intgl’ 80186/188, 80OC186/C188
Hardware Reference Manual

Order Number: 270788-001

intel”

LITERATURE

To order intel Literature or obtain literature pricing information in the U.S. and Canada call or write intel
Literature Sales. In Europe and other international locations, please contact your local sales office or
distributor.

INTEL LITERATURE SALES In the U.S. and Canada

P.O. BOX 7641 call toll free
Mt. Prospect, IL 60056-7641 (800) 548-4725

CURRENT HANDBOOKS

Product line handbooks contain data sheets, application notes, article reprints and other design informa-
tion.

TimLe - ORDER NUMBER
SET OF 11 HANDBOOKS 231003
(Available in U.S. and Canada only)

EMBEDDED APPLICATIONS 270648
8-BIT EMBEDDED CONTROLLERS 270645
16-BIT EMBEDDED CONTROLLERS 270646
16/32-BIT EMBEDDED PROCESSORS 270647
MEMORY 210830
MICROCOMMUNICATIONS 231658
(2 volume set)

MICROCOMPUTER SYSTEMS 280407
MICROPROCESSORS 230843
PERIPHERALS 296467
PRODUCT GUIDE 210846
(Overview of Intel's complete product lines)

PROGRAMMABLE LOGIC 296083
ADDITIONAL LITERATURE

(Not included in handbook set)

AUTOMOTIVE 231792
COMPONENTS QUALITY/RELIABILITY HANDBOOK 210997
INTEL PACKAGING OUTLINES AND DIMENSIONS 231369
(Packaging types, number of leads, etc.)

INTERNATIONAL LITERATURE GUIDE E00029
LITERATURE PRICE LIST (U.S. and Canada) 210620
(Comprehensive list of current Intel Literature)

MILITARY 210461

(2 volume set)

SYSTEMS QUALITY/RELIABILITY 231762

LITINCOV/10/89

intgl

U.S. and CANADA LITERATURE ORDER FORM

NAME:
COMPANY:
ADDRESS:
CITY: STATE: ZIP:
COUNTRY:
PHONE NO.:)
ORDER NO. TITLE QTY. PRICE TOTAL
| X =
HEEEEE X =
LI T TT] X =
LITTTT] X =
LT T T TT] X _
LI TT] X =
LITTTT] X _
LTI X =
LITTTT] X =
LI TP X -
Subtotal
Must Add Your
Local Sales Tax
Postage: add 10% of subtotal > Postage
Total

Pay by check, money order, or include company purchase order with this form ($100 minimum).We also
accept VISA, MasterCard or American Express. Make payment to Intel Literature Sales. Allow 2-4 weeks
for delivery.)

OVISA OMasterCard [0 American Express Expiration Date

Account No.

Signature

Mail To: Intel Literature Sales International Customers outside the U.S. and C-nada
P.O. Box 7641 should use the International order form or contact their local
Mt. Prospect, Il 60056-7641 Sales Office or Distributor.

For phone orders in the U.S. and Canada
Call Toll Free: (800) 548-4725

Prices good until 12/31/90.
Source HB

CG/LOF1/081789

intel

INTERNATIONAL LITERATURE ORDER FORM

NAME:
COMPANY:
ADDRESS:
CITY: STATE: ZIP:
COUNTRY:
PHONE NO.: |)
ORDER NO. TITLE QTY. PRICE TOTAL
I X =
l X =
| X =
HEEEEE X =
Subtotal
Must Add Your
Local Sales Tax
Total
PAYMENT

Cheques should be made payable to your local Intel Sales Office (see inside back cover.)

Other forms of payment may be available in your country. Please contact the Literature Coordinator at your
local Intel Sales Office for details.

The completed form should be marked to the attention of the LITERATURE COORDINATOR and returned
to your local Intel Sales Office.

CG/LOF2/100188

intgl

80186/188,80C186/C188
HARDWARE REFERENCE MANUAL

1990

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which may
appear in this document nor does it make a commitment to update the information contained herein.

Intel retains the right to make changes to these specifications at any time, without notice.
Contact your local sales office to obtain the latest specifications before placing your order.
The following are trademarks of Intel Corporation and may only be used to identify Intel products:

376, 386, 387, 486, 4-SITE, Above, ACE51, ACE96, ACE186, ACE196, ACE960,
BITBUS, COMMputer, CREDIT, Data Pipeline, DVI, ETOX, FaxBACK, Genius, i, 1,
i486, 750, 860, ICE, iCEL, ICEVIEW, iCS, iDBP, iDIS, I2ICE, iLBX, iMDDX, iMMX,
Inboard, Insite, Intel, intgl, Intel386, intgIBOS, Intel Certified, Intelevision, intgligent
Identifier, intgligent Programming, Intellec, Intellink, iOSP, iPAT, iPDS, iPSC, iRMK,
iRMX, iSBC, iSBX, iSDM, iSXM, Library Manager, MAPNET, MCS, Megachassis,
MICROMAINFRAME, MULTIBUS, MULTICHANNEL, MULTIMODULE, MultiSERVER,
ONCE, OpenNET, OTP, PRO750, PROMPT, Promware, QUEST, QueX, Quick-Erase,
Quick-Pulse Programming, Ripplemode, RMX/80, RUPI, Seamless, SLD,
SugarCube, TooITALK, UPI, Visual Edge, VLSIiCEL, and ZapCode, and the combina-
tion of ICE, iCS, iRMX, iSBC, iSBX, iSXM, MCS, or UPI and a numerical suffix.

MDS is an ordering code only and is not used as a product name or trademark. MDS® is a registered trademark of Mohawk
Data Sciences Corporation.

MULTIBUS is a patented Intel bus.
CHMOS and HMOS are patented processes of Intel Corp.

Intel Corporation and Intel's FASTPATH are not affiliated with Kinetics, a division of Excelan, Inc. or its FASTPATH trade-
mark or products.

Additional copies of this manual or other Intel literature may be obtained from:
Intel Corporation
Literature Sales
P.O. Box 7641
Mt. Prospect, IL 60056-7641

©INTEL CORPORATION 1989 CG-101789

intel”

CUSTOMER SUPPORT

INTEL’S COMPLETE SUPPORT SOLUTION WORLDWIDE

Customer Support is Intel’s complete support service that provides Intel customers with hardware support,
software support, customer training, consulting services and network management services. For detailed infor-
mation contact your local sales offices.

After a customer purchases any system hardware or software product, service and support become major
factors in determining whether that product will continue to meet a customer’s expectations. Such support
requires an international support organization and a breadth of programs to meet a variety of customer needs.
As you might expect, Intel’s customer support is quite extensive. It can start with assistance during your
development effort to network management. 100 Intel sales and service offices are located worldwide —in the
U.S., Canada, Europe and the Far East. So wherever you’re using Intel technology, our professional staff is
within close reach.

HARDWARE SUPPORT SERVICES

Intel’s hardware maintenance service, starting with complete on-site installation will boost your productivity
from the start and keep you running at maximum efficiency. Support for system or board level products can be
tailored to match your needs, from complete on-site repair and maintenance support to economical carry-in or
mail-in factory service.

Intel can provide support service for not only Intel systems and emulators, but also support for equipment in
your development lab or provide service on your product to your end-user/customer.

SOFTWARE SUPPORT SERVICES

Software products are supported by our Technical Information Service (TIPS) that has a special toll free
number to provide you with direct, ready information on known, documented problems and deficiencies, as
well as work-arounds, patches and other solutions.

Intel’s software support consists of two levels of contracts. Standard support includes TIPS (Technical Infor-
mation Phone Service), updates and subscription service (product-specific troubleshooting guides and;
COMMENTS Magazine). Basic support consists of updates and the subscription service. Contracts are sold in
environments which represent product groupings (e.g., iRMX® environment).

CONSULTING SERVICES

Intel provides field system engineering consulting services for any phase of your development or application
effort. You can use our system engineers in a variety of ways ranging from assistance in using a new product,
developing an application, personalizing training and customizing an Intel product to providing technical and
management consulting. Systems Engineers are well versed in technical areas such as microcommunications,
real-time applications, embedded microcontrollers, and network services. You know your application needs;
we know our products. Working together we can help you get a successful product to market in the least
possible time.

CUSTOMER TRAINING

Intel offers a wide range of instructional programs covering various aspects of system design and implementa-
tion. In just three to ten days a limited number of individuals learn more in a single workshop than in weeks of
self-study. For optimum convenience, workshops are scheduled regularly at Training Centers worldwide or we
can take our workshops to you for on-site instruction. Covering a wide variety of topics, Intel’s major course
categories include: architecture and assembly language, programming and operating systems, BITBUS™ and
LAN applications.

NETWORK MANAGEMENT SERVICES

Today’s networking products are powerful and extremely flexible. The return they can provide on your invest-
ment via increased productivity and reduced costs can be very substantial.

Intel offers complete network support, from definition of your network’s physical and functional design, to
implementation, installation and maintenance. Whether installing your first network or adding to an existing
one, Intel’s Networking Specialists can optimize network performance for you.

CG/CUSTSUPP/100389

Table of Contents

1.0 INTRODUCTION

1.1 The 80186 Product Familyccccouirimiiiiiiiiieiee e 1-1
1.2 How to Use the Hardware Reference ... 1-2
2.0 OVERVIEW OF THE 80186 FAMILY

2.1 ArchiteCtural OVEIVIEWcccociiiiiieiiiccier st en ittt ae s e s te e sae e esnens 2-1
2.1.1 EXECULION UNIt ..ttt et 2-2
2.1.2 Bus INterface UNitcccovuernierieiin ettt s e e eaeee 2-2
2.1.3 General REGISErSceciriiriiiecie ettt 2-3
2.1.4 Segment REGISIErScoiiiirier ettt ettt s e 2-3
2.1.5 INSLrUCHON POINET ...ttt et 2-3
P2 B =T OO SO 2-4
2.1.7 Memory SEgMENLAtiONccocivveiieiirirenrierr ettt s eeae 2-5
2.1.8 LOGICal AQAIESSESc.oeiiviiriiiniirie ettt sttt ere s s 25
2.1.9 Dynamically Relocatable Codecooeeiiiiciniieinerceceereecr e 2-8
2.1.10 Stack INpIementationccceciiiiriiiinicie e 2-9

2.1.11 Reserved Memory and /O SPaCEcccvevureeueireenrerieiiesresee s v 2-10

2.2 SOftWArE OVEIVIEWc..iiuiiiiieieteece ettt sttt e et ae st e ne e e e e sneesansresnnens 2-10

2.2.1 INSHUCHON SBE ...t st 2-10

‘ 2.2.1.1 Data Transfer INStruCtionscocveciieriiinircir e 2-10

2.2.1.2 Arithmetic INSUCHONScovviiirieiereee et 2-11

2.2.1.3 Bit Manipulation INStructionscceveerirririenececre e 2-11

2.2.1.4 String INSIIUCHONScoviriiiirieietee et 2-13

2.2.1.5 Program Transfer INStructionscccceorerncivnineecereie e 2-13

2.2.1.6 Processor Control INStruCtionsocoeeceeinirenineceiee et 2-14

2.2.2 Addressing MOAEScceeeciiirinecet e s 2-14

2.2.2.1 Register and Immediate Operand Addressing Modes............cccccvvueerennnne 2-15

2.2.2.2 Memory Addressing Modeccccccveieriiciiciniciic e 2-16

2.2.2.3 /O POrt ADAresSsingcceeeeerreenmrreeenrecenriere st seesesresesnesesenennnens 2-21

2.2.3 Data Types Used in the 80186 Familyccccoeveniniiininiinicnccie, 2-21

2.3 DMA CONrOLUNIL ...ttt ettt e e see s st e s nesmee e 2-22

2.4 TIMEIS coteitiieiise ettt e et e st e s st e s ae e ae st e s st e e sbesaesa e e e saee sateeaeeeaeane et e e saeeennanate 2-22

2.5 Interrupt CoNtrol UNitcooviiiiiiieeeecteete ettt et 2-22

2.6 ClOCK GENEIALONccviieeiiieeciieiiee sttt e s e s e st e sre e s e e ae e et e be e sae s se s s aessbaesnnesaresanes 2-23

2.7 Chip Select and READY Generation Unitcccccivieiiiiininiiininiiseceessncsenins 2-23

2.8 DRAM Refresh Control Unit (80C186/80C188 Only) erteee et 2-23

2.9 Power-Save Unit (B0C186/80C188 ONlY)coveruerirererenricnintie e sss s 2-23

2.10 Access to Integrated Peripherals ..ot 2-23

3.0 80186 BUS INTERFACE UNIT

Bl T-SAES .o e s ea s e be s 3-1
3.2 Physical Address GEnerationc.cccoecreecrereeerinecimencins e st ssas s snens 33
3.3 Data BUS ..ot e e 34
3.3.1 80186/80C186 Data Bus Operationccccoeiiiinimniiinecncinieesieneesenene, 34
3.3.2 80188/80C188 Data Bus Operationcceeriiininmiininniniseesse s 3-4
3.3.3 Peripherals Interface ... 35
3.4 Bus Control SIgNalSceueuieriiinininiiiicnise e 3-5
341 RDANAWR ...t ettt ettt e et e s n s snn 3-5
3.4.2 QuEUE StatuS LINES ..ccecceurririeecrinee e e 3-7
3.4.3 StAtUS LINE ..ottt e e 3-7
3.4.4 Software-Initiated Bus CONMrolcooceerieieriiciiiiin e 3-8
3.4.4.1 TEST Input and LOCK OULPULcccvremrercriiniiiiiinini et 3-8
3.4.4.2 Processor HALTcoccviieeeienieenireniesnee et ererere e 3-8

Table of Contents (continued)

3.5 Transcevier CoNtrol SIgNalScccceoviiviiiiinieeiere et sneeeeas
3.6 READY INtErfaCingcieoeeeiieeioieeeiieectieeiir et eece s e eree e st e e e s aseeesaesesaeeeseeensnaseaneenn
~ 3.7 Execution Unit/Bus Interface Unit Relationshipcccceeveevannee. ettt
3.7.1 Prefetch Queue and Bus Performancec.ccoceerererernienc ettt
3.7.2 Bus Performance and CPU Performanceccoccvvovveeeineniescsinceseescee s
3.7.3 Wait States and CPU Performance..........coccoveiireesiiiccneecieninessce e e

3.8 HOLD/HLDA INtEIACEceereeieientieieeiest ettt st s sae et e e e e nes smeenaens
3:8.1 ReSpONSE t0 HOLDcooiiiiiiiiiiiiet ettt
3.8.2 HOLD/HLDA Timing and Bus LatenCyccecereerierieserierieneeieeeenesreneeieseeee e
3.8.3 LeaViNG HOLDccoiiiiiiiciciic ittt e

3.9 Priority Of BUS CYCIE TYPES -.c..vviruieeiiriieieieeeiee ettt ss et s nae s be e snsenaeas

4.0 CLOCK GENERATOR

4.1 Crystal OSCIIAtOrieecerieriiieeecee ettt s re e et sae e sbs s e e eneeeae s
4.2 Using an External OSCIllatorcooiiiriniiieeeee ettt e ne
4.3 Output from ClIOCK GENETALONcceecueceecee ettt ete st eresaeeenesaneeneas
4.4 BESET ...t S SRV USRS SRR

5.0 PERIPHERAL CONTROL BLOCK

5.1 Setting the Base LOCAHONcoeeiiiiiirieieeeiee et nae s snn e
5.2 Peripheral Control BIOCK REGISIEIScovriiieeiieiieniiiee ettt
5.3 Peripheral Configuration at RESETcccccviiriiiiirrirneiennrnieeecinnneesesresne e ssesnsessanns

6.0 TIMER UNIT

6.1 Timer Unit Programmingccoccriimiiinniic e st iss e s
B.2 TIMEI EVENTS ...ttt ettt st s se e b s et e e seeae e e seeneneseenens
6.3 Timer Input Pin OPErationccooeeeeviiciereinteeeneeree et
6.4 Timer Qutput Pin OPerationc..ccoiveriieirteninee s st e e s e e e eeeas
6.5 Example Timer Initialization Codec.cccorrimininiinirece e e
6.5.1 RealI TIME ClOCKcoreruiiririt ittt st st s e
6.5.2 Baud Rate GENETALOrcccoiireiiiiire et sre et sae et e
6.5:3 EVENECOUNLENeeieieiiiecteeeec ettt ettt st sn e

7.0 CHIP SELECT/READY LOGIC

7.1 Memory Chip SEIECEScoeeiiiiieeee e et
7.2 Peripheral Chip SEIECESuoceruiiierieirie et rers e a et st sassreenesae st eneas
7.3 READY GENEIAtiONoecveurieiiiiiniereeiieeesii e ete e s s e sse et e ie bt e re e sne e eneene
7.4 Overlapping Chip Select BIOCKScccoiiiiiiiiiesiieie et e s
7.5 Chip Selects and the 80C186 in Enhanced Modgccoeeiiiiiiiniiniicnn i,
7.6 Example System Initialization Codec.coererirrriiniiieeee e

8.0 DMA CONTROL UNIT

8.1 DIMA FEAIUIESceeueeeieiieteee ettt et sbd e e e e e e e be st e e see e ensesnenenerene
8.2 DMA Unit Programmingccccoicimiiessininieesieessiessseeseeeeesseeseeessessseeseesnseeseesesbeesseeneas
8.3 DMA Channel PriOritycceertiriieinieieeie ettt eeieie ettt sre e srn e bt esnees
8.4 DMA TIANSTOIS ..c.ueeueeieeriieie e ste ettt ettt ses sttt eseesee st et e e e sne b e nenenennesanene
8.5 DMA REQUESEScouteerueetireieieert ettt st e ettt et e s e sne e e
8.5.1 DMA Request Timing and LatenCycc.ccocecviviineniene it eeeeese e e
 8.5.2 DMA ACKNOWIEAGE oottt st s e
8.6 ‘Internally Generated DMA ReqUESLSccocerieiiiieriiincicnn i
8.7 Externally Synchronized DMA Transferscouverrvreresinninieneseeseieeesesseesennens
8.7.1 Source Synchronized DMA Transfersccccouereicrnnenrniciienese e
8.7.2 Destination Synchronized DMA Transfersccceeiiiiiiieeiensieseeecsresesseeee

8.8 DMA Halt and NMIcc.couiiiiiiieiie ettt bbbt enaen
8.9 Example DMA INterface COTEcceviririririivienesie et r st s e e et sae e b eaesmeennens

Table of Contents (continued)

9.0 INTERRUPTS

9.1
9.2

9.3

94

9.6

Interrupt Control MOENoo ittt s e s 9-1
Interrupt Characteristics Related 1o TYPeccccceeiiiiininicciiicicc e 9-1
9.2.1 Interrupts Handled Directly by the CPU.........cccooiirieiiirieeeeeee e 9-1
9.2.1.1 Instruction-Generated Traps and Exceptions.............cccccoeiciiininicnicncnns 9-1
9.2.1.2 Non-Maskable Interrupt (NMI)ccooeieiiiiiieeeceeree e 9-4
9.2.1.3 User-Defined Software Interruptscooeeeiiiiiiiiinineeceeeree e 9-4
9.2.2 Interrupts Handled by the Integrated Interrupt Controllerc..ccccovveeinicreennn. 9-4
Other Interrupt CharacteriStiCseeuereirieiiieieee e e 9-4
9.3.1 INterrupt LAteNnCYcocuiiiiiiiiii e 9-4
9.3.2 Interrupt Masks and NESNGcccuiiviiriiriireeee e e 95
9.3.3 INErruPt PrOKLY ..o 9-5
Interrupt Control Unit Operation MOdescooereiiiiiiieniiiccienecee e 9-8
MESEEI MOGE ...ttt s b e esaneebeennean 9-8
9.5.1 Master Mode External Connectionscccoeeeeierenenenienene e e 9-8
9.5.1.1 DireCt INPUt MOAEeeiiieeiieieeeeee et 9-8
9.5.1.2 Casade MOGEcccceiiiiieirienirer ettt et 9-8
9.5.2 Master Mode Programmingcccceeeeeenireeririenenee e sesne s 9-9
9.5.2.1 Control Registers in Master Modeccoceeeieneniinnennene e 9-9
9.5.2.2 Cascade MOGEcoeerueerieiiiinieeieeieeie et 9-10
9.5.2.3 Special Fully Nested Modecccoeeeririiiininieeceie e 9-10
9.5.2.4 Request Register in Master Modecoceeviiiiiiiiniinincieecccieeee 9-11
9.5.2.5 Mask Register in Master Modecc.ceceveiererincrieneciiei s 9-11
9.5.2.6 Priority Mask Register in Master Modeccccooiiiiiiniiniiicinienes 9-11
9.5.2.7 In-Service Register in Master Modecccereerniiniiniinciceeccenecneee 9-11
9.5.2.8 Poll and Poll Status Registersccccvcrenriiiiinciiiiicccieneccicncne 9-11
9.5.2.9 End of Interrupt Register in Master Modec..ccooviiiiiciinciinciciee, 9-12
9.5.2.10 Interrupt Status Register in Master Mode.........c..cccccociniiiiiniiiniinens 9-12
9.5.3 Master Mode interrupt SOUrCEScceeeiiiieiiiiiicicc e 9-13
9.5.3.1 INtErNAI SOUICESeiiuiieiieriieriiiieee ettt s 9-13
9.5.3.2 EXtErNal SOUICEScovveuirireinieieetenreseeere et s 9-13
9.5.4 Master Mode Interrupt RESpONSecccciviiiiiiiiiiiciiccce e 9-13
9.5.4.1 Internal Vectoring in Master Modeccccooececmniciiiiniinciciecciene 9-14
9.5.4.2 External Vectoring in Master Mode............: ettt en bt 9-14
9.5.4.3 Master Mode Interrupt Response Timeccccoviiiiiiiininiiiniicci 9-14
9.5.5 Example Master Mode Initializationcccceeeiniiiiniciiinii e 9-14
SIAVE MOTE ...ttt 9-15
9.6.1 Slave Mode External ConneCtionsccceeierereriniesiccinise e 9-17
9.6.2 Slave Mode Programmingcccceeeceererenrieeniciesenisines e saesens 9-17
9.6.2.1 Control Registers in Slave Modeccevviiiiiiiiiniiincccie 9-17
9.6.2.2 Request Register in Slave Modecooueririiiiiiiiccececeeeee e 9-17
9.6.2.3 Mask Register in Slave Modeccccooreiieeiceiniiciccn e 9-17
9.6.2.4 Priority Mask Register in Slave Modeccocvriiiieininiiieiiencneee, 9-17
9.6.2.5 In-Service Register in Slave Modecccccceriieiiiiiiiniiniiiinicceee 9-17
9.6.2.6 End of Interrupt Register in Slave Modecccceniiiincincciiiiecnee. 9-19
9.6.2.7 Interrupt Status Register in Slave Modec.ccoceiiiiiiiiiiiiiiicee 9-19
9.6.2.8 Interrupt Vector Register ... 9-19
9.6.3 Slave Mode INterrupt SOUICESc.oeieeeieiriiiiiececcc e 9-20
9.6.4 Slave Mode Interrupt RESPONSEccccecerireiniciiiieiiie e 9-20
9.6.4.1 Internal Vectoring in Slave Modeccooeeiiinieniniienie e, 9-20
9.6.4.2 External Vectoring in Slave Mode............cccocoininiiniiiiincinicce, 9-21

Table of Contents (continued)

9.6.4.3 Slave Mode Interrupt Response TiIMecccceeeevcierieeriininieeceneseeseeeaeenes 9-21
. 9.6.5 Example Slave Mode Initializationccccevuerierieriersnreeere et 9-22
9.7 Interrupt Controller FIOW Chartsccoceeriienteeeirec sttt e saeeeee e e 9-23
10.0 REFRESH CONTROL UNIT (80C186/80C188 ONLY)
10.1 Refresh Control Unit Programmingcccceevreeimreeerieniesinsieseseeseceese e s sae e saesesseenns 10-1
10.2 Refresh Control Unit Operationccoceeeeierieiecceeceeeec e e 10-2
10.3 REfreSh AQAIESSEScceveeiieeiriiiteiiet ettt st se et e st e s e sneeeennanreenae 10-3
10.4 Refresh Operation and Bus HOLDcccvceiicininienneircnere e seeee e sseste s sesse s 10-3
10.5Example RCU Initialization COEccoeeuirrecinicieeeeecee ettt ere e 10-4
11.0 POWER-SAVE UNIT (80C186/80C188 ONLY)
11.1 Power-Save Unit Programmingccccceeerrerreriereienneesersteseesseserssessesesssssssessessessenns 11-1
11.2POWEr-Save OPErationccccceveriieiniriiesieneenreeenie st sesessatessessaeseessesesaneesenssesnsenes 111
11.3Example Power-Save Initialization Codecccvrurieeeeeireeriieeeee st seesessnens 11-2
12.0 HARDWARE PROVISIONS FOR FLOATING POINT MATH
12.1 Using the 80186/80188 with the 8087 Numerics COProCESSOrcereurervrerverrueereiniennas 12-1
12.1.1Overview of NUumerics COProCeSSINGccvruerrererreriererienrenrernsesseesseesenesesnesnnas 12-1
12.1.28087 INSIIUCHON SBL ...t 12-1
12.1.2.1 Data Transfer INStrUCONScocceveiniiniinieecie st 12-1
12.1.2.2 ArithmetiC INStIUCHIONSoeeeveeeeieecirie et eebee e eeeseee e 12-1
12.1.2.3 Comparison INSIrUCLIONSccceeerierrienireere et 12-2
12.1.2.4 Transcendental INStruCtionscccoceveierriesieeseeres e 12-3
12.1.2.5 Constant INSrUCHONSc.ccoiieeiieieceectecee e 12-3
12.1.2.6 Processor Control INStructionsc.cccecvevveiiinneiniesiescees e ..12-4
12.1.38087 Data TYPEScvcuevemieiiiciesiccsett st 12-4
12.1.480186(80188)/8087 INEITACEeeeereeieereereeeise e seeeeeee e e e e enaeseeenesaean 12-4
12.1.580186(80188) Bus Cycles during Numerics Coprocessingccveveeeeerverenne e 12-6
12.2Using the 80C186 with the 80C187 Numerics Processor Extensionccocceveeceenne 12-6
12.2.10verview of the 80C187 Numerics Processor EXtension...........ccccvieevineceeecrenne 12-6
12.2.280C 187 Addtions to INStruction Setccceireeeerrrreerreresce et e e 12-7
12.2.380C186/80C 187 INtEITACEcueoverieeeererierierienireresie et st ss s st e 12-7
12.2.480C 186 Bus Cycles with the Numerics Processor Extensioncccceceeeveeccnene 12-8
APPENDIX A - DIFFERENCE BETWEEN THE 80186 FAMILY
AND THE 8086/8088
A1 CPUPEMOMANCEooveeerieeeeeeeiectietestieseesee s e e stesteeae s e eaessessessesessassensessnssrassensessenes A-1
A2 ClOCKING ..vvieiniiriecre ettt bttt et e et ere st e b e eaeeneenenes A-1
A.3 Local Bus Controller and Control Signalsccoceeieeeriiniernnnscreeeeseesrenee e A-1
A.4 HOLD/HLDA vs. REQUEST/GRANToooovtieetereretetreeeeeeesesesesesssesssseesssenssesssesssosesnes A-1
A5 Status INfOrMALONiciveiiecieii ittt ee e enne e e nenaeeneenes A-1
A.B BUS ULIlIZALIONooveiiieiesiie ettt te s e e s eesre s se s sreessaesana s s aessaesneesee A-2
A.7 INStrUCHON EXECULONeeevereeeiecteteee et e e st aeve s e e se s e se e b e eae e be e sress e snsnsnens A-2
APPENDIX B - SYNCHRONIZATION OF EXTERNAL INPUTS
B.1 Why Synchronizers are ReqUIredcccoeceeeerrirenereninesiseree e seees e sse e B-1
. B.2 80186 SYNCHIONIZEFScc.cviiiiriieiciierieet ettt et sae e ne e B-1
APPENDIX C - SUMMARY OF DIFFERENCES AMONG FAMILY MEMBERS
C.1 Differences Due to Data Bus WIdthccccceeveeiiineriniecresrsencs e s C-1
C.2 Differences Between NMOS and CMOS DEVICESccoveererueuereesreesereseresssesesssessansans C-1

Introduction 1

CHAPTER 1
INTRODUCTION

The 80186 microprocessor family holds the position of indus-
try standard among high integration microprocessors. VLSI
technology incorporates the most commonly used peripheral
functions with a 16-bit CPU on the same silicon die to assure
compatibility and high reliability. The 80186 family reputa-
tion for flexibility and uncomplicated programming makes it
the first choice embedded microprocessor for such applica-
tions as local area network equipment, PC add-on cards, ter-
minals, disk storage subsystems, avionics, and medical instru-
mentation. Figure 1 is ablock diagram of the 80186 processor.

1.1 THE 80186 PRODUCT FAMILY

The 80186 family actually consists of four devices: the origi-
nal 80186 and 80188, and the newer 80C186 and 80C188
microprocessors manufactured on Intel’s CHMOS III proc-
ess. The 80188 and 80C188 are 16-bit microprocessors but
have 8-bit external data buses. The 80C186 and 80C188 offer
the advantage of increased speed (up to 16 MHz) and impor-
tant new features including a Refresh Control Unit, Power-
Save logic, and ONCE™ Mode (see Figure 2).

INT3NTAT/ _INTY/
RQ SELECT TMROUTO TMRIN1
cLkout INTAG / DRQO DRQf
- D A e] INTINTAOL ro TMRINOT [TMR ?UT 1
1 1
y \ i [
X1 X2 PROGRAMMABLE DMA CONTROL
TIMERS UNIT
0 1 2 0 1
PROGRAMMABLE MAXIMUM COUNT 20-BIT SOURCE
Voc —= INTERRRUPT REGISTER B POINTERS
CLOCK CONTROLLER MAXIMUM COUNT 20-BIT DESTINTATION
GENERATOR REGISTER A POINTERS
GND -] 16-BIT COUNT 16-BIT COUNT
REGISTERS REGISTERS
CONTROL
REGISTERS CONTROL REGISTER CONTROL REGISTERS
i INTERNAL BUS
SRDY READY contROL| 4 ' CONTROL PCS5/
ARDY —»] LOGIC ReGisTERs| | EXECUTIONUNIT | geGisTeRs At
— 1
2_0— Ve BUS INTERFAGE UNIT 16-BIT ' cHip
2 GENERAL BCSe
SYSTEM] PCS6/
= REGISTERS ! SELECT
DTAR RiG:(TriRS ' CONTROL A2
_DEN = PREFETCH 16-BIT ALU ' UNIT
LOCK Qe | - | 1 !
|
HOLD AV 4 A V4
HLDA 7 ALE | Y TEsteusY mcsos Y Y Pcsod
:DD% A16/83- RgsY | Y _RD Ucs Lcs
M9IS6 peger 1WA
BHE/S7 270288-001-1

Figure 1. 80186 Block Diagram

1-1

intal’

INTRODUCTION

All family members employ a 20-bit address bus for a one
megabyte memory address space and a 64 kilobyte I/O ad-
dress space. All processors use the same instruction format.
Software written for one CPU will execute on the other CPUs
without alteration (with the possible exception of floating-
point code).

Forsimplicity, thisHardware Reference uses phrases like “80186
family processor” to refer to features and functions shared
commonly by the 80186, 80188, 80C186, and 80C188. This
manual refers to specific member or members of the product
family directly by product number.

1.2 HOW TO USE THE HARDWARE
REFERENCE

The purpose of this Hardware Reference is to explain the
operation of 80186 family processors with a degree of detail
notpossible in the data sheet. Theemphasisis on the integrated
peripheral set, since that is the essence of the 80186 family.
The designer with questions about the function of a particular
peripheral is encouraged to turn directly to the specific sec-
tions suggested by the table of contents.

cLKoUT 'NT:’,/F:%TA1/ s'ENL?c/;T TMROUTO TMRIN 1
1D| M b INT2/INTAO NTo TMR ot |TMrouT DRQO DRQ1
— Kl)
A \ \
Xt x2 PROGRAMMABLE DMA CONTROL
‘ TIMERS UNIT
vee -] |cenennron 0 ! 2 0 !
PROGRAMMABLE MAXIMUM COUNT| 20-BIT SOURCE
INTERRRUPT REGISTER B POINTERS
CONTROLLER MAXIMUM COUNT 20-BIT DESTINTATION
POWER- REGISTER A POINTERS
GND - SAVE 16-BIT COUNT 16-BIT COUNT
REGISTER REGISTERS
CONTROL CONTROL SRS e
REGISTERS|| |REGISTERS CONTROL REGISTER CONTROL REGISTER
1 [1t
< i <
SRDY —f+=1 READY || conTROL ' - | conTROL PCSS/
LOGIC \STER i EXECUTION UNIT ' A1
ARDY REGISTERS| ool : REGISTERS

50- A BUS INTERFACE UNIT | CONTROL 16-8IT !

2 N SYSTEM UNIT GENERAL ' CHIP PCS6/
DT/R REGISTERS REGISTERS ' SELECT A2
— ~oBvIE] : CONTROL -
_DEN= PREFETCH 16-BIT ALU : UNIT
LOCK = QUEUE !

‘ ‘ [RV [[
NUMERICS INTERFACE 1
]
HOLD L MCS0/PEREQ | ' " PCS0-4
HLDA LE TEST/BUSY MCS1/ERROR ics
ADO. A16/S3- RES B MCSM:E\AF::_F;%/}::TS' Yos
AD1S A19/S6 cor ¥ WR
BHE Mcs2 270288-001-2

. Figure 2. 80C186 Block Diagram

1-2

Overview of the 80186 Family 2

CHAPTER 2
OVERVIEW OF THE 80186 FAMILY

the 8086, 8088, 80286, 386TM, and 486TM processors. It is
completely object code compatible with the well-known 8086/
8088. However, most instructions require fewerclockstoexecute
on the 80186 family because of hardware enhancements in the
Bus Interface Unit and the Execution Unit. In addition, there
are a number of additional instructions which simplify pro-
gramming and reduce code size (see Appendix A.7).

The 80186 family operates virtually the same as the 8086. The
added benefits of the 80186 family are the on-chip DMA,
Timer, Interrupt Control, Chip Select, and READY Genera-
tion Units. This concept of high integration greatly simplifies
system design.

The 80186 family operates from a single +5 V supply. It is
available in several standard package configurations. For a
given product, the pinout is identical among any of the avail-
able 68-pin packages: Pin Grid Array (PGA), Leadless Chip

Carrier (LCC), and Plastic Leaded Chip Carrier (PLCC). This
means that sockets for any of the three package types may be
mounted on a printed circuit board drilled with the same 68-
pin pattern.

2.1 ARCHITECTURAL OVERVIEW

An 80186 family processor incorporates two separate proc-
essing units: an Execution Unit (EU) and a Bus Interface Unit
(BIU). The EU is functionally identical among all family
members. In the 80186/80C186 the BIU is configured for a
16-bit external data bus and in the 80188/80C188 the BIU is
configured for an 8-bit external data bus. The two units are
connected by an instruction prefetch queue.

The EU executes instructions and the BIU fetches instruc-
tions, reads operands, and writes results. Whenever the EU
requires another opcode byte, it takes the byte out of the prefetch

ADDRESS BUS

EXECUTION UNIT
EU

(20)
A AL I s
BH BL
CH cL l / O\
GENERAL bH | oL | I I}
REGISTERS 5P DATABUS
SP | v (16 BITS)
DI | =
SI =
ES
| G
R INTERNAL
\ COMMUNICATIONS] BUS
| ALU DATA BUS REGISTERS CONTROL == EXTERNAL
A 4 | } (16 BITS) | ﬁl LOGIC
\ i
[TEMPORARY REGISTERS—¢ |
Y l
INSTRUCTION
__/_ QUEUE
] EU | aBus
ALU b CONTROL | 1]2]ala|5]6 =e
SYSTEM | (8 BITS)
[| |
]
[] 1
11 L |
| FLAGS [——

BUS INTERFACE UNIT
(BIU) 270288-001-3

Figure 3. Simplied Functional Bock Diagram of 80186 Family CPU

21

intal’

OVERVIEW OF THE 80186 FAMILY

queue. The two units can operate independently of one another
and are able, under most circumstances, toextensively overlap
instruction fetches and execution.

An 80186 family processorhas a 16-bit Arithmetic Logic Unit
(ALU) which performs 8-bit or 16-bit arithmetic and logical
operations. It provides for data movement among registers,
memory and I/O space. In addition, the CPU allows for high
speed data transfer from one area of memory to another using
string move instructions, and to or from an I/O port and memory
using block I/O instructions. Finally, the CPU provides many
conditional branch and control instructions.

Thisarchitecture features 14 basic registers which are grouped
as general registers, segment registers, pointer registers, and
status and control registers. The four 16-bit general purpose
registers (AX, BX, CX, and DX) may be used as operands in
mostarithmetic operations in either 8- or 16-bit units. The four
16-bit pointer registers (SI, DI, BP, and SP) may be used both
in arithmetic operations and in accessing memory-based vari-
ables. Four 16-bit segment registers (CS, DS, SS, and ES)
allow simple memory partitioning to aid modular program-
ming. The status and control registers consist of an instruction
pointer (IP) and a status word register containing flag bits.

Figure 3 is a simplified CPU block diagram.

2.1.1 EXECUTION UNIT

The EU is responsible for the execution of all instructions, for
providing data and addresses to the BIU, and for manipulating
the general registers and the flag register. A 16-bit Arithmetic
Logic Unit (ALU) in the EU maintains the CPU status and
control flags, and manipulates the general registers and in-
struction operands. All registers and data paths in the EU are
16 bits wide for fast internal transfers.

The EU does not connect directly to the system bus. It obtains
instructions from a queue maintained by the BIU. Likewise,
when an instruction requires access to memory or to a periph-
eral device, the EU requests the BIU to obtain and store the
data. All addresses manipulated by the EU are 16 bits wide.
The BIU, however, performs an address calculation that gives
the EU access to the full megabyte of memory space.

When the EU is ready to execute an instruction, it fetches the
instruction object code byte from the BIU’s instruction queue
and then executes the instruction. If the queue is empty when
the EU is ready to fetch an instruction byte, the EU waits for
the instruction byte to be fetched. If a memory location or I/O
port must be addressed during the execution of an instruction,
the EU requests the BIU to perform the required bus cycle.

2.1.2 BUS INTERFACE UNIT

The 80186/80C186 and 80188/80C188 BIUs are functionally
identical, but are implemented differently to match the struc-
ture and performance characteristics of their respective sys-
tem buses. Data is transferred between the CPU and memory
or peripheral devices upon demand from the EU. The BIU
executes all external bus cycles. This unit consists of the seg-
ment registers, the instruction pointer, the instruction code
queue, and several miscellaneous registers. The BIU transfers
data to and from the EU on the ALU data bus.

The BIU generates 20-bit physical addresses in a dedicated
adder. The adder shifts a 16-bit segment value left 4 bits and
then adds an offset value derived from combinations of the
pointer registers, the instruction pointer, and immediate val-
ues (see Figure 4). Any carry of this addition is ignored.

During periods when the EU is busy executing instructions,
the BIU “looks ahead” and prefetches more instructions from

1
234IOJ
A
0

19 * 0
TO MEMORY

SHIFT LEFT 4 BITS SEGMENT
1.2 3 4 BASE

- 12 3 6 2] PHYSICAL ADDRESS

0 LOGICAL
ADDRESS

OFFSET

270288-001-4

Figure 4. Physical Address Generation

intel’

OVERVIEW OF THE 80186 FAMILY

memory. As long as the prefetch queue is partially full, the EU
can quickly retrieve instructions upon demand.

2.1.3 GENERAL REGISTERS

80186 family CPUs have eight 16-bit general registers (see
Figure 5). The general registers are subdivided into two sets of
fourregisters each. These are the dataregisters (also called the
H & L group for high and low), and the pointer and index
registers (also called the P & I group).

|
L
15 gl7 0
AX
—— = — > — — —{AccumuLator
BX
OATA) [T BH T B [BASE
GROUP
L — — — X — — — dcount
CH 1
DX
L -— 5n— o 1 DATA
f
STACK
SP POINTER
POINTER 8P BASE
AND { POINTER
INDEX o SOURGE
GROUP INDEX
o DESTINATION
L INDEX
270288-001-5

Figure 5. General Registers

The data registers are unique in that their upper and lower
halves are separately addressable. This means that each data
register can be used interchangeably as a 16-bit register or as
two 8-bit registers. The other CPU registers are always ac-
cessed as 16-bit only. The CPU can use data registers without

Table 1. Implicit Use of General Registers

REGISTER OPERATIONS

AX Word Multiply, Word Divide,
Word I/O

AL Byte Multiply, Byte Divide, Byte
1/O, Translate, Decimal Arithmetic

AH Byte Multiply, Byte Divide

BX Translate

CcX String Operations, Loops

CL Variable Shift and Rotate

DX Word Multiply, Word Divide,
Indirect I/O

SP Stack Operations

Sl String Operations

DI String Operations

2-3

constraint in most arithmetic and logic operations. Most arith-
metic and logic operations can also use the pointer and index
registers. Additionally, some instructions use certain registers
implicitly (see Table 1), therefore allowing compact yet powerful
encoding.

The state of any of the general registers is undefined at RE-
SET.

2.1.4 SEGMENT REGISTERS

The 80186 family memory space (up to one megabyte) is
divided into logical segments of up to 64 Kbytes each. The
CPU has direct access to four segments at a time. The base
addresses (starting locations) of these memory segments are
contained in the segment registers (see Figure 6). The CS
register points to the current code segment. Instructions are
fetched from the CS segment. The SS register points to the
current stack segment. Stack operations are performed on
locations in the SS segment. The DS register points to the
current data segment. The data segment generally contains
program variables. The ES register points to the current extra
segment, which also is typically used for data storage. The
segment registers are accessible to programs and can be
manipulated with several instructions. :

CODE
SEGMENT
DATA
SEGMENT
STACK
SEGMENT
EXTRA
SEGMENT

Ccs

DS

SS

ES

270288-001-6

Figure 6. Segment Registers

Upon RESET, the CS register is initialized to OFFFFH, and
the DS, ES, and SS register are all initialized to zero.

2.1.5 INSTRUCTION POINTER

The BIU updates a 16-bit instruction pointer (IP) register so
that it contains the offset (distance in bytes) of the next instruc-
tion from the beginning of the current code segment. In other
words, the IP register points to the next instruction. During
normal execution, the instruction pointer contains the offset of
the next instruction to be fetched by the BIU. Whenever the IP
register is saved on the stack, however, it is first automatically
adjusted to point to the next instruction to be executed. Pro-
grams do not have direct access to the instruction pointer, but

kel

OVERVIEW OF THE 80186 FAMILY

it may change, be saved, or be restored as a result of program
execution.

RESET initializes the instruction pointer to 0000H. The con-
catenation of CS and IP values comprises a starting execution
address of OFFFFOH (see Section 2.1.8 for a description of
address formation).

2.1.6 FLAGS

An 80186 family processor has six one-bit status flags (see
Figure 7) that the EU posts as the result of an arithmetic or
logic operation. Program branch instructions allow a program
to alter its execution depending on conditions flagged by prior
operation. Different instructions affect the status flags differ-
ently, generally reflecting the following states:

.

If the auxiliary flag (AF) is set, there has been a carry out
from the low nibble into the high nibble or a borrow from
the high nibble into the low nibble of an 8-bit quantity
(low-order byte of a 16-bit quantity). This flag is used by
decimal arithmetic instructions.

Ifthe carry flag (CF) is set, there has been a carry out of, or
a borrow into, the high-order bit of the instruction result
(8- or 16-bit). The flag is used by instructions that add and
subtract multibyte numbers. Rotate instructions can also
isolate a bit in memory or a register by placing it in the

carry flag.

Ifthe overflow flag (OF) is set, an arithmetic overflow has
occurred; that is, a significant digit has been lost because

the size of the result exceeded the capacity of its destina-
tion location. An Interrupt On Overflow. instruction is
available that will generate an interrupt in this situation.

If the sign flag (SF) is set, the high-order bit of the result is
al.Since negative binary numbers are represented in stand-
ard two’s complement notation, SF indicates the sign of
the result (0 = positive, 1 = negative).

If the parity flag (PF) is set, the result has even parity, an
even number of 1-bits. This flag can be used to check for
data transmission errors.

If the zero flag (ZF) is set, the result of the operation is 0.

The additional control flags (see Figure 7) can be set and
cleared by programs to alter processor operations:

Setting the direction flag (DF) causes string instructions to
auto-decrement; that is, to process strings from the high
address to the low address, or “right to left”. Clearing DF
causes string instructions to auto-increment, or process
strings “left to right.” i

Setting the interrupt-enable flag (IF) allows the CPU to
recognize maskable external or internal interrupt requests.
Clearing IF disables these interrupts. The interrupt-enable
flag has no effect upon software interrupts or non-mas-
kable externally generated interrupts.

Setting the trap flag (TF) puts the processor into single-
stepmode for debugging. In this mode, the CPU automati-

STATUS FLAGS:
CARRY

PARITY
AUXILIARY CARRY

ZERO

SIGN
OVERFLOW

11 10

srarusworo: [T o | o]

9 8 VY7 Y6 5 VY4 3 VY2 1 Yo
A EAEI ERA\NEA NN EA NS
A A

CONTROL FLAGS:

TRAP FLAG

INTERRUPT ENABLE

\\\\| INTEL RESERVED

DIRECTION FLAG

270288-001-7

Figure 7. Status Word Format

24

intgl’

OVERVIEW OF THE 80186 FAMILY

cally generates an internal interrupt after each instruction,
allowing a program to be inspected as it executes instruc-
tion by instruction.

Both the status and control flags are contained in a 16-bit status
word (see Figure 7). The RESET condition of the status word
is OFOOOH.

2.1.7 MEMORY SEGMENTATION

Programs for the 80186 family view the one megabyte mem-
ory space as a group of segments that are user-defined accord-
ing to application. A segment is a logical unit of memory that
may be up to 64 Kbytes long. Each segment if made up of
contiguous memory locations and is an independent, sepa-
rately-addressable unit. Software assigns every segment abase
address (starting location) in memory space. All segme ts
begin on 16-bit memory boundaries. There are no other re-
strictions on segment locations. Segments may be adjacent,
disjoint, partially overlapped, or fully overlapped (see Figure
8). A physical memory location may be mapped into (covered
by) one or more logical segments.

The four segment registers point to four “currently address-
able” segments (see Figure 9). The currently addressable
segments provide a work space consisting of 64 Kbytes for
code, a 64K stack, and 128K of data storage. Programs obtain
access to code and data in other segments by changing the
segment registers to point to the desired segments.

The segmented memory structure of the 80186 family is a
hardware provisiontoencourage modularprogramming. Every
program will use segmentation differently. Smaller applica-
tions tend to initialize the segment registers and then simply

forget them. Larger applications give careful consideration to
segment definition and use.

2.1.8 LOGICAL ADDRESSES

It is useful to think of every memory location as having two
kinds of addresses, physical and logical. A physical address is
a 20-bit value that identifies each unique byte location in the
memory space. Physical addresses range from OH to FFFFFH.
Allexchanges between the CPU and memory components use
a physical address.

Programs deal with logical, rather than physical addresses.
Program code can be developed without prior knowledge of
where the code is to be located in memory; in larger applica-
tions, dynamic management of memory resources is a neces-
sity. A logical address consists of a segment base value and an
offset value. Forany given memory location, the segment base
value locates the first byte of the segment and the offset value
is the distance, in bytes, of the target location from the begin-
ning of the segment. Segment base and offset values are un-
signed 16-bit quantities. Many different logical addresses can
map to the same physical location. In the example (see Figure
10), physical memory location 2C3H is contained in two dif-
ferent overlapping seginents, one beginning at 2BOH and the
other at 2COH.

If left alone, the processor automatically assigns segments
based on the specific addressing needs of the program. The
segment register to be selected is automatically chosen ac-
cording to the rules in Table 2. All information in one segment
type generally shares the same logical attributes (e.g., code or
data), leading to programs which are shorter, faster, and better
structured.

I SEGMENT A l SEGMENTil

FULLY
OVERLAPPED SEGMENT D
PARTLY
OVERLAPPED | DISJOINT
SEGMENT C LOGICAL
CONTIGUOUS LocieAL

SEGMENT E

7 Yiies:

|
OH 10000H

20000H

A

30000H

270288-001-8

Figure 8. Segment Locations in Physical Memory

®
I‘Itel OVERVIEW OF THE 80186 FAMILY

FFFFFH

DATA: DS: “ —_—

CODE: CS:

st ss: [W= :
e |

EXTRA: ES. | |l

» > |

=]

r
i
11

o
X

270288-001-9

Figure 9. Currrently Addressable Segments

2-6

OVERVIEW OF THE 80186 FAMILY

PHYSICAL

2C4H

ADDRESS
s

LOGICAL
ADDRESSES

A

OFFSET

(3H)

SEGMENT J
BASE

SEGMENT
BASE

—_—l

2C3H
2C2H
2C1H
2COH
2BFH
2BEH
2BDH
2BCH
2BBH
2BAH
2B9H
2B8H
2B7H
2B6H
2B5H
2B4H
2B3H
2B2H
2B1H
2BOH

270288-001-10

Figure 10. Logical and Physical Address

To generate a physical address, the BIU must first obtain the
logical address. The logical address of a memory location can
come from different sources, depending on the type of refer-
ence that is being made (see Table 2).

Segment base addresses are always held in the segment regis-
ters. The BIU conveniently assumes which segment register

contains the base address according to the type of memory
reference made. However, it is possible for a programmer to
explicitly direct the BIU to access a variable in any of the
currently addressable segments (except for the destination
operand of a string instruction). In assembly language, this is
done by preceding an instruction with a segment override
prefix.

Table 2. Logical Address Sources

DEFAULT ALTERNATE
TYPE OF MEMORY REFERENCE SEGMENT SEGMENT OFFSET
BASE BASE
Instruction Fetch CS NONE P
Stack Operation SS NONE SP
Variable (except following) DS CS, ES, SS Effective Address
String Source DS CS,ES, SS S|
String Destination ES NONE DI
BP Used As Base Register SS CS, DS, ES Effective Address

2-7

intal’

OVERVIEW OF THE 80186 FAMILY

Instructions are always fetched from the current code seg-
ment; the [Pregister contains the offset of the target instruction
from the beginning of the segment. Stack instructions always
operate on the current stack segment; the SP (stack pointer)
register contains the offset of the top of the stack. Most vari-
ables (memory operands) are assumed to reside in the current
data segment, but a program can instruct the BIU to override
this assumption. Often, the offset of a memory variable is not
directly available and must be calculated at execution time.
This calculation is based on the addressing mode (see Section
2.2.2) specified in the instruction; the result is called the oper-
and’s effective address (EA).

Strings are addressed differently than other variables. The
source operand of a string instruction is assumed to lie in the
current data segment, but the program may use another cur-
rently addressable segment. The operand’s offset is taken from
the SI (source index) register. The destination operand of a
string instruction always resides in the current extra segment;

its offset is taken from the DI (destination index) register. The
string instructions automatically adjust the SI and DI registers
as they process the strings one byte or word at a time.

‘When register BP, the base pointer register, is designated as a
base register in an instruction, the variable is assumed toreside
in the current stack segment. Therefore, register BP provides
a convenient way to address data on the stack. However, the
BP register can also be used to access data in any of the other
currently addressable segments.

2.1.9 DYNAMICALLY RELOCATABLE CODE

The segmented memory structure of the 80186 family makes
it possible to write programs that are position-independent, or
dynamically relocatable. Dynamic relocation allows a multi-
programming or multitasking system to make particularly

BEFORE RELOCATION

AFTER RELOCATION

CODE
SEGMENT | _
L————————- s
ss
STACK
SEGMENT DS
- Es
DATA
SEGMENT
EXTRA
SEGMENT |

CS
SS
DS
ES 1
CODE
SEGMENT
STACK
SEGMENT
= DATA
o | SEGMENT
o EXTRA
SEGMENT

E FREE SPACE

270288-001-11

Figure 11. Dynamic Code Relocation

2-8

intel

OVERVIEW OF THE 80186 FAMILY

effective use of available memory. The processor can write
inactive programs to a disk and reallocate the space they occu-
pied to other programs. If a disk-resident program is needed
later, it can be read back into any available memory location
and restarted. Similarly, if a program needs a large contiguous
block of storage, and the total amount is only available in non-
adjacent fragments, other program segments can be compacted
to free up a continuous space. This process is illustrated gra-
phically in Figure 11.

To be dynamically relocatable, a program must not load or
alter its segment registers and must not transfer directly to a
location outside the current code segment. In other words, all
offsets in the program must be relative to fixed values con-
tained in the segment registers. This allows the program to be
moved anywhere in memory as long as the segment registers
are updated to point to the new base addresses.

2.1.10 STACK IMPLEMENTATION

Stacks in the 80186 family are implemented in memory and
are located by the stack segment register (SS) and the stack
pointer (SP). A system may have numerous stacks, and a stack
may be up to 64 Kbytes long, the maximum length of a seg-
ment. An attempt to grow a stack beyond 64K overwrites the
beginning of the segment. Only one stack is directly address-
able at atime. The SS register contains the base address of the
current stack; however, the base address is not the origination
point of the stack. The SP register contains an offset which
points to the top of stack (TOS).

Stacks are 16 bits wide; instructions that operate on a stack add
and remove stack elements one word at a time. An element is
pushed onto the stack (see Figure 12) by first decrementing
the SPregister by 2 and then writing the data word. Anelement
is popped off the stack by copying it from TOS and thenincre-
menting the SP register by 2. In other words, the stack goes
down in memory toward its base address. Stack operations

POP AX
POP BX

ax 12 s Ja—

STACK OPERATION FOR CODE SEQUENCE

PUSH AX
EXISTNG AX -I Bx] :
n ~ “ “
1062 [00] 11 T 1062 [00 [11 l wee[olw] | !
160 22]as | 1060 2233] | 1060 2233 | | {
tose | 44[55 | 3% 105€ [44 [55 | 10sE[4455 | | |
1s8[66|77 | E© 1058 66 [77 toscf el 77 | |
105a[8 oe | ©© 15[88|90 | | (2 o 105a] 88] 09 N |
22— 1058 [An| B8 s 1os 108 [ma]eB J 1058| AA[BB | _JI
1086 [01[23 | | E¥ —10s6[34]12 | 1056 [34| 12 | —
154 asfe7 | | BF 1054 | 4567 1054 45| 67
1052 | 89 | AB Y 1052 | 89 | AB 1052 | 89 | AB
1050 [co eF ;.‘% 1050 | co| eF 1050 | co] eF
[10]50 | ss [10]50]ss (o]0 ss

270288-001-12

Figure 12. Stack Operation

2-9

intal’

OVERVIEW OF THE 80186 FAMILY

never move elements on the stack, nor do they erase them. The
top of the stack changes only as a result of updating the stack
pointer.

2.1.11 RESERVED MEMORY AND I/O SPACE

Two specific areas in memory and one area in I/O space are
reserved in the 80186 family.

¢ Locations OH through 3FFH in low memory are reserved
for interrupt vectors.

¢ Locations OFFFFOH through OFFFFFH in high memory
are reserved for system reset code since the processor
begins execution at OFFFFOH.

¢ Locations OF8H through OFFH in I/O space are reserved
for communication with other Intel hardware products.
On the 80C186, these addresses are used as I/O ports for
the 80C187 numerics processor extension.

The peripheral control block (see Section 5.0) may reside in
memory or I/O space. All unused locations in the peripheral
control block are also reserved.

2.2 SOFTWARE OVERVIEW

All 80186 family members execute exactly the same instruc-
tions. This instruction set includes all the 8086/8088 instruc-
tions plus several useful additions and enhancements. The
following sections provide a description of the instructions by
category and a detailed discussion of the various operand
addressing modes.

Software for 80186 family systems does not need to be written
in assembly language. The processor provides direct hard-
ware support for programs written in the many high-level
languages available. Most high-level languages store vari-
ables in memory; the symmetrical instruction set supports
direct operation on memory operands, including operands on
the stack. The hardware addressing modes provide efficient,
straightforward implementations of based variables, arrays,
arrays of structures and other high-level language data con-
structs. A powerful set of memory-to-memory string opera-
tions is available for efficient character data manipulation.
Finally, routines with critical performance requirements that
cannot be met with high-level languages may be written in
assembly language and linked with high-level code.

2.2.1 INSTRUCTION SET

Instructions in the 80186 processor family treatdifferent types
of operands uniformly. Nearly every instruction can operate
oneither byte or word data. Register, memory and immediate

operands may be specified interchangeably in most instruc-
tions. The exception to this is that immediate values serve as
source and not destination operands. In particular, memory
variables may be added to, subtracted from, shifted, com-
pared, and so on, in place, without moving them in and out of

registers. This saves instructions, registers, and execution time

inassembly language programs. In high-level languages, where
most variables are memory-based, compilers can produce faster
and shorter object programs.

The 80186 family instruction set can be viewed as existing on
two levels. One is the assembly level and the other is the
machine level. To the assembly language programmer, the
80186 family appears tohave arepertoire of about 100 instruc-
tions. One MOV (data move) instruction, for example, trans-
fers abyte of a word from a register of amemory location or an
immediate value to either aregister oramemory location. The
80186 family CPUs, however, recognize 28 different machine
versions of the MOV instruction.

The two levels of instruction set address two different require-
ments: efficiency and simplicity. The approximately 300 forms
of machine-level instructions make very efficient use of stor-
age. For example, the machine instruction that increments a
memory operand is three or four bytes long because the ad-
dress of the operand must be encoded in the instruction. To
increment aregister, however, does not require as much infor-
mation, so the instruction can be shorter. The 80186 family has
eight different machine-level instructions that increment a
different 16-bit register. Each of these instructions is only one
byte long.

The assembly level instructions simplify the programmer’s
view of the instruction set. The programmer writes one form
of anINC (increment) instruction and the assembler examines
the operand to determine which machine level instruction to
generate. The following paragraphs provide a functional de-
scription of the assembly-level instructions.

2.2.1.1 DATA TRANSFER INSTRUCTIONS

The instruction setcontains 14 datatransfer instructions. These
instructions move single bytes and words between memory
and registers, and also move single bytes and words between
the AL or AX registers and I/O ports. Table 3 lists the four
types of data transfer instructions and their functions.

Data transfer instructions are categorized as general purpose,
input/output, address object, and flag transfer. The stack ma-
nipulation instructions which are used for transferring flag
contents, and the instructions for loading segmentregisters are
also included in this group. Figure 13 shows the flag storage
formats. The address object instructions manipulate the ad-
dresses of variables instead of the contents of values of the
variables. This is useful for list processing, based variable, and
string operations.

intgl’

OVERVIEW OF THE 80186 FAMILY

Table 3. Data Transfer Instructions

2.2.1.2 ARITHMETIC INSTRUCTIONS

GENERAL PURPOSE
The arithmetic instructions (see Table 4) operate on four types
MOV Move byte or word of numbers:
PUSH Push word onto stack
POP Pop word off stack 1. Unsigned binary.
PUSHA Push registers onto stack 2. Signed binary (integers).
POPA Pop registers off stack 3. Unsigned packed decimal.
XCHG Exchange byte or word . .
XLAT Translate byte 4. Unsigned unpacked decimal.
INPUT/OUTPUT Table 5 shows the interpretations of various bit patterns ac-
N Input byte or word cording to each number type.
out Output byte or word Binary numbers may be 8 or 16 bits long. Decimal numbers
ADDRESS OBJECT AND STACK FRAME are stored in bytes, two digits per byte for packed decimal and
- onedigit per byte for unpacked decimal. The processoralways
LEA Load effective address assumes that the operands specified in arithmetic instructions
LDS Load pointer using DS contain data that represent valid numbers for the instruction
. . being performed. Invalid datamay produce unpredictable results.
LES } Lo_ad pointer using ES The processor analyzes arithmetic results and posts certain
ENTER Build stack frame characteristics of the operation to six flags.
LEAVE Tear down stack frame
FLAG TRANSFER 2.2.1.3 BIT MANIPULATION INSTRUCTIONS
LAHF Load AH register from flags
‘ot There are three groups of instructions for manipulating bits
SAHF Store AH register in flags within both bytes and word. These three groups are logical,
PUSHF Push flags onto stack shifts and rotates. Table 6 lists these three groups of bit ma-
POPF Pop flags off stack nipulation instructions with their functions.
SAHF[SIZIUIA|U|P|U|C
176 543210
| |
1 |
| |
ggﬁ;‘F[u,u,u,ulolD, | .7,5,Z,U,A,U,P,UC]|
4 3210

15 141312 1110 9 8

7 65

U = UNDEFINED:; VALUE IS INDETERMINATE

O = OVERFLOW FLAG
D = DIRECTION FLAG

| = INTERRUPT ENABLE FLAG

T =TRAP FLAG
S = SIGN FLAG
Z =ZERO FLAG

A = AUXILIARY CARRY FLAG

P = PARITY FLAG
C = CARRY FLAG

270288-001-13

Figure 13. Flag Storage Format

intgl’

OVERVIEW OF THE 80186 FAMILY

Table 4. Arithmetic Instructions

Table 6. Bit Manipulation Instructions

ADDITION LOGICALS
ADD Add byte or word NOT “Not” byte or word
ADC Add byte or word with carry AND “And” byte or word
INC Increment byte or word by 1 OR “Inclusive or” byte or word
AAA ASCII adjust for addition XOR “Exclusive or” byte or word
DAA Decimal adjust for addition TEST “Test” byte or word
SUBTRACTION SHIFTS
SuB Subtract byte or word SHL/SAL Shift logical/arithmetic left
sBB Subtract byte or word with byte or word
borrow SHR Shift logical right byte or word
DEC Decrement byte or word by 1 SAR Shift arithmetic right byte or
NEG Negate byte or word word
CMP Compare byte or word ROTATES
AAS ASCII adjust for subtraction ROL Rotate left byte or word
DAS Decimal adjust for subtraction ROR Rotate right byte or word
MULTIPLICATION RCL Rotate through carry left byte
or word
MUL Multiply byte or word unsigned .
IMUL Integer multiply byte or word RCB Rgtraxaotri&rough cary right byte
AAM . ASCII adjust for multiply
. DIVISION
DIV Divide byte or word unsigned
IDIV Integer divide byte or word
AAD ASClI adjust for division
cBwW Convert byte to word
CWD Convert word to doubleword
Table 5. Arithmetic Interpretation of 8-Bit Numbers
UNSIGNED SIGNED UNPACKED PACKED
HEX BIT PATTERN BINARY BINARY DECIMAL DECIMAL
07 00000111 7 +7 7 7
89 10001001 137 -119 invalid 89
- C5 11000101 197 -59 Jinvalid invalid

The logical instructions include the Boolean operators NOT,
AND, inclusive OR, and exclusive OR (XOR). A TEST in-
struction that sets the flags as a result of a Boolean AND
operation, but does not alter either of its operands, is also
included.

The bits in bytes and words may be shifted arithmetically or
logically. Upto 255 shifts may be performed, according to the
value of the count operand coded in the instruction. The count
may be specified as an immediate value or as a variable in the

2-12

CL register, allowing the shift count to be a variable supplied
at execution time. Arithmetic shifts may be used to multiply
and divide binary numbers by powers of two. Logical shifts
can be used to isolate bits in bytes or words.

Bits in bytes and words can also be rotated. The processor does
not discard the bits rotated out of an operand; the bits circles
back to the other end of the operand. As in the shift instruc-
tions, the number of bits to be rotated is taken from the count
operand, which may specify either an immediate value, or the

intel’

OVERVIEW OF THE 80186 FAMILY

CL register. The carry flag may act as an extension of the
operand in two of the rotate instructions, allowing a bit to be
isolated in CF and then tested by a JC (jump if carry) or INC
(jump if not carry) instruction.

2.2.1.4 STRING INSTRUCTIONS

Five basic string operations allow strings of bytes or words to
be operated on, one element (byte or word) at a time. Strings
of up to 64 Kbytes may be manipulated with these instruc-
tions. Instructions are available to move, compare and scan for
a value, as well as moving string elements to and from the
accumulator. Table 7 lists the string instructions. These basic
operations may be preceded by a special one-byte prefix that
causes the instruction to be repeated by the hardware, allowing
long strings to be processed much faster than would be pos-
sible with a software loop. The repetitions can be terminated
by a variety of conditions, and repeated operations may be
interrupted and resumed.

Table 7. String Instructions

REP Repeat

REPE/REPZ Repeat while equal/zero

REPNE/REPNZ Repeat while not
equal/not zero

MOVS Move byte or word string

MOVSB/MOVSW Move byte or word string

INS Input byte or word string

OuUTS Output byte or word string

CMPS Compare byte or word
string

SCAS Scan byte or word string

LODS Load byte or word string

STOS Store byte or word string

The string instructions operate similarly inmany respects (refer
to Table 8). A string instruction may have a source operand, a
destination operand, or both. The hardware assumes that a
source string resides in the current data segment. A segment
prefix may be used to override this assumption. A destination
string must be in the current extra segment. The assembler
checks the attributes of the operands to determine if the ele-
ments of the strings are bytes or words. However, the assem-
bler does not use the operand names to address strings. In-
stead, the contents of register SI (source index) are used as an
offset toaddress the current element of the source string. Also,
the contents of register DI (destination index) are taken as the
offset of the current destination string element. These registers
must be initialized to point to the source/destination strings
before executing the string instructions. The LDS, LES and
LEA instructions are useful in performing this function.

Table 8. String Instruction Register and Flag Use

Sl Index (offset) for source string
DI Index (offset) for destination
string
CcX Repetition counter
AL/AX Scan value
Destination for LODS
Source for STOS
DF 0 = auto-increment Sl, DI
1 = auto-decrement Sl, DI
ZF Scan/compare terminator

String instructions automatically update the SI or DI register
or both prior to processing the next string element. Setting the
direction flag (DF) determines whether the index registers are
auto-incremented (DF = 0) or auto-decremented (DF = 1).
The processor adjusts the DI or SI register or both by one if
byte strings are being processed. The adjustment is two for
word strings.

If arepeat prefix has been coded, then register CX (ihe count
register) is decremented by one after each repetition of the
string instruction. The CX register must be initialized to the
number of repetitions desired before the string instruction is
executed. If the CX register is 0, the string instruction is not
executed and control goes to the following instruction.

2.2.1.5 PROGRAM TRANSFER
INSTRUCTIONS

The sequence in which instructions are executed in the 80186
family is determined by the contents of the CS and IP registers.
The CS register contains the base address of the current code
segment. The IP register points to the memory locations from
which the next instruction is to be fetched. In most operating
conditions, the next instruction to be executed will have al-
ready been fetched and is waiting in the CPU instruction queue.
The program transfer instructions operate on the instruction
pointer and on the CS register; changing the content of these
causes normal sequential operationtobe altered. Whenaprogram
transfer occurs, the queue no longer contains the correct in-
struction. When the BIU obtains the next instruction from
memory using the new IP and CS values, it passes the instruc-
tion directly to the EU and begins refilling the queue from the
new location.

Four groups of program transfers are available with the 80186
family processors. See Table 9. These are unconditional trans-
fers, conditional transfers, iteration control instructions, and
interrupt-related instructions.

ntgl’

OVERVIEW OF THE 80186 FAMILY

Table 9. Program Transfer Instructions

UNCONDITIONAL TRANSFERS
CALL Call procedure
RET Return from procedure
JMP Jump
CONDITIONAL TRANSFERS
JA/UNBE Jump if above/not below
nor equal
JAE/UNB Jump if above or equal/
not below
JB/JNAE Jump if below/not above
nor equal
JBE/UNA Jump if below or equal/
not above
JC Jump if carry
JENZ Jump if equal/zero
JG/INLE Jump if greater/not less
nor equal
JGE/JNL Jump if greater or equal/
not less
JLUNGE Jump if less/not greater
nor equal
JLE/JNG Jump if less or equal/
not greater
JNC Jump if not carry
JNE/UNZ Jump if not equal/not zero
JNO Jump if not overflow
JNPAJPO Jump if not parity/parity odd
JNS Jump if not sign
JOo Jump if overflow
JP/JPE Jump if parity/parity even
JS Jump if sign
ITERATION CONTROLS
LOOP - Loop
LOOPE/LOOPZ | Loop if equal/zero
LOOPNE/LOOPNZ | Loop if not equal/not zero
JCXZ Jump if register CX=0
INTERRUPTS
INT Interrupt
INTO | Interrupt if overflow
BOUND Interrupt if out of array
bounds
IRET Interrupt return

2-14

The unconditional transfer instructions may transfercontrol to
atarget instruction within the current code segment (intraseg-
ment transfer) or to a different code segment (intersegment
transfer). The assemblertermsanintrasegment transfer SHORT
or NEAR and an intersegment transfer FAR. The transfer is
made unconditionally any time the instruction is executed.

The conditional transfer instructions are jumps that may or
may not transfer control depending on the state of the CPU
flags at the time the instruction is executed. These 18 instruc-
tions (see Table 10) each test a different combination of flags
foracondition. If the condition is logically TRUE then control
is transferred to the target specified in the instruction. If the
condition is FALSE then control passes to the instruction that
follows the conditional jump. Allconditional jumps are SHORT,
that is, the target must be in the current code segment and
within -128 to +127 bytes of the first byte of the next instruc-
tion. For example, JMP 00H causes a jump to the first byte of
the next instruction. Since jumps are made by adding the rela-
tive displacement of the target to the instruction pointer, all
conditional jumps are self-relative and are appropriate for
position-independent routines.

The iteration control instructions can be used to regulate the
repetition of software loops. These instructions use the CX
register as a counter. Like the conditional transfers, the itera-
tion control instructions are self-relative and may only transfer
to targets that are within -128 to +127 bytes of themselves, i.e.,
they are SHORT transfers.

The interrupt instructions allow interrupt service routines to
be activated by programs as well as by external hardware
devices. The effect of software interrupts is similar to hard-
ware-initiated interrupts. However, the processor cannotexecute
an interrupt acknowledge bus cycle if the interrupt originates
in software or with an NMI (Non-Maskable Interrupt).

2.2.1.6 PROCESSOR CONTROL
INSTRUCTIONS

The processor control instructions (see Table 11) allow pro-
grams tocontrol various CPU functions. One group of instruc-
tions updates flags, and another group is used primarily for
synchronizing the microprocessor to external events. A final
instruction causes the CPU to do nothing. Except for the flag
operations, none of the processor control instructions affects
the flags.

2.2.2 ADDRESSING MODES

An 80186 family member accesses instruction operands in
many different ways. Operands may be contained in registers,
within the instruction itself, in memory; or at I/O ports. Also,
the addresses of memory and I/O port operands can be calcu-
lated in several different ways. These addressing modes greatly

intgl’

OVERVIEW OF THE 80186 FAMILY

Table 10. Interpretation of Conditional Transfers

MNEMONIC CONDITION TESTED “JUMPIF...”

JA/JJNBE (CF or ZF)=0 above/not below nor equal
JAE/JNB CF=0 above or equal/not below
JB/UNAE CF=1 below/not above nor equal
JBE/UNA (CF or ZF)=1 below or equal/not above
JC CF=1 carry

JENZ ZF=1 equal/zero

JG/NLE ((SF xor OF) or ZF) =0 greater/not less nor equal
JGE/JNL (SF xor OF)=0 greater or equal/not less
JL/IUNGE (SF xor OF)=1 less/not greater nor equal
JLE/ANG ((SF xor OF) or ZF)=1 less or equal/not greater
JNC CF=0 not carry

JNE/JNZ ZF=0 not equal/not zero

JNO OF=0 not overflow

JNP/JPO PF=0 not parity/parity odd

JINS SF=0 not sign

JO OF=1 overflow

JP/JPE PF=1 parity/parity equal

JS SF=1 sign

Note: “above” and “below” refer to the relationship of two unsigned values;
“greater” and “less” refer to the relationship of two signed values.

Table 11. Processor Control Instructions

FLAG OPERATIONS
STC Set carry flag
CLC Clear carry flag
CcMC Complement carry flag
STD Set direction flag
CLD Clear direction flag
STI Set interrupt enable flag
CLI Clear interrupt enable flag
EXTERNAL SYNCHRONIZATION
HLT Halt until interrupt or reset
WAIT Wait for TEST pin active
ESC Escape to external processor
LOCK Lock bus during next
instruction
NO OPERATION
NOP No operation

2-15

extend the flexibility and convenience of the instruction set.
The following paragraphs briefly describe the register and
immediate modes of operand addressing, and then provide a
detailed description of the memory and I/O addressing modes.

2.2.2.1 REGISTER AND IMMEDIATE
OPERAND ADDRESSING MODES

Instructions that specify only register operands are usually the
most compact and fastest executing of the operand addressing
forms. Thisisbecause the register operand addresses areencoded
in instructions in just a few bits, and because these operands
are performed entirely within the CPU (no bus cycles are run).
Registers may serve as source operands, destination operands,
or both.

Immediate operands are constant data contained in an instruc-
tion. The data may be either 8 or 16 bits in length. Immediate
operands can be accessed quickly because they are available
directly from the instructior: queue. Like the register operand,
nobus cycles need to be run to get an immediate operand. The
limitations on immediate operands are that they may only
serve as source operands and that they are constant in value.

intel

OVERVIEW OF THE 80186 FAMILY

2.2.2.2 MEMORY ADDRESSING MODES

Although the EU has direct access to register and immediate
operands, memory operands must be transferred to and from
the CPU over the bus. When the EU needs to read or write a
memory operand, it must pass an offset value to the BIU. The
BIU adds the offset to the shifted contents of a segment regis-
ter producing a 20-bit physical address and then executes the
bus cycle or cycles needed to access the operand.

The offset that the EU calculates for memory operand is called
theoperand’seffective addressor EA. This addressisanunsigned
16-bit number that expresses the operand’s distance in bytes
from the beginning of the segment in which it resides. The EU

can calculate the effective address in several ways. Informa-
tion encoded in the second byte of the instruction tells the EU
how to calculate the effective address of each memory oper-
and. A compiler or assembler derives this information from
the statement or instruction written by the programmer. As-
sembly language programmers have access to all addressing
modes.

The EU calculates the EA by summing a displacement, the
content of a base register and the content of an index register
(see Figure 14). Any combination of these three components
may be present in a given instruction. This allows a variety of
memory addressing modes.

SINGLE INDEX DOUBLE INDEX
. —_—
OR
IN THE OR
INSTRUCTION
@
OR
SEENs
Y ——
EXPLICIT “)@—| DISPLACEMENT ¥) EFFECTIVE
IN THE G it ADDRESS
INSTRUCTION
OR
ASSUMED
UNLESS { OR
OVERRIDDEN
BY PREFIX
OR
o= -
~
PHYSICAL ADDR
270288-001-14

Figure 14. Memory Address Computation

2-16

intgl’

OVERVIEW OF THE 80186 FAMILY

The displacement element is an 8-bit or 16-bit number that is
contained in the instruction. The displacement generally is
derived from the position of the operand name (a variable or
label) in the program. The programmer can also modify this
value or explicitly specify the displacement.

A programmer may specify that either the BX or BP register
is to serve as a base register whose content is to be used in the
EA computation.

Similarly, either the SI or DI register may be specified as the
index register. Thedisplacement valueis aconstant. The contents
of the base and index registers may change during execution.
This allows one instruction to access different memory loca-
tions as determined by the current values in the base or base
andindex registers. Effective address calculations with the BP
register are made using the SS register, by default, although
either the DS or the ES register may be specified instead.

Direct addressing is the simplest memory addressing mode
(see Figure 15). No registers are involved and the EA is taken

directly fromthe displacementofthe instruction. The programmer
typically uses direct addressing to access scaler variables.

With register indirect addressing, the effective address of a
memory operand may be taken directly from one of the base or
index registers (see Figure 16). One instruction can operate on
many different memory locations if the value in the base or
index register is updated appropriately. Any 16-bit general
register may be used for register indirect addressing with the
JMP or CALL instructions.

Inbased addressing (see Figure 17), the effective address is the
sum of a displacement value and the content of register BX or
BP. Specifying register BP as a base register directs the BIU to
obtain the operand from the current stack segment (unless a
segmentoverride prefix is present). This makes based address-
ing with the BP register a very convenient way to access stack
data.

Based addressing also provides a simple way to address data
structures which may be located at different places in memory

L OPCODE MOD R/M

T =
DISPLACEMENT J

EA

270288-001-15

Figure 15. Direct Addressing

L OPCODE l MOD R/MJ

BP
T

270288-001-16

Figure 16. Register Indirect Addressing

2-17

OVERVIEW OF THE 80186 FAMILY

OPCODE MOD RM

T T
DISPLACEMENT J|
BX
®
BP

270288-001-17

Figure 17. Based Addressing

HIGH ADDRESS
DISPLACEMENT DISPLACEMENT
| waE | AGE |STATUS | wae)
RATE
VvAC | sickK
DEPT | DIV
- BASEREGISTER | | = EmPLOYEE | BASE REGISTER |
| ! | |
! o y !
e J |
AGE [SsTATUS E
RATE I
vac | sick =
DEPT | DIV !
EMPLOYEE [— e — = = — — -
LOW ADDRESS

270288-001-18

Figure 18. Accessing a Structure with Based Addressing

(see Figure 18). A base register can be pointed at the structure
and elements of the structure can be addressed by their dis-
placement. Different copies of the same structure can be ac-
cessed by simply changing the base register.

With indexed addressing, the effective address is calculated
from the sum of a displacement plus the content of an index
register (SI or DI). See Figure 19. Indexed addressing is often
used to access elements in an array (see Figure 20). The dis-
placement locates the beginning of the array, and the value of

2-18

the index register selects one element. If the index register
contains 0000H, the processor selects the first element. Since
allarray elements are the same length, simple arithmetic on the
register may select any element.

Based index addressing generates an effective address that is
the sum of a base register, an index register, and a displace-
ment (see Figure 21). This mode of addressing is very flexible
because the values of two address components can be deter-
mined at execution time.

ntel

OVERVIEW OF THE 80186 FAMILY

| OPCODE | MOD R/M

1
sl

OR (+)

DI

270288-001-19

Figure 19. Indexed Addressing

HIGH ADDRESS

~

[Vl

ARRAY (8)

r—{ DISPLACEMENT I

ARRAY (7)

q

INDEX REGISTER

ARRAY (6)

ARRAY (5)

ARRAY (4)

L«]

ARRAY (3)

ARRAY (2)

ARRAY (1)

r_.___._._ —————
|

ARRAY (0)

S ol

1 WORD

v

LOW ADDRESS

270288-001-20

Figure 20. Accessing an Array with Indexed Addressing

2-19

- ®)
Intd OVERVIEW OF THE 80186 FAMILY

| 18 |
[OPCODE MOD R/M DISPLACEMENT |

270288-001-21

Figure 21. Based Index Addressing

HIGH ADDRESS
™ ~
DISPLACEMENT DISPLACEMENT
i [st
PARM 1
P

OLD BP
OLD BX (BP)| BASE REGISTER
OLD AX

ARRAY (6)

ARRAY (5) INDEX REGISTER

ARRAY (4) q:]
ARRAY (3)
ARRAY (2) |a—of EA |
ARRAY (1)
ARRAY (0)
COUNT _r
TEMP e ——— == -

STATUS |ea- -'- —————— -

—_—_——— e ——

—

NS LN
~—1 WORD—>
LOWER ADDRESS

270288-001-22

Figure 22. Accessing a Stacked Array with Based Index Addressing

2-20

intel’

OVERVIEW OF THE 80186 FAMILY

Based index addressing provides a convenient way for a pro-
cedure to address an array allocated on a stack (see Figure 22).
Register BP can contain the offset of a reference point on the
stack, typically the top of the stack after the procedure has
saved registers and allocated local storage. The offset of the
beginning of the array from the reference point can be ex-
pressed by adisplacement value, and the index register can be
used to access individual array elements. Arrays contained in
structures and matrices (two-dimensional arrays) can also be
accessed with based indexed addressing.

String instructions do not use the normal memory addressing
modes to access operands. Instead, the index registers are
used implicitly (see Figure 23). When a string instruction is
executed, the SI register is assumed to point to the first byte or
word of the source string. The DI register is assumed to point
to the first byte or word of the destination string. In a repeated
string operation, the CPU will automatically adjust the SIand
DI registers to obtain subsequent bytes or words. Note that for
string instructions the DS register is the default segment reg-
ister for the SI register and the ES register is the default seg-
ment register for the DI register . This allows string instruc-
tions to easily operate on data located anywhere within the one
megabyte address space.

| si

| DI

SOURCE EA J

T
—]

DESTINATION EA |

270288-001-23

Figure 23. String Operand
2.2.2.3 1/0 PORT ADDRESSING

Any of the memory operand addressing modes may be used to
access an I/O port if the port is memory-mapped. String in-
structions can also be used to transfer data to memory-mapped
ports with an appropriate hardware interface.

Two different address modes can be used to access ports lo-
cated in the I/O space (see Figure 24). The port number is an 8-
bitimmediate operand for directaddressing. This allows fixed
access to ports numbered 0-255. Indirect I/O port addressing
is similar to register indirect addressing of memory operands.
The port number is taken from register DX and can range from
0 to 65,535. By previously adjusting the content of register
DX, one instruction can access any port in the I/O space. A
group of adjacent ports can be accessed using a simple soft-
ware loop that adjusts the value of the DX register.

OPCODE | DATA

)
‘ PORT ADDRESS I

DIRECT PORT ADDRESSING

| OPCODE l

Y
[ox }—-{ PorT ADDRESS |

INDIRECT PORT ADDRESSING

270288-001-24

Figure 24. /0 Port Addressing

2.2.3 DATA TYPES USED IN THE 80186
FAMILY

The 80186 family supports the following data types:

» Integer- A signed binary numeric value contained in an 8-
bit byte or a 16-bit word. All operations assume a 2’s
complement representation. Signed 32-and 64-bit inte-
gers are directly supported with the addition of an 8087
Numeric Coprocessor to an 80186/80188 system or by the
addition of an 80C187 Numerics Processor Extension to
an 80C186 system.

* Ordinal - An unsigned binary numeric value contained in
an 8-bit byte or a 16-bit word.

« Pointer - A 16- or 32-bit quantity, composed of a 16-bit
offset component or a 16-bit segment base component in
addition to a 16-bit offset component.

« String - A contiguous sequence of bytes of words. A string
may contain from one byte to 64 Kbytes.

* ASCII - A byte representation of alphanumeric and con-
trol characters using the ASCII standard.

¢ BCD - A byte (unpacked) representation of the decimal
digits 0-9.

intel

OVERVIEW OF THE 80186 FAMILY

» Packed BCD- A byte (packed)representation of twodecimal
digits (0-9). One digit is stored in each nibble (4 bits) of the
byte.

« Floating Point - A signed 32-, 64-, or 80-bit real number
representation. Floating point operands are directly sup-
ported with the addition of an 8087 Numerics Coproces-
sortoan 80186/80188 system or by addition of an 80C187
Numerics Processor Extension to an 80C186 system.

In general, individual data elements must fit within defined
segment limits. Figure 25 graphically represents the data types
supported by the 80186 family.

2.3 DMA CONTROL UNIT

The 80186 processor family includes a DMA Control Unit
which provides two flexible DMA channels. The DMA Unit
will perform transfers to or from any combination of I/O space
and memory space in either byte or word units. Every DMA
cycle requires two to four bus cycles, one or two to fetch the
data and one or two to deposit the data. This allows word data
to be located on odd boundaries, or byte data to be moved from
odd locations to even locations.

Each DMA channel maintains independent 20-bit source and
destination pointers. Each of these pointers may independ-
ently address either I/O or memory space. After each DMA
cycle, the processor can increment, decrement, or retain the
pointer values. Each DMA channel also maintains a transfer
count which can terminate a series of DMA transfers after a
programmed number of transfers.

2.4 TIMERS

The Timer Unit contains three independent 16-bittimer/count-
ers. Two of them can count external events, provide wave-
forms based on either the CPU clock or an external clock, or
interrupt the CPU after a specified count. The third timer/
counter counts only CPU clocks. Aftera programmable inter-
val, it can interrupt the CPU, provide a clock pulse to either or
both of the other timer/counters, or initiate a DMA request to
the integrated DMA Control Unit.

2.5 INTERRUPT CONTROL UNIT

The integrated Interrupt Controller arbitrates interrupt requests
between all internal and external sources. It can be directly
cascaded as the master to an external 8259A or 82C59A Inter-
rupt Controller. In addition, it can be configured as a slave
controller to an external master.

2-22

0

7
SIGNED
BYTE
SIGN BIT
MAGNITUDE

7 0
INSIGNED
BYTE

L ms8
MAGNITUDE
151a*1 g7 0 o
SIGNED
WORD
SIGN BIT /| '-MSB
MAGNITUDE
signep 1 *3 2 g5y 1 0 4
DOUBLEI | | ”Il lI 'I “I 'I' l
WORD*
SIGN BIT-|L MSB J
MAGNITUDE
+7 46 +5 +4 +3 +2 +1 0
SIGNED 63 48 47 3231 16 1
QUAD
WORD*
SIGN BIT 4~ MSB]
MAGNITUDE
+1 o

15 0
UNSIGNED
WORD

L-MSB
MAGNITUDE
smary 2N o 7 *' 07 0
CODED I l l ces I I l T I
DECIMAL
®co) _BCO BCD BCO
DIGIT N DIGIT 1 DIGIT 0
7 *N o 7 *' 97 0 o
ASCHt coe I l I l I
ASCIl ASCII ASCH
CHARACTERN CHARACTER; CHARACTERg

7 N 7 *1 o7 0 o
PACKEDm m-ﬁ"rn—m

BCD cse
| — | S—

MOST LEAST
SIGNIFICANT DIGIT SIGNIFICANT DIGIT
715 *N 795 *1 0715 0 o
STRING | I I See
BYTE WORD N BYTE WORD 1 BYTE WORD 0
5 *3 *2 qg95 *1 L
POINTER
SELECTOR OFFSET

79+9 +8 +7 46 +5 +4 +3 +2 +1 0,

“ow T T T T T T T T 11

SIGN BIT - | \
EXPONENT MAGNITUDE

270288-001-25

NOTE:
*Supported directly with additional hardware.

Figure 25. 80186 Family Supported Data Types

ntel

OVERVIEW OF THE 80186 FAMILY

2.6 CLOCK GENERATOR

The on-board crystal oscillator can be used with a parallel
resonant crystal at twice the desired CPU clock frequency
(e.g., 25 MHz for a 12.5 MHz 80C186), or with an external
oscillator also at twice the CPU clock. The output of oscillator
is internally divided by two to provide a 50 percent duty cycle
CPU clock from which all system timing is derived. The CPU
clock is externally available, and most timing parameters are
referenced to it.

2.7 CHIP SELECT AND READY
GENERATION UNIT

The 80186 family includes integrated chip select logic which
can be used to enable memory or peripheral devices. Six out-
put lines are used for memory addressing and seven output
lines are used for peripheral addressing.

The six memory chip select lines are split into 3 groups for
separately addressing the major memory areas in a typical
80186-based system: upper memory for boot ROM, lower
memory for interrupt vectors, and mid-range memory for
program memory. The size of each of these regions is user-
programmable. The starting location and ending location of
lower memory and upper memory are fixed at 00000H and
FFFFFH respectively; the starting location of the mid-range
memory is user-programmable.

Each of the seven peripheral select lines addresses one of
sevencontiguous 128 byte blocks above aprogrammable base
address. This base address can be located in either memory or
1/0 space so that peripheral devices may be I/O-mapped or
memory-mapped.

Each of the programmed chip select areas has associated with
it a set of programmable READY bits. These bits allow a
programmable number of wait states (O to 3) to be automati-
cally inserted wheneveran access is made to the area of memory
associated with the chip select. One of the READY bits deter-
mines whethertheexternal READY signals (ARDY and SRDY)
will be-used, or whether they will be ignored (i.e., a bus cycle
will end even though READY is not returned on the external
pins). There are five sets of READY bits which allow inde-
pendentREADY generation for each of upper memory, lower
memory, mid-range memory, peripheral devices 0-3 and
peripheral devices 4-6.

2.8 DRAM REFRESH CONTROL UNIT
(80C186/80C188 ONLY)

The most important functional improvement of the 80C186/
80C188 over the 80186/80188 is the DRAM Refresh Control
Unit (RCU). The RCU consists of a timer and an address

2-23

counter which work with the Bus Interface Unit and chip se-
lect logic to provide DRAM refresh bus cycles at timed inter-
vals. These bus cycles are the same as ordinary read cycles
except that control signals are specially coded. An external
DRAM controller circuit can use the 80C186/80C 188 control
signals to generate other necessary signals such as address
strobes RAS and CAS.

2.9 POWER-SAVE UNIT (80C186/80C188
ONLY)

The 80C186/80C188 alsocontains a programmable clock divisor
circuit. This Power-Save Unit provides for greatly reduced
operating currents by dividing the processor clock frequency
by 1,4, 8, or 16 (to as low as CLKOUT = 0.5 MHz). Power-
save operation is under complete programmer control. Appli-
cations which spend most of the time in idle operation can also
exit power-save operation at any time upon receipt of a hard-
ware interrupt.

210 ACCESS TO INTEGRATED
PERIPHERALS

The integrated 80186 family peripherals operate semi-autono-
mously from the CPU. Access to them is via peripheral control
registers located within a 256 byte block of either memory or
1/0 space. These registers are all 16-bit, most are read/write,
and are accessed exactly as if they were external devices.
Therefore, standard input, output,or memory instructions may
be used.

80186 Bus Interface Unit 3

CHAPTER 3
BUS INTERFACE UNIT

The 80186 is a true 16-bit microprocessor family with 16-bit
internal data paths, one megabyte (220) of memory address
space, and a separate 64 Kbyte (216) I/O address space. The
CPU communicates withitsexternalenvironment viaatwenty-
bit time-multiplexed address and data bus. There also exists a
command and status bus (see Table 12). This communication
ismanagedby the Bus Interface Unit. Tounderstand the operation
of the address/data bus requires an understanding of the BIU’s
bus cycles.

3.1 T-STATES

To transfer data, fetch instructions, or run DMA cycles, the
CPU executes a bus cycle. A bus cycle consists of aminimum
of four CPU clock cycles or T-states plus any number of wait
states necessary to accommodate the access time limitations
of external memory or peripheral devices. T-states are num-
bered sequentially T, T,, T,, T,, and T,,. Additional idleT-
states (T,) can occur between T, and T, when the processor
requires no bus activity. The beginning of a T-state is signaled
by a HIGH-to-LOW transition of the CPU clock. Each T-state
isdivided into two phases, phase 1 (the LOW phase) and phase
2 (the HIGH phase). Figure 26 illustrates an 80186 family
clock cycle.

| T I
CLOCKOUT
o 6]
o | o2 |
| wow | (men |
| PHASE) | PHASE) |
I I I
270288-001-26
NOTES:

1.Fallingedgeof T .
2.Rising edge of T .

Figure 26. T-State in a 80186 Family Processor

Table 12. 80186 Family Bus Signals

local bus arbitration
local bus control
multi-master bus
ready (wait) interface
status information

Function Single Name (with Alternates)
address/data ADO-AD15 (Varies)
address/status A16/S3-A19-S6, BHE/S7 (BHE, S7, RFSH)
coprocessor control TEST (TEST/BUSY), PEREQ, ERROR)

HOLD.HLDA '
ALE, RD, WR, DT/R, DEN
LOCK

SRDY, ARDY

S0-S2

Different types of bus activity occur for all of the T-states (see
Figure 27). Address generation information occurs during T ,
and data generation occurs during T,, T,, T, and T,. The beginning
of a bus cycle is signaled by the status lines of the processor
going from a passive state (all HIGH) to an active state in the
middle of the T-state immediately before T, (eithera T, or a
Ti). Information concerning an impending bus cycle appears
during the T-state immediately before the first T-state of the
cycle itself. Two different types of T, and T, can be generated,
one where the T-state is immediately followed by a bus cycle,
and one where the T-state is immediately followed by an idle
T-state.

During the first type of T, or T,, the processor generates status
information concerning the impending bus cycle. This infor-
mation will be available no later than T, after the LOW-to-
HIGH transition of the processor’s CLKOUT in the middle of
the T-state. During the second type of T, or T,, the status
outputs remain inactive because no bus cycle will follow. The
decision on which type T, or T, state to present is made at the
beginning of the T-state preceding the T, or T, state (see Figure
28). This determination has aneffecton bus latency (see Section
3.8.2).

BUS INTERFACE UNIT

T,or
3 T
| 4

&
N

T
STATUS \ ! ’ l \

L]

[}
LINES |
! ™ /vauio starus /
|
I

4

LNES —————{ aDDRESSES
ADDRESS/

DATA

CONTROL
SIGNALS

| |
! |
* y
! |
| |
| |

(RD,WR)

]

-

270288-001-27

Figure 27. Example Bus Cycle of the 80186

Tyor
TVI

Decision: No'hus.actlvltv requiredv,
idle bus cycles will be inserted
|

] Ts | T

CcLocK [J

L] |

out]

—

ACTIVE |

STATUS STATUS | /
INFO T Taor
Tw

Decision: Another bus cycle immediately
required—no idle bus cycles

INACTIVE
~ STATUS

RSN S ——

———— -

Ta T

cLock | 1|

|

ey

out |

| |

LINES |
|

Ac-nv? T T T
STATUS _ sTavus | ,’ MACTIVE ‘\ ! _svarus
|

ACTIVE

|
| 1 270288-001-28

Figure 28. Active-Inactive Status Transitions in 80186 Family Processor

The READY signals control the number of wait states (T,)
inserted in each bus cycle. The maximum number of wait
states is unbounded.

The bus may remain idle for several T-states (T,) between
accesses initiated by an 80186 family processor. This situation
occurs under the following diverse conditions:

* When the prefetch queue is full.

« When the processor is running a type of bus cycle which

always includes idle states (interrupt acknowledge, for
example).

3-2

* When an instruction forces idle states (LOCK, for ex-
ample).

» When the DMA Control Unit forces idle states in destina-
tion-synchronized mode.

During idle states, the processor may not necessarily float the
bus; however, if the processor does drive the bus, no control
strobes are active.

intgl’

BUS INTERFACE UNIT

3.2 PHYSICAL ADDRESS GENERATION

Physical addresses are generated by 80186 family processors
during T, of a bus cycle. Since the address and data lines are
multiplexed, addresses must be latched during T, if they are
required to remain stable for the duration of the bus cycle. To
facilitate latching of the physical address, 80186 family proc-
essors generate an active-HIGH ALE (Address Latch Enable)
signal which can be directly connected to the strobe input of a
transparent latch. ALE is active for all bus cycles and never
floats (except during ONCE Mode for system testing).

Figure 29 illustrates the physical address generation parame-
ters. Addresses are valid no later than T, ,, after the beginning
of T, and remain valid at least T, ,, after the end of T,. The
ALE signal is driven HIGH in the middle of the T-state (either
T, or T) immediately preceding T, and is driven LOW in the
middle of T,, no sooner than T,, , after address becomes
valid. T, , satisfies the address latch set-up times of address
valid to strobe inactive. Addresses remain stable on the ad-
dress/databus at least T, ,, after ALE goes inactive to satisfy

address latch hold times.

|
d 270288-001-29

OTES:

T, : Clock high to ALE high.

T, LAV Clock high to address valid.

T HLL Clock high to ALE low.

TcLax: Clock low to address invalid (address hold
from clock low).

T, : ALe low t address invalid (address hold
from ALE).

6. TayL Address valid to ALE low (address setup

to ALE).

N
1.
2.
3.
4.
5.

Figure 29. Address Generation Timing

Because ALE goes HIGH before addresses become valid, the
delay through the address latches will be the propagation delay
through the latch rather than the delay from the latch strobe.

A typical circuit for latching physical addresses is shown in
Figure 30. Thiscircuituses 3 transparent non-inverting latches
todemultiplex the 20 address bits provided on all 80186 family
microprocessors. Typically, the upper4 address bits only select

among various memory components or subsystems, so when
the integrated chip selects (see Chapter 7) are used, these upper
bits need not be latched. The worst case address generation
time from the beginning of T (including address latch propa-
gation) time for the circuit is:

TCLAV + TPD

Some memory and peripheral devices donot require addresses
to remain stable throughout a data transfer. If a system is
constructed wholly with these types of devices, addresses need
not be latched. In addition, two of the peripheral chip select
outputs may be configured to provide latched Al and A2
outputs for peripheral register selects in a system which does
not demultiplex the address/data bus.

SIGNALS

LATCHED
FROM CPU . ADDRESS
A16- / | SIGNALS
A19 4
»|STB of—~# A16-A19
— OE
aps- B ol
AD15 —7 > 8
»-|STB of—4# A8-A15
—OE
8
ADO- P ol
AD7 4 8
ALE —1—|STB o}~ A0-A7
OE

270288-001-30

Figure 30. Demultiplexing the Address Bus
of an 80186 Family Processor
Using Transparent Latches

The 80186/80C186 generates one more signal, BHE (Bus
High Enable), to address memory. BHE and AOQ are used to
enable data transfers on either or both halves of the 16-bit bus.
Since A0 only enables devices onto the lower half of the data
bus, systems commonly drive address inputs with address bits
A1-A19. This provides 512K unique word addresses, or 1M
unique byte addresses. BHE does not need to be latched. On
the 80188/80C 188, BHE is absent; all data transfers take place
across a single byte-wide data bus.

On 80186 family processors, effective (physical) address
calculations take place in dedicated hardware. An effective
address (EA) calculation may be either fully-pipelined ornon-
pipelined. The BIU gives noindication when a fully-pipelined
address calculation occurs.

intel

BUS INTERFACE UNIT

Non-pipelined EA calculations are required anytime an in-
struction has MOD and R/M bits inits opcode. These bits often
denote addressing modes which take longer to-calculate the
EA, such as register-offset or two-register addressing. Here
are some assembly code examples which cause non-pipelined
EA calculations:

MOV AX,ES:[DI] ; Uses indirect

addressing.

AND AX,[DI]+5 ; Uses register-offset
addressing.

XCHG mem_variable, DX ; Direct offset but has
MOD and R/M bits.

A non-pipelined EA calculation takes four clocks, and occurs
during T ,(or T,)-T,-T-T, T (or T))-T-T,-T,, or DMA deposit
bus cycle sequences. In addition to inserting any necessary
idle T-states, a non-pipelined EA calculation alters the usual
bus cycle priority scheme. Data cycles (reads or writes) asso-
ciated with the instruction temporarily take the highest bus
priority possible, higher than even 80C186/80C188 DRAM
refresh cycles. The altered priority scheme is a mechanism to
better utilize the Execution Unit.

3.3 DATABUS

Many small systems do not require buffering because 80186
family devices have adequate bus drive capabilities. If data
buffers are not used, care should be taken not to allow bus
contention between the processor and the devices directly
connected to the data bus. Since the processor floats the ad-
dress/data bus before activating any command lines, the only
requirement on a directly connected device is that it float its
output drivers after a read before the processor begins to drive
address information for the next bus cycle. The parameter of
interest here is the minimum time from RD inactive until
addresses go active for the next bus cycle (T,). If the memory
or peripheral device cannot disable its output drivers in this
time, data buffers will be required to prevent both the proces-
sor and the device from driving these lines simultaneously.
This parameter is unaffected by the addition of wait states.
Data buffers solve this problem because their output float
times are typically much faster than the required minimum.

3.3.1 80186/80C186 DATA BUS OPERATION

Throughout T, T,, T,, and T, of a bus cycle the multiplexed
address/data bus becomes a 16-bit data bus. Data transfers on
this bus may be either bytes or words. All memory is byte
addressable (see Figure 31).

All bytes with even addresses (AO = 0) reside on the lower 8
bits of the data bus, while all bytes with odd addresses (A0 =
1) reside on the upper 8 bits of the data bus. Whenever an
access is made to only the even byte, AQ is driven LOW, BHE

16-8ITS
|+—8 BITS—»|=—8 BITS—|
WORD ADDRESS

q 5)

2 3 "2 BYTE ADDRESS SHOWN
IN BYTE FIELD

[1 [}]

D8-D15 DO-D7 80186 Family
Signal Connections

270288-001-31

Figure 31. Physical Memory Byte/Word
Addressing in 80186 Family
- Microprocessors

is driven HIGH, and the data transfer occurs on DO-D7 of the
data bus. Whenever an access is made to only the odd byte,
BHE is driven LOW, A0 is driven HIGH, and the data trans-
fer occurs on D8-D15 of the data bus. Finally, if a word access
is performed to an even address, both A0 and BHE are driven
LOW and the data transfer occurs on D0-D15 of the data bus.

Word accesses are made to the addressed byte and to the next
higher numbered byte. If a word access is performed to an odd
address, two byte accesses must be performed, the first to
access the odd byte at the first word address on D8-D15, the
second to access the even byte at the next sequential word
address on DO-D7. For example, in Figure 31, byte 0 and byte
1 can be individually accessed in two separate bus cycles to
byte address 0 and 1 at word address 0. They may also be
accessed together in a single bus cycle to word address 0.
However, if a word access is made to address 1, twobuscycles
will be required, the first to access byte 1 at word address 0
(byte 0 will not be accessed), and the second to access byte 2
at word address 2 (byte 3 will not be accessed). This is why all
word data should be located at even addresses to increase
processor performance.

When byte reads are made, the data returned on the unused
half of the data bus is ignored. When byte writes are made, the
data driven on the unused half of the data bus is indeterminate.

The 80186/80C186 always fetches the instruction stream in
words from even addresses except that the first fetch after a
program transfer to an odd address obtains a byte. The proces-
sor disassembles the instruction stream inside the processor;
so instruction alignment will not materially affect the per-
formance of most systems.

3.3.2 80188/80C188 DATA BUS OPERATION

Because the 80188 and 80C188 externally have only 8-bit
data buses, the above discussion about upper and lower bytes

intel’

BUS INTERFACE UNIT

of the data bus does not apply. No performance improvement
will occur if word data is placed on even boundaries in mem-
ory space. All word accesses require two bus cycles, the first
to access the lower byte of the word and the second to access
the upper byte of the word.

Any 80188/80C188 access to the integrated peripherals is
performed 16 bits at a time, whether byte or word addressing
is used. If a byte operation is used, the external bus indicates
only a single byte transfer even though the word access takes
place. See Section 5.2 for more information on peripheral
control block registers.

3.3.3 PERIPHERAL INTERFACE

The 80186 family can interface with peripheral devices using
eitherI/O instructions ormemory instructions (memory-mapped
1/0). The 1/O instructions allow the peripheral devices to re-
side in a separate I/O address space while memory-mapped I/
O allows the full power of the instruction set to be used for
peripheral operations. Up to 64 Kbytes of I/O address space
may be defined for system peripherals. To the programmer,
the separate 1/O address space is only accessible with IN and
OUT commands, whichtransfer databetween peripheral devices
and the AX register (or AL for 8-bit data). The first 256 bytes
of I/O space (0to 255) are directly addressable while the entire
64K is only accessible viaregister indirect addressing through
the DX register. The latter technique is particularly desirable
for service procedures thathandle more than one peripheral by
allowing the desired device address to be passed to the proce-
dure as a parameter. Peripherals may be connected to the local
CPU bus or a buffered system bus.

On the 80186/80C186, 8-bit peripherals may be connected to
either the upper or lower half of the data bus. Assigning an
equal number of devices to the upper and lower halves of the
bus will distribute the bus loading. If a device is connected to
the upper half of the data bus, all I/O addresses assigned to the
device must be odd (A0 = 1). If the device is on the lower half
of the bus, its addresses must be even (A0 = 0). The address
assignment directs the 8-bit transfer to the upper (odd) or lower
(even) half of the 16-bit data bus. Since AQ will always be a
one or zero for a specific device, AQ cannot be used as an
address input to select registers within a specific device. If a
device onthe upper half of the bus and one on the lower half are
assigned addresses that differ only in AO (adjacent odd and
even address), AO and BHE must be conditions of chip select
decode to prevent a write to one device from erroneously
performing a write to the other.

16-bit peripheral devices should be assigned even addresses
for reasons of efficient bus utilization and simplicity of device
selection. To guarantee the device is selected only for word
operations, A0 and BHE should be conditions of chip select
decode.

3.4 BUS CONTROL SIGNALS

80186 family processors directly provide the control signals
RD, WR,LOCK, and TEST. In addition, the processors pro-
vide the status signals S0-S2 and S6 from which other required
bus control signals can be generated.

3.4.1 RD AND WR

The RDand WR signals strobe data from or to memory or /O
space.

The RD signal is driven LOW at the beginning of T, during all
memory and I/O reads (see Figure 32). RD will not become
active until the microprocessor ceases driving address infor-
mation on the address/data bus. Data is sampled into the proc-
essor at the beginning of T,. RD will not go inactive until the
processor’s data hold time has been satisfied.

Note that 80186 family processors do not provide separate
1/0 and memory RD signals. If separate I/O read and memory
read signals are required, they can be synthesized using the S2
signal (LOW for I/O operations and HIGH for memory opera-
tions) and _t_heR_D_signal (see Figure 33). If this approach is
used, the S2 signal will require latching, since the S2 signal
(like% and ﬁ) goes to an inactive state w_ell before the begin-
ning of T, (where RD goes inactive). If S2 was directly used
for this purpose, the type of read command (I/O or memory)
could change just before T, as S2 goes to the inactive state
(HIGH). The status signals may be latched using ALE.

Often the lack of separate I/O and memory RD signals is not
important in a system. Each chip select signal will respond to
accesses exclusively in memory or I/O space. Thus, when a
chip select is used, the external device is enabled only during
accesses to the proper address in the proper space.

The WR signal is also driven LOW at the beginning of T,and
driven HIGH at the beginning of T, (see Figure 34). The WR
signal is active for all memory and I/O writes, similar to the
RDsignal. Again, separate memory and I/O control lines may
be generated using the latched S2 signal along with WR. More
important, however, is the role of the active-going edge of
WR. At the time WR makes its HIGH-to-LOW transition,
valid write data is not present on the data bus. This has conse-
quences when using WR to generate signals such as column
address strobe (CAS) for DRAMs where data is required to be
stable on the falling edge. 11 DRAM applications, the problem
is solved by a DRAM coruroller. For other applications which
require valid databefore the WR transition, place cross-coupled
NAND gates between the CPU and the device on the WR line
(see Figure 35). The added gates delay the active-going edge
of WR to the device by one clock phase, at which time valid
data is driven on the bus by the microprocessor.

®
ntel BUS INTERFACE UNIT

| T | T l T | T
CLOCK
out
ADO-
AD1S ADDRESS ADDRESS
—_—
b
€ i
1
_ |
RD 1
1
h

270288-001-32

9
m
2]

ToLaz: Clock low unit address float.
. TcRy: Clock low unit RD active.

T RL: Address float until RD active.
ng : Data valid until clock low (data input set-up time).
TcLpx: Clock low until data invalid (data input hold time).
T, : Clock low until RD high.
RD high until addresses valid.

INE-4

N O Hw

- TRHAVE®

Figure 32. Read Cycle Timing of 80186 Family Microprocessors

LATCH

Q i/0_
ALE ————plsTB READ

MEMORY

270288-001-33

|
|
[&
CcLKOuT !

ADO- ADDRESS
AD1S INFO !

WA Q[|

270288-001-34

P-4

OTES:

Teipv: Clock low until data valid.
Tty Clock low until WR active.
TCVCTX: Clock low until WR inactive.
T, : Clock high until data valid.

. T&;D&XW inactive until data invalid.

b wWwN =

Figure 34. Family Write Cycle Timing
3-6

- @ X
mtel BUS INTERFACE UNIT
WA —Do—
CLKOUT
DELAYED
WRITE
(DATAVALID
ON LEADING EDGE)

270288-001-35

Figure 35. Synthesizing a Delayed Write Signal

3.4.2 QUEUE STATUS SIGNALS

IftheRD line isexternally grounded during RESET and remains
grounded during processoroperation, the processorenters Queue
Status Mode. When in this mode, the WR and ALE signals
become queue status outputs, reflecting the status of the inter-
nal prefetch queue during each clock cycle. These signals are
provided to allow a coprocessor (such as the Intel 8087) to
track execution of instructions within the microprocessor. The
interpretation of QS0 (ALE) and QS1 (WR) is given in Table
13. Note that since Execution Unit operation is independent of
Bus Interface Unit operation, queue status lines may change in
any T-state.

Table 13. Queue Status Encoding

QS1 | QS0 Interpretation

0 0 no operation
0 1 first byte of instruction taken from

queue
1 0 queue was reinitialized
1 1 subsequent byte of instruction taken

from queue

80186
3 82C88
0-§2 |-4—| so-s2
BUS CONTROL
cLOCK) SIGNALS
out o
270288-001-36

Figure 36. 80186/82C88 Bus Controller
Inteconnection

ALE, RD, and WR signals are not directly available from an
80186 family processor when it is configured in Queue Status
Mode. These signals must be derived from the status lines SO-
S2 using an external 82C88 or 82188 Bus Controller (see
Figure 36). To prevent the microprocessor from accidentally
entering Queue Status Mode during RESET, the RD line is
internally provided with a weak pullup device.

3.4.3 STATUS LINES

An 80186 family processor provides three status outputs which
indicate the type of bus cycle in progress. These signals go
from an inactive state (all HIGH) to one of seven possible
active states during the T-state immediately preceding T, of a
bus cycle (see Figure 28). The possible status line encodings
are given in Table 14. The status lines are driven inactive in the
T3 or TW state immediately preceding T, of the current bus
cycle.

Table 14. Status Line Interpretation

S2 | S1 | SO Operation

0 0 0 | interrupt acknowledge
0 0 1 read I/O

0 1 0 | writel/O

0 1 1 halt

1 0 0 | instruction fetch

1 0 1 read memory

1 1 0 | write memory

1 1 1 passive

The status lines may be directly connected to an 82C88 Bus
Controller, which provides local bus control signals or
MULTIBUS™ control signals (see Figure 36). Use of the
82C88 Bus Controller does not preclude the use of the CPU-
generated RD, WR and ALE signals, however. The processor-
generated signals can provide local bus control signals, while
an 82C88 can provide MULTIBUS control signals.

intal’

BUS INTERFACE UNIT

Two additional status signals are provided by 80186 family
members. S6 provides information concerning the unit gener-
ating the bus cycle. It is multiplexed with A19 and available
during TZ, T, T, and T,,,. The processor drives this line LOW
whenever the bus cycle is generated by the CPU, but drives it
HIGH when the bus cycle is generated by the integrated DMA
Unit.

S7islogically equivalent to BHE and is provided by the 80186.
This pin is always HIGH on the 80188 and 80C188 (except
during 80C188 DRAM refresh cycles) which signifies the
presence of an 8-bit data bus.

3.4.4 SOFTWARE-INITIATED BUS CONTROL

The programmer may control the progress of 80186 family
execution-related bus activity by using the WAIT (or FWAIT),
LOCK, and HLT instructions.

3.4.4.;| TEST INPUT AND LOCK OUTPUT

The 80186 family processor provides a TEST input (TEST/
BUSY on the 80C186) and a LOCK output for coordinating
instruction execution and bus activity.

The TEST input is used in conjunction with the processor
WAIT instruction, typically inasystem containing acoproces-
sor. If the input is HIGH when WAIT executes, instruction
execution suspends. TEST will be resampled every five clocks
until it goes LOW, resuming execution. Any enabled inter-
rupts will be serviced while the processor waits for TEST.
This input must also be driven at RESET to configure an
80C186/80C188 for Enhanced Mode (see Appendix C.2).

The LOCK output is driven LOW whenever ihe data cycies of
aLOCKed instruction are executed. A LOCKed instruction is
generated whenever the LOCK prefix occurs immediately
before an instruction. The LOCK prefix is active for the single
instructionimmediately following the LOCK prefix. The LOCK
signal indicates to a bus arbiter (e.g., the 8289) that an atomic
(uninterruptible) bus operation is occurring. The bus arbiter
should under no circumstances release the bus while LOCKed
transfers are occurring. An 80186 family processor will not
recognize abus HOLD, nor will itallow DMA cycles to be run
by the integrated DMA Controller during LOCKed opera-
tions. LOCKed transfers are typically used in multiprocessor
systems to access memory-based semaphore variables which
control access to shared system resources.

On 80186 family devices, the LOCK signal will go active
during T1 of the first data cycle of the LOCKed transfer. It is
driven inactive at the end of T4 of the last data cycle of the
LOCKed transfers independent of the number of wait states.

On the 80186 or the 80188, back-to-back LOCKed instruc-
tions are not allowed. Insert at least six bytes of code between
the end of the first LOCKed instruction and the beginning of
the second LOCKed instruction. This restrictiondoes notapply
to the 80C186/80C188.

The LOCK output is also driven'LOW during interrupt ac-
knowledge cycles when the integrated Interrupt Controller
operates in Cascade or Slave Modes (see Sections 9.5.2.2 and
9.6). In these modes, the operation of the LOCK pin may be
altered whenan interrupt occurs during execution ofaLOCKed
instruction. See Section 9.5.4.2 foracircuit necessary to block
DMA and HOLD requests under such circumstances.

80186 family processors drive LOCK HIGH for one clock
during RESET. Then, the pin floats until the start of the first
bus cycle. LOCK also floats during HOLD.

3.4.4.2 PROCESSOR HALT

A HALT bus cycle signifies that the CPU has executed the
HLT (HALT) instruction. It differs from aregular bus cycle in
two ways.

The first way a HALT bus cycle differs is that neither RD nor
WR will be driven active. Address and data information will
not be driven by the processor. The second way a HALT bus
cycle differs is that the SO-S2 status lines go to their inactive
state (all HIGH) during T, of the bus cycle, well before they go
to their inactive state during a regular bus cycle.

Like anormal bus cycle, however, ALE is driven active. Since
no validaddress information is present, the information strobed
into the address latches should be ignored. This ALE pulse can
be used, however, to latch the HALT status from the SO-S2
siaius iines. READY is ignored during HALT cycles.

The HALTed state of the processor does not interfere with the
operation of any of the 80186 family integrated peripheral
units. This means that if a DMA transfer is pending while the
processoris HALTed, the bus cycles associated with the trans-
fer will run. In fact, DMA latency time will improve while the
processor is HALTed because the DMA Unit will not be con-
tending with the processor for access to the bus (see Section
8.5.1). After the processor HALTs, a HOLD input can elicit
HLDA and release of the bus by the processor as usual.

Activation of RES, an NMI request, oranon-masked interrupt
request from the integrated Interrupt Controller forces the
processor out of the HALT state.

intel’

BUS INTERFACE UNIT

3.5 TRANSCEIVER CONTROL SIGNALS

If data buffers are required, the 80186 family processor pro-
vides DEN (DataENable)and DT/R (Data Transmit/Receive)
signals to simplify buffer interfacing. The DEN and DT/R
signals are activated during all bus cycles, including transfers
between the 80C186 and 80C187.

The DEN signal is driven LOW whenever the processor is
either ready to receive data (during a read) or when the proc-
essor is ready to send data (during a write). In other words,
DEN is LOW during any active bus cycle when address infor-
mation is not being generated on the address/data pins. Inmost
systems, the DEN signal should not be directly connected to
the OE inputs of a buffer, since unbuffered devices (or other
buffers) may be directly connected to the processors’s ad-
dress/data pins. If DEN were directly connected to several
buffers, contention would occur during read cycles, as many
devices attempt to drive the processor bus. Rather, it should be
a factor along with the chip selects in generating the output
enable. DEN is HIGH whenever DT/R changes state.

The DT/R signal determines the direction of data through the
bi-directional buffers. Itis HIGH whenever datais being written
from the processor, and is LOW whenever data is being read
into the processor. DT/R does not change states between
sequential reads or sequential writes. Unlike the DEN signal,
it may be directly connected to bus buffers, since this signal
does not usually enable the output drivers of the buffer. Figure
37 shows an example data bus subsystem supporting both
buffered and unbuffered devices. Note that the A side of the
buffer is connected to the 80186 family device, the B side to
the external device. The DT/R signal can directly drive the T
(transmit) signal of a typical buffer since it has the correct
polarity.

The processor drives the DT/R and DEN pins HIGH for one
clock during RESET. Then the pins float until the first bus
cycle.

3.6 READY INTERFACING

80186 family devices provide two READY lines, a synchro-
nous (SRDY) line and an asynchronous (ARDY) line. These
lines signal the Bus Interface Unit to insert wait states (T,) into
a CPU bus cycle, allowing slower devices to respond to bus
activity. Wait states will only be inserted when both ARDY
and SRDY are LOW, i.e., only one of the lines needs to be
active to terminate a bus cycle. Figure 38 depicts the logical
ORing of the ARDY and SRDY functions. Any number of
wait states may be inserted into a bus cycle. The processor will
ignore the READY inputs during any accesses to the inte-
grated peripheral registers and to any area where the chip
select READY bits indicate that the external READY should
be ignored. The timings required by the SRDY and ARDY
lines are different.

Only the ARDY line can be fully synchronized (see Appendix
B) by the CPU before presentation to the rest of the bus control
logic. As shown in Figure 38, the first flip-flop is used to
resolve the asynchronous transition of the ARDY line. It will
achieve a definite HIGH or LOW level before its output is
latched into the second flip-flop. When latched HIGH, it passes
alongthe level presentonthe ARDY line; when latched LOW,
it forces Not READY to be passed along to the rest of the
circuit. With this design, note that only the rising edge of
ARDY is fully synchronized; the falling edge of ARDY must
be externally synchronized to the processor clock. Any asyn-
chronous transition on the ARDY line when the processor is
not sampling the input does not matter.

CPU-DERIVED SIGNALS .
ADB-D15 A .
DEN __
DEN B
SEL OE 7 DsDi1s
T
BUFFER BUFFERED
DATA
BUS
8
ADO-AD7 A
— 8 po.07
oE B
DTR T
BUFFER

8
L UNBUFFERED
)

7 DATA
A BUS
270288-001-37

Figure 37. Example Buffered/Unbuffered Data Bus

BUS INTERFACE UNIT

NOTES:

1. Asynchronous Resolution Flip-Flop.
2. Ready Latch Flip-Flop.

Q TO BUS
INTERFACE
UNIT

270288-001-38

3. R2 Bit in Chip Select Registers (Selects Internal Only (1) or External (0).
4. Internally Generated Unit States Controlled by RO and R1 Bits in Chip Select Registers.

Figure 38. 80186 READY Circuitry

Figure 39 depicts activity for Normally-READY and Nor-
mally-Not-READY configurations of external logic. Remem-
ber that for ARDY to force wait states, SRDY must be LOW
as well.

In a Normally-Not-READY implementation the setup and
hold times of both the resolution flip-flop and the READY
latch must be satisfied. The ARDY pin must go active at least
T, gyncu (@lso denoted T,) before the rising edge of T, T,
or T, and stay active until T, , . after the falling edge of T, or
T,, to stop generation of wait states and terminate the bus
cycle. If ARDY goes active after the falling edge of T, there
will be no wait state inserted. '

In a Normally-READY implementation the setup and hold
times of either the resolution flip-flop or the READY latch
must be met. If the external hardware does not meet this re-
quirement, the CPU will not function properly. Wait states
will be generated if ARDY goes inactive T, (also de-
noted T,) before the rising edge of T, and stays inactive a
minimum of T,,, ., before the rising edge of T, and stays
inactive aminimumof T, ., ., after the edge, orif ARDY goes
inactive atleast T, ., , before the falling edge of T, and stays
inactive a minimum of T, , .. after the edge. The READY
circuitry performs this way to allow a slow device the maxi-
mum amount of time to respond with a Not READY after it
has been selected.

The synchronous READY (SRDY) line requires that all tran-
sitions during T,, T, or T, satisfy setup and hold times (T, .,
and T ., respectively). If the external hardware does not
meet this requirement, the CPU will not function properly.
Valid transitions on this line and subsequent wait state inser-

tion is shown in Figure 40. The Bus Interface Unit samples

SRDY at the beginning of each T, and T,,,. If the line is sampled
active at the beginning of either of these two cycles, that cycle
will be immediately followed by T,. If the line is sampled
inactive at the beginning of either T-state, that cycle will be
followed by a T,,. An asynchronous transition on the SRDY
line occurring at any time the processor is not sampling the
input will not cause CPU malfunction.

3.7 EXECUTION UNIT/BUS INTERFACE UNIT
RELATIONSHIP

The 80186 family employs a pipelined architecture that al-
lows instructions to be prefetched during spare bus cycles. The
Bus Interface Unit (BIU) feiches instructions from memory
and loads them into a prefetch queue. The Execution Unit
(EU)executes instructions from the prefetch queue while other
instructions are prefetched. The process of fetching new in-
structions while executing the current instruction is invisible
to the user.

3.7.1 PREFETCH QUEUE AND BUS
PERFORMANCE

The prefetch queue is six bytes long on the 80186/80C186.
When two or more bytes are empty and the EU does not re-
quire the BIU to perform abus cycle, the BIU executes instruc-
tion fetch cycles to refill the queue. Figure 41 shows how
instruction fetches are interleaved with EU-initiated bus cycles.
The chosen queue size allows the BIU tokeep the EU supplied
with prefetched instructions under most conditions without
monopolizing the system bus. Recall that the 80186/80C186
BIU normally accesses two bytes (one word) of opcode per

BUS INTERFACE UNIT

Tyor

Tsor Twor

CLOCK
out

ARDY

| | |
| Ty | T3 | Ty
L] w .
® @

In a Normally-Not-READY system, wait states will be inserted unless:

1.7 (also denoted T
2 TARYCH

: Clock low to Al

CLARX inactive (ARDY active hold time).

): ARDY active to clock high (ARDY resolution setup time).

270288-001-39

T4

CLOCK I I I
out
ARDY

In a Normally-READY system, walil states will be inserted if:
; . lARYHCH (alsodenoted T

)
ARYCHL: (Clock high to Amnlgh (ARDY inactive hold time

CLOCK
out

ARDY

: ARDY low to clock high (ARDY resolution setup time).

).

270288-001-40

Twor
Tyor Twor
Ty T3 Ts

O)

Alternatively, in a Normally-READY system, wait states will be inserted if:

: ARDY low to clock low (ARDY setup time).

T
2. TARYCL. 61 5ck low to ARDY high (ARDY active time).

A X

mustmeet Tyov, o) and Ty, gy Or undesired CPU operation will result.

270288-001-41

Figure 39. ARDY Transitions

bus cycle. If a program transfer forces fetching from an odd
address, the 80186/80C 186 automatically reads one byte from
the odd address and then resumes fetching words from the
subsequent even addresses.

The prefetch queue is four bytes long on the 80188/80C188.
When one or more bytes are empty, the processor attempts to
refill the queue. With an 8-bit data bus, the 80188/80C188
BIU accesses one byte of opcode per bus cycle.

3-11

In most circumstances the queues contain at least one byte of
the instruction stream and the EU does not have to wait for
instructions to be fetched. The queue holds instructions from
memory locations just above the source of the current instruc-
tion. That is, they are the next logical instructions so long as
execution proceeds serially. If the EU executes an instruction
that transfers control to another location, the BIU resets the
queue, fetches the instruction from the new address, passes it
immediately to the EU, and then begins refilling the queue

= ®
mtel BUS INTERFACE UNIT

270288-001-42

NOTES:

1. Decision: Not READY, T-State will be followed by a wait state.

2. Decision: READY, T-State will not be follwed by a wait state.

3. TSRYCL: Synchronous Ready stable until clock low (SRDY set-up time).
4. TCLSRY: Clow low until Synchronous Ready transition (SRDY hold time).

Figure 40. Valid SRDY Transitions

-
S %
N A
80186 FAMILY Vs = T
MicROPROCESSOR | BV] WEIE EFETCH—; READ
L BUS:I BUSY] | BUSY I l BUSYJ l BUSY1 I BUSY l [BUSY I

INSTRUCTION STREAM

1st INSTRUCTION (ALREADY FETCHED):
EXECUTE AND WRITE RESULT

N\
) s

3rd INSTRUCTION:
READ OPERAND AND EXECUTE

.

4th INSTRUCTION:
(UNDEFINED)

=

5th INSTRUCTION:
(UNDEFINED)

270288-001-43

Figure 41. Overlapped Instruction Fetch and Execution

3-12

intel’

BUS INTERFACE UNIT

from the new location. In addition, the BIU suspends instruc-
tion fetching whenever the EU requests amemory or 1/O read
or write, except for a fetch already in progress.

Bus cycles occur sequentially, but do not necessarily follow
immediately one after another. Since the CPU prefetches up to
six bytes of the instruction stream for storage and execution
from an internal instruction queue, the relationship between
prefetching and instruction execution may be skewed in time
and separated by additional instruction fetch bus cycles. In
general, if the BIU fetches an instruction into the processor’s
internal instruction queue, it may also fetch several additional
instructions before the EU removes the instruction from the
queue and executes it. If the EU executes a jump or other
control transfer instruction from the queue, it ignores any
instructions remaining in the queue; the CPU discards these
instructions withnoeffecton operation. The busactivity observed
during execution of a specific instruction depends on the pre-
ceding instructions; the activity, however, may always be
determined within a specific sequence.

3.7.2 BUS PERFORMANCE AND CPU
PERFORMANCE

Overall performance of a system based on an 80186 family
member system depends on both the bus bandwidth and exe-
cution rate.

The number of clock cycles required to execute an instruction
varies from two clocks for a register to register move to 67
clocks for an integer divide. If a program contains many long
instructions, program execution will be CPU-limited, i.e., the
prefetch queue will be full most of the time. If a program
contains mainly short instructions or data move instructions,
execution will be bus-limited. Here the processor will be re-
quired to wait often for an instruction to be fetched before it
continues its operation.

With their 8-bit data buses, the 80188 and 80C188 provide an
opportunity for significant system cost savings over their 16-
bit counterparts, the 80186 and 80C186. In applications which
manipulate only 8-bit quantities, the performance of the proc-
essors with 8-bit buses can approach that of the processors
with 16-bit buses. The same is true for applications that are
highly CPU-intensive (but not memory-intensive) since all
80186 family CPUs are internally 16-bit.

Typical 80186 family applications are more data-intensive
than computation-intensive. The processor with an 8-bit bus
must not only move data around eight bits at a time but also
fetch instructions eight bits at a time. A sufficient number of
prefetched bytes may not reside in the prefetch queue much of
the time. In many cases, the performance degradation of an 8-
bit bus will be significant.

3-13

Adding up instruction clock counts givenin 80186 family data
sheets and reference manuals yields only a rough approxima-
tion of execution time. Published clock counts assume that all
the necessary opcode bytes reside in the prefetch queue, fre-
quently not the case in the 80188/80C188. A conservative rule
of thumb for the 80188/80C188 is to add 100 per cent to the
calculated clock count. The correction for the 80186/80C186
is typically about five to seven per cent. If there is any doubt of
the performance capabilities of either the 80186/80C186 or
the 80188/80C188, Intel suggests the use of a performance
analyzer on critical code sections early in the design process.

3.7.3 WAIT STATES AND CPU
PERFORMANCE

Because an 80186 family processor contains separate Bus
Interface and Execution Units, the actual performance of the
processor will not degrade at a constant rate as wait states are
added to the memory cycle time from the processor. Shown
below are two disparate 80186 assembly language routines,
and the actual execution time for the two procedures as wait
states are added to the memory system of the processor
(CLKOUT =8 MHz). The percentage degradation from each
wait state level to the following wait state level is also indi-
cated. The actual rate of performance degradation is not as
important as the conclusion that wait state degradation will
depend on the type and mix of instructions encountered in the
user’s program.

Table 15. Performance Degradation

vs. Wait States
dof Program 1 Program 2
Swtes | Time | Port | Time | Pet
(usec) (usec)

0 505 294

595 18% 311 6%
2 669 12% 337 8%
3 752 12% 347 3%

Procedure Bench_1 is very bus intensive. It performs many
memory operations using elaborate addressing modes which
also require more opcode bytes. As a result, the Execution
Unit must constantly wait for the Bus Interface Unit to fetch
and perform the memory cycles to allow it to continue. Thus,
the execution time of this type of routine will grow quickly as
wait states are added, since the execution time depends mainly
on the speed at which the processor can run bus cycles.

BUS INTERFACE UNIT

ntel

$modlab
name

example_wait_state_performance

av g

This file contains two programs which demonstrate the 8018k family processor
performance degradation as wait states are inserted. Procedure Benchl
performs a transformation between two types of characters sets. then
copies the transformed characters back to the original buffer (whichis
b4 bytes long. Procedure Benche performs the same type of
transformation. however instead of performing a table lookup. it
multiplies each number in the original 32 word buffer by a constant 3
(note the use of the integer immediate multiply instruction). Program
nothing is used to measure the call and the return times from the
driver programonly.

LT

PRI TR TR IR TIT T}

cgroup group code
dgroup group data
data segment public_data_
t_table db 25k dup(?)
t_string db b4 dup(?)
m_array dw 32 dup(?)
data ends
code segment public'code’
assume (S:cgroupi.DS:dgroup
public bench_l-bench_2.nothing_-wait state_.set_timer_
bench_l proc near
push SI 3 save registers used
push X
push BX
push AX
mov CX.by jtranslate b4 bytes
mov SI.0
mov BH.D
loop_back:
mov BL.t_stringLSIJ 5get the byte
mov AL-t_tableLlBXJ 5 translate byte
mov t_string[SIJ.AL 5and store it
inc SI 3increment index
loop loop_back 5do the next byte
pop AX
pop BX
pop (@4
pop SI
bench_l endp
bench_g proc near
push AX 3 save registers used
push SI
push X
mov CX.32 smultiply 32 numbers
mov SI.offset m_array
loop_back 2:
imul AX-word ptr [SIJ.3 5 immediate multiply
mov word ptr LSIZ.AX
inc SI
inc SI
loop loop_back_2
pop X
pop SI
pop AX
ret
bench_g2 endp

Figure 42. Assembly Language Program for Wait State Evaluation

3-14

kol

BUS INTERFACE UNIT

nothing_ proc near
ret
nothing_ endp
3
5 Wait_state(n) sets the 8018k family processor LMCS register to the number of
k) wait states (0 to 3) indicated by the parameter n (which is passed on
k) the stack). No other bits of the LM(S register are modified-.
B
wait_state_ proc near
enter 0.0 3 set up stack frame

push AX i save registers used
push BX
push DX
mov BX.word ptr I[BP +41 i get argument
mov DX OFFA2h 5get current LMCS register
j contents
in AX2DX
and AX-0OFFCh 5and of f existing ready bits
and BX.3 35insure ws count is good
or AX.BX 5adjust the ready bits
out DX.AX 5and write to LMCS
pop DX
pop BX
pop AX
leave i tear downstack frame
wait_state_ endp
B
5 Set_timer() initializes the 8018k family processor timers to count
3 microseconds. Timer 2 is set up as a prescaler to timer 0. the
3 microsecond count can be read directly out of the timer 0 count
3 register at location FF50H in I/0 space-
5
set_timer_ proc near
push AX
push DX
mov DX.0ffkkh 3stop timer 2
mov AX.4000h
out DX.AX
mov DX.0ff50h iclear timer O count
mov AX0
out DX.AX
mov DX.0ff52h S5timer O counts up to L5535
mov AX.0
out DX.AX
mov DX.0ff5bh ienable timer O
mov AX.0c009n
out DX AX
mov DX.0ffkOh 3clear timer 2 count
mov AX.0
out DX.AX
mov DX.0ffbkeh 3set maximum count of timer 2
mov AX.2
out DX.AX
mov DX.0ffkbh sre-enable timer 2
mov AX.0c001h
out DXAX

Figure 42. Assembly Language Program for Wait State Evaluation (continued)

3-15

intel

BUS INTERFACE UNIT

pop DX
pop AX
ret
endp
ends
end

set_timer_
code

270288-001-44

T

Figure 42. Assembly Language Program for Wait State Evaluation (continued)

Note alsothat the program execution time calculated by merely
summing up the number of clock cycles given in the data sheet
will typically be less than the number of clock cycles actually
required to run the program. This is true because the numbers
quoted in the data sheet assume that the opcode bytes have
been prefetched and reside in the prefetch queue for immedi-
ate access by the execution unit. If the Execution Unit cannot
access the opcode bytes immediately upon request, dead clock
cycles will be inserted in which the Execution Unit will remain
idle, thus increasing the number of clock cycles required to
complete execution of the program.

Onthe otherhand, procedure Bench_2 is more CPU intensive.
The Bus Interface Unit can fill up the instruction prefetch
queue in parallel with the Execution Unit performing integer
multiplies. In this program, the Bus Interface Unit can perform
bus operations faster than the Execution Unit actually requires
them to be run. The performance degradation is much less as
wait states are added to the memory interface. The execution
time of this program is close to the number calculated by
adding the number of cycles per instruction because the Exe-
cution Unit does not have to wait for the Bus Interface Unit to
place an opcode byte in the prefetch queue as often. Fewer
clock cycles are wasted by the Execution Unit lying idle for
want of instructions.

3.8 HOLD/HLDA INTERFACE

The 80186 family employs a HOLD/HLDA bus exchange
protocol. This protocol allows other asynchronous bus mas-
ters (i.e., ones which drive address, data, and control informa-
tion on the bus) to gain control.

3.8.1 RESPONSE TO HOLD

In the HOLD/HLDA protocol, a device requiring bus control
(e.g.,atoken-ring communications controller) raises the HOLD
line. In response to this HOLD request, the processor will raise
its HLDA line after it has finished its current bus activity.
‘When the external device is finished with the bus, it drops its
bus HOLD request. The processor responds by dropping its
HLDA line and resuming bus operation.

Whenthe processorrecognizes abus HOLD by driving HLDA
HIGH, it will float many of its signals (see Figure 43). ADO-
AD14 and DEN are floated within T, ,, after the clock edge
when HLDA is driven active. A16-A19,RD, WR, BHE, DT/
R, and SO-S2 are floated within TCHCZ after the clock edge

on which HLDA becomes active.

Ww] ﬁbr1 [

HLDA

AD15-ADO
DEN
A16-A19,
RD,WR,BHE,

FLOAT

3
E]
g%
8

270288-001-45

Figure 43. Signal FloatHLDA Timing of 80186
Processor

Only the above mentioned signals are floated during bus HOLD.
Of the signals not floated by the processor, some have to do
with peripheral functionality (e.g., timeroutputs). Many others
either directly or indirectly control bus devices. These signals
are ALE and all chip select lines (UCS, LCS, MCS0-3, and
PCS0-6). If Latched A1 or Latched A2 is selected instead of
PCS5 or PCS6, the programmed pin retains its latched value
during HOLD.

3.8.2 HOLD/HLDA TIMING AND BUS
LATENCY

The time required between HOLD going active and the micro-
processordriving HLDA active isknown as bus latency. Many
factors affect bus latency, including synchronization delays,

el

BUS INTERFACE UNIT

bus cycle times, LOCKed transfer times, interrupt acknowl-
edge cycles, and DRAM refresh cycles.

The HOLD request line is internally synchronized by the 80186
family processor, and may therefore be an asynchronous in-
put. To guarantee recognition on a particular falling clock
edge, it must satisfy setup and hold times. A full CPU clock
cycle is required for synchronization (see Appendix B). If the
bus is idle, HLDA will follow HOLD by two CPU clock
cycles plus setup and propagation delay time. The first clock
cycle synchronizes the input; the second signals the internal
circuitry to initiate a bus HOLD (see Figure 44).

| I i
! T | T |
| | |
@), !)
¢/ ! | 1
HOLD X ! ‘
| 1 @ |
| \ .
| | \
HLDA
| | |
|] 1
NOTES: 270288-001-46
1. Thvel: Hold valid until clock low.

2. TCLH AV Clock low until HLDA active.

Figure 44. Idle Bus Hold/HLDA Timing

Many factors make bus latency longer than the best case de-
scribed above. Perhaps the most important factor is that the
processor will not relinquish the local bus until the bus is idle.
The bus can become idle only at the end of a bus cycle. The
processor will normally insert no Ti states between T, and T,

of the nextbus cycle if itrequires any bus activity (e.g., instruc-

tion fetches or /O reads). However, the processor may not
have an immediate need for the bus after a bus cycle, and will
insert Ti states independent of the HOLD input (see Section
3.0).

‘When the HOLD request is active, the 80186 family BIU will
proceed from T, to T, to relinquish the bus. HOLD must go
active two T-states before the end of a bus cycle to force the
BIU to insert idle T-states after T4. One T-state is spent syn-
chronizing the request and one T-state is spent signaling the
processor that T4 of the bus cycle will be followed by idle T-
states (see Section 3.1). After the bus cycle has ended, the
HOLD will be immediately acknowledged. If, however, the
processorhas already determined that an idle T-state will follow
T, of the current bus cycle, HOLD needs to go active only two
T-states before the end of the bus cycle to force the micropro-
cessor to relinquish the bus. Figure 45 shows these processes.

3-17

Also, if HOLD is asserted during RESET, the processor re-
leases the bus prior to the first fetch.

An external HOLD has higher priority than both the CPU or
integrated DMA Unit. However, an external HOLD will not
separate the two cycles needed to perform a word access when
the word accessed is located at an odd location (see Section
3.3.1).Inaddition, an external HOLD will not separate the two
to four bus cycles required for the integrated DMA Unit to
perform a complete transfer. Each of these factors will add to
the bus latency of the 80186 family processor.

Another factor influencing bus latency time is LOCKed trans-
fers. Whenever a LOCKed transfer is occurring, the processor
will not recognize external HOLDs. Also, the processor will
not recognize requests from the DMA Control Unit for DMA
cycles. LOCKed transfers are programmed by preceding an
instruction with the LOCK prefix. String instructions may be
LOCKed. Since string transfers may require thousands of bus
cycles, bus latency time will suffer if they are LOCKed.

The final factor affecting bus latency time is interrupt ac-
knowledge cycles. When an external interrupt controller is
used (Cascade or Slave Modes) the CPU will run two interrupt
acknowledge cycles back-to-back (Sections 9.5.4.2and9.6.4).
These cycles are automatically LOCKed and will never be
separated by bus HOLD. i

3.8.3 LEAVING HOLD

When the HOLD input goes inactive, the processor lowers its
HLDA line in a single clock as shown in Figure 46. If there is
pending bus activity, only two T, states will be inserted after
HLDA goes inactive. Status information will go active during
the last idle state concerning the bus cycle about to be run (see
Section 3.1). If there are no bus cycles to be run by the CPU, it
will continue to float all lines until the last T, before it begins
its first bus cycle after the HOLD.

A special mechanism exists on the 80C186/80C188 to pro-
vide for DRAM refreshing while the bus is in HOLD. See
Section 10.4 for details.

3.9 PRIORITY OF BUS CYCLE TYPES

The 80186 family Bus Interface Unit arbitrates requests for
bus cycles originating in the integrated peripherals as well as
the Execution Unit. Here is a summary of the overall priority
for all bus cycle types (highest to lowest):

1. Instruction execution reads or writes following a non-

pipelined effective address calculation.

®
ntel BUS INTERFACE UNIT

T,0R
| | [
1 Tw | Ts | T
ctock ___| (IGD | I N
ouT '
! :)
: %/ | | |
e
HOLD @l @ 1 I@
[[|
| |
| | |
HLDA ; T " 270288-001-47
NOTES:
1. Decision: No addtional internal bus cycles required, idle T-States will be inserted after T4.
2. Greater than THVCL'
3. Lessthan TCH V'
4. HOLD request 'ﬁﬁemally synchronized.
o ROR)
[Tw | T, | Ty
wex [A0 | || L1
our 1 1]
| 1]
| I |
HOLD W@l ® i :
fe——
|

270288-001-48

NOTES:

1. Decision: Addtional internal bus cycles required, no idle T-States will be inserted, HOLD not active soon-enough to force idle T-States.
2.Greater than T, : not required since it will not get recognized anyway.

3. HOLD request irz{emally synchronized.

1
T | T

N
]

®

croox __| iIJ 2]
an oy) :
oL L@ !

—— e p— - —

| | 1 !
t ! ! ! 270288-001-49
NOTES: ‘
1. HOLD request internally synchronized.
2. Decision: HOLD request active, idle T-States will be inserted at end of current bus cycle.
3.Greaterthan Ty, -
4.Less than TCLH AV

Figure 45. HOLD/HLDA Timing in the 80186 Family

- ®
Inté BUS INTERFACE UNIT
T ! T T, | T, I T,
| | |
cLKouT ol | ; |
wo—V5 /o | alle
—5]l
| | !
| | | [}
ADO-AD1S | | : / &-——
DEN) | | [S
A16/53-A19/S6 | : ! !
i are ; ; —
OT/A56-52 ! ! !

NOTES:

1. HOLD internally synchronized.

2. Greaterthan T, .

3. Less than TCL: V\(/:.L

4. Lines come out éf float only if a bus cycle is pending.

270288-001-50

10.

Figure 46. 80186 Coming Out of Hold

DRAM refresh cycles (80C186/80C188 only).

Bus cycles run by an external bus master during HOLD.
The 80C186/80C188 signals its need to use the bus for a
DRAM refresh cycle by lowering HLDA.

Vectoring sequence for the single step interrupt.
Vectoring sequence for the NMI interrupt.

Vectoring sequence for divide error, breakpoint, overflow,
array bounds, unused opcode, and ESCape trap interrupts,
according to priority resolution.

Vectoring sequence for hardware interrupts from the timers,
DMA Control Unit, and external pins. Interrupts on pins
INTO-3 can cause 80C186/80C187 numerics instructions
to be aborted even when masked.

Vectoring sequence for 80C187 Numerics Coprocessor
Extensionerrors. Suchexceptions are sampled onthe 80C186
ERROR pin during numerics code execution.

DMA cycles. DMA cycles can be interspersed with the
bus cycles necessary for an interrupt vectoring sequence.
The DMA fetch and deposit phases (up to four bus cycles
total) are inseparable.

General instruction execution. This category includes reads
or writes following a fully-pipelined effective address

—_—
—_—

calculation, vectoring sequences for user-designated soft-
ware interrupts, and numerics code execution. The fol-
lowing points are applicable to sequences of related exe-
cution cycles:

e Thesecondread/write cycle of an 80186/80C 186 odd-
addressed word operation is inseparable from the first
bus cycle.

* Onthe 80188/80C188, the two bus cycles associated
with any word operation are inseparable.

* The second read/write cycle of an instruction with
both load and store accesses (e.g., XCHG) may be
separated from the first cycle by other bus cycles.

* Successiveexecutioncycles of string instructions (e.g.,
MOVS) may be separated by other bus cycles.

* WhenaLOCKedinstructionbegins, itsexecutioncycles
are elevated to the highest priority level, making
LOCKed cycles inseparable even to DRAM refresh
cycles. String operations and 80C186/80C187 execu-
tion may be LOCKed like any other instructions.

. Fetches necessary to fill the prefetch queue with opcodes

and operands.

Clock Generator 4

CHAPTER 4
CLOCK GENERATOR

The clock generator provides the main clock signal for all
integrated components, and all CPU synchronous devices ina
system based on the 80186 family. This clock generator in-
cludes a crystal oscillator, divide-by-two counter, RESET
circuitry, and READY generation logic. A block diagram of
the clock generator is shown in Figure 47.

X CRYSTAL . CPUCLOCK &
X, 08C. 2 cLOCKOUT
ARDY READY |—9 cPy
SRDY READY
RESET | CPU RESET
RES CIRCUIT |—— &
RESET OUTPUT
270288-001-51

Figure 47. 80186 Family Clock Generator Block
Diagram

4.1 CRYSTAL OSCILLATOR

Al180186 family microprocessors use a parallel resonant Pierce
oscillator. Forall NMOS 80186/80188 applications and lower
frequency 80C186/80C188 applications, a fundamental mode
crystal is appropriate. At higher frequencies, the diminishing
thickness of fundamental mode crystals makes a third over-
tone crystal the appropriate choice. The addition of external
capacitors at X1 and X2 is always required, and a third over-
tone crystal also requires an RC tank circuit to select the third
overtone frequency overthe fundamental frequency (see Figure
48).

The recommendations given in 80186 family data sheets for
the values of the external components should be taken only as
rough guidelines, since there are situations which alter typical
oscillator characteristics. One example would be the case in
which the circuit layout introduces significant stray capaci-
tance to the X1 and X2 pins. Another example is at low fre-
quencies (CLKOUT less than 6 MHz) where slightly larger
capacitors are desirable. Finally, it is also possible to use ce-
ramic resonators in place of crystals for low cost when precise
frequencies are not required.

For assistance in selecting the external oscillator components
for unusual circumstances, the best resource is the crystal
manufacturer. In general, almost any microprocessor grade
crystal will work satisfactorily with any member of the 80186
family. The foremost circuit consideration is that the oscillator
start correctly over the entire voltage and temperature ranges
expected in operation.

4.2 USING AN EXTERNAL OSCILLATOR

Anexternal oscillator may be used withthe 80186 family. The
external frequency input (EFT) signal is connected directly to
the X1 input of the oscillator. X2 must be left unconnected.
This oscillator input drives an internal divide-by-two counter
to generate the CPU clock signal. Thus the external frequency
input can be of practically any duty cycle, so long as the mini-
mum HIGH and LOW times for the signal (as stated in the data
sheet) are met.

80186/8
80C186/8
X1

X2

* 0

270288-001-52

80C186/8
X1

5

X2

<b

(b)

(a)—Fundamental Mode Operation
(b)—Third Overtone Operation

270288-001-53

Figure 48. 80186 Family Crystal Connections

intal’

CLOCK GENERATOR

4.3 OUTPUT FROM CLOCK GENERATOR

The output of the crystal oscillator (or the external frequency
input) drives a divide-by-two circuit which generates a 50
percent duty cycle clock for the 80186 family processor sys-
tem. All processor timing is referenced to this clock, available
externally at the CLKOUT pin. CLKOUT changes state on
the HIGH-to-LOW transition of the EFI signal, and is active
during RESET and bus HOLD.

4.4 RESET

The 80186 family clock generator also provides a synchro-
nized RESET signal for the system. This signal is generated
from the RES input to the device. The clock generator syn-
chronizes this signal to the CLKOUT signal.

A Schmitt trigger in the RES input circuit ensures that a volt-
agedifference separates the switch points for logic states 0 and
1. This hysteresis measures approximately 200-500 mV. An
80186 family processor must remain in RESET a minimum of
four CLKOUT cycles after VCC and CLKOUT stabilize. The
hysteresis allows the RES input to be driven with a simple RC

circuit as shown in Figure 49. Typical applications can use an
RC time constant of approximately 100 ms. RES must be held
LOW upon power-up for correct processor initialization.

Vce
(1-7c)
100 K typ. Ve(t)=V \1-eRC
RESET IN :;ie
FAMILY
TuF typ. T PROCESSOR

270288-001-54

Figure 49. Simple RC Circuit for
Powerup RESET

The RES input also resets the divide-by-two clock counter. A
one clock internal clear pulse is generated when the RES input
goes active. This clear pulse goes active beginning on the first
LOW-to-HIGH transition of the X 1 input after RES goes active,
and goes inactive on the next LOW-to-HIGH X1 transition.

X1

CLEAR

|
|
[
INTERNAL !
|
[

CLKOUT

—+ — — —

RESET

2. Internal clear pulse generated.

4. RESET output goes active (TCLRO).

corresponding to recognition of RES inactive.

NOTES: 1. RES sampled on rising edge of oscillator input signal (X1).

}
|
| [5y @
|

1

270288-001-55

3. Internal clear pulse drives CLKOUT high, resynchronizing the clock generator.

5. RES allowed to go inactive after minimum 4 CLKOUT cycles.

6. RESET output goes inactive 1-1/2 CLKOUT cycles plus TCLRO after rising
CLKOUT corresponding to recognition of RES inactive.

7. First instruction prefetch occurs 6-1/2 CLKOUT cycles after rising CLKOUT

Figure 50. 80186 Reset

42

LJ ®
|ntel CLOCK GENERATOR

To ensure that the clear pulse is generated on the next oscilla-
tor cycle, the RES input signal must satisfy a setup time to the
HIGH-to-LOW oscillator input signal (see Figure 50). During
the clear pulse, CLKOUT will be HIGH. On the next HIGH-
to-LOW transition of X1, CLKOUT will go LOW, and will
change state on every subsequent HIGH-to-LOW X1 transi-
tion.

The internal RESET signal is presented to the rest of the 80186
family processor. The signal present on the RESET output pin
of the processor is synchronized by the HIGH-to-LOW tran-
sition of the processor’s CLKOUT signal. This signal remains
active an integer number of clocks corresponding to the length
of the RES input. RESET goes inactive two CLKOUT periods
after the RES input goes inactive. After the RES input goes
inactive, the processor will start the fetch ofits first instruction
(at memory location OFFFFOH) after 6 1/2 CPU clock cycles.

Peripheral Control Block 5

CHAPTER 5
PERIPHERAL CONTROL BLOCK

. Allthe integrated peripherals with an 80186 family micropro-
cessor are controlled by sets of registers contained within an
integrated peripheral control block. The registers are physi-
cally located with the peripheral devices they control, but are
addressed as a single block of registers. This set of registers
encompasses 256 contiguous bytes and can be located on any
256 byte boundary of the memory or I/O space. Maps of these
registers are shown in Figure 51 for the 80186/80188 and in
Figure 52 for the 80C186/80C188. Any unused locations are
reserved.

5.1 SETTING THE BASE LOCATION

In addition to the control registers for each of the integrated
peripheral devices, the peripheral control block contains the
peripheral control block relocation register. This register al-
lows the peripheral control clock to be relocated on any 256

byte boundary within the processor’s memory or 1/O space.
Figure 53 shows the layout of this register.

The relocation register is located at offset OFEH within the
peripheral control block. Since it is contained within the pe-
ripheral control block, any time the peripheral control block is
moved, the relocation register will also move.

In addition to the peripheral control block relocation informa-
tion, the relocation register contains two additional bits. One is
used to set the Interrupt Control Unit into Slave Mode. The
other is used to force the processor to trap whenever an ES-
Cape (coprocessor) instruction is encountered.

The relocation register contains the value 20FFH upon RE-
SET. This means that the peripheral control block will be
located at the very top (OFFOOH to OFFFFH) of 1/O space.

OFFSET

Relocation Register

FEH

DMA Descriptors Channel 1

DAH

DMA Descriptors Channel 0

CAH
COH

Chip-Select Contro! Registers

ABH
AOH

Timer 2 Control Registers

Timer 1 Control Registers

[
m
x

Timer 0 Control Registers

§ £¢

Interrupt Controller Registers

]
I

270288-001-56

Figure 51. 80186/80188 integrated Peripheral Control Block

5-1

PERIPHERAL CONTROL BLOCK

RELOCATION REGISTER

POWER-SAVE REGISTER

REFRESH CONTROL REGISTERS

DMA DESCRIPTORS CHANNEL 1

DMA DESCRIPTORS CHANNEL 0

CHIP-SELECT CONTROL REGISTERS‘

TIMER 2 CONTROL REGISTERS

‘ TIMER 1 CONTROL REGISTERS

TIMER 0 CONTROL REGISTERS

INTERRUPT CONTROLLER REGISTERS

OFFSET
FEH

FOH

E4H
EOH

DAH
DOH

CAH
COH

A3H
AOH

66H

60H
5EH

58H
56H

50H

3EH
20H

270288-001-57

Figure 52. 80C186/80C188 Integrated Peripheral Control Block

OFFSET. FEH

15

‘14 13 12 1 10 9 8

ET

SLAVE/MASTER | X |Mm/iO

Relocation Address Bits R19-R8

ET = ESC Trap / No ESC Trap (1/0)
M/I0 = Register Block Located in Memory / 1/O Space (1/0)

SLAVE/MASTER = Master Interrupt Controller Mode / Slave Interrupt Controller Mode (0/1)

270288-001-58

Figure 53. 80186 Family Relocation Register Format

5-2

intel

PERIPHERAL CONTROL BLOCK

Thus after RESET the relocation register will be located at
word location OFFFEH in I/O space.

To relocate the peripheral control block to the memory range
10000- 100FFH, forexample, the user programs the relocation
register with the value 1100H. Since the relocation register is
contained within the peripheral control block, itmoves to word
location 100FEH. Whenever mapping the 80188/80C188
peripheral control block to another location, the programming
of the relocation register should be done with a byte write (i.e.,
OUT DX, AL). Any access to the control block is done 16 bits
atatime. Thus, internally, the relocation register will be writ-
ten with 16 bits of the AX register while externally, the BIU
will run only one 8-bit bus cycle. If a word instruction is used
(i.e.,OUT DX, AX), the relocation register will be written on
the first bus cycle. The BIU will then run a second bus cycle
which is unnecessary. The address of the second bus cycle will
no longer be within the control block (i.e., the control block
was moved on the first cycle), and therefore will require the
generation of external READY to complete the cycle. For this
reason we recommend the use of byte operations for the relo-
cationregister. Byte instructions may also be used for the other
registers in the control block and will eliminate half of the bus
cycles required if a word operation had been specified. Byte
operations are only valid on even addresses though, and are
undefined on odd addresses.

5.2 PERIPHERAL CONTROL BLOCK
REGISTERS

Each of the integrated peripherals’ control and status registers
are located at a fixed location above the programmed base
location of the peripheral control block. There are many loca-
tions within the peripheral control block which are not as-
signed to any peripheral. If a write is made to any of these
locations, the bus cycle will be run, but the value will not be
stored in any internal location. This means that if a subsequent
read is made to the same location, the value written will not be
read back.

The processor will run an external bus cycle for any memory
or I/O cycle which accesses a location within the integrated
control block. This means that the address, data, and control
information will be driven on the processor external pins just
as if an ordinary bus cycle had been run. Any information
returned by an external device will be ignored, however, even
if the access was to a location which does not correspond to
any of the integrated peripheral control registers. The above is
true for the 80188/80C188 except that the word access made
to the integrated registers will be performed in a single bus
cycle internally. Externally, the BIU runs two bus cycles.

The processor internally generates a READY signal when-
ever any of the integrated peripherals are accessed; any exter-
nal READY signal is ignored. This READY will also be re-
turned if an access is made to a location within the 256 byte

areaof the peripheral control block which does not correspond
to any integrated peripheral control register. The processor
will insert no wait states for any access within the integrated
peripheral control clock except for accesses to the timer regis-
ters. Any access to the timercontrol and counting registers will
incur one wait state. This wait state is required to properly
multiplex processor and counter element accesses to the timer
control registers.

All accesses made to the integrated peripheral control block
will be word accesses. Any write to the integrated registers
will modify all 16 bits of the register, whether the opcode
specified abyte writeoraword write. A byte read fromaneven
location causes no problems, but the data returned when abyte
read is performed from an odd address within the peripheral
control block is undefined. This is true both for the 80186/
80C186 and the 80188/80C188. As stated above, even though
the 80188/80C188 has an external 8-bit data bus, internally it
is still a 16-bit machine. Word accesses by the 80188/80C188
to integrated registers each occur as single bus cycles inter-
nally, while externally the BIU runs two bus cycles. The DMA
Control Unit cannot be used for either read or write accesses to
the peripheral control block.

5.3 PERIPHERAL CONFIGURATION AT
RESET

Upon RESET, the chip select/READY logic performs the
following actions:

» All chip select outputs are driven HIGH.

» The UMCS register attains the value OFFFBH. This sets
UCS chip select line activity for a 1 Kbyte block, three
wait states, and external READY consideration.

« Nootherchipselector READY control registers have any
predefined values after RESET. They will not become
active until the CPU accesses their control registers.

Upon RESET, the DMA Control Unit performs the following
actions:

« The start/stop bit for each channel resets, stopping the
channel.

* Any transfer in progress is aborted.
Upon RESET, the Timer Unit performs the following actions:
« All timer enable bits are reset, preventing operation.

+ All function select bits are reset to zero. This activity se-

. ®
lntel PERIPHERAL CONTROL BLOCK

lects max count register A for each timer, which results in
the timer output pins going HIGH.

Upon RESET, the Interrupt Control Unit performs the follow-
ing actions:

* All SFNM bits are reset to zero, disabling Special Fully
Nested Mode.

e All priority bits in the various control registers are set to
one. This places all sources at lowest priority (level 111).

« All LTM bits are reset to zero, resulting in edge-sense
mode.

« _Allinterrupt in-service bits are reset to zero.
¢ All interrupt mask bits are set to one (masked).
¢ AllCascade Modebitsareresetto zero (Direct Input Mode).

« All priority mask bits are set to one, implying no levels
masked.

¢ The Interrupt Control Unit is initialized to Master Mode.

Timer Unit 6

CHAPTER 6
TIMER UNIT

The 80186 family includes a Timer Unit which consists of
three independent 16-bit timers. These timers operate inde-
pendently of the CPU. Two have input and output pins allow-
ing counting of external events and generation of arbitrary
waveforms. The third can be used as a timer, as a prescaler for
the other timers, or as a DMA request source.

The internal Timer Unit on the 80186 family can be modeled
by asingle counter element, time-multiplexed to three register
banks, each of which contains different control and count
values. These register banks are, in turn, dual-ported between
the counter element and the CPU (see Figure 54). Figure 55
shows the timer element sequencing and the subsequent con-
straints on input and output signals. There is no connection
between the sequencing of the counter element through the
timer register banks and the BIU’s sequencing through T-
states. Timer operation and bus interface operation are com-
pletely asynchronous.

6.1 TIMER UNIT PROGRAMMING

Each timer is controlled by a register block (see Figure 56).
Each of these registers can be read or written whether ornotthe
timer is operating. All processor accesses to these registers are
synchronized to all counter accesses to these registers, mean-
ing that one will never read a count register in which only half
of the bits have been modified.

The Bus Interface Unit automatically inserts one wait state for
any access to the timer registers to perform this synchroniza-
tion. Unlike the DMA Unit, LOCKing accesses to timer reg-
isters will not prevent the timer’s counter elements from ac-
cessing the timer registers.

Eachtimerhas a 16-bitcountregister which is incremented for
eachtimerevent. A timereventcanbeaLOW-to-HIGH transition

TOIN TIIN
TRANSITION TRANSITION
LATCH/ LATCH/
SYNCHRONIZER| | SYNCHRONIZER
TIMER 0 oUTPUT
REGISTERS arcn 0 oour
cPU TIMER 1 COUNTER
REGISTERS ELEMENT
TIMER 2 OUTPUT |
REGISTERS e F—Qour
CPU INTERRUPT
CcLOCK LATCHES
DMA TIMER 2
REQUEST TC LATCH
270288-001-59

Figure 54. 80186 Family Timer Model

6-1

- ®
|nte| TIMER UNIT

TIMER 0 TIMER 1 TIMER 2 TIMER 0
SERVICED SERVICED SERVICED DEAD SERVICED

TIMER IN
0

TIMER IN
1

TIMER OUT i
0

TIMER OUT
1
270288-001-60
NOTES: 1. Timer In 0 resolution time.
2. Timer In 1 resolution time.
3. Modified count value written into Timer 0 count regist
4. Modified count value written into Timer 1 count regist

OFFSET
oM [counvheaisterR]
s2m | _ MAXCOUNTREGISTERA — — —] MR o
s [MAXCOUNTREGISTERB — — — —
56 CONTROL REGISTER
seH [counTReGisTER _
A [— maxcounTResisTERA] —
s _ MAXCOUNTREGISTER —
SEH CONTROL REGISTER (!
som [__countReaisTER _ |
oM [— maxcounTmegisTeR] TR 2
64H ________'_______X__
66H CONTROL REGISTER !:2

lf:lﬁﬁlm‘r]mu[o b Lo l olo Ji IMCIRTGI PJEXﬂALﬂEC;Nj
[wT= ool [+ [+ [s [o el s [[s = bod

270288-001-61

Figure 56. Timer Registers

6-2

intal’

TIMER UNIT

on a timer input pin (for Timers 0 and 1), a pulse generated
every fourth CPU Clock, or a time out of Timer 2 (for Timers
0 and 1). The count register is 16 bits wide, allowing up to
65536 (2'%) events to be counted. Upon RESET, the contents
of the count registers are indeterminate and they should be
initialized to zero before any timer operation.

Eachtimer includes a maximum count register. Whenever the
timer count register is equal to the maximum count register,
the count register resets to zero, so the maximum count value
is never stored in the count register. This maximum count
value may be written while the timer is operating. A maximum
count value of 0 implies a maximum count of 65536, a maxi-
mum count value of 1 impliesamaximum countof 1,etc. Only
equivalence between the count value and the maximum count
register value is checked. This means that the count value will
not be cleared if the value in the count register is greater than
the value in the maximum count register. If the timer is pro-
grammed in this way, it will count to the maximum count
(OFFFFH), increment to 0, then count up to the value in the
maximum count register. The TC bit in the timer control reg-
ister will not be set when the counter overflows to 0, nor will
an interrupt be generated from the Timer Unit.

Timers 0 and 1 each contain an additional maximum count
register. When both maximum count registers are used, the
timer will first count up to the value in maximum count regis-
ter A, reset to zero, count up to the value in maximum count
register B, and reset to zero again. The ALTernate bit in the
timer control register determines whether one or both maxi-
mum count registers are used. If this bit is LOW, only maxi-
mum count register A is used; maximum count register B is
ignored. If it is HIGH, both registers are used. The RIU (reg-
ister in use) bit in the timer control register indicates which
maximum count register is presently counting up. This bitis O
when maximum count register A is being used, 1 when maxi-
mum count register B is being used. The RIU bit is read only.
It will always be read O in single maximum count register
mode (since only maximum count register A will be used).

Each timer can generate an interrupt whenever the timer count
value reaches a maximum count value. All timers may use
maximum count A in single max count mode. Timers 0 and 1
(dual max count mode) may also use maximum count B. In
addition, the maximum count (MC) bit in the timer control
register is set whenever the timer count reaches a maximum
count value. This bit is never automatically cleared, i.e., pro-
grammer interventionis required. If atimer generates a second
interrupt request before the first interrupt request has been
serviced, the first interrupt request to the CPU will be lost.

Each timer has an ENable bit in the timer control register. The
timer will count timer events only when this bit is set. Any
write to the timer control register will modify the ENable bit
only if the INHibit bit is also set. The INHibit bit in the timer
control register allows selective updating of the timer ENable
bit. The value of the INHibit bit is not stored in a write to the
timer control register; it will always be read as logic zero.

6-3

Each timer has a CONTinuous bit in the timer control register.
If this bit is cleared, the timer ENable bit will be automatically
cleared at the end of each timing cycle. If a single maximum
count register is used, the end of a timing cycle occurs when
thecount valueresetsto zeroafterreachingthe value inmaximum
countregister A. If dual maximum countregisters are used, the
end of a timing cycle occurs when the count value resets to
zero after reaching the value in maximum count register B. If
the CONTinuous bit is set, the ENable bit will never be auto-
matically reset. Thus, after each timing cycle, another timing
cycle will automatically begin. For example, in single maxi-
mum count register mode, the timer will count up to the value
in maximum count register A, reset to zero, ad infinitum. In
dual maximum count register mode, the timer will count up to
the value in maximum count register A, reset to zero, count up
to the value in maximum count register B, reset to zero, and
repeat.

6.2 TIMER EVENTS

Each timer counts events. All timers can use a transition of the
CPU clock as an event. If the internal clock is used, the count
increments every fourth CPU clock because of timer element
multiplexing. For Timer 2, this is the only timer event which
can be used. For Timers 0 and 1, this event is selected by
clearing the EXTernal and Prescaler bits in the timer control
register.

Timers 0 and 1 can use Timer 2 reaching its maximum count
as a timer event. This is selected by clearing the EXTernal bit
and setting the Prescaler bit in the timer control register. When
this is done, the timer will increment whenever Timer 2 resets
to zero having reached its own maximum count. Note that
Timer 2 must be initialized and running in order to increment
the value in the other timer/counter.

Timers 0 and 1 can also be programmed to count LOW-to-
HIGH transitions on the external input pin. Each transition on
the external pin is synchronized to the 80186 family processor
clock before it is presented to the timer circuitry (see Appen-
dix B for information on synchronizers). The timer counts
transitions on the input pin; the input value must go LOW,
then HIGH, to cause the timer to increment. Transitions on this
line are latched. The maximum count rate for the timer is 1/4
the CPU clock rate measured at CLKOUT.

6.3 TIMER INPUT PIN OPERATION

Timers 0 and 1 each have individual timer input pins. All
LOW-to-HIGH transitions on these input pins are synchro-
nized, latched, and presented to the counter element when the
particular timer is being serviced by the counter element.

Signals on this input can affect timer operation in three differ-
ent ways. The manner in which the pin signals are used is

intel

TIMER UNIT

determined by the EXTernal and RTG (retrigger) bits in the
timer control register. If the EXTernal bit is set, transitions on
the input pin will cause the timer count value to increment if
the timer is enabled (that is, the ENable bit in the timer control
register is set). Thus, the timer counts external events. If the
EXTermnal bit is cleared, all timer increments are caused by
either the CPU clock or by Timer 2 reaching its maximum
count. Inthis mode, the RTG bit determines whether the input
pin will enable timer operation, or whether it will retrigger
timer operation.

When the EXTernal bit is LOW and RTG bit is also LOW, the
timer will count internal timer events only when the timer
input pin is HIGH and the ENable bit in the timer control
register is set. Note that in this mode, the pin is level sensitive,
not edge sensitive. A LOW-to-HIGH transition on the timer
input pin is not required to enable timer operation. If the input
is tied HIGH, the timer will be continually enabled. The timer
enable input signal is completely independent of the ENable
bit in the timer control register. Both must be HIGH for the
timer to count. Examples of uses for the timer in this mode
would be a real time clock or a baud rate generator.

‘When the EXTernal bit is LOW and the RTG bit is HIGH,
every LOW-to-HIGH transition on the timer input pin causes
the timer count register to reset to zero. This mode of operation
can be used to generate a retriggerable digital one-shot. After
the timer is enabled (i.e., the ENable bit in the timer control
register is set), timer operation (counting) will begin only after
the first LOW-to-HIGH transition of the timer input pin has
been detected. If another LOW-to-HIGH transition occurs on
the input pin before the end of the timer cycle, the timer will
reset to zero and begin the timer cycle again. A timer cycle is
defined as the time the timer is counting from zero to the
maximum count (either max count A or max count B). This
means that in the dual max count mode, the RIU bit is not set
if the timer is reset by the LOW-to-HIGH transition on the
input pin. Should a timer reset occur when RIU is sei (indicai-
ing max count B), the timer will again begin to count up tomax
count B before resetting the RIU bit. Thus, when the ALTer-
nate bit is set, a timer reset will retrigger (or extend) the dura-
tion of the current max count in use (which means that either
the LOW or HIGH level of the timer output will be extended).

If the CONTinuous bit in the timer control register is cleared,
the timer ENable bit will automatically be cleared whenever a
timer cycle has been completed (max count is reached). If the
CONtinuous bit in the timer control register is set, the timer
will reset to zero and begin another timer cycle whenever the
current cycle has completed.

6.4 TIMER OUTPUT PIN OPERATION

Timers Oand 1 each have a timer output pin which can perform
two functions. The first is a single pulse indicating the end of
a timing cycle. The second is a level indication of the maxi-
mum count register being used. The timer outputs operate as
outlined below whether internal or external clocking of the
timer is used. With external clocking, the time between a tran-
sition on the timer input pin'and a corresponding transition on
the timer output pin varies from 2 1/2 to 6 clocks. The exact
timing depends on when the input transition occurs relative to
timer service by the counter element.

‘When the timer is in single maximum count register mode, the
timeroutput pin will go LOW forasingle CPU clock one clock
after the timer is serviced by the counter element when maxi-
mum count is reached (see Figure 57).

‘When the timer is programmed in dual maximum count regis-
termode, the timer output pin indicates which maximum count
register is being used. It is LOW if maximum count register B
is being used and HIGH if maximum countregister A is being
used. The timer can generate a repetitive waveform if the
CONTinuous bit in the timer control register is set. The fre-
quency and duty cycle of this waveformiis easily controlled by
the programmer. For example, if maximum count register A
contains 10,.-maximum count register B contains 20, and
CLKOUT is 12.5 MHz, the timer generates a 33 per cent duty
cycle waveform at 104 kHz. If the timer is programmed to halt
upon maximum count, the output pin will go HIGH when the
timer halts.

The timer output pins do not float during bus HOLD.

TIMER 0 SERVICED
kit ity

| L

INTERNAL

COUNT
VALUE

MAX COUNT — 1

) S 0

TMR OUT
PIN

270288-001-62

Figure 57. 80186 Timer Out Signal

intel’

TIMER UNIT

6.5 EXAMPLE TIMER INITIALIZATION CODE

The 80186 family timers possess great flexibility. It is easy to
program them as baud rate generators, digital one-shots, pulse
width modulators, event counters, and pulse width measure-

6.5.1 REAL TIME CLOCK

Figure 58 contains sample code to initialize Timer 2 to gener-
ate interrupts every millisecond. The CPU then increments
memory-based clock variables.

ment applications.

$modl8b
name

example_8018b_family timer_code

5 This file contains an example 8018k family timer routine to set up the timer
3 and interrupt controller to cause the timer to generate an interrupt

3 every L0 milliseconds. and to service interrupts to implement a real

) time clock. Timer 2 is used in this example because no input or output
3 signals are required. The code example assumes that the peripheral

) control block has not been moved from its reset location (FFOO-FFFF in
3 I/0 space) -

3

argl equ word ptr EBP + 41
arge equ word ptr EBP + b1
arg3 equ word ptr EBP + 81
timer_2int equ 19 5timer 2 has vector type 19
timer_2control equ OFFbkh
timer_2max_ctl equ OFFk2h
timer_2count equ OFFLOh
timer_int_ctl equ OFF32h
eoi_register equ 0OFF22h 5interrupt controller regs
interrupt_stat equ OFF30h
data segment public'data’
public hour_aminute_ssecohd_smsec_
msec_ db ?
hour_ db ?
minute_ db ?
second_ db ?
data ends
cgroup group code
dgroup group data
code segment public_code_
public set_time
assume cs:icodes ds:dgroup
3
3 set_time(houraminute.second)
3 sets the time variables. initializes timer 2 to provide
3 interrupts every 10 milliseconds. and programs the interrupt’
) vector for timer 2
)
set_time proc near 5 set stack addressability
enter 0.0 3 save registers used
push AX
push DX
push SI
push DS
xor AX.AX i set the interrupt vector
S5 the timers have unique
Sinterrupt vectors even though
3 they share the same control
3 register
mov DS.AX
mov SI.4xtimer_2int
mov word ptr DS:LSI3. offset time_interrupt_routine
inc SI
inc SI
mov DS:ESIT.CS

Figure 58. Example 80186 Family Real Time Clock Code

6-5

TIMER UNIT

set_time

pop

mov
mov
mov
mov
mov
mov
mov

mov
xor
out

mov
mov

out
mov
mov

out
mov
mov

out
sti

pop
pop
pop
leave
ret
endp

timer_2_interrupt_routine

bump_second:

bump_minute:

bump_hour:

reset_hour:

reset_int_ctl:

DS
AX.argl
hour_sAL
X-arge
minute_-AL
AX.arg3
second_-AL
msec_a0
DX-.timer_2count
AX~AX
DX AX
DX-timer_2max_ctl
AX.2000
DXAX
DX-timer_2control
AX-1110000000000001b
DXqAX
DX-timer int ctl
AX.0000b
DX1AX
SI
DX
AX
proc far
push AX
push DX
cmp msec_»99
jae bump_second
inc msec_
jmp reset_int_ctl
mov msec_-0
cmp minute_.59
jae bump_minute
inc second__
jmp reset_int_ctl
mov second_-0
cmp minute_-59
jae bump_hour
inc minute_
jmp reset_int_ctl
pop DX
pop AX
ret
mov minute_-0
cmp hour_a1l2
jae reset_hour
inc hour_
jmp reset_int_ctl
mov hour_+1

ae

9% ae as as ae ae

FLRFTIFTR

FLIFTINTINT

4

4 ae

a

-

set the time values

clear the
count
register

set the max count value
10 ms 7/ 500 ns(timer 2 counts
at 1/4 the CPU clock rate)

set up the control word
enable counting. generate
interrupts on TCs continuous
counting

set up the interrupt
controller

unmask interrupts highest
priority interrupt

enable processor interrupts

see if one second has passed

if above or equal-..

reset millisecond
see if one minute has passed

see if one hour has passed

see if 12 hours have passed

Figure 58. Example 80186 Family Real Time Clock Code (continued)

6-6

4% 2% a0 ae ot ae ae as g

®
I"l'el TIMER UNIT
mov DX-eo0i_register
mov AX.8000h Ssnon-specific end of
Sinterrupt
out DX.AX
pop DX
pop AX
iret
timer_2_interrupt_routine endp
code ends
end
270288-001-63
Figure 58. Example 80186 Family Real Time Clock Code (continued)
$modlak
name example 8018k _baud_code

This file contains an example 8018b family timer routine. This routine sets up

the timer as a baud rate generator. In this mode. Timer 1 is used to

generate a square
serial controller

wave output with a period of b.51 usec for use with a
at 9600 baud programmed in divide by 1k mode-This

assumes that the procesor is running at 11-.0592 MHz. The code example

also assumes that

the peripheral control block has not been moved from

its reset location (FFOD-FFFF in I/0 space)-

timerl_count equ OFF58h
timerl_control equ OFFSEh
timerl_max_cnt_a equ OFF5Ah
timerl_max_cnt_b equ OFF5Ch
code segment 3 public' code'
assume cs:code
hl
5 Set_baud() initializes timer 1 as a baud rate generator for a serial port
3 running at 9600 baud
set_baud proc near
push AX 5 save registers used
push DX
mov DX-timerl_count 3 clear the
xor AXAX 5 count
out DX AX 5 register
mov AX-9 i set the max count value
mov DX+ timerl_max_cnt_a 390.UYns x 18 = b.5 usec
out DX+AX
mov DX. timerl_max_cnt_b
out DX AX
mov DX-timerl_control 5 set the control word
mov AX-1100000000000011b 5 enable counting
sno interrupt on TC
s continuous counting
5dual max count registers
out DX.AX
pop DX
pop AX
‘ret
set_baud endp
code ends
end 270288-001-64

Figure 59. Example Baud Rate Initialization Code

6-7

- ®
mtel TIMER UNIT
6.5.2 BAUD RATE GENERATOR 6.5.3 EVENT COUNTER
Figure 59 is an example of code to generate a baud rate clock An 80186 family timer can count events using the timer input
for serial communications controllers. pins. Sample code for such an application is shown in Figure
60.
$modléb
name example_8018b_family count_code

4% % g% av ae gv o ae e ae g

This file contains an example 8018bL family timer routine to set up the timer
as an external event counter. In this mode. Timer 1 is used to count
transitions aon its input pin. After the timer has been set up by the
routine. the number of events counted can be directly read from the
timer count register at location FF58H in I/0 space. The timer will
count a maximum of 65535 timer events before wrapping around to zero.
This code example also assumes that the peripheral control block has not
been moved from its reset location (FFOO-FFFF in I/0 space).

timerl_control equ OFF5SEh
timerl_max_cnt equ OFFS5Ah
timerl_cnt_reg equ OFF58H
code segment public'code’
assume cs:code
Rl
3 set_count()initializes the 8018L timerl as an event counter
3.
set_count proc near 3 save registers used
push AX
push DX
mov DXatimerl_max_cnt i set the max count value
mov AX.0 5allows the timer to count
5all the way to FFFFH
out DX.AX
mov DXatimerl_control 3set the control word
mov AX.110000000000010kb 3 enable counting
ino interrupt on TC
5 continuous counting
isingle max count register
5 external clocking
out DX AX
xor DX.timerl_cnt_reg 5 zero AX
mov DX-timerl_cnt_reg 5and zero the count in the
5 timer
out DX+ AX
pop DX
pop AX
ret
set_count endp
code ends
end

270288-001-65

Figure 60. Example 80186 Family Event Counter Code

6-8

Chip Select/Ready Logic 7

CHAPTER 7
CHIP SELECT/READY LOGIC

The 80186 family includes a Chip Select Unit which provides

13 hardware chip select signals for memory and I/O accesses
generated by the CPU and DMA Unit. This unit is program-
mable such that it can fulfill the chip select requirements (in
terms of memory device or bank size and speed) of many small
and medium sized 80186 family processor systems. Using
integratedchip selectshasthe advantage overexternally generated
chip selects because the chip select signals appear earlier in the
bus cycle.

The chip selects are driven only for internally generated bus
cycles. Any cycles generated by an external device (that is, an
external bus master) will not cause the chip selects to go active.
Thus, any external bus masters must be responsible for their
own chip select generation. Also, during a bus HOLD, the
processor does not float the chip select lines. Therefore, logic
must be included to enable the devices which the external bus
master wishes to access (see Figure 61).

the block size was 128K (four 32 Kbyte areas) the base address
could be 0 or 20000H, but not 10000H. With MCS3-0 pro-
grammedfora5 12K block andeither UCS or LCS programmed
fora256K block, the maximum memory area under control of
the memory chip selects is 768K.

The memory chip selects are controlled by 4 registers in the
peripheral control block (see Figure 63). These include one
each for UCS and LCS, the values of which determine the size
of the memory blocks addressed by these lines. The other
registers are used to control the size and base address of the
mid-range memory block.

OnRESET, only UCS isactive. Itis programmed to be active
for a block at the top 1 Kbyte of memory, to insert three wait
states to all memory fetches, and to factor external READY
for every memory fetch (see Section 7.3 for more information

80186 CHIP SELECT
EXTERNALLY GENERATED CHIP SELECT

MEMORY or 1/0
m“_ DEVICE CHIP SELECT

270288-001-66

Figure 61. 80186 External Chip Select/Device Chip Select Generation

7.1 MEMORY CHIP SELECTS

The 80186 family provides six discrete memory chip select
lires. These signals are the Upper Memory Chip Select (UCS),
Lower Memory Chip Select (LCS), and the Mid-Range Chip
Selects 0-3 (MCSO0-3). They are meant to be connected to the
three major areas of the system memory (see Figure 62) butare
not limited to this application.

The upper limit of UCS and the lower limit of LCS are fixed at
OFFFFFH and 00000H in memory space, respectively. The
other limit is set by the memory size programmed into the
control register for the chip select line. UCS and LCS are
active for block sizes up to 256 Kbytes.

Mid-range memory chip selects are active when a memory
reference is made within a programmed 8 to 512 Kbyte block.
The user programs both the base address and the block size of
the memory area. Each of the four chip select lines is active for
one of the four equal contiguous divisions of the mid-range
block. Therefore, if the total block size is 32 Kbytes, each chip
select is active for 8K of memory with MCSO being active for
the first range and MCS3 being active for the last range. The
only limitation is that the base address must be programmed to
be an integer multiple of the total block size. For example, if

FFFFF
ucs STARTUP
ROM
MCS3 {
mcs2 GENERAL
- PURPOSE-
o] MEMORY
MCso {
INTERRUPT
—=| | VECTORs
ics s
DATA
0
270288-001-67

Figure 62. 80186 Family Memory Areas and
Chip Selects

[®
mtel CHIP SELECT/READY LOGIC
OFFSET:
AOH | UPPER MEMORY SIZE @ umcs
A2H | LOWER MEMORY SIZE ® | wmes
A4H | PERIPHERAL CHIP SELECT BASE ADDRESS @ PACS
A6H | MID-RANGE MEMORY BASE ADDRESS @ MMCS
ABH | MID-RANGE MEMORY SIZE I £ I " I ® | mpcs

NOTES:

1. Upper memory READY bits.

2. Lower memory READY bits.

3. PCS0-PCS3 READY bits.

4. Mid-range memory READY bits.

5. PCS4-PCS6 READY bits.

6. MS: 1 = Peripherals active in memory space.
0 = Peripherals active in I/O space.

7.EX:1=7PCSlines.
0=PCS5=A1,PCS6=A2.

Not all bits of every field are used.

@

270288-001-68

Figure 63. Chip Select Control Registers

oninternal READY generation). None of the other chip select
lines will be active until all necessary registers have been
accessed. A read to an uninitialized chip select register will
enable the chip select function controlled by thatregister. Three
of the mid-range chip select pins are unavailable on the 80C186
when it is in Enhanced Mode (see Section 7.5).

7.2 PERIPHERAL CHIP SELECTS

The 80186 family. provides seven discrete chip select lines
which are meant to be connected to peripheral components in
a system based on an 80186 family processor. Each of these
lines is active for one of seven continuous 128 byte areas in
memory or I/O space above a programmed base address.

The peripheral chip selects are controlled by two registers in
the internal peripheral control block (see Figure 63). These
registers set the base address of the peripherals and map the
peripherals into memory or I/O space. Both of these registers
must be accessed before any of the peripheral chip selects will
become active.)

A bit in the MPCS register allows PCSS and PCS6 to become
latched A1 and A2 outputs. When this option s selected, PCS5
and PCS6 reflect the state of Al'and A2 throughout a bus
cycle. This allows external peripheral register selection in a
system in which the addresses are not latched. Upon RESET,
PCS35 and PCS6 are driven HIGH.

72

7.3 READY GENERATION

The 80186 family includes a READY Generation Unit. This
unit generates an internal READY signal for all accesses to
memory or I/O areas to which the chip select circuitry re-
sponds.

ForeachREADY generation area, the internal unit may insert
up to three wait states. In addition, the READY generation
circuitmay be programmed to ignore or include the state of the
external READY pins. When using both internal and external
READY generation, both elements must be fulfilled before a
bus cycle will end. Follow Table 16 to program the READY
control bits. The external READY condition is always re-
quired upon RESET for accesses involving the top 1K of
memory. Therefore, at least one of the READY pins must be
connected to functional READY circuitry or be tied HIGH
until UCS is reprogrammed during the initialization sequence.

Table 16. 80186 Family Wait State Programming

R2 | R1 | RO Number of Wait States
0 0 0 | 0+ external READY
0 0 1 1 + external READY
0 1 0 | 2+external READY
0 1 1 3 + external READY
1 0 0 | 0 (noexternal READY required)
1 0 1 1 (no external READY required)
1 1 0 | 2(noexternal READY required)
1 1 1 3 (no external READY required)

intel’

CHIP SELECT/READY LOGIC

7.4 OVERLAPPING CHIP SELECT AREAS

Itis customary that chip select areas do not overlap each other.
Itis imperative that chip selects do not overlap any locations of
the integrated 256-byte peripheral control block.

Whenever two chip select areas do overlap, the processor
activates both lines during accesses in the overlapped region.
The user must program the READY bits for both areas to the
same value; otherwise, the processor response to an access in
the overlapped region is indeterminate.

If any of the chip select areas overlap the integrated 256-byte
control block, the timing on the chip select lines is altered. An
access to the control block will temporarily activate the corre-
sponding chip select pin, but it will go inactive prematurely.

7.5 CHIP SELECTS AND THE 80C186 IN
ENHANCED MODE

The 80C186 MCS0, MCS1 and MCS3 pins change function
when the device is configured for Enhanced Mode (see Ap-
pendix C.2 for more about Enhanced Mode). The 80C188
MCS pins function the same in both modes. These pins are
configured to support an asynchronous numerics floating point
processor extension(see Table 17). Thus, the 80C186 does not
provide the complete range of middle chip selects normally
available. However, the functionality of the MCS2 pin and the
programming features of the MPCS and MMCS registers are
still available.

Table 17. MCS Pin Definitions

Pi Compatible Enhanced
in#| " Mode Mode
35 MCS3 NPS,
Numerics Processor Select
36 MCS2 MCS2
37 MCS1 ERROR,
Numerics Processor Error
38 MCSO0 PEREQ
Processor Extension Request

In Enhanced Mode, it is still possible to program the starting
address, block size and READY requirements of the middle
chip selects. This allows the user to take advantage of the wait
state generation logic on the 80C186 even though most of the
MCS pins are not available. It is also possible to use MCS2
which is active for one fourth the block size (see Figure 62).

Ifthechipselectcircuitry is programmed so the reserved numerics
processor port addresses 00F8H-00FFH fall within the PCS
address range, a PCS pin will go active during I/O operations

7-3

to the 80C187. However, the 80C186 NPS line does not go
active for non-numerics accesses. Itis the responsibility of the
system designer to ensure that no bus contention occurs during
NUMETiCS processor operations.

7.6 EXAMPLE SYSTEM INITIALIZATION
CODE

Figure 64 contains code which initializes 80186 family chip
select circuitry. Since only the upper memory chip select is
active at RESET, it is customary to program memory chip
selects first, followed by peripheral chip selects and the DRAM
Refresh Control Unit (80C186/80C188). Then, depending on
which units are used, the Interrupt Controller, timers,and DMA
Control Unit may be programmed as required.

ntel

CHIP SELECT/READY LOGIC

$modléb
name

3
3
3
restart

restart
3

init_hw

o a0 a0 e g

hl

UNCS_reg
LMCS_reg
PACS_reg
MPCS_reg
UMCS_value
LMCS_value
PACS_value
MPCS_value

initialize

ae e a0 ae

initialize
init_hw

example_8018b_family system_init

segment at OFFFFh

org 0
jmp far ptr initialize
ends

extrn monitor:far
segment at OFFOh
assume (S:init_hw

equ OFFAQH

equ OFFACH

equ OFFA4H

equ OFFA8H

equ OF038H

equ 07F8H

equ 007EH

equ 81BaH

proc far

mov DX UMCS_reg
mov AX.UMCS_value
out DX AX

mov DX.LMCS_reg
mov AX-LMCS_value
out DX AX

mov DX PACS_reg
mov AX.PACS_value
out DX.1AX

mov DXMPCS_reg
mov AX.MPCS_value
out DX.AX

endp
ends
end

This file contains a system initialization routine for the 8018b. It
initializes the integrated chip select registers.

3 This is the processor reset
5 address at OFFFFOH

This segment initializes the cHip selects. It must be located in the top 1K
to ensure that the ROM remains selected in the 8018k family processor
system until the proper size of the select area can be programmed-.

5chip select register locations

3b4K+ no wait states

532K. no wait state
speripheral base at 4Y00OH. 2 ws
5 PCS5 and b supplied.

speripherals in I/0 space

5 program the UMCS register
5 program the LMCS register

set up the peripheral chip
selects (note the mid-range
memory chip selects are not
needed in this system. and
are thus not initialized)

ae a0 ae av ae

Now that the chip selects are all set ups the main program of the computer may
be executed-

270288-001-69

Figure 64. 80186 System Initialization Code

7-4

DMA Control Unit

CHAPTER 8
DMA CONTROL UNIT

An 80186 family processor includes a DMA Unit consisting
of two independent DMA channels. These channels operate
independently of the CPU and drive all integrated bus inter-
face components (Bus Interface Unit, chip selects, etc.) ex-
actly as the CPU does (see Figure 65). This means that bus
cycles initiated by the DMA Unit are the same as bus cycles
initiated by the CPU (except that S6 = 1 during all DMA-
initiated cycles). Interfacing to the DMA Unit itself is very
simple, since except for the addition of the DMA request
connection, it is exactly the same as interfacing to the CPU.

EXTERNAL ADDRESS/DATA,
CONTROL, CHIP SELECTS,
ETC.
BUS INTERFACE
&
CHIP SELECT CIRCUITRY
! INTERNAL BUS
80186 DMA B moa.
cPu REGISTERS EL°E' 'MENT' R
DMA
REQUESTS
270288-001-70

Figure 65. CPU/DMA Channel Internal Model

8.1 DMA FEATURES

Each of the two DMA channels provides the following fea-
tures:

+ Independent 20-bit source and destination pointers which
access the I/O or memory location from which data will be
fetched or to which data will be deposited.

¢ Programmable auto-increment, auto-decrementor neither,
relative to the source and destination pointers after each
DMA transfer.

¢ Programmable termination of DMA activity after a cer-
tain number of DMA transfers.

¢ Programmable CPU interruption at DMA termination.

« Byteorword DMA transferstoor fromeven orodd memory
or I/O addresses.

¢ Programmable generation of DMA requests by the source
of the data, the destination of the data, Timer 2 (see Chap-
ter 6), or by the DMA Unit itself.

8.2 DMA UNIT PROGRAMMING

Each of the DMA channels contains several registers to con-
trolchannel operation. Theseregisters are included inthe 80186
family integrated peripheral control block (see Section 5.2).
These registers include the source and destination pointer
registers, the transfer count register, and the control register.
The layout of the bits in these registers is given in Figures 66
and 67.

The 20-bit source and destination pointers access the com-
plete one Mbyte address space of the 80186 processor family
and all 20 bits are affected by the auto-increment or auto-
decrement unit of the DMA. The address space is seenas aflat,
linear array without segments. Even though the usual I/O
addressability is 64 Kbytes, it is possible to perform I/O ad-
dresses over a one Mbyte address range. Therefore, one must
program the upper four bits of the pointer registers to 0 if
routine I/O addresses are desired.

After every DMA transfer the 16-bit DMA transfer count
register is decremented by 1, whether a byte transfer or a word
transfer has occurred. If the TC bitin the DMA control register
is set,the DMA ST/STOPbit (see below) will be cleared when
this register goes to 0, causing all DMA activity to cease. A
transfer count of zero allows 65536 (216) transfers. If the TC
bitis cleared, the transfer countregister will decrement to zero,
then roll over to OFFFFH; transfers will continue indefinitely.

Upon RESET, the contents of the DMA pointer registers and
transfer count registers are indeterminate; initialization of all
the bits should be practiced.

The DMA control register (see Figure 67) contains bits which
control various channel characteristics. Each data source and
destination pointer can point to memory or I/O space, and be
incremented, decremented, or left alone aftereach DMA trans-
fer. The register also contains a bit which selects byte or word
transfers. Two synchronization bits determine the source of
the DMA requests (see Section 8.7). The terminal count (TC)
bit determines whether DMA activity will cease after a pro-

3 ®
mtel DMA CONTROL UNIT
OFFSET
DEH x x x
DCH .
DAH | [T1 [T] 1 CONTROL WORD
D8H [15 0 | TRANSFER COUNT
osH I 8| pesminaTION POINTER
DaH [15 [
D2H J1e 16
oon |15 o | SOURCE POINTER cnmusnt
CER 1 x x x
CCH cmmsLol
CAH | [T T T T Ix[[]] conrroLworo
ceH |15 0| TRANSFER COUNT
cenl x x x__]® 1] pesrmnanon pomTeR
can [15 0
cam X x x_ |9 18] gounce pomTeR
CoH |15 0
270288-001-71
Figure 66. 80186 Family DMA Registers
15 o [
ST/
M/i751 DEC | INC [M/i75iDEC | INC | TC [INT [SYN I P mol x|, W"'J
CHG/ _/
DESTINATION SOURCE NOCHG
270288-001-72

Figure 67. DMA Control Register Format

grammed number of DMA transfers, and the INT bit enables
interrupts to the processor upon terminal count. An interrupt
will not be generated to the CPU unless both the INT bit and

TC bit

ra cat
i onar

< 5CL.

The control register also contains a start/stop (ST/STOP) bit
which enables DMA transfers. Whenever this bit is set, the
channel is armed, that is, a DMA transfer will occur whenever
a DMA request is made to the channel. A companion bit, the
CHG/NOCHG bit, allows the DMA control register to be
changed without modifying the state of the ST/STOP bit. The
ST/STOP bit will only be modified if the CHG/NOCHG bit is
also set during the write to the DMA control register. The
CHG/NOCHG bit is write only. It will always be read back as
a 0. Set the ST/STOP bit only after programming all other
DMA Control Unitregisters because DMA transfers may start
immediately. This bit is automatically cleared when the trans-
fer count register reaches zero and the TC bit in the DMA
control registeris set,or when the transfer countregisterreaches
zero and unsynchronized DMA transfers are programmed.

All DMA Unit programming registers are directly accessible
by the CPU. This means the CPU can, forexample, modify the
DMA source pointer register after 137 DMA transfers have

8-2

occurred, and have the new pointer value used for the 138th
DMA transfer. If more than one register fora DMA channel is
being modified while DMA activity is possible, the register
values should be placed in memory locations and moved into
the DMA registers using a LOCKed string move instruction.
This prevents a DMA transfer from occurring after only some
of the register values have changed. A read/modify/write op-
eration (AND, for example) to a memory-mapped pointer
register should also be LOCKed.

8.3 DMA CHANNEL PRIORITY

The P bit in the DMA control register determines the channel
priority if DMA requests are received on both channels simul-
taneously. A one in this position sets higher priority relative to
the other channel while a zero specifies lower priority relative
to the other channel. If both channels are programmed at the
same priority, they will alternate cycles. This alternation starts
with Channel 1 unless Channel 1 is already running a transfer.
In source or destination synchronized operation, the alterna-
tion scheme only applies when DRQO and DRQ!I are sampled
active simultaneously.

intel’

DMA CONTROL UNIT

8.4 DMA TRANSFERS

Every DMA transfer consists of two independent bus cycles,
a fetch cycle and a deposit cycle (see Figure 68). During the
fetch cycle, the byte or word data is accessed according to the
source pointer register. The data is read into an internal tempo-
rary register which is not accessible by the CPU. During the
deposit cycle, the data is written to memory or I/O space at the
address in the destination pointer register. These twobuscycles
cannot be separated by a bus HOLD, a refresh cycle, or any
other condition except RESET. DMA bus cycles are identical
to bus cycles initiated by the CPU except that the S6 status line
is driven to a logic 1 state.

DMA transfer rates depend on processor bus width and the
DMA Control Unit operating mode. Maximum DMA rates
(expressed as Mbytes/sec) can be calculated by multiplying
the processor clock rate (in MHz at CLKOUT) by the appro-
priate factor in Table 18.

8.5 DMA REQUESTS

DMA transfers may be initiated in three ways: by direct regis-
ter programming, by external requests onaDMA request (DRQ)
pin, or by timeouts of Timer 2. Continuous transfer operation
is referred to as unsynchronized mode and is selected by

©'Tw;n;1,:rz;13:u:

UGS, (€8, =t
MCS, or PCS

'
'

-

'

'

'

'
ek €
)
'

'

'

.

|

'

'

NOTES:

1. Source address.

2. Source data.

3. Destination address.
4. Destination data.

270288-001-73

5. If a source or destination address overlaps and active chip select region, the chip select will go active.
6. Wait states are inserted by programming the chip selectREADY logic for an active address region, or by the external READY pins.

Figure 68. Example DMA Transfer Cycle on the 80186/80C186

Table 18. Maximum DMA Transfer Rate Factor

Type of Synchronization 80188/80C188 80186/80C186
Unsynchronized 1/8 1/4
Source Synchronized 1/8 1/4
Destination Synchronized, CPU Does Not Need Bus 110 1/5
Destination Synchronized, CPU Needs Bus 112 1/6

intgl’

DMA CONTROL UNIT

synchronization bits in DMA control register. These bits can
also select source or destination synchronized requests on the
DRQ pin. The processor synchronizes external requests to the
CPU clock before presenting them to the DMA logic.

8.5.1 DMA REQUEST TIMING AND LATENCY

Before any DMA request can be generated, the internal bus
must be granted to the DMA Unit. A certain amount of time is
required for the processorto grant this internal bus tothe DMA
Unit. The time between a DMA request being issued and the
DMA transfer being run is known as DMA latency. Many of
the issues concerning DMA latency are the same as those
concerning bus latency (see Section 3.8.2). External HOLD
and refresh always have bus priority over DMA transfers.
Thus, the latency time of an internal DMA cycle will suffer
during an external bus HOLD.

Each DMA channel has a programmed priority relative to the
other DMA channel. Both channels may be programmed to be
the same priority, or one may be programmed to be of higher
priority than the other channel. If both channels are active,
DMA latency will suffer on the lower priority channel. If both
channels are simultaneously active and both channels are of
the same programmed priority, DMA transfer cycles will al-
ternate between the two channels (i.e., the first channel will
performa fetch and deposit, followed by a fetch and deposit by
the second channel, etc.).

The following sections describe DMA synchronizationindetail.

The minimum DMA latency is four clocks as shown in Figure
69.The DRQsignal is sampled onevery falling clock edge and
it takes this amount of time for it to propagate through the bus
control logic, independent of any wait states associated with
current bus activity. In other words, a DMA cycle will start at
the next available T, state as long as a higher priority activity
is not pending and the DRQ signal was sampled active four
clocks previously.

If DRQ is sampled active at point 1 in Figure 69, the DMA
cycle can be executed four clocks later even if the DMA re-
quest goes inactive before then. If the DMA cycle does not
start when shown (if, for instance, an 80C186/80C188 DRAM
refresh cycle starts instead), DRQ is not latched and must
remain active until four clocks before the next DMA bus cycle
T1 opportunity.

8.5.2 DMA ACKNOWLEDGE

80186 family processors generate no explicit DMA acknowl-
edge (DACK)signal. Instead, the processor performs aread or
write directly to the DMA requesting device. A DMA ac-
knowledge signal can be generated by decoding an address or
by using a PCS line (see Figure 70). Note that ALE must be
used to factor DACK in some cases because addresses are not
guaranteed stable when chip selects go active.

T,or

Tyor Tyor
: T,or : Tyor
| T,or i T,or
: Tyor : Twor
T, T

i Toor I |

i 1 H

I Tyor | T,

: Twor : Tyor of DMA
T LT CYCLE

DRQ

NOTES:

1.7, = DMA request to clock low.

2. Sly’ln\(/:g}'onizer resolution time.

3. DMA unit priority arbitration and overhead.

4.Bus interface Unit latches DMA request and decides to run DMA cycle.

270288-001-74

Figure 69. DMA Request Timing (Showing Minimum Response Time)

DMA CONTROL UNIT

| apDR.
| ATCH
80186
FAMILY g s |2
PROCESSOR DMA DEVICE
DMA
ALE bvMA
ACKNOWLEDGE
PCS0 CHIP SEL
DRQO | DMA REQUEST

NOTE:

1. A6 is arbitrary and is only used to differentiate DMA and non-DMA bus cycles.

270288-001-75

Figure 70. DMA Acknowledge Synthesis

8.6 INTERNALLY GENERATED DMA
REQUESTS

DMA transfer requests may originate from two of the inte-
grated peripherals in the 80186 family. The source may be
either the DMA Control Unit or Timer 2.

The DMA channel can be programmed so that whenever Timer
2 reaches its maximum count, a DMA request will be gener-
ated. This feature is selected by setting the TDRQ bit in the
DMA channel control register. A DMA request generated in
this manner will be latched in the DMA Control Unit, so that
once the timer request has been generated, it cannot be cleared
except by running the DMA cycle or by clearing the TDRQ
bit. Before any DMA requests are generated in this mode,
Timer 2 must be initialized and enabled.

A timer-requested DMA cycle run from either DMA channel
will reset the timer request. Thus, if both channels are using
Timer 2 to request a DMA cycle, only one DMA channel will
execute a transfer for every timeout. Another implication is
that if a second Timer 2 timeout occurs before a DMA channel
has a chance to run a DMA transfer, the first request will be
lost.

The DMA channel can also be programmed to provide its own
DMA requests. In this mode, DMA transfer cycles will run
continuously at the maximum bus bandwidth until the prepro-
grammed number of DMA transfers have occurred. This mode
is selected by programming the synchronization bits in the
DMA control register for unsynchronized transfers. Note that
in this mode, the DMA Control Unit will monopolize the CPU
bus, i.e., the CPU will not be able to perform opcode fetching,
memory operations, etc., while the DMA transfers are occur-
ring. Also notice that the DMA Control Unit will only perform
the number of transfers indicated in the maximum count reg-

ister regardless of the state of the TC bit in the DMA control
register.

8.7 EXTERNALLY SYNCHRONIZED DMA
TRANSFERS

There are two types of externally synchronized DMA trans-
fers, source synchronized and destination synchronized. These
modesare selected by programming thesynchronization (SYN)
bits in the DMA channel control register. The only difference
between the two is the time at which the DMA request pin is
sampled to determine if another DMA transfer is immediately
required after the present DMA transfer. On source synchro-
nized transfers, this is done such that two transfers may occur
immediately after each other. On destination synchronized
transfers, a certain amount of idle time is automatically in-
serted between two DMA transfers to allow time forthe DMA
requesting device to drive its DMA request inactive.

8.7.1 SOURCE SYNCHRONIZED DMA
TRANSFERS

In a source synchronized DMA transfer, the data source re-
quests the DMA cycle. In this type of transfer, the processor
reads the device requesting the DMA transfer during the fetch
cycle of the transfer. It takes four CPU clock cycles from the
time the processor samples the DM A request pin until the time
the DMA transfer begins and a bus cycle takes a minimum of
four clock cycles. Therefore, the earliest time the DMA re-
quest pin will be sampled for another DMA transfer will be at
T, of the deposit cycle of the DMA transfer (assuming no wait
states). This allows three CPU clock cycles (assuming no wait
states) between the time the DMA requesting device receives
acknowledgement of its request (at the beginning of T, of the

intel

DMA CONTROL UNIT

DMA fetch cycle), and the time it must drive the request line
inactive if no more DMA transfers are desired (see Figure 71.)

8.7.2 DESTINATION SYNCHRONIZED DMA
TRANSFERS :

In destination synchronized DMA transfers, the data destina-
tion requests the DMA transfer. An example of this would be
afloppy disk write from main memory to the disk. In this type
of transfer, the device requesting the transfer is written during
the deposit cycle of the DMA transfer. This causes a problem,
since the DMA requesting device will not receive notification
of the DMA cycle being run until three clock cycles before the
end of the DMA transfer (if no wait states are being inserted
into the deposit cycle of the DMA transfer) and it takes four
clock cycles to determine if another DMA cycle should run
immediately following the current transfer. To get around this
problem, the DMA Unit relinquishes the bus after each desti-
nation synchronized DMA transfer for at least two CPU clock

cycles. This allows the requesting device time todrop its DMA
request if itdoes notimmediately desire another DMA transfer.

When the bus is relinquished by the DMA Unit, the CPU may
resume bus operation. Typically,a CPU-initiated bus cycle is
inserted between each destination synchronized DMA trans-
fer. Ifno CPU busactivity is required, however, the DMA Unit
inserts two CPU clock cycles between the deposit of one DMA
transfer and the fetch cycle of the next DMA transfer. The
critical time at which DRQ is sampled to decide whether torun
the next DMA cycle is two clocks before the end of the deposit
cycle, regardless of wait states. Figure 71 shows the DMA
request going away too late to prevent the immediate genera-
tion of another DMA transfer. Wait states lengthen the amount
of time from the beginning of the deposit cycle to the time the
DRQ pin is sampled for a decision on the next transfer. Thus,
wait states can be inserted into the DMA cycle to increase the
amount of time the requesting device has to drop the DRQ line
after receiving DMA acknowledge.

FETCH CYCLE

DRQ

DEPOSIT CYCLE

DEPOSIT CYCLE

DRQ | | | | \|

PROCESSOR DECISION

NOTE: Current DMA source synchronized transfer will not be immediately followed by another DMA transfer.

NEXT POSSIBLE
DMA TRANSFER

PROCESSOR DECISION

NOTE: Current DMA destination synchronized transfer will be followed immediately by another DMA transfer.

270288-001-76

Figure 71. Source and Destination Synchronized DMA Request Timing

intgl’

DMA CONTROL UNIT

8.8 DMA HALT AND NMI

Whenever a Non-Maskable Interrupt is received on an 80186
family microprocessor, all DMA activity will be suspended at
the end of the current DMA transfer. This is performed by the
NMI automatically setting the DMA Halt (DHLT) bit in the
Interrupt Controller status register (see Section 9.5.2.10). The
timing of NMI required to prevent a DMA cycle from occur-
ring is shown in Figure 72. After the NMI has been serviced,
the DHLT bit can be cleared by the programmer to resume
DMA activity (i.e., it is not automatically cleared when enter-
ing the NMI service routine). The DHLT bit is automatically
cleared when the IRET instruction is executed. In either case,
DMA activity resumes exactly as it left off, i.e., none of the
DMA control registers are modified. This DHLT bit may also

be set by the programmer to prevent DMA activity during
critical sections of code. Do not write to the DHLT bit in the
controller status register while timer interrupts are enabled; a
conflict with the internal use of the register may lead to incor-
rect timer interrupt processing. The DHLT bit does not func-
tion when the integrated Interrupt Control Unit is configured
for Slave Mode.

8.9 EXAMPLE DMA INTERFACE CODE

Figure 73 contains sample code to initialize the DMA Control
Unitto perform transfers between the system and a floppy disk
controller.

NOTES:
1. DMA request synchronization.
2. Decision: Will DMA cycle be run?

3. NMI synchronization time.

Answer: No DMA request is active but DHLT is set (from NMI request).

DMA FETCH CYCLE DMA DEPOSIT CYCLE
i i 1 | 1 1 |
| T, | T 1 T, | T ! T, | T, 1 T,
DRQ |] | { | | |
(ALWAYS —
HIGH) | | | | | | |
] I | ! le -l I
| . ; NN :
I ' |] I] 1
o—tt 4 | :
1
! ® ! ® 1 | | |
| | | | T T T
| | l 1
DHLT ' ' ' I | ! !
INTE | l | 1 1 | l
‘Rm';% 1 1 | | 1 | 1
BIm

270288-001-77

4. Logic delay time from synchronized NMI unit DHLT set (note: DHLT is in the interrupt control status register).

Figure 72. NMi and DMA Interaction

ntel

DMA CONTROL UNIT

$modldb
name

assembly example_8018b_family DMA_support

This file contains an example procedure which initializes the DMA controller
to perform the DMA transfers between an 8018k family system and the 8272

block has not been moved from its reset location.

5
B
3 Floppy Disk Controller (FDC). It assumes that the peripheral control
3
3

argl equ word ptrEBP + 43
arge equ word ptrIBP + b3
arg3 equ word ptrIBP + 81
DMA_FROM_LOWER equ OFFCOh 5 DMA register locations
DMA_FROM_UPPER equ OFFC2h
DMA_TO_LOWER equ OFFCHh
DMA_TO_UPPER equ OFFCkh
DMA_COUNT equ OFFC8h
DMA_CONTROL equ OFFCAh
DMA_TO_DISK_CONTROL equ 01l48kh 5 destination synchronization
3 source to memory. incremented
5destination to I/0
3no terminal count
ibyte transfers
DMA_FROM_DISK_CONTROL equ DAO4kLh 5. source synchronization
5 source to I/0
s5destination to memory.
iincremented. no terminal count
ibyte transfers
FDC_DMA equ bBah 3 FDC DMA address
FDC_DATA equ 5-1.14] sFDC data register
FDC_STATUE equ &80h FDC status register
cgroup group code
code segment public’'code’
public set_dma_
assume csicgroup
h)
3 set_dma (offsetato) programs the DMA channel to point one
3 side to the disk DMA address, and the other to memory
3 pointed to by ds:offset. If “to"= O then will be a transfer
5 from disk to memory3s if “to’= 1 then will be a transfer from
3 memory to disk. The parameters to the routine are passed on
E} the stack.
s
set_dma_ proc near
enter 0.0 5 set stack addressability
push AX 5 save registers used
push BX -
push DX

FLRNTINT

check to see direction of
transfer

test argeal

jz from_disk
performing a transfer from memory to the disk controller

mov AX.DS iget the segment value
rol AX Y4 5 generate the upper 4 bits of
5 the physical address in the
51lower 4 bits of the register
mov BXaAX 3 save theresult...
mov DX-DMA_FROM_UPPER Sprgm the upper 4 bits of the
out DX AX 5 DMA source register
and AX-O0FFFOh 5 form the lower 1lb bits of the
3 physical address
add AX-argl 5add the offset
mov DX-DMA_FROM_LOWER sprgm the lower 1k bits of the
out DX.AX 3 DMA source register
jnc no_carry_from 5 check for carry out of
5 addition
inc BX 3if carry outs then need to adj
mov AX.BX 5the upper 4 bits of the
)

pointer

Figure 73. Example DMA Interface Code

8-8

from_disk:
b

LT

no_carry to:

set_dma_

code

performing a transfer from the disk to memory

mov AX-DS

rol AXAY4

mov DX-DMA_TO_UPPER
out DX AX

mov BX~AX

and AX-0OFFFOh

add AX.argl

mov DX~-DMA_TO_LOWER
out DX-AX

jnc no_carry to

inc BX

mov AX.BX

mov DX~DMA_TO_UPPER
out DX.AX

mov AX-FDC_DMA

mov DX+DMA_FROM_LOWER
out DX+AX

xor AX-AX

mov DX.DMA_FROM_UPPER
out DX AX

mov AX+DMA_FROM_DISK_CONTROL
mov DX-DMA_CONTROL
out DX.AX

pop DX

pop BX

pop AX

leave

ret

endp

ends

end

®

mtel DMA CONTROL UNIT
mov DX-DMA_FROM_UPPER
out DX.AX

no_carry from:
mov AX.FDC_DMA sprgmthe low b bits of DMA
mov DX-DMA_TO_LOWER 5destination register
out DX.AX
xor AX~AX 3 zero the uppper 4 bits of
the

mov DX+DMA_TO_UPPER 35 DMA destination register
out DX+ AX
mov AX-DMA_TO_DISK_CONTROL: prgm the DMA ctl reg
mov DX-DMA_CONTROL Snote:DMA may begindirectly
out DX~ AX 5after this word is output
pop DX
pop BX
pop AX
leave
ret

270288-001-78

Figure 73. Example DMA Interface Code (continued)

8-9

Interrupts 9

CHAPTER 9
INTERRUPTS

80186 family interrupts can be software- or hardware-initi-
ated. Software interrupts originate from three sources:

¢ Execution of INT instructions.

» Adirect result of program execution, that is, execution of
a breakpointed instruction.

¢ Anindirectresultof program logic, forexample, attempted
division by zero.

Hardware interrupts originate from either the integrated pe-
ripherals or external logic. In the 80186 family, an integrated
Interrupt Control Unit performs the tasks which would other-
wise be leftto an external 8259 Interrupt Controller. Hardware
interrupts are classified as either non-maskable or maskable.

Allinterrupts, whether software- or hardware-initiated, result
in the transfer of control to a new program location. A 256-
entry vector table (see Figure 74), which contains address
pointers to the interrupt routines, resides in memory locations
0through 3FFH. Eachentry in this table consists of two 16-bit
address values (four bytes) that are loaded into the code seg-
ment (CS) and the instruction pointer (IP) registers when an
interrupt is accepted.

All interrupts save the machine status by pushing the current
contents of the flags onto the stack. The 80186 family CPU
then clears the interrupt-enable and trap bits in the flags regis-
ter to prevent subsequent maskable and single step interrupts.
Next, the CPU establishes the routine return linkage by push-
ing the current CS and IP register contents onto the stack
before loading the new CS and IP register values from the
vector table.

9.1 INTERRUPT CONTROL MODEL

80186 family software interrupts are presented directly to the
CPU, while hardware interrupts are managed through the
integrated Interrupt Controller.

The tasks performed by the integrated Interrupt Controller
include synchronization of interrupt requests, prioritization of
interrupt requests, and management of interrupt acknowledge
sequences. Nesting is provided so interrupt service routines
for lower priority interrupts may themselves be interrupted by
higher priority interrupts. The integrated Interrupt Controller
can be a master to two external 8259A or 82C59A Interrupt
Controllers or can be a slave to an external master controller.

The integrated Interrupt Controller block diagram is shown in
Figure 75. It contains registers and a control element. Four
inputs are provided for external interfacing to the interrupt
controller. Their functions change according to the mode of
the Interrupt Controller. Like the other 80186 family inte-
grated peripheral registers, the Interrupt Controller registers
are available for CPU reading or writing at any time.

9.2 INTERRUPT CHARACTERISTICS
RELATED TO INTERRUPT TYPE

The interrupts handled directly by the CPU are varied and
specific, while the interrupts handled by the integrated Inter-
rupt Controller are processed like each other.

9.2.1 INTERRUPTS HANDLED DIRECTLY BY
THE CPU

The integrated Interrupt Controller does not intervene in inter-
rupt processing related to INT instructions, instruction traps
and exceptions, and the Non-Maskable Interrupt.

9.2.1.1 INSTRUCTION-GENERATED TRAPS
AND EXCEPTIONS

Software interrupts have higher priority than hardware inter-
rupts, with the exception of NMI. There are eight dedicated
software interrupts associated with instruction execution or
attempted instruction execution, leaving room in the vector
table from Type numbers 32 through 255 for user-defined
interrupts.

The predefined software interrupts in the 80186 family are
listed below with brief descriptions. Whenaninterruptis invoked,
the CPU will transfer control to the memory location specified
by the vector associated with the specific type. The user must
provide the interrupt service routine and initialize the interrupt
vector table with the appropriate service routine address. The
user may additionally invoke these interrupts through hard-
ware or software. If the preassigned function is not used in the
system, the user may assign some other function to the associ-
ated type. However, for compatibility with future Intel prod-
ucts, interrupt Types 0-31 should not be reassigned as user
defined interrupts.

- ® N
mtel INTERRUPTS
MEMORY TABLE VECTOR MEMORY TABLE VECTOR
ADDRESS ENTRY DEFINITION ADDRESS ENTRY DEFINITION
SFE cs 2% TYPE 256 2E csi TYPE 11 - DMA1
3FC IP 255 2c 1P 11
! i USER 2A cso TYPE 10~ DMAO
I 1 AVAILABLE 28 P10
cs 32 S9
82 TYPE 32 % c TYPE 9 - RESERVED
80 IP 32 24 P9
E csst TYPE 31 2 css TYPE 8 - TIMER 0
7C 1P 31 20 P8
1E cs7
! ! RESERVED TYPE 7 - ESC OPCODE
! ! 1c P7
52 €S20 TYPE 20 1A CS6 TYPE 6 — UNUSED
50 IP 20 18 P6 OPCODE
4E 19 1 S
il TYPE 19 - TIMER 2 ® ikl U g ARAY
4C IP 19 14 IP5
4A cs 18 , 12 cs4
TYPE 18 - TIMER 1 TYPE 4 - OVERFLOW
48 P18 10 P4
46 cs17 0E cs3
S TYPE 17 - RESERVED TYPE 3 - BREAKPOINT
44 P17 oc IP3
42 cs 16 TYPE 16 - NUMERICS 0A cs2
COPROCESSOR TYPE 2—NMI
40 IP 16 EXCEPTION (80C186) 08 IP2
3E cs15 06 cs 1
TYPE 15— INT3 TYPE 1 - SINGLE-STEP
ac IP15 04 P1
3A cs 14 TYPE 14 INT2 02 cso TYPE 0 DIVIDE
38 IP 14 00 IPO ERROR
3 1
6 cs 13 TYPE. 13— INTY |=—2BYTES—=]
34 P13
32 cs12 TYPE 12 — INTO CS = CODE SEGMENT VALUE
30 P12 IP = INSTRUCTION POINTER VALUE
|=—2BYTES ~—0]
270288-001-79
Figure 74. Interrupt Vector Table
DIVIDE ERROR - TYPE 0: SINGLE STEP - TYPE 1:

Type O interrupts are invoked by an attempted division in
which the quotient exceeds the maximum value (e.g., division
by zero). The interrupt is non-maskable and is entered as part
of the execution of the divide instruction. If divide errors are
common in an application and interrupts are not re-enabled by
the interrupt service routine, add the interrupt routine execu-
tion time to the worst case divide instruction execution time to
calculate interrupt latency for hardware interrupts.

9-2

This interrupt occurs one instruction after the trap flag (TF) is
set in the flag register. It is used to allow software single step-
ping through a sequence of code. Single stepping is initiated
by copying the flags onto the stack, setting the TF bit on the
stack and popping the flags. The interrupt routine should be
the single step routine. The interrupt sequence saves the flags
and program counter, then resets TF to allow the single step
routine to execute normally. To return to the routine under
test, an interrupt return restores the IP register, CS register,

L ®
mtel INTERRUPTS
INT3
TIMER TIMER TIMER DMA DMA INT1/ INT2/ _INTY
1 > o 1 INTOSELECT INTAO INTAVIRQ NMI
1
TIMER »| INTERRUPT
CONTROL REG. REQUEST REG.
DMAO INTERRUPT
CONTROL REG. - MASK REG.
DMA 1 IN-SERVICE
CONTROL REG. REG.
EXT. INPUT 0 :,> 'ﬁ;ﬁggﬁ? PRIOR. LEV.
CONTROL REG. LA MASK REG.
EXT. INPUT 1 INTERRUPT
CONTROL REG. STATUS REG.
EXT. INPUT 2 VECToR
CONTROL REG. GENERA.
EXT. INPUT3 TION
CONTROL REG. LOGIC
INTERRUPT
REQUEST TO
PROCESSOR
< INTERNAL ADDRESS/DATA BUS
270288-001-80

Figure 75. 80186 Processor Family Interrupt Controller Block Diagram

and flags (with TF set). This allows the execution of the next
instruction in the program under test before trapping back to
the single step routine.

BREAKPOINT INTERRUPT - TYPE 3:

This is a special version of the INT instruction. Since it re-
quires only a single byte of code space, the breakpoint inter-
rupt can map into the smallest instruction for absolute break-
point resolution. This interrupt is not maskable.

INTERRUPT ON OVERFLOW - TYPE 4:

This non-maskable interrupt occurs if the overflow flag (OF)
is setin the flag register and the INTO instruction is executed.
This instruction allows trapping to an overflow error service
routine.

ARRAY BOUNDS EXCEPTION - TYPE 5:

Ifanarray index is outside the array bounds during the BOUND
instruction, a Type 5 interrupt results. The array bounds are
located in memory atalocation indicated by one of the instruc-
tion operands. The other operand indicates the value of the
index to be checked.

UNUSED OPCODE EXCEPTION - TYPE 6:

Attempted execution of undefined opcodes generates this
interrupt.

ESCAPE OPCODE EXCEPTION - TYPE 7:

Thisexceptionisthe result of attempted ESCape opcode (D8H-
DFH) execution. On the 80186/80188 and the 80C186 in
Enhanced Mode, the ESC trap is enabled by setting a bit in the
relocation register. On the 80C186 in Compatible Mode and
the 80C188 in any mode, ESC instructions always generate
this trap. (See Appendix C.2 for more on Enhanced and
Compatible Modes.) The return address of this exception will
point to the ESC instruction causing the exception. If a seg-
ment override prefix preceded the ESC instruction, the return
address will point to the segment override prefix.

NUMERICS COPROCESSOR EXCEPTION
(80C186 ONLY) - TYPE 16:

‘When the execution of numerics (ESCape) instruction causes
an unmasked exception in the 80C187 Numerics Processor
Extension, the result is an interrupt Type 16. Although this is
classified as a software interrupt, signaling is performed in
hardware from the 80C187 to the 80C186 on the ERROR pin.

intal’

INTERRUPTS

In general, this exception is detected by the 80C186 upon
execution of the instruction subsequent to the one causing the
error condition.

9.2.1.2 NON-MASKABLE INTERRUPT (NMI)

The Non-Maskable Interrupt (NMI), a hardware interrupt, is
interrupt Type 2. It has the highest priority among hardware
interrupts and is typically reserved for catastrophic events
such as impending power failure or timeout of a system watch-
dog timer. NMI cannot be prevented by programming and
multiple NMI inputs will lead to nesting of NMI interrupt
service routines. Noise on the NMI pin can cause unnecessary
system upsets.

NMI must be asserted for one CLKOUT period in order to be
internally synchronized. The signalisedge-triggered and level-
latched. The vectoring sequence for NMI starts at the next
available instruction edge after NMI is latched. The interrupt
response time for NMI is 42 processor clocks.

The processor will start recognizing the NMI input pin at the
same clock edge on which the RES input goes inactive. f NMI
is asserted within 10 clocks after RESET goes inactive, the
processor will vector to the NMI service routine before it
executes the first instruction. This procedure is useful when it
is desired to begin execution somewhere other than the default
starting address of OFFFFOH.

9.2.1.3 USER-DEFINED SOFTWARE
INTERRUPTS

The user can generate an interrupt through the software witha
two byte interrupt instruction INT nn. The first byte isthe INT
opcode while the second byte (nn) contains the type number of
the interrupt to be performed. The INT instruction is notmaskable
by the interrupt-enable flag. This instruction can be used to
transfer control to routines that are dynamically relocatable
and whose location in memory is not known by the calling
program. This technique also saves the flags of the calling
program on the stack prior to transferring control. The called
procedure must return control with an interrupt return (IRET)
instruction to remove the flags from the stack and fully restore
the state of the calling program.

All interrupts invoked through software (all interrupts dis-
cussed thus far with the exception of NMI) are not maskable
with IF and initiate the transfer of control at the end of the
instruction in which they occur. They do not initiate interrupt
acknowledge bus cycles and will disable subsequent mas-
kable interrupts by resetting the flags IF and TF. The vectors
for these interrupts are implied in the instruction.

94

9.2.2 INTERRUPTS HANDLED BY THE
INTEGRATED INTERRUPT
CONTROLLER

The 80186 family integrated Interrupt Controller receives and
prioritizes hardware interrupts from four external pins and
five integrated peripheral sources. The Interrupt Controller
was designed to allow these interrupts to be flexibly managed.
Forexample, itis possible to mask one or more interrupt sources
and handle them by polling while allowing vectored interrupts
for all the other sources to proceed.

Requests on interrupt pins INTO-3 are not latched. If a nor-
mally LOW INT input is pulsed HIGH briefly while that inter-
rupt is disabled or another interrupt is in service, that request
will not be saved, even if the corresponding bit gets temporar-
ily set in the interrupt request register. It is necessary to hold
the INT input active until the processor starts the vectoring
sequence, either by running interrupt acknowledge cycles or
reading the new CS and IP values from the interrupt vector
table. The 80186 processor family does not employ a default
vector as does the 8259A or 82C59A.

Allinterruptrequests fromthe integrated peripherals arelatched
in the integrated Interrupt Controller for presentation to the
CPU.

9.3 OTHER INTERRUPT CHARACTERISTICS

To understand how interrupts participate in the overall micro-
processor system, it is necessary to understand latency, mask-
ing and priority.

9.3.1 INTERRUPT LATENCY

Interrupt latency time it takes the 80186 family processor to
beginits response after it receives an interrupt. This is different
from interrupt response time, the time from reception of the
interrupt until it actually executes the first instruction of the
interrupt service routine. ’

Two factors affecting interrupt latency are the instruction being
executed and the state of the interrupt-enable flip-flop. The
interrupt-enable flip-flop must be explicitly set by issuing the
STlinstruction. Since interrupt vectoring automatically clears
the flip-flop, it is necessary to set the flip-flop within the inter-
rupt service routine if nested interrupts are desired.

In general, an interrupt can be acknowledged only when the
CPU finishes executing an instruction, i.e., interrupts are
acknowledged at the first available instruction boundary. For
the purpose of determining instruction boundaries, prefixes

intel’

INTERRUPTS

(LOCK, REP, and segment override) are considered to be part
of the following instruction. Thus, interrupt latency time can
be as long as 69 CPU clocks, the amount of time it takes the
processor to execute an integer divide instruction with a seg-
ment override prefix. There are a number of exceptions to
these rules.

MOVs and POPs to a segment register cause interrupt proc-
essing to be delayed until after the next instruction. This delay
allows a 32-bit pointer to be loaded to the SS and SP stack
registers without the danger of an interrupt occurring between
the two loads.

The WAIT instruction causes the CPU to suspend processing
while checking the TEST pin for a logic LOW condition. If an
interrupt is detected, the processor will vector to the interrupt
serviceroutine with the return pointer aimed back tothe WAIT
instruction. The 80C186/80C 188, does not check the ERROR
pin for 80C187 exceptions during the WAIT instruction.

When the repeat prefix (REP) is used in front of a string opera-
tion, the processor does allow interrupt vectoring between
repetitions, including those which are LOCKed. If multiple
prefixes precede a repeated string operation and the instruc-
tion is interrupted, only the prefix immediately preceding the
string primitive is restored.

With the 80C186/80C187 processor combination, interrupts
on the external interrupt pins INTO-3 can be serviced after the
80C186 starts anumerics instruction. However, once commu-
nication is completely established with the 80C187 (i.e., the
80C187 is not busy), interrupts are blocked until the end of the
instruction.

Interrupt latency is also affected by activity of the integrated
peripheral set. Interrupt latency is increased if the processor
does not have control of the bus due to the HOLD/HLDA
protocol. Bus cycles associated with the interrupt vectoring
sequence cannot break in between the fetch and depositcycles
of aDMA transfer. Finally, the 80C186/80C 188 will notaccept
interrupts during DRAM refresh bus cycles.

9.3.2 INTERRUPT MASKS AND NESTING

To provide a high degree of flexibility in designing complex
interrupt structures, the 80186 family has an elaborate mecha-
nism to control the enabling and disenabling of individual
interrupts. The programmer must understand this structure to
utilize the processor most efficiently in a heavily interrupt-
driven system. The rules of masking are as follows:

¢ The non-maskable interrupt (NMI), cannot be prevented
by programming, as its name implies.

« Software interrupts, both user-defined and execution ex-
ception, cannot be masked.

¢ All other hardware interrupts are subject to the condition
of the interrupt-enable flag which is set by the STl instruc-
tion and cleared by the CLI instruction. Since every inter-
rupt vectoring sequence clears the flag, programmer inter-
vention is required to enable interrupt nesting. The flag is
automatically restored upon execution of the IRET in-
struction.

« The integrated Interrupt Controller has a priority mask
register which disables interrupts below a programmable
priority.

« The integrated Interrupt Controller has a mask register
with programmable bits for each possible interrupt source,
including the DMA Control Unit, timers, and the external
interrupt pins. (Timers share a mask bit in Master Mode.)

« The integrated Interrupt Controller has a control register
for each interrupt source. (Timers share a control register
inMaster Mode.) Each control register addresses the same
mask bit as does the mask register.

Interrupts under control of the integrated Interrupt Controller
are nestable subject to the states of their in-service bits. Addi-
tionally, INTO and INT1 have a provision called Special Fully
Nested Mode (SFNM), which allows successive interrupts on
those pins to ignore the state of their in-service bits.

9.3.3 INTERRUPT PRIORITY

When considering the precedence of interrupts for multiple
simultaneous interrupts, apply the following guidelines:

1. Of the non-maskable interrupts (NMI, instruction trap,
and user-defined software), single step has the highest
priority (will be serviced first), followed by NMI, fol-
lowed by all other software interrupts.

2. The interrupts controlled by the 80186 family integrated
Interrupt Controller are all maskable hardware interrupts.
Their priorities levels are lower than the non-maskable
interrupts.

A simultaneous NMI and single step trap will cause the NMI
service routine to follow single step. A simultaneous software
trap and single step trap will cause the software interrupt serv-
ice routine to follow single step. Finally, simultaneous NMI
and software trap will cause the NMI service routine to be
executed followed by the software interrupt service routine.
An exception to this priority structure occurs if all three inter-
rupts are pending. For this case, transfer of control to the soft-

intel

INTERRUPTS

ware interrupt service routine followed by the NMI trap will
cause both the NMI and software interrupt service routines to
be executed without single stepping. Single stepping resumes
upon execution of the instruction following the instruction
causing the software interrupt (the nextinstruction in the routine
being single stepped).

If the user does not wish to single step before hardware inter-
rupt service routines, the single step routine need only disable
interrupts during execution of the program being single stepped

and re-enable interrupts on entry to the single step routine.
Disabling the interrupts within the program under test pre-
vents entry into the interrupt service routine while single step
(TF = 1) is active. To prevent single stepping before NMI
service routines, the single step routine must check the return
address and return control to that routine without single step
enabled. As examples, consider Figures 76 and 77. In Figure
76 single step and NMI occur simultaneously. In Figure 77,
NMI, atimer interrupt and a divide error all occur while single
stepping a divide instruction.

TFIF =1

INSTRUCTION

NMI

NMI TRAP (TF, IF = 1)

PUSH FLAGS, CS, IP
CLEARIF & TF
TRANSFER CONTROL

I SINGLE STEP TRAP (TF, IF = 0)

PUSH FLAGS CS, IP
CLRIF&TF
TRANSFER CONTROL

(]

EXECUTE SINGLE
STEP ROUTINE

(TF, IF = 0) RETURN I

EXECUTE NMI
SERVICE ROUTINE

(TF, IF = 1) RETURN I

EXECUTE NEXT
INSTRUCTION

I SINGLE STEP TRAP

PUSH FLAGS, CS, IP

CLRIF&TF) NORMAL SINGLE STEP
TRANSFER CONTROL OPERATION
EXECUTE SINGLE
STEP ROUTINE

(TF, IF = 1) RETURN I

270288-001-81

Figure 76. NMI During Single Stepping and Normal Single Step Operation

INTERRUPTS

TF=1
IF=1

NMI
DIVIDE ERROR TRAP

TIMER

PUSH FLAGS, CS, IP
CLEARS IF & TF
TRANSFER CONTROL

l NMI (IF, TF = 0)

PUSH FLAGS, CS, IP
CLEARIF & TF
TRANSFER CONTROL

[

EXECUTE NMI

(IF, TF = 0) RETURN

EXECUTE DIVIDE
ERROR ROUTINE

(IF, TF = 1) RETURN I

EXECUTE NEXT INSTR] TIMER INTERRUPT
RECOGNIZE INTR STILL ACTIVE

| TIMER INTERRUPT

PUSH FLAGS, CS, IP
CLEARIF&TF
TRANSFER CONTROL

I SINGLE STEP (IF, TF = 0)

PUSH FLAGS, CS, IP
CLEARIF & TF
TRANSFER CONTROL
EXECUTE SINGLE
STEP
(IF, TF=0) RETURN I
SERVICE
TIMER INTERRUPT
(IF, TF = 1) RETURN I
CONTINUE TO SINGLE STEP

THE PROGRAM

270288-001-82

Figure 77. NMI, Timer, Single Step and Divide Error Simultaneous Interrupts

9-7

intel

INTERRUPTS

9.4 INTERRUPT CONTROL UNIT
OPERATION MODES

The Interrupt Control Unit operates in either of two major
modes, Master Mode and Slave Mode. The system designer
must choose the operation mode early on since the two modes
differ greatly with respect to overall function, pin definition,
and programming registers.

In Master Mode, the Interrupt Control Unit acts as the master
interrupt controller for the system, receiving and arbitrating
hardware interrupts generated both internally and externally.
The Interrupt Controller presents interrupts directly to the CPU
of the 80186 family processor. As many as two 8259A (or
82C59A) Interrupt Controllers may act as slaves to the master
processor. Master Mode is the default configuration.

In Slave Mode, the integrated 80186 family Interrupt Control
Unit operates as a slave to an external master 8259A Interrupt
Controller, receiving hardware interrupts only from the inte-
grated peripherals. The CPU presents interrupt requests to the
8259A, which may receive interrupts from other sources as
well. The 8259A arbitrates all the interrupt sources and re-
quests interrupt service from the CPU. Setting the SLAVE/
MASTER bit in the relocation register (see Section 5.1) se-
lects Slave Mode.

9.5 MASTER MODE

Master Mode is the simplest and most popular configuration
of the Interrupt Control Unit.

9.5.1 MASTER MODE EXTERNAL
CONNECTIONS

In Master Mode the four external interrupt pins are configur-
able according to two options, direct and cascade. With the
pins configured in Direct Input Mode the integrated Interrupt
Controller provides interrupt vectors. With the pins config-
ured in Cascade Mode, interrupt types are furnished by an
external Interrupt Controller. Mixed mode operation (two pins
as direct inputs and two pins as an INT/INTA pair) is also
possible.

9.5.1.1 DIRECT INPUT MODE

When the Cascade Mode bits are cleared, the interrupt input
pins are configured as direct interrupt pins (see Figure 78).
Whenever an interrupt is received on the input line, the inte-
grated controller will do nothing unless the interrupt is en-
abled, and it is the highest priority pending interrupt. At this
time, the Interrupt Controller will present the interrupt to the
CPU and wait for an interrupt acknowledge. When the ac-

knowledge occurs, it will present the interrupt vector address
to the CPU. In Direct Input Mode, the CPU will not run any
external interrupt acknowledge (INTA) cycles.

———= INTO
INTERRUPT | = INT1 gp186 FAMILY
SOURCES o nT2 MEMBER
———— INT3

270288-001-83

Figure 78. Direct Input Mode Interrupt
Connections

9.5.1.2 CASCADE MODE

The INT2/INTAO and INT3/INTAL lines are dual purpose;
they can function as direct input lines, or they can function as
interrupt acknowledge outputs. When the Cascade Mode bit is
set, the interrupt input lines are configured in Cascade Mode.
In this mode, the interrupt input line is paired with an interrupt
acknowledge line. INTAO provides the interrupt acknowledge
foranINTOinput,and INTA I provides the interruptacknowledge
for an INT1 input. Figure 79 shows this connection.

aoson T o™ INTO
'OR
82C59A %
INTA (@& INTAO
80186 FAMILY
MEMBER
1 INT1
8259A INT Vee
OR
82C59A
NTA INTAT
270288-001-84

Figure 79. 80186 Family Cascade Mode Interface

intel

INTERRUPTS

The 8259A or 82C59A Interrupt Controllers may each be fur-
ther cascaded to eight more Interrupt Controllers. Cascading
Interrupt Controllers in this way allows up to 64 interrupt lev-
els.

INTO with INT2/INTAO and INT1 with INT3/INTA 1 may be
individually programmed into interrupt request/acknowledge
pairs, or programmed as direct inputs. For example, INTO and
INT2/INTAO may be programmed as an interrupt and inter-
rupt acknowledge pair, while INT1 and INT3/INTA1 each
provide separate internally vectored interrupt inputs.

9.5.2 MASTER MODE PROGRAMMING

The Interrupt Controller registers for Master Mode are de-
fined according to Figure 80.

9.5.2.1 CONTROL REGISTERS IN MASTER
MODE

Eachinterruptsource toan 80186 family processor hasacontrol
register in the internal controller. These registers contain three
bits which select one of eight interrupt priority levels for the
device (0 is highest priority, 7 is lowest priority), and a mask
bit to enable the interrupt (see Figure 81). When the mask bit
is zero, the interrupt is enabled; when itis one, the interrupt is
masked. All interrupt sources have default priority levels.

There are seven control registers in the integrated Interrupt
Controller. In Master Mode, four of these serve the external
interrupt inputs, one each for the two DMA channels, and one
for the collective timer interrupts.

MASTER MODE OFFSET ADDRESS

INT3 CONTROL REGISTER 3EH

T T INT2CONTROLREGISTER 1acH
INTT CONTROL REGISTER 3AH
[T T NToconTROL REGISTER | 38H
T TOMA1CONTROLREGISTER | 3H
[DMAOCONTROL REGISTER | 34H
= TIMER CONTROL REGISTER 32H
[TINTERRUPT CONTROLLER STATUS REGISTER | 30H
[T INTERRUPT REQUEST REGISTER | 2EH
IN-SERVICE REGISTER | 2cn

T PRIORITY MASK REGISTER | 2AH
T T T “WAskReaisTeR | 28H
POLL STATUS REGISTER | 26H
_______ POLLREGISTER |aaH
——————— EOIREGISTER | 22H
__________ ©) N

NOTE:
1. Unsupported in this mode; values written may or may not be stored.

270288-001-85

Figure 80. Interrupt Controller Registers for Master Mode

INTERRUPTS

15

SFNM @

co

i i
I

PRIORITY BITS
| |

LTM © MSK

1 1

NOTE:
1. This bit present only in INTO-INT3 control registers.
2. These bits present only in INTO-INT1 control register.

270288-001-86

Figure 81. Interrupt Controller Control Register Format

The control registers for the external interrupt pins contain
special bits not present for other interrupt sources. Setting the
LTM bit in these registers selects level-triggered operation as
opposedtoedge-triggered operation. TheINTOand INT'1 control
registerscontain Cand SFNM bits toselect Cascade and Special
Fully Nested Modes, respectively.

Setting the LTM bit in these registers selects level-triggered
operation over edge-triggered operation. With edge-triggered
operation, a LOW-to-HIGH transition must occur before the
interrupt will be recognized. The interrupt input must also be
LOW for one clock before the active-going edge. With level-
triggered operation, only a HIGH level is required to generate
an interrupt. In both types of operation, the interrupt input
must remain active until acknowledged.

With level-triggered operation only, an interrupt request input
left active until after the end-of-interrupt causes another inter-
rupt request. :

9.5.2.2 CASCADE MODE

When programmed in this mode, the 80186 family processor
will provide two interrupt acknowledge pulses in response to
external interrupts. These pulses will be provided on the INT2/
INTAQO line, and will also be reflected by interrupt acknow!-
edge status being generated on the SO-S2 status lines. The
interrupt type will be read on the second pulse. Similarly, the
processor will provide two interrupt acknowledge pulses on
INT3/INTA1 in response to an interrupt request on the INT1
line.

When an interrupt is received on a cascaded interrupt pin, the
priority mask bits and the in-service bits in the particular inter-
rupt control register will be set. This prevents the controller
from generating a CPU interrupt request from a lower priority
interrupt. Also, any subsequent interrupt requests on the same
interrupt input line will not cause the integrated Interrupt
Controller to generate an interrupt request to the 80186 family
CPU. This means that if the external Interrupt Controller re-

9-10

ceives a higher priority interrupt request on one of its interrupt
request lines and presents it to the 80186, the Interrupt Con-
troller will not present it to the CPU until the in-service bit for
the interrupt line has been cleared.

9.5.2.3 SPECIAL FULLY NESTED MODE

‘When both the Cascade Mode bit and the SFNM bit are set, the
interrupt input lines are configured in Special Fully Nested
Mode. The external interface in this mode is exactly as in
Cascade Mode. The only difference is in the conditions which
allow an external interrupt to interrupt the CPU.

When an interrupt is received from a Special Fully Nested
Mode interrupt line, it will interrupt the CPU if it is the highest
priority pending interrupt regardless of the state of the in-
service bit for the source in the Interrupt Controller. When the
processor acknowledges an interrupt from a Special Fully
Nested Mode interrupt line, it sets corresponding bits in the
priority mask and in-service registers. This prevents the Inter-
ruptControllerfromaccepting alowerpriority interrupt. However
the Interrupt Controller will allow additional requests gener-
ated by the same external source to interrupt the CPU. This
means that if the external (cascaded) Interrupt Controller re-
ceives higher priority interrupts on its interrupt request lines
and presents them to the integrated controller’s request line,
these interrupts will be nested.

If the SFNM bit is set and the Cascade Mode bit is not set, the
controller will provide internal interrupt vectoring. It will also
ignore the state of the in-service bit in determining whether to
present an interrupt request to the CPU. In other words, it will
use the SFNM conditions of interrupt generation withan inter-
nally vectored interrupt response, i.e., if the interrupt pending
is the highest priority type pending, it will cause a CPU inter-
ruptregardless of the state of the in-service bit for the interrupt.
This operation is only applicable to INTO and INT1, which
have SFNM bits in their control registers.

intal’

INTERRUPTS

9.5.2.4 REQUEST REGISTER IN MASTER
MODE

The Interrupt Controller includes an interrupt request register
(see Figure 82). This register contains seven active bits, one
for every interrupt source with an interrupt control register.
Whenever an interrupt request is made, the bit in the interrupt
request register is set regardless of whether the interrupt is
enabled. Interrupt request bits are automatically cleared when
the interrupt is acknowledged by starting the interrupt vector-
ing sequence. The programmer can set or clear the D1 and DO
bits of the request register to request or cancel DMA interrupt
requests.

9.5.2.5 MASK REGISTER IN MASTER MODE

The Interrupt Controller mask register (see Figure 83) con-
tains a mask bit for each interrupt source associated with an
interrupt control register. The bit for an interrupt source in the
mask register is the same bit as provided in the interrupt con-
trol register; modifying a mask bit in the control register will
also modify it in the mask register, and vice versa.

9.5.2.6 PRIORITY MASK REGISTER IN
MASTER MODE

The interrupt priority mask register (see Figure 84) contains
three bits which indicate the lowest priority an interrupt must
have to cause an interrupt request to be serviced. Interrupts

whichhave alower priority will be masked. Upon RESET, the
register is set to the lowest priority of 7 to enable interrupts of
any priority. This register may be read or written.

9.5.2.7 IN-SERVICE REGISTER IN MASTER
MODE

The Interrupt Controller contains an in-service register (see
Figure 85). A bit in the in-service register is associated with
eachinterrupt control register so that when an interrupt request
by the device associated with the control register is acknowl-
edged by the processor (either by interrupt acknowledge cycles
or by reading the poll register) the bit is set. The bit is reset
when the CPU issues an End Of Interrupt to the Interrupt
Controller. This register may be both read and written, i.e., the
CPU may set in-service bits without an interrupt ever occur-
ring, or may reset them without using the EOI function of the
Interrupt Controller.

9.5.2.8 POLL AND POLL STATUS
REGISTERS

The Interrupt Controller contains both a poll register and a poll
status register (see Figure 86). These registers contain the
same information. They have a single bit to indicate an inter-
rupt is pending and five bits to indicate the type of the pending
interrupt. The request bit is set if an interrupt of sufficient
priority has been received. Itis automatically cleared when the
interrupt is acknowledged. If an interrupt is pending, the

15 0
OFFSET: 2EH X X X 13] 1211 |10 }p1]po] x | TMR
270288-001-87
Figure 82. Interrupt Request Register Format
15 0
OFFSET: 28H X X X 1312} 11]0]|o1|oo] x |TMR
270288-001-88
Figure 83. Interrupt Mask Register Format
15 0
OFFSET: 2AH X X X X X PRM2| PRM1| PRMO

270288-001-89

Figure 84. Interrupt Controller Priority Mask Register Format

9-11

INTERRUPTS

MASTER MODE

OFFSET: 2CH

I3li2jn D1 TMR

270288-001-90

Figure 85. Interrupt Controller In-Service Register Format

15 0
OFFSET: 24H (Poll) NT
26H (Poll Status) |REQ X X X X s4|s3|s2|s1]so

S4-S0=INTERRUPT TYPE

270288-001-91

Figure 86. Poll and Poll Status Register Format

remaining bits contain information about the highest priority
pending interrupt. These registers are read-only.

Reading the poll register will acknowledge the pending inter-
rupt to the Interrupt Controller just as if the processor had
started the interrupt vectoring sequence. The processor will
not actually run any interrupt acknowledge cycles, and will
not vector through a location in the interrupt vector table. The
contents of the interruptrequest, in-service, poll, and poll status
registers will change appropriately.

Reading the poll status register will merely transmut the status
of the polling bits without modifying any of the other Interrupt
Controller registers.

9.5.2.9 END OF INTERRUPT REGISTER IN
MASTER MODE

The Interrupt Controller contains an End Of Interrupt register
(see Figure 87). The programmer issues an End Of Interrupt
(EOI) to the controller by writing to this register. After receiv-
ing the EOI, the Interrupt Controller automatically resets the
in-service bit for the interrupt. The value of the word written to
this register determines whether the EOI is specific or non-
specific. A non-specific EOI is requested by setting the non-
specific bit in the word written to the EOI register. In a non-
specific EOI, the in-service bit of the highest priority interrupt
setis automatically cleared, while aspecific EOI allows the in-

service bit cleared to be explicitly specified. If the highest
priority interrupt is reset, the poll and poll status registers
change to reflect the next lowest priority interrupt to be serv-
iced. If a less than highest priority interrupt in-service bit is
reset, the poll and poll status registers will not be modified
(because the highest priority interrupt to be serviced has not
changed). This register is write-only.

9.5.2.10 INTERRUPT STATUS REGISTER IN
MASTER MODE

The Interrupt Controller also contains an interrupt status reg-
ister (see Figure 88). This register contains four program-
mable bits. Three bits show which timer is causing an inter-
rupt. This isrequired because in Master Mode, the timers share
a single interrupt control register. A bit in this register is set to
indicate which timer generated an interrupt. The bit associated
with a timer is automatically cleared after the interrupt request
forthe timer is acknowledged. More than one of these bits may
be set at a time. The fourth bit is the DMA halt bit. When set,
this bit prevents any DMA activity. It is automatically set
whenever a NMl is received by the Interrupt Controller. It can
alsobe setby the programmer. This bitis automatically cleared
whenever the IRET instruction is executed. All implemented
bits in the interrupt status register are read/write. Do not per-
formthe write operation when interrupts from the timer/count-
ers are possible; a conflict with internal use of the register may
lead to incorrect timer interrupt processing.

15

NSPEC/
SPEC

OFFSET: 22H

X

X X |s4]|ss 32|s1

S4-S0= INTERRUPT TYPE

270288-001-92

Figure 87. End of Interrupt Register Format

9-12

INTERRUPTS

15

OFFSET. 30H DHLT

T2| T1} TO

270288-001-93

Figure 88. Interrupt Status Register Format

9.5.3 MASTER MODE INTERRUPT SOURCES

The 80186 family Interrupt Controller receives requests and
arbitratesamong many different interrupt request sources, both
internal and external. External interrupts are processed by the
integrated Interrupt Controller only in Master Mode. Each
interrupt source may be programmed to be a different priority
level.

9.5.3.1 INTERNAL SOURCES

The internal interrupt sources are the three timers and the two
DMA channels. Aninterrupt fromany of these interrupt sources
is latched in the Interrupt Controller. The state of the pending
interruptcan be obtained by reading the interrupt requestregister.
Also, latched DMA interrupts can be reset by the processor by
writing to the interrupt request register. Note that all timers
share a common bit in the interrupt request register in Master
Mode. The Interrupt Controller status register may be read to
determine which timer is actually causing the interrupt re-
quest. Each timer has a unique interrupt vector (see Section
9.0). Thus, polling is not required to determine which timer
has caused the interrupt in the interrupt service routine. Also,
because the timers share a common interrupt control register,
they are placed at a common priority level relative to other
interrupt sources. Among themselves they have a fixed prior-
ity, with Timer O as the highest priority timer and Timer 2 as
the lowest priority timer.

9.5.3.2 EXTERNAL SOURCES

The Interrupt Controller will accept external interrupt requests
only whenitis programmed in Master Mode. In this mode, the
external pins associated with the Interrupt Controller may serve
either as direct interrupt inputs, or as cascaded interrupt inputs
from other Interrupt Controllers. These options are selected by
programming the C and SFNM bits in the INTO and INT1
control registers (see Figure 81).

‘When programmed as direct interrupt inputs, the four inter-
ruptinputsareeach controlled by anindividual interrupt control
register. As stated earlier, each of these registers contain bits
which select the priority level for the interrupt and a mask bit.
Inaddition, each of these control registers contains a bit which
selects edge- or level-triggered mode for the interrupt input.

9-13

When edge-triggered operation is selected, a LOW-to-HIGH
transition must occur on the interrupt input before an interrupt
is generated, while inlevel-triggered mode, only aHIGH level
needs to be maintained to generate an interrupt. In edge-trig-
gered mode, the input must remain LOW at least one clock
cycle before the input is rearmed. In both modes, the interrupt
level must remain HIGH until the interrupt is acknowledged,
i.e., the interrupt request is not latched in the Interrupt Con-
troller. The status of the interrupt input can be shown by read-
ing the interrupt request register. Since interrupt requests on
these inputs are not latched by the Interrupt Controller, if an
input goes inactive, the interrupt request (and its request bit)
will also go inactive.

If the C (Cascade) bit of either the INTO or INT1 control
register is set, the interrupt input is cascaded to an external
Interrupt Controller. In this mode, whenever the interrupt pre-
sented on the INTO or INT1 line is acknowledged, the inte-
grated Interrupt Controller will not provide the interrupt type
for the interrupt. Instead, two INTA bus cycles will be run,
with INTAO or INTALI lines providing the interrupt acknowl-
edge pulses for the INTO and INT1 interrupt requests, respec-
tively. This allows up to 128 individually vectored interrupt
sources if two banks of 8 external Interrupt Controllers each
are used.

9.5.4 MASTER MODE INTERRUPT
RESPONSE

The 80186 family processor can respond to an interrupt in two
different ways. The first response will occur if the internal
controller is providing the interrupt vector information with
the controller in Master Mode. The second response will occur
if the CPU reads interrupt type information from an external
Interrupt Controller. In both instances the interrupt vector in-
formation driven by the integrated Interrupt Controller is not
available outside the microprocessor.

Whenthe integrated Interrupt Controller receives an interrupt,
it will automatically set the in-service bit and reset the inter-
rupt request bit. In addition, unless the interrupt control regis-
ter for the interrupt is set in Special Fully Nested Mode, the
Interrupt Controller will prevent any interrupts from occur-
ring from the same interrupt line until the in-service bit for that
line has been cleared.

intal’

INTERRUPTS

9.5.4.1 INTERNAL VECTORING IN MASTER
MODE

In Master Mode, the interrupt types associated with all the
interrupt sources are fixed and unalterable. These types are
given in Table 19. In response to an internal CPU interrupt
acknowledge the Interrupt Controller will generate the vector
address rather than the interrupt type. On 80186 family micro-
processors the interrupt vector address is the interrupt type
multiplied by four.

Table 19. 80186 Family Interrupt Vector Types

Interrupt Vector Relative
Name Type Priority
Timer 0 8 0(a)
Timer 1 18 0(b)
Timer 2 19 0(c)
DMA 0 10 1
DMA 1 11 2
INTO 12 3
INT 1 13 4
INT 2 14 5
INT 3 15 6

In Master Mode, no external Interrupt Controller need know
when the integrated controlleris providing an interrupt vector,
nor when the interrupt acknowledge is taking place. As a re-
sult, no interrupt acknowledge bus cycles will be generated.
The first external indication that an interrupt has been ac-
knowledged will be the processor reading the interrupt vector
from the interrupt vector table in memory.

Interrupt response to an internally vectored interrupt is 42
clock cycles because the processor does not run interrupt
acknowledge cycles. This is faster than the interrupt response
when external vectoring is required, or if the Interrupt Con-
troller is run in Slave Mode.

If two interrupts of the same programmed priority occur, the
default priority scheme (shown in Table 19) is used.

9.5.4.2 EXTERNAL VECTORING IN MASTER
MODE

External interrupt vectoring occurs whenever the Interrupt
Controller is placed in Cascade Mode. With external vector-
ing, the 80186 family processor generates two interrupt ac-
knowledge cycles, reading the interrupt type off the lower 8
bits of the address/data bus on the second interrupt acknowl-
edgecycle (see Figure 89). In the 8259A or 82C59A, the upper
five bits are user-programmable and the lower three bits are
determined by a defined interrupt request level. Interrupt
acknowledge bus cycles have the following characteristics:

The two interrupt acknowledge cycles are LOCKed.

* Two idle T-states are always inserted between the two
interrupt acknowledge cycles.

* Wait states will be inserted in an interrupt acknowledge
cycle if READY is not returned to the processor.

Alsonotice thatthe processor provides two interruptacknowl-
edge signals, one for interrupts signaled by the INTO line, and
one for interrupts signaled by the INT1 line (on the INT2/
INTAOand INT3/INTA lines, respectively). These twointer-
rupt acknowledge signals are mutually exclusive. Interrupt
acknowledge status will be driven on the status lines (S0-S2)
when either INT2/INTAO or INT3/INTA 1 signal an interrupt
acknowledge. The interrupt type generated on the second INTA
cycle is read by the CPU and then multiplied by four. The
resultant value is used as a pointer into the interrupt vector
table.

‘When the Interrupt Controller is operating in Cascade Mode
and an interrupt occurs during an instruction that has been
LOCKed by software, the LOCK signal timing showninFigure
89 may be altered. Some peripheral devices used with 80186
family members require contiguous INTA cycles to allow
correct Interrupt Controller response. In such cases, the exter-
nal circuitry in Figure 90 should be used to ensure that DMA
or HOLD requests are blocked from stealing the bus during
INTA cycles.

9.5.4.3 MASTER MODE INTERRUPT
RESPONSE TIME

The interrupt response time for the 80186 family is 42-55 CPU
clocks when the Interrupt Controller is in Master Mode. Fig-
ure 91 shows how the total is obtained. The clock countchanges
when the processor replaces the indicated idle states with bus -
cycles for other tasks such as DMA. The processor does not
necessarily flush the queue until the very last moment, so
prefetching may continue for a while during the vectoring
sequence. Also, the clock count must be adjusted for wait
states or forthe 80188/80C188. For the 80188/80C188,double
the number of clocks given for each bus cycle accessing the
stack or memory.

These clock counts are also applicable to software interrupts
and NMI (notice there are no INTA cycles).

9.5.5 EXAMPLE MASTER MODE
INITIALIZATION

The code to initialize the Interrupt Control Unit for acombina-
tion of direct inputs and Cascade Mode inputs is given in
Figure 92. Refer to Figures 78 and 79 for the corresponding

INTERRUPTS

Il mn | = | ® | w |

|

| NTERRUPT [[
I /ACKNOWLEDGE |
1 1

1

|

|

|
= TNTERRUPT ‘
S0-52 /ACKNOWLEDGE ' :
—-— | | | +- t |
| | | T\ |
| | | | | | |
ADO-AD7 } } } bk - . .
| | | | | | |
P —J-\ | | | | |
| | | | | |
| | | | |

NOTES: 1. ALE is generated for each INTA cycle.
2. RD is inactive.

INTERRUPT TYPE
(FROM EXTERNAL
CONTROLLER)

270288-001-94

Figure 89. Cascaded Interrupt Acknowledge Timing

OR HOLD
80186
S0 D0 Qo
Si D1 Q1
s2 D2 Q2
74LS373
ALE G

IDRQO_ DRQ1| ‘_G—DMA OR HOLD REQUEST

270288-001-95

Figure 90. Circuit Blocking DMA or HOLD Request Between INTA Cycles

hardware configurations. Notice that a READY signal must
be returned to the processor to prevent the generation of wait
states in response to the interrupt acknowledge cycles. This
configuration provides 10 external input lines: two provided
by the Interrupt Controller itself (pins INT1 and INT3), and
eight from the external 8259A (cascaded at pins INTO and
INTAO). The 80186 integrated Interrupt Control Unit is the
master system Interrupt Controller. The 8259A will only re-
ceive interrupt acknowledge pulses in response to interrupts it
has generated. The 8259A may be cascaded again as a master

to as many as eight additional 8259A Interrupt Controllers
(configured as slaves).

9.6 SLAVE MODE

Although Master Mode is more commonly used in 80186
family applications, Slave Modehas anumberof unique functions
that make it attractive in some larger system designs.

9-15

-

INTERRUPTS

Interrupt presented to the interrupt controller

CLOCKS

Interrupt presented to CPU

IF<0, TF<0

First instruction fetch
from interrupt routine

INTA
IDLE
INTA
IDLE
READ IP
IDLE
READ CS
IDLE
PUSH FLAGS
IDLE
PUSHCS
PUSH IP
IDLE

CASCADE

(5 IF NOT CASCADE MODE)

VOaOasbhwdsdhhbhaoprnmpsy OV

Total 42-55
270288-001-96

Figure 91. 80186 Family Master Mode Interrupt Response Time

$modlab
name example_8018k_family _interrupt_code
5 :
5 This routine configures the interrupt controller to provide two cascaded
3 interrupt inputs (through an external 8259A internal controller on
3 pins INTO and INT2/INTAO) and two direct interrupt inputs (on pins INT1
and
3 INT3). The default priority levels are used: Because of this. the
3 priority level programmed into the control register is set to 111, the
3 level all interrupts assume at reset.
B
intO_control equ OFF38H
int_mask equ OFF28H
hl
code segment 5 public'code’
assume (S:code
set_int_ proc near
push DX
push AX
mov AX.0100111B 5 Cascade Mode
5interrupt unmasked
mov DX-intO_control
out DX AX
mov AX.01001101B inow unmask the other external
jinterrupts
mov DX.int_mask
out DXAX
pop AX
pop DX
ret
set_int_ endp
code ends
end

270288-001-97

Figure 92. Example 80186 Family Interrupt Initialization for Master Mode

9-16

intel

INTERRUPTS

9.6.1 SLAVE MODE EXTERNAL
CONNECTIONS

When the SLAVE/MASTER bit in the peripheral relocating
register is set, the Interrupt Control Unit is in Slave Mode. In
this mode, all four Interrupt Controller input lines are used to
perform the necessary handshaking with the external master
Interrupt Controller. Figure 93 shows the hardware configura-
tion of the interrupt lines with an external controller in Slave
Mode. This discussion uses only the Slave Mode functional
pin names.

45 8250A/
INTO | INT 82C50A |-=-
Vce
INTAD | (42) INTA
80186
FAMILY
PROCESSOR
(44) CASCADE
SELECT |- ADDRESS
CODE

(41)

IRQ

270288-001-98

Figure 93. Slave Mode Interface

Because the integrated Interrupt Control Unit is a slave con-
troller, it must be able to generate an interrupt input for an
external Interrupt Controller. It also must be signaled when it
has the highest priority pending interrupt to know when to
place its interrupt vector on the bus. These two signals are
provided by the IRQ and SELECT lines, respectively. The
external master Interrupt Controller must be able to interrupt
the CPU, and needs to know when the interrupt request is
acknowledged. The INTO0 and INTAGO lines provide these two
functions.

9.6.2 SLAVE MODE PROGRAMMING

The Interrupt Controller registers for Slave Mode are defined
according to Figure 94. In many cases, the names and func-
tions of registers at specific addresses is different from those in
Master Mode.

9-17

9.6.2.1 CONTROL REGISTERS IN SLAVE
MODE

In Slave Mode, the integrated Interrupt Controller uses five
control registers. Unlike in Master Mode, each timer has its
own individual control register. These registers contain three
bits which select one of eight interrupt priority levels for the
device (0 is highest priority, 7 is lowest priority), and a mask
bit to enable the interrupt (see Figure 95). When the mask bit
is zero, the interrupt is enabled; when it is one, the interrupt is
masked.

9.6.2.2 REQUEST REGISTER IN SLAVE
MODE

The Interrupt Controller includes an interrupt request register
(see Figure 96). This register contains seven active bits, one
for every interrupt source with an interrupt control register.
Whenever an interrupt request is made, the bit in the interrupt
request register is set regardless of whether the interrupt is
enabled. These interrupt request bits are automatically cleared
when the interrupt is acknowledged. The D1 and DO bits for
the request register can also be set (requesting a DMA inter-
rupt), or cleared (removing a DMA interrupt request) by pro-
gramming.

9.6.2.3 MASK REGISTER IN SLAVE MODE

The Interrupt Controller mask register (see Figure 97) con-
tains a mask bit for each interrupt source associated with an
interrupt control register. The bit for an interrupt source in the
mask register is the same bit as provided in the interrupt con-
trol register; modifying a mask bit in the control register will
also modify it in the mask register, and vice versa.

9.6.2.4 PRIORITY MASK REGISTER IN
SLAVE MODE

The interrupt priority mask register (see Figure 98) contains
three bits which indicate the lowest priority an interrupt may
have that will cause an interrupt request to actually be serv-
iced. Interrupts received which have a lower priority will be
masked. Upon RESET, this register is set to the lowest priority
of 7 to enable interrupts of any priority. This register may be
read or written.

9.6.2.5 IN-SERVICE REGISTER IN SLAVE
MODE

The Interrupt Controller contains an in-service register (see
Figure 99). There is anin-service bit forevery interrupt control
register. An interrupt acknowledge (either by INTA cycles or

intgl’ INTERRUPTS
SLAVE MODE OFFSET ADDRESS

o 3EH

T T T o Tacu
T TIMER2CONTROL REGISTER | 3aH
T T TIMER1CONTROL REGISTER | 3eH
T T T DMAT CONTROL REGISTER 36H
DMAO CONTROL REGISTER | 34H

[T T T TIMER 0 CONTROL REGISTER | a2
[INTERRUPT CONTROLLER §Aﬁ§a;GETER— 30H
T T T INTERRUPT REQUEST REGISTER | 26H
T T NStRvicE RealsTER | 20m
T T T TPRIORITY MASK REGISTER | 2AH
B —
N R
@ 24H

T T T SPECIFICEOIREGISTER | 22H
| T INTERRUPT VECTOR REGISTER | 20H

NOTE:
1. Unsupported in this mode; values written may or may not be stored.

270288-001-99

Figure 94. Interrupt Controller Registers for Slave Mode

14 13 8 7 6 5 4 3 2

15 1 0
lololol- o 'I6|°I°I°T°ESKIPR2IPR‘|P“°I

270288-001-100

Figure 95. Control Word Format (Slave Mode)

15 ‘ 0
TMR [TMR T™MR
OFFSET: 2EH X X X > 1 |pofot| x |70

270288-001-101

Figure 96. Interrupt Controller Request Register Format (Slave Mode)

15 0

TMR | TMR TMR
OFFSET: 28H X X X > A o M) D S

270288-001-102

Figure 97. Interrupt Controller Mask Register Format (Slave Mode)

9-18

INTERRUPTS

15

OFFSET: 2AH X X

X X M2{ M1{ MO

270288-001-103

Figure 98. Interrupt Controller Priority Mask Register Format (Slave Mode)

aread of the interrupt poll register) sets an in-service bit. The
bit is reset when the CPU issues an End Of Interrupt to the
Interrupt Controller. This register may be both read and writ-
ten, i.., the CPU may set in-service bits without an interrupt
ever occurring, or may reset them without using the EOI func-
tion of the Interrupt Controller.

9.6.2.6 END OF INTERRUPT REGISTER IN
SLAVE MODE

The programmer issues an End of Interrupt (EOI) by writing
to the End of Interrupt register (see Figure 100). After receiv-
ing the EOI, the Interrupt Controller automatically resets the
in-service bit for the interrupt. In Slave Mode, the in-service
bit for a particular interrupt is specified by explicitly writing
the interrupt type bits (see Table 20) of the interrupt to this
register. The EOI register is write-only.

9.6.2.7 INTERRUPT STATUS REGISTER IN
SLAVE MODE

The Interrupt Controller also contains an interrupt status reg-
ister (see Figure 101). This register contains three program-
mable bits that indicate which timer is causing an interrupt.
The bit associated with a timer is automatically cleared after
the interrupt request for the timer is acknowledged. More than
one of these bits may be set atime. All implemented bits in the

Table 20. Slave Mode Interrupt Type Bits 2-0

Interrupt Source Type Bits 2-0
Timer 0 000
(reserved) 001
DMA O 010
DMA 1 011
Timer 1 100
Timer 2 101

interrupt status register are read/write. Do not perform the
write operation when interrupts from the timer/counters are
possible; a conflict with internal use of the register may lead to
incorrect timer interrupt processing.

9.6.2.8 INTERRUPT VECTOR REGISTER

In Slave Mode only, the Interrupt Controller contains an inter-
ruptvector register (see Figure 102). This register specifies the
S mostsignificantbits of the interrupt vector type number to be
placed on the CPU bus in response to an interrupt acknowl-
edge. The three least significant bits are fixed according to
Table 20.

15 0
TMR | TMR TMR
OFFSET: 2CH X X 5 3 | Do jor x|y,
270288-001-104
Figure 99. In-Service and Mask Register Format
15 0
OFFSET: 22H X X X X X vT2|vT1{VTO

270288-001-105

Figure 100. End of Interrupt Register Format (Slave Mode)

INTERRUPTS

15

OFFSET: 30H

T2|T1{TO

270288-001-106

Figure 101. Interrupt Status Register Format (Slave Mode)

OFFSET: 20H

T4]| 13| T2|T1|TO

270288-001-107

Figure 102. Interrupt Vector Register Format (Slave Mode)

9.6.3 SLAVE MODE INTERRUPT SOURCES

When the Interrupt Controller is configured in Slave Mode, it
accepts interrupt requests only from the integrated peripher-
als. Any external requests go through an external Interrupt
Controller. This external Interrupt Controller requests inter-
rupt service directly from the 80186 family CPU through the
INTOline. Once in Slave Mode, the integrated Interrupt Control
Unit cannot affect the function of this line. The integrated
Interrupt Control Unit must request interrupt service from the
external Interrupt Controller just like any other external inter-
rupt sources in the system. This interrupt request is made on
the IRQ line (see Figure 93).

The internal interrupt sources are the three timers and the two
DMA channels. Aninterrupt fromany of these interrupt sources
is latched in the Interrupt Controller. The state of the pending
interruptcan be obtained by reading the interrupt requestregister.
Also, writing to the interrupt request register can reset latched
interrupts.

9.6.4 SLAVE MODE INTERRUPT RESPONSE

Whenthe integrated Interrupt Controller receives an interrupt,
the in-service bit is automatically set and the interrupt request
bitis reset. The Interrupt Controller will prevent any interrupts
from occurring from the same source until the in-service bit
for that line has been cleared. Vector information driven by an
80186 family device is not available outside the microproces-
sor.

9.6.4.1 INTERNAL VECTORING IN SLAVE
MODE

In Slave Mode, the interrupt types associated with the various
interrupt sources are alterable. The five most significant bits

9-20

are taken from the interrupt vector register, and the three least
significant bits are defined according to Table 20. The CPU
calculates the vector address before servicing the interrupt
because the Interrupt Controller gives only the interrupt type
in this mode.

In Slave Mode, the integrated Interrupt Controller will present
the interrupt type to the CPU in response to the two interrupt
acknowledge bus cycles run by the processor. During the first
interrupt acknowledge cycle, the external master Interrupt
Controller determines which slave Interrupt Controller will
place its vector type number on the microprocessor bus. Dur-
ing the second acknowledge cycle, the processor reads the
vector type from its bus. Thus, these two interrupt acknowl-
edge cycles must be run, since the integrated controller will
present the interrupt type information only when the external
Interrupt Controller signals the integrated controller that it has
the highest pending interrupt request (see Figure 103). Correct
master-slave interface requires decoding of the slave addresses
(CASO0-2). External circuitry must decode the slave address
because of microprocessor pin limitations. SELECT is used as
aslave-selectinput. Inthisconfigurationthe slave vectoraddress
is transferred internally, but the READY input must be sup-
plied externally. INTAQ is used as an acknowledge output,
suitable to drive the INTA input of the 8259A or 82C59A. The
processor samples the SELECT line during the falling edge of
the clock at the beginning of T3 of the second interrupt ac-
knowledge cycle. SELECT must be stable before and after
this edge.

These two interrupt acknowledge cycles run back-to-back,
and will be LOCKed with the LOCK output active. The two
interrupt acknowledge cycles will always be separated by two
idle T-states, and wait states will be inserted into the interrupt
acknowledge cycle if aREADY is not returned by the proces-
sor bus interface. The two idle T-states are inserted to allow
compatibility with an external 8259 or 82C59A Interrupt
Controller.

INTERRUPTS

CLKOUT

|
|
INTERRRUPT ACKNOWLEDGE |
1
|

4.
5. SELECT read by processor.

6. ALE is generated for each INTA cycle.
7.

D is inactive.

| | |
| I I
I | INTERRRUPT ACKNOWLEDGE |
INTO) | | 4 |) g | |
(HIGH) T T T T T T T T / T
IRQ I | I N | | | | | L
(rien |] I | | | | | L/
CASO-2 @ x 80186 SLAVE ENABLE CASCADE ADDRESS FROM/8/259A E
| | | |} } 1 | | | |
_ -+ + + I | | I | | |
SELECT © | L\ | | | | / | |
| [[I I | | | | |
me @ \ ! 1 T T N\ 10
I T T T | | | ! T T
—_— —\ I I | | | | I + t
[| | | | | | | I
| [I I I I | I

NOTES: 1. Pin 44 (INT1/SELECT) assumes the SELECT function in Slave Mode.
2. Pin 42 (INT2/INTAQ) functions as interrupt acknowledge INTAOQ in Slave Mode.
3. Cascade address is driven by the external interrupt controlier.
SELECT must be driven before phase 2 of T, of the second INTA cycle.

270288-001-108

Figure 103. Slave Mode Interrupt Acknowledge Timing

9.6.4.2 EXTERNAL VECTORING IN SLAVE
MODE

External interrupt vectoring occurs whenever the 80186 fam-
ily Interrupt Control Unit is placed in Slave Mode and the in-
tegrated controller is not selected by the external master Inter-
rupt Controller. In this mode, the processor generates two in-
terrupt acknowledge cycles, reading the type number off the
lower 8 bits of the address/data bus on the second interrupt
acknowledge cycle (see Figure 103). Notice that the two inter-
rupt acknowledge cycles are LOCKed, and that two idle T-
states are always inserted between the two interrupt acknowl-
edge buscycles. Notice, too, that wait states will be inserted in
the interrupt acknowledge cycle ifaREADY is not returned to
the processor. Interrupt acknowledge status will be driven on
the status lines (S0-S2) when INTAO signals an interrupt
acknowledge.

When the Interrupt Control Unit is operating in Slave Mode
and an interrupt occurs during an instruction that has been

9-21

LOCKed by software, the LOCK signal timing shownin Figure
103 may be altered. Some peripheral devices used with the
80186 family require contiguous INTA cycles toallow correct
Interrupt Controller response. In such cases, the external cir-
cuitry in Figure 90 should be used to ensure that DMA or
HOLDrequests are blocked from stealing the bus during INTA
cycles.

9.6.4.3 SLAVE MODE INTERRUPT
RESPONSE TIME

Because interrupt acknowledge cycles must be run for Slave
Mode and the integrated controller presents an interrupt type
rather than a vector address, the interrupt response time is 55
CPU clocks. Figure 104 shows how the total is obtained. The
clock countchanges when the processorreplaces the indicated
idle states with bus cycles for other tasks such as DMA. The
processor does not necessarily flush the queue until the very
last moment, so prefetching may continue for a while during

- ® .
mtel INTERRUPTS

the vectoring sequence. Also, the clock count must be adjusted 9.6.5 EXAMPLE SLAVE MODE
for wait states or for the 80188/80C 188. For the 80188/80C188, INITIALIZATION

double the number of clocks given for each bus cycle access-
ing the stack or memory.

AsshowninFigure 105, the initialization of Slave Mode requires
setting only one bit in the relocation register.

CLOCKS

Interrupt presented to the interrupt controller

Interrupt presented to CPU

INTA
IDLE
INTA
IDLE
READ IP
IDLE

PUSHFLAGS

IF0, TF<0 IDLE
PUSHCS
PUSH IP

First instruction fetch IDLE

from interrupt routine

VOaOasprwdbsbbwuprponprNmdyV v

Total55 570288-001-109

Figure 104. Interrupt Response Time For Slave Mode

$modl8b
name example_8018b_family _interrupt_code
S
3 This routine configures the interrupt controller into Slave Mode. This code
3 does not initialize any of the integrated peripheral control registersa
3 nor does it initialize the external 8259A interrupt controller
3
relocation_reg equ OFFFEH
3
code segment 53 public’code’
assume (S:code
set_slave proc near
push DX
push AX
mov DX.relocation_reg
in AXaDX sread old contents of register
or AX.0100000000000000B 3 set the Slave/Master mode bit
out DX.AX
pop AX
pop DX
ret
set_slave endp
code ends
end

270288-001-110

Figure 105. Example 80186 Family Interrupt Initialization for Slave Mode

9-22

INTERRUPTS

intgl’

9.7 INTERRUPT CONTROLLER FLOW
CHARTS

Figure 106 shows an interrupt request generation flow chart
and Figure 107 shows an interrupt acknowledge sequence
flow chart. Each interrupt source processed by an 80186 family
integrated Interrupt Controller follows each flow chart inde-
pendently.

INTERRUPT
RECEIVED

)

SET INTERRUPT
REQUEST BIT

Py
e

<
-

Y

MASK NO

BIT CLEARED
?

REGISTER

IN-SERVICE BIT MyYES

SET

Y

HIGHER
PRIORITY THAN ;','ﬁggﬂ NO -
PRIORITY MASK NTERRUST

?

FULLY NESTED
MODE (INT0-1)

SPECIAL NO

?

YES

PRESENT INTERRUPT
REQUEST TO
EXTERNAL CONTROLLER

PRESENT INTERRUPT

REQUEST TO CPU

270288-001-111

Figure 106. Interrupt Request Sequencing

9-23

®
Il'ltel INTERRUPTS

GENERATE
INTERRUPT @ INTA
ACKNOWLEDGE CYCLES
WAIT FOR NEXT
INTERRUPT INTERRUPT
SELECTED ACKNOWLEDGE
GENERATE INTA
CYCLES FOR GENERATE PLACE INTERRUPT
EXTERNAL INTERRUPT TYPE ON INTERNAL @
INTERRUPT TYPE (@ |BUSDURING SECOND
CONTROLLER INTA CYCLE
PROVIDE HIGHEST
SET IN-SERVICE PRIORITY INTERRUPT SET IN-SERVICE
VECTOR ON
INTERNAL BUS

T

SET IN-SERVICE

270288-001-112
NOTES:
1. Before actual interrupt acknowledge is run by CPU.
2. Two interrupt acknowledge cycles will be run; the interrupt type is read by the CPU on the second cycle.
3. Interrupt acknowledge cycles will not be run; the interrupt vector address is placed on an internal bus and is not available outside
the processor.
4. Interrupt type is not driven on external bus in Slave Mode.

Figure 107. Interrupt Acknowledge Sequencing

9-24

Refresh Control Unit 10
(80C186/80C188 Only)

CHAPTER 10
REFRESH CONTROL UNIT (80C186/80C188 ONLY)

To simplify the design of a dynamic memory controller, the
80C186 incorporates integrated address and clock counters
into a Refresh Control Unit (RCU). Its relationship to the BIU
is shown in Figure 108. To the memory interface a refresh re-
quest looks exactly like a memory read bus cycle. Integration
of the RCU into the 80C186 means that chip selects, wait state
logic, and status lines may be used by an external DRAM
controller. The external DRAM controller generates the RAS,
CAS, and enable signals actually needed by the DRAMs.

Thethreecontrolregistersare MDRAM, CDRAM,and EDRAM
(see Figure 109). These registers define the operating charac-
teristics of the RCU. The EDRAM register programs the base
address (upper 7 bits) of the refresh address (see Figure 109).
This allows the refresh address to be mapped to any 4 kilobyte
boundary within the one megabyte 80C186/80C188 address
space. The MDRAM register is not altered whenever the re-
fresh address bits (A1 through A9 in Figure 110) roll over. In
other words, the refresh address does not act like a linear
counter found in a typical DMA controller.

R/W REGISTER CDRAM REGISTER

9=bit Down

CPU

REFRESH REQUEST

—

Counter

Interface CLR

>

REFRESH ACKNOWLEDGE

REQ

EDRAM REGISTER

R/W REGISTER <4—Pp;

R/W REGISTER

BiU
Interface

v

MDRAM REGISTER

CLK
9-BIT ADDRESS

20-bit Refresh Address
COUNTER '

>

270288-001-113

Figure 108. Refresh Control Unit Block Diagram

The 9-bit address counter is used in the formation of refresh
addresses. Thus, any dynamic memory whose refresh address
requirements (rows of memory cells)do not exceed nine bits
can be directly supported by the 80C186. The 9-bit address
counter, a 6-bit base register, and six fixed bits define a full 20-
bit refresh address. The 9-bit counter decrements every clock
cycle and generates a refresh request to the BIU whenever it
reaches 1. When the bus is free, the BIU will run the refresh
(dummy read) bus cycle. Refresh requests have a higher prior-
ity than any other bus request (i.e., CPU, DMA, HOLD).

10.1 REFRESH CONTROL UNIT
PROGRAMMING

There are three registers in the Peripheral Control Block that
control the RCU. These registers are only accessible when the
80C186 or 80C188 are operating in Enhanced Mode (see
Appendix C.2 for more on Enhanced Mode). Otherwise, a
read or write to these registers is ignored.

10-1

The CDRAM register defines the interval between refresh
requests by initializing the value loaded into the 9-bit down
counter. Thus, the higher the value, the longer the amount of
time between requests. The down counterisdecremented every
falling edge of CLKOUT, regardless of the activity of the CPU
or BIU. When the counter decrements to 1, a request is gener-
ated and the counter is again loaded with the value in the
CDRAM register. The amount of time between refresh re-
quests can be calculated using the equation shown in Figure
111. The minimum value that can be programmed into the
CDRAM register is 18 (12H) regardless of the operating fre-
quency. This minimum count ensures that the BIU has enough
time to execute the refresh bus cycle. The BIU cannot queue
DRAMrefreshrequests. If another request is generated before
the current request is executed, the current request is lost.
However, the address associated with the request is not lost;
the refresh address changes only after the BIU runs a refresh
bus cycle. Thus it is possible to miss refresh requests, but not
refresh addresses. .

= ®
|nté REFRESH CONTROL UNIT (80C186/80C188 ONLY)

OFFSET:]
15 0

E4H E 0 0 0 0 0 0 T8| T7| T6] T5| T4 | T3] T2|T1 | TO EDRAM Register (1)

E2H 0 0 0 0 0 0 0O |C8|cCc7|cCelcC5|cac3|ca]ct|cCo CDRAM Register (2)

EOH M6 | M5 | M4 | M3 | M2 M1 | MO | O 0 0 0 0 0 0 0 0 MDRAM Register (3)

Notes:

1. Bits 0-8: T0-T8, Refresh request count. These bits are read-only and represent the current value of the down counter. Any
write to these bits is ignored.
Bit 15 : E, enables the operation of the refresh control unit.

2. Bits 0-8: C0-C8, define the number of CLKOUT cycles between each refresh request.
3. Bits 9-15: M0-M6, are used to define address bits A13-A19 (respectively) of the 20-bit memory address. These bits clear to zero on

RESET. 270288-001-114

Figure 109. Refresh Control Unit Registers

Address Bit 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0

PhVSic"";‘;;’rzz'; rmel MSI M4 | M3| M2 I M1 I MOI 0 | 0 I 0 ICA8|CA7|CA6ICA5|C;|CA3|CA2ICA1ICAﬂ 1

Bit 0: Always driven to 1 (HIGH). This is true for both the 80C186 and the 80C188.

Bits 1-9: CA0-CAB8, generated by the 9-bit linear-feedback shift counter.

Bits 10-12: Always driven to 0 (LOW).

Bits 13-19: M0-M6, defined by the MDRAM register. 270288-001-115

Figure 110. Physical Address Generation

RpeRioD (us) x f(MHz)
Refresh Rows + # (Refresh Rows x % Overhead)

= CDRAM Register Value

RpERIOD = Maximum refresh period specified by DRAM manufacturer (microseconds).
f = Operating frequency of 80C186 in MHz.
Refresh Rows = Total number of rows to be refreshed.
% Overhead = Derating factor to compensate for missed refresh requests (typically 1-5%).
270288-001-116

Figure 111. Equation to Calculate Refresh Interval

The EDRAM registerhas two functions, depending on whether 10.2 REFRESH CONTROL UNIT OPERATION
it is being written or read. During writes to the EDRAM reg-
ister, only the Enable bit is active. Setting the Enable bit turns
onthe RCU while clearing the Enable bit deactivates the RCU.
When the RCU is enabled, the contents of the EDRAM regis-
ter are loaded into the 9-bit down counter and refresh requests
are generated when the counter reaches 1. Disabling the RCU .)
stops and clears the counter. A read of the EDRAM register ~ Ihedown counter is loaded on the falling edge of CLKOUT,
will return the current value of the Enable bit as well as the when either the Enable bit is set or the counter decrements to
current value of the 9-bit down counter (zero if the RCU is not 1. Once loaded, the down counter will decrementevery falling
enabled). Writing to EDRAM register when RCU isrunning ~ €dge of CLKOUT (as long as the Enable bit remains set).
does not modify the count value in the 9-bit counter.

Figure 112 illustrates the two major functions of the Refresh
Control Unit that are responsible for initiating and controlling
the refresh bus cycles.

10-2

intal’

REFRESH CONTROL UNIT (80C186/80C188 ONLY)

Refresh Control Unit Operation

‘ Set "E" bit ’

v
Load Counter
from CORAM

_...__.._.>I

- . Every

Decrement
Counter

—

Generate BIU
Request

270288-001-

Executed

Clock 4

117

BIU Refresh Bus Operation

Refresh Request
Acknowledged

Execute Memory
Read

v

Increment
Address

¥

Remove
Request

v

Continue

270288-001-118

Figure 112. Flowchart of RCU Operation

When the counter decrements to 1, two things happen. First, a
request is generated to the BIU to run a refresh bus cycle. The
request remains active until the bus cycle is run. Second, the
downcounterisreloaded with the value contained inthe CDRAM
register. Atthis time, the down counter will again begin count-
ing down every clock cycle. It does not wait until the request
has been serviced. This is done to ensure that each refresh
requestoccurs atthe correctinterval. Otherwise, the time between
refreshrequests would also be a function of varying bus activi-
ties. Whenthe BIU services the refresh request, it will clear the
request and increment the refresh address.

Refresh bus cycles are specially encoded to distinguish them
from ordinary read cycles according to Table 21.

Table 21. Identification of 80C186/80C188

DRAM Refresh Cycles
BHE/RFSH A0
80C186 1 1
80C188 0 1

NOTE:
BHE applies to the 80C186 and
RFSH applies to the 80C188.

10-3

10.3 REFRESH ADDRESSES

The physical address that is generated during a refresh bus
cycle is shown in Figure 110, and applies to both the 80C186
and 80C188. The refresh address bits CAQ through CAS are
generated using a linear-feedback shift counter which does
not increment the addresses linearly from O through 1FFH
(although they do follow a predicable algorithm). Further,
note that forthe 80C188, address bit AOdoes not toggle during
refresh operation, which means that it cannot be used as part of
the refresh (row)address applied tothe dynamic memory device.
Typically, AQ is used as part of memory decoding in 80C188
applications, unlike 80C186 applications which use AQ along
with BHE to select an upper or lower bank.

10.4 REFRESH OPERATION AND BUS HOLD

‘When another bus master has control of the bus, the HLDA
signal is kept active as long as the HOLD input remains active.
If a refresh request is generated while HOLD is active, the
80C186 will drive the HLDA signal inactive to indicate to the
current bus master that the 80C 186 wishes to regain control of
the bus (see Figure 113). Only when the HOLD input is re-
moved will the BIU begin the refresh bus cycle.

Therefore, it is the responsibility of the system designer to
ensure that the 80C186 can regain the bus if a refresh request
is signalled. The sequence of HLDA going inactive while

- ®
Iﬂl’el REFRESH CONTROL UNIT (80C186/80C188 ONLY)

m oMM M I Tl T4 T
CLKOUT
| Carol—a/
2
HoLD o i ! (I
1 —d®— T T ® ®
HLDA | | | | |
| l ee | L 1 |
aooapss, L Lo L L [K
BEN | | | | | \ |
A16/S3-A19/S6, I gy | | | f
s, ||
DT/R,S0-S2 270288-001-119

NOTES:

1. HLDA deasserted, signaling need to run DRAM refresh cycles; less than TCLH AV
2. External bus master terminates use of the bus.

3. HOLD deasserted; greater than THV L

4. HOLD may be reasserted after one clock.

5. Lines come out of float in order to run DRAM refresh cycle.

Figure 113. Release of 80C186/80C188 HOLD to Run Refresh Cycle

HOLD is active can be used to signal a pending refresh. If ~ 10.5 EXAMPLE RCU INITIALIZATION CODE
HOLD is again asserted, the 80C186 will give up the bus after

the refresh bus cycle has been run (provided another refresh ;1 code to initialize the 80C186/80C188 DRAM Re-
request is not generated during that time). fresh Control Unit is included in Figure 114.

10-4

M REFRESH CONTROL UNIT (80C186/80C188 ONLY)

$modla8b
name example_80Cl8b_dru_code

This file contains example code to initialize the 80C1l8b DRAM refresh control
unit. For the purposes of our example. we will assume that the
specifications for our system call for 512 kbytes of DRAM to be located
at 3 base address of 25bkk. We choose 25bk X 4 DRAMs so that two devices
are low-byte addressed and two devices are high-byte addressed. Reading
the fine print on the DRAM data sheet we see that 25k refresh cycles are
required every 4 ms. This information also tells us the memory cells in
the DRAMs are physically arranged as 25b (2x%*8) rows by 1024 (2%%10)
columns. To calculate the maximum number of clocks between refresh .
cycless we multiply the total refresh period by the 80C18b CLKOUT
frequency and divide by the number of rows. For an 80Cl8b running at
12.5 MHz+ the minimum refresh rate is 4E-03 x 12.5E+0b / 25b = 195

4% e 40 Je 4% a6 4 2% 4% e ae U 4e e a

clocks-
mdram equ OFFEOh
cdram equ OFFE2h
edram equ OFFE4h
code segment public'code’
assume cs:icode
init_rcu proc near
push AX
push X 5 save registers used
push DX
push DI

Notice that we don't initialize the middle chip select. On the 8018b family.
the MCS block can be initialized to a size of 512 kbytes. but the block
cannot be located at a starting address of 25kk. Since the programmable
ready logic is unavailable. the system must provide READY to either the
SRDY or ARDY pins in hardware. :

40 a0 g a0 ae e a0

mov DX.mdram 5 set upper 7?7 address bits
mov AX.4000h 5 for a starting address of
out DX+ AX 50of 25bk
mov DX.cdram i set the clock pre-scaler
mov AX-185 5 to refresh at 185 clock
out DX.AX 3 intervalss just to be sure
mov DX.edram jwrite a one to enable the
mov AX-8000h 5 RCU
out DX+ AX
mov CX+ 8 38 dummy cycles are
xor DI.DI s required by the DRAMs
exercise_ram: mov word ptr EDI3. O S before actual use
loop exercise_ram
pop DI
pop DX
pop X
pop AX
ret
init_rcu endp
code ends
end

270288-001-120

Figure 114. Example DRAM Refresh Initialization Code

10-6

Power-Save Unit 11
(80C186/80C188 Only)

CHAPTER 11
POWER-SAVE UNIT (80C186/80C188 ONLY)

The Power-Save Unit is intended to benefit applications by
lowering power consumption while maintaining regular op-
erationofthe CPU. The 80C 186 power-save mechanismlowers
current needs by reducing the operating frequency.

The Power-Save Unit is an internal clock divider as shown in
Figure 115. power-save operation changes the internal operat-
ing frequency of the processor, so it affects integrated periph-
erals as well as the CPU. Affected units include the timers,
DRAM refresh control, DMA, and BIU. Thus by using the
power-save feature, the net effect is similar to changing the
input clock frequency.

. Power-Save
X1 ! Divider-
' Multiplexer
3 | fosc +2 n
: /& e———> TOCHIPLOGIC
X2 ne

E, FO-F1 —-l

270288-001-121

Figure 115. Simplified Power-Save Internal
Operation

11.1 POWER-SAVE UNIT PROGRAMMING

The PDCON register (see Figure 116) controls the operation
of the Power-Save Unit. This register is available for program-
ming when the 80C186 or 80C188 is in Enhanced Mode (see
Appendix C.2 for more on Enhanced Mode). Reads or write to

the PDCON register in Compatible Mode result in no opera-
tion, and the value returned will be all ones.

‘When the Enable bit in the PDCON register is set, the Power-
Save Unit is active and, depending on the condition of the FO
and F1 bits, the operating clock of the 80C186 changes from
normal operation. When the Enable bit is cleared, the 80C186
will operate at the standard divide-by-two clock rate. The En-
able bit is automatically cleared whenever a non-masked in-
terrupt occurs. Thus, if the power-save feature is enabled and
an unmasked interrupt of sufficient priority is received, the
Enable bit clears and the processor executes at full speed. This
allows interrupts to be processed at maximum speed. A return
from the interrupt does not automatically set the Enable bit.
This must be done as part of the interrupt routine. Software
interrupts do not clear the Enable bit.

The FO and F1 bits determine the divisor of the Power-Save
Unit. Figure 117 provides a list of the various combinations of
the bits and their division factors. Note that the divisor relates
to CLKOUT, not the input clock at pin X1. Selecting a divisor
of 1 does not reduce the power consumption. The operating
clock of the 80C 186 must not be divided below the minimum
operating frequency specified in the data sheet (500 kHz).
Figure 116 alsoindicates the minimumcrystal frequency which
will allow the use of a specific divisor.

11.2 POWER-SAVE OPERATION

When the Enable bit in the PDCON register is set, the clock
divider circuitry will turn on during the write to the PDCON
register (refer to Figure 116). At the falling edge of T, of the
register write, CLKOUT will change to reflect the new divi-
sor. Ifany values of FO-F1 other than zerohave been programmed,

15

OFFSET: FOH

Bits 0-1: Clock Division Select
F1 FO Divsion Factor

0 0 divideby 1 1 MHz
0 1 divideby4 4 MHz
1 0 divideby8 8 MHz
1 1 divideby 16 16 MHz

Bits 2-14: Reserved, read bask as zero.

Minimum X1 Frequency

Bit 15: Enable (set) power-save mode. Cleared (disabled) on reset.

270288-001-122

Figure 116. Power-Save Register Format

111

intal’

POWER-SAVE UNIT (80C186/80C188 ONLY)

the CLKOUT period will increase, starting with the LOW
phase. CLKOUT is glitch-free.

The Power-Save Unit remains active until one of three events
Yappens: the Enable bitinthe PDCON register is cleared, new
values for FO and F1 are programmed, or an unmasked inter-
rupt is received. In the first two cases, the changes directly
follow Figure 117. When an unmasked interrupt is received,
the operating frequency is changed as shown in Figure 116,
but may occur at T, of any bus cycle in progress just after the
interrupt. Thus, it is not possible to determine exactly when, in
theeventofan interrupt, the Power-Save Unit will be disabled.

11.3 EXAMPLE POWER-SAVE
INITIALIZATION CODE

Figure 118 illustrates the programming of the Power-Save
Unit for a typical 80C186 system.

T3

T4

T2
I L |

CLKOUT

@ @
WR \

NOTES:
1. Write to PDCON register (as viewed on the bus).
2. Low going edge of T3 starts new clock divider.

270288-001-123

Fgure 117. Power-Save Clock Transition

11-2

- ®
|ntel POWER-SAVE UNIT (80C186/80C188 ONLY)

$modl8b
name example_80Cl8L_power_save_code

This file contains example code to initialize the 80(C18L power-save unit. UWe
will initially assume that our system is operating at a clock frequency
of 8 MHz (lb MHz at X1) and that we wish to change the processor to a
background mode. with reduced power consumption.

a0 ae ae ge e g

pdcon equ OFFFOh
code segment public’'code’
assume cs:code
init_ps proc near
! push AX 5 save registers used
' push DX

At the beginning of the procedure the user should reprogram those peripherals
which will be affected by the slower clock. including timers and the
DRAM refresh unit. Of particular concern is any external logic clocked
by both CLKIN and CLKOUT.

FLRNTINTRNTIN TR

mov DX.pdcon i set bits 0 and 3 for a
mov AX-8003h 5divisor of lb. which
out DX AX 5yields a processor clock
50of 500 kHz+ the minimum
. i specification for the
i 5 80C18kL.

As soon as the out DX. AX operation takes place- the clock frequency is
reduced. The original clock frequency will be restored upon an unmasked
interrupt or reprogramming the pdcon register.

FLINTINTRNTI

pop DX
pop AX
ret
init_ps endp
code ends

270288-001-124

Figure 118. Example 80C186 Power-Save Initialization Code

Hardware Provisions 12
for Floating Point Math

CHAPTER 12
HARDWARE PROVISIONS FOR FLOATING POINT MATH

The 80186 microprocessor family was designed for general-
purpose microprocessing. Inmost data controllerapplications,
the actual arithmetic performed on data values is fairly simple,
while fast, efficient data movement and control instructions
are very important. However, some applications require more
powerful arithmetic instructions and more complex data types
than provided by a general purpose data processor. Character-
istics of such applications include the following:

« Numeric data vary over a wide range of values or include
non-integral values.

» Algorithms produce very large or very small intermediate
results.

« Computations must be very precise, i.e., a large number of
significant digits must be retained.

« Computations must be extremely reliable without undue
dependence on programmed algorithms.

« Overall math performance exceeds the power provided by
a general-purpose processor and software alone.

The 80186 family supports these needs by providing the nec-
essary hardware interfaces to either a numerics coprocessor
(the 8087) or anumerics coprocessor extension (the 80C187).

12.1 USING THE 80186/80188 WITH THE
8087 NUMERICS COPROCESSOR

Use of the 8087 numerics coprocessor with an 80186 or 80188
adds 68 floating-point instructions and eight 80-bit floating-
point registers to the basic architecture. An 8087 can increase
the math performance of an 80186/80188 system by 50to 100
times. The detailed operation of 80186(80188)/8087 hard-
ware and software is transparent to the system user.

12.1.1 OVERVIEW OF NUMERICS
COPROCESSING

The 80186 or 80188 interfaces to the 8087 through an 82188
Integrated Bus Controller (See Figure 119). Due to the 33
percent duty cycle restriction of the 8087 (specifically the
8087-1 speed selection) and clock input restrictions of the
82188, this combination is limited in speed to 8 MHz.

12-1

12.1.2 8087 INSTRUCTION SET

8087 instructions are divided into six functional groups: data
transfer, arithmetic, comparison, transcendental, constant, and
processor control. Typical 8087 instructions accept one or two
operands and produce a single result. Operands are most often
located in memory or the 8087 stack. The operands of some
instructions are predefined; forexample, FSQRT always takes
the square root of the number in the top stack element. Others
allow, orrequire, the programmertoexplicitly code the operand(s)
along with the instruction mnemonic. Still others accept one
explicit operand and one implicit operand, usually the top
stack element.

As with the basic 80186 family instruction set, there are two
types of operands, source and destination. Source operands
are not altered by the instruction. Even when an instruction
converts the source operand from one format to another (e.g.,
real to integer), the conversion is actually performed in an
internal work area to avoid altering the source operand. A
destination operand is distinguished from a source operand
because its contents may be altered when it receives the result
of the operation; that is, the destination is replaced by the
result.

12.1.2.1 DATA TRANSFER INSTRUCTIONS

These instructions move operands among elements of the 8087
register stack, and between stack top and memory. Any of the
sevendatatypescanbe converted to temporary real (see Section
12.1.3) and loaded onto the stack in a single operation; they
can be stored to memory in the same manner. Data transfer
instruction are summarized in Table 22.

12.1.2.2 ARITHMETIC INSTRUCTIONS

The 8087’s arithmetic instruction set (Table 23) provides a
wealth of variations on the basic add, subtract, multiply, and
divide operations, and a number of other useful functions.
These range from a simple absolute value to a square root
instruction that executes faster than ordinary division. Other
arithmetic instructions perform exact modulo division, round
real numbers to integers, and scale values by powers of two.

Table 23 summarizes the available operation and operand
forms provided for basic arithmetic. In addition to the four
normal operations, two “reversed” instructions make subtrac-
tionanddivision*‘symmetrical’like addition and multiplication.

= ®
ntd HARDWARE PROVISIONS FOR FLOATING POINT MATH

TO OPTIONAL
THIRD BUS MASTER

A

—— A I
80186/80188 ADDRESS DATA BUS
SYS SYS o\
E HOLD HLDA) COMMAND/CONTROL
16 MHz £ HLDA | HLDA ¥
| HOLD == HOLD
MCS0] CSIN
ARDY QSO 1 Qsol
£
L Qst -1 Qsil
SRDY |-=
RESET
CLKOUT
& - > L
> INTo = ALE »1STB
TEST 55 »|55 74LS i
el P 1 373 ‘ ADDRESS
1 50
[1 CLK L
@—1—] RESET | m—
- ®—{ sRo
BUSY -
INT St 82188
52
CLK jt
RESET |-
RDY |-
QS0 - Qso0 DATA
Qst |- Qsi10
RQ/GTO |- -1 RO/GTO
RQ/GT1 |- 1 RQ/GT1
8087-1 A 4 T
|< ADDRESS DATA BUS

|

ARDY SRDY 270288-001-125

Figure 119. 80186 (80188) — 82188-8087 Circuit Diagram

Thevariety of instructionand operand forms give the programmer
unusual flexibility:

Operands may be located in registers or memory.
Results may be deposited in a choice of registers.

Operands may be a variety of data types, including tempo-
rary real, long real, short real, short integer, or word inte-
ger, with automatic type conversion to temporary real
performed by the 8087.

12-2

12.1.2.3 COMPARISON INSTRUCTIONS

Each of these instructions (Table 24) analyzes the stack top
element, often in relationship to another operand, and reports
the result in the status word condition code. The basic opera-
tions are compare, test (compare with zero),and examine (report
tag, sign, and normalization).

intel’

HARDWARE PROVISIONS FOR FLOATING POINT MATH

Table 22. Data Transfer Instructions

Table 23. Arithmetic Instructions

REAL TRANSFERS ADDITION
FLD Load real FADD Add real
FST Store real FADDP Add real and pop
FSTP Store real and pop FIADD Integer add
FXCH Exchange registers SUBTRACTION
INTEGER TRANSFERS FSUB Subtract real
FILD Integer load FSUBP Subtract real and pop
FIST Integer store FISUB Integer subtract
FISTP Integer store and pop FSUBR Subtract real reversed
PACKED DECIMAL TRANSFERS FSUBRP Subtract real reversed and pop
FISUBR [
FBLD Packed decimal (BCD) load SU nteger subtract reversed
FBSTP Packed decimal (BCD) store MULTIPLICATION
and pop FMUL Multiply real
FMULP Multiply real and pop
Table 24. Comparison Instructions FIMUL Integer multiply
FCOM Compare real DIVISION
FCOMP Compare real and pop FDIV Divide real
FCOMPP Compare real and pop twice FDIVP Divide real and pop
FICOM Integer compare FIDIV Integer divide
FICOMP |r|teger compare and pop FDIVR Divide real reversed
FTST Test FDIVRP Divide real reversed and pop
EXAM Examine FIDIVR Integer divide reversed
OTHER OPERATIONS
12.1.2.4 TRANSCENDENTAL FSQRT Square root
INSTRUCTIONS FSCALE Scale
FPREM Partial remainder
The instructfons in this category perform the time-cqnspming FRNDINT Round to integer
core calculations forcommon trigonometric, hyperbolic, inverse o
hyperbolic, logarithmic, and exponential functions. Prologue FXTRACT Extract exponent and significand
and epilogue software may be used to reduce arguments to the FABS Absolute value
range accepted by the instructions and to adjust the result to ECHS Change sign

correspond to the original arguments if necessary. The tran-
scendentals operate on the top one or two stack elements and
they return their results to the stack. Table 25 lists the transcen-
dental instructions.

Table 25. Transcendental Instructions

FPTAN Partial tangent
FPATAN Partial arctangent
F2XM1 2

FYL2X Y I092X
FYL2XP1 Y. Iogz(X+1)

12-3

12.1.2.5 CONSTANT INSTRUCTIONS

Each of these instructions (Table 26) loads acommonly used
constant onto the stack. The values have full temporary real
precision (80 bits) and are accurate to approximately 19 deci-
maldigits. Since atemporary real constant occupies 10memory
bytes, the constant instructions, only two bytes long, save
memory space. These instructions simplify programming as
well.

intel

HARDWARE PROVISIONS FOR FLOATING POINT MATH

Table 26. Constant Instructions

FLDZ Load +0.1
FLD1 Load +1.0
FLDPI Load
FLDL2T Load Iog21 0
‘FLDL2E Load Iogze
FLDLG2 Load log 102
FLDLN2 Load log o2

12.1.2.6 PROCESSOR CONTROL
INSTRUCTIONS

Most of these instructions (Table 27) are not used in computa-
tions; they are provided principally for system-level activities.
These include initialization, exception handling and task

switching.

Table 27. Processor Control Instructions

FINIT/ENINIT
FDISI/FNDISI
FENI/FNENI
FLDCW
FSTCW/FNSTCW
FSTSW/FNSTCW
FCLEX/FNCLEX
FSTENV/FNSTENV
FLDENV
FSAVE/FNSAVE
FRSTOR
FINCSTP
FDECSTP

FFREE

FNOP

FWAIT

Initialize processor
Disable interrupts
Enable interrupts

Load control word
Store control word
Store status word

Clear exceptions

Store environment
Load environment
Save state

Restore state
Increment stack pointer
Decrement stack pointer
Free register

No operation

CPU wait

12.1.3 8087 DATATYPES

An 80186(80188)/8087 or 80C186/80C187 system supports

the following seven data types:

* Word Integer - A signed binary numeric value contained
ina 16-bit word. All operations assume a2’s complement

representation.

12-4

« Short Integer - A signed binary numeric value contained
in a 32-bit double word. All operations assume a 2’s
complement representation.

* LongInteger- A signed binary numeric value contained in
a 64-bit quad word. All operations assume a 2’s comple-
ment representation.

» Packed Decimal - A signed numeric value contained in an
80-bit BCD format.

« Short Real - A signed, floating point numeric value con-
tained in a 32-bit format.

« Long Real - A signed, floating point numeric value con-
tained in a 64-bit format.

» Temporary Real - A signed, floating point numeric value
contained in an 80-bit format. Temporary real is the native
8087/80C187 format.

Figure 120 graphically represents these data types.

12.1.4 80186(80188)/8087 INTERFACE

The 8087 is comprised of two elements, a Control Unit and a
Numeric Execution Unit. The Numeric Execution Unit exe-
cutes all numeric instructions, while the Control Unit receives
and decodes instructions, reads and writes memory operands,
and executes coprocessor control instructions. These two ele-
ments operate independently of one another. This allows the
Control Unit to maintain synchronization with the 80186 or
80188 CPU while the Numeric Execution Unit is busy proc-
essing instructions.

The 8087 is referred to as a numerics coprocessor because it
operates synchronously with the host processor. The CPU’s
status lines (S0-S2) and queue status lines (QS0-QS1) allow
the 8087 to monitor and decode instructions in synchroniza-
tion and without any CPU overhead. The 8087 maintains its
own prefetch queue identical to the one in the 80186 or 80188.
‘When a numerics instruction is encountered, the 8087 proc-
esses them independently of the CPU (Figure 121).

No special configuration is necessary for the 8087 to deter-
mine whether the data bus is eight or sixteen bits; the 8087
examines the 80186/80188 BHE/S7 line at RESET to adjust
its queue length and external data path accordingly.

®
ntel HARDWARE PROVISIONS FOR FLOATING POINT MATH

—=——— INCREASING SIGNIFICANCE

(TWO'S

WORD INTEGER | S} MAGNITUDE COMPLEMENT)

15 0

(TWO'S

SHORT INTEGER |S MAGNITUDE COMPLEMENT)

31 0

TWO'S
LONG INTEGER |S MAGNITUDE (COMPLEMENT)
63 0
MAGNITUDE

PACKED DECIMAL | S X

D17,D16, D15,D14,D13,D12,D11,D10, D9 D8 ; D7, D6 ; D5, D4 ; D3 ; D2 ; D1, DO

79 72
BIASED
SHORTREAL |S| ExPONENT SIGNIFICAND
31 23 0
1A
BIASED
LONG REAL |s SR SIGNIFICAND
63 52 ' a 0
BIASED
TEMPORARY REAL |S EXPONENT ”"I1 SIGNIFICAND
79 64 634 0

270288-001-126

Figure 120. 8087/80C187 Supported Data Types

8087

NUMERIC

DATA PROCESSOR
CONTINUE
UNTIL 8087

80186 RESULT
IS NEEDED

270288-001-127

Figure 121, 8087 Coprocessor Operation

12-5

intal’

HARDWARE PROVISIONS FOR FLOATING POINT MATH

12.1.5 80186(80188) BUS CYCLES DURING
NUMERICS COPROCESSING

The 8087 is an alternate bus master which directly performs all
coprocessor reads and writes to memory. When the Numeric
Execution Unit begins executing an instruction, it activates
the 8087 BUSY signal. This signal is used in conjunction with
the WAIT or FWAIT instruction to resynchronize both proc-
essors when the Numeric Execution Unit has completed its
current instruction.

The 82188 performs several functions necessary to integrate
the 8087 into an 80186 system. Most importantly, it translates
the 8087 REQUEST/GRANT protocol to the HOLD/HLDA
protocol required by the 80186. The 82188 reconstructs the
'RD and WR signals sacrificed by the 80186/80188 to provide
queue status signals. The 82188 also furnishes DEN, DT/R,
and auxiliary bus arbitration signals to integrate the 80186/
8087 into a larger microprocessor system.

The coprocessor must examine all instructions executed by
the host to recognize ESC instructions. When the host fetches
an instruction byte from its internal queue, the coprocessor
must also fetch an instruction byte.

The queue status state, fetch opcode byte, identifies when an
opcode byte is being examined by the host. At the same time,
the coprocessor will check if the byte fetched from its internal
instruction queue is an ESC opcode. If the instruction is not an
ESC, the coprocessor will ignore it. The queue status signals
for fetch subsequent byte and flush queue let the coprocessor
track the host’s queue without knowledge of the length and
function of host instructions and addressing modes.

A numeric instruction for the 8087 appears as an ESC instruc-
tion to the 80186 or 80188 CPU; both the CPU and the NPX
decode and execute the ESC instruction together. Only the
8087, however, recognizes the numeric instructions. The start
of a numeric operation begins when the CPU executes the
ESC instruction (the instruction may or may not identify a
memory operand).

The CPU does, however, distinguish between ESC instruc-
tions that refer to memory operands and those thatdo not. If the
instructions refers to a memory operand, the CPU calculates
theoperand’s address using any one of its available addressing
modes; and then performs a “dummy read” of the word at that
location. The address may fall anywhere within the 1 Mbyte
adddress space. This read cycle is normal except that the CPU
ignores the data it receives. If the ESC instruction does not
contain a memory reference (e.g., an 8087 stack operation),
the CPU simply proceeds to the next instruction.

An 8087 instruction has one of three memory reference op-
tions:

12-6

To not reference memory.

To load an operand from memory into the 8087.

.

To store an operand from the 8087 into memory.

If the 8087 requires no memory reference, the Numeric Exe-
cution Unit simply executes its instruction. If the 8087 does re-
quire a memory reference, the control unit uses the “dummy
read” cycle initiated by the host CPU to capture and save the
address that the CPU places on the bus. If the instruction speci-
fies a register load, the Control Unit also captures the data
word when it becomes available on the local data bus. If the
8087 requires data longer than one word, the Control Unit im-
mediately obtains the bus from the CPU using the REQUEST/
GRANT protocol and reads in the rest of the information in
consecutive bus cycles. In a store operation, the Control Unit
captures and saves the store address as in aregister load opera-
tion, and ignores the data word that follows in the “dummy
read” cycle. When the 8087 is ready to perform the store, the
Control Unit obtains the bus from the CPU and writes the
operand starting at the specified address.

This parallel operation of the host and coprocessor is called
concurrent execution. Concurrent execution of instructions
requires less total time thansstrictly sequential execution. System
performance will be higher with concurrent execution of in-
structions between the host and coprocessor.

12.2 USING THE 80C186 WITH THE 80C187
NUMERICS PROCESSOR EXTENSION

The 80C186 supports floating point calculations by providing
the necessary hardware interface to the 80C187 numerics
processor extension.

12.2.1 OVERVIEW OF THE 80C187
NUMERICS PROCESSOR
EXTENSION

The 80C187 numerics processor extension provides anumber
of new or improved transcendental instructions and refine-
ments above and beyond the capabilities of the 8087. The
80C187 conforms to the most recent revision of IEEE stan-
dard 754.

The 80C186 interfaces directly to the 80C187 (see Figure
122). The 80C186 and 80C187 operate asynchronously, each
up to its maximum rated clock speed. CLKOUT from the
80C186 may be used as the 80C187 clock input-upto 12.5
MHz. The 80C188 cannot be used because the flow of op-
codes, instruction pointers, and data passes through 16-bitI/O
ports. The 80C186 must be in Enhanced Mode to communi-
cate with the 80C187.

HARDWARE PROVISIONS FOR FLOATING POINT MATH

LATCH

ALE
80C186

RESET

WR

RD
MCS3/NPS
TEST/BUSY
MCS1/ERROR
MCS0/PEREQ
CLKOUT

EXTERNAL
OSCILLATOR

1X OR 2X 80C187
INTERNAL FREQUENCY

ADDRESS 15:0

DATA 15:0

CMDO CMD1

80C187

CLOCK INPUT
UNDIVIDED
CKM |

CLOCK INPUT
DIVIDED BY 2

I-WH i}

270288-001-128

Figure 122.80C186/80C187 System Configuration

12.2.2 80C187 ADDITIONS TO
INSTRUCTION SET

The 80C187 adds several new instructions to the 8087 (see
Table 28). Other instructions allow operands overan extended
range, and a few instructions behave slightly differently in
conformarice with the IEEE standard.

Of particular interest are the new trigonometric instructions
which provide sine or cosine in one operation.

12.2.3 80C186/80C187 INTERFACE

In similar fashion to the 8087, the 80C187 is comprised of
three units: aFloating Point Unit, a Data Interface and Control
Unit, and a Bus Control Logic Unit: The Floating Point Unit
executes all numerics instructions under supervision of the
Data Interface and Control Unit, while the Bus Control Logic
Unit maintains handshaking and communications with the
host 80C186.

Table 28. 80C187 Additions to Instruction Set

Instruction Type Mnemonic Description
Arithmetic FPREM1 Partial Remainder (IEEE)
Comparison FUCOM Unordered Compare
FUCOMP Unordered Compare and Pop
FUCOMPP Unordered Compare and Pop Twice
Transcendental FCOS Cosine
FSIN Sine
FSINCOS Sine and Cosine

12-7

intel

HARDWARE PROVISIONS FOR FLOATING POINT MATH

The 80C187 is referred to as a numerics processor extension
because it operates as a slave device to the host 80C186. All
communicationbetween the 80C186and 80C187 occursthrough
the dedicated I/O ports shown in Table 29. When the 80C186
encounters a numerics opcode, it writes the opcode to the
80C187, which decodes the instruction and passes elementary
instruction information (Opcode Status) back to the 80C186.
Since the 80C187 is a slave processor, all loads and stores to
memory are performed by. the 80C186.

Please note that the 80C186 cannot process any numerics
(ESC) opcodes alone. If the 80C186 encounters a numerics
instruction (including the FINIT/FNINIT initialization instruc-
tion) and the 80C187 is not present, the operation of the 80C186
is indeterminate. In those applications where the 80C187 is
offered as an option, problems can be prevented in three ways:

Remove all numerics (ESC) instructions, including any
code which checks for the presence of the NPX.

Use a jumper or switch setting to indicate the presence of
the 80C187, and have the software branch away from
numerics instructions when the 80C 187 socket is empty.

Add pull-up and pull-down resistors to various data and
control lines to force the 80C186 into predictable opera-
tion when the 80C187 socket is empty.

In Enhanced Mode, three of the mid-range memory chip se-
lectsareredefined as handshaking pins forthe 80C186/80C187
interface. Handshaking is managed by 80C186 microcode.
MCS?2 retains its same function as in Compatible Mode.
Additionally, the processor retains the wait state and READY
logic programmability for the entire mid-range block, even
though MCS0, MCST1, and MCS3 are no longer available as
outputs.

Table 29. Numerics Coprocessor I/O

Port Assignments
/0 Address | Read Definition |Write Definition
00F8H Status/Control Opcode
00FAH Data Data
00FCH reserved CS:IP, DS:EA
00FEH Opcode Status reserved

12-8

12.2.4 80C186 BUS CYCLES WITH THE
80C187 NUMERICS PROCESSOR
EXTENSION

The 80C186 performs bus cycles to the 80C187 numerics
processor extension (NPX) exactly like other I/O bus cycles.
This fact has important implications:

Operations to the 80C187 require external READY to be
provided via the SRDY or ARDY pins.

Ifthe PCS address range is programmed to cover the NPX
port addresses, a PCS line goes active during each read or
write from the 80C186 to the 80C187. However, ordinary
reads and writes to those addresses do not activate NPS on
the 80C186.

DT/R and DEN function normally during NPX transfers.
Inabuffered system with the 80C187 residing on the local
bus, use NPS to qualify DEN to the bus transceivers.
Otherwise, contention between the NPX and the trans-
ceivers occurs on read cycles.

The 80C1861ocal busis available to the integrated periph-
erals during execution of numerics instructions when it is
not needed by the CPU. This means that DRAM refresh
cyclesand DMA cycles may be interspersed with accesses
to the 80C187.

The 80C186 local bus is available to alternate bus masters
during execution of numerics instructions when it is not
needed by the CPU. This means that bus cycles originat-
ing from alternate masters (via the HOLD/HLDA proto-
col) can suspend numerics bus cycles for an indefinite
period.

The LOCK pin functions normally during numerics op-
erations. This means that LOCKed numerics instructions
can monopolize the bus for a very long time.

Difference Appendix A
Between the 80186

Family and the 8086/8088

APPENDIX A
DIFFERENCES BETWEEN THE 80186 FAMILY AND THE 8086/
8088

A.1 CPUPERFORMANCE

Because of 80186 family hardware enhancements in both the
Bus Interface Unit and the Execution Unit, most instructions
require fewer clock cycles to execute than on the 8086/8088.
Execution speed is gained by performing the effective address
calculations (base + displacement + index) with a dedicated
hardware adder, which takes only four clock cycles in the
80186 family Bus Interface Unit, rather than with amicrocode
routine. These calculations are three to six times faster than the
8086/8088 at the same frequency.

In addition, the execution speed of specific instructions was
improved. All multiple-bit shift and rotate instructions exe-
cute 1.5 to 2.5 times faster than the (same speed) 8086/8088.
Multiply and divide instructions execute three times faster.
String move instructions run at bus bandwidth, about twice the
speed of the 8086/8088. Overall, the 80186 family processors
runbenchmark programs 1.2 - 2.6 times the performance level
of the (same speed) 8086/8088.

A.2 CLOCKING

The 80186 family employs an integrated clock generator which
provides a 50 percent duty cycle CPU clock. This is different
from the 8086 which utilizes an external clock generator to
provide a 33 percent (1/3 HIGH, 2/3 LOW) duty cycle CPU
clock. The following points relate to 80186 clock generation:

« The 80186 family uses a crystal or external frequency
input that is twice the desired processor clock frequency.

» No oscillator output is available from an 80186 family
processor internal oscillator.

* An 80186 family processor does not provide a clock out-
putatreduced frequency. However, a timer output may be
easily programmed for this purpose.

o Interfacing the 80186 family to devices needing a 33 per-
cent duty cycle clock (for example, the 8087) is possible,
but requires careful timing analysis.

A.3 LOCAL BUS CONTROLLER AND
CONTROL SIGNALS

In general, the output drivers on 80186 family products are
much larger than those of the 8086. This leads to larger sys-

tems without as much need for bus buffering. It also means
that the designer should be more careful to provide adequate
grounding and bypassing, since large drivers are more apt to
cause current transients. In the 68-pin package, an 80186 family
device has only two ground pins.

A.4 HOLD/HLDA VS. REQUEST/GRANT

The 80186 family uses a HOLD/HLDA protocol for bus arbi-
tration rather than the REQUEST/GRANT protocol used by
the 8086 in max mode. This allows compatibility with newer
generation Intel bus master peripheral devices.

A.5 STATUSINFORMATION

Three status signals are available on the 8086 but not on the
80186 family. They are S3,S4,and S5. Taken together, S3 and
S4 indicate the segment register from which the current physi-
cal address has been derived. S5 indicates the state of the
interrupt flip-flop. On 80186 family processors, these signals
will always be LOW.

Status signal S6 indicates whether the current bus cycle is
initiated by either the CPU or a DMA device. Subsequently, it
is always LOW on the 8086. On the 80186 family, it is LOW
whenever the current bus cycle is initiated by the CPU, and is
HIGH when the current bus cycle is initiated by the integrated
DMA Unit.

An 80186 family processor simultaneously provides both local
bus control outputs and status outputs for use with external
Bus Controllers. This is different from the 8086 where the
local bus control outputs are sacrificed if status outputs are de-
sired. Thesedifferences will manifest themselves in8086 systems
and 80186 family systems as follows:

e Many systems supporting both a system bus and a local
bus will not require two separate external bus controllers.
The bus control signals may be used to control the local
bus while the status signals are concurrently connected to
the 82C88 Bus Controller to drive the control signals of
the system bus.

« The ALE signal goes active a clock phase earlier on the
80186 family than on the 8086 or 82C88. This minimizes
address propagation time through the address latches, since
typically the delay time through these latches from valid
inputs is less than the propagation delay from the strobe
input active.

intel

DIFFERENCES BETWEEN THE 80186 FAMILY AND THE 8086/8088

The RD input must be tied LOW to provide queue status
outputs from the 80186 family processor (see Figure A-1).
When so strapped into Queue Status Mode, the ALE and
WR outputs provide queue status information. Notice that
queuestatus information s available one clock phase earlier
than from the 8086 (see Figure A-2).

80186
FAMILY
PROCESSOR
QS0 i
QS1 i

—

ALE
WR
RD

270288-001-129

Figure A-1. Generating Queue Status Information

ADDED INSTRUCTIONS:

The 80186 family executes PUSHA, POPA, INS, OUTS,
BOUND, ENTER, and LEAVE.

IMPROVED INSTRUCTIONS:

PUSH, IMUL, and SHIFTS/ROTATES may use immediate
operands on the 80186 family.

UNDEFINED OPCODES:

When the opcodes 63H, 64H, 65H, 66H, 67H, F1H, FEH
XX111XXXBand FFH XX111XXXB areexecuted, the 80186
family executes anillegal instruction exception, interrupt Type
6. The 8086 will ignore the opcode.

LY N T
CLKOUT d N |
186 FAMILY ' @ | X @ @ | @
| - A
/i /)
= = ST |

270288-001-130

NOTES: 1. 80186 family processor changes queue status off falling edge of CLKOUT.
2. 8086 changes queue status off rising edge of CLK.

Figure A-2. 80186 Family and 8086 Queue Status Generation

A.6 BUS UTILIZATION

Atypical instruction mix will require greater bus utilizationon
the 80186 family than on the 8086. The 80186 family executes
most instructions in fewer clock cycles, requiring instructions
from the queue at a faster rate. This also means that the effect
of wait states is more pronounced in an 80186 family micro-
processor system than in an 8086 system.

A.7 INSTRUCTION EXECUTION

The following paragraphs explain the instruction execution
differences between the 8086 and the 80186.

OFH OPCODE:

‘When the opcode OFH is encountered, the 8086 will execute a
POP CS, while the 80186 family will execute an illegal in-
struction exception, interrupt Type 6.

WORD WRITE AT OFFSET FFFFH:

‘When a word write is performed at offset FFFFH in a segment,
the 8086 will write one byte at offset FFFFH, and the other at
offset 0, while an 80186 family processor will write one byte
at offset FFFFH, and the other at offset 10000H (one byte
beyond the end of the segment). One byte segment underflow

intel’

DIFFERENCES BETWEEN THE 80186 FAMILY AND THE 8086/8088

will also occur if a stack PUSH is executed and the stack
pointer contains the value 1.

SHIFT/ROTATE BY VALUE GREATER
THAN 31:

Before the 80186 family performs a shift or rotate by a value
(either in the CL register, or an immediate value) it ANDs the
value with 1FH, limiting the number of bits rotated to less than
32. The 8086 does not limit the rotation count.

LOCK PREFIX:

The 8086 activates its LOCK signal immediately upon exe-
cuting the LOCK prefix. An 80186 family processor does not
activate the LOCK signal until the processor is ready to begin
the data cycles associated with the LOCKed instruction.

On the 80186 or the 80188, back-to-back LOCKed instruc-
tions are not allowed. Insert at least six bytes of code (four
bytes for the 80188) between the end of the first LOCKed
instruction and the beginning of the second LOCKed instruc-
tion. This restriction does not apply to the 80C186/80C188.
However, between the bus cycles for the first instruction and
thebus cycles forthe second instruction, LOCK will notremain
active, and the processor can perform other bus activities.

INTERRUPTED STRING MOVE
INSTRUCTIONS:

If an 8086 is interrupted during the execution of a repeated
string move instruction, the return value it will push on the
stack will point to the last prefix instruction before the string
move instruction. If the instruction has more than one prefix
(e.g., a segment override prefix in addition to the repeat pre-
fix), the other prefixes will not be reexecuted upon returning
from the interrupt. An 80186 family processor will push an IP
value pointing to the first prefix of the repeated instruction (as
long as prefixes are not repeated), allowing the string instruc-
tion to properly resume.

CONDITIONS CAUSING DIVIDE ERROR
WITH AN INTEGER DIVIDE:

The 8086 will cause a divide error whenever the absolute
value of the quotient is greater than 7FFFH (for word opera-
tions) or if the absolute value of the quotient is greater than
7FH (for byte operations). The 80186 family expanded the
range of negative numbers allowed as a quotient by 1 to in-
clude 8000H and 80H. These numbers represent the most
negative numbers representable using 2’s complement arith-
metic (equaling -32768 and -128 in decimal, respectively).

ESC OPCODES:

An 80186 family microprocessor has a bit (the ET bit) in the
relocation register which can be programmed to cause a Type
7 interrupt upon attempted execution of acoprocessor (ESCape)
instruction. The 8086 has no such provision.

On the 80186 and 80188, the initial state of the ET bit is
cleared, disabling the trap. On the 80C186, the initial state of
the ET bit is cleared in Enhanced Mode or set in Compatible
Mode. On the 80C188, the ET bit is not accessible to the user
and the ESCape Trap is always enabled, regardless of operat-
ing mode.

Execution of numerics opcodes proceeds differently in the
80C186 than in the 8086/8088 or 80186/80188. See Chapter
12 fordetails. The 80C188 cannot utilize anumerics processor
extensionatall. Whenmigrating from the 8086/8088 or 80186/
80188 to the 80C186/80C188, the user should be aware of
these differences. In particular, it may be necessary to check
software for unexpected numerics (ESCape) opcodes.

Synchronization of - Appendix B
External Inputs

APPENDIX B
SYNCHRONIZATION OF EXTERNAL INPUTS

Many input signals to an 80186 family processor are asyn-
chronous, that is, a specified set up or hold time is not required
to ensure proper functioning of the device. Associated with
eachoftheseinputsisasynchronizer whichsamples this external
asynchronous signal, and synchronizes it to the internal clock.

B.1 WHY SYNCHRONIZERS ARE
REQUIRED

Every data latch requires a certain set up and hold time in order
to operate properly. At a certain window within the specified
setup and hold time, the part will actually try to latch the data.
If the input makes a transition within this window, the output
will not attain a stable state within the given output delay time.
The actual size of this sampling window is typically much
smaller than the window specified by the data sheet; however,
part to part variation could move the actual window around
within the specified window.

Even ifthe input to a data latch makes a transition while a data
latch is attempting to latch this input, the output of the latch
will attain a stable state after a certain amount of time, typi-
cally much longer than the normal strobe to output delay time.
Figure B-1 shows a normal input to output strobed transition
and one in which the input signal makes a transition during the
latch’s sample window. Tosynchronize anasynchronoussignal,
all one needs to do is to sample the signal into one data latch
long enough for the output to stabilize, then latch it into a
second data latch. The time between the first latch strobe and
the second latch strobe allows the first latch to attain a steady
state. With the asynchronous signal resolved in this way, the
input signal at the second latch satisfies its setup and hold
requirements.

Thus, the output of this second latch is a synchronous signal
with respect to its strobe input.

A synchronization failure can occur if the synchronizer fails to
resolve the asynchronous transition within the time between
the strobes of the two latches. The rate of failure is determined
by the actual size of the sampling window of the data latch, and
by the amount of time between the strobe signals of the two
latches. Obviously, as the sampling window gets smaller, the
number of times an asynchronous transition will occur during
the sampling window will drop. Inaddition,however, a smaller
sampling window is also indicative of a faster resolution time
for an input transition which manages to fall within the sam-
pling window.

B-1

STROBE
SET-UP TIME |HOLD TIME

h.'

|
ACTUAL SAMPLING INSTANT

INVALID :’

INPUT
RESPONSE RESOLUTION TIME
e
VALID
INPUT

e ————— [

270288-001-131

Figure B-1.Valid and Invalid Latch Input
Transitions and Response

B.2 80186 FAMILY SYNCHRONIZERS

The 80186 family uses the two stage synchronization tech-
nique on TMR INO-1, DRQO-1, NMI, INT0-3, and HOLD
input lines. ARDY uses a slight modification (see Section
3.6). Forthe NMOS 80186, the sampling window of the latches
was designed to be in the tens of picoseconds, and should
allow operation of the synchronizers with a mean time be-
tween failures of over 30 years, assuming continuous opera-
tion.

Summary of Appendix C
Differences Among

Family Members

APPENDIX C
SUMMARY OF DIFFERENCES AMONG 80186 FAMILY MEMBERS

C.1 DIFFERENCES DUE TO DATA BUS
WIDTH

The 80188/80C188 is like the 80186/80C186 except it has an
8-bit external bus. It shares the same Execution Unit, timers,
peripheral control block, Interrupt Control Unit, Chip Select
Unit, and DMA Control Logic Unit. The differences between
the two caused by the narrower data bus are:

« The 80188/80C188 has a four byte prefetch queue, rather
than the six byte prefetch queue present on the 80186/
80C186. The reason is that the 80188/80C188 fetches
opcodes one byte at a time, requiring more bus cycles to
fill the queue. A smaller queue is required to prevent an
inordinate number of bus cycles being wasted by prefetch-
ing opcodes to be discarded during a jump.

e ADS8-ADI15 onthe 80186/80C186 are transformed to A8-
A15 on the 80188/80C188. Valid address information is
presentonthese lines throughout the buscycle of the 80188/
80C188. Valid address information is not guaranteed on
these lines during idle T-states.

« BHE/S7 is always defined HIGH by the 80188/80C188
since the upper half of the data bus is non-existent.

+ The DMA Control Unit on the 80188/80C188 only per-
forms byte transfers. The B/W bit in the DMA control
word is ignored.

+ Execution times for most data transfer instructions in-
creases because the BIU funnels the accesses through a
narrower data bus. The narrower bus also means that the
prefetch queue will run empty more often, causing the
Execution Unit itself to be bus-limited. The execution
time within the processor, however, is not changed be-
tween the 80186/80C186 and 80188/80C188.

Another important point is that the 80188/80C188 is inter-
nally a 16-bit machine. This means that access to the inte-
grated peripheral registers of the 80188/80C188 will be done
in 16-bit pieces, not in 8-bit pieces. All internal peripheral
registers are still 16-bits wide, and only a single read or write
isrequired to access the registers. When a word access is made
to the internal registers, the BIU will run two bus cycles exter-
nally.

Access to the control block may also be done with byte opera-
tions. Internally the full 16 bits of the AX register will be
written, while only one bus cycle will be executed externally.

C.2 DIFFERENCES BETWEEN NMOS AND
CMOS DEVICES

There are two operating modes of the 80C186 and 80C188,
Compatible Mode and Enhanced Mode. In Compatible Mode,
the 80C186/80C188 will function identically to the 80186/
80188 with the following exceptions:

* Allnon-initialized registers in the peripheral control block
willresettoarandom value during power-up onthe 80C 186/
80C188. Non-initialized registers consist of those regis-
ters which are not used for control, i.e., address pointers,
max count, etc. For compatibility, all registers should be
programmed before being used on existing 80186/80188
applications as well as on new 80C186/80C188 applica-
tions.

* The ET (ESC Trap) bit in the relocation register has no
effect in Compatible Mode. If an ESCape opcode is exe-
cuted, the 80C186/80C 188 will always trap to an interrupt
vector Type 7. The 80C186/80C 188 does not support any
numerics operations when in Compatible Mode.

In Enhanced Mode, the 80C186/80C188 provides two addi-
tional features not found on the 80186/80188: power-save
operation, and the DRAM Refresh Unit.

Enhanced Mode is selected during RESET. The timing dia-
gram in Figure C-1 shows how the 80C186/80C188 samples
the TEST pin (TEST/BUSY in the 80C186) before and just
after RES inputis removed to determine if the device will enter
Enhanced Mode. Tying the RESET output pin back to the
TEST input pin will automatically force the processor into
Enhanced Mode.

‘When the 80C186 (but not the 80C188) is in Enhanced Mode,
three of the MCS chip select lines change functionality to
support the 80C187 Numerics Coprocessor Extension. The
remaining MCS functionality is illustrated in Figure C-2.

The 80C188 in Enhanced Mode functions similarly to the
80C186 except for numerics operation. It is not possible to

intal’

SUMMARY OF DIFFERENCES AMONG 80186 FAMILY MEMBERS

CLKOUT

L1 L

@
EIVAR \\

w_/

NOTES:
1. TEST maust be high Tinvep When RES transitions high.
2. TEST must be low TINVCH rc‘)ur clocks later.

270288-001-132

Figure C-1. Enhanced Mode Enable Pin Timing

Block Si Block 4
ock Size | " Ro 1% =
Defined by -- _Bl_oc_k_S. -
MPCS __Block 2 _
Block 1

- =+ MCS2 remains
active -

= Block Start Defined

by MMCS
270288-001-133

Figure C-2. MCS2 Functionality During Enhanced Mode

interface anumerics coprocessor with the 80C188. Therefore,
none of the MCS pins change functionality when invoking
EnhancedMode. Further, any attempted executionof an ESCape
opcode will result in a trap to interrupt vector Type 7.

The external frequency input (EFI) requirements differ some-
whatbetween the NMOS 80186/80188 and the CMOS 80C186/

80C188. On the NMOS processors, it is possible to drive ei-
ther X1 (with X2 unconnected) or X2 (with X1 grounded).
Since the internal oscillator consists of an inverter from the X 1
pintothe X2 pin, overdriving the X2 pinon the CMOS devices
would result in excessive current draw. The correct configura-
tion for the CMOS processors is to drive X1 and leave X2
unconnected.

ALABAMA

tintel Corp.

5015 Bradford Dr., #2
Huntsville 35805

Tel: (205) 830-4010
FAX: (205) 837-2640

ARIZONA

tintel Corp.

11225 N. 28th Dr.

Suite D-214

Phoenix 85029

Tel (602) 869-4980
AX: (602) 869-4294

Intel Ci

1161 N. I Dorado Place

Suite 30

Tucson 85715

Tel: (602) 299-6815

FAX: (602) 296-8234

CALIFORNIA

tintel Corp.

21515 Vanowen Street
Suite 1

Cany a Park 91303
Tel: (818) 704-8500
FAX: (818) 340-1144

tintel Corp.

§250 E. !‘mpenal Highway
Uit

El Ssgundo 90245

Tel: (213) 640-6040

FAX: (213) 640-7133

Sactame

Tel: (916 920-8096
FAX: (916) 920-8253
tintel Corp.

9665 Chesapeake Dr.
Suite 325
San Di 95123
Tel: (619) 292-8086
FAX: (619) 292-0628

tintel Corp.
400 N. Tusnn Avenue
Suite 450

Tel: (714 835-9642

TWX: 910-595-1114

FAX: (714) 541-9157

tintel Covp *

San Tomas 4

ano San Tomas Expressway

FAX: (408) 727-2620

COLORADO

Intel Corp.

4445 Northpark Drive
Suite 100

Colorado Springs 80907
Tel: (719) 594-

FAX: (303) 594-0720
tintel Corp.*
650 S. Cherry St.
Suite 915

Denver 80222

Tel: (303) 321 5085
TWX: 910-931-2289

FAX: (303) 322 8670

tSales and Service Office
*Field Application Location

DOMESTIC SALES OFFICES

CONNECTICUT
tintet Cor

301 Lee lgrm Corporate Park
83 Wooster Heights Rd.

Danbury 06810
Tel (203) 748-3130
AX: (203) 794-0339
FLORIDA
fintel Corp.
6363 N.M}?Sth
Suite 100
Ft. Lauderdale 33309
Tel: (305) 771-0600
TWX: 510-956-9407
FAX: (305) 772-8193
tintel Corp.
5850 T.G. Lee Bivd.
Suite 340

Way

Orlando 32822
Tel: (407) 240-8000
FAX: (407) 240-8097

11300 4th Street North
Suite 170

St. Petersburg 33716
Tel: (813) 577-2413
FAX: (813) 578-1607

GEORGIA

ntel Corp.
goi;l'achnology Parkway, N.W.
Norcross 30092
Tel: (404) 449-0541
FAX: (404) 605-9762

ILLINOIS
tintel Corp.*

?cnaumbu 601 73
FAX: (31 2) 706-9762

INDIANA

tintel Corp.

8777 Purdue Road
Sute 125
Indianapolis 46268
Tel: (317) 875-0623
FAX: (317) 875-8938
IOWA

Intel Corp.
1930 St. Andrews Drive N.E.
2nd Floor

Cedar Rapids 52402
Tel: (319) 393-1294

KANSAS
tintel Corp.
10985 Cody St.
Sute 140, B

Tol, (
FAX: (913) 345 076

MARYLAND

tintel Corp.*

10010 Junction Dr.

Suite 200

Annapolis Junction 20701
Tel: (301) 206-2860

FAX: (301) 206-3677
(301) 206-3678

MASSACHUSETTS

ﬂmel Corp.*

Westford Corp. Center
3 Carlisle Road
2nd Floor
Westford 01886
Tel: (509) 692-3222
TWX: 710-343-6333

FAX: (508) 692-7867
MICHIGAN

tintel
;071 Orchavd Lake Road

Wos: Bloomiield 48322
Tel: (313) 851-8096
FAX: (313) 851-8770

MINNESOTA

tintel Corp.
3500 W. 80th St.
Suite 360

Bloomington 5543
Tel: (612?%35—6722
TWX:

FAX: (612) 831-6497

MISSOURI

150 ga’ﬁﬂc.ty B
Xpressway
Suite 131 Y

Earth cn¥ 63045
Tel: (314) 291-1990
FAX: (314) 291-4341

NEW JERSEY

Tint Corp *

Parkway 109 Office Center

328 Newman Springs Road
Bank 07701

Red
Tel: (201) 747-2233
FAX: (201) 747-0983

tintel Corp.

280 Corporate Center
75 Livingston Avenue
First Floor

Rost

eland 07068
Tel: (201) 740-0111
FAX: (201) 740-0626

NEW YORK

Intel Corp.*
850 Cross Keys Office Park
Faifport 1

Tel: (716) 425-2750

TWX: 510-263-7391

FAX: (716) 223-2561

tintel Corp.*
2950 Exagressway Dr., South

Islandla 11722

Tel: (516) 231-3300

TWX: 510-227-6236

FAX: (516) 348-7939

tintel Corp.
Westag e usmess Center

oute 9
Ploal 12598

Tel: (914) 897-3860
FAX: (914) 897-3125

NORTH CAROLINA

tintel Corp.
5800 Executive Center Dr.

Tel: 568-8966
Fix:n(%l) 535.2236

intel Corp.
5540 Centerview Dr.
Suvte 21

Raleigh 27606
Tel: (919) 851-9537
FAX: (919) 851-8974

OHIO

tintel Corp.*
3401 Park Center Drive
Suite 22
ayloﬂ 454‘4
(513) 890-5350
0-450-2528
FAX (513) 890-8658

tintel Corp.*
25700 Science Park Dr.
Suite 100

FAX: (804) 282.0673

OKLAHOMA

B8 B
o
Suite 115

Tel: (405) 848-8086
FAX: (405) 840-9819

OREGON

tlintel x

15254 N.W. Greenbrier Parkway
Building B

Beaverton 97005

FAX: (508) 645r8

PENNSYLVANIA

tintel Corp.*

gsﬁ Pennsylvania Avenue
uite

Fort Washmgtan 19034

Tel: (215) 641-1000

TWX: 510-661-2077

FAX: (215) 641-0785

tintel Corp.*

400 Penn Center Bivd.
Suite 610

Pmsburgh 15235

Tel: (412) 823-4970
FAX: (412) 829-7578

PUERTO RICO

tintel Corp.

South Industrial Park
P.O. Box 910

Las Piedras 00671
Tel: (809) 733-8616

TEXAS

Intel Corp.
ﬂﬂ Capltal of Texas Hwy.

Tel: (512) 2048086
FAX: (512) 338-9335

tintel Corp.*
12000 Fooﬁi Road
Su 00

5234
Tat (214) 241-8087
FAX: (214) 484-1180

158 P o
.W. Fra
Suite 1490
Houston 77074

FAX: (713) 988-3660
UTAH

ﬂntel Corp.
8 East 6400 South
Sunte 104

84107
Tel (1) 263-8051
FAX: (801) 268-1457

VIRGINIA

tintel Corp.

1504 Santa Rosa Road
Suite 108

Richmond 23238

Tel: (804) 282-5668
FAX: (216) 464-2270
WASHINGTON

tintel

155 1081h Avenue N.E.
Suite 386

Bellevue 98004

Tel: (206) 453-8086
WX: 910-443-3002

FAX: (206) 451-9556

Intel Cory

408 N. Mullan Road

g:gﬁ 10299206

Tel: (509) 928-8086

FAX: (509) 928-9467

WISCONSIN

Intel Corp.
330 S. Executive Dr.
Suite 102

Brookfield 53005
Tel: (414) 784-8087
FAX: (414) 796-2115

CANADA

BRITISH COLUMBIA
Intel Semiconductor of

ONTARIO
Tlntel Semiconductor of
Canada, Ltd.

2650 Queensview Drive
Suite 250

Ottawa K2B 8H6

Tel: (613) 829-9714
FAX: (613) 820-5936

tintel Semiconductor of
Canada, Ltd.

190 Attwell Drive
Suite 500

Rexdale MOW 6H8
Tel: (416) 675-2105
FAX: (416) 675-2438

QUEBEC

Intel Semiconductor of
anada, Ltd.

620 St. Jean Boulevard

Pointe Claire HIR 3K2

Tel: (514) 694-9130

FAX: 514-694-0064

CG/SALE/101789

ALABAMA

Arrow Electronics, Inc.
1015 Henderson Road
Huntsville 35805

Tel: (205) 837-6955

‘tHamilton/Avnet Electronics
4940 Research Drive
Huntsville 35805

Tel: (205) 837-7210

TWX: 810-726-2162

TWX: 810-726-2197

ARIZONA

‘tHamilton/Avnet Electronics
505 S. Madison Drive
Tempe 85281

Tel: (602) 231-5140

TWX: 910-950-0077

Hamilton/Avnet Electronics

Tel: (602) 961-6669
TWX: 910-950-0077

Arrow Electronics, Inc.

4134 E. Wood Strest
Phoenix 85040

Tel: (602) 437-0750

TWX: 910-951-1550

Wyle Distribution Group
17855 N. Black Canyon Hwy.
Phoenix 85023

Tel: (602) 249-2232

TWX: 910-951-4282

CALIFORNIA

Arrow Electronics, Inc.
10824 Hope Street
Cypress 90630

Tel: (714) 220-6300

Arrow Electronics, Inc.
19748 Dearborn Street
Chatsworth 91311

Tel: (213) 701-7500
TWX: 910-493-2086

tArow Electronics, Inc.
521 Weddell Drive
Sunnyvale 94086

Tel: (408) 745-6600
TWX: 910-339-9371

Arrow Electronics, Inc.
9511 Rldgehaven Court
San Diego 9212:

Tel: (619) 565-4300
TWX: 888-064

TArrow Electronics, Inc.
2961 Dow Avenue
Tustin 92680

Tel: (714) 838-5422
TWX: 910-595-2860

tAvnet Electronics

350 McCormick Avenue
Costa Mesa 92626

Tel: (714) 754-6071
TWX: 910-595-1928

‘tHamilton/Avnet Electronics
1175 Bordeaux Drive
Sunnyvale 94086

Tel: (408) 743-3300

TWX: 910-339-9332

‘tHamilton/Avnet Electronics
4545 Rldgewew Avenue

San Diego 92123

Tel: (619) 571-7500

TWX: 910-595-2638
‘tHamilton/Avnet Electronics
9650 Desoto Avenue

Chatsworth 91311
Tel: (818) 700-1161

Mi System T

Di

DOMESTIC DISTRIBUTORS

tHamilton Electro Sales
10950 W. Washington Bivd.
Culver City 2023

Tel: (213) 558-2458

TWX: 910-340-6364

Hamilton Electro Sales
13618 West 190th Street
Gardena 90248

Tel: (213) 217-6700

‘tHamilton/Avnet Electronics
3002 ‘G’ Street

Ontario 91761

Tel: (714) 989-9411

‘tAvnet Electronics
20501 Plummer
Chatsworth 91351
Tel: (213) 700-6271
TWX: 910-494-2207

tHamilton Electro Sales
3170 Pullman Street
Costa Mesa 92626

Tel: (714) 641-4150
TWX: 910-595-2638

‘tHamilton/Avnet Electronics
4103 Northgate Blvd.
Sacramento 95834

Tel: (916) 920-3150

Wyle Distribution Group
124 Maryland Street

El Segundo 90254

Tel: (213) 322-8100

Wyle Distribution Group
7382 Lampson Ave.
Garden Grove 92641

Tel: (714) 891-1717

TWX: 910-348-7140 or 7111

Wyle Distribution Group
11151 Sun Center Drive
Rancho Cordova 95670
Tel: (916) 638-5282

tWyle Distribution Group
9525 Chesapeake Drive
San Diego 92123

Tel: (619) 565-9171
TWX: 910-335-1590

1tWyle Distribution Group
3000 Bowers Avenue

Santa Clara 95051

Tel: (408) 727-2500

TWX: 910-338-0296

1Wyle Distribution Group
17872 Cowan Avenue
Irvine 92714

Tel: (714) 863-9953
TWX: 910-595-1572

Wyie Distribution Group
26677 W. Agoura Rd.
Calabasas 91302

Tel: (818) 880-9000
TWX: 372-0232

COLORADO

Arrow Electronics, Inc.
7060 South Tucson Way
Englewood 80112

Tel: (303) 790-4444

tHamilton/Avnet Electronics
8765 E. Orchard Road
Suite 708

Englewood 80111

Tel: (303) 740-1017

TWX: 910-935-0787

1Wyle Distribution Group
451 E. 124th Avenue
Thornton 80241

Tel: (303) 457-9953
TWX: 910-936-0770

Center

CONNECTICUT

tArrow Electroriics, Inc.
12 Beaumont Road
Wallingford 06492

Tel: (203) 265-7741
TWX: 710-476-0162

Hamilton/Avnet Electronics
Commerce Industrial Park
Commerce Drive

Danbury 06810

Tel: (203) 797-2800

TWX: 710-456-9974

tPioneer Electronics
112 Main Street
Norwalk 06851

Tel: (203) 853-1515
TWX: 710-468-3373

FLORIDA

tArrow Electronics, Inc.

400 Fairway Drive

Suite 102

Deerfield Beach 33441

Tel: (305) 429-8200
510-955-9456

Arrow Electronics, Inc.
37 Skyline Drive

Suite 3101

Lake Marv 32746

Tel: (407) 323-0252
TWX: 510-959-6337

‘tHamilton/Avnet Electronics
6801 N.W. 15th Wa

Ft. Lauderdale 33309

Tel: (305) 971-2900

TWX: 510-956-3097

‘tHamilton/Avnet Electronics
3197 Tech Drive North

St. Petersburg 33702

Tel: (813) 576-3930

TWX: 810-863-0374

tHamilton/Avnet Electronics
6947 University Boulevard
Winter Park 32792

Tel: (305) 628-3888

TWX: 810-853-0322

tPioneer/Technologies Group, Inc.

337 S. Lake Bivd.
Alta Monte Spnngs 32701
Tel: (407) 834-9090
TWX: 810-853-0284

Pioneer/Technologies Group, Inc.
674 S. Military Trail

Deerfield Beach 33442

Tel: (305) 428

TWX: 510- 955 9853

GEORGIA

TArrow Electronics, Inc.

? 55 Northwoods Parkway
uite

Norcross 30071

Tel: (404) 449-8252

TWX: 810-766-0439

‘tHamilton/Avnet Electronics
5825 D Peachtree Corners
Norcross 30092

Tel: (404) 447-7500

TWX: 810-766-0432

Pioneer/Technologies Group, inc.
3100 F Northwoods Place
Norcross 30071

Tel: (404) 448-1711

TWX: 810-766-4515

ILLINOIS

Arrow Electronics, Inc.
1140 W, Thorndale
ltasca 60143

Tel: (312) 250-0500
TWX: 312-250-0916

tHamilton/Avnet Electronics
1130 Thorndale Avenue
Bensenville 60106

Tel: (312) 860-7780

TWX: 910-227-0060

MTI Systems Sales
1100 W. Thorndale
Itasca 60143

Tel: (312) 773-2300

tPioneer Electronics

1551 Carmen Drive

Elk Grove Vlllage 60007

Tel: (3 437-9680
TWX: 910-222-1834

INDIANA

tArrow Electronics, Inc.
2495 Directors Row, Suite H
Indianapolis 46241

Tel: (317) 243-9353

TWX: 810-341-3119

Ham;lton/AvBet Electronics

Tel: (317) 844-9333
TWX: 810-260-3966

tPioneer Electronics
6408 Castleplace Drive
Indianapolis 46250
Tel: (317) 849-7300
TWX: 810-260-1794

IOWA

Hamilton/Avnet Electronics
915 33rd Avenue, S.W.
Cedar Rapids 52404

Tel: (319) 362-4757

KANSAS

Arrow Electronics

8208 Melrose Dr., Suite 210
Lenexa 66214

Tel: (913) 541-9542

‘tHamilton/Avnet Electronics
9219 Quivera Road
Overland Park 66215

Tel: (913) 888-8900

TWX: 910-743-0005

Pioneer/Tec Gr.
10551 Lockman Rd.
Lenexa 66215

Tel: (913) 492-0500

KENTUCKY

Hamilton/Avnet Electronics
1051 D. Newton Park
Lexington 40511

Tel: (606) 259-1475

MARYLAND

Arrow Electronics, Inc.
8300 Guilford Drive
Suite H, River Center
Columbia 21046

Tel: (301) 995-0003
TWX: 710-236-9005

Hamilton/Avnet Electronics
Hall Lane

Tel: (301) 995-3500
TWX: 710-862-1861

tMesa Technology Corp.
9720 Patuxent Woods Dr.
Columbia 21046

Tel: (301) 290-8150
TWX: 710-828-9702

tPioneer/Technologies Group, Inc.

9100 Gaither Road

Gaithersburg 20877
Tel: (301) 921-0660
TWX: 710-828-0545

Arrow Electronics, Inc.
7524 Standish Place
Rockville 20855

Tel: 301-424-0244

MASSACHUSETTS

Arrow Electronics, Inc.

25 Upton Dr.

Wilmington 01887

Tel: (617) 935-5134
‘tHamilton/Avnet Electronics
10D Centennial Drive
Peabody 01960

Tel: (617) 531-7430

TWX: 710-393-0382

MTI Systems Sales
83 Cambridge St.
Burlington 01813
Pioneer Electronics
44 Hartwell Avenue
Lexington 02173
Tel: (617) 861-9200
TWX: 710-326-6617

MICHIGAN

Arrow Electronics, Inc.
755 Phoenix Drive
Ann r 48104

Tel: (313) 971-8220
TWX: 810-223-6020
Hamilton/Avnet Electronics
2215 2¢th Street S.E.
Space A5

Grand Rapids 49508
Tel: (616) 243-8805
TWX: 810-274-6921

Pioneer Electronics
4504 Broadmoor S.E.
Grand Rapids 49508
FAX: 616-698-1831

‘tHamilton/Avnet Electronics
32487 Schoolcraft Road
Livonia 48150

Tel: (313) 522-4700

TWX: 810-282-8775

tPioneer/Michigan
13485 Stamford
Livonia 48150

Tel: (313) 525-1800
TWX: 810-242-3271

MINNESOTA

tArrow Electronics, lnc
5230 W. 73rd Stre

Edina 55435
Tel: (612) 830-1800
TWX: 910-576-3125
‘tHamilton/Avnet Electronics
12400 Whitewater Drive
Minnetonka 55434
Tel: (612) 932-0600

‘tPioneer Electronics
7625 Golden Triange Dr.
Suite G

Eden Prairi 55343

Tel: (612) 944-3355

MISSOURI
‘TArrow Electronics, Inc.

Tel: (314) 567-6888

TWX: 910-764-0882

THammon/Avnet Electronics
13743 Shoreline Court

Earth City 63045

Tel: (314) 344-1200

TWX: 910-762-0684

NEW HAMPSHIRE

tArrow Electronics, Inc.

3 Perimeter Road
Manchester 03103

Tel: (603) 668-6968

TWX: 710-220-1684
‘tHamitton/Avnet Electronics
444 E. Industrial Drive
Manchester 03103

Tel: (603) 624-9400

CG/SALE/101789

n

NEW JERSEY

tArrow Electronics, Inc.
Four East Stow Road

Unif

Marllon 08053

Tel: (609) 596-8000
TWX: 710-897-0829

fArrow Electronics
6 Century Drive
Parsipanny 07054
Tel: (201) 538-0900

‘tHamilton/Avnet Electromcs
1 Keystone Ave., Bldg. 3
Cherry Hill 08003

Tel: (609) 424-0110

TWX: 710-940-0262

tHamiiton/Avnet Electronics
10 Industrial
Fairfield 07006
Tel: (201) 575-5300
TWX: 710-734-4388

1MTI Systems Sales
37 Kulick Rd.
Fairfield 07006

Tel: (201) 227-5552

1Pioneer Electronics
45 Route 46
Pinebrook 07058
Tel: (201) 575-3510
TWX: 710-734-4382

NEW MEXICO

Alliance Electronics Inc.
11030 Cochiti S.E.
Albuguerque 87123
Tel: (50) 292-3360
TWX: 910-989-1151

Hamilton/Avnet Electronics
2524 Baylor Drive S.E.
Albuquerque 87106

Tel: (505) 765-1500

TWX: 910-989-0614

NEW YORK

tArrow Electronics, Inc.

3375 Brighton Henrietta

Townline Rd.

Rochester 14623

Tel: (716) 275-0300
TWX: 510-253-4766

Arrow Electronics, Inc.
20 Oser Avenue
Hauppauge 11788
Tel: (516) 231-1000
TWX: 510-227-6623

Hamilton/Avnet
933 Motor Parkway
Hauppauge 11788
Tel: (516) 231-9800
TWX: 510-224-6166

‘tHamilton/Avnet Electronics
333 Metro Park

Rochester 14623

Tel: (716) 475-9130

TWX: 510-253-5470

‘tHamilton/Avnet Electronics
103 Twin Oaks Drive
Syracuse 13206

Tel: (315) 437-0288

TWX: 710-541-1560

1tMTI Systems Sales
38 Harbor Park Drive
Port Washington 11050
Tel: (516) 621-6200

tMi suter System Te

DOMESTIC DISTRIBUTORS (Contd.)

tPioneer Electronics
68 Corporate Drive
Binghamton 13904
Tel: (607) 722-9300
TWX: 510-252-0893

Pioneer Electronics
40 Oser Avenue

Hauppauge 11787
Tel: (516) 231-9200

tPioneer Elsc{ronics

60 Crossway Park Wi

Woodbury, Long Island 11797
Tel: (516) 921-

TWX: 510-221-; 2134

tPioneer Electronics
840 Fairport Park
Fairport 14450

Tel: (716) 381-7070
TWX: 510-253-7001

NORTH CAROLINA

tArrow Electronics, Inc.
5240 Greensdairy Road
Raleigh 27604

Tel: (919) 876-3132
TWX: 510-928-1856

‘tHamilton/Avnet Electronics
3510 Spring Forest Drive
Raleigh 27604

Tel: (919) 878-0819

TWX: 510-928-1836

Pioneer/Technologies Group, Inc.

9801 A Southern ine Bivd.

Charlotte 2821

Tel: (919) 527 8188
21-0366

OHIO
Arrow Electronics, Inc.

TWX: 810-459-1611

tArrow Electronics, Inc.
6238 Cochran Road
Solon 44139

Tel: (216) 248-3990
TWX: 810-427-9409

tHamilton/Avnet Electronics
954 Senate Drive

Dayton 45459

Tel: (513) 439-6733

TWX: 810-450-2531

Hamilton/Avnet Electronics
4588 Emery Industrial Pkwy.
Warrensville Heights 44128
Tel: (216) 349-5100

TWX: 810-427-9452

‘tHamilton/Avnet Electronics
777 Brooksedge Bivd.
Westerville 43081

Tel: (614) 882-7004

tPioneer Electronics
4433 Int4erpomt Boulevard

Dayton 45424
Tel: (513) 236-9900
TWX: 810-459-1622

tPioneer Electronics
4800 E. 131st Street
Cleveland 44105
Tel: (216) 587-3600
TWX: 810-422-2211

OKLAHOMA

Arrow Electronics, Inc.
1211 E. 51st St.,, Suite 101
Tulsa 74146

Tel: (918) 252-7537

Distributor Center

‘tHamilton/Avnet Electronics
12121 E. 51st St,, Suite 102A
Tulsa 74146

Tel: (918) 252-7297

OREGON

tAImac Electronics Corp.
1885 N.W. 168th Place
Beaverton 97005

Tel: (503) 629-8090
TWX: 910-467-8746

‘tHamilton/Avnet Electronics
6024 S.W. Jean Road
Bldg. C, Suite 10

Lake Oswego 97034

Tel: (503) 635-7848

TWX: 910-455-8179

Wyle Distribution Group

5250 N.E. Elam Young Parkway
Suite 600

Hillsboro 97124

Tel: (503) 640-6000

TWX: 910-460-2203

PENNSYLVANIA

Arrow Electronics, Inc.
650 Seco Road
Monroeville 15146
Tel: (412) 856-7000

Hamilton/Avnet Electronics
2 iberty Ave.
Pittsburgh 15238
Tel: (412) 281-4150

Pnoneer Electronics
59 Kappa Drive
Pittsburgh 15238
Tel: (412) 782-2300
TWX: 710-795-3122

tPioneer/Technologies Group, Inc.

Delaware Vall
261 Glbralter Road

rsham 1
Tel (215) 674-4000
510-665-6778

TEXAS

TArrow Electronics, Inc.
3220 Commander Drive
Carroliton 75006

Tel: (214) 380-6464
TWX: 910-860-5377

tArrow Electronics, Inc.
10899 Kinghurst

Suite 100

Houston 77099

Tel: (713) 530-4700
TWX: 910-880-4439

tArrow Electronics, Inc.
2227 W. Braker Lane
Austin 78758

Tel: (512) 835-4180
TWX: 910-874-1348

‘tHamilton/Avnet Electronics
1807 W. Braker Lane
Austin 78758

Tel: (512) 837-8911

TWX: 910-874-1319

‘tHamilton/Avnet Electronics
2111 W. Walnut Hill Lane

g 75038
Tel (214) 550-6111
TWX: 910-860-5929

‘tHamilton/Avnet Electronics
4850 ngm Rd., Suite 190
Stafford 77

Tel: (713) 24&7733

TWX: 910-881-5523

1Pioneer Electronics
18260 Kramer
Austin 78758

Tel: (512) 835-4000
TWX: 910-874-1323

1Pioneer Electronics
13710 Omega Road
Dallas 75234

Tel: (214) 386-7300
TWX: 910-850-5563

tPioneer Electronics
5853 Point West Drive
Houston 77036

Tel: (713) 988-5555
TWX: 910-881-1606

Wyle Distribution Group
1810 Greenville Avenue
Richardson 75081

Tel: (214) 235-9953

UTAH

Arrow Electronics
1946 Parkway Bivd.
Salt Lake cuy 84119
Tel: (801) 973-6913

‘tHamilton/Avnet Electronics
1585 West 2100 South

Salt Lake City 84119

Tel: (801) 972-2800

TWX: 910-925-4018

Wyle Distribution Group
1325 West 2200 South
Suite E

West Valley 84119

Tel: (801) 974-9953

WASHINGTON

tAlmac Electronics Corp.
14360 S.E. Eastgate Way
Bellevue 98007

Tel: (206) 643-9992
TWX: 910-444-2067

Arrow Electronics, Inc.
19540 68th Ave. South

Kent 98032

Tel: (206) 575-4420
‘tHamilton/Avnet Electronics
14212 N.E. 21st Street
Bellevue 98005

Tel: (206) 643-3950

TWX: 910-443-2469

Wyle Distribution Group
15385 N.E. 90th Street
Redmond 98052

Tel: (206) 881-1150

WISCONSIN

Arrow Electronics, Inc.
200 N. Patrick Blvd., Ste. 100
3005

-6600
TWX: 910-262-1193

Hamilton/Avnet Electronics
2975 Moorland Road
New Berlin 53151
Tel: (414) 784-4510
WX: 910-262-1182

CANADA

ALBERTA

Hamilton/Avnet Electronics
2816 21st Street N.E.
Calgary T2E 623
Tel: (403) 230-3586

TWX: 03-827-642

Zentronics

Bay No. 1

3300 14!h Avenue N.E.
Calgary T:

Tel: (403) 272- 1021

BRITISH COLUMBIA

tHamilton/Avnet Electronics
105-2550 Boundary
Burmalay V5M 323
Tel: (604) 437-6667

Zentronics

108-11400 Bridgeport Road
Richmond V6X 172

Tel: (604) 273-6575

TWX: 04-5077-89

MANITOBA

Zentronics

60-1313 Border Unit 60
Winnipeg R3H 0X4
Tel: (204) 694-1957

ONTARIO

Arrow Electronics, Inc.
36 Antares Dr.
Nepean K2E 7W5
Tel: (613) 226-6903

Arrow Electronics, Inc.
1093 Meyerside
Mississauga L5T 1M4
Tel: (416) 673-7769
TWX: 06-218213

‘tHamilton/Avnet Electronics
6845 Rexwood Road

Units 3-4-5

Mississauga L4T 1R2

Tel: (416) 677-7432

TWX: 610-492-8867

Hamnton/Avnet Electronics
6845 Rexwood Rd., Unit 6
Mississauga L4T 1R2

Tel: (416) 277-0484

‘fHamilton/Avnet Electronics
190 Colonnade Road South
Nepean K2E 7L5

Tel: (613) 226-1700

TWX: 05-349-71

tZentronics

8 Tilbury Court
Brampton L6T 3T4
Tel: (416) 451-9600
TWX: 0A-976-78

1Zentronics
155 Colonnade Road
Unit 17

Nepean K2E 7K1
Tel: (613) 226-8840
Zentronics

60-1313 Border St.

Winnipeg R3H 014
Tel: (204) 694-7957

QUEBEC

tArrow Electronics Inc.
4050 Jean Talon Quest
Montreal H4P 1W1
Tel: (514) 735-5511

. 05-25590

Arrow Electronics, Inc.
500 Avenue St-Jean Baptiste
Suite 280

Quebec G2E 5R9

Tel: (418) 871-7500

FAX: 418-871-6816
Hamiiton/Avnet Electronics
2795 Halpern

St. Laurent H2E 7K1

Tel: (514) 335-1000

TWX: 610-421-3731
Zentronics

817 McCaffrey

St. Laurent H4T 1M3

Tel: (514) 737-9700

TWX: 05-827-535

CG/SALE/10178¢

DENMARK
el Denmark A/S
Glentevq 61, 3rd Floor
400 Copenhagen NV
Tel (45) (31) 19 80 33
TLX: 19567
FINLAND
Intel Finland OY
Ruosilantie 2
00390 Helsinki
TeI (358) o 544 644
FRANCE
Intel Corporation S.A.R.L.
1, Rue Edison-BP 303
78054 St. Quentin-en-Yvelines

X
Tel: (33) (1) 30 57 70 00
TLX: 699016

EUROPEAN SALES OFFICES

WEST GERMANY

Intel Semiconductor GmbH*
Dornacher Strasse 1

8016 Feldkirchen bei Muenchen
Tel: (49) 089/90992-0

TLX: 5-23177

Intel Semiconductor GmbH
Hohenzollern Strasse

3000 Hannover 1

Tel: (49) 0511/344031

TLX: 9-23625

Intel Semiconductor GmbH
Abrahamw Lincoln Strasse 16-18

6200 Wiesl
Tel: (49) 06121/7605-0
TLX: 4-186183

Intel Semiconductor GmbH
Zettachring 10A

7000 Stutigart 80
Tel: (49) 0711/7267-280
TLX: 7-254826

ISRAEL

Intel Semiconductor Ltd.*

Atidim Industrial Park-Neve Sharet
P.O. Box 43202

Tel-Aviv 61430

Tel: (972) 03-498080

TLX: 371215

ITALY

Intel Corporation Italia S.p.A.*
Milanofiori Palazzo E
20090

Milano
Tel: (39) (02) 89200950
TLX: 341286

NETHERLANDS
Intel Semreogguctor BV.*

Postbus 84

3099 CC Rotterdam
Tel: (31) 10.407.11.11
TLX: 22283

NORWAY

Intel Norway A/S
Hvamveien 4-PO Box 92

201
Tek: (457')('?5') 842 420

SPAIN
Izntel Iberia S A

28010 M
Tek: @4) (1) (1) 308.25.52

SWEDEN
Intel Sweden A.B.*
24

171 na
Tel: (46) 8 734 01 00
TLX: 12261

SWITZERLAND

Intel Semiconductor A.G.
Zuerichstrasse

" 8185 Winkel-Rueti bei Zuerich

Tel: (41) 01/860 62 62
TLX: 825977

UNITED KINGDOM

Intel ation (UK, Ltd.*
Pipers Way

Swindon, Wiltshire SN3 1RJ
Tel: (44) (0793) 696000
TLX: 444447/8

EUROPEAN DISTRIBUTORS/REPRESENTATIVES

AUSTRIA

s(a;her Eelﬁtromcs G.m.b.H.
enmu e 26

1120 Wien gaze

Tel: (43) (0222) 83 56 46
TLX: 31532

BELGIUM

Ineico Belgium S.A.

Av. des Croix de Guerre 94

1120 Bruxelles
skruisenlaan, 94

1120
Tel: (32) (02) 216 01 60
TLX: 64475 or 22090

DENMARK
ITT-Muitikomponent
Naverland 29

2600 Glostrup
Tel: (45) (0) 2 45 66 45
TLX: 33 355

FINLAND
QY Fintronic AB
Melkonkatu 244

Tel (353) (0) 6926022

FRANCE

Almex

Zone industrielle d’Antony

48, rue de I'Aubepine

BP 102

92164 Antony cedex

Tel (33) ™) %6 66 21 12
250067

Jermyn-G

60, rue des Gemeaux
Silic 580

94653 Rungis cedex
Tel: (33) .gG).’: 49784978

Tel: (33) (1) 47 90 62 40
TLX: 611448

*Field Application Location

Tekelec-Airtronic
Cite des Bruyeres
Rue Carle Vernet - BP 2

92310 Sevres
Tel: (33) (1) 4534 7535
TLX: 204552

WEST GERMANY

ITALY

Intesi

Divisione ITT Industries GmbH
Viale Milanofiori

Palazzo E/5

20090 (M)
Tek (39) 02/624701
TLX: 311351

Lasi Elettronica S.p.A.

Stahigruberring 12
8000 Muenchen 82 \ZIO(I)estuMo TmBalsamo (M1)
Tel: (49) 089/42001-0 Tel: (39) 02/2440012
TLX: 522561 TLX: 352040
ITT Multikomponent GmbH Telcom S.r.l.
Postfach 1265 Via M. Civitali 75
ey S
Tel: (49) 07141/4879 X:
TLX: 7264472 X ulti ents
Jermyn GmbH Viale Milanofiori
Im Dach: Asg?o M)
6250 Umbuvg Tel: (39) 02/824701
Tel: (49) 1/508-0 TLX: 311351
TLX: 415257-0 Silverstar
Metrologie GmbH Via Dei Gracchi 20
Meglirhm?erstvasse 49 20146 Milano
8000 Muenchen 71 Tel: (39) 02/49961
Tel: (49) 089/78042-0 TLX: 332189
TLX: 5213189 NETHERLANDS
Proelectron Vertriebs GmbH
Max Strasse 1-3 Koning en Hartman Elektrotechniek
6072 Dreieich BV.
Tel: (49) 06 3
TLX: 417903 2627 AP Deitt
Tel: (31) (0) 15/609906
IRELAND TLX: 38250
Micro Marketing Ltd. NORWAY
g:::ageary Park Nordisk Elektronikk (Norge) A/S
o Postboks 123
Co. Dublin Smedsvmgsn 4
Tel: (21) (353) (01) 85 63 25 1364 Hval
TLX: 31584 Te| (47) (oz) 84 62 10
ISRAEL
Eastronics Ltd. PORTUGAL
11 Rozanis Street ATD Portugal LDA
P.O.B. Rua Dos Lusiados, 5 Sala B
Tel-Aviv 61392 1300 Lisboa
Tel: (972) 03-475151 Tel: (35) (1) 64 80 91
TLX: 33638 TLX: 61562

Ditram

Avenida Miguel Bombarda, 133
1000 Lisboa

Tel: (35) (1) 54 53 13

TLX: 14182

SPAIN

ATD Electronica, S.A.
Plaza Cludad de Viena, 6

28040 Madri
Tek: (24) (1)2344000

cmﬁSA el Angel, 21-3
le Migut

28010

Tel (34) (1) 419 09 57
Metrologca Iberica, S.A.
Ctra. de Fuencarral, n.80
28100 Alcobendas rid)
Tel: (34) (1) 653 86 11
SWEDEN

Nordisk Elektronik AB
Torshamnsgatan 39

Box 36

164 93 Kista
Tel: (46)05—034630
TLX: 1

SWITZERLAND

Industrade A.G.
Hertistrasse 31

8304 Walliselien

Tel: (41) (01) 8328111
TLX: 56788

TURKEY

EMPA Electronic
Lindwurmstrasse

8000 Muenchen 2

Tel: (49) 089/53 80 570
TLX: 528573

UNITED KINGDOM

Accent Electrol Componenls Ltd.
Jubilee House, Jubilee Road foa

Letchworth, Herts
Tel: (44) (0462) 686666
TLX: 826293

Bytech-Comway Systems
3 The Wenstem Ceﬁ

lestern
Bracknell RG12 1RW
Tel: (44)7£°0944) 55333
TLX: 847201

noaks
Kent TN14 S5EU
Tel: (44) (0732) 450144
TLX: 95142
MMD
Unit 8 Southview Park
Caversham
Readil

Berks%e RG4 0AF
Tel: (44) (0734) 481666
TLX: 846669

Rapid Silicon
Rapid House
Denmark Street

High be
Buckinghamshire HP11 2ER

Tel: (44) (0494) 442266
TLX: 837931

Repid Hbuse”
se
Rl Wycome
i
b uckinghamshire HP11 2ER
Tel (44) (0494) 450244
TLX: 837931
YUGOSLAVIA

H.R. Microelectranics Corp.
2005delaCruzBNd Ste. 223
Santa 95050

USA.

Tel: (1) (408) 988-0286

TLX: 387452

Raptdo Electronic Components

v;a C Beccaria, 8
34133 Trieste

ltalia
Tel: (39) 040/360555
TLX: 460461

CG/SALE/101789

n

AUSTRALIA

Intel Australia Pty. Ltd.*
Spectrum Buildin,

200 Pacific H %.evel 6
Crows Nest, NSE, 2065
Tel: 612-957-2744

FAX: 612-923-2632

BRAZIL

Intel Semicondutores do Brazil LTDA

Av. Paulista, 1159-CJS 404/405
01311 - Sao Paulo - S.P.

Tel: 55-11-287-5899

TLX: 3911153146 ISDB

FAX: 55-11-287-5119

CHINA/HONG KONG

Intel PRC Corporation
15/F, Office 1, Citic Bldg.
Jian Guo Men Wai Street
Beijing, PRC

Tel: (19) 500-4850

TLX: 22947 INTEL CN
FAX: (1) 500-2953

Intel Semiconductor Ltd.*
10/F East Tower

Bond Center
Queensway, Central
Hong Kong

Tel: () 8444

TLX: 63869 lSHLHK HX
FAX: (5) 8681-989

INDIA

Intel Asia Electronics, Inc.
4/2, Samrah Plaza
St Mark 's Road

galore 560001
Tel 011 91 -812-215065
9538452875 DCBY
FAX 091-812-215067

JAPAN

Intel Japan K.K.

5-6 Tokodai, Tsukuba-shi
Ibaraki, 300-26

Tel: 0298—47 8511

TLX:
FAX: 029747 8450

Intel Japan K.K.*
Daiichi Mitsugi Bldg.
1-8889 Fuchu-cho
Fuchu-shi, Tokyo 183
Tel: 0423-60-7871
FAX: 0423-60-0315

lntel Japan KK.*
g umagaya
2-69 Hon-cho
Kumagaya shl Saitama 360
Tel: 0485-2 71
FAX: 0485-. 24 7518

Intel Japan K.K.*

Mitsui-Seimei Musashi-kosugi Bldg.
915 Shinmaruko, Nakahara-ku
Kawasaki-shi, Kanagawa 211

Tel: 044-733-7011

FAX: 044-733-7010

Intel Japan K.K.

Nihon Seimei Atsugi Bidg.
1-2-1 Asahi-machi
Atsug‘sh» Kanagawa 243

AX: 0462- 29378

Intel Japan K.K.*
Ryokuchi-Eki Bldg.

2-4-1 Terauchi
Toyonaka-: sh- Osaka 560
Tel: 06-863-1

FAX: 068631084

Intel Japan K.K.
Shinmaru Bldg.

1-5-1 Marunouchi
Chiyoda-ku, Tokyo 100
Tel: 03-201-3621

FAX: 03-201-6850

Intel Japan K.K.
reen 3

1-16-20 Nishiki

Naka- kgb Nagoya-shi

Aichi 4!
Tel: 052-204-1261
FAX: 052-204-1285

INTERNATIONAL SALES OFFICES

KOREA

Intel Tecnnolog&Asia. Ltd.
16th Floor, Li dg.

61 Yoido-dong, Youngdeungpo-Ku
Seoul 150 010

FAX: (2) 784-8096

SINGAPORE

Intel Singapore Technol

101 Th'o?ns%%r Road #21- 5/06
United Square

Singapore 1130

Tel: 250-7811

TLX: 39921 INTEL

FAX: 250-9256

TAIWAN

Intel Technology Far East Ltd.
8th Floor, No. 205

Bank Tower Bidg.

Tung Hua N. Road

Taipei

Tel: 886-2-716-9660

FAX: 886-2-717-2455

INTERNATIONAL DISTRIBUTORS/REPRESENTATIVES

ARGENTINA

DAFSYS S.R.L.
Chacabuco, 90-6 PISO
1069-Buenos Aires
Tel: 54-1-334-7726
FAX: 54-1-334-1871

AUSTRALIA
Email Electronics

gdale, 3166
Tel: 011-61-3-544-8244
TLX: AA 30895

FAX: 011-61-3-543-8179

NSD-Australia

205 Middleborough Rd.
Box Hill, Vlmorla 128
Tel: 03 89009

FAX: 03 8990819

BRAZIL

Elebra Microelectronica S.A.
Rua Geraldo Flausina Gomes, 78

loor
04575 - Sao Paulo - S.P.
Tel: 55-11-534-9641
TLX: 55-11-54593/54591
FAX: 55-11-534-9424

CHILE

DIN Instrumems
Suecia 2:
Casnlla 6055 Correo 22

Santi
Tel: 2-225—6139
TLX: 240.846 RUD

CHINA/HONG KONG

Novel Precision Machi ., Ltd.
Flat D, 20 Kingsford Ind.

Ph‘lgse 1,26 wan Hei Street

N.T,

Kon
Tel %5 9223222
TWX: 39114 JINMI HX
FAX: 852-0-4261602

*Field Application Location

INDIA

Micronic Devices
Arun Complex

No. 65 D.V.G. Road
Basavanagudl

% 560 004

Tel: 011-91-812-600-631
011-91-812-611-365
: 9538458332 MDBG

Micronic Devices

No. 516 5th Floor
Swastik Chambers

Sion, Trombay Road
Chembur

Bombay 400 071

TLX: 9531 171447 MDEV

“Jicronic Devices
25/8 1st Floor
da Bazaar Marg

Tel: 011-91-11-5723509
011-91-11-589771

TLX: 031-63253 MDND IN

Micronic Devices

6-3-348/12A Dwarakapuri Colony

Hyderabad 500 482

Tel: 011-91-842-226748

S&S Corporation
1587 Kooser Road

San Jose, CA 95118
Tel: (408) 978 6216

TLX:

FAX: (408) 973—8635

JAPAN

Asahi Electronics Co. Ltd.
KMM Bidg. 2-14-1 Asano
Kokurakita-ku

ishu-shi 802
Tel: -511-6471
FAX: 093-551-7861

C. Itoh Techno—Suence Co., Ltd.
4-8-1 Dobashi, Miyamae-ku
Kawasaki-! shl. Kanagawa 213
Tel: 044-852-5121

FAX: 044-877-4268

Dia Semicon Systems, Inc.
Flower Hill Shinmachi Higashi-kan
1- o%(3‘9 S& inmachi, Setagaya-ku

Tel: 03-439-1600
FAX: 03-439-1601

Okaya Koki

2-4-18 Sakae

Naka-ku, Nagoya-shi 460
Tel: 052-204-2916

FAX: 052-204-2901

Ryoyo Electro Corp.
Konwa Bl

1-12-22 Tsukm
Chuo-ku, Tokyo 104
Tel: 03-546-5011
FAX: 03-546-5044

KOREA
J-Tek Corporation

por:
6th Floor, Government Pension Bldg.

24-3 Yoido-dong
Youngdeungpo-ku

TLX:
FAX: 82-2-784-8391

Samsung Electronics
150 Taepyungro-2 KA
Chungku, Seoul 100-102
Tel: 82-2-751-3985

TLX: 27970 KORSST
FAX: 82-2-753-0967

MEXICO
$8B Electronics, Inc.

TLX:
FAX: (61

Dicopel S. 3
Tochtli 368 Fracc. Ind. San Antonio

Azcapotzaico

C.P. 02760-Mexico, D.F.
Tel: 52-5-661-3211

TLX: 177 3790 Dicome
FAX: 52-5-561-1279

PSI de Mexico

Francisco Villas Esq. Ajusto
Cuernavaca —Morelos — CEP 62130
Tel: 52-73-13-9412

FAX: 52-73-17-5333

NEW ZEALAND

Email Electronics

36 Olive Road

Penrose, Auckland
Tel: 011-64-9-591-155
FAX: 011-64-9-592-681
SINGAPORE

Electronic Resources Pte, Ltd.
17 Harvey Road #04-01
$isr:gapove 1336

SOUTH AFRICA
Electronic Building Elements

178 Erasmus Street (off Watermeyet Street)

Meyerspark, Pretoria, 0184
Tel: 011-2712-803-7680
FAX: 011-2712-803-8294

TAIWAN

Micro Electronics C ation
5/F 587, erg Shen East Rd.
Taipei, R.O.

Tel: 886-2 501-8231

FAX: -2-505-6609

Sert
15/F 135, Section 2
Chien Juo North Rd.

LX: 28450
FAX: 58-2-572-3321

CG/SALE/101789

n

ALABAMA

*Intel Corp.

5015 Bradford Dr., Suite 2
Huntsville 35805

Tel: (205) 830-4010

ALASKA

Intel Corp.
c/o Trans§laska Data Systems

300 Old
Fairbanks 99701-3120
Tel: (907) 452-4401

el Corp.
?5?5 TersAlaska Data Systems

Tel: (907%3522-1 776

ARIZONA
*Intel

85029
Tel: (602) 869-4980

*Intel Corp.

500 E. Fry Bivd., Suite M-15
Sierra Vista 85635

Tel: (602) 459-5010

CALIFORNIA

tintel
21515 Vanowen St,, Ste. 116
91308

Park
Tel: (818) 704-8500

*Intel Corp.

2250 E Imperlal Hwy., Ste. 218
El Segundo 90245

Tel: (213) 640-6040

*Intet Corp.
1900 Prairie City Rd.

Folsom 95630-9597
Tel: (916) 351-6143
1-800-468-3548

Intel Corp.

9665 Cheasapeake Dr., Suite 325
San Diego 92123-1326

Tel: (619) 292-8086

**Intel Corp.
400 N. Tustin Avenue
Suite 450

Santa Ana 92705

Tel: (714) 835-9642

CALIFORNIA
2700 San Tomas Expressway
Santa Clara 95051
Tel: (408) 970-1700
800-421

DOMESTIC SERVICE OFFICES

**fintel Corp.
San T¢

omas
2700 San Tomas Exp., 2nd Floor
Santa Clara 95051
Tel: (408) 986-8086

COLORADO

*Intel Corp.

650 S. Cherry St., Suite 915
Denver 80222

Tel: (303) 321-8086

CONNECTICUT

*Intel Corp.

301 Lee Farm Corporate Park
83 Wooster Heights Rd.
Danbury 06810

Tel: (203) 748-3130

FLORIDA

**Intel Corp.

6363 N.W. 6th Way, Ste. 100
Ft. Lauderdale 33309

Tel: (305) 771-0600

*Intel Corp.
5850 T.G. Lee Blvd., Ste. 340
Orlando 32822

Tel: (407) 2:

GEORGIA

*Intel Corp.

3280 Pointe Pkwy., Ste. 200
Norcross 30092

Tel: (404) 449-0541

HAWAII

*Intel Corp.

US.LS. C Signal Batt.

Bulldlng T-1521
Shafter Plats

Shafter 96856

ILLINOIS

**tintel Col

300 N. Manlngale Rd., Ste. 400
Schaumburg 60173

Tel: (312) 605-8031

INDIANA

*Intel Corp.

8777 Purdue Rd., Ste. 125
Indi is 46268

Tel: (317) 875-0623

CUSTOMER TRAINING

ILLINOIS

300 N. Mamngale Road
Suite 300
Schaumburggeowa
Tel: (708) 7 5700 -

KANSAS

intel
Tel: (913) 345.2727

MARYLAND

**$intel Corp.

10010 Junction Dr., Suite 200
Annapolis Junction 20701

Tel: (301) 206-2860

FAX: 301-206-3677

MASSACHUSETTS

**tintel Corp.

3 Carlisle Rd., 2nd Floor
Westford 01886

Tel: (508) 692-1060

MICHIGAN

*tintel Corp.

7071 Orchard Lake Rd., Ste. 100
West Bloomfield 48322

Tel: (313) 851-8905

MINNESOTA

*tintel Corp.

3500 W. 80th St., Suite 360
Bloomington 55431

Tel: (612) 835-6722

MISSOURI

.Lndig'gonnc Exp., Ste. 13
4203 Eaf ny te. 131
Earth Ci

Tel: (314) 291 1990

NEW JERSEY
**Intel Corp

VI
Eng Iewood Clnlfs 07632
Tel: (201) 567-0821

*Intel Corp.

Parkway 109 Office Center
328 Newman Springs Road
Red Bank 07701

Tel: (201) 747-2233

*Intel Corp.

280 Corporate Center

75 Livingston Ave., 1st Floor
Roseland

Tel: (201) 740-0111

MASSACHUSETTS

3 Carlisle Road, First Floor

Westford 01886

Tel: (301) 220-3380
1-800-328-0386

NEW YORK

*tintel Corp.

2950 Expressway Dr. South
Islandia 11722

Tel: (516) 231-3300

*Intel Corp.
W e Business Center
Bldg. , Route 9
Fishkill 12524

Tel: (314) 897-3860

NORTH CAROLINA

*Intel Corp.

5800 Executive Dr., Ste. 105
Charlotte 28212

Tel: (704) 568-8966

**Intel Corp.
2700 Wycliff Road
Suite 102

Raleigh 27607
Tel: (919) 781-8022
OHIO

**tIntel Corp.
3401 Park Center Dr., Ste. 220

Dayton 45414
Tel: (513) 890-5350

*tintel Corp.
25700 Science Park Dr., Ste. 100
Beachwood 44

Tel: (216) 464—2736

OREGON

Intel Corp.

15254 N.W. Greenbrier Parkway
Building B

Beaverton 97005

Tel: (503) 645-8051

*Intel Corp.

5200 N.E. Elam Young Parkway
Hillsboro 97123

Tel: (503) 681-8080

PENNSYLVANIA

*tintel Corp.

455 Pennsytvama Ave., Ste. 230
Fort Washington 1 9034

Tel: (215) 641-1000

tintel Corp.

400 Penn Center Bivd., Ste. 610
Pittsburgh 15235

Tel: (412) 823-4970

CENTERS

MARYLAND
10010 Junction Dr.
uite 200
Annapolis Junction 20701

apoll
Tel: (301) 206-2860
1-800-328-0386

Intel Corp.

1513 Cedar Cliff Dr.
Camp Hill 17011
Tel: (717) 761-0860

PUERTO RICO

Intel Corp.

South Industrial Park
P.O. Box 910

Las Piedras 00671
Tel: (809) 733-8616

TEXAS

Intel Corp.
8815 Dyer St., Suite 225

El Paso 79904
Tel: (915) 751-0186
*Intel Corp.
313 E. Anderson Lane, Suite 314
Austin
Tel: (51 2) 4543628
**tintel Corp.
12000 Fotd Rd., Suite 401
Dallas 75234
Tel: (214) 241-8087
7558 SWeR eeway, Ste. 1490
.W. Fr , Ste.
Houston 77074
Tel: (713) 988-8086

UTAH

Intel Corp.

428 East 6400 South, Ste. 104
Murray 84107

Tel: (801) 263-8051

VIRGINIA

*Intel Corp.
1504 Santa Rosa Rd., Ste. 108
Richmond 23288
Tel: (804) 282-5668
WASHINGTON
*Intel Corp.

155 108th Avenue N.E., Ste. 386

Bell
Tel: (206) 453-8086

CANADA

ONTARIO
Intel Semiconductor of
Canada, Ltd.

2650 Queensview Dr., Ste. 250
Ottawa K2B 8H6

Tel: (613) 829-9714

FAX: 613-820-5936

Intel Semiconductor of
Canada, Ltd.

190 Attwell Dr., Ste. 102
Rexdale MW

Tel: (416) 675-2105

FAX: 416-675-2438

SYSTEMS ENGINEERING MANAGERS OFFICES

MINNESOTA

Bloomin, 55431
Tel: (612) 8356722

1System Engineering locations
*Carry-in locations
**Carry-in/mail-in locations

NEW YORK

2950 Expressway Dr., South
Islandia 11722
Tel: (506) 231-3300

CG/SALE/101789

UNITED STATES
Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051

JAPAN

Intel Japan K.K.
5-6 Tokodai, Tsukuba-shi
Ibaraki, 300-26

FRANCE
Intel Corporation

1 Rue Edison, BP 303
78054 Saint-Quentin-en-Yvelines Cedex

UNITED KINGDOM

Intel Corporation (U.K.) Ltd.
Pipers Way

Swindon

Wiltshire, England SN3 1R]

WEST GERMANY

Intel Semiconductor GmbH
Dornacher Strasse 1

8016 Feldkirchen bei Muenchen

HONG KONG

Intel Semiconductor Ltd.
10/F East Tower

Bond Center
Queensway, Central

CANADA

Intel Semiconductor of Canada, Ltd.
190 Attwell Drive, Suite 500
Rexdale, Ontario MOW 6HS8

Printed in U.S.A./10 89/20K CG JB ISBN 1-55512-104-7

Embedded Processors

