- @ 49 e

Flash Memory Databook

Documentation Update

New Documents
Revised Documents

Revised Pages

intgl.

1995 Flash Memory Databook
Documentation Update

1995

Information is this document is provided in connection with Intel products. Intel assumes no liability whatsoever, including
infringement of any patent or copyright, for sale and use of Intel products except as provided in Intel’s Terms and Conditions of
Sale for such products.

Intel retains the right to make changes to these specifications at any time, without notice.

Contact your local Intel sales office or your distributor to obtain the latest specifications before placing your product order.
MDS is an ordering code only and is not used as a product name or trademark of Intel Corporation.

*Other brands and names are the property of their respective owners.

1Since publication of documents referenced in this document, registration of the Pentium, OverDrive, and iCOMP trademarks
has been issued to Intel Corporation.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature, may be
obtained from:

Intel Corporation
P.O. Box 7641
Mt. Prospect, IL- 60056-7641

or call 1-800-879-4683

®INTEL CORPORATION 1995

intal.

PREFACE

Information in the 1995 Flash Memory Databook Documentation Update replaces information
found in the 1995 Flash Memory Databook, Volumes I and II. In some chapters of the
databook, individual pages have been revised. In some cases, entire documents have been
replaced.

Please note that this update contains several additional documents not found in the 1995 Flash
Memory Databook: ’

® AP-603 Symmetric Block Format Exchanging Data with FFS Systems

® AP-608 Implementing a Plug and Play BIOS Using Intel’s Boot Block Flash Memory
® AP-609 Interfacing the Intel386™ EX Embedded Processor to Intel Flash

® AP-610 Flash Memory In-System Code and Data Update Techniques

Thank you for your interest in Intel’s Flash memory products.

a
|nt€ﬁ ® 1995 FLASH MEMORY DATABOOK DOCUMENTATION UPDATE

Contents
PAGE
New Documents
AP-610 Flash Memory In-System Code and Data Update Techniques........c.cccoveereercuvennnen. 1
AP-609 Interfacing the Intel386™ EX Embedded Processor to Intel Flashccccceeueuneee 15
AP-608 Implementing a Plug and Play BIOS Using Intel's Boot Block Flash Memory 35
AP-603 Symmetric Block Format Exchanging Data with FFS Systems......ccccccovcvvivvencnenee. 65

Revised Documents
28F016XS 16-Mbit (1-Mbit x 16, 2-Mbit x 8) Synchronous Flash Memory Datasheet 101
28F016XD 16-Mbit (1-Mbit x 16, 2-Mbit x 8) Synchronous Flash Memory Datasheet 151
Interfacing the 28F016XS to the i486™ Microprocessor Family Technical Paper.............. 205
Interfacing the 28F016XS to the i960® Microprocessor Family Technical Paper 233

Revised Pages

Flash Memory OVEIVIBW.c..ii ittt s ee s s s e s ene s 271
DD28F032SA 32-Mbit (2-Mbit x 16, 4-Mbit x 8) FlashFile™ Memory Datasheet................. 275
28F016SV 16-Mbit (1-Mbit x 16, 2-Mbit x 8) FlashFile™ Memory Datasheet..................... 283
28F016SA 16-Mbit (1-Mbit x 16, 2-Mbit x 8) FlashFile™ Memory Datasheet 297
Extended Temperature 28F016SA 16-Mbit (1-Mbit x 16, 2-Mbit x 8)

FlashFile™ Memory Datash@et...........c.coociiiieneciiienee et 303
4-Mbit (256K x 16, 512K x 8) SmartVoltage Boot Block

Flash Memory Family Datasheetcooccoeeimneiicrenicceeeeecce et 311
2-Mbit (128K x 16, 256K x 8) SmartVoltage Boot Block

Flash Memory Family Datasheetccccoriiiiieiiniiiecin et 319
28F001BX-T/28F001BX-B 1M (128K x 8) CMOS Flash Memory Datasheet...................... 327
28F020 2048K (256K x 8) CMOS Flash Memory Datasheetccccccvrvinirineinecnncnninnne 331
28F010 1024K (128K x 8) CMOS Flash Memory Datasheetcccoeveecverircercciinnvcnnenes 337
AP-600 Performance Benefits and Power/Energy Savings of

28F016XS-Based System Designs........cccucireeiniiinieeenteee e ereeseneseeesseresen e e e seseeenenss 343
AP-399 Implementing Mobile Intel486™ SX Microprocessor PC Designs

Using FlashFile™ COMPONENLEScccctiiiiiiieeneisiereeessnr e ereaessreeesstssesessessessssessssnesasesnne 347
AP-398 Designing with the 28F016XS........ccooiirieiiirnienreee sttt s 353
AP-384 Designing with the 28F018XD......ccccoiiiiieninneneetreecere st 357
AP-377 16-Mbit Flash Product Family Software Drivers 28F016SA,

2BF016SV, 28F016XS, 28F016XDceeveiiririecreeeiee et steese s sas s ssessens reeeernens 365
AP-343 Solutions for High Density Applications Using Intel Flash Memory...........ccccceceeuu. 369
AP-325 Guide to First Generation Flash Memory Programming..........ccceeeeviinrnenciienninnenne 373
ER-33 ETOX™ |V Flash Memory Technology: Insight to Intel’s Fourth

Generation Process INNOVALIoN........ccccciiiiinnicini s 377
Intel 28F016XD Embedded Flash RAM Product Brief ..o 381

intel.

New Documents

intal. AP-610

APPLICATION
NOTE

Flash Memory
In-System Code and
Data Update Techniques

BRIAN DIPERT
SENIOR TECHNICAL
MARKETING ENGINEER

February 1995 Order Number: 292163-002

intal.

1.0 INTRODUCTION

The ability to update flash memory contents with the
system operational distinguishes flash memory from
other nonvolatile technologies such as ROM and
EPROM. This capability is key for using flash memory
in a wide range of applications:

e Code storage/execution (code DRAM and ROM
replacement),

e Data storage (EEPROM, battery RAM emulation,
etc.), and

o File storage (flash-based solid state drive)

System software implementations for in-system code
and data update must comprehend algorithm execution
during flash memory program/erase. Implementations
also vary according to the level of system code/data
access required during update.

This application note discusses these topics and gives
general recommendations that can be tailored to specific
system needs. It focuses on Intel’s Boot Block,
FlashFile™ and Embedded Flash RAM memories which
have on-chip program/erase automation and block
erasure. However, many of the concepts can be equally
applied to Intel’s bulk erase flash memories.

2.0 GENERAL INFORMATION
Definition of Terms
Design engineers can select from up to three unique

approaches to update stored flash memory information.
Before proceeding, let’s define these terms to make it

AP-610

clear what we will and won’t be discussing in this
application note:

1. In-System Write (ISW): As first described earlier,
during an in-system update the system is powered up
and either partially or fully operational. The system
CPU (see Figure 1) executes the flash memory
program/erase algorithms and obtains new code/data
from one of several sources (serial or parallel port,
floppy or hard disk drive, modem, etc.).

2. On-Board Programming (OBP): In this approach,

the flash memory is also installed on the system
board. However, OBP does not use the system CPU
and, in fact, commonly powers down the processor
or holds it in a HALT mode. The flash memory
connects to an off-board “computer” such as a board
tester or prom programmer. This off-board
intelligence provides the necessary commands and
data to erasc and reprogram the flash memory. This
technique is covered in other documentation
available from Intel Corporation. See the Additional
Information scction of this application note.

3. PROM Programming: This approach was first made

popular back in the days of PROMs and EPROM:s.
The flash memory is initially programmed, and is
reprogrammed, by removing it from the system
board and socketing it in dedicated hardware called a
PROM programmer. Intel works closely with a wide
range of PROM programmer vendors to ensure
support for all of its flash memory products. See the
Additional Information section of this application
note for details.

System
New Code/ CPU
Data

Flash
Memory

216301

Figure 1. The System CPU Controls the In-System-Write Flash Memory Update

' u
intgl.

Read-While-Write

The fundamental concept to understand when
considering in-system updates is that of read-while-
write. Stated simply, it is currently NOT possible with
any of today’s flash memory technology alternatives to [Write Erase Setup |
read from the flash memory array while simultaneously Command

programming. or erasing it. There are several basic
reasons for this: [Write Erase Confirm

Command

a. During program or erase, the flash memory row
and column decode architecture results in high
voltages present throughout the array. Isolating
these voltages to a specific byte/word or block
would have excessive die size and (therefore)
silicon cost impacts given that inexpensive
system implementation alternatives exist. Keep
reading for details!

Read Status Register

b. Intel’s Boot Block, FlashFile and Embedded
Flash RAM memories all have .on-chip
program/erase automation. After these flash
memories receive program or erase command
sequences, they automatically transition to a
mode where they provide status register
information (versus array or other data). This

transition quickly provides the system with the | ntegg;gr;aa?dSetup

information it needs to determine program/erase

status, minimizing system software overhead and

maximizing effective write/erase performance. | Write Program Data I
Flash memory array reads (to access code or data) CAN ;

take place at any time that the flash memory automation
is READY (either completed or suspended). Figure 2
gives a simple flash memory update algorithm example.
It shows portions of the code that must be executed off-
chip, and shaded areas show “windows” where the flash
memory array can be accessed, if needed, by writing the
Read Array command and then reading from desired
locations. These “windows” will be described in detail
in Section 4.0. Thanks to on-chip automation, the
amount of code executed off-chip to actually
program/erase the flash-memory is very small. Overhead
needed to obtain new code/data from the system varies
with the method chosen.

I Read Status Register

2163_02

Figure 2. Simple Code/Data Block Update
Algorithm Shows Shaded "Window"
Opportunities for Array Reads

intgl.

What Amount of System Functionality Is
Needed During Update?

The answer to the above question is key to
understanding the amount of software architecting
needed to integrate flash memory into your design. Use
the following question as a reference for where to
continue reading:

Q. Can you dedicate the system exclusively to the flash
memory update and ignore all other non-related
interrupts? Said another way, can you take the system
“off-line” during flash memory updates?

A1 If your answer is “yes,” the software implementation
is very straightforward. See Sections 3.0 and 5.0.

Ap. If your answer is “no,” the specific software
implementation varies. One approach uses redundant
system memory to separate the execution and
storage/backup regions. Another technique eliminates
this redundancy but depends on an understanding of
interrupt latency, interrupt frequency and its variability
with time. See Sections 4.0 and 5.0.

Dedicated Blocks for System Boot Code:
Recovery from System Power Loss or Reset
during Flash Memory Update

Several of the approaches described in Sections 3.0 and
4.0 that follow use system RAM to execute the flash
memory update algorithms. This brings up a logical
question; what happens if the system resets or loses
power in the middle of a flash memory update? In this
case, system RAM contents will be invalid, including
the flash memory update code. The byte being
programmed or the block being erased when system
reset/power loss occurs will be left in an indeterminate
state and will need to be reprogrammed/erased.

Flash memory’s blocked architecture provides
protection for system boot code and enables the system
to recover fully from incomplete code updates. All boot
block components as well as 16-/32-Mbit FlashFile and
embedded flash RAM memories also allow hardware
“lock” of boot code for additional protection. This boot
code, after minimally initializing system hardware,
should execute a checksum verify of the remainder of
the flash memory. If this checksum ‘“passes,” system
boot can continue. If a checksum “fail” is obtained, this
reflects an incomplete program or erase, and the system
should alert the user and execute a repeat update. Figure
3 flowcharts this algorithm.

AP-610

s)
v

Boot System <

v

Execute Checksum of
Remainder of Flash Memory
Compare to Valid Checksum

Stored in Boot Block

Alert User, Execute
ReprogramAlgorithm

No
Match?

Yes

C Continue Normal Boot)

2163_03

Figure 3. Checksum Validation Confirms Flash
Memory Integrity

Intel’s 16-/32-Mbit FlashFile and embedded flash RAM
memories indicate via Status Register feedback whether
an erase in progress has been aborted by power loss or
hardware power-down. The 16-Mbit Flash Product
Family User’s Manual covers this topic in detail. See the
Additional Information section of this application note.

3.0 "OFF-LINE" FLASH MEMORY
UPDATES

Reviewing the Q-and-A discussion earlier, you should
be reading this section if you can ensure that the system
will receive no interrupts that will require flash memory
array access during the update process. Examples of this
scenario are numerous:

e Cellular phones that are placed in a special
“maintenance” mode for updates.

e PC BIOS applications where the user runs a
dedicated “update” routine to upgrade the resident
flash memory code.

e Laser printers that can be taken “off-line” prior to the
update process.

e Many other applications. . . .

AP-610

Again referencing Figure 2, we see that the shaded areas
of the algorithm can be ignored since flash memory
array access is not needed until after the update is
complete. The resultant algorithm, shown in Figure 4, is
small in size and straightforward in implementation. It
can be stored within one of the flash memory blocks if
desired, and is copied to/executed from an external
memory. Scenarios that follow show two of the many
possible implementation options.

Technique 3.1: Algorithm Execution from RAM

The RAM in this technique can be located in several
different places within the system, such as:

e In a discrete SRAM or DRAM chip

e Integrated within an embedded microprocessor or
microcontroller

¢ Intcgrated within a system ASIC

e In a Page Buffer of a separate 16-Mbit FlashFile
memory

An important requirement is that the system be able to
execute code (not just read and write data) out of the
RAM. Ideally, to minimize system overhead and
maximize effective update throughput, the update
algorithm should be present in RAM at all times during
system operation. If this is not possible due to “RAM
crunch,” the up-front time required to upload the
algorithm to RAM must be factored into system update
performance calculations.

C Start D)
v

Write Erase Setup
Command

v

Write Erase Confirm
Command

Read Status Register

SR.7 =

Get New Data to Program %

Write Program Setup
Command

v

Write Program Data

v

Read Status Register

(Update Complete)

2163_04

Figure 4. The Block Erase/Program Algorithm
Is Simplified for "Offline" Updates

intgl.

C Start)
v

Copy Update Algorithm
to RAM

v

Jump to RAM

v

Execute Update

y
Put Flash Memory in
Read Array Mode

I Jump Back to
Flash Memory

C Updaté Complete)

2163_06

Figure 5. Executing the Update Algorithm
Requires Minimal System RAM

AP-610.

Figure 5 shows the overall flowchart used when

executing the update algorithm out of system RAM. As
mentioned earlier, flash memory automation means that

the amount of code executed off-chip to actually

program/erase the flash memory is very small. Overhead

needed to obtain new code/data from the system varies

with the method chosen (diskette, modem, serial or

parallel port, etc.).)

Does your system include at least one 16-/32-Mbit
FlashFile memory and other flash memories? If so, you
can potentially use the 256 byte page buffer of the
FlashFile memory as the execution RAM while updating
the other flash memories! Note: it is NOT possible to
completely execute an update algorithm from the page
buffer of a flash memory while simultaneously updating
that same memory.

Technique 3.2: Algorithm Execution from.
Nonvolatile Memory

If the system contains multiple flash' memories,
implementation is very straightforward. Store a
duplicate copy of the update code in each flash memory,
and execute from one device while updating the other(s).
Figure 6 gives one example, using two Intel 28F001BX
Boot Block flash memories.

This same technique can be applied to any other
nonvolatile memory in the system. Examples include
boot ROM, ROM locations within an ASIC or
nonvolatile memory integrated within an embedded
microprocessor or microcontroller.

A Flash Memory
Update Algorithm
Executed Here...

..Erases and
Reprograms This
Flash Memory Block

S

2163_08

Figure 6. Executing the Flash Memory Update Algorithm from Another Nonvolatile Memory Requires
No Dedicated RAM

AP-610

System RAM

Uncompressed
Code
(Execution)

System Fiash Memory

Boot Kernél

Compressed Code
(Storage)

216307

Figure 7. Redundant System RAM Enables Access to All Code during Flash Memory Update

4.0 "ON-LINE" FLASH MEMORY
UPDATES

Reviewing the Q-and-A discussion earlier, you should
be reading this section if the system must be partially or
fully operational during the flash memory update
process. Said another way, it must be able to detect and
service some or all possible system interrupts. Examples
of this scenario include:

e Cellular base stations that must be able to service
incoming connection requests.

e Data Communications router and hub networks that
cannot be taken off-line.

e Telecommunications PBX switch networks that must
be always-operational.

Technique 4.1: Code Redundancy in System
RAM

This system memory configuration, shown in Figure 7,
is relatively common today in high-performance
systems. The system boots from flash memory, copies

code to code DRAM (sometimes decompressing in the
process) and jumps to DRAM for execution. DRAM is
used here primarily because of its high-performance
reads.

In this case, the system has access to all interrupt service
routines during the flash memory update process. After
update is complete, a quick system “reset” will reboot
the system and load DRAM with the new code. The
amount of time that the system cannot service interrupts
is the combination of system reboot and copy-to-DRAM
delays.

Technique 4.2: Code Redundancy in System
Flash Memory

Figure 8 gives an example of this system memory
configuration. Two banks of flash memory components
store “previous” and “latest” versions of system code.
The system executes from one bank while updating the
other bank. Once update successfully completes, an
address or control signal “toggle” swaps the “previous”
and “latest” banks and enables immediate execution of
the latest software version.

AP-610

Primary Flash
Memory Bank

2163_08

Figure 8. Dual Flash Memory Banks Eliminate RAM Reload Delays

The obvious advantage of this approach include constant
access to all interrupt service routines and a non-existent
reboot delay. Memory redundancy will incur additional
system cost, which must be balanced against advantages
and compared to total system cost (and price) to
determine applicability of this approach.

Technique 4.3: Leveraging Flash Memory
Automation: Programming Performance and
Erase Suspend Latency

This approach eliminates both the redundancy of
multiple memories and the reboot delay of the
flash/DRAM solution in Technique 4.1. It is especially
attractive for use with Intel’s Embedded Flash RAM
memories, whose read performance approaches or
exceeds that of DRAM. In this case, the need for
redundant code DRAM (for performance reasons) is
eliminated.

Before continuing your reading of this section, please do
the following research:

o Analyze the latencies of each of your system
interrupt routines. Which routines take the longest to
execute, and how long do they take?

e Analyze the profile of frequency of interrupts. How
often do interrupts occur, and how . does this
frequency vary with time of day, week, month and
year? Can updates be scheduled for times when the
interrupt frequency is low (or ideally, zero)?

The flash memory automation approach ‘hides”
byte/word programming operations within the time
delay between interrupts. It also “hides” slow block
erase by using erase suspend/resume to read from the
flash memory when required. Referring back to
Figure 2, we see that reads from the flash memory (to
access interrupt service routines) can occur at the
conclusion of programming, at the conclusion of erase
and while erase is suspended. This approach exploits
these access “windows.”

As an example, we’ll construct the following scenario
(reference Figure 9).

|)
intel.

Flash Memory Block Architecture as Seen by System - . System Memory Map

1
2
3
4
5
6
7
8
9

Flash
10 Memory

21| Other
22 Peripherals

29 - SRAM

x16

2163_09

Figure 9. Leveraging Flash Memory Automation Eliminates System Memory Redundancy, Enables
Full Interrupt Servicing throughout the Update Process

10

AP-610

Interrupt

Interrupt Service Routine
Latency

Interrupt

Interrupt Period (1/Frequency)

Figure 10. Available Time between System Interrupts Enable Flash Memory Programming

Components

Two 28F016SV flash memories (SV Vcc, 12V Vpp),
each x16, interfacing to a x32 system bus

Small system SRAM

Timings

System interrupt frequency (period) = every 200 ps.
Longest interrupt service routine latency = 50 ps.

Flash memory per-location programming time = 6 ps
(typical)

Flash memory erase suspend latency = 10 ps (typical)
Interrupts During Programming

Looking first at programming (Figure 10), we see that
the goal is to execute at least one programming
operation within the period between interrupts. In the
scenario described above, subtracting interrupt. service
routine latency from interrupt period gives a 150 ps
“window” in which programming can occur. At 6 us per
double-word, up to 25 locations can be programmed
within each interrupt period.

200 ps (interrupt period) — 50 ps (ISR latency) = 150 ps
(programming “window”’)

150 ps (window)/6 ps (programming time per location)
= 25 locations

Intel’s 16-/32-Mbit FlashFile memories contain on-chip
page buffers, each 256 bytes in size, that dramatically
increase effective per-byte programming performance.
For example (averaged over a page), typical
programming performance for the Intel 28F016SV is 2.1
us/byte at 5V Vec and 12V Vpp. Using these page
buffers may, in some cases, allow the system to program
even more bytes within each interrupt programming
“window.” i

Interrupts During Erase

Now for erase. If an interrupt occurs during erase, the
system must be able to suspend erase, read the flash
memory array and service the interrupt, all before the
next interrupt. Looking at Figure 11, adding erase
suspend latency to interrupt service routine latency and
subtracting from interrupt period shows that 140 ps of
flash memory erase automation can execute between
each interrupt. Obviously, block erase time will extend
beyond that specified in the device datasheet since erase
is being repeatedly suspended.

200 ps (interrupt period) — [10 ps (erase suspend
latency) + 50 ps (ISR latency)] = 140 ps (erase
“window”)

11

AP-610

Interrupt

Ss;:zz 4 | Interrupt Service Routine
Dela Latency

Interrupt

Interrupt Period (1/Frequency)

Figure 11. Available Time between System Interrupts Enables Flash Memory Erase, and Erase
Suspend Allows Array Access for Interrupt Service Routines

Accessing the Existing Version of Code in a Block Being
Updated

All well and good. We’ve shown how to access code in
other flash memory blocks (for example blocks 2-30)
while crasing or reprogramming another block (for
example, block 1). But what happens if the code you
need to read is the code in the process of being updated?
Where do you put the previous version of this code?

One approach, shown in Figure 9, assumes that at least
one spare block is available in each flash memory (for
example, block-31). Before updating any block, copy
that block’s contents to the spare block and redirect
appropriate interrupt vectors to point to that block. After
update is complete, redirect interrupt vectors back to the
original block, erase the spare block and move to the
next block to be updated. This approach will obviously
“cycle” block 31 more than any of the others, but this is
often acceptable if the number of expected code updates
through system lifetime is not excessive.

If spare blocks are not available or expected updates are
numerous, copy block information to RAM before
updating. This approach requires dedicated RAM for
this function but needs much less RAM than a technique
like Technique 4.1, where the entire flash memory array
is shadowed.

Putting It All Together

Referring back to our example scenario in Figure 9, we
conclude with the following summary.

Component block 0 is locked and stores system boot
code and the flash memory update routine. The interrupt
vector table, stored in an unlocked block to enable its
revision, is copied from flash memory to RAM on
system power-up. During flash memory update, interrupt
vector table contents point to the flash memory update
routine, also copied to RAM. When an interrupt occurs,
this routine determines via a bit “flag” if block erase is

12

in progress and if so, suspends erase before jumping to
the necessary interrupt service code. After servicing the
interrupt, the update routine resumes erase or executes
location programming operations, depending on where
in the update the interrupt occurred.

Ideally, to minimize system overhead and maximize
effective update throughput, the update algorithm should
be present in RAM at all times during system operation.
If this is not possible due to “RAM crunch,”. the up-front
time required to upload the algorithm to RAM must be
factored into system update performance calculations.

Before erasing and reprogramming a flash memory
block, system software copies block contents to the
spare block and appropriately redirects the interrupt
vector table. After block erase/reprogram completes, the
update routine redirects interrupts back to the block,
erases the spare block and moves to the next block to be
updated.

Program/Erase Suspend Performance, Typical/Max vs.
Cycling

Depending on how “tight” the timings are using the
equations of Technique 4.3 with your specifications, and
depending on the expected flash memory update
frequency (cycling) through system lifetime, additional
information may be needed to determine whether this
technique is applicable to your design. In this case,
please contact your local Intel or distribution sales office
for additional information on typical/max program, erase
and erase suspend specifications as a function of cycling
for the Intel flash memory of interest.

What If Interrupt Period Is too Short or Interrupt
Latency Is too Long?

Technique 4.3 assumes that system interrupt timings
allowed sufficient time for erase suspend and byte/word
programming. If at first inspection this does not seem to
be the case for your design, answer the following

intel.

questions in the process of further analyzing your
system interrupt profile:

e Do interrupts occur fairly regularly as a function of
time, or in bursts of activity followed by periods of
“quiet?” If the latter, your system software can hold
off attempting location programming or resuming
erase until it detects a specified time span of system
“inactivity.”

e Do one or several interrupt service routines have
substantially longer latencies than others? If so,
system software can hold off attempting
programming or initiating/resuming erase when these
specific interrupts occur.

In some cases, it may be difficult to hold off
programming due to a fixed data write transfer rate to
the flash memory subsystem. In these cases, a small
RAM FIFO can potentially be integrated within the
interface logic (ASIC, FPGA, etc.). This FIFO acts as a
buffer between system and flash memory and
accommodates programming delays due to interrupt
bursts or long ISR latencies.

As an alternative, the approaches described in
Techniques 4.1 and 4.2 can be reviewed to determine
applicability with your system design criteria.

Programming (Writing) during Erase

Some system designs require both the ability to quickly
read code from flash memory and to quickly write
information to flash memory in response to an interrupt.
Intel’s 16-Mbit FlashFile memories offer enhanced on-

AP-610

chip automation that, among its features, automatically
suspends block erase to service queued programming
operations to other blocks.

5.0 CONCLUSION

Intel has developed a wide range of documentation and
other collateral to assist you in developing system
software solutions and profiling cycling through system
lifetime. Please contact your local Intel or Distribution
Sales Office for more information on Intel’s flash
memory products.

6.0 ADDITIONAL INFORMATION

Documentation

Device datasheets provide in-depth information on
device operating modes and specifications.

The 16-Mbit Flash Product Family User’s Manual (order
#297372) gives detailed information on the enhanced
automation of Intel’s 16-/32-Mbit FlashFile and
Embedded Flash RAM memories. Included flowcharts
assist you in developing system software.

The following application notes deal specifically with
software interfacing to Intel flash memories:

Order Document

Number

292046 AP-316 “Using Flash Memory for In-System Reprogrammable
Nonvolatile Storage”

292059 AP-325 “Guide to First Generation Flash Memory Reprogramming”

292077 AP-341 “Designing an Updateable BIOS Using Flash Memory”

292095 AP-360 “28F008SA Software Drivers”

292099 AP-364 “28F008SA Automation and Algorithms”

292148 AP-604 “Using Intel’'s Boot Block Flash Memory Parameter Blocks to Replace
EEPROM”’

292126 AP-377 “16-Mbit Flash Product Family Software Drivers”

NOTES:

Please call the Intel Literature Center at 1-800-548-4725 to request Intel documentation. international customers should contact

their local Intel or distribution sales office.

Additional information can be requested from Intel's automated FaxBACK* system at 1-800-628-2283 or 916-356-3105

(+44(0)793-496646 in Europe).

13

AP-610

FLASHBUuilder

This Windows-based utility is a hypertext aid to
understanding the automation of Intel’s 16-Mbit
FlashFile and Embedded Flash RAM memories.
FLASHBuilder automatically generates code segments
in C or ASM-86 for flash memory program/erase that
you can easily “paste” into your system software. It also
includes a cycling utility and power/performance
benchmark utilities for the 28F016XS and 28F016XD.

FLASHBuilder is available from the Intel Literature
Center via order number #297508. It can also be
downloaded from the Intel BBS at 916-356-3600
(+44(0)793-49-6340 in Europe).

VHDL and Verilog Models

VHDL functional simulation models for the 28F016SV,
28F016XD and 28F016XS are available now; please
contact your local Intel or distribution sales office.
Verilog models for these devices will be available in
early 1995.

14

intel.

PROM Programming Support

Intel works closely with a large number of world-wide
PROM programmer vendors to ensure timely support for
its flash memory products. This programming- support
information, updated frequently, is available on
FaxBACK.

On-Board Programming

An application note will be available in early 1995 that
discusses hardware and software recommendations for
OBP using either a board tester or PROM programmer.
Contact your local Intel or distribution sales office for
more details.

intgl. AP-609

APPLICATION
NOTE

Interfacing the
Intei386™ EX
Embedded Processor to
Intel Flash

TONY SHABERMAN
TECHNICAL MARKETING
ENGINEER

DR. MAHESH RAO
APPLICATIONS ENGINEER

January 1995 Order Number: 292160-001

I 15

intgl.

1.0 INTRODUCTION

The Intel386™ microprocessor family has gained a wide
acceptance in the world of embedded applications. The
Intel386 EX embedded processor is a very highly-
integrated member of the Intel386 microprocessor
family. There is a vast base of embedded applications
developed for the 80C186 product family. When these
applications require higher performance and address
space, the Intel386 EX architecture provides a natural
migration path to protect the code investment in the Intel
architecture along with DOS compatibility. A DOS-
based PC provides an easy, cost-effective means to
develop, test, debug and port embedded application
code.

As embedded system designers take advantage of DOS
capability in the PC platform, a revolutionary system
architecture is required to meet space and power
requirements.

e An architecture that is not bound by what has been
done before with existing memory architecture, but
free to meet the demanding requirements of
embedded end-users.

e An architecture free to adopt and accommodate new
technological advances in software and hardware,
while protecting end-users initial base hardware
investment.

Implementing this new system architecture requires an
alternative to the traditional PC storage media such as
ROM, DRAM, floppy disk and hard disk. The solution
is Intel's Boot Block and FlashFile™ memory (see
architecture comparison in Figure 1).

DATA CODE FILE & CODE
APPLICATION | MANIPULATION | EXECUTION STORAGE
DRAM DRAM/ROM FDD/HDD
DRAM FLASH FLASH
- Resident Disk
Embedded - Flash Card
- Flash Drive

Figure 1. Architecture Comparison

PRELIMINARY

AP-609

Intel Flash memory provides in-system write
capabilities, along with selective block erase and
program/erase automation which are gaining wide
acceptance in the embedded market. These features help
cost-effective field updates and provide quick time-to-
market solutions in most applications.

By combining flash memory with this new system
architecture, completely new types of computers are
now possible that fit in the palm of your hand and
replace or integrate many of the code or storage
functions of other memory types. Flash memory can be
used for storing eXecute-In-Place (XIP) code, such as
ROMed DOS, in the system’s memory map while
additionally functioning like a disk for file and program
storage. Since this type of design features flash memory
resident on the embedded system’s motherboard and is
typically arranged in an array, it is described as a
Resident Flash Array (or RFA). To further differentiate
the two tasks of an RFA, the file store task is called a
Resident Flash Disk (RFD), while the XIP task is called
Resident Flash for XIP (or RFX) code storage.

1.1 Why a New Memory
Architecture?

The ideal embedded memory system is:

e Power Conscious (prolongs battery life and reduces
heat)

o Dense (stores lots of code and data in a small amount
of space but weighs very little)

e Updateable (allows in-situ code enhancements)
o Fast (lets you read and write data quickly)
e Inexpensive (low cost-per-megabyte)

e Reliable (retains data when exposed to extreme
temperature and mechanical shock)

While embedding the PC architecture, designers have
grappled with how to construct memory systems that
meet the above criteria. Embedded computing makes the
system design even tougher with more stringent
requirements for low power, low volume, less weight
and harsh environments. The best combination available
for embedded PC designs in their infancy was the same
as used for the desktop; solid-state memory and
magnetic storage, i.e., SRAMs, DRAMs plus magnetic
hard disks. DRAMs are dense and inexpensive, yet
slower than the processors they serve, and they are
volatile. SRAMs, although fast enough to keep pace
with processors, are relegated to caching schemes
(compensating for DRAM’s slowness) due to low
density and high cost while also being volatile.

17

AP-609

Magnetic hard disks are dense, inexpensive on a cost-
per-megabyte basis and nonvolatile. However, they are
also slow, power-hungry, susceptible to damage from
physical shock, and take up a sizable amount of volume.

Embedded computing designs cannot depend on hard
drives as do desktop or portable PCs, due to the size
limitations. Furthermore, vitally. important data such as
credit card numbers or transactions, signatures, or
patient monitoring information demands reliability of
the highest order. The solution is Intel Flash memory.

1.2 The Flash Memory Alternative

High Density

Intel’s ETOX“}"» IV flash memory cell is 30% smaller
than cquivalent DRAM cells; therefore, it will closely
track DRAM density. Flash memory is more scaleable
than DRAM because the flash storage cell is not
sensitive to soft error failure; therefore, it can have a
more simple cell structure. As density increases and
process lithography continues to shrink, flash memory
will pace, and ultimately overtake, the DRAM
technology treadmill. ‘)

Updateable

ROMs and EPROMs may offer lower device costs, but if
servicing the customer or end-user is important to an
OEM, overall system cost'must be factored in. Although
ROMs and EPROMs are nonvolatile, changing the code
within them is either very difficult (in the case of
EPROMs), or entirely impossible (in the case of ROMs).
Whole inventories of ROMs could be lost in.the event of
a catastrophic bug, while an innovative design with flash
memory can be ‘updated in'the factory or by end-users
via networks, OEM Bulletin Board Systems, or other
memory cards. Updating systems could actually become
a second source of income for OEMs and Independent
Software Vendors (ISVs), enhancing the quality of the
product while increasing end-user satisfaction.

Power Conscious.

Intel’s. flash memory provides a deep power-down
mode, reducing- power consumption to typically less
than 0.2 pA. Typical read current is only 20 mA, while
typical standby . current (flash memory not -being
accessed with CE# high) is only 30 pA. Additionally,
flash devices operating at 3.3V are available for state-of-
the-art low-power consumption designs.

18

intgl.

Do not be misled by technology-to-technology speed
comparisons. Architecting a system around flash
memory bypasses the code/data bottleneck created by
connecting slow' mechanical serial memory (such as
disks) to a high-performance, parallel bus. system.- For
example, data seek time for a 1.8" magnetic hard disk is
20 ms, plus an 8 ms average rotational delay, while flash
memory write time is less than 0.1 ms. At the chip level,
read speeds for flash memory are about 70 ns. Therefore,
either direct execution of code from flash memory or
downloading to system RAM will dramatically enhance
overall system performance.

Fast

Nonvolatile

Unlike DRAM or SRAM, flash memory requires no-
battery back-up. Further, Intel’s flash devices retain data
well beyond the useful lifetime of most applications.

Rugged an‘d, Reliable

On average, today’s hard-disk drives can withstand up to
10 Gs of operating shock. Intel’s flash memory can
withstand as much as 1000 Gs. Flash components can
operate beyond 70°C while magnetic drives are limited
to 55°C. Intel’s flash memory can be cycled 100,000
times per block or segment. By employing wear-leveling
techniques, the cycling of a device can be minimized.
For example, a 10-KB file written every 5 minutes,
24-hours a day to a 20-MB flash array takes 16 million
hours, or 1826 years, before reaching the 100,000 cycle
level.

1.3 Summary

Many applications benefit from ROMed or XIP versions
of code, particularly hand-held personal computers,
vertical application pen-based clipboards, and industrial
control and data accumulation equipment. These
applications pose system design constraints requiring
small form factor, low-power consumption, and rugged
construction due to active mobile users or harsh
environments. Exposure to shock, vibration, or
temperature extremes is common, precluding the use of
rotating media. Flash memory provides an excellent
code storage choice for such system designs featuring
thin TSOP packaging, low (deep power-down mode) or
zero (capability to shut off power without losing data)

“power consumption, 1000 G shock resistance and-

extended temperature. products. Additionally, flash
memory provides remote or end-user update capability

PRELIMINARY

intel.

allowing OEMs to service
efficiently and add new
applications after the sale.

their products more
software features and

Compared to RAMs and ROMs, the timing requirements
for flash are slightly different. This application note
explores those differences and provides a detailed
analysis of the interface between the 28F400BX and the
Intel386 EX CPU. Along with the analysis, one possible
solution is provided. To make all of the read and write
calculations easier for the users, a spreadsheet-based
timing analysis for the Intel386 EX CPU interface to
flash is posted on Intel’s application support BBS at

AP-609

916-356-3600. The filename is EXFLASH.ZIP and it is
located in the E3X\REF_DSGN section. A snapshot of
this spreadsheet is provided in Appendix C.

2.0 FLASH TIMING PARAMETERS

The timing parameters provided in Tables 1 and 2 lists
the most important parameters to pay attention to when
interfacing to Intel’s Boot Block and FlashFile memory
families. :

Table 1. Read Timing Parameters

Timing Description 28F001BX | 28F200BV(2) | 28F400BV(3) | 28F008SA(6) | 28F016SA | 28F016SV
Address Valid to Data 120 ns 60 ns 60 ns 85ns 70 ns 65 ns
Valid, tacc/tavav_(max)

CE# Valid to Data 120 ns 60 ns 60 ns 85 ns 70 ns 65 ns
Valid, tor/terqv (max)

OE# Valid to Output 50 ns 30ns 30 ns 40 ns 30ns 30 ns
Delay, toe/taLav (max)

OE# High to Data 30ns 20 ns 20 ns 30ns 25ns 25 ns
Float, tor/tcHaz (max)

Table 2. Write Timing Parameters

Timing Description 28F001BX | 28F200BV(2) | 28F400BV(3) | 28F008SA(6) | 28F016SA | 28F016SV
Address Valid to WE# 50 ns 50 ns 50 ns 40ns 50 ns 40 ns
High, tas/tavwh (min)
Data Valid to WE# 50 ns 50 ns 50 ns 40 ns 50 ns 40 ns
High, tps/tovwh (min)
WE# Pulse Width, 50 ns 50 ns 50 ns 40 ns 50 ns 45ns
twe/twiwh (min)
Address Hold from WE#| 10ns 10 ns 10ns 5ns 10ns 10 ns
High, tan/twrax (min)
WE# Pulse Width High, 50 ns 10 ns 10 ns 30 ns 30 ns 15ns
tweH/twHwe (min)

NOTES:

1. The read and write timings provided in Tables 1 and 2 were taken from the respectivé component’s datasheet and assume
a commercial temperature range, 30 pF test load, and Vcc 5V x 5% for the fastest part available. The 28F001BX is the only

exception with Vec + 10% and a 100 pF test load.

[S20 S S I V]

. The timings listed in Tables 2 and 3 for the 28F200BV are the same for the 28F002BX, 28F200BX, and 28F002BV.

. The timings listed in Tables 2 and 3 for the 28F400BV are the same for the 28F004BX, 28F400BX, and 28F004BV.

. The write timing parameters assume WE#-controlled writes.

. As can be seen from the preceding tables, the majority of the flash timing parameters are close enough to each other that

the interface to the Intel386 EX processor will not change much.

6. In addition to the 28F008SA, Intel also makes a 28F008BV and 28F800BV. These parts are 8-Mbit members of Intel's Boot
Block Flash memory family and incorporate SmartVoltage technology. However, at the time of publication for this

document, A/C timing information was unavailable.

PRELIMINARY

19

AP-609

3.0 READ TIMING ANALYSIS

The remaining sections of this application note analyze
the interface between a 25 MHz Intel386 EX CPU and a
60 ns 28F400BX boot block flash. The procedure used
to analyze this interface should be used when interfacing
the Intel386 EX CPU to any Intel flash device. When
comparing the Intel386 EX CPU parameters to flash,
this application note will refer to the flash signals names
CE#, OE# and WE#. However, the Intel386 EX CPU
respective signals are called CS#, RD# and WR#. Note
that the Intel386 EX CPU also has a W/R# signal that
can bc used to distinguish between read and write
cycles. CLK?2 refers to the 50 MHz clock that drives the
Intcl386 EX CPU. This clock is internally divided by
two to make a 25 MHz internal clock for the mtemal
periphcrals.

intel.

Table 3 provides the memory requirements for a zero
wait-state read cycle. Unfortunately, the memory
requirements for a zero wait-state design are too difficult
for most memory devices to meet. By adding one wait-
state a 60 ns flash device can successfully interface to
the Intel386 EX CPU. Table 4 compares the 28F400BX
parameters to the Intel386 EX CPU parameters in a one
wait-state design.

The timings for the 28F400BX listed in Tables 4 and 6
are the same for the 28F400BV. This application note
analyzes the interface to the 28F400BX in order to
address issues with current designs. However, Intel
recommends that all new designs use the 28F400BV.
The 28F400BV has SmartVoltage technology enabling
read capability at 3.3V or 5V, and program/erase
capability at 5V or 12V.

Table 3. Read Parameter Time Comparison at Zero Wait-States

Timing Description

i386 EX CPU Paramete(4)

Memory Parameter

Address Valid to Data Valid t47 = 4CLK2-36 = 44 ns max Must Be Less Than 44 ns
CE# Valid to Data Valid t47a = 4CLK2-46 = 34 ns max Must Be Less Than 34 ns
OE# Valid to Data Valid t4g = 3CLK2-36 = 24 ns max Must Be Less Than 24 ns

OEi## High to Data Float

tso = 10 ns max

Must Be Less Than 10 ns

Table 4. Read Parameter Time Comparison at One Wait-State

i386 EX CPU Parameter 28F400BX Parameter(5) Violated Timing?
ta7 = 44+2CLK2 = 84 max () tacc = 60 ns Max (1) 84 >60,No
t47a = 34+2CLK2 = 74 max (2 tce = 60 ns Max (1) 74 > 60, No
tsg = 24+2CLK2 = 64 max (2 toe = 30 ns Max (1) 64 > 30, No
tso = 10 ns max tor = 20 ns Max 10 < 20, Yes(3)

NOTES:

1. These parameters assume the flash data lines are connected directly to the Intel386 EX CPU. They do not include any

additional delays due to a buffer.

2.

3.

>

20

For every wait-state it is necessary to add 2CLK2 to each parameter dependent on CLK2. 2CLK2 is added to the first three
parameters for a one wait-state system.

Adding additional wait-states will not fix the tpr timing violated.
All Intel386 EX CPU timings were taken from the fourth revision datasheet (order #272420-004).
All 28F400BX timings were taken from the third revision datasheet (order #290451-003).

PRELIMINARY

intgl.

3.1 Read Timing Solution

3.1.1 OE# HIGH TO DATA FLOAT

Table 4 indicates that OE# high to data float is violated.
After OE# goes inactive, the 28F400BX takes a
maximum of 20 ns for its data lines to go to a high
impedance state. This becomes a problem when the
Intel386 EX CPU tries to do a write immediately after
reading from the 28F400BX. This problem is solved by
either using a buffer to control the bus contention, or by
making sure your code has a NOP in between every read
from flash followed by a write. In this example, a buffer
will be used to address this issue. Section 4.1 details the
specific implementation of the buffer. Figure 9 shows a
complete timing diagram for a read followed by a write.

3.1.2 DATA READ SETUP TIME
VERIFICATION

At 25 MHz, the Intel386 EX CPU requires a min of 7 ns
of data setup time before the end of the read cycle. The
end of a one wait-state cycle at 25 MHz is 120 ns. In
order to meet the read setup time, data must be presented
to the processor no later than 113 ns into the read cycle.
The processor provides a valid chip select a max of
39 ns into the read cycle. The 28F400BX will respond
with data 60 ns later. Since a buffer is used, 11 ns
propagation delay (tpLy, max) is added to the
calculation. This means that data is presented to the
processor a max of 110 ns (39+60+11) from the
beginning of the read cycle (see Figure 2). Since this is
less than 113 ns, the read setup time is met.

3.1.2.1 Capacitive Loading

An access time of 60 ns on the 28F400BX was specified
with a 30 pF load (see high speed test configuration in
datasheets). Derating curves for the 28F400BX show
that at 50 pF the access time only increases by
approximately 2 ns. Since our example meets the data
read setup time by 3 ns, a one wait-state read cycle at
50 pF is still possible to achieve. If the systems
capacitive loading is higher than 50 pF, a faster buffer
will be needed in order to achieve a one wait-state
system.

3.1.3 DATA READ HOLD TIME
VERIFICATION

The Intel386 EX CPU requires a min of 5 ns of data

hold time after the end of the read cycle. The 28F400BX
will hold its data as long as OE#, CE# and the address

PRELIMINARY

AP-609

are active. In this implementation, a PLD turns off the
buffer’s EN# line as early as 2 ns (tco1) after the end of
the read cycle. As long as the buffer has a min tppz and a
min tpyz of 3 ns or more, the data read hold time will be
met (see Figure 2). In general, as long as the PLD’s tco1
plus the buffers tpLz or tpuz are at least 5 ns, the data
read hold time will be met. .

3.14 READ SUMMARY

A one wait-state read cycle is possible with a 60 ns
28F400BX with loads up to 50 pF by using the given
implementation. It is advised to use a buffer in order to
prevent bus contention on read followed by write cycles
This will fix the flash memory data float delay violation
(ts0). Adding a buffer has other benefits as well. It makes
the load to the flash data lines smaller for faster read
performance, and it makes the load to the CPU smaller
so it can drive more devices. In addition to flash
memory, typical embedded systems will incorporate
some SRAM or DRAM. Some RAM is necessary in
order to do in-circuit programming of flash. The
Intel386 EX CPU has CMOS inputs so the buffer helps
the other memory devices drive to these levels. See
Figure 7 for a complete read timing diagram, and
Figure 9 for a read followed by write timing diagram.

50ns

Ll

100ns

Ons

U W WY W
| 39 |
)

I 60 I_I

PH2
CS#

Flash D[0:15]

Buffer EN#

11
Buffer

2160_02

Figure 2. Read Setup and Hold Timing
21

AP-609

4.0 WRITE TIMING ANALYSIS

Table 5 provides the memory requirements for a zero
wait-state write cycle. Unfortunately, the memory
requirements for a zero wait-state design are too difficult
for most memory devices to meet. Table 6 compares the
28F400BX parameters to the Inte]l386 EX parameters in
a onc wait-state design. Section 4.1.2 provides a detailed
explanation for why two wait-states are required for this
interface.

intgl.

Last 12 T
of First Write of Second Write

crel L L\
2 f |
WR# I__

2160_03
NOTE:
WR# will go inactive in phase 1 of the first T-state after the
last T2 of the write. WR# will go active in phase 2 of T1. For
back-to-back writes WR# will go inactive for one CLK2.

Figure 3. WR# Active/lnactive Timings

Table 5. Write Parameter Time Comparison at Zero Wait-State

Timing Description 1386 EX CPU Parameter Memory Parameter
Address Valid to WE# High tag+ta1 = 3CLK2-15 = 45 ns min Must Be Less Than 45 ns
Data Valid to WE# High t43 = 3CLK2-27 = 33 ns min Must Be Less Than 33 ns
WE# Pulse Width tag = 3CLK2-15 = 45 ns min Must Be Less Than 45 ns
Address Hold from WE# High t42 =5 ns min Must Be Less Than 5 ns
WE# Pulse Width High Implied 20 ns(1) min Must Be Less Than 20 ns

NOTE:

1. The implied 20 ns comes from the fact that WR# on the Intel386 EX CPU goes inactive from the previous write in phase 1
of T1, and goes active for the current write in phase 2 of T1. At 256 MHz each phase is 20 ns, therefore the WR# pulse high
time would be 20 ns (See Figure 3 above).

Table 6. Write Parameter Time Comparison at One Wait-State

1386 EX CPU Parameter 28F400BX Parameter Violated Timing?
tae+ta1 = 45+2CLK2 = 85 ns min (3) | tas = 50 ns min 85>50, No
t43 = 33+2CLK2 = 73 ns min (@ tps =50 ns min (1) 73>50, No
tsag = 45+2CLK2 = 85 ns min (@ twp = 50 ns min 85>50, No
ta2 =5 ns min taH =10 ns min 5<10, Yes (3)
Implied 20 ns min twpH = 10 ns min 20>10, No

NOTES:

1. These parameters assume the flash data lines are connected directly to the Intel386 EX CPU. They do not include any

additional delays due to a buffer.

2. For every wait-state it is necessary to add 2CLK2 to each parameter dependent on CLK2. 2CLK2 is added to the first three

parameters for a one wait-state system.

3. Adding additional wait-states will not fix the tan timing violated.

22

PRELIMINARY

intel.
4.1 Write Timing Solution

4.1.1 ADDRESS HOLD FROM WE# HIGH

Table 6 indicates that address hold from WE# high is
violated. The 28F400BX requires that the processor hold
the address 10 ns after WE# goes inactive. The Intel386
EX CPU only guarantees that it will hold the address for
5 ns (t42). This can be fixed by controlling WE# with a
PLD. If the PLD pulls WE# high at least 5 ns earlier,
then the problem is solved.

4.1.2 DATA VALID TO WEi# HIGH AT ONE
WAIT-STATE

The section above states that pulling WE# high early
with a PLD solves the violated write timing. However,
pulling WE# high early shortens tps (Data Valid to WE#
high). If WE# is pulled high too early, tps will be
violated. Figure 4 illustrates the timings for WE#. WE#
is pulled high one CLK2 early by a PLD with a
minimum propagation delay of 2 ns. With one wait-
state, this occurs 102 ns into the write cycle. For the
28F400BX, tps is 50 ns, therefore data has to be valid
no later than 52 ns into the write cycle (102-50). The
Intel386 EX CPU places data on the bus as late as 51 ns

AP-609

from the beginning of the write cycle (31 ns from the
middle of T1). However, in order to avoid bus’
contention on a read followed by write cycle, a buffer
was added causing additional delays of up to 11 ns in
worst case (see Section 3.1.1). These additional delays
cause tps to be violated in a one wait-state write cycle.
Since tps is violated, it becomes necessary to add a
second wait-state to the write cycle.

4.1.3 TWO WAIT-STATE WRITE

With a second wait-state, the write cycle extends to
160 ns. WE# still needs to be pulled high one CLK2
early. With two waits states, this occurs 142 ns into the
write cycle (see Figure 4). With a tps of 50 ns, data has
to be valid no later than 92 ns into the write cycle (142—
50). This leaves plenty of time to meet tps.

4.1.4 WRITE SUMMARY

By controlling WE# with a PLD as implemented above,
a two wait-state write cycle is achieved. For the Intel386
EX CPU, these two wait-states could be easily
programmed using -the internal chip-select logic or
implemented with external ready logic. Ready
generation is explained in detail in Section 5.2. See
Figure 8 for a complete write timing diagram.

Ons

PH2 \ / \

T2
/

1 wait state WE# _—_——\—-__/ l-
l—‘ 2

2 wait state WE# —_—_‘\

31—

CPUD(0:15) ——————

2160_04

Figure 4. WE# Control Timing

PRELIMINARY

23

AP-609

- osC
CLK2
A1:18] > A[0:17]
RD# » OE#
Ccs# » CE#
L—p
i386™ EX CPU 28F400BX
PLD
ADS# »
LBA# > WE#
W/R#
READY# [»>
RESET
» RP#
A A
D[0:15] EN# DR |, »| D[0:15]
BUFFER BYTE#
|

Vee
2160_05

Figure 5. System Block Diagram

5.0 INTERFACE LOGIC

This design example will show how to interface the

Intel386 EX CPU to the 28F400BX with a PLD (22V10)

and a buffer. Figure 5 shows the basic block diagram of
. the interface.

5.1 WE# Control

From the Write Timing Analysis in Section 4.0, address
hold from WE# high and CE# hold from WE# high are
the parameters which are violated. These parameters can
be met by controlling WE# with a PLD as indicated in
Section 4.1 and Figure 4. WE# is enabled during a write

24

cycle in the middle of the first T2 and is then disabled in
the middle of the third T2. A complete timing diagram

[illustrating the write cycle is found in Figure 8. The PLD

equation for WE# is provided in Appendix A.

5.2 Ready Generation

In this example, the read cycle requires one wait-state
and the write cycle requires two. This can be achieved
by setting the RDY bit in the UCSADL or CSADL
register and generating READY# with the PLD. Another
approach would be to use the ready logic built into the
Intel386 EX CPU chip-select unit. For this approach the
chip select unit would need to be programmed to

PRELIMINARY

intal.

generate two wait-states for both read and-write cycles.
However, since the read cycle only requires one
wait-state, this is not the optimum solution. For this
example, a PLD generates one wait-state for a read cycle
and two wait-states for a write cycle. READY# is also
brought in as an input and is used to disable the buffer.
Timing diagrams illustrating READY# generation for
read and write cycles are provided in Figures 7 and 8
respectively. The PLD equations for READY# are
provided in Appendix A.

5.3 Reset Conditions

Upon reset, the UCSADL register defaults to FF6FH.
This means that the Intel386 EX CPU will insert
15 wait-states and drive READY#. If you are using a
PLD to drive READY# (iike in this example) it is
necessary to tristate the PLD's READY# to avoid bus
contention with the CPU's READY#. This can be
accomplished by sampling LBA#. The Intel386 EX CPU
will assert LBA# on accesses where it is driving
READY#. When the PLD samples LBA# active it will
tristate its READY#. The PLD equation for tristating
READY# is provided in Appendix A.

For the interface implemented in Figure 5, PWRGD
(power good) is the signal that indicates to the PLD to
RESET the CPU. It is also important to connect
PWRGD to RP# (reset/power-down) on the flash device
for two reasons. First, it is important for the flash

AP-609

command user interface (CUI) to reset at the same time
as the CPU, putting the CUI in read array mode. At
power-up the CUI will default to read array mode.
However, some designs allow the system to reset while
the power remains on (reset button). At reset, the CUI
may not be in read array mode for the CPU to boot,
therefore it is necessary for the system to reset the CUI
at the same time as the CPU. Triggering RP# with
PWRGD ensures that this happens. The second reason is
to guard against spurious writes. With bus signals in an
indeterminate state at power-up, connecting PWRGD to
RP# provides memory protection by masking unwanted
bus conditions.

5.4

The 28F400BX data float time is longer than the
allowable limit specified in the Intel386 EX CPU
datasheets. One solution to this problem is to add a
buffer. In this implementation, a PLD controls the
enabling of the buffer. For a write, the buffer is enabled
in the middle of the first T2 and then is disabled at the
end of the third T2 (see Figure 6 below). For a read, the
buffer is enabled in the middle of the first T2 and is
disabled at the end of the second T2. The direction of
the buffer is controlled by the Intel386 EX CPU RD#
signal (see Figure 5). A complete timing diagram
illustrating the buffers enable and disable during a read
followed by write cycle is found in Figure 9. The PLD
equation for EN# is provided in Appendix A.

Buffer Control

Ons 250ns
I | | |
e AVAVAVAVAVAVAVAVAVAV AVAVAVAVAVAY
T 2 T T vl 2 Tl
Pz __/___/_‘ _/__/___/__/__/_‘;/—\
‘—-|(429) | —-|(429)
W/R# T
L @9 > 28) L| @9 4 @8)
Buffer EN# g r—
L tPZL/tPZH
PZL/tPZH PLZ/APHZ tPLZ/IPHZ
Buffer ¥ ‘
WRITE DATA D s
- Figure 6. Buffer EN# Control
25

PRELIMINARY

-
AP-609 I ntQI ®

6.0 READ TIMING DIAGRAM

Ons

CLK2

PH2

ADS#

A(1:18)

W/R#

RD#

Buffer EN#

Cs#

Flash D(0:15)

Buffer

READY#

2160_07
NOTE:

The processor puts the address and W/R# on the bus a max of 29 ns from the beginning of T1. CS# goes active a max of

39 ns from the beginning of T1. The PLD samples W/R# in the middle of the first T2 and enables the buffer. Data from the
28F400BX is guaranteed 60 ns after CS# is active. Since the buffer has.a max delay of 11 ns, data will be on the data bus a
max of 110 ns from the beginning of T1. This gives 10 ns of setup time before the data is latched. In this example, the PLD
could disable the buffer as soon as 2 ns after the data is latched. With 3 ns of tpHz and tpLz for the buffer, data will hold for a
minimum of 5 ns after it is latched.

Figure 7. Read Timings for the Interface

26 PRELIMINARY

]
intal.

7.0 WRITE TIMING DIAGRAM

ClR2 M\ S\ N\

PH2 / / / / /

ADS#
A(1:18)
W/RE
o] (2.8
WE# 7
cs#
CPUD(0:15)
of 11
Buffer
> (2.8
READY# 0

2160_08

NOTE:

The processor puts the address and W/R# on the bus a max of 29 ns from the beginning of T1. CS# goes active a max of

39 ns from the beginning of T1. The PLD samples W/R# in the middle of the first T2 (60 ns into the write cycle) and enables
WEH# as well as the buffer. The PLD enables the buffer a max of 8 ns from the middle of the first T2. The buffer has a max tprz
and tp.z of 11 ns, therefore data will be presented to the 28F400BX a max of 79 ns into the write cycle (60+8+11). WE# is
pulled high as early as 2 ns from the middle of the third T2 (142 ns into the write cycle). This yields a min of 64 ns (142-79) of
data setup to WE# high.

Figure 8. Write Timings for the Interface

PRELIMINARY 27

- ‘
AP-609 I nbl ®

8.0 READ FOLLOWED BY WRITE TIMING DIAGRAM

ons IlOOns

N\
9

CLK2
PH2

,29)

ADS#

A(1:18)

W/R#

RD#

WR#
2, (2
Buffer EN# (b ‘g

WE#

-

430
R

Cs#

Flash D(0:15)

CPUD(0:15)

Buffer

READY#

2160_09
NOTE: .
At the end of the read cycle the 28F400BX requires a max of 20 ns from RD# high to go to a high impedance state. If the next
bus cycle is a write, the processor will drive data on to the bus. This causes the potential for bus contention and can be seen in

the figure by the overlap of Flash D[0:15] with CPU D[0:15]. A solution to this problem is to turn off the buffer during this period
of overlap. This allows the 28F400BX to float its data lines, and allows the processor to‘ drive the data bus without contention.

Figure 9. Read Followed by Write Timing Cycles

28 PRELIMINARY

intgl.

AP-609
9.0 ADDITIONAL INFORMATION
9.1 References
Order Title
Number
272420 Intel386™ EX Embedded Microprocessor Datasheet
290406 28F001BX 1-Mbit Boot Block Flash Memory Datasheet
290429 28F008SA 8-Mbit FlashFile™ Memory Datasheet
290448 28F200BX, 28F002BX 2-Mbit Boot Block Flash Memory Family Datasheet
290451 28F400BX, 28F004BX 4-Mbit Boot Block Flash Memory Family Datasheet
290531 2-Mbit SmartVoltage Boot Block Flash Memory Family
290530 4-Mbit SmartVoltage Boot Block Flash Memory Family
290539 8-Mbit SmartVoltage Boot Block Flash Memory Family
290489 28F016SA 16-Mbit FlashFile™ Memory Datasheet
290528 28F016SV 16-Mbit FlashFile™ Memory Datasheet
272425 AP-499, “Introducing Intel’s Family of Embedded Intel386™ Microprocessors”
292163 AP-610, “Flash Memory In-System Code and Data Update Techniques”
29

PRELIMINARY

=
intel.

APPENDIX A
PLD EQUATIONS

*These PLD equation are posted on the BBS under EXFLASH.ZIP

TITLE MEMORY INTERFACE
PATTERN PDS

REVISION 2.0

AUTHOR TONY SHABERMAN
COMPANY INTEL

DATE 1/20/95

; This design has not been verified, it is sample code only.

; Intel assumes no responsibility for any errors which may appear

;-in this code. This PLD performs the functions necessary for interfacing

; the Intel386™ EX CPU to the 28F400BX. It controls WE# to the 28F400BX,
; EN# to the buffer, READY# and RESET to the processor.

. NOTES:

; T2_1 will go active for the first half of the first T2 on all cycles (1 clk2).

; T2_1 will stay active for the second half of T2 if CS# is active. It is

; necessary to place CS# at the second half of the equation because CS# has a
; 39 ns max valid delay (1 ns before the first half of the equation is sampled).

; T2_2 will go active for the duration of the second T2 under the condition
; that the second half of T2_1 was generated

; T2_3 will go active for the duration of the third T2 under the conditions
; that the second half of T2_2 was generated and it is a write cycle

; EN will go active in the middle of the first T2 if CS# is active. EN is

; disabled either by the CPU or the PLD driving RDY_I#. Since the CPU could
; drive RDY_H# early in the last T2, a third term (EN and PH1) is added to the

; equation to ensure that the buffer stays active during the second half of

; the last T2.

; READY# is represented by two pins, RDY_I# (ready in) and RDY_O# (ready out).
; When booting from flash, the CPU will drive RDY_I# so the PLD must tristate

; its RDY_O#. Some PLD devices support a pin feedback feature which would

; eliminate the need for using two pins.

30 PRELIMINARY

-]
intal.

CHIP MEMORY_INTERFACE iPLD22V10

; INPUTS

PIN2 CLK2 ; 2X INPUT CLOCK (50 MHZ)

PIN PWRGD ; POWER GOOD USED TO GENERATE RESET TO CPU

PIN W_R ; FROM CPU W/R# SIGNAL

PIN /ADS ; FROM CPU ADS# SIGNAL

PIN /CS ; FROM CPU CS# SIGNAL

PIN /LBA ; FROM CPU LBA# SIGNAL

PIN /RDY_I ; FROM CPU READY# SIGNAL AND PLD RDY_O# SIGNAL

; OUTPUTS

PIN /WE ; TO FLASH WE# SIGNAL

PIN /EN ; TO BUFFEROUTPUT ENABLE SIGNAL

PIN /RDY_O ; TO CPU READY# SIGNAL AND PLD RDY_I SIGNAL

PIN RESET ; TO CPU RESET SIGNAL

; NODES

NODE PHI1 ; MATCHES CPU PH1, USED FOR TIMING

NODE T2_1 ; ACTIVE DURING FIRST T2, USED FOR TIMING

NODE T2_2 ; ACTIVE DURING SECOND T2, USED FOR TIMING

NODE T2_3 ; ACTIVE DURING THIRD T2, USED FOR TIMING

EQUATIONS

RESET:=/PWRGD

PH1:=(/PH1*/RESET) ; PH1 SYNCS BY RESET

T2_1:=(/PH1*ADS)+(PH1*T2_1*CS) ; T2_1 ACTIVE FOR 2 CLK2 CYCLES AFTER ADS#

T2_2:=(/PH1*T2_1)+(PH1*T2_2) ; T2_2 ACTIVE FOR 2 CLK2 CYCLES AFTER T2_1

T2_3:=(/PH1*T2_2*W_R)+(PH1*T2_3) ;T2_3 ACTIVEFOR 2 CLK2 CYCLES AFTER T2_2

WE:=W_R*(T2_1+T2_2) ; WE ACTIVE FROM MIDDLE OF T2_1 TIL MIDDLE OF T2_3

EN:= CS*(T2_1+(EN*/RDY_I)-+(EN*PH1)); EN ACTIVE UNTIL READY

RDY_O:=(W_R*T2_3) ; 2 WAIT STATE READY GENERATION FOR WRITE
+(/W_R*T2_2) ; 1 WAIT STATE READY GENERATION FOR READ

RDY_O.TRST=/LBA ; RDY_O TRISTATED WHEN LBA# IS ACTIVE (CPU

; GENERATING RESET)
SIMULATION

TRACE_ON CLK2 PH1 PWRGD RESET LBA T2_1T2_2 T2_3 ADS CS WEENRDY_ORDY_I
SETF CLK2 /PWRGD /ADS /CS /LBA /RDY_I
PRLDF /PH1 /T2_1/T2_2/T2_3

PRELIMINARY 8

AP-609

CLOCKF CLK2
CLOCKF CLK2
CLOCKF CLK2
CLOCKF CLK2
SETF PWRGD

CLOCKF CLK2
CLOCKF CLK2

SETF ADS/W_R CS

CLOCKF CLK2
CLOCKF CLK2
SETF /ADS LBA
CLOCKF CLK2
CLOCKF CLK2
CLOCKF CLK2
CLOCKF CLK2
CLOCKF CLK2
CLOCKF CLK2
SETFRDY_I
CLOCKF CLK2
CLOCKF CLK2

SETF/CS /LBA /RDY_I

CLOCKF CLK2
CLOCKF CLK2

SETFADS W_R CS

CLOCKF CLK2
CLOCKF CLK2
SETF /ADS
CLOCKF CLK2
CLOCKF CLK2
CLOCKF CLK2
CLOCKF CLK2
CLOCKF CLK2
SETFRDY_I
CLOCKF CLK2
SETF/CS
CLOCKF CLK2
SETF/RDY_I
CLOCKF CLK2

SETF CS ADS /W_R

CLOCKF CLK2
CLOCKF CLK2
SETF/ADS
CLOCKF CLK2
CLOCKF CLK2
CLOCKF CLK?2
SETFRDY_I
CLOCKF CLK2
CLOCKF CLK2
SETF/RDY_I
CLOCKF CLK2
CLOCKF CLK2
CLOCKF CLK2

TRACE_OFF

32

PRELIMINARY

L]
intel.

APPENDIX B
PLDShell Plus* WAVEFORM

2 Wait State 1 Wait State

Booting from 28F400BX
Wirite Cycle Read Cycle

(only 3 of 15 wait states shown)
Reset

'T1|T2|T2IT2IT2 T T1|T2|T2|T2 Ti T1|T2|T2 TIITI

CLK2

PWRGD I
RESET I

LBA# |

] 1 1
M M m
2.3 I_I

ADSH# L__l l__l l—l
CS# I '—L r——]

Wet | | |
ene | | [| | L
ROY_O# |] L

(I
| | L]

NOTES:

1. This waveform was exported from PLDShell PLUS*. The waveform files are included on the BBS under EXFLASH.ZIP.
The T-state annotation was added and is not normally included with the PLDshell PLUS waveform.

2. PH1 is generated by the PLD and is used instead of PH2 for consistency with the EV386EX evalution board. PH1 is simply
the inverse of the PH2 as seen in all the previous figures.

3. T2_1,T2_2, and T2_3 are used to provide timing for WE# and RDY_O# generation. When booting from the 28F400BX the
Intel386 EX CPU drives READY# so T2_1 and T2_2 are not needed. However, they are still be generated and can be
ignored.

4. For this simulation, CLK2, PWRGD, LBA#, ADS#, CS#, and RDY_l# are all forced inputs.

T

2160_10

PLDShell PLUS* Waveform

PRELIMINARY 3

AP-609

intgl.

APPENDIX C
SAMPLE MEMORY REQUIREMENT
CALCULATIONS

This spreadsheet is posted on the Intel Application
- Support BBS @ 916-356-3600. The filename is
. EXFLASH.ZIP and it is located in the E3X\REF_DSGN

section.

The flash memory timing specs must lie within the
minimum and maximum specs given below for a desired
wait-state performance. However, these calculations do
not take into account the delays due to needed glue logic
or buffers and assume a non-pipelined interface. .

Memory Requirements for the Intel386 EX Microprocessor

16 MHz 20 MHz 25 MHz

Read Specs OWS | 1TWS | 2WS | OWS | 1WS | 2WS | OWS | 1WS | 2WS
tavav | Address Valid | Max 74 137 199 53 103 153 44 84 124
tacc |to Data Valid ‘
telqv | CE#Validto | Max | 64 127 | 189 46 93 143 34 | 74 114
tce Data Valid I '
teLav | OE# Valid to Min 43 105 168 30 70 80 24 64 104
toe Data Valid '
teHaz | OE# High to Max 18 18 18 15 15 15 10 10 10
tor | Output High Z

Write Specs
tavwH | Address Valid [Min 79 141 204 60 110 160 45 85 125
tas to WE# High |
tovwx | Data Valid to Min 54 116 179 39 89 139 33 73 113
tos WE# High :
tWLWH WE# Pulse Min 79 141 204 60 110 160 45 85 125
twe Width) .
twHAx Address Hold Min 5 5 5 5 5 5 5 5 5
taH from WE# '

High
twHwL | WE# Pulse Min 31 31 31 25 25 25 20 20 20
twpn | Width High

4 PRELIMINARY

intgl. AP-608

APPLICATION
NOTE

Implementing a Plug
and Play BIOS Using
Intel's Boot Block Flash

Memory

CHARLES A. ANYIMI
TECHNICAL MARKETING
ENGINEER

February 1995 Order Number: 292161-001

I 35

intgl.

1.0 INTRODUCTION

Today’s PC can perform a myriad of functions, perhaps
far more than the original designers of the PC ever
envisioned. The number of software packages available
for mass consumption is staggering, and more are being
unveiled each year. Multimedia has enabled the PC to
invade every nook and cranny of the home. The number
of systems being purchased with CD-ROMS, sound
cards, and graphics accelerators is growing at a
phenomenal rate. The demand for additional hardware
has led to an unprecedented craze for add-in cards and
peripherals. While all this growth has been a tremendous
boon, it has had its downside as well. The PC has
become so sophisticated that new bus structures have
been defined, new protocols have been introduced and
new system configurations have emerged. All these
changes have made an already complex tool more
difficult to use by the PC user.

With the advent of Plug and Play (PnP), it seems a
solution is in sight. Simply put, Plug and Play is a way
of adding new features to a system without the usual
headaches—like reconfiguring switches and jumpers,
updating system configuration files or other frustrating
things. PnP enables a system to automatically configure
system components, peripherals and add-in devices just
prior to boot time. The basic input/output system (BIOS)
of PnP is responsible for the majority of the auto-
configuration of the system.

With its previous history of changes and. the obvious
future changes that will take place as a result of PnP, it
only makes sense to store the BIOS on a medium that
allows the most flexible means of updating, while
maintaining a high level of reliability. Of course, all this
has to be accomplished without adding to system costs
or making it more difficult for the PC user to get their
work done. A PnP BIOS based on Intel’s boot block
flash meets all of these demands and more. The PnP
Specification, for instance, requires nonvolatile storage
for old bus standards; the parameter blocks of the boot
block flash were designed for such a function. As far as
recovery code is concerned, the hardware-lockable boot
block area of the boot block flash memory provides
unparalleled data protection and guarantees system
recovery. The inherent updateability of the boot block
flash memory, while in-system, reduces cost by
<upporting easy code changes and eliminating sockets.

AP-608

2.0 BENEFITS OF A PNP BOOT
BLOCK FLASH BIOS

Perhaps you are wondering why flash is the medium of
choice advocated in this application note as the means
for storing system BIOS, particularly for Plug and Play?
From a PC user’s perspective, a PnP flash BIOS enables
users to install new hardware without having to call the
support number. This translates to ease-of-use:

o Easily updatable code assuring optimal BIOS
performance
o No need to edit the CONFIG.SYS file.

o No need to determine system type and match,
somehow, to jumper settings.

e No need to investigate available system resources
and muddle through reassigning them.

e No need to fiddle with system memory reallocation.

¢ No need to buy a new system every time something
changes (increases system’s useful lifespan).

Plug and Play can make the usual experience of adding
new functionality to an existing system as easy as:

1. Tumn the system off.

2. Insert the new device.

3. Tumn the system on.

PnP flash BIOS can also extend the life of the PC. By
enabling simple updates to the BIOS (simply insert the

upgrade disk and the software programs the new BIOS),
the user can get more out of their PC investment.

37

AP-608

From an OEM or system manufacturer’s standpoint, a
PnP flash BIOS enables the following benefits:

e Eliminates the need for excessive EPROM
inventories.

e Reduces the need for sockets since flash can be
soldered onto the motherboard and updated in-
system

e Minimizes system chip count and system cost.
e Reduces support costs.

e Improves end-user perception of product
upgradeability and ease-of-use.

When new features are added to the BIOS, a simple disk
sent to the user or a connection to an on-line network is
all it takes for the user to achieve the upgrade. This has
one very important benefit for the OEM/manufacturer—
it strengthens user faith in the product (and its
manufacturer) and enhances their perception of the
product’s ease-of-use—which can be a great
differentiation. Additionally, since each user no longer
needs to call the technical support line as often, this
costly overhead can be reduced, saving even more
money.

All these benefits are a result of the capabilities that a
flash PnP BIOS enables. Looking back to the original
PC, it was a fairly simple machine (by today’s
standards) with simple code designed to perform
computational math functions, database creation and
management, and word processing. Even though the

38

intel.

BIOS code was elementary, few people understood it (or
needed to). Since that time, the PC BIOS has (and will)
continued to evolve in order to accommodate the
growing needs of the PC user.

21 The Old BIOS Paradigm

In the original PC architecture, the BIOS code was fairly
straightforward and required little memory space—about
32 KB total. BIOS code provided the lowest-level of
interface between the operating system and the
hardware. It was located at the top of memory for the
8088 system (the original PC had a memory limit of
1 MB). Even though only 32 KB were required, the PC
designers knew the benefit of “breathing room”. and,
with great foresight, reserved a total of 128 KB (from
hex address EO000h to FFFFFh) for BIOS code storage,
as shown in Figure 1. When the AT was launched in
1984, its BIOS functions were extended by another
32 KB, making a total of 64 KB.

However, the introduction of BIOS created a crutch that
has been integrated into the PC: every new system
hardware component that was not already supported in
the BIOS required a new BIOS to be generated, or at
least an upgrade of the existing BIOS. This meant OEMs
and system manufacturers needed to keep abundant
quantities of ROMs and EPROMs handy to
accommodate new BIOS versions. This was a
cumbersome and expensive solution, but it was soon
accepted as the norm. And, as long as the frequency of
change to the BIOS remained minimal, this solution was
adequate.

intal.

AP-608
1 MB DOS Memory Map
FFFFFl Bios code
FOO(}fSh (64 KB)
Additional
28F001B-T Eh000n B'%i?(";ce 28F002B-T
Boot Block Flash - ; Boot Block Flash
,.' Adapter and
8 KB Boot Code Graphic Space Boot Code 16 KB
4«5 | BIOS Parameters (256 KB) BIOS Parameters |8 KB
4 K| Configuration Utilties | A00G0h Configuration Utiities fg kB
Additional BIOS
: ServiceS 96 KB
Main BIOS Code, User Area H
112 KB| Runtime Services, (638.75 KB) Main BIOS Code, 128 KB
Drivers, etc. 60500h E Runtime Services,
BIOS Data Area Drivers, etc.
00400h (256 Bytes)
BIOS Stack Area
00300h (256 Bytes) |
Interrupt Vector Table
00000h (768 Bytes)
216101

Figure 1. Possible BIOS Segmentations Using Flash Components (1-Mbit or 2-Mbit)

2.2 Beyond the 128 KB Limit

Since then, BIOS code has undergone continual
development, including the addition of custom features
to enhance system flexibility and more complex set-up
routines. Today’s BIOS includes support for previously
“advanced” features such as system configuration
analysis (diagnostics), power management, networking
capability and I/O support for devices with extremely
high transfer rates. This expansion continued until the
AT BIOS eventually consumed the entire reserved BIOS
space—all 128 KB!

So now what? With the definition of new bus
specifications (EISA, VL, PCI, to name a few) and the
further proliferation of features such as ROM versions of
application software and enhanced video BIOS, the
potential for future BIOS changes looms larger than
ever, and the frequency of change seems no less
daunting. A further look at the 1-MB memory map of
the PC indicates that BIOS needs to prepare for more
change and remain open-minded about the future (and it
would not hurt any if the BIOS acquired more memory

spacc cither—but this would mean changing the
architecture of the standard PC).

Today, PnP BIOS requirements may extend beyond
128 KB. A standard system BIOS consumes roughly
64 KB; PnP support is another 12 KB; automatic power
management support adds 2 to 10 KB; PCI (Peripheral
Components Interconnect) extensions hoard some
20 KB of the BIOS; and on-board VGA (Video Graphics
Adapter) controllers utilize an extra 30 KB to 40 KB of
space. The potential size of the BIOS for such a system
is almost 150 KB. Since new developments for the PC
show no signs of abatement, it seems clear that a means
of updating as well as expanding BIOS quickly and
easily has become a necessity. Plug and Play is only one
of the many technologies that can be implemented better
with flash. As users realize the benefits of PnP, the
demand generated will drive the number of Plug and
Play systems upward.

39

AP-608

3.0 PLUG AND PLAY

The Plug and Play architecture is intended to alleviate
configuration woes and provide the end-user with an
easy means of expanding the capability of their PC. To
support PnP, several new components need to be added
to the host system and add-in cards. For instance, a new
type of add-in card capable of auto-configuration is
required. Additionally, system firmware and software is
necessary to supervise the allocation of system resources
and carry out the configuration of these new add-in
cards. For widespread acceptance, PnP has to support all
the major bus structures. PnP executes on the PCI bus by
design. The PnP-ISA extensions enable Plug and Play
functionality on the ISA bus while maintaining support
for traditional (non-PnP) add-in cards—affectionately
referrcd to as legacy devices. All systems that claim PnP
support must recognize the existence of legacy devices
and auto-configure new PnP devices around these static
devices. On-going development will soon qualify Plug
and Play on the VL, EISA and MCA bus structures as
well as the PCMCIA interface.

3.1 PnP Components

For a system to be fully PnP-compliant, four basic
elements are required:

1. System/PnP BIOS

2. PnP operating system

3. PnP hardware devices

4. PnP application software

40

intal.

While waiting for full-featured PnP operating systems
like Windows* 95, Windows NT and PnP versions of
0S/2*, solutions are available from individual vendors,
including Phoenix Technologies*, SystemSoft* and
Intel. In addition, the requirements for PnP
implementation vary slightly depending on which bus
architecture is being utilized. Even though Plug and Play
is an extension of the emerging PCI bus definition, it
will revolutionize standard buses like ISA and EISA by
making them more user-friendly. The software
architecture for supporting PnP consists of the following
components (see Figure 2):

1. Platform BIOS: interfaces to the PnP BIOS
Extensions block; provides error reporting, buffer
allocation and platform-specific configuration;
provides ESCD interface.

2. PnP BIOS Extensions: auto-configures PCI cards,
add-in cards, and system board devices during
power-up as part of the power-on self test (POST)
procedure; provides run-time support to system.

AP-608

Applications PnP Aware
Applications

o/s MS-DOS* / Windows* 3.1 / OS/2*

Configuration
Software

PP Device Diiver UF | [\ Othe

Drivers | PCl TS":

Platform

BIOS BIOS

Other

216102

Figure 2. Plug and Play Software Architecture Components.
Note the many layers that depend on the ESCD. The parameter blocks of the boot block
flash memory enable this nonvolatile storage capability of Plug and Play.

The following components are operating system
dependent:

4. Configuration Manager (CM): a DOS/Win device
driver that auto-configures any ISA add-in cards not
configured by the PnP BIOS Extensions during
POST; provides other device drivers and PnP-aware
applications like the ICU access to configuration
information for all system devices (two VxDs
provide similar access privileges to PnP-aware
drivers and applications running under windows);
provides interfaces for PCMCIA software to get
configuration data, but does not provide
configuration services.

. ISA Configuration Utility (ICU)I: a utility designed
to assist users in selecting conflict-free

1 The Intel PnP Kit R1.21 and R1.23 update include
both DOS and Windows versions of the ICU (release
R1.3 and R1.4 are Windows only at this time. Other
configuration kits are also available: SystemSoft offers
PnPView and Phoenix Technologies offers Phoenix
System Essential.

configurations for legacy ISA add-in cards; advises
end-users on resource settings and saves this new
information into the extended system configuration
data (ESCD) for future use by PnP BIOS Extensions
or the CM; supports manual configuration of PnP
devices. (Caution: it is best to know what you are
doing before embarking down this road—advanced
users haven.)

Of the components listed above, the platform BIOS, PnP
BIOS extensions, and ESCD are the system critical
portions without which PnP support would be
incomplete. The configuration manager and the ISA
configuration utility provide functionality that may be
incorporated into the firmware of the operating system.
The PnP BIOS and the ESCD are the components that
initialize the system when power is applied.

3.2 PnP Functionality

As already mentioned, the PnP BIOS is an essential part
of the PnP system. The traditional system BIOS does not
address resource management. Its knowledge is limited
to hard-wired devices, only. In a PnP environment, the

4

AP-608

system BIOS knows what resources are being used by
system board devices and peripherals. During POST, the
system BIOS communicates this information to the PnP
BIOS, which then detects any PnP hardware devices and
initializes them. PnP BIOS also adds the capability of
" runtime configuration; the system can now dynamically
change the resources allocated to system board devices

and add-in peripherals (if they have been so designed) .

after the operating system has been loaded. Working in
" tandem with the existing system BIOS, the PnP BIOS
can detect newly installed devices during the POST and
communicate this information to the system at runtime
(see Figure 3).

Furthcrmore, the PnP BIOS is capable of event
. management. Through its event management interfaces,
" the PnP BIOS can alert the system about new devices,
like a notebook docking station, added or removed
during runtime.

The POST procedure of the PnP BIOS identifies, tests,
and configures the system before passing control to the
- operating system. The POST process must maintain
previous POST compatibility, configure all legacy
devices known to the PnP BIOS, arbitrate resources,
- initialize the IPL (Initial Program Load—this is how the
operating system is launched), and support both PnP and
non-PnP operating systems. Upon completion of the
POST process, the BIOS attempts to have all necessary
system devices initialized and enabled before the
operating system is loaded; the PnP BIOS aspires further
to provide the operating system a conflict-free
environment in which to boot.

The key to a conflict-free operating environment is
effective management - of system resources;
unfortunately there is no - definitive directive. on how
- system resources should be allocated. The firmware of
most devices does not contain information on how much
memory the device will need. Even if this knowledge
-was available, there is no consistent way of extracting
this information. The PnP BIOS Specification identifies
three methods for attaining effective resource
management: static resource ~allocation, dynamic
resource allocation, and combined resource allocation.
The choice of which is used depends on the devices that
are being supported by the system.

o Static Resource Allocation: This method advocates
the allocation of system resources based on the Last
Working Configuration (LWC) and is best for
systems that have many legacy or static devices that
must be resourced. As its name implies, the resource
allocation for, all configurable devices is
predetermined and fixed. This information on the
specific resources assigned ‘to all. configurable

42

intgl.

devices must be stored in some nonvolatile location
until needed. The ESCD is the structure specified for
storing this information. The ESCD in this allocation
scheme requires updateability (in case a new device
is added and the resource allocations have to be
adjusted) and nonvolatility (so the information is
always available to the system BIOS during POST).
As long as new devices are not added, or previous
ones removed, conflict detection and resolution
(CDR) is not necessary and the LWC is used at each
‘boot. However, the capability to perform CDR must
be available when it is needed.

e Dynamic Resource_ Allocation: This approach
assumes that all PnP devices know exactly how
much space they will require and what resources will
be needed. This approach is best suited for systems
with few static devices or a system whose
configuration changes frequently. A complete
knowledge of which legacy devices are being used
and what resources they consume is necessary to
insure true conflict-free operation. The legacy device
information (and any locked PnP card configuration)
should be stored in nonvolatile memory. The
principle benefits of this -approach are its minimal
nonvolatile memory requirements and the flexibility
of support for PnP devices. Each boot could
potentially yield a different configuration and PnP
devices could be added or removed without changing
the legacy information in the ESCD. The CDR
algorithm - will run each time a new system
configuration has to be determined.

e Combined Static and Dynamic Resource Allocation:
This method bases resource allocation on the last
working configuration (stored in the ESCD) and also
probes other devices, whose information is not
contained in the ESCD, for their resource needs. A
balanced environment is the primary target for this
type of allocation. The system dynamically caters to
its new requirements, shuffling previous resource
assignments as necessary to satisfy as many devices
as possible. Once a new conflict-free environment is
established, the system updates the ESCD with the
new configuration and checks against this new
information during the next boot or system reset. As
with the dynamic scheme, every new system
configuration that must be determined requires some
kind of CDR algorithm in order to insure a conflict-
free operating environment.

AP-608
Non-PnP BIOS ISA Configuration PnP BIOS ISA Configuration
Power On Power On
Plug and Play logical devices Plug and Play logical devices
required for boot come up active required for boot come up active
using defaults. using defaults.
Plug and Play logical devices Plug and Play logical devices
not required for boot come up not required for boot come up
inactive. inactive.
BIOS PnP BIOS will. . .
1. Isolate a PnP card.
POST 2. Assign a handle.
BOOT 3. Read resource data.
4. Repeat #1 - #3 until all cards
are done.
5. For each logical boot device:
O/S Plug 'n Play Support a) Check ESCD for conflict-free
1. Isolate a PnP card. assignments.
2. Assign a handle. b) Activate the logical device.
3. Read resource data. 6. Optionally, configure all other
4. Repeat #1 - #3 until all cards done. logical devices and activate or
5. Arbitrate system resources for Pnp leave inactive.
cards.
6. Configure and activate each card. POST
BOOT
"z
O/S Plug 'n Play Support
1. Get PnP information from BIOS.
2. Read resource data for all cards.
3. Arbitrate system resources.
4. Assign conflict-free resources for
for all inactive logical devices.
5. Activate all logical devices just
confirmed.
6. Load device drivers.
216103

Figure 3. Possible PnP/Non-PnP BIOS ISA Add-In Card Configuration Flow. Note the importance of
the ESCD in the Plug and Play Configuration Flow

Without an ESCD, the PnP BIOS must perform resource
allocation as well as conflict detection and resolution
each and every time the system is booted, and any
locking of devices must be done by the supporting PnP
operating system. Although the need for nonvolatile

storage cannot be disputed, the amount of storage
required depends on whether or not thc PnP system
needs real time updates. Ultimately, it will be decided
by. the methodology selected for resource management.
A static or dynamic allocation scheme requires a fixed

43

AP-608

amount of nonvolatile memory for the ESCD and other
BIOS parameters. A combined scheme for allocation
constantly adds or removes from the ESCD data
structure. Other parameters may need to be updated as a
result. Regardless of the storage method chosen, the
BIOS must know how to resolve any untimely
interruption of a crucial system or BIOS. function. The
underlying mechanism for appeasing all these
requirements is flash, and Intel’s boot block flash is the
solution for today’s demands and tomorrow’s
inclinations. .

4.0 INTEL’S BOOT BLOCK: THE
PNP FLASH BIOS SOLUTION

With the background information on Plug and Play
explained in the previous sections, a full analysis of the
Intel boot block and how it meets the needs of Plug and
Play follows. Included are a description of the boot
block family of products, how they meet the PnP
requirements, and a hardware design example.

The Intel boot block (BB) flash memory products are
particularly well suited for BIOS applications. Boot
block flash is segmented into a lockable boot block, two
parameter blocks and one or more main blocks. All boot
block devices are manufactured on Intel’s ETOX™ flash

44

intgl.

memory process technology. An on-chip Write State
Machine (WSM) provides automated program and erase
algorithms with an SRAM-compatible write interface.
The key feature of the boot block architecture that
differentiates it from other flash memories is its
hardware-lockable boot block, which allows system
recovery from fatal crashes. Additional features of boot
block flash include:

o Hardware write protection via pin

e Hardware locking of boot block

e Hardware pin for system reset during write

o High performance reads (for speedy access to data)

o Deep power-down mode (a key feature for “green”
PCs)

e Extended cycling capability (100,000 block/erase
cycles)

Armed with this impressive array of features, Intel’s
boot block flash memory tackles the PnP BIOS
challenge and prevails with a winning solution. Boot
block flash memory meets the needs of the Plug and
Play BIOS, the PnP data storage area (ESCD), and the
PnP BIOS boot code.

The main block(s) of the boot block flash can be used to
house PnP BIOS code. This code will doubtless include
the standard AT BIOS code (all 64 Kbytes) as well as
the PnP specific additions to the standard BIOS, an extra
10 Kbytes—20 Kbytes. Any additional features that
particular OEMs or vendors wish to implement
(i.e., power management, virus protection, PCI, etc.) will
exhaust more memory. The main block of the 1-Mb boot
block is 112 KB; the 2-Mb has one 96-KB main block
and one 128-KB block. The 4-Mb boot block is similar
to the 2-Mb except it has three 128-KB main blocks.
The choice of which boot block to use depends on BIOS
specifications and other system requirements. For some
systems, the 1-Mb boot block is sufficient. However,
other systems have advanced features that require more
memory, for example

o Improved help files

¢ System diagnostics code

e Foreign language support

o Integrated SCSI subsystems

For these applications, a 2-Mb boot block is the prudent
choice. With twice the memory space as the standard PC
memory map allots to BIOS, the 2-Mb boot block flash

offers plenty of head room—just what a growing PC
needs.

intel.

The previous section touched on some of the methods
available for resource management and the amount of
nonvolatile memory necessary for each approach. Boot
block flash solves the issue of the ESCD for each of the
possible allocation schemes.

The static allocation scheme stores the resource
requirements for all system and add-in devices within
the ESCD. These system configurations can be
programmed into one of the parameter blocks of the
boot block flash as the ESCD. Parameter blocks are
either 4 KB (1-Mb boot block flash) or 8 KB (2-Mb and
4-Mb boot block flash) in size. The ESCD Specification
calls for 4 KB of nonvolatile memory for the ESCD. Of
course, an OEM may elect to define its own version of
the ESCD, but that structure will still need to be stored
in some nonvolatile location. If the OEM or system
manufacturer decides to include additional features
within the ESCD (or keep a second copy of the ESCD
for recovery purposes), the other parameter block can
certainly be used for this purpose.

With ‘dynamic resource allocation, the boot block
architecture’s parameter block is an excellent choice for
storing the resource information of legacy devices.
When systems are being put together, all devices on that
system can be pre-assigned specific resources and this
information is saved into the ESCD. This implies that
some conflict resolution protocol or intelligent
allocation algorithm needs to be implemented to assign
resources to any devices added to the system by the end-
user. This protocol can be included in the BIOS or as
part of the operating system.

For the combined approach, the dual parameter blocks
of the boot block family again come into play. Using
this feature of the boot block architecture, two versions
of working system configurations can be saved. This
means that the last two working configurations are
always available to the system, further insuring recovery
in case of irreconcilable conflicts. If this is not desired,
then the ESCD can be written alternatively to each
parameter block, thereby minimizing the number of
writes to the same location and extending the life of the
flash component.

Finally, the hardware-lockable boot block of the flash
architecture is ideal for BIOS boot code. The boot code
is the first piece of code executed each and every time
the system is turned on or rebooted. Boot code consists
of a jump vector, checksum routine and recovery code.
The jump vector, which is 16 bytes long, is the
beginning address of the main BIOS. This is the address
jumped to after the checksum routine returns a valid
checksum, indicating that the current BIOS is good. If
the checksum routine does not validate the goodness of

AP-608

the available BIOS, the recovery code is then used to
load a new BIOS.

In the AT system, the boot code was usually no more
than 8 KB in size. However, the improvements made to
start-up routines, checksum routines and recovery code
to keep up with the constantly changing times have
forced this boot code to grown outside of its intended
limit. Further PC enhancements will advance rather than
curb this growth. The boot block area of the 1-Mb flash,
with its 8 KB size, is the consummate solution for
storage of the standard boot code. The 16 KB size of the
2-Mb and 4-Mb boot block is the answer to the growing
needs of today, and the unyielding promise of tomorrow,
by enabling the boot code to expand beyond itself to
better serve the user.

Since this boot code is so important to the operation of
the system, it is easy to understand why it needs to be
protected. Storing it within the hardware locked boot
block provides maximum protection to the system. If a
reset occurs during reprogramming of the flash, for
instance (the dog has been known to run over the power
cord at the most inopportune times), a hardware-locked
boot code means that system recovery is not only
possible, it is guaranteed! This capability is an asset to
OEMs users alike. The user no longer needs to suffer
long delays following a system crash; OEMs (and
system manufacturers) no longer need to incur the cost
of person-dependent recovery. The user does not feel
helpless and out of control and the OEM saves money
and gains a faithful customer in the process.

5.0 IMPLEMENTING A PNP FLASH
’ BIOS USING A 2-Mb BOOT
BLOCK

By now it is evident that Intel’s boot block flash
memory is an ideal solution for implementing PnP BIOS
within a system. However, there are implementation
criteria that need to be explained:

e How does this hardware-locking of the boot block
work?

o How does one connect the flash memory to a
system?

e What about address mapping?

o How does one utilize a 256-KB BIOS within an
defined 128-KB BIOS space?

These are just some of the implementation concerns that
need to be addressed. The following section will shed
some light on these questions and provide an example
implementation of a PnP flash BIOS.

45

AP-608

5.1 Overview of the 2-Mb Boot
Block

Figure 1 showed that either a 1-Mb or 2-Mb flash device
can be used to implement BIOS. The choice of device
depends on the contents of the BIOS and the level of
sophistication desired in the design. The 1-Mb boot
block flash memory is an established standard for
implementing flash BIOS, not just for PnP. However,
morc BIOS space will be needed to support
standardization of current features (like power
management and virus aids) and impending future
enhancements (like Windows 95 and Desktop
Management Interfaces*, DMI). As consumers clamor
for “more bang for the buck,” more features and
functions will be integrated into the standard PC. The
migration beyond a 128-KB BIOS is inevitable.
Alrcady, some vendors have adopted code compression
of BIOS in order to adhere to this 128-KB space
limitation. This is a viable alternative that requires
additional code decompression algorithms and consumes
additional RAM space to store the full BIOS.
Fortunately, Intel provides a secure means of code
storage as well as a built-in growth path with its boot
block architecture.

intal.

Within this implementation section, references to the
flash BIOS device assume the 28F002B boot block
flash. A similar approach can be followed to implement
a similar solution using the 1-Mb boot block. However,
some of the techniques included in this design example
will not be applicable. The organization and addressing
scheme of the 28F002B device, along with that of the
1-Mb boot block (as reference), is depicted is Figure 4.
The pinout for the Thin Small Outline Package (TSOP)
and Plastic Small Outline Package (PSOP) of the
28F002B are shown in the Appendix. A table listing the
functions of each of the pins identified in the pin
diagrams is also available in the Appendix. The five,
independently erasable blocks consist of the hardware-
lockable boot block (16 KB), the two parameter blocks
(8 KB each), and two main blocks (a 96-KB block and a
128-KB block). The hardware-lockable boot block can
be located at either the top (28F002B-T) or bottom
(28F002B-B) of the 1-MB memory map, enabling easy
interface to all Intel architecture microprocessors as well
as embedded processor like the i960® processor
(KA/SA) and non-Intel microprocessors that support
location of the BIOS memory area at the low address.

28F002B-T Memory Map
3FFFFh
16-Kbyte Boot Block
3C000h
SBFFFh 8-Kbyte Parameter Block
3A000h
39FFFh| 8-Kbyte Parameter Block
38000h
37FFFh
96-Kbyte Main Block
20000h
1FFFFh
128-Kbyte Main Block
00000h

28F001B-T Memory Map

1FFFFh g Kbyte Boot Block
}Sggg: 4-Kbyte Parameter Block
1C000H 4-Kbyte Parameter Block

112-Kbyte Main Block
00000h

216104

Figure 4. Architectural Organization of 28F002B-T and 28F001B-T Flash Memory Devices

46

s

intgl.

The 16-KB boot block is intended for storage of the
system critical BIOS boot code. This block is unlocked
when the RP# pin is between the specified range for
Vppn; after unlocking, program and erase operations can
be performed. Taking the RP# pin below the specified
minimum value for Vppy locks this block, disabling
program and erase functions. The two parameter blocks
can contain supplementary boot code or the system
configuration information (ESCD). They are intended
for storage of frequently updated system parameters or
configurations. In addition to the ESCD, the nonvolatile
parameter blocks can be used to retain a copy of the
CMOS setup or to store/track add-in card addresses,
DMA channels, or interrupt values/level. -‘The main
blocks may be used for the storage of the main PnP
BIOS code and runtime services. The WE# input
provides write protection for the entire flash memory
device. The Vpp pin offers additional write protection
since standard boot block flash requires Vppy be
between 11.4V and 12.6V before any Program or Erase
command sequences are recognized.

A complete solution cannot be achieved without
mention of available package options. The Boot block
products are offered in PDIP, PLCC, PSOP, and TSOP
form factors. Due to handling similarities in the
manufacturing flow, more vendors are changing from
the previous PLCC package standard to the smaller
PSOP package.

AP-608

5.2 PnP Boot Block Flash BIOS
Implementation (Hardware)

In order to implement a PnP flash BIOS, 'certain
hardware criteria must be met. For standard boot block
flash and SmartVoltage boot block in 12V mode, there
must be a-means for raising Vpp to 12V and lowering it
to normal levels after programming or: erasure is
complete. There must also exist a ‘method for write-
enabling the entire flash device. A way of gating the
RP# input is necessary to insure the integrity of the
program signal for the boot ‘block (usually a
POWERGOOD signal is appropriate). Bi-directional
transceivers or data buffers may be needed for the DQ
pins. Lastly, there must be a means for relocating the
recovery code after the system boots when a 2-Mb
density boot block flash is used. -

5.2.1 BIOS BOOT CODE RELOCATION
Following a system reset or power-on, the typical
system first goes to the high memory area of the 1-MB
memory map, where the boot code is stored. The
checksum routine (or whatever means of verification is
employed) is run to verify the status of the BIOS
currently available to the system. If the main BIOS is
determined to be good, this code proceeds to initialize
the system and its peripherals and passes control to the
operating system; as mentioned earlier, this is done by
jumping to the address pointed to by the jump vector. If,
however, the main BIOS is found to be corrupted or
unusable (i.e., the checksum value read does not match
the expected value), the BIOS recovery code must
reconstruct a new BIOS. The recovery code reconstructs
the BIOS by reading the BIOS update file from a floppy
or COM port (modem), erasing all the other blocks
(except the boot block), reprogramming the flash with
the new BIOS data, and initiating a RESET to reboot the
system. As a result, there are two modes of operation in
which the system can function: boot mode and runtime
mode.

In boot mode, which occurs at power-up, the system
expects the kernel code to be located at physical address
FE000h-FFFFFh. The system then validates the status
of main BIOS. If this check results in a good BIOS, the
system is initialized and control is transferred to the
operating system via the jump vector. At this point
runtime mode is entered; the system now expects the
main BIOS to be located at physical address EO000h—
FFFFFh (see Figure 5). The 1-Mb boot block maps
directly into this 128-KB space allocated for BIOS
usage. The 2-Mb boot block, however, must be able to
switch between its upper 128-KB block (which includes
the boot and parameter blocks) and its lower 128-KB
block (which is where the main BIOS should be stored).

47

AP-608

The system initialization routine and the configuration
utilities should be located in the upper 128-KB block of
the 2-Mb boot block. The lower 128-KB block should
be used for runtime BIOS services and other advanced
features.

To achieve this swapping of boot BIOS and main BIOS,
several methods can be applied. A small piece of logic
can be added to the board to swap the address ranges; an
easicr approach is to simply invert the A7 input to the
flash. For runtime mode operation, A7 is maintained at
logic low, thus mapping the lower 128-KB block of the
2-Mb boot block to the 128-KB BIOS area in main
memory. During recovery, the polarity of Aj7 can be
flipped to shift the kernel code to the F segment, i.e.,
swap the lower 128-KB block for the upper 128-KB
block. A keyboard sequence, motherboard switch, or
jumper can be used to toggle Aj7. The hardware
example in Figure 6 illustrates the use of this tactic.
Another approach would be to locate the flash BIOS at a
high memory area (above 1 MB) and use BIOS

intel.

extension calls to access the runtime BIOS services in
the 128-KB block. This method, however, takes quite a
bit of time because of the overhead associated with the
software BIOS call (saving status, return location after
call, etc.). Note that depending on the particular BIOS
implementation (i.e., vendor, platform, etc.), the
addresses indicated in this example may change slightly.

When the flash memory is being reprogrammed, it is
necessary to relocate the BIOS recovery code to RAM
before proceeding, as Figure 5 illustrates. Although the
flash memory allows suspension of an erase cycle to
permit reading of another block, attempting to read one
of the flash blocks while a write to another block is in
progress is not permitted. This is a characteristic of all
flash products currently on the market today. As a result,
the BIOS recovery code must be copied to RAM and
executed out of RAM in order to reprogram the flash
memory with the new BIOS code.

AP-608
28F002B-T Upper Memory Area: BIOS Space
3FFFFh System Init. ’ FFO00h
Power-On Self Test (POST)
3C000h BIOS Recover Code I
3B000h ESCD F8000h
38000h Configuration Utilities
FO000h
Additional Boot
BIOS, Drivers, etc. E8000h
20000h . % E0000h
System RAM
I/O Suppont, Drivers, "
Runtime BIOS Services, 4
Additional Card Config. Vi kY
:"' .‘
BOOT RUNTIME UPDATE
00000h g
216105
Figure 5. BIOS Relocation for 2-Mb Boot Block
5.2.2 Vpp GENERATION AND WRITE voltage, Vpp. It is imperative that Vpp be generated
PROTECTION

The Vpp pin enables programming and erasure of the
flash device. In addition to this, Vpp also provides write
protection of the flash memory blocks. If Vpp is below
its required level, no Program or Erase command
sequence, whether valid or not, will have any affect on
the flash. If code (or data) security is of paramount
importance to a particular design then a flash memory
device with a dedicated Vpp pin is the best choice.

As for PnP, the BIOS will be tweaked from time to time
by vendors, new features will be added, and standard
routines will be enhanced. One particular allocation
scheme of PnP requires that the ESCD be re-written
each time a new system device is added. Although flash
memory enables all these benefits, none of them can be
achieved without the generation of the programming

cleanly to avoid incorrect programming or erase as well
as spurious writes (which can lead to unwanted system
crashes). Keep in mind that a clean Vc is as important
for fail-safe flash operation as a clean Vpp.

The IBM PC technical reference manual specifies a 12V
supply with a tolerance of + 5% to — 4%. The Vpp
specifications of the boot block flash memory align to
this standard. If the power supply employed in the
design meets the IBM specification and has CMOS
logic, the 12V supply from the power supply can be tied
directly to the 28F002B. This approach, however, is not
recommended since it can degrade program/erase
performance or unfavorably affect reliability. In most
desktops, an unregulated 12V supply exists in addition
to a 5V. It is recommended that 5V be used to obtain the
12V * 5% rail. In addition to being more efficient and
more economical than the unregulated method, this

49

AP-608

approach does not require a minimum load to maintain
the regulation, as is necessary when buffering an
unrcgulated supply using modular solutions: Likewise,
Vpp can be generated by regulating (or stepping down)
from a higher voltage. Additional information on Vpp
gencration strategies can be found in Application
Note 357: “Power Supply Solutions for Flash Memory,”
(order # 292092) and the technical paper entitled “Small
and Low-Cost Power Supply Solutions for Intel’s Flash
Memory Products,” (order # 297534). :

Of course, if a 5V environment is necessary,
SmartVoltage is the irrefutable choice. These voltage
‘sensing devices allow manufacturers or OEMs to choose
either a“12V or 5V Vpp level, depending on their
specific design needs. In this way, the extra write
protection provided by having a separate Vpp pin is
‘retainced and the appropriate hardware environment can
be maintained. When Vpp falls below the specified value

for Vppr (VppLk for SmartVoltage devices), program and

erasc cycles to the flash device are prohibited (ignored),
although the ‘device can still be read normally.
Additional software protection for Vpp can be added by
requiring a password before enabling Vpp to proper
program/erase levels. The RP# pin, gated by the
‘POWERGOOD signal of the power supply and the
_system RESET# pin, provides further write protection
“for the information stored within the boot block.

.5.2.3 HARDWARE DESIGN EXAMPLE

‘Figurc 6 shows an example design’ for implementing a
flash memory-based BIOS within a PC- motherboard.
Specific signal generation is discussed in the following
sections. The Vpp generation circuit used can drive

200 mA of Vpp current with an efficiency rating of 88%. - -

Even though a transceiver may not be necessary, it is
specified in this example as reference. Standard PCs
expect a ROM-based BIOS .and do not enable the data
bus to the BIOS ROM during write sequences. (in fact,
standard PCs do not generate the write enable_signal
when the address decoded references the BIOS area).
The transceiver are used to allow reading and writing of
the flash BIOS within specified timings.

50

5.2.3.2 RP#

This section gives a sample implementation of the PnP
flash BIOS. The block diagram that supports this
implementation is shown in Figure 6. The RP# gating
methodology described in the . previous section is -
implemented in this sample design; the PWRGOOD
signal (or Vcc input) and the hardware generated
RESET# signal are monitored for appropriate voltage
levels using a voltage monitor. This scheme masks
invalid bus conditions from the flash device, thus
providing additional buffering accidental erasure. As
one might expect, the flash memory defaults to read
array mode. It may also be desirable to gate RP# with a
General Purpose Input/Output (GPIO) line to enable
shuttmg off the BIOS after it has been shadowed. A
jumper to 12V.'(with some kind of protection, like
decoupling capacitors or buffer circuit) can be used to
unlock the boot block. This control may also “be
accomplished via software interrupt, although this is a
less secure means than the straight hardware method.
The SmartVoltage boot block products support this type
of boot block locking and unlocking; however, there is a
separate WP# pin that permits locking and unlocking of
the boot block with 5V if 12V is not being supplied to
the ﬂash memory.

intgl.

5.2.33 WEi##

The WE# signal generated by the processor usually
cannot be used in this implementation because the
processor does not expect this area to be writeable (i.e.,
it thinks the BIOS is stored in a ROM). Therefore, the
WE# signal must be generated externally using the bus
definition signals and some discrete components. A
write condition to the BIOS is established when the
M/IO# (memory or I/O) signal indicates memory and the
MEMW/R# (memory write or read) signal indicates
write. Figure 6 illustrates this scheme. Further write
protection for the BIOS can be achieved by gating the
WE# signal with a GPIO line, effectively disabling
writes to the flash BIOS unless permitted by the BIOS
update algorithm. I/O port bits can be ANDed with the
actual write pin to control the generation of the WE#
signal to the flash memory. The bits used should be both
readable and writeable. Flash memory devices that do
not have a WE# pin suffer from more frequent spurious
writes. Such memories use the CE#, OE#, and Vpp pins
to decode a write sequence. Because the CE# input is
decoded from switching address pins, it is not unheard
of for this input to incur glitches. With Vpp at specified
tolerance levels, this glitching can initiate writes—
hardly a favorable state when updating BIOS code.

5.23.4 CE#

The CE# input is defined by the address condition that
enables the flash device. No access to the flash chip will
be permitted if the CE# input is deasserted. This input
can be generated multiple ways as well. Chipsets often
take care of this type of decoding internally, returning
the lone chip select signal on one of their output pins. If
a chipset is not used, HPLD or decoder can be used to
generate the CE# input based on the address inputs used
to indicate the flash memory device. Boot block
products allow both CE# controlled program/erase as
well as WE# controlled program/erase. The logic is such

AP-608

that whichever is asserted first controls the current
program/erase sequence and latches the valid address.
The WSM begins operation when that signal is
deasserted (see Command User Interface, Section
5.3.2.2, for more details).

5.2.3.5 OEi#

Whenever a read cycle is performed, the OE# input
needs to be asserted. OE# is therefore gated by a
memory read to the flash when it is enabled. This
example uses the MEMW/R# signal to control the
generation of OE#. It may be necessary to invert this
signal in order to provide the correct signal polarity to
this input. As with the WE# input, I/O bits as well as
discrete components (that define, in this case, a read
cycle) can be used.

5.2.3.6 Address Inversion for 2-Mb Boot

Block

The address inversion scheme described earlier is used
in this example. This input to the flash can also be gated
by I/O port control bits if a software implementation is
more appropriate. This example uses the Boot/Runtime
Mode (B/RM#) selection pin (which may be software
generated—controlled, say, by the checksum value) to
control the inversion of Aj7 Alternatively, a
programmable device (like a pPLD) can be used to
actually decode the high order address bits and achieve
the same result as the bit inversion.

Some of the features employed in this example may be
incorporated into a chipset, and therefore, the external
circuitry may be unnecessary. The CE# input, for
example, is available on most chipsets as a ROMCS#
output and can be hooked directly to the CE# input of
the flash memory.

51

AP-608
O Vi@V - 10V)
O Optional
? Filter 475V -55V
-l- s + O
. N
I ¥ = Vee 12V/30 mA
= 12V/200 mA 0
2 _sense SW -!—-. 0 S i O
o = o oL 2
SEL D1: 1N5817; - = =
" L 5 o T g
~ LT1301CS8 R2:10,5% i) C1:0220 awo [C2:0.22F
e = =
e MAX662A
B ®
SA[0:16] 0, @
»{A[0:16) 12v
SD[o:7] Vep [—0
DQ[0:7] ,
O 5V
MEMW/R# OE#
SA17 Flash
' A17 Memory O— oV
B/RM#
MEMW/R#
WE# RESET#
MIO# Voo
CE#
BIOS ADDR
CONDITION
216108

NOTES (LT1302CS8):
Input Range: 3.0V to 10V
Output Current: Up to 200 mA @ Viy =5V

Typical Efficiency: 88% @ ILoap = 200 mA, Viy =5V

Switching Frequency: 155 Khz

Operating Quiescent Current: 120 pA (typical)

Shutdown Feature

Shutdown Quiescent Current: 15 pA (max.)

Rise time from shutdown: 1.2 ms (typical)

NOTES (MAX662A):
Input Range: 4.75V - 5.5V
Output Current: Up to 30 mA @ VIN = 5V

Typical Efficiency: 74% @ ILoab = 30 mA, VIN = 5V

Switching Frequency: 500KHz
Operating Quiescent Current: ~320 pA
Shutdown Feature

Shutdown Quiescent Current: ~70 pA

Rise time from shutdown: ~500 ps (typical)

Figure 6. PnP Boot Block Flash BIOS Hardware Implementation Example

52

intal.

5.3 PnP Boot Block Flash BIOS
Implementation (Software)

In order to update the PnP BIOS, some type of flash
programming utility must be employed. This utility
cannot program the boot block due to the hardware
protection provided by the RP# pin (or the WP# pin on
SmartVoltage flash memory), thereby preserving the
boot or recovery code contained therein. In most cases,
however, this programming utility will be unique for
each system because it is dependent on the hardware
used in the design. The method of raising and lowering
Vpp, for instance, is dependent on hardware, as is the
methodology for disabling shadow RAM or cache. Since
reprogramming of the flash memory will result in a
reboot, it is not necessary to keep track of system status
information. (like shadow status, cache status, power
management status, cursor position, etc.).

Boot block devices have on-board programming and
erase algorithms with a built-in SRAM-compatible
interface for simplified software creation and debugging.
This is accomplished through the on-chip write state
machine (WSM), status and command registers. These
registers perform all of the necessary actions, from Vpp
monitoring to erase suspend. The WSM even times the
programming pulses, obviating the need for program
timers and preconditions blocks as part of its erase
process, eliminating the need to “0” program prior to
erase.

5.3.1 PROGRAMMING CONSIDERATIONS

Due to the difficulty of discussing every possible PnP
flash programming utility in this application note, a
generic programming utility that can work on all
platforms will be examined. Inherent to this approach is
an interface between the programming utility and the
PnP BIOS. This interface is accomplished by selecting a
ROM BIOS interrupt number and assigning a function
number through which all flash-specific functions can be
accessed. Table 1 lists some possible functions that
might be defined for the interface. Table 4, in the
Appendix, provides a list of the ROM BIOS interrupts
currently used or preassigned. Once an available (or
unused) interrupt number and/or function has been
determined, the flash programming functions can then
be defined. For this example, assume interrupt 17,
function OFh has been selected for implementing the
flash programming subfunctions.

AP-608

Table 1. Generic Subfunctions for Flash
Programming Utility

Subfunction Description

0oh . Validate Checksum

01h Raise Programming Voltage (Vpp)
02h Lower Programming Voltage (Vep)
03h Flash Write Enable

04h Flash Write Disable

05h - FEh Reserved for Future Use

FFh Generate System RESET

The generic specification is as follows:

Input: AH=0Fh
AL = Subfunction
Output: If CARRY FLAG set = Error

If CARRY FLAG clear = Success
AL =85h

(If 85h is defined as a subfunction in the future, a new
return value must be specified.)

The carry flag was chosen because most instruction sets
include specific instructions for setting and clearing this
bit. The overflow or zero flag may be used in place of
the carry flag. Likewise, a register value may be
returned in casc of an error (as is done with the success
case in this example). The methodology may be changed
but the function must be preserved, i.e., regardless of
how it is done, there must be some way of informing the
system of a successful or unsuccessful instruction
execution.

A few caveats of which to be aware:

1. A PnP BIOS version subfunction may be defined
for distinction or to enable/disable features not
supported in every system

2. If both a flash chip and an EPROM exist on the
system board (for example SCSI or keyboard
BIOS), two additional subfunctions need to be
defined to select the flash memory instead of the
EPROM.

3. The Validate Checksum function can be defined

many ways, but basically it needs to be able to
compare the checksum of the current BIOS (this

53

AP-608

may need to be calculated) with the saved
checksum value. If they match, then boot can
continue; otherwise, a new BIOS needs to be
uploaded.

4. Keep in mind that all registers used by these
subfunctions will be destroyed. If their value needs
to be maintained, the register should be pushed
onto the stack (or saved) prior to use and then
restored afterwards.

Subfunction 00h: Validate Checksum—checks the
checksum of the loaded BIOS against that stored in
memory. If they match, it returns true, else it returns an
crror and a new BIOS should be loaded.

AH = 0Fh
AL =00h
Output: CF set
CFclear = Success
AL = 85h

Input:

= Error

Subfunction 0lh: Raise Programming Voltage
(Vpp)—raises Vpp to the required voltage level (in this
case, greater than 11.4V) and waits until the voltage is
steady.

AH = 0Fh
AL =01h
Output: CF set
CFclear = Success
AL = 85h

Input:

= Error

If the boot block area of the flash memory is to be
accessed and software control of the RP# input is
desired, this function may be used to raise the voltage on
the RP# signal. Alternatively, another subfunction may
be defined to accomplish this purpose. Remember,
however, that software control of the RP# input is not
rccommended as it eliminates the hardware protection
feature of the boot block .

Subfunction 02h: Lower Programming Voltage
(Vcc)—lowers Vpp to its normal level (in this case, less
than 6.5V) and waits until the voltage is steady.

AH = (0Fh
AL =02h
Output: CF set

Input:

= Error
CFclear = Success
AL =85h

intgl.

If access to the boot block area of the flash memory is
completed and software control of the RP# input is in
effect, this function may be used to lower the voltage on
the RP# signal. Alternatively, another subfunction may
be defined to accomplish this purpose. Remember,
however, that software control of the RP# input is not
recommended as it eliminates the hardware protection
feature of the boot block .

Subfunction 03h: Flash Memory Write Enable—
enables erase/program commands to the flash chip and
waits the required amount of time for stabilization (if
necessary).

AH =0Fh
AL =03h
Output: CF set
CFclear = Success
AL =85h

Input:

= Error

Subfunction 04h: Flash Memory Write Disable—
disables Erase/Program commands to the flash chip and
waits the required amount of time for stabilization (if
necessary).

AH = 0Fh
AL = 04h
Output: CF set
CFclear = Success
AL =85h

Input:

= Error

Subfunction FFh: Generate System RESET—issues
the RESET command necessary to reboot the system
after the flash memory has been altered.

AH = 0Fh
AL =FFh
Output: None

Input:

5.3.2 REPROGRAMMING
CONSIDERATIONS

One of the prime benefits of a flash-based PnP BIOS is
the ability to do in-system updating. When a flash chip
is soldered directly onto a system board, there are two
methods available for reprogramming: in-system writing
(ISW) and on-board programming (OBP). The major
difference is in how Vpp is supplied and whether the
programming process is controlled by the system or
some external hardware. The Vpp voltage is supplied
locally and the system is responsible for reprogramming
with the ISW approach. With OBP, the external PROM
programmer supplies the necessary Vpp for

intgl.

programming, and controls the reprogramming process.
Cost, ease-of-implementation, and reprogramming
environment are some of the trade-offs that must be
made when considering which methodology is best.
There are advantages to both methods. This application
note focuses on the ISW approach.

5.3.2.1 In-System Write Considerations
The following items are required to have an ISW
capable system for updating the PnP BIOS:

o Microprocessor or controller (to control the
reprogramming process)

o PnP BIOS boot code, communications software, and
PnP BIOS update algorithm

o Data import capability (floppy disk, serial, network,
etc.)

o Vpp generator or regulator (12V products only)

Vpp Generation

Vpp generation has already been discussed in previous
sections, and since most ISW systems include voltage
divider circuits that provide a path to ground, ESD
protection is not needed for the Vpp pin. If, however, a
system does not have this voltage divider circuitry
(check the schematics) or the Vpp supply is switched
directly, a resistor to ground should be added to prevent
damage due to electrostatic discharge. The tolerance of
the Vpp pin is also important to be wary of. Although
5% tolerance is tighter than 10%, it usually yields a
higher programming time. Such a trade-off may be
necessary to make for certain applications. When using
the SmartVoltage devices in 12V mode, the same care
must be taken in generating Vpp as with the standard
boot block. In the 5V mode of the SVT devices,
however, this extra protection is not necessary.
Nonetheless, the Vcc signal should be as clean as the
Vpp signal.

Data Import Capability

The flash memory does not care how the new PnP
update code is fed to it—any convenient means of
downloading the necessary information is acceptable.
This means the flash memory will not be a barrier to
completion if, for instance, design constraints call for a
parallel link instead of a serial link. Even though most
communication is serial, error free serial communication
still needs some kind of buffering to allow for proper
packet reconstruction after transmission. The download
time is another factor in deciding on a data import

AP-608.

methodology. Although a serial interface, like JTAG, is
easier to implement, in practice it is actually slower than
other methods. An assembly line will see noticeable
differences in program time when -using a JTAG
interface versus a parallel interface, for instance. .

ISW Boot Code

The PnP BIOS boot code stored in the boot block of the
flash memory should be able to handle remote updates
by the processor as well as basic communication and
reprogramming capabilities. This insures that any
interruption of the reprogramming process would be
recovered by resetting the flash and checking BIOS
status or some reprogramming flags.

Suppose the boot code begins execution after a system
reset or power-on and determines that an invalid PnP
BIOS is loaded in the system. This code should begin
the reprogramming process by preparing the flash device
for erasure and establishing a connection to the
reprogramming protocol, perhaps through an interrupt,
say R_INTR. Once this connection is established, the
reprogramming can commence. Some kind of valid (or
complete) signal needs to be provided to the boot code
to let it know that reprogramming is complete, say an
R_DONE interrupt from the update protocol. Should this
reprogramming be interrupted, the boot code should be
able to recover by recognizing that a valid BIOS still has

. not been loaded and re-initiating the reprogram

algorithm.

Communications Software

Whatever means is used to download the information to
be programmed should guarantee accurate data
transmission. The protocol employed can be a simple
read-back technique or a complex error-free
communications protocol. The simple read-back
methodology consists of the CPU indicating to the
system that it wishes to update the BIOS by asserting the
R_INTR interrupt. Once the PnP BIOS acknowledges
this request, it prepares the flash device for updating and
transfers control to the processor. The flash memory
then waits for the R_DONE interrupt. Once the
reprogramming is complete, the system should resend
the update code to verify the programming sequence.

PnP BIOS Reprogramming Routine

In system reprogramming of the system BIOS is one of
the many -advantages that flash memory brings to BIOS
world. . The algorithm needed to accomplish this
reprogramming will vary from vendor to vendor. Rather
than advocate any one method of implementation, the

55

AP-608

flowchart in Figure 7 is provided to serve as a guide.
This enables flexibility of design while insuring that all
necessary components are incorporated into the
reprogramming code. Even though the flowchart may
not indicate so, user consideration should be embedded
in the update routine, i.e., status bars, confirmation
prompts, etc.

5.3.2.2 Command User Interface

The built-in Command User Interface (CUI) of the boot
block (and all Intel second-generation flash devices)

intgl.

provides a standard interface to the internal Write State
Machine (WSM) of the flash memory. Table 2 lists the
commands available through the CUI and the number of
cycles each requires. The CUI simplifies processor
interfacing by granting full read/write functionality to
the CE#, WE#, and OE# inputs. Raising Vpp to Vppy or
lowering it to VppL toggles the flash memory between
read/write mode and read-only mode. When in read-only
mode, only the first three commands listed in Table 2
are accessible. In read/write mode, all commands are
permitted.

Initialize
System

Transfer Control
to Main BIOS
Access BIOS
Update Files
\ 4
Display Update Options;
Prompt User to Choose;
Reboot Load File to Memory
System
Inform User: Yes Is Inform User,;
Erase Flash; File Prompt for File
Reprogram Flash Valid? or Exit

216107

56

Figure 7. Flowchart for Update Algorithm.
Note that although this is a fairly generic algorithm, similar flows
have been implemented by BIOS vendors and OEMs since 1991.

intel.

AP-608

Table 2. CUI Commands for the 28F200/002B Flash Memory

Command # of First Bus Cycle Second Bus Cycle
Cycles

Oper Addr Data Oper Addr Data
Read Array/Reset 1 Write X FFh
Intelligent Identifier 3 Write X 90h Read 1A IID
Read Status Register 2 Write X 70h Read X SRD
Clear Status Register 1 Write X 50h
Erase Setup/Erase Confirm 2 Write BA 20h Write BA DOh
Word/Byte Write Setup/Write 2 Write WA 40h Write WA WD
Erase Suspend/Erase Resume 2 Write . X Boh Write X DOh
Alternate Word/Byte Write 2 Write WA 10h Write WA WD
Setup/Write :

NOTE:

To avoid excess current usage, the high order 8-bits of the data bus should be tied to Vcc or Vss if a 16-bit wide data bus is
being used (16-bit data bus only valid for the 28F200B devices)

BA= Block Address to be erased
WA = Address to be programmed
WD = Data to be programmed at address WA
1A= Identifier Address: 00h for manufacturer code; 01h for device code
(following this command, two read operations access the manufacturer and device codes)
IID = Intelligent Identifier Data
SRD = Status Register Data

Read Array/Reset (FFh): This single command points
the read path at the memory array. If the processor
performs a CE#/OE#-controlled read following a two-
write sequence, the device will output the status register
contents. If the read command is given following an
Erase Setup command, the device is reset to read the
array. Two sequential Read Array commands is required
to place the device in read array mode after write setup.
If the system leaves Vpp turned on during a system reset,
incorporate a command register device reset into the
hardware initialization routine. This is a safeguard in
case the flash device is being programmed or erased
when the system reset occurs.

Intelligent Identifier (90h): This commands points the
output path to the Intelligent Identifier circuitry. Only
values at address 0 and 1 can be read (only address Ag is
valid in this mode). All other inputs are ignored.

Read Status Register (70h): After this command, the
subsequent read will output the contents of the status
register, regardless of the value on the address pins. This
is one of two commands that can be issued while the
WSM is operating. The device automatically enters this
mode following write (program) or erase completion.

Clear Status Register (50h): This command clears the
program status and erase status bits of the status register.
The WSM is only allowed to set these bits when it is
performing one of these tasks; however, it cannot clear
them. This is to allow synchronization with the
Processor.

Erase Setup (20h): This command prepares the flash
memory for erasure and waits for the Erase Confirm
command. If the next command is not the Erase Confirm
command, then the program status and erase status bits
of the status register are set. The device is placed in read
status register mode and awaits the next command.

57

AP-608

Erase Confirm (DOh): If the previous command -is
verified ‘to be the Erase Setup command, the CUI
cnables the WSM, latches the address and data lines and
responds only to the Read Status Register and Erase
Suspend commands. While. the WSM is operating,
toggling -the OE# input causes the device to output
Status Register information.

Erase Suspend (BOh): This command is only valid

when the WSM is executing an Erase command
scquence. Once it has been acknowledged, the CUI
instructs the WSM to suspend its current erase
operation; the CUI then waits for the Read Status
Register or Erase Resume commands, ignoring all other
commands. When the WSM responds to the CUI that it
has suspended erase operations (by setting the WSM
status- bit in the Status register), the Read Array
command can also be recognized by the CUL Even
though the address and data latches are locked, the
address lines can still drive the read path. The WSM will
continue to run after the suspend.

Erase Resume (DOh): This command causes the CUI to
clear the WSM status bit in the Status Register and
instructs the WSM to resume the last suspended erase
operation. This is only done if an Erase Suspend
command was previously issued; otherwise, this
command has no affect.

More information on the specific state of .input pins and

the actual bus definitions for these commands can be
found in the datasheets.

6.0 DESIGNING FOR THE FUTURE

Due to the abundance of healthy competition in the flash
market, vendors and OEMs always seek out alternative
solutions for designs. Most of the discussions seem
centered around three areas: programming voltage, write
protection, and blocking architecture. Intel is committed
to the boot block . architecture and has invested
considerable time and resources. into proliferating the
family to meet market demands.

6.1 The 5V-Only Question

Many system manufacturers are concerned with the cost,
space and analog design necessary to accommodate the
12V requirement for program or. erase of a flash
memory.

58

intel.

s is a justified concern, one that is answerable a number

of ways. The question that must be answered, however,
is not “What new changes are needed to support an on-
board 12V supply?”’ but rather, “What is the best
solution for the problem of reprogramming in-system?”
Intel set out to answer the latter question—the result is
the SmartVoltage (SVT) boot block products.

Simply put, SmartVoltage flash memory supports either
the 12V or the 5V paradigm. Manufacturers-and OEMs
can now decide which method is best for their particular
environment and proceed with their choice without

" having to purchase separate components. An OEM

might have some platforms that need 12V to support
highest performance write systems. Low-end systems,
however, are typically more power and cost-sensitive.
SmartVoltage supports both implementations, allowing
the OEM to make the trade-offs necessary for the

“intended market. The desired program/erase speed is one
.of the considerations that will determine which choice is

best for a particular application, since performing
program/erase at 12V is faster than at 5V.

With the move from 12V / 5V to 5V / 3V on the
horizon, it is easy to see how SmartVoltage technology
will enable all types of system capabilities with its dual
supply capability. The same SmartVoltage device can be
programmed in the manufacturing flow with 12V for
improved throuput. When the product is in the field and
12V is no longer available, the same SmartVoltage
device adapts to the environment, enabling updates
using a 5V Vpp supply and 3.3V or 5V Vcc supply. This
is the type of flexibility and . ease of design. that
SmartVoltage flash memory products will drive.

intel.

SVT Write Protection
Vpp RP# WP#

ViL X

Write Protection

All Blocks Locked

VepLk ViL All Blocks Locked

VPPLK VHH All Blocks Unlocked

VppPLK VIH ViL Boot Block Locked

VPPLK VIH ViH All Blocks Unlocked

In addition to being backwards-compatible to the
standard boot block products, SVT products include
other features. In the event that a 12V trace is not
supplied to the Vpp input, there is a 5V tolerant WP# pin
that allows the boot block to be locked/unlocked without
the need for high voltage. Only one of these locking
schemes needs to be utilized; the internal circuitry is
smart enough to figure out which is being used and
adjusts accordingly, shifting Vi and Viy levels to match
the supply source. Unlike other architectures, there is no
need to apply 12V to some of the input pins to unlock
blocks or access certain features. SmartVoltage offers
uncompromised 5V-only technology. SmartVoltage is
even capable of 3.3V read and will have 2.7V read
capability in the future.

7.0 SUMMARY

PC users have always felt that the computer should be as
simple to use as possible. To them, it was simply
common sense that if they added something new to the
system, it should simply work. In their opinion, if
something changed in the system, the system should
correct itself to adapt to this change, even if they (the
user) caused this change. From their perspective, for all
the money they spend on the computer, they shouldn’t
have to worry about how to fix it too. We have all
shared some of these thoughts, but up until now, it has
always seemed just beyond our reach.

Plug and Play promises to bring some of these long
sought-after requests to fruition. The prospect of
alleviating installation frustrations for end-users is very
compelling, especially for the end-user. This concept

AP-608

even has appeal for manufacturers and designers alike,
promising cost savings, consumer confidence in their
products, and product differentiation. As it turns out,
one of the ways of enabling this saving grace is using
boot block flash to implement the system BIOS.

In this application note, the features of boot block flash,
as it relates to the PnP BIOS, have been carefully laid
out. First the needs of Plug and Play were outlined:

1. System BIOS storage

2. Nonvolatile area for system configuration database
3. Recovery code for updateability

4. Backwards compatibility to established standards

Then the pertinent issues for implementing this design
were examined—from hardware lockability to
generating programming voltages; from software
requirements to BIOS recovery code; from
implementation specific options to reprogramming
algorithms. An example implementation was also
provided, which included both hardware and software
considerations. Even the benefits to the user as well as
the manufacturer were explored. The solution to the
BIOS challenges brought about by Plug and Play have
been met. Boot block flash caters to all the requirements
of a PnP BIOS without compromising design flexibility
or creativity.

Plug and Play is more than just a term used to mean
making the PC more like a Mac (what foolishness—you
cannot even add hardware to a Mac). It is a real
specification that will change the way PCs are used in
the future. As the buzzword garners momentum, its
implementation will become more widespread. This
expansion will bring forth more-people delving into the
make-up of PnP and attempting to ‘“tweak” it for
differing purposes. BIOS must be able to support the
current standards and conform to all the new techniques
and implementations yet to come. Intel’s boot block
flash offers the best solution to this quiet revolution.

59

AP-608

8.0 ADDITIONAL INFORMATION

8.1 References

For more information the concepts and ideas presented
in this application note, the reader is directed to the
following reference materials for further reading.

Order Number Document
292077 AP-341: “Designing an Updateable BIOS Using Flash Memory”
292092 AP-357: “Power Supply Solutions for Flash Memory”
292098 AP-363: “Extended Flash BIOS Concepts for Portable PCs”
292148 AP-604: “Using Intel's Boot Block Flash Memory Parameter Blocks to
Replace EEPROM”)
290406 28F001BX-T/28F001BX-B 1M CMOS Flash Memory Datasheet
290448 28F200BX-T/B, 28F002BX-T/B 2-Mbit Boot Block Flash Memory Family
Datasheet
290531 2-Mbit SmartVoltage Boot Block Flash Memory Familyt _ '
Contact Intel/Distribution Plug and Play BIOS Specification v1.0A by Compaq, Phoenix, & Intel,
Sales Office May 1994 :
Contact Intel/Distribution Extended System Configuration Data Specification v1.02A by Compagq,
Sales Office Phoenix, & Intel, May 1994
Contact Intel/Distribution Plug and Play ISA Specification v1.0A by Microsoft and Intel, May 1994
Sales Office ' :
Contact Intel/Distribution Plug and Play BIOS Extensions Desigh Guide v1.2 by Intel, May 1994
Sales Office ‘

Designing with Flash Memory by Brian Dipert and Markus Levy, 1993 Annabooks Publishers

PC Interrupts by Ralf Brown and Jim Kyle, 1991 Addison-Wesley

“Transforming the PC: Plug and Play” by Tom Halfhill, September 1994 Byte Magazine

Plug and Play SCSI Specification by Adaptec, DEC, et. al., March 1994

60

AP-608
PINOUTS, LEAD DESCRIPTIONS AND
Ag—— 1 O 40 =/ A7
Ais 2 39 /1 GNC
As—] 3 38 —3 NC
Az 4 37 = NC
Ao s 36 f— Ao
Ai— & 35 f—3 DQy
Agr—— 7 34 /3 DQg
Ag—] 8 28F002BX 33 /3 DQs
WE#C—] 9 40-LEAD TSOP 32 /)3 DQ4
RP# C—] 10 10 mm x 20 mm 31 43 Ve
Vpp|: 1 30 ./ Vo
pu—] 12 (wp#forsvt) TOPVIEW 29 /1 NC
Nc—] 13 28— DQ4
A;—] 14 27 £ DQy
AgC—] 15 26 [— DQ4
As—] 16 25 |/ DQg
Ay 17 24 £ OE#
AzC—] 18 23 /1 GNC
A—] 19 22 F— CE#
Aj—] 20 21 A,
2161_08
Figure 8. 40-Lead TSOP 28F002BX Flash Device Pinout
Vppd 10 44 . RP#
(WP#forSVT) DU 2 43 WE#
Neg 8 42 A,
A 4 4“1 7A,
As] 5 40 [A+
Ascq 6 28F200BX 39 PAy
A 7 44-LeadPsop 38 [Aw
As] 8 (0525"x1.110") 37 [3A1s
A2l 9 1333mmx27.94mm 36 [OAw
A, 10 35 A
Ao 11 TOP VIEW 34 Ay
CE#[] 12 33 BYTE#
GND 13 32 MGND
OE#] 14 31 3DQ /A,
pQ, 15 30 MpQ,
pDQg] 16 29 DpQ .,
pQ, 17 28 (/pQ,
DQy 18 27 H5pQ,,
pQ,] 19 26 |DQ;
DQ ,n] 20 25 1pQ 1,
DQ;] 21 2413paQ,
pQ 4] 22 23 Ve
2161_09

Figure 9. 44-Lead PSOP 28F002BX Flash Device Pinout

61

intgl.

AP-608
Table 3. Definition of 28F002B Pins
Symbol Name and Function

Ao—A17 ADDRESS INPUT PINS: Address inputs for memory addresses. Addresses are internally
latched during a write cycle (on the rising edge of the WE# pulse).

Ag ADDRESS INPUT 9: When Ag is at 12V, the signature mode is accessed. In this mode, Ag
decodes between the manufacturer and device IDs.

DQo-DQ7 | DATA INPUT/OUTPUT PINS: Inputs array data on the second CE# and WE# cycle during
a program command. Inputs commands to the Command User Interface when CE# and
WEH# are active. Data is internally latched during write and program cycles. Outputs array,
intelligent identifier, and status register data. The data pins float to tri-state when the chip is
deselected or outputs are disabled.

CE# CHIP ENABLE: Activates the device’s control logic, input buffers, decoders, and sense
amplifiers. When this active low signal is at logic high, it disables the memory device and
reduces power consumption to standby levels. When CE# is logic low, the memory device
is enabled.

RP# RESET/DEEP POWER-DOWN: When this signal is at logic high, Vix (6.4V max.), it locks
the boot block from program and erase. When RP# is 11.4V min., the boot block is
unlocked and can be programmed or erased. When RP# is at logic low, V., the boot block
is locked, deep power-down mode is engaged and the WSM prevents all blocks from being
programmed or erased. When RP4# transitions from low to high, the device entered the
read-array mode.

OE# OUTPUT ENABLE: Gates the device’s outputs through the data buffers during a read
cycle. This signal is active low.

WE# WRITE ENABLE: Controls writes to the Command Register and array blocks. This signal
is active low. Address and data are latched on the rising edge of WE# pulse.

Vpep PROGRAM/ERASE POWER SUPPLY: 12V + 10%, 12V + 5%

Vce DEVICE POWER SUPPLY: 5V x 10%, 5V + 5%

GND GROUND: Ground for all internal circuitry.

NC NO CONNECT: Pin may be driven or left floating.

DU DO NOT USE PIN: This pin is replaced by the WP# pin on the SmartVoltage products. To
insure upgrade to SVT, connect this pin to Vcc, GND, or a control pin as necessary.

62

intal.

Table 4. Full Listing of BIOS-Specific Interrupts

AP-608

Interrupt Number

Function

05

Print Screen

10

‘Function 00h - 13h: Standard Video Functions
Function 14h - 15h: LCD Functions

Function 1Ah - 1Ch: VGA Functions

Function 30h: 3270PC Function

Function 40h - 4Fh: Hercules VGA Functions
Function 6Ah - 70h: Various VGA Functions
Function 71h - 73h: Tandy 2000 Functions
Function 80h - 82h: DESQview v2.0x Functions
Function BFh: Compaq Notebook Functions
Function CCh - CDh: UltraVision BIOS Functions
Function EFh: Extended Hercules Functions
Function FOh - F7h: EGA RIL Functions
Function FAh: EGA RIL Function

Function FFh: DJ G032.EXE Extender Function

11

Get Equipment List

12

Get Memory Size

15

Function 00h - 03h: Cassette (PC & PCjr) Functions
Function 04h - 05h: PS & PS2 System ABIOS Table
Function OFh: PS/2 Format ESD! Drive

Function 20h - 21h: O/S Functions

Function 40h - 44h: System Functions

Function 4Fh: PS/2 Keyboard Intercept

Function 53h: AMIBIOS APM Functions

Function 80h - 89h: O/S & System Functions
Function 90h - 91h: O/S Functions

Function COh: Get system Configuration

Function C1h - C2h: PS/2 BIOS Functions

Function C3h - C5h: O/S & System Functions
Function C6h - CFh: PS/2 Model 95 Functions
Function D8h: AMIBIOS EISA Support

63

AP-608 i nU ®

Table 4. Full Listing of BIOS-Specific Interrupts (Continued)
Interrupt Number Function
16 Function 00h - 05h: Keyboard Functions
Function 10h - 12h: Extended Keyboard Functions
Function 12h: AT & PS/2 Extended keyboard Functions
Function FOh - F4h: AMIBIOS CPU & Cache Controller Functions

17 Function 00h - 02h: Printer Functions

18 Start Cassette Basic (Genuine IBM Machines Only)
19 System Bootstrap Loader

1A Function 00h - 0Bh: Real-Time Clock Functions

Function 80h, 83h-90h: AMIBIOS Socket Functions
Function 95h-A1h, AEh: AMIBIOS Socket Function
Function B1h: AMIBIOS PCI Functions

1B Control-Break Handler

1C System Timer Tick

intgl. AP-603

APPLICATION
NOTE
Symmetric Block
Format
Exchanging Data with
FFS Systems

PETER J. TORELLI
MCD SOFTWARE MARKETING
ENGINEER

January 1995 Order Number: 292155-001

I 65

L]
intal.
1.0 INTRODUCTION

The flexibility of the Microsoft Flash File System (FFS)
data structures makes it possible to arrange data in a
symmetric layout on an Intel Flash PCMCIA card and
still maintain FFS compatibility. Embedded applications
that would like to have the exchangeability of FFS
without the overhead of FFS can use this concept to
their advantage. The FFS Symmetric Block Format
(SBF) is a method of formatting a card to maintain FFS
compatibility without using FFS in the embedded
system.

Symmetric Block Formatting is not a Flash File System,
but rather a method to store data on a flash PCMCIA
card by placing it within the flash space an FFS would
perceive as file space. This is accomplished by
formatting a card with FFS data structures present for a
predetermined number of files. By defining where FFS
looks for the files, we can alter the data contained within
that space without upsetting the FFS format. The format
operates on one assumption: the size and number of data
objects must be known before formatting. This is where
a Symmetric Block Format differs from a complete FFS:
after the card is formatted, there can be no deviation
from the size and number of files that were created
unless the card is erased and reformatted.

Symmetric Block Formatting fulfills the requirements of
many embedded applications via a way to store data
from an embedded system to a flash card, insert it into a
PC running FFS, and be able to retrieve the data through
FFS. The only variation, or implementation specific
detail is the format, which is derived from the nature of
the data.

Before attempting to explain how to create a custom
format, the following sections will introduce a basic
Symmetric Block Format and explain concepts behind
creating a custom Symmetric Block Format.

AP-603.

2.0 THE SYMMETRIC FORMAT

Each time FFS writes a file to a flash PCMCIA card, it
creates several data structures within the card’s flash
array that contain the file data. Where the structures end
up in the card is anyone’s guess. It varies on the
previous usage of the card and between one FFS
implementation to another, but it's usually scattered
across the flash card in varying sized extents (see
Figure 1). Only another FFS compatible driver can
locate and reassemble the file correctly.

FFS data structures permit data to be placed anywhere
on the card. That is the first concept the Symmetric
Block Format uses to its advantage. The format places
all of the file data extents in contiguous locations within
the flash array, and all of the structure data into a fixed
location in each block.

The first example of a format divides each block in the
flash card into a fixed number of same sized pseudo-
files; the total number is an even multiple of the block
size. In the sample code at the end of this document, this
is referred to as “Symmetric Formatting” (see Figure 2).
For each block, the uppermost pseudo-file, known as a
structure file, contains the structure data that enables
FFS to read the card.

A card formatted to the above conditions is just a card
with a number of files containing FFH. However, notice
that the file data is located contiguously within each
block. A simple embedded program could write data to a
flash address within the card without any difficulty. It
could keep writing, as long as it avoided every fourth
file by skipping the number the address range containing
the structure file data. In fact, it could keep writing until
it ran out of space. The card would then contain the
embedded system’s data written to the space. that FFS
believes to be a file. If this card was removed from the
embedded system and placed in a PC with Microsoft’s
FFS loaded, FFS would be able to manage the files. If a
file was opened with a file editor, it would contain the
embedded system’s data. For systems that store x
number of same-size records, this is all they would need
to transfer data from an embedded system to a desktop.

As we will see, this concept can be expanded to place

the file space anywhere on the card within any number
of files.

67

intgl.

File Entry Structure

File Entry Structure

File Entry Structure

FILE.004

AP-603
File Entry Structure
FILE.015 FILE.007 FILE.006
FILE.003 FILE.014
File Entry Structure File Entry Structure
File Entry Structure FILE.008
FILE.002 FILE.O13 FILE.009
FILE.001 File Entry Structure
File Entry Structure File Entry Structure
FILE.010 File Entry Structure FILE.O12
FILE.005 FILE.O11

File Entry Structure

File Entry Structure

File Entry Structure

2155_01

Figure 1. Normal Appearance of FFS Media

~ FILE.0O1 FILE.004 FILE.007 FILE.O10 FILE.013
FILE.002 FILE.005 FILE.008 FILE.O11 FILE.0O14
FILE.0O03 FILE.006 FILE.009 FILE.012 FILE.0O15
Boot Record File Entry Structures File Entry Structures File Entry Structures File Entry Structures
DE/FE/FI Structures Allocation Structures/ Allocation Structures/ Allocation Structures/ Allocation Structures/
Allocation Members Members Members Members Members

2155_02

68

Figure 2. Symmetric FFS Format

intel.
3.0 FFS FUNDAMENTALS

FFS stores a file as a linked-list with each link a
structure containing a pointer to a portion of that file’s
data, called an extent. By traversing the list of structures,
FFS reassembles the file into the proper order. FFS
stores file names and subdirectories the same way: File
entries have a structure that points to the first extent of
the file’s data, and directory entries have a structure that
points to the first file entry structure inside it. These
linked-lists and data structures allow FFS to manage
flash media effectively.

The Symmetric Block Format has no knowledge of what
these structures mean, they merely exist on the card to
manipulate FFS into treating specific regions of the card
as files. The structures are explained to facilitate the
creation of a custom format.

3.1 FFS Data Structures

Microsoft defines (in their FFS Media Control Structures
Specification, available from Microsoft) four different
data structures for storing and arranging data in the MS-
- FFS format: File Entry, Directory Entry, File Info, and
Boot Record. The Boot Record structure contains data
describing the media’s geometry, as well as FFS version
information. Since only one copy of the Boot Record
exists, it will be excluded from all future references to
- the term “data structures” in this document for clarity.

AP-603

The file-directory hierarchy exists in the FEDE list (File
Entry Directory Entry). Typing “DIR” (or “ls” in
UNIX) lists that directory’s entries. In an FFS formatted
flash card, the information displayed corresponds to the
file and directory entries in that directory’s FEDE chain
(see Figure 4). All files or subdirectory entries at the
same level are part of one FEDE chain, and are referred
to as siblings. If a subdirectory exists in that FEDE
chain, it points to another FEDE chain. The tree
continues if more subdirectories exist in that FEDE
chain, and so on.

Actual File Entry file data resembles the FEDE list,
except each entry in the file’s list is a File Info Structure.
This list of File Info Structures sequentially points to the
regions of the card that contain the file’s data. FFS
performs a read file request by locating the proper file
entry, traversing its File Info chain, and returning the
requested data.

The File Entry and Directory Entry structures contain
three pointers: Primary, Sibling and Secondary (see
Figure 3). The Sibling Pointer always points to the next
entry in the same level as that structure. The Primary
Pointer of a Directory Entry points to the first entry in
that directory’s FEDE chain. The Primary Pointer of a
File Entry points to that file’s File Info chain. The
Secondary Pointers of both structures point to files or
directories that supersede the existing structures.

struct FileOrDirectoryEntry {
word Status;
dword SiblingPtr;
dword PrimaryPtr;
dword SecondaryPtr;
byte Attributes;
word Time;
word Date;
word VarStructLen;
byte NameLen;
byte Name [8] ;
byte Ext([3];

}i

struct FileInfoStructure ({
word Status;
dword SiblingPtr;
dword ExtentPtr;
dword SecondaryPtr;
byte Attributes;
word Time;
word Date;
word VarStructLen;
word UncompressedExtentLen
word CompressedExtentLen

Figure 3. File Entry, Directory Entry and File Info Data Structures

69

-
AP-603 I n'tel ®
ROOT FEDE Chain
Root Directory | .
Entry Primary
l
Sibling
' v
FileEntry,
FNULL FILE.000
I
Sibling DIRECT1
FEDE Chain
Directory Entry, |
DIRECT1 ary
[
Sibing SUBDIR1
3 FEDE Chain
File Entry, Directory Entry,
FILE.001 SUBDIR1
I I
Sibling Sibling
File Entry, File Entry, File Entry,
FILE.002 FILE1.00 FILE2.00
I I I
Sibling Sibling Sibling
Directory Entry,
DIRECT2 FNULL FNULL
I
Sibling
File Entry,
FILE.003
I
Sibling
FNULL

2155_03

Figure 4. FEDE Chain Hierarchy

intel.

The chain of File Info Structures point to regions of the
card that contain file data, called extents. The maximum
size of an extent is 65,535 bytes. Like File Entries and
Directory Entries, File Info Structures contain Sibling
and Secondary Pointers, but the Primary Pointer has
been replaced by an Extent Pointer. The Extent Pointer
points to the first extent of that file’s data. The Sibling
Pointer addresses the next File Info Structure in the
chain, and the Secondary Pointer indicates where to find
updated or superseded extent data.

3.2 Allocation of Flash Media:
Space for Structures and File
Data

The pointers in the previously explained structures don’t
explicitly reference the physical address of a structure or
extent within a block; instead, they point to Block
Allocation Members, which in turn point to the physical
location of that structure. This brings us to the second
detail of FFS: Allocation Members.

AP-603

To maintain organization of the above data structures
and file extents, FFS uses Block Allocation Members
(BAM). Every File Entry, File Info Structure, Boot
Record, Directory Entry or File Extent MUST have a
BAM associated with it. These six-byte fields begin at
the top of each erase block and grow downwards as
more structures and extents are written to that block.
They contain the length of the data region pointed to,
the beginning offset of that data relative to address zero
of that block, and a status field indicating whether or not
the data being pointed to is valid or deleted. The status
field allows FFS to determine which regions of the card
are useful, and which can be discarded during a clean-up
operation (called Reclaim).

The Block Allocation Structure (BAS) in Figure 5 exists
at the topmost address of every erase block. It contains
the block’s logical number, whether or not it is a spare,
the block’s erase count, etc. The erase count field helps
the FFS wear-leveling algorithm. decide the priority of
that blocks clean-up status. This feature benefits all flash
media by insuring that the difference between the
number of times adjoining blocks have been erased
never exceeds a certain threshold, which has the
potential to corrupt data in adjacent blocks.

struct BlockAllocMember ({

byte Status;
byte Offset[3];
word Len;

struct BlockAllocStructure {

dword BootRecordPtr;
dword EraseCount;

word BlockSeq;

word BlockSeqChecksum;
word Status;

Figure 5. Block Allocation Structures

71

AP-603

4.0 SYMMETRIC BLOCK
FORMATTING EXPLAINED

All FFS formatted cards must contain the following

information: ’ ’

® One Boot Record + its BAM

¢ One Root Directory Structure + its BAM

e A BAS in every block with a unique logical block
number .

These three requirements are necessary for all formats.

intal.

When FFS writes a file to a flash card, it creates the
following structures:

o File Entry (appended to FEDE Chain) + its BAM
¢ File Info + its BAM
¢ Extent + its BAM

e + Additional File Info/Extent Pairs, depending on the
size of the File Entry

Modeling a custom format is just a matter of arranging
the above structures to inhabit a reserved location in
each block. Since 64 KB — 1 is the largest size of an FFS
extent, files larger than that need multiple File Info
structures.

To help in the visualization of what needs to be written

to the card, observe Figure 6.

Physical Block One
00000H to
- Pseudo file data space

1BFFFH
: (extents) for first 7 16-Kbyte
files.

;Start Structure File space here...

1CO00H - Boot Record

1CO01AH - ROOT Directory Entry
1CO03BH - Volume Label

1CO05CH - File Entry (FILE.001)
1C07DH - File Info (FILE.001)-
1C096H - File Entry (FILE.002)
1C1B8H - File Entry (FILE.007)

1C1D9H - File Info (FILE.007)

1C1F2H to 1FF61H - Not Used

1FF68H - BAM (Extent for FILE.007)
1FFCEH - BAM (FE FILE.002)

1FFD4H - BAM (Extent for FILE.001)
1FFDAH - BAM (FI FILE.O001)

1FFEOH - BAM (FE FILE.O001)

1FFE6H - BAM (Volume Label)

1FFECH - BAM (ROOT Directory)
1FFF2H - BAM (Boot Record)

20000H - BAS (Logical Block 0)
NOTE:

All other Physical Blocks (e.g.., Block #2)
20000H to
3BFFF - Pseudo file data space

(extents) for next 7 files.

;Start Structure File space here...

3CO000H - File Entry (FILE.008)
3C021H - File Info (FILE.008)

3CO03AH - File Entry (FILE.009)
3C15CH - File Entry (FILE.014)

3C17DH - File Info (FILE.014)

3C196H to 3FF73H - Not Used

3FF7AH - BAM (Extent for FILE.014)
3FFEOH - BAM (FE FILE.009)

3FFE6H - BAM (Extent for FILE.008)
3FFECH - BAM (FI FILE.008)

3FFF2H - BAM (FE FILE.008)

40000H - BAS (Logical Block 1...)

This layout assumes a flash card with 128-Kbyte erases blocks. The format divides each block by eight, resulting in seven
16-Kbyte pseudo-files and a 16-Kbyte space for one data structure.

Figure 6. Symmetric Format Example

72

intgl.

Thus, a 2-Mbyte card would appear to FFS as a 2-MB |

drive with 112 16-Kbyte files, and to the embedded
system as a storage space capable of holding 128 files,
but every eighth file should be skipped.

The code in Appendix A provides three procedures for
formatting the card: InitialFormat, DoSymmetric and
DoEntireCard. InitialFormat writes a Boot Record,
ROOT Directory Entry and Volume Label to the card’s

block zero. DoSymmetric performs the symmetric -

format described earlier. DoEntireCard is another
variation on the Symmetric Block Format. This
procedure formats the entire card as one large file. The
reference code is described in the last section of this
application note.

5.0 EMBEDDED SYSTEM
REQUIREMENTS

The difference between a Symmetric Block Format in an
embedded system and a full FFS implementation lies in
the amount of FFS capability built into the embedded
system. Deciding how much functionality to build into
the embedded system can be associated with a “Kbyte
per level of functionality” cost. Adding more FFS-like
features requires larger embedded code. The following
sections describe how to implement four fundamental
FFS concepts based on MS-FFS data structures.

5.1 Where to Put the Formatter

Regardless of the amount of functionality desired, the
key to the SBF lies in the format of the card. Formatting
requires writing all of the data and allocation structures
to the card before it’s used. A special formatter located
either on a PC or on the embedded system itself writes
the structure file data to the card.

Using the formatter outside the embedded system and on
the PC shrinks the size of the embedded code, but
requires the extra handling of an external program.

Designing the formatter into the embedded system
increases the size of the embedded code, but insures that
formatting and downloading can be done at the same
location.

Regardless of where the formatter is located, it must
perform the same function: writing the necessary
structures to convince FFS that files exist on the card. If
all of the format data is known, a simple hex dump to
the card at the proper address in each block can be used.
This way, the computer doesn’t have to calculate where

AP-603

to place all of the structures, it merely copies the
numbers from internal storage to the card. However,
having the format data in hardware makes it non-
updateable. The other way to format requires a utility
that prompts the user for the specific number of files and
their size. This utility then calculates how to pack the
structures into a small enough space in the block and
displays to the user where the forbidden structure file
locations exist.

5.2 Writing to the Formatted Card

Since all of the pseudo-file space created by the
formatter exists in a contiguous region of flash, the
embedded system needs to know how to avoid this
forbidden region. This can be done two ways, depending
on the read/write mechanism of the embedded system.

The first method employs a protection algorithm that’s
inserted into the embedded system’s normal write
algorithm. Typically, a generic write algorithm would
look something like Figure 7. When the embedded
system decides to write a byte, it obtains the current
address, calls the flash programming algorithm, and then
increments the address. The protection algorithm, shown

“in Figure 8 avoids the region of space at the top of the

block reserved for the structure file. Since the size of the
structure file may vary, its location is determined by
subtracting the size of the file from the block size.
Reference code for these algorithms are located in
Appendix A.

Write a Byte

A

Invoke Flash
Write Algorithm

v

‘ Done ’

2155_04

Figure 7. Conventional Byte-Write Process

73

AP-603

~ Write a Byte with
Protection Code

v
Invoke Flash
Write Algorithm

v
Invoke Flash
" Write Algorithm

S tﬁe Address
-~ inside the
Structure File

Yes

l . No

.- Adjust Address to
Next Block's Base

v
" Invoke Flash Write
Algorithm

(Done) o ’
S ' vms_os

Iy

Figure 8. Byte-Write Protection Algorithm

74

Ntal.

AP-603

; Values defined before éompile time.

define CHECK

protection_check:

mov eax, ebx

write_flash:

callwrite_flash_byte

define BLOCK_SIZE = block size
define BLOCK_BOUND = 2's complement of block size
define IN_BLOCK = block size - 1

= block size - structure file size

Assuming ebx = (32-bit) address in the card about to be written to

; Grab the current address

and eax, IN_BLOCK ; Truncate the address to a single block
sub eax, CHECK ; Subtract the distance to the structure file
js write_flash ; If accumulator goes negative, we're safe

and ebx, BLOCK_BOUND; Otherwise, mask the address to a block boundary
add ebx, BLOCK_SIZE ; and increment to the next block

Figure 9. Protection Code for Byte-by-Byte Writing

Another way to write to the formatted card involves
using equally sized records. For example, a data logging
device that needs to write a 4-KB record every so often
can speed up the write process by eliminating the need
to use protection code. Assuming the card has been
formatted to 4-KB file sizes, the embedded system need

only be aware of what file number is being written. A
128-Kbyte erase block partitioned into 4-KB pseudo-
files would have 32 file spaces, with every 32nd space
being a structure file. By avoiding the 32nd space and
writing 4 KB at a time, the embedded system would
successfully write to the card.

75

AP-603

Here is the code for file-oriented data writing on a
record-by-record basis. Assuming 4-Kbyte records:

intel.

define FILE_SIZE

find_flash_start_address:

increment_to_next_£file:

define FILES_PER_BLOCK =.Number of (: PseudoFlles + Structure Flles) /
block

cx . = Next available filespace’s number

mov ax, FILE_SIZE ; Put the pseudo-file size in AX
mul cx ; Multiply AX by the current filespace'’s number

callwrite_4kbytes_to_card ; Call the. routine to write 4K to the found address

inc cx : ; Increment to next valid filespace
mov ax, cxX ; Move this number into AX
mov bx, FILES_PER_BLOCK . ; Prepare to do a modulus operation
div bx ; D1v1de number of files by the current f11e number
or dx, dx ; (Remainder in DX)
jnz done ; Was the remainder Zero?
inc cx ; Was the remainder Zero?
done: ; Then skip this filespace

Figure 9. Record-by-Record File-Oriented Data Writing

In most instances, this is the maximum functionality the
embedded system would need: insert a freshly formatted
card into the embedded machine, let it dump its data,
and now the card can be msened and read by any PC
running FFS. E

6.0 READING FROM THE
FORMATTED CARD

6.1 Embedded System to an FFS-
Based PC

The entire process of writing data to the formatted card

enables any FFS-based PC the ability to read the data off
the card. This case has already been defined.

6.2 Embedded System to Same
Type of Embedded System

Passing data between two of the same embedded
systems is quite simple, assuming they both expect the

76

same format. The only way an embedded system can
read data from the card is if it knows where the data is.
A file pointer that. references the start of a pseudo file
that, the embedded .system wishes to reference can be
obtained from the format information that the system has
already been programmed to understand. If the data is a
binary image (i.e., a large graphic picture taking up the
entire card), the same protection algorithm must be used
for reading as well as writing in order to recreate the file.

6.3 FFS-Based PC to an Embedded
System

Since the write algorithm operates on the principle of
permanent structure file space, a full FFS cannot write to
a card. If the card is inserted into a PC running FFS, and
a file is written to it, the format will be lost. Therefore,
there is no direct way to write data from a PC to the
formatted card using FFS. If a designer wishes to place
data into the Symmetric Block Format, it must be done
with a separate PCMCIA hex dump/editor utility.

intal.

7.0 REFERENCE CODE FOR DOS-
BASED PCs

When compiled, the reference code in this section will
format the card to either of the following options: A
Symmetric Format with a user-definable number of files,
and an Entire Card Format which uses the entire space
of the card as one large file. The formatter uses the DOS
Generic IOCTL interface supplied by a PCMCIA
Compliant Memory Card Device Driver. Intel’s
iCardrvl, iCard2.9 and iCardrv3 all provide the Generic
IOCTL services used here, as well as Card Drivers by
Phoenix, AM], SystemSoft and Award. These drivers
must be loaded in CONFIG.SYS for this program to
work properly. If iCardrvl or 2.9 is being used, this
program will support Intel Series 1, 2 and 2+ Flash
memory cards. Otherwise, the proper technology driver
must be loaded.

Although the low-level portion of this program is based
on a DOS interface, these routines may be removed and
replaced with other platform-specific low-level
functions. The formatting concepts remain the same for
all FFS based systems.

The first thing the program does upon invocation is to
obtain the card’s geometry: size, number of blocks, size
of block, etc. This information will be used later to
calculate how many structures will be needed to format
the card. Next, the program prompts the user for a
format selection. At this point, the user may select either
a symmetric format or an entire card format. Selecting a
symmetric format further queries the user as to the
number of files per block. The program determines this
range dynamically by computing the maximum and
minimum amount of files that may be written to a block.
Note, that this calculation is made to keep the structure
file data within one file space. Depending on the
implementation, the structure file space can be any size:
it’'s up to the implementation to tailor the embedded
system to the format. The second option: Entire Card
will format the entire card as one large file. Before the
format is installed, the program will ask whether or not
the card needs to be erased.

AP-603

The three reference code procedures of interest are:
InitialFormat(), DoSymmetric() and DoEntireCard().
InitialFormat() places on the card the basic elements
provided by an FFS Format: a Boot Record, ROOT
Directory entry and a Volume Label. In reality, the
Volume Label is optional and may be excluded from the
format, but it’s included as an additional reference. Two
important variables are initialized by this procedure:
BottomPtr and BAMptr. BottomPtr references the base
address of the structure file within that block. If the
block size is 128 KB and the structure file is 8 KB, the
BottomPtr would be 128 KB-8 KB or 1E000H. Each
time a structure is added to the file, the BottomPtr
increases by the size of the structure. A 25-byte File
Info structure increases the BottomPtr by 25 bytes. Each
time the formatter enters a new block, it resets the
BottomPtr. The BAMptr always references the currently
available BAM. Each time a new structure is written to
the structure file, its BAM should be chosen using the
BAMptr and then written with the function
WriteBAM(). WriteBAM() calculates the correct address
within the card to write the BAM. All the user needs to
specify is the 32-bit BAM value and the structure
containing the BAM’s data. Each time a BAM is used,
BAMptr is incremented. If the next structure needs to be
placed in the next block, BAMptr is incremented by
10000H.

DoSymmetric() takes the BAMptr and BottomPtr as well
as the user-specified PseudoFileCount values and
formats each block with x number of files.
DoSymmetric() iterates through each block in the card
(except the spare) and writes a File Entry and File Info
structure for each file. The result of this format is a

. FEDE chain of File Entries.

DoEntireCard() writes a single File Entry to block zero
and multiple 32-KB file extents to each block, thus
encapsulating the entire flash card as one file. The
procedure does not use the PseudoFile values; instead, it
uses the InfoCount value calculated by the program
before calling this function. InfoCount indicates the
number of File Info Structures required in each block
based on the size of the block.

AP-603

APPENDIX A
FFS FILE IMAGE FORMATTER

/‘k**

FFS File Image Formatter

Copyright (c) Intel Corporation, 1994

Peter J Torelli/James R. Massoni

Revision History:

1.
1.
1.

1.
2.
3.

00 First release: symmetric formatting only (PJT,6-17-94)
01 Added entire card capability.
02 Modified program structure (JRM, 8-26-94)

'Better error handling.
Check for Card Driver
Query IOCTLs first

Environment:

Borland C/C++ 3.1 IDE, Example: BCC -mh SBM.C
Huge Memory Model -
Force pointers as "far" for DWORD compatibility

*
*
*
*
*
*
*
*
*
*
*
*
*
* Future modifications:
*
*
*
*
*
*
*
*
*
*
*.
*

KA A A AR I A KT IR KR KK KK I AR KA KA AT KR AI TR IR AR I AT AR Rk kA hk Ak khkhkhkhkhkhkhkdhhkdhhkhhhhkdkddhrk

PAGE

'k***************‘*******/

#include
#include
#include
#include
#include
#include

#include
#include

/*

<conio.h>
<ctype.h>
<dos.h>
<stdio.h>
<stdlib.h>
<string.h>

n Sbm- hll
"sbm_msg.h"

** Global Variables

*/

78

intel.

AP-603

DWORD InfoCount=0UL; /* Number of FileInfos for Entire Format */
DWORD ResidualSpace=0UL; /* Non 32K extent for Entire Card Format */
DWORD BottomPtr=0UL; /* Bottom of FFS Structure File */ ’

DWORD BAMptr=0UL; /* Incremental BAM pointer */

DWORD StructureFileSize=0UL; /* Structure File Size */

DWORD PseudoFileSize=0UL; /* PseudoFile Size */

WORD PseudoFileCnt=0; /* Number of Pseudo Files */

BYTE DriveNumber=0; /* Current Drive number */

CardiInfo Card; /* Current Card's Geometry */

union IOCTLDataPkt DataPkt;
union IOCTLDataPkt *pDataPkt=&DataPkt;

/*

* *

*/

Function Prototypes

WORD
void
void
WORD
void
void
void
void
void

GenericIOCTL (BYTE, union IOCTLDataPkt far ¥*,
CommonWrite (DWORD, BYTE *, WORD);
CommonRead (DWORD, BYTE *, WORD);

Log2Phy (WORD lblock);

WriteBAM (DWORD, BlockAllocMember);
WriteBAS (WORD, WORD, WORD);

DoSymmetric (void);

DoEntireCard (void);

InitialFormat (wvoid);

BYTE };

/***

PAGE

khkkkkhkhhkhkhhkhdkhhhkdhhddhhkdrhhkdrhhkdbhhddbhhkrrhrhdhhdhkbdkhhdhhkkhrdhdkrrkdkdhkkkdhx

Title: Main

is used to format a flash PCMCIA .card symmetrically so

*

*

* A .

* Description: Entry point for Symmetric Block Manager. This utility
* .

* data may be written to the card at pre-known addresses.

* i

*

»**********/

void main (int argc,
{

char *argvl[])

/* Calculation Values. */

DWORD CompareSize=0UL;
WORD FileOverhead=0;
WORD BaseOverhead=0;
WORD TotalOverhead=0;
WORD MinFiles=0;
WORD MaxFiles=0;

/* User Input. */

BYTE format_type=0;
BYTE keypress=0;

/* Initial Format fields.
WORD flags=0;

*/

79

n
intgl.

80

WORD block_ctr=0;
fprintf(stdout, LOGON_MSG, REVISION);

if (arge < 2)
{ : :
fprintf(stderr, SPECIFY_MSG);
fprintf(stderr, USAGE_MSG /);
exit(1);
}
else if (argc > 2)
{
fprintf(stderr, TOO_MANY_MSG);
fprintf(stderr, USAGE_MSG);
exit(1);
}
if (((DriveNumber=toupper (argv[1][0])-'A'+1) < 1) ||
(DriveNumber > 26))
{
fprintf(stderr, INVL_DRV_LET_MSG):
fprintf(stderr, USAGE_MSG);
exit(1);
}

/* Get Card Size Metrics. */

fprintf(stdout, OBTAINING_MSG);)
pDataPkt->MediaInfo.Len=sizeof(pDataPkt->MedialInfo);
GenericIOCTL(DriveNumber, pDataPkt, MEDIA_INFO);

Card.BlockSize=pDataPkt->MediaInfo.BlockSize;
Card.Size=pDataPkt->MediaInfo.PartSize;
Card.NumBlocks=(DWORD) Card.Size / (DWORD) Card.BlockSize;

fprintf(stdout, CHOOSE_MSG);
format_type=toupper (getche());
fprintf(stdout, DBL_CRLF_MSG);

switch(format_type) {
case SYMMETRIC: {

/* Calculate min/max number of symmetric files. */
MinFiles (DWORD) Card.BlockSize / 0x8000;
MaxFiles 0;

/* Determine the base overhead. */
BaseOverhead = sizeof(BlockAllocStruct) +

sizeof (BootRecord) +

sizeof(BlockAllocMember) +

sizeof(DirectoryEntry) +

sizeof(BlockAllocMember) +

sizeof(FileEntry) +

sizeof(BlockAllocMember);

/* Determine the amount of overhead per file. */
FileOverhead = sizeof(FileEntry) +
sizeof(BlockAllocMember) +

L]
I nté ® AP-603

}

sizeof(FileInfo) +
sizeof (BlockAllocMember) +
sizeof(BlockAllocMember);

/* Do a max/min calculation to determine the number
of files per block based on block size. */
do {
MaxFiles++;
TotalOverhead = (MaxFiles * FileOverhead) +
BaseOverhead;
CompareSize =
DWORD) ((DWORD) Card.BlockSize) / ((DWORD)MaxFiles) ;
} while(CompareSize > TotalOverhead);
MaxFiles--;

/* Offer the user a range to choose from. */

fprintf(stdout, NUM_PFILES_MSG, MinFiles, MaxFiles);
scanf("%d", &PseudoFileCnt);

fflush(stdin);

fprintf(stdout, CRLF_MSG);

/* Calculate the Pseudo File Size. */
PseudoFileSize=(DWORD) Card.BlockSize / PseudoFileCnt;
StructureFileSize=PseudoFileSize;
BottomPtr=Card.BlockSize-StructureFileSize;

break;

case ENTIRE: {

/* Calculate the Base Overhead */

BaseOverhead =sizeof(BlockAllocStruct) +
sizeof (BootRecord) + sizeof(BlockAllocMember) +
sizeof (DirectoryEntry) +
sizeof (BlockAllocMember) +
sizeof(FileEntry) + sizeof(BlockAllocMember) +
sizeof(FileEntry) + sizeof(BlockAllocMember);

/* Determine how many 32k extents fill a block.*/
InfoCount = (DWORD) Card.BlockSize / 0x8000;

/* Determine how many File Infos would be needed to store those
** extents. Each FI has an FI struct, FI BAM and -
** Extent BAM. */
FileOverhead =InfoCount * (sizeof(BlockAllocMember) +
sizeof(FileInfo) +
sizeof (BlockAllocMember));

/* Combine the two overheads to determine the structure file
** sgize. */

StructureFileSize=BaseOverhead + FileOverhead;

/* The last extent of each block is some # less than 32k. */
ResidualSpace=0x8000-StructureFileSize;

/* Adjust the bottom pointer. */

81

AP-603

82

BottomPtr=Card.BlockSize-StructureFileSize;

/* The file is the size of the card minus all structure
** files. */
PseudoFileSize=BottomPtr. * (Card NumBlocks-1) ;
PseudoFileCnt=1;
break;
}
default: {
fprintf(stdout, INVL_SELECT_MSG);
exit(1l);

}

fprintf(stdout, ERASE_PROMPT_MSG);

keypress=toupper (getche()); .)
fprintf(stdout, CRLF_MSG); e . .
if (keypress == YES)

{

fprintf(stdout PLEASE_WAIT_MSG); .

GenerchOCTL(DriveNumber, pDataPkt, ERASE_] DRIVE)
fprintf(stdout, DONE_MSG); .

) e ‘

fprintf(stdout, CRLF_MSG);

/* Write BASs. */
block_ctr=0;
fprlntf(stdout, WRITE _BAS_MSG, block_ctr);
while(block_ctr < Card.NumBlocks) {
if(block_ctr == 0) {
flags |= BOOT_RECORD;

} ‘ ‘ .
if(block_ctr+l == Card.NumBlocks) {
flags |= SPARE_BLOCK; -

}

WriteBAS(block_ctr, block_ctr, flags);

flags=0; :

block_ctr++;

fprintf(stdout, "%c%c%c%c%03xXh", 8,8,8,8,block _ctr);
}) .
fprintf(stdout, DOT_DONE_MSG) ;

/* Lay down initial format. */
InitialFormat();

/* Do the specific format. */
switch(format_type) {
case SYMMETRIC: ({
.DoSymmetric();

/* Reset the drive so our format info is recognized by DOS.

fprintf(stdout, RESET_MEDIA_MSG);
GenericIOCTL(DriveNumber, pDataPkt, MEDIA. CHANGE) ;
fprintf(stdout, DOT_DONE_MSG) ; \

/* Display the format information. */

*/

I n ® AP-603

fprintf(stdout, SYMM_INFO_MSG,
((DWORD) PseudoFileCnt * (Card.NumBlocks-1))-
(Card.NumBlocks-1),
Card.NumBlocks-1, ((DWORD) PseudoFileCnt * (Card.NumBlocks-1)),
(DWORD) PseudoFileSize/1024, Card.BlockSize-StructureFileSize,
Card.BlockSize-1);
break;
}
case ENTIRE: {
DoEntireCard() ;

/* Reset the drive so our format info is recognized by DOS. */
fprintf(stdout, RESET_MEDIA_MSG);

GenericIOCTL(DriveNumber, pDataPkt, MEDIA_CHANGE);

fprintf(stdout, DOT_DONE_MSG);

/* Display the format information. */
fprintf(stdout, ENTIRE_INFO_MSG, ((DWORD) PseudoFileCnt),
Card.NumBlocks-1, (DWORD) PseudoFileSize/1024,
Card.BlockSize-StructureFileSize, Card.BlockSize-1);
break;

}

default: break;

}

/***‘k***

PAGE

LR R R R S R R R R R R R R R R RS RS SRR R RS RR R R R R AR R EE R EE RS SR

Title: GenericIOCTL

*
*
*
* Description: This procedure invokes a DOS generic IOCTL 440Dh.
*
*

************************'k***/

WORD GenericIOCTL (BYTE DriveNumber, union IOCTLDataPkt far *pPkt, BYTE Code)
{

union REGS inregs, outregs;

struct SREGS sregs;

WORD ReturnAX=0;

inregs.x.ax=GENERIC_IOCTL;

inregs.h.bl=DriveNumber;

inregs.h.bh=0;

inregs.h.ch=DISK_DRIVE;

inregs.h.cl=Code;

inregs.x.dx=FP_OFF (pPkt) ;

sregs.ds=FP_SEG (pPkt) ;

ReturnAX=intdosx(&inregs, &outregs, &sregs) ;

if(outregs.x.cflag)

fprintf(stderr, ERROR_MSG);

return (outregs.x.cflag ? ReturnAX :.0);

}

/*******************‘k*'k‘k**

83

AP-603 INTal.

PAGE

LRSS AR R SRR R AR R AR RS R RS R R R R RS R SRR RS AR AR Rt E SR SR

*
* Title: CommonWrite

* : : ‘

* Description: Common memory write procedure.

*
***/

void CommonWrite (DWORD to, BYTE *data, WORD length)

{
pDataPkt->CommonMemWrite.Len=1length;
pDataPkt->CommonMemWrite.Offset=to;
pDataPkt->CommonMemWrite.PtrBuffer=data;
GenericIOCTL(DriveNumber, pDataPkt, COMM _WRITE);
}

/***

PAGE

Khkhkhkhkhkhkhkhkhkhkhhkhhkdhkhhhhhhhhhrhkhhddhkhkrhdhdhhkhhkrhhhkhkrhkhdhhhkhdkhdrhhhhhhkhkrkrrhhhhkrhrkhx

*
* Title: CommonRead

*

* Description: Common memory read procedure.
*

*

**/

void CommonRead (DWORD to, BYTE *data, WORD length)

{
pDataPkt->CommonMemRead.Len=1length;
pDataPkt->CommonMemRead.Offset=to;
pDataPkt->CommonMemRead.PtrBuffer=data;
GenericIOCTL(DriveNumber, pDataPkt, COMM_READ:);
}

/***

PAGE

KA AR kA AA A AR R IR A Ak A Ak kb hh bk hkdhhhkhhkhkhkhkhhkhkhhkhkhkhhkhhhkhrhkhhdhkhhhhdrdrhhdrhhhhhrhdhkx

Title: Log2Phy

*

*

* .

* Description: This procedure converts a logical block number to a
* physical one by reading each BAS sequence number.

* .

*

***************************************‘*************************************/

WORD Log2Phy (WORD lblock)
{
BlockAllocStruct CurBAS;
DWORD address=0UL;
WORD block=1;

/* Mustn't try to read a block that doesn't exist. */
if (1block>=Card.NumBlocks) return (ERROR);

/* Read each BAS. */

84

I n ® AP-603

while(block <= Card.NumBlocks)

{
address=(DWORD) block * (DWORD) Card.BlockSize;
address-=sizeof (BlockAllocStruct);
CommonRead(address, pBYTE &CurBAS, sizeof(BlockAllocStruct));
if(CurBAS.BlockSeq == lblock) return block;
block++;
}

return (ERROR) ;
}

/***

PAGE

R RS R R SRR R LR R R R R SRR E RS SRR RS SRR R e SRR E SRR RS R R

Title: WriteBAM

specified by the BAM pointer. The actual physical

*

*

*

* Description: This procedure writes the current BAM to the location
*

* address of the BAM is derived from the BAM pointer.

. : :

*

****'k***‘k*************************/

void WriteBAM (DWORD BAMptr, BlockAllocMember CurBAM)

{
WORD block;
DWORD address;
block=Log2Phy((DWORD)BAMptr >> 16);
address=block*Card.BlockSize;
address-=sizeof (BlockAllocStruct);
address-=(((BAMptr & OxXFFFF) + 1) * sizeof(BlockAllocMember))
CommonWrite(address, pBYTE &CurBAM, sizeof(BlockAllocMember));
}

/***

PAGE

**

Title: WriteBAS

Description: This procedure writes a BAS to a physical block. The
1block value assigns the physical block it's unique logical
number. The flags field determines whether or not the
block is spare, and if the boot record is present.

* ok ok ok F K X F F

**/

void WriteBAS (WORD LogBlock, WORD PhyBlock, WORD Flags)
{

DWORD CurAddress=0UL;

BlockAllocStruct CurBAS;

CurBAS.BootRecordPtr=FNULL;

CurBAS.EraseCount=69;
CurBAS.BlockSeg=LogBlock;

85

L]
intel.

CurBAS.BlockSeqgChecksum=CurBAS .BlockSeq”0xFFFF;
CurBAS.Status=0xC3FF;

/* Make Spare Block Modifications */
if(Flags & SPARE_BLOCK)

{
CurBAS.BlockSeq=0xFFFF;
CurBAS.BlockSeqgChecksum=0xFFFF;
CurBAS.Status=0xFFF3;

}

/* Make Boot Record Modifications. */

if(Flags & BOOT_RECORD)

{
CurBAS.BootRecordPtr=((DWORD) LogBlock<<16)+0;
CurBAS.Status=0xC3FE;

}

/* Calculate where . to write the BAS. */
CurAddress=(((PhyBlock+l) * Card.BlockSize)-sizeof(BlockAllocStruct));
CommonWrite(CurAddress, pBYTE &CurBAS, sizeof(BlockAllocStruct));

}

/***

PAGE

IR R RS S SR R R R RS REEESS R R R ES SRR AR R RS R R RN ER R R R R R EREEEES

Title: DoSymmetric

*

*

*

* Description: Symmetric formatter procedure. It writes x number of
* pseudo files per block as specified by the user in main().

*
*

'k*************/

void DoSymmetric (void)

{
DWORD pfile_num=0; /* Current File Number. */
WORD block_ctr=0; /* Current block. */
WORD file_ctr=0; /* Current File Counter. */
DWORD CurrentBase=0UL; /* Base address of current block. */
BYTE tempname [8] ; /* Temporary extension field. */

BlockAllocMember BAM;
FileEntry FE;
FileInfo ' FI;

fprintf(stdout, WRITE_PSEUDO_MSG, pfile_num);
/* Begin writing the pseudo files for each block. */
while(block_ctr < (Card.NumBlocks-1))
{
file_ctr=0;

/* Calculate the physical base of the block. */
CurrentBase=(DWORD) Card.BlockSize * block_ctr;

/* The BottomPtr of the structure file is initially set from

86

tel.

** the InitialFormat procedure. */
if(block_ctr > 0)
{

BottomPtr. */

/* If this isn't block zero, then recalculate the new -

BottomPtxr=(DWORD) Card.BlockSize—PseudoFileSize;

BAMptr=(DWORD) block_ctr << 16;
}

/* For each block, write x number of PseudoFiles.

while(file_ctr < (PseudoFileCnt - 1)

{
/* Write FileEntry BAMs. */
BAM. Status=0x3F;
BAM.Offset[0]=BottomPtr&0OxFF;
BAM.Offset[l]=(BottomPtr>>8)&0xXFF;
BAM.Offset[2]=(BottomPtr>>16) &0XFF;
BAM.Len=sizeof(FileEntry);
WriteBAM(BAMptr, BAM);
BAMptr++;

/* Write File Entry. */
FE.Status=0x00A7;

/* Last PseudoFile? */
if((file_ctr+l)==(PseudoFileCnt-1))

)

*/

{ .
/* Last block? */
if(block_ctr == (Card.NumBlocks - 2))
{ .
FE.SiblingPtr=FNULL;
FE.Status=0x00E7;
}
else
{
FE.SiblingPtr=((DWORD) (block_ctr + 1)
<< 16);
}
}
else
{
FE.SiblingPtr=BAMptr+2;
}

FE.PrimaryPtr=BAMptr;
FE.SecondaryPtr=FNULL;
FE.Attributes=0x00;
FE.Time=0x8800;
FE.Date=0x02F4;
FE.VarStructLen=0;
FE.NameLen=0x0B;

sprintf(tempname, "%081d", pfile_num);

strncpy(FE.Name, tempname, 8);
strncpy(FE.Ext, "BIN", 3);
CommonWrite(BottomPtr+CurrentBase,
sizeof(FileEntry));
BottomPtr+=sizeof(FileEntry);

&FE,

AP-603

87

AP-603

}

}

/* Write FileInfo BAMs. */

BAM. Status=0x3F;

BAM.Offset[0]=BottomPtr & OXFF;
BAM.Offset[1]=(BottomPtr >> 8) & OXFF;
BAM.Offset[2]=(BottomPtr >> 16) & OXFF;
BAM.Len=sizeof (FileInfo);

WriteBAM(BAMptr, BAM);

BAMptr++;

/* Write File Info Structures. */
FI.Status=0xFCBB; ‘
FI.ExtentPtr=BAMptr;

FI.PrimaryPtr=FNULL;

FI.SecondaryPtr=FNULL;

FI.Attributes=0x00;

FI.Time=0x8800;

FI.Date=0x02F4;

FI.VarStructLen=0; :
FI.UncompressedExtentLen=PseudoFileSize;
FI.CompressedExtentLen=PseudoFileSize;
CommonWrite(BottomPtr+CurrentBase, pBYTE &FI,
sizeof(FileInfo)); !
BottomPtr+=sizeof(FileInfo);

/* Write Extent BAMs */

/* Last BAM in block? */ ‘

if ((file_ctr+l)==(PseudoFileCnt-1)) BAM.Status=0xBF;
else BAM.Status=0x3F;
BAM.Offset[0]=((DWORD)PseudoFileSize*file_ctr)&0xFF;
BAM.Offset[1]=(((DWORD)PseudoFileSize*file_ctr)>>8)&0XFF;
BAM.Offset[2]=(((DWORD)PseudoFileSize*file_ctr)>>16)&0xFF;
BAM.Len=PseudoFileSize;)
WriteBAM(BAMptr, BAM);

BAMptr++;

/* Update the display. */

pfile_num++;

fprintf(stdout, "%c%c%c%c%c%5d4", 8,8,8,8,8,pfile_num);
file ctr++;

block_ctr++;

fprintf(stdout, DOT_DONE_MSG);

}

/***

PAGE

hhkhkhkhkhkhkhkhhkhhkhkhkrAhhrhhkdhhhhkhkhhhdrhhhdhkhhhdkrhhhdkhhkrdhhhbhkhrhhbhkhhkhkrhhkhkhkkhkkhhkhhhkdk

*
*
*
*
*
*
*
*

88

Title:

DoEntireCard

Description: This procedure formats the entire card as one huge file.

It creates InfoCount number of File Info's and Extents in
each block's structure file space.

**/

intgl.

void DoEntireCard (void)

{

WORD block_ctr=0;
WORD info_ctr=0;
DWORD CurrentBase=0UL;

block.*/

BlockAllocMember BAM;
FileEntry FE;
FileInfo FI;

fprintf(stdout, WRITING_FILE_MSG);

/* We only need one file entry structure.

/*

Write FileEntry BAM. */

BAM. Status=0x3F;
BAM.Offset[0]=BottomPtr&0xFF;

BAM.Offset[1]=(BottomPtr>>8)&0xXFF;
BAM.Offset[2]=(BottomPtr>>16) &0xFF;

BAM.Len=sizeof(FileEntry);
WriteBAM(BAMptr, BAM);
BAMptr++;

/*

FE.
.Status=0x00E7;
FE.
FE.
FE.
FE.
FE.
FE.
FE.

FE

Write File Entry. */
SiblingPtr=FNULL;

PrimaryPtr=BAMptr;
SecondaryPtr=FNULL;
Attributes=0x00;
Time=0x8800;
Date=0x02F4;
VarStructLen=0;
NameLen=D0S83;

strncpy(FE.Name, "00000001", 8
strncpy(FE.Ext, "BIN", 3);

CommonWrite(BottomPtr+CurrentBase,

BottomPtr+=sizeof(FileEntry);

/*

while(block_ctr < (Card.NumBlocks - 1)

Loop through the blocks. */

info_ctr=0;

/* Calculate the physical base of the block.
CurrentBase= (DWORD) Card.BlockSize * block_ctr;

/* The BottomPtr of the structure file is initially set from
** the InitialFormat procedure.

if(block_ctr > 0)

{
BottomPtr. */
BottomPtr=(DWORD) Card.BlockSize-StructureFileSize;
BAMptr=(DWORD) block_ctr << 16;

}

/* For each block, write x number of InfoCounts.

while(info_ctr < InfoCount)

)

{

/* Block counter.
/* FI counter.
/* Current structure file address in

*/

pPBYTE &FE, sizeof(FileEntry));

/* If this isn't block zero, then recalculate the new

*/

AP-603

89

AP-603

920

/* Write FileInfo BAMs. */
BAM.Status=0x3F;

BAM.Offset[0]=BottomPtr & OXFF;
BAM.Offset[1]=(BottomPtr >> 8) & OXFF;
BAM.Offset[2]=(-BottomPtr >> 16) & OXFF;
BAM.Len=sizeof(FileInfo);

WriteBAM(BAMptr, BAM);

BAMptr++;

/* Write File Info Structures. */
FI.Status=0xFCAB;
FI.ExtentPtr=BAMptr;

/* Last file info? */

if(info_ctr == (InfoCount - 1))

{
/* Last block? */
if(block_ctr == (Card.NumBlocks - 2))
{

FI.PrimaryPtr=FNULL;
FI.Status=0xFCBB;

}
else
{
FI.PrimaryPtr=((DWORD) (block_ctr + 1
<< 16);
}
}
else

{

FI.PrimaryPtr=BAMptr+l;
}
FI.SecondaryPtr=FNULL;
FI.Attributes=0x00;
FI.Time=0x8800;
FI.Date=0x02F4;
FI.VarStructLen=0;

/* Last File Info in block ? */

if(info_ctr == (InfoCount - 1))

{
FI.UncompressedExtentLen=ResidualSpace;
FI.CompressedExtentLen=ResidualSpace;

}

else

{
FI.UncompressedExtentLen=0x8000;
FI.CompressedExtentLen=0x8000;

}

CommonWrite(BottomPtr+CurrentBase, pBYTE &FI,

FileInfo));

BottomPtr+=sizeof(FileInfo);

/* Write Extent BAMs */
/* Last BAM in block? */ .
if(info_ctr == (InfoCount - 1))

y

sizeof (

}

{
BAM. Status=0xBF;
BAM.Len=ResidualSpace;
}
else
{
BAM. Status=0x3F;
BAM.Len=0x8000;
}

BAM.Offset[0]=((DWORD)0x8000*info_ctr) &0xFF;
BAM.Offset[1]=((DWORD)0x8000*info_ctr>>8)&0xFF;
BAM.Offset[2]=((DWORD)0x8000*info_ctr>>16)&0XFF;
WriteBAM(BAMptr, BAM);

BAMptr++;

info_ctr++;

block_ctr++;

}

fprintf(stdout, DOT_DONE_MSG);

}

AP-603

/************************************'k**

PAGE

R R R R RS R S R R SR RS SRR R SRR R RS R RS R RS RS R R R R R Rt R SRR R EEEEEE]
Title: InitialFormat
Description: This procedure places a Boot Record, ROOT Directory and

*
*
*
*
*
*
*
*

Volume Label in block zero (at address BottomPtr) of the

card.

void InitialFormat (void)

{

/* Initial Format Structures. */
BlockAllocMember BAM;

FileEntry FE;

DirectoryEntry DE;

BootRecord BR;

/* Write Boot Record BAM in Physical Block Zero. */
BAM.Status=0x3F;

BAM.Offset[0]=BottomPtr & OxFF;

BAM.Offset[1]=(BottomPtr >> 8) & OXFF;
BAM.Offset[2]=(BottomPtr >> 16) & OXFF;
BAM.Len=sizeof (BootRecord);

fprintf(stdout, WRITE_BAM_MSG);

WriteBAM(BAMptr, BAM);

BAMptr++;

fprintf(stdout, DONE_MSG);

/* Write Boot Record in physical block zero. */
BR.Signature=0xF1AS5;
BR.SerialNumber=0x66677788UL;
BR.FFSWriteVersion=FFS_WRITE_VER;

**/

91

AP-603

BR.FFSReadVersion=FFS_READ_VER;
BR.TotalBlockCount=Card.NumBlocks;
BR.SpareBlockCount=1;
BR.BlockLen=Card.BlockSize;
BR.RootDirectoryPtr=BAMptr;
BR.Status=0xFFFF;
BR.BootCodeLen=0;

fprintf(stdout, WRITE_BOOT_MSG);
CommonWrite(BottomPtr, pBYTE &BR, sizeof(BootRecord));
BottomPtr+=sizeof(BootRecord);
fprintf(stdout, DONE_MSG);

/* Write ROOT Directory BAM in physical block zero. */
BAM.Status=0x3F;

BAM.Offset[0]=BottomPtr & OxXFF;

BAM.Offset[1]=(BottomPtr >> 8) & OXFF;
BAM.Offset[2]=(BottomPtr >> 16) & OXFF;
BAM.Len=sizeof (DirectoryEntry);

fprintf(stdout, WRITE_ROOT_BAM_MSG);

WriteBAM(BAMptr, BAM);

BAMptr++;

fprintf(stdout, DONE_MSG);

/* Write ROOT Directory Entry. */
DE.Status=0xFFE3;
DE.SiblingPtr=FNULL;
DE.PrimaryPtr=BAMptr;

DE. SecondaryPtr=FNULL;
DE.Attributes=0x10;

DE.Time=0x8800;

DE.Date=0x02F4;

DE.VarStructLen=0;

DE.NameLen=D0OS83;

strncpy(DE.Name , "ROOT ", 8);
strncpy(DE.Ext ," ", 3);

fprintf(stdout, WRITE_ROOT_MSG);
CommonWrite(BottomPtr, pBYTE &DE, sizeof(DirectoryEntry));
BottomPtr+=sizeof(DirectoryEntry);
fprintf(stdout, DONE_MSG) ;

/* Write Volume Label BAM in physical block zero. */
BAM. Status=0x3F;

BAM.Offset[0] =BottomPtr & OxXFF;

BAM.Offset[1]=(BottomPtr >> 8) & OXFF;
BAM.Offset[2]=(BottomPtr >> 16) & OXFF;
BAM.Len=sizeof (FileEntry);

fprintf(stdout, WRITE_VOL_BAM_ MSG);

WriteBAM(BAMptr, BAM);

BAMptr++;

fprintf(stdout, DONE_MSG);

/* Write Volume Label Entry. */
FE.Status=0x00B7;
FE.SiblingPtr=BAMptr;
FE.PrimaryPtr=FNULL;
FE.SecondaryPtr=FNULL;

92

I n ® AP-603

FE.Attributes=0x28;
FE.Time=0x8800;
FE.Date=0x02F4;
FE.VarStructLen=0;
FE.NameLen=D0OS83;
strncpy (FE.Name, "EMBEDDED", 8) ;
strncpy (FE.Ext, "FFS",3);
fprintf(stdout, WRITE_VOLUME_MSG) ;
CommonWrite(BottomPtr, pBYTE &FE, sizeof(FileEntry));
BottomPtr+=sizeof(FileEntry);
fprintf(stdout, DONE_MSG) ;

}

/* End of File: SBM.C

** COPYRIGHT (c) 1994 Intel Corporation, ALL RIGHTS RESERVED

***/

93

=
AP-603 I ntel ®

/***

COPYRIGHT (c) 1994 Intel Corporation, ALL RIGHTS RESERVED

*

* FILE NAME:. SBM.H

*

* PURPOSE: Defines, Typedefs, and Structures for file Symmetric Block-
* Manager.

*

* AUTHOR: Peter J Torelli/James R. Massoni
*

*

*

*

**/

#ifndef SBM.H /* Has this file been included before? */
#define SBM.H /* No, remember it has been now */
/*

* * Defines khkkhhhkhkhkhkkhkhhhhhkhkhkdkhhhhhkrhrhhhdhhhdrhhhhddhhdrhrhkkddhdrhkhhrdhhhkkhrkd

*/

#define REVISION 1.02
#define BOOT_RECORD 0x01
#define COMM_READ 0x71
#define COMM_WRITE 0x51
#define DISK_DRIVE 0x08

#define DOS83 0x0B
#define ENTIRE '‘E’
#define ERASE_DRIVE 0x54
#define ERROR -1

#define FFS_READ_VER 0x200
#define FFS_WRITE_VER 0x200
#define FNULL OXFFFFFFFFUL
#define GENERIC_IOCTL 0x440D
#define MEDIA_CHANGE 0x52
#define MEDIA_INFO 0x73
#define SPARE_BLOCK 0x02
#define SYMMETRIC 'S’

#define YES 'y
#define pBYTE (BYTE *)
/*

* % Typedefs KK I KKK KA A A A A AA KA AR IR A AR AT A A A I h Ak bk kA hdk ok hkdhk kb hkhhkhkdhhhhk

*/

typedef unsigned char BYTE;
typedef unsigned int WORD;
typedef unsigned longDWORD;

typedef struct {
DWORD Size;
DWORD BlockSize;
WORD NumBlocks;
} CardInfo;

typedef struct {
BYTE Status;

94

Ntal.

BYTE Offset[3];
WORD Len;
} BlockAllocMember;

typedef struct {
DWORD BootRecordPtr;
DWORD EraseCount;
WORD BlockSeq;
WORD BlockSegChecksum;
WORD Status;

} BlockAllocStruct;

typedef struct {
WORD Signature;
DWORD SerialNumber;
WORD FFSWriteVersion;
WORD FFSReadVersion;
WORD TotalBlockCount;
WORD SpareBlockCount;
DWORD BlockLen;
DWORD RootDirectoryPtr;
WORD Status;
WORD BootCodeLen;

/* BYTE BootCode[0]; Boot Code is ZERO.

} BootRecord;

typedef struct {
WORD Status;
DWORD SiblingPtr;
DWORD PrimaryPtr;
DWORD SecondaryPtr;
BYTE Attributes;
WORD Time;
WORD Date;
WORD VarStructLen;
BYTE NameLen;
BYTE Name([8];
BYTE Ext[3];

} FileEntry, DirectoryEntry;

typedef struct {

WORD Status;

DWORD ExtentPtr;

DWORD PrimaryPtr;

DWORD SecondaryPtr;

BYTE Attributes;

WORD Time;

WORD Date;

WORD VarStructLen;

WORD UncompressedExtentLen;

WORD CompressedExtentLen;
} FilelInfo;

/*

*/

*/

AP-603

* * Unions and Structures ISR RS R SRS E RS s R RSRR R R R R R R RS

95

AP-603

union IOCTLDataPkt{

struct EraseDrive {

BYTE
} ED;

Status;

struct CommonMemReadWritePkt {

BYTE
WORD
DWORD

Status;
Len;
Offset;

BYTE far *PtrBuffer;
} CommonMemRead, CommonMemWrite;

struct MediaInfoPkt {

BYTE
BYTE
BYTE
WORD
BYTE
BYTE
BYTE
DWORD
DWORD
DWORD
DWORD
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
void
WORD
BYTE
BYTE
BYTE
BYTE
WORD
BYTE
BYTE
WORD
BYTE
BYTE
WORD
BYTE
WORD
DWORD

Status;

Len;

DevType;
JedecID;
DriveSlot;
TotalSlots;
PartType;
PartBegin;
PartSize;
MediaSize;
BlockSize;
PartNum;
CurPartInSlot;
MaxPartInSlot;
TotPartInSlot;
DevInfoNum;
DevInfoSize;

far *DevInfoPtr;

InitYear;
InitMonth;
InitDay;
InitHour;
InitSec;
BatRepYear;
BatRepMonth;
BatRepDay;
BatExpYear;
BatExpMonth;
BatExpDay;
Flags;
VendorName[11];
ChangeCount ;
Reserved[5];

} MediaInfo;

Y

#endif

/* End of File: SBM.H

** COPYRIGHT (c) 1994 Intel Corporation, ALL RIGHTS RESERVED

***/

96

-
intal.

/*'k************************'k**

COPYRIGHT (c) 1994 Intel Corporation, ALL RIGHTS RESERVED

*

* FILE NAME: SBM _MSG.H

* .
* PURPOSE: Defines, Typedefs, and Structures for file Symmetric Block
* Manager.

*

* AUTHOR: Peter J Torelli/James R. Massoni

*

*

*

*

**/

#ifndef SBM_MSG.H /* Has this file been included before? */
#define SBM_MSG.H /* No, remember it has been now. */
/*

* k. Defines KKK I KKK KK KKK KRK KA KRKRIAIKR A A I ARA AT AT AR Ak Ak bk Ak kA hkhhkhhkhhkhkhkkhhkxk

*/

#define CHOOSE_MSG "Done\n\nChoose a format:\n\t(S)ymmetric\n\t(E)ntire\
Card as One File\n\nSelection (S/E): "

#define CRLF_MSG "\n"

#define DBL_CRLF_MSG "\n\n"

#define DONE_MSG "Done.\n"

#define DOT_DONE_MSG "...Done.\n"

#define ERASE_PROMPT_ MSG "Note: The media must be erased before\

formatting.\nDoes this media need to be erased? (y/n): "

#define OBTAINING_MSG "Obtaining media geometry..."

#define LOGON_MSG "LFM Linear File Formatter v%.2f (c) Intel\
Corporation\n\n"

#define NUM_PFILES_MSG "Enter the number of PseudoFiles/Block [%d-%d]: "
#define PLEASE_WAIT_MSG "\nPlease wait, media being erased..."

#define RESET_MEDIA_MSG "Resetting media"

#define WRITE_BAM_MSG "Writing Boot Record BAM in physical block zero..."
#define WRITE_BAS_MSG "Writing BAS block %03Xh"

#define WRITE_BOOT_MSG "Writing Boot Record in physical block zero..."
#define WRITE_PSEUDO_MSG "Writing Pseudo File number $%05d4"

#define WRITE_ROOT_MSG "Writing ROOT Directory Entry in physical block\
zero..."

#define WRITE_ROOT_BAM_MSG "Writing ROOT BAM in physical block zero..."
#define WRITE_VOL_BAM_MSG "Writing Volume Label BAM in physical block zero..."

#define WRITE_VOLUME_MSG "Writing Volume Label in physical block zero..."
#define WRITING_FILE_MSG "Writing File..."
/* Define the format symmetric block screen */
#define SYMM_INFO_MSG "\n\
Symmetric Preformat installed.\n\n\
Number of Pseudo Files: $61d\n\
+ Number of Structure Files: $6d\n\

\n\
= Total Number of Pseudo File Spaces: %6ld\n\n\

97

L]
intel.

Each Pseudo File Space is ‘%$1dk.\n\n\
Avoid address ranges %1X-%1X in each block.\n"

/* Define the format entire screen */

#define ENTIRE_INFO_MSG "\n\

Entire-Card Preformat installed.\n\n\
Number of Pseudo Files: $61d\n\
Number of Structure Files: $6d\n\n\

The Pseudo File is %1dk.\n\n\
Avoid address ranges %1X-%1X in each block.\n"

/*

** Error Messages:

*/

#define ERROR_MSG "\nError"

#define INVL_DRV_LET_MSG "The drive letter entered is invalid.\n"
#define INVL_SELECT_MSG ~ "Error, Invalid selection.\n"

#define SPECIFY_MSG "Please specify one drive letter.\n"

#define TOO_MANY_MSG "Too many parameters, please specify only a drive\
letter.\n" S o .
#define USAGE_MSG "Correct usage example: C:>SBM E:\n"

#endif

/* End of File: SBM_MSG.H
** COPYRIGHT (c) 1994 Intel Corporation, ALL RIGHTS RESERVED

***/

98

intgl.

Revised Documents

I nu ® 28F016XS 28F016XS Flash Memory

16-MBIT (1 MBIT X 16, 2 MBIT X 8)
SYNCHRONOUS FLASH MEMORY

B Effective Zero Wait-State Performance m Backwards-Compatible with 28F008SA
up to 33 Mhz Command-Set
— Synchronous Pipelined Reads

m SmartVoltage Technology
— User-Selectable 3.3V or 5V V¢
— User-Selectable 5V or 12V Vpp

m 0.33 MB/sec Write Transfer Rate
m Configurable x8 or x16 Operation
m 56-Lead TSOP Type | Package

2 pA Typical Deep Power-Down

m 1 mA Typical Active Igc Current in
Static Mode

m 16 Separately-Erasable/Lockable
128-Kbyte Blocks

m 1 Million Erase Cycles per Block

m State-of-the-Art 0.6 pm ETOX™ |V Flash
Technology

Intel's 28F016XS 16-Mbit Flash memory is a revolutionary architecture which is the ideal choice for designing
truly revolutionary high-performance products. Combining very high read performance with the intrinsic
non-volatility of flash memory, the 28F016XS eliminates the traditional redundant memory paradigm of
shadowing code from a slow nonvolatile storage source to a faster execution memory, such as DRAM, for
improved system performance. The innovative capabilities of the 28F016XS enable the design of
direct-execute code and mass storage data/file flash memory systems.

The 28F016XS is the highest performance high density nonvolatile read/write flash memory solution available
today. Its synchronous pipelined read interface, flexible V¢ and Vpp voltages, extended cycling, fast write
and read performance, symmetrically blocked architecture, and selective block locking provide a highly
flexible memory component suitable for resident flash component arrays on the system board or SIMMs. The
synchronous pipelined interface and x8/x16 architecture of the 28F016XS allow easy interface with minimal
glue logic to a wide range of processors/buses, providing effective zero wait-state read performance up to
33 MHz. The 28F016XS’s dual read voltage allows the same component to operate at either 3.3V or
5.0V V. Programming voltage at 5V Vpp minimizes external circuitry in minimal-chip, space critical designs,
while the 12V Vpp option maximizes write/erase performance. Its high read performance combined with
flexible block locking enable both storage and execution of operating systems/application software and fast
access to large data tables. The 28F016XS is manufactured on Intel's 0.6 ym ETOX™ |V process
technology.

Order Number 290532-002

ADVANCE INFORMATION 101

intal.

1.0 INTRODUCTION

The documentation of the Intel 28F016XS Flash
raemory device includes this datasheet, a detailed
user's manual, a number of application notes and
design tools, all of which are referenced at the end
of this datasheet. ’

The datasheet is intended to give an overview of
the chip feature-set and of the operating AC/DC
specifications. The 16-Mbit Flash Product Family
User's Manual provides complete descriptions of
the user modes, system interface examples and
detailed descriptions of all principles of operation. It
also contains the full list of software algorithm
flowcharts, and a brief section on compatlblhty with
the Intel 28FO08SA.

Significant 28F016XS feature revisions occurred
between datasheet revisions 290532-001 and
290532-002. These revisions center around
removal of the following features:

o All page buffer operations (read, write,
programming, Upload Device Information)

o Command queuing
o Software Sleep and Abort
o Erase all Unlocked Blocks and Two-Byte Write

e RY/BY# reconfiguration as part of the Device
Configuration command

Intel recommends that all customers obtain the
latest revisions of 28F016XD documentation.

1.1 Product Overview

The 28F016XS is a high-performance, 16-Mbit
(16,777,216-bit) block erasable nonvolatile random
access memory organized as either 1 Mword x 16
or 2 Mbyte x 8, subdivided into even and odd
banks. Address A; makes the bank selection. The
28F016XS- includes sixteen 128-Kbyte (131,072
byte) blocks or sixteen 64-Kword (65,536 word)
blocks. Chip memory maps for x8 and x16 modes
are 'shown in Figures 3 and 4.

The implementation of a new architecture, with
many enhanced features, will improve the device
operating characteristics and result in greater
product reliability and ease-of-use as compared to
other flash memories. Significant features of the
28F016XS as compared to previous asynchronous
flash memories include:

ADVANCE INFORMATION

28F016XS Flash Memory

e Synchronous Pipelined Read Interface

* Significantly Improved Read and Write
Performance

e SmartVoltage Technology

— Selectable 3.3V or 5.0 V¢

— Selectable 5.0V or 12.0 Vpp
o Internal 3.3V/5.0V V¢ Detection Circuitry
o Block Write/Erase Protection

The 28F016XS's synchronous pipelined interface
dramatically raises read performance far beyond
previously attainable levels. Addresses are
synchronously latched and data read from a
28F016XS bank every 30 ns (5V Vcc, SFI
Configuration = 2). This capability translates to
0-wait-state reads at clock rates up to 33 MHz at
5V Vcc, after an initial address pipeline fill delay
and assuming.even and odd banks within the flash
memory are alternately accessed. Data is latched
and driven valid 20 ns (tcyqy) after a rising CLK
edge. The 28F016XS is capable of operating up to
66 MHz (5V Vcc);, its programmable SFI
Configuration enables system design flexibility,
optimizing the 28F016XS to a specific system clock
frequency. See Section 4.9, SFI Configuration
Table, for specific SFI Configurations for given
operating frequencies.

The SFI Configuration optimizes the 28F016XS for
a wide range of system operating frequencies. The
default SFI Configuration is 4, which allows system
boot from the 28F016XS at any frequency up to
66 MHz at 5V V. After initiating an access, data
is latched and begins driving on the data outputs
after a CLK count . corresponding to the SFI
Configuration has elapsed. The 28F016XS will hold
data valid until CEx# or OE# is deactivated or a
CLK count corresponding to the SFI Configuration
for a subsequent access has elapsed.

The CLK and ADV# inputs, new to the 28F016XS in
comparison to previous flash memories, enable
synchronous latching of input addresses for reads.
The CLK input controls the device latencies,
decrements the SFI Configuration counter and
synchronizes data outputs. ADV# indicates the
presence of a valid address on the 28F016XS
address inputs. During read operations, addresses
are latched and accesses are initiated on a rising
CLK edge in conjunction with ADV# low. Both CLK
and ADV# are ignored by the 28F016XS during
command/data write sequences.

103

28F016XS Flash Memory

The 28F016XS incorporates = SmartVoltage
technology, providing V¢ operation at both 3.3V
and 5.0V and program and erase capability at
Vpp = 12.0V or 5.0V. Operating at V¢ = 3.3V, the
28F016XS consumes less than one half the power
consumption at 5.0V V¢, while 5.0V V¢ provides
highest read performance capability. Vpp operation
at 5.0V eliminates the need for a separate 12.0V
converter, while the Vpp = 12.0V option maximizes
write/erase performance. In addition to the flexible
program and erase voltages, the dedicated Vpp
gives complete code protection with Vpp < Vpp k.

Internal 3.3V or 5.0V V¢ detection automatically
configures the device for optimized 3.3V or 5.0V
read/write operation. Hence, the 28F016SA's
3/54# pin is not required and is a no-connect (NC) on
the 28F016XS, maintaining pin-out backwards-
compatibility between components.

A Command User Interface (CUI) serves as the
system interface between the microprocessor or
microcontroller and the internal memory operation.

Internal " Algorithm Automation allows byte/word
writes and block erase operations to be executed
using a Two-Write command sequence to the CUI
in the same way as the 28F008SA 8-Mbit
FlashFile™ memory.

Software locking of memory blocks is an added
feature of the 28F016XS as compared to the
28F008SA. The 28F016XS provides selectable
block locking to protect code or data such as direct-
executable operating systems or application code.
Each block has an associated nonvolatile lock-bit
which determines the lock status of the block. In
addition, the 28F016XS has a master Write Protect
pin (WP#) which prevents any modifications to
memory blocks whose lock-bits are set.

Writing of memory data is performed in either byte
or word increments, typically within 6 psec at 12.0V
Vpp, which is a 33% improvement over the
28F008SA. A block erase operation erases one of
the 16 blocks in typically 1.2 sec, independent of
the other blocks.

Each block can be written and erased a minimum of
100,000 cycles. Systems can achieve one million
Block Erase Cycles by providing wear-leveling
algorithms and graceful block retirement. These
techniques have already been employed in many
flash file systems and hard disk drive designs.

104

]

intel.
All operations are started by a sequence of Write
commands to the device. Three Status Registers.
(described in detail later in this datasheet) and a

RY/BY# output pin provide information on the
progress of the requested operation.

The following Status Registers are used to provide
device and WSM operation information to the user:

e A Compatible Status Register (CSR) which is
100% compatible with the 28F008SA FlashFile
memory Status Register. The CSR, when used
alone, provides a straightforward upgrade
capability to the 28F016XS from a 28F008SA-
based design.

e A Global Status Register (GSR) which also
informs the system of overall Write State
Machine (WSM) status.

e 16 Block Status Registers (BSRs) which
provide block-specific status information such
as the block lock-bit status.

The GSR and BSR memory maps for Byte-Wide
and Word-Wide modes are shown in Figures 5
and 6.

The 28F016XS incorporates an open drain RY/BY#
output pin. This. feature allows the user to OR-tie
many RY/BY# pins together in a multiple memory
configuration such as a Resident Flash Array.

The 28F016XS also incorporates a dual chip-
enable function with two input pins, CEq# and CE,#.
These pins have exactly the same functionality as
the regular chip-enable pin, CE#, on the 28F008SA.
For minimum chip designs, CE;# may be tied to
ground and system logic may use CEy# as the chip
enable input. The 28F016XS uses the logical
combination of these two signals to enable or
disable the entire chip. Both CEy# and CE;# must
be active low to enable the device. If either one
becomes inactive, the chip will be disabled. This
feature, along with the open drain RY/BY# pin,
allows the system designer to reduce the number of
control pins used in a large array of 16-Mbit
devices.

ADVANCE INFORMATION

n ® 28F016XS Flash Memory

oQ &15 4} ba 07
[| [

Output Qutput Input Input
Buffer Buffer Buffer Buffer

4N 78N y v

ologic | o pres
Y

D
Register

]
o
ClK f_}
ADV# £ : =
= e
5
o
pul
o
CEg#
<]:CE]#
t OF#
g Data WEH
<d IComparator o
Input [| w
:> Buffer pu; .
 []_Decoder] Y Gating/Sensing
o
Elae >
3)
glel x ° Even Bank
E 4L oo o RY/BV#
oo ar
> M & ey 2 ¥ VPP
il =1 = Program/Erase
H f Voltage Switch
=< £
& N =" Vee
Lle -
N % . X . - e .
Address [~ Decoder o
Counter Sl . Odd Bank
1 3 L)
e lmg —»t
3
N Det:loder] Y Gating/Sensing
0532_01

Figure 1. 28F016XS Block Diagram
Architectural Evolution Includes Synchronous Pipelined Read Interface,
SmartVoltage Technology, and Extended Status Registers

ADVANCE INFORMATION 105

28F016XS Flash Memory

The BYTE# pin allows either x8 or x16 read/writes
to the 28F016XS. BYTE# at logic low selects 8-bit
mode with address A, selecting between low byte
and high byte. On the other hand, BYTE# at logic
high enables 16-bit operation with address A,
becoming the lowest order address and address A,
is not used (don’t care). A device block diagram is
shown in Figure 1. :

The 28F016XS incorporates an Automatic Power
Saving (APS) feature, which substantially reduces
the active current when the device is in static mode
of operation (addresses not switching). In APS
mode, the typical ¢ currentis 1 mA at 5.0V (3 mA
at 3.3V).

A deep power-down mode of operation is invoked
when the RP# (called PWD# on the 28F008SA) pin
transitions low. This mode brings the device power
consumption to less than 2.0 pA, typically, and
provides additional write protection by acting as a
device reset pin during power transitions. A reset
time of 300 ns (5V Vcc) is required from RP#
switching high before latching an address into the

intgl.

28F016XS. In the Deep Power-Down state, the
WSM is reset (any current operation will abort) and
the CSR, GSR and BSR registers are cleared.

‘A CMOS standby mode of operation is enabled

when either CEq# or CE,# transitions high and RP#
stays high with all input control pins at CMOS
levels. In this mode, the device typically draws an
Igc standby current of 70 pA at 5V Vec.

The 28F016XS is available in a 56-Lead, 1.2mm
thick, 14mm x 20mm TSOP Type | package. The
package's form factor and pinout allow for very high
board layout densities.

2.0 DEVICE PINOUT

The 28F016XS is pinout compatible with the
28F016SA/SV 16-Mbit FlashFile memory
components, providing a performance upgrade path
to the 28F016XS. The 28F016XS 56-Lead TSOP
pinout configuration is shown in Figure 2.

28F0163A | 28F0165V . 28F0165V | 28F0165A
NC NC =1 O 56 == wp# WP# | WP#
CE# | CEf# |CEf T2 66 /3 WE# WE# | WE#
NC NC NC =3 54 == OE# OE# | OE#
Axn| Axn Apx == 4 53 === RY/BY# | RY/BY#| RY/BY#
Al Aw | Aw =5 52—DQis | DQis |Ds
Al A | As =6 51 =33 DQ; DQ; 7
Azl A | A =7 0OF=DQ), |DQy, |Dy
Als| Al | Al =8 49 DQ¢ s | DQg
Vec| Ve | Vec E=H9 48E—IGND | GND' | GND
Ais| Ais | Ais =10 47E=DQ); |DQ;3 |DQy;
Au| A | AW EHN E28F016XS 4F—DQ; |DQs |DQs
A A | A EH 12 56-LEAD TSOP PINOUT 4E=3DQ);; | DQ); |DQ,
Al A | Ap 13 “4Fpq,” |DpQ, |DQ,
CEg¢ | CEd [CEgt =H 14 BE—Vec [Vee | Veo
Vpp Vpp Vvep =4 15 . 42— GND GND | GND
RP# RP# RPE &= 16 14mm x 20mm 41 E3D0Q) DQn | DQy
An Al An =17 TOP VIEW 403 D0Q, DQ3 |DQj
An| A | Ao =18 E=1DQyp | DQy |DQ0
Aol Ao | AQEH 9 38 DQ2 | DQ, |DQ,
As| As | As E=H 2 SIE3Vee [Vee | Vee
GND| GND [eND EH 2 3609y |DQ, |DQ
A7l A7 Ay B2 3B =3 DQ, DQ, 1
As As As = 8 34PDQ, DQg 8
As| As | As =2 BEDQ, |DQ, |DRg
Adl As | As= 25 RFA A
Al As | AsEH 2 31 B0 Byres
Al Al RAEHZ 0= ADV# 'NC
Al A A =28 29— ClK C

Figure 2. 28F016XS 56-Lead TSOP Pinout Configuration Shows Compatibility with
the 28F016SA/SV, Allowing for Easy Performance Upgrades from Existing 16-Mbit Designs

106

ADVANCE INFORMATION

intel.

28F016XS Flash Memory

2.1 Lead Descriptions

Symbol

Type

Name and Function

Ao

INPUT

BYTE-SELECT ADDRESS: Selects between high and Iow byte when device is
in x8 mode. This address is latched in x8 data writes and ignored in x16 mode
(i.e., the Ag input buffer is turned off when BYTE# is high).

A1

INPUT

BANK-SELECT ADDRESS: Selects an even or odd bank in a selected block.
A 128-Kbyte block is subdivided into an even and odd bank. A, = 0 selects the
even bank and A, = 1 selects the odd bank, in both byte-wide mode and word-
wide mode device configurations.

A2—A1 6

INPUT

WORD-SELECT ADDRESSES: Select a word within one 128-Kbyte block.
Address Ay and A7-16 select 1 of 2048 rows, and Az—¢ select 16 of 512
columns. These addresses are latched during both data reads and writes.

A17-Az20

INPUT

BLOCK-SELECT ADDRESSES: Select 1 of 16 Erase blocks. These
addresses are latched during data writes, erase and lock-block operations.

DQo-DQ7

INPUT
OUTPUT

LOW-BYTE DATA BUS: Inputs data and commands during CUI write cycles.
Outputs array, identifier or status data in the appropriate read mode. Floated
when the chip is de-selected or the outputs are disabled.

DQs-DQ1s

INPUT
OUTPUT

HIGH-BYTE DATA BUS: Inputs data during x16 data-write operations. Outputs
array or identifier data in the appropriate read mode; not used for Status
Register reads. Outputs floated when the chip is de-selected, the outputs are
disabled (OE# = V|,) or BYTE# is driven active.

CEg#, CE#

INPUT

CHIP ENABLE INPUTS: Activate the device'’s control logic, input buffers,
decoders and sense amplifiers. With either CEg# or CE1# high, the device'is
de-selected and power consumption reduces to standby levels upon
completion of any current data-write or erase operations. Both CEo# and CE1#
must be low to select the device.

All timing specifications are the same for both signals. Device Selection occurs
with the latter falling edge of CEo# or CE1#. The first rising edge of CEo# or
CE# disables the device.

RP#

INPUT

RESET/POWER-DOWN: RP# low places the device in a Deep Power-Down
state. All circuits that consume static power, even those circuits enabled in
standby mode, are turned off. When returning from Deep Power-Down, a
recovery time of tpHcH is required to allow these circuits to power-up.

When RP# goes low, the current WSM operation is terminated, and the device
is reset. All Status Registers return to ready, clearing all status flags. Exit from
Deep Power-Down places the device in read array mode.

OE#

INPUT

OUTPUT ENABLE: Drives device data through the output buffers when low.
The outputs float to tri-state off when OE# is high. CEx# overrides OE#, and
OE# overrides WE#.

WE#

INPUT

WRITE ENABLE: Controls access to the CUI, Data Register and Address
Latch. WE# is active low, and latches both address and data (command or
array) on its rising edge.

ADVANCE INFORMATION 107

L]
28F016XS Flash Memory IntGI ®

2.1 Lead Descriptions (Continued)

Symbol

Type

Name and Function

CLK

INPUT

CLOCK: Provides the fundamental timing and internal operating frequency.
CLK latches input addresses in conjunction with ADV#, times out the desired
output SFI Configuration as a function of the CLK period, and synchronizes
device outputs. CLK can be slowed or stopped with no loss of data or
synchronization. CLK is ignored during write operations.

ADV#

INPUT

ADDRESS VALID: Indicates that a valid address is present on the address
inputs. ADV# low at the rising edge of CLK Ilatches the address on the address
inputs into the flash memory and initiates a read access to the even or odd
bank depending on the state of A;. ADV# is ignored during write operations.

RY/BY#

OPEN
DRAIN
OUTPUT

READY/BUSY: Indicates status of the internal WSM. When low, it indicates
that the WSM is busy performing an operation. RY/BY# high indicates that the
WSM is ready for new operations, Erase is Suspended, or the device is in deep
power-down mode. This output is always active (i.e., not floated to tri-state off

-when OE# or CE#, CE,# are high).

WP#

INPUT

WRITE PROTECT: Erase blocks can be locked by writing a nonvolatile lock-bit
for each block. When WP# is low, those locked blocks as reflected by the
Block-Lock Status bits (BSR.6), are protected from inadvertent data writes or

.| erases. When WP# is high, all blocks can be written or erased regardless of

the state of the lock-bits. The WP# input buffer is disabled when RP#
transitions low (deep power-down mode).

BYTE#

INPUT

BYTE ENABLE: BYTE# low placés device in x8 mode. All data is then input or

-| output on DQo-7, and DQg-15 float. Address Ag selects between the high and

low byte. BYTE# high places the device in x16 mode, and turns off the Ag input
buffer. Address A1 then becomes the lowest order address.

SUPPLY

WRITE/ERASE POWER SUPPLY (12.0V x 0.6V, 5.0V x+ 0.5V) :

For erasing memory array blocks or writing words/bytes into the flash array.
Vpp = 5.0V + 0.5V eliminates the need for a 12V converter, while the 12.0V +
0.6V option maximizes Write/Erase Performance.

Successful completion of write and erase attempts is inhibited with Vpp at or
below 1.5V. Write and Erase attempts with Vpp between 1.5V and 4.5V,
between 5.5V and 11.4V, and above 12.6V produce spurious results and
should not be attempted.

Vee

SUPPLY

DEVICE POWER SUPPLY (3.3V % 0.3V, 5.0V + 0.5V):

Internal detection configures the device for 3.3V or 5.0V operation. To switch
3.3V to 5.0V (or vice versa), first ramp Vcc down to GND, and then power to
the new Vcc voltage. Do not leave any power pins floating.

GND

SUPPLY

GROUND FOR ALL INTERNAL CIRCUITRY:
Do not leave any ground pins floating.

NC

NO CONNECT:
Lead may be driven or left floating.

108

ADVANCE INFORMATION

intel.

28F016XS Flash Memory

3.0 MEMORY MAPS

x8 Mode Ao x16 Mode Ao
1FFFFF FFFFF

128-Kbyte Block 15 64-Kword Block 15
1E0000 FO000
1DFFFF EFFFF

128-Kbyte Block 14 64-Kword Block 14
1€0000 E0000
1BFFFF DFFFF
128-Kbyte Block 13 1A0000 64-Kword Block 13 D000
19FFFF CFFRE
128-Kbyte Block 12 180000 64-Kword Block 12 0000
17FFFF BFFFF
128-Kbyte Block 11 160000 64-Kword Block 11 B00GO
15FFFF AFFFF
128-Kbyte Block 10 140000 64-Kword Block 10 AG00
13FFFF OFFFF

128-Kbyte Block 9 64-Kword Block 9
13 N
128-Kbyte Block 8 100000 64-Kword Block 8 80000
OFFFFF TFFFF

128-Kbyte Block 7 64-Kword Block 7
OBRRYE o
128-Kbyte Block 6 060000 64-Kword Block 6 60000
OBFFFF 5FFFF
128-Kbyte Block 5 0A0000 64-Kword Block 5 50000
09FFFF 4FFFF
128-Kbyte Block 4 080000 64-Kword Block 4 40000
O7FFFF 3FFFF
128-Kbyte Block 3 060000 64-Kword Block 3 30000
O05FFFF 2FFFF
128-Kbyte Block 2 | | 4000 64-Kword Block 2 20000
03FFF 1FFFF

128-Kbyte Block 1 64-Kword Block 1
Bre i
128-Kbyte Block 0 000000 64-Kword Block 0 00000

0532_03 0532_04
Figure 3. 28F016XS Memory Map Figure 4. 28F016XS Memory Map
(Byte-Wide Mode) (Word-Wide Mode)
109

ADVANCE INFORMATION

28F016XS Flash Memory

intel.

31 Extended Status Register Memory Map

x8 Mode Ao
] 1FFFFFH
RESERVED
RESERVED 1E0006H
1E0005H
GSR
« — 1E0004H
RESERVED
“1E0003H
BSR 15
: 1E0002H
RESERVED
 1E0001H
RESERVED 1E0000H
L]
L]
L]
01FFFFH
RESERVED
000006H
RESERVED
000005H
GSR ‘
' — 000004H
RESERVED
000003H
BSR 0
RESERVED 0000021
RESERVED 000001H
000000H

0532_05

x16 Mode ! A 20-1
FFFFFH
RESERVED
FO003H
RESERVED
GSR
— v FO002H
RESERVED
BSR 15
FO001H
RESERVED ’
RESERVED
FOOOOH
[|
| |
L}
OFFFFH
RESERVED
00003H
RESERVED
GSR
00002H
RESERVED
BSRO
00001H
RESERVED
RESERVED
00000H

0532_06

Figure 5. Extended Status Register Memory
Map (Byte-Wide Mode)

110

Figure 6. Extended Status Register Memory
Map (Word-Wide Mode)

ADVANCE INFORMATION

nbl ® 28F016XS Flash Memory

4.0 BUS OPERATIONS, COMMANDS AND STATUS REGISTER DEFINITIONS

4.1 Bus Operations for Word-Wide Mode (BYTE# = V)

Mode Notes | RP# | CEy,¢# | OE# | WE# | ADV# | CLK Aq DQy 5 | RY/BY#
Latch Read 1,9,10 VlH V||_ X V|H VIL T X X X '
Address
Inhibit 1 ,9 VlH VIL X VIH V|H T X X X
Latching : ‘

Read Address

Read 1,279 Vi " Vi Viu X T X Dout X
Output 1,679 | Vi Vie Vi | Viu X X X | HighZ X
Disable

Standby 1,6,7,9 ViH Vi X X X X X High Z X
Deep 1,3 Vi X X X X X X HighZ | ~Vou
Power-Down

Manufacturer 1,49 VlH VIL V"_ VIH X T V"_ 0089H VOH
ID -

Device ID 1,4,8,9 VIH VIL V"_ VIH X T VIH 66A8H VOH :
Write 1569 Vi Vi | vm | v X X | x Din X

NQTES:)

1. Xcanbe V|4 or Vy_ for address or control pins except for RY/BY#, which is either Vo or Vor, or High Z or Doyr for data
pins depending on whether or not OE# is active.

2. RY/BY# output is open drain. When the WSM is ready, Erase is suspended, or the device is in deep power-down mode,
RY/BY# will be at Vo if it is tied to Vcc through a resistor. RY/BY# at Vo is mdependem of OE# while a WSM operation
is in progress.

3. RP#at GND = 0.2V ensures the lowest deep power-down current.

4. Ao and A at Vi provide device manufacturer codes in x8 and x16 modes respectively. Ag and A1 at Vin provide device ID
codes in x8 and x16 modes respectively. All other addresses are set to zero.

5. Commands for erase, data write, or lock-block operations can only be completed successfully when Vpp = Vppny or
Vep = Vpphz:

6. While the WSM is running, RY/BY# stays at Vo until all operations are complete. RY/BY# goes to Von when the WSM is
not busy or in erase suspend mode.

7. RY/BY# may be at VoL while the WSM is busy performing various operations (for example a Status Reglster read durmg a
write operation).

8. The 28F016XS shares an identical device identifier with the 28F016XD.

9. CEg-s# atV,_ is defined as both CEo# and CE,# low, and CEo-1# at Vi is defined as elther CEo# or CE1# high.

10. Addresses are latched on the rising edge of CLK in conjunction with ADV# low. Address A4 = O selects the even bank and

A1 = 1 selects the odd bank, in both byte-wide mode and word-wide mode device configurations.

ADVANCE INFORMATION 111

-
28F016XS Flash Memory I ntel ®

4.2 Bus Operations for Byte-Wide Mode (BYTE# = V),)

Mode Notes | RP# | CE,# | OE# | WE# | ADV# | CLK Ay DQ, ; RYIBY#’
Latch Read 1,9,10 | Vi Vi | X Vi Vi T X X X
Address :) o
Inhibit . .| 1,9 Vin Vi X V4 Viy T X X X
Latching ‘ !

Read Address

Read 1,279 | Vi Vi Vi | Vi x| 1t 1 x Dourt X
Output 1,6,7,9 le) V“_ V,IH VIH X X) X ngh Zz X
Disable

Standby 1,6,7,9 Viu ' ViH X X X X X High Z X
Power-Down ,
Manufacturer | 1,49 | Vi Vi Vi Vi | X T Vi 89H Vou
ID .
Device ID 1489 Vg Vi | vie | Vi X T Vi | A8H | Vou
Write 1 ,5,6,9 Vi ViL Vi . ViL X X X Din X

NOTES:

1. Xcan be Vjy or Vi for address or control pins except for RY/BY#, which is either VoL or Von, or High Z or Douyr for data
pins depending on whether or. not OE# is active.

2. RY/BY# output is open drain. When the WSM is ready, Erase is suspended, or the device is in deep power-down mode,
RY/BY# will be at Vo if it is tied to Vcc through a resistor. RY/BY# at Vo is mdependent of OE# while a WSM operatlon
is in progress.

3. RP#at GND = 0.2V ensures the lowest deep power-down current.

4. Agand Ay at Vy_ provide device manufacturer codes in x8 and x16 modes respectively. Ag and As at Vi4 prowde device ID
codes in x8 and x16 modes respectively. All other addresses are set to zero.

5. Commands for erase, data write, or lock-block operations can only be completed successfully when Vpp = Vppm or
Vep = VepHa.

6. While the WSM is running, RY/BY# stays at VoL until all operatlons are complete RY/BY# goes to Von when the WSMis
not busy or in erase suspend mode.

7. RY/BY# may be at VoL while the WSM is busy performmg various operatlons (for example, a Status Reglster read during a
write operation). o

8. The 28F016XS shares an identical device identifier with the 28F016XD.

9. CEo-1# at VL is defined as both CEo# and CE1# low; and CEo-# at V|4 is defined as either CEg# or CE1# high.

10. Addresses are latched on the rising edge of CLK in conjunction with ADV# low. Address Ay = 0 selects the even bank and

1

A1 = 1 selects the odd bank, in both byte-wide mode and word-wide mode device configurations.

12 | ADVANCE INFORMATION

n
l nU ® 28F016XS Flash Memory

4.3 28F008SA—Compatible Mode Command Bus Definitions

First Bus Cycle Second Bus Cycle
Command Notes | Oper | Addr | Data® | Oper | Addr | Data®

Read Array Write X xxFFH Read AA . AD
Intelligent Identifier 1 Write X xx90H Read 1A ID
Read Compatible Status Register 2 Wirite X XX70H Read X | csrp
Clear Status Register 3 Write X xx50H ‘
Word/Byte Write Write X xx40H Write WA WD
Alternate Word/Byte Write Write X xx10H Write WA WD
Block Erase/Confirm Write X xx20H Write BA xxDOH
Erase Suspend/Resume Write X xxBOH Write X xxDOH

ADDRESS DATA

AA = Array Address AD = Array Data

BA = Block Address . CSRD=CSR Data

IA = Identifier Address ID = Identifier Data

WA = Write Address WD = Write Data

X =Don't Care

NOTES:

1. Following the Intelligent Identifier command, two read operations access the manufacturer and device signature codes.

2. The CSR is automatically available after device enters data write, erase, or suspend operations.

3. Clears CSR.3, CSR.4 and CSR.5. Also clears GSR.5 and all BSR.5, BSR.4 and BSR.2 bits. See Status Register
definitions.

4. The upper byte of the data bus (Dg-15) during command writes is a “Don’t Care” in x16 operation of the device.

ADVANCE INFORMATION 118

28F016XS Flash Memory I ntel ®

44 28F016XS—Enhanced Command Bus Definitions

First Bus Cycle Second Bus Cycle
Command | Notes | Oper | Addr | Data® | Oper | Addr | Data®
Read Extended Status Register 1 Write | X xx71H Read RA -GSRD
. : o . - v . . | | BsRD
Lock Block/Confirm™ = | Write X | xx77H | Wiite BA | xxDOH
Upload Status Bits/Confirm 2 Wiite || X xx97H | -Write X xxDOH
Device Configuration =~ ~ 1 3 | Wrte | X Xx96H | Write X DCCD
ADDRESS ’ o DATA
BA = Block Address ~ AD = Array Déta DCCD = Device Configuration Code Data
RA = Extended Register Address BSRD = BSR Data '
WA Write Address GSRD = GSR Data
X =Don’t Care
NOTES:
1. RA can be the GSR address or any BSR address. See Flgures 4 and 5 for Extended Status Register memory maps.
2. Upon device power-up, all BSR lock-bits come up locked. The Upload Status Bits command must be written to reflect the
actual lock-bit status.
3. This command sets the SFI Configuration allowing the device to be optimized for the specific sytem operating frequency.
4. The upper byte of the Data bus (Dg-15) during command writes is a “Don’t Care” in x16 operation of the device.

114 ADVANCE INFORMATION

intel.

45 Compatible Status Register

28F016XS Flash Memory

| wsms | Ess | Es DWS

VPPS R R R

7 6 5 4

CSR.7 = WRITE STATE MACHINE STATUS
1 = Ready
0 = Busy

CSR.6 = ERASE-SUSPEND STATUS
1 = Erase Suspended
0 = Erase In Progress/Completed

CSR.5 = ERASE STATUS
1 = Error In Block Erasure
0 = Successful Block Erase

CSR.4 = DATA-WRITE STATUS
1 = Error in Data Write
0 = Data Write Successful

CSR.3 = Vpp STATUS
1 = Vpp Error Detect, Operation Abort
0 = Vpp OK

NOTES:

RY/BY# output or WSMS bit must be checked to
determine completion of an operation (Erase,
Erase Suspend, or Data Write) before the
appropriate Status bit (ESS, ES or DWS) is
checked for success.

If DWS and ES are set to “1” during an erase
attempt, an improper command sequence was
entered. Clear the CSR and attempt the
operation again.

The VPPS bit, unlike an A/D converter, does not
provide continuous indication of Vpp level. The
WSM interrogates Vpp's level only after the Data
Write or Erase command sequences have been
entered, and informs the system if Vpp has not
been switched on. VPPS is not guaranteed to
report accurate feedback between Vpp «(max)
and Vppy4(min), between Vppy(max) and
Vppna(min), and above Vppps(max).

CSR.2-0 = RESERVED FOR FUTURE ENHANCEMENTS
These bits are reserved for future use; mask them out when polling the CSR.

ADVANCE INFORMATION

28F016XS Flash Memory

4.6 Global Status Register

wsMs | oss | pos | R

7 6 5 4

GSR.7 = WRITE STATE MACHINE STATUS
1 = Ready
0 = Busy

GSR.6 = OPERATION SUSPEND STATUS
1 = Operation Suspended
0 = Operation in Progress/Completed

GSR.5 = DEVICE OPERATION STATUS
1 = Operation Unsuccessful
0 = Operation Successful or Currently
Running

NOTES:

RY/BY# output or WSMS bit must be checked to
determine completion of an operation (Block
Lock, Suspend, Upload Status Bits, Erase or
Data Write) before the appropriate Status bit
(OSS or DOS) is checked for success.

GSR.4-0 = RESERVED FOR FUTURE ENHANCEMENTS
These bits are reserved for future use; mask them out when polling the GSR.

116

ADVANCE INFORMATION

intel.

28F016XS Flash Memory

4.7 Block Status Register:
| B | LS BOS R R VPPS v | R
7 6 5 4 3 2 1 0
NOTES:

BSR.7 = BLOCK STATUS
1 = Ready
0 = Busy

BSR.6 = BLOCK LOCK STATUS
1 = Block Unlocked for Write/Erase
0 = Block Locked for Write/Erase

BSR.5 = BLOCK OPERATION STATUS
1 = Operation Unsuccessful
0 = Operation Successful or
Currently Running

BSR.2 = Vpp STATUS
1 = Vpp Error Detect, Operation Abort
0 = Vpp OK

BSR.1 = Vpp LEVEL
1 = Vpp Detected at 5.0V + 10%
0 = Vpp Detected at 12.0V + 5%

RY/BY# output or BS bit must be checked to
determine completion of an operation (Block
Lock, Suspend, Erase or Data Write) before the
appropriate Status bits (BOS, BLS) is checked
for success.

BSR.1 is not guaranteed to report accurate
feedback between the Vppyy and Vppy, voltage
ranges. Writes and erases with Vpp between
VppLK(maX) and VPPH1 (min), between
Vppni(max) and Vppyp(min), and above
Vppra(max) produce spurious results and should
not be attempted.

BSR.4,3,0 = RESERVED FOR FUTURE ENHANCEMENTS
These bits are reserved for future use; mask them out when polling the BSRs.

ADVANCE INFORMATION

117

n
28F016XS Flash Memory Int6| ®
4.8 Device Configuration Code
R | R | sFfe SFI1 sslo | R | R | R]
7 6 5 4 3 2 1 0

DCC.5-DCC.3 = SFI CONFIGURATION
(SFI2-SF10)
001 = SFI Configuration 1
010 = SFI Configuration 2
011 = SFI Configuration 3
100 = SFI Configuration 4
(Default)

DCC.7-6,2-0 = RESERVED FOR FUTURE ENHANCEMENTS

These bits are reserved for future use; mask them out when reading the Device Configuration Code.
Set these bits to “0” when writing the desired SFI Configuration to the device.

NOTES:

Default SFI Configuration on power-up or return
from deep power-down mode is 4, allowing
system boot from the 28F016XS at any
frequency up to the device's maximum
frequency. Undocumented combinations of
SFI2-SFI0 are reserved by Intel Corporation for
future implementations and should not be used.

4.9 SFI Configuration Table

SFI 28F016XS-15 28F016XS-20 28F016XS-25
Configuration Notes Frequency (MHz) Frequency (MHz) Frequency (MH2)

4 1 66 (and below) 50 (and below) 40 (and below)

3 50 (and below) 37.5 (and below) 30 (and below)

2 33 (and below) 25 (and below) 20 (and below)

1 16.7 (and below) 12.5 (and below) 10 (and below)

NOTE:

1. Default SFI Configuration after power-up or return from deep power-down mode via RP# low.

118

ADVANCE INFORMATION

]
!ntel ® 28F016XS Flash Memory

5.0 ELECTRICAL SPECIFICATIONS

NOTICE: This datasheet contains information on

products in the sampling and initial production
: : * phases of development. The specifications are -

5.1 Absolute Maximum Ratings subject to change without notice. Verify with your

. . . local Intel Sales office that you have the latest
Temperature Under Bias 0°C to +80°C datasheet before finalizing a design.

................... ° +125°
Sto‘rage Temperature —65°Cto +125 C_ *WARNING: Stressing the device. beyond the

“Absolute Maximum Ratings” may cause
permanent damage. These are stress ratings
only. Operation - beyond the “Operating
Conditions” is. not recommended and extended
exposure beyond the "Operating Conditions" may
affect device reliability.

Vee = 3.3V + 0.3V Systems

Symbol Parameter Notes | Min | Max | Units| Test Conditions
Ta Operating Temperature, Commercial 1 0 70 °C | Ambient Temperature
Vce. | Vec with Respect to GND 2 =02 70 | 'V

Vpp | Vpp Supply Voltage with Respectto GND | 2,3 | -0.2 | 14.0 \
Vv Voltage on any Pin (except Ve, Vpp) With | 2,5 | =0.5 | Ve \%

Respect to GND +0.5
| Current into any Non-Supply Pin 5 +30 | mA
loutr | Output Short Circuit Current 4 100 | mA

Vce = 5.0V £ 0.5V Systems

Symbol Parameter Notes | Min | Max | Units Test Conditions
Ta Operating Temperature, Commercial 1 0 70 °C | Ambient Temperature
Vee V¢ with Respect to GND 2 =02 7.0 \Y
Vpp Vpp Supply Voltage with Respectto GND | 2,3 | -0.2 | 14.0 \Y
\Y Voltage on any Pin (except Ve, Vpp) With | 2,5 | =20} 7.0 \Y
Respect to GND
| Current into any Non-Supply Pin 5 +30 | mA
lout Output Short Circuit Current 4 100 | mA

NOTES:
1. Operating temperature is for commercial product defined by this specification.

2. Minimum DC voltage is —0.5V on input/output pins. During transitions, this level may undershoot to —2.0V for periods <20
ns. Maximum DC voltage on input/output pins is V¢ +0.5V which may overshoot to V¢ +2.0V for periods <20 ns.

3. Maximum DC voltage on Vg, may overshoot to +14.0V for periods <20 ns.
4. Output shorted for no more than one second. No more than one output shorted at a time.
5. This specification also applies to pins marked “NC.”

ADVANCE INFORMATION 119

28F016XS Flash Memory

5.2 Capacitance

intel.

For a 3.3V + 0.3V System:
Symbol Parameter Notes | Typ | Max | Units Test Conditions
Cin Capacitance Looking into an 1 6 8 pF | Ta =25°C,f=1.0 MHz
Address/Control Pin
Cour Capacitance Looking into an 1 8 12 pF | Ta =25°C,f=1.0 MHz
Output Pin
CLoap |Load Capacitance Driven by 1 50 pF | For the 28F016XS-20
. Outputs for Timing Specifications and 28F016XS-25
For 5.0V + 0.5V System:
Symbol Parameter Notes | Typ | Max | Units Test Conditions
Cin Capacitance Looking into an 1 6 8 pF | Ta=25°C, f=1.0 MHz
Address/Control Pin
Cout Capacitance Looking into an 1 8 12 pF |Ta=25°C,f=1.0 MHz
Output Pin
CLoap |Load Capacitance Driven by 1 100 pF | For the 28F016XS-20
Outputs for Timing Specifications
30 pF | For the 28F016XS-15
NOTE:

1. Sampled, not 100% tested. Guaranteed by design.

2. To obtain iBIS models for the 28F016XS, please contact your local Intel/Distribution Sales Office.

120

ADVANCE INFORMATION

o
E ntel ® 28F016XS Fiash Memory

5.3 Transient Input/Output Reference Waveforms

C
20 “ 20
INPUT TEST POINTS OUTPUT
0.8 I 0.8
J)

AC test inputs are driven at Vo, (2.4 VTTL) for a Logic “1” and V¢, (0.45 VTTL) for a Logic “0.” Input timing begins at V,;
(2.0 VTTL) and V,_(0.8 VTTL). Output timing ends at V,; and V. Input rise and fall times (10% to 90%) <10 ns.

24

0.45

0532_07

Figure 7. Transient Input/Output Reference Waveform (V¢¢ = 5.0V = 0.5V)
for Standard Testing Configuration(1)

3.0 I
P2J

INPUT 16 ¢————TESTPOINTS ——p ¥ 1.5 OUTPUT
0.0 5

0532_08

AC test inputs are driven at 3.0V for a Logic “1” and 0.0V for a Logic “0.” Input timing begins, and output timing ends, at 1.5V.
Input rise and fall times (10% to 90%) <10 ns.

Figure 8. Transient Input/Output Reference Waveform (V¢ = 3.3V = 0.3V)
High Speed Reference Waveform(® (V¢e = 5.0V + 0.5V)

NOTES:

1. Testing characteristics for 28F016XS-20 at 5V V.
2. Testing characteristics for 28F016XS-15 at 5V V¢ and 28F016XS-20/28F016XS-25 at 3.3V V.

ADVANCE INFORMATION 121

28F016XS Flash Memory

54 DC Characteristics

Vg = 3.3V £ 0.3V, Ty = 0°C to +70°C

intel.

Symbol

Parameter

Notes

Typ

Max

Units

Test Conditions

Input Load Current

1

+1

A

Vee = Voo Max,
VIN = VCC or GND

Output Leakage
Current

+10

HA

VCC = Vcc Max,
VOUT = Vcc or GND

Vcc Standby
Current

1,5

70

130

A

VCC = VCC Max,

CE#, CE#, RP# =V £

. 0.2v

BYTE#, WP# = Vee £ 0.2V
or GND + 0.2V

mA

VCC = VCC Max,
CEo#, CE-'#, RP# = V|H
BYTE#, WP# =V, or V.

lcep

Ve Deep
Power-Down
Current

A

RP# =GND £ 0.2V
BYTE# = Vg £ 0.2V or
GND = 0.2V

lccr!

Ve Word/Byte
Read Current

1,45

85

mA

Vee = Vee Max

CMOS: CE# ,CE# = GND
+ 0.2V

BYTE#=GND = 0.2V or
VCC + 0.2V

Inputs = GND + 0.2V or V¢
+0.2V

4-Location Access
Sequence: 3-1-1-1
(clocks)

f=25 MHZ, 'OUT =0mA

Iccr?

Ve Word/Byte
Read Current

114’
5,6

60

75

mA

VCC = Vcc Max

CMOS: CE#, CE# =GND
+ 0.2V

BYTE# = GND + 0.2V or
Vcc + 0.2V

Inputs = GND + 0.2V or V¢
+ 0.2V

4-Location Access
Sequence: 3-1-1-1
(clocks)

f= 16 MHZ, IOUT =0 mA

122

ADVANCE INFORMATION

intgl.

5.4

Vee =3.3V £ 0.3V, Ty = 0°C to +70°C

DC Characteristics (Continued)

28F016XS Flash Memory

Symbol Parameter Notes | Min | Typ | Max | Units Test Conditions
lecw Vge Write Current 1,6 8 12 mA | Word/Byte Write in Progress
Vpp = 12.0V + 5%
8 17 mA | Word/Byte Write in Progress
Vpp =5.0V £ 10%
lcce V¢ Block Erase 1,6 6 12 mA | Block Erase in Progress
Current Vpp =12.0V £ 5%
9 17 mA | Block Erase in Progress
Vpp =5.0Vx+10%
ICCES VCC Erase 1,2 3 6 mA CEo#, CE1# = VIH
Suspend Current Block Erase Suspended
Ipps Vpp Standby/Read 1 +1 | £10 PA | Vpp<Vee
lppR Current 30 200 pA Vep > Ve
IppD Vpp Deep Power- 1 0.2 5 HA RP# = GND + 0.2V
Down Current
lppw Vpp Write Current 1,6 10 15 mA | Vpp=12.0V £ 5%
Word/Byte Write in Progress
15 25 mA | Vpp =5.0V £ 10%
Word/Byte Write in Progress
IPPE Vpp Erase Current 1,6 4 10 mA Vpp =12.0V £ 5%
Block Erase in Progress
14 20 mA | Vpp=5.0V = 10%
Block Erase in Progress
lppes Vpp Erase 1 30 | 50 BA | Vep =VppH1 or VepHz: Block
Suspend Current Erase Suspended
Vi Input Low Voltage 6 -0.3 0.8 Vv
Vi Input High Voltage 6 2.0 Vee \'
+0.3
VoL Output Low 6 0.4 Vv Vee = Ve Min and
Voltage lop =4 mA
V0H1 Output ngh 6 2.4 \ lOH =-2.0mA
Voltage Ve = Ve Min
V0H2 VCC \) |OH =-100 |JA
-0.2 VCC = VCC Min

ADVANCE INFORMATION

123

28F016XS Flash Memory

intel.

54 DC Characteristics (Continued)
Vg =3.3V + 0.3V, Ty =0°C to +70°C
Symbol Parameter Notes | Min | Typ | Max | Units Test Conditions
Vppu(Vpp Erase/Write 3,6 0.0 15 \'
Lock Voltage
VppH1 Vpp during 3 45 | 50 | 55 Vv
Write/Erase '
Operations
VpepHe Vpp during 3 114 | 12.0 | 12.6 \
Write/Erase
Operations
Viko V¢ Erase/Write 20 \
Lock Voltage
NOTES:

1.

o

All currents are in RMS unless otherwise noted. Typical values at Vg = 3.3V, Vpp =12.0Vor 5.0V, T= 25°C These
currents are valid for all product versions (package and speeds).

loces is specified with the device de-selected. If the device is read while in erase suspend mode, current draw is the sum of

lcces and lggp.

Block erases, word/byte writes and lock block operations are inhibited when Vpp < Vpp, « and not guaranteed in the ranges

between Vpp c(max) and Vppy4(min), between Vppyyy (Max) and Vppy,(min) and above Vppy,(max).
Automatic Power Savings (APS) reduces locg to 3 mA typical in static operation.

CMOS Inputs are either Vg + 0.2V or GND + 0.2V. TTL Inputs are either V,_or V.

Sampled, but not 100% tested. Guaranteed by design.

124

'ADVANCE INFORMATION

=
"Tt€| ® 28F016XS Flash Memory

5.5 DC Characteristics
Vee = 5.0V + 0.5V, T, = 0°C to +70°C

Symbol Parameter Notes | Min | Typ [Max | Units Test Conditions
Iu Input Load Current 1 +1 VA Vee = Vg Max
VIN = VCC or GND
o Output Leakage 1 +10 LA Ve = Vee Max
Current Vour = Ve or GND
lccs Vce Standby 1,5 70 | 130 PA | Vgg =Vgc Max
Current CE#, CE#, RP#=Vc
0.2v
BYTE#, WP# = V¢ + 0.2V
or GND + 0.2V -

2 4 mA VCC = VCC Max
CEo#, CE1#, RP# = VlH
BYTE#, WP# =V or Vi
lcep Vcc Deep Power- 1 2 5 HA RP# = GND £ 0.2V
Down Current BYTE# = Vo 0.2V or
GND + 0.2V '
lcer? V¢ Read Current 1,45 120 | 175 mA | Vgg = Ve Max,
CMOS: CEg# ,CE # =GND
+ 0.2V
BYTE# = GND + 0.2V
or Veg £ 0.2V
Inputs = GND + 0.2V or
Vo 0.2V
4-Location Access
Sequence: 3-1-1-1
(clocks)
f=33 MHZ, IOUT =0mA
lccr? V¢ Read Current 1,4, 105 | 150 mA | Vge =Vgc Max,
5,6 CMOS: CE#, CE # =GND
+ 0.2V
BYTE#=GND + 0.2V
or Vcc + 0.2V
Inputs = GND + 0.2V or
Vee£0.2V
4-Location Access
Sequence: 3-1-1-1
(clocks)
f=20 MHZ, IOUT =0mA

ADVANCE INFORMATION 125

28F016XS Flash Memory I nU ®

5.5 DC Characteristics (Continued)
Vee =5.0V £ 0.5V, Tp = 0°C to +70°C _ _
Symbol Parameter Notes | Min | Typ | Max | Units Test Conditions

lcow Ve Write Current © 1,6 25 35 mA Word/Byte in Progress
Vpp = 12.0V £ 5%

25 40 mA | Word/Byte in Progress
Vpp = 5.0V + 10%

lcce Vcc Erase 1,6 - 18 25 mA Block Erase in Progress
Suspend Current Vpp = 12.0V £ 5%

20 30 mA Block Erase in Progress
. Vpp = 5.0V + 10%

lcces Vcc Block Erase 1,2 5 10 mA CEy#, CE# =V

Current Block Erase Suspended
Ippg Vpp Standby/Read 1 +1 | £10 A Vpp £ Vee
lppg | Current - 30 | 200 PA | Vpp>Vce
Ippp Vpp Deep Power- 1 0.2 5 pA | RP#=GND 0.2V
Down Current
Ippwy Vpp Write Current 1,6 7 | 12 mA | Vpp=12.0V 5%

Word/Byte Write in Progress
17 22 mA | Vpp=5.0V + 10%
Word/Byte Write in Progress
IppE Vpp Block Erase 1,6 5 10 mA | Vpp =120V +5%
Current Block Erase in Progress
' ' 16 | 20 | mA | Vpp=5.0vV£10%

. Block Erase in Progress
IPPES Vpp Erase 1 30 50 IJA VPP = VPPH1 or Vpsz, Block

Suspend Current Erase Suspended
Vi Input Low Voltage 6 -0.5 0.8 \
ViH Input High Voltage 6 2.0 Vee \'
+0.5
VoL Output Low 6 0.45 \ Vee = Ve Min
Voltage lop =5.8 mA
Voul Output High 6 0.85 \" loy=-2.5mA
Voltage Voo Vee = Ve Min
V0H2 VCC IOH =-100 pA
-0.4 Vee = Ve Min

126 ADVANCE INFORMATION

n
|n'te| ® 28F016XS Flash Memory

5.5 DC Characteristics (Continued)
Vge = 5.0V £ 0.5V, Tp = 0°C to +70°C

Symbol Parameter Notes | Min | Typ | Max | Units Test Conditions

VppLk Vpp Write/Erase 3,6 0.0 1.5 \
Lock Voltage

VppH1 Vpp during 4.5 5.0 5.5 Vv
Write/Erase
Operations

VPPH2 VPP during 1.4 12.0 12.6 \
Write/Erase
Operations

VLKO VCC Write/Erase 2.0 : \")
Lock Voltage

NOTES:

1.

o

All currents are in RMS unless otherwise noted. Typical values at Ve = 5.0V, Vpp = 12.0V or 5.0V, T = 25°C. These
currents are valid for all product versions (package and speeds) and are specified for a CMOS rise/fall time (10% to 90%) of
<5 ns and a TTL rise/fall time of <10 ns.

loces is specified with the device de-selected. If the device is read while in erase suspend mode, current draw is the sum of
loces and lecp, ‘

Block erases, word/byte writes and lock block operations are inhibited when Vpp < Vpp ¢ and not guaranteed in the ranges
between Vpp «(max) and Vppyy;(min), between Vppyy (Max) and Vppy,(min) and above Vppys(max).

Automatic Power Saving (APS) reduces Icg to 1 mA typical in static operation.

CMOS Inputs are either Vg + 0.2V or GND + 0.2V. TTL Inputs are either V,_or V.

Sampled, but not 100% tested. Guaranteed by design.

ADVANCE INFORMATION 127

-
28F016XS Flash Memory I ntel ®

5.6 Timing Nomenclature

All 3.3V system timihgsare measured from where signals cross 1.5V.

For 5.0V systems, use the standard JEDEC cross point definitions (sténdard testing) or from where signals
cross 1.5V (high speed testing). ‘

Each timing parameter consists of 5 characters. Some common examples are defined below:

teL o time(t) from CE# (E) going low (L) to CLK (C) going high (H)
tavcn time(t) from address (A) valid (V) to CLK (C) going high (H)
twhpx time(t) from WE# (W) going ‘high (H) to when the data (D) can become undefined (X)

Pin Characters Pin States
High
Low

Valid

Address Inputs
CLK (Clock)

Data Inputs

Data Outputs Driven, but Not Necessarily Valid
CE# (Chip Enable)

BYTE# (Byte Enable)

OE# (Output Enable)

WE# (Write Enable)

RP# (Deep Power-Down Pin)
RY/BY# (Ready Busy)

ADV# (Address Valid)

Ve at 4.5V Minimum

Ve at 3.0V Minimum

- High Impedance
Latched

mFIN|IXI<|F|XI

<|D|OD|S|Q|M|m|OjO]O|>

(4}
<

4]
<

128 ADVANCE INFORMATION

-
I ntel ® 28F016XS Flash Memory

5.7 AC Characteristics—Read Only Operations(1)
Veo =8.3V £ 0.3V, T, = 0°C to +70°C

Versions(® 28F016XS-20 28F016XS-25
Symbol Parameter Notes Min Max Min Max Units
fork CLK Frequency 7 50 40 MHz
tok CLK Period 20 25 ns
teH CLK High Time 6 8.5 o ns
toL CLK Low Time 6 85 - ns
toLeH CLK Rise Time 4 4 ns
toHoL CLK Fall Time 4 4 ns
teLeH CEy# Setup to CLK 6 25 - 36 ns
tyiLcH ADVi# Setup to CLK 20 - 25 ns
taveH Address Valid to CLK 20 25 ns
teHAX Address Hold from CLK 0 0 ns
tehvH ADV# Hold from CLK 0 0 ns
taLcH OE# Setup to CLK 20 25 ns
tcHav CLK to Data Delay 30 35 ns
1 teucn RP# High to CLK 480 480 ns
toHax Output Hold from CLK 2 6 , 6 ns
teLax CEyd# to Output Low Z 2,6 0 -0 ns
tenaz CEyi## High to Output High Z 2,6 30 30 ns
taLax OE# to Output Low Z 2 0 0 ns
teHaz OEi## High to Output High Z 2 30 ~ 30 ns
toH Output Hold from CEy# or OE# 6 0 0 ns
Change, Whichever Occurs First

ADVANCE INFORMATION 129

28F016XS Flash Memory

5.7 AC Characteristics—Read Only Operations(1) (Continued)

intel.

Vg = 5.0V 0.5V, Ty = 0°C to +70°C

Versions(3) 28F016XS-15(4) | 28F016XS-20(5)
Symbol Parameter Notes Min Max Min Max Units ‘
fork CLK Frequency 7 66 50 MHz
tork CLK Period 15 20 ns
toH CLK High Time 35 6 ns
toL CLK Low Time 35 6 ns .
toLcH CLK Rise Time - ns
tcHoL CLK Fall Time ns
teLcH CEyd# Setup to CLK 6 25 30 ns
tyen - | ADV# Setup to CLK 156 20 ns
tavon Address Valid to CLK 15 20 ns
toHAX Address Hold from CLK 0 ns
touvn | ADV# Hold from CLK ns
taLeH OE# Setup to CLK 15 20 ns
tenav CLK to Data Delay 20 30 ns
tpHcH RP# High to CLK 300 300 ns
toHax Output Hold from CLK 2 5 5 ns
teLax CExyé# to Output Low Z 2,6 0 -0 ns.
tenaz CEx# High to Output High Z 2,6 30 - 30 ns
taLax OE# to Output Low Z 2 0 0 ns
teHaz OEi# High to Output High Z 2 30 30 ns
ton Output Hold from CEy# or OE# 6 0 0 ns
Change, Whichever Occurs First :
NOTES:

See AC Input/Output Reference Waveforms for timing measurements.

1.
2. Sampled, not 100% tested. Guaranteed by design.
3.

Device speeds are defined as:

N o oM

15 ns at Vg = 5.0V equivalent to 20 ns at Voo = 3.3V

20 ns at Ve = 5.0V equivalent to 25 ns at Vg = 3.3V
See the high speed AC Input/Output Reference Waveforms.
See the standard AC Input/Output Reference Waveforms.
CEy# is defined as the latter of CE# or CE,# going low, or the first of CEy# or CE,# going high.
Page buffer reads are valid at any frequency up to the corresponding SFI Configuration setting of 2. Page buffer reads

above this frequency may produce invalid results and should not be attempted. See Section 4.9 for SFI Configuration
frequency settings.

130

ADVANCE INFORMATION

28F016XS Flash Memory

teieH

r -y

CH

CcL

CHCL

CLK

0532_09

Figure 9. CLK Waveform

CLK
|
|
|
——— [
ADDR I
i \
tCHAX !
g
|
S AN = M
7 -
t 1 CLK Periods
AVCH
= L0000 1000 ‘
I‘—' |
tvien tEHQz l—
CExt _\ teHH 7-
1 .
T GHQZ
teLcH ! ™ I
< teLax > !
OE# \ /L
| toLeH ton
touax | EVen odd Even Odd T
o SO DO
3 i AT
> »
tcHax teHav
0532_10
NOTE:
1. The 28F016XS can sustain an optimized burst access throughout the 28F016XS array assuming alternating bank
accesses; the length of the burst access is dictated by the control CPU or bus architecture.
Figure 10. Read Timing Waveform(1)
(SFI Configuration = 1, Alternate-Bank Accesses)
131

ADVANCE INFORMATION

28F016XS Flash Memory

CLK
‘AR
ADDR
7
tenax
1D
o Y VLA
x 3
» 2CLK Périods ———|
taveH
fe—
'VlﬁH teHazig| le—
t X
CExt -\ CHVH
x
f
)) feHez
tELGH R
ELQX
i
A
-
jfeToN] t
OH_
toLax Even Odd Even Odd bl
{00 H0E0C OB X0
A J A M-
>
tcHax tcHav
0532_11
NOTE:

1. The 28F016XS can sustain an optimized burst access throughout the 28F016XS array assuming alternating bank
accesses; the length of the burst access is dictated by the control CPU or bus architecture.

132

Figure 11. Read Timing Waveform(1)
(SFI Configuration = 2, Alternate-Bank Accesses)

ADVANCE INFORMATION

28F016XS Flash Memory

UL
0101010101011010101010MOI

H
H

|||||||||

|

il ﬂ(’l’lﬂm010!01010]0101

- [cHAX . | :
¥ 3 CLK Periods ' - !
taveH | | :
ADV# i
|
| | N
tvLcHi i | Haz
“h i | -
CEx;\ CHVH } |
| | i
2 i | N ‘_’GHOZ
teLcH ! I
teLax i |
| -
teL H | 1 T
| i ton,ff,_
toLak)S" Odd Note2 (Even | Odd Ngez
i : i ; —
—i i
tcHax | tcHay
0532_12
NOTES:
1. The 28F016XS can sustain an optimized burst access throughout the 28F016XS array assuming alternating bank

accesses; the length of the burst access is dictated by the control CPU or bus architecture.

2.

earlier. See AP-398 for further information.

Depending on the actual operation frequency, a consecutive alternating bank access can be initiated one clock period

Figure 12. Re

ad Timing Waveform(1)

(SFI Configuration = 3, Alternate-Bank Accesses)

ADVANCE INFORMATION

133

L]
28F016XS Flash Memory Int9I ®

U UUULUUL

7 ftonax

T

4 CLK Periods
tavel
ADV;\- Xxy
teLCH

ADD

e ==

=

teLax

OE#

| 0dd {Even | { Odd

DATA |

—vl J-toren | ‘; ! ‘teHax ! teHay |

NOTE:

1. The 28F016XS can sustain an optimized burst access throughout the 28F016XS array assuming alternating bank
accesses; the length of the burst access is dictated by the control CPU or bus architecture.

Figure 13. Read Timing Waveform(1)
(SFI Configuration = 4, Alternating Bank Accesses)

134 ADVANCE INFORMATION I

intel.

28F016XS Flash Memory

5.8 AC Characteristics for WE#—Controlled Write Operations(1)
Ve =3.3V £ 0.3V, Ty =0°C to +70°C
Versions 28F016XS-20 28F016XS-25

Symbol Parameter Notes | Min | Typ | Max | Min | Typ | Max | Unit

tavav Write Cycle Time 75 75 ns

typwn1,2 | Vpp Setup to WE# Going 3 100 100 ns
High

teHEL RP# Setup to CEx# Going 3,7 480 480 ns
Low

teLwL CEy# Setup to WE# Going 3,7 0 0 ns
Low

tAvWH Address Setup to WE# 2,6 60 60 ns
Going High :

tovwH Data Setup to WE# Going 2,6 60 60 ’ ns
High

twiwh WE# Pulse Width 60 60 ns

twHDX Data Hold from WE# High 2 5 5 ns

twHAX Address Hold from WE# 2 5 5 ns
High

tWHEH CEx# hold from WE# High 3,7 5 5 ns

tWHWL WE# Pulse Width ngh 15 15 ns

tamwL Read Recovery before 3 0 0 ns
Write

twHRL WE# High to RY/BY# 3 100 100 ns
Going Low

tRHPL RP# Hold from Valid 3 0 0 ns
Status Register (CSR,
GSR, BSR) data and
RY/BY# High

tPHWL RP# High Recovery to 3 480 480 ns
WE# Going Low

twHcH Write Recovery before 20 20 ns
Read

tquw 1,2 | Vpp Hold from Valid Status 3 0 0 us
Register (CSR, GSR, BSR)
Data and RY/BY# High

twhavl Duration of Word/Byte 3,4, 5 9 TBD 5 9 TBD | us
Write Operation 5,8

twhav2 Duration of Block Erase 34 0.6 1.6 20 0.6 1.6 20 sec
Operation

135

ADVANCE INFORMATION

=
28F016XS Flash Memory I nu ®

5.8 AC Characteristics for WE#—Controlled Write Operations(1) (Continued)
Ve = 5.0V £ 0.5V, Tp = 0°C to +70°C

Versions 28F016XS-15 28F016XS-20

‘Symbol © Parameter Notes | Min | Typ | Max | Min | Typ | Max | Unit

tavav Write Cycle Time 65 65 ns

typwn1,2 | Vep Setup to WE# Going 3 100 100 ns
High

tpHEL RP# Setup to CEy# Going 3,7 300 300 ns
Low

tELWL CEx# Setup to WE# Going 3,7 0 0 ns
Low

tAVWH Address Setup to WE# 2,6 50 50 ns
Going High

tovwH Data Setup to WE# Going 2,6 50. 50 ns
High ‘

twiwH WEH# Pulse Width 50 50 ns

twHDX Data Hold from WE# High 2 0 0 ns

twHAx Address Hold from WE# 2 5 5 ns
High

twHEH CEy# hold from WE# High 37 5 5 ns

twHWL WE# Pulse Width High 15 15 ns

taHwL Read Recovery before 3 0 0 ns
Write
Going Low

tRHPL RP# Hold from Valid 3 0 0 ns
Status Register (CSR,
GSR, BSR) data and
RY/BY# High

tpHWL RP# High Recovery to 3 300 300 ns
WE# Going Low

twHeH Write Recovery before 20 20 ns
Read

towwi 1,2 | Vep Hold from Valid Status 3 0 0 ys
Register (CSR, GSR, BSR)) '
Data and RY/BY# High

twhavl Duration of Word/Byte 3,4, 45 6 TBD | 45 6 TBD | ps
Write Operation 58

twhav2 Duration of Block Erase 3,4 0.6 1.2 20 06 | 1.2 20 sec
Operation

136 ADVANCE INFORMATION

L]
I ntel ® 28F016XS Flash Memory

NOTES:

. Read timings during write and erase are the same as for normal read.

Refer to command definition tables for valid address and data values.

Sampled, but not 100% tested. Guaranteed by design.

Write/Erase durations are measured to valid Status Register (CSR) Data.

Word/byte write operations are typically performed with 1 Programming Pulse.

Address and Data are latched on the rising edge of WE# for all command write operations.
CEy# is defined as the latter of CEy# or CE,# going low, or the first of CEy# or CE,# going high.

The TBD information will be available in a technical paper. Please contact Intel's Application Hotline or your local sales
office for more information.

PN O R OP

ADVANCE INFORMATION 137

28F016XS Flash Memory "Ttel ®
ClK
NOTE &
oon HERPERRe STROHIEe UMBALIT CERSRR SRR
S OOITOE HA0oooo, oo (o R
" RO ™ PO AR
s b o R ' READ COMPATILE
o b= tawm e : STATUSREGISTER DATA
OO, SR RO, oo, (Y7
o8, XXXV RO, M XXX 10909 0000IRERR5555500
I tavav) favwH twHax

ADVE
NOTE &

KR XK XK XKXKXKXRXK
R

/N N\ \

= /NS
NOTE4
'EuM."l = I"'WHEH .
"
OFN (G) v f
VHF fe— t v Y12 _/[je— 1 m;i_/_
WENW)
Vi
fwwn
, v twhox .
DATA(D/Q)V':——fH’Zm | w { O / 4 DIN ,‘ é DOUI’ E > 4 DIN s
v L—'I e, -
Rvmwm)vt: / :1\ /
trupt ""I
wrer :H —/- %\wm
L
RV o
VPPHZ ‘V V.V’V‘V’V.V’V’V’V’V’V’V"‘V‘V‘VeY Q . ’V"’V.V‘V"’V‘V.V‘V‘V.V’V‘V’V VYV
vt Vo ; :0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0¢ QO:O:Q:O:OOO:O:O:O.0.0:0:0:0:0.0:0’0:0
v, w1 NoTE? 7 OOAAR) AR
v BB o NN
NOTE 8
0532_14
NOTES:
1. This address string depicts Data Write/Erase cycles with corresponding verification via ESRD.
2. This address string depicts Data Write/Erase cycles with corresponding verification via CSRD.
3. This cycle is invalid when using CSRD for verification during data write/erase operations.
4. CEy# is defined as the latter of CE# or CE,# going low or the first of CE# or CE,# going high.
5. RP# low transition is only to show tpyp, ; not valid for above Read and Write cycles.
6. Data Write/Erase cycles are asynchronous; CLK and ADV# are ignored.
7. Vpp voltage during data write/erase operations valid at both 12.0V and 5.0V.
8. Vpp voltage equal to or below Vpp ¢ provides complete flash memory array protection.

Figure 14. AC Waveforms for WE#—Command Write Operations, .
lllustrating a Two Command Write Sequence Followed by an Extended Status Register Read

138

ADVANCE INFORMATION

intel.

28F016XS Flash Memory

5.9 AC Characteristics for CExi#—Controlled Write Operations(1)
Vg =3.3V + 0.3V, Ty = 0°C to +70°C
Versions 28F016XS-20 28F016XS-25

Symbol Parameter Notes | Min | Typ | Max | Min | Typ | Max | Unit

tavav Write Cycle Time 75 75 ns

typen1,2 | Vpp Setup to CEx# Going 3,7 100 100 ns
High

trrHwL RP# Setup to WE# Going 3 480 480 ns
Low

twieL WEH# Setup to CEx# Going 3,7 0 0 ns
Low

tavEH Address Setup to CEyi# 2,67 60 60 ns
Going High

toven Data Setup to CEy# Going 2,6,7 60 60 ns
High

teLEn CEy# Pulse Width 7 60 60 ns

teHDx Data Hold from CEy# High 27 10 10 ns

tenax Address Hold from CEy# 2,7 10 10 ns
High

tenwH WE hold from CEy# High 3,7 5 5 ns

teHEL CEy# Pulse Width High 7 15 15 ns

taHEL Read Recovery before 3 0 0 ns
Write

teHRL CEyi# High to RY/BY# 3,7 100 100 ns
Going Low

taHPL RP# Hold from Valid Status 3 0 0 ns
Register (CSR, GSR, BSR)
Data and RY/BY# High

tPHEL RP# High Recovery to 3,7 480 480 ns
CEx# Going Low

teneH Write Recovery before 20 20 ns
Read

towi1,2 | Vpp Hold from Valid Status 3 0 0 us
Register (CSR, GSR, BSR)
Data and RY/BY# High

tenavl Duration of Word/Byte 3,458 5 9 TBD 5 9 TBD | ps
Write Operation

tenqv2 Duration of Block Erase 3,4 0.6 1.6 20 0.6 1.6 20 sec
Operation

ADVANCE INFORMATION

139

n
28F016XS Flash Memory ' | n'|'9| ®

5.9 AC Characteristics for CEx#—Controlled Write Operations(1) (Continued)
Ve = 5.0V £ 0.5V, Tp = 0°C to +70°C E

Versions : . 28F016XS-15 :28F016XS-20

Symbol Parameter Notes. | Min | Typ | Max | Min | Typ | Max | Unit

tavav Write Cycle Time ‘ 60 60 ns

tvpen1,2 | Vpp Setup to CEx# Going 3,7 100 100 - ns
High

teHwL RP# Setup to WE# Going 3 300 -300 ‘ ns
Low

twier WE# Setup to CEy# Going 3,7 0 0 ns
Low

taven Address Setup to CExi# 2,6,7 45 45 ns
Going High

toven Data Setup to CEy# Going 2,6,7 45 45 ' ns
High '

teLEn CEy# Pulse Width 7 45 45 C ns

teHDX Data Hold from CEy# High 2,7 0 0 ns

tenax Address Hold from CEyx# 2,7 - 5 5 ns
High : :

tEHWH WE hold from CEyi# High 37 5 : 1 5 ns

teHEL CEy# Pulse Width High 7 15 : 15 ns

tGHEL Read Recovery before 3 0 0 ns
Write i

teHRL .CEx# High to RY/BY# 3,7 100 100 ns
Going Low

tRHPL RP# Hold from Valid Status 3 0 =0 | ns
Register (CSR, GSR, BSR) .
Data and RY/BY# High

tpHEL RP# High Recovery to 3,7 300. 300 | ns
CExi# Going Low .

teHcH Write Recovery before 20 1 20 | ns
Read

towr1.2 | Vpp Hold from Valid Status 3 0 1-0 . Us
Register (CSR, GSR, BSR) P
Data and RY/BY# High

tenav1 .Duration of Word/Byte 3458 | 45 6 TBD | 45 6 | TBD | ps
Write Operation

tEHQvé Duration of Block Erase 34 0.6 1.2 20 0.6 12 |20 séc
Operation .

140 ADVANCE INFORMATION

intel.

NOTES:

©ONOOH LN~

Read timings during write and erase are the same as for normal read.

Refer to command definition tables for valid address and data values.

Sampled, but not 100% tested. Guaranteed by design.

Wirite/Erase durations are measured to valid Status Register (CSR) Data.

Word/byte write operations are typically performed with 1 Programming Pulse.

Address and Data are latched on the rising edge of WE# for all command write operations.
CEyit is defined as the latter of CE# or CE,# going low, or the first of CE# or CE,# going high.

The TBD information will be available in a technical paper. Please contact Intel’s Application Hotline or your local sales
office for more information.

ADVANCE INFORMATION

28F016XS Flash Memory

141

-
28F016XS Flash Memory l nU ®

CK
NOTE 6

Vi NOOAXXXXXXOT AKX XXX A /
o0 LR ™ AR, AN
T] e oo
VH OOOOOOOOOOONE OOOOXXXXX Noms QOO OXOONNNAXX/
‘Zﬁf‘v‘lm 00000005 SR 20000000, BRI
avav T tave e
oV V’V’V’V’V.V.V’V.V V’V.V’V.V‘V’V.V".V.V’V.V"‘V’V’
oy SRR
. L/ ___/ ___/—
WEE(W)
Vi,
twet o] - o fe-tem
v [ey
OEX () v L /
— 1&‘” 2 1
e vam Y BV VN Vo Ve
v
NOTE4 L Ya
toven | eox
DATA(D/Q):H#— Oy J_D:\ { on) {s Dour E > /-;\—
L PHEL =¥ / - / \ / \. /
I' L_’I T
v, £
RY/BYS R) v
! RHpL <->|
RPE(P) :: \NOTE ¢
' —
Vi ATTXOIXOTIXOOIOOE | XXX T YT XYY
Vi .0.0.0’0.0‘0.0.0.0.0.0’0.0.0.0.0&0 0,0’0.0.0.0.0’0.0.0.0’0.0.0‘0.0.0’0’0’0
e RS F— e RorE7] OKKRRRRIK XXX KKK
e A o B
NOTE8
0532_15
NOTES:
1. This address string depicts Data Write/Erase cycles with corresponding verification via ESRD.
2. This address string depicts Data Write/Erase cycles with corresponding verification via CSRD.
3. This cycle is invalid when using CSRD for verification during data write/erase operations.
4. CEy# is defined as the latter of CE# or CE# going low or the first of CEg# or CE# going high.
5. RP# low transition is only to show tzp ; not valid for above Read and Write cycles.
6. Data Write/Erase cycles are asynchronous; CLK and ADV# are ignored.
7. Vpp voltage during data write/erase operations valid at both 12.0V and 5.0V.
8. Vpp voltage equal to or below Vpp i provides complete flash memory array protection.
PP

Figure 15. AC Waveforms for CEy#—Controlled Write Operations,
lllustrating a Two Command Write Sequence Followed by an Extended Status Register Read

142 ADVANCE INFORMATION

intal.

5.10 Power-Up and Reset Timings

28F016XS Flash Memory

Vo POWER-UP

RP# /

(P) 5.0V
as5v
3.3V ¢
3.0V 5VPH
Y :
cc ov < >
(@3V.5V) _/" —> '
tavpH 'pLsv
053218
NOTE:
For read timings following reset see Section 5.7.
Figure 16. V¢ Power-Up and RP# Reset Waveforms
Symbol Parameter Notes Min Max Unit
tpLsy RP# Low to V¢ at 4.5V (Minimum) 2 0. . us
tpLav RP# Low to V¢ at 3.0V (Minimum) 2 0 Us
tsvpH V¢ at 4.5V Minimum) to RP# High 1 2 us
tavpH Vg at 3.0V (Minimum) to RP# High 1 2 us
NOTES:

1. The tgypyandlor typy times must be strictly followed to guarantee all other read and write specifications for the 28F016XS.
2. The power supply may start to switch concurrently with RP# going low.

ADVANCE INFORMATION

143

28F016XS Flash Memory

5.11 Erase and Word/Byte Write Performance(3.4)

Ve = 3.3V £ 0.3V, Vpp = 5.0V £ 0.5V, To = 0°C to +70°C

intel.

Symbol Parameter Notes | Min | Typ(1) | Max | Units Test Conditions
twhrn1A | Byte Write Time 2,5 8D 29 TBD us
twrrn1B | Word Write Time 2,5 8D 35 TBD us
twHre2 | Block Write Time 2,5 TBD 3.8 TBD sec | Byte Write Mode
twhre3 | Block Write Time 2,5 TBD 2.4 TBD sec | Word Write Mode
Block Erase Time 2,5 TBD 2.8 TBD sec
Erase Suspend 1.0 12 75 ps
Latency Time to Read
Ve = 3.3V 0.3V, Vpp = 12.0V £ 0.6V, T, = 0°C to +70°C
Symbol Parameter Notes Min | Typ(? | Max Units Test Conditions
twhrH1 Word/Byte Write Time 2,5 5. 9 TBD us
twhrn2 | Block Write Time 2,5 TBD 1.2 4.2 sec | Byte Write Mode
twurnd | Block Write Time 2,5 TBD 0.6 2.0 sec | Word Write Mode
Block Erase Time 2 0.6 1.6 20 sec
Erase Suspend 1.0 9 55 s
Latency Time to Read
144

ADVANCE INFORMATION

L]
IntGI) 28F016XS Flash Memory

Veg = 5.0V £ 0.5V, Vpp = 5.0V £ 0.5V, T, = 0°C to +70°C

Symbol Parameter Notes | Min | Typ(" | Max | Units Test Conditions
twrurn1A | Byte Write Time 2,5 TBD 20 TBD us
twirn1B | Word Write Time 2,5 TBD 25 TBD ys
twirn2 | Block Write Time 2,5 TBD 28 TBD sec | Byte Write Mode
twhrn3 | Block Write Time 25 TBD 1.7 TBD sec | Word Write Mode
Block Erase Time 2,5 TBD 2.0 TBD sec
Erase Suspend 1.0 9 55 us
Latency Time to Read

Veg = 5.0V + 0.5V, Vpp = 12.0V + 0.6V, T, = 0°C to +70°C

Symbol Parameter Notes Min | Typ() | Max | Units Test Conditions
twhrH1 Word/Byte Write Time 2,5 4.5 6 TBD Hs
twHRH2 Block Write Time 2,5 TBD 0.8 42 | sec | Byte Write Mode
twurn3 | Block Write Time 2,5 TBD 0.4 2.0 sec | Word Write Mode
Block Erase Time 2 0.6 12 20 sec
Erase Suspend 1.0 7 40 ps
Latency Time to Read
NOTES:
1. 25°C, and nominal voltages.
2. Excludes system-level overhead.
3. These performance numbers are valid for all speed versions.
4. Sampled, but not 100% tested. Guaranteed by design.
5.

The TBD information will be available in a technical paper. Please contact Intel's Application Hotline or your local sales
office for more information. .

| ADVANCE INFORMATION 145

- .
28F016XS Flash Memory I nU ®

6.0 MECHANICAL SPECIFICATIONS

o SEEDETALA
F
S

DETAILB . DETAILA

) s » % Qﬁ:{%<o
»ble t

0532_19

Figure 17. Mechanical Specifications of the 28F016XS 56-Lead TSOP Type | Package

Family: Thin Small Out-Line Package
Symbol _ Millimeters , Notes
“Minimum - ~ Nominal Maximum

A v 1.20
A1 . 0.50 o

A2 0965 0.995 1.025

0.100 0.150 0.200

c 0.115 | . 0125 0.135

D1 18.20 18.40 18.60

E 13.80 14.00 14.20

e 0.50

D 19.80 20.00 20.20

L 0500 0.600 0.700
N 56

@ 0° 3° 5°

Y R 0.100

z 0.150 0.250 0.350

146 ADVANCE INFORMATION

intal.

28F016XS Flash Memory

DEVICE NOMENCLATURE AND ORDERING INFORMATION

Product line designator for all Intel Flash products

——
b L
Package Period of Maximum CLK
E =TSOP Input Frequency (ns)
Device Type
S = Synchronous Pipelined
Interface
0532_20
Valid Combinations
Option Order Code Vee =3.3V£0.3V, Vce = 5.0V £ 10%, Vee = 5.0V £ 10%,
50 pF load, 100 pF load 30 pF load
1.5V 1/O Levels(!) TTL 1/O Levels(1) 1.5V 1/O Levels(!)
1 E28F016XS15 28F016XS-20 28F016XS-15
2 E28F016XS20 28F016XS-25 - 28F016XS-20

ADVANCE INFORMATION

147

28F016XS Flash Memory

intel.

ADDITIONAL INFORMATION

Order Number

Document/Tool

297372 16-Mbit Flash Product Family User’é Manual
292165 AB-62, “Compiling Optimized Code for Embedded Flash RAM Memories”
292126 AP-360, “16-Mbit Flash Product Family Software Drivers,
28F016SA/SV/XD/XS”
292147 AP-398, "Designing with the 28F016XS"
202146 — AP-600, "Performance Benefits and Power/Energy Savings of 28F016XS
Based System Designs"
292163 AP-610, “Flash Memory In-System Code and Data Update Techniques”
297500 *Interfacing the 28F016XS to the i960® Microprocessor Family"
297504 "Interfacing the 28F016XS to the Intel486™ Microprocessor Family"
294016 ER-33, “ETOX™ Flash Memory Technology—Insight to Intel’s Fourth
Generation Process Innovation”
- 297508 FLASHBuilder Utility
Contact Intel/Distribution 28F016XS Benchmark Utility
‘Sales Office
Contact Intel/Distribution Flash Cycling Utility
Sales Office
Contact Intel/Distribution 28F016XS iBIS Models
Sales Office
Contact Intel/Distribution 28F016XS VHDL/Verilog Models
Sales Office
Contact Intel/Distribution 28F016XS Timing Designer Library Files
Sales Office

Contact Intel/Distribution
Sales Office

28F016XS Orcad/Viewlogic Schematic Symbols

148

ADVANCE INFORMATION

n
I ntQI ® 28F016XS Flash Memory

DATASHEET REVISION HISTORY

Number Description

001 Original Version

002 Removed support of the following features:
o All page buffer operations (read, write, programming, Upload Device Information)
o Command queuing
o Software Sleep and Abort
e Erase all Unlocked Blocks and Two-Byte Write
o

RY/BY# Configuration as part of the Device Configuration command

Changed definition of “NC.” Removed “No internal connection to die” from description.

Added “xx” to Upper Byte of Command (Data) Definition in Sections 4.3 and 4.4.

Maodified parameters “V” and “I” of Section 5.1 to apply to “NC” pins.

Increased lppr (Ve Read Current) for Vpp > Vcc to 200 pA at Ve = 3.3V/5.0V.

Changed Vcc = 5.0V DC Characteristics (Section 5.5) marked with Note 1 to indicate
that these currents are specified for a CMOS rise/fall time (10% to 90%) of <5 ns
and a TTL rise/fall time of <10 ns.

Corrected trHcH (RP# High to CLK) to be a “Min” specification at Vcc = 3.3V/5.0V.

Corrected the graphical representation of twncH and tenc in Figures 14 and 15.

Increased Typical “Byte/Word Write Times” (twHrH1a/twHrH1B) for Vpp = 5.0V (Sec. 5.13):
twHRH1A from 16.5 ps to 29.0 ps and twHrH1s from 24.0 ps to 35.0 ps at

Vce = 3.3V
twHRH1A from 11.0 ps to 20.0 ps and twHrH1e from 16.0 ps to 25.0 ps at
Vce =5.0V.

Increased Typical “Block Write Times” (twHrH2/ twHRH3) for Vep = 5.0V (Section 5.13):
twrrH2 from 2.2 sec to 3.8 sec and twrrHa from 1.6 sec to 2.4 sec at V¢e = 3.3V
twrrH2 from 1.6 sec to 2.8 sec and twHrHa from 1.2 sec to 1.7 sec at Ve = 5.0V.

Changed “Time from Erase Suspend Command to WSM Ready” spec name to “Erase
Suspend Latency Time to Read”; Modified typical values and Added Min/Max
values at Vcc =3.3/5.0V and Vpp =5.0/12.0V (Section 5.13).

Minor cosmetic changes throughout document.

ADVANCE INFORMATION 149

ADVANCE INFORMATION

28F016XD
16-MBIT (1 MBIT x 16)
DRAM-INTERFACE FLASH MEMORY

@ 85 ns Access Time (tgac) @ 56-Lead TSOP Type | Package
— Supports both Standard and Fast- o Backwards-Compatible with 28F008SA
Page-Mode Accesses Command Set
@ Multiplexed Address Bus : y
— RAS# and CAS# Control Inputs @ 2 pA Typical Deep Power-Down Current

m No-Glue Interface to Many Memory n ;ﬂ ?dAe Typical Igc Active Current in Static

Controllers
@ 32 Separately-Erasable/Lockable

z SmartVoltage Technology -
— User-Selectable 3.3V or 5V V¢ 64 I.(b.yte Blocks
— User-Selectable 5V or 12V Vpp o 1 Million Erase Cycles per Block
@ 0.33 MB/sec Write Transfer Rate State-of-the-Art 0.6 ym ETOX™ IV Flash
Technology

@ 316 Architecture

Intel’s 28F016XD 16-Mbit Flash memory is a revolutionary architecture which is the ideal choice for designing
truly revolutionary high-performance products. Combining its DRAM-like read performance and interface with
the intrinsic nonvolatility of flash memory, the 28F016XD eliminates the traditional redundant memory
paradigm of shadowing code from a slow nonvolatile storage source to a faster execution memory, such as
DRAM, for improved system performance. The innovative capabilities of the 28F016XD enable the design of
direct-execute code and mass storage data/file flash memory systems.

The 28F016XD’s DRAM-like interface with a multiplexed address bus, flexible Vg and Vpp voltages, power
saving features, extended cycling, fast write and read performance, symmetrically blocked architecture, and
selective block locking provide a highly flexible memory component suitable for resident flash component
arrays on the system board or SIMMs. The DRAM-like interface with RAS# and CAS# control inputs allows
for easy migration to flash memory in existing DRAM-based systems. The 28F016XD’s dual read voltage
allows the same component to operate at either 3.3V or 5.0V V. Programming voltage at 5V Vpp minimizes
external circuitry in minimal-chip, space critical designs, while the 12V Vpp option maximizes write/erase
performance. The x16 architecture allows optimization of the memory-to-processor interface. Its high read
performance combined with flexible block locking enable both storage and execution of operating
systems/application software and fast access to large data tables. The 28F016XD is manufactured on Intel’s
0.6 pm ETOX™ |V process technology.

Order Number 290533-002

151

intgl.

1.0 INTRODUCTION

The documentation of the Intel 28F016XD flash
memory device includes this datasheet, a detailed
user’s manual, and a number of application notes
and design tools, all of which are referenced at the
end of this datasheet.

The datasheet is intended to give an overview of
the chip feature-set and of the operating AC/DC
specifications. The 16-Mbit Flash Product Family
User's Manual provides complete descriptions of
the user modes, system interface examples and
detailed descriptions of all principles of operation.
It also contains the full list of software algorithm
flowcharts, and a brief section on compatibility
with the Intel 28F008SA.

Significant 28F016XD feature revisions occurred
between datasheet revisions 290533-001 and
290533-002. These revisions center around
removal of the following features:

o All page buffer operations (read, write,
- programming, Upload Device Information)

o Command queuing

o Software Sleep and Abort

o Erase all Unlocked Blocks

o Device Configuration command

Intel recommends that all customers obtain the
latest revisions of 28F016XD documentation.

1.1 Product Overview

The 28F016XD is a high-performance, 16-Mbit
(16,777,216-bit) block erasable, nonvolatile
random access memory, organized as
1 Mword x 16. The 28F016XD includes thirty-two
32-KW (32,768 word) blocks. A chip memory map
is shown in Figure 3.

The implementation of a new architecture, with
many enhanced features, will improve the device
operating characteristics and result in greater
product reliability and ease-of-use as compared to
other flash memories. Significant features of the
28F016XD include:

o No-Glue Interface to Memory Controllers
e Improved Word Write Performance

ADVANCE INFORMATION

28F016XD FLASH MEMORY

e SmartVoltage Technology

— Selectable 3.3V or 5.0V V¢

— Selectable 5.0V or 12.0V Vpp
¢ Internal 3.0V/5.0V V¢ Detection Circuitry
o Block Write/Erase Protection

The 28F016XD's multiplexed address bus with
RAS# and CAS# inputs allows for a “No Glue”
interface to many existing in-system memory
controllers. As such, 28F016XD-based SIMMs
(72-pin JEDEC Standard) offer attractive
advantages over their DRAM counterparts in many
applications. For more information on 28F016XD-
based SIMM designs, see the application note
referenced at the end of this datasheet.

The 28F016XD incorporates = SmartVoltage
technology, providing V¢ operation at both 3.3V
and 5.0V and program and erase capability at
Vpp = 12.0V or 5.0V. Operating at Vg = 3.3V, the
28F016XD consumes less than 60% of the power
consumption at 5.0V V¢, while 5.0V V¢ provides
the highest read performance capability.
Vpp = 5.0V operation eliminates the need for a
separate 12.0V converter, while Vpp = 12.0V
maximizes write/erase performance. In addition to
the flexible program and erase voltages, the
dedicated Vpp gives complete code protection with

Vep < VepLk-

Internal 3.3V or 5.0V V¢ detection automatically
configures the device for optimized 3.3V or 5.0V
read/write operation.

A Command User Interface (CUI) serves as the
system interface between the microprocessor or
microcontroller and the internal memory operation.

Internal Algorithm Automation allows word writes
and block erase operations to be executed using a
Two-Write command sequence to the CUI in the
same way as the 28F008SA 8-Mbit FlashFile™
memory.

Software Locking of Memory Blocks is an added
feature of the 28F016XD as compared to the
28F008SA. The 28F016XD provides selectable
block locking to protect code or data such as
direct-executable operating systems or application
code. Each block has an associated nonvolatile
lock-bit which determines the lock status of the
block. In addition, the 28F016XD has a master
Write Protect pin (WP#) which prevents any
maodifications to memory blocks whose lock-bits
are set.

153

28F016XD FLASH MEMORY

Writing of memory data is performed in word
increments typically within 6 pusec (12.0V Vpp)-a
33% improvement over the 28F008SA. A block
erase operation erases one of the 32 blocks in
typically 0.6 sec (12.0V Vpp), independent of the
other blocks, which is about a 65% improvement
over the 28F008SA.

Each block can be written and erased a minimum
of 100,000 cycles. Systems can achieve one
million Block Erase Cycles by providing wear-
leveling algorithms and graceful block retirement.
These techniques have already been employed in
many flash file systems and hard disk drive
designs.

All operations are started by a sequence of Write
commands to the device. Three types of Status
Registers (described in detail later in this
datasheet) and a RY/BY# output pin provide
information on the progress of the requested
operation.

The following Status Registers are used to provide
device and WSM information to the user :

e A Compatible Status Register (CSR) which is
100% compatible with the 28F008SA FlashFile
memory Status Register. The CSR, when used
alone, provides a straightforward upgrade
capability to the 28F016XD from a 28F008SA-
based design.

e A Global Status Register (GSR) which also
informs the system of overall Write State
Machine (WSM) status.

e 32 Block Status Registers (BSRs) which
provide block-specific status information such
as the block lock-bit status.

The GSR and BSR memory maps are shown in
Figure 4.

154

-

intgl.
The 28F016XD incorporates an -open drain
RY/BY# output pin. This feature allows the user to.
OR-tie many RY/BY# pins together in a multiple

memory configuration such as a Resident Flash
Array.

The 28F016XD is specified for a maximum fast
page mode cycle time of 65 ns (tpcg) at 5.0V
operation (4.75V to 5.25V) over the commercial
temperature range (0°C to +70°C). A
corresponding maximum fast page mode cycle
time of 75 ns at 3.3V (3.0V to 3.6V and 0°C to
+70°C) is achieved for reduced power
consumption applications.

The 28F016XD incorporates an Automatic Power
Saving (APS) feature, which substantially reduces
the active current when the device is in static
mode of operation (addresses not switching). In
APS mode, the typical I currentis 1 mA at 5.0V
(3.0 mA at 3.3V).

A deep power-down mode of operation is invoked
when the RP# (called PWD# on the 28F008SA)
pin transitions low. This mode brings the device
power consumption to less than 2.0 pA, typically,
and provides additional write protection by acting
as a device reset pin during power transitions. A
reset time of 300 ns (5.0V Vg operation) is
required from RP# switching high until dropping
RAS#. In the Deep Power-Down state, the WSM is
reset (any current operation will abort) and the
CSR, GSR and BSR registers are cleared.

A CMOS standby mode of operation is enabled
when RAS# and CAS# transition high and RP#
stays high with all input control pins at CMOS
levels. In this mode, the device typically draws an
Icc standby current of 70 pA at 5V V.

The 28F016XD is available in a 56-Lead, 1.2mm
thick, 14mm x 20mm TSOP Type | package. This

form factor and pinout allow for very high board
layout densities.

2.0 DEVICE PINOUT

The 28F016XD 56-Lead TSOP Type | pinout
configuration is shown in Figure 2.

ADVANCE INFORMATION

28F016XD FLASH MEMORY

A P15 A~ %7
' i |
Output Output Input Input
Buffer Buffer Buffer Buffer
, Y
1/0 Logic |<— CC
A
D
Register
3
x
2
=3
=]
=
=
3
a
5
[¢]
<
CASH#
OE#
Data - | A | WE#
- Comparator) WP#
=) J Input
< Buffer/ RP#
RAS#——p Address | _
CAS# De-Mux Y) i :
—> Decoder |— Y Gating/Sensing
Address 1 L RY/BY#
Quetle -JI> —
Registers] L3 vV,
: X %3 iz 'EE %2 Program/Erase PP
Decoder | ® [X § Q 8 e s ® 2 S1Xg Voltage Switch
3o | E® Im|dm
| M. . \
L Vee
-
Address —J -«4—GND
Counter
— A Y A
L] L] .
0533_01
Figure 1. 28F016XD Block Diagram
Architectural Evolution Includes Multiplexed Address Bus,
SmartVoltage Technology, and Extended Registers
155

ADVANCE INFORMATION

L
28F016XD FLASH MEMORY "Ttel ®

NC — 1 56 [WP#
GND[— 2 O 551 WE#
NC—3 . 54 OE#
Ag 1 4 53 RY/BY#
Ag —s 5271 DQ 45
A,)6 51—/ DQ 7
Ag T 7 50——1 DQ 14
As] 8 491 DQg
Vec T 9 48— GND
RAS# —] 10 47—/—3 DQ 3
CAS# 1 11 46— DQs
NC] 12 4571 DQ 12
NCT—] 13 E28F016XD 44— pQ4
oND —] 12 56-LEAD TSOP PINOUT 4353 Voo
Vpp] 15 ’ 42— GND
RP# C— 16 411/ DQ 14
NC —] 17 14mm X 20 mm 40/ DQj
NC] 18 TOP VIEW 39— DQ 1o
NC /3 19 38— DQ,
NC] 20 37 Ve
GND[] 21 361 DQg
NC] 22 35 DQ4
NC] 23 3417/ DQg
Ay] 24 33 DQg
Az /] 25 32— NC
A,] 26 31— V¢
Ay T 27 30— NC
Ag] 28 29 NC

0533_02

Figure 2. 28F016XD 56-Lead TSOP Type | Pinout Conﬁguratipn'

156 ADVANCE INFORMATION

intgl.

2.1 Lead Descriptions

28F016XD FLASH MEMORY

Symbol

Type

Name and Function

Ao—Ag

INPUT

MULTIPLEXED ROW/COLUMN ADDRESSES: Selects a word within
one of thirty-two 32-Kword blocks. Row (upper) addresses are latched on
the falling edge of RAS#, while column (lower) addresses are latched on
the falling edge of CAS#.

DQo-DQ1s

INPUT/OUTPUT

DATA BUS: Inputs data and commands during CUI write cycles. Outputs
array, identifier or status data (DQo.7) in the appropriate read mode.
Floated when the chip is de-selected or the outputs are disabled.

RAS#

INPUT

ROW ADDRESS STROBE: Latches row address information on inputs
Ag.o when RASH# transitions low. A subsequent CAS# low transition
initiates 28F016XD read or write operations.

CAS#

INPUT

COLUMN ADDRESS STROBE: Latches column address information on
inputs Ag.o when CAS# transitions low. When preceded by a RAS# low
transition, CAS# low initiates 28F016XD read or write operations, along
with OE# and WE#. Subsequent CAS# low transitions, with RAS# held
low, enable fast page mode reads/writes

RP#

INPUT

RESET/POWER-DOWN: RP# low places the device in a Deep Power-
Down state. All circuits that consume static power, even those circuits
enabled in standby mode, are turned off. When returning from Deep
Power-Down, a recovery time of 300 ns at 5.0V V is required to allow
these circuits to power-up.

When RP# goes low, the current WSM operation is terminated, and the
device is reset. All Status Registers return to ready (with all status flags
cleared).

Exit from Deep Power-Down places the device in read array mode.

OE#

INPUT

OUTPUT ENABLE: Gates device data through the output buffers when
low in combination with RAS# and CAS# low. The outputs float to tri-state
off when OE# is high. OE# can be tied to GND if not controlled by the
system memory controller. RAS# and CAS# high override OE# low. WE#
low also overrides OE# low.

WE#

INPUT

WRITE ENABLE: Controls access to the CUI, Data Register and Address
Latch. WE# is active low and initiates writes in combination with RAS#
and CAS# low. WE# low overrides OE# low. RAS# and CAS# high
override WE# low.

RY/BY#

OPEN DRAIN
OUTPUT

READY/BUSY: Indicates status of the internal WSM. When low, it
indicates that the WSM is busy performing an operation. RY/BY# floating
indicates that the WSM is ready for new operations, Erase is Suspended,
or the device is in deep power-down mode. This output is always active
(i.e., not floated to tri-state off when OE#, RAS# or CAS# are high).

WP#

INPUT

WRITE PROTECT: Erase blocks can be locked by writing a nonvolatile
lock-bit for each block. When WP# is low, those locked blocks as
reflected by the Block-Lock Status bits (BSR.6), are protected from
inadvertent Data Writes or Erases. When WP# is high, all blocks can be
written or erased regardless of the state of the lock-bits. The WP# input
buffer is disabled when RP# transitions low (deep power-down mode).

ADVANCE INFORMATION 157

L]
28F016XD FLASH MEMORY I nu ®

2.1 Lead Descriptions (Continued)

Symbol Type Name and Function

Vep SUPPLY WRITE/ERASE POWER SUPPLY (12.0V = 0.6V, 5.0V 0.5V): For
erasing memory array blocks or writing words into the flash array. Vpp =
5.0V + 0.5V eliminates the need for a 12V converter, while connection to
12.0V + 0.6V maximizes Write/Erase Performance.

NOTE:
Successful completion of write and erase attempts is inhibited with Vpp at
or below 1.5V. Write and Erase attempts with Vpp between 1.5V and
4.5V, between 5.5V and 11.4V, and above 12.6V produce spurious
results and should not be attempted.
Vee SUPPLY DEVICE POWER SUPPLY (3.3V + 0.3V, 5.0V + 0.5V):)
Internal detection configures the device for 3.3V or 5.0V operation. To
switch 3.3V to 5.0V (or vice versa), first ramp V¢ down to GND, and then
power to the new V¢ voltage.
Do not leave any power pins floating.

GND SUPPLY GROUND FOR ALL INTERNAL CIRCUITRY:
Do not leave any ground pins floating.

NC NO CONNECT:
‘ Lead may be driven or left floating.

158 ADVANCE INFORMATION

intel.

28F016XD FLASH MEMORY
3.0 MEMORY MAPS
AQ9-0)
" | 32-kwordBlock 31
T | 32KwordBlock 30
E;;; 32-Kword Block 29
E;:; 32-Kword Block 28
o | 32-Kword Block 27
ool 32-Kword Block 26
| 32KwordBlock 25
ool 32-kword Block 24
T | 32-KwordBlock 23
Z;:; 32-Kword Block 22
M| 32-Kword Block 21
el 32-Kword Block 20
| 32-KwordBlock 19
| 32-Kword Block 18
| 32-Kword Block 17
ol 32-kword Block 16
Tan | 32-Kword Block 15
Tl 32-Kword Block 14
| 32-Kword Block 13
| 32-kword Block 12
o | 32-Kword Block 11
ZF:D 32-Kword Block 10
om | 32-Kword Block 9
ol 32KkwordBlock 8
3;:;; 32-Kword Block 7
| 32KwordBlock 6
| 32KwordBlock s
| 32-Kword Block 4
| 32KwordBlock 3
el 32-Kword Block 2
Ug;;;) 32-Kword Block . 1
S| 32KwordBlock 0
0533_03
NOTE:
The upper 10 bits (A1g_10) reflect 28F016XD addresses Ag_g, latched by RASH#.
The lower 10 bits (Ag_g) reflect 28F016XD addresses Ag_g, latched by CAS#.
Figure 3. 28F016XD Memory Map
] ADVANCE INFORMATION 199

28F016XD FLASH MEMORY

3.1 Extended Status Registers Memory Map

RESERVED

RESERVED
GSR
RESERVED
BSR31
RESERVED
RESERVED

RESERVED

RESERVED
GSR
RESERVED

BSRO
RESERVED
RESERVED

NOTE:
The upper 10 bits (A1g_10) reflect 28F016XD addresses Ag_g, latched by RAS#.
The lower 10 bits (Ag_g) reflect 28F016XD addresses Ag_g, latched by CAS#.

Ay90

FFFFFH

F8003H

F8002H

F8001H

F8000H

07FFFH

00003H

00002H

00001H

00000H

0533_04"

Figure 4. Extended Status Registers Memory Map

160 ADVANCE INFORMATION

n
IntGI ® 28F016XD FLASH MEMORY

4.0 BUS OPERATIONS, COMMANDS AND STATUS REGISTER DEFINITIONS -

4.1 Bus Operations

Mode Notes | RP# | RAS# | CAS# | OE# | WE# | DQ, s | RY/BY#
Row Address Latch | 1,29 | Vi { Viy X X X X
Column Address Latch 1,29 | Vy Vi Ll x| X X X
Read 127 | Viy Vi | Vi | Vi | Viu | Dour | X
Output Disable 1,6,7 | Vi Vi Vi | Vm Vi | Highz | X
Standby 167 | Vi | Vi | v | X X | Highz | X
Deep Power-Down 1,3 Vi X X X X HighZ Vou
Manufacturer ID 48 Vi Vil Vi Vi Viy | 0089H | Vou
Device ID 48 | Vi | v | vie | vie | v | 66A8H | Vou
Write 156 | Vi | v | v | x | v Din X

NOTES:

1.

2.

X can be V|4 or V| for address or control pins except for RY/BY#, which is either Vo|_ or VOH, or High Z or Doyt for data
pins depending on whether or not OE# is active.
RY/BY# output is open drain. When the WSM is ready, Erase is suspended or the devnce is in deep power-down mode,,
RY/BY# will be at Von if it is tied to Vcc through a resistor. RY/BY# at Von is |ndependent of OE# while a WSM operatlon
is in progress.
RP# at GND + 0.2V ensures the lowest deep power-down current.” e
Ao (latched by CAS#) at V. provides the Manufacturer ID code. Ag (latched by CAS#) at Viy provides the Device ID code.
All other addresses (row and column) should be set to zero.
Sommands for erase, data write, or lock-block operations can only be completed successfully when Vpp = VPPH1 or -

PP = VppH2.
While the WSM is running, RY/BY# stays at Vo until all operations are complete. RY/BY# goes to Voq when the WSM is
not busy or in erase suspend mode.
RY/BY# may be at VoL while the WSM is busy performing various operations (for example, a Status Register read during a
write operation).
The 28F016XD shares an identical device identifier with the 28F016XS.
Row (upper) addresses are latched via inputs Ag.g on the falling edge of RAS#. Column (lower) addresses are latched via
inputs Ao.g on the falling edge of CAS#. Row addresses must be latched before column addresses are latched.

ADVANCE INFORMATION 161

L

28F016XD FLASH MEMORY

4.2 28F008SA—Compatible Mode Command Bus Definitions

intel.

First Bus Cycle Second Bus Cycle

Command Notes | Oper | Addr | Data® | Oper | Addr | Data"
Read Array Write X xxFFH Read AA AD
Intelligent Identifier 1 Write X xx90H Read 1A ID
Read Compatible Status Register 2 Write X XX70H Read X CSRD
Clear Status Register ’ 3 Write X xx50H
Word Write Write X Xx40H Write WA WD
Alternate Word Write Write X xx10H Write WA WD
Block Erase/Confirm Write X Xxx20H | Write BA xxDOH
Erase Suspend/Flesume Write X XxBOH | Write X xxDOH

ADDRESS DATA

AA = Array Address
BA = Block Address
IA = Identifier Address
WA = Write Address

X = Don't Care

NOTES:
Following the Intelligent Identifier command, two read operations access the manufacturer and device signature codes.
The CSR is automatically available after device enters data write, erase, or suspend operations.
Clears CSR.3, CSR.4 and CSR.5. Also clears GSR.5 and all BSR.5, BSR.4 and BSR.2 bits. See Status Register

1.
2,
3.

4.

definitions.

The upper byte of the data bus (Dg-15) during command
[- I 1 o [] '

162

AD = Array Data
CSRD = CSR Data
ID = Identifier Data
WD = Write Data

writes is a “Don’t Care.”
oo "o

ADVANCE INFORMATION

a
Int9| ® 28F016XD FLASH MEMORY

4.3 28F016XD—Enhanced Command Bus Definitions

First Bus Cycle Second Bus Cycle
Command Notes | Oper | Addr | Data® | Oper | Addr | Data®
Read Extended Status Register 1 Write X xx71H Read RA GSRD
BSRD
Lock Block/Confirm Write X xx77H Write BA xxDOH
Upload Status Bits/Confirm 2 Write X xx97H Write X xxDOH
ADDRESS DATA
BA = Block Address AD = Array Data
RA = Extended Register Address BSRD = BSR Data
WA = Write Address GSRD = GSR Data
X=Don't Care
NOTES:

1. RA can be the GSR address or any BSR address. See Figure 4 for the Extended Status Register memory map.

2. Upon device power-up, all BSR lock-bits come up locked. The Upload Status Bits command must be written to reflect the
actual lock-bit status.

3. The upper byte of the data bus (Dg-15) during command writes is a “Don’t Care.”

ADVANCE INFORMATION 163

28F016XD FLASH MEMORY

4.4 Compatible Status Register

[wsms | Ess | Es | ows

VPPS

)

By
’___I

)

7 6 5 4

CSR.7 = WRITE STATE MACHINE STATUS
1 = Ready
0 = Busy

CSR.6 = ERASE-SUSPEND STATUS
1 = Erase Suspended
0 = Erase In Progress/Completed

CSR.5 = ERASE STATUS
1 = Error In Block Erasure
0 = Successful Block Erase

CSR.4 = DATA-WRITE STATUS
1 = Error in Data Write
0 = Data Write Successful

CSR.3 = Vpp STATUS
1 = Vpp Error Detect, Operation Abort
0= Vpp OK

NOTES:

RY/BY# output or WSMS bit must be checked to
determine completion of an operation (Erase,
Erase Suspend, or Data Write) before the
appropriate Status bit (ESS, ES or DWS) is
checked for success.

If DWS and ES are set to “1” during an erase
attempt, an improper command sequence was
entered. Clear the CSR and attempt the
operation again.

The VPPS bit, unlike an A/D converter, does not
provide continuous indication of Vgp level. The
WSM interrogates Vpp's level only after the Data
Write or Erase command sequences have been
entered, and informs the system if Vpp has not
been switched on. VPPS is not guaranteed to
report accurate feedback between VppLik(max)
and VppH1(min), between Vppxi(max) and
VppH2(min) and above Vpppz(max).

CSR.2-0 = RESERVED FOR FUTURE ENHANCEMENTS
These bits are reserved for future use; mask them out when polling the CSR.

164

ADVANCE INFORMATION

L]
I ntGI ® 28F016XD FLASH MEMORY

4.5 Global Status Register

| wsms | oss | Dpos R R R R R
7 6 5 4 3 2 1 0
NOTES:
GSR.7 = WRITE STATE MACHINE STATUS RY/BY3# output or WSMS bit must be checked to
1 = Ready determine completion of an operation (Block
0 = Busy Lock, Suspend, Upload Status Bits, Erase or

Data Write) before the appropriate Status bit
(OSS or DOS) is checked for success.
GSR.6 = OPERATION SUSPEND STATUS
1 = Operation Suspended
0 = Operation in Progress/Completed

GSR.5 = DEVICE OPERATION STATUS
1 = Operation Unsuccessful
0 = Operation Successful or Currently
Running

GSR.4-0 = RESERVED FOR FUTURE ENHANCEMENTS
These bits are reserved for future use; mask them out when polling the GSR.

ADVANCE INFORMATION 165

-
28F016XD FLASH MEMORY Int6I ®

4.6 Block Status Register

| Bs | Bs | Bos R R VPPS vl | R
7 6 5 4 3 2 1
NOTES:
BSR.7 = BLOCK STATUS RY/BY# output or BS bit must be checked to
1=Ready . determine completion of an operation (Block
0 = Busy Lock, Suspend, Erase or Data Write) before the

appropriate Status bits (BOS, BLS) is checked
for success.

BSR.6 = BLOCK LOCK STATUS
1 = Block Unlocked for Write/Erase
0 = Block Locked for Write/Erase

BSR.5 = BLOCK OPERATION STATUS
1 = Operation Unsuccessful
0 = Operation Successful or
Currently Running

BSR.2 = Vpp STATUS
1 = Vpp Error Detect, Operation Abort

0= Vpp OK

BSR.1 = Vpp LEVEL BSR.1 is not guaranteed to report accurate
1 = Vpp Detected at 5.0V + 10% feedback between the Vppy4 and Vppy, Voltage
0 = Vpp Detected at 12.0V + 5% ranges. Writes and erases with Vpp between

VppLK(max) and VPPH1 (min), between
Vppxi(max) and Vppya(min), and above
VppHa(max) produce spurious results and should
not be attempted.

BSR.1 was a RESERVED bit on the 28F016SA.

BSR.4,3,0 = RESERVED FOR FUTURE ENHANCEMENTS
These bits are reserved for future use; mask them out when polling the BSRs.

166 "ADVANCE INFORMAT_ION

intgl.

5.0 ELECTRICAL SPECIFICATIONS
5.1 Absolute Maximum Ratings*

Temperature Under Bias.........cccuceuees 0°C to +80°C
Storage Temperature................... —65°C to +125°C

Vee = 3.3V x 0.3V Systems

28F016XD FLASH MEMORY

NOTICE: This datasheet contains information on
products in the sampling and initial production
phases of development. The specifications are
subject to change without notice. Verify with your
local Intel Sales office that you have the latest
datasheet before finalizing a design.

*WARNING: Stressing the device beyond the
“Absolute Maximum Ratings” may cause
permanent damage. These are stress ratings
only. Operation beyond the “Operating
Conditions” is not recommended and extended
exposure beyond the "Operating Conditions" may
affect device reliability.

Sym Parameter otes | Min | Max | Units Test Conditions
TaA | Operating Temperature, Commercial 0 70 °C | Ambient Temperature
Vee | Ve With Respect to GND -02 1 70
Vpp | Vpp Supply Voltage with Respect to GND -0.2 | 14.0
V | Voltage on any Pin (except Vg, Vpp) With -0.5 | Vee
Respect to GND +0.5
| Current into any Non-Supply Pin +30 | mA
lout | Output Short Circuit Current 100 | mA

Ve = 5.0V x 0.5V Systems

Sym | . "' Parameter Notes [Min | Max | Units Test Conditions
Ta Operating Temperature, Commercial 0 70 °C | Ambient Temperature
Vee | Ve with Respect to GND -02| 7.0
Vpp | Vpp Supply Voltage with Respect to GND -02 | 140
\ Voltage on any Pin (except Ve, Vpp) with 20| 7.0
Respect to GND
| Current into any Non-Supply Pin +30 | mA
lout | Output Short Circuit Current 100 | mA

NOTES:

1. Operating temperature is for commercial product defined by this specification.

2. Minimum DC voltage is -0.5V on input/output pins. During transitions, this level may undershoot to -2.0V for periods <20 ns.
Maximum DC voltage on input/output pins is Vg + 0.5V which, during transitions, may overshoot to Vg + 2.0V for periods

<20 ns.

3. Maximum DC voltage on Vpp may overshoot to +14.0V for periods <20 ns.

>

5. This specification also applies to pins marked “NC.”

ADVANCE INFORMATION

Qutput shorted for no more than one second. No more than one output shorted at a time.

167

28F016XD FLASH MEMORY

5.2 Capacitance

intgl.

For a 3.3V £ 0.3V System:
Sym : Parameter Notes | Typ | Max | Units Test Conditions
Cn . | Capacitance Looking into an 1 6 8 pF | Ta =25°C, f=1.0 MHz
Address/Control Pin
Cout Capacitance Looking into an 1 8 12 | pF Ta =25°C, f=1.0 MHz
Output Pin
Cloap |Load Capacitance Driven by 1,2 50 pF
Outputs for Timing Specifications
For 5.0V + 0.5V System:
Sym Parameter Notes | Typ | Max | Units Test Conditions
Cin Capacitance Looking into an 1 6 8 pF | TA=25°C, f=1.0 MHz
Address/Control Pin
Cout Capacitance Looking into an 1 8 12 pF [Ta=25°C, f=1.0 MHz
Output Pin :
CLoap |Load Capacitance Driven by 1,2 100 pF

Outputs for Timing Specifications

NOTE:
1. ‘Sampled, not 100% tested.

2. To obtain iBIS models for the 28F016XD, please contact your local Intel/Distribution Sales Office.

168

ADVANCE INFORMATION

L]
I ntGI ® 28F016XD FLASH MEMORY

5.3 Transient Input/Output Reference Waveforms

(C
24 2.0 7 2.0
INPUT TEST POINTS OUTPUT
0.8 0.8
0.45 55
0533_05
AC test inputs are driven at Vg (2.4 VTTL) for a Logic “1” and V¢, (0.45 VTTL) for a Logic “0.” Input timing begins at V,
(2.0 VTTL) and V;__(0.8 VTTL). Output timing ends at V,,; and V,, . Input rise and fall times (10% to 90%) <10 ns.
Figure 5. Transient Input/Output Reference Waveform for V¢g = 5.0V x 0.5V(")
3.0 (C
27
INPUT 1.5 ¢————TEST POINTS ——b 1.5 OUTPUT
0.0 5
0533_06

AC test inputs are driven at 3.0V for a Logic “1” and 0.0V for a Logic “0.” Input timing begins, and output timing ends, at 1.5V.
Input rise and fall times (10% to 90%) <10 ns.

Figure 6. Transient Input/Output Reference Waveform for V¢ = 3.3V £ 0.3V(2)

NOTES:

1. Testing characteristics for 28F016XD-85.
2. Testing characteristics for 28F016XD-95.

ADVANCE INFORMATION 169

28F016XD FLASH MEMORY

5.4 DC Characteristics
Vg = 3.3V £ 0.3V, T, = 0°C to +70°C

intel.

Sym Parameter Notes | Min | Typ | Max | Unit Test Condition
log! | Vo Word Read 1,4,5 50 70 mA |Vgc = Vg Max
Current RAS#, CAS# =V, _
RAS#, CAS#, Addr. Cycling @
tRC =min
IOUT = 0 mA
Inputs = TTL or CMOS
lcc2 |Vec Standby Current 1,5 1 4 mA |Vge = Ve Max
RAS#, CAS#, RP# =V y
WP# = V"_ or VIH
|Coa VCC RAS#-OnIy 1,5 50 70 mA VCC = VCC Max
Refresh Current CAS# =V
RAS# =V,
RAS#, Addr. Cycling @tgc = min
Inputs = TTL or CMOS
lcc4 | Vec Fast Page Mode 1,45 40 60 mA [Vge = Vg Max
Word Read Current RAS#, CAS#=V,_
CAS#, Addr. Cycling @tpc = min
|OUT = 0 mA
Inputs =V or Vi
lcc5 | Ve Standby Current 1,5 70 130 PA |Veo =Vec Max
RAS# CAS# RP# = Vg + 0.2V
WP# = Vg = 0.2V or GND =
0.2V
ICCG VCC CAS#-before- 1,5 40 55 mA VCC = VCC Max
RAS# Refresh Current CAS#, RAS# =V,
CAS#, RAS#, Addr. Cycling @tgs
=min
Inputs = TTL or CMOS
lcc7 |Voc Standby Current 1,5 40 55 mA |Vge = Ve Max
(Self Refresh Mode) RAS#, CAS# =V,
IOUT = 0 mA
Inputs =V, or Vi
Iy Input Load Current 1 *1 BA | Vge = Ve Max
VIN = VCC or GND
Lo Output Leakage 1 +10 | pPA | Vgo = Vg Max
Current Vout = Vec or GND
lccp | Vec Deep Power-Down 1 2 5 pPA |RP#=GND 0.2V
Current
170

ADVANCE INFORMATION

intgl.

28F016XD FLASH MEMORY
5.4 DC Characteristics (Continued)
Vg = 3.3V £ 0.3V, T =0°C to +70°C
Sym Parameter Notes | Min | Typ | Max | Unit Test Condition
lcow [Vec Word Write Current] 1,6 8 12 mA | Word Write in Progress
Vpp =12.0V + 5%
8 17 mA |Word Write in Progress
Vpp =5.0V + 10%
lcce |Vcc Block Erase 1,6 6 12 mA |Block Erase in Progress
Current Vpp =12.0V £ 5%
9 17 mA |Block Erase in Progress
Vpp =5.0V £ 10%
lcces |Vec Erase Suspend 1,2 1 4 mA |RAS#, CAS# =V
Current Block Erase Suspended
lpps Vpp Standby/Read 1 +1 +10 PA |Vpp £Vee
Current 30 200 PA [Vep > Ve
lppp | Vep Deep Power-Down 1 0.2 5 HA [RP#=GND + 0.2V
Current
lppw | Vpp Word Write Current| 1,6 10 156 mA |Vpp=12.0V £ 5%
Word Write in Progress
15 25 mA |Vpp=5.0V £ 10%
Word Write in Progress
IPPE Vpp Block Erase 1,6 4 10 mA Vpp =12.0V = 5%
Current Block Erase in Progress
14 20 mA |Vpp =5.0V + 10%
Block Erase in Progress
lppes |Vpp Erase Suspend 1 30 50 MA |Block Erase Suspended
Current
Vi Input Low Voltage 6 -0.3 0.8 Vv
ViH Input High Voltage 6 2.0 Vee+| V
0.3
VoL | Output Low Voltage 6 0.4 V| Vg =Vee Min
|o[_ =4.0mA
Von¢ | Output High Voltage 6 24 Vv lon=-2.0mMA
VCC = VCC Min
VOH2 6 VCC' \' IOH =-100 IJA
0.2 Vee = Ve Min
Vepwk | Vep Erase/Write Lock 3,6 0.0 1.5 \'
Voltage
Vppu1 | Vpp during Write/Erase 3 45 5.0 5.5 \
Operations
Vppn2 | Vep during Write/Erase 3 114 | 120 | 126 v
Operations
Viko |Vcc Erase/Write Lock 2.0 \

Voltage

ADVANCE INFORMATION

171

-
28F016XD FLASH MEMORY I ntel ®

NOTES:

1. Allcurrents are in RMS unless otherwise noted. Typical values at Vg = 8.3V, Vpp = 12.0V or 5.0V, T = 25°C.

2. Icces is specified with the device de-selected. If the device is read while in Erase Suspend mode, current draw is the
sum of Icces and |cc1/|cc4.

3. Block erases, word writes and lock block operations are inhibited when Vpp = Vpp| k and not guaranteed in the ranges
between VppLk(max) and VppH1(min), between VPPH1(max) and VPPH2(min), and above VPPH2(max)-

4. Automatic Power Saving (APS) reduces Icc1 and Iccs to 3.0 mA typical in static operation.

CMOS inputs are either Vcc + 0.2V or GND + 0.2V. TTL inputs are either Vi or V|H.

6. Sampled, but not 100% tested. Guaranteed by design.

o

172 ADVANCE INFORMATION

intgl.

28F016XD FLASH MEMORY
5.5 DC Characteristics
Vg = 5.0V £ 0.5V, To =0°C to +70°C
Sym Parameter Notes | Min | Typ | Max | Unit Test Condition
lcc1 |Vec Word Read Current| 1,4,5 90 120 | mA |Vgo =V Max
RAS#, CAS# =V, _
RAS#, CAS#, Addr. Cycling @
trc = min
IOUT = 0 mA
Inputs = TTL or CMOS
lcc2 |V Standby Current 1,5 2 4 mA |V = Vg Max
RAS#, CAS#, RP# =V,
WP# = V||_ or VIH
|CC3 VCC RAS#-Only 1,5 90 120 mA VCC = Vcc Max
Refresh Current CAS# =V
RAS# = V"_
RAS#, Addr. Cycling @tgc = min
Inputs = TTL or CMOS
lcc4 Ve Fast Page Mode 1,4,5 80 110 | mA |Vgo =V Max
Word Read Current RAS#, CAS# =V,
CAS#, Addr. Cycling @tpg = min
IOUT =0mA
Inputs =V, or Vi
lcc® Ve Standby Current 1,5 70 130 PA |Vee = Ve Max
RAS#,CAS#,RP# = Vg £ 0.2V
WP# = VCC + 0.2V or
GND = 0.2V
|cc6 VCC CAS#-before- 1,5 50 65 mA VCC = Vcc Max
RAS# Refresh Current CAS#, RAS# =V _
CAS#, RAS#, Addr. Cycling @tpc
=min
inputs = TTL or CMOS
lcc?7 |Vec Standby Current 1,5 50 65 mA |V = Ve Max
(Self Refresh Mode) RAS#, CAS#=V,_
lOUT = 0 mA
Inputs = V_or Viy
Iy Input Load Current 1 +1 A | Ve =V Max
VIN = VCC or GND
Ilo |Output Leakage 1 +10 | PA | Vgg = Ve Max
Current Vout = Ve or GND
lccp | Vec Deep Power-Down 1 2 5 A [RP#=GND + 0.2V
Current
lccw |Vcc Word Write Current| 1,6 25 35 mA |Word Write in Progress
Vpp =12.0V £ 5%
25 40 mA | Word Write in Progress

Vpp = 5.0V + 10%

' ADVANCE INFORMATION

173

28F016XD FLASH MEMORY

5.5 DC Characteristics (Continued)
Ve = 5.0V £ 0.5V, T = 0°C to +70°C

intgl.

Sym |- Parameter Notes .| Min | Typ | Max | Unit Test Condition
lcce |Voc Block Erase 1,6 18 25 mA | Block Erase in Progress
Current Vpp =12.0V + 5%
20 30 mA |Block Erase in Progress
‘ Vpp = 5.0V £ 10%
ICCES VCC Erase Suspend 1,2' 2 4 mA |RAS#, CAS# = VIH
Current Block Erase Suspended
IF‘PS Vpp Standby/Read 1 £1 | £10 LA Vpp < VCC
Current 30 200 YA |Vpp > Ve
Ispp | Vpp Deep Power-Down 1 0.2 5 PA |RP#=GND + 0.2V
Current
lppw | Vpp Word Write Current| 1,6 7 12 mA |Vpp=12.0V + 5%
- : Word Write in Progress
17 22 mA |Vpp=5.0V = 10%
o i Word Write in Progress
IPPE Vpp Block Erase 1,6 5 10 mA Vpp =12.0V £ 5%
Current i Block Erase in Progress
16 20 mA |Vpp=5.0V + 10%
Block Erase in Progress
lppes | Vpp Erase Suspend - 1 ' 30 50 MA | Block Erase Suspended
Current
V. [Input Low Voltage 6 -0.5 0.8 \
Vi {Input High Voltage 6 20 IVeec+!| V
, 0.5 .
VoL |Output Low Voltage 6 0.45 V | Vgo=Vge Min
|0|_ =5.8 mA
Vo |Output High Voltage 6 0.85 \ lop=—-2.5mA
VCC » VCC = VCC Min
Vot 6 Ve V | loy=-100pA.
o 0.4 Ve = Vee Min
Vepk | Vep Erase/Write Lock 3,6 0.0 1.5 \
Voltage ' o
Vppy1 | Vpp during Write/Erase 3 45 5.0 5.5 \
i Operations
Vppy2 |Vpp during Write/Erase | 3 - | 1141120 | 126 |- V
Operations ' o
Viko |Vcc Erase/Write Lock 2.0 \
Voltage

174 ADVANCE INFORMATION

)
Int6I ® 28F016XD FLASH MEMORY

NOTES:

1. All currents are in RMS unless otherwise noted. Typical values at Vg = 5.0V, Vpp = 12.0V or 5.0V, T = 25°C. These
currents are specified for a CMOS rise/fall time (10% to 90%) of <5 ns and a TTL rise/fall time of <10 ns.

2. |cces is specified with the device de-selected. If the device is read while in Erase Suspend mode, current draw is the
sum of lcces and lCC1/ICC4'

3. Block erases, word writes and lock block operations are inhibited when Vpp = Vpp| « and not guaranteed in the ranges
between Vpp| k(max) and Vppy1(min), between Vppp1(max) and VppHa(min), and above VppHa(max)-

4. Automatic Power Saving (APS) reduces Igcy and Igg4 to 1 mA typical in static operation.

CMOS inputs are either Vg + 0.2V or GND + 0.2V. TTL inputs are either V)_or V).

6. Sampled, not 100% tested. Guaranteed by design.

o

ADVANCE INFORMATION 175

= .
28F016XD FLASH MEMORY Intel ®

5.6 AC Characteristics(11)
Veo =8.8V'£ 0.3V, Ty = 0°C to +70°C

Read, Write, Read-Modify-Write and Refresh Cycles (Common Parameters)

Versions ! .| 28F016XD-95 | Units
Sym o Parameter . ‘ Notes “Min | Max | .
trP RASH# precharge time T C | : 10 |- . ns
tcp CAS# precharge time ” 15 T ns
tasr Row address set-up time 9 0 ns
traH Row address hold time 9 15 ns
tasc Column address set-up time 9 0 ns
tcan Column address hold time 9 20 ns
tar Column address hold time referenced to RAS# 3,9 35 ns
trAD RAS# to column address delay time 8,9 15 15 ns
tcrp CAS# to RAS# precharge time 10 ns
toeD OE# to data delay 10 30 ns
tozo OE# delay time from data-in 10 0 ns
tozc CAS# delay time from data-in 10 0 ns
tr Transition time (rise and fall) 10 2 4 ns
Read Cycle
Versions 28F016XD-95 Units
Sym Parameter Notes Min Max
trRer) Random read cycle time 105 ns
trAS(R) RAS# pulse width (reads) 95 oo ns
tcas(r) CAS# pulse width (reads) 40 oo ns
trRcD(R) RAS# to CAS# delay time (reads) 1 15 55 ns
tRSH(R) RAS# hold time (reads) 30 ns
tcsHR) CAS# hold time (reads) 95 ns
trac Access time from RAS# 1,8 95 ns
tcac Access time from CAS# 1,2 40 ns
taa Access time from column address 8 75 ns
toEa OE# access time 40 ns

176 ADVANCE INFORMATION I

intel.

28F016XD FLASH MEMORY
Read Cycle (Continued) o)
Versions 28F016XD-95 Units
Sym Parameter Notes Min Max
trRoH RAS# hold time referenced to OE# 40 ns
tres Read command setup time 5 ns
treh Read command hold time referenced to CAS# 6,10 0 ns
trRH Read command hold time referenced to RAS# 6,10 0 ns
traL Column address to RAS# lead time 9 15 ns
tcaL Column address to CAS# lead time 9 75 ns
torz CAS# to output in Low-Z 0 ns
ton Output data hold time 0 ns
tono Output data hold time from OE# 0 ns
torr Output buffer turn-off delay 4 30 ns
toez Output buffer turn off delay time from OE# 30 ns
tcop CAS# to data-in delay time 30 ns
Write Cycle
Versions " 28F016XD-95 Units
Sym Parameter Notes Min Max
trew) Random write cycle time 90 ns
trasw) RAS# pulse width (writes) 80 oo ns
tcasw) CAS# pulse width (writes) 65 oo ns
trepw) RAS# to CAS# delay time (writes) 1 15 15 ns
tasw) | RAS# hold time (writes) 65 ns
tosHw) CAS# hold time (writes) 80 ns.
twes Write command set-up time 5 0 ns
twen Write command hold time 15 ns
twer Write command hold time referenced to RAS# 3 30 ns
twp Write command pulse width 15 ns
tRwL Write command to RAS# lead time 65 ns
tewe Write command to CAS# lead time 65 ns
tos Data-in set-up time 7.9 0 ns
ton Data-in hold time 7.9 15 ns
toHR Data-in hold time referenced to RAS# 3,9 30 ns
177

ADVANCE INFORMATION

intgl.

28F016XD FLASH MEMORY
Read-Modify-Write Cycle
Versions 28F016XD-95 | Units
Sym Parameter Notes Min Max
tawe Read-modify-write cycle time 10 200 ns
tawp RAS# to WE# delay time 5,10 125 ns
town CAS# to WE# delay time 5,10 70 ns
tawp Column address to WE# delay time 5,9,10 105 ns
toen OE# command hold time 10 15 ns
Fast Page Mode Cycle
Versions 28F016XD-95 | Units
Sym Parameter Notes Min Max
tec(R) Fast page mode cycle time (reads) 75 ns
tecw) Fast page mode cycle time (writes) 80 ns
traspr) | RASH# pulse width (reads) 95 o ns
traspw) | RASH# pulse width (writes) 80 oo ns
tepa Access time from CAS# precharge 85 ns
topw WE# delay time from CAS# precharge 10 0 ns
toerHm). | RAS# hold time from CAS# precharge (reads) 75 ns
toprHw) | RAS# hold time from CAS# precharge (writes) 80 ns
Fast Page Mode Read-Modify-Write Cycle
Versions 28F016XD-95 Units
Sym Parameter Notes Min Max
teRWC Fast page mode read-modify-write cycle time 10 170 ns

178

ADVANCE INFORMATION |

intel.

28F016XD FLASH MEMORY
Refresh Cycle
Versions 28F016XD-95 Units
Sym Parameter Notes Min Max
tesr CAS# set-up time (CAS#-before-RAS# refresh) 10 10 ns
tcHR CAS# hold time (CAS#-before-RAS# refresh) 10 10 ns
twrp WE# setup time (CAS#-before-RASH# refresh) 10 10 ns
twRH WEH# hold time (CAS#-before-RAS# refresh) 10 10 ns
tarc RAS# precharge to CAS# hold time 10 10 ns
trass RAS# pulse width (self-refresh mode) 10 0 ns
trps RAS# precharge time (self-refresh mode) 10 10 ns,
tepn CASH# precharge time (self-refresh mode) 10 10 ns
tchs CAS# hold time (self-refresh mode) 10 0 ns
Refresh
Versions 28F016XD-95 Units
Sym Parameter Notes Min Max
tRer Refresh period 10 oo ms
Misc. Specifications
Versions 28F016XD-95 Units
Parameter Notes Min Max
RP# high to RAS# going low 10 480 ns
RP# set-up to WE# going low 10 480 ns
Vpp set-up to CAS# high at end of write cycle 10 100 ns
WEH# high to RY/BY# going low 10 100 ns
RP# hold from valid status register data and RY/BY# high 10 0 ns
Vpp hold from valid status register data and RY/BY# high 10 ns
179

ADVANCE INFORMATION

-
28F016XD FLASH MEMORY Inu ®

NOTES:

1.

o s w0

180

Operation within the trcp(max) limit insures that tgac(max) can be met. taep(max) is specified as a reference point.
Assumes that tgcp 2tRCD(max)~

tar: twer tbHR are referenced to trap(max)-

toFF(max) defines the time at which the output achieves the open circuit condition and is not referenced to Vo or Vg .

twes: trwor towp and tawp are non restrictive operating parameters. They are included in the datasheet as electrical
characteristics only. If twcs 2twcs(min) the cycle is an early write cycle and the data output will remain high impedance for
the duration of the cycle. If towp 2tcwp(miny tRWD 2tRwD(min) tAWD 2tawD(min): then the cycle is a read-write cycle and
the data output will contain the data read from the selected address. If neither of the above conditions are satisfied, the
condition of the data out is indeterminate.

Either tgcy or tary Must be satisfied for a read cycle.

These parameters are referenced to the CAS# leading edge in early write cycles and to the WE# leading edge in read-
write cycles.

Operation within the tgap(may) limit ensures that tgac(max) can be met, taapmay) is specified as a reference point only. If
trap is greater than the specified tgap(max limit, then the access time is controlled by taa.

Refer to command definition tables for valid address and data values.

Sampled, but not 100% tested. Guaranteed by design.

. See AC Input/Output Reference Waveforms for timing measurements.

ADVANCE INFORMATION

a
Int6I ® 28F016XD FLASH MEMORY

5.7 AC Characteristics(11)
Vcc =5.0V x O.5V, TA =0°C to +70°C

Read, Write, Read-Modify-Write and Refresh Cycles (Common Parameters)

Versions 28F016XD-85 Units
Sym Parameter Notes Min Max
trp RASH# precharge time 10 ns
tcp CAS# precharge time 15 ns
tasr Row address set-up time 9 0 ns
tran Row address hold time 9 15 ns
tasc Column address set-up time 9 0 ns
tcan Column address hold time 9 20 ns
tar Column address hold time referenced to RAS# 39 35 ns
traD RAS# to column address delay time 8,9 15 15 ns
tcrp CAS# to RAS# precharge time 10 ns
toeo OE# to data delay 10 30 ns
tbzo OE# delay time from data-in 10 0 ns
tozc CAS# delay time from data-in 10 0 ns
tr Transition time (rise and fall) 10 2 4 ns

ADVANCE INFORMATION 181

L]
28F016XD FLASH MEMORY I nu ®

Read Cycle
Versions 28F016XD-85 Units
Sym Parameter \ _ Notes Min Max
trem) » Random read cycle time 95 ns
tRas(R) RAS# pulse width (reads) 85 oo ns
tcasmy | CAS# pulse width (reads) : 35 oo ns
thep) | RASH to CASH# delay time (reads) 1 | 15 50 ns
trsH(R) RAS# hold time (reads) 30 ns
tosHEm) CAS# hold time (reads) v 85 ns
trac Access time from RAS# 1,8 85 ns
tcac Access time from CAS# 1,2 35 ns
taa Access time from column address 8 65 ns
toea OE# access time. ‘ 35 ns
trRoH RAS# hold time referenced to OE# 35 ns
tres Read command setup time , 5 ns
treH | Read command hold time referenced to CAS# 6,10 0 ns
trRRH | Read command hold time referenced to RAS# 6,10 0 ns
trAL Column address to RAS# lead time 9 15 ns
| tea | Column address to CAS# lead time 9 65 ns
oLz CAS# to output in Low-Z 10 0 ns
ton Output data hold time 10 0 ns
tono Output data hold time from OE# 10 0 ns
torr Output buffer turn-off delay 4,10 30 ns
toez Output buffer turn off delay time from OE# 10 30 ns
tcop CAS# to data-in delay time 10 30 ns

182 ADVANCE INFORMATION

intgl.

28F016XD FLASH MEMORY
Write Cycle
Versions 28F016XD-85 Units
Sym Parameter Notes Min Max
tacw) Random write cycle time 75 ns
tras(w) RAS# pulse width (writes) 65 co ns
tcasw) . | CAS# pulse width (writes) 50 oo ns
trcow) RAS# to CAS# delay time (writes) 1 15 15 ns
tasHw) RAS# hold time (writes) 50 ns
tesHw) CAS# hold time (writes) 65 . ns
twes Write command set-up time 5 0 ns
tweH Write command hold time 15 ns
twer Write command hold time referenced to RAS# 3 30 ns
twp Write command pulse width 15 ns
trwL Write command to RAS# lead time 50 ns
towL Write command to CAS# lead time 50 ns
tps Data-in set-up time 7.9 0 ns
ton Data-in hold time 7,9 15 ns
toHR Data-in hold time referenced to RAS# 3,9 30 ns .
Read-Modify-Write Cycle
Versions 28F016XD-85 Units
Sym Parameter Notes Min Max '
tawc | Read-modify-write cycle time 10 175 ns
trwo RAS# to WE# delay time 5,10 115 ns
townp CAS# to WE# delay time 5,10 - 65 ns
tawp Column address to WE# delay time ©5,9,10 100 ns
toEn OE# command hold time 10 156 ns
Fast Page Mode Cycle
Versions 28F016XD-85 Units
Sym Parameter Notes Min Max
tpc(m) Fast page mode cycle time (reads) 65 ns
tcw) Fast page mode cycle time (writes) 65 ns
183

ADVANCE INFORMATION

28F016XD FLASH MEMORY

Fast Page Mode Cycle Continued

in

tal.

Versions 28F016XD-85 Units
Sym Parameter Notes Min Max
traspr) | RASH# pulse width (reads) 85 oo ns
traspw) | RASH# pulse width (writes) 65 o0 ns
tepa Access time from CAS# precharge 70 ns
tepw WEH# delay time from CAS# precharge 10 0 ns
teprHr) | RASH# hold time from CAS# precharge (reads) 65 ns
tcpruw) | RASH# hold time from CAS# precharge (writes) 65 ns
Fast Page Mode Read-Modify-Write Cycle
Versions 28F016XD-85 Units
Sym Parameter Notes Min Max
terRWC Fast page mode read-modify-write cycle time 10 145 ns
Refresh Cycle
Versions 28F016XD-85 | Units
Sym Parameter Notes Min Max
tesr CAS# set-up time (CAS#-before-RAS# refresh) 10 10 ns
teur CAS# hold time (CAS#-before-RAS# refresh) 10 10 ns
twrp WE# setup time (CAS#-before-RAS# refresh) 10 10 ns
twRH WEH# hold time (CAS#-before-RAS# refresh) 10 10 ns
trrc RAS# precharge to CAS# hold time 10 10 ns
thass RAS# pulse width (self-refresh mode) 10 0 ns
trps RASH## precharge time (self-refresh mode) 10 10 ns
tepn CAS# precharge time (self-refresh mode) 10 10 ns
tous CAS# hold time (self-refresh mode) 10 0 ns
Refresh
Versions 28F016XD-85 Units
Sym Parameter Notes Min Max
trer Refresh period 10 oo ms

184

ADVANCE INFORMATION

L]
Inu ® - 28F016XD FLASH MEMORY

Misc. Specifications

Versions 28F016XD-85 | Units

Parameter Notes Min Max
RP# high to RAS# going low 10 300 ns
RP# set-up to WE# going low 10 300) ns
Vpp set-up to CAS# high at end of write cycle 10 100 ns
WE# high to RY/BY# going low , 10 | 100 ns
RP# hold from valid status register data and RY/BY# high 10 0 ns
Vpp hold from valid status register data and RY/BY# high 10 0 ns

NOTES:

1.

LA o S

10.
1.

Operation within the trop(max) limit insures that tgac(max) €an be met. taop(max) is specified as a reference point.
Assumes that trcp2tRcp(max)-

tAR, tweRr: toHR are referenced to tgap(max)-

toFF(max) defines the time at which the output achieves the open circuit condition and is not referenced to Vgy or Vg .

twcs: tRwp: tcwp and tawp are non restrictive operating parameters. They are included in the datasheet as electrical
characteristics only. If tycs2twes(min) the cycle is an early write cycle and the data output will remain high impedance for
the duration of the cycle. If towp2towp(min) tRWD2tRWD(min) tawpZtawp(min): then the cycle is a read-write cycle and the
data output will contain the data read from the selected address. If neither of the above conditions are satisfied, the
condition of the data out is indeterminate.

Either tgcy Or tgry Must be satisfied for a read cycle.

These parameters are referenced to the CAS# leading edge in early write cycles and to the WE# leading edge in read-
write cycles.

Operation within the tgap(max) limit ensures that tgac(max) can be met, tRAD(max) is specified as a reference point only. If ‘
trap is greater than the specified tgap(max) limit, then the access time is controlled by taa. :

Refer to command definition tables for valid address and data values.
Sampled, but not 100% tested. Guaranteed by design.)
See AC Input/Output Reference Waveforms for timing measurements.

ADVANCE INFORMATION 185

28F016XD FLASH MEMORY

5.8 AC Waveforms

tre
< -
tras tre
\ %
tesn terr
Toco Sl TRsH o o
t teas
> |- - .
CAS# \ /
\ 1Y
o | traL |
gl TcaL
; - -
tas RAH tasc tean
-— (e -+ | g—P
s y— X ARXRRRKRXH)
K
Row Column BB
Adaress mx K 75 N0
’ i
:Rcs R ty [
'V"V"V'V"' {7
R oy X0
R RXXXXXXOORIRORY) QALK
WEE /BB torc GO
T teop
R K OPEN OOOOOCOO00COOOON/
R
toao | Tom Toen TRRUOCCOONN
|-
XAAAAAAAAAAAAAR v, AA YWYWIWVWWYWVWW A Y VWAAAAAN
Y B KKK/
OF# AAIAAAASANER) R
O0OOOOAO000ONNOON X ‘0‘0AQ}AO))))))‘Q)A‘A‘“)}A&\\
" 1 b
L ta [-1:| o
 taac bl -Ir -t
o P ton
Dout \ Dout F

: Don't Care

Figure 7. AC Waveforms for Read Operations

186

‘

ADVANCE INFORMATION

In ® 28F016XD FLASH MEMORY
t
- RC »
'RAS tep
- > |

RAS# ———

t t
- CSH ol | CRP o
RCD ol RSH -
T | <__>tCAS
CAS# \
tasr| ['rRaH tasc| | tcaH
] N XXX XXX XXX YYRY 77
QAR A AKX
Address m - Row Column ‘:’0’0W0’o'o’o’o’o’o’0’0‘0’0’0’0’o’0‘0‘0’o’o'oWo‘o’oW0’0'oWo’0’0‘0’0’0’0’0’0’0’
t twen
RRRRRRRRTTRTIT XXX
XA AR
WEH XA QR AR
| |
tps o
- - L

RN XXX
Din X RRRRRRRRXRN
IA’A.A’.'.’A’.’.’.‘.’.‘.‘.ﬁ’.‘.‘.‘).’.‘}.’ x

l——_—'x WYY Y Y Y Y Y Y Y YYYYYY YY Y YYY YY YYYYYYYYYYYYY
Din R R RN/
R XXX KKK KR OXXXX XXX

OPEN

Dout

OE# : Don't Care

= .
By : Don't Care

twes = tWEs (min) oy o

Figure 8. AC Waveforms for Early Write Operations

ADVANCE INFORMATION 187

28F016XD FLASH MEMORY I nt9| ®

t
- RC -
t t
< RAS > PP
RAS# ——— Y\)
\ K x
tcsH tcrp
[l T T o —
<« ACD ol RSH -

CASH \

n's 4 \
Row Column OO0
Address m&(N]

'acs fowL
- tRwL
t
\\ 7 | [WP | sxmommeroreorssssmooooes?
\ 0’o’o’o’o’o’o’o’o‘o’o’o’o’o’o’o‘o‘o’o’o‘»’0’0’»’0’0’/
WE# /R OSSOSO

R
RN RRRRRRREREERRRR
"’A‘A’A‘A.‘.A.A.A’A’A‘A’A“.‘.A‘A‘A‘A‘A"\

; e
OE# N
tQez RN
t

CLz
Dout j‘ Invalia N

g : Don't Care

0533_09

Figure 9. AC Waveforms for Delayed Write Operations

188 ADVANCE INFORMATION

28F016XD FLASH MEMORY
'rwe
- -
'mas 'ep
e . -
RASH ———
\] \
'ReD CAS 'cre
a—PCD ol g - >
tr
-
CAS#
tASR
|t
Y
Address % Row
1 i
b o T
AWD RWL
'rwb ‘tWP >
g — g -
\AMAAANAVNV VNV AMANANMNAMAN
R X XXX/
WE# ! AR
Y h y, »A‘A’A.A‘A‘A‘A‘A‘A’A’A.A.A‘A.A.A.A‘A‘A.A.A.A.A‘A‘A.A‘A’A‘A\\
t
t ‘gzc 'ps| |l@—PH 5
—]
: \ X0
Din OPEN Din XXX
I~ t —————f B ‘A’A’A‘A‘A’A’A’A‘A‘A‘A‘A’A‘A’A’A‘A‘A’A‘A‘A\\
'pzo OED
‘O&A
™ ‘_ “'VY'VYVV'VVV'VVVVVVVVV'V"VV '
oe# Rl
XO000C0OODOCO0X 7T OAOA03‘0))‘0.0‘0)3)).0.0).0).0.@O.O.MA\
lcac| toEz
'l 1
t -
« FAC o] [loHg
N
Dout Dout
t N
cLz
—»
: Don't Care
0533_10
Figure 10. AC Waveforms for Read-Modify-Write Operations
189

ADVANCE INFORMATION

28F016XD FLASH MEMORY In ‘

- 'Rasp
RAS# \
' \
.
> |- tosH L
. 'mep 5| |CPy
‘—
CASH# N\ /
T
1
| 'maD
asr | | tra tasc | |tcan
Address | <t—pm [t— <> [
v \L s L XN/
KXO00000CODOOO0000
Row Column 1 Column 2 Dolumn NPEXXOGAONTNNNN0
%{r 4 ! K 4 ROOBSEEIAANEEAN
t t t 'RRH
<FCSh RC | Aoy | Tro A
: | e
V09090000 -
wer R * Y
IACCCOOC OOOYXYXY .
_l'ocz. 'l 'ptz
: ‘ ‘co_nl ' teod| | | : 'cop
Din OPEN . OPEN OPEN
r . ' deD
» 'pzo OEL ‘oz tood th >
- > Il
oE# R AR
. YXXXX .‘.““0‘0“ \\
I,xx' AA ‘l‘lb‘\
t A CPA
RAC -
= ‘ol q_l Tak L] to »{toy
- , .
' OHC o F
. LOEA -] |-t =l [LEF
t !
) CAC_p, =TT OF s 1
olZ_y gl 0EZ, | - oﬁ' "{
v \ !
Dout Dout 1 Dout 2 f

: Don't Care

0533_11

Figure 11. AC Waveforms for Fast Page Mode Read Operations

190 ADVANCE INFORMATION

28F016XD FLASH lviEMORY

B 'Rasp L tee
RAS# \. \
K A
t
Ty t t
’:— CSH RSH
t t t
'aco S CAS AP
\
CAS# \
K A
t t t t t t t
ASR RA ASC| | C t
<5 AH ASC _CAE ASCH <CAH
_l x _ ’v.v‘v‘v‘v.v.v’v.v.v‘v.v.,,
OOOOOOOONNN0
Addressm Row Column 1 Column 2 P Column N_AXXXAXXXXXXXXXXX
K / 7 NSO
t t t t t
wcs| | weH wcs| | weH wcs| | weH
WE#
k 7 N bi
t t t t
DS DH . DS DH DS | | 'DH
\Wo'o'o'o'o'o‘o‘o‘o'o'o'o'0'0'0'0'0'0'0‘0‘0 \ o'o'o'o'o'o'o'oo'o'o'o'o'o'o'l /
| OOOOCOOOOOOOAOOOK)) . . LOOCOOCOCON0N0O00
O
Din R Oin Din 2 oinn - KRS
OPEN
Dout
OE# : Don't Care
: Don't Care

twes >= tWes (min)

0533_12

Figure 12. AC Waveforms for Fast Page Mode Early Write Operatlons

ADVANCE INFORMATION

191

28F016XD FLASH MEMORY'
'Rasp
>| |5
RAS# \ _
, y
T . CRe
e CSH - | - 'RsH
a—PBSH
<«—'BCD | g CAS - < CAS o
’ \ i
CASH# %
N X £
. < FAD l
ASH ASC L 'asc psC
. t - . t .
RAH t t
| A CAH CA CA
I -\ \ m,: \
. -Address’ FAColumn GRE0MINGOIumN Column
fowd| fowL fowL
—

tFlCS

. X
WE# X"
/’A‘A’A‘A‘A’A’A‘A.A.A.A.A’A.A‘A’ 1

DZC
\\'0'0'0'0‘0‘0"0‘0'0‘0.
AN
Din XXX ————
" /70
'pz0
OE#
t t t
(o] Cl CLZ| o
t e, 11 'oez
OEZ OEZ 1
o
/A /
v A
. \
: Don't Care Invalid Dout Invalid Dout Invalid Dout

0533_13

192

Figure 13. AC Waveforms for Fast Page Mode Delayed Write Operations

ADVANCE INFORMATION

-
I nte' ® 28F016XD FLASH MEMORY

) 'RasP ol it
|| | RP
3)
RASH N \
\N - I
t - o
‘ T | PRWC — torp
p cp [+
\ o |- =
<P o 'oas o _ toas - CAS
\ 2 M\
CASH# \ 1 N / K .
| ST | SN () S—
. RAD,
t
ASR ASC 'asc 'asc
t
RAH t t t
ﬂ CAH - CAH, CCAH,_
' J 4 \ 4 A OO0,
Address m&&ow { [Column 1 x Column 27 Column N_)X03 R/
K | /
t t t t
"W o] GNL 'cPW gy O ‘cPw, Lewy
| tawD 'Awny, tawgy] |
t t t RWL
_CWD, SO I) o o
RCS AGS|
-1 g TIIITTY
3 X h QSR
WE# \ KOO000000
t |3 t - RO\
wp WP, WP .“““
RCS
t t t t
'pzd] Ds,, |J. B¢l DS e 0Z ' "
t t
H DH DH <
\\xx!xlxxxxxxx (XXXXX
Din XXRXKKXEXXXXXN) Din2 Din
b 'pz
o [
‘oeg| | EDp. t sl t
T OEH| ¢ OE - OEH
toE t})Eﬁ t
s Y —
OE# XX XXX XX XAXX / 5
XOOOOXXKOXKE 7 - f
‘cacle |4- eads]' 4 ‘cacle] He-
tade tan tanlelo
t t t
OHO |_, OH OHO
'oLz_w|[%t oz o %oz, L;
5 — i |~ :
4 'oez OEZ OEZ
Dout)py) _}f

: Don't Care Dout 1 Dout 2 Dout 3

0533_14

Figure 14. AC Waveforms for Fast Page Mode Read-Modify-Write Operations

ADVANCE INFORMATION

193

28F016XD FLASH MEMORY In
'Re
P— >
' 'Ras 'rp
-t LA -
RAS¥ ———| \
N N
tr "
o |- \ .
RPC CRP
<
CAS#
'asr|| ‘'RaH
-
A A AR A A A AR A AR A A K A A AR K I AR AA A K A AR AKX
Add ; R
ress YOO R R XXX RS
! L0000 n.o.omo.m.m.o‘o.n.o.o.u,ooo.mu.u.o.oAo.o‘o.o.m‘o.m.o.u.c.o.o.m.o.o‘o.m\
t
. |'oFE
VAN OP EN
N
R

KXXXXXX)

OE#,WE# : Don't Care

: Don't Care

0533_15

Figure 15. AC Waveforms for RAS#-Only Refresh Operations

194 ADVANCE INFORMATION

28F016XD FLASH MEMORY

-~ —
t
. RP_ RAS RP
RAS# + E ‘§
1

'rpC 'cRp
t tesr t
CPR CHR

'wRH twep

-
WRP WRH
OO)
AN
WE# OAAAAOKY
VWAWWYWAAAAA NV A AMNANAAAAANAAAANAANAAA N AN NV AN AAAAANNAAAN AN AN
Address NRuRRR KXo/
XXX XXX XXX XXX KRR XXX XX KRR OOOOOXXXXXXXXXXXXX\
torF
Dout \‘.ozozo:o:o:o:o:« OPEN
OB

OE##: Don't Care

: Don't Care

0533_16

Figure 16. AC Waveforms for CAS#-before-RAS# Refresh Operations

ADVANCE INFORMATION

195

28F016XD FLASH MEMORY
t t t
RC -l RC -l RC -
[y too | t
'Ras RP 'Ras RP | 'Ras RP
< » ! e .
RAS# !\ 5 Y \
O 4 \ / \
N]
1
RSH 'cHR 'crp
~'Rep [- -
CAS# }_ Z‘
RAD \: RAL]
t
ASFL t
AH
- ['ASE Lt
-
T\
Address Ho Ccll mn POGG 00000000000 00000000000000000000000004 004
\ I
'RRH
'Res 1
<l ~'ReH
4
WE#
'nzc t
|t CDD
Din 4
MVIAVVY \ t
DZ0 QED
! oEA
"V'VVYYY'VVYVYVYV'YV VANV VAWY
OE# AR &:{.}}}:{0}:{/
XN 2RO\
téACV > :QEZ
I VY OFF _ | OHO
RAC 1
B0\ i
Dout X Dout \—
N\
: Don't Care

0533_17

Figure 17. AC Waveforms for Hidden Refresh Operations

196

ADVANCE INFORMATION

-
lnt6| ® 28F016XD FLASH MEMORY

t t
. RASS > RPS

RAS# f

%
! CHS
CAS# %
- HI-Z

vo,) 5

0533_18

Figure 18. AC Waveforms for Self-Refresh Operations

ADVANCE INFORMATION 197

28F016XD FLASH MEMORY

5.9 Power-Up and Reset Timings

Vo POWER-UP

RP# _____/ \ /
(P) 5.0V
4.5V /
v tsvPH
3.0V |~
Vcc ov / \ < >
(8v,5v)
tavPH 'pLsv
0533_19
Figure 19. V¢c Power-Up and RP# Reset Waveforms
Sym Parameter Notes Min Max Unit
tpLsv RP# Low to V¢ at 4.5V (Minimum) 2 0 us
teLav RP# Low to V¢ at 3.0V (Minimum) - 2 0 us
tsvpH Ve at 4.5V Minimum) to RP# High 1 2 ps
taveH Ve at 3.0V (Minimum) to RP# High 1 2 ps
NOTES:

For Read Timings following Reset, see sections 5.6 and 5.7.

1. The tsypyand/or taypy, times must be strictly followed to guarantee all other read and write specifications for the 28F016XD
2. The power supply may start to switch concurrently with RP# going low.

198

ADVANCE INFORMATION

L]
IntGI ® 28F016XD FLASH MEMORY

5.10 Erase and Word Write Performance(3:4)
Voo =8.3V £ 0.3V, Vpp = 5.0V + 0.5V, T = 0°C to +70°C

Symbol Parameter Notes Min Typ() Max Units

twhrH1 Word Write Time 25 TBD 35.0 TBD Hs

twhrHS Block Write Time 25 TBD 1.2 TBD sec
Block Erase Time 2,5 TBD 1.4 TBD sec
Erase Suspend Latency Time to Read 1.0 12.0 75.0 us

Vg = 3.3V £ 0.3V, Vpp = 12.0V + 0.6V, T = 0°C to +70°C

Symbol Parameter - Notes Min Typ() Max Units

twhrn! | Word Write Time 25 5 9 8D ps

twHRHS Block Write Time 2,5 TBD 0.3 1.0 sec
Block Erase Time 2 0.3 0.8 10 sec
Erase Suspend Latency Time to Read 1.0 9.0 55.0 Hs

Ve =5.0V £ 0.5V, Vpp = 5.0V 0.5V, T = 0°C to +70°C

Symbol Parameter Notes Min Typ(® Max Units

twhrn1 Word Write Time 2,5 TBD 25.0 TBD Us

twhrn3 | Block Write Time 2,5 TBD 0.85 TBD sec
Block Erase Time) 2,5 TBD 1.0 TBD sec
Erase Suspend Latency Time to Read 1.0 - 9.0 55.0 Hs

Vog = 5.0V £ 0.5V, Vpp = 12.0V £ 0.6V, T = 0°C to +70°C

Symbol Parameter Notes Min Typ() Max Units
twhrn1 Word Write Time 2,5 45 6 TBD Us
twhrn3 | Block Write Time - 2,5 TBD 0.2 1.0 sec
Block Erase Time 2 0.3 0.6 10 sec
Erase Suspend Latency Time to Read 1.0 7.0 40.0 Us
NOTES:

1. 25°C, and nominal voltages.

Excludes system-level overhead.

These performance numbers are valid for all speed versions.
Sampled, but not 100% tested. -Guaranteed by design.

The TBD information will be available in a technical paper. Please contact Intel's Application Hotline or your local sales
office for more information.

o> wP

ADVANCE INFORMATION 199

) L]
28F016XD FLASH MEMORY Inu ®

6.0 MECHANICAL SPECIFICATIONS

Q)
l<¢]
D1
r o]
<+— D »
EE DETAILA SEATING
PLANE
N
‘1 j
-
DETAILB DETALLA

F B

Figuré 20. Mechanical Specifications of the 28F016XD 56-Lead TSOP Type | Package

0533_20

v) Family: Thin Small Out-Line Package
Symbol . Millimeters Notes
Minimum = . Nominal Maximum
A 1.20
A1 0.50
A2 0.965 0.995 1.025
b 0.100 . 0.150 0.200
c 0.115 .0.125 0.135
D1 18.20 18.40 18.60
E 13.80 14.00 14.20
e 050
D 19.80 20.00 20.20
L 0.500 ~ 0.600 0.700
N 56
%) 0° 3° 5°
Y 0.100
4 0.150 0.250 0.350

200 ADVANCE INFORMATION

u
ntel ® 28F016XD FLASH MEMORY

DEVICE NOMENCLATURE AND ORDERING INFORMATION

Product line designator for all intel Flash products

|E¢|28F016XD|-85

L n ua
Package Random Access Time
E=TSOP (trac) at 5V \&c (ns)
Device Density .
1AM Device Type

016 = 16-Mbit D= DRAI\);I-InTerfcce

Product Family

X = Embedded

Flash RAM
0533_21
Valid Combinations
Order Code Vce = 3.3V £ 0.3V, 50 PF load, Vce = 5.0V + 10%, 100 PF load,
1.5V I/O Leveis'!) TTL 1O Levels!)
E28F016XD 85 E28F016XD-95 E28F016XD-85

NOTE:
1. See Section 5.2 for Transient Input/Output Reference Waveforms.

ADVANCE INFORMATION 201

28F016XD FLASH MEMORY

intgl.

ADDITIONAL INFORMATION

Order Number

Document/Tool

297372 16-Mbit Flash Product Family User's Manual
292152 AB-58, "28F016XD-Based SIMM Designs"
292165 AB-62, "Compiling Optimized Code for Embedded Flash RAM Memories"
292092 AP-357, “Power Supply Solutions for Flash Memory”
292123 AP-374, "Flash Memory Write Protection Techniques"
292126 AP-377, "16-Mbit Flash Product Family Software Drivers,
28F016SA/SV/XD/XS"
292131 AP-384, "Designing with the 28F016XD"
292163 AP-610, “Flash Memory In-System Code and Data Update Techniques”
292168 AP-614, “Using the 28F016XD in Embedded PC Designs”
294016 ER-33, “ETOX™ Flash Memory Technology—Insight to Intel’s Fourth
Generation Process Innovation”
297508 FlashBuilder Utility.
~ Contact Intel/Distribution 28F016XD Benchmark Utility
‘ Sales Office
Contact Intel/Distribution Flash Cycling Utility
Sales Office
Contact Intel/Distribution 28F016XD iBIS Models
Sales Office
Contact Intel/Distribution 28F016XD VHDL/Verilog Models
Sales Office
Contact Intel/Distribution 28F016XD Timing Designer Library Files
Sales Office »
Contact Intel/Distribution 28F016XD Orcad and ViewlLogic Schematic Symbols
Sales Office

202

ADVANCE INFORMATION

L]
I nu ® 28F016XD FLASH MEMORY

DATASHEET REVISION HISTORY

Number Description
001 Original Version
002 Removed support of the following features:

o All page buffer operations (read, write, programming, Upload Device information)
o Command queuing
o Software Sleep and Abort
o Erase All Unlocked Blocks
e Device Configuration command
Changed definition of “NC.” Removed “No internal connection to die” from description.
Added “xx" to Upper Byte of Command (Data) Definition in Sections 4.2 and 4.3.
Modified parameters “V” and “|” of Section 5.1 to apply to “NC” pins.
Increased Ipps (Vpp Read Current) for Vep > Vce to 200 pA at Vee = 3.3V/5.0V.
Changed Vcc = 5.0V DC Characteristics (Section 5.5) marked with Note 1 to indicate
that these currents are specified for a CMOS rise/fall time (10% to 90%) of <5 ns
and a TTL rise/fall time of <10 ns.
Corrected “RP# high to RAS# going low” to be a “Min” specification at Vcc = 3.3V/5.0V.
Increased Typical “Word/Block Write Times” (twHrH1/twHrH3) for Vep = 5.0V:
twHRH1 from 24.0 ps to 35.0 ps and twHrHa from 0.8 sec to 1.2 sec at Vec = 3.3V
twHRrH1 from 16.0 ps to 25.0 ps and twrrHa from 0.6 sec to 0.85 sec at Ve = 5.0V
Changed “Time from Erase Suspend Command to WSM Ready” spec name to “Erase
Suspend Latency Time to Read”; modified typical values and added Min/Max
values at V¢c =3.3/5.0V and Vpp =5.0/12.0V (Section 5.10).
Minor cosmetic changes throughout document.

ADVANCE INFORMATION ' 203

TECHNICAL
PAPER

Interfacing the
28F016XS to the
Intel486™

Microprocessor Family

KEN MCKEE
TECHNICAL MARKETING
ENGINEER

PHILIP BRACE
APPLICATIONS ENGINEER

February 1995 Order Number: 297504-002

205

intal.

1.0 INTRODUCTION

This technical paper describes designs interfacing the
high performance 28F016XS flash memory to the
Intel486™ microprocessor. These designs are based on
preliminary 28F016XS specifications. Please contact
your Intel or distribution sales office for up-to-date
information.

The 28F016XS is a 16-Mbit flash memory with a
synchronous pipelined read interface. This optimized
flash memory interface delivers equivalent or better
read performance compared to DRAM. The 28F016XS
combines ROM-like non-volatility, DRAM-like read
performance and in-system updateability into one
memory technology. These inherent capabilities will
improve performance and lower the over-all system
cost. The 28F016XS delivers optimal performance
when interfacing to a burst processor, such as the
Intel486 microprocessor. The Intel486 microprocessor
sees widespread use in a variety of applications ranging
from the PC to numerous embedded products, while
providing code compatibility with thousands of
commercially available software packages and the
performance necessary for today’s leading-edge
systems. The Intel486 microprocessor’s bus interface
provides a burst transfer mechanism whereby four
consecutive data items are fetched in one access
sequence. The 28F016XS’s synchronous pipelined read
interface makes special use of the burst transfer
mechanism to achieve extremely high read
performance.

When interfacing the 28F016XS to a processor that
executes an Intel or linear burst cycle, up to three
simultaneous read accesses can be pipelined into the
28F016XS, sustaining a high read transfer rate. At
33 MHz, the 28F016XS-15 delivers zero wait-state

PRODUCT PREVIEW

28F016XS/Intel486 CPU Interface

performance after the initial pipeline fill. This
enhanced read performance eliminates the costly
expense of shadowing code from slow non-volatile
memory (ROM, hard disk drive, etc.) to fast DRAM for
increased system performance. The 28F016XS enables
direct code execution out of the flash memory array,
eliminating unnecessary software and hardware
overhead involved in shadowing code.

In an Intel486 microprocessor-based environment,
BAPCo benchmarking analysis revealed a 13% system
performance improvement using the 28F016XS-15
over 70 ns DRAM.

In addition to the increased read performance, the
28F016XS offers an Intel486 microprocessor-based
system a low power, non-volatile memory that is
electrically updateable via local processor control. The
28F016XS’s low power consumption reduces system
power dissipation and heat emission, and its
updateability increases code flexibility and system
reliability. Combined, the 28F016XS and the Intel486
microprocessor deliver a high performance, low power
and cost-effective system solution.

The Intel486 microprocessor interface to the
28F016XS requires minimal logic while offering
significant system enhancements. One programmable
logic device (PLD), a 22V10-15, generates and
monitors all 28F016XS and Intel486 microprocessor
control signals. This technical paper explores the
interface between the 28F016XS-15 and the Intel486™
SX-33 microprocessor, describing the interface
circuitry, explaining the read and write cycles and
providing the interfacing PLD equations. It also
provides detailed design suggestions for interfacing the
28F016XS to other Intel486 microprocessors.

207

28F016XS/Intel486 CPU Interface

intel.

2.0 OPTIMIZED 28F016XS / INTEL486 SX MICROPROCESSOR INTERFACE

Buffer

Y X777
. ,
\ Dasp D15—0
L : A21-4 Ays E %
i486™ SX-33 4 Z
Microprocessor iz ChieSelect | JcE# 28F016XS [/
Logic
7
A2
A2-1
cs#
CTR
A
LYTH MUX v Switched
bp A—
4 ADV# ADV# SVor12v
OE# OE# BYTE#[(] sv
WS wes we# (1 cpio
RY/BY# L INT
: | Interface :
RESET Logic :
BOFF# (22v10-15) RESET: 2::: _
CFG. Z,

Figure 1. Optimized 28F016XS Interface to the Intel486 Microprocessor
with Wait-State Profile of 2-0-0-0 Up to 33 MHz

The 28F016XS-15 interface to the Intel486 SX-33
microprocessor, illustrated in Figure 1, delivers 2-0-0-0
wait-state read performance. Consult your Intel or
distribution sales office for schematic and PLD files for
this design.

See Section 3.0 for an alternative design.

2.1 Circuitry Description

This section will describe the circuitry involved in this
design.

Memory Configuration

This design uses two 28F016XS-15s, each configured in
x16 mode and arranged in parallel to match the Intel486
SX microprocessor’s 32-bit data bus. This memory
configuration

208

provides 4 Mbytes of flash memory for system usage.
Signals A,,_4 from the Intel486 SX microprocessor and
CTR,, from the PLD select locations within the
28F016XS memory space, arranged as 1 Meg double
words. The two-bit counter implemented in the PLD
supplies consecutive burst addresses to the 28F016XSs.

Reset

The Intel486 SX microprocessor requires an active high
reset signal, while the 28F016XSs use an active low
RESET#. Figure 2 illustrates a suggested logic
configuration for generating both an active high and low
reset signal. The active high RESET controls the
Intel486 SX microprocessor and PLD RESET inputs,
while the active low RESET# drives the 28F016XS RP#
input.

PRODUCT PREVIEW I

28F016XS/Intel486 CPU Interface

VCC

SYSTEM RESET —— MR#

MAX707

Voltage Monitor
RESET#

RESET

28F106XS

RP#

l RESET#

RESET

7504_02

Figure 2. RESET Generation Method

Chip Select Logic

Chip select decode logic may use Ajz;,, to generate
active low chip select signals, CEx#, for the 28F016XS
memory space and other system peripherals. The chip
select addressing the 28F016XS memory space drives
CE# on each 28F016XS-15 and a control input to the
PLD. The 28F016XS-15s" CE# inputs are grounded.
For many systems, using the upper address bits in a
linear selection scheme may provide a sufficient number
of chip select signals, thus eliminating chip select
decode logic. (See Figure 3 for an example of using
linear selection for chip selects.) When using a linear
chip select scheme however, software must avoid using
addresses that may select more than one device, which
could result in bus contention. For example, addresses
01000000H through 010FFFFFH drive both Ay, and Ay;
to a logic “0," which inadvertently selects two peripheral
devices.

CLK Option

A 33 MHz CLK drives the Intel486 SX microprocessor.
The buffer in Figure 1 delays this processor CLK input
and drives the PLD and the 28F016XS-15s. The buffer
introduces an intentional system clock skew. This skew
provides additional time for the processor to meet the
28F016XSs’ address setup time.

PRODUCT PREVIEW

Intel486™
SX CPU

Ao —— Chip Select

23 Chip Select

24 |_ Chip Select

Chip Select

1
2
3

Address Space

01800000 - 01BFFFFF H

01400000 - 017FFFFF H
00C00000 - 00FFFFFF H

7504_03

Figure 3. Example of Using Linear Chip

Selection with Active Low
Chip Select Signals

209

28F016XS/Intel486 CPU Interface

Multiplexer (MUX)

To achieve this type of wait-state proﬁle, the Intel486
SX microprocessor directly loads the 28F016XS with
the address of the first read access. The interface logic
enables the MUX to permit the processor’s lower
address lines ‘A3.; access to the lower flash memory
address lines during the initial access of a burst or single
read transaction. Next, the interface logic switches the
data flow path through the MUX in anticipation of a
burst transaction. The two-bit counter integrated into the
control logic then takes over driving the 28F016XSs’
Aj.;. The counter supplies the flash memory with
consecutive burst addresses for the remaining duration
of the transaction.

" Interface Control Signals

The interfacing state machine monitors the Intel486 SX
microprocessor’s external bus signals to control the two-
bit counter and generate OE#, WE# and ADV# signals
to the 28F016XS-15s. At the beginning of the burst

cycle, the interface logic loads the two-bit counter. The

state machine also generates KEN# and BRDY# signals,
informing the Intel486 SX microprocessor of the nature
of the bus cycle.

Configuration Signal

A general purpose input/output (GPIO) generates the
configuration signal input to the state machine. The
configuration signal must reset to logic “0” on power-up
and system reset to ensure that the operation of the state
machine ‘matches the initial SFI Configuration of the
28F016XS-15s. After optimizing the SFI Configuration,
the GPIO must switch to logic “1” in order to take
advantage of the optimized flash memory state. See
Section 2.3 for more information regarding the
configuration signal.

Additional 28F016XS Control Signals

The BYTE# input to the 28F016XS-15s is tied to 5.0V
to configure the 28F016XS-15s for x16 mode, and A is
tied to GND (A, is only used for byte addressing). A
GPIO controls the write protect input, WP#, to the
28F016XS-15s. The 28F016XS is compatible with
either a 5.0V or a 12.0V Vpp voltage and is completely
protected from data alteration when Vypp is switched to
GND. With Vpp < Vppg, the 28F016XS will not
successfully complete Data Write and Erase operations,

210

L]

intel.
resulting in absolute flash memory data protection.
Figure 1 also illustrates the 28F016XS-15’s RY/BY#
output connecting directly to a system interrupt, which
enables background Write/Erase operations. RY/BY#,
WP#, and Vpp implementations are application
dependent. Consult the Additional Information section

of this technical paper for documentation covering these
topics in more detail.

2.2 Interfacing Signal Definitions

The interface logic that controls the 28F016XS-15
interface to the Intel486™ SX-33 microprocessor
monitors and regulates specific system signals. The next
two sections describe these signals in detail.

2.2.1 28F016XS Signaj Descriptions

This section describes the 28F016XS signals that are
pertinent to this design.

ADV# - Address Valid (Input).

This active low signal informs the 28F016XS that a
valid address is present on its address pins. ADV#, in
conjunction with a rising CLK edge, initiates a read
access to the 28F016XS. This signal is ignored during
write operations.

CLK - Clock (Input)

CLK provides the fundamental timing and internal
operating read frequency for the 28F016XS. CLK
initiates read accesses (in conjunction with ADV#),
times out the SFI Configuration, and synchronizes
device outputs. CLK can be slowed or stopped with no
loss of data synchronization. This signal, like ADV#, is
ignored during write operations.

OE# - Output Enable (Input)

This active low signal activates the 28F016XS’s output
buffers when OE# equals "0". The outputs tri-state when
OE## is driven to "1".

WE# - Write Enable (Input)

This active low signal controls access to the Control
User Interface (CUI). Addresses (command or array) and

data are latched on the rising edge of WE# during write
cycles.

PRODUCT PREVIEW I

]

intal.

2.2.2 INTELA486 SX Microprocessor Signal
Descriptions

This section describes the Intel486 SX microprocessor
signals that are relevant to this interface. This interface
assumes processor inputs are driven by only one
controlling device (the PLD). If more than one device
drives a processor input, the PLD output should be
configured as open drain to avoid signal contention.
Many PLDs, FPGAs and ASICs provide output
configuration capability.

ADS# - Address Status (Output)

This active low output signal from the Intel486 SX
microprocessor indicates the presence of valid bus cycle
and address signals on the bus. ADS# is driven in the
same clock as the address signals. Typically, external
circuitry uses ADS# to indicate the beginning of a bus
cycle.

KEN# - Cache Enable (Input)

This active low input to the Intel486 SX microprocessor
determines whether data being returned in the current
bus cycle will be cached. In order for the current data to
be cached, KEN# must be returned active in the clock
prior to the first RDY# or BRDY# of the cycle and must
also be returned active in the last clock of the data
transfer.

BRDY# - Burst Ready (Input)

This active low input to the microprocessor performs the
same function during a burst cycle as RDY# performs
during a non-burst cycle. During a burst cycle, BRDY#
is sampled on the rising edge of every clock. Upon
sampling BRDY# active, the data on the data bus will be
latched into the microprocessor (for burst reads). ADS#
will be negated during the second transfer of the burst
cycle; however, the lower address lines and byte enables
may change to indicate the next data item requested by
the processor.

BLAST# - Burst Last (Output)

This active low output from the microprocessor signals
the final transfer in a burst cycle. The next time BRDY#
is returned, it will be treated the same as RDY# and thus
terminate any multiple cycle transfers.

PRODUCT PREVIEW

28F016XS/Intel486 CPU Interface

2.3 System Interface Requirement

The system logic controlling the 28F016XS-15 interface
to the Intel486 SX microprocessor incorporates an initial
and an optimized read configuration, which correlates to
specific SFI Configuration values. The interface read
configuration is dependent upon the value of CFG (PLD
input). CFG informs the interface of the SFI
Configuration status. Note, the SFI Configuration status
does not affect Write operations.

Initial Read Configuration

Upon power-up/reset, the 28F016XS-15 defaults to a
SFI Configuration value of 4, and the interface logic
supports burst read accesses to the flash memory space.
The interface returns BRDY# to inform the processor
that the interface supports burst read transaction. A
general purpose input/output (GPIO) informs the system
interface of the status of the SFI Configuration.

The GPIO entitled CFG is set to logic “0” on
power-up/reset. With CFG driven low, the state machine
correctly matches the 28F016XS-15s’ default
configuration.

Optimized Read Configuration

At 33 MHz, the 28F016XS-15 operates at highest
performance with a SFI Configuration value set to 2. To
reconfigure the 28F016XS-15, program control should
jump to an area of RAM to execute the configuration
sequence. After reconfiguring the 28F016XS-15, the
GPIO value must change to logic “1,” in order to take
advantage of the 28F016XS-15’s optimized
configuration. A pseudocode flow for this configuration
sequence is shown below.

Execute Device Configuration command sequence
Activate CFG signal
End

In the optimized read configuration, the system logic
supports burst cycles by generating BRDY#, which
informs the microprocessor that the memory subsystem
is capable of handling a burst -transfer. The
28F016XS-15 memory array, after the initial pipeline fill
delay from the first access, transfers data to the
processor at a rate of 133 Mbytes/sec.

211

28F016XS/Intel486 CPU Interface

2.4 Read Control for Burst
Transactions

The interface logic controlling the handshaking between
the 28F016XS and processor performs one of two
different read cycles, depending upon the CFG input
signal.

Read Abort Condition

A read cycle will abort only when an external system
bus master asserts BOFF#, which forces the processor to
give immediate bus control to the requester. When this
situation occurs, the Intel486 SX microprocessor floats
the address bus, which will cause the address decode
logic to de-select the 28F016XS memory space.
Monitoring BOFF#, the interfacing logic will transition
to an idle state and wait for the processor to re-initiate
the interrupted bus cycle after the bus master has
relinquished the bus to the processor. OE# is
immediately driven high, deactivating the 28F016XS-
15’s output buffers, upon detecting BOFF# driven
active. This BOFF# condition can occur in both the
initial and optimized configurations described in the
paragraphs that follow.

Initial Configuration

Refer to Figures 4 and 5 for the following read cycle
discussion.

With CFG set to logic “0,” the interfacing read state
machine executes cacheable burst read cycles. This
configuration occurs upon power-up and reset.

Initially, the interface logic drives ADV# and MUX
active while waiting for the Intel486 SX processor to
initiate a bus cycle targeting the 28F016XS. With the
MUX active, the processor’s A3z drive the lower flash
memory address lines in anticipation of a flash memory
access. During this anticipation state, CE# is active to
prevent a tgrcy violation on the first access initiated by
the processor. The delayed CLK also prevents a possible
timing violation, providing the processor with sufficient
time to meet the 28F016XSs’ tavch specification when
initiating the first access.

212

.

intel.
When the microprocessor does initiate a read access to
the 28F016XS memory space, it will provide an address,

drive W/R# low and activate ADS#. Monitoring these
signals, the state machine transitions into read control.

IfADS# = 0 and W/R# = 0 then READ CONTROL

At this point, CFG and CS# are examined to determine
the configuration status of the 28F016XS-15s, and
whether or not the current address targets the 28F016XS
memory space. If CS# = “1,” the state machine returns
to an idle state waiting for a new access. Otherwise, the
state machine will continue the read access, regulating
ADV#, BRDY# and OE#.

At N =1 (Figure 5), the interfacing read state machine
loads and increments the two-bit counter. The counter is
incremented because the processor supplies the flash
memory with the initial address. The counter then
provides the flash memory with the subsequent burst
addresses throughout the remaining duration of the bus
transaction.

With ADV# at logic "0," the interface initiates a read
access to the 28F016XS-15s at N = 1. Next, ADV#
immediately switches to a logic “1” at N = 1 and then
toggles active on every other clock edge until N = 8.
After this time, ADV# will remain inactive.

In the default SFI Configuration (SFI Configuration
= 4), the first data will be accessible to the processor at
N = 6. The rest remaining data will be available for the
processor to retrieve at N = 8, 10 and 12. The
28F016XS-15’s output buffers are enabled at N = 3 and
BRDY# is driven low at N = 5. The processor will
sample BRDY# active and latch the information residing
on the data bus at N = 6. If the processor drives
BLAST# inactive, indicating a burst transaction is in
process, the interface logic will drive BRDY# active on
every other clock edge until BLAST# is sampled active
by the interface logic. Then the state machine will
transition to an idle state where it deactivates OE# and
waits for the processor to initiate a new bus cycle.

PRODUCT PREVIEW I

intel.

Initial Configuration Timing Consideration

In this initial read configuration design, there are
important timing considerations that need to be taken
into consideration.

First, the buffer delay can cause possible timing
violations if not chosen correctly. The purpose of the
buffer is to provide time for the processor to load the
28F016XSs with the initial address during read
transactions. Therefore, the buffer must have a minimum
delay which satisfies the flash memory’s’ taych.

tavcH*+ ts- 1/33 MHz =1 ns

28F016XS/Intel486 CPU Interface

The buffer can also affect the processor’s data setup
time. Hence, the buffer must have a maximum delay of
no greater than:

1/33 MHz - tchqv - t22 =5 ns

Another important timing parameter is the Inte!486 SX
microprocessor’s data hold time. Since the 28F016XS
specifies a 0 ns guaranteed data hold time from CE# or
OE# high, these two signals must be driven active until
the processor’s hold time is satisfied. CE# hold delay
will not be concern because CE# is held active during
the state machine’s idle state. OE# has only .5 ns of
margin to the processor’s specification for the buffer
used in this design. OE# hold time equals:

tpZX(min) *+ tPHL(min) = 3.5 ns

Consult the appropriate datasheets for full timing
information.

RESET=0

KEN#=0
ADV#=0
BRDY#=1
BLAST#=0

+BOFF#=0 cFG=1

* BOFF#=1

OE#=0
WE#=1
KEN#=0
ADV#=0
BRDY#=1

BLAST#=1
*CFG=1

OE#=0
WE#=1
KEN#=0
ADV#=1

BRDY#=0

BLAST#=1

BLAST#=1
* CFG=0

OE#=0
WE#=1
KEN#=0
ADV#=1

BRDY#=1

ADS#=0

OE#=1
WE#=1
KEN#=1
ADV#=1
BRDY#=1

BOFF#=1

OE#=1
WE#=1
KEN#=0
ADV#=1

BRDY#=1

CFG=0
* BOFF#=1
BLAST#=0
+CS# =0

BOFF#=1 * BOFF#=0

=7
* BOFF#=1

BRDY#=1

BOFF#=1

Figure 4. Optimized Read State Diagram for Burst Read Control (Interface Shown in Figure 1)

PRODUCT PREVIEW

213

28F016XS/Intel486 CPU Interfacé

=

tel.

CLK
=
Delayed
o f Iy
(]
e
ADS# Zzzl ’
—=
Address_m
BLAST#
CE#
ADV#
KEN#
OE#

CR<1:0>

BRDY#

Data

-

N=4

INEINSNRiE

N=5

N=6 N=7

N=8 N=9

Syipipinupipipipininininl
plipliplinlinligl

N=10 N=11

N=12

El
177 12 r

tvicn

i
5
F

=
=
=

T

tozxmin)

toron

=0

= =

N

é‘

|

Vgt

t

i

=[E 7

e

XK

L
]

7504_05

Figure 5. Example Initial Burst Read Cycle Showing Key Timing
Specifications Requiring Consideration

Table 1. Example Optimized Read Cycle Specifications at 5V V¢

Symbol Description Min Max Unit
trHLPLH | Buffer Delay o 1.5 5 ns
ts ADS# Delay (Intel486 SX-33 microprocessor) 3 16 ns
taa BLAST# Delay (Intel486 SX-33 microprocessor) 3 20 ns
too Do Setup Time (Intel486 SX-33 microprocessor) 5 ns
tecch | CEx# Setup Time to CLK (28F016XS-15) 25 ns
tuucH | ADV# Setup Time to CLK (28F016XS-15) 15 ns
toLch | OE# Setup Time to CLK (28F016XS-15) 15 ns
tchqv | CLK to Data Delay (28F016XS-15) : 20 ns
tpzx CLK Output Delay (22V10-15) 2 8 ns

NOTE: .

Consult appropriate datasheets for up-to-déteespeciﬁcations.)

214

PRODUCT PREVIEW

intgl.

Optimized Configuration
Refer to Figures 4 and 6 for the following discussion.

With the 28F016XS-15s in the optimized configuration
(SFI Configuration = 2 at 33 MHz), and CFG set to a
logic “1” value, the system interface executes cacheable
burst cycles.

Like the initial configuration, the connecting logic
initially drives ADV# and MUX active while waiting for
the Intel486 SX processor to initiate a bus cycle
targeting the 28F016XS. With the MUX active, the
processor’s Ajz.2 drive the lower flash memory address
lines in anticipation of a flash memory access. During
this anticipation state, CE# is active to prevent a tgLcH
violation on the first access initiated by the processor.
The delayed CLK also inhibits also possible timing
violations from occurring. It provides the processor with
sufficient time to meet the 28F016XSs’ tavcH
specification when initiating the first access.

When the processor drives ADS# low, it notifies the
interface logic that a valid address is on the address bus.
Monitoring the external bus of the Intel4d86 SX
microprocessor, the state machine then transitions into
read control.

If ADS# = 0 and W/R# = 0 then READ CONTROL

In optimized read control, the state machine controls
OE#, KEN# and BRDY#. If CS# = “0,” the state
machine at N = 1 loads and increments the two-bit
counter, switches the data flow path through the MUX
and holds ADV# active for the next three consecutive
clock periods. While ADV# is driven low, the counter
increments through the Intel burst order (Table 2),
supplying the 28F016XS-15s with a new address at
N =2, 3 and 4. If CS# ="1,” the state machine returns to
an idle state waiting for a new memory access.

PRODUCT PREVIEW

28F016XS/Intel486 CPU Interface

Table 2. Intel Burst Order (A;_,)

First Second Third Fourth
Address | Address | Address | Address
0 4 8 C
4 0 C 8
8 c 0 4
o] 8 4 0

At N = 2, the state machine drives KEN# active and
holds it active until the end of the burst cycle, thereby
executing a cache line fill.

The state machine activates the 28F016XS-15 output
buffers (OE# driven to a logic “0” value) at N = 2 and
holds them active throughout the burst read cycle.

With the SFI Configuration value set to 2, data will be
available at N =4, 5, 6 and 7. Driving BRDY# low at N
= 3, the Intel486 SX microprocessor will sample
BRDY# active at N = 4, which informs the processor of
valid information on data pins Dj3; o and that the
28F016XS memory space supports a burst read transfer.
BRDY# is held low until the end of the burst cycle while
the processor retrieves data on every rising clock edge.
BRDY# is driven high upon sampling BLAST# low,
marking the end of the burst cycle. Then the state
machine will transition to and idle state where it
deactivates OE# and waits for the processor to initiate a
new bus cycle.

Optimized Configuration Timing Considerations

In the optimized configuration, the same timing
consideration regarding the buffer propagation delay and
OE# hold time require attention. For information
regarding these concerns, see Section 2.4 Initial
Configuration Timing Considerations.

215

28F016XS/Intel486 CPU Interface

N=0 N=1 N=2 N=3 N=4 =5

« LY LY L L

N=7

N=8

Sagigigiglinlinligiply
s

—

BLAST#

CE#

W

st

KEN#

8

OE#

==

=

?
==

'm
CR<1:0>

——i7

BROY#

i DCDBCTAC

T

Figure 6. Example Burst Read Timing Waveform lilustrating Key Timing

Specifications Requiring Consideration

Table 3. Example Optimized Read Cycle Specifications at 5V V¢

Symbol Description Min Max Unit
trHLPLH | Buffer Delay 15 5 ns
ts ADS# Delay (Intel486 SX-33 microprocessor) 16 ns
taa BLAST# Delay (Intel486 SX-33 microprocessor) 20 ns
tn D31.9 Setup Time (Intel486 SX-33 microprocessor) ns
teecn | CEx# Setup Time to CLK (28F016XS-15) 25 ns
tvich | ADV# Setup Time to CLK (28F016XS-15) 15 ns
taich | OE# Setup Time to CLK (28F016XS-15) 15 ns
tchqv | CLK to Data Delay (28F016XS-15) 20 ns
tpzx CLK Output Delay (22V10-15) 2 8 ns

NOTE:

Consult appropriate datasheets for up-to-date specifications.

216

PRODUCT PREVIEW I

intel.

2.5 Write Cycle Control

Refer to Figures 7 and 8 for the following write cycle
discussion.

Write Abort Condition

A write cycle will abort only when an external system
bus master asserts BOFF#, which forces the processor to
give immediate bus control to the requester. When this
situation occurs, the Intel486 SX microprocessor will
float the address bus, causing the address decode logic
to de-select the 28F016XS memory space. The
interfacing logic, monitoring BOFF#, will transition to
an idle state where it will wait for the processor to re-
initiate the interrupted bus cycle after the bus master has
relinquished the bus to the processor. WE# s
immediately deactivated upon sensing BOFF# low.

RESET=0

BOFF#=1

Figure 7. Non-Burst Write State Diagram
Controlling the Interface Shown in Figure 1

Write Cycle Description
The 28F016XS-15 executes asynchronous write cycles

like traditional flash memory components such as the
28F016SA/SV. The SFI Configuration does not

PRODUCT PREVIEW

28F016XS/Intel486 CPU Interface

influence write operations; therefore, the interfacing
state machine does not examine CFG once detecting a
write cycle.

During the first clock period, the Intel486 SX
microprocessor drives ADS# low and W/R# high. The
state machine, upon detecting a write cycle, immediately
switches the data flow path through the MUX. The
processor does not drive the flash memory’s lower
address lines during write cycles. The counter loads and
supplies the address to the 28F016XSs’ lower two
address lines, As.;. The state machine then transitions to
write control at N =1. The counter only supplies the
28F016XS-15 with one address throughout the entire
write operation. A write transaction must complete fully
before issuing a second write operation.

If ADS# = 0 and W/R# = 1 then WRITE CONTROL

In write control, the state machine performs
WE#-controlled command write operations to the
28F016XS-15s. Data is written to the 28F016XS
memory space via processor control. The interface only
supports double word writes.

For the next two clock periods the state machine holds
WE# low to satisfy the 28F016XS-15s> WE# active
requirement. At N = 4, WE# transitions to a logic “1,”
which latches the address and data into the
28F016XS-15s.

BRDY# is not returned to the processor at N = 4 because
the Intel486 SX microprocessor will only hold an
address 3 ns after sampling BRDY# low. Instead, the
interface activates BRDY# after N = 4, causing the
processor to hold the address valid for an additional
clock cycle, which satisfies the 28F016XS-15’s address
hold specification (tyyax). The state machine then
returns to an inactive state at N = 5, waiting for a new
memory access.

Write Timing Consideration

When performing a write operation, CS# is a critical
system timing parameter, which must satisfy the
interface logic’s required setup time. The 22V10-15
requires a 9 ns setup time to CLK. Therefore, the system
decode logic must generate a valid CS# to the interface
within:

2 X 1/33 MHz - t; - tg; = 35 ns

Consult the appropriate datasheets for full tlmmg
information.

217

-
28F016XS/Intel486 CPU Interface I nU ®

N=0 . N=1 N=2 N=3 N=4 N=5

CLK
ADS# _zm ‘ /

—]
A<31:4>—-m

)__
/___

CE#
—»itpzx
"CTR
t
EZote tovwh »tpzx
e T
——itpzx —ltp2x

rovs | N Y

t .
st Lovwe Lot

Data : | @()__

7504_08

Figure 8. Example Write Cycle Showing Key Timing Specifications Requiring Consideration

Table 4. Example Write Cycle Timing Specifications at 5V V¢

Symbol Description Min Max Unit
ts ADS# Delay(Intel486 SX-33 microprocessor) 3 16 ns
tio Data Write Valid Delay (Intel486 SX-33 3 © 18 ns

microprocessor)
ty4 Data Write Float Delay (Intel486 SX-33 20 ns
microprocessor)
_twiwn | WE# Pulse Width (28F016XS-15) 50 ns
tovwn | Data Setup to WE# Going High (28F016XS-15) - 50 ns
tezx CLK Output Delay (22V10-15) 2 8 ns
NOTE: '

Consult appropriate datasheets for up-to-date specifications.

218 PRODUCT PREVIEW

intgl.

3.0 STANDARD 28F016XS / INTEL486 SX MICROPROCESSOR INTERFACE

28F016XS/Intel486 CPU Interface

A2
Dajg : KDlsn %
A21:4 A %

Y| P03 /
i486™$X-33 , %
Microprocessor o ot CE¥ 28F016XS é

/
%
%
%
- %
/
/4 Switched
o
WE# ﬁ GPIO
I . o
e interoce |
c RESET# .
aog;aé (22V10-15)
33 MHz
Clock —o
Input

7504_01

Figure 9. Minimal Glue Logic in Interfacing the 28F016XS-15 to the Intel486 SX-33 Microprocessor
with a Wait-State Profile of 3-0-0-0 Up to 33 MHz

The 28F016XS-15 interface to the Intel486 SX-33
microprocessor illustrated in Figures 1 delivers 3-0-0-0
wait-state read performance. The design requires only
one 22V10 to handle all interfacing requirements.
Consult your Intel or distribution sales office for
schematic and PLD equations for the interface
documented in this section.

See Section 2.0 for an alternative design.

3.1 Interface Circuitry Description

This interface is extremely similar to the optimized
design described in Section 2. The circuitry elements
involved in the design are exactly the same except to for
the elimination of the buffer and multiplexer in this
interface. For specific circuitry information about the
individual aspects of this design, refer to Section 2.

PRODUCT PREVIEW

CLK Option

Unlike the optimized 28F016XS/Intel486 SX
microprocessor interface, a buffer is not implemented in
this design. The processor’s 33 MHz CLK input drives
both the PLD and flash memory. To reduce system clock
skew, position the PLD and 28F016XSs within close
proximity to the microprocessor.

3.2 Read Control For Burst
Transactions

Similar to the optimized design described in Section 2,
the read state machine will perform one of two different
read cycles, depending upon the CFG input value. This
section will concentrate on the differences between the
read operations between the optimized and standard
interface.

Initial Configuration

Refer to Figures 10 and 11 for the following read cycle
discussion.

219

28F016XS/Intel486 CPU Interface

With CFG set to logic “0,” the interfacing read state
machine executes cacheable burst read cycles. This
configuration will occur upon power-up and reset.

The microprocessor initiates a read access to the
28F016XS memory space by providing an address,

. driving W/R# low and activating ADS#. Monitoring the
external bus of the Intel486 SX microprocessor, the state
machine transitions into read control.

If ADS# = 0 and W/R# = 0 then READ CONTROL

At this point, CFG and CE# are examined to determine
the configuration status of the 28F016XS-15s, and
whether or not the current address targets the 28F016XS
memory space. If CE# = “1,” the state machine returns
to an idle state waiting for a new access. Otherwise, the

- state machine will continue read access. In the initial
configuration (CFG = “0”), read control will regulate
ADV#, BRDY# and OE#.

At N =1 (Figure 5), the counter loads address bits A;_,
and transitions ADV# low. With ADV# at logic "0," the
interface initiates a read access to the 28F016XS-15s at
N = 2. After initiating the read access, ADV#
immediately switches to a logic “1” at N = 2 and then
toggles active on every other clock edge until N = 8.
After which, ADV# will remain inactive.

In the default SFI Configuration (SFI Configuration
= 4), the first data will be accessible to the processor at
N = 7. The rest of the data will be available for the
processor to retrieve at N = 9, 11 and 13. The
28F016XS-15’s output buffers are enabled at N = 4 and

220

-

intal.
BRDY# is driven low at N = 6. The processor will
sample BRDY# active and latch the information residing
on the data bus at N = 7. If the processor drives
BLAST# inactive indicating a burst transaction is in
process, the interface logic will drive BRDY# active on

every other clock edge until BLAST# is sampled active
by the interface logic.

The Intel486 SX microprocessor requires a 3 ns hold
time after sampling BRDY# active, therefore, the state
machine will hold OE# active for 15 ns after the
processor reads the last double-word. Then, the state
machine will transition to an idle state where it
deactivates -OE# and waits for the Intel486 SX
microprocessor to initiate a new bus cycle targeting the
28F016XS memory space.

Initial Configuration Timing Consideration

In the initial read configuration, CE# setup is a key
system timing parameter.

To satisfy the 28F016XS-15 setup requirement, CE#
must be valid 25 ns prior to the first rising CLK edge
with ADV# = “0.” Therefore, the maximum time
allotted for the address decoding logic to generate CE#
equals: :

2*1/33 MHz - t6 - tELCH =19 ns

Consult the approp;iaie datasheets for full timing
information.

PRODUCT PREVIEW

I n ® 28F016XS/Intel486 CPU Interface

RESET=0 ADS#=0

* WR#=1 s11

OE#=1
WE#=1
KEN#=1
ADV#=1

BRDY#=1

ADS#=0
* WR#=0

BOFF#=0
+ CE#=1

St

OE#=1
WE#=1
KEN#=1
ADV#=0
BRDY#=1

OE#=1
WE#=1
KEN#=1
ADV#=1
BRDY#=1

OE#=1
WE#=1
KEN#=0
ADV#=0

BRDY#=1

CFG=0
* BOFF#=1

BRDY#=1

BLAST#=0 BLAST#=0
+ BOFF#=0 CFG=1 + BOFF#=0
* BOFF#=1 BOFF#=1
OE#=0 OE#=0
WE#=1 WE#=1
KEN#=0 KEN#=0
ADV#=0 = =
CFG=0 ADV#=1
BRDY#=1 « BOFF#=1 BRDY#=0
BLAST#=1 BOFF#=1
* CFG=1

OE#=0 OE#=0
WE#=1 WE#=1
BLAST#=1 KEN#=0 KEN#=0
ADV#=0 ADV#=0

BRDY#=0 BRDY#=1

BLAST#=1
* CFG=0

BOFF#=1

OE#=0
WE#=1
KEN#=0
ADV#=1

BRDY#=1

7504_10

Figure 10. State Diagram of Single and Burst Read Control
(Interface Shown in Figure 1)

PRODUCT PREVIEW 221

¢

28F016XS/Intel486 CPU Interface I n

z

=0 N=1 N=2 N=3 N=4 N=5 N=6 N=7 N=8 N=9 N=10 N=11 N=12

z
w
w

CLK

:
l__l
,_I

ADS#

Address —j

%k‘? !
L

BLAST#

=

i}

CE#

| P2y —stezx

i
m :

tweH

KEN#

OE#

AT IR

B

P tolon
CR<1:0> W W . W
toax 'F—Zx'l
arore | N N
'Gﬂvhn

»}

—— 0 M M i

15

7504_11
Figure 11. Example Initial Burst Read Cycle Showing Key Timing Specifications
Requiring Consideration
Table 5. Example Initial Read Cycle Timing Specifications at 5V V¢
Symbol Description Min Max Unit
te ADS# Delay (Intel486 SX-33 microprocessor) 3 16 ns
tis RDY# Setup Time (Intel486 SX-33 microprocessor) 5 ns
too D349 Setup Time (Intel486 SX-33 microprocessor) 5 ns
tecch | CEx# Setup Time to CLK (28F016XS-15) 25 ns
tvicH ADV# Setup Time to CLK (28F016XS-15) 15 ns
tgicn | OE# Setup Time to CLK (28F016XS-15) 15 ns
techqv | CLK to Data Delay (28F016XS-15) 20 ns
tpzx CLK Output Delay (22V10-15) 2 8 ns
NOTE:

Consult appropriate datasheets for up-to-date specifications.

222 PRODUCT PREVIEW

L]
intgl.
Optimized Configuration

Refer to Figures 10 and 12 for the following discussion.

With the 28F016XS-15s in the optimized configuration
(SFI Configuration = 2 at 33 MHz), and CFG set to a
logic “1” value, the system interface executes cacheable
burst cycles.

The Intel486 SX processor drives ADS# low, notifying
the interface logic that a valid address is on the address
bus. Monitoring the external bus of the Intel486 SX
microprocessor, the state machine then transitions into
read control.

If ADS# = 0 and W/R# = 0 then READ CONTROL

In optimized read control, the state machine controls
OE#, KEN# and BRDY#. If CE# = “0,” the state
machine at N = 1 loads the two-bit counter (A;,) and
activates ADV# (ADV# = “0”) for the next four
consecutive clock periods (N = 1 through 5). While
ADV# is driven low, the counter increments through the
Intel burst order (Table 2), supplying the 28F016XS-15s
with a new address at N =2, 3, 4 and 5. If CE# ="1,” the
state machine returns to an idle state waiting for a new
Memory access.

PRODUCT PREVIEW

28F016XS/Intel486 CPU Interface

With the SFI Configuration value set to 2, new data will
be available at N = 5, 6, 7 and 8. Driving BRDY# low at
N = 4, the Intel486 SX microprocessor will sample
BRDY# active at N = 5, which informs the processor of
valid information on data pins Ds; .and that the
28F016XS memory space supports a burst read transfer.
BRDY# is held low until the end of the burst cycle while
the processor retrieves data on every rising clock edge.
BRDY# is driven high upon sampling BLAST# low,
marking the end of the burst cycle.

The Intel486 SX microprocessor requires a 3 ns hold
time after sampling the last BRDY# active in a burst
cycle. Therefore, the state machine will hold OE# active
for 15 ns after the microprocessor samples the last
double-word. At N = 9, the state machine transitions to
an idle state, where it deactivates OE# and waits for the
Intel486 SX microprocessor to initiate a new bus cycle
targeting the 28F016XS memory space.

Optimized Configuration Timing Considerations

In the optimized configuration, CE# setup time is again
a key system timing parameter. For information
regarding the CE# setup time requirement, see the Initial
Configuration Timing Considerations Timing section.

223

28F016XS/Intel486 CPU Interface

N=0 N=1 N=2 N=3 N=4 =5 N=6 N=7 N=8 N=9
CLK |

—el 1
os |/

L—site
Address—

{0)

——{te
BLAST# ’
teren
\
oer \ /
L) tozx —i tp2x
ADV
fo—s]
tvich —
KEN#
—h tpzx(min)
OE#
fo—
L—»f tpax taicH
CR<1:0> x i k m W
——s{ P2} —! tpzx

BRDY#

Data

tenav te

mC

OC_ DB

0

)_

7504_06

Figure 12.

Example Burst Read Cycle Showing Key Timing Specifications Requiring Consideration

Table 6. Example Optimized Read Cycle Specifications at 5V V¢

Symbol Description Min Max Unit
ts ADS# Delay (Intel486 SX-33 microprocessor) 16 ns
tga BLAST# Delay (Intel486 SX-33 microprocessor) 20 ns
oo D31.9 Setup Time (Intel486 SX-33 microprocessor) ns

teLcH CEx# Setup Time to CLK (28F016XS-15) 25 ns
tvicH ADV# Setup Time to CLK (28F016XS-15) 15 ns
tasicn | OE# Setup Time to CLK (28F016XS-15) 15 ns
tchHav CLK to Data Delay (28F016XS-15) 20 ns
tpzx CLK Output Delay (22V10-15) 2 8 ns
NOTE:

Consult appropriate datasheets for up-to-date specifications.

224

PRODUCT PREVIEW

intal.

3.3 Write Cycle Control

The write interface in for this design functionally
behaves like the optimized design’s write interface. The
only difference between the two designs is the absence
of the MUX in the standard interface. Therefore, the
interface logic for this design does not have to concern
itself with changing the data flow through the MUX.
Instead, the interface simply loads and holds the address
for the duration of the write operation.

For further detailed information about this cycle and
write timing waveform, refer to Section 2.4.

4.0 INTERFACING TO OTHER
INTEL486 MICROPROCESSORS

The Intel486 microprocessor family provides designers a
large and diverse selection of CPUs, which offers
designers different performance points to meet different
market segment needs. Throughout the product family,
the external bus architecture has remained consistent,
which makes the 28F016XS interface to the entire
Intel486 microprocessor family similar, if not identical,
to the Intel486 SX microprocessor interface described in
Sections 2 and 3. The 28F016XS-15 interface to the
Intel486 SX-33 microprocessor works equally well for
the following microprocessors at 5.0V Vc.

o Intel486™ SX-20, 25 processors

o Intel486™ SX2-50 processor

o Intel486™ DX-25, 33 processors

o Intel486™ DX2-40, 50, 66 processors

o IntelDX4™-75, 100 processors(I/O buffers
configured for 5.0V, Vs = 5.0V)

The 28F016XS-15 interface to the Intel486 SX-33
microprocessor also works well for the following
Intel486 microprocessors at 3.3V Vc. The 3.3V Vo
design utilizes a 22V10-15 low voltage PLD to control
the interface between the 28F016XS-15 (operating at
3.3V Vc) and the processor.

o Intel486 SX-20, 25 processors
e Intel486 DX-25 processor
o Intel486 DX2-40, 50 processors
e IntelDX4-75 processors
(I/0 buffers configured for 3.3V, Vs = 3.3V)

When the external bus frequency falls outside the
16.7 MHz through 33 MHz frequency range at 5.0V V¢
(12.5 MHz through 25 MHz at 3.3V V), the optimized

PRODUCT PREVIEW

28F016XS/Intel486 CPU Interface

SFI Configuration value for the 28F016XS-15 differs in
respect to the Intel486 SX-33 microprocessor design
documented earlier. The state machine, therefore,
requires slight modifications to accommodate the
different SFI Configuration. Note, the initial read
configuration and write control state machine remains
consistent throughout all designs because they are not
affected by the optimized SFI Configuration.

Intel486 SX-16 Microprocessor Interface at
5.0V Ve

The 28F016XS-15’s optimized SFI Configuration at
16 MHz equals 1. Therefore, 28F016XS-15 will begin
driving data one CLK period after initiating the first read
access. The optimized state machine must drive BRDY#
and OE# active upon initiating the first access to the
28F016XS-15. BRDY# and OE# remain low throughout
the burst cycle. The optimized and standard
28F016XS-15 interface to the Intel486 SX-16
microprocessor at this specific frequency deliver 1-0-0-0
and 2-0-0-0 wait-state read performance respectively.

Intel486 DX-50 Microprocessor Interface at
5V Vge

Operating at 50 MHz, the 28F016XS-15’s optimized SFI
Configuration equals 3. The interface loads the two-bit
counter and drives ADV# active at the first rising CLK
edge after the processor initiates the read access. The
optimized read state machine increments the two-bit
counter and drives ADV# low every other CLK, thereby
adhering to the Alfernating-A; and Same-A ; access rules
(see Additional Information). The optimized and
standard 28F016XS-15 interface to the Intel486 DX-50
microprocessor at this given frequency deliver 4-1-1-1
and 5-1-1-1 wait-state read performance respectively.

Intel486 DX-33 and IntelDX4-100 Microprocessor
Interface at 3.3V V¢

Operating at 33 MHz with 33V Vg, the
28F016XS-15’s optimized SFI Configuration equals 3.
The interface loads the two-bit counter and drives ADV#
active at the first rising CLK edge after the processor
initiates the read access. The optimized read state
machine increments the two-bit counter and drives
ADV# low for two CLK periods and then strobes ADV#
high for one CLK period. ADV# is again driven low for
two CLK periods finishing the burst cycle. Refer to the
Alternating-A; and Same-A; access rules (see
Additional Information) for further information on
consecutive accesses. The optimized and standard
28F016XS-15 interface to the Intel486 microprocessor

225

28F016XS/Intel486 CPU Interface

at this frequency deliver 3-0-1-0 and 4-0-1-0 wait-state
read performance respectively. :

5.0 CONCLUSION

This technical paper has described the interface between
the 28F016XS 16-Mbit flash memory component and
the Intel486 microprocessor. This simple design has
been implemented with a minimal number of
components and achieves exceptional read

226

intgl.

performance. The 28F016XS provides the
microprocessor with the non-volatility and updateability
of flash memory and the performance of DRAM. For
further information about 28F016XS-15, consult
reference documentation for a more comprehensive
understanding of device capabilities and design
techniques. Please contact your local Intel or distribution
sales office for more information on Intel’s flash
memory products.)

PRODUCT PREVIEW I

]
I ntel ® 28F016XS/Intel486 CPU Interface

ADDITIONAL INFORMATION

Order Number Document/Tools
290532 28F016XS Datasheet
297500 “Interfacing the 28F016XS to the i960® Microprocessor
Family"
292147 AP-398, "Designing with the 28F016XS"
292146 AP-600, "Performance Benefits and Power/Energy Savings of
28F016XS Based System Designs"
292163 AP-610, “Flash Memory In-System Code and Data Update Techniques”
292165 AB-62, “Compiled Code Optimizations For Embedded Flash RAM
Memories”
297372 16-Mbit Flash Product User's Manual,
297508 FLASHBuilder Utility
Contact Intel/Distribution 28F016XS Benchmark Utility
Sales Office
Contact Intel/Distribution 28F016XS iBIS Models
Sales Office
Contact Intel/Distribution 28F016XS VHDL/Verilog Models
Sales Office
Contact Intel/Distribution 28F016XS Timing Designer Library Files
Sales Office
Contact Intel/Distribution 28F016XS Orcad and ViewLogic Schematic Symbols
Sales Office

REVISION HISTORY

Number Description
001 Original Version
002 Incorporated initial read burst configuration, replacing the single read cycle
Added optimized design, improving system read performance

PRODUCT PREVIEW

227

]
28F016XS/Intel486 CPU Interface I I‘I'tel ®

APPENDIX A
'PLD FILE FOR THE 28F016XS
INTEL486 MICROPROCESSOR

INTERFACE

PLD file for the optimized interface described in Section 2.

TITLE Optimized 28F016XS / 486 Interface

PATTERN PDS

REVISION 1

AUTHOR . Example

COMPANY NAME Intel

DATE 2/6/95

CHIP OPTIMIZED_28F016XS_486_INTERFACE 85C22V10

; input pins

PIN 1 CLK ; clk frequency 33mhz

PIN ADS ; address strobe from 486

PIN WR ; multiplexed read/write strobe

PIN BLAST ; BLAST from the 486

PIN CE ; CE from the address decoding logic
PIN CFG ; informs interface to changes to the SFI Configuration
PIN A2 ; lower address lines from the 486 used
PIN A3 ; in loading the counter

PIN RESET ; system reset

PIN 25 GLOBAL

; output pins

PIN ADV ; address valid input

PIN /KEN ; cache control

PIN /OE ; output enable input

PIN /WE ; write enable input

PIN /BRDY ; initiating a burst cycle, 486 input
PIN SWITCH ; control MUX switching

PIN Qo0 ; state variable

PIN CTRO ; lower bit of the 2bit counter

PIN CTR1 ; higher bit of the 2bit counter
STRING LD '(/ADS)' ; load

STRING INC'(/ADV)' ; increment

STATE MOORE_MACHINE
DEFAULT_BRANCH SO

; state assignments

SO =/ADV * /BRDY * /OE * /WE * /KEN * /SWITCH * /Q0
S1 =/ADV * /BRDY * /OE * /WE * /KEN * SWITCH * /Q0
S2 =/ADV * /BRDY * OE * /WE * KEN * SWITCH * /Q0
S3 =/ADV * BRDY * OE * /WE * KEN * SWITCH * /Q0
S4 = ADV * BRDY * OE * /WE * KEN * SWITCH * /Q0
S5 = ADV */BRDY * OE * /WE * KEN * SWITCH * /Q0

228

PRODUCT PREVIEW I

-
I ntel ® 28F016XS/Intel486 CPU Interface

S6 = ADV */BRDY * /OE * /WE * /KEN * SWITCH * Q0
S7 = ADV */BRDY * /OE * /WE * KEN * SWITCH * Q0
S8 = ADV * BRDY * OE */WE * KEN * SWITCH * Q0
S9 =/ADV */BRDY * OE */WE * KEN * SWITCH * QO
S10= ADV */BRDY * /OE * /WE * /KEN * SWITCH */Q0
S11 = ADV */BRDY * /OE *# WE * /KEN * SWITCH * /Q0
S12= ADV */BRDY * /OE * WE * /KEN * SWITCH * Q0
S13= ADV * BRDY */OE * /WE * /KEN * SWITCH * /Q0

; state transitions

S0:= (/ADS * /WR * /CFG) ->S6 ;initial config READ cycle
+ (/ADS * /WR * CFG) ->S1 ;optimized config READ cycle
+ (/ADS * WR) ->S10
+-> S0
S1:= (/CFG * /CE * BOFF) ->S7
+ (CFG * /CE * BOFF) ->8S2
+ CE */BOFF -> S0
S2:= /CFG * BOFF -> S8
+ CFG * BOFF > 83
+-> S0
S3:= /BLAST +/BOFF -> S0
+ BLAST >S4
S4:= /BLAST + /BOFF -> S0
+ (BLAST * /CFG) >S5
+ (BLAST * CFG) >S4
S5:= BOFF >S4
+ /BOFF -> S0
S6:= BOFF ->S1
+ /BOFF -> S0
S7:= BOFF > 82
+ /BOFF -> S0
S8 := /BLAST +/BOFF -> S0
+ BLAST >S9
S9:= BOFF >S4
+ /BOFF > S0
S10:= /CE ->S11 ; write cycle
+ CE +/BOFF -> 80
S11:= BOFF ->S12 ; WE low for two clocks
+ [/BOFF -> S0
S12:= BOFF ->S13
+ [/BOFF ->S0
S13:= VCC -> S0 ;ready
EQUATIONS
; implement RESET

GLOBAL.RSTF = /RESET
; implement 2-bit burst counter
CTR1 :=(LD * A3) + (/LD * INC * /CTR1 * S1)
+ (/LD * INC * CTR1 */S1) + (/LD * /INC * CTR1 */S1)
CTRO := (/WR * LD * /A2) + (WR *LD * A2)
+ (/LD * INC * /CTRO) + (/LD * /INC * CTRO)

PRODUCT PREVIEW

229

28F016XS/Intel486 CPU Interface

PLD file for the standard interface described in Section 3.

Title Standard 28F016XS / Intel486™ Interface
Pattern PDS

Revision 1

Author Example

Company Name Intel

Date 2/14/94

CHIP 28F016XS_486_Interface 85C22V10 ; 85C22V10-15

; input pins :

PIN 1 CLK ; clk frequency 33mhz

PIN ADS ; address strobe from 486

PIN WR ; multiplexed read/write strobe

PIN BLAST ; BLAST from the 486

PIN CE ; CE from the address decoding logic
PIN CFG ; informs interface to changes to the SFI Configuration
PIN BOFF ; BOFF input to processor

PIN A2 ; lower address lines from the 486 used
PIN A3 ; in loading the counter

PIN RESET ; system reset

PIN 25 GLOBAL

;output pins

PIN /ADV ; address valid input

PIN /KEN ; cache control

PIN /OE ; output enable input

PIN /WE ; write enable input

PIN /BRDY ; initiating a burst cycle, 486 input
PIN Qo0 ; state variable

PIN Q1 ; state variable

PIN CONTO ; lower bit of the 2bit counter

PIN CONT1 ; higher bit of the 2bit counter
STRING LD '(/ADS)' ; load

STRING INC'(/ADVY)'

STATE MOORE_MACHINE
DEFAULT_BRANCH SO

; State assignments

S0 =/ADV * /KEN * /WE * /BRDY * /QO * /Q1
S1 = ADV * /KEN * /WE * /BRDY * /Q0 * /Q1
$2 = ADV * KEN * /WE * /BRDY * /Q0 * /Q1
S3 = ADV * KEN */WE * /BRDY */Q0 * Q1
S4 = ADV * KEN */WE * BRDY */QO0 * /Q1
S5 =/ADV * KEN * /WE * BRDY * /Q0 * /Q1
S6 =/ADV * /KEN * /WE * /BRDY */Q0 * QI
$7 =/ADV * KEN * /WE * /BRDY * /QO0 * /Q1
S8 =/ADV * KEN * /WE * /BRDY */Q0 * Ql
S9 = ADV * KEN */WE * BRDY */Q0 * Q1
S10=/ADV * KEN * /WE * /BRDY * Q0 * Ql
S11 =/ADV * /KEN * /WE * /BRDY * QO * /Q1

230

PRODUCT PREVIEW

n
l I‘l'tel ® 28F016XS/Intel486 CPU Interface

S12=/ADV */KEN * WE * /BRDY */Q0 * /Q1
S13 =/ADV */KEN * WE * /BRDY */Q0 * Q1
S14 =/ADV * /KEN * /WE * BRDY * Q0 */Q1

; state transitions

S0 := ADS * /BOFF -> S0 ; start of an access
+/ADS * /WR * /BOFF ->S1
+/ADS * WR * /BOFF ->Sl11

S1 :=/CFG */CE -> S6 ; not reconfigured
+ CFG */CE ->S2 ; reconfig active low
+ CE -> S0
S2 :=/CFG * BOFF ->S7 ; if chip enable is de-asserted,
+ CFG * BOFF ->S3 ; quit the access and return
+ /BOFF -> S0
S3 :=/CFG * BOFF -> S8
+ CFG * BOFF ->S4
+ /BOFF -> S0
S4 :=/BLAST +/BOFF ->S0 ; situations will only ocur during
+ BLAST -> 85 ; a BOFF.
S5 :=/BLAST +/BOFF ->S0 ; continous cycling until BLAST is
+/CFG * BLAST ->S10 ; presented - end the burst cycle
+ CFG * BLAST -> S5
S6 :=/BOFF -> S0
+ BOFF -> 82
S7 :=/BOFF -> S0
+ BOFF ->83
S8 :=/BOFF +/BLAST ->S0
+ BOFF -> 89
S9 :=/BOFF -> S0
+ BOFF -> S5
S10 :=/BOFF -> S0
+ BOFF -> 85
S11:=/CE ->S12 ; situation will only occur during
+ CE + /BOFF -> S0 ; during a BOFF.
S12 :=/BOFF -> S0
+ BOFF ->S13
S13 :=/BOFF -> S0
+ BOFF ->S14
S14:= VCC -> S0
EQUATIONS
; implement RESET

GLOBAL.RSTF = /RESET
; implement 2-bit burst counter
CTR1 := (LD * A3) + (/LD * INC * /CTR1 * S1)
+ (/LD * INC * CTR1 */S2) + (/LD * /INC * CTR1 */S2)
CTRO := (/WR * LD * A2) + (/LD * INC * /CTRO) + (/LD * /INC * CTRO)
; output enable control, triggered on falling clock edge
OE :=S2 + 83 + S4 + S5 + 87 + S8 + S9 + S10

OE.CLKF =/CLK

PRODUCT PREVIEW

231

TECHNICAL
PAPER

Interfacing the
28F016XS to the i960°
Microprocessor Family

KEN MC KEE
TECHNICAL MARKETING ENGINEER

TIM KELLY
ENGINEER

RANNA PRAJAPATI
ENGINEER

February 1995 ' Order Number: 297500-002

233

intal.

1.0 INTRODUCTION

This technical paper describes several designs
interfacing the high-performance 28F016XS Flash
memory to the i960® microprocessor family. All
designs are based on preliminary 28F016XS
specifications. Please contact your Intel or distribution
sales office for up-to-date specifications before
finalizing any design.

The 28F016XS is a 16-Mbit block erasable flash
memory with a high-performance synchronous
pipelined read interface. This optimized interface can
sustain a high read transfer rate and makes the
28F016XS the ideal flash memory component when
interfacing to a burst processor, such as the
1960 microprocessor. The 28F016XS combines ROM-
like non-volatility, DRAM-like read performance and
in-system update ability in one memory technology.
These characteristics enable code execution directly
from the 28F016XS memory space, replacing the
costly practice of shadowing code from HDD or ROM
to DRAM. The i960 microprocessor family sees
widespread use in various applications, including
imaging and data communications. Combined, the
28F016XS and the 1960 processor constitute a rugged,
high performance and cost-effective solution.

The 28F016XS performs synchronous pipelined reads.
Up to three accesses can be initiated before reading
data output from the initial cycle. This pipelined
structure is ideal for use with the 1960 microprocessor’s
burst transfer mechanism. The 28F016XS brings
significant system performance enhancements to an
1960 microprocessor-based environment. This technical
paper describes processor-to-memory interfaces that
exploit these capabilities to achieve maximum system
performance. Figures 1 and 2 illustrate relative system
performance enhancements that the 28F016XS brings
to an 1960 microprocessor-based environment,
compared to other technologies. The benchmark
parameters are documented in Appendix B.

28F016XS/i960® Microprocessor Interface

Relative System
Performance (%)

0 DRAM
B 28FO16XS

A
UDP/IP Networking
Bonchmark

7500_01

Figure 1. Relative System Performance
Enhancement of the 28F016XS Compared to
Other Memory Technologies in an
{960 KB-25 Microprocessor-Based Design

Relative System
Performance (%)
- @ EPROM
1 RoM
& DRAM
W 28F016XS
80|
oo
|
ol %
“r %
) %
UDP/IP Networiing Imaging Benchmark
Benchmark
7500_02

Figure 2. Relative System Performance
Enhancement of the 28F016XS Compared to
Other Memory Technologies in an
i960 CA-33 Processor-Based Design

235

28F016XS/i960® Microprocessor Interface

2.0 i960 CA-33 MICROPROCESSOR INTERFACE

SEEERH D15—0

Logic

..... A
- pr 203
19600 CA _
Microprocessor] C“E’oszc‘ TCE# 28F016XS
33 MHz
CLKIN¢- Clock
Input
CLKMODJ¢- 5V Na %
V, [Switched
ADVE 5V or12v
OE# v
ec 4 sv
WE# BYTE#[g] sv
wrp gl GPio

Interface

(22v10-15)

RY/BY# % L) INT
Z

7500_03

Figure 3. Minimal Logic Required in Interfacing the 28F016XS-15 to the 1960 CA-33 Microprocessor to
Sustain 3-0-0-0-2-0-0-0.. Burst Pipelined Read Performance Up to 33 MHz

Using this interface, an i960 CA-33 microprocessor
based system executing code directly out of the
28F016XS can achieve 3-0-0-0-2-0-0-0. . .wait-state
read performance. This interface supports both burst
transfers and address pipelining. For schematic and PLD
files contact your Intel or distrution sales office.

2.1 Circuit Description

This section describes the 28F016XS-15 interface to the
i960 CA-33 microprocessor interface block diagram in
Figure 3.

Memory Configuration

This design uses two 28F016XS-15s, in x16 mode, to
match the 19960 CA microprocessor’s 32-bit data bus,
providing 4 Mbytes of flash memory. Signals A, 4 from
the 1960 CA microprocessor and CTR; , from the PLD
sclect locations within the 28F016XS memory space,
arranged as 1-Meg double words. The two-bit counter

implemented in the PLD loads from the processor’s

lower addresses at the beginning of each memory cycle

236

and generates the lower.two bits of the burst addresses
on its outputs CTR_o. The counter feeds burst addresses
so that the 28F016XS-15s do not stall waiting for the
processor to supply the next address.

Chip Select Logic

Chip select decode logic may use Az, to generate an
active low chip select signal, CE#, for the 28F016XS-15
memory space and other system peripherals. The chip
select drives CEq# on each 28F016XS-15 and a control
input to the PLD. The 28F016XS-15’s CE# input is
grounded. /

In support of address pipelining, the chip select logic
latches CE#, holding it active throughout the duration of
the memory access. This will prevent potential CE#
problems caused by using combinatorial logic when
utilizing the address pipelining capability of 1960 CA
microprocessor.

If address pipelining functionality is not implemented,
simple combinatorial logic can be utilized in generating
the system CE# for the 28F016XS memory space, and

]

intel.

the chip select logic shown in Figure 3 does not examine
BLAST# and ADS#. For many systems using the upper
address bits in a linear selection scheme may provide a
sufficient number of chip select signals, thus eliminating
system chip select decode logic. (See Figure 4 for an

28F016XS/i960® Microprocessor Interface

example of using linear selection for chip selects.) When
using a linear chip select scheme however, the software
must avoid using addresses that may select more than
one device, which could result in bus contention.

Separate Address Bus

Multiplexed Address / Data Bus

A A2z - Chip Select 1
22 — Chip Select 1 @
31-0 A 23)
: Chip Select 2
i960® A23 |— Chip Select 2 i960® f_’:::,',es P
Processor Processor 2 Chip Select 3
ip Selec
Aa | — Chip Select 3 P
Chip Select Address Space

1 01800000 - 01BFFFFF H

2 01400000 - 017FFFFF H

3 00C00000 - 00FFFFFF H

7500_04
Figure 4. Example of Using Linear Chip Selection
Flash
Memory
Vee RP#
Voltage Monitor
SYSTEM_RESET# ——| MR# aoab RESET#
MAX705
7500_05

Figure 5. Example RESET Generation Circuitry

237

28F016XS/i960® Microprocessor Interface

CLK Option

A 33 MHz clock signal drives the i960 CA
microprocessor CLKIN input. Driving CLKMODE to a
logic “1” configures the 1960 CA microprocessor for a
1x CLK input. The 1960 CA microprocessor outputs an
internally-referenced 33 MHz clock on its PCLK1 and
PCLK2 pins (the signals on PCLK1 and PCLK2 are
identical), which drives the CLK inputs of the PLD and
the 28F016XS-15s.

Reset

An active-low reset signal, RESET#, connects to the
RESET# inputs of the 960 CA microprocessor, and the
PLD, and to the RP# input of the 28F016XS-15s.
Figure 5 illustrates a suggested logic configuration for
generating RESET#.

Interface Control Signals

The 1960 CA-33 microprocessor external bus signals,
BLAST#, ADS# and W/R#, serve as inputs to the state
machine, which controls the two-bit counter and
generates OE#, WE# and ADV#. The counter is loaded
at the beginning of the memory access, generating the
burst addresses to the 28F016XS-15s. ADV# indicates
that a valid address is available to the 28F016XS-15.
Addresses are latched and a read cycle is initiated on a
rising CLK edge. WE# controls writes to the 28F016XS-
15, latching data into the 28F016XS-15 on its rising
edge if the applicable timing requirements are satisfied. -

Ccenfiguration Signal

A general purpose input/output (GPIO) generates the
configuration signal input to the state machine. The
configuration signal must reset to logic “0” on power-up
and system reset to ensure that the operation of the state
machine matches the initial configurations of the
28F016XS-15s and the i960 CA microprocessor. After
optimizing the 28F016XS-15s and i960 CA
microprocessor, the configuration signal must switch to
logic “1.” :

Additional 28F016XS Control Signals

The BYTE# input to the 28F016XS-15s is tied to 5.0V
to configure the 28F016XS-15s for x16 mode, and A is

tied to GND (A, is only used for byte addressing). A -

GPIO controls the write protect input, WP#, to the
28F016XS-15s. As shown in Figure 3, the 28F016XS-15
is compatible with either a 5.0V or a 12.0V Vpp voltage
and is completely write protected by switching Vpp to

238

intgl.

GND. When Vpp drops below Vpp x, the 28F016XS-15
will not successfully complete Program and Erase
operations. Figure 3 also illustrates the 28F016XS-15
RY/BY# output connected to a system interrupt for
background erase operation. RY/BY#, WP#, and Vpp
implementation are application dependent. See the
Additional Information section of this technical paper
for documentation that cover these topics in more detail.

2.2 Software Interface Considerations

Boot-up Capability / Configuration

This interface supports processor boot-up from the
28F016XS memory space upon power-up or system
reset. However, the boot code must follow some
restrictions until it has properly configured the
28F016XS-15s, 19960 CA microprocessor and CFG state
machine input valve. In the default configuration state,
the 1960 CA microprocessor supports only non-burst
reads and writes. Program control should jump to an
area of RAM to execute the configuration sequence. The
code will configure the 28F016XS-15s and all necessary
1960 CA microprocessor programmable attributes before
setting the CFG input to logic “1.” Table 1 illustrates the
required configuration settings for both the
28F016XS-15s and the 1960 CA-33 microprocessor.

Table 1. Configuration Settings for the
28F016XS-15 and i960 CA-33 Microprocessor
Employing Address Pipelining at 33 MHz

Part Parameter Setting
28F016XS-15 | SFI Configuration 2
(8V V)

{960 CA-33 Ready Inputs OFF
Microprocessor
Byte Ordering LITTLE
ENDIAN
Bus Width 32-BIT
Wait-States: 3
Nrad
Nrdd 0
Nwad 2
Nwdd 2
Nxda 0
Address Pipelining ON
Burst mode ON

]
I ntel ® 28F016XS/i960® Microprocessor Interface

2.3 Single and Burst Read Cycle
Description

Refer to the read cycle timing diagrams (Figures 7 and
8) and the state diagram (Figure 6) for the following
read cycle discussion.

RESET

ADSH#=0 * W_R#=1

BLAST#=0
* ADS#=1

BLAST#=0
* ADS#=0

BLAST#=0
* ADS#=0

BLAST#=0
* ADS#=1

BLAST#=1

7500_06
NOTE:
OE# and WE# are clocked on the inverted CLK edge

Figure 6. Read State Diagram of Single and Address Pipelined Burst Control Interface
Shown in Figure 3

239

28F016XS/i960® Microprocessor Interface

Initial Configuration

Figure 7 illustrates a read cycle with the 28F016XS-15s
and i960 CA microprocessor in a power-up/reset
configuration state. The initial configuration permits
only non-burst transfers. The i960 CA microprocessor
initiates a read cycle by asserting ADS# with W/R# =
“0,” presenting the valid address and control signals. At
N = 1, the two-bit counter loads the values on the
processor’s lower address lines, Aj_,. The state machine
asserts ADV# for the next clock (N = 2), where the
28F016XS-15 will latch in the address if CE# is
asserted. If CE# is not asserted, the state machine returns
to inactive state at N = 2.

n

intgl.
If the flash memory is selected, the state machine will
assert ADV# for only one clock before entering a hold
state to await the assertion of BLAST# by the 1960 CA
microprocessor. The state machine asserts OE# (to meet
timing requirements OE# is falling-edge triggered) on
the falling edge between N = 2 and N = 3 to enable the
28F016XS-15 data output buffers. With SFI
Configuration = 4, the data will be valid at the N = 7.
The 28F016XS-15s will hold data on the bus until the
1960 CA microprocessor asserts BLAST#. During the
clock period following N =y, the state machine returns
to its inactive state, de-asserting OE# to tri-state the
28F016XS-15 data outputs.

N=0, 1 2 3 4

PCLK I 1 | | |

(33MHz) 501

ADSH# \le=> /

tsu1

W/R# 5k—> _/

BLAST

NS

Aat4 m i

XXRXXRXXRXRR

TR || =

tsut

cs# \j¢e— /

—_—i tsut
CcFG 3\

—_— tvLeH
ADV# \k—>_/
OE# \ /
WE#
CTR1p p i

7600_07

Figure 7. Example Read Cycle, Initial Configuration, Showing Key Specifications Requiring
Consideration

240

intgl.

Optimized Configuration

Figure 8 illustrates a two double-word burst read
followed by a four double-word burst read with the
28F016XS-15s, i960 CA microprocessor and state
machine configured for optimum read performance.
With CFG = 1, the counter increments the two lower bits
of the address at N =2, N =3 and N = 4, and ADV#
remains asserted so that the 28F016XS-15 latches in
four successive addresses at N = 2-5. With
SFI Configuration = 2, the first data will be available at
N = 5 for the processor to read. If a second read cycle
follows the current read cycle, the i960 CA
microprocessor will assert ADS# one clock after
asserting BLAST#. The state machine will respond by
immediately re-entering the read cycle. Otherwise, the

28F016XS/i960® Microprocessor Interface

state machine will return to its inactive state waiting for
a new access targeting the 28F016XS memory space.

When implementing the i960 CA microprocessor
address pipelining capability, the state machine
controlling CE# monitors the upper address lines, ADS#
and BLAST#. CE# is held active upon detecting an
access targeting the flash memory space until BLAST#
is asserted with ADS# de-asserted. When BLAST# and
ADS# are active at the same time, a pipelined read
access is in progress. If the current pipelined access is
aimed at the 28F016XS memory space, the CE# state
machine will hold CE# active until BLAST# is sampled
active again.

N0 1 2 3 4 5 6 8 9 g 1 12 1 14
k_,SU]
ADS# _i/
tsul
WIRH \"—.
tsun tsul
g L
A ./ i/
Asia m(k_’t X ORXRXLXXRXY
SU1
e XL X (TR
ELCH
cst : S
cre 1
—/I‘ "': rf,l::;H icH
Aove T\ /T /
ta ___
Ot \! = \ [
We# M
CR 19 X_i 11 X2 i J+3 K k+1 K+2 k+3

7500_¢

Figure 8. Example Two Double-Word Burst Read Followed by Pipelined Four Double Word Burst
Read Showing Key Specifications Requiring Consideration

241

28F016XS/i960® Microprocessor Interface

Critical Timings

Table 2 describes the critical timings illustrated in
Figures 7 and 8. One particularly critical timing in this
designs, is the data hold time. The i960 CA-33
microprocessor requires a 5 ns hold time after the clock
edge. The 28F016XS-15 guarantees a 5 ns data hold
after clock, meeting the processor's hold requirement
with O ns of margin.

This design provides 7 ns of margin to meeting the 3 ns
setup time of the 1960 CA-33 microprocessor data
inputs, outputting data tcyqy after a rising CLK edge.

Another critical area concerns CE# during pipelined
read accesses. Since the 28F016XS-15 specifies zero

-

intal.
data hold from CE# going high, the chip seiec; state
machine must hold CE# active for 5 ns to satisfy the
1960 CA-33 microprocessor data input hold specification
of 5 ns. Hence, the chip select state machine holds CE#

active for an additional clock period after detecting
BLAST# active.)

The 1960 CA-33 microprocessor control outputs ADS#
and W/R# have 3 ns of margin and BLAST# has 5 ns of
margin to meeting the 22V10-15 input setup
requirement.

Consult the appropriate datasheets for full timing
information.

Table 2. Example Read Cycle Timing Specifications at 5V V¢ .

Part Symbol Parameter Minimum Specified
: Value (ns)
22V10-15 tsus Input Setup Time to CLK
i960 CA-33 Tisy Input Setup D3y
Microprocessor
TiH Input Hold D349 5
28F016XS-15 teLcH CE# Setup to CLK 25
tvicH ADV# Setup to CLK 15
tavcH Address Setup to CLK 15
teLen OE# Setup to CLK 15

NOTE:
Consult appropriate datasheets for up-to-date specifications.

242

intal.

2.4 Single Burst Write Cycle
Description

Refer to the write cycle timing diagrams and the state
diagram (Figure 9) for the following write cycle
discussion.

BLAST#=0
BLAST#=1

CS#=0

BLAST#=1
* CFG=0

Figure 9. Write State Diagram of Control
Interface Shown in Figure 3

28F016XS/i960® Microprocessor Interface

Initial Configuration

Figure 10 illustrates a write cycle. In the reset/power-up
configuration state, the interface supports only non-burst
writes. The i960 CA microprocessor initiates a write.
cycle by asserting ADS# with W/R# = “1,” presenting a
valid address and control signals. At N = 1, the two-bit
counter loads the values on address bits A;_,. The state
machine asserts WE# (to meet timing requirements,
WE# is falling-edge triggered) on the falling edge
between N = 1 and N = 2. WE# remains asserted for two
clock periods, in order to meet the 28F016XS-15 timing
requirements. The state machine then enters a holding
state until the processor asserts BLAST#, after which
time the interface state machine will return to SO.

Optimized Configuration

Figure 11 illustrates a two double-word burst write with
CFG = “1.” When the first data write is complete at
N =4, the counter increments the two lower address bits,
and the state machine asserts WE# on the next falling
clock edge to begin the next the 28F016XS-15 data
write. The i960 CA microprocessor must provide the
next data during the clock period following N = 4. The
data writes continue to the next consecutive addresses
until the 1960 CA microprocessor asserts BLAST#,
indicating the end of the burst write cycle.

243

28F016XS/i960® Microprocessor Interface

PCLK N=(1 2 3 4 5 y+1
CTLC I I . L L] LI L L
ADS# k_,'sm
i/
W/R#
] /lesi'sut .
'SU1
BLAST# je—>
i/
XXX
. NAMA
E_WHDX
NAMAX
1
cs# F_Eﬁw" —
CFG
\
ADV#
OE#
1
We# tavwL WLWH———>1 ot
je—> P 'WHAX
CTl
R0 X Y
7500_10
Figure 10. Example Write Cycle, Initial Configuration, Showing Key Specifications Requiring
Consideration
PCLK N=Q 1 2 3 4 5 7
ewa T LT LT LT LT LJ LJ L
ADS# s U1
./
W/R
' / la—si'sSU1
T tsut
BLAST#
i/
"o XEXRRX = YRR
Asa
i
.. X e [
D] + 1 000X
tELwL WHEH
cs# ——p!
CFG
/
ADV#
OE#
1
WE# AL WwH—— 4 o \ WHAX
CTR — 'WHAX e —>}
Y X X e X
750011

244

Figure 11. Example Two Double-Word Burst Write Illustrating Key Specifications Requiring

Considerations

L]
I ntel ® 28F016XS/i960® Microprocessor Interface

Critical Timings Also notice that CTR; , must be valid before WE# is
asserted. CTR,, are guaranteed valid 8 ns after the
Table 3 describes the critical timings illustrated in rising cleck edge, providing 9 ns of margin.

Figures 10 and 11.
Consult the appropriate datasheets for full timing
One critical hold time to notice is tyyax. WE# is information.
guaranteed to transition within 8 ns from the falling
clock edge. Therefore, the tyyax requirement has 2 ns
of margin on CTR ¢, and 5 ns of margin on Aj; 4.

Table 3. Example Write Cycle Timing Parameters at 5V V¢

Part Symbol Parameter Minimum Specified
Value (ns)

22V10-15 tsuq Input Setup Time to CLK 9
28F016XS-15 teLwe CE# Setup to WE# Going Low - 0]

tavwL Address Setup to WE# Going Low 0

twLwH WE# Pulse Width 50

tovwH Data Setup to WE# Going High 50

twHDX Data Hold from WE# High

twHax Address Hold from WE# High

twHEH CE# Hold from WE# High

NOTE:
Consult appropriate datasheets for up-to-date specifications.

245

28F016XS/i960® Microprocessor Interface

3.0 Optimized 1960 JF MICROPROCESSOR INTERFACE

SLIIIIIIIIIIISY,
P2

%
%
%
7

AN

i960® JF
Microprocessor

NN

Chip Select
Logic

Switched
5Voriav

) \ 7
BLAST# WE# WE# BYTE%C gx
i Interf WP# 1— GPIO

’ logic RY/BY# 4 INT
RESET# M——— RESET# (22V10-15) RESET#

CLKIN 0-—1 CFG
30 MHz | - 1

Clock —* lBuﬂer |
Input

7500_12

Figure 12. Minimal Interface Logic Required in Interfacing the 28F016XS-15 to the
1960 JF-33 Microprocessor to Sustain 2-0-0-0 Burst Read Performance Up to 30 MHz

Using this interface, the 28F016XS interface to the i960
JF-33 microprocessor can achieve 2-0-0-0 wait-state
read performance up to 30 MHz, supporting burst
transfers. Contact your Intel or distribution sales office
for schematic and PLD files for the design documented
in the section.

See Section 4.0 for an alternative 1960 JF design.

3.1 Circuit Description

This . design, illustrated in Figure 12, uses two
28F016XS-15s to match the 32-bit data bus of the i960
JF-33 microprocessor. This configuration provides the
system with 4 Mbytes of flash memory. Four octal
latches, enabled by the LE signal, de-multiplex the 32-
bit address from the AD bus. The latched address bits
QA,;4 and the counter outputs CTR, o from the PLD
select locations within the 28F016XS memory space.
The two-bit counter implemented in the PLD loads and
increments the processor’s lower address lines at the
beginning of each memory cycle. The processor supplies
the 28F016XS-15s with the initial address during a read
transaction, and the counter provides the subsequent

246

burst addresses for the remaining duration of the read
transaction.

CLK Option

A 33 MHz clock signal drives the i960 CA
microprocessor CLKIN input. The buffer then delays the
system CLK and drives the PLD and 28F016XS-15s.
The buffer introduces an intentional system clock skew,
providing additional time for the processor to meet the
28F016XSs’ address setup time. At a slower operating
frequency, this intentional delay may not be required to
satisfy the 28F016XSs’ address setup specification.

Multiplexer (MUX)

To achieve this type of wait-state profile, the processor
directly loads the 28F016XSs with the address of the
first access. The interface logic enables the MUX to
permit the processor’s lower address lines, As.2, access
to the lower flash memory address lines during the
initial access of a burst or single read transaction. Next,
the interface logic switches the data flow path through
the MUX. The two-bit counter integrated into the
control logic then takes over, driving the 28F016XSs’

-
intal.
Ao, address inputs. The counter supplies the flash

memory with consecutive burst addresses for the
remaining duration of the read transaction.

Reset

An active-low reset signal, RESET#, connects to the
RESET# inputs of the i960 JF microprocessor and PLD
and to the RP# input of the 28F016XS-15. Figure 5
illustrates a suggested logic configuration for generating
RESET#.

Interface Control Signals

ADS# and W/R# 1960 JF microprocessor signals, just as
in the 1960 CA microprocessor design, serve as inputs to
the state machine, which controls the two-bit counter
and generates the OE#, WE# and ADV# signals for the
28F016XS-15s. The state machine also generates the
RDYRCV# signal for the i960 JF microprocessor to
control the insertion of wait-states during data transfers.

Configuration Signal

A general purpose input/output (GPIO) generates the
configuration signal for input to the state machine. The
configuration signal must be reset to logic “0” on power-
up and system reset to ensure that the operation of the
state machine matches the 28F016XS-15s. After
optimizing the 28F016XS-15s, the reconfiguration
signal must switch to a logic “1” to take advantage of
the new configuration.

28F016XS/i960® Microprocessor Interface.

Additional Control Signals

For information regarding BYTE#, WP#, RY/BY# and
Vpp, see Section 2.1.

3.2 Software Interface Considerations

Boot-up Capability

This interface supports processor boot-up from the
28F016XS-15 memory space after power-up or system
reset. Burst reads and writes may commence with no
configuration. However, read wait-state performance
will be 4-1-1-1 until the SFI Configuration is set to 2
and the CFG input is set to logic “1.” Program control
should jump to an area of RAM to execute the
configuration sequence. A pseudocode flow for this
configuration sequence is shown below.

Execute Device Configuration command sequence
Activate CFG signal
End

The SFI Configuration must be set to 2 before the CFG

input is set to logic “1.” Thereafter, burst read wait-state
performance will improve to 2-0-0-0.

247

28F016XS/i960® Microprocessor Interface

3.3 Burst Read Cycle Description

Refer to the read cycle timing diagrams and state
diagram (Figure 13) for the following discussions of the

read cycle.
RESET
ADS#=0 * W_R#=1
s13
RDYRCV#=1
INC=0
BLAST#=0
ADV#=0
OE#=1
WE#=1
RDYRCV#=1
BLAST#=0 INC=1
sS4 s7
ADVi#t=1 ADV#=1
OE#=0 OE#=0
WE#=1 WE#=1
RDYRCV#=0 RDYRCV#=1
BLAST#=1 INC=0 INC=0
* CFG=1
BLAST#=1
* CFG=0

BLAST#=1

s1

ADV#=1
OE#=0
WE#=1
RDYRCV#=1
INC=0

S10

ADV#=0
OE#=0
WE#=1
RDYRCV#=1
INC=1

S9

BLAST#=1

ADV#=1
OE#=0
WE#=1
RDYRCV#=0
INC=0

BLAST#=0

7500_13

248

Figure 13. Read State Diagram of Burst Control Interface Shown in Figure 12

28F016XS/i960® Microprocessor Interface

i e o O e |
il ' I B | | | | O | N | | |y | Ny O
P

i e
W/RE —-\
BLASTS# \ /_
wosro NRKANes X 7] ez 5+ NXXXXNRE
Az m | M j+2 143 OOOOOON
QAx4 m VaktAddoss HOO0LOOX
N 'ElC:“
CfG ——\"_. m
ADVA / — \ / \ /
our \,.'GiL, —
WE#

2] 12 TS

CRyg
ROYRCVA ___ / \ / \ / \ /-

7500_14

Figure 14. Example Four Double-Word Burst Read in Initial Configuration Showing Key
Specifications Requiring Consideration

Initial Configuration

Figure 14 illustrates a four double-word burst read cycle
with the 28F016XS-15s and state machine in a
reset/power-up configuration state.

Initially, the interface logic drives LE, ADV# and MUX
active while waiting for the processor to initiate a read
cycle targeting the 28F016XSs. With the MUX active,
the processor drives the lower flash memory address
lines in anticipation of a flash memory access. During
this anticipation state, CE# is active to prevent a tgLcH
violation on the first access initiated by the processor.
The delayed CLK also prevents a possible timing
violation from occurring by providing the processor with
sufficient time to meet the 28F016XSs’ tavch
specification when initiating the first access.

When the 1960 JF microprocessor initiates a read cycle
by asserting ADS# with W/R# = “0,” presenting a valid
address and control signals, the state machine loads and
increments the two-bit counter. The counter is
incremented upon the initial load sequence because the
processor supplies the flash memory with the initial
address.

The state machine will then de-assert ADV# at N = 1
and switches the data flow path through the MUX. The
two-bit count then drives the flash memory’s lower

address lines for the remaining duration of the read
transaction. The state machine then asserts ADV# at N =
3 to load the next read address into the 28F016XS-15s.
De-asserting ADV# for one clock cycle (at N =2, 4, 6
and 8) between accesses forces the 28F016XS-15s to
hold data output for two clock cycles (access stretching),
which allows time for the data to stabilize and meet the
timing requirements of the 1960 JF microprocessor bus.

While ADV# is asserted, the counter increments the two
lower bits of the address, providing successive burst
addresses. The state machine asserts OE# at N = 4 to
enable the 28F016XS-15 data output buffers. With the
SFI Configuration = 4, the data will be valid at the
1960 JF microprocessor data inputs at N = 6, 8, 10 and
12.

The state machine asserts RDYRCV# to inform the
i960 JF microprocessor that the data is valid.
RDYRCV# is returned active at N =6, 8, 10 and 12. The
interface will follow this methodology until the
processor asserts BLAST#, which identifies the end of
the burst transaction. Upon detecting BLAST# active,
the interface will transition to its idle state, waiting for
another bus transaction to take place.

249

28F016XS/i960® Microprocessor Interface

Optimized Configuration

Figure 15 illustrates a four double-word burst read with
the 28F016XS-15s and state machine configured for
optimum read performance. While the state machine
waits for the 1960 JF microprocessor to initiate a read
cycle, ADV#, LE and MUX are held active enabling the

L] .

intel.
After the first access is initiated at N = 1, ADV# is held
active and the counter increments through the remaining
burst sequence. Data from the initial access will be
available at N = 4. Subsequent data will be valid at
N =5, 6 and 7. All other signal monitoring and

generation is identical to the reset/power-up
configuration read cycle documented in the preceding

processor with the capability of providing the flash section.
memory with the initial address.
N=Q 1 2 3 4 7
CLK
ax 11 | | | | | L1
o | A ¥ ¥ 1 ¥ s 1 | e O
— tsu1
ADSH —___/
i tsu1
W/RH \
BLASTE \ /[

X X 2 X j+3 m

D 00

QA4 MXXXX ValidiAddress
— tELCH
CE# -\

e \k—' fsu1

ADV#

teLcH
OF# \l‘—’

|

J+3

CR 19

RDYRCV# \

S

7500_15

Figure 15. Example Four Double-Word Burst Read lllustrating Important Timing Parameters
Requiring Consideration

250

intal.

Critical Timings

In these two read configurations, there are some
important timing considerations that need to be taken
into consideration. Table 4 depicts critical timings that
are illustrated in Figures 14 and 15.

First, the buffer delay can cause possible timing
violations if not chosen correctly for a given system
operating frequency. The purpose of the buffer is to
provide sufficient time for the processor to load the
28F016XSs with the initial address during a read
transaction. Therefore, the buffer must have a minimum
delay that satisfies the flash memory’s tavch.

Latch Delay - tovi - tavcn -1/CLKIN = Buffer Delay

28F016XS/i960® Microprocessor Interface

As the previous equation illustrates, the minimum buffer
delay is dependent upon several different variables:
CLKIN frequency and latch delay. At a slow operation
frequency, the interface does not require a buffer delay.

The buffer can also affect the processor’s data setup
time. Hence, the buffer must have a maximum delay of
no greater than:

1/CLKIN - tcaqv - tis1 = Buffer Delay

Consult the appropriate datasheets for full timing
information.

Table 4. Example Read Cycle Timing Parameters at 5V V¢

Part Symbol Parameter Minimum Specified
Value (ns)

Buffer tPHL,PLH Buffer Delay 1.5
22V10-15 tsus Input Setup Time to CLK 9
28F016XS-15 teLcH CE# Setup to CLK 25

tvLch: ADV# Setup to CLK 15

taveH Address Setup to CLK 15

teLcH OE# Setup to CLK 15

‘NOTE:
Consult appropriate datasheets for up-to-date specifications.

251

28F016XS/i960® Microprocessor Interface

3.4 Burst Write Cycle Description at

33 MHz ‘

s13
ADV#=1
OE#=1
WE#=0
RDYRCV#=1
INC=0

BLAST#=1

CS#=0

ADV#=1
OE#=1

WE#=0
RDYRCV#=1
INC=0

S14

7500_16

Figure 16. Write State Diagram of Burst Control

Interface Shown in Figure 12

intel.

Figure 17 illustrates a two double-word burst write
cycle. The i960 JF microprocessor initiates a write cycle
by asserting ADS# with W/R# = 1 and presenting a
valid address and control signals. When detecting a
write operation, the state machine immediately switches
the data flow path through the MUX. The counter is
given sole control to drive the 28F016XSs’ lower
address lines during write operations. At N = 1 with
ADS# = 0, the two-bit counter loads the values on the
processor’s lower address lines. The state machine
asserts WE# (to meet timing requirements, WE# is
falling-edge triggered) on the falling edge between N =
1 and N = 2. WE# remains asserted for four clock
periods, in order to meet 28F016XS-15 timing

Write Configuration

_requirements. The state machine asserts RDYRCV# for

N = 4 to inform the 1960 KB microprocessor to supply
the next data. At N = 4, the counter increments the two
lower address bits, and the state machine asserts WE# on
the next falling clock edge to begin the next data write
to the 28F016XS-15s. The data writes continue until the
processor asserts BLAST#, noting the end of the current
write transaction. The SFI Configuration has no effect
on the write cycle.

N=9 ! 2 3 4 5 6 7
a1 LT LT LT LT L1 1T 1
(33MH2) - .
— su1
ADSH# \ / \ /
WRe i /jeiSUl
BLAST# \ Vo
. 'DVWH tWHDX twHDX
¢ i le—>y
Loy KUKRK Address X 03 Yot XXXXXX
lgisUty.
A3 XXX . X i+ XXXXX
VWL i
QAZ1.4 B Valid Address
| tWHEH
cs# = | ELAL
ADV#
OE#
WE# tWLWH o ,
] letAwL le—iny Y
CTRyg X i X "
12 iTit
RDYRCV# \Je >l

7500_17

252

Figure 17. Two Double-Word Burst Write

L]
I ntel ® 28F016XS/i960® Microprocessor Interface

Critical Timings Consult the appropriate datasheets for full timing
information.
Table 5 describes the critical timings illustrated in

Figure 17.

Notice that CTR ., and CS# must be valid before WE#
is asserted. CTR |, are guaranteed valid 8 ns after the
rising clock edge, providing 12 ns of margin.

Table 5. Example Write Cycle Timing Parameters at 5V V¢

Part Symbol Parameter Minimum Specified
Value (ns)

22V10-15 tsus Input Setup Time to CLK 9
28F016XS-15 teLwi CE# Setup to WE# Going Low 0

tavwL Address Setup to WE# Going Low 0

twLwH WE# Pulse Width 50

tovwH Data Setup to WE# Going High 50

twHDX Data Hold from WE# High

twHAX Address Hold from WE# High

twHEH CE# Hold from WE# High

NOTES:
Consult appropriate datasheets for up-to-date specifications.

253

28F016XS/i960® Microprocessor Interface

4.0 Standard i960 JF MICROPROCESSOR INTERFACE

\

CLKIN CFG
33 MHz
L Clock

|

7
r 'IIIII/IIIIIIII& %
Illllllllllllléé % ‘
i960® JF 7 é
Microprocessorp Ch:%;gec' %
‘ é
ALE Z
7
%
%
%
- -
Y or
BLAST# WE# /=y
RDYCRV# (¢ v
'"13"?5 ° INT
RESET# f——— RESETH ——H (22v190-15) RESET#
—)

Input

750012

Figure 18. Minimal Interface Logic Required in Interfacing the 28F016XS-15 to the
i960 JF-33 Microprocessor to Sustain 3-0-0-0 Burst Read Performance Up to 33 MHz

The 28F016XS-15 interface to the i960 JF-33
microprocessor, illustrate in Figure 12, delivers 3-0-0-0
wait-state read performance up to 33 MHz. The design
requires only one 22V10 to handle all interfacing
requirements. Contact your Intel or distribution sales
office for schematic and PLD files for the interface
documented in this section.

See Section 3.0 for an alternative design.

4.1. Circuit Description

This interface is very similar to the optimized i960 JF
design described in Section 3.0. This design however,
eliminates the buffer and multiplexer requirement. For
specific circuitry information involved in this standard
interface, reference Section 3.0.

CLK Option

Unlike the optimized design in Section 3.0, a buffer is
not implemented in this interface. The 33 MHz system
clock drives the processor, PLD and flash memory. To
reduce system clock skew, position the PLD and

254

28F016XSs within
MiCroprocessor.

close proximity to the

4.2. Software Interface Considerations

This interface supports processor boot-up from the flash
memory space after power-up or system reset. Initially,
the read wait-state performance will be 5-1-1-1 until the
SFI Configuration value is modified. The 28F016XS
operates at optimal performance with -a
SFI Configuration value of 2 at 33 MHz. Program
control should jump to an area of RAM to execute a
configuration sequence which optimizes the flash
memory and interface state machine for the given
operating frequency.

4.3 Burst Read Cycle Description at
33 MHz

Refer to the read cycle timing diagrams and state
diagram (Figure 13) for the following discussions of the
read cycle.

28F016XS/i960® Microprocessor Interface

RESET

SO

ADV#=1
OE#=1
WE#=1
RDYRCV#=1
INC=0

ADS#=1

“W_R#=0 -

ADV#=0
OE#=1
WE#=1
RDYRCV#=1
INC=1

BLAST#=0

ADV#=0
OE#=1
WE#=1
RDYRCV#=1
INC=1

BLAST#=0

S5
ADV#=1
OE#=0
WE#=1
RDYRCV#=0
INC=0

ADV#=0
OE#=0
WE#=1
RDYRCV#=1
INC=1

BLAST#=1
* CFG=1

BLAST#=1
*CFG=0 ADV#=0
OE#=0
WE#=1
RDYRCV#=0
INC=0

BLAST#=1

S12

ADV#=1
OE#=0
WE#=1
RDYRCV#=1
INC=0

S11

ADV#=0
OE#=0
WE#=1
RDYRCV#=1
INC=1

ADS#=0 * W_R#=1

S#=1

CS#=0
*CFG=0

BLAST#=1

S13

S8/ ADvi=1

OE#=1
WE#=1
RDYRCV#=1
INC=0

S7

ADV#=0

RDYRCV#=1
INC=1

S8

ADV#=1
OE#=0
WE#=1
RDYRCV#=1
INC=0

5o ADV#=0

OE#=0
WE#=1
RDYRCV#=1
INC=1

BLAST#=0

$10 -

ADV#=1

OE#=0

WE#=1

RDYRCV#=0

INC=0

7500_19

Figure 19. Read State Diagram of Burst Control Interface Shown in Figure 18

255

28F016XS/i960® Microprocessor Interface

] Isy;
Aot ‘f‘/
-t Su;
ww TS
BLAST# \ /—
Wbag.0 m o) Dlet Dj+2 n;.am
A:Lz A % J1 j+2 J+3 HOOOOOOXX
QAz1y miﬂﬂl OO0
csr P 'ELCH
1Sy1] /
— o>
CFG
tyLcH
aove *—/ /] / I/
oEr \ \GLCH /__
WE#
oy) J+1 J+2 J+3
-0
RDYRCV# / —\ / \ / \ _/_
7500_14

Figure 20. Example Four Double-Word Burst Read in Initial Configuration Showing Key
Specifications Requiring Consideration

Initial Configuration

Figure 20 illustrates a four double-word burst read cycle
with the 28F016XS-15s and the state machine in the
reset/power-up configuration state. The i960 JF
microprocessor initiates a read cycle by asserting ADS#
with W/R# = “0,” presenting a valid address and control
signals. At N = 2 with ADS# = “0” and CLK = “0,” the
two-bit counter loads the values on the address bits A, ,.

The state machine asserts ADV# after clock edge N =1
where the 28F016XS-15s will clock in the first address
at the next rising clock edge (N=2), if CS# is asserted. If
CS# is not asserted, the state machine will return to its
inactive state at N = 2.

The state machine de-asserts ADV# at N = 2. The state
machine then asserts ADV# at N = 3 to load the next
read address into the 28F016XS-15s. De-asserting
ADV# for one clock cycle (at N =2, 4, 6 and 8) between
accesses forces the 28F016XS-15s to hold data output
for two clock cycles (access stretching), which allows
time for the data to stabilize and meet the timing
requirements of the i960 JF microprocessor bus.

256

The counter increments the two lower bits of the address
at N =3, 5 and 7 to provide the four successive burst
addresses. The state machine asserts OE# at N = 4 to
enable the 28F016XS-15 data output buffers. With the
SFI Configuration = 4, the data will be valid at the
1960 JF microprocessor data inputs at N = 7.

The state machine asserts RDYRCV# to inform the
i960 JF microprocessor that the data is valid.
RDYRCV# is returned active at N =7, 9, 11 and 12.
When sampling BLAST# active, the state machine ends
the read transfer and returns to an idle state. In the idle
state, the state machine simply waits for the processor to
initiate another bus transaction.

intal.

Optimized Configuration

Figure 15 illustrates a four double-word burst read with
the 28F016XS-15s and state machine configured for
optimum read performance. With the
SFI Configuration = 2, ADV# is held active and the
counter increments at N = 2, 3 and 4, supplying the
28F016XS-15s with four consecutive accesses. Data

28F016XS/i960® Microprocessor Interface

from the initial access will be valid for transfer at N = 5.
Subsequent data will be valid at N = 6, 7 and 8. This
interface and 28F016XS-15 configuration improve read
wait-state performance to 3-0-0-0. All other signal
monitoring and generation are identical to the
reset/power-up configuration read cycle documented in
the preceding section.

N=¢ 1 2 3 5 6 7 8
o]| | | 1 | | | | |
tsu]
ADs# \—_/
_ 'suj
WIR#"
BLAST# \ _/_

oo SRS

j+1 j+2 j+3

" Aga Xm i

QAz14 Valid:Address

tELCH

CS# T \:

CFG] \H

tLCH

ADV# \

taLCH

OE# \"

WE#

j+3

CTRi

RDYRCV#

—

7500_15

Figure 21. Example Four Double-Word Burst Read lllustrating Important Timing Parameters
Requiring Consideration

257

28F016XS/i960® Microprocessor Interface

Critiqal Timings

Table 4 describes the critical timings illustrated in
Figures 14 and 15. One particularly critical timing in
this design is the data hold time, which the
28F016XS-15 meets with 0 ns margin. The 28F016XS
holds data for 5 ns after a rising clock.

The 28F016XS-15 will provide data 10 ns before the
rising edge of the system clock, which satisfies the
1960 JF-33 microprocessor’s data input requirement.

intgl.

ADV# and CTR, are guaranteed valid 8 ns after the
rising clock edge. Setup times for these inputs to
28F016XS-15 are each 15 ns. Since the clock period is
30 ns, this allows 7 ns margin for these timings.

RDYRCV# is guaranteed valid 8 ns after the rising
clock edge to met the microprocessor's setup time to
rising clock edge.

Consult the appropriate datasheets for full timing
information.

Table 6. Example Write Cycle Timing Parameters at 5V V¢c

Part Symbol Parameter Minimum Specified
Value (ns)
22v10-15 tsut Input Setup Time to CLK 9
28F016XS-15 teLcH CE# Setup to CLK 25
tvLcH ADV# Setup to CLK 15
taveH Address Setup to CLK 15
teLch OE# Setup to CLK © 15

NOTE:
Consult appropriate datasheets for up-to-date specifications.

258

intal.

4.4 Burst Write Cycle Description at
33 MHz

The write interface in for this design behaves similar to
the optimized design’s write interface described in
Section 3.4. The only difference between the two
designs is the absence of the MUX. Therefore, this
design’s write state machine does not have to concern
itself with changing the data flow through the MUX.
Instead, the interface simply loads and holds the address
presented by the processor for the duration of the write
operation.

For further details information about this cycle and write
timing waveform, refer to Section 3.4.

5.0 INTERFACING TO OTHER i960
MICROPROCESSORS

{960 CF-16, 1960 CF-25 and 1960 CF-33
Microprocessors

The 1960 CF microprocessor bus interface is completely
compatible with the i960 CA microprocessor bus
interface. Therefore, the 28F016XS-15 interfaces
described above for the 1960 CA-33 microprocessor
work equally well with the 1960 CF-25 and 33 MHz
MiCroprocessors.

At 16 MHz, the interface requires a slight modification
because the SFI Configuration value at 16 MHz
equals 1. The 28F016XS-15 will begin driving the data
pin 1 CLK period after initiating a read access. The
interface returns READY# to the i960 CF-16
microprocessor, 1 CLK cycle earlier. Therefore, the
28F016XS-15 interface to the 960 CF-16
microprocessor will deliver 3-0-0-0 wait-state read
performance. ‘

i960 KA and i960 KB Microprocessors

The 28F016XS interface to the 1960 Kx microprocessor
series will be very similar to the i960 JF interface
described in Sections 3.0 and 4.0. The only difference
between the two designs is the i960 Kx’s lack of a

28F016XS/i960® Microprocessor Interface

BLAST# output signal. The 1960 JF interfaces use this
signal to determine the end to the burst transaction.
Since the 1960 Kx microprocessor does not have a
BLAST# signal, the interface logic must examine the
processor’s lower address lines to determine the length
of the read transaction.

For further detailed information about this interface,
please reference the 1960 JF interfaces. Contact your
Intel or distribution sales office for schematic and PLD
files for the 28F016XS interface to the i960 Kx
microprocessor.

i960 SA Microprocessor, i960 SB
Microprocessor

The 28F016XS’s interface to the i960 Sx microprocessor
series will be similar to the i960 JF microprocessor
interfaces, with the following differences:

o The 1960 Sx microprocessor series has a 16-bit data
bus multiplexed with the lower 16 of 32 address bits.
Therefore, a single 28F016XS will match the width
of the data bus.

o The 1960 Sx microprocessor series supports eight
double-word burst transfers. Therefore, the
28F016XS interface will require a three-bit counter
to generate the lower three bits of the burst
addresses.

6.0 CONCLUSION

This technical paper has described the interface between
the 28F016XS 16-Mbit Flash memory component and
the 1960 microprocessor family. This simple design has
been .implemented with a minimal number of
components and achieves exceptional read performance.
The 28F016XS provides the microprocessor with the
non-volatility and updateability of flash memory and the
performance of DRAM. For further information about
the 28F016XS, reference the Additional Information
section of this technical paper. Please contact your local
Intel or distribution sales office for more information on
Intel’s flash memory products.

259

]
28F016XS/i960® Microprocessor Interface l ntel ®

ADDITIONAL INFORMATION

Order Number Document/Tools
290532 28F016XS Datasheet
297500 "Interfacing 28F016XS to the Intel486™ Microprocessor
Family"
292147 AP-398, "Designing with the 28F016XS"
292146 AP-600, "Performance Benefits and Power/Energy Savings of 28F016XS
Based System Designs"
292163 AP-610, “Flash Memory In-System Code and Data Update Techniques" '
292165 AB-62, “Compiled Code Optimizations For Embedded Flash RAM
Memories”
297372 16-Mbit Flash Product Family User's Manual
297508 FLASHBuilder Utility
Contact Intel/Distribution 28F016XS Benchmark Utility
Sales Office
‘Contact Intel/Distribution 28F016XS iBIS Models
Sales Office
Contact Intel/Distribution 28F016XS VHDL/Verilog Models
Sales Office
Contact Intel/Distribution 28F016XS Timing Designer Library Files
Sales Office -
Contact Intel/Distribution 28F016XS Orcad and ViewLogic Schematic Symbols
Sales Office
REVISION HISTORY
Number . Description
001 Original Version
002 Added Optimized i960 JF Microprocessor Interface that Delivers 2-0-0-0 Wait-State
Performance Up to 30 MHz.
Removed Detailed i960 KB Microprocessor Interface Description
Added i960 KB Microprocessor Interfacing Guidelines to Section 5.0, “Interfacing to
Other i960 Microprocessors”

260

-
I nb' ® 28F016XS/i960® Microprocessor Interface

APPENDIX A
PLD FILES

PLD file for the standard 28F016XS interface to the 960 CA Microprocessor described in Section 2.0.

Title 28F016XS / i960® CA Microprocessor Interface State Machine
Pattern PDS
Revision 1
Authors Example
Company Intel Corporation - Folsom, California
Date 1-25-94
CHIP STATEMACHINE 85C22V10
; inputs
PIN 1 CLK
PIN ADS_n ; address status - 19960 CA microprocessor
PIN W_R_n ; W/R# - 19960 CA microprocessor
PIN BLAST_n ; burst last - 19960 CA microprocessor
PIN CS_n ; chip select - 28F016XS
PIN CFG ; 28F016XS/i960 CA microprocessor config status set input
PIN A2 ; LAD bit 2
PIN A3 ; LAD bit 3
PIN RESET ; resets all FFs in device
PIN 25 GLOBAL ; virtual pin to implement reset
, outputs
PIN CTRO ; burst counter out - 28F016XS-A1
PIN CTR1 ; burst counter out - 28F016XS-A2
PIN /WE ; write enable - 28F016XS
PIN /OE ; output enable - 28F016XS
PIN Qo0 ; state variables
PIN Q1
PIN /ADV ; state variable and address valid - 28F016XS
PIN Q3
; burst counter control signals
STRING LD '(/ADS_n)' ; load
STRING INC '(/ADV + ADV * Q3 * Q1 * Q0)' ; increment

STATE MOORE_MACHINE
DEFAULT_BRANCH SO

; state assignments

S0 = /Q3 * JADV */Q1 * /QO
Sl= /Q3 * ADV */Q1 * /QO
S2= Q3 * ADV */Ql */Q0
S3= Q3 * ADV */QL * QO
S4= /Q3 * ADV */Q1 * QO

261

28F016XS/i960® Microprocessor Interface

S5= /Q3 */ADV */Q1 * QO
S6= /Q3*/ADV * QI */Q0
S7= Q3 */ADV * QI */Q0
S8= Q3 */ADV */Ql */QO0

; State transitions
SO:= (/ADS_n*/W_R_n) ->S1 ; READ cycle
+ (/ADS_n*W_R_n) ->S6 ; WRITE cycle
+-> S0 ; else, stay
S1:= (/CS_n */CFG) >S5 ; 28F016XS selected, initial configurations
+ (/CS_n * CFG) ->S2 ; 28F016XS selected, 28F016XS and 1960 CA microprocessor configured
+-> S0 ; else, return to idle state
S2:= VCC ->S3
S3:= VCC -> 54 ; 28F016XS is configured to wait 4 clocks
S4:= (/BLAST_n* ADS_n) ->S0 ; 1 double word read
+ (/BLAST_n */ADS_n) -> S1 ; pipelined read
+-> 85 ; else, continue
S5:= (/BLAST_n* ADS_n) -> S0 ; burst read finished
+ (/BLAST_n * /ADS_n) -> S1 ; pipelined read
+-> 85 ; else, continue
S6:= /CS_n ->S7 ; 28F016XS selected, continue
+-> S0 ; else, return to idle state
S7:= VCC -> S8
S8:= (BLAST_n * CFG) ->S6 ; continue burst
+ (BLAST_n*/CFG) ->S8 ; pre-config write

+-> S0 ; write is finished
; transition outputs
S0.0UTF := /OE * /WE
S1.0UTF := /OE * /WE
S2.0UTF := OE * /WE
S3.0UTF := OE * /WE
S4.0UTF := OE * /WE
S5.0UTF := OE * /WE
S6.0UTF := OE * /WE
S7.0UTF = /OE * WE
S8.0UTF := /OE * WE
S9.0UTF := /OE * /WE
EQUATIONS
; implement RESET

GLOBAL.RSTF =/RESET
; implement 2-bit burst counter - registered counter equations

CTR1 := (LD * A3) + (/LD * INC * CTRO * /CTR1)

+ (/LD * INC * /CTRO * CTR1) + (/LD * /INC * CTR1)

CTRO := (LD * A2) + (/LD * INC * /CTRO) + (/LD * /INC * CTRO)
; flop OE and WE on falling edge

OE.CLKF =/CLK

WE.CLKF =/CLK

262

-
I n.bl ® 28F016XS/i960® Microprocessor Interface

PLD file for the optimized 28F016XS interface to the 1960 JF Microprocessor described in Section 3.0.

Title Optimized 28F016XS/i960® JF Microprocessor Interface State Machine
Pattern PDS

Revision 1

Authors Example

Company Intel Corporation - Folsom, California

Date 2-16-95

CHIP STATEMACHINE 85C22V10

; inputs

PIN 1 CLK

PIN ADS ; address status - 1960 JF microprocessor
PIN W_R ; W/R# - 1960 JF microprocessor

PIN BLAST ; burst last - 19960 JF microprocessor

PIN CS ; chip setect

PIN CFG ; 28F016XS/1960 JF microprocessor config status set input
PIN A2 ; Abit2

PIN A3 ; Abit3

PIN RESET ; resets all FFs in device

PIN 25 GLOBAL ; virtual pin to implement reset

; outputs

PIN CTRO ; burst counter out - 28F016XS-A1

PIN CTR1 ; burst counter out - 28F016XS-A2

PIN /WE ; write enable - 28F016XS

PIN /OE ; output enable - 28F016XS

PIN /RDYRCV ; wait-state control

PIN MUX ; control data flow through the multiplexer
PIN Qo0 ; state variables

PIN Q1

PIN /ADV ; state variable and address valid - 28F016XS
PIN Q3

; burst counter control signals
STRING LD '(/ADS)' ; load
STRING INC'(/ADV +/RDYRCV * Q3 * Q1 * Q0)' ; increment

STATE MOORE_MACHINE
DEFAULT_BRANCH S0

; state assignments
SO = /RDYRCV */Q3 * ADV */Q1 */Q0 * /OE * /WE * /IMUX
S1= /RDYRCV */Q3 * ADV */Q1 * QO * OE * /WE* MUX

S2 = /RDYRCV */Q3 * ADV * Q1 */Q0 * OE * /WE * MUX
S3 = RDYRCV */Q3 * ADV * Q1 * Q0 * OE */WE* MUX
S4 = RDYRCV */Q3 */ADV */Q1 * QO * OE * /WE* MUX
S5 = /RDYRCV */Q3 * /ADV * Q1 */Q0 * /OE * /WE* MUX

263

28F016XS/i960® Microprocessor Interface

S6 = /RDYRCV * Q3 * ADV */Q1 */Q0 * OE */WE * MUX
S§7 = /RDYRCV */Q3 */ADV * Q1 * Q0 * OE * /WE* MUX
S8 = /RDYRCV * Q3 * ADV */Q1 * QO * OE */WE* MUX
S9 = RDYRCV * Q3 */ADV */Q1 */Q0 * OE * /WE* MUX

S10= /RDYRCV * Q3 * ADV * Q1 */Q0 * OE * /WE* MUX
S11= /RDYRCV * Q3 */ADV */Q1 * Q0 * OE * /WE* MUX
S$13 = /RDYRCV * Q3 */ADV * Q1 */Q0 * /OE * WE* MUX
S14 = /RDYRCV * Q3 */ADV * Q1 * QO * /OE * WE* MUX
S15= RDYRCV * Q3 */ADV * Q1 * QO * /OE * /WE* MUX

; state transitions -
(/ADS * /W_R * CFG) ->S1
(/ADS * /W_R * /CFG) ->S85

SO :=

+

+ (JADS* W_R)
S1:= /CS

+ CS
S2:= VCC
S3:= (/BLAST)
S4:= /BLAST

+ (BLAST * CFG)

+ (BLAST * /CFG)
S5:= VCC
S6:= VCC
S7:= VCC
S8:= VCC
S9:= /BLAST

+ BLAST
S10:= VCC
S1l:= VCC
S13:= CS

+ /CS
S14:= VCC
S15:= BLAST

+ /BLAST
EQUATIONS

; implement RESET

-> 813
+-> S0
> 82
-> S0
->83
-> S0
+-> 54
-> S0
>S4
->S11
-> S6
-> 87
-> S8
>89
-> S0
->S10
>S4
>S4
-> S0
->S14
->S15
->S13
-> S0

GLOBAL.RSTF =/RESET

; READ cycle

; WRITE cycle

; else, stay

; 28F016XS selected, init configurations

; 28F016XS selected, optimized configured

; 1 double word read
; else, continue
; burst read finished

; continue, optimized configuration
; continue, initial configuration

; BLAST - end of the burst read transaction

; write cycle control

; BLAST - end of burst write transaction

; implement 2-bit burst counter - registered counter equations
CTR1 := (/WR *LD * A3 * /A2) + (WR * LD * A3) + (/LD * INC * CTRO * /CTR1)

+ (/LD * INC * /CTRO * CTR1) + (/LD * /INC * CTR1)

CTRO := (/WR *LD * /A2) + (WR * LD * A2) + (/LD * INC * /CTRO) + (/LD * /INC * CTRO)

264

-1
E ntel ® 28F016XS/i960® Microprocessor Interface

PLD file for the standard 28F016XS interface to the i960 JF Microprocessor described in Section 4.0.

Title 28F016XS/i960® JF Microprocessor Interface State Machine
Pattern PDS

Revision 1

Authors Example

Company Intel Corporation - Folsom, California

Date 8-16-94

CHIP STATEMACHINE 85C22V10

; inputs

PIN 1 CLK

PIN ADS ; address status - i960 FJ microprocessor
PIN W_R ; W/R# - 1960 FJ microprocessor

PIN BLAST ; burst last - 1960 JF microprocessor

PIN CS ; chip setect

PIN CFG ; 28F016XS/i960 JF microprocessor config status set input
PIN A2 ; Abit2

PIN A3 ; Abit3

PIN RESET ; resets all FFs in device

PIN 25 GLOBAL ; virtual pin to implement reset

; outputs -

PIN CTRO ; burst counter out - 28F016XS-A1

PIN CTR1 ; burst counter out - 28F016XS-A2

PIN /WE ; write enable - 28F016XS

PIN /OE ; output enable - 28F016XS

PIN /RDYRCV ; wait-state control

PIN Qo ; state variables

PIN Q1

PIN /ADV ; state variable and address valid - 28F016XS
PIN Q3

; burst counter control signals
STRING LD '(/ADS)' ; load
STRING INC'(/ADV +/RDYRCV * Q3 * Q1 * Q0)' ' ; increment

STATE MOORE_MACHINE
DEFAULT_BRANCH SO

; state assignments

S0 = /RDYRCV * /Q3 * /ADV * /Q1 * /Q0 * /OE * /WE
St = /RDYRCV * /Q3 * ADV */Q1 * /QO * /OE * /WE
S2 = /RDYRCV */Q3 * ADV */Q1 * Q0 * OE * /WE
S3 = /RDYRCV */Q3 * ADV * Q1 */Q0 * OE * /WE
S4 = RDYRCV */Q3 * ADV * Q1 * Q0 * OE * /WE
S5 = RDYRCV */Q3 * /ADV */Q1 * QO * OE * /WE
S6 = /RDYRCV */Q3 * /ADV * Q1 * /Q0 * /OE * /WE

265

]
28F016XS/i960® Microprocessor Interface I ntel ®

S7 = /RDYRCV * Q3 * ADV */Q1 */Q0 * OE * /WE
S8 = /RDYRCV */Q3 */ADV * Q1 * QO * OE * /WE
S9 = /RDYRCV * Q3 * ADV */Ql * Q0 * OE * /WE
S10= RDYRCV * Q3 * /ADV */Q1 * /Q0 * OE * /WE
S11= /RDYRCV * Q3 * ADV * Q1 */Q0 * OE * /WE
S12= /RDYRCV * Q3 * /ADV */Q1 * Q0 * OE * /WE
S13 = /RDYRCV * Q3 */ADV * Q1 * /QO0 * /OE * WE
S14= /RDYRCV * Q3 */ADV * Q1 * QO * /OE * WE
S15= RDYRCV * Q3 */ADV * Q1 * QO * /OE * /WE

; State transitions

nununnn
= \0 003

SO0:= (/ADS */W_R) ->S1 ; READ cycle
+ (/ADS * W_R) ->S13 ; WRITE cycle
+-> S0 ; else, stay
S1:= (/CS */CFG) -> S6 ; 28F016XS selected, init configurations
+ (/CS * CFG) -> 82 ; 28F016XS selected, optimized configured
N +> S0 ; else, return to idle state
S2:= VCC -> 83
S3:= VCC -> S84 ; 28F016XS is configured to wait 4 clocks
:|S4:= (/BLAST * ADS) -> S0 ; 1 double word read
+->85 ; else, continue
S5:= /BLAST -> S0 ; burst read finished
+ (BLAST * CFG) -> 85 ; continue, optimized configuration
+ (BLAST * /CFG) ->S12 ;.continue, initial configuration
= VCC) >87 .
= VCC -> S8
= VCC -> 89
= VCC ->S10
0:= /BLAST -> S0 ; BLAST - end of the burst read transaction
+ BLAST -> S11
Sl1:= VCC -> S5
S12:= VCC -> S5
S13:= CS -> S0 ; write cycle control
+ /CS ->S14
S14:= VCC -> S15
| S15:= BLAST ->S813 ; BLAST - end of burst write transaction
+ /BLAST -> S0 :
EQUATIONS
; implement RESET

GLOBAL.RSTF =/RESET
; implement 2-bit burst counter - registered counter equations
CTR1 := (LD * A3) + (/LD * INC * CTRO * /CTR1)
+ (/LD * INC * /CTRO * CTR1) + (/LD * /INC * CTR1)
CTRO := (LD * A2) + (/LD * INC * /CTRO) + (/LD * /INC * CTRO)

266

28F016XS/i960® Microprocessor Interface

APPENDIX B
BENCHMARK PERFORMANCE
ANALYSIS

The following section provides detailed memory technology information used in the performance analysis (UDP/IP
Networking and Imaging Benchmarks) contained in the introduction. The performance analysis was based on actual
memory component performance in an i960 processor-based environment. System interface delay between
microprocessor and memory was not included in the analysis. The two benchmarks illustrate relative system memory
performance.

A. 28F016XS Flash Memory

28F016XS is capable of 3-1-1-1-1-1-1-1. . 'read performance at 5.0V V- and 33 MHz or 25 MHz
(2-0-0-0-0-0-0-0. . .in terms of wait-states). The benchmarking analysis is shown below:

UDP/IP Networking Benchmark Imaging Benchmark
Time (sec) Time (sec)

i960 KB-25 1.30 1.64
Microprocessor '

{960 CA-33 .89 .89
Microprocessor

i960 CF-33 .53 .59
Microprocessor

B. 16-Mbit DRAM

16-Mbit DRAMs were, at the time this technical paper was published, only beginning to ramp into production. Only
advance information for the wider x16, 16-Mbit DRAMs was available for use in the calculations that follow.

Sequential reads allow use of the DRAM fast page mode. Assumed DRAM specifications are shown below:

o 80nstgac, 40ns tyn (5.0V Vo)
e 256 word (512 byte) page buffer

Therefore, 16-Mbit DRAMs are capable of 3-2-2-2-2-2-2-2. . .read performance at 33 MHz and 25 MHz
(2-1-1-1-1-1-1-1 in terms of wait-states. . .). The benchmarking analysis is shown below:

UDP/IP Networking Benchmark Imaging Benchmark
Time (sec) Time (sec)

i960 KB-25 1.88 1.89
Microprocessor

{960 CA-33 1.06 1.03
Microprocessor

i960 CF-33 .59 .64
Microprocessor

]
28F016XS/i960® Microprocessor Interface I ntQI ®

C. 4-Mbit EPROM
Calculations that follow used the x16 version of the 4-Mbit EPROM (Intel 27C400 or equivalent).
The assumed 5.0V V¢ 4-Mbit EPROM random access time is 150 ns. Therefore, 4-Mbit EPROMs are capable of 5-5-

5-5-5-5-5-5. . .read performance at 5.0V Ve and 33 MHz (4-4-4-4-4-4-4-4. . .in terms of wait-states). The
benchmarking analysis is shown below:)

UDP/IP Networking Benchmark Imaging Benchmark
Time (sec) Time (sec)

i960 KB-25 NA NA
Microprocessor

i960 CA-33 1.56 1.49
Microprocessor ‘

i960 CF-33 .78 .81
Microprocessor

D. 16-Mbit PAGED MASK ROM

Calculations that follow used the x16 version of the 16-Mbit paged mask ROM, which is not yet widely available from
multiple vendors. The x8, 16-Mbit paged mask ROM is the more common version today.

Sequential reads allow use of the mask ROM page mode. The assumed 5.0V Ve 16-Mbit mask ROM random access
time is 150 ns, with 75 ns accesses in page mode (4-word page). Therefore, 16-Mbit mask ROMs are capable of 5-3-3-
3-5-3-3-3. . .read performance at 5.0V V¢ and 33 MHz (4-2-2-2-4-2-2-2. . .in terms of wait-states). The benchmarking
analysis is shown below:

UDP/IP Networking Benchmark Imaging Benchmark (sec)
Time (sec) Time (sec)

i960 KB-25 NA NA
Microprocessor

i960 CA-33 1.35 1.30
Microprocessor

i960 CF-33 71 .73
Microprocessor B

268

intgl.

Revised Pages

intal.

Flash Memory Overview

271

intal.

In contrast, Intel flash memory is inherently nonvolatile,
and the single transistor cell design of Intel’s ETOX
manufacturing process is extremely scaleable, allowing
the development of continuously higher densities and
steady cost improvement over SRAM (Figure 2).

MEMORY CELL SIZE (u2)

' ! L L

2.0 1.5 1.2 10

I I\
0.8 0.7 0.6 0.5

MINIMUM FEATURE SIZE (4)
296101-1

Figure 2

— EPROM (electrically programmable read-only
memory) is a mature, high-density, nonvolatile
technology which provides a degree of
updatability not found in ROM. An OEM may
program EPROM as needed to accommodate
code changes or varying manufacturing unit
quantities. Once programmed, however, the
EPROM may only be erased by removing it from
the system and then exposing the memory
component to ultraviolet light—an impractical
and time-consuming procedure form many OEMs
and a virtually impossible task for end-users.

Unlike EPROM, flash memory is electrically re-writable
within the host system, making it a much more flexible
and easier to use alternative. Flash memory offers
OEMs not only high density and nonvolatility, but
higher functionality and the ability to differentiate their
systems. ‘

Intel EEPROM
ETOX Flash
Transistors 1 2
Cell Size 15 38
(1-Micro Lithography)
Cycling Features 0.1% 5%
Figure 3

— EEPROM (electrically erasable programmable
read-only memory) is nonvolatile and electrically
byte-erasable. Such byte-alterability is needed in
certain applications but involves a more complex

FLASH MEMORY OVERVIEW

cell structure, and significant trade-offs in terms
of limited density, lower reliability and higher
cost, making it unsuitable as a mainstream
memory.

Unlike EEPROM, Intel flash memory technology
utilizes a one-transistor cell, allowing higher densities,
scalability, lower cost, and higher reliability, while
taking advantage of in-system, electrical erasability
(Figure 3).

— DRAM (dynamic random access memory) is a
volatile memory known for its density and low
cost. Because of its volatility, however it requires
not only a constant power supply to retain data,
but also an archival storage technology, such as
disk, to back it up.

Partnered with hard disks for permanent mass storage,
DRAM technology has provided a low-cost, yet space
and power-hungry solution for today’s PCs.

With ETOX process technology, Intel manufactures a
flash memory cell that is 30% smaller than equivalent
DRAM cells. Flash memory’s scalability offers a price
advantage as well, keeping price parity with DRAM,
and also becoming more attractive as a hard disk
replacement in portable systems as densities grow and
costs decline.

Intel flash memory combines advantages from each of
these memory technologies. In embedded memory
applications, flash memory provides higher-performance
and more flexibility than ROM and EPROM, while
providing higher density and better cost effectiveness
than battery-backed SRAM and EEPROM. Moreover,
the true nonvolatility and low power consumption
characteristics of flash memory make it a compelling
alternative to DRAM in many applications.

ETOX Il TECHNOLOGY

Unlike other approaches to flash memory, Intel ETOX is
a proven technology. As its name suggest, ETOX (or
“EPROM tunnel oxide”) technology evolved from
EPROM. With 95% process compatibility with EPROM,
ETOX taps experience gained from a mature high-
volume manufacturing base pioneered by Intel in the
1970s.

Representing the third generation of Intel flash memory
technology, the ETOX III 0.8 p process delivers 100,000
write cycles per block. This capability significantly
exceeds the cycling requirements of even the most
demanding applications.

273

intal.

DD28F032SA, 32-Mbit
FlashFile™ Memory Datasheet

275

intel.

The DD28F032SA contains three types of Status
Registers to accomplish various functions:

e A Compatible Status Register (CSR) which is
100% compatible with the 2BFO08SA FlashFile
memory’s Status Register. This register, when
used alone, provides a straightforward upgrade
capability to the DD28F032SA from a
28F008SA-based design.

o A Global Status Register (GSR) which informs
the system of command Queue status, Page
Buffer status, and overall Write State Machine
(WSM) status.

e 64 Block Status Registers (BSRs) which
provide block-specific status information such
as the block lock-bit status.

The GSR and BSR memory maps for Byte-Wide
and Word-Wide modes are shown in Figures 4
and 5.

The DD28F032SA incorporates an open drain
RY/BY# output pin. This feature allows the user to
OR-tie many RY/BY# pins together in a multiple
memory configuration such as a Resident Flash
Array. Other configurations of the RY/BY# pin are
enabled via special CUl commands and are
described in detail in the 16-Mbit Flash Product
Family User's Manual.

The DD28F032SA also incorporates three chip-
enable input pins, CEy#, CE# and CE,#. The
active low combination of CE# and CE,# controls
the first 28F016SA. The active low combination of
CE,# and CE,# controls the second 28F016SA.

ADVANCE INFORMATION

DD28F032SA

The BYTE# pin allows either x8 or x16 read/writes
to the DD28F032SA. BYTE# at logic low selects
8-bit mode with address A, selecting between low
byte and high byte. On the other hand, BYTE# at
logic high enables 16-bit operation with address A,
becoming the lowest order address and address
Aq is not used (don't care). A device block diagram
is shown in Figure 1.

The DD28F032SA incorporates, an Automatic
Power Saving (APS) feature which substantially
reduces the active current when the device is in
static mode of operation (addresses not
switching).

A deep power-down mode of operation is invoked
when the RP# (called PWD# on the 28F008SA)
pin is driven low. This mode provides additional
write protection by acting as a device reset pin
during power transitions. In the Deep Power-
Down state, the WSM is ‘reset (any current
operation will abort) and the CSR, GSR and BSR
registers are cleared.

A CMOS standby mode of operation is enabled
when either CEg#, or both CE# and CE,#,
transition high and RP# stays high with all input
control pins at CMOS levels.

2.0 DEVICE PINOUT

The DD28F032SA Standard 56L-Dual Die TSOP
Type | pinout configuration is shown in Figure 2.

277

DD28F032SA

2.1 Lead Descriptions

Symbol

Type

]
inteal.
Name and Function

Ao

INPUT

BYTE-SELECT ADDRESS: Selects between high and low byte when
device is in x8 mode. This address is latched in x8 Data Writes. Not used
in x16 mode (i.e., the A, input buffer is turned off when BYTE# is high).

A1 -A1s

INPUT

WORD-SELECT ADDRESSES: Select a word within one 64-Kbyte block.
Ag-15 selects 1 of 1024 rows, and A+.5 selects 16 of 512 columns. These
addresses are latched during Data Writes.

At - A2o

INPUT

BLOCK-SELECT ADDRESSES: Select 1 of 64 Erase blocks. These
addresses are latched during Data Writes, Erase and Lock-Block
operations.

DQop - DQ7

INPUT/OUTPUT

LOW-BYTE DATA BUS: Inputs data and commands during CUI write
cycles. Outputs array, buffer, identifier or status data in the appropriate
read mode. Floated when the chip is de-selected or the outputs are
disabled.

DQs - DQis

INPUT/OUTPUT

HIGH-BYTE DATA BUS: Inputs data during x16 Data-Write operations.
Outputs array, buffer or identifier data in the appropriate read mode; not
used for Status register reads. Floated when the chip is de-selected or the
outputs are disabled.

CEq#
CEx# =
CE,#or
CE#

INPUT

CHIP ENABLE INPUTS: Activate the device’s control logic, input buffers,
decoders and sense amplifiers. CE# or CE,# enable/disable the first
28F016SA (16 Mbit No. 1) while CE#, CE,# enable/disable the second
28F016SA (16 Mbit No. 2). CEq# active low enables chip operation while
CE,# or CE,# select between the first and second device, respectively.
CE# or CE,# must not be active low simultaneously. Reference Table
3.0.

RP#

INPUT

RESET/POWER-DOWN: RP# low places the device in a Deep Power-
Down state. All circuits that burn static power, even those circuits enabled
in standby mode, are turned off. When returning from Deep Power-Down,
a recovery time of 400 ns is required to allow these circuits to power-up.
When RP# goes low, any current or pending WSM operation(s) are
terminated, and the device is reset. All Status registers return to ready
(with all status flags cleared).

OE#

| INPUT

OUTPUT ENABLE: Gates device data through the output buffers when
low. The outputs float to tri-state off when OE# is high.

NOTE:
CEx# overrides OE#, and OE# overrides WE#.

WE#

INPUT

WRITE ENABLE: Controls access to the CUI, Page Buffers, Data Queue
Registers and Address Queue Latches. WE# is active low, and latches
both address and data (command or array) on its rising edge.

278

DVANCE INFORMATION

L]
I ntQI ® DD28F032SA .

6.4 DC Characteristics

Ve =3.3V £ 0.3V, Tp = 0°C to +70°C
3/5# = Pin Set High for 3.3V Operations

Symbol Parameter Notes | Min | Typ | Max | Units Test Conditions
I Input Leakage 1 +2 pA Vee = Voo Max,
Current VN = Vg or GND
o Output Leakage 1 +20 pA Vee = Voo Max,
Current Vin = Ve or GND
ICCS VCC Standby 1,5,6 100 200 LIA VCC = VCC Max,
Current ' CEg#, CEx#, RP#, = Vo £
0.2v
BYTE#, WP#, 3/5# = Vo £
0.2V or GND + 0.2V

2 8 mA VCC= VCC Max,

CEo#, CEx#, RP# = VlH
BYTE#, WP#, 3/5# = V|, or
Vi

leep Vec Deep Power- 1 2 10 bA RP# = GND £ 0.2V

Down Current BYTE# = Vg + 0.2V or
GND + 0.2V

ICCR1 VCC Read Current 1,4,5, 25 30 mA VCC = Vcc Max

6 CMOS: CE#, CEx# = GND
+0.2V '

BYTE# = GND + 0.2V or
Vcc + 0.2V

Inputs = GND £ 0.2V or V¢
+ 0.2V '
f=6.67 MHz, IOUT =0mA
26 34 mA | TTL: CEg#, CEx# =V,
BYTE# = V"_ or V|H

INPUTS =V, or Vi,

f= 6.67 MHZ, IOUT =0 mA
lccw Ve Write Current 1,7 8 12 mA | Word/Byte Write in Progress

279

ADVANCE INFORMATION

DD28F032SA

intgl.

6.11 Erase and Word/Byte Write Performance, Cycling Performance and Suspend
Latency(1.3)

Vg =33V £ 0.3V, Vpp = 12.0V £ 0.6V, To = 0°C to +70°C

Sym Parameter Notes| ‘Min Typ(f) Max | Units | Test Conditions
Page Buffer Byte Write Time | 2,4 3,26 Note 6 us
Page Buffer Word Write 24 6.53 Note 6 Us
Time
twhrn1 | Word/Byte Write Time 2 9 Note 6 Us
twhnrH2 | Block Write Time 2 0.6 2.1 Sec | Byte Write Mode
twhrH3 | Block Write Time 2 0.3 1.0 Sec | Word Write Mode
Block Erase Time 2 0.8 10 Sec
Full Chip Erase Time 2 51.2 Sec
Erase Suspend Latency 7.0 Us
Time to Read ’
Auto Erase Suspend Latency 10.0 Us
Time to Write
Erase Cycles 5 100,000 | 1,000,000 Cycles
VCC =5.0V = 05V, Vpp =12.0V = OBV, TA =0°C to +70°C
Sym Parameter Notes| Min Typ(1) Max | Units | Test Conditions
Page Buffer Byte Write Time | 2,4 2.76 Note 6 us
Page Buffer Word Write 2,4 5.51 Note 6 Us
Time
twhrn1| Word Byte/Write Time 2 6 Note 6 us
twhrn2 | Block Write Time 2 0.4 241 Sec | Byte Write Mode
twhrH3 | Block Write Time 2 0.2 1.0 Sec | Word Write Mode
Block Erase Time 2 0.6 10 Sec
Full Chip Erase Time 2 38.4 Sec
Erase Suspend Latency 5.0 us
Time to Read
Auto Erase Suspend Latency 8.0 us
Time to Write
Erase Cycles 5 100,000 | 1,000,000 Cycles
NOTES:
1. 25°C, Voo = 3.3V or 5.0V nominal, 10K cycles.
2. Excludes system-level overhead.
3. These performance numbers are valid for all speed versions.
4. This assumes using the full Page Buffer to Write to Flash (256 bytes or 128 words).
5. 1,000,000 cycle performance assumes the application uses block retirement techniques.
6. This information will be available in a technical paper. Please call Intel's Application hotline or your local sales office for

more information.

280

ADVANCE INFORMATION

-
I nU ® DD28F032SA

DEVICE NOMENCLATURE/ORDERING INFORMATION

DIDI2I8IFI0I3[2ISIAI-101710

DUAL DIE ACCESS SPEED (ns)
70 ns
100 ns

NOTES:

Two valid combinations of speeds exist:
DD28F032SA-070, DD28F032SA-080, DD28F032SA-120
or ’

DD28F032SA-100, DD28F032SA-150

Option Order Code Valid Combinations
Vee =3.3V Vee =5.0V Vce = 5.0V

+ 0.3V, 50 pF + 5%, 30 pF = 10%, 100 pF
1 DD28F032SA 070 | DD28F032SA-150 | DD28F032SA-070 | DD28F032SA-080
2 DD28F032SA 100 | DD28F032SA-150 DD28F032SA-100

ADDITIONAL INFORMATION
Order Item
Number

297372 16-Mbit Flash Product Family User's Manual

290489 28F016SA 16-Mbit FlashFile™ Memory Data Sheet

290528 28F016SV FlashFile™ Memory Data Sheet

290429 28F008SA Data Sheet

292159 AP-607 “Multi-Site Layout Planning w/Intel's FlashFile™ Components Including ROM
Compatibility”

202144 AP 393 “28F016SV Compatibility with 28F016SA”

292127 AP 378 “System Optimization Using the Enhanced Features of the 28F016SA”
292126 AP 377 “28F016SA Software Drivers”

292124 AP 375 “Upgrade Considerations from the 28FO08SA to the 28F016SA”

292123 AP 374 “Flash Memory Write Protection Techniques”

292092 AP 357 “Power Supply Solutions For Flash Memory”

294016 ER 33 “ETOX™ Flash Memory Technology—Insight to Intel's Fourth Generation
Process Innovation”

297508 FLASHBUuilder Design Resource Tool

297534 Small and Low-Cost Power Supply Solution for Intel’s Flash Memory Products
(Technical Paper)

Please check with Intel Literature for availability.

281

ADVANCE INFORMATION

DD28F032SA

DATASHEET REVISION HISTORY .

intel.

Number Description
001 Original Version
002 Never Published
003 Full Datasheet with Specifications
CE,#, CE4# control 28F016SA No. 1
CE#, CE,i# control 28F016SA No. 2
004 Lead Descriptions: Block Select Addresses: Select 1

of 64 Erase Blocks
DC Characteristics (3.3V Vcg): Iccr?! (TTL):
BYTE# =V|_or Vi4
Full Chip Erase Time (3.8V Vcc) = 51.2 sec typ
Full Chip Erase Time (5.0V Vcc) = 38.4 sec typ
Minor cosmetic changes ‘

282

_ ADVANCE INFORMATION

intgl.

28F016SV, 16-Mbit
FlashFile™ Memory Datasheet

283

intel.

28F016SV FlashFile™ MEMORY

2.1 Lead Descriptions (Continued)

Symbol

Type

Name and Function

RY/BY#

OPEN DRAIN
OUTPUT

READY/BUSY: Indicates status of the internal WSM. When low, it
indicates that the WSM is busy performing an operation. RY/BY# floating
indicates that the WSM is ready for new operations (or WSM has
completed all pending operations), or Erase is Suspended, or the device
is in deep power-down mode. This output is always active (i.e., not floated
to tri-state off when OE# or CE#, CE,# are high), except if a RY/BY# Pin
Disable command is issued.

WP#

INPUT

WRITE PROTECT: Erase blocks can be locked by writing a nonvolatile
lock-bit for each block. When WP# is low, those locked blocks as
reflected by the Block-Lock Status bits (BSR.6), are protected from
inadvertent Data Writes or Erases. When WP# is high, all blocks can be
written or erased regardless of the state of the lock-bits. The WP# input
buffer is disabled when RP# transitions low (deep power-down mode).

BYTE#

INPUT

BYTE ENABLE: BYTE# low places device in x8 mode. All data is then
input or output on DQg_7, and DQg_45 float. Address A, selects between
the high and low byte. BYTE# high places the device in x16 mode, and
turns off the A, input buffer. Address A4, then becomes the lowest order
address. ‘

Vep

SUPPLY

WRITE/ERASE POWER SUPPLY (12.0V x 0.6V, 5.0V + 0.5V) : For
erasing memory array blocks or writing words/bytes/pages into the flash
array. Vpp = 5.0V x 0.5V eliminates the need for a 12V converter, while
connection to 12.0V + 0.6V maximizes Write/Erase Performance.

NOTE:
Successful completion of write and erase attempts is inhibited with Vpp at
or below 1.5V. Write and Erase attempts with Vpp between 1.5V and
4.5V, between 5.5V and 11.4V, and above 12.6V produce spurious
results and should not be attempted.

Vee

SUPPLY

DEVICE POWER SUPPLY (3.3V = 0.3V, 5.0V x 0.5V, 5.0 x 0.25V):
Internal detection configures the device for 3.3V or 5.0V operation. To
switch 3.3V to 5.0V (or vice versa), first ramp V¢ down to GND, and then
power to the new V. voltage.

Do not leave any power pins floating.

GND

SUPPLY

GROUND FOR ALL INTERNAL CIRCUITRY:
Do not leave any ground pins floating.

NC

NO CONNECT:
Lead may be driven or left floating.

ADVANCE INFORMATION

285

28F016SV FlashFile™ MEMORY

intel.

4.4 28F016SV—Performance Enhancement Command Bus Definitions

Command Mode | Notes First Bus Cycle Second Bus Cycle Third Bus Cycle
Oper | Addr | Data | Oper | Addr Data Oper | Addr Data
Read Extended 1 Write X xx71H | Read RA GSRD
Status Register BSRD
Page Buffer Swap 7 Write X xx72H
Read Page Buffer Write xx75H | Read PA | PD
Single Load to Write xx74H | Write PA PD
Page Buffer
Sequential Load to x8 4,6,10 | Write X xxEOH | Write X BCL Write X BCH
Page Buffer
x16 | 4,5,6,10 | Write X | xxEOH | Write X WCL Write X WCH
Page Buffer Write x8 | 34,9,10| Write X | xxOCH | Write Ao | BC(LH) | Write WA | BC(H,L)
to Flash
x16 | 4,510 | Write X | xxOCH | Write X WCL Write | WA WCH
Two-Byté Write x8 3 Write X | xxFBH| Write | Ao | WD(L,H)| Write WA | WD(H,L)
Lock Block/Confirm Write X xx77H | Write BA xxDOH
Upload Status 2 Write X xx97H | Write X xxDOH
Bits/Confirm
Upload Device 11 Write X | xx98H | Write | © X xxDOH
Information/Confirm
Erase All Unlocked Write X xxA7H | Write X xxDOH
Blocks/Confirm
RY/BY# Enable to 8 Write | X [>x96H| Write | X | xx01H
Level-Mode
RY/BY# 8 Write X xx96H | Write X xx02H
Pulse-On-Write
RY/BY# 8 Write X | xx96H | Write X xx03H
Pulse-On-Erase
RY/BY# Disable 8 Write X xx96H | Write X xx04H
RY/BY# Pulse-On- 8. Write X xx96H | Write X xx05H
Write/Erase
Sleep 12 Write X | xxFOH
Abort Write X xx80H
ADDRESS DATA
BA = Block Address AD = Array Data WC (L,H) = Word Count (Low, High)
PA = Page Buffer Address PD = Page Buffer Data BC (L,H) = Byte Count (Low, High)
RA = Extended Register Address BSRD = BSR Data WD (L,H) = Write Data (Low, High)

WA = Write Address
X = Don’'t Care

286

GSRD = GSR Data

. ADVANCE INFORMATION

a
nteg ® 28F016SV FlashFile™ MEMORY

NOTES:

1.
2.

3.

©® N O

10.
11.

12.

13.

RA can be the GSR address or any BSR address. See Figures 4 and 5 for Extended Status Register memdry maps.

Upon device power-up, all BSR lock-bits come up locked. The Upload Status Bits command must be written to reflect the
actual lock-bit status.

A, is automatically complemented to load second byte of data. BYTE# mustbe at V.
A, value determines which WD/BC is supplied first: Ay = 0 looks at the WDL/BCL, A, = 1 looks at the WDH/BCH.

BCH/WCH must be at 00H for this product because of the 256-byte (128-word) Page Buffer size, and to avoid writing the
Page Buffer contents to more than one 256-byte segment within an array block. They are simply shown for future Page
Buffer expandability.

In x16 mode, only the lower byte DQy; is used for WCL and WCH. The upper byte DQg 45 is a don't care.

PA and PD (whose count is given in cycles 2 and 3) are supplied starting in the fourth cycle, which is not shown.

This command allows the user to swap between available Page Buffers (0 or 1).

These commands reconfigure RY/BY# output to one of three pulse-modes or enable and disable the RY/BY# function.

Write address, WA, is the Destination address in the flash array which must match the Source address in the Page Buffer.
Refer to the 16-Mbit Flash Product Family Users Manual.

BCL = 00H corresponds to a byte count of 1. Similarly, WCL = 00H corresponds to a word count of 1.

After writing the Upload Device Information command and the Confirm command, the following information is output at
Page Buffer addresses specified below:

Address Information

06H, 07H (Byte Mode) Device Revision Number

03H (Word Mode) Device Revision Number

1EH (Byte Mode) Device Configuration Code

OFH (DQg_7)(Word Mode) Device Configuration Code

1FH (Byte Mode) Device Proliferation Code (01H)

OFH (DQg_45)(Word Mode) Device Proliferation Code (01H)

A page buffer swap followed by a page buffer read sequence is necessary to access this information. The contents of all
other Page Buffer locations, after the Upload Device Information command is written, are reserved for future implementation
by Intel Corporation. See Section 4.8 for a description of the Device Configuration Code. This code also corresponds to
data written to the 28F016SV after writing the RY/BY# Reconfiguration command.

To ensure that the 28F016SV’s power consuption during Sleep Mode reaches the Deep Power-Down current level, the
system also needs to de-select the chip by taking either or both CE_# or CE # high.

The upper byte of the data bus (Dg-15) during command writes is a “Don’t Care” in x16 operation of the device.

ADVANCE INFORMATIO 287

28F016SV FlashFile™ MEMORY

5.0 ELECTRICAL SPECIFICATIONS
5.1 Absolute Maximum Ratings*

Temperature Under Bias.................... 0°C to +80°C
Storage Temperature............ccouues —65°C to +125°C

Vee = 3.3V £ 0.3V Systems

intgl.

NOTICE: This datasheet contains information on
products in the sampling and initial production
phases of development. The specifications are
subject to change without notice. Verify with your
local Intel Sales office that you have the latest
datasheet before finalizing a design.

*WARNING: Stressing the device beyond the
“Absolute Maximum Ratings” may cause
permanent damage. These are stress ratings
only. Operation beyond the “Operating
Conditions” is not recommended and extended
exposure beyond the "Operating Conditions" may
affect device reliability. i

Sym Parameter Notes | Min | Max | Units Test Conditions
Ta | Operating Temperature, Commercial 1 0 70 °C | Ambient Temperature
Vee | Ve with Respect to GND 2 02| 7.0
Vep | Vep Supply Voltage with Respect to GND 2,3 -0.2 | 14.0
V | Voltage on any Pin (except V¢,Vpp) with 2,5 -0.5 | Vgo \
Respect to GND +051|
I | Current into any Non-Supply Pin 5 +30 | mA
lout | Output Short Circuit Current 4 100 | mA
Ve = 5.0V + 0.5V, 5.0V x 0.25V Systems(®)
Sym Parameter Notes | Min | Max | Units Test Conditions
Ta Operating Temperature, Commercial 1 0 70 °C | Ambient Temperature
Vee | Vee with Respect to GND 2 02| 7.0
Vpp | Vpp Supply Voltage with Respect to GND 23 | -02 | 14.0
\ Voltage on any Pin (except Vc,Vpp) with 25 20| 70 \
Respect to GND
I Current into any Non-Supply Pin 5 +30 | mA
lout | Output Short Circuit Current 4 100 | mA
NOTES:

1. Operating temperature is for commercial product defined by this specification.

2. Minimum DC voltage is -0.5V on input/output pins. During transitions, this level may undershoot to -2.0V for periods <20 ns.
Maximum DC voltage on input/output pins is Vg + 0.5V which, during transitions, may overshoot to V¢ + 2.0V for periods

<20 ns.

. This specification also applies to pins marked “NC.”

o oA

288

Maximum DC voltage on Vpp may overshoot to +14.0V for periods <20 ns.
. Output shorted for no more than one second. No more than one output shorted at a time.

. 5% V¢ specifications refer to the 28F0165V-065 and 28F016SV-070 in its high speed test configuration.

ADVANCE INFORMATION

]
"Ttel ® 28F016SV FiashFile™ MEMORY

5.3 DC Characteristics (Continued)
Ve = 3.3V £ 0.3V, T = 0°C to +70°C

Sym Parameter Notes | Min | Typ | Max | Units Test Conditions

lcew Vec Write Current 1,6 8 12 mA | Word/Byte Write in Progress
Vpp =12.0V £ 5%

8 17 mA | Word/Byte Write in Progress
Vpp = 5.0V + 10%

lcce V¢ Block Erase 1,6 6 12 mA | Block Erase in Progress
Current Vpp =12.0V £ 5%
9 17 mA | Block Erase in Progress
Vpp =5.0Vx10%
lCCES VCC Erase 1,2 1 4 mA CEo#, CE1# = VIH
Suspend Current Block Erase Suspended
Ipps Vpp Standby/Read 1 +1 | £10 PA | Vpp< Ve
IPPR Current 30 200 "IA VPP > Vcc
IppD Vpp Deep Power- 1 0.2 5 LA RP# = GND 0.2V
Down Current
lppw Vpp Write Current 1,6 10 15 mA | Vpp=12.0V £ 5%

Word/Byte Write in Progress
15 | 25 mA | Vpp=5.0V+10%
Word/Byte Write in Progress
IppE Vpp Erase Current 1,6 4 10 mA | Vpp=12.0V £ 5%

Block Erase in Progress

14 20 mA | Vpp=5.0V+10%

Block Erase in Progress

IPPES VPP Erase 1 30 50 |JA Vpp = VPPH1 or VPPHZ’ Block
Suspend Current Erase Suspended
Vi Input Low Voltage 6 -0.3 0.8 \Y
ViH Input High Voltage 6 20 Vee Vv
+
0.3
VoL Output Low 6 0.4 \' Ve = Ve Min and
Voltage loL =4 mA

289

' ADVANCE INFORMATION

28F016SV FlashFile™ MEMORY

5.4 DC Characteristics (Continued)
Veg = 5.0V £ 0.5V, 5.0V £ 0.25V, T = 0°C to +70°C

intgl.

Sym Parameter Notes | Min | Typ | Max | Units Test Conditions
lccw Vcc: Write Current 1,6 25 35 mA | Word/Byte in Progress
Vpp = 12.0V £ 5%
25 40 mA | Word/Byte in Progress
Vpp =5.0V + 10%
lcce Vcc Block Erase 1,6 18 25 mA Block Erase in Progress
Current Vpp = 12.0V £ 5%
20 30 mA Block Erase in Progress
Vpp =5.0V £ 10%
lcces Vcc Erase 1,2 2 4 mA CE#, CE# =V
Suspend Current Block Erase Suspended
lpps Vpp Standby/Read 1 +1 | £10 pA Vpp < Vee
lppR Current 30 200 HA Vpep > Voo
lppp Vpp Deep Power- 1 0.2 5 HA RP# = GND + 0.2V
Down Current
lppw Vpp Write Current 1,6 7 12 mA | Vpp=12.0V £ 5%
Word/Byte Write in Progress
17 | 22 mA | Vpp=5.0V £ 10%
Word/Byte Write in Progress
lppe Vpp Block Erase 1,6 5 10 mA | Vpp=12.0V 5%
Current Block Erase in Progress
’ 16 20 mA | Vpp=5.0V = 10%
Block Erase in Progress
IpPES Vpp Erase 1 30 50 HA Vep = VppHi or VppH2s Block
Suspend Current Erase Suspended
ViL Input Low Voltage 6 -0.5 0.8 \
Viu Input High Voltage 6 2.0 Vee \
+0.5
290

DVANCE INFORMATION

-
Int6I ® 28F016SV FlashFile™ MEMORY

5.4 DC Characteristics (Continued)
Veg = 5.0V = 0.5V, 5.0V + 0.25V, T, = 0°C to +70°C

Sym Parameter Notes | Min | Typ | Max | Units Test Conditions
VOL OUtpUt Low 6 0.45 \Y VCC = VCC Min
Voltage lop =5.8 mA
Voul Output High 6 0.85 \ lop =-2.5 mA
Voltage Vee Vee = Voo Min
VOH2 6 VCC IOH =-100 IJA
-04 VCC = VCC Min
VPPLK Vpp Write/Erase 3,6 0.0 15 \)
Lock Voltage
VPPH'I Vpp during 4.5 5.0 55 \Y
Write/Erase
Operations
Vppua Vpp during 114 | 120 [126 | V
Write/Erase
Operations
VLKO VCC Write/Erase 2.0 \Y
Lock Voltage
NOTES:

1. All currents are in RMS unless otherwise noted. Typical values at Vg = 5.0V, Vpp = 12.0V or 5.0V, T =25°C. These
currents are valid for all product versions (package and speeds) and are specified for a CMOS rise/fall time (10% to 90%) of
<5 ns and a TTL rise/fall time of <10 ns.

2. lgces is specified with the device de-selected. If the device is read while in erase suspend mode, current draw is the sum of
leces and lggg,

3. Block Erases, Word/Byte Writes and Lock Block operations are inhibited when Vpp < Vpp ¢ and not guaranteed in the
ranges between Vpp «(max) and Vppy,(min), between Vppy, (max) and Vppy,(min) and above Vppyp(max).

4. Automatic Power Saving (APS) reduces locg to 1 mA typical in Static operation.

CMOS Inputs are either V¢ + 0.2V or GND + 0.2V. TTL Inputs are either Vy_or V.

6. Sampled, not 100% tested. Guaranteed by design.

o

ADVANCE INFORMATIO 291

28F016SV FlashFile™ MEMORY

intgl.

Vi OO 3
o0 XXX~ ™ 5 =
Vi \XXOOKOONNO OOOOXXXXXN Mo OO OONAXX
e XXX, " AR QUK RN K
tavav __"_'Aku_ﬂ fwmax
Vu
we /)
faw " R]
— 1
Vh
OE# (G) v L /
v m) 'wwigvi2 ‘ !
WEr Vi / . _/
&L%—;t - o
Town fwhox
v L 'PHWL > N B N N N outr i] N
v r L_’I’wum A
o]
!?VII!YI(F*)VOL \
v . q
H NOTES
RPE(P) M)"\
L
- 't vewsip oz
Vemz OGO, RN
o Vo :0’0‘0.0‘0‘0.0.0.0’0.0’0.0.0.0’0’%0 0,0:0‘0.0:0.0:0‘0.0:0:0’0.0‘0.0:0‘0.0’0
v OOOOOOOOXKXXXXXXY [e—: NOTES le——»] OOOOOOOOONXXX
e XX ™ T XK
NOTE?
2900538_15
NOTES:
1. This address string depicts Data Write/Erase cycles with corresponding verification via ESRD.
2. This address string depicts Data Write/Erase cycles with corresponding verification via CSRD.
3. This cycle is invalid when using CSRD for verification during Data Write/Erase operations.
4. CExi is defined as the latter of CE# or CE,# going low or the first of CE,# or CE,# going high.
5. RP# low transition is only to show tgp,; not valid for above Read and Write cycles.
6. Vpp voltage during Write/Erase operations valid at both 12.0V and 5.0V.
7. Vpp voltage equal to or below Vpp provides complete flash memory array protection.
Figure 15. AC Waveforms for Command Write Operations
292

ADVANCE INFORMATION

intgl.

28F016SV FlashFile™ MEMORY

mgﬂm WRITE Srzﬁ;x.wnrrz or ;’g‘g"@‘ﬂw&fm AUTOMATED DATAWRITE WRITEREAD % READ EXTENDED
'DOWN ERASE SETUP COMMAND ERASE CONFIRM COMMAND AY

Vi \NOOOMOOOOOOOO0K) R GO XCOOOOCTKK) OO/
g RN, i S = YR
o W \OOOBOOCOOOCOOOC) X0 _mere BOOOOCOOOOOONOOOOOXNAXX
e ROMKRRRRRDL KRS R KRR

tavav taven —P] Y eHax
WEE W) :" / \ / U
t 'W\B. ft » 'EHWH .

; — the
OFE¢ (G) V: /

v | W D ! enovi2 -Ll o —j\‘/
CEx¥E)
[__7Z _/ \7_/

Yeien

DAIA(D/Q)VH wz'm D’ b { Dy) { b,) {FD) { Dy)

v N 'PHE. ey IN \ N/ \ N / \ S our \ N /

TeRL
rzv/avm?): /Z
tRupL "’,
. :n 1‘(NOTES
e ! ayviz
OO OO

Bty S — | KOO

v opert NOTE 6 Y

v AR " GNNR

NOTE7
290538_16

NOTES:
This address string depicts Data Write/Erase cycles with corresponding verification via ESRD.
This address string depicts Data Write/Erase cycles with corresponding verification via CSRD.
This cycle is invalid when using CSRD for verification during Data Write/Erase operations.
CEx# is defined as the latter of CE# or CE# going low or the first of CE# or CE,# going high.
RP# low transition is only to show tgp ; not valid for above Read and Write cycles.
Vpp voltage during Write/Erase operations valid at both 12.0V and 5.0V.
Vpp voltage equal to or below Vpp ¢ provides complete flash memory array protection.

Noo,wb~

Figure 16. Alternate AC Waveforms for Command Write Operations

ADVANCE INFORMATION 293

m
28F016SV FlashFile™ MEMORY !nté ®

5.12 Erase and Word/Byte Write Performance(3.5)
Ve = 3.3V 0.3V, Vpp = 5.0V + 0.5V, T = 0°C to +70°C

Sym Parameter Notes | Min | Typ() | Max | Units Test Conditions
Page Buffer Byte Write 2,6 TBD 8.0 TBD us
Time
Page Buffer Word Write 2,6 TBD 16.0 TBD us
Time
twarn1A | Byte Write Time 2 TBD 29.0 TBD us
twrurn1B | Word Write Time 2 TBD 35.0 TBD Hs
twHRH2 Block Write Time 2 TBD 1.9 TBD sec | Byte Write Mode
twhrnd | Block Write Time 2 TBD 1.2 TBD sec | Word Write Mode
Block Erase Time 2 TBD 14 TBD sec
Full Chip Erase Time 2 TBD 44.8 TBD sec
Erase Suspend 4 1.0 12 75 Hs
Latency Time to Read
Auto Erase Suspend 4.0 15 80 s
Latency Time to Write

Vg = 3.3V £ 0.3V, Vpp = 12.0V 2 0.6V, T, = 0°C to +70°C

Sym Parameter Notes | Min | Typ(® | Max | Units Test Conditions
Page Buffer Byte Write | 2,6 8D 22 TBD s
Time
Page Buffer Word 2,6 TBD 44 TBD us
Write Time

twarn1 | Word/Byte Write Time 2 5 9 TBD us
twuru2 | Block Write Time 2 TBD 0.6 2.1 sec | Byte Write Mode
twurn3 | Block Write Time 2 TBD 0.3 1.0 sec | Word Write Mode
Block Erase Time 2 0.3 0.8 10 sec
Full Chip Erase Time 2 T8D | 256 | TBD sec
Erase Suspend 4 1.0 9 55 us
Latency Time to Read
Auto Erase Suspend 4.0 12 60 s

Latency Time to Write

204 ADVANCE INFORMATION

L]
I ntGI ® 28F016SV FlashFile™ MEMORY

5.12 Erase and Word/Byte Write Performance(3:5) (Continued)
Vee = 5.0V £ 0.5V, 5.0V 0.25V, Vpp = 5.0V 0.5V, T = 0°C to +70°C

Sym Parameter Notes | Min | Typ() | Max | Units | Test Conditions
Page Buffer Byte Write Time 26 | TBD | 80 | TBD s
Page Buffer Word Write Time | 2,6 | TBD | 160 | TBD | ps
twuru1A | Byte Write Time 2 TBD | 20 | TBD | ps

twury1B | Word Write Time 2 | TBD | 25 | TBD | ps
twuru2 | Block Write Time 2 TBD | 14 | TBD | sec | Byte Write Mode
twuru3 | Block Write Time 2 TBD | 0.85 | TBD | sec | Word Write Mode
Block Erase Time 2 | TBD | 10 | TBD | sec
Full Chip Erase Time 2 TBD | 320 | TBD | sec
Erase Suspend Latency Time 4 1.0 9 55 s
to Read -
Auto Erase Suspend Latency 3.0 12 60 Hs
Time to Write

Voo = 5.0V £ 0.5V, 5.0V £ 0.25V, Vpp = 12.0V = 0.6V, T = 0°C to +70°C

Sym Parameter Notes | Min | Typ(!) | Max | Units | Test Conditions
Page Buffer Byte Write Time 26 | TBD | 24 | TBD ps
Page Buffer Word Write Time | 26 | TBD | 41 | TBD ps
twurel | Word/Byte Write Time 2 45 6 TBD | ps

twiru2 | Block Write Time 2 TBD | 04 | 21 sec | Byte Write Mode
twuru3 | Block Write Time 2 TBD | 02 1.0 | sec | Word Write Mode

Block Erase Time 2 0.3 0.6 10 sec

Full Chip Erase Time 2 TBD | 192 | TBD | sec

Erase Suspend Latency Time 4 1.0 7 40 us

to Read

Auto Erase Suspend Latency 3.0 10 45 Hs

Time to Write

NOTES:

1. 25°C, and nominal voltages.

2. Excludes system-level overhead.

3. These performance numbers are valid for all speed versions.
4

Specification applies to interrupt latency for Single Block Erase. Suspend latency for Erase All Unlocked Block operation
extends the maximum latency time to 270 ps.

Sampled, but not 100% tested. Guaranteed by design.
Assumes using the full Page Buffer to write to flash (256 Bytes or 128 Words).

o o

ADVANCE INFORMATION 295

intal.

28F016SA, 16-Mbit
FlashFile™ Memory Datasheet

297

intgl.

The 28F016SA contains three types of Status
Registers to accomplish various functions:

o A Compatible Status Register (CSR) which is
100% compatible with the 28F008SA FlashFile
memory’s Status Register. This register, when
used alone, provides a straightforward
upgrade capability to the 28F016SA from a
28F008SA-based design.

o A Global Status Register (GSR) which informs
the system of command Queue status, Page
Buffer status, and overall Write State Machine
(WSM) status.

o 32 Block Status Registers (BSRs) which
provide block-specific status information such
as the block lock-bit status.

The GSR and BSR memory maps for Byte-Wide
and Word-Wide modes are shown in Figures 5
and 6.

The 28F016SA incorporates an open drain
RY/BY# output pin. This feature allows the user to
OR-tie many RY/BY# pins together in a multiple
memory configuration such as a Resident Flash
Array.

Other configurations of the RY/BY# pin are
enabled via special CUl commands and are
described in detail in the 16-Mbit Flash Product
Family User’'s Manual.

The 28F016SA also incorporates a dual chip-
enable function with two input pins, CEo# and
CEs#. These pins have exactly the same
functionality as the regular chip-enable pin CE# on
the 28F008SA. For minimum chip designs, CE1#
may be tied to ground and use CEo# as the chip
enable input. The 28F016SA uses the logical
combination of these two signals to enable or
disable the entire chip. Both CEo# and CE1# must
be active low to enable the device and, if either
one becomes inactive, the chip will be disabled.
This feature, along with the open drain RY/BY#
pin, allows the system designer to reduce the
number of control pins used in a large array of
16-Mbit devices.

PRELIMINARY

28F016SA

The BYTE# pin allows either x8 or x16 read/writes
to the 28F016SA. BYTE# at logic low selects 8-bit
mode with address Ag selecting between low byte
and high byte. On the other hand, BYTE# at logic
high enables 16-bit operation with address A1
becoming the lowest order address and address
Ao is not used (don’t care). A device block diagram
is shown in Figure 1.

The 28F016SA is specified for a maximum access
time of 70 ns (tacc) at 5.0V operation (4.75V to
5.25V) over the commercial temperature range (0°
C to +70°C). A corresponding maximum access
time of 120 ns at 3.3V (3.0V to 3.6V and 0°C to
+70°C) is achieved for reduced power
consumption applications.

The 28F016SA incorporates an Automatic Power
Saving (APS) feature which substantially reduces
the active current when the device is in static
mode of operation (addresses not switching).

In APS mode, the typical Icc current is 1 mA at
5.0V (0.8 mA at 3.3V).

A deep power-down mode of operation is invoked
when the RP# (called PWD on the 28F008SA) pin
transitions low. This mode brings the device power
consumption to less than 1.0 pA, typically, and
provides additional write protection by acting as a
device reset pin during power transitions. A reset
time of 400 ns is required from RP# switching high
until outputs are again valid. In the Deep Power-
Down state, the WSM is reset (any current
operation will abort) and the CSR, GSR and BSR
registers are cleared.

A CMOS standby mode of operation is enabled
when either CEo# or CEs# transitions high and
RP# stays high with all input control pins at CMOS
levels. In this mode, the device typically draws an
Icc standby current of 50 pA.

2.0 DEVICE PINOUT
The 28F016SA 56 lead TSOP Type | pinout

configuration is shown in Figure 2. The 56 lead
SSOP pinout configuration is shown in Figure 3.

299

-
28F016SA ! ntel ®

5.11 Erase and Word/Byte Write Performance, Cycling Performance and
Suspend Latency(1:3)
Vce =3.3V + 0.3V, Vpp = 12.0V £ 0.6V, Ta = 0°C to +70°C

Sym Parameter Notes Min Typ Max | Units | Test Conditions
Page Buffer Byte Write Time | 1,2,4 3.26 Note 6 us
Page Buffer Word Write Time | 1,2,4 6.53 Note 6 us
twhrH1 | Word/Byte Write Time 1,2 9 Note6 | ps
twHrH2 | Block Write Time 1,2 0.6 21 Sec | Byte Write Mode
twrrH3 | Block Write Time 1,2 0.3 1.0 Sec | Word Write Mode
Block Erase Time 1,2 0.8 10 Sec
Full Chip Erase Time 1,2 25.6 Sec
Erase Suspend Latency Time 7.0 us
to Read
Auto Erase Suspend Latency 10.0 us
Time to Write
Erase Cycles 5 100,000 | 1,000,000 Cycles
Vee =5.0V £ 0.5V, Vpp = 12.0V + 0.6V, Ta = 0°C to +70°C
Sym Parameter Notes | Min Typ Max | Units | Test Conditions
Page Buffer Byte Write Time | 1,2,4 2.76 Note 6 us
Page Buffer Word Write Time | 1,2,4 5.51 Note 6 us
twarn1 | Word Byte/Write Time 1,2 6 Note 6 us
twrrH2 | Block Write Time 1,2 0.4 2.1 Sec | Byte Write Mode
twHrH3 | Block Write Time 1,2 0.2 1.0 Sec | Word Write Mode
Block Erase Time : 1,2 0.6 10 Sec
Full Chip Erase Time 1,2 19.2 Sec
Erase Suspend Latency Time 5.0 us
to Read)
Auto Erase Suspend Latency 8.0 us
Time to Write
Erase Cycles 5 | 100,000 | 1,000,000 Cycles
NOTES: ‘
1. 25°C, Vpp = 12.0V nominal, 10K cycles.
2. Excludes system-level overhead.
3. These performance numbers are valid for all speed versions.
4. This assumes using the full Page Buffer to Write Flash (256 bytes or 128 words).
5. Typical 1,000,000 cycle performance assumes the application uses block retirement techniques.
6. This information will be available in a technical paper. Please call Intel's Application Hotline or your local Intel Sales office

for more information.

300 PRELIMINARY

intgl.

9.0 DEVICE NOMENCLATURE AND ORDERING INFORMATION

28F016SA

D

A

2

8|F

0|1

6

S

Al -

0

l4

0

DA = COMMERCIAL TEMPERATURE
56-LEAD SSOP

E = COMMERCIAL TEMPERATURE
56-LEAD TSOP

I_'_l

ACCESS SPEED

70 ns
100 ns

Valid Combinations
Option Order Code Vee =3.3V £ 0.3V, Vee = 5.0V = 10%, Vce = 5.0V x 5%,
50 pF Load 100 pF Load 30 pF Load

1 E28F016SA-070 E28F016SA-120 E28F016SA-080 E28F016SA-070
2 E28F016SA-100 E28F016SA-150 E28F016SA-100

3 DA28F016SA-070 DA28F016SA-120 DA28F016SA-080 DA28F016SA-070
4 DA28F016SA-100 DA28F016SA-150 DA28F016SA-100

9.1 References
Order Number Document/Tool

297372 16-Mbit Flash Product Family User’s Manuall

290490 DD28F032SA 32-Mbit FlashFile™ Memory Datasheet

290528 28F016SV FlashFile™ Memory Datasheet

290435 28F008SA 8-Mbit FlashFile™ Memory Datasheet

292159 AP-607 Multi-Site Layout Planning with Intel’s Flash File™ Components

292144 AP-393 28F016SV Compatibility with 28F016SA

292127 AP-378 System Optimization Using the Enhanced Features of the 28F016SA

292126 AP-377 28F016SA Software Drivers

292124 AP-375 Upgrade Considerations from the 28F008SA to the 28F016SA

292123 AP-374 Flash Memory Write Protection Techniques

292092 AP-357 Power Supply Solutions for Flash Memory

301

PRELIMINARY

28F016SA

intgl.

Order Number Document/Tool
294016 ER-33 ETOX™ Flash Memory Technology - Insight to Intel’s Fourth Generation
Process Innovation)
297534 Small and Low-Cost Power'SuppIy solution for Intel’s Flash Memory Products
(Technical Paper)
297508 FLASHBuilder Design Resource Tool

9.2 Revision History

Number

Description

001

Original Version

002

— Added 56 Lead SSOP Package

—Separated AC Reading Timing Specs taveL, tavaL for Extended Status Register
Reads

— Modified DEVICE NOMENCLATURE

— Added ORDERING INFORMATION

— Added Page Buffer Typical Write Performance numbers

— Added Typical Erase Suspend Latencies

— For Iccp (Deep Power-Down current, BYTE# must be at CMOS levels)
— Added SSOP package mechanical specifications

003

— Renamed referenced “28F016SA User’s Manual” as “16-Mbit Flash Product Family
User's Manual :

—Section 5.11: Renamed specification “Erase Suspend Latency Time to Write” as “Auto
Erase Suspend Latency Time to Write”

— Minor cosmetic changes

302

PRELIMINARY

intgl.

Extended Temperature
28F016SA, 16-Mbit

Flashiile™ Memory Datasheet

303

integl.

28F016SA

2.1 Lead Descriptions

Lead Descriptions

Symbol

Type

Name and Function

Ao

INPUT

BYTE-SELECT ADDRESS: Selects between high and low byte when device is
in x8 mode. This address is latched in x8 Data Writes. Not used in x16 mode
(i.e., the A, input buffer is turned off when BYTE# is high).

A1-A1s

INPUT

WORD-SELECT ADDRESSES: Select a word within one 64-Kbyte block. Ag-15
selects 1 of 1024 rows, and A1-s selects 16 of 512 columns. These addresses
are latched during Data Wirites.

A1—-A20

INPUT

BLOCK-SELECT ADDRESSES: Select 1 of 32 Erase blocks. These addresses
are latched during Data Writes, Erase and Lock-Block operations.

DQo-DQ7

INPUT/
OUTPUT

LOW-BYTE DATA BUS: Inputs data and commands during CUI write cycles.
Outputs array, buffer, identifier or status data in the appropriate read mode.
Floated when the chip is de-selected or the outputs are disabled.

DQg-DQi1s

INPUT/
OUTPUT

HIGH-BYTE DATA BUS: Inputs data during x16 Data-Write operations.
Outputs array, buffer or identifier data in the appropriate read mode; not used
for Status Register reads. Floated when the chip is de-selected or the outputs
are disabled.

CEq#, CE,#

INPUT

CHIP ENABLE INPUTS: Activate the device’s control logic, input buffers,
decoders and sense amplifiers. With either CEq# or CE,# high, the device is de-
selected and power consumption reduces to standby levels upon completion of
any current Data-Write or Erase operations. Both CEq#, CE4# must be low to
select the device.

All timing specifications are the same for both signals. Device Selection occurs
with the latter falling edge of CEy# or CE#. The first rising edge of CEy# or
CE,# disables the device.

RP#

INPUT

RESET/POWER-DOWN: RP# low places the device in a Deep Power-Down
state. All circuits that burn static power, even those circuits enabled in standby
mode, are turned off. When returning from Deep Power-Down, a recovery time
of 550 ns at 5.0V V is required to allow these circuits to power-up.

When RP# goes low, any current or pending WSM operation(s) are terminated,
and the device is reset. All Status Registers return to ready (with all status flags
cleared).

Exit from Deep Power-Down places the device in read array mode.

OE#

INPUT

OUTPUT ENABLE: Gates device data through the output buffers when low.
The outputs float to tri-state off when OE# is high.

NOTE:
CExit overrides OE#, and OE# overrides WE#.

WE#

INPUT

WRITE ENABLE: Controls access to the CUIl, Page Buffers, Data Queue
Registers and Address Queue Latches. WE# is active low, and latches both
address and data (command or array) on its rising edge.

Page Buffer addresses are latched on the falling edge of WE#.

RY/BY#

OPEN
DRAIN
OUTPUT

READY/BUSY: Indicates status of the internal WSM. When low, it indicates that
the WSM is busy performing an operation. RY/BY# high indicates that the WSM
is ready for new operations (or WSM has completed all pending operations), or
Erase is Suspended, or the device is in deep power-down mode. This output is
always active (i.e., not floated to tri-state off when OE# or CE,#, CE,# are
high), except if a RY/BY# Pin Disable command is issued.

ADVANCE INFORMATIO

305

L]
28F016SA I nté ®

twHEH

CEx#
(E)

WE#

/] twhwL

Ve T X : 3’:
W) v, - \E :l .
i) twuwn L whax
f XXX
T R ‘ oy

v
H HIGH Z
DATA

(D/Q)

Figure 14. Page Buffer Write Timing Waveforms
(Loading Data to the Page Buffer)

'5.11 Erase and Word/Byte Write Performance, Cycling Performance and
Suspend Latency(1, 3) : EXTENDED TEMPERATURE OPERATION

“Vgg = 3.3V £ 0.3V, Vpp = 12.0V 2 0.6V, Ty = —40°C to +85°C

Symbol Parameter Notes| Min Typ(1) Max Units | Test Conditions
Page Buffer Byte Write Time | 1,2,4 3.26 us
Page Buffer Word Write Time| 1,2,4 6.53' ‘ s
twuml | Word/Byte Write Time 12 | 9 us
twhrn2 - [Block Write Time 1,2 0.6 sec . |Byte Write Mode
twHreS [Block Write Time ‘ l 1,2 0.3 ' sec Word Write Mode
Block Erase Time 1,2 1.5 sec
" |Full Chip Erase Time 1.2 48 sec . |
Erase Suspend Latency - : 7.0 us
Time to Read)
Auto Erase Suspend Latency ‘ 10.0 us
Time to Read)
Erase Cycles ‘ . '5- | 100,000 1,000,000 .Cycles
306

ADVANCE INFORMATION

-
I ntel ® 28F016SA

5.11 Erase and Word/Byte Write Performance (1:3) (Continued): EXTENDED
TEMPERATURE OPERATION

Voo = 5.0V 2 0.5V, Vpp = 12.0V 0.6V, T, = -40°C to +85°C

Sym Parameter Notes| Min Typ() | Max| Units Test Conditions
Page Buffer Byte Write Time | 1,2,4 2.76 Note Us
6
Page Buffer Word Write Time | 1,2,4 5.51 Note Us
6
twhrn | Word Byte/Write Time 1, 6 Note Us
twhrn | Block Write Time 1,2 0.4 21 sec Byte Write Mode
twhrH | Block Write Time 1,2 i 0.2 1.0 sec | Word Write Mode
Block Erase Time 1,2 1.2 10 sec
Full Chip Erase Time 1,2 41.6 sec
Erase Suspend Latency 5.0 Us
Time to Read
Erase Suspend Latency 8.0 Us
Time to Write
Erase Cycles 5 100,000 { 1,000,000 Cycles
NOTES:
1. 25°C, and normal voltages.
2. Excludes system-level overhead.
3. These performance numbers are valid for all speed versions.
4. This assumes using the full Page Buffer to Write to Flash (256 bytes or 128 words).
5. Typical 1,000,000 cycles performance assumes the application uses block retirement techniques.
6. This information will be available in a technical paper. Pleas call intel’s application Hotline or your local sales office for

more information.

307

ADVANCE INFORMATION

-
28F016SA l nté ®

DEVICE NOMENCLATURE

DIT [218[F|0[1]6IS[A |-]1110]0

DT = EXTENDED ACCESS SPEED
56-LEAD SSOP
100 ns (5V), 150 ns
290541-16
Valid Combinations
Order Code Vee =3.3V £ 0.3V Vce =5.0V = 10%
DT28F016SA-100 DT28F016SA-150 DT28F016SA-100

ADDITIONAL INFORMATION

Item Order
Number
16-Mbit Flash Product Family User’s Manual 297372
Commercial Temperature 28F016SA 16-Mbit FlashFile™ Memory 290489
Datasheet
Commercial Temperature 28F016SV SmartVoltage 16-Mbit FlashFile™ 290528
Memory Datasheet
28F008SA 8 Mbit FlashFile™ Memory Datasheet 290429
AP 393 28F016SV Compatibility with 28F016SA 292144
AP 378 System Optimization Using the Enhanced Features of the 28F016SA 292127
AP 377 28F016SA Software Drivers 292126
AP 375 Upgrade Considerations from the 28F008SA to the 28F016SA 292124
AP-357 Power Supply Solutions for Flash Memory 292092
ER 33 ETOX™ Flash Memory Technology—Insight to Intel's Fourth Generation 294016
Process Innovation

Please check with Intel Literature for availability.

308 ADVANCE INFORMATION

n
! ntel ® 28F016SA

DATA SHEET REVISION HISTORY

Number Description
001 Criginal Version
002 Renamed referenced “28F016SA User’s Manual” as 16-Mbit Product Family User’s
Manual”

Section 5.11: Renamed specification “Erase Suspend Latency Time to Write” as “Auto
Erase Suspend Latency Time to Write”

Section 2.1 RP# recovery time is 550 ns

Minor cosmetic changes

| ADVANCE INFORMATION 809

intel.

4-Mbit SmartVoltage
Boot Block Flash Memory
Family Datasheet

31

intgl.

Refer to the DC Characteristics Table, Section 4.2
(commercial temperature) and Section 5.2
(extended temperature), for complete current and
voltage specifications. Refer to the AC
Characteristics Table, Section 4.3 (commercial
temperature) and Section 5.3 (extended
temperature), for read, write and erase performance
specifications.

1.3 Applications

The 4-Mbit boot block flash memory family
combines high-density, low-power, high-
performance, cost-effective flash memories with
blocking and hardware protection capabilities. Their
flexibility and versatility reduce costs throughout the
product life cycle. Flash memory is ideal for Just-In-
Time production flow, reducing system inventory
and costs, and eliminating component handling
during the production phase.

When your product is in the end-user’s hands, and
updates or feature enhancements become
necessary, flash memory reduces the update costs
by allowing user-performed code changes instead
of costly product returns or technician calls.

The 4-Mbit boot block flash memory family provides
full-function, blocked flash memories suitable for a
wide range of applications. These applications
include extended PC BIOS and ROM-able
applications storage, digital cellular phone program
and data storage, telecommunication boot/firmware,
printer firmware/font storage and various other
embedded applications where program and data
storage are required.

Reprogrammable systems such as personal
computers, are ideal applications for the 4-Mbit
flash memory products. Increasing software
sophistication greatens the probability that a code

PRODUCT PREVIEW

4-MBIT SmartVoltage BOOT BLOCK FAMILY

update will be required after the PC is shipped. For
example, the emerging of “plug and play” standard
in deskiop and portable PCs enables auto-
configuration of ISA and PCl add-in cards.
However, since the “plug and play” specification
continues to evolve, a flash BIOS provides a cost-
effective capability to update existing PCs. In
addition, the parameter blocks are ideal for storing
the required auto-configuration parameters,
allowing you to integrate the BIOS PROM and
parameter storage EEPROM into a single
component, reducing parts costs while increasing
functionality.

The 4-Mbit flash memory products are also
excellent design solutions for digital cellular phone
and telecommunication switching applications
requiring very low power consumption, high-
performance, high-density storage capability,
modular software designs, and a small form factor
package. The 4-Mbit’s blocking scheme allows for
easy segmentation of embedded code with
16 Kbytes of hardware-protected boot code, four
main blocks for program code, and two 8-Kbyte
parameter blocks for frequently updated data
storage and diagnostic messages (e.g., phone
numbers, authorization codes).

Intel’s high integration flash architecture provides a
flexible voltage solution for the different design
needs of various applications. The asymmetrically
blocked memory map allows the integration of
several memory components into a single flash
device. The boot block provides a secure boot
PROM; the parameter blocks can emulate
EEPROM functionality for parameter store with
proper software techniques; and the main blocks
provide code and data storage with access times
fast enough to execute code in place, decreasing
RAM requirements.

313

4-MBIT SmartVoltage BOOT BLOCK FAMILY

ADDRESS
Al16:18] : M LATCHES
o LE
Aghis > AgAsg
80C188EB
ALE
‘ ADDRESS 28F004-T
ADgAD, <1,__ M LATCHES
LE
> DQ,-DQ,
ucs# - CE#
cC
%-10K.Q
WR# o WE#
RD# OE#
RESIN# Y - RP#
L System Reset
P1.X Vep
P1.X WP#

Figure 2. 28F004 interface to Intel80C188EB 8-Bit Embedded Microprocessor

14 Pinouts.

Intel's SmartVoltage Boot Block architecture
provides upgrade paths in most package pinout to
the 8-Mbit density. The 28F004 40-lead TSOP
pinout for space-constrained designs is shown in
Figure 3. The 28F400 44-lead PSOP pinout follows
the industry-standard ROM/EPROM pinout, as
shown in Figure 4. For designs that require x16
operation but have space concermns, refer to the

314

48-lead pinout in Figure 5. Furthermore, the 28F400
56-lead TSOP pinout shown in Figure 6 provides
backwards compatibility with exisiting 28F400BX
designs.

Pinouts for the corresponding 2-Mbit and 8-Mbit
components are also provided for convenient
reference. 4-Mbit pinouts are given on the chip
illustration in the center, with 2-Mbit and 8-Mbit
pinouts going outward from the center.

PRODUCT PREVIEW

intgl.

4-MBIT SmartVoltage BOOT BLOCK FAMILY

28F008B 28F002B

A A
16 16
Ags Ais
ﬁm 214
13 13
A || A2
A1 Aq1
Ag Ag
Ag Ag
WE# WE#
RP# RP#
Vep || Vep
WP# WP#
Ag || NC
Ay || A7
Ag Ag
A || A
Ay Ai
A3 Aj
Az Az
Aq A4
NOTE:

28F002B 28F008B

Aqe T
A1s—
Ala——
Az
A
A1

Ag—]

AgC—]
WE# —]
RP# —]
Vpp]

D=

Ag]

As—]
A—]
Ay——
A —

A —]

O©CONOOU HWN =

(¢)

28F004B
40-Lead TSOP
10mm x 20 mm

TOP VIEW

40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21

1. Pin 12is DU for BX/BL 12V Vpp Versions.
2. The 28F008B pinout shown is for the 8-Mbit boot block and not the 28FO08SA FlashFile™ memory.

—— A7 | Az || Az
—— oND | GND || GND
— NC NC)
=%
— Ao | Ao Ao
— DQ; | bQ; || pQy
— 1 DQg DQg DQg
— pbag | bas || pag
— DQ, DQy4 DQy4
—— Vec | Vec || Vee
—— Vcc | Vec || Vee
— NC NC NC
—1DQ; | DQg || DQg
— pQ, | DQ, || DQ;
— pQ, | DQY || DQy
—DpQ, | DQg || DQy
—— OE# | OE# || OE#
— GND | GND || GND
—— Cce# | CE# || CE#
— Aq Ao Ao
290530_03

Figure 3. The 40-Lead TSOP Offers the Smallest Form Factor for Space-Constrained Applications

28F800 28F200
Vep Vep
qp’ WP#
A7 NC
A, A;
Ag Ag
As As
Ay A,
As Aq
A, A,
A, Ay
Ay Ao
CE# CE#
GND GND
OE# OE#
DQ, DQy
DQg DQg
DQ; DQ 4
DQ, DQ,
pQ, pQ,
DQ 4o DQ 1o
DQj, DQ,
DQ 44 DQ 44

Ver

WP#]
&2
A7

As
As]
A
A
Ax
AT
Ao
CE# [
GND I
OE#
DQ, O
DQg O
DQ;
DQy]
DQ,
DQ 0}
DQ; O
DQ

PA28F400
44-Lead PSOP
0.525" x 1.110"

TOP VIEW

44
43
42
4
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23

[RP#
I WE#
(A8
(1A,
:Aw
A
A2
:!Am
A1
A5
A6
I BYTE#
[IGND
(1DQ, /A
1DQ ;
[DQ 44
[DQg
JDQ 45
[1DQ 5
[JDQ
[DQ,
[(IVce

28F200 28F800
RP# RP#
WE# WE#
Ag Ag
Ag Ag
A1 Ao
Aqy Ay
Ay, A
Ay Aga
Aty Ay
Ass Ass
A Ay
BYTE# BYTE#
GND GND
DQ,/A, | | Da/A,
DQ, DQ,
DQ 4 DQ 44
DQ, DQs
DQ 3 DQ 43
DQs DQs
DQ 2 DQ 12
DQ, DQ,
Vee Vee

290530_04

NOTE: Pin 2 is DU for BX/BL 12V Vpp Versions, but for the 8-Mbit device, pin 2 has been changed to A;g (WP# on 2/4 Mbit).
Designs planning on upgrading to the 8-Mbit density from the 2/4-Mbit density in this package should design pin 2 to control
WP# functionality at the 2/4-Mbit level and allow for pin 2 to control A,4 after upgrading to the 8-Mbit density.

PRODUCT PREVIEW

Figure 4. The 44-Lead PSOP Offers a Convenient Upgrade from JEDEC ROM Standards

315

4-MBIT SmartVoltage BOOT BLOCK FAMILY

Register is set to a “1” to indicate a Program
Failure. If bit 3 is set to a “1,” then Vpp was not
within acceptable limits, and the WSM did not
execute the programming sequence. [f the program
operation fails, bit 4 of the Status Register will be
set within 1.5 ms as determined by the timeout of
the WSM.

The Status Register should be cleared before
attempting the next operation. Any CUI instruction
can follow after programming is completed;
however, reads from the Memory Array, Status
Register, or Intelligent Identifier cannot be
accomplished until the CUI is given the Read Array
command.

3.34 ERASE MODE

Erasure of a single block is initiated by writing the
Erase Setup and Erase Confirm commands to the
CUI, along with the addresses identifying the block
to be erased. These addresses are latched
internally when the Erase Confirm command is.
issued. Block erasure results in all bits within the
block being set to “1.”

The WSM will execute a sequence of internally
timed events to:

Program all bits within the block to “0.”

2. Verify that all bits within the block are
sufficiently programmed to “0.”

3. Erase all bits within the block.

4. Verify that all bits within the block are
sufficiently erased.

While the erase sequence is executing, bit 7 of the
Status Register is a “0.”

When the Status Register indicates that erasure is
complete, the status bits, which indicate whether
the Erase operation was successful, should be
checked. If the Erase operation was unsuccessful,
bit 5 of the Status Register will be set to a “1,”
indicating an Erase Failure. If Vpp was not within
acceptable limits after the Erase Confirm command

316

intgl.

is issued, the WSM will not execute an erase
sequence; instead, bit 5 of the Status Register is
set to a “1” to indicate an Erase Failure, and bit 3 is
set to a “1” to identify that Vpp supply voltage was
not within acceptable limits.

The Status Register should be cleared before
attempting the next operation. Any CUI instruction
can follow after erasure is completed; however,
reads from the Memory Array, Status Register, or
Intelligent Identifier cannot be accomplished until
the CUI is given the Read Array command.

3.3.4.1 Suspending and Resuming Erase
Since an erase operation requires on the order of
seconds to complete, an Erase Suspend command
is provided to allow erase-sequence interruption in
order to read data from another block of the
memory. Once the erase sequence is started,
writing the Erase Suspend command to the CUI
requests that the WSM pause the erase sequence
at a predetermined point in the erase algorithm. The
Status Register must then be read to determine if
the erase operation has been suspended.

At this point, a Read Array command can be written
to the CUI in order to read data from blocks other.
than that which is being suspended. The only other
valid command at this time is the Erase Resume
command or Read Status Register command.

During erase suspend mode, the chip can go into a
pseudo-standby mode by taking CE# to Viu, which
reduces active current draw.

To resume the erase operation, the chip must be
enabled by taking CE# to V), then issuing the
Erase Resume command. When the Erase Resume
command is given, the WSM will continue with the
erase sequence and complete erasing the block. As
with the end of a standard erase operation, the
Status Register must be read, cleared, and the next
instruction issued in order to continue.

PRODUCT PREVIEW

4-MBIT SmartVoltage BOOT BLOCK FAMILY

Write 40H,
Word/Byte Address

v

Write Word/Byte
Data/Address

v

Read
Status Register

Full Status
Check if Desired

Bus Command Comments
Operation
Write Setup Data = 40H
Program Addr = Word/Byte to Program
Wwrite Program Data = Data to Program
rogra Addr = Location to Program
Read Status Register Data
Toggle CE# or OE#
to Update SRD.
Standby Check SR.7
1 =WSM Ready
0 = WSM Busy
Repeat for subsequent Word/Byte Writes.
SR Full Status Check can be done after each Word/Byte
Write, or after a sequence of Word/Byte Writes.
Write FFH after the last write operation to reset device to
read array mode.

Word/Byte Program
Complete
FULL STATUS CHECK PROCEDURE

Read Status Register
Data (See Above)

Vpp Range Error
Word/Byte Program
Error

Word/Byte Program
Successful

Bus Command Comments
Operation
Standby Check SR.3
1=Vpp Low Detect
Standby Check SR.4
1 = Word/Byte Program Error

SR.3 MUST be cleared, if set during a program attempt,
before further attempts are allowed by the Write State Machine.

SR.4 is only clear by the Clear Status Register Command,
in cases where multiple bytes are programmed before full
status is checked.

If error is detected, clear the Status Register before attempting

retry or other error recovery.

290530_09

PRODUCT PREVIEW

Figure 9. Automated Word/Byte Programming Flowchart

317

4-MBIT SmartVoitage BOOT BLOCK FAMILY

1]

®
Bus Command Comments
Operation
N Write Erase Setup Data = 20H
Write 20H, Witk
Block Address Addr = Within Block to be Erased
i Write Erase Data = DOH
Confirm Addr = Within Block to be Erased
Write DOH and
Block Address
Read Status Register Data
* Toggle CE# or OE#
to Update Status Register
Read Status
Register
Suspend Erase
Loop Standby Check SR.7
1= WSM Ready
0 = WSM Busy
Repeat for subsequent block erasures.
Full Status Check can be done after each block erase,
or after a sequence of block erasures.
Write FFH after the last operation to reset device to read
Full Status array mode.
Check if Desired
Block Erase
Complete
FULL STATUS CHECK PROCEDURE
Read Status Register Bus Command Comments
Data (See Above) Operation
Standby Check SR.3
1=Vpp Low Detect
Vpp Range Error
Standby Check SR.4,5
Both 1 = Command
Sequence Error
Command Sequence Standby Check SR.5
Error 1 = Block Erase Error
SR.3 MUST be cleared, if set during an erase attempt, before further
attempts are allowed by the Write State Machine.
Block Erase
Error SR.5 is only clear by the Clear Status Register Command, in
0 cases where multiple blocks are erase before full status is checked.
If error is detected, clear the Status Register before attempting
Block Erase retry or other error recovery.
Successful
290530_10

318

Figure 10. Automated Block Erase Flowchart

PRODUCT PREVIEW

m v

M O T

g ¢ H g |1

ki b e e
&t

2-Mibit SmartVoltage
Boot Block Flash Memory
Family Datasheet

319

intgl.

2-MBIT SmartVoltage BOOT BLOCK FAMILY

ADDRESS
Al16:17] : D LATCHES
»| LE
Aghis > AgAq7
80C188EB
ALE
ADDRESS 28F002-T
ADFAD, <:_: LATCHES
LE
DQ,-DQ,
ucs# CE#
WR# WE#
RD# OE#
RESIN# o RP#
L System Reset
P1.X Vep
P1.X 00— WP#

290531-02

Figure 1. 28F002 Interface to Intel80C188EB 8-Bit Embedded Microprocessor

1.4 Pinouts

Intel's SmartVoltage Boot Block architecture
provides upgrade paths in every package pinout to
the 8-Mbit density. The 28F002 40-lead TSOP
pinout for space-constrained designs is shown in
Figure 3. The 28F200 44-lead PSOP pinout follows
the industry-standard ROM/EPROM pinout, as
shown in Figure 4. For designs that require x16
operation but have space concerns, refer to the

ADVANCE INFORMATIO

48-lead pinout in Figure 5. Furthermore, the 28F200
56-lead TSOP pinout shown in Figure 6 provides
density upgrades to the 28F400BV as well as
backwards compatibility with existing 28F200BX/BL
designs.

Pinouts for the corresponding 4-Mbit and 8-Mbit
components are also provided for convenient
reference. 2-Mbit pinouts are given on the chip
illustration in the center, with 4-Mbit and 8-Mbit
pinouts going outward from the center.

321

n
2-MBIT SmartVoltage BOOT BLOCK FAMILY !nte! ®

28F008B 28F004B 28F004B 28F008B
A || A | As—=— 1 O 0 E A7 | A7 || Aw
15 15 | Ais—] 2 39 = GND | GND || GND

Aqg Ay | Auc— 3 38 = NC NC N
A1 || A1 | Ae— 4 37 =aNC | NC (f_b
12 12 12 5 36 /3 Aqo Ao 10
A1 A1y 11—y 6 35 =DpQ; | DbQ; || DQy
Ag Ag | Ag— 7 34 E—DQg | DQg || DQg
M=k 1=EElE
40-LEAD TSOP DQy DQ4 DQy

R4 || BP# | RPPC] 10 $omm x 20 mm BB Ve | Voo || Voo
we# | | wes | wpee——] 12 TOP VIEW 20 F N | N || N
A &@ Nc—] 13 28 = DpQ; | DQs || DQg
A; 7| A, 14 27 = DpQ, | DQ, || DQj
As A6 A6= 15 26 :DQ1 DQ1 DQ1
A5 A5 A5= 16 25 — DQq DQg DQO
Ag Ay Aj—] 17 24 F—— OE# OE# OE#
As Az | Aj— 18 23 I GND | GND || GND
A, Ay | A— 19 22 — CE# | CE# || CE#

A1 A1 A1= 20 21 =/ AO Ag Ao

290531_03
NOTES:

1. Pin 12is DU for BX/BL 12V Vpp Versions.
2. The 28F008B pinout shown is for the 8-Mbit boot block and not the 28FO08SA FlashFile™ memory.

Figure 3. The 40-Lead TSOP Offers the Smallest Form Factor for Space-Constrained Applications

28F800 28F400 28F400 28F800
Vep Vep Verd 10 44 [RP# RP# RP#
WP# wr#d 2 43 [WE# WE# WE#
A17 NC g 3 42 [As Ag Asg
A, A7 A 4 4189A, As Ag
AG As As[: 5 40 :Am A1o A1o
Asg Asg Ascg 6 PA28F200 39 A1 A A1
Aa ~ A} 7 g4leadpsor BEIAw A Ae
As As Asc] 8 ossrxtat0r 37 [3A At At
Az Az A 9 36 A1 A A1s
Ay Ay A, 10 35 A5 Ass Ass
Ao Ao Ao 11 TOP VIEW 34 A6 Ase A
CE# CE# ce#C] 12 33 aBYTE# BYTE# BYTE#
GND GND GNDL 13 32 IGND GND GND
OE# OE# oEs#] 14 31 DQ, /A, | DQ/A, DQ,5/A 4
DQ, DQo DQ, 15 30 mbQ-, DQ DQ;
DQg DQg DQg CA16 29 MDA 14 DQ 14 DQ s
DQ;, DQ4 DQ 3 17 28 FIDQs DQse DQs
DQg DQg DQgy] 18 27 |DQ 3 DQ 13 DQ 13
DQ, DQ, DQ, 19 26 DQs DQs DQs
DQ 1o DQ 1o DQ o 20 25 pQ 12 DQ 12 DQ 12
DQs DQ3s DQ,] 21 24 pq, DQ4 DQ4
DQ 14 DQ 11 DQ] 22 23 Vee Vee Vee
290531_04

NOTE: Pin 2 is DU for BX/BL 12V Vpp Versions, but for the 8-Mbit device, pin 2 has been changed to A;g (WP# on 2/4 Mbit).
Designs planning on upgrading to the 8-Mbit density from the 2/4-Mbit density in this package should design pin 2 to control
WP# functionality at the 2/4-Mbit level and allow for pin 2 to control A,g after upgrading to the 8-Mbit density.

Figure 4. The 44-Lead PSOP Offers a Convenient Upgrade from JEDEC ROM Standards

322 ADVANCE INFORMATION

intgl.

Register is set to a “1” to indicate a Program
Failure. If bit 3 is set to a “1,” then Vpp was not
within acceptable limits, and the WSM did not
execute the programming sequence. |f the program
operation fails, bit 4 of the Status Register will be
set within 1.5 ms as determined by the timeout of
the WSM.

The Status Register should be cleared before
attempting the next operation. Any CUI instruction
can follow after programming is completed;
however, reads from the Memory Array, Status
Register, or Intelligent Identifier cannot be
accomplished until the CUI is given the Read Array
command.

3.3.4 ERASE MODE

Erasure of a single block is initiated by writing the
Erase Setup and Erase Confirm commands to the
CUI, along with the addresses identifying the block
to be erased. These addresses are latched
internally when the Erase Confirm command is
issued. Block erasure results in all bits within the
block being set to “1.”

The WSM will execute a sequence of internally
timed events to:

Program all bits within the block to “0.”

2. Verify that all bits within the block are
sufficiently programmed to “0.”

3. Erase all bits within the block.

4. Verify that all bits within the block are
sufficiently erased.

While the erase sequence is executing, bit 7 of the
Status Register is a “0.”

When the Status Register indicates that erasure is
complete, the status bits, which indicate whether
the Erase operation was successful, should be
checked. If the Erase operation was unsuccessful,
bit 5 of the Status Register will be set to a “1,”
indicating an Erase Failure. If Vpp was not within

ADVANCE INFORMATION

2-MBIT SmartVoltage BOOT BLOCK FAMILY

acceptable limits after the Erase Confirm command
is issued, the WSM will not execute an erase
sequence; instead, bit 5 of the Status Register is
set to a “1” to indicate an Erase Failure, and bit 3 is
set to a “1” to identify that Vpp supply voltage was
not within acceptable limits.

The Status Register should be cleared before
attempting the next operation. Any CUI instruction
can follow after erasure is completed; however,
reads from the Memory Array, Status Register, or
Intelligent Identifier cannot be accomplished until
the CUI is given the Read Array command.

3.3.4.1 Suspending and Resuming Erase
Since an erase operation requires on the order of
seconds to complete, an Erase Suspend command
is provided to allow erase-sequence interruption in
order to read data from another block of the
memory. Once the erase sequence is started,
writing the Erase Suspend command to the CUI
requests that the WSM pause the erase sequence
at a predetermined point in the erase algorithm. The
Status Register must then be read to determine if
the erase operation has been suspended.

At this point, a Read Array command can be written
to the CUI in order to read data from blocks other
than that which is being suspended. The only other
valid command at this time is the Erase Resume
command or Read Status Register command.

During erase suspend mode, the chip can go into a
pseudo-standby mode by taking CE# to Viu, which
reduces active current draw.

To resume the erase operation, the chip must be
enabled by taking CE# to Vi, then issuing the
Erase Resume command. When the Erase Resume
command is given, the WSM will continue with the
erase sequence and complete erasing the block. As
with the end. of a standard erase operation, the
Status Register must be read, cleared, and the next
instruction issued in order to continue.

323

2-MBIT SmartVoltage BOOT BLOCK FAMILY

In

Start

Write 40H,
Word/Byte Address

v

Write Word/Byte
Data/Address

v

Read
Status Register

Full Status
Check if Desired

Word/Byte Program
Complete

FULL STATUS CHECK PROCEDURE

Read Status Register
Data (See Above)

Bus Command Comments
Operation
Write Setup Data = 40H
Program | Addr = Word/Byte to Program
Write P m Data = Data to Program
rogra Addr = Location to Program
Read Status Register Data
Toggle CE# or OE#
to Update SRD.
Standby Check SR.7
1 =WSM Ready
0 =WSM Busy

Repeat for subsequent Word/Byte Writes.

SR Full Status Check can be done after each Word/Byte
Write, or after a sequence of Word/Byte Writes.

Write FFH after the last write operation to reset device to
read array mode.

Word/Byte Program
Successful

Bus Command Comments
Operation
Standby Check SR.3
1=Vpp Low Detect
Vpp Range Error
Standby Check SR.4
1 = Word/Byte Program Error
Word/Byte Program
Error

SR.3 MUST be cleared, if set during a program attempt,

before further attempts are allowed by the Write State Machine.

SR.4 is only clear by the Clear Status Register Command,
in cases where multiple bytes are programmed before full
status is checked.

If error is detected, clear the Status Register before attempting
retry or other error recovery.

290531_09

Figure 9. Automated Word/Byte Programming Flowchart

324

ADVANCE INFORMATION

In ® 2-MBIT SmartVoltage BOOT BLOCK FAMILY

Bus Command Comments
Operation
V
N Write Erase Setup Data = 20H
Write 20H, — Withe
Block Address Addr = Within Block to be Erased
‘L Write Erase Data = DOH
Confirm Addr = Within Block to be Erased
Write DOH and
Block Address
Read Status Register Data
¢ Toggle CE# or OE#
to Update Status Register
Read Status
Register
Suspend Erase
Loop Standby Check SR.7
NO 1= WSM Ready
0 YES 0 = WSM Busy
SR7 = Suspend
Erase Repeat for subsequent block erasures.
Full Status Check can be done after each block erase,
1 or after a sequence of block erasures.
Write FFH after the last operation to reset device to read
Full Status array mode.
Check if Desired
V
Block Erase
Complete
FULL STATUS CHECK PROCEDURE
Read Status Register Bus Command Comments
Data (See Above) Operation
Standby Check SR.3
1=Vpp Low Detect
Vpp Range Error
Standby Check SR.4,5

Both 1 = Command
Sequence Error

Command Sequence
Error

Block Erase
Error

Standby Check SR.5
1 = Block Erase Error

SR.3 MUST be cleared, if set during an erase attempt, before further
attempts are allowed by the Write State Machine.

SR.5 is only clear by the Clear Status Register Command, in
cases where multiple blocks are erase before full status is checked.

0]
If error is detected, clear the Status Register before attempting
Block Erase retry or other error recovery.
Successful
290531_10
Figure 10. Automated Block Erase Flowchart
ADVANCE INFORMATION 325

intgl.

28F001BX-T/28F001BX-B
1M CMOS Flash Memory

327

intgl.

Program Setup/Program Commands

Programming is executed by a two-write sequence.
The Program Setup command (40H) is written to
the Command Register, followed by a second write
specifying the address and data (latched on the
rising edge of WE#) to be programmed. The WSM
then takes over, controlling the program and verify
algorithms internally. After the two-command
program sequence is written to it, the 28F001BX
automatically outputs Status Register data when
read (see Figure 9: Byte Program Flowchart). The
CPU can detect the completion of the program
event by analyzing the WSM Status bit of the
Status Register. Only the Read Status Register
command is valid while programming is active.

When the Status Register indicates that
programming is complete, the Program Status bit
should be checked. If program error is detected, the
Status Register should be cleared. The internal
WSM only detects errors for “1s” that do not
successfully program to “0s”. The Command
Register remains in Read Status Register mode
until further commands are issued to it. If byte
programming is attempted while Vpp = VppL, the
Vpp Status bit will be set to “1”. Program attempts
while VppL < Vpp < VppH produce spurious results
and should not be attempted.

EXTENDED ERASE/PROGRAM CYCLING

EEPROM cycling failures have always concerned
users. The high electric fields required by thin oxide
EEPROMSs for tunneling can literally tear apart the
oxide at defect regions. To combat this, some
suppliers have implemented redundancy schemes,
reducing cycling failures to insignificant levels.
However, redundancy requires that cell size be
doubled—an expensive solution.

Intel has designed extensive cycling capability into
its ETOX flash memory technology. Resulting
improvements in cycling reliability come without
increasing memory cell size or complexity. First, an
advanced tunnel oxide increases charge carrying
ability ten-fold. Second, the oxide area per cell
subjected to the tunneling electric field is one-tenth
that of common EEPROMs, minimizing the
probability of oxide defects in the region. Finally,
the peak electric field during erasure is
approximately 2 MV/cm lower than EEPROM. The
lower electric field greatly reduces the oxide stress
and the probability of failure.

28F001BX-T/28F001BX-B

The 28F001BX-B and the 28F001BX-T are capable
of 100,000 program/erase cycles on each
parameter block, main block, and boot block.

ON-CHIP PROGRAMMING ALGORITHM

The 28F001BX integrates the Quick-Pulse
programming algorithm of prior Intel flash memory
devices on-chip, using the Command Register,
Status Register, and Write State Machine (WSM).
On-chip integration dramatically simplifies system
software and provides processor-like interface
timings to the Command and Status Registers.
WSM operation, internal program verify, and Vpp
high voltage presence are monitored and reported
via appropriate Status Register bits. Figure 9 shows
a system software flowchart for device
programming. The entire sequence is performed
with Vpp at VppH. Program abort occurs when RP#
transitions to Vi or Vpp drops to VppL. Although the
WSM is halted, byte data is partially programmed at
the location where programming is aborted. Block
erasure or a repeat of byte programming will
initialize this data to a known value.

ON-CHIP ERASE ALGORITHM

As above, the Quick-Erase algorithm of prior Intel
flash memory devices is implemented internally,
including all preconditioning of block data. WSM
operation, erase success, and Vpp high voltage
presence are monitored and reported through the
Status Register. Additionally, if a command other
than Erase Confirm is written to the device after
Erase Setup has been written, both the Erase
Status and Program Status bits will be set to “1”.
When issuing the Erase Setup and Erase Confirm
commands, they should be written to an address
within the address range of the block to be erased.
Figure 10 shows a system software flowchart for
block erase.

Erase typically takes 1-4 seconds per block. The
Erase Suspend/Erase Resume command sequence
allows interruption of this erase operation to read
data from a block other than the block in which
erase is being performed. A system software
flowchart is shown in Figure 11.

The entire sequence if performed with Vep at VppH.
Abort occurs when RP# transitions to ViL or Vep
falls to VppL, while erase is in progress. Block data
is partially erased by this operation, and a repeat if
the erase is required to obtain a fully erased block.

329

intgl.

28F020
2048K CMOS Flash Memory

331

intel.

Program-Verify Command

The 28F020 is programmed on a byte-by-byte
basis. Byte programming may occur sequentially or
at random. Following each programming operation,
the byte just programmed must be verified.

The program-verify operation is initiated by writing
COH into the command register. The register write
terminates the programming operation with the
riding edge of its WE# pulse. The program-verify
operation stages the device for verification of the
byte last programmed. No new address information
is latched.

The 28F020 applies its internally-generated margin
voltage to the byte. A microprocessor read cycle
outputs the data. A successful comparison between
the programmed byte and the true data means the
byte was successfully programmed. Programming
then proceeds to the next desired byte location.
Figure 5, the 28F020 Quick-Pulse algorithm,
illustrates how commands are combined with bus
operations to perform byte programming. Refer to
AC Programming Characteristics and Waveforms
for specific timing parameters.

Reset Command

A reset command is provided as a means to safely
abort the erase- or program-command sequences.
Following either setup command (erase or program)
with two consecutive write of FFH will safely abort
the operation. Memory contents will not be altered.
A valid command must then be written to place the
device in the desired state.

EXTENDED ERASE/PROGRAM CYCLING

EEPROM cycling failures have always concerned
users. The high electric fields required by thin oxide
EEPROMs for tunneling can literally tear apart the
oxide at defect regions. To combat this, some
suppliers have implemented redundancy schemes,
reducing cycling failures to insignificant levels.
However, redundancy requires that cell size be
doubled—an expensive solution.

Intel has designed extensive cycling capability into
its ETOX flash memory technology. Resulting
improvements in cycling reliability come without
increasing memory cell size or complexity. First, an
advanced tunnel oxide increases charge carrying

28F020

ability ten-fold. Second, the oxide area per cell
subjected to the tunneling electric field is one-tenth
that of common EEPROMs, minimizing the
probability of oxide defects in the region. Finally,
the peak electric field during erasure is
approximately 2 MV/cm lower than EEPROM. The
lower electric field greatly reduces the oxide stress
and the probability of failure.

The 28F020 is capable of 100,000 program/erase
cycles. The device is programmed and erased
using Intel’'s Quick-Pulse Programming and Quick-
Erase algorithms. Intel’s algorithmic approach uses
a series of operations (pulses), along with byte
verification, to completely and reliably erase and
program the device.

For further information, see Reliability Report
RR-60.

QUICK-PULSE PROGRAMMING ALGORITHM

The Quick-Pulse Programming algorithm uses
programming operations of 10 ms duration. Each
operation is followed by a byte verification to
determine when the addressed byte has been
successfully programmed. The algorithm allows for
up to 25 programming operations per byte, although
most bytes verify on the first or second operation.
The entire sequence of programming and byte
verification is performed with Vpp at high voltage.
Figure 5 illustrates the Quick-Pulse Programming
algorithm.

QUICK-ERASE ALGORITHM

Intel’s Quick-Erase algorithm yields fast and reliable
electrical erasure of memory contents. The
algorithm employs a closed-loop flow, similar to the
Quick-Pulse Programming algorithm, to
simultaneously remove charge from all bits in the
array.

Erasure begins with a read of memory contents.
The 28F020 is erased when shipped from the
factory. Reading FFH from the device would
immediately be followed by device programming.

For devices being erased and programmed, uniform
and reliable erasure is ensured by first
programming all bits in the device to their charged
state (Data = 00H). This is accomplished, using the
Quick-Pulse Programming algorithm, in
approximately four seconds.

333

28F020

Erase execution then continues with an initial erase
operation. Erase verification (Data = FFH) begins at
address 0000H and continues through the array to
the last address, or until data other than FFH is
encountered. With each erase operation, an
increased number of bytes verify to the erased
state. Erase efficiency may be improved by storing
the address of the last byte verified in a register.
Following the next erase operation, verification
starts at that stored address location. Erasure
typically occurs in two seconds. Figure 6 illustrates
the Quick-Erase algorithm.

334

28F020
Bus
Operation Command Comments
Entire Memory Must = 00H
before Erasure
Use Quick-Pulse
Programming Algorithm
(Figure 5)
Standby Wait for Vi, Ramp to Vppy ()
Initialize Addresses and
Pulse-Count
Writa E -
Setoup tmd Write Setlp Data = 20H
Write Erase Data = 20H
Standby Duration of Erase Operation
(twhwhz2)
2)
Write 5;‘:?3(' Addr = Byte to Verity;
Data = AOH; Stops Erase
Operation®)
Standby twHaL
Read Ready Byte to Verify Erasure
from Davice
N
Inc
PLSCNT
=10007 Standby Compare Output to FFH
Increment Pulse-Count
1% Y
Last
Incrament
I Address | ?
Y
Write
Write - Read Data = 00H, Resets the
1 Register for Read Operations
Apply Apply .
l Vepe 1] I r Vepe 1] I Standby Wait for Vpp Ramp to Vppy (W
Erosure Erase
(Camplsted) (Error)
290245-8

See DC Characteristics for the value of Vppy and Vppp

Erase Verify is performed only after chip-erasure. A
final read/compare may be performed (optional) after
the register is written with the Read command.

Refer to principles of operation.
CAUTION: The algorithm MUST BE FOLLOWED

to ensure proper and reliable operation of the
device.

Figure 6. 20F020 Quick-Erase Algorithm

335

&
3
Versions Vcc +5% | 28F020-70(4)
Vee + 10% 28F020-70(5) 28F020-90(5) 28F020-1505) | Unit
Symbol | Characterisitcs Notes Min Max Min Max Min Max Min Max

tavav/trc | Read Cycle Time 70 80 90 150 ns

teLav/tce | Chip Enable 70 80 920 120 ns
Access Time

tavav/tacc | Address Access 70 80 90 120 ns
Time

teLav/toe | Output-Enable 28 30 35 50 ns
Access Time

teLax/tiz | Chip Enable to 2,3 0 0 0 0 ns
Qutput in Low Z

teHaz Chip Disable to 2 35 40 45 55 ns
Output in High Z

teLax/toLz | Output Enable to 2,3 0 0 0 0 ns
Output in Low Z

teHaz/torF | Output Disable to 2 30 30 30 30 ns
Quput in High Z

ton Output Hold from 1,2 0 0 0 0 ns
Address, CE#, or
QE# Change

twHGL Write Recovery 6 6 6 6 Us
Time before Read

NOTES:

sjonpoud ainjetadwa]
—SOILSIHILOVHVYHO OV

0co0d48c

. Whichever occurs first.

. Sampled, not 100% tested.

. Guaranteed by design. .

. See High Speed AC Input/Output reference Waveforms and High Speed AC Testing Load Circuits for testing characteristics.

. See AC Input/Output reference Waveforms and AC Testing Load Circuits for testing characteristics.

g o~ =

papua)x3 pue jelosswiwoy—suonesado AjuQ peay

intgl.

28F010
1024K CMOS Flash Memory

337

intgl.

Program-Verify Command

The 28F010 is programmed on a byte-by-byte
basis. Byte programming may occur sequentially or
at random. Following each programming operation,
the byte just programmed must be verified.

The program-verify operation is initiated by writing
COH into the command register. The register write
terminates the programming operation with the
riding edge of its WE# pulse. The program-verify
operation stages the device for verification of the
byte last programmed. No new address information
is latched.

The 28F010 applies its internally-generated margin
voltage to the byte. A microprocessor read cycle
outputs the data. A successful comparison between
the programmed byte and the true data means the
byte was successfully programmed. Programming
then proceeds to the next desired byte location.
Figure 5, the 28F010 Quick-Pulse algorithm,
illustrates how commands are combined with bus
operations to perform byte programming. Refer to
AC Programming Characteristics and Waveforms
for specific timing parameters.

Reset Command

A reset command is provided as a means to safely
abort the erase- or program-command sequences.
Following either setup command (erase or program)
with two consecutive writes of FFH will safely abort
the operation. Memory contents will not be altered.
A valid command must then be written to place the
device in the desired state.

EXTENDED ERASE/PROGRAM CYCLING

EEPROM cycling failures have always concerned
users. The high electric fields required by thin oxide
EEPROMSs for tunneling can literally tear apart the
oxide at defect regions. To combat this, some
suppliers have implemented redundancy schemes,
reducing cycling failures to insignificant levels.
However, redundancy requires that cell size be
doubled—an expensive solution.

Intel has designed extensive cycling capability into
its ETOX flash memory technology. Resulting
improvements in cycling reliability come without
increasing memory cell size or complexity. First, an
advanced tunnel oxide increases charge carrying

28F010

ability ten-fold. Second, the oxide area per cell
subjected to the tunneling electric field is one-tenth
that of common EEPROMs, minimizing the
probability of oxide defects in the region. Finally,
the peak electric field during erasure is
approximately 2 MV/cm lower than EEPROM. The
lower electric field greatly reduces the oxide stress
and the probability of failure.

The 28F010 is capable of 100,000 program/erase
cycles. The device is programmed and erased
using Intel’s Quick-Pulse Programming and Quick-
Erase algorithms. Intel’s algorithmic approach uses
a series of operations (pulses), along with byte
verification, to completely and reliably erase and
program the device.

For further information, see Reliability Report
RR-60.

QUICK-PULSE PROGRAMMING ALGORITHM

The Quick-Pulse Programming algorithm uses
programming operations of 10 ps duration. Each
operation is followed by a byte verification to
determine when the addressed byte has been
successfully programmed. The algorithm allows for
up to 25 programming operations per byte, although
most bytes verify on the first or second operation.
The entire sequence of programming and byte
verification is performed with Vpp at high voltage.
Figure 5 illustrates the Quick-Pulse Programming
algorithm.

QUICK-ERASE ALGORITHM

Intel’s Quick-Erase algorithm yields fast and reliable
electrical erasure of memory contents. The
algorithm employs a closed-loop flow, similar to the
Quick-Pulse Programming algorithm, to
simultaneously remove charge from all bits in the
array.

Erasure begins with a read of memory contents.
The 28F010 is erased when shipped from the
factory. Reading FFH from the device would
immediately be followed by device programming.

For devices being erased and programmed, uniform
and reliable erasure is ensured by first
programming all bits in the device to their charged
state (Data = 00H). This is accomplished, using the
Quick-Pulse Programming algorithm, in
approximately four seconds.

339

28F010

Erase execution then continues with an initial erase
operation. Erase verification (Data = FFH) begins at
address 0000H and continues through the array to
the last address, or until data other than FFH is
encountered. With = each erase operation, an
increased number of bytes verify to the erased
state. Erase efficiency may be improved by storing
the address of the last byte verified in a register.
Following the next erase operation, verification
starts at that stored address location. Erasure
typically occurs in two seconds. Figure 6 illustrates
the Quick-Erase algorithm.

340

28F010

-
py
(s]

Versions Vce + 5% | 28F010-65(4)
Vee +10% 28F010-65(5) | 28F010-90(5) | 28F010-120(5) | 28F010-150(5) | Unit
Symbol Characterisitcs Notes Min | Max | Min | Max | Min | Max | Min Max Min Max

tavav/trc |Read Cycle Time 65 70 90 120 150 ns

teLqv/tce |Chip Enable Access 65 70 90 120 150 ns
Time

tavqv/tacc |Address Access Time 65 70 90 120 150 ns

taLQv/toe |Output Enable Access 25 28 35 50 55 ns
Time

teLQx/tLz Chip Enable to Output 2,3 0 0 0 0 0 ns
in Low Z

teEHQZ Chip Disable to Output 2 35 40 45 55 55 ns
in High Z

tcLax/toLz |Output Enable to 2,3 0 0 0 0 0 ns
Qutput in Low Z

tGHQz/toF |Output Disable to 2 30 30 30 30 35 ns
Quput in High Z

toH Output Hold from 1,2 0 0 0 0 0 ns
Address, CE#, or OE#
Change

tWHGL Write Recovery Time 6 6 6 6 6 Hs
before Read

AC CHARACTERISTICS—Read Only Operations—Commercial and Extended

Temperature Products

intgl.

NOTES:

1. Whichever occurs first.

2. Sampled, not 100% tested.

3. Guaranteed by design.

4. See High Speed AC Input/Output reference Waveforms and High Speed AC Testing Load Circuits for testing characteristics.
5. See AC Input/Output reference Waveforms and AC Testing Load Circuits for testing characteristics.

n
28F010 I ntel ®

ERASE AND PROGRAMMING PERFORMANCE

Parameter Notes Min Typical Max Unit
Chip Erase Time 1,34 2 30 Sec
Chip Program Time 1,24 4 25 Sec

NOTES:
1. “Typicals” are not guaranteed, but based on samples from production lots. Data taken at 25°C, 12.0V Vpp.

2. Minimum byte programming time excluding system overhead is 16 psec (10 psec program + 6 psec write recovery), while
maximum is 400 psec/byte (16 psec x 25 loops allowed by algorithm). Max chip programming time is specified lower than
the worst case allowed by the programming algorithm since most bytes program significantly faster than the worst case
byte.

3. Excludes O0H programming prior to erasure.

4. Excludes system level overhead.

342

intel.

Application Note-600

AP-600
BOOT
MEMORY
CPU L2 L3
—) CACHE —) DRAM — CACHE — HDD
L1
CACHE
NETWORK
DRIVE
292146-04
Figure 4. The Traditional System Memory Architecture
Adds Complexity in Order to Optimize Performance
DRAM
K—| 28FO16XS K~ STORAGE
FLASH
CACHE MEMORY
292146_05

Figure 5. A Flash Memory-Based System Memory Architecture
Achieves Performance without Tradeoffs

This application note compares the read performance
and power consumption of Intel’s 28F016XS Flash
memory to that of more traditional memory alternatives,
based on specifications available at the time this
document was published. The 28F016XS Flash memory
is a new member of the Intel 16-Mbit flash memory
product family. Significant 28F016XS enhancements
compared to previous flash memories include:

e A synchronous pipelined read interface that
optimizes the performance of today’s leading-edge
microprocessors and buses, and

e SmartVoltage technology

ADVANCE INFORMATION

This analysis focuses on the highest read performance
versions of the highest-density products for each
memory technology. Also discussed, are 28F016XS-
based system memory architecture advantages over
traditional alternatives in terms of performance,
complexity, cost, power consumption and reliability. For
complete information on Intel’s 28F016XS flash
memory, consult documentation listed in the Additional
Information section.

intel.

Application Note-399

347

intal.

getting the system’s BIOS code to copy the file before or
during POST.

Either option is possible. The choice is dependent on
determining which is easier, modifying hardware or
modifying a BIOS boot-up process.

34

This section describes the logic design for the RFA
controller. Timing analysis is also provided to draw
special attention to some of the difficulties and their
resolutions. Lastly, a discussion of possible future
enhancements is presented.

RFA Control Logic Overview

AP-399

As shown in the block diagram, Figure 1, the EPX780
provides the interface between the CPU and the flash
memory. The following components are utilized in
this sub-system design:

e 25MHz 3.3V 486 SX CPU
e Altera’s EPX780-132 PLD
e 4 28F016SV-75 1M x 16-bit flash memory devices
e 32-bit Transceiver
(4 x 8-bit or 2 x 16-bit, tpp <15 ns)

The signal names used in the diagratﬁs are described in
Table 1

Intel486™ SX CPU-RFA Sub-System Design

3

£z

7 7
A23-A2 (ABUSI) A21-A2 (ABUSO)

ADSH 28F016SV 28F016SV

MA/o# CEO-1#(H,L) 4
i486 SX 4 D/C# . OE#
1
CPU 7 BEO-3# EPX780

WIR# WE#

RDY#

KEN#

i DT/R#
pO-D9 1 28F016SV 28F016SV
D31-D0,(DBUS) D31,00 [TRANSCEIVER
7 7—>| 74HL33623 (4) or
74LVT16245 (2)
RY/BY#
D31-D0 -
(FLASH DBUS) MSB L5
3
D31-D16 7| p15-00 T
,
2921497

Figure 1. RFA Block Diagram

349

AP-399
Table 1. Signal Name Descriptions
ignal name Signal Description
CLK Clock input to the subsystem, assumed 25 MHz
ADS# Address Strobe from the CPU
W/R# Write/Read# signal from CPU
M/i/o# Memory/i/o# signal from CPU
D/C# Data/Code# signal from CPU
WE# Write Enable# signal from EPX780 to flash memory
OE# Output Enable# signal from EPX780 to flash memory
RDY# Ready# signal from EPX780 to CPU
KEN# Cache Enable# signal from EPX780 to CPU
DT/R# Data Transmit/Receive# signal from EPX780 to transceiver
ABUSI Address Bus, A23-A2 from CPU to EPX780
ABUSo Address Bus, A21-A2 from EPX780 to flash memory
BSEL# Byte Enable# signals, BEO-3# from CPU to EPX780
CE# Chip Enable# signals, CEHO-1# & CELO-1 from EPX780 to flash memory
DBUS Data Bus, D31-DO0 from CPU to EPX780 and transceiver
FLASH DBUS Data Bus, D31-DO0 from transceiver to flash memory
ADSWREG Sliding Window Register select
ADS1..4 Address Strobe delay flip-flop chain
| SWREG Sliding Window Register
NOTE:

A “#” after the name means inverted or active low.

Logic Design

Sliding Window Address Register Interface

The nécessary address decoding for the actual loading of
the Sliding Window Address Register with the base

The logic design (see Figure 8) for the EPX780 RFA
controller was split into the following three subdivisions
from a design standpoint:

e Sliding Window Address Register interface

e ROM Stub Window mapping function

o Chip enable logic for memory- devices

350

address of the window on the data bus is done using a
simple AND function. Similarly, allowing the address
bits to propagate out of the register to the address bus
upon access to the window is done using a 2x1 mux for
each bit with the address decode as the select.

intal.

APPENDIX D
PLD EQUATIONS

Included below are the equations for the EPX780
EPX780-10 PLD

AP-399

; Functional model for Simulation of Resident Flash Array design
Title 486SX RFA design

Pattern 1

Revision 4.0

Author Rajiv Parikh

Company Intel Corporation

Date 9/20/94

; This design has not been verified, it is sample code only.
; Intel assumes no responsibility for any errors which may appear
; in this code.

OPTIONS DRIVE_LEVEL = 3VOLT ; Default voltage is 3 Volts
CHIP Ul NFX780_132

; Pinlist

; inputs

PIN CLK ; main clock (used by register)

; Control signals from CPU

PIN W_R ; Write/Read# from CPU

PIN M_IO ; M/i/o# from CPU

PIN /ADS ; ADS# from CPU

PIN D_C ; D/C# from CPU

PIN A[23:2] ; Address lines from CPU, 0,1,24-31 not used
PIN /BE[3:0] ; Byte Enable lines from CPU

; Control signals from PLD to memory

; outputs

PIN B[23:2] ; Address lines out of PLD to memory (23,22 NC)
PIN /CEH[1:0] ; Chip enable out of PLD to memory high word
PIN /CEL[1:0] ; Chip enable out of PLD to memory low word
PIN /WE ; Write Enable# from PLD to memory

PIN /OE ; Output Enable# from PLD to memory

; Other signals

; input

PIN RY_BY ; Ready/Busy# from memory to PLD/486

; outputs

PIN /RDY ; Ready# from PLD to CPU

PIN /KEN ; Cache enable# from PLD to CPU

351

intgl.

Application Note-398

353

3
€

AP-398

 ——————
1 ADDRESS/DATA I\
N 14
CPU > 28F016XS
> INTERFACE
LOGIC
e —— o __.ADV#
WE#
CLK
OE#
< READY. CE# p

292147_06

Figure 6. Comparing Past Address with Current Address to Determine Whether an Alternating-A, or
Same-A; Access Occurs When Interfacing the 28F016XS to a Pipelined Bus Processor

Pipelined Bus

A pipelined bus activates the address and control signals
for the next cycle before completing the current cycle.
Pipelined buses have no defined access order; therefore,
Alternating-A; accesses are not guaranteed. The
interface must guard against a possible mixture of
consecutive Alternating-A; and Same-A; accesses.
Figure 6 illustrates a pipelined bus interface to the
28F016XS.

In a pipelined interface, the system logic does not
increment the 28F016XS’s lower addresses. The system
logic instead latches address A and compares it to A; of
the following cycle. Comparing A, the interface logic
can identify Alternating-A; and Same-A; accesses,
which directly informs the interface logic when it can
initiate a read access to the 28F016XS. The Alternating-
A; and Same-A| access rules define the minimum delay
between consecutive accesses (see Section 4.2 and 4.3).

In the past, external latches were required to latch the
next address and control signals. The 28F016XS
eliminates this extra system overhead, latching the next
address internally and initiating the next cycle prior to
completing the current cycle. The 28F016XS’s
synchronous pipelined interface takes full advantage of
a pipelined bus.

ADVANCE INFORMATION

4.0 INTERFACING TO THE 28F016XS

The 28F016XS can interface to a wide range of CPUs
and bus architectures. Glue logic is minimal and the
performance enhancements are significant. Below are
key considerations to keep in mind when interfacing to
the 28F016XS:

o Clocking Options

o Alternating-A; Access Rule

o Same-A; Access Rule

o Optimizing Read Performance in x8 Mode

o Consecutive Accesses across Bank Boundaries
o Handling Asynchronous Write Cycles

o System Boot-Up out of the 28F016XS

4.1 Clocking Options

In choosing a CLK option, keep in mind that the
28F016XS operates at optimum performance with a
CLK frequency at an upper SFI Configuration boundary
(50 MHz and 33 MHz are two of four SFI Configuration
upper boundaries for the 28F016XS-15 at 5.0V V().
See Section 2.3 for information about the SFI
Configuration.

355

AP-398
CLK
ol L L L L L L
Example}—
Access 1 Accegs 2 Acceps 3 Acceps 4
tcm;' teHeHA
I) 7 | LAY AR
o]
taveH teHeHs
oo\ TOLA AT
]
tvLcHfsl
t
CEot CHVH /
tELCH]
CEq# \ /
1
ELCH
OEy# \"_ /
\ taLcH) taHaZ
OE, # \
A 1 3 Al 4 :EHQZ
t ccess| bs 3 Acceps GHQZ
02 N i ar%&u
DATA 0 1
' tcHax
292147_23
NOTE:

Refer to the 28F016XS datasheet for timing specifications.

Figure 23. Consecutive Alternating-A, Accesses Crossing Bank Boundaries,
One OE# per Bank (28F016XS-15, SFI Configuration = 2)

4.7 Handling Asynchronous Writes

The 28F016XS write interface is asynchronous, similar
to other Intel flash memories. The 28F016XS’s write
interface is not pipelined, therefore a write cycle must
complete before another begins.

When the interfacing CPU can execute a burst write
cycle, the system logic needs to manage the write cycle,
allowing only one write cycle to the 28F016XS at a
time. Write-back caches, for example, support burst
write cycles.

356

When the interfacing CPU does not support burst writes,
the 28F016XS’s asynchronous write interface is not an
issue. The processor will only execute one write cycle at
atime.

When executing a write cycle, the interfacing processor
or bus will drive a write signal informing the system of
the desired operation. Monitoring this signal, the
interfacing logic can correctly transition into an
appropriate state machine sequence. In this situation, the
interfacing logic directly controls the 28F016XS’s write
control signals (Figure 24), just as with asynchronous
Intel flash memories.

ADVANCE INFORMATION

intgl.

Application Note-384

357

intgl.
1.0 INTRODUCTION

This application note discusses comparisons between the
28F016XD and DRAM memories. It also offers
recommendations for determining compatibility between
the 28F016XD and DRAM controllers, and provides
suggestions for designing DRAM controllers with the
28F016XD in mind. The 28F016XD, an Intel 16-Mbit
Flash memory component, retains full software
backwards-compatibility with the 28F008SA and adds
the following features:

e Multiplexed address/address interface with RAS#
and CAS# control inputs

e SmartVoltage technology
e Internal 3.3V/5.0V

The 28F016XD leverages the existing DRAM controller
in system designs and thereby minimizes the glue logic
required to interface to flash memory. It is a 16-Mbit
device, organized as 1 Mbyte x 16. The 28F016XD has
ten row addresses and ten column addresses,
multiplexed on inputs Aj-Ag.

The 28F016XD is fully non-volatile, giving it significant
power and performance advantages over the traditional
disk-plus-DRAM alternative. The 28F016XD does not
lose data when power is removed from the device. By
permanently storing and executing programs from the
28F016XD, the inherently slow disk drive-to-DRAM
load delay is eliminated. The 28F016XD also does not
require refresh cycles (although the 28F016XD will
properly ignore any refresh cycles that are issued to it).

ADVANCE INFORMATION

AP-384

2.0 28F016XD COMPARISONS TO
DRAM

The following sections discuss specific areas of
comparison between the 28F016XD and 16-Mbit (IM x
16) DRAMs in 60 ns and 70 ns speed bins. Please
reference the 28F016XD datasheet for a full description
of the 28F016XD.

2.1 Voltage and Current
Specifications

One obvious difference between the 28F016XD and
DRAM s is that flash memory specifications reference a
Vpp voltage, used with Data Write and Erase operations.
All Vpp-related voltage and current specifications are
unique to the 28F016XD. Note that the 28F016XD
offers the option to connect Vpp either to 12.0V + 5% or
to 5.0V = 10% (which may also be the V¢ operating
voltage). The 28F016XD includes Ve current
specifications during Data Write, Erase and Erase
Suspend operations. These operations are unique to flash
memory; therefore, these specifications are not found in
DRAM datasheets.

The 28F016XD specifies a Vi g (lockout) voltage. This
specification relates to circuitry within the flash memory
that protects it from unwanted data alteration. The Vi go
specification is not found in DRAM datasheets. The
28F016XD also provides the deep power-down mode,
not available on DRAMs. 28F016XD read, standby
(CMOS), RAS#-only refresh and CAS#-before-RAS#
refresh currents are lower than those seen with DRAMs.

A comparison between the 28F016XD and

representative 16-Mbit DRAMs (valid at the time this
application note was written) is shown in Table 1.

359

AP-384

intel.

Table 2. 28F016XD Added/Revised DC Characteristics (Continued)
Ve =3.3V + 0.3V, Ta =0°C to + 70°C

Sym Parameter Min Typ Max Unit Test Condition
lec7 Vcc Standby Current 40 55 mA [Vce = Vee Max
(Self Refresh Mode) RAS#, CAS# = V|L
lour =0 mA
Inputs = Vi or Viy
lcco Vcc Deep Power-Down 2 5 HA |RP#=GND + 0.2V
Current
lccw Ve Word Write Current 8 12 mA | Word Write in Progress
Vep =12.0V + 5%
8 17 mA |Word Write in Progress
Vpp = 5.0V + 10%
lcce Ve Block Erase Current 6 12 mA |Block Erase in Progress
Vpp =12.0V £ 5%
9 17 mA |Block Erase in Progress
Vpp = 5.0V + 10%
lcces Vcc Erase Suspend 1 4 mA RAS#, CAS#=ViH
Current Block Erase Suspended
Ilpps Vpp Standby/Read +1 +10 pA Vpp £ Vce
Current 30 200 MA |Vep> Vce
IpPD Vpp Deep Power-Down 0.2 5 pA RP# = GND + 0.2V
Current
lpPw Vep Word Write Current 10 15 mA [Vpp=12.0V + 5%
Word Write in Progress
15 25 mA [Vpp=5.0V +10%
Word Write in Progress
lpPE Vpp Block Erase Current 4 10 mA [Vpp=12.0V 5%
Block Erase in Progress
14 20 mA |Vpp=5.0V +10%
‘ Block Erase in Progress
lpPES Vpp Erase Suspend 30 50 pA Block Erase Suspended
Current
VPPLK Vpp Erase/Write Lock 0.0 1.5 \
Voltage
Vepul Vpp during Write/Erase 45 5.0 5.5 \
Operations
VppH2 Vpp during Write/Erase 11.4 12.0 12.6 \
Operations
Viko V¢ Erase/Write Lock 2.0 \
Voltage
360 ADVANCE INFORMATION

intal.

AP-384

Table 3. 28F016XD Added/Revised DC Characteristics (Continued)
Ve =5.0V +0.5V, Ta =0°C to +70°C

Sym Parameter Min Typ Max Unit Test Condition
lpps Vpp Standby/Read +1 +10 PA |Vep £ Vce
Current 30 200 PA |Vep > Vce
lpPD Vpp Deep Power-Down 0.2 5 A RP# = GND = 0.2V
Current
lppw Vpp Word Write Current 7 12 mA |Vpp=12.0V £ 5%
Word Write in Progress
17 22 mA |Vpp=5.0V+10%
Word Write in Progress
IpPE Vpp Block Erase Current 5 10 mA |Vpp =12.0V £ 5%
Block Erase in Progress
16 20 mA |Vpp=5.0Vx10%
Block Erase in Progress
IpPES Vpp Erase Suspend 30 50 HA Block Erase Suspended
Current
VppLK Vpp Erase/Write Lock 0.0 15 \"
Voltage
VppH1 Vpp during Write/Erase 4.5 5.0 55 Vv
Operations
VppH2 Vpp during Write/Erase 114 12.0 12.6 \
Operations
Viko Vcc Erase/Write Lock 2.0 \Y
Voltage

2.2 Timing Specifications

28F016XD timing specifications are divided into the
following categories in the datasheet:

e Common Parameters

e Read Cycle

e Write Cycle

o Read-Modify-Write Cycle

o Fast Page Mode Cycle (including fast page mode
read-modify-write)

e Refresh Cycle (including refresh period)

e Miscellaneous

Many 28F016XD specifications match or improve on
those of 60 ns and 70 ns DRAMSs. Programming

additional DRAM controller wait states will
accommodate most slower 28F016XD specs.

ADVANCE INFORMATION

In some cases, specifications that have identical values
for both reads and writes to DRAM (such as RAS# and
CAS# pulse widths and hold times), have been
differentiated (separate specs for read and write) on the
28F016XD. This differentiation both accurately reflects
28F016XD functionality and improves the DRAM
controller interface to 28F016XD, in some cases.

Common Parameters

Table 4 compares 28F016XD common parameters to
DRAM, with incompatible specifications shaded for
emphasis. Areas where the 28F016XD improves upon
DRAM specifications are outlined in bold. Notice that
the 28F016XD’s RAS# precharge time specification is
much shorter than that for DRAM, while the
28F016XD’s CAS# precharge time specification is
slightly longer. Also, the 28F016XD’s row address hold
time after RAS#, column address hold time after CAS#
and CAS#-to-RAS# precharge time are slightly longer
than those for DRAM.

361

AP-384

Fast Page Mode Cycle Specifications

28F016XD fast page mode cycle specification
incompatibilities compared to DRAM have the same
root causes as the read and write cycle incompatibilities
described earlier. Fast page mode read-modify-write
cycles to the 28F016XD will not occur in the majority of
applications.

Table 8 compares 28F016XD fast page mode cycle
specifications to DRAM, with incompatible
specifications shaded for emphasis. Areas where the
28F016XD improves upon DRAM specifications are
outlined in bold.

intgl.

Flash memory does not require refresh to retain stored
data contents. However, by interfacing to a DRAM
controller, it will automatically receive the same refresh
cycles that DRAM receives. The 28F016XD supports all
common refresh cycles; CAS#-before-RAS#, RAS#-
only, hidden and self-refresh. In these modes, it will
either drive or float the data bus just as a DRAM would.
Refresh cycles have no other effect on 28F016XD stored
data.

Refresh Cycle Specifications

Table 9 compares 28F016XD refresh cycle
specifications to DRAM, with incompatible
specifications shaded for emphasis. Areas where the
28F016XD improves upon DRAM specifications are
outlined in bold.

Table 8. 28F016XD Fast Page Mode Cycle Specifications Compared to 60-70 ns 16-Mbit DRAM

Sym Description

DRAM
(3.3V)

DRAM

28F016XD 28F016XD
(3.3V) (5.0V) (5.0V)

362

ADVANCE INFORMATION

o
intel.

Table 10 28F016XD Added/Revised AC Timings (Continued)
Ve =3.3V £0.3V, Vpp = 5.0V £ 0.5V, T, = 0°C to +70°C

Sym Parameter Min Typ Max Units
twarn1 | Word Write Time TBD 35 TBD us
twrrn3 | Block Write Time TBD 1.2 TBD sec

Block Erase Time TBD 1.4 TBD sec
Erase Suspend Latency Time to Read 1.0 12 75 us
Ve =33V £ 0.3V, Vpp = 12.0V + 0.6V, T, = 0°C to +70°C

Sym Parameter Min Typ Max Units
twhrn1 | Word Write Time 5 9 TBD us
twhrn3 | Block Write Time TBD 0.3 1.0 sec

Block Erase Time 0.3 0.8 10 sec
Erase Suspend Latency Time to Read 1.0 9 55 15

Table 11. 28F016XD Added/Revised AC Timings
Ve =5.0V £ 0.5V, T, = 0°C to +70°C

Versions 28F016XD - 85

Parameter Min Max | Unit
RP# High to RAS# going low 300 ns
RP# Set-Up to WE# going low 300 ns
Vpp Set-Up to CAS# high at end of write cycle 100 ns
WEH# High to RY/BY# going low 100 ns
RP# Hold from Valid Status Register Data and RY/BY# High 0 ns
Vpp Hold from Valid Status Register Data and RY/BY# High 0 ns
Ve at 4.5V (minimum) to RP# High 2 Us

ADVANCE INFORMATION 363

AP-384

intgl.

Table 11 28F016XD Added/Revised AC Timings (Continued)

Ve = 5.0V £ 0.5V, Vpp = 5.0V £ 0.5V, T, = 0°C to +70°C

Sym Parameter Min Typ Max Units
twarn1 | Word Write Time TBD 25 TBD us
twhrn3 | Block Write Time TBD 0.85 TBD sec

Block Erase Time TBD 1.0 TBD sec

Erase Suspend Latency Time to Read

1.0 9 55 ps

Ve = 5.0V £0.5V, Vpp = 12,0V £ 0.6V, T, = 0°C to +70°C

Sym Parameter Min Typ Max Units
twnrn1 | Word Write Time 4.5 6 TBD us
twhrnS | Block Write Time TBD 0.2 1.0 sec

Block Erase Time 0.3 0.6 10 sec
Erase Suspend Latency Time to Read 1.0 7 40 us

2.3 Package and Pinout

Although the 28F016XD includes all necessary inputs
and outputs for interfacing to DRAM controllers, its
pinout and package do not match those of DRAMs but
instead evolve from other 16-Mbit Intel flash memories.
The 28F016XD uses a 56-lead TSOP package, with
pinout shown in Figure 1 and package dimensions
shown in Figure 2.

Comparable 1M x 16 (16-Mbit) DRAMs use two

packages, a 42-lead SOJ and 44-lead TSOP. Examples
of these DRAM pinouts are shown in Figures 3 and 4.

364

Table 12 summarizes pinout comparisons between the
28F016XD in 56-lead TSOP and various DRAM
package options.

If compatibility between the 28F016XD and DRAM
“footprints” is desired, 28F016XD flash memories can
be placed on DRAM-compatible SIMMs. Please see the
Additional Information section of this application note
for documentation that covers this topic in more detail.

ADVANCE INFORMATION

intal.

Application Note-377

365

intgl.
28F016SA Commands

The 28F016SA command set is a superset of the
28F008SA command set, giving existing 28F008SA
code the ability to run on the 28F016SA with minimal
modifications.

28F008SA-Compatible Commands

00 invalid/reserved

20 single block erase
40 word/byte write

50 clear status registers
70 read CSR

90 read ID codes

BO erase suspend

DO confirm/resume

FF read flash array

28F016SA Performance-Enhancement
Commands

oc page buffer write to flash

71 read GSR and BSRs (i.e. the ESR)
72 page buffer swap

74 single load to page buffer

75 read page buffer

71 lock block

80 abort

96,xx RY/BY# reconfiguration and SFI
configuration (28F016XS)

97 upload BSRs with lock bit

99 upload device information
A7 erase all unlocked blocks

EO sequential load to page buffer
FO sleep

FB two-byte write

AP-377

28F016XD and 28F016XS Feature Sets

The following features are not supported on the
28F016XD and 28F016XS Embedded Flash RAM
memories (as compared to the 28F016SA/SV/32SA
FlashFile™ memories):

o All page buffer operations (read, load, program,
Upload Device Information)

o Command queuing

o Erase All Unlocked Blocks and Two-Byte Write

o Software Sleep and Abort

o RY/BY# reconfiguration via the Device
Configuration command

367

intgl.

Application Note-343

369

intal.

Memory Cards

Many computer manufacturers are pursuing the IC
memory card to incorporate a removable mass storage
medium. This is an ideal application for the Intel Flash
Memory TSOP, due to the package’s minimal height.

Solid-State Memory Alternatives

ROM and SRAM are currently the dominant IC card
memory technologies. ROM has the advantage of being
inexpensive, but is not changeable. When newer
software revisions (e.g., Lotus* 123, Windows, etc.) are
available, the user must buy a new ROM card for each
upgrade. Intel Flash Memory’s reprogrammability
minimizes the user’s expense and the OEM’s inventory
risk.

SRAM is reprogrammable but requires batteries to
maintain data, risking data loss. Like magnetic disks,
flash memory is truly nonvolatile and thus has very long
storage time with power off. Additionally, SRAM is

AP-343

expensive and not a high density solution. Intel Flash
Memory provides a denser, more cost effective and
reliable solution.

System level cost is about the same for Intel Flash
Memory and SRAM + battery—

Flash memory requires 12V for programming and
erasing. If a 12V supply is not available, 5V can easily
be boosted. (See Application Note AP-316.) SRAM +
battery requires battery state detect circuitry.

Card level cost differences are substantial (Figure 3)—

SRAM must have a battery to retain data. It also requires
a Vcc monitor and Write Lockout circuitry. Intel’s Flash
Memory only requires Write Lockout circuitry
(switching Vpp to OV is an alternative write protect).
This leads to increased area for memory components.
More importantly, Intel’s Flash Memory density is
4 times that of static RAM, yielding lower cost per bit.

CARD LEVEL
[
(%2
Q
(8]
I;' Battery
-
<€ Higher Densities] Vce Monitor
- Circuits
g In;:recMsed Area
or Memory
SYSTEM LEVEL Components Write
Lockout
Circuit
Voltage Battery Write
Conversion Detect Lockout Lower
5V =12V Clrcult Circult Densities
FLASH SRAM FLASH SRAM

292079-23

Figure 3. Support Circuitry Cost Comparison

371

intal.

Application Note-325

373

Start
Program
y <

Program Verify=
Read Data
from Device

Program
rror

'

Y
(Program
Success

292059-1

Figure 1. The flow chart shows the fundamental
nature of an adaptive algorithm. Based on the
outcome of program verification, the flow may

loop back for another program operation.

Moving Charge and Other Factors You
Should Know

This section discusses the mechanics of flash memory
programming. For most 'system designers, transistor-

AP-325

level discussions were last heard in college. We may
recall that DRAM consists of a storage capacitor and a
transistor. We remember this clearly because failure to
refresh that capacitor causes systems to malfunction. In
like fashion, one should understand the fundamentals
of flash memory reprogramming. The understanding
will enable error-free memory operation and reliable
system performance.

In simplest terms, each data bit equates to a memory
cell. Intel’s flash memory uses one transistor per cell
with the smallest possible architecture. This delivers the
lowest cost per bit and highest capacity, levering system
software (rather than bulky, complex cells) for
reprogramming control.

Figure 2 shows a simplified cross section of Intel’s flash
memory transistor. Note the structure; the cell is a
stacked gate MOS transistor. An isolated floating gate
stores the memory charge. The floating gate consists of a
layer of (conductive) polysilicon surrounded by (non-
conductive) oxide layers.

On a DRAM cell, each transistor connects to a capacitor
which stores the memory charge. The major difference
between flash memory and DRAM derives from their
cell structure. The DRAM cell loses its charge if not
refreshed within a few milliseconds. On the other hand,
the flash memory floating gate maintains its charge as a
fully nonvolatile memory, similar to ROM or EPROM.
The structure is isolated and insulated by the field and
gate oxides-hence the name “floating” gate.

ETOX™ Flash Memory Cell*

Control Gate

Floating Gate

Source

Substrate

Drain

Floating Gate

2620592
*Patented Intel Processes

Figure 2. Simplicity of design assures isicreasing densities, manufacturability and reliability.
These are the attributes that drive mainstream memories.

375

intgl.

Engineering Report-33

377

intal.

Cycling Performance

Cycling durability has made tremendous gains from
early first-generation devices, such as the 28F256-
170P1C2 with a 100-cycle specification. Current
products, such as Intel’s ETOX III 28F008SA, are
registering above 1,000,000 cycles. Experiments with
these units have been conducted to prove their
reliability. These parts typically do not produce hard
failures, instead they see program and erase timings
push out.

ETOX cycling longevity has progressed due to
continued improvements in tunnel-oxide quality. As
oxide layers become cleaner and more consistent,
cycling-induced electron trapping minimizes. Reduced
electron trapping helps keep V. distributions tight.
Additionally, reduced electron trapping improves
program and erase pulsing efficiencies. This improved
efficiency lessens the number of pulses required for a
given operation to succeed, which in turn also reduces
electron trapping. Since trapping is the primary source
of program/erase time pushout (i.e., more pulses
required), higher quality oxides reduce this degradation
and extend cycling performance.

Improved source-to-floating gate coupling consistency
via enhanced cell/array uniformity also extends cycling
longevity by lowering the number of erase pulses
required. Additionally, the Intel ETOX cell, in
combination with optimal WSM control, typically
requires a very low number of pulse repetitions to
achieve a program or erase state (typically one pulse for
programming). This also lessens the pulse count,
extending cycling livelihood.

Improvements in isolation, both from cell to cell and
around the floating gate, have mitigated charge retention
and data disturb concerns.

Read Access
Intel Flash Memory architecture has evolved by leaps

and bounds since its inception. Read access time (tacc)
has made significant gains, while maintaining very high

ER-33

levels of noise immunity. The 27F64’s fastest speed bin
was 150 ns, while the 28F016SA will offer a 5.0V 70-
ns/80-ns version with +5%/10% Vcc tolerance and a
3.3V +0.3V 120-ns version.

Double metal, introduced on ETOX III, has been the
biggest contributing factor toward improving read
access times. This enhancement reduces wordline and
bitline resistance, thereby enabling faster cell turn-on
and sensing paths during read operations. Continually-
improved circuit designs also contribute to shorter read
timings. Again, cell and array compaction enables
inclusion of new/additional circuitry that enhance read
performance, and will also allow future 3.3V parts with
access times much faster than their 5.0V predecessors.

FLASH vs. OTHER SEMICONDUCTOR
MEMORY TECHNOLOGIES

Intel’s scaling advances in flash memory manufacturing
and design provide optimal cell/array compaction. In
roughly twenty-two years, Intel non-volatile memory
density has grown from 2,048 bits to 16,777,216 bits, a
factor of 8192x. Figure 15 compares other memory
types to show relative density progression. The fast
ramp in ETOX flash memory density results from its
similarity to EPROM. :

Figure 16 illustrates the relationship between cell sizes
of different memory types and minimum geometries. As
dimensions scale, certain memory types become cell-
size limited (i.e. some components cannot shrink
proportionally). The memory cost-per-bit learning curve
shows flash in a strong position. This curve, shown in
Figure 17, reflects how Intel’s experience reduces cost
for increased memory density.

Since the late 1980’s, a new memory sub-system has
arrived on the market offering an alternative to high-
density file system media. Intel’s Series 2+ Flash
Memory Cards take advantage of the 28F016SA and its
third-generation architecture to provide card densities of
up to 40 Mbytes and new functionality. This relatively
new technology offers a solid-state file system (Figure
18) that will double in density with new ETOX
generations.

379

intal.

28F016XD
Embedded Flash RAM
Product Brief

381

Intel 28F016XD Embedded Flash RAM

Product Brief

B Innovative embedded flash
RAM device:
DRAM:-like system interface
Nonvolatile, updatable and
low power

M Better price and performance
than DRAM + ROM and
DRAM + HDD:

Offers higher integration and
3.3V capability

Requires lower power and less

board space

B Ideal for embedded applications:
Datacom
Office automation
Telecom
Computing
Games

E Simple DRAM-like interface:
Allows use of standard
DRAM controllers
Optimizes time to market
Sits directly on a cachable
bus

B Ideal for portable
applications

Easy interface to systems using
embedded processors:
For i960°KX, i960CS, i960JX
and Intel386™EX CPU-based
systems

B Internally partitioned into 32
software-lockable, 64-KB blocks

B SmartVoltage feature:
Supports both 5V and 12V
device writes and 5V or 3.3V
device reads

B First flash memory device with
DRAM:-like interface

*,

Product Description

The Intel 28F016XD embedded flash RAM is an innovative 16Mb memory
component that combines a DRAM-like system interface with the nonvolatility,
updatability and lower power of flash memory. The 28F016XD embedded flash
RAM is an ideal solution for embedded applications where redundant code DRAM
+ROM or code DRAM + HDD were used for code execution/storage memory.

Its simple DRAM-like interface allows use of standard DRAM controllers, opti-
mizing time to market. In addition, the Intel 28F016XD embedded flash RAM is
in-system updatable, reducing the risk of early manufacturing as compared to
DRAM + ROM and DRAM + OTP EPROM options. The Intel 28F016XD
embedded flash RAM can easily interface to systems using such embedded
processors as the 1960°KX,, 960X, 1960JX and the Intel386™EX CPU-based
systems. Several vendors offer 28F016XD embedded flash RAM SIMM modules,
making it easier to upgrade code DRAM designs to embedded flash RAM.

The Intel 28F016XD embedded flash RAM is internally partitioned into 32
software-lockable, 64-KB blocks. Like Intel’s 28F016SV SmartVoltage device,
the 28F016XD embedded flash RAM supports both 5V and 12V device writes as
well as 5V or 3.3V device reads. Because the Intel 28F016XS embedded flash
RAM is a nonvolatile, code storage and execution solution, there is no need for
refresh, redundant memory or HDD “spin-up” latency when returning from deep
power-down mode. It also enables instant-on system design.

The Intel 28F016XD embedded flash RAM, which is the first flash memory device
with a DRAM-like interface, is particularly well suited for data communications,
office automation, telecommunications, computing and games.

Other brands and names are the property of their respective owners.

Printed in USA/0395/7.5K/ASI/LK
© 1995 Intel Corporation

Order Number: 297547-002

383

intgl

Order Number: 210830-014
Printed in USA/0195/21K/RRD/TS
Memory Products

@ Printed on
Recycled Material

