 
the user on the async terminal to: set the station ad-

dress, set the destination address, and go online and 
offline. Setting the station address sets the byte in the 
ST AD register. The destination address is the first byte 
in the I field. Going online or offline results in either 
calling the OPEN or CLOSE procedure respectively. 

After the secondary station powers up, it enters the 
'terminal mode', which accepts data from the terminal. 
However, before any data is sent, the user must con­
figure the stij.~ion .. The station address and destination 
address must be set, and the station must be placed 
online. To configure the station the ESC character is 
entered at the terminal which puts the protocol converter 
into the 'configure mode'. Figure 20-13 shows the menu 
which appears on the terminal screen. 

( I) 8044 Secondary Station 
1 

1 - Set the Station Address 
2 - Set the Destination Address 
3 - Go Online 
4 - Go Offline 
5 - Return to terminal mode 

Enter option _ 

Figure 20-13. Menu for the Protocol 
Converter 

In the terminal mode data is buffered up in the secon­
dary station. A Line Feed character 'LF' tells the secon­
dary station to send an I frame. If more than 60 bytes 
are buffered in the secondary station when a 'LF' is 
received, the applications software packetizes the data 
into 60 bytes or less per frame. If a LF is entered when 
the station is' offline, an error message comes on the 
screen which says 'Unable to Get Online'. 

The secondary station also does error checking on the 
async interface for Parity; Framing Error, and Over­
run Error. If one of these errors are detected, an error 
message is displayed on the terminal screen. 

Buffering 

There are two separate buffers in the application 
module: a transmit buffer and a receive buffer. The 
transmit buffer receives data from the USART, and 
sends data to the SSD. The receive buffer receives data 
from the SSD, and transmits data to the USART. Each 
buffer is a 256 byte software FIFO. If the tranmsit FIFO 
becomes full and no 'LF' character is received, the 
secondary station automatically begins sending the data. 
In addition, the application module will shut off the 
terminal's transmitter using CTS until the FIFO has 
been partially emptied. A block diagram of the buffer­
ing for the protocol converter is given in Figure20-14. 

Application Module Software ' 

A block diagram of the application module software 
is given in Figure 20-15. There are three interrupt 

20-46 



MULTIDROP 

SOLe DATALINK 

W", 
I!:'" - .. 
==rh 
",I!: 

I!: I!: 
W W 
LL LL 
LL LL 
:> :> 
III III 
W I-
> :E iii en 
(.) z W < I!: I!: , I-

~ ::E 
< 
I!: .. en en ...J .. ~~ oW -;2 0 "'~ '" III III I!: 
W I-

A 
~ 

I 

en 
W I-
> 
III 

'" "' "' '" I- '" ::E W :E < > 
iii en I!: 
(.) Z ...J 
W < < 
I!: I!: --z 
6 t; I!: 

0 W LL 
LL l-

ii: >< ii: W 

(.) w", 
Z I!:M 
> -'" en ==rh < .. I!: 

~\ 
-

...J 

rO~1 < 
(.)~ 
Z::E 
> I!: 117 enw 
<I- ~~ 

J\~ 
J. ~' 

'\!J 

Figure 20-14. Block Diagram of Secondary Station 
Protocol Converter Illustrating Buffering 

20·47 



routines in this module: USART _RECV _INT, 
USART XMIT INT, and TIMER_O_INT. 
The fir~ two ~e for servicing the USART. 
TIMER OINT is used if the TRANSMIT pro­
cedure ;;;- the SSD is called and does not return 
with the DATA TRANSMITTED parameter. 
TIMER ° INT ~ploys Timer ° to wait a finite 
amount of time before tring to transmit again. The 
highest priority interrupt is USART _RECV _INT. The 
main program and all. the procedures it calls use register 
bank 0, USART_XMIT_INT and TIMER_O_INT 
and FIFO R OUT use bank 1, while USART_ 
RECV _HIT and all the procedures it calls use register 
bank 2. 

Power_On Procedure 

The Power_On procedure initializes all of the chips 
in the system including the 8044. The 8044 is initial­
ized to use the on-chip DPLL with NRZI coding, 
PreFrame Sync, and Timer 1 auto reload at a baud rate 
of 62.5 Kbps. The 8254 and the 8251A are initialized 
next based on the DIP switch values attached to port 
1 on the 8044. Variables and pointers are initialized, 
then the SSD's Power-Up Procedure, Power_On_ 
0, is called. Finally the interrupt system is enabled and 
the main program is entered. . 

Main Program 

The main program is a simple loop which waits for a 
frame transmit command. A frame transmit command 
is indicated when the variable SEND _DATA is greater 
than 0. The value of SEND _DATA equals the number 
of 'LF' characters in the transmit FIFO, hence it also 
indicates the number of frames pending transmission. 
Each time a frame is sent, SEND_DATA is 
decremented by one. Thus when SEND _OAT A is 
greater than 0, the main program falls down into the 
next loop which polls the XMIT _BUFFER_EMPTY 
bit. When XMIT BUFFER_EMPTY equals 1, the 
SIU XMIT BUFFER can be loaded. The first byte 
in th-;;-buffer ~loaded with the destination address while 
the rest of the buffer is loaded with the data. Bytes are 
removed from the transmit FIFO and placed into the 
SIU XMIT BUFFER until one of three things 
happen: 1. a'LF' character is read out of the FIFO, 
2. the number of bytes loaded equals the size of the 
SIU XMIT BUFFER, or 3. the transmit FIFO is 
empty. 

After the SIU XMIT BUFFER is filled, the SSD 
TRANSMIT p-;:;;cedureis called and the results from 
the procedure are checked. Any result other than 
OAT A TRANSMITTED will result in several retries 
within ;finite amount of time. If all the retries fail then 
the LINK_DISC procedure is called which 'sends a 
message to the terminal, 'Unable to Get Online'. 

USART _RECV _I NT Procedure 

When the 8251A receives a character, the RxRDY pin 

on the 8251A is activated, and this interrupt procedure 
is entered. The routine reads the USART status register 
to determine if there are any errors in the character 
received. If there are, the character is discarded and the 
ERROR procedure is called which prints the type of 
error on the screen. If there are no errors, the received 
character is checked to see if it's an ESC. If it is an ESC, 
the MENU procedure is called which allows the user 
to change the configuration. If neither one of these two 
conditions exits the received character is inserted 
into the transmit FIFO. The received character mayor 
may not be echoed back to the terminal based on the 
dip switch settings. 

Transmit FIFO 

The transmit FIFO consists of two procedures: FIFO_ 
T IN and FIFO T OUT. FIFO T IN inserts a 
character into the FIFO,and FIFO _ T _OUT removes 
a character from the FIFO. The FIFO itself is an array 
of 256 bytes called FIFO _ T. There are two pointers 
used as indexes in the array to address the characters: 
IN PTR T and OUT_PTR_T. IN_PTR_T 
pohrts to the location in the array which willstore the 
next byte of data inserted. OUT _PTR_ T points to 
the next byte of data removed from the array. Both 
IN PTR T and OUT _PTR_ T are declared as 
bytes. The FIFO _ T _ IN procedure receives a character 
from the USART RECV INT procedure and stores 
it in the array location pointed to by IN_PTR_ T, then 
INPTR T is incremented. Similarly, when FIFO_ 
T OUT ~ called by the main program, to load the 
sill XMIT BUFFER, the byte in the array pointed 
to by OUT _PTR_ T is read, then OUT _PTR_ T is 
incremented. Since IN_PTR_ T and OUT _PTR_ T 
are always incremented, they must be able to roll over 
when they hit the top of the 256 byte address space. This 
is done automatically by having both IN_PTR_ T and 
OUT PTR T declared as bytes. Each character 
insert~ into the transmit FIFO is tested to see if it's 
a LF. If it is a LF, the variable SEND_DATA is 
incremented which lets the main program know that it 
is time to send an I frame. Similarily each character 
removed from the FIFO is tested. SEND _DATA is 
decremented for every LF character removed from the 

. FIFO. 

IN PTR T and OUT _PTR_ T are also used to in­
dic-;rte ho;-many bytes are in the FIFO, and whether 
it is full or empty. When a character is placed into the 
FIFO and IN PTR T is incremented, the FIFO is full 
if IN_PTR=T eQuals OUT_PTR_T. When a 
character is read from the FIFO and OUT _PTR_ T 
is incremented, the FIFO is empty if OUT _PTR_ T 
equals IN_PTR_T. If the FIFO is neither full nor 
empty, then it is in use. A byte called BUFFER_ 
STATUS T is used to indicate one of these three con­
ditions. The application module uses the buffer status 
information to control the flow of data into and out 
of the FIFO.·When the transmit FIFO is empty, the 
main program must stop loading bytes into the SIU_ 

20-48 



" cS' 
c 
; 
I\) 

'? .... 
?' 
III 
0' 
" I\:l ~ 

0 c .;.. iii' ea Ie 
Dl 
3 
0 -c: 
1/1 
CD ... 
en 
0 
;:: 
::e 
I» .... 
CD 

r--------------------------------
I MAIN PROGRAM 
I --~--r~~ 

CO 

FIFO_T_OUT 

FIFO T IN 

TIMER_O_INT 

I 
I 
I 
I 
I 
I 
I 

i I FIFO_R_OUT I : 
-----------------------------------------------~ 

J:I 
c: 
'lJ -.... 

;0 

.;.. 
"" 



XMIT_BUFFER. Just before the FIFO is full, the 
async input must be shut off using CTS. Also if the 
FIFO is full and SEND_DATA=O, then SEND_ 
DATA must be incremented to automatically' send the 
data without a LF. 

Receive FIFO 

The receive FIFO operates in a similiar fashion as the 
transmit FIFO does. Data is inserted into the receive 
FIFO from the SIU_RECV procedure. The SIU_ 
RECV procedure is called by the SIU _INT procedure 
when a valid I frame is received. The SIU_RECV pro­
cedure meariy 'polls the receive FIFO status to see if it's 
full before transfering each byte from the SIU_ 
RECV _BUFFER into the receive FIFO. If the receive 
FIFO is full, the SIU _RECV procedure remains poll­
ing the FIFO status until it can insert the rest of the 
data. In the meantime, the SID.AUTO mode is respond­
ing to ail polls from the primary with a RNR supervisory 
frame. The USART _XMIT _INT interrupt procedure 
removes data from the receive FIFO and transmits it 
to the terminal. The USART transmit interrupt remains 
enabled while the receive FIFO has data in it. When 
the receive FIFO becomes empty, the USART transmit 
interrupt is disabled. 

20.2.6 PRIMARY STATION 

The primary station is responsible for controlling the 
data link. It issues commands to the secondary stations 
and receives responses from them. The primary station 
controls link access, link level error recovery, and the 
flow of information. Secondaries can only transmit 
when polled by the primary. 

Most primary stations are either micro/minicomputers, 
or front ehd processors to a mainframe computer. The 
example primary station in this design is standalone. 
It is possible for the 8044 to be used a~ an intelligent 
front end processor for a microprocessor, implemen­
ting the primary station functions. This latter type of 
design would extensively off-load link control functions 
for the microprocessor. The code listed in this paper 
can be used as the basis for this primary station design. 
Additional software is required to interface to the 
microprocessor. A l)ardware design example for inter­
facing the 8044 to a microprocessor can be found in 
the applications section of this handbook. 

The primary station must know the addresses of all the 
stations which will be on the network. The software for 
this primary needs to know this before it is compiled, 
however a more flexible system would down load these 
parameters. 

From the listing of the software it can be seen that the 
variable NUMBER_OF _STATIONS is a literal 
declaration, which is 2 in this design example. There 
were three stations tested on this data link, two secon­
daries and one primary. Following the NUMBER_ 
OF _STATIONS declaration is a table, loaded into the 

?O-fin 

object code file at compile time, which lists the addresses 
of each secondary station on the network. 

Remote Station Database 

The primary station keeps a record of each secondary 
station on the network. This is called the Remote 
Station Database (RSD). The RSD in this software is 
an array of structures, which can be found in the listing 
and also in Figure 20-16. Each RSD stores the necessary 
information about that secondary station. 

To add additional secondary stations to the nefwork, 
one simply adjusts the NUMBER_OF _STATIONS 
declaration, and adds the additional addresses to the 
SECONDARY_ADDRESSES table. The number of 
RSDs is automatically allocated at compile time, and 
the primary automatically polls each station whose 
address is in the SECONDARY _ADDRESSES table. 

Memory for the RSDs resides in external RAM. Based 
on memory requirements for each RSD, the maximum 
number of stations can be easily buffered in external 
RAM. (254 secondary stations is the maximum number 
SDLC will address on the data link; i.e. 8 bit address, 
FF H is the broadcast address, and 0 is the nul address. 
Each RSD uses 70 bytes of RAM. 70 x 254 = 17,780.) 

The station state, in the RSD structure, maintain the 
status of the secondary. If this byte indicates that the 
secondary is in the DISCONNECT _S, then the primary 
tries to put the station in the I_ T _S by sending a 
SNRM. If the response is an UA then the station state 
changes into the I_ T _So Any other frame received 
results in the station state remaining in the 
DISCONNECT_S. When the RSD indicates that the 
station state is in the I_ T _S, the primary will send 
either a I, RR, or RNR command, depending on the 
local and remote buffer status. When the station state 
equals GO_TO _DISC the primary will send a DISC 
command. If the response is an UA frame, the station 
state will change to DISCONNECT _S, else the station 
state will remain in GO_TO_DISC. The station state 
is set to GO_TO_DISC when one of the following 
responses occur: 

1. A receive buffer overrun in the primary. 

2. An I frame is received and Nr(P) i'Ns(S). 

3. An I frame or a Supervisory frame is received and 
Ns(P) + 1 i' Nr(S) and Ns(P) i'Nr(S). 

4. A FRMR response is received; 

5. An RD response is received. 

6. An unknown response is received. 

The send count (Ns) and receive count (Nr) are also 
maintained in the RSD. Each time an I frame is sent 
by the primary and acknowledged by the secondary, Ns 
is incremented. Nr is incremented each time a valid I 
frame is received. BUFFER_STATUS indicates the 
status of the secondary stations buffer. If a RR response 
is received, BUFFER_STATUS is set to BUFFER_ 



READY. If a RNR response is received, BUFFER_ 
STATUS is set to BUFFER_NOT_READY. 

Buffering 

The buffering for the primary station is as follows: 
within each RSD is a 64 byte array buffer which 
is initially empty. When the primary receives an I frame, 
it looks for a match between the first byte of the I frame 
and the addresses of the secondaries on the network. 
If a match exits, the primary places the data in the RSD 
buffer of the destination station. The INFO_LENGTH 
in the RSD indicates how many bytes are in the buffer. 
If INFO_LENGTH equals O,then the buffer is emp­
ty. The primary can buffer only one I frame per sta­
tion. If a second I frame is received while the address­
ed secondary's RSD buffer is full, the primary cannot 
receive any more I frames. At this point the primary 
continues to poll the secondaries using RNR supervisory 
frame. 

Primary Station Software 

A block diagram of the primary station software is 
shown in Figure 20-17 The primary station software con­
sists of a main program, one interrupt routine, and 

several procedures. The POWER_ON procedure 
begins by initializing the SIU's DMA and enabling the 
receiver. Then each RSD is initialized. The DPLL and 
the timers are set, and finally the TIMER 0 interrupt 
is enabled. 

The main program consists of an iterative do loop within 
a do forever loop. The iterative do loop polls each secon­
dary station once through the do loop. The variable 
STATION_NUMBER is the counter for the iterative 
do statement which is also used as an index to the 
array of RSD structures. The primary station issues one 
command and receives one response from every secon­
dary station each time through the loop. The first state­
ment in the loop loads the secondary station address, 
indexed by STATION_NUMBER into the array of the 
RSD structures. Now when the primary sends a com­
mand, it will have the secondary's address in the 
address field of the frame. The automatic address 
recognition feature is used by the primary to recognize 
the response from the secondary. 

Next the main program determines the secondary 
stations state. Based on this state, the primary knows 
what command to send. If the station is in the 
DISCONNECT_S, the primary calls the SNRM_P 

RSD:' STATION-ADDRESS 

STATION-STATE 

NS 

NR 

BUFFER-STATUS 

INFO-LENGTH 

DATA (0) 

DATA (63) 

Figure 20-16. Remote Station Database 
Structure 

20-51 



procedure to try and put the secondary in the I T 
S. If the station state is in the GO TO DISC ~at~ 
the DISC_P is called to try and PW: th~econdary i~ 
the L_D _So If the secondary is in neither one of the 
above two states, then it is in the ITS. When the 
secondary is in the 1_ T _S, the primary COuld send one 
of three commands: I, RR, or RNR. If the RSD's 
buffer has data in it, indicated by INFO LENGTH 
being greater than zero, and the ~condary's 
BUFFER_STATUS equals BUFFER_READY, then 
an I frame will be sent. Else if RPB=O, a RR super­
visory frame will be sent. If neither one of these cases 
is true, then an RNR will be sent. The last statement 
in the main program checks the RPB bit. If set to one, 
the BUFFER_TRANSFER procedure is called, which 
transfers the data from the SIU receive buffer to the 
appropriate RSD buffer. 

Receive Time Out 

Each time a frame is transmitted, the primary sets a 
receive time out timer; Timer O. If a response is not 
received within a certain time, the primary returns to 
the main program and continues polling the rest of the 
stations. The minimum length of time the primary 
should wait for a response can be calculated as the sum 
of the following parameters. 

1. propagation time to the secondary station 
2. clear-to-send time at the secondary station's DCE 

3. appropriate time for secondary station processing 
4. propagation time from the secondary station 
5. maximum frame length time 

The clear-to-send time and the propagation time are 
negligible for a local network at low bit rates. However, 
the turnaround time and the maximum frame length 
time are significant factors. Using the 8044 secondaries 
in the AUTO mode minimizes turnaround time. The 
maximum frame length time comes from the fact the 
8044 does not generate an interrupt from a received 
frame until it has been completely received, and the CRC 
is verified as correct. This means that the time-out is 
bit rate dependent. 

Ns and Nr check Procedures 

Each time an I frame or supervisory frame is received, 
the Nr field in the control byte must be checked. Since 
this data link only allows one outstanding frame, a valid 
Nr would satisfy either one of two equations; 
Ns(P) + 1 = Nr(S) the I frame previously sent by the 
primary is acknowledged, Ns(P) = Nr(S) the I frame 
previously sent is not acknowledged. If either one of 
these two cases is true, the CHECK_NR procedure 
returns a parameter of TRUE; otherwise a FALSE 
parameter is returned. If an acknowledgement is 
received, the Ns byte in the RSD structure is in­
cremented, and the Information buffer may be cleared. 
Otherwise the information buffer remains full. 

MAIN PROGRAM 

BUFFER TRANSFER 

Figure 20.17. Block Diagram of Primary 
Station Software Structure 

20-52 



When an I frame is received, the Ns field has to be 
checked also. If Nr(P) = Ns(S), then the procedure 
returns TRUE, otherwise a FALSE is returned. 

Receive Procedure 

The- receive procedure is called when a supervisory or 
information frame is sent, and a response is received 
before the time-out period. The RECEIVE procedure 
can be broken down into three parts. The first part is 
entered if an I frame is received. When an I frame is 
received, Ns, Nr and buffer overrun are checked. If 
there is a buffer overrun, or there is an error in either 
Ns or Nr, then the station state is set to GO_TO_ 
DISC. Otherwise Nr in the RSD is incremented, the 
receive field length is saved, and the RPB bit is set. By 
incrementing the Nr field, the I frame just received is 
acknowledged the next time the primary polls the secon­
dary with an I frame or a supervisory frame. 
Setting RBP protects the received data, and also tells 

the main program that there is data to transfer to o~e 
of the RSD buffers. 

If a supervisory frame is received, the Nr field is 
checked. If a FALSE is returned, then the station state 
is set to GO,,--TO_DISC. If the supervisory frame 
received was an RNR, buffer status is set to not ready. 
If the response is not an I frame, nor a supervisory 
frame, then it must be an Unnumbered frame. 

The only Unnumbered frames the primary recognizes 
are UA, DM, and FRMR. In any event, the station state 
is set to GO_TO_DISC. However if the frame 
received is a FRMR, Nr in the second data byte of the 
I field is checked to see if the secondary. acknowledged 
an I frameteceived before it went into the FRMR state. 
If this is not done and the secondary acknowledged an 
I frame which the primary did not recognize, the 
primary transmits, the I frame when the secondary 
returns to the 1_ T _So In this case, the secondary would 
receive duplicate I frames. 



APPENDIX A 
8044 SOFTWARE FLOWCHARTS 

20-54 



POWER-ON-D PROCEDURE 

USER-STATE = CLOSED-S 

STATION-STATION = DISCONNECT-S 

TBS = SIU-XMIT-BUFFER STARTING ADDRESS 

RBS = SIU-RECV-BUFFER STARTING ADDRESS 

RBL = BUFFER LENGTH 

ENABLE SIU RECEIVER: RBE = 1 

XMIT-BUFFER-EMPTY = 1 

RETURN 

CLOSE PROCEDURE 

AM = 0 

RETURN 

OPEN PROCEDURE 

USER STATE = OPEN_S 

RETURN 

Figure 20-18. Secondary Station Driver Flow Chart 



XMIT-UNNUMBERED PROCEDURE 

TRANSMIT PROCEDURE 

XMIT-BUFFER-EMPTY : 0 

TBl : XMIT-BUFFER-lENGTH 

I-FRAME-lENGTH: XMIT-BUFFER-lENGTH 

STATUS: DATA-TRANSMITTED 

STATUS: USER-STATE-ClOSE 

STATUS = 
LINK_DISCONNECTED 

STATUS: 
')VERFlOW 

Figure 20-20_ Secondary Station Driver Flow Chart 



XMIT-FRMR PROCEDURE 

FRMR-8UFFER (2) = REASON 

, 
STATION-STATE = FRMR-S 

y 

SEND FRMR 
FRAME 

N 

Figure 20-21_ Secondary Station Driver Flow Chart 

20-57 



IN-DISCONNECT-STATE PROCEDURE 

N 

SNRM-RESPONSE PROCEDURE 

Figure 20-22. Secondary Station Driver Flow Chart 

20-58 



IN·FRMR·STATE PROCEDURE 

y 

y 

Figure 20-24. Secondary Station Driver Flow Chart 



COMMAND DECODE PROCE!'URE 

RETURN 

Figure 20·25. Secondary Station Driver Flow Chart 



SIU·INT PROCEDURE 

N 

"1! 
cO· 
c: 
iil 
N 

Y 

C? 
N 
!» 
en 
CD 
() 
0 
::I 
Q. 
D! 

-< 
!a 
III g. 
::I 

C .. 
~ . .. 
"1! 
0" 
:Ii: 
0 :r 
D! 
:::. 

Y 

Y 

XMIT·BUFFER·EMPTY 
= 1 

N 

CALL COMMAND·DECODE 1-1 --------, 

CALL Xrd~~~~~~BERED • I 

CALL XMIT·FRMR 

CALL COMMAND DECODE 

:II 
C 
~ 
-i! 
j. 
~ 



MAIN PROGRAM 

LOAD DESTINATION 
ADDRESS IN FIRST 
BYTE OF SIU-XMIT 

BUFFER 

LOAD INFORMATION 
INTO SIU XMIT-BUFFER 

SIU BUFFER LENGTH 
OR FIFO-T EMPTY 

OUTPUT MESSAGE 
TO TERMINAL 

'UNABLE TO GET ON LINE' 

Y 

Figure 20-27. Application Module Flow Chart 

N 



USART-RECV-INT INTERRUPT PROCEDURE 

N 

Figure 20-28. Application Module Flow Chart 

20-63 



MENU PROCEDURE 

RETURN 

N 

OUTPUT MENU 
TO TERMINAL 

CALL OUTPUT-MESSAGE 
'ENTER THE STATION ADDRESS:_' 

CALL GET-HEX 
SHIFT TO LEFT BY FOUR 

N 

CALL OUTPUT-MESSAGE 
'ENTER THE DESTINATION ADDRESS:_' 

CALL GET-HEX 
SHIFT TO LEFT BY FOUR 

LOAD ADDRESS 
INTO DESTINATION-ADDRESS 

CALL OUT-MESSAGE 
'THE NEW DESTINATION ADDRESS IS:_' 

Figure 20- 29. Application Module Flow Chart 

20-64 



ERROR PROCEDURE 

y 

y 

RESET ERROR FLAGS ON USART 

Figure 20-30. Appli~ation Module Flow Chart 

20-65 



FIFO-T-OUT PROCEDURE 

\ 

Figure 20-31. Application Module Flow Chart 

20-66 



FIFO-T-IN PROCEDURE 

N 

RETURN 

Figure 20-32. Application Module Flow Chart 

20-67 



SIU·RECV PROCEDURE 

TRANSFER A BYTE FROM 
SIU·RECV·BUFFER 

INTO FIFO·R·IN 

Figure 20-33. Application Module Flow Chart 

20·68 



POWER ON 

I INITIALIZE SIU REGISTERS I 
I 

FOR EACH STATION 
INITIALIZE RSD RECORDS 

1. STATION-ADDRESS 
2. STATION-STATE = DISCONNECT 

3. BUFFER-STATE = BUFFER-NOT-READY 
4. INFO-LENGTH = 0 

I 
I RETURN I 

Figure 20-34. Primary Station Flow Charts 

20-69 



PRIMARY STATION MAIN PROGRAM 

CALL SEND-SNRM 

CALL SEND-DISC 

CALL XMIT ITS 
(T-I-FRAME) -

CALL XMIT-I-T-S 
(T-RR) 

CALL BUFFER-TRANSFER 

Y 

Y 

Y 

Y 

ADDRESS NEXT STATION 
SET STAD 

Figure 20-35_ Primary Station Flow Charts 

20-70 



SEND·SNRM PROCEDURE 

N 

SEND·DISC PROCEDURE 

N 

STATION·STATE = DISCONNECT·S 
BUFFER·STATUS = BUFFER·NOT·READY 

Figure 20-36. Primary Station Flow Charts 

20-71 



XMIT-I-T-S PROCEDURE 

CALL RECEIVE 

XMIT PROCEDURE 

y 

BUILD CONTROL 
FIELD USING EITHER 

I, RR, RNR 
AND NR AND/OR NS 

Figure 20- 38. Primary Station Flow Charts 

20-72 



BUFFER-TRANSFER PROCEDURE 

MOVE DATA FROM 
SIU-RECV-BUFFER 
TO RSD BUFFER 

Figure ~O-39_ Primary Station Flow Charts 

20-73 



CHECK.NS PROCEDURE 

Figure 20-40. Primary Station Flow Charts 

20-74 



~ 
.:... 
C11 

!l 
IC 
c: 
; 
N 
cp 

"" .... 
~ 
3· 
III 

-< 
!a a 
0· 
:= 
"T1 
0" 
::IE 
o 
':S" 
III 
::l. 
III STATION·STATE 

= GO-TO·DISC 

Y 

REMOTE BUFFER·STATUS = BUFFER·READY 

Y 

N 

~ 
I RETURN I 

Y 

STATION·STATE 
= GO·TO·DISC 

:II 
c: 
"tI -.... 
~ 

.i:. 
"" 





RUPI™ Data Sheets 21 





8044AH/8344AH 
HIGH PERFORMANCE 8-BIT MICROCONTROLLER 

WITH ON-CHIP SERIAL COMMUNICATION CENTER 

• 8044AH - CPu/SIU with Factory Mask Programmable ROM 
• 8344AH - An 8044AH used with External Program Memory 
• 8744H - An 8044AH with User Programmable/Erasable EPROM 

8051 MICROCONTROLLER CORE 

• Optimized for Real Time Control 
12 MHz Clock, Priority Interrupts, 
32 Programmable I/O lines, 
Two 16-bit Timer/Counters 

• Boolean Processor 

• 4K x 8 ROM, 192 x 8 RAM 

• 64K Accessible External Program 
Memory 

• 64K Accessible External Data Memory 

iii 4 Ils Multiply and Divide 

SERIAL INTERFACE UNIT (SIU) 

• Serial Communication Processor that 
Operates Concurrently to C.P.U. 

• 2.4 Mbps Maximum Data Rate 

• 375 Kbps using On-Chip Phase 
Locked Loop 

• Communication Software in Silicon: 
- Complete Data Link Functions 
- Automatic Station Responses 

• Operates as an SDLC Primary or 
Secondary Station 

The RUPI-44 family integrates a high performance 8-bit Microcontroller, the Intel 8051 Core, with an 
intelligent/high performance HOLC/SDLC serial communication controller, called the Serial Interface 
Unit (SIU). See Figure 1. This dual architecture allows complex control and high speed data communica­
tion functions to be realized cost effectively. 

Specifically, the 8044's Microcontroller features: 4K byte On-Chip program memory space; 32 I/O lines; 
two 16-bit timer/event counters; a 5-source; 2-level interrupt structure; a full duplex serial channel; a 
Boolean processor; and on-chip oscillator and clock circuitry. Standard TTL and most byte-oriented 
MCS-80 and MCS-85 peripherals can be used for I/O and memory expansion. 

The Serial Interface Unit (SIU) manages the interface to a high speed serial link. The SIU offloads the 
On-Chip 8051 Microcontroller of communication tasks, thereby freeing the CPU to concentrate on real 
time control tasks. 

The RUPI-44 family consists of the 8044,8744, and 8344. All three devices are identical except in respect 
of on-chip program memory. The 8044 contains 4K bytes of mask-programmable ROM. User program­
mable EPROM replaces ROM in the 8744. The 8344 addresses all program memory externally. 

The RUPI-44 deviCes are fabricated with Intel's reliable +5 volt, silicon-gate HMOSII technology and 
packaged in a 40-pin DIP. 

Contro 
Lines 

I 

8044's Dual Controller Architecture 

8051 2-port 
Micro- f---- - S.I.U_ 

controller RAM 

Figure 1. Dual Controller Architecture 

21-1 

HDLC/ 
SDLC 
port 



inter 8044AH/8344AH 

Table 1. RUPITM ·44 Family Pin Description 

VSS 
Circuit ground potential. 

vee 
+ 5V power supply during operation and program 
verification. 

PORTO 
Port 0 is an 8·bit open drain bidirectional 1/0 port. It is 
also the multiplexed low·order address and data bus 
when using external memory. It is used for data output 
during program verification. Port 0 can sink/source eight 
LS TIL loads. 

PORT 1 
Port 1 is an 8-bit quasi-bidirectional 1/0 port. It is used for 
the low-order address byte during program verification. 
Port 1 can sink/source four LS TIL loads. 

In non·loop mode two of the 1/0 lines serve alternate 
functions: 
-RTS (P1.6). Request·to·Send output. A low indicates 

that the RUPI-44 is ready to transmit. 
-CTS (P1.7) Clear·to·Send input. A low indicates that a 

receiving station is ready to receive. 

PORT 2 
Port 2 is an 8-bit quasi-bidirection 1/0 port. It also emits 
the high-order address byte when accessing external 
memory. It is used for the high-order address and the 
control signals during program verification. Port 2 can 
sink/source four LS TIL loads. 

PORT 3 
Port 3 is an 8-bit quasi-bidirectional 1/0 port. It also 
contains the interrupt, timer, serial port and RD and 
WR pins that are used by various options. The output 
latch corresponding to a secondary function must be pro­
grammed to a one (1) for that function to operate. Port 3 
can sink/source four LS TIL loads. 

In addition to 1/0, some of the pins also serve alternate 
functions as follows: 
-1/0 RxD (P3.0). In point·ta-point or multipoint Gonfigura· 

tions, this pin controls the direction of pin P3.1. Serves 
as Receive Data input in loop and diagnostic modes. 

-DATA TxD (P3.1) In point·ta-point or multipoint con· 
figuratiqns, this pin functions as data input/output. In 
loop mode, it serves as transmit pin. A '0' written to 
this pin enables diagnostic mode. 

-INTO.(P3.2). Interrupt 0 input or gate control input for 
counter O. 

-INT1 (P3.3). Interrupt 1 input or gate control input for 
counter 1. 

- TO(P3.4). Input to counter O. 

-SCLK T1 (P3.5). In addition to 1/0, this pin provides in· 
E!:!!. to counter 1 or serves as SCLK (serial clock) input. 

-WR (P3.6). The write control signal latches the data 
!We from Port 0 into the External Data Memory. 

-RD (P3.7). The read control Signal enables External 
Data Memory to Port O. 

RSTNPD 
A high level on this pin resets the RUPI-44. A small inter· 
nal pulldown resistor permits power·on reset using only a 
capacitor connected to VCC. If VPD is held within its 
spec while VCC drops below spec, VPD will provide 
standby power to the RAM. When VPD is low, the RAM's 
current is drawn from VCC. 

ALEIPROG 
Provides Address Latch Enable output used for latching 
the address into external memory during normal opera· 
tion. It is activitated every six oscillator periods except 
during an external data memory access. It also receives 
the program pulse input for programming the EPROM 
version. 

PSEN 
The Program Store Enable output is a control signal 
that enables the external Program Memory to the bus 
during external fetch operations. It is activated every 
six oscillator periods, except during external data 
memory accesses. Remains high during i"ternal pro· 
gram execution. 

EAlVPP 
When held at a TTL high level, the RUPI·44 executes in­
structions from the internal ROM when the PC is less 
than 4096. When held at a TIL low level, the RUPI·44 fet· 
ches all instructions from external Program Memory. 
The pin also receives the 21 V EPROM programming sup­
ply voltage on the 8744. 

XTAL 1 
Input to the oscillator's high gain amplifier. Required 
when a crystal is used. Connect to VSS when external 
source is used on XTAL 2. 

XTAL 2 
Output from the oscillator's amplifier. Input to the inter­
nal timing circuitry. A crystal or external source can be 
used. 

21-2 



8044AH/8344AH 

~{~~~ ~~~=~ z INTO~ M 

~ INn ...... I-

~ TO~ :5 
~ SClK ~---.... Co. 

~ WR~ 
~ Ri5...-

o~=}; ~:: ~ .. " -::l -'" a: 

i[ .. : 
_ eTS 

~}==}~ a:_'" 2 ___ ~ 

_ c 

c -" -

P1.0 vee 

.ul 2 PO.O AOO 

.'.2 [ 3 PO.' AD' 

., 1 I , PO.2 A02 

pul 5 PO.3 .1.03 

.'.5 I 6 PO.' AD. 

RTS .'.61 7 PO.5 ADS 

m .'.7 I 8 I PO.8 A06 

RST VPO 
8044 

PO.7 A07 

110 RXO .3.0 10 
834' 

31 J fi ·vpp 

DATA TXO .3.' [ 11 ALE PROG 
87U 

J PSEN INTO P3.2 [ 12 

INT1 .3.3 I 13 J P2.7 A'S 

TO P3.' I " P2.6 AU 

seLK T1 P3.5 I 15 P2.5 .1.13 

ViR P3.6 I 15 P2.4 A12 

AD P3.7 [ 11 All 
XTAL2 [ 18 P2.2 A'O 

XTAL11 " P2.1 "9 

VSS I 20 21 P2.0 A8 

'" 

Figure 2. Figure 3. Pin 
Logic Symbol Configuration 

FREQUENCE 
REFERENCE 

r-- ----------- ----1 
I OSCIL 4096 BYTES SIU DATA 192 BYTES 

LATOR PROGRAM OVAL PORT (SERIAL 

I & MEMORY. RAM INTERFACE I • I/O 
TIMING (8044 & 8744) UNIT) HOLCISDLC 

I I SERIAL 
COMMUNICATIONS 

I I 
I I 
I I 
I 64K-BYTE BUS TWO 16-BIT I 
I EXPANSION TIMER EVENT I CONTROL COUNTERS 

I 
INTERRUPTS 

--t- J 1----L 

INTERRUPTS CONTROL PARALLEL PORTS COUNTERS 
ADDRESS DATA BUS 

AND 1/0 PINS 

Figure 4. 
Block Diagram 

21-3 



8044AH/8344AH 

Functional Description 
'General 

The 8044 integrates the powerful 8051 microcontroller 
with an intelligent Serial Communication Controller 
to provide a single-chip solution which will efficiently 
implement a distributed processing or distributed 
control system. The' microcontroller is a self-sufficient 
unit containing ROM, RAM, ALU, and its own 
peripherals. The 8044's architecture and instruction 
set are identical to the 8051 's. The 8044 replaces the 
8051 's serial interface with an intelligent SDLCIHDLC 
Serial Interface Unit (SIU). 64 more bytes of RAM 
have been .added to the 8051 RAM array. The SIU 
can communicate at bit rates up to 2.4 M bps. The 
SIU works concurrently with the Microcontroller so 
that there is no throughput loss in either unit. Since 
the SIU possesses its own intelligence, the CPU is 
off-loaded from many of the communications tasks, 
thus dedicating more of its computing power to con­
trolling local peripherals or some external process. 

The Microcontroller 
The microcontroller is a stand-alone high­
performance single-chip computer intended for 
use in sophisticated real-time application such as 
instrumentation, industrial control, and intelligent 
computer peripherals. 

The major features of the microcontroller are: 
II 8-bit CPU 
II on-chip oscillator 
II 4K bytes of ROM 
II 192 bytes of RAM 
II 32 I/O lines 
II 64K address space for external Data Memory 
II 64K address space for external Program 

Memory 

II two fully programmable 16-bit timer/counters 
II a five-source interrupt structure with two priori­

ty levels 
II bit addressability for Boolean processing 
II 1 ,..sec instruction cycle time for 60% of the in­

structions 2 ,..sec instruction cycle time for 
40% of the ins~ructions 

II 4 ,..sec cycle time for 8 by 8 bit unsigned 
Multiply/Divide 

Internal Data Memory 
Functionally the Internal Data Memory is the most 
flexible of the address spaces. The Internal Data 
Memory space is subdivided into a 256-byte Internal 
Data RAM address space and a 128-byte Special 
Function Register address space as shown in Figure 
5. 

The Internal Data RAM address space is 0 to 255. 
Four 8-Register Banks occupy locations 0 through 31. 
The stack can be located anywhere in the Internal 
Data RAM address space. In addition, 128 bit loca­
tions of the on-chip RAM are accessible through 
Direct Addressing. These bits reside in Internal Data 
RAM at byte locations 32 through 47. Currently loca­
tions 0 through 191 of the Internal Data RAM address 
space are filled with on-chip RAM. 

21-4 

SPECIAL 
FUNCTION 
REGISTERS 
~ 

ill 255 248 F8H 
FOH 
E8H 
EOH 
D8H 

RAM DOH 

~ g~~ {om B8H 
BOH 
A8H 

~r?J~~~~- AOH 

ING ;::=-=12:::8 ::13~5_1:..:2::.J8 ii~ 
127 

ADDRESS- 1! 1=-_-=\ 
ABLE { 127 120 
BITS IN 

~J2~SBITS) {: :~ BANK: 

R7 . 
16 RO BANK 2 

REGISTERS - R7 
8 RO BANK 1 

::- R7 
o RO BANK 0 

A 

INTERNAL SPECIAL FUNCTION 
DATA RAM REGISTERS 

1 
ADDRESS­
ABLE 
BITS IN 
SFRs 
(128 BITS) 

DIRECT 
ADDRESS­
ING 

Figure 5_ Internal Data Memory 
Address Space 

Parallel 1/0 

The 8044 has 32 general-purpose 110 lines which 
are arranged into four groups of eight lines. Each 
group is called a port. Hence there are four ports; 
Port 0, Port 1, Port 2, and Port 3. Up to five lines 
from 1 and Port 2 are dedicated to supporting the 
serial channel when the SIU is invoked. Due to 
the nature of the serial port, two of PorI' 3's I/O 
lines (P3.0 and P3.1) do not have latched outputs. 
This is true whether or not the !serial channel is 
used. 



intel' 8044AH/8344AH ffi\[Q),¥,ffi\[Me;~ ~[M~(QJrRlU¥llffi\l~(QJ[M 

Table 1. MCS®-51 Instruction Set Description 

ARITHMETIC OPERATIONS LOGICAL OPERATIONS (CONTINUED) 

Mnemonic Description Byte Cyc Mnemonic Destination Byte Cyc 
ADD A,Rn Add register to ORL A,@Ri OR indirect RAM to 

Accumulator Accumulator 
ADD A,direct Add direct byte to ORL A,#data OR immediate data to 

Accumulator 2 Accumulator 2 
ADD A,@Ri Add indirect RAM to ORL direct,A OR Accumulatorto 

Accumulator direct byte 2 1-
ADD A,#data Add immediate data to ORL direct,#data OR immediate data to 

Accumulator 2 direct byte 3 2 
AD DC A,Rn Add register to XRL A,Rn Exclusive-OR register to 

Accumulator with Carry Accumulator 
AD DC A,direct Add direct byte to A XRL A,direct Exclusive-OR direct 

with Carry flag 2 byte to Accumulator 2 
AD DC A,@Ri Add indirect RAM to A XRL A,@Ri Exclusive-OR indirect 

with Carry flag RAMtoA 
ADDC A,#data Add immediate data to XRL A,#data Exclusive-OR 

A with Carry flag 2 immediate data to A 2 
SUBB A,Rn Subtract register from A XRL direct,A Exclusive-OR Accumu-

with Borrow lator to direct byte 2 
SUBB A,direct Subtract direct byte XRL direct,#data Exclusive-OR im-

from A with Borrow '2 1 mediate data to direct 3 2 
SUBB A,@Ri Subtract indirect RAM CLR A Clear Accumulator 1 1 

from A with Borrow CPL A Complement 
SUBB A,#data Subtract immed data Accumulator 

from A with Borrow 2 1 RL A Rotate Accumulator Left 
INC A Increment Accumulator 1 1 RLC A Rotate A Left through 
INC Rn I ncrement register 1 1 the Carry flag 
INC direct Increment direct byte 2 1 RR A Rotate Accumulator 
INC @Ri Increment indirect RAM 1 1 Right 
INC DPTR Increment Data Pointer 1 2 RRC A Rotate A Right through 
DEC A Decrement Accumulator 1 1 Carry flag 
DEC Rn Decrement register 1 1 SWAP A Swap nibbles within the 
DEC direct Decrement direct byte 2 1 Accumulator 
DEC @Ri Decrement indirect 

RAM 1 1 DATA TRANSFER 
MUL AB Multiply A & B 1 4 Mnemonic Description Byte Cyc 
DIV AB Divide A by B 1 4 MOV A,Rn Move register to 
DA A Decimal Adjust Accumulator 

Accumulator MOV A,direct Move direct byte to 

LOGICAL OPERATIONS Accumulator 2 
MOV A,@Ri Move indirect RAM to 

Mnemonic Destination Byte Cyc Accumulator 
ANL A,Rn AND register to MOV A,#data Mov immediate data to 

Accumulator Accumulator 2 
ANL A,direct AND direct byte to MOV RnA Move Accumulator to 

Accumulator 2 register 
ANL A,@Ri AND indirect RAM to MOV Rn,direct Move direct byte to 

Accumulator register 2 2 
ANL A,#data AND immediate data to MOV Rn,#data Move immediate data to 

Accumulator 2 register 2 
ANL direct,A AND Accumulator. to MOV direct,A Move Accumulator to 

direct byte 2 direct byte 2 
ANL direct,#data AND immediate data to MOV direct,Rn Move register to direct 

direct byte 3 2 byte 2 2 
ORL A,Rn OR register to MOV direct,direct Move direct byte to 

Accumulator direct 3 2 
ORL A,direct OR direct byte to MOV direct,@Ri Move indirect RAM to 

Accumulator 2 direct byte :2 2 



intel® 8044AH/8344AH ~[Q)~~IMiQ;~ ~1M~Q)[gJlMU~u~Q)1M 

Table 1. (Cont.) 

DATA TRANSFER (CONTINUED) 'PROGRAM AND MACHINE CONTROL 

Mnemonic Description Byte Cyc Mnemonic Description Byte Cyc 
MOV direct,#data Move immediate data to ACALL addr11 Absolute Subroutine 

direct byte 3 2 Call 2 2 
MOV @Ri.A Move Accumulator to LCALL addr16 Long Subroutine Call 3 2 

indirect RAM RET Return from subroutine 1 2 
Moil @Ri,direct Move direct byt!'! to R5TI Return from interrupt 1 2 

indirect RAM 2 2 AJMP addr11 Absolute Jump 2 2 
MOV @Ri,#data Move immediate data to LJMP addr16 Long Jump 3 2 

indirect RAM 2 SJMP rei Short Jump (relative 
MOV DPTR,#data16 Load Data Pointer with addr) 2 2 

a 16-bit constant 3 2 JMP @A+DPTR Jump indirect relative to 
MOVC A,@A+DPTR Move Code byte relative the DPTR 2 

to DPTR toA 2 JZ rei Jump if Accumulator is 
MOVC A,@A+PC Move Code byte relative Zero 2 2 

to PCtoA 2 JNZ rei Jump if Accumulator is 
MOVX A,@Ri Move External RAM (8- Not Zero 2 2 

bit addr) to A 2 JC rei Jump if Carry flag is set 2 2 
MOVX A,@DPTR Move External RAM (16- JNC rei Jump if No Carry flag 2 2 

bit addr) to A 2 JB bit,rel Jump if direct Bit set 3 2 
MOVX @Ri.A Move A to External RAM " JNB bit, rei Jump if direct Bit Not 

(8-bit addr) 2 set 3' 2 
MOVX @DPTR,A Move A to External RAM JBC bit,rel Jump if direct Bit is set 

(16-bit addr) 2 & Clear bit 3 2 
PUSH direct Push direct byte onto CJNE A,direct,rel Compare direct to A & 

stack 2 2 Jump if Not Equal 3 2 
POP direct Pop direct byte from CJNE A,#data,rel Comp, immed, to A & " 

stack 2 2 Jump if Not Equal 3 2 
XCH A,Rn Exchange register with CJNE Rn,#data,rel Comp, immed, to reg & 

Accumulator Jump if Not Equal 3 2 
XCH A,direct Exchange direct byte CJNE @Ri,#data,rel Comp,immed, to ind, & 

with Accumulator 2 Jump if Not Equal 3 2 
XCH A,@Ri Exchange indirect RAM DJNZ Rn,rel Decrement register & 

with A Jump if Not Zero 2 2 
XCHD A,@Ri Exchange low-order DJNZ direct,rel Decrement direct & 

Digit ind RAM w A Jump if Not Zero 3 2 
NOP No operation 1 1 

BOOLEAN VARIABLE MANIPULATION Notes on data addressing modes: 
Mnemonic Description Byte Cye Rn -Working register RO-R7 

CLR C Clear Carry flag 1 1 direct -128 internal RAM locations, any I/O port, 

CLR bit Clear direct bit 2 1 
control or status register 

@Ri -Indirect internal RAM location addressed by 
SETB C Set Carry flag 1 register RO or R1 
SETB bit Set direct Bit 2 #data -8-bit constant included in instruction 
CPL C Complement Carry flag 1 #data16 -16-bit constant included as bytes 2 & 3 of 
CPL bit Complement direct bit 2 instruction 
ANL C,bit AND direct bit to Carry bit -128 software flags, any I/O pin, control or 

flag 2 2 status bit 

ANL C,Ibit ' AND complement of Notes on program addressing modes: 
direct bit to Carry 2 2 addr16 -Destination address for LCALL & LJMP may 

ORL C/bit OR direct bit to Carry 
be anywhere within the 64-K program 
memory address space 

flag 2 2 Addr11 -Destination address for ACALL & AJMP will be 
ORL C,Ibit OR complement of within the same 2-K page of program 

direct bit to Carry 2 2 memory as the first byte of the following 
MOV C,Ibit Move direct bit to Carry instruction 

flag 2 rei -SJMP and all conditional jumps include an 8-
MOV bit,C Move Carry flag to bit offset byte, Range is +127-128 bytes relative 

direct bit 2 2 to first byte of the following instruction 

All mnemonics copyrighted © Intel Corporation 1979 



8044AH/8344AH 

Port 0 and Port 2 also have an alternate dedicated 
function. When placed in the external access 
mode, Port 0 and Port 2 become the means by 
which the 8044 communicates with external pro- . 
gram memory. Port 0 and Port 2 are also the 
means by which the 8044 communicates with ex­
ternal data memory. Peripherals can be memory 
mapped into the address space and controlled by 
the 8044. 

Timer/Counters 

The 8044 contains two 16-bit counters which can 
be used for measuring time intervals, measuring 
pulse widths, counting events, generating precise 
periodic interrupt requests, and 'clocking the serial 
communications. Internally the Timers are clocked 
at 1/12 of the crystal frequency, which is the instruc­
tion cycle time. Externally the counters can run up 
to 500 KHz. 

Interrupt System 
External events and the real·time driven on-chip 
peripherals require service by the CPU asyn­
chronous to the execution of any particular sec­
tion of code. To tie the asynchronous activities of 
these functions to normal program execution, a 
sophisticated multiple-source, two priority level, 
nested interrupt system is provided. Interrupt 
response latency ranges from 3 !-,sec to 7 !-,sec 
when using a 12 MHz clock. 

All five inlerrupt sources can be mapped into one 
of the two priority levels_ Each interrupt source 
can be enabled or disabled individually or the en­
tire interrupt system can be enabled or disabled. 
The five interrupt sources are: Serial Interface 
Unit, Timer 1, Timer 2, and two external interrupts. 
The external interrupts can be either level or edge 
triggered. 

Serial Interface Unit (SIU) 
The Serial Interface Unit is used for HOLC/SOLC 
communications. It handles Zero Bit Inser­
tionlDeletion, Flags, automatic address recogni-· 
tion, and a 16-bit cyclic redundancy check. In ad­
dition it implements in hardware a subset of the 
SOLC protocol such that it responds to many 
SDLC frames without CPU intervention. In certain 
applications it is advantageous to have the CPU 
control the reception or transmission of every 
single frame. For this reason the SIU has two modes 
of operation: "AUTO" and "FLEXIBLE" (or "N,ON­
AUTO"). It is in the AUTO mode that the SIU 
responds to SOLC frames without CPU intervention; 
whereas, in the FLEXIBLE mode the reception or 
transmission of every single frame will be under CPU 
control. 

There are three control registers and eight parameter 
registers that are used to operate the serial inter­
face. These registers are shown in Figure 5 and 
Figure 6. The control registers set the modes of 
operation and provide status information. The eight 
parameter registers buffer the station address, receive 
and transmit control bytes, and point to the on-chip 
transmit and receive buffers. 

Oata to be received or transmitted by the SIU must 
be buffered anywhere within the 192 bytes of on­
chip RAM. Transmit and receive buffers are not 
allowed to "wrap around" in RAM; a "buffer end" 
is generated after address 191 is reached. 

AUTO Mode 

In the AUTO mode the SIU implements in hard­
ware a subset of the SOLC protocol such that it 
responds to many SOLC frames without CPU in­
tervention. All AUTO mode responses to the 
primary station will conform to IBM's SOLC defini­
tion. The advantages of the AUTO mode are that 
less software is required to implement a secondary 
station, and the hardware generated response to polls 
is much faster than doing it in softwqre. However, the 
Auto mode can not be used at a primary station. 

To transmit in the AUTO mode the CPU must load 
the Transmit Information Buffer, Transmit Buffer 
Start register, Transmit Buffer Length register, 
and set the Transmit Buffer Full bit. The SIU 
automatically responds to a poll by transmitting 
an information frame with the PIF bit in the con­
trol field set. When the SIU receives a positive 
acknowledgement from the primary station, it 
automatically increments the Ns field in the NSNR 
register and interrupts the CPU. A negative acknow­
ledgement would cause the SIU to retransmit the 
frame. 

To receive in the AUTO mode, the CPU loads the 
Receive Buffer Start register, the Receive Buffer 
Length register, clears the Receive Buffer Protect 
bit, and sets the Receive Buffer Empty bit. If the 
SIU is polled in this state, and the TBF bit in­
dicates that the Transmit Buffer is empty, an 
automatic RR response will be generated. When a 
valid information frame is received the SIU will 
automatically. increment Nr in the NSNR register 

. and interrupt the CPU. 

While in the AUTO mode the SIU can recognize 
and respond to the following commands without 
CPU intervention: I (Information), RR (Receive 
Ready), RNR (Receive Not Ready), REJ (Reject), 
and UP (Unnumbered Poll). The SIU can generate 



REGISTER NAMES 

B REGISTER 
ACCUMULATOR 
'THREE BYTE FIFO 

TRANSMIT BUFFER START 
TRANSMIT BUFFER LENGTH 
TRANSMIT CONTROL BYTE 
, SIU STATE COUNTER 
SEND COUNT RECEIVE COUNT 
PROGRAM STATUS WORD 
'DMA COUNT 
STATION ADDRESS 
RECEIVE FIELD LENGTH 
RECEIVE BUFFER START 
RECEIVE BUFFER LENGTH 
RECEIVE CONTROL BYTE 
SERIAL MODE 
STATUS REGISTER 
INTERRUPT PRIORITY CONTROL 
PORT 3 
INTERRUPT ENABLE CONTROL 
PORT 2 
PORT 1 
TIMER HIGH 1 
TIMER HIGH 0 
TIMER LOW 1 
TIMER LOW 0 
TIMER MODE 
TIMER CONTROL 
DATA POINTER HIGH 
DATA POINTER LOW 
STACK POINTER 
PORT 0 

SYMBOLIC 
ADDRESS 

8044AH/8344AH 

BIT ADDRESS 

~ ~--~-------

B 
ACC 
FIFO 
FIFO 
FIFO 
TBS 
TBL 
TCB 
SIUST 
NSNR 
PSW 
DMA CNT 
STAD 
RFL 
RBS 
RBL 
RCB 
SMD 
STS 
IP 
P3 
IE 
P2 
PI 
THI 
THO 
TL1 
TLO 
TMOD 
TCON 
DPH 
DPL 
SP 
PO 

247 through 240 
231 through 224 

223 tnrougn 216 
215 lhrough 208 

207 lh,ouoh 200 
191 tnrougn 184 
183 Ihrough 176 
175 through 168 
167 through 160 
151 through 144 

143 li1r0uoh 136 

135 through 128 

BYTE 
ADDRESS 

240 (FOH) 
224 (EOH) 
223 (DFH) 
222 (DEH) 
221 (DOH) 
220 (DCH) 
219 (DBH) 
218 (DAH) 
217 (D9H) 
216 (D8H) 
208 (DOH) 
207 (CFH) 
206 (CEH) 
205 (CDH) 
204 (CCH) 
203 (CBH) 
202 (CAH) 
201 (C9H) 
200 (C8H) 
184 (B8H) 
176 (BOH) 
168 (A8H) 
160 (AOH) 
144 (90H) 
141 (8DH) 
140 (8CH) 
139 (8BH) 
138 (8AH) 
137 (89H) 
136 (88H) 
131 (83H) 
130 (82H) 
129 (81H) 
128 (80H) 

SFR's CONTAINING 
DIRECT ADDRESSABLE BITS 

·ICE Support Hardware registers. Under normal operating conditions there 
is no need for the CPU to access these registers. ' 

SERIAL MODE REGISTER (SMD) 

STATUS REGISTER (STS) 

SEND COUNT RECEIVE 

Figure 5. Mapping of Special Function registers 

SCM2 SCMl SCMO NRZI I LOOP I PFS I NB 

I I I 

TBF RBE RTS SI BOV OPB AM 

I I I 

I NFCS I 
~ 

RBP 
L-

NO FRAME CHECK SEQUENCE 
NON-BUFFERED 
PRE-FRAME l::YNC 
LOOP 
NON RETURN TO ZERO INVERTED 
SELECT CLOCK MODE 

RECEIVE BUFFER PROTECT 
AUTO MODEJADDRESSED MODE 
OPTIONAL POLL BIT 
RECEIVE INFORMATION BUFFER OVERRUN 
SERIAL INTERFACE UNIT INTERRUPT 
REQUESTTO SEND 
RECEIVE BUFFER EMPTY 

TRANSMIT BUFFER FULL 

COUNT REGISTER (NSNR) .. ="--..=--.=:;;-r-;=,,--..=--. ... ,,"O.-;;;"',,"'",, 
SEQUENCE ERROR RECEIVED 

'---'----'----- RECEIVE SEQUENCE COUNTER 
SEQUENCE ERROR SEND 
SEND SEQUENCE COUNTER 

Figure 6. Serial Interface Unit Control registers 



inter 8044AH/8344AH 

the following responses without CPU interven­
tion: I (Information), RR (Receive Ready), and RNR 
(Receive Not Ready). 

When the Receive Buffer Empty bit (RBE) in­
dicates that the Receive Buffer is empty, the 
receiver is enabled, and when the RBE bit in­
dicates that the Receive Buffer is full, the receiver 
is disabled. Assuming that the Receive Buffer is 
empty, the SIU will respond to a poll with an I 
frame if the Transmit Buffer is full. If the Transmit 
Buffer is empty, the SIU wilJ respond to a poll 
with a RR command if the Receive Buffer Protect 
bit (RBP) is cleared, or an RNR command if RBP is 
set. 

FLEXIBLE (or NON-AUTO) Mode 

In the FLEXIBLE mode all communications are under 
control of the CPU. It is the CPU's task to encode 
and decode control fields, manage 
acknowledgements, and adhere to the requirements 
of the HOLC/SOLC protocols. The 8044 can be used 
as a primary or a secondary station in this mode. 

To receive a frame in the FLEXIBLE mode, the CPU 
must load the Receive Buffer Start register, the 
Receive Buffer Length register, clear the Receive Buf­
fer Protect bit, and set the Receive Buffer Empty bit. 
If a valid opening flag is received and the address 
field matches the byte in the Station Address register 
or the address field contains a broadcast address, the 
8044 loads the control field in the receive control byte 
register, and loads the I field in the receive buffer. 
If there is no CRC error, the SIU interrupts the CPU, 
indicating a frame has just been received. If there is 
a CRC error, no interrupt occurs. The Receive Field 
Length register provides the number of bytes that 
were received in the information field. 

To transmit a frame, the CPU must load the transmit 
information buffer, the Transmit Buffer Start register, 
the Transmit Buffer Length register; the Transmit 
Control Byte, and set the TBF and the RFS bit. The 
SIU, unsolicited by an HOLC/SOLC frame, will 
transmit the entire information frame, and interrupt 
the CPU, indicating the completion of transmission. 
For supervisory frames or unnumbered frames, the 
transmit buffer length would be O. 

eRe 

The FCS register is initially set to all 1 's prior to 
calculating the FCS field. The SIU will not interrupt 
the CPU if a CRC error occurs (in both AUTO 'and 
FLEXIBLE modes). The CRC error is cleared upon 
receiving of an opening flag. 

Frame Format Options 

In addition to the standard SOLC frame format, 
the 8044 will support the frames displayed in 
Figure 7. The standard SOLC frame is shown at 
the top of this figure. For the remaining frames 

, the information field will incorporate the control 
or address bytes and the frame check sequences; 
therefore these fields will be stored in the 
Transmit and Receive buffers. For example, in the 
non-buffered mode the third byte is treated as the 
beginning of the information field. In the non­
addressed mode, the information field begins after 
the opening flag. The mode bits to.set the frame 
format options are found in the Serial Mode 
register and the Status register. 

21-9 

EXTENDED ADDRESSING 

To realize an extended control field or an extended 
address field using the HOLC protocol, the FLEXI­
BLE mode must be used. For an extended control 
field, the SIU is programmed to be in the non-buffered 
mode. The extended control field will be the first and 
second bytes in the Receive and Transmit Buffers. 
For extended addressing the SIU is placed in the non­
addressed mode. In this mode the CPU must imple­
ment the address rAcognition for received frames. The 
addressing field will be the initial bytes in the Transmit 
and Receive buffers followed by the control field. 

The SIU can transmit and receive only frames which 
are multiples of 8 bits. For frames received with other 
than 8-bit multiples, a CRC error will cause the SIU 
to reject the frame. 

SDLe Loop Networks 
The SIU can be used in a AOLC loop as a secondary 
or primary station. When the SIU is placed in the Loop 
mode it receives the data on pin 10 and transmits the 
data one bit time delayed on pin 11. It can also 
recognize the Go ahead signal and change it into a 
flag when it is ready to transmit. As a secondary sta­
tion the SIU can be used in the AUTO or FLEXIBLE 
modes. As a primary station the FLEXIBLE mode is 
used; however, additional hardware is required for 
generating the Go Ahead bit pattern. In the Loop 
mode the maximum data rate is 1 Mbps clocked or 
375 Kbps self-clocked. 

SDLe Multidrop Networks 
The SIU can be used in a SOLC non-loop configura­
tion as a secondary or primary station. When the SIU 
is placed in the non-loop mod~, data is received and 
transmitted on pin 11, and pin 10 drives a tri-state 
buffer. In non-loop mode, modem interface pins, RTS 
and CTS, become available. 



8044AH/8344AH 

FRAME OPTION 

Siandard SOLC 
NON·AUTO Mod. 

Standard SOLC 
AUTO Mod. 

Non·Bull.rod Mod. 
NON·AUTO Mod. 

Non·Addr .... d Mod. 
NON·AUTO Mod. 

No FCS FI.ld 
NON·AUTO Mod. 

No FCS Field 
AUTO Mod. 

No FCS FI.ld 
Non·Bull.red Mod. 
NON·AUTO Mod. 

No FCS FI.ld 
Non·Addre ... dMod. 
NON·AUTO Mod. 

Mod. Bli.: 

NFCS NB 

o 

o 

o 

AM - "AUTO" ModO/Addr •••• d Mod. 
NB - Non·Bull.red Mod. 
NFCS - No FCS FI.ld Mod. 

Key to Abbreviations: 

AM' 

o I 
I 

I 

I 

I 

I 

I 

o I 

FRAME FORMAT 

F I A I CI IFCSI FI 

F I A I ci IFCsl F I 

F I A I IFCsl F 

F I Fcsi F I 

F I A I ci I F 

F I A I ci I F 

F I A I F I 

F F I 

F = Flag (01111110) 
A = Addr ... Field 
C = Control FI.ld 

I = Inlormallon FI.ld 
FCS = From. Ch.ck Sequ.nc. 

Note 1: The AM bit function is controlled by the NB bit. When NB::; 0, AM becomes AUTO mode select, 
when NB = 1, AM becomes Address mode select. 

Figure 7. Frame Format Options 

Data Clocking Options 
The 8044's serial port can operate in an externally 
clocked or seif clocked system. A clocked system pro­
vides to the 8044 a clock synchronization to the data. 
A self-clocked system uses the 8044's on-chip'Digital 
Phase Locked Loop (DPLL) to recover the clock from 
the data, and clock this data into the Serial Receive 
Shift Register. 

In this 'mode, a clock synchronized with the data is 
externally fed into the 8044. This clock may be 
generated from an External Phase Locked Loop, or 
possibly supplied along with the-data. The 8044 can 
transmit and receive data in this mode at rates up to 
2.4 Mbps. 

This self clocked mode allows data transfer without 
a common system data clock. An on-chip Digital 
Phase Locked Loop is employed to recover the data 
clock which is encoded in the data stream. The DPLL 
wiii converge to the nominal bit center within eight 

bit transitions, worst case. The DPLL requires a 
reference clock of either 16 times (16x) or 32 times 
(32x) the data rate. This reference clock may be ex­
ternally applied or i'nternally generated. When inter­
nally generated either the 8044's internal logic clock 
(crystal frequency divided by two) or the timer 1 
overflow is used as the reference clock. Using the in­
ternal timer 1 clock the data reates can vary from 244 
to 62.5 Kbps. Using the internal logic clock at a 16x 
sampling rate, receive data can either be 187.5 Kbps, 
or 375 Kbps. When the reference clock for the DPLL 
is externally applied the data rates can vary from 0 
to 375 Kbps at a 16x sampling rate. 

To aid in a Phase Locked Loop capture, the SIU has 
a NRZI (Non Return to Zero Inverted) data encoding 
and decoding option. Additionally the SIU has a pre­
frame sync option that transmits two bytes of alter­
nating 1 's and O's to ensure that the receive station 
DPLL wiii be synchronized with the data by the time 
it receives the opening flag. 

21-10 



8044AH/8344AH 

Control and Status Registers 
There are three SIU Control and Status Registers: 

Serial Mode Register (SMD) 

Status/Command Register (STS) 

Send/Receive Count Register (NSNR) 

The SMD, STS, and NSNR registers are all cleared by 
system reset. This assures that the SIU will power up in 
an idle state (neither receiving nor transmitting). 

These registers and their bit assignments are 
described below. 

SMD: Serial Mode Register (byte-addressable) 

Bit: 7 6 5 4 3 2 I 0 

I SCM21 SCM II SCMO I NRZI I LOOP I PFS I NB I NFCS / 

The Serial Mode Register (Address C9H) selects the 
operational modes of the SIU. The 8044 CPU can both 
read and write SMD. The SIU can read SMD but can­
not write to it. To prevent conflict between CPU and 
SIU access to SMD, the CPU should write SMD only 
when the Request To Send (RTS) and Receive Buffer 
Empty (RBE) bits (in the STS register) are both false 
(0). Normally, SMD is accessed only during 
initialization. 

The individual bits of the Serial Mode Register are as 
follows: 

Bit # 

SMD.O 

SMD.I 

SMD.2 

SMD.3 
, SMD.4 

SMO'S 

SMD .. 6 

SMD.7 

Name Description 

NFCS No FCS field in the SDLC frame. 

NB Non-Buffered mode. No control 
field in the SDLC frame. 

PFS Pre-Frame Sync mode. In this 
mode, the 8044 transmits two bytes 
before the first flag of a frame, for 
DPLL synchronization. If NRZI is 
enabled, OOH is sent; otherwise, 
5SH is sent. In either case, 16 pre­
frame transitions are guaranteed. 

LOOP Loop configuration. 

NRZI NRZI coding option. 

SCMO Select Clock Mode - Bit 0 

SCM I Select Clock Mode - Bit I 

SCM2 Select Clock Mode - Bit 2 

The SCM bits decode as follows: 

SCM 
2 1 0 Clock Mode ---
o 0 0 Externally clocked 

o 0 Reserved 

Data Rate 
(Bits/sec)* 

0-2.4M** 

o 0 Self clocked, timer overflow 244-62.5K 

o Reserved 

o 0 Self clocked, external 16x 0-375K 

SCM Data Rate 
2 1 0 Clock Mode (Bits/sec)* ---

0 I Self clocked, external 32x 0-187.5K 

I 0 Self clocked, internal fixed 375K 

Self clocked, internal filled 187.5k 

·Based on a 12 Mhz crystal frequency 
**0-1 M bps in loop configuration 

STS: Status/Command Register (bit-addressable) 

Bit: 7 6 S 4 3 2 I 0 

/TBF/RBE/RTS/SI /BOY IOPB lAM /RBP/ 

The Status/Command Register (Address C8H) pro­
vides operational control of the SIU by the 8044 CPU, 
and enables the SIU to post status information for the 
CPU's access. The SIU can read STS, and can alter cer­
tain bits, as indicated below. The CPU can both read 
and write STS asynchronously. However, 2-cycle in­
structions that access STS during both cycles ('JBC/B, 
REL' and 'MOY /B,C.') should not be used, since the 
SIU may write to STS between the two CPU accesses. 

The individual bits of the Status/Command Register 
are as follows: 

Bit# 

STS.O 

STS.I 

STS.2 

STS.3 

STS.4 

STS.S 

Name Description 

RBP Receive Buffer Protect. Inhibits 
writing of data into the receive buff­
er. In AUTO mode, RBP forces an 
RNR response instead of an RR. 

AM AUTO Mode/Addressed Mode. Se­
lects AUTO mode where AUTO 
mode is. allowed. If NB is true, 
(= I), the AM bit selects the ad­
dressed mode. AM may be cleared 
by the SIU. 

OPB Optional Poll Bit. Determines 
whether the SIU will generate an 
AUTO response to an optional poll 
(UP with P=O). OPB may be set or 
cleared by the SIU. 

BOY Receive Buffer Overrun. BOY may 
be set or cleared by the SIU. 

SI SIU Interrupt. This is one of the five 
interrupt sources to the CPU. The 
vector location = 23H. SI may be 
set by the sm. It should be cleared 
QY the CPU before returning from 
an interrupt routine. 

RTS Request To Send. Indicates that the 
8044 is ready to transmit or is trans-
mitting. RTS may be read or writ­
ten by the CPU. RTS may be read 
by the sm, and in AUTO mode 
may be wriiten by the sm. 

21-11 



intJ 8044AH/8344AH 

STS.6 

STS.7 

RBE Receive Buffer Empty. RBE can be 
thought of as Receive Enable. RBE 
is set to one by the CPU when it is 
ready to receive a frame, or has just 
read the buffer, and to zero by the 
SIU when a frame has been 
received. 

TBF Transmit Buffer Full. Written by 
the CPU to indicate that it has filled 
the transmit buffer. TBF may be 
cleared by the SIU. 

NSNR: Send/Receive Count Register (bit­
addressable) 

Bit: 7 6 54 3 2 I 0 

INS21NSIINsoisESINR21NRIINROIsERI 

The Send/Receive Count Register (Address D8H) con­
tains the transmit and receive sequence numbers, plus 
tally error indications. The SIU can both read and write 
NSNR. The 8044 CPU can both read and write NSNR 
asynchronously. However, 2-cycle instructions that ac­
cess NSNR during both cycles ('JBC /B, REL', and 
'MOY /B,C') should not be used, since the SIU may 
write to NSNR between the two 8044 CPU accesses. 

The individual bits of the Send/Receive Count Register 
are as follows: 

Bit # Name DescriI!tion 

NSNR.O SER Receive Sequence Error: 
NS (P) *" NR (S) 

NSNR.I NRO Receive Sequence Counter-Bit 0 

NSNR.2 NRI Receive Sequence Counter-Bit 1 

NSNR.3 NR2 Receive Sequence Counter-Bit 2 

NSNRA SES Send Sequence Error: 
NP (P) *" NS (S) and 
NP (P) *" NS (S) + 1 

NSNR.5 NSO Send Sequence Counter - BitO 

NSNR.6 NSI Send Sequence Counter - Bit 1 

NSNR.7 NS2 Send Sequence. Counter - Bit 2 

Parameter Registers 

There are eight parameter registers tha t are used in con­
nection with SIU operation. All eight registers may be 
read or written by the 8044 CPU. RFL and RCB are 
normally loaded by the sm. 

The eight parameter registers are as follows: 

STAD: Station Address Register 
(byte-addressable) 

The Station Address register (Address CEH) contains 
the station address. To prevent access conflict, the CPU 
should access STAD only when the SIU is idle (RTS=O 

and RBE=O). Normally, STAD is accessed only during 
initialization. 

TBS: Transmit Buffer Start Address Register 
(byte-addressable) 

The Transmit Buffer Start address register (Address 
DCH) points to the location in on-chip RAM for the be­
ginning of the I-field of the frame to be transmitted. The 
CPU should access TBS only when the SIU is not trans­
mitting a frame (when TBF=O). 

TBl: Transmit Buffer length Register 
(byte-addressable) 

The Transmit Buffer Length register (Address DBH) 
contains the length (in bytes) of the I-field to be trans­
mitted. A blank I-field (TBL=O) is valid. The CPU 
should access TBL only when the SIU is not transmit­
ting a frame (when TBF=O). 

NOTE: The transmit and recieve buffers are not allowed 
to "wrap around" in the on-chip RAM. A "buffer end" 
is automatically generated if address 191 (BFH) is 
reached. 

TCB: Transmit Control Byte Register 
(byte-addressable) 

The Transmit Control Byte register (Address DAH) 
contains the byte which is to be. placed in the control 
field of the transmitted frame, during NON-AUTO 
mode transmission. The CPU should access TCB only 
when the SIU is not transmitting'. a frame (when 
TBF=O). The Ns and NR counters are not used in the 
NON-AUTO mode. 

RBS: Receive Buffer Start Address Register 
(byte-addressable) 

The Receive Buffer Start address register (Address 
CCH) points to the location in on-chip RAM where the 
beginning of the I-field of the frame being received is to 
be stored. The CPU should write RBS only when the 
sm is not receiving a frame (when RBE=O). 

RBl: Receive Buffer length Register 
(byte-addressable) 

The Receive Buffer Length register (Address CBH) 
co~tains the length (in bytes) of the area in on-chip 

RAM allocated for the received I-field. RBL=O is val­
id. The CPU should write RBL only when RBE=O. 

RFl: Receive Field length Register 
(byte-addressable) 

The Received Field Length register (Address CDH) 
contains the length (in bytes) of the received I -field that 
has just been loaded into on-chip RAM. RFL is loaded 
by the SIU. RFL=O is valid. RFL should be accesssed 
by the CPU only when RBE=O. 

21-12 



intel' 8044AH/8344AH 

RCB: Receive Control Byte Register 
(byte-addressable) 

The Received Control Byte register (Address CAH) 
contains the control field of the frame that has just been 
received. RCB is loaded by the SIU. The CPU can only 
read RCB, and should only access RCB when RBE=O. 

ICE Support Registers 

The 8044 In-Circuit Emulator (ICE-44) allows the user 
to exercise the 8044 application system and monitor the 
execution of instructions in real time. 

The emulator operates with Intel's Intellec® develop­
ment system. The development system interfaces with 
the user's 8044 system through an in-cable buffer box. 
The cable terminates in a 8044 pin-compatible plug, 
which fits into the 8044 socket in the user's system. With 

the emulator plug in place, the user can excercise his sys­
tem in real time while collecting up to 255 instruction 
cycles of real-time data. In addition, he can single-step 
the program. 

Static RAM is available (in the in-cable buffer box) to 
emulate the 8044 internal and external program mem­
ory and external data memory. The designer can display 
and alter the contents of the replacement memory in the 
buffer box, the internal data memory, and the internal 
8044 registers, including the SFRs. 

SIUST: SIU State Counter (byte-addressable) 

The SIU State Cciunter (Address D9H) reflects the 
state of the intern.allogic which is under SIU control. 
Therefore, care must be taken not to write into this 
register. This register provides a useful means for 
debugging 8044 receiver problem. 

21-13 



8044AH/8344AH 

ABSOLUTE MAXIMUM RATINGS· 
Ambient Temperature Under Bias ........... 0 to 70'C 
Storage Temperature ............. -65'C to + 150'C 
Voltage on Any Pin With 

Respect to Ground (Vss) ............. - 0.5V to + 7V 
Power Dissipation ......................... 2 Watts 

• Notice: Stresses above those listed under "Absolute 
Maximum Ratings" may cause permanent damage to 
the device. T.his is a stress rating only and functional 
operation of the device at these ~lr any other conditions 
above those indicated in. the c>perational sections of 
this specification is not implied. Exposure to absolute 
maximum rating conditions for extended periods may 
affect device reliability. 

DC CHARACTERISTICS (TA = o·C to 70'C, VCC = 5V ± 10%, VSS = OV) 

Symbol Parameter Min Typ Max Units Test Conditions 

VIL Input Low Voltage -0.5 O.B V 

VIH Input High Voltage 2.0 VCC+0.5 V 
(Except RSTIVPD and'XTAL2) 

VIHI Input High Voltage To 2.5 V XTALI to VSS 
RSTIVPD For Reset, XTAL2 

VPD Power Down Voltage 4.5 5.5 V VCC=OV 
To RSTIVPD 

VOL Output Low Voltage 0.45 V IOL= 1.6mA 
Ports 1, 2, 3 (Note' 1) 

VOlt Output Low Voltage 0.45 V IOL=3.2mA 
Port 0 ALE, \flSEN (Note 1) 

VOH Outp! High Voltage 2.4 V IOH= -BOflA 
Ports 1,2,3 

VOHI Output High Voltage .2.4 V IOH= -400"A 
Port 0, ALE, \PSEN 

ilL Logical 0 Input Current -BOO "A XTALI at VSS 
Ports 1,2,3 VIL=0.45V 

IIHI Input High Current.TO 500 "A Yin = VCC-l.5V 
RSTIVPD For Reset 

III Input Leaka~ Current 10 flA 0.45V < Yin < VCC 
To Port 0, \EA 

ICC Power Supply Current 125 200 mA TA=25'C 

IPD Power Down Current 15 30 mA 

CIO Capacitance 01 I/O Buffer 10" pF Ic= lMHz 

1IL2 Logical 0 Input Current -2.5 mA XTALI = VSS 
XTAL 2 VIL = 0.45V 

Not. 1: VOL is degraded when the RUPI-44 rapidly discharges external capacitance. This A.C. noise is most pronounced during 
emission of address data. When using external memory, locate the latch or buffer as close to the RUPI-44 as possible. 

VOL 
Emitting Degraded (peak) 

Datum Ports 1/0 Lines "(max) 

Address P2, PO PI, P3 .BV 

Write Data PO PI, P3,ALE .BV 

21-14 



8044AH/8344AH 

A.C. CHARACTERISTICS (TA O·C to 70·C, VCC = 5V ± 10';. JSS= OV, CL for Port 0, ALE and PSEN Outputs = 100pF; 
. CL for All Other Outputs = ao pF) 

Program Memory 

Variable Clock 
12 MHz Clock 1fTCLCL = 1.2 MHz to 12 MHz 

Symbol Parameter Min Max Units Min Max Units 

TLHLL ALE Pulse Width 127 ns 2TCLCL-40 ns 

TAVLL Address Setup to ALE 43 ns TCLCL-30 ns 

TLLAX' Address Hold After ALE 48 ns TCLCL-35 ns 

TLLlV ALE To Valid Instr In 233 ns 4TCLCL-100 ns 

TLLPL ALE To PSEN 58 ns TCLCL·25 ns 

TPLPH PSEN Pulse Width 215 ns 3TCLCL-35 . ns 

TPLIV PSEN To Valid Instr In 125 ns 3TCLCL-125 ns 

TPXIX Input Instr Hold After PSEN 0 ns 0 ns 

TPXIZ' Input Instr Float After PSEN 63 ns TCLCL-20 ns 

TPXAV' Address Valid After PSEN 75 ns TCLCL-8 ns 

TAVIV Address To Valid Instr In 302 ns 5TCLCL·115 ns 

TAZPL Address Float To PSEN 0 ns 0 ns. 
Notes: 
1. TLLAX for access to program memory is different from TLLAX for data memory. 
2. Interfacing RUPI-44 devices with float times up to 75ns is permissible. This limited bus contention will not cause any damage to Port 

o drivers. 

External Data Memory 

Variable Clock 
12 MHz Clock lITCLCL = 1.2 MHz to 12 MHz 

Symbol Parameter Min Max Units Min Max Units 

TRLRH RD Pulse Width 400 rs 6TCLCL-100 ns 

TWLWH WR Pulse Width 400 ns 6TCLCL-100 ns 

TLLAX' Address Hold After ALE 48 ns TCLCL-35 
TRLDV RD To Valid Data In 250 ns 5TCLCL-165 ns 

TRHDX Data Hold After RD 0 ns 0 ns 

TRHDZ Data Float After RD 97 ns 2TCLCL-70 ns 

TLLDV ALE To Valid Data In 517 ns 8TCLCL-150 ns 

TAVDV Address To Valid Data In 585 ns 9TCLCL-165 ns 

TLLWL ALE To WR or RD 200 300 ns 3TCLCL-50 3TCLCL+50 ns 

TAVWL Address To WR or RD 203 ns 4TCLCL-130 ns 

TWHLH WR or RD High To ALE High 43 123 ns TCLCL-40 TCLCL+40 ns 

TDVWX Data Valid To WR Transition 33 ns TCLCL-50 ns 

TOVWH Data Setup Before WR 433 ns lTCLCL-150 ns 

TWHOX Data Hold After WR 33 ns TCLCL-50 ns 

TRLAZ Address Float After RD 0 ns 0 ns 

Note 1. TLLAX for access to program memory is different from TLLAX for access data memory. 

Serial Interface 

Symbol Parameter Min Max Units 

TDCY Data Clock 420 ns 

TDCL Data Clock Low 180 ns 

TDCH Data Clock High 120 ns 

21-15 



intJ 8044AH/8344AH 

Serial Interface (Continued) 

lTD Transmit Data Delay 80 ns 

tDSS Data Setup Time 60 ns 

tDHS Data Hold Time 40 ns 

WAVEFORMS 

Memory Access 

Program Memory Read Cycle 

~------~-----------------------TCY--------------------------~ 

ALE 

PSEN 

PORTO 

PORT 2 
ADDRESS 
OR SFR-P2 ADDRESSA15-A8 

Data Memory Read Cycle 

~--~--, ~~---------TLLDV----------__ ~ 

ALE 

AT-AD INSTR IN 

ADDRESSA15-A8 

TWHLH 

PSEN 

RD ------------------~------------, ~~--------_+TRLRH------------+1/-------

PORTO 

PORT2 
ADDRESS 
OR SFR-P2 

Data Memory Write Cycle 

ALE 

PSEN 

WR 

PORTO 

PORT 2 

~ 
ADDRESS )< OR SFR-P2 

TLLAX TRLDV 
TRHDX 

AT-AD DATA IN 

TRLAZ 

ADDRESS A15-A8 OR SFR-P2 

TWHLH--

" 
I---------TLLWL -I" 

I • TWLWH 

TAVWL 
1{ / 

I.-TLLAX~. r __ TDVWX 
TaVWH TWHO~ 

AT-AD DATA OUT ] 
I 

ADDRESS A 15-A8 OR SFR-P2 

21-16 

--



·8044AH/8344AH 

SERIAL I/O WAVEFORMS 

Synchronous Data Transmission 

~-------TDCY-------~ 

-----""'\ I-o---TDCL -----.j ~-----____ 

SCLK 

'--_____ ---J I----TDCH--+l '---~---

DATA 

TID 

Synchronous Data Reception 

I---------·TDCY------~ 

--------.. I-----TDCL -----.j r------~ 
SCLK 

i----TDCH ----I 

DATA 

TDSS I-----TDHS-----.j 

21-17 



intJ 8044AH/8344AH . 

AC TESTING INPUT, OUTPUT, FLOAT WAVEFORMS 

INPUT/OUTPUT FLOAT 

j ----FLOAT-----t 

2.4 . 2.0 2.0 2.4 

0.45 0 .... 8-----------0-.8 . 0.45 

2.4==>(2.0 2.oX=. 
. TEST POINTS 

0.45 ~0~.8~ _____ ~0.:::..8 

AC testing inputs are driven at 2.4V for a logic "1" and O.45V lor a logic "0," 
Timing measurements are 'made at 2.0V lor a logic "1" and a.BV for a logic "0," 

EXTERNAL CLOCK DRIVE XTAL2 

~--------TCLCL------~ 

Variable Clock 
Freq = 1.2 MHz to 12 MHz 

Symbol Parameter Min Max Unit 
TCLCL Oscillator Period 83.3 833.3 ns 
TCHCX High Time 20 TCLCL·TCLCX ns 
TCLCX Low Time 20 TCLCL·TCHCX ns 
TCLCH Rise Time 20 ns 
TCHCL Fall Time 20 ns 

21-18 

TCHCL 



CLOCK WAVEFORMS 

INTERNAL 
CLOCK 

XTAL2 

ALE 

STATE 4 

Pl I P2 

STATE 5 

Pl I P2 

STATE 6 

Pl 1 P2 

8044AH/8344AH 

STATE 1 

Pl 1 P2 

STATE 2 

Pl I P2 

STATE 3 

Pl I P2 

STATE 4 

Pl I P2 

I I I 

STATE 5 

Pl I P2 

EXTERNAL PROGRAM MEMORY FETCH ::2 THESE SIGNALS ARE NOT 
ACTIVATEO DURING THE 
EXECUTION OF A MOVX INSTRUCTION 

I I"'.. I L L-_=--_-' 

PO 

P2(EXT) ~ _____ IINDICATES ADDRESS TRANSIONS L-__________ ---' 

READ CYCLE 

RD 

PO 

P2 
WRITE CYCLE 

WR 

PO 

DPL OR Ri 
OUT 

OOH IS EMITTED PCL OUT (IF PROGRAM 
DURING THIS PERIOD MEMORY IS EXTERNAL) 

LY !DATAl nIL 
I-~ FLOAT SAMPLED • i 

INDICATES DPH OR P2 SFR TO PCH TRANSITIONS 

DPL OR Ri 
OUT 

I PCL OUT(EVEN IF PROGRAM 
L-__________ ---' MEMORY IS INTERNAL) 

, P; ; I ·L 
i- DATA OUT • \:1 ·1 PCL OUT (IF PROGRAM 

-------"~---I-N-D-I-C-AT-E~S-D-P-H-0-R-P-2-S-F-R-T-0-P-C-H-T-R-A-N-S-I-T-IO-N-S-----IMEMORYISEXTERNAL) P2 

PORT OPERATION 

MOV PORT, SRC OLD DATA I NEW DATA 
__ LPO PINS SAMPLED 

MOVDES~PO· ~~~~~~~ ________________ ~~ 

MOV DEST, PORT (Pl, P2, P3) PO PINS SAMPLED c::::::J 
(INCLUDES INTO, INn, TO, Tl) ~'----' ___________________ ~I-' - L..-

Pl, P2, P3 PINS SAMPLED :11N~2S:~PLED 
SERIAL PORT SHIFT CLOCK 

--------b;.! 
RXDSAMPLED 

~~gDE O)----------~XD SAMPLED 

This diagram indicates when signals are clocked internally. The time it takes the signals to propagate to the pins, however, 
ranges from 25 to 125 ns. This propagation delay is dependent on variables such as temperature and pin loading. Propagation 
also varies from output to output and component to component. Typically though, (T A = 25° C, fully loaded) RD and WR prop­
agation delays are approximately 50 ns. The other signals are typically 85 ns. Propagation delays are incorporated in the AC 
specifications. 

21-19 



8744 
HIGH PERFORMANCE 8-BIT MICROCONTROLLER 

WITH On-CHIP SERIAL COMMUNICATION CENTER 

8044AH - CPu/SIU with Factory Mask Programmable ROM 
8344AH - An 8044AH used with External Program Memory 
8744H - An 8044AH with User Programmable/Erasable EPROM 

8051 MICROCONTROLLER CORE SERIAL INTERFACE UNIT (SIU) . 

• Optimized for Real Time Control • Serial Communication Processor that 
12 MHz Clock, Priority Interrupts, Operates Concurrently to C.P.U. 
32 Programmable I/O lines, • 2.4 Mbps Maximum Data Rate Two 16-bit Timer/Counters 

• Boolean Processor • 375 Kbpsusing On-Chip Phase 
Locked Loop 

• 4K x 8 EPROM, 192 x 8 RAM • Communication Software in Silicon: 

• 64K Accessible External Program - Complete Data Link Functions 
Memory - Automatic Station Responses 

• 64K Accessible External Data Memory • Operates as an SDLC Primary or 

• 4 JAs Multiply and Divide 
Secondary Station 

The RUPI-44 family integrates a high performance 8-bit Microcontroller, the Intel 8051 Core, with an 
intelligent/high performance HOLC/SOLC serial communication controller, called the Serial Interface 
Unit (SIU). See Figure 1. This dual architecture allows complex control and high speed data communica­
tion functions to be realized cost effectively. 

Specifically, the 8044's Microcontroller features: 4~ byte On-Chip program memory space; 32 I/O lines; 
two 16-bit timer/event counters; a 5-source; 2-level interrupt structure; a full duplex serial channel; a 
Boolean processor; and on-chip oscillator and clock circuitry. Standard TTL and most byte-oriented 
MCS-80 and MCS-85 peripherals can be used for I/O and memory expansion: 

The Serial Interface Unit (SIU) manages the interface to a high speed serial link. The SIU offloads the 
On-Chip 8051 Microcontroller of communication tasks, thereby freeing the CPU to concentrate on real 
time control tasks. 

The RUPI-44 family consists of the 8044,8744, and 8344. All three devices are identical except in respect 
of on-chip program memory. The 8044 contains 4K bytes of mask-programmable ROM. User program­
mable EPROM replaces ROM in the 8744. The 8344 addresses all program memory externally. 

The RUPI-44 devices are fabricated with Intel's reliable +5 volt, silicon-gate HMOSII technology and 
packaged in a 40-pin DIP. 

Contro 
Lines 

I 

804415 Dual Controller Architecture 

8051 2-port 
Micro- - r--- S.I.U. 

controller RAM 

Figure 1. Dual Controller Architecture 

HOLC/ 
SOLC 
port 

Intel Corporation Assumes No Responsibitity for the Use of Any Circuitry Other Than Circuitry Embodied in an Intel Product. No Other Circuit Patent Licenses are Implied . 

• INTEL CORPORATION. 1982 

21-20 



8744H 

Table 1. RUPITM ·44 Family Pin Description 

VSS 
Circuit ground potential. 

vee 
+ 5V power supply during operation and program 
verification. 

PORT 0 
Port 0 is an 8·bit open drain bidirectional 1/0 port. It is 
also the multiplexed low·order address and data bus 
when using external memory. It is used for data output 
during program verification. Port 0 can sink/source eight 
LS TIL loads. 

PORT 1 
Port 1 is an 8·bit quasi·bidirectional I/O port. It is used for 
the low·order address byte during program verification. 
Port 1 can sink/source four LS TTL loads. 

In non·loop mode two of the I/O lines serve alternate 
functions: 
-RTS (P1.6). Request·to-Send output. A low indicates 

that the RUPI-44 is ready to transmit. 
-CTS (P1.7) Clear-to-Send input. A low indicates that a 

receiving station is ready to receive. 

PORT2 
Port 2 is an 8-bit quasi-bidirection I/O port. It also emits 
the high-order address byte when accessing external 
memory. It is used for the high·order address and the 
control signals during program verification. Port 2 can 
sink/source four LS TIL loads. 

PORT 3 
Port 3 is an 8·bit quasi-bidirectional I/O port. It also 
contains the interrupt, timer, serial port and RD and 
WR pins that are used by various options. The output 
latch corresponding to a secondary function must be pro­
grammed to a one (1) for that function to operate. Port 3 
can sink/source LS TIL loads. 

In addition to I/O, some of the pins also serve alternate 
functions as follows: 
-I/O RxD (P3.0). In point-to-point or multipoint configura­

tions, this pin controls the direction of pin P3.1. Serves 
as Receive Data input in loop and diagnostic modes. 

-DATA TxD (P3.1) In point-to-point or multipoint con­
figurations, this pin functions as data input/output. In 
loop mode, it serves as transmit pin. A '0' written to 
this pin enables diagnostic mode. 

-INTO .(P3.2). Interrupt 0 input or gate control input for 
counter O. 

-INT1 (P3.3). Interrupt 1 input or gate control input for 
counter 1. 

- TO(P3.4). Input to counter o. 

-SCLK T1 (P3.5). In addition to 110, this pin provides in· 
~ to counter 1 or serves as SCLK (serial clock) input. 

-WR (P3.6). The write control signal latches the data 
i2Y!e from Port 0 into the External Data Memory. 

-RD (P3.7). The read control signal enables External 
Data Memory to Port O. 

RSTNPD 
A high level on this pin resets the RUPI-44. A small inter­
nal pulldown resistor permits power-on reset using only a 
capacitor connected to VCC. If VPD is held within its 
spec while VCC drops below spec, VPD will provide 
standby power to the RAM. When VPD is low, the RAM's 
current is drawn from VCC. 

ALEIPROG 
Provides Address Latch Enable output used for latching 
the address into external memory during normal opera­
tion. It is activitated every six oscillator periods except 
during an external data memory access. It also receives 
the program pulse input for programming the EPROM 
version. 

PSEN 
The Program Store Enable output is a control signal 
that enables the external Program Memory to the bus 
during external fetch operations. It is activated every 
six oscillator periods, except during external data 
memory accesses. Reillains high during i"ternal pro· 

. gram execution. 

EAlVPP 
When held at a TTL high level, the RUPI-44 executes in­
structions from the internal ROM when the PC is less 
than 4096. When held at a TTL low level, the RUPI-44 fet­
ches all instructions from external Program Memory. 
The pin also receives the 21V EPROM programming sup­
ply voltage on the 8744. 

XTAL 1 
Input to the oscillator's high gain amplifier. Required 
when a crystal is used. Connect to VSS when external 
source is used on XTAL 2. 

XTAL2 
Output from the oscillator's amplifier. Input to the inter­
nal timing circuitry. A crystal or external source can be 
used. 

21-21 



UI l ,,' .. "-~ t> DATA~-4-
Z INTO ........ 
::> - ~ 
~ INT1-., :E 
~ TO ... 0 
~ SCLK n-... 11-

z WR~ 

§ R04-
UI 

FREQUENCE 
REFERENCE 

Figure 2. 
Logic Symbol 

4096 BYTES 
PROGRAM 
MEMORY 

(8044 & 8744) 

INTERRUPTS ..... _,...,...._ .... 

L "/ ___ _ 

INTERRUPTS CONTROL 

8744H 

UI 

f:}; ~:: ~ .. c 
_UI 

UI _ w 

a: 

~[.~ 
_ eTS 

,}~}! a:_UI 

~ -. ~ _ 0 

0 _c -

192 BYTES 
OVAL PORT 

RAM 

PARALLEL PORTS 
ADDRESS DATA BUS 

AND 1/0 PINS 

Figure 4. 
Block Diagram 

21-22 

Pl.0 vee 

Pl.le 2 PO.O ADO 
P1.2 C 3 PO.l AD1 

Pl1 [ • PO.2 AD2 

pul 5 PO.3 AD3 

P1.S I 6 PO.' AD. 

RTS Pl.61 7 PO.S ADS 

ffi P1.1[ • PO.S AD6 

RST VPD 
80" 

PO.7 AD7 

110 RXD P3.0 10 
834' 

EA 'VPP 

OATA TXD P3.1 I " 8744 
ALE PROG 

INTO P3.2 I 12 PSEN 

INn P3.3 I 13 A15 

TO PHI 14 AI. 

seLK T1 P3.5 I 15 P2.S A13 

WR P3.6 r 
" 

A12 

AD P3.7 r 17 All 

XTAL2 r ,. P2.2 AID 

XTALI [ 19 P2.1 A9 

vssl 20 P2.0 A8 

Figure 3. Pin 
Configuration 

SIU 
(SERIAL 

INTERFACE 
UNIT) 

TWO 16·BIT 
TIMER EVENT 

COUNTERS 

COUNTERS 

14;--- DATA 

1-11--"""~ ~gLC/SDLC 
I SERIAL 

I 
I 
I 
I 
I 
I 

..J 

COMMUNICATIONS 



8744H 

ABSOLUTE MAXIMUM RATINGS* 
Ambient Temperature Under Bias '" O°C to 70°C 

Storage Temperature .. " ...... -65°C to +150°C 

Voltage On Any Pin to VSS 
(Except VPP) ................... -0.5V to + 7V 

Voltage from VPP to VSS ................. 21.5V 

Power Dissipation ........................ 2 W 

'NOTlCE: Stresses above those listed under "Abso­
lute Maximum Ratings" may cause permanent 
damage to the device. This is a stress rating only 
and functional operation of the device at these or 
any other conditions above those indicated in the 
operational sections of this specification is not 
implied. Exposure to absolute maximum rating 
conditions for extended periods may affect device 
reliability. 

D.C. CHARACTERISTICS: (T A = 0° C to 70° C; VCC = 4.5V to 5.5V, VSS = OV) 

Symbol Parameter Min Max Unit Test Conditions 

VIL Input Low Voltage -0.5 O.S V 

VIH Input High Voltage (Except XTAL2, RST) 2.0 VCC +0.5 V 

VIH1 Input High Voltage to XTAL2, RST 2.5 VCC +0.5 V XTAL 1 = VSS 

VPD Power Down Voltage to RST IVPD 4.5 5.5 V VCC =OV 

VOL Output Low Voltage Ports 1,2,3 (Note 1) 0.45 V IOL = 1.6mA 

VOL1 Output Low Voltage Port 0, ALE, PSEN 0.60 V IOL =3.2mA 
(Note 1) 0.45 V 10L = 2.4mA 

VOH Output High Voltage Ports 1,2,3 2.4 V 10H = -SOf.lA 

VOH1 Output High VoltCJ.ge Port 0 (in External 2.4 V 10H =-400f.lA 
Bus Mode), ALE, PSEN 

IlL Logical 0 I nput Current P1, P2, P3 500 f.lA Vin = 0.45V --
IlL 1 Logical 0 Input Current to EAlVpp ~15 mA Vin = 0.45V 

IIL2 Logical 0 Input Current to XTAL2 -2.5 mA XTAL1 = VSS Vin = 0.45V 

III Input Leakage Current to Port 0 100 f.lA 0.45 < Vin < VCC 

IIH Logical Input Current to EAlVpp 500 f.lA Vin = 2.4V 

IIH1 Input Current t6 RSTIVPD to activate reset 500 f.lA Vin < (VCC - 1.5V) 

ICC Power Supply Current 250 mA 6.!! outputs disconnected, 
EA=VCC 

IPD Power Down Current to RST IVPD 10 mA VCC =OV VpD = 5V 

CIO Capacitance of I/O Buffers 10 pF fc = 1 MHz TA = 25°C 

21-23 



8744H 

AC CHARACTERISTICS (TA = O°C to 70°C, VCC = 4.5V to 5.5V, VSS = OV, Load Capacitance for Port 0, 
ALE, and PSEN = 100 pF; Load Capacitance for all other outputs = 80 pF) 

EXTERNAL PROGRAM MEMORY CHARACTERISTICS 

8744H 
12 MHzOsc Variable Oscillator 

Symbol Parameter Min Max Min Max Units 

TCLCL Oscillator Period 83.3 833.3 ns 

TLHLL ALE Pulse Width 127 2TCLCL-40 ns 

TAVLL Address Valid to ALE 53 TCLCL-40 ns 

'TLLAX Address Hold after ALE 48 TCLCL-35 ns 

TLLlV ALE to Valid Instr In 183 4TCLCL-150 ns 

TLLPL ALE to PSEN 58 TCLCL-25 ns 

TPLPH PSEN Pulse Width 190 3TCLCL-60 ns 

TPLIV PSEN to Valid Instr In 100 3TCLCL-150 ns 

TPXIX Input Instr Hold after PSEN 0 0 ns 

TPXIZ Input Instr Float after PSEN 63 TCLCL-20 ns 

TPXAV PSEN to Address Valid 75 TCLCL-8 ns 

TAVIV Address to Valid Instr In 267 5TCLCL-150 ns 

TAZPL Address Float to PSEN 0 0 ns 

EXTERNAL DATA MEMORY CHARACTERISTICS 

8744H 
12 MHz Osc Variable Oscillator 

Symbol Parameter Min Max Min Max Units 

TRLRH RD Pulse Width 400 6TCLCL-100 ns 

TWLWH WR Pulse Width 400 6TCLCL-100 ns 

TLLAX Address Hold After ALE 48 TCLCL-35 ns 

TRLDV RD to Valid Data In 252 5TCLCL-165 ns 

TRHDX Data Hold after RD 0 0 ns 

TRHDZ Data Float after RD 97 ·2TCLCL-70 ns 

TLLDV ALE to Valid Data In 517 8TCLCL-150 ns 

TAVDV Address to Valid Data In 585 9TCLCL-165 ns 

TLLWL ALE to WR or RD 200 300 3TCLCL-50 3TCLCL+50 ns 

TAVWL Address to WR or RD 203 4TCLCL-130 ns 

TOVWX Data Valid to WR Transition 13 TCLCL-70 ns 

TOVWH Data Setup to WR High 433 7TCLCL-150 ns 

TWHOX Data Held after WR 33 'TCLCL-50 ns 

TRLAZ RD Low to Address Float 0 0 ns 

TWHLH RD or WR High to ALE High 33 133 TCLCL-50 TCLCL+50 ns 

21-24 



8744H 

AC TESTING INPUT, OUTPUT, FLOAT WAVEFORMS 

INPUT/OUTPUT FLOAT 

2.4----t=-FLOAT 2.t2.4 

0.4SJ:---------O ...... ; 0.45 

2.4=>(20 2.o)C 
TEST POINTS 

0.45 ~0::::.8:....-_____ ~0.:::..;8 

AC testing inputs are driven at 2.4V for a logic 1 and O.45V for a logic 0 
Timing measurements are made at 2.0V for a logic 1 and O.8V for a logic 0 
For timing purposes, the float state is defined as the pOint at which a PO pin sinks 3.2mA or sources 400,,11 at the voltage tesl levels 

SERIAL I/O WAVEFORMS 

Synchronous Data Transmission 

~--------TOCY-----------~~ 

---------~ ~----TOCl---~ r-------~ 

SCLK 

~ _______ J ~~-----TOCH---~ ~-------

DATA 

TTO 

Synchronous Data Reception 

TOCY 

SCLK 
TOCl 

~ / ~ 
1\ 7 

'- 1\ 
TOCH 

C f- '- -' 

.- "' 
DATA 

- TOSS TOHS 

?1-?!> 



inter 8744H 

Serial Interface 

Symbol Parameter Min Max Units 

TDCY Data Clock 420 ns 

TDCL Data Clock Low 180 ns 

TDCH Data Clock High 120 ns 

TID Transmit Data Delay 80 ns 

TOSS Data Setup Time 60 ns 

TDHS Data Hole Time 40 ns 

Memory Access 

Program Memory Read Cycle 

~-----------------------------TCY------------------------~~ 

ALE. 

PSEN 

PORTO 

PORT 2 
ADDRESS 
OR SFR-P2 ADDRESS A1S-A8 

Data Memory Read Cycle 

.r----.... r-~-------TLLDV ------------J 
ALE 

A7-AD INSTR IN 

ADDRESS A15-A8 

TWHLH 

PSEN 

RD ----------------~------------, r-~--------_+TRLRH-----~r_------

PORT 0 

PORT 2 
ADDRESS 
OR SFR-P2 

Data Memory Write Cycle 

ALE 

TLLAX 

A7-AO 

TRLDV 

TRLAZ 

ADDRESS A1S-A8 OR SFR-P2 

TRHDX 

DATA IN 

TWHLH 

PSEN 

WR ------~--------4_----------__4 I __ ----------TWLWH------------~-------

TQVWH TWHOX 

PORTO DATA OUT 

ADDRESS 
PORT 2 R SFR-P2 

ADDRESS A15-A8 OR SFR-P2 

21-26 



inter 8744H 

NOTE: VOL is degraded when the 8744H rapidly discharges external capacitance. This AC noise is most pronounced 
during emission of address data. When using external memory. locate the latch or buffer as close to the 8744H 
as possible. . 

VOL 
Emitting Degraded (peak) 

Datum Ports 1/0 Lines (max) 

Address P2. PO P1. P3 0.8V 

Write Data PO P1. P3. ALE 0.8V 

EXTERNAL CLOCK DRIVE CHARACTERISTICS (XTAL2) 

Symbol Parameter Min Max 

TCLCL Oscillator Period: 8751H 83.3 833.3 

TCHCX High Time 

TClCX Low Time 

TCLCH Rise Time 

TCHCL Fall Time 

20 

20 

20 

20 

TCLCH-

0.8 0.8 

~TCL'cx-1 
I 
I-'~-----'TCLCL~-'----

21-27 

I-TCHCL 
i 
I 
I 

Units 

ns 

ns 

ns 

ns 

ns 



intel' 
CLOCK WAVEFORMS 

INTERNAL 
CLOCK 

XTAL2 

ALE 

STATE 4 

Pl I P2 

STATE 5 

Pl I P2 

EXTERNAL PROGRAM MEMORY FETCH 

STATE 6 

Pl I P2 

8744H 

STATE 1 

Pl I P2 

STATE 2 1 STATE 31 STATE 4 

Pl I P2 Pl I P2. Pl I P2 

1 I 'I 
ACTIVATED DURING THE 

STATE 5 

Pl I P2 

EXECUTION OF A MOVX INSTRUCTION 

PSEN 

::2 THESE SIGNALS ARE NOT 

__ ~r------'L-~ __ ~I I~ I L-
PO 

P2(EXT) ~ ____ --,IINDICATES ADDRESS TRANSIONS '-__________ ---' 

READ CYCLE 

RD 

PO 

P2 
WRITE CYCLE 

WR 

PO 

P2 

PORT OPERATION 

MOV PORT, SRC 

DPL OR Ri 
OUT 

OOH IS EMITTED PCL OUT (IF PROGRAM 
DURING THIS PERIOD MEMORY IS EXTERNAL) 

L~ !oATA1 n~ I_ "r: FLOAT SAMPLED • i ' 
INDICATES DPH OR P2 SFR TO PCH TRANSITIONS 

DPL OR Ri 
OUT !. 

1 PCL OUT(EVEN IF PROGRAM 
'--------------' MEMORY IS INTERNAL) 

DATA OUT 

INDICATES DPH OR P2 SFR TO PCH TRANSITIONS 

.5 . : tCL OUT ;I~OGRAM 
I MEMORY IS EXTERNAL) 

OLD DATA 1 NEW DATA 
__ LPO PINS SAMPLED 

MOVDEScPO ~~----~----------~-----~~ 
MOV DESc PORT (Pl. P2. P3) PO PINS SAMPLED c:::::::J 
(INCLUDES INTO. INTl. TO. Tl) ~L ______________ ...,.--_______ I-" - L....-

, Pt. P2. P3 PINS SAMPLED ::N~2S:~PLED 
SERIAL PORT SHIFT CLOCK 

L--___ q-:J 
RXD SAMPLED 

~~gDE O)--------~XD SAMPLED 

This diagram indicates when signals are clocked internally. The time it takes the Signals to propagate to the pins, however, 
ranges from 25 to 125 ns. This propagation delay is dependent on variables such as temperature and pin loading. Propagation 
also varies from output to output and component to component. TYPically though, (T A = 25° C, fully loaded) RD and WR prop­
agation delays are approximately 50 ns. The other signals are typically 85 ns. Propagation delays are incorporated in the AC 
specifications. 

" 21-28 



8744H 

8744H EPROM CHARACTERISTICS 

Erasure Characteristics 
Erasure of the 8744H Program Memory begins to 
occur when the chip is exposed to light with wave­
lengths shorter than approximately 4,000 Angstroms. 
Since sunlight and fluorescent lighting have wave­
lengths in this range, constant exposure to these 
light sources over an extended period of time (about 
1 week in sunlight, or 3 years in room-level fluores­
cent lighting) could cause unintentional erasure. If 
an application subjects the 8744H to this type of 
exposure, it is suggested that an opaque label be 
placed over the window. 

The recommended erasure procedure is exposure 
to ultraviolet light (at 2537 Angstroms) to an inte­
grated dose of at least 15 W-sec/cm2 rating for 20 
to 30 minutes, at a distance of about 1 inch, should 
be sufficient. 

Erasure leaves the array in an all 1s state. 

Programming the EPROM 
To be programmed, the 8744H must be running with 
a 4 to 6 MHz oscillator. (The reason the oscillator 
needs to be running is that the internal bus is being 
used to transfer address and program data to appro­
priate registers.) The address of an EPROM location 
to be programmed is applied to Port 1 and pins 
P2.0-P2.3 of Port 2, while the data byte is applied to 
Port O. Pins P2.4-P2.6 and PSEN should be held low, 
and P2.7 and RST high. (These are all TTLlevels 
except RST, which requires 2.5V for high.) EAIVPP 
is held normally high, and is pulsed to +21V. While 
EAIVPP is at 21V, the ALE/PROG pin, which is 
normally being held high, is pulsed low for 50 msec. 
Then EAlVPP is returned to high. This is illustrated 
in Figure 3. Detailed timing specifications are pro­
vided in the EPROM Programming and Verification 
Characteristics section of this data sheet. 

Program Memory Security 
The program memory security feature is developed 
around a "security bit" in the 8744H EPROM array. 
Once this "hidden bit" is programmed, electrical 
access to the contents of the entire program memory 
array becomes impossible. Activation of this feature 

, is accomplished by programming the 8744H as 
described in "Programming the EPROM" with the 
exception that P2.6 is held ata TTL high rather than 
a TTL low. In addition, Port 1 and P2.0-P2.3 may be 
in any state. Figure 4 illustrates the security bit pro­
gramming configuration. Deactivating the security 
feature, which again allows programmability of the 
EPROM, is accomplished by exposing the EPROM 
to ultraviolet light. This exposure, as described in 
"Erasure Characteristics," erases the entire EPROM 
array. Therefore, attempted retrieval of "protected 
code" results in its destruction. 

Program Verification 
Program Memory may be read only when the 
"security feature" has not been activated. Refer to 
Figure 5 for Program Verification setup. To read the 
Program Memory, the following procedure can be 
used. The unit must be running with a 4 to 6 MHz 
oscillator. The address of a Program Memory loca­
tion to be read is applied to Port 1 and pins P2.0-
P2.3 of Port 2. Pins P2.4-P2.6 and PSEN are held at 
TTL low, while the ALE/PROG, RST, and EAIVPP 
pins are held at TTL high. (These are all TTL levels 
except RST, which requires 2.5V for high.) Port 0 
will be the data output lines. P2.7 can be used as a 
read strobe. While P2.7 is held high, the Port 0 pins 
float. When P2.7 is strobed low, the contents of the 
addressed location will appear at Port O. External 
pullups (e.g., 10K) are required on Port 0 during 
program verification. 

21-29 



r- ',-
t 

TTL HIGH --

..l..----::::r::-
4-SMHz 0 :F- -

-C---- .. --

-

8744H 

P1 
8744H 

P2.0-
P2.3 

P2.4 

P2.5 

P2.S 

P2.7 

XTAL2 

XTAL1 

VSS 

+5V 

I 

VCC 

PO PGM DATA ----

ALE - -.- ALE PROG 

EA --EAIVPP 

RST --VIH1 

PSEN 

Figure 3. Programming Configuration 

+5V 
I 

NC 
VCC ----" 

P1 

8744H 

P2.0- PO NC 
NC P2.3 

P2.4 
~ L P2.5 ALE ___ ALE/PROG 50 ms PULSE TO GND 

C 
P2.S 

TTL HIGH P2.7 

- XTAL2 Eli -
~l -- EAjVPP +21V PULSE 

4-S MHz. 0 ::E 
,. - ! XTAL1 . RST -VIH1 

1- VSS PSEN~ 
....l-

Figure 4. Security Bit Programming Configuration 

21-30 



8744H 

+SV 

P1 
Vcc 

8744H 

P2.0-
t------c-~ PGM DATA 

PO (USE 10K PULLUPS) 
P2.3 

P2.4 

P2.S 

P2.6 

ENABLE --.----. P2.7 

ALE ----r-- TTL HIGH 

EA .-J 
XTAL2 RST --VIH1 

XTAL1 PSEN 

VSS = 

Figure 5. Program Verification Configuration 

EPROM PROGRAMMING, SECURITY BIT PROGRAMMING AND VERIFICATION CHARACTERISTICS 
(TA = 21 0 C to 27 0 C, VCC = 4.5V to 5.5V, VSS = OV) 

Symbol Parameter Min Max Units 

Vpp Programming Supply Voltage 20.5 21.5 V 

IPP Programming Current 30 mA 

1ITCLCL Oscillator Frequency 4 6 MHz 

TAVGL Address Setup to PROG 48TCLCL 

TGHAX Address Hold after PROG 48TCLCL 

TDVGL Data Setup to PROG 48TCLCL 

TGHDX Data Hold after PROG 48TCLCL 

TEHSH ENABLE High to VPP 48TCLCL 

TSHGL VPP Setup to PROG 10 /lsec 

TGHSL VPP Hold after PROG 10 /lsec 

TGLGH PROG Width 45 55 msec 

TAVQV Address to Data Valid 48TCLCL 

TELQV ENABLE to Data Valid 48TCLCL 

TEHQZ Data Float after ENABLE 0 48TCLCL 

21-31 



8744H 

EPROM PROGRAMMING, SECURITY BIT PROGRAMMING AND 
VERIFICATION WAVEFORMS 

PROGRAMMING VERIFICATION 

Pl.0-Pl.7 --i ADDRESS ) 
f"a, I 

ADDRESS P2.0-P2.3 

I I 
I I 

PORTO DATA IN \1 DATA OUT 

{I I ----I 14_1 I 
TDVGL I 'TGHDX 

I 4~1 
TAVGL .TGHAXi I 

ALE PROG ""G,'f----;f,G"~ 
TGLGHI 

21V = .5V 

I 
! TTL HIGH 

\ 
T~ TTL HIGH \ 

EAVPP 

I 

) 

\. 
./ 

TTL HIGH 

1_ TEHOZ 
I 

)

TEHSH I_I TELOV 

P2.7 ,-----------~\i,. /' 
(ENABLE) \ . 

'-----~ 

FOR PROGRAMMING CONDITIONS SEE FIGURE 3. 

FOR SECURITY BIT PROGRAMMING CONDITIONS SEE FIGURE 4. 

FOR VERIFICATION CONDITIONS SEE FIGURE 5. 
I 

21-32 



RUPI™ Article Reprints 22 





© INTEL CORPORATION 

ARTICLE 
REPRINT 

22-1 

AR-307 

NOVEMBER 1983 

ORDER NUMBER 230876-001 



AR-307 

SUMMARY 
The 8044 offers a lower cost and higher performance 
solution to networking microcontrollers than conven­
tional solutions. The system cost is lowered by 
integrating an entire microcomputer with an intelligent 
HDLC/SDLC communication processor onto a single 
chip. The higher performance is realized by integrating 
two processors running concurrently on one chip; the 
powerful 8051 micro controller and the Serial Inter­
face Unit. The 8051 microcontroller is substantially 
off-loaded from the communication tasks when 
using the AUTO mode. In the AUTO mode the SIU 
handles many of the data link functions in hardware. 
The advantages of the AUTO mode are: less software 
is required to implement a secondary station data link, 
the 8051 CPU is offloaded, and the turn-around time 
is reduced, thus increasing the network throughput. 
Currently the 8044 is the only microcontroller with 
a sophisticated communications processor on-chip. In 
the future there will be more microcontrollers available 
following this trend. 

INTRODUCTION 
Today microcontrollers are being designed into 
virtually every type of equipment. For the household, 
they are turning up in refrigerators, thermostats, 
burglar alarms, sprinklers, and even water softeners. 
At work they are found in laboratory instruments, 
copiers, elevators, hospital equipment, and telephones. 
In addition, a lot of microcomputer equipment con­
tains more than one microcontroller. Applications 
using multiple microcontrollers as well, as the office 
and home, are now faced with the same requirements 
that laboratory insttuments were faced with 12 years 
ago - they need to connect them together and have 
them communicate. This need was satisfied in the 
laboratory with the IEEE-488 General Purpose 
Instrumentation Bus (GPIB). However, GPIB does 
not meet the current design objectives for network­
ing microcontrollers. 

Today there are many communications schemes and 
protocols available; some of the popular ones are 
GPIB, Async, HDLC/SDLC, and Ethernet. Common 
design objectives of today's networks are: low cost, 
reliable, efficient throughput, and expandable. In 
examining available solutions, GPIB does Jlot meet 
these design objectives; first, the cable is too expen­
sive (parallel communications), second, it can only be 
used over a limited distance (20 meters), and third, 
it' can only handle a limited number of stations. For 
general networking, serial communications is 
preferable because of lower cable costs and higher 
reliability (fewer connections). While Ethernet pro­
vides very high performance, it is more of a system 
backbone rather than a microcontroller interconnect. 
Async, on the other hand, is inexpensive but it is not 
an efficient protocol for data block or file transfers. 
Even with some new modifications such as a 9 bit pro­
tocol for addressing, important functions such as 

acknowledgements, error checking/recovery, and data 
transparency are not standardized nor supported by 
avaihible data comm chips. 

SDLC, Synchronous Data Link Control, meets the 
requirements for communications link design. The 
physical medium can be used on two or four wire 
twisted pair with inexpensive transceivers and connec­
tors. It can also be interfaced through modems, which 
allows it to be used on broadband networks, leased 
or switched telephone lines. VLSI controllers have 
been available from a number of vendors for years; 
higher performance and more user friendly SDLC con­
trollers continue to appear. SDLC has also been 
designed to be very reliable. A 16 bit CRC checks the 
integrity of the received data, while frame number­
ing and acknowledgements are also built in. Using 
SDLC, up to 254 stations can be uniquely addressed, 
while HDLC addressing is unlimited. If an RS-422 
only requires a single +5 volt power supply. 

What will the end user pay for the added value pro­
vided by communication~? The cost of the com­
munications hardware is not the only additional cost. 
There will be performance degradation in the main 

I application because the microcontroller now has 
additional tasks to perform. There are two extremes 
to the cost of adding communication capability. One 
could spend very little by adding an IIO port and have 
the CPU handle everything from the baud rate to the 
protocol. Of course the main application would be 
idle while the CPU was communicating. The other ex­
treme would be to add another micro controller to 
the system dedicated to communications. This 
communications processor could interface to the main 
CPU through a high speed parallel link or dual port 
RAM. This approach would maintain system per-

22-2 

formance, but it would be costly. ' 

Adding HOLC/SOLC Netowrking Capability 
Figure 1 shows a microcomputer system with a con­
ventional HDLC/SDLC communications solution. 
The additional hardware needed to realize the con­
ventional design is: an HDLC/SDLC communication 
chip, additional ROM for the communication soft­
ware, part of an interrupt controller, a baud 
rate generator, a phase locked loop, NRZI en­
coded/decoder, and a cable driver. The NRZI 
encoder/decoder, and phase locked loop are used 
when the transmitter does not send the clock on a 
separate line from the data (i.e. over telephone lines, 
or two wire cable). The NRZI encoder/decoder is 
used in HDLC/SDLC to combine the clock into the 
data line. A phase locked loop is used to recover the 
clock from the data line. 

The majority of the available communication chips 
provide a limited, number of data link control func­
tions. Most of them will handle Zero Bit Inser­
tion/Deletion (ZBIID), Flags, Aborts, Automatic 



AR-307 

~ 

-l NRZI J-
SERIAL CODER 

COMMUNICATIONS rl RS422 MICROCONTROLLER 
'v--,./ SDLC/HDLC PHASE DRIVER 

- LOCKED-
LOOP 

'/ 
BAUD 
RATE 

GENERATOR 

Figure 1. Conventional microcontroller networking solution 

address recognition, and CRC generation and check­
ing. It is the CPU's responsibility to manage 
link access, command recognition and response, 
acknowledgements and error recovery. Handling these 
tasks can take a lot of CPU time. In addition, servic­
ing the transmission and reception of data bytes can 
also be very time consuming depending on the method 
used. 

The Using a DMA controller can increase the overall 
system performance, since it can transfer a block of 
data in fewer clock cycles than a CPU. In addition, 
the CPU and the DMA controller can multiplex their 
access to the bus so that both can be running at 
virtually the same time. However, both the DMA con-. 
troller and the CPU are sharing the same bus, 
therefore, neither one get to utilize 100% of the bus 
bandwidth. Microcontrollers available today do not 
support DMA, therefore, they would have to use 
interrupts, since polling is unacceptable in a multitask­
ing environment. 

In an interrupt driven, the CPU has overhead in ad­
dition to servicing the interrupt. During each inter­
rupt request the CPU has to save all of the important 
registers, transfer a byte, update pointers and 
counters, then restore all of its registers. At low bit 
rates this overhead may be insignificant. However, the 
percentage of overhead increases linearly with the bit 
rate. At high bit rates this overhead would consume 
all of the CPU's time. There is another nuisance fac­
tor associated with interrupt driven systems, interrupt 
latency. Too much interrupt latency will cause data 
to be lost from underrun and overrun errors. 

The additional hardware necessary to implement the 
communications solution, as shown in Figure 1, would 

22-3 

require 1 LSI chip and about 10 TTL chips. The cost 
of CPU throughput degradation can be even greater. 
The percentage of time the CPU has to spend servic­
ing the communication tasks can be anywhere from 
10-100%, depending on the serial bit rate. These high 
costs will prevent consumer acceptance of network­
ing microcomputer equipment. 

A Highly Integrated, High Performance Solution 
The 8044 reduces the cost of networking micro­
controllers without compromising performance. It 
contains all of the hardware components necessary to 
implement a microcomputer system with communica­
tions capability, plus it reduces the CPU and software 
overhead of implementing HDLC/SDLC. Figure 2 
shows a functional block diagram of the 8044. 

The 8044 integrates the powerful 8051 microcontroller 
with an intelligent Serial Interface Unit to provide a 
single chip solution which efficiently implements a 
distributed processing or distributed control system. 
The micro controller is a self sufficient unit contain­
ing ROM, RAM, ALU and its own peripherals. The 
8044's architecture and instruction set are identical to 
the 8051 'so The Serial Interface Unit (SIU) uses 
bit synchronous HDLC/SDLC protocol and can com­
municate at bit rates up to 2.4 Mbps, externally 
clocked, or up to 375 Kbps using the on-chip digital 
phase locked loop. The SIU contains its own pro­
cessor, which operates concurrently with the micro­
controller. 

The CPU and the SIU, in the 8044, interface through 
192 bytes of dual port RAM. There is no hardware 
arbitration in the dual port RAM. Both processor's 
memory access cycles are interlaced; each processor 
has access every other clock cycle. Therefore, there 



AR-307 

8051 
MICRO­

CONTROLLER 

SIU 

L ______________ _ 

Figure 2. 8044 single chip microcontroller networking solution 

is no throughput loss in either processor' as a result 
of the dual port RAM, and execution times are deter­
ministic. Since this has always been the method for 
memory access on the 8051 microcontroller, 8051' pro­
grams have the same execution time in the 8044. 

By integrating all of the communication hardware 
onto the 8051 microcontroller, the hardware cost of 
the system is reduced. Now several chips have been 
integrated into a single chip. This means that the 
system power is reduced, P.C. board space is re­
duced, inventory and assembly is reduced, and 
reliability is improved. The improvement in reli­
ability isa result of fewer chips and interconnections 
on the P.C. board. 

As mentioned before, there can be two extremes in 
a design which adds communications to the microcom­
puter system. The 8044 solution uses the high end ex­
treme. The SIU on the 8044 contains its own processor 
which communicates with the 8051 processor through 
dual port RAM and control/status registers. While 
the SIU is not a totally independent communications 
processor, it substantially offloads the 8051 processor 
from the communication tasks. 

The DMA on the 8044 is dedicated to the SIU. It can­
not access external RAM. By having a DMA controller 
in the SIU, the 8051 CPU is offloaded. As a result 
of the dual port RAM design, the DMA does not share 
the running at full speed while the frames are being 

22-4 

transmitted or received. Also, the nuisance of over­
run and underrun errors is totally eliminated since the 
dedicated DMA controller is guaranteed to meet the 
maximum data rates. Having a dedicated DMA con­
troller means that the serial channel interrupt can be 
the lowest priority, thus allowing the CPU to have 
higher priority real time interrupts. 

Figure 3 shows a comparison between the conventional 
and the 8044 solution on the percentage of time the 
CPU must spend sending data. This diagram was 
derived by assuming a 64 byte information frame is 
being transmitted repeatedly. The conventional solu­
tion is interrupt driven, and each interrupt service 

,routine is assumed to take about 15 instructions with 
a 1 Ilsec instruction cycle time. At '533 Kbps, an in­
terrupt would occur every 15 usec. Thus, the CPU 
becomes completely dedicated to servicing the serial 
communications. The conventional design could not 
support bit rates higher than this because of under­
runs and overruns. For the, 8044 to repeatedly send 
64 byte frames, it simply has to reinitialize the DMA 
controller. As a result, the 8044 can support bit rates 
up to 2.4 Mbps. 

Some of the other communications tasks the CPU has, 
to perform, such as link access, command recogni­
tion/response, and acknowledgements, are per­
formed automatically by the SIU in a mode called 
"AUTO." The combination of the dedicated DMA 
controller and the' AUTO mode, substantially offload 



AR-307 

• CONCURRENT PROCESSING 

PERCENTAGE OF 
CPU TIME SPENT 
SERVICING SDLC 

100 
90 
80 
70 
60 
50 
40 
30 

CONVENTIONAL 
SOLUTION 

8044 
SOLUTION 

1~~ __ ========================~ 
250 K 500 K 750 K 1 M 

BIT RATE (BITS/SECOND) 

Figure 3. SIU offloads CPU 

the CPU, thus allowing it to devote more of its power 
to other tasks. 

8044's Auto Mode 
In the AUTO mode the SIU implements in hardware 
a subset of the SOLC protocol such that it responds 
to many SOLC commands without CPU intervention. 
All AUTO mode responses to the primary station con­
form to IBM's SOLC definition. In the AUTO mode 
the 8044 can only be a secondary station operating -
in SOLC specified "Normal Response Mode." 
Normal Response Mode means that the secondary 
station can not transmit unless it is polled by the 
primary station. The SIU in the AUTO mode can 
recognize and respond to the following SOLC com­
mands without CPU intervention: I (Information), RR 
(Receive Ready), RNR (Receive Not Ready), REJ (Re­
ject), and for loop mode UP (Unnumbered Poll). The 
SIU can generate the following responses without 
CPU intervention: I, RR, and RNR. In addition, the 
SIU manages Ns and Nr in the control field. If it 
detects an error in either Ns or Nr, it interrupts the 
CPU for error recovery. 

How does the SIU know what responses to send to 
the primary? It uses two status bits which are set by 
the CPU. The two bits are TBF (Transmit Buffer Full) 
and RBP (Receive Buffer Protect). TBF indicates that 
the CPU wants to send data, and RBP indicates that 
the receive data buffer is full. Table I shows the 
-responses the SIU will send based on these two status 
bits. This is an innovative approach to communica­
tion design. the CPU in the 8044 with one instruction 

22-5 

can directly set a bit which communicates to the 
primary what its transmit and receive buffering status 
is. 

When the CPU wants to send a frame, it loads the 
transmit buffer with the data, loads the starting 
address and the count of the data into the SIU, then 
sets TBF to transmit the frame. The SIU waits for the 
primary station to poll it with a RR command. After 
the SIU is polled, it automatically sends the informa­
tion frame to the primary with the proper control field. 
The SIU then waits for a positive acknowledgement 
from the primary before incrementing the Ns field and 
interrupting the CPU for more data. If a negative 
acknowledgement is received, the SIU automatically 
retransmits the frame. 

When the 8044 is ready to receive information, the 
CPU loads the receive buffer starting address and the 
buffer length into the SIU, then enables the receiver. 
When a valid information frame with the correct 
address and CRC is received, the SIU will increment 
the Nr field, disable the receiver and interrupt the CPU 
indicating that a good I frame has been received. The 
CPU then sets RBP, reenables the receiver and pro­
cesses the received data. By enabling the receiver with 
RBP set, the SIU will automatically respond to polls 
with a Receive Not Ready, thus keeping the link 
moving rather than timing out the primary from a 
disabled receiver, or interrupting the CPU with 
another poll before it has processed the data. After 
the data has been processed, the CPU clears RBP, 
returning to the Receive Ready responses. 



AR-307 

Table 1. SIU's automatic responses in auto mod~ 

STATUS BITS 

TBF 

o 
o 

1 

RBP 

o 
1 

o 
1 

SDLC communications can be broken up into four 
states: Logical Disconnect State, Initialization State, 
Frame Reject State, and Information Transfer State. 
Data can only be transferred in the Information 
Transfer State. More than 900/0 of the time a station 
will be in the Information Transfer State, which is 
where the SIU can run autonomously. In the other 
states, where error recovery, online/offline, and in­
itialization takes place, the CPU manages the protocol. 

PRIMARY 

RESPONSE 

(RR) Receive ready 

(RNR) Receive not ready 

(I) Information 

(I) Information 

In the Information Transfer State there are three com­
mon events which occur as illustrated in Figure 4, they 
are: 1) the primary polls the secondary and the secon­
dary is. ready to receive but has nothing to send, 2) 
the primary sends the secondary information, and 3) 
the secondary sends information to the primary. 
Figures 5, 6, and 7 compare the functions the con­
ventional design and the 8044 must execute in order 
to respond to the primary for the cases in Figure 4. 

I SECONDARY I I SECONDARY I 

Note: RR 

Case 1. Primary polls secondary 
secondary has nothing to send 

Command 

RR 

Case 2. Primary polls secondary 
secondary sends information frame 

Response 

RR 

Command . Response 

RR,NR 
Information frame 

RR, NR+1 

Case 3. Primary sends secondary information frame 

Command Response 

RR .. .. RR,NR 

Information frame .. 
= Receive ready .. RR, NR+1 

Figure 4. SDLC commands and responses in the information transfer state 

22-6 



inter 

8044 
AUTO MODE 

AR-307 

CASE 1 

PRIMARY 

-RR---­
Poll 

CONVENTIONAL 
DESIGN 

Receive interrupts 

Decode received control field 

Check NR field 

Load response into transmit control field 

Send frame 

Transmit interrupts 

Figure 5. Primary polls secondary, secondary has nothing to send 

8044 
AUTO MODE 

Load transmit buffer 

Set TBF bit 

Transmit interrupt 

CASE 2 

PRIMARY 

..... ---RR--... -
poll 

..... .._-- RR --~.­
poll 

CONVENTIONAL 
DESIGN 

Load transmit buffer and transmit 
control byte 

Receive interrupts 

Decode receive control byte 

Check NR field 

Send frame 

Transmit interrupts 

Receive interrupts 

Decode receive control byte 

Check NR field 

Increment NS 

Figure 6. Primary polls secondary, secondary sends information frame 

22-7 



AR-307 

CASE 3 
8044 

AUTO MODE 

Receive interrupt 

PRIMARY 
-RR ____ 

poll 

----I frame ~ 

CONVENTIONAL 
DESIGN 

Receive interrupts 

Decode received control field 

Check NR field 

Load response into transmit control 
field 

Send frame 

Transmit interrupts 

Receive interrupts 

Decode receive control field 

Check NS NR fields 

Increment NR 

Load response into transmit control 
field 

Send frame 

Transmit interrupts 

Figure 7. Primary sends information frame to secondary 

Using case 1 as an example, the conventional design 
first gets receive interrupts bringing the data from the 
SOLC comm chip into memory. The CPU must then 
decode the command in the'control field and deter­
mine the response. In addition, it must check the Nr 
field for any pending acknowledgements. The CPU 
loads the transmit buffer with the appropriate address 
and control field, then transmits the frame. When the 
8044 receives this frame in AUTO mode, the CPU 
never gets an interrupt because the SIU handles the 
entire frame reception and response automatically. 

In SOLC networks, when there is no information 
transfers, case 1 is the activity on the line. Typically 
this is 800/0 of the network traffic. The CPU in the 
conventional design would constantly be getting in-

/' terrupts and servicing the communications tasks, even 
when it has nothing to send or receive .. On the other 
hand, the 8044 CPU would only get involved in com­
municating when it has data to send or receive. 

Having the SID implement a subset of the SOLC pro­
tocol in hardware not only offloads the CPU, but it 
also improves the throughp~t on the network. The 

22-8 

most critical parameter for calculating throughput on 
any high speed network is the station turnaround time; 
the time it takes a station to respond after receiving 
a frame. Since the 8044 handles all of the commands 
and responses of the Information Transfer State in 
hardware, the tuniaround time is much faster than 
handling it in software, hence a higher throughput. 

8044's Flexible Mode 
In the "NON-AUTO" mode or Flexible mode, the 
SIU does not recognize or respond to any commands, 
nor does it manage acknowledgements, which means 
the CPU must handle link access, command recogni­
tion/response, acknowledgements and error recovery 
by itself. The Flexible mode allows the 8044 to have 
extended address fields and extended control fields, 
thus providing HOLC support. In the Flexible mode 
the 8044 can operate as a primary station, since it can 
transmit without being polled. 

Front End Communications Processor 
The 8044 can also be used as all intelligent 
HOLC/SOLC front end for a microporcessor, capable 
of extensively off-loading link control functions for 



AR-307 

the microporcessor. In some applications the 8044 can 
even be used for communications preprocessing, in 
addition to data link control. For this type of design 
the 8044 would communicate to the Host CPU 
through a FIFO,.or dual port RAM. A block diagram 
of this design is given in Figure 8. A tightly coupled 
interface between the 8044 and the Host CPU would 
be established. The Host CPU would give the 8044 
high level commands and data which the 8044 would 
convert to HOLC/SOLC. This particular type of 
design would be most appropriate for a primary 
Station which is normally a micro, mini, or mainframe 

computer. Sophisticated secondary stations could also 
take advantage of this design. 

Since the 8044 has ROM on chip, all the communica­
tions software is non-volatile. The 8044 primary 
station could down-line-load software to 8044 secon­
dary stations. Once down-line-loading is implemented, 
software updates to the primary and secondary 
stations could be done very inexpensively. The only 
things which would remain fixed in ROM are the 
HOLC/SOLC communications software and the soft­
ware interface to the HOST. 

HOST SYSTEM 
MEMORY 

SYSTEM DATA BUS 

INTERFACE 
HARDWARE 

8044 DATA BUS 

8044 
EXPANSION 

MEMORY 

HDLC/SDLC DATA LINK 

Figure 8. 8044 front end processor 

22-9 





Packaging Information 23 





PACKAGING INFORMATION All dimensions In Inches and (millimeters) 

NOTES: 

1 All packages drawings not to scale 

2 All packages seating plane defined by .0415 to .0430 PCB holes 

3 Type P packages only. Package length does nol include end flash burr. Burr IS 005 nominal, can be .010 max. alone end. 

4 All package drawings end view dimensions are to outside of leads 

24-LEAD PLASTIC DUAL IN-LINE 
PACKAGE TYPE P 

40-LEAD PLASTIC DUAL IN-LINE 
PACKAGE TYPE P 

48-LEAD PLASTIC DUAL IN-LINE 
PACKAGE TYPE P 

24-LEAD HERMETIC DUAL IN-LINE 
PACKAGE TYPE D 

1.285 (32.639) 

1

-------- 1,235 (31.369) ~ 

2~!&08) 

SEATING t~'FFi'n 
PLANE f 

. 125 13.1751j---- i 
MIN. ~ 

.1'0 (:2.7941 

.090 (2.286) 

23-1 

PIN ,1 

600 (15 240) 
515 (13 081) 

(15.7481 
.620 

f---- --soc- ~ 
1 (15.240) : 
, I 

IJ- .175(4.4451 1 :: l ~ .140(3.5561 ~ J 

t.020 MIN .010 TYP. -.: 10 

II (.508) (0.254) I 700 ,REF . 

--- --.020 (0.508) __ MAX. --.J 
.032 TYP. 016 (0.406) (17.780) 

(0.813) NOTE 4. 



40-LEAD HERMETIC DUAL IN-LINE 
PACKAGE TYPE D 

40-LEAD HERMETIC DUAL IN-LINE 
PACKAGE TYPE D 

40-LEAD HERMETIC DUAL IN-LINE 
PACKAGE TYPE C 

. 48·LEAD PLASTIC DUAL IN·LINE 
PACKAGE TYPE C 

PACKAGING INFORMATION All dimensions in inches and (millimeters) 

SEATING 
PLANE 

C .2.OBO (52.832)~ 
2.030 (51.562J 

PIN 1 --- r 
.600 (15.240) 

.515 (13.081) 

~..."..j.!~ 1_ 085 (2 159) (15.748) 

MAX C(1;~)J 
.-=~#?R'Ii--;---r .175(4445) F=:T=l 

---.L.S .140(3556) -! ~ 3 t .020 MIN 010 TVP -.: 10 
(.508) (0 254} I 700 I I REF 

-IL .020 10.508) I-- MAX . ...J 
.032 TYP ,016 (O.406) (17.780) 

(0.813) NOTE 4 

PIN 1 
C 2.080(52.832) ~ 

2.030 (51.562) 

C---~l O ~115.24,O) 
.515 (13.081) -.-l .085 (2.159) 

---. I Mi· 010 [(1~~48)J 
.225(5.715) 1_1.900RE~._ fo---;:===~MAX ~ 

MAX. (49.546) I 10.254) (15.240) 

-=-=-=- ~l::::~:: --f=~- L 

-----r,020 MIN. .O(~~;~!~. ~ R~OF. 
(.508) , 

.125(3.175) 

MIN. .~ 12.794)--l 

. 090 (2.286) 

-I1-.~10.508) L .700 J 
.032 TYP, .016 (0.406) MAX . 

1O.813} (17.780) 
NOTE 4. 

2.020 (51.308) 

C ~150=~.'f2)~~=i,i&r-
t 

PIN 1 MARK 

. 210 (5.334) 

~ 

.110(2.794) 

.090 (2.286) 

zz~ MAl( 

(511!» 

125 MIN 
(31151 

23·2 

805 (15 367) (15748) 

:585 (14:859) [ :g _ 
I .070 lLml (14988) 

=-;l~~~j.I----..l .030 (0.762) 

I 1.900 REF . 
(48.280) 



PACKAGING INFORMATION All dimensions in inches and (millimeters) 

CERAMIC PIN GRID ARRAY PACKAGE TYPE CG 

68-LEAD CERAMIC PIN GRID ARRAY 
PACKAGE TYPE CG 

PLASTIC FLAT PACK PACKAGE TYPE PC 

S8-LEAD PLASTIC FLAT PACK 
PACKAGE TYPE PC 

CERAMIC LEAD LESS CHIP CARRIERS 
44-LEAD CERAMIC LEAOLESS 
PACKAGE TYPE C 

r--- ::::::~:: . . ... I ." .... ...., ~ 
'C:::::::::'·' ~::::::11 

.----fF===tt=T"T 

44-LEAO'CERAMIC LEAD LESS 
PACKAGE TYPE C 

23-3 





inter 
....... A 

Intel Corp 
303 Williams Avenue, SW. 
Suite 1422 
Huntsville 35801 
Tel: (20S) 533·9353 

ARIZONA 

Inlel Corp 
11225 N. 28th Drive 
Suite 214D 
Phoenix 85029 
Tel: (502) 869_4980 

CAUFORNIA 

Intel Corp. 

~~li?e ~~~ey Way 
Sacramento 95825 
Tel: (916) 929-4078 

Inlel Corp. 

~~ft~ Pft°rtunity Road 

~7~~) D~6~~359l3111 
Intel Corp,' 
2000 East 4th Street 
Suite 100 
Santa Ana 92705 
Tel: (714) 835·9642 
TWX: 910-595-1114 

Inlel Corp.' 
1350 Shorebird Way 
Mt View 94043 

~:(4Jr6.3~~~9~~~6 
910·338·0255 

Intel Corp,· 
5530 Corbin Avenue 
Suite 120 
Tarzana 91356 
Tel: (213) 708-0333 
TWX: 910-495·2045 

COLORADO 

Intel Corp 
4445 Northpark Drive 
Suite 100 
Colorado Springs 8:}9Q7 
Tel: (J03) 594-6622 

Intel Corp.' 
650 S. Cherry Street 
Suite 720 
Denver 80222 
Tel: (303) 321-8086 
TWX: 910·931·2289 

CONNECTICUT 

Inlel Corp. 
36 Padanaram Road 
Danbury 06810 
Tel: (203) 792·8366 
TWX: 710·456·1199 

EMC Corp. 
393 Center Street 

~~:Iti(~~J? 20665~~~91 
FLORIDA 

Inlel Corp. 
1500 NW. 62nd Street 
Suite 104 
Ft Lauderdale 33309 
Tel: (305) 771·0600 
TWX: 510·956·9407 

Intel Corp 
500 N. Mai\1and 
Suite 205 
Maitland 32751 
Tel: (305) 628·2393 
TWX: 810·853·9219 

GEORGIA 

tntel Corp 
3300 Holcombe Bridge Road 
Suite 225 
Norcross 30092 
Tel: (404) 449-0541 

DOMESTIC SALES OFFICES 

IWNOIS 

Intel Corp." 
2550 GoII Road 
Suite 815 
Rotting Meadows 60008 
Tel: (312) 981·7200 
TWX: 910·651·5881 

INDIANA 

Inlel Corp 
9100 Purdue Road 
Suite 400 
Ind,anapolis 46268 
Tel: (317) 875·0623 

IOWA 

Intel Corp. 

f~30A~~eA~d~e~~in8rive N ,E. \ 
Cedar Rapids 52402 
Tel: (319) 393·5510 

KANSAS 

Intel Corp. 
8400 W. 110th Street 
Suile 170 
Overland Park 66210 
Tel: (913) 642·8080 

LOUISIANA 

Industrial Digital Systems Corp. 
2332 Severn Avenue 
Suite 202 
Metairie 70001 
Tel: (504) 831·8492 

MARYLAND 

Inlel Corp." 

~~~~v:ra~oa16 Drive 

~:(3~116.8~~~i~~~0
Intel Corp.
1620 Elton Road
Silver Spring 20903
Tel: (301) 431·1200

MASSACHUSETTS

Inlel Corp."
27 Industrial Avenue
Chelmsford 01824
Tel: (617) 256·1800
TWX: 710·343·6333

EMC Corp
385 Elliot Siroet
Newton 02164
Tel: (617) 244·4740
TWX: 922531

MICHIGAN

Intel Corp."
26500 Northwestern Hwy
Suite 401
Southlield 48075
Tel: (313) 353·0920
TWX: 810·244·4915

MINNESOTA

Intel Corp.
3500 W. 80th Street
Suite 360

~7~J'~~:~~~~i~~2
MISSOURI

Intel Corp
4203 Earth City E)(pressway

~~~ 211 63045 
Tet: (314~ 291·1990 

NEW JERSEY 

~!~ta~O~a:a ttl 
Raritan Center 
Edison 08837 
Tel: (201) 225·3000 
TWX: 710·480·6238 

NEW MEXICO 

Intel Corp 
1120 Jaan Tabo N.E. 
Albuquerque 87112 
Tel: (505) 292·8086 

NEW YORK 

Intel Corp," 
300 Vanderbilt Motor Parkway 
Hauppauge 11788 
Tet: (516) 231·3300 
TWX: 510·227·6236 

Intel Corp 
80 Washington Street 
Poughkeepsie 12601 
Tel: (914) 473·2303 
TW>\: 510·248·0060 

Intel Corp." 
211 White Spruce Boulevard 
Rochester 14623 
Tel: (716) 424·1050 
TWX: 510·253·7391 

T·Squared 

~~:cu~~di~~~o~oad 
Tel: (315) 463·8592 
TWX: 710·541·0554 

T-Squared 
7353 Pinslord 
Victor Road 
Victor 14564 
Tel: (716) 924·9101 
TWX: 510·254·8542 

NORTH CAROUNA 

Intel Corp. 
2306 W, Meadowview Road 
Suite 206 
Greensboro 27407 
Tel: (919) 294·1541 

OHIO 

Intel Corp." 
6500 Poe Avenue 
Dayton 45414 
Tel: (513) 890·5350 
TWX: 810·450·2528 

~~~8'~~Efr:in~rd Bldg .• No, 300 

~?~ve~a;dha2~lr22 Boulevard

Tel: (216) 464·6915
TWX: 810-427·9298

OKLAHOMA

Intel Corp.
4157 S. Harvard Avenue
Suite 123
Tulsa 74135
Tel: (918) 749-8688

OREGON

Inlel Corp.
10700 SW. Beaverton
Hillsdale Highway
Suite 22
Beaverton 97005

~~:(5~ld-4~~8~~~6
PENNSYLVANIA

Intel Corp."
510 Pennsylvania Avenue
Fori Washington 19034
Tel: (215) 641·1000
TWX: 510-661·2077

Intel Corp."
201 Penn Center Boulevard
Suite 301W
Pinsburgh 15235
Tel: ~412) 823·4970

Q,E.D. Electronics
300 N. York Road
Hatboro 19040
Tel: (215) 674·9600

TEXAS

Inlel Corp."
12300 Ford Road
Suite 380
Dallas 75234
Tel: (214) 241·8087
TWX: 910·860·5617

Inlel Corp."
7322 S.W, Freeway
SUite t490
Houston 77074
Tel: (713) 988·8086
TWX: 910·881·2490

Industrial Digital Systems Corp.
5925 Sovereign
Suite 101
Houston 77036
Tel: (713)988·9421

Intel Corp.
313 E. Anderson Lane
SUite 314
Austin 78752
Tel: (512) 454·3628

UTAH

Intel Corp
268 West 400 South

~:llt ~~~j ~~~.8~~101
VIRGINIA

Intel Corp
1603 Santa Rosa Road
Suite 109
Richmond 23288
Tel: (804) 282·5668

WASHINGTON

Intel Corp
110 1101h Avenue N,E.
Suite 510
Bellevue 98004
Tel: (206) 453·8086
TWX: 910·443·3002

WISCONSIN

Intel Corp.
450 N, Sunnyslope Road
Suile 130
Brooklield 53005
Tel: (414) 784·9060

CANADA
ONTARIO

Inlel Semiconductor 01 Canada, Ltd.
39 Hwy, 7, Bell Mews
Nepean K2H 8R2
Tel: (613) 829·9714
TELEX: 053·4115

Intel Semiconductor of Canada, Ltd.
50 Galaxy Boulevard
Suite 12
Re)(dale M9W 4Y5
Tel: {416} 675·2105
TELEX: 06983574

Intel Semiconductor 01 Canada, Ltd.
201 Consumers Road
Suite 200
Willowdale M2J 4G8
Tel: (416) 494·6831
TELEX: 4946831

QUEBEC

Intel Semiconductor of Canada, Ltd.
3860 Cote Verlu Road
Suite 210
SI. Laurent H4R lV4
Tel: (514) 334·0560
TELEX: 05-824172

"Field Application location

--fArrow Electronics, Inc.
~~~"1:~~5Parl<wa)' So. 
Tel: (205) 882·2730 

ARIZONA 

tHamilton/Avnet Electronics 
505 S. Madison Drive 
Tempe 85281 

~:(egl~.9~~~1 

t~N~s:l~~~roup 
Phoenix 85021 

~:(e:~9~~!~~2 

fArrow Electronics, Inc. 
19748 Dearborn Street 
Chatsworth 91311 

~: (2J~6-4~~~I5: 
tHamilton/Avnel Electronics 
350 McCormick Avenue 
Costa Mesa 92626 

~;(7J~6.5~~=~' 
tHamilton/Avnel Electronics 
19515 So. Vermont Avenue 
Torrance 90502 

~:(2J~~~:: 
tHamitlon/Avnet ·Electronlcs 
1175 Bordeaux Drive 
Sunnyvale 94086 

~:(~o,sJ.3~~~~ 
tHamihon/Avnel EIeC1ronIcs 

~5 ~~~2:veoLM 
~:(7J~~5~~~~ 
tHamilton~ Avnet Electronics 
g~r! ~ity W::~lon Boulevard 

t::?c;(2J~6_~~-6~ 
ttlamilton Avnet/Bectronics 
21050 Erwin Street 
Woodland HillS 91367 

~:(2J~6-4':.~ 
tHamihon Electro Sales 
3170 Punman Street 
Costa Mesa 92626 

~:(7J~6~~~og 
tHamilton/Avnet Electronics 
4103 Northga1e BoulllV8.rd 
Sacramento 95834 
Tel: (916) 920-3150 

DOMESTIC DISTRIBUTORS 

CAUFORIIA (ConI'd) 

t;vrs &.i:~~~~~~ ~~ 
San Diego 92123 

~:(7J~6.3~i~;~~~' 

~~e ~!~~~U~ven~oup 
Santa Clara 95051 

~:(4~,8J_31~?o~~O 
tWyle Distribution Group 
17872 Cowan Avenue 
Irvine 92714 
Tel: (714) 641·1600 
TWX: 910·595·1572 

COLORADO 

twYle DIstribution Group 
451 E. 124th Avenue 
Thornton 80241 
Tel: (303) 457·9953 
TWX: 910-93&-0770 

vne! Electronics 
chard Road 

80111 
74().1017 

935-0787 

CONNECTICUT 

t 

tHamilton/Avnet Electronics 
Commerce Induslrial Park 
Commerce Drive 

~~~~~3r:J~.2800 
TWX: 710·456-9974

. tHarvey ElectroniCs
112 Main Street
Norwalk 06851

·~:(2~,aJ.4ti~31~~
FLORIDA

tArrow Electronics, Inc.
1001 NW. 62nd Street
Suite 108
Ft. Lauderdale 33309
Tel: (305) 77&-7790
TWX: 51()'955-9456

tArrow E~iCS, Inc.
50 Woodlake Drive W.
Bldg. B

~~~ (3~lJ ~~~15480 
TWX: 510·959-6337 

~i~~~~3~ioniCs 
~:(3£5J.9~3~ 
tHamilton/Avne! Electronics 
3197 Tech. Drive North 

¥!I: =b~~&-:l82 
TWX: 810-863-0374 

tPioneer/AIta. Monte Springs 
221 N. Lake Blvd. 
Sulle 412 

~:~fIs~i~~ 32701 

tPioneer/Ft. Lauderdale 
1500 62nd Street N.W. 
Suite 506 . 
Fl Lauderdale 33309 
Tel: (305) 771·7520 
TWX: 510-955-9653 

GEORGIA 

tArrow Electronics, Inc 
2979 PIlCiIic Drive 
Norcross 30071 

~:(~O:~7~~~2 
tHamilton/Avnet Electronics 
5825 D. Peachtree Corners 
Norcross 30092 

~:('Wi'J.7~~~0 
tPioneer/Georgia ' 
5835B Peachtree Corners E 
Norcross 30092 
Norcross 30092 

~:(\O:~7~~~~1 

IWNOIS 

tArrow Eiec1ronlcs, Inc. 

~~~U~be~:"~~~5 Street . 
Tel: (312) 397·3440
TWX: 910-291·3?44

tHamilton/Avnet Electronics
1130 Thorndale Avenue
Bensenville 60106
Tel: (312) 860·7780
TWX: ·910·227·0060

T~51nee~~~I;a~~lve
f~: 13~j :~~~~8~OOO7
TWX: 910·222·1834

INDIANA

tArrow Electronics, Inc.
2718 Rand Roael
Indianapolis 46241

~: ~~~~:~.~119
tHamilton/Avnet Eiec1ronics
485 Gradle DrNe
Carmel 46032
Tel. (317) 844·9333
TWX: 810-,260-3966

tPloneer/lndiana
6408 Castleplaee DrJl/e
Indianapolis 46250
Tel: (317) 849·7300
TWX: 810-260-1794

KANSAS

tHamllton/Avnet Electronics
9219 Quivera Road
Overland Park 66215
Tel: (913) 888-8900
TWX: 910·743·0005

IlARYLAND

tHamillon/Avnet Electronics
6822 oak Hall Lane
Cotumbia 21045

~:(3~11~8~~~~

T~~~ 1~~t:I~~rporatlon

~~O~t~4~~{;OTWX: 710-828·9702

t~6~~ailher Road
• Gaithersburg 20877

~:(3~116~s.o~~~
IlA88ACHUSETTS
tArrow Electronics, Inc.
1 Arrow Drive
Woburn 01801

~:(6if&3~3l6~~8
tHamillon/Avnet Electronics
50 Tower Office Park
WobUrn 01801
Tel: (617) 935·9700
TWX: 710·393'()382

tHarvey/Boston
44 Hartwell Avenue.

~rerf6.:~k~~
M""""
!~foowva=r~::: Inc.
Ann Arbor' 48104
Tel: (313) 971-8220
TWX: 810-223-6020

tPioneer/Michigan
13485 Stamford
LivOnia 48150
Tel: (313) 525·1800
TWX: 810·242·3271

tHamillon/Avnei Electronics
32487 Schoolcraft Road
U'IOnla 48150

~: (3J~~2~~~:'?'~

MINNESOTA

tArrow Electronics, Inc.
5230 W. 73rd Street
Edina 55435
Tel: (612) 830-1800
TWX: 910·576-3125

tHamilton/Avnet Electronics
10300 Bren Road East
Minnetonka 55343
Tel: (612) 932-0600
TWX: (910) 576-2720

tPioneer IT win Cilies
10203 Bren Road East
Minnetonka 55343

~:(6J~6.5~~2~~4
MIBSOUFd

tArrow Electronics, Inc
2380 Schuetz .
51. Louis 63141
Tel: (314) 567-6888
TWX: 910·764-0882

tHamillon/Avnet Electronics
13743 Shofellne Court
Earth CIty 63045
Tel: (314) 344·1200
TWX: 910-762·0684

NEW HAMPSHIRE

tArrow Electronics, Inc.
1 Perimeter Road
Manchester 03103
Tel: (603) 668-6968
TWX: 710·220·1684

NEW JERSEY

5~~~~io1;e~~
Tel: (215) 928-1800
TWX: 710·897·0829

tArrow Electronics, Inc
2 Industrial Road
Fairfield 07006
Tel: (201) 575-5300
TWX: 710·998-2206

tHamillon/Avnet Electronics
1 KeyStone Avenue
Bldg. 36
Cherry Hill 08003

~:(sr,a~9:~~~~W
tHamilton/Avnet Electronics
10 Industrial
Fairfield 07006
Tel: (201) 575-3390
TWX: 710·734-4388

tHarvey Electronics
45 Route 46
Plnebrook 07058

~:(2?~~7~~~~~W
tMTI 5ystems Sales
383 Route 46 W
Fairfield 07006
Tel: (201) 227·5552

NEW MEXtcO

tAilianee Electronics Inc.
11030 Cochltl S.E.
Albuquerque 87123

~:(5~1~.er~,~~,~
tHamillon/Avnet ElectroniCS
2524 Baylor Drive S.E
Albuquerque 87106
Tel: (505) 765-1500
TWX: 910·989-0614

NEW YORK

tArrow Electronics, Inc.
900 Broad Hollow Road
FarminOdale 11735
Tel: (516) 694-6800
TWX: 510·224-6126

tArrow Electronics, Inc.
3000 South Winton Road
Rochester 14623

~:(7J~6'2~~~~
tArrow Electronics, Inc.
7705 Mallage Dnve
Uverpool 13088
Tel: (315) 652·1000
TWX: 710-545-0230

tArrow 'Electronics, Inc
20, Oser Avenue

~~:Pft;~2~1~~
TWX: 510·227·6623

tMicrocomputer System Technical Demonstrator Centers

NEW YORK (Cont'd)

tHamilton/Avnet Electronics
333 Metro Park
Rochester 14623
Tel: (716) 475·9130
TWX: 510·253·5470

tHamilton/ Avnet Electronics
16 Corporate Circle
E, Syracuse 13057
Tel: (315) 437·2641
TWX: 710·541·1560

tHamilton/ Avnet Electronics
5 Hub Drive

~e~~vi~~i6)Lo~g4.~boOd 11747
TWX: 510·224·6166

tHarvey Electronics
P,O. BOll 1208
Binghamton 13902
Tel: (607) 748·8211
TWX: 510·252·0893

tHarvey Electronics
60 Crossway Park West

~er(~~~' igl~~,~~and 11797
TWX: 510·221·2184

tHarvey/Rochester
840 Fairport Park
Falrpon 14450
Tel: (716) 381-7070
TWX: 510-253-7001

tMTI Systems Sales
38 Harbor Park Drive
Port Washington 11050
Tel: (516) 621-6200
TWX: 510-223·0846

NORTH CAROLINA

tArrow Electronics, Inc
938 Burke Street
Winston-Salem 27101

~x:(9Jr&.9~;~3~~~1
tHamllton/Avnet Electronics
~~:~g~Pg~~o:orest Drive

~:x:(9Jr6_9~1~ig~~9
tPioneer/Carolina
103 Industrial Avenue
Greensboro 27406
Tel: (919) 273·4441
TWX: 510-925-1114

OHIO

tArrow Electronics, Inc
7620 McEwen Road
Centerville 45459
Tel: (513) 435-5563
TWX: 810-459-1611

tArrow .Electronics, Inc.
6238 Cochran Road
Solon 44139
Tel: (216) 248-3990
TWX: 810-427-9409

tHar-:ilton/Avnet Electronics
954 Senate Drive
Dayton 45459
Tel: (513) 433·0610
TWX: 810-450-2531

tHamilton/ Avnet Electronics
4588 Emery Industrial Parkway

~f~r{~~~\lle83~~~~~tg 44128
TWX: 810-427-9452

DOMESTIC DISTRIBUTORS

OHIO (Cont'd)

tPioneer /Dayton
4433 Interpoint Boulevard
Dayton 45424

~:(5~~L~~~1~~go
tPioneer /Cleveland
4800 E. 131s1 Street
Cleveland 44105
Tel (216) 587·3600
TWX: 810·422-2211

OKLAHOMA

tArrow Electronics, Inc'
4719 S, MemOrial Drive
Tulsa 74145
Tel: (918) 665-7700

OREGON

tAlmac Eleclronics Corporation
8022 S.W, Nimbus, Bldg. 7
Beaverton 97005
Tel: (503) 641·9070
TWX: 910-467-8743

tHamlllon/ Avnet Electronics
6024 SW. Jean Road
Bldg. C, SUite 10

i~te {g~ie~35.%~14
TWX: 910-455·8179

PENNSYLVANIA

tArrow Electronics, Inc
650 Seco Road
Monroeville t5146
Tel: (412) 856·7000

tPloneer/Pittsburgh
259 Kappa Drive
Pittsburgh 15238
Tel: {412} 782·2300
TWX: 710·795-3122

~~~on6T~{~~~w~~~d Valley 
Horsham 19044 
Tel. (215j 674-4000 
TWX: 510·665·6778 

TEXAS 

tArrow Electronics, Inc 
13715 Gama Road 
Dallas 75234 
Tel: (214) 386·7500 
TWX: 910·660·5377 

fArrow Electronics, Inc 
10899 Kinghurst 
Suite 100 
Houslon 77099 
Tel: (713) 530·4700 
TWX: 910·880-4439 

tArrow Electronics, Inc 10125 
Metropolitan 
Austin 78758 
Tel: (512) 835-4100 
TWX: 9tO·674-1348 

tHamiiton/Avnet Electronics 
2401 Rutland 
Austm 78757 
Tel: (512) 837·8911 
TWX: 910·874·1319 

tHamilton/ Avnet Electronics 
2111 W. Walnut Hill Lane 
Irving 75062 
Tel: (214) 659·4100 
TWX: 910-860·5929 

TEXAS (Cont'd) 

tHamilton/Avnet Electronics 
8750 Wesl Park 
Hosuton 77063 
Tel: (713) 780-1771 
TWX: 910·881·5523 

tPlOneer/Auslin 
9901 Burnel Road 
Aushn 78758 
Tel: (512) 835·4000 
TWX: 910·874-1323 

tPloneer/Dallas 
13710 Omega Road 
Dallas 75234 
Tel: (214j 386-7300 
TWX: 910·850·5563 

tPloneer/Houslon 
5853 Point West Drive 
Houston 77036 
Tel. (713) 988·5555 
TWX: 910·881·1606 

UTAH 

tHamittonl Avnet Electronics 
1585 West 2100 South 
Satt Lake City 84119 
Tel. (801) 972·2800 
TWX: 910-925·4018 

Wyle Distribution Group 
1959 South 4130 West, Unit B 
Sail Lake City 84104 
Tel: (80t) 974·9953 

WASHINGTON 

tAlmac Electronics Corporation 
t4360 S.E. Easlgate Way 
Bellevue 98007 
Tel: (206) 643·9992 
TWX: 9tO·444-2067 

tArrow Eleclronlcs, Inc 
14320 N.E, 21s1 Street 
Bellevue 98007 
Tel: (206) 643·4800 
TWX: 910-444-2017 

tHamilton/Avnet Electronics 
14212 N.E. 21st Slreet 
Bellevue 98005 
Tel: J206) 453·5874 
TWX: 910·443·2469 

WISCONSIN 

tArrow Electronics, Inc 
430 W. Rausson Avenue 
Oakcreek 53154 
Tel: (414) 764-6600 
TWX: 910·262-1193 

tHamilton/ Avnet ElectroniCS 
2975 Moorland Road 
New Berlin 53151 
Tel: (414) 784·4510 
TWX: 910-262-1182 

CANADA 
ALBERTA 

tHamilton/ Avnet Electronics 
2816 21st Street N.E 
Calgary T2E 6Z3 
Tel: (403) 230·3586 
TWX: 03·827·642 

tL.A. Varah, ltd 
4742 14th Street N.E 
Calgary T2D 6L7 
Tel, (403)230·1235 
TWX: 038-258·97 

ALBERTA (ConI'd) 

Zentronlcs 

~g~o ~!th Avenue N,E. 
Calgary T2A 6J4 
Tel: (403) 272·1021 

BRITISH COLUMBIA 

LA Varah, ltd 
2077 Albena Street 
Vancouver V5Y lC4 
Tel: (604) 873-3211 
TWX: 610·929-1068 

Zentronlcs 
108-11400 Bridgeport Road 
Richmond V6X tT2 
Tel· (604) 273-5575 
TWX: 04-5077--89 

MANITOBA 

L.A, Varah, ltd 
12·1832 King Edward Sireet 
Winnipeg R2R ONI 
Tel: (204j 633-6190 
TWX: 07-55·365 

Zentronlcs 
590 Berry Streel 
Winnipeg RJH OSI 
Tel: (204) 775-8661 

ONTARIO 

Hamllton/Avnet Electronics 
6845 Rellwood Road 
Unils G & H 
Mississauga L4V 1R2 
Tel: (416) 677-7432 
TWX: 610-492-8867 

Hamilton/Avnet ElectroniCS 
2\0 Colonnade Road South 
Nepean K2E 7L5 
Tel: (613) 226--1700 
TWX, 05·349-71 

LA Varah, ltd. 
505 Kenora Avenue 
Hamilton L8E 3P2 
Tel: (416) 561·9311 
TWX: 061·8349 

Zentronics 
8 Tilbury Court 
Brampton L6T 3T4 
Tel: (416) 451·9600 
TWX: 06·976·78 

Zentronics 
564/10 Weber Street North 
Waterloo N2L 5C6 
Tel: (519) 884·5700 

Zentronics 
590 Berry Slreet 
Winnipeg R3H OSI 
Tel: (204) 775·8661 

QUEBEC 

Hamilton/Avnet Electronics 
2670 Sabourin Sireel 
SI. Laurent H4S 1M2 
Tel: (514) 331-6443 
TWX: 610-421·3731 

Zentronics 
505 locke Street 
SI. Laurent H4T lX7 
Tel: (514) 735·5361 
TWX: 05-827-535 

tMicrocomputer Syslem Technical Demonstrator Centers 



inter 

BELGIUM 

Intel'Corporation SA 

~~ d~en~OUlln a Papler 51 
Bolle 1 
9-1160 Brussels 
Tel: (02)661 07 11 
TELEX: 28414 

DENMARK 

Intel Denmark A/S' 

~K'~toeJ c~~n~~e/I~~t 
Tel: (Ot) 18 20 00 
TELEX. 19567 

FINLAND 

Intel Finland QY 
Hameentl8 103 
SF . 00550 Helsinki 55 
Tel: 0/716 955 
TELEX' 123 332 

fRANCE 
Intel Corporation, SAR.L' 
5 Place de la Balance 
Silie 223 

~:1~2~OI~u~~ {id~~ 
TELEX: 270475 

EUROPEAN SALES OFFICES 

FRANCE (Cont'd) 

Intel Corporation, S.A R L. 
Immeuble BBC 
4 Qual des Elrolls 
69005 Lyon 
Tel. (7) 842 40 89 
TELEX: 305153 

WEST GERMANY 

Intel Semiconductor GmbH" 
Seldlslrass8 27 
0-8000 Muenchen 2 
Tel. (89) 53891 
TELEX' 05-23177 INTL 0 

Inlel Semiconductor GmbH" 
Mainzer Slras~e 75 

.0-6200 Wiesbaden 1 
Tel. (6121) 70 08 74 
TELEX 04186183 INTW 0 

Intel Semiconductor GmbH 
Brueckstrasse 61 
7012 Fellbach 
West Germany 
Tel. (711) 58 00 82 
TElEX. 7254826 lNTS D 

Intel Semiconductor GmbH" 
Hohenzollern Strasse 5-
3000 Hannover 1 
Te)' (511) 34 40 81 
TELEX 923625 INTH 0 

Intel Semiconductor GmbH 
Ober-Ratherslrasse 2 
0-4000 Dusseldorf 30 
Tel. (211) 65 10 54 
TELEX. 08-58977 INTL 0 

ISRAEL 

Intel Semiconductor Ud.­
P.O. Box 1659 
Haifa 
Tel: 4/524 
TELEX 46511 

ITALY 

Inlel Corporation !talia Spa­
Mllanollori, Palazzo E 
20094 Assago (Milano) 
Tel (02) 824 00 06 
TELEX: 315183 INTMIL 

NETHERLANDS 

Intel Semiconductor Nederland B.V.­
Alexanderpoort Building 
Marten'Meesweg 93 
3068 Rotlerdam 
Tel' (10) 21 23 77 
TELEX' 22283 

NORWAY 

Intel Norway AIS 
P.O. Box 92 
Hvamveien 4 
N-2013 

f~l:e"(~) 742 420 
TELEX 18018 

SWEDEN 

Inlel Sweden A.B" 
Box 20092 
Archimedesvagen 5 
S·16120 Bromma 
Tel (08) 98 53 85 
TELEX: 12261 

SWITZERLAND 

Intel Semiconductor A.G.­
Forchstrasse 95 
CH 8032 Zurich 
Tel' (ol) 55 45 02 
TELEX: 57989 ICH CH 

UNITED KINGDOM 

Intel Corporation (U K.) Ud.-
5 Hospital Street 
Nantwlch, Cheshire CW5 5RE 
Tel' (0270) 626 560 
TELEX: 36620 

Intel Corporation (UK) Ud.­
Pipers Way 
Swindon, Wiltshire SN3 1 RJ 
Tei' (0793) 488 388 
TELEX: 444447 INT SWN 

-Field Application Location 

EUROPEAN DISTRIBUTORS/REPRESENTATIVES 

AUSTRIA 

Bacher Elektranlsche Geraete GmbH 
Rolemuehlgasse 26 
A 1120 Vienna 
Tel. (222) 83 63 96 
TELEX 11532 BASAT A 

BELGIUM 

Inelco Belgium S.A 
Ave des Croix de Guerre 94 
B1I20 Brussels 
Tel' (02) 216 01 60 
TELEX. 25441 

DENMARK 

Mu!tIKomponent AIS 
Fabl"iksparken 31 
OK-2600 Gloskrup 
Tel: (02) 45 66 45 
TX: 33355 

ScandinaVian Semiconductor 
Supply AIS 

~~~2~oga1!ode8nhagen 
Tel: (01) 83 50 90
TELEX: 19037

FINLAND

Of Fintronic AB
Melkonkatu 24 A
SF-0021O
HelSinki 21
Tel. (0) 692 60 22
TELEX: 124 224 Ftron SF

FRANCE

Generim
Z.1. de Courtaboeuf
Avenue de la Bal\lque
91943 Les Uhs Cede)(-B P 88
Tel: (6) 907 78 79
TELEX. F691700

Jermyn S.A
rue Jules Ferry 35

~;1~7~,)B8~~OI~ 04
TELEX. 21810 F

Melrologie
La Tour d' Asnleres
1, Avenue. Laurent Cely
92606-Asnleres
Tel (1) 791 44 44
TELEX: 611-448

fRANCE (Cont'd)

Tekelec Alrtronic
Cite des <Bruyeres
Rue Carle Vernet
F-92310 Sevres
Tel' (OI) 534 75 35
TELEX 204552

WEST GERMANY

ElectrOniC 2000 Vertriebs A G
Neumarlder Strasse 75
0-8000 Munich 80
Tel. (89) 43 40 61
TELEX 522561 EIEC 0

Jermyn GmbH
Postlach 1180
Schulstrasse 48
0-6277 Bad Camberg
Tel: (06434) 231
TELEX' 484426 JERM D

Celdls Enatechnik Syslems GmbH
Gutenbergslrasse 4
2359 Hensledt-Ulzburg 1
Tel' (04193) 4026
TELEX 2180260

Proelectron Vertflebs GmbH
Ma)(Planck Strasse 1-3
6072 Oreieich bel Frankfurt
iel' (6103) 33564
TELEX. 417983

IRELAND

Micro Marketin~
Glenageary Office Park
Glenageary
Co. Dublin
Tel: (1) 85 62 88
TELEX 31584

ISRAEL

Eastronics Ud
11 Rozanis Street
PO 80)(39300
Tel Aviv 61390
Tel (3) 47 51 51
TELEX: 33638

ITALY

Electra 3S S P.A
V,ale Elvezia, 18
I 20154 Milano
Tel (2) 34 97 51
TELEX: 332332

ITALY (Cont'd)

Intesi
Mllanliori Pal. E/5
20090 Assago
Milano
Tel (02) 82470
TELEX 311351

NETHERLANDS

KonlOg & Hartman
Koperwerl 30
P.O. Box 43220
2544 EN's Gravenhage
Tel 31 (70) 210.101
TELEX: 31528

NORWAY

Nordlsk Elektronlc (Norge) A/S
Postofflce Box 122

r36~ds~~na~it~d 4

Tel (2) 786 210
TELEX 77546

PORTUGAL

Ditram
Componentes E Electronica LOA
Av. Miguel Bombarda, 133
PlaOO lisboa
Tel: (19) 545 313
TELEX: 14182 Brieks·P

SPATN

Interface S.A
Ronda San Pedro 22,3
Barcelona 10
Tet. (3) 301 78 51
TWX. 51508

In SESA

~iduri~ ~Qgel 23-3

Tet (1l 419 54 00
TELEX 27707

SWEDEN

AB Gosta Backstrom
80)(12009
Aistroemergatan 22
S-10221 Siockholm 12
Tel (8) 541 080
TELEX 10135

SWEDEN (Cont'd)

Nordlsk ElectrOnlk AB
80)(27301
Sandhamnsgatan 71
S·10254 Stockholm
Tel (8) 635 040
TELEX 10547

SWITZERLAND

Industrade AG
Gemsenstrasse 2
Poslcheck 80 - 21190

f~-8~g,\ ~~3Ch23 20
TELEX: 56788 INDEL CH

UNITED KINGDOM

Bytech Ud
Unit 57
London Road
Earley, ReadlOg
Berkshire
Tel. (0734) 61031
TELEX: 848215

Comway Mlcrosyslems Ud
Markel Street
UK-Bracknell, Berkshire
Tel' 44 (344) 55333
TELEX: 847201

Jermyn Industries
Vestry Estate
Sevenoaks, Kent
Tel (0732) 450144
TELEX: 95142

M.E.O.L
East Lane Road
North Wembley
Middlesex HA9 7PP
Tel: (01) 904 93 07
TELEX 28817

Rapid Recall. Ud
RaPId House/Denmark St

~~~~s,W~~~~~d. HP11 2ER 
Tel: (0494) 26 271 
TELEX: 837931 

YUGOSLAVIA 

H R MIcroelectronics Enterprises 
P.O. Box 5604 
San Jose, California 95150 
Tel: 408/978-8000 
TELEX 278-559 



AUSTRALIA 

Inlel Semiconductor Ply. Ltd. 

~roc~~~h~u~~~h~ay 
level 6 
Crows Nest, NSW, 2089 
Australia 
Tel: 011-61-2-436-2744 
TELEX: 790-20097 
FAX: 011·61·2-923-2632 

INTERNATIONAL SALES OFFICES 

HONG KONQ 

Intel Semiconductor Ltd 
13/F Hong Kong Trade Centre 
161-167 Des Voeux Road Central 
Tel. 011-852-5-450·885 
TELEX; 63869 tSlHKHX 

JAPAN 

Intel Japan K.K 
5·6 Tokodai, Toyosalo·machl 
i~~kuO~9~~7:8~~frakl-ken 300-26 

TELEY.; 03656-160 

JAPAN (Conl'd) 

Intel Japan K.K." 
2-1-15 Naka·machl 
Atsugl, Kanagawa 243 
Tet. 0462-23-3511 

Intel Japan KK." 

~~~i~, ~~C~oa-~~~ 
Tel 0424·88·3151

Intel Japan K.K.·
2·69 Hon·cho

~~ta~:lg:24~6~~ra 360

JAPAN (Com'd)

Inlel Japan K K.·
2-4-1 Terauchi

i~r:o~~863~~9k,a 560

Inlel Japan KK
1-5-1 Marunouchl
Chlyoda-ku, Tokyo 100
Tel: 03·201·3621/3681

Inlel Japan K.K.·
1-23-9 Shlnmachi

~:I~agoj_~-~6:2J31kYO 154

'Fleld Application location

INTERNATIONAL DISTRIBUTORS/REPRESENTATIVES

ARGENTINA

VlC S.Rl.
Sarmiento 1630, 1 PISO
1042 Buenos Aires
Tel: 35-1201/9242
TELEX. PubliC Booth 9900 or 9901

Mailing Address
SOlmex Internahonal Corporation
15 Park Row, Room #1730
New York, New York 10038
(212) 406·3052
Altn: Gaston Briones

AUSTRAUA

. Total Electronics
9 Harker Street
Burwood
Victoria 3125
Tel: 61 1 288·4044
TELEX: AA 31261

Mailmg Address
Private Bag 250
Burwood, VICtoria 3125
Australia

Total Electronics
#1 Johnstone lane
lane Cove, N.SW. 2066
TELEX: 26297

BRAZIL

Icotron S.A
05110 Av. Mutlnga 3650-6 Andar
Plfituba Sao Paulo
Tel. 261-0211
TELEX: 1122274j1CQTBR

CHILE

DIN
AV VIC MCKENNA 204
Casilia 6055
Sanllago
Tel. 227 564
TELEX: 352 003

COWMSIA

International Computer Machmes
Carrera 7 No. 72-34
Apdo. Aereo 19403
Bogota 1
Tel: 211-7282
TELEX: 45716 ICM CO

HONQ KONQ

Schmidt & Co. Ltd
Wing on Centre. 28th Floor
111 Connaught Road Central
Tel: 5 8521 222
TELEX: 74766 SCHMC HX

INDIA

Mlcronic DeVices
104/109C, Nlrmal Industrial Estate
Sion (E)

~1~b4aJ6_{~g022
TELEX· 011·71447 MDEV IN

JAPAN

Asahi Electronics Co. Ltd.
KMM Btdg. Room 407
2-14-1 Asano, Kokura
Klta-Ku, Kitakyushu City 802
Tel: (093) 511·6471
TELEX: AECKY 7126-16

JAPAN (Cont'd)

Hamllton-Avnel Electronics Japan ltd.
YU and YOU Bldg. 1-4 Horidome­
Cho
Nlhonbashi Chuo-Ku, Tokyo 103
Tel: (03) 662-9911
TELEX: 2523774

Ayoyo ElectriC Corp
Konwa Bldg
1-12-22, TsuklJI
Chuo-Ku, Tokyo 104
Tel: (03) 543-7711/541-7311

Tokyo Electron Ltd
Shin Juku, Nomura Bldg

~~;~ ~~t~':~~,in T~k~~-I~~~me
Tel. (03) 343-4411
TELEX: 232-2220 lABTEl J

KOREA

Koram Digital
2nd Floor, Government Pension Bldg
1-589, YOldo-Dong
Youngdungpo-Ku
Seoul 150
Tel· 782-8039 or 8049
TELEX: KDDIGIT K25 299

HEW ZEALAND

Mclean Informallon Technology ltd
459 Kyber Pass Road. Newmarket,
P.O. Box 9464, Newmarket
Auckland 1, New Zealand
Tel. 501-801, 501-219, 587-037
TELEX NZ21570 THERMAL

SINGAPORE

General Engineers Corporabon Ply
lid

~~-0~ig8 ~s~a~ult~O~?orey Comple)(
Singapore 0511
Tel: 011·65-271-3163
TELEX: RS23987 GENERCD

SOUTH AFRICA
Electronic BUilding Elements, Ply ltd
P.O Box 4609
Hazelwood, Pretoria 0001
Tel: 011-27-12-46-9221 or 9227
TELEX· 3-0181 SA

TAIWAN

Taiwan Automallon Corp.'
3rd Floor #75, Section 4
Nanking East Road
Taipei
Tel: 771-0940 or 0941
TelEX. 11942 TAIAUTO

YUGOSLAVIA

H. R. Microelectronics Enterprises
P.O. 60)(5604
San Jose, California 95150
Tel: (408) 978-8000
TELEX. 278-559

'Field Application location

CAUI'OIIIOA

~':'o~ebirdWay
Mt View 94043

~:(4J~~3~~)~
910·338-0255

Intel Corp.
2000 E. 4th Streel
Suite 110
Santa Ana 92705

i:x: (7J~6_~~:2~~7~
Intel Corp.

~:~O ~2rf1 Road
Tel: 811r 268--3563

Intel Corp.
5530 N. Corbin Avenue
Suite 120
Tarzana 91356
Tel: (213) 708,0333

COLORADO

COHHlCTlCUT
Imel Corp.
36 Padanaram Road

i:~3)OO:~~-8366
FLORIDA

~~ ~\e: 62nd Street
Suite 1().4
Ft. Lauderdale 33309

~:(3g15J.9~~~~~

~ ~aitland Avenue
Suite 205
Maitland 32751

~:(3~1~_8~~~9~~:3
Intel Corp.
5151 AdanSOfl Street
Orlando 32804
Tel: (305) 626-2393

U.S. SERVICE OFFICES

GIORGIA

~~be Bridge Road
Sulte 225
Norcross 30092
Tel: (404) 441-1171

....-
Intel Corp.
2550 Golf Road
Suite 815

~73Jr~~~7r8
ICAHIA8
Intel Corp.
8400 W. 110th Street
Suile 170
Overland Park 66210
Tel: (913) 642-8080

...... yLAHD

Intel Corp. 7257 Parkway Drive
Hanover 21076

~:(~~6~~~~
IIA8MCHUIETT8
Intel Corp.
27 Industrial Avenue
Chelmsford 01824

~:(6~f~3~:t\s:
IIICHIOAN

Intel Corp.
26500 Nonhwestem Highway
Suite 401
Southfield 48075

~:(3Jr~2~~-4~~O
-.orA

~~1 ~ Boulevard
Suite 355
Edina 55435

~:(6Jf~~~:t~~2
IIISIOURI

Intel Corp.
4203 Earth City Expressway
Suile 143

~~~ (39:r :~~'5 

MEW JER8E'( 

Intel Corp. 
385 Sylvan Avenue 
E~1ewood Cliffs 07632 

~:(2~~6_~~:~~O 
NEW YORK 
Intel Corp. 
2255 lyell Avenue 
Rochester 14606 
Tel: (716) 254-6120 

IIOIITH CAROLINA 

Inlel Corp. 
5600 Executive Drive 
Suite 113 
Charlotte 28212 
Tel: (704) 568-8966 

Intel Corp. 
2306 W. Meadowview Road 
Suite 206 
Greensboro 27407 
Tel: (919) 294-1541 

01lIO 

~:gr?n~&ainard Bldg. 

Inlel Corp. 
6500 Poe Avenue 
Dayton 45414 
Tel: (800) 325-4415 
lW.(: 810-450-2528 

CJl(LAHOMA 

Intel Corp 
4157 S. Harvard 
Suite 123 
Tulsa 74101 
Tel: (918) 744-8068 

_""" 
Inlel Corp. 
10700 S.w. Beaverton-Hillsdale 

~~1':?2 
Beaverton 97005 

~:(5~1~-4~~~8~~~6 

PlNNBYLVANtA 

Intel Corp. 
500 Pennsylvania AYenue 
Fort Washington 19034 

~/2Jf6~~2~~ 
Intel Corp . 
201 Penn Center Bouleyard 
Suite 301 W 

~~~(;~;) 15lli540 

TEXAS

~~~I ~~rson lane 
Suite 314 
Austin 78752 

~:(5Jf6~~4~,~~8: 
Intel Corp. 
12300 ford Road 
Suite 380 
Dallas 75234 

~:(2J:6.s~~~~~7 
Intel Corp. 
7322 S.W. Freeway 
Suite 1490 
Hooslon 77074 
Tel: (713) 988-8088 
TWX: 910-881·2490 

VIRGINIA 

Intel Corp. 
7700 leesburg Pike 
Suite 412 
Falls Church 22043 

~: (7~,3J_9~~!5~~g7 

WASHINGTON 

Intel Corp. 
110 110th Avenue N.E. 
Suite 510 
BeHeyue 98004 
Tel 1-800-538-0662 
TWX: 910-443·3002 

WISCOIISIN 

~~I ?'EunnySlope Road 
Suite 148 
Brookfield 53005 
Tel: (414) 784-9060 



L{n~ Pl.0 
Pl.l 
Pl.2 
Pl.3 
Pl.4 
Pl.5 
Pl.6 
Pl.7 
RST 

RXD P3.0 
TXD P3.1 
INTO P3.2 
INTl P3.3 

TO P3.4 
Tl P3.5 

WR P3.6 

ACH5/PO.5 
ACH4/PO.4 

ANGND 
VREF 

VPD 
EXTlNT/P2.2 

RESET 
RXD/P2.1 
TXD/P2.0 

Pl.D 
Pl.l 
Pl.2 
Pl.3 
Pl.4 
HSID 
HSI1 

HSI21HS04 

Ail P3.7 
XTAL2 
XTALl 

VSS 

805218032 ONLY 

VCC TO 
PO.O ADO XTALl 
PO.l ADl XTAL2 
PO.2 AD2 RESET 
PO.3 AD3 SS 
PO.4 AD4 iN'i' 
PO.5 ADS EA 
PO.6 AD6 RD 
PO.7 AD7 PSEN 
EAivDD 'WR 

ALE/PROG ALE 
PSEN DBO 
P2.7 A15 DBl 
P2.6A14 DB2 
P2.5 A13 DB3 
P2.4 A12 DB4 
P2.3 Al1 DB5 
P2.2 Al0 DB6 
P2.1 A9 DB7 
P2.0 A8 VSS 

1 2345678 91011121314151617 
68 18 
67 19 
66 20 
65 21 
64 22 
63 23 
62 68 PIN 24 
61 25 
60 MCS-96 26 
59 27 
58' 28 
57 29 
56 30 
55 31 
54 32 
53 33 
52, 34 
~~~~~%~«~~~~~~~~~ 

VCC
Tl
P27
P26
P25 P50 VCC
P24 P40 PSl
P17 P41 P52
P16 P42 P53
P15 P43 P60
P14 CS P61
P13 PROG P62
P12 P23 P63
Pll P22 P73

P\O P21 P72

VDD P2D P71
PROG GND P7D
P23
P22
P21
P20

RXD/P2.1 RESET
TXD/P2.0 EXTINT/P2.2

HSID VPD

ADO/P3.0
HSll VREF

HSI21HS04 ANGND
AD1/P3.1

HSI3/HS05 ACH4/PD.4
AD2fP3.2 HSOO ACH5/PO.5
AD3/P3.3 HSOl ACH7/PO.7
AD4/P3.4

HS02 ACH6/PO.6
AD5/P3.5

HS03 Eli:
AD6/P3.6 VSS VCC
AD7fP3.7

VBB VSS
AD8/P4.0

PWMlP2.5 XTALl
A09/P4.1

WR XTAL2
AD10/P4.2

BHE ALE
ADll/P4.3

READY Ail
ADl21P4.4

AD15/P4.7 ADO/P3.0
AD13/P4.5 AD14/P4.6 AD1/P3.1
AD14/P4.6

AD13/P4.5 AD21P3.2
AD15/P4.7 ADl21P4.4 AD3/P3.3
T2CLKlP2.3

ADll/P4.3 AD4/P3.4
AD10/P4.2 ADS/P3.5

AD9/P4.1 AD6IP3.6
AD8/P4.0 AD7/P3.7

