)IOO(]plIEH JI[JOIIUOI0II1

7861

Pioneer

PIONEER-STANDARD ELECTRONICS, INC

Order Number: 210918-002




LITERATURE

In addition to the product line Handbooks listed below, the INTEL PRODUCT GUIDE (no charge. Order

No. 210846) provides an overview of Intel’s complete product line and customer services.

Consultthe INTEL LITERATURE GUIDE fora complete listing of Intel literature. TO ORDER literature
in the United States, write or call the Intel Literature Department, 3065 Bowers Avenue, Santa Clara. CA
95051, (800) 538-1876, or (800) 672-1833 (California only). TO ORDER literature from international
locations, contact the nearest Intel sales office or distributor (see listings in the back of most any Intel

literature).

1984 HANDBOOKS

Memory Components Handbook (Order No. 210830)
Contains all application notes, article reprints, data sheets, and other design information
on RAMs, DRAMs, EPROMs, E2PROMs, Bubble Memories.

Telecommunication Products Handbook (Order No. 230730)
Contains all application notes, article reprints, and data sheets for telecommunication
products.

Microcontroller Handbook (Order No. 210918)
Contains allapplicationnotes. article reprints, data sheets, and design information for the
MC(CS-48, MCS-51 and MCS-96 families.

Microsystem Components Handbook (Order No. 230843)

Contains application notes, article reprints, data sheets, technical papers for micropro-
cessors and peripherals. (2 Volumes) (Individual User Manuals are also available on the
8085. 8086, 8088. 186, 286, etc. Consult the Literature Guide for prices and order
numbers.)

Military Handbook (Order No. 210461)
Contains complete data sheets for all military products. Information on Leadless Chip
Carriers and on Quality Assurance is also included.

Development Systems Handbook (Order No. 210940)
Contains data sheets on development systems and software, support options, and design
kits.

OEM Systems Handbook (Order No. 210941)
Contains all data sheets, application notes, and article reprints for OEM boards and
systems. :

Software Handbook (Order No. 230786)
Contains all data sheets, applications notes, and article reprints available directly
from Intel, as well as 3rd Party software.

* Prices are for the U.S. only.

U.S. PRICE*
$15.00

750

15.00

20.00

10.00

10.00

15.00

10.00



APPLICATION FOR FREE SUBSCRIPTION TO
SOLUTIONS MAGAZINE

Solutions is a bimonthly customer magazine covering all of Intel’s new product announce-
ments and offering useful application information. If you wish to receive SOLUT/IONS
regularly, please fill in the requested information and mail it back to:

Intel SC6-714

3065 Bowers Avenue See reverse side for European return addresses.

Santa Clara, CA 95051

There is no charge—just your continued interest in Intel products.

1. Your principal responsibility (please check one box only).

AA [ General Management ’ AG 0O Marketing or Sales
BB O Engineering Management AH O Purchasing/Buyer
AC O Hardware Design Engineer AJ O Educator

AD O Software Design Engineer AK O Computer Hobbyist
AE [ Technician AL O Data Processing
AF O Manufacturing, Reliability or QA AM O Other

2. Your company’s principal business or industry (please check one box only).

AN O Manufacturer of computers or peripheral equipment

AP O Manufacturer of control equipment

AQ [0 Manufacturer of test/measurement equipment or instruments
AR O Manufacturer of communication/telecommunication equipment
AS [0 Manufacturer of office/business equipment

AT O System integration

AU O User of computer equipment

AV O Research lab/consultant

AW [0 Software house

AX O Government/military agency R
AZ [ Sales office or distributor

BA [ Other

3. Your company’s/division’s products fall primarily into:
BB O Industrial BC O Military BD O Consumer

4. Do vou own or use an Intel microcomputer development system or design aid?
BE [ Yes BF O No

5. Are products that are purchased to your specifications incorporated into products to be sold or are they
used in-house?
BG [ Incorporated into products to be sold BJ O Both
BH [ Used in-house

6. Who do you usually buy from?
BK O Distributor BL O Manufacturer

7. | am interested in the following product areas:

70 O Microcomputer Components 73 O Memory Boards and Systems
71 0O Microcomputer Boards and Systems 74 O Military Products :
72 O Memory Components 75 [O Telecommunications Products
Name
Title
Company
Phone
Address . -
City _~ State Zip Country

CORP 164C



For a free subscription to the European edition of SOLUT/ONS
please mail this card to one of the regional offices listed below:

Intel Corporation (UK) Ltd Intel Semiconductor GmbH

Piper's Way . Seidlstrasse 27
Swindon, SN3 1RJ ~ D-8000 Munchen 2
Wiltshire, England West Germany

Intel Corporation S.A.R.L. Intel Sweden AB

5 Place de la Balance Box 20092 _
-Silic 223 Archimedesvagen5 -
94528 Rungis Cedex S-16120 Bromma
France Sweden

Intel Corporation Italia Spa
Milanofiori, Palazzo E
20094 Assago (Milano)
Italy



intel

MICROCONTROLLER HANDBOOK

1984



intel®

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which may appear in
this document nor does it make a commitment to update the information contained herein.

Intel retains the right to make changes to these specifications at any time, without notice. _
Contact your local sales office to obtain the latest specifications before plading your order.
The following are trademarks of Intel Corporation and may only be used to identify Intel Products:

BITBUS, COMMputer, CREDIT, Data Pipeline, GENIUS, i, %, ICE, iCS, iDBP,

iDIS, 12ICE, iLBX, im, IMMX, Insite, Intel, intgl, intglBOS, Intelevision, intgligent

Identifier, inteligent Programming, Intellec, Intellink, iOSP, iPDS, iSBC, iSBX,

iSDM, iSXM, Library Manager, MCS, Megachassis, MICROMAINFRAME, MUL-

TIBUS, MULTICHANNEL, MULTIMODULE, Plug-A-Bubble, PROMPT,

Promware, QUEST, QUEX, Ripplemode, RMX/80, RUPI, Seamless; SOLO, .
SYSTEM 2000, and UPI, and the combination of ICE, iCS, iRMX, iSBC, MCS, or

UPI and a numerical suffix. '

MDS is an ordering code only and is not used as a product name or trademark. MDS® is a registered trademark of Mohawk Data
Sciences Corporation. ,

* MULTIBUS is a patented Intel bus.

Additional copies of this manual or other Intel literature may.be obtained from:
Intel Corporation
Literature Department

3065 Bowers Avenue ' . )
Santa Clara, CA 95051

(© INTEL CORPORATION, 1983



Table of Contents

MCS®-96 FAMILY

CHAPTER 1 .

INtrodUCHION t0 MUS®=06 ......oouiiiiiiiiieriii et st s e bt ae e st eese e e e sbesaeeresteenteseras 1-1
CHAPTER 2

ATCRItECIUTAl OVEIVIEW ..c.viuiiiiiiiierieiie sttt st ettt sttt b bt se e e et ae e beseresbennaens 2-1
CHAPTER 3

MCS®-96 Software Design INfOrmation ..........cccoecviiciiininiiiic e 3-1
CHAPTER 4

Hardware Design INfOrmation ..........coccoieiiiiiiiiiniic et sbe e s aans 4-1
CHAPTER 5 .

MCS®-96 Data SNEEt ......cccovieiiiiiiieiice ettt DT 5-1

MCS®-51 FAMILY
CHAPTER 6 .
MCOS®-51 ArChIECIUIE ...eeiuiiiiiiiiiiiciiie ettt et a e e st e st e s se e s abeatnesebeeeeres 6-1
CHAPTER 7
MCS®-51 Memory Organization, Addressing
Modes and BOOIEAN PrOCESSON .......ccceiiiiriueriiiiniistiniiee ettt sttt e st st sbesnesbesbesaeeseensaerns 7-1
CHAPTER 8
MCS®-51 INStrUCHION St ....coiiiiiiiiiiiiiicr e e 8-1
CHAPTER 9
MCS®-51 Application EXamMPIES .......ccccceviiiiiiiiiiiii et 9-1
CHAPTER. 10 i :
ATEICIE REPIINES ..iviiitiiiiii sttt b e ere s 10-1
CHAPTER 11 : '
MCS®-51 Data Sheets
8031AH/8051AH
8032AH/8052AH
B75TH e e bbb e bbb s h et e e ek e e be s taebe e ae e eaaeereeerees

CMOS
CHAPTER 12 '
Design Considerations When Using CHMOS ..........ccooiiiiiiiiniiiccce s 12-1
Inside CMOS TECHhNOIOGY ...ccvviuiieiiiiieiiiciiii et 12-6

MCS®-48 FAMILY
CHAPTER 13 :
The Single Component MCS®-48 SYSIEM .......cccocuciiiiiiiieiniieieiniies et sae s 13-1
CHAPTER 14
Expanded MCS®-48 SYSIEIM .......cccceviiiiiiiiiiiiiiii ittt st sr st be s e e b stesbeese s s nes 14-1
CHAPTER 15
MCS®-48 INSIUCHION St ....ceeuiiiiiiiriiiie bbb e sre e 15-1
CHAPTER 16
MCS®-48 Data Sheets
B243 ...t b e e ket e bt e hb e et e e b b e et e e et et s e et ae et e eaeeebeetaeentsbeaen 16-1
8048AH/8748H/8035AHL/8049AH
8749H/8039AHL/8050AH/B040AHL ......ccocvvvinieiienes e - 16-7
MCS®-48 Express ...16-20
80C39-7/80C49-7 .. 16-24




“THE RUPI™ FAMILY: MICROCONTROLLER
WITH ON-CHIP COMMUNICATION CONTROLLER
CHAPTER 17 - )
The RUPI™-44 Family .......cccocovvirninvincnnnnininnns frerres e s saaes e v 1741
CHAPTER 18 . .
8044 AICRItECIUIE ....voveieeeiieiiicte et eetes et s te et e te e e e b e eas et esae s b e ete e eae s aesaesbesbaensentesasessaensersenesesbnnaseseean 18-1
CHAPTER 19 - S
8044 Serial INTBITACE .....ceeverieeerieeereesee v st s tasae s s ee e stasre et e assresreesanesesanaseaneresanansesnnan 19-1
CHAPTER 20
8044 Applications EXAmPIES ........cccevererineniiiiiii s e s 20-1
CHAPTER 21
RUPI™ Data Sheets
8044AH/8344AH . .
B7A44 ...ttt e bbb ee
CHAPTER 22 .
LR 10 RN g (o3[ I8 =T o ] o U TUPRON 22-1

PACKAGING INFORMATION ‘ i
CHAPTER 23 ...ttt b bbb bbb s 23-1




uction to MCS®.96 1

Introd







CHAPTER 1
INTRODUCTION TO MCS®-96

1.0 CONTINUING MICROCONTROLLER
EVOLUTION

Beginning with the introduction of the world standard
8048 (MCS®-48) Microcontroller in 1976, Intel has con-
tinued to drive the evolution of single chip microcontroll-
ers. In 1980, Intel introduced the 8051 (MCS-51) offering
performance levels significantly higher than the 8048.
With the advent of the 8051, the microcontroller appli-
cations base took a marked vertical leap. These versatile
chips are used in applications from keyboards and ter-
minals to controlling automobile engines. The 8051
quickly gained the position of the second generation world
standard microcontroller.

Now that the semiconductor process technologies are

being pushed to new limits, it has become possible to
integrate more than 100,000 transistors onto a single sil-
icon chip. Microcontroller designers at Intel have taken
today’s process technology achievements and forged a
new generation of single chip microcontrollers called the
MCS-96. The 8096 (generic part number for MCS-96)

- offers the highest level of system integration ever achieved

on a single chip microcontroller. It uses over 120,000
transistors to implement a high performance 16-bit CPU,
8K bytes of program memory, 232 bytes of data memory
and both analog and digital types of I/O features. Figure
1-1 shows the evolution of single chip microcontroller at
Intel.

1

) MCS®-96
8394 o 16 BIT CPU
8395 o 8K ROM
8396 e 232 BYTE RAM
3 © 8397 e TIMER/COUNTER
g o PARALLEL /0
o e SERIAL /O
ﬁ MCS®-51 © 10 BIT AD
= o HIGH SPEED 10
= 8051 e 8 BIT CPU ° PWM
E 8052 o 4/8K ROM © WATCH DOG TIMER
> o 128/256 BYTE RAM
w o TIMER/COUNTER
e MCS®-48 ® PARALLEL 1O
3 e SERIAL /0
x ® 8 BIT CPU
2 8048 4 11214k ROM
w 8049 o 64/128/256 BYTE RAM
8050 o TIMER/COUNTER
8021 o PARALLEL IO
8022 e B8BITAD
1976 1980 1983

Figure 1-1. Evolution of Microcontrollers at Intel



INTRODUCTION TO MCS®-96

1.1 INTRODUCTION TO THE MCS®-96

The 8096 consists of a 16-bit powerful CPU tightly cou-
pled with program and data memory along with several

I/O features all integrated onto a single piece of silicon. .

The CPU supports bit, byte, and word operations. 32-bit
double words are also supported for a subset of the in-
struction set. With a 12 MHz input frequency, the 8096
can perform a 16-bit addition in 1.0 us and 16 X 16
multiply or 32/16 divide in 6.5 us.

Four high-speed trigger inputs are provided to record the
times at which external events occur with a resolution of
2 ps (at 12 MHz crystal frequency). Up to six high-speed
pulse generator outputs are provided to trigger external
events at preset times. The high speed output unit can
simultaneously perform timer functions, up to four such

16-bit software timers can be in operation at once in ad-
dition to the two 16-bit hardware timers.

" An optional on-chip A/D converter converts up to four

(in the 48-pin version) or 8 (in the 68-pin version) analog
input channels into 10-bit digital values. Also provided
on-chip, is a serial port, a watchdog timer, and a pulse-
width modulated output signal. Table 1.1 shows the fea-
tures and benefits summary for the MCS-96.

The 8096 with its 16-bit CPU and all the I/O features and
interface resources on a single piece of silicon represents
the highest level of system integration in the world of
microcontrollers. It will open up new applications which

had to use multiple chip solutions in the past.

Table 1-1 MCS®-96 Features and Benefits Summary

FEATURES

BENEFITS

16-Bit CPU
8K Bytes ROM
232 Bytes RAM

Hardware MUL/DIV

6 Addressing Modes
High Speed I/O Unit

4 dedicated I/0 lines

4 programmable I/O lines
10-Bit A/D Converter
Full Duplex Serial Port
Up to 40 I/O Ports
Programmable 8 Sot}rce Priority

Interrupt System

Pulse Width Modulated Output
Watchdog Timer

48 Pin (DIP) & 68 Pin (Flatpack, Pin
Grid Array) Versions

Efficient machine with higher throughput.
Large program space for more complex, larger programs.
Large on-board register file.

Provides good math capablllty 16 by 16 multlply or 32 by 16 d1v1de
in 6.5 us @ 12 MHz..

Provides greater ﬂexibility of programming and data manipulation. -
Can measure and generate pulses with high resolution (2 us @

12 MHz).

Reads the external analog inputs.

Provides asynchronous serial link to other proé‘es_sors or systems.

Provides TTL compatible digital data I/O including system expansion
with standard 8 or 16-bit peripherals.

Respond to asynchronous events.
Provides a programmable pulse train with variable duty cycle Also
used to gencrate analog output.

Provides ability to recover from software malfunction or hardware
upset.

Offers a variety of package types to choose from to better fit a specific
application need for number of I/0’s and package size.




INTRODUCTION TO MCS®-96

1.2. MCS®-96 APPLICATIONS

The MCS-96 products are stand-alone high performance
single chip microcontrollers designed for use in sophis-
ticated real-time demanding applications such as industrial
control, instrumentation and intelligent computer periph-
erals. The wide base of applications cut across all industry
segments (see table 1.2). With the 16-bit CPU horse-
power, high-speed math processing and high-speed /O,
the 8096 is ideal for complex motor control and axis con-
trol systems. Examples include three phase, large horse-
power AC motors and robotics.

With its 10-bit A/D converter option, the device finds

usage in data acquisition systems and closed-loop analog
controllers. It permits considerable system integration by

Table 1-2 MCS®-96 Broad Base of Applications

INDUSTRIAL
Motor Control
Robotics
Discrete and Continuous Process Control
Numerical Control
Intelligent Transducers

INSTRUMENTATION
Medical Instrumentation
Liquid and Gas Chromatographs
Oscillioscopes

CONSUMER
Video Recorder
Laser Disk Drive
High-end Video Games

GUIDANCE & CONTROL
Missile Control
Torpedo Guidance Control

" Intelligent Ammunition
Aerospace Guidance Systems

DATA PROCESSING

Plotters

Color and B&W Copiers

Winchester Disk Drive

Tape Drives

Impact and Non-Impact Printers
TELECOMMUNICATIONS

Modems

Intelligent Line Card Control
AUTOMOTIVE

Ignition Control

Transmission Control

Anti Skid Braking

Emission Control

1-3

combining analog and digital I/O processing in the single
chip.

This chip is ideally suited in the area of instrumentation
products such as gas chromatographs, which combine an-
alog processing with high speed number crunching. The
same features make it a desirable component for aerospace
applications like missile guidance and control.

1.3. MCS®-96 FAMILY DEVELOPMENT
SUPPORT TOOLS

The product family is supported by a range of Intel soft-
ware and hardware development tools. These tools shorten
the product development cycle, thus bringing the product
to the market sooner.

1.3.1. MCS®-96 Software Development
Package

The 8096 software development package provides devel-
opment system support specifically designed for the MCS-
96 family of single chip microcontrollers. The package
consists of a symbolic macro assembler ASM-96, Linker/
Relocator RL-96 and the librarian LIB-96. Among the
high level languages, PLM-96 is offered along with a
floating point math package. Additional high level lan-
guages are being developed for the MCS-96 product
family.

1.3.2. ASM-96 MACRO Assembler

The 8096 macro assembler translates the symbolic assem-
bly language instructions into the machine executable ob-
ject code. ASM-96 enables the programmer to write the
program in a modular fashion. The modular programs
divide a rather complex program into smaller functional
units, that are easier to code, to debug, and to change.
The separate modules can then be linked and located into

“one program module using the RL-96 utility. This utility

combines the selected input object modules into a single
output object module. It also allocates memory to input
segments and binds the relocatable addresses to absolute
addresses. It then produces a print file that consists of a
link summary, a symbol table listing and an intermediate
cross-reference listing. LIB-96, another utility helps to
create, modify, and examine library files. The ASM-96
runs on Intellec Series III or IV. .

1.3.3. PL/M-96

The PL/M-96 compiler translates the PL/M-96 language
into 8096 relocatable object modules. This allows im-
proved programmer productivity and application reliabil-
ity. This high level language has been efficiently designed
to map into the machine architecture, so as not to trade
off higher programmer productivity with inefficient code.
Since the language and the compiler are optimized for the
8096 and its application environment, developing software
with PL/M-96 is a ‘low-risk’ project.



INTRODUCTION TO MCS®-96

1.3.4. Hardware Development Support:
iSBE-96

* The iSBE-96 is a hardware execution and debug tool for
the MCS-96 products. It consists of a monitor/debugger
resident in an 8096 system. This development system in-
terfaces with the user’s 8096 system via two ribbon cables,
one for the 8096 I/O ports, and the other for the memory
bus. The iSBE-96 is controlled by an Intellec Series III
or other computer system over a serial link. Power for the
iSBE-96 can be supplied by plugging it into the MUL-
TIBUS® card slot, or by an external power supply. The
iSBE-96 is contained on one standard MULTIBUS board.

The iSBE-96 provides the most often used features for
real-time hardware emulation. The user can display and
modify memory, set up break points, execute with or
without breakpoints and change the memory map. In ad-
dition, the user can single step through the system
program.

1.3.5. MCS®-96 Workshop

The workshop ‘provides the design engineer or system
designer hands-on experience with the MCS-96 family of
products. The course includes an explanation of the Intel
8096 architecture, system timing, input/output design.
The lab sessions allow the atténdees to gain in-depth
knowledge of the MCS-96 product family and support
tools.

1.3.6. Insite™ Library

The Intel Insite Library contains several application pro-
grams. A very useful program contained in the Insite is
SIM-96, the software simulator for 8096. It allows soft-
ware simulations of user’s system. The simulator provides
the ability to set breakpoints, examine and modify mem-
ory, disassemble the object code and single step through
the code.

1-4

1.4. MCS®-96 FAMILY OF PRODUCTS

Although 8096 is the generic part number often used for
the MCS-96 products throughout this manual, the product
family consists of eight configurations with eight part
numbers including the 8096. This wide variety of products
is offered to best meet user’s application requirements in
terms of number of I/0O’s and package size. The options
include on-board 8K bytes of mask programmed memory,
10-bit A/D converter, and 48 or 68 pin package type. -

Table 1-3 summarizes all the current products in the
MCS®-96 product family.

Table 1-3 MCS®-96 Family of Products

OPTIONS 68 PIN | 48 PIN

ROMLESS 8096 8094
DIGITAL
/0

ROM 8396 8394
ANALOG ROMLESS 8097 8095
AND
DIGITAL \
V0 ROM 8397 8395

The 48 pin version is available in a DIP (duaI inline)
package.

The 68 pin version comes in two packages, the Plastic
Flatpack and the Pin Grid Array.



Architectural Overview







CHAPTER 2
ARCHITECTURAL OVERVIEW

2.0. INTRODUCTION

The 8096 can be separated into several sections for the
purpose of describing its operation. There is a CPU, a
programmable High Speed I/O Unit, an analog to digital
converter, a serial port, and a Pulse Width Modulated
(PWM) output for digital to analog conversion. In addition
to these functional units, there are some sections which
support overall operation of the chip such as the clock
generator and the back-bias generator. The CPU and the
programmable I/O make the 8096 very different from any
other microcontroller, let us first examine the CPU.

2.1. CPU OPERATION

The major components of the CPU on the 8096 are the
Register File and the RALU. Communication with the
outside world is done through either the Special Function
Registers (SFRs) or the Memory Controller. The RALU
(Register/Arithmetic Logic Unit) does not use an accu-
mulator, it operates directly on the 256-byte register space
made up of the Register File and the SFRs. Efficient I/O

‘operations are possible by directly controlling the

1I/0 through the SFRs. The main benefits of this structure
are the ability to quickly change context, the absence of
accumulator bottleneck, and fast throughput and /0O
times.

2.1.1. CPU Buses

A “‘Control Unit’’ and two buses connect the Register
File and RALU. Figure 2-1 shows the CPU with its major
bus connections. The two buses are the ‘‘A-Bus’’ which
is 8-bits wide, and the ‘‘D-Bus’’ which is 16-bits wide.
The D-Bus transfers data only between the RALU and the
Register File or Special Function Registers (SFRs). The
A-Bus is used as the address bus for the above transfers
or as a multiplexed address/data bus connecting to the
‘“Memory Controller’’. Any accesses of either the internal
ROM or external memory are done through the Memory
Controller.

Within the memory controller is a slave program counter
(Slave PC) which keeps track of the PC in the CPU. By
having most program fetches from memory referenced to

VPD XTAL 1

XTAL 2

CLKOUT

ON-CHIP
ROM

PO’ACH

i
|
|
|
[
| "
|
| i T el s
! ! ! |_®@
| | | SLAVE PC| < EA
: I REG. INST. REG. | | e ;L"i
| =
I i FILE aawy | [:contror | | MEMORY (1w RD.
| | UNIT | WAIT | CONTROLLER |— > WA
: SFR ADDR [~} S [ READY
I DECODER | | : AESET
..... DATA
: —————————————— ———f——— - (I
|
: D D-BUS 16 WATCHDOG |
TIMER |
VREF —-»{ CONV. |
! I
ANGND —L—| P1 REG. SERIAL PWM INTERRUPT | |Hsio unIT |
| G comna || ool | (B
! [renes] | | omr g
L : £
! £
i [ [———— H 2 ADDR/DATA
| [Po BurFers| [p1BuFFERs] [Pz BUFFERS] ! - BUS
' [:4
| ) &
| 2
I m
| g
e b e b

P2/ALT. FUNCTIONS

Figure 2-1. Block Diagram (For simplicity, lines connecting port registers to port buffers are not shown.)

2-1



ARCHITECTURAL OVERVIEW ‘ '

the slave PC, the processor saves time as addresses seldom
have to be sent to the memory controller. If the address
jumps sequence then the slave PC is loaded with a new
value and processing continues. Data fetches from mem-
ory are also done through the memory controller, but the
slave PC is bypassed for this operation.

2.1.2. CPU Register File

The Register File contains 232 bytes of RAM which can
be accessed as bytes, words, or double-words. Since each
of these locations can be used by the RALU, there are
" essentially 232 “‘accumulators’’. The first word in the
Register File is reserved for use as the stack pointer so
it can not be used for data when stack manipulations are
taking place. Addresses for accessing the Register File
and SFRs are temporarily stored in two 8-bit address reg-
isters by the CPU hardware.

2.1.3. RALU Control
Instructions to the RALU are taken from the A-Bus and
stored temporarily in the instruction register. The Control

Unit decodes the instructions and generates the correct
sequence of signals to have the RALU perform the desired
function. Figure 2-1 shows the instruction register and the
control unit.

'2.1.4. RALU

Most calculations performed by the 8096 take place in the
RALU. The RALU, shown in Figure 2-2, contains a 17-
bit ALU, the Program Status Word (PSW), the Program
Counter (PC), a loop counter, -and three temporary reg-
isters. All of the registers are 16-bits or 17-bits (16 + sign
extension) wide. Some of the registers have the ability to
perform simple operations to off-load the ALU.

A separate incrementer is used for the PC; however, jumps
must be handled through the ALU. Two of the temporary
registers have their own shift logic. These registers are
used for the operations which require logical shifts, in-
cluding Normalize, Multiply, and Divide. The ‘‘Lower
Word’’ register is used only when double-word quantities
are being shifted, the ‘‘Upper Word’’ register is used

] |, 16-BIT !
D-BUS

“/ 8-BIT
A-BUS

\—>EROG. COUNTER I I INCREMENTOFII

—>| UPPER WORD REGISTER/SHIFTER ]—b

—Dl:OWER WORD REGISTEFI/SHIFTERJ—>

216

:I TEMPORARY REGISTER I<—74‘——-

; CONSTANTS (0,1,2)

/

16 16
Y Y
A NV B
LOOP COUNTER 17 BIT ALU
[
/]
PSW (HIGH BYTE) 8 (UPPER Jl DELAY Il >
16, 8 , LOWER ] -
e 7 7

Figure 2-2. RALU Biock Diagram




ARCHITECTURAL OVERVIEW

whenever a shift is performed or as a temporary register
for many instructions. Repetitive shifts are counted by the
5-bit ‘‘Loop Counter’’.

A temporary register is used to store the second operand
of two operand instructions. This includes the multiplier
during multiplications and the divisor during divisions.
To perform subtractions, the output of this register can be
complemented before being placed into the ‘‘B’’ input of
the ALU,

The DELAY shown in Figure 2-2 is used to convert the
16-bit bus into an 8-bit bus. This is required as all ad-
dresses and instructions are carried on the 8-bit A bus.
Several constants, such as 0, 1 and 2 are stored in the
RALU for use in speeding up certain calculations. These
come in handy when the RALU needs to make a 2’s
complement number or perform an increment or decre-
ment instruction.

" 2.2. BASIC TIMING

 The 8096 requires an input clock frequency of between
6.0 MHz and 12 MHz to function. This frequency can be
applied directly to XTAL1. Alternatively, since XTAL1
and XTAL?2 are inputs and outputs of an inverter, it is also
possible to use a crystal to generate the clock. A block
diagram of the oscillator section is shown in Figure 2-3.
Details of the circuit and suggestions for its use can be
found in section 4.1.

2.2.1. Internal Timings ‘
The crystal or external oscillator frequency is divided by

+3 PHASE
GENERATOR

INTERNAL
CIRCUITRY

8096

XTAL 2

3¢

Figure 2-3. Block Diagram of Oscillator

3 to generate the three internal timing phases as shown
in Figure 2-4. Each of the internal phases repeat every 3
oscillator periods: 3 oscillator periods are referred to as
one ‘‘state time’’, the basic time measurement for 8096
operations. Most internal operations are synchronized to
either Phase A, B or C, each of which have a 33% duty
cycle. Phase A is represented externally by CLKOUT, a
signal available on the 68-pin part. Phases B and C are
not available externally. The relationships of XTAL1,
CLKOUT, and Phases A, B, and C are shown in Figure
2-4. It should be noted that propagation delays have not

esom L 1 L
PHASE B | l J l J_

PHASE C L J l

I —

Figure 2-4. Internal Timings Relative to XTAL 1



'

ARCHITECTURAL OVERVIEW

been taken into account in this diagram. Details on these
and other timing relationships can be found in sections
4.1, 4.4 and 4.6.

The RESET line-can be used to start the 8096 at an exact

time to provide for synchronization of test equipment and
multiple chip systems. Use of this feature is fully ex-
plained under RESET, sections 2.15 and 4.1.

2.3. MEMORY SPACE

The addressable memory space on the 8096 consists of
64K bytes, most of which is available to the user for
program or data memory. Locations which have special
purposes are 0000H through O0FFH and 1FFEH through
2010H. All other locations can be used for either program
or data storage or for memory mapped peripherals. A
memory map is shown in figure 2-5.

2.3.1. Register File
Locations O0H through OFFH contain the Register File
and SFRs. Complete information on-this section of mem-

ory space can be found in section ‘‘RAM SPACE”’. No

code can be executed from this internal RAM section. If
an attempt to execute instructions from locations 000H
through OFFH is made, the instructions will be fetched
from external memory. This section of external memory
is reserved for use by Intel development tools. Execution
of a nonmaskable interrupt (NMI) will force a call to

external location 0000H, therefore, the NMI instruction
is also reserved for Intel development tools.

2.3.2. Reserved Memory Spaces

Locations 1FFEH and 1FFFH are reserved for Ports 3 and
4 respectively. This is to allow easy reconstruction of these
ports if external memory is used in the system.- An ex-
ample of reconstructing the I/O ports is given in section
4.6.7. If ports 3 and 4 are not going to be reconstructed
then these locations can be treated as any other external
memory location.

The 9 interrupt vectors are stored in locations 2000H
through 2011H. The 9th vector is used by Intel devel-
opment systems, as explained in section 2.5. Internal lo-
cations 2012H through 2077H are reserved for Intel’s fac-
tory test code. These locations may be used in extemal
memory.

Resetting the 8096 causes instructions to be fetched start-
ing from location 2080H. This-location was chosen to
allow a system to have up to 8K of RAM continuous with
the register file. Further information on reset can be found
in section 2.15.

- 2.3.3. Internal ROM

When a ROM part is ordered, the internal memory lo-
cations 2080H through 3FFFH are user specified as are
the interrupt vectors in locations 2000H through 2011H.

65535
EXTERNAL MEMORY FFFFH
- OR
16384 vo
INTERNAL PROGRAM
- STORAGE ROM
8320 2080H < RESET
6210 FACTORY TEST CODE 2012H
8
INTERRUPT |
VECTORS
8192 2000H
PORT 4
8190 |: PORT 3 1FFEH
EXTERNAL MEMORY
OR
L e EXTERNAL MEMORY RESERVED
J FOR USE BY INTEL DEVELOPMENT
STACK POINTER SYSTEMS
SPECIAL FUNCTION REGISTERS (WHEN ACCESSED AS PROGRAM
(WHEN ACCESSED AS MEMORY)
0 DATA MEMORY) 6000H 00

‘Figure 2-5. Memory Map

2-4 .




ARCHITECTURAL OVERVIEW

Instruction and data fetches from the internal ROM occur
only if the part has a ROM, EA is tied high, and the
address is between 2000H and 3FFFH. At all other times
data is accessed from either the internal RAM space or
external memory and instructions are fetched from exter-
nal memory.

2.3.4. Memory Controller

The RALU talks to the memory (except for the locations
in the register file and SFR space) through the memory
controller which is connected to the RALU by the A-bus
and several control lines. Since the A-bus is eight bits
wide, the memory controller uses a Slave Program
Counter to avoid having to always get the instruction lo-
cation from the RALU. This slave PC is incremented after
each fetch. When a jump or call occurs, the slave PC must
be loaded from the A-bus before instruction fetches can
continue.

In addition to holding a slave PC, the memory controller

contains a 3 byte queue to help speed execution. This
queue is transparent to the RALU and to the user unless
wait states are forced during external bus cycles. The
instruction execution times shown in Tables 3-3 and 3-4
show the normal execution times with no wait states

added. Reloading the slave PC and fetching the first byte
of the new instruction stream takes 4 state times. This is
reflected in the jump taken/not-taken times shown in Table
3-4.

- 2.3.5. System Bus

External memory is addressed through lines ADO through
AD15 which form a-16-bit multiplexed (address/data) data
bus. These lines share pins with I/O ports 3 and 4. The
falling edge of the Address Latch Enable (ALE) line is
used to provide a clock to a transparent latch (74LS373)
in order to demultiplex the bus. A typical circuit and the
required timings are shown in section 4.6. Since the
8096’s external memory can be addressed as either bytes
or words, the decoding is controlled with two lines, Bus
High Enable (BHE) and Addresss/Data Line 0 (ADO).
The BHE line must be transparently latched, just as the
addresses are.

To avoid confusion during the explanation of the memory
system it is reasonablé to give names to the demultiplexed
address/data signals. The address signals will be called
MAQ through MA15 (Memory Address), and the data
signals will be called MDO through MD15 (Memory
Data).

PHASE A __/_L /—\

(CLKOUT)

[\

PHASE B

I\
o

-

PHASE C

[ [\ [\

READY

X vaup X

ALE

[\

[\

RD \ /
WR _—————\___./T)ATA IN

—tn

ADDRESS/DATA

————aobRess) pataout | )

Y vaup )

BHE, INST

INVALID

X vaup: x:

*IF ALE IS HIGH

Figure 2-6. External Memory Timings

2-5



ARCHITECTURAL OVERVIEW

When BHE is active (low), the memory connected to the
high byte of the data bus should be selected. When MAO
is low the memory connected to the low byte of the data
bus should be selected. In this way accesses to a 16-bit
wide memory can be to the low (even) byte only (MAO-
=0, BHE=1), to the high (odd) byte only (MAO=1,
BHE=0), or to both bytes (MAO=0, BHE=0). When
a memory block is being used only. for reads, BHE and
MAQO need not be decoded.

Figure 2-6 shows the idealized waveforms related to the
following description of external memory manipulations.
For exact timing specifications please refer to the latest
data sheet. When an external memory fetch begins, the
address latch enable (ALE) line rises, the address is put
-on AD0-AD15 and BHE is set to the required state. ALE
then falls, the address is taken off the pins, and the RD
(Read) signal goes low. The READY line can be pulled
low to hold the processor in this condition for a few extra
state times.

2.3.6. Ready

The READY line can be used to hold the processor in the
above condition in order to allow access to slow memories
or for DMA purposes. Sampling of the READY line oc-
curs internally during Phase 2, which is the signal that
generates CLKOUT. There is a minimum time in which
READY must be stable before CLKOUT goes low. If this
set-up time is violated while the part is going to the not-
ready state, the part may fail to operate predictably.

Since READY is synchronized with CLKOUT, the 8096
will be in a not-ready condition for a period equal to some
multiple of CLKOUT, although the READY line can be
brought high at any time. There is a maximum time for
holding the 8096 in the not-ready condition, typically on
the order of 1 uS. The exact time is specified in the data
sheet for the particular part and temperature range desired.

The data from the external memory must be on the bus’

and stable for a minimum of the specnﬁed set-up time
before the rising edge of RD. The rising edge of RD
latches the information into the 8096. If the read is for
data, the INST pin will be low when the address is valid,
if it is for an instruction the INST pin will be high during

this time. The 48-lead part does not have the INST pin. -

Writing to external memory requires timings that are sim-
ilar to those required when reading from it. The main
difference is that the write (WR) signal is used instead of
the RD signal. The timings are the same until the falling
edge of the WR line. At this point the 8096 removes the

address and places the data on the bus. The READY line

must be held in the desired state at that time as described
above. When the WR line goes high the data should be
latched to the external memory. INST is always low during
a write, as instructions cannot be written. The exact timing
specifications for memory accesses can be found in the
data sheet.

OFFH 255
POWER-DOWN

OFO0H 240

OEFH 239

INTERNAL |
REGISTER FILE

(WHEN READ)

(WHEN WRITTEN)

T T
1AH 26
:g: STACK POINTER STACK POINTER :i
17H PWM_CONTROL 23
16H | 1081 1oc1 22
154 | 10s0 10co 21
14H 20
13H | RESERVED RESERVED 19
12H 18
11H | sp_sTar SP_CON 17
10H | 10 PORT 2 10 PORT 2 16
OFH | 10 PORT 1 10 PORT 1 15
OEH | 10 PORT 0 BAUD_RATE 14
ODH | TIMER2 (HI) ‘13
ocH | TIMER2 (LO) RESERVED 12
OBH | TIMER1 (HI) , 1
OAH | TIMER1 (LO) WATCHDOG 10
0%H /| INT_PENDING INT_PENDING 0
08H | INT_MASK INT_MASK 8
o7H. | SBUF (RX) SBUF (TX) 7
O6H | HSI_STATUS HSO_COMMAND 6
O5H | HSI_TIME (HI) HSO_TIME (HI) 5
04H | HSI_TIME (LO) HSO_TIME (LO) 4
O3H | AD_RESULT (H) HSI_MODE 3
O2H | AD_RESULT (LO) AD_COMMAND 2
otH | Ro (HN) RO (HI) 1
00H | Ro(LO) RO (LO) 0

2.4. RAM SPACE

Figure 2-7. Register File Memory Map

The internal register locations on the 8096 are divided into
two groups, a register file and a set of Special Function
Registers (SFRs). The RALU can operate on any of these
256 internal register locations. Locations 00H through
17H are used to access the SFRs. Locations 18H and 19H
contain the stack pointer. There are no restrictions on the
use of the remaining 230 locations except that code cannot
be executed from them.



ARCHITECTURAL OVERVIEW

2.4.1. Special Function Registers 7 shows the locations and names of these registers. A
All of the I/O on the 8096 is controlled through the SFRs. summary of the capabilities of each of these registers is
Many of these registers serve two functions; one if they shown in Figure 2-8, with complete descriptions reserved
are read from, the other if they are written to. Figure 2- for later chapters.
Register Description Chapter
RO Zero Register — Always reads as a zero, useful for a base when 3.2.7
indexing and as a constant for calculations and compares.
AD_RESULT A/D Result Hi/Low — Low and high order Results of the A/D 293
converter
AD_COMMAND A/D Command Register — Controls the A/D 292
HSL_MODE HSI Mode Register — Sets the mode of the High Speed Input unit. 2.7.1
HSL_TIME HSI Time Hi/Lo — Contains the time at which the High Speed Input | 2.7.4
unit was triggered.
HSQ_TIME HSO Time Hi/Lo — Sets the time for the High Speed Output to 2.8.3
execute the command in the Command Register.
HSQ_COMMAND HSO Command Register — Determines what will happen at the time 2.8.2
i loaded into the HSO Time registers.
HSL_STATUS HSI Status Registers — Indicates which HSI pins were detected at the | 2.7.4
time in the HSI Time registers.
SBUF (RX) Receive buffer for the serial port, holds contents to be outputed. 2.11
SBUF (TX) Transmit buffer for the serial port, holds the byte just received by the 2.11
: serial port.
INTL_MASK Interrupt Mask Register — Enables or disables the individual 252
interrupts. 3.6.2
INT_PENDING Interrupt Pending Register — Indicates when an interrupt signal has 2.5.2
occurred on one of the sources. 3.6.2 /
WATCHDOG Watchdog Timer Register — Written to periodically to hold off 2.14
automatic reset every 64K state times.
TIMER1 Timer 1 Hi/Lo — Timer 1 high and low bytes. 2.6.1
2.7-8
TIMER2 Timer 2 Hi/Lo — Timer 2 high and low bytes. 2.6.2
2.7-8
IOPORTO Port 0 Register — Levels on_pins of port 0. 2.12.1
BAUD_RATE Register which contains the baud rate, this register is loaded 2.11.4
sequentially. '
IOPORT1 Port 1 Register — Used to read or write to Port 1. 2.12.2
IOPORT?2 Port 2 Register — Used to read or write to Port 2. 2.12.3
SP_STAT Serial Port Status — Indicates the status of the serial port. 2.11.3
SE_CON Serial port control — Used to set the mode of the serial port. 2.11.1
10S0 I/O Status Register 0 — Contains information on the HSO status. 2.13.4
10S1 I/O Status Register 1 — Contains information on the status of the 2.13.5
timers and of the HSI. 3.7.2
10C0 I/O Control Register 0 — Controls alternate functions of HSI pins, 2.13.2
Timer 2 reset sources and Timer 2 clock sources.
I0C1 1/0 Control Register 1 — Controls alternate functions of Port 2 pins, 2.13.3
timer interrupts and HSI interrupts. »
PWM_CONTROL Pulse Width Modulation. Control Register — Sets the duration of the 2.10

PWM pulse. 4.3.2

Figure 2-8. SFR Summary



ARCHITECTURAL OVERVIEW

Within the SFR space are several registers labeled as
‘“‘RESERVED’’. These registers are reserved for future
expansion or test purposes. Reads or writes of these reg-
isters may produce unexpected results. For example, writ-
ing to location 000CH will set both timers to OFFFXH,
this feature is for use in testing the part and should not
be used in programs.

2.4.2. Power Down

The upper 16 RAM locations (OFOH through OFFH) re-
ceive their power from both the VCC pin and the VPD
pin. If it is desired to keep the memory in these locations
alive during a power down situation, one need only keep
‘voltage on the VPD pin. The current required to keep the
RAM alive is approximately 1 milliamp (refer to the data
sheet for the exact specification).

To place the 8096 into a power down mode, the RESET
pin is pulled low. Two state times later the part will be
in reset. This is necessary to prevent the part from writing
into RAM as the power goes down. The power may now
be removed from the VCC pin, the VPD pin must remain
within specifications. The 8096 can remain in'this state
for any amount of time and the 16 RAM bytes will retain
their values.

To bring the 8096 out of power down, RESET is held low
while VCC is applied. Two state times after the oscillator
and the back bias generator have stabilized (~1 millise-
cond), the RESET pin can be pulled high. The 8096 will
begin to execute code at location 02080H 10 state times

- after RESET is pulled high. Figure 2-9 shows a timing
diagram of the power down sequence. To ensure that the
2 state time minimum reset time (synchronous with
CLKOUT) is met, it is recommended that 10 XTALIl
cycles be used. Suggestions for actual hardware connec-
tions are given in section 4.1. Reset is discussed in section
2.15.

2.5. INTERRUPT STRUCTURE

2.5.1. Interrupt Sources

Eight interrupt sources are available on the 8096. When
enabled, an interrupt occurring on any of these sources
will force a call to the location stored in the vector location
for that source. The interrupt sources and their respective
véctor locations are listed in Figure 2-10. In addition to
the 8 standard interrupts, there is a TRAP instruction
which acts as a software generated interrupt. This instruc-
tion is not currently supported by the MCS-96 Assembler
and is reserved for use by Intel development systems.
Many of the interrupt sources can be activated by several
methods, Figure 2-11 shows all of the possible sources
for interrupts.

Source Vector Location Priority
) (High | (Low |
Byte) | Byte)

Software 2011H |2010H | Not Applicable
Extint 200FH |200EH |7 (Highest)
Serial Port 200DH {200CH |6 ’
Software Timers | 200BH | 200AH |5
HSI.0 2009H |{2008H |4
High Speed 2007H |2006H |3

Outputs
HSI Data 2005H |2004H |2

Available o
A/D Conversion |2003H |2002H |1

Complete
Timer Overflow |2001H |2000H |0 (Lowest)

Figure 2-10. Interrupt Vector Locations

. vce POWER DOWN
4§
VPD {¢
= 5.5V
RESET ————\ .
{C
e
XTAL1 tNeRaRaRaliatasialadalinlsl
IR RN IRR RN RN EE
I
10 XTAL1 CYCLES | CLOCK NOT NECESSARY | 10 XTAL1 CYCLES
. AFTER CLOCK IS STABLE

Figure 2-9. Power Down Timing



ARCHITECTURAL OVERVIEW

2.5.2. Interrupt Control

A block diagram of the interrupt system is shown in Figure
2-12. Each of the interrupt sources is tested for a 0 to 1
transition. If this transition occurs, the corresponding bit
in the Interrupt Pending Register, located at 0009H, is set.
Since this register can be written to, it is possible to gen-
erate software interrupts by setting bits within the register,
or remove pending interrupts by clearing the bits in this
register. The pending register can be set even if the in-
terrupt is disabled.

Caution must be used when writing to the pending register
to clear interrupts. If the interrupt has already been ac-
knowledged when the bit is cleared, a 4 state time
‘‘partial’’ interrupt cycle will occur. This is because the
8096 will have to fetch the next instruction of the normal
instruction flow, instead of proceeding with the interrupt
processing as it was going to. The effect on the program
will be essentially that of an extra NOP. This can be
prevented by clearing the bits using a 2 operand immediate
logical, as the 8096 holds off acknowledging interrupts
during these ‘‘read/modify/write’’ instructions.

Enabling and disabling of individual interrupts is done
through the Interrupt Mask Register, located at 0008H.
If the bit in the mask register is a 1 then the interrupt is
enabled, otherwise it is disabled. Even if an interrupt is
masked it may still become pending. It may, therefore,
be desirable to clear the pending bit before unmasking an
interrupt.

The Interrupt Mask Register is also the low byté of the
PSW. All of the interrupts may be enabled and disabled
simultaneously by using the ‘‘EI’’ (Enable Interrupt) and
“‘DI’’ (Disable Interrupt) instructions. EI and DI set and
clear PSW.9, the interrupt enable bit, they do not effect

- the contents of the mask register,

2.5.3. Interrupt Priority Programming

The priority encoder looks at all of the interrupts which
are both pending and enabled, and selects the one with
the highest priority. The priorities are shown in Figure
2-10 (7 is highest, O is lowest.) The interrupt generator
then forces a call to the location in the indicated vector
location. This location would be the starting location of
the Interrupt Service Routine (ISR).

PINS OR FLAGS

EXTINT

=== 10C1.1
]

INTERRUPT

ACH7 —o

TI FLAG

EXTINT

SERIAL PORT

RI FLAG ————I

SOFTWARE TIMER 0

SOFTWARE TIMER

SOFTWARE TIMER 1
SOFTWARE TIMER 2
SOFTWARE TIMER 3

HSLO

HSLO

r--- HSQ_.COMMAND.4

[}
ANY HSO OPERATION —o o

HIGH SPEED OUTPUTS

r===10C1.7
FIFO IS FULL i
HSI DATA AVAILABLE
HOLDING REGISTER LOADED ——— o
A/D CONVERSION COMPLETE A/D CONVERSION COMPLETE
r=--10C1.2
]
TIMER1 OVERFLOW — o T TIMER OVERFLOW
TIMER2 OVERFLOW a\'rrﬁ
L-——i0C1.3

Figure 2-11. All Possible Interrupt Sources



ARCHITECTURAL OVERVIEW

SOFTWARE

EXTINT SERIAL PORT TIMERS HSLO

Rl

TIMER
OVERFLOW
2 1 0

HSO HSI A/D CONV.
3

TRANSITION
DETECTOR

INTERRUPT PENDING REG.

INTERRUPT MASK REG.

| =] GATE
PRIORITY ENCODER

U

INTERRUPT
GENERATOR

D-BUS CONTROL
: UNIT

Figure 2-12. Block Diagram of Interrupt System

At least one instruction in the ISR will always be executed
before another interrupt can be acknowledged. Usually
this instruction is ‘‘DI’’ or ‘‘PUSHF’’ (push flags). The
PUSHF instruction pushes the PSW onto the stack and
then clears it.

Clearing the PSW disables all interrupts in two ways; by
clearing PSW.9, the interrupt enable bit and because the
Interrupt Mask Register is located in bits O through 7 of
the PSW. The interrupts which should be permitted to
interrupt this ISR can then be set in the mask register and
an “‘EI'’ instruction executed.

By selectively determining which interrupts are enabled
or disabled within which interrupt service routines, it is
possible to configure the interrupt system in any way one
would desire. More information on programming the in-
terrupts can be found under software programming of in-
terrupts, section 3.6.

The last two instructions in an ISR are normally a ‘‘POPF”’
(pop flags), which restores the PSW and, therefore, the
interrupt mask register, followed by a ‘RET’, which re-
stores the Program Counter. Execution will then continue
from the point at which the call was forced.



ARCHITECTURAL OVERVIEW

2.5.4. Interrupt Timing

Interrupts are not always acknowledged immediately. If
the interrupt signal does not occur prior to 4 state-times
before the end of an instruction, the interrupt will not be
acknowledged until after the next instruction has been
executed. This is because an instruction is fetched and
prepared for execution a few state times before it is ac-
tually executed.

There are 6 instructions which always inhibit interrupts
from being acknowledged until after the next instruction
has becn executed. These instructions are:
El, DI — Enable and Disable Interrupts
POPF, PUSHF — Pop and Push Flags

SIGND — Prefix to perform signed multiply
and divide :
TRAP — Software interrupt

When an interrupt is acknowledged, a call is forced to the
location indicated by the specified interrupt vector. This
call occurs after the completion of the instruction in pro-
cess, except as noted above. The procedure of getting the
vector and forcing the call requires 21 state times. If the
stack is in external RAM an additional 3 state times are
required.

The maximum number of state times required from the
time an interrupt is generated (not acknowledged) until
the 8096 begins executing code at the desired location is
the time of the longest instruction, NORML (Normalize
— 43 state times), plus the 4 state times prior to the end
of the previous instruction, plus the response time (21 to
24 state times). Therefore, the maximum response time
is 71 (43 +4 +24) state times. This does not include the
12 state times required for PUSHF if it is used as the first
instruction in the interrupt routine or additional latency
caused by having the interrupt masked or disabled.

Interrupt latency time can be reduced by careful selection
of instructions in areas of code where interrupts are ex-
pected. Using ‘EI’ followed immediately by a long in-
struction (e.g. MUL, NORML, etc.) will increase the
maximum latency by 4 state times, as an interrupt cannot
occur between EI and the instruction following EI. The
“DI’’, “PUSHF”’, “‘POPF’’ and ‘‘TRAP”’ instructions
will also cause the same situation. Typically the PUSHF,
POPF and TRAP instructions would only effect latency
when one interrupt routine is already in process, as these
instructions are seldom used at other times.

2.6. TIMERS

Two 16-bit timers are available for use on the 8096. The
first is designated ‘‘Timer 1°°, the second, ‘‘Timer 2.
Timer 1 is used to synchronize events to real time, while
Timer 2 can be clocked externally and synchronizes events
to external occurences.

2.6.1. Timer 1.
Timer 1 is clocked once every cight state times and can
be cleared only by executing a reset. The only other way

2-11

to change its value is by writing to 000CH but this is a
test mode which sets both timers to OFFFXH and should
not be used in programs.

2.6.2. Timer 2

Timer 2 can be incremented by transitions (one count each
transition, rising and falling) on either T2CLK or HSI.1.
The multiple functionality of the timer is determined by
the state of I/O Control Register 0, bit 7 (10C0.7). To
ensure that all CAM entries are checked each count of
Timer 2, the maximum transition speed is limited to once
per eight state times. Timer 2 can be cleared by: executing
a reset, by setting 10CO0.1, by triggering HSO channel
OEH, or by pulling T2RST or HSI.O high. The HSO and
CAM are described in section 2.8. I0C0.3 and I0C0.5
control the resetting of Timer 2. Figure 2-13 shows the
different ways of manipulating Timer 2.

T2 CLK —\<—— HSI1

HSO#14
10Co0.1

10C0.3
T2 RST

R
o Py

TIMER 2

RST

10C0.5

Figure 2-13. Timer 2 Clock and Reset Options

2.6.3. Timer Interrupts

"Both Timer 1 and Timer 2 can be used to trigger a timer

overflow interrupt and set a flag in the I/O Status Register
1 (IOS1). The interrupts are controlled by IOC1.2 and
IOC1.3 respectively. The flags are set in I0S1.6 and
10S1.7, respectively.

Caution must be used when examining the flags, as any
access (including Compare and Jump on Bit) of I0S1
clears the whole byte, including the software timer flags.
It is, therefore, recommended to write the byte to a tem-
porary register before testing bits. The general enabling
and disabling of the timer interrupts are controlled by the
Interrupt Mask Register bit 0. In all cases, setting a bit
enables a function, while clearing a bit disables it.

2.6.4. Timer Related Sections
The High Speed I/O unit is coupled to the timers in that
the HSI records the value on Timer 1 when transitions



ARCHITECTURAL OVERVIEW

16-BIT
2.0 uS CLOCK TIMER 1
HSI TRIGGER OPTIONS HSI.0 =—b] TRIGGERED
Hsl1 =] CHANGE INPUT(S) ”
-_l' . HSI.2 —»{ DETECTOR A6
HITO LO HS|.3 =] - : 1
[—LoTOH r
-t 20 >
- - FIFO 7
HI OR LO st CURRENT
STATUS
4
Hglglgigligh 1T
] ——— HOLDING REGISTER
EVERY EIGHTH POSITIVE ,{’4 |
TRANSITION 16

[HSI_;IIODE | [ wsistatus | 1 wsimime ]

Y Y

© PULSE MEASUREMENT WITH 2.0 xSEC RESOLUTION
® INPUT TRANSITIONS TRIGGER THE RECORDING OF THE REFERENCE
TIMER (16-BIT) AND TRIGGERED INPUT(S) (4-BIT)

Figdre 2-14. High Speed Input Unit

occur and the HSO causes transitions to occur based on
values of either Timer 1 or Timer 2. The Baud rate gen-
erator can use the T2CLK pin as input to its counter. A
complete listing of the functions of I0S1, I0C0, and IOC1
are in section 2.13.

2.7. HIGH SPEED INPUTS

The High Speed Input Unit (HSI), can be used to record
the time at which an event occurs with respect to Timer
1. There are 4 lines (HSI.O through HSI.3) which can be
used in this mode and up to a total of 8 events can be
recorded. HSI.2 and HSI.3 share pins with HSO.4 and
HSO.5. The I/O Control Registers (IOCO and IOC1) are
used to determine the functions of these pins. A block
- diagram of the HSI unit is shown in Figure 2-14.

2.7.1. HSI Modes

There ‘are 4 possible modes of operation for each of the
HSI. The HSI mode register is used to control which pins
will look for what type of events. The 8-bit register is set
up as shown in Figure 2-15.

High and low levels each need to be held for at least 1
state time to ensure proper operation. The maximum input
speed is 1 event every 8 state times except when the 8
transition mode is used, in which case it is 1 transition
per state time.

The HSI lines can be individually enabled and disabled
using bits in JOCO, at location 0015H. Figure 2-16 shows

HSI MODE REGISTER (HSI-MODE)

LOCATION 03H
716]|514]3|2]1

0

HSL.0 MODE
HSI.1 MODE
HSI.2 MODE
HSI.3 MODE

WHERE EACH 2-BIT MODE CONTROL FIELD
DEFINES ONE OF 4 POSSIBLE MODES:

00
01
10
11

8 POSITIVE TRANSITIONS

EACH POSITIVE TRANSITION

EACH NEGATIVE TRANSITION

EVERY TRANSITION (POSITIVE AND NEGATIVE)

212

Figure 2-15. HSI Mode Register Diagram

the bit locations which control the HSI pins. If the pin is
disabled, transitions will not be entered in the FIFO.

2.7.2. HSI FIFO
When an HSI event occurs,.a 7x20 FIFO stores the 16
bits of Timer 1 and the 4 bits indicating the state of the



ARCHITECTURAL OVERVIEW

r------10€0.3, 10C0.5
N T2RESET
- 10C0.0
HS1.0 0 ~o— HSl
R 10C0.2
N Hsi
| r===- 10C0.7
HSIA o o TIMER2
CLOCK
PR 10C0.4
HS1.2 o o HSI
===~ 10C0.6
HSL3 o N HSI

Figure 2-16. 10CO Control of HSI Pin Functions

4 HSI lines at the recorded timer value. It can take up to
8 state times for this information to reach the holding
‘egister. When the FIFO is full, one additional event can
be stored by considering the holding register part of the
FIFO. If the FIFO and holding register are full any ad-
ditional events will not be recorded.

2.7.3. HSI Interrupts

Interrupts can be generated from the HSI unit in one of

two ways, determined by IOC1.7. If the bit is a O, then
an interrupt will be generated every time a value is loaded
into the holding register. If it is a 1, an interrupt will only
be generated when the FIFO, (independent of the holding
register), has six or seven entries in it. Since all interrupts
are rising edge triggered, if IOC1.7 =1, the processor will
not be re-interrupted until the FIFO first contains 5 or less
records, then contains six or more.

2.7.4. HSI Status

Bits 6 and 7 of the I/O Status register 1 (I0S1) indicate
the status of the HSI FIFO. If bit 6 is a 1, the FIFO
contains at least seven entries. If bit 7 is a 1, the FIFO
contains at least 1 entry. The FIFO may be read after
verifying that it contains valid data. Caution must be used
when reading or testing bits in IOS1, as this action clears
the entire byte, including the software and hardware timer
overflow flags. It is best to store the byte and then test the
stored value.

Reading the HSI is done in two steps. First, the HSI Status
register is read to obtain the current state of the HSI pins
and their state at the recorded time. Second, the HSI Time
register, is read. Reading the Time register unloads one
word of the FIFO, so if the Time register is read before
the Status register, the information in the Status register
will be lost. The HSI Status register is at location 06H
and the HSI Time registers are in locations 04H and 05H.

It should be noted that many of the Status register con-
ditions are changed by a reset, see section 2.15.2. A
complete listing of the functions of I0S0, IOS1, and IOCI
can be found in section 2.13.

2.0 uS CLOCK—>»{ TIMER 1

16-BIT. 16-BIT

T2 CLK—> EVENT
T2 RST—p] COUNTER

CONTROL
LOGIC vy
] . »| Mmux
‘*—+—23—> " OUTPUT
CAM FILE 8 COMPARATOR || SIGNAL
l— 7—>:<—1s—>‘
i \
STATUS 4 7
/2 HOLDING REGISTER HIGH SPEED OUTPUT CONTROLS
6 PINS
A 16 4 SOFTWARE TIMERS
i ? 2 INTERRUPTS
HSO_COMMAND HSO__TIME INITIATE A/D CONVERSION

RESET TIMER 2

y BUS 1 ' ’ 1

Figure 2-17. High Speed Output Unit

2-13



* ARCHITECTURAL OVERVIEW

2.8. HIGH SPEED OUTPUTS

The High Speed Output unit (HSO) is used to trigger
events at specific times with minimal CPU overhead.
These events include: starting an A to D conversion, re-
setting Timer 2, setting 4 software flags, generating in-
terrupts, and switching up to 6 output lines. Up to 8 events
can be pending at any one time.

2.8.1. HSIO Shared Pins

Two of the 6 output lines (HSO.0 through HSO.5) are
shared with the High Speed Input (HSI) lines. HSO.4 and
HSO.5 are shared with HSI.2 and HSI.3, respectively.
Bits 4 and 6 of the I/O Control Register 1 (IOC1) are used
- to enable HSO.4 and HSO.5 as outputs.

2.8.2. HSIO CAM

A block diagram of the HSO unit is shown in Figure 2-
17. The Content Addressable Memory (CAM) file is the
center of control. One CAM register is compared with a
time value every state time. Therefore, it takes 8 state
times to compare all CAM registers with a timer.

Each CAM register is 23 bits wide. Sixteen bits specify
the time at which the action is to be carried out and 7 bits
specify both the nature of the action and whether Timer
1 or Timer 2 is the reference. The format of the command
to the HSO unit shown in Figure 2-18. ’

To enter a command into the CAM file, write the 7-bit
“‘Command Tag’’ into location 0006H followed by the
time at which the action is to be carried out into word
address 0004H. Writing the time value loads the HSO
Holding Register with both the time and the last written
command tag. The command does not actually enter the
CAM file until an empty CAM register becomes available.

Care must be taken when writing the command tag for the
HSO. If an interrupt occurs during the time between writ-
ing the command tag and loading the time value, and the

interrupt service routine writes to the HSO time register,

- the command tag will be loaded into the CAM with the

time value from the interrupt routine. One way of avoiding
this problem would be to disable interrupts when writing
commands and times to the HSO unit.

2.8.3. HSO Status .
Before writing to the HSO, it is desirable to ensure that
the Holding Register is empty. If it is not, writing to the

* HSO will overwrite the value in the Holding Register.

I/0O Status Register 0 (I0S0) bits 6 and 7 indicate the
status of the HSO unit. This register is described in section
2.13.4. If I0S0.6 equals 0, the holding register is empty
and at least one CAM register is empty. If I0S0.7 equals
0, the holding register is empty.

One location in the CAM file is checked each state-time.
Thus, it takes 8 state-times for the Holding Register to
have had access to all 8 CAM registers. Similarly, it takes
8 state-times for the comparator to have had access to all
8 CAM registers. This defines the time-resolution of the
HSO unit to be 8 state-times (2.0 usec, if the oscillator
frequency is 12 MHz). Note that the comparator does not
look at the holding register, so instructions in the holding
register do not execute.

2.8.4. Clearing The HSO

All 8 CAM locations of the HSO are compared before any
action is taken. This allows a pending event to be cancelled
by simply writing the opposite event to the CAM. How-
ever, once an entry is placed in the CAM, it cannot be
removed until either the specified timer matches the writ-
ten value or the chip is reset.

Timer 1 is incremented only once every 8 state-times.
When it is being used as the reference timer for an HSO
action, the comparator has a chance to look at all 8§ CAM
registers before Timer 1 changes its value. Following the
same reasoning, Timer 2 has been synchronized to allow
it to change at a maximum rate of once per 8 state-times.
Timer 2 increments on both edges of the input signal.

7 6 5 4 3 2 1 0
o LI T

!X]TIDIII CHANNEL:I
1 L 1

CHANNEL 0-5
6
7
8-B
E
F

HS0.0 - HSO.5

HS0.0 AND HSO.1

HSO0.2 AND HSO.3
SOFTWARE TIMERS

RESET TIMER

START A/D CONVERSION
INTERRUPT/NO INTERRUPT
SET/CLEAR :
TIMER 2/TIMER 1

Figure 2-18. HSO Command Tag Format

2-14




ARCHITECTURAL OVERVIEW

If Timer 2 is being used as the reference timer, the user
must ensure that it is not cleared before all references to
it in the CAM have been recognized. If this occurs, the
unrecognized references will remain in the CAM, blocking
further entries to those CAM registers until the part is
reset or the references are recognized.

2.8.5. Software Timers

The HSO can be programmed to generate interrupts at
preset times. Up to four such *‘Software Timers’’ can be
in operation at a time. As each preprogrammed time is
reached, the HSO unit generates a Software Timer inter-
rupt. The interrupt service routine can then examine

/0 Status register 1 (I0S1) to determine which software

timer expired and caused the interrupt. When the HSO
resets Timer 2 or starts an A to D conversion, it can also
be programmed to generate a software timer interrupt but
there is no flag to indicate that this has occurred.

Each read or test of any bit in IOS1 will clear the whole
byte. Be certain to save the byte before testing it unless
you are only concerned with 1 bit.

A complete listing of the functions of I0S0, 10S1, and
I0CI can be found in section 2.13. The Timers are de-
scribed in section 2.6 and the HSI is described in section
2.7.

2.9. ANALOG INPUTS

The A to D converter on the 8096 provides a 10-bit result
on one of 8 input channels. Conversion is done using
successive approximation with a result equal to the ratio
of the input voltage divided by the analog supply voltage.
If the ratio is 1.00, then the result will be all ones. The
A/D converter is available on the 8097, 8397, 8095 and
8395 members of the MCS®-96 family.

2.9.1. A/D Accuracy

Each conversion requires 168 state-times (42uS at 12
MHz) independent of the accuracy desired or value of
input voltage. The input voltage must be in the range of
0 to VREF, the analog reference and supply voltage. For
proper operation, VREF (the reference voltage and analog
power supply) must be held at VCC = 0.3V with
VREF=5.0%0.5V. The A/D result is calculated from the
formula: )

1023 X (input voltage-AVGND) / (VREF-AVGND)

It can be seen from this formula that changes in VREF
or AVGND efféct the output of the converter. This can be
advantageous if a ratiometric sensor is used since these
sensors have an output that can be measured as a pro-
portion of VREF.

If high absolute accuracy is needed it may be desirable
to use a separate power supply, or power traces, to operate
the A/D converter. There is no sample and hold circuit
internal to the chip, so the input voltage must be held
constant for the entire 168 state times. Examples of con-
necting the A/D converter to various devices are given in
section 4.3.

2.9.2. A/D Commands

Analog signals can be sampled by any one of the 8 analog
input pins (ACHO through ACH7) which are shared with
Port 0. ACH7 can also be used as an external interrupt
if IOCI1.1 is set (see section 2.5). The A/D Command
Register, at location 02H, selects which channel is to be
converted and whether the conversion should start im-
mediately or when the HSO (Channel #14) triggers it. A
to D commands are formatted as shown in Figure 2-19.

The command register is double buffered so it is possible

A/D COMMAND REGISTER
(LOCATION 02H)

5432'1'0
X|X| X]X|GO CH#

-
o

CHANNEL # SELECTS WHICH OF THE 8 ANALOG INPUT
CHANNELS IS TO BE CONVERTED TO DIGITAL FORM;

GO INDICATES WHEN THE CONVERSION iS TO BE
INITIATED (GO =1 MEANS START NOW, GO=0
MEANS THE CONVERSION IS TO BE INITIATED
BY THE HSO UNIT AT A SPECIFIED TIME).

Figure 2-19. A/D Command Register

2-15



ARCHITECTURAL OVERVIEW

A/D RESULT REGISTER

7lelslTalal2l1To 716|514

MSB - -------nn- LsB

X X|S

21110
CH#

A/D CHANNEL NUMBER

STATUS .
0 = A/D CURRENTLY IDLE
1 = CONVERSION IN PROCESS

A/D RESULT:

LEAST SIGNIFICANT 2 BITS

MOST SIGNIFICANT BYTE

Figure 2-20. A/D Resuit Register T

to write a command to start a conversion triggered by the
HSO while one is still in progress. Care must be taken -
when this is done since if a new conversion is started
while one is already in progress, the conversion in progress
is cancelled and the new one is started. When a conversion
is started, the result register is cleared. For this reason the
result register must be read before a new conversion is
started or data will be lost.

2.9.3. A/D Results

Results of the analog conversions are read from the A/D
Result Register at locations 02H and 03H. Although these
addresses are on a word boundary, they must be read as

BUS
g 22
°
REGISTER ‘
Fs
cOMPAnAfon EquaL
R
As Q PWM
y s OUTPUT
counter |4
OVERFLOW

STATE TIME CLOCK
(F(XTAL1)/3)

© PERIOD = 64 xS, FREQUENCY = 15.625 KHz
¢ DUTY FACTOR PROGRAMMABLE IN 256 STEPS

Figure 2-21. Pulse Width Modulated (D/A) Output

2-16

individual bytes. Information in the A/D Result register
is formatted as shown in Figure 2-20. Note that the status
bit may not be set until 8 state times after the go command
Information on using the HSO is in section 2.8.

2.10. PULSE WIDTH MODULATION
OUTPUT (D/A)

Dlglta] to analog conversion can be done with the pulse
width modulation output; a block diagram of the circuit
is shown in Figure 2-21. The 8-bit counter is incremented
every state time. When it equals 0, the PWM output is
set to a one. When the counter matches the value in the
PWM register, the output is switched low. When the
counter overflows, the output is once again switched high.
A typical output waveform is shown in Figure 2-22. Note
that when the PWM register equals 00, the output is always
low.

‘The output waveform is a variable duty cycle pulse which

fepeats every 256 state umes (64 uS at 12MHz). Changes
in the duty cycle are made by writing to the PWM register
at location 17H. There are several types of motors which
require a PWM waveform for most efficient operation.
Additionally, if this waveform is integrated it will produce
a DC level which can be changed in 256 steps by varying
the duty cycle.

Details about the hardware required for smooth, accurate
D/A conversion can be found in section 4.3.2. Typically,
some form of buffer and integrator are needed to obtain
the most usefulness from this feature.

The PWM output shares a pin with Port 2, pin 5 so that
these two features cannot be used at the same time. I0C1:0
equal to 1 selects the PWM function instead of the standard
port function. More information on IOC1 is in section
2.13.3.

2.11. SERIAL PORT

The serial port is compatible with the MCS-51 serial port.
It is full duplex, meaning it can transmit and receive si-



ARCHITECTURAL OVERVIEW

multaneously. It is also receive-buffered, meaning it can
commence reception of a second byte before a previously
received byte has been read from the receive register. The
serial port registers are both accessed at location 07H. A
write to this location accesses the transmit register, and
a read accesses a physically separate receive register.

The serial port can operate in 4 modes (explained below).
Selection of these modes is done through the Serial Port
Control register at location 11H. Use of this register will
be described after defining the possible modes of opera-
tion. In addition to setting the proper mode, it is necessary
to enable the TXD output by setting IOC1.5 high before
the serial port is used.

2.11.1. Serial Port Modes

MODE 0

Mode 0 is a shift register mode. The 8096 outputs a train
-of 8 shift pulses to an external shift register to clock 8
bits of data into or out of the register from or to the 8096.
Serial data enters and exits the 8096 through RXD. TXD

_ outputs the shift clock. 8 bits are transmitted or received,

LSB first. A timing diagram of this mode is shown in
Figure 2-23. This mode is useful ds an I/O expander in
which application external shift registers can be used as
additional parallel I/O ports. An example of using the port
in this mode is given in section 4.5.

MODE 1

10-bit frames are transmitted through TXD, and received
through RXD: a start bit (0), 8 data bits (LSB first), and
a stop bit (1). This mode is the one commonly used for
CRT terminals. The data frame for Mode 1 is shown in
Figure 2-24.

MODE 2

11-bit frames are transmitted through TXD and received
through RXD: a start bit (0), 8 data bits (LSB first), a
programmable 9th data bit, and a stop bit (1). On transmit,
the 9th data bit can be assigned the value of 0 or 1. On
receive, the serial port interrupt is not activated unless the
received 9th data bit is 1. This mode is commonly used
along with mode 3 in a multiprocessor environment.

DUTY . PWM CONTROL
CYCLE REGISTER VALUE OUTPUT WAVEFORM
HI
0% 00 Lo
10% 25 HI M M
Lo
HI
50% 128 Lo | | | | | | ‘
90% 230 HI
Lo — N L
HI
99.6% 255 Lo | | |

Figure 2-22. Typical PWM Outputs

RXD

alnlipininipiniginlin
our — (o7 X o6 X5 X o# X o X2 X o X0
N ——E)— )

Figure 2-23. Serial Port Mode 0 Timing

2-17




*ARCHITECTURAL OVERVIEW

AT €3 € €3 €D € D G

10-BIT FRAME

Figure 2-24. Serial Port Frame — Mode 1

stop \ START / Do X D1 X D2 Y D3 X p4 X D5 X D6 X D7 X D8 / stop
8-BITS OF DATA | T
PROGRAMMABLE 9TH BIT
[-— 11-BIT FRAME

X

* Figure 2-25. Serial Port Frame Modes 2 and 3

MODE 3

11-bit frames are transmitted through TXD and received
through RXD: a start bit (0), 8 data bits (LSB first), a
programmable 9th data bit, and a stop bit (1). On transmit,

the 9th data bit can be assigned the value of 0 or 1. On’

receive, the received 9th data bit is stored and the serial
port interrupt is activated regardless of its value. The data
frame for Modes 2 and 3 is shown in Figure 2-25.

2.11.2. Multiprocessor Communications

Mode 2 and 3 are provided for multiprocessor commu-
nications. In mode 2 if the received 9th data bit is not 1,
the serial port interrupt is not activated. The way to use
this feature in multiprocessor systems is described below.

When the master processor wants to transmit a block of
data to one of several slaves, it first sends out an address
frame which identifies the target slave. An address frame
will differ from a datd frame in that the 9th data bit is 1
in an address frame and O in a data frame. No slave in
mode 2 will be interrupted by a data frame. An address
frame, however, will interrupt all slaves so that each slave
can examine the received byte and see if it is being ad-
dressed. The addressed slave switches to mode 3 to receive
the coming data frames, while the slaves that were not
addressed stay in mode 2 and go on about their business.

2.11.3. Controlling the Serial Port

Control of the Serial Port is done through the Serial Port
Control/Status register. The format for the control word
is shown in Figure 2-26.

When using Mode 0, it is necessary to set up the port with
REN=0 and then write a one'to the REN register before
the port will be to properly initialized. In any mode, it is

necessary to set IOC1.5 to a 1 to enable the TXD pin.
Some examples of the software involved in using the serial
port can be found in section 3.8. More information on
IOCl1 is in section 2.13.3. '

2.11.4. Determining Baud Rates

Baud rates in all modes are determined by the contents
of a 16-bit register at location 000EH. This register must
be loaded sequentially with 2 bytes (least significant byte
first). The MSB of this register selects one of two sources
for the input frequency to the baud rate generator. If it is
a 1, the frequency on the XTALI pin is selected, if not,
the external frequency from the T2CLK pin is used. It
should be noted that the maximum speed of T2CLK is
one transition every 2 state times.

The unsigned integer represented by the remaining 15 bits
of the baud rate register, plus I, defines a number B,
where B can thus take any value from 1 to 32768. This
‘1’ is not added if the T2CLK is used as the time base.
The baud rate for the 4 serial modes is then given by

Mode 0: baud rate
Others: baud rate

input frequehcy/(4*B)
input frequency/(64*B)

The maximum asynchronous baud rate is -187.5 Kbaud,
with a 12 MHz clock.

The unsigned integer must not equal zero if mode 0 is
being used.

2.12, /O PORTS 0, 1, 2, 3, AND 4

There are five 8-bit I/O ports on the 8096. Some of these
ports are input only, some output only, some bidirectional
and some have alternate functions. Input ports connect to
the internal bus through an input buffer. Output ports



ARCHITECTURAL OVERVIEW

LOCATION 11H

7
RB8/RPE

3

TB8 REN

PEN

m

L- M2, M1 SPECIFIES THE MODE;

PEN
REN
TB8
T

Rl

RB8
RPE

0,0 = MODE 0
0,1 = MODE 1
1,0 = MODE 2
1,1 = MODE 3

ENABLE THE PARITY FUNCTION (EVEN PARITY);
ENABLES THE RECEIVE FUNCTION;

PROGRAMS THE 9TH DATA BIT (IF NOT PARITY) ON
TRANSMISSION;

IS THE TRANSMIT INTERRUPT FLAG;

IS THE RECEIVE INTERRUPT FLAG;

IS THE 9TH DATA BIT RECEIVED (IF NOT PARITY);
IS THE PARITY ERROR INDICATOR (IF PARITY ACTIVE).

Figure 2-26. Serial Port Control/Status Register

connect through an. output buffer to an internal register

that holds the output bits. Bidirectional ports consist of

an internal register, an output buffer, and an input buffer.

When an instruction accesses a bidirectional port as a
. source register, the question often arises as to whether the
value that is brought into the CPU comes from the internal
port register or from the port pins through the input buffer.
In the 8096, the value always comes from the port pins,
never from the internal register.

2.12.1. Port 0

Port 0 is an input only port which shares its pins with the
analog inputs to the A/D Converter. One can read Port 0
digitally, and/or, by writing the appropriate control bits
to the A/D Command Register, select one of the lines of
this port to be the input to the A/D Converter. While a
conversion is in process, the impedance of the selected
line is lower than normal. See the data sheet for the spe-
cific values.

2.12.2. Port 1

Port 1 is a quasi-bidirectional I/O port. ‘‘Quasi-bidirec-
tional’’ means the port pin has a weak internal pullup that
is always active and an internal pulldown which can either
be on (to output a 0) or off (to output a 1). If the internal
pulldown is left off (by writing a 1 to the pin), the pin’s
logic level can be controlled by an external pulldown
which can either be on (to input a 0) or:off (to input a 1).
From the user’s point of view the.main distinction is that

a quasi-bidirectional input will source current while being
externally held low and will pull itself high if left alone.

In parallel with the weak internal pullup, is a much
stronger internal pullup that is activated for one state time
when the pin is internally driven from 0 to 1. This is done
to speed up the 0-to-1 transition time.

2.12.3. Port 2
Port 2 is a multi-functional port. Six of its pins are shared
with other functions in the 8096, as shown below.

Port |Function Alternate Controlled by
Function

P2.0 | output | TXD (serial port |IOC1.5
transmit)

P2.1 | input RXD (serial port | N/A
receive)

P2.2 | input EXTINT I0C1.1
(external interrupt)

P2.3 | input T2CLK (Timer |I10C0.7
2 input)

P2.4 | input T2RST (Timer | 10C0.3

. 2 reset)

P2.5 | output |PWM I0C1.0
(pulse-width
modulation)

P2.6 quasi-bidirectional

P2.7 quasi-bidirectional



ARCHITECTURAL OVERVIEW

2.12.4. Ports 3 and 4

Ports 3 and 4 have two functions. They are either bidi-

rectional ports with open-drain outputs or System Bus pins -

which the memory controller uses when it is accessing
off-chip memory. Strong internal pullups are used during
external memory read or write cycles when the pins are
used as address or data outputs. At any other time, the
internal pullups are disabled. The port pins and their sys-
tem bus functions are shown below: ‘

System Bus'Function

Port Pin.
P3.0 ADO
P3.1 ADI1
P3.2 AD2
P3.3 AD3
P3.4 AD4
P3.5 ADS
P3.6 AD6
P3.7 AD7
P4.0 ADS8
P4.1 AD9
P4.2 ADI10
P4.3 ADI1
P4.4 ADI2
P4.5 ADI3
P4.6 ADI14
P4.7 ADI1S5

B

2.13. STATUS AND CONTROL REGISTERS

2.13.1. 1/0 Control Registers

There are two I/0O Control registers, IOCO and IOCI.
10CO controls Timer 2 and the HSI lines. IOC1 controls
some pin functions, interrupt sources and 2 HSO pins.

2.13.2. 10CO ‘
I0CO is located at 0015H. The four HSI lines can be
enabled or disabled to the HSI unit by setting or clearing
bits in IOCO. Timer 2 functions including clock and reset
sources are also determined by I0CO. The control bit
locations are shown in Figure 2-27.

- 2.13.3. 10C1

IOC1 is used to select some pin functions and enable or
disable some interrupt sources. Its location is 0016H. Port
pin P2.5 can be selected to be the PWM output instead
of a standard output. The external interrupt source can be
selected to be either EXTINT (same pin as P2.2) or Analog
Channel 7 (ACH7, same pin as P0.7). Timer 1 and Timer
2 overflow interrupts can be individually enabled or dis-
abled. The HSI interrupt can be selected to activate either
when there is 1 FIFO entry or 7. Port pin P2.0 can be
selected to be the TXD output. HSO.4 and HSO.5 can
be enabled or disabled to the HSO unit. More information
on interrupts is available in section 2.5. The positions of

. the JOC1 control bits are shown in Figure 2-28.

LOCATION 15H

anonpnan

]

HS1.0 INPUT ENABLE/DISABLE
TIMER 2 RESET EACH WRITE
HSL.1 INPUT ENABLE/DISABLE
TIMER 2 EXTERNAL RESET ENABLE/DISABLE
HS1.2 INPUT ENABLE/DISABLE

TIMER 2 RESET SOURCE HSI.0/T2 RST

HS1.3 INPUT ENABLE/DISABLE

TIMER 2 CLOCK SOURCE HSI.1/T2CLK

Figure 2-27. /O Control Register 0 (I0C0)

LOCATION 16H

[rle]sfe]af2]1]o]

SELECT PWM/SELECT P2.5

EXTERNAL INTERRUPT ACH7/EXTINT »
TIMER 1 OVERFLOW INTERRUPT ENABLE/DISABLE
TIMER 2 OVERFLOW INTERRUPT ENABLE/DISABLE
HSO.4 OUTPUT ENABLE/DISABLE

— SELECT TXD/SELECT P2.0

HSO0.5 OUTPUT ENABLE/DISABLE

HSI INTERRUPT FIFO FULL/HOLDING REGISTER LOADED

Figure 2-28. I/0 Control Register 1 (I0C1)

2-20



ARCHITECTURAL OVERVIEW

2.13.4. 1/O Status Register 0

There are two I/O Status registers, IOS0 and I0S1. I0SO0,
located at 0015H, holds the current status of the HSO
lines and CAM. The status bits of I0SO are shown in
Figure 2-29.

2.13.5. 1/O Status Register 1

IOS1 is located at 0016H. It contains status bits for the
timers and the HSI. Every access of this register clears
all of the timer overflow and timer expired bits. It is,
therefore, important to first store the byte in a temporary
location before attempting to test any bit unless only one
bit will ever be of importance to the program. The status
bits of IOS1 are shown in Figure 2-30.

2.14. WATCHDOG TIMER

This feature is provided as a means of graceful recovery
from a software upset. If the software fails to reset the
watchdog at least every 64K state times, a hardware reset
will be initiated.

The software can be designed so that the watchdog times
out if the program does not progress properly. The watch-
dog will also time-out if the software error was due to
ESD (Electrostatic Discharge) or other hardware related
problems. This prevents the controller from having a mal-

function for longer than 16 mS if a 12 MHz oscillator is
used.

The watchdog timer is a 16-bit counter which is incre-
mented every state time. When it overflows it pulls down
the RESET pin for at least two state times, resetting the
8096 and any other chips connected to the reset line. To
prevent the timer from overflowing and resetting the sys-
tem, it must be cleared periodically. Clearing the timer
is done by writing a ““OlEH"’ followed by an “‘OE1H”’
to the WDT register at location 000AH.

Use of a large reset capacitor on the RESET pin will
increase the length of time required for a watchdog ini-
tiated reset. This is because the capacitor will keep the
RESET pin from responding immediately to the internal
pull-ups and pull-downs. A large capacitor on the RESET
pin may also interfere with the reset of other parts con-
nected to the RESET pin. Under some circumstances, it
may be desirable to use an open collector circuit. See
section 4.1.4.

2.14.1. Disabling The Watchdog

During program development, the watchdog can be dis-
abled by holding the RESET pin at 2.0 to 2.5 volts. Volt-
ages over 2.5 volts on the pin could quickly damage the
part. Even at 2.5 volts, using this technique for other than

LOCATION 15H

7]e]s]a]af2]1]0]

HS0.0 CURRENT STATE
HSO.1 CURRENT STATE
HS0.2 CURRENT STATE
HS0.3 CURRENT STATE
HSO0.4 CURRENT STATE
HS0.5 CURRENT STATE

CAM AND HOLDING REGISTER NOT EMPTY

HSO HOLDING REGISTER NOT EMPTY

Figure 2-29. HSIO Status Register 0 (10S0)

LOCATION 16H

[7]els]4fa2]1]o]

' l—" SOFTWARE TIMER 0 EXPIRED

SOFTWARE TIMER 1 EXPIRED
SOFTWARE TIMER 2 EXPIRED
SOFTWARE TIMER 3 EXPIRED
TIMER 1 HAS OVERFLOW
TIMER 2 HAS OVERFLOW

HSI FIFO IS FULL

HSI HOLDING REGISTER IS LOADED

Figure 2-30. HSIO Status Register 1 (I0S1)

2-21



ARCHITECTURAL OVERVIEW

debugging purposes is not recommended, as it may effect
long term reliability. It is further recommended that any
part used in this way for more than a few minutes, not
be used in production versions of products.

2.15. RESET ’
2.15.1. Reset Signal

As with all processors, the 8096 must be reset each time
the power is turned on. To complete a reset, the RESET
pin must be held active (low) for at least 2 state times
after VCC, the oscillator, and the back bias generator have
stabilized (~1.0 milliseconds). Then when RESET is
brought high again, the 8096 executes a reset sequence
that takes 10 state times. (It initializes some registers,
clears the PSW and jumps to address 2080H.)

The 8096 can be reset using a capacitor, 1-shot, or any
other method capable of providing a pulse of at least 2
state times longer than required for VCC and the oscillator
to stabilize.

For best functionality, it is suggested that the reset pin be
pulled low with an open collector device. In this way,
several reset sources can be wire ored together. Remem-
ber, the RESET pin itself can be a reset source (see section
2.14). Details of hardware suggestions for reset can be
found in section 4.1.4.

2.15.2. Reset Status

The 1/O lines of the 8096 will be in their reset st'ate within '

2 state times after reset is low, with VCC and the oscillator
stabilized. Prior to that time, the status of the I/O lines
is indeterminate. After the 10 state time reset sequence,
the Special Function Registers will be set as follows:

SFR reset value

Port 1 11111111B
Port 2 110XXXX1B
Port 3 11111111B
Port 4 11111111B
PWM Control 00H
Serial Port (Transmit) undefined
Serial Port (Receive) undefined
Baud Rate Register undefined
Serial Control/Status undefined
A/D Command undefined
A/D Result undefined
Interrupt Pending undefined
Interrupt Mask 00000000B
Timer 1 0000H
Timer 2 0000H
Watchdog Timer 0000H
HSI Mode 11111111B
HSI Status undefined
10S0 00000000B
10S1 00000000B
10COo X0X0X0X0B
10C1 X0X0XXX1B

2-22

Other conditions following a reset are:

Register reset value
HSI FIFO " empty
HSO CAM empty
HSO lines 00000B
PSW | 0000H
Stack Pointer undefined
Program Counter 2080H

It is important to note that the Stack Pointer and Interrupt
Pending Register are undefined, and need to be initialized
in software. The Interrupts are disabled by both the mask
register and PSW.9 after a reset.

2.15.3. Reset Sync Mode

The RESET line can be used to start the 8096 at an exact
state time to provide for synchronization of test equipment
and multiple chip systems. RESET is active low. To syn-
chronize parts, RESET is brought high on the rising edge
of XTALI1. Complete details on synchronizing parts can
be found in section 4.1.5.

It is very possible that parts which start in sync may not
stay that way. The best example of this would be when
a “‘jump on I/O bit”’ is being used to hold the processor
in a loop. If the line changes during the time it is being
tested, one processor may see it as a one, while the other
sees it as a zero. The result is that one processor will do
an extra loop, thus putting it several states out of sync
with the other.

2.16. PIN DESCRIPTION

vCC
Main supply voltage (5V).

VSss
Digital circuit ground (0V).There are two VSS pins, both
must be tied to ground.

VPD :

RAM standby.supply voltage (5V). This voltage must be
present during normal operation. See section 2.4.2 and
4.1.

VREF

Reference voltage and power supply for the analog portion
of the A/D converter. Nominally at 5 volts. See $ection
2.9.1 and 4.1.

ANGND

Reference ground for the A/D converter. Should be held
at nominally the same potential as VSS. See section 2.9.1
and 4.1. :

vBB
Substrate voltage from the on-chip back-bias generator.
This pin should be connected to ANGND through a 0.01



ARCHITECTURAL OVERVIEW

uf capacitor (and not connected to anything else). The
capacitor is not required if the A/D convertor is not being
used.

XTAL1
Input of the oscillator inverter and input to the internal
clock generator. See sections 2.2 and 4.1.

XTAL2
Output of the oscillator inverter. See section 2.2.

CLKOUT _

Output of the internal clock generator. The frequency of
CLKOUT is %5 the oscillator frequency. It has a 33% duty
cycle. CLKOUT can drive one TTL input. See section
2.2.

RESET

Reset input to the chip, dlso output to other circuits. Input
low for at least 2 state times to reset the chip. RESET has
a strong internal pullup. See section 2.15 and 4.1.

TEST
Input low enables a factory test mode. The user should
tie this pin to VCC for normal operation.

NMI

A low to high transition a vector to external memory
‘location 0000H. Reserved for use in Intél Development
systems.

INST

Output high while the address is valid during -an external
read indicates the read is an instruction fetch. See section
2.3.5 and 4.6.

EA

Input for memory select (External Access). EA = 1 causes
memory accesses to locations 2000H through 3FFFH to
be directed to on-chip ROM. EA = 0 causes accesses to
these locations to be directed to off-chip memory. EA has
an internal pulldown, so it goes to O unless driven to 1.
See section 2.3.4.

ALE

Address Latch Enable output. ALE is activated only dur-
ing external memory accesses. It is used to latch the ad-
dress from the multiplexed address/data bus. See section
2.3.5 and 4.6.

RD
Read signal output to external memory. RD is dctivated
only during external memory reads. See section 2.3.5 and

WR

Write signal output to external memory. WR is activated
only during external memory writes. See section 2.3.5
and 4.6.

2-23

BHE

Bus High Enable signal output to external memory. BHE
(0/1) selects/deselects the bank of memory that is con-
nected to the high byte of the data bus. See section 2.3.5
and 4.6.

READY

The READY input is used to lengthen external memory
bus cycles up to the time specified in the data sheet. It
has a weak internal pullup. See section 2.3.5 and 4.6.

HSI

High impedance inputs to HSI Unit. Four HSI pins are
available: HSI.O, HSI.1, HSI.2, and HSI.3. Two of them
(HSI.2 and HSI.3) are shared with the HSO Unit. See
section 2.7.

HSO

Outputs from HSO Unit..Six HSO pins are available:
HSO.0, HSO.1, HSO.2, HSO.3, HSO.4, and HSO.5.
Two of them (HSO.4 and HSO.5) are shared with the HSI
Unit. All HSO pins are capable of driving one TTL input.
See section 2.8.

PORT 0/ANALOG CHANNEL

High impedance input-only port. These pins can be used
as digital inputs and/or as analog inputs to the on-chip
A/D converter. See sections 2.9 and 2.12.1.

PORT 1
Quasi-bidirectional I/O port. All pins of P1 are capable
of driving one LS TTL input. See section 2.1.2.

PORT 2
Multi-functional port. Six of its pins are shared with other
functions in the 8096, as shown below.

Port | Function |Alternate Function| Reference
section

P2.0 | output TXD (serial port 2.11.3
transmit)

P2.1 input RXD (seridl port 2.11.3
receive) :

P2.2 | input EXTINT (external 2.5
interrupt)

P2.3 | input T2CLK (Timer 2 2.6.2
input)

P2.4 | input T2RST (Timer 2 2.6.2
reset)

P2.5 | output PWM (pulse-width 2.10
modulator)

P2.6 quasi-bidirectional

P2.7 quasi-bidirectional

The multi-functional inputs are high impedance. See sec-
tion 2.1.3.



ARCHITECTURAL OVERVIEW

PORTS 3 AND 4

8-bit bidirectional I/O ports. These pins are shared the
multiplexed address/data bus when accessing external
memory, with the Port 3 pins accessing the low byte and
Port 4 pins accessing the high byte. They are open drain
except when being used as system bus pins. See section
2.3.5.

2.17. PIN LIST

The following is a list of pins in alphabetical order. Where
a pin has two names it has been listed under both names,
except for the system bus pins, ADO-AD1S5, which are
listed under Port 3 and Port 4.

The Following pins are not bonded out in the 48-pin
package:

P1.0 through P1.7, P0.0 through P0.3, P2.3, P2.4, P2.6,
P2.7 CLKOUT, INST, NMI, TEST, T2CLK(P2.3),
T2RST(P2.4).

Name 68-Pin | 48-Pin Name 68-Pin | 48-Pin

ACHO/PO.1 4 —_ P2.0/TXD 60 2
ACH1/P0.2 5 — P2.1/RXD 61 1
ACH2/P0.3 3 — P2.2/EXTINT 63 47
ACH3/P0.3 6 —_— P2.3/T2CLK 34 —_
ACH4/P0.4 - 67 43 P2.4/T2RST 36 —
ACHS/P0.5 68 42 P2.5/PWM 39 13
ACH6/P0.6 2 40 P2.6 45 ——
ACH7/P0.7 1 41 P2.7 40 -
ALE 16 34 P3.0/ADO 18 32
ANGND 66 44 P3.1/ADI1 19 31
BHE 37 15 P3.2/AD2 20 30
CLKOUT 13 — P3.3/AD3 21 29
EA 7 39 P3.4/AD4 22 28
EXTINT/P2.2 63 47 P3.5/ADS 23 27
HSI.0 54 3 P3.6/AD6 24 26
HSI.1 53 4 P3.7/AD7 25 25
HSI.2/HSO.4 52 5 P4.0/AD8 26 24
HSI.3/HSO.5 51 6 P4.1/AD9 27 23
HSO.0 50 - 7 P4.2/AD10 28 22
HSO.1 49 8 P4.3/AD11 29 21
HSO.2 44 9 P4.4/AD12 30 20
HSO.3 43 10 P4.5/AD13 © 31 19
HSO0.4/HS1.2 52 5 P4.6/AD14 32 18
HSO.5/HSI1.3 51 6 P4.7/AD15 33 17
INST 15 — RD 17 33
NMI 7 — READY 35 16
PWM/P2.5 39 13 RESET 62 48
P0.0/ACHO 4 — RXD/P2.1 61 1
P0.1/ACH1 5 — TEST 14 —
P0.2/ACH2 3 —_ TXD/P2.0 60 2
P0.3/ACH3 6 — T2CLK/P2.3 34 —

| P0.4/ACH4 67 43 T2RST/P2.4 36 —
P0.5/ACH5 68 4?2 VBB 41 12
P0.6/ACH6 2 40 VCC 9 38
P0.7/ACH7 1 41 VPD . 64 46 .
P1.0 59 — VREF 65 45
P1.1 58 —_ VSS 10 11
P1.2 57 — VSss 42 37
P1.3 56 — WR 38 14
P1.4 | 55 —_ XTAL1 11 36
P1.5 48 — XTAL2 12 35
P1.6 47 — N
P1.7 46 —

2-24




MCS®.96 Software Design Information 3







| ~ CHAPTER 3 |
MCS®-96 SOFTWARE DESIGN INFORMATION

0. INTRODUCTION

This section provides information which will primarily
interest those who must write programs to execute in the
8096. Several other sources of information are currently
available which will also be of interest:

'~ MCS®-96 MACRO ASSEMBLER USER’S GUIDE
Order Number 122048-001

MCS-96 UTILITIES USER’S GUIDE
Order Number 122049-001

MCS-96 MACRO ASSEMBLER AND UTILITIES
POCKET REFERENCE
Order Number 122050-001

Throughout this chapter short segments of ‘code are used
to illustrate the operation of the device. For these sections
it has been assumed that a set of temporary registers have
been predeclared. The names of these registers have been
chosen as follows:

AX, BX, CX, and DX are 16 bit registers.

AL is the low byte of AX, AH is the high byte.
BL is the low byte of BX

CL is the low byte of CX

DL is the low byte of DX

These are the same as the names for the general data
registers used in 8086. It is important to note, however,
that in the 8096, these are not dedicated registers but
merely the symbolic names assigned by the programmer
to an eight byte region within onboard register file.

3.1. OPERAND TYPES

The MCS®-96 architecture provides support for a variety
of data types which are likely to be useful in a control
application. In the discussion of these operand types that
follows, the names adopted by the PLM-96 programming
language will be used where appropriate. To avoid con-
fusion the name of an operand type will be capitalized.
A “BYTE” is an unsigned eight bit variable; a ‘‘byte’’
is an eight bit unit of data of any type.

3.1.1. Bytes
BYTES are unsigned 8-bit variables which can take on
- the values between 0 and 255. Arithmetic and relational
operators can be applied to BYTE operands but the result
must be interpreted in modulo 256 arithmetic. Logical
operations on BYTES are applied bitwise. Bits within
BYTES are labeled from O to 7 with O being the least
significant bit. There are no alignment restrictions for
BYTES so they may be placed anywhere in the MCS-96
address space.

3.1.2. Words
WORDS are unsigned 16-bit variables which can take on
the values between 0 and 65535. Arithmetic and relational

3-1

operators can be applied to WORD operands but the result
must be interpreted modulo 65536. Logical operations on
WORDS are applied bitwise. Bits within words are labeled
from 0 to 15 with O being the least significant bit. WORDS
must be aligned at even byte boundaries in the MCS-96
address space. The least significant byte of the WORD
is in the even byte address and the most significant byte
is in the next higher (odd) address. The address of a word
is the address of its least significant byte.

3.1.3. Short-Integers

SHORT-INTEGERS are 8-bit signed varlables which can
take on the values between — 128 and + 127. Arithmetic
operations which generate results outside of the range of
a SHORT-INTEGER will set the overflow indicators in
the program status word. The actual numeric result re-
turned will be the same as the equivalent operation on
BYTE variables. There are no alignment restrictions on
SHORT-INTEGERS so they may be placed anywhere in
the MCS-96 address space.

3.1.4. Integers

INTEGERS are 16-bit signed variables which can take on
the values between — 32,768 and 32,767. Arithmetic op-
erations which generate results outside of the range of an
INTEGER will set the overflow indicators in the program
status word. The actual numeric result returned will be
the same as the equivalent operation on WORD variables.
INTEGERS conform to the same alignment and address-
ing rules as do WORDS.

3.1.5. Bits

BITS are single-bit operands which can take on the Boo-
lean values of true and false. In addition to the normal
support for bits as components of BYTE and WORD op-
erands, the 8096 provides for the direct testing of any bit
in the internal register file. The MCS-96 architecture re-
quires that bits be addressed as’ components of BYTES
or WORDS, it does not support the direct addressing of
bits that can occur in the MCS-51 architecture.

3.1.6. Double-Words

DOUBLE-WORDS are unsigned 32-bit variables which
can take on the values between 0 and 4,294,967,295. The
MCS-96 architecture provides direct support for this op-
erand type only for shifts and as the dividend in a 32 by
16 divide and the product of a 16 by 16 multiply. For
these operations a DOUBLE-WORD variable must reside
in the on-board register file of the 8096 and be aligned
at an address which is evenly divisible by 4. A DOUBLE-
WORD operand is addressed by the address of its least
significant byte. DOUBLE-WORD operations which are
not directly supported can be easily implemented with two
WORD operations. For consistency with INTEL provided
software the user should adopt the conventions for ad-
dressing DOUBLE-WORD operands which are discussed
in section 3.5.



MCS¢®-96 SOFTWARE DESIGN INFORMATION

3.1.7. Long-Integers

LONG-INTEGERS are 32-bit signed variables which can
take on the values between —2,147,483,648 and
2,147,483,647. The MCS-96 architecture provides direct
support for this data type only for shifts and as the dividend
ina 32 by 16 divide and the product of a 16 by 16 multiply.

LONG-INTEGERS can also be normalized. For these
operations a LONG-INTEGER variable must reside in the
onboard register file of the 8096 and be aligned at an

3.2. OPERAND ADDRESSING

Operands are accessed within the address space of the
8096 with one of six basic addressing modes. Some of
the details of how these addressing modes work are hidden
by the assembly language. If the programmer is to take
full advantage of the architecture, it is important that these
details be understood. This section will describe the ad-
dressing modes as they are handled by the hardware. At
the end of this section the addressing modes will be de-

3.2.1. Register-direct References

The register-direct mode is used to directly access a reg-
ister from the 256 byte on-board register file. The register
is selected by an 8-bit field within the instruction and

address which is evenly divisible by 4. A LONG-INTEGER
is addressed by the address of its least significant byte.

LONG-INTEGER operations which are not directly sup-
ported can be easily implemented with two INTEGER
operations. For consistency with Intel provided software,
the user should adopt the conventions for addressing
LONG operands which are discussed in section 3.5.

scribed as they are seen through the assembly language.
The six basic addressing modes which will be described
are termed register-direct, indirect, indirect with auto-in-
crement, immediate, short-indexed, and long-indexed.
Several other useful addressing operations can be achieved
by combining these basic addressing modes with specific
registers such as the ZERO register or the stack pointer.

register address must conform to the alignment rules for
the operand type. Depending on the instruction, up to
three registers can take part in the calculation.

Examples
ADD AX,BX,CX ; AX:=BX+CX
MUL AX,BX 1 AX: = AX*BX
INCB CL :CL:=CL+1-

3.2.2. Indirect References

The indirect mode is used to access an operand by placing
its address in a WORD variable in the register file. The
calculated address must conform to the alignment- rules
for the operand type. Note that the indirect address can
refer to an operand anywhere within the address space.of

the 8096, including the register file. The register which
contains the indirect address is selected by an eight bit
field within the instruction. An instruction can contain
only one indirect reference and the remaining operands
of the instruction (if any) must be register-direct references.

Examples
LD AX,[AX] ; AX:=MEM _ WORD(AX)
ADDB  AL,BL,[CX] ; AL:=BL+MEM _ BYTE(CX)
POP [AX]

; MEM _ WORD(AX) :=MEM _ WORD(SP): SP:=SP +2

3.2.3. Indirect with Auto-increment References
This addressing mode is the same as the indirect mode
except that the WORD variable which contains the indirect
address is incremented after it is used to address the op-
erand. If the instruction operates on BYTES or SHORT-

INTEGERS the indirect address variable will be incre-
mented by one, if the instruction operates on WORDS or
INTEGERS the indirect address able will be incremented
by two.

Examples
LD AX,[BX]+ ; AX:=MEM _ WORD(BX); BX: =BX +2
ADD  AL,BL,[CX]+ ; AL:=AL+BL+MEM _ BYTE(CX); CX:=CX +1
PUSH [AX]+ ; SP:=SP-2;
; MEM _ WORD(SP): =MEM _ WORD(AX)
;. AXi=AX+2

3-2

¢



MCS®-96 SOFTWARE DESIGN INFORMATION

- 3.2.4. Immediate References

This addressing mode allows an operand to be taken di-
rectly from a field in the instruction. For operations on
BYTE or SHORT-INTEGER operands this field is eight
bits wide, for operations on WORD or INTEGER oper-

ands the field is 16 bits wide. An instruction can contain

~only one immediate reference and the remaining oper- -

and(s) must be register-direct references.

Examples
ADD AX.#340 ; AX:=AX+340
PUSH #1234H
DIVB AX,#10

: SP:=SP -2: MEM _ WORD(SP):
1 AL:=AX/10; AH: =AX MOD 10

=1234H

3.2.5. Short-indexed References

In this addressing mode an eight bit field in the instruction
selects a WORD variable in the register file which is
assumed to contain an address. A second eight bit field
in the instruction stream is sign-extended and summed
with the WORD variable to form the address of the op-
erand which will take part in the calculation. Since the

eight bit field is sign-extended the effective address can
be up to 128 bytes before the address in the WORD var-
iable and up to 127 bytes after it. An instruction can
contain only one short-indexed reference and the remain-
ing operand(s) must be register-direct references.

Examples
LD AX,12[BX]
MULB AX,BL.3[CX]

. AX:=MEM _ WORD(BX +12)
. AX: =BL*MEM _ BYTE(CX +3)

3.2.6. Long-indexed References

This addressing mode is like the short-indexed mode ex-
cept that a /6-bit field is taken from the instruction and
added to the WORD variable to form the address of the

operand. No sign extension is necessary. An instruction
can contain only one long-indexed reference and the re-
maining operand(s) must to register-direct references.

Examples

AND AX.,BX,TABLE[CX] :AX:=BX AND MEM _ WORD(TABLE +CX)
ST AX . TABLE[BX] : MEM __ WORD(TABLE + BX) : =AX
ADDB AL,BL,LOOKUP[CX] : AL:=BL+MEM _ BYTE(LOOKUP +CX)

3.2.7. ZERO Register Addressing

The first two bytes in the register file are fixed at zero by
the 8096 hardware. In addition to providing a fixed source
of the constant zero for calculations and comparisons, this
register can be used as the WORD variable in a long-

indexed reference. This combination of register selection
and address mode allows any location in memory to be
addressed directly.

Examples
ADD AX,1234[0]
POP 5678{0]
SP:=SP+2

1 AX:=AX+MEM _ WORD(1234)
. MEM __ WORD(5678): = MEM _ WORD(SP)

3.2.8. Stack Pointer Register Addressing

The system stack pointer in the 8096 can be accessed as
register 18H of the internal register file. In addition to
providing for convenient manipulation of the stack pointer,
this also facilitates the accessing of operands in the stack.
. The top of the stack, for example, can be accessed by

using the stack pointer as the WORD variable in an indirect
reference. In a similar fashion, the stack pointer can be
used in the short-indexed mode to access data within the
stack. ’

; DUPLICATE TOP _ OF _ STACK

Examples
PUSH [SP]
LD AX,2[SP] ; AX:=NEXT _ TO — TOP

3-3



MCS©-96 SOFTWARE DESIGN INFORMATION

3.2.9. Assembly Languaée Addressing Modes

The 8096 assembly language simplifies the choice of ad-
dressing modes to be used in several respects:

Direct Addressing.The assembly language will choose
between register-direct addressing and long-indexed with
the ZERO register depending on where the operand is in
memory. The user can simply refer to an operand by its
symbolic name; if the operand is in the register file, a
register-direct reference will be used, if the operand is
elsewhere in memory, a long-indexed reference will be
generated.

3.3 PROGRAM STATUS WORD

The program status word (PSW) is a collection of Boolean
flags which retain information concerning the state of the
user’s program. The format of the PSW is shown in figure
3-1. The information in the PSW can be broken down into

15[14]13[12]|11[10]|09]0

oo

07]06]05]04]03]02]01]00

Immediate Addressing. The assembly language will
choose between short and long indexing depending on the
value of the index expression. If the value can be expressed
in eight bits then short indexing will be used, if it cannot
be expressed in eight bits then long indexing will be used.

The use of these features of the assembly language sim-
plifies the programming task and should be used wherever
possible.

two basic categories; interrupt control and condition flags.
The PSW can be saved in the system stack with a single
operation (PUSHF) and restored in a like manner (POPF).

ZI{N|VIVTIC|—]|I

ST

<Interrupt Mask Reg>

Figure 3-1. PSW Register

3.3.1. |nterrupt Flags
The lower elght bits of the PSW are used to individually
mask the various sources of interrupt to the 8096. A logical
‘I’ in these bit positions enables the servicing of the cor-
responding interrupt. These mask bits can be accessed as
an eight bit byte INT__MASK — address 8) in the on-
board register file. Bit 9 in'the PSW is the global interrupt
“enable. If this bit is cleared then all interrupts will be
locked out except for the Non Maskable Interrupt (NMI).
Note that the various interrupts are collected in the
INT _ PENDING register even if they are locked out.
Execution of the corresponding service routines will
procede according to their priority when they become en-
abled. Further information on the interrupt structure of the
8096 can be found in sections 2.5 and 3.6.

3.3.2. Condition Flags

The remaining bits in the PSW are set as side effects of
instruction execution and can be tested by the conditional
jump instructions.

Z. The Z (Zero) flag is set to indicate that the operation
generated a result equal to zero. For the add-with-carry
(ADDC) and subtract-with-borrow (SUBC) operations the
Z flag is cleared if the result is non-zero but is never set.
These two instructions are normally used in conjunction
with the ADD and SUB instructions to perform multiple
precision arithmetic. The operation of the Z flag for these
instructions leaves it indicating the proper result for the
entire multiple. precision calculation. '

N. The N (Negative) flag is set to indicate that the op-

eration generated a negative result. Note that the N flag
will be set to the algebraically correct state even if the
calculation overflows.

V. The V (oVerflow) flag is set to indicate that the op-
eration generated a result which is outside the range that
can be expressed in the destination data type.

VT. the VT (oVerflow Trap) flag is set whenever the V
flag is set but can only be cleared an instruction which
explicitly operates on it such as the CLRVT or JVT in-
structions. The operation of the VT flag allows for the
testing for a possible overflow condition at the end of a

" sequence of related arithmetic operations. This is normally

more efficient than testing the V flag after each instruction.

C. The C (Carry) flag is set to indicate the state of the
arithmetic carry from the most significant bit of the ALU
for an arithmetic operation or the state of the last bit shifted
out of the operand for a shift. Arithmetic Borrow after a
subtract operation is the complement of the C flag (i.e.
if the operation generated a borrow then C=0).

ST. The ST (STicky bit) set to indicate that during a right
shift a 1 has been shifted first into the C flag and then
been shifted out. The ST flag is undefined after a multiply
operation. The ST flag can be used along with the C flag
to control rounding after a right shift. Consider multiply-
ing two eight bit quantities and then scaling the result
down to 12 bits:

MULUB
SHR

AX,CL,DL
AX,#4

; AX:=CL*DL
; Shift right 4 places



MCS®-96 SOFTWARE DESIGN INFORMATION

If the C flag is set after the shift it indicates that the bits
shifted off the end of operand were greater-than or equal-
to one half the least significant bit (LSB) of the result. If
the C flag is clear after the shift it indicates that the bits
shifted off the end of the operand were less than half the
LSB of the result. Without the ST flag, the rounding
decision must be made on the basis of this information
alone. (Normally the result would be rounded up if the
C flag is set.) The ST flag allows a finer resolution in the
rounding decision:

C ST Value of the bits shifted off
00 Value = 0 .

01 0 < Value < 2 LSB

10 Value = % LSB

11 Value > ¥ LSB

Figure 3-2. Rounding Alternatives

Imprecise rounding can be a major source of error in a
numerical calculation; use of the ST flag improves the
options available to the programmer.

3.4 INSTRUCTION SET

The MCS-96 instruction set contains'a full set of arithmetic
and logical operations for the 8-bit data types BYTE and
SHORT INTEGER and for the 16-bit data types WORD
and INTEGER. The DOUBLE-WORD and LONG data
types (32 bits) are supported for the products of 16 by 16
multiplies and the dividends of 32 by 16 divides and for
shift operations. The remaining operations on 32 bit var-

3-5

iables can be implemented by combinations of 16 bit op-
erations. As an example the sequence:

ADD
ADDC

AX,CX
BX,DX

performs a 32 bit addition, and the sequence

SUB AX,CX
SUBC BX,DX

performs a 32 bit subtraction. Operations on REAL (i.e.
floating point) variables are not supported directly by the
hardware but are supported by the floating point library
for the 8096 (FPAL-96) which implements a single pre-
cision subset of the proposed IEEE standard for floating
point operations. The performance of this software is sig-
nificantly improved by the 8096 NORML instruction
which normalizes a 32-bit variable and by the existance
of the ST flag in the PSW.

In addition to the operations on the various data types, the
8096 supports conversions between these types. LDBZE
(load byte zero extended) converts a BYTE to a WORD
and LDBSE (load byte sign extended) converts a SHORT-
INTEGER into an INTEGER. WORDS can be converted
to DOUBLE-WORDS by simply clearing the upper
WORD of the DOUBLE-WORD (CLR) and INTEGERS
can be converted to LONGS with the EXT (sign extend)
instruction.

Tables 3-1 and 3-2 summarize the operation of each of
the instructions and Tables 3-3 and 3-4 give the opcode,
byte count, and timing information for each of the
instructions.



MCS©®-96 SOFTWARE DESIGN INFORMATION

Table 3-1. Instruction Summary

Oper- , Flags
Mnemonic ands Operation (Note 1) Z|N|C|V|VT|ST| Notes

ADD/ADDB 2 D« D+A ~ JIslvlv =
ADD/ADDB 3 D < B+A JIvivivliv]—
ADDC/ADDCB 2 D < D+A+C JIv I =
SUB/SUBB 2 D<D-A JIVIVIVIY =
SUB/SUBB 3 D<B - A JIvivivivi—
SUBC/SUBCB 2 DeD-A+C-1 JIVIVIV =
CMP/CMPB 2 D-A JIvIviviy—
MUL/MULU 2 D,D+2«<D*A —|— ===V 2
~MUL/MULU 3 D,D+2«<B*A — ===V 2
MULB/MULUB 2 D,D+1«<D*A —|—|—=|=|=]V 3
MULB/MULUB 3 D,D+ 1< B*A —|—|—=|—=]|—]V 3
DIV/DIVU 2 D« (D,D + 2)/A 2

D + 2  remainder — | ==/ |/ |—=
DIVB/DIVUB 3 D« DO,D + 1)A

D + 1 _remainder — ==/l /[ 3
AND/ANDB \ 2 D« Dand A JI1/10]10 | —|—
AND/ANDB 3 D« Band A JIV10]0|—|—
OR/ORB 2 D<DorA JIV/10]0 ]| —|—
XOR/XORB 2 D < D (excl. or) A JI/10]10 | —|—
LD/LDB 2 D<A — === |—|—
ST/STB 2 A<D —— ===
LDBSE 2 D <« A; D + 1 « SIGN(A) ——|—|—|—|— 3,4
LDBZE 2 D<—A;D+ 1«0 — === —]— 3,4
PUSH 1 SP<«<SP —-2;(SP) A —|— ===
POP 1 . A < (SP); SP <SP + 2 — === ==
PUSHF 0 'SP « SP — 2; (SP) « PSW; 0l0j0j0f0]|O0}

PSW <« 0000H
POPF 0 PSW « (SP); SP «<— SP + 2 JIvivivlyly
SIMP 1 PC <« PC + 11-bit offset ——|—|—|—]|— 5
LIMP 1 PC « PC + 16-bit offset —|—— =] 5
INDJMP 1 PC « (A) —|—|—|=]|—=|=
SCALL 1 SP « SP — 2; (SP) « PC; — === |—— 5

PC <« PC + 11-bit offset
LCALL 1 SP « SP — 2; (SP) « PC; —|—|—|——|— 5

) PC < PC + 16-bit offset

RET 0 PC < (SP); SP « SP + 2 —|—| ===
J(conditional) 1 PC « PC + 8-bit offset — === |—|— 5
JC Jump if C = 1 — | =] === 5
IJNC Jump if C = 0 —|— === 5

Note
If the mnemonic ends in “‘B’’, a byte operation is performed, otherwise a word operation is done. Operands D, B, and A must conform
to the alignment rules for the required operand type. D and B are locations in the register file; A can be located anywhere in memory.

L

AW

. D, D + 2 are consecutive WORDS in memory; D is DOUBLE-WORD aligned.
. D, D + 1 are consecutive BYTES in memory; D is WORD aligned.

. Changes a byte to a word.

. Offset is a 2’s complement number.

-3-6




MCS®-96 SOFTWARE DESIGN INFORMATION

Table 3-2. Instruction Summary

Oper- Flags

Mnemonic ands Operation (Note 1) ’ Z|N|C|V|VT|ST| Notes
JE Jumpif Z = 1 —|— =] === 5
INE Jump if Z =0 — == === 5
JGE = Jump if N = | —|— == |—|— 5
JLT Jump if N = 0 —|— === |— 5
IGT - Jump if N = Oand Z = 0 — === =] 5
JLE Jumpif N=1lorZ = 1 —|— === 5
JH Jumpif C = landZ = 0 — === 5
JNH Jumpif C = 0orZ = 1 —|—|— == 35
vV Jump if V = 1 — === 5
INV Jump if V = 0 —f— === 5
VT Jump if VT = 1; Clear VT A== ]—] 0 |— 5
JNVT Jump if VT = 0; Clear VT —|—|—|— 0 |— 5
JST Jump if ST = 1 — | === —|— 5
INST . Jump if ST = 0 — == — == 5
JBS Jump if ST = 1 —|—|—=|—=|—=|— 56
JBC | Jump if Specified Bit = 0 — || === 5,6
DINZ 1 D« D — 1;if D # then

PC « PC + 8-bit offset — | ——|—|—|— 5

DEC/DECB 1 D«D — 1 JI Y =
NEG/NEGB ' 1 D<0-D JIVIVIVY | —
INC/INCB 1 D«D+1 JIVIVIV I =
EXT 1 D < D; D + 2 « Sign (D) JIV]0]0]|—|— 2
EXTB 1 D < D;D + 1 < Sign (D) JI1/]10]0|—]|—
NOT/NOTB 1 D < Logical Not (D) JIV/]0]0|—]|—
CLR/CLRB 1 D« 0 110{0|0|—|—
SHL/SHLB/SHLL 1 Cemsb ————— Isb < 0 JIVIVI /Y | — 7
SHR/SHRB/SHRL 1 0— msb — — — — — Isb — C JIJIV]0|—]V 7
SHRA/SHRAB/SHRAL 1 msb — msb — — — — — Isb— C JIVIV]0|[—]/ 7
SETC 0 Ce1 —|—| 1 |—|—]—
CLRC 0 C<0 —|— 0 |—|—|—
CLRVT 0 VT <0 —|—|—=]|=] 0 [—
RST 0 PC < 2080H 0/0|0JO]|O(O 8
DI 0 Disable All Interrupts — | ——[—|—|—
EI 0 Enable All Interrupts —|—|—| ===
NOP 0 PC<PC + 1 —|—|—=|—=|—|—
SKIP 0 PC <~ PC + 2 —|—=|—=|=|—=[—
NORML 2 Normalize (See sec 3.13.66) JI 1 —]—|—|— 7
Note

1. If the mnemonic ends in ‘‘B”’, a byte operation is performed, otherwise a word operation is done. Operands D, B and A must conform
to the alignment rules for the required operand type. D and B are locations in the register file; A can be located anywhere in memory.

. Offset is a 2’s complement number. '

. Specified bit is one of the 2048 bits in the register file.

. The “‘L”’ (Long) suffix indicates double-word operation.

. Initiates a Reset by pulling RESET low. Software should re-initialize all the necessary registers with code starting at 2080H.

[e ol e V)

3-7



MCS®-96 SOFTWARE DESIGN INFORMATION

Table 3-3. Opcode and State Time Listing

INDIRECT® INDEXED®
DIRECT | IMMEDIATE ™—NooMAL  |AUTOANC]  SHORT LONG
e g
2 w w w w
S 12|8|alug |8lal wa |8 |0 B2 (2| 82| 8|a| 82 || B8
z BRIk 2= ||k =S= (8 |E|22|E| 22| 2|E| =22 |E| =&
S |6|lo|m| wF |C|m| oF |C |m| oF |m| woF | o |m| oF |m| oF
ARITHMETIC INSTRUCTIONS

ADD 2[e6a[3] 4 [es[a] 5 |66 [3] o1 [3] 7112 [e7 4] 611 [5] 112
" [AaDD 3[aalal 5 [as|s| 6 |4a6a| 7120 [a| 813 [47|5] 712 [ 6] 813
ADDB | 2 |74 3] 4 [75[3] 4 | 76|3] et [3] 712 |77 ]a] 611 [5] 712
ADDB | 3 |54 |4| 5 |55(a] s |se|al| 712 [a] 813 [s7]5] w12 [6] 813
ADDC | 2 a4 |3]| 4 [as|a| s Jas|3] en1 [3] 712 [a7]a] en1 [5] 712
ADDCB | 2 IBa 3| 4 [Bs[3] 4 |Be|3]| en1 [3] 712 [B7]a] 611 [5] 712
SUB 2[es[3] 4 [e6o]a] 5 |eal3] en1 [3] 712 [eB[a] 611 [5] 712
SUB 3asa] 5 |ao[s| 6 [aala| 712 [a] 813 [4aB[5] 712 [6] 813
suBB | 2 |78 (3| 4 [729]3] 4 |7a[3] enn [3] 72 |m]a] &1 [s] 712
SUBB |3 |s8]4| 5 [s9]a| s |sala| 712 [4] 813 [sB|5] 712 [6] 813
sUBC |2 [as|3] 4 [aofa| s |aal3] enn [3] 712 |aB]4a] 611 |[5] 712
SUBCB | 2 B8 |3| 4 |B9|3| 4 |Ba|3| e11 [3] 712 [BB|4] &11 5] 712
cMp | 2|88 |3] 4 [sofa] 5 |sala]| er1 [3] 712 |88 ]a] 611 [5] 712
cMPB | 2 |98 3] 4 [oo[3] 4 Joala| en1 [3] 712 |oB|a] 611 5] 712
MuLU | 2 |6c|3| 25 [ep|4a]| 26 | 6E 3] 2732 [3] 2833 [ 6F [ 4| 2732 [ 5 [ 28/33
MULU | 3 |ac|4| 26 [ap|s| 27 | a4 2833 4] 2034 | 4F [ 5] 2833 | 6 | 2934
MULUB | 2 [7c [3] 17 [ 3] 17 | 76 {3 1924 [ 3] 2025 [ 76 [ 4 | 1924 |5 | 20125
MULUB | 3 [5c|4] 18 [sD[a| 18 | se|a| 2005 [a] 2126 | 5E [ 5] 20025 | 6] 21026
MUL 2@ 4] 29 [ols] 30 | @ {a]3136]a]3237 @ [5] 3136 [6]3237
MUL s|o[s] 30 [@le] 31 | @ |s5]3237 53338 | @ [6] 3237 [7]3338
MULB |2 | @ |a] 21 |@ 4] 21 | @ [a] 2328 [a] 2429 | @ | 5] 2328 [ 6] 24120
MULB |3 |®|5]| 22 @ [s] 22 [ @ [s|2a29 5] 2530 @ [6] 2429 | 7] 2530
pivU | 2 |8c|3] 25 [sp[a] 26 | 8e|3| 2732 3] 2833 | 8F [a| 2732 [ 5| 2833
pivuB | 2 [oc 3] 17 [op[3] 17 | o3| 1924 [ 3] 2025 [ oF [ 4] 1924 | 5] 2025
DIV 2@ 4] 29 [@|s] 30 | @a|3u36|a]|3237] @ [5] 3136 [6]3237
pDIVB |2 |@ 4]l 21t @ 4] 21 [ @fal 2328 [a] 2429 @ [5] 2328 [ 6] 24120

Notes: -

® Long indexed and Indirect + instructions have identical opocodes with Short indexed and Indirect modes, respectively. The second byte
of instructions using any indirect or indexed addressing mode specifies the exact mode used. If the second byte is even, use Indirect
or Short Indexed. If it is odd, use Indirect +or Long indexed. In all cases the second byte of the instruction always specifies an even
(word) location for the address referenced. .

® Number of state times shown for internal/external operands.

@ The opcodes for signed multiply and divide are the opcodes for the unsigned functions with an ‘‘FE’’ appended as a prefix.

3-8



MCS®-96 SOFTWARE DESIGN INFORMATION

Table 3-3. Continued

DIRECT IMMEDIATE INDIRECT® INDEXED®
NORMAL [AUTO-INC.| SHORT LONG
[72]
% 2| u a Q ) a Q )
= (2| o|8ua|8lglua|olalul g sl |68 ud|gluwd
S |W|QlE|=E|S|E|R2| 2 |E| 52 |5 82 | 2 |E| 52 |E| &2
S |o|o|a|bFE|C|m| b | o |a|BF |a| BF | O |a| BF [m| BF
LOGICAL INSTRUCTIONS
AND 21603 4 Je1]a|l s | e2]|3]| e11 |3] 712 |63]a| 11 |5] 712
AND 3040 a| 5 |ar|s| 6 | a2la| 712 |4] 813 [43]5] 712 |6] 813
ANDB |2 |70 (3| 4 |7 ]3] 4 | n2{3| en1t [3] 72 |73 (4] 611 |5] 712
ANDB |3 {504 s [si|a| 5 | salal 712 |4 813 |s3|s| 712 [6] 813
OR 2180 (3] 4 |81|4] s 82 3| e11 |3] 712 |83 |a| 11 |5]| w12
ORB 219 |3 4 [or{3] 4 | 9o2|3| et |[3] 712 [93]a] 611 |5] 712
XOR 2|84 (3] 4 |8|4| 5 86 | 3| e11 |3] 712 |87 4] 11 |5] 712
XORB | 2|94 (3| 4 los|3] 4 | 96|33 e11 |3] 712 |97 (4| 611 |5] 712
DATA TRANSFER INSTRUCTIONS
LD 21a0 |3 4 [arf{a] s | a2|3| e1 [3] 712 [A3(a] en1 [5] 712
LDB 2|Bo|3| 4 [B1|3| 4 | B2|3| en1 [3] 712 [B3|a] 611 [5] 712
ST 2lco|3| 4 | —|—| — | c2l3] 713 [3] 814 |c3|a| 7113 [5] 814
STB 2lcal{3] 4 | —|—| — | c6|3| 713 3] 814 [c7|a| 7113 |5] 814
LDBSE | 2 [BC|{3| 4 |BD 4 | BE[3] e11 [3] 712 |BF[4]| 611 [5] 712
LDBZE | 2 [ac|{3| 4 |ab|3]| 4 | AE[3| 611 [3| 712 [AF{4| 611 |5] 712
STACK OPERATIONS (internal stack)
PUSH 1|cs|2]| 8 [co{3| 8 | calz2|1u1s|2] 12116 |[cB|3]| 1115 | 4] 12116
POP 1 |ccl2] 2 |—|—] — | cE 1418 |2 | 14118 | CF [ 3| 1418 [ 4| 14118
PUSHF | 0 | F2 |1 8
POPF 0|F|1] 9
' STACK OPERATIONS (external stack)
PUsH |1 fcs8|2| 12 [cof3]| 12 | ca2| 1519 [2] 1620 [CB|3 | 1519 | 4] 1620
POP 1]cc|2] 14 | —|—| — | cef2] 1620 [2] 1620 | CF|3] 16020 | 4] 16120
PUSHF |0 [F2[1]| 12
POPF . | 0 [F3[1]| 13
JUMPS AND CALLS

MNEMONIC | OPCODE | BYTES | STATES | MNEMONIC | OPCODE | BYTES | STATES
LIMP E7 3 8 LCALL EF 3 13/16®
SIMP 20-27® 2 8 SCALL 28-2F® 2 13/16®
INDJMP E3 2 8 RET FO 1 12/16®

Notes:

® Number of state times shown for internal/external operands.

@ This instruction is generated by the assembler when a branch indirect (BR [Rx]) instruction is reached.
@ The least significant 3 bits of the opcode are concatenated with the following 8 bits to form an 11-bit, 2’s complement, offset for the

relative call or jump.
® State times for stack located internal/external.

39




MCS®-96 SOFTWARE DESIGN INFORMATION

Table 3-4. CONDITIONAL JUMPS -

All conditional jumps are 2 byte instructions. They require 8 state times if the jump is taken, 4 if it is not.

MNEMONIC | OPCODE |[MNEMONIC| OPCODE [MNEMONIC| OPCODE |[MNEMONIC| OPCODE
JC DB JE DF JGE D6 JGT D2
INC D3 IJNE D7 JLT DE JLE DA
JH D9 1V DD JVT DC JST D8
JNH D1 JNV . D5 JNVT D4 IJNST DO

~ JUMP ON BIT CLEAR OR BIT SET

These instructions are 3-byte instructions. They require 9 state times if the jump is taken, 5 if it is not.

BIT NUMBER

MNEMONIC| 0 1 2 3 4 5 6 7
1BC 30 31 32 33 34 35 36 37
IBS 38 39 3A 3B 3C 3D 3E 3F

LOOP CONTROL

I DINZ OPCODE EO; 3 BYTES; 5/9 STATE TIMES (NOT TAKEN/TAKEN)

SINGLE REGISTER INSTRUCTIONS

MNEMONIC | OPCODE | BYTES STATES |MNEMONIC| OPCODE | . BYTES STATES
DEC ' 05 2 4 | EXT - 06 2 4
DECB 15 2 4 . EXTB 16 2 4
NEG -~ 03 2 4 NOT 02 2 4
NEGB 13 2 4 NOTB 12 2 4
INC 07 2 4 CLR 01 2 4
INCB 17 2 4 CLRB 11 2 4
SHIFT INSTRUCTIONS
INSTR WORD INSTR BYTE INSTR | DBL WD N
MNEMONIC | OP | B |MNEMONIC| OP | B [MNEMONIC| OP | B STATE TIMES
SHL 09 | 3 | SHLB 19 | 3 | SHLL oD | 3 7 + 1 PER SHIFT®
SHR 08 | 3 | SHRB 18 | 3 | SHRL oc | 3 7 + 1 PER SHIFT®
SHRA .| oA | 3 | SHRAB 1A | 3 | SHRAL OE | 3 7 + 1 PER SHIFT®

SPECIAL CONTROL INSTRUCTIONS

" MNEMONIC | OPCODE | BYTES STATES |MNEMONIC| OPCODE BYTES STATES
SETC F9 | 4 DI FA 1 4
CLRC F8 1 4. | EI FB 1 4
CLRVT FC 1 4 NOP FD 1 4
RST FF 1 16 SKIP 00 2 4

NORMALIZE

NORML | oF | 3 | 11 + 1PERSHIFT ‘

Notes:

_ ® This instruction takes 2 states to pull RST low, then.holds it low for 2 states to initiate a reset. The reset takes 12 states, at which
time the program restarts at location 2080H.
@ Execution will take at least 8 states, even for O shift.

3-10



MCS®-96 SOFTWARE DESIGN INFORMATION

3.5. SOFTWARE STANDARDS AND
CONVENTIONS -

For a software project of any size it is a good idea to
modularize the program and to establish standards which
control the communication between these modules. The
nature of these standards will vary with the needs of the
final application. A common component of all of these
standards, however, must be the mechanism for passing
parameters to procedures and returning results from pro-
cedures. In the absence of some overriding consideration
which prevents their use, it is suggested that the user
conform to the conventions adopted by the PLM-96 pro-
graming language for procedure linkage. It is a very usable
standard for both the assembly language and PLM-96 en-
vironment and it offers compatibility between these en-
vironments. Another advantage is ‘that it allows the user
access to the same floating point arithmetics library that
PLM-96 uses to operate on REAL variables.

3.5.1. Register Utilization

The MCS-96 architecture provides a 256 byte register file.
Some of these registers are used to control register-mapped
I/0 devices and for other special functions such as the
ZERO register and the stack pointer. The remaining bytes
in the register file, some 230 ‘of them, are available for
allocation by the programmer. If these registers are to be
used effectively some overall strategy for their allocation
must be adopted. PLM-96 adopts the simple and effective
strategy of allocating the eight bytes between addresses
1CH and 23H as temporary storage. The starting address
of this region is called PLMREG. The remaining area in
the register file is treated as a segment of memory which
is allocated as required.

3.5.2. Addressing 32-bit Operands

These operands are formed from two adjacent 16-bit words
in memory. The least significant word of the double word
is always in lower address, even when the data is in the
stack (which means that the most significant word must
be pushed into the stack first). A double word is addressed
by the address of its least significant byte. Note that the
hardware supports some operations on double words (e.g.
normalize and divide). For these operations the double
word must be in the internal register file and must have
an address which is evenly divisible by four.

3.5.3. Subrougine Linkage

Parameters are passed to subroutines in the stack. Param-
eters are pushed into the stack in the order that they are
encountered in the scanning of the source text. Eight-bit
parameters (BYTES or SHORT-INTEGERS) are pushed
into the stack with the high order byte undefined. Thirty-
two bit parameters (LONG-INTEGERS, DOUBLE-
WORDS, and REALS) are pushed into the stack as two
16 bit values; the most significant half of the parameter
is pushed into the stack first.

As an example, consider the following PLM-96 procedure:

example_procedure: PROCEDURE (paraml,param2, param3)
DECLARE paraml BYTE,
param2 DWORD,
param3 WORD;

When this procedure is entered at run time the stack will
contain the parameters in the following order:

299972

param]

high word of param2

low word of param2

param3

return address <« Stack__pointer

Figure 3-3. Stack Image

If a procedure returns a value to the calling code (as
opposed to modifying more global variables) then the re-
sult is returned in the variable PLMREG. PLMREG is
viewed as either an 8, 16 or 32 bit variable depending on
the type of the procedure.

The standard calling convention adopted by PLM-96 has
several key features:

a). Procedures can always assume that the eight bytes
of register file memory starting at PLMREG can be
used as temporaries within the body of the procedure.

b). Code which calls a procedure must assume that
the eight bytes of register file memory starting at
PLMREG are modified by the procedure.

c). The Program Status Word (PSW-see section 3.3)
is not saved and restored by procedures so the calling
code must assumed that the condition flags
(Z,N,V,VT,C, and ST) are modified by the procedure.

d). Function results from procedures are always re-
turned in the variable PLMREG.

PLM-96 allows the definition of INTERRUPT procedures
which are executed when a predefined interrupt occurs.
These procedures do not conform to the rules of a normal
procedure. Parameters cannot be passed to these proce-
dures and they cannot return results. Since they can ex-
ecute essentially at any time (hence the term interrupt),
these procedures must save the PSW and PLMREG when
they are entered and restore these values before they exit.

3.6. USING THE INTERRUPT SYSTEM

Processing interrupts is an integral part of almost any -
control application. The 8096 allows the program to man-
age interrupt servicing in an efficient and flexible manner.
Software running in the 8096 exerts control over the in-
terrupt hardware at several levels.



MCS®-96 SOFTWARE DESIGN INFORMATION

3.6.1. Global Lockout

The processing of interrupts can be enabled or disabled
by setting or clearing the I bit in the PSW. This is accom-
plished by the EI (Enable Interrupts) and DI (Disable
Interrupts) instructions. Note that the I bit only controls
the actual servicing of interrupts; interrupts that occur
during periods of lockout will be held in the pending
register and serviced on a prioritized basis when the lock-
out period ends.

3.6.2. Pending Interrupt Register
When the hardware detects one of the eight interrupts it
sets the corresponding bit in the pending interrupt register
(INT_PENDING-register 09H). This register, which has
the same bit layout as the interrupt mask register (see next
section), can be read or modified as a byte register. This
register can be read to determine which of the interrupts
are pending at any given time or modified to either clear
pending interrupts or generate interrupts under soft-
ware control. Any software which modifies the
INT_PENDING register should ensure that the entire
operation is indivisible. The easiest way of doing this is
to use the logical instructions in the two or three operand
format, as examples:

ANDB
ORB

INTPENDING,#11111101B
; Clears the A/D interrupt
INT_PENDING, #00000010B
Sets the A/D interrupt

If the required modification to INT_PENDING cannot be
accomplished with one instruction then a critical region
should be established and the INT_PENDING register
modified from within this region (see section 3.6.5).

3.6.3. Interrupt Mask Register

Individual interrupts can be enabled or disabled by setting
or clearing bits in the interrupt mask register (INT—
MASK-register 08H). The format of this register is shown
in figure 3-4.

[ Tels [« 512 1]0]

L=

Figure 3-4. Interrupt Mask Registerl

TIMER OVERFLOW

A/D COMPLETION

HSI DATA AVAILABLE
HSO EVENT

HSIBIT 0

SOFTWARE TIMERS
SERIAL /0

EXTERNAL INTERRUPT

The INT_MASK register can be read or written as a byte
register. A one in any bit position will enable the corre-
sponding interrupt source and a zero will disable the
source. The individual masks act like the global lockout
in that they only control the servicing of the interrupt; the
hardware will save any interrupts that occur in the pending
register even if the interrupt mask bit is cleared. The
INT_MASK register also can be accessed as the lower

eight bits of the PSW so the PUSHF and POPF instructions
save and restore the INT_MASK register as well as the
global interrupt lockout and the arithmetic flags.

3.6.4. Interrupt Vectors

The 8096 has eight sources of hardware ‘interrupt, each
with its own priority and interrupt vector location. Table
3-6 shows the interrupt sources, their priority, and their
vector locations. See section 2.5 for a discussion of the
various interrupt, sources.

Table 3-5. Interrupt Vector Information -

Source Priority Vector
Timer Overflow 0-Lowest 2000H
A/D Completion 1 - 2002H
“HSI Data Available 2 2004H
HSO Excution 3 2006H
HSI.O 4 2008H
Software timers 5 200AH
Serial I/O 6 200CH
External Interrupt 7-Highest 200EH

The programmer must initialize the interrupt vector table
with the starting addresses of the appropriate interrupt
service routine. It would be a good idea to vector any
interrupts that are not used in the system to an error han-
dling routine.

The priorities given in the table give the hardware en-
forced priorities for these interrupts. This priority controls
the order in which pending interrupts are passed to the
software via interrupt-calls. The software can implement
its own priority structure by controlling the mask register
(INT — MASK-register 08H). To see how this is done
consider the case of a serial I/O service routine which
must run at a priority level which is lower than the HSI
data available interrupt but higher than any other source.
The “‘preamble’” and exit code for this interrupt service
routine would look like this:
serial — io — isr:

PUSHF ; Save the PSW
(Includes INT —_ MASK)
‘LD INT _ MASK, #00000100B
EI ; Enable interrupts again
H Service the interrupt
POPF ; Restore the PSW
RET

Note that location 200CH in the interrupt vector table
would have to be loaded with the value of the label
serial — io _ isr and the interrupt be enabled for this rou-
tine to execute.



MCS®-96 SOFTWARE DESIGN INFORMATION

There is an interesting chain of instruction side-effects
which makes this (or any other) 8096 interrupt service
routine execute properly:

‘a). After the hardware decides to process an interrupt
it generates and executes a special interrupt-call in-
struction which pushés the current program counter
onto the stack and then loads the program counter with
the contents of the vector table entry corresponding
to the interrupt. The hardware will not allow another
interrupt to be serviced immediately following the
interrupt-call. This guarantees that once the interrupt-
call starts the first instruction of the interrupt service
routine will execute. ‘

b). The PUSHF instruction, which is now guaranteed
to execute, saves the PSW in the stack and then clears
the PSW. The PSW contains, in addition to the arith-
metic flags, the INT_MASK register and the global
enable flag (I). The hardware will not allow an inter-
rupt following a PUSHF instruction and by the time
the LD instruction starts all of the interrupt enable
flags will be cleared. Now there is guaranteed exe-
cution of the LD INT_MASK instruction.

c¢). The LD INT_MASK instruction enables those
interrupts that the programmer chooses to allow to
interrupt the serial I/O interrupt service routine. In this
example only the HSI data available interrupt will be
allowed to do this but any interrupt or combination of
interrupts could be enabled at this point, even the serial
interrupt. It is the loading of the INT _ MASK register
which allows the software to establish its own prior-
ities for interrupt servicing independently from those
that the hardware enforces.

d). The EI instruction reenables the processing of
interrupts.

e). The actual interrupt service routine executes
within the priority structure established by the software.

f). At the end of the service routine the POPF instruc-
tion restores the PSW to its state when the interrupt-
call occurred. The hardware will not allow interrupts
to be processed following a POPF instruction so the
execution of the last instruction (RET) is guaranteed
before further interrupts can occur. The reason that
this RET instruction must be protected in this fashion
is that it is quite likely that the POPF instruction will
reenable an interrupt which is already pending. If this
interrupt were serviced before the RET instruction,
then the return address to the code that was executing
when the original interrupt occurred would be left on
the stack. While this does not present a problem to the
program flow, it could result in a stack overflow if
interrupts are occurring at a high frequency.

Notice that the ‘‘preamble’’ and exit code for the interrupt
service routine does not include any code for saving or
restoring registers. This is because it has been assumed

3-13

that the interrupt service routine has been allocated its
own private set of registers from the on-board register file.
The availability of some 230 bytes of register storage
makes this quite practical.

3.6.5. Critical Regions

Interrupt service routines must share some data with other
routines. Whenever the programmer is coding those sec-
tions of code which access these shared pieces of data,
great care must be taken to ensure that the integrity of the
data is maintained. Consider clearing a bit in the interrupt
pending register as part of a non-interrupt routine:

LDB AL,INT_PENDING
ANDB AL, #bit_mask
AL,INT_PENDING

STB

This code works if no other routines are operating con-
currently, but will cause occasional but serious problems
if used in a concurrent environment. (All programs which
make use of interrupts must be considered to be part of
a concurrent environment.) To demonstrate this problem,
assume that the INT_PENDING register contains
00001111B and bit 3 (HSO event interrupt pending)-is to
be reset. The code does work for this data pattern but what
happens if an HSI interrupt occurs somewhere between
the LDB and the STB instructions? Before the LDB in-
struction INT_PENDING contains 00001111B and after
the LDB instruction so does AL. IF the HSI interrupt
service routine executes at this point then INT_PENDING
will change to 00001011B. The ANDB changes AL to
00000111B and the STB changes INT_PENDING to
00000111B. It should be 00000011B. This code sequence
has managed to generate a false HSO interrupt! The same
basic process can generate an amazing assortment of prob-
lems and headaches. These problems can be avoided by,
assuring mutual exclusion which basically means that if
more than one routine can change a variable, then the
programmer must ensure exclusive access to the variable
during the entire operation on the variable.

In many cases the instruction set of the 8096 allows the
variable to be modified with a single instruction. The code
in the above example can be implemented with a single
instruction:

ANDB INT_PENDING, #bit . mask

Instructions are indivisible so mutual exclusion is ensured
in this case. For more complex situations, such a simple
solution is not available and the programmer must create
what is termed a critical region in which it is safe to
modify the variable. One way to do this is to simply
disable interrupts with a DI instruction, perform the mod-
ification, and then re-enable interrupts with an EI instruc-
tion. The problem with this approach is that it leaves the
interrupts enabled even if they were not enabled at the
start. A better solution is to enter the critical region with
a PUSHF instruction which saves the PSW and also clears
the interrupt enable flags. The region can then be termi-
nated with a POPF instruction which returns the interrupt
enable to the state it was in before the code sequence. It



MCS©-96 SOFTWARE DESIGN INFORMATION

should be noted that some system configurations might
require more protection to form a critical region. An ex-
ample is a system in which more than one processor has
access to a common resource such as memory or external
I/O devices.

3.7. /0 PROGRAMMING
CONSIDERATIONS

- The on-board I/O devices are, for the most part, simple

to program. There are some areas of potential confusion |

- which need to be addressed:

3.7.1. Programming the I/O Ports

Some of the on-board I/O ports can be used as both input
"and output pins (e.g. Port 1) When the processor writes
to the pins of these ports it actually writes into a register

which in turn drives the port pin. When the processor ,

reads these ports, it senses the status of the pin directly.
If a port pin is to be used'as an input then the software

should write a one to that pin, this will cause the low-.

impedance pull-down device to turn off and leave the pin
pulled up with relatively high impedance pull-up device
which can be easily driven down by the device driving
the input. If some pins of a port are to be used as inputs
and some are to be used as outputs the programmer should
“be careful when writing to the port. Consider using P1.0
as an input and then trying to toggle P1.1 as an output:

ORB  IOPORT1 ,#OOOOOOblB
XORB IOPORT1,#00000010B

; Set P1.0 for input
; Complement P1.1

The first instruction will work as expected but two prob-
lems can occur when the second instruction executes. The
first is that even though P1.1 is being driven high by the
8096 it is possible that it is being held low externally.
This typically happens when the port pin is used to drive
the base of an NPN transistor which in turn drives what-
ever there is in the outside world which needs to be tog-
gled. The base of the transistor will clamp the port pin
to the transistor’s Vbe above ground, typically 0.7 volts.
The 8096 will input this value as a zero even if a one has
been written to the port pin. When this happens the XORB

instruction will always write a one to the port pin and it”

will not toggle. The second problem, which is related to
the first one, is that if P1.0 happens to be driven to a zero
when Port 1 is read by the XORB instruction then the
XORB will write a zero to P1.0 and it will no longer be
useable as an input. The first problem can best be solved
by the external driver design. A series resistor between
the port pin and the base of the transistor often works.
The second problem can be solved in the software fairly
easily: -

LDB  AL,IOPORTI
XORB AL,#010B
ORB  AL,#001B

- STB AL,IOPORT1

A software solution to both problems is to keep a byte in
RAM as an image of the data to be output to the port; any

time the software wants to modify the data on the port it
can then modify the image byte and then copy it to-the
port. i

3.7.2. Reading the I/O Status Register 1

This status register contains a collection of status flags
which relate to ‘the timer and high speed I/O functions
(see section 2.12.5). It can be accessed as register 16H
in the on-board register file. The layout of this register is

‘shown in figure 3-5.

L7lelsfalaf2]r]o]

I o
I_ SOFTWARE TIMER 0 EXPIRED
' SOFTWARE TIMER 1 EXPIRED

SOFTWARE TIMER 2 EXPIRED
SOFTWARE TIMER 3 EXPIRED
TIMER 1 OVERFLOW FLAG
TIMER 2 OVERFLOW FLAG
HSIFIFO IS FULL ~ '~

HSI DATA AVAILABLE -

Figure 3-5. I/O Status Register 1

Whenever the processor reads this register all of the time-
related flags (bits 5 through 0) are cleared. ThlS “applies
not only to explicit reads such as:

LD  AL,IOS1
but also to implicit reads such as:
JB  IOS1.3,somewhere —else '

which jumps to somewhere _ else if bit 3 of IOS1 is set.
In most cases this situation can best be handled by having
a byte in the register file which is used to maintain an
image of lower five bits of the register. Any time a hard-
ware timer interrupt or a HSO software timer interrupt
occurs the byte can be updated:
ORB  I0S1 _ image,JOS1

leaving 10S1 _ image containing all the flags that were
set before plus all the new flags that were read and cleared
from IOS1. Any other routine which needs to sample the
flags can safely check IOS1 _ image. Note that if these
routines need to clear the flags that they have acted on
then the modification of IOS1 __image must be done from
inside a critical reglon (see secnon 3.6.5).

3.7.3. Sendmg Commands to the HSO Unit

Commands are sent to the HSO unit via a byte and then

- a word write operatlon

LDB HSO — COMMAND, #what _ to._ do
ADD HSO — TIME, TIMER1,#when —to _do — it

The command is actually accepted when the HSO _TIME
register is written. It is important to ensure that this code
piece is not interrupted by any interrupt service routine

3-14



MCS©®-96 SOFTWARE DESIGN INFORMATION

which might also send a command to the HSO unit. If
this happens the HSO will know when to do it but not
know what to do when it’s time to do it. In many systems
this becomes a null problem because HSO commands are
only issued from one place in the code. If this is not the
case then a critical region must be established and the two
instructions executed from within this region (see section
3.6.5).

Commands in the holding register will not execute even
if their time tag is reached. Commands must be in the
CAM for this to occur. Flags are available in IOSO which
indicate the holding register is empty (I0S0.7) or that
both the holding register is empty and the CAM is not
full (I0S0.6). The programmer should carefully decide
which of these two flags is the best to use for each
application.

It is possible to enter commands into the CAM which
never execute. This occurs if TIMER?2 has been set up as
a variable modulo counter and a command is entered with
a time tag referenced to TIMER2 which has a value that
TIMER?2 never reaches. The inaccessible command will
never execute and continue to take up room in the CAM
until either the system is reset or the program -allows
TIMER? increment up to the value stored in the time tag.
Note that commands cannot be flushed from the CAM
without being executed but that they can be cancelled.
This is accomplished by setting the opposite command in
the CAM to execute at the same time tag as the command
to be cancelled. If, as an example, a command has been
issued to set HSO.1 when TIMERI1 = 1234 then entering
a second command which clears HSO.1 when
TIMER1 = 1234 will result in a no-operation on HSO.1.
Both commands will remain in the CAM until
TIMER1 =1234.

3.7.4. High Speed /O Interrupts

The HSO unit can generate two types of interrupts. The
HSO execution interrupt (vector = (2006H)) is generated
(if enabled) for HSO commands which operate on one of
the six HSO pins. The other HSO interrupt is the Software
Timer interrupt (vector=(200AH)) which is generated
(if enabled) for any other HSO command (e.g. triggering
the A/D, resetting Timer2 or generating a software time
delay). )

There are also two interrupts associated with the HSI unit.
The HSI data available interrupt (vector=(2004H)) is
generated if there is data in the HSI FIFO that the program
should read. The other HSI related interrupt is the HSI.0
interrupt which occurs whenever High Speed Input pin 0
makes a zero-to-one transition. This interrupt will become
pending in the INT _ PENDING register even if the HSI

unit is programmed to ignore changes on HSI.O or look -

for a one-to-zero transition.

3.7.5. Accessing Register Mapped 1/0

The on-board I/O devices such as the serial port or the
A/D converter are controlled as register mapped I/O. This
allows convenient and efficient /O processing. The im-

3-15

plementation of the current members of the MCS-96 fam-
ily place some restrictions on how these registers can be
accessed. While these restrictions are not severe, the pro-
grammer must be aware of them. A complete listing of
these registers is shown in figure 2-7 and 2-8. The re-

- strictions are as follows:

a). TIMERO, TIMER1 and HSI — TIME are word
read only. They cannot be read as bytes or written to
in any format.

b). HSO _ TIME is word write only. It cannot be
written to as individual bytes or read. in any format.

c). RO (the ZERO register) is byte or word read or
write but writing to it will not change its value.

d). All of the other I/O registers can be accessed only
as bytes. This applies even to the AD _ RESULT
which is logically a word operand.



MCS®-96 SOFTWARE DESIGN INFORMATION

3.8. EXAMPLE-1 PROGRAMMING THE
SERIAL 1/0 CHANNEL

MCS-96 MACRO ASSEMBLER SERIAL PORT DEMO PROGRAM
SERIES-III MCS-96 MACRO ASSEMBLER, V1.0

SOURCE FILE: :Fl:SPX.SRC
OBJECT FILE: :Fl:SPX.OBJ
CONTROLS SPECIFIED IN INVOCATION COMMAND: NOSB DEBUG

ERR LOC OBJECT LINE SOURCE STATEMENT
. STITLE (' SERIAL PORT DEMO PROGRAM')
$PAGELENGTH (95)

This ﬁrogram initializes the serial port and echos any
character sent to it.

VOO WN

000E BAUD_REG . equ © OEH
0011 SPCON . ! equ 11H
0011 10 SPSTAT equ 11H
0016 11 I0C1 equ 16H
0015 12 10C0 . equ 15H
0007 © 13 SBUF equ 07H
0009 14 INT_PENDING equ 09H
0018 15 SP equ 18H
16
: 17
0000 18 rseg
. 19 N
0000 20 CHR: dsb 1
0001 21 TEMPO: dsb 1
0002 22 TEMPl: dsb 1
0003 . 23 RCV_FLAG: dsb 1
24
25
0000 26 cseg
27 .
0000 A1B00018 28 LD SP, #0BOH
- 29 .
0004 B12016 . 30 LDB 10C1l, #00100000B ; Set P2.0 to TXD
31 .
32 ; Baud rate = input frequency / (64*baud _val)
33 ; baud_val = (input frequency/64) / baud rate
34
35 '
0027 36  baud_val equ 39 ; 2400 baud at 6.0 MHz
: 37 .
0080 38 BAUD_HIGH equ ((baud_val-1)/256) OR B80H = ; Set MSB to 1
0026 39 BAUD_LOW equ (baud_val-1) MOD 256
40
41
0007 B1260E 42 LDB BAUD_REG, #BAUD_LOW
000A B18OOE 43 LDB BAUD REG, #BAUD HIGH
44 .
000D B14911 45 LDB SPCON, #01001001B ; Enable receiver, Mode 1
: 46 ' .
47 ; The serial port is now initialized
48
. 49 .
0010 C40007 R 50 STB SBUF, CHR ; Clear serial Port
0013 B12001 R 51 LDB TEMPO, #00100000B ; Set TI-temp
52
0016 3609FD 53 wait: JBC INT_PENDING, 6, wait ; Wait for pending bit to be set
0019 71BF09 54 ANDB INT_PENDING, #10111111B ; Clear pending bit
55
001C 901101 R 56 ORB TEMPO, SPCON ; Put SPCON into temp register
57 ; This is necessary becase reading
58 ; SPCON clears TI and RI
P 59 . :
001F 60 get_byte:
001F 360109 R 61 JBC TEMPO, 6, put_byte ; If RI-temp is not set
0022 C40007 R 62 STB SBUF, CHR ; Store byte
- 0025 71BFO01 R 63 ANDB TEMPO, #10111111B ; CLR RI-temp
0028 B1FFO03 R 64 LDB RCV_FLAG, #0FFH ; Set bit-received flag
65 N BN
002B 66 put_byte: »
002B 30030C R 67 JBC RCV_FLAG, 0, continue ; If receive flag is cleared
002E 350109 R 68 JBC TEMPO, 5, continue ; If TI was not set
0031 B00CO7 R 69 LDB SBUF, CHR ; Send byte
0034 71DFO01 R 70 ANDB TEMPO, #11011111B ; CLR TI-temp
0037 B10003 R 71 LDB RCV_FLAG, #00 ; Clear bit- recewed flag
. 72
003a 73 continue: ‘
003A 27DA 74 BR wait
75 .
003C 76 END

ASSEMBLY COMPLETED, NO ERROR(S) FOUND.

3-16



MCS®-96 SOFTWARE DESIGN INFORMATION

'3.9. EXAMPLE-2 GENERATING A PWM
WITH THE HSO UNIT

MCS-96 MACRO ASSEMBLER HSO EXAMPLE PROGRAM FOR PWM OUTPUTS
SERIES-IIT MCS-96 MACRO ASSEMBLER, V1.0
SOURCE FILE: :Fl:HSO2X.SRC

OBJECT FILE: :Fl:HSO2X.OBJ
CONTROLS SPECIFIED IN INVOCATION COMMAND: NOSB DEBUG

ERR LOC OBJECT LINE SOURCE STATEMENT
1 STITLE ('HSO EXAMPLE PROGRAM FOR PWM OUTPUTS')
SPAGELENGTH (95)

This program will provide 4 PWM outputs on HSO pins 0-3
The input parameters passed to the program are:

HSO_ON_N HSO on time for pin N
HSO_OFF_N HSO off time for pin N

ouaU e W

9
10 H Where: Times are in timerl cycles
11 H N takes values from 0 to 3
12
13 Fiiiiiiiiiiiiiiig
14
15
0000 16 dseg
17 :
0000 18 D_STAT: DSB 1
19 eXtrn  HSO_ON_O :word , HSO_OFF_0 :word
20 extrn  HSO_ON_1l :word , HSO_OFF_l :word
21 extrn  HSO ON_2 :word , HSO OFF_2 :word
22 extrn  HSO_ON”3 :word , HSO_OFF_3 :word
23 extrn  HSO TIME :word , HSO COMMAND :byte
24 extrn TIMER1 tword , I0S0 :byte
25 extrn SP tword
26
27
0000 28 rseg
29 .
30 " public OLD_STAT .
0000 31 OLD_STAT: dsb 1
0001 32 NEW_STAT: dsb 1
33
. 34.
0000 35 cseg
36
37 PUBLIC wait
38
39
0000 3EOOQFD . E 40 wait: JBS I0s0, 6, wait ; Loop until HSO holding register
0003 FD 41 NOP ; is empty
0004 FD 42 NOP
0005 C701000000 E 43 STB 10S0, D_STAT ' - ; Load byte to external RAM
44
45 ; For opperation with interrupts 'store stat:' would be the
46 ; entry point of the routine. -
47 ; Note that a DI or PUSHF might have to be added.
48
000A 49 store_stat: .
000A 510F0001 E 50 ~ aNDB NEW_STAT, I0S0, #0FH ; Store new status of HSO
000E 980100 R 51 CMPB OLD_STAT, NEW_STAT
0011 DFED 52 JE wait ; If status hasn't changed
0013 940100 R T 53 XORB OLD_STAT, NEW_STAT
“ 54
55
0016 56 check_0: N
0016 300017 R 57 JBC OLD_STAT, 0, check_ 1 ; Jump if OLD_STAT (0)=NEW_STAT (0)
0019 380108 R 58 JBS NEW_STAT, 0, set off_0 - -
59 .
001C 60 set_on_0: e
001C B13000 E 61 T T LDB HSO_COMMAND, #00110000B ; Set HSO for timerl, set pin 0
,001F 470100000000 E 62 ADD HSOTIME, TIMER1, HSO_OFF_0 ; Time to set pin = Timerl value
0025 2009 63 BR check_1 -~ ; + Time for pin to be low
64
0027 65 set_off 0:
0027 B11000 E 66 LDB HSO_COMMAND, #00010000B ; Set HSO for timerl, clear pin 0
002A 470100000000 E 67 ADD HSO:TIME, TIMER1, HSO_ON_0 ; Time to clear pin = Timerl value
68 ; + Time for pin to be high
69
0030 70 check_1: .
0030 310017 R 71 g OLD_STAT, 1, check_2 ; Jump if OLD_STAT (1)=NEW_STAT (1)
0033 39010B R 72 JBS NEW:STAT, 1, set_off 1
73
0036 74 set_on_1:
0036 B13100 E 75 - T ipB HSO_COMMAND, #00110001B ; Set HSO for timerl, set pin 1
0039 470100000000 E 76 ADD HSO TIME, TIMER1l, HSO OFF 1 ; Time to set pin = Timerl value
003F 2009 77 BR check_2 -~ ;i + Time for pin to be low
! 78
0041 79 set off 1:
0041 B11100 E 80 T  LDB HSO_COMMAND, $#00010001B ; Set HSO for timerl, clear pin 1
0044 470100000000 E 81 ADD HSO_TIME, TIMERL, HSO_ON _1 ; Time to clear pin = Timerl value
82 - - ; + Time for pin to be high ,
- 83

84 SEJECT .

3-17



MCS¢-96 SOFTWARE DESIGN INFORMATION

MCS-96 MACRO ASSEMBLER , HSO EXAMPLE PROGRAM FOR PWM OUTPUTS

ERR LOC

004A
004A
004D

0064
0064
0067

006A
006A
006D
0073
0075

0075
0078

007E
007E

0081

0082

ASSEMBLY

OBJECT

320017
3A010B

B13200
470100000000
2009

B11200
470100000000
330017

3B010B

B13300
470100000000
2009

B11300
470100000000

B00100

FO

COMPLETED,

[ohol o o [oho) [oR) o

[ohel

122

SOURCE STATEMENT

check_2:
JBC OLD_STAT, 2, check 3
JBS NEW_STAT, 2, set Off 2
set_on_2:
LDB HSO_COMMAND, #00110010B
ADD HSO_TIME, TIMER1, HSO_OFF_2
BR check_3
set_off_2:
LDB HSO_COMMAND, #00010010B
ADD HSO_TIME, TIMER1, HSO_ON_2
check_3: i
JBC OLD_STAT, 3, check_done
JBS NEW_STAT, 3, set off_3
set_on_3:
LDB HSO_COMMAND, #00110011B
ADD HSO_TIME, TIMER1, HSO_OFF_3
BR check_done
set_off 3:
LDB HSO_COMMAND, - #00010011B
ADD HSO_TIME, TIMER1, HSO_ON_3

check_done: . :
LDB OLD_STAT, NEW_STAT

RET

END

NO ERROR(S) FOUND.

3-18

Jump if OLD_STAT (2)=NEW_STAT (2)

Set HSO for timerl, set pin 2
Time to set pin = Timerl value
+ Time for pin to be low

Set HSO for timerl, clear pin 2
Time to clear pin = Timerl value
+ Time for pin to be high

Jump if OLD_STAT (3)=NEW_STAT (3)

Set HSO £or timerl, set pin 3
Time to set pin = Timerl value
+ Time for pin to be low

Set HSO for timerl, clear pin 3
Time to clear pin = Timerl value
+ Time for pin to be high

Store current status and
wait for interrupt flag



MCS©-96 SOFTWARE DESIGN INFORMATION

3.10. EXAMPLE-3 MEASURING PULSES

WITH THE HSI UNIT

MCS-96 MACRO ASSEMBLER

SOURCE FILE: :Fl:PULSE
OBJECT FILE: :Fl:PULSE

CONTROLS SPECIFIED IN INVOCATION COMMAND: NOSB DEBUG

ERR LOC OBJECT

0018
0003
0006
0004
000A
0015
0016

0000

0000
0002
0004
0006
0008

000A
000A
000B

000C

000C
000D

0000 AlC00018
0004 B1011l5
0007 B1OFO03
000A 44020004
000E 3716F9

0011 BO060A

0014 A0040C

0017 390A09
001A C0080C

001D 48060800
0021 27E7

0023 C0060C
0026 48080602
002A 27DE
oo2c

ASSEMBLY COMPLETED,

MEASURING PULSES USING THE HSI UNIT

SERIES-III MCS-96 MACRO ASSEMBLER, V1.0

X.SRC
X.0BJ

Note that 'BH' is an opcode so it
can't be used as a label

Enable HSI 0
HSI 0 look for either edge

; Wait while no pulse is entered

Load status; Note that reading
HSI_TIME clears HSI_STATUS

Load the HSI_TIME

Jump if HSI.O0 is high

LINE SOURCE STATEMENT
1 S$STITLE ('MEASURING PULSES USING THE HSI UNIT')
2 $PAGELENGTH (95)
3
4 H This program measures pulsewidths in TIMER1 cycles
5 H and retuns the values in external RAM.
6
7
8 SP equ 18H
9 HSI_MODE equ 03H
10 HSI_STATUS equ 06H
11 HSI_TIME equ 04H
12 TIMER1 equ 0AH
13 I0C0 equ 15H
14 I0S1 equ 16H
15
16
17 rseg
18
19 HIGH_TIME: dsw 1
20 LOW_TIME: dsw 1
21 PERIOD: dsw 1
22 HI_EDGE: dsw 1
23 LO_EDGE: dsw 1
24
25
26 AX: dsw 1
27 AL equ AX :byte
28 AH equ (AX+1) :byte
29
30 BX: dsw 1
31 BL equ BX :byte
32 BU ‘equ _(BX+1) :byte H
33 i
34
35 cseg
36
37 LD SP, #0COH
38 LDB I0CO, #00000001B ;
39 LDB HSI_MODE, #00001111B i
40 :
R 4% wait: ADD PERIOD, HIGH_TIME, LOW_TIME
4
43 JBC 10s1l, 7, wait
44
R 45 LDB AL, HSI_STATUS ;
46 ;
47
R 48 LD BX, HSI_TIME ;
49
gg JBS AL, 1, hsi_hi ;
R 52 hsi_lo: ST BX, LO_EDGE
R 53 - sus HIGH_TIME, LO_EDGE, HI_EDGE
54 BR wait
55
56
R 57 hsi_hi: ST BX, HI_EDGE
R 58 - SUB LOW_TIME, HI_EDGE, LO_EDGE
59 BR wait - -
60
61 END

NO ERROR(S) FOUND.



MCS®-96 SOFTWARE DESIGN INFORMATION

3.11. EXAMPLE-4 SCANNING THE A/D

CHANNELS

MCS-96 MACRO ASSEMBLER
SERIES-III MCS-96 MACRO ASSEMBLER,

SOURCE FILE:
. OBJECT FILE:

:F1

V1.0

ATODX . SRC
:F1: ATODX .0BJ

CONTROLS SPECIFIED IN INVOCATION COMMAND: NOSB DEBUG

ERR LOC

0000
0004

0007
000A
000D
0010

0011

\ 0014
0017

001a
001E
0021

0026
0028

002B
002D

ASSEMBLY

OBJECT

A1C00018
A00002

910802

B00202
710702

FD

3B02FD

B00200
B00301

54020204
AC0404
€304000000
1702
710302

27DA

COMPLETED,

wHm W

wo WAH”HM o

LINE

-

SCANNING THE A TO D CHANNELS

SOURCE STATEMENT

$TITLE (' SCANNING THE A TO D CHANNELS')

$SPAGELENGTH (95)

H ’I‘hxs program scans A to D lines 0 through 3 and stores the

H results in RESULT N
AD_RESULT_LO equ 02
AD_RESULT_HI equ 03
AD_COMMAND equ 02
SP equ 18H
dseg
RESULT_TABLE:
RESULT_1: dsw 1
RESULT_2: dsw 1
RESULT_3: dsw 1
RESULT_4: dsw 1
rseg ’
AX: dsw 1
AL equ AX :byte
AH. equ (AX+1) :byte
BX: dsw 1 :
BL equ BX :byte
BU equ (BX+1) :byte
DX: dsw 1
DL equ DX :tbyte
DH equ (DX+1) :byte
cseg
start: LD SP, #0COH H
LD BX, 00H ;
next: ORB BL, #1000B ;
LDB AD_COMMAND, BL ;
ANDB BL, #0111B
NOP ; Wait
check: JBS AD_RESULT_LO, 3, check
LDB AL, AD_RESULT_LO
LDB AH, AD RESULT THI
ADDB DL, BL, BL
LDBZE DX, DL
ST AX, RESULT_TABLE [DX]
INCB BL
ANDB BL, #03H
BR . next
END

NO ERROR(S) FOUND.

3-20

Note that

TBY!

is an opcode so it

can't be used as a label

Set Stack Pointer
Use the zero register

for conversion to start

H

i

Start conversion on channel
indicated by BL register

Wait while A to D is busy

Load low order result
Load high order result

DL=BL*2

Store result indexed by BL*2



MCS¢-96 SOFTWARE DESIGN INFORMATION

3.12. EXAMPLE-5 TABLE LOOKUP-AND
INTERPOLATION

MCS-96 MACRO ASSEMBLER TABLE LOOKUP AND INTERPOLATION
SERIES-III MCS-96 MACRO ASSEMBLER, V1.0
SOURCE FILE: :F1:INTERX.SRC

OBJECT FILE: :F1l:INTERX.OBJ
CONTROLS SPECIFIED IN INVOCATION COMMAND: NOSB DEBUG

ERR LOC OBJECT LINE SOURCE STATEMENT
1 STITLE (' TABLE LOOKUP AND INTERPOLATION')
2 $SPAGELENGTH (95)
3
4 H This program uses a lookup table to generate 12-bit function values
5 ; using 8-bit input values. The table is 16 bytes long and 16 bits wide.
6 i A linear interpolation is made using the following fomula:
7
-] Table_Step IN_VAL - TABLE_LOW
9 ; e e SR =
10 TABLE_HIGH - TABLE_LOW OUT - TABLE_LOW
11
12 16 IN_DIF
13 S=meoms = mmaTooo
14 H TAB_DIF OUT_DIF
15
16 i Cross Multiplication is used to solve for OUT_DIF
17
18
19
0018 20 Sp equ 18H
21
22
0000 - . 23 dseg
24
0000 25 RESULT_TABLE:
0000 26 ~ RESULT: dsw 1
. . 27
c 28
0000 29 rseg
30
0000 31 AX: dsw 1
0000 32 AL equ AX :byte
0001 33 AH equ (AX+1) :byte
34
0002 35 BX: dsw 1
0002 36 BL equ BX :byte
0003 37 BU equ (BX+1) :byte ; Note that 'BH' is an opcode so it
38 . ; can't be used as a label
39
0004 40 IN_VAL: dsb 1
0006 41 TABLE_LOW: dsw 1
0008 42 TABLE_HIGH: dsw 1
000a 43 IN DIF: dsw 1
000A 44 IN DIFB equ IN DIF :byte
000C 45 TAB_DIF: dsw 1
000E 46 oUTY dsw 1
0010 47 OUT_DIF: dsl 1
48 -
49
0000 50 cseg
51 :
52
0000 AlC00018 53 start: LD SP, #0COH ; Set Stack Pointer
54
55
0004 B00400 R 56 look: LDB AL, IN VAL
0007 180300 R 57 SHRB AL, #3° ; Place 2 times the upper nibble in byte
000A 71FEO00 R 58 ANDB AL, #11111110B ; Insure AL is a word address
000D AC0000 R 59 LDBZE AX, AL
60
0010 A300420006 R 61 LD TABLE_LOW, TABLE [AX] TABLE_LOW is table output value

62 : of IN_VAL rounded down to the

63 nearest multiple of 10H.
64

0015 A300440008 R .65 LD TABLE_HIGH, (TABLE+2) [AX] ; TABLE HIGH is the table output
66 : ; value of IN_VAL rounded up to the
67 ; nearest multiple of 10H. .
68
69

001A 4806080C R 70 SUB TAB_DIF, TABLE_HIGH, TABLE_LOW
71 '

001E S510F040A R 72 ANDB IN_DIFB, IN_VAL, #0FH

0022 BCOAOA R 73 LDBSE IN_DIF, IN_DIFB ; Make input difference into a word
74

0025 FE4C0C0A10 R 75 MUL OUT_DIF, IN_DIF, TAB DIF

002A FE8D100010 R 76 DIV OUT_DIF, #1§ -
77 .

002F 4406100E R 78 labl: ADD OUT, OUT DIF, TABLE_LOW ; Add output difference to output
79 . ; generated with truncated IN_VAL

. 80 ; as input .
0033 08040E R 81 . SHR ouT, #4 ; Round to 12-bit answer

3-21



- MCS®-96 SOFTWARE DESIGN INFORMATION

MCS-96 MACRO ASSEMBLER

ERR LOC
0036

0038
003a

003F

0041

0042
004a
0052
005A
0062

0064

ASSEMBLY

OBJECT
D307
070E
C30100000E

27c3

000000200034004C
005D006A00720078
007B007D0076006D
005D004B00340022
0010

TABLE LOOKUP AND

COMPLETED, NO ERROR(S) FOUND.

N

INTERPOLATION

SOURCE STATEMENT
JNC lab2

INC
ST

BR

DCW
DCW
DCW
DCW

END

ouT H
OUT, RESULT

look

0000H, 2000H, 3400H, 4CO00H
SDOOH, 6A00H, 7200H, 7800H
7B00H, 7D00H, 7600H, 6DOOH
SDOOH, 4BOOH, 3400H, 2200H
1000H

3-22

Round

10/11/83

up if Carry =1

; A random non-monotonic
; function



MCS©-96 SOFTWARE DESIGN INFORMATION

3.13. DETAILED INSTRUCTION SET
DESCRIPTION

This section gives a description of each instruction rec-
ognized by the 8096 sorted alphabetically by the mne-
monic used in the assembly language for the 8096. Note
that the effect on the program counter (PC) is not always
shown in the instruction descriptions. All instructions in-
crement the PC by the number of bytes in the instruction.
Several acronynms are used in the instruction set descrip-
tions which are defined here:

aa. A two bit field within an opcode which selects the
basic addressing mode user. This field is only present in
those opcodes which allow address mode options. The
encoding of the field is as follows:

aa Addressing mode
00 Register direct
01 Immediate

10 Indirect

11 Indexed

The selection between indirect and indirect with auto-in-
crement or between short and long indexing is done based
on the least significant bit of the instruction byte which
follows the opcode. This type selects the 16-bit register
which is to take part in the address calculation. Since the
8096 requires that words be aligned on even byte bound-
aries this bit would be otherwise unused.

breg. A byte register in the internal register file. When
confusion could exist as to whether this field refers to a
source or a destination register it will be prefixed with an
“S” ora“D.”

baop. A byte operand which is addressed by any of the
address mooes discussed in section 3.2.

bitno. A three bit field within an instruction op-code which
selects one of the eight bits in a byte.

3-23

wreg. A word register in the internal register file. When
confusion could exist as to whether this field refers to a
source register or a destination register it will be prefixed
with an “‘S”’ ora *‘D.”’

waop. A word operand which is addressed by any of the
address modes discussed in section 3.2.

Ireg. A 32-bit register in the internal register file.

BEA. Extra bytes of code required for the address mode
selected.

CEA. Extra state times (cycles) required for the address
mode selected.

cadd An address in the program code.

Flag Settings. The modification to the flag setting is
shown for each instruction. A checkmark (,/) means that
the flag is set or cleared as appropriate. A hyphen means
that the flag is not modified. A one or zero (1) or (0)
indicates that the flag will be in that state after the instruc-
tion. An up arrow ( 1) indicates that the instruction may
set the flag if it is appropriate but will not clear the flag.
A down arrow (| ) indicates that the flag can be cleared
but not set by the instruction.

Generic Jumps and Calls. The assembler for the 8096
provides for generic jumps and calls. For all of the con-
ditional jump instructions a ‘‘B’’ can be substituted for
the “‘J’’ and the assembler will generate a code sequence
which is logically equivalent but can reach anywhere in |
the memory. A JH can only jump about 128 locations
from the current program counter; a BH can jump any-
where in memory. In a like manner a BR will cause a
SIMP or LIMP to be generated as appropriate and a CALL
will cause a SCALL or LCALL to be generated. The
assembler user guide (see section 3.0) should be consulted
for the algorithms used by the assembler to convert these
generic instructions into actual machine instructions.



MCse-96 SOFTWARE DESIGN INFORMATION

3.13.1. ADD (Two Operands) — ADD WORDS

Operation: The sum of the two word operands is stored into the destination
(leftmost) operand

i (DEST)<—~(DEST) + (SRC)

Assembly Language Format: DST SRC
ADD . wreg, waop

Object Code Format: [ 011001aa ][ waop ][ wreg ]

Bytes: 2+BEA
States: 4+ CEA

Flags Affected
Z|N|C |V |VT|ST
ivivivitT-

3.13.2. ADD (Three Operands) — ADD WORDS -

Operation: The sum of the second and third word operands is stored into the
destination (leftmost) operand.

(DEST) < (SRC1) + (SRC2)

Assembly Language Format: DST  SRCt SRC2
ADD Dwreg, Swreg, waop

Object Code Format: [ 010001aa ][ waop ][ Swreg ][ Dwreg ]

Bytes: 3+BEA
States: 5+ CEA

Flags Affected
Z|N|C |V IVT|ST
ARANARENE RS

3-24



MCS®-96 SOFTWARE DESIGN INFORMATION

3.13.3. ADDB (Two Operands) — ADD BYTES

Operation: The sum of the two byte operands is stored into the destination
(leftmost) operand.

(DEST) < (DEST) + (SRC)

Assembly Language Format: DST SRC
. ADDB breg, boap

Object Code Format: [ 011101aa ][ baop ][ breg ]

Bytes: 2+BEA
States: 4+ CEA

Flags Affected
Z|N|C|V|VT|ST
A R N

3.13.4. ADDB (Three Operands) — ADD BYTES

Operation: The sum of the second and third byte operands is stored into the
destination (leftmost) operand.

(DEST) « (SRC1) + (SRC2)

Assembly Language Format: DST '~ SRC1 SRC2
ADDB Dbreg, Sbreg, baop

Object Code Format: [ 010101aa ][ baop ][ Sbreg ][ Dbreg ]

Bytes: ' 3+BEA
States: 5+ CEA

Flags Affected
Z|N|C |V |VT ST
VIV -

3-25



MCS®-96 SOFTWARE DESIGN INFORMATION

3.13.5. ADDC — ADD WORDS WITH CARRY

Operation: The sum of the two word operands and the carry flag (0 or 1) is
stored into the destination (leftmost) operand.

(DEST) < (DEST) + (SRC) + C

Assembly Language Format: DST  SRC
‘ ADDC wreg, waop

Object Code Format: [ 101001aa ][ waop ][ wreg |

Bytes: 2+BEA
States: 4+ BEA

Flags Affected
Z|N|C |V |VT|ST
VIVt -

3.13.6. ADDCB — ADD BYTES WITH CARRY

Operation: The sum of the two byte operands and the carry flag (0 or 1) is
stored into the destination (leftmost) operand.

(DEST) « (DEST) + (SRC) + C

- Assembly Language Format: DST SRC
ADDCB breg, baop

Object Code Format: [ 101101aa ][ baop ][ breg ]

Bytes: 2+BEA
States: 4+ CEA

Flags Affected
Z|N|[C |V |VT|ST
ARARARanN

3-26



MCS©-96 SOFTWARE DESIGN INFORMATION

3.13.7. AND (Two Operands) — LOGICAL AND WORDS

Operation:

Assembly Language Format:

Object Code Format:

The two word operands are ANDed, the result having a 1 only in
those bit positions where both operands had a 1, with zeroes in
all other bit positions. The result is stored into the destination
(leftmost) operand. »

(DEST) < (DEST) AND (SRC)

DST = SRC
AND  wreg, waop

[ 011000aa ][ waop ][ wreg |

Bytes: 2+BEA
States: 4+ CEA

Flags Affected
Z|N|C |V |VT|ST
J1vJ|o]o|-|-

3.13.8. AND (Three Operahds) — LOGICAL AND WORDS

Operation:

Assembly Language Format:

Object Code Format:

The second and third word operands are ANDed, the result having
a 1 only in those bit positions where both operands had a 1, with
zeroes in all other bit positions. The result is stored into the des-
tination (leftmost) operand.

(DEST) < (SRC1) AND (SRC2)

DST SRC1 SRC2
AND Dwreg, Swreg, waop

[ 010000aa ][ waop ][ Swreg ][ bwreg ]

Bytes: 3+BEA
States: 5+ CEA

Flags Affected
Z|N|C |V |VT|ST

JIJ/]ojoj-|~- ' \

3-27



MCS®-96 SOFTWARE DESIGN INFORMATION

3.13.9. ANDB (Two Operands) — LOGICAL AND BYTES

Operatlon

Assembly Language Format:

Object Code Format:

The two byte operands are ANDed, the result having a 1 only in
those bit positions where both operands had a 1, with zeroes in
all other bit positions. The result is stored into the destination
(leftmost) operand.

'(DEST) < (DEST) AND (SRC)

_ DST SRC
ANDB breg, baop

[ 011100aa ][ baop ][ breg ]

Bytes: 2+ BEA
States: 4+ CEA

Flags Affected
Z ' N|C|V |VT|ST
JIVJI[0o]l0o| - |-

3.13.10. ANDB (Three Operands) — LOGICAL AND BYTES

Operation:

Assembly Language Format:

Object Code Format:

The second and third word operands are ANDed, the result having
a 1 only in those bit positions where both operands had a 1, with
zeroes in all other bit positions. The result is stored into the des-
tination (leftmost) operand.

(DEST) < (SRC1) AND (SRC2) |

DST SRC1 SRC2
ANDB Dbreg, Sbreg, baop

[ 010100aa ][ baop ][ Sbreg ][ Dbreg 1

Bytes: 3+BEA
States: 5+CEA

Flags Affected
Z|N|C |V |VT|ST

Jlvlojol-1]-

328



MCS®©-96 SOFTWARE DESIGN INFORMATION

3.13.11. BR (Indirect) — BRANCH INDIRECT

Operation: The execution continues at the address specified in the operand
word register. .

PC « (DEST)
Assembly Language Format: BR [wreg]
Object Code Format: | 11100011 ][ wreg |

Bytes: 2
States: 8

Flags Affected
Z|N|C|V|VT|ST

3.13.12. CLR — CLEAR WORD

i

Operation: The value of the word operand is set to zero.
(DEST) <0
Assembly Language Format: CLR wreg
Object Code Format: [ 00000001 ][ wreg ]

Bytes: 2
States: 4

Flags Affected

Z|N|C |V |VT|ST
11000 -]|-

3-29



MCS©®-96 SOFTWARE DESIGN INFORMATION

3.13.13.: CLRB — CLEAR BYTE

Operation: The value of the byte operand is set to zero.
(DEST) <0 -
Assembly Language Format: CLRB breg
Object Code Format: [ 00010001 ][ breg ]»

Bytes: 2
States: 4

Flags Affected

Z|N|C |V |VT|ST
1]10|0|0|~-]|-

3.13.14. CLRC — CLEAR CARRY FLAG

Operation: The value of the carry flag is set to zero.
C<«0 -
Assembly Language Format: CLRC |
Object Code Format: [ 11111000 ]

Bytes: 1
States: 4

Flags Affected

Z|N|C |V |VT|ST
| =Tol=1-=-1-

3-30



MCS©-96 SOFTWARE DESIGN INFORMATION

3.13.15. CLRVT — CLEAR OVERFLOW TRAP

Operation: The value of the overflow-trap flag is set to zero.
VT <0
Assembly Language Format: CLRVT
Object Code Format: [ 11111100 ]

Bytes: 1
States: 4

Flags Affected
Z|N|C |V |VT|ST

— T =T=1T=To ] =

3.13.16. CMP — COMPARE WORDS

Operation: The source (rightmost) word operand is subtracted from the des-
tination (leftmost) word operand. The flags are altered but the
operands remain unaffected. The carry flag is set as complement
of borrow.

(DEST) — (SRC)

Assembly Language Format: DST SRC
CMP wreg, waop

Object Code Format: [ 100010aa ][ waop ][ wreg ]

Bytes: 2+BEA
States: 4+ CEA

Flags Affected
Z|N|[C |V |VT|ST
ARAFAranE

3-31



MCS®-96 SOFTWARE DESIGN INFORMATION

3.13.17. CMPB — COMPARE BYTES

Operation: The source (rightmost) byte operand is subtracted from the des-
tination (leftmost) byte operand. The flags are altered but the
operands remain unaffected. The carry flag is set as comiplement
of borrow. ‘

(DEST) — (SRC)

Assembly Language Format: DST SRC
CMPB breg, baop

Object Code Format: [ 100110aa ][ baop ][ breg 1

Bytes: 2+BEA
States: 4+ CEA

Flags Affected -
Z|N|C |V |VT|ST
Y A A A O

3.13.18. DEC — DECREMENT WORD

Operation: The value of the word operand is decremented by one.
(DEST) « (DEST) — 1
Assembly Language Format: DEC wreg '
~ Object Code Format: [ 00000101 ][ wreg ]

Bytes: 2
States: 4

Flags Affected
Z|N|C|V|VT|ST
SVt =

3-32



MCS©-96 SOFTWARE DESIGN INFORMATION

3.13.19. DECB — DECREMENT BYTE

. Operation: The value of the byte operand is decremented by one.
(DEST) « (DEST) — 1
Assembly Language Format: DECB breg
Object Code Format: [ 00010101 ][ breg ]

Bytes: 2
States: 4

Flags Affected
Z|{N|C |V |[VT|ST
VAR A A A O

3.13.20. DI — DISABLE INTERRUPTS

Operation: Interrupts are disabled. Interrupt-calls will not occur after this
instruction.

Interrupt Enable (PSW.9) <0
Assembly Language Format: DI
Object Code Format: [ 11111010 ]

Bytes: 1
States: 4

Flags Affected
* Z|N|C:V |VT|ST

3-33



| MCS®-96 SOFTWARE DESIGN INFORMATION

+ 3.13.21. DIV — DIVIDE INTEGERS

Operation:

This instruction divides the contents of the destination LONG-
INTEGER operand by the contents of the INTEGER word oper-
and, using signed arithmetic. The low order word of the destination
(i.e., the word with the lower address) will contain the quotient;

~ the high order word will contain the remainder.

Assembly Language Format:

Object Code Format:

(low word DEST) « (DEST) / (SRC)
(high word DEST) « (DEST) MOD (SRC) ‘
The above two statements are performed concurrently.

DST  SRC
DIV Ireg, waop

[ 11111110 ][ 100011aa ][ waop ][ Ireq 1

Bytes: 2+BEA
States: 29 + CEA

Flags Affected
Z|N|C|vV]|vT|sT
—_ _ —_ ‘/ T —_

3.13.22. DIVB — DIVIDE SHOR;T-INTEGERS

Operation:

Assembly Language Format:

Object Code Format:

This instruction divides the contents of the destination INTEGER
operand by the contents of the source SHORT-INTEGER oper-
and, using signed arithmetic. The low order byte of the destination
(i.e. the byte with the lower address) will contain the quotient; the
high order byte will contain the remainder.

(low byte DEST) « (DEST) / (SRC)
(high byte DEST) < (DEST) MOD (SRC) : '
The above two statements are performed concurrently.

DST SRC
DIVB wreg, baop

[ 11111110 ][ 100111aa ][ baop ]{ wreg ]

Bytes: 2+BEA
States: 21 + CEA

Flags Affected
Z|N{C |V |VT|ST
- - - ‘/ T -

3-34



MCS®-96 SOFTWARE DESIGN INFORMATION

3.13.23. DIVU — DIVIDE WORDS

. Operation:

Assembly Language Format:

Object Code Format:

This instruction divides the contents of the destination DOUBLE-
WORD operand by the contents of the source WORD operand,
using unsigned arithmetic. The low order word will contain the
quotient; the high order byte will contain the remainder.

(low word DEST) « (DEST) / (SRC)
(high word DEST) « MOD (SRC)
The above two statements are performed concurrently.

DST SRC
DIVU  Ireg, waop

[ 100011aa ][ waop ][ Ireq 1]

Bytes: 2+BEA
States: 25 + CEA

Flags Affected
Z|N|C |V |VT|ST
- - — / T -

3.13.24. DIVUB — DIVIDE BYTES

Operation:

Assembly Language Format:

Object Céde Format:

This instruction divides the contents of the destination WORD
operand by the contents of the source BYTE operand, using un-
signed arithmetic. The low order byte of the destination (i.e., the
byte with the lower address) will contain the quotlent the high
order byte will contain the remainder.

(low byte DEST) « (DEST) / (SRC)
(high byte DEST) < (DEST) MOD (SRC)
The above two statements are performed concurrently.

DST SRC
DIVUB wreg, baop

[ 100111aa ][ baop ][ wreg |

Bytes: 2+BEA
States: 17 + CEA

Flags Affected
Z|N|C |V |VT|ST

- - — / T -

3-35



MCS®-96 SOFTWARE DESIGN INFORMATION

3.13.25. DUNZ — DECREMENT AND JUMP IF NOT ZERO

Operatioh:

Assembly Language Format:

Object Code Format:

The value of the byte operand is decremented by 1. If the result
is not equal to 0, the distance from the end of this instruction to
the target label is added to the program counter, effecting the
jump. The offset from the end of this instruction to the target label
must be in the range of —128 to +127. If the result of the dec-
rement is zero then control passes to the next sequential
instruction. '

(COUNT) < (COUNT) — 1

- if (COUNT) < > 0 then

PC < PC + disp (sign- extended to 16 bits)
end — |f

DJNZ breg,cadd
[ 11100000 ][ breg ][ disp 1
Bytes: -3

States: Jump Not Taken: 5
Jump Taken: 9

Flags Affected
ZIN|C |V |VT|ST

3.13.26. El — ENABLE INTERRUPTS

Operation:

Assembly Language Format:

Object Code Format:

Interrupts are enabled following the execution of the next state-
ment. Interrupt-calls cannot occur immediately following this
instruction.

" Interrupt Enable (PSW.9) <1

El
[ 11111011 ]

Bytes: 1

States: 4

Flags Affected
Z|N|C |V |VT|ST

3-36



MCS®-96 SOFTWARE DESIGN INFORMATION

3.13.27. EXT — SIGN EXTEND INTEGER INTO LONG-INTEGER

Operatlon The low order word of the operand is sign-extended throughout
the high order word of the operand.

if (low word DEST)<8000H then
(high word DEST) <0

else '

(high word DEST) < OFFFFH

end _ if

Assembly Language Format: EXT Ireg
Object Code Format: [ 00000110 ][ Ireg ]

Bytes: 2
States: 4

Flags Affected
Z|N|C |V |VT|ST
JIJ/J]0]O0o] -]~

3.13.28. EXTB — SIGN EXTEND SHORT-INTEGER INTO INTEGER

Operation: The low order byte of the operand is sign-extended throughout
the high order byte of the operand. :

if (low byte DEST)<80H then
(high byte DEST) «- 0
else
(high byte DEST) « OFFH
end _ if

Assembly Language Format: EXTB wreg
 Object Code Format: [ 00010110 ][ wreg |

Bytes: 2
States: 4

Flags Affected
Z{N|C|V|VT|ST
J{v]0joj-]~-

3-37



MCS®-96 SOFTWARE DESIGN INFORMATION

3.13.29. INC — INCREMENT WORD

Operétion: The value of the word operand is incremented by 1.
(DEST) « (DEST) + 1
Assembly Language Format: INC wreg
Object Code Format: [ 00000111 ][ wreg ]

Bytes: 2
States: 4

Flags Affected
Z|N|C |V |VT|ST
IV -

3.13.30. INCB — INCREMENT BYTE

Operation: The value of the byte operand is incremented by 1.
(DEST) « (DEST) + 1
Assembly Language Fo!mat: INCB breg »
Object Code Format: [ 00010111 ][ breg ]

Bytes: 2
States: 4

Flags Affected
Z|N|C |V |VT|ST
AMMNE

3-38



MCS®-96 SOFTWARE DESIGN INFORMATION

3.13.31. JBC — JUMP IF BIT CLEAR

Operation:

Assembly Language Format:

Object Code Format:

The specified bit is tested. If it is clear (i.e., 0), the distance from
the end of this instruction to the target label is added to the pro-
gram counter, effecting the jump. The offset from the end of this
instruction to the target label must be in the range of —128 to
+127. If the bitis set (i.e., 1), control passes to the next sequential
instruction.

if (specified bit) = 0 then
PC « PC + disp (sign-extended to 16 bits)

JBC breg,bitno,cadd

[ 00110bbb ][ breg ][ disp ]

where Ebb is the bit number within the specified register.
Bytes: 3

States: Jump Not Taken: 5
Jump Taken: 9

-Flags Affected
Z|N|C|V|VT|ST

3-39



MCS®-96 SOFTWARE DESIGN INFORMATION

3.13.32. JBS — JUMP IF BIT SET ’

Operation:

Assembly Language Format:

Object Code Format:

The specified bit is tested. If it is set (i.e., 1), the distance from
the end of this instruction to the target label is added to the pro-
gram counter, effecting the jump. The offset from the end of this
instruction to the target label must be in the range of —128 to
+127. If the bit is clear (i.e., 0), control passes to the next se-
quential instruction. :

if (specified bit) = 1 then
PC « PC + disp (sign-extended to 16 bits)

JBS breg,bitno,cadd

[ 00111bbb ][ breg ][ disp ]

where bbb is the bit number within the specified reéister.
Bytes: 3

States: Jump Not Taken: 5
Jump Taken: 9

Flags Affected
Z|N|C|V |VT|ST

3.13.33. JC - JUMP IF CARRY FLAG IS SET

Operation:

Assembly Language Format:

' Object Code Format:

If the carry flag is set (i.e., 1), the distance from the end of this
instruction to the target label is added to the program counter,
effecting the jump. The offset from the end of this instruction to
the target label must be in the range of —128 to +127. If the
carry flag is clear (i.e., 0), control passes to the next sequential
instruction.

if C = 1 then
PC <« PC + disp (sign-extended to 16 bits)

JC cadd
[ 11011011. ][ disp ]
Bytes: 2

States: Jump Not Taken: 4
Jump Taken: 8

Flags Affected
Z|N|C |V |VT|ST

3-40



MCS@-96 SOFTWARE DESIGN INFORMATION

3.13.34. JE — JUMP IF EQUAL

Operation:

Assembly Language Format:

Object Code Format:

If the zero flag is set (i.e., 1), the distance from the end of this
instruction to the target label is added to the program counter,
effecting the jump. The offset from the end of this instruction to
the target label must be in the range of —128 to +127. If the zero
flag is clear (i.e., 0), control passes to the next sequential
instruction.

if Z = 1 then
PC < PC + disp (sign-extended to 16 bits)

JE cadd
[ 11011111 ][ disp ]
Bytes: 2

States: Jump Not Taken: 4
Jump Taken: 8

Flags Affected
Z|N|C |V |VT|ST

3.13.35. JGE — JUMP IF SIGNED GREATER THAN OR EQUAL

Operation:

Assembly Language Format:

Object Code Format:

If the negative flag is clear (i.e., 0), the distance from the end of
this instruction to the target label is added to the program counter,
effecting the jump. The offset from the end of this instruction to
the target label must be in the range of —128 to +127. If the
negative flag is set (i.e., 1), control passes to the next sequential
instruction.

if N = 0 then
PC <« PC + disp (sign-extended to 16 bits)

JGE cadd
[ 11010110 ][ disp ]
Bytes: 2

States: Jump Not Taken: 4
Jump Taken: 8

Flags Affected
Z|N|[C|V|VT|ST

3-41



MCS®-96 SOFTWARE DESIGN INFORMATION

3.13.36. JGT — JUMP IF SIGNED GREATER THAN

Operation:

Assembly Language Format:

Object Code Format:

If both the negative flag and the zero flag are clear (i.e., 0), the
distance from the end of this instruction to the target label is added
to the program counter, effecting the jump. The offset from the
end of this instruction to the target label must be in the range of
—128to +127. If either the negative flag or the zero flag are set
(i.e., 1,) control passes to the next sequential instruction.

ifN = 0 AND Z = 0 then
PC < PC + disp (sign-extended to 16 bits)

JGT cadd
[ 11010010 ][ disp ]
Bytes: . 2

States: Jump Not Taken: 4
Jump Taken: 8

Flags Affected
Z|N|C|V|VT|ST

3.13.37. JH — JUMP IF HIGHER (UNSIGNED)

Operation:

Assembly Language Format:

Object Code Format:

If the carry flag is set (i.e., 1), but the zero flag is not, the distance
from the end of this instruction to the target label is added to the
program counter, effecting the jump. The offset from the end of
this instruction to the target label must be in the range of —128
to +127. If either the carry flag is clear or the zero flag is set,
control passes to the next sequential instruction.

if C =1and Z = 0 then
PC < PC + disp (sign-extended to 16 bits)

JH cadd
[ 11011001 ][ disp ]
Bytes: 2

States: Jump Not Taken: 4
Jump Taken: ‘8

Flags Affected
Z|'N|C |V |VT|ST,|

3-42



MCS®-96 SOFTWARE DESIGN INFORMATION

3.13.38. JLE — JUMP IF SIGNED LESS THAN OR EQUAL

Operation:

Assembly Language Format:

Object Code Format:

If either the negative flag or the zero flag are set (i.e., 1), the
distance from the end of this instruction to the target label is added
to the program counter, effecting the jump. The offset from the
end of this instruction to the target label must be in the range of
—128 to +127. If both the negative flag and the zero flag are
clear (i.e, 0), control passes to the next sequential instruction.

if N =10RZ = 1then
PC « PC + disp (sign-extended to 16 bits)

JLE cadd
[ 11011010 ][ disp ]
Bytes: 2

States: Jump Not Taken: 4
Jump Taken: 8

Flags Affected
Z|N|C |V |VT|ST

3.13.39. JLT — JUMP IF SIGNED LESS THAN

Operation:

Assembly Language Format:

Object Code Format:

If the negative flag is set (i.e., 1), the distance from the end of
this instruction to the target label is added to the program counter,
effecting the jump. The offset from the end of this instruction to
the target label must be in the range of —128 to +127. If the
negative flag is clear (i.e., 0), control passes to the next sequential
instruction.

if N = 1 then ,
PC < PC + disp (sign-extended to 16 bits)

JLT cadd
[ 11011110 ][ disp ]

- Bytes: 2

States: Jump Not Taken: 4
Jump Taken: 8

Flags Affected
Z|N|C |V |VT|ST

3-43



MCS®-96 SOFTWARE DESIGN INFORMATION

3.13.40. JNC — JUMP IF CARRY FLAG IS CLEAR

Operation:

Assembly Language Format:

Object Code Format:

If the carry flag is clear (i.e., 0), the distance from the end of this
instruction to the target label is added to the program counter,
effecting the jump. The offset from the end of this instruction to
the target label must be in the range of —128 to +127. If the
carry flag is set (i.e., 1), control passes to the next sequential
instruction.

if C = 0 then
PC < PC + disp (sign-extended to 16 bits)

JNC cadd
[ 11010011 ][ disp ]
Bytes: 2

States: Jump Not Taken: 4
Jump Taken: 8

Flags Affected
Z|N|[C |V |VT|ST

3.13.41. JNE — JUMP IF NOT EQUAL

Operation:

Assembly Language Format:

Object Code Format:

If the zero flag is clear (i.e., 0), the distance from the end of this
instruction to the target label is added to the program counter,
effecting the jump. The offset from the end of this instruction to
the target label must be in the range of — 128 to + 127. If the zero
flagis set (i.e., 1), control passes to the next sequential instruction.

if Z = 0 then .
PC < PC + disp (sign-extended to 16 bits)

JNE cadd
[ 11010111][ disp ]
Bytes: 2

States: Jump Not Taken: 4
Jump Taken: 8

—Flags Affected
Z|N|C |V |VT|ST

3-44



MCS©®-96 SOFTWARE DESIGN INFORMATION

3.13.42. JNH — JUMP IF NOT HIGHER (UNSIGNED)

Operation:

Assembly Language Format:

Object Code Format:

If either the carry flag is clear (i.e., 0), or the zero flag is set (i.e.,
1), the distance from the end of this instruction to the target label
is added to program counter, effecting the jump. The offset from
the end of this instruction to the target label must be in the range
of —128 to +127. If the carry flag is set (i.e., 1), or the zero flag
is not, control passes to the next sequential instruction.

if C=00RZ = 1 then
PC < PC + disp (sign-extended to 16 bits)

JNH cadd
[ 11010001 ][ disp ]
Bytes: , 2

States: Jump Not Taken: 4
Jump Taken: 8

Flags Affected
Z|N|C |V |VT|ST

3.13.43. JNST — JUMP IF STICKY BIT IS CLEAR

Operation:

Assembly Language Format:

Object Code Format:

If the sticky bit flag is clear (i.e., 0), the distance from the end of
this instruction to the target label is added to the program counter,
effecting the jump. The offset from the end of this instruction to
the target label must be in the range of —128 to +127. If the
sticky bit flag is set (i.e., 1), control passes to the next sequential
instruction.

if ST = 0 then
PC « PC + disp (sign-extended to 16 bits)

JNST cadd

[ 11010000 ][ disp 1

Bytes: 2
States: Jump Not Taken: 4
Jump Taken: 8

’———Flags Affected
Z{N|C |V |VT|ST

AUAR



'

MCS®-96 SOFTWARE DESIGN INFORMATION

3.13.44. JNV — JUMP IF OVERFLOW FLAG IS CLEAR

.Operation:

Assembly Language Format:

Object Code Format:

If the overflow flag is clear (i.e., 0), the distance from the end of
this instruction to the target label is added to the program counter,
effecting the jump. The offset from the end of this instruction to
the target label must be in the range of —128 to +127. If the
overflow flag is set (i.e., 1), control passes to next sequential
instruction.

if V.= 0 then
PC <« PC + disp (sign-extended to 16 bits)

JNV  cadd
[ 11010101 ][ disp ]
Bytes: 2

States: Jump Not Taken: 4
Jump Taken: 8

Flags Affected
Z|N|C |V |VT|ST

3.13.45. JNVT — JUMP IF OVERFLOW TRAP IS CLEAR

Operation:

Assembly Language Format:

Object Code Format:

If the overflow trap flag is clear (i.e., 0), the distance from the end
of this instruction to the target label is added to the program
counter, effecting the jump. The offset from the end of this in-
struction to the target label must be in the range of —128 to
+127. If the overflow trap flag is set (i.e., 1), control passes to
the next sequential instruction.

-if VT = 0 then

PC < PC + disp (sign-extended to 16 bits)
JNVT  cadd
[ 11010100 ][ 4 disp 1]
Bytes: ' T2

- States: Jump Not Taken: 4

Jumps Taken: 8

Flags Affected
Z|N|C |V |VT|ST

—=1T=T=-Tol-=

R.4R



MCS©®-96 SOFTWARE DESIGN INFORMATION

3.13.46. JST — JUMP IF STICKY BIT IS SET

Operation:

Assembly Language Format:

Object Code Format:

If the sticky bit flag is set (i.e., 1), the distance from the end of
this instruction to the target label is added to the program counter,
effecting the jump. The offset from the end of this instruction to
the target label must be in the range of —128 to +127. If the
sticky bit flag is clear (i.e., 0), control passes to the next sequential
instruction.

if ST = 1 then
PC < PC + disp (sign-extended to 16 bits)

JST cadd
[ 11011000 ][ disp ]
Bytes: 2

States: Jump Not Taken: 4
Jump Taken: 8

Flags Affected
Z|N|C |V |VT|ST

3.13.47. JV — JUMP IF OVERFLOW FLAG IS SET

Operation:

Assembly Language Format:

Object Code Format:

If the overflow flag is set (i.e., 1), the distance from the end of this
instruction to the target label is added to the program counter,
effecting the jump. The offset from the end of this instruction to
the target label must be in the range of —128 to +127. If the
overflow flag is clear (i.e., 0), control passes to the next sequential
instruction. '

if V.= 1 then
PC « PC + disp (sign-extended to 16 bits)

JV cadd
[ 11011101 ][ disp ]
Bytes: 2

States: Jump Not Taken: 4
Jump Taken: 8

Flags Affected
Z|N|C |V |VT|ST

3-47



MCS®-96 SOFTWARE DESIGN INFORMATION

3.13.48. JVT — JUMP IF OVERFLOW TRAP IS SET

Operation:

Assembly Language Format:

Object Code Format:

If the overflow flag is set (i.e., 1), the distance from the end of this
instruction to the target label is added to the program counter,
effecting the jump. The offset from the end of this instruction to
the target label must be in the range of —128 to +127. If the
overflow trap flag is clear (i.e., 0), control passes to the next
sequential instruction.

it VT = 1 then -
PC « PC + disp (sign-extended to 16 bits)

JVT cadd
[ 11011100 ][ disp ]
Bytes: 2

States: Jump Not Taken: 4
Jump Taken: 8

Flags Affected

Z|N|C|V|VT|ST
| =-1T-=1=-1o0o]-

3.13.49. LCALL — LONG CALL

" Operation:

Assembly Language Format:

Object Code Formét:

The contents of the program counter. (the return address) is
pushed onto the stack. Then the distance from the end of this

- instruction to the target label is added to the program counter,

effecting the call. The operand may be any address in the entiré
address space. v

SP <« SP -2
(SP) «— PC
PC <« PC + disp

LCALL cadd
[ 11101111 ][ disp-low ][ disp-hi ]
Bytes: 3

States: Onchip stack: 13
Onchip stack: 16

—Flags Affected
Z|N|C |V |VT|ST

3-48



MCS©-96 SOFTWARE DESIGN INFORMATION

3.13.50. LD — LOAD WORD

Operation:

Assembly Language Format:

Object Code Format:

3.13.51. LDB — LOAD BYTE

The value of the source (rightmost) word operand is stored into
the destination (leftmost) operand.

(DEST) < (SRC)

DST SRC
LD wreg, waop

[ 101000aa ][ waop ][ wreg 1

Bytes: 2+BEA
States: 4+ CEA

Flags Affected
ZIN|C |V |VT|ST

Operation:

Assembly Language Format:

Object Code Format:

The value of the source (rightmost) byte operand is stored intc
the destination (leftmost) operand. ’

(DEST) « (SRC)

DST SRC
LDB breg, baop

[ 101100aa ][ baop ‘][ breg ]

Bytes: 2+BEA
States: 4+ CEA

Flags Affected
"Z{N|C |V |VT|ST

3-49



MCS®-96 SOFTWARE DESIGN INFORMATION

3.13.52. LDBSE — LOAD INTEGER WITH SHORT-INTEGER

Operation:

Assembly Language Format:

Object Code Format:

The value of the source (rightmost) byte operand is sign-extended
and stored into the destination (leftmost) word operand.

(low byte DEST) « (SRC)
if (SRC) < 80H then

(high byte DEST) <0
else '

(high byte DEST) < OFFH
end_if

DST SRC
LDBSE wreg, baop

[ 101111aa ][ baop ][ wreg ]b

Bytes: 2+BEA
States: 4+ CEA

Flags Affected—j
Z|N|C |V |VT|ST

3.13.53. LDBZE — LOAD WORD WITH BYTE

Operation:

Assembly Language Format:

Object Code Format:

The value of the source (rightmost) byte operand is zero-extended
and stored into the destination (leftmost) word operand.

(low byte DEST) < (SRC)
(high byte DEST) «<-0

DST SRC

_LDBZE wreg, baop

[ 101011aa ][ baop ][ wreg ]‘

Bytes: 2+BEA
States: 4+ CEA "

Flags Affected
Z{N|C |V |VT|ST

3-50



MCS®-96 SOFTWARE DESIGN INFORMATION

3.13.54. LUMP — LONG JUMP

Operation: The distance from the end of this instruction to the target label
is added to the program counter, effecting the jump. The operand
may be any address in the entire address space.

PC «—PC + disp
Assembly Language Format: LUMP cadd
Object Code Format: [ 11100111 ][ disp-low ][ disp-hi ]

Bytes: 3
States: 8

Flags Affected
Z|N|[C |V |VT|ST

3.13.55. MUL (Two Operands) — MULTIPLY INTEGERS

Operation: The two INTEGER operands are multiplied using signed arith-
metic and the 32-bit result is stored into the destination (leftmost)
LONG-INTEGER operand. The sticky bit flag is undefined after
the instruction is executed.

(DEST) < (DEST) * (SRC)

Assembly Language Format: - DST SRC
MUL Ireg, waop

Object Code Format: [ 11111110 ][ 011011aa ][ waop ][ lIreg ]

Bytes: 3+BEA
States: 29 + CEA

Flags Affected
Z|N|[C |V |[VT|ST
-1-1-1-1-1v

3-51



MCS®-96 SOFTWARE DESIGN INFORMATION

3.13.56. MUL (Three Operands) — MULTIPLY INTEGERS

Operation:

Assembly Language Format:

Object Code Format:

The second and third INTEGER operands are multiplied using
signed arithmetic and the 32-bit result is stored into the destination
(leftmost) INTEGER operand. The sticky bit flag is undefined after
the instruction is executed.

(DEST) « (SRC1) * (SRC2)

DST SRC1 SRC2
MUL Ireg, wreg, waop

[ 11111110 ][ 010011aa ][ waop ][ wreg ][ lreg ]

Bytes: 4+BEA
States: 30 + CEA

Flags Affected
Z|{N|C |V |VT|ST
-1=-1-T-T-1v

3.13.57. MULB (Two Operands) — MULTIPLY SHORT-INTEGERS

Operation:

Assembly Languége Format:

Object Code Format:

The two SHORT-INTEGER operands are multiplied using signed
arithmetic and the 16-bit result is stored into the destination (left-
most) INTEGER operand. The sticky bit flag is undefined after the
instruction is executed.

(DEST) « (DEST) * (SRC)

DST SRC
MULB wreg, baop

[ 11111110 ][ O11111aa ][ baop ][ wreg ]

Bytes: 3+BEA
States: 21 + CEA

Flags Affected
Z[N|[C |V |VT|ST

- 1=1-T=-1

3-52



MCS¢-96 SOFTWARE DESIGN INFORMATION

3.13.58. MULB (Three Operands) — MULTIPLY SHORT-INTEGERS

Operation: The second and third SHORT-INTEGER operands are multiplied
using signed arithmetic and the 16-bit result is stored into the
destination (leftmost) INTEGER operand. The sticky bit flag is
undefined after the instruction is executed.

(DEST) < (SRC1) * (SRC2)

Assembly Language Format: DST SRC1 SRC2
MULB wreg, breg baop

Object Code Format: [ 11111110 ][ 010111aa ][ baop ][ breg ][ wreg ]

Bytes: 4+BEA
States: 22 + CEA

Flags Affected
Z|{N|C |V |VT|ST
- [-1-T-T-Tv

3.13.59. MULU (Two Operands) — MULTIPLY WORDS

Operation: The two WORD operands are multiplied using unsigned arithmetic
and the 32-bit result is stored into the destination (leftmost) DOU-
BLE-WORD operand. The sticky bit flag is undefined after the
instruction is executed.

(DEST) < (DEST) * (SRC)

Assembly Language Format: DST SRC
MULU Ireg, waop

Object Code Format: [ 011011aa ][ waop ][ Ireg ]

Bytes: 2+BEA
States: 25 + CEA

Flags Affected
Z|N|C |V |VT|ST

o e Y

3-53



MCS®-96 SOFTWARE DESIGN INFORMATION

3.13.60. MULU (Three Operands) — MULTIPLY WORDS

Operatlon

Assembly Language Format:

Object Code Format:

The second and third WORD operands are multiplied using un-
signed arithmetic and the 32-bit result is stored into the destination
(leftmost) DOUBLE-WORD operand. The sticky bit flag is unde-
fined after the instruction is executed.

(DEST)< — (SRC1) * (SRC2)

DST SRC1 SRC2
MULU Ireg, wreg, waop

[ 010011aa ][ waop ][ wreg ][ Ireg ]

Bytes: 3+BEA
States: 26 + CEA

Flags Affected
Z|N|C |V |VT|ST
-1-1-1T-1-1v

3.13.61. MULUB (Two Operands) — MULTIPLY BYTES

" Operation:

Assembly Language Format:

Object Code Format:

The two BYTE operands are muitiplied using unsigned arithmetic
and the WORD result is stored into the destination (leftmost) op-
erand. The sticky bit flag is undefined after the instruction is
executed.

(DEST) « (DEST) * (SRC)

DST SRC
MULUB wreg, baop

[ O11111aa ][ baop ][ wreg 1

Bytes: 2+BEA
States: 17 + CEA

Flags Affected
Z|N|C|V|VT|ST

“T-T=1-T-1

3-54



MCS®-96 SOFTWARE DESIGN INFORMATION

3.13.62. MULUB (Three Operands) — MULTIPLY BYTES

Operation:

Assembly Language Format:

Object Code Format:

The second and third BYTE operands are multiplied using un-
signed arithmetic and the WORD result is stored into the desti-
nation (leftmost) operand. The sticky bit flag is undefined after the
instruction is executed.

(DEST) < (SRC1) * (SRC2)

DST SRC1 SRC2
MULUB wreg, breg, baop

[ O010111aa ][ baop ][ breg ][ wreg ]

Bytes: 3+BEA
States: 18 + CEA

Flags Affected
Z|N|C|V|VT|ST
-[-1-T-T-Tv

3.13.63. NEG — NEGATE INTEGER

Operation:

Assembly Language Format:

Object Code Format:

The value of the INTEGER operand is negated.
(DEST) « — (DEST)

NEG wreg

[ 00000011 ][ wreg 1

Bytes: 2
States: 4

Flags Affected
Z|N|C |V |VT|ST

YA A A A O

3-55



MCS®-96 SOFTWARE DESIGN INFORMATION

3.13.64. NEGB — NEGATE SHORT-INTEGER

Operation: The value of the SHORT-INTEGER operénd is negated.
- (DEST) « — (DEST)
Assembly Language Format: NEGB brég -
Object Code Format: [ 00010011 ][\ breg ]

Bytes: 2
States: 4

Flags Affected
Z|{N|C|V|VT| ST
v lvlvr -

3.13.65. NOP — NO OPERATION
' Operation: Nothing'is done. Control passes to the next seq’uenﬁal instruction.
Assembly Language Format: NOP
Object Code Format: [ 11111101 ]

Bytes: ‘1
States: 4

Flags Affected—
Z|N|C|vVv|vT|sT

3-56



MCS®-96 SOFTWARE DESIGN INFORMATION

3.13.66. NORML — NORMALIZE LONG-INTEGER

Operation:

Assembly Language Format:

Object Code Format:

The LONG-INTEGER operand is normalized; i.e., it is shifted to
the left until its most significant bit is 1. If the most significant bit
is still 0 after 31 shifts, the process stops and the zero flag is set.
The number of shifts actually performed is stored in the second
operand.

(COUNT) <0

do while (MSB(DEST) = 0)
(DEST) « (DEST) * 2
(COUNT) « (COUNT) + 1

end _ while

AND ((COUNT) < 31)

NORML Ireg,breg
[ 00001111 ][ breg ][ lreg 1

Bytes: 3
States: 8 + No. of shifts performed

Flags Affected

Z|N|C|V|vT|sT
Jl1lol-1-1-

3.13.67. NOT — COMPLEMENT WORD

Operation:

Assembly Language Format:

Object Code Format:

The value of the WORD operand is complemented: each 1 is
replaced with a 0, and each 0 with a 1.

(DEST) <« NOT(DEST)
NOT wreg
[ 00000010 ][ wreg ]

Bytes: 2
States: 4

—Flags Affected
Z|N|[C!V|VT|ST

/v ofol[-T=

3-57



MCS®-96 SOFTWARE DESIGN INFORMATION

3.13.68. NOTB — COMPLEMENT BYTE

Operation: The value of the BYTE operand‘ is complemented: each 1 is re-
placed with a 0, and each 0 with a 1.

(DEST) « NOT (DEST)
Assembly Language Format: NOTB breg
Object Code Format: [ 00010010 ][ breg ]

Bytes: 2
States: 4

Flags Affected
Z|N|C|V]|VT|ST
J| J/]10]0]| -]~

3.13.69. OR — LOGICAL OR WORDS

Operation: The source (rightmost) WORD is ORed with the destination (left-
most) WORD operand. Each bit is set to 1 if the corresponding
bit in either the source operand or the destination operand is 1.
The result replaces the original destination operand.

(DEST) < (DEST) OR (SRC)

Assembly Language Format: DST SRC
OR wreg, waop

Object Code Format: [ 100000aa ][ waop ][ wreg |

Bytes: 2-+BEA
States: 4+ CEA

Flags Affected
Z|N|C|V|VT|ST
JIiv]ojo|-|~-

3-58



MCS¢®-96 SOFTWARE DESIGN INFORMATION

3.13.70. ORB — LOGICAL OR BYTES

Operation: The source (rightmost) BYTE operand is ORed with the desti-
nation (leftmost) BYTE operand. Each bit is set to 1 if the cor-
responding bit in either the source operand or the destination
operand was 1. The result replaces the original destination
operand.

(DEST) < (DEST) OR (SRC)
Assembly Language Format: ORB breg,baop
Object Code Format: [ 100100aa ][ baop ][ breg ]

Bytes: 2+BEA
States: 4+ CEA

Flags Affected
ZIN|C |V |VT|ST
VA A Y L el

3.13.71. POP — POP WORD

Operation: The word on top of the stack is popped and placed at the desti-
nation operand.

(DEST) < (SP)
SP <8P + 2

Assembly Language Format: POP waop
‘Object Code Format: [ 110011aa ][ waop ]

Bytes: 1+BEA
States: Onchip Stack: 12+ CEA
Offchip Stack 14+ CEA

Flags Affected
Z|N|C |V |VT|ST

3-59



MCS®-96 SOFTWARE DESIGN INFORMATION

3.13.72. POPF — POP FLAGS

Operation The word on top of the 'stack is popped and placed in the PSW.
Interrupt calls cannot occur immediately following this instruction.

(PSW) < (SP)
SP <SP + 2

Assembly Language Format: POPF
Object Code Format: [ 11110011, ]
Bytes: 1

States: Onchip Stack: 9
Offchip Stack: 13

Flags Affected
Z|N|C |V |VT|ST
VIV VLY

3.13.73. PUSH — PUSH WORD

Operation: The specified operand is pushed onto the stack.

SP—SP -2
(SP) < (DEST)

Assembly Language Format: PUSH waop
Object Code Format: [ 110010aa ][ waop ]

Bytes: 1+BEA
States: Onchip Stack: 8+ CEA
Offchip Stack: 12+ CEA

Flags Affected
Z|N|[C|V]|VT|ST

3-60



MCS©®-96 SOFTWARE DESIGN INFORMATION

3.13.74. PUSHF — PUSH FLAGS

Operation:

Assembly Language Format:

Object Code Format:

The PSW is pushed on top of the stack, and then set to all zeroes.
This implies that all interrupts are disabled. Interrupt-calls cannot
occur immediately following this instruction.

SP«SP -2
(SP) « PSW
PSW <0

PUSHF
[ 11110010 ]
Bytes: ‘ 1

States: Onchip Stack: 8
Offchip Stack: 12

Flags Affected

Z|N|C |V |VT|ST
0o|0|0O|0O0jO0]|O

3.13.75. RET — RETURN FROM SUBROUTINE

Operation:

Assembly Language Format:

Object Code Format:

The PC is popped off the top of the stack.

PC « (SP)
SP <SP + 2

RET
[ 11110000 ]
Bytes: 1

States: Onchip Stack: 12
Offchip Stack: 16

Flags Affected
Z|N|C|vV]|vT|sST

3-61



MCS®-96 SOFTWARE DESIGN INFORMATION

3.13.76. RST — RESET SYSTEM

Operation:

Assembly Language Format:

Object Code Format:

.

The PSW is initialized to zero, and the PC is initialized to 2080H.
The I/O registers are set to their initial value (see section 2.15.2,
“Reset Status”). Executing this instruction will cause a pulse to
appear on the reset pin of the 8096. .

PSW <0
PC « 2080H

RST
[ 11111111 ]

Bytes: 1
States: 16

Flags Affected

Z|N|C |V |VT|ST
ojo0jo0ofojo0¢fo0

3.13.77. SCALL — SHORT CALL

~ Operation:

Assembly Language Format:

Object Code Format:

The contents of the program counter (the return address) is
pushed onto the stack. Then the distance from the end of this
instruction to the target label is added to the program counter,
effecting the call. The offset from the end of this instruction to the
target label must be in the range of —1024 to + 1023 inclusive.

SP«SP—2
(SP) <~ PC
PC <« PC + disp (sign-extended to 16 bits)

SCALL cadd ‘
[ 00101xxx ][ disp-low -]

~where xxx holds the three high-order bits of displacement. '

Bytes: 2
States: Onchip Stack: 13 .
Offchip Stack: 16 "

Flags Affected
Z|N|C |V |VT|ST




MCS®-96 SOFTWARE DESIGN INFORMATION

3.13.78. SETC — SET CARRY FLAG

Qperation: The carry flag is set.
C«1
Assembly Language Format: SETC
Object Code Format: [ 11111001 ]

Bytes: 1
States: 4

Flags Affected
Z{N|C |V |VT|ST

=71 1=1T=1-=

3.13.79. SHL — SHIFT WORD LEFT

Operation: The destination (leftmost) word operand is shifted left as many
times as specified by the count (rightmost) operand. The count
may be specified either as an immediate value in the range of 0
to 15 inclusive, or as the content of any register, the address of -
which is 16 to 255. The right bits of the result are filled with zeroes.
The last bit shifted out is saved in the carry flag.

Temp < (COUNT)

do while Temp <>0
C < High order bit of (DEST)
(DEST) « (DEST)*2
Temp < Temp — 1

end _ while

Assembly Language Format: SHL wreg,#count
or :
SHL wreg,breg

Object Code Format: [ 00001001 ][ cnt/breg ][ wreg ]

Bytes: 3
States: 7 + No. of shifts performed
note: O place shifts take 8 states.

Flags Affected
Z|N|C|V |VT|ST
SIS -

3-63



MCS®-96 SOFTWARE DESIGN INFORMATION

3.13.80. SHLB — SHIFT BYTE LEFT

Operation:

Assembly Language Format:

Object Code Format:

The destination (leftmost) byte operand is shifted left as many
times as specified by the count (rightmost) operand. The count
may be specified either as an immediate value in the range of 0
to 15 inclusive, or as the content of any register, the address of
which is 16 to 255. The right bits of the result are filled with zeroes.
The last bit shifted out is saved in the carry flag.

Temp « (COUNT)
do while Temp <> 0
C <« High order bit of (DEST)

(DEST) « (DEST)*2 '
Temp < Temp — 1
end _ while

SHLB breg,#count
or
SHLB breg,breg

[ 00011001 ][ cntbreg ][ breg ]
Bytes: 3

States: 7 + No. of shifts performed
note: 0 place shifts take 8 states.

Flags Affected
Z|N|C |V |VT|ST
IV -

3-64



MCS¢-96 SOFTWARE DESIGN INFORMATION

3.13.81. SHLL — SHIFT DOUBLE-WORD LEFT

Operatlon

Assembly Language Format:

Object Code Format:

The destination (leftmost) double-word operand is shifted left as
many times as specified by the count (rightmost) operand. The
count may be specified either as an immediate value in the range
of 0 to 15 inclusive, or as the content of any register, the address
of which is 16 to 255. The right bits of the result are filled with
zeroes. The last bit shifted out is saved in the carry flag.

Temp < (COUNT)
do while Temp <> 0
C < High order bit of (DEST)

(DEST) « (DEST)*2
Temp < Temp — 1
end _ while

SHLL Ireg,#count
or
SHLL Ireg,breg

[ 00001101 ][ cntbreg ][ lIreg ]
Bytes: 3

States: 7 + No. of shifts performed
note: O place shifts take 8 states.

Flags Affected
Z|N|C |V |VT|ST

YA A A A O




MCS®-96 SOFTWARE DESIGN INFORMATION

3.13.82. SHR — LOGICAL RIGHT SHIFT WORD

~Operation:

Assembly Language Format:

Object Code Format:

The destination (leftmost) word operand is shifted right as many
times as specified by the count (rightmost) operand. The count
may be specified either as an immediate value in the range of 0
to 15 inclusive, or as the content of any register, the address of
which is 16 to 255. The left bits of the result are filled with zeroes.
The last bit shifted out is saved to the carry. The sticky bit flag
is cleared at the beginning of the instruction, and set if at any time
during the shift a 1 is shifted first into the carry flag, and a further
shift cycle occurs.

Temp < (COUNT)

do while Temp <> 0
C < Low order bit of (DEST)
(DEST) « (DEST) / 2 where / is unsigned division
Temp < Temp — 1

end _ while

SHR wreg,#count
or
SHR wreg,breg

[ 00001000 ][ cntbreg ][ wreg |
Bytes: 3 -

States: 7 + No. of shifts performed
note: 0 place shifts take 8 states.

: Flags Affected
Z|N|[C |V |VT|ST

/v To=TV



MCS®-96 \SOFTWARE DESIGN INFORMATION

3.13.83. SHRA — ARITHMETIC RIGHT SHIFT WORD

~ Operation:

Assembly Language Format:

Object Code Format:

The destination (leftmost) word operand is shifted right as many
times as specified by the count (rightmost) operand. The count
may be specified either as an immediate value in the range of 0
to 15 inclusive, or as the content of any register, the address of
which is 16 to 255. If the original high order bit value was 0, zeroes
are shifted in. If the value was 1, ones are shifted in. The last bit
shifted out is saved in the carry. The sticky bit flag is cleared at
the beginning of the instruction, and set if at any time during the
shift a 1 is shifted first into the carry flag, and a further shift cycle
occurs.

Temp < (COUNT)

do while Temp <> 0
C < Low order bit of (DEST)
(DEST) « (DEST) / 2 where / is signed division
Temp < Temp — 1

end _ while

SHRA wreg,#count
or . .
SHRA wreg,breg

[ 00001010 ][ cntbreg ][ wreg ]
Bytes: 3

States: 7 + No. of shifts performed
note: O place shifts take 8 states.

Flags Affected -
Z|N|C|[V|VT|ST

YA A A I el I

R.R7



MCS®-96 SOFTWARE DESIGN INFORMATION

3.13.84. SHRAB — ARITHMETIC RIGHT SHIFT BYTE

Operation:

Assembly Language Format:

Object Code Format:

The destination (leftmost) byte operand is shifted right as many
times as specified by the count (rightmost) operand. The count
may be specified either as an immediate value in the range of 0
to 15 inclusive, or as the content of any register, the address of
which is 16 to 255. If the original high order bit value was 0, zeroes
are shifted in. If that value was 1, ones are shifted in. The last bit
shifted out is saved in the carry. The sticky bit flag is cleared at
the beginning of the instruction, and set if at any time during the
shift a 1 is shifted first into the carry flag, and a further shift cycle

occurs.

Temp < (COUNT)

do while Temp <> 0
C,=Low order bit of (DEST)
(DEST) « (DEST) / 2 where /is signed division
Temp <« Temp — 1

end _ while

SHRAB breg,#count
or
SHRAB breg,breg

[ 00011010 ][ cntbreg ][ breg ]

Bytes: 3 ' -
States: 7 + No. of shifts performed

note: 0 place shifts take 8 states.
Flags Affected
Z|N]JC|V|VT|ST .o
I/ /ol-1/

3-68



MCS*®-96 SOFTWARE DESIGN INFORMATION

3.13.85. SHRAL — ARITHMETIC RIGHT SHIFT DOUBLE-WORD

Operation:

Assembly Language Format:

Object Code Format:

The destination (leftmost) double-word operand is shifted right as
many times as specified by the count (rightmost) operand. The
count may be specified either as an immediate value in the range
of 0 to 15 inclusive, or as the content of any register, the address
of which is 16 to 255. If the original high order bit value was 0,
zeroes are shifted in. If the value was 1, ones are shifted in. The
sticky bit is cleared at the beginning of the instruction, and set if
at any time during the shift a 1 is shifted first into the carry flag,
and a further shift cycle occurs.

Temp « (COUNT)

do while Temp <> 0
C < Low order bit of (DEST)
(DEST) « (DEST) / 2 where/is signed division
Temp < Temp — 1

end — while

SHRAL Ireg,#count
or
SHRAL lIreg,breg

[ 00001110 ][ cntbreg ][ lreg ]
Bytes: 3

States: 7 + No. of shifts performed
note: 0 place shifts take 8 states.

Flags Affected
Z|N|C |V |VT|ST

JIVIV/ 0 =Y

3-69



= ®
mi‘el MCS®-96 SOFTWARE DESIGN INFORMATION

3.13.86. SHRB — LOGICAL RIGHT SHIFT BYTE

Operation:

Assembly Language Format:

Object Code Format:

The destination (leftmost) byte operand is shifted right as many
times as specified by the count (rightmost) operand. The count

‘may be specified either as an immediate value in the range of 0

to 15 inclusive, or as the content of any register, the address of

- which is 16 to 255. The left bits of the result are filled with zeroes.

The last bit shifted out is saved in the carry. The sticky bit flag is
cleared at the beginning of the instruction, and set if at any time
during the shift a 1 is shifted first into the carry flag, and a further
shift cycle occurs.

Temp < (COUNT)

do while Temp <> 0
C < Low order bit of (DEST)
(DEST) « (DEST) / 2 where/is unsigned division
Temp «Temp — 1

end _. while '

SHRB breg,#count
or
SHRB breg,breg

[ 00011000 ][ cntbreg ][ breg ]
Bytes: - 3

States: 7 + No. of shifts performed
note: O place shifts take 8 states.

Flags Affected
Z{N|C |V |VT|ST
SV lo=1V

3-70



MCS®-96 SOFTWARE DESIGN INFORMATION

3.13.87. SHRL — LOGICAL RIGHT SHIFT DOUBLE-WORD

Operation:

Assembly Language Format:

Object Code Format:

The destination (leftmost) double-word operand is shifted right as
many times as specified by the count (rightmost) operand. The
count may be specified either as an immediate value in the range
of 0 to 15 inclusive, or as the content of any register, the address
of which is 16 to 255. The left bits of the result are filled with
zeroes. The last bit shifted -out is saved in the carry. The sticky
bit flag is cleared at the beginning of the instruction, and set if at
any time during the shift a 1 is shifted first into the carry flag, and
a further shift cycle occurs.

Temp < (COUNT) -

do while Temp <> 0
C < Low order bit of (DEST)
(DEST) « (DEST) / 2 where/is unsigned division
Temp < Temp — 1

end _ while

SHRL Ireg,#count
or
SHRL Ireg,breg

[ 00001100 ][ cntbreg ][ breg 1
Bytes: 3

States: 7 + No. of shifts performed
note: 0 place shifts take 8 states.

Flags Affected
Z|IN|C!|V|VT|ST
S/ VLo -1V

3-71



MCS®-96 SOFTWARE DESIGN INFORMATION

3.13.88. SUMP — SHORT JUMP

Operation:

Assembly Language Format:

Object Code Format:

The distance from the end of this instruction to the target Iabel
is added to the program counter, effecting the jump. The offset
from the end of this instruction to the target label must be in the
range of — 1024 to + 1023 inclusive.

PC < PC + disp (sign-extended to 16 bits)

SJMP  cadd

[ 00100xxx ][ disp-low ]

where xxx holds the three high order bits of the displacement.

Bytes: 2
States: 8

Flags Affected
Z|N|C |V |VT|ST

3.13.89. SKIP — TWO BYTE NO-OPERATION

Operation:

Assembly Language Format:

Object Code Format:

Nothing is done. This is actually a two-byte NOP where the second
byte can be any value, and is simply ignored. Control passes to .
the next sequentlal instruction.

SKIP breg
[ 00000000 ][ breg ]

Bytes: 2
States: 4

Flags Affected
Z|N|C |V [VT|ST

3-72



MCS©®-96 SOFTWARE DESIGN INFORMATION

3.13.90. ST — STORE WORD

Operation: The value of the leftmost word operand is stored into the rightmost

operand.
(DEST) « (SRQC)
Assembly Language Format: SRC DST

ST wreg, waop
Object Code Format: [ 110000aa ][ waop ][ wreg ]

Bytes: 2+BEA
States: 4+ CEA

Flags Affected
Z|N|C |V |VT|ST

3.13.91. STB — STORE BYTE

Operation: The value of the leftmost byte operand is stored into the rightmost
operand.

(DEST) « (SRC)

Assembly Language Format: SRC  DST
STB breg, baop

Object Code Format: [ 110001aa ][ baop ][ breg ]

Bytes: 2+BEA
States: 4+ CEA

Flags Affected
Z|N|C|V|VT|ST

3-73



MCS®-96 SOFTWARE DESIGN INFORMATION

3.13.92. SUB (Two Operands) — SUBTRACT WORDS

Operation:

- Assembly Language Format:

Object Code Format:

The source (rightmost) word-operand is subtracted from the des-
tination ‘(leftmost) word operand, and the result is stored in the
destination. The carry flag is set as complement of borrow.

(DEST) < (DEST) — (SRC)

DST SRC
SUB wreg, waop

[ 011010aa ][ waop ][ wreg 1]

Bytes: 2+BEA
States: 4+ CEA

Flags Affected
Z|N|C|V |VT|ST
IV -

3.13.93. SUB (Three Operands) — SUBTRACT WORDS

Operation:

Assembly Language Format:

Object Code Format:

The source (rightmost) word operand is subtracted from the sec-
ond word operand, and the result is stored in the destination (the
leftmost operand). The carry flag is set as complement of borrow.

(DEST) < (SRC1) — (SRC2)

DST SRC1 SRC2,
SuB wreg, wreg, waop

[ 010010aa ][ waop ][ Swreg ][ Dwrég ]

Bytes: 3+BEA
States: 5+ CEA

Flags Affected
Z|{N|C|V|VT|ST

SV -

3-74



MCS®-96 SOFTWARE DESIGN INFORMATION

3.13.94. SUBB (Two Operands) — SUBTRACT BYTES

Operation:

Assembly Language Format:

Object Code Format:

The sourcé (rightmost) byte is subtracted from the destination
(leftmost) byte operand, and the result is stored in the destination.
The carry flag is set as complement of borrow.

(DEST) < (DEST) — (SRC)

DST SRC
SUBB breg, baop

[ 011110aa ][ baop ][ breg 1

Bytes: 2+BEA
States: 4 +CEA

Flags Affected
Z|N|C |V |VT|ST
IV -

3.13.95. SUBB (Three Operands) — SUBTRACT BYTES

Operation:

Assembly Language Format:

Object Code Format:

The source (rightmost) byte operand is subtracted from the des-
tination (leftmost) byte operand, and the result is stored in the
destination. The carry flag is set as complement of borrow.

(DEST) < (DEST) — (SRC).

DST SRC ,
SUBB breg, baop

[ 010110aa ][ baop ][Sbreg ][ Dbreg ]

Bytes: 3+BEA
States: 5+ CEA

. Flags Affected
Z|IN|C|V|VT|ST

SIS -




MCS¢®-96 SOFTWARE DESIGN INFORMATION

3.13;96. SUBC — SUBTRACT WORDS WITH BORROW

Operation:

Assembly Language Format:

Object Code Format:

The source (rightmost) word operand is subtracted from the des-
tination (leftmost) word operand. If the carry flag was clear, 1 is
subtracted from the above result. The result replaces the original
destination operand. The carry flag is set as complement of
borrow.

(DEST) « (DEST) — (SRC) —(1-C)

DST SRC
SUBC wreg, waop

[ 101010aa ][ waop ][ wreg ]

Bytes: 2+BEA
States: 4+ CEA

- Flags Affected
Z|N[C|V]|VT|ST
VIvivivitl-

3.13.97. SUBCB — SUBTRACT BYTES WITH BORROW

" Operation:

Assembly Language Format:

‘Object Code Format:

The source (rightmost) byte operand is subtracted from the des-
tination (leftmost) byte operand. If the carry flag was clear, 1 is
subtracted from the above result. The result replaces the original
destination operand. The carry flag is set as complement of
borrow. .

(DEST) « (DEST) — (SRC) — (1-C)

DST =~ SRC
SUBCB breg,” baop

[ 101110aa ][ baop 1[ breg ]

Bytes: 24 BEA
States: 4+ CEA

Flags Affected—
Z|N|C|V|VT|ST

I A A A I s




MCS&-96 SOFTWARE DESIGN INFORMATION

3.13.98. TRAP — SOFTWARE TRAP

Operation:

Assembly Language Format:

Object Code Format:

This instruction causes an interrupt-call which is vectored through
location 2010H. The operation of this instruction is not effected
by the state of the interrupt enable flag in the PSW (1). Interrupt-
calls cannot occur immediately following this instruction. This in-
struction is intended for use by Intel provided development tools.
These tools will not support user-application of this instruction.

SP <SP — 2
(SP) < PC
PC « (2010H)

This instruction is not supported by revision 1.0 of the 8096 as-
sembly language.

[ 11110111 ]
Bytes: 1

States: Onchip Stack: 21
Offchip Stack: 24

Flags Affected
Z|N|[C |V |VT|ST

3.13.99. XOR — LOGICAL EXCLUSIVE-OR WORDS

Operation:

Assembly Language Format:

Object Code Format:

The source (rightmost) word operand is XORed with the desti-
nation (leftmost) word operand. Each bit is set to 1 if the corre-
sponding bit in either the source operand or the destination op-
erand was 1, but not both. The result replaces the original
destination operand.

(DEST) « (DEST) XOR (SRC)

DST SRC
XOR wreg, waop

[ 100001aa ][ waop ][ wreg ]

Bytes: 2+BEA
States: 4+ CEA

Flags Affected
Z|N|C |V |VT| ST

JIV]0Jo]-1]-~-

3-77



MCS®-96 SOFTWARE DESIGN INFORMATION

3.13.100. XORB — LOGICAL EXCLUSIVE-OR BYTES

Operatlon. The source (rightmost) byte operand is XORed with the desti-

ASsembly Language Format:

Object Code Format:

nation. (leftmost) byte operand. Each bit is set to 1 if the corre-
sponding bit in either the source operand or the destination op-
erand was 1, but not both. The result replaces the original .
destination operand. -

(DEST) « (DEST) XOR (SRC)

DST SRC
XORB breg, baop

[ 10010taa ][ baop ][ breg ]
Bytes: 2+BEA ‘

States: 4+ CEA

Flags Affected
Z|N|[C |V |VT|ST

AR N il

3-78



Hardware Design Information | 4







CHAPTER 4
HARDWARE DESIGN INFORMATION

4.0. HARDWARE INTERFACING
OVERVIEW

This section of the manual is devoted to the hardware
engineer. All of the information you need to connect the
correct pin to the correct external circuit is provided. Many
of the special function pins have different characteristics
which are under software control, therefore, it is necessary
to define the system completely before the hardware is
wired-up.

Frequently within this section a specification for a current,
voltage, or time period is referred to; the values provided
are to be used as an approximation only. The exact spec-
ification can be found in the latest data sheet for the par-
ticular part and temperature range that is being used.

4.1. REQUIRED HARDWARE
CONNECTIONS

Although the 8096 is a single-chip microcontroller, it still
requires several external connections to make it work.
Power must be applied, a clock source provided, and some
form of reset circuitry must be present. We will look at
each of these areas of circuitry separately. Figure 4-5
shows the connections that are needed for a single-chip
system.

4.1.1. Power Supply Information

be tied to 5 volts. When the analog to digital converter
is being used it may be desirable to connect the VREF |
pin to a separate power supply, or at least a separate power
supply line.

The two VSS pins should be connected together with as
short a lead as possible to avoid problems due to voltage
drops across the wiring. There should be no measurable
voltage difference between VSS1 and VSS2. The 2 VSS
pins and the ANGND pin should all be nominally at 0
volts. The maximum current drain of the 8096 is around
200mA, with all lines unloaded.

When the analog converter is being used, clean, stable
power must be provided to the analog section of the chip
to assure highest accuracy. To achieve this, it may be
desirable to separate the analog power supply from the
digital power supply. The VREF pin supplies 5 volts to
the analog circuitry and the ANGND pin is the ground for
this section of the chip. More information on the analog

. power supply is in section 4.3.1.

4.1.2. Other Needed Connections :
Several of the pins on the 8096 are used to configure the
mode of operation. In normal operation the following pins
should be tied directly to the indicated power supply.

PIN POWER SUPPLY

Power for 8096 flows through 6 pins; one VCC pin, two NMI vCe
VSS pins, one VREF (analog VCC), one ANGND (An- TEST VCC
alog VSS), and one VPD (V Power Down) pin. All six o -
of these pins must be connected to the 8096 for normal EA VCC. (to allow internal execution)
operation. The VCC pin, VREEF pin and VPD pin should VSS (to force external execution)
TO DIVIDER CIRCUITRY DIVIDER CIRCUITRY
vee —
——————— _
. vce Q3
T e
o (S 3
[' [es « >
‘ | a % 4, a5
01 ——————— -— ————————————————————
: EEk]—I XTAL1 [ xmaL2
] I 1
SUBSTRATE Er
"""""""""""""""""""""" == I AV
N AN . L4 B
[J_‘| XTAL1 xTAL2 [] 30pt = 30pt

Figure 4-1. 8096 Oscillator Circuit

Figure 4-2, Crystal Oscillator Circuit



HARDWARE DESIGN INFORMATION

Although the EA pin has an internal pulldown, it is best
to tie this pin to the desired level if it is not left completely

disconnected., This will prevent induced noise from dis-

turbing the system.

4.1.3. Oscillator Information
The 8096 requires a clock source to operate. This clock
can be provided to the chip through the XTAL1 input or
the on-chip oscillator can be used. The frequency of op-
eration is from 6.0 MHz to 12 MHz.

The on-chip circuitry for the 8096 oscillator is a single
stage linear inverter as shown in Figure 4-1. It is intended
for use as a crystal-controlled, positive reactance oscillator
with external connections as shown in Figure 4-2. In this
application, the crystal is being operated in its fundamental

DIVIDER CIRCUITRY

Figure 4-3. External Clock Drive

response mode as an inductive reactance in parallel res-

onance with capacitance external to the crystal.

The crystal specifications and capacitance values (C1 and
C2 in Figure 4-2) are not critical. 30 pF can be used in
these positions at any frequency with good quality crys-
tals. For 0.5% frequency accuracy, the crystal frequency
can be specified at series resonance or for parallel reso-
nance with any load capacitance. (In other words, forthat
degree of frequency accuracy, the load capacitance simply
doesn’t matter.) For 0.05% frequency accuracy the crystal
frequency should be specified for parallel resonance with
25 pF load capacitance, if C1 and C2 are 30 pF.

A more in-depth discussion of crystal specifications and
the selection of values for C1 and C2 can be found in the
Intel Appllcatlon Note, AP-155, ‘‘Oscillators for
Microcontrollers.’

To drive the 8096 with an external clock source, apply
the external clock signal to XTAL1 and let XTAL2 float.
An example of this circuit is shown in Figure 4-3. The
required voltage levels on XTAL1 are specified in the data
sheet. The signal on XTAL1 must be clean with-good
solid levels. It is important that the minimum high and
low times are met.

There is no specification on rise and fall times, but they
should be reasonably fast (on the order of 30 nanoseconds)
to avoid having the XTAL1 pin in the transition range for .
long periods of time. The longer the signal is in the tran-
sition region, the higher the probability that an external
noise glitch could be seen by the clock generator circuitry.
Noise glitches on the 8096 internal clock lines will cause
unreliable operation.

The clock generator provides a 3 phase clock output from
the XTALI1 pin input. Figure 4-4 shows the waveforms
of the major internal timing signals.

XTAL1

PHASE A
(CLKOUT) / \

%

PHASE B ) , \

PHASE C

) PHASE B-C ,

Figure 4-4. Internal Timings -

4-2



HARDWARE DESIGN INFORMATION

4.1.4. Reset Information

In order for the 8096 to function properly it must be reset.
This is done by holding the reset pin low for at least 2
state times after the power supply is within tolerance, the
oscillator has stabilized, and the back-bias generator has
stabilized. Typically, the back-bias generator requires one
millisecond to stabilize.

There are several ways of doing this, the simplest being
just to connect a capacitor from the reset pin to ground.
The capacitor should be on the order of 1 to 2 microfarads
for every millisecond of reset time required. This method
will only work if the rise time of VCC is fast and the total
reset time is less than around 50 milliseconds. It also may
not work if the reset pin is to be used to reset other parts
on the board. An 8096 with the minimum required con-
nections is shown in Figure 4-5.

The 8096 RESET pin can be used to allow other chips on
the board to make use of the watchdog timer or the RST
instruction. When this is done the reset hardware should
be a one-shot with an open-collector output. The reset
pulse going to the other parts may have to be buffered and
lengthened with a one-shot, since the RESET low duration

is only two state times. If this is done, it is possible that
the 8096 will be reset and start running before the other
parts on the board are out of reset. The software must
account for this possible problem.

A capacitor directly connected to RESET cannot be used
to reset the part if the pin is to be used as an output. If
a large capacitor is used, the pin will pull down more
slowly than normal. It will continue to pull down until the
8096 is reset. It could fall so slowly that it never goes
below the internal switch point of the reset signal (1 to
1.5 volts), a voltage which may be above the guaranteed
switch point of external circuitry connected to the pin.
Several circuit examples are shown in Figure 4-6.

4.1.5. Sync Mode

If RESET is brought high coincident to the falling edge
of XTAL1, the part will start executing the 10 state time
RST instruction exactly 6 XTALI cycles later. This feature
can be used to synchronize several -MCS-96 devices. A
diagram of a typical connection is shown in Figure 4-7.
It should be noted that parts that start in sync may not stay
that way, due to propagation delays which may cause the
synchronized parts to receive signals at slightly different
times.

+5 VOLTS
SEPARATEVCC TRACE @ T

VPD

VREF NMI

(U} I

0.1 puf == TEST |-
ANGND EA
01 pf vee :
AIILn) VBB /~ 0.1 TO 1.0 ut

vss1

vss2
RESET

10 p4f |+ XTAL1

T0O R _[_ = C
25 ut ) = C, = C, = 30 pf
T =G,
XTAL2
SEPARATE GROUND TRACE (2) |
NOTES: 1. THESE CAPACITORS ARE NEEDED ONLY IF A TO D IS USED.
2. VREF & ANGND MAY BE CONNECTED TO THE SAME TRACES AS THE DIGITAL POWER SUPPLY IF THE
A TO D'IS NOT USED. ) :

_Figure 4-5. Minimum Hardware Connections

4-3



HARDWARE DESIGN INFORMATION

8096 OTHER
— OPTIONAL CIRCUITRY
RESET ONE-SHOT —
7405123
vee
o>
$ 100K ¥ 74LS05
s | wa0e3 oR
Y 7406
ji 1.0 pf
8096
OPTIONAL gL“EF:
ONE-SHOT |—| CIRCUITRY
74L5123

!

100 @

NOTE: 1. THE DIODE WILL PROVIDE A FASTER CYCLE TIME REPETITIVE POWER-ON-RESETS

Figure 4-6. Multiple Chip Reset Circuits

74504
XTAL1 xTaLt | L xTAL1
8096 8096
>CLK
R Q RESET | —{ RESET
RESET D
-| 7as78
PR CL vee

Figure 4-7. Reset Sync Mode

4.1.6. Disabling the Watchdog Timer

The watchdog timer will pull the RESET pin low when
it overflows. If the pin is being externally held above the
low going threshold, the pull-down transistor will remain
on indefinitely. This means that once the watchdog ov-
erflows, the part must be reset or RESET must be held

4-4

high indefinitely. Just resetting the watchdog timer will
not reset'the flip-flop which keeps the RESET pull-down
on.

The pull-down is capable of sinking on.the order of 30
milliamps if it is held at 2.0 volts. This amount of current



HARDWARE DESIGN INFORMATION

may cause some long term reliability problems due to
localized chip heating. For this reason, parts that will be
used in production should never have had the watchdog
timer over-ridden for more than a second or two.

Whenever the reset pin is being pulled high while the pull-
down is on, it should be through a resistor that will limit
the voltage on RESET to 2.5 volts and the current through
the pin to 40 milliamps. Figure 4-8 shows a circuit which
will provide the desired results. Using the LED will pro-
vide the additional benefit of having a visual indicator that
the part is trying to reset itself, although this circuit only
works at room temperature and VCC = 5 Volts.

4.1.7. Power Down Circuitry

Battery backup can be provided on the 8096 with a | mA
current drain at 5 volts. This mode will hold locations
OFOH through OFFH valid as long as the power to the
VPD pin remains on. The required timings to put the part
into power-down and an overview of this mode are given
in section 2.4.2. '

A ‘key’ can be written into power-down RAM while the
part is running. This key can be checked on reset to de-
termine if it is a start-up from power-down or a complete
cold start. In this way the validity of the power-down
RAM can be verified. The length of this key determines
the probability that this procedure will work, however,
there is always a statistical chance that the RAM will
power up with a replica of the key.

Under most circumstances, the power-fail indicator which
is used to initiate a power-down condition must come from
the unfiltered, unregulated section of the power supply.
The power supply must have sufficient storage capacity
to operate the 8096 until it has completed its reset
operation.

4.2. DRIVE AND INTERFACE LEVELS

There are 5 types of 1/O lines on the 8096. Of these, 2
are inputs and 3 are outputs. All of the pins of the same
type have the same current/voltage characteristics. Some
of the control input pins, such as XTAL1 and RESET,
may have slightly different characteristics. These pins are
discussed in section 4.1.

While discussing the characteristics of the I/O pins some
approximate current or voltage specifications will be
given. The exact specifications are available in the latest
version of the 8096 Data Sheet.

4.2.1. Quasi-Bidirectional Ports

The quasi-bidirectional port is both an input and an output
port. It has three states, low impedance current sink, low
impedance current source, and high impedance current
source. As a low impedance current sink, the pin has a
specification of sinking up to around .4 milliamps, while
staying below 0.45 volts. The pin is placed in this con-
dition by writing a ‘0’ to the SFR (Special Function Reg-
ister) controlling the pin. :

When a ‘I’ is written to the SFR location controlling the
pin, a low impedance current source is turned on for one
state time, then it is turned off and the depletion pull-up
holds the line at a logical ‘1’ state. The low-impedance
pull-up is used to shorten the rise time of the pin, and has

* current source capability on the order of 100 times that

of the depletion pull-up. The configuration of a quasi-
bidirectional port pin is shown in Figure 4-9.

While the depletion mode pull-up is the only device on,
the pin may be used as an input with a leakage of around
100 microamps from 0.45 volts to VCC. It is ideal for
use with TTL or CMOS chips and may even be used

o— vce
wvsoz0 7 7 /
710 oTHER Y. N4001
CIRCUITS
ol OR
. 8096
20 i:

RESET

vce
LM313
1N4001
8096
330 Q@
RESET

NOTE: SEE CAUTIONS IN SECTION 4.1.6.

Figure 4-8. Disabling the WDT



HARDWARE DESIGN INFORMATION

LOW IMPEDANCE HIGH IMPEDANCE

PULL UP PULL UP — ALWAYS ON
c
L}
ONE !
STATE TIME ]
DELAY L
]
- —{]
OUTPUT | < LOW IMPEDANCE !
PULL DOWN. L !
s 1
i
INPUT \]/] ]
LOW IMPEDANCE HIGH IMPEDANCE LOW IMPEDANCE
PULL UP PULL UP PULL DOWN
-50mA -160 pA 50mA
TYPICAL TYPICAL i TYPICAL
z —30mA = =90 pA L30mA
5 3
-10mA -30 A 10mA |- /—
- L 1 1 1 L J
ov 2v av ov 2v av ov 2v av
Vou Vou Voo

NOTE: THESE GRAPHS SHOW TYPICAL PIN CAPABILITIES, THEY ARE NOT GUARANTEED SPECIFICATIONS

Figure 4-9. Quasi-Bidirectional Port

directly with switches, however if the switch option is
used certain precautions should be taken. It is impootant
to note that any time the pin is read, the value returned
will be the value on the pin, not the value placed-in the
control register. This could prevent logical operations on
these pins while they are being used as inputs.

4.2.2. Quasi-Bidirectional Hardware
Connections

When using the quasi-bidirectional ports as inputs tied to
switches, series resistors should be used if the ports will
be written to internally after the part is initialized. Every
time any quasi-bidirectional pin is written from a zero to
a one, the low impedance pull-up is turned on. If many
of the pins are tied directly to ground, a large current
spike will be generated when all of these low impedance
devices are turned on at once.

For this reason, a series resistor is recommended to limit
the current to a maximum of 0.2 milliamps per pin. If

46

several pins are connected to a common ground through
switches, it should be sufficient to limit the current through
the common ground to 0.2 milliamps times the maximum
number of pins that could be switched to ground. Many
switches require a minimum amount of current flow
through them to keep them clean. This could cause prob-
lems in long term reliability if it is not considered when
designing a system.

If a switch is used on a long line connected to a quasi-
bidirectional pin, a pull-up resistor is recommended to
reduce the possibility of noise glitches. On extremely long
lines that are handling slow signals a capacitor may be
helpful in addition to the resistor.

4.2.3. Input Ports, Analog and Digital

The high impedance input ports on the 8096 have an input
leakage of a few microamps and are predominantly ca-
pacitive loads on the order-of 10 pf. The Port O pins have
an additional function when the A to D converter is being -



HARDWARE DESIGN INFORMATION

used. These pins are the input to the A to D converter,
and as such, are required to provide current to the com-
parator when a conversion is in process. This means that
the input characteristics of a pin will change if a conversion
is being done on that pin. See section 4.3.1.

4.2.4. Open Drain Ports

Ports 3 and 4 on the 8096 are open drain ports. There is
no pull-up when these pins are used as I/O ports. These
pins have different characteristics when used as bus pins
as described in the next section. A diagram of the output
buffers connected to ports 3 and 4 and the Bus pins is
shown in Figure 4-10.

When Ports 3 and 4 are to be used as inputs, or as Bus
pins, they must first be written with a ‘1°, this will put
the ports in a high impedance mode. When they are used
as outputs, a pull-up resistor must be used externally. The
sink capability of these pins is on the order of 0.4 mil-
liamps so the total pull-up current to the pin must be less

of 0.33 milliamps, so it would be a reasonable value to
choose if no other circuits with pullups were connected

to the pin.

4.2.5. HSO Pins, Control Outputs and Bus

Pins

The control outputs and HSO pins have output buffers
with the same output characteristics as those of the bus
pins. Included in the category of control outputs are; TXD,
RXD (in mode 0), PWM, CLKOUT, ALE, BHE, RD,
and WR. The bus pins have 3 states; output high, output
low, and high impedance input. As a high output, the pins
are specified to source around 200 pA to 2.4 volts, but
the pins can source on the order of ten times that value
in order to provide fast rise times. When used as a low
output, the pins can sink around 2 mA at .45 volts, and
considerably more as the voltage increases. When in the
high impedance state, the pin acts as a capacitive load
with a few microamps of leakage. Figure 4-10 shows the
internal configuration of a bus pin.

than this. A 15k pull-up resistor will source a maximum

vee
1
DATA $ !
N |
N’ }
3
[ : i
BUS OUTPUT gbﬁ " !
ENABLE .
| —L
BUS DATA i
d BUS PULL DOWN PORT 3,4 OPEN DRAIN
| DRIVER
PORT ENABLE i
PORT DATA E v
- BUS PULL UP BUS PULL DOWN PORT PULL DOWN
BUS BUS, P1,P2 . BUS, P1, P2
—50 mA 50 mA 25 mA -
’ TYPICAL TYPICAL TYPICAL
~30 mA L 30mA[ 15mA M~ ‘
x -
] £ : 2
-10mA ‘10mA'-/——' 5mA-/"_
1 L 1 1 J 1 1 L 1 ]
ov 2v av ov 2v av ov 2v av
Vou VoL Voo

NOTE: THESE GRAPHS SHOW TYPICAL PIN CAPABILITIES, THEY ARE NOT GUARANTEED SPECIFICATIONS

Figure 4-10. Bus and Port 3 and 4 Pins



HARDWARE DESIGN INFORMATION

4.3. ANALOG INTERFACE

Interfacing the 8096 to analog signal can be done in several
ways. If the 8096 needs to measure an analog signal the
A to D converter can be used. Creation of analog outputs
can be done with either the PWM output or the HSO unit.

4.3.1. Analog Inputs _

The 8096 can have 8 analog inputs and can convert one
input at a time into a digital value. Each conversion takes
42 microseconds with a 12 MHz signal on XTAL1. The

input signal is applied to one of the Port 0/Analog Channel

inputs. Since there is no sample and hold on the A to D,
the input signal must remain constant over the sampling
period.

Whan a conversion® takes place, the 8096 compares the
external signal to that of its internal D to A. Based on the
result of the comparison it adjusts the D to A and compares
again. Each comparison takes 8 state times and requires
the input to the comparator to be charged up. 20 com-
parisons are made during a conversion, two times for each
bit of resolution. An additional 8 states are used to load
and store values. The total number of state times required
is 168 for a 10-bit conversion. Attempting to do other than
a 10-bit conversion is not recommended.

Since the capacitance of the comparator input is around
0.5pf, the sample and hold circuit must be able to charge
- a 10pf (20*0.5pf) capacitor without a significant voltage
change. To keep the effect of the sample and hold circuit
below =+ Isb on a 10-bit converter, the voltage on the

sample and hold circuit may vary no more than 0.05%

(1/2048).

The effective capacitance of the sample and hold must,
therefore, be at least 20000pf or 0.02 uf. If there is external
leakage on the capacitor, its value must be increased to
compensate for the leakage. At 10uA leakage; 2.5 mV
(5/2048) will be lost from a 0.17 uf capacitor in 42 uS.
The capacitor connected externally to the pin should,
therefore, be at least 0.2 uf for best results. If the external
signal changes slowly relative to 42 uS, then a larger
capacitor will work well and also filter out unwanted noise.

The converter is a 10-bit, successive approximation, ra-
tiometric converter, so the numerical value obtained from
the conversion will be:

1023 * (VIN-ANGND) / (VREF-ANGND)

It can be seen that the power supply levels strongly in-
fluence the absolute accuracy of the conversion. For this
reason, it is recommended that the ANGND pin be tied
to a clean ground, as close to the power supply as possible.
VREF should be well regulated and used only for the A
to D converter. If ratiometric information is derived,
VREF can be connected to VCC, but this should be done
at the power supply not at the chip. It needs to be able
to source around 15 milliamps. Bypass capacitors should
be used between VREF and ANGND. ANGND should
be within about a tenth of a volt of VSS and VREF should
be within a few tenths of a volt of VCC. A 0.01 uf

" capacitor should be connected between the ANGND and

8096 Lot FILTER
HSO OUTPUT (PASSIVE POWER
OR ANALOG
OR »|  swing 1 actve) > AMP b uTPUT
PWM RAIL (OPTIONAL)
TO (OPTIONAL)
RAIL
SUGGESTED CIRCUIT FOR NON-CRITICAL APPLICATIONS
8096
HSO R _ HIGH ANALOG
OR e IMPEDANCE [—— o 1out
PWM 1 AMP
CD4049 I c
R AND.C ARE CHOSEN FOR BEST
FILTERING AT THE USER'S FREQUENCY

Figure 4-11. D/A Buffer Block Diagram




HARDWARE DESIGN INFORMATION

VBB pins to reduce the noise on VBB and provide the
highest possible accuracy. Figure 4-5 shows all of these
connections.

4.3.2. Analog Output Suggestions

Analog outputs can be generated by two methods, either
by using the PWM output or the HSO. Either device will
generate a rectangular pulse training that varies in duty
cycle and (for the HSO only) period. If a smooth analog
signal is desired as an output, the rectangular waveform
must be filtered.

In most cases this filtering is best done after the signal is
buffered to make it swing from O to 5 volts since both of
the outputs are guaranteed only to TTL levels. A block
diagram of the type of circuit needed is shown in Figure
4-11. By proper selection of components, accounting for
temperature and power supply drift, a highly accurate 8-
bit D to A converter can be made using either the HSO
or the PWM output. If the HSO is used the accuracy could
be theoretically extended to 16-bits, however the temper-
ature and noise related problems would be extremely hard
to handle.

When driving some circuits it may be desirable to use
unfiltered Pulse Width Modulation. This is particularly
true for motor drive circuits. The PWM output can be
used to generate these waveforms if a fixed period on the
order of 64 uS is acceptable. If this is not the case then
the HSO unit can be used. The HSO can generate a var-
iable waveform with a duty cycle variable in up to 65536
steps and a period of up to 131 milliseconds. Both of these
outputs produce TTL levels.

4.4. /O TIMINGS

The I/O pins on the 8096 are sampled and changed at
specific times within an instruction cycle. The timings
shown in this section are idealized; no propagation delay
factors have been taken into account. Designing a system
that depends on an I/O pin to change within a window of
less than 50 nanoseconds using the information in this
section is not recommended.

4.4.1. HSO Outputs

Changes in the HSO lines are synchronized to Timer 1.
All of the HSO lines due to change at a certain value of
a timer will change just prior to the incrementing of Timer
1. This corresponds to an internal change during Phase
C, every eight state times. From an external perspective
the HSO pin should change around the rising edge of
CLKOUT and be stable by its falling edge.

Timer 2 is synchronized to increment no faster than Timer
1, so there will always be at least one incrementing of
Timer 1 while Timer 2 is at a specific value. )

4.4.2. HSI Input Sampling
The HSI pins are sampled internally once each state time.
Any value on these pins must remain stable for at least

1 full state time to guarantee that it is recognized. This
restriction applies even if the divide by eight mode is
being used. If two events occur on the same pin within
the same 8 state time window, only one of the events will
be recorded. The 8 state time window, (ie. the amount of
time during which Timer 1 remains constant), is stable
to within about 20 nanoseconds. The window starts
roughly around the rising edge of CLKOUT, however this
timing is very approximate due to the amount of internal
circuitry involved.

4.4.3. Standard I/O Port Pins »

Port 0 is different from the other digital ports in that it is
actually part of the A to D converter. The port is sampled
once every 8 state times, the same frequency at which the
comparator is charged-up during an A to D conversion.
This 8 state times counter is not synchronized with Timer
1. If this port is used the input signal on the pin must be
stable 8 state times prior to reading the SFR.

Port 1 and Port 2 have quasi-bidirectional I/O pins. When
used as inputs the data on these pins must be stable one
state time prior to reading the SFR. This timing is also
valid for the input-only pins of Port 2. When used as
outputs, the quasi-bidirectional pins will change state
shortly after CLKOUT falls. If the change was from ‘0’
to a ‘1’ the low impedance pull-up will remain on for one
state time after the changé.

Ports 3 and 4 are addressed as off-chip memory-mapped
I/0. The port pins will change state shortly after the rising
edge of CLKOUT. When these pins are used as Ports 3
and 4 they are open drain, their structure is different when
they are used as part of the bus.

4.5. SERIAL PORT TIMINGS

The serial port on the 8096 was designed to be compatible
with the 8051 serial port. Since the 8051 uses a divide by
2 clock and the 8096 uses a divide by 3, the serial port
on the 8096 had to be provided with its own clock circuit
to maximize its compatibility with the 8051 at high baud
rates. This means that the serial port itself does not know
about state times. There is circuitry which is synchronized
to the serial port and to the rest of the 8096 so that in-
formation can be passed back and forth.

The baud rate generator is clocked by either XTALI or
T2CLK, because T2CLK needs to be synchronized to the
XTAL1 signal its speed must be limited to Yis that of
XTALL. The serial port will not function during the time

- between the consecutive writes to the baud rate register.

Section 2.11.4 discusses programming the baud rate
generator.

4.5.1. Mode 0

Mode O is the shift register mode. The TXD pin sends
out a clock train, while the RXD pin transmits or receives
the data. Figure 4-12 shows the waveforms and timing.
Note that the port starts functioning when a ‘1’ is written



HARDWARE DESIGN

INFORMATION

to the REN (Receiver Enable) bit in the serial port control .
register. If REN is already high, clearing-the RI flag will
start a reception. :

In this mode the serial port can be used to expand the
/O capability of the 8096 by simply adding shift registers.

A schematic of a typical circuit is shown in Figure 4-13.
This circuit inverts the data coming in, so it must be re-
inverted in software. The enable and latch connections to
the shift registers can be driven by decoders, rather than
directly from the low speed I/O ports, if the software and
hardware are properly designed.

‘ARxpour) — Do Y b1 X b2 XY D3 X b4 X D5 Y D6 X D7
. Do D1 D2 D3 D4 D5 D6 D7
M i ! ‘! M 1
RXD(IN) 11 Ll L Ll {1—1 L 1t
EXPANDED:
XTAL1 i
TXD \ / # \ [ #
Rxoour) — [ DO ) D1 2
DO D1
RXD (IN) ' 4 {1 #
Figure 4-12. Serial Port Timings in Mode 0
CLOCK INHIBIT
, SHIFT/LOAD
SERIAL IN ] PXX
L | DATA
= a —Dc RXD
74165 - 74LS05 o
cLOCK
HERRERR ™D
INPUTS
vce SERIAL OUTPUTS 8096
INB LILLL 111 semacma
CLEAR 4164 ENABLE
—] PX.X

Figure 4-13. Mode 0 Serial Port Example

-1in



HARDWARE DESIGN INFORMATION

4.5.2. Mode 1 Timings .

Mode 1 operation of the serial port makes use of 10-bit
data packages, a start bit, 8 data bits and a stop bit. The
transmit and receive functions are controlled by separate
shift clocks. The transmit shift clock starts when the baud

tate generator is initialized, the receive shift clock is reset
when a ‘1 to 0’ transition (start bit) is received. The trans-
mit clock may therefore not be in sync with the receive
clock, although they will both be at the same frequency.

XTAL1 I I I I | I I I I I
H |
| ! |
' ' |
|—— rcHch ——————] i 1
1
' |
! 1
CLKOUT
1 teneL
TYVCL
TCLLH
—>] |e—TCLyx
READY VALID K
TLLCH >
TLHLL | TYLYH
‘ \ [ TLLYV = jf \
ALE  ——
TLLRL | TRLRH »] TRHLH
T3] —\ —
TAVLL \- TRXDZ
- <
< TLLAX
<3| |«——TRLDV—]
AD _( ADDROUT ), 8 — DATA IN
y
- TAVDV >
TLLRL
le—— Twiwn TWXLH ——p}
WR w
TAVLL !
<>
TLLAX
- T™WXQX
l«—— TQVWX — | t——>
AD —{ ADDR OUT DATA OUT
) 1

- BHE, INST

N o/

Figure 4-14, Bus Signal Timings



HARDWARE DESIGN INFORMATION

The TI (Transmit Interrupt) and RI (Receive Interrupt)
flags are set to indicate when operations are complete. TI
is set when the last data bit of the message has been sent,
not when the stop bit is sent. If an attempt to send another
byte is made before the stop bit is sent the port will hold
off transmission until the stop bit is complete. RI is set
when 8 data bits are received, not when the stop bit is
received. Note that when the serial port status register is
read both TI and RI are cleared.

Caution should be used when using the serial port to con-
nect more than two devices in half-duplex, (ie. one wire

for transmit and receive). If the receiving processor does
not wait for one bit time after RI is set before starting to
transmit, the stop bit on the link could be squashed. This
could cause a problem for other devices listening on the
link. .

4.5.3. Mode 2 and 3 Timings

Modes 2 and 3 operate in a manner similar to that of mode
1. The only difference is that the data is now made up of
9 bits, so.11-bit packages are transmitted and received.
This means that TI and RI will be set on the 9th data bit

" Tosc — Oscillator Period, one cycle time on XTALI.

Timings The Memory System Must Meet

TYVCL — READY valid to CLKOUT low: This is a
fixed time of around 40 ns, if it is violated the part could
malfunction, necessitating a chip reset.

TLLYV — ALE low to READY VALID: This spec is just
a more convenient form of TYVCL to use.

TYLYH — READY low to READY high: Maximum time
the part can be in the not-ready state. If it is exceeded,
the 8096 dynamic nodes which hold the current instruction
may ‘forget’ how to finish the instruction.

TAVDV — ADDRESS valid to DATA valid: Maximum
time that the memory has to output valid data after the
8096 outputs a valid address. Nominally, a maximum of
5 Tosc periods.

TRLDV — READ low to DATA valid: Maximum time
that the memory has to output data after READ goes low.
Nominally, a maximum of 3 Tosc periods.

TRXDZ — READ not low to DATA float: Time after
READ is no longer low until the memory must float the
bus. The memory signal can be removed as soon as READ
is not low, and must be removed within the specified
maximum time.

Nominally, a maximum of 1 Tosc period.

Timings the 8096 Will Provide

"TCHCH — CLKOUT high to CLKOUT high: The period
of CLKOUT and the duration of one state time. Always
3 Tosc average, but individual periods could vary by a
few nanoseconds. .

TCHCL — CLKOUT high to CLKOUT low: Nominally

1 Tosc period.

TCLLH — CLKOUT low to ALE high: A help in deriving
other timings, typically plus or minus 5 to 10 ns.

TLLCH — ALE low to CLKOUT high: Used to derive
other timings, nominally 1 Tosc period.

TLHLL — ALE high to ALE low: ALE pulse width.
Useful in determining ALE rising edge to ADDRESS valid
time. Nominally 1 Tosc period.

TAVLL — ADDRESS valid to ALE low: Length of time
ADDRESS is valid before ALE falls. Important timing
for address latch circuitry. Nominally 1 Tosc period.

TLLAX — ALE low to ADDRESS invalid: Length of
time ADDRESS is valid after ALE falls. Important timing
for address latch circuitry. Nominally 1 Tosc period.

TLLRL — ALE low to READ or WRITE low: Length
of time after ALE falls before RD or WR fall. Could be
needed to ensure that proper memory decoding takes place
before it is output enabled. Nominally 1 Tosc period.

TRLRH — READ low to READ high: RD pulse width,
nominally 1 Tosc period.

TRHLH — READ high to ALE high: Time between RD
going inactive and next ALE, also used to calculate time
between RD inactive and next ADDRESS valid. Nom-
inally 1 Tosc period.

TWLWH — WRITE low to WRITE high: Write pulse
width, nominally 2 Tosc periods.

TQVWX — OUTPUT valid to WRITE not low: time that
the OUTPUT data is valid before WR starts to go high.
Nominally 2 Tosc periods.

TWXQX — WRITE not low to OUTPUT not valid: Time
that the OUTPUT data is valid after WR starts to rise.
Nominally 1 Tosc period.

TWXLH — WRITE not low to ALE high: Time between
write starting to rise and next ALE, also used to calculate
the time between WR starting to rise and next ADDRESS
valid. Nominally 2 Tosc periods.

_Figure 4-15. Timing Specification Explanations

419



HARDWARE DESIGN INFORMATION

rather than the 8th. The 9th bit can be used for parity or
multiple processor communications (see section 2.11).

4.6. BUS TIMING AND MEMORY
INTERFACE

4.6.1. Bus Functionality

The 8096 has a multiplexed (address/data) 16 bit bus.

There are control lines provided to demultiplex the bus
(ALE), indicate reads or writes (RD, WR), indicate if the
access is for an instruction (INST), and separate the bus
into high and low bytes (BHE, ADO). Section 2.3.5 con-
tains an overview of the bus operation.

4.6.2. Timing Specifications

Figure 4-14 shows the timing of the bus signals and data
lines. Since this is a new part, the exact timing specifi-
cations are subject to change, please refer to the latest
8096 data sheet to ensure that your system is designed to
the proper specifications. The major timing specifications
are described in Figure 4-15.

4.6.3. READY Line Usage

When the processor has to address a memory location that
cannot respond within the standard specifications it is nec-
. essary to use the READY line to generate wait states.
When the READY line is held low the processor waits
in a loop for the line to come high. There is a maximum
time that the READY line can be held low without risking
a processor malfunction due to dynamic nodes that have
not been refreshed during the wait states. This time is
shown as TYLYH in. the data sheet.

In most cases the READY line is brought low after the
address is decoded and it is determined that a wait state
is needed. It is very likely that some addresses, such as
those addressing memory mapped peripherals, would need
wait states, and others would not. The READY line must
be stable within the TLLYV specification after ALE falls

(or the TYVCL before CLKOUT falls) or the processor
could lock-up. There is no requirement as to when
READY may go high, as long as the maximum READY"
low time (TYLYH) is not violated.

4.6.4. INST Line Usage

The INST (Instruction) line is high during the output of
an address that is for an instruction stream fetch. It is low
during the same time for any other memory access. At
any other time it is not valid. This pin is not present on
the 48-pin versions. The INST signal can be used with
a logic analyzer to debug a system. In this way. it is
possible to determine if the fetch was for instructions or
data, making the task of tracing the program much easier.

4.6.5. Address Decoding

The multiplexed bus of the 8096 must be demultiplexed
before it can be used. This ca be done with 2 74L.S373
transparent latches. As explained in section 2.3.5, the
latched address signal will be referred to as MAO through
MAI1S. (Memory Address), and the data lines will be
called MDO through MD15, (Memory Data).

Since the 8096 can make accesses to memory for either
bytes or words it is necessary to have a way of determining
the type of access desired. The BHE and MAO lines are
used for this purpose. BHE must be latched, as it is valid
only when the address is valid. The memory system is
typically set up as 32K by 16, instead of 64K by 8. When
the BHE line is low, the upper byte is enabled. When
MAQ is low, the lower byte is enabled when MAO is high
BHE will be low, and the upper byte is enabled.

When external RAM and EPROM are both used in the
system the control logic can be simplified a little to some
of the addresses. The 8096 will always output BHE to
indicate if a read is of the high byte or the low byte, but
it discards the byte it is not going to use. It is therefore
possible to use the BHE and MAO lines only to control

ADB-AD15 7aLS MAB-MA15 8 A7-A14
373 7
8096
ADO-AD7 74LS MAO-MA7 7 ' A0-A6
373 wao] 1 ]
) N.C.
2764 2764
. UPPER LOWER
8
RD

Figure 4-16. Memory Wiring Example—EPROM Only System




HARDWARE DESIGN INFORMATION

memory writes, and to ignore these lines during memory
reads. Figure 4-16 and 4-17 show block diagrams of two
memory systems, an external EPROM only system and
a RAM/ROM system.

signal may be limited by either the ALE timing or the
Address timing, these two cases must be considered.

If Limited by ALE:

. Minimum ALE pulse width = Tosc-10
4.6.6. System Verification Example : (TLHLL)
To verify that a system such as the one in Figure 4-17 will Mini Addr set-up to ALE falling =  Tosc-20
work with the 8096, it is necessary to check all of the tnimum ACr set-tp fo T il
timing parameters. Let us examine. this system one pa-

- Tameter at a time using the proposed 8096 specifications. Therefore ALE could occur 10 ns after Address valid.

These. specifications are subject to change, refer to the »
latest 8096 data sheet for the current specifications. Total delay from 8096 Address stable to MA (Memory .

Address) stable would be:

The timings of signals that the processor and memory use
are effected by the latch and buffer circuitry. The timings
of the signal provided by the processor are delayed by
various amounts of time. Similarly, the signals coming
back from the memory are also delayed. The calculations
involved in verifying this system follow:

Address Valid Delay — 20 nanoseconds

The address lines are delayed by passing them through
the 74LS373s, this delay is specified at 18ns after
Address is valid or 30ns after ALE is high. Since the

ALE delay from address —10
74LS373 clock to output 30

20 nanoseconds
If Limited by Address Valid:
. 74L.S373 Data Valid to Data Output = 18 nanoseconds
In the worst case, the delay in Address valid is

controlled by ALE and has a value of 20
nanoseconds.

MAB-MA15 8
7
-ALE MA1-MA7 ,7 o
ALE 7 >
3 Ao- A7- AO- A7-
) ' A4
AD8-ADIS 8 TS L8 A6 A14 ABY ¥
7 ~1 373 7 UPPER LOWER
| y BYTE OF BYTE OF
8096 | A7 MEMORY MEMORY
ADO-AD7 ,8 [ 7as © 8 (obD (EVEN
7 373 7 MAO LOCATIONS) LOCATIONS)
7D |WR| BHE N1 WE / 1ﬁ wet f0E
= 74LS 4,8 )
: — t—yf J
vee on L2 . MAB-MA15
: ;; Y7 48
¥ 245 | 7
om MDO-MD7
PR D AG
CLR - Qf+4—— — —
. LBHE (LATCHED BHE) WR LOW
74 :
—>D>CK
ALE
WR WR :
HIGH )
Figure 4-17. RAM/ROM Memory System

4-14



HARDWARE DESIGN INFORMATION

Delay of Data Transfer to/from Processor — 12

nanoseconds

The RD low to Data valid specification (TRLDV) is
3 Tosc-50, (200 ns at 12 MHz). The 7415245 is en-
abled by RD and has a delay of 40 ns from enable.
The enable delay is clearly not a problem.

The 7415245 is enabled except during a read, so there
is no enable delay to consider for write operaions.

The Data In to Data Out delay. of the 74LS245 is
12 ns.

Delay of WR signal to memory — 15 nanoseconds

Latched BHE is delayed by the inverter on ALE and
the 74LS74.

74L.S04 delay (Output low to high) =22
74LS74 delay (Clock to Output) =40

Delay of Latched BHE from ALE falling = 62
nanoseconds

The 74LS74 requires data valid for 20 ns prior to the
clock, the 8096 will have BHE stable Tosc-20 ns
(TAVLL, 63 ns at 12 MHz) prior to ALE falling. There
is no problem here.

MAO is valid prior to ALE falling, since the 20 ns
Address Delay is less than TAVLL.

WR will fall no sooner than Tosc-20 ns (TLLRL, 63
ns at 12 MHz) after ALE goes_low. It will therefore
be valid just after the Latched BHE is valid, so it is
the controlling signal.

WR High and WR Low are valid 15 ns after MAO,
Latched BHE and WR are valid. . Since WR is the last
signal to go valid, the delay of WR (ngh and Low)
to memory is 15 ns.

Delay Summary — Address Delay = 20 ns
Data Delay = 12 ns
WR Delay = 15ns
RD Delay = Ons

Characteristics of a 12 MHz 8096 system
with latches:

Required by system:

Address valid to Data in;

TAVDV 386.6 ns maximum
Address Delay : — 20.0 ns maximum
Data Delay : — 12.0 ns maximum

354.6 ns maximum

Read low to Data in;

TRLDV 200.0 ns maximum
RD Delay : — 00.0 ns maximum
Data Delay : — 12.0 ns maximum

188.0 ns maximum
Provided by System:

Address valid to Control;

TLLRL 63.3 ns minimum
TAVLL 63.3 ns minimum
Address Delay  : — 20.0 ns maximum
WR Delay : — 00.0 ns minimum (no spec)

101.6 ns minimum

~ Write Pulse Width;

TWLWH _ 151.6 ns minimum
Rising WR Delay : — 15.0 ns maximum
Falling WR Delay : 00.0 ns minimum (no spec)

146.6 ns minimum

Data Setup to WR rising;

TQVWX 136.6 ns minimum
Data Delay : — 12.0 ns maximum
WR Delay 00.0 ns minimum’(no spec)

'124.6 ns minimum

Data Hold after WR;

TWXQX 58.3 ns minimum
Data Delay 0.0 ns minimum (no spec)
WR Delay : — 15.0 ns maximum

43.3 ns minimum

The two memory devices which are expected to be used
most often with the 8096 are the 2764 EPROM and the
2128 RAM. The system verification for the 2764 is simple.
2764 Tac
(Address valid to Output) < Address valid to Data in
250 ns < 354ns O.K.
2764 Toe

(Output Enable to Output) < Read low to Data in
100 ns < 188 ns O.K.

These calculations assume no address decoder delays and
no delays on the RD (OE) line. If there are delays in these
signals the delays must be added to the 2764’s timing.

The read calculations for the 2128 are similar to those for
the 2764.

< Address valid to Data in
< 354ns O.XK.

2128-20 Tac
200 ns

< Read low to Data in
< 188 ns . O.K.

2128-20 Toe
65 ns



HARDWARE DESIGN INFORMATION

The write calculations are a little more involved, but still -

_straight-forward.

2128 Twp (Write Pulse) < Write Pulse Width
100 ns < 146ns O.K.

2128 Tds (Data Setup) < Data Setup to WR rising
65ns < 124 ns O.K.

2128 Tdh (Data Hold) < Data Hold after WR
Ons < 43 ns

All of the above calculations have been done assuming
that no components are in the circuit except for those
shown in Figure 4-17. If additional components are added,
as may be needed for address decoding or memory bank
switching, the calculations must be updated to reflect the
actual circuit.

4.6.7. 1/0 Port Reconstruction

When a single-ship system is being designed using a mul-
tiple chip system as a prototype, it may be necessary to
reconstruct I/O ports 3 and 4 using a memory-mapped
I/0 technique. The circuit shown in Figure 4-18 provides

this function on the iSBE-96 emulator board. It can be
attached to any 8096 system which has the required ad-
dress decoding and bus demultiplexing. )

The output circuitry is basically just a latch that operates
when 1FFEH or 1FFFH are placed on the MA lines. The
inverters surrounding the latch create an open-collector
output to emulate the open-drain output found on the 8096.
The ‘reset’ line is used to set the ports to all 1’s when the
8096 is reset. It should be noted that the voltage and
current characteristics of this port will differ from those
of the 8096, but the basic functionality will be the same.

The input circuitry is just a bus transceiver that is ad-
dressed at 1FFEH or 1FFFH. If the ports are going to be
used for either input or output, but not both, some of the
circuitry can be eliminated.

4.7. NOISE PROTECTION TIPS

Designing controllers differs from designing other com-
puter equipment in the area of noise protection. A micro-
controller circuit under the hood of a car, in a photo-
copier, CRT terminal, -or a high speed printer is subject

WR Low ' I Y- ] . outpuT
' ck |-
74LS 74LS
8 8 8
MDO-MD? - #—] 04 +—> 7247'55 +—>1 05 > p3
' (x1%2) (x1%2)
CLR
WR HIGH @ )
1
CLK
. 74LS 74LS
8 8 8
MD8—MD15 —f—>] 04 +—> 7247": +—>1 05 > P4
(x1%2) . (X1%2)
CLR
RESET 1 INPUT
ADDR = P3, P4 — ‘
D ——_j ) s 74LS
/- 244
ADO-AD7 7
‘ S
74LS
4 AD8-AD15 48 ot
1G2G

Figure 4-18. 1/0 Port Reconstruction

.

4-16



HARDWARE DESIGN INFORMATION

to many types of electrical noise. Noise can get to the
processor directly through the power supply, or it can be
induced onto the board by electromagnetic fields. It is also
possible for the pc board to find itself in the path of
electrostatic discharges. Glitches and noise on the pc board
can cause the processor to act unpredictably, usually by
changing either the memory locations or the program
counter.

There are both hardware and software solutions to noise
problems, but the best solution is good design practice
and a few ounces of prevention. The 8096 has a watchdog
timer which will reset the part if it fails to execute the
software properly. The software should be set up to take
advantage of this feature.

It is also recommended that unused areas of code be filled
with NOPs and periodic jumps to an error routine or RST
(reset chip) instructions. This is particularly important in
the code around lookup tables, since if lookup tables are
executed all sorts of bad things can happen. Wherever
space allows, each table should be surrounded by 7 NOPs
(the longest 8096 instruction has 7 bytes) and a RST or
jump to error routine instruction. This will help to ensure
a speedy recovery should the processor have a glitch in
the program flow.

Many hardware solutions exist for keeping pc board noise
to a minimum. Ground planes, gridded ground and VCC

structures, bypass capacitors, transient absorbers and
power busses with built-in capacitors can all be of great
help. It is much easier to design a board with these features
than to try to retrofit them later. Proper pc board layout
is probably the single most important and, unfortunately,
least understood aspect of project design. Minimizing loop
areas and inductance, as well as providing clean grounds
are very important. More information on protecting
against noise can be found in the Intel Application Note
AP-125, ‘‘Designing Microcontroller Systems For Noisy
Environments.”’

4.8. PACKAGING PINOUTS AND
ENVIRONMENT

The MCS-96 family of products is offered in many ver-
sions. They are available in 48-pin or 68-pin packages,
with or without ROM, and with or without an A to D
converter. A summary of the available options is shown
in Figure 4-19.

The 48-pin versions are available in a 48-pin DIP (Dual
In-Line) package, in either ceramic or plastic.

The 68-pin versions are available in a ceramic pin grid
array, and a plastic flatpack. A plastic pin grid array will
be available in the near future.

ROMLESS WITH ROM
68-pin | 48-pin | 68-pin | 48-pin

Without A to D 8096 8094 8396 8394
With A to D 8097 8095 8397 8395

Figure 4-19. The MCS®-96 Family of Products

4-17






MCS®.96 Data Sheets







inte|® ADVANCE INEORMATION

8094/8095/8096/8097
8394/8395/8396/8397
16-BIT MICROCONTROLLERS

m 839X: an 809X with 8K Bytes of On-chip ROM

B High Speed Pulse I/0 m 232 Byte Register File

® 10-bit A/D Converter m Memory-to-Memory Architecture
| 8 Interrupt Sources | Full Duplex Serial Port

8 Pulse-Width Modulated Output ® Five 8-bit 1/0 Ports

Bm Four 16-bit Software Timers ® Watchdog Timer

The MCS-96 family of 16-bit microcontrollers consists of 8 members, all of which are designed for high-speed
control functions.

The CPU supports bit, byte, and word operations. 32-bit double-words are supported for a subset of the instruction
set. With a 12 MHz input frequency the 8096 can do a 16-bit addition in 1.0 usec and a 16 x 16-bit multiply or 32/
16-bit divide in 6.5 usec. Instruction execution times average 1 to 2 usec in typical applications.

Four high-speed trigger inputs are provided to record the times at which external events occur. Six high-speed
pulse generator outputs are provided to trigger external events at preset times. The high-speed output unit can
simultaneously perform timer functions. Up to four such 16-bit Software Timers can be in operation at once.

An on-chip A/D Converter converts up to 4 (in the 48-pin version) or 8 (in the 68-pin version) analog input channels
to 10-bit digital values. This feature is only available on the 8095, 8395, 8097 and 8397.

Also provided on-chip are a serial port, a watchdog timer, and a pulse-width modulated output signal.

POWER FREQUENCY

DOWN REFERENCE

[

5 N A
| 8K BYTE |
| ON-CHIP
| 8 ROM
|

|
Y (8396) |
ADIN | ———f
AD P |
) K1 v oy ) T
|

r |
1
| |
: Lmd BZ\?TZE REGISTER : MEMORY CONTROL
| REGISTER ALU | CONTROLLERI\— =]/ SIGNALS
| WATCHDOG I i FILE . I i
TIMER
! ! | PoRT 3
] (S N SR I
v Yy 16 ]
| ADDR/
+ Y / DATA
' BUS

PULSE BAUD
SERIAL
WIDTH l€-| RATE |
MoD. PORT GEN. HIGH |PORT 4

o |
| ; I P2 MULTIPLEXER l ‘ I
- _i ____________ 1

PORT 0 PORT 1 PORT 2/ HSI  HSO
ALT FUNCTIONS

i
|
|
|
|
I
|
|
|
|
|
|
|
|
|
L_

Figure 1. Block Diagram (For simplicity, lines connecting port registers to port buffers are not shown.)

5-1



Intel’

8096

ADVANCE INFORMATION

RXD P2.1
TXD P2.0
HSI0

HSI

HSI2 HSO4
HSI3 HSO5
HSO00
HSO1
HSO2
HSO3
Vss

VBB

PWM P2.5
WR

BHE
READY
AD15P4.7
AD14 P4.6
AD13 P4.5
AD12P4.4
AD11.P4.3
AD10 P4.2
AD9 P4.1
AD8 P4.0

annanaan

8094
8095

8395

NNO000AAANNANL]

N
s

[ 48
[ 47
] 46
45
44
[ 43
] 42
(141
(] 40
139
38
(137
136
35
[ 34
133
] 32
131
[ 30
] 29
128
327

g 26
25

RESET
EXTINT P2.2
VPD
VREF
ANGND
ACH4 PO.4
ACHS P0.5
ACH7 P0.7

' ACHS P0.6

EA
vce
vss
XTAL1
XTAL2
ALE

"RD

ADO P3.0
AD1 P3.1
AD2 P3.2
AD3 P3.3
AD4 P3.4
AD5 P3.5
AD6 P3.6

. AD7 P3.7

Figure 1 shows a block diagram of the MCS-96 parts, .
generally referred to as the 8096. The 8096 is available
in 48-pin and 68-pin packages, with and without A/D,
and with and without on-chip ROM. The MCS-96 num-
bering system is shown below:

OPTIONS 68 PIN | 48 PIN

ROMLESS 8096 8094
DIGITAL
10

ROM 8396 8394
ANALOG ROMLESS 8097 8095
AND
DIGITAL
10 ROM 8397 | 8395

Figure 2. 48-Pin Package

packages.

‘Figures 2 and 3 show the pinouts for the 48- and 68-pin

ACHS P0.5
ACH4 P0.4
ANGND

VREF

VPD
EXTINT P2.2
RESET
RXD P2.1
TXD P2.0
P1.0

P11

P1.2

P13

P1.4

« Hsio
HSI1

HSI2 HSO4

=]
i

= 77 ACH7P0.7
NPT ACHE P06
© [T ) ACH2 PO.2
&[T """ ACHO P0.0

o
©

o [T 73 ACH1 PO
o [T ACH3P0.3

o
d

8096
8396
8097
8397

S
r

a4

'S

3

3
241403938373635

HSO1

A 1 e—

P17

HSI3HS05 C————— @
HSOO C———— | &
[ - ——— I3

HSO2

p2s C————— &
HSO3 C———|

ves
v C————

P2.7
PWM P2.5

WR
BHE

T2RST P2.4

READY

ADO P3.0
AD1P3.1
AD2 P3.2
AD3 P3.3
AD4 P3.4
ADS5 P3.5
AD6 P3.6
AD7 P3.7
AD8 P4.0
AD9 P4.1
AD10 P4.2
AD11 P43
AD12P4.4
AD13.P4.5
AD14P4.6
AD15 P47

4] T2CLK P23

Figure 3. 68-Pin Package




intgl” 8096 ADVANGE INFORMATION
Instruction Summary
Oper- Flags
Mnemonic ands Operation (Note 1) Z|N|C|V|VT|ST| Notes
ADD/ADDB 2 D« D+A JIVI Y —
ADD/ADDB 3 D« B+A SIS Y =
ADDC/ADDCB 2 D« D+A+C JIVIVIY LY | —
SUB/SUBB 2 D—D-A SISV VI
SUB/SUBB . 3 D<B - A A =
SUBC/SUBCB 2 DeD-A+C-1 JIVIVIY LY —
CMP/CMPB 2 D-A JIVI L =
MUL/MULU 2 D,D+2«<D*A — ===V 2
MUL/MULU 3 D,D+2«<B*A — ===V 2
MULB/MULUB 2 D,D+ 1 «<D*A —|—|— |||/ 3
MULB/MULUB 3 D,D+ 1« B*A —|— ===/ 3
DIV/DIVU 2 D« (D,D + 2)A 2
D + 2 remainder — ==V |—
DIVB/DIVUB 3 D« (D,D + 1yA
D + 1  remainder el el et R A 3
AND/ANDB 2 D« Dand A VIV10]0]|——
AND/ANDB 3 D« Band A - JI1V10]0 | —]—
OR/ORB 2 D<—DorA JI/1olo|—|—
XOR/XORB 2 D « D (excl. or) A JIVIO0[0 | —|—
LD/LDB 2 D« A —— ===
ST/STB 2 A<D —|—|——|—|—
LDBSE 2 D« A; D + | « SIGN(A) ———|—|—]— 3.4
LDBZE 2 D«<A/D+ 1«0 —|—]—|—|—|— 3.4
PUSH 1 SP <SP - 2;(SP) A ——— ==
POP 1 A <« (SP); SP <~ SP + 2 ——— ===
PUSHF 0 SP « SP — 2; (SP) « PSW; 01010(0|01|0O
PSW <« 0000H
POPF 0 PSW « (SP); SP « SP + 2 AVAVAFAVaN
- SIMP 1 PC « PC + 11-bit offset ——|—|—|—|— 5
LIMP 1 PC « PC + 16-bit offset —|—|—]—|—|— 5
INDIMP 1 PC < (A) ) — == —=—|—
SCALL 1 SP « SP — 2; (SP) « PC; — === 5
PC « PC + 11-bit offset
LCALL 1 SP <~ SP — 2; (SP) « PC; — === == 5
PC « PC + 16-bit offset
RET . 0 PC < (SP); SP « SP + 2 — === —|—
J(conditional) 1 PC « PC + 8-bit offset —— === 5
JC Jump if C = 1 — | === 5
JNC Jump if C = 0 —— ===
Note ’

1. If the mnemonic ends in **B"’, a byte operation is performed, otherwise a word operation is done. Operands D, B, and A must conform
to the alignment rules for the required operand type. D and B are locations in the register file; A can be located anywhere in memory.

2. D, D + 2 are consecutive WORDS in memory; D is DOUBLE-WORD aligned.

3. D, D + 1 are consecutive BYTES in memory; D is WORD aligned.

4. Changes a byte to a word.

5. Offset is a 2’s complement number.



Nl 8096 - ADVANCE INFORMATION

Instruction Summary (continued)

Oper- . Flags
Mnemonic ands " Operation (Note 1) Z|{N|C|V|VT|ST| Notes
JE Jumpif Z = 1 - — | —|—|—|—{— 5
INE ' f JumpifZ =0 —_——]— ] —]— 5
JGE ’ Jump if N = 1 === 5
JLT Jump if N = 0 —=l=1=1=]=] 5
JGT Jumpif N =0andZ = 0 e == 5
JLE . Jumpif N =1lorZ = 1 —— === — 5
JH Jumpif C = land Z = 0 —— || === 5
JNH ! Jumpif C = 0orZ = 1 —_ = === 5
v Jump if V = 1 == 5
INV Jump if V.= 0 — == —=]—=]— 5
JVT Jump if VT = I; Clear VT —|—|—=]—=]0[— 5
INVT Jump if VT -= 0; Clear VT = ]—==]=]0|— 5
JST Jump if ST = 1 =] — 5
IJNST Jump if ST = 0 —_ | —]—]—]—=| 5
IBS Jump if ST = 1 — == —]—]— 5,6
JBC Jump if Specified Bit = 0 — === == 5,6
DINZ 1 D« D —-1;if D # then :
PC < PC + 8-bit offset — =] =|—=|—=|=! .5

DEC/DECB 1 . D<«D -1 IV —
NEG/NEGB i D«<—0-D SV =
INC/INCB 1 D<«D+ 1 VIV LV —

EXT 1 D « D; D + 2« Sign (D) JIV]0J0 | —]— 2
EXTB 1 D« D;D + | < Sign (D) o lvlvlolo|—|— 3
NOT/NOTB 1 D « Logical Not (D) vl sdol ol —=]—
CLR/CLRB 1 D« 0 1lofloflo|—|—
SHL/SHLB/SHLL | Cemsb————— Isb < 0 SV V= 7
SHR/SHRB/SHRL I 0— msb— — — — — Isb — C Jlvlvlol—lv 7
SHRA/SHRAB/SHRAL 1 msb —- msb — — — — — Isb — C JIVIV]0|—| 7
SETC ' 0 C 1 ' =T ===
CLRC 0 C«0 I D I I
CLRVT 0 VT < 0 JERN N D O Y

RST 0 PC <« 2080H ' 0{0{0[0f0O}0O 8
DI 0 Disable All Interrupts —_ = =] ==

EI 0 Enable All Interrupts =] =] —=]=

NOP 0 PC < PC + 1 —_— == ——
SKIP 0 PC <~ PC + 2 —_— ] ——— ] —
NORML 2 Normalize - JI | —l—]—1— 7
Note

1. If the mnemonic ends in *‘B’’, a byte operation is performed, otherwise a word operation is done. Operands D, B and A must conform
to the alignment rules for the required operand type. D and B are locations in the register file; A can be located anywhere in memory.

. Offset is a 2’s complement number.

. Specnﬁed bit is one of the 2048 bits in the register file.

. The “‘L"’ (Long) suffix indicates double-word operation.

. Initiates a Reset by pulling RESET low. Software should re-initialize all the necessary registers w1th code starting at 2080H.

00 3N

5-4



intgl’ 8096 ADVARCE INFORMATION

Opcode and State Time Listing

DIRECT IMMEDIATE INDIRECT® INDEXED®
NORMAL  |AUTO-INC.]  SHORT LONG

[¢) )

Z 2| a a e ©p | a © ©

= |2|8(8|lrp|8|8lue |8 (o) Ul g 28| 6|0 L8 |p|ud

z |§|8|E|SE |2\ 22 |2 E|S2 |5 288|582 |E| B8

= O|O|m| i |O |m| WF | O |m| » ol » O m| » m| »

ARITHMETIC INSTRUCTIONS

ADD 2 16413 4 65 | 4 S 66 | 3| 6/11 31 712 67 | 4| 6/11 51 712
ADD 3144 |4 5 45 |5 6 46 | 4| 112 | 4] 8/13 47 15 712 | 6| 8/13
ADDB 2174 |3 4 75 13 4 76 | 3| 6/11 31 712 77 { 4] 6/11 St 712
ADDB 3154 1|4 5 55 | 4 5 56 (4| 712 (4| 8/13 57 (5| 712 | 6| 813
ADDC 2 A4 3 4 A5 | 4 5 A6 | 3| 6/11 30 T2 | AT |4 /11 51 712
ADDCB | 2 | B4 |3 4 B5 (3 4 B6 { 3| 6/11 31 1712 B7 | 4| 6/11 51 7712
SUB 216813 4 69 | 4 5 6A |3 6/11 3 712 1 6B | 4| 6/11 51 712
SUB 3148 |4 5 49 |5 6 4A [ 4| T/12 | 4] 8/13 4B | 5| 712 | 6] 8/13
SUBB 2178 |3 4 79 | 3 4 TA | 3| 6/11 30 712 | 7B {4 | 6/11 51 712
SUBB 3158 |4 5 59 | 4 5 SA 4| 112 |4 813 | SB|S5| 7/12 | 6| 813
SUBC 2 | A8 |3 4 A9 | 4 5 AA {3 6/11 3 712 | AB | 4| 6/11 5 7l/12
SUBCB 2 | B8 |3 4 B9 |3 4 BA | 3| 6/11 3| 712 BB |4 6/11 S| 712
CMP 2 | 8 |3 4 89 | 4 5 8A | 3| 6/11 30 7/12 | 8B | 4| 6/11 S| 712
CMPB 2 198|3 4 99 | 3 4 9A [ 3| 6/11 3( 712 {9B | 4| 6/11 51 712
MULU 2 16C|3 25 6D | .4 26 6E | 3| 27/32 | 3| 28/33 | 6F | 4| 27/32 | 5| 28/33
MULU 3 14C |4 26 4D | 5 27 4E | 4| 28/33 | 4| 29/34 | 4F | 5| 28/33 | 6 | 29/34
MULUB | 2 | 7C | 3 17 7D | 3 17 TJE | 3| 19/24 | 3| 2025 | 7F | 4 | 19/24 | 5| 20/25
MULUB | 3 | 5C | 4 18 SD | 4 18 SE [ 4| 20/25 [ 4| 21/26 | 5F | 5| 20/25 | 6 | 21/26
MUL 21 ® |4 29 @ |5 30 @ |4 3136 4] 3237 | @ [ 5] 31/36 | 6 | 32/37
MUL 31@ |5 30 @ |6 31 @ {53237 | 5] 3338 | @ | 6] 3237 | 7] 33/38
MULB 21 ©® |4 21 @ |4 21 @ | 4] 2328 (4] 2429 | @ [ 5| 2328 | 6 | 24/29
MULB 31@ 15 22 @ |5 22 @ |5] 2429 | 5] 2530 ) @ | 6] 2429 | 72530
DIVU 2 |8C |3 25 8D | 4 26 8E | 3| 27/32 { 3| 28/33 | 8F | 4| 27/32 | 5| 28/33
DIVUB 2 19C |3 17 9D | 3 17 9E | 3| 19/24 |13 | 20/25 | 9F | 4 | 19/24 |'5 | 20/25
DIV 2 1@ |4 29 @ {5 30 @ |4 31/36 | 4| 3237 | @ | 5| 31/36 | 6 | 32/37
DIVB 21 @ |4 21 @ |4 21 @ [ 4] 2328 (4| 2429 | @ |5 23/28 | 6 | 24/29
Notes:

® Long indexed and Indirect + instructions have identical opocodes with Short indexed and Indirect modes. respectively. The second byte
of instructions using any indirect or indexed addressing mode specifies the exact mode used. If the second byte is even, use Indirect
or Short Indexed. If it is odd, use Indirect+or Long indexed. In all cases the second byte of the instruction always specifies an even
(word) location for the address referenced.

® Number of state times shown for internal/external operands.

® The opcodes for signed multiply and divide are the opcodes for the unsigned functions with an **FE"" appended as a prefix.

5-5



Il 8096 ADVANCE INFORMATION

Opcode and State Time Listing (Continued)

' INDIRECT® INDEXED®
DIRECT IMMEDIATE NORMAL  [AUTO-INC.| SHORT LONG
g |8 »
w . w w w
S |2|8/nlwy |8 |alue |8 |olde (o B2 |5 |al Ga sl ds
2 |HIQE|RE|Q|E| B2 | 8 (5|22 K| 52 | 2 |E| 22 |E| 2
S |6|o|m|BFE |G |a|wir | © |m| bF || bF |6 |m| BF |m| bBF
LOGICAL INSTRUCTIONS
AND 21603 4 |61 |4 5 62 | 3| e11 | 3| 712 |63 |4 &11 |5| 712
AND |3 |40]|4 s’ a1 |s 6 42 |4l 712 |4 813 |43 |5] 712 |6]| 813
ANDB | 217013 4 |73 4 72 (3| e11 [3] 712 |73 4] 611 |5]| 112
ANDB | 3 |50]|4 5 |51 |4 5 52 04| 712 |4 813 |53 |5| 712 |6 813
OR 21803 4 |81]4 5 82 | 3| 611 [ 3] 712 |83 |4 611 |5] 712
ORB 219 |3 4 |91 |3 4 92 | 3| 611 |3) 712 |93 |4 e11 |[5] 712
XOR 21843 4 |8514 5 86 | 3| 611 | 3| 712 |87 |4 611 | 5| w12
XORB | 2|94 |3 4 953 4 96 | 3] 611 | 3] 712 |97 |4]| e11 |5] 712
DATA TRANSFER INSTRUCTIONS ‘
LD 2 |ao|3 4 | Al]4 5 A2 |3 | et (3] 712 | A3 |4 e11 | 5] 712
LDB’ 2 |Bo|3 4 |B1]3 4 B2 3| e11 (3] 712 B3 |4 e11 | 5| 712
ST 2 |COY|3 4 — = — c2 3| 713 3 8/14 C3 |4 7/13 5| 814
STB 2{cal|3 4 | —|—| — 1 ce|3] m3 |3]| 814 |c7|4| 7113 |5] 814
LDBSE | 2 |BC|3 4 '|BD|3 4 BE|3| 611 |3]| 712 |BF|4| 611 |5]| 712
LDBZE | 2 | AC |3 4 |AD|3 4 | AE|3| e&11 |3] w12 | AF|4| e11 | 5] 712
STACK OPERATIONS (internal stack)
PUSH 1]cs|2 8 |cof3| .8 | caj2jtns|2] 12116 |CB|3| 11115 |4 12116
POP 1 JCC}2 12 — |—| — | . CE| 2| 1418 | 2| 14/18 | CF | 3| 14/18 | 4 | 14/18
PUSHF | 0 | F2 |1 8 '
POPF 0|F3|1 9 .
~ STACK OPERATIONS (external stack)
PUSH 1§cgf2| 12 [co|3| 12 | cal2| 1519 2] 1620 |CB|3]| 1519 | 4| 16/20
POP 1jcci2| 14 | —|—| — | CE|2]| 1620 | 2] 1620 | GF|3| 16220 | 4| 1620
PUSHF | 0 |F2 |1 | 12
POPF |0 |F|1| 13
JUMPS AND CALLS
MNEMONIC | OPCODE | BYTES STATES | MNEMONIC | OPCODE | BYTES | STATES
LIMP E7 3 8 LCALL EF 3 13/16®
SIMP 20-27® 2 8 SCALL 28-2F® L2 13/16®
INDIMP E3 2 8 RET FO 1 12/16®
Notes:

@ Number of state times shown for internal/external operands.

@ This instruction is generated by the assembler when a branch indirect (BR [Rx]) instruction is reached.

@ The least significant 3 bits of the opcode are concatenated with the following 8 bits to form an 11-bit, 2's complement, offset for the _
relative call or jump. !

® State times for stack located internal/external.

5-6



intel’ ' 8096 ADVANCE INFORMATION

CONDITIONAL JUMPS

All conditional jumps are 2 byte instructions. They require 8 state times if the jump is taken, 4 if it is not.

MNEMONIC | OPCODE |MNEMONIC| OPCODE |MNEMONIC| OPCODE |MNEMONIC| OPCODE
JC DB JE DF JGE D6 JGT D2
INC D3 IJNE D7 JLT DE JLE DA
JH D9 IV DD JVT DC JST D8
JNH D1 INV D5 INVT D4 IJNST DO

JUMP ON BIT CLEAR OR BIT SET

These instructions are 3-byte instructions. They require 9 state times if the jump is taken, 5 if it is not.

BIT NUMBER
MNEMONIC 0 1 2 3 4 5 6 7
IBC 30 31 32 33 34 35 36 37
JBS 38 39 3A 3B 3C 3D 3E 3F

LOOP CONTROL

DINZ OPCODE EO; 3 BYTES; 5/9 STATE TIMES (NOT TAKEN/TAKEN)

SINGLE REGISTER INSTRUCTIONS

MNEMONIC | OPCODE BYTES STATES |MNEMONIC| OPCODE BYTES STATES
DEC 05 2 4 EXT 06 2 4
DECB 15 2 4 EXTB 16 2 4
NEG 03 2 4 NOT 02 2 4
NEGB 13 2 4 NOTB 12 2 4
INC 07 2 4 CLR 01 2 4
INCB 17 2 4 CLRB 11 2 4
SHIFT INSTRUCTIONS
INSTR "WORD INSTR BYTE INSTR DBL WD

MNEMONIC | OP | B [MNEMONIC| OP | B |[MNEMONIC| OP | B STATE TIMES
SHL 09, 3 SHLB 19 3 SHLL 0D 3 7 + 1 PER SHIFT®
SHR 08 3 SHRB 18 3 SHRL 0C 3 7 + 1 PER SHIFT®
SHRA 0A 3 SHRAB 1A 3 SHRAL OE 3 7 + 1 PER SHIFT®

SPECIAL CONTROL INSTRUCTIONS

MNEMONIC | OPCODE BYTES STATES [MNEMONIC| OPCODE BYTES STATES

SETC F9 1 4 DI FA 1 4

CLRC F8 1 4 El FB 1 4

CLRVT FC 1 4 NOP FD 1 4

RST FF 1 16 SKIP 00 2 4
NORMALIZE

NORML OF 3 ~| 11 + 1 PER SHIFT

Notes:

® This instruction takes 2 states to pull RST low, then holds it low for 2 states to initiate a reset. The reset takes 12 states, at which
time the program restarts at location 2080H.

@ Execution will take at least 8 states, even for 0 shift.

5-7



intel

8096

ADVANCE INFORMATION

ELECTRICAL CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS

Ambient Temperature Under Bias.......... 0°C to +70°C
Storage Temperature . -40°C to +150°C
Voltage from Any Pin to VSS or ANGND . .. -0.3V to +7.0V

*NOTICE: Stresses above those listed under “Absolute
Maximum Ratings” may cause permanent damage to the
device. This is a stress rating only and functional operation of
the device at these or any other conditions above those
indicated in the operational sections of this specification is

Average Output Current from Any Pin ........... 10 mA not implied. Exposure to absolute maximum rating condi-
Power Dissipation ............oiiiiiiin., 1.5 Watts tions for extended periods may affect device reliability.
OPERATING CONDITIONS

Symbol Parameter Min Max Units

TA R Ambient Temperature Under Bias 0 +70 C

vCC Digital’ Supply Voltage 4.50 5.50 "

VREF Analog Supply Voltage 45 5.5 \Y

VCC-0.3 VCC+0.3 v
fOSC Oscillator Frequency 6.0 12 MHz
VPD Power-Down Supply Voltage 4.50 550 ' \

VBB should be connected to ANGND through a 0.01 uF capacitor. ANGND and VSS should be nominally at the same potential.

DC CHARACTERISTICS
Symbol Parameter Min Max Units Test Conditions
VIL Input Low Voltage -0.3 +0.8 \
VIH 'Input High Voltage 20 VCC+0.5 \
VvOL Output Low Voltage 0.45 \ See Note 1.
VOH Output High Voltage 2.4 \Y See Note 2.
ICC VCC Supply Current 200 mA All outputs
disconnected.
IPD VPD Supply Current 1 mA Normal operation
and Power-Down.
IREF VREF Supply Current 15 mA
Ll Input Leakage Current to all pins of HSI, PO, +10 LA Vin=0to VCC
P3, P4, and to P2.1, P2.2, P2.3, and P2.4 See Note 3
IIH _ Input High Current to EA 100 UA VIH = 2.4V
11 Input Low Current to all pins of P1, and to -100 UA VIL = 0.45V
P2.6, P2.7, and READY
et Input Low Current to RESET -2 mA VIL = 0.45V
Cs Pin Capacitance (Any Pin to VSS) 10 pF fTEST = 1MHz

NOTES:
1.

I0L = 0.36 mA for all pins of P1, for P2.6 and P2.7, and for all bins of P3 and P4 when used as ports.

IOL = 20 mA for‘TXD, RXD (in serial port mode 0), PWM, CLKOUT, ALE, BHE, RD, WR, and all pins of HSO and P3 and P4 when used

as external memory bus (ADO-AD15).

. IOH

[o],]
as external memory bus (AD_O-AD15).

P3 and P4, when used as ports, have open-drain outputs.

—20 pA for all pins of P1, for P2.6 ad P2.7.

. Analog Conversion not in process.

—~200 uA for TXD, RXD (in serial port mode 0), PWM, CLKOUT, ALE,

HE, WR, and all pins of HSO and P3 and P4 when used

\



intgl” | 8096 ADVANCE INFORMATION

A/D CONVERTER SPECIFICATIONS

.A/D Converter operation is verified only on the 8097,
8397, 8095, 8395.

The absolute conversion accuracy is dependent on the
accuracy of VREF. The specifications given below as-
sume adherence to the Operating Conditions section -
of these data sheets. Testing is done at VREF = 5.120

volts.

RESOIUtION ..v.vveevevceceicecee e ... =0.001 VREF
ACCUIaCY ....ocvvvreeeeiecrenieneeniieeeenenen. £0.004 VREF
Differential nonlinearity ................ =0.002 VREF max
Integral nonlinearity .............. . =0.004 VREF max
Channel-to-chanel matching .............c.ccee.. +1LSB
Crosstalk (DC to 100kHz) .........ccccceceeeee —60dB max
AC CHARACTERISTICS

Test Conditions; Oscillator Frequency = 12MHz
Load Capacitance on Output Pins = 80pF
Other Operating Conditions as previously described.

Timing Requirements (Other system cémponents must meet these specs.)

Symbol Parameter Min Max Units
TYVCL READY Setup to CLKOUT Edge 50" nsec
TCLYX READY Hold after CLKOUT Edge 0. nsec
TLLYV End of ALE to READY Setup 2Tosc-50 nsec
TYLYH Non-ready Time 1000 nsec
TAVDV Address Valid to Input Data Valid 5Tosc-70 nsec
TRLDV RD Active to Input Data Valid 3Tosc-50 nsec
TRXDZ End of RD to Input Data Float 0 Tosc-20 nsec
Timing Responses (MCS-96 parts meet these specs.)
Symbol Parameter ' Min Max Units
FXTAL Oscillator Frequency 6.0 12.0 MHz
TOSC 1/Oscillator Frequency 160 83 nsec
TCHCH CLKOUT Period 3Tosc 3Tosc nsec
TCHCL CLKOUT High Time Tosc-20 Tosc +10 nsec
TCLLH CLKOUT Low to ALE High -5 +20 nsec
TLLCH ALE Low to CLKOUT High Tosc-20 Tosc +20 nsec
TLHLL ALE Pulse Width Tosc-10 Tosc nsec
TAVLL Address Valid to End of ALE Tosc-40 Tosc-15 nsec
TLLRL End of ALE to RD or WR Active Tosc-20

TLLAX End of ALE to Address Invalid : Tosc-20 nsec
. TWLWH WR Pulse Width 2Tosc-15 nsec
TQVWX Output Data Valid to End of WR 2Tosc-30 : nsec
TWXQX Output Data Hold after WR Tosc-25 nsec
TWXLH End of WR to Next ALE 2Tosc-30 nsec
TRLRH RD Pulse Width 3Tosc-30 nsec
TRHLH End of RD to Next ALE Tosc-25 nsec




intgl” | soes  ADVANCE INFORMATION

XTAL1 l lllllllllllll

|
1 l
|t TCHCH e} ]
CLKOUT Y/ \ H _ I/ \
==l rcHcL "
: . TYVCL }
Jd— TCLLH il
| —»1 |—rTcLYX
READY VALID
TLLCH < -
TLHLL |t TYLYH
{ \ <= TLLYV =3 f ™\
ALE sl /
TLLRL e TRLRH 3 TRHLH
RD \ —
TAVLL \ TRXDZ
<@—3 TLLAX <
|  |<€—— TRLDV ——>]

AD __( ADDR OUT > DATA IN

<t TAVDV —p>
TLLRL
< TWLWH TWXLH ——p]
WR . \
TAVLL \
TLLAX :
<> T™WXQX
<t TQVWX |t >

AD _< ADDR OUT m DATA OUT b

BHE, INST
\ VALID /




MCS®.51 Architectur

€

i

5







CHAPTER 6
MCS®-51 ARCHITECTURE

6.0 INTRODUCTION

The MCS®-51 family of 8-bit microcontrollers consists
of the devices listed in Table 1, all of which are based on
the MCS-51 architecture shown in Figure 6-1. The original
8051 was built in HMOS 1 technology. The HMOS 1I
version, which is the device currently in production, is
called the 8051AH. The term ‘‘8051,”’ however, is still

often used to generically refer to all of the MCS-51 family
members. This is the case throughout this manual, except
where specifically stated otherwise. Also for brevity, the
term ‘‘8052”’ is used to refer to both the 8052 and the
8032, unless otherwise noted.

P0.0-P0.7

e

PORT 0
DRIVERS

<
[2)
_[i’

P2.0-P2.7

<
n
‘l"’

P1.0-P1.7

|
|
|
| o
ow I
| R
=0 |
| g EPROM/
= ROM N ——— |
: |
[ |
I L. |
| |
| I
PRO%I;AM |
ADDR.
| i
I— |
l | REGISTER I I
BUFFER |
| scon | TMoD| TcoN |
| | THo | TLo [ TH1
TH2* | TL2* [RCAP2H* PC I
I *| SBUF IE P INCREMENTER
INTERRUPT, SERIAL |
| PORT AND TIMER |
| BLOCKS PROGRAM <:>
COUNTER |
PSEN <1 55 |
ALE - TIMING o
ER = conTROL E § N oetR <:>__ |
RST —+ o l
E
| A ‘ [
l |
| |
| osc |
' |
b o - J
XLt D XTaL2 : *Resident in 8052/8032 only.

P3.0-P3.7

Figure 6-1. MCS-51 Architectural Block Diagram

4



MCS&-51 ARCHITECTURE

The newest MCS-51 members, the 8032 and 8052, have
more on-chip memory and an additional 16-bit timer/
counter. The new timer can be used as a timer, a counter,
or to generate baud rates for the serial port. As a timer/
counter, it operates in either a 16-bit auto-reload mode or
a 16-bit “‘capture’’ mode. This new feature is described
in Section 6.6.2.

Pinouts are shown in the individual data sheets and on the
inside back cover of this handbook.

Table 1. MCS®-51 Family Members

ON-CHIP |ON-CHIP
PROGRAM | - DATA
PART |TECHNOLOGY| MEMORY - [MEMORY
8051AH HMOS 1II 4K — ROM 128
8031AH HMOS II NONE 128
8751H HMOS 1 4K — EPROM| 128
80C51 . CHMOS 4K — ROM 128
80C31 CHMOS NONE 128
8052 + HMOS 11 8K — ROM 256
8032 HMOS II NONE 256

The major MCS®-51 features are:

e 8-Bit CPU

@ On-Chip oscillator and clock circuitry

® 32 J/O lines

® 64K address space for external data memory

® 64K address space for external program memory

® Two 16-bit timer/counters (three on 8032/8052)
. ® A five-source interrupt structure (six sources on-

8032/8052) with two priority levels
@ Full duplex serial port
® Boolean processor

6.1 MEMORY ORGANIZATION

The 8051 has separate address spaces for Program Mem-
ory and Data Memory. The Program Memory can be up
to 64K bytes long. The lower 4K (8K for 8052) may
reside on-chip. The Data Memory can consist of up to
64K bytes of off-chip RAM, in addition to which, it in-
cludes 128 bytes of on-chip RAM (256 bytes for the 8052),
plus a number of ‘“‘SFRs’’ (Special Functlon Registers)
as listed below.

Symbol Name Address
*ACC Accumulator OEOH
*B B Register OFOH
*PSW Program Status Word ODOH

SP Stack Pointer 81H
DPTR Data Pointer (con- 83H |

sisting of DPH and DPL 82H

*PO Port 0 ' 80H

*P1 - Port 1 " 90H

Symbol Name Address
*P2 Port 2 0AOH
*P3 Port 3 : 0BOH
*IP Interrupt Priority Control 0B8H
*IE Interrupt Enable Control ~ 0A8H

TMOD Timer/Counter Mode

Control 89H
+*T2CON Timer/Counter Control 88H
TCON Timer/Counter 2 Control 0C8H
THO Timer/Counter 0

(high byte) 8CH
TLO Timer/Counter 0

(low byte) 8AH
TH1 Timer/Counter 1

(high byte) 8DH-
TL1 Timer/Counter 1

(low byte) 8BH
+TH2 . Timer/Counter 2 ‘

(high byte) 0CDH
+TL2 Timer/Counter 2

(low byte) 0CCH
+RCAP2H Timer/Counter 2 Capture

Register (high byte) 0CBH
+RCAP2L Timer/Counter 2 Capture

Register (low byte)" O0CAH
*SCON Serial Control 98H
SBUF Serial Data Buff 99H
PCON Power Control 97H

The SFRs marked with an asterisk (*) are both bit- and
byte-addressable. The SFRs marked with a plus sign
(+) are present in the 8052 only. The functions of the

. SFRs are described as follows.

ACCUMULATOR

- ACC is the Accumulator register. The mnemonics forac-

cumulator-specific instructions, however, refer to the ac-
cumulator simply. as A.

B REGISTER

The B register is used during multiply and divide opera-
tions. For other instructions it can be treated as another
scratch pad register.

PROGRAM STATUS WORD

The PSW register contains program status information as
detailed in Figure 6-2.

STACK POINTER
The Stack Pointer register is 8 bits wide. It is incremented

before data is stored during PUSH and CALL executions.
While the stack may reside anywhere in on-chip RAM,



MCS®-51 ARCHITECTURE

the Stack Pointer is initialized to O7H after a reset. This
causes the stack to begin at location 08H.

DATA POINTER

The Data Pointer (DPTR) consists of a high byte (DPH)
and a low byte (DPL). Its intended function is to hold a
16-bit address. It may be manipulated as a 16-bit register
or as two independent 8-bit registers.

PORTS 0 to 3

PO, P1, P2 and P3 are the SFR latches of Ports 0. I, 2
and 3, respectively.

SERIAL DATA BUFFER

The Serial Data Buffer is actually two separate registers,
a transmit buffer and a receive buffer register. When data
is moved to SBUF, it goes to the transmit buffer where
it is held for serial transmission. (Moving a byte to SBUF
is what initiates the transmission.) When data is moved
from SBUF, it comes from the receive buffer.

TIMER REGISTERS

Register pairs (THO, TLO), (TH1, TL1), and (TH2, TL2)
are the 16-bit counting registers for Timer/Counters 0, 1,
and 2, respectively.

CAPTURE REGISTERS

The register pair (RCAP2H, RCAP2L) are the capture
registers for the Timer 2 ‘‘capture mode.’’ In this mode,
in response to a transition at the 8052’s T2EX pin, TH2
and TL2 are copied into RCAP2H and RCAP2L. Timer

2 also has a 16-bit auto-reload mode, and RCAP2H and
RCAP2L hold the reload value for this mode. More about
Timer 2’s features in Section 6.6.2.

CONTROL REGISTERS

Special Function Registers IP, IE, TMOD, TCON, T2CON,
SCON, and PCON contain control and status bits for the
interrupt system, the timer/counters, and the serial port.
They are described in later sections.

6.2 OSCILLATOR AND CLOCK CIRCUIT

XTALI and XTAL2 are the input and output of a single-
stage on-chip inverter, which can be configured with off-
chip components as a Pierce oscillator, as shown in Figure
6-3. The on-chip circuitry, and selection of off-chip com-
ponents to configure the oscillator are discussed in Section

30 pf - 10 pt FOR CRYSTALS
40 pf - 10 pf FOR CERAMIC RESONATORS
18

{{ﬁ XTAL 2

U

_-L_—-o
— m

30 pf - 10 pf FOR CRYSTALS
40 pt - 10 pf FOR CERAMIC RESONATORS

XTAL 1

Figure 6-3. Crystal/Ceramic Resonator Oscillator

(MSB) (LSB)
[ ex | ac | r0 [ st RSO ov - 1 » ]
Symbol Position Name and Significance Symbol Position Name and Significance
cy PSW.7 Carry flag. ov PSW.2 Overflow flag.
AC PSW.6 Auxiliary Carry flag. — .PSW.1 (reserved)
(For BCD operations.)
P PSW.0 Parity flag.
Set/cleared by hardware each instruc-
tion cycle to indicate an odd/even
FO PSW.5 Flag 0 number of “one” bits in the accumu-
(Avalilable to the user for general lator, i.e., even parity.
purposes.)
Note— the contents of (RS1, RS0) enable the working register
RS1 PSW.4 Register bank Select control bits 1 & 0. banks as follows:
Set/cleared by software to determine (0.0)0—Bank 0  (00H-07H)
RSO PSW.3 working register bank (see Note). (0.1)—Bank 1 (08H-0FH)
(1.0)—Bank 2 (10H-17H)
(1.1)—Bank 3 (18H-1FH)

Figure 6-2. PSW: Program Status Word Register



MCS®-51 ARCHITECTURE

6.13. A more detailed discussion will be found in Appli-
cation Note AP-155, ‘‘Oscillators for Microcontrollers,’’
which is included in this manual.

The oscillator, in any case, drives the internal clock gen-
erator. The clock generator provides the internal clocking
signals to the chip. The internal clocking signals are at
half the oscillator frequency, and define the internal

phases, states, and machine cycles, which are described
in the next section.

6.3 CPU TIMING

A machine cycle consists of 6 states (12 oscillator pe-
riods). Each state is divided into a Phase 1 half, during
which the Phase 1 clock is active, and a Phase 2 half,

S1 s2 S3 S4 S5 S6

0sC.
(XTAL2)

e ] ™ I

P1 P2 [P1 P2 |P1 P2 [P1 P2 IP1 P2 |P1 P2 [P1 P2 [P1 P2 IP1 P2 IP1 P2 IP1 P2 IP1 P2 IP1 P2

S1 s2 S3 S4 S5 S6 s1

L [1 [

' |
I |
I T
I , ! I
| READ OPCODE. READ NEXT | |
: ﬁ;ggi’:m, | ' READ NEXT OPCODE AGAIN. |
_____ —[ st [ s2 | s3] sa [ ss | ﬂ::::_ [
| _ |
(A) 1-byte, 1-cycle instruction, e.g., INCA.| l |
|
: READ OPCODE. I [
|
| READ 2ND BYTE,| READ NEXT OPCODE. I
________ | LT o
_fs1|sz]sa]s4[ss]ss—| _______ |
| ! . |
(B) 2-byte, 1-cycle instr\]clion, e.g., ADD A, #data l I
I , | |
READ OPCODE. .
| TP READ NEXT | READ NEXT OPCODE AGAIN.l
| OPCODE (DISCARD). |
I Iy |
—__[sxlszlsalsajss]sﬂs1Tsz]s3]sal_ss]ss]

|
(C) 1-byte, 2-cycle instuction, e.g., INC DPTR.

|
| | READ NEXT OPCODE AGAIN.
READ OPCODE ] |
I 1 (movx) NO
READ NEXT . FETCH. NO FETCH. |
| OPCODE (DISCARD) |
[~ NOALE I
| I

| |
I I

[ s1 [ s2 | s3 | sa] ss]ss

[srﬂz]‘sslsalsslssj

! ADDR l
(D) MOVX (1-byte, 2-cycle)

DATA

_ |

! : ACCESS EXTERNAL MEMORY |

Figure 6-4. 8051 Fetch/Execute Sequences



MCSe-51 ARCHITECTURE

during which the Phase 2 clock is active. Thus, a machine
cycle consists of 12 oscillator periods, numbered S1P1
(State 1, Phase 1), through S6P2 (State 6, Phase 2). Each
phase lasts for one oscillator period. Each state lasts for
two oscillator periods. Typically, arithmetic and logical
operations take place during Phase 1 and internal register-
to-register transfers take place during Phase 2.

The-diagrams in Figure 6-4 show the fetch/execute timing
referenced to the internal states and phases. Since these
internal clock signals are not user accessible, the XTAL2
oscillator signal and the ALE (Address Latch Enable) sig-
nal are shown for external reference. ALE is normally
activated twice during each machine cycle: once during
S1P2 and S2P1, and .again during S4P2 and S5P1.

Execution of a one-cycle instruction begins at S1P2, when
the opcode is latched into the Instruction Register. If it
is a two-byte instruction, the second byte is read during
S4 of the same machine cycle. If it is a one-byte instruc-
tion, there is still a fetch at S4, but the byte read (which
would be the next opcode), is ignored, and the Program
Counter is not incremented. In any case, execution is

complete at the end of S6P2. Figures 6-4A and 6-4B show
the timing for a 1-byte, 1-cycle instruction and for a 2-
byte, 1-cycle instruction.

Most 8051 instructions execute in one cycle. MUL (mul-
tiply) and DIV (divide) are the only instructions that take
more than two cycles to complete. They take four cycles.

Normally, two code bytes are fetched from Program Mem-
ory during every machine cycle. The only exception to
this is when a MOVX instruction is executed. MOVX is
a l-byte 2-cycle instruction that accesses external Data
Memory. During a MOVX, two fetches are skipped while
the external Data Memory is being addressed and strobed.
Figures 6-4C and 6-4D show the timing for a normal 1-
byte, 2-cycle instruction and for a MOVX instruction.

6.4 PORT STRUCTURES AND OPERATICN

All four ports in the 8051 are bidirectional. Each consists
of a latch (Special Function Registers PO through P3), an
output driver, and an input buffer.

ADDR/DATA v
cc
READ CONTROL
LATCH D
INT. BUS
WRITE LG——I
TO 4+ MUX
LATCH
READ
PIN
(A) PORT 0BIT
READ CONTROL
LATCH ADDR Voo
INTERNAL
INT. MUX PULL-UP
BUS D P2XQ ::J_ -
WRITE LATCH ¥ m
T cL a >0
LATCH ’
READ
PIN

(C) PORT 2BIT

READ

LATCH v

. cc

INTERNAL
PULL-UP
INT. BUS
LATCH
TO c. opb—
LATCH
READ
PIN
(B) PORT 1BIT
ALTERNATE
OuTPUT
FUNCTION
READ
LATCH Vee
INTERNAL

INT. BUS PULL-UP !
WRITE
TO

bd
~N

READ I
PIN
ALTERNATE
INPUT
FUNCTION

(D) PORT 3BIT

Figure 6-5. 8051 Port Bit Latches and I/O Buffers
* See Figure 6-6 for details of the internal pullup.

=



MCS®-51 ARCHITECTURE

The output drivers of Ports 0 and 2, and the input buffers
of Port 0, are used in accesses to external memory. In this
application, Port O outputs the low byte of the external
memory address, time-multiplexed with the byte being
written or read. Port 2 outputs the high byte of the external
memory address when the address is 16 bits wide. Oth-
erwise the Port 2 pins continue to emit the P2 SFR content.

All the Port 3 pins, and (in the 8052) two Port 1 pins are

multifunctional. They are not only port pins, but also serve
the functions of various special features as listed below:

PORT PIN ALTERNATE FUNCTION

*P1.0 T2 (Timer/Counter 2
- external input)
*P1.1 T2EX (Timer/Counter 2

capture/reload trigger)
P3.0 RXD (serial input port)
P3.1 TXD (serial output port)
P3.2 INTO (external interrupt)
P3.3 INT1 (external interrupt)

P3.4 TO (Timer/Counter 0 external
input)
P3.5 T1 (Timer/Counter 1 external
» input)
P3.6 WR (external Data memory
' write strobe)
P3.7 RD (external Data memory

read strobe)
*P1.0 and P1.1 serve these alternate functions only on the
8052. ‘

The alternate functions can only be activated if the cor-
responding bit latch in the port SFR contains a 1. Oth-
erwise the port pin is stuck at 0.

6.4.1 I/O Configurations

Figure 6-5 shows a functional diagram of a typical bit
latch and I/O buffer in each of the four ports. The bit latch
(one bit in the port’s SFR) is represented as a Type D flip-
flop, which will clock in a value from the internal bus in
response to a ‘‘write to latch’’ signal from the CPU. The
Q output of the flip-flop is placed on the internal bus in
response to a ‘‘read latch’’ signal from the CPU. The level
of the port pin itself is placed on the internal bus in re-

sponse to a “‘read pin’’ signal from the CPU. Some in- -

structions that read a port activate the ‘‘read latch’’ signal,
and others activate the ‘‘read pin’’ signal. More about that
in Section 6.4.4.

As shown in Figure 6-5, the output drivers of Ports 0 and
2 are switchable to an internal ADDR and ADDR/DATA
bus by an internal CONTROL signal for use in external
memory accesses. During external memory accesses, the
P2 SFR remains unchanged, but the PO SFR gets 1s written
to it.

Also shown in Figure 6-5, is that if a P3 bit latch contains
a 1, then the output level is controlled by the signal labeled
‘‘alternate output function.”” The actual P3.X pin level
is always available to the pin’s alternate input function,
if any. i

Ports 1, 2, and 3 have internal pull-ups. Port 0 has open-
drain outputs. Each I/O line can be independently used
as an input or an output. (Ports 0 and 2 may not be used
as general purpose 1/0 when being used as the ADDR/
DATA BUS). To be used as an input, the port bit latch
must contain a 1, which turns off the output driver FET.
Then, for Ports 1, 2, and 3, the pin is pulled high by the
internal pull-up, but can be pulled low by an external
source.

Port 0 differs in not having internal pullups. The pullup
FET in the PO output driver (see Figure 6-5A) is used only
when the Port is emitting 1s during external memory ac-
cesses. Otherwise the pullup FET is off. Consequently PO
lines that are being used as output port lines are open
drain. Writing a 1 to the bit latch leaves both output FETs

off, so the pin floats. In that condition it can be used as

a high-impedance input.

Because Ports 1, 2, and 3 have fixed internal pullups they
are sometimes called ‘‘quasi-bidirectional’’ ports. When
configured as inputs they pull high and will source current
(IIL, in the data sheets) when externally pulled low. Port
0, on the other hand, is considered ‘‘true’’ bidirectional,
because when configured as an input it floats.

All the port latches in the 8051 have 1s written to them
by the reset function. If a O is subsequently written to a
port latch, it can be reconfigured as an input by writing
altoit.

6.4.2 Writing to a Port

In the execution of an instruction that changes the value
in a port latch, the new value arrives at the latch during
S6P2 of the final cycle of the instruction. However, port
latches are in fact sampled by their output buffers only
during Phase 1 of any clock period. (During Phase 2 the
output buffer holds the value it saw during the previous
Phase 1). Consequently, the new value in the port latch
won'’t actually appear at the output pin until the next Phase
1, which will be at S1P1 of the next machine cycle.

If the change requires a 0-to-1 transition in Port 1, 2, or
3, an additional pull-up is turned on during S1P1 and
S1P2 of the cycle in which the transition occurs. This is
done to increase the transition speed. The extra pull-up
can source about 100 times the current that the normal
pull-up can. It should be noted that the internal pull-ups
are field-effect transistors, not linear resistors. The pull-

_up arrangements are shown in Figure 6-6.

In HMOS versions of the 8051, the fixed part of the pull-
up is a depletion-mode transistor with the gate wired to
the source. This transistor will allow the pin to source



MCS®-51 ARCHITECTURE

2 OSC PERIODS

S

ENHANCEMENT MODE FET
~,_DEPLETION MODEFET
PORT
PIN

Qo

2 OSC. PERIODS

A. HMOS Configuration. The enhancement mode transistor is turned
on for 2 osc. periods after Q makes a 1-to-0 transition.

Vss

Vee

Vee

Vee

PORT
PIN

FROM PORT
LATCH

INPUT
DATA

READ
PORT PIN

B. CHMOS Configuration. pFET 1 is turned on for 2 osc.
periods after Q makes a 1-to-0 transition. During this
time, pFET 1 also turns on pFET 3 through the inverter
to form a latch which holds the 1. pFET 2 is also on.

Figure 6-6. Ports 1, 2 and 3 HMOS and CHMOS Internal Pull-up Configurations

about 0.25 mA when shorted to ground. In parallel with
the fixed pull-up is an enhancement-mode transistor,
which is activated during S1 whenever the port bit does
a O-to-1 transition. During this interval, if the port pin is

shorted to ground, this extra transistor will allow the pin’

to source an additional 30 mA.

In the CHMOS versions, the pull-up consists of three
pFETs. It should be noted that an n-channel FET (nFET)
is turned on when a logical 1 is applied to its gate, and
is turned off when a logical 0 is applied to its gate. A p-
channel FET (pFET) is the opposite: it is on when its gate
sees a 0, and off when its gate sees a 1.

»

pFET 1 in Figure 6-6B is the transistor that is turned on
for 2 oscillator periods after a 0-to-1 transition in the port
latch. While it’s on, it turns on pFET 3 (a weak pull-up),
through the inverter. This inverter and pFET form a latch
which hold the 1.

Note that if the pin is emitting a 1, a negative glitch on
the pin from some external source can turn off pFET 3,
causing the pin to go into a float state, pFET 2 is a very
weak pull-up which is on whenever the nFET is off, in
traditional CMOS style. It’s only about 1/10 the strength
of pFET3. Its function is to restore a 1 to the pin in the
event the pin had a 1 and lost it to a glitch.



MCS®-51 ARCHITECTURE

6.4.3 Port Loading and Interfacing

The output buffers of Ports 1, 2, and 3 can each drive 4
LS TTL inputs. These ports on HMOS versions can be
driven in a normal manner by any TTL or NMOS circuit.
Both HMOS and CHMOS versions can be driven by open-
collector and open-drain outputs, without the need for
external pull-ups.

Port 0 output buffers can each drive 8 LS TTL inputs.
They do, however, require external pull-ups to drive
NMOS inputs, except when being used as the ADDRESS/
DATA bus.

6.4.4 Read-Modify-Write Feature

Some instructions that read a port read the latch and others
read the pin. Which ones do which? The instructions that
read the latch rather than the pin are the ones that read
a value, possibly change it, and then rewrite it to the latch.
These are called ‘‘read-modify-write’’ instructions. The
instructions listed below are read-modify-write instruc-
tions. When the destination operand is a port, or a port
bit, these instructions read the latch rather than the pin:

ANL (logical AND, e.g., ANL P1,A)

ORL (logical OR, e.g., ORL P2,A)

XRL (logical EX-OR e.g., XRL
P3,A)

JBC (jump if bit = 1 and clear bit,
e.g., JBC P1.1, LABEL)

CPL (complement bit, e.g., CPL

' P3.0)

INC (increment, e.g., INC P2)

DEC _ (decrement, e.g., DEC P2)

DJNZ (decrement and jump if not

zero, e.g., DUNZ P3, LABEL)
MOV PX.Y,C (move carry bit to bit Y of
Port X)
(clear bit Y of Port X)
(set bit Y of Port X) -

" CLR PX.Y
SET PX.Y

It is not obvious that the last three instructions in this list
are read-modify-write instructions, but they are. They read
the port byte, all 8 bits, modify the addressed bit, then
write the new byte back to the latch.

The reason that read-modify-write instructions are directed
to the latch rather than the pin is to avoid a possible
misinterpretation of the voltage level at the pin. For ex-
ample, a port bit might be used to drive the base of a
transistor. When a 1 is written to the bit, the transistor is
turned on. If the CPU then reads the same port bit at the
pin rather than the latch, it will read the base voltage of
the transistor and interpret it as'a 0. Reading the latch
rather than the pin will return the correct value of 1.

6.5 ACCESSING EXTERNAL MEMORY

Accesses to external memory are of two types: accesses
to external Program Memory and accesses to external Data
Memory. Accesses to external Program Memory use sig-
nal PSEN (program store enable) as the read strobe. Ac-
cesses to external Data Memory use RD or WR (altemate
functions of P3.7 and P3.6) to strobe the memory.

Fetches from external Program Memory always use a 16-
bit address. Accesses to external Data Memory can use °
either a 16-bit address (MOVX @DPTR) or an 8-bit ad-
dress (MOVX @Ri).

Whenever a 16-bit address is used, the high byte of the
address comes out on Port 2, where it is held for the
duration of the read or write cycle. During this time the
Port 2 latch (the Special Function Register) does not have
to contain 1s, and the contents of the Port 2 SFR are not
modified. If the external memory cycle is not immediately
followed by another external memory cycle, the undis-
turbed contents of the Port 2 SFR will reappear in the next
cycle.

If an 8-bit address is being used (MOVX @Ri), the con-
tents of the Port 2 SFR remain at the Port 2 pins throughout
the external memory cycle. This will facilitate paging.

In any case, the low byte of the address is time-multiplexed
with the data byte on Port 0. The ADDR/DATA signal
drives both FETs in the Port 0 output buffers. Thus, in
this application the Port O pins are not open-drain outputs,
and do not require external pull-ups. Signal ALE (address
latch enable) should be used to capture the address byte
into an external latch. The address byte is valid at the
negative transition of ALE. Then, in a write cycle,_the
data byte to be written appears on Port 0 just before WR

. is activated, and remains there until after WR is deacti-

vated. In a read cycle, the incoming byte is accepted at
Port O just before the read strobe is deactivated.

" During any access to external memory, the CPU writes

OFFH to the Port 0 latch (the Special Function Register),
thus obliterating whatever information the Port 0 SFR may
have been holding.

External Program Memory is accessed under two conditions:

1) Whenever signal EA is active; or
2) Whenever the program counter (PC) contams anumber
that is larger than OFFFH (1FFFH for the 8052).

This requires that the ROMless versions have EA wired
low to enable the lower 4K (8K for the 8032) program
bytes to be fetched from external memory.

When the CPU is executing out of external Program Mem-
ory, all 8 bits of Port 2 are dedicated to an output function
and may not be used for general purpose I/O. During
external program fetches they output the high byte of the
PC, and during accesses to external Data Memory they



MCSe@-51 ARCHITECTURE

output either DPH or the Port 2 SFR (depending on
whether the external Data Memory access is a MOVX
@DPTR. or a MOVX @Ri).

6.5.1 PSEN

The read strobe for external fetches is PSEN. PSEN is not
activated for internal fetches. When the CPU is accessing
external Program Memory, PSEN is activated twice every
cycle (except during a MOVX instruction) whether or not
the byte fetched is actually needed for the current instruc-
tion. When PSEN is activated its timing is not the same
as RD. A complete RD cycle, including activation and
deactivation of ALE and RD, takes 12 oscillator periods.
A complete PSEN cycle, including activation and deac-
tivation of ALE and PSEN, takes 6 oscillator periods. The

execution sequence for these two types of read cycles are
shown in Figure 6-7 for comparison.

6.5.2 ALE

The main function of ALE is to provide a properly timed
signal to latch the low byte of an address from PO to an
external latch during fetches from external Program Mem-
ory. For that purpose ALE is activatd twice every machine
cycle. This activation takes place even when the cycle
involves no external fetch. The only time an ALE pulse
doesn’t come out is during an access to external Data
Memory. The first ALE of the second cycle of a MOVX
instruction is missing (see Figure 6-7). Consequently, in
any system that does not use external Data Memory, ALE
is activated at a constant rate of 1/6 the oscillator fre-
quency, and can be used for external clocking or timing

purposes.

ONE MACHINE CYCLE ONE MACHINE CYCLE
s1|s2|s3|s4|ss|ss's1|sz|ss|s4|ss|ss|
ae — L 1 [ 1 [ 1 [ 1
| | I |
4 ! — i 1
PSEN | L | i : | ! 1 | :
"D ; I— . . ' (A)
! : | | | WITHOUT A
g | ! | | MOVX.
P2 PCHOUTX | PCHOUT X | PCHOUT )L, pcHouT X 1 : PCHOUT X PCHOUT
| |
1
i) E () ) m & m &
]
1
LPCL ouT f_PCL ouT f_PCL ouT LPCL ouT
VALID VALID VALID VALID
| CYCLE1 } CYCLE2
s1|sz|sa|sa|ss|ssl-s1|sz|ss|s4|s5|ss
ALE [ 1 [ [ I|
| |
N e + 1
PSEN [ I ! ]
D 1 i : ; ®)
| | | i , WITH A
1 | : ! i MOVX.
P2 PCHOUTX " pcHout X ! DPH OUT OR P2 OUT X TpcHout  XpcHout
i T
ADDR
Po %% R ER—Gi—CRy-<5ED
N ;
t PCLOUT { aoorouT tecLour
VALID VALID VALID

Figure 6-7. External Program Memory Execution

6-9



MCS®-51 ARCHITECTURE

6.5.3 Overlapping External Program and
Data Memory Spaces

In some applications it is desirable to execute a program
from the same physical memory that is being used to store
data. In the 8051, the external Program and Data Memory
spaces can be combined by ANDing PSEN and RD. A
positive-logic AND of these two signals produces an ac-
tive-low read strobe that can be used for the combined
physical memory. Since the PSEN cycle is faster than the
RD cycle, the external memory needs to be fast enough
to accommodate the PSEN cycle.

6.6 TIMER/COUNTERS

The 8051 has two 16-bit timer/counter registers: Timer -

0 and Timer 1. The 8052 has these two plus one more:
Timer 2. All three can be configured to operate either as
timers or event counters.

In the “‘timer’’ function, the register is incremented every
machine cycle. Thus, one can think of it as counting
machine cycles. Since a machine cycle consists of 12
oscillator periods, the count rate is 1/12 of the oscillator
frequency.

In the ‘‘counter’’ function, the register is incremented in
response to a 1-to-0 transition at its corresponding external
input pin, TO, T1 or (in the 8052) T2. In this function,
the external input is sampled during SS5P2 of every ma-
chine cycle. When the samples show a high in one cycle

and a low in the next cycle, the count is incremented. The *

new count value appears in the register during S3P1 of
the cycle following the one in which the transition was
detected. Since it takes 2 machine cycles (24 oscillator
periods) to recognize a 1-to-0 transition, the maximum
count rate is 1/24 of the oscillator frequency. There are

no restrictions on the duty cycle of the external input
signal, but to ensure that a given level is sampled at least
once before it changes, it should be held for at least one
full machine cycle.

In addition to the ‘‘timer’’ or ‘‘counter’’ selection, Timer
0 and Timer 1 have four operating modes from which"to
select. Timer 2, in the 8052, has three modes of operation:
““‘capture,’’ ‘‘auto-reload’’ and ‘‘baud rate generator.”’

6.6.1 Timer 0 and Timer 1

" These timer/counters are present in both the 8051 and the

8052. The “‘timer’’ or ‘‘counter’’ function is selected by
control bits C/T in the Special Function Register TMOD
(Figure 6-8). These two timer/counters have four operating
modes, which are selected by bit-pairs: (M1, MO) in
TMOD. Modes 0, 1, and 2 are the same for both timer/
counters. Mode 3 is different. The four operating modes
are described below.

MODE 0

Putting either Timer into mode O makes it look like an
8048 Timer, which is an 8-bit counter with a divide-by-
32 prescaler. Figure 6-9 shows the mode O operation as
it applies to Timer 1.

In this mode, the timer register is configured as a 13-bit
register. As the count rolls over from all 1s to all Os, it
sets the timer interrupt flag TF1. The counted input is
enabled to the Timer when TR1 = 1 and either GATE
= 0or INT1 = 1. (Setting GATE = 1 allows the Timer
to be controlled by external input INT1, to facilitate pulse
width measurements.) TR1 is a control bit in the Special
Function Register TCON (Figure 6-10). GATE is in
TMOD.

_ whenever “TRx" control bit is set
C/T Timer or Counter Selector Cleared for
Timer operation (input from internal
- system clock). Set for Counter opera-
tion (input from “Tx" input pin).

(MSB) (LSB)
[ Gate [ cA | M | mo | cate [ cm | w1 [ wmo |
“ N J
~ ~
TIMER 1 TIMER O
GATE Gating control When set. Timer/counter M1 Mo Operating Mode
“x”" is enabled only while “INTx" pin is 0 0 MCS-48 Timer “TLx" serves as five-bit
high and “TRx" control pin is set. When prescaler.
cleared Timer“x” Is enabled 0 1 16 bit Timer/Counter “THx” and

“TLx"are cascaded; there is no prescaler
8-bit auto-reload timer-counter “THx”
holds a value which is to be reloaded
into “TLx” each time it overfiows.

(Timer 0) TLO is an eight-bit timer
counter-controlied by the
standard Timer 0 control bits
THO is an eight-bit timer
only controlled by Timer 1
control bits.

(Timer 1) Timer-counter 1 stopped.

Figure 6-8. TMOD: Timer/Counter Mode Control Register

.



MCS®-51 ARCHITECTURE

The 13-bit register consists of all 8 bits of TH1 and the
lower 5 bits of TL1. The upper 3 bits of TL1 are inde-
terminate and should be ingored. Setting the run flag (TR1)
does not clear the registers.

Mode 0 operation is the same for Timer O as for Timer
1. Substitute TRO, TFO and INTO for the corresponding
Timer 1 signals in Figure 6-9. There are two different
GATE bits, one for Timer 1 (TMOD.7) and one for Timer
0 (TMOD.3).

MODE 1

Mode 1 is the same as Mode 0, except that the Timer
register is being run with all 16 bits.

MODE 2

Mode 2 configures the timer register as an 8-bit counter
(TL1) with automatic reload, as shown in Figure 6-11.
Overflow from TL1 not only sets TF1, but also reloads
TL1 with the contents of TH1, which is preset by software.
The reload leaves TH1 unchanged.

Mode 2 operation is the same for Timer/Counter 0.

MODE 3

Timer 1 in Mode 3 simply holds its count. The effect is
the same as setting TR1 = 0.

oscC +12

TL1 TH1

ssits) | (@Bits) TF1 | INTERRUPT

o
3
z
()
2
=l
"

CONTROL

TR1
GATE
INT1 PIN
Figure 6-9. Timer/Counter 1 Mode 0: 13-bit Counter
(MsB) " (LSB)
[ vrt | v | tro [ tRo | et | m | eo [ mo |

Symbol Position Name and Significance Symbol Position Name and Significance

TF1 TCON.7 Timer 1 overflow Flag. Set by hardware 1E1 TCON.3. Interrupt 1 Edge tlag. Set by hardware
on timer/counter overflow. Cleared when external interrupt edge detected. -
by hardware when processor Cleared when interrupt processed.
vectors to interrupt routine. 1m™ TCON.2 Interrupt 1 Type control bit..Set/cleared

TR1 TCON.6 Timer 1 Run control bit. Set/cleared by software to specify falling edge/low
by software to turn timer/counter level triggered external interrupts.
on/off. (1] TCON.1 Interrupt 0 Edge flag. Set by hardware

. TFO TCON.5 Timer 0 overflow Flag. Set by hardware when external interrupt edge detected.

on timer/counter overflow. Cleared Cleared when interrupt processed.
by hardware when processor ITO TCON.0 Interrupt 0 Type control bit. Set/cleared
vectors to interrupt routine. by software to specify falling edge/low level

TRO TCON.4 Timer 0 Run control bit. Set/cleared by triggered external interrupts.
software to turn timer/counter on/off.

Figure 6-10. TCON: Timer/Counter Control Register

6-11



MCS®-51 ARCHITECTURE

Timer 0 in Mode 3 establishes TLO and THO as two sep-
arate counters. The logic for Mode 3 on Timer 0 is shown
in Figure 6-12. TLO uses the Timer O control bits: C/T,
GATE, TRO, INTO, and TF0. THO is locked into a timer
function (counting machine cycles) and takes over the use
of TR1 and TF1 from Timer 1. Thus THO now controls
the ““Timer 1’’ interrupt.

Mode 3 is provided for applications requiring an extra 8-
bit timer or counter. With Timer 0 in Mode 3, an 8051
can look like it has three timer/counters, and an 8052, like
it has four. When Timer 0 is in Mode 3, Timer 1 can be

turned on and off by switching it out of and into its own
Mode 3, or can still be used by the serial port as a baud

" rate generator, or in fact, in any application not requiring

an interrupt.
6.6.2 Timer 2

Timer 2 is a 16-bit timer/counter which is present only
in the 8052. Like Timers O and 1, it can operate either
as a timer or as an event counter. This is selected by bit
C/T2 in the Special Function Regxster T2CON (Figure 6-
13). It has three operating modes: ‘‘capture,’’ ‘‘auto-re-

osc +12

c/T=0 TL1
— ot (8 Bits) > TRl | INTERRUPT
] C/T=1 :
T PIN CONTROL
TR —————— RELOAD
GATE TH1
(8 Bits)
INTO PIN .
Figure 6-11. Timer/Counter 1 Mode 2: 8-bit Auto-reload
osc +12 1/121gsc

112105¢ ﬁc .
 yCiT=0
d TLO
Sho— o:/ o) TFO INTERRUPT
TO PIN S, ¥ £3 H
CONTROL
TRO
GATE
TNTO PIN
1/12f0sc . o (,;T,?s, TF1 }—— INTERRUPT
CONTROL
TR1

Figure 6-12. Timer/Counter 0 Mode 3: Two 8-bit Counters



MCSe-51 ARCHITECTURE

(MSB) (LSB)

[ /2 T exr2 RCLK TCLK | EXEN2 TR2_ | /72 | cpRLz_|

Symbol Position Name aﬁd Significance

TF2 T2CON.7  Timer 2 overflow flag set by a Timer 2 overflow and must be cleared by soft-
ware. TF2 will not be set when either RCLK =1 0or TCLK = 1.

EXF2 T2CON.6  Timer2external flag set when either a capture or reload is caused by a negative

transition on T2EX and EXEN2 = 1. When Timer 2 interruptis enabled, EXF2 =1
. will cause the CPU to vector to the Timer 2 interrupt routine. EXF2 must be
cleared by software.

RCLK T2CON.5 Receive clock flag. When set, causes the serial port to use Timer 2 overflow
pulses for its receive clock in modes 1 and 3. RCLK = 0 causes Timer 1 overflow
to be used for the receive clock.

TCLK T2CON.4  Transmit clock flag. When set, causes the serial port to use Timer 2 overflow
pulses for its transmit clock in modes 1 and 3. TCLK = 0 causes Timer 1 over-
flows to be used for the transmit clock.

EXEN2 T2CON.3  Timer2external enable flag. When set, allows a capture or reload to occuras a
result of a negative transition on T2EX if Timer 2 is not being used to clock the
serial port. EXEN2 = 0 causes Timer 2 to ignore events at T2EX.

TR2 T2CON.2  Start/stop control for Timer 2. A logic 1 starts the timer.

c/T2 T2CON.1  Timer or counter select. (Timer 2)

0 = Internal timer (OSC/12)
1= External event counter (falling edge triggered).

CP/RL2 T2CON.0  Capture/Reload flag. When set, captures will occur on negative transitions at
T2EX if EXEN2 = 1. When cleared, auto reloads will occur either with Timer 2
overflows or negative transitions at T2EX when EXEN2 = 1. When either RCLK
=1 or TCLK = 1, this bit is ignored and the timer is forced to auto-reload on
Timer 2 overflow.

Figure 6-13. T2CON: Timer/Counter 2 Control Register

load’’ and ‘‘baud rate generator,’’ which are selected by
bits in T2CON as shown in Table 2.

Table 2. Timer 2 Operating Modes

RCLK +TCLK| CP/RL2 |TR2 MODE
0. 0 1 | 16-bit auto-reload
0 1 1 [ 16-bit capture
1 X 1 | baud rate generator
X X 0 | (off) ,

In the capture mode there are two options which are se-
lected by bit EXEN2 in T2CON. If EXEN2 = 0, then
Timer 2 is a 16-bit timer or counter which upon over-
flowing sets bit TF2, the Timer 2 overflow bit, which can
be used to generate an interrupt. If EXEN2 = 1, then
Timer 2 still does the above, but with the added feature
that a 1-to-0 transition at external input T2EX causes the
current value in the Timer 2 registers, TL2 and TH2, to
be captured into registers RCAP2L and RCAP2H, re-
spectively. (RCAP2L and RCAP2H are new Special Func-
tion Registers in the 8052.) In addition, the transition at
T2EX causes bit EXF2 in T2CON to be set, and EXF2,
like TF2, can generate an interrupt.

The capture mode is illustrated in Figure 6-14.

6-13

In the auto-reload mode there are again two options, which
are selected by bit EXEN2 in T2CON. If EXEN2 = 0,
then when Timer 2 rolls over it not only sets TF2 but also
causes the Timer 2 registers to-be reloaded with the 16-
bit value in registers RCAP2L and RCAP2H, which are
preset by software. If EXEN2 = 1, then Timer 2 still
does the above, but with the added feature that a 1-to-0
transition at.external input T2EX will also trigger the 16-
bit reload and set EXF2.

The auto-reload mode is illustrated in Figure 6-15.

The baud rate generator mode is selected by RCLK = 1
and/or TCLK = 1. It will be described in conjunction
with the serial port.

6.7 SERIAL INTERFACE

The serial port is full duplex, meaning it can transmit and
receive simultaneously. It is also receive-buffered, mean-
ing it can commence reception of a second byte before
a previously received byte has been read from the receive
register. (However, if the first byte still hasn’t been read
by the time reception of the second byte is complete, one
of the bytes will be lost). The serial port receive and
transmit registers are both accessed at Special Function
Register SBUFE. Writing to SBUF loads the transmit reg-



MCS®-51 ARCHITECTURE

Cr2=0 ‘ol TL2 TH2 o
- 1 ¢ (6-BITS) (8-BITS)
_—T CM2= 1 .
T2 PIN I CONTROL
TR2
CAPTURE | . :D_> TIMER 2
. INTERRUPT
o —— »
TRANSITION L RCAP2L I RCAP2H —I
l— DETECTOR ‘
T2EX PIN —> -\_ ' :/{ o E]—J
1
CONTROL ’
EXEN2 -

Figure 6-14. Timer 2 in Capture Mode

ister, and reading SBUF accesses a physically separate
receive register.

The serial port can operate in 4 modes:

Mode 0: Serial data enters and exits through RXD. TXD
outputs the shift clock. 8 bits are transmitted/received: 8
data bits (LSB first). The baud rate is fixed at 1/12 the
oscillator frequency.

Mode 1: 10 bits are transmitted (through TXD) or received
(through RXD): a start bit (0), 8 data bits (LSB first), and
a stop bit (1). On receive, the stop bit goes into RB8 in
Special Function Regxster SCON. The baud rate is
variable.

Mode 2: 11 bits are transmitted (through TXD) or received
(through RXD): a start bit (0), 8 data bits (LSB first), a
programmable 9th data bit, and a stop bit (1). On transmit,
the 9th data bit (TB8 in SCON) can be assigned the value
of 0 or 1. Or, for example, the parity bit (P, in the PSW)
could be moved into TB8. On receive, the 9th data bit
goes into RB8 in Special Function Register SCON, while
the stop bit is ignored. The baud rate is programmable to
either 1/32 or 1/64 the oscillator frequency.

Mode 3: 11 bits are transmitted (through TXD) or received
(through RXD): a start bit (0), 8 data bits (LSB first), a
programmable th data bit and a stop bit (1). In fact,
Mode 3 is the same as Mode 2 in all respects except the
baud rate. The baud rate in Mode 3 is variable.

1In all four modes, transmission is initiated by any instruc-
‘tion that uses SBUF as a destination register. Reception
is initiated in Mode O by the condition RI=0and REN=1.
Reception is initiated in the other modes by the incoming
start bit if REN=1. '

6.7.1 Multiprocessor Communications

Modes 2 and 3 have a special provision for multiprocessor
communications. In these modes, 9 data bits are received.
The 9th one goes into RB8. Then comes a stop bit. The
port can be programmed such that when the stop bit is
received, the serial port interrupt will be activated only
if RB8 = 1. This feature is enabled by setting bit SM2
in SCON. A way to use this feature in multiprocessor
systems is as follows. .

When the master procéssor wants to transmit a block of
data to one of several slaves, it first sénds out an address
byte which identifies the target slave. An address byte
differs from a data byte in that the 9th bit is 1 in an address
byte and 0 in a data byte. With SM2 = 1, no slave will
be interrupted by a data byte. An address byte, however,
will interrupt all slaves, so that each slave can examine
the. received byte and see if it is being addressed. The

" addressed slave will clear its SM2 bit and prepare to re-

ceive the data bytes that will be coming. The slaves that
weren’t being addressed leave their SM2s set and go on
about their business, ignoring the coming data bytes.

SM2 has no‘effect in Mode 0, and in Mode 1 can be used
to check the validity of the stop bit. In a Mode 1 reception,
if SM2 = 1, the receive interrupt will not be activated

-unless a valid stop bit is received.

6-14

6.7.2 Serlal Port Control Register

The serial port control and status register is the Special
Function Register SCON, shown in Figure 6-16. This.
register contains not only the mode selection bits, but also
the 9th data bit for transmit and receive (TB8 and RBS),
and the serial port interrupt bits (TI and RI) .



MCS®-51 ARCHITECTURE

TL2 TH2
- ' (8-BITS) (8-BITS)
j c2=1 ’
T2 PIN CONTROL
TR2
" RELOAD
RCAP
TRANSITION I 2 ] RCAP2ZH I T2
r DETECTOR :
’ TIMER 2
INTERRUPT
T2EX PIN —] _\_ :/: o EXF2 .
l
CONTROL
EXEN2
Figure 6-15. Timer 2 in Auto-Reload Mode
: (MSB) (LSB)
[ S™Mo | sMi | sM2 | REN | 188 | RB8 | Tf | RI ]
where SM0, SM1 specify the serial port mode, as follows: e TB8 is the Sth data bit that will be

SM0 SM1 Mode Baud Rate

fosc./12
variable

fosc./64
or

fosc./32
9-bit UART variable

Description

shift register
8-bit UART
9-bit UART

e SM2

the multip com-
munication feature in modes 2 and
3. In mode 2 or 3, if SM2is set to 1
then RI will not be activated if the
received 9th data bit (RB8) is 0. In
mode 1, if SM2 = 1 then RI will
not be activated it a valid stop bit
was not received. In mode 0, SM2
should be 0.

* REN enables serial reception. Set by
to enable ion. Clear

to disabl N

by

transmitted in modes 2 and 3. Set
or clear by software as desired.
* RB8 in modes 2 and 3, is the 9th data bit
that was received. In mode 1, if
SM2 = 0, RBS is the stop bit that
was received. In mode 0, RB8 is
not used.

is transmit interrupt flag. Set by
hardware at the end of the 8th bit
time in mode 0, or at the beginning
of the stop bit in the other modes,
in any serial transmission. Must be
cleared by software.

Tl

* RI Is receive interrupt flag. Set by
hardware at the end of the 8th bit
time in mode 0, or haltway through
the stop bit time in the other
modes, in any serial reception (ex-
cept see SM2). Must be cleared
by software. ’

Figure 6-16. SCON: Serial Port Control Register

6.7.3 Baud Rates
The baud rate in Mode 0 is fixed:

Oscillator Frequency

Mode 0 Baud Rate = 12

6-15

The baud rate in Mode 2 depends on the value of bit
SMOD in Special Function Register PCON. If SMOD
= 0 (which is its value on reset), the baud rate is 1/64
the oscillator frequency. If SMOD = 1, the baud rate is
1/32 the oscillator frequency.

i D
Mode 2 Baud Rate x (Oscillator Frequency)




' MCS®-51 ARCHITECTURE

In the 8051, the baud rates in Modes 1 and 3 are deter-
mined by the Timer 1 overflow rate. In the 8052, these
baud rates can be determined by Timer 1, or by Timer 2,
or by both (one for transmit and the other for receive).

Using Timer 1 to Generate Baud Rates

When Timer 1 is used as the baud rate generator, the baud

rates in Modes 1 and 3 are determined by the Timer 1
overflow rate and the value of SMOD as follows:

Modes 1, 3
Baud Rate =

SMOD

32
The Timer 1 interrupt should be -disabled in this appli-
cation. The Timer itself can be configured for either
“‘timer’” or ‘‘counter’’ operation, and in any of its 3 run-
ning modes. In the most typical applications, it is confi-
gured for ‘‘timer’’ operation, in the auto-reload mode

x (Timer 1 Overflow Rate)

(high nibble of TMOD = 0010B). In that case, the baud

rate is given by the formula

2SMOD - Qgcillator Frequency

32 X 12x[256 — (TH1)]

Modes 1, 3 Baud Rate =

One can achieve very low baud rates with Timer 1 by
leaving the Timer 1 interrupt enabled, and configuring the
Timer to run as a 16-bit timer (high nibble of TMOD

= 0001B), and using the Timer 1 interrupt to do a 16-bit
software reload.

Figure 6-17 lists various commonly used baud rates and
how they can be obtained from Timer 1.

TIMER 1.
BAUD RATE fosc SMOD [ C/T | MODE | RELOAD
VALUE
MODE 0 MAX: IMHZ | 12 MHZ X X X X
MODE 2MAX: 375K | 12MHZ 1 X X X
MODES 1,3:625K | 12MHZ 1 0 2 FFH
19.2K | 11.059 MHZ 1 0 2 FDH
9.6K 11.059 MHZ 0 0 2 FDH
4.8K 11.059 MHZ 0 0 2 FAH
2.4K 11.05MHZ | © 0 2 F4H
1.2K 11.059MHZ | "0 0 2 E8H
137.5 . | 11.986 MHZ 0 0 2 1DH
110 6 MHZ 0 0 2 72H
110 12 MHZ 0 0 1 FEEBH

Figure 6-17. Timer 1 Generated Commonly
Used Baud Rates ’

Using Timer 2 to Generate Baud Rates

In'the 8052, Timer 2 is selected as the baud rate generator
by setting TCLK and/or RCLK in T2CON (Figure 6-13).
Note then the baud rates for transmit and receive can be
simultaneously different. Setting RCLK and/or TCLK
puts Timer 2 into its baud rate generator mode, as shown
-in Figure 6-18. - ’

NOTE: OSC. FREQ. IS DIVIDED BY 2, NOT 12.

TIMER 1
OVERFLOW

EXEN2

cAz=0 N - —— ‘
> (8-BITS) (6-BITS) =
. 1 CAZ=1 ! RCLK
T2PIN
S TR . . _
' ; RELOAD >\ *=___
TRANSITION I RCAP2L | RCAPZH | TX CLOCK
I DETECTOR
T2EX PIN —>] _\_ ofo [exrz ] “TIMER 2"
[ | INTERRUPT
CONTROL

L NOTE AVAILABILITY OF ADDITIONAL EXTERNAL INTERRUPT

Figure 6-18. Timer 2 in Baud Rate Generator Mode

6-16



MCS®-51 ARCHITECTURE

The baud rate generator mode is similar to the auto-reload
mode, in that a rollover in TH2 causes the Timer 2 reg-
isters to be reloaded with the 16-bit value in registers
RCAP2H and RCAP2L, which are preset by software.

Now, the baud rates in Modes 1 and 3 are determined by
Timer 2’s overflow rate as follows:

Timer 2 Overflow Rate

Modes 1, 3 Baud Rate = 6

The Timer can be configured for either ‘‘timer’’ or
“‘counter’’ operation. In the most typical applications, it
is configured for ‘‘timer’’ operation (C/T2 = 0). ‘‘Timer”’
operation is a little different for Timer 2 when it’s being
used as a baud rate generator. Normally as a timer it would
increment every machine cycle (thus at 1/12 the oscillator
frequency). As a baud rate generator, however, it incre-
ments every state time (thus at 1/2 the oscillator fre-
quency). In that case the baud rate is given by the formula

Modes 1, 3

Oscillator Frequenc
Baud Rate = d Y

32x[65536 — (RCAP2H, RCAP2L)]

where (RCAP2H, RCAP2L) is the content of RCAP2H
and RCAP2L taken as a 16-bit unsigned integer.

Timer 2 as a baud rate generator is shown in Figure 6-18.
This Figure is valid only if RCLK + TCLK = 1 in
T2CON. Note that a rollover in TH2 does not set TF2,
and will not generate an interrupt. Therefore, the Timer
2 interrupt does not have to be disabled when Timer 2 is
in the baud rate generator mode. Note too, that if EXEN2
is set, a 1-to-0 transition in T2EX will set EXF2 but will
not cause a reload from (RCAP2H, RCAP2L) to (TH2,
TL2). Thus when Timer 2 is in use as a baud rate gen-
erator, T2EX can be used as an extra external interrupt,
if desired.

It should be noted that when Timer 2 is running (TR2
= 1)in “‘timer’’ function in the baud rate generator mode,
one should not try to read or write TH2 or TL2. Under
these conditions the Timer is being incrémented every
state time, and the results of a read or write may not be
accurate. The RCAP registers may be read, but shouldn’t
be written to, because a write might overlap a reload and
cause write and/or reload errors. Turn the Timer off (clear
TR2) before accessing the Timer 2 or RCAP registers, in
this case.

6.7.4 More About Mode 0

Serial data enters and exits through RXD. TXD outputs
the shift clock. 8 bits are transmitted/received: 8 data bits

(LSB first). The baud rate is fixed at'1/12 the oscillator

frequency.

Figure 6-19 shows a simplified functional diagram of the
serial port in mode 0, and associated timing.

6-17

Transmission is initiated by any instruction that uses SBUF
as a destination register. The ‘‘write to SBUF’’ signal at
S6P2 also loads a 1 into the 9th bit position of the transmit
shift register and tells the TX Control block to commence
a transmission. The internal timing is such that one full
machine cycle will elapse between ‘‘write to SBUF,”” and
activation of SEND.

SEND enables the output of the shift register to the al-
ternate output function line of P3.0, and also enables
SHIFT CLOCK to the alternate output function line of
P3.1. SHIFT CLOCK is low during S3, S4, and S5 of
every machine cycle, and high during S6, S1 and S2. At
S6P2 of every machine cycle in which SEND is active,
the contents of the transmit shift register are shifted to the
right one position.

As data bits shift out to the right, zeros come in from the
left. When the MSB of the data byte is at the output
position of the shift register, then the 1 that was initially
loaded into the 9th position, is just to the left of the MSB,
and all positions to the left of that contain zeros. This
condition flags the TX Control block to do one last shift
and then deactivate SEND and set T1. Both of these ac-
tions occur at S1P1 of the 10th machine cycle after *‘write
to SBUE.”

Reception is initiated by the condition REN = 1 and RI
= 0. At S6P2 of the next machine cycle, the RX Control
unit writes the bits 11111110 to the receive shift register,
and in the next clock phase activates RECEIVE.

RECEIVE enables SHIFT CLOCK to the alternate output
function line of P3.1. SHIFT CLOCK makes transitions
at S3P1 and S6P1 of egvery machine cycle. At S6P2 of
every machine cycle in which RECEIVE is active, the
contents of the receive shift register are shifted to the left
one position. The value that comes in from the right is
the value that was sampled at the P3.0 pin at S5P2 of the
same machine cycle.

As data bits come in from the right, 1s shift out to the
left. When the O that was initially loaded into the rightmost
position arrives at the leftmost position in the shift register,
it flags the RX Control block to do one last shift and load
SBUF. At S1P1 of the 10th machine cycle after the write
to SCON that cleared RI, RECEIVE is cleared and RI is
set.

6.7.5 More About Mode 1

Ten bits are transmitted (through TXD), or received
(through RXD): a start bit (0), 8 data bits (LSB first), and
a stop bit (1). On receive, the stop bit goes into RB8 in
SCON. In the 8051 the baud rate is determined by the
Timer 1 overflow rate. In the 8052 it is determined either
by the Timer 1 overflow rate, or the Timer 2 overflow
rate, or both (one for transmit and the other for receive).

Figure 6-20 shows a simplified functional diagram of the
serial port in Mode 1, and associated timings for transmit
and receive.



MCS®-51 ARCHITECTURE

8051 INTERNAL BUS

WRITE .
70 — RXD
SBUF P3.0 ALT
= OUTPUT
FUNCTION
TECTOR]
N
START SHIFT
TX CONTROL
S6 TXCLOCK 1, SEND
SERIAL X0
: INTPECI)RE(LPT P3.1ALT
OuUTPUT
' FUNCTION
RrxcLock Rl RECEIVE
REN . _ RXCONTROL gt
ﬁ:D—’START11111110
RXD
. g . P3.0 ALT
INPUT SHIFT REG. INPUT
FUNCTION
LOAD '
SBUF
READ
SBUF
8051 INTERNAL BUS
Sa SSSS| 515253545556 |S¥ $25354 5556 I 5‘32‘51545556‘SISZSJSASSSG | 5152S5384585¢5h I 515251545556 l S15253S455S6 | 5182535455856 |SlS2SJSIS$SG (S|5253545556 I S
ALE
[LWRITE TO SBUF

senp P2 | : |

SHIFT n Mn - n . N n N

RXD (DATAOUT)\ 00X b1 X ®2 Y b3 Y ba Y o5 J 6 Y b7 J

TXD (SHIFTCLOCK) LT _

T s3p1t sep1 —
JLWRITE TO SCON (CLEARRI)

T —
RECEIVE f I
SHIFT Nn n Nn M . n n n
RXD (DATA IN) DO D1 o2 o3 b4 b5 e no?

~ issP2 :
TXD (SHIFT CLOCK)

TRANSMIT

RECEIVE

Figure 6-19. Serial Port Mode 0

6-18



MCS©®-51 ARCHITECTURE

TIMER1 TIMER 2 8051 INTERNAL BUS
OVERFLOW OVERFLOW j

WRITE
TO
SBUF
TXD
ZERO DETECTOR
& L SHIFT
START DATA
TX CONTROL
+16 TXCLOCK Ty SEND
SERIAL
e PORT
INTERRUPT "
RCLK —— ——
+16
SAMPLE ‘
1-TO-0 RXCLOCK RI LOAD }—
TRANSITION START SBUF
DETECTOR RXCONTROL  SHIFT
1FFH
Bl
DETECTOR |
INPUT SHIFT REG.
(3BITS)
RXD
READ
SBUF
8051 INTERNAL BUS
T
ELOCK g I L 1 | | | N 1
| WRITE TO SBUF -
— |__SEND [
DA —S1Pd \ 1 VTransmIT
SHIFT 1 1 I 1 ! 1 : ! L
TXD DO 1 5 D3 D3 o5 -
TI  STARTBIT STOPBIT
+16 RESET
JIRX cLOCK) nt 1 N I 1 N I 0L I | 1

RXD ———————s1aRTBIT 56 D1 BZ D3 54 )05 X D6 X ©7 ) STOPBIT
RECEIVE { BITDETECTORSAMPLETIMES gy QW AW WM AWM ML M m
SHIFT I - 1 | I 1 i i .
RI I

Figure 6-20. Serial Port Mode 1
TCLK, RCLK, and Timer 2 are present in the 8052/8032 only.




MCS®-51 ARCHITECTURE

Transmission is initiated by any instruction that uses SBUF
as a destination register. The ‘‘write to SBUF’’ signal also
loads a 1 into the 9th bit position of the transmit shift
register and flags the TX Control unit that a transmission
is requested. Transmission actually commences at S1P1
of the machine cycle following the next rollover in the
divide-by-16 counter. (Thus, the bit times are synchro-
nized to the divide-by-16 counter, not to the ‘‘write to
SBUF’’ signal).

The transmission begins with activation of SEND, which
puts the start bit at TXD. One bit time later, DATA is
activated, which enables the output bit of the transmit
shift register to TXD. The first shift pulse occurs one bit
time after that.

As data bits shift out to the right, zeros are clocked in
from the left. When the MSB of the data byte is at the
output position of the shift register, then the 1 that was
initially loaded into the 9th position is just to the left of
the MSB, and all positions to the left of that contain
zeroes. This condition flags the TX Control unit to do one
last shift and then deactivate SEND and set T1. This
occurs at the 10th divide-by-16 rollover after ‘‘write to
SBUE.”

Reception is initiated by a detected 1-to-O transition at
RXD. For this purpose RXD is sampled at a rate of 16
times whatever baud rate has been established. When a
transition is detected, the divide-by-16 counter is imme-
diately reset, and 1FFH is written into the input shift
register. Resetting the divide-by-16 counter aligns its
rollovers with the boundaries of the incoming bit times.

The 16 states of .the counter divide each bit time into
16ths. At the 7th, 8th, and 9th counter states of each bit
time, the bit detector samples the value of RXD. The value
accepted is the value that was seen in at least 2 of the 3
samples. This is done for noise rejection. If the value
accepted during the first bit time is not O, the receive
circuits are reset and the unit goes back to looking for
another 1-to-0 transition. This is to provide rejection of
false start bits. If the start bit proves valid, it is shifted
into the input shift register, and receptlon of the rest of
the frame will proceed.

As data bits come in from the right, 1s shift out to the
left. When the start bit arrives at the leftmost position in
the shift register, (which in mode 1 is a 9-bit register), it
flags the RX Control block to do one last shift, load SBUF
and RB8, and set RI. The signal to load SBUF and RBS,
and to set RI, will be generated if, and only if, the fol-
lowing conditions are met at the time the final shift pulse
is generated.

1) RI = 0, and
2) Either SM2 = 0, or the received stop bit = 1

If either of these two conditions are not met, the received
frame is irretrievably lost. If both conditions are met, the
stop bit goes into RB8, the 8 data bits go into SBUF, and

Rl is activated. At this time, whether the above conditions

are met or not, the unit goes back to looking for a 1-to-
0 transition in RXD.

6.7.6 More About Modes 2 and 3

Eleven bits are transmitted (through TXD), or received
(through RXD): a start bit (0), 8 data bits (LSB first), a
programmable 9th data bit, and a stop bit (1). On transmit,
the 9th data bit (TD8) can be assigned the value of 0 or
1. On receive, the 9th data bit goes into RB8 in SCON.
The baud rate is programmable to either 1/32 or 1/64 the
oscillator frequency in mode 2. Mode 3 may have a var-
iable baud rate generated from either Timer- 1 or 2 de-
pending on the state of TCLK and RCLK.

Figures 6-21 A and B show a functional diagramof the
serial port in modes 2 and 3. The receive portion is exactly
the same as in mode 1. The transmit portion differs from
mode 1 only in the 9th bit of the transmit shift register.

Transmission is initiated by any instruction that uses SBUF
as a destination register. The *‘write to SBUF’’ signal also
loads TB8 into the 9th bit position of the transmit shift
register and flags the TX Control unit that a transmission
is requested. Transmission commences at S1P1 of the
machine cycle following the next rollover in the divide-

~ by-16 counter. (Thus, the bit times are synchronized to

the divide-by-16 counter, not to the ‘‘write to SBUF”’
signal.)

The transmission begins with-activation of SEND, which
puts the start bit at TXD. One bit time later, DATA is
activated, which enables the output bit of the transmit
shift register to TXD. The first shift pulse occurs one bit
time after that. The first shift clocks a 1 (the stop bit) into
the 9th bit position of the shift register. Thereafter, only
zeroes are clocked in. Thus, as data bits shift out to the
right, zeroes are clocked in from the left. When TB8 is
at the output position of the shift register, then the stop
bit is just to the left of TB8, and all positions to the left
of that contain zeroes. This condition flags the TX Control
unit to do one last shift and then deactivate SEND and set
T1. This occurs at the 11th divide-by-16 rollover after
“‘write to SBUE.”’

Reception is initiated by a detected 1-to-O transition at
RXD. For this purpose RXD is sampled at a rate of 16
times whatever baud rate has been established. When a
transition is detected, the divide-by-16 counter is imme-
diately reset; and 1FFH is written to the input shift register.

At the 7th, 8th and 9th counter states of each bit time, the
bit detector samples the value of RXD. The value accepted
is the value that was seen in at least 2 of the 3 samples.
If the value accepted during the first bit time is not 0, the

« receive circuits are reset and the unit goes back to looking

for another 1-to-0 transition. If the start bit proves valid,
it is shifted into the input shift register, and reception of -
the rest of the frame will proceed.

6-20



MCSe-51 ARCHITECTURE

8051 INTERNAL BUS

TB8
WRITE ﬁ
TO
SBUF
TXD
PHASE 2 CLOCK
(% fosc)
BI
START ST&PN.T SHIFT ATA
TXCONTRQL ——
16 TXCLOCK T SEND
SERIAL
PORT
INTERRUPT
(SMOD IS PCON.7) n
| SAMPLE
1-TO-0 RX Rl LOAD }—»
TRANSITION| START CLOCK SBUF
DETECTOR . RXCONTROL  gpyet
1FFH
BIT
DETECTOR L4
INPUT SHIFT REG.
(9BITS)
RXD
8051 INTERNAL BUS
TX . .
jeLock | | 1 | 0 I L | 1 1 |
L WRITE TO SBUF ]
SEND - —
DATA “s1P1
SHIFT ]| 1 i 1 1 | 1 1 TRANSMIT
TXD \ARTET D0 T D1 X D2 D3 Da D D6 D7 TB8 ] STOP BIT
Tl
STOP BIT GEN 1 —
+16 RESET
NCLOCK ¢ |} | fl i\ I I i I | 1 |
RXDB”DETECTOPISTMWB"I 60 X BT X oz YB3 X~ ba X 05 X" D6 X D7 X RB8 JgTQp
RECEIVE SAMPLETIMES )| L ) L i . Bt q___BIT
SHIFT 0 i 1 | -0 I | 1 0
Rl —

Figure 6-21A. Serial Port Mode 2

6-21



MCS®-51 ARCHITECTURE -

TIMER 1 ' TIMER2 8051 INTERNAL BUS
OVERFLOW OVERFLOW

TXD

ZERO DETECTOR

I

START SHIFT pata

TX CONTROL

TXCLOCK SEND
SERIAL -

- PORT

: INTERRUPT "
RCLK — = ——
+16
SAMPLE -~
1-TO-0 RXCLOCK RI LOAD }—
ITRANSITION START SBUF
DETECTOR RX CONTROL SHIFT
1FFH
DETECTOR |
INPUT SHIFT REG.
(9BITS)
RXD
READ
SBUF
TX
JCLOCK; 1 ] I ] 1 A | 1 I | 1
[ WRITE TO SBUF
1 _SEND

DATA “si1P1
SHIFT

, 1 I 1 1 1 1 1L 1 1 TRANSMIT
R(o STARTET D0 YD1 _X_D2 Y D3 X_D4a X D5 X D6 X D7 X TB8 /stoPBIT

STOPFB(IT GEN L '
+16 RESET
JCLOCK j ) 1 1L 1 | | | f f | |
RXD & S ETECTORLETART BT/ 56 X BT X5z (B3 B4 Y65 X 66 _X_ 67 J_REE TsToP
RECEIVE SAMPLE TIMES M ML o BIT
SHIFT i 1 L 1 i i 1 I 1 I
Ri  —

Figure 6-21B. Serial Port Mode 3
TCLK, RCLK, and Timer 2 are present in the 8052/8032 only.

6-22




MCS®-51 ARCHITECTURE

As data bits come in from the right, 1s shift out to the
left. When the start bit arrives at the leftmost position in
the shift register (which in modes 2 and 3 is a 9-bit reg-
ister), it flags the RX Control block to do one last shift,
load SBUF and RBS, and set RI. The signal to load SBUF
and RB8, and to set RI, will be generated if, and only if,
the following conditions are met at the time the final shift
pulse is generated:

1) RI = 0, and
2) Either SM2 = 0 or the received 9th data bit = 1

If either of these conditions are not met, the received
frame is irretrievably lost, and RI is not set. IF both con-
ditions are met, the received 9th data bit goes into RBS,
and the first 8 data bits go into SBUF. One bit time later,
whether the above conditions were met or not, the unit
goes back to looking for a 1-to-0 transition at the RXD
input.

Note that the value of the received stop bit is irrelevant
to SBUF, RB8, or RI. .

6.8 INTERRUPTS

The 8051 provides 5 interrupt sources. The 8052 provides
6. These are shown in Figure 6-22.

The External Interrupts INTO and INT1 can each be either
level-activated or transition-activated, depending on bits

INTO

TFO

= INTERRUPT
INT1 ? SOURCES

TF1
T
RI
EXF2 - {8052 ONLY) : /

ITO and IT1 in Register TCON. The flags that actually
generate these interrupts are bits IEQ and IE1 in TCON.
‘When an external interrupt is generated, the flag that gen-
erated it is cleared by the hardware when the service rou-
tine is vectored to only if the interrupt was transition-
activated. If the interrupt was level-activated, then the
external requesting source is what controls the request
flag, rather than the on-chip hardware.

The Timer 0 and Timer 1 Interrupts are generated by TFO
and TF1, which are set by a rollover in their respective
timer/counter registers (except see Section 6.6.1 for Timer
0 in mode 3). When a timer interrupt is generated, the
flag that generated it is cleared by the on-chip hardware
when the service routine is vectored to.

The Serial Port Interrupt is generated by the logical OR
of RI and TI. Neither of these flags is cleared by hardware
when the service routine is vectored to. In fact, the service
routine will normally have to determine whether it was
RI or TI that generated the interrupt, and the bit will have
to be cleared in software.

In the 8052, the Timer 2 Interrupt is generated by the
logical OR of TF2 and EXF2. Neither of these flags is
cleared by hardware when the service routine is vectored
to. In fact, the service routine may have to determine
whether it was TF2 or EXF2 that generated the interrupt,
and the bit will have to be cleared in software.

All of the bits that generate interrupts can be set or cleared
by software, with the same result as though it had been
set or cleared by hardware. That is, interrupts can be
generated or pending interrupts can be canceled in
software. .

(MSB) (LSB)
[ea] x[er2]es [er1[ex1]ero]exo]
Symbol  Position Function

EA 1E.7 disables all interrupts. If EA = 0, no interrupt
will be acknowledged. If EA = 1, each inter-
rupt source is individually enabled or dis-
abled by setting or clearing its enable bit.

- IE.6 reserved

ET2 IE.5 enables or disables the Timer 2 overflow
or capture interrupt. If ET2 = 0, the Timer 2
interrupt is disabled.

ES IE.4 enables or disables the Serial Port inter-
rupt. If ES = 0, the Serial Port interrupt is
disabled.

ET1 IE.3  enables or disables the Timer 1 Overflow
interrupt. If ET1 = 0, the Timer 1 interrup!
is disabled.

EX1 IE.2 enables or disables External Interrupt 1.

If EX1 = 0, External Interrupt 1 is disabled.

ETO IEA enables or disables the Timer 0 Overilow
interrupt. If ETO = 0, the Timer 0 Interrupt
is disabled.

EX0 IE.0 enables or disables External Interrqpto. 1
EXO = 0, External Interrupt 0 is disabled.

Figure 6-22. MCS-51 Interrupt Sources

Figure 6-23. IE: Interrupt Enable Register



MCS¢e-51 ARCHITECTURE

Each of these interrupt sources can be individually enabled
or disabled by setting or clearing a bit in Special Function
Register IE (Figure 6-23). Note that IE contains also a
global disable bit, EA, which disables all intcrrupts at
once.

6.8.1 Priority'Level Structure

Each interrupt source can also be individually programmed
to one of two priority levels by setting or clearing a bit
in Special Function Register IP (Figure 6-24). A low-
priority interrupt can itself be interrupted by a high-priority
interrupt, but not by another low-priority interrupt. A
‘high-priority interrupt can’t be interrupted by any other
‘interrupt source.

(MSB) ) (LSB

I x] x]pralps]pri]exi|pro]exo
Symbol Position  Function
- iP.7 reserved
- iP.6 reserved

PT2 IP.5 defines the Timer 2 interrupt priority
level. PT2 = 1 programs it to the higher
priority level.

PS 1P.4 defines the Serial Port interrupt priority
level. PS = 1 programs it to the higher
priority level.

PT1 iP.3 defines the Timer 1 interrupt priority
level. PT1 = 1'programs it to the higher

R priority level.

PX1 iP.2 defines the External Interrupt 1 priority
level. PX1 = 1 programs it {o the higher
priority level.

PTO IP.1 defines the Timer 0 interrupt priority
level. PTO = 1 programs it to the higher
priority level. )

PX0 IP.0 defines the External Interrupt 0 priority
level. PX0 = 1 programs it to the hvgher
priority level.

Figure 6-24. IP: Interrupt Prioiity Register

If two requests of different priority levels are received
simultaneously, the request of higher priority level is ser-
viced. If requests of the same priority level are received
simultaneously, an internal polling sequence determines
which request is serviced. Thus within each priority level
there is a second priority structure determined by the poll-
ing sequence, as follows:

SOURCE PRIORITY WITHIN LEVEL

1 IEC (highest)
2 TFO

3 IE1

4. TF1

5, RI+TI

6.

TF2+EXF2 (lowest)

Note that the ‘‘priority within level’’ structure is only used
to resolve simultaneous requests of the same priority level.

6.8.2 How Interrupts Are Handled

The interrupt flags are sampled at SSP2 of every machine

cycle. The samples are polled during the following ma-
chine cycle. If one of the flags was in a set condition at
S5P2 of the preceding cycle, the polling cycle will find
it and the interrupt system will generate an LCALL to the
appropriate service routine, provided this hardware-gen-
erated LCALL is not blocked by any of the followmg
conditions:

1. An interrupt of equal or higher priority level is already
in progress.

2. The current (polling) cycle is not the final cycle in the
execution of the instruction in progress.

3. The instruction in progress is RETI or any access to
the IE or IP registers.

Any of these three conditions will block the generation

" of the LCALL to the interrupt service routine. Condition

2 ensures that the instruction in progress will be completed

------- c1 } Cc2 + c3 -t c4 + C5
issP2l  s6 |
o l I l I l I I ) 1 ) 1 Y] 1
B A\Y A\ T
- ~ " N ~" A ~ .
€ t INTERRUPTS LONG CALLTO INTERRUPT ROUTINE
: ARE POLLED INTERRUPT
INTERRUPT INTERRUPT B VECTOR ADDRESS

GOES LATCHED
ACTIVE

This is the fastest possible response when C2 is the final cycle of
an instruction other than RETI or an access to IE or IP.

Figure 6-25. Interrupt Response Timing Diagram



MCS®-51 ARCHITECTURE

before vectoring to any service routine. Condition 3 en-
sures that if the instruction in progress is RETI or any
access to IE or IP, then at least one more instruction will
be executed before any interrupt is vectored to.

The polling cycle is repeated with each machine cycle,
and the-values polled are the values that were present at
S5P2 of the previous machine cycle. Note then that if an
interrupt flag is active but not being responded to for one
of the above conditions, if the flag is not still active when
the blocking condition is removed, the denied interrupt
will not be serviced. In other words, the fact that the
interrupt flag was once active but not serviced is not re-
membered. Every polling cycle is new.

The polling cycle/LCALL sequence is illustrated in Figure
6-25. .

Note that if an interrupt of higher priority level goes active .

prior to S5P2 of the machine cycle labeled C3 in Figure
6-25, then in accordance with the above rules it will be
vectored to during C5 and C6, without any instruction of
the lower priority routine having been executed.

Thus the processor acknowledges an interrupt request by
executing a hardware-generated LCALL to the appropriate
servicing routine. In some cases it also clears the flag that
generated the interrupt, and in other cases it doesn’t. It
never clears the Serial Port or Timer 2 flags. This has to
be done in the user’s software. It clears an external in-
terrupt flag (IEO or IE1) only if it was transition-activated.
The hardware-generated LCALL pushes the contents of
the Program Counter onto the stack (but it does not save
the PSW) and reloads the PC with an address that depends
on the source of the interrupt being vectored to, as shown
below.

VECTOR
SOURCE ADDRESS

IEO 0003H
TFO 000BH

IE1 0013H
TF1 001BH
RI+TI 0023H
TF2+EXF2 002BH

Execution proceeds from that location until the RETI in-
struction is encountered. The RETI instruction informs
the processor that this interrupt routine is no longer in
progress, then pops the top two bytes from the stack and
reloads the Program Counter. Execution of the interrupted
program continues from where it left off.

Note that a simple RET instruction would also have re-
turned execution to the interrupted program, but it would
have left the interrupt control system thinking an interrupt
was still in progress.

6-25

6.8.3 External Interrupts

The external sources can be programmed to be level-
activated or transition-activated by setting or clcaring bit
IT1 or ITO in Register TCON. If ITx = 0, external in-
terrupt x is triggered by a detected low at the INTx pin.
If ITx = 1, external interrupt x is edge-triggered. In this
mode if successive samples of the INTX pin show a high
in one cycle and’a low in the next cycle, interrupt request
flag IEx in TCON is set. Flag bit IEx then requests the
interrupt.

Since the external interrupt pins are sampled once each
machine cycle, an input high or low should hold for at
least 12 oscillator periods to ensure sampling. If the ex-
ternal interrupt is transition-activated, the external source
has to hold the request pin high for at least one cycle, and
then hold it low for at least one cycle to ensure that the
transition is seen so that interrupt request flag IEx will be
set. JEx will be automatically cleared by the CPU when
the service routine is called.

If the external interrupt is level-activated, the external
source has to hold the request active until the requested
interrupt is actually generated. Then it has to deactivate
the request before the interrupt service routine is com-
pleted, or else another interrupt will be generated.

6.8.4 Response Time

The INTO and INT1 levels are inverted and latched into
IEO and IE1 at S5P2 of every machine cycle. The values
are not actually polled by the circuitry until the next ma-
chine cycle. If a request is active and conditions are right
for it to be acknowledged, a hardware subroutine call to
the requested service routine will be the next instruction
to be executed. The call itself takes two cycles. Thus, a
minimum of three complete machine cycles elapse be-
tween activation of an external interrupt request and, the
beginning of execution of the first instruction of the service
routine. Figure 6-25 shows interrupt response timings.

A longer response time would result if the request is
blocked by one of the 3 previously listed conditions. If
an interrupt of equal or higher priority level is already in
progress, the additional wait time obviously depends on
the nature of the other interrupt’s service routine. If the
instruction in progress is not in its final cycle, the addi-
tional wait time cannot be more than 3 cycles, since the
longest instructions (MUL .and DIV) are only 4 cycles
long, and if the instruction in progress is RETI or an
access to IE or IP, the additional wait time cannot be more
than 5 cycles (a maximum of one more cycle to complete
the instruction in progress, plus 4 cycles to complete the
next instruction if the instruction is MUL or DIV).

Thus, in a single-interrupt system, the response time is
always more than 3 cycles and less than 8 cycles.



MCS®-51 ARCHITECTURE . \

6.9 SINGLE-STEP OPERATION

The 8051 interrupt structure allows single-step execution
with very little software overhead. As previously noted,
an interrupt request will not be responded to while an
interrupt of equal priority level is still in progress, nor
will it be responded to after RETI until at least one other
instruction has been executed. Thus, once an interrupt
routine has been entered, it cannot be ré-entered until at
jeast once instruction of the interrupted program is exe-
cuted. One way to use this feature for single-step operation
is to program one of the external interrupts (say, INTO)
~ to be level-activated. The service routine for the -interrupt
will terminate with the following code:

JNB P3.2,$ ;WAIT HERE TILL INTO
GOES HIGH

JB P3.2,$ ;NOW WAIT HERE TILL
IT GOES LOW

RETI :GO BACK AND

EXECUTE ONE
INSTRUCTION

Now if the INTO pin, which is also the P3.2 pin, is held
normally low, the CPU will go right into the External
Interrupt O routine and stay there until INTO is pulsed
(from low to high to low). Then it will execute RETI, go
back to the task program, execute one instruction, and
immediately re-enter the External Interrupt O routine to
await the next pulsing of P3.2. One step of the task pro-
gram is executed each time P3.2 is pulsed.

6.10 RESET

The reset input is the RST pin, which is the input to a
Schmitt Trigger.

vcec

+

10ut
vcc

8051

RST/VPD
8.2K(2 L

e AAA
W

vss

Figure 6-26. Power on Reset Circuit

A reset is accomplished by holding the RST pin high for
at least two machine cycles (24 oscillator periods), while
the oscillator is running. The CPU responds by executing
an internal reset. It also configures the ALE and PSEN
pins as inputs. (They are quasi-bidirectional). The internal
reset is executed during the second cycle in which RST

“is high and is repeated every cycle until RST goes low.

It leaves the internal registers as follows:

REGISTER CONTENT
PC 0000H
ACC 00H
B 00H
PSW 00H
SP 07H
DPTR 0000H
P0O-P3 OFFH
IP (XX000000)
IE (0X000000)
TMOD 00H
TCON 00H
T2CON 00H
THO ) 00H
TLO 00H
TH1 00H
TL1 00H

- TH2 00H
TL2 00H
RCAP2H 00H
RCAP2L 00H
SCON O00H
SBUF Indeterminate
PCON (0XXX0000)

The internal RAM is not affected by reset. When vCC
is turned on, the RAM content is indeterminate unless the
part is returning from a reduced power mode of operation.

POWER-ON RESET

An automatic reset can be obtained when VCC is turned
on by connecting the RST pin to VCC through a 10 uf
capacitor and to VSS through an 8.2K () resistor, providing
the VCC risetime does not exceed a millisecond and the
oscillator start-up time does not exceed 10 milliseconds.
This power-on reset circuit is shown in Figure 6-26. When
power comes on, the current drawn by RST commences
to charge the capacitor. The voltage at RST is the differ-
ence between VCC and the capacitor voltage, and de-
creases from VCC as the cap charges. The larger the’
capacitor, the more slowly VRST decreases. VRST must
remain above the lower threshhold of the Schmitt Trigger
long enough to effect a complete reset. The time required
is the oscillator start-up time, plus 2 machine cycles.

6.11 POWER-SAVING MODES OF
OPERATION

For applications where power consumption is a critical
factor, both the HMOS and CHMOS versions provide
reduced power modes of operation. For the CHMOS ver-



MCS®@-51 ARCHITECTURE

sion of the 8051 the reduced power modes, Idle and Power
Down, are standard features. In the HMOS versions a
reduced power mode is available, but not as a standard
feature. The local sales office will provide ordering in-
formation for users requiring this feature.

6.11.1 HMOS Power Down Mode

The power down mode in the HMOS devices allows one
to reduce VCC to zero while saving the on-chip RAM
through a backup supply connected to the RST pin. To
use the feature, the user’s system, upon detecting that a
power failure is imminent, would interrupt the processor
in some manner to transfer relevant data to the on-chip
RAM and enable the backup power supply to the RST pin
before VCC falls below its operating limit. When power
returns, the backup supply needs to stay on long enough
to accomplish a reset, and then can be removed so that
normal operation can be resumed.

6.11.2 CHMOS Power Reduction Modes

CHMOS versions have two power-reducing modes, Idle
and Power Down. The input through which backup power
is supplied during these operations is VCC. Figure 6-27
shows the internal circuitry which implements these fea-
tures. In the Idle mode (IDL = 1), the oscillator continues
to run and the Interrupt, Serial Port, and Timer blocks
continue to be clocked, but the clock signal is gated off
to the CPU. In Power Down (PD = 1), the oscillator is
frozen. The Idle and Power Down modes are activated by
setting bits in Special Function Register PCON. The ad-
dress of this register is 87H. Figure 6-28 details its
contents.

IDLE MODE

An instruction that sets PCON.O causes that to be the last
instruction executed before going into the Idle mode. In

(MsB) (LSB)
fsmoo] — | — | — [ar [aro [ po | 1oL ]
Symbol Position Name and Function
SMOD PCON.7 Double Baud rate bit. When setto a
1, the baud rate is doubled when
the serial port is being used in
either modes 1,2 or 3.
-_— PCON.6 (Reserved)
— PCON.5 (Reserved)
- PCON.4 (Reserved)
GF1 PCON.3 General-purpose flag bit.
GFO0 PCON.2 General-purpose flag bit.
PD PCON.1  Power Down bit. Setting this bit

activates power down operation.
iDL PCON.0 Idle mode bit. Setting this bit ac-
tivates idle mode operation.

If 1s are written to PD and IDL at the same time, PD
takes precedence. The reset value of PCON is
(0XXX0000).

Figure 6-28. PCON: Power Control Register

the Idle mode, the internal clock signal is gated off to the
CPU, but not to the Interrupt, Timer, and Serial Port
functions. The CPU status is preserved in its entirety: the
Stack Pointer, Program Counter, Program Status Word,
Accumulator, and all other registers maintain their data
during Idle. The port pins hold the logical states they had
at the time Idle was activated. ALE and PSEN go to their
inactive levels.

There are two ways to terminate the Idle. Activation of
any enabled interrupt will cause PCON.O to be cleared by
hardware, terminating the Idle mode. The interrupt will
be serviced, and following RETI the next instruction to
be executed will be the one following the instruction that
put the device into Idle.

The flag bits GFO and GF1 can be used to give an indi-
cation if an interrupt occurred during normal operation or

| 'jﬂl—
b

XTAL2 = XTAL1

l—-O..";C—-!

| >

CLOCK INTERRUPT,
GEN. SERIAL PORT,

TIMER BLOCKS

CPU

iDL

Figure 6-27. Idié and Power Down Hardware

6-27




MCS®-51 ARCHITECTURE

during an Idle. For example, an instruction that activates
Idle can also set one or both flag bits. When Idle is ter-
minated by an interrupt, the interrupt service routine can
examine the flag bits. .

The other way of terminating the Idle mode is with a
. hardware reset. Since the clock oscillator is still running,

the hardware reset needs to be held active for only two '

machine cycles (24 oscillator periods) to complete the
reset.

POWER DOWN MODE

An instruction that sets PCON.1 causes that to be the last
instruction executed before going into the Power Down
mede. In the Power Down mode, the on-chip oscillator
is stopped. With the clock frozen, all functions are
stopped, but the on-chip RAM and Special Function Reg-
isters are held. The port pins output the values held by
their respective SFRs. ALE and PSEN output lows.

~ The only exit from Power Down is a hardware reset. Reset
redefines all the SFRs, but does not change the on-chip
RAM. E
In the Power down mode of operation, VCC.can be re-
duced to minimize power consumption. Care must be
taken, however, to ensure that VCC is not reduced before
the Power Down mode is invoked, and that VCC is re-
stored to its normal operating level, before the Power
Down mode is terminated. The reset that terminates Power
Down also frees the oscillator. The reset should not be
activated before VCC is restored to its normal operating
level, and must be held active long enough to allow the
oscillator to restart and stabilize (normally less than 10
msec).

6.12 8751H

The 8751H is the EPROM member of the MCS-51 family.
This means that the on-chip Program Memory can be
electrically programmed, and can be erased by exposure
to ultraviolet light. The 8751H also has a provision for
denying external access to the on-chip Program Memory,
in order to protect its contents against software piracy.

* 6.12.1 Programming the EPROM

To be programmed, the 8751H must be running with a

" 4 to 6 MHz oscillator. (The reason the oscillator needs to
be running is that the internal bus is being used to transfer
address and program data to appropriate internal registers.)
The address of an EPROM location to be programmed is
applied to Port 1 and pins P2.0-P2.3 of Port 2, while the
data byte is applied to Port 0. Pins P2.4-P2.6 and PSEN
should be held low, and P2.7 and RST high. (These are
all TTL levels except RST, which requires 2.5V for a
logic high.) EA/VPP is held normally high, and is pulsed
to +21V. While EA/VPP is at 21V, the ALE/PROG pin,
which is normally bemg held high, is pulsed low for 50
msec. Then EA/VPP is returned to high. This setup is
shown in Figure 6.29. Detailed timing specnﬁcauons are
provided in the 8751H data sheet

Note: The EA pin must not be allowed to go above the
maximum specified VPP level of 21.5V for any amount
of time. Even a narrow glitch above that voltage level can
cause permanent damage to the device. The VPP source
should be well regulated and free of glitches.

6.12.2 Program Verification

If the program securityv bit has not been programmed, the
on-chip Program Memory can be read out for verification

+5V

ADDR.
—A7 )P
0000H- Aoz
OFFFH
— N\ P2.0-
i ILILY), oyt
2.4
1 Ap25
_ ‘ P26
" TTL HIGH p2.7
= XTAL2
4-6 MHz 3 3
T3 XTAL1
s

||

K PGM DATA

[<¢—— ALE/PROG

Vee

8751H
PO

ALE

EA f«——EAVPP

< VIH1

1 -

RST
PSEN

Figure 6-29. Programming the 8751H

6-28



MCS®-51 ARCHITECTURE

purposes, if desired, either during or after the program-
ming operation. The required setup, which is shown in
Figure 6.30, is the same as for programming the EPROM
except that pin P2.7 is held at TTL low (or used as an
active-low read strobe). The address of the Program Mem-
ory location to be read is applied to Port 1 and pins
P2.0-P2.3. The other Port 2 pins and PSEN are held low.
ALE, EA, and RST are held high. The contents of the
addressed location will come out on Port 0. External pul-
lups are required on Port O for this operation.

6.12.3 Program Memory Security

The 8751H contains a security bit, which, once pro-
grammed, denies electrical access by any external means
to the on-chip Program Memory. The setup and procedure
for programming the security bit are the same as for normal

programming, except that pin P2.6 is held at TTL high.
The setup is shown in Figure 6.31. Port 0, Port 1, and
pins P2.0-P2.3 of Port 2 may be in any state.

Once the security bit has been programmed, it can be
deactivated only by full erasure of the Program Memory.
While it is programmed, the internal Program Memory
cannot be read out, the device cannot be further pro-
grammed, and it cannot execute external program mem-
ory. Erasing the EPROM, thus deactivating the security
bit, restores the device’s full functionality. It can then be
re-programmed.

6.12.4 Erasure Characteristics

Erasure of the 8751H Program Memory begins to occur .
when the chip is exposed to light with wavelengths shorter

ADDR
0000H- Ag- A7 NP1
OFFFH :
! P2.0-
A3 A1l ¥ oo e75H
8051AH
P2.4
L P25
P26
ENABLE P27
XTAL2
=4 =
4-6 MHz [ _1h_—|
= XTAL1

Vss

+5V
Vee __l
PO PGM DATA
(USE 10K PULLUPS)
ALE = TTL HIGH
EA }:I'
RST VIH1
PSEN '_—_L

Figure 6-30. Program Verification in the 8751H and 8051AH

+5V
X = “DON'T -CARE”
P1 Vee
X
P2.0- PO | X
P2.3
8751H
I A e PROG
-+ P2.5 ALE |<——— ALE/PROG 50 ms PULSE TO GND
P2.6
TTL HIGH —1: P2.7 ‘
o= XTAL2 EA [«——EA/VPP +21V PULSE
4-6MHz T ‘r-l
T3 XTAL1 RST VIH1
t—- Vss PSEN .—-L
Figure 6-31. Programming the Security Bit in the 8751H

6-29



MCS®-51 ARCHITECTURE

than approximately 4,000 Angstroms. Since sunlight and
fluorescent lighting have wavelengths in this range,-ex-
posure to these light sources over an extended time (about
1 week in sunlight, or 3 years in room-level fluorescent
lighting) could cause inadvertent erasure. If an application
subjects the 8751H to this type of exposure, it is suggested
‘that an opaque label be placed over the window.

The recommended erasure procedure is exposure to ultra-
violet light (at 2537 Angstroms) to an integrated dose of
at least 15 W/cm?. Exposing the 8751H to an ultraviolet_
lamp of 12,000 uW/cm? rating for 20 to 30 minutes, at’
a distance of about 1 inch, should be sufficient.

Erasure leaves the array in an all 1s state.

6.13 MORE ABOUT THE ON-CHIP
OSCILLATOR

6.13.1 HMOS Versions

The on-chip oscillator circuitry for the HMOS (HMOS-I
and HMOS-II) members of the MCS-51 family is a single
stage linear inverter (figure 6-32), intended for use as a
crystal-controlled, positive reactance oscillator (Figure 6-
33). In this application the crystal is operated in its fun-
damental response mode as an inductive reactance in par-
allel resonance with capacitance external to the crystal.

Q3 TIMING CKTS
@ —ﬁu XTAL2

TO INTERNAL

Lo

Ve

Figure 6-32. On-Chip Oscillator Circuitry in the HMOS Versions of the MCS-51 Fémily

Q2

AAA
VWA

Qt

TO INTERNAL
TIMING CKTS

[: Q3, 04
Vss <

VWA~

I AVl

___.?"_5‘_‘._ EHXTAU_:E

-

QUARTZ CRYSTAL
OR CERAMIC RESONATOR

LAY AN

Cq Ca.

5y

Figure 6-33. Using the HMOS On-Chip Oscillator

6-30



MCS®-51 ARCHITECTURE

The crystal specifications and capacitance values (C1 and
C2 in Figure 6-33) are not critical. 30 pF can be used in
these positions at any frequency with good quality crys-

tals. A ceramic resonator can be used in place of the

crystal in cost-sensitive applications. When a ceramic res-
onator is used, C1 and C2 are normally selected to be of
somewhat higher values, typically, 47 pF. The manufac-
turer of the ceramic resonator should be consulted for
recommendations on the values of these capacitors.

Vce
8051
EXTERNAL
. XTAL2
OSCILLATOR
SIGNAL T XTAL1
TTL
GATE Vss

Figure 6-34. Driving the HMOS MCS-51 Parts
with an External Clock Source

A more in-depth discussion of crystal specifications, ce-
_ramic resonators, and the selection of values for C1 and
C2 can be found in Application Note AP-155, “‘Oscillators
for Microcontrollers,’’ which is included in this manual.

To drive the HMOS parts with an external clock source,
apply the external clock signal to XTAL2, and ground
XTALL1, as shown in Figure 6-34. A pull-up resistor is
suggested because the logic levels at XTAL2 are not TTL.

6.13.2 CHMOS

The on-chip oscillator circuitry for the 80C51, shown in
Figure 6-35, consists of a single stage linear inverter in-
tended for use as a crystal-controlled, positive reactance
oscillator in the same manner as the HMOS parts. How-
ever, there are some important differences.

One difference is that the 80C51 is able to turn off its

- oscillator under software control (by writing a 1 to the PD

bit in PCON). Another difference is that in the 80C51 the
internal clocking circuitry is driven by the signal at
XTAL1, whereas in the HMOS versions it is by the signal
at XTAL2.

The feedback resistor Rf in Figure 6-35 consists of par-
alleled n- and p-channel FETs controlled by the PD bit,
such that Rf is opened when PD = 1. The diodes D1 and
D2, which act as clamps to VCC and VSS, are parasitic
to the Rf FETs.

TO INTERNAL
TIMING CKTS

Vee

ﬂ

D1
400 Q

_—{EE

Rt

XTAL1 D AN

D2

WA D XTAL2

Figure 6-35. On-Chip Oscillator Circuitry in the CHMOS Versions of the MCS-51 Family

6-31



MCS®-51 ARCHITECTURE

Vee
TO INTERNAL )
_ TIMING CKTS __D"_
Rt
3
Vss
———————— | xmu-——-——f_J] XTAL2 - — = — —
80C51 .
_4———— QUARTZ CRYSTAL
0l OR CERAMIC
RESONATOR
174 AR

Figure 6-36. Using the CHMOS On-Chip Oscillator

The oscillator can be used with the same external com-
ponents as the HMOS versions, as shown in Figure 6-36.
Typically, C1 = C2 = 30 pF when the feedback element
is a quartz crystal, and C1 = C2 = 47 pF when a ceramic
resonator is used.

To drive the CHMOS parts with an external clock source,
apply the external clock signal to XTAL1, and leave
XTAL?2 float, as shown'in Figure 6-37.

6.14 MCS-51 PIN DESCRIPTIONS

VCC: Supply voltage.

80C51

NC— XTAL2

EXTERNAL
—Do—— XTAL1
OSCILLATOR |
SIGNAL T v
[

TTL GATE
OR CMOS GATE

WITH PULL-UP

" Figure 6-37. Driving the CHMOS MCS-51 Parts
- with an External Clock Source

VSS: Circuit ground potenﬁal.

Port 0: Port 0 is an 8-bit open drain bidirectional I/O port.
As an open drain output port it can sink 8 LS TTL loads.
Port 0 pins that have 1s written to them float, and in that
state will function as high-impedance inputs. Port 0 is also
the multiplexed low-order address and data bus during
accesses to external memory. In this application it uses
strong internal pullups when emitting 1s. Port 0 also emits
code bytes during program verification. In that applica-
tion, external pullups are required.

Port 1: Port 1 is an 8-bit bidirectional /O port with in-
ternal pullups. The port 1 output buffers can sink/source
4'LS TTL loads. Port 1 pins that have 1s written to them
are pulled high by the internal pullups, and in that state
can be used as inputs. As inputs, Port 1 pins that are
externally being pulled low will source current (IIL, on
the data sheet) because of the internal pullups.

In the 8052, pins P1.0 and P1.1 also serve the alternate
functions of T2 and T2EX. T2 is the Timer 2 external
input. T2EX is the input through which a Timer 2 ‘‘cap-
ture’’ is triggered.

Port 2: Port 2 is an 8-bit bidirectional I/O port with in-
ternal pullups. The Port 2 output buffers can sink/source
4 LS TTL loads. Port 2 emits the high-order address byte
during accesses to external memory that use 16-bit ad-
dresses. In this application it uses the strong internal pul-
lups when emitting 1s. Port 2 also receives the high-order
address and control bits during 8751H programming and
verification, and during program verification in the 8051AH.

6-32



MCS®-51 ARCHITECTURE

Port 3: Port 3 is an 8-bit bidirectional I/O port with in-
ternal pullups. It also serves the functions of various spe-
cial features of the MCS-51 Family, as listed below:

PORT PIN ALTERNATE FUNCTION
P3.0 RXD (serial input port)
P3.1 TXD (serial output port)
P3.2 INTO (external interrupt 0)
P3.3 INT1 (external interrupt 1)
P3.4 TO (Timer 0 external input)
P3.5 T1 (Timer 1 external input)
P3.6 WR (external data memory

write strobe)

P3.7 RD (external data memory

read strobe)
The Port 3 output buffers can source/sink 4 LS TTL loads.

RST: Reset input. A high on this pin for two machine
cycles while the oscillator is running resets the device.

ALE/PROG: Address Latch Enable output pulse for
latching the low byte of the address during accesses to
external memory. ALE is emitted at a constant rate of
1/6 of the oscillator frequency, for external timing or
clocking purposes, even when there are no accesses to

6-33

‘external memory. (However, one ALE pulse is skipped
during each acces to external Data Memory) This pin is
also the program pulse input (PROG) during EPROM
programming.

PSEN: Program Store Enable is the read strobe to external
Program Memory. When the device is executing out of
external Program Memory, PSEN is activated twice each
machine cycle (except that two PSEN activations are
skipped during accesses to external Data Memory). PSEN
is not activated when the device is executing out of internal
Program Memory.

EA/VPP: When EA is held high the CPU executes out
of internal Program Memory (unless the Program Counter
exceeds OFFFH in the 8051AH, or 1FFFH in the 8052).
Holding EA low forces the CPU to execute out of external
memory regardless of the Program Counter value. In the
8031AH and 8032, EA must be externally wired low. In
the 8751H, this pin also receives the 21V programming
supply voltage (VPP) during EPROM programming.

XTALZ1: Input to the inverting oscillator amplifier.

XTAL2: Output from the inverting oscillator amplifier.






MCS®-51 Memory Organization, : 7







CHAPTER 7 .
MCS®-51 MEMORY ORGANIZATION, ADDRESSING
MODES AND BOOLEAN PROCESSOR

7.0INTRODUCTION

The MCS®-51 architecture, provides on-chip memory
as well as off-chip memory expansion capabilitics. Sev-
eral addressing mechanisms are incorporated to allow
for an optimal instruction set.

7.1 MEMORY ORGANIZATION

The 8051 has three basic memory address spaces:
® 64K-byte Program Memory;

¢ 64K-byte External Data Program Memory; and

® 256-byte (384 bytes for the 8032/8052 Internal Data
Memory

Figure 7-1 shows MCS@-51 memory maps.
PROGRAM MEMORY ADDRESS SPACE

The 64K-byte Program Memory space consists of an
internal and an external memory portion. If the EA pin
is held high, the 8051 executes out of internal program
memory unless the address exceeds OFFFH (IFFFH
for the 8052). Locations 1000H through OFFFFH
(2000H through OFFFFH for the 8052), are then
fetched from external Program memory. If the EA pin
is held low, the 8051 fetches all instructions from exter-
nal Program Memory. In cither case, the 16-bit Pro-
gram Counter is the addressing mechanism.

Locations 00 through 23H (00 through 2BH for the 8032/
8052) in Program Memory are used by interrupt service
routines as indicated in Table 1.

DATA MEMORY ADDRESS SPACE

The Data Memory address space consists of an internal
and an external memory space. External Data Memory
is accessed when a MOV X instruction is executed.

Internal Data Memory is divided into three physically
separate and distinct blocks: the lower 128 bytes of
RAM; the upper 128 bytes of RAM (accessable in the
8032/8052 only); and the 128-byte Special Function
Register (SFR) area. While the upper RAM area and
the SFR area share the same address locations, they are
accessed ‘through different addressing modes. These
modes are discussed in a iater section.

Figure 7-2 shows a mapping of Internal Data Memory.
Four 8-Register Banks occupy locations 0 through 31 in
the lower RAM area. Only one of these banks may be
enabled at a time (through a two-bit field in the PSW).
The next sixteen bytes, locations 32 through 47 contain

128 bit addressable locations. Figure 7-3 shows the
RAM bit addresses. The SFR arca also has bit addres-
sable locations. They are shown in Figure 7-4.

Note that reading from unused locations in Internal
Data Memory will yield random data.

Table 1.

Source Address
External Interrupt 0 0003H
Timer 0 Overflow 000BH
External Interrupt | 0013H
Timer | Overflow 001BH
Serial Port 0023H
Timer 2 Overflow/ TZEX 002BH
Negative Transition

7.2 ADDRESSING MODES

The 8051 uses five addressing modes:

® Register;

® Direct;

e Register Indirect;

© Immediate; and ]

® Base-Register plus Index-Register Indirect.

Table 2 summarizes which memory spaces may be ac-
cessed by each of the addressing modes.

Table 2. Addressing Method and Associated
Memory Spaces

Register Addressing

— RO-R7
-~ ACC, B, CY(bit), DPTR

Direct Addressing
- Lower 128 bytes of internal RAM
— Special Function Registers
Register Indirect Addressing

— Internal RAM (@RI, @RO, SP)
— External Data Memory (@R 1, RO, @DPTR)

Immediate Addressing
— Program Memory

Base-Register plus Index-Register
Indirect Addressing

— Program Memory (@DPTR + A, @ PC + A)




MCS®-51 MEMORY ORGANIZATION, ADDRESSING MODES AND BOOLEAN PROCESSOR

FFFF
FFFF
EXTERNAL
1000
_ C - N
OFFF OFFF
INTERNAL EXTERNAL
(EA=1) (EA = 0) o B T
FUNCTION
80 | _REGISTERS
7F|  INTERNAL
0000 0000 oo DATARAM 0000
N— D) '_\ ~ —_—
Y Y
PROGRAM MEMORY INTERNAL DATA MEMORY EXBiF;:AL
, A. MCS®-51 MEMORY MAP (EXCLUDING 8032/8052) MEMORY
FFFF !
FFFF
EXTERNAL
3000
_ Fa i N
2FFF 2FFF
OVERLAPPED
SPACE
INTERNAL EXTERNAL
€A=1 EA=0) FF "~ SPECIAL
FUNCTION
oy REGISTERS
7F | TINTERNAL
0000 0000 go| DATARAM 0000
\ J \ J (¢ -
Y Y Y
PROGRAM MEMORY INTERNAL EXTERNAL
: . DATA MEMORY ~ DATA
’ MEMORY
B. 8032/8052 MEMORY MAP

Figure 7-1. MCS®-51 Memory Maps

7-2



MCS®-51 MEMORY ORGANIZATION, ADDRESSING MODES AND BOOLEAN PROCESSOR

SPECIAL
FUNCTION
REGISTERS
/_L\
255 FOH
o
C3H<
%%3522’ ADDRESS-
ONLY BEH ABLE BITS
BOH IN SFRs
ABH
AOH
98H
90H
88H
128 80H
127
ADDRESS- _ 48
ABLE BITS 127 120
IN RAM %
(128 BITS) >£ ;7 0
| 24 |Ro PANK3
‘ . :g BANK 2
REGISTERS< — [0
8 |ro BANK1
R7
o RTBANKO
INTERNAL
DATA RAM *8032/8052 ONLY

Figure 7-2. Internal Data Memory Address Space
REGISTER ADDRESSING

Register Addressing accesses the eight working regis-
ters (R0O-R7) of the selected Register Bank. The least
significant three bits of the instruction op code indicate
which register is to be used. ACC, B, DPTR and CY,
the Boolean Processor accumulator, can also be ad-
dressed as registers.

DIRECT ADDRESSING

Direct Addressing is the only method of accessing the
Special Function Registers. The lower 128 bytes of
Internal RAM are also directly addressable.

REGISTER-INDIRECT ADDRESSING

Register-Indirect Addressing uses the contents of either
ROor R1 (in the selected Register Bank) as a pointer to
locations in a 256-byte block: the lower 128 bytes of
internal RAM; the upper 128 bytes of internal RAM
(8032/8052 only); or the lower 256 bytes of external

RAM
Byte (MSB) (LSB)
7FH 127
2FH- 7F | TE(7D [ 7C| 7B |.7TA| 79| 78 47
2EH 77| 761 75|74 73|72|71] 70 46
2DH 6F | 6E| 6D | 6C | 6B | 6A | 69 | 68 45
2CH 67 | 66| 65 | 64 | 63 | 62 | 61 | 60 44
2BH SF | SE| 5D | 5C | 5B | 5A | 59 | 58 43
2AH 57 | 56| 55 | 54 | 53 | 52 | 51 | 50 42
29H 4F | 4E| 4D | 4C | 4B | 4A | 49 | 48 41
28H 47 | 46| 45 | 44 | 43 | 42 | 41| 40 40
27TH 3F | 3E|3D|3C|3B|3A]| 39| 38 39
26H 37 | 36|35 (34 ]33|32|31|30 38
25H 2F | 2E|2D|2C | 2B | 2A | 29 | 28 37
24H 27| 26| 25|24 | 23 | 22| 21| 20 36
23H 1F| 1E({1D{1C | 1B|1A| 19| 18 35
22H 17 116 (15 {14 | 13 [ 12| 11| 10 34
21H OF | CE|{OD |OC | 0B |OA | 09 | 08 33
20H 07 | 06| 05|04 |03]|02|01]|00 32
1FH 31
Bank 3
18H 24
17H 23
Bank 2
10H 16
OFH 15
Bank 1
08H 8
o7H 7
Bank 0
00H 0

Figure 7-3. Special Function Bit
‘Addressable Locations

Data Memory. Note that the Special Function Registers
are not accessable by this method. Access to the full 64K
external Data Memory address space is accomplished by
using the 16-bit Data Pointer. '

Execution of PUSH and POP instructions also use
Register-Indirect addressing. The Stack Pointer may
reside anywhere in Internal RAM. .

- IMMEDIATE ADDRESSING

Immediate Addressing allows constants to be part of
the op code instruction in Program Memory.




MCS®-51 MEMORY ORGANIZATION, ADDRESSING MODES AND BOOLéAN PROCESSOR

BASE-REGISTER PLUS INDEX
REGISTER-INDIRECT ADDRESSING

Base-Register plus Index Register-Indirect Addressing
allows a byte to be accessed from Program Memory via
an indirect move from the location whose address is the
sum of a base register (DPTR or PC) and index register,
ACC. This mode facilitates look-up-table accesses.

7.3 BOOLEAN PROCESSOR

The Boolean Processor is an integrated bit processor
within the 8051. It has its own instruction set, accumu-
lator (the carry flag), and bit addressable RAM and /0.

The bit-manipulation instructions allow a bit to be set,
cleared, complimented, jump-if-set, jump-if-not-set,
jump-if-set-then-cleared and moved to/from the carry.
Addressable bits, or their compliments, may be logically
ANDed or ORed with the contents of the carry ﬂag The
result is returned to the carry reglster

Direct Hardware

Byte Bit Addresses Register
Address  (MSB) (LSB) Symbol
240 n.lrs'rsln|ra|m|mlrn B
224 z7leslss]s4|z:'ez,s1|so ACC
CY AC FO RS1 RSO OV P
208 o7los|ns|m|oa|oz|m|no PSW
TF2 EXF2 RCLK TCLK.EXEN2 TR2 C/T2 CP/RLZ,

200 cplcslcolcc,cs'mlcslcs T2CON

PT2 Ps PT1 PX1 PTO  PXO

[ Te[elnlnlenla]-

176 B7IBGIBSlBIIBSI32,81(BD P3

184

EA ET2 ES ET1 EX1 ETO - EXO
168 AFl—IADlAClABlAAIASlA! IE
160 A7|As|A5|A4lA:|AzlA1IAo P2
SMO SM1 SM2 REN TBS RB8 TI Rl
152 9F | 9E | QDJ 9C l 9B l 9A I 99 i 98 | SCON
144 97|ss|95i94|93[92191loo Pt
TF1 TR TFO TRO IE1 IT1- IE0 ITO
136 °‘|’5|°I’|’Bl°ﬂ”l“ TCON

o Tl wlalelalol el

128

Figure 7-4. Special Function Register Bit Address



MCS®.51 Instruction Set 8







CHAPTER 8
MCS®-51 INSTRUCTION SET

8.0 INTRODUCTION

The MCS®-51 instruction set includes 111 instructions,
49 of which are single-byte, 45 two-byte and 17 three
byte. The instruction op code format consists of a func-
tion mnemonic followed by a “destination, source”
operand field. This field specifies the data type and
addressing method(s) to be used.

8.1 FUNCTIONAL OVERVIEW

The MCS-51 instruction set is divided into four func-
tional groups:

Data Transfer
Arithmetic

Logic

Control Transfer

® & 0o @

8.1.1 Data Transfer

Data transfer operations are divided into three classes:

e General Purpose
® Accumulator-Specific
e Address-Object

None of these operations affect the PSW flag settings
except a POP or MOV directly to the PSW.

GENERAL-PURPOSE TRANSFERS

® MOV performs a bit or a byte transfer from the
source operand to the destination operand.

e PUSH increments the SP register and then transfers
a byte from the source operand to the stack location
currently addressed by SP.

e POP transfer a byte operand from the stack location

addressed by SP to the destination operand and then
decrements SP.

ACCUMULATOR SPECIFIC TRANSFERS

® XCH exchanges the byte source operand with regis-
ter A (accumulator).

® XCHD exchanges the low-order nibble of the byte
source operand with the low-order nibble of A.

8-1

e MOVX performs a byte move between the External
Data Memory and the accumulator. The external
address can be specified by the DPTR register (16-
bit) or the R1 or RO register (8-bit).

® MOVC moves a byte from Program memory to the
accumulator. The operand in A is used as an index
into a 256-byte table pointed to by the base register
(DPTR or PC). The byte operand accessed is trans-
ferred to the accumulator.

ADDRESS-OBJECT TRANSFER

"o MOV DPTR, #data loads 16-bits’ of immediate data

into a pair of destination registers, DPH and DPL.

8.1.2 Arithmetic

The 8051 has four basic mathematical operations. Only
8-bit operations using unsigned arithmetic are sup-
ported directly. The overflow flag, however, permits the
addition and subtraction operation to serve for both
unsigned and signed binary integers. Arithmetic can
also be performed directly on packed decimal (BCD)
representations.

ADDITION

e INC (increment) adds one to the source operand and
puts the result in the operand.

e ADD adds A to the source operand and returns the
result to A.

e ADDC (add with Carry) adds A and the source
operand, then adds one (1) if CY is set, and puts the
result in A.

® DA (decimal-add-adjust for BCD addition) corrects
the sum which results from the binary addition of -
two two-digit decimal operands. The packed decimal
sum formed by DA is returned to A. CY is set if the
BCD result is greater than 99; otherwise, it is cleared.

SUBTRACTION

e SUBB (subtract with borrow) subtracts the second
source operand from the first operand (the accumu-
lator), subtracts one (1) if CY is set and returns the
result to A.

o DEC (decrement) subtracts one (1) from the source
operand and returns the result to the operand.



MCS®-51 INSTRUCTION SET ’

MULTIPLICATION

MUL performs an unsigned multiplication of the A
register by the B register, returning a double-byte
result. A receives the low-order byte, B receives the
high-order byte. OV is cleared if the top half of the
result is zero and is set if it is non-zero. CY is cleared.
AC is unaffected.

DIVISION

DIV performs an unsigned division of the A register by.
the B register and returns the integer quotient to A and
returns the fractional remainder to the B register.
Division by zero leaves indeterminate data in registers
A and B and sets OV; otherwise OV is cleared. CY is
cleared. AC is unaffected.

Unless otherwise stated in the above descriptions, the

-flags of PSW are affected as follows:

CY is set if the operation causes a carry to or from the
resulting high-order bit. Otherwise CY is cleared.

AC is set if the operation results in a carry from the
low-order four bits of the result (during addition), or
a borrow from the high-order bits to the low-order
bits (during subtraction); otherwise AC is cleared.

OV is set if the operation results in a carry to the
high-order bit of the result but not a carry from the
high-order bit, or vice versa; otherwise OV is cleared.
OV is used in two's-complement arithmetic, because
it is set when the signed result cannot be represented
in 8 bits.

P is set if the modulo 2 sum of the eight bits in the
accumulator is 1 (odd parity); otherwise P is cleared
(even parity). When a value is written to the PSW
register, the P bit remains unchanged, as it always
reflects the parity of A.

8.1.3 Logic

The 805! performs basic logic operations on both bit
and byte operands.

SINGLE-OPERAND OPERATIONS

CLR sets A or any directly addressable bit to zero (0).
SETB sets any directly addressable bit to one (1).
CPL is ‘used to compliment the contents of the A

register without affecting any flags, or any directly
addressable bit location.

8-2

e RL, RLC, RR, RRC, SWAP are the five rotate

operations that can be performed on A. RL, rotate left,
RR, rotate right, RLC, rotate left through C, RRC,
rotate right through C, and SWAP, rotate left four.
For RLC and RRC the CY flag becomes equal to the
last bit rotated out. SWAP rotates A left four places to
exchange bits 3 through 0 with bits 7 through 4.

TWO-OPERAND OPERATIONS

ANL performs bitwise logical and of with two source
operands (for both bit and byte operands) and returns
the result to the location of the first operand.

ORL performs bitwise logical or of two source oper-
ands (for both bit and byte operands) and returns the
result of the location of the first operand.

XRL performs bitwise logical or of two source oper-
ands (byte operands) and returns the result to the loca-
tion of the first operand. '

8.1.4 Control Transfer

There are three classes of ‘control transfer operations:
- unconditional calls, returns and jumps; conditional
jumps; and-interrupts. All control transfer operations
cause, some upon a specific condition, the program
execution to continue at a non-sequential location in
program memory.

UNCONDITIONAL CALLS, RETURNS
AND JUMPS

Unconditional calls, returns and jumps transfer control
from the current value of the Program Counter to the
target address. Both direct and indirect transfers are
supported.

ACALL and LCALL push the address of the next

-instruction onto the stack and then transfer control

to the target address. ACALL is a 2-byte instruction
used when the target address is in the current 2K
page. LCALL is a 3-byte instruction that addresses
the full 64K program space. In ACALL, immediate
data (i.e. an 11 bit address field) is concatenated to
the five most significant bits of the PC (which is
pointing to the next instruction).-If ACALL is in the
last 2 bytes of a JK page then the call will be made to
the next page since the PC will have been incre-
mented to the next instruction prior to execution.



MCS®-51 INSTRUCTION SET

RET transfers control to the return address saved on
the stack by a previous call operation and decre-
ments the SP register by two (2) to adjust the SP for
the popped address.

AJMP, LIMP and SJMP transfer control to the target
operand. The operation of AJMP and LIMP are
analogousto ACALL and LCALL. The SIMP (short
jump) instruction provides for transfers within a 256
byte range centered about the starting address of the
next instruction (-128 to +127).

JMP @A+DPTR performs a jump relative to the
DPTR register. The operand in A is used as the offset
(0-255) to the address in the DPTR register. Thus, the
effective destination for a jump can be anywhere in the
Program Memory space.

CONDITIONAL JUMPS

Conditional jumps perform a jump contingént upon a
specific condition. The destination will be within a 256~
-byte range centered about the starting address of the
next instruction (-128 to +127).

e JZ performs a jump if the accumulator is zero.

® JNZ performs a jump if the accumulator is not zero.

® JC performs a jump if the carry flag is set.

JNC performs a jump if the carry flag is not set.

JB performs a jump if the Direct Addressed bit is set.

® JNB performs a jump if the Direct Addressed bit is
not set.

JBC performs a jump if the Direct Addressed bit is
set and then clears the Direct Addressed bit.

CJNE compares the first operand to the second ope-
rand and performs a jump if they are not equal. CY is
set if the first operand is less than the second ope-
rand; otherwise it is cleared. Comparisons can be

made between A directly addressable bytes in Internal
Data Memory or between an immediate value and
either A, a register in the selected Register Bank, or a
Register-Indirect addressed byte of Internal RAM.

© DJNZ decrements the source operand and returns the
result to the operand. A jump is performed if the result
is not zero. The source operand of the DJNZ instruc-
tion may be any byte in the Internal Data Memory.
Either Direct or Register Addressing may be used to
address the source operand.

INTERRUPT RETURNS

e RETI transfers control as does RET, but addition-
ally enables interrupts of the current priority level.

8.2 INSTRUCTION DEFINITIONS

Each of the 51 basic MCS-51 operations, ordered
alphabetically according to.the operation mnemonic
are described beginning page 8-8.

A brief example of how the instruction might be used is
given as well as its effect on the PSW flags. The number
of bytes and machine cycles required, the binary machine-
language encoding, and a symbolic description or restate-
ment of the function is also provided.

Note: Only the carry, auxiliary-carry, and overflow flags
are discussed. The parity bit is computed after every in-
struction cycle that alters the accumulator. Similarly,
instructions which alter directly addressed registers could
affect the other status flags if the instruction is applied to
the PSW. Status flags can also be modified by bit-
manipulation.

For details onthe MCS-51 assembler, ASM5], refer to
the MCS-51 Macro Assembler User’s Guide, publication
number 9800937. ‘ :

Table 8-1 summarized the MCS-51 instruction set.



MCS®-51 INSTRUCTION SET

Table 8-1. 8051 Instruction Set Summary

Interrupt Response Time: To finish execution of currént in-

struction, respond to the interrupt request, push the PC and to .

vector to the first instruction of the interrupt service program
requires 38 to 81 oscillator periods (3 to 7us @ 12 MHz).

INSTRUCTIONS THAT AFFECT FLAG SETTINGS!

INSTRUCTION  FLAG INSTRUCTION. FLAG
. C OV AC C OVAC

ADD X X X CLRC o

ADDC X X X CPLC X

SUBB X X. X ANLGC,bit X

MUL 0 X ANL C,/bit X

DIV 0 X ORL C,bit X

DA X ORL C,bit X

RRC X MOV C,bit X

RLC X CINE X

SETBC 1

INote that operations on SFR byte address 208 or bit ad-

Notes on instruction set and addressing modes:

Rn —Register R7-R0 of the currently selected Register
Bank. )
direct —8-bit internal data location’s address. This could be

an Internal Data RAM location (0-127) or a SFR
[i.e., 1/O port, control register, status register, etc.
(128-255)].

‘@Ri —8-bit internal data RAM location (0-255) addressed

indirectly through register R1 or RO.

#data  —8-bit constant included in instruction.

#data 16 —16-bit constant included'in instruction

addr 16 —16-bit destination address. Used by LCALL &
LJMP. A branch can be anywhere within the 64K-
byte Program Memory address space.

addr 11 —11-bit destination address. Used by ACALL &
AJMP. The branch will be within the same 2K-byte
page of program memory as the first byte of the
following instruction.

rel —Signed (two’s complement) 8-bit offset byte. Used
by SIMP and all conditional jumps. Range is -128
to +127 bytes relative to first byte of the following

X - © . instruction.
:Ffe:s:?]am::t'ii (S"e" the PSW or bits in the PSW) will also bit —Direct Addressed bit in Internal Data: RAM or
8 8. Special Function Register.
* —New operation not provided by 8048AH /8049AH.

ARITHMETIC OPERATIONS

Oscillator
Period

Add register to 1 12
Accumulator

Add direct byte to 2 12
Accumulator

Add indirect RAM | 12
to Accumulator

Add immediate 2 12
data to

Accumulator

Add register to 1 12
Accumulator

with Carry

Add direct byte to 2 12
Accumulator

with Carry

Add indirect 1 12
RAM to :
Accumulator

with Carry

Add immediate 2 12
data to Acc

with Carry

Subtract register 1 12
from Acc with

borrow

Subtract direct 2 12
byte from Acc

with borrow

Mnemonic - Description Byte

ADD - ARn
ADD A, direct
ADD A,@Ri

ADD A #data
ADDC A,Rn
ADDC A.direct

ADDC A,@Ri

ADDC A, #data
SUBB A,Rn

SUBB  A,direct

ARITHMETIC OPERATIONS Cont.

Oscillator
Mnemonic Description Byte  Period

SUBB A,@Ri Subtract indirect 1 12

RAM from Acc
: with borrow

SUBB  A,#data Subtract 2 12
immediate data
from Acc with
borrow

INC A Increment 1 12
Accumulator

INC Rn ‘Increment register 1 12

INC direct Increment direct 2 12
byte

INC @Ri Increment indirect 1 12
RAM

DEC A Decrement 1 12
Accumulator

DEC Rn Decrement 1 12

) Register

DEC direct Decrement direct 2 12
byte

DEC @Ri Decrement 1 12
indirect RAM

INC DPTR Increment Data 1 24
Pointer

MUL AB Multiply A & B- 1 48

DIV AB Divide A by B 1 48

DA A Decimal Adjust 1 12

Accumulator

All mnemonics copyrighted ©Intel Corporation 1980




MCS®-51 INSTRUCTION SET

Table 8-1. 8051 Instruction Set Summary (Continued)

LOGICAL OPERATIONS

ANL

ANL

ANL

ANL

ANL

ANL

ORL

ORL

ORL

ORL

ORL

ORL

XRL

XRL

Mnemonic

A,Rn
A.direct

A,@Ri

A, #data

direct,A
direct,#data
A,Rn
A,direct
A,@Ri

A #data

direct,A
direct,#data

A,Rn

A.direct

Description

AND register to
Accumulator
AND direct byte
to Accumulator
AND indirect
RAMto
Accumulator
AND immediate
data to
Accumulator
AND Accumulator
to direct byte
AND immediate
data to direct byte
OR register to
Accumulator

OR direct byte to
Accumulator

OR indirect RAM
to Accumulator
OR immediate
datato
Accumulator

OR Accumulator
to direct byte

OR immediate
data to direct byte
Exclusive-OR
register to
Accumulator
Exclusive-OR
direct byte to
Accumulator

Byte
1

Oscillator
Period

LOGICAL OPERATIONS Cont.

Mnemonic
XRL A,@Ri
XRL A #data
XRL direct,A
XRL direct,#data

CLR

CPL

RL

RR

RRC

SWAP

Description

Exclusive-OR
indirect RAM to
Accumulator
Exclusive-OR
immediate data to
Accumulator
Exclusive-OR
Accumulator to
direct byte
Exclusive-OR
immediate data
to direct byte
Clear
Accumulator
Complement
Accumulator
Rotate
Accumulator Left
Rotate
Accumulator Left
through the Carry
Rotate
Accumulator
Right

Rotate -
Accumulator
Right through
the Carry

Swap nibbles
within the
Accumulator

Byte
1

Oscillator
Period

12

24

_ All mnemonics copyrighted ©Intel Corporation 1980




MCS®-51 INSTRUCTION SET

Table 8-1. 8051 Instruction Set Summary (Continued)

DATA TRANSFER

Mnemonic

MOV  A,Rn
MOV A direct
MOV A @Ri

MOV A #data

MoV Rn,A

MOV Rn,direct
MOV Rn,#data
MOV  direct,A »

MOV direct,Rn
MOV direct,direct

MOV direct, @Ri

MOV direct,#data

MOV  @RiA

'

MOV @Ri,direct

MOV @Ri,#data

Description

Move
register to
Accumulator
Move direct
byte to
Accumulator

‘Move indirect

RAMto .
Accumulator
Move
immediate
data to
Accumulator

“Move

Accumulator
to register
Move direct
byteto
register

Move
immediate data
to register
Move
Accumulator
to direct byte
Move register
to direct byte.
Move direct
byte to direct
Move indirect
RAM to
direct byte
Move
immediate data
to direct byte
Move
Accumulator to
indirect RAM_
Move direct
byte to
indirect RAM
Move
immediate
datato .
indirect RAM

Byte
1

Oscillator
Period

12

24

24
24

24

24

DATA TRANSFER Cont.

MOV

MOVC

MOVC

MOVX

MOVX

MOVX

MOVX

PUSH

POP

XCH

XCH

XCH

XCHD

Mnemonic

Description

DPTR,#datalé Load Data

A,@A+DPTR
A@A+PC

A,@Ri
A,@DPTR

@Ri,A
@DPTR,A
direct
direct
A.Rn

A,direct
A,@Ri

A.@Ri,

Pointer with a
16-bit constant
Move Code
byte relative to
DPTR to Acc
Move Code
byte relative to
PC to Acc
Move
External
RAM (8-bit
addr) to Acc
Move
External
RAM (16-bit
addr) to Acc
Move Acc to
External RAM
(8-bit addr)
‘Move Acc to
External RAM
(16-bit addr)
Push direct
byte onto
stack

Pop direct
byte from
stack
Exchange -
register with
Accumulator
Exchange
direct byte
with
Accumulator
Exchange
indirect RAM
with
Accumulator
Exchange low-
order Digit
indirect RAM
with Acc

Byte
3

1

Oscillator
Period

24
24
24

24
24

24
24
24

4

All mnemonics copyrighted ©Intel Corporation 1980




MCS®-51 INSTRUCTION SET

Table 3-1; 8051 Instruction Set Summary (Continued)

BOOLEAN'VARIABLE MANIPULATION

Oscillator
Mnemonic Description Byte  Period
CLR C Clear Carry | 12
CLR bit Clear direct bit 2 12
SETB C Set Carry 1 12
SETB  bit Set direct bit 2 12
CPL C Complement 1 12
Carry
CPL bit Complement 2 12
direct bit
ANL C,bit AND direct bit 2 24
to Carry
ANL C,/bit AND complement 2 24
of direct bit
to Carry
ORL C,bit OR direct bit 2 24
) to Carry
ORL C,/bit OR complement 2 24
of direct bit
to Carry
MOV C,bit Move direct bit 2 12
to Carry
MOV bit,C Move Carry to 2 24
direct bit
JC rel Jump if Carry 2 24
is set
JNC rel Jump if Carry 2 24
not set
JB bit,rel Jump if direct 3 24
Bit is set '
JNB bit,rel Jump if direct 3 24
Bit is Not set
JBC bit,rel Jump if direct 3 24
Bit is set &
clear bit
PROGRAM BRANCHING
Oscillator
Mnemonic Description  Byte  Period
ACALL addrll Absolute 2 24
Subroutine
. Call
LCALL addrl6 Long 3 24
Subroutine
Call
RET * Return from 1 24

Subroutine

PROGRAM BRANCHING Cont.

RET!

AJMP

LIMP
SIMP

JMP

Jz

JNZ

CINE

CINE

CJINE

CINE

DINZ

DINZ

NOP

Mnemonic

addrll

addrl16

rel

@A+DPTR

rel

rel

A.direct,rel

A, #tdata,rel

Rn,#data,rel

@Ri,#data,rel

Rn,rel

direct,rel

Description

Return from
interrupt
Absolute
Jump

Long Jump
Short Jump
(relative addr)
Jump indirect
relative to the
DPTR

Jump if
Accumulator
is Zero

Jump if
Accumulator
is Not Zero
Compare
direct byte to
Accand Jump
if Not Equal
Compare
immediate to
Accand Jump
if Not Equal
Compare
immediate to
register and
Jump If Not
Equal
Compare
immediate to
indirect and
Jump if Not
Equal
Decrement
register and
Jump if Not
Zero
Decrement
direct byte
and Jump if
Not Zero

No Operation

Byte
|

w

Oscillator
Period

24

24

24
24

24

24

24

24

24

24

24

24

24

All mnemonics copyrighted ©intel Corporation 1980




MCS®-51 INSTRUCTION SET

ACALL

addri1

Function:
Description:

Example:

Bytes:
Cycles:

Encoding:

Operation:

Absolute Call

ACALL unconditionally calls a subroutine located at the indicated address.

The instruction increments the PC twice to obtain-the address of the following

instruction, then pushes the 16-bit result onto the stack (low-order byte first)

and increments the stack pointer twice. The destination address is obtained by
successively concatenating the five high-order bits of the incremented PC, op-

code bits 7-5, and the second byte of the instruction. The subroutine called must

therefore start within the same 2K block of the program memory as the flrst'
byte of the instruction following ACALL. No flags are affected.

Initially SP equals 07H. The label “SUBRTN?” is at program memory location

0345H. After executing the instruction,

ACALL  SUBRTN

at location 0123H, SP will contain 09H, internal RAM locations 08H and 09H
will contain 25H and O1H, respectively, and the PC will contain 0345H.

2

2

[alo a9 a8 1]/0 0 0 1| |a7 a6 a5 ad |a3 a2 al a0

ACALL

(PC)=—(PC) + 2

(SP) «—(SP) + 1

((SP)) =—(PC7.0)

(SP) «—(SP) + 1

((SP)) =—(PC15-8)
(PC10-0) «<—page address -



MCS®-51 INSTRUCTION SET

ADD A,<src-byte>

Function:
Description:

Example:

ADD A,Rn
Bytes:
Cycles:
"~ Encoding:

Operation:

~ADD Adirect
. Bytes:
Cycles:

Encoding:

Operation:

Add

ADD adds the byte variable indicated to the accumulator, leaving the result in
the accumulator. The carry and auxiliary-carry flags are set, respectively, if
there is a carry-out from bit 7 or bit 3, and cleared otherwise. When adding un-
signed integers, the carry flag indicates an overflow occurred.

OV is set if there is a carry-out of bit 6 but not out of bit 7, or a carry-out of bit
7 but not bit 6; otherwise OV is cleared. When adding signed integers, OV in-
dicates a negative number produced as the sum of two positive operands, or a
positive sum from two negative operands.

Four source operand addressing modes are allowed: register, direct, register-
indirect, or immediate.

The accumulator holds 0C3H (11000011B) and register 0 holds 0AAH
(10101010B). The instruction, '

ADD A,RO

will leave 6DH (01101101B) in the accumulator with the AC flag cleared and
both the carry flag and OV set to 1.

1
1

00101 rrrf

ADD
(A)=—(A) + (Rn)

- N

0010 l 010 TI Ldirect address

ADD
(A)=—(A) + (direct)



MCS®-51 INSTRUCTION SET

ADD A,@Ri
Bytes: . 1
Cycles: 1

Encoding: 001 0/0 1 1-i

Operation: ADD
(A)=—(A) + (R})

ADD A#data
Bytes: 2
Cycles: 1

Encoding: |0 0 1 0/0 1 0 0| |immediate data

Operation: ADD
: (A)=—(A) + #data



- MCS®-51 INSTRUCTION SET

ADDC A, <src-byte>

Function: Add with Carry
Description: ADDC simultaneously adds the byte variable indicated, the carry flag and the
accumulator contents, leaving the result in the accumulator. The carry and
auxiliary-carry flags are set, respectively, if there is a carry-out from bit 7 or bit
* 3, and cleared otherwise. When adding unsigned integers, the carry flag in-
dicates an overflow occurred.

OV is set if there is a carry-out of bit 6 but not out of bit 7, or a carryout of bit 7
but not out of bit 6; otherwise OV is cleared. When adding signed integers, OV
indicates a negative number produced as the sum of two positive operands or a
positive sum from two negative operands.

Four source operand addressing modes are allowed: register, direct, register-
indirect, or immediate. :

Example: The accumulator holds OC3H (11000011B) and register 0 holds OAAH
'(10101010B) with the carry flag set. The instruction,

ADDC A,RO

will leave 6EH (01101110B) in the accumulator with AC cleared and both the
carry flag and OV set to 1.

ADDC A,Rn
Bytes: 1
~ Cycles: 1

Encoding: 001 1|1 rrr

Operation: ADDC
(A)=—(A) + (O) + Rp)
ADDC A,direct - '
Bytes: 2
Cycles: 1

Encoding: ]7) 01 llO 1 0 1| ldirect address

Operation: ADDC
(A)<—(A) + (C) + (direct)

8-11



- MCS®-51 INSTRUCTION SET

ADDC A,@Ri
Bytes: 1
Cycles: 1

Encoding: 0 01 ITO 11 iJ

Operation: ADDC
(A)=—(A) + (C) + (RD)
ADDC A, #data
Bytes: 2 ,
Cycles: 1

Encoding: [0 0 1 1[0 1 0 0| |immediate data

' Operation: ADDC
(A)=—(A) + (O) + #data

AJMP addri1

Function: Absolute Jump ; . ‘

Description: AJMP transfers program execution to the indicated address, which is formed at
run-time by concatenating the high-order five bits of the PC (after incrementing .
the PC twice), opcode bits 7-5, and the second byte of the instruction. The
destination must therefore be within the same 2K block of program memory as
the first byte of the instruction following AJMP.

Example: The label “JMPADR? is at program memory location 0123H. The instruction,

AJMP JMPADR

is at location 0345H and will load the PC with 0123H.
Bytes: 2
Cycles: 2

7

Encoding: [alo a9 a8 0|0 0 0 1| [a7 a6 a5 a4|a3 a2 al a0

Operation: AJMP v
(PC)y=—(PC) + 2
(PC10-0)<«— page address

8-12



MCS®@-51 INSTRUCTION SET

ANL <dest-byte> ., <src-byte>

Function:
Description:

Example:

ANL ARn
Bytes:
Cycles:
Encoding:

Operation:

Logical-AND for byte variables
ANL performs the bitwise logical-AND operation between the variables in-
dicated and stores the results in the destination variable. No flags are affected.

The two operands allow six addressing mode combinations. When the destina-
tion is the accumulator, the source can use register, direct, register-indirect, or
immediate addressing; when the destination is a direct address, the source can
be the accumulator or immediate data. '

Note: When this instruction is used to modify an output port, the value used as
the original port data will be read from the output data latch, not the input
pins.

If the accumulator holds 0C3H (11000011B) and register 0 holds 0AAH
(10101010B) then the instruction,

ANL  A,RO
will leave 41H (01000001B) in the accumulator.

When the destination is a directly addressed byte, this instruction will clear
combinations of bits in any RAM location or hardware register. The mask byte
determining the pattern of bits to be cleared would either be a constant con-
tained in the instruction or a value computed in the accumulator at run-time.
The instruction,

ANL P1,#01110011B
will clear bits 7, 3, and 2 of output port 1.

ANL
(A)=—(A) A (Rn)

8-13



MCS@-51 INSTRUCTION SET

ANL A,direct
"~ Bytes: 2
Cycles: 1

Encoding: 0101(010°1 direct address

Operation: ANL |
(A)=<— (A) A (direct)
ANL A,@Ri
Bytes:
Cycles:

[ .

Encoding: [0 1 0'1 01 1 i
Operation: ANL '
' (A)<—(A) A ((Ri)
ANL A#data ’

Bytes:
Cycles:

Lol ]

Encoding: 01 0 10 1 0 0| |immediatedata

Operation: ANL
. (A)<— (A) A #data
ANL direct,A
Bytes: 2
Cycles: 1

Encoding: [0 1 0 1[0 O 1 0| |direct address

Operation: ANL
_ (direct) «— (direct) A (A)
ANL direct,#data '
Bytes: 3
Cycles: 2

Encoding: [0 1 0 1/0 0 1 1| |direct address

Emmediate data

Operation: ANL
(direct) «— (direct) A  #data




MCS®@-51 INSTRUCTION SET

ANL C, <src-bit>
Function: Logical-AND for bit variables
Description: If the Boolean value of the source bit is a logical 0 then clear the carry flag;
otherwise leave the carry flag in its current state. A slash (“/”) preceding the
operand in the assembly language indicates that the logical complement of the
addressed bit is used as the source value, but the source bit itself is not affected.
No other flags are affected.
Only direct bit addressing is allowed for the source operand.
Example: Set the carry flag if, and only if, P1.0=1, ACC. 7=1, and OV=0:
MOV C,P1.0 ;LOAD CARRY WITH INPUT PIN STATE
ANL C,ACC.7 ;AND CARRY WITH ACCUM. BIT 7
ANL C,/0V ;AND WITH INVERSE OF OVERFLOW
FLAG
ANL C,bit A
Bytes: 2
Cycles: 2
Encoding: |1 0 0 0/ 0 0 1 0| |bit address
Operation:  ANL
(O =—(C) A (bit)
ANL C,bit
Bytes: 2
Cycles: 2
Encoding: { 1011 { 000 oj | bit addresﬂ
Operation: ANL
(C) « (C) N "1 (bit) -
CJNE <dest-byte>,<src-byte>, rel
Function: Compare and Jump if Not Equal."
Description: CJINE compares the magnitudes of the first two operands, and branches if their

values are not equal. The branch destination is computed by adding the signed
relative-displacement in the last instruction byte to the PC, after incrementing
the PC to the start of the next instruction. The carry flag is set if the unsigned
integer value of <dest-byte> is less than the unsigned integer value of <src-byte>;
otherwise, the carry is cleared. Neither operand is affected.



MCS®-51 INSTRUCTION SET

The first two operands allow four addressing mode combinations: the ac-
cumulator may be compared with any directly addressed byte or immediate
data, and any indirect RAM location or workmg reglster can be compared with
: an immediate constant.
Example: The accumulator contains 34H. Reglster 7 contains S6H. The first instruction in
the sequence,

CINE  R7,#60H, NOT_EQ

; e e ; 'R7 = 60H.
NOT__EQ: JC - REQ__LOW ; IF R7<60H.
; e e ;  R7>60H.

sets the carry ﬂég and branches to the instruction at label NOT_EQ. By testing

the carry flag, this instruction determmes whether R7 is greater or less than
60H.

If the data being presented to port 1 is also 34H, then the instruction,
WAIT: CINE A,P1,WAIT
clears the carry flag and continues with the next instruction in sequence, since

the accumulator does equal the data read from P1. (If some other value was be-
ing input on P1, the program will loop at this point until the P1 data changesto

34H.)

CJNE A,direct,rel
Bytes: 3
Cycles: 2

Encoding: 1 001 1101 0 l| Idirect address| |rel. addressJ

Operation: CJNE
(PC)<«—(PC) + 3
IF (direct) < (A)
THEN  (PC)<«—(PC) + rel and (C)=«—0
OR
IF (direct) < (A)
THEN (PC)<«— (PC) + rel and (C)«—1



MCS®-51 INSTRUCTION SET

CJNE A,#data,rel
Bytes: 3
Cycles: 2

Encoding: |1 0 1 1]0 1 0 0| |immediatedatal | rel. address

Operation: CINE
(PC)<«——(PC) + 3
IF #data < (A)
THEN (PC)<—(PC) + rel and (C)=—0
OR"
IF #data > (A) ‘
THEN (PC)«—(PC) + rel and (C)<«—1
CJNE Rn,#data,rel
Bytes: 3
Cycles: 2

Encoding: ‘LO 1 l[l rr r| Iimmediate data| irel. address

Operation: CJNE
(PC) «<—(PC) + 3
IF #data < (Rn)
THEN (PC)<«— (PC) + rel and (C)<—0
' OR
IF #data > (Rn)
THEN (PC)<—(PC) + rel and (C)=—1

CJNE @Ri,#data,rel

Bytes: 3
Cycles: 2
Encoding: 1 01 1|0 11 i| |immediate datal |rel. address

Operation: CJNE
(PC)=—(PC) + 3
IF #data < ((Ri)
THEN (PC)<«—(PC) + rel and (C)=—1
OR
IF #data > ((Ri)) ,
THEN (PC)«—(PC) + rel and (C)=—0



MCS®-51 INSTRUCTION SET

CLR A
Function: Clear Accumulator
Description: The accumulator is cleared (all bits set to zero). No flags are affected
Example: The accumulator contains SCH (01011100B). The instruction,
CLR A
will leave the accumulator set to 00H (00000000B).
Bytes: 1 '
Cycles: 1
Encoding: 1 110/0100
Operation: CLR
(A)=—0
CLR bit
Function: Clear bit
Description: The indicated bit is cleared (reset to zero). No other flags are affected. CLR can
operate on the carry flag or any directly addressable bit.

Example: Port 1 has previously been written with SDH (01011101B). The instruction,
CLR P1.2 ‘ ‘
will leave the port set to S9H (01011001B).

CLR C ‘
Bytes: 1
Cycles: 1
Encoding: 110 0/0 01 IJ
~ Operation:  CLR
‘ (C)=—0
CLR bit
Bytes: 2
Cycles: 1
Encoding: |1 1 0 0/0 0 1 0] |bitaddress
. ¢
Operation: ©~ CLR

(bit)=«—20



MCS®-51 INSTRUCTION SET

CPL A

Function: Complement Accumulator
Description: Each bit of the accumulator is logically complemented (one’s complement). Bits
which previously contained a one are changed to zero and vice-versa. No flags
are affected.
Example: The accumulator contains SCH (01011100B). The instruction,
CPL A '
will leave the accumulator set to 0A3H (10100011B).
Bytes: 1
Cycles: 1
Encoding: (1 1 1 1{0 1 0 0|
Operation:  CPL
(A)=—"T1(A)
CPL bit
Function: Complement bit
Description: The bit variable specified is complemented. A bit which had been a one is
changed to zero and vice-versa. No other flags are affected. CLR can operate
on the carry or any directly addressable bit.
Note: When this instruction is used to modify an output pin, the value used as
the original data will be read from the output data latch, not the input pin.
Example: Port 1 has previously been written with SBH (01011101B). The instruction se-
quence, ' ' '
CPL P1.1
CPL P1.2
will leave the port set to SBH (01011011B).
CPL C
Bytes: 1
Cycles: 1
Encodingg |1 0 1 1/0 0 1 1J
Operation: CPL .
(O)=1(C)

8-19



MCS®-51 INSTRUCTION SET .

CPL bit

Bytes:
Cycles: 1
Encoding: u 011 I 0010 J I bit address
Operation: CPL
(bit)-1(bit)
DA A
‘ Function: Decimal-adjust Accumulator for Addition
Description: DA A adjusts the eight-bit value in the accumulator resulting from the earlier

addition of two variables (each in packed-BCD format), producing two four-bit
digits. Any ADD or ADDC instruction may have been used to perform the ad-
dition.

If accumulator bits 3-0 are greater than nine (xxxx1010-xxxx1111), or if the AC
flag is one, six is added to the accumulator producing the proper BCD digit in
the low-order nibble. This internal addition would set the carry flag if a carry-
out of the low-order four-bit field propagated through all high-order bits, but it

would not clear the carry flag otherwise.

If the carry flag is now set, or if the four high-order bits now exceed nine
(1010xxxx-1111xxxx), these high-order bits are incremented by six, producing
the proper BCD digit in the high-order nibble. Again, this would set the carry
flag if there was a carry-out of the high-order bits, but wouldn’t clear the carry.
The carry flag thus indicates if the sum of the original two BCD variables is
greater than 100, allowing multiple precision decimal addition. OV is not af-
fected.

All of this occurs during the oné instruction cycle. Essentially, this instruction
performs the decimal conversion by adding 00H, 06H, 60H, or 66H to the ac-
cumulator, depending on initial accumulator and PSW conditions.

Note: DA A cannot simply convert a hexadecimal number in the accumulator
to BCD notation, nor does DA A apply to decimal subtraction.

8-20



MCS®@-51 INSTRUCTION SET

Example:

Bytes:
Cycles:

Encoding:

Operation:

The accumulator holds the value 56H (01010110B) representing the packed
BCD digits of the decimal number 56. Register 3 contains the value 67H
(01100111B) representing the packed BCD digits of the decimal number 67. The
carry flag is set. The instruction sequence,

ADDC A,R3
DA A

will first perform a standard twos-complement binary addition, resulting in the
value OBEH (10111110) in the accumulator. The carry and auxiliary carry flags
will be cleared.

The Decimal Adjust instruction will then alter the accumulator to the value 24H
(00100100B), indicating the packed BCD digits of the decimal number 24, the
low-order two digits of the decimal sum of 56, 67, and the carry-in. The carry
flag will be set by the Decimal Adjust instruction, indicating that a decimal
overflow occurred. The true sum 56, 67, and 1 is 124.

BCD variables can be incremented or decremented by adding 01H or 99H. If
the accumulator initially holds 30H (representing the digits of 30 decimal), then
the instruction sequence,

ADD A,#99H
DA A '

will leave the carry set and 29H in the accumulator, since 30 + 99 = 129. The
low-order byte of the sum can be interpreted to mean 30 — 1 = 29.
1

1
IllOllOlOﬂ
DA

-contents of Accumulator are BCD
IF [[(A3-00>9] v [(AC) = 1]]
THEN (A3-0)<—(A3-0) + 6
AND
IF [[(A7-4) >9] v [(O) = 1]]
THEN (A7-4)<—(A7-4) + 6

8-21



MCS®-51 INSTRUCTION SET

DEC  byte

Function:
Description:

Example:

DEC A
Bytes:
- Cycles:
Encoding:

Operation:

DEC Rn
Bytes:
Cycles:
Encoding:

Ope‘ration:

Decrement : .

The variable indicated is decremented by 1. An original value of 00H will
underflow to OFFH. No flags are affected. Four operand addressing modes are
allowed: accumulator, register, direct, or register-indirect.

Note: When this instruction is used to modify an output port, the value used as
the original port data will be read from the output data latch, not the input
pins.

Register 0 contains 7FH (01111111B). Internal RAM locations 7EH and 7FH
contain 00H and 40H, respectively. The instruction sequence, '

DEC @RO°
DEC RO
DEC @RO

will leave register O set to 7TEH and internal RAM locations 7EH and 7FH set to
OFFH and 3FH. : .

0,00101'00Jv

DEC
(A)=—(A) — 1

1
1

000 11 rr

DEC
(Rn)<«— (Rn) — 1

8-22



MCS®-51 INSTRUCTION SET

DEC direct
Bytes: 2
Cycles: 1
Encoding: |7) 00 ll 010 ll |direct address
Operation: DEC
(direct)«— (direct) — 1
DEC @Ri
Bytes: 1
Cycles: 1
Encoding: 00O0T1|0 111
Operation: DEC
((Ri))=—((RD) -1
DIV AB
Function: Divide

Description:

Example:

Bytes:
Cycles:

Encoding:

Operation:

DIV AB divides the unsigned eight-bit integer in the accumulator by the un-
signed eight-bit integer in register B. The accumulator receives the integer part
of the quotient; register B receives the integer remainder. The carry and oV
flags will be cleared. v

Exception: if B had originally contained 00H, the values returned in the ac-
cumulator and B-register will be undefined and the overflow flag will be set.
The carry flag is cleared in any case. ) 4

The accumulator contains 251 (OFBH or 11111011B) and B contains 18 (12H or
00010010B). The instruction,

DIV AB

will leave 13 in the accumulator (ODH or 00001101B) and the value 17 (11H or
00010001B) in B, since 251 = (13 x 18) + 17. Carry and OV will both be
cleared.

1

4

100‘00100J

DIV

AN58__ Ay, (B
@y ~ WO

8-23



MCS@-51 INSTRUCTION SET

DJINZ <byte>,<rel-addr>

Function:
Description:

Example:

Decrement and Jump if Not Zero

DIJNZ decrements the location indicated by 1, and branches to the address in-
dicated by the second operand: if the resulting value is not zero. An original
value of 00H will underflow to OFFH. No flags are affected. The branch
destination would be computed by adding the signed relative-displacement
value in the last instruction byte to the PC, after incrementing the PC to the
first byte of the following instruction.

The location decremented may be a register or directly addressed byte.

Note: When this instruction is used to modify an output port, the value used as
the original port data will be read from the output data latch, not the input
pins.

Internal RAM locations 40H, 50H, and 60H contain the values 01H, 70H, and
15H, respectively. The instruction sequence,

DINZ 40H,LABEL__1
DINZ 50H,LABEL__2
DINZ 60H,LABEL__3

will cause a jump to the instruction at label LABEL__2 with the values 00H,
6FH, and 15H in the three RAM locations. The first jump was not taken

because the result was zero.

This instruction provides a simple way of executing a program loop a given
number of times, or for adding a moderate time delay (from 2 to 512 machine
cycles) with a single instruction. The instruction sequence, -

MOV  R2,#8
TOGGLE: CPL P1.7
DINZ R2,TOGGLE

will toggle P1.7 eight times, causing four output pulses to appear at bit 7 of out-
put port 1. Each pulse will last three machine cycles, two for DJNZ and one to
alter the pin.

8-24



MCS®@-51 INSTRUCTION SET

DJNZ Rnyjrel
Bytes: 2
Cycles: 2

. Encoding: [1 1 0 1|1 r r rl ‘direct address

Operation: DJINZ
(PC)=—(PC) + 2
(Rn)=<— (Rn) — 1
IF " (Rn) > Oor (Rn) < 0
THEN
(PC)=— (PC) + rel

DJNZ direct,rel
Bytes: 3
Cycles: 2

Encoding: [1 1 01/0 10 1] ‘direct addressJ rel. address

Operation: DINZ
(PC)=—(PC) + 2
(direct)«— (direct) — 1
IF (direct) > O or (direct) < 0
THEN
(PC)<«— (PC) + rel

INC <byte> <

Function: Increment
Description: INC increments the indicated variable by 1. An original value of OFFH will
overflow to 00H. No flags are affected. Three addressing modes are allowed:
register, direct, or register-indirect.

Note: When this instruction is used to modify an output port, the value used as

the original port data will be read from the output data latch, nor the input
pins.

8-25



MCS®-51 INSTRUCTION SET

Example:

INC A
Bytes:
Cycles:

Encoding:

Operation: -

INC Rn
Bytes:
Cycles:
Encoding:
Operation:
INC direct
Bytes:
Cycles:

Encoding:

Operation:

Register 0 contains 7EH (011111110B). Internal RAM locations 7EH and 7FH
contain OFFH and 40H, respectively. The instruction sequence,

INC @RO

INC RO
INC  @RO

will leave register 0 set to 7FH and internal RAM locations 7EH and 7FH
holding (respectively) 00H and 41H.

1
1

000 0f010 0]

INC
(A)=— (A) + 1

1
1

fooo o[t rrx

INC
(Rn)=<=—(Rn) + 1

2
1

LO 00 (ﬂo 1 0 IJ |direct address]'

INC :
(direct)=— (direct) + 1

8-26



'MCS®-51 INSTRUCTION SET

INC @Ri
Bytes: 1
Cycles: 1
Encoding: 0 00 0[O0 1 1 i
Operation: INC
((Ri))=—((RD)) + 1
INC DPTR .
Function: Increment Data Pointer

Description:

Example:

Bytes:
Cycles:

Encoding:

Operation:

Increment the 16-bit data pointer by 1. A 16-bit increment (modulo 216) is per-
formed; an overflow of the low-order byte of the data pointer (DPL) from
OFFH to 00H will increment the high-order byte (DPH). No flags are affected.
This is the only 16-bit register which can be incremented. !
Registers DPH and DPL contain 12H and OFEH, respectively. The instruction
sequence,

INC DPTR
INC DPTR
INC DPTR

will change DPH and DPL to 13H and 01H.
1

u 010[0011
INC
(DPTR)<— (DPTR) + 1

8-27



MCs®-51 INSTRUCTION SET

JB bit,rel

Function:
Description:

Example:

Bytes:
Cycles:

Encoding:

Operation:

JBC bit,rel

. Jump if Bit set

If the indicated bit is a one, jump to the address indicated; otherwise proceed
with the next instruction. The branch destination is computed by adding the
signed relative-displacement in the third instruction byte to the PC, after in-
crementing the PC to the first byte of the next instruction. The bit tested is not
modified. No flags are affected.

The data present at input port 1 is 11001010B. The accumulator holds 56
(01010110B). The instruction sequence,

JB P1.2,LABELI
JB ACC.2,LABEL2

"will cause program execution to branch to the instruction at label LABEL?2.

3
2

0 01 OI‘O 00 Ol |bitaddress| lre]. address

JB »
PC)=—(PC) + 3
IF (bit) =1
THEN
(PC)=—(PC) + rel

Function:
Description:

-Example:

Jump if Bit is set and Clear bit

If the indicated bit is one, branch to the address indicated; otherwise proceed
with the next instruction. In either case, clear the designated bit. The branch
destination is computed by adding the signed relative-displacement in the third
instruction byte to the PC, after incrementing the PC to the first byte of the
next instruction. No flags are affected.

Note: When this instruction is used to test an output pin, the value used as the
original data will be read from the output data latch, not the input pin.
The accumulator holds 56H (01010110B). The instruction sequence,

JBC ACC.3,LABEL1 |
JBC ACC.2,LABEL2

will cause program execution to continue at the instruction identified by the
label LABEL2, with the accumulator modified to 52H (01010010B).

8-28



MCS®-51 INSTRUCTION SET

Bytes: 3
Cycles: 2
Encoding: |0 0 0 1|0 0 0 0| |bit addressJ rel. address
Operation: JBC ‘
(PC) «— (PC) + 3
IF (bit) = 1
THEN
(bit)<—0
(PC)y«—— (PC) + rel
JC rel
Function:  Jump if Carry is set
Description: If the carry flag is set, branch to the address indicated; otherwise proceed with
the next instruction. The branch destination is computed by adding the signed
relative-displacement in the second instruction byte to the PC, after incremen-
) ting the PC twice. No flags are affected.
Example: The carry flag is cleared. The instruction sequence,
JC LABELLI
CPL C
JC LABEL2
will set the carry and cause program execution to continue at the instruction
i identified by the label LABEL2. '
" Bytes: 2
Cycles: 2
Encoding: 0100{0O0O0O rel. address
Operation: - JC -
. (PC)=—(PC) + 2
IF (C) =1
THEN

(PC)<=—(PC) + rel

8-29



MCS®-51 INSTRUCTION SET

JMP @A +DPTR

Function:
Description:

Examplé:

Bytes:
Cycles:

Encoding:

Operation:

- Jump indirect

Add the eight-bit unsigned contents of the accumulator with the sixteen-bit data
pointer, and load the resulting sum to the program counter. This will be the ad-
dress for subsequent instruction fetches. Sixteen-bit addition is performed
(modulo 216): a carry-out from the low-order eight bits propagates through the
higher-order bits. Neither the accumulator nor the data pointer is altered. No
flags are affected.

An even number from 0 to 6 is in the accumulator. The following sequence of
instructions will branch to one of four AJMP instructions in a jump table start-
ing at JMP__TBL:

MOV DPTR,#JMP__TBL

JMP @A +DPTR
JMP__TBL: AJMP LABELO

AJMP LABELI

AJMP = LABEL2

AJMP LABEL3

If the accumulator equals 04H when starting this sequence, execution will jump
to label LABEL2. Remember that AJMP is a two-byte instruction, so the jump
instructions start at every other address.

1 -
2

011 1{0 011

JMP
(PC)<«—(A) + (DPTR)

8-30



MCS®-51 INSTRUCTION SET

JNB bit,rel

Function: - Jump if Bit Not set
Description: If the indicated bit is a zero, branch to the indicated address; otherwise proceed
with the next instruction. The branch destination is computed by adding the
signed relative-displacement in the third instruction byte to the PC, after in-
crementing the PC to the first byte of the next instruction. The bit tested is not
modified. No flags are affected.
Example: The data present at input port 1 is 11001010B. The accumulator holds 56H
(01010110B). The instruction sequence,
JNB P1.3,LABEL1
JNB ACC.3,LABEL2
will cause program execution to continue at the instruction at label LABEL?2.
Bytes: 3 "
Cycles: 2
Encoding: 0011{0 00 0} l_bit address } Lrel. address
Operation: JNB
(PC)~—(PC) + 3
IF (bit) = 0
THEN (PC) «—— (PC) + rel.
JNC rel
Function: Jump if Carry not set
Description: If the carry flag is a zero, branch to the address indicated; otherwise proceed
with the next instruction. The branch destination is computed by adding the
signed relative-displacement in the second instruction byte to the PC, after in-
crementing the PC twice to point to the next instruction. The carry flag is not
modified. .
Example: The carry flag is set. The instruction sequence,

JNC LABELI1
CPL C-
JNC LABEL2

will clear the carry and cause program execution to continue at the instruction
identified by the label LABEL2.

8-31



MCS®-51 INSTRUCTION SET

Bytes: 2
Cycles: 2
Encoding: |0 1 0 1[0 0 0 0] |rel address ]|
Operation: JNC
. (PC)=—(PC) + 2
IF (C)=0
THEN (PC)=—(PC) + rel
INZ  rel
Function: - Jump if accumulator Not Zero
Description: If any bit of the accumulator is a one, branch to the indicated address; other-
' wise proceed with the next instruction. The branch destination is computed by
adding the signed relative-displacement in the second instruction byte to the
PC, after incrementing the PC twice. The accumulator is not modified. - No
flags are affected. .
"~ Example: The accumulator originally holds 00H. The instruction sequence,
JNZ LABELI1
INC A
JNZ LABEL2
will set the accumulator to 01H and continue at label LABEL2.
Bytes: 2 :
Cycles: 2
Encoding: l 0 1.1 JO 00 O] l?l. addresq
Operation: INZ :
(PC) «—— (PC) + 2
IF (A) #0

THEN (PC)=<— (PC) + rel

8-32



MCS®-51 INSTRUCTION SET

Jz rel
Function: Jump if Accumulator Zero
Description: If all bits of the accumulator are zero, branch to the address indicated; other-
wise proceed with the next instruction. The branch destination is computed by
adding the signed relative-displacement in the second instruction byte to the
PC, after incrementing the PC twice. The accumulator is not modified. No
flags are affected. ;
Example: The accumulator originally contains 01H. The instruction sequence,
JZ LABELLI
DEC A
- JZ LABEL2
will change the accumulator to 00H and cause program execution to continue at
the instruction identified by the label LABEL2.
Bytes: 2
Cycles: 2
Encoding: [0 1 1 0/0 0 0 0| |rel. address |
Operation: JZ
(PC)=—(PC) + 2
IF (A)=0

THEN (PC)<«—(PC) + rel

LCALL addri6

Function:
Description:

Long Call

LCALL calls a subroutine located at the indicated address. The instruction
adds three to the program counter to generate the address of the next instruc-
tion and then pushes the 16-bit result onto the stack (low byte first), increment-
ing the stack pointer by two. The high-order and low-order bytes of the PC are
then loaded, respectively, with the second and third bytes of the LCALL in-
struction. Program execution continues with the instruction at this address. The
subroutine may therefore begin anywhere in the full 64K- byte program memory
address space. No flags are affected.

8-33



MCS®-51 INSTRUCTION SET

Example: Initially the stack pointer equals 07H. The label “SUBRTN?” is assigned to pfo-
gram memory location 1234H. After executing the instruction,
LCALL SUBRTN
at location 0123H, the stack pointer will contain 09H, internal RAM locations
08H and 09H will contain 26H and 01H, and the PC will contain 1235H.
Bytes: 3
Cycles: 2 v
Encoding: |0 0 0 1]0 0 1 0] [addrl5-addr8| [add:7 - addro
Operation:: LCALL
(PC)=<— (PC) + 3
(SP) =— (SP) + 1
((SP))=— (PC7.0)
(SP)=<—(SP) + 1
((SP)) =—(PC15-8)
(PC) «—addris5-0
LJMP addr16
Function: Long Jump
Description: LJMP causes an unconditional branch to the indicated address, by loading the
high-order and low-order bytes of the PC (respectively) with the second and
third instruction bytes. The destination may therefore be anywhere in the full
64K program memory -address space. No flags are affected.
Example: The label “JMPADR?” is assigned to the instruction at program memory loca-
tion 1234H. The instruction, . )
LIMP JMPADR
at location 0123H will load the program counter with 1234H.
Bytes: 3 ' ‘
~Cycles: 2
Encoding: 0 00O00O0T10O0 addrl5 - addr8 addr7 - addr0
Operation: LIMP

(PC)<«—addris-0

8-34



MCS®@®-51 INSTRUCTION SET

MOV <dest-byte>,<src-byte>

Function: Move byte variable :
Description: The byte variable indicated by the second operand is copied into the location
specified by the first operand. The source byte is not affected. No other register
or flag is affected.

This is by far the most flexible operation. Fifteen combinations of source and
destination addressing modes are allowed. '

Example: Internal RAM location 30H holds 40H. The value of RAM location 40H is
10H. The data present at input port 1 is 11001010B (0CAH).

MOV RO0,#30H ;RO<= 30H

MOV A,@RO ;A <= 40H

MOV RILA ;R1 <= 40H

MOV R,@R1 ;B<= 10H

MOV @R1,P1 ;RAM (40H) <= 0CAH
MOV P2, Pl ;P2 #0CAH

leaves the value 30H in register 0, 40H in both the accumulator and register 1,
10H in register B, and 0CAH (11001010B) both in RAM location 40H and out-
put on port 2.

MOV A,Rn
Bytes: 1
Cycles: 1

Encoding: 11101 rrr

Operation: MOV

(A)=<—(Rn)
*MOV A,direct
Bytes: 2
Cycles: 1

Encoding: |1 1 1 0]0 1 0 1] [direct address

Operation: MOV
(A)=— (direct)

*MOV A,ACC is not a valid instruction.

8-35



MCS®-51 INSTRUCTION SET

MOV A@Ri

Bytes:
Cycles:

Encoding:

Operation:

- MOV A,#data

Bytes:
Cycles:

Encoding:

Operation:

MOV Rn,A
Bytes:
Cycles:
Encoding:

Operation:

MOV Rn,direct

Bytes:
Cycles:

~ Encoding:

Operation:

MOV Rn,#data

Bytes:
Cycles:

Encoding:

Operation:

1

1 110j0

MOV
(A) =— ((Ri)

0 immediate data

MOV
(A)=— #data

1
1

111 1]1

MOV
(Rn)<—(A)

2
2

1 01 01

r| |direct addr. |

MOV

(Rn)«—(direct) -

2
1

o 11 11

r I Iimmediate data

MOV
(Rn) «— #data

8-36




MCS®-51 INSTRUCTION SET

MOV direct,A
Bytes: 2
Cycles: 1

Encoding: [1 1 1 1[0 1 0 1| | direct address |

Operation: MOV

(direct)<«— (A)
MOV direct,Rn
Bytes: 2
Cycles: 2

Encoding: 1 00 Oll rr j |direct address}

' Operation: MOV

(direct) «— (Rn)
MOV direct,direct
Bytes: 3
Cycles: 2

Encoding: 1 00 0(0 1 0 1| |dir. addr. (src) dir. addr. (dest) |’

Operation: MOV

(direct) =— (direct)
MOV direct,@Ri
Bytes: 2
Cycles: 2

Encoding: |1 0 0 0/0 1 1 i| |directaddr.

Operation: . MOV

‘ (direct) «—((Ri))
MOV direct,#data
Bytes: 3
Cycles: 2 -
Encoding: 011 1/010 1} Idirect addrcss] ‘immediate data

Operation: MOV
(direct)«— #data

8-37



MCS®-51 INSTRUCTION SET

MOV @RiA

Bytes: 1
Cycles: 1

Encoding: |L'1 1 1{0»1 lﬂ

Operation: MOV

(Ri))=—(A)
MOV @Ri,direct
Bytes: 2
Cycles: 2

Encoding: 1 0100 1 1 i direct addr.

Operation: MOV

) ((Ri)) =<— (direct)
MOV @Ri,#data
Bytes: 2
Cycles: 1

Encoding: [0 1 1 1[0 1 1 i| |immediate data

Operation: MOV K
((RI)) =— #data

MOV . <dest-bit>,<src-bit>

Function: Move bit data
Description: The Boolean variable indicated by the second operand is copied into the loca-
tion specified by the first operand. One of the operands must be the carry flag;
the other may be any directly addressable bit. No other register or flag is af-
fected.
Example: The carry flag is originally set. The data present at input port 3 is 11000101B.
The data previously written to output port 1 is 35H (00110101B).

MOV Pl1.3,C
MOV  C,P3.3
MOV P1.2,C

will leave the carry cleared and change port 1 to 39H (00111001B).

8-38



MCS®-51 INSTRUCTION SET

MOV C,bit
Bytes:
Cycles:
Encoding:

Operation:

MOV bit,C
Bytes:
Cycles:
Encoding:

Operation:

2
1

101 0[00 1 0| | bit address

MOV
(C)<—(bit)

2
2

100 1|o 0 1ﬂ @addressl

MOV
(bit)=«— (C)

MOV DPTR,#data16

Function:
Description:

Example:

Bytes:
Cycles:

Encoding:

Operation:

. Load Data Pointer with a 16-bit constant

The data pointer is loaded with the 16-bit constant indicated. The 16-bit con-
stant is loaded into the second and third bytes of the instruction. The second
byte (DPH) is the high-order byte, while the third byte (DPL) holds the low-
order byte. No flags are affected.

This is the only instruction which moves 16 bits of data at once.
The instruction,

MOV DPTR,#1234H

will load the value 1234H into the data pointer: DPH will hold 12H and DPL
will hold 34H. ’

3

2

1 00 1/0 0 0O immed. datal5s - 8 immed. data7 - 0

MOV
(DPTR)=— #data]5-0

DPH O DPL-+~—#datay5.g [J #data7.g

8-39



'MCS®-51 INSTRUCTION SET

MovC

A,@A + <base-reg>

Function:
Description:

Example:

Move Code byte

The MOVC instructions load the accumulator with a code byte, or constant
from program memory. The address of the byte fetched is the sum of the
original unsigned eight-bit accumulator contents and the contents of a sixteen-
bit base register, which may be either the data pointer or the PC. In the latter
case, the PC is incremented to the address of the following instruction before
being added with the accumulator: otherwise the base register is not altered.
Sixteen-bit addition is performed so a carry-out from the low-order eight bits
may propagate through higher-order bits. No flags are affected.

A value between 0 and 3 is in the accumulator. The following instructions will
translate the value in the accumulator to one of four values defined by the DB
(define byte) directive.

REL_PC: INC A
MOVC A,@A+PC
RET
DB 66H
DB 77H -
DB 88H
DB 99H

If the subroutine is called with the accumulator equal to 01H, it will return with
77H in the accumulator. The INC A before the MOVC instruction is needed to

“get around” the RET instruction above the table. If several bytes of code
separated the MOVC from the table, the correspondmg number would be add-
ed to the accumulator instead.

MOVC A,@A+DPTR

Bytes:
Cycles:

Encoding:

Operation:

1
2

[t oo1]oo1 1]

MOVC
(A)=—((A) + (DPTR))

8-40



MCS®-51 INSTRUCTION SET

MOVC A,@A+PC

Bytes:
Cycles:

Encoding:

Operation:

1
2

|1 0 0oo0foo01 1]

MOVC
(PO)=—(PO) + 1
A)=—(A) + (PC)

MOVX <dest-byte>,<src-byte>

Function:
Description:

Move External :

The MOVX instructions transfer data between the accumulator and a byte of
external data memory, hence the “X” appended to MOV. There are two types of
instructions, differing in whether they provide an eight-bit or sixteen-bit in-
direct address to the external data RAM.

In the first type, the contents of RO or R1 in the current register bank provide an
eight-bit address multiplexed with data on P0. Eight bits are sufficient for exter-
nal I/0 expansion decoding or a relatively small RAM array. For somewhat
larger arrays, any output port-pins can be used to output higher-order address
bits. These pins would be controlled by an output instruction preceding the
MOVX. .

In the second type of MOVX instruction, the data pointer generates a sixteen-
bit address. P2 outputs the high-order eight address bits (the contents of DPH)
while PO multiplexes the low-order eight bits (DPL) with data. The P2 Special
Function Register retains its previous contents while the P2 output buffers are
emitting the contents of DPH. This form is faster and more efficient when ac-
cessing very large data arrays (up to 64K bytes), since no additional instructions
are needed to set up the output ports.

It is possible in some situations to mix the two MOVX types. A large RAM ar-
ray with its high-order address lines driven by P2 can be addressed via the data
pointer, or with code to output high-order address bits to P2 followed by a
MOVX instruction using RO or R1.

8-41



MCS®-51 INSTRUCTION SET

Example: An external 256 byte RAM using multiplexed address/data lines (e.g., an Intel®
8155 RAM/1/0/Timer) is connected to the 8051 Port 0. Port 3 provides control
lines for the external RAM. Ports 1 and 2 are used for normal I/0. Registers 0
and 1 contain 12H and 34H. Location 34H of the external RAM holds the value
56H. The instruction sequence,

MOVX A,@R1
MOVX @ROA

copies the value S6H into both the accumulator and external RAM location

© 12H.
MOVX A,@Ri
Bytes: 1
Cycles: 2

Encoding: 1 1 10|00 1 i

Operation: MOVX .

(A)=—((RD)
MOVX A,@DPTR
Bytes: 1
Cycles: 2

Encoding: {1 1100000

Operation: MOVX

(A)=—((DPTR))
MOVX @Ri,A
Bytes: 1
~Cycles: 2
Encoding: |1 1 1 1{0 0 1 i
Operation: MOVX
(Ri))=— (A)
MOVX @DPTR,A ‘
Bytes: 1
Cycles: 2 -

Encoding: |1 1 1 1[0 0 0 0

Operation: MOVX
(DPTR) «—(A) '

8-42



MCS®-51 INSTRUCTION SET

MUL AB
Function: Multiply
Description: MUL AB multiplies the unsigned eight-bit integers in the accumulator and
register B. The low-order byte of the sixteen-bit product is left in the ac-
cumulator, and the high-order byte in B. If the product is greater than 255
(OFFH) the overflow flag is set; otherwise it is cleared. The carry flag is always
cleared.
Example: Originally the accumulator holds the value 80 (S0H). Register B holds the value
160 (OAOH). The instruction,
MUL AB
will give the product 12,800 (3200H), so B is changed to 32H (00110010B) and
‘ the accumulator is cleared. The overflow flag is set, carry is cleared.
Bytes: 1
Cycles: 4
Encoding: 1 01 0/0 100
Operation: MUL

(A)7-0<—(A) X (B)

(B)15-8

8-43



MCS®-51 INSTRUCTION SET

NOP
~ Function: No Operation
Description: Execution continues at the following instruction. Other than the PC, no
registers or flags are affected.

Example: It is desired to produce a low-going output pulse on blt 7 of port 2 lasting exact-
ly 5 cycles. A simple SETB/CLR sequence would generate a one-cycle pulse, so
four additional cycles must be inserted. This may be done (assummg no inter-
rupts are enabled) with the instruction sequence,

CLR P2.7
NOP
NOP
NOP
NOP
SETB P2.7
Bytes: 1
Cycles: 1
Encoding: 0 00O0[(0O0O0TO
Operation: NOP

(PC)=—(PC) + 1

8-44



MCS®-51 INSTRUCTION SET

ORL <dest-byte> <src-byte>

Function:
Description:

Example:

ORL A,Rn
Bytes:
Cycles:
Encoding:

Operation:

Logical-OR for byte variables
ORL performs the bitwise logical-OR operation between the indicated
variables, storing the results in the destination byte. No flags are affected.

The two operands allow six addressing mode combinations. When the destina-
tion is the accumulator, the source can use register, direct, register-indirect, or
immediate addressing; when the destination is a direct address, the source can
be the accumulator or immediate data.

Note: When this instruction is used to modify an output port, the value used as
the original port data will be read from the output data latch, not the input
pins.

If the accumulator holds OC3H (11000011B) and RO holds 55H (01010101B)
then the instruction,

ORL A,RO
will leave the accumulator holding the valqe O0D7H (11010111B).

When the déstination is a directly addressed byte, the instruction can set com-
binations of bits in any RAM location or hardware register. The pattern of bits
to be set is determined by a mask byte, which may be either a constant data
value in the instruction or a variable computed in the accumulator at run-time.
The instruction,

ORL P1,#00110010B
will set bits 5, 4, and 1 of output port 1.

ORL
(A)<—(A) vV (Rn)

8-45



—lntel‘” MCS®©-51 INSTRUCTION SET

ORL Adirect
Bytes: 2
Cycles: 1

Encoding: [0 1 0 0|0 1 0 1] |direct address

Operation:  ORL
(A)<—(A) Vv (direct)
ORL A,@Ri
Bytes:
Cycles:

(S

Encoding: 01 000 1 1

Operation: ORL
(A)=—(A) V ((RD)
ORL A,#data
Bytes: 2
Cycles:

[

Encoding: |0 1 0 0[0 I 0 o| ‘limmédiate data

Operation: ORL
(A)<—(A) V #data
ORL direct,A
Bytes: 2
Cycles:

—

Encoding: [O 1 0 0{0 0 1 Oi ldirect addressJ

Operation: ORL
(direct) «—(direct) V (A)

ORL direct,#data

Bytes: 3
Cycles: 2
Encoding: [0 1 0 0/0 0 1 1| |directaddr.| |immediate data

Operation: ORL
(direct)<—(direct) V #data

8-46



MCS®-51 INSTRUCTION SET

ORL C, <src-bit>
Function: Logical-OR for bit variables
Description Set the carry flag if the Boolean value is a logical |; leave the carry in its current
state otherwise. A slash (“/”) preceding the operand in the assembly language
indicates that the logical complement of the addressed bit is used as the source
value, but the source bit itself is not affected. No other flags are affected.
Example: Set the carry flag if and only if P1.0 = 1, ACC.7 = 1, or OV = 0:
MOV C,P1.0 ;LOAD CARRY WITH INPUT PIN P10
ORL C,ACC.7 ;OR CARRY WITH THE ACC. BIT 7
ORL C,/0V :OR CARRY WITH THE INVERSE OF OV,
ORL C,bit
Bytes: 2
Cycles: 2
Encoding: 0111|0010 I ‘ bit address—l

Operation:

ORL
(C)=—(C) v (bit)

ORL C,/bit
Bytes: 2
Cycles: 2 .
Encoding: |1 0 1 0]0 0 0 0/ | bitaddress |
Operation: ORL
(©)=—(C) v (bit)
POP direct
Function: Pop from stack.
The contents of the internal RAM location addressed by the stack pointer is

Description:

read, and the stack pointer is decremented by one. The value read is the transfer
to the directly addressed byte indicated. No flags are affected.

8-47



MCS®-51 INSTRUCTION SET

Example:

Bytes:
Cycles:

Encoding:

Operation:

The stack pointer originally contains the value 32H, and internal RAM loca-
tions 30H through 32H contain the values 20H, 23H, and 01H, respectively.
The instruction sequence,

POP DPH
POP DPL

will leave the stack pointer equal to the value 30H and the data pointer set to
0123H. At this point the instruction,

POP SP /

will leave the stack pointer set to 20H. Note that in this special case the stack
pointer was decremented to 2FH before being loaded with the value popped
(20H). '

2

2

1 10 1{0 0 O_(ﬂ [directaddressj

POP
(direct)<«—((SP))
(SP)«——(SP) — 1

PUSH direct

Function:
Description:

Example:

Bytes:
Cycles:

Encoding:

Operation:

Push onto stack

The stack pointer is incremented by one. The contents of the indicated variable
is then copied into the internal RAM location ‘addressed by the stack pointer.
Otherwise no flags are affected.

On entering an interrupt routine the stack pointer contains 09H. The data
pointer holds the value 0123H. The instruction sequence,

PUSH DPL
PUSH DPH

will leave the stack pointer set to OBH and store 23H and 01H in internal RAM
locations 0AH and OBH, respectively.

2 .

2

1 1.0 0/0 0 0O direct address

PUSH
(SP)<«—(SP) + 1
((SP))<«— (direct)

8-48



MCS®@-51 INSTRUCTION SET

RET
Function:.  Return from subroutine
Description: RET pops the high- and low-order bytes of the PC successively from the stack,
N decrementing the stack pointer by two. Program execution continues at the
resulting address, generally the instruction immediately following an ACALL
or LCALL. No flags are affected.
Example: The stack pointer originally contains the value 0BH. Internal RAM locations
0AH and OBH contain the values 23H and 01H, respectively. The instruction,
RET
will leave the stack pointer equal to the value 09H. Program execution will con-
tinue at location 0123H.
Bytes: 1
Cycles: 2
Encoding: 0010|0010
Operation: RET
’ (PC15-8)=—((SP))
(SP)«—(SP) — 1 : .
(PC7-0)=«—((SP))
(SP)<«—(SP) — 1
RETI
Function: Return from interrupt
Description: RETI pops the high- and low-order bytes of the PC successively from the stack,

and restores the interrupt logic to accept additional interrupts at the same
priority level as the one just processed. The stack pointer is left decremented by
two. No other registers are affected; the PSW is not automatically restored to
its pre-interrupt status. Program execution continues at the resulting address,
which is generally the instruction immediately after the point at which the inter-
rupt request was detected. If a lower- or same-level interrupt had been pending
when the RETI instruction is executed, that one instruction will be executed
before the pending interrupt is processed.

8-49



MCS®-51 INSTRUCTION SET

Example:

Bytes:
Cycles:

Encoding:

Operation:

The stack pointer originally contains the value 0BH. An interrupt was detected
during the instruction ending at location 0122H. Internal RAM locations 0OAH
and OBH contain the values 23H and 01H, respectively. The instruction,

RETI

will leave the stack pointer equal to 09H and return program execution to loca-
tion 0123H. ‘ )

RETI
(PC15-8)<«—((SP))
(SP)=<— (SP) — 1
(PC7-0) =—((SP))
(SP)=—(SP) — 1

8-50



MCS®-51 INSTRUCTION SET

RL A
Function: Rotate accumulator Left .
Description: The eight bits in the accumulator are rotated one bit to the left. Bit 7 is rotated
into the bit 0 position. No flags are affected.
Example: The accumulator holds the value 0C5H (11000101B). The instruction,
RL A
leaves the accumulator holding the value 8BH (10001011B) with the carry unaf-
fected.
Bytes: 1
Cycles: 1
Encoding: [0 0 1 0]0 0 1 1
Operation: RL
(An+1)<—(An) n=0-6
(A0)<— (A7)
RLC A
Function: Rotate accumulator Left through the Carry flag
Description: The eight bits in the accumulator and the carry flag are together rotated one bit
to the left. Bit 7 moves into the carry flag; the original state of the carry flag
moves into the bit 0 position. No other flags are affected.
Example: The accumulator holds the value 0C5SH (11000101B), and the carry is zero. The
instruction,
RLC A
leaves the accumulator holding the value 8BH (10001010B) with the carry set.
Bytes: 1
Cycles: 1 _
Encoding: LO 01 10 011
Operation: RLC
(An+1)<—(An) n=0-—6
(AQ)=—(O)
(O)=—(AT)

8-51



MCS®@-51 INSTRUCTION SET

RR A

Function: Rotate accumulator Right .
Description: = The eight bits in the accumulator are rotated one bit to the right. Bit 0 is rotated
into the bit 7 position. No flags are affected. :
Example: The accumulator holds the value 0C5H (11000101B). The instruction,
RR A
leaves the accumulator holding the value OE2H (11100010B) with the carry
unaffected.
Bytes: 1
Cycles: 1
Encoding: 0 00 O0(0O0T1 1
Operation:  RR g
(An)«—(An+1) n=0-6
(A7) <«—(A0)
!
. RRC A
‘ ~ Function: ‘ Rotate accumulator Right through Carry flag
Description: The eight bits in the accumulator and the carry flag are together rotated one bit
to the right. Bit 0 moves into the carry flag; the original value of the carry ﬂag
moves into the bit 7 position. No other flags are affected.
Example: The accumulator holds the value 0C5H (1 1000101B), the carry is zero. The in-
struction,
RRC A
» leaves the accumulator holding the value 62 (01100010B) with the carry set.
Bytes: 1
Cycles: 1
Encoding: 0001|001 1
Operation: RRC
(An)<«—(An+1) n=0-6
(A7)=—(C)
(O=—(A0)

8-52



MCS®-51 INSTRUCTION SET

SETB

<bit>

Function:
Description:

Set Bit
SETB sets the indicated bit to one. SETB can operate on the carry flag or any
directly addressable bit. No other flags are affected.

Example: The carry flag is cleared. Output port 1 has been written with the value 34H
(00110100B). The instructions,
SETB C
SETB P1.0
will leave the carry flag set to 1 and change the data output on port 1 to 35H
(00110101B).
SETB C
Bytes: 1
Cycles: 1
Encoding: 1 10 1(0 011
Operation: SETB
(C)=—1
SETB bit
Bytes: 2
Cycles: 1
Encoding: 110 1/0010 bit address
Operation: SETB
(bit)<—1
SJMP rel
Function: Short Jump

Description:

Program control branches unconditionally to the address indicated. The branch
destination is computed by adding the signed displacement in the second in-
struction byte to the PC, after incrementing the PC twice. Therefore, the range
of destinations allowed is from 128 bytes preceding this instruction to 127 bytes
following it.

8-53



MCS®-51 INSTRUCTION SET

Example:

Bytes:

Cycles::

Encoding:

Operation:

The label “RELADR?” is assigned to an instruction at program memory location
0123H. The instruction,

SIMP RELADR

_ will assemble into location 0100H. After the instruction is executed, the PC will

contain the value 0123H.

(Note: Under the above conditions the instruction following SIMP will be at
102H. Therefore, the displacement byte of the instruction will be the relative
offset (0123H-0102H) = 21H. Put another way, an STMP with a displacement
of OFEH would be a one-instruction infinite loop.)

2

2

|1 0 0 0f[0 00 0] [rel.address[

SIMP
(PC)=—(PC) + 2
(PC)=— (PC) + rel

8-54



MCS®-51 INSTRUCTION SET

SUBB A, ¢src-byte>

Function:
Description:

Example:

SUBB A,Rn
Bytes:

Cycles:

Encoding:

Operation:

Subtract with borrow

SUBB subtracts the indicated variable and the carry flag together from the ac-
cumulator, leaving the result in the accumulator. SUBB sets the carry (borrow)
flag if a borrow is needed for bit 7, and clears C otherwise. (If C was set before
executing a SUBB instruction, this indicates that a borrow was needed for the
previous step in a multiple precision subtraction, so the carry is subtracted from
the accumulator along with the source operand.) AC is set if a borrow is needed
for bit 3, and cleared otherwise. OV is set if a borrow is needed into bit 6, but
not into bit 7, or into bit 7, but not bit 6.

When subtracting signed integers OV indicates a negative number produced

when a negative value is subtracted from a positive value, or a positive result
when a positive number is subtracted from a negative number.

The source operand allows four addressing modes: register, direct, register-
indirect, or immediate.

The accumulator holds 0C9H (11001001B), register 2 holds 54H (01010100B),
and the carry flag is set. The instruction,

SUBB A,R2

will leave the value 74H (01110100B) in the accumulator, with the carry flag and
AC cleared but OV set.

Notice that 0C9H minus 54H is 75H. The difference between this and the above
result is due to the carry (borrow) flag being set before the operation. If the
state of the carry is not known before starting a single or multiple-precision sub-
traction, it should be explicitly cleared by a CLR C instruction.

SUBB
(A)=—(A) — (C) — (Rn)

8-55



MCS®-51 INSTRUCTION SET

SUBB A .direct

Bytes: 2
Cycles: 1
Encoding: |1 0 0 1/0 1 0 1] | direct address |

Operation: SUBB .
. (A)=—(A) — (C) — (direct)-
SUBB A,@Ri

Bytes: 1
Cycles: 1
Encoding: 1 00 1[0 1 1 i

Operation: SUBB
: (A)=—(A) — (©) — ((Ri))
SUBB A,#data
Bytes: 2
Cycles: 1

Encoding: |1 0 0 10 1 0 0| |immediate data |

Operation: SUBB ,
(A)<—(A) — (C) — #data

. SWAP A

Function: Swap nibbles within the Accumulator
Description: SWAP A interchanges the low- and high-order nibbles (four-bit flelds) of the
accumulator (bits 3-0 and bits 7-4). The operation can also be thought of as a
» four-bit rotate instruction. No flags are affected.
Example: The accumulator holds the value OC5H (11000101B). The instruction,

SWAP A
leaves the accumulator holding the value SCH (01011100B).
Bytes: 1 ’
- Cycles: 1

Encoding: |1 1 0 0/0 10 0

Operation: SWAP
(A3-00=(A7-4), (A7-4)=<—(A3-0)

-8-56



MCS®-51 INSTRUCTION SET

XCH A, <byte>

Function: Exchange Accumulator with byte variable
Description: XCH loads the accumulator with the contents of the indicated variable, at the

same time writing the original accumulator contents to the indicated variable.
The source/destination operand can use register, direct, or register-indirect ad-
dressing.

Example: RO contains the address 20H. The accumulator holds the value 3FH
(00111111B). Internal RAM location 20H holds the value 75H (01110101B).
The instruction,

XCH A,@RO

will leave RAM location 20H holding the values 3FH (00111111B) and 75H
(01110101B) in the accumulator.

XCH A,Rn
Bytes: 1
Cycles: = 1
Encoding: 11001 rrrr

Operation: XCH

(A) <= (Rn)
XCH Adirect
Bytes: 2 |
Cycles: 1

Encoding: |1 1 0 00 1 0 1] |direct address |

Operation:  XCH
(A) > (direct)

XCH A,@Ri
Bytes: 1
Cycles: 1

Encoding: 1 1 0 0{0 1 1 i

Operation: XCH
' (A) = ((Ri)

8-57



MCS@-51 INSTRUCTION SET

Operation:

XCHD A,@Ri
. Function: Exchange Digit '
‘Description: XCHD exchanges the low-order nibble of the accumulator (bits 3-0), generally
representing a hexadecimal or BCD digit), with that of the internal RAM loca-
tion indirectly addressed by the specified register. The hlgh -order nibbles (bits -
7-4) of each register are not affected. No flags are affected.
Example: RO contains the address 20H. The accumulator holds the value 36H
' (00110110B). Internal RAM location 20H holds the value 75H (01110101B).
The instruction,
XCHD A,@R0
- will leave RAM location 20H holding the value 76H (01110110B) and 35H
(00110101B) in the accumulator.
Bytes: 1
Cycles: 1
Encoding: [1 1 0 1[0 1 1 i

XCHD
(A3-0) <= ((Ri3-0)

8-58



MCS@-51 INSTRUCTION SET

XRL «dest-byte>, <src-byte>

Function:
Description:

Example:

XRL A,Rn
Bytes:
Cycles:
Encdding:
Operation:
XRL Adirect
Bytes:
Cycles:
Encoding:

Operation:

Logical Exclusive-OR for byte variables
XRL performs the bitwise logical Exclusive-OR operation between the in-
dicated variables, storing the results in the destination. No flags are affected.

The two operands allow six addressing mode combinations. When the destina-
tion is the accumulator, the source can use register, direct, register-indirect, or
immediate addressing; when the destination is a direct address, the source can
be the accumulator or immediate data.

(Note: When this instruction is used to-modify an output port, the value used as
the original port data will be read from the output data latch, not the input
pins.)

If the accumulator holds OC3H (11000011B) and register 0 holds 0AAH
(10101010B) then the instruction,

XRL - A,RO
will leave the accumulator holding the value 69H (01101001B).

When the destination is a directly addressed byte, this instruction can comple-
ment combinations of bits in any RAM location or hardware register. The pat-
tern of bits to be complemented is then determined by a mask byte, either a con-
stant contained in the instruction or a variable computed in the accumulator at
run-time. The instruction,

XRL P1,#00110001B

will complement bits 5, 4, and 0 of output port 1.

1
1

b'llo'lrrr

- XRL

(A)=—(A) v (Rn)

2
1

0110010 1] | direct address |

XRL
(A)<—(A) v (direct)

8-59



MCS®-51 INSTRUCTION SET

XRL A,@Ri
Bytes:
Cycles:
Encoding:

Operation:

XRL Aj#data

Bytes:
Cycles:

Encoding:

Operation:

XRL direct,A

Bytes:
Cycles:

Encoding:

Operation:

XRL _
(A)<=—(A) v ((RD)

1

01 10[010 0| |immediate data‘J

XRL
(A)<—(A) v #data

2
1

011 0]0 0 1 0| rdirect address

XRL
(direct)=— (direct) v (A)

XRL direct,#data

Bytes:
Cycles:

Encoding:

Operation:

3
2

LO 11 0/0 011 lrdirect addressl [immediate data

XRL v
(direct)«— (direct) v #data

8-60









CHAPTER9
MCS®-51 APPLICATION EXAMPLES

Chapter 9 is divided into three sections:

® 8051 Programming Techniques
e Peripheral Interfacing Techniques
® Peripheral Interface Examples

The first section has 8051 software examples for
common routines in controller applications. Some of
- the routines are multiple-precision arithmetic and table
look-up techniques. '

Peripheral Interfacing Techniques include routines for
handling the 805I's 1/O ports, serial channel and
timer/counters. Discussed in this section is 1/O port
reconfiguration, software delay timing, and transmit-
ting serial port character strings along with other
routines.

The Peripheral Interface examples consist of block
diagram schematics.

9.0 8051 PROGRAMMING TECHNIQUES
9.0.1 Radix Conversion Routines

The divide instruction can be used to convert a number
from one radix to another. BINBCD is a short sub-
routine to convert an eight-bit unsigned binary integer
in the accumulator (between 0 & 255) to a three-digit
(two byte) BCD representation. The hundred’s digit is
returned in one variable (HUND) and the ten’s and
one’s digits returned as packed BCD in another
(TENONE).

; BINBCD CONVERT 8-BIT BINARY VARIABLE IN ACCUMULATOR
i .TO 3-DIGIT PACKED BCD FORMAT.
; HUNDREDS’ PLACE LEFT IN VARIABLE ‘HUND’,
TENS’ AND ONES’ PLACES IN ‘TENONE’.
HUND DATA 21H
TENONE DATA 22H
BINBCD: MOV  B,#100 :DIVIDED BY 100 TO _
DIV AB :DETERMINE NUMBER OF HUNDREDS
MOV  HUND,A
MOV  A#10 ;DIVIDE REMAINDER BY TEN TO
XCH AB ;DETERMINE NUMBER OF TENS LEFT
DIV AB ;TEN’S DIGIT IN ACC, REMAINDER IS
;ONE’S DIGIT
SWAP A
ADD AB ;PACK BCD DIGITS IN ACC
MOV TENONE,A
RET

9-1



' 'MCS@-51 APPLICATION EXAMPLES

The divide instruction can also separate data in the
accumulator into sub-fields. For example, dividing
packed BCD data by 16 will separate the two nibbles,
leaving the high-order digit in the accumulator and the
low-order digit (remainder) in B. Each is right-justified,

/

so the digits can be processed individually. This exam-
ple receives two packed BCD digits in the accumulator,
separates the digits, computes their product, and re-
turns the product in packed BCD format m the
accumulator.

MULBCD UNPACK TWO BCD DIGITS RECEIVED IN ACCUMULATOR,

; FIND THEIR PRODUCT, AND RETURN PRODUCT
; IN PACKED BCD FORMAT IN ACCUMULATOR
MULBCD: MOV  B,#10H ;DIVIDE INPUT BY 16
DIV AB ;A & B HOLD SEPARATED DIGITS
;(EACH RIGHT JUSTIFIED IN REGISTER).
MUL AB ;A HOLDS PRODUCT IN BINARY FORMAT (0-
;99 (DECIMAL) =0 - 63H)
MOV  B,#10 ;DIVIDE PRODUCT BY 10
DIv AB ;A HOLDS NUMBER OF TENS, B HOLDS :
;REMAINDER
SWAP A
ORL AB ;PACK DIGITS
RET

9.0.2 Multiple Precision Arithmetic

The ADDC and SUBB instructions incorporate the
previous state of the carry (borrow) flag to allow
multiple-precision calculations by repeating the opera-
tion with successively higher-order operand bytes. If
the input data for a multiple-precision operation is an

unsigned string of integers, the carry flag will be set
upon completion if an overflow (for ADDC) or under-
flow (for SUBB) occurs. With two’s complement signed
data, the most significant bit of the original input data’s
most significant byte indicates the sign of the string, so
the overflow flag (OV) will indicate if overflow or
underflow occurred.

SUBSTR SUBTRACT STRING INDICATED BY R1
H FROM STRING INDICATED BY RO TO

H PRECISION INDICATED BY R2.

; CHECK FOR SIGNED UNDERFLOW WHEN DONE.

SUBSTR: CLR Cc

;BORROW =0.



MCS®-51 APPLICATION EXAMPLES

SUBS1: MOV A,@RO :.LOAD MINUEND BYTE
SUBB A @R1 :SUBTRACT SUBTRAHEND BYTE
MOV  @RO,A ‘STORE DIFFERENCE BYTE
INC RO :BUMP POINTERS TO NEXT PLACE
INC Ri1
DJNZ R2,SUBS1 :.LOOP UNTIL DONE

: WHEN DONE, TEST IF OVERFLOW OCCURRED

: ON LAST ITERATION OF LOOP.

’ JNB  OV,0V_OK .

: - (OVERFLOW RECOVERY ROUTINE)
OV__OK: RET :RETURN

9.0.3 Table Look-Up Sequences

The two versions of the MOVC instructions are used as
part of a three-step sequence to access look-up tables in
ROM. To use the DPTR version, load the Data Pointer
with the starting address of a look-up table; load the
accumulator with (or compute) the index of the entry
desired; and execute MOVC A,@A+DPTR. The data
pointer may be loaded with a constant for short tables,
or to allow more complicated data structures, and
tables with more than 256 entries, the values for DPH
and DPL may be computed or modified with the
standard arithmetic instruction set.

The PC-based version is used with smaller, “local”
tables, and has the advantage of not affecting the data
pointer. This makes it useful in interrupt routines or
other situations where the DPTR contents might be
"significant. Again, a look-up sequence takes three steps:
load the accumulator with the index; compensate for
the offset from the look-up instruction’s address to the
start of the table by adding that offset to the accumula-
tor; then execute the MOVC A,@A+PC instruction.

9-3

As a non-trivial situation where this instruction would
be used, consider applications which store large multi-
dimensional look-up tables of dot matrix patterns, non-
linear calibration parameters, and so on in the linear
(one-dimensional) program memory. To retrieve data
from the tables, variables representing matrix indices
must be converted to the desired entry’s memory address.
For a matrix of dimensions (MDIMEN x NDIMEN)
starting at address BASE and respective indices INDEXI
and INDEXJ, the address of element (INDEXI, INDEXJ)
is determined by the formula,

Entry Address = [BASE + (NDIMEN x
INDEXI) +INDEXJ]

The subroutine MATRIX]! can access an entry in any
array with less than 255 elements (e.g., an 11 x 21 array
with 231 elements). The table entries are defined using
the Data Byte (“*DB") directive, and will be contained in
the assembly object code as part of the accessing
subroutine itself.



MCS®-51 APPLICATION EXAMPLES

To handle the more general case, subroutine MATR X2 data pointer-based version of MOVC. The only restric-
allows tables to be unlimited in size, by combining the tion is that each index be between 0 and 255.
MUL instruction, double-precision addition, and the ‘

MATRX1 LOAD CONSTANT READ FROM TWO DIMENSIONAL LOOK-UP

H TABLE IN PROGRAM MEMORY INTO ACCUMULATOR

H USING LOCAL TABLE LOOK-UP INSTRUCTION, ‘MOVC A,@A+PC’.
; THE TOTAL NUMBER OF TABLE ENTRIES IS ASSUMED TO

; BE SMALL, LE., LESS THAN ABOUT 255 ENTRIES.

TABLE USED IN THIS EXAMPLE IS 11 x 21.

DESIRED ENTRY ADDRESS IS GIVEN BY THE FORMULA,

[(BASE ADDRESS) = (21 X.INDEXI) = (INDEXJ)]

INDEXI EQU Ré6 ;FIRST COORDINATE OF ENTRY (0-10).

INDEXJ DATA 23H ;SECOND COORDINATE OF ENTRY (0-20).
MATRX1:© MOV  A,INDEXI
MOV B, #21 i
MUL AB ;(21 X -INDEXI)
ADD A,INDEXJ ;ADD IN OFFSET WITHIN ROW
H _ ALLOW FOR INSTRUCTION BYTE BETWEEN “MOVC” AND
; ENTRY (0,0).
INC A
MOVC A,@A+PC
. RET ‘
BASE1: DB 1 ;(entry 0,0)
DB 2 ;(entry 0,1)
DB 21 ) . (entry 0,20)
DB 22 s(entry 1,0)
’ DB 42 s(entry 1,20)
; DB 231 ;(entry 10,20)



MCS®-51 APPLICATION EXAMPLES

MATRX2: MOV  A,INDEXI ;LOAD FIRST COORDINATE
MOV  B,#NDIMEN
MUL AB @INDEXI X NDIMEN
ADD A#LOW(BASE?2) ;ADD IN 16-BIT BASE ADDRESS
MOV DPLA
MOV AB
ADDC A #HIGH(BASE2) ,
MOV DPH,A ;DPTR=(BASE ADDR) + (INDEXI + NDIMEN)
MOV  A,INDEXJ '
MOVC A,@A+DPTR ;ADD INDEXJ AND FETCH BYTE
RET
BASE2: DB 0 ;(entry 0,0)
DB 0 ;(entry 0,1)
DB 0 ;(entry 0, NDIMEN-1)
DB 0 ;(entry 1,0)
DB (1] ;(entry 1, NDIMEN-1)
DB 0 s(entry

MDIMEN-i, NDIMEN-1)

9.0.4 Saving CPU Status during Interrupts

When the 8051 hardware recognizes an interrupt re-
quest, program control branches automatically to the
corresponding service routine, by forcing the CPU to
process a Long CALL (LCALL) instruction to the
appropriate address. The return address is stored on the

top of the stack. After completing the service routine,

an RETI instruction returns the processor to the
background program at the point from which it was
interrupted.

9-5

Interrupt service routines must not change any variable
or hardware registers modified by the main program, or
else the program may not resume correctly. (Such a
change might look like a spontaneous random error.
An example of this will be given later in this section, in
the second method of I/O port reconfiguration.) Re-
sources used or altered by the service routine (Accumu-
lator, PSW, etc.) must be saved and restored to their
previous value before returning from the service
routine. PUSH and POP provide an efficient and
convenient way to save such registers on the stack.



M¢S®-51 APPLICATION EXAMPLES

LOC.TMP EQU $ ;REMEMBER LOCATION COUNTER
’ ORG ' 0003H :STARTING ADDRESS FOR INTERRUPT ROUTINE
LJMP SERVER :JUMP TO ACTUAL SERVICE ROUTINE LOCATE
'ELSEWHERE
’ ORG LOC_TMP :RESTORE LOCATION COUNTER
SERVER: PUSH PSW_ :
PUSH ACC  :SAVE ACCUMULATOR (NOTE DIRECT ADDRESS
‘NOTATION) -
PUSH B :SAVE B REGISTER
PUSH DPL ° ‘SAVE DATA POINTER
PUSH DPH :

MOV  PSW,#00001000B ‘SELECT REGISTER BANK 1

POP DPH ;RESTORE REGISTERS IN REVERSE ORDER

POP DPL

POP B ,

POP ACC

POP  PSW ;RESTORE PSW AND RE-SELECT ORIGINAL
- ;REGISTER BANK

RETI ;RETURN TO MAIN PROGRAM AND RESTORE
' " INTERRUPT LOGIC :

" If the SP register held 1FH when the interrupt was RAM

detected, then while the service routine was in progress ADDR
the stack would hold the registers shown in Figure 9-1; 7FH
SP would contain 26H. This is the most general case; if :
the service routine doesn’t alter the B-register and data
pointer, for example, the instructions saving and restor- 26H DPH ‘- (SP)
ing those registers could be omitted. osm [ - DPL
9.0.5 Passing Parameters on the Stack 24H B

: : 23H ) ACC
The stack may also pass parameters to and from 22H PSW
subroutines. The subroutine can indirectly address the 21H PC (HIGH)
parameters derived from the contents of the stack 20H PC (LOW)
pointer: or simply pop the stack into registers before 1FH -
processing.

00H

Figure 9-1.



MCS®-51 APPLICATION EXAMPLES

HEXASC: MOV  RO,SP
DEC RO ;ACCESS LOCATION PARAMETER PUSHED
* INTO
DEC RO
XCH A,@R0O ;READ INPUT PARAMETER AND SAVE AC-
CUMULATOR
ANL A,#OFH ;MASK ALL BUT LOW-ORDER 4 BITS
ADD A2 ;ALLOW FOR OFFSET FROM MOVC TO TABLE
MOVC A,@A+PC ;READ LOOK-UP TABLE ENTRY
XCH A,@RO ;PASS BACK TRANSLATED VALUE AND
;RESTORE ACCUMULATOR
RET ;RETURN TO BACKGROUND PROGRAM
ASCTBL: DB ‘0’ ;ASCIl CODE FOR 00H
DB 1 ;ASCIl CODE FOR 01H
DB 2 ;ASCIl CODE FOR 02H
DB ‘3 ;ASCII CODE FOR 03H
DB ‘q ;ASCII CODE FOR 04H
DB ‘5’ ;ASCIl CODE FOR O05H
DB ‘6’ ;ASCHl CODE FOR 06H
DB ‘v ;ASCII CODE FOR 07H
DB ‘e’ ;ASCII CODE FOR 08H
DB ‘9’ ;ASCIl CODE FOR 09H
DB ‘A’ ;ASCIl CODE FOR OAH
DB ‘B’ ;ASCIl CODE FOR OBH
DB ‘C ;ASCII CODE FOR OCH
DB ‘D’ ;ASCIl CODE FOR ODH
DB ‘E’ ;ASCII CODE FOR OEH
DB ‘F ;ASClIl CODE FOR OFH

One advantage here is simplicity. Variables need not be
allocated for specific parameters, a potentially large
number of parameters may be passed, and different
calling programs may use different techniques for
determining or handling the variables.

For example, the subroutine HEXASC converts a
hexadecimal value to ASCII code for its low-order
digit. It first reads a parameter stored on the stack by
calling program, then uses the low-order bits to access a
local l6-entry look-up table holding ASCII codes,
stores the appropriate code back in the stack and then

9-7

returns. The accumulator contents are left unchanged.

The background program may reach this subroutine
with several different calling sequences, all of which
PUSH a value before calling the routine and POP the
result to any destination register or port later. There is
even the option of leaving a value on the stack if it won't
be needed until later. The example below converts the
three-digit BCD value computed in the Radix Conver-
sion example above to a three-character string, calling a
subroutine SP _OUT to output an eight-bit code in the
accumulator. :



MCS®-51 APPLICATION EXAMPLES

i

seesan

;CONVERT HUNDREDS DIGIT
;TRANSMIT HUNDREDS CHARACTER
;CONVERT ONE’S PLACE DIGIT

;BUT LEAVE ON STACK!

PUSH HUND
CALL HEXASC
POP ACC
CALL SP_OUT
PUSH TENONE
CALL HEXASC
MOV A, TENONE
SWAP A

PUSH ACC
CALL HEXASC
POP = ACC
CALL SP_OUT
POP ACC
CALL SP_OUT

;RIGHT-JUSTIFY TEN'S PLACE
;CONVERT TEN'S PLACE DIGIT

;TRANSMIT TEN’S PLACE CHARACTER
;TRANSMIT ONE’'S PLACE CHARACTER

9.0.6 N-Way Branching

There are several different means for branching to
sections of code determined or selected at run time.
(The single destination addresses incorporated into
conditional and unconditional jumps are, of course,
fixed at assembly time.) Each has advantages for
different applications.

In a typical N-way branch situation, the potential
destinations are generally known at assembly time. One
of a number of small routines is selected according to
the value of an index variable determined while the
program is running. The most cfficient way to solve this
problem is .with the MOVC and an indirect jump
instruction, using a short table of offset values in ROM
to indicate the relative starting addresses of the several
routines.

JMP @A+DPTR is an instruction which performs an
indirect jump to an address determined during program

execution. The instruction adds the eight-bit unsigned
accumulator contents with the contents of the sixteen-
bit data pointer, just like MOVC A,@A+DPTR. The
resulting sum is loaded into the program counter and is
used as the address for subsequent instruction fetches.
Again, a sixteen-bit addition is performed: a carry-out
from the low-order eight-bits may propagate through
the higher-order bits. In this case, neither the ac-
cumulator contents nor the data pointer is altered.

The example subroutine below reads a byte of RAM
into the accumulator from one of four alternate address
spaces, as selected by the contents of the variable
MEMSEL. The address of the byte to be read is
determined by the contents of RO (and optionally R1).
It might find use in a printing terminal application,
where four different model printers all use the same
ROM code but use different types (and sizes) of buffer
memory for different speeds and options.



MCS®-51 APPLICATION EXAMPLES

MEMSEL EQU R3
JUMP_4: MOV  AMEMSEL
MOV  DPTR,#JMPTBL
MOVC A,@A+DPTR
JMP  @A+DPTR .
JMPTBL: DB MEMSPO-JMPTBL
DB MEMSP1-JMPTBL
DB MEMSP2-JMPTBL
DB  MEMSP3-JMPTBL
MEMSPO: MOV  A,@RO
RET
MEMSP1: MOVX A @RO
RET
MEMSP2: MOV  DPL,RO
MOV  DPH,R1
MOVX A,@DPTR
RET
MEMSP3: MOV  AR1
ANL  A#07H
ANL  P1,#11111000B
ORL P1A
MOVX A,@R0
RET ~

;READ FROM INTERNAL RAM
;READ 256 BYTE EXTERNAL RAM
;READ 64K BYTE EXTERNAL RAM

;READ 4K BYTE EXTERNAL RAM

To use this approach, the size of the jump table plus the
length of the alternate routines must be less than 256
bytes. The jump table and routines may be located
anywhere in program memory and are independent of
256-byte program memory pages.

_a

For applications where up to 128 destinations must be
selected, all residing in the same 2K page of program
memory, the following technique may be used. In the
printing terminal example, this sequence could process
128 different codes for ASCII characters arriving via the
8051 serial port.



MCS@-51 APPLICATION EXAMPLES

OPTION EQU R3

JMP128: MOV  A,OPTION

» RL A
MOV  DPTR,#INSTBL
JMP  @A+DPTR

INSTBL: AJMP PROCO00
AJMP PROCO1
AJMP  PROCO2

’ AJMP PROC7E
AJMP PROCTF

;MULTIPLY BY 2 FOR 2-BYTE JUMP TABLE
;FIRST ENTRY IN JUMP TABLE )
;JJUMP INTO JUMP TABLE

128 CONSECUTIVE
‘AJMP INSTRUCTIONS

The destinations in the jump table (PROC00-PROC7F)
are not all necessarily unique routines. A large number
of special control codes could each be processed with
their own unique routine, with the remaining printing
characters all causing a branch to a common routine for
entering the character into the output queue.

9.0.7 Computing Branch
Destinations at Run Time

In some rare situations, 128 options are insufficient, the

be handled by computing the destination address at

" run-time with standard arithmetic or table look-up

destination routines may cross a 2K page boundary, or

a branch destination is not known at assembly time (for
whatever reason), and therefore cannot be easily in-
cluded in the assembled code. These situations can all

instructions, then performing an indirect branch to that
address. There are two simple ways to execute this last
step, assuming the 16-bit destination address has al-
ready been computed. The first is to load the address
into the DPH and DPL registers, clear the accumulator
and branch using the JMP @A+DPTR instruction; the
second is to push the destination address onto the stack, -
low-order byte first (so as to-mimic a call instruction) '
then pop that address into the PC by performing a
return instruction. This also adjusts the stack pointer to
its previous value. The code segment below illustrates
the latter possibility. :

RTEMP EQU R7
- JMP256: MOV  DPTR,#ADRTBL
~ MOV  A,OPTION
CLR C
RLC A
JNC  LOW128
INC DPH

;FIRST ADDRESS TABLE ENTRY
;LOAD INDEX INTO TABLE

;MULTIPLY BY 2 FOR 2-BYTE JUMP TABLE
;FIX BASE IF INDEX>127



MCS®-51 APPLICATION EXAMPLES

LOW128: MOV RTEMP,A ;SAVE ADJUSTED ACC FOR SECOND READ
INC A ;READ LOWORDER BYTE FIRST
MOVC A,@A+DPTR ;GET LOW-ORDER BYTE FROM TABLE
PUSH ACC
MOV  A,RTEMP ;RELOAD ADJUSTED ACC
MOVC A,@A+DPTR ;GET HIGH-ORDERED BYTE FROM TABLE
PUSH ACC

H THE TWO ACC PUSHES HAVE PRODUCED

; A “RETURN ADDRESS” ON THE STACK WHICH CORRESPONDS

H TO THE DESIRED STARTING ADDRESS.

; IT MAY BE REACHED BY POPPING THE STACK

H INTO THE PC.
RET

ADRTBL: DW PROCO00 ;UP TO 256 CONSECUTIVE DATA
DW PROCO1 ;WORDS INDICATING STARTING ADDRESSES
DW PROCFF

9.0.8 In-Line-Code Parameter Passing

Parameters can be passed by loading appropriate
registers with values before calling the subroutine. This
technique is inefficient if a lot of the parameters are
constants, since each would require a separate register
to carry it, and a separate instruction to load the register
each time the routine is called.

If the routine is called frequently, a more code-efficient
way to transfer constants, is “in-line-code™ parameter-
passing. The constants are actually part of the program
code, immediately following the call instruction. The
subroutine determines where to find them from the
return address on the stack, and then reads the para-
meters it needs from program memory.

For example, assume a utility named ADDBCD adds
a 16-bit packed-BCD constant with a two-byte BCD

variable in internal RAM and stores the sum in a
different two-byte buffer. The utility must be given the
constant and both buffer addresses. Rather than using
four working registers to carry this information, all four
bytes could be inserted into program memory each time
the utility is called. Specifically, the calling sequence |
below invokes the utility to add 1234 (decimal) with the
string at internal RAM address 56H, and store the sum
in a buffer at location 78H.

The ADDBCD subroutine determines at what point
the call was made by popping the return address from
the stack into the data pointer high- and low-order
bytes. A MOVC instruction then reads the parameters
from program memory as they are needed. When done,
ADDBCD resumes execution by jumping to the in-
struction following the last parameter.



MCS@-51 APPLICATION EXAMPLES

ADDBCD:

CALL
DW
DB
DB

POP
POP
MoV
mMovc
MoV
MoV

mMovc
MoV
MoV
Movc
ADD
DA
MoV
INC
INC
CLR
MovC
ADDC
DA
MoV
MOV
JMP

ADDBCD
© 1234H
56H

78H

DPH
DPL
A#2
A,@A+DPTR
RO,A
A#3

A,@A+DPTR
R1,A

A#1
A,@A+DPTR
A,@RO

A

@R1,A

RO

R1

A
A,@A+DPTR
A,@RO

A

@R1,A
A#4

- @A+DPTR

;BCD CONSTANT

;SOURCE STRING ADDRESS
;DESTINATION STRING ADDRESS
;CONTINUATION OF PROGRAM

;POP RETURN ADDRESS INTO DPTR

;INDEX FOR SOURCE STRING PARAMETER
;GET SOURCE STRING LOCATION

;INDEX FOR DESTINATION STRING
;PARAMETER
;GET DESTINATION ADDRESS

;INDEX FOR 16-BIT CONSTANT LOW BYTE
;GET LOW-ORDER VALUE

;COMPUTE LOW-ORDER BYTE OF SUM
;DECIMAL ADJUST FOR ADDITION
;SAVE IN BUFFER

;INDEX FOR HIGH-BYTE = 0
;GET HIGH-ORDER CONSTANT

;DECIMAL ADJUST FOR ADDITION

;SAVE IN BUFFER

;INDEX FOR CONTINUATION OF PROGRAM
3wJUMP BACK INTO MAIN PROGRAM

This example illustrates several points:

1) The “subroutine” does not end with a normal return
statement; instead, an indirect jump relative to the
data pointer returns execution to the first instruc-
tion following the parameter list. The two initial
POP instructions correct the stack pointer contents.

2) Either an ACALL or LCALL works with the sub-
routine, since each pushes the address of the next
instruction or data byte onto the stack. The call may
be made from anywhere in the full 8051 address space,
since the MOVC instruction access all 64K bytes.

9-12



MCS@-51 APPLICATION EXAMPLES

3) The parameters passed to the utility can be listed in
whatever order is most convenient, which may not
be that in which they're used. The utility has
essentially “random access™ to the paramater list, by
loading the appropriate constant into the accumula-
tor before each MOVC instruction.

4) Other than the data pointer, the whole calling and
processing sequence ‘only affects the accumulator,
PSW and pointer registers. The utility could have
pushed these registers onto the stack (after popping
the parameter list starting address), and popped
before returning.

Passing parameters through in-line-code can be used in
conjunction with other variable passing techniques.

The utility can also get input variables from working
registers or from the stack, and réeturn output variables
to registers or to the stack.

9.1 PERIPHERAL INTERFACING TECHNIQUES
9.1.11/0 Port Reconfiguration (First Approach)

/0 ports must often transmit or reccive parallel data in
formats other than as cight-bit bytes. For example, if an
application requires three five-bit latched output ports
(called X, Y, and Z), these “virtual” ports could be
mapped onto the pins of “physical” ports | and 2 (see
example at bottom of page).

This pin assignment leaves P2.7 free for use as a test pin,
input data pin, or control output through software.

Notice that the bits of port Z are reversed. The highest-
order port Z pin corresponds to pin P2.2, and the
lowest-order pin of port Z is P2.6, due to P.C. board
layout considerations. When connecting an 8051 to an
immediately adjacent keyboard column decoder or
another device with weighted inputs, the corresponding
pins may not be aligned. The interconnections must be
“scrambled” to compensate either with interwoven
circuit board traces or through software (as shown on
the next page).

PORT “Z” PORT “Y” PORT X"
- | PZ0 PZI PZ2 PZ3 PZ4 |PY4 PY3 PY2 PYl PYO| PX4 PX3 PX2 PXl PX0
P27 {P2.6 P25 P24 P23 P22 P21 P20 PL7 PL6 PLS5S|PL4 PIL3 PL2 PLI PLO

9-13



MCS®-51 APPLICATION EXAMPLES

PX__MAP
PY_MAP
PZ_MAP

OUT_PX:
OUT_PY:

OUT_PZ:

OUT__P1:

ouUT__P2:

DATA
DATA
DATA

ANL
MOV
ACALL
RET

MoV
ACALL
ACALL

RET

MOV
ACALL
RET

MOV
SWAP
RL
ANL
ORL
MoV
RET

MOV
RLC
MOV
RLC
MoV
RLC
MOV
RLC
MoV
RLC
MOV
RLC
MOV

-RLC

SETB
MOV
RET

20H
21H
22H

A,#00011111B
PX_MAP,A
OUT_P1

PY_MAP,A
OuT__P1
ouT_P2

PZ_MAP,A
ouT_P2

APY_MAP

A

A
A,#11100000B
A,PX_MAP
P1,A

C,PZ_MAP.0

A
C,PZ_MAP.1
A
C,PZ_MAP.2
A
C,PZ_MAP.3
A

A
C,PZ_MAP.4
A

A
ACC.7
P2.A

C,PZ_MAP.4

C,PZ_MAP.3

;CLEAR BITS ACC.7- ACC. 5
:SAVE DATA IN MAP BYTE
;UPDATE PORT 1 OUTPUT LATCH

;SAVE IN MAP BYTE
;UPDATE PORT 1 )
;AND PORT 2 OUTPUT LATCHES

;SAVE DATA IN MAP BYTE
;UPDATE PORT 2.

:OUTPUT ALL P1BITS

;SHIFT PY_MAP LEFT 5 BITS
;MASK OUT GARBAGE
;INCLUDE PX__MAP BITS

;LOAD CY WITH P2.6 BIT
;AND SHIFT INTO ACC.
;LOAD CY WITH P2.5 BIT
;AND SHIFT INTO ACC.
;LOAD CY WITH P24 BIT
;AND SHIFT INTO ACC.
;LOAD CY WITH P2.3 BIT
;AND SHIFT INTO ACC.
;LOAD CY WITH P2.2 BIT
;AND SHIFT INTO ACC.
;LOAD CY WITH P2.1 BIT
;AND SHIFT INTO ACC.
;LOAD CY WITH P2.0 BIT .
;AND SHIFT INTO ACC.
;(ASSUMING INPUT ON P2.7)

9-14



MCS®-51 APPLICATION EXAMPLES

Writing to the virtual ports must not affect any other
pins. Since the virtual output algorithms are non-
trivial, a subroutine is needed for each port: OUT _PX,
OUT _PY and OUT__PZ. Each is called with data to
output right-justified in the accumulator, and any data
in bits ACC.7-ACC.5 is insignificant. Each subroutine
saves the data in a “map” variable for the virtual port,
then calls other subroutines which use the data in the
various map bytes to compute and output the eight-bit
pattern needed for each physical port affected. The two
level structure of the above subroutines can be modified
somewhat if code efficiency and execution speed are
critical: incorporate the code shown as subroutines
OUT _P! and OUT__P2 directly into the code for
OUT _PX and OUT __PZ, in place of the correspond-
ing ACALL instructions. OUT_PY would not be
changed, but now the destinations for its ACALL
instructions would be alternate entry points in OUT
PX and OUT __PZ, instead of isolated subroutines.

9.1.2 1/0 Port Configuration
(Second Approach)

A trickier situation arises if two sections of code which
write to the same port or register, or call virtual output
routines like those above, need to be executed at
different interrupt levels. For example, suppose the
background program wants to rewrite Port X (using the
port associations in the previous example), and has

computed the bit pattern needed for P1. An interrupt is
detected just before the MOV P1,A instruction, and the
service routine tries to write to Port Y. The service
routine would correctly update Pl and P2, but upon
returning to the background program P! is immediate-
ly re-written with the data computed before the inter-
rupt! Now pins P2.1 and P2.0 indicate (correctly) data
written to port Y in the interrupt routine, but the earlier
data written to P1.7-P1.5 is no longer valid. The same
sort of confusion could arise if a high-level interrupt
disrupted such an output sequence.

One solution is to disable interrupts around any section
of code which must not be interrupted (called “critical
section™) but this would adversely affect interrupt
latency. Another is to have interrupt routines set or
clear a flag (“semaphore”) when a common resource is
altered — a rather complex and elaborate system.

An easier way to ensure that any instruction which
writes the port X field of P1 does not change the port Y
field pins from their state ar the beginning of that
instruction, is shown next. A number of 8051 opera-
tions read, modify, and write the output port latches all
in one instruction. These are the arithmetic and logical
instructions (INC, DEC, ANL, ORL, etc.), where an
addressed byte is both the destination variable and one
of the source operands. Using these instructions, in-
stead of data moves, eliminates the critical section
problem entirely.



MCS@-51 APPLICATION EXAMPLES

OUT_PX: ANL
ORL
'RET

OUT_PY: MOV
MUL
ANL
ORL
MOV
ANL
ORL
RET

’

OUT__PZ: RRC
‘MOV
RRC
MOV
RRC
MOV
RRC
MOV
RRC
MOV
RET

P1,#11100000B

P1,A .

AB

P1,#00011111B
P1,A

AB
P2,#11111100B
P2,A

;CLEARBITS P1.4-P1.0
;SET P1 PIN FOR EACH ACC BIT SET

+SHIFT B A LEFT 5 BITS.

;CLEAR PY FIELD OF PORT 1

;SET PY PITS ON PORT 1

;LOAD 2 BITS SHIFTED INTO B
;AND UPDATE P2

;MOVE ORIGINAL ACC.0 INTO CY
;AND STORE TO PIN P2.6.

;MOVE ORIGINAL ACC.1INTO CY
:AND STORE TO PIN P2.5.

;MOVE ORIGINAL ACC.2 INTO CY
;AND STORE TO PIN P2.4.

;MOVE ORIGINAL ACC.3 INTO CY
;AND STORE TO PIN P2.3.

;MOVE ORIGINAL ACC.4 INTO CY
;AND STORE TO PIN P2.2.

9.1.3 8243 Interfacing

The 8051's quasi-bidirectional port structure lets each
1/0 pin input data, output data, or serve as a test pin or
output strobe under software control. An example of
these modes operating in conjunction is the host-

processor interface expected by an 8243:1/0 expander.
Even though the 8051 does not include 8048-type

" instructions for interfacing with an 8243, the parts can
be interconnected and the protocol may be emulated
with simple software; see Figure 9-2.

;IN8243

INPUT DATA FROM AN 8243 I/O EXPANDER
; " CONNECTED TO P23-P20.
P25 & P24 MIMIC CS & PROG.

; * P27-P26 USED AS INPUTS. CODE FOR

PORT TO BE READ IN ACC.1-ACC.0

9-16



MCS®-51 APPLICATION EXAMPLES

PROG BIT, P24

;SYMBOLIC PIN DESCRIPTION

IN8243: ORL  A,#11010000B ;SET PROG AND PINS USED AS INPUT
MOV  P2,A ;OUTPUT PORT CODE AND OPERATION CODE
CLR PROG ;LOWER PROG TO LATCH ADDRESS
ORL  P2,#00001111B ;SET LOW ORDER PINS FOR INPUT
MOV  A,P2 ;READ IN PORT DATA
ORL  P2,#00110000B

;SET PROG AND CS HIGH

9.1.4 Software Delay Timing

Many 8051 applications involve exact control over
output timing. A software-generated output strobe, for
instance, might have to be exact/y 50usec. wide. The

DJNZ operation can insert an one instruction software
delay into a piece of code, adding a moderate delay of
two instruction cycles per iteration. For example, two
instructions can add a 49-usec software delay loop to
code to generate a pulse on the WR pin.

CLR WR
MoV R2,#24
DJNZ R2,$
SETB WR
8051AH
8751H s
e
ol | [
P2.5 & ps <:Z>
P24 PROG f
p2.3 P23
p2.2 P22 - <;1>
2.1 P21 4
gz.o _ P20 P7 w

Figure 9-2. Connecting an 8051 with an 8243 1/0
" Expander

The dollar sign in this example is a special character
meaning “the address of this instruction.” It can be used
to eliminate instruction labels on nearby source lines.

9.1.5 Serial Port and Timer Configuration

Configuring the 8051's Serial Port for a given data rate
and protocol requires essentially three short sections of

« f ‘ 9-17

software. On power-up or hardware reset the serial
port and timer control words must be initialized to the
appropriate values. Additional software is also needed
in the transmit routine to load the serial port data
register and in the receive routine to unload the data as
it arrives.

To choose one arbitrary example, assume the 8051
should communicate with a standard CRT operating at

2400 baud (bits per second). Each character is transmit-

ted as seven data bits, odd parity, and one stop bit. The
resulting character rate is 2400 baud/9 bits, approxi-
mately 265 characters per second.

For the sake of clarity, the transmit and receive
subroutines here are driven by simple-minded software
status polling code rather than interrupts. The serial
port must be initialized to 8-bit UART mode (SMO,
SMI! = 01), enabled to receive all messages (SM2 = 0,
REN = 1). The flag indicating that the transmit register
is free for more data will be artificially set in order to let
the output software know the output register is avail-
able. All this can be set up with instruction at label
SPINIT. .



MCS@-51 APPLICATION EXAMPLES

Timer | will be used in auto-reload mode as a baud rate
generator. To achieve a data rate of 2400 baud, the
timer must divide the IMHz internal clock by

1 x 10%
(32) (2400)

™

which equals 13 (actually, 13.02) instruction cycles. The
timer must reload the value — 13, or OF3H, as shown by
the code at label THINIT. (ASMS51 will accept both the’
signed decimal or hexadecimal representations.)

INITIALIZE SERIAL PORT
FOR 8-BIT UART MODE

L R

PINIT: MOV SCON,#01010010B
INITIALIZE TIMER 1 FOR
AUTO-RELOAD AT 32 X 2400HZ
;TIUNIT: MOV TCON,#1101001B
MOV TH1,#13

SETB TRt

& SET TRANSMIT READY FLAG.

(TO USED-AS GATED 16-BIT COUNTER.)

9.1.6 Simple seriql 1/0 Drivers

SP_OUT is a simple subroutine to transmit the
character passed to it in the accumulator. First it must
compute the parity bit, insert it into the data byte, wait
until the transmitter is available, output the character
and then return.

SP__IN is an equally simple routine which waits until a
character is received, sets the carry flag if there is an
odd-parity error, and returns the masked seven-bit code
in the accumulator.

SP_OUT ADD ODD PARITY TO ACC AND
TRANSMIT WHEN SERIAL PORT READY

SP_OUT:

MOV C,P

CPL C
MOV ACC.7,C
JNB TI$
CLR TI

MOV  SBUF,A
RET



MCS®-51 APPLICATION EXAMPLES

;$SP_IN  INPUT NEXT CHARACTER FROM SERIAL PORT.
: SET CARRY IF ODD-PARITY ERROR

SP_IN: JNB RIS

CLR Rl

MOV  A,SBUF
MOV CpP
CPL C

ANL A#TFH
RET

9.1.7 Transmitting Serial Port Character

Strings need to output “canned” messages, including error
messages, diagnostics, or operator instructions. These
Any application which transmits characters through a character strings are most easily defined with in-line
serial port to an ASCII output device will on occasion .  data bytes defined with the DB directive.
CR EQU 0DH ;ASCIlI CARRIAGE RET
LF EQU 0AH ;ASCIl LINE-FEED
ESC EQU 1BH ;ASCIlI ESCAPE CODE
CALL XSTRING
DB CR,LF ' ;NEW LINE
DB ‘INTEL DELIVERS’ ;MESSAGE
DB ESC ;ESCAPE CHARACTER

H (CONTINUATION OF PROGRAM)

XSTRING: POP DPH : ;LOAD DPTR WITH FIRST CHARACTER
POP DPL ‘
XSTR_1: CLR A ;(ZERO OFFSET)
MOVC A,@A+DPTR ;FETCH FIRST CHARACTER OF STRING
XSTR__2: JNB TL$ ;WAIT UNTIL TRANSMITTER READY
CLR TI ;MARK AS NOT READY
MOV  SBUF,A ;OUTPUT NEXT CHARACTER
INC DPTR ;BUMP POINTER '
CLR A '
MOVC A,@A+DPTR ;GET NEXT OUTPUT CHARACTER
CJIJNE A#ESC,XSTR__2 ;LOOP UNTIL ESCAPE READ
MOV At

JMP @A+DPTR ;RETURN TO CODE AFTER ESCAPE




MCS®-51 APPLICATION EXAMPLES

9.1.8 Recognizing and Processing Special
Cases

Before operating on the data it receives, a subroutine
might give “special handling” to certain input values.
Consider a word processing device which receives
ASCII characters through the 8051 serial port and
drives a thermal hard-copy printer. A standard routine

translates most printing characters to bit patterns, but
certain control characters ((DEL], [CR], [LF], [BEL],
[ESC], or [SP]) must invoke corresponding special
routines. Any other character with an ASCII code less
than 20H should be translated into the [NUL] value,
00H, and processed with the printing characters. The

“ CJINE operation provides essentially a one-instruction

CASE statement.

CHAR EQU R7
INTERP: CJNE
RET
INTP_1: CJNE
_ RET
INTP_2: CJNE
RET
INTP_3: CJNE
 RET
INTP_3: CJNE
RET
INTP_5: CJNE
" RET _
INTP_6: JC PRINTC
' MOV  CHAR,#0

;CHARACTER CODE VARIABLE

CHAR,#7FH, INTP_1 ;SKIP UNLESS RUBOUT
‘ (SPECIAL ROUTINE FOR RUBOUT CODE)

CHAR,#07H,INTP_2 ;SKIP UNLESS BELL
(SPECIAL ROUTINE FOR BELL CODE)

CHAR,#0AH,INTP_3 ;SKIP UNLESS LFEED
‘ ) (SPECIAL ROUTINE FOR LFEED CODE)

CHAR,#0DH,INTP__4 ;SKIP UNLESS RETURN
(SPECIAL ROUTINE FOR RETURN CODE)

CHAR,#1BH,INTP_5 ;SKIP UNLESS ESCAPE
(SPECIAL ROUTINE FOR ESCAPE CODE)

CHAR,#20H,INTP_6 ;SKIP UNLESS SPACE
(SPECIAL ROUTINE FOR SPACE CODE)

;JUMP IF CODE 20H
;REPLACE CONTROL CHARACTER WITH

;NULL CODE '

PRINTC:

RET

;PROCESS STANDARD PRINTING
;CHARACTER ‘




MCS®-51 APPLICATION EXAMPLES

9.1.9 Synchronizing Timer Overflows

8051 timer overflows automatically generate an inter-
nal interrupt request, which will vector program execu-
tion to the appropriate interrupt service routine if
interrupts are enabled and no other service routines are
in progress at the time. However, it is not predictable
exactly how long it will take to reach the service routine.
The service routine call takes two instruction cycles, but
1, 2, or 4 additional cycles may be needed to complete
the instruction in progress. If the background program
ever disables interrupts, the response latency could
further increase by a few instruction cycles. (Critical
sections generally involve simple instruction sequences
— rarely multiplies or divides.) Interrupt response
delay is generally negligible, but certain time-critical
applications must take the exact delay into account.
For example, generating interrupts with timer |

cvery millisecond (1000 instruction cycles) or so would

normally call for reloading it with the.value -1000
(OFC30H). But if the interrupt interval (average over
time) must be accurate to | instruction cycle, the [6-bit
value reload into the timer must be computed, taking
into account when the timer actually overflowed.

This simply requires reading the appropriate timer,
which has been incremented each cycle since the
overflow occurred. A sequence like the one below can
stop the timer, compute how much time should elapse
before the next interrupt, and reload and restart the
timer. The double-precision calculation shown here
compensates for any amount of timer overrun within
the maximum interval. Note that it also takes into
account that the timer is stopped for seven instruction
cycles in the process. All interrupts are disabled, so a
higher priority request will not be able to disrupt the
time-critical code section.

CLR EA

CLR TRl

MOV A #LOW(—1000+7)
ADD  ATLi

MOV TL1,A

MOV A #HIGH(—1000+7)
ADDC A,TH1

MOV  TH1,A

SETB TR1

;DISABLE ALL INTERRUPTS

;STOP TIMER 1

;LOAD LOW-ORDER DESIRED COUNT
;CORRECT FOR TIMER OVERRUN
;RELOAD LOW-ORDER BYTE.
;REPEAT FOR HIGH-ORDER BYTE.

;RESTART TIMER

9-21



MCS®-51 APPLICATION EXAMPLES

9.1.10 Reading a Timer/Counter
“On-the-Fly”

The preceding example simply stopped the timer before
changing its contents. This is normally done when
reloading a timer so that the time at which the timer is
started (i.e. the “run” flag is set) can be exactly-
controlled. There are situations, though, when it is
desired to read the current count without disrupting the
timing process. The 8051 timer/counter registers can all
be read or written while they are running, but a few
precautions must be taken.

Suppose the subroutine RDTIME should return in
[R1], [RO] a sixteen-bit value indicating the count in
timer 0. The instant at which the count was sampled is
not as critical as the fact that the value returned must
have been valid at some point while the routine was in
progress. There is a potential problem that between
reading the two halves, a low-order register overflow
might increment the high-order register, and the two
data bytes returned would be “out of phase.” The
solution is to read the high-order byte first, then the
low-order byte, and then confirm that the high-order
byte has not changed. If it has, repeat the whole process.

RDTIME: MOV

A,THO ;SAMPLE TIMERO (HIGH)
MOV  RO,TLO ;SAMPLE TIMERO (LOW)
CINE A,THO,RDTIME :REPEAT IF NECESSARY
MOV R1,A - ;STORE VALID READ
RET

9.2 PERIPHERAL INTERFACE EXAMPLES

This section should give the designer an in\sight into
connecting external peripherals and memories to the
MCS-51 family.

9-22



MCS®-51 APPLICATION EXAMPLES

| ok | | k| e | N -

]30 Izs

+5V
+5V
= |24 12 =
40 20 Voo GND,
19 v v
XTAL1 CC S$ pro %— P41
spree | maf s 0
L 1 &3 P13 4— 1/0
= -4 T 18 P1a s 1/0 EXPANDER psq
30 pF XTAL 2 P15 g— P51
P16 [— P52
P17 P— P53
VW 8051AH
= 82K . P20 2] P20 P60
1 P21 P21 P61
eV At RESET P22 (23 P22 P62
104t P2.3 (52 P23 P63
P24 |22 .
p2.5 (28 L %rroG P70
3| _ P26 {21 6l— P71
EA P27 |28 cs P72
P73
101 P3.0 (RXD) PO.0 39 _
111P3.1(TXD) PO.1 38
}_g P3.2 (INTO) po.2 |37 1O
y —a]P33(INT1) P0.3 %
07 2 raa(ro Po.4 35
—51P35(T1) Pos |34
—~7]P3:6 (WR) P0.6 __g3
—~ P3.7 (RD) P07 |32
ALE PSEN

The following software driver is required to interface to the 8243.

Mixing Paralle! Output, Input, and
Control Strobes on Port 2.

IN8243 INPUT DATA FROM AN 8243 I/O EXPANDER
CONNECT TO P23-P20
P25 & P24 MIMIC CS/ & PROG
P27-P26 USED AS INPUTS
PORT TO BE READ IN ACC

IN8243 ORL A#11010000B
MOV P2,A  ;OUTPUT INSTRUCTION CODE
CLR P24  :FALLING EDGE OF PROG
ORL P2,#00001111B ;SET FOR INPUT
MOV A,P2  ;READ INPUT DATA
SETB P24  ;RETURN PROG HIGH

- Vo

Figure 9-3.1/0 Expansion Using an 8243

9-23




¥2-6

SATdNVXI NOILVOIIT1ddY LS-eSOW

I~
5V +5V
+5V | 1
1 [20 10 2 |21 h2 g
40 20 : vcc GND vcec Vep CE
19 v v
XxTAL1 € S5 p1o - b0 D00 }g A7
30 pF = _L P11 [2— 2o11 D01 |23 Ag Ag
P1.2 |7— 71012 8282 002lq A5
1 £ e o B Bosf s s N
= L . . 2716
30 pF T XTAL 2 P15 (6 D15 D5 14 A2 At0
8031AH P1.6 | D16 Do6 A4
g D17 Do7 Ao
J o 21
82K . :g.g 5
It 1153
el RESET p2.2
10uf P2.3 o5 _
P2.4 15— STB OE
P25 15— )+
31— P2.6 55— 1 |9
& p2.7 |25 =
= 101 p3.0 (RXD) Po.o |39 9 10g
111 P3.1(TXD) Po.1 |38 10 {04
32} p3.2 (INTO) PO.2 |37 ; 02
Vo 131 p3.3 (INT1) P0.3 |38 03
% P3.4 (T0) P0.4 |33 =104
5] p3s(T1) P0.5 16| 95
_13_ P3.6 (WR) P0.6 37196
171 p3.7 (RD) ___ P07 |3 1o —
: 7 OF
ALE PSEN
30 Fs ?20

* These pins are not available as I/Q where any part of Port 2 is
being used as an address bus.

Figure 9-4. External Program Memory Using a 2716




G2-6

+5V

* These pins are not available as I/0 when any part of Port 2
is being used as an address bus.

+5V v L
1 20 yi10 ot o e "
0 20 vcc GND vcc CE GND
vce Vss '
P1.O]1_ 1 |p1o poo |19 A7 .
i XTALA Pr1[2_ Zip1 po1 |18 Ag agf%
30 pF T P12]3 D11 8282 poofl? As 2
—1 =3 k] IR D13 po3 {18 Ag Ag
- =T P42 D14 pos 3 A3 21
30 pF 18l yraL2 :}.g TJ D15 DO5 [43 22 - A10
6H— D16 DO6 1
B031AH  py7[E- D17 po7 [ Ao 2rozA Anpt
I A p2.0j21
¢ RESET p2.2|23
Tout P23 24
i P24 322— STB O
p25f2 | T [s
P26 | 2L
T Uea p2.7 {28 =
- Heeie ROk 9190
. PO.1 1101
T2}pa2(INTO) po.2 |37 o,
33]p3.3(INTH) Po.3 |36 1210
3
V0 _141p3.4 ((T0) Po.4 |35 - o
5 34 5] 04
A51p3.5 (T1) P0.5 05
61 p36 (WH) 133 ¥
1 P06 |32 17] 96
171p3.7 (RD) —__ PO7TP= o7 OE/V,
ALE PSEN . L PP
30 Tzs lzo

Figure 9-5. External Program Memory Using a 2732

S3TdWVX3 NOILVYOITddV 1S-@SON



MCS®@-51 APPLICATION EXAMPLES

+5V
40
19 Ve
XTAL1 CC
30pF | _L
—
30 pF T 18l xraL2
_L——'ow»—— 8051AH
82K .
+sV 1= | reseT 5V GTD
10uf 40 20
vce Vss
3z
P3.0 (RXD) 12
1P3.1 (TXD) 13] ABS
2|p3.2 (INTO0) 1a] Apo
[7{e] 131P3.3 (INT1) 151 AD3
}4 P3.4 (Tg) }g AD4
P35 (T
16, pa,sg R) 18 ﬁgg 8155
17]p3.7 (RD) 191 AD7 256x8
ALE RAM
30 7 io/M .
=T
Yiwa
1
ALE

| CE

ESET TIMER TIMER
ouT

—1/0

Can be supplied by

or port line of 8051

JG ?3

TIMER

Figure 9-6. Adding a Data Memory and I/O Expander

9-26




MCS®-51 APPLICATION EXAMPLES

+5V

40 20
19 vee Vs
XTAL 1 S pro —]
T _L P11 [E—
30 pF T° P23
-t & P13 |3
= £ T 18 P14 lg—-
30 pF XTAL 2 ,’i}"‘g 7
‘ . 8051AH Pi7[8
L e2k P20 |21
| 9 P2.1 |
+5V—] | RESET p2.2}23.
p23|22
10t 25 1o
P24 56
P2.5 v
o P2.6 58~
EA P27~
10f p3.0 (RXD) Po.0|-39
{ ;' P3.1(TXD) po.1[ 38
~121 P32 (iNTO) po2t 3L
3] p33 (INTH) Po.3}-3&
vo 4 —1a P34 (T0) PO.4[35
151 pa5(11) Po.5(34
_16 p3’5 (WR) Po.6|-33
_17) p3.7 (RD) ____ p0o7[32 |
ALE PSEN
Iso |29
+5V
40 20
19 v v
XTAL1 ' CC ss Pe il
30 pF = _L p12[ 3
___:JC &5 ]
S P42
18 3
30 pF T XTAL 2 ,':}f; (7
8051AH P78
L 82K : P20 ‘g_
T - p21122
+t RESET P2.2|5%
10,1 P23l |
F232s two
= [26
P2.5 57"
@l P26 2L
T P27
10| p3.0 (RXD) 39
[ 11| P3.1(TXD) Po1 |35
12| p3.2 (INTO) P02 |37
131 p3.3 (INTH). po;3[36
141 p3.4(T0) P04 |35
/04 35| p35(T1) Po5|34
16} P3.6 (WR) Po.6 |33
37] p3.7 (RD) P07 |32 _|
ALE PSEN

Iso |29

Figure 9-7. Multiple 8051’s Using Half-Duplex Serial Communication

9-27




MCS®-51 APPLICATION EXAMPLES

DEVICE
1

DEVICE
2

+5V
:
40 2

19 vce Vss
XTAL 1 P1.0
wor £ T s
15 £i3
30 pF-— T 18 XTAL 2 ' P15
P1.6
8051AH P17
-E= 82K P2.0
9 P2.1
+5V ¢ RESET ggg
10pf -
OPEN K P24
COLLECTOR P25
INVERTERS +5V 3| P2.6
, |EA P27
_10}p3.0 (RXD) ' P0.0
vo{_ 11lp3.1 (TxD PO.1
P3.2 (INTO P0.2
131p3.3 ((INT1) P0.3
:4 gg.g (T0) P0.4
I/ 5 (T1 PO.5
° 16]P3.6 (WR) P0.6
17|P3.7 (RD) PO.7

ALE PSEN

DEVICE

DEVICE
4

|

s

— 1o

NN NN [N NN ~|| ] ) -
spssdele BRBBENRE 7N

]30

dhail

Figure 9-8. Multiple Interrupt Sources

9-28




Article Reprints

10







Putting a new wrinkle in a CMOS process has led to a pair of high-caliber
microcontrollers that limit power dissipation but not speed.

Microcontrollers go CMOS
without slowing down

Long considered a low-speed, complex technology
compared with NMOS, CMOS is on the rise as it
prepares to compete successfully with NMOS for
new, high-speed microprocessor applications. Using
its HMOS-II technology, Intel has developed high-
performance CMOS (C-HMOS) logic and applied it
to two standard NMOS microcontrollers, the 8049
and 8051.

The two new members of the MCS-48 and MCS-51
families—the 80C49 and 80C51, respectively—are
out to erase the low-performance image of previous
CMOS devices while minimizing price differences
and chip sizes compared with their n-channel coun-
terparts. C-HMOS technology borrows many of the
design and performance characteristics of high-
performance MOS (HMOS). However, developing C-
HMOS called for the creation of an n-well CMOS
process (Fig. 1). That had not been done previously
because CMOS technology grew naturally out of the
older p-channel MOS technology.

N-well CMOS offers two important processing
advantages: First, the substrate remains the same
as in HMOS. Thus n-channel transistors in C-HMOS
- require no new process characterization. Second, the

only new processing necessary are the n well and
a p-channel transistor.

Because they retain the design rules of HMOS-II,
C-HMOS devices realize the high speed and superior
packing density of that process. In addition,

.C-HMOS, like CMOS, dissipates less power than any
other semiconductor technology. One of the best uses
of the combined characteristics is in a microcon-
troller that must operate at low input power levels,
and the number of such applications is growing. They

“include battery-powered equipment and systems

John Katausky, Technical Marketing Manager
George Leach, Design Engineering Manager
intel Corp., Microcontroller Operation

5000 W. Williams Field Rd., Chandler, AZ 85224

Reprinted from ELECTRONIC DESIGN - February 18, 1982

10-1

that must keep working when normal ac power is
removed. In fact, this class of applications would not
exist if not for CMOS.

Microcontrollers are an ideal vehicle for the first
use of C-HMOS technology for several reasons. For
one, since they are generally stand-alone devices,
designers can construct a complete one-chip CMOS
microcontroller system. For another, they are widely
used in battery-powered systems, in .which CMOS
devices are mandatory. Also, since they contain
RAM, ROM, and random logic on a single chip,
designers gain experience with the major forms of-
CMOS hardware contained on a single device. As for
the 80C49 and 80C51 in particular, designers already
familiar with the 8049 and 8051 can gain the benefits
of CMOS with minor software modifications.

In developing the 80C49 and 80C51, the architec-
tural differences between the NMOS and C-HMOS

1. Inthe standard CMOS pr ,apwellresidesinan
n-type substrate (a). C-HMOS technology reverses this
process, placing an n well in a p-type substrate (b).

Copyright 1982 Hayden Publishing Co., Inc.



CMOS microcontrollers

versions were minimized. As a result, designers need
not relearn instruction sets, development tools, and
existing hardware designs. Existing software can
even be patched with idle instructions to reduce
significantly the part’s power consumption in agiven
application.

The 80C49 leads the way

The 80C49 is pin— and instruction-set—compatible
with the industry-standard 8049 microcontroller
(Fig. 2a). It contains 2 kbytes of ROM, 128 bytes of
RAM, and an 8-bit timer-counter. Other features
include three 8-bit I/0 ports, two test inputs, and
an output structure geared to easy expansion of the
1/0. To cover a range of controller applications, two
companion devices are in the offing. One is the 80C48
(1 kbyte of ROM, 64 bytes of RAM) and the other
is the 80C50 (4 kbytes of ROM, 256 bytes of RAM).
Both will use the same CPU as the 80C49 and include
the same power-down and idle features.

The 80C49 operates off 4.0 to 6.0 V. Between 4.5
to 5.5 V, its inputs and outputs match those of TTL
circuits. When interfaced with CMOS circuitry, both
inputs and outputs reach CMOS levels for the logic
1 and 0 states.

The operating frequency in CMOS devices is highly
dependent on supply voltage. In the case of 80C49,
above 4.5 V it can run at 11 MHz, but below that
the clock rate must be reduced. For example, at the

maximum supply voltage of 6 V and an operating
frequency of 11 MHz, the chip draws a maximum
current of 15 mA; with a 4-V power supply and a
frequency of 1 MHz, however, the current drain is
just 1 mA (see the table).

To reduce power consumption further, the 80C49
incorporates a very flexible idle mode. “Idle” is a new
instruction added to the 80C49’s architecture. Its
function is to stop all CPU activity and allow only
the timer-counter and the interrupt circuitry to
remain active. In hardware, that is accomplished

" using two sets of clocks, one for the CPU and the

other for the timer-counter and interrupt circuitry.
Figure 3 shows the logical implementation of the
dual clock. With this setup, the CPU is easily disabled
by selectively stopping its clock.

During idle, the counter-timer clock continues to
run and the entire 80C49 draws but a fraction of its
normal active current. The user can monitor events
or real-time functions while holding the current

“ drain to just 500 uA at 6 V and 11 MHz.

Either the timer-counter interrupt or an external
interrupt terminates the idle mode. Interrupts are
then handled as though they were received under
normal operating conditions. Moreover, a simple
flag, implemented by the user, can indicate if the
interrupt occurred during the idle condition or dur-
ing normal operation. A hardware reset also
terminates the idle mode.

A == Pl Tw:l Vee Interrupt and umj
XTAL: ] 2 2 39[3P0, AD o clock !
XTAL, O 3 3 38[3P0 ADY| :

RESET(] 4 4 37[]P0; AD,
s Os 5 36 [JP0s AD;|
W ]s 6 35[1P0 AD|
EA 7 7 34 [ P0s ADs|

o E 8 s 50 33po,AD, -
PSENC © 9 8‘(’)"055‘; 32[3P0; AD) CPU clock

WA LIRS ] = EAAL/VE;,o

ALE ] 1 > 30 :m

DB, 2 29 IPSEN

Rl ™ 13 28} P2rAus

08, ] 14 277 F2sAu TOLE
08; 15 263 P2sArs

- DBy E 16 251 P2iAn
08; [ 17 2413 P2sAn 3. The 80C49’s low-poweridle mode is
D8s (] 18 2301 P2An implemented using dual clocks, allowing the
DB, (] 19 19 223 P2 A, timer-counter and interrupts to remain active while

(.,Vsa ]2 20 210 P2ohs * the controller draws just 500 uA operating from a

2. The firsthigh-performance CMOS microcontroller, the

6-V power supply atan 11-MHz clock rate.

80C49, is compatible pin for pin and electrically with the NMOS
8049 (a), but contains features that allow it to dissipate less
power than its NMOS cousin. Like members of the MCS-48
family, the C-HMOS 80C51 executes programs outof its
internal memory or from an external memory. When operating
with an external memory, the chip’s pins assume the

functions shown in the outside columi ‘h).

10-2



The timer-counter remains active during the idle
mode to allow the idle instruction to be as useful
as possible. For example, the absence of an active
timer-counter forces the user to implement an ex-
ternal hardware interrupt to end the idle mode, a
less than ideal solution in almost all applications.
With an active timer-counter, the user can operate
the 80C49 in a programmable duty-cycle mode, which
allows the ratio of CPU active time to idle time to
be determined by software.

Holding down power

Power consumption is reduced to an absolute
minimum by placing the 80C49 in a hardware power-
down mode (Fig. 4). During power-down, only the
on-board RAM is kept active. Power-down is ac-
tivated by turning off the V¢ supply and reducing
the Vpp supply to its minimum value of 2 V. That
cuts the current drain to only 10 uA.

For some applications, it is useful for the designer
to know whether a power-up condition occurred from
a cold start or from the power-down mode. That is
made possible by software and is accomplished by
inserting a 1- or 2-byte “key” in the RAM before
entering the power-down mode. When the device
resets and comes out of power-down, the key bytes
are examined, enabling the CPU to determine from
what condition the reset occurred.

Higher performance with the 80C51

Specifically targeted at high-end 8-bit micropro-
cessor applications requiring low power consump-
tion, the 80C51 has all of the 8051's architectural

features, including its enhanced CPU and 170 func- .

tions. The on-chip program memory size remains 4
kbytes, with a full 64-kbyte external range. The 128-
byte on-chip RAM also is externally expandable—
to 64 kbytes. Also, on board are two 16-bit timer-
counters, a full duplex serial port, and a 1-bit Boolean
processor for control functions. Figure 2b shows the
80C51’s pinout for both the expanded and the port
mode. . :

Electrically similar to the 80C49, the 80C51 has
a Vcrange of 4to 6 V and is TTL-compatible between
4.5and 5.5 V. Above 4.5V, the chip operates at clock
rates of up to 15 MHz (see the table).

Like the 80C49, the 80C51 offers an idle mode for
lower power dissipation. This mode is initiated by
setting a bit in a new on-chip register, called the
PCON register, that resides in previously unused
chip area. When the bit is set, the CPU is disabled,
but the timer-counter, interrupts, and serial port
continue to function normally. A reset or any enabled
interrupt terminates the idle mode.

If an interrupt ends the idle mode, all register data
remain unchanged and the interrupt is serviced. Idle

4. Absolute minimum power is drawn during the
80C49’'s power-down mode. A fail-safe
power-down mode circuit can be designed with
just agermanium diode, aresistor, and two or
three nickel-cadmium cells.

. The current drain for the 80C48/80C51 (mA)
Voo At At At At
1 MHz 6 MHz 11/12 MHz* 15 MHz
4V 11.3 5.5/8 —/16 —l—
5 V’ 1.21.6 7/10 12.5/20 —/26
6V 1.5/2.0 8.5/12.5 15/25 —/31

*11 MHz for the 80C49, 12 MHz for the 80C51.

is implemented in much the same way as on the
80C49, that is, by splitting the on-chip clocks into
two signals, one for the CPU and the other for the
active idle circuitry. Using this technique, current
drain in the idle mode is about 1 mA at a supply
voltage of 6 V and an operating frequency of 15 MHz.,

Other bits of the PCON registers can be set as flags
to determine whether an interrupt has been used for
its normal function or to terminate the idle mode.
These flags permit an interrupt to do double duty,
instead of having to dedicate a particular interrupt
specifically to this mode.

How the idle mode works

Connecting a number of slave 80C51s to a common
serial link serves as an example of how to use the
80C51’s idle mode. These slave processors would be
controlled by a master computer or a master 80C51.
Each slave processor would contain a unique code
byte that would be stored in on-chip memory. To
conserve power, each of the slave 80C51s could be
in the idle mode. When the master transmitted a code
byte, all of the slaves would receive a serial-port
interrupt terminating the mode. Then each slave
would compare the transmitted code byte with its
internal code byte. The 80C51 -whose internal code
matched the transmitted code could then carry on
the task it was programmed for, while the other
slaves would return to the idle mode.

A new power-down mode is incorporated on the

10-3



CMOS microcontrollers

80C51 (Fig. 5), but unlike that on the 80C49, it is
achieved through software. As with idle, power-
down is entered by setting a bit in the PCON register.
That disables the clock oscillator, freezing the clocks
and stopping all functions. Therefore all vital
hardware-register data must be stored in the on-chip
RAM before starting the power-down mode. While
powered down, V¢ can be lowered to 2 V—at that

~ level, total current drain is only 50 uA. The only way
to terminate power-down is through a hardware
reset. As with the 80C49, software flags can be used
to determine the state the processor was in when
an interrupt or reset occurred.

C-HMOS for other kinds of circuits

Although the first products are single-chip
microcontrollers, C-HMOS technology can .be used
for any product fabricated in HMOS and for some
made with other technologies.

In building CMOS and C-HMOS circuits, p-channel
and n-channel devices are created. Thus n-type and
p-type impurities are routinely doped into the sub-

_strate. It is therefore possible to fabricate npn and
pnp bipolar transistors on the same substrate. When
high-drive capability is needed, a designer can create
an npn device. In fact, in an experimental ECL-
compatible RAM memory, designers have used an
npn transistor to provide the ECL output levels.

Clock
generator sl

5. The 80C51’s power-down mode is activated by abitinthe
new on-board PCON register, Setting the register’s PD bit
turns off the chip’s oscillator. This bit actually enables agate
that turns off the oscillator.

10-4

The ability to fabricate n-channel, p-channel, and
bipolar devices on the same substrate gives designers
considerable flexibility. It should, for example, be
easier in the future to combine analog and dlgltal
functlons on the same chip.

Experlments with memories

C-HMOS has been succegsfully demonstrated in
laboratory memory devices. One is a 4-k static RAM
that is functionally identical to the 2147. The chip
exhibits the same address and data access times as
its HMOS counterpart but consumes one-fifth as
much power.

Another experimental 4—k static RAM is com-
patible with 10K series ECL memories. Here, the
memory array was fabricated with six-transistor
CMOS devices, and special conversion circuitry was
fitted to the front and back ends. These converters
change the ECL inputs to MOS inputs and the MOS
outputs to ECL outputs. The resulting performance
rivals that of the chip’s bipolar equivalents. More
importantly, the circuit may pave the way for 16-
k, and larger, ECL-compatible memories. At those
levels, working with bipolar technology becomes very
difficult, if not impossible. Thus it may be that
higher-capacity ECL-compatible memories will have
to be fabricated in an MOS technology.

Lots of room to- shrink

Both HMOS and C-HMOS will no doubt undergo
scaling down in the future. Interestingly, C-HMOS
may have some unique advantages as sizes shrink.
For example, p-channel transistors are typically used
as load devices. At channel lengths of 2 um or more,
these devices have, typically, one-fourth the gain of
n-channel transistors, because of the dominance of
carrier mobility. However, as device dimensions

-shrink, saturation velocity becomes more important

than carrier mobility. Therefore, as lengths are -
scaled down below 2 um, the gain disparity should
improve to about a 2:1 ratio, and the p-channel
transistors will be even better load devices.

With scaling down and 5-V operation, it is likely
that hot-electron trapping will occur and cause a
shift in reference levels. To reduce that effect, it will
probably be necessary to lower the power-supply
levels commensurately. That is no problem, because
with CMOS or C-HMOS technology the reference
point will naturally -assume the half-voltage level
between the supply rails.00 o









|nte| PRELIMINARY
8031AH/8051AH
SINGLE-COMPONENT 8-BIT MICROCOMPUTER

= 8031AH — Control-Oriented CPU with RAM and /0
B 8051AH — An 8031AH with Factory Mask-Programmable ROM
B Fabricated with Intel's HMOS Il Process

4K x 8 ROM (8051AH only) m 128K Accessible External Memory
m 128 x 8 RAM B Boolean Processor

& 321/0 Lines (Four 8-Bit Ports) B 4 us Multiply and Divide

@ Two 16-Bit Timer/Counters W 218 User Bit-Addressable Locations
® Programmable Full-Duplex Serial Channel = 100 mA Typical Supply Current

The 8031AH/8051AH is Intel's HMOS Il version of the high performance 8-bit 8031/8051 microcomputer.
While the 8031AH/8051AH features the same powerful architecture and instruction set as its HMOS |
predecessor, it offers the additional benefit of lower power supply current.

" The 8031AH/8051AH provides a cost-effective solution for those cantroller applications requiring up to 64K
bytes of program and/or 64K bytes of data storage. Specifically, the 8031AH contains 128 bytes of read/
write data memory; 32 I/O lines configured as four 8-bit parallel ports; two 16-bit timer/counters; a five-
source, two-priority level, nested interrupt structure; a programmable serial I/O port; and an on-chip oscil-
lator with clock circuitry. The 8051AH has all of these 8031AH features plus 4K bytes of nonvolatile read
only program memory. Both microcomputers can use standard TTL compatible memories and most byte-
oriented MCS®-80 and MCS-85 peripherals for additional I/0O and memory capabilities.

The 8031AH/8051AH microcomputer, characteristic of the entire MCS-51 fémily, is efficient in both control and
computational type applications. This results from extensive BCD/binary arithmetic and bit-handling facili-
ties. The 8031AH/8051AH also makes efficient use of its program memory space with an instruction set consisting
of 44% one-byte, 41% two-byte, and 15% three-byte instructions. At 12MHz CPU operation, over half of
the instructions execute in just 1.0us, while the longest instructions, multiply and divide, require only 4us.

P0.0-PO.7 P20-P2.7

EPROM/
PORT 2 ROM
LATCH

STACK
PROGRAM
POINTER ADDR,

REGISTER

BUFFER

PCON_[SCON[TMOD| TCON
T2CON*| THO | TLo TH1
TLt | TH2'| TL2' | RCAP2H* b
RCAP2L*[SBUF| IE P INCREMENTER
INTERRUPT, SERIAL
PORT AND TIMER

BLOCKS PROGRAM
COUNTER
z
FEN -a-H Se
ALE =~ TIMING ok §
£ anp [S9 e - OPTR “
— controL |E 3|\ L]
RST _* g 3

i

O e— “Resident in 8032/8052 only.
P1.0-P17 P3.0-P3.7
loa] Figure 1. Block Diagram

1141



, 'ntel

8031AH/8051AH

PRELIMINARY

8031AH/8051AH PIN DESCRIPTIONS

Vss
Circuit ground potential.

Vce
5V power supply input for normal operation and
program verification.

Port0

Port 0-is an 8-bit open drain bidirectional /O port. It
is also the multiplexed low-order address and data
bus when using external memory. It is used for data
output during program verification. Port 0 can sink
(and in bus operations can source) eight LS TTL
loads.

Port1 -

-Port 1 is an 8-bit quasi-bidirectional 1/0 port. It is
also used for the low-order address byte during
program verification. Port 1 can sink/source four
LS TTL loads.

Port 2

Port 2 is an 8-bit quasi-bidirectional 1/0 port. It
also emits the high-order address byte when
accessing external memory. It is used for the high-
order address and the control signals during
program verification. Port 2 can sink/source four
LS TTL loads. '

Port 3
Port 3 is an 8-bit bidirectional 1/0 port with inter-
nal pullups. It also serves the functions of various
special features of the MCS-51 Family, as listed
below:

Port Pin Alternate Function
P3.0  RXD (serial input port)
P3.1  TXD (serial output port)
P3.2  INTO (external interrupt)
P3.3  INT1 (external interrupt)
P3.4  TO (Timer/counter 0 external input)
P3.5 T1 (Timer/counter 1 external input)
P3.6  WR (external DataMemory write strobe)
P37 RD (external Data Memory read strobe)

The output latch corresponding to a secondary
function must be programmed to a one (1) for that

112

function to operate. Port 3 can sink/source four LS
TTL loads.

RST

A high on this pin for two machine cycles while the
oscillator is running resets the device. A small exter-
nal pulldown resistor (~8.2kQ2) from RST to Vgg per-
mits power-on reset when a capacitor (=10 uf) is also
connected from this pin to Vcc.

ALE

Address Latch Enable output for latching the low
byte of the address during accesses to external
memory. ALE is activated at a constant rate of 1/6
the oscillator frequency except during an external
data memory access at which time one ALE pulse
is skipped. ALE can sink/source 8 LSTTL inputs.

PSEN

The Program Store Enable output is a control
signal that enables the external Program Memory
to the bus during external fetch operations. It is
activated every six oscillator periods except during
external data memory access. PSEN remains high
during internal program execution.

P10 1 40Vee

P1.12 39P0.0/ADO
P1.23 -38[1P0.1/AD1
P1.34 37[3P0.2/AD2
P1.45 36 3P0.3/AD3
P1.5]6 35[1P0.4/AD4

RXD/P3.0 10
TXD/P3.1 11
iNTO/P3.212
iNT1/P3.3C]13
T0/P3.4C]14
_T1/P34]15
WR/P3.6 |16
RD/P3.7 17

28 1P2.7/A15
27P2.6/A14
26[1P2.5/A13
25[71P2.4/A12
241P2.3/A11

XTAL2]18 23[1P2.2/A10
XTAL1CH19 22[1P2.1/A9
Vss {20 21{3P2.0/A8

Figure 2. Pin Configuration



intel

8031AH/8051AH

PRELIMINARY

EA )

When held at a TTL high level, the 8051AH
executes instructions from the internal ROM when
the PC is less than 4096. When held at a TTL low
level, the 8031AH/8051AH fetches all instructions
from external. Program Memory. Do not float EA
during normal operation.

XTAL1

Input to the inverting amplifier that forms part of
the oscillator. This pin should be connected to
ground when an external oscillator is used.

XTAL2

Output of the inverting amplifier that forms part of
the oscillator, and input to the internal clock
generator. XTAL2 receives the oscillator signal
when an external oscillator is used.

ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature Under Bias ... 0°Cto70°C
Storage Temperature .......... -65°C to +150°C
Voltage on Any Pin With

Respect to Ground (Vgg) ......... -0.5V to +7V
Power Dissipation...................... 1 Watt

*NOTICE: Stresses above those listed under
“Absolute Maximum Ratings” may cause permanent
damage to the device. This is a stress rating only
and functional operation of the device at these or
any other conditions above those indicated in the
operational sections of this specification is not
implied. Exposure to absolute maximum rating
conditions for extended periods may affect device
reliability. :

DC CHARACTERISTICS (Ta = 0°C to 70°C; VGG = 4.5V to 5.5V; Vgg = 0V)

Symbol Parameter Min | Max Unit Test Conditions
VIL Input Low Voltage -0.5 08 v |
VIH Input High Voltage 20 |Vcc+05| V
(Except RST and XTAL2) }
VIHA Input High Voltage to 25 |Vcc+05| V [XTAL1toVss
RST For Reset, XTAL2
VOL Output Low Voltage Ports 1, 2, 3 (Note 1) 0.45 VvV |[loL=1.6mA
VOL1 Output Low Voltage Port 0, ALE, PSEN 0.45 V |IOL=3.2mA
(Note 1) i
VOH Output High Voltage Ports 1,2, 3 2.4 V |IOH =-80uA
VOH1 | Output High Voitage Port 0, ALE, PSEN 2.4 V |IOH = -400uA
1L Logical 0 Input Current Ports 1,2, 3 -800 pA |Vin =0.45V
L2 Logical 0 Input Current for XTAL 2 -25 mA |XTAL1 =Vgg, Vin =0.45V
ILI Input Leakage Current To Port 0,EA +10 1A 10.45V.<Vin <V
HHA1 ‘Input High Current to RST/Vpp For Reset 500 BA Vin<Vgo-1.5V
ICC Power Supply Current 125 mA |All outputs disconnected
ClO Capacitance of 1/0 Buffer 10 pF |fc=1MHz, Tp =25°C

See page 4 for Notes.

11-3



|nte|® 8031AH/8051AH o _ PRELIMINARY

Note 1: VOL is degraded when the 8031AH/8051AH rapidly discharges external capacitance. This AC noise is most

pronounced during emission of addréss data. When using external memory, locate the latch or buffer as close to the
8031AH/8051AH as possible.

VOL

Emitting Degraded (peak)

Datum Ports 1/0 Lines (max)'
Address P2, PO P1, P3 0.8V
Write Data PO P1, P3, ALE 0.8V

EXTERNAL CLOCK DRIVE CHARACTERISTICS (XTAL2)

Variable Clock
. freq =3.5 MHz to 12 MHz
Symbol Paraineler Min Max Unit
ITCLCL Oscillator Period . 83.3 286 ns
ITCHCX High Time 20 ns
ITCLCX Low Time 20 ns
CLCH Rise Time . 20 ns
CHCL _ Fall Time 20 ns
TCLCH—= -— TCHCL
25 . 25
,Z ) 0.8 0.8 4
TCLCX

TCLCL

11-4



inteF 8031AH/8051AH PRELIMINARY

AC CHARACTERISTICS (Tp =0°C to 70°C, Vo =5V £10%, Vgg = 0V, C_ for Port 0, ALE and PSEN
Outputs =100 pF; C_ for all other outputs = 80 pF)
EXTERNAL PROGRAM MEMORY CHARACTERISTICS

. Variable Clock
12 MHz Clock 1/TCLCL = 3.5 MHz to 12 MHz
Symbol Parameter Min Max Unit Min Max Unit
TLHLL ALE Pulse Width 127 ns 2TCLCL-40 ns
TAVLL Address Setup to ALE 43 ns TCLCL-40 ns
TLLAX Address Hold After ALE . 48 ns TCLCL-35 ns
TLLIV ALE to Valid Instr In 233 ns 4TCLCL-100 | ns
TLLPL ALE To PSEN 58 ' ns TCLCL-25 ns
TPLPH PSEN Pulse Width 215 ns 3TCLCL-35 ns
TPLIV PSEN To Valid Instr In 125 ns 3TCLCL-125 | ns
TPXIX Input Instr Hold After PSEN 0 ns 0 ns
TPXIZ Input Instr Float After PSEN 63 ns TCLCL-20 ns
TPXAV' | Address Valid After PSEN 75 ns TCLCL-8 ns
TAVIV Address To Valid Instr In 302 ns .| 5TCLCL-115 | ns
TAZPL | Address Float To PSEN 0 ns 0 ns
EXTERNAL DATA MEMORY CHARACTERISTICS
Variable Clock
12 MHz Clock 1/TCLCL = 3.5 MHz to 12 MHz
Symbol Parameter . Min Max Unit Min Max | Unit
TRLRH RD Pulse Width 400 ns 6TCLCL-100 ' ns
TWLWH | WR Pulse Width 400 ns 6TCLCL-100 | ns
TLLAX | Address Hold After ALE 48 ns TCLCL-35
 TRLDV RD To Valid Data In 250 ns 5TCLCL-165 | ns
TRHDX | Data Hold After RD 0 ns 0 ns
TRHDZ | Data Float After RD 97 ns ‘ 2TCLCL-70 | ns
TLLDV ALE To Valid Data In 517 ns 8TCLCL-150 | ns
TAVDV Address To Valid Data In 585 ns 9TCLCL-165 | ns
TLLWL | ALE To WR or RD 200 | 300 | ns | 3TCLCL-50 |3TCLCL+50 | ns
TAVWL | Address To WR or RD 203 ns | 4TCLCL-130 ns
TWHLH | WR or RD High To ALE High 43 123 ns TCLCL-40 TCLCL+40 | ns
TDVWX | Data Valid To WR Transition 23 . ns TCLCL-60 ns
TQVWH | Data Setup Before WR 433 ns 7TCLCL-150 ns
TWHQX | Data Hold After WR 33 ) ns TCLCL-50 ns
TRLAZ | Address Float After RD 0 ns 0 ns




ALE
PSEN
PORT 0

PORT 2

ALE

PSEN'
RD

PORT 0

PORT 2

. ® L
intel 8031AH/B051AH PRELIMINARY
AC TIMING DIAGRAMS
EXTERNAL PROGRAM MEMORY READ CYCLE
12TCLCL ‘

TLHLL —{

%ﬁ

TAvLL JLLAX -~

~t—TLLIV—|

TLLPL

N

—

|~—— TPLPH

N

TPXAV

= TAZPL

INSTRIN

= = TPLY = rpxix = TPXIZ

A0-A7
N

INSTR IN

A0-A7

e TAVIV————

EXTERNAL DATA MEMORY READ CYCLE

S
A X ADDRESS A8-A15 D¢ ADDRESS A8-A15 >
N TLLDV - TV
__/ No ’
— : TLLWL
TRLRH
‘ \ .\
T AN /| TRHD2
TAVDV |— — - ~=—TRLDV —>— TRHDX —»!  fu—
A0-A7 DATAIN K
—— TRLAZ '

ADDRESS A8-A15 OR SFR-P2

ADDRESS
OR SFR-P2

EXTERNAL DATA MEMORY WRITE CYCLE

. TWHLH —=
‘ALE __/__—-\\ '
PSEN _/ : TLLWL
WR -~ TWLWH
. J—
TAVWL AN : /|
|« TLLAX —=—TDVWX TQVWH TWHOX
PORT 0 AO-A7 X DATA OUT .
ADDRESS S
PORT2  omermme N ADDRESS AB-A15 OR SFR-P2 >
AC TESTING INPUT/OUTPUT, FLOAT WAVEFORMS
INPUT/OUTPUT B FLOAT FLOAT
24 24 : 24
2.0 2.0 g '3\2.0 2.0/—
TEST POINTS
0.45 0.8 0.8 045 1{().8 OB\L 0.45

AC inputs during testing are driven at 2.4V for a logic “1” and 0.45V for a'logic “0”. Timing measurements are made at
2.0V foralogic “1"” and 0.8V for a logic “0”. For timing purposes, the float state is defined as the point at which a PO pin
sinks 3.2mA or sources 400 pA at the voltage test levels. .



intel 8031AH/8051AH PRELIMINARY

CLOCK WAVEFORMS
INTERNAL STATE4 | STATES | STATEG | STATE1 | STATE2 | STATE3 | STATE4 | STATES
cLock pr|p2 | p1|e2 e |p2|pi]|p2fpi|pr2|p|r P | 2| P P2
XTAL 2
_ALE

THESE SIGNALS ARE NOT
EXTERNAL PROGRAM MEMORY FETCH ACTIVATED DURING THE
EXECUTION OF A MOVX INSTRUCTION

PSEN
PO —_lpatal__| pcLour | Joatal ] pcLout | [oatal___[PcLouT |
SAMPLED SAMPLED . SAMPLED
FLOAT L—FLOAT l——FLOAT
P2(EXT) | INDICATES ADDRESS TRANSIONS |
READ CYCLE
o | r
00H IS EMITTED PCL OUT (I PROGRAM
DURING THIS PERIOD MEMORY IS EXTERNAL)

ouT
2 FLOAT SAMPLED

P2 — INDICATES DPH OR P2 SFR TO PCH TRANSITIONS S
WRITE CYCLE
WR | [ PcL OuT(EVEN IF PROGRAM

MEMORY IS INTERNAL)

[ opLorRi | ' i 'j\ -
PO

outr f— DATA OUT =<+ PCL OUT (IF PROGRAM
P2 ——— | INDICATES DPH OR P2 SFR TO PCH TRANSITIONS | MEMORY IS EXTERNAL) .
PORT OPERATION
MOV PORT, SRC oLD DATA [NEW DATA

PO PINS SAMPLED

MOV DEST, PO ];1 . J—TA

MOV DEST, PORT (P1, P2, P3) PO PINS SAMPLED
(INCLUDES INTQ, INT1, T0, T1)

P1, P2, P3 PINS SAMPLED P1,P2,P3
SERIAL PORT SHIFT CLOCK . ) PINS SAMPLED
1
TXD ) L
(MODE 0) , RXD SAMPLED "RXD SAMPLED

This diagram indicates when signals are clocked internally. The time it takes the signals to propagate to the pins, however,
ranges from 25 to 125 ns. This propagation delay is dependent on variables such as temperature and pin loading. Propagation
also varies from output to outputand component to component. Typically though, (Ta = 25°C, fully loaded) RD and WR prop-
agation delays are approximately 50 ns. The other signals are typically 85 ns. Propagation delays are incorporated inthe AC
specifications.



ntel

8031AH/8051AH

. PRELIMINARY

Table 1. MCS®-51 Instruction Set Description

ARITHMETIC OPERATIONS
Mnemonic Description
ADD ARn Add register to
Accumulator
ADD  Adirect Add direct byte to
Accumulator
ADD A ,@Ri Add indirect RAM to .
Accumulator
ADD A #data Add immediate data to
Accumulator '
ADDC ARn Add register to
Accumulator with Carry
ADDC A,direct Add direct byte to A
with Carry flag :
ADDC A,@Ri Add indirect RAM to A
with Carry flag
ADDC A #data Add immediate data to
A with Carry flag
SUBB ARn . Subtract register from A
with Borrow
SUBB A, direct Subtract direct byte
) from A with Borrow
SUBB A,@Ri Subtract indirect RAM
. from A with Borrow
SUBB A, #data Subtract immed data
from A with Borrow
INC A Increment Accumulator
INC Rn Increment register
INC direct Increment direct byte
INC @Ri Increment indirect RAM
INC DPTR Increment Data Pointer
DEC A Decrement Accumulator
DEC Rn Decrement register
DEC direct Decrement direct byte
DEC @Ri Decrement indirect
RAM
MUL AB Multiply A & B
DIV AB Divide Aby B
DA A Decimal Adjust
Accumulator
LOGICAL OPERATIONS
Mnemonic Destination
ANL ARn AND register to
Accumulator
ANL  Adirect AND direct byte to
Accumulator
ANL A @Ri AND indirect RAM to
Accumulator
ANL A #data AND immediate data to
Accumulator
ANL  direct, A AND Accumulator to
direct byte
ANL  direct#data AND immediate data to
direct byte
ORL ARn . ORregister to
Accumulator
ORL  A,direct OR direct byte to
Accumulator

Byte Cyc

1
2

- N =t = D) = = N -

—_

Byte Cyc

1

2 N

1

1

pry

-

1

1

- A N b e

LOGICAL OPERATIONS (CONTINUED)

Mnemonic

ORL A @Ri

ORL  A,#data

ORL  direct,A

ORL * direct,#data

XRL  ARn

XRL  Adirect

XRL A @Ri

XRL A #data

XRL direct,A

XﬁL direct,#data

CLR A

CPL A

RL A

RLC A

RR A

RRC . A

SWAP A

DATA TRANSFER

Mnemonic

MOV  ARn

MOV  Adirect

MOV A @Ri

MOV  A#data
‘|MOV  RnA

MOV  Rn.direct

MOV‘ Rn,#data

MOV direct,A

MOV  direct,Rn

MOV  direct,direct

MOV  direct,@Ri

Destination

OR indirect RAM to
Accumulator

OR immediate data to
Accumulator

OR Accumulator to
direct byte

OR immediate data to
direct byte |
Exclusive-OR register to
Accumulator
Exclusive-OR direct
byte to Accumulator
Exclusive-OR indirect
RAMto A
Exclusive-OR
immediate datato A
Exclusive-OR Accumu-
lator to direct byte
Exclusive-OR im-
mediate data to direct
Clear Accumulator
Complement
Accumulator

Rotate Accumulator Left
Rotate A Left through
the Carry flag

Rotate Accumulator
Right

Rotate A Right through
Carry flag

Swap nibbles within the
Accumulator .

Description
Move register to

" Accumulator

Move direct byte to
Accumulator

Move indirect RAM to
Accumulator

Mov immediate data to
Accumulator

Move Accumulator to
register

Move direct byte to
register

Move immediate data to
register

Move Accumulator to
direct byte

Move register to direct
byte

Move direct byte to
direct

Move indirect RAM to
direct byte

Byte Cyc
1 1
2 1
2 1
3 2

2 1
1 1
2 1
2 1
3 2
1 1
1 1
1 1
1 1
1 1
1 1
1’ 1
Byte Cyc
1 ‘ 1
2 1
1 1
2 1
1 1
2 2
2 1
2 1
2 2
3 2
2 2




ntel

8031AH/8051AH

PRELIMINARY

Table 1. (Cont.)

DATA TRANSFER (CONTINUED)

Mnemonic

MoV
MOV
MOV
MOV
MOV
MOvC
MoOvC
MOVX
MOVX
MOVX
MOVX
PUSH
POP
XCH
XCH
XCH

XCHD

direct,#data
@Ri,A
@Ri,direct

@Ri,#data

Description

Move immediate data to
direct byte

Move Accumulator to
indirect RAM

Move direct byte to
indirect RAM

Move immediate data to
indirect RAM

DPTR,#data16 Load Data Pointer with

A.@A+DPTR‘
A@A+PC
A,@Ri
A@DPTR
@Ri,A
@DPTR,A
direct
direct
ARn
A.direct

A @Ri

A @Ri

a 16-bit constant

Move Code byte relative
toDPTRto A

Move Code byte relative
toPCto A

Move External RAM (8-
bit addr) to A

Move External RAM (16-
bit addr) to A

Move A to External RAM
(8-bit addr)

Move A to External RAM
(16-bit addr)

Push direct byte onto
stack

Pop direct byte from
stack .

Exchange register with
Accumulator

Exchange direct byte
with Accumulator
Exchange indirect RAM
with A

Exchange low-order
Digitind RAMw A

BOOLEAN VARIABLE MANIPULATION

Mnemonic
CLR C
CLR  bit
SETB C
SETB bit
CPL C

CPL  bit
ANL  C,bit
ANL  C,1bit
ORL  C/bit
ORL C,1bit
MOV  C/bit
MOV  bit,C

Description

Clear Carry flag

Clear direct bit

Set Carry flag

Set direct Bit
Complement Carry flag
Complement direct bit
AND direct bit to Carry
flag

AND complement of
direct bit to Carry

OR direct bit to Carry
flag

OR complement of
direct bit to Carry
Move direct bit to Carry
flag

Move Carry flag to
direct bit

Byte Cyc
3 2
1 1
2 2
2 1
3 2
1 2
1 2
1 2
1 2
1 2
1 2
2 2
2 2
1 1
2 1
1 1
1 1

Byte Cyc
1 1
2 1
1 1
2 1
1 1
2 1
2 2
2 2

2
2 2
2 1
2 2

PROGRAM AND MACHINE CONTROL

| Mnemonic Description Byte Cyc
ACALL addr11 Absolute Subroutine
. Call 2 2
LCALL addr16 Long Subroutine Call 3 2
RET Return from subroutine 1 2
RETI Return from interrupt 1 2
AJMP addr11 Absolute Jump 2 2
LJMP addr16 Long Jump 3 2
SJMP rel Short Jump (relative
addr) 2 2
JMP  @A+DPTR  Jump indirect relative to
the DPTR 12
Jz rel Jump if Accumulator is
Zero 2 2
JNZ rel Jump if Accumulator is
Not Zero 2 2
JC rel Jumpif Carry flagisset 2 2
JNC  rel Jump if No Carry flag 2 2
JB bit,rel Jump if direct Bit set 3 2
JNB bit,rel Jump if direct Bit Not
set 3 2
JBC  bit,rel Jump if direct Bit is set
) & Clear bit 3 2
CJUNE Adirect,rel Comparedirectto A &
Jump if Not Equal 3 2
CJNE A, #data,rel Comp,immed,to A &
Jump if Not Equal 3 2
CJNE Rn,#data,rel Comp, immed, toreg &
Jump if Not Equal 3 2
CJUNE @Ri,#data,rel Comp,immed, toind, &
Jump if Not Equal 3 2
DJNZ Rn,rel Decrement register &
Jump if Not Zero 2 2
DJNZ direct,rel Decrement direct &
Jump if Not Zero 3 2
NOP No operation 1 1
Notes on data addressing modes:
Rn —Working register RO-R7
direct —128internal RAM locations, any 1/0 port,
control or status register
@Ri —Indirect internal RAM location addressed by
register RO or R1 :
#data —8-bit constant included ininstruction
#data16 —16-bit constant included as bytes 2 & 3 of
instruction
bit —128 software flags, any 1/0 pin, control or
status bit

Notes on program addressing modes:

addr16 —Destination address for LCALL & LUMP may
be anywhere within the 64-K program
memory address space

Addr11 —Destination address for ACALL & AJMP will be

within the same 2-K page of program
memory as the first byte of the following
instruction

—SJMP and all conditional jumps include an 8-
bit offset byte, Range is +127-128 bytes relative
to first byte of the following instruction

All mnemonics copyrighted © Intel Corporation 1979

rel

11-9




ntel 8031AH/8051AH PRELIMINARY
Table 2. Instruction Opcodes in Hexadecimal Order
Hex Number Mnemonic Operands Hex Number Mnemonic Operands
Code of Bytes Code of Bytes
00 1 NOP 33 1 RLC A
01 2 AJMP code addr 34 2 ADDC A #data
02 3 LIMP code addr 35 2 ADDC A,data addr
03 1 RR A 36 1 ADDC A,@RO
04 1 INC A 37 1 ADDC A @R1
05 2 INC data addr 38 1 ADDC A,RO
06 1 INC @Ro 39 1 ADDC ‘AR1
07 1 INC @R1 3A 1 ADDC AR2
08 1 INC RO 3B 1 ADDC AR3
09 1 INC R1 3C 1 ADDC AR4
0A 1 INC R2 3D 1 ADDC AR5
0B 1 INC R3 3E 1 ADDC A R6
ocC 1 INC R4 3F 1 ADDC AR7
oD 1 INC RS 40 2 JC code addr
0E 1 INC R6 41 2 AJMP code addr
OF 1 INC R7 42 2 ORL data addr,A
10 3 JBC bit addr, code addr 43 3 ORL data addr,#data
1 2 ACALL code addr 44 2 ORL A #data
12 3 LCALL code addr 45 2 ORL A,data addr
13 1 RRC A 46 1 ORL A,@RO
14 1 DEC A 47 1 ORL A @R1
15 2 DEC data addr 48 1 ORL A,RO
16 1 DEC @Ro 49 1 ORL AR1
17 1 DEC @R1 4A 1 ORL A.R2
18 1 DEC RO 4B 1 " ORL AR3
19 1 . DEC R1 4c 1 ORL AR4
1A 1 DEC R2 4D 1 ORL AR5
1B 1 DEC R3 4E 1 ORL A.R6
1C 1 " DEC R4 4F 1 ORL A.R7
1D 1 DEC RS 50 2 JNC code addr
1E 1 DEC R6 51 2 ACALL code addr
1F 1 DEC R7 52 2 ANL data addr,A
20 3 JB bit addr, code addr 53 3 ANL data addr,#data
21 2 AJMP code addr 54 2 ANL A itdata
22 1 RET 55 2 ANL A,data addr
23 1 RL A 56 1 ANL A ,@RO
24 2 ADD A #data 57 1 ANL A@R1
25 2 °~ ADD A,data addr 58 1 ANL A,RO
26 1 ADD A,@RO 59 R ANL AR1
27 1 ADD A,@R1 5A 1 ANL AR2
28 1 ADD A,RO 58 1 ANL AR3
29 1 ADD AR1 5C 1 ANL A R4
2A 1 ADD A,R2 5D 1 ANL AR5
2B 1 ADD AR3 5E 1 ANL A,R6
2C 1 ADD A,R4 5F -1 ANL A,R7
2D 1 ADD AR5 60 2 JzZ code addr
2E 1 ADD A,R6 61 2 AJMP code addr
2F 1 ADD AR7 62 2  XRL data addr.A
30 3 JNB bit addr, code addr 63 3 XRL data addr,#data
31 2 ACALL code addr 64 2 XRL A #data
32 1 RETI 65 2 XRL A,data addr

11-10



mteF 8031AH/8051AH PRELIMINARY
Table 2. (Cont.)
Hex Number Mnemonic Operands Hex Number Mnemonic Operands
Code of Bytes Code ofBytes
66 1 XRL A,@RO 99 1 suBB AR1
67 1 XRL A @R1 9A 1 suBB AR2
68 1 XRL ARO - 98 1 suBB AR3
69 , 1 XRL AR1 9C 1 SuUBB A R4
6A 1 XRL AR2 9D 1 suBB AR5
6B 1 XRL AR3 9E 1 suBB AR6
6C 1 XRL A,R4 9F 1 suBB AR7
6D 1 XRL ARS A0, 2 ORL C,/bit addr
6E 1 XRL A,R6 Al 2 AJMP code addr
6F 1 XRL AR7 A2 2 MOV C,bit addr
70 2 JINZ code addr . A3 1 INC DPTR
71 2 ACALL code addr A4 1 *MUL AB
72 2 ORL C,bit addr A5 . reserved
73 1 JMP @A+DPTR Ab6 2 MOV @RO0, data addr
74 2 MOV A #data A7 2 MOV @R1,data addr
75 3 MOV data addr, #data A8 2 MOV RO,data addr
76 2 MOV @RO0,#data A9 2 MOV R1,data addr
77 2 MOV @R1,#data AA 2 MOV R2,data addr
78 2 MOV RO, #data AB 2 MOV R3,data addr
79 2 MOV R1,#data AC 2 MOV R4,data addr
7A 2 MOV R2,#data AD 2 MOV R5,data addr
7B 2 MOV R3,#data AE 2 MOV R6,data addr
7C 2 MOV R4, #data AF 2 MoV R7,data addr
7D 2 MoV RS5,#data BO 2 ANL C./bit addr
7E 2 MOV R6,#data B1 2 ACALL code addr
7F 2" MoV R7,#data B2 2 CPL bit addr
80 2 SJMP code addr B3 1 CPL C
81 2 AIJMP code addr B4 3  CJINE A #data,code addr
82 2 ANL C,bit addr B5 3 CJNE A, data addr,code addr
83 1 MOVC A @A+PC B6 3 CJNE @RO,#data,code addr
84 1 DIV AB B7 3 CJUNE @R1,#data,code addr
85 3 MOV data addr, data addr B8 3 CJNE RO, #data,code addr
86 2 MOV data addr,@R0O B9 3 CJINE R1,#data,code addr
87 2 MOV data addr,@R1 BA 3 CJNE R2,#data,code addr
88 2 MOV data addr,R0 BB 3 CJNE R3,#data,code addr
89 2 MOV data addr,R1 BC 3 CJNE R4,#data,code addr
8A 2 MOV data addr,R2 BD 3 CJNE R5,#data,code addr
8B 2 MOV data addr,R3 BE 3 CJNE R6,#data,code addr
8C 2 MOV data addr,R4 BF 3 CJNE . R7,#data,code addr
8D 2 MOV data addr,R5 Co 2 PUSH data addr
8E 2 MOV data addr,R6 C1 2 AJMP code addr
8F 2 MoV data addr,R7 c2 2 CLR bit addr '
90 3 MOV DPTR, #data C3 1 CLR o]
91 2 ACALL code addr C4 1 SWAP A
92 2 MOV bit addr,C C5 2 XCH A,data addr
93 1 MOvVC A,@A+DPTR Cc6 1 XCH A,@RO
94 2 suBB A #data c7 1 XCH A @R1
95 2 suBB A, data addr c8 1 XCH A,RO
96 1 susB A,@RO Cc9 1 XCH AR1
97 1 suBB A ,@R1 CA 1 XCH AR2
98 1 SuBB A,RO cB 1 XCH AR3

11-11




PRELIMINARY

ntJ 8031AH/8051AH
Table 2. (Cont.)
Hex Number Mnemonic Operands "Hex Number Mnemonic Operands
Code of Bytes Code of Bytes
cC 1 XCH AR4 E6 1 MoV A,@RO
CcD 1 XCH A,R5 E7 1 MOV A,@R1
CE 1 XCH AR6 - E8 1 MoV A,RO
CF 1 XCH AR7 E9 1 MoV AR1
DO 2 POP " data addr EA 1 MOV AR2
D1 2 ACALL code addr EB 1 MOV A,R3
D2 2 SETB ° bitaddr EC 1 MOV AR4
D3 1 SETB C ED 1 MOV . AR5
D4 1 DA A EE 1 MoV A,R6
D5 3 DJNZ data addr,code addr EF 1 MoV AR7
D6 1 XCHD A,@RO FO 1 MOVX @DPTR,A
D7 1 XCHD A,@R1 F1 2 ACALL code addr
D8 2 DJNZ RO,code addr F2 1 MOVX @RO0,A
D9 2 DJNZ R1,code addr F3 1 MOVX @R1,A
DA 2 DJNZ R2,code addr F4 1 CPL, A .
DB 2 DJNZ R3,code addr F5 2 MOV data addr,A
DC 2 DJNZ R4,code addr F6 1 MOV @RO,A
DD 2 DJNZ R5,code addr F7 1 MOV @R1,A
DE 2 DINZ R6,code addr F8 1 MOV RO,A
DF 2 DJNZ R7,code addr F9 1 MOV R1,A
EO 1 MOVX A,@DPTR FA 1 MOV R2,A
Ei 2 AJMP code addr FB 1 MOV R3,A
E2 1 MOVX A,@RO FC 1 MOV R4,A
E3 1 MOVX A @R1 FD 1 MOV R5,A
E4 1 CLR A ’ FE 1 MOV R6,A
E5 2 MOV A,data addr FF 1 MOV R7,A

11-12




Intd 8032AH/8052AH PRELIMINARY
SINGLE-COMPONENT 8-BIT MICROCOMPUTER

B 8032AH—Control-Oriented CPU with RAM and 1/0
B 8052AH—AN 8032AH with Factory Mask-Programmable ROM

u 8K x 8 ROM (8052AH only) B Timer 2 Capture Capability

m 256 x 8 RAM ' m 128K Accessible External Memory N
®m 32 1/0 lines (Four 8-Bit Ports) B Boolean Processor

® Three 16-Bit Timer/Counters B 218 User Bit-Addressable Locations

B Programmable Full-Duplex Serial Channel ® Upward Compatible with 8031AH/8051AH
B Variable Transmit/Receive Baud Rate ‘
Capability

The 8032AH/8052AH is the highest performance member of Intel's MCS®-51 family of 8-bit microcomputers.
It is fabricated with Intel’s highly reliable +5 depletlon -load, N-channel, silicon gate HMOS-II technology, and
like the other MCS-51 members is packaged in a 40-pin DIP.

The 8032AH contains 256 bytes of read/write data memory; 32 I/O lines configured as four 8-bit ports; three
16-bit timer/counters; a six-source, two-priority level, nested interrupt structure; a programmable serial I/O port;
and an on-chip oscillator with clock circuitry. The 8052AH has all of thesé features plus 8K bytes of nonvolatile
read-only program memory. Both microcomputers have memory expansion capabilities of up to 64K bytes of
data storage and 64K bytes of program memory that may be realized with standard TTL compatible memories
and/or byte-oriented MCS-80 and MCS-85 peripherals.

The 8032AH/8052AH microcomputer, characteristic of the entire MCS-51 family, is efficient at both computa-
tional and control-oriented tasks. This results from its extensive BCD/binary arithmetic and bit-handling facilities.
Efficient use of program memory is also achieved by using the familiar compact instruction set of the 8031/
8051. Forty-four percent of the instructions are one-byte, 41% two-byte and 15% three-byte. The majority of
the instructions execute in just 1.0 us at 12 MHz operation. The longest instructions, multiply and divide, require
only 4 us at 12 MHz.

(I e e 3
vec
vss :
= g -
Io|g :
56
Nt e |
| |
| |
I '
|
{ , |
| ADDR. |< :::‘ -1
| REGISTER |
PCON_[SCON| TMOD | TCON
|
T2CON*| THO | L0 THY |
| TL1 | TH2*| Ti2- | “RCAP2H o |
| RCAP2L|SBUF| IE P ER
INTERRUPT, SERIAL |
| PORT AND TIMER
| EXeh
|
7SEn | 65 |
H
coNvRoL
nst —oH %# “
|
|
|
|
|

Figure 1. Block Diagram

O *Resident in 8032/8052 only.
'I{ P1.0-P1.7 : P3.0-P37

11-13



.y

8032AH/8052AH

PRELIMINARY

8032AH/8052AH PIN DESCRIPTIONS

Vss .
Circuit ground potential.

Vcc
+5V power supply during operation and program
verification.

Port0

Port 0 is an 8-bit open drain bidirectional 1/O port It

is also the multiplexed low-order address and data
bus when using external memory. It is used for data
output during program verification. Port 0 can sink
(and in bus operations can source) elght LS TTL
loads.

Port1

Port 1 is an 8-bit quasi-bidirectional 1/0 port. Pins
P1.0 and P1.1 also correspond to the special func-
tions T2, Timer 2 counter trigger input, and T2EX,
external input to Timer 2. The output latch on these
two special function pins must be programmed to a
one (1) for that function to operate. Port 1 is also
used for the low-order address byte during program
verification. Port 1 can sink/source four LS TTL
loads.

Port 2

Port 2 is an 8-bit quasi-bidirectional 1/0 port. It also

emits the high-order address byte when accessing
external memory. It is used for the high-order
address and the control signals during program
verification. Port 2 can. sink/source four LS TTL
loads.

Port3

Port 3 is an 8-bit quasi-bidirectional I/0 port. Each
of the P3 pins also correspond to special functions
as listed below:

Port Pin Alternate Function

P3.0 RXD (serial input/output port)

P3.1 . TXD (serial output port)

P3.2 ﬂ) (external interrupt O input)

P3.3 INT1 (external interrupt 1 input)

P3.4 TO (Timer/Counter 0 external input)
P3.5 T1 (Timer/Counter 1 external input)
P3.6 WR (external Data Memory write strobe)
P3.7 R D (external Data Memory read strobe)

The output latch corresponding to a secondary
function must be programmed to a one (1) for

that functlon to operate. Port 3 can sink/source
four LS TTL loads.

RST

A high on this pm for two machine cycles while the
oscillator is running resets the device. A small exter-
nal pulldown resistor (=~8.2k(2) from RST to VSS per-
mits power-on reset when a capacitor (=10 uf) is also
connected from this pin to Vcc.

ALE .

Provides Address Latch Enable output used for
latching the address into external memory during
normal operation. It is activated every six oscillator
periods except during an external data memory
access. )

‘PSEN

The Program Store Enable output is a control s'ignal
that enables the-external Program Memory to the

-bus during external fetch operations. It is activated

every six oscillator periods, except during external

. data memory accesses. Remains high during internal

program execution.

EA

When held at a TTL high level, the 8052AH executes
instructions from the internal ROM when the PC is
less than 8192. When held at a TTL low level, the
8032AH/8052AH fetches all instructions from exter-
nal Program Memory.

T2/P1.0 vce
T2EX/P1.1 ] P0.0/ADO
P1.2 P0.1/AD1
P1.3 ] P0.2/AD2
P1.4 ] P0.3/AD3
P1.5] P0.4/AD4
P1.6 ] P0.5/AD5
P1.7] P0.6/AD6
RST ]9 P0.7/AD7
RXD/P3.0 ] EA
TXD/P3.1 ] ALE
INTO/P3.2(]12 PSEN
INT1/P3.313 28[1P2.7/A15
To/P3.4 14 27[P2.6/A14
_T1/P3.415 26[1P2.5/A13
WR/P3.6 (|16 25[1P2.4/A12
RD/P3.7.17 24[1P2.3/A11
XTAL2({18 23[p2.2/A10
XTAL1 18 P2.1/A9
vss 20 P2.0/A8

Figure 2. Pin Configuration

11-14



intgl

8032AH/8052AH

PRELIMINARY

XTAL1
Input to the inverting amplifier that forms the oscilla-
tor.

XTAL2

Output of the inverting amplifier that forms the
oscillator, and input to the internal clock genera-
tor. Receives the external oscillator signal when an
external oscillator is used.

ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature Under Bias ... 0°Cto70°C
Storage Temperature .......... -65°C to +150°C
Voltage on Any Pin With

Respect to Ground (Vgg) ... ...... -0.5V to +7V
Power Dissipation..................... 2 Watts

*NOTICE: Stresses above those listed under
“Absolute Maximum Ratings” may cause permanent
damage to the device. This is a stress rating only
and functional operation of the device at these or
any other conditions above those indicated in the
operational sections of this specification is not
implied. Exposure to absolute maximum rating
conditions for extended periods may affect device
reliability.

DC CHARACTERISTICS (Ta =0°Ct070°C, Vo = 4.5V to 5.5V, Vgg = 0V)

Symbol Parameter Min Max Unit Test Conditions
VIL Input Low Volitage -0.5 0.8 Vv
VIH Input High Voltage 20 |Vcc+05] V
(Except RST and XTAL2)
VIH1 Input High Voltage to 25 |Vcc+05| V | XTAL1toVss
RST for Reset, XTAL2
VOL Output Low Voltage Ports 1, 2, 3'(Note 1) 0.45 Y IOL =1.6mA
voL1 Output Low Voltage Port 0, ALE,PSEN 0.45 V | IOL=32mA
. (Note 1) )
VOH Output High Voltage Ports 1,2, 3 2.4 V | IOH =-80uA
VOH1 | Output High Voltage Port 0, ALE, PSEN 2.4 V | IOH =-400uA
L Logicél O Input CurrentPorts 1,2,3 -800 pA | Vin=0.45V
L2 Logical 0 Input Current XTAL2 -2.5 mA | XTAL1 at Vgg, Vin=0.45V
1Ll Input Leakage Current To Port 0, EA +10 uA 045V <Vin<Vcc
I1H1 Input High Current to RST/VPD For Reset 500 uA |Vin=Vcc-15V
ICC Power Supply Current 175 mA | All outputs disconnected,
EA=Vce
CIO Capacitance of /0 Buffer 10 pF | fc=1MHz, Tp =25°C
See page 4 for Notes. )

11-15



mtel‘” 8032AH/8052AH PRELIMINARY

Note 1: Vol is degraded when the 8032AH/8052AH rapidly discharges external capacitance. This AC noise is most pronounced

during emission of address data. When using external memory, locate the latch or buffer as close to the 8032AH/8052AH as
possible.

VoL
Emitting Degraded | (peak)
Datum Ports I1/0 Lines (max)
Address P2, PO P1, P3 0.8v
Write Data PO P1, P3, ALE 0.8v

EXTERNAL CLOCK DRIVE CHARACTERISTICS (XTAL2)

Variable Clock
f = 3.5 MHz to 12 MHz
Symbol Parameter Min Max Unit
TCLCL Oscillator Period 83.3 286 ns
TCHCX ‘High Time 20 ns
TCLCX Low Time 20 ns
TCLCH Rise Time 20 ns
TCHCL Fall Time 20 ns
TCHCX——= TCLCH—=

254 25
7‘ kO,B 0.8 7

11-16



el

8032AH/8052A!

PRELIRITNARY

AC CHARACTERISTICS (T, =0°C to 70°C, Vo = 5V £10%, Vgg = 0V, Cy_ for Port 0, ALE and PSEN
Outputs =100 pF, C|_ for all other outputs = 80 pF)

PROGRAM MEMORY CHARACTERISTICS

Yariable Clock

12 MHz Clock 1TCLCL = 3.5 WHz to 12 Mz
Symbol Parameter Min Max Unit Min Man Unit
TLHLL ALE Pulse Width 127 ns | 2TCLCL-40 ns
TAVLL Address Setup to ALE 43 ns TCLCL-40 ns
TLLAX Address Hold After ALE 48 ns TCLCL-35 ns
TLLIV ALE to Valid Instr In 233 ns 4TCLCL-100 | ns
TLLPL ALE To PSEN 58 ns TCLCL-25 ns
TPLPH PSEN Pulse Width 215 ns | 3TCLCL-35 ns
TPLIV PSEN To Valid Instr In 125 ns 3TCLCL-125 | ns
TPXIX Input Instr Hold After PSEN' 0 ns 0 ns
TPX1Z Input Instr Float After PSEN 63 ns TCLCL-20 ns
TPXAV Address Valid After PSEN 75 ns TCLCL-8 ns
TAVIV Address To Valid Instr In 302 ns 5TCLCL-115{ ns
TAZPL Address Float To PSEN’ 0 ns 0 ns

EXTERNAL DATA MEMORY CHARACTERISTICS

12 MiHz Cloclk

Variabie Ciaclt
PMTCLCL = 3.5 Mz to 12 Mz

Symbol ) Parameter Min Max Unit NMin iiax Unit
TRLRH RD Pulse Width 400 ns 6TCLCL-100 ns
TWLWH | WR Pulse Width 400 ns | 6TCLCL-100 ns
TLLAX Address Hold After ALE 48 ns TCLCL-35

TRLDV RD To Valid Data In 250 ns ‘5TCLCL-165| ns
TRHDX | Data Hold After RD 0 ns 0 ns
TRHDZ | Data Float After RD 97 ns 2TCLCL-70 ns
TLLDV ALE To Valid Data In 517 ns 8TCLCL-150|. ns
TAVDV Address To Valid Data In 585 ns 9TCLCL-165| ns
TLLWL | ALE To WR or RD 200 | 300 | ns | 3TCLCL-50 | 3TCLCL+50| ns
TAVWL | Address To WR or RD 203 ns | 4TCLCL-130 ns
TWHLH | WR or RD High To ALE High 43 123 ns TCLCL-40 | TCLCL + 40 | ns |
TDVWX | Data Valid To WR Transition 23 ns TCLCL-60 ns
TQVWH | Data Setup Before WR 433 ns | 7TCLCL-150 ns
TWHQX | Data Hold After WR 33 ns TCLCL-50 ns
TRLAZ Address Float After RD 0 ns 0 ns

11-17



®
ntel 8032AH/B052AH PRELIMINARY
AC TIMING DIAGRAMS
EXTERNAL PROGRAM MEMORY READ CYCLE
| 12TCLCL |
TLHLL——-<—TLLIV——’
ALE e | \
[~ TPLPH
PSEN TLLAX \
TAVLL = Tl -H:‘.‘;:'i',‘,’f TPXIXS TPXIZ
™~
porTo 'NSTRIN AO-A7 INSTR IN A0-A7 <INSTRIN>—
- TAVIV .
ADDRESS L : .
PORT2  ORSFR-P2 ADDRESS A8-A15 X ADDRESS A8-A15 S
EXTERNAL DATA MEMORY READ CYCLE
TWHLH =]
__/——\L‘———‘ TLLDV e
ALE ‘ ;
PSEN — e TLLWL — ]
RD j————— | TRLRH L
S —— k /| TRHDZ
TAVDV - > + TRLDV | — TRHDX — ! e \
PORT 0 A0-A7 - " DATAIN >
—— TRLAZ i
A Y
PORT2  goPRESS ADDRESS A8-A15 OR SFR-P2 >

EXTERNAL DATA MEMORY WRITE CYCLE

TWHLH —|
ALE f\ "
PSEN __/ TLLWL
WR J TWLWH i
TAVWL —————=-1\ /
o TLLAX | = = TOVWX_ qouwn_ | _TWHOX.
7
PORT 0 >-—< AC-A7 DATA OUT
ADDRESS \
PORT2 ORGSFRP2 N ADDRESS A8-A15 OR SFR-P2 >
AC TESTING INPUT/OUTPUT, FLOAT WAVEFORMS
INPUT/OUTPUT FLOAT
' FLOAT
24 24 e 2.4
20 . 2.0 3\2.0 2.(7- 2
TEST POINTS . / —\ ‘
045 08 08 0.45 —#08 08 % _____o4s

AC inputs during testing are driven at 2.4V for alogic “1” and 0.45V for a logic “0". Timing measurements are made at 2.0V for
alogic “1”and 0.8V foralogic “0". For timing purposes, the float state is defined as the pointat which a PO pin sinks 2.4mA or

sources 400 uA at the voltage test levels.

11:18



intgl 8032AH/8052AH PRELIMINARY

CLOCK WAVEFORMS
INTERNAL | STATE4 | STATEs | STATES® l STATE1 | STATE2 | STATE3 | STATE4 | STATES
crock P P2 | et |p2|pile2lpilp2|p|p2|p|p2|pi|rp2]|ri]ee
XTAL 2

ALE __J——l I L l_—L—

THESE SIGNALS ARE NOT

ETCH ACTIVATED DURING THE
EXTERNAL PROGRAM MEMORY FETC EXECUTION OF A MOVX INSTRUCTION

PSEN

PO IDATAI l PCLOUT I lDATAI PCLOUT DATA PCLOUT
SAMPLED SAMPLED SAMPLED
FLOAT L——FLOAT_’I I‘—FLOAT_’I
P2(EXT) l INDICATES ADDRESS TRANSIONS l l

READ CYCLE

"o l r
00H IS EMITTED PCL OUT (F PROGRAM
DURING THIS PERIOD MEMORY IS EXTERNAL)

1 1
I DPL ORRi I / IDATAI l
PO g ouT Z FLOAT SAMPLED X

P2 S—— | INDICATES DPH OR P2 SFR TO PCH TRANSITIONS. I—————
WRITE CYCLE
WwR | [PCL OUT(EVEN IF PROGRAM

MEMORY IS INTERNAL)

‘ DPL OR Ri ‘j\ ;
PO

out [ DATA OUT »t=\=| PCL OUT (IF PROGRAM
MEMORY IS EXTERNAL)
P2 _ INDICATES DPH OR P2 SFR TO PCH TRANSITIONS =R ey
PORT OPERATION
MOV PORT, SRC OLD DATA [ NEW DATA

PO PINS SAMPLED

MOV DEST, PO [._—"Y.[ J.Té

MOV DEST, PORT (P1, P2, P3) PO PINS SAMPLED
(INCLUDES INT0, INT1, T0, T1)

g

P1,P2,P3
P1, P2, P3 PINS SAMPLED ,P2,
SERIAL PORT SHIFT CLOCK | PINSSAMPLED
TXD -"Tﬂ‘ L 3
(MODE 0) RXD SAMPLED RXD SAMPLED

This diagram indicates when signals are clocked internally. The time it takes the signals to propagate to the pins, however,
ranges from 25 to 125 ns. This propagation delay is dependent on variables such as temperature and pinloading. Propagation
also varies from output to output and component to component. Typically though, (Ta =25°C, fully loaded) RD and WR prop-
agation delays are approximately 50 ns. The other signals are typically 85 ns. Propagation delays areincorporated in the AC
specifications.

11-19



nitgl | 8032AH/8052AH PRELIMINARY

Table 1. MCS®-51 Instruction Set Description

ARITHRIMETIC OPERATIONS ’ LOGICAL OPERATIONS (CONTINUED)
Winemonic Description " Byte Cyc Mnemonic A Destination Byte Cyc
ADD  ARn Add register to ORL A @Ri ORindirect RAM to
Accumulator 1 1 Accumulator 11
ADD  A,direct Add direct byte to ORL  A#data OR immediate data to
Accumulator 2 1 Accumulator 2 1
ADD A @RI Add indirect RAM to ORL  direct,A OR Accumulator to
Accumulator 1 1 direct byte 2 1
ADD  A#data Add immediate data to ORL  direct,#data OR immediate data to
: Accumulator 2 1 * direct byte 3 2
ADDC ARn Add register to ) XRL ARn Exclusive-OR register to
Accumulator with Carry 1 1 . Accumulator 11
ADDC A, direct Add direct byte to A XRL - Adirect Exclusive-OR direct
with Carry flag 2 1 byte to Accumulator 2 1
ADDC A @Ri Add indirect RAM to A XRL A @Ri Exclusive-OR indirect
with Carry flag 1 1 ' RAM to A 1 1
ADDC A #data Add immediate data to XRL A #data Exclusive-OR
A with Carry flag 2 1 immediate datato A 2 1
SUBB ARn Subiract register from A XRL direct,A Exclusive-OR Accumu-
with Borrow 1 1 . lator to direct byte 2 1
SuUBB Adirect Subtract direct byte XRL direct,#data  Exclusive-OR im-
from A with Borrow 2 1 mediate data to direct 3 2
SUBB A ,@Ri Subtract indirect RAM CLR A Clear Accumulator 1 1
from AwithBorrow 1 1 CPL A Complement
SUBB A #data Subtract immed data Accumulator 1 1
from A with Borrow 2 1 RL A ‘Rotate Accumulator Left 1~ 1 -
INC A Increment Accumulator 1 1 RLC A Rotate A Left through
INC Rn Increment register 1 1 : the Carry flag 1 1
INC direct Increment direct byte 2 1 RR | A Rotate Accumulator
INC = (@Ri Increment indirect RAM 1 1 ' Right 1 1
INC DPTR Increment Data Pointer 1 2 RRC A Rotate A Right through
DEC A Decrement Accumulator. 1 1 : Carry flag ' 1 1
DEC Rn Decrement register 1 1 SWAP A Swap nibbles within the
DEC  direct Decrement direct byte 2 1 Accumulator 1 1
DEC  @Ri Decrement indirect
RAM ’ 1 1 DATA TRANSFER
MUL  AB Multiply A & B 14 1 |mMnemonic Description: * Byte Cyc
DIV AB Divide A by B 14 MOV  ARn Move register to
DA A Decimal Adjust Accumulator 1 1
Accumulator T MOV  Adirect Move direct byte to
‘ i : Accumulator 2 1
LOGICAL OPERATIONS ' MOV A @Ri Move indirect RAM to
finemonic ’ Destination Byte Cyc : Accumulator 1 1
ANL  ARn AND register to MOV A #data Mov immediate data to s
: Accumulator 1 1 ' Accumulator . 2 1
ANL A, direct AND direct byte to - MOV  Rn,A Move Accumulator to
Accumuiator 2 1 register 1 1
ANL A @RI AND indirect RAM to MOV  Rn,direct Move direct byte to
Accumulator 1 1 register 2 2
ANL A #data AND immediate data to MOV  Rn,#data Move immediate data to
Accumulator 2 1 register 2 1
ANL  direct,A AND Accumulator to MOV  direct,A Move Accumulator to
. direct byte 2 1 direct byte 2 1
ANL direct,#data  AND immediate datato MOV  direct,Rn Move register to direct
direct byte 3 2 byte . 2 2
ORL ARn OR register to MOV  direct,direct Move direct byte to
Accumulator 1 1 . direct 3 2
ORL ~ A,direct OR direct byte to MOV  direct,@Ri Move indirect RAM to
) Accumulator - 2 1 direct byte 2 2

11-20




el

8031AH/8052/AH

PRELIMINARY

Table 1. (Cont.)

DATA TRANSFER (CONTINUED)
Mnemonic

MoV
MOV
MOV
MoV
MOV
MOVC
MOVC
MOVX
MOVX
MOVX
MOVX
PUSH
POP
XCH
XCH
XCH

XCHD

direct,#data
@Ri,A
@Ri,direct

@Ri,#data

Description

Move immediate data to
direct byte

Move Accumulator to
indirect RAM

Move direct byte to
indirect RAM

‘Move immediate data to

indirect RAM

DPTR,#data16 Load Data Pointer with

A, @A+DPTR
A @A+PC
A@Ri

A @DPTR
@Ri,A
@DPTR,A
direct
direct

A RN
Adirect
A@Ri
A,@Ri

a 16-bit constant

Move Code byte relative
toDPTRto A

Move Code byte relative
toPCto A

Move External RAM (8-
bit addr) to A

Move External RAM (16-
bit addr) to A

Move A to External RAM
(8-bit addr)

Move A to External RAM
(16-bit addr)

Push direct byte onto
stack

Pop direct byte from
stack

Exchange register with
Accumulator

Exchange direct byte
with Accumulator
Exchange indirect RAM
with A

Exchange low-order
Digitind RAMw A

BOOLEAN VARIABLE MANIPULATION

Mnemonic
CLR C

CLR  bit
SETB C
SETB bit
CPL C
CPL  bit
ANL  C,bit
ANL  C,1bit
ORL  C/bit
ORL - C,1bit
MOV  C/bit
MOV  bit,C

Description

Clear Carry flag

Clear direct bit

Set Carry flag

Set direct Bit
Complement Carry flag
Complement direct bit
AND direct bit to Carry
flag

AND complement of
direct bit to Carry

OR direct bit to Carry
flag

OR complement of
direct bit to Carry
Move direct bit to Carry
flag )
Move Carry flag to
direct bit

Byte Cyc
3 2
1 1
2 2
2 1
3 2
1 2
1 2
1 2
1 2
1 2
1 2
2 2
2 2
1 1
2 1

11
1 1

Byte Cyc
1 1
2 1
1 1
2 1
1 1
2.1
2 2
2 2
2 2
2 2
2 1
2 2

PROGRAM AND MACHINE CONTROL

Mnemonic Description Byte Cyc
ACALL addr11 Absolute Subroutine
Call 2 2
LCALL addr16 Long Subroutine Call 3
RET Return from subroutine 1 2
RETI Return from interrupt 1 2
AJMP addri1 Absolute Jump 2 2
LJMP addr16 Long Jump 3 2
SIMP  rel Short Jump (relative
addr) 2 2
JMP  @A+DPTR  Jump indirect relative to
the DPTR 12
Jz rel Jump if Accumulator is
Zero 2 2
JNZ rel Jump if Accumulator is
Not Zero 2 2
JC rel Jump if Carry flagisset 2 2
JNC  rel Jump if No Carry flag 2 2
JB bit,rel Jump if direct Bit set - 3 2
JNB bit,rel Jump if direct Bit Not
set 3 2
JBC  bit,rel Jump if direct Bit is set
& Clear bit 3 2
CJNE A.direct,rel Comparedirectto A &
Jump if Not Equal 3 -2
CJUNE A, #data,rel Comp,immed, to A &
Jump if Not Equal 3 2
CJNE Rn,#data,rel Comp, immed,toreg &
Jump if Not Equal 3 2
CJUNE @Ri,#data,rel Comp,immed,toind, &
Jump if Not Equal 3 2
DJNZ Rn,rel Decrement register &
Jump if Not Zero 2 2
DJNZ direct,rel Decrement direct &
Jump if Not Zero 3 2
NOP No operation 1 1
Notes on data addressing modes:
Rn —Working register R0-R7
direct —128 internal RAM locations, any I/0 port,
control or status register
@Ri —Indirect internal RAM location addressed by
register RO or R1 )
#data —8-bit constant included in instruction
#data16 —16-bit constant included as bytes 2 & 3 of
instruction
bit —128software flags, any 1/0 pin, control or
status bit

Notes on program addressing modes:

addr16 —Destination address for LCALL & LUJMP may
be anywhere within the 64-K program
memory address space

—Destination address for ACALL & AJMP will be
within the same 2-K page of program
memory as the first byte of the following
instruction

—SJMP and all conditional jumps include an 8-
bit offset byte, Range is +127-128 bytes relative
to first byte of the following instruction

All mnemonics copyrighted © Intel Corporation 1979

Addr11

rel

11-21




ntel

l 8032AH/8052AH ' PRELIMINARY
Table 2. Instruction Opcodes in Hexadecimal Order
Hex Number Mnemonic Operands Hex Number Mnemonic Operands
Code ofBytes ' Code of Bytes
00 1 NOP S 33 1 RLC A
01 2 AJMP code addr 34 2 ADDC A #data
02 3 LJMP code addr 35 2 ADDC A,data addr
03- 1 RR A 36 1 ADDC A,@RO
04 1 INC. A 37 1 ADDC- A,@R1
05 2 INC - data addr 38 1 ADDC ARO
06 1 INC @RO0 39 1 ADDC "AR1
07 1 INC @R1 3A 1 ADDC A,R2
08 1 INC RO 3B 1 ADDC A,R3
09 1 INC R1 " 3C 1 ADDC A,R4
0A 1 INC R2 3D 1 ADDC AR5
0B 1 INC R3 3E 1 ADDC A,R6
ocC 1 INC R4 3F 1 ADDC AR7
oD 1 INC R5 40 2 JC code addr
OE 1 INC R6 41 2 AJMP code addr
OF 1 INC R7 . 42 2 . ORL data addr,A
10 3 JBC bit addr, code addr 43 3 ORL data addr,#data
1" 2 ACALL code addr 44 2  ORL A #data
12 3 LCALL code addr 45 2 ORL A,data addr
13 1 RRC A 46 1 ORL A,@RO
14 1 DEC A 47 . 1 ORL A,@R1
15 2 DEC data addr 48 - 1 ORL A,RO
16 1 DEC @RO 49 1 ORL AR1
17 1 DEC @R1 4A 1 ORL AR2
18 1 DEC RO 4B 1 ORL AR3
19 1 DEC R1 ac’ 1 ORL AR4
A 1. DEC R2 4D 1 “ORL AR5
1B 1 DEC R3 4E 1 ORL A,R6
1C 1 DEC R4 4F 1 ORL AR7
1D 1 DEC RS 50 2 JNC code addr
1E 1 DEC R6 51 2 ACALL code addr
1F 1 DEC R7 52 2 ~ANL data addr,A
20 3 JB bit addr, code addr 53 3 ANL " data addr,#data
21 2 AJMP- code addr 54 2 ANL A #data
22 1 RET ) 55 2 ANL A,data addr
23 1 RL A 56 1 ., ANL" A,@RO
24 2  ADD A #data 57 1 ANL A@R1
25 2 ADD A,data addr 58 1 . ANL " ARO
26 1 ADD A,@R0 59 1 . ANL AR1
27 . 1 ADD - A,@R1 5A 1 ANL A,R2
28 1 ADD A.RO 5B - 1 ANL A,R3
29 1 ADD AR1 5C 1 " ANL AR4
2A 1 .ADD A,R2 5D 1 ANL AR5
2B 1 ADD A,R3 5E 1 ANL A,R6
2C 1 ADD AR4 5F 1 ANL . AR7
2D 1 ADD . AR5 60 2 Jz code addr
2E 1 ADD A,R6 61 2 AJMP code addr
2F 1. ADD AR7 62 2 XRL data addr.A
30 3 JNB bit addr, code addr 63 3 XRL data addr, #data
31 2 ACALL code addr 64 2 XRL A, #data
32 1 " RETI 65 2 XRL A,data addr

11-22



ntel 8032AH/8052AH PRELIMINARY
Table 2. (Cont.)
Hex Number Mnemonic Operands Hex Number Mnemonic Operands
Code of Bytes Code of Bytes
66 1 XRL A,@R0 99 1 SuBB AR1
67 1 XRL A,@R1 9A 1 SuUBB AR2
68 1 XRL ARO 9B 1 SUBB AR3
69 1 XRL AR1 9C 1 SUBB AR4
6A 1 XRL AR2 9D 1 SUBB AR5
6B 1 XRL AR3 9E 1 SuUBB A,R6
6C 1 XRL A R4 9F 1 sSuUBB A,R7
6D 1 XRL AR5 A0 2 ORL C./bit addr
6E 1 XRL AR6 A1 2 AJMP code addr
6F 1 XRL AR7 A2 2 MOV C,bit addr
70 2 JINZ code addr A3 1 INC DPTR
71 2 ACALL code addr, A4 1 MUL AB
72 2 ORL C,bit addr A5 reserved
73 1 JMP @A+DPTR A6 2 MOV @RO, data addr
74 2 MOV A #data A7 2 MOV @R1,data addr
75 3 MOV data addr,#data A8 2 MOV 'RO,data addr
76 2° MOV @RO,#data A9 2 MOV R1,data addr
77 2 MOV @R1,#data AA 2 MOV R2,data addr
78 2 MOV RO, #data AB 2 MOV R3,data addr
79 2 MOV R1,#data AC 2 MOV R4,data addr
7A 2 MOV R2,#data AD 2 MOV R5,data addr
7B 2 MOV R3,#data’ AE 2 MOV R6,data addr
7C 2 MOV R4,#data AF 2 MOV R7,data addr
7D 2 ° MoV R5,#data BO 2 ANL C,/bit addr
7E 2 MOV R6,#data B1 2 ACALL code addr
7F 2 MOV R7,#data B2 2 CPL bit addr
80 2 SJMP code addr B3 1 CPL c
81 2  AJMP code addr B4 3 CJUNE A #data,code addr
82 2 ANL C,bit addr B5 3 CJNE A,data addr,code addr
83 1 MOVC A,@A+PC B6 3 CJNE @RO0,#data,code addr
84 1 DIV AB B7 3 CJNE @R1,#data,code addr
85 3 MOV data addr, data addr B8 3 CJUNE RO, #data,code addr
86 2 MOV data addr,@RO B9 3 CJNE R1,#data,code addr
87 2 MOV data addr,@R1 BA 3 CJINE R2,#data,code addr
88 2 MOV data addr,RO BB 3 CJINE R3,#data,code addr
89 2 MOV data addr,R1 BC 3 CJINE R4,#data,code addr
8A 2 MOV data addr,R2 BD 3 CJNE R5,#data,code addr
8B 2 MOV data addr,R3 BE 3 CJNE R6,#data,code addr
8C 2 MOV data addr,R4 BF 3 CJINE R7,#data,code addr
8D 2 MOV data addr,R5 Cco 2 PUSH data addr
8E 2 MOV data addr,R6 C1 2 AJMP code addr
8F 2 MOV data addr,R7 c2 2 CLR bit addr
90 3 MOV DPTR,#data C3 1 CLR C
91 2 ACALL code addr Cc4 1 SWAP A
92 2 MOV bit addr,C C5 2 XCH A,data addr
93 1 MOVC A,@A+DPTR C6 1 XCH A,@RO0
94 2 SuBB A #tdata Cc7 1 XCH A,@R1
95. 2 SuBB A,data addr c8 1 XCH A,RO
96 1 suBB A,@RO c9 1 XCH AR1
97 1 suBB A @R1 CA 1 XCH AR2
98 1 suBB A,RO cB 1 XCH A,R3

11-23



r‘ter? 8032AH/8052AH PRELIMINARY
Table 2. (Cont.)
Hex - Number Mnemonic " Operands Hex Number Mnemonic Operands
Code of Bytes Code of Bytes
cC 1 XCH AR4 E6 1 MOV A,@RO
CD 1 XCH ‘AR5 E7 1 MOV A,@R1
CE 1 XCH A,R6 E8 1 MOV A,RO
CF 1 XCH A,R7 E9 1 MOV AR1
DO 2 POP data addr EA 1 MOV AR2
D1 2 ACALL code addr EB 1 MOV A,R3
D2 2 SETB bit addr EC 1 MOV A,R4
D3 1 SETB C ED 1 MOV AR5
D4 1 DA A EE 1 MOV A,R6
D5 3 DINZ data addr,code addr EF 1 Mov AR7
D6 1 XCHD A,@RO FO 1 MOVX @DPTR,A
D7 1 XCHD A @R1 F1 2  ACALL code addr
D8 2 DJINZ RO,code addr F2 1 MOVX @RO,A
D9 2 - DINZ R1,code addr F3 1 MOVX @R1,A
DA 2 DJNZ R2,code addr F4 1 CPL A X
DB 2 'DJNZ R3,code addr F§ 2 MOV data addr,A
DC 2 DJNZ R4,code addr Fé 1 MOV @RO,A
DD 2 DJINZ R5,code addr F7 1 MOV @R1,A
DE 2 DJNZ R6,code addr F8 1 MOV RO,A
DF 2 DJNZ R7,code addr - F9 1 MoV R1,A
EO 1 MOVX A,@DPTR FA 1 MOV R2,A
E1 2 AJMP code addr FB 1 MOV R3A°
E2 1 MOVX A,@RO FC 1 MOV R4,A
E3 1 MOVX A,@R1 FD 1 MOV R5,A
E4 1 CLR A FE 1 MOV R6,A
E5 2 A,data addr FF 1 MOV R7,A

MOV

11-24




[ ©
Intd ADVANCED INFORMATION

8751H
8751H-11/8751H-10/8751H-8
SINGLE-COMPONENT 8-BIT MICROCOMPUTERS

® 8751H: 12 MHz Operation
® 8751H-8: 8 MHz Operation

® Program Memory Security ® Programmable Full-Duplex Serial Channel
m 4K x 8 EPROM m 128K Accessible External Memory

m 128 x 8 RAM | Boolean Processor

® 32 1/0 Lines (Four 8-Bit Ports) m 4 us Multiply and Divide

B Two 16-Bit Timer/Counters m 218 User Bit-Addressable Locations

The 8751H is a pin compatible EPROM version of the 8051AH. Intel’'s advanced +5 volt, depletion load, N-
channel, HMOS technology allows the 8751H to remain fully compatible with its 8751/8751-8 predecessor in
addition to incorporating a new program memory security feature. This allows the 8751H to be a full-speed
MCS®@-51 prototyping tool and provides for an effective single component solution for highly sensitive con-
troller applications requiring code modification flexibility. .

Specifically, the 8751H features: 4K byte program memory space; 32 1/0 lines; two 16-bit timer/event counters;
ab-source; 2-level interrupt structure; a full duplex serial channel; a Boolean processor; and on-chip oscilla-
tor and clock circuitry. Standard TTL and most byte-oriented MCS-80 and MCS-85 peripherals can be used
for I/0 and memory expansion.

The 8751H is available in a hermetically sealed, ceramic, 40-lead dual in-line package which includes a window
thatallows for EPROM erasure when exposed to ultraviolet light (see Erasure Characteristics). During normal
operation, ambient light may adversely affect the functionality of the chip. Therefore, applications which
expose the 8751H to ambient light may require an opaque label over the window.

P0.0-PO.7 P20-P2.7

[ o 5 i TN - T 3
vee
Vss :
T da |
88
| 2z
se |
B3 EPROM/
! == !
| !
| |
| C |
|
I STACI
| PR 1
REGISTER |
! |
B
| “ BUFFER “ |
| PCON | SCON | TMOD | TCON
| THO | TLo | THI | TH1 ! |
PC
| IR m '
INTERRUPT, SERIAL I
| PORT AND TIMER |
. e INEaS
Ui
FSEN —-H Cf"z :
=41
CONTROL | £ Q LJ
Rt —oH g& |
| |
| |
|
' |
|>e |
XTAL1 XTAL2
______ J

|1.| P10-P1.7 P3.0-P3.7

Figure 1. Block Diagfam

11-25



8751H

ADVANCED INFORMATION

P1.0 41 a0 Vee
P11 2 39 (7 P0O.0
P12 3 38 [ PO.1
P13 4 37 [ P0.2
P14 5 36 [ P03
P15 {6 35 P0.4
P1.6 7 347POS
P17 (]8 33[3P0.6
RST(] 9 325 P07
P3.0/RXD T 10 goc 0 31 [0 EA/Vpp
P3.1/TXD {11 30 {0 ALE/PROG
P3.2/INT0 (] 12 297 PSEN
P3.3/INT1 ] 13 281 P2.7
P3.4/TOC] 14 270 P26
P3.4/TIC]15 ©  26[3 P25
. P36/WR(]16 25{) P24
P3.7/RD 17 24 P23
XTAL2 (] 18 23[P2.2
XTAL1C] 19 223 P21

Vss 20 21[3P2.0

Figure 2. Pin Configuration
8751H PIN DESCRIPTIONS

Vss
Circuit ground potential.

Vcc .
Supply voltage during programming, verification,
and normal operation.

Port 0

Port 0 is an 8-bit open drain bidirectional /O port. It
is also the multiplexed low-order address and data
bus during accesses to external memory. It also re-
ceives the instruction bytes during EPROM program-
ming, and outputs instruction bytes during program
verification. (External pullups are required during pro-
gram verification.) Port O can sink (and in bus oper-
ations can source) eight LS TTL inputs.

Port 1 :

Port 1 is-an 8-bit bidirectional I/O port with internal
pullups. It receives the low-order address byte
during EPROM programming and program verifi-
cation. Port 1 can sink/source four LS TTL inputs.

Port 2 . .
Port 2 is an 8-bit bidirectional I/O port with internal
pullups. It emits the high-order address byte during

11-26

accesses to external memory. It also receives the
high-order address bits during EPROM program-
ming and program verification. Port 2 can sink/
source four LS TTL inputs.

Port 3
Port 3 is an 8-bit bidirectional 1/0 port with inter-
nal pullups. It also serves the functions of various
special features of the MCS®-51 Family, as listed
below:

Port Pin Alternate Function

P3.0 RXD (serial input port)
P3.1 TXD (serial output port)
P3.2 INTO (external interrupt)

P3.3 INT1 (external interrupt)
P3.4 TO (Timer/counter 0 external input)
P3.5 T1 (Timer/counter 1 external input)

P3.6 WR (external Data Memory write strobe)
P3.7 RD (external Data Memory read strobe)

Port 3 can sink/source four LS TTL inputs.

RST

A high on this pin for two machine cycles while the
oscillator is running resets the device. A small exter-
nal pulldown resistor (=8.2k(Q2) from RST to Vgg per-
mits power-on reset when a capacitor (=10 uf) is also
connected from this pin to Vgc.

ALE/PROG

Address Latch Enable output for latching the low
byte of the address during accesses to external
memory. ALE is activated at a constant rate of 1/6
the oscillator frequency except during an external
data memory access at which time one ALE pulse
is skipped. ALE can sink/source 8 LS TTL inputs.
This pin is also the program pulse input (PROG)
dU(ing EPROM programming.

PSEN - ,

Program Store Enable output is the read strobe to
external Program Memory. PSEN is activated twice
each machine cycle during fetches from external
Program Memory. (However, even when executing
out of external Program Memory two activations of
PSEN are skipped during each access to external




intel

8751H

ADVANCED INFORMATION

Data Memory.) PSEN is not activated during
fetches from internal Program Memory. PSEN can
sink/source 8 LS TTL inputs.

EA/VPP.

When EA is held high, the 8751H executes out of
internal Program Memory (unless the Program
Counter exceeds OFFFH). When EA is held low,
the 8751H executes only out of external Program
Memory. This pin also receives the 21V program-
ming supply voltage (VPP) during EPROM pro-

gramming. This pin should not be floated during
normal operation.

XTAL1 )
Input to the inverting amplifier that forms the oscil-
lator. XTAL1 should be grounded when an external
oscillator is used.

XTAL2

Output of the inverting amplifier that forms the
oscillator, and input to the internal clock genera-
tor. Receives the external oscillator signal when an
external oscillator is used.

ABSOLUTE MAXIMUM RATINGS*

*NOTICE: Stresses above those listed under “Abso-
lute Maximum Ratings” may cause permanent

Ambient Temperature Under Bias ... 0°C1070°C damage to the device. This is a stress rating only
Storage Temperature .......... -65°C to +150°C and functional operation of the device at these or
Voltage On Any Pinto Vgg any other conditions above those indicated in the
(ExCeptVPP) ...ovoveeeennn .. —0.5V to +7V operational sections of this specification is not
"""""" ’ implied. Exposure to absolute maximum rating
Voltage from Vpp toVgg ..........iits 21.5V conditions for extended periods may affect device
Power Dissipation........................ 2W reliability.
D.C. CHARACTERISTICS: (Tp =0°C to 70°C; Vo = 4.5V to 5.5V, Vgg = 0V)
Symbol Parameter Min Max Unit Test Conditions
VIL Input Low Voltage -0.5 0.8 v
VIH Input High Voltage (Except XTAL2, RST) 20 |Vcct+05] V
VIH1 Input High Voltage to XTAL2, RST 25 |Vcc+t0.5| V |XTAL1=Vgg
VOL Output Low Voltage Ports 1, 2, 3 (Note 1) 0.45 V |IOL =1.6mA
voL1 Output Low Voltage Port 0, ALE, PSEN 0.6C V [IOL=3.2mA
(Note 1) 0.45 V |IOL=2.4mA
VOH Output High Voltage Ports 1, 2, 3 24 V |IOH =-80pA
VOH1 Output High Voltage Port 0 (in External 24 V |IOH = -400uA
Bus Mode), ALE, PSEN
L Logical 0 Input Current P1, P2, P3 500 pA [Vin =0.45V
1Lt Logical 0 Input Current to EA/Vpp -15 mA |Vin =0.45V
L2 Logical 0 Input Current to XTAL2 -2.5 mA [XTAL1=Vgg Vin =0.45V
i Input Leakage Current to Port 0 100 _#A 10.45<Vin<Vgc
IH Logical Input Current to EA/Vpp 500 uA |Vin =24V
1HH1 Input Current to RST/Vpp to activate reset 500 pA Vin<(Vcc -1.5V)
ICC Power Supply Current 250 mA |All outputs disconnected,
EA=Vce
ClO Capacitance of I/0 Buffers 10 pF [fc=1MHzTp =25°C

See page 4 for Notes.

11-27



||'Ite|  8751H ADVANCED INFORMATION

NOTE: VOL is degraded when the 8751H rapidly discharges external capacitance. This AC noise is most pronounced
during emission of address data. When using external memory, locate the latch or buffer as close to the 8751H
as possible. L

VOL
Emitting Degraded (peak)
Datum Ports I1/0 Lines (max)
Address P2, PO P1, P3 0.8V
Write Data PO P1, P3, ALE 0.8V
EXTERNAL CLOCK DRIVE CHARACTERISTICS (XTAL2)
Symbol Parameter Min Max Units
TCLCL Oscillator Period: 8751H 83.3 286 ns
TCHCX High Time 20 ns
TCLCX Low Time 20 ns
TCLCH Rise Time ' ~ 20 ns
TCHCL Fall Time 20 ns

-— TCHCL

~———TCHCX—=

2.57 25

11-28



intel 8751H ADVANGED INFORMATION

AC CHARACTERISTICS (Tp =0°Cto 70°C, Vcc =4.5V to 5.5V, Vgg = 0V, Load Capaditance for Port 0,
ALE, and PSEN = 100 pF; Load Capacitance for all other outputs = 80 pF)

EXTERNAL PROGRAM MEMORY CHARACTERISTICS

8751H
12 MHz Osc Variable Oscillator
Symbol Parameter Min Max Min Max Unifs
TCLCL Oscillator Period 83.3 833.3 ns
TLHLL | ALE Pulse Width 127 2TCLCL-40 ns
TAVLL | Address Validto ALE 53 ~ TCLCL-30 ns
TLLAX Address Hold after ALE 48 TCLCL-35 ns
TLLIV ALE to Valid Instr In 183 4TCLCL-150 | ns
TLLPL | ALEtoPSEN 58 | . TCLCL-25 ns
TPLPH | PSEN Pulse Width 190 3TCLCL-60 ns
TPLIV PSEN to Valid Instr In 100 - 3TCLCL-150 | ns
TPXIX | Inputinstr Hold after PSEN 0 0 ns
TPXIZ Input Instr Float after PSEN 63 TCLCL-20 ns
TPXAV | PSEN to Address Valid 75 TCLCL-8 ns
TAVIV Address to Valid Instr In 267 5TCLCL-150 ns
TAZPL | Address Floatto PSEN 0 0 ns
EXTERNAL DATA MEMORY CHARACTERISTICS
8751H
12 MHz Osc Variable Oscillator

Symbol Parameter Min Max Min Max Units |
TRLRH | RD Pulse Width 400 6TCLCL-100 ns
TWLWH | WR Pulse Width 400 6TCLCL-100 ns
TLLAX | Address Hold After ALE 48 TCLCL-35 ns
TRLDV | RD to Valid Dataln 252 5TCLCL-165 | ns
TRHDX | DataHold after RD 0 , 0 ns
TRHDZ |- Data Float after RD 97 2TCLCL-70 ns
TLLDV | ALEto Valid Dataln 517 8TCLCL-150 | ns
TAVDV | Address to Valid Data In 585 9TCLCL-165 | ns
TLLWL | ALEtoWR orRD 200 300 3TCLCL-50 3TCLCL+50 ns
TAVWL | Addressto WR or RD 203 4TCLCL-130 : ns
TQVWX | Data Valid to WR Transition 13 TCLCL-70 : ns
TQVWH | Data Setup to WR High 433 7TCLCL-150 ns
TWHQX | Data Held after WR 33 TCLCL-50 - ns
TRLAZ | RD Low to Address Float 0 0 ns
TWHLH | RD or WR High to ALE High 33 133 TCLCL-50 TCLCL+50 ns

11-29



ntel , 8751 ADVANGED INFORMATION

AC TIMING DIAGRAMS

EXTERNAL PROGRAM MEMORY READ CYCLE
e : 12 TCLCL |
' TLHLL | e TLLIV — |
AE - TLLPL \
|«—— TPLPH
5= *H
Tavi A T TRV ks TPXIZ
porTo NSTRIN A0-A7 INSTR IN [ AoA7 > INSTR IN
~———TAVIV——| 7
ADDRESS v - ~
PORT2  ORSFR-P2 ADDRESS A8-A15 P ADDRESS A8-A15 >
EXTERNAL DATA MEMORY READ CYCLE .
| Loy \ TWHLH |
Ll -
ALE ___/ \ .
I
PSEN — TLLWL ‘ ‘
RD N ‘ TRLRH L~
AR TAWL =N\ /| TRHDZ
TAVDV [ = T TALDV = . TRHDX =l =
porT0 ___ >—=< A0-A7 ’ DATA IN X
— i TRLAZ j
R A
PORT2 OKEBSFERg_Ez X ADDRESS A8-A15 OR SFR-P2 D
EXTERNAL DATA MEMORY WRITE CYCLE ,
, TWHLH—=|
ALE __/—_ﬂ} |
PSEN - TLLWL
WR ’ N TWLWH o
TAVWL N — |
< TLLAX =7 TOVWX __ _T1QuwH TWHOX,
r ,
PORT 0 A0-A7 )4 DATA OUT
ADDRESS ’ N
porT2  onernpe X ADDRESS A8-A15 OR SFR-P2 >
AC TESTING INPUT/OUTPUT, FLOAT WAVEFORMS
INPUT/OUTPUT FLOAT
FLOAT
24 24 R P— Y |
20 2.0 : 3@ 20,0
TEST POINTS / =
045 08 0.8 045 Aos . ok 045

AC inputs during testing are driven at 2.4V foralogic “1” and 0.45V for alogic “0”. Timing measurements are made at 2.0V for
alogic “1”and 0.8V for a logic “0". For timing purposes, the float state is defined as the point at which a PO pin sinks 2.4mA or

sources 400 uA at the voltage test levels.

11-30



L] ®
|nte| 8751H ADYAIGED IHFORKATION

CLOCK WAVEFORMS
INTERNAL | STATE4 | STATES | STATE6 | STATE1 | STATE2 | STATE3 | STATE4 | STATES
cLock p1 ez | P |p2|pilp2 e p2]ei|p2|pi|r2|pi|p2|pi]ee
XTAL 2

ALe [ l /) A I S

THESE SIGNALS ARE NOT

R ORY FETCH . ACTIVATED DURING THE
EXTERNAL PROGRAM MEM EXECUTION OF A MOVX INSTRUCTION

PSEN

PO Joatal | pcLouT | [oatal PCL OUT oaTal [ PcLout |
SAMPLED SAMPLED SAMPLED
FLOAT L———FLOAT———>l I-—FLOAT
P2(EXT) | INDICATES ADDRESS TRANSIONS | [

READ CYCLE .

RD j l

00H IS EMITTED PCL OUT (IF PROGRAM
DURING THIS PERIOD MEMORY IS EXTERNAL)

1
| DPL OR Ri | / ]DATAl |
PO g ouTt 7, FLOAT SAMPLED .

P2 _ INDICATES DPH OR P2 SFR TO PCH TRANSITIONS |
WRITE CYCLE

WR | | pcL ouT(EVEN IF PROGRAM
MEMORY IS INTERNAL)

[ oPLormi | jj\ :
PO

out je————————DATA OUT—————}=1=| PCL OUT (IF PROGRAM

MEMORY IS EXTERNAL)
P2 — I INDICATES DPH OR P2 SFR TO PCH TRANSITIONS | MEMORY IS EXT
PORT OPERATION \
MOV PORT, SRC OLD DATA [ NEW DATA

PO PINS SAMPLED

MOV DEST, PO [;q ' _ |:—4

MOV DEST, PORT (P1, P2, P3) PO PINS SAMPLED
(INCLUDES INTO, INT1, T0, T1)

» P1,P2,P3
P1, P2, P3 PINS SAMPLED P2,
SERIAL PORT SHIFT CLOCK | PINS SAMPLED
TXD b—\:F L 3 .
(MODE 0) RXD SAMPLED RXD SAMPLED

’

This diagram indicates when signals are clocked internally. The time it takes the signals to propagate to the pins, however,
ranges from 25 to 125 ns. This propagation delay is dependent on variables such as temperature and pin loading. Propagation
also varies from output to output and component to component. Typically though, (Tp =25°C, fully loaded) RD and WR prop-
agation delays are approximately 50 ns. The other signals are typically 85 ns. Propagation delays are incorporated inthe AC
specifications.

11-31



intgl’

8751H

ADVANCED INFORMATION

8751H EPROM CHARACTERISTICS

Erasure Characteristics

Erasure of the 8751H Program Memory begins to
occur when the chip is exposed to light with-wave-
lengths shorter than approximately 4,000 Angstroms.
Since sunlight and fluorescent lighting have wave-
lengths in this range, constant exposure to these
light sources over an extended period of time (about
1 week in sunlight, or 3 years in room-level fluores-
cent lighting) could cause unintentional erasure. If
an application subjects the 8751H to this type of
exposure, it is suggested that an opaque label be
placed over the window.

The recommended erasure procedure'is exposure to
ultraviolet light (at 2537 Angstroms) to an integrated
dose of at least 15 W-sec. Exposmg the 8751H to an
ultraviolet lamp of 12,000 uW/cm2 rating for 20 to 30
minutes, at a distance of about 1 inch, should be
sufficient.

Erasure leaves the array in an alI 1s state.

Programming the EPROM

To be programmed, the 8751H must be running with
a 4 to 6 MHz oscillator. (The reason the oscillator
needs to be running is that the internal bus is being
used to transfer address and program data to appro-
priate registers.) The address of an EPROM location
to be programmed is applied to Port 1 and pins
P2.0-P2.3 of Port 2, while the data byte is applied to
Port0. Pins P2.4-P2.6 and PSEN should be held low,
and P2.7 and RST high. (These are all TTL levels
except RST, which requires 2.5V for high.) EA/VPP
is held normally high, and is pulsed to +21V. While
EA/VPP is at 21V, the ALE/PROG pin, which is
normally being held high, is pulsed low for 50 msec.
Then EA/VPP is returned to high. This is illustrated
in Figure 3. detailed timing specifications are pro-
vided in the EPROM Programming and Verification
Characteristics section of this data sheet.

11-32

Program Memory Security

The program memory security feature is developed
around a “security bit" in the 8751H EPROM array.
Once this “hidden bit” is programmed, electrical
access to.the contents of the entire program memory
array becomes impossible. Activation of this feature
is accomplished by programming the 8751H as
described in “Programming the EPROM” with the
exception that P2.6is heldata TTL high rather than
aTTL low. Inaddition, Port 1 and P2.0-P2.3 may be
in any state. Figure 4 illustrates the security bit pro-
gramming configuration. Deactivating the security
feature, which again allows programmability of the
EPROM, is accomplished by exposing the EPROM
to ultraviolet light. This exposure, as described in
“Erasure Characteristics,” erases the entire EPROM
array. Therefore, attempted retrieval of “protected

" code” results in its destruction.

Program Verification .

Program Memory may be read only when the
“security feature” has not been activated. Refer to
Figure 5 for Program Verification setup. To read the
Program Memory, the following procedure can be
used. The unit must be running with a 4 to 6 MHz
oscillator. The address of a Program Memory loca-
tion to be read is applied to Port 1 and pins P2.0-
P2.3 of Port 2. Pins P2.4-P2.6 and PSEN are held at
TTL low, while the ALE/PROG, RST, and EA/VPP
pins are held at TTL high. (These are all TTL levels
except RST, which requires 2.5V for high.) Port 0
will-be the data output lines. P2.7 can be used as a
read strobe. While P2.7 is held high, the Port 0 pins
float. When P2.7 is strobed low, the contents of the
addressed location will appear at Port 0. External
pullups (e.g., 10K) are required on Port 0 during
program verification.




&
ntel 8751H ADVARCED IMFORMATION
+5V
|
- Vece __J
ADDR. -
0000H- A°E’j P1 8751
OFFFH -
_ P2.0- PO}  PGM DATA
AB-A11 ) o' -,
s o R —
= E_ P25 ALE|~— ——ALE PROG
— P26
TTL HIGH — P27
1] XTAL2 EA EA/VPP
a6MHz [ ] T . :
‘E,,_‘f_.j:“ XTAL1 RST ViH1
‘E Vss PSEN gl

Figure 3. Programming Configuration

TTL HIGH —— ,,..[__

A
a6MHz (]
TLO

P1
8751

P2.0-
P23
P24
P25
P26
P27
XTAL2

— XTAL1

Vss

vee

PO

ALE

RST
PSEN

+5V
|
|
NC
~_ — ALE/PROG 50 ms PULSE TO GND
‘EA/VPP +21V PULSE
VIH1

Figure 4. Security Bit Programming Configuration

11-33




intel” 8751H ADVANGED INFORMATION

+
(4]
<

L

S v
ADDR. Ag-A7 ) P1 cc
0000H- : 8751
e B E—
P2.0- E 10K PULLUPS;
ng=Aip) P20 (USE 10K PU )
P24
= E P25 ALE TTL HIGH
P26
ENABLE ——— P27 EA — .
11 XTAL2 RST VIH1
4-6 MHz[]
’ XTAL1 PSEN[—
Vss =

Figure 5. Program Verification Configuration

EPROM PROGRAMMING, SECURITY BIT PROGRAMMING AND VERIFICATION CHARACTERISTICS
(TA=21°C t0 27°C, VoG = 4.5V t0 5.5V, Vgg = 0V)

Symbol Parameter Min Max Units
Vpp Programming Supply Voltage 20.5 215 v
IPP Programming Current 30 mA
1/TCLCL Oscillator Frequency 4 6 MHz
TAVGL Address Setup to PROG 48TCLCL

TGHAX Address Hold after PROG 48TCLCL

TDVGL Data Setup to PROG 48TCLCL

TGHDX Data Hold after PROG - 48TCLCL N
TEHSH ENABLE High to Vpp 48TCLCL

TSHGL Vpp Setup to PROG 10 , usec
TGHSL Vpp Hold after PROG 10 usec
TGLGH PROG Width 45 55 msec
TAVQV Address to Data Valid 48TCLCL

TELQV ENABLE to Data Valid 48TCLCL

TEHQZ- Data Float after ENABLE 0 48TCLCL

11-34



intel 8751H ADVANCED INFORMATION

EPROM PROGRAMMING, SECURITY BIT PROGRAMMING AND
VERIFICATION WAVEFORMS

PROGRAMMING VERIFICATION
P1.0-P1.7 Y \
P20.p23 — ADDRESS > ADDRESS
N /
TAVQV
PORT 0 DATAOUT |
I
o] *
TDVGL ITGHDX ]
TAVGL I TGHAX & i
ALE PROG : \ 4 |
TSHGL l TGHSL | |
TGLGH "
21V = 5V |
TTL HIGH \L TTL HIGH TTL HIGH TTL HIGH
© EAVPP
TEHSH --| TELQV |~-| TEHQZ
P27
(ENABLE)

FOR PROGRAMMING CONDITIONS SEE FIGURE 3.
FOR SECURITY BIT PROGRAMMING CONDITIONS SEE FIGURE 4.
FOR VERIFICATION CONDITIONS SEE FIGURE 5.

11-35



ntel | | 875t ~ ADVANGED INFORMATION

Table 1. MCS®-51 Instruction Set Description

ARITHMETIC OPERATIONS LOGICAL OPERATIONS (CONTINUED)
Mnemonic Description Byte Cyc Mnemonic Destination Byte Cyc
ADD ARn Add register to ORL A @Ri OR indirect RAM to
Accumulator 1 1 Accumulator 1 1
ADD  Adirect Add direct byte to ORL  A#data OR immediate datato .
Accumulator 2 1 Accumulator 2 1
ADD A @Ri Add indirect RAM to ORL  direct,A OR Accumulator to
Accumulator 1 1 direct byte 2 1
ADD A #data Add immediate data to ORL  direct,#data OR immediate data to
Accumulator 2 1 direct byte 3 2
ADDC ARn Add register to XRL ARn Exclusive-OR register to
Accumulator with Carry 1 1 Accumulator 1 1
ADDC A,direct =  Adddirectbyteto A XRL A, direct Exclusive-OR direct
with Carry flag 2 1 . byte to Accumulator 2 1
ADDC A @Ri Add indirect RAM to A . | XRL  A@Ri Exclusive-OR indirect
- with Carry flag 1 1 RAMto A 1 1
ADDC A #data Add immediate data to XRL A #data Exclusive-OR
A with Carry flag 2 1 - immediate datato A 2 1
SuBB ARn Subtract register from A XRL direct,A Exclusive-OR Accumu-
with Borrow 11 lator to direct byte 2.1
SUBB A direct Subtract direct byte XRL direct,#data  Exclusive-OR im-
from A with Borrow 2 1 mediate data to direct 3 2
SUBB A @Ri Subtract indirect RAM CLR A Clear Accumulator 1 1
from A with Borrow 1 1 CPL A Complement
SUBB A #data . Subtractimmed data Accumulator 1 1
from A with Borrow 2 1 RL - A Rotate Accumulator Left 1 1
INC A Increment Accumulator 1 1 RLC A Rotate A Left through
INC Rn Increment register 1 1 . the Carry flag 1 1
INC direct - Increment direct byte 2 1 RR A Rotate Accumulator
INC @Ri Increment indirect RAM 1 1 Right 1 1
INC DPTR Increment Data Pointer 1 2 RRC A Rotate A Right through
DEC A Decrement Accumulator 1 1 Carry flag . 1 1
DEC Rn Decrement register 11 SWAP A Swap nibbles within the
DEC  direct Decrement direct byte 2 1 Accumulator o1 1
DEC @Ri Decrement indirect :
RAM 1 1 DATA TRANSFER
'\SH,L ﬁg gﬁ'ﬂzm &BB 1 Z Mnemonic Description Byte Cyc |
¢ Y1 MOV ARn .  Moveregister to
DA A Decimal Adjust ) Accumulator 1 1
Accumulator 1 1 MOV  A,direct Move direct byte to
Accumulator 2 1
LOGICAL OPERATIONS MOV A @Ri Move indirect RAM to
Mnemonic Destination Byte Cyc Accumulator 1 1
ANL  ARn AND register to MOV A #data Mov immediate data to
Accumulator LA Accumulator 2 1
ANL  Adirect AND direct byte to : MOV  Rn,A Move Accumulator to
. Accumulator 2 1 register 1 1
ANL  A@Ri . _ ANDindirect RAM to MOV  Rn,direct Move direct byte to
Accumulator 1 1 register- 2 2
ANL  A#data - AND immediate data to - |MOV  Rn,#data Move immediate data to
Accumulator 2 1 register 2 1
ANL  direct,A AND Accumulator to MOV  direct,A Move Accumulator to
direct byte 2 1 direct byte 2 1
ANL direct,#data AND immediate data to MOV  direct,Rn Move register to direct
direct byte 3 2 byte 2 2
ORL ARn OR register to MOV direct,direct Move direct byte to
Accumulator 1 1 direct 2
ORL  A.direct OR direct byte to MOV  direct,@Ri, Move indirect RAMto
Accumulator 2 1 direct byte 2 2

11-36




ntel

8751H

ADVANCED INFORMATION

Table 1. (Cont.)

DATA TRANSFER (CONTINUED)

Mnemonic

MOV  direct,#data
MOV  @RiA
MOV @Ri,(direct
-MOV @Ri,#data
MOV
MOVC A,@A+DPTR
MOVC A,@A+PC
MOVX A,@Ri
MOVX A ,@DPTR
MOVX @Ri,A
MOVX @DPTR,A
PUSH direct
POP  direct
XCH ARn
XCH  Adirect
XCH A@Ri-

XCHD A,@Ri

Description

Move immediate data to
direct byte

Move Accumulator to
indirect RAM

Move direct byte to
indirect RAM

Move immediate data to
indirect RAM

DPTR,#data16 Load Data Pointer with

a 16-bit constant

Move Code byte relative
toDPTRto A

Move Code byte relative
toPCto A

Move External RAM (8-
bitaddr) to A

Move External RAM (16-
bit addr) to A

Move A to External RAM -

(8-bit addr)

Move A to External RAM
(16-bit addr)

Push direct byte onto
stack

Pop direct byte from
stack

Exchange register with
Accumulator
Exchange direct byte
with Accumulator
Exchange indirect RAM
with A

Exchange low-order
Digitind RAMw A

BOOLEAN VARIABLE MANIPULATION

Description

Clear Carry flag

Clear direct bit

Set Carry flag

Set direct Bit
Complement Carry flag
Complement direct bit
AND direct bit to Carry
flag

AND complement of
direct bit to Carry

OR direct bit to Carry

 flag

Mnemonic
CLR C
CLR  bit
SETB C
SETB bit
CPL C
CPL  bit
ANL  C,bit
ANL  C,/bit
ORL  C/bit
ORL  C/,/bit
MOV C./bit
MOV  bit,C

OR complement of
direct bit to Carry
Move direct bit to Carry
flag

Move Carry flag to
direct bit

Byte Cyc
3 2
1 1
2 2 2
2 1
3 2
1 2
1 2
1 2
1 2
1 2
12
2 2
2 2
1 1
2 1
1 1
1 1

Byte Cyc
1 1
2 1
1 1
2 1
1 1
2 1

2
2 2
2 2
2 2
2 1
2 2

PROGRAM AND MACHINE CONTROL

Mnemonic Description Byte Cyc
ACALL addrtt Absolute Subroutine :
Call 2 2
LCALL addri6 Long Subroutine Call 3 2
RET Return from subroutine 1 2
RETI Return from interrupt 1 2
AJMP  addr11 Absolute Jump 2 2
LJMP addr16 Long Jump 3 2
SIMP  rel Short Jump (relative
addr) 2 2
JMP  @A+DPTR. Jump indirect relative to
‘the DPTR 1 2
Jz rel Jump if Accumulator is ’
Zero 2 2
JNZ rel Jump if Accumulator is
Not Zero 2 2
JC rel Jumpif Carry flagisset 2 2
JNC  rel Jump if No Carry flag 2 2
JB bit,rel Jump if direct Bit set 3 2
JNB  bit,rel Jump if direct Bit Not
set 3 2
JBC bit,rel Jump if direct Bit is set
& Clear bit 3 2
CJINE Adirect,rel Compare directto A &
Jump if Not Equal 3 2
CJNE A #datarel Comp, immed;to A &
Jump if Not Equal 3 2
CJNE Rn,#data,rel Comp, immed, toreg &
Jump if Not Equal 3 2
CJNE @Ri,#data,rel Comp, immed, to ind, &
Jump if Not Equal 3 2
DJNZ Rn,rel Decrement register &
Jump if Not Zero 2 2
DJNZ direct,rel Decrement direct &
Jump if Not Zero 3 2
NOP No operation 1 1
Notes on data addressing modes:
Rn —Working register R0-R7
direct —128internal RAM locations, any 1/0 port,
control or status register ) :
@Ri —Indirect internal RAM location addressed by
register RO or R1
#data —8-bit constant included in instruction
#data16 —16-bit constant included as bytes 2 & 3 of
instruction :
bit —128 software flags, any |/O pin, control or
status bit

Notes on program addressing modes:
addr16 —Destination address for LCALL & LUMP may
be anywhere within the 64-K program
memory address space
—Destination address for ACALL & AJMP will be
within the same 2-K page of program
memory as the first byte of the following
instruction
rel —SJMP and all conditional jumps include an 8-
bit offset byte, Range is +127-128 bytes relative
to first byte of the following instruction

All mnemonics copyrighted © Intel Corporation 1979

Addri1

44 A=




ntel’ 8751H ADVANCED INFORMATION

Table 2. Instruction Opcodes in Hexadecimal Order

Hex Number Mnemonic Operands " Hex Number Mnemonic Operands
*Code of Bytes : Code of Bytes
00 1 NOP 33 1 RLC A
01 2 AJMP code addr 34 2 ADDC  A,#data
02 3 LIJMP code addr 35 2 ADDC A,data addr
03 1 RR A 36 1 -ADDC A,@RO
04 1 INC A - 37 1 ADDC A,@R1
05 2 INC data addr 38 1 ADDC A,RO
06 1 INC @RO0 39 1 ADDC AR1
07 1 INC @R1 ) 3A 1 ADDC AR2
08 1 INC RO 3B 1 ADDC A R3
09 1 INC R1 3C 1 ADDC A R4
0A 1 INC R2 3D 1 ADDC AR5
0B 1 INC R3 3E 1 ADDC A ,R6
oC 1 INC R4 3F 1 ADDC AR7
0D 1 INC RS 40 2 JC code addr
OE 1 INC . R6 1 2 AJMP code addr
OF 1 INC R7 C . 42 2 ORL data addr,A
10 3 JBC bit addr, code addr 43 3 ORL data addr,#data
1 2 ACALL code addr 44 2 ORL A #data
12 3 LCALL code addr 45 2 ORL A,data addr
13 1 RRC A ‘ 46 1 ORL A,@RO
14 1 DEC A 47 1 'ORL A,@R1
15 2 DEC data addr 48 1 ORL A,RO
16 1 DEC @RO0 49 1 ORL AR1
17 1 DEC @R1 4A 1 ORL A,R2
18 1 DEC RO 4B 1 ORL A,R3
19 1 DEC R1 4c 1 ORL AR4
1A 1 DEC R2 4D 1 ORL AR5
1B 1 DEC R3 ) 4E 1 ORL A,R6
1C 1 DEC R4 - 4F 1 ORL AR7
1D 1 DEC RS 50 2 JNC code addr
1E 1 DEC R6 51 2 ACALL code addr
1F 1 DEC R7 52 2 ANL data addr,A
20 3 JB bit addr, code addr 53 3 ANL data addr,#data
21 2 AJMP code addr 54 2 ANL A #data
22 1 RET 55 2 ANL A,data addr
23 1 RL A 56 1 ANL A,@RO
24 2 ADD A #data 57 1 ANL A@R1
25 2 -ADD A,data addr 58 1 ANL A,RO
26 1 ADD' A.@RO 59 1 ANL AR1
27 1" ADD A.@R1 5A 1 ANL AR2
28 1 ADD A,RO 5B 1 ANL AR3
29 1 ADD AR1 5C 1 ANL A,R4
2A 1 ADD AR2 5D 1 ANL AR5
2B 1 ADD A,R3 5E 1 ANL A,R6
2C 1 -ADD " AR4 ) 5F 1 ANL AR7
2D 1 ADD AR5 60 2 Jz code addr
2E 1 ADD A,R6 61 2 AJMP code addr
2F 1 ADD AR7 62 2 XRL - data addr.A
30 3 JNB bit addr, code addr 63 3 XRL data addr,#data
31 2 ACALL code addr 64 2 XRL A #data
32 1 RETI 65 2 XRL A.data addr

141_20



intgl

8751H

ADVANGCED INFORMATION

Table 2. (Cont.)

2

Hex Number Mnemonic Operands Hex Number Mnemonic Operands
Code of Bytes . Code of Bytes

66 1 XRAL A,@RO 99 1 suBB AR1

67 1 XRL A,@R1 9A 1 suBB AR2

68 1 XRL A RO 9B 1 suBB AR3

69 1 XRL AR1 9C 1 SuBB AR4

6A 1 XRL AR2 9D 1 suBB AR5

6B 1 XRL AR3 9E 1 suBB AR6

6C 1 XRL AR4 9F 1 suBB AR7

6D 1 XRL A RS A0 2 ORL C,/bit addr

6E 1 XRL A,R6 Al 2 AJMP code addr

6F 1 XRL AR7 A2 2 MOV C,bit addr

70 2 JINZ code addr A3 1 INC DPTR

7 2 ACALL code addr A4 1 MUL AB

72 2  ORL C,bit addr A5 reserved

73 1 JMP @A+DPTR A6 T2 MOV @RO0,data adr

74 2 MOV A #data A7 2 MOV @R1,data addr

75 3 MOV data addr,#data A8 2 MoV RO,data addr

76 2 MOV @RO,#data A9 2 MOV R1,data addr

77 2 MOV @R1,#data AA 2 MOV R2,data addr.

78 2 MOV RO, #data AB 2 MOV R3,data addr

79 2 MOV R1,#data AC 2 MOV R4,data addr

TA 2 MOV R2,#data AD 2 MOV R5,data addr

78 2 MOV R3,#data AE 2 MOV R6,data addr

7C 2 MOV R4, #data AF 2 MOV R7,data addr

7D 2 MOV R5,#data . BO 2 ANL C,/bit addr

7E 2 MOV R6,#data B1 2 ACALL code addr

7F 2 MOV R7,#data B2 2 CPL bit addr

80 2 SJMP code addr B3 1 CPL C

81 2 AIMP code addr B4 3 CJNE A, #data,code addr

82 2 ANL C,bit addr BS 3 CJNE A,data addr,code addr

83 1 MOVC A @A+PC B6 3 CJINE @RO0,#data,code addr

84 1 Div AB B7 3 CJINE @R1,#data,code addr

85 3 MOV data addr, data addr B8 3 CJNE RO, #data,code addr

86 2 Mov data addr,@R0 B9 3 CJNE R1,#data,code addr
- 87 2 MOV data addr,@R1 BA 3 CJNE R2,#data,code addr

88 2 MOV data addr,RO BB 3 CJNE R3,#data,code addr

89 2 MOV data addr,R1 BC 3 CINE R4,#data,code addr

8A 2 MOV data addr,R2 BD 3 CJNE R5,#data,code addr

8B 2 MOV data addr,R3 BE 3 CJNE R6,#data,code addr

8C 2 MOV data addr,R4 BF 3 CJNE R7,#data,code addr

8D 2 MOV data addr,R5 Co 2 PUSH data addr

8E 2 MOV data addr,R6 C1 2 AJMP code addr

8F 2 MOV data addr,R7 c2 2 CLR bit addr

90 3 MOV DPTR, #data C3 1 CLR (o]

91 2 ACALL code addr C4 1 SWAP A

92 2 MOV bit addr,C C5 2 XCH A,data addr

93 1 MOvVC A,@A+DPTR Ccé6 1 XCH A,@RO

94 2 SuBB A #data c7 1 XCH A@R1

95 2 SUBB - A, data addr c8 1 XCH ARO

96 1 suBB A,@RO Cc9 1 XCH AR1

97 1 SuBB A ,@R1 CA 1 XCH AR2

98 1 suBB ARO cB 1 XCH AR3

1i1.?0




ntel 8751 ADVANCED INFORMATION

Table 2. (Cont.)

Hex Number Mnemonic Operands Hex Number Mnemonic Operands
Code - of Bytes Code ofBytes
CcC 1 XCH A,R4 E6 1 MOV A,@RO
CD 1 XCH AR5 E7 1 MOV | A ,@R1
CE 1 XCH A,R6 E8 1 MOV A,RO
CF 1 - XCH AR7 E9 1 MOV AR1
DO 2 POP data addr EA 1 MOV AR2
D1 2 ACALL code addr EB 1 MOV AR3
D2 2 SETB bit addr EC 1 MOV AR4
D3 1 SETB (¢} ED 1 MOV - AR5
D4 1 DA A ‘ EE 1 MOV AR6
D5 3 DJNZ data addr,code addr EF 1 MOV A.R7
D6 1 XCHD A,@RO FO 1 MOVX @DPTR,A
D7 1 XCHD A,@R1 F1 2 ACALL code addr
D8 2 DJNZ RO,code addr F2 1 MOVX @RO,A
D9 2 DJNZ R1,code addr F3 1 MOVX @R1,A
DA 2 DJNZ R2,code addr F4 1 CPL A
DB 2 DJINZ R3,code addr - F5 2 MOV data addr,A
DC 2 DJNZ R4,code addr F6 1 MOV @RO,A
DD 2 DJNZ R5,code addr F7 1 MOV @R1,A
DE 2 DJNZ R6,code addr F8 1 MoV RO,A
DF 2 DJNZ R7,code addr F9 1 MOV R1,A
EO 1 MOVX A,@DPTR FA 1 MoV R2,A
E1 2 AJMP code addr FB 1 MOV R3,A
E2 1 MOVX A,@RO FC 1 MOV R4,A
E3 1 MOVX  A,@R1 | FD 1 MOV R5,A
E4 1 CLR A FE 1 MOV R6,A
ES5 2 MOV A,data addr FF 1 MOV R7,A

11-40



Design Considerations

When Using CHMOS







CHAPTER 12
DESIGN CONSIDERATIONS WHEN USING CHMOS

12.0 WHAT IS CHMOS?

CHMOS is Intel’s n-well CMOS process which is based
on the highly developed HMOS-II technology. There are
three other types of CMOS processes: p-well, twin-tub,
and silicon on sapphire (SOS). All four CMOS structures
are discussed in the accompanying article reprint, ‘‘Inside
CMOS Technology.”” SOS and twin-tub offer superior
performance, but are very costly to manufacture. The
n-well technology offers about the same performance as
p-well and has been chosen for Intel’s microcontrollers
because it is more readily adapted to the currently used
and well understood HMOS-II technology. This CMOS
technology also offers a known path to higher performance
products in the future.

Because CMOS tends to have lower gate density and a
higher gate count than an NMOS circuit of the same func-
tionality, the ability to scale down the transistor size in
CMOS processes is essential to improving the price/per-
formance ratio. The penalty paid for the size reduction,
however, is a departure from the traditional CMOS supply
voltage range of 3 to 18 volts. CHMOS will be limited
to a maximum of 6 volts VCC.

Further reduction in CHMOS die size is accomplished by
using dynamic nodes at appropriate points in the circuit,
whereas, traditional CMOS is fully static. This reduces
the gate count, and therefore, the die size — achieving
lower cost. However, the use of dynamic nodes imposes
a minimum clock frequency requirement on the CHMOS
part.

12.1 NOISE IMMUNITY

CMOS noise immunity is greatly over stated. Noise im-
munity has been described as the amount of noise that can
be induced at the input of a gate that will not change the
logic state of the output. Noise margin, on the other hand,
is the DC levels that will be applied to an input from
another output (Voh, Vol) and the trip point of that input.

On the surface, CMOS would seem ideal for use in noisy

environments. Output voltages are rail-to-rail, and input.

switch points are approximately 50% of VCC. There is
one thing wrong with this analysis — CMOS has high
impedance inputs. High impedance inputs need only volt-

age and very little current (nano Amps) to switch its output

logic state. TTL, on the other hand, needs voltage and at
least 20 nA (for an LS device) to switch its output logic
state. Because it is a lot more difficult to induce noise in
the form of current than in the form of voltage, CMOS
tends to be more noise sensitive than TTL.

However, NMOS also has high impedance inputs and has
input leakages typically less than 1 uA. Because NMOS
output voltage swings are considerably less than CMOS,

i2-1

CMOS has the advantage when inputs and outputs are
noisy. Another advantage of CMOS over NMOS is the
p-channel pullup instead of a depletion pullup. The p-
channel pullup is able to charge up the stray capacitance
faster thus signal rise times are significantly improved.

In conclusion, don’t fool yourself into thinking that CMOS
eliminates the need to be concerned about noise problems.
Time is well spent following good design practices and
layout techniques from the earliest phases of a project.

12.2 LATCH-UP

CHMOS is not immune to traditional CMOS latch-up, but
the latch-up threat is highly overrated. Latch-up is usually
the result of unforeseen operating conditions, such as an
unexpected power-up sequence, inadvertent removal and
re-application of a supply voltage, or ‘‘hot-socketing’’ the
part (plugging a chip into its socket while the system is
active). An energetic voltage spike on VCC or the /O
lines might also trigger latch-up, but a little ringing on the
data lines isn’t going to cause any problems.

It is helpful to understand the mechanisms involved in the
latch-up phenomenon. Figure 12-1A shows the circuit
diagram of a typical CMOS output stage. Figure 12-1B
shows a plan view of how this stage might look in n-well
CMOS (with the gate electrodes of the FETs stripped
away, since they are not germane to the discussion). There
are two parasitic bipolar transistors in this structure, one
pnp and the other npn. The n-well forms the base region
of the pnp transistor, which is connected to VCC through
the distributed resistance of the n-well. The source and
drain of the p-channel pullup FET are dual emitters to the
pnp transistor. The p-type substrate is the collector of this
transistor and also serves as the base of the npn transistor
which is connected to VSS through the distributed resis-
tance of the substrate. The collector of this transistor is
the n-well, and the drain and source of the pulldown
n-channel FET are dual emitters. These parasitic transis-
tors are shown in Figure 12-1C.

Any pullup FET that shares the same n-well region acts
as additional multiple emitters to the parasitic pnp tran-
sistor. Much worse, ALL pulldown FETs and input pro-
tection devices on the IC act as additional collectors to
the parasitic npn transistor. This has several implications.
Latch-up is not limited to output stages, inputs only pins
and internal gates can also be the cause. So when latch-
up does occur, it’s hard to tell which device caused it.

In normal operation, both of these parasitic bipolar junc-
tion transistors are in an off state, and do not hamper the
operation of the FETs. However, if either parasitic junc-
tion transistor should turn on, its collector current might
turn the other parasitic junction transistor on, and an SCR
type effect rapidly ensues which is called latch-up.



DESIGN CONSIDERATIONS WHEN USING CHMOS

OHMIC
CONNECTION
TO N-WELL
vec  OHMIC vee vee
CONNECTION
TO N-WELL
N-WELL RwELL
Nt
INPUT D} ouTpPUT P s
— OUTPUT
P |D
OHMIC OUTPUT
CONNECTION N | o RsuB
TO P-TYPE
~ SUBSTRATE .
N | S |pP+ OHMIC
(A) - CONNECTION
R TO SUBSTRATE
OHMIC
v
ss V CONNECTION
, TO P-TYPE
SUBSTRATE (&)
, (B)

Figure 12-1. CHMOS Inverter

What might turn on one of the parasitic junction transis-
tors? Look at Figure 12-1C. The base of the parasitic pnp
is at VCC, and the base of the npn is at VSS. If the output
line swings a diode drop above VCC, or below VSS, it
forward-biases the ‘‘D’’ emitter of either the pnp or the
npn transistor.

Suppose it is the pnp emitter that is forward-biased by the
output line swinging a diode drop above VCC. Some of
the current that enters that emitter now exits the parasitic
-device as collector current. It flows down to-the juncture
of Rsub and the base of the npn transistor. If Rsub is low,
the current is shunted through it to VSS, and the npn
transistor stays off. If Rsub is high, some of the current
crosses the base-emitter junction of the npn, and that tran-
sistor will likely turn on. - )

It is important to note that the designer of the integrated
circuit has a certain amount of control over the turn-on
probabilities. Grounded guard rings placed around the npn
emitters will have the effect of reducing the value of Rsub.

12-2

Reducing the value of Rsub has the effect of increasing’
the amount of current that has to enter the pnp D emitter
in order to turn the npn transistor on. The CHMOS, the
npn transistor will not turn on if the current entering the
pnp D emitter is less than 10 mA:

A similar sequence of events can occur when the output
line swings a diode drop below VSS. In this case it is the
npn transistor that is in danger of turning on the pnp,
depending on the value of Rwell and how much current
is involved. Again, the IC designer can reduce the value
of Rwell by the judicious placement of guard rings, con-
nected to VCC, around the pnp emitters. When the output
line swings a diode drop below VSS, if the current that
exits the output pin does not exceed 10 mA, there will be
no latch-up.

12.3 POWER SUPPLY CONSIDERATIONS

The power supply, as viewed by the microcontroller,
should be low in inductance because of the peak currents



DESIGN CONSIDERATIONS WHEN USING CHMOS

associated with CHMOS switching characteristics. Note
that the repetition rate of these peak currents increases
with the clock frequency. Bypass capacitors of approxi-
mately 0.1uF should be used with proper PCB layout to
ensure a low inductance, high peak current power source.
Low inductance capacitors are also available that fit under
the package. These capacitors are also advantages for
HMOS in noisy environments (See Application Note
AP125 ‘‘Designing Microcontroller Systems For Electri-
cally Noisy Environments’’ in this manual for detailed
discussion).

Power supply glitches must be filtered to ensure that the
maximum voltage rating of the device is not violated.
Violation may induce an SCR effect between VCC/VDD
and Vss (latch-up).

The polarity of the power supply must never be reversed.
The n-well is connected to VCC and the p-type substrate
is connected to ground so normally that pn junction is
reversed biased. If VCC or VDD are ever more negative
than —0.5 volts with respect to Vss, the n-well/substrate
pn junction will be forward biased and short VCC/VDD
to ground.

When the microcontroller is powered separately from the
surrounding circuitry, the microcontroller should always
be powered up before any input signal is applied. The
reverse is true when powering down, input signals first
then the microcontroller.

When separate VCC and VDD power supplies are used
for the 80C49, VDD and VCC must track each other
within 1.5 volts (except during power down) and also
maintain the 5v 20% specification. This ensures that the
CPU, powered by VCC, and the RAM, powered by VDD,
have proper voltage levels to communicate. If VCC and
VDD cannot be powered up simultaneously, VDD should
be applied first.

12.4 MINIMIZING POWER CONSUMPTION

The reason CMOS parts draw considerably less current
than an NMOS part is that there is no direct path between
VCC and ground (refer to figure 10-1A). When the
p-channel pullup FET is on the n-channel pulldown FET
is off and the output line gets pulled up. The opposite is
true, when the n-channel FET is on the p-channel FET
is off and the output goes low. There is leakage associated
with either the n-channel and p-channel FETs in the off
state. The sum of all the leakages from every inverter on
the chip is what is called the ‘‘quiescent current.’’ This
current is in the order of microAmps and is the lesser of
the two currents that add up to the total ICC.

When the inverter is switching in either direction, there
is a moment in time when both FETs are on creating a
low resistance path between VCC and ground. The ca-
pacitance on the output line (pin capacitance, trace ca-
pacitance, and input capacitance to the next stage) is also
charged or discharged which also increases current con-

12-3

sumption. This ‘‘dynamic current’’ is a couple of orders
of magnitude higher than the quiescent current.

Power supply voltage also comes into play with both types
of currents. If VCC is high, the leakage across the off
FET is increased. Output capacitance now has to be
charged up to a higher level. So a higher VCC also con-
tributes to making ICC larger.

Frequency of switch can also affect the amount of current
used. If the inverter stage is switched very slowly, then
the average current is equal to the quiescent current. As .
the frequency of switching is increased, the dynamic cur-
rent contributes more and more to the total ICC until the
dynamic current totally swamps the quiescent current.

Now that we are aware of what components make up the
total ICC, we can work on ways of minimizing it. VCC
can play a big roll in minimizing power. If the whole.
purpose in going to CMOS is to minimize heat dissipation
and the power is drawn from the 110 volt AC socket,
tweak your power supply to the minimum voltage that the
system will run. On the other hand it batteries are used
you must consider types of batteries available, lifetime of
the battery, and voltage drop off at the end of its life to
determine what voltage to start at. Remember the lower
the voltage the lower the current draw.

The application also has to be analyzed for what kind of
response time is needed to determine how fast the micro-
controller needs to run. If the end application is a direct
human interface, then the response time can be relatively
slow and the processor can run at minimum speed. But
if real time decisions need to be made on evaluating in-
coming data, then the microcontroller needs all the time
it can get. The idea is to run the microcontroller as slow
as you can and still get the task accomplished.

Intel has added idle mode -and power down features to
help further manage your power consumption. Idle mode
in the 80C51/80C31 stops the clock to the CPU while
keeping the oscillator, RAM, interrupts, timer/counter,
and serial port alive. Stopping the clock to the CPU de-
creases the current in the CPU from dynamic to mostly
quiescent. Idle mode consumes approximately 1/10th the
operating current.

Idle mode allows the microcontroller to minimize its cur-
rent when no processing needs to be done. The live in-
terrupts, timer/counter, and the serial port can wake the
CPU and since the oscillator is running the response time
is quick.

Data on the ports are left in the state they were in when
idle was invoked. If careful attention is given to the logic
state of the port, total system current can be reduced. The
state of the port for reduced current is dependent on what
the port is driving. If it is a transistor, the transistor should
be put into its off state. If the port pin is driving another
CMOS gate, the loading of the port pin would be minimal
and a choice of the logic state may be made on what is



DESIGN CONSIDERATIONS WHEN USING CHMOS

AWAKE

BATTERY
TO MCS48 .
PIN 4
RST
BATTERY
y VPO300M
A P-CHANNEL
VFET
27K$ TO MCS48
PIN 40
cizx1pF  VCCAND
; PERIPHERY

Figure 12-2. MCS®-48 Power Down Circuit

on the outputs of the CMOS gate. If TTL is being driven,
the reduced current would be when the port pin is high.
A little thought in this area can go a long way in mini-
mizing system current.

Power down removes all internal clocks to decrease the
current to totally quiescent current while the contents of
the RAM are saved. This mode is useful in hand held
applications where data needs to be saved between uses.
On the 80C51, the port pins are left in the same state they
were in when the power down mode was called. The same
thought processes that were needed for reduced current
in the idle mode are valid for power down also.

Figure 12-2 shows a simple circuit that uses one quad
NOR CMOS integrated circuit and some external resistors
and capacitors to power down the CHMOS MCS48 family
under the control of one input. To activate the operation
of the microcontroller, the AWAKE/ signal is pulled low
and in turn, node A goes low turning on the p-channel
VFET. This allows VCC to the microcontroller to be
pulled to the power supply minus Vsd. Node A being low
brings RESET high after a time determined by the R1C1
time constant. The RC has been chosen to allow 10 mS
between VCC going high and RESET going high to allow
the oscillator time to stabilize.

Powering down is accomplished by AWAKE/ going high
which pulls RESET low. The time delay R2C2 allows the
reset signal enough time to signal the microcontroller to
save the RAM before VCC is shut off.

When idle mode and power down are used in conjunction
with slow operating speed it can reduce your power needs
to a minimum.

12-4

Unused input only pins on the MCS48 family such as
SS/, TO, and T1 should not be allowed to float. The inputs
would float about the trip point of the input buffer. This
switching of the input buffer can waste up to .5mA per
input.’ Tie all unused input only pins high or low.

When the CHMOS units are being used with external
program or data memory, PortO (Data'Bus on the MCS48
products) is left floating when in idle mode. PortO also
floats on the 80C51 when in the power down mode. The
same condition as described above can happen with the
input gate on those pins. Without tying these pins high
or low at least .5 mA x 8 or 4 mA could be wasted. Tie
the PortO pins high or low through a 500K or IMQ
resistor. A little extra board space is minimal when con-
sidering the extra power savings.

The quasi-bidirectional pins have internal pullups so the
inputs on these pins never float.

12.5 CHMOS 1/0 PORT STRUCTURE

The CHMOS /O ports have similar drive capability to
their HMOS counterparts, but the differences must be
noted.

12.5.1 As An Output Pin

The /O port structure is implemented as shown in Figure
12-3.

As an output pin latched to a low (0) state, pullups P1,
P2, and P3 are in an off state while the pulldown N1 is
on. This configuration uses little current, since there is no
path between VCC and ground in the output buffer stage.



DESIGN CONSIDERATIONS WHEN USING CHMOS

vee Vee Vee
PULLUP
SIGNAL | P1 —l P2 -—I P3
PORT
r_] PIN
‘ N1
Q
FROM DATA ‘g
LATCH
READ |
PULSE
INPUT _Oq_
DATA
Figure 12-3. CHMOS Quasi-Bidirectional I/0 Port Structure
a latch. This latch along with the support of P2 keeps the
output high. Figure 12-4 shows the VOH vs IOH curve
1OH for this output structure when P1 is off. }
-1OH ]
@ 24v 12.5.2 As-An Input Pin

IOH 4
@ .9 VCC

VOH

THIS GRAPH IS FOR INFORMATIONAL PURPOSES
ONLY. :

Figure 12-4. CHMOS 1/0 Current Characteristics

When the output pin is to be latched in the high (1) state,
the data line turns N1 off and turns on the weak (5uA)
" pullup P2. At the same time P1 (a strong pullup) turns on
for one state time pulling the output up very quickly. Once
the output voltage is above approximately 2 volts, P3 turns
on to supply the source current. P3 and the inverter form

40

To use the I/O port as an input, a one must be written to
the pin first, leaving the pin in a high state. When the
input goes below 2 volts, P3 turns off to avoid any high
sink currents from being presented to the input device.
Note when returning back to a one, P2 is the only internal
pullup that is on. This will result in a long rise time if P2
is the only pullup.

12.5.3 Interfacing Between CHMOS and
Other Logic Families

Interfacing Intel’s CHMOS to other logic families is very
simple and straight forward. When VCC is kept within
10% of 5 volts all inputs (except those noted in the data
sheets) and outputs are TTL compatible. CMOS compat-
ibility is achieved as long as VCC is kept within 20% of
5 volts.

When driving a high current load, the output current (Ioh)
must be limited to keep the output voltage (Voh) at a
minimum of 2 volts. If the voltage is pulled below 2 volts
the output current will be dropped to approximately 5 uA.
See Figure 12-4.

=



Inside CMOS Technology

Photo 1: The die for the 80C51, with the functions of the various sections identified.

How CMOS devices are manufactured and a look at three of them

by Martin B. Pawloski, Tony Moroyan, and Joe Altnether

Order Number: 230860-001

12/



AR-302

CMOS (complementary metal-
oxide semiconductor) has often been
called the ideal technology. It has
low power dissipation, high im-
munity to power-supply noise,
symmetric switching characteris-
tics, and a large supply-voltage tol-
erance. But CMOS has rarely been
used for advanced VLSI (very-large-
scale-integration) microcomputer
designs. Because of the complexity
of the CMOS process, the ICs (in-
tegrated circuits) produced have
traditionally had a relatively poor
price/performance ratio.

As a result, CMOS was used only
in applications that required low
power and were neither perfor-
mance conscious (such as in calcu-
lators and watches) nor cost con-
scious (many military applications,
for example). Suddenly, however,
all major semiconductor companies
have announced either advanced
CMOS products. or the intention of
designing their next generation of
high-performance microprocessors
using CMOS technology.

What has happened to make
CMOS both affordable and high
performance? For one thing, the
dominant VLSI technology, NMOS

(n-channel metal-oxide semicon--

ductor), is rapidly approaching the
process complexity. of standard
CMOS. It is not unusual nowadays
for NMOS technology to have up to
four transistor types with different
operating characteristics. Much of
the complexity of this process is
added simply to help VLSI design-
ers keep the operating power of
their circuits under control.

Second, CMOS circuit designers
are being more selective in the use
of static CMOS logic. Critically
placed dynamic logic, creative cir-
cuit design, and use of modes that
offer varying degrees of power con-
sumption are all tricks designers
are using to maintain the advan-
tages of CMOS.

Finally, aggressive reduction in
CMOS transistor size is being used
to bring CMOS performance in line
with that of NMOS. As a matter of
fact, many manufacturers are de-
veloping CMOS as a derivative of
their advanced NMOS processes.

This not only improves CMOS per-
formance levels but alsa boosts re-
liability and reduces development
costs.

The Evolution of LSI

Early LSI circuits were built with
p-channel MOS transistors, which
permitted high-circuit densities yet
were relatively slow and difficult to
interface to normal integrated cir-
cuits, such as TTL (transistor-
transistor logic). As an example,
the 1103-type 1K by 1-bit dynamic
RAM (random-access read/write
memory), circa 1971, required its
inputs (address, controls, and data)
to swing between 1 and 15 volts (V)
although its output was measured
in millivolts — hardly TTL compat-
ible! About 1974, NMOS came to
the rescue. It provided faster speed,
and most of its inputs and outputs
were TTL compatible.

Low power
requirements are a
major advantage of
designing a system

that uses CMOS.

NMOS was more difficult to
manufacture than PMOS because
contaminants would vary the
thresholds of the n-channel transis-
tors, causing deviations in speed
and performance. But this problem
was quickly overcome through ul-
traclean processing rooms, and
NMOS became the workhorse tech-
nology because it cost less to man-
ufacture, was easy to use, and had
good speed-power characteristics.
And NMOS technology had poten-
tial for greater improvement of its
speed-power characteristics through
scaling (or shrinking) of the silicon
devices. The result of this scaling
was HMOS (high-speed NMOS),
which accomplished three objec-
tives: increased speed, reduced
power, and increased density.

Over the past 10 years, the re-
duction in transistor size has, at the
device level, increased memory
density by a factor of 64, increased

12-7

speed by a factor of 3, and reduced
power consumption by a factor of
100. However, the scaling cannot
continue ad infinitum because of
resolution limitations of the photo-
lithographic equipment used to
make the circuits as well as break-
down mechanisms within the de-
vices. More important, even before
these limitations are reached, heat
dissipation will prohibit major en-
hancements with NMOS. Heat
generation increases exponentially
with transistor count, and, at den-
sities approaching 150,000 transis-
tors per integrated circuit, special
cooling measures are required. This
heat can accelerate failure mecha-
nisms within the silicon, reducing
device and system reliability. To
hurdle this barrier, low-power de-
vices must be used.

The Importance of
Power Consumption

The development of NMOS was
spurred on by the semiconductor .
industry’s drive to produce high-
volume, large-capacity memory de-
vices, for which high dénsity, rather
than low power consumption, was
the primary concern. As VLSI be-
gan to emerge, however, power
dissipation became a limiting factor
in continued increases in NMOS
packing densities. Thus, the semi-
conductor industry turned to CMOS
as a potential alternative.

CMOS achieves its low power
dissipation through the use of both
p- and n-channel transistors (hence
the name “‘complementary”’). Es-
sentially, no DC power is dissipated
in either logical state, and AC power
occurs only during the relatively
short switching period. Because
most circuitry in a complex design
is active only 10 to 20 percent of the
time, CMOS achieves a dramatic re-
duction in power dissipation com- °
pared with NMOS, which contin-
ually dissipates DC power whenever
an operating voltage is applied.

Low power requirements are a
major advantage of designing a sys-
tem that uses CMOS. Reducing
power requirements has a domino
effect that often substantially re-
duces the cost of the end product:



AR-302

(1a)

(1b)
+5V —_— ———
Vin \
0
TIME
/
(1c)
ENHANCEMENT ~ DEPLETION
CURRENT CURRENT
| | |
| ] |
| | |
1
i
[N] I ‘_N
1 1
: QUIESCENT !
| CURRENT |
TIME

+5V |—— —
Vin
0

TIME
n-CHANNEL p-CHANNEL
CURRENT CURRENT
QUIESCENT
CURRENT

TIME

Figure 1: A comparison of NMOS and CMOS technologies. Figure 1a shows the schematic
diagrams of an inverter as implemented in both NMOS and CMOS. A hypothetical input
waveform and the resulting transistor currents are shown in 1b and Ic.

® Jow power allows smaller, lower-
cost power supplies to be used .

@ power distribution in the system
is simplified

® cooling fans can be eliminated

® printed-circuit boards can be

packed more densely and: can thus
become smaller .

With smaller power supplies,
denser circuit boards, and no fans,
smaller cabinets can be used, re-
sulting in savings in chassis and en-
closure costs. Also, power fail-safe

and hand-held use become possible
if battery operation is feasible.

Basic CMOS Operation

To truly understand the promises
(and problems) facing both the
CMOS VLSI digital designer and
the CMOS systems designer, one
must first understand some CMOS
fundamentals.

Figure 1 compares the circuit dia-
grams and current characteristics of
both an NMOS and a CMOS in-
verter. The NMOS inverter uses an
n-channel depletion-mode transis-

12-8

tor as the pull-up device (which
drives the output line high) and an
n-channel enhancement-mode tran-
sistor as the pull-down device

" (which drives the output line low).

The pull-up transistor is used as a
load; its operation approximates that
of a constant current source. The
pull-down transistor is used as the
switching device; when active, it
discharges the load, and when in-
active it lets the pull-up charge the
load. MOS loads are primarily ca-
pacitive and include the parasitic
capacitances of the inverter itself,
interconnect capacitances, and the
thin-oxide capacitances of all the
gates the inverter is driving.

Let’s note several characteristics
of an NMOS inverter. When the
pull-down device is turned on, it
not only has to sink the current
from the capacitive load, but it also
has to sink the current supplied by
the pull-up load device. Even in the
quiescent state this current compo-
nent from the pull-up device still
exists. Because logic gates spend
most of their time in the quiescent
state, this quiescent current ac-
counts for up to 90 percent of the
total power dissipated in NMOS
VLSI designs; the remaining 10 per-
cent is switching or dynamic power.

A second related characteristic is
that the inverter’s output voltage in

. the low state, V, is dependent on

the ratio of the impedances of the
pull-down and pull-up devices. This
ratio affects the noise margin and
switching speed and is generally
around 4:1. Such a ratio results in
a Vg, on the order of 0.2 V t0 0.3 V.
It also causes asymmetric switching
characteristics: the fall time of the
inverter is significantly faster than
its rise time.

The CMOS inverter uses a p-
channel enhancement-mode tran-
sistor as the pull-up device and an
n-channel enhancement-mode tran-
sistor as the pull-down device. In a
CMOS inverter, both the pull-up
and pull-down transistors are used
as switching devices. When the in-
put changes from low to high, the
p-channel device shuts off and the
n-channel transistor discharges the

load. When the input changes from



AR-302

1.0
09 I~
0.8
0.7
GATE 06
DELAY 0.5
(ns) 0.4
03
0.2
0.1

CMOS

P

SCALED CMOS ~ SCALED NMOS
1 : 1
0.1 1.0
POWER/GATE (mW)

NMOS

rrvrit

Figure 2: The speed versus power consunip-
tion characteristics of NMOS and CMOS
technologies. Note the advantages gained by
scaling (reducing the size) of the integrated
components.

(32) p-well (original)

AR

high to low, the n-channel device
shuts off and the p-channel transis-
tor charges the load. While almost
all current from the CMOS inverter
is used to charge or discharge the
load, a small current component
does not flow through the load.
This is a result of the fact that both
the p-channel and n-channel tran-
sistors are on for a short period of
time during the input voltage tran-
sition. This current component is
typically less than 10 percent of the
total inverter current, though it de-
pends greatly on the rise and fall
times of the input signal.

With no quiescent power com-
ponent, a CMOS inverter’s dy-
namic power dissipation represents
only a small fraction of an equiva-

n+

E n-SUBSTRATE

',A p-SUBSTRATE
[[D pWELL
nWELL
OXIDE

E POLY

(3b) n-well
R W s |
s 7T
\
7
@3o) ﬁin tub

7
p
1

S
) =
L

LA

(3d) SOS (no latchup)

SAPPHIRE

Figure 3: Cross sections of transistors formed by each of the four major CMOS processes.
Figure 3a is a p-well bulk CMOS transistor; figure 3b shows an n-well bulk device; figure
3c is an example of a twin-tub bulk CMOS transistor; the transistor in figure 3d is formed

using silicon-on-sapphire technology.

12-9

lent NMOS inverter’s power dissi-
pation. Also, the CMOS inverter is
a “ratio-less” design, having only
one transistor active after an input
transition. This lets V; go all the
way to ground potential, resulting
in better noise tolerance than NMOS
inverters. It is also a simple matter
to design CMOS circuits with out-
puts that have equal rise and fall
times. While this is important in
some circuits, it is generally not
taken advantage of in VLSI designs
because it requires greater chip area.

For NMOS and CMOS technolo-
gies with similar transistor dimen-
sions and gate oxides, gate delays
are essentially identical. The speed-
power products for such a set of
NMOS and CMOS technologies are
shown in figure 2. This graphically
illustrates the tremendous power
advantage CMOS offers when used
in high-performance VLSI designs.

While CMOS enjoys significant
electrical advantages over NMOS,
it does have a cost disadvantage.
One small factor is the larger num-
ber of process steps needed to fab-
ricate a CMOS device. More signif-
icant is the larger die required
because CMOS has lower gate
density.

CMOS Technologies

Figure 3 shows the four major
CMOS technologies in use today:
p-well bulk, n-well bulk, twin-tub
bulk, and silicon-on-sapphire (SOS).
P-well CMOS uses a p-type diffu-

‘sion into an n-type bulk silicon sub-

strate to form an n-channel transis-
tor. The p-channel transistor is built
directly in the bulk. This is the orig-
inal CMOS technology, which has
many years of good performance
and reliability behind it.

The n-well CMOS process starts
with a p-type substrate. N-type ma-
terial is diffused into it to form the
n-well in which p-channel devices
are built. N-channel devices are
built directly in the bulk substrate.
An n-well CMOS process is usually
derived from an advanced NMOS
process. It also permits a highly op-
timized n-channel transistor, which
yields a slight performance advan-
tage over a p-well CMOS process.



AR-302

Twin-tub CMOS combines n-well
and p-well technologies by diffusing
both an n-well for the p-channel tran-
sistor and a p-well for the n-channel
transistor. The twin wells are usual-
ly formed in a lightly doped n-type
substrate. While it is a slightly more
complex and costly process than
either n-well CMOS or p-well CMOS,
twin-tub CMOS has the advantage of
being able to optimize the perfor-
mance of both the n-channel and p-
channel devices. Thus, this process
gives the highest overall performance
of the bulk CMOS technologies.

The highest performing CMOS
technology is SOS. Silicon islands are
. grown on an insulating sapphire sub-
strate. N-channel or p-channel tran-
sistors are then built on the islands.
High performance is achieved due to
the significant reduction of parasitic
capacitance. SOS also offers good
‘gate density because no parasitic
bipolar transistors are around to
cause a phenomenon called latch up.
Unfortunately, SOS devices are dif-
ficult and expensive to manufacture.
For example, unused sapphire wafers
cost approximately 10 times more
than bulk silicon wafers.

While CMOS sulffers a cost penal-
ty of about 20 percent due to process
differences, it generally suffers more
significantly because of die size.
(While processing steps have a linear
relationship with cost, die size has an
exponential relationship.) CMOS
dies are larger than equivalent
NMOS designs even when aggres-
sive transistor scaling is employed.
Three major factors contribute to this:
the area used in trying to prevent
latch up, CMOS logic-gate structure,
and static design techniques.

Latch Up Prevention

Bulk CMOS technologies "have
parasitic bipolar transistors that, if
improperly biased, can cause a phe-
nomenon called latch up. This poten-
tially destructive action results from
triggering an SCR (silicon-controlled
rectifier) formed by the transistors
and can cause extremely large cur-
rents to flow. Figure 4 shows the con-
struction of the parasitic SCR in an
n-well bulk CMOS device.

(4a) Vee GND TO SUBSTRATE STRAP
p-CHANNEL  n-CHANNEL
Vee TO n-WELL TRANSISTOR  TRANSISTOR 3,
STRAP ——\ l—rsnumm_ TERMINAL 1
n Pt

n+ P+
RWELL m

T2

n-WELL /I
L

\1_!

Rsus

p-SUBSTRATE

(4b)

Vee

n-WELL

RWELL S

p-SUB

Rsus

T2

7\

]

Vss

Figure 4: Parasitic SCR in bulk CMOS can cause latch up. Figure 4a shows how the parasitic
transistors are formed in the silicon; figure 4b is a diagram of the equivalent circuit.

Two well-defined conditions must
exist before latch up can occur. First,
for the SCR to be triggered, IR,., or
IR.., must be greater than or equal to
0.7 V. This forward-biases the base-
emitter junctions of the parasitic
bipolar transistors. Second, to sustain
the latch up condition, the product
of the s (gains) of the two bipolar
transistors must equal at least 1.

In order to minimize the chance of
one of the SCR’s transistors being for-
ward-biased, every attempt is made
to reduce the resistance values as
much as is feasible. This has the ef-
fect of requiring significantly larger
injected currents before the SCR can
be triggered. To reduce the resistance
values, guard rings are used in the cir-
cuitry. (Guard rings are low-resistiv-
ity connections to the supply voltages
placed around the CMOS p-channel
and n-channel transistors.) While
guard rings reduce the SCR bias
resistor values, they also increase the

12-10

space between n-channel transistors
and p-channel. transistors (thus
reducing the gate density). To some-
what minimize this effect, particular-
ly sensitive areas (like VLSI com-
ponent’s I/O pins) are heavily guard
ringed, while the more protected in-
ternal circuitry is less so.

A less controllable method of pre-
venting latch up is to try and de-
crease the Bs of the parasitic tran-
sistors. While the vertical pnp tran-
sistor’s 3 is set by the process design,
the lateral npn transistor is more
directly controllable. Its 8 can be dras-
tically reduced by increasing the n-
well-to-n+ diffusion spacing (or p-
well-to-p+ diffusion spacing in p-
well technology). This method re-
duces the 3 by increasing the width
of the transistor’s base. While this is
an effective way of decreasing the
gain of the parasitic structure, it also
reduces the gate density.

In bulk CMOS technologies, to



AR-302

» OUT

(5¢) Voo

out

Vee
(5b)

& OUT

A-b—hi n

Figure 5: A comparison of typical logic gates in NMOS and CMOS form. Figure 5a is an
NMOS NOR gate, while figure 5b is a CMOS version; figure 5¢ is an NMOS NAND gate,

and figure 5d is a CMOS version.

give absolute protection against latch
up is not only tremendously expen-
sive in silicon area, but it is also vir-
tually impossible. CMOS designers
sacrifice area to ensure there is
enough margin in their design to
protect it from latch up in normal op-
erating-system environments.

Logic-Gate Structures

Gate densities are also reduced in
CMOS because standard CMOS
logic gates are built from more tran-
sistors than their NMOS equiva-
lents. Standard CMOS logic-gate
design has a 1:1 ratio of n-channel
transistors to p-channel transistors.
For example, the two input gates
shown in figure 5 take four transis-
tors in CMOS and only three in
NMOS. The relative density de-
creases as the number of inputs in-
creases. For example, three-input
gates require six transistors in CMOS
and only four in NMOS; four-input
gates require eight transistors in

CMOS and only five in NMOS, etc.
As a matter of fact, it is rare to have
a standard CMOS gate with more
than three inputs because the self-
loading and the transistor stack
make the structure inefficient in
both speed and area. On the other
hand, it is not unusual in NMOS to
have gates with as many as eight
inputs.

Static Design Techniques

A final reason for the lower CMOS
gate densities is the use of static
logic (modern VLSI NMOS micro-
computer designs rely heavily on
dynamic circuitry). Dynamic
circuitry essentially uses a small ca-
pacitor as a latch to store logic val-
ues. This technique saves both area
(by reducing the number of transis-
tors in a gate) and power (by reduc-
ing the number of gates in struc-
tures like latches, flip-flops, shift
registers, etc.). Employing dynamic
design can reduce an NMOS latch’s

12-11

area by 30 percent and its power
consumption by 50 percent. How-
ever, the problem with dynamic cir-
cuitry is that the capacitor used to
store the logic value is leaky and
will, over time, discharge and lose
its data. This is the same problem
faced by dynamic memory design-
ers. The solution is to periodically
refresh the capacitor, which forces
a minimum operating frequency to
be adhered to.

CMOS can also use dynamic cir-
cuitry, especially to increase the ra-
tio of n-channel transistors to p-
channel transistors. Because static
CMOS designs have a 1:1 ratio of
n-channel to p-channel transistors,
being able to increase this ratio will
have the effect of giving CMOS a
higher gate density (but the mini-
mum operating-frequency charac-
teristic of dynamic circuitry often
conflicts with the CMOS potential
of absolutely minimizing power).
Therefore, while true static CMOS
design does give the lowest possi-
ble power consumption (by allow-
ing the device to operate at fre-
quencies all the way to DC),
dynamic CMOS designs, being more
dense and resulting in smaller die
sizes, tend to be more cost-effec-
tive. Thus, two trends are devel-
oping in the use of CMOS for VLSI
microcomputer design.

Designers of the next generation
of 16- and 32-bit microprocessors
are choosing CMOS. Here, the goal
is not to operate at the lowest pos-
sible power level but rather to keep
the operating power under a maxi-
mum level for cooler junction tem-
peratures, higher performance lev-
els, and the ability to use standard
low-cost packages. In these de-
signs, extensive use is made of dy-
namic logic. The ratio of n-channel
transistors to p-channel transistors
is often as high as 3:1.

Designers of 4- and 8-bit single-
chip microcomputers are choosing
CMOS to accommodate a host of
new portable, hand-held, and ul-
tra-low-power applications. Here,
the goal is to minimize the operat-
ing power levels consistent with
the performance required by the
application. In the simpler micro-



AR-302

computers, true CMOS static logic
is used—their simpler structure still
. allows a relatively small die size,
while the low-performance appli-
cations they are appropriate for
allow low operating frequencies.
On the other hand, the more com-
plex, higher-performance, single-
chip VLSI components still make
maximum use of static logic but are
forced 'into dynamic logic for large
arrays to keep the die cost down.

Future CMOS

CMOS will be the technology of
choice for VLSI microcomputer de-
signs. For one thing, with the advent
of hundreds of thousands of tran-
sistors on a die, CMOS is the only
technology that offers a cost-effective

solution to the power-density prob-
lem.

A second and more subtle future
issue is reduced supply voltage. As
MOS transistors continue to be
scaled to smaller dimensions to eke
out further performance and densi-
ty advances, the standard 5V supply
voltage must be reduced, if only for
internal circuitry, to limit substrate
current and hot-electron effects.
CMOS is better suited for lower sup-
ply-voltage operation because its
switch point is a fixed percentage of
the supply voltage. Also, due to its
“ratio-less” structures, CMOS enjoys
better noise tolerance than NMOS,
another important factor at lower
supply voltages. ’

Finally, CMOS has made and will

continue to make major strides in its
relative cost disadvantage to NMOS.
Where CMOS formerly sold at as
much as a fourfold premium, today
it is selling at somewhat less than
twice the price of comparable NMOS
devices. With its continued use of
standard, low-cost packaging tech-
nology as well as the more creative
use of dynamic circuitry and hybrid
static/dynamic designs, CMOS will
rapidly approach the cost of NMOS.
As a matter of fact, several major
semiconductor manufacturers have
stated that CMOS/NMOS price pari-
ty will occur this decade, and some
manufacturers say it will happen as
early as 1985, When CMOS and

. NMOS cost the same, why would

anyone buy NMOS?®m

A CMOS Single-Chip Computer:

Intel’s 80C51 is an interesting exam-
ple of how the static logic versus.
dynamic logic trade-off was made in
an actual product design. The 8051 is

an 8-bit, single-chip microcomputer

with 4K bytes of ROM, 128 bytes of
RAM, two 16-bit counter/timers,
multilevel interrupt control, 32 I/O
pins, full-duplex UART (universal
asynchronous receiver/transmitter),
and on-chip oscillator and clock cir-
cuits. A die with the sections iden-
tified by functions is shown in photo
1 on page 94.

The CMOS version of the 8051,
called the 80C5], is targeted at a num-
ber of applications that require both
high. performance and low power
consumption. In areas like telephony,
automotive control, -industrial con-
trol,; and portable instrumentation,
the 80C51 operates at or near its max-
imum speed, even if only for short
intervals. (For example, most real-
time applications need an external-
interrupt response time of less than
100 microseconds (ps); more de-
manding applications require better
than 10-us response. While the re-
sponse must be quick, and the inter-
rupt routine executed quickly; the

Intel’s 80C51
by Martin B. Pawloski

Normal
Ve Supply  Operating- Operating Power Down
Voltage Frequency Mode Idle Mode Mode
Product| Technology Range Range (lec Max) (lcc Max) (lec Max)
' . 12 MHz Max 24 mA 3 mA 50 pA
B0CST | CMOS -6V 12MHzMin 24mA 03 mA 50 4A
12 MHz Max 150 mA — 20 mA
8051 HMMOS 45-55V BomA | — 20 mA

Table 1: A comparison of the CMOS and NMOS versions of the 8051.

1.2 MHz Min

processor spends a significant. por-
tion of its time idle.)

Once the performance require-
ments of the application are known,
it is possible to specify a minimum
operating frequency. For the 80C51,
a hybrid static/dynamic design was
proposed that allows a minimum die
size and includes various modes of
operation to minimize power con-
sumption.

First, the only areas of the design
that were made dynamic were the
(very large) ROM and Control arrays.
These arrays contain almost 50,000
transistors and constitute a major
portion of the die. By making them
dynamic, an’area savings on the

12-12

order of 40 to 50 percent was accom-

. plished.

Second, the processor, all the pe-

ripheral functions, the RAM, and the

I/O ports were made static. This al-
lowed two modes of operation other
than normal operating mode: Idle
mode and Power Down mode. :

Because in many applications the
processor does nothing more than
wait for an event to happen, in the
Idle mode the major clocks of the de-
vice dre stopped and only smaller an-
cillary clocks operate to drive the
peripheral counter/timers, external-
interrupt control, and the serial chan-
nel. When one of the’ peripherals
generates an interrupt, the processor



AR-302

clocks are restarted and instruction
execution resumes in the interrupt-
service routine. The Idle mode
reduces power consumption by
almost an order of magnitude.

In Power Down mode, all the clocks
inside the device are shut off and
only the internal 128 bytes of RAM
are “kept alive” The only current
consumed is a minute amount due to
pn-junction leakage. Static logic was
designed in the peripheral sections in
order to support this mode because

no clocks are available to refresh
dynamic logic. In both the Idle and
Power Down modes, special provi-
sions are made for the dynamic cir-
cuits in the ROM and Control areas

to enter a pseudostatic condition that'

prevents any extraneous power con-
sumption due to voltage drift on ca-
pacitive storage nodes.

Table 1 compares the NMOS 8051
to the CMOS 80C51. The 80C51, de-
signed in Intel's HMOS-derived n-
well process called CHMOS, is less

than 10 percent larger than the
NMOS design and consumes only 15
percent of the normal operating
power. More significant power sav-
ings are possible by operating the
80C51 at lower frequencies or by
using the Idle mode.

Martin B. Pawloski (5000 West Williams Field
Rd., Chandler, AZ 85224) is involved in the prod-
uct planning, definition, and implementation of both
NMOS and CMOS single-chip microcomputers at
Intel Corp.

A Look

The fast-growing portable-com-
" puter market is placing severe de-
mands on semiconductor memory.
For optimum system performance,
these components must limit their
power dissipation to suit battery
operation and backup, and they must
achieve the high data bandwidths
and increased speeds needed for fast
processing and high-resolution
graphics. As the market reaches a
projected $4.8 billion level by 1987 (a
tenfold increase over 1982 levels),
these requirements will combine to
fuel the use of high-performance
CMOS dynamic RAMs.

One architecture that can increase
the speed of a CMOS dynamic RAM
incorporates static-column address
decoders: static circuits perform the
selection of the column address of
the RAM. Previously, this architec-
ture has not been used with dynamic
RAMs because of the increased
power consumption of the static cir-
cuits over that of the dynamic cir-
cuits, and the advantage of low
power consumption would have
been lost. But with CMOS, the in-
creased power consumption is neg-
ligible.

Memory-device Architecture
RAMs are organized internally as
rows and columns of storage cells.
Data access occurs at the intersection
of a row address and a column ad-
dress. In dynamic RAMs, the row

at CMOS Dynamic Memory

by Joe Altnether

and column addresses are multi-
plexed to reduce package size and pin
count: the row addresses are clocked
into the device with the RAS (row ad-
dress strobe) signal, causing one row
of data (1 bit from each of the 256 col-
umns in a 64K-bit dynamic RAM) to
be fed into the 256 internal sense
amplifiers. (Because of the low inter-
nal signal levels, each column must
have an associated sense amplifier to
sense and restore memory-cell data.)
Next, column addresses are pre-
sented to the device and clocked into
it with the CAS (column address
strobe) signal. These column ad-
dresses are then decoded to select
one of the 256 bits. Faster access and
cycle times are obtained within a.row
(or “page”) after the first access to it
because the 256 bits within the row
continue to reside in the sense ampli-
fiers and need not be refetched. Re-
applying . only column addresses,
then, in what is known as Page Mode
operation, provides fast serial ac-
cesses and can increase cycle times by
a factor of 2.

The CMOS dynamic RAM can in-
corporate static-column circuits to
provide performance equivalent to
that of high-speed static RAMs. With
CMOQOS, the static-decoding circuits
reduce the internal number of clocks
by a factor of 3, eliminating the need
to allow for setup and hold times of
signals with respect to clocks and the
need to compensate for timing skews

12-13

due to process variances. With static-
column circuits, precharge times are
drastically reduced (in Page Mode
operation of the Static-Column-mode
device, precharge time is reduced
from 30 nanoseconds [ns] to 5 ns).
This precharge time reduction and
the faster access times typically in-
crease the memory’s bandwidth to 20
MHz. (Performance of memory dis-
cussed here is based on the experi-
mental 64K-bit CMOS dynamic RAM
that Intel presented at the ISSCC
conference in February 1983.)

With static-column architecture,
two different types of .Page Mode
operation are possible: Static Column
mode and Ripplemode. Static Col-
umn mode uses the RAS line and
row addresses in the conventional
manner, but once the row has been
selected, data can be accessed mere-
ly by changing column addresses. As
with a static RAM, column addresses
must remain stable and valid for the
entire address access cycle. Access
time is measured from column ad-
dresses rather than the occurrence of
CAS. (Typically, access from column
addresses is 30 ns; from CAS, it is 10
ns.)

- In operation, CAS is used to place
the output in a high-impedance state
or to activate an output buffer. CAS
can be held active during the entire
page cycle. In fact, it is possible to
keep CAS permanently active (i.e.,
grounded). During a write cycle,



AR-302

however, addresses as well as data
are latched by CAS or WE, whichever
occurs last. Operation is identical to
that of an NMOS dynamic RAM in
this case. This action ensures that the
data is written into the proper mem-
ory location.

Although Static Column mode
provides fast, easy accesses, speed at
the system levél is limited by how fast
addresses for the next cycle become
valid; the time to generate and stabi-
lize the addresses must be added to
the cycle time. Increased system
speed can be obtained by using Rip-
plemode. With this mode, static-
column circuits are again used to ob-
tain access from valid column ad-
dresses, but the addresses are latched
on the falling edge of CAS, removing
the requirement for addresses to re-
main valid throughout the entire cy-
cle. As aresult, during the current cy-
cle addresses for the next cycle can
be set up or pipelined.

Column addresses enter the RAM
through the internal address latch.
This latch, controlled by CAS, pro-
vides flow-through operation. When
CAS is inactive, the latch is open, and
addresses pass through continuous-

" ly to the static-column decoders. Any
change in address is transmitted im-
mediately to the decoder. Conse-
quently, access to the RAM is again
measured from valid column ad-
dresses. The latch captures the cur-
rent address on the fall of CAS, per-
mitting the system address to change
while the access occurs. CAS also
serves as an output enable on the
data output. Static Column mode
and Ripplemode both permit con-

tinuous data streams up to 20 MHz.

CMOS technology and static-
column architecture provide more
than low power consumption and
high bandwidth. In addition, static-
column decoding simplifies system
design by eliminating critical timing
relationships while providing higher
system speed. Access from column
-addresses gives usable speed for
single random accesses within the
RAM. Also, the CMOS technology
enhances reliability by incorporating
a mechanism to significantly reduce
soft errors. Finally, increased stored
charge creates larger internal signal

levels, which can more easily be dif-

‘ferentiated from noise. As a result,

the CMOS dynamic RAM has wider
operating margins and system reli-
ability is improved. :

. Power Consumption

At the system level, dynamic mem-
ory has three components of power:
active, standby, and refresh. The
system’s power consumption is de-
fined as

P=V(MI, +KI;+NIx)

where P = system power, V = volt-
age (5.5 V worst case), I, = active cur-
rent, I, = standby current, I, =
refresh current, M = number of ac-
tive devices, K = number of devices
in standby, and N = total number of
devices.

CMOS reduces the first term, the
active current, relative to NMOS by
a factor of 2. In addition, the lower
active current reduces supply voltage
transients, thus simplifying
printed-circuit-board design and
reducing . decoupling-capacitor
requirements.

The second term, standby current,
is also reduced by a factor of 2 at TTL
input levels. Driving the RAS signal
to a CMOS level (Vpp—0.5 V) places
the device in -a low-power-standby
mode and typically draws 10 micro-
amperes (pA)—a factor of 50 reduc-
tion over NMOS!

Refresh current, the third term in
the equation, is cycle-time depen-
dent. Current increases with the fre-
quency of refresh. In dynamic RAMs,
data is stored on a capacitor that must
be replenished or recharged every 2
or 4 milliseconds (ms). This refresh
time is a function of the stored charge
and the leakage current. With the
CMOS dynamic RAM, the cell stor-
age capacitance is 0.125 picofarad (pF)
compared to 0.040 pF.to 0.085 pF in
an NMOS dynamic RAM. This low
capacitance, coupled with lower leak-
age currents, permits the CMOS re-
fresh period to be extended to 64 ms
in standby. .

At the standard 128 refresh cycles/2
‘ms (equivalent to a 15.625-us refresh
period), the NMOS device draws
about 4.8 milliamperes (mA) and

12-14

asymptotically approaches the stand-
by current of 4 mA as the refresh
period approaches infinity. Even
eliminating refresh entirely only re-
duces the current to 4 mA, which is
only a 16 percent improvement. As a
result, extending NMOS refresh does
not significantly reduce the system’s
power consumption.

Contrast this characteristic to the
improvement CMOS offers. At 15.625
us, the CMOS dynamic RAM draws
approximately - 10 percent of the
NMOS current, or 042 mA at TTL
levels. Extending the refresh period
reduces the current asymptotically to
the standby current of 0.05 mA. At a
64-ms refresh period, the current is
reduced to 0.15 mA, a 300 percent re-
duction. When battery powered, the
CMOS system has a 10 times longer
life than does the NMOS system, and
an extended refresh mode offers
another fivefold improvement. A
256K-byte CMOS memory can retain
data for nearly one week on only AA
nickel-cadmium (nicad) cells—more
than sufficient for most portable
systems.

High-Speed
Applications

Ripplemode and Static Column
mode are ideal for applications in-
volving high-speed buffers, telecom-
munications, and graphics. Bit-
mapped graphics systems would
seem to be a natural fit with Page
Mode operation. However, this was
not always the case. Prior to the In-
tel 2164A 64K by 1-bit NMOS
dynamic RAM, it was difficult to re-
trieve all 256 bits within a single row
of memory because of the RAS-low
time limitation of 10 us. Even with a
Page Mode cycle time of 125 ns, to
retrieve all 256 bits would require 32
us—three times longer than allowed.
The 2164A extended the RAS-low
time to 75 ps, permitting the extrac-
tion of all 256 bits during a single
Page Mode cycle.

At the end of the cycle, the device
cannot be reaccessed again until after
a certain off-time allows internal
nodes to be precharged to be ready

‘for the next cycle. As a result, the

2164A can stream data at greater than



AR-302

a 7-MHz rate continuously. This func-
tion matches the timing and opera-
tion of low-performance, bit-mapped
graphics memories. One 2164A, for
example, can map all the data for the
256 by 256 matrix of a graphics dis-
play. During the horizontal scan time,
the RAM performs a Page Mode cy-
cle and one full line is displayed.
During retrace time, the memory
must be refreshed and can be up-
dated with new data if required. This
type of update is relatively slow; con-
sequently, it limits the speed of
animation on the screen because the
processor has access to the memory
only 25 percent of the time.

To increase resolution, more lines,
each with more pixels, must be used.
By performing two- sequential Page
Mode cycles from two different
RAM:s, pixel densities to 512 bits per
line can be achieved. As pixel densi-
ty increases, the memory cycle time
must decrease to paint more pixels on
a line in the same amount of time.
This cycle-time- limitation plus the
fact that memory can be updated
only during blanking has precluded
dynamic RAMs from wuse in
higher-resolution graphics displays.
These systems are usually built with
high-speed, expensive static RAMs.

With Ripplemode, memory update
during screen display time, also
known as cycle stealing, is possible.
As an example, a 512 by 384 display
requires 512 bits/line and 1 bit every
67 ns. Data is read from four memory
devices in a series of eight Ripple-
mode reads each. Data is temporari-
ly stored in a video-output register
file and then shifted to the video
screen at a rate slower than the Rip-
plemode reads. Following this,
enough time is available to perform
an update cycle before the next eight

_Ripplemode reads are performed to
continue .screen refresh. Eight was
the number chosen to minimize the
time the processor must wait to up-
date the memory. In addition to this
cycle stealing, which updates during
display time, memory updates are
also performed during blanking.
Along with this system, a similar sys-
tem was built using 2164As with Ex-
tended Page Mode operation. Each
system used an iAPX 86 processor

and similar software. A comparison

of both systems showed the CHMOS
(complementary high-speed metal-
oxide semiconductor) system to have
a 42 percent higher drawing speed.
Animation on the CHMOS system
was vastly improved.

Usable Speed

Memory design using dynamic
RAMs has always been a challenge.
Although multiplexing addresses
does reduce the package pin count
and increase system density, it limits
the access and cycle times in the
system. To access a dynamic RAM,
low-order row addresses are pre-
sented and latched into the dynamic
RAM with RAS. Row addresses must
be held for a period tr.x after the fall
of RAS to guarantee proper opera-
tion. Next, the addresses must be
changed to high-order column ad-
dresses and latched into the dynamic
RAM with CAS, creating a timing
window tgep, Which is the RAS-to-
CAS delay. .

Within this window, the designer
must guarantee row address hold
time, change the addresses, and ac-
count for any timing skew on the
CAS signal. If column addresses are
valid at the maximum specified txcp,
access time tg,c is measured from the
high-to-low transition of RAS.

The cycle time is the sum of the ac-
cess time and the cycle precharge
time txp. The access time is a function
of trep, which has contradictory re-

_quirements. It must be as long as

possible to simplify system design
and at the same time as short as
possible to enhance system speed.
Cycle time is affected directly by the
length of te.

Static-column operation eliminates
the trcp problem. After row addresses
have been latched into the RAM, the
second portion of the access begins
from valid column addresses. In
other words, column access does not
wait for CAS to become valid, but
operates in a fashion similar to that
of a static RAM. This is due to the
flow-through operation of the CAS
latch. CAS serves only to latch the
addresses and to provide an output
enable. Access from valid column ad-
dresses simplifies design by remov-

12-15

ing the CAS signal from the critical
timing path.

Systems using dynamic RAMs are
typically CAS access-limited because
controllers generate timing signals in
discrete clock increments. A CMOS
dynamic RAM system might operate
at 8 MHz without Wait states. Using
any other 64K-bit dynamic RAM
would require the injection of one or
two Wait states, resulting in a corre-
sponding performance penalty. Con-
sequently, the advantage of higher
processor speed is negated without
the high-speed dynamic RAM. For
systems incorporating either discrete
or LSI controllers, the CMOS
dynamic RAM simplifies the system
design and offers higher system
performance.

High Reliability

Soft errors are random, nonrecur-
ring failures caused by ionizing radia-
tion present within the environment.
All matter contains small amounts of
radioactive material. Alpha particles
emitted by an IC’s packaging material
can penetrate the enclosed circuit. As
they do so, they generate hole-elec-
tron pairs. . Any high-impedance
node in the vicinity sensitive to 1
million electrons may be affected,
because the difference between a 1
and a 0 (known as the critical charge)
is about 1 million electrons. Conse-
quently, data in one cell could change
from a 1to a 0 or vice versa. Correct
data can be rewritten into the affected
cell and the memory will again func-
tion correctly, thus the term “soft
error.”

When first discovered during tests
of 16K-bit dynamic RAMs, soft errors
occurred at a rate five times greater
than catastrophic or hard-error fail-
ures. While device designers worked
to eliminate the alpha-particle sen-
sitivity, systems designers added
error-correcting circuits (ECC), which
increased system reliability, but the
systems were larger and more expen-
sive. due to the additional com-
ponents required. Also, the system
had to test and correct the data, slow-
ing the system’s performance. All this
was due to soft errors. Obviously,
what is really required is the elimina-
tion of soft errors.



AR-302

CMOS technology offers such a
solution. The CMOS dynamic RAM
cell is built on an n-well in a p-sub-
strate, creating a p-n junction or
diode at the boundary. When alpha
particles create hole-electron pairs in
a CMOS device, something else oc-
curs. First, the n-well is very shallow,
and the majority of hole-electron
pairs are created in the p-substrate.
Holes cannot transfer across the
reverse-biased p-n junction, which
acts as a barrier to soft-error-effects.
Any electrons that do cross the junc-
tion are gathered at the +5V node
away from the storage cell. The prob-
ability that sufficient hole-electron
pairs are created within the n-well
that cell upset could occur is so low
that the soft-error rate of CMOS
dynamic RAMs is typically orders of
magnitude below that of their NMOS
counterparts.

High storage capacitance also plays
a role in the reduction of soft errors.
The number of stored charged elec-
trons representing a 1 or a 0 is direct-
ly proportional to the storage capac-
itance. Higher capacitance equates

to more stored charge, which in turn
increases the critical charge. The
critical charge is the number of par-
ticles that differentiate a 1 from a 0.
Increasing the critical charge beyond
1 million electrons significantly
reduces the susceptibility to soft er-
rors. This, in addition to the n-well
mechanism, reduces the soft-error
rate to much less than 0.001 percent
per 1000 hours.

Studies were performed to com-
pare reliability of systems with and
without error correction for both
NMOS and CMOS dynamic RAMs.
The resuilts show one surprise: at
256K bytes and below, the CMOS
system without ECC is more reliable
than the NMOS system with ECC,
because of the cycle-time depen-
dence of soft errors. In small systems,
the memory is accessed more fre-
quently, and the probability of a soft
error is increased. With a soft-error
rate ‘at the very minimum 100 times
less than NMOS, the CMOS
dynamic RAM does not experience
this effect.

Systems below 256K-byte capacities

benefit by the elimination of ECC cir-
cuits from a cost, ‘performance, and
simplicity-of-design standpoint. First,
ECC increases the access time of the
system by 50 ns to check and correct
data. Assuming a 120-ns RAM ac-
cess, ECC increases the access by 42
percent. Moreover, the penalty on cy-
cle time is even greater, especially
when you are writing a single byte in-
to a 2-byte word. In this instance,
data must be accessed and corrected,
the new byte merged into the word,
and check bits generated. Finally, the
system must write the new data into
memory. Added to this are any sys-
tem-timing skews. As a result, a
200-ns cycle time stretches to a 335-ns
system cycle time or an increase of 68
percent. Therefore, using a CMOS
dynamic RAM not only improves
system reliability but enhances sys-
tem speed and simplicity of design.®

Joe Altnether is technical marketing manager at
Intel Corp. (2111 N.E. 25th Ave., Hillsboro, OR
97123).

From Inside CMOS Technology by Martin B. Pawloski, Tomy Moroyan, and Joe Altnether appearing in the September 1983 issue of BYTE
magazine. Copyright © 1983 Byte Publications, Inc. Used with the permission of Byte Publications, Inc.

12-16



The Single Compone
MCS®-48 System







CHAPTER 13

THE SINGLE C

13.0 INTRODUCTION

Sections 13.1 through 13.4 describe in detail the func-
tional characteristics of the 8748H and 8749H EPROM,
8048AH/8049AH/8050AH ROM, and 8035AHL/
8039AHL/8040-AHL CPU only single component micro-
computers. Unless otherwise noted, details within these
sections apply to all versions. This chapter is limited to
those functions useful in single-chip implementations of
the MCS®-48.Chapter 14 discusses functions which allow
expansion of program memory, data memory, and input
output capability. ’

13.1 ARCHITECTURE

The following sections break the MCS-48 Family into
functional blocks and describe each in detail. The follow-
ing description will use the 8048AH as the representative
product for the family. See Figure 15.1.

13.1.1 Arithmetic Section

The arithmetic section of the processor contains the basic
data manipulation functions of the 8048AH and can be

divided into the following blocks:

e Arithmetic Logic Unit (ALU)
© Accumulator
e Carry Flag

e [nstruction Decoder

In a typical operation data stored in the accumulator is
combined in the ALU with data from another source on
the internal bus (such as a register or 1/O port) and the
result is stored in the accumulator or another register.
The following is more detailed description of the function
of each block.

INSTRUCTION DECODER

The operation code (op code) portion of each program

OMPONENT MCS®-48 SYSTEM

Add With or Without Carry
AND, OR, Exclusive OR
Increment/ Decrement

Bit Complement

Rotate Left, Right

Swap Nibbles

BCD Decimal Adjust

If the operation performed by the ALU results in a value
represented by more than 8 bits (overflow of most signifi-
cant bit), a Carry Flagis set in the Program Status Word.

ACCUMULATOR

The accumulator is the single most imiportant data register
in the processor, being one of the sources of input to the
ALU and often the destination of the result of operations
performed in the ALU. Data to and from I/O ports and
memory also normally passes through the accumulator.

13.1.2 Program-Memory

instruction is stored in the Instruction Decoder and con-

verted to outputs which control the function of each of
the blocks of the Arithmetic Section. These lines control
the source of data and the destination register as well as
the function performed in the ALU.

ARITHMETIC LOGIC UNIT

The ALU accepts 8-bit data words from one or two sources
and generates an 8-bit result under control of the Instruc-
tion Decoder. The ALU can perform the following functions:

13-1

Resident program memory consists of 1024, 2048, or 4096
words eight bits wide which are addressed by the program
counter. In the 8748H and the 8749H this memory is user
programmable and erasable EPROM; in the 8048AH/
8049AH/8050AH the memory is ROM which is mask
programmable at the factory. The 8035AHL/8039AHL/
8040AHL has no internal program memory and is used
with external memory devices. Program code is completely
interchangeable among the various versions. To access
the upper 2K of program memory in the 8050AH, and -
other MCS-48devices, a select memory bank and a JUMP
or CALL instruction must be executed to cross the 2K
boundary. See Section 2.3 for EPROM programming
techniques. )

There are three locations in Program Memory of special
importance as shown in Figure 13.2.

LOCATION 0
Activating the Reset line of the processor causes the first
instruction to be fetched from location 0.

LOCATION 3

Activating the Interrupt input line of the processor (if
interrupt is enabled) causes a jump to subroutine at lo-
cation 3.

LOCATION 7

A timer/counter interrupt resulting from timer counter
overflow (if enabled) causes a jump to subroutine at lo-
cation 7.

Therefore, the first instruction to be executed after ini-
tialization is stored in location O, the first word of an
external interrupt service subroutine is stored in location
3, and the first word of a timer/counter service routines



el

. weibe|g xo0|g HY0S08/HV6Y08/H6Y.8/HV8Y08/HBYL8 *1-E 1 @4nbiy

PORT 2
BUS BUFFER

RESIDENT
PORT 2 LATCH PROGRAM
(LOW 4) AND :2:‘;: 8 HIGH ——2-> EPROM ROM _—
E;(ga_rrnlalgn HIGH3) COl.(l;d)TER B
DECODE

::>

EXPANSION TO

MORE I/0 AND
MEMORY
BUS BUFFER
BUSLATCH | £ \
AND LOW
PC TEMP REG

osc +480 TIMER/EVENT LOWER PROGRAM
FREQ COUNTER PROGRAM STATUS
COUNTER
TEST 1 ——————> (8) (8) WORD
N
. \} PORT 1
N2 BUS
8 BUFFER
AND
! I @ AN LATCH
A"CUMULAYOR TEMP REG FLAGS RAM ADDRESS MULTIPLEXER
(8) (8) REGISTER
REGISTER 0
N2 REGISTER 1
ACCUMULATOR ARITHMETIC IS TRE REGISTER 2
LATCH LOGIC l«— TEST O
e AND DECODER REGISTER 3
l— TEST 1 REGISTER 4
REGISTER 5
la— INT w
| RecisTER 6
vee l<8— FLAG 0 3
—€ & PROGRAM SUPPLY CONDITIONAL Q| meaistern 7
i i BRANCH  [=— FLAG1 8 LEVEL STACK
—BD o .5V (LOW POWER STANDBY) [ DECIMAL LOGIC TIMER (VARIABLE LENGTH)
Vss ADJUST FLAG
=2 o GND - OPTIONAL SECOND
l<=— CARRY REGISTER BANK
CONTROL AND TIMING +—ACC DATA STORE
. . ACCBIT
iNT RESET PROG EA  XTAL1 XTAL2  ALE PSEN SS RD WA TEST
; 3 3 RESIDENT
- l RAM ARRAY
INTERRUPT PROM/  CPU/  OSCILLATOR ADDRESS PROGRAM SINGLE READ .
EXPANDER MEMORY XTAL LATCH  MEMORY STEP  WRITE
“STROBE SEPARATE STROBE  ENABLE STROBES
CYCLE

INITIALIZE

CLOCK

N3LSAS 8Y-@SOW LNINOdJWOD JTONIS



SINGLE COMPONENT MCS®-48 SYSTEM

is stored in location 7. Program memory can be used to
store constants as well as program instructions. Instruc-
tions such as MOVP- and MOVP3 allow easy access to
data ‘‘lookup’’ tables.

r 4095
K\f\\—\.\
2048 _} sELMB1
2047 { SEL MBO
I — ——_
<
2 1024
8 1023
e -
I
o
Z|z
olgix
o | <
ol ®
@13
fla LOCATION 7 —
S —{ TIMER INTERRUPT
zo 7 VECTORS
° F 6 PROGRAM HERE
5
a LOCATION 3 —
3 EXTERNAL
<~} INTERRUPT
2 VECTORS
1 PROGRAM HERE
of7][6[s[a[3]2]1]o}~RESET VECTORS
"ADDRESS PROGRAM HERE

Figure 13-2. Program Memory Map
13.1.3 Data Memory

Resident data memory is organized as 64, 128, or 256 by
8-bits wide in the 8048AH, 8049AH and 8050AH. All
locations are indirectly addressable through either of two
RAM Pointer Registers which reside at address 0 and 1
of the register array. In addition, as shown in Figure 2-3,
the first 8 locations (0-7) of the array are designated as
working registers and are directly addressable by several
instructions. Since these registers are more easily ad-
dressed, they are usually used to store frequently accessed
intermediate results. The DINZ instruction makes very
efficient use of the working registers as program loop
counters by allowing the programmer to decrement and
test the register in a single instruction.

By executing a Register Bank Switch instruction (SEL
RB) RAM locations 24--31 are designated as the working

registers in place of locations 0-7 and are then directly
addressable. This second bank of working registers may
be used as an extension of the first bank or reserved for use
during interrupt service subroutines allowing the regis-
ters of Bank 0 used in the main program to be instantly
“saved” by a Bank Switch. Note that if this second bank is
not used, locations 24-31 are still addressable as general
purpose RAM. Since the two RAM pointer Registers RO
and R1 are a part of the working register array, bank
switching effectively creates two more pointer registers
(RO/and R 1/) which can be used with ROand R to easily
access up to four separate working areas in RAM at one
time. RAM locations (8-23) also serve a dual role in that
they contain the program counter stack as explained in
Section 2. 1.6. These locations are addressed by the Stack
Pointer during subroutine calls as wellas by RAM Pointer
Registers RO and R1. If the level of subroutine nesting
is less than 8, all stack registers are not required and can
be used as general purpose RAM locations. Each level of
subroutine nesting not used provides the user with two
additional RAM locations. :

63
(127)
((255))
USER RAM
32x8
(96 x 8)
(224 < 8))
32
3 BANK 1
WORKING DIRECTLY
REGISTERS ADDRESSABLE
8 x8 WHEN BANK 1
T~ ~"~""§7_~— 1 ISSELECTED
24 RO’ |
23
8 LEVEL STACK ADDRESSED
OR INDIRECTLY
USER RAM THROUGH
16 %8 R1OR RO
(RO’ OR RT')
8
7 BANK 0
WORKING DIRECTLY
REGISTERS ADDRESSABLE
8x8 WHEN BANK 0
"""" ®7 ~ ] IS SELECTED
0 RO
IN ADDITION RO OR R1 (R0’ OR R1')
MAY BE USED TO ADDRESS 256 ( ) 8049AH, 8749H,
WORDS OF EXTERNAL RAM. ((')) 8050AH

13-3

Figure 13-3. Data Memory Map



SINGLE COMPONENT MCS®-48 SYSTEM

ORL, ANL
Vec
LOW Vee
IMPEDANCE
— l:D HIGH
) | IMPEDANCE
INTERNAL . ']
BUs o ] PULLUP
D 1/0
g
FLOP ’
Low AND 2
IMPEDANCE
1 PULLDOWN
CLKk Q 1
WRITE
PULSE
-50 mA BUS, P1, P2 MAX somAr  BUS,P1,P2
I -500 |
Vec =55
-400
—30ma} 30 ma} TYPICAL
lon TYPICAL lon ~300[_TYPICAL loL i
(#A) -200; VCC = 5.0
-10 mA 100 m 10 mA} /_-——
MIN ce -+ I " 2 "
ov 2v av 01 2 3 4 5 . ov 2v av
VoH VoH (V) VoL
LOW IMPEDANCE PULLUP " HIGH IMPEDANCE PULLUP LOW IMPEDANCE PULLDOWN
These graphs are for informational purposes only and are not g d mini or

Figure 13-4. “Quasi-bidirectional’” Port Structure

13-4




SINGLE COMPONENT MCS®-48 SYSTEM

13.1.4 Input/Output

The 8048AH has 27 lines which can be used for input or
output functions. These lines are grouped as 3 ports of
8 lines each which serve as either inputs, outputs or bi-
directional ports and 3 “test” inputs which can alter
program sequences when tested by conditional jump
instructions.

PORTS 1 AND 2

Ports | and 2 are each 8 bits wide and have identical
characteristics. Data written to these ports is statically
latched and remains unchanged until rewritten. As input
ports these lines are non-latching,.i.e., inputs must be
present until read by an input instruction. Inputs are
fully TTL compatible and outputs will drive one stand-
ard TTL load.

The lines of ports 1 and 2 are called quasi-bidirectional
because of a special output circuit structure which allows
each line to serve as an input, and output, or both even
though outputs are statically latched. Figure 13-4 shows
the circuit configuration in detail. Each line is continu-
ously pulled up to Vo through a resistive device of
relatively high impedance.

N .
This pullup is sufficient to provide the source current for
a TTL highlevel yet can be pulled low by a standard TTL
gate thus allowing the same pin to be used for both input
and output. To provide fast switching times in a “0” to
“1”transition a relatively low impedance device is switched
in momentarily (= 1/ 5 of a machine cycle) whenevera “1”
is written to the line. When a “0” is written to the line a low
impedance device overcomes the light pullup and provides
TTL current sinking capability. Since the pulldown tran-
sistor is a low impedance device a “1” must first be written
to any line which is to be used as an input. Reset initializes
all lines to the high impedance “1” state.

It is important to note that the ORL and the ANL are read/
write operations. When éxecuted, the uC ‘‘reads’ the
port, modifies the data according to the instruction, then
“‘writes’’ the data back to the port. The ‘‘writing’” (es-
sentially an OUTL instruction) enables the low impedance
pull-up momentarily again even if the data was unchanged
from a “‘1.”” This specifically applies to configurations
that have inputs and outputs mixed together on the same
port. See also section 3.7. )

BUS
Bus is also an 8-bit port which is a true bidirectional port

with associated input and output strobes. If the bidirec-
tional feature is not needed, Bus can serve as either a stati-

13-56

cally latched output port or non-latching inut port. Input
and output lines on this port cannot be mixed however.

As a static port, data is written and latched using the
OUTL instruction and inputted using the INS instruction.
The INS and OUTL instructions generate pulses on the
corresponding RD and WR output strobe lines; however,
in the static port mode they are generally not used. As a
bidirectional port the MOVX instructions are used to read
and write the port. A write to the port generates a pulse
on the WR output line and output data is valid at the
trailing edge of WR. A read of the port generates a pulse
on the RD output line and input data must be valid at the
trailing edge of RD. When not being written or read, the
BUS lines are in a high impedance state. See also sections
14.6 and 14.7.

13.1.5 Test and INT Inputs

Three pins serve as inputs and are testable with the con-
ditional jump instruction. These are TO, T1, and INT.
These pins allow inputs to cause program branches without
the necessity to load an input port into the accumulator.
The TO, T1, and INT pins have other possible functions
as well. See the pin description in Section 13.2.

13.1.6 Program Counter and Stack

The Program Counter is an independent counter while the
Program Counter Stack is implemented using pairs of reg-
isters in the Data Memory Array. Only 10, 11, or 12 bits
of the Program Counter are used to address the 1024,
2048, or 4096 words of on-board program memory of the
8048AH, 8049AH, or 8050AH, while the most significant
bits can be used for external Program Memory fetches.
See Figure 13.5. The Program Counter is initialized to
zero by activating the Reset line.

hn A1olA9|AalA7|As]A5IA4|AslA2|A1|Ao

T
Conventional Program Counter
* Counts 000H to 7FFH
® Overflows 7FFH to 000H

' Figure 13-5. Program Counter

An interrupt or CALL to a subroutine causes the contents
of the program counter to be stored in one of the 8 register
pairs of the Program Counter Stack as shown in Figure
13-6. The pair to be used is determined by a 3-bit Stack
Pointer which is part of the Program Status Word (PSW).



SINGLE COMPONENT MCS®-48 SYSTEM

POINTER ¥ 1 n2s
m 3
. 22
N 21
110 + 2
L
101 $ 1
L
) 18
v 17
100 4
L J
. 16
: 15
o1 -
5 14
: 13
010 -
N 12
: 1
001
L)
. 10
PSW ’ PCg-11 9
000 $
PCq4-7 . PCo-3 R8
MsB LSB

Figure 13-6. Program Counter Stack

Data RAM locations 8-23 are available as stack registers
and are used to store the Program Counter and 4 bits of
PSW as shown in Figure 13-6. The Stack Pointer when
initialized to 000 points to RAM locations 8 and 9. The
first subroutine jump or interrupt results in the program
counter contents being transfetred to locations 8 and 9 of
the RAM array. The stack pointer is then incremented by
one to point to locations 10 and 11 in anticipation of
another CALL. Nesting of subroutines within subroutines
can continue up to 8 times without overflowing the stack.
If overflow does occur the deepest address stored (loca-
tions 8 and 9) will be overwritten and lost since the stack

pointer overflows from 111 to 000. It also underflows

from 000 to 111.

The end of a subroutine, which is signalled by a return
instruction (RET or RETR), causes the Stack Pointer to
be decremented and the contents of the resulting register
pair to be transferred to the Program Counter.

13.1.7 Program Status Word

An 8-bit status word which can be loaded to and from the
- accumulator exists called the Program Status Word
(PSW). Figure 13-7 shows the information available in

the word. The Program Status Word is actually a collection
of flip-flops throughout the machine which can be read
or written as a whole. The ability to write to PSW allows
for easy restoration of machine status after a power down
sequence.

SAVED IN STACK STACK POINTER
1 1

r 1 r

CY | AC FO | BS 1 S2 Sq So

MSB LSB
CY CARRY
AC AUKXILIARY CARRY
FO FLAGO
BS REGISTER BANK SELECT

Figure 13-7. Program Status Word (PSW)

The upper four bits of PSW are stored in the Program
Counter Stack with every call to subroutine or interrupt
vector and are optionally restored upon return with the
RETR instruction. The RET return instruction does not
update PSW.

The PSW bit definitions are as follows:

Bits 0-2: Stack Pointer bits (S, S, S,)

Bit 3: Not used (“1” level when read)
Bit 4: Working Register Bank Switch Bit (BS)
: 0=Bank 0

| = Bank |

Bit 5: Flag 0 bit (F0) user controlled flag which can
be complemented or cleared, and tested with
the conditional jump instruction JFO.

Bit 6: Auxiliary Carry (AC) carry bit generated by
an ADD instruction and used by the decimal
adjust instruction DA A.

Bit 7: Carry (CY) carry flag which indicates that the

previous operation has resulted in overflow
of the accumulator. ,

13.1.8 Conditional Branch Logic

The conditional branch logic within the processor enables
several conditions internal and external to the processor
to be tested by the users program. By using the conditional
jump instruction the conditions that are listed in Table 13-
1 can effect a change in the sequence of the program
execution.

13-6



SINGLE COMPONENT MCS®-48 SYSTEM

Table 13-1
Jump Conditions
Device Testable (Jump On)
not all

Accumulator All zeros zeros
Accumulator Bit —
Carry Flag 0 1
User Flags (FO, F1) — 1
Timer Overflow Flag — 1
Test Inputs (TO, T1) 0 1
Interrupt Input (INT) 0 —

13.1.9 Interrdpt

An interrupt sequence is initiated by applying a low *‘0’
level input to the INT pin. Interrupt is level triggered and
active low to allow ‘“WIRE ORing’’ of several interrupt
sources at the input pin. Figure 13-8 shows the interrupt
logic of the 8048AH. The Interrupt line is sampled every
instruction cycle and when detected causes a ‘‘call to
subroutine’” at location 3 in program memory as soon as
all cycles of the current instruction are complete. On 2-
cycle instructions the interrupt line is sampled on the 2nd
cycle only. INT must be held low for at least 3 machine
cycles to ensure proper interrupt operations. as in any
CALL to subroutine, the Program Counter and Program
Status word are saved in the stack. For a description of
this operation see the previous section, Program Counter
and Stack. Program Memory location 3 usually contains
an unconditional jump to an interrupt service subroutine
elsewhere in program memory. The end of an interrupt
service subroutine is signalled by the execution of a Return
and Restore Status instruction RETR. The interrupt system
is single level in that once an interrupt is detected all
further interrupt requests are ignored until execution of
an RETR reenables the interrupt input logic. This occurs
at the beginning of the second cycle of the RETR instruc-
tion. This sequence holds true also for an internal interrupt
generated by timer overflow. If an internal timer/counter
generated interrupt and an external interrupt are detected
at the same time, the external source will be recognized.
See the following Timer/Counter section for a description
of timer interrupt. If needed, a second external interrupt
can be created by enabling the timer/counter interrupt,
loading FFH in the Counter (ones less than terminal
count), and enabling the-event counter mode. A ‘1’ to
*‘0” transition on the T1 input will then cause an interrupt
vector to location 7.

INTERRUPT TIMING

The interrupt input may be enabled or disabled under
Program Control using the EN 1 and DIS [ instructions.
Interrupts are disabled by Reset and remain so until en-

abled by the users program. An interrupt request must be
removed before the RETR instruction is executed upon
return from the service routine otherwise the processor
will re-enter the service routine immediately. Many peri-
pheral devices prevent this situation by resetting their
interrupt request line whenever the processor accesses
(Reads or Writes) the peripherals data buffer register. If
the interrupting device does not require access by the
processor, one output line of the 8048AH may be desig-
nated as an “interrupt acknowledge” which is activated
by the service subroutine to reset the interrupt request.
The INT pin may also be tested using the conditional jump
instruction JNI. This instruction may be used to detect
the presence of a pending interrupt before interrupts are
enabled. If interrupt is left disabled, INT may be used as
another test input like TO and T1.

13.1.10 Timer/Counter

The 8048AH contains a counter to aid the user in counting
external events and generating accurate time delays with-
out placing a burden on the processor for these functions.
In both modes the counter operation is the same, the only
difference being the source of the input to the counter.
The timer/event counter is shown in Figure 13-9.

COUNTER

The 8-bit binary counter is presettable and readable with
two MOV instructions which transfer the contents of the
accumulator to the counter and vice versa. The counter
content may be affected by Reset and should be initialized
by software. The counter is stopped by a Reset or STOP
TCNT instruction and remains stopped until started as a
timer by a START T instruction or as an event counter
by a START CNT instruction. Once started the counter
will increment to this maximum count (FF) and over-
flow to zero continuing its count until stopped by a STOP
TCNT instruction or Reset.

The increment from maximum count to zero (overflow)
results in the setting of an overflow flag flip-flop and in
the generation of an interrupt request. The state of the
overflow flag is testable with the conditional jump instruc-
tion JTF. The flag is reset by executing a JTF or by Reset.
The interrupt request is stored in a latch and then ORed
with the external interrupt input INT. The timer interrupt
may be enabled or disabled independently of external
interrupt by the EN TCNTI and DIS TCNTl instructions.
If enabled, the counter overflow will cause a subroutine
callto location 7 where the timer or counter service routine
may be stored.

If timer and external interrupts occur simultaneously, the
external source will be recognized and the Call will be to

13-7



SINGLE COMPONENT MCS®-48 SYSTEM

—1s CONDITIONAL
. JUMP LOGIC
TIMER
FLA INTERRUPT
JTF G CALL
EXECUTED : R EXECUTED
RESET
TR EXTERNAL
D a}- INTERRUPT
TIMER s o RECOGNIZED
OVERFLOW
TIMER .
oveRpLOw INTERRUPT
TIMER INT FF al-
RECOGNIZED R CLK RECOGNIZED
EXECUTED
RESET
INTERRUPT
IN
PROGRESS
EN TCNTI s a er
EXECUTED
TIMER R
INT
ENA :
DIS TCNTI BLE
EXECUTED;D——— R a
RESET v
iNfo——1p
PIN
INT RESET
. FF
. RETR
3 EXECUTED
ALE : :
LAST CYCLE
OF INST.
ENI —  1s Q
EXECUTED .
INT 1. WHEN INTERRUPT IN PROGRESS FLIP-FLOP IS SET
ENABLE ALL FURTHER INTERRUPTS ARE LOCKED OUT
DIS| INDEPENDENT OF STATE OF EITHER INTERRUPT
EXECUTED:D___ R - ENABLE FLIP-FLOP.
RESET 2. WHILE TIMER INTERRUPTS ARE DISABLED TIMER
OVERFLOW f/f WILL NOT STORE ANY OVERFLOW
THAT OCCURS. TIMER FLAG WILL BE SET, HOWEVER.
Figure 13-8. Interrupt Logic

13-8




SINGLE COMPONENT MCS®-48 SYSTEM

PRESCALER

XTAL + 15— +32

CLEARED ON START TIMER

LOAD OR READ

JUMP ON
?;’32; TIMER FLAG
START
- EDGE °°UNTE% 8 BIT TIMER/
> DETECTOR / EVENT COUNTER
d OVERFLOW
STOPT FLAG

INT
ENABLE ——————

Figure 13-9. Timer/Event Counter

location 3. Since the timer interrupt is latched it will re-
main pending until the external device is serviced and
immediately be recognized upon return from the service
routine. The pending timer interrupt is reset by the Call to
location 7 or may be removed by executinga DIS TCNTI
instruction.

AS AN EVENT COUNTER

u
Execution of a START CNT instruction connects the T1
input pin to the counter input and enables the counter.
The T1 input is sampled at the beginning of state 3 or in
later MCS-48 devices in state time 4. Subsequent high to
low transitions on T1 will cause the counter to increment.
T1 must be held low for at least 1 machine cycle to insure
it won’t be missed. The maximum rate at which the
counter may be incremented is once per three instruction
cycles (every 5.7 usec when using an 8 MHz crystal)—
there is no minimum frequency. T1 input must remain
high for at least 1/5 machine cycle after each transition.

AS A TIMER

Execution of a START T instruction connects an internal
clock to the counter input and enables the counter. The
internal clock is derived by passing the basic machine cycle
clock through a =32 prescaler. The prescaleris reset during
the START T instruction. The resulting clock increments
the counter every 32 machine cycles. Various delays from
1 to 256 counts can be obtained by presetting the counter
and detecting overflow. Times longer than 256 counts
may be achieved by accumulating multiple overflowsina
register under software control. For time resolution less

13-9

than | count an external clock can be applied to the T1
input and the counter operated in the event counter mode.
ALE divided by 3 or more can serve as this external clock.
Very small delays or “fine tuning” of larger delays can be
easily accomplished by software delay loops.

Often a serial link is desirable in an MCS-48 family mem-
ber. Table 13-2 lists the timer counts and cycles needed
for a specific baud rate given a crystal frequency.

13.1.11 Clock and Timing bircuits

Timing generation for the 8048AH is completely self-
contained with the exception of a frequency reference
which can be XTAL, ceramic resonator, or external
clock source. The Clock and Timing circuitry can be
divided into the following functional blocks.

OSCILLATOR

The on-board oscillator is a high gain parallel resonant
circuit with a frequency range of 1 to 11 MHz. The X1
external pin is the input to the amplifier stage while X2 is
the output. A crystal or ceramic resonator connected
between X1 and X2 provides the feedback and phase
shift required for oscillation. If an accurate frequency
reference is not required, ceramic resonator may be used
in place of the crystal.

For accurate clocking, a crystal should be used. An exter-
nally generated clock may also be applied to X 1-X2as the
frequency source. See the data sheet for more information.



SINGLE COMPONENT MCS®-48 SYSTEM

Table 13-2. Baud Rate Generation

Frequency Tey TO Prr(1/5 Tcy) Timer Prescaler
(MHz) (32 Tcy)
4 3.75us 750ns 120us
6 2.50us 500ns 80us
8 1.88us 375ns 60.2us
11 1.36us 275ns 43.5us
Baud 4 MHz 6 MHz 8 MHz 11 MHz
Rate Timer Counts + Timer Counts + Timer Counts + Timer Counts +
Instr. Cycles Instr. Cycles Instr. Cycles Instr. Cycles
110 75 + 24 Cycles 113 + 20 Cycles 151 + 3 Cycles 208 + 28 Cycles
.01% Error .01% Error .01% Error .01% Error
300 27 + 24 Cycles 41 + 21 Cycles 55+ 13 Cycles 76 + 18 Cycles
.19% Error .03% Error .019% Error .04% Error .
1200 6 + 30 Cycles 10 + 13 Cycles 13 + 27 Cycles 19 + 4 Cycles
: .19% Error .19 Error .06% Error * . 129% Error
1800 4 + 20 Cycles 6 + 30 Cycles 9 + 7 Cycles 12 + 24 Cycles
.1% Error .19% Error .17% Error 12% Error
2400 3+ 15 Cycles 5+ 6 Cycles 6 + 24 Cycles 9+ 18 Cycles -
.19% Error .49% Error .29% Error .129% Error
4800 I +23 Cycles 2 + 19 Cycles 3+ 14 Cycles 4 + 25 Cycles
1.0% Error .4% Error .74% Error .12% Error

STATE COUNTER

The output of the oscillator is divided by 3 in the State
Counter to create a clock which defines the state times of
the machine (CLK). CLK can be made available on the
external pin TO by executingan ENTO CLK instruction.
The output of CLK on TO is disabled by Reset of the
processor.

CYCLE COUNTER

CLK is then divided by 5in the Cycle Counter to provide
a clock which defines a machine cycle consisting of 5
machine states as shown in Figure 2-10. Figure 2-11
shows the different internal operations as divided into the
machine states. This clock is called Address Latch Enable
(ALE) because of its function in MCS-48 systems with
external memory. It is provided continuously on the
ALE output pin.

13.1.12 Reset

The reset input provides a means for initialization for the
processor. This Schmitt-trigger input has an internal pull-
up device which in combination with an external 1 p fd .
capacitor provides an internal reset pulse of sufficient

length to guarantee all circuitry is reset, as shown in Figure
13-12. If the reset pulse is generated externally the RESET
pin must be held low for at least 10 milliseconds after the
power supply is within tolerance. Only 5 machine cycles
(6.8 ws @ 11 MHz) are required if power is already on
and the oscillator has stabilized. ALE and PSEN (if EA
= 1) are active while in Reset. ’
Reset performs the following functions:

) Sets program counter to zero.

2) Sets stack pointer to zero. -
" 3) Selects register bank 0.

4) Selects memory bank 0.

5) Sets BUS to high impedance state (eXcept when
EA =5V).

6) Sets Ports | and 2 to input mode.

7) Disables interrupts (timer and external).
8) Stops timer.

9) Clears timer ﬂag.

10) Clears FOand Fl1.

|8} Disables cloci( output from TO.

13-10



SINGLE COMPONENT MCS®-48 SYSTEM

CLOCK

E OUTPUT

Té
JUMP ON q g
XTAL2 TEST=10R0 TEST RESET
n | 3 INPUT
MHz () STATE | —¢ .273 usec (3.67 MHz)
“T_| COUNTER
XTAL1 -
+5
L+| cvcLe ————D— ALE
COUNTER | (733 KHz)
1.36 usec

DIAGRAM OF 8048AH CLOCK UTILITIES

|[«————1.36 usec CYCLE ——————

S5 S1 S2 S3 S4 | S5 S1
TNPUT
NPUT Ibecope EXECUTION INPUT
OUTPUT
INC.PC| AppRESS

INSTRUCTION CYCLE

(1 BYTE, 2 CYCLE INSTRUCTION ONLY)

2ND CVCLE———>|
|s1|sz|sa|s4|ss|s1|sz|ss|s4|ss|§1|sz
e N I N e Y e T e Y e Y e T e T o N N N e B O

PREVIOUS CYCLE—)—,<—1ST CYCLE

STATE TIME:
s2| s3 | s4 | s5

"‘

I

j —
1 ]

8048AH/8049AH TIMING

*EXTERNAL MODE
**IF ENABLED

Figure 13-10. MCS®-48 Timing Generation and Cycle Timing

13.1.13 Single-Step

This feature, as pictured in Figure 13-13, provides the
user with a debug capability in that the processor can be
stepped through the program one instruction at a time.
While stopped, the address of the next instruction to be
fetched is available concurrently on BUS and the lower

13-11

half of Port 2. The user can therefore follow the program
through each of the instruction steps. A timing diagram,
showing the interaction between output ALE and input
SS, is shown. The BUS buffer contents are lost during
single step; however, a latch may be added to reestablish
the lost I/O capability if needed. Data is valid at the leading
edge of ALE.



ZHEl _
weJbe|q Bujwil uononisul Hyeb08/HVYEY08 *LL-EL 94nbiy

CYCLE 1 CYCLE 2
INSTRUCTION st S2 s3 s4 s5 s1 s2 s3 s4a | s5
INAP FETCH INCREMENT _ *INCREMENT _ _ READ _ . _ _
’ INSTRUCTION |PROGRAM COUNTER TIMER PORT
OUTL PA FETCH INCREMENT _ *INCREMENT OUTPUT _ _ _ . o _
’ INSTRUCTION |PROGRAM COUNTER TIMER TO PORT
- FETCH INCREMENT _ *INCREMENT FETCH _ " INCREMENT *OUTPUT| _
ANLP.=DATA | |\ STRUCTION |PROGRAM COUNTER TIMER READ FORT | |\ MEDIATE DATA PROGRAM COUNTER | TO PORT
_ FETCH .INCREMENT _ *INCREMENT FETCH _ INCREMENT *OUTPUT| _
ORLP.=DATA |\ STRUCTION |PROGRAM COUNTER TIMER READ PORT | |\ MEDIATE DATA PROGRAM COUNTER | TO PORT
INS A, BUS FETCH INCREMENT _ INCREMENT _ _ READ _ . _
’ INSTRUCTION |[PROGRAM COUNTER TIMER PORT
OUTL BUS, A FETCH INCREMENT _ INCREMENT OUTPUT _ _ _ . _
i INSTRUCTION |PROGRAM COUNTER TIMER TO PORT <
- . FETCH INCREMENT _ *INCREMENT . FETCH _ INCREMENT *OUTPUT| _
ANL BUS, = DATA | |\ STRUCTION [PROGRAM COUNTER TIMER READPORT | |\ \MEDIATE DATA PROGRAM COUNTER | TO PORT
- FETCH INCREMENT _ *INCREMENT FETCH _ INCREMENT *OUTPUT| _
ORL BUS, = DATA| |\ STRUCTION PROGRAM COUNTER TIMER READ PORT | | /MEDIATE DATA PROGRAM COUNTER | TO PORT
MOVX @ R,A FETCH INCREMENT OUTPUT RAM INCREMENT OUTPUT _ _ _ . _ _
" INSTRUCTION [PROGRAM COUNTER ADDRESS TIMER DATA TO RAM
MOVX A,@R FETCH INCREMENT OUTPUT RAM INCREMENT _ _ READ _ . _
’ INSTRUCTION [PROGRAM COUNTER ADDRESS TIMER DATA
MOVD AP FETCH INCREMENT OUTPUT INCREMENT _ _ READ P2 _ . _
i INSTRUCTION |PROGRAM COUNTER | OPCODE/ADDRESS TIMER " LOWER
MOVD P,.A FETCH INCREMENT - OUTPUT INCREMENT {OUTPUT DATA _ _ _ . _
v INSTRUCTION [PROGRAM COUNTER |OPCODE/ADDRESS TIMER TO P2 LOWER
ANLD PA FETCH INCREMENT OUTPUT INCREMENT ouTPUT _ _ _ . _
i INSTRUCTION [PROGRAM COUNTER | OPCODE/ADDRESS TIMER DATA
ORLD PA FETCH INCREMENT OUTPUT INCREMENT OUTPUT _ _ _ . _
” INSTRUCTION |PROGRAM COUNTER | OPCODE/ADDRESS TIMER DATA -
J(CONDITIONAL) FETCH INCREMENT SAMPLE *INCREMENT _ FETCH _ UPDATE . _
INSTRUCTION |PROGRAM COUNTER CONDITION SAMPLE IMMEDIATE DATA PROGRAM COUNTER
STRTT FETCH INCREMENT _ . START
STRT CNT INSTRUCTION |PROGRAM COUNTER COUNTER
FETCH INCREMENT _ . sTOP
STo'f TeNT INSTRUCTION |[PROGRAM COUNTER COUNTER
ENI FETCH INCREMENT _ * ENABLE . .
INSTRUCTION |PROGRAM COUNTER INTERRUPT *VALID INSTRUCTION ADDRESSES ARE OUTPUT
o FETCH “INCREMENT _ < DISABLE B QEII:SSI‘\ 'Cr:léngng%XTERNAL PROGRAM MEMORY IS
INSTRUCTION |PROGRAM COUNTER INTERRUPT. .
(1) IN LATER MCS-48 DEVICES T1 1S SAMPLED IN S4.
ENTO CLK FETCH INCREMENT * ENABLE _
INSTRUCTION [PROGRAM COUNTER cLOCK

N3LSAS 8V-2SON LNINOdJWOD ITONIS



SINGLE COMPONENT MCS®-48 SYSTEM

EXTERNAL RESET
Vce
RESET
' 80 K()
ACTIVE
PULLUP

POWER ON RESET

Vce

RESET g

80 K()

Figure 13-12
TIMING

The 8048 AH operates in a single-step mode as follows:

1) The processor is requested to stop by applyinga low
level on SS.

2) The processor responds by stopping during the ad-
dress fetch portion of the next instruction. If a double
cycle instruction is in progress when the single step
command is received, both cycles will be completed
before stopping.

Kl

3) The processor acknowledges it has entered the stop-
ped state by raising ALE high. In this state (which
can be maintained indefinitely) the address of the
next instruction to be fetched.is present on BUS and
the lower half of port 2.

4) SSis then raised high to bring the processor out of
the stopped mode allowing it to fetch the next instruc-
tion. The exit from stop is indicated by the processor
bringing ALE low.

To stop the processor at the next instruction S—S_mlﬁ
be brought low again soon after ALE goes low. If SS
is left high the processor remains in a “Run” mode.

5

~

A diagram for implementing the single-step function of
the 8748H is shown in Figure 13-13. A D-type flip-flop
with preset and clear is used to generate SS. In the run
mode S8 is held high by keeping the flip-flop preset (preset
has precedence over the clear input). To enter single step,
preset is removed allowing ALE to bring SS low via the

13-13

clear input. ALE should be buffered since the clear input
of an SN7474 is the equivalent of 3 TTL loads. The
processor is now in the stopped state. The next instruction
is initiated by clocking a *‘1”” into the flip-flop. This *‘1”
will not appear on SS unless ALE is high removing clear
from the flip-flop. In response to SS going high the pro-
cessor begins an instruction fetch which brings ALE low
resetting SS through the clear input and causing the pro-
cessor to again enter the stopped state.

13.1.14 Power Down Mode
(8048AH, 8049AH, 8050AH,
8039AHL, 8035AHL, 8040AHL)

Extracircuitry has been added to the 8048AH /8049AH /
8050AH, ROM version to allow power to be removed
from all but the data RAM array for low power standby
operation. In the power down mode the contents of data
RAM can be maintained while drawing typically 109
to 15% of normal operating power requirements.

Ve serves as the SV supply pin for the bulk of circuitry
while the Vpy pin supplies only the RAM array. In
normal operation both pins are a 5V while in standby,
Ve is'at ground and Vppy is maintained at its standby
value. Applying Reset to the processor through the
RESET pin inhibits any access to the RAM by the pro-
cessor and guarantees that RAM cannot be inadvertently
altered as power is removed from V¢c.

A typical power down seqﬁence (Figure 13-14) océurs as
follows:

1) Imminent power supply failure is detected by user
defined circuitry. Signal must be early enough to allow
8048AH to save all necessary data before V¢ falls
below normal operating limits.

2

-

Power fail signal is used to interrupt processor and
vector it to a power fail service routine.

3) Power fail routine saves all important data and
machine status in the internal data RAM array.
Routine may also initiate transfer of backup supply
to the Vpp pin and indicate to external circuitry
that power fail routine is complete.

4) Resetisapplied to guarantee data will not be altered
as the power supply falls out of limits. Reset must be

held low until V¢ is at ground level.

=

Recovery from the Power Down mode can occur as any
‘other power-on sequence with an external capacitor on
the Reset input providing the necessary delay. See the
previous section on Reset.



SINGLE COMPONENT MCS®-48 SYSTEM

+5V
SINGLE < 10K
8V STEP
MOMENTARY o
PUSHBUTTON 10K RUN L
- ‘PRESET _
+sV——D Q s
| S
+5V
> CLOCK
10K
J_L CLEAR
DEBOUNCE
LATCH
1/2 7400 C 127474
ALE
SINGLE STEP CIRCUIT
| = |

|ss|sa|ss’|s1|sz|ss]i.....|ss|54|ssl

re

¢
J ’ |

—

ALE ﬂ

[ ¥ = 1 —
BUS PC 0-7
1_Peoer P L
I P4 "
— €
k4 P
P20-23 - 110 PC 8-11 I /0
[ A
rs J

SINGLE STEP TIMING

Figure 13-13. Single Step Operation

13-14




SINGLE COMPONENT MCS®-48 SYSTEM

POWER — TN
SUPPLY PROCESSOR |

INTERRUPTED | :

POWER — | | NORMAL
SUPPLY ' I _:_ _. __POWERON
FAIL SIGNAL | | . SEQUENCE

| - FOLLOWS
RESET ! | |

C_ T

DATA'SAVE  ACCESS TO

ROUTINE  DATA RAM

EXECUTED. INHIBITED

Figure 13-14. Power Down Sequence
13.1.15 External Access Mode

Normally the first 1K (8048AH), 2K (8049AH), or 4K
(8050A H) words of program memory are automatically
fetched from internal ROM or EPROM. The EA input
pin however allows the user to effectively disable inter-
nal program memory by forcing all program memory
fetches to reference external memory. The following
chapter explains how access to external program mem-
ory is accomplished.

The External Access mode is very useful in system test
and debug because it allows the user to disable his internal
applications program and substitute an external program
of his choice—a diagnostic routine for instance. In ad-
dition, section 13.4 explains how internal program mem-
ory can be read externally, independent of the processor.

A ‘17 level on EA initiates the external access mode.
For proper operation, Reset should be applied while the
EA input is changed.

13.1.16 Sync Mode

The 8048AH, 8049AH, 8050A H has incorporated a new
SYNC mode. The Sync mode is provided to ease the
design of multiple controller circuits by allowing the
designer to force the device into known phase and state
time. The SYNC mode may also be utilized by auto-
‘matic test equipment (ATE) for quick, easy, and effi-
cient synchronizing between the tester and the DUT
(device under test).

SYNC mode is enabled when SS’ pin is raised to a high
voltage level of +12 volts. To begin synchronization, TO
is raised to 5 volts at least four clocks cycles after SS".
TO must be high for at least four X1 clock cycle§ to fully

13-15

reset the prescaler and time state generators. TO may
then be brought down with the rising edge of X1. Two
clock cycles later, with the rising edge of X1, the device
enters into Time State I, Phase 1. SS’is then brought
downto Svolts 4 clocks later after TO. RESET’is allowed
to go high 5tCY (75 clocks) later for normal execution
of code. See Figure 2-15. :

13.1.17 ldle Mode

Along with the standard power down, the 80C48, 80C49,
80C50 has added an IDLE mode instruction (01 H) to
give even further flexibility and power management.
In the IDLE mode, the CPU is frozen while the oscil-
lator, RAM, timer, and the interrupt circuitry remains
fully active.

. When the IDL instruction (01H) is decoded, the clock

to the CPU is stopped. CPU status is preserved in its
entirety: the Stack Pointer, Program Counter, Program
Status Word, Accumulator, RAM, and all the registers
maintain their data throughout idle.

Externally, the following occurs during idle:

1) The ports remain in the logical state they were in
when idle was executed.

2) The bus remains in the logical state it was in when
idle was executed if the bus was latched.

If the bus was in a high Z condition or if external
program memory is used the bus will remain in the
float state.

3) ALE remains in the inactive state (low).

4) RD’, WR’, PROG’, and PSEN’ remains in the in-
active state (high).

5) TO outputs clock if enabled.

There are three ways of exiting idle. Activating any
enabled interrupt (external or timer) will cause the CPU
to vector to the appropriate interrupt routine. Follow-
inga RETR instruction, program execution will resume
at the instruction following the address that contained
the IDL instruction.

The FO and F1 flags may be used to give an indication
if the interrupt occurred during normal program execu-
tion or duringidle. This is done by setting or clearing the
flags before going into idle. The interrupt service routine
can examine the flags and act accordingly when idle is
terminated by an interrupt.

Resetting the device can also terminate idle. Since the
oscillator is already running, five machine cycles are
all that is required to insure proper machine operation.



SINGLE COMPONENT MCS®-48 SYSTEM

x1mmm
PHASEl= — — — — — — — — —— —— - 1 Imm! 1 ™ —
PHASE 2= — o — —/_ . ri
TIME STATE [ 1 | 2 | - .
L2y
Y p— 1
ov
p N \
To oV
5V
5V
ALE OV I . | I
RESET OV -
SYNC MODE TIMING

Figure 13-15. Sync Mode Timing

PROGRAM
PROM
5V
9
XTAL {——' “ PORT
—_— #1
RESET —0O
SINGLE STEP —»O PosT
EXTERNAL ____| 804BAH
MEM 8049AH
— 8050AH o READ -
TEST
—_— IO—> WRITE
PROGRAM
INTERRUPT —»O) STORE ENABLE
|, ADDRESS
BUS <____s__:> LATCH ENABLE

Figure 13-16. 8048AH and 8049AH Logic Symbol

2.2 PIN DESCRIPTION

The MCS-48 processors are packaged in 40 pin Dual In-
Line Packages (DIP’s). Table 2-3 is a summary of the
functions of each pin. Figure 2-16 is the logic symbol for
the 8048AH product family. Where it exists, the second
paragraph describes each pin’s function in an expanded
MCS-48 system. Unless otherwise specified, each input
is TTL compatible and each output will drive one standard
TTL load.

13-16



SINGLE COMPONENT MCS®-48 SYSTEM

Table 13-3. Pin Description

Pin
Designation Number* Function

Vg 20 Circuit GND potential i

Vbp 26 Programming power supply; 21V during program for the 8748H/8749H; + 5V during
operation for both ROM and EPROM. Low power standby pin in 8048AH and
8049AH/8050AH ROM versions.

Vee 40 Main power supply; +5V during operation and during 8748H and 8749H pro-
gramming.

PROG 25 Program pulse; +18V input pin during 8748H /8749H programming. Output strobe
for 8243 1/O expander.

P10-P17 27-34 8-bit quasi-bidirectional port. (Internal Pullup = 50K ()

(Port 1)

P20-P27 21-24 8-bit quasi-bidirectional port. (Internal Pullup = 50K )

(Port 2) 35-38 ’

P20-P23 contain the four high order program counter bits during an external pro-
gram memory fetch and serve as a 4-bit I/ O expander bus for 8243.

D0-D7 12-19 True bidirectional port which can be written or read synchronously using the RD,

(BUS) WR strobes. The port can also be statically latched.

Contains the 8 low order program counter bits during an external program mem-
ory fetch, and receives the addressed instruction under the control of PSEN. Also
contains the address and data during an external RAM data store instruction,
under control of ALE, RD, and WR.

TO 1 Input pin testable using the conditional transfer instructions JT0 and JNTO. TO
can be designated as a clock output using ENTO CLK instruction. T0 is also used
during programming and sync mode.

TI 39 Input pin testable using the JTI, and JNTI instructions. Can be designated the
event counter input using the STRT CNT instruction. (See Section 2.1.10)

INT 6 Interrupt input. Initiates an interrupt if interrupt is Lndblt.d Interrupt is disabled
after a reset. (Active low)

Interrupt must remain low for at least 3 machine cycles to ensure proper operation.

RD 8 Output strobe activated during a BUS read. Can be used to enable data onto the
BUS from an external device. (Active low)

Used as a Read Strobe to External Data Memory. ' B

RESET 4 Input which is used to initialize the processor. Also used during EPROM programming
and verification. (Active low) (Internal pullup = 80K Q)

WR 10 Output strobe during a BUS write. (Active low) Used as write strobe to external
data memory.

ALE 11 Address Latch Enable. This signal occurs once during each cycle and is useful as

a clock output.

The negative edge of ALE strobes address into external data and program memory.

13-17




SINGLE COMPONENT MCS®-48 SYSTEM

Table 13-3. Pin Description (Continued)

Pin
Designation | Number* Function

PSEN 9 Program Store Enable. This output occurs only during a fetch to external program
memory. (Active low) »

SS 5 Single step input can be used in conjunction with ALE to “single step” the processor
through each instruction. (Active low) (Internal pullup = 300K Q) +12V for sync
modes (See 2.1.16)

EA 7 External Access input which forces all program memory fetches to reference ex-
ternal memory. Useful for emulation and debug, and essential for testing and pro-

‘|gram verification. (Active high) +12V for 8048AH/8049AH /8050AH program

verification and +18V for 8748H/8749H program verification (Internal pullup =
10MQ on 8048AH/8049AH /8035AHL/8039AHL/8050AH /8040AHL)

XTALI 2 One side of crystal input for internal oscillator. Also input for external source.

XTAL2 3 Other side of crystal/external source input.

*Unless otherwise stated, inputs do not have internal pullup resistors. 8048AH, 8748H, 8049AH, 8050AH, 8040AHL

13.3 PROGRAMMING, VERIFYING AND
ERASING EPROM

The internal Program Memory of the 8748H and the
8749H may be erased and reprogrammed by the user as
explained in the following sections. See also the 8748H
and 8749H data sheets.

13.3.1 Programming/Verification

In brief, the programming process consists of: activating
the program mode, applying an address, latching the
address, applying data, and applying a programming
pulse. This programming algorithm applies to both the
8748H and 8749H. Each word is programmed completely
before moving on to the next and is followed by a veri-
fication step. The following is a list of the pins used for
programming and a description of their functions:

Pin Function

XTAL | Clock Input (3 to 4 MHz)

Reset Initialization and Address Latching

Test 0 " Selection of Program (OV) or Verify
(5V) Mode

EA Activation of Program/ Verify Modes

BUS Address and Data Input Data Output

During Verify
P20-1 Address Input for 8748H
P20-2 Address Input for 8749H
Vop Programming Power Supply
PROG Program Pulse Input
P10-PI1 Tied to ground (8749H only)

8748H AND 8749H ERASURE
CHARACTERISTICS

The erasure characteristics of the 8748H and 8749H are

» such that erasure begins to occur when exposed to light

with wavelengths shorter than approximately 4000
Angstroms (A). It should be noted that sunlight and
certain types of fluorescent lamps have wavelengths
in the 3000-4000A range. Data show that constant ex-
posure to room level fluorescent lighting could erase

.the typical 8748H and 8749H in approximately 3 years

while it would take approximately | week to cause era-
sure when exposed to direct sunlight. If the 8748H or
8749H is to be exposed to these types of lighting con-
ditions for extended periods of time, opaque labels
should be placed over the 8748H window to prevent
unintentional erasure.

When erased, bits of the 8748H and 8749H Program
Memory are in the logic “0” state.

The recommended erasure procedure for the 8748H and
8749H is exposure to shortwave ultraviolet light which
has a wavelength of 2537 Angstroms (A). The integrated
dose (i.e., UV intensity X exposure time) for erasure
should be a minimum of 15W-sec/cm2 The erasure time
with this dosage is approximately 15to 20 minutes using
an ultraviolet lamp with a 120004 W /cm2 power rating.
The 8748H and 8749H should be placed within one
inch from the lamp tubes during erasure. Some lamps
have a filter in their tubes and this filter should be re-
moved before erasure.

13-18



SINGLE COMPONENT MCS-48 SYSTEM

COMBINATION PROGRAM/VERIFY MODE (EPROM’s ONLY)

18V .
EA
sv _/
trw

N\ : /] \

e—— tww——

RESET \ / \ /

PROGRAM VERIFY ‘i PROGRAM—

TO \

'AW‘f‘—“_+ twa : "—'DO“"[
_ _ _/ ADDRESS DATA TO BE . DATA \ _ _ _/NEXT ADDR
DBO0-DB7 (0-7) VALID /\PROGRAMMED VALID, VALID VALID
LAST >< NEXT
P20-P22 ADDRESS X ADDRESS (8-10) VALID ADDRESS
IVDDw——l tvDDH
twr—1

+21 .
vDD ‘ A
tpw twp
+18
PROG
H—— e —— — B ettt

- Tt

w

VERIFY MODE (ROM/EPROM)

" /

*To,
RESET m
DBO-DB7 __ ADDRESS DATAOUT \ _ _ NEXT NEXTDATA\ _ _ _
(0-7) VALID VALID ADDRESS OUT VALID

P20-P22 )( ADDRESS (8-10) VALID ‘X NEXT ADDRESS VALID

NOTES:
1. PROG MUST FLOAT IF EA IS LOW (L.E., # 18V).

*T0 ON EPROM ONLY.

Figure 13-17. Program/Verify Sequence for 8749H/8748H

13-19







Expan

de

MCS®

-48 System







CHAPTER 14
EXPANDED MCS®-48 SYSTEM

14.0 INTRODUCTION

If the capabilities resident on the single-chip 8048AH/
8748H/8035AHL/8049AH /8749H /8039AHL are not
sufficient for your system requirements, special on-board
circuitry allows the addition of a wide variety of external
memory, 1/0, or special peripherals you may require.
The processors can be directly and simply expanded in
the following areas:

o Program Memory to 4K words

e Data Memory to 320 words (384 words with’

8049AH)

e |/O by unlimited amount

e Special Functions using 8080/8085AH peripherals
By using bank switching techniques, maximum capability
is essentially unlimited. Bank switching is discussed later
in the chapter. Expansion is accomplished in two ways:

1) Expander 1/O —A special 1/O Expander circuit, the
8243, provides for the addition of four 4-bit Input/
Output ports with the sacrifice of only the lower half
(4-bits) of port 2 for inter-device communication.
Multiple 8243's may be added to this 4-bit bus by
generating the required “chip select” lines.

Standard 8085 Bus —One port of the 8048AH ; 8049AH
is like the 8-bit bidirectional data bus of the 8085 micro-
computer system allowing interface to the numerous
standard memories and peripherals of the MCS®-
80/85 microcomputer family.

2

-

s
MCS-48 systems can be configured using either or both
of these expansion features to optimize system capabil-
ities to the application.

Both expander devices and standard memories and peri-
pherals can be added in virtually any number and com-
bination required.

14.1 EXPANSION OF PROGRAM MEMORY

Program Memory is expanded beyond the resident 1K
or 2K words by using the 8085 BUS feature of the MCS®-
48. All program memory fetches from the addresses less
than 1024 on the 8048AH and less than 2048 on the
8049AH occur internally with no external signals being
generated (except ALE which is always present). At ad-
dress 1024 on the 8048AH, the processor automatically
initiates external program memory fetches.

14.1.1 Instruction Fetch Cycle (External)

As shown in Figure 14-1, for all instruction fetches from
addresses of 1024 (2048) or greater, the following will
occur:

1) The contents of the 12-bit program counter will be
output on BUS and the lower half of port 2.

2) Address Latch Enable (ALE) will indicate the time
at which address is valid. The trailing edge of ALE
is used to latch the address externally.

3) Program Store Enable (PSEN) indicates that an ex-

ternal instruction fetch is in progress and serves to
enable the external memory device.

4) BUS reverts to input (floating) mode and the proces-
sor accepts its 8-bit contents as an instruction word.

we [ 1
v L[

FLO/ATING

7

BUS FLOATING FLOATING

ADDRESS INSTRUCTION

Figure 14-1. Instruction Fetch from
External Program Memory

All instruction fetches, including internal addresses, can
be forced to be external by activating the EA pin of the
8048AH/8049AH/8050AH. The 8035AHL/8039AHL/
8040AHL processors without program memory al-
ways operate in the external program memory mode
(EA = 5V).

14.1.2 Extended Program Memory
Addressing (Beyond 2K)

For programs of 2K words or less, the 8048AH /8049A H
addresses program memory in the conventional manner.

* Addresses beyond 2047 can be reached by executing a

program memory bank switch instruction (SEL MBO,
SEL MBI) followed by a branch instruction (JMP or
CALL). The bank switch feature extends the range of
branch instructions beyond their normal 2K range and
at the same time prevents the user from inadvertently
crossing the 2K boundary.

- PROGRAM MEMORY BANK SWITCH

14-1

The switching of 2K program memory banks is accom-
plished by directly setting or resetting the most significant
bit of the program counter (bit 11); see Figure 14-2. Bit
11 is not altered by normal incrementing of the program
counter but is loaded with the contents of a special flip-
flop each time a JMP or CALL instruction is executed.
This special flip-flop is set by executing an SEL MB1



EXPANDED MCS®-48 SYSTEM

instruction and reset by SEL MBO0. Therefore, the SEL
MB instruction may be executed at any time prior to the
actual bank switch which occurs during the next branch
instruction encountered. Since all twelve bits of the pro-
gram counter, including bit 11, are stored in the stack,
when a Callis executed, the user may jump to subroutines
across the 2K boundary and the proper bank will be re-
stored upon return. However, the bank switch flip-flop
will not be altered on return.

rAn A101A9IA81A7|MIA5IM]A3]AdA1IM

T
Conventional Program Counter
© Counts 000H to 7FFH
® Overflows 7FFH to 000H

JMP or CALL instructions transfer contents
of internal flipflop to Aqq .
e Flipflop set by SEL MB1

e Fliptlop reset by SEL MBO
or by RESET

During interrupt service routine
A11 is forced to “0”
Ali 12 bits are saved in stack

Figure 14-2. Program Counter

INTERRUPT ROUTINES

Interrupts always vector the program counter to location
3 or 7 in the first 2K bank, and bit 11 of the program

counter is held at “0” during the interrupt service routine.
The end of the service routine is signalled by the execution
of an RETR instruction. Interrupt service routines should
therefore be contained entirely in the lower 2K words of
program memory. The execution of a SEL MB0 or SEL
MBI instruction within an interrupt routine is not recom-
mended since it will not alter PC11 while in the routine,
but will change the internal flip-flop.

14.1.3 Restoring I/O Port Information

Although the lower half of Port 2 is used to output the
four most significant bits of address during an external
program memory fetch, the 1/O informationis still out-
puted during certain portions of each machine cycle. 1/ O
information is always present on Port 2's lower 4 bits at
the rising edge of ALE and can be sampled or latched
at this time. f

14.1.4 Expansion Examples

Shown in Figure 3-3 is the addition of 2K words of pro-
gram memory using an 2716A 2K x 8 ROM to give a total
of 3K words of program memory. In this case no chip
select decoding is required and PSEN enables the mem-
ory directly through the chip select input. If the system
requires only 2K of program memory, the same config-
uration can be used with an 8035AHL substituted for the
8048AH. The 8049A H would provide 4K of program mem-
ory with the same configuration.

3
PORT 20-22
8048AH  ALE 11 )| ADDRESS
o 8282
LATCH 2716
3 EPROM
BUS < ) gﬁ'[rA
PSEN cs
USING 2K x 8 EPROM

Figure 14-3. Expanding MCS®-48 Program Memory Using Standard Memory Products

14-2



EXPANDED MCS®-48 SYSTEM

ALE ALE
PSEN RD
WR oW 2kxs
8048AH RD 10R E';g’g,/“
8049AH WITH I/O
BUSA/DD_7 170
8355/
8755
P20-P23| 4 A Ag-Aqg, CS

TEST fe]
INPUTS

Figure 14-4. External Program Memory Interface

Figure 14-4 shows how the 8755/8355 EPROM/ROM with
I/0 interfaces directly to the 8048 AH without the need for
an address latch. The 8755/8355 contains an internal
8-bit address latch eliminating the need for an 8212 latch.
In addition to a 2K x 8 program memory, the 8755/8355
also contains 16 I/O lines addressable as two 8-bit ports.
These ports are addressed as external RAM; therefore the
RD and WR outputs of the 8048AH are required. Sec the
following ection on data memory expansion for more de-
tail. The subsequent section on I/O expansion explains the
operation of the 16 I/O lines.

14.2 EXPANSION OF DATA MEMORY

Data Memory is expanded beyond the resident 64 words
by using the 8085AH type bus feature of the MCS®-48.

14.2.1 Read/Write Cycle

All address and data is transferred over the 8 lines of BUS.
As shown in Figure 14-5, a read or write cycle occurs as
follows:

ALE I I

FLOATING

ALE I I

BUS FLOATINGXADDRESSX X DATA X
Va
/

FLOATING

READ FROM EXTERNAL DATA MEMORY

WR . | l

BUS FLOATIPTGXADDRESSXFLOATING x DATA X FLOATING

WRITE TO EXTERNAL DATA MEMORY

Figure 14-5. External Data Memory Timings



EXPANDED MCS®-48 SYSTEM

1) The contents of register ROor R 1 is outputed on BUS.

2) Address Latch Enable (ALE) indicates address is valid.
‘ The trailing edge of ALE is used to latch the address
externally. )

3

~

A read (RD) or write (WR) pulse on the corresponding
output pins of the 8048 AH indicates the type of data
memory access in progress. Output data is valid at the
trailing edge of—W_Rﬂd input data must be valid at
the trailing edge of RD.

4) Data (8 bits) is transferred in or out over BUS.
14.2.2 Addressing External Data Memory

External Data Memory is accessed with its own two-
cycle move instructions, MOVX A, @R and MOVX @R,
A, which transfer 8 bits of data between.the accumulator
and the external memory location addressed by the con-
tents of one of the RAM Pointer Registers RO and R1.
This allows 256 locations to be addressed in addition to
the resident locations. Additional pages may be added
by “bank switching” with extra output lines of the 8048 A H.

14.2.3 Examples of Data Memory
Expansion

Figure 3-6shows how the 8048 A H can be expanded using
the 8155 memory and 1/0 expanding device. Since the
8155 has an’internal 8-bit address latch, it can interface
directly to the 8048A H without the use of an external latch.
The 8155 provides an additional 256 words of static data
memory and also includes 22 1/0 lines and a 14-bit timer.
See the following section on 1/ O expansionand the 8155
- data sheet for more details on these additional features.

14.3 EXPANSION OF INPUT/OUTPUT

There are four possible modes of I/ O expansion with the
8048AH: one using a special low-cost expander, the 8243;
another using standard MCS-80/851/0 devices; and a
third using the combination memory/1/Oexpander de-
vices the 8155, 8355, and 8755. It is also possible to ex-
pand using standard TTL devices as shown in Chapter 5.

14.3.1 /0O Expander Device

The most efficient means of 1/0 expansion for small
systems is the 8243 1/ O Expander Device which requires
only 4 port lines (lower half of Port 2) for communica-
tion with the 8048AH. The 8243 contains four 4-bit 1/O
ports which serve as an extension of the on-chip 1/ O and
are addressed as ports #4-7 (see Figure 3-7). The follow-
ing operations may be performed on these ports:

e Transfer Accumulator to Port
e Transfer Port to Accumulator
e AND Accumulator to Port

® OR Accumulator to Port

A 4-bit transfer from a port to the lower half of the Ac-
cumulator sets the most significant four bits to zero. All
communication between the 8048AH and the 8243 occurs
over Port 2lower (P20-P23) with timing provided by an
output pulse on the PROG pin of the processor. Each
transfer consists of two 4-bit nibbles: The first containing
the “op code” and port address, and the second contain-
ing the actual 4 bits of data.

BUS < 8

ALE

> ADg-7

ALE
s, Kz pvo
256 x 8

8048AH WR
RD

PORT

TEST
INPUTS

T

Wr RAM | TIMERIN
RD L~ TIMER OUT
10/M ’

Figure 14-6. 8048AH Interface to 256 x 8 Standard Memories




EXPANDED MCS®-48 SYSTEM

JT-_"l

CHIP SELECT CONNECTION IF MORE
THAN ONE EXPANDER IS USED

vo e
. ] —T
PROG 0 PROG
8050AH <:::] TS P5 /L\,_i“—___‘_—'>" o
8049AH 8243
sosean Pk T o
P20-p23 DATA IN
P2
‘ K2 >wo

EXPANDER INTERFACE

PROG \ / BITS O, 1 BITS 2,3
00 00 READ
01 | PORT 01 | WRITE
10 [ ADDRESS 10 | OR
11 11— AND
P20-P23 ——-( X )————
) ADDRESS DATA (4-BITS)
AND OPCODE
(4-BITS) OUTPUT EXPANDER TIMING
Figure 14-7. 8243 Expander I/O Interface
14.3.2 1/0 Expansion with Standard
Nibbl i 2 .
ibble 1 Nibble Peripherals
32 10 32 10 . .
Standard MCS-80/85type 1/ O devices may be added to
nn nnn the MCS®-48 using the same bus and timing used for
lnstCru(cj:tlon Agg"» data Data Memory expansion. Figure 3-8 shows an example
ode ress of how an 8048AH can be connected to an MCS-85
I AA peripheral. 1/O devices reside on the Data Memory bus
00 Read 00 — Port #4 aqd inthe data memory.address.spaceand are acce§sed
01 Write 01 — Port #5 with the same MOV X instructions. (See the previous
10 OR 10 — Port #6 section on data memory expansion for a description of
Il AND 11 — Port #7 timing.) The following are a few of the Standard MCS-

A highto low transition of the PROG line indicates that
address is present, while a low to high transition indicates
the presence of data. Additional 8243’ may be added to
the four-bit bus and chip selected using additional output
lines from the 8048AH/8748H.

1/0 PORT CHARACTERISTICS

Each of the four 4-bit ports of the 8243 can serve as either
input or output and can provide high drive capability in
both the high and low state.

14-5

80 devices which are very useful in MCS®-48 systems:
o 8214 Priority Interrupt Encoder

8251 Serial Communications Interface

8255 General Purpose Programmable 1/0

8279 Keyboard/Display Interface

8253 Interval Timer

14.3.3 Combination Memory and
1/0 Expanders '
As mentioned in the sections on program and data mem-

ory expansion, the 8355/8755 and 8155 expanders also
contain 1/O capability.

e © o o



EXPANDED MCS®-48 SYSTEM

f—oJ—{mr

DATA
BUS

KEYBOARD
INPUTS

INT

<—— SHIFT
P20 c/D

Je——CcNTL

8279
KEYBOARD 7 OSCAN
8048AH DISPLAY OUTPUTS

RD RD ‘
— — (A) DISPLAY
WR WR 4 OUTPUT

(B) DISPLAY
4 OUTPUT

aHs

Figure 14-8. Keyboard/Display Interface

8355/8755: These two parts of ROM and EPROM equiva-
lents and therefore contain the same 1/O structure. 1/O
consists of two 8-bit ports which normally reside in the
external data memory address space and are accessed
with MOVX instructions. Associated with each port is
an 8-bit Data Direction Register which defines each bit
inthe port aseither an input or an output. The data direc-
tion registers are directly addressable, thereby allowing

the user to define under software control each individual

bit of the ports as either input or output. All outputs are
statically latched and double buffered. Inputs are not
latched. ' :

8155/8156: 1/0 on the 8155/8156 is configured as two
8-bit programmable 1/O ports and one 6-bit program-

mable port. These three registers and a Control/ Status
register are accessible as external data memory with the
MOV X instructions. The contents of the control register
determines the mode of the three ports.. The ports can be
programmed as input or output with or without associated
handshake communication lines. In the handshake mode,
lines of the six-bit port become input and output strobes
for the two 8-bit ports. Also included in the 8155is a 14-bit
programmable timer. The clock input to the timer and the
timer overflow output are available on external pins. The
timer can be programmed to stop on terminal count or to’
continuously reload itself. A square wave or pulse output
on terminal count can also be specified. ‘

!

I

PORT 2

=KD F K[ F K[ K
A 8243 8243 : [ 8243 8243
N PROG on-s PROG P20-3K 2 |PROG on-aK\_T_D PROG pzo.s<rLI>
poRTIK 8 >
8048AH
8

PROG

Figure 14-9. Low Cost I/O Expansion

14-6



EXPANDED MCS®-48 SYSTEM

1/0 EXPANSION EXAMPLES
(SEE ALSO CHAPTER 5)

Figure 14-9 shows the expansion of I/O using multiple
8243’s. The only difference from a single 8243 system
is the addition of chip selects provided by additional
8048AH output lines. Two output lines and a decoder
could also be used to address the four chips. Large num-
bers of 8243’s would require a chip select decoder chip
such as the 8205 to save I/O pins.

Figure 14-10 shows the 8048AH interface to a standard
MCS®-80 peripheral; in this case, the 8255 Programmable
Peripheral Interface, a 40-pin part which provides three
8-bit programmable I/O ports. The 8255 bus interface is
typical of programmable MCS®-80 peripherals with an
8-bit bidirectional data bus, a RD and WR input for Read/
Write control, a CS (chip select) input used to enable the
Read/Write control logic and the address inputs used to
select various internal registers. '

P20 Ag 8255
P21 A1 PROGRAM- s MPORT
~ - MABLE A
PERIPHERAL PORT
8048AH __ __INTERFACE “‘»
RD RD B

L
A
Tf*A0 8255 PORT
c|—|A; PROGRAM-
Al |1 MasLE A
PERIPHERAL boRT
ALE INTERFACE
soasan ALE, ] “«’
RD RD ) B8
WR WR PORT
c
BUS 3 Do-7
cs
L
OPTION#1 =

WR WR PORT
g
susk 5 oot _
‘ =
I
OPTION #2 =

Figure 14-10. Interface to MCS®-80 Peripherals

Interconnection to the 8048AH is very straightforward
with BUS, RD, and WR connecting directly to the cor-
responding pins on the 8255. The only design considera-
tion is the way in which the internal registers of the 8255
are to be addressed. If the registers are to be addressed as
external data memory using the MOV X instructions, the
appropriate number of address bits (in this case, 2) must
be latched on BUS using ALE as described in the section
onexternal data memories. If only asingle device is con-
nected to BUS, the 8255 may be continuously selected
by grounding CS. If multiple 8255 are used, additional
address bits can be latched and used as chip selects.

A second addressing method eliminates external latches
and chip select decoders by using output port lines as ad-
dress and chip select lines directly. This method, of
course, requires the setting of an output port with address
information prior to executing a MOV X instruction.

14.4 MULTI-CHIP MCS©®-48 SYSTEMS

Figure 14-11 shows the addition of two memory expanders
to the 8048AH, one 8355/8755 ROM and one 8156 RAM.
The main consideration in designing such a system is the
addressing of the various memories and I/O ports. Note

14-7

that in this configuration address,lines Ay and A, have
been O Red to chip select the 8355. This ensures that the
chip is active for all external program memory fetches in
the 1K to 3K range and is disabled for all other addresses.
This gating has been added to allow the /O port of the
8355 to be used. If the chip was left selected all the time,
there would be conflict between these ports and the RAM
and I/O of the 8156. The NOR gate could be eliminated
and A, connected directly to the CE (instead of CE) input
of the 8355; however, this would create a 1K word *‘hole’’
in the program memory by causing the 8355 to be active
in the 2K and 4K range instead of the normal 1K to 3K
range. ‘

In this system the various locations are addressed as
follows:
e Data RAM —Addresses 0to 255 when Port 2 Bit 0
has been previously set = | and Bit | set =0
® RAM I/O —Addresses 0to 3 when Port 2 Bit 0 =
land Bit 1 = |

® ROMI1/0 —Addresses 0to 3when Port 2 Bit2or
Bit 3=1

See the memory map in Figure 14-12.



EXPANDED MCS®-48 SYSTEM

8156/8355

e >ronr
8355/
8755 .
. RD  Rom
i oM
03K 4 IoR EPR PonT
| WR
ALE ) >ADO-7
PSEN} 10/M
8048AH Rp T
WR o =
BUS < 8 8 > D07 ”‘i’“’
L’E PORT
WR 8156 B
A8 ce RAM
A9 iy
o <E>PORT ~
c
TIMER
"IN
L——» TIMER
out

Flgui'e 14-11. The Three-Component MCS®-48 System

14.5 MEMORY BANK SWITCHING

Certain systems may require more than the 4K words of
program memory which are directly addressable by the
program counter or more than the 256 data memory and
I/Olocations directly addressable by the pointer registers
ROand R 1. These systems can be achieved using “bank
switching” techniques. Bank switching is merely the selec-
tion of various blocks or “banks” of memory using dedi-
cated output port lines from the processor. In the case of
the 8048AH, program memory is selected in blocks of 4K
words at a time, while data memory and 1/ O are enabled
256 words at a time.

The most important consideration in implementing two

or more banks is the software required to cross the bank

boundaries. Each crossing of the boundary requires that
the processor first write a control bit to an output port
before accessing memory or [/ O in the new bank. If pro-
gram memory is being switched, programs should be
organized to keep boundary crossings to a minimum.

Jumping to subroutines across the boundary should be
avoided when possible since the programmer must keep
track of which bank to return to after completion of the
subroutine. If these subroutines are to be nested and ac-
cessed from either bank, a software “stack™ should be
implemented to save the bank switch bit just as if it were
another bit of the program counter. ’

From a hardware standpoint bank switching is very
straightforward and involves only the connection of an
I/0 line or lines as bank enable signals. These enables
are ANDed with normal memory and 1/0O chip select
signals to activate the proper bank.

14.6 CONTROL SIGNAL SUMMARY

Table 3-1 summarizes the instructions which activate the
various control outputs ofthe MCS®-48 processors. During
all other instructions these outputs are driven to the in-
active state.

14-8



EXPANDED MCS®-48 SYSTEM

Table 14-1. MCS®-48 Control Signals

Control

Signal When Active

RD During MOVX A, @R or INS Bus
WR During MOVX @R, A or OUTL Bus

ALE Every Machine Cycle

PSEN During Fetch of external program
memory (instruction or immediate data)

PROG During MOVD A,P ANLD P,A

- MOVD P,A ORLD P,A

14.7 PORT CHARACTERISTICS
14.7.1 BUS Port Operations

The BUS port can operate in three different modes: as a
latched 1/ O port, as a bidirectional bus port, or as a pro-
gram memory address output when external memory is
used. The BUS port lines are either active high, active
low, or high impedance (floating).

The latched mode (INS, OUTL)is intended for use in the
single-chip configuration where BUS is not being used as
anexpander port. OUTL and MOV X instructions can be
mixed if necessary. However, a previously latched output
will be destroyed by executinga MOV X instruction and
BUS will be left in the high impedance state. INS does not
put the BUS in a high impedance state. Therefore, the use
of MOVX after OUTL to put the BUS in a high imped-
ance state is necessary before an INS instruction intended
to read an external word (as opposed to the previously
latched value).

OUTL should never be used in a system with external
program memory, since latching BUS can cause the next
instruction, if external, to be fetched improperly.

14.7.2 Port 2 Operations

The lower half of Port 2 can be used in three different
ways: as a quasi-bidirectional static port, as an 8243 ex-
pander port, and to address external program memory.

PROGRAM MEMORY
SPACE
BFFH
MB1
8355 i
- (2K)
EXTERNAL DATA
MEMORY SPACE
MBO 400H 8ass
300H 8155
RESIDENT o
200H RESIDENT DATA
(1K) 8155 (256) MEMORY
————————— 100H (64)
000H
SECTION | ADDRESS | DESIGNATION
PROG. MEM| 000—BFF
DATAMEM | 100—IFF
8155 PORTS | 300 CMD/STATUS
301 PORT A
302 PORT B
303 PORT C
304 TIMER LOW
8355 PORTS | 305 TIMER HI
400 PORT A
401 PORT B
402 DDR A
403 DDR B

Figure 14-12. Memory Map for Three-Component MCS®-48 Family

14-9



EXPANDED MCS®©-48 SYSTEM

In all cases outputs are driven low by an active device and
driven high momentarily by a low impedance device and
held high by a high impedance device to VCC.

The port may contain latched 1/O data prior to its use in
another mode without affecting operation of either. If
lower Port 2 (P20-3) is used to output address for an
external program memory fetch, the 1/O information

previously latched will be alitomatically removed tem-
porarily while address is present, then restored when the
fetch is complete. However, if lower Port 2 is used to.
communicate with an 8243, previously latched 1/0 in-
formation will be removed and not restored. After an
input from the 8243, P20-3 will be left in the input mode
(floating). After an output tothe 8243, P20-3 will contain
the value written, ANDed, or ORed to the 8243 port.

110 /0
TIMER
;
/
8355/8755 8155
STANDARD STANDARD
ROM/S:RXC;M/I/O nzgl‘\;n x|/!;) ADDRESS ROM/EPROM \ND
X LATCH
8749H
) G N NN S (U |
8048AH :
8748H 100
8035AHL :
8039AHL
8279
8251
Z\ sng‘s USART KEYBOARD/
) i DISPLAY
:\J> 8243 '/° SERIAL  SERIAL I : I\/I "
OUTPUT  INPUT
170 KEYBOARD| | DISPLAY
4
i

ﬁ 8243 |/o

=

=

Figure 14-13. MCS®-48 Expansion Capability

14-10










CHAPTER 15
MCS®-48 INSTRUCTION SET

15.0 INTRODUCTION

The MCS®-48 instruction set is extensive for a machine of
its size and has been tailored to be straightforward and
very efficient in its use of program memory. All instruc-
tions are either one or two bytes in length and over 80
are only one byte long. Also, all instructions execute in
either one or two cycles and over 500 of all instructions
execute in a single cycle. Double cycle instructions include
all immediate instructions, and all 1/O instructions.
.

The MCS-48 microcomputers have been designed to
handle arithmetic operations efficiently in both binary
and BCD as well as handle the single-bit operations re-
quired in control applications. Special instructions have
also been included to simplify loop counters, table look-
up routines, and N-way branch routines.

15.0.1 Data Transfers

As can be seen in Figure 15-1, the 8-bit accumulator is
the central point for all data transfers within the 8048.
Data can be transferred between the 8 registers of each
working register bank and the accumulator directly, i.e.,
the source or destination register is specified by the in-
struction. The remaining locations of the internal RAM
array are referred to as Data Memory and are addressed
indirectly via an address stored in either RO or R1 of the
active register bank. RO and R1 are also used to indirectly
address external data memory when it is present. Transfers
to and from internal RAM require one cycle, while trans-
fers to external RAM require two. Constants stored in
Program Memory can be loaded directly to the accumu-
lator and to the 8 working registers. Data can also be
transferred directly between the accumulator and the on-

DATA .
‘ PROGRAM woATA J
MEMORY MoV
(#DATA)
:> WORKING REG
ADD Mov MoV
MoV ADD ADD
MOVP ANL ANL
MOVP3 ORL ORL
ANL XRL XRL :
MovD ORL XCH :
ANLD XRL XCHD
EXPANDER l_ORLD | N MOVX EXTERNAL
1/0 PORTS @) BI ACCUMULATOR 5US @) MEMORY
4-7 n’ AND
PERIPHERALS
MoV ouTL Mov l .
|
TIMER PROGRAM
COUNTER STATUS WORD \
.
8749H
L et |
ON CHIP /0 8049AH
PORTS 1,2 BUS 8748H
. . 8035AHL* | *NO PROGRAM
8039AHL* , MEMORY
L e |elie

Figure 15-1. Data Transfer Instructions

15-1



- MCS®-48 INSTRUCTION SET

board timer counter or the accumulator and the Program
Status word (PSW): Writing to the PSW alters machine
status accordingly and provides a means of restoring status
after an interrupt or of altering the stack pointer if
necessary.

15.0.2 Accumulator Operations

Immediate data, data memory, or the working registers
can be added with or without carry to the accumulator.

These sources can also-be ANDed, ORed, or Exclusive )

ORed to the accumulator. Data may be moved to or from
the accumulator and working registers or data memory.
The two values can also be exchanged in a single operation.

In addition, the lower 4 bits of the accumulator can be ex-
changed with the lower 4-bits of any of the internal RAM
locations. This instruction, along with an instruction
which swaps the upper and lower 4-bit halves of the ac-
cumulator, provides for easy handling of 4-bit quantities,
including BCD numbers. To facilitate BCD arithmetic, a
Decimal Adjust instruction is included. This instruction is
used to correct the result of the binary addition of two 2-
digit BCD numbers. Performing a decimal adjust on the re-
sult in the accumulator produces the required BCD result.

Finally, the accumulator can be incremented, decremented,

cleared, or complemented and can be rotated left or right

| bit at a time with or without carry.

Although there is no subtract instruction in the 8048AH,
this operation can be easily implemented with three single-
byte single-cycle instructions.

A value may be subtracted from the accumulator with
the result in the accumulator by:

e Complementing the accumulator
® Adding the value to the accumulator

® Complementing the accumulator

15.0.3 Register Operations

The working registers can be accessed via the accumula-
tor as explained above, or can be loaded immediate with
constants from program memory. In addition, they can
be incremented or decremented or used as loop counters
using the decrement and jump, if not zero instruction, as
explained under branch instructions. g

All Data Memory including working registers can be
accessed with indirect instructions via RO and R1 and
can be incremented.

15-2

15.0.4 Flags

There are four user-accessible flags in the 8048 AH: Carry,
Aucxiliary Carry, F0, and F1. Carry indicates overflow of
the accumulator, and Auxiliary Carry is used to indicate
overflow between BCD digits and is used during decimal-
adjust operation. Both Carry and Auxiliary Carry are
accessible as part of the program status word and are

" stored on the stack during subroutines. FO-and FI are

undedicated general-purpose flags to be used as the pro-
grammer desires. Both flags can be cleared.or comple-
menteéd and tested by conditional jump instructions. FOis
also accessible via the Program Status word and is stored
on the stack with the carry flags.

15.0.5 Branch Instructions

The unconditional jump instruction is two bytes and
allows jumps anywhere in the first 2K words of program
memory. Jumps to the second 2K of memory (4K words
are directly addressable) are made fitst by executing a
select memory bank instruction, then executing the jump
instruction. The 2K boundary can only be crossed via a
jump or subroutine call instruction, i.e., the bank switch
does not occur until a jump is executed. Once a memory
bank has been selected all subsequent jumps will be to the
selected bank until another select memory bank instruc-
tion is executed. A subroutine in the opposite bank can
be accessed by a select memory bank instruction followed
by a call instruction. Upon completion of the subroutine,
execution will automatically return to the original bank;
however, unless the original bank is reselected, the next
jump instruction encountered will again transfer execu-
tion to the opposite bank.

Conditional jumps can test the following inputs and
machine status:

e TO Input pin

® TI Input Pin

o INT Input Pin
Accumulator Zero

Any bit of Accumulator
Carry Flag

FO Flag

F1 Flag

Conditional jumps allow a branch to any address within
the current page (256 words) of execution. The conditions
tested are the instantaneous values at the time the con-
ditional jump is executed. For instance, the jump on
accumulator zero instruction tests the accumulator itself.
not an intermediate zero flag.



MCS®@-48 INSTRUCTION SET

The decrement register and jump if not zero instruction
combines a decrement and a branch instruction to create
an instruction very useful inimplementing a loop counter.
This instruction can designate any one of the 8 working
registers as a counter and can effect a branch to any ad-
dress within the current page of execution.

A single-byte indirect jump instruction allows the pro-
gram to be vectored to any one of several different loca-
tions based on the contents of the accumulator. The con-
tents of the accumulator points to a location in program
memory which contains the jump address. The 8-bit jump
address refers to the current page of execution. This in-
struction could be used, for instance, to vector to any one

of several routines based on an ASCII character which

has been loaded in the accumulator. In this way ASCII
key inputs can be used to initiate various routines.

15.0.6 Subroutines

Subroutines are entered by executing a call instruction.
Calls can be made like unconditional jumps to any ad-
dress ina 2K word bank, and jumps across the 2K bound-
ary are executed in the same manner. Two separate return
instructions determine whether or not status (upper 4-bits
of PSW) is restored upon return from the subroutine.

The return and restore status instruction also signals the
end of an interrupt service routine if one has been in
progress.

15.0.7 Timer Instructions

The 8-bit on board timer/counter can be loaded or read
via the accumulator while the counter is stopped or while
counting. The counter can be started as a timer with an
internal clock source or as an event counter or timer with
an external clock applied to the T1 input pin. The instruc-
tion executed determines which clock source is used. A
single instruction stops the counter whether it is operat-
ing with an internal or an external clock source. In ad-
dition, two instructions allow the timer interrupt to be
enabled or disabled.

15.0.8 Control Instructions

Two instructions allow the external interrupt source to be
enabled or disabled. Interrupts are initially disabled and
are automatically disabled while an interrupt service
routine is in progress and re-enabled afterward.

There are four memory bank select instructions, two to

designate the active working register bank and two to
control program memory banks. The operation of the pro-
gram memory bank switch is explained in section 14.1.2.

The working register bank switch instructions allow the
programmer to immediately substitute a second 8-register
working register bank for the one in use. This effectively
provides 16 working registers or it can be used as a means
of quickly saving the contents of the registers in response
to an interrupt. The user has the option to switch or not
to switch banks on interrupt. However, if the banks are
switched, the original bank will be automatically restored
upon execution of a return and restore status instruction
at the end of the interrupt service routine.

A special instruction enables an internal clock, which is
the X TAL frequency divided by three to be output on pin
TO. This clock can be used as a general-purpose clock in
the user’s system. This instruction should be used only to
initialize the system since the clock output can be disabled
only by application of system reset. :

v 15.0.9 Input/Output Instructions

Ports | and 2 are 8-bit static 1/ O ports which can be loaded
to and from the accumulator. Outputs are statically latch-
ed butinputs are not latched and must be read while inputs
are present. In addition, immediate data from program
memory can be ANDed or ORed directly to Port | and
Port 2 with the result remaining on the port. This allows
“masks” stored in program memory to selectively set or
reset individual bits of the 1,0 ports. Ports | and 2 are
configured to allow input on a given pin by first writing
a “1” out to the pin.

An 8-bit port called BUS can also be accessed via the
accumulator and can have statically latched outputs as
well. It too can have immediate data ANDed or ORed
directly to its outputs, however, unlike ports 1 and 2, all
eight lines of BUS must be treated as either input or output
at any one time. In addition to being a static port, BUS
can be used as a true synchronous bi-directional port using
the Move External instructions used to access external
data memory. When these instructions are executed, a
corresponding READ or WRITE pulse is generated and
data is valid only at that time. When data is not being
transferred, BUS is in a high impedance state. Note that
the OUTL, ANL, and the ORL instructions for the BUS
are for use with internal program memory only.

- The basic three on-board 1O ports can be expanded via

a 4-bit expander bus using half of port 2. 1,0 expander
devices on this bus consisit of four 4-bit ports which are
addressed as ports 4 through 7. These ports have their
own AND and OR instructions like the on-board ports
as well as move instructions to transfer data in or out. The
expander AND and OR instructions, however, combine

15-3



MCS®-48 INSTRUCTION SET

the contents of accumulator with the selected port rather
than immediate data as is done with the on-board ports.
1/0 devices can also be added externally using the BUS
port as the expansion bus. In this case the 1/0 ports be-
come, “memory mapped”, i.e., they are addressed in the
same way as external data memory and exist in the exter-
nal data memory address space addressed by pointer
register RO or R1.

15.1 INSTRUCTION SET DESCRIPTION

The following pages describe the MCS®-48 instruction
set in detail. The instruction set is first summarized with
instructions grouped functionally. This summary page is
followed by a detailed description listed alphabetically
by mnemonic opcode. :

The alphabetical listing includes the following information.
® Mnemonic
® Machine Code

Verbal Description

Symbolic Description

Assembly Language Example
The machine code is represented with the most significant
bit (7) to the left and two byte instructions are represented
with the first byte on the left. The assembly language ex-
amples are formulated as follows:

Arbitrary

Label: Mnemonic, Operand;

Descriptive Comment

15-4



MCS®-48 INSTRUCTION SET

8048AH/8748H/8049AH/8749H
Instruction Set Summary

Mnemonics copyright Intel Corporation 1983.
*For use with internal memory only.

ar

| Mnemonic Description Bytes | Cycle Mnemonic Description Bytes |Cycles
Accumulator Registers
ADDA,R Add register to A 1 1 INCR Increment register 1 1
ADD A, @R Add data memory to A 1 1 INC @R Increment data memory| 1 1
ADD A, # data| Add immediate to A 2 2 DECR Decrement register 1 1
ADDC A, R Add register with carry 1 1
ADDC A, Add data memory 1 1 Branch .
@R with carry JMP addr Jump unconditional 2 2
ADDC A, Add immediate 2 2 JMPP @A Jump indirect 1 2
# data with carry DJNZ R, addr | Decrement register 2 2
ANL A, R And register to A 1 1 and jump
ANL A, @R And data memoryto A | 1 1 JC addr Jump on carry = 1 2 2
ANL A, # data [ And immediate to A 2 2 JNC addr Jump on carry = 0 2 2
ORL A, R Or register to A 1 1 JZ addr Jump on A Zero 2 2
ORLA@R | Ordata memoryto A 1 1 JNZ addr Jump on A not Zero 2 2
ORL A, # data| Orimmediate to A 2 2 JTO addr JumponTO=1 2 2
XRL A, R Exclusive Or register 1 1 JNTO addr JumponT0=0 2 2
to A JT1 addr JumponTi=1 2 2
XRL A, @R Exclusive or data 1 1 JNT1 addr JumponT1=0 2 2
memory to A JFO addr JumponFO=1. 2 2
XRL, A, # data %CI:cSi'i;?eotro A 2 2 JF1 addr JumponF1=1 2 2
INC A | m JTF addr Jump on timer flag = 1 2 2
ncrement A 1 1
JNI addr Jump on INT =0 2 2
A Decrement A ! ! JBb addr Jump on Accumulator 2 2
CLRA Clear A 1 1 Bit
CPLA Complement A 1 1
DA A Decimal adjust A 1 1 Subroutine
SWAP A Swap nibbles of A 1 1 CALL addr Jump to subroutine 2 2
RLA Rotate A left 1 1 RET Return 1 2
RLC A Rotate A left 1 1 RETR Return and restore 1 2
through carry status
RRA Rotate A right 1 1 -
RRC A Rotate A right 1 1 Flags
through carry CLRC Clear Carry 1 1
CPLC Complement Carry 1 1
Input/Output CLRFO Clear Flag 0 1 1
INA,P Input port to A o2 CPLFO Complement Flag 0 1]
OUTLP, A Outpyt A to. port 1 2 CLR F1 Clear Flag 1 1 1
ANL P, # data | And immediate to port 2 2 CPL F1 Complement Flag 1 1 1
ORL P, # data | Or immediate to port 2 2
*INS A, BUS Input BUS to A 1 2 Data Moves
*OUTL BUS, A| Output A to BUS 1 2 MOV A, R Move register to A 1 1
*ANL BUS, And immediate to BUS 2 2 MOV A, @R Move data memory 1 1
# data . toA
*ORL BUS, Or immediate to BUS 2 2 MOV A, # data] Move immediate to A 2 2
# data MOV R, A Move A to register 1 1
MOVD A, P Input Expander port 1 2 MOV @R, A Move A to data 1 1
toA memory
MOVDP,A | OutputAtoExpander | 1 2 MOV R, # data| Move immediate 2 | 2
port "] to register
ANLDP, A And A to Expander port| 1 2 MOV @R, Move immediate to 2 2
ORLD P, A Or A to Expander port 1 2 # data data memory
MOV A, PSW | Move PSWto A 1 1
’ MOV PSW, A | Move A to PSW 1 1




MCS®-48 INSTRUCTION SET

8048AH/8748H/8049AH/8749H
Instruction Set Summary (Con'th )

Description

Mnemonic Description Bytes | Cycle Mnemonic Bytes | Cycle
Data Moves Control '
(Cont'd) ENI Enable external 1 1
XCH A, R Exchange A and 1 1 Interrupt
register DIS | Disable external. 1 1.
XCHA, @R |Exchange A and 1 1 ) Interrupt
data memory SEL RBO Select register bank 0 1 1
XCHD A, @R |Exchange nibble of A 1 1 SEL RB1 Select register bank 1 1 1
and register . SEL MBO Select memory bank 0 1 1
MOVX A, @R ng:og;(tg'}fl data 1 2 SEL MB1 Select memory bank 1 | 1 1
MOVX @R, A |Move A to external 1 2 ENTO CLK srr]\qlp‘:;e clock output 1 !
data memory
MOVP A, @A |Move to A from 1 2 NOP No Operation 1 1
’ current page
MOVP3 A, @A |Move to A from Page 3 1 2
Timer/Counter
MOVA, T Read Timer/Counter 1 1
MOVT, A Load Timer/Counter 1 -1
STRTT Start Timer 1 1
STRT CNT Start Counter 1 1
STOP TCNT |Stop Timer/Counter 1 1
EN TCNTI Enable Timer/Counter 1 1
Interrupt :
DIS TCNTI Disable Timer/Counter 1 1

Interrupt

1E.Q

Mnemonics copyright Intel Cofrporation 1983.




- MCS®-48 INSTRUCTION SET
Symbols and-Abbreviations Used

A Accumulator

AC Auxiliary Carry

addr 12-Bit Program Memory Address
Bb Bit Designator (b = 0-7)

BS Bank Switch

BUS BUS Port

C Carry

CLK Clock
CNT Event Counter

CRR Conversion Result Register
D Mnemonic for 4-Bit Digit (Nibble)
data 8-Bit Number or Expression

DBF Memory Bank Flip-Flop
FO, F1 Flag 0, Flag 1

| Interrupt

P Mnemonic for “in-page” Operation
PC Program Counter

Pp Port Designator (p = 1, 2 or 4-7)
PSW Program Status Word

Ri Data memory Pointer (i=0, or 1)
Rr Register Designator (r = 0-7)

SP Stack Pointer

T Timer

TF Timer Flag

TO, T1 Test O, Test 1

X Mnemonic for External RAM

# Immediate Data Prefix

@ Indirect Address Prefix

$ Current Value of Program Counter
(X) Contents of X '
(X)) Contents of Location Addressed by X
— Is Replaced by

Mnemonics copyright Intel Corporation 1983.

15-7



MCS®-48 INSTRUCTION SET

ADD AR, Add Registevr Contents to Accumulator

Encoding: [0 1 1.0[1rrr|  68H-6FH '
Description: The contents of register ‘r' are added to the accumulator. Carry is
affected. ‘
Operation: (A) «— (A) + (Rr) r=0-7
Example: ADDREG: ADD A,R6 ;ADD REG 6 CONTENTS
. ;TO ACC

ADD A,@R, Add Data Memory Contents to Accumulator

Encoding; [0110[000i |

‘ Description

Operation

Example:

60H-61H

: The contents of the resident data memory iocation addressed by register ‘i’ bits
0-5** are added to the accumulator. Carry is affected.
2 (A) — (A) + ((Ri) i=0-1
ADDM: MOV RO, #01FH ;MOVE ‘1FP HEX TO REG 0
ADD A, @RO ;ADD VALUE OF LOCATION
;31 TO ACC

ADD A;#dala Add Immediate Data to Accumulator

Encoding: [0 000[00 11| |d; dgdgdg|dg dpdy dg] 03H
Description: This is a 2-cycle instruction. The specified data is added to the accumulator. -
Carry is affected.
Operation: (A) «— (A) + data
Example: ADDID: ADD A #ADDER: ;ADD VALUE OF SYMBOL
;ADDER’ TO ACC
ADDC A,R; Add Carry and Register Contents to Accumulator
Encoding: {0 111{1rrr 78H-7FH
Description: The content of the carry bit is added to accumulator location 0 and the carry
bit cleared. The contents of register ‘r' are then added to the accumulator.
Carry is affected. )
Operation: (A) «— (A) + (Rr) + (C) r=0-7
Example: ADDRGC: AGCDC A,R4 ;ADD CARRY AND REG 4
;CONTENTS TO ACC

** 0-5 in 8048AH/8748H
0-6 in 8049AH/8749H
. 0-7 in 8050AH

15-8



MCS®©-48 INSTRUCTION SET

ADDC A,@R; Add Carry and Data Memory Contents to Accumulator

Encoding: [0111/000i|  70H-71H

Description: The content of the carry bit is added to accumulator location 0 and the carry bit
cleared. Then the contents of the resident data memory location addressed by
register ‘i’ bits 0—5** are added to the accumulator. Carry is affected.

Operation: (A) «— (A) + ((Ri)) + (C) i =0-1 ’ ’
Example: ADDMC: MOV R1,#40 ;MOVE ‘40' DEC TO REG 1
ADDC A,@R1 ;ADD CARRY AND LOCATION 40

;CONTENTS TO ACC

ADDC A,@data Add Carry and Immediate Data to Accumulator

Encoding: [0001[0011] |d7 dg dg dy |dg dp dy dg 13H
Description: This is a 2-cycle instruction. The content of the carry bit is added to

accumulator location 0 and the carry bit cleared. Then the specnfled data is
added to the accumulator. Carry is affected.

Operation: (A) «— (A) + data + (C)

Example: ADDC A, #225 : ;ADD CARRY AND ‘225' DEC
;TOACC

ANL A,R, Logical AND Accumulator with Register Mask

Encoding: [0101[1rrr | 58H-5FH

Description: Data in the accumulator is logically ANDed with the mask contained |n
working register ‘r’.

Operation: (A) «— (A) AND (Rr) r=0-7

Example: ANDREG: ANL A,R3 ;AND’ ACC CONTENTS WITH MASK
;INREG 3

ANL A,@R; Logical AND Accumulator with memory Mask

Encoding: (0101|000 i|  50H-51H

Description: Data in the accumulator is logically ANDed with the mask contained in the
data memory location referenced by register ‘i’ bits 0-5**.

Operation: (A) «— (A) AND ((Ri)) i=0-1
Example: ANDDM: MOV R0,#03FH ;MOVE ‘3F' HEX TO REG 0 ’
ANL A, @RO  AND’ ACC CONTENTS WITH

** 0-5 in 8048AH/8748H ;MASK IN LOCATION 63

0-6 in 8049AH/8749H
0-7 in 8050AH

15-9



MCS®-48 INSTRUCTION SET

ANL A,#data Logical AND Accumulator with Immediat'e Mask
Encoding: [0101]00 1 1] [d7 dg dg dg | d3 dp dy dp] 53H
Description: This is a 2-cycle instruction. Data in the accumulator-is logically ANDed
) with an immediately-specified mask.
Operation: (A) «— (A) AND data
Examples: ANDID: ANL A #0AFH ;AND’ ACC CONTENTS
;WITH MASK 10101111
ANL A #3 + X/Y ;’AND’ ACC CONTENTS
;WITH VALUE OF EXP ‘
;3 + XYY’

ANL BUS,#data* Logical AND BUS with Immediate Mask

Encoding:
Description:

Operation:
Example:

[1001]1000] [d7 dg dg d4 [d3 dp dq dg 98H

This is a 2-cycle instruction. Data on the BUS port is logically ANDed
with an immediately-specified mask. This instruction assumes prior

. specification of an ‘OUTL BUS, A’ instruction. .

(BUS) «— (BUS).AND data -

ANDBUS: ANL BUS,#MASK ;’AND’ BUS CONTENTS
;WITH MASK EQUAL VALUE
;OF SYMBOL ‘MASK’

ANL Pp,#data Logical AND Port 1-2 with Immediate Mask

Encoding:
Description:

Operation:
Example:

[1001]10pp| [d7dgdsdg[dgdpdydg 99H-9AH
This is a 2-cycle instruction. Data on port ‘p’ is logically ANDed with an
immediately-specified mask.

(Pp) «— (Pp) AND DATA p=1-2

ANDP2: ANL P2,#0FO0H ;AND’ PORT 2 CONTENTS

sWITH MASK ‘FO’ HEX
;(CLEAR P20-23)

* For use with internal program memory ONLY.

15-10



MCS®-48 INSTRUCTION SET

ANLD Pp,A Logical AND Port 4-7 with Accumulator Mask

Encoding: (100 1[11pp|  9CH-9FH

Description: This is a 2-cycle instruction. Data on port ‘p’ is logically ANDed with the
digit mask contained in accumulator bits 0-3.

Operation: (Pp) «— (Pp) AND (A0-3) p=4-7
Note: The mapping of port ‘p’ to opcode bits 0-1 is as follows:
10 Port
00 4
01 5
10 6
11 7
Example: ANDP4: ANLD P4,A ;’AND’ PORT 4 CONTENTS

;WITH ACC BITS 0-3

CALL address Subroutine Call

Encoding: Em ag ag 1 LO 100 I |a7 ag as a4] agz ap a1 ag
Page Hex Op Code
0 14
1 34
2 54
3 74
4 94
5 B4
6 D4
7. F4

Description: This is a 2-cycle instruction. The program counter and PSW bits 4-7 are
saved in the stack. The stack pointer (PSW bits 0-2) is updated. Program
control is then passed to the location specified by ‘address’. PC bit 11 is
determined by the most recent SEL MB instruction.

A CALL cannot begin in locations 2046-2047 or 4094-4095. Execution
continues at the instruction following the CALL upon return from the
subroutine.

Operation: ((SP)) «— (PC), (PSWy_7)
. (SP) «— (SP) +1
(PCg_10) +— (addrg_4q)
(PCq-7) + (addrg_7)
(PC11) «— DBF

15-11



MCS®-48 INSTRUCTION SET

Example: Add three groups of two numbers. Put subtotalé in locations 50, 51 and
total in location 52.

MOV RO, #50 . ;MOVE ‘50’ DEC TO ADDRESS
;REG 0
BEGADD: MOV A R1 ;MOVE CONTENTS OF REG 1
;TOACC
ADD A,R2 ;ADD REG 2 TO ACC
CALL SUBTOT ;CALL SUBROUTINE ‘SUBTOT'
ADDC AR3 ;ADD REG 3 TO ACC
ADDC A,R4 ;ADD REG 4 TO ACC
CALL SUBTOT ;CALL SUBROUTINE ‘SUBTOT’
ADDC AR5 ;ADD REG 5 TO ACC
ADDC A,R6 ;ADD REG 6 TO ACC
CALL SUBTOT ;CALL SUBROUTINE ‘SUBTOT’
SUBTOT: MOV @R0,A ;MOVE CONTENTS OF ACCTO
;LOCATION ADDRESSED BY
, ;REG 0 :
INC RO ;INCREMENT REG 0
RET ;RETURN TO MAIN PROGRAM

CLR A Clear Accumulator

Encoding: (0010[01 1 1] 27H"
Description: The contents of the accumulator are cleared to zero.

Operation: A«— 0

CLR C Clear Carry Bit

Encoding: [1001]/0111]  97H

Description: During normal program execution, the carry bit can be set to one by the
ADD, ADDC, RLC, CPL C, RRC, and DAA insructions. This instruction
resets the carry bit to zero.

Operation: C+— 0

CLR F1 Clear Flag 1

Encoding: [1010[010 1 A5H
Description: Flag 1 is cleared to zero.
Operation: (F1) «— 0

15-12



MCS®-48 INSTRUCTION SET

CLR FO Clear Flag0

Encoding: [1000/0101|  85H
Description: Flag 0 is cleared to zero.
Operation: (F0) «— 0

CPL A Compiement Accumulator

Encoding: [0011[0111|  37H
Description: The contents of the accumulator are complemented. This is strictly a one’s
complement. Each one is changed to zero and vice-versa.
Operation: (A) «— NOT (A)
Example: Assume accumulator contains 01101010.

CPLA: CPLA ;ACC CONTENTS ARE COMPLE-
;MENTED TO 10010101

CPL C Complement Carry Bit

Encoding: [1010]/0111]  A7H

Description: The setting of the carry bit is complemented; one is changed to zero, and
. zero is changed to one.

Operation: (C) «— NOT (C)
Example: Set C to one; current setting is unknown.

CTO1: CLRC . ~ ;C IS CLEARED TO ZERO
! CPLC : ;C IS SET TO ONE

CPLF0 Complement Flag 0

+Encoding: [1001[0101]  95H

Description: The setting of flag 0 is complemented; one is changed to zero, and zero is
changed to one. - :

Operation: FO «— NOT (FO0)

CPLF1 Complement Flag 1

Encoding: [1011]0101]  BS5H

Description: The setting of flag 1 is complemented; one is changed to zero, and zero is
. changed to one.

Operation: (F1) «— NOT (F1) -

15-13



MCS®-48 INSTRUCTION SET

DA A Decimal Adjust Accumulator

Encoding: [0 101]0111]|  57H

Description: The 8-bit accumulator value is adjusted to form two 4-bit Binary Coded
Decimal (BCD) digits following the binary addition of BCD numbers.
The carry bit C is affected. If the contents of bits 0-3 are greater than nine,
or if AC is one, the accumulator is incremented by six.

The four high-order bits are then checked. If bits 4-7 exceed nine, or if
C is one, these bits are increased by six. If an overflow occurs, Cis set

to one.
Example: Assume accumulator contains 10011011.
DA A . ) ;ACC Adjusted to 00000001
: iWITH C SET
CAC7 4 3 0
0 010011011 _
00000110 - ADD SIX TO BITS 0-7
01 10100001
0110 - ADD SIX TO BITS 4-7
10 00000001 OVERFLOWTO C

DEC A Decrement Accumulator

Encoding: [0000[0111] ~ o7H

Description: The contents of the accumulator are decremented by one. The carry flag
is not affected.

‘Operation: (A) «— (A) -1
Example: Decrement contents of external data memory location 63.

MOV RO,#3FH . ;MOVE ‘3F' HEX TO REG 0

MOVX A, @RO iMOVE CONTENTS OF
;LOCATION 63 TO ACC

DECA - ,;DECREMENT ACC

MOVX @RO,A - ;MOVE CONTENTS OF ACCTO .
;LOCATION 63 IN EXPANDED -
;MEMORY

DEC Rr Decrement Register

Encoding: (1 1001 rrr| C8H-CFH
Description: The contents of working register ‘r’ are decremented by one.
Operation: (Rr) «— (Rr) -1 r=0-7 _
Example: DECR1: DEC R1 ;DECREMENT CONTENTS OF REG 1

15-14



MCS®-48 INSTRUCTION SET

DIS | External Interrupt

Encoding: | 0001[0101]  15H
Description: External interrupts are disabled. A low signal on the interrupt input pin has
no effect.

DIS TCNTI Disable Timer/Counter Interrupt

Encoding: [0011]0101]|  35H

Description: Timer/counter interrupts are disabled. Any pending timer interrupt request
is cleared. The interrupt sequence is not initiated by an overflow, but the
timer flag is set and time accumulation continues.

DJNZ R/, address Decrement Register and Test

Encoding: 1110 |1rrr| [a7agagay|agapayag E8H-EFH
Description: This is a 2-cycle instruction. Register ‘r' is decremented, then tested for
zero. If the register contains all zeros, program control falls through to the

next instruction. If the register contents are not zero, control jumps to the
specified ‘address’.

The address in this case must evaluate to 8-bits, that is, the jump must be
to a location within the current 256-location page.

Example: (Rr) «— (Rr) -1 r=0-7
If Rrnot O
(PCq_7) «— addr
Note: A 12-bit address specification does not cause an error if the
DJNZ instruction and the jump target are on the same page. |f the DJNZ
instruction begins in location 255 of a page, it must jump to a target
address on the following page.

Example: Increment values in data memory locations 50-54.

MOV RO,#50 :MOVE ‘50' DEC TO ADDRESS
. ;JREG O .
MOV R3,#5 :MOVE ‘5" DEC TO COUNTER
' :REG 3
INCRT: INC @RO :INCREMENT CONTENTS OF
: :LOCATION ADDRESSED BY
:REG 0 ‘
INC RO :INCREMENT ADDRESS IN REG 0
DJNZ R3, INCRT :DECREMENT REG 3 — JUMP TO
' “INCRT’ IF REG 3 NONZERO
NEXT — . “NEXT' ROUTINE EXECUTED
:IF R3 1S ZERO

15-15



MCS®-48 INSTRUCTION SET

'"EN 1 Enable External Interrupt

Encoding: [0000[010 1 05H

Description: External interrupts are enabled. A low signal on the interrupt input pin
initiates the interrupt sequence.

EN TCNTI Enable Timer/Counter Interrupt

Encoding: (0010010 1 25H

Description: Timer/counter interrupts are enabled. An overflow of the timer/counter
initiates the interrupt sequence.

ENTO CLK Enable Clock Output

Encoding: [0111]/0101]|  75H

Description: The test 0 pin is enabled to act as the clock output. This function is
disabled by a system reset.

Example: EMTSTO: ENTO CLK ;ENABLE TO AS CLOCK OUTPUT

IN A,Pp Input Port or Data to Accumulator

Encoding: [0000[10p p|  09H-0AH

Description: This is a 2-cycle instruction. Data present on port ‘p’ is
transferred (read) to the accumulator.

Operation: (A) «— (Pp) ! p=1-2
INP12: IN A,P1 ;INPUT PORT 1 CONTENTS TO ACC
MOV R6,A ;MOVE ACC CONTENTS TO REG 6
IN A,P2 ;INPUT PORT 2 CONTENTS TO ACC

MOV R7,A° ;MOVE ACC CONTENTS TO REG 7

INC A Increment Accumulator

Encoding: [0001[0111]  17H
Description: The contents of the accumulator are incremented by one. C‘arry is not
affected.

Operation: (A) «— (A) +1

15-16



MCS®-48 INSTRUCTION SET

Example: Increment contents of location 100 in external data memory.

INCA: MOV RO0,#100 ;MOVE ‘100’ DEC TO ADDRESS REG 0
MOVX A,@R0O ;MOVE CONTENTS OF LOCATION
;100 TO ACC
INC A ;INCREMENT A
MOVX @R0,A ;MOVE ACC CONTENTS TO

;LOCATION 101

INC R, Increment Register

Encoding: [0 00 1|1 rrr|  18H-1FH
Description: The contents of working register ‘r’ are incremented by one.
Operation: (Rr) «— (Rr) +1 r=0-7
Example: INCRO: INC RO ;INCREMENT CONTENTS OF REG 0

INC @R, Increment Data Memory Location

Encoding: (0001[000i]|  10H-11H

Description: The contents of the resident data memory location addressed by register ‘i’ bits
0-5** are incremented by one.

Operation: ((Ri)) «— ((Ri)) +1 i=0-1
Example: INCDM: MOV R1,#03FH ;MOVE ONES TO REG 1
INC @R1 ;INCREMENT LOCATION 63

INS A,BUS* Strobed Input of BUS Data to Accumulator

Encoding: [0000[1000]|  08H

Description: This is a 2-cycle instruction. Data present on the BUS port is transferred
(read) to the accumulator when the RD pulse is dropped. (Refer to section
on programming memory expansion for details.)

Operation: (A) «— (BUS)
Example: INPBUS: INS A,BUS ;INPUT BUS CONTENTS TO ACC

* For use with internal program memory ONLY.
** 0-5 in 8048AH/8748H

0-6 in 8049AH/8749H

0-7 in 8050AH

15-17



MCS®-48 INSTRUCTION SET

JBb address Jump If Accumulator Bit Is Set

Encoding: [bp by by 100 10| [a; ag a5 a4 [a3 ap ay ag
Accumulator Bit | Hex Op Code
0 12
1 32
2 52
3 72
4 - 92
5 B2
6 D2
. 7 F2
Description: This is a 2-cycle instruction. Control passes to the specified address if
accumulator bit ‘b’ is set to one.
Operation: b =0-7
(PCq-7) «— addr 1fBb=1
(PC) = (PC) +2 1fBb=0
Example: JB4IS1: JB4 NEXT ;JUMP TO ‘NEXT’ ROUTINE
i IFACCBIT4=1
JC address Jump If Carry Is Set
Encoding: F1 11 | 011 OI [a7 ag ag a4 |agz ap a4 ag F6H
Description: This is a 2-cycle instruction. Control passes to the specified address if the
carry bit is set to one.
. Operation: (PCq_7) «— addr 1fC=1
(PC) = (PC) +2 IfC=0
Example: JC1: JC OVFLOW ;JUMP TO ‘OVFLOW’ ROUTINE
‘ IFC =1
JFO0 address Jump If Flag 0 Is Set
Encoding: |1 011 |0 11 0| [a7 ag ag a4 |ag as aq ag. B6H
Description: This is a 2-cycle instruction. Control passes to the specified address if
flag 0 is set to one.
Operation: (PCq_7) «— addr IfFO=1
(PC) =(PC) +2 IfFO=0
Example: JFOIS1: JFO TOTAL ;JUMP TO ‘TOTAL’ ROUTINE IF FO =1

15-18



MCS®-48 INSTRUCTION SET

JF1 address

Jump If Flag 1 Is Set

Encodlng [o 111 IO 11 0’ |a7 ag ag a4 | ag ap aq ag 76H
Description: This is a 2-cycle instruction. Control passes to the specified address if
_ flag 1 is set to one.
Operation: (PCq_7) «— addr IfF1=1
(PC) =(PC +2) IfF1=0
Example: JF11S1: JF1 FILBUF ;JUMP TO ‘FILBUF’
;ROUTINE IF F1 =1
JMP address Direct Jump within 2K Block
Encoding: [310 ag ag 0| 010 0] li’ ag ag a4| ag ap a4 ag
Page Hex-Op Code
0 04
1 24
2 44 Ca
3 64
4 84
5 A4
6 C4
. 7 E4
Descfiptiiin: This is a 2-cycle instruction. Bits 0-10 of the program counter are replaced
with the directly-spécified address. The setting of PC bit 11 is
determined by the most recent SELECT MB instruction.
Operation: (PCg_qq) «— addr 8-10
(PCO_7) - a_ddr 0-7
(PCqq) — DBF
Example: JMP SUBTOT ;JUMP TO SUBROUTINE ‘SUBTOT’
JMP $-6 « ;JUMP TO INSTRUCTION SIX
. ;LOCATIONS BEFORE CURRENT
;LOCATION
JMP 2FH JUMP TO ADDRESS ‘2F' HEX

JMPP @A Indirect Jump within Page

_Encoding: [1011]0011] B3H
Description: Thisisa é-cycle insruction. The contents of the program memory location

pointed to by the accumulator are substituted for the ‘page’ portion of the
program counter (PC bits 0-7).

15-19



MCS®-48 INSTRUCTION SET

Operation:
Example:

JNC address

(PCo-7) — ((A)
Assume accumulator contains OFH.

JMPPAG: JMPP @A ;JUMP TO ADDRESS STORED IN
;LOCATION 15 IN CURRENT PAGE

Jump If Carry Is Not Set

Encoding: (1110]0110]| |a7 ag a5 a4 | ag ap a4 ag E6H
Description: This is a 2-cycle instruction. Control passes to the specified address if
the carry bit is not set, that is, equals zero.
Operation: (PCp_7) «— addr fC=0
(PC)= (PC)+2 fC=1
Example: JCO: JNC NOVFLO ;JUMP TO ‘NOVFLO’ ROUTINE
) IFC=0
JNI address Jump If Interrupt Input is Low
Encoding: [1000[0110]| [a; ag a5 a4 | a3 ap a4 ag 86H
Description: This is a 2-cycle instruction. Control passes to the specified address if the
interrupt input signal is low (= 0), that is, an external interrupt has been
signaled. (This signal initiates an interrupt service sequence if the external
interrupt is enabled.)
Operation: (PCqg_7) «+— addr If1=0
' (PC)=(PC) +2 =1
Example: LOC 3: JNI EXTINT" -;JUMP TO ‘EXTINT ROUTINE
IF1=0

JNTO address Jump If Test 0 is Low

Encoding:
Description:

Operation:

Example:

0010 0110 26H

fa7 36 35 a4 a3 32 a1 ao

This is a 2-cycle instruction. Control passes to the specified address, if the

test 0 signal is low. \

(PCo_7) — addr 1fT0=0

(PC)=(PC) +2 IfTO=1 _

JTOLOW: JNTO 60 :JUMP TO LOCATION 60 DEC
(AFTO=0

15-20 -



MCS®-48 INSTRUCTION SET

JNT1 address Jump If Test 1 Is Low

Encoding:
Description:

Operation:

[0100[0110] [a7agasag|agapayag|  46H
This is a 2-cycle instruction. Control passes to the specified address, if
the test 1 signal is low.

(PCp-7) «— addr
(PC)=(PC) +2

1fT1=0
1fT1=1

JNZ Address Jump if Accumulator Is Not Zero
Encoding: ‘1 001 | 0110 I |a7 ag ag ag4 |az ap aq aOJ 96H
Description: This is a 2-cycle instruction. Control passes to the specified address if the

Operation:

Example:

JTF address

accumulator contents are nonzero at the time this instruction is executed.

(PCq_7) «— addr IfA%0
(PC) = (PC) + 2 IfA=0

JACCNO: JNZ 0ABH ;JUMP TO LOCATION ‘AB’ HEX
;IF ACC VALUE IS NONZERO

Jump If Timer Flag Is Set

Encoding:
Description:

Operation:

Example:

JTO address

[0001]0110] la7 ag a5 a4 | ag ap aq ap| 16H

This is a 2-cycle instruction. Control passes to the specified address if the
timer flag is set to one, that is, the timer/counter register has overflowed.
Testing the timer flag resets it to zero. (This overflow initiates an interrupt
service sequence if the timer-overflow interrupt is enabled.)

(PCq-7) «— addr fTF=1

(PC) = (PC) +2 IfTF=0

JTF1: JTF TIMER ;JUMP TO ‘TIMER' ROUTINE
IFTF=1 '

Jump If Test 0 Is High

Encoding:
Description:

Operation:

Example:

|0011|0110, [67368584 ag ap aj ag 36H

This is a 2-cycle instruction. Control passes to the specufled address if
the test 0 signal is high (= 1).

(PCo_7) <— addr 1fTO=1

(PC)=(PC) +2 IfTO=0

JTOHI: JTO 53 ;3JUMP TO LOCATION 53 DEC
IFTO=1

15-21



MCS©-48 INSTRUCTION SET

JT1 address Jump If Test 1 Is High

Encoding: |0 10 1]0110| |a7 ag a5 a4 | a3 ap ay ag 56H

Description: This is a 2-cycle instruction. Control passes to the specified address jf the
. test 1 signal is high (= 1).

Operation: (PCq_7) «— addr 1fT1=1
- (PC) = (PC) +2 IfT1=0

Example: JT1HI: JT1 COUNT . ;JUMP TO ‘COUNT’ ROUTINE
JFT1=1

JZ address Jump If Accumulator Is Zero

Encoding:|1100]01 10| |a7 ag ag a4 | ag ag aq ag C6H
Description: This is a 2-cycle instruction. Control passes to the specifiéd address if
the accumulator contains all zeros at the time this instruction is executed.

Operation: (PC(_7) «— addr ) IfA=0
‘ - (PC)=(PC) +2 IfA#1
Example: JACCO: JZ 0A3H ;JUMP TO LOCATION ‘A3 HEX

;IF ACC VALUE IS ZERO

MOV Atdata Move Immediate Data to Accumulator

Encoding: [O 01 O| 001 1| ' |a7 ag ag a4 | ag ap aq aOJ 23H

Description: This is a 2-cycle instruction. The 8-bit value specified by ‘data’ is loaded
in the accumulator.

Operation: (A) «— data ‘
Example: MOV A ,#0A3H ;MOVE ‘A3 HEX TO ACC

MOV A,PSW Move PSW Contents to Accumulator

Encoding: [1100/0111]  C7H
Description: The contents of the program status word are moved to the accumulator. -
Operation: (A) «— (PSW)
Example: Jump to ‘RB1SET’ routine if PSW bank switch, bit 4, is set.

BSCHK: MOV A PSW ;MOVE PSW CONTENTS TO ACC
JB4 RB1SET ;JUMP TO ‘RB1SET' IF ACCBIT 4 =1

15-22



MCS®-48 INSTRUCTION SET

MOV A,R, Move Register Contents to Accumulator

Encoding: [ 1111 I 1rrr | F8H-FFH
Description: 8-bits of data are removed from working register ‘r’ into the accumulator.
Operation: (A) «— (Rr) r=0-7
Example: MAR: MOV A,R3 _ ;MOVE CONTENTS OF REG 3 TO ACC

MOV A,@R; Move Data Memory Contents to Accumuiator

Encoding [1111[000i|  FOH-FIH

Description: The contents of the resident data memory location addressed by bits 0—5** of
: register ‘i’ are moved to the accumulator. Register ‘i’ contents are unaffected.

Operation: (A) «— ((Ri)) i=0-1
Example: Assume R1 contains 00110110. .
MADM: MOV A,@R1 ;MOVE CONTENTS OF DATA MEM

;LOCATION 54 TO ACC

MOV A,T . Move Timer/Counter Contents to Accumulator

Encoding: lO 10 OI 001 OJ 42H

Description: The contents of the timer/event-counter register are moved to the
accumulator.

Operation: (A) — (T)
Example: Jump to “EXIT” routine when timer reaches ‘64’ that is, when bit 6 set—
assuming initialization 64,

TIMCHK: MOV AT ;MOVE TIMER CONTENTS TO ACC
JB6 EXIT ;JUMP TO ‘EXIT' IF ACCBIT6 =1

MOV PSW,A Mer Accumulator Contents to PSW

Encoding: [1 101/ 0111] D7H

Description: The contents of the accumulator are moved into the progam status word.
All condition bits and the stack pointer are affected by this move.

Operation: (PSW) «— (A)

Example: Move up stack pointer by two memory locations, that is, increment the
pointer by one. :

INCPTR: MOV A PSW ;MOVE PSW CONTENTS TO ACC
INC A ;INCREMENT ACC BY ONE
MOV PSW,A ;MOVE ACC CONTENTS TO PSW

** 0-5 in 8048AH/8748H
0-6 in 8049AH/8749H
0-7 in 8050AH

15-23



MCS®-48 INSTRUCTION SET

MOV R,A Move Accumulator Contents to Register

Encoding:
Description:
Operation:
Example:

[To10[1rrr| ABH-AFH

The contents of the accufnulator are moved to register ‘r’.
(Rr) «— (A) r=0-7

MRA: MOV RO,A . ;MOVE CONTENTS OF ACC TO REG 0 '

MOV R, #data Move Immediate Data to Register

b011l1r2r1m

Encoding: ' d7 d6 ds d4 d3 d2 d1 do B8H-BFH
Description: This is a 2-cycle instruction. The 8-bit value specified by ‘data’ is moved to
register ‘r’. ‘
Operation: (Rr) «— data r=0-7 .
Examples: MIR4: MOV R4, #HEXTEN ;THE VALUE OF THE SYMBOL
;'HEXTEN’ IS MOVED INTO REG 4
MIR 5: MOV R5,#PI1*(R*R) . ;THE VALUE OF THE EXPRESSION
;'P1*(R*R)’ 1S MOVED INTO REG 5
MIR 6: MOV R6, #0OADH ;’AD’ HEX IS MOVED INTO REG 6
MOV @ R;,A Move Accumulator Contents to Data Memory
Encoding: [1010[000i|  AOH-ATH
Description: The contents of the accumulator are moved to the resident data memory
location whose address is specified by bits'0-5** of register ‘i’. Register ‘'
contents are unaffected.
Operation: ((Ri)) «— (A) i=0-1
Example: Assume RO contains 00000111.

MDMA: MOV @RO,A ;MOVE CONTENTS OF ACC TO

;LOCATION 7 (REG 7)

MOV @ Rj#data Move Immediate Data to Data memory

Encoding: [1011]00 01 |

Description:

Operation:
Examples:

| d7 dg d5 d4 | dg dp dy dg BOH-B1H

This is a 2-cycle instruction. The 8-bit value specified by ‘data’ is moved
to the resident data memory location addressed by register ‘7', bits 0-5**.

((Ri)) «— data i=0-1

Move the hexadecimal value AC3F to locations 62-63.

MIDM: MOV RO,#62 ;MOVE ‘62’ DEC TO ADDR REG 0
MOV @RO,#0ACH ;MOVE ‘AC’ HEX TO LOCATION 62
INCRO ;INCREMENT REG 0 to ‘63’

MOV @RO0,#3FH +“MOVE‘3F' HEX TO LOCATION 63

* 05 in B048AH/8748H
0-6 in 8049AH/8749H

. 0-7 in 8050AH

15-24



MCS®-48 INSTRUCTION SET

MOV T,A Move Accumulator Contents to Timer/Counter

Encoding

Description:

Operation:
Example:

MOVD A,Pp

]o11o.oo1o—| 62H

The contents of the accumulator are moved to the timer/event-counter
register.

(T) — (A)
Initialize and start event counter.
INITEC: CLR A

MOV T,A
START CNT

;CLEAR ACC TO ZEROS
;MOVE ZEROS TO EVENT COUNTER
;START COUNTER

Move Port 4-7 Data to Accumulator

Encoding:
Description:

Operation:

t

Example:

MOVD Pp,A

loo00[11pp|  OCH-OFH

This is a 2-cycle instruction. Data on 8243 port ‘p’ is moved (read) to
accumulator bits 0-3. Accumulator bits 4-7 are zeroed.

(0-3) «— (Pp) p=4-7

(4-7)«—0

Note: Bits 0-7 of the opcode are used to represent ports 4-7. if you are

coding in binary rather than assembly language, the mapping is as
follows:

Bits 10 Port

00 4
01 5
10 6
11 7

;MOVE PORT 5 DATA TO ACC
;BITS 0-3, ZERO ACC BITS 4-7

INPPT5: MOVD A.P5

Move Accumulator Data to Port 4-7

Encoding:
“Description:

Operation:
Example:

[o011]11pp 3CH-3FH

This is a 2-cycle instruction. Data in accumulator bits 0-3 is moved
(written) to 8243 port ‘p’. Accumulator bits 4-7 are unaffected. (See NOTE
above regarding port mapping.)

(PP) +—(Ag-3) P=4-7
Move data in accumulator to ports 4 and 5. -

OUTP45: MOVD P4,A :MOVE ACC BITS 0-3 TO PORT 4
SWAP A ;EXCHANGE ACC BITS 0-3 and 4-7
MOVD P5,A ;MOVE ACC BITS 0-3 TO PORT 5

15-25



MCS®-48 INSTRUCTION SET

MOVP A,@A Move Current Page Data to Accumulator

Encoding: [1010]0011]  AH

Description: The contents of the program memory location addressed by the
accumulator are moved to the accumulator. Only bits 0-7 of the program
counter are affected, limiting the program memory reference to the
current page. The program counter is restored following this operation.

Operation: (PCg_7) «— (A)
(A) ~— ((PC)) _
Note: This is a 1-byte, 2-cycle instruction. If it appears in location 255 of a
program memory page, @A addresses a location in the following page.

Example: MOV128: MOV A,#128 ;MOVE ‘128' DEC TO ACC

MOVP A,@A ;CONTENTS OF 129th LOCATION IN
;CURRENT PAGE ARE MOVED TO ACC

MOVP3 A, @A Move Page 3 Data to Accumulator

Encoding: [1110]0011|  E3H

Description: This is a 2-cycle instruction. The contents of the program memory location
(within page 3) addressed by the accumulator are moved to the
‘accumulator. The program counter is restored following this operation.

Operation: (PCq_7) +— (A)
(PCg_11) «— 0011
(A) — ((PC))
Example: Look up ASCII equivalent of hexadecimal code in table contained at the

beginning of page 3. Note that ASCII characters are designated by a
7-bit code; the eighth bit is always reset. .

r

TABSCH: MOV A #0B8H ;MOVE ‘B8 HEX TO ACC (10111000)
ANL A #7FH ;LOGICAL AND ACC TO MASK BIT
» - ;7 (00111000)
MOVP3 A,@A ;MOVE CONTENTS OF LOCATION ‘38’

;HEX IN PAGE 3 TO ACC (ASCII ‘8)
Access contents 0j location in page 3 labelled TAB1.
Assume current program location is not in page 3.
TABSCH: MOV A #LOW TAB 1 ;ISOLATE BITS 0-7 OF LABEL
;ADDRESS VALUE
MOVP3 A,@A ;MOVE CONTENTS OF PAGE 3
:LOCATION LABELED ‘TAB1’ TO ACC

15-26



MCS®-48 INSTRUCTION SET

MOVX A,@R; Move External-Data-Memory Contents to Accumulator

Encoding: [1000]/000i|  80H-81H

Description: This is a 2-cycle instruction. The contents of the external data memory
location addressed by register ‘i’ are moved to the accumulator. Register ‘'
contents are unaffected. A read pulse is generated.

Operation: (A) «— ((Ri)) i=0-1

Example: Assume R1 contains 01110110.
MAXDM: MOVX A,@R1 ;MOVE CONTENTS OF LOCATION
;118 TO ACC

MOVX @R;,A Move Accumulator Contents to External Data Memory

Encoding: |[1001[000i|  90H-91H

Description: This is a 2-cycle instruction. The contents of the accumulator are moved to
the external data memory location addressed by register ‘i". Register ‘i’
contents are unaffected. A write pulse is generated.

Operation: ((Ri)) «— A i=0-1
Example: Assume RO contains 11000111.
MXDMA: MOVX @RO0,A ;MOVE CONTENTS OF ACC TO

;LOCATION 199 IN EXPANDED
;DATA MEMORY

NOP The NOP Instruction

Encoding: [0 000[0000|  OOH
Description: No operation is performed. Execution continues with the foilowing
instruction.

ORL AR, Logical OR Accumulator With Register Mask

Encoding: 0100 [1rrr |  48H-4FH

Description: Data in the accumulator is logically ORed with the mask contained in
working register ‘r’. '

Operation: (A) «— (A) OR (Rr) r=0-7

Example: ORREG: ORL A,R4 ;'OR’ ACC CONTENTS WITH
: ;MASK IN REG 4

15-27



\

MCS®-48 INSTRUCTION SET

ORL A,@R; Logical OR Accumulator with Memory Mask

Encoding:
Description:

. Operatiqn:
Example:

ORL A,#data

0o1o00fo00i|  40H-41H

Data in the accumulator is logically ORed with the mask containd in the
resident data memory location referenced by register ‘r', bits 0-5*

(A) < (A) OR ((Ri)) i=0-1

ORDM: MOV RO,#3FH ;MOVE ‘3F° HEX TO REG 0

ORL A,@RO ;'OR’ AC CONTENTS WITH MASK
: ;IN LOCATION 63

Logical OR Accumulator With Immediate Mask

Encoding:
Description:

Operation:
Example:

[0100[001 1] |[d7dgd5dy]dgdpdydg|  43H

This is a 2-cycle instruction. Data in the accumulator is Ioglcally ORed with
an immediately-specified mask:

(A) «— (A) OR data
ORID: ORL A #X

“OR’ ACC CONTENTS WITH MASK-
;01011000 (ASCII VALUE OF ‘X’)

ORL BUS,#data* Logical OR BUS With. Immediate Mask

Encoding:
. Description:

Operation:
Example:

[1000[1000]| [d7 dgdsdy | d3dydydg 88H
This is a 2-cycle instruction. Data on the BUS port is logically ORed with an

‘immediately-specified mask. This instruction assumes prior specification

on an ‘OUTL BUS, A’ instruction.
(BUS) «— (BUS) OR data '

ORBUS: ORL BUS#HEXMSK :OR’BUS CONTENTS WITH MASK

;EQUAL VALUE OF SYMBOL '"HEXMSK’

ORL Pp, #data Logical OR Port 1 or 2 With Immediate Mask

Encoding:
Description:

Operation:
Example:

* For use with internal program memofy ONLY.

dg dp dq dg|  89H-8AH
Data on port ‘p' is logically ORed with an

[1000[10pp| [d7dgdsady
This is a 2-cycle instruction.
immediately-specified mask.

(Pp) «— (Pp) OR data
ORP1: ORL P1, #0FFH -

p=1-2
;‘OR’' PORT 1 CONTENTS WITH MASK
;'FF HEX (SET PORT 1 TO ALL ONES)

** 0-5 in 8048AH/8748H
0-6 in 8049AH/8749H
0-7 in 8050AH

15-28



MCS®-48 INSTRUCTION SET

ORLD Pp,A

Logical OR Port 4-7 With Accumulator Mask

Encoding

Description:

Operation:
Example:

:11000[11pp]| 8CH-8FH

This is a 2-cycle instruction. Data on port ‘p’ is logically ORed with the
digit mask contained in accumulator bits 0-3.

(Pp) «— (Pp) OR (Ag_3) p=4-7

ORP7: ORLD P7,A ;'OR’ PORT 7 CONTENTS WITH ACC
;BITS 0-3 "

OUTL BUS,A* Output Accumulator Data to BUS

Encoding:
Description:

Operation:
Example:

OUTL Pp,A

l0oooofoo10] 02H

This is a 2-cycle instruction. Data residing in the
accumulator is transferred (written) to the BUS port and
latched. The latched data remains valid until altered by
another OUTL instruction. Any other instruction requiring
use of the BUS port (except INS) destroys the contents of
the BUS latch. This includes expanded memory operations
(such as the MOVX instruction). Logical operations on
BUS data (AND, OR) assume the OUTL BUS,A instruction
has been issued previously.

(BUS) «— (A)
OUTLBP: OUTL BUS, A

;OUTPUT ACC CONTENTS TO BUS

Output Accumulator Data to Port 1 or 2

Encoding

Description:

Operation:
Example:

[oo11][10pp] 39H-3AH

This is a 2-cycle instruction. Data residing in the accumulator is transferred
(written) to port ‘p’ and latched.

(Pp) «— (A) p=1-2

OUTLP: MOV AR7 . ;MOVE REG 7 CONTENTS TO ACC
OUTL P2,A ;OUTPUT ACC CONTENTS TO PORT 2
MOV A, R6 ;MOV REG 6 CONTENTS TO ACC
OUTL P1,A ;OUTPUT ACC CONTENTS TO PORT 1

* For use with internal program memory ONLY.

15-29



MCS®-48 INSTRUCTION SET

i

RET Return Without PSW Restore

Encoding: [1000/001 1]  83H ’

Description: This is a 2-cycle instruction. The stack pointer (PSW bits 0-2) is
decremented. The program counter is then restored from the stack. PSW
bits 4-7 are not restored. :

Operation: (SP) «— (SP)-1
(PC) < ((SP))

RETR Return with PSW Restore

Encoding: (100 1/00 1 1 93H

Description: This is a 2-cycle instruction. The stack pointer is decremented. The
program counter and bits 4-7 of the PSW are then restored from the stack.
Note that RETR should be used to return from an interrupt, but should
not be used within the interrupt service routine as it signals the end of an
interrupt routine by resetting the Interrupt in Progress flip-flop.
Operation: (SP) «— (SP)-1 ‘
(PC) «— ((SP))
(PSW 4-7) «— ((SP))

15-30



MCS®-48 INSTRUCTION SET

RL A Rotat

e Left without Carry
Encoding: [1110[0111]  E7H
Description: The contents of the accumulator are rotated left one bit. Bit 7 is rotated
' into the bit 0 position.
Operation: (An + 1) «— (An)
(AQ) «+— (A7) n=0-6
Example: Assume accumulator contains 10110001.
RLNC: RL A ;NEW ACC CONTENTS ARE 01100011

RLC A Rotate Left through Carry

Encoding

Description:

Operation:

Example:

:[1111]0111] F7H

The contents of the accumulator are rotated left one bit. Bit 7 replaces the
carry bit; the carry bit is rotatd into the bit 0 position.

(An + 1) «— (An)
n=0-6

(AQ) «— (C)

(C) — (A7)

Assume accumulator contains a ‘signed’ number; isolate sign without
changing value.

RLTC: CLRC ;CLEAR CARRY TO ZERO
RLC A ;ROTATE ACC LEFT, SIGN
;BIT (7) IS PLACED IN CARRY
RR A ;ROTATE ACC RIGHT — VALUE

;(BITS 0-6) IS RESTORED,
;CARRY UNCHANGED, BIT 7
;IS ZERO

RR A Rotate Right without Carry

Encoding

Description:

Operation

Example:

:lo111]o111]  77H

The contents of the accumulator are rotated right one bit. Bit 0 is rotated
into the bit 7 position. -
: (An) «— (An +1) n=0-6
(A7) «— (A0)
Assume accumulator contains 10110001.
RRNC: RR A ;NEW ACC CONTENTS ARE 11011000

15-31



MCS®-48 INSTRUCTION SET

RRC A Rotate Right through Carry

Encoding: (0110011 1]

Description: The contents of the accumulator are rotated right one bit: Bit 0 replaces the
: carry bit; the carry bit is rotated into the bit 7 position.

Operation: (An) «— (An +1) n=0-6 )
(A7) «— (C) ,
(C) «— (Ag)
Example: Assume carry is not set and accumulator contains 10110001.

RRTC: RRC A ;CARRY IS SET AND ACC
' ;CONTAINS 01011000

SEL MB0 Select Memory Bank 0

Encoding: [1110[/0101]|  E5H

Description: PC bit 11 is set to zero on next JMP or CALL instruction. All references to
program memory addresses fall within the range 0-2047.
Operation: (DBF) «— 0

Example: Assume program counter contains 834 Hex.
SEL MBO ;SELECT MEMORY BANK 0
JMP $+20 ;JUMP TO LOCATION 58 HEX

. SEL MB1 Select Memory Bank 1

Encoding: [1111]/0101]  F5H

Descriptlon PC bit 11 is set to one on next JMP or CALL instruction. All references to
program memory addresses faII within the range 2048-4095.

Operation: (DBF) «— 1

15-32



MCS®-48 INSTRUCTION SET

SEL RBO Select Register Bank 0

Encoding: |1 100|010 1 C5H

Descri