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CHAPTER 1
INTRODUCTION

The 8086 microprocessor was first introduced in 1978 and gained rapid support as the
microcomputer engine of choice. There are literally millions of 8086/8088 based systems in
the world today. The amount of software written for the 8086/8088 is rivaled by no other
architecture.

By the early 1980’s, however, it was clear that a replacement for the 8086/8088 was
necessary. An 8086/8088 system required dozens of support chips to implement even a
moderately complex design. Intel recognized the need to integrate commonly used system
peripherals onto the same silicon die as the CPU. In 1982 Intel addressed this need by
introducing the 80186/80188 family of embedded microprocessors. The original 80186/80188
integrated an enhanced 8086/8088 CPU with six commonly used system peripherals. A
parallel effort within Intel also gave rise to the 80286 microprocessor in 1982. The 80286
began the trend toward very high performance “x86” compatible CPUs that today includes the
1386™ and i486™ microprocessors.

As technology advanced and turned toward small geometry CMOS processes, it became clear
that a new 80186 was needed. In 1987 Intel announced the second generation of the 80186
family: the 80C186/C188. The 80C186 family is pin compatible with the 80186 family while
adding an enhanced feature set. The high performance CHMOS III process allowed the
80C186 to run at twice the clock rate of the NMOS 80186 while consuming less than one
quarter the power.

The 80186 family took another major step in 1990 with the introduction of the 80C186EB
family. The 80C186EB heralded many changes for the 80186 family. First, the enhanced
8086/8088 CPU was redesigned as a static, stand alone module known as the 80C186 Modular
Core. Second, the 80186 family peripherals were also redesigned as static modules with
standard interfaces. The goal behind this redesign effort was to give Intel the capability to
rapidly proliferate the 80186 family in order to provide solutions for an even wider range of
customer applications.

The 80C186EB/C188EB was the first product to use the new modular capability. The
80C186EB/C188EB includes a different peripheral set than the original 80186 family. Power
consumption was dramatically reduced as a direct result of the static design, power
management features and advanced CHMOS 1V process. The 80C186EB/C188EB has found
acceptance in a wide array of portable equipment ranging from cellular phones to personal
organizers.

In 1991 the 80C186 Modular Core family was extended again with the introduction of three
new products: the 80C186XL, the 80C186EA and the 80C186EC. The 80C186XL/C188XL is
a higher performance, lower power replacement for the older 80C186/C188. The
80C186EA/C188EA combines the feature set of the 80C186 with power management features
for power critical applications. For those applications that require higher integration than the -
80C186EA or 80C186EB can provide, the 80C186EC/C188EC offers the highest level of
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integration of any of the 80C186 Modular Core family products with a total of 14 on-chip
peripherals.

The 80C186 Modular Core family is the direct result of ten years of Intel development. It
offers the designer the peace-of mind of a well established architecture with the benefits of
state of the art technology.

FEATURE
ENHANCED 8086 INSTRUCTION SET
LOW POWER STATIC MODULAR CPU
POWER SAVE (CLOCK DIVIDE) MODE
POWERDOWN AND IDLE MODES
80C187 INTERFACE

ONCE MODE

INTERRUPT CONTROL UNIT
TIMER/COUNTER UNIT

CHIP-SELECT UNIT

DMA UNIT

SERIAL COMMUNICATIONS UNIT
REFRESH CONTROL UNIT
WATCHDOG TIMER UNIT

I/0 PORTS

Figure 1.1. Comparison of 80C186 Modular Core Family Products

1.1 HOW TO USE THIS MANUAL

Throughout this manual you will come across phrases such as “80CI186 Modular Core .
Family” or “80C188 Modular Core” as well as references to specific products such as
“80C188EA”. Each of these terms refers to a specific set of 80C186 family products. The
phrases and the products they refer to are as follows: '
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80C186 Modular Core Family: This phrase refers to any device that uses the
modular 80C186/C188 CPU core architecture. At this time these include:
80C186EA/C188EA, 80C186EB/C188EB, 80C186EC/CI88EC and 80C186XL/
C188XL.

80C186 Modular Core: Without the word family, this refers to just the 16-bit bus
members of the 80C186 Modular Core Family. :

80C188 Modular Core: This phrase refers to the 8-bit bus products.

Specific Product References: For example the phrase “On the 8O0CI88EC...” refers
strictly to the 80C188EC and not to any other device.

Each chapter covers a specific section of the device beginning with the CPU core. Each
peripheral chapter includes programming examples intended to aid in your understanding of
device operation. Please read the comments carefully, as not all of the examples include all of
the code necessary for a specific application.

This user’s guide is a supplement to the device data sheet. Specific timing values are not
discussed in this guide. When designing a system, always consult the most recent version of
the device data sheet for up to date specifications.
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CHAPTER 2
OVERVIEW OF THE 80C186 FAMILY MODULAR
MICROPROCESSOR CORE ARCHITECTURE

The 80C186 Modular Microprocessor Core shares a common base architecture with the 8086,
8088, 80186, 80188, 80286, i386™ and i486™ processors. The 80C186 Modular Core
maintains full object code compatibility with the 8086/8088 family of 16-bit microprocessors,
while adding hardware and software performance enhancements. Most instructions require
fewer clocks to execute on the 80C186 Modular Core because of hardware enhancements in
the Bus Interface Unit and the Execution Unit. There are several additional instructions which
simplify programming and reduce code size (see 80CI86 Instruction Set Additions and
Extensions).

2.1. ARCHITECTURAL OVERVIEW

The 80C186 Modular Microprocessor Core incorporates two separate processing units: an
Execution Unit (EU) and a Bus Interface Unit (BIU). The Execution Unit is functionally
identical among all family members. The Bus Interface Unit is configured for a 16-bit external
data bus for the 80C186 core and an 8-bit external data bus for the 80C188 core. The two units
interface via an instruction prefetch queue.

The Execution Unit executes instructions and the Bus Interface Unit fetches instructions, reads
operands and writes results. Whenever the Execution Unit requires another opcode byte, it
takes the byte out of the prefetch queue. The two units can operate independently of one
another and are able, under most circumstances, to overlap instruction fetches and execution.

The 80C186 Modular Core family has a 16-bit Arithmetic Logic Unit (ALU). The Arithmetic
Logic Unit performs 8-bit or 16-bit arithmetic and logical operations. It provides for data
movement between registers, memory and I/O space.

The 80C186 Modular Core family CPU allows for high speed data transfer from one area of
memory to another using string move instructions and between an I/O port and memory using
block I/O instructions. The CPU also provides many conditional branch and control
instructions.

The 80C186 Modular Core architecture features 14 basic registers grouped as general
registers, segment registers, pointer registers and status and control registers. The four 16-bit
general purpose registers (AX, BX, CX and DX) may be used as operands for most arithmetic
operations as either 8- or 16-bit units. The four 16-bit pointer registers (SI, DI, BP and SP)
may be used in arithmetic operations and in accessing memory-based variables. Four 16-bit
segment registers (CS, DS, SS and ES) allow simple memory partitioning to aid modular
programming. The status and control registers consist of an Instruction Pointer (IP) and the
Processor Status Word register containing flag bits. -Figure 2.1 is a simplified CPU block
diagram. ‘
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Figure 2.1. Simplified Functional Block Diagram of the
80C186 Modular Core Family CPU

2.1.1. EXECUTION UNIT

- The Execution Unit executes all instructions, provides data and addresses to the Bus Interface
Unit and manipulates the general registers and the Processor Status Word. The 16-bit ALU
within the Execution Unit maintains the CPU status and control flags and manipulates the
general registers and instruction operands. All registers and data paths in the Execution Unit
are 16 bits wide for fast internal transfers.
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The Execution Unit does not connect directly to the system bus. It obtains instructions from a
queue maintained by the Bus Interface Unit. When an instruction requires access to memory
or a peripheral device, the Execution Unit requests the Bus Interface Unit to read and write
data. Addresses manipulated by the Execution Unit are 16 bits wide. The Bus Interface Unit,
however, performs an address calculation which allows the Execution Unit to access the full
megabyte of memory space.

For the Execution Unit to execute an instruction, it must fetch the object code byte from the
instruction queue and then execute the instruction. If the queue is empty when the Execution
Unit is ready to fetch an instruction byte, the Execution Unit waits for the instruction byte to
be fetched by the Bus Interface Unit.

2.1.2. BUS INTERFACE UNIT

The 80C186 Modular Core and 80C188 Modular Core Bus Interface Units are functionally
identical. They are implemented differently to match the structure and performance
characteristics of their respective system buses. The Bus Interface Unit executes all external
bus cycles. This unit consists of the segment registers, the Instruction Pointer, the instruction
code queue and several miscellaneous registers. The Bus Interface Unit transfers data to and
from the Execution Unit on the ALU data bus.

The Bus Interface Unit generates a 20-bit physical address in a dedicated adder. The adder
shifts a 16-bit segment value left 4 bits and then adds a 16-bit offset. This offset is derived
from combinations of the pointer registers, the Instruction Pointer and immediate values (see
Figure 2.2). Any carry from this addition is ignored.

SHIFT LEFT 4 BITS

* 1 2 3 4| SEGMENT BASE
. 15 0 LOGICAL
12 3 4 :0 ADDRESS
0 0 2 2| OFFSET
19 0
Y 15 0

+ 0o o 2 2
15 0

= | 1 2 3 6 2 PHYSICAL ADDRESS

TO MEMORY

Figure 2.2. Physical Address Generation
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During periods when the Execution Unit is busy executing instructions, the Bus Interface Unit
sequentially prefetches instructions from memory. As long as the prefetch queue is partially .
full, the Execution Unit fetches instructions.

2.1.3. GENERAL REGISTERS

The 80C186 Modular Core family CPU has eight 16-bit general registers (see Figure 2.3). The
general registers are subdivided into two sets of four registers. These sets are the data registers
(also called the H & L group for high and low) and the pointer and index registers (also called
the P & I group).

H : L
15 87 0
( AX ' i
¥ § i ACCUMULATO
X BASE
BH : BL
DATA {
GROWP )| 9§ ____________________ "
i 5 i COUN
DX
\ i i o DATA
( SP ‘ STACK POINTER
POINTER BP BASE POINTER
AND
INDEX 4 ,
GROUP . SI SOURCE INDEX
\ DI DESTINATION INDEX

Figure 2.3. General Registers
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The data registers may be addressed by their upper or lower halves. Each data register can be
used interchangeably as a 16-bit register or two 8-bit registers. The pointer registers are always
accessed as 16-bit values. The CPU can use data registers without constraint in most
arithmetic and logic operations. Arithmetic and logic operations can also use the pointer and
index registers. Some instructions use certain registers implicitly (see Table 2.1), allowing
compact encoding.

Table 2.1. Implicit Use of General Registers

- REGISTER OPERATIONS
AX . Word Multiply, Word Divide, Word 1/0
AL Byte Multiply, Byte Divide, Byte I/O, Translate,
Decimal Arithmetic
AH Byte Multiply, Byte Divide
BX Translate
CX String Operations, Loops
CL Variable Shift and Rotate
DX Word Multiply, Word Divide, Indirect I/O
SP Stack Operations
Si String Operations
DI String Operations

The contents of the general purpose registers are undefined following a processor reset.

2.1.4. SEGMENT REGISTERS

The 80C186 Modular Core family memory space is one megabyte in size and divided into
logical segments of up to 64 Kbytes each. The CPU has direct access to four segments at a
time. The segment registers contain the base addresses (starting locations) of these memory
segments (see Figure 2.4). The CS register points to the current code segment, which contains
instructions to be fetched. The SS register points to the current stack segment, which is used
for all stack operations. The DS register points to the current data segment, which generally
contains program variables. The ES register points to the current extra segment, typically used
for data storage. Programs can access and manipulate the segment registers with several
instructions.

The CS register initializes to OFFFFH and the DS, ES and SS>registers initialize to 0000H.
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15 0
CS CODE SEGMENT
DS DATA SEGMENT
SS STACK SEGMENT
ES EXTRA SEGMENT

Figure 2.4. Segment Registers

2.1.5. INSTRUCTION POINTER

The Bus Interface Unit updates the 16-bit Instruction Pointer (IP) register so it contains the
offset of the next instruction to be fetched. Programs do not have direct access to the
Instruction Pointer, but it may change, be saved or be restored as a result of program
execution. For example, if the Instruction Pointer is saved on the stack, it is first automatically
adjusted to point to the next instruction to be executed.

Reset initializes the Instruction Pointer to 0000H. The CS and IP values comprise a starting
execution address of OFFFFOH (see Section 2.1.8 for a description of address formation).

2.1.6. FLAGS

The 80C186 Modular Core family has six status flags (see Figure 2.5) that the Execution Unit
posts as the result of arithmetic or logical operations. Program branch instructions allow a
program to alter its execution depending on conditions flagged by a prior operation. Different
instructions affect the status flags differently, generally reflecting the following states:

e If the Auxiliary Flag (AF) is set, there has been a carry out from the low nibble into the
high nibble or a borrow from the high nibble into the low nibble of an 8-bit quantity (low-
order byte of a 16-bit quantity). This flag is used by decimal arithmetic instructions.

e If the Carry Flag (CF) is set, there has been a carry out of or a borrow into the high-order
bit of the instruction result (8- or 16-bit). This flag is used by instructions that add or
subtract multibyte numbers. Rotate instructions can also isolate a bit in memory or a
register by placing it in the Carry Flag.
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e If the Overflow Flag (OF) is set, an arithmetic overflow has occurred. A significant digit
has been lost because the size of the result exceeded the capacity of its destination
location. An Interrupt On Overflow instruction is available that will generate an interrupt
in this situation.

' If the Sign Flag (SF) is set, the high-order bit of the result is a 1. Since negative binary
numbers are represented in standard two’s complement notation, SF indicates the sign of
the result (0 = positive, 1 = negative).

e If the Parity Flag (PF) is set, the result has even parity, an even number of 1 bits. This flag
can be used to check for data transmission errors.

e If the Zero Flag (ZF) is set, the result of the operation is zero.

Additional control flags (see Figure 2.5) can be set or cleared by programs to alter processor
operations:

e Setting the Direction Flag (DF) causes string operations to auto-decrement. Strings are
processed from the high address to the low address or “right to left”. Clearing DF causes
string operations to auto-increment on process strings “left to right”.

e Setting the Interrupt Enable Flag (IF) allows the CPU to recognize maskable external or
internal interrupt requests. Clearing IF disables these interrupts. The Interrupt Enable Flag
has no effect on software interrupts or non-maskable, interrupts.

e  Setting the Trap Flag (TF) bit puts the processor into single-step mode for debugging. In
this mode, the CPU automatically generates an interrupt after each instruction. This
allows a program to be inspected instruction by instruction during execution.

Both the status and control flags are contained in a 16-bit Processor Status Word (see Figure
2.5). Reset initializes the Processor Status Word to OFOOOH.

2.1.7. MEMORY SEGMENTATION

Programs for the 80C186 Modular Core family view the one megabyte memory space as a
group of user-defined segments. A segment is a logical unit of memory that may be up to 64
Kbytes long. Each segment is composed of contiguous memory locations. Segments are
independent and separately-addressable. Software assigns every segment a base address
(starting location) in memory space. All segments begin on 16-byte memory boundaries.
There are no other restrictions on segment locations. Segments may be adjacent, disjoint,
partially overlapped or fully overlapped (see Figure 2.6). A physical memory location may be
mapped into (covered by) one or more logical segments.



|nte|® - OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

Register Name:
Register Mnemonic:
Register Function:

Processor Status Word
PSW (FLAGS)
Posts CPU status information.

15
oD 1T S|z
F|F|F|F F|F
BIT RESET
MNEMONIC BIT NAME | STATE FUNCTION

OF Overflow Flag 0 If OF is set, an arithmetic overflow has
occurred.

DF Direction Flag 0 If DF is set, string instructions are processed
high address to low address. If DF is clear,
strings are processed low address to high
address.

IF Interrupt 0 If IF is set, the CPU will recognize maskable

Enable Flag interrupt requests. If IF is clear, maskable
interrupts are ignored.

TF Trap Flag 0 If TF is set, the processor will enter single-step
mode.

SF Sign Flag 0 If SF is set, the high-order bit of the result of an
operation is 1, indicating it is negative.

ZF Zero Flag 0 If ZP is set, the result of an operation is zero.

AF Auxiliary 0 If AF is set, there has been a carry from the low

Carry Flag nibble to the high or a borrow from the high
nibble to the low nibble of an 8-bit quantity.
Used in BCD operations.

PF Parity Flag 0 If PF is set, the result of an operation has even
parity.

CF Carry Flag 0 If CF is set, there has been a carry out of, or a
borrow into, the high-order bit of the result of an
instruction.

NOTE: Reserved register bits are shown with gray shading.

Figure 2.5. Processor Status Word
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Figure 2.6. Segment Locations in Physical Memory

The four segment registers point to four “currently addressable” segments (see Figure 2.7).
The currently addressable segments provide a work space consisting of 64 Kbytes for code, a
64 Kbytes for stack and 128 Kbytes for data storage. Programs access code and data in another
segment by updating the segment register to point to the new segment.

2.1.8. LOGICAL ADDRESSES

It is useful to think of every memory location as having two kinds of addresses, physical and
logical. A physical address is a 20-bit value that identifies a unique byte location in the
memory space. Physical addresses range from OH to OFFFFFH. All exchanges between the
CPU and memory use physical addresses.

Programs deal with logical rather than physical addresses. Program code can be developed
without prior knowledge of where the code will be located in memory. A logical address
consists of a segment base value and an offset value. For any given memory location, the
segment base value locates the first byte of the segment. The offset value represents the
distance, in bytes, of the target location from the beginning of the segment. Segment base and
offset values are unsigned 16-bit quantities. Many different logical addresses can map to the
same physical location. In Figure 2.8, physical memory location 2C3H is contained in two
different overlapping segments, one beginning at 2BOH and the other at 2COH.
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Figure 2.7. Currently Addressable Segments

The segment register is automatically selected according to the rules in Table 2.2. All
information in one segment type generally shares the same logical attributes (e.g., code or
data). This leads to programs which are shorter, faster and better structured.

The Bus Interface Unit must obtain the logical address before generating the physical address.
The logical address of a memory location can come from different sources, depending on the
type of reference that is being made (see Table 2.2).

Segment registers always hold the segment base addresses. The Bus Interface Unit determines
which segment register contains the base address according to the type of memory reference
made. However, the programmer can explicitly direct the Bus Interface Unit to use any
currently addressable segment (except for the destination operand of a string instruction). In
assembly language, this is done by preceding an instruction with a segment override prefix.
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" S8
2C4H
PHYSICAL
2C3H
ADDRESS A—>
2C2H
OFFSET 2C1H
SEGMENT o 2C0H
2BEH
2BDH
2BCH
OFFSET 2BBH
LOGICAL (13H) 2BAH
ADDRESSES 2B9H
2B8H
2B7H
2B6H
2B5H
2B4H
2B3H
2B2H
SEGMENT 2B1H
BASE 2B0H
7 (7
Figure 2.8. Logical and Physical Address
Table 2.2. Logical Address Sources
DEFAULT ALTERNATE
TYPE OF MEMORY REFERENCE SEGMENT SEGMENT OFFSET
BASE BASE
Instruction Fetch CS NONE P
Stack Operation SH] NONE SP
Variable (except following) DS CS, ES, SS Effective Address
String Source DS CS, ES, SS Sl
String Destination ES NONE DI
BP Used As Base Register SS CS, DS, ES Effective Address
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Instructions are always fetched from the current code segment. The IP register contains the
instruction’s offset from the beginning of the segment. Stack instructions always operate on
the current stack segment. The Stack Pointer (SP) register contains the offset of the top of the
stack from the base of the stack. Most variables (memory operands) are assumed to reside in
the current data segment, but a program can instruct the Bus Interface Unit to override this
assumption. Often, the offset of a memory variable is not directly available and must be
calculated at execution time. The addressing mode specified in the instruction determines how
this offset is calculated (see Section 2.2.2). The result is called the operand’s Effective
Address (EA).

Strings are addressed differently than other variables. The source operand of a string
instruction is assumed to lie in the current data segment However, the program may use
another currently addressable segment. The operand’s offset is taken from the Source Index
(SI) register. The destination operand of a string instruction always resides in the current extra
segment. The destination’s offset is taken from the Destination Index (DI) register. The string
instructions automatically adjust the SI and DI registers as they process the strings one byte or
word at a time. -

When an instruction designates the Base Pointer (BP) register as a base register, the variable is
assumed to reside in the current stack segment. The BP register provides a convenient way to
access data on the stack. The BP register can also be used to access data in any other currently
addressable segment.

2.1.9. DYNAMICALLY RELOCATABLE CODE

The segmented memory structure of the 80C186 Modular Core family allows creation of
dynamically relocatable (position-independent) programs. Dynamic relocation allows a
multiprogramming or multitasking system to make effective use of available memory. The
processor can write inactive programs to a disk and reallocate the space they occupied to other
programs. A disk-resident program can then be read back into available memory locations and
restarted whenever it is needed. If a program needs a large contiguous block of storage and the
total amount is only available in non-adjacent fragments, other program segments can be
compacted to free up enough continuous space. This process is illustrated graphically in
Figure 2.9.

To be dynamically relocatable, a program must not load or alter its segment registers and must
not transfer directly to a location outside the current code segment. All program offsets must
be relative to the segment registers. This allows the program to be moved anywhere in
memory provided the segment registers are updated to point to the new base addresses.
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Figure 2.9. Dynamic Code Relocation

2.1.10. STACKIMPLEMENTATION

Stacks in the 80C186 Modular Core family reside in memory space. They are located by the
Stack Segment register (SS) and the Stack Pointer (SP). A system may have multiple stacks. A
stack may be up to 64 Kbytes long, the maximum length of a segment. Growing a stack
segment beyond 64 Kbytes overwrites the beginning of the segment. Only one stack is directly

addressable at a time. The SS register contains the base address of the current stack. The top of

the stack, not the base address, is the origination point of the stack. The SP register contains an

offset which points to the Top Of Stack (TOS).
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Stacks are 16 bits wide. Instructions operating on a stack add and remove stack elements one
word at a time. An element is pushed onto the stack (see Figure 2.10) by first decrementing
the SP register by 2 and then writing the data word. An element is popped off the stack by
copying it from the top of the stack and then incrementing the SP register by 2. The stack
grows down in memory toward its base address. Stack operations never move or erase
elements on the stack. The top of the stack changes only as a result of updating the stack
pointer.

2.1.11. RESERVED MEMORY AND I/O SPACE

Two specific areas in memory and one area in I/O space are reserved in the 80C186 Core
family. '

e Locations OH through 3FFH in low memory are used for the Interrupt Vector Table.
Programs should not be loaded here.

e Locations OFFFFOH through OFFFFFH in high memory are used for system reset code
since the processor begins execution at OFFFFOH.

o Locations OF8H through OFFH in I/O space are reserved for communication with other
Intel hardware products and may not be used. On the 80C186 core, these addresses are
used as I/O ports for the 80C187 numerics processor extension.

2.2. SOFTWARE OVERVIEW

All 80C186 Modular Core family members execute the same instructions. This includes all the
8086/8088 instructions plus several additions and enhancements (see 80CI186 Instruction Set
Additions and Extensions). The following sections provide a description of the instructions by
category and a detailed discussion of the operand addressing modes.

Software for 80C186 core family systems does not need to be written in assembly language.
The processor provides direct hardware support for programs written in the many high-level
languages available. The hardware addressing modes provide straight forward
implementations of based variables, arrays, arrays of structures and other high-level language
data constructs. A powerful set of memory-to-memory string operations allow efficient
character data manipulation. Finally, routines with critical performance requirements may be
written in assembly language and linked with high-level code.
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Figure 2.10. Stack Operation

2.2.1. INSTRUCTION SET

The 80C186 Modular Core family instructions treat different types of operands uniformly.
Nearly every instruction can operate on either byte or word data. Register, memory and
immediate operands may be specified interchangeably in most instructions. The exception to
this is immediate values must serve as source operands and not destination operands. Memory
variables may be added to, subtracted from, shifted, compared, etc., without moving them in
and out of registers. This saves instructions, registers and execution time in assembly language
programs. In high-level languages, where most variables are memory-based, compilers can
produce faster and shorter object programs.
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The 80C186 Modular Core family instruction set can be viewed as existing on two levels. One
is the assembly level and the other is the machine level. To the assembly language
programmer, the 80C186 Modular Core family appears to have about 100 instructions. One
MOV (data move) instruction, for example, transfers a byte or a word from a register, a
memory location or an immediate value to either a register or a memory location. The 80C186
Modular Core family CPUs, however, recognize 28 different machine versions of the MOV
instruction.

The two levels of instruction sets address two requirements: efficiency and simplicity.
Approximately 300 forms of machine-level instructions make very efficient use of storage.
For example, the machine instruction that increments a memory operand is three or four bytes
long because the address of the operand must be encoded in the instruction. To increment a
_ register, however, does not require as much information, so the instruction can be shorter. The
80C186 Core family has eight one byte machine-level instructions that increment different 16-
bit registers.

The assembly level instructions simplify the programmer’s view of the instruction set. The
programmer writes one form of an INC (increment) instruction and the assembler examines
the operand to determine which machine level instruction to generate. The following
paragraphs provide a functional description of the assembly-level instructions.

2.2.1.1. DATA TRANSFER INSTRUCTIONS

The instruction set contains 14 data transfer instructions. These instructions move single bytes
and words between memory and registers. They also move single bytes and words between the
AL or AX registers and I/O ports. Table 2.3 lists the four types of data transfer instructions
and their functions. ,

Data transfer instructions are categorized as general purpose, input/output, address object and
flag transfer. The stack manipulation instructions, used for transferring flag contents and
instructions used for loading segment registers are also included in this group. Figure 2.11
shows the flag storage formats. The address object instructions manipulate the addresses of
variables instead of the values of the variables.
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Table 2.3. Data Transfer

Table 2.4. Arithmetic Instructions

Instructions
GENERAL PURPOSE ADDITION
MOV Move byte or word ADD Add byte or word
PUSH Push word onto stack ADC Add byte or word with carry
POP Pop word off stack INC Increment byte or word by 1
PUSHA | Push registers onto stack AAA ASCI| adjust for addition
POPA Pop registers off stack DAA Decimal adjust for addition
XCHG Exchange byte or word SUBTRACTION
XLAT Translate byte sSuB Subtract byte or word
INPUT/OUTPUT SBB Subtract byte or word with borrow
IN Input byte or word DEC Decrement byte or word by 1
ouT Output byte or word NEG Negate byte or word
ADDRESS OBJECT AND STACK FRAME CMP Compare byte or word
LEA Load effective address AAS ASCII adjust for subtraction
LDS Load pointer using DS DAS Decimal adjust for subtraction
LES Load pointer using ES MULTIPLICATION
ENTER | Build stack frame MUL Multiply byte or word unsigned
LEAVE | Tear down stack frame IMUL Integer multiply byte or word
FLAG TRANSFER AAM | ASCII adjust for multiplication
LAHF Load AH register from flags DIVISION
SAHF Store AH register in flags DIV Divide byte or word unsigned
PUSHF | Push flags onto stack IDIV Integer divide byte or word
POPF Pop flags off stack AAD ASCI| adjust for division
CBW Convert byte to word
CWD Convert word to doubleword
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Table 2.5. Arithmetic Interpretation of 8-Bit Numbers

HEX BIT PATTERN UNSIGNED SIGNED UNPACKED PACKED
) BINARY BINARY DECIMAL DECIMAL
07 00000111 7 +7 7 7
89 10001001 137 -119 - invalid 89
C5 11000101 - 197 -59 invalid invalid

LAHF
 SAHF {S,Z,U,A,U,P,U,C

i7 6 5 4 3 2 1 01

PUSHF

PusH luu vv,001 157,08 0P uc]

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0

U = Undefined; Value is indeterminate
0O = Overflow Flag

D = Direction Flag

| = Interrupt Enable Flag

T=Trap Flag

S = Sign Flag

Z=ZeroFlag

A = Auxiliary Carry Flag

P = Parity Flag

C = Carry Flag

' Figure 2.11. Flag Storage Format

2.2.1.2. ARITHMETIC INSTRUCTIONS
The arithmetic instructions (see Table 2.4) operate on four types of numbers:

e  Unsigned binary
- o Signed binary (integers)
¢ Unsigned packed decimal

¢  Unsigned unpacked decimal

Table 2.5 shows the interpretations of various bit patterns according to number type.
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Binary numbers may be 8 or 16 bits long. Decimal numbers are stored in bytes, two digits per
byte for packed decimal and one digit per byte for unpacked decimal. The processor assumes
that the operands in arithmetic instructions contain data that represents valid numbers for that
instruction. Invalid data may produce unpredictable results. The Execution Unit analyzes
arithmetic instruction’s results and adjusts status flags accordingly.

2.2.1.3. BIT MANIPULATION INSTRUCTIONS

There are three groups of instructions for manipulating bits within bytes and words. These
three groups are logical, shifts and rotates. Table 2.6 lists these three groups of bit
manipulation instructions with their functions.

Logical instructions include the Boolean operators NOT, AND, OR and exclusive OR (XOR).
Logical instructions also include a TEST instruction that sets the flags as a result of a Boolean
AND operation, but does not alter either of its operands.

Individual bits in bytes and words can be shifted arithmetically or logically. Up to 32 shifts
may be performed, according to the value of the count operand coded in the instruction. The
count may be specified as an immediate value or as a variable in the CL register. This allows
the shift count to be a supplied at execution time. Arithmetic shifts can be used to multiply and
divide binary numbers by powers of two. Logical shifts can be used to isolate bits in bytes or
words. ‘

Individual bits in bytes and words can also be rotated. The processor does not discard the bits
rotated out of an operand. The bits circle back to the other end of the operand. The number of
bits to be rotated is taken from the count operand, which may specify either an immediate
value or the CL register. The carry flag may act as an extension of the operand in two of the
rotate instructions. This allows a bit to be isolated in the Carry Flag (CF) and then tested by a
JC (jump if carry) or INC (jump if not carry) instruction.

2.2.1.4. STRING INSTRUCTIONS

Five basic string operations process strings of bytes or words, one element (byte or word) at a
time. Strings of up to 64 Kbytes may be manipulated with these instructions. Instructions are
available to move, compare or scan for a value, as well as move string elements to and from
the accumulator. Table 2.7 lists the string instructions. These basic operations may be
preceded by a one-byte prefix that causes the instruction to be repeated by the hardware,
allowing long strings to be processed much faster than with a software loop. The repetitions
can be terminated by a variety of conditions. Repeated operations may be interrupted and
resumed.

String instructions operate similarly in many respects (see Table 2.8). A string instruction may
have a source operand, a destination operand or both. The hardware assumes that a source
string resides in the current data segment. A segment prefix may override this assumption. A
destination string must be in the current extra segment. The assembler does not use the

operand names to address strings. Instead, the contents of the Source Index (SI) register are
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used as an offset to address the current element of the source string. The contents of the
Destination Index (DI) register are taken as the offset of the current destination string element.
These registers must be initialized to point to the source/destination strings before executing
the string instructions. The LDS, LES and LEA instructions are useful in performing this
function.

String instructions automatically update the SI, DI or both registers prior to processing the
next string element. The Direction Flag (DF) determines whether the index registers are auto-
incremented (DF = 0) or auto-decremented (DF = 1). The processor adjusts the DI, SI or both
registers by one for byte strings or two for word strings. «

If a repeat prefix is used, the count register (CX) is decremented by one after each repetition of
the string instruction. The CX register must be initialized to the number of repetitions before
the string instruction is executed. If the CX register is 0, the string instruction is not executed
and control goes to the following instruction.

2.2.1.5. PROGRAM TRANSFER INSTRUCTIONS

The contents of the Code Segment (CS) and Instruction Pointer (IP) registers determine the
instruction execution sequence in the 80C186 Modular Core family. The CS register contains
the base address of the current code segment. The Instruction Pointer register points to the
memory location of the next instruction to be fetched. In most operating conditions, the next
instruction will already have been fetched and will be waiting in the CPU instruction queue.
Program transfer instructions operate on the IP and CS registers. Changing the contents of
these registers causes normal sequential operation to be altered. When a program transfer
occurs, the queue no longer contains the correct instruction. The Bus Interface Unit obtains the
next instruction from memory using the new IP and CS values. It then passes the instruction
directly to the Execution Unit and begins refilling the queue from the new location.

The 80C186 Modular Core family offers four groups of program transfer instructions (see
Table 2.9). These are unconditional transfers, conditional transfers, iteration control
instructions and interrupt-related instructions.

Unconditional transfer instructions may transfer control to a target instruction within the
current code segment (intrasegment transfer) or to a different code segment (intersegment
transfer). The assembler terms an intrasegment transfer SHORT or NEAR and an intersegment
transfer FAR. The transfer is made unconditionally when the instruction is executed. CALL,
RET and JMP are all unconditional transfers. CALL is used to transfer the program to a
procedure. A CALL can be NEAR or FAR. A NEAR CALL will stack only the Instruction
Pointer, while a FAR CALL will stack the Instruction Pointer and the Code Segment register.
The RET instruction uses the information pushed onto the stack to determine where to return
when the procedure finishes. Note: the RET and CALL instructions must be the same type.
This can be a problem when the CALL and RET instructions are in separately assembled
programs. The JMP instruction does not push any information onto the stack. A JMP
instruction may be NEAR or FAR.
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Table 2.6 Bit Manipulation

Table 2.8. String Instruction Register and

Instructions Flag Use
LOGICALS Sl Index (offset) for source string
NOT “Not” byte or word DI Index (offset) for destination string
AND “And” byte or word CX Repetition counter
OR “Inclusive or” byte or word AL/AX Scan value
XOR “Exclusive or” byte or word Destination for LODS
TEST “Test” byte or word Source for STOS
SHIFTS DF 0 = auto-increment SI, DI
SHL/SAL Shift logical/arithmetic left 1 = auto-decrement SI, DI
byte or word ZF Scan/compare terminator
SHR Shift logical right byte or
word :
SAR Shift arithmetic right byte or Table 2.9. Program Transfer Instructions
word
ROTATES CONDITIONAL TRANSFERS
ROL Rotate left byte or word JA/UNBE Jump if above/not below nor equal
ROR Rotate right byte or word JAE/JNB Jump if above or equal/not below
RCL Rotate through carry left JB/UNAE Jump if below/not above nor equal
byte or word JBE/JNA Jump if below or equal/not above
RCR Rotate through carry right JC Jump if carry
byte or word JENZ Jump if equal/zero
JG/INLE Jump if greater/not less nor equal
JGE/JNL Jump if greater or equal/not less
JLIUNGE Jump if less/not greater nor equal
Table 2.7 String Instructions JLE/JNG Jump if less or equal/not greater
JNC Jump if not carry
REPE/ Repeat while equal/zero JNE/INZ Jump if not equal/not zero
REPZ JNO Jump if not overflow
REPNE/ Repeat while not equal/not JNP/JPO Jump if not parity/parity odd
REPNZ zero JNS Jump if not sign
MOVSB/ Move byte or word string JO Jump if overflow
MOVSW JP/JPE Jump if parity/parity even
MOVS Move byte or word string JS Jump if sign
INS Input byte or word string ITERATION CONTROL
ouTS Output byte or word string LOOP Loop
CMPS Compare byte or word string LOOPE/LOOPZ Loop if equal/zero
SCAS Scan byte or word string LOOPNE/LOOPNZ | Loop if not equal/not zero
LODS Load byte or word string JCXZ Jump if register CX=0
STOS Store byte or word string INTERRUPTS
INT Interrupt
INTO Interrupt if overflow
BOUND Interrupt if out of array bounds
IRET Interrupt return
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Conditional transfer instructions are jumps that may or may not transfer control. This depends
on the state of the CPU flags when the instruction is executed. These 18 instructions (see
Table 2.10) each test a different combination of flags for a condition. If the condition is
logically TRUE, control is transferred to the target specified in the instruction. If the condition
is FALSE, control passes to the instruction following the conditional jump. All conditional
jumps are SHORT. The target must be in the current code segment within -128 to +127 bytes
of the next instruction’s first byte. For example, JMP O0H causes a jump to the first byte of the
next instruction. Jumps are made by adding the relative displacement of the target to the
Instruction Pointer. All conditional jumps are self-relative and are appropriate for position-
independent routines.

Table 2.10. Interpretation of Conditional Transfers

MNEMONIC CONDITION TESTED “JUMP IF ...”
JA/JNBE (CF or ZF)=0 above/not below nor equal
JAE/JNB CF=0 above or equal/not below
JB/UNAE CF=1 below/not above nor equal
JBE/UNA (CF or ZF)=1 below or equal/not above
JC CF=1 carry

JE/JZ ZF=1 equal/zero

JG/INLE ((SF xor OF) or ZF)=0 greater/not less nor equal
JGE/NL (SF xor OF)=0 greater or equal/not less
JU/UNGE (SF xor OF)=1 less/not greater nor equal
JLE/UNG ((SF xor OF) or ZF)=1 less or equal/not greater
JNC CF=0 not carry

JNE/INZ ZF=0 not equal/not zero

JNO OF=0 not overflow

JNP/JPO PF=0 not parity/parity odd

JNS SF=0 not sign

JO OF=1 overflow

JP/JPE PF=1 parity/parity equal

Js SF=1 sign

Note: “above” and “below” refer to the relationship of two unsigned values;
“greater” and “less” refer to the relationship of two signed values.

Iteration control instructions can be used to regulate the repetition of software loops. These
instructions use the CX register as a counter. Like the conditional transfers, the iteration
control instructions are self-relative and may only transfer to targets that are within -128 to
+127 bytes of themselves. They are SHORT transfers.

The interrupt instructions allow interrupt service routines to be activated by programs and
external hardware devices. The effect of software interrupts is similar to hardware-initiated
interrupts. The processor cannot execute an interrupt acknowledge bus cycle if the interrupt
originates in software or with an NMI (Non-Maskable Interrupt).
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2.2.1.6. PROCESSOR CONTROL INSTRUCTIONS

Processor control instructions (see Table 2.11) allow programs to control various CPU
functions. One group of instructions updates flags and another group is used primarily for
synchronizing the microprocessor to external events. Another instruction causes the CPU to do
nothing. Except for flag operations, processor control instructions do not affect the flags.

Table 2.11. Processor Control Instructions

FLAG OPERATIONS
STC Set Carry flag
CLC Clear Carry flag
CMC Complement Carry flag
STD Set Direction flag
CLD Clear Direction flag
STI Set Interrupt Enable flag
CLI Clear Interrupt Enable flag
EXTERNAL SYNCHRONIZATION
HLT Halt until interrupt or reset
WAIT Wait for TEST# pin active
ESC Escape to external processor
LOCK Lock bus during next instruction
NO OPERATION
NOP | No operation

2.2.2, ADDRESSING MODES

The 80C186 Modular Core family members access instruction operands in several ways.
Operands may be contained in registers, the instruction itself, memory or at I/O ports.
Addresses of memory and I/O port operands can be calculated in many ways. These
addressing modes greatly extend the flexibility and convenience of the instruction set. The
following paragraphs briefly describe register and immediate modes of operand addressing. A
detailed description of the memory and I/O addressing modes is also provided.

2.2.2.1. REGISTER AND IMMEDIATE OPERAND ADDRESSING MODES

Usually, the fastest, most compact operand addressing forms specify only register operands.
This is because the register operand addresses are encoded in instructions in just a few bits and
no bus cycles are run (the operation occurs within the CPU). Registers may serve as source
operands, destination operands or both.

Immediate operands are constant data contained in an instruction. Immediate data may be

either 8 or 16 bits in length. Immediate operands are available directly from the instruction
queue and can be accessed quickly. Like the register operand, no bus cycles need to be run to
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get an immediate operand. Immediate operands can only be source operands and must have a
constant value.

2.2.2.2. MEMORY ADDRESSING MODES

Although the Execution Unit has direct access to register and immediate operands, memory
operands must be transferred to and from the CPU over the bus. When the Execution Unit
needs to read or write a memory operand, it must pass an offset value to the Bus Interface
Unit. The Bus Interface Unit adds the offset to the shifted contents of a segment register
producing a 20-bit physical address. One or more bus cycles are then run to access the
operand.

The offset that the Execution Unit calculates for memory operand is called the operand’s
effective address (EA). This address is an unsigned 16-bit number that expresses the operand’s
distance, in bytes, from the beginning of the segment where it resides. The Execution Unit can
calculate the effective address in several ways. Information encoded in the second byte of the
instruction tells the Execution Unit how to calculate the effective address of each memory
operand. A compiler or assembler derives this information from the instruction written by the
programmer. Assembly language programmers have access to all addressing modes.

The Execution Unit calculates the Effective Address by summing a displacement, the contents
of a base register and the contents of an index register (see Figure 2.12). Any combination of
these may be present in a given instruction. This allows a variety of memory addressing
modes.

The displacement is an 8- or 16-bit number contained in the instruction. The displacement
generally is derived from the position of the operand’s name (a variable or label) in the
program. The programmer can modify this value or explicitly specify the displacement.

The BX or BP register may be specified as the base register for an effective address
calculation.

Similarly, either the SI or DI register may be specified as the index register. The displacement
value is a constant. The contents of the base and index registers may change during execution.
This allows one instruction to access different memory locations depending upon the current
values in the base or base and index registers. The default base register for effective address
calculations with the BP register is SS, although DS or ES may be specified.

Direct addressing is the simplest memory addressing mode (see Figure 2.13). No registers are

involved and the effective address is taken directly from the displacement of the instruction.
The programmer typically uses direct addressing to access scalar variables.
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Figure 2.13. Direct Addressing
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With register indirect addressing, the effective address of a memory operand may be taken
directly from one of the base or index registers (see Figure 2.14). One instruction can operate
on various memory locations if the base or index register is updated accordingly. Any 16-bit
general register may be used for reglster indirect addressing with the JMP or CALL

instructions.

In based addressing (see Figure 2.15), the effective address is the sum of a displacement value
and the contents of the BX or BP register. Specifying the BP register as a base register directs
the Bus Interface Unit to obtain the operand from the current stack segment (unless a segment
override prefix is present). This makes based addressing with the BP register a convenient way

to access stack data.

OPCODE MOD RM

BX

OR
BP

OR
S

OR
DI

—>>

EA

Figure 2.14. Register Indirect Addressing

OPCODE MOD RM

BX

'

OR
BP

o

DISPLACE \AENT

_

EA

Figure 2.15. Based Addressing
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Based addressing provides a simple way to address data structures which may be located in
different places in memory (see Figure 2.16). A base register can be pointed at the structure.
Elements of the structure can then be addressed by their displacement. Different copies of the
same structure can be accessed by simply changing the base register.

HIGH ADDRESS
DISPLACEMENT DISPLACEMENT
(RATE) AGE STATUS (RATE)
RATE $
VAC sick
RE@@,?ER DEPT oI BASE REGISTER —
EMPLOYEE :
|
o |
N7 |
AGE STATUS :
RATE <— |
VAC SICK I
DEPT DIV |
EMPLOYEE «<— — — —— — — — _
LOW ADDRESS

Figure 2.16. Accessing a Structure with Based Addressing

With indexed addressing, the effective address is calculated by summing a displacement and
the contents of an index register (SI or DI, see Figure 2.17). Indexed addressing is often used
to access elements in an array (see Figure 2.18). The displacement locates the beginning of the
array and the value of the index register selects one element. If the index register contains
0000H, the processor selects the first element. Since all array elements are the same length,
simple arithmetic on the register may select any element.
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Figure 2.17. Indexed Addressing
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[ ~|DISPLACEMENT —>> ARRAY (7) DISPLACEMENT | — —]
| % ARRAY (6) |
: ARRAY (5) :
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} 4 ARRAY (3) 2 |
|
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1 WORD
LOW ADDRESS

Figure 2.18. Accessing an Array with Indexed Addressing
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Based index addressing generates an effective address which is the sum of a base register, an
index register and a displacement (see Figure 2.19). The two address components can be
determined at execution time, making this a very flexible addressing mode.

I
OPCODE MOD RM DISPLACEMENT

BX
OR >
BP
Sl
—> OR >
DI
EA

Figure 2.19. Based Index Addressing

Based index addressing provides a convenient way for a procedure to address an array located
on a stack (see Figure 2.20). The BP register can contain the offset of a reference point on the
stack. This is typically the top of the stack after the procedure has saved registers and allocated
local storage. The offset of the beginning of the array from the reference point can be
expressed by a displacement value. The index register can be used to access individual array
elements. Arrays contained in structures and matrices (two-dimensional arrays) can also be
accessed with based indexed addressing.

String instructions do not use normal memory addressing modes to access operands. Instead,
the index registers are used implicitly (see Figure 2.21). When a string instruction executes,
the SI register must point to the first byte or word of the source string. The DI register must
point to the first byte or word of the destination string. In a repeated string operation, the CPU
will automatically adjust the SI and DI registers to obtain subsequent bytes or words. For
string instructions, the DS register is the default segment register for the SI register and the ES
register is the default segment register for the DI register. This allows string instructions to
operate on data located anywhere within the one megabyte address space.
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Figure 2.20. Accessing a Stacked Array with Based Index Addressing
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OPCODE

l
DESTINATION EA

SOURCE EA

Figure 2.21. String Operand

2.2.2.3. 1/0 PORT ADDRESSING

Any memory operand addressing modes may be used to access an 1/O port if the port is
memory-mapped. String instructions can also be used to transfer data to memory-mapped

ports with an appropriate hardware interface.

Two addressing modes can be used to access ports located in the I/O space (see Figure 2.22).
The port number is an 8-bit immediate operand for direct addressing. This allows fixed access
to ports numbered O to 255. Indirect I/O port addressing is similar to register indirect
addressing of memory operands. The DX register contains the port number which can range
from O to 65,535. By adjusting the contents of the DX register, one instruction can access any
port in the I/O space. A group of adjacent ports can be accessed using a simple software loop

that adjusts the value of the DX register.

OPCODE DATA OPCODE
A A
PORT ADDRESS DX > PORT ADDRESS
DIRECT PORT INDIRECT PORT
ADDRESSING ADDRESSING

Figure 2.22. /O Port Addressing
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2.2.2.4. DATA TYPES USED IN THE 80C186 MODULAR CORE FAMILY
The 80C186 Modular Core family supports the following data types:

e Integer - A signed 8- or 16-bit binary numeric value. All operations assume a 2’s
complement representation. Signed 32- and 64-bit integers are directly supported with the
addition of an 80C187 Numerics Processor Extension to an 80C186 Modular Core
system. The 80C188 Modular Core does not support the 80C187.

e Ordinal - An unsigned 8- or 16-bit binary numeric value.

o Pointer - A 16- or 32-bit quantity, composed of a 16-bit offset component or a 16-bit
segment base component in addition to a 16-bit offset component.

e String - A contiguous sequence of bytes or words. A string may contain from one to 64
Kbytes.

e ASCII - A byte representation of alphanumeric and control characters using the ASCII
standard.

¢ BCD - A byte (unpacked) representation of the decimal digits 0-9.

e Packed BCD - A byte (packed) representation of two decimal digits (0-9). One digit is
stored in each nibble (4 bits) of the byte.

e Floating Point - A signed 32-, 64- or 80-bit real number representation. The 80C187
Numerics Processor Extension, when added to an 80C186 Modular Core system, directly
supports floating point operands. The 80C188 Modular Core does not support the
80C187. ‘

In general, individual data elements must fit within defined segment limits. Figure 2.23
graphically represents the data types supported by the 80C186 Modular Core family.

2.3. INTERRUPTS AND EXCEPTION HANDLING

Interrupts and exceptions alter the program execution in response to an external event or an
error condition. An interrupt handles asynchronous external events, for example an NML
Exceptions result directly from the execution of an instruction, usually an instruction fault.
The user can cause a software interrupt by executing an “INT n” instruction. The CPU
processes software interrupts the same as exceptions.

The 80C186 Modular Core responds to interrupts and exceptions in the same way for all
devices within the 80C186 Modular Core family. However, devices within the family may
have different Interrupt Control Units. The Interrupt Control Unit handles all external interrupt
sources and presents them to the 80C186 Modular Core via one maskable interrupt request.
See Figure 2.24. This section covers only areas of interrupts and exceptions common to the
80C186 Modular Core Architecture. The Interrupt Control Unit is proliferation dependent and
is covered in another section. '
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Figure 2.23. 80C186 Modular Core Family Supported Data Types
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Figure 2.24. Interrupt Control Unit

23.1. INTERRUPT/EXCEPTION PROCESSING

The 80C186 Modular Core can service up to 256 different interrupts/exceptions. A 256 entry
Interrupt Vector Table contains the pointers to interrupt service routines. Each interrupt/
exception is given a type number, 0 through 255 corresponding to its position in the Interrupt
Vector Table. See Figure 2.25. Each entry is 4 bytes long. An entry contains the Code
Segment (CS) and Instruction Pointer (IP) of the first instruction in the interrupt service

routine.

Interrupt types 0-31 are reserved for Intel and should not be used by an application program.

When an interrupt is acknowledged, a common sequence of events occur allowing the
processor to execute the interrupt service routine (See Figure 2.26).

1. The processor saves a partial machine status by pushing the Program Status Word onto
the stack.

2. The Trap Flag bit and Interrupt Enable bit are then cleared in the Program Status Word.
This prevents maskable interrupts or single step exceptions from interrupting the
processor during the interrupt service routine.

The current CS and IP are pushed onto the stack.

4. The CPU fetches the new CS and IP for the interrupt vector routine from the Interrupt
Vector Table and begins executing from that point.
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MEMORY TABLE VECTOR MEMORY TABLE VECTOR
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Figure 2.25. Interrupt Vector Table

The CPU is now executing the interrupt service routine. The programmer must save (usually
by pushing onto the stack) all registers used in the interrupt service routine or their contents
will be lost. To allow nesting of maskable interrupts, the programmer must set the Interrupt
Enable bit in the Program Status Word.

When exiting an interrupt service routine, the programmer must restore (usually by popping
off the stack) the saved registers and execute an IRET instruction. An IRET instruction:
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1. Loads the return CS and IP by popping them off the stack.

2. Pops and restores the old Program Status Word from the stack.

The CPU now executes from where it was before the interrupt/exception occurred.

STACK

NTERRUPT ENABLE BIT

PSW

CS

® ’ VTRAP FLAG ®
\’ ﬁ] 0 I J PROGRAM STATUS WORD

SP —>»

u

®

CODE SEGMENT REGISTER

INSTRUCTION POINTER

Cs

N

INTERRUPT
VECTOR TABLE

Figure 2.26. Interrupt Sequence

2.3.1.1. NON-MASKABLE INTERRUPTS

The Non-Maskable Interrupt (NMI) is the highest priority interrupt. It is usually reserved for a
catastrophic event such as impending power failure. An NMI cannot be prevented (or masked)
by software. When the NMI input is asserted, the interrupt processing sequence begins after
execution of the current instruction completes (see Section 2.3.4 on 1nterrupt latency). The

CPU automatically generates a type 2 interrupt vector.

The NMI input is asynchronous. Setup and hold times are given only to guarantee recognition
on a specific clock edge. To be recognized, NMI must be asserted for at least one CLKOUT
period and meet the correct setup and hold times. NMI is edge-triggered and level-latched.
Multiple NMI requests cause multiple NMI service routines to be executed. NMI can be

nested in this manner an infinite number of times.
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2.3.1.2. MASKABLE INTERRUPTS

Maskable interrupts are the most common way to service external hardware interrupts.
Software can globally enable or disable maskable interrupts. This is done by setting or clearing
the Interrupt Enable bit in the Program Status Word. '

The Interrupt Control Unit processes the multiple sources of maskable interrupts and presents
them to the core via a single maskable interrupt input. The Interrupt Control Unit provides the
interrupt vector type to the 80C186 Modular Core. The Interrupt Control Unit differs among
members of the 80C186 Modular Core family and is described in a different section.

2.3.1.3. EXCEPTIONS

Exceptions occur when an unusual condition prevents further instruction processing until the
exception is corrected. The CPU handles software interrupts and exceptions in the same way.
The interrupt type for an exception is either predefined or supplied by the instruction.

Exceptions are classified as either faults or traps. This depends on when they are detected and
if the instruction which caused the exception can be restarted. Faults are detected and serviced
before the faulting instruction can be executed. The return address pushed onto the stack in the
interrupt processing instruction points to the beginning of the faulting instruction. This way,
the instruction can be restarted. A trap is detected and serviced immediately after the
instruction which caused the trap. The return address pushed onto the stack during the
interrupt processing points to the instruction following the trapping instruction.

Divide Error - Type 0:

A divide error trap is invoked when the quotient of an attempted division exceeds the
maximum value of the destination. A divide-by-zero is a common example.

Single Step - Type 1:

The single step trap occurs after the CPU executes one instruction with the Trap Flag (TF) bit
set in the Program Status Word. This allows programs to execute one instruction at a time.
Interrupts will not be generated after prefix instructions (e.g. REP), instructions which modify
segment registers (e.g. POP DS) or the WAIT instruction. Vectoring to the single-step
interrupt service routine clears the Trap Flag bit. An IRET instruction in the interrupt service
routine restores the Trap Flag bit to logic “1” and transfers control to the next instruction to be
single-stepped.

Breakpoint Interrupt - Type 3:
This is a single byte version of the INT instruction. The breakpoint interrupt is commonly used

by software debuggers to set breakpoints in RAM. Because the instruction is only one byte
long, it can substitute for any instruction.
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Interrupt on Overflow - Type 4:

The Interrupt on Overflow trap occurs if the Overflow Flag (OF) bit is set in the Program
Status Word and the INTO instruction is executed. Interrupt on Overflow is a common way to
conditionally handle arithmetic overflows.

Array Bounds Check - Type 5:

If the array index is outside the afray bounds during execution of the BOUND instruction (see
80C186 Instruction Set Additions and Extensions), an array bounds trap occurs.

Invalid Opcode - Type 6:
Execution of an undefined opcode causes an Invalid Opcode trap.
Escape Opcode - Type 7:

The Escape Opcode fault is used for floating point emulation. With 80C186 Modular Core
family members, the escape opcode fault is enabled by setting the Escape Trap (ET) bit in the
Relocation Register (see Peripheral Control Block). When a floating point instruction is
executed with the Escape Trap bit set, the Escape Opcode Fault exception occurs. The Escape
Opcode service routine then emulates the floating point instruction. If the Escape Trap bit is
cleared, the CPU sends the floating point instruction to an external 80C187.

80C188 Modular Core Family members do not support the 80C187 interface and always
generate the Escape Opcode Fault. The 80C186EA will generate the Escape Opcode Fault
regardless of the state of the Escape Trap bit unless it is in Numerics Mode.

Numerics Coprocessor Fault - Type 16:

The Numerics Coprocessor Fault is caused by an external 80C187 numerics coprocessor. The
80C187 reports the exception by asserting the ERROR pin. The 80C186 Modular Core only
checks the ERROR pin when executing a numerics instruction. A Numerics Coprocessor
Fault indicates that the previous numerics instruction caused the exception. The 80C187 saves
the address of the floating point instruction that caused the exception. The return address
pushed onto the stack during the interrupt processing points to the numerics instruction which
detected the exception. This way, the last numerics instruction can be restarted.

2.3.2. SOFTWARE INTERRUPTS

A Software Interrupt is caused by executing an “INT n” instruction. The parameter n
corresponds to the specific interrupt type to be executed. The interrupt type can be any number
between 0 and 255. If the parameter n corresponds to an interrupt type associated with a
hardware interrupt (NMI, Timers), the vectors will be fetched and the routine executed, but the
corresponding bits in the Interrupt Status register will not be altered.
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The CPU processes software interrupts and exceptions in the same way. Software interrupts,
exceptions and traps cannot be masked.

2.3.3. INTERRUPT LATENCY

Interrupt latency is the amount of time it takes for the CPU to recognize the existence of an
interrupt. The CPU generally only recognizes interrupts between instructions or on instruction
boundaries. Therefore, the current instruction must finish executing before an interrupt can be
recognized.

The worst case 80C186 instruction execution time is an integer divide instruction with
segment override prefix. The instruction takes 69 clocks, assuming an 80C186 Modular Core
family member and a zero wait state external bus. The execution time for an 80C188 Modular
Core family member may be longer depending on the queue.

This is one factor in determining interrupt latency. In addition, the following are also factors in
determining maximum latency:
1. The Interrupt Enable bit must be set for the CPU to recognize the Maskable Interrupt.
2. The CPU will not recognize interrupts during HOLD.
Once communication is completely established with an 80C187, the CPU will not

recognize interrupts until the numerics instruction is finished.

The CPU can only recognize interrupts on valid instruction boundaries. A valid instruction
boundary usually occurs when the current instruction finishes. The following is a list of
exceptions:

1. MOVs and POPs referencing a segment register will delay servicing of interrupts until
after the following instruction. The delay allows a 32-bit load to the SS and SP without an
interrupt occurring between the two loads.

2. The CPU allows interrupts between repeated string instructions. If multiple prefixes
precede a string instruction and the instruction is interrupted, only the one prefix
preceding the string primitive is restored.

3. The CPU can be interrupted during a WAIT instruction. The CPU will return to the WAIT
instruction.

2.3.4. INTERRUPT RESPONSE

Interrupt response time is the time from the CPU recognizing an mterrupt until the first
instruction in the service routine is executed.

Interrupt response time is less for interrupts or exceptions which supply their own vector type.
The maskable interrupt has a longer response time because the vector type must be supplied
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by the Interrupt Control Unit. The response time for the maskablé interrupt is covered in the
Interrupt Control Unit section.

Figure 2.27 shows the sequence of events which dictate interrupt response time for the
interrupts which supply their type. Note that an on-chip bus master, such as the DRAM
Refresh Unit, can make use of idle bus cycles. This can increase interrupt response time.

Clocks
IDLE
READ IP
IDLE
READ CS
IDLE
PUSH FLAGS
IDLE
PUSH CS
PUSH IP
IDLE

S L N - R S & L B N ¢4 ]

FIRST INSTRUTION

FETCHFROM INTERRUPT =~ -ormrrmmmmmmmmsmmmm oo >

ROUTINE -
Total 42

Figure 2.27. Interrupt Response Factors

2.3.5. INTERRUPT AND EXCEPTION PRIORITY

Interrupts can only be recognized on valid instruction boundaries. If an NMI and a maskable
interrupt are both recognized on the same instruction boundary, NMI has precedence. The
maskable interrupt will not be recognized until the Interrupt Enable bit is set and it is the
highest priority.

Only the single step exception can occur concurrently with another exception. At most, two
exceptions can occur at the same instruction boundary and one of the exceptions must be the
single step. Single step is a special case which will be discussed later. By ignoring single step
(for now), only one exception can occur at any given instruction boundary.

An exception has priority over both NMI and the maskable interrupt. However, a pending

NMI can interrupt the CPU at any valid instruction boundary. Therefore, NMI can interrupt an
exception service routine. If an exception and NMI occur simultaneously, the exception vector
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will be taken, followed immediately by the NMI vector. See Figure 2.28. While the exception
has higher priority at the instruction boundary, the NMI interrupt service routine is executed
first.

F=1

N —> DIVIDE <€— DIVIDE ERROR -

v

PUSH PSW, CS, IP

FETCH DIVIDE ERROR VECTOR
PUSH PSW, CS, IP
FETCH NMI VECTOR
EXECUTE NMI
SERVICE ROUTINE
\L IRET
EXECUTE DIVIDE
SERVICE ROUTINE

¢ IRET

Figure 2.28. Simultaneous NMI and Exception

Single step priority is a special case. If an interrupt (NMI or maskable) occurs at the same
instruction boundary as a single step, the interrupt vector is taken first, followed immediately
by the single step vector. The single step service routine is executed before the interrupt
service routine. See Figure 2.29. If the single step service routine re-enables Single Step by
setting the Trap Flag bit before executing the IRET, the interrupt service routine will also be
single stepped. This can severely limit the real-time response of the CPU to an interrupt.
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To prevent the single step routine from executing before a maskable interrupt, disable
interrupts while single stepping an instruction. Then enable interrupts in the single step service
routine. The maskable interrupt is serviced from within the single step service routine and that
interrupt service routine is not single-stepped. To prevent single stepping before an NMI, the
single step service routine must compare the return address on the stack to the NMI vector. If
they are the same, return to the NMI service routine immediately without executing the single
step service routine.

NMI- = INSTRUCTION <€— TRAP FLAG=1

PUSH PSW, CS, IP
FETCH DIVIDE
ERROR VECTOR
TRAP FLAG=0

—

PUSH PSW, CS, IP
FETCH SINGLE STEP VECTOR

Y

EXECUTE SINGLE STEP
SERVICE ROUTINE-

00 000 L ||RET

TRAP FLAG=???

Figure 2.29. Simultaneous NMI and Single Step Interrupts

The most complicated case is when an NMI, maskable interrupt, single step and another
exception are pending on the same instruction boundary. Figure 2.30 shows how this case is
prioritized by the CPU. Note: if the single step routine sets the Trap Flag bit before executing
the IRET instruction, the NMI routine will also be single stepped.
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INTERRUPT ENABLE BIT (IE) = 1
TRAP FLAG (TF) =1

NMI —»| DIVIDE «€— TIMER INTERRUPT

L———V

PUSH PSW, CS, IP INTERRUPT ENABLE BIT (IF) = 0
FETCH DIVIDE ERROR VECTOR TRAP FLAG (TF) =0

L_—V

PUSH PSW, CS, IP INTERRUPT ENABLE BIT (IF) =0
FETCH NMI VECTOR TRAP FLAG (TF)=0

\j

PUSH PSW, CS, IP INTERRUPT ENABLE BIT
FETCH SINGLE STEP VECTOR (IF)=0

¢ TRAP FLAG (TF) =0

EXECUTE SINGLE STEP
SERVICE ROUTINE

......‘ JIRET

INTERRUPT ENABLE BIT (IF) = 0
TRAP FLAG (TF) = 722

INTERRUPT ENABLE BIT (IF) = 1
TRAP FLAG (TF) = X

’

PUSH PSW, CS, IP INTERRUPT ENABLE BIT (IE) =1
FETCH SINGLE STEP VECTOR TRAP FLAG =X

¥

EXECUTE SINGLE STEP SERVICE ROUTINE

; IRET

Figure 2.30. Simultaneous NMI, Single Step and Maskable Interrupt
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CHAPTER 3
BUS INTERFACE UNIT

The Bus Interface Unit, abbreviated BIU, generates bus cycles that prefetch instructions from
memory, pass data to and from the execution unit, and pass data to and from the integrated
peripheral units.

The BIU drives address, data, status and control information to define a bus cycle. The start of
a bus cycle presents the address of a memory or I/O location and status information defining
the type of bus cycle. Read or write control signals follow address and define the direction of
data flow. A read cycle requires data to flow from the selected memory or I/O device to the
BIU. In a write cycle, the data flows from the BIU to the selected memory or I/O device. Opon
termination of the bus cycle, the BIU latches read data or removes write data.

3.1. MULTIPLEXED ADDRESS AND DATA BUS

The BIU has a combined address and data bus, commonly referred to as a time multiplexed
bus. Time multiplexing address and data information makes the most efficient use of device
package pins. A system with address latching provided within the memory and I/O devices
can directly connect to the address/data bus (or local bus). The local bus can be demultiplexed
with a single set of address latches to provide non-multiplexed address and data information to
the system. ~

3.2. ADDRESS AND DATA BUS CONCEPTS

The programmer views the memory or I/O address space as a sequence of bytes. Memory
space consists of 1 Mbytes, while I/O space consists of 64 KBytes. Any byte may contain an
eight bit data element, and any two consecutive bytes may contain a sixteen bit data element
(identified as a word). The discussions in this section apply to both memory and I/O bus
cycles. For brevity, memory bus cycles are used for examples and illustration.

3.2.1. 16-BIT DATA BUS

The memory address space on a 16-bit data bus is physically implemented by dividing the
address space into two banks of up to 512 Kbytes (see Figure 3.1). One bank connects to the
lower half of the data bus and contains even addressed bytes (A0=0). The other bank connects
to the upper half of the data bus and contains odd addressed bytes (AO=1). Address lines A19-
A1l select a specific byte within each bank. A0 and Byte High Enable (BHE) determine
whether one bank or both banks participate in the data transfer.
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PHYSICAL IMPLEMENTATION PHYSICAL IMPLEMENTATION OF THE

OF THE ADDRESS SPACE FOR
8-BIT SYSTEMS ADDRESS SPACE FOR 16-BIT SYSTEMS
1 MBYTE 512 KBYTES 512 KBYTES
FFFFF FFFFF FFFFE
FFFFE FFFFD FFFFC
> O— > O—
2 5 4
1 3 2
0 1 0
PZAN
v —_ 4
A19:0 D7:0 A19:1 D15:8 BHE D7.0 A0

Figure 3.1. Physical Data Bus Models

Byte transfers to even addresses transfer information over the lower half of the data bus (see
Figure 3.2). AO low enables the lower bank while BHE high disables the upper bank. The data
value from the upper bank is ignored during a bus read cycle. BHE high prevents a write
operation from destroying data in the upper bank.

Byte transfers to odd addresses transfer information over the upper half of the data bus (see
Figure 3.2). BHE low enables the upper bank while AO high disables the lower bank. The data
value from the lower bank is ignored during a bus read cycle. AO high prevents a write
operation from destroying data in the lower bank.

To access even addressed 16-bit words (two consecutive bytes with the least significant byte at
an even address), information is transferred over both halves of the data bus (see Figure 3.3).
A19-Al select the appropriate byte within each bank. AQ and BHE drive low to enable both
banks simultaneously. '

0Odd addressed word accesses require the BIU to split the transfer into two byte operations (see
Figure 3.4). The first operation transfers data over the upper half of the bus, while the second
operation transfers data over the lower half of the bus. The BIU automatically executes. the
two byte sequence whenever an odd addressed word access is performed.
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EVEN BYTE TRANFER
Y+1 Y
X+1 X)
AN
~ L
A19:1 D15:8 BHE (HIGH) D7:0 A0 (LOW)
0DD BYTE TRANSFER
Y+1 Y
~> . X+ X
A19:1 D158  BHE (LOW) D70 A0 (HIGH)
Figure 3.2. 16-Bit Data Bus Byte Transfers
A19:1 D15:8 BHE (LOW) D70 A0 (LOW)

Figure 3.3. 16-Bit Data Bus Even Word Transfers
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During a byte read operation the BIU floats the entire 16-bit data bus even though the transfer
occurs on only one half of the bus. This action simplifies the decoding requirements for read
only devices (e.g., ROM, EPROM, FLASH). During the byte read, both halves of the bus can
be driven and the BIU automatically accesses the correct half. The BIU drives both halves of
the bus during a byte write operation. Information of the half of the bus not involved in the
transfer is indeterminate. This action requires that the appropriate bank (defined by BHE or
A0 high) be disabled to prevent destroying data.

3.2.2. 8-BIT DATA BUS

The mémory address space on an 8-bit data bus is physically implemented as one bank of 1
Mbytes (see Figure 3.1). Address lines A19-A0 select a specific byte within the bank. Unlike a
16-bit bus, byte and word transfers (to'even or odd addresses) all transfer data over the same
8-bit bus. '

FIRST BUS CYCLE
‘ Y
X
O—
A19:1 D15:8 BHE (LOW) _ D7:0 A0 (HIGH)
SECOND BUS CYCLE
N
Y+1
—l/ X+1
0— 0
PN
v .
A19:1 D15:8  BHE (HIGH) D7:0 A0 (LOW)

Figure 3.4. 16-Bit Data Bus Odd Word Transfers
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Byte transfers to even or odd addresses transfer information in one bus cycle. Word transfers
to even or odd addresses transfer information in two bus cycles. The BIU automatically
converts the word access into two consecutive byte accesses, making the operation transparent
to the programmer.

For word transfers, the word address defines the first byte transferred. The second byte
transfer occurs from the word address plus one. Figure 3.5 illustrates a word transfer on an 8-
bit bus interface.

FIRST BUS CYCLE SECOND BUS CYCLE
A19:0 D7:0 A19:0 D7:0

Figure 3.5. 8-Bit Data Bus Word Transfers

3.3.. MEMORY AND I/O INTERFACES

The CPU can interface with 8- and 16-bit memory and I/O devices. Memory devices exchange
information with the CPU during memory read, memory write and instruction fetch bus
cycles. I/O (peripheral) devices exchange information with the CPU during memory read,
memory write, I/O read, I/O write and interrupt acknowledge bus cycles. Memory mapped I/O
refers to peripheral devices that exchanged information during memory cycles. Memory
mapped I/O allows the full power of the instruction set to be use when communicating with
peripheral devices.

I/O read and I/O write bus cycles use a separate 1/O address space. Only IN and OUT
instructions can access I/O address space, and information must be transferred between the
peripheral device and the AX register. The first 256 bytes (0-255) of I/O space can be
accessed directly by the I/O instructions. The entire 64 Kbyte I/O address space can only be
accessed indirectly through the DX register. I/O instructions always force address bits A19-
A16 to zero. ’

Interrupt acknowledge, or INTA bus cycles access an I/0O device intended to increase interrupt

input capability. Valid address information is not generated as part of the INTA bus cycle, and
data are transferred only over the lower bank (16-bit device).
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3.3.1. 16-BIT BUS MEMORY AND /O REQUIREMENTS |

A 16-bit bus has certain assumptions that must be met to operate properly. Memory used to
store instruction operands (i.e., the program) and immediate data must be 16-bits wide.
Instruction prefetch bus cycles require that both banks be used. The lower bank contains the
even bytes of code and the upper bank contains the odd bytes of code.

Memory used to store interrupt vectors and stack data must be 16-bits wide. Memory address
space between OH and 1FFH (1 Kbyte) hold the starting location of an interrupt routine. In
response to an interrupt, the BIU fetches two consecutive, even addressed words from this 1
Kbyte address space. Stack pushes and pops always write or read even addressed word data.

3.3.2. 8-BIT BUS MEMORY AND I/0 REQUIREMENTS

An 8-bit bus interface has no restrictions on implementing the memory or I/O interfaces. All
transfers, bytes and words, occur over the single 8-bit bus. Operatlons requ1r1ng word transfers
automatically execute two consecutive byte transfers.

3.4. BUS CYCLE OPERATION

The BIU executes a bus cycle to transfer data to or from any of the integrated units and
external memory or I/O devices (see Figure 3.6). A bus cycle consists of a minimum of four
CPU clocks known as “T-States.” A T-state is bounded by one falling edge of CLKOUT to the
next falling edge of CLKOUT (see Figure 3.7). Phase 1 represents the low time of the T-state
and starts at the high-to-low transition of CLKOUT. Phase 2 represent the high time of the T-
state and starts at the low-to-high transition of CLKOUT. Address, data and control signals
generated by the BIU go active and inactive at different phases within a T-state.

Figure 3.8 shows the BIU state diagram. Typically a bus cycle consists of four consecutive T-
states labeled T1, T2, T3 and T4. A TI (idle) state occurs when no bus cycle is pending.
Multiple T3 states occur to generate wait states. The symbol TW represents a wait state.

The operation of a bus cycle can be broken up into two phases:

e Address/Status Phase
e Data Transfer Phase
The address/status phase starts just prior to T1 and continues through T1. The data transfer

phase starts at T2 and continues through T4. Flgure 3.9 illustrates the T-state relationship of
the two phases

36
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S R O < T A
CLKOUTW_><\>\ :

N LA

; NN
STATUS LINES XA /' VALID STA}?GS \ 35/ /

ADDRESS/ ADDR E / | DATA
DATA SIGNALS /
READ / WRITE
Figure 3.6. Typical Bus Cycle
LN |
CLKOUT Edge Edgo

PHASE! |  PHASE2
(LOW " (HIGH
PHASE) PHASE)

Figure 3.7. T-State Relation to CLKOUT

3.4.1. ADDRESS/STATUS PHASE

Figure 3.10 shows signal ‘timing relationships for the address/status phase of a bus cycle. A
bus cycle begins with the transition of the ALE and S2:0. These signals transition during
phase 2 of the T-state just prior to T1. Referring back to Figure 3.8, T4 or TI precede T1
depending on the operation of the previous bus cycle.

3-7



intel. ‘ ' BUS INTERFACE UNIT

BUS READY
REQUEST PENDING
HOLD DEASSERTED

BUS NOT
READY
HALT BUS CYCLE
BUS READY
REQUEST PENDING NO REQUEST PENDING
HOLD DEASSERTED HOLD DEASSERTED
" RESN
ASSERTED
HOLD ASSERTED
Figure 3.8. BIU State Diagram
T4orT T R PoTmw i Tam
CLKOUT |

ADDRESS/ ‘
<gATus PHASE DATA PHASE

Figure 3.9. T-State and Bus Phases
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TlorT4 + T N V-
CLKOUT q <K q c>\
ALE @ :
AD15-ADO
A19:16 ;
S2:0 N\\ ! VALD
BHE W vALD :
NOTES: ;
1. Tepov : Clock high to ALE high, $2:0 valid,
2. TCLOV : Clock low to address valid, BHE valid.
3. TAVLL : Address valid to ALE low (address setup to ALE).
4. Tepov : Clock high to ALE low.
5. ToLOF : Clock low to address invalid (address hold from clock low).
6. TLLAX : ALE low to address invalid (address hold from ALE).

Figure 3.10. Address/Status Signal Relationships

ALE provides a strobe to latch physical address information. Address is presented on the
multiplexed address/data bus during T1 (see Figure 3.10). The falling edge of ALE occurs
during the middle of T1 and provides a strobe to latch address. Figure 3.11 presents a typical
circuit for latching addresses.

The status signals S2:0 define the type of bus cycle. Table 3.1 lists the possible bus cycle
types. S2:0 remain valid until phase 1 of T3 (or the last TW when wait states occur). The
circuit shown in Figure 3.11 can also be used to extend S2:0 beyond the T3 (or TW) state.
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SIGNALS FROM . LATCHED
CPU ADDRESS SIGNALS
A19:16 4 >||
20 3 5 0 [—> LA18:16
—>{gg O F—>1820
OF
AD158 __8 > |
>8B o> (A158
&— OF
AD7:0 8 > |
ALE >SB 0> 1m0
I— OF

Figure 3.11. Demultiplexing Address Information

Table 3.1. Bus Cycle Types

STATUS BIT

S2 S1 SO OPERATION
0 0 0 Interrupt Acknowledge
0 0 1 1/0 Read

0 1 0 1/0 Write

0. 1 1 Halt

1 0 0 Instruction Prefetch

1 0 1 Memory Read

1 1 0 Memory Write

1 1 1 Idle (passive)
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T2 T3 or TW T4 or Tl

CLKOUT O

® = @ \®
A
/
/™

W

//KW

VALID WRIIE DAT.

AD15:0
WRITE

JQ 7
AD15:0
o

VALID
READ DATA

READ

20 N/

. ToLov : Clock low to valid RD/ WR active; Write data valid
. TCLOV : Clock low to status inactive
. TCLIS : Data input valid to clock low

. Tcuis  : Data input HOLD from clock low
. TWHDX : Output data HOLD from WR high

1
2
3
4. TeLov : Clock valid to RD/ WR inactive
5
6
7

. TRHAV : Bus no longer floating from RD high

Figure 3.12. Data Transfer Signal Relationships

3.4.2. DATA PHASE

Figure 3.12 shows the timing relationships for the data phase of a bus cycle. The only bus
cycle type that does not have a data phase is a bus halt. During the data phase the bus transfers
information between the internal units and the memory or peripheral device selected during
the address/status phase. Appropriate control signals become active to coordinate the transfer

of data.
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The data phase begins at phase 1 of T2 and continues until phase 2 of T4 or TI. The length of
the data phase varies depending on the number of wait states. Wait states occur after T3 and
before T4 or TI.

3.4.3. WAIT STATES

Wait states extend the data phase of the bus cycle. Memory and I/O devices that can not
provide or accept data in the minimum four CPU clocks require wait states. Figure 3.13 shows
a typical bus cycle with wait states inserted.

T2 T3 ™W TW T4

SPAPR w T n T  E
AE —/ o\ , /[

STATUS \ VALID /
A19:16 /ADDRESS _\
ADIS0 XaooRess X VALID WRITE DATA

WR R /
ARDY - / |

Figure 3.13. Typical Bus Cycle With Wait States

The bus ready pins and the Chip-Select Unit control bus cycle wait states. Only the bus ready
pins are described in this section. Refer to Chapter 7 for a discussion of the Chip-Select Unit.

The SRDY and ARDY inputs control the wait state operation of the BIU. Figure 3.14 shows a

simplified block diagram of the SRDY and ARDY inputs. Either ARDY or SRDY must be
active to signal a bus ready condition. However, both ARDY and SRDY must be inactive to

- signal a bus not-ready condition. Depending on the size and characteristics of the system,

ready implementation may take one of two approaches: normally not-ready or normally ready.

3-12



intgl. BUS INTERFACE UNIT

ARDY
D Q] D Q |— BUS READY
Rising
CLKouT Edge
Falling
Edge
SRDY

Figure 3.14. ARDY and SRDY Pin Block Diagram

The condition where ARDY and SRDY remain low at all times except to signal a ready
condition defines a normally not-ready system. For any bus cycle, only the selected device
drives either ready input high to allow the BIU to complete the bus cycle. The circuit shown in
Figure 3.15 illustrates how to generate a normally not-ready signal. Note that if no device is
selected the bus remains not-ready indefinitely. Systems with many slow devices that can
not operate at the maximum bus bandwidth usually implement a normally not-ready signal.

The start of a bus cycle clears the wait state module and forces ARDY low. After every rising
edge of CLKOUT, INPUT1 and INPUT?2 are shifted through the module and eventually drive
ARDY high. Assuming INPUT1 and INPUT2 are valid prior to phase 2 of T2, no delay
through the module causes one wait state. Each additional clock delay through the module
generates one additional wait state. Two inputs are used to establish different wait state
conditions. The same circuit works for SRDY, except no delay through the module results in

no wait states.
e WAIT STATE
cs1 MODULE
CS2

INPUT 1
o INPUT 2
CS3
=Rl our |— seor
ALE CLEAR
CLKOUT CLOCK

Figure 3.15. Generating a Normally Not-Ready Signal
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A normally ready system drives ARDY or SRDY (or both) high at all times except when the
selected device needs to signal a not-ready condition. For any bus cycle, only the selected
device drives the ready input (or inputs) low to delay the completion of the bus cycle. The
circuit shown in Figure 3.16 illustrates a simple circuit to generate a normally ready signal.
Note that if no device is selected the bus remains ready. Systems that have few or no
devices requiring wait states usually implement a normally ready signal.

The start of a bus cycle preloads a “zero” shifter and forces SRDY active (high). SRDY
remains active if neither CS1 or CS2 go low. Should CS1 or CS2 go low, a series of zeros
are shifted out every rising edge of CLKOUT causing SRDY to go inactive. At the end of the
shift pattern SRDY is forced active again. Assuming CSI and CS2 are active just prior to
phase 2 of T2, shifting one “zero” through the module causes one wait state. Each additional
zero shifted through the module generates one wait state. The same circuit works for ARDY,
except shifting one “zero” through the module results in two wait states.

WAIT STATE

~ MODULE
o8
s ENABLE
ouT SRDY
ALE LOAD
CLKOUT ~ ——— CLOCK

Figure 3.16. Generating a Normally Ready Signal

The BIU can execute an indefinite number of wait states. However, bus cycles with large
numbers of wait states limit the performance of the CPU and the integrated peripherals. CPU
performance suffers because the instruction prefetch queue can not be kept full. Integrated
peripheral performance suffers because the maximum bus bandwidth decreases.

3.4.3.1. ARDY INPUT

The ARDY input has two major timing concerns that can effect whether a normally ready or
normally not-ready signal may be required. Referring to Figure 3.14, two latches capture the
state of the ARDY input. The first latch captures ARDY on the phase 2 clock edge. The
second latch captures ARDY and the result of the first latch on the phase 1 clock edge. The
following equations define the requirements of the ARDY input (SRDY is inactive) to meet
ready or not-ready bus conditions. ‘
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The bus is ready if:
1. ARDY is active prior to the phase 2 clock edge.
AND
2. ARDY is active prior to the phase 1 clock edge.
The bus is not-ready if:
1. ARDY is inactive prior to the phase 2 clock edge.
OR
2. ARDY is inactive prior to the phase 1 clock edge.

A normally not-ready system must generate a valid ready input at phase 2 of T2 to prevent
wait states. If it can not, then a normally ready system is required to run no wait states. Figure
3.17 illustrates the timing necessary to prevent wait states in a normally not-ready system.
Figure 3.17 also illustrates how to terminate a bus cycle with wait states in a normally not-
ready system.

: T2, T3or TW i T3orTW T4

CLKOUT .4 ™
O\ @ ®
ARDY
SRDY

In a Normally-Not-Ready system, wait states are inserted until (1 or 2) and 3 are met.
1. T cHig: ARDY active to clock high (assumes ARDY remains active until 3)
2.7 cus” SRDY active to clock low

3T CLH' ARDY + SRDY hold from clock low

Failure to meet SRDY setup & hold can cause a device failure (i.e., the bus
hangs or operates inappropriately).

Figure 3.17. Normally Not-Ready System Timing

A valid not-ready input can be generated as late as phase 1 of T3 to insert wait states in a
normally ready system . A normally not-ready system is required to run wait states if the not-
ready condition can not be met in time. Figure 3.18 illustrates the minimum and maximum
timing necessary to insert wait states in a normally ready system. Figure 3.18 also illustrates
how to terminate a bus cycle with wait states in a normally ready system.
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T2, T3orTW | T3arTW T4

CLKOUT Vi
® ®

ARDY 0JO)

Ina Normally-Not-Ready system, a wait state will be inserted when 1 & 2 are met.
(Assumes SRDY is low.)

: ARDY low to clock high

L Teus

2.7 CLH' Clock high to ARDY high (ARDY inactive hold time)

P72, T3or TW T3or TW : T4

CLKOUT | (ON
o\ /@

ARDY

SRDY

Alternatively, in a Normally-Ready system, a wait states will be inserted when 1 & 2 are
met for both SRDY & ARDY.

T CHIS' ARDY/SRDY low to clock low

2. T CHiH : ARDY/SRDY low from‘clock low

A Failure to meet ARDY & SRDY setup & hold time can cause a device failure
(i.e., the bus hangs or operates inappropriately).

Figure 3.18. Normally Ready System Timing

3.4.3.2. SRDY INPUT

Referring to Figure 3.14, only one latch captures the state of the SRDY input. SRDY must be
valid by phase 1 clock edge. The following equations define the requirements of the SRDY
input (ARDY is inactive) to meet ready or not-ready bus conditions.

The bus is ready if: .
1. SRDY is active prior to the phase 1 clock edge.
The bus is not-ready if: ‘

1. SRDY is inactive prior to the phase 1 clock edge.

LI
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A normally not-ready system must generate a valid ready input at phase 1 of T3 to prevent
wait states. If it can not, then a normally ready system is required to run no wait states. Figure
3.17 illustrates the timing necessary to prevent wait states in a normally not-ready system.
Figure 3.17 also illustrates how to terminate a bus cycle with wait states in a normally not-
ready system.

A valid not-ready input can be generated as late as phase 1 of T3 to insert wait states in a
normally ready system. A normally not-ready system is required to run wait states if the not-
ready condition can not be met in time. Figure 3.18 illustrates the minimum and maximum
timing necessary to insert wait states in a normally ready system. Figure 3.18 also illustrates
how to terminate a bus cycle with wait states in a normally ready system.

3.4.4. |IDLE STATES

Under most operating conditions the BIU executes consecutive (back-to-back) bus cycles.
However, several conditions cause the BIU to become idle. An idle condition occurs between
bus cycles (see Figure 3.8), and may last an indefinite amount of time (depending on the
instruction sequence). Conditions causing the BIU to become idle include:

e  The instruction prefetch queue is full

e  An effective address calculation is in progress

e The bus cycle inherently requires idle states (e.g., interrupt acknowledge, locked
operations)

e Instruction execution forces idle states (e.g., HLT, WAIT)
An idle bus state may or may not drive the bus. An idle bus state following a bus read cycle
continues to float the bus. An idle bus state following a bus write cycle continues to drive the

bus. The BIU does not drive any of the control strobes active in an idle state unless to indicate
the start of another bus cycle.

3.5. BUS CYCLES

There are four basic types of bus cycles: read, write, interrupt acknowledge and halt. Interrupt
acknowledge and halt bus cycles define special bus operations and require separate
discussions. Read bus cycles include memory, I/0 and instruction prefetch bus operations.
Write bus cycles include memory and I/O bus operations. All read and write bus cycles have
the same basic format.

The following sections present timing equations containing symbols found in the data sheet.
The timing equations provide information necessary to start a worst case design analysis.

3.5.1. READBUS CYCLES

Figure 3.19 illustrates a typical read cycle. Table 3.2 lists the three types of read bus cycles.
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; T : T2 ; T3 ; T4 ;
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=0 | \ STATUS VALID / | 5 AN
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i ./ ADDRESS A18:16=0
A19:16 . VALID A19=VALID STATUS
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AD15:0 ADDRESS \ ! : ! /DATA\ ! v
[AD7:0] VALD /T ; " \VALID/ ™ N\
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oev /0 b b\ b

Figure 3.19. Typical Read Bus Cycle

Figure 3.20 illustrates a typical 16-bit interface connection to a read-only device interface. The
same example applies to an 8-bit bus system, except no devices connect to an upper bus. Four
parameters must be evaluated when determining the compatibility of a memory (or I/O)
device. TADLTCH defines the delay through the address latch. Table 3.3 lists the four
parameters. \

TOE, TACC and TCE define the maximum data access requirements for the memory device.

These device parameters must be less than the value calculated in the equation column. A
equal to or greater than result indicates that wait states must be inserted into the bus cycle.
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Table 3.2. Read Bus Cycle Types

STATUS BIT
S2 st S0 BUS CYCLE TYPE
0 1 Read I/O - Initiated by the Execution Unit for IN, OUT,

INS, OUTS instructions or by the DMA Unit. A15:0 selects
the desired 1/0 port. A19:16 drive to zero (see also DMA
Unit).

1 0 0 Instruction Prefetch - Initiated by the BIU. Data read from
the bus fills the prefetch queue.

1 0 1 Read Memory - Initiated by the Execution Unit, the DMA
Unit, or the Refresh Control Unit. A19:0 select the desired
byte or word memory location

TDF determines the maximum time the memory device can float its outputs before the next bus
cycle begins. A TDF value greater than the equation result indicates a buffer fight. A buffer
fight means two (or more) devices are driving the bus at the same time. This can lead to short
circuit conditions, resulting in large current spikes and possible device damage.

TRHAX cannot be lengthened (other than slowing the clock rate). To resolve a buffer fight
condition, chose a faster device or buffer the AD bus (see Section 3.6.1).

Table 3.3. Read Cycle Critical Timing Parameters

MEMORY DEVICE
PARAMETER DESCRIPTION EQUATION
ToE Output enable (RD low) to data valid 2T - TcLov2 - Tous
Tacc Address valid to data valid 3T - TcLov2-TADLTCH - TcLIs
Tce Chip enable (UCS) to data valid 3T - TcLov2 - Tous
ToF Output disable (RD high) to output float TRHAX

3.5.1.1. REFRESH BUS CYCLES

A refresh bus cycle operates similarly to a normal read bus cycle except for the following:

For a 16-bit data bus, address bit A0 and BHE drive to a 1 (high) and the data value on
the bus is ignored. ‘ ’

For an 8-bit data bus, address bit AQ drives to a 1 (high) and RFSH is driven active. The
data value on the bus is ignored. RFSH has the same bus timing as BHE.
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1
UCS f -O|CE ’
AD7:0 < Oo.7 |
: Il 27C256
LA15:1 > Agaa |
\
y ﬁ i {
<
Ao-14 |
27C256 |
AD15:8 < 00_7 |
- |

Q| CE

NOTE: Ap AND BHE ARE NOT USED.

Figure 3.20. Read-Only Device Interface

3.5.2. WRITE BUS CYCLES

Figure 3.21 illustrates a typical write bus cycle. The bus cycle starts with the transition of ALE
high and the generation of valid status bits S2:0. The bus cycle ends when WR transitions
high (inactive), although data remains valid for one additional clock. Table 3.3 lists the two
types of write bus cycles.

Figure 3.22 illustrates a typical 16-bit interface connection to a Read/Write device. Write bus

cycles have many parameters that must be evaluated in determining the compatibility of a
memory (or I/O) device. Table 3.4 lists some critical write bus cycle parameters.
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o 1T U

STATUS VALID

S2:0 - , 1 : ;
ALE f I j ? j Z j I A
. ADDRESS ‘ A18:16=0
A19:16 ‘ VALID A19=VALID STATUS \
BHE
VALID

[A15:8] .
AD15:0 ADDRESS DATA
[AD7:0] VALID VALID

WR

DT/R |/

EN

Figure 3.21. Typical Write Bus Cycle

Most memory and peripheral devices latch data on the rising edge of the write strobe. Address,
chip-select and data must be valid (setup) prior to rising edge of WR. TAw, TCw and TpwW
define the minimum data setup requirements. The value calculated by their respective
‘equations must be greater than the device requirements. To increase the calculated value insert
wait states.

The minimum device data hold time (from WR high) is defined by TDH. The calculated value

must be greater than the minimum device requirements; however, the value can only be
changed by decreasing the clock rate.
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Table 3.4. Write Bus Cycle Types

"STATUS BITS

s2 s1 ) BUS CYCLE TYPE

0 1 0 Write 1/O - Initiated by executing IN, OUT, INS, OUTS
instructions or by the DMA Unit. A15:0 selects the desired
I/0 port. A19:16 are driven to zero (see also DMA Unit).

1 1 0 Write Memory - Initiated by any of the Byte/ Word

memory instructions or the DMA Unit. A19:0 selects the
desired byte or word memory location. ‘

LA15:1 >A0-14

RD O|0E 1/0 1 '
| ® AD7:0
O| WE 0 8
- O|cst

BHE —=O

Ene
e

OE 10 1
| <:> AD15:8

WE 110 8

RS

LCS

Figure 3.22. 16-Bit Bus Read/Write Device Interface
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Table 3.5. Write Cycle Critical Timing Parameters

MEMORY DEVICE
PARAMETER DESCRIPTION EQUATION

Twe Write cycle time 47

Taw Address valid to end of write strobe (WR high) 3T -TADLTCH

Tow Chip enable (LCS) to end of write strobe (WR 3T

high)

Twr Write recover time TWHLH

Tow Data valid to write strobe (WR high) 2T

ToH Data hold from write strobe (WR high) TWHDX

Twp Write pulse width TwLwH

Twc and TwP define the minimum time (maximum frequency) a device can process write bus
cycles. TWR determines the minimum time from the end of the current write cycle to the start
of the next write cycle. All three parameters require calculated values be greater than device
requirements. The calculated TwC and TWP values increase by inserting wait states. The
calculated TWR value, however, can not be changed except by decreasing the clock rate.

3.5.3. INTERRUPT ACKNOWLEDGE BUS CYCLE

Interrupt expansion is accomplished by interfacing the Interrupt Control Unit with a peripheral
device such as the 82C59A Programmable Interrupt Controller. The BIU controls the bus
cycles required to fetch vector information from the peripheral device, and then passes the
information to the CPU. These bus cycles, collectively know as an INTA bus cycle, operate
similarly to read bus cycles. However, instead of generating RD to enable the peripheral, the
signal INTA is used. Figure 3.23 illustrates a typical Interrupt Acknowledge bus cycle.

An Interrupt Acknowledge bus cycle consists of two consecutive bus cycles. LOCK is
generated to indicate the sequential bus operation. The second bus cycle strobes vector
information only from the lower half of the bus (D7:0). In a 16-bit bus system, the upper half
of the bus floats.

Figure 3.25 shows a typical 82C59A interface example. Bus ready must be provided to
terminate both bus cycles in the interrupt acknowledge sequence.
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™ T2 .13 .17 T T T

CLKOUT

||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

ALE

NOTE: Vector Type is read from AD7:0 only.

INTA occurs during T2 in Slave Mode

Figure 3.23. Interrupt Acknowledge Bus Cyble
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PROCESSOR 82C59A
INTAO L INTA 1RO
INTO l€&———— | INT . K
RO ———>RD IR7

WR ———— > WR

PCS0 ———>» CS
LAl —t AO

D7:0

W

Figure 3.24 Typical 82C59A Interface

3.5.3.1. SYSTEM DESIGN CONSIDERATIONS

Although ALE is generated for both bus cycles, the BIU does not drive valid address
information. Actually, all address bits except A19:16 float during the time ALE becomes
active (on both 8- and 16-bit bus devices). Address decode circuitry must be disabled for
Interrupt Acknowledge bus cycles to prevent erroneous operation.

3.5.4. HALT BUS CYCLE

Suspending the CPU reduces device power consumption and potentially reduces interrupt
latency time. The HLT instruction initiates two sequences:

1. Suspends the Execution Unit
2. Instructs the BIU to execute a HALT bus cycle
Chapter 5 discusses the concepts of Idle and Powerdown power management modes. Either of

those two modes (or the absence of both of them, known as Active Mode) affects the
operation of the bus HALT cycle. The effects relating to BIU operation and the HALT bus
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cycle are described in this section. However, refer to Chapter 5 for a discussion of Active, Idle
and Powerdown Modes.

After executing a HALT bus cycle, the BIU suspends operation until any of the following

) events occur:

¢ An interrupt is generated
e A bus HOLD is generated (except when Powerdown Mode is enabled)
¢ A DMA request is generated (except when Powerdown Mode is enabled)

o A refresh request is generated (except when Powerdown Mode is enabled)

Figure 3.25 shows the operation of a HALT bus cycle. During T1, the AD bus either floats or
drives depending on the next bus cycle to be executed by the BIU. Under most instruction
sequences, the BIU floats the AD bus because the next operation would most likely be an
instruction prefetch. However, the AD bus drives either data or address information during T1
if the HALT occurs just after a bus write operation. A19:16 continues to drive the previous
bus cycle information under most instruction sequences (it drives the next prefetch address
otherwise). The BIU always operates the same way for any given instruction sequence.

The Chip-Select Unit prevents a programmed chip-select from going active during a HALT
bus cycle. However, chip-selects generated by external decoder circuits must be disabled for
HALT bus cycles.

After several TI bus states, all address/data, address/status and bus control pins drive to a
known state when Powerdown or Idle Mode is enabled. The address/data and address/status
bus pins force a low (0) state. Bus control pins force their inactive state. Table 3.6 lists the
state of each pin after entering the HALT bus state.

Table 3.6. HALT Bus Cycle Pin States

PIN STATE PIN STATE
PIN(S) NO Powerdown Powerdown
or idle Mode or Idle Mode
AD15:0 (AD7:0 for 8-bit) Float Drive Zero
A15:8 (8-bit) Drive Address Drive Zero
A19:16 Drive 8H or Zero Drive Zero
BHE (16-bit) Drive Last Value Drive One
RD, WR, DEN, DT/R, Drive One Drive One
RFSH (8-bit), S2:0
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T Tl Tl

owour | L[ L[ LT 1

ALE ] \

S2:0 \ 011 /
3[375:;% NOTE 1 \ NoTE2 \  NOTE3
[A15:8] NOTE 2 “\ NotE2  \ NOTEZ
A19:16 \ NOTE4
BHE /
[RFSH= 1]

NOTES:

1.

The AD15:0 [AD7:0] bus can be floating, driving a previous write data value,
or driving the next instruction prefetch address value. For an 8-bit device,
A15:8 either drives the previous bus address value or the next instruction
prefetch address value.

The AD15:0 bus, or AD7:0 and A15:8 buses for an 8-bit device, drive to a
zero (all low) at this time if Powerdown Mode is enabled. When Powerdown
Mode is not enabled, the AD15:0 [AD7:0] bus either floats or drives previous
write data, and A15:8 (8-bit device) continues to drive its previous value.

The AD15:0 bus, or AD7:0 and A15:8 buses for an 8-bit device, drive to a
zero (all low) at this time if Idle Mode is enabled. When Idle Mode is not
enabled, the AD15:0 [AD7:0] bus either floats or drives previous write data,
and A15:8 (8-bit device) continues to drive its previous value.

The A19:16 bus either drives zero (all low) or 8H (all low except A19/S6,
which can be high if the previous bus cycle was a DMA or refresh operation).
If either Idle or Powerdown Mode is enabled, the A19:16 bus drives zeros
(all low) at phase 1 of TI. Otherwise, the previous value remains active.

Figure 3.25. HALT Bus Cycle
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3.5.5. TEMPORARILY EXITING THE HALT BUS STATE

A DMA request, refresh request or bus hold request cause the BIU to temporarily exit the
HALT bus state. This can only occur when in the Active or Idle power management mode.
The BIU returns to the HALT bus state after it completes the desired bus operation. However,
the BIU does not execute another bus HALT cycle (i.e., ALE and bus cycle status are not

regenerated). Figures 3.26, 3.27, and 3.28 illustrate how the BIU temporarily exits and then
returns to the HALT bus state.

3.5.6. EXITING HALT

The detection of an NMI forces the BIU to exit the HALT bus state when Powerdown Mode is
enabled. Any NMI or non-masked INTx interrupt exits the HALT bus state for any other
~ power management mode except Powerdown Mode. The first bus operations to occur after
exiting HALT are read cycles to reload the CS:IP registers. Figures 3.29 and 3.30 show how
the HALT bus state is exited when and NMI or INTx (respectively) occurs.

ckout | [ 1 L LT L ]
AE [

S2:0 \ /
AD15:0 _{oor L
[AD7:0) — y / A A

[A15:8] /T\IOTE 1 X ADDRESS \

A19:16 /NOTE1 XADDRX Al9=1.A18:16=0 \

%—’- H\NOTEZ /\ _”_-_h;oa-__;_—'/

NOTE: 1. Previous bus cycle value.

2. Only occurs for BHE on the first refresh bus cycle after entenng HALT.
3. BHE = 1 for 16-bit device, RFSH = 0 for 8-bit device.

Figure 3.26. Returning to HALT After a Refresh Bus Cycle
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™4 ™ T2 T3 T4 T T2 T3 TI T TI T

CLKOUT
ALE
S2:0 \ vaupstatus [ \ vaup status |
,[;%1750(; ADDRX VALID DATA >——————\___
[A15:8] : / NOTEX ADDRESS X ADDRESS X

A19:16 / NOTE 8H 8H \

[ﬁl-:—Sﬁ:E] \NOTE X VALID )L VALID /

NOTE: Drives previous bus cycle value

Figure 3.27. Returning to HALT After a DMA Bus Cycle

CLKOUT | | | LI L]
Hoo | 7
HLDA - .

AD15:0

AD7:0 i \

A15:8

A19:16 / t -
CONTROL VALID )——I: {  vAuD

Figure 3.28. Returning to HALT After a HOLD/HLDA Bus Exchange
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1L : I
S I e e G
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_/_"_'\ (4172 clocks min.) -

Previous bus cycle address value.

Figure 3.29. Exiting HALT (Powerdown Mode)

3.6. SYSTEM DESIGN ALTERNATIVES

Most system designs do not require any additional signaling requirements than those already
provided by the BIU. However, heavily loaded bus conditions, slow memory or peripheral
device performance, and off-board device interfaces may not be supported directly without
modifying the BIU interface. The following sections deal with topics to enhance or modify the

operation of the BIU.

3.6.1. BUFFERING THE DATA BUS

The BIU generates two control signals, DEN and DT/R, to control bidirectional buffers or -
transceivers. The timing relationship of DEN and DT/R is shown in Figure 3.31. Conditions

requiring transceivers include:

o The capacitive load on the AD bus gets too large

¢ The current load on the AD bus exceeds device specifications

e Additional VOL and VOH drive is required

¢ A memory or I/O device can not float its outputs in time to prevent a buffer fight
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(A15:8] . / NOTE 3 X ADDR
A19:16 o/ NOTE 4 \
BHE i
BHE, NOTE 3
RFSH \ \
NOTE:
1. For NMI, delay = 4 1/2 clock 3. Previous bus cycle value

For INTx, delay = 7 1/2 clocks

If previous bus cycle was a refresh
or DMA bus cycle, value will be 8H
(A19= 1); otherwise value will be 0.

2. |f previous bus cycle was a 4.
read, bus will float. If previous
bus cycle was a write, bus will
drive data value.

Figure 3.30. Exiting HALT (Active/ldle Mode)

The circuit shown in Figure 3.32 illustrates how to use transceivers to buffer the AD bus. The
connection between the processor and the transceiver is known as the “local bus.” Connections
between the transceiver and other memory or I/O devices is known as the “buffered bus.” A
fully buffered system does not have any devices attached to the local bus. A partially buffered
system has devices on both the local and buffered buses.

DEN drives the transceiver output enable directly in a fully buffered system. A partially
buffered system requires DEN to be qualified with another signal to prevent the transceiver
from going active for local bus accesses. Figure 3.33 illustrates how to use chip-selects to
qualify DEN.

DT/R always connects directly to the transceiver. However, an inverter may be required if the
polarity of DT/R does not match the transceiver. DT/R only goes low (0) for memory and I/O
read, instruction prefetch and interrupt acknowledge bus cycles.
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Figure 3.31. DEN and DT/R Timing Relationship
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Figure 3.32.V‘Buffered AD Bus System
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Figure 3.33. Qualifying DEN with Chip-Selects

3.6.2. = SOFTWARE SYNCHRONIZATION

The execution sequence of a program and hardware events occurring within a system are often
asynchronous to each other. In some systems there may be a requirement to suspend program
execution until an event (or events) occurs, and the program execution continues.

One way to synchronize software execution with hardware events requires the use of
interrupts. Executing a HALT instruction suspends program execution until an unmasked
interrupt occurs. However, there is a delay associated with servicing the interrupt before
program execution can once again proceed. Using the WAIT instruction removes the delay

- associated with servicing interrupts.

The WAIT instruction suspends program execution until one of two events occurs: an
interrupt is generated, or the TEST input pin is sampled low. Unlike interrupts, the TEST
input pin does not require program execution to be transferred to a new location (i.e., an
interrupt routine is not executed). In processing the WAIT instruction, as long as TEST
remains high program execution remains suspended (at least until an interrupt occurs). When
TEST is sampled low, program execution resumes.
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The TEST input and WAIT instruction provide a mechanism to delay program execution until
a hardware event occurs, without having to absorb the delay associated with servicing an
interrupt.

3.6.3. LOCKED BUS OPERATION

To address the problems of controlling accesses to shared resources, the BIU provides a
hardware LOCK output. The execution of a LOCK prefix instruction activates the LOCK
output.

LOCK goes active in phase 1 of T1 of the first bus cycle following execution of the LOCK
prefix instruction. It remains active until phase 1 of T1 of the first bus cycle following the
execution of the instruction following the LOCK prefix. To provide bus access control in
multiprocessor systems, the LOCK signal should be incorporated into the system bus
arbitration logic resident to the CPU.

During normal multiprocessor system operation, priority of the shared system bus is
determined by the arbitration circuits on a cycle by cycle basis. As each CPU requires a
transfer over the system bus, it requests access to the bus via its resident bus arbitration logic.
When the CPU gains priority (determined by -the system bus arbitration scheme and any
associated logic), it takes control of the bus, performs its bus cycle and either maintains bus
control, voluntarily releases the bus or is forced off the bus by the loss of priority.

The lock mechanism prevents the CPU from losing bus control (either voluntarily or by force)
and guarantees that the CPU can execute multiple bus cycles without intervention and possible
corruption of the data by another CPU. A classic use of the mechanism is the “TEST and SET
semaphore” during which a CPU must read from a shared memory location and return data to
the location without allowing another CPU to reference the same location durlng the test and
set operations.

Another application of LOCK for multiprocessor systems consists of a locked block move
which allows high speed message transfer from one CPU’s message buffer to another.

During the locked instruction (i.e., while LOCK is active), a bus hold, DMA or refresh request
are recorded but not acknowledged until completion of the locked instruction. However,
LOCK has no affect on interrupts. As an example, a locked HALT instruction causes bus hold,
DMA or refresh bus requests to be ignored, but still allows the CPU to exit the HALT state on
an interrupt.

In general, prefix bytes (like LOCK) are considered extensions of the instructions they
preceded. Interrupts, DMA requests and refresh requests that occur during execution of prefix
are not acknowledged until completion of the instruction following the prefix (except for
instructions which are servicing interrupts during their execution, (i.e., HALT, WAIT and
repeated string primitive). Note that multiple prefix bytes may precede an instruction.
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Another example is a “string primitive” preceded by the repetition prefix (REP) which is
interruptible after each execution of the string primitive, even if the REP prefix is combined
with the LOCK prefix. This prevents interrupts from being locked out during a block move or
other repeated string operations. However, bus hold, DMA and refresh requests remain locked
out until LOCK is removed (either by completing the block operation or after an interrupt
occurs).

3.6.4. QUEUE STATUS OPERATION

The queue status indicates what information is being removed from the internal queue and
when the queue is being reset due to a transfer of control (e.g., jump, interrupt, etc.). Since the
Execution Unit can remove information from the queue on any clock boundary, the queue
status pins can change state on every phase 1 clock edge (see Figure 3.34). The queue status
signals can not be related to any specific T-state, although for a given sequence of instructions
the relationship between the operation of the BIU and the sequence of queue status
information always remains the same.

cLKOUT ) ) N |
aso.0st Y S S

Figure 3.34. Queue Status Timing

The queue status signals QSO and QS1 become alternate functions of the ALE and WR
signals, respectively. To enable QS0 and QS1, the RD signal pin must be directly shorted to
ground. RD, WR and ALE are no longer available for use by the system and must be
generated by external hardware. A device like the 82C88 or a programmable logic device can
recreate the function of RD, WR and ALE. Table 3.7 shows the encoding of the QS0 and QS1
signals.

Table 3.7. Queue Status Bit Encoding

Qs1 Qs2 DEFINITION
0 0 No queue operation occurred
0 1 First byte of a new instruction has been taken from the queue.
1 0 The queue was reinitialized. Signals the flush of all prefetch information. BIU must

begin prefetching new queue information.

1 1 Subsequent byte of instruction taken from queue. The current instruction contains
multiple opcode bytes or immediate data.
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Queue status mode is required in older generation devices for the purposes of interfacing with
an 8087 Math Coprocessor. However, the 8087 Math Coprocessor has been replaced by the
80187 Math Coprocessor, which has an I/O port interface similar to a peripheral device. This
new interface no longer requires queue status mode. '

3.7. MULTI-MASTER BUS SYSTEM DESIGNS

The BIU supports protocols for transferring control of the local bus between itself and other
devices capable of acting as bus masters. To support such a protocol, the BIU uses a hold
request input (HOLD) and a hold acknowledge output (HLDA) as bus transfer handshake
- signals. To gain control of the bus, a device asserts the HOLD input, and then waits until the
HLDA output goes active before driving the bus. After HLDA has gone active, the requesting
device can take control of the local bus and remains in control of the bus until HOLD is
removed.

3.7.1. - ENTERING BUS HOLD

In responding to the hold request input, the BIU floats the entire address and data bus, and
many of the control signals. Table 3.8 lists the state of the BIU pins when HLDA is asserted.
Figure 3.35 illustrates the timing sequence when acknowledging the hold request. Of those
device pins not mentioned in Table 3.8 or shown in Figure 3.35, all other pins either remain
active (e.g., CLKOUT and T10UT) or remain in their inactive state (e.g., UCS and INTA).
Refer to the data sheet for specific details of pin functioning during a bus hold.

Table 3.8. Signal Condition Entering HOLD

 SIGNAL HOLD CONDITION
A19:16, S2:0, RD, WR, DT/R, BHE RFSH, DT/R, | These signals float one half clock before HLDA
LOCK is generated (i.e., phase 2).
AD15:0 (16-bit), AD7:0 (8-bit), A15:8 (8-bit), DEN These signals float the same clock HLDA is
‘ generated (i.e., phase 1).

3.7.1.1. HOLD BUS LATENCY

The duration of time between the assertion of HOLD by the external device and the assertion
of HLDA by the BIU is known as bus latency. In Figure 3.35, the two clock delay between
HOLD and HLDA represents the shortest bus latency. Normally this only occurs if the bus is
idle, halted or the bus hold request occurs just prior to the BIU beginning another bus cycle.
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CLKOUT q

HLDA
AD15:0 @\

SEN \ \5\ FLOAT
A19:16, \

15
®
/

HOLD Q)j) @ / Q
(

R_D, V—VR, BH_E, \> FLOAT
DT/R, S2:0
LOCK
NOTES:

1. Teus : HOLD input to clock low
2. TcHor : Clock high to output float
3. TcLor : Clock low to output float
4. ToLov : Clock low to HLDA high

Figure 3.35. Timing Sequence Entering HOLD

The major factors that influence bus latency are listed below (in order of longest delay to
shortest delay).

1.

Bus Not Ready — As long as the bus remains not ready a bus hold request can not be
serviced.

Locked Bus Cycle — As long as LOCK remains asserted a bus hold request can not be
serviced. Performing a locked move string operation can take several thousands of clocks.

Completion of Current Bus Cycle — A bus hold request is not serviced until the current
bus cycle completes. A bus hold request will not separate bus cycles required to move odd
aligned word data. Also, bus cycles with long wait states will delay the servicing of a bus
hold request.

Interrupt Acknowle'dge Bus Cycle — A bus hold request is not serviced until after an
INTA bus cycle has completed. An INTA bus cycle drives LOCK active.

DMA and Refresh Bus Cycles — A bus hold request is not serviced until after the DMA
request or refresh bus cycle has completed. Refresh bus cycles have a higher priority than
hold bus requests. A bus hold request can not separate the bus cycles associated with a
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DMA transfer (worst case is an odd aligned transfer, which takes four bus cycles to
complete). :

3.7.1.2. REFRESH OPERATION DURING A BUS HOLD

Under normal operating conditions, once HDLA has been asserted it remains asserted until
HOLD is removed. However, when a refresh bus request is generated, the HLDA output is
removed (driven low) to signal the need for the BIU to regain control of the local bus. The
BIU does not gain control of the bus until HOLD is removed. This procedure prevents the BIU
from just arbitrarily regaining control of the bus.

Figure 3.36 shows the timing associated with the occurrence of refresh request while HLDA is
active. Note that HLDA can be as short as one clock in duration. This happens when a refresh
request occurs just after HLDA is granted. A refresh request has higher priority than a bus
hold request, so when both occur simultaneously the refresh request occurs before HLDA
becomes active.

CLKOUT

HOLD

HLDA

AD15:0
DEN

A19:16 ,
RD, WR, BHE, !
DT/R, S2:0

NOTES:

HLDA deasserted, signaling need to run refresh bus cycle
External bus master terminates use of the bus.

HOLD deasserted.

HOLD may be reasserted after one clock.

BIU runs refresh bus cycle

R

Figure 3.36. Refresh Request During Bus Hold
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The device requesting a bus hold must be able to detect a one clock wide HLDA pulse. A bus
lockup (hang) condition may result because the requesting device did not detect the short
HLDA pulse and continues to wait for HLDA to be asserted, while the BIU waits for HOLD
to be deasserted. The circuit shown in Figure 3.37 can be used to latch HLDA.

+5

PRE
[_—D Q LATCHED HLDA
HLDA
CLR
RESOUT
HOLD

Figure 3.37. Latching HLDA

The removal of HOLD must be detected for at least one clock cycle to allow the BIU to regain
the bus and execute a refresh bus cycle. The BIU will release the bus and generate HLDA
~should HOLD go active prior to completing the refresh bus cycle.

3.7.2. EXITING HOLD

Figure 3.38 shows the timing associated with exiting the bus hold state. Normally a bus
operation (e.g., instruction prefetch) occurs just after HOLD is released. However, if no bus
cycle is pending when leaving a bus hold state, the bus and associated control signals remain
floating (except if Idle or Powerdown Modes are active, see Section 3.5.5).
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3.8. BUS CYCLE PRIORITIES

The BIU arbitrates requests for bus cycles from the Execution Unit, the integrated peripherals
(e.g., DMA Unit) and external bus masters (i.e., bus hold requests). The list below summarizes
the priority for all bus cycle requests (from highest to lowest).

L.

B AU SR

,_.
e

11.

Instruction execution reads or writes following a non-pipelined effective address
calculation. :

Refresh bus cycles.

Bus hold request.

Single step interrupt vectoring sequence.

Non-Maskable interrupt vectoring sequence.

Internal error (e.g., divide error, overflow) interrupt vectoring sequence.
Hardware (e.g., INTO, DMA) interrupt vectoring sequence.

80C187 Math Coprocessor error interrupt vectoring sequence.

DMA bus cycles.

General instruction execution. This category includes read and write operations
following a pipelined effective address calculation, vectoring sequences for software
interrupts and numerics:code execution. The following points apply to sequences of
related execution cycles:

e The second read/write cycle of an odd addressed word operation is inseparable
from the first bus cycle.

e The second read/write cycle of an instruction with both load and store accesses
(e.g., EXCHG) may be separated from the first cycle by other bus cycles.

e  Successive bus cycles of string instructions (e.g., MOVS) may be separated by
other bus cycles. ‘

e When a locked instruction begins, its associated bus cycles become the highest
priority and can not be separated (or preempted) until completed. -

Bus cycles necessary to fill the prefetch queue.
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CLKOUT

HOLD

HLDA
AD15:0

DEN

RD, WR, BHE,
DT/R, S2:0
A19:16

NOTES:

LaNB AN
/ 2@
\
-
1. Tous : HOLD recognition setup to clock low
2. : HOLD internally synchronized
3. To oy * Clock low to HLDA low
4. TCHOV : Clock high to signal active (high or low)
5. ’TCLOV : Clock low to signal active (high or low)

Figure 3.38. Exiting HOLD
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CHAPTER 4
PERIPHERAL CONTROL BLOCK

All integrated peripherals in the 80C186 Modular Core family are controlled by sets of
registers within an integrated Peripheral Control Block (PCB). These registers are physically
located in the peripheral devices they control, but they are addressed as a single block of
registers. The Peripheral Control Block encompasses 256 contiguous bytes. The control block
can be located on any 256 byte boundary of memory or I/O space. Table 4.1 shows a map of
these registers. Unused locations are reserved.

4.1. SETTING THE BASE LOCATION

The Peripheral Control Block contains the Peripheral Control Block Relocation Register, in
addition to control registers for each integrated peripheral device. The Relocation Register
allows the Peripheral Control Block to be relocated to any 256 byte boundary within memory
or I/O space, depending on the state of the Memory I/O (MEM) bit and R19:8. Figure 4.1
shows the layout of the Relocation Register.

The Relocation Register is located at a fixed offset within the Peripheral Control Block. If the
Peripheral Control Block is moved, the Relocation Register will also move.

The Peripheral Control Block Relocation Register contains the Escape Trap (ET) bit. When
set, this bit forces the processor to trap whenever an ESC (coprocessor) instruction is
encountered.

The Relocation Register contains the value OOFFH upon RESET. This means the Peripheral
Control Block will be located at the top of I/O space (OFFOOH to OFFFFH).

As an example, to relocate the Peripheral Control Block to the memory range 10000-100FFH,
the user would program the Relocation Register with the value 1100H. Since the Relocation
Register is part of the Peripheral Control Block, it relocates to word 10000H plus its fixed
offset.

All communication between integrated peripherals and the Modular CPU Core occurs over a
special bus called the F-Bus. The F-Bus always carries 16 bit data.
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Table 4.1. 80C186EC Peripheral Control Block

PCB Function PCB Function PCB Function PCB Function
Offset Offset Offset Offset
00H MPICPO 40H T2CNT 80H GCSO0ST COH DOSRCL
02H MPICP1 42H T2CMPA 82H GCSO0SP C2H DOSRCH
04H SPICPO 44H Reserved 84H GCS1ST C4H DODSTL
06H SPICP1 46H T2CON 86H GCS1SP C6H DODSTH
08H Reserved 48H P3DIR 88H GCS2ST C8H D1TC
0AH SCUIRL 4AH 'P3PIN 8AH GCS2SP CAH DOCON
0CH DMAIRL 4CH P3CON 8CH GCS3ST CCH DMAPRI
OEH TIMIRL 4EH P3LTCH 8EH GCS3SP CEH DMAHALT
10H Reserved 50H P1DIR 90H GCS4ST DOH D1SRCL
12H Reserved 52H P1PIN 92H GCS4SP D2H D1SRCH
14H Reserved 54H P1CON 94H GCS5ST D4H D1DSTL
16H Reserved 56H P1LTCH 96H GCS5SP D6H D1DSTH
18H Reserved 58H P2DIR 98H GCS6ST D8H D1TC
1AH Reserved 5AH P2PIN 9AH GCS6SP DAH D1CON
1CH Reserved 5CH P2CON 9CH GCS7ST DCH Reserved
1EH Reserved 5EH P2LTCH 9EH GCS7SP DEH Reserved
20H WDTRLDH 60H BOCMP AOH LCSST EOH D2SRCL
22H WDTRLDL 62H BOCNT A2H LCSSP E2H D2SRCH
24H WDTCNTH 64H SOCON A4H GCSST E4H D2DSTL
26H WDTCNTL 66H SOSTS A6H GCSSP E6H D2DSTH
28H WDTCLR 68H SORBUF A8H RELREG E8H D2TC
2AH WDTDIS 6AH SO0TBUF AAH Reserved EAH D2CON
2CH Reserved 6CH Reserved ACH Reserved ECH Reserved
2EH Reserved 6EH Reserved AEH Reserved EEH Reserved
30H TOCNT 70H B1CMP BOH RFBASE FOH D3SRCL
32H TOCMPA 72H B1CNT B2H RFTIM F2H D3SRCH
34H TOCMPB 74H S1CON B4H RFCON F4H D3DSTL
36H TOCON 76H S1STS B6H RFADDR F6H D3DSTH
38H T1CNT 78H . S1RBUF B8H PWRCON F8H D3TC
3AH T1CMPA 7AH S1TBUF BAH Reserved FAH D3CON
3CH T1CMPB 7CH Reserved BCH STEPID FCH Reserved
3EH . T1CON 7EH Reserved BEH PWRSAV FEH Reserved

4-2




intgl. PERIPHERAL CONTROL BLOCK

Whenever mapping the Peripheral Control Block to another location, the user should
program the Relocation Register with a byte write (i.e.,, OUT DX, AL). Accesses to the
Peripheral Control Block, like all integrated peripherals, are always done 16 bits at a time.
Internally, the Relocation Register is written with 16 bits of the AX register while externally
the Bus Interface Unit runs a single 8-bit bus cycle. If a word instruction is used with an
80C188 Modular Core family member (i.e., OUT DX, AX), the Relocation Register is written
on the first bus cycle. The Bus Interface Unit then runs an unnecessary second bus cycle. The
address of the second bus cycle will no longer be within the control block (the Peripheral
Control Block was moved on the first cycle). Generation of external READY is now needed to
complete the cycle. For this reason, we recommend byte operations for the Relocation
Register. Byte instructions should also be used for the other registers in the Peripheral Control
Block of an 80C188 Modular Core family member. This requires half of the bus cycles of
word operations. Byte operations are only valid for even addressed writes to the Peripheral
Control Block. A word read (i.e., IN AX, DX) must be performed to read a 16-bit Peripheral
Control Block register.

Register Name: PCB Relocation Register
Register Mnemonic: RELREG
Register Function: Relocates the PCB within memory or I/O space.
15 - 0
| | o] .
E 'R R/ R R|[R /R R R
T 1101 1,11 98
1 54 3|2 1 0] |
‘ [ R T N R 1
| 1 | Jo b
BIT RESET
MNEMONIC BIT NAME | STATE FUNCTION
ET Escape Trap 0 If set, the CPU will trap when an ESC
instruction is executed.
MEM Memory I/O 0 If set, the PCB is located in memory space. If
clear, the PCB is located in I/O space.
R19:8 PCB Base OFFH R19:8 define the upper address bits of the
Address PCB base address. All lower bits are zero.
Upper Bits R19:16 are ignored when the PCB is mapped
to 1/O space.

NOTE: Reserved register bits are shown with grey shading. Reserved register bits must be
written with a logic zero value to maintain compatibility with future Intel products.

Figure 4.1. PCB Relocation Register

43



intgl. PERIPHERAL CONTROL BLOCK

4.2. PERIPHERAL CONTROL BLOCK REGISTERS

Each of the integrated peripherals’ control and status registers is located at a fixed offset above
the programmed base location of the Peripheral Control Block. Many locations within the
Peripheral Control lock are not assigned to any peripheral. If a write is made to these
locations, a bus cycle will occur, but data will not be stored. If a subsequent read is made to
the same location, the value written will not be read back. Unused Peripheral Control Block
locations are reserved.

The processor will run an external bus cycle for any memory or I/O cycle accessing a location
within the Peripheral Control Block. Address, data and control information will be driven on
the external pins as with an ordinary bus cycle. Information returned by an external device will
be ignored, even if the access does not correspond to the location of an integrated peripheral
control register. This is also true for the 80C188 Modular Core family, except word accesses
made to integrated registers will be performed in two bus cycles.

The processor generates an internal READY signal whenever an integrated peripheral is
accessed. External READY is ignored. READY will also be generated if an access is made to
the Peripheral Control Block not corresponding to an integrated peripheral control register.
The processor will not insert wait states for any access to the integrated Peripheral Control
Block. The exceptions to this are accesses to timer registers. Accesses to timer control and
counting registers insert one wait state. This is required to properly multiplex processor and
counter element accesses to the timer control registers.

The F-Bus does not function identically to the external data bus for byte and word accesses.
All write transfers on the F-Bus occur as words, regardless of how they are encoded. For
example, the instruction OUT DX, AL (DX is even) will write the entire AX register to the
Peripheral Control Block register at location [DX]. If DX were an odd location, AL would be
placed in [DX] and AH would be placed at [DX-1]. A word operation to an odd address would
write [DX] and [DX-1] with AL and AH, respectively. This differs from normal external bus
operation where unaligned word writes cause the modification of [DX] and [DX+1]. In
summary, do not use odd aligned byte or word writes to the PCB.

Aligned word reads work normally. Unaligned word reads do not work normally. For
example, IN AX, DX (DX is odd) will transfer [DX] into AL and [DX-1] into AH. Byte reads
from even or odd addresses work normally, but only a byte will be read. For example, IN AL,
DX will not transfer [DX] into AX (only AL is modified).
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No problems will arise if the following recommendations are adhered to. For the 80C186
Modular Core:

Word reads: Access only even aligned words with IN AX, DX or MOV <word
register>, <even PCB address>.

Byte reads: Work normally. Beware of reading word-wide PCB registers that may
change value between successive reads (i.e. timer count value).

Word writes: Always write even aligned words. Writing an odd aligned word will
give unexpected results. Use either OUT DX, AX or OUT DX, AL (or MOV. <even
PCB address>, <word register>).

Byte writes: Do not perform unaligned byte writes. Even aligned byte writes will
modify the entire word PCB location.

For the 80C188 Modular Core:

Word reads: Access only even aligned words with IN AX, DX or MOV <word
register>, <even PCB address>.

Byte reads: Work normally. Beware of reading word-wide PCB registers that may
change value between successive reads (i.e. timer count value).

Word writes: Always write even aligned words. Writing an odd aligned word will
give unexpected results. Use OUT DX, AL or MOV <even aligned byte PCB
address>, <byte register low byte> Using OUT DX, AX will perform an unnecessary
bus cycle.

Byte writes: Do not perform unaligned byte writes. Even aligned byte writes will
modify the entire word PCB location.

4.3. RESERVED LOCATIONS AND THE NUMERICS INTERFACE

Locations within the Peripheral Control Block not explicitly used are reserved. Reading from
these locations yields an undefined result. If reserved registers are written, for example during
a block MOV instruction, they must be set to OH. Failure to follow this guideline could
result in incompatibilities with future 80C186 Modular Core family products.

Systems using the 80C187 Numeric Processor Extension must not relocate the Peripheral
Control Block to location OH in I/O space. The 80C187 interface uses I/O locations OF8H
through OFFH. If the Peripheral Control Block were relocated here, the processor would be
communicating with the Peripheral Control Block, not the 80C187 interface circuitry. This
will cause indeterminate system operation if a numerics instruction is encountered when the
Escape Trap bit is clear.
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CHAPTER 5
CLOCK GENERATION AND POWER MANAGEMENT

The clock generation and distribution circuits provide uniform clock signals for the Execution
Unit, the Bus Interface Unit and all integrated peripherals. 80C186 Modular Core Family
processors have additional logic which controls the clock signals to provide power
management functions.

5.1. CLOCK GENERATION

The clock generation circuit includes a crystal oscillator, a divide-by-two counter and power-
save and reset circuitry (see Figure 5.1). Section 5.2.4 describes Power-Save Mode as a power
management option.

* POWERDOWN
SCHMITT TRIGGER
*SQUARES-UP" CLKIN —<IDLE
| POWERSAVE
e .2 [ cLock PD ouage [P0 | INTERNAL
CLOCK _D|V|DER DDRWERS > 02 (P)l:ggis
10
> CLkouT
0SCOUT
YY
RESET CIRCUITRY ——>:L“ETSE:TNAL
RESIN

Figure 5.1. Clock Generator

5.1.1. CRYSTAL OSCILLATOR

The internal oscillator is a parallel resonant Pierce oscillator, a specific form of the common
phase shift oscillator.
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5.1.1.1. OSCILLATOR OPERATION

A phase shift oscillator operates through positive feedback, where a non-inverted, amplified
version of the input connects back to the input. A 360 degree phase shift around the loop will
sustain the feedback in the oscillator. The on-chip inverter provides a 180 degree phase shift.
The combination of the inverter’s output impedance and the first load capacitor (see Figure
5.2) provides another 90 degree phase shift. At resonance, the crystal becomes primarily
resistive. The combination of the crystal and the second load capacitor provides the final 90
degree phase shift. Above and below resonance the crystal is reactive and forces the oscillator
back toward the crystal’s nominal frequency.

Lo = INVERTER OUTPUT 7

90° 90° 180°

NOTE: At resonance, the crystal is essential resistive.
Above resonance, the crystal is inductive.
Below resonance, the crystal is capacitive.

Figure 5.2. Ideal Operation of Pierce Oscillator

Figure 5.3 shows the actual microprocessor crystal connections. For low frequencies, crystal
vendors offer fundamental mode crystals. At higher frequencies, a third overtone crystal is the
only choice. The external capacitors, Cx; at CLKIN and Cx, at OSCOUT, together with stray
capacitance, form-the load. A third overtone crystal requires an additional inductor L, and
capacitor C; to select the third overtone frequency and reject the fundamental frequency.
Section 5.1.1.2 discusses crystal vibration modes in more detail.

Choose C; and L; component values in the third overtone crystal circuit to satisfy the
following conditions: o

e The LC components form an equivalent series resonant circuit at a frequency below the
fundamental frequency. This criteria makes the circuit inductive at the fundamental
frequency. The inductive circuit cannot make the 90 degree phase shift and oscillations do
not take place.

e The LC components form an equivalent parallel resonant circuit at a frequency about
halfway between the fundamental frequency and the third overtone frequency. This
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criteria makes the circuit capacitive at the third overtone frequency, necessary for
oscillation.

e The two capacitors and inductor at OSCOUT, plus some stray capacitance, approximately
equal the 20 pF load capacitor, Cx, used alone in the fundamental mode circuit.

@) (b) ()
Fundamental Third Overtone Third Overtone
Mode Circuit Mode Circuit Mode

(Equivalent Circuit)
CLKIN CLKIN
C2r— U+,

[ gcm S
0SCOUT D{ 0SCOUT § :
c 1

v Ty
L L ,
voT
C 4Gy =20FF :

X2
Cy =200pF

Ly =(SeeTex)

Figure 5.3. Crystal Connections to Microprocessor

Choosing C, as 200 pF (at least 10X the load capacitor) simplifies the circuit analysis. At the
series resonance, the capacitance connected to L; is 200 pF in series with 20 pF. The
equivalent capacitance is still about 20 pF and the equation in Figure 5.4(a) yields the series
resonant frequency.

\ :
1 07 Cy Cxpl4- Cy- Cxo
L — Ceq =

2t’VL C 0°C L -1

(a) Series or Parallel (b) Equivalent Capacitance
Resonant Frequency

Figure 5.4. Equations for Crystal Calculations

To examine the parallel resonant frequency, refer to Figure 5.3(c), an equivalent circuit to
Figure 5.3(b). The capacitance connected to L; is 200 pF in parallel with 20 pF. The
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Choosing C; as 200 pF (at least 10X the load capacitor) simpliﬁes the circuit analysis. At the
series resonance, the capac1tance connected to L; is 200 pF in series with 20 pF. The
equivalent capacitance is still about 20 pF and the equatlon in Figure 5.4(a) yields the series
resonant frequency.

To examine the parallel resonant frequency, refer to Figure 5.3(c), an equivalent circuit to
Figure 5.3(b). The capacitance connected to L, is 200 pF in parallel with 20 pF. The
equivalent capacitance is. still about 200 pF (within 10 percent) and the equation in Figure
5.4(a) now yields the parallel resonant frequency.

The equation in Figure 5.4(b) yields the equivalent capacitance C,, at the operation frequency.
The desired operation frequency is the third overtone frequency marked on the crystal.
Optimizing equations for the above three criteria yields Table 5.1. This table shows suggested
standard inductor values for various processor frequencies. The equivalent capacitance is
about 15 pF.

Table 5.1. Suggested Values for Inductor L,
in Third Overtone Oscillator Circuit

feLkour f3or. L,
- (MHz) (MHz) (uH)
10 © 20 10.0, 12.0, 15.0
12.5 25 6.8,8.2,10.0
16 .32 3.9,47,5.6
.20 | 40 22,27,33

5.1.1.2 SELECTING CRYSTALS
When specifying crystals, consider these parameters:

e Resonance and Load Capacitance — Crystals carry a parallel or series resonance
specification. The two types do not differ in construction, just in test conditions and
expected circuit application. Parallel resonant crystals carry a test load specification, with
typical load capacitance values of 15, 18 or 22 pF. Series resonant crystals do not carry a
load capacitance specification. You may use a series resonant crystal with the

microprocessor even though the circuit is parallel resonant. However, it will vibrate at a

frequency slightly (on the order of 0.1%) higher than its calibration frequency.

e Vibration Mode — The vibration mode is either fundamental or third overtone. Crystal
thickness varies inversely with frequency. Vendors furnish third or higher overtone
crystals to avoid manufacturing very- thin, fragile quartz crystal elements. At a given
frequency, an overtone crystal is thicker and ‘more rugged than its fundamental mode
counterpart. Below 20 MHz, most crystals are fundamental mode. In the 20 to 32 MHz
range, you can purchase both modes. Above 32 MHz, vendors usually offer a third
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overtone component. You must know the vibrational mode to know whether to add the
LC circuit at OSCOUT.

e Equivalent Series Resistance (ESR) — ESR is proportional to crystal thickness, inversely
propomonal to frequency A lower value gives a faster startup time, but the speaﬁcatlon
is usually not important in microprocessor applications.

e  Shunt Capacitance — A lower value reduces ESR, but typical values such aé 7 pF will
work fine.

e Drive Level — Specifies the maximum power dissipation for which the manufacturer
calibrated the crystal. It is proportional to ESR, frequency, load and Vcc. Disregard this
specification unless you use a third overtone crystal, whose ESR and frequency will be
relatively high. Several crystal manufacturers stock a standard microprocessor crystal line.
Specifying a “microprocessor grade” crystal should ensure the rated drive level is a
couple of milliwatts with 5-Volt operation.

e Temperature Range — Specifies an operating range over which the frequency will not
vary beyond a stated limit. Specify the temperature range to match the microprocessor
temperature range.

e Tolerance — The allowable frequency deviation at a particular calibration temperature,
usually 25 degrees C. Quartz crystals are more accurate than microprocessor applications
call for; do not pay for a tighter specification than you need. Vendors quote frequency
tolerance in percent or parts per million (ppm). Standard microprocessor crystals typically
have a frequency tolerance of 0.01% (100 ppm). If you use these crystals, you can usually
disregard all the other specifications; these crystals are ideal for the 80C186 Modular Core
family.

An important consideration when using crystals is that the oscillator start correctly over the
voltage and temperature ranges expected in operation. Observe oscillator startup in the
laboratory. Varying the load capacitors (within about + 50 percent) can optimize startup
characteristics versus stability. In your experiments, consider stray capacitance and scope
loading effects.

For help in selecting external oscillator components for unusual circumstances, count on the
crystal manufacturer as your best resource. Using low cost ceramic resonators in place of
crystals is possible if your application will tolerate less precise frequencies.

5.1.2. USING AN EXTERNAL OSCILLATOR

The microprocessor’s on-board clock oscillator allows the use of a relatively low cost crystal.
However, the designer may also use a “canned oscillator” or other external frequency source.
Connect the external frequency input (EFI) signal directly to the oscillator CLKIN input.
Leave OSCOUT unconnected. This oscillator input drives the internal divide-by-two counter
directly, generating the CPU clock signals. The external frequency input can have practically
any duty cycle, provided it meets the minimum high and low times as stated in the data sheet.
Selecting an external clock oscillator is more straightforward than selecting a crystal.
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5.1.3. OUTPUT FROM THE CLOCK GENERATOR

The crystal oscillator output drives a divide-by-two circuit, generating a 50 percent duty cycle
clock for the processor’s integrated components. All processor timings refer to this clock,
available externally at the CLKOUT pin. CLKOUT changes state on the high-to-low transition
of the CLKIN signal, even during reset and bus hold. CLKOUT is also available during Idle
Mode but not during Powerdown Mode (see Sections 5.2.2 and 5.2.3).

In a CMOS circuit, significant current only flows during logic level transitions. Since the
microprocessor consists mostly of clocked circuitry, the clock distribution is the basis of
power management.

5.1.4. RESET AND CLOCK SYNCHRONIZATION

The clock generator provides a system reset signal (RESOUT). The RESIN input generates
RESOUT and the clock generator synchronizes it to the CLKOUT signal.

A Schmitt trigger in the RESIN input ensures that the switch point for a low-to-high transition
is greater than the switch point for a high-to-low transition. The processor must remain in reset
a minimum of four CLKOUT cycles after Vcc and CLKOUT stabilize. The hysteresis allows a
simple RC circuit to drive the RESIN input (see Figure 5.5). Typical applications can use
about 100 ms. as an RC time constant.

Reset may be either cold (power-up) or warm. Figure 5.6 illustrates a cold reset. Assert the
RESIN input during power supply and oscillator startup. The processor’s pins assume their
reset pin states a maximum of 28 CLKIN periods after CLKIN and Vcc stabilize. Assert
RESIN four additional CLKIN periods after the device pins assume their reset states. '

ie
vV .=V (1-e )
100K TYP. c(t)

RESET IN d RESIN

——< 1HFTYP.

+

Figure 5.5. Simple RC Circuit for Powerup Reset
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Applying RESIN when the device is running constitutes a warm reset (see Figure 5.7). In this
case, assert RESIN at least 4 CLKOUT periods. The device pins will assume their reset states
on the second falling CLKIN edge following the assertion of RESIN.
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NOTE:
CLKOUT synchronization occurs approximately
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Figure 5.6. Cold Reset Waveform
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The falling RESIN edge generates an internal RESYNC pulse (Figure 5.8) resynchronizing
the divide-by-two internal phase clock. The clock generator samples RESIN on the falling
CLKIN edge. If RESIN is sampled high while CLKOUT is high, the processor forces
CLKOUT high for the next two CLKIN cycles. The clock essentially “skips a beat” to
synchronize the internal phases. If RESIN is sampled high while CLKOUT is low, CLKOUT
is already in phase.
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Figure 5.7. Warm Reset Waveform
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At the second falling CLKOUT edge after sampling RESIN inactive, the processor deasserts
RESOUT. Bus activity starts 6-1/2 CLKOUT periods after recognition of RESIN in the logic
high state. If an alternate bus master asserts HOLD during RESET, the processor will
immediately assert HLDA and will not prefetch instructions.

CLKIN

-RESIN

RESYNC
(INTERNAL)

CLKOUT

RESOUT

NOTES: 1. Setup of RESIN to falling CLKIN.
2. RESYNC pulse generated.
3. RESYNC pulse drives CLKOUT high, resynchronizing the clock generator.
4. RESOUT goes active.
5. RESIN allowed to go inactive after minimum 4 CLKOUT cycles.
6. RESOUT goes inactive 1-1/2 CLKOUT cycles after RESIN sampled inactive.

Figure 5.8. Clock Synchronization at Reset

5.2. POWER MANAGEMENT

Many VLSI devices available today use dynamic circuitry. A dynamic circuit uses a capacitor
(usually parasitic gate or diffusion capacitance) to store information. The stored charge decays
over time due to leakage currents in the silicon. If the device does not use the stored
information before it decays, the state of the entire device may be lost. Circuits must
periodically refresh ' dynamic RAMs, for example, to ensure data retention. Any
microprocessor which has a minimum clock frequency has dynamic logic. On a dynamic
microprocessor, if you stop or slow the clock, the dynamic nodes within it begin discharging.
With a long enough delay, the processor is likely to lose its present state, needing reset to
resume normal operation.

An 80C186 Modular Core microprocessor is fully static. The CPU stores its current state in
flip-flops, not capacitive nodes. The clock signal to both the CPU core and the peripherals can
stop without losing any internal information, provided the design maintains power. When the
clock restarts, the device will execute from its previous state. When the processor is inactive
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for significant periods, special power management hardware takes advantage of static
operation to achieve major power savings.

5.2.1. OPERATIONAL MODES

There are three' power management modes: Idle, Powerdown and Power-Save. Power-Save
Mode is a clock generation function, while Idle and Powerdown Modes are clock distribution
functions. For this discussion, Active Mode is the condition of no programmed power
management. Active Mode operation feeds the clock signal to the CPU core and all the
integrated peripherals and power consumption reaches its maximum for the application. The
processor defaults to Active Mode at reset. ’

5.2.2. IDLE MODE

During Idle Mode operation the clock signal is routed only to the integrated peripheral -
devices. CLKOUT continues toggling. The clocks to the CPU core (Execution and Bus
Interface Units) freeze in a logic low state. Idle Mode reduces current consumption about a
third, depending on the activity in the peripheral units.

5.2.2.1. ENTERING IDLE MODE

Setting the appropriate bit in the Power Control Register prepares for Idle Mode (see Figure
5.9). The processor enters Idle Mode when it executes the HLT (halt) instruction. If the
program arms both Idle Mode and Powerdown Mode by mistake, the device halts but remains
in Active Mode. See Bus Interface Unit for detailed information on HLT bus cycles. Figure
5.10 shows some internal and external waveforms during entry into Idle Mode.

5.2.2.2. BUS OPERATION DURING IDLE MODE

DMA requests, refresh requests and HOLD requesté temporarily turn on the core clocks.

If the processor needs to run a DMA cycle during Idle Mode, the internal core clock begins to
toggle on the falling CLKOUT edge three- clocks after the processor samples the DMA request
pin. After one idle T-state, the processor runs the DMA cycle. The BIU uses the ready, wait
state generation and chip-select circuitry as necessary for DMA cycles during Idle Mode.
There is one idle T-state after T, before the internal core clock shuts off again.

If the processor needs to run a refresh cycle during Idle Mode, the internal core clock begins to
toggle on the falling CLKOUT edge immediately after the down-counter reaches zero. After
one idle T-state, the processor runs the refresh cycle. As with all other bus cycles, the BIU
uses the ready, wait state generation and chip-select circuitry as necessary for refresh cycles
during Idle'Mode. There is one idle T-state after T, before the internal core clock shuts off
again.

A HOLD request from an external bus master turns on the core clock as long as HOLD is
active (see Figure 5.11). The core clock restarts one CLKOUT cycle after the bus processor
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samples HOLD high. The microprocessor asserts HLDA one cycle after the core clock starts.
The core clock turns off and the processor deasserts HLDA one cycle after the external bus
master deasserts HOLD.

As in Active Mode, refresh requests will force the BIU to drop HLDA during bus hold.
Section 7.8 contains more information on refresh cycles during hold. Refresh requests will
also correctly break into sequences of back-to-back DMA cycles.

5.2.2.3. LEAVING IDLE MODE

Any unmasked interrupt or non-maskable interrupt (NMI) will return the processor to Active
“ Mode. Reset also returns the processor to Active Mode, but the device loses its prior state.

Any unmasked interrupt received by the core will return the processor to Active Mode. For an
external interrupt, the core clock begins toggling seven clocks after the processor recognizes
the asserted input. Interrupt Control Unit priority and mask checking requires these seven
clocks. Six CLKOUT cycles later, the core begins the interrupt vectoring sequence (including
INTA cycles if appropriate).

Register Name: Power Control Register
Register Mnemonic: PWRCON
Register Function: Arms power management functions.

BIT RESET
MNEMONIC BIT NAME | STATE FUNCTION
IDLE Idle Mode 0 Setting the IDLE bit forces the CPU to enter the

Idle mode when the HLT instruction is executed.
The PWRDN bit must be cleared when setting
the IDLE bit, otherwise Idle mode is not armed.

PWRDN Powerdown 0 Setting the PWRDN bit forces the CPU to enter
Mode the Powerdown mode when the next HLT
instruction is executed. The IDLE bit must be
cleared when setting the PWRDN bit, otherwise
Powerdown mode is not armed.

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written to
a logic zero to insure compatibility with future Intel products.

Figure 5.9. Power Control Register
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Figure 5.10. Entering Idle Mode
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Figure 5.11. HOLD/HLDA During Idle Mode

After execution of the IRET (interrupt return) instruction in the interrupt service routine, the
CS:IP will point to the instruction following the HALT. Interrupt execution does not modify
the Power Control Register. Unless the programmer intentionally reprograms the register after
exiting Idle Mode the processor will re-enter Idle Mode at the next HLT instruction.
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Like an unmasked interrupt, an NMI returns the core to Active Mode from Idle Mode. It takes
two CLKOUT cycles to restart the core clock after an NMI occurs. The NMI signal does not
need the mask and priority checks that a maskable interrupt does. This results in the five clock
cycle difference in clock restart time between an NMI and an unmasked interrupt.

The core begins the interrupt response six cycles after the core clock re-starts when it fetches
the NMI vector from location 00008H. NMI does not clear the IDLE bit in the Power Control
Register.

Resetting the microprocessor will return the device to Active Mode. Reset clears the Power
Control Register, unlike the interrupt case. Execution beglns as it would following a warm
reset (see Section 5.1.4).

5.2.2.4. EXAMPLE IDLE MODE INITIALIZATION CODE

Example 5.1 illustrates programming the Power Control Register and entering Idle Mode upon
HLT. The interrupts from the serial port and timers are not masked. Assume that the serial port
connects to a keyboard controller. At every keystroke, the keyboard sends a data byte and the
processor wakes up to service the interrupt. After acting on the keystroke, the core will go
back into Idle Mode. The example excludes the actual keystroke processing.

smodl86
name example_80C186_power_management_code

;FUNCTION: This function reduces CPU power consumption.

;  SYNTAX: extern void far power_mgt (int mode) ;

;  INPUTS: mode - 00 -> Active Mode

; 01 -> Powerdown Mode

; 02 -> Idle Mode

; 03 -> Active Mode

; OUTPUTS: None

; NOTE: Parameters are passed on the stack as required
; by high-level languages

PWRCON equ XXXXH - ;substitute PWRCON register
;offset

1ib_80C186 segment public 'code'
assume cs:11b_80C186

public _power_mgt

Example 5.1. Idle or Powerdown Mode Initialization Code

5-13




Inte|® CLOCK GENERATION AND POWER MANAGEMENT

_power_mgt proc far

push bp ;save caller's bp

mov bp, sp ;get current top of stack

push ax ;Save registers that will

push dx ;be modified :
_mode ' equ word ptr[bp+6] ;get parameter off the

- ;stack ’

mov dx, PWRCON ;select Power Control Reg

mov ax, _mode ;get mode

and ax, 3 ;mask off unwanted bits

out dx, ax

hlt ;enter mode

pop ax ;restore saved registers

pop ax

pop bp ;restore caller's bp

ret

_power_mgt endp

1ib_80C186 ends
end

Example 5.1. Idle or Powerdown Mode Initialization Codé (Cor{tinued)

5.2.3. POWERDOWN MODE

Powerdown Mode freezes the clock to the entire device (core and peripherals) and disables the
crystal oscillator. All internal devices (registers, state machines, etc.) maintain their state as
long as V. is applied. The BIU will not honor DMA, DRAM refresh and HOLD requests in
Powerdown Mode because the clocks for those functions are off. CLKOUT freezes in a logic
high state. Current consumption in Powerdown Mode consists of just transistor leakage
(typically less than 100 microamps).

5.2.3.1. ENTERING POWERDOWN MODE

Powerdown Mode is entered by executing the HLT instruction after setting the PWRDN bit in

the Power Control Register. The HLT cycle turns off both the core and peripheral clocks and -

disables the crystal oscillator. See Chapter 3 for detailed information on HLT bus cycles.

Figure 5.12 shows the internal and external waveforms during entry into Powerdown Mode.
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During the T, phase of the HLT instruction, the core generates a signal called
ENTER_POWERDOWN. ENTER_POWERDOWN immediately disables the internal CPU
core and peripheral clocks. The processor disables the oscillator inverter during the next
CLKOUT cycle. If the design uses a crystal oscillator, the oscillator stops immediately. When
CLKIN originates from an external frequency input (EFI), Powerdown isolates the signal on
the CLKIN pin from the internal circuitry. Therefore, the circuit may drive CLKIN during
- Powerdown Mode although it will not clock the device. ‘

HALT CYCLE

TaorTL P T T2 T . TOGGLES
: AN EXTERNAL
CLKIN . . . . ! FREQUENCY INPUT
g : ; : S i ISUSED
oscout l [ t"."."f'.‘."."f".‘.'?

CPU CORE CLOCK : |_] l_ ; ;

‘CLKOUT

:

INTERNAL
PERIPHERAL CLOCK

s

20 Lot

ALE

;

Figure 5.12. Entering Powerdown Mode

5.2.3.2. LEAVING POWERDOWN MODE

An NMI or reset returns the processor to Active Mode.

If the device leaves Powerdown Mode via NMI, a delay must follow the NMI request to allow
the crystal oscillator to stabilize before gating it to the internal phase clocks. An external
timing pin sets this delay as described below. Leaving Powerdown via an NMI does not clear
the PWRDN bit in the Power Control Register.

A reset also takes the processor out of Powerdown Mode. Since the oscillator is off, the user
should follow the oscillator cold start guidelines (see Section 5.1.4).

5-15



intel. CLOCK GENERATION AND POWER MANAGEMENT

The Powerdown timer circuit has a PDTMR pin (see Figure 5.13). Connecting this pin to an
external capacitor gives the user control over the gating of the crystal oscillator to the internal
clocks. The strong P-channel device is always on except during exit from Powerdown Mode.
This pullup keeps the powerdown capacitor C,, charged up to Vcc. When the processor
detects NMI, the weak N-channel device turns on and the P-channel device turns off. C,
discharges slowly. At the same time, the circuit turns on the feedback inverter on the crystal
oscillator and oscillation starts.

The Schmitt trigger connected to the PDTMR pin asserts the internal OSC_OK signal when
the voltage at the pin drops below its switching threshold. The OSC_OK signal gates the
crystal oscillator output to the internal clock circuitry. One CLKOUT cycle runs before the
internal clocks turn back on. It takes two additional CLKOUT cycles before an NMI request
reaches the CPU, with the vector fetched another six clocks later.

‘ STRONG })o__ 0, EXCEPT WHEN
P-CHANNEL PULLUP LEAVING POWERDOWN

PDTMR
; ’ N = Olb) 0SC_OK

c_ = ,
PD I WEAK N-CHANNEL
1 PULLDOWN EXIT_POWERDOWN

Figure 5.13. Powerdown Timer Circuit

The first step in determining the proper Cpp value is startup time characterization for crystal
oscillator circuit. This step can be done with a storage oscilloscope if you compensate for
scope probe loading effects. Characterize startup over the full range of operating voltages and
temperatures. The oscillator starts up on the order of a couple of milliseconds. After
determining the oscillator startup time, refer to “PDTMR Pin Delay Calculation” in the data
sheet. Multiply the startup time (in seconds) by the given constant to get the Cpp value. Typical
values are less than 1puF.

If the design uses an external oscillator instead of a crystal, the external oscillator continues

- running during Powerdown Mode. Leave the PDTMR pin unconnected and the processor can
exit Powerdown Mode immediately.
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5.2.4. POWER-SAVE MODE

In addition to Idle and Powerdown Modes, this microprocessor offers Power-Save Mode as
another means to reduce operating current. Power-Save Mode enables a programmable clock
divider in the clock generation circuit. This divider operates in addition to the divide-by-two
counter mentioned in Section 5.1.

Register Name: Power Save Register .
E:g:::g: y::::‘t‘igw:cz Ex\zlaﬁié\;nd sets clock division factor.
15 0
P
1 s
BIT RESET
MNEMONIC | BITNAME | STATE FUNCTION
PSEN Power Save 0 Setting this bit enables Power Save Mode and
Enable divides the internal operating clock by the value

defined by F1:0. This bit is cleared to disable
Power-Save mode and force the CPU to operate
at full speed. PSEN is automatically cleared
whenever an interrupt occurs.

F1:

o

Clock Division OH These bits control the division factor used when
Factor Power Save mode is enabled. The allowable
values are listed below:

" F1___FO Divisor

0 0 By 1
0 1 By 4
1 0 By 8
1 1 By 16

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written to
a logic zero to insure compatibility with future Intel products.

Figure 5.14. Power-Save Register
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Possible clock divisor settings are 1, 4, 8 and 16 (1 has no effect). The divided frequency feeds
the core, the integrated peripherals and CLKOUT. The processor operates at the divided clock
rate exactly as if the crystal or external oscillator frequency were lower by the same amount.

The advantage of Power-Save Mode over Idle and Powerdown Modes is that operation of both
the core and the integrated peripherals can continue. However, it may be necessary to
reprogram units such as the Timer Counter Unit and the Refresh Control Unit to compensate
for the overall reduced clock rate.

5.2.4.1. ENTERING POWER-SAVE MODE

The Power-Save Register (see Figure 5.14) controls Power-Save Mode operation. The lower
two bits select the divisor. When program execution sets the PSEN bit, the processor enters
Power-Save Mode. The internal clock frequency changes at the falling edge of T, of the write
to the Power-Save Register. CLKOUT changes simultaneously and does not glitch. Figure
5.15 illustrates the change at CLKOUT.

T2 T3 T4

CLKOUT ;

®
wo\@ /

NOTES: 1. Write to Power-Save Register (as viewed on the bus).
2. Low-going edge of T3 starts new clock rate.

Figure 5.15. Power-Save Clock Transition

5.2.4.2. LEAVING POWER-SAVE MODE

Power-Save Mode continues until one of three events: execution clears the PSEN bit in the
Power-Save Register, an unmasked interrupt occurs or an NMI occurs.

When the PSEN bit clears, the clock returns to its undivided frequency (standard divide-by-

two) at the falling T; edge of the write to the Power-Save Register. The same result happens
from reprogramming the clock divisor to a new value. The Power-Save Register can be read or
written at any time.

Unmasked interrupts include those from the Interrupt Control Unit but not software interrupts.
If an NMI occurs, or an unmasked interrupt request has sufficient priority to pass to the core,
Power-Save Mode will end. The PSEN bit clears and the clock resumes full speed operation at
the falling edge of a bus cycle T; state. However, the exact bus cycle of the transition is
undefined. The Return from Interrupt instruction (IRET) does not automatically set the PSEN
bit again. If you still want Power-Save Mode operation, you can set the PSEN bit as part of the
interrupt service routine. ‘ '
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5.2.4.3. EXAMPLE POWER-SAVE INITIALIZATION CODE

Example 5.2 illustrates programming the Power-Save Unit for a typical system. The program
also includes code to change the DRAM refresh rate to compensate for the reduced clock rate.

5.2.5. IMPLEMENTING A POWER MANAGEMENT SCHEME

Table 5.2 summarizes the power management options available to the user. With three ways
available to reduce power, here are some guidelines:

e Powerdown Mode reduces power consumption by several orders of magnitude. If the
application goes in and out of Powerdown frequently, the power reduction can probably
offset the relatively long intervals spent leaving Powerdown Mode.

e If background CPU tasks are usually necessary and the overhead of reprogramming
peripherals is not severe, Power-Save Mode can “tune” the clock rate to the best value.
Remember that current varies linearly with respect to frequency.

e Idle Mode fits DMA-intensive and interrupt-intensive (as opposed to CPU-intensive)
applications perfectly.

Table 5.2. Summary of Power Management Modes

RELATIVE TYPICAL USER CHIEF
MODE POWER POWER OVERHEAD ADVANTAGE

Active Full 250 mW Full Speed
@ 16 MHz Operation
Idle Low 175 mW Low Peripherals
@ 16 MHz Unaffected

Power-Save Adjustable 125 mW Moderate to Code Execution
@ 16/2 MHz High Continues

Powerdown Lowest 250 uW Low to Moderate | Long Battery Life

The processor can operate in Power-Save Mode and Idle Mode concurrently. With Idle Mode
alone, rated power consumption typically drops a third or more. Power-Save Mode multiplies
that reduction further according to the selected clock divisor.

Overall power consumption has two parts: switching power dissipated by driving loads such
as the address/data bus and device power dissipated internally by the microprocessor whether
or not connected to external devices. A power management scheme should consider loadlng as
well as the raw specifications in the processor’s data sheet.
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Smodl186
name

; FUNCTION:
i

;  SYNTAX:
; INPUTS:

; OUTPUTS:
; NOTE:
PWRSAV
RFTIME
Register

RFCON
PSEN

data
FreqgTable
data

1ib_80C186

_power_save

_divisor

example_PSU_code

This function reduces CPU power consumption

by dividing the CPU operating frequency by a
divisor.

extern void far power_save (int divisor);
divisor - This variable represents F0 and F1 of
PWRSAV.

None

Parameters are passed on the stack as required
by high-level languages

;substitute register offset

equ XxxxXH : ; Power-Save Register

equ XXXXH ;Refresh Interval Count
equ  xxxxH ;Refresh Control Register
equ 8000H ; Power-Save enable bit

segment public 'data’
dw 1, 4, 8, 16
ends

segment public 'code'
assume cs:11b_80C186, ds:data

public _power_save

proc far

push bp . ;save caller's bp

mov bp, sp ;get current top of stack

push ax ;save registers that will

push bx ;be modified

push dx

equ word ptr[bp+6] ;get parameter off the
;stack

mov dx, RFCON ;get current DRAM refresh

in ax, dx ;rate

and ax, 01ffh ;mask off unwanted bits

div FregTable[_divisor] ;divide refresh rate

;by _divisor

Example 5.2. Power-Save Initialization Code
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mov
out
mov
mov
and
or

out
pop
pop
pop
ret

_power_save endp

1ib_80C186 ends

end

ax,
dx,
dax,
ax,
ax,

‘ax,

dx,
dx
ax
bp

REFTIME ;set new refresh rate

ax

PWRSAV ;select Power-Save Register
_divisor ;get divisor

3 ;mask off unwanted bits
PSEN ;set enable bit

ax ;divide frequency

;restore saved registers

;restore caller's bp

vExampIe 5.2. Power-Save Initialization Code (Continued)

5-21







Chip Select Unit







CHAPTER 6
CHIP SELECT UNIT

Every system requires some form of component select mechanism so the CPU can access a
specific memory or peripheral device. The signal selecting the memory or peripheral device is
referred to as a chip-select. Besides selecting a specific device, each chip-select can be used to
control the number of wait states inserted into the bus cycle. Devices too slow to keep up with
the maximum bus bandwidth can use wait states to slow the bus down.

One method of generating chip-selects uses latched address signals directly. An example
interface is shown in Figure 6.1 (A). In the example, an inverted A16 is connected to an
SRAM device with an active low chip-select. Any bus cycle with an address between 10000H
and 1FFFFH (A16 = 1) enables the SRAM device. Also note that any bus cycle with an
address starting at 3FFFFH, SFFFFH, 7FFFFH and so on also selects the SRAM device.

Decoding more address bits solves the problem of a chip-select being active over multiple
address ranges. In Figure 6.1 (B), a one-of-eight decoder is connected to the upper most
address bits. Each of the eight decoded outputs are active for one-eighth of the 1 Mbyte
address space. However, each chip-select has a fixed starting address and range. Future system
memory changes may require circuit changes to accommodate the additional memory.

27C256 74AC138
"v ] V——/ oro A9 —| A ¥7 1_) SELECTS 896K TO 1M
A N Ao | ‘\% Atg —| A2 Y6 O > SELECTS 768K TO 896K
/| ‘ A vs |
A3 b A7 — Al
VA /" o158 \ F—>
1 NT— ’ Y4 E:})
‘ ALE —@1 E1 Y3 ¢
RD — | OE ‘ | ‘
| HLDA —C] E2 2>
[ ‘ ‘ Y1 SELECTS 128K TO 256K
- _ \ T
A6~ ~0 O{‘CS ! I E3 YO 0> SELECTSO0TO 128K
I R L .
" (B)
CHIP-SELECTS USING CHIP-SELECTS USING
ADDRESSES DIRECTLY SIMPLE DECODER

Figure 6.1. Common Chip-Select Generation Methods

6-1



intgl. CHIP-SELECT UNIT

The Chip-Select Unit overcomes limitations found in the above designs and has the following
features: : :

e Thirteen chip-select outputs

e Programmable chip-select active range
® Memory or I/O bus cycle decoder

e  Programmable wait state generator

e, Provision to override bus ready

Figure 6.2 illustrates the logic blocks that generate a chip-select.

6.1. FUNCTIONAL OVERVIEW

The Chip-Select Unit, abbreviated CSU, decodes bus cycle address and status information and
enables the appropriate chip-select. Figure 6.3 illustrates the timing of a chip-select during a
bus cycle. Note the chip-select goes active in the same bus state as address goes active,
eliminating any delay through address latches and decoder circuits. The Chip Select Unit
activates a chip-select for CPU, DMA Control Unit or Refresh Control Unit initiated bus
cycles.

Six of the thirteen chip-selects only map into memory address space. The remaining seven
chip-selects can map into memory or I/O address space. The chip-selects typically associate
with memory and peripheral devices as follows:

UCS Mapped only to upper memory address space and selects the BOOT memory
device (EPROM or FLASH memory types).

LCS Mapped only to lower memory address space and selects a static memory
(SRAM) device that stores the interrupt vector table, local stack and data and
scratch pad data.

MCSO0:3 Mapped only to memory address space and selects additional SRAM memory,
DRAM memory or system bus.

PCS7:0 Mapped to memory or I/O address space and selects peripheral devices or
generates a DMA acknowledge strobe.

The LCS chip-select always starts at address location OH and has a programmable block size
up to 256 Kbytes. The UCS chip-select always ends at address location OFFFFH and has a
- programmable block size up to 256 Kbytes.
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Figure 6.2. Chip-Select Block Diagram

The four MCS chip-selects access one contiguous block of memory address space. The block
size can range from 8 Kbytes to 512 Kbytes and each chip-select goes active for one fourth of
the block size. The block start address is programmable but must be an integer multiple of the
block size. This start address limitation prevents the MCS chip-selects from covering the entire

address space between the LCS and UCS chip-selects.

"The PCS chip-selects access a contiguous block of memory or I/O address space. Each chip-
select goes active for 128 bytes of the 896 byte block. The PCS block start address can begin

on any 1 Kbyte boundary.
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Figure 6.3. Chip-Select Relative Timings

A chip-select goes active when it meets all of the following criteria:

1) The chip-select is enabled.
2) The bus cycle status matches the default or programmed type (memory or i/O).
3) The bus cycle address is within the default or programmed block size.
4) The bus cycle is NOT accessing the Peripheral Control Block.
A memory address applies to memory read, memory write and instruction prefetch bus cycles.

An I/0 address applies to 1/O read and I/O write bus cycles. Interrupt acknowledge and HALT
bus cycles never activate a chip-select regardless of the address generated.

After power-on or system reset only the UCS chip-select is initialized and active (see Figure
6.4).
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Figure 6.4. UCS Reset Configuration

6.2. PROGRAMMING

A set of registers determine the operating characteristics of the chip-selects. The Peripheral
Control Block defines the location of the Chip-Select Unit registers. Table 6.1 lists all of the
Chip-Select Unit registers and their associated programming names.

The UCS and LCS chip-selects each have one register that defines their operation (see Figure
6.5 and Figure 6.6).

Table 6.1. Chip-Select Unit Registers

REGISTER REGISTER CHIP-SELECT

MNEMONIC MNEMONIC AFFECTED
UMCS UCS
LMCS \ TCS
MMCS MPCS MCS3:0
PACS MPCS PCS7:0

6-5
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Register Name: UCS Control Register
Register Mnemonic: UMCS
Register Function: Controls the operation of the UCS chip-select.

1 0
U H u uj v u U | u R | R
1 ‘ ' 1 1 1 1 1 1 1 0
6 ‘ 5 3 2 ‘ 1 0
. n
BIT i RESET
MNEMONIC BIT NAME | STATE FUNCTION

u17:10 Start Address | OFFH | Defines the starting address for the UCS chip-
select. During memory bus cycles, address bits
A17:10 are compared against U17:10 and an
equal to or greater than result enables the chip-
select (A19 and A18 must be 1 also). Allowable
bit programming combinations are as follows:

U17:0 Starting Address _ Block Size

O0H 0CO000H 256 Kbytes
80H OEO000H 128 Kbytes
COH OFO0000H 64 Kbytes
EOH OF8000H 32 Kbytes
FOH : OFCO00H 16 Kbytes -
F8H OFEO000H 8 Kbytes
FCH OFFO00H 4 Kbytes
FEH OFF800H 2 Kbytes
FFH OFFCOO0H 1 Kbytes
R2 Bus Ready 0 Clearing R2 requires bus ready be active to
Disable complete a bus cycle. When R2 is cleared, R1:0
control the number of bus wait states (bus ready
is ignored).
R1:0 Wait State 3H R1:0 define the minimum number of wait states
Value inserted into the bus cycle.

NOTE: Reserved register bits are shown with grey shading and must contain a value of zero
when writing this register (to ensure compatibility with future products). Do not program
U17:10 with values other than what is shown. Failure to do so results in unreliable chip-
select operation. Reading this register (prior to writing it) enables the chip-select, however,
none of the programmable fields will have been properly initialized.

Figure 6.5. UMCS Register Definition



CHIP-SELECT UNIT

Register Name: LCS Control Register
Register Mnemonic: LMCS
Register Function: Controls the operation of the LCS chip-select.

BIT RESET
MNEMONIC BIT NAME | STATE FUNCTION

u17:10 End Address XXH | Defines the ending address for the LCS chip-
select. During memory bus cycles, address bits
A17:10 are compared against U17:10 and a less
than result enables the chip-select (A19 and A18
must be 0 also). Allowable bit programming
combinations are as follows:

Ui17:0 Ending Address Block Size
00H 003FFH 1 Kbytes
01H 007FFH 2 Kbytes
03H 00FFFH 4 Kbytes
07H 01FFFH 8 Kbytes
OFH 03FFFH 16 Kbytes
1FH 07FFFH 32 Kbytes
3FH OFFFFH 64 Kbytes
7FH 1FFFFH 128 Kbytes
FFH 3FFFFH 256 Kbytes
R2 Bus Ready X Clearing R2 requires bus ready be active to

Disable complete a bus cycle. When R2 is cleared, R1:0
control the number of bus wait states (bus ready
is ignored).

R1:0 Wait State XH R1:0 define the minimum number of wait states
Value inserted into the bus cycle. A zero value means

no wait states (unless R2 is zero, which means
bus ready controls wait states)

NOTE: Reserved register bits are shown with grey shading and must contain a value of zero
when writing this register (to ensure compatibility with future products). Do not program
U17:10 with values other than what is shown. Failure to do so results in unreliable chip-select
operation. Reading this register (prior to writing it) enables the chip-select, however, none of
the programmable fields will have been properly initialized.

Figure 6.6. LMCS Register Definition
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The MCS and PCS chip-selects require two registers to define their operation. One register is
shared between them. The MMCS and MPCS registers control the MCS chip-selects. The
PACS and MPCS registers control the PCS chip-selects. Figure 6.7, Figure 6.8 and Figure 6.9
define the programming attributes for each of the registers.

Register Name: MCS Control Register
Register Mnemonic:© MMCS :
Register Function: Controls the operation of the MCS chip-selects

15‘ _ ‘ ‘
ulu uju ulu u‘ufu‘
,11|111‘1‘1_11‘1
9 81716‘5 4,321
| | [ | |
. |
BIT RESET

MNEMONIC | BITNAME | STATE FUNCTION

U19:13 Start Address XXH | Defines the starting (base) address for the block
of MCS chip-selects. During memory bus cycles,
address bits A19:13 are compared against
U19:13 and an equal to or greater than result
enables the chip-select. The start address must
be an integer multiple of the MCS block size
(defined in the MPCS register).

R2 Bus Ready XH Clearing R2 requires bus ready be active to
Disable complete a bus cycle. When R2 is cleared, R1:0
control the number of bus wait states (bus ready
is ignored).
R1:0 Wait State XH R1:0 define the minimum number of wait states
Value inserted into the bus cycle. A zero value means

no wait states (unless R2 is zero, which means
bus ready controls wait states)

NOTE: Reserved register bits are shown with grey shading and must contain a value of zero
when writing this register (to ensure compatibility with future products). Reading this register
and the MPCS register (prior to writing them) enables the MCS chip-selects, however, none
of the programmable fields will have been properly initialized.

Figure 6.7. MMCS Register Definition
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Register Name:
Register Mnemonic:
Register Function:

o<
o Z
>~ =Z

MCS and PCS Alternate Control Register
MPCS

Controls the operation for both the MCS and PCS
chip-selects.

wZ
—‘z:
oz
wz

o=
xm

BIT

MNEMONIC BIT NAME

RESET

STATE FUNCTION

M6:0 Block Size

XXH | Defines the block size for the MCS chip-selects.

Allowable bit programming combinations are as
follows:

M6 M5 M4 M3 M2 M1 MO Block Size
0O 0 0 O0OTUO 8 Kbytes
16 Kbytes
32 Kbytes
64 Kbytes

128 Kbytes

256 Kbytes
1 X X X X X 512 Kbytes

X = Don’t Care, but shouid be 0 for future
compatibility.

1
X
X
X
X
X

O oo oo
- o0 0o o o
X = O 0 o
X X =+ o o
X X X =+ ©
X X X X =

x

EX Pin Selector

XH Setting EX configures PCS5 and PCS6 pins as
chip-selects. When EX is cleared, PCS5
becomes latched address bit 1 (A1) and PCS6

becomes latched address bit 2 (A2).

MS Bus Cycle

Selector

When MS is cleared the PCS chip-selects go
active for I/O bus cycles. Setting MS activates
the PCS chip-selects for memory bus cycles.

XH

R2 Bus Ready

Disable

XH This bit applies to the PCS4-PCS6 chip-selects
only. Clearing R2 requires bus ready be active
to.complete a bus cycle. When R2 is set, R1:0
control the number of bus wait states (bus ready
is ignored).

R1:0 Wait State

Value

XH These bits apply to the PCS4-PCS6 chip-
selects only. R1:0 define the minimum number
of wait states inserted into the bus cycle. A zero

value means no wait states.

NOTE: Reserved register bits are shown with grey shading and must contain a value of zero
when writing this register (to ensure compatibility with future products). Reading this register
and the MMCS register or PACS register (prior to writing them) enables the associated chip-
selects, however, none of the programmable fields will have been properly initialized.

Figure 6.8. MPCS Register Definition
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Register Name:
Register Mnemonic:
Register Function:

PCS Control Register
PACS
Controls the operation of the PCS chip-selects.

15 0
U u u u u|u U | u R IR
1 111 11711 101 110
9 7 .6 || 5 4 2 110
BIT RESET
MNEMONIC BIT NAME | STATE FUNCTION
U19:10 Start Address | XXH . | Defines the starting (base) address for the block
‘ of PCS chip-selects. During memory or I/O bus
cycles, address bits A19:13 are compared
against U19:13 and an equal to or greater than
result enables the chip-select. U19:16 must be
programmed to zero for proper /O bus cycle
operation.
R2 Bus Ready XH Clearing R2 requires bus ready be active to
‘ Disable complete a bus cycle. When R2 is set, R1:0
control the number of bus wait states (bus ready
is ignored).
R1:0 Wait State XH R1:0 define the minimum number of wait states
Value inserted into the bus cycle. A zero value means
no wait states (unless R2 is zero, which means
bus ready controls wait states)

NOTE: Reserved register bits are shown with grey shading and must contain a value of zero

when writing this register (to ensure compatibility with future products). Reading this register
and the MPCS register (prior to writing them) enables the PCS chip-selects, however, none of
the programmable fields will have been properly initialized. .

Figure 6.9. PACS Register Definition
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6.2.1. INITIALIZATION SEQUENCE

Chip-selects do not have to be initialized in any specific order. However, the following
guidelines help prevent a system failure.

1) Initialize local memory chip-selects

2) Initialize local peripheral chip-selects

3) Perform local diagnostics

4) Initialize off-board memory and peripheral chip-selects

5) Complete system diagnostics

An unmasked interrupt or NMI must not occur until the interrupt vector addresses have been
written to memory. Failure to prevent an interrupt from occurring during initialization will

cause a system failure. Use external logic to generate the chip-select if interrupts cannot be
masked prior to initialization.

Programming the UMCS and LMCS registers can be done in any sequence. To program the
MCS and PCS chip-selects, follow the sequence shown below:

1) Program the MPCS fegister

2) Program the MMCS register to enable the MCS chip-selects

3) Program the PACS register to enable the PCS chip-selects

6.2.2. START ADDRESS

The LCS chip-select has a fixed starting address of zero in memory address space. The UCS
chip-select defines its starting address as 100000H (1 Mbyte) minus the programmed block
size (see Section 6.2.4). The MCS chip-selects have a programmable base address that
determines their individual start addresses (see Figure 6.10). However, there are limitations on
the location of the base address depending on the MCS block size.

Table 6.2 lists the limitations of the base address for the MCS chip-selects. Figure 6.10
illustrates how to calculate the starting address for each MCS chip-select.

Each PCS chip-select is active for 128 bytes and start at an offset above the programmed base

address. The base address can start on any 1 Kbyte memory or I/O address location. Table 6.3
lists the range for each chip-select.
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Table 6.2. MMCS Programming Restrictions

ALLOWABLE BASE ADDRESS
BLOCK SIZE RESTRICTIONS ‘ NOTES
8 Kbytes None
16 Kbytes U13 must be zero -
32 Kbytes U13-14 must be zero
64 Kbytes U13-15 must be zero
128 Kbytes U13-16 must be zero
256 Kbytes U13-17 must be zero
512 Kbytes U13-18 must be zero Will overlap UCS if U19 is 1

Table 6.3. PCS Chip-Selects Active Range

CHIP
SELECT ACTIVE RANGE

PCSO Base ‘ to Base + 127 (7FH)
PCST Base + 128 (080H) to Base + 255 (OFFH)
PCS2 Base + 256 (100H)  to Base + 383 (17FH)
PCS3 Base + 384 (180H) to Base + 511 (1FFH)
PCS4 Base + 512 (200H) to Base + 639 (27FH)
PCS5 Base + 640 (280H) to Base + 767 (2FFH)
PCS6 Base + 768 (300H) to Base + 895 (37FH)

6.2.3. STOP ADDRESS

The UCS chip-select has a fixed ending address of OFFFFFH in memory address space. The
LCS chip-select defines its ending address as one byte less than the programmed block size
(see Section 6.2.4). :
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STARTING ADDRESS ENDING ADDRESS

BLOCK SIZE IS DEFINED BY M6:0

BASE + (BLOCK SIZE - 1)

MCS3 ACTIVE RANGE

BASE + 3/4 BLOCK SIZE BASE + (3/4 BLOCK SIZE - 1)
MCS2 ACTIVE RANGE

BASE + 1/2 BLOCK SIZE BASE + (1/2 BLOCK SIZE - 1)
MCST ACTIVE RANGE

BASE + 1/4 BLOCK SIZE BASE + (1/4 BLOCK SIZE - 1)
MCS0 ACTIVE RANGE

"MCS# BASE > =

(DEFINED BY U19:10)

MEMORY MAP

Figure 6.10. MCS Active Range

The ending address for the MCS chip-selects is defined by the programmed base address and
the block size. Figure 6.10 illustrates how to calculate the ending address for each MCS chip-
select.

The PCS chip-selects have fixed ending addresses defined by the programmed base address
Table 6.3 defines the ending address for each chip-select.

6.2.4. BLOCK SIZE

The LCS, UCS and MCS chip-selects have programmable block sizes to define their active
ranges. The PCS chip-selects have fixed block sizes of 128 bytes.

The LMCS and UMCS registers define the block size for the LCS and UCS chip selects,
respectively. The allowable block sizes, in Kbytes, for the LCS and UCS chip-selects are 1, 2,
4,8, 16, 32, 64, 128 and 256. -

The combined MCS block size is controlled by thé MPCS register. Each MCS chip-select is
active for one quarter of the block size. Table 6.2 defines the allowable block sizes for the
MCS chip-selects. '
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6.2.5. BUS WAIT STATE AND READY CONTROL

Normally the bus ready inputs must be inactive at the appropriate time to insert wait states into
the bus cycle. The Chip-Select Unit can ignore the state of the bus ready inputs to extend and
complete the bus cycle automatically. Most memory and peripheral devices operate properly
using three or less wait states. However, accessing devices such as a dual-port memory, an
expansion bus interface, a system bus interface or remote peripheral devices can require more
than three wait states to complete a bus cycle.

The Chip-Select Unit can insert up to three wait states and control the state of the bus ready
inputs. The UMCS, LMCS, MMCS, MPCS and PACS registers define a three-bit field (RO,
R1, R2) that control bus wait state and ready requirements. Figure 6.11 shows a simplified
logic diagram of the wait state and ready control functions.

BUS READY
R2 CONTROL BIT
WAIT STATE
WAIT READY
WAIT STATE VALUE )—_—:> STATE
(R1:0) COUNTER

Figure 6.11. Wait State and Ready Control Functions

The RO and R1 control bits define the number of wait states to insert into the bus cycle. The
R2 control bit determines whether the bus cycle should complete normally (i.e., require bus
ready) or unconditionally (i.e., ignore bus ready). Chip-selects connected to devices requiring
three wait states or less can program R2 active to complete the bus cycle automatically.
Devices that may require more than three wait states must program R2 inactive.

A bus cycle with wait states automatically inserted cannot be shortened. A bus cycle ignoring
bus ready cannot be lengthened.

6.2.6. OVERLAPPING CHIP-SELECTS

The Chip-Select Unit activates all enabled chip-selects programmed to cover the same
physical address space. This is true if any portion of the chip-selects address range overlap
(i-e., chip-selects ranges do not need to completely overlap to all go active). There are various
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reasons for overlapping chip-selects. For example, overlapping a portion of read-only memory
with read/write memory or copying data to two devices simultaneously.

If overlapping chip-selects do not have identical wait state value and bus ready programming,
the following priority scheme exists:

1. If any MCS chip-select is active, the MPCS R2:0 bits are used.
2. If the PCS chip-selects overlap the LCS or UCS chip selects, the LMCS or UMCS R2:0

bits (respectively) are used.

As an example, consider the case where MCS3 overlaps UCS. MCS3 is programmed for two
wait states and requires bus ready. UCS is programmed for no wait states and ignores bus
ready. An access to the overlapped region results in two wait states and bus ready is required.

Be cautious when overlapping chip selects with different wait state and bus ready
programming. Here are two conditions that require special attention to ensure proper system
operation.

1. 'When all overlapping chip-selects ignore bus ready but have different wait states, make
sure each chip-select still works properly using the highest wait state value. A system
failure may result when the required number of wait states does not occur in the bus
cycle.

2. If one or more of the overlapping chip-selects requires bus ready, verify the following:

A. All chip-selects that ignore bus ready work properly using the smallest wait state
value.

B. All chip-selects that ignore bus ready work properly for the longest bus cycle
possible.

A system failure may result when not enough or too many wait states occur in the bus cycle.

6.2.7. MEMORY OR I/O BUS CYCLE DECODING

The PCS chip-selects go active for memory or I/O address space. The MS control bit in the
MPCS register selects the appropriate address space. Memory address space accesses consist
of memory read, memory write and instruction prefetch bus cycles. I/O address space accesses
consist of I/O read and I/O write bus cycles.

The UCS, PCS and MCS chip-selects only go active for memory bus cycles. Chip-selects go
active for CPU, DMA Control Unit and Refresh Control Unit initiated bus cycles.

6.3. PROGRAMMING CONSIDERATIONS

When programing the PCS chip-selects active for I/O bus cycles, remember that eight bytes
of I/O are reserved by Intel. These eight bytes, located between 00F8H and O0FFH, control the

6-15



intel. » CHIP-SELECT UNIT

interface to an 80C187 Numerics Coprocessor. A chip-select can overlap this reserved space
provided there is no intention of using the 80C187. However, Intel recommends that the base
address of the PCS chip-selects not start at OH in I/O address space to avoid possible future
compatibility issues.

An access to the appropriate chip-select register or registers, enables the chip-select. An
access is any read or write operation. For instance, reading the LMCS register enables the
LCS chip-select. However, reading the LMCS register does not ensure it has been
programmed correctly.

Do not read any chip-select register unless it has been previously written. Reading a register
before programming it enables the chip-select and results in indeterminate operation.

A chip-select can not be disabled once it has been enabled. However, the operating
characteristics of the chip-select can be changed by writing the appropriate register.

6.4. CHIP-SELECTS AND BUS HOLD

The Chip-Select Unit only decodes address and bus state information generated internally. An
external bus master cannot make use of the Chip-Select Unit. During HLDA, all chip-selects
remain inactive.

The circuit shown in Figure 6.12 allows an external bus master to access a device during bus
HOLD. ‘

CSU CHIP-SELECT '
Yo—— DEVICE SELECT
EXTERNAL MASTER

CHIP SELECT

Figure 6.12. Using Chip-Selects During HOLD
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Figure 6.13. Typical System

6.5. EXAMPLES
The following sections provide examples of programming the Chip-Select Unit to meet the

needs of a particular application. The examples do not go into hardware analysis or design
issues.

6.5.1. EXAMPLE 1: TYPICAL SYSTEM CONFIGURATION

Figure 6.13 illustrates a block diagram of a typical system design. The EPROM memory has a
total size of 64 Kbytes and the SRAM memory has a total size of 64 Kbytes also. The
peripherals are mapped to I/O address space.
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TITLE (Chip-Select Unit Initialization)
MOD186 XREF
NAME CSU_EXAMPLE_1

Ur Ur

5ok ok ok kK ok ok ok ok ok ok ok ok K ok ok ok o ok ok ok K ok ok ok Kk ok ok ok ko ok ok ok ok ok kK ok ok kK ok ok ok ko ok ok kK ok ok ok K ok ok kK
. . *
; EXTERNAL REFERENCE FROM THIS MdDULE *

. *
’
;**************************************************************

$ ‘ include (PCBMAP. INC) ; File declares register
; locations and names

R
. *
’
; MODULE EQUATES *

. *
1
IEAEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEESEEEREEEEEEEEERE SRR LS RS S
!

i < CONFIGURATION EQUATES

INTRDY EQU 0004H ; Ixternal bus ready modifier

EXTRDY EQU ~ 0000H ; External bus ready modifier
I0 EQU ~0080H ; PCS Memory/IO Modifier
ALLPCS EQU 0040H ; PCS PCS/Latched Address Modifier

; Below is a list of the default system memory and I/0
; environment. These defaults configure the Chip-Select Unit
; for proper system operation.

; EPROM memory is located from OE0000 to OFFFFF (128 Kbytes).
; Wait states are calculated assuming 16MHz operation.
; UCS# controls the accesses to EPROM memory space.

EPROM_SIZE EQU 128 ; Size in Kbytes
EPROM_BASE EQU 1024 - EPROM_SIZE ; Start address in Kbytes
EPROM_WAIT EQU 2 ; Wait states

EPROM_RDY = EQU ' INTRDY ; Ignore bus ready

; The UMCS regiser value is calculated using the above
; system constraints and the equations below.

UMCS_VAL EQU (EPROM_BASE SHL 6) OR (0CO38H) OR

& (EPROM_RDY) OR (EPROM_WAIT)
Example 6.1.
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; SRAM memory starts at OH and continues to 7FFFH (32 Kbytes).
; Wait states are caclulated assuming 16MHz operation.
; LCS# controls the accesses to SRAM memory space.

SRAM_STZE EQU 32 ; Size in Kbytes
SRAM_BASE EQU 0 ; Start address in Kbytes
SRAM_WAIT EQU 0 ; Walt states

SRAM_RDY EQU INTRDY ; Ignore bus ready

; The LMCS register value is calculated using the above
; system constraints and the equation below

LMCS_VAL EQU ((SRAM_SIZE - 1) SHL 6) OR (00038H) OR
& (SRAM_RDY) OR (SRAM_WAIT)

; A DRAM interface is selected by the four MCS# chip-selects.

; The BASE value defines the starting address of the DRAM

; window. The SIZE value (along with the BASE value) define

; the ending address. Zero wait state performance is assumed.
; The Refresh Control Unit uses DRAM-BASE to properly configure
; refresh operation.

DRAM_BASE EQU 256 ; Window start address in Kbytes
DRAM_SIZE EQU 256 ; Window size in Kbytes
DRAM_WAIT EQU 0 ; Walt states

DRAM_RDY EQU INTRDY ; Ignore bus ready

; The MPCS register is used to program both the MCS and PCS
; chip-selects. Below are the equates for the I/0 peripherals
; (also used to program the PACS register).

IO_WAIT EQU 4 ; IO Wait states

IO_RDY EQU INTRDY ; Ignore bus ready
PCS_SPACE EQU I0 ; Put PCSx# in I/0 Space
PCS_FUNC EQU ALLPCS ; Generate PCS5# and PCSo6#

; The MMCS and MPCS register values are calculated using the
; above system constraints and the equations below

MMCS_VAL EQU (DRAM_BASE SHL 6) OR (001F8H) OR

& (DRAM_RDY) OR (DRAM_WAIT)
MPCS_VAL EQU (DRAM_SIZE SHL 5) OR (08038H) OR
& (PCS_SPACE) OR (PCS_FUNC) OR
& (IO_RDY) OR (IO_WAIT)

Example 6.1. (Continued)
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; I/0 is selected using the PCSO0# chip-select. Wait states

; assume operation at 16MHz. For this example, the Floppy Disk
; Controller is connect to PCS2# and PCS1l# provides the DACK#

; signal.

IO_BASE EQU 1 ; 10 start address in KBytes

; The PACS register value is calculated using the above
; system contraints and the equation below

PACS_VAL EQU (IO_BASE SHL 6) OR (00038H) OR
& (IO_RDY) OR (IO_WAIT)

; The following statements define the default assumptions
; for segment locations. ‘

ASSUME CS:CODE
ASSUME DS:DATA
ASSUME SS:DATA
ASSUME . ES:DATA

CODE - SEGMENT PUBLIC 'CODE’

P e R R A
. . *
4 \

; ENTRY POINT ON POWER UP *

. *
H )

SRRk ok ok ok ko ko kR k ok ok ok kK k ok ok kk ko kAR kR kk kK ok k ok kK ok kK h kR Kk Kk h ok ok ok
FW_START LABEL FAR ; FORCES FAR JUMP

CLI ' ; Disable Interrupts

; Place register initialization code here

- Example 6.1. (Continued)
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;  SET UP CHIP

; UCS

; PCS - I/O

; MCS - DRAM

MOV
MOV
ouT

MOV
MOV
ouT

MOV
MOV
ouT

MOV
MOV
ouT

CODE ENDS

EPROM
;  LCS - SRAM

DX,
AX,
DX,

DX,
AX,

X,
DX,

AX,
DX,

DX,
AX,
DX,

Select
Select
Select
Select

SELECTS

(
(
(
(

LMCS_REG
LMCS_VAL
AL

MPCS_REG
MPCS_VAL
AL

MMCS_REG
MMCS_VAL
AL

PACS_REG
PACS_VAL
AL

Initialized during POWER_ON code)
Set to SRAM Size)

PCS0-1 Support Floppy)

Set to DRAM Size)

Set up LCS Register
Remember, BYTE Writes OK

READY FOR PCS LINES 4-6
AS WELL AS MCS PROGRAMMING

SET UP DRAM Chip-Select

SET UP IO Chip-Select

; POWER ON RESET CODE TO GET STARTED

ASSUME CS:POWER_ON

POWER_ON

MOV
MOV
ouT
. JMP

DX,
AX,
DX,

SEGMENT AT OFFFFH

UMCS_REG
UMCS_VAL
AL

FW_START

POWER_ON ENDS

’

;

Point to UMCS Register
Reprogram UMCS to match
system requirements
Jump to init code

Example 6.1. (Continued)
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2K ok ok kK ok ok ok kK ok ok ok K ok ok ok ok o ok ok ok ok ok ok ok ok ok kK ko ok ok ok ok kK ok ok ok ok ok ok ko kK ok ok ok Kk
. *
1
; DATA SEGMENT *

. *
1 .
R R R SRR RS S RS S EE S EEEEEEEEE RS SRR SRR R R R R SRR R R R R R R R RS
1

DATA SEGMENT PUBLIC "DATA’
DD 256 DUP (?) ; Reserved for Interrupt Vectors

;Place memory variables Here

DW 500 DUP (?) ; Stack Allocation
STACK_TOP LABEL WORD
DATA ENDS

; Program ends

END

Example 6.1. (Continued)
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CHAPTER 7
REFRESH CONTROL UNIT

The Refresh Control Unit (RCU) simplifies dynamic memory controller design with its
integrated address and clock counters. Figure 7.1 shows the relationship between the Bus
Interface Unit and the Refresh Control Unit. Integrating the Refresh Control Unit into the
processor allows an external DRAM controller to use chip-selects, wait state logic and status
lines. "

—

<:> REFRESH CLOCK
INTERVAL REGISTER
CPU {}

CLOCK
| E— 9-BIT DOWN

COUNTER

REFRESH REQUEST > BIU
INTERFACE

BUS

CLR | _ REFRESH ACKNOWLEDGE
ReQ 1€

REFRESH CONTROL
REGISTER

12-BIT ADDRESS COUNTER
<:> REFRESH BASE
ADDRESS REGISTER REFRESH ADDRESS
) REGISTER
L
L
e P
2087

REFRESH ADDRESS

Figure 7.1. Refresh Control Unit Block Diagram

7.1. THE ROLE OF THE REFRESH CONTROL UNIT

Like a DMA controller, the Refresh Control Unit runs bus cycles independent of CPU
execution. Unlike a DMA controller, however, the Refresh Control Unit does not run bus
cycle bursts nor does it transfer data. The DRAM refresh process freshens individual DRAM
rows in “dummy read” cycles, while cycling through all necessary addresses.
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The microprocessor interface to DRAMs is more complicated than other memory interfaces. A
complete DRAM controller requires circuitry beyond that provided by the processor even in
the simplest configurations. This circuitry must respond correctly to reads, writes and DRAM
refresh cycles. The external DRAM controller generates the Row Address Strobe (RAS),
Column Address Strobe (CAS) and other DRAM control signals.

Pseudo-static RAMs use dynamic memory cells but generate address strobes and refresh
addresses internally. The address counters still need external timing pulses. These pulses are
easy to derive from the processor’s bus control signals. Pseudo-static RAMs do not need a full
DRAM controller.

7.2. REFRESH CONTROL UNIT CAPABILITIES

A nine-bit address counter forms the refresh addresses, supporting any dynamic memory
devices with up to nine rows of memory cells (nine refresh address bits). This includes all
practical DRAM sizes for the processor’s one Mbyte address space.

.7.3. REFRESH CONTROL UNIT OPERATION

Figure 7.2 illustrates Refresh Control Unit counting, address generation and BIU bus cycle
generation in flow chart form.

The 9-bit down-counter loads from the Refresh Interval Register on the falling edge of
CLKOUT. Once loaded, it decrements every falling CLKOUT edge until it reaches one. Then
the down-counter reloads and starts counting again, simultaneously triggering a refresh
request. Once enabled, the DRAM refresh process continues indefinitely until the user
reprograms the Refresh Control Unit, a reset occurs, or the processor enters Powerdown
Mode. Power-Save Mode divides the Refresh Control Unit clocks, so reprogramming the
Refresh Interval Register becomes necessary.

The refresh request remains active until the bus becomes available. When the bus is free, the
BIU will run its “dummy read” cycle. Refresh bus requests have higher priority than most
CPU bus cycles, all DMA bus cycles and all interrupt vectoring sequences. Refresh bus cycles
also have a higher priority than the HOLD/HLDA bus arbitration protocol (see Section 7.8).

The 9-bit refresh clock counter does not wait until the BIU services the refresh request to
continue counting. This operation ensures refresh requests occur at the correct interval.
Otherwise, the time between refresh requests would be a function of varying bus activity.
When the BIU services the refresh request, it clears the request and increments the refresh
address.
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REFRESH CONTROL UNIT BIU REFRESH BUS
OPERATION OPERATION

SET'E'BIT REFRESH REQUEST
ACKNOWLEDGED

L
Y
LOAD COUNTER EXECUTE
FROM REFRESH CLOCK MEMORY READ
INTERVAL REGISTER
— Y
INCREMENT
ADDRESS
EXECUTED Y
— EVERY
oLOCK REMOVE REQUEST
|| DECREMENT
COUNTER CONTINUE
GENERATED BIU
REQUEST

Figure 7.2. Refresh Control Unit Operation Flow Chart

FROM | FROM
REFRESHBASE ADDRESS REGISTER FIXED REFRESHADDRESS COUNTER FIXED
" 1 —r—

[ T T
IRA|9’RA|8 RAl7‘RA|6)RA|5‘RAI4IRAI3\ 0 , 0 ‘ 0 ‘ RA9 ‘ RA8 ‘ RA7 ] RA6 ’ RAS ’RA“J RA3 ’ RA2 ‘ RAI { | ‘l
L L l i 1 '
19 0
L ]

20-BITREFRESH ADDRESS

Figure 7.3. Refresh Address Formation
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The BIU does not queue DRAM refresh requests. If the Refresh Control Unit generates
another request before the BIU handles the present request, the BIU loses the present request.
However, the address associated with the request is not lost. The refresh address changes only
after the BIU runs a refresh bus cycle. If a DRAM refresh cycle is excessively delayed, there is
still a chance that the processor will successfully refresh the corresponding row of cells in the
DRAM, retaining the data.

7.4. REFRESH ADDRESSES

Figure 7.3 shows the physical address generated during a refresh bus cycle. This figure applies
to both the 8-bit and 16-bit data bus microprocessor versions. Refresh address bits RA19:13
come from the Refresh Base Address Register described in Section 7.7.2.1.

Refresh address bits RA12:10 are always zero. A linear-feedback shift counter generates
address bits RA9:1. The counter does not increment linearly from 0 through 1FFH. However,
the counting algorithm cycles uniquely through all possible 9-bit values. It only matters that
each row of DRAM memory cells gets refreshed at a specific interval. The order of the rows is
unimportant.

Address bit AO is fixed at zero during all refresh operations. In applications based on a 16-bit
data bus processor, AQ typically selects memory devices placed on the low (even) half of the
bus. Applications based on an 8-bit data bus processor typically use A0 as a true address bit.
The DRAM controller must not route AQ to row address pins on the DRAMs.

7.5. REFRESH BUS CYCLES

Refresh bus cycles look exactly like ordinary memory read bus cycles except for the control
signals indicated in Table 7.1. The 16-bit bus processor drives both the BHE and A0 pins high
during refresh cycles. These signals may be AND’ed in a DRAM controller to detect a refresh
bus cycle. The 8-bit bus version replaces the BHE pin with RESH, which is low during refresh
cycles. RFSH and BHE timings are the same. A0 is also high during refresh cycles on the 8-bit
bus processor.

Table 7.1. Identification of Refresh Bus Cycles

DATA BUS WIDTH BHE/RFSH A0
16-Bit Device 1 1
8-Bit Device 0 1

7-4
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7.6. GUIDELINES FOR DESIGNING DRAM CONTROLLERS
The basic DRAM access method consists of four phases:

1. The DRAM controller supplies a row address to the DRAM:S.

2. The controller asserts a Row Address Strobe (RAS), which latches the row address inside
the DRAMs.

The controller supplies a column address to the DRAMs.

4. The controller asserts a Column Address Strobe (CAS), which latches the column address
inside the DRAMs.

Most 80C186 Modular Core family DRAM interfaces use only this method. Others will not be
discussed here.

The DRAM controller’s purpose is to use the processor’s address, status and control lines to
generate the multiplexed addresses and strobes. These signals must be appropriate for three
bus cycle types: read, write and refresh. They must also meet specific pulse width, setup, and
hold timing requirements. DRAM interface designs need special attention to transmission line
effects, since DRAMs represent significant loads on the bus.

DRAM controllers may be either clocked or unclocked. An unclocked DRAM controller
requires a tapped digital delay line to derive the proper timings.

Clocked DRAM controllers may use either discrete or programmable logic devices. A state
machine design is appropriate, especially if the circuit must provide wait state control (beyond
that possible with the processor’s Chip-Select Unit). Because of the microprocessor’s four-
clock bus, clocking some logic elements on each CLKOUT phase is advantageous (see Figure
7.4). The cycle begins with presentation of the row address. RAS should go active on the
falling edge of T.. At the rising edge of T,, the address lines should switch to a column
address. CAS goes active on the falling edge of Ti. Refresh cycles do not require CAS. When
CAS is present, the “dummy read” cycle becomes a true read cycle (the DRAM drives the
bus), and the DRAM row still gets refreshed.

Both RAS and CAS stay active during any wait states. They go inactive on the falling edge of
T4 At the rising edge of T,, the address multiplexer shifts to its original selection (row
addressing), preparing for the next DRAM access.

7.7. PROGRAMMING THE REFRESH CONTROL UNIT

Given a specific processor operating frequency and information about the DRAMs in the
system, the user can program the Refresh Control Unit registers.
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MUXED ADDRESS ROW

X

X A=

— 7
T(/

/

/
- | N
&

S2:0
cs

| —
A

NOTES:

1. CAS is unnecessary for refresh cycles only.
2. WE is necessary for write cycles only.

Figure 7.4. Suggested DRAM Control Signal Timing Relationships

RPeri od (us) x f(MHz)

# Refresh Rows + # (Refresh Rows x % Overhead)

= RFTIME Register Value

RPerio q= Maximum refresh period specified by DRAM manufacturer (microseconds).

f = Operating frequency in MHz.
# Refresh Rows = Total number of rows to be refreshed.

% Overhead = Derating factor to compensate for missed refresh requests (typically 1-5%).

Figure 7.5. Formula for Calculating Refresh Interval for RFTIME Register
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7.7.1. CALCULATING THE REFRESH INTERVAL

DRAM data sheets show DRAM refresh requirements as a number of refresh cycles necessary
and the maximum period to run the cycles. The indicated number of cycles is the same as the
number of rows. Multiply the specified refresh period (convert to microseconds) by the
mlcroprocessor s CLKOUT frequency (MHz). Then divide the result by the number of rows
in the DRAM. Figure 7.5 shows the formula.

Bus latency is the time the Refresh Control Unit needs to gain control of the bus. Reduce the
calculated refresh interval by one to five percent to compensate. If an external bus master will
be extremely slow to release the bus, reduce the interval even more. At standard operating
frequencies, DRAM refresh bus overhead totals two or three percent of the total bus
bandwidth.

If the processor enters Power-Save Mode, the refresh rate must increase to offset the reduced
CPU clock rate to preserve memory. At lower frequencies, the refresh bus overhead increases.
At frequencies less than about 1.5 MHz, the Bus Interface Unit will spend almost all its time
running refresh cycles. There may not be enough bandwidth left for the processor to perform
other activities, especially if the processor must share the bus with an external master.

7.7.2. REFRESH CONTROL UNIT REGISTERS

Three contiguous Peripheral Control Block registers operate the Refresh Control Unit: the
Refresh Base Address Register, Refresh Clock Interval Register and the Refresh Control
Register.

7.7.2.1. REFRESH BASE ADDRESS REGISTER

The Refresh Base Address Register (see Figure 7.6) programs the base (upper 7 bits) of the
refresh address. Seven-bit mapping places the refresh address at any 4 Kbyte boundary
within the one Mbyte address space. When the partial refresh address from the 9-bit address
counter (see Section 7.3) passes 1FFH, the Refresh Control Unit does not increment the
refresh base address.

7.7.2.2. REFRESH CLOCK INTERVAL REGISTER

The Refresh Clock Interval Register (Figure 7.7) defines the time between refresh requests.
The higher the value, the longer the time between requests. The down-counter decrements
every falling CLKOUT edge, regardless of core activity. When the counter reaches 1, the
Refresh Control Unit generates a refresh request and the counter again loads the value from
the register.
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Register Name:
Register Mnemonic:
Register Function:

Refresh Base Address Register
RFBASE
Determines upper 7 bits of refresh address.

15 ‘

, 1 x

| R RIR | R |

LALA A A

1 1)1 ‘ 1]

(9l8 7 6 |

s L

BIT
MNEMONIC | BIT NAME | STATE FUNCTION
RA19:13 Refresh Base 00H | Uppermost address bits for DRAM refresh

cycles.

NOTE: Reserved register bits are shown with gray shading. Always program reserved register
bits with a “0” to insure proper device functionality and compatibility with future Intel products.

Figure 7.6. Refresh Base Address Register

Register Name:
Register Mnemonic:
Register Function:

Refresh Clock Interval Register
RFTIME
Sets refresh rate.

BIT RESET
MNEMONIC BIT NAME | STATE FUNCTION
RCS8:0 Refresh 000H | Sets the desired clock count between refresh
Counter cycles.
Reload Value

NOTE: Reserved register bits are shown with gray shading. Always program reserved register
bits with a “0” to insure proper device functionality and compatibility with future Intel products.

Figuré 7.7. Refresh Clock Interval Register
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Register Name: Refresh Control Register
Register Mnemonic: RFCON
Register Function: Controls Refresh Unit operation.

BIT RESET
MNEMONIC BIT NAME | STATE FUNCTION
REN Refresh 0 Setting REN enables the Refresh Unit. Clearing
Control Unit REN disables the Refresh Unit.
Enable
RC7:0 Refresh 000H | These bits contain the present value of the down
Counter counter which triggers refresh requests.

NOTE: Reserved register bits are shown with gray shading. Always program reserved register
bits with a “0” to insure proper device functionality and compatibility with future Intel products.

Figure 7.8. Refresh Control Register

7.7.2.3. REFRESH CONTROL REGISTER
Figure 7.8 shows the Refresh Control Register. The user may read or write the REN bit at
any time to turn the Refresh Control Unit on or off. The lower nine bits contain the current

9-bit down-counter value. The user cannot program these bits. Disabling the Refresh Control
Unit clears both the counter and the corresponding counter bits in the control register.

7.7.3. PROGRAMMING EXAMPLE

Example 7.1 contains sample code to initialize the Refresh Control Unit. Example 5.2 shows
the additional code to reprogram the Refresh Control Unit upon entering Power-Save Mode.
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$modl186

name example_80C186_RCU_code

’

; FUNCTION: This function initializes the DRAM Refresh
;Control Unit to refresh the DRAM starting at dram_addr
;at clock_time intervals.

’

; SYNTAX:

; extern void far config_rcu(int dram_addr, int clock_time);

7

;  INPUTS: dram_addr - Base address of DRAM to refresh
H / clock_time - DRAM refresh rate

; OUTPUTS: None

; NOTE: Parameters are passed on the stack as
; required by high-level languages.

’

RFBASE equ
RFTIME equ
RFCON equ
Enable equ

xxxxh ;substitute register offset
xxxxh
xxxxh

8000h ;enable bit

lib_ 80186 segment public 'code'
assume cs:11b_80186

public _config_rcu
_config_rcu proc far

push bp ;save caller's bp

mov bp, sp ;get current top of stack
_clock_time equ word ptr[bp+6] ;get parameters off
_dram_addr equ word ptr[bp+8] ;the stack

push ax ;save registers that

;will be modified

push cx ‘

push dx

push di

Example 7.1. Refresh Control Unit Intialization Code
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mov dx, RFBASE ;set upper 7 address bits
mov ax, _dram_addr
out dx, ax
mov dx, RFTIME ;set clock pre_scaler
mov ax, _clock_time
out dx, ax
mov dx, RFCON ;Enable RCU
mov ax, Enable
out dx, ax
mov cx, 8 ’ ;8 dummy cycles are
;required by DRAMS
xor di, di ;before actual use

_exercise_ram:

mov word ptr [di], O
loop _exercise_ram

bop
pop
pop
pop

pop

ret

_config_rcu endp

1ib_80186 ends

end

di
dx
cx
ax

bp

;restore saved registers

;restore caller's bp

Example 7.1. Refresh Control Unit Initialization Code (Continued)

7.8. REFRESH OPERATION AND BUS HOLD

When another bus master controls the bus, the processor keeps HLDA active as long as the
HOLD input remains active. If the Refresh Control Unit generates a refresh request during bus
hold, the processor drives the HLDA signal inactive, indicating to the current bus master that it
wishes to regain bus control (see Figure 7.9). The BIU begins a refresh bus cycle only after the
alternate master removes HOLD. The user must design the system so the processor can regain
bus control. If the alternate master asserts HOLD after the processor starts the refresh cycle,

the CPU will give up the bus afterwards.
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CLKOUT
HOLD
HLDA / /
ADO-AD15, DEN 2 [ ©\>C
A19:16, RD, WR, BHE, o K/—
DT/R, 52:0 ¢ I —

NOTES: 1. HLDA deasserted; signaling needs to run DRAM refresh cycles less than Tgy oy
2. External bus master terminates use of the bus
3. HOLD deasserted; greater than T |5
4. HOLD may be reasserted after one clock
5. Lines come out of float in order to run DRAM refresh cycle

Figure 7.9. Regaining Bus Control to Run a DRAM Refresh Bus Cycle
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CHAPTER 8
INTERRUPT CONTROL UNIT

The 80C186 Modular Core has a single maskable interrupt input (See Section 2.3.1.2). An
Interrupt Control Unit is needed to expand the interrupt capabilities beyond a single input. To
fulfill this function, the Interrupt Control Unit has two different modes of operation; Master
Mode and Slave Mode.

In Master Mode, the Interrupt Control Unit processes all maskable interrupt sources and
presents them to the CPU through the single maskable interrupt input. The Interrupt Control
Unit synchronizes and prioritizes interrupt sources and provides the interrupt type vector to the
CPU. The interrupts can originate from on-chip peripherals and from four external interrupt
pins. Most systems use Master Mode. ‘

In Slave Mode, an external 8259A interrupt controller acts as the master interrupt controller.
The 8259A now actually controls the maskable interrupt input to the CPU. The Interrupt
Control Unit is only responsible for processing the on-chip interrupt sources and must request
service from the external 8259A.

Features of the Interrupt Control Unit are:

e  Programmable priority of each interrupt source
e  Support for polled operation

e Individual masking of each interrupt source

e Nesting of interrupt sources

e External 8259As can be used for expanding external interrupt sources (Cascade Mode)

8.1. FUNCTIONAL OVERVIEW

All microprocessor systems must communicate in some way with the external world. A typical
system may have a set of peripherals, for example, a keyboard, communications port and a
display. Each peripheral requires the attention of the CPU at different times. There are two
distinct ways to process peripheral I/0 requests; polling and interrupts.

Polling requires the CPU to check each peripheral in the system periodically to see if an I/O
request is pending. However, polling is not a very efficient use of CPU time and in most cases
is detrimental to system throughput.

Interrupts eliminate polling by allowing the peripheral to signal the CPU that it has an I/O
request pending. The CPU then stops execution of the current task, saves its state and begins
executing the peripheral servicing routine (interrupt handler). At the end of the interrupt
handler, the CPU restores its original state and returns to executing the original task.
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The Interrupt Control Unit is responsible for processing interrupts from multiple peripherals
and presenting them to the CPU in an orderly and defined fashion.

8.2. MASTER MODE

A block diagram of the Interrupt Control Unit in Master Mode is shown in Figure 8.1.

TIMER TIMER TIMER DMA DMA : INT T
INTERRUPT
PRIORITY
RESOLVER
_ VECTOR
GENERATION
TO CPU ‘ LOGIC
INTERRUPT REQUEST

s

L __FBUS 1

Figure 8.1. Interrupt Control Unit Block Diagram

8.2.1. GENERIC FUNCTIONS IN MASTER MODE

There are several functions of the Interrupt Control Unit which are common among most
interrupt controllers. This section covers how these generic funct1ons are implemented on the
Interrupt Control Unit.

8.2.1.1. INTERRUPT MASKING

There are several instances where a programmer may want to disable an interrupt source
temporarily. Executing time-critical sections of code or servicing a high priority task are
common examples of when interrupt sources may need to be disabled. This is called interrupt
masking. All interrupts from the Interrupt Control Unit may be globally masked or selectively
masked on an individual basis.
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8.2.1.1.1. GLOBAL MASKING OF INTERRUPT SOURCES

The Interrupt Enable Bit in the Program Status Word globally enables or disables the
maskable interrupt request from the Interrupt Control Unit. The programmer controls the
Interrupt Enable Bit by using the STI (Set Interrupt) and the CLI (Clear Interrupt) instructions.

8.2.1.1.2. INDIVIDUAL MASKING OF INTERRUPT SOURCES

In addition to the Interrupt Enable Bit, each interrupt source can be individually enabled or
disabled. The Interrupt Mask Register has a single bit for each interrupt source. By setting or
clearing a bit in the Interrupt Mask Register, the programmer can selectively mask or unmask
the corresponding interrupt source.

8.2.1.2. INTERRUPT PRIORITY

One of the critical functions of the Interrupt Control Unit is to prioritize interrupt requests.
Priority determines which interrupt request is serviced first if multiple interrupts are pending.
In many systems, it is possible that an interrupt handler may itself be interrupted by another
interrupt source. This is known as interrupt nesting. When nesting interrupts, priotity
determines if an interrupt source can preempt an interrupt handler which is currently
executing.

An interrupt source is assigned a priority between zero and seven. Zero is the highest possible
priority and seven is the lowest. After reset, the interrupts default to the priority shown in
Table 8.1. Because the timers share an interrupt source, they also share a priority. Within the
assigned priority, they are prioritized relative to each other. Timer 0 has the highest relative
priority, Timer 2 the lowest. ,

Different priorities can be assigned for each source. This is done by programming the Interrupt
Control Register with a new priority. The priority must be between zero and seven. Interrupt
sources can be programmed to share the same priority. The Interrupt Control Unit handles this
by using the default priorities within the shared priority level. For example, assume INTO and
INT1 are programmed to priority seven. INTO is serviced first because it has the higher default
priority.

Interrupt sources can also be masked on the basis of their priority. The Priority Mask Register
masks all interrupts with a lower priority than its programmed value. After reset, the Priority
Mask Register contains priority seven, effectively enabling interrupts of any priority. The
register can then be programmed with any valid priority.
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Table 8.1. Default Interrupt Priorities

Interrupt Name Relative
Priority
Timer 0 0(a)
Timer 1 0 (b)
Timer 2 0(c)
DMAO 1
DMA1 2
INTO 3
INT1 4
INT2 5
INT3 6
8.2.1.2.1. OPERATION WHEN INTERRUPT NESTING IS NOT ENABLED

When entering an interrupt handler, the Program Status Word is pushed onto the stack. The
Interrupt Enable Bit is cleared. The processor enters all interrupt handlers with maskable
interrupts disabled. Maskable interrupts will not be enabled again until either the IRET
instruction restores the Interrupt Enable Bit or the programmer explicitly enables interrupts.
Enabling maskable interrupts within an interrupt handler allows interrupts to be nested.
Otherwise, interrupts are processed sequentially; an interrupt handler must finish before
another executes. g

The simplest way to use the Interrupt Control Unit is when nesting is not needed. The
operation and servicing of all sources of maskable interrupts is straightforward. However, the
application tradeoff is that an interrupt handler will finish executing even if a higher priority
interrupt occurs. This can add considerable latency to the higher priority interrupt.

In simplest terms, the Interrupt Control Unit asserts the maskable interrupt request to the CPU
and waits for the interrupt acknowledge. When the Interrupt Control Unit receives the
acknowledge, it presents the highest ‘priority unmasked interrupt type at that time to the CPU.
The CPU then executes the interrupt handler for that interrupt. Because the Interrupt Enable
Bit is never set within the interrupt handler, the interrupt handler can never be interrupted.

8.2.1.2.2. OPERATION WHEN NESTING INTERRUPTS

The function of the Interrupt Control Unit is more complicated when nesting interrupts. An
interrupt now can occur within an interrupt handler. The term used here is an interrupt
preempting another interrupt. The following rules apply for nesting interrupts:
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e Aninterrupt source can only preempt other interrupts of equal or higher priority.

e An interrupt source cannot preempt itself. The interrupt handler must finish executing
before the interrupt is serviced again. (An exception to this is Special Fully Nested Mode,
which is covered in Section 8.3.3.1)

8.3. MASTER MODE OPERATION

This section covers the process in which the Interrupt Control Unit receives interrupts and
asserts the Maskable Interrupt Request to the CPU.

8.3.1. TYPICAL INTERRUPT SEQUENCE

When the Interrupt Control Unit first detects an interrupt, it sets the corresponding bit in the
Interrupt Request Register. That interrupt is pending or waiting to be serviced. The Interrupt
Control Unit checks all pending interrupt sources. If the interrupt is not masked and it meets
the priority criteria (see Section 8.3.2 on Priority Resolution), the Interrupt Control Unit
asserts the maskable interrupt request to the CPU.

The Interrupt Control Unit then waits for the interrupt acknowledge from the CPU. At that
time, it passes the interrupt type to the CPU and the interrupt processing sequence takes place.
See Section 2.3.1 for a detailed explanation of the interrupt processing sequence. The Interrupt
Control Unit always passes the highest priority interrupt vector at the time the acknowledge is
received. If a higher priority interrupt occurs before the interrupt acknowledge, the higher
priority interrupt has precedence.

When the interrupt acknowledge occurs, the corresponding bit in the Interrupt Request
Register is cleared. The corresponding bit in the In-Service Register is set. The In-Service
Register keeps track of which interrupt handlers are being processed. At the end of Interrupt
Handler, the programmer must explicitly clear the bit in the In-Service Register by issuing an
End-Of-Interrupt (EOI) command. If the bit remains set, the Interrupt Control Unit cannot
process any more interrupts from that source.

8.3.2. PRIORITY RESOLUTION

The criteria for asserting the maskable interrupt request to the CPU is somewhat complicated.
The complexity is needed to support interrupt nesting. First, an interrupt occurs and the
corresponding bit is set in the Interrupt Request Register. The Interrupt Control Unit then
asserts the maskable interrupt request to the CPU based on the following criteria:

1. The interrupt is not masked.

2. The interrupt has higher priority than the Priority Mask Register.
3. The interrupt must not have its own In-Service bit set.
4.

An interrupt has equal or higher priority than any interrupt whose In-Service bit is set.
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The In-Service Register keeps track of any currently executing interrupt handler. The Interrupt
Control Unit uses this information to decide if another interrupt source has enough priority to
preempt an interrupt handler that is currently executing.

The following example illustrates the priority resolution:

The initial conditions are:

The Interrupt Control Unit has been initialized.

There are no pending interrupts.

No bits are set in the In-Service Register.

All interrupts are unmasked and the Interrupt Enable bit is set.

The default priority scheme is used.

- The Priority Mask Register is set to the lowest priority (seven).

A low to high transition on INTO sets its bit in the Interrupt Request Register. The
interrupt is now pending.

Because INTO is the only interrupt pending, it must meet all the priority criteria. The
Interrupt Control Unit asserts the interrupt request' to the CPU and waits for an
acknowledge.

The CPU acknowledges the interrupt. The Interrupt Control Unit passes the interrupt type
(in this case type 12) to the CPU.

The Interrupt Control Unit clears the INTO in the Interrupt Request Register and sets the
INTO bit in the In-Service Register.

The CPU executes the interrupt processing sequence and begins executing the interrupt
handler for INTO.

During execution of the interrupt handler, a low to high transition on INT3 sets its bit in
the Interrupt Request Register.

INT3 has lower priority than INTO, whose interrupt handler is currently executing
(INTO’s .In-Service bit is set). INT3 does not meet the priority criteria and thus no
interrupt request is sent to the CPU.. If INT3 had been programmed with an equal or
higher priority than INTO, the interrupt request would have been sent to the CPU. INT3
remains pending in the Interrupt Request Register.

The INTO interrupt handler completes and an EOI command clears the INTO bit in the In-
Service Register. .

INTS3 is still pending and now meets all the priority criteria. An interrupt request is sent to
the CPU and the process begins again.
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8.3.2.1. INTERRUPTS WHICH SHARE A SINGLE SOURCE

Multiple interrupt requests can share a single source input to the Interrupt Control Unit (the
three timer interrupts, for example). Although these interrupts share a source input, each has
its own interrupt vector. The actual vectoring sequence is transparent to the user (i.e., when a
Timer0Q interrupt occurs, the TimerO interrupt handler gets executed). The application
consequences of how these interrupts get prioritized and serviced is covered in this section.
We will use the three timer interrupts as an example.

The Interrupt Status Register acts as a second level request register to process the three timer
interrupts. The Interrupt Status Register contains a bit for each timer interrupt. Lets assume a
timer interrupt occurs. The specific bit for that timer in the Interrupt Status Register and the
shared timer interrupt bit in the Interrupt Request Register are both set. Now the shared timer
interrupt is processed like any other interrupt source. Multiple timer interrupt bits can be set at
one time in the Interrupt Status Register.

When the shared interrupt is acknowledged, the highest priority timer interrupt at that time
gets serviced first (see Table 8.1). The highest priority timer bit is cleared in the Interrupt
Status Register. Any other timer interrupts remain pending and their bits set. If only one timer
interrupt is pending, the timer bit in the Interrupt Request Register is also cleared. Otherwise,
it remains set, signalling other timer interrupts are pending.

The shared In-Service Bit is set when the timer interrupt is acknowledged. No other timer
interrupts can occur when the In-Service Bit is set. For example, assume a lower priority timer
interrupt is being serviced and a higher priority timer interrupt occurs. The In-Service Bit is
already set for the shared timer interrupt. The higher priority timer interrupt remains pending
until the lower priority timer interrupt handler is finished and the In-Service Bit cleared.

8.3.3. CASCADING WITH EXTERNAL 8259As

For some applications, the number of external interrupt pins on the Interrupt Control Unit is
not enough. The Interrupt Control Unit has Cascade Mode which expands the number of
external interrupt pins using 8259A interrupt controllers. The INT2/INTAO and INT3/INTA1
have two functions. They can function as external interrupt pins or as interrupt acknowledge
outputs in Cascade Mode. INTAO is the acknowledge for INTO and INTAI is the
acknowledge for INT1 as shown in Figure 8.2.

The INT2/INTAO and INT3/INTAL1 are inputs after reset until the pins are configured as
outputs. The pullup resistors insure the INTA pins never float (issuing a spurious interrupt
acknowledge to the 8259A). The value of the resistors must be high enough to prevent
excessive loading on the INTA pins.
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Figure 8.2. Using 8259As in Cascade Mode

8.3.3.1. SPECIAL FULLY NESTED MODE

Special Fully Nested Mode is an optional feature normally used with Cascade Mode and is
only applicable to INTO and INT1. In Special Fully Nested Mode, a request from an interrupt
source is serviced even if its In-Service Bit is set.

In Cascade Mode, up to eight external interrupts share a single interrupt pin under the control
of an 8259A. Special Fully Nested Mode allows the priority structure of the 8259A to be
maintained. For example, let’s assume the CPU is currently servicing a low priority interrupt
from the 8259A. While the interrupt handler is executing, the 8259A receives a higher priority
interrupt from one of its sources. The 8259A applies its own priority criteria to that interrupt
and -asserts its interrupt pin to the Interrupt Control Unit. Special fully Nested Mode would
allow that 8259A interrupt to be serviced even though the In-Service Bit is already set for that
interrupt source. A higher priority interrupt has preempted a lower priority interrupt therefore
fully maintaining interrupt nesting.

Special Fully Nested Mode can still be used without Cascade Mode. This allows a single
external interrupt pin, (either INTO or INT1) to preempt itself.

8.3.4. INTERRUPT ACKNOWLEDGE SEQUENCE

During the interrupt acknowledge sequence, the Interrupt Control Unit passes the interrupt
type to the CPU. The CPU then multiplies the interrupt type by four to get the interrupt vector
address in the interrupt vector table. See Section 2.3.1.

8-8 .




intgl. INTERRUPT CONTROL UNIT

The interrupt types for all the sources are fixed and unalterable (see Table 8.2). The Interrupt
Control Unit passes these types to the CPU internally. The first external indication of the
interrupt acknowledge sequence will be the CPU fetching from the interrupt vector table.

Table 8.2. Fixed Interrupt Types

Interrupt Name Interrupt Type

Timer O 8
Timer 1 18
Timer 2 19
DMAO 10
DMA1 11
INTO 12

INT1 13

INT2 14

INT3 15

In Cascade Mode, the external 8259A supplies the interrupt type to the CPU. Therefore, the
CPU runs an external interrupt acknowledge cycle (see Section 3.5.3) to fetch the interrupt
type from the 8259A.

8.3.5. POLLING

In some applications, it is desirable to poll the Interrupt Control Unit. The CPU asks or polls,
the Interrupt Control Unit for any pending interrupts. The user can then service interrupts
whenever it is convenient. The Interrupt Control Unit has the Poll and Poll Status Registers to
support polling.

By reading the Poll Register, the user gets the type of the highest priority pending interrupt.
Now the user must call that interrupt handler. Reading the poll register also acknowledges the
interrupt. The specific bit in the Request Register is cleared and the bit in the In-Service
Register is set. The Poll Status Register has the same format as the Poll Register. Reading the
Poll Status Register does not acknowledge the interrupt.

8.3.6. EDGE AND LEVEL TRIGGERING

The external interrupt pins (INT3-0) are programmable for either edge or level triggering.
Both types of triggering are active high.

Edge triggering is defined as a zero to one transition on an external interrupt pin. The pin must
remain high until after the CPU acknowledges the interrupt. The external interrupt pin must go
low again to reset the edge detect circuitry (see the data sheet for timing information). No
further interrupts will occur unless the external interrupt pin goes low after being
acknowledged.
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Level triggering is defined as a valid logic one on the external interrupt pin. The logic one
must remain until after the CPU acknowledges the interrupt. Unlike edge triggering, level
triggering will continue to generate interrupts if the pin remains high. A level triggered
external interrupt pin must be deasserted before the EOI command or another interrupt occurs.

8.3.7. ADDITIONAL LATENCY AND RESPONSE TIME OF MASTER MODE

The Interrupt Control Unit adds five clocks to the interrupt latency of the CPU. The Interrupt
Control Unit also -adds an extra 13 clocks to the interrupt response time when the Cascade
Mode is used because the interrupt acknowledge bus cycles must be run. (See Figure 8.3).

Section 2.3.3 defines the interrupt latency and interrupt response time of the 80C186 Modular

CPU.

INTERRUPT PRESENTED TO
INTERRUPT CONTROL UNIT

INTERRUPT PRESENTED TO
CPU

INTA

IDLE

READ IP
IDLE

READ CS
IDLE

PUSH FLAGS
IDLE

PUSH CS
PUSH IP

' IDLE
FIRST INSTRUCTION FETCH

FROM INTERRUPT ROUTINE =~~~ =~ =~~~

Clocks

AV‘-’"V

CASCADE
MODE ONLY

(51F NOT CASCADE MODE)

Total 55

Figure 8.3. Interrupt Control Unit Latency and Response Time
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8.4. MASTER MODE INTERRUPT UNIT PROGRAMMING

The Peripheral Control Block map of the Interrupt Control Unit registers in Master Mode is
shown in Table 8.3. '

Table 8.3. Interrupt Control Unit Registers in Master Mode

Register Name Offset Address
INT3 Control Register 3EH
INT2 Control Register 3CH
INT1 Control Register 3AH
INTO Control Register / 38H
DMAT1 Control Register 36H
DMAO Control Register 34H
Timer Control Register . 32H
Interrupt Status Register 30H
Interrupt Request Register 2EH
In-Service Register 2CH
Priority Mask Register 2AH
Interrupt Mask Register 28H
Poll Status Register 26H
Poll Register 24H
EOI Register 22H

8.4.1. INTERRUPT CONTROL UNIT REGISTER DEFINITIONS

The following sections define the bit-level functionality of the ‘individual Interrupt Control
Unit Registers.
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8.4.1.1. INTERRUPT CONTROL REGISTERS

Each interrupt source has its own Interrupt Control Register (See Figures 8.4-8.6). Each
Interrupt Control Register has three bits which can be programmed with the priority level for
the interrupt source (see Figure 8.4). Also, each register has a mask bit which enables the
interrupt source. The mask bit is the same bit in the Interrupt Mask Register. Modifying one
bit in either register also modifies the other bit.

Register Name: Interrupt ControI'Register (Internal Sources)
Register Mnemonic: TCUCON, DMAOCON, DMA1CON
Register Function: Control Register for the internal interrupt sources.

15 0
P|P
M| M
110
BIT RESET B
MNEMONIC BIT NAME | STATE | FUNCTION
MSK Interrupt 1 Cleared to enable interrupts from this source.
Mask

PM2:0 Priority Level 111 Sets the priority level for this source.
Field

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written to
a logic zero to insure compatibility with future Intel products.

Figure 8.4. Interrupt Control Register Template for Internal Sources

Each Interrupt Control Register for the external interrupt pins also has a LVL bit (see Figure
8.5). The LVL bit selects between Level-triggered and Edge-triggered mode for the
corresponding external interrupt pin. In Edge-triggered Mode, a low to high transition causes
the interrupt. The pin must remain low at least one clock before the low to high transition. The
interrupt pin must still must remain asserted until the CPU acknowledges the interrupt.
Otherwise, the interrupt is lost.

In Level-triggered Mode, an interrupt pin left asserted after the EOI causes another interrupt.
Level-triggered Mode is useful when interrupt requests are wire-ORed to a single interrupt
pin.
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Register Name: Interrupt Control Register (Non-cascadable
external pins)

Register Mnemonic: 12CON, I3CON

Register Function: Control Register for non-cascadable
external interrupt pins.

0-\
5 P|P P}
(M| M| M|
2|10
| |
BIT RESET
MNEMONIC BIT NAME | STATE FUNCTION
LVL Level-trigger 0 0 = Edge-triggered mode
1 = Level-triggered mode
MSK Interrupt 1 Cleared to enable interrupts from this source.

Mask

PM2:0 Priority Level 111 Sets the priority level for this source.
Field

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written to
a logic zero to insure compatibility with future Intel products.

Figure 8.5. Interrupt Control Register Template for
Non-Cascadeable Interrupt Pins

Level-triggered mode must be used when external 8259As are cascaded into the Interrupt
Control Unit. '

To support external 8259As, the INTO and INT1 Interrupt Control Registers have the CAS and

SFNM bits (see Figure 8.6). The CAS bit enables Cascade Mode operation and the SFNM bit
enables the Special Fully Nested Mode.
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Register Name:

Register Mnemonic:
Register Function:

Interrupt Control Register (Cascadable
external pins)

IOCON, I1CON

Control register for the cascadable external
interrupt pins.

0
LM/ P P|P
VIS ' M|M|M
LI Ki2/1 0

BIT RESET
MNEMONIC BIT NAME | STATE FUNCTION
SFNM Special Fully 0 Set to enable Special Fully Nested Mode.
Nested Mode
CAS Cascade 0 Set to enable Cascade Mode.
Mode i
LVL Level-trigger 0 ‘0 = Edge-trigger mode
1 = Level-trigger mode
- MSK Interrupt 1 Cleared to enable interrupts from this source.
Mask
PM2:0 Priority Level 111 Sets the priority level for this interrupt source.
Field

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written to
a logic zero to insure compatibility with future Intel products.

Figure 8.6. Interrupt Control Register Témplate for Cascadeable Interrupt Pins

8.4.1.2. THE INTERRUPT REQUEST REGISTER

The Interrupt Request Register has seven bits, one for each interrupt source (see Figure 8.7).
When an interrupt occurs, the corresponding bit is set in the Interrupt Request Register. The
bit is set whether the interrupt is masked or unmasked. The bit is cleared when the interrupt is !

acknowledged.
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Register Name: Interrupt Request Register
Register Mnemonic: REQST
Register Function: Stores pending interrupt requests.

| | | | ] ‘ D
NIN|[NI N M
T| | T|TI|T A
3|2 (1|0 1
BIT RESET
MNEMONIC BIT NAME | STATE FUNCTION
INT3:0 External 0 When set, the corresponding INT pin has an
Interrupts interrupt pending.
DMA1:0 DMA 0 DMA channel interrupt requests. When set, the -
Interrupts corresponding DMA channel has an interrupt
pending.
TMR Timer 0 Timer/Counter Unit interrupt request. When set,
Interrupt the TCU has an interrupt pending.

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written to
a logic zero to insure compatibility with future Intel products.

Figure 8.7. Interrupt Request Register

For the external interrupt pins, the request must remain asserted until the interrupt is
acknowledged. Otherwise, that bit in the Interrupt Request Register will be cleared and the
interrupt will not be serviced.

8.4.1.3. INTERRUPT MASK REGISTER
The Interrupt Mask Register contains a mask bit for each interrupt source (see Figure 8.8). The

bit for an interrupt source is the same as the mask bit in the Interrupt Control Register. The
Interrupt Mask Register may be read or written.
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Register Name: - Interrupt Mask Register
Register Mnemonic: IMASK
Register Function: Masks individual interrupt sources.

BIT " | RESET
MNEMONIC BIT NAME | STATE FUNCTION
INT3:0 External 1111 | Set to mask interrupt requests from the
ilterrupts corresponding INT pin.
DMAT1:0 DMA 11 Set to mask interrupt requests from the
Interrupts corresponding DMA channel.
TMR Timer . A1 Set to mask interrupt requests from the
Interrupt Timer/Counter Unit.

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written to
a logic zero to insure compatibility with future Intel products.

Figure 8.8. Interrupt Mask Register ‘

8.4.1.4. PRIORITY MASK REGISTER |

The Priority Mask Register (see Figure 8.9) indicates the lowest interrupt priority that will be
serviced. Any interrupts with -a lower priority will be masked. After reset, the Priority Mask
Register is set to the lowest priority (seven) to enable interrupts of any priority.

8-16



intel. INTERRUPT CONTROL UNIT

Register Name: Priority Mask Register
Register Mnemonic: PRIMSK
Register Function: Masks all interrupts with a lower priority.

15

BIT RESET
MNEMONIC BIT NAME | STATE FUNCTION

PM2:0 Priority Mask 111 Interrupts with a lower priority than PM2:0 will
‘ Field not be serviced.

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written to
a logic zero to insure compatibility with future Intel products.

Figure 8.9. Priority Mask Register

8.4.1.5. IN-SERVICE REGISTER

The In-Service Register (see Figure 8.10) has a bit for each interrupt source. The bits indicate
which source’s interrupt handlers are executing. The bit in the In-Service Register is set when
the interrupt is acknowledged. The bit is then cleared at the end of the interrupt handler by the
End-Of-Interrupt (EOI) command.

The Interrupt Control Unit uses the In-Service Register to support interrupt nesting.
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Register Name: In-Service Register
Register Mnemonic: INSERV
Register Function: Indicates which interrupt handlers are

currently in process.

| | | | D D
N | N | N|N MM
T T | T7T|T A A
3|21, 0 1.0
BIT RESET
MNEMONIC BIT NAME | STATE ) FUNCTION
INT3:0 External 0 When set, the corresponding INT pin’s interrupt
Interrupts request is in-service.
DMA1:0 DMA 0 When set, the corresponding DMA interrupt
Interrupts request is in-service.
TMR Timer 0 When set, the corresponding Timer interrupt
Interrupt request is in-service.

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written to
a logic zero to insure compatibility with future Intel products.

Figure 8.10. In-Service Register ,

8.4.1.6. POLL AND POLL STATUS REGISTERS

The Poll and Poll Status Registers (see Figures 8.11 and 8.12) support polling the Interrupt
Control Unit. They indicate an interrupt is pending and also the type of the highest priority
pending interrupt. The programmer reads these registers to service interrupts through software.

The Poll Register and Poll Status Register both contain the same information. If an interrupt of

sufficient priority is pending, the IREQ bit is set and the highest priority vector type is
contained in bits VT4:0.
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Register Name: Poll Register
Register Mnemonic: POLL
Register Function: Read to check for pending interrupts when

polling.
_ 0
\ ViV Vv Vv
T T T\ T7T|T
4 3/ 210
BIT RESET
MNEMONIC BIT NAME | STATE FUNCTION
IREQ Interrupt 0 Set if an interrupt is pending.
Request
VT4:0 Poll Status 0 Indicate the type of the highest pending
interrupt. Reading the Poll Register
acknowledges highest pending interrupt.

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written to
a logic zero to insure compatibility with future Intel products.

Figure 8.11. Poll Register

Reading the Poll Register acknowledges the pending interrupt the same as if the CPU had
started the interrupt vectoring sequence. The processor will not actually run any interrupt
acknowledge sequence or fetch the vector from the vector table. The user has the
responsibility to use this information and execute the proper routine to service the interrupt.
The Interrupt Control Unit updates the Interrupt Request, In-Service, Poll and Poll Status
Registers the same as in the normal interrupt acknowledge sequence.

The Poll Status Register may be read to get the same information as the Poll Register.

However, the interrupt is not actually acknowledged and none of the other registers in the
Interrupt Control Unit will be modified. ‘
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Register Name: Poll Status Register
Register Mnemonic: POLLSTS
Register Function: Read to check for pending interrupts when polling.
0
|'v
T
o

BIT RESET
MNEMONIC BIT NAME | STATE . FUNCTION
IREQ Interrupt 0 Set if an interrupt is pending.
Request
VT4:.0 Poll Status 0 Indicate the type of the highest pending .
: ) interrupt. Reading the poll status register will
NOT acknowledge the interrupt.

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written to
a logic zero to insure compatibility with future Intel products.

Figure 8.12. Poll Status Register

8.4.1.7. END-OF-INTERRUPT REGISTER

The End-Of-Interrupt Register (see Figure 8.13) is used to issue the EOI (End-Of-Interrupt)
command to the Interrupt Control Unit. The EOI command is usually issued at the end of an
interrupt handler and clears the bit in the In-Service Register.

There are two types of EOISs, specific and non-specific. A non-specific EOI simply clears the

In-Service bit of the highest priority interrupt. A non-specific EOI is performed by writing a
word to the End-Of-Interrupt Register with the NSPEC bit set (8000H).
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Register Name: End of Interrupt Register
Register Mnemonic: EOI
Register Function: Used to issue the EOl command.

BIT RESET
MNEMONIC BIT NAME | STATE FUNCTION
NSPEC Non-specific 0 Set to issue a non-specific EOI.
EOI

VT4:0 Interrupt Type 0 Specifies the interrupt type when issuing a
Number specific EOL.

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written to
‘a logic zero to insure compatibility with future Intel products.

Figure 8.13. End-Of-Interrupt Register

A specific EOI clears a particular bit in the In-Service Register. To perform a specific EOI,
write a word to the End-Of-Interrupt Register with the interrupt type in bits VT4:0 of the In-
Service bit to be cleared. The NSPEC bit must be cleared when issuing specific EOI
command. ‘

The timer interrupts share a bit in the In-Service Register. Write the interrupt type 8 to the
End-Of-Interrupt Register to clear any timer interrupt with a specific EOL

8.4.1.8. INTERRUPT STATUS REGISTER

All three timer interrupts share a single interrupt source. The Interrupt Status Register
distinguishes between the interrupts which share an interrupt source (see Figure 8.14). The bits
in the Interrupt Status Register are cleared when the interrupt request is acknowledged. More
than one of these bits may be set at a time.
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Register Name: Interrupt Status Register

Register Mnemonic: INTSTS

Register Function: Indicates which interrupt(s) is(are) pending for
those interrupts which share a source.

MDA
s |
olnZH

BIT RESET

MNEMONIC BIT NAME | STATE ~ FUNCTION
k DHLT DMA Halt 0 Set to prevent any DMA activity.
" TMR2:0 Timer ' 0 Set when a timer has an interrupt request
Interrupts pending.

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written to
a logic zero to insure compatibility with future Intel products.

Figure 8.14. Interrubt Status Register

8.4.2. INTERRUPT CONTROL UNIT INITIALIZATION SEQUENCE
To initialize the Interrupt Control Unit, follow these steps:

1. Determine which interrupt sources will be utilized. ‘
2. Determine if the default priority scheme will be used or figure out your own priority.
3. [Initialize the Interrupt Control Registers for all used interrupt sources.

A. For the external interrupt pins, determine whether edge or level triggered will be
used. '

B. For either INTO or INT1 determine whether The Cascade Mode and/or the Special
Fully Nested Mode will be used.

C. If using your own priority scheme, program the priority levels.
4. Initialize the Priority Mask Register if seven is too low a priority for your application.
Unmask all desired interrupt sources with the Interrupt Mask Register.

6. Set the Interrupt Enable bit by executing the STI instruction.
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8.4.3. MASTER MODE INITIALIZATION EXAMPLE

The following example shows how to initialize the Interrupt Control Unit.

Smod186

name example_80186_ICU_initialization

;This routine configures the interrupt controller to provide
;two cascaded interrupt inputs (through an external 8259A
;connected to INTO0 and INTAO#) and two direct interrupt inputs
;connected to INT1 and INT3. The default priorities are used.
;The example assumes that the register addresses have been
;properly defined.

’

code segment
assume cs:code
set_int_ . proc near
push dx
push ax
mov ax,0100111B :Cascade Mode
mov dx, TOCON ; INTO Control Register
out dx, ax
mov ax,01001101B ;Unmask INT1 and INT3
mov dx, IMASK
out dx, ax
pop ax
pop dx
ret
set_int_ endp
code ends
end

Example 8.1. Initializing The Interrupt Control Unit

8.5. SLAVE MODE

Although Master Mode is the most common mode used in the Interrupt Control Unit, Slave
Mode has some unique features that make it useful in larger system designs. In Slave Mode,
an external 8259A acts as the master interrupt controller. ‘The 8259A now controls the
maskable interrupt input to the CPU. The Interrupt Control Unit acts as an interrupt input to
the 8259A. In simplest terms, the Interrupt Control Unit behaves like a cascaded 8259A to the
master 8259A (See Figure 8.15).
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, ce 8259A/
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Figure 8.15. Interrupt Control Unit In Slave Mode
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INTERRUPT REQUEST
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Figure 8.16. Interrupt Sources In Slave Mode ‘
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8.5.2. SLAVE MODE PROGRAMMING

Slave Mode adds one new register. Most of the registers retain the same functionality as in
Master Mode. Many of the bit positions have changed, to account for each timer interrupt now
being its own source to the Interrupt Control Unit. The register positions in the Peripheral
Control Block have also changed (See Table 8.4).

8.5.2.1. INTERRUPT VECTOR REGISTER

The Interrupt Vector Register (see Figure 8.17) is the additional register in Slave Mode. In
Slave Mode, the interrupt vector types are programmable. While in Master Mode, the interrupt
vector types are fixed and unalterable. The Interrupt Vector Register specifies the five most
significant bits of the interrupt vector type. The three least significant bits are fixed according
to Table 8.5.

Table 8.4. Interrupt Control Unit Registers In Slave Mode

Register Name Offset Address
Timer 2 Control Register 3AH
Timer 1 Control Register 38H
DMA1 Control Register 36H
DMAO Control Register 34H
Timer 0 Control Register 32H
Interrupt Status Register 30H
Interrupt Request Register 2EH
In-Service Register 2CH
Priority Mask Register 2AH
Interrupt Mask Register 28H
EOI Register 22H
Interrupt Vector Register 20H

Table 8.5. Slave Mode Interrupt Type Bits

Interrupt Source Type bits 2-0
Timer 0 000
(reserved) 001
DMAO 010
DMAT1 011
Timer 1 100
Timer 2 101
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Register Name: Interrupt Vector Register (Slave Mode)
Register Mnemonic: INTVEC
Register Function: Sets the five most significant bits of the

' ~interrupt types for the interrupt sources in

v

Slave Mode.
15 i ‘ 0
T T/ T!T
3/ 2]1]0
BIT RESET
MNEMONIC BIT NAME | STATE FUNCTION
T4.0 Interrupt Type 0 Sets the five most significant bits of the interrupt
Field types for the internal sources.

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written to
a logic zero to insure compatibility with future Intel products.

Figure 8.17. Interrupt Vector Register

8.5.2.2. END-OF-INTERRUPT REGISTER

The End-Of-Interrupt Register (see Figure 8.18) retains the same function in Slave Mode.
However, only specific EOIs can be issued to the Interrupt Control Register in Slave Mode.
Non-specific EOIs are not supported. To clear an In-Service Bit in Slave Mode, write the three
least significant bits of the interrupt type to VT2:0 in the End-Of-Interrupt Register.

8.5.2.3. OTHER REGISTERS IN SLAVE MODE

The Interrupt Control, Interrupt Request, Interrupt Mask, In-Service and Interrupt Status
Registers all retain the same functionality in Slave Mode as in Master Mode. The individual
bits are different to account for the addition of the separate timer sources and the deletion of
the external interrupt pins (see Figure 8.19). .

The Priority Mask Register maintains the exact function and bit definitions in Slave Mode as
in Master Mode.

The Poll and Poll Status Registers are not supported in Slave Mode.
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Register Name: End of Interrupt Register (Slave Mode)
Register Mnemonic: EOI
Register Function: Used to issue the EOl command in Slave
Mode.
N 0
v v
T T
1,0

BIT RESET
MNEMONIC BIT NAME | STATE FUNCTION

VT2:0 Interrupt Type 0 Write three LSBs of the interrupt type to VT2:0 to
Number issue an EOI in Slave Mode.

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written to
a logic zero to insure compatibility with future Intel products.

Figure 8.18. End-Of-Interrupt Register In Slave Mode

Figure 8.19. Other Registers In Slave Mode

8.5.2.4. INTERRUPT VECTORING IN SLAVE MODE

The external 8259A acts as the master interrupt controller in Slave Mode. Therefore, interrupt
acknowledge cycles must be run for every interrupt. This includes any interrupts from the
integrated peripherals. During the first interrupt acknowledge cycle, the external 8259A
determines which slave interrupt controller has the highest priority interrupt request. The
external 8259A then drives the address of that interrupt controller onto its CAS2:0 pins (see
Figure 8.20). External logic must decode the correct slave address of the Interrupt Control
Unit from the CAS2:0 signals to drive the SELECT pin.
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:T1ETz.'Ts:T4:Ti:T1:T1:T2:T35T4:

i
'
'
'
1

S082 ' INTA [

Tk EE

INTAO ! : [ 5 A : T
seeCT | T R L .
LOCK — : : 5 ; 5 ’ F —
CAS20 | X SLAVE CASCADE ADDRESS FROM 8259A X
NOTES:
1. INT1/SELECT HAS THE SELECT FUNCTION IN SLAVE MODE
2. INT2/INTAO HAS THE INTAO FUNCTION IN SLAVE MODE
3. CASCADE ADDRESS IS DRIVEN BY THE EXTERNAL 8259A
4. SELECT MUST BE DRIVEN BEFORE PHASE 2 OF T2 OF THE SECOND INTA
5. SELECT READ BY PROCESSOR
6. ALE IS GENERATED FOR EACH INTA
7. RD IS INACTIVE

Figure 8.20. Interrupt Vectoring In Slave Mode

The SELECT pin is used as the slave-select input to the Interrupt Control Unit. During the
second interrupt acknowledge cycle, the slave interrupt controller with the highest priority
transfers the interrupt type to the CPU of its highest priority interrupt. If the Interrupt Control
Unit is selected, it passes the interrupt type internally to the CPU. However, the interrupt
acknowledge cycle still must be run for the benefit of the external 8259A.

External interrupt acknowledge cycles must be run for every maskable interrupt. Therefore,
the interrupt response time for every interrupt will be 55 clocks. This is shown in Figure 8.21.
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Figure 8.21. Slave Mode Interrupt Response Time
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CHAPTER 9
TIMER / COUNTER UNIT

The Timer/Counter Unit can be used in many applications. Some of these applications include:
a real-time clock, a square-wave generator and a digital one-shot. All of these can be
implemented in a system design. A real-time clock can be used to update time-dependent
memory variables. A square-wave generator can be used to provide a system clock tick for
peripheral devices. Code examples configuring the Timer/Counter Unit to function as a real-
time clock, a square-wave generator, and a digital one-shot are provided in Section 9.4.

TOIN T1IN
TRANSITION TRANSITION
LATCH/ LATCH/

SYNCHRONIZER | |SYNCHRONIZER

| |
Y ¥

TIMER 0
<> i € —>foutput LatcH 3 1o out
| cOUNTER
CPU 2 TIMER 1
REGISTERS [€>] ELEMENT
TIMER2 | —>ouTPUT LATCH -3 JT10UT
REGISTERS
ﬁ CPU ‘—T .| INTERRUPT
CLOCK iy

Figure 9.1. Timer/Counter Unit Block Diagram

9.1. FUNCTIONAL OVERVIEW

The Timer/Counter Unit is composed of three independent 16-bit timers (see Figure 9.1).
These timers operate independently of the CPU. The internal Timer/Counter Unit can be
modeled as a single counter element, time multiplexed to three register banks. The unit is
serviced over 4 clock periods, one timer during each clock with an idle clock at the end (see
Figure 9.2). No connection exists between the counter element’s sequencing through timer
register banks and the Bus Interface Unit’s sequencing through T-states. Timer operation and
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bus interface operation are asynchronous. This time multiplexed scheme results in a 2 1/2 to 6
1/2 CLKOUT period delay from timer input to timer output.

The register banks are dual-ported between the counter element and the CPU. During a given
bus cycle, the counter element and CPU may both access the register banks. Counter element
and CPU accesses to the register banks are synchronized.

TIMER 0 TIMER 1 TIMER 2 TIMER 0 TIMER 1 TIMER 2 TIMER 0
SERVICED ~ SERVICED  SERVICED DEAD  SERVICED ~ SERVICED  SERVICED DEAD SERVICED
P Y g A N

TOIN

T1IN
TOOUT XX ) L

THouT |

NOTES: 1. TOIN resolution time (setup time met).

. T1IN resolution time (setup time not met).

. Modified count value written into Timer 0 count register.

. T1IN resolution time, count value written into Timer 1 count register.

. T1IN resolution time.

A WN =

Figure 9.2. Counter Element Multiplexing and Timer Input Synchi‘onization

Each timer keeps its own running count and has a user-defined maximum count value. Timers
0 and 1 can use one maximum count value (single maximum count mode) or two alternating
maximum count values (dual maximum count mode). Timer 2 can only use one maximum
count value. The control register for each timer determines the counting mode to be used.
When a timer is serviced, its present count value is incremented and compared to the
maximum count for that timer. If these two values match, the count value resets to zero. The
timers can be configured to either stop after a single cycle or run continuously.

9-2
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EXTERNAL
CLOCKING
?

(EX;|'=1)

RETRIGGER
?
(RTG=1)
LOTOHI
{oTOHI NO TRANSITION
SINC
NO TIMER INPUT TRANSITION YES GLEAR COUNT ON IN;l_ﬂS' ;‘r\\l’ S
AT HIGH LEVEL ON INPUT PIN SINCE REGISTER
2 LAST SERVICE ?
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SET TIMER
RUNNING FLAG
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TIMER RUNNING
FLAG SET
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STATE COUNTER ~
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Figure 9.3(a). Timers 0 and 1 Flow Chart
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Figure 9.3(b). Timers 0 and 1 Flow Chart (Continued)
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Timers 0 and 1 are functionally identical. Each has a latched, synchronized input pin and a
single output pin. Each timer may be clocked internally or externally. Internally, the timer may
increment at either 1/4 CLKOUT frequency or be prescaled by Timer 2. If a timer is prescaled
by Timer 2, when Timer 2 reaches its maximum count value, the timer increments. When
configured for internal clocking, the Timer/Counter Unit uses the input pins to either enable
timer counting or retrigger the associated timer. Externally, a timer will increment on LOW-
TO-HIGH transitions on its input pin (up to 1/4 CLKOUT frequency). A flow chart for Timer
0 and 1 operation is given in Figures 9.3(a) and 9.3(b).

Timers 0 and 1 each have a single output pin. Timer output can be either a single pulse,
indicating the end of a timing cycle, or a variable duty cycle wave. These two output options
correspond to single maximum count mode and dual maximum count mode, respectively (see
Figure 9.4). Interrupts can be generated at the end of every timing cycle.

Timer 2 has no input or output pins and may only be operated in single maximum count mode.
It may be used as a free-running clock and a prescaler to Timers O and 1. Timer 2 can only be
clocked internally, at 1/4 CLKOUT frequency. Timer 2 can also generate interrupts at the end
of every timing cycle.

MAXCOUNT A MAXCOUNT B
DUAL MAXIMUM = -
COUNT MODE
ONE CPU
MAXCOUNT A CLOCK
. —— . ——
SINGLE MAXIMUM
COUNT MODE

Figure 9.4. Timer/Counter Unit Output Modes

9.2. PROGRAMMING THE TIMER/COUNTER UNIT

Each timer has three registers: a Timer Control register (see Figures 9.5 and 9.6), a Timer
Count register (see Figure 9.7) and a Timer Maxcount Compare register (see Figure 9.8).
Timers 0 and 1 also have access to an additional Maxcount Compare register. The Timer
Control register controls timer operation. The Timer Count register holds the current timer
count value. The Maxcount Compare register holds the maximum timer count value.
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Register Name: Timer 0 and 1 Control Registers
Register Mnemonic: TOCON, T1CON
Register Function: Defines Timer 0 and 1 operation.

BIT - RESET
MNEMONIC BIT NAME | STATE : FUNCTION

EN Enable 0 If set, the timer is enabled. This bit cannot be written to
unless the INH bit is set.

INH Inhibit X If set, writes to the Enable bit are allowed. If clear,
writes to the Enable bit are ignored. This bit is not
stored and is always read as zero.

! INT Interrupt X If set, an interrupt request is generated when the
Count register equals a maximum count. If clear, the
timer will not issue interrupt requests.

RIU ‘Register In X If set, Maxcount Compare register B is being used. If

Use clear, Maxcount Compare register A is being used.

MC Maximum X If set, counter has reached a maximum count. If clear,

Count counter has not reached a maximum count.

RTG Retrigger X If set, 0 to 1 edge on TxIN resets count. If clear, high
input enables counting. This bit is ignored with external
clocking (EXT=1). ’

P Prescaler X If set, timer is prescaled by Timer 2. If clear, timer
counts 1/4 CLKOUT. This bit is ignored with external
clocking (EXT=1).

EXT External X If set, use external clock. If clear, use internal clock.

Clock -
ALT Alternate X If set, count to Maxcount Compare A, reset Count
Compare register to zero, count to Maxcount Compare B, reset
Register Count register to zero again. If clear, count to
Maxcount Compare A and reset Count register to zero.
CONT Continuous X If set, timer runs continuously. If clear, EN is cleared
Mode after each timer counting sequence.

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written to a logic
zero to insure compatibility with future Intel products.

Figure 9.5. Timer 0 and Timer 1 Control Registers
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Register Name:
Register Mhemonic:
Register Function:

Timer 2 Control Register
T2CON
Defines Timer 2 operation.

15 0

E C

N o

N
T
BIT RESET
MNEMONIC BIT NAME | STATE FUNCTION

EN Enable 0 If set, the timer is enabled. If clear, the timer is

disabled. This bit cannot be written to unless the
INH bit is set.

IN Inhibit X If set, writes to the Enable bit are allowed. If
clear, writes to the Enable bit are ignored. This
bit is not stored and is always read as zero.

INT Interrupt X If set, an interrupt request is generated when the

. Count register equals a maximum count. If clear,
the timer will not issue interrupt requests.

MC Maximum X If set, counter has reached a maximum count. If

Count clear, counter has not reached a maximum
count. This bit must be cleared by the user after
maximum count is reached.

CONT Continuous X If set, timer runs continuously. If clear, EN is

Mode cleared after each timer counting sequence.

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written to
a logic zero to insure compatibility with future Intel products.

9.2.1.

Figure 9.6. Timer 2 Control Register

INITIALIZATION

When initializing the Timer/Counter Unit, the following sequence is suggested:

1. If timer interrupts will be used, program interrupt vectors into the Interrupt Vector Table.
2. Clear the Timer Count register.

Set Timer Maxcount Compare register to maximum count value. Make sure to program

Maxcount Compare A and B if dual maximum count mode is used.

4. Program Timer Control register to enable timer.
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Register Name: Timer Count Register
Register Mnemonic: TOCNT, TICNT, T2CNT
Register Function: Contains the current timer count.

B | T o] I °
fT!TiT‘T‘T T;TiT%T.TTTMT T
iC:C|CsC‘CCC‘CiCCCC;1CCCC
!1‘1|1‘1;119|a\7654:;3210
‘5‘4\3;211 0 L é‘

‘ i | { ! | | | ‘

BIT RESET f
MNEMONIC | BIT NAME | STATE FUNCTION

TC15:0 Timer Count | XXXXH | Register contains the current count of the
‘ Value associated timer.

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written to
a logic zero to insure compatibility with future Intel products.

Figure 9.7. Timer Count Registers

Register Name: Timer Maxcount Compare Register
Register Mnemonic: TOCMPA, TOCMPB, TICMPA, T1ICMPB, T2CMPA
Register Function: Contains timer maximum count value.

15 ‘ _ | . , ‘ . : | 0
'TiT’TiTirT‘T!T‘TI?‘T?T,|T’T‘1T5T!T!T|
C!C‘CC‘=CCCCCCC‘CCCCCI
11i151?1_|111‘9|8‘}7‘6‘5§4§‘312!1‘0
5 4 3 2 |1 0] L I N A R ‘
N I N N O I .l ||
BIT RESET
MNEMONIC BIT NAME | STATE FUNCTION
TC15:0 Timer XXXXH | Register contains the maximum value a timer
Compare will count to before resetting its Count register to
Value zero.

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written to
a logic zero to insure compatibility with future Intel products.

Figure 9.8. Timer Maxcount Compare Registers

The programmer must clear the Timer Count register before enabling the timer because the
count register is undefined at reset. This ensures counting begins at zero.
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When using Timer 2 to prescale another timer, Timer 2 should be enabled last. If Timer 2 is
enabled first, it will be at an unknown point in its timing cycle when the timer to be prescaled
is enabled. This results in an unpredictable duration of the first timing cycle for the prescaled
timer.

9.2.2. CLOCK SOURCES

The 16-bit Timer Count register increments once for each timer event. A timer event can be a
LOW-to-HIGH transition on a timer input pin (Timers 0 and 1), a pulse generated every fourth
CPU Clock (all timers) or a time-out of Timer 2 (Timers 0 and 1). Up to 65536 (21¢) events
may be counted.

Timers 0 and 1 can be programmed to count LOW-TO-HIGH transitions on their input pins as
timer events by setting the External (EXT) bit in their control registers. Transitions on the
external pin are synchronized to the CPU clock before being presented to the timer circuitry.
The timer counts transitions on this pin. The input signal must go LOW, then HIGH, to cause
the timer to increment. The maximum count-rate for the timers is 1/4 the CPU clock rate
(measured at CLKOUT) because the timers are only serviced once every four clocks.

All timers can use transitions of the CPU clock as timer events. For internal clocking, the
timer increments every fourth CPU clock due to the counter element’s time-multiplexed
servicing scheme. Timer 2 may only use the internal clock as a timer event.

Timers 0 and 1 can also use Timer 2 reaching its maximum count as a timer event. In this
configuration, Timer O or Timer 1 increments each time Timer 2 reaches its maximum count.
See Table 9.1 for a summary of clock sources for Timers 0 and 1.

Timer 2 must be initialized and running in order to increment values in other
timer/counters.

Table 9.1. Timer 0 and 1 Clock Sources

EXT P CLOCK SOURCE
0 ' 0 Timer clocked internally at 1/4 CLKOUT
frequency.
0 1 Timer clocked internally, prescaled by Timer 2.
1 X Timer clocked externally at up to 1/4 CLKOUT
frequency.

9.2.3. COUNTING SEQUENCE

All timers have a Timer Count register and a Maxcount Compare A register. Timers 0 and 1
also have access to a second Maxcount Compare B register. Whenever the contents of the
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Timer Count register equal the contents of the Maxcount Compare register, the count register
resets to zero. The maximum count value will never be stored in the count register. This is
. because the counter element increments, compares and resets a timer in one clock cycle.
Therefore, the maximum value is never written back to the count register. The Maxcount
Compare register may be written to any time during timer operation.

The timer counting from its initial count (usually zero) to its maximum count (either

Maxcount Compare A or B) and resetting to zero defines one timing cycle. A Maxcount

Compare value of 0 implies a maximum count of 65536, a Maxcount Compare value of 1
implies a maximum count of 1, etc.

Only equivalence between the Timer Count and Maxcount Compare registers is checked. The
~ count does not reset to zero if its value is greater than the maximum count. If the count value
exceeds the Maxcount Compare value, the timer counts to OFFFFH, increments to zero, then
counts to the value in the Maxcount Compare register. Upon reaching a maximum count
value, the Maximum Count (MC) bit in the Timer Control register sets. The MC bit must be
cleared by writing to the Timer Control register, this is not done automatically.

The Timer/Counter Unit may be configured to execute different counting sequences. The
timers may operate in single maximum count mode (all timers) or dual maximum count mode
(Timers 0 and 1 only). They may also be programmed to run continuously in either of these
modes. The Alternate (ALT) bit in the Timer Control register determines the counting modes
used by Timers 0 and 1.

All timers may use single maximum count mode, where only Maxcount Compare A is used.
The timer will count to the value contained in Maxcount Compare A and reset to zero. Timer 2
can only operate in this mode. '

Timers 0 and 1 can also use dual maximum count mode. In this mode, Maxcount Compare A
and Maxcount Compare B are both used. The timer counts to the value contained in Maxcount
Compare A, resets to zero, counts to the value contained in Maxcount Compare B, and resets
to zero again. The Register In Use (RIU) bit in the Timer Control register indicates which
Maxcount Compare register is currently in use.

The timers can be programmed to run contmuously in single maximum count and dual
maximum count modes. The Continiious (CONT) bit in the Timer Control register determines
if a timer is disabled after a single counting sequence.

9.2.3.1. RETRIGGERING

The timer input pins affect timer counting in three ways (see Table 9.2). The programming of
the External (EXT) and Retrigger (RTG); bits in the Timer Control register determines how the
input 31gnals are used. When the timers are clocked internally, the RTG b1t determines if the
input pin enables timer counting or retriggers the current timing cycle
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Table 9.2. Timer Retriggering

EXT RTG TIMER OPERATION

0 0 Timer counts internal events, if input pin remains
high.

0 1 Timer counts internal events, count will reset to
zero on every LOW-to-HIGH transition on the
input pin.

1 X Timer input acts as clock source.

When the EXT and RTG bits are LOW, the timer counts internal timer events. In this mode,
the input is level-sensitive, not edge-sensitive. A LOW-to-HIGH transition on the timer input
is not required for operation. The input pin acts as an external enable. If the input is HIGH, the
timer will count through its sequence, provided the timer remains enabled.

When the EXT bit is LOW and the RTG bit is HIGH, every LOW-to-HIGH transition on the
timer input pin causes the Count register to reset to zero. After the timer is enabled, counting
begins only after the first LOW-to-HIGH transition on the input pin. If another LOW-to-
HIGH transition occurs before the end of the timer cycle, the timer count resets to zero and
the timer cycle begins again. In dual maximum count mode, the Register In Use (RIU) bit does
not clear when a LOW-to-HIGH transition occurs. For example, if the timer retriggers while
Maxcount Compare B is in use, the timer resets to zero and counts to maximum count B
before the RIU bit clears. In dual maximum count mode, the timer retriggering extends
the use of the current Maxcount Compare register.

9.2.4. PULSED AND VARIABLE DUTY CYCLE OUTPUT

Timers 0 and 1 each have an output pin which can perform two functions. First, the output
may be a single pulse, indicating the end of a timing cycle (single maximum count mode).
Second, the output may be a level indicating the Maxcount Compare register currently in use
(dual maximum count mode). The output occurs one clock after the counter element services
the timer when the maximum count is reached (see Figure 9.9).

With external clocking, the time between a transition on a timer input and the corresponding
transition of the timer output varies from 2 1/2 to 6 1/2 clocks. This delay occurs due to the
time multiplexed servicing scheme of the Timer/Counter Unit. The exact timing depends on
when the input occurs relative to the counter element’s servicing of the timer. Figure 9.2
shows the two extremes in timer output delay. Timer O demonstrates the best possible case,
where the input occurs immediately before the timer is serviced. Timer 1 demonstrates the
worst possible case, where input is latched, but the setup time is not met and the input is not
recognized until the counter element services the timer again.

In single maximum count mode, the timer output pin goes LOW for one CPU clock period

(see Figure 9.4). This occurs when the count value equals the Maxcount Compare A value. If
programmed to run continuously, the timer generates periodic pulses.
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TIMER 0 SERVICED
pr——
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TXOUT PIN (

NOTES: @ T oy

Figure 9.9. TxOUT Signal Timing

In dual maximum count mode, the timer output pin indicates which Maxcount Compare
register is currently in use. A LOW output indicates Maxcount Compare B, and a HIGH
output indicates Maxcount Compare A (see Figure 9.4). If programmed to, run continuously, a
repetitive waveform can be generated. For example, if Maxcount Compare A contains 10,
Maxcount Compare B contains 20, and CLKOUT is 12.5 MHz, the timer generates a 33
percent duty cycle waveform at 104 KHz. The output pin always goes HIGH at the end of the
counting sequence (even if the timer is not programmed to run continuously).

9.2.5. ENABLING/DISABLING COUNTERS

Each timer has an Enable (EN) bit in its Control register to allow or prevent timer counting.
The Inhibit (INH) bit controls write accesses to the EN bit. Timers 0 and 1 can be
programmed to use their input pins as enable functions also. If a timer is disabled, the count
register will not increment when the counter element services the timer.

The Enable bit can be altered by programming or the timers can be programmed to disable
themselves at the end of a counting sequence with the Continuous (CONT) bit. If the timer is
not programmed for continuous operation, the Enable bit automatically clears at the end of a
counting sequence. In single maximum count mode, this occurs after Maxcount Compare A is
reached. Indual maximum count mode, this occurs after Maxcount Compare B is reached
(Timers 0 and 1 only).

The input pins for Timers 0 and 1 provide an alternate method for enabling and disabling timer
counting. When using internal clocking, the input pin can be programmed to either enable the
timer or reset the timer count depending on the state of the Retrigger (RTG) bit in the control
register. When used as an enable function, the input pin either allows (input HIGH) or
prevents (input LOW) timer counting. To ensure recognition of an input level, it must be valid
for four CPU clocks. This is due to the counter element’s time-multiplexed servicing scheme
for the timers.
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9.2.6. TIMER INTERRUPTS

All timers can generate internal interrupt requests. Although all three timers share a single
interrupt request to the CPU, each has its own vector location and internal priority. Timer 0O
has the highest interrupt priority and Timer 2 has the lowest interrupt priority.

Timer Interrupts are enabled or disabled via the Interrupt (INT) bit in the Timer Control
register. If enabled, an interrupt is generated every time a maximum count value is reached. In
dual maximum count mode, an interrupt will be generated each time the value in Maxcount
Compare A or Maxcount Compare B is reached. If the interrupt is disabled after a request has
been generated, but before a pending interrupt is serviced, the interrupt request will still be
active (the Interrupt Controller latches the request). If a timer generates a second interrupt
request before the CPU services the first interrupt request, the first request will be lost.

9.2.7. PROGRAMMING CONSIDERATIONS

Timer registers can be read or written whether the timer is operating or not. Since processor
accesses to timer registers are synchronized with counter element accesses, a half-modified
count register will never be read.

When the Timer 0 and Timer 1 use an internal clock source, the input pin must be HIGH to
enable counting.

9.3. TIMING

Certain timing considerations need to be made with the Timer/Counter Unit. These include:
input setup and hold times, synchronization and operating frequency.

9.3.1. INPUT SETUP AND HOLD TIMINGS

To ensure recognition, setup and hold times must be met with-respect to CPU clock edges. The
timer input signal must be valid TcHis before the rising edge of CLKOUT. The timer input
signal must remain valid TcHiy after the same rising edge. If these timing requirements are not
met, the input will not be recognized until the next clock edge.

9.3.2. SYNCHRONIZATION AND MAXIMUM FREQUENCY

All timer inputs are latched and synchronized with the CPU clock. Because of the internal
logic required to synchronize the external signals, and the multiplexing of the counter element,
the Timer/Counter Unit may only operate up to 1/4 of the CLKOUT frequency. Clocking at
greater frequencies will result in missed clocks.
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9.4. TIMER/COUNTER UNIT APPLICATION EXAMPLES

The following examples are possible applications of the Timer/Counter Unit. They include: a
real-time clock, a square wave generator and a digital one-shot.

9.4.1. REAL-TIME CLOCK

Example 9.1 contains sample éode to configure Timer 2 to generate an interrupt request every
10 milliseconds. The CPU then increments memory-based clock variables.

Smod186

name example_80186_family_timer_code

; FUNCTION: This function sets up the timer and interrupt

; controller to cause the timer to generate an

H interrupt every 10 milliseconds, and to

H service interrupts to implement a real time clock.
; Timer 2 is used in this example because no input or
H output signals are required.

;  SYNTAX: extern void far set_time (hour, minute, second,

; T2Compare) ;

;  INPUTS: hour - hour to set time to.

; minute - minute to set time to.

H second - second to set time to.

H T2Compare - T2CMPA value (see note below)

; OUTPUTS: None

; NOTE: Parameters are passed on the stack as required by

; high-level languages

; For a CLKOUT of 1lé6Mhz,

H f(timer2) = 16Mhz/4
i = 4Mhz
H = 0.25us for T2CMPA = 1

: T2CMPA (10ms) = 10ms/0.25us
10e-3/0.25e-6
40000

1

0

Example 9.1.
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;substitute register offsets

T2CON equ  xxxxh ;Timer 2 Control register
T2CMPA equ  xxxxh ;Timer 2 Compare register
T2CNT equ  xxxxh ;Timer 2 Counter register
TCUCON equ  xxxxh ;Int. Control register
EOI equ  xxxxh ;End Of Interrupt register
INTSTS equ xxxxh ;Interrupt Status register
timer_2_int equ 19 ;timer 2:vector type 19
data segment public ’‘data’

public _hour, _minute, _second, _msec
_hour db ?
_minute db ?
_second db ?
_msec db ?
data ends
1ib_80186 segment public ‘code’

assume cs:1ib_80186, ds:data
public _set_time
_set_time proc far

push bp ;save caller’s bp

mov bp, sp ;get current top of stack
hour equ word ptr[bp+6] ;get parameters off stack
minute equ word ptr[bp+8]
second equ word ptr{bp+10]
T2Compare equ word ptr[bp+12]

push ax ;save registers used

push DX

push si

push ds

XOor ax, ax

mov ds, ax

mov si,
mov word ptr ds:[si],

;set interrupt vector

4*timer_2_int

offset

Example 9.1. (Continued)
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timer_2_interrupt_routine

inc si

inc si

mov ds:[si], cs
pop ds

mov ax, hour

mov _hour, al

mov ax, minute
mov _minute, al
mov ax, second

mov _second, al
mov _msec, 0

mov DX, T2CNT
XOr ax, ax
out DX, ax
mov DX, T2CMPA
mov ax, T2Compare
out DX, ax
mov DX, T2CON
mov ax, OEOO01H
out DX, ax
mov DX, TCUCON
XOor ax, ax
out DX, ax
sti
pop si
pop DX
pop ax
pop bp
ret

_set_time endp

timer_2_interrupt_routine proc far
push ax
push DX

i

;set time

jclear Count register

;set maximum count value
;see note in header above

;set up the control word:
;enable counting, generate
;interrupt on MC,

;continuous counting

;set up interrupt controller
;unmask highest

;priority interrupt

;enable interrupts

;restore saved registers

;restore caller’s bp

;save registers used

Example 9.1. (Continued)
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cmp _msec, 99 ;has 1 sec passed?
jae bump_second ;1f above or equal...
inc _msec

jmp short reset_int_ctl

bump_second:mov _msec, 0 ;reset millisecond
cmp _minute, 59 ;has 1 minute passed?
jae bump_minute
inc _second

jmp short reset_int_ctl

bump_minute:mov _second, 0 ;reset second
cmp _minute, 59 ;has 1 hour passed?
jae bump_hour
inc _minute
jmp short reset_int_ctl

bump_hour: mov _minute, 0 ;reset minute
cmp _hour, 12 ;have 12 hours passed?
jae reset_hour
inc _houf
jmp reset_int_ctl

reset_hour: mov _hour, 1 ;reset hour

reset_int_ctl:mov DX, EOI

mov ax, 8000h ;non-specific end of interrupt
out DX, ax '

pop DX

pop ax

iret

timer_2_interrupt_routine endp

1ib_80186 ends
' end

Example 9.1. (Continued)

9.4.2. SQUARE WAVE GENEﬁATOR

A square-wave generétor can be useful to act as a system clock tick. Example 9.2 illustrates
how to configure the Timer 1 to operate this way.
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$mod186
name ' example_timerl_square_wave_code
;FUNCTION: This function generates a square wave of given .
; frequency and duty cycle on Timer 1 output pin.
;.  SYNTAX: extern void far clock(int mark, int space)
;. INPUTS: mark - This is the mark (1) time.
: . space - This is the space (0) time.
; The register compare value for a given time can.be
; easily calculated from the formula below.
; ComparevValue = (reqg_pulse_width*f)/4
; OUTPUTS: None
H NOTE: Parameters are passed on the stack as required by
; high-level Languages
T1CMPA  equ xxxxH ) ;substitute register offsets
T1CMPB equ xxxxH "
T1CNT equ XxXXXH
T1CON equ XxxxH
1ib_80186 segment public ‘code’
assume cs:1ib_80186
public _clock
_clock proc far
push bp ;save: caller’s bp =
mov bp, sp ) jget current top ofistack
._space equ word ptr[bp+6] ;get parameters Off .the .stack
_mark "~ equ word ptr[bp+8] : S
push ax ' ;save registers that will be
;modified
push bx
push DX
Example 9.2.
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mov DX, T1CMPA ;set mark time
mov ax, _mark
out DX, ax
mov DX, T1CMPB ;set space time

mov ax, _space
out DX, ax

mov DX, TI1CNT ;Clear Timer 1 Counter
XOr ax, ax
out DX, ax

mov DX, T1CON ;start Timer 1
mov ax, CO03H
out DX, ax

pop DX ;restore saved registers
pop bx

pop ax

pop bp ;restore caller’s bp

Example 9.2. (Continued)

9.4.3. DIGITAL ONE-SHOT

Example 9.3 configures Timer 1 to act as a digital one-shot.

Smod186
name

; FUNCTION:

’

7

;  SYNTAX:

7

example_timerl_1_shot_code

This function generates an active-low one shot
pulse on Timer 1 output pin.

extern void far one_shot (int CMPB);

Example 9.3.
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; INPUTS:

; OUTPUTS:

; NOTE:

CMPB - This is the TI1CMPB value required to
generate a pulse of given pulse width. This value

is calculated from the formula below.

CMPB = (reg_pulse_width*f) /4

None

Parameters are passed on the stack as required by

high-level languages

T1CNT
T1CMPA
T1CMPB
T1CON
MaxCount
1ib_80186

public
_one_shot

_CMPB

equ RXXXH
equ XXXxXH
equ XxXXxH
equ XXXXH

equ 0020H

segment public ’‘code’
assume cs:1ib_80186

_one_shot
proc far

push bp
mov bp, sp

equ word ptr[bp+6]
push ax

push DX

mov DX, TI1CNT

XOor ax, ax

out DX, ax

mov DX, T1CMPA

mov ax, 1
out DX, ax

;get

;substitute register offsets

;save caller’s bp

current top of stack

;get parameter off the stack

;save registers that will be

;modified

;Clear Timer 1 Counter

;set time before

t_shot to 0

Example 9.3. (Continued)
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CountDown:

mov
mov
out

mov
mov
out

DX,
ax,
DX,

DX,
ax,
DX,

T1CMPB
_CMPB
ax

T1CON
C002H
ax

in ax, DX

test ax,

MaxCount

jz CountDown

and
out

pop
pop

ax,
DX,

DX
ax

bp

not MaxCount
ax

;set pulse time

;jstart Timer 1

;read in T1CON
;max count occurred?
;jno: then wait

;clear max count bit
;update T1CON

;restore saved registers

jrestore caller’s bp

1ib_80186

Example 9.3. (Continued)
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CHAPTER 10
DIRECT MEMORY ACCESS UNIT

In many applications, large blocks of data must be transferred between memory and I/O space.
A disk drive, for example, usually reads and writes data in blocks that may be thousands of
bytes long. If the CPU were required to handle each byte of the transfer, the main tasks would
suffer a severe performance penalty. Even if the data transfers were interrupt driven, the
overhead for transferring control to the interrupt handler would still have a detrimental effect
on system throughput.

Direct Memory Access, or DMA, allows data to be transferred between memory and
peripherals without the intervention of the CPU. Systems that use DMA have a special
device, known as the DMA controller, that takes control of the system bus and performs the
transfer between memory and the peripheral device. When the DMA controller receives a
request for a transfer from a peripheral, it signals the CPU that it needs control of the system
bus. The CPU then releases control of the bus and the DMA controller performs the transfer.
In many cases, the CPU will release the bus and continue to execute instructions from the
prefetch queue. If the DMA transfers are relatively infrequent there will be no degradation of
software performance; the DMA transfer is transparent to the CPU.

The DMA Unit of the 80C186EA/C188EA has two channels. Each channel can accept DMA
requests from one of 3 sources: an external request pin, the Timer/Counter Unit or by direct
programming. Data can be transferred between any combination of memory and I/O space.
The DMA Unit can access the entire memory and I/O space in either byte or word increments.

10.1. FUNCTIONAL OVERVIEW

The DMA Unit is comprised of two identical channels. Both channels are functionally
identical. The following discussion is hierarchical beginning with an overview of a single
channel and ending with a description of the two channel unit.

10.1.1. THE DMA TRANSFER

A DMA transfer begins with a request. The requesting device may either have data to transmit
(a source request) or it may require data (a destination request). Alternatively, transfers may be
initiated by the system software without an external request.

When the DMA request is granted, the Bus Interface Unit provides the bus signals for the
DMA transfer while the DMA channel provides the address information for the source and
destination devices. The DMA Unit does not provide a discrete DMA acknowledge signal,
unlike other DMA controller chips (an acknowledge can be synthesized, however). The DMA
channel will continue transferring data as long as the request is active and it has not exceeded
its programmed transfer limit.
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Every DMA transfer consists of two distinct bus cycles: a fetch and a deposit (see Figure
10.1). During the fetch cycle, the byte or word is read from the data source and placed in an
internal temporary storage register. The data in the temporary storage register is written to the
destination. during the deposit cycle. The two bus cycles are indivisible; they cannot be
separated by a bus hold request, a refresh request or another DMA request.

<@——FETCH | | DEPOSIT —Pp»

T4 : T1 :' T2 T3 T4

CLKOUT I ‘ l ‘ [ | ‘

'
'
T
'
'

AD15:0 C X —
. | SOURCE SOURCE i DEST _ DESTINATION
: ! ADDRESS DATA ' ADDRESS DATA
RD T T N\ T
WR T T N\

Figure 10.1. Typical DMA Transfer

10.1.1.1. DMA TRANSFER DIRECTIONS

The source and destination addresses for a DMA transfer are programmable and can be in
either memory or I/O space. DMA transfers can be programmed for any of the following four
directions:

e  From memory space to I/O space
e  From I/O space to memory space
e From memory space to memory space

e From I/O space to I/O space

DMA transfers can access the Peripheral Control Block.

10.1.1.2, BYTE AND WORD TRANSFERS

DMA transfers can be programmed to handle either byte or word sized transfers. The handling
of byte and word data is the same as that for normal bus cycles and is processor bus width
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dependent. For example, odd aligned word DMA transfers on a 16-bit bus processor requires
two fetches and two deposits (all back-to-back). BIU bus cycles are covered in greater detail in
Chapter 3. Word transfers are illegal on the 8-bit bus device.

10.1.2. SOURCE AND DESTINATION POINTERS

Each DMA channel maintains a twenty bit pointer for the source of data and a twenty bit
pointer for the destination of data. The twenty bit pointers allow access to the full 1 Mbyte of
memory space. The DMA Unit views memory as a linear (unsegmented) array.

With a twenty bit pointer it is possible to create an I/O address that is above the CPU limit of
64 Kbytes. The DMA Unit will run I/O DMA cycles above 64K even though these addresses
are not accessible through CPU instructions (e.g., IN and OUT). Some applications may wish
to make use of this by swapping pages of data from I/O space above 64K to standard CPU
memory.

The source and destination pointers can be individually programmed to increment, decrement
or remain constant after each transfer. The amount that a pointer is incremented or
decremented is dependent on the programmed data width, byte or word, for the channel. Word
transfers will change the pointer by two, byte transfers change the pointer by one.

10.1.3. DMA REQUESTS

There are three distinct sources of DMA requests: the external DRQ pin, the internal DMA
request line and the system software. In all three cases, the system software must arm a DMA
channel before it recognizes DMA requests. Arming a DMA channel is discussed in the
programming section of this chapter.

10.1.4. EXTERNAL REQUESTS

External DMA requests are asserted on the DRQ pins. The DRQ pins are sampled on the
- falling edge of CLKOUT. It takes a minimum of four clocks before the DMA cycle is initiated
by the BIU (see Figure 10.2). The DMA request is cleared four clocks before the end of the
DMA cycle (effectively re-arming the DRQ input).
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Tyo Ty
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i i T T CYCLE

T T

DRQ ?LJ N \\ \\\& \\ NN
<o—> |

NOTES:

© Ty : DMA request to clock low.

@ Synchronizer resolution time.

(® DMA unit priority arbitration and overhead.

(® Bus interface Unit latches DMA request and decides to run DMA cycle.

Figure 10.2. DMA Request Minimum Response Time

External requests (and the resulting DMA transfer) are classified as either source synchronized
or destination synchronized. A source synchronized request originates from the peripheral
from which data is transferred. For example, a disk controller in the process of reading data
from a disk would use a source synchronized request. A destination synchronized request
originates from the peripheral to which data is transferred. If the previously mentioned disk
controller were writing data to the disk, it would use destination synchronization since the data
would be moving from memory to the disk. The type of synchronization a channel uses is
programmable. ‘

10.1.4.1. SOURCE SYNCHRONIZATION

A typical source synchronized transfer is shown in Figure 10.3. Most DMA driven peripherals
do not deassert their DRQ line until after the DMA transfer has begun. The DRQ signal must
be deasserted at least 4 clocks before the end of the DMA transfer (at the T1 state of the
deposit phase) in order to prevent another DMA cycle from occurring. A source synchronized
transfer provides the source device at least three clock cycles from when it is accessed
(acknowledged) to deassert its request line if further transfers are not required.
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FETCH CYCLE DEPOSIT CYCLE

CLKOUT

DRQ
(CASE 1) ©

DRQ ®
(CASE 2) \

NOTES:

® Current source synchronized transfer will not be immediately
followed by another DMA transfer.

® Current source synchronized transfer will be immediately
followed by another DMA transfer.

Figure 10.3. Source Synchronized Transfers

10.1.4.2. DESTINATION SYNCHRONIZATION

A destination synchronized transfer differs from a source synchronized transfer by the addition
of two idle states at the end of the deposit cycle (Figure 10.4). The two idle states extend the
DMA cycle to allow the destination device to deassert its DRQ pin four clocks before the end
of the cycle. If the two idle states were not inserted, the destination device would not be able
to deassert its request in time to prevent another DMA cycle from occurring.

The insertion of two idle states at the end of a destination synchronization transfer has an
important side effect. A destination synchronized DMA channel gives up the bus during

the idle states allowing any other bus master to gain ownership. This includes the CPU,
the Refresh Control Unit, an external bus master or another DMA channel.

10.1.5. INTERNAL REQUESTS

Internal DMA requests can come from either Timer 2 or from the system software.
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FETCH CYCLE 'DEPOSIT CYCLE

CLKOUT

DRQ
(CASE 1)

DRQ | |
(CASE 2) ’ | -\

NOTES:
@ Current destination synchronized transfer will not be immediately
followed by another DMA transfer.

® Current destination synchronized transfer will be immediately
followed by another DMA transfer.

Figure 10.4. Destination Synchronized Transfers

10.1.5.1. TIMER 2 INITIATED TRANSFERS

When programmed for Timer 2 initiated transfers, the DMA channel performs one DMA
transfer every time that Timer 2 reaches its maximum count. Timer 2 initiated transfers are
useful for servicing time based peripherals. For example, an A/D converter would require data
every 22 microseconds in order to produce an audio range waveform. In this case the DMA
source would point at the waveform data, the destination would point to the A/D converter and
Timer 2 would request a transfer every 22 microseconds.

10.1.5.2. UNSYNCHRONIZED TRANSFERS

DMA transfers can be initiated directly by the system software by selecting unsynchronized
transfers. Unsynchronized transfers continue, back-to-back, at the full bus bandwidth, until the
channel’s transfer count reaches zero or DMA transfers are suspended by an NMIL

10.1.6. DMA TRANSFER COUNTS

Each DMA Unit maintains a programmable 16-bit transfer count value that controls the total
number of transfers the channel runs. The transfer count is decremented by one after each
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transfer (regardless of data size). The DMA channel can be programmed to terminate transfers
when the transfer count reaches zero (also referred to as terminal count).

10.1.7. TERMINATION AND SUSPENSION OF DMA TRANSFERS

When DMA transfers for a channel are terminated, no further DMA requests for that channel
will be granted until the channel is re-started by direct programming. A suspended DMA
transfer temporarily disables transfers in order to perform a specific task. A suspended DMA
channel does not need to be re-started by direct programming. :

10.1.7.1. TERMINATION AT TERMINAL COUNT
When programmed to terminate on terminal count, the DMA channel disarms itself when the
transfer count value reaches zero. No further DMA transfers take place on the channel until it

is re-armed by direct programming.

Unsynchronized transfers always terminate when the transfer count reaches zero
regardless of programming.

10.1.7.2. SOFTWARE TERMINATION

A DMA channel can be disarmed by direct programming. Any DMA transfer that is in
progress will complete but no further transfers are run until the channel is re-armed.

10.1.7.3.  SUSPENSION OF DMA DURING NMI
DMA transfers are inhibited during the service of Non-Maskable Interrupts (NMI). DMA
activity is halted in order to give the CPU full command of the system bus during the NMI

service. Exit from the NMI via an IRET instruction re-enables the DMA Unit. DMA transfers
can be enabled during an NMI service routine by the system software.

10.1.7.4. SOFTWARE SUSPENSION

DMA transfers can be temporarily suspended by direct programming. In time critical sections
of code, interrupt handlers for example, it may be necessary to temporarily shut off DMA
activity in order to give the CPU total control of the bus.

10.1.8. DMA UNIT INTERRUPTS

Each DMA channel can be programmed to generate an interrupt request when its transfer
count reaches zero.
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10.1.9. DMA CYCLES AND THE BIU

The DMA Unit uses the Bus Interface Unit to perform its transfers. When the DMA Unit has a
pending request, it signals the BIU. If the BIU has no other higher priority request pending it
runs the DMA cycle (BIU priority is described in Chapter 3). The BIU signals that it is

running a bus cycle initiated by a master other than the CPU by driving the S6 status bit high.

The Chip-Select Unit monitors the BIU addresses to determine which chip-select, if any, to
activate. Because the DMA Unit uses the BIU, chip-selects are active for DMA cycles. If a
DMA channel accesses a region of memory or I/O space within a chip-select’s programmed
range, then that chip-select is asserted during the cycle. The Chip-Select Unit will not
recognize DMA cycles that access I/O space above 64K.

MODULE DMA*OUEST
INTER-MODULE
TIMER 2 ARBITRATION TIMER 2
REQUEST LOGIC REQUEST
A A
SOURCE POINTER SOURCE POINTER
DESTINATION POINTER DESTINATION POINTER
CHANNEL 0 | CHANNEL 1
CONTROL LOGIC T CONTROL LOGIC
DRQPIN DRQPIN

Figure 10.5. Two Channel DMA Unit

10.1.10.  THE 2 CHANNEL DMA UNIT

Two DMA channels are combined with arbitration logic to form the two channel DMA Unit
(see Figure 10.5). ‘
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10.1.10.1. DMA CHANNEL ARBITRATION

Within a two channel DMA module, the arbitration logic decides which channel takes
precedence when both channels simultaneously request transfers. Each channel can be set to
either low priority or high priority. If the two channels are set to the same priority (either both
high or both low) then the channels rotate priority.

10.1.10.1.1. FIXED PRIORITY

Fixed priority results when one channel in a module is programmed to high priority and the
other is set to low priority. If both DMA requests occur simultaneously, the high priority
channel will perform its transfer (or transfers) first. The high priority channel continues to
perform transfers as long as the following conditions are met:

e the channel’s DMA request is still active

e the channel has not terminated or suspended transfers (through programming or
interrupts)

e the channel has not released the bus (through the insertion of idle states for destination
synchronized transfers)

The last point is extremely important when the two channels use different synchronization. For
example, consider the case where channel 1 is programmed for high priority and destination
synchronization and channel O is programmed for low priority and source synchronization. If a
DMA request occurred for both channels simultaneously channel 1 would perform the first
transfer. At the end of channel 1’s deposit cycle two idle states are inserted (thus releasing the
bus). With the bus released, channel 0 is free to perform its transfer even though the higher
priority channel 0 has not completed all of its transfers. Channel 1 would regain the bus at
the end of channel 0’s transfer. The transfers would alternate as long as both requests
remained active.

A higher priority DMA channel will interrupt the transfers of a lower priority channel. Figure
10.6 shows several transfers with different combinations of channel priority and
synchronization.

10.1.10.1.2.  ROTATING PRIORITY

Channel priority rotates when both channels are programmed as both high or both low
priority. The highest priority is initially assigned to channel 1 of the module. After a channel
performs a transfer it-is assigned the lower priority. When requests are active for both
channels, the transfers alternate between the two as long as the bus is not released by the DMA
Unit. For the 80C186EA/C188EA, channel 1 is reassigned high priority whenever the bus is
released (i.e., at the end of a destination synchronized transfer, or when DMA requests are no
longer active).
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BOTH REQUESTS ASSERTED

[CHANNEL[O |1 | v , -
PRIORITY | LOW | LOW | CHANNEL 1 [ CHANNEL 0 | CHANNEL 1 | CHANNEL 0 o o®
[SYNCH | SRC |SRC : :

CHANNEL[0 |1 | eTC
PRIORITY |HIGH| LOW |CHANNEL 0 |CHANNELO |~ |CHANNEL 1 |CHANNEL 1 |@ @ ®
SYNCH SRC | SRC :

N CHANNEL 0 COMPLETES

ALL TRANSFERS

[CHANNEL[0 1
_PRIORITY [HIGH| LOW | CHANNEL 0
[SYNCH [DESTISRC

ETC.
HANNEL 1 ‘CHANNELO ‘ CHANNEL1 | @ @ ©

DESTINATION
SYNC RELEASES
BUS

Figure 10.6. Examples of DMA Priority

10.2. PROGRAMMING THE DMA UNIT

A total of six Peripheral Control Block registers configure each DMA channel.

10.2.1. DMA CHANNEL PARAMETERS

The first step in programming the DMA Unit is to set up the parameters for each of the
channels.

10.2.1.1. PROGRAMMING THE SOURCE AND DESTINATION POINTERS

The following parameters are programmable for the source and destination pointers:

e pointer address

e address space (memory or I/O)

e automatic pointer indexing (increment/decrement) after transfer

Two 16-bit Peripheral Control Block registers define each of the 20-bit pointers. Figures 10.7
© through 10.10 show the layout of the DMA Source and DMA Destination pointer address
registers. The DS19:16 and DD19:16 (high order address bits) are driven on the bus even if

I/O transfers have been programmed. When performing I/O transfers within the normal 64K
/O space only, the high order bits in the pointer registers must be cleared.
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Register Name: DMA Source Address Pointer (High)

Register Mnemonic: DxSRCH

Register Function: Contains the upper 4 bits of the DMA Source
pointer.

N=>W0W0
o=>mn0 o

BIT RESET
MNEMONIC BIT NAME | STATE FUNCTION

DSA19:16 | DMA Source | XXXXH | DSA19:16 are driven on A19:16 during the fetch
Address phase of a DMA transfer.

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written
to a logic zero to insure compatibility with future Intel products.

Figure 10.7. DMA Source Pointer (High Order Bits)

Register Name: DMA Source Address Pointer (Low)
Register Mnemonic: DxSRCL
Register Function: Contains the lower 16 bits of the DMA Source
pointer.
15 ‘ 0
!DTD!D‘D\‘D}D‘DiD‘D‘D‘DDED“DDD‘
S,SwS‘S‘SiS‘S‘S“S‘S‘SS S|s s|s
{A‘A\A“AV‘A\A‘A‘A:‘A\A‘AA A A|A|A
1,11‘1\‘11‘9\8‘76‘54‘3‘210‘
‘5i4\.3\2~\1‘0 o | \ |
(N I TN N I I L |
BIT RESET
MNEMONIC | BIT NAME | STATE FUNCTION
DSA15:0 DMA Source | XXXXH | DSA15:0 are driven on the lower 16 bits of the
Address address bus during the fetch phase of a DMA
transfer.

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written
to a logic zero to insure compatibility with future Intel products.

Figure 10.8. DMA Source Pointer (Low Order Bits)
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The address space referenced by the source and destination pointers is programmed in the
DMA Control Register for the channel (see Figure 10.13). The SMEM and DMEM bits
control the address space (memory or 1/O) for source pointer and destination pointer,
respectively.

Automatic pointer indexing is also controlled by the DMA Control Register. Each pointer has
a two bit field, increment and decrement, that controls the indexing. If the increment and "
decrement bits for a pointer are programmed to the same value then the pointer will remain
constant. The amount that a pointer is incremented or decremented is automatically controlled
by the programmed data width, byte or word, for the channel.

Register Name: DMA Destination Address Pointer (High)

Register Mnemonic: DxDSTH ,

Register Function: Contains the upper 4 bits of the DMA Source
pointer.

0
D/D|D|D|
D D D|D
AlA A A |
17101 1!
9 8 7!6
| o
BIT RESET
MNEMONIC BIT NAME | STATE FUNCTION
DDA19:16 | DMA | XXXXH | DDA19:16 arc driven on A19:16 during the
Destination deposit phase of a DMA transfer.
Address

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written
to a logic zero to insure compatibility with future Intel products.

Figure 10.9. DMA Destination Pointer (High Order Bits)
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Register Name:
Register Mnemonic:
Register Function:

DMA Destination Address Pointer (Low)
DxDSTL
Contains the lower 16 bits of the DMA Source

pointer.
15 0
D D|D|D D/ D D|D D D|D|D
D D  D|D D D|D|D D/ D|D | D
A A|lA A AlA|A|A AlA|AIlA
1 1198 7|/ 6|54 3/2(11]0
5 0
| |
BIT BIT NAME | RESET FUNCTION
MNEMONIC STATE
DDA15:0 DMA XXXXH | DDA15:0 are driven on the lower 16 bits of the
Destination address bus during the deposit phase of a DMA
Address transfer.

NOTE: Reserved register bits are shown with gray shading. Reserved blts must be written
to a logic zero to insure compatibility with future Intel products.

Figure 10.10. DMA Destination Pointer (Low Order Bits)

Register Name:
Register Mnemonic:
Register Function:

DMA Control Register

DxCON
Controls DMA channel parameters.

oOmooO

oOmow

0OZ-w
oO-

OTO
L 1Y)
ODOE |

b

OTO—

Figure 10.11(a).DMA Control Register Bit Positions
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BIT RESET
MNEMONIC BIT NAME | STATE FUNCTION
SMEM/DME | Source/ X Selects memory or 1/O space for the corresponding
M Destination pointer. Set SMEM/DMEM to select memory space; Clear
Address SMEM/DMEM to select I/O space. SMEM corresponds to
Space Select the source pointer. DMEM corresponds to the destination
pointer.
SINC/DINC | Source/ X | Set to automatically increment the source/destination
Destination pointer after each transfer. A pointer will remain constant if
Increment its increment and decrement bits are equal.
SDEC/DDEC | Source/ X Set to automatically decrement-the source/destination
Destination pointer after each transfer. A pointer will remain constant if
) Decrement its increment and decrement bits are equal.
TC Terminal X Set to terminate transfers on Terminal Count.
Count
INT Interrupt X 7 | Set to generate an interrupt request on Terminal Count.
The TC bit must be set to generate an interrupt.
SYN1:0 Synchron- XX Selects channel synchronization:
ation T
ization Type YN1:0 Synchronization T
Unsynchronized
Source Synchronized
Destination Synchronized
Reserved (Do Not Use)
P Relative X Setting P selects high priority for the channel.
Priority : )
IDRQ Internal DMA X Setting IDRQ selects internal (Timer 2) DMA requests.
Request When IDRQ is set the external DRQ pin is ignored.
Select Clearing IDRQ selects the DRQ pin as the source of DMA
requests.
CHG Change Start X CHG must be set to modify the STRT bit.
Bit
STRT Start DMA The DMA channel is armed by setting the STRT bit. The
: Channel STRT bit can only be modified when the CHG bit is set.
WORD Word X The WORD bit selects between byte and word transfers.
Transfer : Setting WORD selects word transfers; clearing WORD
Select selects byte transfers.

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written to a Ioglc
zero to insure compatibility with future Intel products.

- Figure 10.11(b). DMA Chénnel Control Register Bit Descriptions
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10.2.1.2. SELECTING BYTE OR WORD SIZE TRANSFERS

The WORD bit in the DMA Control Register is used to control the data size for a channel.
When WORD is set, the channel transfers data in 16-bit words. Byte transfers are selected by
clearing the WORD bit. The data size for a channel also affects pointer indexing. Word sized
transfers modify (increment or decrement) the pointer registers by two for each transfer
whereas byte transfers modify the pointer registers by one.

10.2.1.3. SELECTING THE SOURCE OF DMA REQUESTS

DMA requests can come from either an internal source (Timer 2) or an external source.

Timer 2 DMA requests are selected by setting the IDRQ bit in the DMA Control Register for
the channel. The DMA channel ignores its DRQ pin when internal requests are programmed.

Similarly, the DMA channel only responds to the DRQ pin (and ignores internal requests)
when external requests are selected.

10.2.1.4. ARMING THE DMA CHANNEL

Each DMA channel must be armed before it will recognize DMA requests. A channel is armed
by setting its STRT (Start) bit in the DMA Control Register. The STRT bit can only be
modified if the CHG (Change Start) bit is set at the same time. The CHG bit is a safeguard to
prevent unwanted arming of a DMA channel while modifying other channel parameters.

A DMA channel is disarmed by clearing its STRT bit. The STRT bit is cleared either directly
by software or by the channel itself when programmed to terminate on terminal count.

10.2.1.5. SELECTING CHANNEL SYNCHRONIZATION
The synchronization method for a channel is controlled by the SYN1:0 bits in the DMA
Control Register. The combination SYN1:0=11 is reserved and will result in unpredictable

operation, if used.

When programmed for unsynchronized transfers (SYN1:0=00) the DMA channel will begin to
transfer data as soon as the STRT bit is set.

Transfers requested by Timer 2 must always be programmed for source
synchronization.

10.2.1.6. PROGRAMMING THE TRANSFER COUNT OPTIONS

The Transfer Count Register and the TC bit in the DMA Control Register are used to stop
DMA transfers for a channel after a specified number of transfers have occurred.
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Register Name: - DMA Transfer Count

Register Mnemonic: DxTC ‘

Register Function: Contains the DMA channel’s transfer count.
15 - S ‘ 0
Tttt TgT;T”T‘.rT‘TTT TiTiTlT
|C‘c‘c[c‘0\0\c\0‘cccc ciciclc
,11‘1!131%1;9i8“7‘ 4 /3|2 1|0
s[4ls 2z 10 | |
[ \ \ . ‘
[ I ‘ j | ‘ )1 ‘ i !

BIT BIT NAME | RESET FUNCTION

MNEMONIC STATE

TC15:0 Transfer XXXXH | Contains the transfer count for a DMA channel.
Count This value is decremented by one after each
transfer.

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written
to a logic zero to insure compatibility with future Intel products.

Figure 10.12. Transfer Count Register

The number of transfers desired are written to the DMA Transfer Count Register (see Figure
10.12) The Transfer Count Register is 16-bits wide limiting the total number of transfers for a
channel to 65,536 (without reprogramming). The Transfer Count Register is decremented by
one after each transfer (for both byte and word transfers).

The TC bit, when set, instructs the DMA channel to disarm itself (by clearing the STRT bit)
when the transfer count reaches zero. If the TC bit is cleared, the channel continues to perform
transfers regardless of the state of the Transfer Count Register. Unsynchronized (software
initiated) transfers always terminate when the transfer count reaches zero; the TC bit is
ignored. '

10.2.1.7. - GENERATING INTERRUPTS ON TERMINAL COUNT

A channel can be programmed to generate an interrupt request whenever the transfer count
reaches zero. Both the TC bit and the INT bit (in the DMA Control Register) must be set to
generate an interrupt request.

10.2.1.8. SETTING THE RELATIVE PRIORITY OF A CHANNEL

The priority of a channel within a module is controlled by the Priority bit in the DMA Control
Register. A channel may be assigned either high or low priority. If the priority for both -
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channels is programmed to the same priority (i.e., both high or both low) then the channels
will rotate priority.

10.2.2. SUSPENSION OF DMA TRANSFERS

Whenever an NMI is received by the CPU, all DMA activity is suspended at the end of the
current transfer. The CPU suspends transfers by setting the DHLT (DMA Halt) bit in the
Interrupt Status Register (see Chapter 8). The DHLT bit is automatically cleared upon
execution of an IRET instruction. DMA transfers resume when the DHLT bit is cleared.

The DHLT bit may be read and written by the user. Do not write to the DHLT bit while
Timer/Counter Unit interrupts are enabled; a conflict with the internal use of the
register may lead to incorrect timer interrupt processing.

The DHLT bit does not function when the interrupt controller is in Slave Mode.

10.2.3. INITIALIZING THE DMA UNIT

Use the following sequence when programming the DMA Unit:

1. Program the source and destination pointers for all used channels.

2. Program the DMA Control Registers in order of highest priority channel to lowest priority
channel.

10.3. HARDWARE CONSIDERATIONS AND THE DMA UNIT

The following sections cover hardware interfacing and performance factors for the DMA Unit.

10.3.1. DRQ PIN TIMING REQUIREMENTS

The DRQ pins are sampled on the falling edge of CLKOUT. The DRQ pins must be setup a
minimum of T, before CLKOUT falling and must be held a minimum of T, after
CLKOUT falls. Refer to the datasheet for specific values. .

The DRQ pins have an internal synchronizer. Violating the setup and hold times may only
result in a missed DMA request, not a processor malfunction.

10.3.2. DMA LATENCY

DMA Latency is the delay between a DMA request being asserted and the DMA cycle being
run. The DMA latency for a channel is controlled by many factors, including:
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e Bus HOLD: Bus HOLD takes precedence over internal DMA requests. Using bus HOLD
will degrade DMA latency.

¢ LOCKed Instructions: Long LOCKed instructions (e.g., LOCK REP MOVS) will
monopolize the bus preventing access by the DMA Unit.

e Inter-channel Priority Scheme: Setting a channel at low priority will affect its latency.

The minimum latency in all cases is four CLKOUT cycles. This is the amount of time it takes
to synchronize and prioritize a request.

10.3.3. DMA TRANSFER RATES

The maximum DMA transfer rate is a function of processor operating frequency and
synchronization mode. For unsynchronized and source synchronized transfers, 2 bytes can be
transferred every eight CLKOUT cycles for the 80C186EA and one byte can be transferred for
the 80C188EA. Maximum transfer rate for the SOC186EA is calculated by:

Maximum DMA Transfer Rate in Mbytes/sec = 25*Fch
(Source and Unsynchronized)

Where Fepy is the CPU operating frequency in megahertz.

For destination synchronized transfers, the addition of two idle T-states reduces the bandwidth
by two clocks per word:

Maximum DMA Transfer Rate in Mbytes/sec = .20*Fcpy
(Source and Unsynchronized)

Where Fepy is the CPU operating frequency in megahertz.

Maximum transfer rates for the 80C188EA are half those calculated by the above equations as
the 80C188EA can only transfer one byte per cycle.

10.3.4. GENERATING A DMA ACKNOWLEDGE

The DMA channels do not provide a distinct DMA acknowledge signal. A chip select line can
be programmed to active for the memory or I/O range that requires the acknowledge. The chip
select must be programmed to active only when a DMA is in progress. Latched status line S6
can be used as a qualifier to the chip select in situations where the chip select line will be
active for both DMA and normal data accesses.

10.4. DMA UNIT EXAMPLES

In Example 10.1, channel 0 is set up to perform an unsynchronized burst transfer from
memory to memory while channel 1 is used to service an external DMA request from a hard
disk controller.
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Timed DMA transfers are shown in Example 10.2. A sawtooth waveform is created using
DMA transfers to an A/D converter.

$MOD186
NAME DMA_EXAMPLE_1

; This example shows code necessary
; to setup of two DMA channels. One
; channel performs an unsynchronized
; transfer from memory to memory.

; The second channel is used by a

; hard disk controller located in

; I/0 space.

; It is assumed that the constants for PCB register
; addresses are defined elsewhere with EQUates.

CODE_SEG SEGMENT
ASSUME CS:CODE_SEG

START: MOV AX, DATA_SEG ; DATA SEGMENT POINTER
MOV Ds, AX
ASSUME DS:DATA_SEG

; First we must initialize DMA channel 0. DMAO will
; an unsynchronized transfer from SOURCE_DATA_1 to
; DEST_DATA_1. The first step is to calculate the

; proper values for the source and destination

; pointers.

MOV AX, SEG SOURCE_DATA_1

ROL AX, 4 ; GET HIGH 4 BITS
MOV BX, AX ; SAVE ROTATED VALUE
AND AX, OFEFOH ; GET SHIFTED LOW 4

; NIBBLES
ADD AX, OFFSET SOURCE_DATA_1

Example 10.1. DMA Unit Initialization
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; NOW LOW BYTES OF
; POINTER ARE IN AX

ADC BX, 0

AND BX, O0O0OFH
MOV DX, DOSRCL
ouT DX, AX
MOV DX, DOSRCH
MOV AX, BX

ouT DX, AX

; SOURCE POINTER DONE.

MOV AX, SEG DEST_DATA_1

ROL AX, 4

; ADD IN THE CARRY

; TO THE HIGH NIBBLE
; GET JUST THE HIGH
; NIBBLE

; AX=LOW 4 BYTES

; GET HIGH NIBBLE

REPEAT FOR DEST.

; GET HIGH 4 BITS

MOV BX, AX ; SAVE ROTATED VALUE

AND AX, OFFFOH ; GET SHIFTED LOW 4
; NIBBLES

ADD AX, OFFSET DEST_DATA_1

; NOW LOW BYTES OF
; POINTER ARE IN AX

ADC BX, 0

AND BX, 000FH
MOV DX, DODSTL
ouT DX, AX
MOV DX, DODSTH
MOV AX, BX

ouT DX, AX

'; ADD IN THE CARRY

; TO THE HIGH NIBBLE
; GET JUST THE HIGH
; NIBBLE

; AX=LOW 4 BYTES

; GET HIGH NIBBLE

Example 10.1. DMA Unit Initialization (Continued)
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7

7

THE POINTER ADDRESSES HAVE BEEN SET UP. NOW
WE SET UP THE TRANSFER COUNT.

MOV AX, 29 ; THE MESSAGE IS

; 29 BYTES LONG.
MOV DX, DOTC ; XFER COUNT REG
ouT DX, AX

7

NOW WE NEED TO SET THE PARAMETERS FOR
THE CHANNEL AS FOLLOWS:

DESTINATION SOURCE
MEMORY SPACE MEMORY SPACE
INCREMENT PTR INCREMENT PTR

TERMINATE ON TC, NO INTERRUPT, UNSYNCHRONIZED,
LOW PRIORITY RELATIVE TO CHANNEL 1, BYTE XFERS.
WE START THE CHANNEL

MOV AX, 1011011000000110B
MOV DX, DOCON
ouT DX, AX

7

THE UNSYNCHRONIZED BURST IS NOW RUNNING ON
THE BUS...

NOW SET UP CHANNEL 1 TO SERVICE THE DISK
CONTROLLER. FOR THIS EXAMPLE WE WILL ONLY
BE READING FROM THE DISK.

THE SOURCE IS THE I/O PORT FOR THE
DISK CONTROLLER.

MOV AX, DISK_IO_ADDR

MOV DX, DI1SRCL

ouT DX, AL ; PROGRAM LOW ADDR
XOR AX, AX

MOV DX, DI1SRCH ; HI ADDR FOR IO=0
ouT DX, AL

Example 10.1. DMA Unit Initialization (Continued)
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; THE DESTINATION IS THE DISK BUFFER IN MEMORY

MOV AX, SEG DISK_BUFF

ROL AX, 4 ; GET HIGH 4 BITS
MOV BX, AX ; SAVE ROTATED VALUE
AND AX, OFFFOH ; GET SHIFTED LOW 4

; NIBBLES
ADD AX, OFFSET DISK_BUFF

;- NOW LOW BYTES OF
; POINTER ARE IN AX

ADC BX, O ; ADD IN THE CARRY

; TO THE HIGH NIBBLE
AND BX, O00OFH ; GET JUST THE HIGH

‘ ; NIBBLE

MOV DX, DIDSTL
ouT DX, AX ; AX=LOW 4 BYTES
MOV DX, D1DSTH
MOV AX, BX ; GET HIGH NIBBLE
ouT DX, AX

; THE POINTER ADDRESSES HAVE BEEN SET UP. NOW
; WE SET UP THE TRANSFER COUNT.

MOV AX, 512 ; THE DISK READS IN

; 512 BYTE SECTORS.
MOV DX, DITC ; XFER COUNT REG
ouT DX, AX

Example 10.1. DMA Unit Initialization (Continued)
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CODE_SEG

DATA_SEG

SOURCE_DATA_1
DEST_DATA_1

DISK_BUFF

DATA_SEG

; NOW WE NEED TO SET THE PARAMETERS FOR
; THE CHANNEL AS FOLLOWS:

i DESTINATION SOURCE

i MEMORY SPACE I/0 SPACE
i INCREMENT PTR CONSTANT PTR

; TERMINATE ON TC, INTERRUPT, SOURCE SYNC,
; HIGH PRIORITY RELATIVE TO CHANNEL 0, BYTE XFERS,
; USE DRQ PIN FOR REQUEST SOURCE.

; THE CHANNEL IS ARMED.

MOV AX, 1010001101100110B
MOV DX, DOCON
ouT DX, AX

; REQUESTS ON DRQ1 WILL NOW RESULT IN TRANSFERS

ENDS

SEGMENT

DB '80C186EC INTEGRATED PROCESSOR'
DB 30 DUP('MITCH') ; JUNK DATA FOR TEST

DB 512 DUP(?)

ENDS

END START

Example 10.1. DMA Unit Initialization (Continued)
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$MOD186
NAME DMA_EXAMPLE_1

; This example sets up the DMA Unit
; to perform a memory to I/O space
; transfer every 22uS. The data is
; sent to an A/D converter.

;- It is assumed that the constants for PCB register
; addresses are defined elsewhere with EQUates.

CODE_SEG SEGMENT
ASSUME CS:CODE_SEG

START: MOV AX, DATA_SEG ; DATA SEGMENT POINTER
MOV DS, AX
ASSUME DS:DATA_SEG

; First, setup the pointers. The source is in memory.

MOV AX, SEG WAVEFORM_DATA

ROL AX, 4 ; GET HIGH 4 BITS
MOV BX, AX ; SAVE ROTATED VALUE
AND AX, OFFFOH ; GET SHIFTED LOW 4

; NIBBLES
ADD AX, OFFSET WAVEFORM_DATA

Example 10.2. Timed DMA Transfers
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; NOW LOW BYTES OF
; POINTER ARE IN AX

ADC BX, 0 ; ADD IN THE CARRY
; TO THE HIGH NIBBLE
AND BX, O0OFH ; GET JUST THE HIGH
; NIBBLE
MOV DX, DOSRCL
ouT DX, AX ; AX=LOW 4 BYTES
MOV DX, DOSRCH
MOV AX, BX ; GET HIGH NIBBLE
ouT DX, AX

MOV AX, DA_CNVTR; I/O ADDRESS OF D/A

MOV DX, DODSTL

ouT DX, AX ;

MOV DX, DODSTH

XOR AX, AX ; CLEAR HIGH NIBBLE
ouT DX, AX

; THE POINTER ADDRESSES HAVE BEEN SET UP. NOW
; WE SET UP THE TRANSFER COUNT.

MOV AX, 255 ; 8-BIT D/A SO

' ; WE SEND 256 BYTES
MOV DX, DOTC ; TO GET A FULL SCALE
ouT DX, AX

Example 10.2. Timed DMA Transfers (Continued)
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CODE_SEG
DATA_SEG

WAVEFORM_DATA

DATA_SEG

; NOW WE NEED TO SET THE PARAMETERS FOR
; THE CHANNEL AS FOLLOWS:

H DESTINATION SOURCE

H I/0 SPACE MEMORY SPAC

i CONSTANT PTR INCREMENT PTR

; TERMINATE ON 'TC, INTERRUPT, SOURCE SYNCHRONIZE,
; INTERNAL REQUESTS,

; LOW PRIORITY RELATIVE TO CHANNEL 1, BYTE XFERS.

MOV AX, 0001011101010110B
MOV DX, DOCON
ouT DX, AX

; NOW WE ASSUME THAT TIMER 2 HAS BEEN PROPERLY
; PROGRAMMED FOR A 22US DELAY.

; WHEN THE TIMER IS STARTED, A DMA
; TRANSFER WILL OCCUR EVERY 22US.

ENDS
SEGMENT
DB 0,1,2,3,4,5,6,7,8,9,10,11,12,13

DB 14,15,16,17,18,19,20,21,22,23,24

; ETC. UP TO 255
ENDS

END START

Example 10.2. Timed DMA Trahsfers (Continued)
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CHAPTER 11
MATH COPROCESSING

The 80C186 Modular Core Family meets the need for a general-purpose embedded
microprocessor. In most data control applications, efficient data movement and control
instructions are foremost and arithmetic performed on the data is simple. However, some
applications do require more powerful arithmetic instructions and more complex data types
than provided by the 80C186 Modular Core.

11.1. OVERVIEW OF MATH COPROCESSING

Applications needing advanced mathematics capabilities have the following characteristics:

e  Numeric data values are non-integral or vary over a wide range

e  Algorithms produce very large or very small intermediate results

e Computations must be precise, i.e., calculations must retain several significant digits
e Computations must be reliable without dependence on programmed algorithms

e Overall math performance exceeds that afforded by a general-purpose processor and
software alone

For the 80C186 Modular Core family, the 80C187 satisfies the need for powerful
mathematics. The 80C187 can increase the math performance of the microprocessor system by
50 to 100 times.

11.2. AVAILABILITY OF MATH COPROCESSING

The processor supports the 80C187 with a hardware interface under microcode control. To
execute numerics instructions, the 80C186EA must exit reset in Numerics Mode. The
processor checks its TEST pin at reset and enters Numerics Mode automatically if the Math
Coprocessor is present.

The core has a TRAP bit in the Relocation Register to control the availability of math
coprocessing. If the bit is a one, attempted numerics execution results in a Type 7 interrupt.
The 80C187 will not work with the 8-bit bus version of the processor because all 80C187
accesses must be 16-bit. The 8-bit bus version will automatically trap ESC (numerics) opcodes
to the Type 7 interrupt regardless of Relocation Register programming.

The 3-Volt version of the microprocessor does not specify numerics coprocessing because the
80C187 only has a 5-Volt rating.
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11.3. THE 80C187 MATH COPROCESSOR

The 80C187’s high performance is due to its 80-bit internal architecture. It contains three
units: a Floating Point Unit, a Data Interface and Control Unit and a Bus Control Logic Unit.
The foundation of the Floating Point Unit is an 8-element register file, usable as individually
addressable registers or as a register stack. The register file allows storage of intermediate
results in the 80-bit format. The Floating Point Unit operates under supervision of the Data
Interface and Control Unit. The Bus Control Logic Unit maintains handshaking and
communications with the host microprocessor. The 80C187 has built-in exception handling. -

The 80C187 executes code written for the 387™ DX and 387™ SX math coprocessors. The
80C187 conforms to ANSI/IEEE Standard 754-1985. '

11.3.1. 80C187 INSTRUCTION SET

80C187 instructions fall into six functional groups: data transfer, arithmetic, comparison,
transcendental, constant and processor control. Typical 80C187 instructions accept one or two
operands and produce a single result. Operands are usually located in memory or the 80C187
stack. Some operands are predefined; FSQRT always takes the square root of the number in
the top stack element, for example. Other instructions allow or require the programmer to
specify explicitly the operand(s) along with the instruction mnemonic. Still other instructions
accept one explicit operand and one implicit operand (usually the top stack element).

As with the basic (non-numerics) instruction set, there are two types of operands for
coprocessor instructions, source and destination. Instruction execution does not alter a source
operand. Even when an instruction converts the source operand from one format to another
(for example, real to integer), the coprocessor performs the conversion in a work area to
preserve the source operand. A destination operand differs from a source operand because the
80C187 may alter the register when it receives the result of the operation. For most destination
operands, the coprocessor usually replaces the destinations with results.

11.3.1.1. DATA TRANSFER INSTRUCTIONS

Data transfer instructions move operands between elements of the 80C187 register stack or
between stack top and memory. Instructions can convert any of the data types to temporary
real and load it onto the stack in a single operation. Conversely, instructions can convert a
temporary real operand on the stack to any data type and store it to memory in a single
operation. Table 11.1 summarizes the data transfer instructions.
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Table 11.1. 80C187 Data Transfer Instructions

REAL TRANSFERS
FLD Load real
FST Store real
FSTP Store real and pop
FXCH Exchange registers
INTEGER TRANSFERS
FILD Integer load
FIST ' Integer store
FISTP Integer store and pop
PACKED DECIMAL TRANSFERS
FBLD Packed decimal (BCD) load
FBSTP ' Packed decimal (BCD) store and
pop

11.3.1.2. ARITHMETIC INSTRUCTIONS

The 80C187’s arithmetic instruction set includes many variations of add, subtract, multiply,
and divide operations and several other useful functions. Examples include a simple absolute
value and a square root instruction that executes faster than ordinary division. Other arithmetic
instructions perform exact modulo division, round real numbers to integers and scale values by
powers of two.

Table 11.2 summarizes the available operation and operand forms for basic arithmetic. In
addition to the four normal operations, two “reversed” instructions make subtraction and
division “symmetrical” like addition and multiplication. In summary, the arithmetic
instructions are highly flexible because:

e The 80C187 uses register or memory operands

e The 80C187 may save results in a choice of registers

Available data types include temporary real, long real, short real, short integer and word
integer. The 80C187 performs automatic type conversion to temporary real.
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Table 11.2. 80C187 Arithmetic Instructions

ADDITION
FADD Add real
FADDP Add real and pop
FIADD Integer add
SUBTRACTION
FSuUB Subtract real
FSUBP Subtract real and pop
FISUB Integer subtract
FSUBR Subtract real reversed
FSUBRP Subtract real reversed and pop
FISUBR Integer subtract reversed
MULTIPLICATION
FMUL Multiply real
FMULP Multiply real and pop
FIMUL Integer multiply
DIVISION
FDIV Divide real
FDIVP Divide real and pop
FIDIV Integer divide
FDIVR Divide real reversed
FDIVRP Divide real reversed and pop
FIDIVR Integer divide reversed
OTHER OPERATIONS-
FSQRT Square root
FSCALE Scale
FPREM Partial remainder
FRNDINT Round to-integer
FXTRACT Extract exponent and significand
FABS Absolute value
FCHS Change sign
FPREMI Partial remainder (IEEE)
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11.3.1.3. COMPARISON INSTRUCTIONS

Each comparison instruction (see Table 11.3) analyzes the stack top element, often in
relationship to another operand. Then it reports the result in the Status Word condition code.
The basic operations are compare, test (compare with zero) and examine (report tag, sign and
normalization).

Table 11.3. 80C187 Comparison Instructions

FCOM Compare real

FCOMP Compare real and pop

FCOMPP Compare real and pop twice

FICOM Integer compare

FICOMP Integer compare and pop

FTST Test

FXAM Examine

FUCOM Unordered compare

FUCOMP Unordered compare and pop

FUCOMPP  |Unordered compare and pop
twice

11.3.1.4. TRANSCENDENTAL INSTRUCTIONS

Transcendental instructions perform the core calculations for common trigonometric,
hyperbolic, inverse hyperbolic, logarithmic and exponential functions. Use prologue code to
reduce arguments to a range accepted by the instruction. Use epilogue code to adjust the result
to the range of the original arguments. The transcendentals operate on the top one or two stack
_elements and return their results to the stack. Table 11.4 lists the transcendental instructions.

Table 11.4. 80C187 Transcendental Instructions

FPTAN Partial tangent
FPATAN Partial arctangent
F2XM1 oX _ 4

FyL2X Y log, X
FYL2XP1 Y log, (X+1)
FCOS Cosine

FSIN Sine

FSINCOS Sine and Cosine
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11.3.1.5. CONSTANT INSTRUCTIONS

Each constant instruction (see Table 11.5) loads a commonly used constant onto the stack. The
values have full 80-bit precision and are accurate to about 19 decimal digits. Since a
temporary real constant occupies 10 memory bytes, the constant instructions, only two bytes

long, save memory space. \

Table 11.5. 80C187 Constant Instructions

FLDZ Load +0.1
FLD1 Load +1.0
FLDPI Load T
FLDL2T Load log, 10
FLDL2E Load log, e
FLDLG2 Load log,,2
FLDLG2  |Load log,2

11.3.1.6. PROCESSOR CONTROL INSTRUCTIONS

Computations do not use the processor control instructions; they are available for activities at
the operating system level. This group (see Table 11.6) includes initialization, exception
handling and task switching instructions.

Table 11.6. 80C187 Processor Cohtrol Instructions

| FINIT/FNINIT Initialize processor
FDISI/FNDISI Disable interrupts
FENI/FNENI Enable interrupts
FLDCW Load control word
FSTCW/FNSTCW Store control word
FSTSW/FNSTSW Store status word
FCLEX/FNCLEX Clear exceptions
FSTENV/FNSTENV Store environment
FLDENV Load environment
FSAVE/FNSAVE Save state
FRSTOR Restore state
FINCSTP Increment stack pointer
FDECSTP Decrement stack pointer
FFREE Free register
FNOP No operation
FWAIT CPU wait
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11.3.2. 80C187 DATA TYPES

The microprocessor/math coprocessor combination supports the following seven data types:

e  Word Integer — A signed 16-bit numeric value. All operations assume a 2’s complement
representation.

e  Short Integer — A signed 32-bit numeric value (double word). All operations assume a
2’s complement representation.

e Long Integer — A signed 64-bit numeric value (quad word). All operations assume a 2’s
complement representation.

e Packed Decimal — A signed numeric value contained in an 80-bit BCD format.
e  Short Real — A signed 32-bit floating point numeric value.
e Long Real — A signed 64-bit floating point numeric value.

e Temporary Real — A signed 80-bit floating point numeric value. Temporary real is the
native 80C187 format. ‘

Figure 11.1 graphically represents these data types.

11.4. MICROPROCESSOR AND COPROCESSOR OPERATION

The 80C187 interfaces directly to the microprocessor (see Figure 11.2) and operates as an
I/O-mapped slave peripheral device. Hardware handshaking requires connections between the
80C187 and four special pins on the processor: NCS, BUSY, PEREQ and ERROR. These
pins are multiplexed with MCS3, TEST, MCS0 and MCS1, respectively. When the processor
leaves reset, the presence of the 80C187 automatically places the 80C186EA in Numerics
Mode and configures the pins correctly. Note that MCS2 always retains its function as a chip
select. The processor also retains the wait state and ready programming for the entire mid-
range memory block, even though MCS0, MCS1 and MCS3 are no longer available.

11.4.1. CLOCKING THE 80C187

The microprocessor and math coprocessor operate asynchronously and their clock rates may
differ. The 80C187 has a CKM pin which determines whether it uses the input clock directly
or divided by two. Direct clocking works up to 12.5 MHz, which makes it convenient to feed
the clock input from the microprocessor’s CLKOUT pin. Beyond 12.5 MHz, the 80C187 must
use a 2X frequency clock input up to a maximum of 32 MHz. The microprocessor and the
math coprocessor have correct timing relationships even with operation at different
frequencies.
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<« INCREASING SIGNIFICANCE
WORD | g | mAGNITUDE (TWO'S COMPLEMENT) /
INTEGER ;
15 0
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11.42. PROCESSOR BUS CYCLES ACCESSING THE 80C187

Data transfers between the microprocessor and the 80C187 occur through the dedicated, 16-bit
I/O ports shown in Table 11.7. When the processor encounters a numerics opcode, it first
writes the opcode to the 80C187. The 80C187 decodes the instruction and passes elementary.
instruction’ information (Opcode Status Word) back to the processor. Since the 80C187 is a
slave processor, the Modular Core processor performs all loads and stores to memory.
Including the overhead in the microprocessor’s microcode, each data transfer between

Figure 11.1. 80C187-Supported Datal Types

memory and the 80C187 (via the microprocessor) takes at least 17 processor clocks.
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EXTERNAL , LATCH
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Figure 11.2. 80C186 Modular Core Family/80C187 System Configuration
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Table 11.7. 80C187 I/O Port Assignments

/0 READ WRITE
ADDRESS DEFINITION DEFINITION
00F8H Status/ Control Opcode
00FAH Data Data
00FCH Reserved CS:IP, DS:EA
00OFEH Opcode Status Reserved

The microprocessor cannot process any numerics (ESC) opcodes alone. If the CPU encounters
a numerics opcode with the TRAP bit in the Relocation Register a zero and the 80C187 is not
present, its operation is indeterminate. Even the FINIT/FNINIT initialization instruction (used
in the past to test the presence of a coprocessor) will fail without the 80C187. If an application
offers the 80C187 as an option, problems can be prevented in three ways:

¢ Remove all numerics (ESC) instructions, including code which checks for the presence of
the 80C187. ‘

e Use a jumper or switch setting to indicate the presence of the 80C187. The program can

interrogate the jumper or switch setting and branch away from numerics instructions when
the 80C187 socket is empty.

e Trick the microprocessor into predictable operation when the 80C187 socket is empty.
The fix is placing pull-up or pull-down resistors on certain data and handshaking lines so
the CPU reads a recognizable Opcode Status Word. This solution requires a detailed
knowledge of the interface.

Bus cycles involving the 80C187 Math Coprocessor behave exactly like other I/O bus cycles
with respect to the processor’s control pins. The next section covers integration of the 80C187
into the overall system.

11.4.3. SYSTEM DESIGN TIPS

All 80C187 operations require that bus ready be asserted. The simplest way to return the ready
indication is via hardware connected to the processor’s ARDY or SRDY pin. If you program a
chip select to cover the math coprocessor port addresses, its ready programming will be in
force and can provide bus ready for coprocessor accesses. The user must verify there are no
conflicts from other hardware connected to that chip select pin.

A chip select pin will go active on 80C187 accesses if you program it for a range including the

math coprocessor 1/O ports. The converse is not true — a non-80C187 access cannot activate
NCS (numerics chip select) regardless of programming.
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In a buffered system, it is customary to place the 80C187 on the local bus. Since DT/R and
DEN function normally during 80C187 transfers, you must qualify DEN with NCS (see
Figure 11.3). Otherwise, contention between the 80C187 and the transceivers occurs on read
cycles to the 80C187.

The microprocessor’s local bus is available to the integrated peripherals during numerics
execution whenever the CPU is not communicating with the 80C187. The idle bus allows the
processor to intersperse DRAM refresh cycles and DMA cycles with accesses to the 80C187.

The microprocessor’s local bus is available to alternate bus masters during execution of
numerics instructions when the CPU does not need it. Bus cycles driven by alternate masters
(via the HOLD/HLDA protocol) can suspend coprocessor bus cycles for an indefinite period.

The programmer may lock 80C187 instructions. The CPU asserts the LOCK pin for the entire
duration of a numerics instruction, monopolizing the bus for a very long time.

11.4.4. EXCEPTION TRAPPING

The 80C187 detects six error conditions that can occur during instruction execution. The
80C187 can apply default fix-ups or signal exceptions to the microprocessor’s ERROR pin.
The processor tests ERROR at the beginning of numerics instructions, so it traps an exception
on the next attempted numerics instruction after it occurs. When ERROR tests active, the
processor executes a Type 16 interrupt.

There is no automatic exception-trapping on the last numerics instruction of a series. If the last
numerics instruction writes an invalid result to memory, subsequent non-numerics instructions
can use that result as if it is valid, further compounding the original error. Insert the FNOP
instruction at the end of the 80C187 routine to force an ERROR check. If the program is
written in a high-level language, it is impossible to insert FNOP. In this case, route the error
signal through an inverter to an interrupt pin on the microprocessor (see Figure 11.4). With
this arrangement, use a flip-flop to latch BUSY upon assertion of ERROR. The latch gets
cleared during the exception-handler routine. Use an additional flip-flop to latch PEREQ to
maintain the correct handshaking sequence with the microprocessor.

11.5. EXAMPLE MATH COPROCESSOR ROUTINES

Example 11.1 shows the initialization sequence for the 80C187. Example 11.2 is an example
of a floating point routine using the 80C187. The FSINCOS instruction yields both sine and
cosine in one operation. ‘
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EXTERNAL LATCH
OSCILLATOR
BUFFER
D15:8
AD 15:0
ALE .
T OE
CLKOUT NI
80C186
g 80C187
CORE
A0
, Al
RESOUT — > RESET BUFFER
‘ D7:0
WR NPWR
RD NPRD
BUSY |« BUSY T OE
ERROR ERROR
PEREQ PEREQ .
‘NCS . NPS1
. }
DEN — NPS2
DTR

D15:0

Figure 11.3. 80C187 Configuration with Partially Buffered Bus
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80C186
MODULAR CORE 3
ERROR
RESOUT LD—L
INTx [€—
LATCH BUSY (—G_
PEREQ {&&
ALE NCS
A9-A16 —
AD15-AD0 RD
WR [ L
. c
A CLKOUT Q
D 74
D _a
R > DATA 15-0 S
E
s
S D15-D0 CLK
2 :
190
At L
CMDO NPRD ' [<€ ® I
80C187 _ 1
NPST [€&—— c
: | ! ‘
CKM PEREQ T
g BUSY s
NPS2 _
ERROR >0 ' %
RESET jeg—

Figure 11.4. 80C187 Exception Trapping via Processor Interrupt Pin
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Smodl186
name

; FUNCTION:

7 SYNTAX:
; INPUTS:

; OUTPUTS:

; NOTE :

lib_80186

_187_init

example_80C187_init

This function initializes the 80C187 numerics
Co-processor.

extern unsigned char far 187_init (void);
None

unsigned char - 0000h -> False -> coprocessor not
initialized ‘
ffffh -> True -> coprocessor
initialized
Parameters are passed on the stack as required by
high-level languages.

segment public ‘code’
assume cs:11ib_ 80186

public _187_init
proc far
push bp ;save caller’s bp
mov bp, sp ;get current top of stack
cli ;disable maskable
© ;interrupts
fninit ;init 80C187 processor
fnstcw [bp-2] ;get current control word
sti ;enable interrupts
mov ax, [bp-2] . «
and ax, 0300h ;mask off unwanted control
;bits
cmp ax, 0300h ;PC bits = 11
je Ok ;yes: processor ok
XOor ax, ax ;return false (80C187 not
; OK)

Example 11.1. Initialization Sequence for 80C187 Math Coprocessor
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pop bp ;restore caller’s bp
ret

Ok: and [bp-2]1, 0fffeh ;unmask possible exceptions
fldew [bp-2]
mov ax,0ffffh ;return true (80C1l87 ok)
Pop bp ;restore caller’s bp
ret :

_187_init endp

1ib_80186 ends
end

Example 11.1. Initialization Sequence for 80C187

Math Coprocessor (Continued)

Smod186
Smodcl87

name example_80C187_proc

; DESCRIPTION:

; VARIABLES:

; RESULTS:

; NOTES:

This code section uses the 80C187 FSINCOS
transcendental instruction to convert the
locus of a point from polar to Cartesian
coordinates.

The variables consist of the radius, r, and
the angle, theta. Both are expressed as
32-bit reals and 0 <= theta <= pi/4.

The results of the computation are the
coordinates x and y expressed as 32-bit

reals.

This routine is coded for Intel ASM86. It is
not set up as a HLL-callable routine.

This code assumes that the 80C187 has already
been initialized.

assume cs:code, ds:data

Example 11.2. Floating Point Math Routine Using FSINCOS
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\

data segment at 0100h
r dd x.xxxx ;substitute real operand

theta dd x.xxxx ;substitute real operand
x dad »
Y - dd ?

data ends
code segment at 0080h
convert proc far

mov ax, data
mov ds, ax

fld r ;load radius
fld theta ;load angle
fsincos ;st=cos, st(l)=sin
fmul st, st(2) ;compute x
fstp x ;store to memory and pop
frul ;compute y
fstp vy ‘ ;store to memory and pop
convert endp ‘
code ends
. ' end

Example 11.2. Floating Point Math Routine Using FSINCOS (Continued)

11-16




ONCE™ Mode

12







CHAPTER 12
ONCE™ MODE

ONCE (pronounced: ahnce) Mode provides the ability to three-state all output, bidirectional,
or weakly held high/low pins except OSCOUT. OSCOUT does not three-state to allow device
operation with a crystal network.

ONCE Mode electrically isolates the 80CI86EA or 80C188EA form the rest of the board
logic. This isolation allows a bed-of-nails tester to drive the device pins directly for more
accurate and thorough testing. An in-circuit emulation probe uses ONCE Mode to isolate a
surface mounted device from board logic and essentially “take over” operation of the board
(without removing the soldered device from the board).

12.1. ENTERING/LEAVING ONCE MODE

Forcing UCS and LCS low while RESIN is asserted (low) enables ONCE Mode (see Figure
12.1). Maintaining UCS, LCS and RESIN low continues to keep ONCE Mode active.
Returning UCS and/or LCS back high exits the ONCE Mode.

However, it is possible to always keep ONCE Mode active by deasserting RESIN while
keeping UCS and LCS low. Removing RESIN “latches” ONCE Mode and allows UCS and
LCS to be driven to any level. UCS and LCS must remain low for at least one clock beyond
the time RESIN is driven high. Asserting RESIN exits ONCE Mode, assuming UCS and
LCS do not remain low also (see Figure 12.1).

ucs

LCS

ALL OUTPUT,
BI-DIRECTIONAL,
WEAKLY HELD
PINS EXCEPT

0oscouT

NOTES: 1. Entering ONCE Mode.
2. Latching ONCE Mode.
3. Leaving ONCE Mode (assuming 2. occurred)

Figure 12.1. Entering/Leaving ONCE Mode
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APPENDIX A
80C186 INSTRUCTION SET ADDITIONS AND
EXTENSIONS

The 80C186 Modular Core family instruction set differs from the original 8086/8088
instruction set in two ways. First, there are several additional instructions that were not
available in the 8086/8088 instruction set. Second, there are several 8086/8088 instructions
that have been enhanced for the 80C186 Modular Core family instruction set.

A.1. 80C186 INSTRUCTION SET ADDITIONS

The following sections describe instructions added to the base 8086/8088 instruction set to
make the instruction set for the 80C186 Modular Core family. These instructions did not exist
in the 8086/8088 instruction set.

A.1.1.DATA TRANSFER INSTRUCTIONS

PUSHA/POPA

PUSHA (push all) and POPA (pop all) allow all general purpose registers to be stacked and
unstacked. The PUSHA instruction pushes all CPU registers (except as noted below) onto the
stack. The POPA instruction pops all registers pushed by PUSHA off of the stack. The
registers are pushed onto the stack in the following order: AX, CX, DX, BX, SP, BP, SI, DL
The Stack Pointer (SP) value pushed is the Stack Pointer value before the AX register was
pushed. When POPA is executed, the Stack Pointer value is popped, but ignored.

Note: This instruction does not save segment registers (CS, DS, SS, ES), the Instruction
Pointer (IP), the Program Status Word or any integrated peripheral registers.

A.1.2.STRING INSTRUCTIONS

INS source_string, port

INS (in string) performs block input from an I/O port to memory. The port address is placed in
the DX register. The memory address is placed in the DI register. This instruction uses the ES
segment register (which cannot be overridden). After the data transfer takes place, the pointer
register (DI) increments or decrements, depending on the value of the Direction Flag (DF).
The pointer register changes by 1 for byte transfers or 2 for word transfers.
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‘OUTS port, destination_string

OUTS (out string) performs block output from memory to an I/O port. The port address is
placed in the DX register. The memory address is placed in the SI register. This instruction
uses the DS segment register, but this may be changed with a segment override instruction.
After the data transfer takes place, the pointer register (SI) increments or decrements,
depending on the value of the Direction Flag (DF). The pointer register changes by 1 for byte
transfers or 2 for word transfers.

A.1.3.HIGH LEVEL INSTRUCTIONS
ENTER size, level

ENTER creates the stack frame required by most block-structured high-level languages. The
first parameter, size, specifies the number of bytes of dynamic storage to be allocated for the
procedure being entered (16-bit value). The second parameter, level, is the lexical nesting level
- of the procedure (8-bit value). Note: the higher the lexical nesting level, the lower the
procedure is in the nesting hierarchy.

The lexical nesting level determines the number pointers to higher level stack frames copied
into the current stack frame. This list of pointers is called the display. The first word of the
display points to the previous stack frame. The display allows access to variables of higher-
level (lower lexical nesting level) procedures.

After ENTER creates a display for the current procedure, it allocates dynamic storage space.
The Stack Pointer decrements by the number of bytes specified by size. All PUSH and POP
operations in the procedure use this value of the Stack Pointer as a base.

Two forms of ENTER exist: non-nested and nested. A lexical nesting level of 0 specifies the
non-nested form. In this situation, BP is pushed, the Stack Pointer is copied to BP and
decremented by the size of the frame. If the lexical nesting level is greater than 0, the nested
form is used. Figure A.1 gives the formal definition of ENTER.

ENTER treats a reentrant procedure as a procedure calling another procedure at the same
lexical level. A reentrant procedure can only address its own variables and variables of higher-
level calling procedures. ENTER ensures this by copying only stack frame pointers from
higher-level procedures.

Block-structured high-level languages use lexical nesting levels to control access to variables
of previously nested procedures. For example, assume, as shown in Figure A.2, PROCEDURE
A calls PROCEDURE B which calls PROCEDURE C which calls PROCEDURE D.
PROCEDURE C = will have access to the wvariables of MAIN and
PROCEDURE A, but not PROCEDURE B because they operate at the same lexical nesting
level. The following is a summary of the variable access for Figure A.2.
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The formal definition of the ENTER instruction for all cases is given by the
following listing: (LEVEL denotes the value of the second operand.)

Push BP
Set a temporary value FRAME_PTR: = SP
If LEVEL > 0 then
Repeat (LEVEL - 1) times:
BP:=BP-2
Push the word pointed to by BP
End repeat
Push FRAME_PTR
End if
BP: = FRAME_PTR
SP: = SP - first operand

Figure A.1. Formal Definition of ENTER

MAIN PROGRAM (LEXICAL LEVEL 1)

PROCEDURE A (LEXICAL LEVEL 2)

PROCEDURE B (LEXICAL LEVEL 3)

PROCEDURE C (LEXICAL LEVEL 3)

PROCEDURE D (LEXICAL LEVEL 4)

Figure A.2. Variable Access in Nested Procedures
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1. MAIN PROGRAM has variables at fixed locations.
2. PROCEDURE A can access only the fixed variables of MAIN.

3. PROCEDURE B can access only the variables of PROCEDURE A and MAIN.
PROCEDURE B cannot access the variables of PROCEDURE C or PROCEDURE D.

4. PROCEDURE C can access only the variables of PROCEDURE A and MAIN.
PROCEDURE C cannot access the variables of PROCEDURE B or PROCEDURE D.

5. PROCEDURE D can access the variables of PROCEDURE C, PROCEDURE A and
MAIN. PROCEDURE D cannot access the variables of PROCEDURE B.

The first ENTER, executed in the MAIN PROGRAM, allocates dynamic storage space for
MAIN, but no pointers are copied. The only word in the display points to itself because no
previous value exists to return to after LEAVE is executed (see Figure A.3).

15 0
OLD BP
—> DISPLAY MAIN
BP BPM }
DYNAMIC
STORAGE
MAIN

sp —>
*BPM = BP VALUE FOR MAIN

Figure A.3. Stack Frame for MAIN at Level 1

After MAIN calls PROCEDURE A, ENTER creates a new display for PROCEDURE A. The
first word points to the previous value of BP (BPM). The second word points to the current
value of BP (BPA). BPM contains the base for dynamic storage in MAIN. All dynamic
variables for MAIN will be at a fixed offset from this value (see Figure A.4). '

After PROCEDURE A calls PROCEDURE B, ENTER creates the display for PROCEDURE
B. The first word of the display points to the previous value of BP (BPA). The second word
points to the value of BP for MAIN (BPM). The third word points to the BP for
PROCEDURE A (BPA). The last word points to the current BP (BPB). PROCEDURE B can
access variables in PROCEDURE A or MAIN via the appropriate BP in the display (see
Figure A.5). ’ ‘
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15 0
OLD BP
BPM
BPM
BP —>
BPM DISPLAY A
BPA*
DYNAMIC
STORAGE A
SP —>

*BPA = BP VALUE FOR PROCEDURE A

Figure A.4. Stack Frame for Procedure A at Level 2

After PROCEDURE B calls PROCEDURE C, ENTER creates the display for PROCEDURE
C. The first word of the display points to the previous value of BP (BPB). The second word
points to the value of BP for MAIN (BPM). The third word points to the value of BP for
PROCEDURE A (BPA). The fourth word points to the current BP (BPC). Because
PROCEDURE B and PROCEDURE C have the same lexical nesting level, PROCEDURE C
cannot access variables in PROCEDURE B. The only pointer to PROCEDURE B in the
display of PROCEDURE C exists to allow the LEAVE instruction to collapse the
PROCEDURE C stack frame (see Figure A.6).

LEAVE

LEAVE reverses the action of the most recent ENTER instruction. It collapses the last stack
frame created. First, LEAVE copies the current BP to the Stack Pointer releasing the stack
space allocated to the current procedure. Second, LEAVE pops the old value of BP from the
stack, to return to the calling procedure's stack frame. An RET instruction will remove
arguments stacked by the calling procedure for use by the called procedure.

BOUND register, address

BOUND verifies that the signed value in the specified register lies within specified limits. If
the value does not lie within the bounds, an array bounds exception (type 5) occurs.
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15 0

OLD BP
BPM

BPM
BPM
BPA

BPA
BPM
BPA
BPB

BP —>

DISPLAY B

DYNAMIC
STORAGE B

SP—>

Figure A.5. Stack Frame for Procedure B at Level 3 Called from A

BOUND has two operands. The first, register, specifies the register being tested. The second,
address, contains the effective relative address of the two signed boundary values. The lower
limit word is at this address and the upper limit word immediately follows. The limit values
cannot be register operands (if they are, an invalid opcode exception occurs).

BOUND is useful for checking array bounds before attempting to access an array element.
This avoids the program overwriting information outside the limits of the array.

A.2. 80C186 INSTRUCTION SET ENHANCEMENTS

The following sections describe enhancements to the 8086/8088 instruction set available with
the 80C186 Modular Core family. These instructions were available with the 8086/8088
instruction set, but have been expanded to be more useful.
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BP —>

sP—>

15

OLD BP

BPM

BPM

BPM

BPA

BPA

BPM

BPA

BPB

BPB

BPM

BPA

BPC

DISPLAY C

DYNAMIC
STORAGE C

Figure A.6. Stack Frame for Procedure C at Level 3 Called from B
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A.2.1.DATA TRANSFER INSTRUCTIONS
PUSH data

PUSH (push immediate) allows an immediate argument, data, to be pushed onto the stack.
The value can be either a byte or a word. Byte values will be sign extended to word size before
being pushed.

A.2.2.ARITHMETIC INSTRUCTIONS
IMUL destination, source, data

IMUL (integer immediate multiply, signed) allows a value to be multiplied by an immediate
operand. IMUL requires three operands. The first, destination, is the register where the result
will be placed. The second, source, is the effective address of the multiplier. The source may
be the same register as the destination, another register or a memory location. The third, data,
is an immediate value used as the multiplicand. The data operand may be a byte or word. If
data is a byte, it is be sign extended to 16-bits. Only the lower 16-bits of the result are saved.
The result must be placed in a general purpose register.

A.2.3.BIT MANIPULATION INSTRUCTIONS

The 80C186 Modular Core .instruction set includes enhancements to the bit manipulation
instructions. The following sections describe these enhancements.

A.23.1. SHIFT INSTRUCTIONS

SAL destination, count

SAL (immediate shift arithmetic left) shifts the destination operand left by an immediate
value. SAL has two operands. The first, destination, is the effective address to be shifted. The
second, count, is an immediate byte value representing the number of shifts to be made. The
CPU will AND count with 1FH before shifting to allow no more than 32 shifts. Zeros shift in
on the right. ' ‘
SHL destination, count

SHL (immediate shift logical left) is physically the same instruction as SAL (immediate shift
arithmetic left).

SAR destination, count
SAR (immediate shift arithmetic right) shifts the destination operand right by an immediate

value. SAL has two operands. The first, destination, is the effective address to be shifted. The
second, count, is an immediate byte value representing the number of shifts to be made. The
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CPU will AND count with 1FH before shifting to allow no more than 32 shifts. The value of
the original sign bit shifts into the most-significant bit to preserve the initial sign.

SHR destination, count

SHR (immediate shift logical right) is physically the same instruction as SAR (immediate shift
arithmetic right).

A.23.2. ROTATE INSTRUCTIONS
ROL destination, count

ROL (immediate rotate left) rotates the destination byte or word left by an immediate value.
ROL has two operands. The first, destination, is the effective address to be rotated. The
second, count is an immediate byte value representing the number of rotations to be made. The
most-significant bit of destination rotates into the least-significant bit.

ROR destination, count

ROR (immediate rotate right) rotates the destination byte or word right by an immediate value.
ROR has two operands. The first, destination, is the effective address to be rotated. The
second, count is an immediate byte value representing the number of rotations to be made. The
least-significant bit of destination rotates into the most-significant bit.

RCL destination, count

RCL (immediate rotate through carry left) rotates the destination byte or word left by an
immediate value. RCL has two operands. The first, destination, is the effective address to be
rotated. The second, count, is an immediate byte value representing the number of rotations to
be made. The Carry Flag (CF) rotates into the least-significant bit of destination. The
most-significant bit of destination rotates into the Carry Flag.

RCR destination, count

RCR (immediate rotate through carry right) rotates the destination byte or word right by an
immediate value. RCR has two operands. The first, destination, is the effective address to be
rotated. The second, count, is an immediate byte value representing the number of rotations to
be made. The Carry Flag (CF) rotates into the most-significant bit of ‘destination. The least-
significant bit of destination rotates into the Carry Flag.
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APPENDIX B
INPUT SYNCHRONIZATION

Many input signals to an 80C186EA or 80C188EA embedded processor are asynchronous.
Asynchronous signals do not require a specified set up or hold time to ensure the device does
not incur a failure. However, asynchronous setup and hold times are specified in the data sheet
to ensure recognition. Associated with each of these inputs is a synchronizing circuit (see
Figure B-1) which samples the asynchronous signal and synchronizes it to the internal
operating clock. The output of the synchronizing circuit is then safely routed to the logic units.

ASYNCHRONOUS D Q D Q SYNCHRONIZED
INPUT OUTPUT
FIRST SECOND
LATCH LATCH
©—P @ —
NOTES: 1. First latch sample clock, can be phase 1 or phase 2 depending on pin function

2. Second latch sample clock, opposite phase of first latch sample clock
(e.g. if first latch is sampled with phase 1, the second latch is sampled with phase 2).

Figure B.1. Input Synchronization Circuit

B.1. WHY SYNCHRONIZERS ARE REQUIRED

Every data latch requires a specific set up and hold time to operate properly. The duration of
the setup and hold time defines a window where the device attempts to latch the data. If the
input makes a transition within this window, the output may not attain a stable state. The data
sheet specifies a setup and hold window larger than is actually required. However, variations
" in device operation (e.g., temperature, voltage) require a larger window be specified to cover
all conditions.

Should the input to the data latch transition during the sample and hold window, the output of
the latch eventually attains a stable state. Reaching this stable state must occur before the
second stage of sychroniztion requires a valid input. To synchronize an asynchronous signal,
the circuit in Figure B-1 samples the input into the first latch, allows to output to stabilize, then
samples the stabilized value into a second latch. With the asynchronous signal resolved in this
way, the input signal can not cause a internal device failure.
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A synchronization failure can occur when the output of the first latch does not meet the setup
and hold requirements of the input of the second latch. The rate of failure is determined by the
actual size of the sampling window of the data latch, and by the amount of time between the
strobe signals of the two latches. As the sampling window gets smaller, the number of times
an asynchronous transition occurs during the sampling window drops.

B.2. ASYNCHRONOUS PINS

The 80C186EA and 80C188EA embedded processors use the two stage synchronization
circuit on the following pins: T1IN, T2IN, NMI, TEST/BUSY, INT0-3, HOLD, DRQO, and
DRQI.
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Table C.1. Instruction Set Summary

Clock

Function Format Cycles Comments
DATA TRANSFER
MOV .= MOVE:
Register to Register/Memory 1000100 wj modreg t/m 2/12
Register/memory to register 1000101 w| modreg r/m 2/9
Immediate to register memory 1100011 w| mod000 t/m data data if w=1 | 12-13 8/16-bit
Immediate to register 1011w reg data data if w=1 34 8/16-bit
Memory to accumulator 1010000w addr-low addr-high 9
Accumulator to memory 1010001 wl addr-low addr-high 8
Register/memory to segment register 10001110/ modOreg r/m 2/9
Segment register to register/memory . 1000110 0] modOreg /m 21
PUSH = Push:
Memory 1111111 1] md110 vm | 16
Register 01010 reg 10
Segment register 000 g 110 9

PUSHA = Push All 01100000 )
POP = Pop:

Memory 10001 111] medooo | 2
Register 01011 reg 10
Segment register 000 r6g 111 (reg201) : 8

XCHG = Exchange:

Register/memory with register 100001 1 w| modreg tm_| an7
Register with accumulator 10010 reg 3
IN = input from:

Fixed port 1110010w port 10
Variable port 1110110w 8
OUT = Output to:

Fixed port 1110011w port ] 9
Variable port 111011 1w 7
XLAT =Translate byte to AL 11010111 1"
LEA = Load EA to register ' 1000110 1] modreg /m 6
LDS = Load pointer to DS 1100010 1] modreg /m | (mod211) 18
LES = Load pointer to ES 1100010 0] modreg r/m (mod211) 18
LAHF = Load AH with flags 100t1111 | 2
SAHF = Store AH into flags 10011110 3
PUSHF = Push flags 10011100 9
POPF = Pop Flags 10011101 8

Shaded areas indicate instructions not available in iAPX 86, 88 microsystems.

C-1



intgl. ' APPENDIX C

- ~ Table C.1. Instruction Set Summary (Continued)

Format gylgm Comments
 DATA TRANSFER (Continued)
SEGMENT = Segment Override:
Shcse ; 00101110 2
s ‘ 00110110 2
s 00111110 2
5 00100110 2
* ARITHMETIC
ADU=M¢: .
Reg/memory with register to either 000000 dw| modreg m ‘ 3/10
Immiediate to register/memory ‘ 100000 s w| mod000 t/m data data if s w=01 4/16
Immediate to accumulator 000001 0w data data if w=1 3/4 8/16-bit
ADC = Add with carry:
Reg/hemowwhh register to either 000100 dw]| modreg t/m 3/10
Immediate to register/memory 100000s w| md010 /m data data if s w=01 | 4/16
Immediate to accumulator 0001010w data data if w=1 3/4 8/16-bit
INC = Increment
Register/memory 1111111 w| mod000 =~ ©/m . 3/15
Register 01000 reg 3
SUB = Subtract )
Reg/memory and register to either 001010 dw| modreg r/m 3/10
Immediate from register/memory 100000 s w/| modi01 r/m data data if s w=01 I 4116
Immediate from accumulator 0010110w data data if w=1 3/4 8/16-bit
$BB = suMmcl with borrow
Reg/memory and register to either 000110 dw]| modreg /m 3/10
Immediate from register/memory 100000 s w| modOt1 m data data if s w=01 l 416
g !mrﬁediaté,fromaccumulator . 0001110w data data if w=1 ) 3/4 8/16-bit
1111111 w| mod001 m | 315
01001 reg ) 3
0011101 w[ modreg /m 310
0011100 w[ modreg t/m 3110
100000s wi mditd r/m’ data data if s w=01 | 3110
0011110 wj data data if w=1 3/4 8/16-bit
sign:ioy. o 1111011 w| mod0i1 /m ’ 3
adiust for Add. . 00110111 8
00100111 4
00111111 7
0o0101t11t1 4
¢ MUk Mutily (unsigned): [ 111011 w[ mdioo t/m .
" Register-Byte ) i 26-28
Register-Word 35-37
Memory-Byte N 32-34
Memory-Word 41-43

Shaded areas indicate instructions not available in iAPX 86, 88 microsysteins.
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Table C.1. Instruction Set Summary (Cohtinued)

Clock

Function ) Format Cycles Comments
ARITHMETIC (Continued)
IMUL = Integer multiply (signed): 11 171101 1w l mod10 1 r/m |
Register-Byte 25-28
Register-Word 34-37
Memory-Byte 31-34
Memory-Word 40-43

DIV = Divide (unsigned): |1 111011 w
Register-Byte

—

mod 110 /m |

Register-Word
Memory-Byte
Memory-Word

IDIV = Integer divide (signed): 111101 1w
Register-Byte
Register-Word

mod 111 m |

Memory-Byte
Memory-Word

AAM = ASCII ‘adjust for multiply 11010100/00001010
AAD = ASCI! adjust for divide 11010101j00001010
CBW = Convert byte to word 10011000

CWD = Convert word to double word 10011001

LOGIC

Shift/Rotate Instructions:

Register/Memory by 1 [171 01000 w] mdTTT vm |

Register/Memory by CL : |1 101001 wl mod TTT r/m

TIT  Instruction
000 ROL
001 ROR
010 RCL
011 RCR
100 SHUSAL
101 SHR
111 SAR
AND = And:
Reg/memory and register to either 001000 dw| modreg r/m
Immediate to register/memory 1000000 w(| mod100 r/m data . data if w=1 j
Immediate to accumulator 0010010w data data if w=1
TEST = And function to flags, no result:
Register/memory and register 1000.01 0 w| modreg /m
data and regi y 1111011 w| md000 t/m data dataifw=1 |
Immediate data and accumulator 101T0100w data data if w=1
OR=0r:
Reg/memory and register to either 0000 10d w/| modreg /m
Immediate to register/memory 1000000 w| mod001 /m data data if w=1
immediate to accumulator 0000110w data data if w=1

215

5+n/17+n

310
4/16
3/4

3/10
4/10
4

3/10
4/16
34

8/16-bit

8/16-bit

8/16-bit

Shaded areas indicate instructions not available in iAPX 86, 88 microsystemls.
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APPENDIX C

Table C.1. Instruction Set Summary (Continued)

Repeated by count in CX

MOVS - Move string
CMPS - Compare string
SCAS - Scan string

~ LODS - Load string
$TOS - Store string

CONTROL TRANSFER
CALL = Call:

Direct within segment
' Register memory indirect within segment
Direct intersegment

Indirect intersegment

JMP = Unconditional jump:

Short/long

Direct within segment
Register/memory indirect with segment

Direct intersegment

Indirect intersegment

RET = Return from CHPS:

Within segment

With seg adding immed to SP

Intersegment

Intersegment adding immediate to SP'
JE/JZ = Jump on equal zero

JL/INGE = Jump on less/not greater or equal
JLE/ING = Jump on less or equal/not greater

111100101 010010w
1111001z[101001 1w
1111001zJ10101 11w
1111001010101 10w
11110100}01 1001w

11101000 disp-low disp-hour
11111111 mod010 r/m
10011010 segment offset
selector
11111111] modo11 vm | (mod 2 11)

11101011 disp-low

11101001 disp-low disp-high

11111111 mod 100 /m

11101010 segment offset
selector

1111111 mod101 vm_| (mod > 11)

11000011

11000010  data-low data-high
11001011

11001010 data-low data-high
01110100 disp
01111100 disp
01111110 disp

Function Format g;:;ks Comments
LOGIC (Continued)
XOR = Exclusive or:
Reg/memory and register to either 001 100dw| modreg /m -3110
Immediate to register/memory 1000000 w| mdil10 /m data data if w=1 416
Immediate to accumulator 0011010w data data if w=1 3/4 8/16-bit
Not = Invert register/memory 1111011 w| mod010 r/m 3
STRING MANIPULATION:
MOVS = Move byte/word 1010010w 14
CMPS = Compare byte/word 1010011 w 22
SCAS = Scan byte/word 17010111 w 15
LODS = Load byte/wd to AL/AX 10101 10w 12
STOS = Stor byte/wd from AL/A 1010101 w 10

84
5+22n
54150
6+11n
6+9n

13/19
23

38

1n7

413
4n3
413

13if JMP
taken

4if Jmp

not taken

Shaded areas indicate instructions not available in iAPX 86, 88 microsystems.
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Table C.1. Instruction Set Summary (Continued)

Function Format (?yI:lceks Comments
Control Transfer (Continued)
JB/INAE = Jump on below/not above or equal 01110010 disp 413
JBE/JNA = Jump on below or equal/not above 01110110 disp 413
JP/JPE = Jump on parity/parity even 01111010 disp 413
J0 = Jump on overflow 01110000 disp 413
J8 = Jump on sign 01111000 disp 413
JNE/INZ = Jump on not equal/not zero 01110101 disp 4713
JNL/JGE = Jump on not less/greater or equal 01111101 disp 413
JINLE/JG = Jump on not less or equal/greater 01111111 disp 413
JNB/JAE = Jump on not below/above or equal 01110011 disp 413
JNBE/JA = Jump on not below or equal/above 01110111 disp 413
JNP/JPO = Jump on not par/par odd 01111011 disp ) 413
JNO = Jump on not overflow 01110001 disp 43
JNS = Jump on not sign 01111001 disp 515
JCXZ = Jump on CX zero 11100011 disp 6/16
LOOP = Loop CX times - 11100010 disp . 6/16
LOOPZ/LOOPE = Loop while zero/equal 11100001 disp 16 JMP taken/
LOOPNZ/LOOPNE = Loop while not zero/equal 11100000 disp 5 JMP not taken

LEAVE = Leave Procedure 11001001 , 8

INT = Interrupt:

Type specified . 11001101 type I 47 if INT taken/
Type 3 11001100 45 if INT not
INTO = Interrupt on overflow 11001110 ] 48/4 taken
IRET = Interrupt return 11001111 28

PROCESSOR CONTROL

CLC = Clear carry 11111000 2
CMC = Complement carry 11110101 2
STC = Set carry 11111001 2
CLD = Clear direction 11111100 2
STD = Set direction 11111101 2
CLI = Clear interrupt 11111010 2
STI = Set interrupt 11111011 2
HLT = Halt 11110100 2
WAIT = Wait 10011011 6 if fest = 0
LOCK = Bus lock prefix 11 10000 2
ESC = Processor extension escape 11011 T7T7TT| modLLL r/m I 6

(TTT LLL are opcode to processor extension)

Shaded areas indicate instructions not available in iAPX 86, 88 microsystems.
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FOOT NOTES

The Effective Address (EA) of the memory operand reg is assigned according to the following:
is computed according to the mod and r/m fields:

Segment
if mod = 11 then r/m is treated as a REG field reg Register
if mod = 00 then DISP = 0%, disp-low and disp-high !
are absent - 00 ES
if mod = 01 then DISP = disp-low sign-extended to - 01 CS
16-bits, disp-high is absent 10 N
if mod = 10 then DISP = disp-high:disp-low 11 DS
if r/m = 000 then EA = (BX) + (SI) + DISP REG is assigned according to the
if r/m = 001 then EA = (BX) + (DI) + DISP . following table: ‘
if r/m = 010 then EA = (BP) + (SI) + DISP .
if r/m = 011 then EA = (BP) + (DI) + DISP ~ 16-Bit (w=1) 8-Bit (w=0)
if r/m = 100 then EA = (SI) + DISP ‘
if /m = 101 then EA = (DI) + DISP ' . 000 AX 000 AL
if r/m = 110 then EA = (BP) + DISP* 001 €X 001 CL
if r/m = 111 then EA = (BX) + DISP 010 DX 010 DL

011 BX 011 BL

DISP follows 2nd byte of instruction (before data 100 SP 100 AH
if required) 101 BP 101 CH
: ~ 110 SI 110 DH

*excgpt if mod‘= 00 and r/m = 110 then EA = disp-high:disp-low. 111 DI 111 BH

SEGMENT OVERRIDE PREFIX The physical address of all operands

001 reg 110 addressed by the BP register are com-

, puted using the SS segment register. The
physical addresses of the destination
operands of the string primitive operation
(those addressed by the DI register) are
computed using the ES segment, which
may not be overridden.
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Table C.2. Machine Instruction Decoding Guide

ISTBYTE 2ND BYTE BYTES 3,4,5,6 ASM-86 INSTRUCTION FORMAT
HEX | BINARY
00 | 0000 0000 | MOD REGRM (DISP-LO),(DISP-HI) ADD  REGS8/MEMS,REGS
01 | 0000 0001 | MOD REGRM (DISP-LO),(DISP-HI) ADD  REG16/EMI16,REG16
02 | 0000 0010 | MOD REGRM (DISP-LO),(DISP-HI) ADD  REGSREGS8/MEMS
03 | 0000 0011 | MOD REGRM (DISP-LO),(DISP-HI) ADD  REG16,REG16/MEMI6
04 | 0000 0100 | DATA-8 ADD  ALIMMEDS
05 | 0000 0101 | DATA-LO DATA-HI ADD  AX,MMEDI6
06 | 0000 0110 PUSH ES
07 | 0000 o111 POP ES
08 | 0000 0100 | MOD REGRM (DISP-LO),(DISP-HI) OR REGS/MEMS,REG8
09 | 0000 1001 | MOD REGRM (DISP-LO)(DISP-HI) OR REG16/MEMI16,REG16
0A | 0000 1010 | MOD REGRM (DISP-LO),(DISP-HI) OR REG8,REG8/MEMS8 |
0B | 0000 1011.| MOD REGRM (DISP-LO),(DISP-HI) OR REG16,REG16/MEM16 .
0C | 0000 1100 | DATA-8 OR ALIMMEDS ‘
0D | 0000 1101 | DATA-LO DATA-HI OR AX,MMEDI16
0E | 0000 1110 PUSH CS
OF | 0000 1111 (not used) B
10 | ooo1 0000 | MOD REGRM (DISP-LO),(DISP-HI) ADC REGS/MEM8,REGS  +°
11 | 0001 0001 | MOD REGRM (DISP-LO),(DISP-HI) ADC  REGI6/MEMI6;REGI6
12 | 0001 0010 | MOD REG RM (DISP-LO),(DISP-HI) ADC REG8,REG8/MEMS.
13 | 0001 0011 | MOD REGRM (DISP-LO),(DISP-HI) ADC  REGIGREGI6/MEMI6 .
14 | 0001 0100 | DATA-8 ADC  ALIMMEDS
15 | 0001 0101 | DATA-LO DATA-HI ADC  AX,MMEDI6
16 | 0001 o110 PUSH SS S
17 | o001 o111 pOP ss
18 | 0001 1000 | MOD REG RM (DISP-LO),(DISP-HI) SBB REG8/MEMS,REG8 :
19 | 0001 1001 | MOD REG RM (DISP-LO),(DISP-HI) SBB REG16/MEMI16,REG16
1A | 0001 1010 | MOD REGRM (DISP-LO)(DISP-HI) SBB REG8,REG8/MEMS8
1B | 0001 1011 | MOD REGRM (DISP-LO),(DISP-HI) SBB REG16,REG16/MEM16
1C | 0001 1100 | DATA-8 SBB ALJIMMEDS8
ID | 0001 1101 | DATA-LO DATA-HI SBB AX,IMMED16
1E | 0001 1110 PUSH DS
1IF | 0001 1111 poP DS
20 | 0010 0000 | MOD REG RM (DISP-LO),(DISP-HI) AND  REGS8/MEMS,REGS .
21 | 0010 0001 | MOD REG RM (DISP-LO),(DISP-HI) AND  REGI6/MEMI6REGI6 . .-
22 | 0010 0010 | MOD REG RM (DISP-LO),(DISP-HI) AND  REGS,REG8/MEMS . .
23 | 0010 0011 | MOD REGRM (DISP-LO),(DISP-HI) AND  REGI6REG16/MEMI6:
24 | 0010 0100 | DATA-8 AND  ALIMMEDS . °
25 | 0010 0101 | DATA-LO DATA-HI AND  AX,MMEDI6
26 | 0010 0110 ES: (segment override prefix): ' -
27 | o010 o111 DAA oo
28 | 0010 1000 | MOD REG RM (DISP-LO),(DISP-HI) SUB
29 | 0010 1001 | MOD REG RM (DISP-LO),(DISP-HI) SUB
2A | 0010 1010 | MOD REGRM (DISP-LO),(DISP-HI) SUB
2B | 0010 1011 | MOD REGRM (DISP-LO),(DISP-HI) SUB
2C | 0010 1100 | DATA-8 SUB
2D | 0010 1100 | DATA-LO DATA-HI SUB
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APPENDIX C

Table C.2. Machine Instruction Decoding Guide (Continued)

ISTBYTE

2ND BYTE BYTES 3,4,5,6 ASM-86 INSTRUCTION FORMAT

| HEX BINARY

2E 0010 1110 CS: (segment override prefix)

2F | 0010 1111 ) DAS

30 0011 0000 | MOD REGRM (DISP-LO),(DISP-HI) XOR REG8/MEMS8,REG8

31 0011 0001 MOD REG RM (DISP-LO),(DISP-HI) XOR REG16/MEM16,REG16

32 0011 0010 MOD REG RM (DISP-LO),(DISP-HI) XOR REG8,REG8/MEMS8

33 0011 0011 MOD REG RM (DISP-LO),(DISP-HI) XOR REG16,REG16/MEM16

34 0011 0100 | DATA-8 XOR AL,MMEDS

35 0011 0100 | DATA-LO DATA-HI XOR AX,IMMED16

36 0011 0110 SS: (segment override prefix)

37 0011 0111 AAA

38 0011 1000 | MOD REG RM (DISP-LO),(DISP-HI) CMP REG8/MEMS8,REG8

39 0011 1001 MOD REG RM (DISP-LO),(DISP-HI) CMP REG16/MEM16,REG16

3A | 0011 1010 | MOD REGRM (DISP-LO),(DISP-HI) CMP REG8 REG8/MEMS$

3B | 0011 1011 MOD REG RM (DISP-LO),(DISP-HI) CMP REG16 REG16/MEM16

3C | 0011 1100 | DATA-8 CMP ALIMMEDS

3D | 0011 1101 DATA-LO DATA-HI CMP AX,IMMEDI16

3E 0011 1110 | ° DS: (segment override prefix)

3F | 0011 1111 AAS

40 0100 0000 INC AX

41 0100 0001 INC cX

4?2 0100 0010 INC DX

43 0100 0011 INC BX

4 0100 0100 INC SP

45 | 0100 0101 INC BP

46 0100 0110 INC SI

47 0100 0111 INC DI

48 0100 1000 DEC AX

49 0100 1001 DEC cX

4A | 0100 1010 DEC DX

4B 0100 1011 DEC BX

4C | 0100 1100 DEC SP

4D | 0100 1101 DEC BP

4E 0100 1110 DEC SI

4F | 0100 1111 DEC DI

50 0101 0000 PUSH AX

51 0101 0001 PUSH cX

52 0101 0010 PUSH DX

53 0101 0011 PUSH BX

54 | 0101 0100 PUSH SP

5S 0101 0101 PUSH BP

56 0101 0110 PUSH SI

57 0101 0111 PUSH DI

58 0101 1000 , POP AX

59 0101 1001 POP cX

SA | 0101 1010 POP DX

5B 0101 = 1011 POP BX
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APPENDIX C

Table C.2. Machine Instruction Decoding Guide (Continued)

ISTBYTE 2ND BYTE BYTES 3,4,5,6 ASM-86 INSTRUCTION FORMAT
| HEX | BINARY
sc | 0101 1100 POP sp
sD | o101 1101 POP BP
SE | 0101 1110 POP s
SF | o101 1111 POP DI
60 | 0110 0000 PUSHA (186/8 ONLY)
61 | 0110 0001 POPA  (186/8 ONLY) ,
62 | 0110 0010 | MODREGRM BOUND REG16,MEM16(186/8 ONLY)
63 | 0110 0011 (not used)
64 | 0110 0100 (not used)
65 | o110 o101 (not used)
66 | 0110 0110 (not used)
67 | 0110 0111 (not used)
68 | 0110 1000 | DATA-LO DATA-HI PUSH  IMMEDI6(186/8 ONLY)
69 | 0110 1001 | MOD REGRM DATA-LO,DATA-HI IMUL  IMMEDI6(186/8 ONLY)
6A | 0110 1010 | DATA-8 PUSH  IMMEDS(186/8 ONLY)
6B | 0110 1011 | MOD REGRM DATA-8 IMUL  IMMEDS(186/8 ONLY)
6c | 0110 1100 INS MEMS8,DX(186/8 ONLY)
6D | o110 1101 INS MEM16,DX(186/8 ONLY)
6E | 0110 1110 OUTS  MEMS,CX(186/8 ONLY)
6F | o110 1111 OUTS  MEM16,DX(186/8 ONLY)
70 | o111 0000 | IP:INC8 JjO SHORT-LABEL
71 | 0111 0001 | IP-INC8 INO SHORT-LABEL
72 | o111 0010 | IP-INC8 B/ SHORT-LABEL
INAE/
ic
73 | o111 0011 | IP-INCS JNB/  SHORT-LABEL
JAE/
INC
74 | 0111 0100 | IP-INC8 JENZ  SHORT-LABEL
75 | o1l 0101 | IP-INCS INE/INZ SHORT-LABEL
76 | o111 0110 | IP-INCS JBE/INA SHORT-LABEL
77 | o111 o1l | IP-INCS | JNBE/  SHORT-LABEL
JA
78 | 0111 1000 | IP-INCS s * SHORT-LABEL
79 | o111. 1001 | IP-INC3 INS SHORT-LABEL
7A | 0111 1010 | IP-INC8 JPIPE  SHORT-LABEL
7B | 0111 1011 | IP-INC8 INPJPO SHORT-LABEL
7c | o111 1100 | IP-INC8 1 7] SHORT-LABEL
INGE
7D | o111 1101 | IP-INC8 INLIGE SHORT-LABEL
7E | o111 1110 | IP-INC8 JLE/ SHORT-LABEL
ING
7F | o111 1111 | IP-INC8 JNLE/  SHORT-LABEL
1G
80 | 1000 0000 | MOD 000 RM (DISP LO)(DISP HI) ADD  REGS/MEMSIMMEDS
DATA-8
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APPENDIX C

Table C2 Machine Instruction Decoding Guide (Continued)

ISTBYTE 2ND BYTE ! BYTES3,4,5,6 ASM-86 INSTRUCTION FORMAT
| HEX | BINARY
1000 0000 [ MOD 001 RM (DISP-LO),(DISP-HI), . OR REG8/MEMS8,IMMEDS
DATA-8 ,
1000 000 | MOD 010 RM (DISP-LO),(DISP-HI), ADC REG8/MEMS,IMMEDS
DATA-8 o
80 | 1000 0000 | MODO11 RM (DISP-LO),(DISP-HI), SBB REG8/MEMS,IMMEDS
DATA-8 '
80 | 1000 0000 | MOD 100 RM (DISP-LO),(DISP-HD), AND  REGS/MEMS8IMMEDS
‘ DATA-8
80 | 1000. 0000 | MOD 101 RM (DISP-LO),(DISP-HI), SUB REG8/MEMS,IMMEDS
, DATA-8
80 | 1000 0000 | MOD 110 RM (DISP-LO),(DISP-HI), XOR REG8/MEMS8,IMMEDS
' DATA-8
1000 0000 | MOD 111 RM (DISP-LO),(DISP-HD), CMP REG8/MEM8,IMMEDS
DATA-8
81. | 1000 0001 | MOD 000 RM (DISP-LO),(DISP-HI), ADD  REG16/MEM16 IMMEDI16
DATA-LO,DATA-HI ‘ ‘
81 | 1000 0001 | MOD 00! RM (DISP-LO),(DISP-HI), OR REG16/MEM16 IMMED16
v DATA-LO,DATA-HI
81 | 1000 0001 | MODO010RM (DISP-LO),(DISP-HI), ADC REG16/MEM16,IMMEDI16
DATA-LODATA-HI
81 | 1000 0001 | MODOI11RM (DISP-LO),(DISP-HI), SBB REG16/MEM16 IMMED16
DATA-LODATA-HI '
81 | 1000 0001 | MOD 100 RM (DISP-LO),(DISP-HI), AND  REG16/MEM16 IMMEDI16
DATA-LO.DATA-HI \
81 | 1000 0001 | MOD 101 RM (DISP-LO),(DISP-HI), SUB REG16/MEM16,IMMED16
. DATA-LO,DATA-HI
81 | 1000 0001 | MOD110RM (DISP-LO),(DISP-HI), XOR REG16/MEM16,IMMEDI16
DATA-LO,DATA-HI
81 | 1000 0001 | MOD111RM (DISP-LO),(DISP-HI), CMP REG16/MEM16,IMMEDI16
DATA-LODATA-HI '
82 | 1000 0010 | MOD 000 RM (DISP-LO),(DISP-HI), ADD  REG8/MEMS8IMMEDS
) ‘ DATA-8 »
82 | 1000 0010 | MOD 001 RM (not used)
82 | 1000 0010 | MODO10RM (DISP-LO),(DISP-HI), ADC REG8/MEMS IMMEDS
DATA-8
82 | 1000 0010 | MODO!1RM (DISP-LO),(DISP-HI), SBB REG8/MEM8,IMMEDS
DATA-8
82 | 1000 0010 | MOD 100 RM (not used)
82 | 1000 0010 | MODIOIRM (DISP-LO),(DISP-HI), SUB REG8/MEMS8,IMMEDS
' v , DATA-8
82 | 1000 0010 | MOD110RM (ot used)
82 | 1000 0010 | MOD111 RM (DISP-LO),(DISP-HI), CMP REGS/MEMSIMMEDS
DATA-8
83 | 1000 0011 | MOD 000 RM (DISP-LO),(DISP-HI), ADD  REG16/MEM16,IMMEDS
. ; DATA-SX
83 | 1000 0011 | MODO001 RM (not used)
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Table C.2. Machine Instruction Decoding Guide (Continued)

IST BYTE 2ND BYTE BYTES 3,4,5,6 ASM-86 INSTRUCTION FORMAT
| HEX BINARY

83 1000 0011 MOD 010 RM (DISP-LO),(DISP-HI), ADC REG16/MEM16 IMMEDS
DATA-SX

83 1000 0011 MOD 011 RM (DISP-LO),(DISP-HI), SBB REG16/MEM16 IMMEDS8
DATA-SX

83 1000 0011 MOD 100 RM . (not used)

83 1000 0011 MOD 101 RM (DISP-LO),(DISP-HI), SUB REG16/MEM16 IMMEDS8
DATA-SX

83 1000 011 MOD 110 RM (not used)

83 1000 0011 MOD 111 RM (DISP-LO),(DISP-HI), CMP REG16/MEM16 IMMEDS
DATA-SX .

84 1000 0100 MOD REG R'M (DISP-LO),(DISP-HI) TEST REG8 MEM8 REG8

85 1000 0101 MOD REG R'M (DISP-LO),(DISP-HI) TEST REG16/MEM16,REG16

86 1000 0110 MOD REG RM (DISP-LO),(DISP-HI) XCHG REGS8,REG8/MEMS

87 1000 0111 MOD REG RM (DISP-LO),(DISP-HI) XCHG REG16,REG16,MEM16

88 1000 1000 MOD REG R'M (DISP-LO),(DISP-HI) MOV REG8/MEMS8,REG8

89 1000 1001 MOD REG RM (DISP-LO),(DISP-HI) MOV REG16/MEM16/REG16

8A 1000 1010 MOD REG R'M (DISP-LO),(DISP-HI) MOV REG8,REG8/MEMS8

8B 1000 1011 MOD REG RM (DISP-LO),(DISP-HI) MOV REG16,REG16/MEM16

8C 1000 1100 MOD OSR RM (DISP-LO),(DISP-HI) REG16/MEM16 SEGREG

8C 1000 1100 MOD 1 - RM (not used)

8D 1000 1101 MOD REG RM (DISP-LO),(DISP-HI) LEA REG16 MEM16

8E 1000 1110 | MOD OSR RM (DISP-LO),(DISP-HI) MOV SEGREG,REG16/MEM16

8E 1000 1110 MOD 1 - R'M (not used)

8F 1000 1111 MOD 000 RM (DISP-LO),(DISP-HI)

8F 1000 1111 MOD 001 R'M (not used)

8F 1000 1111 MOD 010 RM (not used)

8F 1000 1111 MOD 011 RM (not used)

8F 1000 1111 MOD 100 RM (not used)

8F 1000 1111 MOD 101 RM (not used)

8F 1000 1111 MOD 110 RM (not used)

90 1001 0000 NOP (exchange AX,AX)

91 1001 0001 XCHG AXCX

92 1001 0010 XCHG AXDX

93 1001 0011 XCHG AX,BX

94 1001 0100 XCHG AXSP

95 1001 0101 XCHG AXBP

96 1001 0110 XCHG AXSI

97 1001 0111 XCHG AXDI

98 1001 1000 CBW

99 1001 1001 CWD

9A 1001 1010 DISP-LO DISP-HI,SEG-LO, CALL FAR_PROC
SEG-HI )

9B 1001 1011 WAIT

9C 1001 1100 PUSHF

9D 1001 1101 POPF

9E 1001 1110 SAHF
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Table C.2. Machine Instruction Decoding Guide (Continued)

ISTBYTE 2ND BYTE BYTES 3,4,5,6 ASM-86 INSTRUCTION FORMAT
| HEX | BINARY
9F | 1001 1111 ‘ LAHF
A0 | 1010 0000 | ADDR-LO ADDR-HI MOV  ALMEMS
Al | 1010 0001 | ADDR-LO ADDR-HI MOV  AX,MEM16
A2 | 1010 0010 | ADDR-LO ADDR-HI MOV  MEMSAL
A3 | 1010 0011 | ADDR-LO ADDR-HI MOV  MEMI6AL
A4 | 1010 0100 MOVS  DEST-STR8,SRC-STR8
AS | 1010 0101 MOVS  DEST-STR16,SRC-STR16
A6 | 1010 0110 CMPS  DEST-STR8,SR-STR8
A7 | 1010 o111 CMPS  DEST-STR16,SRC-STR16
A8 | 1010 1000 | DATA-8 TEST  ALIMMEDS
A9 | 1010 1001 | DATA-LO DATA-HI “TEST  AX,]MMEDI16
AA | 1010 1010 STOS  DEST-STRS
AB | 1010 1011 STOS  DEST-STR16
AC | 1010 1100 LODS  SRC-STRS
AD | 1010 1101 LODS  SRC-STRI6
AE | 1010 1110 SCAS  DEST-STR8
AF | 1010 1111 SCAS  DEST-STRI16
BO | 1011 0000 | DATA-8 MOV  ALIMMEDS
Bl | 1011 0001 | DATA-8 MOV  CL,IMMEDS
B2 | 1011 0010 | DATA-8 MOV  DLIMMEDS
B3 | 1011 0011 | DATA-8 MOV  BL,IMMEDS
B4 | 1011 0100 | DATA-8 MOV  AHIMMEDS
B5 | 1011 0101 | DATA-8 MOV  CHIMMEDS
B6 | 1011 0110 | DATA-8 MOV  DHIMMEDS
B7 | 1011 0111 | DATA-8 MOV  BH,IMMEDS
B8 | 1011 1000 | DATA-LO DATA-HI MOV  AX,MMEDI6
B9 | 1011 1001 | DATA-LO DATA-HI MOV  CXJIMMEDI6
BA | 1011 1010 | DATA-LO DATA-HI MOV  DX,MMEDI6
BB | 1011 1011 | DATA-LO DATA-HI MOV  BXIMMEDI6
BC | 1011 1100 | DATA-LO DATA-HI MOV  SPIMMEDI16
BD | 1011 1101 | DATA-LO DATA-HI MOV  BPIMMEDI6
BE | 1011 1110 | DATA-LO DATA-HI MOV  SLIMMEDI6
BF | 1011 1111 | DATA-LO DATA-HI / MOV DIIMMEDI16
Cco | 1100 0000 | MOD 000 RM DATA-8 ROL REG8/MEMS,IMMEDS(186/8 ONLY)
co | 1100 0000 | MOD 001 RM DATA-8 ROR REG8/MEMS,IMMEDS(186/8 ONLY)
co | 1100 0000 | MOD 010 RM DATA-8 RCL REG8/MEMS,IMMEDS(186/8 ONLY)
co | 1100 0000 | MODO11 RM DATA-8 RR |  REGS/MEMS,IMMEDS(186/8 ONLY)
Co 1100 0000 MOD 100 RM DATA-8 SHL/SAL REG8/MEMS IMMEDS(186/8 ONLY)
Co 1100 0000 MOD 101 RM DATA-8 SHR REG8/MEMS8,IMMEDS(186/8 ONLY)
Co 1100 0000 MOD 111 RIM DATA-8 SAR REG8/MEMS,IMMEDg(186/8 ONLY)
Cl | 1100 0001 | MOD 000 RIM DATA-3 ROL REG16/MDM16,IMMEDS(186/8 ONLY)
C1 | 1100 0001 | MOD 001 RM DATA-8 ROR REG16/MDM16,IMMEDS(186/8 ONLY)
C1t | 1100 0001 | MODO010 RM DATA-8 RCL REG16/MDM16,IMMEDS(186/8 ONLY)
Cl 1100 0001 MOD 011 RM DATA-8 RCR REG16/MDM16,IMMEDS8(186/8 ONLY)
C1 | 1100 0001 | MOD 100 RM DATA-8 _ SHL/SAL REG16/MDM16,]MMEDS(186/8 ONLY)
C1 1100 0001 MOD 101 RM DATA-8 SHR REG16/MDM16,IMMEDS8(186/8 ONLY)
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Table C.2. Machine Instruction Decoding Guide (Continued)

ISTBYTE 2ND BYTE BYTES 3,4,5,6 ASM-86 INSTRUCTION FORMAT
| HEX | BINARY
C1 | 1100 0001 | MOD111RM DATA-8 SAR.  REG16/MDM16,IMMEDS(186/8
ONLY)
c2 | 1100 0010 | DATA-LO DATA-HI RET IMMED!6(intraseg)
c3 | 1100 0011 RET (intrasegment)
C4 | 1100 0100 | MOD REGRM (DISP-LO),(DISP-HI) LES REG16 MEM16
cs | 1100 0101 | MOD REG RM (DISP-LO),(DISP-HI) LDS REG16 MEM16
C6 | 1100 0110 | MOD 000 RM (DISP-LO),(DISP-HI), MOV  MEMSIMMEDS
‘ DATA-8
c6 | 1100 0110 | MODO001 RM (not used)
c6 | 1100 0110 | MODO010 RM (not used)
c6 | 1100 0110 | MODO11 RM (not used)
C6 | 1100 0110 | MOD 100 RM (not used)
c6 |'t100 o110 | MOD 101 RM (not used)
c6 | 1100 0110 | MOD110RM (not used)
c6 | 1100 0110 | MOD111 RM (not used)
c7 | 1100 o111 | MOD000 RM (DISP-LO),(DISP-HI), MOV  MEMI16]IMMEDI6
DATA-LODATA-HI
c7 | 1100 o111 | MODO001 RM (not used)
c7 | 1100 o111 | MODO10RM (not used)
c7 | 1100 o111 | MoDo11 RM (not used)
c7 | 1100 0111 | MOD 100 RM (not used)
c7 | 1100 o111 | MOD 101 RM (not used)
c7 | 1100 o111 | MOD110RM (not used)
c7 | 1100 o111 | MOD111RM (not used)
c8 | 1100 1000 | DATA-LO DATA-HI.LEVEL ENTER IMMEDI16,IMMEDS(186/8 ONLY)
co | 1100 1001 LEAVE (186/8 ONLY)
CA | 1100 1010 | DATA-LO DATA-HI RET IMMEDI6 (intersegment)
CB 1100 1011 RET (intersegment)
cc | 1100 1100 INT 3
cD | 1100 1101 | DATA-8 INT IMMEDS
CE | 1100 1110 INTO
CF 1100 1111 IRET
DO | 1101 0000 | MOD 000 RM (DISP-LO),(DISP-HI) ROL  REGS/MEMS,1
DO | 1101 0000 | MODO0O1 RM (DISP-LO),(DISP-HI) ROR REGS/MEMS, 1
DO | 1101 0000 | MODO010 RM (DISP-LO),(DISP-HI) RCL REGS/MEMS,1
DO | 1101 0000 | MODO11 RM (DISP-LO),(DISP-HI) RCR REGS/MEMS. 1
DO | 1101 0000 | MOD 100 RM (DISP-LO),(DISP-HI) SAL/SHL REGS/MEMS,1
DO | 1101 0000 | MOD 101 RM (DISP-LO),(DISP-HI) SHR REGS/MEMS, 1
DO | 1101 0000 | MOD 110 RM (not used)
DO | 1101 0000 | MOD111RM (DISP-LO),(DISP-HI) SAR REGS/MEMS,1
DI | 1101 0001 | MOD 000 RM (DISP-LO),(DISP-HI) SAR REG16/MEMI16,1
DI | 1101 0001 | MOD 001 RM (DISP-LO),(DISP-HI) ROR REG16/MEMI16,1
DI | 1101 0001 | MODO10 RM (DISP-LO).(DISP-HI) RCL - REG16/MEMIG6,1
Dl | 1101 0001 | MODOI1 RM (DISP-LO),(DISP-HI) RCR REG16/MEMI16,1
Dl | 1101 0001 | MOD 100 RM (DISP-LO),(DISP-HI) SAL/SHL REG16/MEMI6,1
Dl | 110t 0001 | MOD 101 RM (DISP-LO),(DISP-HI) SHR REG16/MEMI16,1
DI | 1101 0001 | MOD110RM (not used)
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Table C.2. Machine Instruction Decoding Guide (Continued)

ISTBYTE 2ND BYTE BYTES 3,4,5,6 ASM-86 INSTRUCTION FORMAT
HEX | BINARY : '
D1 | 1101 0001 | MOD111RM (DISP-LO),(DISP-HI) SAR REG16/MEM16,1
D2 | 1101 0010 | MODO000RM (DISP-LO),(DISP-HI) ROL REGS/MEMS,CL
p2 | 1101 0010 | MOD 001 RM (DISP-LO),(DISP-HI) ROR REGS8/MEMS,CL
D2 | 1101 0010 | MODO010 RM (DISP-LO),(DISP-HI) RCL REGS/MEMS,CL
D2 | 1101 0010 | MODO11 RM (DISP-LO),(DISP-HI) ’ RCR REG8/MEMS,CL
D2 | 1101, 0010 | MOD 100 RM (DISP-LO),(DISP-HI) SAL/SHL REGS/MEMS,CL
D2 | 1101 0010 | MOD101 RM (DISP-LO),(DISP-HI) SHR REGS8/MEMS,CL
D2 | 1101 0010 | MOD110 RM (not used)
D2 | 1101 0010 | MOD 111 RM (DISP:LO),(DISP-HI) SAR REG8/MEMS,CL
D3 | 1101 0011 | MOD 000 RM (DISP-LO),(DISP-HI) ROL REG16 MEM16,CL
D3 | 1101 0011 | MOD 001 RM (DISP-LO),(DISP-HI) ROR REG16MEM16,CL
D3 | 1101 0011 | MODO010 RM (DISP-LO),(DISP-HI) RCL REG16 MEM16,CL
D3 | 1101 0011 | MODO11 RM (DISP-LO),(DISP-HI) RCR REG16 MEM16,CL
D3 | 1101 0011 | MOD 100 RM (DISP-LO),(DISP-HI) SAL/SHL REG16MEM16,CL
D3 | 1101 0011 | MODO001 RM (DISP-LO),(DISP-HI) SHR REG16,MEM16,CL
D3 | 1101 0011 | MOD 110 RM , (not used)
D3 | 1101 0011 | MOD111 RM (DISP-LO),(DISP-HI) SAR REG16,MEM16,CL
D4 | 1101 - 0100 | 00001010 AAM i
D5 | 1101 0101 | 00001010 AAD
D6 | 1101 0110 (not used)
D7 | 1101 o111 XLAT  SOURCE-TABLE
D8 | 1101 1000 | MOD 000 R'M N
1XXX | MOD YYY RM (DISP-LO),(DISP-HI) ESC OPCODE,SOURCE
DF | 1101 1111 | MOD111 RM
EO | 1110 0000 | IP-INC-8 LOOPNE/ SHORT-LABEL
: LOOPNZ
El | 1110 0001 | IP-INC-8 LOOPE/  SHORT-LABEL
LooOPZ
E2 | 1110 0010 | IP-INC-8 LOOP  SHORT-LABEL
E3 | 1110 o011 | IP-INC-8 JCXZ  SHORT-LABEL
E4 | 1110 0100 | DATA-8 IN ALIMMEDS
ES | 1110 0101 | DATA-8 IN AXIMMEDS
E6 |.1110 0110 | DATA-8 OUT  ALIMMEDS
E7 | 1110 0111 | DATA-8 OUT  AX,MMEDS
E8 | 1110 1000 | IP-INC-LO IP-PINC-HI CALL  NEAR-PROC
E9 | 1110 1001 | IP-INC-LO IP-INC-HI IMP NEAR-LABEL
EA | 1110 1010 | 'IP-LO IP-HI,CS-LO,CS-HI MP FAR-LABEL
EB | 1110 1011 | IP-INC8 ‘ IMP . SHORT-LABEL
EC | 1110 ‘1100 IN ALDX
ED | 1110 1101 IN AX.DX
EE | 1110 1110 ouT ALDX
EF | 1110 1111 OUT = AXDX
FO 1111 0000 - LOCK (prefix)
FL | 1111 0001 (not used)
F2 | 1111 0010 REPNE/REPNZ
F3 | 1111 o011 REP/REPE/REPZ
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Table C.2. Machine Instruction Decoding Guide (Continued)

ISTBYTE 2ND BYTE BYTES 3,4,5,6 ASM-86 INSTRUCTION FORMAT
| HEX BINARY
F4 1111 0100 HLT
FS 1111 0101 CcMC
F6 1111 0110 | MOD 000 RM (DISP-LO),(DISP-HI), TEST REG8/MEMS8,IMMEDS8
DATA-8
F6 1111 0110 | MOD 001 RM (not used)
F6 1111 0110 | MODO10 RM (DISP-LO),(DISP-HI) NOT REG8/MEM8
F6 1111 0110 | MODOI11 RM (DISP-LO),(DISP-HI) NEG REG8/MEMS8
F6 1111 0110 | MOD 100 RM (DISP-LO),(DISP-HI) MUL REG8/MEMS8
F6 1111 0110 | MOD 101 RM (DISP-LO),(DISP-HI) IMUL REG8/MEMS8
F6 1111 0110 MOD 110 RM (DISP-LO),(DISP-HI) DIV REG8/MEMS8
F6 1111 0110 | MOD 111 RM (DISPLO),(DISPHI) DIV REG8/MEMS8
F71 1111 0111 MOD 000 RM (DISP-LO),(DISP-HI), TEST REG16/MEM16 IMMED16
DATA-LODATA-HI
F7 1111 0111 MOD 001 RM (not used)
F7 1111 0111 MOD 010 RM (DISP-LO),(DISP-HI) NOT REG16/MEM16
F71 1111 0111 MOD 011 R'M (DISP-LO),(DISP-HI) NEG REG16/MEM16
F7 1111 0111 MOD 100 RM (DISP-LO),(DISP-HI) MUL REG16/MEM16
F7 1111 0111 MOD 101 R'M (DISP-LO),(DISP-HI) IMUL REG16/MEM16
F7 1111 0111 MOD 110 RM (DISP-LO),(DISP-HI) DIV REG16/MEM16
F71 1111 0111 MOD 111 RM (DISP-LO),(DISP-HI) DIV REG16/MEM16
F8 1111 0100 CLC
F9 1111 1001 STC
FA 1111 1010 CLI
FB 1111 1011 STI
FC 1111 1100 CLD
FD | 1111 1101 STD
FE 1111 1110 MOD 000 RM (DISP-LO),(DISP-HI) INC REG8/MEMS8
FE 1111 1110 | MOD 001 RM (DISP-LO),(DISP-HI) DEC REG8/MEM8
FE 1111 1110 MOD 010 RM (not used)
FE 1111 1110 MOD 011 RM (not used)
FE 1111 1110 | MOD 100 RM (not used)
FE 1111 1110 MOD 101 R'M (not used)
FE 1111 1110 MOD 110 RM (not used)
FE 1111 1110 MOD 111 RM (not used)
FF 1111 1111 MOD 000 R'M (DISP-LO),(DISP-HI) INC MEM16
FF 111 1111 MOD 001 RM (DISP-LO),(DISP-HI) DEC MEM16
FF 1111 1111 MOD 010 RM (DISP-LO),(DISP-HI) CALL  REG16/MEMI6(intra)
FF 1111 1111 MOD 011 RM (DISP-LO),(DISP-HI) CALL MEM16(intersegment)
FF 1111 1111 MOD 100 R'M (DISP-LO),(DISP-HI) IMP REG16/MEM16(intra)
FF 1111 1111 MOD 101 RM (DISP-LO),(DISP-HI) MP MEM 1 6(intersegment)
FF 1111 1111 MOD 110 RM (DISP-LO),(DISP-HI) PUSH MEM16
FF 1111 1111 MOD 111 RM (not used)
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HI

LO

Table C.3. Mnemonic Encoding Matrix

0 1 2 3 4 S 6 7 8 9 A B C D E F
ADD ADD ADD ADD ADD ADD PUSH POP OR OR OR OR OR OR lPUSH
bfir/m | wfir/m | btr/m | witr/m b,ia wia ES ES bfir/m | wfi/m | btr/m | witr/m bi w,i CS
ADC ADC ADC ADC ADC ADC PUSH POP SBB SBB SBB SBB SBB SBB PUSH POP
bfe/m | wifr/m | btr/m | wtr/m bii w,i SS SS bfr/m | wfr/m | btr/m | wtr/m bji w,i DS Ds
AND AND AND. AND AND AND SEG . SUB SUB SUB SUB SUB SUB SEG :
bfr/m | wfir/m | btr/m | witr/m bi w,i =ES DAA bf/m | wifi/m | btym | witr/m b, w,i =CS DAS
XOR XOR XOR XOR XOR XOR SEG CMP CMP CMP CMP CMP CMP SEG
bfr/m | wfr/m | btr/m | witr/m b,i w,i =SS AAA bfir/m | wf/m | bt/m | witr/m b,i w,i =DS AAS
INC INC INC INC INC INC INC INC DEC DEC DEC DEC DEC DEC DEC DEC
AX ‘ CcX DX BX SP BP SI DI AX CcX DX BX SP BP SI DI
PUSH PUSH | PUSH PUSH PUSH PUSH PUSH | PUSH POP pPoP POP POP POP POP POP POP
AX CcX DX BX Sp BP SI DI AX CcX DX BX Sp BP SI DI
BOUND PUSH | IMUL | PUSH | IMUL INS INS OUTS | OUTS
FUSHA | POPA w,fr/m w,i w,i b,i b,i b w b w
JB/ INB/ JE/ JNE/ JBE/ JNBE/ Jp/ INP/ uv INL/ JLE/ JNLE/
jo No INAE JAE 1z INZ IJNA JA is ms JPE JPO IJNGE JGE ING G
Immed | Immed | Immed | Immed | TEST TEST | XCHG | XCHG | MOV MOV MoV MoV MOV MOV POP
b,r/m w,r/m b,r/m is,r/m b,r/m w,r/m b,r/m w,r/m bfr/m | wfr/m | btr/m | witr/m | srfr/m LEA srt,r/m r/m
XCHG | XCHG | XCHG | XCHG | XCHG | XCHG | XCHG | XCHG CALL
AX X DX BX sp Bp st bI CBW CWD Id WAIT | PUSHF | POPF SAHF | LAHF
MOV MOV MoV MoV TEST TEST
m—AL | moaX | AL-m | AX—m MOVS | MOVS [ CMPS | CMPS bia wia STOS STOS LODS | LODS SCAS SCAS
MOV MOV MOV MOV MOV MOV MoV MoV MOV MoV MOV MoV MOV MoV MOV MOV
i~AL i»CL i»DL i»BL i~AH i~CH i»DH i~BH i~AX i*(\:X i»DX i»BX i»SP i»BP i~SI i»DL
Shift Shift RET. MOV MOV RET. RET INT INT
b,i w,i (i+SP) RET LES LDS bi/m | w,i,/m ENTER | LEAVE 1.(i+SP) I Type3 | (Any) INTO IRET
Shift Shift Shift Shift ESC - ESC ESC ESC ESC ESC ESC ESC
b w byv w,v AAM AAD XLAT 0 1 2 3 4 5 6 7
LOOPNZ/| LOOPZ/ IN IN out ouT CALL JMP JMP JMP IN IN ouT ouTt
LOOPNE | LOOPE Loop Jexz b w b w d d 1d si,d v,b v,W v,b v, W
REP Grp 1 Grp 1 Grp2 Grp2
LOCK REP z HLT CMC bafm walm CLC STC CLI STI CLD STD b/ warlm
where:
mod O r/m 000 001 010 o1l 100 101 110 111
Immed ADD OR ADC | SBB AND SUB | XOR | CMP
Shift ROL ROR RCL RCR SHL/SAL SHR — SAR
Grp 1 TEST —_ NOT NEG MUL IMUL DIV DIV
Grp2 INC DEC CALL | CALL IMP JMP PUSH _
id Lid id i,id
b = byte operation m = memory

d =direct
f = from CPU reg

immed. to accum.

indirect
is = immed. byte, sign ext.
1=long ie. intersegment

r/m = EA is second byte
si = short intrasegment
sr = segment register

t=to CPU reg

v = variable
w = word operation
Z = zero
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APPENDIX D
UPGRADING FROM THE 80C186 TO THE 80C186EA

The 80C186EA is a direct functional upgrade from the standard 80C186 for power-sensitive
applications. With its 80C186 Modular Core, the 80C186EA maintains 100% code
compatibility with the original 80C186. The Chip-Select, Refresh Control, Interrupt Control,
Timer/Counter and DMA Units are also identical.

The 80C186EA offers power reduction in several ways:

e The 80CI86EA device geometry is smaller than the original 80C186, resulting in about
half the power consumption, even if the user does not use power management.

e Since the processor is fully static, its clock may be stopped and restarted at any time
without losing its present state.

e The clock generation circuit offers Power-Save Mode as a power management feature.
Power-Save Mode reduces power consumption by dividing the operating clock frequency.

e The clock distribution circuits offer Idle and Powerdown Modes as power management
features. Idle Mode reduces power consumption by almost a third. Powerdown Mode
reduces power consumption to microwatts.

In general, pin functions are the same between the standard 80C186 and the 80C186EA.
Some pin names changed for consistency within the 80C186 Modular Core family. Most
differences between the standard 80C186 and the 80C186EA involve AC and DC
specifications. Design upgrades should need minimal effort.

D.1. PINOUT COMPATIBILITY

Intel manufactures the 80CI86EA in two plastic packages, a 68-lead Plastic Leaded Chip
Carrier (PLCC) and an 80-lead EIAJ Quad Flat Pack (QFP).

D.1.1. 68-LEAD PLCC COMPATIBILITY

67 of the 68 80C186EA PLCC leads are identical to the standard 80C186. The remaining lead,
Pin 40, is Data Transmit/Receive DT/R on the standard 80C186 and the Powerdown Timer
(PDTMR) on the 80C186EA. The Powerdown Timer lead allows the user to set the period of
time for exiting Powerdown Mode by connecting an external capacitor.

No redesign is necessary if the application does not use DT/R or Powerdown Mode. A

* configuration that needs DT/R can synthesize the signal by latching status line ST with a
transparent latch gated by ALE. For a configuration that needs Powerdown Mode, add the
capacitor at the PDTMR pin.



intel. APPENDIX D

D.1.2. 80-LEAD QFP (EIAJ) COMPATIBILITY

‘The 80-lead QFP pinout differs by ten leads between the 80C186 and 80C186EA. Four of the

former 80C186 NO CONNECT leads are 80C186EA Vcc or Vss pins. Lead 38, DEN on the
standard 80C186, is PDTMR on the 80C186EA. Lead 39 becomes DEN on the 80C186EA.
The four Mid-Range Chip-Select (MCS) lines (leads 39-42) shift by one lead, using a former
80C186 NO CONNECT at lead 43. '

. Table D.1 compares the pinout of the 80-lead standard 80C186 to the 80-lead 80C186EA. The
80-lead 80C186EA does have DT/R. Notice that the 80C186EA renames some pins.

Table D.1. Comparison of standard 80C186 and 80C186EA in
80-Lead QFP (EIAJ) Package

LEAD # 80C186 FUNCTION 80C186EA FUNCTION
1 AD15 AD15 !
2 NO CONNECT Vee
3 | A6 A16
4 A17 A17
5 A18 A18
6 A19/S6 A19/S6
7 BHE BHE
8 WR/QS1 WR/QS1
9 ‘RD/QSMD 'RD/QSMD
10 ALE/QS0 ALE/QSO
11 'NO CONNECT NO CONNECT
12 Vss Vss
13 Vss Vss
14 NO CONNECT NO CONNECT
15 NO CONNECT NO CONNECT
16 X1 CLKIN (NOTE)
17 X2 OSCOUT (NOTE)
18 RESET RESOUT (NOTE)
19 CLKOUT CLKOUT
20 ARDY ARDY
21 S2 S2
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Table D.1. Comparison of Standard 80C186 and 80C186EA in

80-Lead QFP (EIAJ) Package (Continued)

22 S1 S1

23 ) S0

24 NO CONNECT Vsg

25 HLDA HLDA

26 HOLD HOLD

27 SRDY SRDY

28 LOCK LOCK

29 TEST/BUSY TEST/BUSY
30 NMI NMI

31 INTO INTO

32 INT1/SELECT INT1/SELECT
33 Voo Vee

34 Vee Vee

35 INT2/INTAO INT2/INTAO

36 INT3/INTA1/IRQ INT3/INTA1/IRQ
37 DT/R DT/R

38 DEN PDTMR

39 MSCO/PEREQ DEN

40 MCS1/ERROR MCSO/PEREQ
41 MSC2 MCS1/ERROR
42 MSC3/NPS MSC2

43 NO CONNECT MSC3/NCS (NOTE)
44 NO CONNECT Vee

45 ucs ucs

46 LCS LCS

47 PCS6/A2 PCS6/A2

48 PCS5/A1 PCS5/A1

49 PCS4 PCS4

50 PCS3 PCS3

51 PCS2 PCS2
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Table D.1. Comparison of Standard 80C186 and 80C186EA in
80-Lead QFP (EIAJ) Package (Continued)

52 PCST PCST
53 Vss Vss
54 PCSO PCSO
55 RES 'RESIN (NOTE)
56 TMR OUT 1 T10UT (NOTE)
57 TMR OUT 0 TOOUT (NOTE)
58 TMRIN 1 T1IN (NOTE)
59 TMRIN 0 TOIN (NOTE)
60 DRQ1 DRQ1
61 DRQO DRQO
62 NO CONNECT Vss
63 NO CONNECT NO CONNECT
64 ADO ADO
65 AD8 AD8
66 AD1 AD1
67 AD9 AD9
68 AD2 AD2
69 AD10 AD10
70 AD3 AD3
71 AD11 AD11
2 Vec Vec
3 Vee Vee
74 AD4 AD4
75 AD12 AD12
76 AD5 AD5
77 AD13 AD13
78 AD6 AD6
79 AD14 AD14
80 AD7 AD7
NOTE:

Some pins renamed for consistency with 80C186 Modular Core family.

D-4




intgl. APPENDIX D

D.2. OPERATING MODES
The concept of operating mode differs between the 80C186 and the 80OC186EA.

The standard 80C186 exits reset in either Compatible Mode or Enhanced Mode, depending on
the TEST/BUSY pin state. Compatible Mode derived its name because of its likeness to the
NMOS 80186. The standard 80C186 requires Enhanced Mode operation for Power-Save
Mode, the Refresh Control Unit and the 80C187 Math Coprocessor interface. Enhanced Mode
changes the three MCS pin functions to handshaking pins for the math coprocessor.

The 80C186EA allows use of Power-Save Mode and the Refresh Control Unit during regular
operation. However, the 80C186EA does have a separate Numerics Mode. Like the standard
80C186, the TEST/BUSY pin state at reset determines whether the processor enters Numerics
Mode. Numerics Mode changes the three MCS pin functions.

An 80CI186EA placed into an unmodified standard 80C186 design will respond correctly,
whether the- original operation was Compatible or Enhanced. All execution proceeds
identically on a clock-for-clock basis. The processor activates new power management
features only if the user programs them.

D.3." PROGRAM EXECUTION

All existing 80C186 programs execute correctly on the 80C186EA without modification. All
80C186 control registers have the same offsets in the 80C186EA Peripheral Control Block.
Although the register functions are identical, many register and bit names differ on the
80C186EA to conform to other 80C186 Modular Core family members.

The 80C186EA has two new registers. They are the Power Control Register, for power
management programming, and the Step ID Register, to determine the product stepping. To
avoid accidental power management activation, check existing software for spurious writes to
the Power Control Register location. See the 80C186EA data sheet for details.

D.4. TTL VS. CMOS INPUTS

Intel manufactures both the standard 80C186 and the 80C186EA in CMOS logic. However,
the standard 80C186 has TTL-compatible inputs while the 80C186EA has CMOS-compatible
inputs. TTL Logic in existing 80C186 designs must change to CMOS logic if the outputs drive
the 80C186EA. Using pullup resistors is an alternative for peripherals which are unavailable in
CMOS, but the added current draw is inconsistent with choosing the 80C186EA for low
power.

CMOS-Level inputs have several advantages. The main advantage is increased noise margin.
For example, the standard 80C186 has a Vo minimum of 2.4 V and a Viy minimum is 0.2 Vcc
+ 0.9 V, for a noise margin of 0.5 V (with 5-Volt operation). The 80C186EA has a Vou
minimum of Ve — 0.5 V and a Vig minimum is 0.7 Vcc, for a noise margin of 1.0 V (with 5-
Volt operation).

D-5



intgl. o APPENDIX D

The standard 80C186 data sheet references AC timings to 1.5 V (the TTL switchpoint). The
80C186EA data sheet references AC timings to Vcc/2 (the CMOS switchpoint). Reducing the
operating voltage (S0L186EA/80L188EA) directly scales the specified reference point.

D.5. TIMING SPECIFICATIONS

The 80C186 Modular Core family uses faster transistor technology than the standard 80C186.

The result is. faster product speed selections. Consult the latest 80C186EA data sheet for all
timing specifications.

Intel specifies 80C186EA AC timings in a simplified format consistent with other 80C186
Modular Core family members. Since the 8OC186EA can run faster than the standard 80C186,
compare specifications carefully before using the SOC186EA in your design. Table D.2 lists
all standard 80C186 AC timing mnemonics and their 80C186EA equivalents. If timing

margins are very tight, remember also that the timing reference points for AC specifications

differ, as explained above.

Table D.2. 80C186 Equivalents to Standard 80C186 AC Timing Mnemonics

STANDARD
80C186 PARAMETER EQUIVALENT 80C186EA
AC TIMING _ AC TIMING MNEMONIC _
MNEMONIC :
TpveL Data in Setup (A/D) , Tcus
TcLpx Data in Hold (A/D) TeLH
TcHsv Status Active Delay TcHov1
TcLlsH | Status Inactive Delay ' TcLovz
TcLav Address Valid Delay TcLov1 (A19:16, DEN), T gyo
(AD15:0)
TeLax Address Hold TcLovi (A19:16), Ty oy (AD15:0)
TcLpbv Data Valid Delay TcLov1 (A19:16), To ove (AD15:0)
| TeHpx Status Hold Time Eliminated
TCHLH ALE Active Delay TcHov1
TLHLL ALE Width | TLHw
TCHLL ALE Inactive Delay TcHov1
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Table D.2. 80C186 Equivalents to Standard 80C186 AC
Timing Mnemonics (Continued)

TaviL Address Valid to ALE Low TavLL

TLLAX Address Hold from ALE Inactive TLax

TAVCH Address Valid to Clock High Eliminated

ToLaz Address Float Delay TcLoF

TcLesv Chip-Select Active Delay TcLovz2

Texcsx l(f\r:gi?eelect Hold from Command TRHPHA (FD), TWHPH W)
TcHesx Chip-Select Inactive Delay TcHov2

ToXDL DEN Inactive to DT/R Low TpxDL

TeveTv Control Active Delay 1 | TcHovi (DEN), T ova (WR, INTA)
TCVDEX DEN Inactive Delay ToLovi

TCHCTV Control Active Delay 2 TcHoVA

ToLLy LOCK Valid/Invalid Delay TcLovd

TazRL Address Float to Read Active TAFRL

TCLRL RD Active Delay Tolove

TRLRH RD Pulse Width TRLRH

TCLRH RD Inactive Delay TcLov2

TRHLH RD Inactive to ALE High TRHLH

TRHAV RD Inactive to Address Active TRHAV

TcLpox Data Hold Time ToLov2

TeveTX Control Inactive Delay TeLove (WR, INTA), Topoy4 (DEN)
TWLWH WR Pul;e,e Width TWLWH
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Table D.2. 80C186 Equivalents to Standard 80C186 AC
Timing Mnemonics (Continued)

TWHLH WRinactive to ALE High TWHLH
TwHDX ' Data Hold after WR TWhDX
TWHDEX WR Inactive to DEN Inactive TWHDEX
Tekin CLKIN Period To
TcLek CLKIN Low Time ToL
TcHeK CLKIN High Time Ton
TeKHL CLKIN Fall Time Tor
TeKLH CLKIN Rise Time Tom
Tcico CLKIN to CLKOUT Skew Tep
TcLel CLKOUT Period .

TeLeH CLKOUT Low Time ToL
TcHeL CLKOUT High Time . o
TCH1CH2 CLKOUT Rise Time Tor
TeLactt CLKOUT Fall Time Tor
oo | S| Tous
TcLsrY SRDY Transition Hold Time Teun
TARYCH .,?il?nle Resolution Transition Setup Terin
TCLARX ARDY Active Hold Time TeLH
TARYCHL ARDY Inactive Holding Time TeHIH
TARYLCL ?isr%/gchronous Ready (ARDY) Setup Teus
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Table D.2. 80C186 Equivalents to Standard 80C186 AC
Timing Mnemonics (Continued)

TiNveH INTx, NMI, TEST/BUSY, TMR IN TCHIH
Setup Time
TinveL DRQO, DRQ1 Setup Time TeuH
ToLtmy Timer Output Delay TcLovi
TcHasv Queue Status Delay Eliminated
TRESIN RES Setup TeLis
ThveL HOLD Setup Tous
TcLrRO Reset Delay TcLovi
TcLHAV HLDA Valid Delay TcLovi
TcHez Command Lines Float Delay TcHOF
TcHev IC::|t(3)rarlltr)nand Lines Valid Delay (after TcHov1 (A19:16, BHE, DT/R, S2:0,
LOCK), Toovz (RD,WR)




UNITED STATES
Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051

JAPAN

Intel Japan K.K.

5-6 Tokodai, Tsukuba-shi
Ibaraki, 300-26

FRANCE
Intel Corporation S.A.R.L.
1, Rue Edison, BP 303

78054 Saint-Quentin-en-Yvelines Cedex

UNITED KINGDOM

Intel Corporation (U.K.) Ltd.
Pipers Way

Swindon - :
Wiltshire, England SN3 1RJ

WEST GERMANY

Intel GmbH

Dornacher Strasse 1

8016 Feldkirchen bei Muenchen

HONG KONG

Intel Semiconductor Ltd.
10/F East Tower

Bond Center
Queensway, Central

CANADA

Intel Semiconductor of Canada, Ltd.

190 Attwell Drive, Suite 500
Rexdale, Ontario M9W 6HS

Printed in USA/891/20K/RRD DM

ISBN 1-55512-156-X



