

LITERATURE

To order Intel Literature or obtain literature pricing information in the U.S. and Canada call or write Intel
Literature Sales. In Europe and other international locations, please contact your local sales office or
distributor.

INTEL LITERATURE SALES
P.O. BOX 7641
Mt. Prospect, IL 60056·7641

CURRENT HANDBOOKS

In the U.S. and Canada
call toll free
(800) 548-4725

Product line handbooks contain data sheets, application notes, article reprints and other design informa­
tion.

TITLE

SET OF 11 HANDBOOKS
(Available in U.S. and Canada only)

EMBEDDED APPLICATIONS

8·BIT EMBEDDED CONTROLLERS

16·BIT EMBEDDED CONTROLLERS

16/32·BIT EMBEDDED PROCESSORS

MEMORY

MICROCOMMUNICATIONS
(2 volume set)

MICROCOMPUTER SYSTEMS

MICROPROCESSORS

PERIPHERALS

PRODUCT GUIDE
(Overview of Intel's complete product lines)

PROGRAMMABLE LOGIC

ADDITIONAL LITERATURE
(Not included in handbook set)

AUTOMOTIVE

COMPONENTS QUALITY/RELIABILITY HANDBOOK

INTEL PACKAGING OUTLINES AND DIMENSIONS
(Packaging types, number of leads, etc.)

INTERNATIONAL LITERATURE GUIDE

LITERATURE PRICE LIST (U.S. and Canada)
(Comprehensive list of current Intel Literature)

MILITARY
(2 volume set)

SYSTEMS QUALITY/RELIABILITY

LITERATURE
ORDER NUMBER

231003

270648

270645

270646

270647

210830

231658

280407

230843

296467

210846

296083

231792

210997

231369

E00029

210620

210461

231762

UTiNCOV/l0/89

u.s. and CANADA LITERATURE ORDER FORM
NAME: __ ___

COMPANY: ________________________________ --------------------
ADDRESS: ________ ~ __ __

CITY: ______________________________ STATE: _______ ZIP: ~ ____ _

COUNTRY: __ __

PHONENO.:~ __ ~ __ ___

ORDER NO TITLE QTY. PRICE TOTAL

__ X ___ = ___ __

___ X ___ = __ __

__ X ___ = __ __

___ X ___ = __ __

__ X ___ = __ __

___ X ___ = __ _

__ X

__ X ___ = __ _

__ X

__ X ___ = __ _

Subtotal ___ _

Must Add Your
Local Sales Tax ____ __

Postage: add 10% of subtotal
-----------!~~ Postage ____ __

Total ____ __

Pay by check, money order, or include company purchase order with this form ($100 minimum).We also
accept VISA, MasterCard or American Express. Make payment to Intel Literature Sales. Allow 2-4 weeks
for delivery.
o VISA 0 MasterCard 0 American Express Expiration Date ________________ _

Account No. ~ __ _

Signature __ _

Mall To: Intel Literature Sales
P.O. Box 7641
Mt. Prospect, II 60056-7641

International Customers outside the U.S. and C~nada
should use the International order form or contact their local
Sales Office or Distributor.

For phone orders in the U.S. and Canada
Call Toll Free: (800) 548-4725
Prices good unlil 12/31/90.

Source HB

CGlLOF1/081789

INTERNATIONAL LITERATURE ORDER FORM

NAME: __ ___

COMPANY: ________ ~ __ __

ADDRESS: __ __

CITY: _______________________________ STATE: _______ ZIP: _____ _

COUNTRY: __ __

PHONE NO.: ""'(__ -'-____________________ _

ORDER NO. TITLE QTY. PRICE TOTAL

__ X

__ X

__ X.

__ X ___ = ____ _

__ X __ = __ _

__ x __ = __ __

__ X __ = __ __

__ X __ = __ __

__ X ___ = __ __

__ X __ = __ __

Subtotal ____ _

Must Add Your
Local Sales Tax ____ _

Total ____ _

PAYMENT

Cheques should be made payable to your local Intel Sales Office (see inside back cover.)

Other forms of payment may be available in your country. Please contact the Literature Coordinator at your
local Intel Sales Office for details.

The completed form should be marked to the attention of the LITERATURE COORDINATOR and returned
to your local Intel Sales Office.

CG/LOF2/100188

80186/188, 80C186/C188
HARDWARE REFERENCE MANUAL

1990

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which may
appear in this document nor does it make a commitment to update the information contained herein.

Intel retains the right to make changes to these specifications at any time, without notice.

Contact your local sales office to obtain the latest specifications before placing your order.

The following are trademarks of Intel Corporation and may only be used to identify Intel products:

376, 386, 387, 486, 4-SITE, Above, ACE51 , ACE96, ACE186, ACE196, ACE960,
BITBUS, COMMputer, CREDIT, Data Pipeline, DVI, ETOX, FaxBACK, Genius, i, ~,
i486, i750, i860, ICE, iCEL, ICEVIEW, iCS, iDBP, iDIS, 12 1CE, iLBX, iMDDX, iMMX,
Inboard, Insite, Intel, intel, Intel386, intelBOS, Intel Certified, Intelevision, inteligent
Identifier, inteligent Programming, Intellec, Intellink, iOSP, iPAT, iPDS, iPSC, iRMK,
iRMX, iSBC, iSBX, iSDM, iSXM, Library Manager, MAPNET, MCS, Megachassis,
MICROMAINFRAME, MULTIBUS, MULTICHANNEL, MUL TIMODULE, MultiSERVER,
ONCE, OpenNET, OTP, PR0750, PROMPT, Promware, QUEST, QueX, Quick-Erase,
Quick-Pulse Programming, Ripplemode, RMX/80, RUPI, Seamless, SLD,
SugarCube, ToolTALK, UPI, Visual Edge, VLSiCEL, and ZapCode, and the combina­
tion of ICE, iCS, iRMX, iSBC, iSBX, iSXM, MCS, or UPI and a numerical suffix.

MDS is an ordering code only and is not used as a product name or trademark. MDS® is a registered trademark of Mohawk
Data Sciences Corporation.

MUL TIBUS is a patented Intel bus.

CHMOS and HMOS are patented processes of Intel Corp.

Intel Corporation and Intel's FASTPATH are not affiliated with Kinetics, a division of Excelan, Inc. or its FASTPATH trade­
mark or products.

Additional copies of this manual or other Intel literature may be obtained from:

Intel Corporation
Literature Sales
P.O. Box 7641
Mt. Prospect, IL 60056-7641

©INTEL CORPORATION 1989 CG·101789

CUSTOMER SUPPORT

INTEL'S COMPLETE SUPPORT SOLUTION WORLDWIDE

Customer Support is Intel's complete support service that provides Intel customers with hardware support,
software support, customer trainin~, consulting services and network management services. For detailed infor­
mation contact your local sales offices.

After a customer purchases any system hardware or software product, service and support become major
factors in determining whether that product will continue to meet a customer's expectations. Such support
requires an international support organization and a breadth of programs to meet a variety of customer needs.
As you might expect, Intel's customer support is quite extensive. It can start with assistance during your
development effort to network management. 100 Intel sales and service offices are located worldwide - in the
U.S., Canada, Europe and the Far East. So wherever you're using Intel technology, our professional staff is
within close reach.

HARDWARE SUPPORT SERVICES

Intel's hardware maintenance service, starting with complete on-site installation will boost your productivity
from the start and keep you running at maximum efficiency. Support for system or board level products can be
tailored to match your needs, from complete on-site repair and maintenance support to economical carry-in or
mail-in factory service.

Intel can provide support service for not only Intel systems and emulators, but also support for equipment in
your development lab or provide service on your product to your end-user/customer.

SOFTWARE SUPPORT SERVICES
Software products are supported by our Technical Information Service (TIPS) that has a special toll free
number to provide you with direct, ready information on known, documented problems and deficiencies, as
well as work-arounds, patches and other solutions.

Intel's software support consists of two levels of contracts. Standard support includes TIPS (Technical Infor­
mation Phone Service), updates and subscription service (product-specific troubleshootmg guides and;
COMMENTS Ma$azine). Basic support consists of updates and the subscription service. Contracts are sold in
environments which represent product groupings (e.g., iRMX® environment).

CONSULTING SERVICES
Intel provides field system engineering consulting services for any phase of your development or application
effort. You can use our system engineers in a variety of ways ranging from assistance in using a new product,
developing an application, personalizing training and customizing an Intel product to providing technical and
management consulting. Systems Engineers are well versed in technical areas such as microcommunications,
real-time applications, embedded microcontrollers, and network services. You know your application needs;
we know our products. Working together we can help you get a successful product to market in the least
possible time.

CUSTOMER TRAINING
Intel offers a wide range of instructional programs covering various aspects of system design and implementa­
tion. In just three to ten days a limited number of individuals learn more in a single workshop than in weeks of
self-study. For optimum convenience, workshops are scheduled regularly at Training Centers worldwide or we
can take our workshops to you for on-site instruction. Covering a wide variety of topics, Intel's major course
categories include: architecture and assembly language, programming and operating systems, BITBUS ,. and
LAN applications.

NETWORK MANAGEMENT SERVICES
Today's networking products are powerful and extremely flexible. The return they can provide on your invest­
merit via increased productivity and reduced costs can be very substantial.

Intel offers complete network support, from definition of your network's physical and functional design, to
implementation, installation and maintenance. Whether installing your first network or adding to an existing
one, Intel's Networking Specialists can optimize network performance for you.

CG/CUSTSUPP/1oo389

Table of Contents

1.0 INTRODUCTION
1.1 The 80186 Product Family ... 1-1
1.2 How to Use the Hardware Reference ... 1-2

2.0 OVERVIEW OF THE 80186 FAMILY
2.1 Architectural Overview .. 2-1

2.1.1 Execution Unit ... 2-2
2.1.2 Bus Interface Unit .. 2-2
2.1.3 General Registers .. 2-3
2.1.4 Segment Registers .. 2-3
2.1.5 Instruction Pointer .. 2-3
2.1.6 Flags ... 2-4
2.1.7 Memory Segmentation .. 2-5
2.1.8 Logical Addresses ... 2-5
2.1.9 Dynamically Relocatable Code .. 2-8
2.1.1 0 Stack Inplementation ... 2-9
2.1.11 Reserved Memory and I/O Space .. , 2-10

2.2 Software Overview .. 2-10
2.2.1 Instruction Set ... 2-10

2.2.1.1 Data Transfer Instructions ... 2-10
2.2.1.2 Arithmetic Instructions ... 2-11
2.2.1.3 Bit Manipulation Instructions ... 2-11
2.2.1.4 String Instructions ... 2-13
2.2.1.5 Program Transfer Instructions ... 2-13
2.2.1.6 Processor Control Instructions .. 2-14

2.2.2 Addressing Modes .. 2~14
2.2.2.1 Register and Immediate Operand Addressing Modes 2-15
2.2.2.2 Memory Addressing Mode .. 2-16
2.2.2.3 1/0 Port Addressing ... 2-21

2.2.3 Data Types Used in the 80186 Family ... 2-21
2.3 DMA Control Unit .. 2-22
2.4 Timers .. 2-22
2.5 Interrupt Control Unit ... 2-22
2.6 Clock Generator .. 2-23
2.7 Chip Select and READY Generation Unit .. 2-23
2.8 DRAM Refresh Control Unit (80C186/80C188 Only) .. 2-23
2.9 Power-Save Unit (80C186/80C188 Only) .. 2-23
2.10 Access to Integrated Peripherals ; ... 2-23

3.080186 BUS INTERFACE UNIT
3.1 T-States .. 3-1
3.2 Physical Address Generation .. 3-3
3.3 Data Bus ... 3-4

3.3.1 80186/80C186 Data Bus Operation ... 3-4
3.3.2 80188/80C188 Data Bus Operation ... 3-4
3.3.3 Peripherals Interface .. 3-5

3.4 Bus Control Si~ls ... 3-5
3.4.1 RD and WR , ; 3-5
3.4.2 Queue Status Lines ... 3-7
3.4.3 Status Line .. 3-7
3.4.4 Software-Initiated Bus Control ... 3-8

3.4.4.1 TEST Input and LOCK Output ... 3-8
3.4.4.2 Processor HALT ... 3-8

vii

Table of Contents (continued)

3.5 TransCevier ContrQI Signals .. 3-9
3.6 READY Interfacing ; ; , .. .-.............................. 3-9

. 3.7 Execution UniVBus Interface Unit Relationship .. 3-10
3.7.1 Prefetch Queue and Bus Performance .. 3-10
3.7.2 Bus Performance and CPU Performance .. 3-13
3.7.3 Wait States and CPU Performance .. ;.3-13

3.8 HOLD/HLDA Interface .. 3-16
3.8.1 Response to HOLD ... 3-16
3.8.2 HOLD/HLDA Timing and Bus Latency ; ... 3-16
3.8:3 Leaving HOLD : ... 3-17

3.9 Priority of Bus Cycle Types ... , ... 3-17

4.0 CLOCK GENERAtOR
4.1 Crystal Oscillator ... 4-1
4.2 Using an External Oscillator .. ; 4-1
4.3 Outpuffrom Clock Generator .. 4-2
4.4 RESET ; ; ;•... 4-2

5.0 PERIPHERAL CONTROL BLOCK
5.1 Setting the Base Location ... ; 5-1
5.2 Peripheral Control Block Registers .. , 5-3
5.3 Peripheral Configuration at RESET ... ~ .. 5-3

6.0 TIMER UNIT
6.1 Timer Unit Programming ... 6~ 1
6.2 Timer Events ... 6-3
6.3 Timer Input Pin Operation .. ; 6-3
6.4 Timer Output Pin Operation ... 6-4
6.5 Example Timer Initialization Code ... 6-5

6.5.1 Real Time Clock .. 6-5
6.5.2 Baud Rate Generator .. 6-8
6.5.3 Event Counter ... 6-8

7.0 CHIP SELECT/READY LOGIC
7.1 Memory Chip Selects ; .. 7-1
7.2 Peripheral Chip Selects .. ~ 7-2
7.3 READY Generation ... 7-2
7.4 Overlapping Chip Select Blocks .. 7-3
7.5 Chip Selects and the 80C186 in Enhanced Mode ... 7-3
7.6 Example System Initialization Code ... 7-3

8.0 DMA CONTROL UNIT
8.1 DMAFeatures .. ; ... 8-1
8.2 DMA Unit Programming , .. 8-1
8.3 OMA Channel Priority, .. 8-2
8.4 DMA Transfers ... 8-3
8.5 DMA Requests .. 8-3

8.5.1 DMA Request Timing and Latency .. 8-4
8.5.2 DMA Acknowledge .. 8-4

8.6 . Internally Generated DMA Requests .. 8-5
8.7 Externally Synchronized DMA Transfers ... 8-5

8.7.1 Source Synchronized DMA Transfers ... 8-5
8.7.2 Destination Synchronized DMA Transfers ... 8-6

8.8 DMA Halt and NMI .. 8-7
8.9 Example DMA Interface Code ; ; ; 8-7

viii

Table of Contents (continued)

9.0 INTERRUPTS
9.1 Interrupt Control Model .. 9-1
9.2 Interrupt Characteristics Related to Type ... 9-1

9.2.1 Interrupts Handled Directly by the CPU .. 9-1
9.2.1.1 Instruction-Generated Traps and Exceptions ... 9-1
9.2.1.2 Non-Maskable Interrupt (NMI) ... 9-4
9.2.1.3 User-Defined Software Interrupts .. 9-4

9.2.2 Interrupts Handled by the Integrated Interrupt Controller 9-4
9.3 Other Interrupt Characteristics ... 9-4

9.3.1 Interrupt Latency ... 9-4
9.3.2 Interrupt Masks and Nesting .. 9-5
9.3.3 Interrupt Priority ... 9-5

9.4 Interrupt Control Unit Operation Modes ... 9-8
9.5 Master Mode ... 9-8

9.5.1 Master Mode External Connections ... 9-8
9.5.1.1 Direct Input Mode ... 9-8
9.5.1.2 Casade Mode ... 9-8

9.5.2 Master Mode Programming ... 9-9
9.5.2.1 Control Registers in Master Mode ... 9-9
9.5.2.2 Cascade Mode ... 9-1 0
9.5.2.3 Special Fully Nested Mode .. 9-1 0
9.5.2.4 Request Register in Master Mode ... 9-11
9.5.2.5 Mask Register in Master Mode .. 9-11
9.5.2.6 Priority Mask Register in Master Mode .. 9-11
9.5.2.7 In-Service Register in Master Mode .. 9-11
9.5.2.8 Poll and Poll Status Registers ... 9-11
9.5.2.9 End of Interrupt Register in Master Mode .. 9-12
9.5.2.10 Interrupt Status Register in Master Mode ... 9-12

9.5.3 Master Mode interrupt Sources ... 9-13
9.5.3.1 Internal Sources ... 9-13
9.5.3.2 External Sources .. 9-13

9.5.4 Master Mode Interrupt Response .. 9-13
9.5.4.1 Internal Vectoring in Master Mode ... 9-14
9.5.4.2 External Vectoring in Master Mode : .. 9-14
9.5.4.3 Master Mode Interrupt Response Time ... 9-14

9.5.5 Example Master Mode Initialization ... 9-14
9.6 Slave Mode ... 9-15

9.6.1 Slave Mode External Connections ... 9-17
9.6.2 Slave Mode Programming ... 9-17

9.6.2.1 Control Registers in Slave Mode ... 9-17
9.6.2.2 Request Register in Slave Mode ... 9-17
9.6.2.3 Mask Register in Slave Mode .. 9-17
9.6.2.4 Priority Mask Register in Slave Mode .. 9-17
9.6.2.5 In-Service Register in Slave Mode .. 9-17
9.6.2.6 End of Interrupt Register in Slave Mode .. 9-19
9.6.2.7 Interrupt Status Register in Slave Mode .. 9-19
9.6.2.8 Interrupt Vector Register , .. 9-19

9.6.3 Slave Mode Interrupt Sources ... 9-20
9.6.4 Slave Mode Interrupt Response .. 9-20

9.6.4.1 Internal Vectoring in Slave Mode ... 9-20
9.6.4.2 External Vectoring in Slave Mode .. 9-21

ix

Table of Contents (continued)

9.6.4.3 Slave Mode Interrupt ResponseTime ... 9-21
9.6.5 Example Slave Mode Initialization ..•.............. 9-22

9.7 Interrupt Controller Flow Charts .. , 9-23

10.0 REFRESH CONTROL UNIT (80C186/80C188 ONLY)
10.1 R$fresh Control Unit Programming , ... 10-1·
10.2 Refresh Control Unit Operation .. ,'" 10-2
10.3 Refresh Addresses ... 10-3
10.4 Refresh Operation and Bus HOLD ...•.................. 10-3
10.5 Example RCU Initialization Code ... 10-4

11.0 POWER-SAVE UNIT (80C186/80C188 ONLY)
11.1 Power-Save Unit Programming ... 11-1
11.2 Power-Save Operation .. 11-1
11 :3 Example Power-Save Initialization Code ... 11-2

12.0 HARDWARE PROVISIONS FOR FLOATING POINT MATH
12.1 Using the 80186/80188 with the 8087 Numerics Coprocessor 12-1

12.1.1 Overview of Numerics Coprocessing ... 12-1
12.1.28087 Instruction Set ... ; .. 12-1

12.1.2.1 Data Transfer Instructions•... 12-1
12.1.2.2 Arithmetic ,nstructions ; 12-1
12.1.2.3 Comparison Instructions ... 12-2
12.1.2.4 Transcendental Instructions .. 12-3
12.1.2.5 Constant Instructions .. 12-3
12.1.2.6 Processor Control Instructions•...................................... 12-4

12.1.38087 Data Types .. , 12-4
12.1.480186(80188)/8087 Interface•... 12-4
12.1.580186(80188) Bus Cycles during Numerics Coprocessing 1.2-6

12.2 Using the 80C186 with the 80C187 Numerics Processor Extension 12-6
12.2.1 Overview of the 80C187 Numerics Processor Extension•....................... 12-6
12.2.280C187 Addtions to Instruction Set .. 12-7
12.2.380C186/80C187 Interface ... ~ 12-7
12.2.480C186 Bus Cycles with the Numerics Processor Extension 12-8

APPENDIX A - DIFFERENCE BETWEEN THE 80186 FAMILY
AND THE 8086/8088

A.1 CPU Performance ... A-1
A.2 Clocking .. A-1
A.3 Local Bus Controller and ConJol Signals ... A-1
A.4 HOLD/HLDAvs. REQUEST/ RANT .. A-1
A.5 Status Information ... A-1
A.6 Bus Utilization ... A-2
A.7 Instruction Execution ... A-2

APPENDIX B - SYNCHRONIZATION OF EXTERNAL INPUTS
B.1 Why Synchronizers are Required .. B-1
B.2 80186 Synchronizers .. B-1

APPENDIX C - SUMMARY OF DIFFERENCES AMONG FAMILY MEMBERS
C.1 Differences Due to Data Bus Width ... C~ 1
C.2 Difference$ Between NMOS and CMOS Devices .. C-1

x

Introduction 1

CHAPTER 1
INTRODUCTION

The 80186 microprocessor family holds the position of indus­
try standard among high integration microprocessors. VLSI
technology incorporates the most commonly used peripheral
functions with a 16-bit CPU on the same silicon die to assure
compatibility and high reliability. The 80186 fa'.'1ily repu~­
tion for flexibility and uncomplicated programmmg makes It
the first choice embedded microprocessor for such applica­
tions as local area network equipment, PC add-on cards, ter­
minals, disk storage subsystems, avionics, and medical instru­
mentation. Figure I is a block diagram of the 80 186 processor.

INT3/1NTA11 -1tIT1L
IRQ SELECT

rD~KrT NMI
INT2IINTAO

• INTO

I 11 ~
X1 X2

PROGRAMMABLE
Vee INTERRRUPT

CLOCK CONTROLLER
GENERATOR

GND
CONTROL

REGISTERS

1/1"

1.1 THE 80186 PRODUCT FAMILY

The 80186 family actually consists of four devices: the origi­
nal 80186 and 80188, and the newer 80C 186 and 80C 188
microprocessors manufactured on Intel's CHMOS III proc­
ess. The 80188 and 8OCl88 are 16-bit microprocessors but
have 8-bit external data buses. The 80C 186 and 80C 188 offer
the advantage of increased speed (up to 16 MHz) and impor­
tant new features including a Refresh Control Unit, Power­
Save logic, and ONCETMMode (see Figure 2).

TMR OUT 0 TMR IN 1

TMR, IN 0 TMRfUT1
DRQO DRQ1

L I
+ 1 ~ +

PROGRAMMABLE DMACONTROL
TIMERS UNIT

0 1 2 0 1

MAXIMUM COUNj 20·BIT SOURCE
REGISTERB POINTERS
MAXIMUM COUNT 20·BIT DESTINTATION

REGISTER A POINTERS
16-BIT COUNT 16·BIT COUNT
REGISTERS REGISTERS

CONTROL REGISTER CONTROL REGISTERS

Jt 1t
INTERNAL BUS

SRDY

ARDY

So
52

-
-

DT/R :-
i--DEN

LOCK -

r-
~
.....
r-

r-
I-
r-

HOLD

~IJ -------- --------
I

READY I CONTROL I
EXECUTION UNIT LOGIC REGISTERS I

I

BUS INTERFACE UNIT 16-BIT

SYSTEM GENERAL
REGISTERS REGISTERS

6-BYTE
PREFETCH 16-BITALU

QUEUE ------

i'""

HLDA ~'~ ALE
ADO'. A16/S3- RES

TESTIBUSY
RD

AD15 A19/S6 WR
RESET BHE/S7

Figure 1. 80186 Block Diagram

1-1

,t,.
--51

CONTROL J PCS
REGISTERS A1

r- r---
CHIP

SELECT PCS
A2

CONTROL r- r-UNIT

--61

~
1 -~-
MCSO-3 PCSO-4

UCS LCS

270288-001-1

INTRODUCTION

All family members employ a 20-bit address bus for a one
megabyte memory address space and a 64 kilobyte I/O ad­
dress space. All processors use the same instruction format.
Software written for one CPU will execute on the other CPUs
without alteration (with the possible exception of floating­
point code).

Forsimplicity, thisHardwareReference uses phrases like "80 186
family processor" to refer to features and functions shared
commonly by the 80186, 80188, 80C186, and 80C188. This
manual refers to specific member or members of the product
family directly by product number.

INT3Iiiiii'A11 INT11
IRQ SELECT

rD~KrT NMI
INT2/1NTAO

l INTO

I 11 • i
X1 X2

Vee -- CLOCK
GENERATOR

PROGRAMMABLE
INTERRRUPT

POWER-
CONTROLLER

SAVE
GND -- CONTROL, I CONTROL

REGISTERS REGISTERS

1t jl\-

~

1.2 HOW TO USE THE HARDWARE
REFERENCE

The purpose of this Hardware Reference is to explain the
operation of 80186 family processors with a degree of detail
not possible in the data sheet. The emphasis is on the integrated
peripheral set, since that is the essence of the 80186 family.
The designer with questions about the function of a particular
peripheral is encouraged to tum directly to the specific sec­
tions suggested by the table of contents.

TMR OUT 0 TMR IN 1

TMR1INO TMR.UT1 DROO DRQ1

I I
t I t t

PROGRAMMABLE DMACONTROL
TIMERS UNIT

0 1 2 0 1
MAXIMUM COUNTI 2O-BIT SOURCE

REGISTER B POINTERS
MAXIMUM COUNT 20-BIT DESTINTATION

REGISTER A POINTERS
16-BIT COUNT 16-BIT COUNT
REGISTERS REGISTERS

CONTROL REGISTER CONTROL REGISTER

it i'"
IUS

~~
SRDY

ARDY
f- READY I CONTROL

. -------- -------- ..
I

CONTROL ,I --51

so-
52

DT/R

DEN
LOCK

- PCS I I

- r- LOGIC REGISTER~ I EXECUTION UNIT I REGISTERS A1
REFRESH I I l- I---I

"- BUS INTERFACE UNIT CONTROL 16-BIT I

I""" UNIT GENERAL
I CHIP SYSTEM I PC -I- REGISTERS REGISTERS I SELECT

A2 I CONTROL -I- 6-BYTE I
UNIT

l- I---
16-BIT ALU I

PRE FETCH I -- QUEUE I

1 --U-' I
NUMERICS INTERFACE J

- .1.1 •
HOLD t ~- MCSO/PEREQ t '" PCsO-4 HLDA "'I~'-' ~ ALE:TESTIBUSY MCS1IERROR LCS

ADO- A 16/S3- RES RD
MCS3INPs UCs AD15 A19/SS WR

RESET BHE
270288-001-2

, Figure 2. 80C186 Block Diagram

1-2

Overview of the 80186 Family 2

CHAPTER 2
OVERVIEW OF THE 80186 FAMILY

The 80186 processor shares a common base arc:,ltecture with
the 8086, 8088, 80286, 386TM, and 486TM processors. It is
completely object code compatible with the well-known 8086/
8088. However, most instructions require fewerciocks to execute
on the 80 186 family because of hardware enhancements in the
Bus Interface Unit and the Execution Unit. In addition, there
are a number of additional instructions which simplify pro­
gramming and reduce code size (see Appendix A.7).

The 80186 family operates virtually the same as the 8086. The
added benefits of the 80186 family are the on-chip DMA,
Timer, Interrupt Control, Chip Select, and READY Genera­
tion Units. This concept of high integration greatly simplifies
system design.

The 80186 family operates from a single +5 V supply. It is
available in several standard package configurations. For a
given product, the pinout is identical among any of the avail­
able 68-pin packages: Pin Grid Array (PGA), Leadless Chip

AH

BH

CH

GENERAL DH
REGISTERS SP

SP

DI

SI

AL

BL

CL

DL

ALU DATA BUS

(16 BITS)

EXECUTION UNIT
(EU)

Carrier (LCC), and Plastic Leaded Chip Carrier (PLCC). This
means that sockets for any ofthe three package types may be
mounted on a printed circuit board drilled with the same 68-
pin pattern.

2.1 ARCHITECTURAL OVERVIEW

An 80186 family processor incorporates two separate proc­
essing units: an Execution Unit (EU) and a Bus Interface Unit
(BIU). The EU is functionally identical among all family
members. In the 801 86/80C 186 the BIU is configured for a
16-bit external data bus and in the 80188/80C188 the BIU is
configured for an 8-bit external data bus. The two units are
connected by an instruction prefetch queue.

The EU executes instructions and the BIU fetches instruc­
tions, reads operands, and writes results. Whenever the EU
requires another opcode byte, it takes the byte out of the prefetch

ADDRESS BUS

CS

DS

SS

(20 BI)

DATA BUS

(16 BITS)

BUS
CONTROL

LOGIC

BUS INTERFACE UNIT
(BIU)

EXTERNAL
BUS

270288-001-3

Figure 3. Simplied Functional Bock Diagram of 80186 Family CPU

2-1

OVERVIEW OF THE 80186 FAUll V

queue. The two units can operate independently of one another
and are able. undermost circumstances, to extensively overlap
instruction fetches and execution.

An 80 186 family processor has a l6-bit Arithmetic Logic Unit
(ALU) which performs 8-bit or l6-bit arithmetic and logical
operations. It provides for data movement among registers,
memory and I/O space. In addition, the CPU allows for high
speed data transfer from one area of memory to another using
string move instructions, and to or from an I/O port and memory
using block I/O instructions. Finally, the CPU provides many
conditional branch and control instructions.

This architecture features 14 basic registers which are grouped
as general registers, segment registers, pointer registers, and
status and control registers. The four 16-bit general purpose
registers (AX, BX, CX, and DX) may be used as operands in
most arithmetic operations in either 8- or 16-bit units. The four
l6-bit pointer registers (SI, DI, BP, and SP) may be used both
in arithmetic operations and in accessing memory-based vari­
ables. Four 16-bit segment registers (CS, DS, SS, and ES)
allow simple memory partitioning to aid modular program­
ming. The status and control registers consist of an instruction
pointer (IP) and a status word register containing flag bits.

Figure 3 is a simplified CPU block diagram.

2.1.1 EXECUTION UNIT

The EU is responsible for the execution of all instructions, for
providing data and addresses to the BID, and for manipulating
the general registers and the flag register. A l6-bit Arithmetic
Logic Unit (ALU) in the EU maintains the CPU status and
control flags, and manipulates the general registers and in­
struction operands. All registers and data paths in the EU are
16 bits wide for fast internal transfers.

+

The EU does not connect directly to the system bus. It obtains
instructions from a queue maintained by the BIU. Likewise,
when an instruction requires access to memory or to a periph­
eral device, the EU requests the BIU to obtain and store the
data. All addresses manipulated by the EU are 16 bits wide.
The BIU, however, performs an address calculation that gives
the EU access to the full megabyte of memory space.

When the EU is ready to execute an instruction, it fetches the
instruction object code byte from the BID's instruction queue
and then executes the instruction. If the queue is empty when
the EU is ready to fetch an instruction byte, the EU waits for
the instruction byte to be fetched. If a memory location or I/O
port must be addressed during the execution of an instruction,
the EU requests the BID to perform the required bus cycle.

2.1.2 BUS INTERFACE UNIT

The 80186/80C186and 80l88/80C188 BIUsare functionally
identical, but are implemented differently to match the struc­
ture and performance characteristics of their respective sys­
tem buses. Data is transferred between the CPU and memory
or peripheral devices upon demand from the EU. The BID
executes all external bus cycles. This unit consists of the seg­
ment registers, the instruction pointer, the instruction code
queue, and several miscellaneous registers. The BIU transfers
data to and from the EU on the ALU data bus.

The BID generates 20-bit physical addresses in a dedicated
adder. The adder shifts a 16-bit segment value left 4 bits and
then adds an offset value derived from combinations of the
pointer registers, the instruction pointer, and immediate val­
ues (see Figure 4). Any carry of this addition is ignored.

During periods when the EU is busy executing instructions,
the BID Hlooks ahead" and prefetches more instructions from

~_1_2_3 __ 4_-:!0 ~~~~ENT} LOGICAL

ADDRESS

OFFSET
L....-_....,.-_~

PHYSICAL ADDRESS

TO MEMORY

270288-001-4

Figure 4. Physical Address Generation

2-2

inter OVERVIEW OF THE 80186 FAMIL V

memory. As long as the prefetch queue is partially full, the EU
can quickly retrieve instructions upon demand.

2.1.3 GENERAL REGISTERS

80186 family CPUs have eight 16-bit general registers (see
Figure 5). The general registers are subdivided into two sets of
four registers each. These are the data registers (also called the
H & L group for high and low), and the pointer and index
registers (also called the P & I group).

H

DATA{15

GROUP

o
f--AR-¥--AL--

~-8H-'¥--BL--

r--CH-~-ct--
~-DH-,¥--15[--

ACCUMULATOR

BASE

COUNT

DATA

POINTER { AND
INDEX

GROUP

SP

BP

Sl

DI

STACK
POINTER
BASE
POINTER
SOURCE
NDEX I

DESTINATION
NDEX I

270288-001-5

Figure 5. General Registers

The data registers are unique in that their upper and lower
halves are separately addressable. This means that each data
register can be used interchangeably as a 16-bit register or as
two 8-bit registers. The other CPU registers are always ac­
cessed as 16-bit only. The CPU can use data registers without

Table 1. Implicit Use of General Registers

REGISTER OPERATIONS

AX Word Multiply, Word Divide,
Word 1/0

AL Byte Multiply, Byte Divide, Byte
1/0, Translate, Decimal Arithmetic

AH Byte Multiply, Byte Divide

BX Translate

CX String Operations, Loops

CL Variable Shift and Rotate

DX Word Multiply, Word Divide,
Indirect 1/0

SP Stack Operations

SI String Operations

DI String Operations

2-3

constraint in most arithmetic and logic operations. Most arith­
metic and logic operations can also use the pointer and index
registers. Additionally, some instructions use certain registers
implicitly (see Table I), therefore allowing compact yet powerful
encoding.

The state of any of the general registers is undefined at RE­
SET.

2.1.4 SEGMENT REGISTERS

The 80186 family memory space (up to one megabyte) is
divided into logical segments of up to 64 Kbytes each. The
CPU has direct access to four segments at a time. The base
addresses (starting locations) of these memory segments are
contained in the segment registers (see Figure 6). The CS
register points to the current code segment. Instructions are
fetched from the CS segment. The SS register points to the
cutrent stack segment. Stack operations are performed on
locations in the SS segment. The DS register points to the
current data segment. The data segment generally contains
program variables. The ES register points to the current extra
segment, which also is typically used for data storage. The
segment registers are accessible to programs and can be
manipulated with several instructions.

15 0

CS
CODE
SEGMENT

DS DATA
SEGMENT

SS STACK
SEGMENT

ES
EXTRA
SEGMENT

270288-001-6

Figure 6. Segment Registers

Upon RESET, the CS register is initialized to OFFFFH, and
the DS,ES, and SS register are all initialized to zero.

2.1.5 INSTRUCTION POINTER

The BIU updates a 16-bit instruction pointer (IP) register so
that it contains the offset (distance in bytes) of the next instruc­
tion from the beginning of the current code segment. In other
words, the IP register points to the next instruction. During
normal execution, the instruction pointer contains the offset of
the next instruction to be fetched by the BIU. Whenever the IP
register is saved on the stack, however, it is first automatically
adjusted to point to the next instruction to be executed. Pro­
grams do not have direct access to the instruction pointer, but

OVERVIEW OF THE 80186 FAMILY

it may change, be saved, or be restored as a result of program
execution.

RESET initializes the instruction pointer to OOOOH. The con­
catenation of CS and IP values comprises a starting execution
address of OFFFFOH (see Section 2.1.8 for a description of
address formation).

2.1.6 FLAGS

An 80186 family processor has six one-bit status flags (see
Figure 7) that the EU posts as the result of an arithmetic or
logic operation. Program branch instructions allow a program
to alter its execution depending on conditions flagged by prior
operation. Different instructions affect the status flags differ­
ently, generally reflecting the following states:

If the auxiliary flag (AF) is set, there has been a carry out
from the low nibble into the high nibble or a borrow from
the high nibble into the low nibble of an 8-bit quantity
(low-order byte of a 16-bit quantity). This flag is used by
decimal arithmetic instructions.

If the carry flag (CF) is set, there has been a carry out of, or
a borrow into, the high-order bit of the instruction result
(8- or 16-bit). The flag is used by instructions that add and
subtract multibyte numbers. Rotate instructions can also
isolate a bit in memory or a register by placing it in the
carry flag.

If the overflow flag (OF) is set, an arithmetic overflow has
occurred; that is, a significant digit has been lost because

STATUS FLAGS:

the size of the result exceeded the capacity of its destina­
tion location. An Interrupt On Overflow instruction is
available that will generate an interrupt in this situation.

If the sign flag (SF) is set, the high-order bit of the result is
a I. Since negative binary numbers are represented in stand­
ard two's complement notation, SF indicates the sign of
the result (0 = positive, I = negative).

If the parity flag (PF) is set, the result has even parity, an
even number of I-bits. This flag can be used to check for
data transmission errors.

If the zero flag (ZF) is set, the result of the operation is O.

The additional control flags (see Figure 7) can beset and
cleared by programs to alter processor operations:

Setting the direction flag (DF) causes string instructions to
auto-decrement; that is, to process strings from the high
address to the low address, or "right to left". Clearing DF
causes string instructions to auto-increment, or process
strings "left to right."

Setting the interrupt -enable flag (IF) allows the CPU to
recognize maskableextemal or internal interrupt requests.
Clearing IF disables these interrupts. The interrupt-enable
flag has no effect upon software interrupts or non-mas­
kable externally generated interrupts.

Setting the trap flag (TF) puts the processor into single­
step mode fordebugging. In this mode, the CPU automati-

CARRY---,

PARITY ---..,
AUXILIARY CARRY --,

ZERO--------------------------------,

CONTROL FLAGS:
1.-_____________ TRAP FLAG

INTERRUPT ENABLE
1.-__________________ DIRECTION FLAG

~ INTEL RESERVED

270288·001·7

Figure 7. Status Word Format

2-4

OVERVIEW OF THE 80186 FAMILY

cally generates an internal interrupt after each instruction,
allowing a program to be inspected as it executes instruc­
tion by instruction.

Both the status and control flags are contained in a l6-bit status
word (see Figure 7). The RESET condition of the status word
isOFOOOH.

2.1.7 MEMORY SEGMENTATION

Programs for the 80186 family view the one megabyte mem­
ory space as a group of segments that are user -defined accord­
ing to application. A segment is a logical unit of memory that
may be up to 64 Kbytes long. Each segment if made up of
contiguous memory locations and is an independent, sepa­
rately-addressable unit. Software assigns every segment a base
address (starting location) in memory space. All segmf'lts
begin on l6-bit memory boundaries. There are no other re­
strictions on segment locations. Segments may be adjacent,
disjoint, partially overlapped, or fully overlapped (see Figure
8). A physical memory location may be mapped into (covered
by) one or more logical segments.

The four segment registers point to four "currently address­
able" segments (see Figure 9). The currently addressable
segments provide a work space consisting of 64 Kbytes for
code, a 64K stack, and l28K of data storage. Programs obtain
access to code and data in other segments by changing the
segment registers to point to the desired segments.

The segmented memory structure of the 80186 family is a
hardware provision to encourage modular programming. Every
program will use segmentation differently. Smaller applica­
tions tend to initialize the segment registers and then simply

forget them. Larger applications give careful consideration to
segment definition and use.

2.1.8 LOGICAL ADDRESSES

It is useful to think of every memory location as having two
kinds of addresses, physical and logical. A physical address is
a 20-bit value that identifies each unique byte location in the
memory space. Physical addresses range from OH to FFFFFH.
All exchanges between the CPU and memory components use
a physical address.

Programs deal with logical, rather than physical addresses.
Program code can be developed without prior knowledge of
where the code is to be located in memory; in larger applica­
tions, dynamic management of memory resources is a neces­
sity. A logical address consists of a segment base value and an
offset value. For any given memory location, the segment base
value locates the first byte of the segment and the offset value
is the distan-:;e, in bytes, of the target location from the begin­
ning of the segment. Segment base and offset values are un­
signed l6-bit quantities. Many different logical addresses can
map to the same physical location. In the example (see Figure
10), physical memory location 2C3H is contained in two dif­
ferent overlapping segments, one beginning at 2BOH and the
other at 2COH.

If left alone, the processor automatically assigns segments
based on the specific addressing needs of the program. The
segment register to be selected is automatically chosen ac­
cording to the rules in Table 2. All information in one segment
type generally shares the same logical attributes (e.g., code or
data), leading to programs which are shorter, faster, and better
structured.

----7 DISJOINT

~
LOGICAL
SEGMENTS

~t------t----+-----tl----.JJI?) ~~~S6~~L
OH 10000H 20000H 30000H

270288-001-8

Figure 8. Segment Locations in Physical Memory

2-5

OVERVIEW OF THE 80186 FAMILY

FFFFFH

]
DATA: OS: B \--- G CODE: CS: E r--,

r,' 0

STACK: SS: H

h :: EXTRA: ES:

, I
'L ,
,
L_

OH

270288-001-9

Figure 9. Currrently Addressable Segments

2-6

OVERVIEW OF THE 80186 FAMILY

~r '"

PHYSICAL
ADDRESS

OF'SET

2C4H

2C3H

2C2H

2C1H

2COH

2BFH
2BEH

2BDH

2BCH

2BBH

2BAH

2B9H

2B8H

2B7H

2B6H

2B5H

2B4H

2B3H

2B2H

2B1H

2BOH

LOGICAL
ADDRESSES

'-

(3H)
~~~~ENT -----.I 

SEGMENT 
BASE 

OFFSET 
(13H) 

" ," 
270288·001·10 

Figure 10. Logical and Physical Address 

To generate a physical address, the BIU must first obtain the 
logical address. The logical address of a memory location can 
come from different sources, depending on the type of refer­
ence that is being made (see Table 2). 

Segment base addresses are always held in the segment regis­
ters. The BIU conveniently assumes which segment register 

contains the base address according to the type of memory 
reference made. However, it is possible for a programmer to 
explicitly direct the BIU to access a variable in any of the 
currently addressable segments (except for the destination 
operand of a string instruction). In assembly language, this is 
done by preceding an instruction with a segment override 
prefix. 

Table 2, Logical Address Sources 

DEFAUL1' ALTERNATE 
TYPE OF MEMORY REFERENCE SEGMENT SEGMENT OFFSET 

BASE BASE 

Instruction Fetch CS NONE IP 
Stack Operation SS NONE SP 
Variable (except following) DS CS, ES, SS Effective Address 
String Source DS CS, ES, SS SI 
String Destination ES NONE DI 
BP Used As Base Register SS CS,DS,ES Effective Address 

2-7 



OVERVIEW OF THE 80186 FAMILY 

Instructions are always fetched from the current code seg­
ment; the IP register contains the offset of the target instruction 
from the beginning of the segment. Stack instructions always 
operate on the current stack segment; the SP (stack pointer) 
register contains the offset of the top of the stack. Most vari­
ables (memory operands) are assumed to reside in the current 
data segment, but a program can instruct the BIU to override 
this assumption. Often, the offset of a memory variable is not 
directly available and must be calculated at execution time. 
This calculation is based on the addressing mode (see Section 
2.2.2) specified in the instruction; the result is called the oper­
and's effective address (EA). 

Strings are addressed differently than other variables. The 
source operand of a string instruction is assumed to lie in the 
current data segment, but the program may use another cur­
rently addressable segment. The operand's offset is taken from 
the SI (source index) register. The destination operand of a 
string instruction always resides in the current extra segment; 

BEFORE RELOCATION 

CODE 
SEGMENT 

L CS 

I 
SS 

STACK ;-- DS 
SEGMENT - ES 

DATA 
SEGMENT 

EXTRA 
SEGMENT 

its offset is taken from the DI (destination index) register. The 
string instructions automatically adjust the SI and DI registers 
as they process the strings one byte or word at a time. 

When register BP, the base pointer register, is designated as a 
base register in an instruction, the variable is assumed to reside 
in the current stack segment. Therefore, register BP provides 
a convenient way to address data on the stack. However, the 
BP register can also be used to access data in any of the other 
currently addressable segments. 

2.1.9 DYNAMICALLY RELOCATABLE CODE 

The segmented memory structure of the 80186 family makes 
it possible to write programs that are position-independent, or 
dynamically relocatable. Dynamic relocation allows a multi­
programming or multitasking system to make particularly 

AFTER RELOCATION 

CS 

SS 

DS ~ 

ES t-

CODE 
SEGMENT 

STACK 
SEGMENT 

DATA 
SEGMENT 

EXTRA 
SEGMENT 

CJ FREE SPACE 

270288-001-11 

Figure 11. Dynamic Code Relocation 

2-8 



OVERVIEW OF THE 80186 FAMILY 

effective use of available memory. The processor can write 
inactive programs to a disk and reallocate the space they occu­
pied to other programs. If a disk-resident program is needed 
later, it can be read back into any available memory locatlon 
and restarted. Similarly, if a program needs a large contiguous 
block of storage, and the total amount is only available in non­
adjacent fragments, other program segments can be compacted 
to free up a continuous space. This process is illustrated gra­
phically in Figure 11. 

To be dynamically relocatable, a program must not load or 
alter its segment registers and must not transfer directly to a 
location outside the current code segment. In other words, all 
offsets in the program must be relative to fixed values con­
tained in the segment registers. This allows the program to be 
moved anywhere in memory as long as the segment registers 
are updated to point to the new base addresses. 

2.1.10 STACK IMPLEMENTATION 

Stacks in the 80186 family are implemented in memory and 
are located by the stack segment register (SS) and the stack 
pointer (SP). A system may have numerous stacks, and a stack 
may be up to 64 Kbytes long, the maximum length of a seg­
ment. An attempt to grow a stack beyond 64K overwrites the 
beginning of the segment. Only one stack is directly address­
able at a time. The SS register contains the base address of the 
current stack; however, the base address is not the origination 
point of the stack. The SP register contains an offset which 
points to the top of stack (TOS). 

Stacks are 16 bits wide; instructions that operate on a stack add 
and remove stack elements one word at a time. An element is 
pushed onto the stack (see Figure 12) by first decrementing 
the SP register by 2 and then writing the data word.An element 
is popped off the stack by copying it from TOS and then incre­
menting the SP register by 2. In other words, the stack goes 
down in memory toward its base address. Stack operations 

POP AX 
POP BX 

PUSH AX 
AX~I 

TOS 

, 
1062 

1060 

105E 

105B 

105A 

1058 

EXISTING 
STACK , 
00 11 

22 33 

44 55 

66 77 

88 99 

AA BB 

t 
'" ::;;0 

o~ 
i=CIl 
ou.. 
mO 

6 01 23 105 !z i3 
w« 

4 45 67 105 [:3~ 

2 89 AB 105 g:!i! 
}

~ 

11050~ ~~ 
~SS 

00 08 SP 

AX~l 

1062 00 11 I 
1060 22 33 I 
105E 44 55 I 105B 66 77 

105A 88 99 I 
1058 AA BB J TOS 
1056 

1054 45 67 

1052 89 AB 

11050~ 

~SS 

STACK OPERATION FOR CODE SEQUENCE 
PUSH AX 
POP AX 
POP BX 

Figure 12. Stack Operation 

2-9 

BX~l I 
I 
I 
I 
I 
I 
I 

1062 

1060 

105E 

105C 
TOS 

105A 

105B 

1056 

1054 

1052 

r 1050 

00 

22 

44 

66 

88 

AA 

34 

45 

89 

CD 

10 

11 

33 

55 

77 

99 

BB 

12 

67 

AB 

EF 

50 

I 
I 
I 
I 

JI 
_-.J 

SS 

00 OA SP 

270288·001·12 



OVERVIEW OF THE 80186 FAMILY 

never move elements on the stack, nor do they erase them. The 
top of the stack changes only as a result of updating the stack 
pointer. 

2.1.11 RESERVED MEMORY AND I/O SPACE 

Two specific areas in memory and one area in I/O space are 
reserved in the 80186 family. 

Locations OH through 3FFH in low memory are reserved 
for interrupt vectors. 

Locations OFFFFOH through OFFFFFH in high memory 
are reserved for system reset code since the processor 
begins execution at OFFFFOH. 

Locations OF8H through OFFH in I/O space are reserved 
for communication with other Intel hardware products. 
On the 80C 186, these addresses are used as I/O ports for 
the 80C 187 numerics processor extension. 

The peripheral control block (see Section 5.0) may reside in 
memory or I/O space. All unused locations in the peripheral 
control block are also reserved. 

2.2 SOFTWARE OVERVIEW 

All 80 186 family members execute exactly the same instruc­
tions. This instruction set includes all the 8086/8088 instruc­
tions plus several useful additions and enhancements. The 
following sections provide a description of the instructions by 
category and a detailed discussion of the various operand 
addressing modes. 

Soft\vare for 80 186 fa..T!ily systems does not need to be written 
in assembly language. The processor provides direct hard­
ware support for programs written in the many high-level 
languages available. Most high-level languages store vari­
ables in memory; the symmetrical instruction set supports 
direct operation on memory operands, including operands on 
the stack. The hardware addressing modes provide efficient, 
straightforward implementations of based variables, arrays, 
arrays of structures and Olher high-level language data con­
structs. A powerful set of memory-to-memory string opera­
tions is available for efficient character data manipulation. 
Finally, routines with critical perfonnance requirements that 
cannot be met with high-level languages may be written in 
assembly language and linked with high-level code. 

2.2.1 INSTRUCTION SET 

Instructions in the 80186 processor family treat different types 
of operands uniformly. Nearly every instruction can operate 
on either byte or word data. Register, memory and immediate 

2-10 

operands may be specified interchangeably in most instruc­
tions. The exception to this is that immediate values serve as 
source and not destination operands. In particular, memory 
variables may be added to, subtracted from, shifted, com­
pared, and so on, in place, without moving them in and out of 
registers. This saves instructions, registers, and execution time 
in assembly language programs. In high-level languages, where 
most variables are memory-based, compilers can produce faster 
and shorter object programs. 

The 80186 family instruction set can be viewed as existing on 
two levels. One is the assembly level and the other is the 
machine level. To the assembly language programmer, the 
80186 family appears to have a repertoire of about 100 instruc­
tions. One MOY (data move) instruction, for example, trans­
fers a byte of a word from a register of a memory location or an 
immediate value to either a register or a memory location. The 
80186 family CPUs, however, recognize 28 different machine 
versions of the MOY instruction. 

The two levels of instruction set address two different require­
ments: efficiency and simplicity. The approximately 300 forms 
of machine-level instructions make very efficient use of stor­
age. For exarnple, the machine instruction that increments a 
memory operand is three or four bytes long because the ad­
dress of the operand must be encoded in the instruction. To 
increment a register, however, does not require as much infor­
mation, so the instruction can be shorter. The 80 186 family has 
eight different machine-level instructions that increment a 
different 16-bitregister. Each of these instructions is only one 
byte long. 

The assembly level instructions simplify the programmer's 
view of the instruction set. The programmer writes one fonn 
of an INC (increment) instruction and the assembler examines 
the operand to determine which machine level instruction to 
generate. The following paragraphs provide a functional de­
scription of the assembly-level instructions. 

2.2.1.1 DATA TRANSFER INSTRUCTIONS 

The instruction set contains 14 data trans fer instructions. These 
instructions move single bytes and words between memory 
and registers, and also move single bytes and words between 
the AL or AX registers and I/O ports. Table 3 lists the four 
types of data transfer instructions and their functions. 

Data transfer instructions are categorized as general purpose, 
input/output, address object, and flag transfer. The stack ma­
nipulation instructions which are used for transferring flag 
contents, and the instructions for loading segment registers are 
also included in this group. Figure 13 shows the flag storage 
formats. The address object instructions manipulate the ad­
dresses of variables instead of the contents of values of the 
variables. This is useful for list processing, based variable, and 
string operations. 



OVERVIEW OF THE 80186 FAMIL V 

Table 3. Data Transfer Instructions 2.2.1.2 ARITHMETIC INSTRUCTIONS 

MOV 

PUSH 

POP 

PUSHA 

POPA 

XCHG 

XLAT 

IN 

OUT 

GENERAL PURPOSE 

Move byte or word 

Push word onto stack 

Pop word off stack 

Push registers onto stack 

Pop registers off stack 

Exchange byte or word 

Translate byte 

INPUT/OUTPUT 

Input byte or word 

Output byte or word 

The arithmetic instructions (see Table 4) operate on fourtypes 
of numbers: 

I. Unsigned binary. 

2. Signed binary (integers). 

3. Unsigned packed decimal. 

4. Unsigned unpacked decimal. 

Table 5 shows the interpretations of various bit patterns ac­
cording to each number type. 

ADDRESS OBJECT AND STACK FRAME 
Binary numbers may be 8 or 16 bits long. Decimal numbers 
are stored in bytes, two digits per byte for packed decimal and 
one digit per byte for unpacked decimal. The processor always 
assumes that the operands specified in arithmetic instructions 
contain data that represent valid numbers for the instruction 
being performed. Invaliddatamayproduce unpredictable results. 
The processor analyzes arithmetic results and posts certain 
characteristics of the operation to six flags. 

LEA 

LOS 

LES 

ENTER 

LEAVE 

LAHF 

SAHF 

PUSHF 

POPF 

Load effective address 

Load pointer using OS 

Load pointer using ES 

Build stack frame 

Tear down stack frame 

FLAG TRANSFER 2.2.1.3 BIT MANIPULATION INSTRUCTIONS 

Load AH register from flags 

Store AH register in flags 

Push flags onto stack 

Pop flags off stack 

There are three groups of instructions for manipulating bits 
within both bytes and word. These three groups are logical, 
shifts and rotates. Table 6 lists these three groups of bit ma­
nipulation instructions with their functions. 

~~~~IS!Z!U!A,U,P!u,cl 
1765432101

I I
I 1
I I

~g~~F I U I U ! U I U 10 ! a , I ! T ! S , Z , U ! A ! U ! P ! U I C I
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

U = UNDEFINED; VALUE IS INDETERMINATE
o = OVERFLOW FLAG
D = DIRECTION FLAG
I = INTERRUPT ENABLE FLAG
T = TRAP FLAG
S = SIGN FLAG
Z = ZERO FLAG
A = AUXILIARY CARRY FLAG
P = PARITY FLAG
C = CARRY FLAG

Figure 13. Flag Storage Format

2-11

270288·001-13

OVERVIEW OF THE 80186 FAMIL V

Table 4. Arithmetic Instructions Table 6. Bit Manipulation Instructions

ADDITION LOGICALS

ADD Add byte or word NOT "Not" byte or word
ADC Add byte or word with carry AND "And" byte or word
INC Increment byte or word by 1 OR "Inclusive or" byte or word
AAA ASCII adjust for addition XOR "Exclusive or" byte or word
DAA Decimal adjust for addition TEST "Test" byte or word

SUBTRACTION SHIFTS

SUB Subtract byte or word SHUSAL Shift logical/arithmetic left
SBB Subtract byte or word with byte or word

borrow SHR Shift logical right byte or word
DEC Decrement byte or word by 1 SAR Shift arithmetic right byte or
NEG Negate byte or word word

CMP Compare byte or word ROTATES
AAS ASCII adjust for subtraction ROL Rotate left byte or word
DAS Decimal adjust for subtraction ROR Rotate right byte or word

MULTIPLICATION RCL Rotate through carry left byte

MUL Multiply byte or word unsigned

IMUL Integer multiply byte or word

or word

RCR Rotate through carry right byte
or word

AAM ASCII adjust for multiply

DIVISION

DIV Divide byte or word unsigned

IDIV Integer divide byte or word

AAD ASCII adjust for division
CBW Convert byte to word

CWO Convert word to doubleword

Table 5. Arithmetic Interpretation of 8-Bit Numbers

HEX BIT PATTERN
UNSIGNED

BINARY

07 00000111 7

89 10001001 137

C5 11000101 197

The logical instructions include the Boolean operators NOT,
AND, inclusive OR, and exclusive OR (XOR). A TEST in­
struction that sets the flags as a result of a Boolean AND
operation, but does not alter either of its operands, is also
included.

The bits in bytes and words may be shifted arithmetically or
logically. Up to 255 shifts may be performed, according to the
value of the count operand coded in the instruction. The count
may be specified as an immediate value or as a variable in the

2-12

SIGNED UNPACKED PACKED
BINARY DECIMAL DECIMAL

+7 7 7

-119 invalid 89

-59 invalid invalid

CL register, allowing the shift count to be a variable supplied
at execution time. Arithmetic shifts may be used to multiply
and divide binary numbers by powers of two. Logical shifts
can be used to isolate bits in bytes or words.

B its in bytes and words can also be rotated. The processor does
not discard the bits rotated out of an operand; the bits circles
back to the other end of the operand. As in the shift instruc­
tions, the number of bits to be rotated is taken from the count
operand, which may specify either an immediate value, or the

OVERVIEW OF THE 80186 FAMIL V

CL register. The carry flag may act as an extension of the
operand in two of the rotate instructions, allowing a bit to be
isolated in CF and then tested by a JC (jump if carry) or JNC
(jump if not carry) instruction.

2.2.1.4 STRING INSTRUCTIONS

Five basic string operations allow strings of bytes or words to
be operated on, one element (byte or word) at a time. Strings
of up to 64 Kbytes may be manipulated with these instruc­
tions. Instructions are available to move, compare and scan for
a value, as well as moving string elements to and from the
accumulator. Table 7 lists the string instructions. These basic
operations may be preceded by a special one-byte prefix that
causes the instruction to be repeated by the hardware, allowing
long strings to be processed much faster than would be pos­
sible with a software loop. The repetitions can be terminated
by a variety of conditions, and repeated operations may be
interrupted and resumed.

Table 7. String Instructions
REP Repeat

REPE/REPZ Repeat while equal/zero

REPNE/REPNZ Repeat while not
equal/not zero

MOVS Move byte or word string

MOVSB/MOVSW Move byte or word string

INS Input byte or word string

OUTS Output byte or word string

CMPS Compare byte or word
string

SCAS Scan byte or word string

LODS Load byte or word string

STOS Store byte or word string

The string instructions operate similarly in many respects (refer
to Table 8). A string instruction may have a source operand, a
destination operand, or both. The hardware assumes that a
source string resides in the current data segment. A segment
prefix may be used to override this assumption. A destination
string must be in the current extra segment. The assembler
checks the attributes of the operands to determine if the ele­
ments of the strings are bytes or words. However, the assem­
bler does not use the operand names to address strings. In­
stead, the contents of register SI (source index) are used as an
offsetto address the current element of the source string. Also,
the contents of register or (destination index) are taken as the
offset of the current destination string element. These registers
must be initialized to point to the source/destination strings
before executing the string instructions. The LOS, LES and
LEA instructions are useful in performing this function.

2-13

Table 8. String Instruction Register and Flag Use

SI Index (offset) for source string

01 Index (offset) for destination
string

CX Repetition counter

AUAX Scan value
Destination for LODS
Source for STOS

OF 0: auto-increment SI, 01
1 : auto-decrement SI, 01

ZF Scan/compare terminator

String instructions automatically update the SI or or register
or both prior to processing the next string element. Setting the
direction flag (OF) determines whether the index registers are
auto-incremented (OF: 0) or auto-decremented (OF: I).
The processor adjusts the or or SI register or both by one if
byte strings are being processed. The adjustment is two for
word strings.

If a repeat prefix has been coded, then register CX (the count
register) is decremented by one after each repetition of the
string instruction. The CX register must be initialized to the
number of repetitions desired before the string instruction is
executed. If the CX register is 0, the string instruction is not
executed and control goes to the following instruction.

2.2.1.5 PROGRAM TRANSFER
INSTRUCTIONS

The sequence in which instructions are executed in the 80 186
family is determined by the contents of the CS and IPregisters.
The CS register contains the base address of the current code
segment. The IP register points to the memory locations from
which the next instruction is to be fetched. In most operating
conditions, the next instruction to be executed will have al­
ready been fetched and is waiting in the CPU instruction queue.
The program transfer instructions operate on the instruction
pointer and on the CS register; changing the content of these
causes normal sequential operation to be altered. When a program
transfer occurs, the queue no longer contains the correct in­
struction. When the BIU obtains the next instruction from
memory using the new IP and CS values, it passes the instruc­
tion directly to the EU and begins refilling the queue from the
new location.

Four groups of program transfers are available with the 80186
family processors. See Table 9. These are unconditional trans­
fers, conditional transfers, iteration control instructions, and
interrupt-related instructions.

OVERVIEW OF THE 80186 FAMIL V

Table 9. Program Transfer Instructions

UNCONDITIONAL TRANSFERS

CALL Call procedure

RET Return from procedure

JMP Jump

CONDITIONAL TRANSFERS

JNJNBE Jump if above/not below
nor equal

JAE/JNB Jump if above or equall
not below

JB/JNAE Jump if below/not above
nor equal

JBE/JNA Jump if below or equall
not above

JC Jump if carry

JElJZ Jump if equal/zero

JG/JNLE Jump if greater/not less
nor equal

JGE/JNL Jump if greater or equall
not less

JUJNGE Jump if less/not greater
nor equal

JLElJNG Jump if less or equall
not greater

JNC Jump if not carry

JNElJNZ Jump if not equal/not zero

JNO Jump if not overflow

JNP/JPO Jump if not parity/parity odd

JNS Jump if not sign

JO Illmn if nVOo"lnul

JP/JPE I ~:~~;; ~a~;~;~~rity even
JS Jump if sign

ITERATION CONTROLS

LOOP Loop
LOOPEILOOPZ Loop if equal/zero

LOOPNEILOOPNZ Loop if not equal/not zero

JCXZ Jump if register CX=O

INTERRUPTS

INT Interrupt

INTO Interrupt if overflow

BOUND Interrupt if out of array
bounds

IRET Interrupt return

The unconditional transfer instructions may transfer control to
a target instruction within the current code segment (intraseg­
ment transfer) or to a different code segment (intersegment
transfer). Theassemblertermsan intrasegmenttransferSHORT
or NEAR and an intersegment transfer FAR. The transfer is
made unconditionally any time the instruction is executed.

The conditional transfer instructions are jumps that mayor
may not transfer control depending on the state of the CPU
flags at the time the instruction is executed. These 18 instruc­
tions (see Table 10) each test a different combination of flags
for acondition. If the condition is logically TRUE then control
is transferred to the target specified in the instruction. If the
condition is FALSE then control passes to the instruction that
follows the conditional jump. Allconditionaljumps are SHORT,
that is, the target must be in the current code segment and
within -128 to + 127 bytes of the first byte of the next instruc­
tion. For example, JMP OOH causes a jump to the first byte of
the next instruction. Since jumps are made by adding the rela­
tive displacement of the target to the instruction pointer, all
conditional jumps are self-relative and are appropriate for
position-independent routines.

The iteration control instructions can be used to regulate the
repetition of software loops. These instructions use the CX
register as a counter. Like the conditional transfers, the itera­
tion control instructions are self-relative and may only transfer
to targets that are within -128 to + 127 bytes of themselves, i.e.,
they are SHORT transfers.

The interrupt instructions allow interrupt service routines to
be activated by programs as well as by external hardware
devices. The effect of software interrupts is similar to hard­
ware-initiated interrupts. However,theprocessorcannotexecute
an interrupt acknowledge bus cycle if the interrupt originates
in software or with an NMI (Non-Maskable Interrupt).

2.2.1.6 PROCESSOR CONTROL
INSTRUCTIONS

2-14

The processor control instructions (see Table II) allow pro­
grams to control various CPU functions. One groupofinstruc­
tions updates flags, and another group is used primarily for
synchronizing the microprocessor to external events. A final
instruction causes the CPU to do nothing. Except for the flag
operations, none of the processor control instructions affects
the flags.

2.2.2 ADDRESSING MODES·

An 80186 family member accesses instruction operands in
many different ways. Operands may be contained in registers,
within the instruction itself, in memory, or at I/O ports. Also,
the addresses of memory and I/O port operands can be calcu­
lated in several different ways. These addressing modes greatly

OVERVIEW OF THE 80186 FAMILY

Table 10. Interpretation of Conditional Transfers

MNEMONIC CONDITION TESTED "JUMPIF ... "

JAlJNBE (CF orZF)=O above/not below nor equal

JAE/JNB CF=O above or equal/not below

JB/JNAE CF=1 below/not above nor equal

JBE/JNA (CF orZF)=1 below or equal/not above

JC CF=1 carry

JE/JZ ZF=1 equal/zero

JG/JNLE ((SF xor OF) or ZF) = 0 greater/not less nor equal

JGE/JNL (SF xor OF)=O greater or equal/not less

JUJNGE (SF xor OF)=1 less/not greater nor equal

JLE/JNG ((SF xor OF) or ZF)=1 less or equal/not greater

JNC CF=O not carry

JNE/JNZ ZF=O not equal/not zero

JNO OF=O not overflow

JNP/JPO PF=O not parity/parity odd

JNS SF=O not sign

JO OF=1 overflow

JP/JPE PF=1 parity/parity equal

JS SF=1 sign

Note: "above" and "below" refer to the relationship of two unsigned values;
"greater" and "less" refer to the relationship of two signed values.

Table 11. Processor Control Instructions

FLAG OPERATIONS

STC Set carry flag

CLC Clear carry flag

CMC Complement carry flag

STD Set direction flag

CLD Clear direction flag

STI Set interrupt enable flag

CLI Clear interrupt enable flag

EXTERNAL SYNCHRONIZATION

HLT Halt until interrupt or reset

WAIT Wait for TEST pin active

ESC Escape to external processor

LOCK Lock bus during next
instruction

NO OPERATION

NOP No operation

2-15

extend the flexibility and convenience of the instruction set.
The following paragraphs briefly describe the register and
immediate modes of operand addressing. and then provide a
detailed description of the memory and I/O addressing modes.

2.2.2.1 REGISTER AND IMMEDIATE
OPERAND ADDRESSING MODES

Instructions that specify only register operands are usually the
most compact and fastest executing of the operand addressing
forms. This is because the register operand addresses areencoded
in instructions in just a few bits, and because these operands
are performed entirely within the CPU (no bus cycles are run).
Registers may serve as source operands, destination operands,
or both.

Immediate operands are constant data contained in an instruc­
tion. The data may be either 8 or 16 bits in length. Immediate
operands can be accessed quickly because they are available
directly from the instructim) queue. Like the register operand,
no bus cycles need to be run to get an immediate operand. The
limitations on immediate operands are that they may only
serve as source operands and that they are constant in value.

OVERVIEW OF THE 80186 FAMILY

2.2.2.2 MEMORY ADDRESSING MODES

Although the EU has direct access to register and immediate
operands, memory operands must be transferred to and from
the CPU over the bus. When the EU needs to read or write a
memory operand, it must pass an offset value to the BIU. The
BIU adds the offset to the shifted contents of a segment regis­
ter producing a 20-bit physical address and then executes the
bus cycle or cycles needed to access the operand.

The offset that the EU calculates for memory operand is called
the operand' seffective addressorEA. This address is an unsigned
16-bit number that expresses the operand's distance in bytes
from the beginning of the segment in which it resides. The EU

ENCODED
INTHE
INSTRUCTION

EXPLICIT {
INTHE
INSTRUCTION

ASSUMED
UNLESS
OVERRIDDEN
BY PREFIX

r

SINGLE INDEX

can calculate the effective address in several ways. Informa­
tion encoded in the second byte of the instruction tells the EU
how to calculate the effective address of each memory oper­
and. A compiler or assembler derives this information from
the statement or instruction written by the programmer. As­
sembly language programmers have access to all addressing
modes.

The EU calculates the EA by summing a displacement, the
content of a base register and the content of an index register
(see Figure 14). Any combination of these three components
may be present in a given instruction. This allows a variety of
memory addressing modes.

DOUBLE INDEX

EU

BIU

270266·001-14

Figure 14. Memory Address Computation

2-16

OVERVIEW OF THE 80186 FAMILY

The displacement element is an 8-bit or 16-bit number that is
contained in the instruction. The displacement generally is
derived from the position of the operand name (a variable or
label) in the program. The programmer can also modify this
value or explicitly specify the displacement.

A programmer may specify that either the BX or BP register
is to serve as a base register whose content is to be used in the
EA computation.

Similarly, either the SI or DI register may be specified as the
index register. Thedisplacementvalueis aconstant. Thecontents
of the base and index registers may change during execution.
This allows one instruction to access different memory loca­
tions as determined by the current values in the base or base
and index registers. Effective address calculations with the BP
register are made using the SS register, by default, although
either the DS or the ES register may be specified instead.

Direct addressing is the simplest memory addressing mode
(see Figure 15). No registers are involved and the EA is taken

directly from thedisplacementofthe instruction. Theprogrammer
typically uses direct addressing to access scaler variables.

With register indirect addressing, the effective address of a
memory operand may be taken directly from one of the base or
index registers (see Figure 16). One instruction can operate on
many different memory locations if the value in the base or
index register is updated appropriately. Any 16-bit general
register may be used for register indirect addressing with the
JMP or CALL instructions.

In based addressing (see Figure 17), the effective address is the
sum of a displacement value and the content of register BX or
BP. Specifying register BP as a base register directs the BIU to
obtain the operand from the current stack segment (unless a
segment override prefix is present). This makes based address­
ing with the BP register a very convenient way to access stack
data.

Based addressing also provides a simple way to address data
structures which may be located at different places in memory

,-------r------,r----,-- - - --, l OPCODE I MOD RIM I DISPLACEMENT I
L-----L------'-----t-____ ..J

I EA

Figure 15. Direct Addressing

BX
OR
BP

OR--+-_-i
SI
OR
DI

I

Figure 16. Register Indirect Addressing

2-17

270288-001-15

270288-001-16

infel® OVERVIEW OF THE 80186 FAMILY

270288-001-17

Figure 17. Based Addressing

HIGH ADDRESS

r '----.:,...--.....
I

I I L __________ J

VAC

DEPT
________ ...J

LOW ADDRESS

270288-001-18

Figure 18. Accessing a Structure with Based Addressing

(see Figure 18). A base register can be pointed at the structure
and elements of the structure can be addressed by their dis­
placement. Different copies of the same structure can be ac­
cessed by simply changing the base register.

With indexed addressing, the effective address is calculated
from the sum of a displacement plus the content of an index
register (SI or 01). See Figure 19. Indexed addressing is often
used to access elements in an array (see Figure 20). The dis­
placement locates the beginning ofthe array, and the value of

2-18

the index register selects one element. If the index register
contains OOOOH, the processor selects the first element. Since
all array elements are the same length, simple arithmetic on the
register may select any element.

Based index addressing generates an effective address that is
the sum of a base register, an index register, and a displace­
ment (see Figure 21). This mode of addressing is very flexible
because the values of two address components can be deter­
mined at execution time.

inter

r
I
I
I
I

OVERVIEW OF THE 80186 FAMILY

Figure 19. Indexed Addressing

HIGH ADDRESS

ARRAY (8)

ARRAY (7)

ARRAY (6)

ARRAY (5)

270288-001 -19

...,

I INDEX REGISTER ARRAY (4) INDEX REGISTER

I
I
I
I
I EA
L __________ _

ARRAY (3) 2

ARRAY (2) ,

~_A_R_R_A_Y_(I_)~ -----1 EA

ARRAY (0)

1 WORD
LOW ADDRESS

Figure 20. Accessing an Array with Indexed Addressing

2-19

270288-001 -20

OVERVIEW OF THE 80186 FAMIL V

270288-001-21

Figure 21. Based Index Addressing

HIGH ADDRESS

DISPLACEMENT
PARM2

PARM 1

IP

OLD BP

OLD BX (BP) 1.-_--,.....-_--' .,

OLD AX I
ARRAY (6) I

i ARRAY (5) i
I AA~~ I
I AA~~ I

I I ARRAY (2) I
I I ARRAY (1) I
I II r- ARRAY (0) ~ II

'I' COUNT 'I'
T------.J 1------1 I-------~

L ______ l i ______ ~

.... 1 WORD
LOWER ADDRESS

Figure 22. Accessing a Stacked Array with Based Index Addressing

2-20

270288-001-22

OVERVIEW OF THE 80186 FAMILY

Based index addressing provides a convenient way for a pro­
cedure to address an array allocated on a stack (see Figure 22).
Register BP can contain the offset of a reference point on the
stack, typically the top of the stack after the procedure has
saved registers and allocated local storage. The offset of the
beginning of the array from the reference point can be ex­
pressed by a displacement value, and the index register can be
used to access individual array elements. Arrays contained in
structures and matrices (two-dimensional arrays) can also be
accessed with based indexed addressing.

String instructions do not use the normal memory addressing
modes to access operands. Instead, the index registers are
used implicitly (see Figure 23). When a string instruction is
executed, the SI register is assumed to point to the first byte or
word of the source string. The DI register is assumed to point
to the first byte or word of the destination string. In a repeated
string operation, the CPU will automatically adjust the SI and
DI registers to obtain subsequent bytes or words. Note that for
string instructions the OS register is the default segment reg­
ister for the SI register and the ES register is the default seg­
ment register for the DI register. This allows string instruc­
tions to easily operate on data located anywhere within the one
megabyte address space.

I OPCODE I

~ ____ S_I ____ ~r---1 SOURCEEA

01 r---1 DESTINATION EA I
270288-001·23

Figure 23. String Operand

2.2.2.3 110 PORT ADDRESSING

Any of the memory operand addressing modes may be used to
access an I/O port if the POrt is memory-mapped. String in­
structions can also be used t6 transfer data to memory-mapped
ports with an appropriate hardware interface.

Two different address modes can be used to access ports lo­
cated in the I/O space (see Figure 24). The port number is an 8-
bit immediate operand for direct addressing. This allows fixed
access to ports numbered 0-255. Indirect I/O port addressing
is similar to register indirect addressing of memory operands.
The port number is taken from register OX and can range from
o to 65,535. By previously adjusting the content of register
OX, one instruction can access any port in the I/O space. A
group of adjacent ports can be accessed using a simple soft­
ware loop that adjusts the value of the OX register.

2-21

DIRECT PORT ADDRESSING

INDIRECT PORT ADDRESSING

270288-001-24

Figure 24. 1/0 Port Addressing

2.2.3 DATA TYPES USED IN THE 80186
FAMILY

The 80186 family supports the following data types:

Integer -A signed binary numeric value contained in an 8-
bit byte or a 16-bit word. All operations assume a 2's
complement representation. Signed 32-and 64-bit inte­
gers are directly supported with the addition of an 8087
Numeric Coprocessor to an 80 186/80 188 system or by the
addition of an 80C 187 Numerics Processor Extension to
an 80C 186 system.

Ordinal- An unsigned binary numeric value contained in
an 8-bit byte or a 16-bit word.

Pointer - A 16- or 32-bit quantity, composed of a 16-bit
offset component or a 16-bit segment base component in
addition to a 16-bit offset component.

String -A contiguous sequence of bytes of words. A string
may contain from one byte to 64 Kbytes.

ASCII - A byte representation of alphanumeric and con­
trol characters using the ASCII standard.

BCO - A byte (unpacked) representation of the decimal
digits 0-9.

OVERVIEW OF THE 80186 FAMll V

Packed BCD-Abyte (packed) representationoftwodecimal
digits (O-9)~ One digit is stored in each nibble (4 bits) ofthe
byte.

Roating Point - A signed 32-, 64-, or 80-bit real number
representation. Roating point operands are directly sup­
ported with the addition of an 8087 Numerics Coproces­
sorto an 80 186/80 188 system or by addition of an 80C 187
Numerics Processor Extension to an 80C 186 system.

In general, individual data elements must fit within defined
segment limits. Figure 25 graphically represents the data types
supported by the 80186 family.

2.3 DMA CONTROL UNIT

The 80186 processor family includes a DMA Control Unit
which provides two flexible DMA channels. The DMA Unit
will perform transfers to or from any combination ofUO space
and memory space in either byte or word units. Every DMA
cycle requires two to four bus cycles, one or two to fetch the
data and one or tWo to deposit the data. This allows word data
to be located on odd boundaries, or byte data to be moved from
odd locations to even locations.

Each DMA channel maintains independent 20-bit source and
destination pointers. Each of these pointers may independ­
ently address either UO or memory space. After each DMA
cycle, the processor can increment, decrement, or retain the
pointer values. Each DMA channel also maintains a transfer
count which can terminate a series of DMA transfers after a
programmed number of transfers.

2.4 TIMERS

The Timer Unit contains three independent I 6-bit timer/count­
ers. Two of them can count external events, provide wave­
forms based on either the CPU clock or an external clock, or
interrupt the CPU after ,II specified count. The third timer/
counter counts only CPU clocks. After a programmable inter­
val, it can interrupt the CPU, provide a clock pulse to either or
both of the other timer/counters, or initiate a DMA request to
the integratedDMA Control Unit.

2.5 INTERRUPT CONTROL UNIT

The integrated Interrupt Controller arbitrates interrupt requests
between all internal and external sources. It can be directly
cascaded as the master to an external 8259A or 82C59A Inter­
rupt Controller. In addition, it can be configured as a slave
controller to an external master.

2-22

1 0
SIGNEO rTTTTTTT1

BYTe l.L.!.-...J
$IGN BIT . L--.....J

MAGNITUDE

1 0
.NSIGNED rrnTTTT1
BYTE~

C!!!........J
MAGNITUDE

1514 +1 • ., 0

s:~=g II iii iii Iii i I' iii
SIGN BIT J,LMSB

'-"::;M~A""G::;NI"'TU"'D"'E-""

SIGNED 31 +3 +2 1615 +' 0

o~~:~~ II Ii I Ii i I Ii r I " i I Ii iii i r I " i I II i I
SIGN BIT J Lol L..::M::;SB=----;;MiiAG;;;NW'IT;;:UmDE.-------'

+7 +6 +5 +4 +3 +2 +1
SIGNED 63 ... 47 3231 1115 0

=~II I I I I J
StON BIT JLo.'-..:;M"'S=-B-'---,M"'AG=NI=TU"'D"'E------'

15 +1 0 0

UNSI::g I' Ii I i Ii Iii i I'i i I
,LMSB

MAGNITUDE

BINARY·" +N 0
CODED rrnTTTT1
DECIMAL~

fBCD) DI~~ N

., +N 0

ASCII~
ASCII

CHAAACTEAN

., +N 0
PACKED f"'nTrTn1

BCD L-J...........J
L-..J
MOST
SIGNIFICANT DIGIT

., +1 0., 0

I Ii iii jil'l iii iii
BCD BCD

DIGIT 1 DIGIT 0

., +1 07 0

I"ijllrl"iliifl
ASCII ASCII

CHARACTER, CHARACTEAo

1 +1 07 0 0

IfI'I"'J'''I'''1
L-..J
LEAST

SIGNIFICANT DtGlT

71~ +N 0 7t5 +1 0715 0 0

rrnTTTT1 1"'llillll'I"'1 STFlING~ •••• • •

BVTE WORD N BYTE WORD 1 BYTE WORD 0

)1 +3 +2 titS +1 0 0

POINTER ,I iii iii Iii iii i i ,.I iii iii Iii iii iii
SELECTOR OFFSET

71+9 +8 +7 +6 +5 +4 +3 +2 +1

EXPONENT MAGNITUDE

270288·001·25

NOTE:
'Supported directly with additional hardware.

Figure 25. 80186 Family Supported Data Types

OVERVIEW OF THE 80186 FAMILY

2.6 CLOCK GENERATOR

The on-board crystal oscillator can be used with a parallel
resonant crystal at twice the desired CPU clock frequency
(e.g., 25 MHz for a 12.5 MHz 8OCI86), or with an external
oscillator also at twice the CPU clock. The output of oscillator
is internally divided by two to provide a 50 percent duty cycle
CPU clock from which all system timing is derived. The CPU
clock is externally available, and most timing parameters are
referenced to it.

2.7 CHIP SELECT AND READY
GENERATION UNIT

The 80186 family includes integrated chip select logic which
can be used to enable memory or peripheral devices. Six out­
put lines are used for memory addressing and seven output
lines are used for peripheral addressing.

The six memory chip select lines are split into 3 groups for
separately addressing the major memory areas in a typical
80l86-based system: upper memory for boot ROM, lower
memory for interrupt vectors, and mid-range memory for
program memory. The size of each of these regions is user­
programmable. The starting location and ending location of
lower memory and upper memory are fixed at OOOOOH and
FFFFFH respectively; the starting location of the mid-range
memory is user-programmable.

Each of the seven peripheral select lines addresses one of
seven contiguous 128 byte blocks above a programmable base
address. This base address can be located in either memory or
I/O space so that peripheral devices may be I/O-mapped or
memory-mapped.

Each of the programmed chip select areas has associated with
it a set of programmable READY bits. These bits allow a
programmable number of wait states (0 to 3) to be automati­
cally inserted wheneveranaccess is made to the areaofmemory
associated with the chip select. One of the READY bits deter­
mineswhethertheextemalREADYsignaIs(ARDYandSRDY)
will be used, or whether they will be ignored (Le., a bus cycle
will end even though READY is not returned on the external
pins). There are five sets of READY bits which allow inde­
pendent READY generation for each of upper memory, lower
memory, mid-range memory, peripheral devices 0-3 and
peripheral devices 4-6.

2.8 DRAM REFRESH CONTROL UNIT
(80C186/80Cl88 ONLY)

The most important functional improvement of the 80C 186/
80C 188 over the 80186/80188 is the DRAM Refresh Control
Unit (RCU). The RCU consists of a timer and an address

2-23

counter which work with the Bus Interface Unit and chip se­
lect logic to provide DRAM refresh bus cycles at timed inter­
vals. These bus cycles are the same as ordinary read cycles
except that control signals are specially coded. An external
DRAM controller circuit can use the 80C I 86/80C 188 control
signals to generate other necessary signals such as address
strobes RAS and CAS.

2.9 POWER·SAVE UNIT (80C186/SOCl88
ONLY)

The80CI 86/8OCI88alsocontainsaprogrammableclockdivisor
circuit. This Power-Save Unit provides for greatly reduced
operating currents by dividing the processor clock frequency
by 1,4,8, or 16 (to as low as CLKOUT =0.5 MHz). Power­
save operation is under complete programmer control. Appli­
cations which spend most of the time in idle operation can also
exit power-save operation at any time upon receipt of a hard­
ware interrupt.

2.10 ACCESS TO INTEGRATED
PERIPHERALS

The integrated 80 186 family peripherals operate semi-autono­
mously from the CPU. Access to them is via peripheral control
registers located within a 256 byte block of either memory or
I/O space. These registers are all 16-bit, most are read/write,
and are accessed exactly as if they were external devices.
Therefore, standard input, output, or memory instructions may
be used.

80186 Bus Interface Unit 3

CHAPTER 3
BUS INTERFACE UNIT

The 80\ 86 is a true 16-bit microprocessor family with 16-bit
internal data paths, one megabyte (220) of memory address
space, and a separate 64 Kbyte (216) I/O address space. The
CPU communicates with its external environment via a twenty­
bit time-multiplexed address and data bus. There also exists a
command and status bus (see Table 12). This communication
is managed by the Bus Jnterface Unit. To understand the operation
of the address/data bus requires an understanding of the BIU' s
bus cycles.

3.1 T-STATES

To transfer data, fetch instructions, or run DMA cycles, the
CPU executes a bus cycle. A bus cycle consists of a minimum
of four CPU clock cycles or T -states plus any number of wait
states necessary to accommodate the access time limitations
of external memory or peripheral devices. T-states are num­
bered sequentially T" T" TJ , T., and Tw. Additional idleT­
states (T,) can occur between T. and T, when the processor
requires no bus activity. The beginning of aT-state is signaled
by a HIGH-to-LOW transition of the CPU clock. Each T -state
is divided into two phases, phase I (the LOW phase) and phase
2 (the HIGH phase). Figure 26 illustrates an 80186 family
clock cycle.

'~~l~lm Ie L
I 01 I 02

NOTES:
1. Falling edge of Tn.
2. Rising edge ofT n.

I (LOW I (HIGH

I PHASE) I PHASE)

I I
270288-001-26

Figure 26. T-State in a 80186 Family Processor

Table 12. 80186 Family Bus Signals

Function

address/data
address/status
coprocessor control
local bus arbitration
local bus control
multi-master bus
ready (wait) interface
status information

Different types of bus activity occur for all of the T -states (see
Figure 27). Address generation information occurs during T"
and data generation occurs during T" T" T wand T •. The beginning
of a bus cycle is signaled by the status lines of the processor
going from a passive state (all HIGH) to an active state in the
middle of the T-state immediately before T, (either a T. or a
Ti). Information concerning an impending bus cycle appears
during the T -state immediately before the first T -state of the
cycle itself. Two different types ofT. and T, can be generated,
one where the T -state is immediately followed by a bus cycle,
and one where the T -state is immediately followed by an idle
T-state.

3-1

Single Name (with Alternates)

ADO-AD15 (Varie.§L
A16/S3-A19-S6, BHE/S7 (BHE, S7, RFSH)
TEST (TEST/BUSY), PEREa, ERROR)
HOLqJ::ILDA
ALE, RD, WR, DT/R, DEN
LOCK
SRDY,ARDY
SO-S2

During the first type ofT. or T" the processor generates status
information concerning the impending bus cycle. This infor­
mation will be available no later than TcHsv after the LOW -to­
HIGH transition of the processor's CLKOUT in the middle of
the T -state. During the second type of T. or T" the status
outputs remain inactive because no bus cycle will follow. The
decision on which type T. or T, state to present is made at the
beginning of the T -state preceding the T. or T, state (see Figure
28). This determination has an effect on bus latency (see Section
3.8.2).

BUS INTERFACE UNIT

LINES

DATA
LINES

ADDRESSI -r-------~~~~~~----+_--~--~----J
CONTROL -t-----1'------1\
SIGNALS

(RD,WR)

Figure 27. Example Bus Cycle of the 80186

CLOCK

OUT I. I
I ,

STATUS :fI~~ I : . INACTIVE I
_-==;:""-+.J Ta or I - STATUS :

INFO

CLOCK

OUT

ACTIVE I STATUS STATUS ,
LINES -';;;';';;;';';;;"'-..1

Tw : T. : T,
Decision: Another bus c~le immediately
required-no idle bu. cyae.

I I

INACTIVE
STATUS

I
I

\ ACTIVE
STATUS

270288-001-27

270288-001-26

Figure 28. Activ~lnactive Status Transitions in 80186 Family Processor

The READY signals control the number of wait states (Tw)
inserted in each bus cycle. The maximum number of wait
states is unbounded.

The bils may remain idle for several T-states (T) between
accesses initiated by an 80186familyprocessor. This situation
occurs under the following diverse conditions:

When the prefetch queue is full.

When the processor is running a type of bus cycle which
always includes idle states (interrupt acknowledge, for
example).

3-2

When an instruction forces idle states (LOCK, for ex­
ample).

When the DMA Control Unit forces idle states in destina­
tion-synchronized mode.

During idle states, the processor may not necessarily float the
bus; however, if the processor does drive the bus, no control
strobes are active.

BUS INTERFACE UNIT

3.2 PHYSICAL ADDRESS GENERATION

Physical addresses are generated by 80186 family processors
during TI of a bus cycle. Since the address and data lines are
multiplexed, addresses must be latched during T I if they are
required to remain stable for the duration of the bus cycle. To
facilitate latching of the physical address, 80186 family proc­
essors generate an active-HIGH ALE (Address Latch Enable)
signal which can be directly connected to the strobe input of a
transparent latch. ALE is active for all bus cycles and never
floats (except during ONCE Mode for system testing).

Figure 29 illustrates the physical address generation parame­
ters. Addresses are valid no later than T CIA V after the beginning
ofT I' and remain valid at least T CLAX afterthe end of TI. The
ALE signal is driven HIGH in the middle of the T-state (either
T4 or T) immediately preceding TI and is driven LOW in the
middle of TI, no sooner than TAVLL after address becomes
valid. TAVLL satisfies the address latch set-up times of address
valid to strobe inactive. Addresses remain stable on the ad­
dress/data bus at least T LLAX after ALE goes inactive to satisfy
address latch hold times.

CLOCK

OUT

TIOR

T.

ALE __J

NOTES:

T,

1. T CHLH: Clock high to ALE high.
2. T CLA v: Clock high to address valid.

270288-001-29

3. T CHLL: Clock hlQh to ALE low.
4. T CLAX: Clock low to address invalid (address hold

from clock low).
5. T LLAX: ALe low t address invalid (address hold

from ALE).
6. T AVLL: Address valid to ALE low (address setup

to ALE).

Figure 29. Address Generation Timing

Because ALE goes HIGH before addresses become valid, the
delay through the address latches will be the propagation delay
through the latch rather than the delay from the latch strobe.

A typical circuit for latching physical addresses is shown in
Figure 30. Thi~ circuit uses 3 transparent non-inverting latches
to demultiplex the 20 address bits provided on all 80 I 86 family
microprocessors. Typically, the upper 4 address bits only select

3-3

among various memory components or subsystems, so when
the integrated chip selects (see Chapter 7) are used, these upper
bits need not be latched. The worst case address generation
time from the beginning ofT! (including address latch propa­
gation) time for .the circuit is:

Some memory and peripheral devices do not require addresses
to remain stable throughout a data transfer. If a system is
constructed wholly with these types of devices, addresses need
not be latched. In addition, two of the peripheral chip select
outputs may be configured to provide latched A I and A2
outputs for peripheral register selects in a system which does
not demultiplex the address/data bus.

SIGNALS
FROM CPU

A16- 4

A19

AD8- 8

AD15

ADO-
8

AD7
ALE

4

6E

8
STB

6E

STB

6E

....

LATCHED
ADDRESS
SIGNALS

A16-A19

A8-A15

AO-A7

270288-001-30

Figure 30. Demultiplexing the Address Bus
of an 80186 Family Processor
Using Transparent Latches

The 80186!80C186 generates one more signal, BHE (Bus
High Enable), to address memory. BHE and AO are used to
enable data transfers on either or both halves of the 16-bit bus.
Since AO only enables devices onto the lower half of the data
bus, syste.ms commonly drive address inputs with address bits
AI-AI9. This provides 512K unique word addresses, or 1M
unique byte addresses. BHE does not need to be latched. On
the 80 I 88/8OC 188, BHE is absent; all data transfers take place
across a single byte-wide data bus.

On 80186 family processors, effective (physical) address
calculations take place in dedicated hardware. An effective
address (EA) calculation may beeitherfully-pipelinedornon­
pipe lined. The BIU gives no indication when a fully-pipelined
address calculation occurs.

BUS INTERFACE UNIT

Non-pipelined EA calculations' are required anytime an in­
struction has MOD andRlMbits in its opcode. These bits often
denote addressing modes which take longer to-calculate the
EA, such as register-offset or two-register addressing. Here
are some assembly code examples which cause non-pipelined
EA calculations:

MOV AX, ES:[OIl ; Uses indirect
addressing.

AND AX, [OIl + 5 ; Uses register-offset
addressing.

XCHG mem_ variable, OX ; Direct offset but has
MOD and RIM bits.

A non-pipelined EA calculation takes four clocks, and occurs
duringT3(orTw)-T.-T;-T;, T.(orT;)-T;-T;-T;,orDMAdeposit
bus cycle sequences. In addition to inserting any necessary
idle T -states, a non-pipelined EA calculation alters the usual
bus cycle priority scheme. Data cycles (reads or writes) asso­
ciated with the instruction temporarily take the highest bus
priority possible, higher than even 80C186/8OC188 DRAM
refresh cycles. The altered priority scheme is a mechanism to
better utilize the Execution Unit.

3.3 DATA BUS

Many small systems do not require buffering because 80186
family devices have adequate bus drive capabilities. If data
buffers are not used, care should be taken not to allow bus
contention between the processor and the deviCes directly
connected to the data bus. Since the processor floats the ad­
dress/data bus before activating any command lines, the only
requirement on a directly connected device is that it float its
output drivers after a read before the processor begins to drive
address infonnation for the next bus cycle. The parameter of
interest here is the minimum time from RD inactive until
addresses go active for the next bus cycle (T RllAv). If the memory
or peripheral device cannot disable its output drivers in this
time, data buffers will be required to prevent both the proces­
sor and the device from driving these lines simultaneously.
This parameter is unaffected by the addition of wait states.
Data buffers solve this problem because their -output float
times are typically much faster than the required minimum.

3.3.1 80186/SOC186 DATA BUS OPERATION

Throughout T2, T" Tw and T. of a bus cycle the multiplexed
address/data bus .becomes a 16-bit data bus. Data transfers on
this bus may be either bytes or words. All memory is byte­
addressable (see Figure 31).

All bytes with even addresses (AO= 0) reside on the lower 8
bits of the data bus, while all bytes with odd addresses (AO =
1) reside on the upper 8 bits of the data bus. Whenever an
access is made to only the even byte, AO is driven LOW, BHE

3-4

~·.a~·I:·.a~
WORD ADDRESS i----;.....--~

I I I~·~~ o

08-015 DO-07 80186 Family
Signal Connections

270288-001-31

Figure 31. Physical Memory ByteIWord
Addressing in 80186 Family

Microprocessors

is driven HIGH, and the data transfer occurs on 00-07 of the
data bus. Whenever an access is made to only the odd byte,
BHE is driven LOW, AO is driven HIGH, and the data trans­
fer occurs on 08-0 15 of the data bus. Finally, if a word access
is perfonned to an even address, both AO and BHE are driven
LOW and the data transfer occurs on DO-DIS of the data bus.

Word accesses are made to the addressed byte and to the next
higher numbered byte. If a word access is perfonned to an odd
address, two byte accesses must be perfonned, the fITSt to
access the odd byte at the first word address on D8-D15,the
second to access the even byte at the next sequential word
address on 00-07. For example, in Figure 31, byte 0 and byte
I can be individually accessed in two separate bus cycles to
byte address 0 and I at word address O. They may also be
accessed together in a single bus cycle to word address o.
However, if a word access is made to address I, two bus cycles
will be required, the first to access byte I at word address 0
(byte 0 will not be accessed), and the second to access byte 2
at word address 2 (byte 3 will not be accessed). This is why all
word data should be located at even addresses to increase
processor perfonnance.

When byte reads are made, the data returned on the unused
half of the data bus is ignored. When byte writes are made, the
data driven on the unused half of the data bus is indetenninate.

The 80186/80C186 always fetches the instruction stream in
words from even addresses except that the fITSt fetch after a
program transfer to an odd address obtains a byte. The proces­
sor disassembles the instruction stream inside the processor;
so instruction alignment will not materially affect the per­
fonnance of most systems.

3.3.2 80188/80C188 DATA BUS OPERATION

Because the 80188 and 80CI88 externally have only 8-bit
data buses, the above discussion about upper and lower bytes

BUS INTERFACE UNIT

of the data bus does not apply. No perfonnance improvement
will occur if word data is placed on even boundaries in mem­
ory space. All word accesses require two bus cycles. the first
to access the lower byte of the word and the second to access
the upper byte of the word.

Any 80 I 88/80C 188 access to the integrated peripherals is
perfonned 16 bits at a time, whether byte or word addressing
is used. If a byte operation is used, the external bus indicates
only a single byte transfer even though the word access takes
place. See Section 5.2 for more infonnation on peripheral
control block registers.

3.3.3 PERIPHERAL INTERFACE

The 80186 family can interface with peripheral devices using
eitherI/O instructions or memory instructions (memory-mapped
I/O). The I/O instructions allow the peripheral devices to re­
side in a separate I/O address space while memory-mapped 1/
o allows the full power of the instruction set to be used for
peripheral operations. Up to 64 Kbytes of I/O address space
may be defined for system peripherals. To the programmer,
the separate I/O address space is only accessible with IN and
OUT commands, whichtransferdatabetweenperipheraldevices
and the AX register (or AL for 8-bit data). The first 256 bytes
ofl/O space (0 to 255) are directly addressable while the entire
64 K is only accessible via register indirect addressing through
the DX register. The latter technique is particularly desirable
for service procedures that handle more than one peripheral by
allowing the desired device address to be passed to the proce­
dure as a parameter. Peripherals may be connected to the local
CPU bus or a buffered system bus.

On the 80 I 86/8OC 186, 8-bit peripherals may be connected to
either the upper or lower half of the data bus. Assigning an
equal number of devices to the upper and lower halves of the
bus will distribute the bus loading. If a device is connected to
the upper half of the data bus, all I/O addresses assigned to the
device must be odd (AO = I). If the device is on the lower half
of the bus, its addresses must be even (AO = 0). The address
assignment directs the 8-bit transferto the upper (odd) or lower
(even) half of the l6-bit data bus. Since AO will always be a
one or zero for a specific device, AO cannot be used as an
address input to select registers within a specific device. If a
device on the upper half of the bus and one on the lower half are
assigned addresses that differ only in 1\0 (adjacent odd and
even address), AO and BHE must be conditions of chip select
decode to prevent a write to one device from erroneously
perfonning a write to the other.

16-bit peripheral devices should be assigned even addresses
for reasons of efficient bus utilization and simplicity of device
selection. To guarantee the device is selected only for word
operations, AO and BHE should be conditions of chip select
decode.

3-5

3.4 BUS CONTROL SIGNALS

8018~i1y processors directly provide the control signals
RD, WR, LOCK, and TEST. In addition, the processors pro­
vide the status signals SO-S2 and S6 from which other required
bus control signals can be generated.

3.4.1 RD AND WR

The RD and WR signals strobe data from or to memory or I/O
space.

The RD signal is driven LOW at the beginning ofT, during all
memory and I/O reads (see Figure 32). RD will not become
active until the microprocessor ceases driving address infor­
mation on the address/data bus. Data is sampled into the proc­
essor at the beginning ofT •. RD will not go inactive until the
processor's data hold time has been satisfied.

Note that 80186 family processors do not provide separate
I/O and memory RD signals. If separate I/O read and memory
read signals are required, they can be synthesized using the S1
signal (LOW for I/O operations and HIGH for memory opera­
tions) and the RD signal (see Figure 33). Ifthis approach is
used, the S2 signal will require latching, since the S2 signal
(like SO and S 1) goes to an inactive state well before the begin­
ning ofT. (where RD goes inactive). If S2 was directly used
for this purpose, the type of read command (I/O or memory)
could change just before T. as S2 goes to the inactive state
(HIGH). The status signals may be latched using ALE.

Often the lack of separate I/O and memory RD signals is not
important in a system. Each chip select signal will respond to
accesses exclusively in memory or I/O space. Thus, when a
chip select is used, the external device is enabled only during
accesses to the proper address in the proper space.

The WR signal is also driven LOW at the beginning ofT ~
driven HIGH at the beginning ofT. (see Figure 34). The WR
signal is active for all memory and I/O writes, similar to the
RD signal. Again, separate memory and I/O control lines may
be generated using the latched S2 signal along with WR. More
~rtant, however, is the role of the active-going edge of
WR. At the time WR makes its HIGH-to-LOW transition,
valid write data is not present on the data bus. This has conse­
quences when using WR to generate signals such as column
address strobe (CAS) for DRAMs where data is required to be
stable on the falling edge. 1'1 DRAM applications, the problem
is solved by a DRAM cor.(I"oller. For other applications which
require valid data before the WR transition, placecross~coupled
NAND gates between the CPU and the device on the WR line
(see Figure 35). The added gates delay the active-going edge
ofWR to the device by one clock phase, at which time valid
data is driven on the bus by the microprocessor.

-nt_l@
11Iae-

NOTES:
1: T CLAZ: Clock low unit addr~s float.
2. TCRL: Clock low uM RD active.

BUS INTERFACE UNIT

3. T RL: Address float until RD active.
4. ~VCL: Data valid until clock low (data input set-up time).
5. TgLDX: ClOCk low until ~ invalid (data input hold time).
6. T CLRH: Clock low unt!1 RD high. .
7. T RHAVE: RD high until addresses valid.

270288-001-32

Figure 32. Read Cycle Timing of 80186 Family Microprocessors

LATCH

!ZQ....
ALE READ

~------------------~Ol--'

Figure 33. Generating 110 and Memory Read Signals

NOTES:
1. T CLDV: Clock low unt!1 data valid.
2. T CVTV: Clock low until WR active ..
3. T CVCTX: Clock low untllWR Ina~lve.
4. T CLDOX: Clo~k hil;lh until. data ~alld ..
5. T WHDX: WR Inactive until data Invalid.

Figure 34. Family Write Cycle Timing

3-6

270288-001-33

270288-001-34

BUS INTERFACE UNIT

WR

ClKOUT ----+----'

DELAYED

WRITE

(DATA VALID

ON LEADING EDGE,
270288-001-35

Figure 35. Synthesizing a Delayed Write Signal

3.4.2 QUEUE STATUS SIGNALS

If the RD line isextemally grounded during RESET and remains
grounded during processor operation, the processor enters Queue
Status Mode. When in this mode, the WR and ALE signals
become queue status outputs, reflecting the status of the inter­
nal pre fetch queue during each clock cycle. These signals are
provided to allow a coprocessor (such as the Intel 8087) to
track execution of instructions within the microprocessor. The
interpretation ofQSO (ALE) and QS 1 (WR) is given in Table
13. Note that since Execution Unit operation is independent of
Bus Interface Unit operation, queue status lines may change in
any T -state.

QS1

0
0

1
1

Table 13. Queue Status Encoding

QSO Interpretation

0 no operation
1 first byte of instruction taken from

queue
0 queue was reinitialized
1 subsequent byte of instruction taken

from queue

80186
82C88

SO-52 SO-52
BUS CONTROL

CLOCK
SIGNALS

OUT
ClK

270288-001-36

Figure 36. 80186/82C88 Bus Controller
Inteconnection

3-7

ALE, RD, and WR signals are not directly available from an
80186 family processor when it is configured in Queue Status
Mode. These signals must be derived from the status lines SO­
S2 using an external 82C88 or 82188 Bus Controller (see
Figure 36). To prevent the microprocessor from accidentally
entering Queue Status Mode during RESET, the RD line is
internally provided with a weak pullup device.

3.4.3 STATUS LINES

An 80 186 family processor provides three status outputs which
indicate the type of bus cycle in progress. These signals go
from an inactive state (all HIGH) to one of seven possible
active states during the T -state immediately preceding T, of a
bus cycle (see Figure 28). The possible status line encodings
are given in Table 14. The status lines are driven inactive in the
T3 or TW state immediately preceding T4 of the current bus
cycle.

Table 14. Status Line Interpretation

S2 S1 SO Operation

0 0 0 interrupt acknowledge
0 0 1 read I/O
0 1 0 write I/O
0 1 1 halt
1 0 0 instruction fetch
1 0 1 read memory
1 1 0 write memory
1 1 1 passive

The status lines may be directly connected to an 82C88 Bus
Controller, which provides local bus control signals or
MUL TIBUSTM control signals (see Figure 36). Use of the
82C88 Bus Controller does not preclude the use ofthe CPU­
generated RD, WR andALE signals, however. The processor­
generated signals can provide local bus control signals, while
an 82C88 can provide MUL TIBUS control signals.

BUS INTERFACE UNIT

Two additional status signals are provided by 80186 family
members. S6 provides information concerning the unit gener­
ating the bus cycle. It is multiplexed with A 19 and available
during T2• T,. T, and T w' The processor drives this line LOW
whenever the bus cycle is generated by the CPU. but drives it
HIGH when the bus cycle is generated by the integrated DMA
Unit.

S7 is logically equivalent to BHE and is provided by the 801 86.
This pin is always HIGH on the 80188 and 80CI88 (except
during 80CI88 DRAM refresh cycles) which signifies the
presence of an 8-bit data bus.

3.4.4 SOFTWARE-INITIATED BUS CONTROL

The programmer may control the progress of 80186 family
execution-related bus activity by using the WAIT (or FW AIT).
LOCK, and HL T instructions.

3.4.4.1 TEST INPUT AND LOCK OUTPUT

The 80186 family processor provides a TEST input (TEST/
BUSY on the 80C186) and a LOCK output for coordinating
instruction execution and bus activity.

The TEST input is used in conjunction with the processor
WAIT instruction, typically ina system containing acoproces­
sor. If the input is HIGH when WAIT exeCutes. instruction
execution suspends. TEST will be resampled every five clocks
until it goes LOW. resuming execution. Any enabled inter­
rupts will be serviced while the processor waits for TEST.
This input must also be driven at RESET to configure an
80C186/8OC188 for Enhanced Mode (see Appendix C.2).

The LOCK output is driven LO\V whenever the data cycles of
a LOCKed instruction are executed. A LOCKed instruction is
generated whenever the LOCK prefix occurs immediately
before an instruction. The LOCK prefix is active for the single
instruction immediately following the LOCK prefix. The LOCK
signal indicates to a bus arbiter (e.g., the 8289) that an atomic
(uninterruptible) bus operation is occurring. The bus arbiter
should underno circumstances release the bus while LOCKed
transfers are occurring. An 80186 family processor will not
recognize a bus HOLD, nor will it allow DMA cycles to be run
by the integrated DMA Controller during LOCKed opera­
tions. LOCKed transfers are typically used in multiprocessor
systems to access memory-based semaphore variables which
control access to shared system resources.

On 80186 family devices, the LOCK signal will go active
during T I of the first data cycle of the LOCKed transfer. It is
driven inactive at the end of T4 of the last data cycle of the
LOCKed transfers independent of the number of wait states.

3-8

On the 80186 or the 80188, back-to-back LOCKed instruc­
tions are not allowed. Insert at least six bytes of code between
the end of the first LOCKed instruction and the beginning of
the second LOCKed instruction. This restriction does not apply
to the 80C I 86/80C 188.

The LOCK output is also driven LOW during interrupt ac­
knowledge cycles when the integrated Interrupt Controller
operates in Cascade or Slave Modes (see Sections 9.5.2.2 and
9.6). In these modes, the operation of the LOCK pin may be
altered when an interrupt occurs during execution of a LOCKed
instruction. See Section 9.5.4.2 for a circuit necessary to block
DMA and HOLD requests under such circumstances.

80186 family processors drive LOCK HIGH for one clock
during RESET. Then, the pin floats until the start of the first
bus cycle. LOCK also floats during HOLD.

3.4.4.2 PROCESSOR HALT

A HALT bus cycle signifies that the CPU has executed the
HL T (HALT) instruction. It differs from a regular bus cycle in
two ways.

The first way a HALT bus cycle differs is that neither RD nor
WR will be driven active. Address and data information will
not be driven by the processor. The second way a HALT bus
cycle differs is that the SO-S2 status lines go to their inactive
state (all HIGH) during T 2 of the bus cycle, well before they go
to their inactive state during a regular bus cycle.

Like a normal bus cycle, however, ALE is driven active. Since
no valid address information is present, the information strobed
into the address latches should be ignored. This ALE pulse can
be used, however, to latch the HALT status from the SO-S2
staius lines. READY is ignored during HALT cycles.

The HAL Ted state oftlie processor does not interfere with the
operation of any of the 80186 family integrated peripheral
units. This means that if a DMA transfer is pending while the
processor is HAL Ted, the bus cycles associated with the trans­
fer will run. In fact, DMA latency time will improve while the
processor is HALTed because the DMA Unit will not be con­
tending with the processor for access to the bus (see Section
8.5.1). After the processor HALTs, a HOLD input can elicit
HLDA and release of the bus by the processor as usual.

Activation of RES, an NMI request, or a non-masked interrupt
request from the integrated Interrupt Controller forces the
processor out of the HALT state.

BUS INTERFACE UNIT

3.5 TRANSCEIVER CONTROL SIGNALS

If data buffers are required, the 8Q! 86 family processor pro­
vides DEN (Data ENable) and DT IR (Data TransmitlReceive)
signals to simplify buffer interfacing. The DEN and DT,tR
signals are activated during all bus cycles, including transfers
between the 80C 186 and 80C 187.

The DEN signal is driven LOW whenever the processor is
either ready to receive data (during a read) or when the proc­
essor is ready to send data (during a write). In other words,
DEN is LOW during any active bus cycle when address infor­
mation is not being generated on the address/data pins. In most
systems, the DEN signal should not be directly connected to
the OE inputs of a buffer, since unbuffered devices (or other
buffers) may be directly connected to the processors's ad­
dress/data pins. If DEN were directly connected to several
buffers, contention would occur during read cycles, as many
devices attempt to drive the processor bus. Rather, it should be
a factor along with the chip selects in generating the output
enable. DEN is HIGH whenever DT,tR changes state.

The DT/R signal determines the direction of data through the
bi-directional buffers. It is HIGH whenever data is being written
from the processor, and is LOW whenever data is being read
into the processor. DT/R does not change states between
sequential reads or sequential writes. Unlike the DEN signal,
it may be directly connected to bus buffers, since this signal
does not usually enable the output drivers of the buffer. Figure
37 shows an example data bus subsystem supporting both
buffered and unbuffered devices. Note that the A side of the
buffer is connected to the 80186 family device, the B side to
the external device. The DT/R signal can directly drive the T
(transmit) signal of a typical buffer since it has the correct
polarity.

CPU-DERIVED SIGNALS

AD8-D15
DEN

SEL

ADO-AD7

DTiFi

-J

8

,

8

The processor drives the DT/R and DEN pins HIGH for one
clock during RESET. Then the pins float until the first bus
cycle.

3.6 READY INTERFACING

80186 family devices provide two READY lines, a synchro­
nous (SRDY) line and an asynchronous (ARDY) line. These
lines signal the Bus Interface Unit to insert wait states (T) into
a CPU bus cycle, allowing slower devices to respond ~o bus
activity. Wait states will only be inserted when both ARDY
and SRDY are LOW, i.e., only one of the lines needs to be
active to terminate a bus cycle. Figure 38 depicts the logical
ORing of the ARDY and SRDY functions. Any number of
wait states may be inserted into a bus cycle. The processor will
ignore the READY inputs during any accesses to the inte­
grated peripheral registers and to any area where the chip
select READY bits indicate that the external READY should
be ignored. The timings required by the SRDY and ARDY
lines are different.

Only the ARDY line can be fully synchronized (see Appendix
B) by the CPU before presentation to the rest of the bus control
logic. As shown in Figure 38, the first flip-flop is used to
resolve the asynchronous transition of the ARDY line. It will
achieve a definite HIGH or LOW level before its output is
latched into the second flip-flop. When latched HIGH, it passes
along the level present on the ARDY line; when latched LOW,
it forces Not READY to be passed along to the rest of the
circuit. With this design, note that only the rising edge of
ARDY is fully synchronized; the falling edge of ARDY must
be externally synchronized to the processor clock. Any asyn­
chronous transition on the ARDY line when the processor is
not sampling the input does not matter.

A

6E B

r- T
BUFFER

A

-
OE B

T
BUFFER

/8

/8
-"

8

8

08-015

00-07

BUFFERED
DATA
BUS

UNBUFFERED
DATA
BUS

270288-001-37

Figure 37. Example Buffered/Unbuffered Data Bus

3-9

inter BUS INTERFACE UNIT

ARDY

SRDY~-+------------------~

NOTES:
1. Asynchronous Resolution Flip-Flop.
2. Ready Latch Flip-Flop.

TO BUS
INTERFACE

UNIT

270288-001-38

3. R2 Bit in Chip Select Registers (Selects Internal Only (1) or External (0).
4. Internally Generated Unit States Controlled by RO and R1 Bits in Chip Select Registers.

Figure 38. 80186 READY Circuitry

Figure 39 depicts activity for Nonnally-READY and Nor­
mally-Nat-READY configurations of external logic. Remem­
ber that for ARDY to force wait states, SRDY must be LOW
as welL

In a Nonnally-Not-READY implementation the setup and
hold times of both the resolution flip-flop and the READY
latch must be satisfied. The ARDY pin must go active at least
TARYHCH (also denoted TARYCH) before the rising edge ofT" T,
or T w' and stay active until TeLARx after the falling edge ofT, or
T w to stop generation of wait states and tenninate the bus
cycle. If ARDY goes active after the falling edge ofT, there
will be no wait state inserted. .

In a Nonnally-REA.DY implementation hie setup WJd hold
times of either the resolution flip-flop or the READY latch
must be met. If the external hardware does not meet this re­
quirement, the CPU will not function properly. Wait states
will be generated if ARDY goes inactive T ARYHCH (also de­
noted TARyCH) before the rising edge ofT, and stays inactive a
minimum of T ARYCH before the rising edge of T 2 and stays
inactive a minimum ofT ARYCHL afterthe edge, or if ARDY goes
inactive at least TARYLCL before the falling edge ofT, and stays
inactive a minimum of TCLARX after the edge. The READY
circuitry perfonns this way to allow a slow device the maxi­
mum amount of time to respond with a Not READY after it
has been selected.

The synchronous READY (SRDY) line requires that all tran­
sitions during T2, T" or T w satisfy setup and hold times (TSRYCL
and TCLSRY respectively). If the external hardware does not
meet this requirement, the CPU will not function properly.
Valid transitions on this line and subsequent wait state inser­
tion is shown in Figure 40. The Bus Interface Unit samples

3-10

SRDY at the beginning of each T3 and T w' If the line is sampled
active at the beginning of either of these two cycles, that cycle
will be immediately followed by T,. If the line is sampled
inactive at the beginning of either T -state, that cycle will be
followed by a Tw' An asynchronous transition on the SRDY
line occurring at any time the processor is not sampling the
input will not cause CPU malfunction.

3.7 EXECUTION UNIT/BUS INTERFACE UNIT
RELATIONSHIP

The 80186 family employs a pipelined architecture that al­
lows instructions to be prefetched during spare bus cycles. The
Bus Interface Unit (BIU) feiches instructions from memory
and loads them into a prefetch queue. The Execution Unit
(EU) executes instructions from the prefetchqueue while other
instructions are pre fetched. The process of fetching new in­
structions while executing the current instruction is invisible
to the user.

3.7.1 PREFETCH QUEUE AND BUS
PERFORMANCE

The prefetch queue is six bytes long on the 80 186/80C 186.
When two or more bytes are empty and the EU does not re­
quire the BIU to perfonn a bus cycle, the BIU executes instruc­
tion fetch cycles to refill the queue. Figure 41 shows how
instruction fetches are interleaved with EU-initiated bus cycles.
The chosen queue size allows the BIU to keep the EU supplied
with prefetched instructions under most conditions without
monopolizing the system bus. Recall that the 80 186/80C 186
BIU nonnally accesses two bytes (one word) of opcode per

BUS INTERFACE UNIT

I
I

CLOCK
OUT

ARDY ~
In a Normally-Not-READY system, wait states will be inserted unless:

270288-001-39

1. ~RYCH (also denoted !ARYCH): ARDY active to clock high (ARDY resolution setup time).
2. T CLARX: Clock low to ARDY inactive (ARDY active hold time).

I
I

CLOCK
OUT

ARDY ~
270288-001-40

In a Normally-READY system, wail states will be inserted H:
1. ~RYHCH (also de~O!ed TAR'lCH): ARDY lo~ to ~Iock hig~ (ARDY resolution setup time).
2. TARYCHL: {Clock high to ARDYhlgh (ARDY InactiVe hold time).

I
I

CLOCK
OUT

ARDY ~ 270288-001-41
Mematively. in a Normally-READY system, watt states will be inserted if:
1. ~RYCL: ARDY low to clock low (ARDY setup time).
2. T"; x: Clock low to ARDY high (ARDY active time).

A%NImust meet T ARYLCL and T CLARX or undesired CPU operation will resu~.

Figure 39. ARDY Transitions

bus cycle. If a program transfer forces fetching from an odd
address, the 80 I 86!80C I 86 automatically reads one byte from
the odd address and then resumes fetching words from the
subsequent even addresses.

The prefetch queue is four bytes long on the 80 I 88/8OC 188.
When one or more bytes are empty, the processor attempts to
refill the queue. With an 8-bit data bus, the 80 I 88!80C 188
BIU accesses one byte of opcode per bus cycle.

3-11

In most circumstances the queues contain at least one byte of
the instruction stream and the EU does not have to wait for
instructions to be fetched. The queue holds instructions from
memory locations just above the source of the current instruc­
tion. That is, they are the next logical instructions so long as
execution proceeds serially. If the EU executes an instruction
that transfers control to another location, the BIU resets the
queue, fetches the instruction from the new address, passes it
immediately to the EU, and then begins refilling the queue

BUS INTERFACE UNIT

~ : ~ : ~ : ~

CLOCK~l <D.
OUT. @Q?@ ~ SRDY~ _

270288-001-42

NOTES:
1. Decision: Not READY, T-State will be followed by a wait state.
2. Decision: READY, T·State will not be lollwed by a wa~ state.
3. T RYCL: Synchronous Ready stable until clock low (SRDY set-up time).
4. ~LSRY: Clow low until Synchronous Ready transition (SRDY hold time).

Figure 40. Valid SRDY Tr~nsitions

EU:~~)] Wf=j IIIN~~MJ~III
80186 FAMILY BIU:~ 111~~JftMIII - WFETCH9 III [I; ::::FETCH:::

MICROPROCESSOR ::::::::::::::::::::::

INSTRUCTION STREAM

- 1 st INSTRUCTION (ALREADY FETCHED):

-m
~
WillI

EXECUTE AND WRITE RESULT

2nd INSTRUCTION:
EXECUTE ONLY

3rd INSTRUCTION:
READ OPERAND AND EXECUTE

4th INSTRUCTION:
(UNDEFINED)

5th INSTRUCTION:
(UNDEFINED)

Figure 41. Overlapped Instruction Fetch and Execution

3-12

270288-001-43

BUS INTERFACE UNIT

from the new location. In addition, the BIU suspends instruc­
tion fetching whenever the EU requests a memory or I/O read
or write, except for a fetch already in progress.

Bus cycles occur sequentially, but do not necessarily follow
immediately one after another. Since the CPU prefetches upto
six bytes ofthe instruction stream for storage and execution
from an internal instruction queue, the relationship between
prefetching and instruction execution may be skewed in time
and separated by additional instruction fetch bus cycles. In
general, ifthe BlU fetches an instruction into the processor's
intemalinstruction queue, it may also fetch several additional
instructions before the EU removes the instruction from the
queue and executes it. If the EU executes a jump or other
control transfer instruction from the queue, it ignores any
instructions remaining in the queue; the CPU discards these
instructions with noeffectonoperation. The bus activity observed
during execution of a specific instruction depends on the pre­
ceding instructions; the activity, however, may always be
determined within a specific sequence.

3.7.2 BUS PERFORMANCE AND CPU
PERFORMANCE

Overall performance of a system based on an 80186 family
member system pepends on both the bus bandwidth and exe­
cution rate.

The number of clock cycles required to execute an instruction
varies from two clocks for a register to register move to 67
clocks for an integer divide. If a program contains many long
instructions, program execution will be CPU-limited, i.e., the
prefetch queue will be full most of the time. If a program
contains mainly short instructions or data move instructions,
execution will be bus-limited. Here the processor will be re­
quired to wait often for an instruction to be fetched before it
continues its operation.

With their 8-bit data buses, the 80188 and 80C 188 provide an
opportunity for significant system cost savings over their 16-
bit counterparts, the 80186 and 80C 186.ln applications which
manipulate only 8-bit quantities, the performance of the proc­
essors with 8-bit buses can approach that of the processors
with ·16-bit buses. The same is true for applications that are
highly CPU-intensive (but not memory-intensive) since all
80186 family CPUs are internally 16-bit.

Typical 80186 family applications are more data-intensive
than computation-intensive. TIle processor with an 8-bit bus
must not only move data around eight bits at a time but also
fetch instructions eight bits at a time. A suffiCient number of
prefetched bytes may not reside in the prefeteh queue much of
the time. In many cases, the performance degradation of an 8-
bit bus will be significant.

3-13

Adding up instruction clock counts given in 80 186 family data
sheets and reference manuals yields only a rough approxima­
tion of execution time. Published clock counts assume that all
the necessary opcode bytes reside in the prefetch queue, fre­
quently not the case in the 80 I 88/80C 188. A conservative rule
of thumb for the 80 I 88/80C 188 is to add lOOper cent to the
calculated clock count. The correction for the 80 I 86/80C 186
is typically about five to seven percent. Ifthere is any doubt of
the performance capabilities of either the 80 I 86/80C 186 or
the 80 I 88/8OC 188, Intel suggests the use of a performance
analyzer on critical code sections early in the design process.

3.7.3 WAIT STATES AND CPU
PERFORMANCE

Because an 80186 family processor contains separate Bus
Interface and Execution Units, the actual performance of the
processor will not degrade at a constant rate as wait states are
added to the memory cycle time from the processor. Shown
below are two disparate 80186 assembly language routines,
and the actual execution time for the two procedures as wait
states are added to the memory system of the processor
(CLKOUT = 8 MHz). The percentage degradation from each
wait state level to the following wait state level is also indi­
cated. The actual rate of performance degradation is not as
important as the conclusion that wait state degradation will
depend on the type and mix of instructions encountered in the
user's program.

#of
Wait

Table 15. Performance Degradation
vs. Wait States

Proaram 1 Proaram2

Exec Exec
Perf Perf States Time (~~\ (Usee\ Degr Degr

0 505 294

1 595 18% 311 6%

2 669 12% 337 8%

3 752 12% 347 3%

Procedure Bench_I is very bus intensive. It performs many
memory operations using elaborate addressing modes which
also require more opcode bytes. As a result, the Execution
Unit must constantly wait for the Bus Interface Unit to fetch
and perform the memory cycles to allow it to continue. Thus,
the execution time of this type of routine will grow quickly as
wait states are added, since the execution time depends mainly
on the speed at which the processor can run bus cycles.

$modlo!!6
name

This

cgroup
dgroup
data

BUS INTERFACE UNIT

exampl e~wa i t_state-per formance

file cont;!lins two programs which demonstra·te the o!!Olo!!6 family processor
performance degradation as wai t states are inserted. Procedure Ben~hl
performs a transformation betw.een two types of characters sets, then
copies the transformed characters back to the original buffer (which is
64 bytes long. Procedure Bench_2 performs the same type of·
transformation, however instea·d of performing a table lookup, it
multiplies each number in the origi.nal 32 word buffer by a constant 3
(note the use of the integer immediate multiply instruction). Program
nothin!L is used to measure th.e call an·d the return times from the
driver program only. .

group code
group data
segment public_data_

t table
t::string
m_array
data

db
db
dw
ends

256 dupe?)
64 dupe?)
32 dupe?)

code

loop~back :

sllgment pub 1 i c'code'
assume eS:cgroup,DS:dgroup
pub li c bench_l ;bench_2, noth i ng_, wa i t state_, set_t i mer
proc near
push SI ; save registers used
push ex
push BX
push AX

mov eX,64
mov SI,O
mov BH,O

m.ov Bl,t_string[SU
mov AL,t tabldBX]
mov t_string[S!l,AL
inc SI
loop loop_back

pop AX
pop BX
pop ex
pop SI
endp

pro': near
push AX
push SI
push ex

mov eX,32
mov SI,offset m_array

imul AX,word ptr [SI],3
mov word ptr [S!],AX
inc SI
inc SI
loop 100p_back_2

pqp ex
pop SI
PoP AX
ret
endp

; translate 64 bytes

; get the byte
; translate byte
; and store it
; increment index
; do the next byte

; save registe,rs used

; multiply 32 numbers

immediate multiply

Figure 42. Assembly Language .Program for Wait State Evaluation

3-14

nothing_

nothing_

proc
ret
endp

BUS INTERFACE UNIT

near

Wait_state(n) sets the 80186 family processor LMCS register to the number of
wait states (0 to 3) indicated by the parameter n (which is passed on
the stack). No other bits of the LMCS register are modified.

proc near
enter 0,0
push AX
push BX
push DX

mov BX,word ptr
mov DX,OFFA2h

in AX,DX

and AX,OFFCh
and BX,3
or AX,BX
out DX,AX
pop DX
pop BX
pop AX
leave
endp

[BP +4]

; set up stack frame
; save registers used

; get argument
; get current LMCS register
; contents

; and off existing ready bits
; insure ws count is good
; adjust the ready bits
; and write to LMCS

; tear downs tack frame

Set_timer() initializes the 80186 family processor timers to count
microseconds. Timer 2 is set up as a prescaler to timer 0, the
microsecond count can be read directly out of the timer 0 count
register at location FF50H in 1/0 space.

set - timer proc near
push AX
push DX

mov DX,Off66h ; stop timer 2
mov AX,4000h
out DX,AX

mov DX,Off50h ; clear timer 0 count
mov AX,O
out DX,AX

mov DX,Off52h ; timer 0 counts up to 65535
mov AX,O
out DX,AX

mov DX,Off56h ; enable timer 0
mov AX,OcOO'lh
out DX,AX

mov DX,Off60h ; clear timer 2 count
mov AX,O
out DX,AX

mov DX,Off62h ; set maximum count of timer 2
mov AX,2
out DX,AX

mov DX,Off66h ; re-enable timer 2
mov AX,Oc001h
out DX,AX

Figure 42. Assembly Language Program for Wait State Evaluation (continued)

3-15

BUS INTERFACE UNIT

pop
pop
ret
endp
ends
end

DX
AX

270288-001-44

Figure 42_ Assembly Language Program for Wait State Evaluation (continued)

Note also that the program execution time calculated by merely
summing up the number of clock cycles given in the data sheet
will typically be less than the number of clock cycles actually
required to run the program. This is true because the numbers
quoted in the data sheet assume that the opcode bytes have
been prefetched and reside in the prefetch queue for immedi­
ate access by the execution unit. If the Execution Unit cannot
access the opcode bytes immediately upon request, dead clock
cycles will be inserted in which the Execution Unit will remain
idle, thus increasing the number of clock cycles required to
complete execution of the program.

On the other hand, procedure Bench_2 is more CPU intensive.
The Bus Interface Unit can fill up the instruction prefetch
queue in parallel with the Execution Unit performing integer
mUltiplies. In this program, the Bus Interface Unit can perfOrni
bus operations fasterthan the Execution Unit actually requires
them to be run. The performance degradation is much less as
wait states are added to the memory interface. The execution
time of this program is close to the number calculated by
adding the number of cycles per instruction because the Exe­
cution Unit does not have to wait for the Bus Interface Unit to
place an opcode byte in the prefetch queue as often. Fewer
clock cycles are wasted by the Execution Unit lying idle for
want of instructions.

3.8 HOLD/HLDA INTERFACE

The 80186 family employs a HOLD/HLDA bus exchange
protocol. This protocol allows other asynchronous bus mas­
ters (i.e., ones which drive address, data, and control informa­
tion on the bus) to gain control.

3.8.1 RESPONSE TO HOLD

In the HOLD/HLDA protocol, a device requiring bus control
(e.g., a token-ring communications controller) raises the HOLD
line. In response to this HOLD request, the processor will raise
its HLDA line after it has finished its current bus activity.
When the external device is finished with the bus, it drops its
bus HOLD request. The processor responds by dropping its
HLDA line and resuming bus operation.

3-16

When the processor recognizes abus HOLD by driving HLDA
HIGH, it will float many of its signals (see Figure 43). ADO­
AD 14 and DEN are floated within T CLAZ after the clock edge
when HLDA is driven active. A 16-A 19, RD, WR, BHE, DT I
R, and SO-S2 are floated within TCHCZ after the clock edge
on which HLDA becomes active.

CLOCK

OUT

T. OR T, T, T,

HOLD ----~----~~~-------7------

HLDA -----i---.....,'-+--:~

AD15-ADO -----;---+--'<::.~.--'-'=:.:....._-----
DEN ______ -+ ____ J

~~~~:~:: ----~-+,'~--~--~~~~-----
DT/fI,!Iii-S2, ____ .;-. __ J 

LOCK 

270288-001·45 

FigUi6 43. Signal FloatlHLDA Timing of 801 86 
Processor 

Only the above mentioned signals are floated during bus HOLD. 
Of the signals not floated by the processor, some have to do 
with peripheral functionality (e.g., timer outputs). Many others 
either directly or indirectly control bus devices. These signals 
are ALE and all chip select lines (UCS, LCS, MCSO-3, and 
PCSO-6). If Latched Al or Latched A2 is selected instead of 
PCS5 or PCS6, the programmed pin retains its latched value 
during HOLD. 

3.8.2 HOLD/HLDA TIMING AND BUS 
LATENCY 

The time required between HOLD going active and the micro­
processor driving HLDAactive is known as bus latency. Many 
factors affect bus latency, including synchronization delays, 



BUS INTERFACE UNIT 

bus cycle times, LOCKed transfer times, interrupt acknowl­
edge cycles, and DRAM refresh cycles. 

The HOLD request line is internally synchronized by the 80 186 
family processor, and may therefore be an asynchronous in­
put. To guarantee recognition on a particular falling clock 
edge, it must satisfy setup and hold times. A full CPU clock 
cycle is required for synchronization (see Appendix B). If the 
bus is idle, HLDA will follow HOLD by two CPU clock 
cycles plus setup and propagation delay time. The first clock 
cycle synchronizes the input; the second signals the internal 
circuitry to initiate a bus HOLD (see Figure 44). 

T, T, 

HOLD 

HLDA 

NOTES: 270288·001-46 

1. T HVCL: Hold valid until clock low. 
2. T CLHAV: Clock low until HLDA active. 

Figure 44. Idle Bus Hold/HLDA Timing 

Many factors make bus latency longer than the best case de­
scribed above. Perhaps the most important factor is that the 
processor will not relinquish the local bus until the bus is idle. 
The bus can become idle only at the end of a bus cycle. The 
processor will normally insert no Ti states between T 4 and T I 
ofthe next bus cycle if it requires any bus activity (e.g., instruc­
tion fetches or I/O reads). However, the processor may not 
have an immediate need for the bus after a bus cycle, and will 
insert Ti states independent ofthe HOLD input (see Section 
3.1). 

When the HOLD request is active, the 80186 family BIU will 
proceed from T4 to T, to relinquish the bus. HOLD must go 
active two T -states before the end of a bus cycle to force the 
BIU to insert idle T-states afterT4. One T-state is spent syn­
chronizing the request and one T -state is spent signaling the 
processor that T4 of the bus cycle will be followed by idle T­
states (see Section 3.1). After the bus cycle has ended, the 
HOLD will be immediately acknowledged. If, however, the 
processor has already determined that an idle T -state will follow 
T4 of the current bus cycle, HOLD needs to go active only two 
T -states before the end of the bus cycle to force the micropro­
cessor to relinquish the bus. Figure 45 shows these processes. 

3-17 

Also, if HOLD is asserted during RESET, the processor re­
leases the bus prior to the first fetch. 

An external HOLD has higher priority than both the CPU or 
integrated DMA Unit. However, an external HOLD will not 
separate the two cycles needed to perform a word access when 
the word accessed is located at an odd location (see Section 
3.3.1). In addition, an external HOLD will not separate the two 
to four bus cycles required for the integrated DMA Unit to 
perform a complete transfer. Each of these factors will add to 
the bus latency of the 80186 family processor. 

Another factor influencing bus latency time is LOCKed trans­
fers. Whenever a LOCKed transfer is occurring, the processor 
will not recognize external HOLDs. Also, the processor will 
not recognize requests from the DMA Control Unit for DMA 
cycles. LOCKed transfers are programmed by preceding an 
instruction with the LOCK prefix. String instructions may be 
LOCKed. Since string transfers may require thousands of bus 
cycles, bus latency time will suffer if they are LOCKed. 

The final factor affecting bus latency time is interrupt ac­
knowledge cycles. When an external interrupt controller is 
used (Cascade or Slave Modes) the CPU will run two interrupt 
acknowledge cycles back-to-back (Sections 9 .5.4.2 and 9.6.4). 
These cycles are automatically LOCKed and will never be 
separated by bus HOLD. 

3.8.3 LEAVING HOLD 

When the HOLD input goes inactive, the processor lowers its 
HLDA line in a single clock as shown in Figure 46. If there is 
pending bus activity, only two T, states will be inserted after 
HLDA goes inactive. Status information will go active during 
the last idle state concerning the bus cycle about to be run (see 
Section 3.1). If there are no bus cycles to be run by the CPU, it 
will continue to float all lines until the last T, before it begins 
its first bus cycle after the HOLD. 

A special mechanism exists on the 80C I 86/8OC 188 to pro­
vide for DRAM refreshing while the bus is in HOLD. See 
Section 10.4 for details. 

3.9 PRIORITY OF BUS CYCLE TYPES 

The 80186 family Bus Interface Unit arbitrates requests for 
bus cycles originating in the integrated peripherals as well as 
the Execution Unit. Here is a summary of the overall priority 
for all bus cycle types (highest to lowest): 

I. Instruction execution reads or writes following a non­
pipe lined effective address calculation. 



NOTES: 

CLOCK 
OUT 

HOLD 

HLDA 

BUS INTERFACE UNIT 

T,OR 

Tw T, 

1. Decision: No addtional internal bus cycles required, idle T-States will be inserted after T4. 
2. Greater than T HVCL' 
3. Less than T CHLA V' 
4. HOLD request internally synchronized. 

CLOCK 
OUT 

HOLD 

T,OR 

: Tw I T. I T, 

~l 
. I I I 

I I 

~ 
I I I 

HLDA ------------------

NOTES: 

270288-001-47 

270288-001-48 

1. Decision: Addtional internal bus cycles required, no idle T-States will be inserted, HOLD not active soon enough to force idle T-States. 
2. Greater than T fiYCL: not required since it will not get recognized anyway. 
3. HOLD request internally synchronized. 

NOTES: 

CLOCK 
OUT 

HOLD 

HLDA 

1. HOLD request internally synchronized. 
2. Decision: HOLD request active, idle T-States will be inserted at end of current bus cycle. 
3. Greater than T HVCL' 
4. Less than T CLHAV' 

Figure 45. HOLD/HLDA Timing in the 80186 Family 

3-18 

270288-001-49 



BUS INTERFACE UNIT 

T, T, T, T, T, 

CLKOUT 

HOLD ----

HLDA ----...... ----........ _ 

ADo-ADI5 

DEN -----~----~----~-_1~-7~-----
A 18/53·A 19/96 

RD,WR,BHE -----:-----..!..----.!.--.....J( 
DT/II,5O·52 \-....!..----

NOTES: 270288·00 I-50 

I. HOLD internally synchronized. 
2. Greater than T HVCL' 
3. Less than T CLHA.V' 
4. Lines come out 01 float only if a bus cycle is pending. 

Figure 46. 80186 Coming Out of Hold 

2. DRAM refresh cycles (80C I 86/80C 188 only). 

3. Bus cycles run by an external bus master during HOLD. 
The 80C I 86/80C 188 signals its need to use the bus for a 
DRAM refresh cycle by lowering HLDA. 

4. Vectoring sequence for the single step interrupt. 

5. Vectoring sequence for the NMI interrupt. 

6. Vectoring sequence fordivide error, breakpoint, overflow, 
array bounds, unused opcode, and ESCape trap interrupts, 
according to priority resolution. 

7. Vectoring sequence for hardware interrupts from the timers, 
DMA Control Unit, and external pins. Interrupts on pins 
INTO-3 can cause 80C I 86/80C 187 numerics instructions 
to be aborted even when masked. 

8. Vectoring sequence for 80C 187 Numerics Coprocessor 
Extensionerrors. Such exceptions are sampled on the 80C 186 
ERROR pin during numerics code execution. 

9. DMA cycles. DMA cycles can be interspersed with the 
bus cycles necessary for an interrupt vectoring sequence. 
The DMA fetch and deposit phases (up to four bus cycles 
total) are inseparable. 

10. General instruction execution. This category includes reads 
or writes following a fully-pipelined effective address 

3-19 

calculation, vectoring sequences for user-designated soft­
ware interrupts, and numerics code execution. The fol­
lowing points are applicable to sequences of related exe­
cution cycles: 

The second read/write cycle of an 80 I 86/80C 186 odd­
addressed word operation is inseparable from the first 
bus cycle. 

On the 80 I 88/80C 188, the two bus cycles associated 
with any word operation are inseparable. 

The second read/write cycle of an instruction with 
both load and store accesses (e.g., XCHG) may be 
separated from the first cycle by other bus cycles. 

Successive execution cycles of string instructions (e.g., 
MOVS) may be separated by other bus cycles. 

When aLOCKed instruction begins, its execution cycles 
are elevated to the highest priority level, making 
LOCKed cycles inseparable even to DRAM refresh 
cycles. String operations and 80C I 86/80C 187 execu­
tion may be LOCKed like any other instructions. 

II. Fetches necessary to fill the pre fetch queue with opcodes 
and operands. 





Clock Generator 4 





CHAPTER 4 
CLOCK GENERATOR 

The clock generator provides the main clock signal for all 
integrated components, and all CPU synchronous devices in a 
system based on the 80186 family. This clock generator in­
cludes a crystal oscillator, divide-by-two counter, RESET 
circuitry, and READY generation logic. A block diagram of 
the clock generator is shown in Figure 47. 

X, CPU CLOCK I 

X, CLOCKOUT 

MDY CPU 

SADY READY 

CPU RESET 
lIES • 

RESET OUTPUT 

270288·001·51 

Figure 47.80186 Family Clock Generator Block 
Diagram 

4.1 CRVSTALOSCILLATOR 

All 80 186 family microprocessors use a parallel resonant Pierce 
oscillator. For all NMOS 80186/80188 applications and lower 
frequency 80C I 86/80C 188 applications, a fundamental mode 
crystal is appropriate. At higher frequencies, the diminishing 
thickness of fundamental mode crystals makes a third over­
tone crystal the appropriate choice. The addition of external 
capacitors at XI and X2 is always required, and a third over­
tone crystal also requires an RC tank circuit to select the third 
overtone frequency overthe fundamental frequency (see Figure 
48). 

80186/8 
80C186/8 

Xl!-_-., 

X2 

(a) 
270288·001·52 

The recommendations given in 80186 family data sheets for 
the values of the external components should be taken only as 
rough guidelines, since there are situations which alter typical 
oscillator characteristics. One example would be the case in 
which the circuit layout introduces significant stray capaci­
tance to the X I and X2 pins. Another example is at low fre­
quencies (CLKOUT less than 6 MHz) where slightly larger 
capacitors are desirable. Finally, it is also possible to use ce­
ramic resonators in place of crystals for low cost when precise 
frequencies are not required. 

For assistance in selecting the external oscillator components 
for unusual circumstances, the best resource is the crystal 
manufacturer. In general, almost any microprocessor grade 
crystal will work satisfactorily with any member of the 80186 
family. The foremost circuit consideration is that the oscillator 
start correctly over the entire voltage and temperature ranges 
expected in operation. 

4.2 USING AN EXTERNAL OSCILLATOR 

An external oscillator may be used with the 80186 family. The 
external frequency input (EFI) signal is connected directly to 
the X I input of the oscillator. X2 must be left unconnected. 
This oscillator input drives an internal divide-by-two counter 
to generate the CPU clock signal. Thus the external frequency 
input can be of practically any duty cycle, so long as the mini­
mum HIGH and LOW times forthe signal (as stated in the data 
sheet) are met. 

80C186/8 

Xlt-_-, 

X2 ...... _-., 

(b) 
(a)-Fundamental Mode Operation 
(b)-Third Overtone Operation 

270288·001·53 

Figure 48.80186 Family Crystal Connections 

4-1 



CLOCK GENERATOR 

4.3 OUTPUT FROM CLOCK GENERATOR 

The output of the crystal oscillator (or the external frequency 
input) drives a divide-by-two circuit which generates a 50 
percent duty cycle clock for the 80186 family processor sys­
tem. All processor timing is referenced to this clock, available 
externally at the CLKOUT pin. CLKOUT changes state on 
the HIGH-to-LOW transition of the EFI signal, and is active 
during RESET and bus HOLD. 

4.4 RESET 

The 80186 family dock generator also provides a synchro­
nized RESET signal for the system. This signal is generated 
from the RES input to the device. The clock generator syn­
chronizes this signal to the CLKOUT signal. 

A Schmitt trigger in the RES input circuit ensures that a volt­
age difference separates the s witch points for logic states 0 and 
I. This hysteresis measures approximately 200-500 mY. An 
80186 family processor must remain in RESET a minimum of 
fourCLKOUTcycles after YCC and CLKOUTstabilize. The 
hysteresis allows the RES input to be driven with a simple RC 

X1 

INTERNAL 
CLEAR 

CLKOUT 

RESET 

circuit as shown in Figure 49. Typical applications can use an 
RC time constant of approximately 100 ms. RES must be held 
LOW upon power-up for correct processor initialization. 

Vee 

100 Ktyp. 
~ VC(t)=v(1-efc) 

m-RESET IN - ... - ... ---; 

1llFtyp. f 80186 
FAMILY 
PROCESSOR 

270288-001-54 

Figure 49. Simple RC Circuit for 
Powerup RESET 

The RES input also resets the divide-by-two clock counter. A 
one clock internal clear pulse is generated when the RES input 
goes active. This clear pulse goes active beginning on the first 
LOW-to-HIGHtransition of the X I input after RES goes active, 
and goes inactive on the next LOW-to-HIGH XI transition. 

270288-001-55 
NOTES: 1. RES sampled on rising edge of oscillator input Signal (X1). 

2. Internal clear pulse generated. 
3. Internal clear pulse drives CLKOUT high, resynchronizing the clock generator. 
4. RESET output goes active ( TCLRO). 
5. RES allowed to go inactive after minimum 4 CLKOUT cycles. 
6. RESET output goes inactive 1-1/2 CLKOUT cycles plus T CLRO after rising 

CLKOUT corresponding to recognition of RES inactive. 
7. First instruction prefetch occurs 6-1/2 CLKOUT cycles after rising CLKOUT 

corresponding to recognition of RES inactive. 

Figure 50. 80186 Reset 

4-2 



CLOCK GENERATOR 

To ensure that the clear pulse is generated on the next oscilla­
tor cycle, the RES input signal must satisfy a setup time to the 
HIGH-to-LOW oscillator input signal (see Figure 50). During 
the clear pulse, CLKOUT will be HIGH. On the next HIGH­
to-LOW transition of XI, CLKOUT will go LOW, and will 
change state on every subsequent HIGH-to-LOW XI transi­
tion. 

The internal RESET signal is presented to the rest of the 80186 
family processor. The signal present on the RESET output pin 
of the processor is synchronized by the HIGH-to-LOW tran­
sition of the processor'sCLKOUT signal. This signal remains 
active an integernumber of clocks corresponding to the length 
of the RES input. RESET goes inactive two CLKOUT periods 
after the RES input goes inactive. After the RES input goes 
inactive, the processor will start the fetch ofits first instruction 
(at memory location OFFFFOH) after 6 1/2 CPU clock cycles. 

4-3 





Peripheral Control Block 5 





CHAPTERS 
PERIPHERAL CONTROL BLOCK 

All the integrated peripherals with an 80186 family micropro­
cessor are controlled by sets of registers contained within an 
integrated peripheral control block. The registers are physi­
cally located with the peripheral devices they control, but are 
addressed as a single block of registers. This set of registers 
encompasses 256 contiguous bytes and can be located on any 
256 byte boundary of the memory or I/O space. Maps of these 
registers are shown in Figure 51 for the 80186/80 188 and in 
Figure 52 for the 80C I 86/8OC 188. Any unused locations are 
reserved. 

5.1 SETIING THE BASE LOCATION 

In addition to the control registers for each of the integrated 
peripheral devices, the peripheral control block contains the 
peripheral control block relocation register. This register al­
lows the peripheral control clock to be relocated on any 256 

byte boundary within the processor's memory or I/O space. 
Figure 53 shows the layout of this register. 

The relocation register is located at offset OFEH within the 
peripheral control block. Since it is contained within the pe­
ripheral control block, any time the peripheral control block is 
moved, the relocation register will also move. 

In addition to the peripheral control block relocation informa­
tion, the relocation register contains two additional bits. One is 
used to set the Interrupt Control Unit into Slave Mode. The 
other is used to force the processor to trap whenever an ES­
Cape (coprocessor) instruction is encountered. 

The relocation register contains the value 20FFH upon RE­
SET. This means that the peripheral control block will be 
located at the very top (OFFOOH to OFFFFH) of I/O space. 

OFFSET 

Relocation Regiotar FEH 

DMA Deocrlplor. Channel 1 

DMA Deocrlptor. Channel U 

Chlp-setect Control Register. 

Tlmar 2 Control Raglsters 

Timer 1 Control Register. 

TImer U Control Register. 

Interrupt Controller Registe .. 

DAH 

DOH 

CAH 

COH 

A8H 

AUH 

88H -5EH 

58H 
58H 

SOH 

3EH 

20H 
270288-001-56 

Figure 51. 80186/80188 Integrated Peripheral Control Block 

5-1 



PERIPHERAL CONTROL BLOCK 

RELOCATION REGISTER 

POWER-SAVE REGISTER 

REFRESH CONTROL REGISTERS 

DMA DESCRIPTORS CHANNEL 1 

DMA DESCRIPTORS CHANNEL 0 

CHIP-SELECT CONTROL REGISTERS 

TIMER 2 CONTROL REGISTERS 

TIMER 1 CONTROL REGISTERS 

TIMER 0 CONTROL REGISTERS 

INTERRUPT CONTROLLER REGISTERS 

OFFSET 

FEH 

FOH 

E4H 

EOH 

DAH 

DOH 

CAH 

COH 

A3H 

AOH 

66H 

60H 
5EH 

58H 
56H 

50H 

3EH 

20H 270288-001-57 

Figure 52. 8OC186/80C188 Integrated Peripheral Control Block 

15 . 14 13 12 11 10 9 8 7 6 5 4 

OFFSET: FEH Relocation Address Bits R19-R8 

ET = ESC Trap 1 No ESC Trap (1/0) 
M/iO = Register Block Located in Memory 1 VO Space (1/0) 
SLAVE/MASTER = Master Interrupt Controller Mode 1 Slave Inter~pt Controller M9de (0/1) 

Figure 53. 80186 Family Relocation Register Format 

5-2 

o 

270288-001-58 



PERIPHERAL CONTROL BLOCK 

Thus after RESET the relocation register will be located at 
word location OFFFEH in I/O space. 

To relocate the peripheral control block to the memory range 
10000-1 OOFFH, for example, the user programs the relocation 
register with the value II OOH. Since the relocation register is 
contained within the peripheral control block, it moves to word 
location 100FEH. Whenever mapping the 80188/80C188 
peripheral control block to another location, the programming 
of the relocation register should be done with a byte write (i.e., 
OUT DX, AL). Any access to the control block is done 16 bits 
ata time. Thus, internally, the relocation register will be writ­
ten with 16 bits of the AX register while externally, the BIU 
will run only one 8-bit bus cycle. If a word instruction is used 
(i.e., OUT DX, AX), the relocation register will be written on 
the first bus cycle. The BIU will then run a second bus cycle 
which is unnecessary. The address of the second bus cycle will 
no longer be within the control block (i.e., the control block 
was moved on the first cycle), and therefore will require the 
generation of external READY to complete the cycle. Forthis 
reason we recommend the use of byte operations for the relo­
cation register. Byte instructions may also be used for the other 
registers in the control block and will eliminate half of the bus 
cycles required if a word operation had been specified. Byte 
operations are only valid on even addresses though, and are 
undefined on odd addresses. 

5.2 PERIPHERAL CONTROL BLOCK 
REGISTERS 

Each of the integrated peripherals' control and status registers 
are located at a fixed location above the programmed base 
location of the peripheral control block. There are many loca­
tions within the peripheral control block which are not as­
signed to any peripheral. If a write is made to any of these 
locations, the bus cycle will be run, but the value will not be 
stored in any internal location. This means that if a subsequent 
read is made to the same location, the value written will not be 
read back. 

The processor will run an external bus cycle for any memory 
or I/O cycle which accesses a location within the integrated 
control block. This means that the address, data, and control 
information will be driven on the processor external pins just 
as if an ordinary bus cycle had been run. Any information 
returned by an external device will be ignored, however, even 
if the access was to a location which does not correspond to 
any of the integrated peripheral control registers. The above is 
true for the 80 I 88/80C 188 except that the word access made 
to the integrated registers will be performed in a single bus 
cycle internally. Externally, the BIU runs two bus cycles. 

The processor internally generates a READY signal when­
ever any of the integrated peripherals are accessed; any exter­
nal READY signal is ignored. This READY will also be re­
turned if an access is made to a location within the 256 byte 

5-3 

area of the peripheral control block which does not correspond 
to any integrated peripheral control register. The processor 
will insert no wait states for any access within the integrated 
peripheral control clock except for accesses to the timer regis­
ters. Any access to the timer control and counting registers will 
incur one wait state. This wait state is required to properly 
multiplex processor and counter element accesses to the timer 
control registers. 

All accesses made to the integrated peripheral control block 
will be word accesses. Any write to the integrated registers 
will modify all 16 bits of the register, whether the opcode 
specified a byte write ora word write. A byte read from an even 
location causes no problems, but the data returned when a byte 
read is performed from an odd address within the peripheral 
control block is undefined. This is true both for the 80186/ 
80C 186 and the 80 I 88/80C 188. As stated above, even though 
the 801 88/80C 188 has an external8-bitdata bus, internally it 
is still a 16-bit machine. Word accesses by the 80 I 88/80C 188 
to integrated registers each occur as single bus cycles inter­
nally, while externally the BIU runs two bus cycles. The DMA 
Control Unit cannot be used for either read or write accesses to 
the peripheral control block. 

5.3 PERIPHERAL CONFIGURATION AT 
RESET 

Upon RESET, the chip select/READY logic performs the 
following actions: 

All chip select outputs are driven HIGH. 

The UMCS register attains the value OFFFBH. This sets 
UCS chip select line activity for a I Kbyte block, three 
wait states, and external READY consideration. 

No other chip select or READY control registers have any 
predefined values after RESET. They will not become 
active until the CPU accesses their control registers. 

Upon RESET, the DMA Control Unit performs the following 
actions: 

The start/stop bit for each channel resets, stopping the 
channel. 

Any transfer in progress is aborted. 

Upon RESET, the Timer Unit performs the following actions: 

All timer enable bits are reset, preventing operation. 

All function select bits are reset to zero. This activity se-



PERIPHERAL CONTROL BLOCK 

lects max count register A for each timer, which results in 
the timer output pins going HIGH. . 

Upon RESET, the Interrupt Control Unit performs the follow­
ing actions: 

All SFNM bits are reset to zero, disabling Special Fully 
Nested Mode. 

All priority bits in the various control registers are set to 
one. This places all sources at lowest priority (level Ill). 

All L TM bits are reset to zero, resulting in edge-sense 
mode. 

All interrupt in-service bits are reset to zero. 

All interrupt mask bits are set to one (masked). 

All Cascade Mode bits are resetto zero (Direct Input Mode). 

All priority mask bits are set to one, implying no levels 
masked. 

The Interrupt Control Unit is initialized to Master Mode. 

5-4 



Timer Unit 6 





CHAPTER 6 
TIMER UNIT 

The 80186 family includes a Timer Unit which consists of 
three independent 16-bit timers. These timers operate inde­
pendently of the CPU. Two have input and ou~put pins ~Iow­
ing counting of external events and generation of arbitrary 
waveforms. The third can be used as a timer, as a prescaler for 
the other timers, or as a DMA request source. 

The internal Timer Unit on the 80186 family can be modeled 
by a single counter element, time-multiplexed to three register 
banks, each of which contains different control and count 
values. These register banks are, in tum, dual-ported between 
the counter element and the CPU (see Figure 54). Figure 55 
shows the timer element sequencing and the subsequent con­
straints on input and output signals. Tbere is no connection 
between the sequencing of the counter element through the 
timer register hanks and the BIU's sequencing through T­
states. Timer operation and bus interface operation are com­
pletely asynchronous. 

CPU 

DMA 
REQUEST 

TO IN 

6.1 TIMER UNIT PROGRAMMING 

Each timer is controlled by a register block (see Figure 56). 
Each of these registers can be readorwritten whetherornot the 
timer is operating. All processor accesses to these registers are 
synchronized to all counter accesses to these registers, mean­
ing that one will never read a count register in which only half 
of the bits have been modified. 

The Bus Interface Unit automatically inserts one wait state for 
any access to the timer registers to perform this synchroniza­
tion. Unlike the DMA Unit, LOCKing accesses to timer reg­
isters will not prevent the timer's counter elements from ac­
cessing the timer registers. 

Each timer has a 16-bitcount register which is incremented for 
eachtirnerevent.AtirnereventcanbeaLOW-to-lHGH transition 

TllN 

TO OUT 

Tl0UT 

270288·001-59 

Figure 54. 80186 Family Timer Model 

6-1 



inter 

TIMER IN 
o 

TIMER IN 
1 

TIMER OUT 
o 

TIMER OUT 
1 

TIMER UNIT 

TIMER 1 
SERVICED 

TIMER 2 
SERVICED 

NOTES: 1. Timer In 0 resolution time. 
2. Timer In 1 resolution time. 
3. Modified count value written into Timer 0 count register. 
4. Modified count value written into Timer 1 count register. 

DEAD 
TIMER 0 

SERVICED 

270288-001-60 

Figure 55. Counter Element Multiplexing and Timer Input Synchronization 

OFFSET 

SOH _ ~'!!l REC!!!T~ ______ 

52H MAX COUNT REGISTER A 
TIMER 0 

54H = ~~O~~~S~M= = = = 
56H CONTROL REGISTER J 

58H _ ~,!!!,,'!!!C!!!~ ______ 

SAH MAX COUNT REGISTER A 
TIMER 1 

SCH - MiXCOUNTAEGISTERB - - - -

5EH - CONTROL REoiSTER(ij - - - -

60H _~U~.!!!G...!!T!!!. ______ 

62H _ ~~O~!..!!E~S!!R ______ 
TIMER 2 

64H X X X 

66H - CONTROL AEGiSTERci" - - - -

<D CONTROL REGISTER FORMAT (TlMERS 0 AND 1) 

15 D 

~CONTROL REGISTER FORMAT (TlMER 2) 

o 
15 

270288-001-61 

Figure 56. Timer Registers 

6-2 



on a timer input pin (for Timers 0 and I), a pulse generated 
every fourth CPU Clock, or a time out of Timer 2 (for Timers 
o and I). The count register is 16 bits wide, allowing up to 
65536 (2'6) events to be counted. Upon RESET, the contents 
of the count registers are indetenninate and they should be 
initialized to zero before any timer operation. 

Each timer includes a maximum count register. Whenever the 
timer count register is equal to the maximum count register, 
the count register resets to zero, so the maximum count value 
is never stored in the count register. This maximum count 
value may be written while the timer is operating. A maximum 
count value of 0 implies a maximum count of 65536, a maxi­
mum count value of I implies amaximumcountof I ,etc. Only 
equivalence between the count value and the maximum count 
register value is checked. This means that the count value will 
not be cleared if the value in the count register i& greater than 
the value in the maximum count register. If the timer is pro­
grammed in this way, it will count to the maximum count 
(OFFFFH), increment to 0, then count up to the value in the 
maximum count register. The TC bit in the timer control reg­
ister will not be set when the counter overflows to 0, nor will 
an interrupt be generated from the Timer Unit. 

Timers 0 and I each contain an additional maximum count 
register. When both maximum count registers are used; the 
timer will first count up to the value in maximum count regis­
ter A, reset to zero, count up to the value in maximum count 
register B, and reset to zero again. The ALTernate bit in the 
timer control register determines whether one or both maxi­
mum count registers are used. If this bit is LOW, only maxi­
mum count register A is used; maximum count register B is 
ignored. If itis HIGH, both registers are used. The RIU (reg­
ister in use) bit in the timer control register indicates which 
maximum count register is presently counting up. This bit is 0 
when maximum count register A is being used, I when maxi­
mum count register B is being used. The RIU bit is read only. 
It will always be read 0 in single maximum count register 
mode (since only maximum count register A will be used). 

Each timer can generate an interrupt whenever the timer count 
value reaches a maximum count value. All timers may use 
maximum count A in single max count mode. Timers 0 and I 
(dual max count mode) may also use maximum count B. In 
addition, the maximum count (MC) bit in the timer control 
register is set whenever the timer count reaches a maximum 
count value. This bit is never automatically cleared, i.e., pro­
grammer intervention is required. If a timer generates a second 
interrupt request before the first interrupt request has been 
serviced, the first interrupt request to the CPU will be lost. 

Each timer has an ENable bit in the timer control register. The 
timer will count timer events only when this bit is set. Any 
write to the timer control register will modify the ENable bit 
only if the INHibit bit is also set. The INHibit bit in the timer 
control register allows selective Updating of the timer ENable 
bit. The value of the INHibit bit is not stored in a write to the 
timer control register; it will always be read as logic zero. 

TIMER UNIT 

6-3 

Each timer has a CONTinuous bit in the timer control register. 
If this bit is cleared, the timer ENable bit will be automatically 
cleared at the end of each timing cycle. If a single maximum 
count register is used, the end of a timing cycle occurs when 
thecountvalueresetstozeroafterreachingthevalueinmaximum 
count register A. If dual maximum count registers are used, the 
end of a timing cycle occurs when the count value resets to 
zero after reaching the value in maximum count register B. If 
the CONTinuous bit is set, the ENable bit will never be auto­
matically reset. Thus, after each timing cycle, another timing 
cycle will automatically begin. For example, in single maxi­
mum count register mode, the timer will count up to the value 
in maximum count register A, reset to zero, ad infinitum. In 
dual maximum count register mode, the timer will count up to 
the value in maximum count register A, reset to zero, count up 
to the value in maximum count register B, reset to zero, and 
repeat. 

6.2 TIMER EVENTS 

Each timer counts events. All timers can use a transition of the 
CPU clock as an event. If the internal clock is used, the count 
increments every fourth CPU clock because of timer element 
mUltiplexing. For Timer 2, this is the only timer event which 
can be used. For Timers 0 and I, this event is selected by 
clearing the EXTernal and Prescaler bits in the timer control 
register. 

Timers 0 and I can use Timer 2 reaching its maximum count 
as a timer event. This is selected by clearing the EXTernal bit 
and setting the Prescaler bit in the timer control register. When 
this is done, the timer will increment whenever Timer 2 resets 
to zero having reached its own maximum count. Note that 
Timer 2 must be initialized and running in order to increment 
the value in the other timer/counter. 

Timers 0 and I can also be programmed to count LOW -to­
HIGH transitions on the external input pin. Each transition on 
the external pin is synchronized to the 80 186 family processor 
clock before it is presented to the timer circuitry (see Appen­
dix B for information on synchronizers). The timer counts 
transitions on the input pin; the input value must go LOW, 
then HIGH, tocausethetimerto increment. Transitions on this 
line are latched. The maximum count rate for the timer is 1/4 
the CPU clock rate measured at CLKOUT. 

6.3 TIMER INPUT PIN OPERATION 

Timers 0 and I each have individual timer input pins. All 
LOW-to-HIGH transitions on these input pins are synchro­
nized, latched, and presented to the counter element when the 
particular timer is being serviced by the counter element. 

Signals on this input can affect timer operation in three differ­
ent ways. The manner in which the pin signals are used is 



detennined by the EXTernal and RTG (retrigger) bits in the 
timer control register. If the EXTernal bit is set, transitions on 
the input pin will cause the timer count value to increment if 
the timer is enabled (that is, the ENable bit in the timer control 
register is set). Thus, the timer counts external events. If the 
EXTernal bit is cleared, all timer increments are caused by 
either the CPU clock or by Timer 2 reaching its maximum 
count. In this mode, the RTG bit detennines whether the input 
pin will enable timer operation, or whether it will retrigger 
timer operation. 

When the EXTernal bit is LOW andRTG bit is also LOW, the 
timer will count internal timer events only when the timer 
htput pin is HIGH and the ENable bit in the timer control 
register is set. Note that in this mode, the pin is level sensitive, 
not edge sensitive. A LOW-to-HIGH trl!Dsition on the timer 
input pin is not required to enable timer operation. If the input 
is tied HIGH, the timer will be continually enabled. The timer 
enable input signal is completely independent of the ENable 
bit in the timer control register. Both must be HIGH for the 
timer to count. Examples of uses for the timer in this mode 
would be a real time clock or a baud rate generator. 

When the EXTernal bit is LOW and the RTG bit is HIGH, 
every LOW~to"HIGH transition on the timer input pin causes 
thetimercountregistertoresettozero~ This mode of operation 
can be used to generate a retriggerable digital one-shot. After 
the timer is enabled (i.e., the ENable bit in the timer !X>ntrol 
registetis set), timeroper'ation (coUnting) will begin only after 
the first LOW -tocHIGH transition of the timer input pin has 
been detected. If another LOW-wHIGH transition occurs on 
the input pin before the· end of the timer cycle, the timer wili 
reset to zero and begm the timer cycle again. A timer cycle is 
defmed as the time the timer is counting froni zero to the 
maximum count (either max count A or max count B). This 
means that in the dual max colint mode; the RIU bit is not set 
if the qmer is reset by ~e LOW~to-HiGH transition on the 
illPUt P~"l. Should a timer reset occur when RIU is set (indicat~ 
ingmax count B), the pmerwill again begin to count up to max 
count B before resetting the RIU bit. Thus, when the AL Ter­
nate bit is set, a timer reset will retrigger (or extend) the dura­
tion of the current maX count in use (which means that either 
theLDW or HIGH level of the timer output will be extended). 

TIMER UNIT 

If the CONTinuous bit in the timer control register is cleared, 
the timer ENable bit will automatically be cleared whenever a 
timer cycle has ~n completed (max count isreached).lfthe 
CONtinuous bit in the timer control register is set, the timer 
will reset to zero and begin another timer cycle whenever the 
current cycle has completed. 

6.4 TIMER OUTPUT PIN OPERATION 

TimersOand 1 each have a timer output pin which canperfonn 
two functions. The first is a single pulse indicating the end of 
a timing cycle. The second is· a level indication of the maxi­
mum count register being used. The timer outputs operate as 
outlined below whether internal or external clocking of the 
timer is used. With external clocking, the time between a tran­
sition on the timer input pin and a corresponding transition on 
the timer output pin varies from 2 1(2 to 6 clocks. The exact 
timing depends on when the input transition occurs relative to 
timer service by the counter element 

When the timer is in single maximum count register mode, the 
timer output pin will go LOW fora single CPU clock one clock 
after the timer is serviced by the counter element when maxi­
mum count is reached (see Figure 57). 

When the timer is programmed in dual maximum count regis­
termode, the timer output pin indicates which maximum count 
register is being used, It is LOW if maximum count register B 
is being used and HIGH if maximum count register A is being 
used. The timer can generate a repetitive wayefonn if the 
CONTinuouS bit in the timer control register is set. The fre­
quency and duty cycle ofthls wavefonn is easily controlled by 
the programmer. For·example, ·if maximum count register A 
contains IO"maximum count register B contains 20, and 
CLKOUT is 12;5 MlIz, the timer generates a 33 per cent duty 
cycle wavefonn at 104 kHz. If the timer is programmed to halt 
upon maximum count, the output pin will go HIGH when the 
timer halts. 

The timer output pins do not float during bus HOLD. 

TIMER o SERVICED 

MAX COUNT - .1 
~~L~--------------v---~---r--~-----------COUNT 
Y~UE 

TMR OUT ----...;...-------r, 
PIN 270288-001-62 

Figure 57. 80186 Timer Out Signal 

6-4 



TIMER UNIT 

6.5 EXAMPLE TIMER INITIALIZATION CODE 6.5.1 REAL TIME CLOCK 

The 80186 family timers possess great flexibility. It is easy to 
program them as baud rate generators, digital one-shots, pulse 
width modulators, event counters, and pulse width measure­
ment applications. 

Figure 58 contains sample code to initialize Timer 2 to gener­
ate interrupts every millisecond. The CPU then increments 
memory-based clock variables. 

$mod186 
name examp I e_80186_f am i I y_t i mer_cod e 

This file contains an example 80186 family timer routine to set up the timer 
and interrupt controller to cause the timer to generate an interrupt 
every 10 milliseconds, and to service interrupts to implement a real 
time clock. Timer 2 is used in this example because no input or output 
signals are required. The code example assumes that the peripheral 
control block has not been moved from its reset location (FFOO-FFFF in 
1/0 space) . 

arg1 
arg2 
arg3 
timer 2int 
timer -2control 
timer-2max ctl 
timer -2count 
timer-int ctl 
eOi_register 
interrupt_stat 

data 

msec 
hour 
minute 
second_ 
data 

cgroup 
dgroup 

code 

set time -

equ 
equ 
equ 
equ 
equ 
equ 
equ 
equ 
equ 
equ 

word ptr [BP + 4] 
word ptr [BP + 6] 
word ptr [BP + 8] 
19 
OFF66h 
OFF62h 
OFF60h 
OFF32h 
OFF22h 
OFF30h 

segment public'data' 

; timer 2 has vector type 19 

; interrupt controller regs 

public hour_,minute ,secohd_,msec 
db ? 
db ? 
db ? 
db ? 
ends 

group 
group 

code 
data 

segment publ ic_code_ 
public set_time 
assume cs: code, ds: dgroup 

set time(hour,minute,second) 
sets the time variables, initializes timer 2 to provide 
interrupts every 10 milliseconds, and programs the interrupt 
vector for timer 2 

proc near 
enter 0,0 
push AX 
push DX 
push SI 
push DS 
xor AX,AX 

mov DS,AX 
mov SI,4*timer 2int 

; set stack addressabi I i ty 
; save registers used 

; set the interrupt vector 
; the timers have unique 
; interrupt vectors even though 
; they share the same control 
; register 

mov word ptr DS:[SI], offset time_~_interrupt_routine 
inc SI 
inc SI 
mov DS:[SI],(S 

Figure 58. Example 80186 Family Real Time Clock Code 

6-5 



pop 

mov 
OIOV 
mov 
IIOV 
1II0V 
mov 
IIOV 

mov 
xor 
out 

IIOV 
mov 

out 
mov 
mov 

out 

mov 

mov 

out 
sti 

pop 
pop 
pop 
leave 
ret 

set_time endp 

TIMER UNIT 

DS 

AX,arg1 
hour, AL 
X,arg2 
minute_,AL 
AX,arg3 
second_, AL 
nisec_,O 

DX,timer 2count 
AX,AX -
DX,AX 

DX, timer _2I11ax_c t 1 
AX,2000 

DX,AX 
DX,timer 2control 
AX,11100D0000000001b 

DX,timer int ctl 

SI 
DX 
AX 

; set the time values 

; clear the 
; count 
; register 

; set the max count value 
; 10 ms 1 500 nsCtimer 2 counts 
; at 1/4 the CPU clock rate) 

; set up the control word 
; enable counting, generate 
; iriter.rupts on TC, continuous 
; counting . 

; set up the interrupt 
; controller 
; unmask interrupts highest 
; priority interrupt 

; enable processor interrupts 

timer _2_interrupt_routine proc far 
push AX 
push DX 

cmp 
jae 
inc 
jmp 

mov 
Clip 
jae 
inc 
jmp 

msec ,99 
bump:=second 
ms.ec_ 
reset_int_ctl 

msec ,0 
minute ,59 
bump_minute 
second __ 
reset_int_ctl 

mov second ,0 

; see if one second has passed 
; if above or equal •.• 

; reset millisecond 
; see if one minute has passed 

cmp lIinute-,59 ; see· if one hour has passed 
jae bump_hour 
inc lIinute_ 
jmp reset_int_ctl 
pop DX 
pop AX 
ret 

mov lIinute_,O 
Clip hour _,12 ;see if 12 hours have passed 
jae reset hour 
inc hour - . 
jmp reset_int_ctl 

Figure 58. Example 80186 Family Real Time Clock Code (continued) 

6-6 



mov 
mov 

out 

TIMER UNIT 

DX,eoi_register 
AX,8000h ; non-specific end of 

; interrupt 

pop DX 
pop AX 
iret 

timer_2_interrupt_routine endp 
code ends 

end 

Figure 58. Example 80186 Family Real Time Clock Code (continued) 

$mod186 
name example_80186_baud_code 

270288-001-63 

This file contains an example 80186 family timer routine. This routine sets up 
the timer as a baud rate generator. In this mode, Timer 1 is used to 
generate a square wave output with a period of 6.51 usec for use with a 
serial controller at 9600 baud programmed in divide by 16 mode.This 
assumes that the procesor is running at 11· 0592 MHz· The code example 
also assumes that the peripheral control block has not been moved from 
its res e t 10 cat ion (F F 0 0 - F F F Fin I/O spa c e) • 

timer1 count equ OFF58h 
timer1-control equ OFF5Eh 
timer1-max cnt a equ OFF5Ah 
time r1::max::cn t::b equ OFF5Ch 

code segment ; public' code' 
assume cs:code 

Set_baud() initializes timer 1 as a baud rate generator for a serial port 
running at 9600 baud 

proc 
push 
push 
mov 
xor 
out 

mov 
mov 
out 
mov 
out 
mov 
mov 

out 

pop 
pop 

code 

near 
AX 
DX 
DX,timer1 count 
AX,AX -
DX,AX 

AX,9 
DX, timer1_max_cnt_a 
DX,AX 
DX, timer1 max cnt b 
DX, AX - - -
DX,timer1 control 
AX,1100000000000011b 

DX,AX 

DX 
AX 
·ret 
endp 
ends 
end 

; save registers used 

; clear the 
; count 
; register 

; set the max count va.lue 
; 90·4ns * 18 = 6·5 usec 

; set the control word 
; enable counting 
; no interrupt on TC 
; continuous counting 
; dual max count registers 

270288-001-64 

Figure 59. Example Baud Rate Initialization Code 

6-7 



..... _18 

111ae- TIMER UNIT 

6.5.2 BAUD RATE GENERATOR 6.5.3 EVENT COUNTER 

Figure 59 is an example of code to generate a baud rate clock 
for serial communications controllers. 

An 80186 family timer can count events using the timer input 
pins. Sample code for such an application is shown in Figure 
60. 

hod186 
name exallpl e_8D186J all i 1 y_c()unt_code 

This file contains an example 8D186 fallily timel" I"outine to set up the timel" 
as an extel"nal event countel". In this mode, Timel" 1 is used to count 
tl"ansitions on its input pin. Aftel"· the timel" has been set up by the 
I"outine, t·he nUllbel" of events counted can be dil"ectly I"ead fl"oll the 
tillel" count I"egistel" at locati·on FF58H in IIO space. The timel" will 
count a lIaximull of 65535 tillel" events befol"e wrapping al"ound to zel"o· 
This code example also assumes that the pel"ipheral contl"ol block has not 
been lIoved from its I"eset .location (FFDD-FFFF in IIO space). 

tillel"l control 
t iIIlil"l:::max_cn t 
tillel"l_cnt_reg 

code 

set count 
code 

equ 
equ 
equ 

DFF5Eh 
DFF5Ah 
DFF58H 

segment public'code' 
assume cs: code 

set_count()initializes the 8D186 timerl as an event counter 

proc 
push 
push 

mov 
mov 

out 
mov 
mov 

near 
AX 
DX 

DX, t i merl_max_cn t 
AX,D 

DX,AX 
DX,timerl_control 
AX,11DDDDDDDDDDD1Dlb 

out DX,AX 

xor 
mov 

DX, timerl_cnt_reg 
DX, tilaer1_cnt_rllg 

out DX, AX 
pop DX 
pop AX 
ret 

endp 
ends 
end 

; save registers used 

; set the max count value 
; allows the timer to count 
; all the way to FFFFH 

; set the control word 
; enable counting 
; no interrupt on TC 
; continuous counting 
; single max coun·t register 
; extel"nal clocking 

; zero AX 
; and zero the count in the 
; timer 

270288-001-65 

Figure 60. Example 80186 Family Event Counter Code 



Chip Select/Ready Logic 7 





CHAPTER 7 
CHIP SELECT/READY LOGIC 

The 80186 family includes a Chip Select Unit which provides 
13 hardware chip select signals for memory and I/O accesses 
generated by the CPU and DMA Unit. This unit is program­
mable such that it can fulfill the chip select requirements (in 
tenns of memory device or bank size and speed) of many small 
and medium sized 80186 family processor systems. Using 
integrated chip selects has the advantage overextemally generated 
chip selects because the chip select signals appear earlier in the 
bus cycle. 

The chip selects are driven only for internally generated bus 
cycles. Any cycles generated by an external device (that is, an 
external bus master) will not cause the chip selects to go active. 
Thus, any external bus masters must be responsible for their 
own chip select generation. Also, during a bus HOLD, the 
processor does not float the chip select lines. Therefore,logic 
rr:ust be included to enable the devices which the external bus 
rr:aster wishes to access (see Figure 61). 

the block size was 128K (four 32 Kbyte areas) the base address 
could be 0 or 2ooooH, but not looooH. With MCS3-0 pro­
grammed fora512K block and either UCS or LCS programmed 
for a 256K block,the maximum memory area under control of 
the memory chip selects is 768K. 

The memory chip selects are controlled by 4 registers in the 
peripheral control block (see Figure 63). These include one 
each for UCS and LCS, the values of which detennine the size 
of the memory blocks addressed by these lines. The other 
registers are used to control the size and base address of the 
mid-range memory block. 

On RESET, only UCS is active. It is programmed to be active 
for a block at the top I Kbyte of memory, to insert three wait 
states to all memory fetches, and to factor external READY 
for every memory fetch (see Section 7.3 for more infonnation 

80186 CHIP SELECT~ MEMORY or I/O 

EXTERNALLY GENERATED CHIP SELECT --~ DEVICE CHIP SELECT 
270288·001·66 

Figure 61. 80186 External Chip Select/Device Chip Select Generation 

7.1 MEMORY CHIP SELECTS 

The 80186 family provides six discrete memory chip select 
lires. These signals are the Upper Memory Chip Select (UCS), 
Lower Memory Chip Select (LCS), and the Mid-Range Chip 
Selects 0-3 (MCSO-3). They are meant to be connected to the 
three major areas of the system memory (see Figure 62) but are 
n<1; limited to this application. 

The upper limit ofUCS and the lower limit ofLCS are fixed at 
OFFFFFH and OOOOOH in memory space, respectively. The 
other limit is set by the memory size programmed into the 
control register for the chip select line. UCS and LCS are 
active for block sizes up to 256 Kbytes. 

Mid-range memory chip selects are active when a memory 
reference is made within a programmed 8to 512 Kbyte block. 
The user programs both the base address and the block size of 
the memory area. Each of the four chip select lines is active for 
one of the four equal contiguous divisions of the mid-range 
block. Therefore, if the total block size is 32 Kbytes, each chip 
select is active for 8K of memory with MCSO being active for 
the first range and MCS3 being active for the last range. The 
only limitation is that the base address must be programmed to 
be an integer multiple of the total block size. For example, if 

7-1 

FFFFF 

STARTUP 
ROM 

-------

GENERAL 
-PURPOSE-

MEMORY 

-------

INTERRUPT 
VECTORS 

AND 
DATA 

,,,{ 
o 

270288·001-67 

Figure 62.80186 Family Memory Areas and 
Chip Selects 



CHIP SELECT/READY LOGIC 

OFFSET: 

AOH UPPER MEMORY SIZE CD UMCS 

LMCS A2H LOWER MEMORY SIZE @ 

A4H 

ASH 

PERIPHERAL CHIP SELECT BASE ADDRESS ® PACS 

MMCS MID-RANGE MEMORY BASE ADDRESS @ 

A8H MID-RANGE MEMORY SIZE I ~ I ~ I ® MPCS 

NOTES: 
1. Upper memory READY bits. 
2. Lower memory READY bits. 
3. PCSO-PCS3 READY bits. 
4. Mid-range memory READY bits. 
5. PCS4-PCSS READY bits. 
S. MS: 1 = Peripherals active in memory space. 

o = Peripherals active in I/O space. 
7. EX: 1 = 7PCS lines. 

0= PCS5=A1. PCSS= A2. 
Not all bits of every field are used. 

cv® 
270288-001-68 

Figure 63_ Chip Select Control Registers 

on internal READY generation). None of the other chip select 
lines will be active until all necessary registers have been 
accessed. A read to an uninitialized chip select register will 
enable the chip select function controlled by that register. Three 
of the mid-range chip select pins are unavailable on the 80C 186 
when it is in Enhanced Mode (see Section 7,5). 

7.2 PERIPHERAL CHIP SELECTS 

The 80186 family provides seven discrete chip select lines 
which are meant to be connected to peripheral components in 
a system based on an 80186 family processor. Each of these 
lines is active for one of seven continuous 128 byte areas in 
memory or I/O space above a programmed base address. 

The peripheral chip selects are controlled by two registers in 
the internal peripheral control block (see Figure 63). These 
registers set the base address of the peripherals and map the 
peripherals into memory or I/O space. Both of these registers 
must be accessed before any of the peripheral chip selects will 
become active. 

A bit in the MPCS register allows PCS5 and PCS6 to become 
latched A I andA2 outputs. When this option is selected, PCS5 
and PCS6 reflect the state of AI· and A2 throughout a bus 
cycle. This allows external peripheral register selection in a 
system in which the addresse~ are not latched. Upon RESET, 
PCS5 and PCS6 are driven HIGH. 

7-2 

7.3 READY GENERATION 

The 80186 family includes a READY Generation Unit. This 
unit generates an internal READY signal for all accesses to 
memory or I/O areas to which the chip select circuitry re­
sponds. 

For each READY generation area_ the internal unit may insert 
up to three wait states. In addition, the READY generation 
circuit may be programmed to ignore or include the state of the 
external READY pins, When using both internal and external 
READY generation, both elements must be fulfilled before a 
bus cycle-will end. Follow Table 16 to program the READY 
control bits, The external READY condition is always re­
quired upon RESET for accesses involving the top IK of 
memory, Therefore, at least one of the READY pins must be 
connected to functional READY circuitry or be tied HIGH 
until U CS is reprogrammed during the initialization sequence. 

Table 16. 80186 Family Wait State Programming 

R2 R1 RO Number of Wait States 

0 0 0 o + external READY 
0 0 1 1 + external READY 
0 1 0 2 + external READY 
0 1 1 3 + external READY 
1 0 0 o (no external READY required) 
1 0 1 1 (no external READY required) 
1 1 0 2 (no external READY required) 
1 1 1 3 (no external READY required) 



CHIP SELECT/READY LOGIC 

7.4 OVERLAPPING CHIP SELECT AREAS 

It is customary that chip select areas do not overlap each other. 
It is imperative that chip selects do not overlap any locations of 
the integrated 256-byte peripheral control block. 

Whenever two chip select areas do overlap, the processor 
activates b,oth lines during accesses in the overlapped region. 
The user must program the READY bits for both areas to the 
same value; otherwise, the processor response to an access in 
the overlapped region is indeterminate. 

If any of the chip select areas overlap the integrated 256-byte 
control block, the timing on the chip select lines is altered. An 
access to the control block will temporarily activate the corre­
sponding chip select pin, but it will go inactive prematurely. 

7.5 CHIP SELECTS AND THE 80C186IN 
ENHANCED MODE 

The SOClS6 MCSO, MCSI and MCS3 pins change function 
when the device is configured for Enhanced Mode (see Ap­
pendix C.2 for more about Enhanced Mode). The SOCISS 
MCS pins function the same in both modes. These pins are 
configured to support an asynchronous numerics floating point 
processorextension(see Table 17). Thus, the SOC IS6 does not 
provide the complete range of middle chip selects normally 
available. However, the functionality of the MCS2 pin and the 
programming features of the MPCS and MMCS registers are 
still available. 

Table 17. MCS Pin Definitions 

Pin# 
Compatible Enhanced 

Mode Mode 

35 MCS3 NPS, 
Numerics Processor Select -- --

36 MCS2 MCS2 -- ---
37 MCS1 ERROR, 

Numerics Processor Error -- ---
38 MCSO PEREa 

Processor Extension Request 

In Enhanced Mode, it is still possible to program the starting 
address, block size and READY requirements of the middle 
chip selects. This allows the user to take advantage of the wait 
state generation logic on the SOC IS6 even though most of the 
MCS pins are not available. It is also possible to use MCS2 
which is active for one fourth the block size (see Figure 62). 

Ifthechipselectcircuitryisprogrammedsothereservednumerics 
processor port addresses OOFSH-OOFFH fall within the PCS 
address range, a PCS pin will go active during I/O operations 

7-3 

to the SOCI87. However, the 80CIS6 NPS line does not go 
active fornon-numerics accesses. It is the responsibility of the 
system designer to ensure that no bus contention occurs during 
numerics processor operations. 

7.6 EXAMPLE SYSTEM INITIALIZATION 
CODE 

Figure 64 contains code which initializes SO IS6 family chip 
select circuitry. Since only the upper memory chip select is 
active at RESET, it is customary to program memory chip 
selects first, followed by peripheral chip selects and the DRAM 
Refresh Control Unit (SOC IS6/80C 18S). Then, depending on 
which units are used, the Interrupt Controller, timers, and DMA 
Control Unit may be programmed as required. 



$mod186 
name: 

CHIP SELECT/READY LOGIC 

This file contains a system initialization routine for the 80186. It 
initializes the integrated chip select registers. 

restart 

restart 

segment at OFFFFh 

org 
jmp 
ends 

o 
far ptr initialize 

extrn monitor:far 
segment at OFFOh 
assume CS:init_hw 

; This is the processor reset 
; address at OFFFFOH 

This segment initializes the chip selects. It must be located in the top lK 
to ensure that the ROM remains selected in the 80186 family processor 
system until the proper size of the select area can be programmed. 

UMCS_reg 
LMCS_reg 
PACS_reg 
MPCS_reg 
UMCS value 
LMCS-value 
PACS-value 
MPCS:::value 

ini tialize 

equ OFFAOH 
equ OFFA2H 
equ OFFA4H 
equ OFFA8H 
equ OF038H 
equ 07F8H 
equ 007EH 
equ 81B8H 

proc far 
mov DX,UMCS_reg 
mov AX,UMCS_value 
out DX,AX 

mov DX,LMCS_reg 
mov AX,LMCS_value 
out DX,AX 

mov DX,PACS_reg 

mov AX,PACS value 
out DX,AX-
mov DX,MPCS_reg 
mov AX,MPCS value 
out DX,AX-

; chip select register locations 

; 64K, no wait states 
; 32K, no wait state 
; peripheral base at 400H, 2 ws 
; PCSS and 6 supplied. 
; peripherals in IIO space 

; program the UMCS register 

; program the LMCS register 

; set up the peripheral chip 
; selects (note the mid-range 
; memory chip selects are not 
; needed in this system, and 
; are thus not initialized) 

Now that the chip selects are all set up, the main program of the computer may 
be executed· 

nitialize 
n i t_h w 

endp 
ends 
end 

Figure 64. 80186 System Initialization Code 

7-4 

270288-001-69 



DMA Control Unit 8 





CHAPTERS 
DMA CONTROL UNIT 

An 80 I 86 family processor includes a DMA Unit consisting 
of two independent DMA channels. These channels operate 
independently of the CPU and drive all integrated bus inter­
face components (Bus Interface Unit, chip selects, etc.) ex­
actly as the CPU does (see Figure 65). This means that bus 
cycles initiated by the DMA Unit are the same as bus cycles 
initiated by the CPU (except that S6 = I during all DMA­
initiated cycles). Interfacing to the DMA Unit itself is very 
simple, since except for the addition of the DMA request 
connection, it is exactly the same as interfacing to the CPU. 

EXTERNAL ADDRESS/DATA, 

CONTROL, CHIP SELECTS, 
ETC. 

BUS INTERFACE 

& 

CHIP SELECT CIRCUITRY 

DMA 

REQUESTS 

270288-001-70 

Figure 65. CPUlDMA Channel Internal Model 

8.1 DMA FEATURES 

Each of the two DMA channels provides the following fea­
tures: 

Independent 20-bit source and destination pointers which 
access the I/O or memory location from which data will be 
fetched or to which data will be deposited. 

Programmable auto-increment, auto-decrementorneither, 
relative to the source and destination pointers after each 
DMA transfer. 

Programmable termination of DMA activity after a cer­
tain number of DMA transfers. 

8-1 

Programmable CPU interruption at DMA termination. 

By teor word DMA transfers toorfrom even or odd memory 
or I/O addresses. 

Programmable generation ofDMA requests by the source 
of the data, the destination of the data, Timer 2 (see Chap­
ter 6), or by the DMA Unit itself. 

8.2 DMA UNIT PROGRAMMING 

Each of the DMA channels contains several registers to con­
trol channel operation. These registers are included in the 80 I 86 
family integrated peripheral control block (see Section 5.2). 
These registers include the source and destination pointer 
registers, the transfer count register, and the control register. 
The layout of the bits in these registers is given in Figures 66 
and 67. 

The 20-bit source and destination pointers access the com­
plete one Mbyte address space of the 80 186 processor family 
and all 20 bits are affected by the auto-increment or auto­
decrement unit ofthe D MA. The address space is seen as a flat, 
linear array without segments. Even though the usual I/O 
addressability is 64 Kbytes, it is possible to perform I/O ad­
dresses over a one Mbyte address range. Therefore, one must 
program the upper four bits of the pointer registers to 0 if 
routine I/O addresses are desired. 

After every DMA transfer the 16-bit DMA transfer count 
register is decremented by I, whether a byte transfer or a word 
transfer has occurred. If the TC bit in the DMA control register 
is set, the DMA ST/STOP'bit (see below) will be cleared when 
this register goes to 0, causing all DMA activity to cease. A 
transfer count of zero allows 65536 (216) transfers. If the TC 
bit is cleared, the transfer count register will decrementto zero, 
then roll overto OFFFFH; transfers will continue indefinitely. 

Upon RESET, tke contents of the DMA pointerregisters and 
transfer count registers are indeterminate; initialization of all 
the bits should be practiced. 

The DMA control register (see Figure 67) contains bits which 
control various channel characteristics. Each data source and 
destination pointer can point to memory or I/O space, and be 
incremented, decremented, or left alone after each D MA trans­
fer. The register also contains a bit which selects byte or word 
transfers. Two synchronization bits determine the source of 
the DMA requests (see Section 8.7). The terminal count (TC) 
bit determines whether DMA activity will cease after a pro-



DMA CONTROL UNIT 

x X X 

OFFSET 

DEH 
DCH 
DAH 

D8H 
D6H 

D4H 
D2H 

DOH 
CEH 

CCH 

CAH 
C6H 

C6H 

C4H 
C2H 
COH 

I I I I I I I xl I I CONTROL WORD 

TRANSFER COUNT 15 0 

119 16 

15 0 
DESTlNAnON POINTER 

119 16 
15 0 

SOURCE POINTER CHANNEL 1 t 
·X X X 

I I I I I I I Xl I I 
CHANNEL Ol 

CONTROL WORD 

15 0 TRANSFER COUNT 

Ie Ie Ie 119 1. 
DESTINAnON POINTER 

15 0 
Ie Ie Ie 119 18 SOURCE POINTER 

15 0 

270288-001-71 

Figure 66. 80186 Family DMA Registers 

270288-001-72 

Figure 67. DMA Control Register Format 

grammed number of DMA transfers, and the INT bit enables 
interrupts to the processor upon terminal count. An interrupt 
will not be generated to the CPU unless both the !NT bit and 
TC bit are set. 

The control register also contains a start/stop (ST/STOP) bit 
which enables DMA transfers. Whenever this bit is set, the 
channel is anned, that is, a DMA transfer will occur whenever 
a DMA request is made to the channel. A companion bit, the 
CHG/NOCHG bit, allows the DMA control register to be 
changed without modifying the state ofthe ST/STOPbit. The 
ST/STOP bit will only be modified if the CHG/NOCHG bit is 
also set during the write to the DMA control register. The 
CHG/NOCHG bit is write only. It will always be read back as 
a O. Set the ST/STOP bit only after programming all other 
DMA Control Unit registers because DMA transfers may start 
immediately. This bit is automatically cleared when the trans­
fer count register reaches zero and the TC bit in the DMA 
control register is set, or when the trdl1sfer count register reaches 
zero and unsynchronized DMA transfers are programmed. 

All DMA Unit programming registers are directly accessible 
by the CPU. This means the CPU can, for example, modify the 
DMA source pointer register after 137 DMA transfers have 

8-2 

occurred, and have the new pointer value used for the 138th 
DMA transfer. If more than one register for a DMA channel is 
being modified while DMA activity is possible, the register 
values should be placed in memorj locations a.1d moved into 
the DMA registers using a LOCKed string move instruction. 
This prevents a DMA transfer from occurring after only some 
of the register values have changed. A read/modify/write op­
eration (AND, for example) to a memory-mapped pointer 
register should also be LOCKed. 

8.3 DMA CHANNEL PRIORITY 

The P bit in the DMA control register determines the channel 
priority ifDMA requests are received on both channels simul­
taneously. A one in this position sets higher priority relative to 
the other channel while a zero specifies lower priority relative 
to the other channel. If both channels are programmed at the 
same priority, they will alternate cycles. This alternation starts 
with Channell unless Channell is already running a transfer. 
In source or destination synchronized operation, the alterna­
tion scheme only applies when DRQO and DRQ I are sampled 
active simultaneously. 



DMA CONTROL UNIT 

8.4 DMA TRANSFERS 

Every DMA transfer consists of two independent bus cycles, 
a fetch cycle and a deposit cycle (see Figure 68). During the 
fetch cycle, the byte or word data is accessed according to the 
source pointerregister. The data is read into an internal tempo­
rary register which is not accessible by the CPU. During the 
deposit cycle, the data is written to memory or I/O space at the 
address in the destination pointerregister. These two bus cycles 
cannot be separated by a bus HOLD, a refresh cycle, or any 
other condition except RESET. DMA bus cycles are identical 
to bus cycles initiated by the CPU except that the S6 status line 
is driven to a logic 1 state. 

CLOCK Tn 

OUT~ 
T, T2 T3 

~\ 
ORO I : 

ADO- !~ @ 
AD15 S I I 

R5 ! \ \ 

DMA transfer rates depend on processor bus width and the 
DMA Control Unit operating mode. Maximum DMA rates 
(expressed as Mbytes/sec) can be calculated by multiplying 
the processor clock rate (in MHz at CLKOUT) by the appro­
priate factor in Table 18. 

8.5 DMA REQUESTS 

DMA transfers may be initiated in three ways: by direct regis­
terprogramming, byextemalrequestsonaDMArequest (DRQ) 
pin, or by timeouts of Timer 2. Continuous transfer operation 
is referred to as unsynchronized mode and is selected by 

®. 
TW ' Tw T4 T, T2 T3 T4 

\ 

;/ 
, 

ViR 

UCS, LCS, 
~CS, or PCS 

! \ ~,"_~ __ ~1: 

~+-~--~--~--~~~®~--+---~;: !~® 

270288·001·73 

NOTES: 
1. Source address. 
2. Source data. 
3. Destination address. 
4. Destinatio" data. 
5. If a source or destination address overlaps and active chip select region, the chip select will go active. 
6. Wait states are inserted by programming the chip select/READY logic for an active address region, or by the external READY pins. 

Figure 68. Example DMA Transfer Cycle on the 80186/80C186 

Table 18. Maximum DMA Transfer Rate Factor 

Type of Synchronization 80188/80C188 80186/80C186 

Unsynchronized 1/8 1/4 
Source Synchronized 1/8 1/4 
Destination Synchronized, CPU Does Not Need Bus 1/10 1/5 
Destination Synchronized, CPU Needs Bus 1/12 1/6 

8-3 



-nte-18 III-e- DMA CONTROL UNIT 

synchronization bits in DMA control register. These bits can 
also select source or destination syiIchronized requests on the 
DRQ pin. The processor synchronizes external requests to the 
CPU clock before presenting them to the DMA logic. 

8.5.1 DMA REQUEST TIMING AND LATENCY 

Before ariy DMA request can be generated, the internal bus 
must be granted to the DMA Unit. A certain amount of time is 
required for the processor to grant this internalbustothe DMA 
Unit. The time between a DMA request being issued and the 
DMA transfer being run is known as DMA latency. Many of 
the issues concerning DMA latency are the same as th.ose 
concerning bus latency (see Section 3.8.2). External HOLD 
and refresh always have bus priority over DMA transfers. 
Thus, the latency time of an internal DMA cycle will suffer 
during aD external bus HOLD. 

Each DMA channel has a programmed priority relative to the 
other DMAchannel. Both channels may be programmed to be 
the same priority, or one may be programmed to be of higher 
priority than the other channel. If both channels. are active, 
DMA latency will suffer on the lower priority channel. Ifboth 
channels are simultaneously active and·both channels are of 
the same programmed priority, DMA transfer cycles will al­
ternate between the two channels (Le., the first channel will 
perfonna fetch and deposit, followed by afetch and deposit by 
the second channel, etc.). 

Thefollowing sections describeDMA synchronization indetail. 

The miniIrium DMA latency isfourclocks as shown in FigUre 
69. The DRQsignal is sampledonevery falling clock edge and 
it takes this amount of time for it to propagate through the bus 
control logic, independent of any wait states associated with 
current bus activity, In other words, a DMA cycle will start at 
the next available T I state as long as a higher priority activity 
is not pending and the DRQ signal was sampled active four 
clocks previously. 

IfDRQ is sampled active at point 1 in Figure 69, the DMA 
cycle can be executed four clocks later even if the DMA re­
quest goes inactive before then. If the DMA cycle does not 
start when shown (if,for instance, an 80C 186/8OC I 88 DRAM 
refresh cyCle starts instead), DRQ is not latched and must 
remain active untilfourclocks before the next DMA bus cycle 
T1 opportunity. 

8.5.2 DMA ACKNOWLEDGE 

80186 family processors generate no explicit DMA acknowl­
edge (DACK) signal. Instead, the processorperfonns areador 
write directly to the DMA requesting device. A DMA ac­
knowledge~a1 can be generated by decoding an address or 
by using a PeS line (see Figure 70). Note thatALE must be 
used to factor DACK in some cases because addresses are not 
guaranteed stable when chip selects go active. 

1 
I 

T, or T. or T. or 1 T, 

NOTES: 

1 Tw or 1 Tw.or 1 Twor : T,o; I 01 DNA 

~:" :" :." :".:"~ 
0~: ~ ~ t ~ ~ ~ 
DIIQI~ 

I 1 1 1 I 
1 14 .1 1 I 
1 1 CD I 1 1 
1 1 I 1 1 
I' .1 I 1 I 
1 CD 1 I 1 I 

1. TINVCL = pMA requeslt~ clock low. 
2. SYtldlronlzer resolution time. 
3. DMA un~ priority arbitration and overhead. 
4. Bus interface Unit latches DMA request and decides to run DMA cycle. 

Figure 69. DMA Request Timing (Showing Minimum Response Time) 

8-4 

270288·001·74 



DMA CONTROL UNIT 

80186 
FAMILY 
PROCESSOR DMADEVICE 

ALEr-~--------------------~ 
ACKNOWLEDGE 

PCSO t------------4~---_~CHIP SEL 

DRQO DMA REQUEST 

NOTE: 270288-001-75 

1. A6 is arbitrary and is only used to differentiate DMA and non-DMA bus cycles. 

Figure 70. DMA Acknowledge Synthesis 

8.6 INTERNALLY GENERATED DMA 
REQUESTS 

DMA transfer requests may originate from two of the inte­
g:ated peripherals in the 80186 family. The source may be 
eIther the DMA Control Unit or Timer 2. 

The DMA channel can be programmed so that whenever Timer 
2 reaches its maximum count, a DMA request will be gener­
ated. This feature is selected by setting the TDRQ bit in the 
DMA channel control register. A DMA request generated in 
this manner will be latched in the DMA Control Unit, so that 
once the timer request has been generated, it cannot be cleared 
e~cept by running the DMA cycle or by clearing the TDRQ 
bIt. Before any DMA requests are generated in this mode 
Timer 2 must be initialized and enabled. ' 

A timer-requested DMA cycle run from either DMA channel 
will reset the timer request. Thus, if both channels are using 
Timer 2 to request a DMA cycle, only one DMA channel will 
execute a transfer for every timeout. Another implication is 
that if a second Timer 2 timeout occurs before aDMA channel 
has a chance to run a DMA transfer, the first request will be 
lost. 

The DMA channel can also be programmed to provide its own 
DMA requests. In this mode, DMA transfer cycles will run 
continuously at the maximum bus bandwidth until the prepro­
grammed number ofDMA transfers have occurred. This mode 
is selected by programming the synchronization bits in the 
DMA control register for unsynchronized transfers. Note that 
in this mode, the DMA Control Unit will monopolize the CPU 
bus, i.e., the CPU will not be able to perform opcode fetching, 
memory operations, etc., while the DMA transfers are occur­
ring. Also notice that the DMA Control Unit will only perform 
the number of transfers indicated in the maximum count reg-

8-5 

ister regardless of the state of the TC bit in the DMA control 
register. 

8.7 EXTERNALLY SYNCHRONIZED DMA 
TRANSFERS 

There are two types of externally synchronized DMA trans­
fers, source synchronized and destination synchronized. These 
modes are selected by programming the synchronization (SYN) 
bits in the DMA channel control register. The only difference 
between the two is the time at which the DMA request pin is 
sampled to determine if another DMA transfer is immediately 
required after the present DMA transfer. On source synchro­
nized transfers, this is done such that two transfers may occur 
immediately after each other. On destination synchronized 
transfers, a certain amount of idle time is automatically in­
serted between two DMA transfers to allow time for the DMA 
requesting device to drive its DMA request inactive. 

8.7.1 SOURCE SYNCHRONIZED DMA 
TRANSFERS 

In a source synchronized DMA transfer, the data source re­
quests the DMA cycle. In this type of transfer, the processor 
reads the device requesting the DMA transfer during the fetch 
cycle of the transfer. It takes four CPU clock cycles from the 
time the processor samples the DMA request pin until the time 
the DMA transfer begins and a bus cycle takes a minimum of 
four clock cycles. Therefore, the earliest time the DMA re­
quest pin will be sampled for another DMA transfer will be at 
T I of the deposit cycle of the DMA transfer (assuming no wait 
states). This allows three CPU clock cycles (assuming no wait 
states) between the time the DMA requesting device receives 
acknowledgement of its request (at the beginning ofT 2 of the 



inter DMA CONTROL UNIT 

DMA fetch cycle), and the time it must drive the request line 
inactive ifno more DMAtransfers are desired (see Figure 71 ,) 

8.7.2 DESTINATION SYNCHRONIZED DMA 
TRANSFERS 

In destination synchronized DMA transfers, the data destina­
tion requests the DMA transfer. An example of this would be 
a floppy disk write from main memory to the disk. In this type 
of transfer, the device requesting the transfer is written during 
t~e deposit cycle of the DMA transfer. This causes a problem, 
smce the DMA requesting device will not receive notification 
of the DMA cycle being run until three clock cycles before the 
end of the DMA transfer (if no wait states are being inserted 
into the deposit cycle of the DMA transfer) and it takes four 
clock cycles to determine if another DMA cycle should run 
immediately following the current transfer, To get around this 
problem, the DMA Unit relinquishes the bus after each desti­
nation synchronized DMA transfer for at least two CPU clock 

cycles. This allows the requesting device time to drop its DMA 
request ifit does not immediately desire another DMA transfer. 

When the bus is relinquished by the DMA Unit,. the CPU may 
resume bus operation. Typically, a CPU-initiated bus cycle is 
inserted between each destination synchronized DMA trans­
fer. Ifno CPU bus activity is required,however, the DMAUnit 
inserts two CPU clock cycles between the deposit of one DMA 
transfer and the fetch cycle of the next DMA transfer. The 
critical time at which DRQ is sampled to decide whetherto run 
the next DMA cycle is two clocks before the end of the deposit 
cycle, regardless of wait states. Figure 71 shows the DMA 
request going away too late to prevent the immediate genera­
tion of another DMA transfer. Wait states lengthen the amount 
of time from the beginning of the deposit cycle to the time the 
DRQ pin is sampled for a decision on the next transfer. Thus, 
wait states can be inserted into the DMA cycle to increase the 
amount of time the requesting device has to drop the DRQ line 
after receiving DMA acknowledge. 

FETCH CYCLE DEPOSIT CYCLE 

~~ 
IT11T21T31T41Tl T2 T3 T4 T1 

DRO 

PROCESSOR DECISION 

NOTE: Current DMA source synchronized transfer will not be immediately followed by another DMA transfer. 

NEXT POSSIBLE 
DEPOSIT CYCLE DMA TRANSFER 

~ ~ ,- ~ 
1 T1 T2 T3 Tw T4 1 T; T; 1 T1 T2 

DRO 

PROCESSOR DECISION 270288·001·76 

NOTE:. Current DMA destination synchronized transfer will be followed immediately by another DMA transfer. 

Figure 71. Source and Destination Synchronized DMA Request Timing 

8-6 



DMA CONTROL UNIT 

8.8 DMA HALT AND NMI 

Whenever a Non-Maskable Interrupt is received on an 80186 
family microprocessor, all DMA activity will be suspended at 
the end of the current DMA transfer. This is performed by the 
NMI automatically setting the DMA Halt (DHLT) bit in the 
Interrupt Controller status register (see Section 9.5 .2.1 0). The 
timing of NMI required to prevent a DMA cycle from occur­
ring is shown in Figure 72. After the NMI has been serviced, 
the DHL T bit can be cleared by the programmer to resume 
DMA activity (i.e., it is not automatically cleared when enter­
ing the NMI service routine). The DHL T bit is automatically 
cleared when the IRET instruction is executed. In either case, 
DMA activity resumes exactly as it left off, i.e., none of the 
DMA control registers are modified. This DHL T bit may also 

DMA FETCH CYCLE 

T. T. T. 

ORQ 
(ALWAYS 

"KIll) I 
I 
I 
I 

NMI--1.J I' ·1 , 
<D <D I 

I I 
I I 

DllLT 
(INTERNAL 
RECIISTUI 

lIT) 

NOTES: 
1. DMA request synchronization. 
2. Decision: Will DMA cycle be run? 

Answer: No DMA request is active but DHL T is set (from NMI request). 
3. NMI synchronization time. 

I· 
I. 
I 

be set by the programmer to prevent DMA activity during 
critical sections of code. Do not write to the DHL T bit in the 
controller status register while timer interrupts are enabled; a 
conflict with the internal use of the register may lead to incor­
rect timer interrupt processing. The DHL T bit does not func­
tion when the integrated Interrupt Control Unit is configured 
for Slave Mode. 

8.9 EXAMPLE DMA INTERFACE CODE 

Figure 73 contains sample code to initialize the DMA Control 
Unittoperform transfers between the system and a floppy disk 
controller. 

DMA DEPOSIT CYCLE 

T, T. T. T. 

I I .1. r! 
<D I <D I , 

·1 

/ 

270288·001·77 

4. Logic delay time from synchronized NMI unH DHL T set (note: DHL T is in the interrupt control status register). 

Figure 72. NMI and DMA Interaction 

8-7 



DMA CONTROL UNIT 

$mod186 
name assemb I y_examp I e_801116_f am i I y_DMA_s uppor t 

This file contains an example procedure which initializes the DMA controller 
to perform the DMA transfers between an 80186 family system and the 8272 
Floppy Disk Controller (FDCl. It assumes that the peripheral control 
block has not been moved from its reset location. 

arg1 
arg2 
arg3 
DMA FROM LOWER 
DMA-FROM-UPPER 
DMA-TO LOWER 
DMA-TO-UPPER 
DMA-COUNT 
DMA-CONTROL 
DMA=T O_D I S K_C 0 NT RO L 

FDC DMA 
FDC-DATA 
FDC=STATUE 

cgroup 
code 

equ 
equ 
equ 
equ 
equ 
equ 
equ 
equ 
equ 
equ 

equ 
equ 
equ 

word ptr[BP + 41 
word ptr£BP + 61 
word ptr[BP + III 
OFFCOh 
OFFC2h 
OFFC4h 
OFFC6h 
OFFC8h 
OFFCAh 
014116h 

OA046h 

6B8h 
688h 
680h 

group code 
segment public'code' 
public set_dma_ 
assume cs:cgroup 

; DMA register locations 

; destination synchronization 
; source to memory .. incremented 
; destination to I/O 
; no terminal count 
; byte transfers 
; source synchronization 
; source to I/O 
; destination to memory .. 
; incremented, no terminal count 
; byte transfers 
; FDC DMA address 
; FDC data register 
;FDC status register 

set_dma (offset,to) programs the DMA channel to point one 
side to the disk DMA address, and the other to memory 
pointed to by ds:offset. If "to"= 0 then will be a transfer 
from disk to memory; if "to"= 1 then will be a transfer from 
memory to disk. The parameters to the routine are passed on 
the stack. 

proc 
enter 
push 
push 
push 
test 

near 
0,0 
AX 
BX 
l)X 
arg2,1 

jz from_disk 

; set stack addressability 
; save registers used 

; check to see direction of 
; transfer 

performing a transfer from memory to the disk controller 

mov 
rol 

mov 
mov 
out 
and 

add 
mov 
out 
jnc 

inc 
mov 

BX,AX 
DX, DMA FROM UPPER 
DX,AX - -
AX,OFFFOh 

AX,arg1 
DX,DMA FROM LOWER 
DX,AX - -
no_carry_from 

BX 
AX,BX 

; get the segment value 
; generate the upper 4 bits of 
; the physical address in the 
; lower 4 bits of the register 
; save the resul to •• 
; prgm the upper 4 bits of the 
; DMA source register 
; form the lower 16 bits of the 
; physical address 
; add the offset 
; prgm the lower 16 bits of the 
; DMA source register 
; check for carry out of 
; addition 
; if carry out, then need to adj 
; the upper 4 bits of the 
; pointer 

Figure 73. Example DMA Interface Code 



the 

code 

mov 
out 

mov 
1110 V 
out 
xor 

mov 
out 
mov 
mov 
out 
pop 
pop 
pop 
leave 
ret 

DMA CONTROL UNIT 

DX,DMA FROM UPPER 
DX,AX - -

AX,FDC DMA 
DX,DMA-TO LOWER 
DX,AX - -
AX,AX 

DX,DMA TO UPPER 
DX,AX - -

; prgm -the low 1b bits of DMA 
; destination register 

; zero the uppper If bits of 

; DMA destination register 

AX,DMA_TO_DISK_CONTROL; prgm the DMA ctl reg 
DX,DMA_CONTROL ; note:DMA may begin directly 
DX,AX ; after this word is output 
DX 
8X 
AX 

performing a transfer from the disk to mellory 

1110 V AX,DS 
rol AX,1f 
mov DX, DMA_TO_UPPER 
out DX,AX 
1110 V 8X,AX 
and AX,OFFFOh 
add AX,arg1 
mov DX, DMA_TO_LOWER 
out DX,AX 
jnc no_carry_to 
inc 8X 
mov AX,8X 
IROV DX, DMA_TO_UPPER 
out DX,AX 

mov AX,FDC_DMA 

mov DX,DMA]ROM_LOWER 
out DX,AX 
xor AX,AX 
mov DX,DMA]ROM_UPPER 
out DX,AX 
mov AX,DMA FROM DISK CONTROL 
mov DX,DMA:::CONTROL -
out DX,AX 
pop DX 
pop 8X 
pop AX 
leave 
ret 
endp 

ends 
end 270288-001-78 

Figure 73. Example DMA Interface Code (continued) 

8-9 





Interrupts 9 





CHAPTER 9 
INTERRUPTS 

80186 family interrupts can be software- or hardware-initi­
ated. Software interrupts originate from three sources: 

Execution of INT instructions. 

A direct result of program execution, that is, execution of 
a breakpointed instruction. 

An indirect result of program logic, for examp Ie, attempted 
division by zero. 

Hardware interrupts originate from either the integrated pe­
ripherals or external logic. In the 80186 family, an integrated 
Interrupt Control Unit performs the tasks which would other­
wise be left to an external 8259 Interrupt Controller. Hardware 
interrupts are classified as either non-maskable or maskable. 

All interrupts, whether software- or hardware-initiated, result 
in the transfer of control to a new program location. A 256-
entry vector table (see Figure 74), which contains address 
pointers to the interrupt routines, resides in memory locations 
o through 3FFH. Each entry in this table consists of two 16-bit 
address values (four bytes) that are loaded into the code seg­
ment (CS) and the instruction pointer (IP) registers when an 
interrupt is accepted. 

All interrupts save the machine status by pushing the current 
contents of the flags onto the stack. The 80186 family CPU 
then clears the interrupt-enable and trap bits in the flags regis­
ter to prevent subsequent maskable and single step interrupts. 
Next, the CPU establishes the routine return linkage by push­
ing the current CS and IP register contents onto the stack 
before loading the new CS and IP register values from the 
vector table. 

9.1 INTERRUPT CONTROL MODEL 

80186 family software interrupts are presented directly to the 
CPU, while hardware interrupts are managed through the 
integrated Interrupt Controller. 

The tasks performed by the integrated Interrupt Controller 
include synchronization of interrupt requests, prioritization of 
interrupt requests, and management of interrupt acknow ledge 
sequences. Nesting is provided so interrupt service routines 
for lower priority interrupts may themselves be interrupted by 
higher priority interrupts. The integrated Interrupt Controller 
can be a master to two external 8259A or 82C59A Interrupt 
Controllers or can be a slave to an external master controller. 

9-1 

The integrated Interrupt Controller block diagram is shown in 
Figure 75. It contains registers and a control element. Four 
inputs are provided for external interfacing to the interrupt 
controller. Their functions change according to the mode of 
the Interrupt Controller. Like the other 80186 family inte­
grated peripheral registers, the Interrupt Controller registers 
are available for CPU reading or writing at any time. 

9.2 INTERRUPT CHARACTERISTICS 
RELATED TO INTERRUPT TYPE 

The interrupts handled directly by the CPU are varied and 
specific, while the interrupts handled by the integrated Inter­
rupt Controller are processed like each other. 

9.2.1 INTERRUPTS HANDLED DIRECTLY BY 
THE CPU 

The integrated Interrupt Controller does not intervene in inter­
rupt processing related to INT instructions, instruction traps 
and exceptions, and the Non-Maskable Interrupt. 

9.2.1.1 INSTRUCTION-GENERATED TRAPS 
AND EXCEPTIONS 

Software interrupts have higher priority than hardware inter­
rupts, with the exception of NMI. There are eight dedicated 
software interrupts associated with instruction execution or 
attempted instruction execution, leaving room in the vector 
table from Type numbers 32 through 255 for user-defined 
interrupts. 

The predefined software interrupts in the 80186 family are 
listed below with brief descriptions. When an interrupt is invoked, 
the CPU will transfer control to the memory location specified 
by the vector associated with the specific type. The user must 
provide the interrupt service routine and initialize the interrupt 
vector table with the appropriate service routine address. The 
user may additionally invoke these interrupts through hard­
ware or software. If the preassigned function is not used in the 
system, the user may assign some other function to the associ­
ated type. However, for compatibility with future Intel prod­
ucts, interrupt Types 0-31 should not be reassigned as user 
defined interrupts. 



INTERRUPTS 

MEMORY TABLE VECTOR MEMORY TABLE VECTOR 
ADDRESS ENTRY DEFINITION ADDRESS ENTRY DEFINITION 

3FE CS255 
} TYPE 255 

2E CS11 
} TYPE 11-DMA1 

3FC IP 255 2C IP 11 

USER 2A CS10 
} TYPE10-DMAO . 

AVAILABLE 28 IP 10 

82 CS32 
} TYPE 32 

26 CS9 ~ ffl'E' - "",.,,, 80 IP32 24 IP9 

7E CS31 
} TYPE 31 

22 CS8 
TYPE 8 - TIMER 0 

7C IP31 20 IP8 

1E CS7 
} TYPE 7 - ESC OPCODE RESERVED 

1C IP 7 

52 CS20 
} TYPE 20 

1A CS6 } TYPE 6 - UNUSED 

50 IP 20 18 IP6 OPCODE 

4E CS19 
} TYPE 19 - TIMER 2 

16 CS5 } TYPE5-ARRAY 

4C IP 19 14 IP5 BOUNDS 

4A CS18 
} TYPE 18 - TIMER 1 

12 CS4 
} TYPE 4 - OVERFLOW 

48 IP 18 10 IP4 

46 CS17 
} TYPE 17-RESERVED 

OE CS3 
} TYPE 3 - BREAKPOINT 

44 IP 17 OC IP3 

42 CS16 } TYPE 16 - NUMERICS OA CS2 
} TYPE2-NMI COPROCESSOR 

40 IP 16 EXCEPTION (80C186) 08 IP2 

3E CS15 
} TYPE 15 -INT3 

06 CS1 
} TYPE 1 - SINGLE-STEP 

3C IP 15 04 IP 1 

3.A CS14 
} TYPE 14 -INT2 

02 CSO } TYPE 0 - DIVIDE 
38 IP 14 00 IPO ERROR 

36 CS13 
} TYPE13-INT1 

1-2 BYTES-I 

34 IP13 

32 CS12 
} TYPE 12 -INTO CS = CODE SEGMENT VALUE 

30 IP 12 IP = INSTRUCTION POINTER VALUE 

1-2 BYTES-I 
270288-001-79 

Figure 74. Interrupt Vector Table 

DIVIDE ERROR· TYPE 0: 

Type 0 interrupts are invoked by an attempted division in 
which the quotient exceeds the maximum value (e.g., division 
by zero). The interrupt is non-maskable and is entered as part 
of the execution of the divide instruction. If divide errors are 
common in an application and interrupts are not re-enabled by 
the interrupt service routine, add the interrupt routine execu­
tion time to the worst case divide instruction execution time to 
calculate interrupt latency for hardware interrupts. 

9-2 

SINGLE STEp· TYPE 1 : 

This interrupt occurs one instruction after the l1l-P flag (TF) is 
set in the flag register. It is used to allow software single step­
ping through.a sequence of code. Single stepping is initiated 
by copying the flags onto the stack, setting the TF bit on the 
stack and popping the flags. The interrupt routine should be 
the single step routine. The interrupt sequence saves the flags 
and program counter, then resets TF to allow the single step 
routine to execute normally. To return to the routine under 
test, an interrupt return restores the IP register, CS register, 



INTERRUPTS 

DMA 
INT1I INT2I INT3I 

TIMER TIMER TIMER 
o 1 2 NMI 1 INTO SELECT INTAO INTA111RQ 

TIMER 
CONTROL REG. 

DMAO 
CONTROL REG. 

DMA1 
CONTROL REG. 

INTERRUPT 
MASK REG. 

IN-SERVICE 
REG. 

EXT. INPUT 0 
CONTROL REG. 

INTERRUPT 
PRIORITY 

RESOLVER 

PRIOR. LEV. 
MASK REG. 

INTERRUPT 
STATUS REG. 

EXT. INPUT 1 
CONTROL REG. 

EXT. INPUT 2 
CONTROL REG. 

INTERRUPT 
REQUEST TO 
PROCESSOR 

INTERNAL ADDRESS/DATA BUS 

270288-001-80 

Figure 75. 80186 Processor Family Interrupt Controller Block Diagram 

and flags (with TF set). This allows the execution of the next 
instruction in the program under test before trapping back to 
the single step routine. 

BREAKPOINT INTERRUPT - TYPE 3: 

This is a special version of the !NT instruction. Since it re­
quires only a single byte of code space, the breakpoint inter­
rupt can map into the smallest instruction for absolute break­
point resolution. This interrupt is not maskable. 

INTERRUPT ON OVERFLOW - TYPE 4: 

This non-maskable interrupt occurs if the overflow flag (OF) 
is set in the flag register and the INTO instruction is executed. 
This instruction allows trapping to an overflow error service 
routine. 

ARRAY BOUNDS EXCEPTION - TYPE 5: 

If an array index is outside the array bounds during the BOUND 
instruction, a Type 5 interrupt results. The array bounds are 
located in memory ata location indicated by one of the instruc­
tion operands. The other operand indicates the value of the 
index to be checked. 

9-3 

UNUSED OPCODE EXCEPTION - TYPE 6: 

Attempted execution of undefined opcodes generates this 
interrupt. 

ESCAPE OPCODE EXCEPTION - TYPE 7: 

Thisexceptionis the resultofattemptedESCapeopcode (D8H­
DFH) execution. On the 80186/80188 and the 8OCl86 in 
Enhanced Mode, the ESC trap is enabled by setting a bit in the 
relocation register. On the 8OCl86 in Compatible Mode and 
the 80CI88 in any mode, ESC instructions always generate 
this trap. (See Appendix C.2 for more on Enhanced and 
Compatible Modes.) The return address of this exception will 
point to the ESC instruction causing the exception. If a seg­
ment override prefix preceded the ESC instruction, the return 
address will point to the segment override prefix. 

NUMERICS COPROCESSOR EXCEPTION 
(80C186 ONLY) - TYPE 16: 

When the execution of numerics (ESCape) instruction causes 
an unmasked exception in the 80CI87 Numerics Processor 
Extension, the result is an interrupt Type 16. Although this is 
classified as a software interrupt, signaling is performed in 
hardware from the 80CI87 to the 80C 186 on the ERROR pin. 



In general, this exception is detected by the 80C J 86 upon 
execution of the instruction subsequent to the one causing the 
error condition. 

9.2.1.2 NON·MASKABLE INTERRUPT (NMI) 

The Non-Maskable Interrupt (NMI), a hardware interrupt, is 
interrupt Type 2. It has the highest priority among hardware 
interrupts and is typically reserved for catastrophic events 
such as impending power failure ortimeout of a system watch­
dog timer. NMI cannot be prevented by programming and 
multiple NMI inputs will lead to nesting of NMI interrupt 
service routines. Noise on the NMI pin can cause unnecessary 
system upsets. 

NMI must be asserted for one CLKOUT period in order to be 
internally synchronized. The signal is edge-triggered and level­
latched. The vectoring sequence for NMI starts at the next 
available instruction edge after NMI is latched. The interrupt 
response time for NMI is 42 processor clocks. 

The processor will start recognizing the NMI input pin at the 
same clock edge on which the RES input goes inactive. IfNMI 
is asserted within 10 clocks after RESET goes inactive, the 
processor will vector to the NMI service routine before it 
executes the first instruction. This procedure is useful when it 
is desired to begin execution somewhere other than the default 
starting address ofOFFFFOH. 

9.2.1.3 USER·DEFINED SOFTWARE 
INTERRUPTS 

The user can generate an interrupt through the software with a 
two byte interrupt instruction INT nn. The first byte is the INT 
opcode while the second byte (nn) contains the type number of 
the interrupt to beperformed. The INT instruction is notmaskable 
by the interrupt -enable flag. This instruction can be used to 
transfer control to routines that are dynamically relocatable 
and whose location in memory is not known by the calling 
program. This technique also saves the flags of the calling 
program on the stack prior to transferring control. The called 
procedure must return control with an interrupt return (IRET) 
instruction to remove the flags from the stack and fully restore 
the state of the calling program. 

All interrupts invoked through software (all interrupts dis­
cussed thus far with the exception of NMI) are not maskable 
with IF and initiate the transfer of control at the end of the 
instruction in which they occur. They do not initiate interrupt 
acknowledge bus cycles and will disable subsequent mas­
kable interrupts by resetting the flags IF and TF. The vectors 
for these interrupts are implied in the instruction. 

INTERRUPTS 

9-4 

9.2.2 INTERRUPTS HANDLED BY THE 
INTEGRATED INTERRUPT 
CONTROLLER 

The 80 186 family integrated Interrupt Controller receives and 
prioritizes hardware interrupts from four external pins and 
five integrated peripheral sources. The Interrupt Controller 
was designed to allow these interrupts to be flexibly managed. 
Forexample, it is possible to mask one or more interrupt sources 
and handle them by polling while allowing vectored interrupts 
for all the other sources to proceed. 

Requests on interrupt pins INTO-3 are not latched. If a nor­
mally LOW INT input is pulsed HIGH briefly while that inter­
rupt is disabled or another interrupt is in service, that request 
will not be saved, even if the corresponding bit gets temporar­
ily set in the interrupt request register. It is necessary to hold 
the INT input active until the processor starts the vectoring 
sequence, either by running interrupt acknowledge cycles or 
reading the new CS and IP values from the interrupt vector 
table. The 80186 processor family does not employ a default 
vector as does the 8259A or 82C59A. 

All interrupt requests from the integrated peripherals are latched 
in the integrated Interrupt Controller for presentation to the 
CPU. 

9.3 OTHER INTERRUPT CHARACTERISTICS 

To understand how interrupts participate in the overall micro­
processor system, it is necessary to understand latency, mask­
ing and priority. 

9.3.1 INTERRUPT LATENCY 

Interrupt latency time it takes the 80186 family processor to 
begin its response after it receives an interrupt. This is different 
from interrupt response time, the time from reception of the 
interrupt until it actually executes the first instruction of the 
interrupt service routine. 

Two factors affecting interrupt latency are the instruction being 
executed and the state of the interrupt-enable flip-flop. The 
interrupt-enable flip-flop must be explicitly set by issuing the 
STI instruction. Since interrupt vectoring automatically clears 
the flip-flop, it is necessary to set the flip-flop within the inter­
rupt service routine if nested interrupts are desired. 

In general, an interrupt can be acknowledged only when the 
CPU finishes executing an instruction, i.e., interrupts are 
acknowledged at the first available instruction boundary. For 
the purpose of determining instruction boundaries, prefixes 



(LOCK, REP, and segment override) are considered to be part 
of the following instruction. Thus, interrupt latency time can 
be as long as 69 CPU clocks, the amount of time it takes the 
processor to execute an integer divide instruction with a seg­
ment override prefix. There are a number of exceptions to 
these rules. 

MOVs and POPs to a segment register cause interrupt proc­
essing to be delayed until after the next instruction. This delay 
allows a 32-bit pointer to be loaded to the SS and SP stack 
registers without the danger of an interrupt occurring between 
the two loads. 

The WAIT instruction causes the CPU to suspend processing 
while checking the TEST pin for a logic LOW condition. If an 
interrupt is detected, the processor will vector to the interrupt 
service routine with the return pointer aimed back to the WAIT 
instruction. The 80C I 86/80CI 88, does not check the ERROR 
pin for 80C 187 exceptions during the WAIT instruction. 

When the repeat prefix (REP) is used in front of a string opera­
tion, the processor does allow interrupt vectoring between 
repetitions, including those which are LOCKed. If multiple 
prefixes precede a repeated string operation and the instruc­
tion is interrupted, only the prefix immediately preceding the 
string primitive is restored. 

With the 80C I 86/80C 187 processor combination, interrupts 
on the external interrupt pins INTO-3 can be serviced after the 
80C 186 starts a numerics instruction. However, oncecommu­
nication is completely established with the 80CI87 (i.e., the 
80C 187 is not busy), interrupts are blocked until the end of the 
instruction. 

Interrupt latency is also affected by activity of the integrated 
peripheral set. Interrupt latency is increased if the processor 
does not have control of the bus due to the HOLD/HLDA 
protocol. Bus cycles associated with the interrupt vectoring 
sequence cannot break in between the fetch and deposit cycles 
of a DMA transfer. Finally, the 80C I 86!8OC 188 will not accept 
interrupts during DRAM refresh bus cycles. 

9.3.2 INTERRUPT MASKS AND NESTING 

To provide a high degree of flexibility in designing complex 
interrupt structures, the 80186 family has an elaborate mecha­
nism to control the enabling and disenabling of individual 
interrupts. The programmer must understand this structure to 
utilize the processor most efficiently in a heavily interrupt­
driven system. The rules of masking are as follows: 

The non-maskable interrupt (NMI), cannot be prevented 
by programming, as its name implies. 

INTERRUPTS 

9-5 

Software interrupts, both user-defined and execution ex­
ception, cannot be masked. 

All other hardware interrupts are subject to the condition 
ofthe interrupt-enable flag which is set by the STI instruc­
tion and cleared by the CLI instruction. Since every inter­
rupt vectoring sequence clears the flag, programmer inter­
vention is required to enable interrupt nesting. The flag is 
automatically restored upon execution of the IRET in­
struction. 

The integrated Interrupt Controller has a priority mask 
register which disables interrupts below a programmable 
priority. 

The integrated Interrupt Controller has a mask register 
with programmable bits for each possible interrupt source, 
includingthe DMA Control Unit, timers, and the external 
interrupt pins. (Timers share a mask bit in Master Mode.) 

The integrated Interrupt Controller has a control register 
for each interrupt source. (Timers share a control register 
in Master Mode.) Each control register addresses the same 
mask bit as does the mask register. 

Interrupts under control of the integrated Interrupt Controller 
are nestable subject to the states of their in-service bits. Addi­
tionally, INTO and INTI have a provision called Special Fully 
Nested Mode (SFNM), which allows successive interrupts on 
those pins to ignore the state of their in-service bits. 

9.3.3 INTERRUPT PRIORITY 

When considering the precedence of interrupts for multiple 
simultaneous interrupts, apply the following guidelines: 

I. Of the non-maskable interrupts (NMI, instruction trap, 
and user-defined software), single step has the highest 
priority (will be serviced first), followed by NMI, fol­
low~d by all other software interrupts. 

2. The interrupts controlled by the 80186 family integrated 
Interrupt Controller are all maskable hardware interrupts. 
Their priorities levels are lower than the non-maskable 
interrupts. 

A simultaneous NMI and single step trap will cause the NMI 
service routine to follow single step. A simultaneous software 
trap and single step trap will cause the software interrupt serv­
ice routine to follow single step. Finally, simultaneous NMI 
and software trap will cause the NMI service routine to be 
executed followed by the software interrupt service routine. 
An exception to this priority structure occurs if all three inter­
rupts are pending. For this case, transfer of control to the soft-



ware interrupt service routine followed by the NMI trap will 
cause both the NMI and software interrupt service routines to 
be executed without single stepping. Single stepping resumes 
upon execution of the instruction following the instruction 
causing the software interrupt (the next instruction in the routine 
being single stepped). 

If the user does not wish to single step before hardware inter­
rupt service routines, the single step routine need only disable 
interrupts during execution of the program being single stepped 

TF.IF = 1 

NMI 

INTERRUPTS 

and re-enable interrupts on entry to the single step routine. 
Disabling the interrupts within the program under test pre­
vents entry into the interrupt service routine while single step 
(TF = I) is active. To prevent single stepping before NMI 
service routines, the single step routine must check the return 
address and return control to that routine without single step 
enabled. As examples, consider Figures 76 and 77. In Figure 
76 single step and NMI occur simultaneously. In Figure 77, 
NMI, a timer interrupt and a divide error all occur while single 
stepping a divide instruction. 

NORMAL SINGLE STEP 
OPERATION 

270288·001·81 

Figure 76. NMI During Single Stepping and Normal Single Step Operation 

9-6 



TIMER 

CONTINUE TO SINGLE STEP 
THE PROGRAM 

INTERRUPTS 

270288-001-82 

Figure 77. NMI, Timer, Single Step and Divide Error Simultaneous Interrupts 

9-7 



9.4 INTERRUPT CONTROL UNIT 
OPERATION MODES 

The Interrupt Control Unit operates in either of two major 
modes, Master Mode and Slave Mode. The system designer 
must choose the operation mode early on since the two modes 
differ greatly with respect to overall function, pin definition, 
and programming registers. 

In Master Mode, the Interrupt Control Unit acts as the master 
interrupt controller for the system, receiving and arbitrating 
hardware interrupts generated both internally and externally. 
The Interrupt Controller presents interrupts directly to the CPU 
of the 80186 family processor. As many as two 8259A (or 
82C59A) Interrupt Controllers may act as slaves to the master 
processor. Master Mode is the default configuration. 

In Slave Mode, the integrated 80186 family Interrupt Control 
Unit operates as a slave to an external master 8259A Interrupt 
Controller, receiving hardware interrupts only from the inte­
grated peripherals. The CPU presents interrupt requests to the 
8259A, which may receive interrupts from other sources as 
well. The 8259A arbitrates all the interrupt sources and re­
quests interrupt service from the CPU. Setting the SLA VEl 
MASTER bit in the relocation register (see Section 5.1) se­
lects Slave Mode. 

9.5 MASTER MODE 

Master Mode is the simplest and most popular configuration 
of the Interrupt Control Unit. 

9.5.1 MASTER MODE EXTERNAL 
CONNECTIONS 

In Master Mode the four external interrupt pins are configur­
able according to two options, direct and cascade. With the 
pins configured in Direct Input Mode the integrated Interrupt 
Controller provides interrupt vectors. With the pins config­
ured in Cascade Mode, interrupt types are furnished by an 
external Interrupt Controller. Mixed mode operation (two pins 
as direct inputs and two pins as an INT/INTA pair) is also 
possible. 

9.5.1.1 DIRECT INPUT MODE 

When the Cascade Mode bits are cleared, the interrupt input 
pins are configured as direct interrupt pins (see Figure 78). 
Whenever an interrupt is received on the input line, the inte­
grated controller will do nothing unless the interrupt is en­
abled, and it is the highest priority pending interrupt. At this 
time, the Interrupt Controller will present the interrupt to the 
CPU and wait for an interrupt acknowledge. When the ac-

INTERRUPTS 

9-8 

knowledge occurs, it will present the interrupt vector address 
to the CPU. In Direct Input Mode, the CPU will not run any 
external interrupt acknowledge (INTA) cycles. 

INTERRUPT { 
SOURCES 

INTO 

INTl 80186 FAMILY 

INT2 
MEMBER 

INT3 

270288-001-83 

Figure 78. Direct Input Mode Interrupt 
Connections 

9.5.1.2 CASCADE MODE 

The !NT2/INT AO and INT3/INT A I lines are dual purpose; 
they can function as direct input lines, or they can function as 
interrupt acknowledge outputs. When the Cascade Mode bit is 
set, the interrupt input lines are configured in Cascade Mode. 
In this mode, the interrupt input line is paired with an interrupt 
acknowledge line. !NT AOprovides the interrupt acknowledge 
for an INTO input,andINT Al provides the interrupt acknowledge 
for an INTI input. Figure 79 shows this connection. 

INT INTO 
8259A vr 'OR 

82C59A 

INTA ... INTAO 

80186 FAMILY 
MEMBER 

INT INTl 
8259A vr OR 

82C59A 

INTA ~ INTAl 

270288-001-84 

Figure 79. 80186 Family Cascade Mode Interface 



INTERRUPTS 

The 8259A or 82C59A Interrupt Controllers may each be fur­
ther cascaded to eight more Interrupt Controllers. Cascading 
Interrupt Controllers in this way allows up to 64 interrupt lev­
e�s. 

9.5.2.1 CONTROL REGISTERS IN MASTER 
MODE 

INTO with INT2/lNT AO and INTI with INT3/lNT A I may be 
individually programmed into interrupt request/acknowledge 
pairs, or programmed as direct inputs. For example, INTO and 
INT2/lNTAO may be programmed as an interrupt and inter­
rupt acknowledge pair, while INTI and INT3/INTAI each 
provide separate internally vectored interrupt inputs. 

Each interrupt source to an SO I 86family processorhasacontrol 
register in the internal controller. These registers contain three 
bits which select one of eight interrupt priority levels for the 
device (0 is highest priority, 7 is lowest priority), and a mask 
bit to enable the interrupt (see Figure 81). When the mask bit 
is zero, the interrupt is enabled; when it is one, the interrupt is 
masked. All interrupt sources have default priority levels. 

9.5.2 MASTER MODE PROGRAMMING 
There are seven control registers in the integrated Interrupt 
Controller. In Master Mode, four of these serve the external 
interrupt inputs, one each for the two DMA channels, and one 
for the coliective timer interrupts. 

The Interrupt Controller registers for Master Mode are de­
fined according to Figure 80. 

MASTER MODE OFFSET ADDRESS 

INTS CONTROL REGISTER 3EH 
--------------------

INT2 CONTROL REGISTER 3CH 

-----INT7cciNTROL'REGiSTER----- 3AH 

~----;Toc~ffi~R~~~R---- ~H 
r-----------------

DMAI CONTROL REGISTER 36H 

r---~Aoc~ffi~REOOlER----~H 
~-------~----------TIMER CONTROL REGISTER 32H 

INTERRUPT CONTROLLER STATUS REGISTER 30H 

---ir::i-TERRuPTREciliESTREGiSTER--- 2EH 

-----IN-SERViCE REGisTER---- - 2CH 

-----------------
PRIORITY MASK REGISTER 2AH 

~-----------------MASK REGISTER 28H 

----------~-------POLL STATUS REGISTER 26H -------------------
POLL REGISTER 24H 

EOI REGISTER 22H 

G) 20H 
~--------~--------~ 

~.~~~~pported in lhis mode; values written mayor may not be stored. 

Figure SO. Interrupt Controller Registers for Master Mode 

- 9-9 

270286-001-85 



INTERRUPTS 

~ 0 

~i>L __ L[ __ O~_S_FN_M_~~[ __ C_~-L_U_M_@~_M_SK~ ____ p~rl_~_In_B~11~S __ ~[ 
270288-001-86 

NOTE: 
1. This bit present only in INTO-INT3 control registers. 
2. These bits present only in INTO-INT1 control register. 

Figure 81. Interrupt Controller Control Register Format 

The control registers for the external interrupt pins contain 
special bits not present for other interrupt sources. Setting the 
LTM bit in these registers selects level-triggered operation as 
opposed to edge-triggered operation. The INTO and INT I control 
registers contain C and SFNM bits to select Cascade and Special 
Fully Nested Modes, respectively. 

Setting the L TM bit in these registers selects level-triggered 
operation over edge-triggered operation. With edge-triggered 
operation, a LOW -to-HIGH transition must occur before the 
interrupt will be recognized. The interrupt input must also be 
LOW for one clock before the active-going edge. With level­
triggered operation, only a HIGH level is required to generate 
an interrupt. In both types of operation, the interrupt input 
must remain active until acknowledged. 

With level-triggered operation only, an interrupt request input 
left active until after the end-of-interrupt causes another inter­
rupt request. 

9.5.2.2 CASCADE MODE 

When programmed in this mode, the 80186 family processor 
will provide two interrupt acknowledge pulses in response to 
external interrupts. These pulses will be provided on the INT2/ 
INT AO line, and will also be reflected by interrupt acknowl­
edge status being generated on the SO-S2 status lines. The 
interrupt type will be read on the second pulse. Similarly, the 
processor will provide two interrupt acknowledge pulses on 
INT3/INT A I in response to an interrupt request on the INT I 
line. 

When an interrupt is received on a cascaded interrupt pin, the 
priority mask bits and the in-service bits in the particular inter­
rupt control register will be set. This prevents the controller 
from generating a CPU interrupt request from a lower priority 
interrupt. Also, any subsequent interrupt requests on the same 
interrupt input line will not cause the integrated Interrupt 
Controller to generate an interrupt request to the 80 186 family 
CPU. This means that if the external Interrupt Controller re-

9-10 

ceives a higher priority interrupt request on one of its interrupt 
request lines and presents it to the 80186, the Interrupt Con­
troller will not present it to the CPU until the in-service bit for 
the interrupt line has been cleared. 

9.5.2.3 SPECIAL FULL V NESTED MODE 

When both the Cascade Mode bit and the SFNM bit are set, the 
interrupt input lines are configured in Special Fully Nested 
Mode. The external interface in this mode is exactly as in 
Cascade Mode. The only difference is in the conditions which 
allow an external interrupt to interrupt the CPU. 

When an interrupt is received from a Special Fully Nested 
Mode interrupt line, it will interrupt the CPU if it is the highest 
priority pending interrupt regardless of the state of the in­
service bit for the source in the Interrupt Controller. When the 
processor acknowledges an interrupt from a Special Fully 
Nested Mode interrupt line, it sets corresponding bits in the 
priority mask and in-service registers. This prevents the Inter­
ruptControllerfromacceptingalowerpriorityinterrupt.However 
the Interrupt Controller will allow additional requests gener­
ated by the same external source to interrupt the CPU. This 
means that if the external (cascaded) Interrupt Controller re­
ceives higher priority interrupts on its interrupt request lines 
and presents them to the integrated controller's request line, 
these interrupts will be nested. 

If the SFNM bit is set and the Cascade Mode bit is not set, the 
controller will provide internal interrupt vectoring. It will also 
ignore the state of the in-service bit in determining whether to 
present an intertupt request to the CPU. In other words, it will 
use the SFNM conditions ofinterrupt generation with an inter­
na��y vectored interrupt response, Le., if the interrupt pending 
is the highest priority type pending, it will cause a CPU inter­
rupt regardless of the state of the in -service bit forthe interrupt. 
This operation is only applicable to INTO and INTI, which 
have SFNM bits in their control registers. 



INTERRUPTS 

9.5.2.4 REQUEST REGISTER IN MASTER 
MODE 

The Interrupt Controller includes an interrupt request register 
(see Figure 82). This register contains seven active bits, one 
for every interrupt source with an interrupt control register. 
Whenever an interrupt request is made, the bit in the interrupt 
request register is set regardless of whether the interrupt is 
enabled. Interrupt request bits are automatically cleared when 
the interrupt is acknowledged by starting the interrupt vector­
ing sequence. The programmer can set or clear the D I and DO 
bits of the request register to request or cancel DMA interrupt 
requests. 

9.5.2.5 MASK REGISTER IN MASTER MODE 

The Interrupt Controller mask register (see Figure 83) con­
tains a mask bit for each interrupt source associated with an 
interrupt control register. The bit for an interrupt source in the 
mask register is the same bit as provided in the interrupt con­
trol register; modifying a mask bit in the control register will 
also modify it in the mask register, and vice versa. 

9.5.2.6 PRIORITY MASK REGISTER IN 
MASTER MODE 

The interrupt priority mask register (see Figure 84) contains 
three bits which indicate the lowest priority an interrupt must 
have to cause an interrupt request to be serviced. Interrupts 

15 

OFFSET: 2EH X x x 

which have a lower priority will be masked. Upon RESET, the 
register is set to the lowest priority of 7 to enable interrupts of 
any priority. This register may be read or written. 

9.5.2.7 IN-SERVICE REGISTER IN MASTER 
MODE 

The Interrupt Controller contains an in-service register (see 
Figure 85). A bit in the in-service register is associated with 
each interrupt control register so that when an interrupt request 
by the device associated with the control register is acknowl­
edged by the processor (either by interrupt acknowledge cycles 
or by reading the poll register) the bit is set. The bit is reset 
when the CPU issues an End Of Interrupt to the Interrupt 
Controller. This register may be both read and written, i.e., the 
CPU may set in-service bits without an interrupt ever occur­
ring, or may reset them without using the EOI function of the 
Interrupt Controller. 

9.5.2.8 POLL AND POLL STATUS 
REGISTERS 

The Interrupt Controller contains bothapoll register and a poll 
status register (see Figure 86). These registers contain the 
same information. They have a single bit to indicate an inter­
rupt is pending and five bits to indicate the type of the pending 
interrupt. The request bit is set if an interrupt of sufficient 
priority has been received. It is automatically cleared when the 
interrupt is acknowledged. If an interrupt is pending, the 

o 

113112111 110 101 1 Dol x ITMR I 
270288-001-87 

Figure 82. Interrupt Request Register Format 

15 o 

OFFSET:28H x x x 113112111 110 101 1 Dol x ITMR I 
270288-001-88 

Figure 83. Interrupt Mask Register Format 

15 o 

OFFSET:2AH x x x x x 
270288-001-89 

Figure 84. Interrupt Controller Priority Mask Register Format 

9-11 



INTERRUPTS 

15 MASTER MODE o 

OFFSET:2CH x x x 113112111110 1011 DOl X ITMR I 
270288·001 ·90 

Figure 85. Interrupt Controller In-Service Register Format 

15 0 

OFFSET: 24H (Poll) liNT I IS41S31S21 SII Sol 26H (Poll Status) REQ X X X X 
~~----------------~~~~~~ 

S4·S0= INTERRUPT TYPE 270288·001·91 

Figure 86. Poll and Poll Status Register Format 

remaining bits contain infonnation about the highest priority 
pending interrupt. These registers are read-only. 

Reading the poll register will acknowledge the pending inter­
rupt to the Interrupt Controller just as if the processor had 
started the interrupt vectoring sequence. The processor will 
not actually run any interrupt acknowledge cycles, and will 
not vector through a location in the interrupt vector table. The 
contents of the interrupt request, in-service, poll, and poll status 
registers will change appropriately. 

Reading the poll status register will merely transm;t the status 
ofthe polling bits without modifying any of the other Interrupt 
Controller registers. 

9.5.2.9 END OF INTERRUPT REGISTER IN 
MASTER MODE 

The Interrupt Controller contains an End OfInterrupt register 
(see Figure 87). The programmer issues an End Of Interrupt 
(EOI) to the controller by writing to this register. Afterreceiv­
ing the EOI, the Interrupt Controller automatically resets the 
in-service bit forthe interrupt. The value of the word written to 
this register detennines whether the EOI is specific or non­
specific. A non-specific EOI is requested by setting the non­
specific bit in the word written to the EOI register. In a non­
specific EOI, the in-service bit of the highest priority interrupt 
set is automatically cleared, while a specific EOI allows the in-

t5 

I NSSPPEEcC/1 OFFSET: 22H. . X X 

service bit cleared to be explicitly specified. If the highest 
priority interrupt is reset, the poll and poll status registers 
change to reflect the next lowest priority interrupt to be serv­
iced. If a less than highest priority interrupt in-service bit is 
reset, the poll and poll status registers will not be modified 
(because the highest priority interrupt to be serviced has not 
changed). This register is write-only. 

9.5.2.10 INTERRUPT STATUS REGISTER IN 
MASTER MODE 

The Interrupt Controller also contains an interrupt status reg­
ister (see Figure 88). This register contains four program­
mable bits. Three bits show which timer is causing an inter­
rupt. This is required because in Master Mode, the timers share 
a single interrupt control register. A bit in this register is set to 
indicate which timer generated an interrupt. The bit associated 
with a timer is automatically cleared afterthe interrupt request 
for the timer is acknowledged. More than one of these bits may 
be set at a time. The fourth bit is the DMA halt bit. When set, 
this bit prevents any DMA activity. It is automatically set 
whenever a NMI is received by the Interrupt Controller. It can 
also be set by the programmer. This bit is automatically cleared 
whenever the IRET instruction is executed. All implemented 
bits in the interrupt status register are read/write. Do not per­
fonn the write operation when interrupts from the timer/count­
ers are possible; a conflict with internal use ofthe register may 
lead to incorrect timer interrupt processing. 

o 

X X 

S4·S0= INTERRUPT TYPE 270288·001 ·92 

Figure 87. End of Interrupt Register Format 

9-12 



INTERRUPTS 

15 ° 
OFFSET: 30H LID_H_l_T~I __ X __ X __ X __ X __ X __ X __ IL.T_2 ... I_T_11L.T ..... 01 

270288-001-93 

Figure 88. Interrupt Status Register Format 

9.5.3 MASTER MODE INTERRUPT SOURCES 

The 80186 family Interrupt Controller receives requests and 
arbitrates among many different interrupt request sources, both 
internal and external. External interrupts are processed by the 
integrated Interrupt Controller only in Mas~r Mode .. ~h 
interrupt source may be programmed to be a different pnonty 
level. 

9.5.3.1 INTERNAL SOURCES 

The internal interrupt sources are the three timers and the two 
DMAchannels. An interrupt from any of these interrupt sources 
is latched in the Interrupt Controller. The state of the pending 
interrupt can beobtainedby readingthe interrupt request register. 
Also latched DMA interrupts can be reset by the processor by 
writi~g to the interrupt request register. Note that all timers 
share a common bit in the interrupt request register in Master 
Mode. The Interrupt Controller status register may be read to 
determine which timer is actually causing the interrupt re­
quest. Each timer has a uniqu~ interrupt vec~or (~ S~ion 
9.0). Thus, polling is not required to determme which timer 
has caused the interrupt in the interrupt service routine. Also, 
because the timers share a common interrupt control register, 
they are placed at a common priority level relative to other 
interrupt sources. Among themselves they have a fixed prior­
ity, with Timer 0 as the highest priority timer and Timer 2 as 
the lowest priority timer. 

9.5.3.2 EXTERNAL SOURCES 

The Interrupt Controller will accept external interrupt requests 
. only when it is programmed in Master Mode. In this mode, the 
external pins associated with the Interrupt Controllermay serve 
either as direct interrupt inputs, or as cascaded interrupt inputs 
from other Interrupt Controllers. These options are selected by 
programming the C and SFNM bits in the INTO and INTI 
control registers (see Figure 81). 

When programmed as direct interrupt inputs, the four inter­
rupt inputs areeach controlled by an individ~l interruptc?ntt:ol 
register. As stated earlier, each of these registers contam bl.ts 
which select the priority level for the interrupt and a mask bit. 
In addition, each of these co.ntrol registers contains a bit which 
selects edge- or level-triggered mode for the interrupt input. 

9-13 

When edge-triggered operation is selected, a LOW -to-HIGH 
transition must occur on the interrupt input before an interrupt 
is generated, while in level-triggered mode, only a HIGH level 
needs to be maintained to generate an interrupt. In edge-trig­
gered mode, the input must remain LOW at least o?e clock 
cycle before the input is rearmed. In both modes, the mterrupt 
level must remain HIGH until the interrupt is acknowledged, 
i.e., the interrupt request is not latched in the Interrupt Con­
troller. The status of the interrupt input can be shown by read­
ing the interrupt request register. Since interrupt request.s on 
these inputs are not latched by the Interrupt C?ntroller, If ~ 
input goes inactive, the interrupt request (and Its request bit) 
will also go inactive. 

If the C (Cascade) bit of either the INTO or INTI control 
register is set, the interrupt input is cascaded to an external 
Interrupt Controller. In this mode, whenever the interrupt pre­
sented on the INTO or INTI line is acknowledged, the inte­
grated Interrupt Controller will not provide the inte~pt type 
for the interrupt. Instead, two INT A bus cycles Will be run, 
with INT AO or INTAllines providing the interrupt acknowl­
edge pulses for the INTO and INT I interrupt requests .. respec­
tively. This allows up to 128 individually vectored mterrupt 
sources if two banks of 8 external Interrupt Controllers each 
are used. 

9.5.4 MASTER MODE INTERRUPT 
RESPONSE 

The 80 186 family processor can respond to an interrupt in two 
different ways. The first response will occur if the internal 
controller is providing the interrupt vector information with 
the controller in Master Mode. The second response will occur 
if the CPU reads interrupt type information from an external 
Interrupt Controller. In both instances the interrupt vect?r in­
formation driven by the integrated Interrupt Controller IS not 
available outside the microprocessor. 

When the integrated Interrupt Controller receives an inte?Upt, 
it will automatically set the in-service bit and reset the mter­
rupt request bit. In addition, unless the interrupt control regis­
ter for the interrupt is set in Special Fully Nested Mode, the 
Interrupt Controller will prevent any interrupts from occur­
ring from the same interrupt line until the in-service bit for that 
line has been cleared. 



9.5.4.1 INTERNAL VECTORING IN MASTER 
MODE 

In Master Mode, the interrupt types associated with all the 
interrupt sources are fixed and unalterable. These types are 
given in Table 19. In response to an internal CPU interrupt 
acknowledge the Interrupt Controller will generate the vector 
address rather than the interrupt type. On 80 186 family micro­
processors the interrupt vector address is the interrupt type 
multiplied by four. 

Table 19. 80186 Family Interrupt Vector Types 

Interrupt Vector Relative 
Name Type Priority 

Timer 0 8 O(a) 
Timer 1 18 O(b) 
Timer 2 19 O(c) 
DMAO 10 1 
DMA1 11 2 
INTO 12 3 
INT1 13 4 
INT2 14 5 
INT3 15 6 

In Master Mode, no external Interrupt Controller need know 
when the integrated controller is providing an interrupt vector, 
nor when the interrupt acknowledge is taking place. As a re­
sult, no interrupt acknowledge bus cycles will be generated. 
The first external indication that an interrupt has been ac­
knowledged will be the processor reading the interrupt vector 
from the interrupt vector table in memory. 

Interrupt response to an internally vectored interrupt is 42 
clock cycles because the processor does not run interrupt 
acknowledge cycles. This is faster than the interrupt response 
when external vectoring is required, or if the Interrupt Con­
troller is run in Slave Mode. 

If two interrupts of the same programmed priority occur, the 
default priority scheme (shown in Table 19) is used. 

9.5.4.2 EXTERNAL VECTORING IN MASTER 
MODE 

External interrupt vectoring occurs whenever the Interrupt 
Controller is placed in Cascade Mode. With external vector­
ing, the 80186 family processor generates two interrupt ac­
knowledge cycles, reading the interrupt type off the lower 8 
bits of the address/data bus on the second interrupt acknowl­
edge cycle (see Figure 89). In the 8259Aor 82C59A, the upper 
five bits are user-programmable and the lower three bits are 
determined by a defined interrupt request level. Interrupt 
acknowledge bus cycles have the following characteristics: 

INTERRUPTS 

9-14 

The two interrupt acknowledge cycles are LOCKed. 

Two idle T -states are always inserted between the two 
interrupt acknowledge cycles. 

Wait states will be inserted in an interrupt acknowledge 
cycle if READY is not returned to the processor. 

Also notice thatthe processor provides two interrupt aCknow l­
edge signals, one for interrupts signaled by the INTO line, and 
one for interrupts signaled by the INTI line (on the INT2/ 
INT AO and INT3/INT A I lines , respectively). These two inter­
rupt acknowledge signals are mutually exclusive. Interrupt 
acknowledge status will be driven on the status lines (SO-S2) 
when either INT2/INT AO or INT3/INT A I signal an interrupt 
acknowledge. The interrupttype generated on the secondINT A 
cycle is read by the CPU and then multiplied by four. The 
resultant value is used as a pointer into the interrupt vector 
table. 

When the Interrupt Controller is operating in Cascade Mode 
and an interrupt occurs during an instruction that has been 
LOCKed by software, the LOCK signal timing shown in Figure 
89 may be altered. Some peripheral devices used with 80186 
family members require contiguous INTA cycles to allow 
correctlnterrupt Controller response. In such cases, the exter­
nal circuitry in Figure 90 should be used to ensure that DMA 
or HOLD requests are blocked from stealing the bus during 
INT A cycles. 

9.5.4.3 MASTER MODE INTERRUPT 
RESPONSE TIME 

The interrupt response time for the 80 186 family is 42-55 CPU 
clocks when the Interrupt Controller is in Master Mode. Fig­
ure 91 shows how the total is obtained. The clock count changes 
when the processor replaces the indicated idle states with bus 
cycles for other tasks such as DMA. The processor does not 
necessarily flush the queue until the very last moment, so 
prefetching may continue for a while during the vectoring 
sequence. Also, the clock count must be adjusted for wait 
states or for the 80 I 88/8OC 188. Forthe 80 I 88/80C 188, double 
the number of clocks given for each bus cycle accessing the 
stack or memory. 

These clock counts are also applicable to software interrupts 
and NMI (notice there are no INT A cycles). 

9.5.5 EXAMPLE MASTER MODE 
INITIALIZATION 

The code to initialize the Interrupt Control Unit for a comb ina­
tion of direct inputs and Cascade Mode inputs is given in 
Figure 92. Refer to Figures 78 and 79 for the corresponding 



inter 

So-52 

ADO-AD7 

NOTES: 1. ALE is generated for each INTA cycle. 
2. AD is inactive. 

INTERRUPTS 

INTERRUPT TYPE 
(FROM EXTERNAL 

CONTROLLER) 

Figure 89. Cascaded Interrupt Acknowledge Thnlng 

DROO,DROI 
OR HOLD 

80186 

DMA OR HOLD REOUEST 

so DO 001---0-.... 
51 01 01 
52 02 021--oQ-' 

74LS373 
ALE G 

Figure 90. Circuit Blocking DMA or HOLD Request Between INTA Cycles 

270288-001-94 

270288-001-95 

hardware configurations. Notice that a READY signal muSt 
be returned to the processor to prevent the generation of wait 
states in response to the interrupt acknowledge cycles. This 
configuration provides 10 external input lines: two provided 
by the Interrupt Controller itself (pins INTI and INT3), and 
eight from the external 8259A (cascaded at pins INTO and 
INTAO). The 80186 integrated Interrupt Control Unit is the 
master system Interrupt Controller. The 8259A wiJI only re­
ceive interrupt acknowledge pulses in response to interrupts it 
has generated. The 8259A may be cascaded again as a master 

to lis many as eight additional 8259A Interrupt Controllers 
(configured as slaves). 

9-15 

9.6 SLAVE MODE 

Although Master Mode is more commonly used in 80186 
farnilyapplications,SlaveModehasanumberofuniquefunctions 
that make it attractive in some larger system designs. 



INTERRUPTS 

CLOCKS 
Interrupt presented to the interrupt controller ---------------------------------------------------------------------------- > 

5 
Interrupt presented to CPU ------------------------------------------------------------------------------------------------- > 

INTA 4 
IDLE 2 
INTA 4 
IDLE 5 
READIP 4 

} 
CASCADE 
MODE 
ONLY 

IDLE 3 (5 IF NOT CASCADE MODE) 
READCS 4 
IDLE 4 
PUSH FLAGS 4 

IF..-O, TF..-O IDLE 3 
PUSHCS 4 
PUSH IP 4 

First instruction fetch IDLE 5 
from interrupt routine --------------------------------------------------------------------------------------------------------- > 

$mod186 
name 

Total 42-55 

Figure 91. 80186 Family Master Mode Interrupt Response Time 

270288-001-96 

; This routine configures the interrupt controller to provide two cascaded 
interrupt inputs (through an external 8259A internal controller on 
pins INTO and INT2/INTAO) and two direct interrupt inputs (on pins INT1 

and 
INT3)· The default priority levels are used' Because of this, the 
priority level programmed into the control register is set to 111, the 
level all interrupts assume at reset· 

intO control 
int_mask 

equ 
equ 

OFF38H 
OFF28H 

code segment 
assume 
proc 
push 
push 

mov 

mov 
out 

mov 

mov 
out 
pop 
pop 
ret 
endp 
ends 
end 

CS:code 
near 
DX 
AX 

AX,0100111B 

DX,intO_control 
DX,AX 

AX,01001101B 

DX,int_mask 
DX,AX 
AX 
DX 

; public'code' 

; Cascade Mode 
; interrupt unmasked 

; now un mask the 0 the rex t ern a 1 
; interrupts 

270288-001-97 

Figure 92. Example 80186 Family Interrupt Initialization for Master Mode 

9-16 



9.6.1 SLAVE MODE EXTERNAL 
CONNECTIONS 

When the SLA VE/MASTER bit in the peripheral relocating 
register is set, the Interrupt Control Unit is in Slave Mode. In 
this mode, all four Interrupt Controller input lines are used to 
perform the necessary handshaking with the external master 
Interrupt Controller. Figure 93 shows the hardware configura­
tion of the interrupt lines with an external controller in Slave 
Mode. This discussion uses only the Slave Mode functional 
pin names. 

(45) 8259N 
INTO INT 82C59A ~ 

VCC 

INTAO (42)1 INTA 

80186 
FAMILY 

PROCESSOR 

""J 
(44) CASCADE 

SELECT ADDRESS 
CODE 

(41) 
IRQ 

270288-001-98 

Figure 93. Slave Mode Interface 

Because the integrated Interrupt Control Unit is a slave con­
troller, it must be able to generate an interrupt input for an 
external Interrupt Controller. It also must be signaled when it 
has the highest priority pending interrupt to know when to 
place its interrupt vector on the bus. These two signals are 
provided by the IRQ and SELECT lines, respectively. The 
external master Interrupt Controller must be able to interrupt 
the CPU, and needs to know when the interrupt request is 
acknowledged. The INTO and !NT AO lines provide these two 
functions. 

9.6.2 SLAVE MODE PROGRAMMING 

The Interrupt Controller registers for Slave Mode are defined 
according to Figure 94. In many cases, the names and func­
tions of registers at specific addresses is different from those in 
Master Mode. 

INTERRUPTS 

9-17 

9.6.2.1 CONTROL REGISTERS IN SLAVE 
MODE 

In Slave Mode, the integrated Interrupt Controller uses five 
control registers. Unlike in Master Mode, each timer has its 
own individual control register. These registers contain three 
bits which select one of eight interrupt priority levels for the 
device (0 is highest priority, 7 is lowest priority), and a mask 
bit to enable the interrupt (see Figure 95). When the mask bit 
is zero, the interrupt is enabled; when it is one, the interrupt is 
masked. 

9.6.2.2 REQUEST REGISTER IN SLAVE 
MODE 

The Interrupt Controller includes an interrupt request register 
(see Figure 96). This register contains seven active bits, one 
for every interrupt source with an interrupt control register. 
Whenever an interrupt request is made, the bit in the interrupt 
request register is set regardless of whether the interrupt is 
enabled. These interrupt request bits are automatically cleared 
when the interrupt is acknowledged. The D I and DO bits for 
the request register can also be set (requesting a DMA inter­
rupt), or cleared (removing a DMA interrupt request) by pro­
gramming. 

9.6.2.3 MASK REGISTER IN SLAVE MODE 

The Interrupt Controller mask register (see Figure 97) con­
tains a mask bit for each interrupt source associated with an 
interrupt control register. The bit for an interrupt source in the 
mask register is the same bit as provided in the interrupt con­
trol register; modifying a mask bit in the control register will 
also modify it in the mask register, and vice versa. 

9.6.2.4 PRIORITY MASK REGISTER IN 
SLAVE MODE 

The interrupt priority mask register (see Figure 98) contains 
three bits which indicate the lowest priority an interrupt may 
have that will cause an interrupt request to actually be serv­
iced. Interrupts received which have a lower priority will be 
masked. Upon RESET, this register is set to the lowest priority 
of 7 to enable interrupts of any priority. This register may be 
read or written. 

9.6.2.5 IN·SERVICE REGISTER IN SLAVE 
MODE 

The Interrupt Controller contains an in-service register (see 
Figure 99). There is an in-service bit for every interrupt control 
register. An interrupt acknowledge (either by INTA cycles or 



INTERRUPTS 

SLAVE MODE OFFSET ADDRESS 

CD 
------------~---

3EH 

CD 3CH -------------------
TIMER 2 CONTROL REGISTER 3AH ---------...,..--..;..-----
TIMER 1 CONTROL REGI.STER 38H 

------------~-----DMA1 CONTROL REGISTER 36H 
------------~----. 

DMAO CONTROL REGISTER 34H 
----------~..;..-----TIMER 0 CONTROL REGISTER 32H 

-----------~-----INTERRUPT CONTROLLER STATUS REGISTER 30H --...,.--------..;.._._----
INTERRUPT REQUEST REGISTER 2EH 

----------....;~------IN-SERVICE REGISTER 2CH ------...,..--------..;..-
PRIORITY MASK REGISTER 2AH 

--..;..--------~-------
MASK REGISTER 28H 

-------,---------
CD 26H 

----------------~--CD 24H -------------------
SPECIFIC EOI REGISTER -------------------- 22H 

INTERRUPT VECTOR REGISTER 20H 

NOTE: 
1. Unsupported in this mode; values written mayor may not be stored. 

270288-001-99 

Figure 94. InterrlJpt Controller Registers for Slave Mode 

15 14 13 8765432 0 

o 0 0 

270288·001-100 

Figure 95. Control Word Format (Slave Mode) 

15 o 

OFFSET:2EH x x 

270288-001-101 

Figure 96. Interrupt Controller Request Re~lster Format (Slave Mode) 

15 o 

OFFSET: 28H X x 

270288-001-102 

Figure 97. Interrupt Controller Mask Register Format (Slave Mode) 



INTERRUPTS 

15 o 

OFFSET: 2AH x x x x x 
270288-001-103 

Figure 98. Interrupt Controller Priority Mask Register Format (Slave Mode) 

a read of the interrupt poll register) sets an in-service bit. The 
bit is reset when the CPU issues an End Of Interrupt to the 
Interrupt Controller. This register may be both read and writ­
ten, i.e., the CPU may set in-service bits without an interrupt 
ever occurring, ormay reset them without using the EOI func­
tion of the Interrupt Controller. 

9.6.2.6 END OF INTERRUPT REGISTER IN 
SLAVE MODE 

The programmer issues an End ofinterrupt (EOI) by writing 
to the End ofinterrupt register (see Figure 100). After receiv­
ing the EOI, the Interrupt Controller automatically resets the 
in-service bit for the interrupt. In Slave Mode, the in-service 
bit for a particular interrupt is specified by explicitly writing 
the interrupt type bits (see Table 20) of the interrupt to this 
register. The EOI register is write-only. 

9.6.2.7 INTERRUPT STATUS REGISTER IN 
SLAVE MODE 

The Interrupt Controller also contains an interrupt status reg­
ister (see Figure 10 I). This register contains three program­
mable bits that indicate which timer is causing an interrupt. 
The bit associated with a timer is automatically cleared after 
the interrupt request for the timer is acknowledged. More than 
one of these bits may be set a time. All implemented bits in the 

15 

OFFSET: 2CH X x x 

Table 20. Slave Mode Interrupt Type Bits 2-0 

Interrupt Source Type Bits 2-0 

Timer 0 000 

(reserved) 001 

DMAO 010 

DMA1 011 

Timer 1 100 

Timer 2 101 

interrupt status register are read/write. Do not perform the 
write operation when interrupts from the timer/counters are 
possible; a conflict with internal use of the register may lead to 
incorrect timer interrupt processing. 

9.6.2.8 INTERRUPT VECTOR REGISTER 

In Slave Mode only, the Interrupt Controller contains an inter­
rupt vectorregister (see Figure 102). This register specifies the 
5 most significant bits ofthe interrupt vector type number to be 
placed on the CPU bus in response to an interrupt acknowl­
edge. The three least significant bits are fixed according to 
Table 20. 

o 

270288-001-104 

Figure 99. In-Service and Mask Register Format 

15 o 

OFFSET: 22H X X X X X X 

270288-001-105 

Figure 100. End of Interrupt Register Format (Slave Mode) 

9-19 



INTERRUPTS 

15 o 

OFFSET:30H x x x x x x 

270288-001 -106 

Figure 101. Interrupt Status Register Format (Slave Mode) 

15 o 

OFFSET:20H x x x 

270288-001-107 

Figure 102. Interrupt Vector Register Format (Slave Mode) 

9.6.3 SLAVE MODE INTERRUPT SOURCES 

When the Interrupt Controller is configured in Slave Mode, it 
accepts interrupt requests only from the integrated peripher­
als. Any external requests go through an external Interrupt 
Controller. This external Interrupt Controller requests inter­
rupt service directly from the 80186 family CPU through the 
INTO line. Once in Slave Mode.the integrated interrupt Control 
Unit cannot affect the function of this line. The integrated 
Interrupt Control Unit must request interrupt service from the 
external Interrupt Controller just like any other external inter­
rupt sources in the system. This interrupt request is made on 
the IRQ line (see Figure 93). . 

The internal interrupt sources are the three timers and the two 
DMAchannels. An interrupt from anyofthese interrupt sources 
is latched in the Interrupt Controller. The state of the pending 
interrupt can be obtained by readingthe interrupt request register. 
Also, writing to the interrupt request register can reset latched 
interrupts. 

9.6.4 SLAVE MODE INTERRUPT RESPONSE 

When the integrated Interrupt Controller receives an interrupt. 
the in-service bit is automatically set and the interrupt request 
bit is reset. The Interrupt Controller will prevent any interrupts 
from occurring from the same source until the in-service bit 
for that line has been cleared. Vector information driven by an 
80186 family device is not available outside the microproces­
sor. 

9.6.4.1 INTERNAL VECTORING IN SLAVE 
MODE 

In Slave Mode. the interrupt types associated with the various 
interrupt sources are alterable. The five most significant bits 

9-20 

are taken from the interrupt vector register, and the three least 
significant bits are defined according to Table 20. The CPU 
calculates the vector address before servicing the interrupt 
because the Interrupt Controller gives only the interrupt type 
in this mode. 

In Slave Mode. the integrated Interrupt Controller will present 
the interrupt type to the CPU in response to the two interrupt 
acknowledge bus cycles run by the processor. During the fit:St 
interrupt acknowledge cycle, the external master Interrupt 
Controller determines which slave Interrupt Controller will 
place its vector type number on the microprocessor bus. Dur­
ing the second acknowledge cycle, the processor reads the 
vector type from its bus. Thus, these two interrupt acknowl­
edge cycles must be run, since the integrated controller will 
present the interrupt type information only when the external 
Interrupt Controller signals the integrated controller that it has 
the highestpendirig interrupt request (see Figure 103). Correct 
master-slave interface requires decoding of the slave addresses 
(CASO-2). External circuitry must decode the slave address 
because of microprocessor pin limitations. SELECT is used as 
aslave-select input. In this configuration the slavevectoraddress 
is transferred internally, but the READY input must be sup­
plied externally. INTAO is used as an acknowledge output, 
suitable to drive the INTA input of the 8259A or 82C59A. The 
processor samples the SELECT line during the falling edge of 
the clock at the beginning of T3 of the second interrupt ac­
knowledge cycle. SELECT must be stable before and after 
this edge. 

These two interrupt acknowledge cycles run back-to-back, 
and will be LOCKed with the LOCK output active. The two 
interrupt acknowledge cycles will always be separated by two 
idle T -states. and wait states will be inserted into the interrupt 
acknowledge cycle if a READY is not returned by the proces­
sor bus interface. The two idle T -states are inserted to allow 
compatibility with an external 8259 or 82C59A Interrupt 
Controller. 



CLKOUT 

So-S2 

INTO 
(HIGH) 

IRQ 
(HIGH) 

CASO-2 

SELECT 

INTAO 

LOCK 

T1 

@ 

<D I 
I 

® ~ 
~ 

T2 

I 
1/ 

INTERRUPTS 

:\,---~.......,.._~r 
I 

270288-001-108 
NOTES: 1. Pin 44 (INTI/SELECT) assumes the SELECT function in Slave Mode. 

2. Pin 42 (INT2IINTAO) functions as interrupt acknowledge iiii'i'Ao in Slave Mode. 
3. Cascade address is driven by the extemal interrupt controller. 
4. SELECT must be driven before phase 2 of T2 of the second INTA cycle. 
5. SELECT read by processor. 
6. ALE is generated for each INTA cycle. 
7. AD is inactive. 

Figure 103. Slave Mode Interrupt Acknowledge Timing 

9.6.4.2 EXTERNAL VECTORING IN SLAVE 
MODE 

External interrupt vectoring occurs whenever the 80186 f!lll1-
. ily Interrupt Control Unit is placed in Slave Mode and the in­
tegrated controller is not selected by the external master Inter­
rupt Controller. In this mode, the processor generates two in­
terrupt acknowledge cycles, reading the type number off the 
lower 8 bits of the address/data bus on the second interrupt 
acknowledge cycle (see Figure 103)_ Notice thatthe two inter­
rupt acknowledge cycles are LOCKed, and that two idle T­
states are always inserted between the two interrupt acknowl­
edge bus cycles. Notice, too, that wait states will be inserted in 
the interrupt acknowledge cycle if a READY is not returned to 
the processor. Interrupt acknowledge status will be driven on 
the status lines (SU-S2) when INT AO signals an interrupt 
acknowledge. 

When the Interrupt Control Unit is operating in Slave Mode 
and an interrupt occurs during an instruction that has been 

9-21 

LOCKed by software, the LOCK signal timing shown in Figure 
103 may be altered. Some peripheral devices used with the 
80186family require contiguous INTA cycles to allow correct 
Interrupt Controller response. In such cases, the external cir­
cuitry in Figure 90 should be used to ensure that DMA or 
HOLD requests are blocked from stealing the bus during INT A 
cycles. 

9.6.4.3 SLAVE MODE INTERRUPT 
RESPONSE TIME 

Because interrupt acknowledge cycles must be run for Slave 
Mode and the integrated controller presents an interrupt type 
rather than a vector address, the interrupt response time is 55 
CPU clocks. Figure 104 shows how the total is obtained. The 
clock count changes when the processor replaces the indicated 
idle states with bus cycles for other tasks such as DMA. The 
processor does not necessarily flush the queue until the very 
last moment, so prefetching may continue for a while during 



INTERRUPTS 

9.S.5 EXAMPLE SLAVE MODE 
INITIALIZATION 

the vectoring sequence. Also, the clock count must beadjusted 
forwaitstatesorforthe801 88/8OC 188.Forthe 80 I 88/8OCI 88, 
double the number of clocks given for each bus cycle access­
ing the stack or memory. AsshowninFigure I 05,the initiaiizationof Slave Mode requires 

setting only one bit in the relocation register. 

$modl/1b 
nallle 

CLOCKS 

Interrupt presented to the interrupt controller ............................................................................ > 

5 
Interrupt presented to CPU ............................................. , ....................... c ........................... > 

INTA 4 
IDLE 2 
INTA 4 
IDLE 5 
READIP 4 
IDLE 3 
READCS 4 
IDLE 4 
PUSH FLAGS 4 

IF+-O, TF+-O IDLE 3 
PUSHCS 4 
PUSH IP 4 

First instruction fetch IDLE 5 
from interrupt routine ......................................................................................................... > 

Total 55 

Figure 104. Interrupt Response Time For Slave Mode 

270288·001·109 

This routine configures the interrupt controller into Slave Mode. This code 
does not initialize any of the integrated peripheral control registers, 
nor does it initialize the external /l25'1A interrupt controller 

relocation.,reg 
, 

set sl.ave 
code 

equ 

code 
assume 
proc 
push 
push 

OFFFEH 

segment 
CS:code 
near 
DX 
AX 

mov DX,relocation_reg 

; publ i c'code' 

in AX,DX ; rl!ad old contents o.f.register 
or AX,0100000000000000B; set the Slave/Master mode bi t 
out DX,AX 

pop 
pop 
ret 
endp 
ends 
end 

AX 
DX 

270288·001-110 

Figure .105. Example 80186 Family Interrupt Initialization for Slave Mode 

9-22 



9.7 INTERRUPT CONTROLLER FLOW 
CHARTS 

Figure 106 shows an interrupt request generation flow chart 
and Figure 107 shows an interrupt acknowledge sequence 
flowchart. Each interrupt source processed by an 80 I 86 family 
integrated Interrupt Controller follows each flow chart inde­
pendently. 

INTERRUPTS 

PRESENT INTERRUPT 
REQUEST TO 

EXTERNAL CONTROLLER 

Figure 106. Interrupt Request Sequencing 

9-23 

YES 

270288-001-111 



INTERRUPTS 

NOTES: 
1. Before actual interrupt acknowledge is run by CPU. 
2. Two interrupt acknowledge cycles will be run; the interrupt type is read by the CPU on the second cycle. 

WAIT FOR NEXT 
INTERRUPT 

ACKNOWLE~E 

270288-001-112 

3. Interrupt acknowledge cycles will not be run; the interrupt vector address is placed on an internal bus and is not available outside 
the processor. ' 

4. InterrUpt type is not driven on external bus in Slave Mode. 

Figure 107. Interrupt Acknowledge Sequencing 

9-24 



Refresh Control Unit 1 0 
(80C 186180C 188 Only) 





CHAPTER 10 
REFRESH CONTROL UNIT (80C186/80C188 ONLY) 

To simplify the design of a dynamic memory controller, the 
80C 186 incorporates integrated address and clock counters 
into a Refresh Control Unit (RCU). Its relationship to the BIU 
is shown in Figure 108. To the memory interface a refresh re­
quest looks exactly like a memory read bus cycle. Integration 
of the RCU into the 80C 186 means that chip selects, wait state 
logic, and status lines may be used by an external DRAM 
controller. The external DRAM controller generates the RAS, 
CAS, and enable signals actually needed by the DRAMs. 

R/W REGISTER 

CPU 
Interface 

R/W REGISTER 

R/W REGISTER MDRAM REGISTER 

ThethreecontrolregistersareMDRAM,CDRAM,andEDRAM 
(see Figure 109). These registers define the operating charac­
teristics of the RCU. The EDRAM register programs the base 
address (upper 7 bits) of the refresh address (see Figure 109). 
This allows the refresh address to be mapped to any 4 kilobyte 
boundary within the one megabyte 80C I 86/8OC 188 address 
space. The MDRAM register is not altered whenever the re­
fresh address bits (A I through A9 in Figure 110) roll over. In 
other words, the refresh address does not act like a linear 
counter found in a typical DMA controller. 

REfRESH REQUEST 

REfRESH ACKNOWLEDGE 

20-bit Refresh Address 

BIU 
Interface 

270288-001-113 

Figure 108. Refresh Control Unit Block Diagram 

The 9-bit address counter is used in the formation of refresh 
addresses. Thus, any dynamic memory whose refresh address 
requirements (rows of memory cells)do not exceed nine bits 
can be directly supported by the 80C 186. The 9-bit address 
counter, a 6-bit base register, and six fixed bits define a full 20-
bit refresh address. The 9-bit counter decrements every clock 
cycle and generates a refresh request to the BIU whenever it 
reaches I. When the bus is free, the BIU will run the refresh 
(dummy read) bus cycle. Refresh requests have a higher prior­
ity than any other bus request (i.e., CPU, DMA, HOLD). 

10.1 REFRESH CONTROL UNIT 
PROGRAMMING 

There are three registers in the Peripheral Control Block that 
control the RCU. These registers are only accessible when the 
80CI86 or 80CI88 are operating in Enhanced Mode (see 
Appendix C.2 for more on Enhanced Mode). Otherwise, a 
read or write to these registers is ignored. 

10-1 

The CDRAM register defines the interval between refresh 
requests by initializing the value loaded into the 9-bit down 
counter. Thus, the higher the value, the longer the amount of 
time between requests. The down counter is decremented every 
falling edge ofCLKOUT, regardless of the activity of the CPU 
or BIU. When the counter decrements to I, a request is gener­
ated and the counter is again loaded with the value in the 
CDRAM register. The amount of time between refresh re­
quests can be calculated using the equation shown in Figure 
III. The minimum value that can be programmed into the 
CDRAM register is 18 (12H) regardless of the operating fre­
quency. This minimum count ensures that the BIU has enough 
time to execute the refresh bus cycle. The BIU cannot queue 
DRAM refresh requests. If another request is generated before 
the current request is executed, the current request is lost. 
However, the address associated with the request is not lost; 
the refresh address changes only after the BIU runs a refresh 
bus cycle. Thus it is possible to miss refresh requests, but not 
refresh addresses. 



REFRESH CONTROL UNIT (80C186/80C188 ONLY) 

OFFSET: 
15 o 

E4H E 0 0 0 0 0 0 T8 T7 I6 T5 T4 T3 T2 Tl TO EORAM Register (1) 

E2H 0 0 0 0 0 0 0 C8 C7 C6 C5 C4 C3 C2 Cl CO CDRAM Register (2) 

EOH M6 M5 M4 M3 M2 Ml MO 0 0 0 0 0 0 0 0 0 MDRAM Register (3) 

Noles: 

1. Bits 0-8: TO-T8, Refresh request count. These bits are read-only and represent the current value of the down counter. Any 
wrije to these bits is ignored. 
Bit 15 : E, enables the operation of the refresh control unit. 

2. Bits 0-8: CO-C8, define the number of CLKOUT cycles between each refresh request. 

3. Bijs 9-15: MO-M6, are used to define address bits A 13-A 19 (respectively) of the 20-bit memory address. These bits clear to zero on 

RESET. 270288-001-114 

Figure 109. Refresh Control Unit Registers 

Address Bit 19 18 17 16 15 14 13 11 10 9 8 7 6 5 432 o 
Physical Refresh 

Addm$L--L __ -L __ ~ __ ~ __ L-~~~ __ -L __ -L __ ~ __ L-__ L-~~-L~~ __ ~ __ ~ __ L-~ 

Bit 0: Always driven to 1 (HIGH). This is true for both the 80C186 and the 80C188. 
Bits 1-9: CAO-CA8, generated by the 9-bit linear-feedback shift counter. 
Bits 10-12: Always driven to 0 (LOW). 
Bits 13-19: MO-M6, defined by the MDRAM register. 270288-001-115 

Figure 110. Physical Address Generation 

____ R""PE::!R.:.:;IO::<:D::...:..(II..:S)_x_f.:..(M_H..,;z)'--_-- = CDRAM Register Value 
# Refresh Rows + # (Refresh Rows x % OVerhead) 

RpERIOD = Maximum refresh period specified by DRAM manufacturer (microseconds). 

f = Operating frequency of 80C186 in MHz. 
# Refresh Rows'= Total number of rows to be refreshed. 
% OVerhead = Derating factor to compensate for missed refresh requests (typically 1-5%). 

270288-001-116 

Figure 111. Equation to Calculate Refresh Interval 

'I'heEDRAMregisterhas two functions, depending on whether 
it is being written or read. During writes to the EDRAM reg­

. ister, only the Enable bit is active. Setting the Enable bit turns 
on the RCV while clearing the Enable bit deactivates the RCV. 
When the RCV is enabled, the contents of the EDRAM regis­
ter are loaded into the 9-bit down counter and refresh requests 
are generated when the counter reaches I. Disabling the RCV 
stops and clears the counter. A read of the EDRAM register 
will return the current value of the Enable bit as well as the 
current value of the 9-bit down counter (zero if the RCV is not 
enabled). Writing to EDRAM register when RCV is running 
does not modify the count value in the 9-bit counter. 

10-2 

10.2 REFRESH CONTROL UNIT OPERATION 

Figure 112 illustrates the two major functions of the Refresh 
Control Vnit that are responsible for initiating and controlling 
the refresh bus cycles. 

The down counter is loaded on the falling edge of CLKOVT, 
when either the Enable bit is set or the counter decrements to 
I. Once loaded, the down counter will decrement every falling 
edge ofCLKOUT (as long as the Enable bit remains set). 



inter REFRESH CONTROL UNIT (80C186/80C188 ONLY) 

Refresh Control Unit Operation 

Executed 
~ __ Every 
, Clock-l-

270288-001-117 

BIU Refresh Bus Operation 

Continue 

270288-001-118 

Figure 112. Flowchart of RCU Operation 

When the counter decrements to I, two things happen. First, a 
request is generated to the B IU to run a refresh bus cycle. The 
request remains active until the bus cycle is run. Second, the 
downcounterisreloadedwiththevaluecontainedintheCDRAM 
register. At this time, the down counter will again begin count­
ing down every clock cycle. It does not wait until the request 
has been serviced. This is done to ensure that each refresh 
requestoccursatthecorrect interval. Otherwise, the time between 
refresh requests would also be a function of varying bus activi­
ties. When the BIU services the refresh request, it will clear the 
request and increment the refresh address. 

Refresh bus cycles are specially encoded to distinguish them 
from ordinary read cycles according to Table 21_ 

Table 21. Identification of SOC186/SOC188 
DRAM Refresh Cycles 

BHEIRFSH 
80C186 

80C188 

NOTE: 
BHE applies to the 80C186 and 
RFSH applies to the 8OC188. 

1 

0 

AD 
1 

1 

10-3 

10.3 REFRESH ADDRESSES 

The physical address that is generated during a refresh bus 
cycle is shown in Figure 110, and applies to both the 80C 186 
and 80C 188. The refresh address bits CAO through CA8 are 
generated using a linear-feedback shift counter which does 
not increment the addresses linearly from 0 through IFFH 
(although they do follow a predicable algorithm). Further, 
note that for the 80CI 88,addressbit AOdoes not toggle during 
refresh operation, which means that it cannot be used as part of 
the refresh (row) address applied to the dynamic memory device. 
Typically, AO is used as part of memory decoding in 80C 188 
applications, unlike 8OCl86 applications which use AO along 
with BHE to select an upper or lower bank. 

10.4 REFRESH OPERATION AND BUS HOLD 

When another bus master has control of the bus, the HLDA 
signal is kept active as long as the HOLD input remains active. 
If a refresh request is generated while HOLD is active, the 
8OCl86 will drive the HLDA signal inactive to indicate to the 
current bus master that the 80C 186 wishes to regain control of 
the bus (see Figure 113). Only when the HOLD input is re­
moved will the BIU begin the refresh bus cycle. 

Therefore, it is the responsibility of the system designer to 
ensure that the 80C 186 can regain the bus if a refresh request 
is signalled. The sequence of HLDA going inactive while 



NOTES: 

REFRESH CONTROL UNIT (80C186/80C188 ONLY) 

n I n I n n I n T4 I T1 

CL::: =EI (!J ::: (!) 

I ~~--~TL~~~~~~~ 
HLDA I 

I ll--I------I---~--+_---lf--

ADo-AD15, 
tmt; 

A16/S3-A19/S6, 

DTiFi,S0-S2 

I I 
I I ll--+--+---+-+---I-{ 
I I 

I I 11---;-----;.-----;---"'< 
I I '-+---
I I 

1. HLDA deasserted, signaling need to run DRAM refresh cycles; less than T CLHAV' 
2. External bus master terminates use of the bus. 
3. HOLD deasserted; greater than T HV L' 
4. HOLD may be reasserted after one cYock. 
5. Lines come oul of float in order to run DRAM refresh cycle. 

Figure 113. Release of 8OC186/80C188 HOLD to Run Refresh Cycle 

270288-001-119 

HOLD is active can be used to signal a pending refresh. If 
HOLD is again asserted, the 80C 186 will give up the bus after 
the refresh bus cycle has been run (provided another refresh 
request is not generated during that time). 

10.5 EXAMPLE RCU INITIALIZATION CODE 

10-4 

Sample code to initialize the 80CI86/80CI88 DRAM Re­
fresh Control Unit is included in Figure 114. 



REFRESH CONTROL UNIT (8OC18618OC188 ONLY) 

"odlollio 
naee axaaple_IIDC101l1o_dru_code 

This file contains exaaple code to initialize the IIDCloll1o DRAM refresh control 
unit. for th~ purposes of our exaaple, we will assuee that the 
specifications for our systell call for Slo~ kbytes of DRAM to be located 
at a base address of ~Slok. ~e choose ~Slok X ~ DRAMs sq that two devices 
are low-byte addressed and two devices are high-byte addressed. Reading 
the fine print on the DRAM data sheet we see that ~SIo refresh cycles are 
required every ~ as. This inforllation also tells us the lIellory cells in 
the DRAMs ar. physically arranged as ~SIo (~**II) rows by loD~~ (~**1oD) 
coluens. To calculate the Maxiaull number of clocks between refresh 
cycles, we lIultiply the to~al refresh period by the IIDC101l1o CLKOUT 
frequency and divide by the nua~er of rows. for an IIDC101l1o running at 
1o~.S MHz, the einieua refresh rate is ~[-D3 * 1o~.SE+DIo I ~SIo • 1o'S 

; 
IIdralll 
cdraa 
edralll 

code 

clocks. . 

equ 
equ 
equ 

DffEDh 
DffE~h 
DffE~h 

segllent public'code' 
aSSUMe cs:code 

proc 
push 
push 
pus!'l 
push 

naar 
AX 
CX 
DX 
DI 

; sava ragisters used 

Notice that we don't initialize tha lIiddle chip selact. On the liD 1011 10 faaily, 
the MCS block can be initialized to a size of Sl~ kbytes, but the block 
cannot be located at a starting address of ~Slok. Since the progr.aaable 
ready logic is unavailable, t!'le systaa aust provide READY to either the 
SRDY or ARDY pins in hardware. 

IIOV DX,adraa 
aov AX,~DDDh 
out DX, AX 

IIOV DX,cdraa 
aov AX,US 
out DX,AX 

aov DX,edralll 
IIOV AX,IIDDOh 
out DX, AX 

IIOV CX, II 
xor DI,DI 
IIOV word ptr UIl, 
loop ,xercise_raa 

pop PI 
pop DX 
pop CX 
pop AX 
ret 
endp 
ends 
end 

D 

; set upper 7 address bits 
; for a starting address of 
; of ~Slok 

; set the cloc.k pre-scaier 
; to.ref~esh at 10llS clock 
; intervals, just to be sura 

;write a one to e~able the 
; RCU 

; II duaey cycles are 
; raquirer;l by the DRAMs 
; before actual use 

270288-001-120 

Figure 114. Example ~RAM Refresh Inltlallzatlo!"l Code 

10-5 





Power-Save Unit 11 
(80C186180C188 Only) 





CHAPTER 11 
POWER-SAVE UNIT (80C186/80C188 ONLY) 

The Power-Save Unit is intended to benefit applications by 
lowering power consumption while maintaining regular op­
erationofthe CPU. The 80C 186 power-save mechanism lowers 
current needs by reducing the operating frequency. 

The Power-Save Unit is an internal clock divider as shown in 
Figure 115. power-save operation changes the internal operat­
ing frequency of the processor, so it affects integrated periph­
erals as well as the CPU. Affected units include the timers, 
DRAM refresh control, DMA, and BIU. Thus by using the 
power-save feature, the net effect is similar to changing the 
input clock frequency. 

Power-Save 
Divider­

Multiplexer 
11 
/4 
/8 
/16 

~H--I~ TO CHIP LOGIC 

E, FO-F1 

270288-001-121 

Figure 115. Simplified Power-Save Internal 
Operation 

11.1 POWER-SAVE UNIT PROGRAMMING 

The PDCON register (see Figure 116) controls the operation 
of the Power-Save Unit. This register is available for program­
ming when the 80C1860r80C188 is in Enhanced Mode (see 
Appendix C.2 for more on Enhanced Mode). Reads or write to 

15 

E o 0 o o o 0 
OFFSET: FOH 

Bits 0-1: Clock Division Select 

the PDCON register in Compatible Mode result in no opera­
tion, and the value returned will be all ones. 

When the Enable bit in the PDCON register is set, the Power­
Save Unit is active and, depending on the condition of the FO 
and FI bits, the operating clock of the 80C 186 changes from 
normal operation. When the Enable bit is cleared, the 80C 186 
will operate at the standard divide-by-two clock rate. The En­
able bit is automatically cleared whenever a non-masked in­
terrupt occurs. Thus, if the power-save feature is enabled and 
an unmasked interrupt of sufficient priority is received, the 
Enable bit clears and the processor executes at full speed. This 
allows interrupts to be processed at maximum speed. A return 
from the interrupt does not automatically set the Enable bit. 
This must be done as part of the interrupt routine. Software 
interrupts do not clear the Enable bit. 

The FO and FI bits determine the divisor of the Power-Save 
Unit. Figure 117 provides a list of the various combinations of 
the bits and their division factors. Note that the divisor relates 
to CLKOUT, not the input clock at pin X I. Selecting a divisor 
of I does not reduce the power consumption. The operating 
clock of the 80C 186 must not be divided below the minimum 
operating frequency specified in the data sheet (500 kHz). 
Figure 116 also indicates the minimum crystal frequency which 
will allow the use of a specific divisor. 

11.2 POWER-SAVE OPERATION 

When the Enable bit in the PDCON register is set, the clock 
divider circuitry will tum on during the write to the PDCON 
register (refer to Figure 116). At the falling edge ofT, of the 
register write, CLKOUT will change to reflect the new divi­
sor.lfanyvaluesofRJ-Flotherthanzerohavebeenprogrammed, 

o 

o o o o o o o Fl I FO I 
F1 FO Divsion Faclor 
o 0 divide by 1 

Minimum Xl Frequency 
1 MHz 

o 1 divide by 4 4 MHz 
1 0 divide by 8 8 MHz 
1 1 divide by 16 16MHz 

Bits 2-14: Reserved, read bask as zero. 
Bi115: Enable (set) power-save mode. Cleared (disabled) on reset. 270288-001-122 

Figure 116. Power-Save Register Format 

11-1 



POWER-SAVE UNIT (80C186/80C188 ONl V) 

the CLKOUT period will increase, starting with the LOW 
phase. CLKOUT is glitch-free. 

11.3 EXAMPLE POWER-SAVE 
INITIALIZATION CODE 

The Power-Save Unit remains active until one of three events 
'lappens: the Enable bit inthe PDCON register is cleared, new 
values for FO and FI are programmed, or an unmasked inter­
rupt is received. In the first two cases, the changes directly 
follow Figure 117. When an unmasked interrupt is received, 
the operating frequency is changed as shown in Figure 116, 
but may occur atT, of any bus cycle in progress just after the 
interrupt. Thus, it is not possible to determine exactly when, in 
the event of an interrupt, the Power-Save Unit will be disabled. 

Figure 118 illustrates the programming of the Power-Save 
Unit for a typical80C 186 system. 

CLKOUT 

CD @ 

,'-_____ ---..Jf 

NOTES: 
1. Write to PDCON register (as viewed on the bus). 
2. Low going edge of T 3 starts new clock divider. 270288-001-123 

Fgure 117. Power-Save Clock Transition 

11-2 



$mod186 
name 

POWER-SAVE UNIT (80C186/80C188 ONLY) 

This file contains example code to initialize the 8oC186 power-save unit. We 
will initially assume that our system is operating at a clock frequency 
of 8 MHz (16 MHz at Xl) and that we wish to change the processor to a 
background mode, with reduced power consumption. 

pdcon 

code 

equ oFFFoh 

segment publ ic'code' 
assume cs: code 

proc 
push 
push 

near 
AX 
DX 

; save registers used 

At the beginning of the procedure the user should reprogram those peripherals 
which will be affected by the slower clock, including timers and the 
DRAM refresh unit. Of particular concern is any external logic clocked 
by both ClKIN and ClKOUT. 

mov 
mov 
out 

DX,pdcon 
AX,8oo3h 
DX,AX 

; set bits 0 and 1 for a 
; divisor of 16, which 
; yields a processor clock 
; of 500 kHz, the minimum 
; specification for the 
; 8oC186. 

As soon as the out DX, AX operation takes place, the clock frequency is 
reduced. The original clock frequency will be restored upon an unmasked 
interrupt or reprogramming the pdcon register. 

end 

pop DX 
pop AX 
ret 

endp 
ends 

Figure 118. Example 80C186 Power-Save Initialization Code 

11-3 

270288-001-124 



, 
, 

.j 



Hardware Provisions 1 2 
for Floating Point Math 





CHAPTER 12 
HARDWARE PROVISIONS FOR FLOATING POINT MATH 

The 80186 microprocessor family was designed for general­
purpose microprocessing. In most data controller applications, 
the actual arithmetic performed on data values is fairly simple, 
while fast, efficient data movement and control instructions 
are very important. However, some applications require more 
powerful arithmetic instructions and more complex data types 
than provided by a general purpose data processor. Character­
istics of such applications include the following: 

Numeric data vary over a wide range of values or include 
non-integral values. 

Algorithms produce very large or very small intermediate 
results. 

Computations must be very precise, i.e., a large number of 
significant digits must be retained. 

Computations must be extremely reliable without undue 
dependence on programmed algorithms. 

Overall math performance exceeds the power provided by 
a general-purpose processor and software alone. 

The 80186 family supports these needs by providing the nec­
essary hardware interfaces to either a numerics coprocessor 
(the 8087) or a numerics coprocessor extension (the 80C 187). 

12.1 USING THE 80186/80188 WITH THE 
8087 NUMERICS COPROCESSOR 

Use of the 8087 numerics coprocessor with an 801860r801 88 
adds 68 floating-point instructioris and eight 80-bit floating­
point registers to the basic architecture. An 8087 can increase 
the math performance of an 80186/80188 system by 50 to 100 
times. The detailed operation of 80186(80188)/8087 hard­
ware and software is transparent to the system user. 

12.1.1 OVERVIEW OF NUMERICS 
COPROCESSING 

The 80186 or 80188 interfaces to the 8087 through an 82188 
Integrated Bus Controller (See Figure 119). Due to the 33 
percent duty cycle restriction of the 8087 (specifically the 
8087-1 speed selection) and clock input restrictions of the 
82188, this combination is limited in speed to 8 MHz. 

12-1 

12.1.2 8087 INSTRUCTION SET 

8087 instructions are divided into six functional groups: data 
transfer, arithmetic, comparison, transcendental, constant, and 
processor control. Typical 8087 instructions accept one ortwo 
operands and produce a single result. Operands are most often 
located in memory or the 8087 stack. The operands of some 
instructions are predefined; forexample,FSQRT always takes 
the square root of the number in the top stack element. Others 
allow, orrequire, theprogrammertoexplicitIy codetheoperand(s) 
along with the instruction mnemonic. Still others accept one 
explicit operand and one implicit operand, usually the top 
stack element. 

As with the basic 80186 family instruction set, there are two 
types of operands, source and destination. Source operands 
are not altered by the instruction. Even when an instruction 
converts the source operand from one format to another (e.g., 
real to integer), the conversion is actually performed in an 
internal work area to avoid altering the source operand. A 
destination operand is distinguished from a source operand 
because its contents may be altered when it receives the result 
of the operation; that is, the destination is replaced by the 
result. 

12.1.2.1 DATA TRANSFER INSTRUCTIONS 

These instructions move operands among elements of the 8087 
register stack, and between stack top and memory. Any of the 
seven data types can beconverted to temporary real (see Section 
12.1.3) and loaded onto the stack in a single operation; they 
can be stored to memory in the same manner. Data transfer 
instruction are summarized in Table 22. 

12.1.2.2 ARITHMETIC INSTRUCTIONS 

The 8087's arithmetic instruction set (Table 23) provides a 
wealth of variations on the basic add, subtract, multiply, and 
divide operations, and a number of other useful functions. 
These range from a simple absolute value toa square root 
instruction that executes faster than ordinary division. Other 
arithmetic instructions perform exact modulo division, round 
real numbers to integers, and scale values by powers of tWo. 

Table 23 summarizes the available operation and operand 
forms provided for basic arithmetic. In addition to the four 
normal operations, two "reversed" instructions make subtrac­
tionanddivision"symmetrical"like addition and multiplication. 



HARDWARE PROVISIONS FOR FLOATING POINT MATH 

TO OPTIONAL 
THIRD BUS MASTER 

80186180188 ADDRESS DATA BUS 

HLDA I--------~ HLDA 
HOLD HOLD 
MCSii CSIN 

ARDY OSO I------~ OSOI 
RD 

OSl I------~ OSll 

SRDY ..... I------, 
RESET 1-----. 

CLKOUT 1----; 
52 

INTO 

BUSY 
INT 

.... ~j....;I~~S2 
... +-t-Hr--~ 51 

.... Hi-+-+-+-~Sli 
.... +-I~ .. CLK 

RESET 

51 
52 
CLK~--.J 

RESET ~ ___ ....... .J 

RDY~---~ 

SRO 

82188 

OSO ~-------1 OSOO 
OSl OSlO 

RQ/GTo RQ/GTO 
RO/GTl RQ/GTl 

8087-1 
ADDRESS DATA BUS 

.... -------J COMMAND/CONTROL 

ALE 

ADDRESS 

DATA 

ARDY SRDY 270288-001-125 

Figure 119 .. 80186 (80188) - 82188-8087 Circuit Diagram 
'. 

Thevarietyofinstructionandoperandfonnsgivetbeprogrammer 
unusual flexibility: 

• Operands may be located in registers or memory. 

• Results may be deposited in a choice of registers. 

• Operands may hea variety of qata types, including tempo­
rary real, long real, short real, short integer, or word inte­
ger, with automatic type conversion to temporary real 
performed by the 8087. 

12-2 

12.1.2.3 COMPARISON INSTRUCTIONS 

Each of these instructions (Table 24) analyzes the stack top 
element, often in relationship to another operand, and reports 
the result in the status word condition code. The basic opera­
tions arecompare, test (compare with zero ),andexamine (report 
tag, sign, and normalizaiion). 



HARDWARE PROVISIONS FOR FLOATING POINT MATH 

Table 22. Data Transfer Instructions 

REAL TRANSFERS 

FLD Load real 
FST Store real 
FSTP Store real and pop 

FXGH Exchange registers 

INTEGER TRANSFERS 

FILD Integer load 
FIST Integer store 
FISTP Integer store and pop 

PACKED DECIMAL TRANSFERS 

FBLD Packed decimal (BCD) load 
FBSTP Packed decimal (BCD) store 

and pop 

Table 24. Comparison Instructions 

FCOM Compare real 
FCOMP Compare real and pop 
FCOMPP Compare real and pop twice 

FICOM Integer compare 
FICOMP Integer compare and pop 
FTST Test 
FXAM Examine 

12.1.2.4 TRANSCENDENTAL 
INSTRUCTIONS 

The instructions in this category perfonn the time-consuming 
core calculations forcommon trigonometric, hyperbolic, inverse 
hyperbolic,logarithmic, and exponential functions. Prologue 
and epilogue software may be used to reduce arguments to the 
range accepted by the instructions and to adjust the result to 
correspond to the original arguments if necessary. The tran­
scendentals operate on the top one or two stack elements and 
they return their results to the stack. Table 25 lists the transcen­
dental instructions. 

Table 25. Transcendental Instructions 

FPTAN 
FPATAN 
F2XM1 

FYL2X 
FYL2XP1 

Partial tangent 
Partial arctangent 
2X_1 

Y.log2X 

Y • log2(X+ 1 ) 

12-3 

Table 23. Arithmetic Instructions 

ADDITION 

FADD Add real 

FADDP Add real and pop 
FIADD Integer add 

SUBTRACTION 

FSUB Subtract real 
FSUBP Subtract real and pop 
FISUB Integer subtract 
FSUBR Subtract real reversed 
FSUBRP Subtract real reversed and pop 
FISUBR Integer subtract reversed 

MULTIPLICATION 

FMUL Multiply real 
FMULP Multiply real and pop 
FIMUL Integer multiply 

DIVISION 

FDIV Divide real 
FDIVP Divide real and pop 
FIDIV Integer divide 
FDIVR Divide real reversed 
FDIVRP Divide real reversed and pop 

FIDIVR Integer divide reversed 

OTHER OPERATIONS 

FSQRT Square root 

FSCALE Scale 

FPREM Partial remainder 
FRNDINT Round to integer 
FXTRACT Extract exponent and significand 

FABS Absolute value 

FCHS Change sign 

12.1.2.5 CONSTANT INSTRUCTIONS 

Each of these instructions (Table 26) loads a commonly used 
constant onto the stack. The values have full temporary real 
precision (80 bits) and are accurate to approximately 19 deci­
mal digits. Since atemporary real constant occupies 10memory 
bytes, the constant instructions, only two bytes long, save 
memory space. These instructions simplify programming as 
well. 



HARDWARE PROVISIONS FOR FLOATING POINT MATH 

Table 26. Constant Instructions 

FLDZ Load +0.1 
FLD1 Load +1.0 
FLDPI Loadlt 
FLDL2T Load log21 0 
FLDL2E Loadlog2e 
FLDLG2 Load log 102 
FLDLN2 Loadloge2 

12.1.2.6 PROCESSOR CONTROL 
INSTRUC110NS 

Most of these instructions (Table 27) are not used in computa­
tions; they are provided principally for system-level activities. 
These include initialization, exception handling and task 
switching. 

Table 27. Processor Control Instructions 

FINIT/FNINIT Initialize processor 
FDISIIFNDISI Disable interrupts 
FENIIFNENI Enable interrupts 
FLDCW Load control word 
FSTCW/FNSTCW Store control word 
FSTSW/FNSTCW . Store status word 
FCLEXlFNCLEX Clear exceptions 
FSTENV/FNSTENV Store environment 
FLDENV Load environment 
FSAVElFNSAVE Save state 
FRSTOR Restore state 
FINCSTP Increment stack pointer 
FDECSTP Decrement stack pointer 
FFREE Free register 
FNOP No operation 
FWAIT CPU wait 

12.1.3 8087 DATA TYPES 

An 80186(80188)18087 or 80C I 86180CI 87 system supports 
the following seven data types: 

• Word Integer - A signed binary numeric value contained 
in a 16-bit word. All operations assume a 2's complement 
representation. 

12-4 

• Short Integer - A signed binary numeric value contained 
in a 32-bit double word. All operations assume a 2's 
complement representation. 

• Long Integer-A signed binary numeric value contained in 
a 64-bit quad word. All operations assume a 2 's comple­
ment representation. 

• Packed Decimal- A signed numeric value contained in an 
80-bit BCD format. 

• Short Real- A signed, floating point numeric value con­
tained in a 32-bit format. 

• Long Real - A signed, floating point numeric value con­
tained in a 64-bit format. 

• Temporary Real- A signed, floating. point numeric value 
contained in an 80-bitformat. Temporary real is the native 
808718OC187 format. 

Figure 120 graphically represents these data types. 

12.1.4 80186(80188)/8087INTERFACE 

The 8087 is comprised of two elements, a Control Unit and a 
Numeric Execution Unit. The Numeric Execution Unit exe­
cutes all numeric instructions, while the Control Unit receives 
and decodes instructions, reads and writes memory operands, 
and executes coprocessor control instructions. These two ele­
ments operate independently of one another. This allows the 
Control Unit to maintain synchronization with the 80186 or 
80188 CPU while the Numeric Execution Unitis busy proc~ 
essing instructions. 

The 8087 is referred to as a numerics coprocessor because it 
operates synchronously with the host processor. The CPU's 
status lines (SO-S2) and queue status lines (QSO-QS I) allow 
the 8087 to monitor and decode instructions in synchroniza~ 
tion and without any CPU overhead. The 8087 maintains its 
own prefetch queue identical to the one in the 80 I 860r 80 188. 
When a numerics instruction is encountered, the 8087 proc­
esses them independently of the CPU (Figure 121). 

No special configuration is necessary for the 8087 to deter­
mine whether the data bus is eight or sixteen bits; the 8087 
examines the 80186180188 BHEis7 line at RESET to adjust 
its queue length and external data path accordingly. 



15 

SHORT INTEGER lsi 
31 

LONG INTEGER lsi 
63 

PACKED DECIMAL 

79 

SHORT REAL 

LONG REAL 

63 

HARDWARE PROVISIONS FOR FLOATING POINT MATH 

o 

(TWO'S 
COMPLEMENT) 

MAGNITUDE 
(TWO'S 
COMPLEMENT) 

0 

MAGNITUDE 

72 

BIASED 
EXPONENT 

1'" 
o 

SIGNIFICAND 

1'" 
o 

(TWO'S 
COMPLEMENT) 

TEMPORARY REAL LI_S~I _____ E_:_~~_~_~_~_T ____ ~fi1_1-+ _______________ S_IG_N_IF_1C_A_N_D ________________ ~ 
79 64 63'" 

8087 
NUMERIC 
DATA PROCESSOR 

80186 

Figure 120. 8087/SOC187 Supported Data Types 

Figure 121. 8087 Coprocessor Operation 

12-5 

o 
270288-001-126 



HARDWARE PROVISIONS FOR FLOATING POINT MATH 

12.1.5 80186(80188) BUS CYCLES DURING 
NUMERICS COPROCESSING 

The.8087 is an alternate bus master which directly performs all 
coprocessor reads and writes to memory. When the Numeric 
Execution Unit begins executing an instruction, it activates 
the 8087 BUSY signal. This signal is used in conjunction with 
the WAIT or FW AIT instruction to resynchronize both proc­
essors when the Numeric Execution Unit has completed its 
current instruction. 

The 82188 performs several functions necessary to integrate 
the 8087 into an 80186 system. Most importantly, ittranslates 
the 8087 REQUEST/GRANT protocol to the HOLD/HLDA 
protocol required by the 80186. The 82188 reconstructs the 
RD and WR signals sacrificed by the 80 186{80 188 to provide 
queue status signals. The 82188 also furnishes DEN, DT/R, 
and auxiliary bus arbitration signals to integrate the 80186/ 
8087 into a larger microprocessor system. 

The coprocessor must examine all instructions executed by 
the host to recognize ESC instructions. When the host fetches 
an instruction byte from its internal queue, the coprocessor 
must also fetch an instruction byte. 

The queue status state, fetch opcode byte, identifies when an 
opcode byte is being examined by the host. At the same time, 
the coprocessor will check if the byte fetched from its internal 
instruction queue is an ESC opcode. If the instruction is not an 
ESC, the coprocessor will ignore it. The queue status signals 
for fetch subsequent byte and flush queue let the coprocessor 
track the host's queue without knowledge of the length and 
function of host instructions and addressing modes. 

A numeric instruction for the 8087 appears as an ESC instruc­
tion to the 80186 or 80188 CPU; both the CPU and the NPX 
decode and execute the ESC instruction together. Only the 
8087, however, recognizes the numeric instructions. The start 
of a numeric operation begins when the CPU executes the 
ESC instruction (the instruction mayor may not identify a 
memory operand). 

The CPU does, howt:ver, distinguish between ESC instruc­
tions that referto memory operands and those thatdonot. If the 
instructions refers to a memory operand, the CPU calculates 
the operand's address using anyone of its available addressing 
modes, and then performs a "dummy read" of the word at that 
location. The address may fall anywhere within the 1 Mbyte 
adddress space. This read cycle is normal except that the CPU 
ignores the data it receives. If the ESC· instruction does not 
contain a memory reference (e.g., an 8087 stack operation), 
the CPU simply proceeds to the next instruction. 

An 8087 instruction has one of three memory reference op­
tions: 

12-6 

• To not reference memory. 

• To load an operand from memory into the 8087. 

• To store an operand from the 8087 into memory. 

If the 8087 requires no memory reference, the Numeric Exe­
cution Unit simply executes its instruction. If the 8087 does re­
quire a memory reference, the control unit uses the "dummy 
read" cycle initiated by the host CPU to capture and save the 
address that the CPU places on the bus. If the instruction speci­
fies a register load, the Control Unit also captures the data 
word when it becomes available on the local data bus. If the 
8087 requires data longer than one word, the Control Unit im­
mediately obtains the bus from the CPU using the REQUEST/ 
GRANT protocol and reads in the rest of the information in 
consecutive bus cycles. In a store operation, the Control Unit 
captures and saves the store address as in a register load opera­
tion, and ignores the data word that follows in the "dummy 
read" cycle. When the 8087 is ready to perform the store, the 
Control Unit obtains the bus from the CPU and writes the 
operand starting at the specified address. 

This parallel operation of the host and coprocessor is called 
concurrent execution. Concurrent execution of instructions 
requires less total time than strictly sequential execution. System 
performance will be higher with concurrent execution of in­
structions between the host and coprocessor. 

12.2 USING THE 8OC186 WITH THE 8OC187 
NUMERICS PROCESSOR EXTENSION 

The 80C 186 supports floating point calculations by providing 
the necessary hardware interface to the 80C 187 numerics 
processor extension. 

12.2.1 OVERVIEW OF THE 80C187 
NUMERICS PROCESSOR 
EXTENSION 

The SOC 187 numerics processor extension provides anumber 
of new or improved transcendental instructions and refine­
ments above and beyond the capabilities of the 8087. The 
80C 187 conforms to the most recent revision of IEEE stan­
dard 754. 

The 80C186 interfaces directly to the 8OC187 (see Figure 
122). The 80C 186 and 80C 187 operate asynchronously, each 
up to its maximum rated clock speed. CLKOUT from the 
8OC186 may be used as the 80C187 clock input up to 12.5 
MHz. The 8OC188 cannot be used because the flow of op­
codes, instruction pointers, and data passes through 16-bit I/O 
ports. The 8OC186 must be in Enhanced Mode to communi­
cate with the 80C187. 



HARDWARE PROVISIONS FOR FLOATING POINT MATH 

AD 15:0 

ALE 

80C186 

RESET 

WR 

RD 

MCS3/NPS 

TEST/BUSY 

i.ICS1 /ERROR 

MCSO/PEREQ 

ClKOUT 

I EXTERNAl. 
OSCillATOR I 

1 X OR 2X 80C187 
INTERNAL FREQUENCY 

LATCH 

~ 

.. .. 
EN 

10... 

I 
I 

I 

ADDRESS 15:0 

AI! A2! 

CMDO CMDI 

80C187 

RESET 

NPWR 
CKM 

NPRD 

NPSI 

BUSY 

ERROR 

PEREQ 
NPS2 

ClK 
015-00 

DATA 15:0 f 

.. 
r 

U --

J 

.. .. 

CLOCK INPUT 
UNDIVIDED 

CLOCK INPUT 
DIVIDED BY 2 

270288-001-128 

Figure 122.80C186/80C187 System Configuration 

12.2.2 80C187 ADDITIONS TO 
INSTRUCTION SET 

The 80Cl87 adds several new instructions to the 8087 (see 
Table 28)_ Other instructions allow operands over an extended 
range, and a few instructions behave slightly differently in 
confonnal1ce with the IEEE standard. 

Of particular interest are the new trigonometric instructions 
which provide sine or cosine in one operation_ 

12.2.3 80C186/80C1871NTERFACE 

In similar fashion to the 8087, the 80C 187 is comprised of 
three units: a Floating Point Unit, a Data Interface and Control 
Unit, and aBus Control Logic Unit. The Floating Point Unit 
executes all numerics instructions under supervision of the 
Data Interface and Control Unit, while the Bus Control Logic 
Unit maintains handshaking and communications with the 
host 80C 186. 

Table 28. 80C187 Additions to Instruction Set 

Instruction Type Mnemonic Description 

Arithmetic FPREM1 Partial Remainder (IEEE) 

Comparison FUCOM Unordered Compare 
FUCOMP Unordered Compare and Pop 
FUCOMPP Unordered Compare and Pop Twice 

Transcendental FCOS Cosine 
FSIN Sine 
FSINCOS Sine and Cosine 

12-7 



HARDWARE PROVISIONS FOR FLOATING POINT MATH 

The 80C 187 is referred to as a numerics processor extension 
because it operates as a slave device to the host 80C 186. All 
communication between the SOC I 86 and 80C I 87 occurs through 
the dedicated I/O ports shown in Table 29. When the 8OCl86 
encounters a numerics opcode, it. writes the opcode to the 
80C 187, which decodes the instruction and passes elementary 
instruction information (Opcode Status) back to the 80C 186. 
Since the 80C 187 is a slave processor, all loads and stores to 
memory are performed by the 8OC186. 

Please note that the 80C 186 cannot process any ilUmerics 
(ESC) opcodes alone. If the 80C 186 encounters a numerics 
instruction (including theFINIT /FNlNIT initialization instruc­
tion)and the80CI 87 is not present, the operation of the 8OCl86 
is indeterminate. Iii those applications where the 80C 187 is 
offered as an option, problems can be prevented in three ways: 

• Remove all numerics (ESC) instructions, including any 
code which checks for the presence of the NPX. 

• Use a jumper or switch setting to indicate the presence of 
the 8OC187, and have the software branch away from 
numerics instructions when the 80C 187 socket is empty. 

• Add pull-up and pull-down resistors to various data and 
control lines to force the 80C 186 into predictable opera­
tion when the 8OCl87 socket is empty. 

In Enhanced Mode, three of the mid-range memory chip se­
lects are redefined as handshaking pins forthe 80C I 86/80C I 87 
interface. Handshaking is managed by 80C 186 microcode. 
MCS2 retains its same function as in Compatible Mode. 
Additionally, the processor retains the wait state and READY 
logic programmability for the entire mid-range block, even 
though MCSO, MeS I, and MCS3 are no longer available as 
outputs. 

Table 29. Numerics Coprocessor I/O 
Port Assignments 

110 Address Read Definition Write Definition 

OOF8H Status/Control Opcode 
OOFAH 

I 
Data Data 

OOFCH reserved CS:IP, DS:EA 
OOFEH Opcode Status reserved 

12-8 

12.2.4 80C186 BUS CYCLES WITH THE 
80C187 NUMERICS PROCESSOR 
EXTENSION 

The 80CI86 performs bus cycles to the 8OCl87 numerics 
processor extension (NPX) exactly like other I/O bus cycles. 
This fact has important implications: 

Operations to the 8OCl87 require external READY to be 
provided via the SRDY or ARDYpins. 

If the PeS address range is programmed to cover the NPX 
port addresses, a PeS line goes active during each read or 
write from the 80C 186 to the SOC 187. However, ordinary 
reads and writes to those addresses do not activate NPS on 
the 80C186. 

DT/R and DEN function normally during NPX transfers. 
In a buffered system with the 80C 187 residing on the local 
bus, use NPS to qualify DEN to the bus transceivers. 
Otherwise, contention between theNPX and the trans­
ceivers occurs on read cycles. 

• The 80C 18610cal bus is available to the integrated periph­
erals during execution of numerics instructions when it is 
not needed by the CPU. This means that DRAM refresh 
cycles and DMA cycles may be interspersed with accesses 
tothe8OCl87. 

• The 8OCl86 local bus is available to alternate bus masters 
during execution of numerics instructions when it is not 
needed by the CPU. This means that bus cycles originat­
ing from alternate masters (via the HOLD/HLDA proto­
col) can suspend numerics bus cycles for an indefinite 
period. 

The LOCK pin functions normally during numerics op­
erations. This means that LOCKed numerics instructions 
can monopolize the bus for a very long time. 



Difference Appendix A 
Between the 80186 
Family and the 808618088 





APPENDIX A 
DIFFERENCES BETWEEN THE 80186 FAMilY AND THE 80861 

8088 

A.1 CPU PERFORMANCE 

Because of 80 186 family hardware enhancements in both the 
Bus Interface Unit and the Execution Unit, most instructions 
require fewer clock cycles to execute than on the 8086/8088. 
Execution speed is gained by performing the effective address 
calculations (base + displacement + index) with a dedicated 
hardware adder, which takes only four clock cycles in the 
80186 family Bus Interface Unit. rather than with a microcode 
routine. These calculations are three to six times fasterthan the 
8086/8088 at the same frequency. 

In addition. the execution speed of specific instructions was 
improved. All multiple-bit shift and rotate instructions exe­
cute I.S to 2.S times faster than the (same speed) 8086/8088. 
Multiply and divide instructions execute three times faster. 
String move instructions run at bus bandwidth. abouttwice the 
speed of the 8086/8088. Overall. the 80186 family processors 
run benchmark programs 1.2 - 2.6 times the performance level 
of the (same speed) 8086/8088. 

A.2 CLOCKING 

The 80 186 family employs an integrated clock generator which 
provides a SO percent duty cycle CPU clock. This is different 
from the 8086 which utilizes an external clock generator to 
provide a 33 percent (1/3 HIGH. 2/3 LOW) duty cycle CPU 
clock. The following points relate to 80186 clock generation: 

The 80186 family uses a crystal or external frequency 
input that is twice the desired processor clock frequency. 

No oscillator output is available from an 80186 family 
processor internal oscillator. 

An 80186 family processor does not provide a clock out­
put at reduced frequency. However. a timer output may be 
easily programmed for this purpose. 

Interfacing the 80186 family to devices needing a 33 per­
cent duty cycle clock (for example. the 8087) is possible. 
but requires careful timing analysis. 

A.3 LOCAL BUS CONTROLLER AND 
CONTROL SIGNALS 

In general. the output drivers on 80186 family products are 
much larger than those of the 8086. This leads to larger sys-

A-1 

tems without as much need for bus buffering. It also means 
that the designer should be more careful to provide adequate 
grounding and bypassing. since large drivers are more apt to 
causecurrenttransients. In the 68-pin package. an 80 186 family 
device has only two ground pins. 

A.4 HOLD/HLDA VS. REQUEST/GRANT 

The 80186 family uses a HOLD/HLDA protocol for bus arbi­
tration rather than the REQUEST/GRANT protocol used by 
the 8086 in max mode. This allows compatibility with newer 
generation Intel bus master peripheral devices. 

A.S STATUS INFORMATION 

Three status signals are available on the 8086 but not on the 
80 I 86 family. They are S3, S4. and SS. Taken together. S3 and 
S4 indicate the segment register from which the current physi­
cal address has been derived. SS indicates the state of the 
interrupt flip-flop. On 80186 family processors. these signals 
will always be LOW. 

Status signal S6 indicates whether the current bus cycle is 
initiated by eitherthe CPU or a DMA device. Subsequently. it 
is always LOW on the 8086. On the 80186 family. it is LOW 
whenever the current bus cycle is initiated by the CPU. and is 
HIGH when the current bus cycle is initiated by the integrated 
DMAUnit. 

An 80 186 family processor simultaneously provides both local 
bus control outputs and status outputs for use with external 
Bus Controllers. This is different from the 8086 where the 
local bus control outputs are sacrificed if status outputs are de­
sired. These differences will manifest themselves in 8086 systems 
and 80186 family systems as follows: 

Many systems supporting both a system bus and a local 
bus will not require two separate external bus controllers. 
The bus control signals may be used to control the local 
bus while the status signals are concurrently connected to 
the 82C88 Bus Controller to drive the control signals of 
the system bus. 

The ALE signal goes active a clock phase earlier on the 
80186 family than on the 8086 or 82C88. This minimizes 
address propagation time through the address latches. since 
typically the delay time through these latches from valid 
inputs is less than the propagation delay from the strobe 
input active. 



DIFFERENCES BETWEEN THE 80186 FAMIL V AND THE 8086/8088 

• The RD input must be tied LOW to provide queue status 
outputs from the 801 86 family processor(seeFigureA-I). 
When so strapped into Queue Status Mode, the ALE and 
WR outputs provide queue status information. Notice that 
queue status information is available one clock phase earlier 
than from the 8086 (see Figure A-2). 

QSO 

QSl 

80186 
FAMILY 

PROCESSOR 

ALE 

~----I WR 

~~R_D ______ ~ 
270288-001-129 

Figure A·1. Generating Queue Status Information 

ClKOUT 

186 FAMILY 
PROCESSOR 

OS 

8086 
OS 

ADDED INSTRUCTIONS: 

The 80186 family executes PUSHA, POPA, INS, OUTS, 
BOUND, ENTER, and LEA YE. 

IMPROVED INSTRUCTIONS: 

PUSH, IMUL, and SHIFTS/ROTATES may use immediate 
operands on the 80186 family. 

UNDEFINED OPCODES: 

When the opcodes 63H, 64H, 65H, 66H, 67H, FIH, FEH 
XXI I IXXXBandFFHXXI I IXXXB areexecuted,the801 86 
family executes an illegal instruction exception, interrupt Type 
6. The 8086 will ignore the opcode. 

270288-001-130 

NOTES: 1. 80186 family processor changes queue status off falling edge of ClKOUT. 
2. 8086 changes queue status off rising edge of ClK. 

Figure A·2. 80186 Family and 8086 Queue Status Generation 

A.6 BUS UTILIZATION 

A typical instruction mix will require greater bus utilization on 
the 80 186 family than on the 8086. The 80 186 family executes 
most instructions in fewer clock cycles, requiring instructions 
from the queue at a faster rate. This also means that the effect 
of wait states is more pronounced in an 80186 family micro­
processor system than in an 8086 system. 

A.7 INSTRUCTION EXECUTION 

The following paragraphs explain the instruction execution 
differences between the 8086 and the 80186. 

A-2 

OFHOPCODE: 

When the opcode OFH is encountered, the 8086 will execute a 
POP CS, while the 80186 family will execute an illegal in­
struction exception, interrupt Type 6. 

WORD WRITE AT OFFSET FFFFH: 

When a word write is performed at offset FFFFH in a segment, 
the 8086 will write one byte at offset FFFFH, and the other at 
offset 0, while an 80186 family processor will write one byte 
at offset FFFFH, and the other at offset lOOOOH (one byte 
beyond the end of the segment). One byte segment underflow 



DIFFERENCES BETWEEN THE 80186 FAMILY AND THE 8086/8088 

will also occur if a stack PUSH is executed and the stack 
pointer contains the value I. 

SHIFT/ROTATE BY VALUE GREATER 
THAN 31: 

Before the 80186 family performs a shift or rotate by a value 
(either in the CL register, or an immediate value) it ANDs the 
value with I PH, limiting the number of bits rotated to less than 
32. The 8086 does not limit the rotation count. 

LOCK PREFIX: 

The 8086 activates its LOCK signal immediately upon exe­
cuting the LOCK prefix. An 80186 family processor does not 
activate the LOCK signal until the processor is ready to begin 
the data cycles associated with the LOCKed instruction. 

On the 80186 or the 80188, back-to-back LOCKed instruc­
tions are not allowed. Insert at least six bytes of code (four 
bytes for the 80188) between the end of the first LOCKed 
instruction and the beginning of the second LOCKed instruc­
tion. This restriction does not apply to the 80C I 86/8OC 188. 
However, between' the bus cycles for the first instruction and 
the bus cycles forthe second instruction, LOCK will not remain 
active, and the processor can perform other bus activities. 

INTERRUPTED STRING MOVE 
INSTRUCTIONS: 

If an 8086 is interrupted during the execution of a repeated 
string move instruction, the return value it will push on the 
stack will point to the last prefix instruction before the string 
move instruction. If the instruction has more than one prefix 
(e.g., a segment override prefix in addition to the repeat pre­
fix), the other prefixes will not be reexecuted upon returning 
from the interrupt. An 80186 family processor will push an IP 
value pointing to the first prefix of the repeated instruction (as 
long as prefixes are not repeated), allowing the string instruc­
tion to properly resume. 

CONDITIONS CAUSING DIVIDE ERROR 
WITH AN INTEGER DIVIDE: 

The 8086 will cause a divide error whenever the absolute 
value of the quotient is greater than 7FFFH (for word opera­
tions) or if the absolute value of the quotient is greater than 
7PH (for byte operations). The 80186 family expanded the 
range of negative numbers allowed as a quotient by I to in­
clude 8000H and 80H. These numbers represent the most 
negative numbers representable using 2' s complement arith­
metic (equaling -32768 and -128 in decimal, respectively). 

A-3 

ESC OPCODES: 

An 80186 family microprocessor has a bit (the ET bit) in the 
relocation register which can be programmed to cause a Type 
7 interrupt upon attempted execution of acoprocessor (ESCape) 
instruction. The 8086 has no such provision. 

On the 80186 and 80188, the initial state of the ET bit is 
cleared, disabling the trap. On the 80C 186, the initial state of 
the ET bit is cleared in Enhanced Mode or set in Compatible 
Mode. On the 80C 188, the ET bit is not accessible to the user 
and the ESCape Trap is always enabled, regardless of operat­
ingmode. 

Execution of numerics opcodes proceeds differently in the 
80C 186 than in the 8086/8088 or 80186/80188. See Chapter 
12 fordetails. The 80C 188 cannot utilizeanumerics processor 
extension at all. When migrating from the 8086/8088 or80 186/ 
80188 to the 80C I 86/80C 188, the user should be aware of 
these differences. In particular, it may be necessary to check 
software for unexpected numerics (ESCape) opcodes. 





Synchronization of Appendix B 
External Inputs 





APPENDIX B 
SYNCHRONIZATION OF EXTERNAL INPUTS 

Many input signals to an 80186 family processor are asyn­
chronous, that is, a specified set up or hold time is not required 
to ensure proper functioning of the device. Associated with 
each of these inputs is a synchronizer which samples this external 
asynchronous signal, and synchronizes it to the internal clock. 

B.1 WHY SYNCHRONIZERS ARE 
REQUIRED 

Every data latch requires a certain set up and hold time in order 
to operate properly. At a certain window within the specified 
set up and hold time, the part will actually try to latch the data. 
If the input makes a transition within this window, the output 
will not attain a stable state within the given output delay time. 
The actual size of this sampling window is typically much 
smallerthan the window specified by the data sheet; however, 
part to part variation could move the actual window around 
within the specified window. 

Even if the input to a data latch makes a transition while a data 
latch is attempting to latch this input, the output of the latch 
will attain a stable state after a certain amount of time, typi­
cally much longer than the normal strobe to output delay time. 
Figure B-1 shows a normal input to output strobed transition 
and one in which the input signal makes a transition during the 
latch'ssample window. To synchronize an asynchronous signal, 
all one needs to do is to sample the signal into one data latch 
long enough for the output to stabilize, then latch it into a 
second data latch. The time between the first latch strobe and 
the second latch strobe allows the first latch to attain a steady 
state. With the asynchronous signal resolved in this way, the 
input signal at the second latch satisfies its setup and hold 
requirements. 

Thus, the output of this second latch is a synchronous signal 
with respect to its strobe input. 

A synchronization failure can occur ifthe synchronizer fails to 
resolve the asynchronous transition within the time between 
the strobes of the two latches. The rate offailure is determined 
by the actual size of the sampling window of the data latch, and 
by the amount of time between the strobe signals of the two 
latches. Obviously, as the sampling window gets smaller, the 
number of times an asynchronous transition will occur during 
the sampling window will drop. In addition, however, a smaller 
sampling window is also indicative of a faster resolution time 
for an input transition which manages to fall within the sam­
pling window. 

8-1 

STROBE ! 
INPUT ----:S=E=T--:-:U~=-. IT=I:":M=TIOLD ;rIM~ 

ACTUAL SAMPliNG INSTANT 

INVALID V 
INPUT~ 

RESPONSE /. RESOLUTION TIME ./ 

VALID -.-l 
INPUT 

RESPONSE _...;;. _____ J! 
270288-001-131 

Figure B-1.Valid and Invalid Latch Input 
Transitions and Response 

B.2 80186 FAMILY SYNCHRONIZERS 

The 80186 family uses the two stage synchronization tech­
nique on TMR INO-I, DRQO-I, NMI, INTO-3, and HOLD 
input lines. ARDY uses a slight modification (see Section 
3.6). For the NMOS 801 86,the sampling window of the latches 
was designed to be in the tens of picoseconds, and should 
allow operation of the synchronizers with a mean time be­
tween failures of over 30 years, assuming continuous opera­
tion. 





Summary of Appendix C 
Differences Among 
Family Members 





APPENDIXC 
SUMMARY OF DIFFERENCES AMONG 80186 FAMILY MEMBERS 

C.1 DIFFERENCES DUE TO DATA BUS 
WIDTH 

The 80 I 88/80C 188 is like the 80 I 86/80C 186 except it has an 
8-bit external bus. It shares the same Execution Unit, timers, 
peripheral control block, Interrupt Control Unit. Chip Select 
Unit. and DMA Control Logic Unit. The differences between 
the two caused by the narrower data bus are: 

The 80 I 88/80C 188 has a four byte prefetch queue. rather 
than the six byte prefetch queue present on the 80186/ 
80C 186. The reason is that the 80 I 88/80C 188 fetches 
opcodes one byte at a time. requiring more bus cycles to 
fill the queue. A smaller queue is required to prevent an 
inordinate number of bus cycles being wasted by prefetch­
ing opcodes to be discarded during a jump. 

AD8-ADl5 on the 80 I 86/80C 186 are transformed to A8-
A 15 on the 80 I 88/80C 188. Valid address information is 
present on these lines throughout the bus cycle of the 80 188/ 
80C 188. Valid address information is not guaranteed on 
these lines during idle T -states. 

BHE/S7 is always defined HIGH by the 80 I 88/80C 188 
since the upper half of the data bus is non-existent. 

The DMA Control Unit on the 801 88/80CI 88 only per­
forms byte transfers. The B/W bit in the DMA control 
word is ignored. 

Execution times for most data transfer instructions in­
creas~s because the BIU funnels the accesses through a 
narrower data bus. The narrower bus also means that the 
prefetch queue will run empty more often. causing the 
Execution Unit itself to be bus-limited. The execution 
time within the processor. however. is not changed be­
tween the 80186/80C186 and 80188/80CI88. 

Another important point is that the 80 I 88/8OC 188 is inter­
nally a 16-bit machine. This means that access to the inte­
grated peripheral registers of the 80 I 88/80C 188 will be done 
in 16-bit pieces, not in 8-bit pieces. All internal peripheral 
registers are still 16-bits wide. and only a single read or write 
is required to access the registers. When a word access is made 
to the internal registers. the BIU will run two bus cycles exter­
nally. 

C-1 

Access to the control block may also be done with "'yte opera­
tions. Internally the full 16 bits of the AX register will be 
written. while only one bus cycle will be executed externally. 

C.2 DIFFERENCES BETWEEN NMOS AND 
CMOS DEVICES 

There are two operating modes of the 80C 186 and 80C 188. 
Compatible Mode and Enhanced Mode. In Compatible Mode. 
the 80C I 86/80C 188 will function identically to the 80186/ 
80188 with the following exceptions: 

All non-initialized registers in the peripheral control block 
will reset to arandom value during power -up on the 80C 186/ 
80C188. Non-initialized registers consist of those regis­
ters which are not used for control. i.e .• address pointers, 
max count. etc. For compatibility. all registers should be 
programmed before being used on existing 80186/80188 
applications as well as on new 80C186/80C188 applica­
tions. 

The ET (ESC Trap) bit in the relocation register has no 
effect in Compatible Mode. If an ESCape opcode is exe­
cuted. the 80C I 86/80C 188 will always trap to an interrupt 
vector Type 7. The 80C I 86/80C 188 does not support any 
numerics operations when in Compatible Mode. 

In Enhanced Mode. the 80C I 86/8OC 188 provides two addi­
tional features not found on the 80186/80188: power-save 
operation, and the DRAM Refresh Unit. 

Enhanced Mode is selected during RESET. The timing dia­
gram in Figure C-I shows how the 80C I 86/80C 188 samples 
the TEST pin (TEST/BUSY in the 80C 186) before and just 
after RES input is removed to determine if the device will enter 
Enhanced Mode. Tying the RESET output pin back to the 
TEST input pin will automatically force the processor into 
Enhanced Mode. 

When the 80C 186 (but not the 80C 188) is in Enhanced Mode. 
three of the MCS chip select lines change functionality to 
support the 80CI87 Numerics Coprocessor Extension. The 
remaining MCS functionality is illustrated in Figure C-2. 

The 80C 188 in Enhanced Mode functions similarly to the 
80C 186 except for numerics operation. It is not possible to 



SUMMARY OF DIFFERENCES AMONG 80186 FAMILY MEMBERS 

NOTES: 
1. TEST maust be high TINVCH when RES transitions high. 
2. TEST must be low TINVCH four docks later. 

Figure C-l. Enhanced Mode Enable Pin Timing 

{ 

__ !l1~)I'_k_4 __ _ 
Block Size Block 3 • _. MCS2 remain. 
Defined by - - BI7.c-k - 2- - - active MPCS ________ _ 

~....;B;:;lo;;;;c;;.;;k~1 _ ..... _ Block Start Defined 
by MMCS 

Figure C-2. MCS2 Functionality During Enhanced Mode 

270288-00H 32 

270288-001-133 

interface a numerics coprocessor with the 80C 188. Therefore, 
none of the MCS pins change functionality when invoking 
EnhancedMode. Further, any attempted executionofan ESCape 
opcode will result in a trap to interrupt vector Type 7. 

The external frequency input (EFl) requirements differ some­
what between the NMOS 80 I 86/801 88 and the CMOS 8OC186/ 

80C188. On the NMOS processors, it is possible to drive ei­
ther XI (with X2 unconnected) or X2 (with XI grounded). 
Since the internal oscillator consists of an inverter from the X I 
pin to the X2 pin, overdriving the X2 pin on the CMOS devices 
would result in excessive current draw. The correct configura­
tion for the CMOS processors is to drive XI and leave X2 
unconnected. 

C-2 



inter 
ALABAMA 

:1~1 ir"..:lloro Dr., #2 
Huntsville 35805 
Tel: (205) 830-4010 
FAX: (205) 837-2640 

ARIZONA 
tlntel Corp. 
11225 N. 28th Dr. 
SUite 0-214 
Phoenix 85029 
Tel: (mb 889-4980 
FAX: ( 889-4294 

\~1 ~~i Dorma Place 
Suite 301 
Tucson 85715 

~~:(=)~~ 
CAUFORNIA 
tlnlal Corp. 
21515 Venowen Sireet 
Suite 116 

~:~8~rJ!J~ 
FAX: (818) 340-1144 

tlnlal Corp. 
fu~ ~i ~mperial Highway 

¥~~af~)~e:o 
FAX: (213) 940-7133 

\"s'fo ~':'J'8n Way 
Suite 101 '. 
Sacramento 95815 
Tot: (91~ 920-8098 
FAX: (91 920-8253 

tlntel Corp. = ~ .. peake Dr. 

r.rWl'r~~ 
FAX: (619) 292-0828 

tlntel Corp." 
400, N. Tustin Avenue 
SUite 450 
Sants Ana 92705 

~m6.:~ 
FAX: (714) 541-9157 

tlntel Corp." 
San Tomas 4 
2700 Sen Tomas Expressway 
2nd Floor 
Ssnte Clara 95051 

~\~~6~t= 
FAX: (408) 727-2820 

COLORADO 

Inial Corp. 
4445 Northpark Drive 
SUite 100 
Colorado S~~ 80907 
Tel:(~594-
FAX: ) 594-0720 

tlntot Corp." 
650 S. Cherry St. 
Suite 915 
Denver 80222 

~\~~1:= 
FAX: (303) 322470 

tSaiea end Ssrvlce OffIce 
"Field Appllc8tlon LocatIon 

DOMESTIC SALES 
CONNECTICUT MASSACHUSETTS 

~:I'leL;,°1P.'rm Corporate Park ~~~~~. Center 
83 Wooeter HeIghts Rd. 3 ca~lsle Road 
Oenbury 08810 2nd Floor 
Tel: (203) 748-3130 Westford 01886 
FAX: (203) 794-0339 Tel: (509) 892-3222 

TWX: 710-343-6333 
FLORIOA FAX: (509) 892-7867 

=' ~.'W6th Way 
MICHIGAN 

sune100 tlntel Corp. 
FI. Lauderdale 33309 7071 Orchard Lake Road 

~~~~= 
SUite 100
Weal Bloomfield 48322

FAX: (305) n2-6183 ~~:~m)~tmo
'lintel Corp.
5850 T.G. Lee Blvd. MINNEtiOTA
SUite 340
~and032B22 'lintel Corp.
Tel: (4O~240-BOOO 3500 W. BOth SI.
FAX: (40 240-8097 Suite 380

BIoomI~{in 55431
\~~. Street North

Tel: (61 835-6722
TWX: 91 76-2967

Suite 170 FAX: (612) 831-l!497
St. Petersburg 33716

~~:('J~~)5~~t~g., MISSOURI

1~1 ~~. CRy Expreesway
GEORGIA Suite 131
Intel Corp. EMh~83045
20 Technology Parkway, N.W. Tel: (314 291-1990
Sune150 FAX: (314) 291-4341
Norcroas 30092
Tel: (404) 449-0541 NEW JERSEY
FAX: (404) sos.a762

~.:!..~o; 0ffI0e Center
IWNOIS 328 Newman Springs Road
'lintel Corp." Rod Bonk On01
300 N. Martingale Road Tel: (201) 747-2233
SUite 400 FAX: (201) 747-11983

~~~~\"i'"J8s~~ 'lintel Corp. 

FAX: (31~) 708-9782 
280 c;orporate Center 
75 Uvlngston Avenue 
~FIoor 

INDIANA oIend 07068 

tlntel Corp. 
87n Purdue Road 

Tot: (201) 740-0111 
FAX: (201) 740-0826 

Suite 125 NEW YORK 
Ind~is46288 
Tel: (31 875-()623 Inial Corp." 
FAX: (317) 875.a838 r.? C~~ 0Ift0e Palk 

Talm1~ 425-2750 IOWA 
TWX: 51 253-7391 

Intel Corp. FAX: (716) 223-2561 
1930 St. Andrews Drive N.E. 

tlntel Corp." 2nd Floor 
Cadar Rapids 52402 2950 Expressway Dr., South 
Tel: (319) 393-1294 Suite 130 

Islandia 11722 
KANSAS ~\5Jn.rJ: 
tlnlal Corp. FAX: (516) 348-7839 

~~1~~~I:.D tlntel Corg. 
Overland Park 66210 W~ USilness Center 

~~:(9~~~)~~~6 ~~1I11is':"" 9 
Tot: (914) 897-3BBO 
FAX: (914) 897-3125 

MARYLAND 

tlntel Corp." NORTH CAROUNA 
10010 Junction Dr. tlntel Corp. 
SURe 200 5BOO Executive Center Dr. 
Annapolis Junction 20701 Suite 105 
Tel: (301) 208-2960 Ch~otI.28212 

FAX: g:l1! 206-3677 Tel: (704) 588-9996 
1 20B-3B78 FAX: (704) 535-2236 

OFFICES 
Intel Corp. tlntel Corp." 
5640 Centerview Dr. 7322 S.W. Freeway 
Suite 215 Suite 1490 
Rale~h 27606 Houston 77074 
Tel: 19~851-9537 +:xm~-=~~ FAX: (91 851-8974 

FAX: (713) 989-3660 
OHIO UTAH 
'lintel Corp." 
3401 Park Center Drive ~7'~r~ South 
Suite 220 sune 104 

v:ron45414 ~.'I70\'i'~1 Te: (513j!1O-5350 
TWX: 81 50-2528 FAX: (801) 289-1457 
FAX: (513) 890-B858 

VIRGINIA 
tlntel Corp." 'lintel Corp. 25700 Science Park Ilt'. 1504 Santa Rosa Road SuRe 100 Suite 108 Beachwood 44122 Richmond 23288 
~\2J~:~J Tel: (804) 282-5889 

FAX: (216) 464-2270 FAX: (804) 262-()673 
WASHINGTON 

OKLAHOMA tlntel Corp. 

~"Jg\~~r~ 
155 109th Avenue N.E. 
sune 396 

Suite 115 BeHevue 98004 
Oklahoma CRy 73182 ~\2~~= 
Tel: (405) 848'8096 FAX: (206) 451-9556 FAX: (405) 840-9819 

~I ~rT~llan Road OREGON Suite 102 

l~ 1r&: Greenbrier Parkway 
Spokane 99206 
Tel: (509) 92Il-6086 

Building B FAX: (509) 928-9467 
B .... lIOn97OO5 WISCONSIN Tot: (503) 645-8051 
TWX: 910-467-8741 Intel Corp. 
FAX: (503) 845.a181 330 S. Executive Dr. 

Suite 102 
PENNSYLVANIA Brookfield 53005 

Tel: (414) 784-8087 
tlntel Corp." FAX: (414) 796-2115 
455 Pennsylvania Avenue 

CANADA sune 230 
Fort Washington 19034 
Tot: (215) 641-1000 BRITISH COLUMBIA 
TWX: 510-961-2On Inlot Semioonductor 01 FAX: (215) 641-0785 canada, Ltd. 
tlntel Corp." 4585 Canada Way 
400 Penn Center Blvd. Suite 202 
Suite 610 Burnaby VSG 4L6 

~:'(tI~h~O 
Tel: (804) 298-0387 
FAX: (804) 298-9234 

FAX: (412) 929-7578 ONTARIO 
tlntel Semiconductor 01 PUERTO RICO CBnlida, Ltd. 

tlntel Corp. 2650 QueensvieW Drive 
SUite 250 South Industrial Park 

P.O. Box 910 OItawa K2B 8H6 
Las Piedras 00671 ~~:(~m)~~~~ Tel: (809) 733-9616 

'lintel Semiconductor 01 
TEXAS Canada, Ltd. 

190 Altwell Drive 
Intel Corp. SURe 500 
8911 Copltal 01 T .... Hwy. Rexdale MBW 6H8 
Austin 78758 Tel: (416) 675-2105 

~~:(~Jf~i':a_-s:s 
FAX: (416) 675-2438 

QUEBEC 
tlntel Corp." Intot Semioonductor of 
12000 Ford Road Canada, Ltd. 
SUite 400 820 St. Jean Boulevard 
Dallas 75234 Pointe Claire H9R 3K2 
Tel: (214) 241_7 
FAX: (214) 464-1180 

Tel: (514) 694-9130 
FAX: 514-694-0064 

CGlSALE/101789 



DOMESTIC DISTRIBUTORS 
ALABAMA tHamiiton Electro Sates CONNECTICUT tHamiiton/Avnet Electronics Arrow Electronics, Inc. 

10950 W. Washington Blvd. 1130 Thorndale Avenue 7524 Standish Place 
Arrow Electronics, Inc. Culver City 20230 tArrow ElectronicS, Inc. Bensenville 60106 Rockville 20855 
1015 Henderson Road Tel: (213) 558-2458 12 Beaumont Road Tet (312) 860-77BO Tel: 301-424-0244 
Huntsville 35805 TWX: 910-340-8364 Wallingford 06492 TWX: 910-227-0060 
Tel: (205) 837-6955 Tel: (203) 265-7741 MASSACHUSETTS 

tHamilton/Avnet Electronics Hamilton Electro Sales TWX: 710-476-0162 MTI Systems Sales Arrow Electronics, Inc. 
1361 B West 190th Street 1100 W. Thorndale 25 Upton Dr. 4940 Research Drive 
Gardena 90248 Hamilton/Avnet Electronics Itasca 60143 Wilmington 01887 Huntsville 35805 
Tel: (213) 217-6700 Commerce Industrial Park Tel: (312) 773-2300 Tel: (617) 935-5134 Tel: (205) 837-7210 Commerce Drive 

TWX: 810-726-2162 
tHamiiton/Avnet Electronics Danbury 06810 tPioneer Electronics tHamiiton/Avnet Electronics 

Tel: (203) 797-2800 1551 Carmen Drive 100 Centennial Drive 
Pioneer/Technologies Group, Inc. 3002 'G' Street 

TWX: 710-456-9974 Elk Grove Village 60007 Peabody 01960 
4825 University Square Ontario 91761 Tel: (312) 437-8680 Tel: (617) 531-7430 
Huntsville 35805 Tel: (714) 989-9411 tPioneer Electronics TWX: 910-222-1834 TWX: 710-393-0382 
Tel: (205) 837-9300 

tAvnet Electronics 
112 Main Street MTI Systems Sales TWX: 810-726-2197 Norwalk 06851 INDIANA 20501 Plummer Tel: (203) 853-1515 83 Cambridge St. 

ARIZONA Chatsworth 91351 TWX: 710-468-3373 tArrow Electronics, Inc. 
Burlington 01813 

Tel: (213) 700-6271 2495 Directors Row, Suite H Pioneer Electronics 
tHamiiton/Avnet Electronics TWX: 910-494-2207 Indianapolis 46241 44 Hartwell Avenue 
505 S. Madison Drive FLORIDA 

Tel: (317) 243-9353 Lexington 02173 
Tempe 85281 tHamilton Electro Sales 

tArrow Electronics, Inc. TWX: 810-341-3119 Tel: (617) 861-9200 
Tel: (602) 231-5140 3170 Pullman Street 

400 Fairway Drive TWX: 710-326-6617 
TWX: 910-950-0077 Costa Mesa 92626 Hamilton/Avnet Electronics 

Tel: (714) 641-4150 Suite 102 485 Gradle Drive MICHIGAN 
Hamilton/Avnet Electronics TWX: 910-595-2638 Deerfield Beach 33441 Carmel 46032 Arrow Electronics, Inc. 30 South McKiemy Tel: (305) 429-8200 

Tel: (317) 844-9333 755 Phoenix Drive Chandler 85226 tHamilton/Avnet Electronics TWX: 510-955-9456 
TWX: 810-260-3966 Ann Arbor 48104 Tel: (602) 961-6669 4103 Northgate Blvd. Arrow Electronics, Inc. Tel: (313) 971-8220 TWX: 910-950-0077 Sacramento 95834 37 Skyline Drive tPioneer Electronics TWX: 810-223-6020 

Tel: (916) 920-3150 6408 Castleplace Drive Arrow Electronics, Inc. Suite 3101 Indianapolis 46250 Hamilton/Avnet Electronics 
4134 E. Wood Street Wyle Distribution Group 

Lake Marv 32746 Tel: (317) 849-7300 221529th Street S.E. 
Phoenix 85040 124 Maryland Street Tel: (407) 323-0252 TWX: 810-260-1794 Space AS 
Tel: (602) 437-0750 EI Segundo 90254 

TWX: 510-959-6337 Grand Rapids 49508 
TWX: 910-951-1550 Tel: (213) 322-8100 tHamilton/Avnet Electronics Tel: (616) 243-8805 

IOWA TWX: 810-274-6921 Wyle Distribution Group 
Wyle Distribution Group 

6801 N.w_ 15th Way 
Hamilton/Avnet Electronics Pioneer Electronics 17855 N. Black Canyon Hwy. Ft. Lauderdale 33309 

Phoenix 85023 7382 Lampson Ave. Tel: (305) 971-2900 915 33rd Avenue, S.W. 4504 Broadmoor S.E. 
Tel: (602) 249-2232 Garden Grove 92641 TWX: 510-956-3097 Cedar Rapids 52404 Grand Rapids 49508 
TWX: 910-951-4282 Tel: (714) 891-1717 Tel: (319) 362-4757 FAX: 616-698-1831 

TWX: 910-348-7140 or 7111 tHamilton/Avnet Electronics 
tHamiiton/Avnet Electronics 

CALIFORNIA 3197 Tech Drive North KANSAS 32487 Schoolcraft Road 
Wyle Distribution Group St. Petersburg 33702 

Uvonia 48150 
Arrow Electronics, Inc. 11151 Sun Center Drive Tel: (813) 576-3930 Arrow Electronics Tel: (313) 522-4700 
10824 Hope Street Rancho Cordova 95670 TWX: 810-863-0374 8208 Melrose Dr., Suite 210 TWX: 810-282-8775 
Cypress 90630 Tel: (916) 838-5282 

tHamilton/Avnet Electronics Lenexa 66214 
tPioneer/Michigan Tel: (714) 220-6300 Tel: (913) 541-9542 

tWyle Distribution Group 6947 University Boulevard 13485 Stamford 
Arrow Electronics, Inc. 9525 Chesapeake Drive Winter Park 32792 tHamHton/Avnet Electronics Livonia 48150 
19748 Dearborn Street San Diego 92123 Tel: (305) 628-3888 9219 Quivera Road Tel: (313) 525-1800 
Chatsworth 91311 Tel: (619) 565-9171 TWX: 810-853-0322 Overland Park 66215 TWX: 810-242-3271 
Tel: (213) 701-7500 TWX: 910-335-1590 tPioneer/Technologies Group, Inc. Tel: (913) 888-8900 

MINNESOTA TWX: 910-493-2086 TWX: 910-743-0005 
tWyle Distribution Group 

337 S. Lake Blvd. tArrow Electronics, Inc. tArow Electronics, Inc. ~:~ ~g~~e8~~~~~~ 32701 Pioneer/Tec Gr. 5230 W. 73rd Street 521 Weddell Drive 3000 Bowers Avenue 
10551 Lockman Rd. Edina 55435 Sunnyvale 94086 Santa Clara 95051 TWX: 810-853-0284 Lenexa 66215 Tel: (612) 830-1800 Tel: (408) 745-6600 Tel: (408) 727-2500 
Tel: (913) 492-0500 TWX: 910-576-3125 TWX: 910-339-9371 TWX: 910-338-0296 Pioneerffechnologies Group, Inc. 

674 S. Military Trail tHamilton/Avnet Electronics 
Arrow Electronics, Inc. twyle Distribution Group Deerfield Beach 33442 KENTUCKY 12400 Whitewater Drive 
9511 Ridgehaven Court 17872 Cowan Avenue Tel: (305) 428-8877 Minnetonka 55434 
San Diego 92123 Irvine 92714 TWX: ::; 1 0-955-9653 Hamilton/Avnet Electronics Tel: (612) 932-0600 
Tel: (619) 565-4800 Tel: (714) 883-9953 1051 D. Newton Park 

tPioneer Electronics TWX: 888-064 TWX: 910-595-1572 
GEORGIA 

Lexington 40511 
7625 Golden Triange Dr. 

tArrow ElectroniCS, Inc. 
Tel: (606) 259-1475 

Suite G 
2961 Dow Avenue Wyle Distribution Group tArrow Electronics, Inc. Eden Prairi 55343 
Tustin 92680 26677 W. Agoura Rd. 3155 Northwoods Parkway MARYLAND Tel: (612) 944-3355 
Tel: (714) 838-5422 Calabasas 91302 Suite A 
TWX: 910-595-2860 Tel: (818) 880-9000 Norcross 30071 Arrow Electronics, Inc. MISSOURI 

TWX: 372-0232 Tel: (404) 449-8252 8300 Guilford- Drive tArrow Electronics, Inc. 
tAvnet Electronics TWX: 810-765-0439 Suite H, River Center 2380 Schuetz 
350 McCormick Avenue Columbia 21046 St. Louis 63141 
Costa Mesa 92626 COLORADO tHamiiton/Avnet Electronics Tel: (301) 995-0003 Tel: (314) 567-6888 
Tel: (714) 754-6071 5825 0 Peachtree Corners TWX: 710-236-9005 TWX: 910-764-0882 
TWX: 910-595-1928 Arrow Electronics, Inc. Norcross 30092 

Hamilton/Avnet Electronics tHamiiton/Avnet Electronics 7060 South Tucson Way Tel: (404) 447-7500 
tHamilton/Avnet Electronics Englewood 80112 TWX: 810-766-0432 6822 Oak Hall Lane 13743 Shoreline Court 
1175 BOii:leaux Drive Tel: (303) 790-4444 Columbia 21045 Earth City 83045 
Sunnyvale 94086 Pioneer/Technologies Group, Inc. Tel: (301) 995-3500 Tel: (314) 344-1200 
Tel: (408) 743-3300 tHamiiton/Avnet Electronics 3100 F Northwoods Place TWX: 710-862-1861 TWX: 910-762-0684 
TWX: 910-339-9332 8765 E. Orchard Road Norcross 30071 

tMesa Technology Corp. NEW HAMPSHIRE Tel: (404) 448-1711 
tHamiitonJAvnet Electronics Suite 708 

TWX: 810-766-4515 9720 Patuxent Woods Dr. tArrow Electronics, Inc. 
4545 Ridgeview Avenue Englewood 80111 Columbia 21046 3 Perimeter Road 
San Diego 92123 Tel: (303) 740-1017 Tel: (301) 290-8150 Manchester 03103 
Tel: (619) 571-7500 TWX: 910-935-0787 ILLINOIS TWX: 710-828-9702 Tel: (603) 668-6868 
TWX: 910-595-2838 

tWyle Distribution Group Arrow Electronics, Inc. tPioneer/Technologies Group, Inc. TWX: 710-220-1684 

tHamilton/Avnet Electronics 451 E. 124th Avenue 1140 W. Thorndale 9100 Gaither Road tHamifton/Avnet Electronics 
9650 Desoto Avenue Thornton 80241 Itasca 60143 Gaithersburg 20877 444 E. Industrial Drive 
Chatsworth 91311 Tel: (303) 457-9953 Tel: (312) 250-0500 Tel: (301) 921-0660 Manchester 03103 
Tel: (818) 700-1161 TWX: 910-936-0770 TWX: 312-250-0916 TWX: 710-828-0545 Tel: (603) 624-9400 

tMicrocomputer System Technical Distributor Center CG/SALE/101789 



inter 
DOMESTIC DISTRIBUTORS (Contd.) 

NEW JERSEY tPioneer Electronics tHamilton/Avnet Electronics tPioneer Electronics Zentronics 
68 Corporate Drive 12121 E. 51st 51., Suite 102A 18260 Kramer Bay No.1 

tArrow Electronics, Inc. Binghamton 13904 Tulsa 74146 Austin 78758 3300 14th Avenue N.E. 
Four East Stow Aoad Tel: (607) 722-9300 Tel: (918) 252-7297 Tel: (512) 835-4000 Calgary T2A 6J4 
Unit 11 TWX: 510-252-0893 TWX: 910-874-1323 Tel: (403) 272-1021 
Marlton 08053 

Pioneer Electronics OREGON tPioneer ElectroniCS BRITISH COLUMBIA Tel: (609) 596-8000 
40 Oser Avenue 13710 Omega Road tHamilton/Avnet ElectronIcs TWX: 710-897-0829 
Hauppauge 11787 tAlmac Electronics Corp. Dallas 75234 105-2550 Boundary 

tArrow Electronics Tel: (516) 231-9200 1885 N.W. 169th Place Tel: (214) 388-7300 Burmaiay V5M 3Z3 
6 Century Drive Beaverton 97005 TWX: 910-850-5563 Tel: (604) 437-6667 tPioneer Electronics Tel: (503) 629-8090 

~r:s~~7)~~~~0 :o~~~S;~~~s~~~ 11797 
TWX: 910-467-8746 tPioneer ElectroniCS Zentronics 

tHamilton/Avnet Electronics 
5853 Point West Drive 108-11400 Bridgeport Road 

~~(5Jf~~1:m~ Houston 77036 Richmond V6X 1T2 tHamliton/Avnet Electronics 6024 S.W. Jean Road 
~m~.:t~~~ Tel: (604) 273-5575 1 Keystone Ave., Bldg. 36 Bldg. C, Suite 10 TWX: 04-5077-89 Cherry Hili 08003 tPioneer Electronics f:~e(~:)~~_~1~4 MANITOBA Tel: (609) 424-0110 840 Fairport Park Wyle Distribution Group 

TWX: 710-940-0262 Fairport 14450 TWX: 910-455-8179 1810 Greenville Avenue Zentronics Tel: (716) 381-7070 Richardson 75081 60-1313 Border Unit 60 tHamilton/Avnet Electronics TWX: 510-253-7001 Wyle Distribution Group Tel: (214) 235-9953 
~~'l~J'JI :~10:5~ 10 Industrial 5250 N.E. Elam Young Parkway 

Fairfield 07006 
NORTH CAROLINA Suite 600 

UTAH Tel: (201) 575-5300 Hillsboro 97124 ONTARIO TWX: 710-734-4388 tArrow Electronics, Inc. Tel: (503) 640-6000 Arrow Electronics Arrow Electronics, Inc. 5240 Greensdalry Road TWX: 910-460-2203 1946 Parkway Blvd. 36 Antares Dr. tMTI Systems Sales 

~1~~~9~7:~:3132 ~~~ ::1) ~%-:n9 Nepean K2E 7W5 37 Kulick Rd. 
PENNSYLVANIA Tel: (613) 226-8903 Fairfield 07006 TWX: 510-928-1856 

Tel: (201) 227-5552 
Arrow Electronics, Inc. tH~ilton/Avnet ElectroniCS Arrow Electronics, Inc. 

tHamilton/Avnet Electronics 850 Seco Road 1585 West 2100 South 1093 Meyerside 
tPioneer Electronics ~1~ ~~~orest Drive Monroeville 15146 Sa~ Lake City 84119 Mississauga 15T 1 M4 
45 Route 46 

Tel: ~19) 878-0819 
Tel: (412) 856-7000 Tel: (801) 972-2800 Tel: (416) 673-7789 

Pinebrook 07058 TWX: 910-925-4018 TWX: 06-218213 
Tel: (201) 575-3510 TWX: 510-928-1836 Hamilton/Avnet ElectroniCS tHamilton/Avnet Electronics TWX: 710-734-4382 

~~~e~~~~~~,\: ~~~.p, Inc. 
2800 Liberty Ave. Wyle Distribution Group 6845 ReXWOOd Road
Pittsburgh 15238 1325 West 2200 South Units 3-4-5
Tel: (412) 281-4150 Suite E Mississauga L4T 1 R2 NEW MEXICO Cha~otte 28210 West Valley 84119 Tel: (416) 677-7432 Tel: (919) 527-8188 Pioneer Electronics Tel: (801) 974-9953 TWX: 610-492-8667 Alliance Electronics Inc. TWX: 810-821-0366 259 Kappa Drive

11030 Cochiti S.E. Pittsburgh 15238
WASHINGTON

Hamilton/Avnet Electronics
Albuquerque 87123 OHIO Tel: (412) 782-2300 8845 ReXWOOd Rd., Un~ 6
Tel: (505) 292-3360 TWX: 710-795-3122 tAimac Electronics Corp. Mississauga L4T 1 R2
TWX: 910-989-1151 Arrow Electronics, Inc.

14360 S.E. Eastgate W9:i Tel: (416) 277-0484
7620 McEwen Road tPioneerrrechnologles Group, Inc.

Bellevue 98007 tHamiltonlAvnet Electronics Hamilton/AVnet Electronics Centerville 45459 ~~~~~::I~ad Tel: (206) 643-9992 190 Colonnade Road South 2524 Baylor Drive·S.E. ,Tel: (513) 435-5583 TWX: 910-444-2067 Nepean K2E 7L5 Albuquerque 87106 1WX: 810-459-1611 Horsham 19044
Tel: (613) 226-1700 Tel: (505) 765-1500 Tel: (215) 674-4000 Arrow Electronics, Inc. TWX: 05-349-71 TWX: 910-989-0614 tArrow Electronics, Inc. TWX: 510-665-6778 19540 68th Ave. South 6238 Cochran Road

Kent 98032 tZentronics
Solon.44139

TEXAS Tel: (206) 575-4420 8 Tilbury Court
NEW YORK Tel: (216) 248-3990 Brarnpton Lor 3T4

TWX: 810-427-9409
tArrow ElectroniCS, Inc. tHamilton/Avnet Electronics Tel: (416) 451-9600

tArrow Electronics, Inc. .14212 N.E. 21st Street TWX: 011-976-78
3375 Brighton Henrietta tHamilton/Avnet Electronics 3220 Commander Drive

Bellevue 98005 tZentronics Townllne Rd. 954 Senate Drive Carrollton 75006
Tel: (208) 643-3950 155 Colonnade Road Rochester 14623

. ~:rfs~~~~733 Tel: (214) 380-8464
TWX: 910-443-2489 Un~ 17

~VJf~fst~m
TWX: 910-860-5377

Nept!an K2E 7Kl TWX: 810-450-2531
tArrow Electronics, Inc. Wyle Distribution Group Tel: (613) 226-8840

15385 N.E. 901h Street
Arrow Electronics. Inc. Hamilton/Avnet Electronics 10899 Kinghurst Redmond 98052 Zentronlcs

4588 Emery Industrial Pkwy. Suite 100 60-1313 Border SI. 20 Oser Avenue
f.~:IT~~~rl~~~~~~ 44128

Houston 77099 Tel: (206) 881-1150

~n~J'JI::~J~7 Hauppauge 11788
Tel: (713) 530-4700

~~5Jf~_~~~ TWX: 810-427-9452 TWX: 910-880-4439 WISCONSIN
QUEBEC

tHamilton/Avnet Electronics tArrow Electronics, Inc, Arrow ElectroniCS, Inc. tArrow Electronics Inc. Hamilton/Avnet 777 Brooksedge Blvd. 2227 W. Braker Lane 200 N. Pat~ck Blvd., 51e. 100 4050 Jean Talon Quest 933 Motor Parkway Westerville 43081 Austin 78758 Brookfield 53005 Montreal H4P lWl Hauppauge 11788 Tel: (614) 882-7004 Tel: (512) 835-4180 Tel: (414) 767-6600 Tel: (514) 735-5511 Tel: (516) 231-8800 TWX: 910-874-1348 . TWX: 910-262-1193
TWX: 05-25590 TWX: 510-224-6166 tPioneer Electronics

4433 Interpoint Boulevard tHamilton/Avnet ElectroniCS Hamilton/Avnet ElectroniCS Arrow ElectroniCS, Inc.
tHamilton/Avnet Electronics ~:rrs'\:~:-9900 1807 W, Braker Lane 2975 Moorland Road 500 Avenue St-Jean Baptiste 333 Metro Park Austin 78758 New Be~ln 53151 Suite 280
Rochester 14623 TWX: 810-459-1622' Tel: (b12) 837-8911 Tel: (414) 784-4510 Quebec G2E 5R9
Tel: (716) 475-9130 TWX: 910-874-1319 TWX: 910-282-1182 Tel: (418) 871-7500
TWX: 510-253-5470 tPioneer Electronics FAX: 418-871-6816 4600 E. 131st St_ tHamilton/Avnet Electronics Hamilton/Avnet Electronics tHamilton/Avnet Electronics Cleveland 44105 2111 W. Walnut Hili Lane CANADA 2795 Halpern 103 Twin Oaks Drive Tel: (216) 587-3600 Irving 75038 St. Laurent H2E 7K1 Syracuse 13206 TWX: 810-422-2211 Tel: (214) 550-6111 Tel: (514) 335-1000 Tel: (315) 437-0288 TWX: 910-860-5929 ALBERTA TWX: 610-421-3731 TWX: 710-541-1560 OKLAHOMA

tHamilton/Avnet ElectroniCS Hamilton/Avnet Electronics Zehtronics

:~a~~e:r;kS~:e Arrow Electronics, Inc. 4850 Wright Rd., Suite 190 2816 21st Street N.E. 817 McCaffrey
1211 E. 51st St" Su"el0l S1aflord 77477 Calgary T2E 6Z3 51. Laurent H4T 1 M3

Port Washington 11050 Tulsa 74146 ~\7J;~~n~~g Tel: (403) 230-3588 Tel: (514) 737-9700
Tel: (516) 621-6200 Tel: (918) 252-7537 TWX: 03-827-642 TWX: 05-827-535

tMicrocomputer System Technical Distributor Center CGISAlE/l0178!

DENMARK

Intel Denmark AiS
Glenlevej 61, 3rd ~
2400 copen~en NV
+~:(=1) 1 8033

FINLAND

Intel Finland 'OY
RuosilaJi1ie 2
00390 Helsinki
Tel: (358) 0 544 644
TLX: 123332

FRANCE

Intel Corporation SAR.L,
I, Rue Edlson-BP 303
78054 St Quentln-en-Yvellnes
Cedex
Tel: (33) (1) 30 5710 00
TLX: 699016

EUROPEAN SALES OFFICES
WEST GERMANY IBRAEL NORWAY

Inlol Semiconductor GmbH" Intel Semiconductor Ltd.,.. Intel Norway AIS
Domacher S1rIIsse 1 AUdim Indl'Slrl,aI Park-Nove Share1 Hvamvelen 4-PO Box S2
8016 Feldklrchen bei Muenchen P,O, Box 43202 2013 Skj8lten
Tel: (49) 089/90992-0 TeI-Aviv 81430

+~:';~l~ 842 420 TLX: 5-23177 Tel: (972) 03-49B080
TLX: 371215

Intol Semiconductor GmbH
Hohenzollem S1rIIsse 5 ITALY SPAIN
3000 Hannover 1

Intel CorporB1lon _ S,pA' +~:':~1/344081 Intel Iberia S.A.
Mlianoliori Palazzo E ' Zurberan, 28
::::'Aesago 28010 Madrid

Intel Semiconductor GmbH Tel: (34) (1) 308.25.52
Abraham Uncoln S1rIIsse 16-18 +~1~::'~1~ 8S200950

TLX,48880'
6200Wleebeden

+~:'~I:':I1605-O NETHERLANDS SWEDEN

Intel Semiconductor GmbH Intel S8mlool'aductor B.V.· InJel SWeden A.B. *
Zel10cMng lOA Postbue 84130 \'1,'~S':a 7000 Stuttgart 80 3099 OC RoUerdem
Tel: (49) 0711/1287-280 Tel: (31) 10.407.11.11 Tel: (48) 8 734 01 00
TLX: 7-254528 TLX: 22283 ' TLX: 12281

SWl'rZERLAND

Intel Semiconductor A.G.
Zuerlchstrasse
8185 Wlnkel-Ruetl bei Zuerich

m,<mg~82B2

UNITED KINGDOM

:;!~on (U.K.) Ud.'

SWlndon, ~ltshire SN3 1 RJ

m,<~~) 698000

EUROPEAN DISTRIBUTORS/REPRESENTATIVES
AUSTRIA Tekelec-Airtronic ITALY DI1ram :~~'=Ce~m.
Bech.r E~nics G.m.b.H.

CHe _ Bruyeres
Intosl A_ide Miguet Bomberda, 133

Rue carle Vernet - BP 2 1000 Usboe WestemRoad
Rot~nmuehlgasse 26 82310 SIM'OS D!viSicne ITT Industries GmbH

m,<~uu54 53 13 Bracknell RG12 lAW 1120 Wlen Tel: (33) (1) 45 34 75 35 VI8Ie Milanoflorl
m,<;!!JoOf") 55333 Tel: (43) (0222) 83 56 48 TLX: 204552 Palazzo E/5'

TLX: 31532 ~39=~31 SPAIN
WEST GERMANY Jl!t'rr1yn

BELGIUM TLX: 311351 ATD EIOCIrOnica, SA Veslry Estate
Inelco Belgium SA Electronic 2000 AG

~~~=~~~'f~ 
Plaza Cludad de VIana, 6 QtIorij Road 

='I%':~":n 1~ 2804OMadri~ ~nOilk. 'Av, _ Croix de Guerra 94 
Tel: (34) W 40 00 KilntTN145EU 1120 Bruxell .. Tel: (49) 089/42001-0 

20082 Clnloello Balsamo (MI) 
TLX:~ Tel: (44) (0732) 450144 

~skruleenlaari, 94 Tel: (39) 02/2440012 
1120 russel TLX: 522561 TIX: 352040 ITT-SESA TLX: 95142 
Tel: (32) (02) 21601 60 ~.::,~~.nt GmbH Telcom S.r.l. ~~oMr!/I~"rlctAngeI, 21-3 MMD TLX: 64475 or 22090 VI.M. CIvIteH 75 UnH 8 Southview Park 

Behnholslraaee 44 20148 Milano mi~JV 41909 57 cavarahem 
DENMARK ~~~1(4~~11711~79 Tel: (39) 02/4049048 :=~re RG4 OAF' ITT -Multlkomponent TLX: 335854 "'etrologia Iberica, SA TLX: 7284472 Ctra. de Fuencarral. n.SO +~:(~~734) 481_ N ... ~.nII29 ~~~=~n:m" 2800 Glostruf Jemiyn GmbH 28100 Aicobendes (Madrid) 
Tel: (45) ~ 45 58 45 1m Dechsstueck 9 

~39r=~~1 
Tel: (34) (1) S53 88 11 

RapId Silicon TLX: 33 3 f.Fc~=1/508-0 SWEDEN Rapid House TLX: 311351 Denmark Sireet FINLAND TLX: 415257-0 
Silverstar Nordlsk Elektronlk AB High Wycombe 

OY Flntrontc AS Metrologle GinbH Vte Dei Greochl 20 Torshamnagatan 39 BUck~hire HPll 2ER 
Melkonkelu 24A ~1==~:~7~ 20146 Milano Box 36 Tel: ( 0494) 4422S8 
00210 HelSinki Tel: (39) 02/49961 184 83 Klste TLX:83 1 
Tol: (256) (0) 8S28022 Tel: (49) 089178042-0 TLX: 332189 Tel: (49) 0B-03 4s 30 

Rapid Systems TLX: 124224 TLX: 5213189 TLX: 105 47 
NETHERLANDS Rapid House 

FRANCE 
ProeIectron Vortrlebe GmbH 

Koning an H.rtm.n Eleklrotechnisk SWITZERLAND Danmark Street 
Max Planck S1rIIsso 1-3 High Wycombe 

Aim .. 8072 Drelelch g~l InduslredeA.G. ~~I~l'll=~~ 2ER Zone Industrleli. d'Antony Tol: (49) 08103/30434-3 Hertiel ..... 31 
48, rue de "Aubapine TLX: 417903 2827 APOOm 8304 Waillsellen TLX: 837931 
BP102 

IRELAND 
~i~ 15/609906 +~,<~1)8328111 

1!2184 Antony oedex YUGOSLAV1A 
+~:(=746882112 ~1~:=elJIeo.UdP8rk NORWAY TURKEY 

Nordlek ElokIronlkk (Norge) AlS H.R. Microelectronics Corp. 
Jermyn-Generlm ' Glenageery PosItioksl23 EMPA ElectroniC 2006 de Ia Cruz Blvd., Ste. 223 
60, fOe des Gameaux Co. Dublin SmiIdeYingon,4 Undwurmstrasse 95A Sante Clara, CA 95050 

~:(~1l:f!) (01) 85 83 25 8000 Muenchen 2 U.S.A. Silic580 1384 H_ Tel: (49) 088/53 80 510 Tel: (1) (408) 988-0288 94653 R!S oedex m:(Ws1s02) 84 8210 Tel: (33) (1 49 78 49 78 TLX: 528579 TLX: 367452 
TLX: 281 ISRAEL 

RapIdO Electronic Components 

~:U~~ieres EaaIronlcs Ud. PORTUGAL UNITED KINGDOM 
S.p.a. 

II' Rozanis StreeI ATD Portugal LOA Accent Electronic Components Ud. -Via C. Beccarta. 8 
4, av. Laurent-Cely P.O.B. 39300 RUB Dos Lusl._, 5 Sola B Jubilee House, Jubilee Road 34133 Trieste 
92808 Asnl .... Codex Tel-Aviv 61392 1300 Usboe 1.etchwort/1, He'" SG8 lTL lteHa 
~:~~.cJa4790824O Tel: (972) 03-475151 

TLX: 33839 
Tel: (35) (1) 84 80 91 
TLX: 61582 

Tel: (44) (0482) S8S8S8 
TLX: S28283 

Tel: (39) 0401360555 
TLX: 480481 

'Field Application location CG/SALEItOl789 

i" 



AUSTRALIA 

Intel Australia Pty. Ltd,· 
Spectrum BUildin~ 

~~:sa~~~t~E, ~~~ 6 

Tel: 612-957-2744 
FAX: 612-923-2632 

BRAZIL 

Intel Semicandutores do Brazil l TDA 
Av. Paulista, 11S9-CJS 404/405 
01311 - Sao Paulo - S.P. 
Tel: 55-11-287-5899 
TLX: 3911153146 ISOB 
FAX: 55-11-287-5119 

CHINA/HONG KONG 

Intel PRC Corporation 
15/F, Office 1, Citic Bldg. 
Jian Guo Men Wai Street 
Beijing, PRC 
Tel: (1) 500-4850 
TLX: 22947 INTEL CN 
FAX: (1) 500-2953 

Intel Semiconductor Ltd. * 
10/F East Tower 
Bond Center 
Queensway, Central 
Hong Kong 
Tel: (5) 8444-555 
TLX: 63869 ISHLHK HX 
FAX: (5) 8681-989 

INTERNATIONAL SALES OFFICES 
INOlA 

Intel Asia Electronics, Inc. 
4/2, Samrah Plaza 
51. Mark's Road 
Bangalore 560001 
Tel: 011-91-812-215065 
TLX: 9538452875 OCBY 
FAX: 091-812-215067 

JAPAN 

Intel Japan KK. 
5-6 Tokodai, Tsukuba-shi 
Ibaraki, 300-26 
Tel: 0298-47-8511 
TLX: 3656-160 
FAX: 029747-8450 

Intel Japan K.K. "" 
Daiichi Mitsugi Bldg. 
1-8889 Fuchu-cho 
Fuchu-shi, Tokyo 183 
Tel: 0423-60-7871 
FAX: 0423-60-0315 

Intel Japan K.K.* 

~~gH'H~Un~c~~ya 
Kumagaya-shi, Saitama 360 
Tel: 0485-24-6871 
FAX: 0485-24-7518 

~1~uif:~~'~~sashi-kOSU9i Bldg. 
915 Shinmaruko, Nakahara-ku 
Kawasaki-shi, Kanagawa 211 
Tel: 044-733-7011 
FAX: 044-733-7010 

~~~~ac:~~'~tSU9i Bldg. 
1-2-1 Asahi-machi
Atsugl-shi, Kanagawa 243
Tel: 0462-29--3731
FAX: 0462-29-3781

Intel Japan K.K. *
Ryokuchl-Eki Bldg.
2-4-1 Terauchi
Toyonaka-shi, Osaka 560
Tel: 06-863-1091
FAX: 06-863-1084

Intel Japan K.K.
Shinmaru Bldg.
1-5-1 Marunouchi
Chiyoda-ku, Tokyo 100
Tel: 03-201-3621
FAX: 03-201-6850

Intel Japan K.K.
Green Bldg.
1-16-20 Nishiki
Naka-ku, Nagoya-shi
Aichi 450
Tel: 052-204-1261
FAX: 052-204-1285

KOREA

~":~ ~~r~~~b~~' Ltd.
61 Voido-dong, Voungdeungpo-Ku
Seoul 150-010

~~:(~28i~E~~~6, 8386
FAX: (2) 784-8096

SINGAPORE

Intel Singapore Technology, Ltd.
101 Thomson Road #21-05/06
United Square
Singapore 1130
Tel; 250-7811
TLX: 39921 INTEL
FAX: 25Q.9256

TAIWAN

Intel Technology Far East Ltd.
8th Floor, No. 205
Bank Tower Bldg.
Tung Hua N. Road
Taipei
Tel: 886-2-716-9660
FAX: 886-2-717-2455

INTERNATIONAL DISTRIBUTORS/REPRESENTATIVES
ARGENTINA

OAFSYS S.R.L.
Chacabuco, 90-6 PISO
l069-Buenos Aires
Tel: 54-1-334-7726
FAX: 54-1-334-1871

AUSTRALIA

Email Electronics
15-17 Hume Street
Huntingdale, 3166
Tel: 011-61-3-544-8244
TLX: AA 30895
FAX: 011-61-3-543-8179

NSD-Australia

~~; ~1~d~r~~au8~ 2~d.
Tel: 03 8900970
FAX: 03 8990819

BRAZIL

Elebra Microelectronica S.A.
Rua Geraldo Flauslna Gomes, 78
10th Floor
04575 - Sao Paulo - S.P.
Tel: 55-11-534-9641
TLX: 55-11-54593/54591
FAX: 55-11-534-9424

CHILE

DIN Instruments
Suecia 2323
casilla 6055, Correo 22
Santiago
Tel: 56-2-225-8139
TLX: 240.846 RUO

CHINA/HONG KONG

Novel Precision Machinera Co., Ltd.

~~!s~ ~,o 2~i~::r~~in~re!~g·
N.T., Kowloon

~~~i5~~~223222 
TWX: 39114 JINMI HX 
FAX: 852-0-4261602 

*Field Application Location 

INOlA 

Micronic Devices 
Arun Complex 
No. 65 O.V.G. Road 
Basavanagudi 
Bangalore 560 004 
Tel: 011-91-812-600-631 

011-91-812-611-365 
TLX: 9538458332 MOBG 

Micronic Devices 
No. 516 5th Floor 
Swastlk Chambers 
Sion, Trombay Road 
Chembur 
Bombay 400 071 
TLX: 9531 171447 MOEV 

. .1icronic Devices 
25/8, 1 st Floor 
Bada Bazaar Marg 
Old Rajinder Nagar 
New Delhi 110 060 
Tel: 011-91-11-5723509 

011-91-11-589771 
TLX: 031-63253 MONO IN 

Micronic Devices 
6-3-348/12A Dwarakapuri Colony 
Hyderabad 500 482 
Tel: 011-91-842-226748 

S&S Corporation 
1587 Kooser Road 
San Jose, CA 95118 
Tel: (408) 978-6216 
TLX: 820281 
FAX: (408) 978-8635 

JAPAN 

Asahi ElectroniCS Co. Ltd. 
KMM Bldg. 2-14-1 Asano 
Kokurakita-ku 

~e~~~~-f~4~~2 
FAX: 093-551-7861 

C. Itoh Techno-Science Co., Ltd. 
4-8-1 Dobashi, Mlyamae-ku 
Kawasaki-shi, Kanagawa 213 
Tel: 044-852-5121 
FAX: 044-877-4268 

Dia Semlcon Systems, Inc. 
Flower Hill Shinmachi Higashi-kan 
1-23-9 Shinmachi, Setagaya-ku 
Tokyo 154 
Tel: 03-439-1600 
FAX: 03-439-1601 

Okaya Koki 
2-4-18 Sakae 
Naka-ku, Nagoya-shi 460 
Tel: 052-204-2916 
FAX: 052-204-2901 

Ryoyo Electro Corp. 
Konwa Bldg. 
1-12-22 Tsukiji 
Chuo-ku, Tokyo 104 
Tel: 03-546-5011 
FAX: 03-546-5044 

KOREA 

J·Tek Corporation 
6th Floor, Government Pension Bldg. 
24-3 Voido-dong 

~~~~p~;~~~~O-kU 
Tel: 82-2-780-8039
TLX: 25299 KOOIGIT
FAX, 82-2-784-8391

Samsung Electronics
150 Taepyungro-2 KA
Chungku, Seoul 100-102
Tel: 82-2-751-3985
TLX: 27970 KORSST
FAX: 82-2-753-0967

MEXICO

SSB ElectroniCS, Inc.
675 Palomar Street, Bldg. 4, Suite A
Chula Vista, CA 92011
Tel: (619) 585-3253
TLX: 287751 CBALL UR
FAX: (619) 585-8322

Dicopel SA
Tochtli 368 Frace. Ind. San Antonio
Azcapotzalco
C.P. 02760-Mexlco, O,F.
Tel: 52-5-561-3211
TLX: 1 n 3790 Dicome
FAX; 52-5-561-1279

PSI de Mexico
Francisco Villas Esq. Ajusto
Cuernavaca - Morelos- CEP 62130
Tel: 52-73-13-9412
FAX: 52-73-17-5333

NEW ZEALAND
Email Electronics
36 Olive Road
Penrose, Auckland
Tel: 011-64-9-591-155
FAX: 011-64-9-592-681

SINGAPORE
Electronic Resources Pte, ltd.
17 Harvey Road #04-01
Singapore 1336
Tel: 283-0888
TWX: 56541 ERS
FAX: 2895327

SOUTH AFRICA
Electronic Building Elements
178 Erasmus Street (off Watermeyet Street)
Meyerspark, Pretoria, 0184
Tel: 011-2712-803-7680
FAX: 011-2712-803-8294

TAIWAN
Micro Electronics Co~ratlon
¥~~?7 R~~ Shen est Rd.

Tel: 886-2-501-8231
FAX: 886-2-505-6609
Sertek
15/F 135, Section 2
Chien Juo North Rd.
Taipei 10479, R.O.C.
Tel: (02) 5010055
FAX: (02) 5012521

(02) 5058414

VENEZUELA
P. Benavides SA
Avtlanes a Rio
Residencia Kamarata
Locales 4 AL 7
La Candelaria, Caracas
Tel: 58-2-574-6336
TLX: 28450
FAX: 58-2-572-3321

CG/SALEJ101789

AI..ASAMA

*Intel Corp.
5015 Bradford Dr .. Suile 2
Huntsville 35805
Tel: (205) 83Q.4010

ALASKA

Intal Corp.
c/o TransAlaska Data Systems
300 Old Steese Hwy.
Fairbanks 99701-3120
Tel: (907) 452-4401

Intel Corp.
c/o TransAlaska Data Systems
1551 Lore Road

~n::tfs~fns

ARIZONA

'Intel Corp.
11225 N. 28th Dr.
Suile 0-214
Phoenix 85029
Tel: (602) 869-4960

'Intel Corp.
~~'~:x..B~Sutte M-15

Tel: (602) 459-5010

CALIFORNtA

tlntel Corp.
21515 Vanowen St., Ste. 11.6

~8~~:wg
*Intej Corp.
2250 E. ImpeMaI Hwy., Ste. 218
EI Segundo 90245
Tel: (213) 640-6040

'Intel Corp.
1900 PraiMe cny Rd.
Folsom 85830-9597
Tel: (916) 351-6143

1-800-468-3548

Intel Corp.
9685 Ch peaks Dr .. Suite 325

.~ ~~0::Z~326

··Intel Corp.
400 N. Tustin Avenue
Suile 450
Santa Ana 92705
Tel: (714) 835-9642

CAUFORNIA

2700 San Tomss Expressway
Santa Clara 95051

Tel: \~~'i-k~

DOMESTIC SERVICE OFFICES
*·tlntel Corp:
San Tomas 4

KANSAS NEW YORK

2700 San Tomaa Exp., 2nd Floor "'Intel Corp. 'tlntel Corp.
Santa Clara 95051 10985 Cody, Sune 140 2950 'Expressway Dr. South
Tel: (408) 98IH!086 Overland Pari< 88210 Islandia 11722 .

Tel: (913) 345-2727 Tel: (516) 231-,'1300

COLORAOO 'Intel Co'gu.
MARYLAND w~ Iness Center

'Intel Corp.
=r~~~ St .. Suite 915 "tlntel Corp. ~~t\l(IU l~~~te 9

10010 Junction Dr., Suile 200 Tel: (914) 897-3860
Tel: (303) 321-8086 Annapolis Junction 20701

Tel: (301) 206-2860

CONNECTICUT
FAX: 301-206-3677 NORTH CAROUNA

'Intel Corp. "'Intel Corp: MASSACHUSETTS
301 Lee Farm Corporate Pari< 5800 Executive Dr., Ste. 105

Charlotte 28212 83 Wooeter HeIghts Rd. "'·tlntel Corp. Tel: (704) 568-8966 Danbury 06810 3 ca~lsle Rd., 2nd Floor
Tel: (203) 748-3130 Wsstford 01886

;~~~~'Road Tel: (508) 892-1060

FLORIDA Suile 102

MICHIGAN
Raleigh 27607

·"'Intel Corp. Tel: (919) 781-8022
8383 N. W. 6th way, St •• 100 'tlntel Corp. Ft. Laudardale 33309 7071 Orchard Lake Rd., St •. 100 OHIO Tel: (305) 771-0600 West Bloomfield 48322

'Intel Corp.
Tel: (313) 851-8905

;~~~C"Onter Dr .. Ste. 220 5850 T.G. Lee Blvd., Ste. 340
OMande 32822 MINNESOTA Dayton 45414
Tel: (407) 240-8000 Tel: (513) 890'5350

*tlntel Corp. ·tlntel Corp.
GEORG 3500 W. 80th St., Suile 360

25700 ScIence Pari< Dr .. Ste. 100 Bloomington 55431
Tel: (612) 835-6722 Beachwood 44122

"'Intel Corp. Tel: (216) 464-2736
3280 Pointe Pkwy., Ste. 200
Norcross 30092 MISSOURI
Tel: (404) 449-0541 OREGON

~1.f.:'.:J:·Ctty Exp., Ste. 131 HAWAII
Intel Corp.

ElMh C~63045 15254 N.W. Greenbrier Parkway

·Intel Corp. Tel: (314 291-1990 BuildlngB
Beaverton 97005

U.S.I.S.C. Signal Batt. Tel: (503) 645-8051
Building T·1521 NEW JERSEY Shelter Plats 'Intel Corp. Shelter 96856 Ulntal Corp. 5200 N.E. Elam Young Parkway

300 Sylvan Avenue Hillsboro 97123
IWNOIS Englewood Cliffs 07832 Tel: (503) 681'l!O8O

Tel: (201) 567-oa1!l
-·tlmel Corp.
~a~~~~leJd., Ste. 400

·Intel Corp. pENNSYLVANIA
Parkway 109 Office Center

T.~ (312) ~8031 328 Newman SpMngs Road *tlntel Corp.
Red Bank 07701 455 Pennsylvania Ave .. Ste. 230
Tel: (201) 747-2233 ~~r ~~:r.rrl~034 INDIANA
*Intel Corp.

;~ ~:J'ue Rd., Ste. 125
280 Corporate Center tlntel Corp.
75 UYingston Ave., 1st Floor 400 Penn canter Blvd .. Ste. 610

Indlanapolls 46268 Roseland 07068 Pittsburgh 15235
Tel: (317) 875-0823 Tel: (201) 740-0111 Tel: (412) 823-4970

CUSTOMER TRAINING CENTERS
IWNOIS

300 N. Martingale Road
Suile300

~;ra~3's'iU7'8s-sg~~ .
1-800-421-0386

MASSACHUSETTS

3 CMIsIe Road, Rrst Roor
Wsstford 01886

Tel:\~~a:

MARYLAND

10010 Junction Dr.
Sune200

f..~'m\1 ~~~ 20701
1-800-328-0386

Intel Corp.
1513 Cedar Cliff Dr.

~M~~~nko
PUERTO RICO

Intel Corp.
South Industrial Pari<
P.O. Box 910
Las Piedras 00671
Tel: (809) 733-8616

TEXAS
Intel Corp.
8815 Dyer St., Suite 225
EI Paso 79904
Tel: (915) 751-0186

*Intel Corp.
313 E. Anderson Lane, Suile 314
Austin 78752
Tel: (512) 454-3828

··tlntel Corp.
12000 Ford Rd., Sune 401
Dellas 75234
Tel: (214) 241-8087

'Intel Corp.
7322 S.W. Freeway, Ste. 1490
Houston 77074
Tel: (713) 988-8086

UTAH
Intel Corp.
428 East 6400 S!>uth, Ste. 104
Murray 84107
Tel: (801) 263-8051

VIRGINIA

'Intel Corp.
1504 Santa Rosa Rd., Ste. 108
Richmond 23288
Tel: (804) 282·5B68

WASHINGTON

·Intel Corp.
155106th Avenue N.E., Ste. 386
Bellevue 98004
Tel: (206) 453-6086

CANADA
ONTARIO

Intel Semiconductor of
Canada, Ltd.
2650 CueensYlow Dr., Ste. 250
Ottawa K2B 8H6
Tel: (613) 829-9714
FAX: 613-820-5936

Intel Semiconductor of
Canada, Ltd.
190 Attwell Dr., Ste. 102
Rexdale MSW 6H8

~~;,}~~2:lt:kO:

SYSTEMS ENGINEERING MANAGERS OFFICES
MINNESOTA

3500 W. 8Oth'StreeI
Suite 360
Bloomington 55431
Tel: (612) 835-6722

tsystem Engineering locations
*C8rry-ln locations

**Csny-in/mail-in klcations

NEW YORK

2950 Expressway Dr., South
Islandia 11722
Tel: (506) 231-3300

CGJSALE/l01789 ."

UNITED STATES
Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051

JAPAN
Intel Japan K.K.
5~6 Tokodai, Tsukuba~shi
Ibaraki, 300~26

FRANCE
Intel Corporation
1 Rue Edison, BP 303
78054 Saint~Quentin~en~ Yvelines Cedex

UNITED KINGDOM
Intel Corporation (U.K.) Ltd.
Pipers Way
Swindon
Wiltshire, England SN3 lRJ

WEST GERMANY
Intel Semiconductor GmbH
Dornacher Strasse 1
8016 Feldkirchen bei Muenchen

HONG KONG
Intel Semiconductor Ltd.
10fF East Tower
Bond Center
Queensway, Central

CANADA
Intel Semiconductor of Canada, Ltd.
190 Attwell Drive, Suite 500
Rexdale, Ontario M9W 6H8

Printed in U.SA 10 8920K CG JB
Embedded Processors

ISBN 1-55512-104-7

