intal

APPLICATION AP-29
NOTE

August 1977

Using the Intel 8085
Serial 1/0 Lines

Contents

INTRODUCTION. et 1
MCS Family Members. 1 =

Additional 8085 Instructions 1
CRTINTERFACE 3
Hardware Interface 3
Software Package 3
OUTPUTROUTINE 5
INPUT ROUTINE. 6
TIMING ANALYSIS. 6
BAUD RATE IDENTIFICATION ROUTINE. 7
CASSETTE RECORDER INTERFACE 8
Hardware Design.............................. 8
Software 9
OUTPUTROUTINE. 10
INPUTROUTINE. 10
ADDITIONAL COMMENTS. 12

APPENDIX 13

INTEL CORPORATION ASSUMES NO RESPONSIBILITY FOR THE USE OF ANY CIRCUITRY OTHER THAN CIRCUITRY EMBODIED IN AN INTEL PRODUCT. NO OTHER CIRCUIT PATENT LICENSES ARE IMPLIED.

© INTEL CORPORATION, 1977

INTRODUCTION

This application note is intended to acquaint the
reader with the Intel® MCS-85 family, and to
explain how to use one of its key features, a direct
serial data link between the CPU and the outside
world. Two design examples will be provided: a
versatile method for direct communications be-
tween the CPU and a CRT or other peripheral at
any rate from 110 to 9600 baud, and a magnetic
tape interface system which allows programs and
data to be stored or loaded using a cheap audio
cassette recorder. Both examples use software
routines to replace extensive external hardware and
to provide additional flexibility.

MCS Family Members

The MCS-85 family consists of the new 8085
N-channel, 8-bit microprocessor (Figure 1) and a
variety of parts which provide memory, input/out-
put, timing, and peripheral control capability.

C

X, d» a0 Ve
X 2 39 1 HoLD
RESETOUT []3 38 [] HLDA
sop [4 37 [] CLK (OUT)
sib s 36 [] RESETIN
TRAP []6 35 [] READY
RST75 7 3a] 1o/m
RsT6.5 []8 337 s,
RSTS55 (]9 32|] RD
INTR (J10 8085 310 WR
INTA (11 300 ALE
ADy 12 29[s,
AD, 13 28] Ass
AD, [] 14 270 A
AD; [15 261 Ay
AD, [16 251 Ay,
ADg [17 241 Ay,
ADg []18 23[] A
AD, [19 22[1] A
Ves [20 210 Ag

Figure 1. 8085 Pinout Diagram

In many respects the 8085 can be thought of as
simply a hardware refinement of the extremely
popular Intel® 8080 processor, which was intro-
duced in 1973. It is 100% software-compatible
with its predecessor. In addition to being 50%
faster, many of the external timing and control
functions needed by the 8080A have been inte-
grated into the 8085 (such as the 8224 Clock

Generator and the 8228 System Controller), thus
reducing the system part count. Additional fea-
tures include four additional maskable and non-
maskable interrupt pins, increased drive capability,
and two new input and output lines. These pins,
called SID and SOD, provide a serial I/O data link
with the CPU. The 8085 uses a standard 40-pin
DIP package.

All members of the MCS-85 family require a single
S-volt power supply, greatly reducing system over-
head. Several components combine a number of
system functions (e.g., ROM and I/O), allowing a
complete, useful microcomputer system to be
assembled with as few as three integrated circuits,
as shown in Figure 2. For example, the 8155 and
8156 RAM/IO/TIMER chips each contain 256
8-bit bytes of program or data storage, three pro-
grammable I/O ports, and a 14-bit timer/counter.

Since the internal architecture and instruction set
of the 8085 is an extension of that of the 8080, all
software written for the 8080 — including com-
pilers, assemblers, and individual applications
programs — will run without modification on the
new processor. In fact, the complete upward com-
patibility of the MCS-85 system means that appli-
cations designed around the 8080 can be converted
to using the 8085 at minimal cost, requiring little
hardware redesign or program modification. An
engineer already familiar with the 8080 will not
need to learn a new architecture or mnemonics.
Companies now using Intel’s extensive line of
design, development, and debugging tools can aug-
ment their systems with a series of 8085 support
products (such as the SDK-85, ICE-85, and SBC
boards) which are compatible with their present
mainframe and peripherals.

Additional 8085 Instructions

The additional hardware features of the 8085
(handling multiple-level maskable interrupts and
serial I/O) are supported with two new instruc-
tions. RIM (machine code 20H) is used to read the
current status of the three interrupt masks into the
accumulator. Additional bits are set to show what
interrupts (if any) are pending, and the logical state
of the SID input pin (pin 5). The complement of
RIM is SIM (machine code 30H), which has a dual
function depending on the current accumulator
contents. If bits 3 or 4 of the accumulator are a
logical one, SIM can be used to change the three

interrupt masks; if bit 6=1, SIM can set the SOD
output (pin 4). The two functions of the SIM
instruction operate independently. (If, at this
point, the acronyms RIM, SIM, SID, and SOD are
starting to blur in your mind, try to remember
their roots instead: Read Interrupt Mask, Set Inter-
rupt Mask, Serial Input Data, and Serial Output
Data. Don’t worry; of the other four ordered
permutations of R&S, 1&0, and M&D, only ROM
is used elsewhere in this note, and then only in its
traditional sense.)

0 1,

e

X, X, RESET IN
—=1 TRAP HOLD <
—{ RST7,5 HLDA |—
—1 RST6,5 8085 SOD p—»
—=| RST5,5 SID f=—
—| INTR S\ —
_ RESET
INTA ADDR/ _____out So
ADDR DATA ALE RD WR I0/M RDY CLK

{\ Vss Ve
@) @8 1 l

DATA/ ¢
ADDR
N

I
1888

10/M TIMER
reser OUT
ow
RD

~
>
=
m
o
]
ol
>

CE

>A8410

I | | I | I 8355/8755
DATA/
ADDR

10/M poRT
RESET 8

T

g

RDY
—=|CLK

1]

Vss Vee Voo PROG

AM— Vcc

VoV

Figure 2. 8085 Minimum System

A detailed explanation of the accumulator con-
tents after and before RIM and SIM is given in
Figure 3. The I/O pins both function with respect
to positive logic: a “1”” in the accumulator corre-
sponds to a high voltage level, 0 to a level near
ground. The SID and SOD lines are electrically
compatible with normal TTL logic levels. (For full
electrical specifications, the reader should consult
the MCS-85 User’s Manual.) If Ag is “0” prior to
executing SIM, SOD will remain unchanged,
regardless of the state of A7. After a Reset, SOD
will be low. It should be noted that RIM does not
affect the Sign Flag; in order to make a conditional
jump based on the Serial Input Data state, a three
instruction sequence should be used, such as shown
in Examples 1 and 2. When serial data is to be
assembled into a parallel word, a sequence such as
in Example 3 can be used, which shifts the con-
tents of register pair HL one bit to the left and
appends the input data bit.

7 (1]
OPCODE: o[o[1|o|o|o|oio]
7 6 5 4 3 2 1 0
ACCUMULATOR
CONTENT SID 175 16.5 155 (3 M7.5 | M6.5 | M55
AFTER RIM: ; ‘
L INTERRUPT MASKS
INTERRUPT ENABLE FLAG

CYCLES: 1

STATES: 4 INTERRUPTS PENDING

FLAGS: NONE

SERIAL INPUT DATA

0

[efofr[r]ofolo o]

OPCODE:

7 6 s 4 3 2 1 0
ACCUMULATOR [
CONTENT SOD | SOE | X | R7.5 | MSE | M7.5 | M6.5 | M55
FOR SIM:

1
’ t RST 5.5 MASK
L —— RST 6.5 MASK
- — RST 7.5 MASK

— MASK SET ENABLE
——— RESET RST 7.5
~—— UNDEFINED
—— ——— SOD ENABLE
E— -~ SERIAL OUTPUT DATA

CYCLES: 1
STATES: 4
FLAGS: NONE

Figure 3. Effect of RIM and SIM Instructions

This note does not concern itself with the interrupt
mask manipulation also made possible with RIM
and SIM; for a full understanding of the interrupt
capabilities of the 8085, see the User’s Manual. To
use SIM for altering the SOD state without fear of
interfering with the interrupt mask status, one
need only make sure that bits 3 and 4 of the
accumulator are set to zero first.

.\

EVRMPLE 1:

BIM (RERD SID LEVEL

o R JSET SIGN FLRG IF 7=t
M LREEL S JUMP IF SID MRS HIGH.
o \ ELSE CONTIMJE
EXPHFLE o

RIH {PERD SID

PRL JMDYE F7 INTD CY

CHE SERYICE :CALL SERYIZE ROUTIME
it IF SI0 WRS L.

Pt i% THEN CONTINUE
EXAMPLE 3:

RIH :PERD €10 DRTA BIT
RAL (MIYE DATR INTO OV
MY AL

RAL JROTATE DATR INTO L
MY LR

N

RFL i POTATE QYERFLON
MOV MR sh INTO M

v S CONTINUE

On the following pages, examples are given show-
ing two possible uses of the SID and SOD lines.
The main purpose of these examples is not to give
the reader a design after which he could model his
own system — though, of course, this might be the
case — but rather to illustrate the hardware and
software interfaces and techniques necessary to
implement a typical working subsystem.

CRT INTERFACE

Most microprocessor systems require some sort of
serial communications. This may be selected for
reasons of economy (to reduce the number of
interconnections required in a distributed system),
or it may be necessary in order to communicate
with such common peripherals as CRT’s or tele-
typewriters.

These peripherals all use a standard convention for
transmitting serial ASCII code. Each data byte is
transmitted as a series of 10 or 11 bits. The uni-
form time per bit corresponds to the data trans-
mission rate. For example, if the transmission rate
is to be 2400 baud (2400 bits per second), each bit
time must be 1/2400 bps =416.7 usec/bit. The
standard 10-bit sequence consists of a logically

zero “‘Start” bit, 8 data bits (least significant bit
first), and one or more stop bits (logic 1). An
11-bit sequence with two stop bits is used for 110
baud TTY’s. The logic one level continues until the
start bit of the next byte to ensure that each 10-bit
sequence is initiated with a one-to-zero transition.
The 8 bits transferred might be raw binary data or
alphanumeric characters using the standard ASCII
code. In this case, the most significant bit — the
last data bit transmitted — will depend on the
parity convention being used. This sequence is
illustrated for the ASCII “space” character in
Figure 4.

6 BITS

D D D D D, D, D, D
0 1 2 3 4 5
START 6 7 STOP
BIT BITS

Figure 4. ASCII Space Character

The algorithm for receiving serial code involves
sampling the incoming data at the middle of each
bit time. The eight sampled values are shifted into
a serial byte corresponding to the data originally
transmitted. The one-to-zero transition at the
beginning of each byte makes it possible to syn-
chronize the sampling points relative to the start
of each data sequence.

Hardware Interface

In general, any serial communications system will
require both hardware and software interfaces.
Since the SOD line can drive only one TTL load,
additional current and voltage buffering is required
to be compatible with the RS-232C interface
standard used by most peripherals. A schematic for
achieving this buffering is shown in Figure 5. The
MC1488 and MC1489 circuits interface positive
logic TTL signals with the RS-232 high voltage
inverted logic levels.

Software Package

The software needed to drive the CRT interface is
divided into three parts. All three use software
timing and delay loops, with fixed and variable
parameters. In conjunction, they are able to
identify incoming signals at any rate from below
110 to over 9600 baud and respond at the same
rate.

+5V
[14

N.C.

2 CRT DATA OUT

SID

8085

SOD

GND 20

=330 pF

3_0 CRT DATA IN
5 SIGNAL O 0 00 000 00 O
GROUND o9 000000 0
), [——————)

Figure 5. RS-232C Interface Schematic

Upon power-up or reset, or when the console
device baud rate is changed, the baud rate identifi-
cation subroutine (BRID) is called. This routine
waits until an ASCII space character (20H) is
received from the console. (Any other character
will result in a case of mistaken identification.)
When a space character is received, two time
parameters are computed which correspond to the
bit time and one-half the bit time of the baud rate
being used. These are stored as variables BITTIME
and HALFBIT. To output a character to the con-
sole, the character code is placed in register C, and
the subroutine COUT is called. This routine uses
BITTIME as a parameter for the software delay
loop which determines the baud rate. To accept a
character from the keyboard, CIN is called. CIN
returns after the next key is typed, with the corre-
sponding character code in register C. CIN uses
both parameters BITTIME and HALFBIT.

Since COUT and CIN use time parameters com-
puted by BRID, they will function at a rate the
same as that of the initial space character input.
Because of the nature of the software, the rate
does not depend on the CPU clock frequency. This

results in additional flexibility in the following
respects:

1. The software does not need to be modified
if the 8085 crystal frequency is changed or
Wait states are added.

2. Since the time base is no longer critical, the
quartz crystal could be replaced by a less
expensive RC network, provided the fre-
quency does not drift by more than a few
percent during a session. Additional drift can
be accommodated by periodically recalling
the BRID routine.

3. Communication is possible at non-standard
baud rates which relaxes the constraints on
system peripherals.

It should be noted, though, that slowing down the
CPU clock will decrease its throughput proportion-
ately. In addition, it will degrade the maximum
resolution of the delay loops, with the result that
the highest baud rates may no longer be achievable.

A more detailed analysis of the CRT interface
routines will be presented in the order of increasing
complexity: COUT, CIN, and BRID. Since SID and

SOD are ideal for many applications which involve
critical I/O timing, the timing techniques used here
may be of interest to software designers. Accord-
ingly, the mathematical derivation of the timing
parameters is included in this analysis, as well as a
justification for the BRID algorithm. The algebra
involved might be a bit too tedious for designers
unconcerned with generating software delays. If so,
they (and other bored readers) have the freedom of
choice to skip over the sections they find objec-
tionable.

OUTPUT ROUTINE

It would seem natural to write data in the standard
format in three stages: output a zero start bit, then
the 8 data bits (using a loop sequence), then the
stop bits. Each stage would incorporate its own
appropriate delay and output sections, leading to
unnecessary duplication. Instead, the code below
executes the same main loop 11 times. Its bit
manipulation routine inherently results in the cor-
rect data sequence being formed. It accomplishes
this by using the carry and C register as a 9-bit
pseudo-circular shift register. Initially CY=0. The
algorithm outputs CY, waits one bit time, sets
CY=1, and then rotates the pseudo-register right
one bit. This repeats for 11 cycles. On the tenth
and all subsequent loops, the output bit will be a
logical one, since that bit had been set nine loops
earlier while in the CY (see Figure 6).

When COUT is called the registers to be used must
be preserved and interrupts disabled so the timing
loop will not be disrupted. Clear the CY in prepara-
tion for outputting the start bit, and set the loop
counter for 11 bits (if 110 baud will never be used,
the counter could be set to 10):

COuT- PUSH B
PLSH H
DI
YRR A
M1 g1

Output of the contents of the CY:

o Myl f. oEH I
FRR 4
= 4%

The numbers in brackets indicate how many ma-
cine cycles are required for each instruction. They
will be referred to in the timing analysis section.

cLe
REGISTER C: ID7[°5‘D5iD‘ID3‘D2]D‘[D°

OUTPUT
cy:
STC START BIT

CY:
RAR

1 ID71051 Ds‘ D4l Dgl Dzl D1
m OUTPUT
STC Do

RAR

1 |1 [D7lDeID§]D4]Dal02

OUTPUT
D1

:
OUTPUT
ST - (g
%‘{1[111]41].[111
OuUTPUT
STC D7

RAR

OUTPUT

STOP BITS
.

Figure 6. Data Serialization Algorithm

Get stuck in a loop for the appropriate time (don’t
worry for now how “BITTIME” is determined):

LHLD BITTIME “1e%

L2 WR L 0
Mmoo (D
DR H i
meooe {0

Rotate the contents of register C right into the CY,
while moving a one into the left end. Continue
until all bits have been transmitted:

ST 4
M A.C 4%
FRE 4
oy LA A4
LLR e <43

N2 Ci 18

Restore processor status and return:

pop H
PoP B
El

RET

INPUT ROUTINE

The console input routine uses the opposite pro-
cedure; instead of moving a bit from register C to
the CY, then to A7, then to SOD, CIN loads a bit
from SID into A7, then moves it to CY, then into
register C.

First, set up the CPU as before:

CIN: Pils H
b1
Myl g.9

When a start bit transition arrives, the first sam-
pling should not be taken until the middle of the
first data bit, one and one-half bit times after the
transition. Await the start bit transition, then set
up the delay parameter for one-half bit time:

Ci1: RIM <>
] A 4>
I B3] ae

LHLE HALFBIT {163

Loop for one-half bit time before starting to
sample data:

£I2: [CR L (i
N CIz K
DCR H iy
e CIz2 ey

Wait until the middle of the next bit before sam-
pling SID, then move the data bit into CY:

CI2: LHLD BITTIHE 18>

CI4: LCR L by
MNE 14 (0
bR H by
Nz Cl4 LAY
RIM 4>
BRL A

Decrement the bit counter. If this is the ninth
cycle, the 8 data bits are in register C, so quit (the
first stop bit will already have been received, and
be in CY):

DCR & LY

12 LI L

Otherwise, continue. Rotate the data bit right into
register C, and repeat the cycle:

MOv AL 4>
PAR 4>
HOY LR 4>
NP 43
Jup CIz 18>

(A NOP is needed to make the COUT and CIN
loops exactly equal in number of machine cycles,
so that each can use the same delay parameter.)
Restore status and return.

CI3 PaF H
El
RET

TIMING ANALYSIS

COUT and CIN now need to be provided with
parameters for BITTIME and HALFBIT. It can be
seen from the above code that each routine uses
61 +D machine cycles per input or output bit,
where D is the number of cycles spent in either
four line delay segment. If (H) and (L) are the
contents of the H and L registers going into this
section of code, then:

D=22+(D-1D)X14+(HD-1)X

[(255 X 14) + 25] (1)
IfH = H-1,) =LY~ 1, and
(HLY =256 (H) + (L) 2)
then , ,
D = 22+ 14 (L) + 3595 (H) (3)

This can be approximated by:

D = 22+ 14 (HLY 4)

This approximation is exact for M) = 0; otherwise,
it is accurate to within 0.3%. Thus each loop of
COUT or CIN uses a total of:

C = 61+D = 83+ 14 (HL) machine cycles (5)

Each machine cycle uses two crystal cycles in the
8085, so the resulting data rate is:

cycle frequency
C

_ (crystal frequency) +2
83 + 14 (HLY

B =

(6)

For a typical calculation, see Example 4.

EXAMPLE 4

To produce 2400 baud with the standard 6.144 MHz
crystal:

(6.144 X 106) + 2

2400 = :
83 + 14 (HL)
4 @D = 6.144 X 100 +2 23
2400
. 6.144 X 106 2
(HL) = [(—W>—83:|
+14 = 85.5 ~ 86
(HLY = 8610 = 0056H
(HL) = 0157H = BITTIME

To determine the true data rate this parameter will
produce, substitute into equation (6):

6.144 X 100 +2

Date Rate = 83 + 14(36)

2387 baud, which is 0.54% slow.

For 9600 baud, the same calculations will yield (HLY
=17, which is actually 0.3% slow; a sizzling 19200
baud or 38409 baud could each be generated to with-
in 5% if (HL) =6 or 0! Table 1 presents the param-
eters for several standard baud rates.

Notice that the resolution of the delay algorithm —
the difference between bit times resulting from
parameters which differ by one — is 14 machine
cycles. As a result, the true bit delay produced can
always manage to be within +2.3 usec of the delay

desired. This guarantees that at rates up to 9600
baud, where each bit time is at least 104 usec wide,
some value of BITTIME can be found which will
be accurate to within 2.2%.

BAUD RATE IDENTIFICATION ROUTINE

The function of BRID is to compute the appropri-
ate parameters BITTIME and HALFBIT. It accom-
plishes this by observing the data pattern received
when the space bar is pressed on the console
device. Since a space character has the ASCII code
20H = 00100000B, the pattern represented back in
Figure 4 is transmitted. Notice that the initial zero
level is 6 bits wide. Suppose it could be determined
that this corresponds to M machine cycles. Then
one bit would correspond to (M+6) machine
cycles. The reason for dividing down a space
several bits long is so that any distortion caused by
the signal rise and fall times, or any lack of pre-
cision in detecting the two transitions, will be
reduced by a factor of six. Since the bit period of
COUT and CIN is 83 + 14 (HL), BRID must gener-
ate a value (HL) such that:

M=<6= 83+ 14 (HL) (7
/ _ (M*6)-83

(HL) — 1 (8)
' M)

(HL) = |d " 6 (approximately))

This value can be determined by setting register
pair HL to -6, then incrementing it once every 84
machine cycles during the period that the incom-

Table 1

DELAY PARAMETERS FOR STANDARD BAND RATES USING 6.144 MHz CRYSTAL

TARGET . s (HL) or ACTUAL ,
BAUD HL) 10 HL) 16 BITTIME HALFBIT BAUD RATE %
RATE (See Text) (See Text) (See Text) PRODUCED ERROR

110 1989 07C5 08C6 04E3 109.99 -0.006
150 1457 0581 0682 03D9 149.99 -0.005
300 726 02D6 03D7 026C 299.80 -0.068
600 360 0168 0269 01A5 599.65 -0.059
1200 177 0081 0182 0159 1199.5 -0.039
2400 86 0056 0157 012C 2386.9 -0.547
4800 40 0028 0129 0115 47776 -0.469
9600 17 0011 0112 0109 9570.1 -0.312
19200 6 0006 0107 0104 18395.2 -4.37

ing signal is zero. BITTIME is then obtained by
individually incrementing registers H and L. To
obtain HALFBIT, divide the value of (HLY deter-
mined above by two before incrementing each
register.

In order to implement this algorithm, set HL to -6,
verify that the incoming signal is a logic one, then
wait for the start bit transition.

BRID: MYI f, BCRH

SIN

L¥I H.-€H
BRI1: RIH

QRA H

JP BRI1
BRI2: PRIM

kA A

n ERIZ

Increment register pair HL, then delay so that each
cycle will require 84 machine cycles:

BRIZ- TN H 62
MY'1 E. 84H 2
ERI4: DCR E (533
INZ ERI4 S

Check if SID is still low. If so, repeat:

RIN o
ORA R 4%
JF BRIZ 48

Otherwise continue. Store HL temporarily for the
HALFBIT calculation. Obtain and store BITTIME:

PUSH H
INR H
INR L
SHLD BITTIME

Restore HL, calculate HALFBIT, and return:

POP H
OrA A
May fA:H
PRR

Moy H:H
pc AL
RAF

Mo LA
INR H
INF L
SHLD HALFEIT
RET

The assembled listings for these subroutines, along
with a simple test program, is presented in the
Appendix.

CASSETTE RECORDER INTERFACE

There are many situations where data has to be
transmitted through a non-ideal medium. To give
three typical examples, a system with electrically
isolated elements might require that signals be AC
coupled, communications through an audio net-
work (such as telephone or radio) are greatly band-
width limited, and some applications (such as a
distributed network in an industrial environment)
must tolerate random electrical noise. Attempting
to record data on a cheap cassette recorder (the
one used for this note cost $17.00) will reveal all
of these shortcomings, plus one: The tape speed
fluctuates significantly and varies as the batteries
run down, hence the data rate is inconsistent.

The recording scheme used here makes very few
demands on the transmission medium. It makes no
attempt to transmit DC voltage levels. Instead, data
is transmitted by a series of variable length tone
bursts. The dominant frequency of the tone used
can be selected to be within the passband of the
particular medium. Data is transmitted with each
bit composed of a tone burst followed by a pause.
The first third of a bit period is always a tone
burst, the middle third is either a tone burst con-
tinuous with the first or a pause corresponding to,
respectively, a one or zero, and the final third is
always a pause, as shown in Figure 7. Thus, data is
distinguished by the burst/pause ratio.

Hardware Design

These tone bursts are obtained from the 8085 SOD
line, using analog signal conditioning to eliminate
the DC component of the waveform. (This low
frequency component is due to the single-ended
nature of the SOD line: it’s deviations from ground
are all positive, which unbalances the capacitive
input stage of the recorder.) A suggested interface
circuit is shown in Figure 8, using one LM324
quad op amp and a few standard value discrete
components which should be available in even a
digital design laboratory. On playback, analog cir-
cuitry is again used to detect the presence of a tone
burst. In Figure 8, A2 buffers the incoming signal,
and A3 inverts it. The peaks of these two signals
are transmitted through D1 or D2 and are filtered
by an RC network. Comparator A4 then squares
up the output and produces the logic signal read

by the SID pin. Since the op amps are powered by
the single 5-volt supply, a 2.0-volt reference level
is obtained from a resistive voltage divider. The
waveforms present at several points in the circuit
are shown in Figure 9.

Software

The algorithm for reading a data bit off the tape is
simple and straightforward: If the tone burst is
longer than the pause, the bit is a one. Otherwise,
it is a zero. Since only the time ratio is considered,
any variation in tape speed will not affect the data
determination.

VOLUME CONTROL

A question that arises with any audio cassette inter-
face is how to set the volume control. (Recording
level is usually determined internally.) When the play-
back level is correct, the logic signal output from A4
will have either a one-third or two-thirds duty cycle.
This can be readily observed with an oscilloscope. In
the field, an old-fashioned mechanical-type voltmeter
could be connected to the A4 output, and the volume
adjusted until the meter needle hovered somewhere
between 1/3 and 2/3 the high level output voltage.
With random data, the reading would be about 2
volts. There will be a fairly wide range of acceptable
volume settings. (Since the quivering meter needle is
being used here for inertial signal averaging, a digital
voltmeter would not be very helpful in this applica-
tion.)

VoH
SOD OUTPUT |||||||||| ||||||||||||||I||||| |||L—
VoL
| | | —
DATA 0" DATA 1"
Figure 7. Tape Interface Data Recording Scheme
0.001 uF
11
11
10K 20K @
VWA A~ sop
+5V
10K
RECORDER @ 0.1 uF
AUX f—
INPUT K
1K
8085
<
210»(
< 10K <
'IMeg% — AW — M
Vi
- oK 0.1 uF == 1K
1
® .
RECORDER "
EARPHONE 1} @
OUTPUT .

NOTES: A1 - A4:
D1 -D2:

ALL RESISTORS +5%

% LM324 QUAD OP AMP

Figure 8. One Chip Magnetic Tape Interface Schematic

ANY LOW CURRENT DIODE

f«——TONE BURST ——»]

VoH

Vor
3v
1\Y \—/ —

® oo ——— N\ ——

(RECORDING OR TRANSMISSION MEDIUM)

+4V

©® LYY S COMPARATOR
200N —— A v v ‘ ¥ ™— EVEL

v

GND
| RECONSTRUCTED SIGNAL \
r 1

Figure 9. Analog Signal Waveforms

After the CRT software analysis, the tape routines
are almost trivial. TAPEO is a subroutine for out-
putting the contents of register C to a cassette
recorder. TAPEIN reads 8 bits into register C.

OUTPUT ROUTINE

TAPEO calls a subroutine named BURST three
times for each bit. If Ag (the SOD enable bit) is set
when BURST is called, a square-wave tone burst
will be transmitted. If Ag is not set, BURST
simply delays for exactly the same amount of time
before returning. The three calls are used to,
respectively, output the initial burst, output the
data burst/space, and create the space at the end of
each bit. Nine bits will be output: the eight data
bits (LSB first) followed by a zero bit. The start of
the initial burst of the trailing zero is needed to
mark the end of the final space of the preceding
data bit.

Start each bit by outputting a tone burst:

TRFEC: WYI B9
T MYl R, ACAH
CALL BURST

10

Rotate register C through CY:

MOV A.C
PAR
By C.A

Move CY to the SOD enable bit position, Ag.
Simultaneously set A7 to one, and clear all other
bits. Output a tone burst or space, depending on
the previous contents of CY:

HY1 A B1H
RAR
RAR
CRLL BURST

Clear the accumulator, and output a space:

#RR A
CALL BURST

Keep cycling until the full 9-bit sequence is fin-
ished:

DCE B
THZ T01
RET

The BURST subroutine executes the SIM in-
struction CYCNO times, at intervals of 29 + 14
(HALFCYC) machine cycles. In between each SIM,
bit A7 is complemented. CYCNO should be an
even number. If Ag is set upon calling BURST a
square-wave will be created. Otherwise, the same
code sequence is followed but SOD does not
change — thus a space results.

EURST: WY1 b: CYCHD

Bifl- SIM
Y1 E: HALFCYC

BUZ: LR E 4%
TN Bilz 718>
iR1 2iH S
bCR b 43
INE Bill P
FET 1@z

INPUT ROUTINE

TAPEIN uses a subroutine called BITIN to move
the data at the SID pin into the CY. The maximum
rate at which SID is read is limited by a delay loop
in BITIN.

Initialize the bit counter and the register D, which
will keep track of the tone burst time. If a tone

burst is being received when TAPEIN is. called,
wait until the burst is over:

THPEIN: H¥1 B. &
Myl {1 GEH

Tt ALl BITIN
I TI1
CHLL BITIN
A Ti1

(Throughout this subroutine, a level transition is
recognized only after it has been read once initially
and then verified on the next reading. This pro-
vides some degree of software noise immunity.)
Now await the start of the next burst:

T2+ CALL BITIN
M Tiz
CALL EITIN
Mmoo TIE

The next burst has now arrived. Keep reading the
SID pin, decrementing register D (thus making it
more negative), each cycle until the pause is
detected:

T DR D
CRALL BITIN
oo T
CALL BITIN
I TIZ

Now continue reading the SID pin, incrementing
the D register (back towards zero), each cycle until
the next burst is received:

TI4: IkE
CRLL
JHC
CALL
IHC

b
EITIN
TI4
EITIN
TI4

Now, if the burst lasted longer than the space, D
was not incremented all the way back to zero; it is
still negative. If the space was longer, D was incre-
mented up through zero; it is now positive. In
other words, the sign bit of D will now correspond
to the data bit that would lead to each of these
results. Move the sign bit into the CY, then rotate
it into register C:

e A [
FAL

M A i
AR

Y oy
M1 L, G

11

Continue until the last bit has been received:

K E
JHE TiZ
FET

(Notice that the first half of this subroutine is
incorporated in the second half. In fact, the as-
sembled listing included in the Appendix makes
use of this fact to eliminate 24 bytes of duplicated
code.)

BITIN waits a short time in order to regulate the
sampling rate, then reads SID and moves the data
bit into the CY:

BITIN:
BI1:

'l
bk
N2
Fin
FAL
RET

The tone burst frequency and duration, and
the TAPEIN sampling rate are determined by
HALFCYC, CYCNO, and CKRATE. Tables 2 and
3 give typical values.

Table 2

EXAMPLE COMBINATIONS OF HALFCYC AND CYCNO.
ALL VALUES IN DECIMAL

MAXIMUM SAMPLING RATES

FOR VARIOUS VALUES OF

CKRATE
CKRATE SAMPLING RATE

VALUE (INCLUDING
CALL & RET)

1 17.6 usec

20 104 pusec

80 378 usec

250 1.14 msec

APPROXIMATE | CORRESPONDING RESULTING DATA RATE
TONE HALFCYC 8 20 {100 CYCNO
FREQUENCY VALUE 4| 10 | 50 | CYC/BURST

500 Hz 217 42 17 3.3 bps

1 kHz 108 83| 33| 66 bps

2 kHz 53 166 | 66 | 13 bps

5 kHz 20 414 | 166 | 33 bps

10 kHz 9 826 | 330 | 66 bps

Table 3

The Appendix also includes a simple block record
routine utilizing TAPEO. Before calling BLKRCD,
HL must be set to the start of the desired block,
and the recorder turned on manually. Successive
bytes will be recorded until the end of that page,
i.e., until L is incremented to zero. The playback
routine requires presetting HL to the target address
and turning on the recorder before PLAYBK is
called. These routines incorporate a long tone burst
before each data block to allow a recorder with
Automatic Gain Control to stabilize before the
data starts.

ADDITIONAL COMMENTS

The two design examples given so far were built up
using an SDK-85 System Design Kit. Both hard-
ware interfaces were wire-wrapped on the ample
breadboarding area provided on the board. The
connections between SID and SOD and the on-
board TTY interface were broken, so as not to
affect the 8085 I/O electrical characteristics.

The CRT interface was tested with a Beehive Mini-
Bee II Terminal in the full duplex mode at each of
its 14 possible transmission rates, from 110 to
9600 baud. It was also checked out at 19200 baud
using a Beehive B-100 terminal. In addition, the
software was exercised using an SBC 80/20 system
as a variable baud rate character generator and
receiver.

An additional advantage to having software select-
able communications rates is that it would be pos-
sible to communicate with several system periper-
als, each at its own preferred rate, without having
to duplicate hardware. For example, the addition
of a single 7408 AND gate and an output port
(such as on the 8155) would make it possible to
use the same two RS-232 circuits to interface with
up to seven I/O devices (see Figure 10). Three of the
MC1488 drivers have Enable inputs which can be
controlled by the output port. One AND gate can
be used to buffer the SOD line and drive the
MC1488 Data inputs. The rest of the 7408 can be
configured as a four input AND gate. This would
act as an inverted logic OR gate to reduce the four
MC1489 receiver outputs to a single line, which
could be read by the SID. This assumes that only
one input device (CRT, PTR) at a time will be used
(which is usually the case in a non-time shared,
interactive application), and that the unused
devices are transmitting a logic one level (which
should also be the case).

12

+12v. -12v

T0
PERIPHERAL
I3000F(inputs

OUTPUT
LINES

8155

ﬁ L

SoD _[—N.C.

SID :cc
-l

8085 7408

TO
PERIPHERAL
OUTPUTS

Figure 10. Interfacing 8085 to Multiple Peripherals

The software needed to support additional periph-
erals would be simple and straightforward. A
routine intended to dump a section of memory to
a paper tape punch, for example, would first have
to store BITTIME and HALFBIT somewhere (per-
haps on stack), load the variables with new param-
eters corresponding to the paper tape punch rate,
and then write a bit pattern to the output port
which would disable the console driver and enable
the punch (and perhaps a typewriter). After the
dump was over, the original time parameters and
driver status would be restored.

As explained before, the BRID routine computed
rate parameters based on the fact that an ASCII
“space” character resulted in a zero level 6 bits
long. Conceivably, some obscure peripherals might
produce a transient between successive zero bits.
(This might be the case, for example, if the signal
was produced by mechanical rather than electronic
means.) If so, the BRID algorithm used here prob-
ably would not work reliably. Once the two time
parameters were identified, though, COUT and
CIN could still be used. An alternate algorithm for
baud rate identification would require a table in
ROM (note the fifth and final R/S-1/O-M/D permu-
tation). This table would contain a list of delay
parameters corresponding to the standard transmis-

sion rates, as computed for the selected crystal
frequency. Initialization would require the oper-
ator to hit a specific key several times (usually the
“U” key, which generates a pattern of alternating
ones and zeros). The identification routine would
attempt to “‘read’ this pattern at each baud rate,
in turn, until finding the rate at which the read
was successful.

The cassette recorder used to develop the tape
interface was a Lloyd’s push-button model which
cost $17 in 1972. Empirical testing has indicated
that for this application, the quality of the cassette
recorder is less critical than the quality of the tape
itself. In other words, some 33¢ cassettes were not
very reliable, even when used with more expensive
recorders.

When using a cassette at the beginning of a side,
allow the tape to run for about 10 seconds until
the leader has passed before starting to write data.
Otherwise, data will be lost to the leader.

Depending on the recorder quality, the tone burst
frequency and duration can be optimized for
higher data rates by modifying HALFCYC and
CYCNO. If so, CKRATE should also be reduced,
so that between about 10 and 80 data samplings
are made during a single (one-third width) tone
burst. At greatly increased frequencies, some of the

components in the analog interface might also be
modified.

The two simple routines for recording and playing
back blocks of data were intended to illustrate one
way of using TAPEIN and TAPEO, and therefore
do not contain any provisions for error detection
or correction. Depending on the nature of a partic-
ular application, these routines could be aug-
mented with parity bit or checksum comparison,
or an error correcting code technique.

Funny things happen when recording and playing
back a page of RAM which includes the subroutine
stack. Eventually, PLAYBK will start writing over
the data at the top of the stack, destroying the
subroutine traceback sequence. The next RET
instruction will then cause a jump to a place where
you’d rather not be.

The printout reproduced in the Appendix includes
the assembled listings for the CRT and magnetic
tape interfaces discussed in this application note.
The object code produced was programmed into
an 8755 EPROM, which was installed in the expan-
sion PROM socket of the SDK-85 board. Some
very minor differences exist between this listing
and the code segments presented earlier, which
were written for maximum clarity.

APPENDIX

ISIS-1T 388A/22353 ACSEMBLER., 1.4

Lot 2RI SER

A%

HOL4ILE

SOURCE STHTEMENT

MODES TITLEC 79985 SERIAL I1-0 HOTE APPENDIX'}

13

ISIS-11 2@30/2885 ASSEMBLER. Y14

2685 SERIAL I-0 HOTE APPENDIX

Loc oeJ

@280 310424
8282 ZECA
48@3 28
aoae CD1ABS
R299 [D47AQ
@2aC Chanag
82ar 79
as1a B7
8211 CRAzA2

2814 ChoAs
A817 Cacse

ag1A 28
Ag1B B7
aR4c FziAag
B21F 24
8324 b7
G221 FRiFag
8924 2AFAFF
8227 1E84
pg29 10
Ag2R Cz2o82
i

Ag2E 24

SER

o
-

49
ic

13 BITTIME EGU
14 HRLFEIT EQU

15
16
17
18
12
2

SO % 6)
UNNCS B o

b 2 TG RO 8

r.

ood bed L T O PO T PO P

[
o = D Lo 0

NN
1

I Lol
D) IV N S

Led 1)
=4 Ty

29
29

LY W I a RN BEOC SR I R RN K

BITZ0
BITEI

;CRTTST CRT IMTERFACE TEST

i

CRTTET:
CRTL:

ECHD:

i BRID

PO

48 ;

4

42
43
44
45
46
47
42
43
=8
3 |
52

a2

BRI

BRI1:

BRIZ:
ERI4:

MODULE PRGE 2

SOURCE STRTEMENT

THE FOLLOWING PROGRAMS AND SUBROUTINES ARE DESCRIBED IN DETAIL

IN INTEL CORPERATION’S RPPLICATION MOTE RP-29, "USING THE 88835
SERIAL I/0 LIMES". THE FIRST SECTION IS A GEMERAL PURPOSE CRT
INTERFACE WITH AUTOMATIC ERUD RATE IDEMTIFICATION: THE SECOND
CECTION IS A MAGNETIC TRPE INTERFACE FOR STORIMNG DATA ON CRSSETTE
TAPES. THE CODE PRESENTED HERE IS ORIGIMED AT LOCATION 8@,

AND MIGHT BE PRRT OF AN EXPANSION PROM IM AN INTEL SDK-85

SYSTEM DESIGN KIT

28C8H ;i ADDRESS OF STORAGE FOR COMPUTED BIT DELAY

20CAH i ADDRESS OF STORAGE FOR HALF BIT DELAY
Bt 1 i DATA BITS PUT DUT CINCLUDING TWO STOP BITS)
ey 9 ;DATA BITS TO BE FECIEYED (INCLUDING ONE STOP BIT)
ORG 884H ;STARTING ADDRESS OF SDK-85 EXPANSION PROM

MHEN CALLED. RMWAITS THE SPRCE EAR BEING PRESSED ON
THE SYSTEM COMGOLE, AND THEN RESPONDS MITH R DATR RATE VERIFICATION
MESSAGE. THERE AFTER. CHARACTERS TYPED ON THE KEYBORRD ARE ECHOED

ON THE DISPLAY TUBE. WHEM A BREAK KEY IS TYPED, THE ROUTIME IS
RE-STARTED. ALLOWIMG A DIFFEREMT BAUD RATE TO BE SELECTED ON THE CRT

LXI <P, 2BC8H
M1 A.BCAH ;50D MUST BE HIGH PETHEEM CHARACTERS
cIM
CRLL BRID ; IDENTIFY DATA RATE USED BY TERMINAL
CALL SIGNON :OUTPUT STGMON MESSAGE AT RATE DETECTED
ALl CIM i READ NEXT KEYSTROKE INTO REGISTER C
MY A.C
arA R i CHECK TF CHRARACTER MRS A <BRERK> (RSCII @dH)
2 CRTL ;IF 50, RE-IDENWTIFY DATA RATE
i THIS ALLOWS AMOTHER RATE TO BE SELECTED ON CRT
CALL COUT :OTHERWISE COPY REGISTER C TO THE SCREEN
TP ECHO ;COMTINUE INDEFIMITELY ¢UNTIL BRERK)

BAUD RATE IDENTIFICATION SUBROUTINE

EXPECTS A <CR™ {RASCII 2@8H» TO BE RECIEYEL FROM THE CONSOLE

THE LENGTH OF THE IMITIAL ZERC LEVEL ©SIX BITS WIDE) IS MERSURED
IN ORDER TO DETERMINE THE DRTA RATE FOR FUTURE COMMUNICATIONS

RIH i YERIFY THAT THE "ONE" LEVEL HAS BEEN ESTABLISHED
ORA R i% AS THE CRT IS POMERING UP

JP BRID

RIH ;s MOMITOR SID LINE STATUS

ORA R

JH BRI1 ;LOOP UNTIL START BIT IS RECIEVED

L¥I H:.-& BIRS COUNTER USED IN DETERMINING ZERD DURATION
M1 E.B4H

LER E +53 MACHIME CYCLE DELAY LOOP

INZ BRI4

IH= H i INCREMENT COUNTER EVERY 24 CYCLES WHILE 51D IS LOMW
RIM

14

ISIS-IT 2828/2A25 ASSEMELER. Y1 @ MODULE PRGE 3
2895 SERIAL 1/0 MNOTE APPENDIA

Lot et SEQ SOURCE STATEMENT
R22F BF = {RA A
9g38 Fzzven o8 Ip ERIZ

36 +CHL> NOW CORRESFONDS TO INCOMING DATA RATE
A833 EX a7 PUSH H +SAVE COUNT FOR HRLFBIT TIME COMPUTATION
A234 24 22 INR H +BITTIME IS DETERMINED BY INCREMENTING
8oz 2¢ 39 INR L i5 HOAND L INDIVIDUALLY
#8358 220524 &8 SHLE BITTIME
8233 E1 &1 POpP H +FESTORE COUNT FOR HALFRIT DETERMINATION
AS3A BY & OPAR A : CLERR CRRRY
A238 7L 2 Mo . H : FOTATE RIGHT EXTENDED CHL>
a8zt 1F £4 FRE o5 TO DIVIDE COUNT BY 2
8930 7 B3 Ho H.A
A3ZE T B, MW R L
Bg3F 1F By FRR
B24A oF £x piy LA
agdl 24 £9 INF H iPUT H AND L IN FROPER FORMAT FOR DELAY
aRd2 2C 7@ IHF: L % SEGMEMTS (IHCREMENT ERCH!
BR4% 23CR2A 71 SHLD HALFEIT ;SRYE AS HALF-BIT TIME DELAY PARAMETER
8245 2 V2 PET

74 ;SIGNON WRITES A SIGN-OM MESSAGE TO THE CRT AT WHRT SHOULD BE THE CORRECT RATE

75 IF THE MESSAGE IS UMINTELLIGIBLE. . . WELL. 50 IT GOES
8247 215588 76 SIGHOM: LXI H, STRNG LORD START OF SIGN-ON MESSRGE
A24R 4E 77 Sl Moy C.n s GET NEXT CHARACTER
824E AF 78 #RH A CLEAR RCCUMULATOR
a24C Bl 79 ORA C s CHECY, IF CHARACTER IS END OF STRING
a840 Cg 2 RZ i RETURM IF SIGN-ON COMPLETE
A34E CDe2ER 21 CRLL COUT GELSE OUTPUT CHARACTER TO CRT
883 22 22 INY H i INDEX POINTER
A252 C24AA2 83 JHF o1 i ECHY MEXT CHARACTER
a4
8235 ap 23 STRNG: DB ADH, 8RH ; CCRZLFZ
A25c an
837 42415544 28 DE ‘BAUD RATE CHECKES
AO5E 28524154
AZSF 4528434%
ASET 43434R
8265 @D &7 be ADH. BAH ; CCRLFZ
@87 8A
#2ee Ad ge R @84 s EMD-0F-STRING ESCRPE CODE
a2
9% ;COUT COMSOLE OUTPUT SUBROUTINE
91 WRITES THE CONTENTS OF THE C REGISTER TO THE CRT DISPLAY SCREEN
BaEI F2 92 CouT: DI
828 £ XA FUSH E
BREE EX 94 FUSH H
82cC AodR 5 Y1 B, BITSO : SET NUMBER OF BITS TO BE TRAWSHITTED
88cE AF G “FA A i CLEAR CARRY
826F 2E0Q 97 ool MYI R.8BH SET WHAT WILL BECOME SO0+ ENABLE BIT
agv1 1F 28 RAF s MOYE CRRERY INTO SO0 [RTR EIT OF ACC
887z 28 a8 SIH i QUTPUT DRTA BIT T0 SOD
8373 2ACE4 168 LHLD BITTIHE
Agve 20 184 Coz: Lok L +WRAIT UNTIL APFROPRIATE TIME HAS PASSED

15

ISIS-1T 2080/2983 ASSEMBLER. Y1 8

8885 SERIAL 10 NOTE RPPENDIX

Lac oBJ

8882 C26Fn8
a28s E1
8887 L1
8088 Fe
8289 2

808R F2
8338 ES
8eaC aeAl
882E 2a
888F B7
A83A FARERS
8892 ZRCAZA
Agss 20
A897 C20688
AL%A 25
8298 29582
@89E 2ACRz4
AgA1 20
ABR2 C2R182
BaRs 2%
8eAe C2A1e8
A%A% 28
A2RA 17
82AE 83
B2AC CRBGAZ
a8AF 79
a2k 1F
A2B1 4F
@ge2 /a
80Pz C29EMg
898¢ Ei
88E7 FB
agpe €9

AB1a
Aal1E

SEO

182
183
184
103
188
1@7
18
189
118
111
142
113
114
113
115
117
118
149

28
121
122
173
124
123
126
129
128
121

477
1 a2

132
134
125
126
137
138
129
148
141
142

;CIN

CIN:

CI1:
cl2:

CIZ:
CId:

142 CI5:

144
145
146
147
148

B B B e T e O B S e e PR T T R

149 ;
154 ;
151 ;

152

153

154 HALFCYC EQU 39

CYCHO

MODHILE PAGE 4

SOURCE STRTEMENT

A oz

bR H

INZ ca2

STC #SET WMHAT WILL EVENTUALLY BECOME A STOP BIT
Moy AN +ROTATE CHARACTER RIGHT OME BIT.

PAR % MOVING NEXT DATR BIT INTO CARREY

pay LA

boR E +CHECK IF CHRRACTER C(AND STOP BITCSY) DONE
INZ o +IF MOT. QUTPUT CURRENT CRRRY

pap H i RESTORE STRTUS AND RETURN

POF B

El

PET

CON=OL INPUT SUBROUTINE WRITS FOR R KEYSTROKE AND
RETURNS HITH 2 BITS IN REG C

DI

PUSH H

My1 B.BITSI :DATA BITS TO EE READ CLAST RETURNED IN CY:
RIN sWAIT FOR SYMC BIT TRANSITION

ORA A

n (N5

LHL HALFEIT

[CR L SWAIT UMTIL MIDDLE OF STRRT BIT

N2 c1z

DR H

INZ C12
LHLD BITTIME ;KHAIT OUT BIT TIME

LoR L

Nz {14

DCR H

N2 Cl4

RIM i CHECK SID LINE LEVEL

FAL ;DRTA BIT IN CY

DCR B +DETERMINE IF THIS IS FIRST STOP EIT
12 CIs +IF S0, JUMP QUT OF LOOF

MDY A.C ;ELSE ROTATE INTO FARTIAL CHARACTER IN C
FAR sACC HOLDS UPDATED CHARACTER

Hov C.R

HQe SEQUALIZES COUT AMD CIN LDOP TIMES
JHF LIz

FoF H

EI

RET ; CHRRACTER COMPLETE

THE FOLLOWING CODE IS USED EY THE CRSSETTE IWTERFACE.

SUSROUTINES TRPED AMD THPEIM RRE UISED RESFECTIVELY

TO OUTRUT OR RECEIVE AN EIGHT BIT BYTE OF DRTA. REGISTER C

HOLDS THE DRTA IN EITHER CRSE. REGISTERS A.E. &C ARE ALL DESTROVED
EQU 1€ s TWICE THE MUMBER OF CYCLES PER TOME BURST

; DETERMINES TONE FREGUEMCY

16

ISIS-11 2@88/2@85 ASSEMBLER, 1.4
8085 SERIAL 10 MOTE APPENDIX

LoC oeJ

881e
AGFA
#aFA

ASEY BEFA
ageB 2ECa
A8R0 CDFdBR
acca ap
8201 C2PDRg
Becd AF
ARCS COFAG3
A8CR 4t
8ace ChC1ag
RRCC 20
8aCDh C2Ceas
aera o

@sp1 F2
asp2 D5
A0 BaY
aals Af
@sDe ZECA
A30] COFOER
aare 79
AolC 1F
aged 49F
8ShE el
A3Ee 1F
AgEL 1F
agE2 CDFAAS
80ES AF
BRES CDFAER
A3ES a3
@2ER C2056e8
8oED D1
@8EE FB
AoEF 9

agFa 1519
AoF2 zA
82F2 1E1E
agFs 1D
AgFe C2F583
@8FS EE2M
AEFR 15
8OFC C2F288

CEQ

155 CKRATE
156 LERDER
157 LDRCHE
128

139 ; BLKRCD
168 ;

11

162

163 BLKRCD:
164

165 BR1:
166

167

18

169

178 BRZ:
171

172

173

174

175

176

177 : TRPED
178 ;

179 TAPED:
124

121

182 TO1:
123

184

125

136

187

138

122

1599

191

192

133

194

195

196

197

198

199

260 BURST:
281 P
262

263 BU2:
204

285

2P8

287

EQU
EQU
EQY

M1
MY I
CRLL
DR
JHZ
*PA
CRLL
My
CALL
INR
JNZ
RET

pI
PUSH
WY1
*RA
My1
CALL
MY
FAR
MY
MYI
FPR
PAR
CALL
*RR
CARLL
DCR
INZ
FOP
EI
PET

MY1
CIM
MY1
GLR
Iz
#RI
bER
JNZ

MODULE PAGE 5

SOURCE STRTEHENT

22 i SETS SHHPLE PRTE
258 i NUMBER OF SUCCESIYE TOME BURSTS COMPRISING LEADER
258 ;USED IN PLRYEK T YERIFY PRESENCE OF LERDER

DUTPUTS A VERY LONG TOME BURST (<LEADER> TIMES

THE MNORMAL BURST CURATIONY TO ALLOW RECORDER ELECTRONICS
AND AGC TO STABILIZE. THEN OUTPUTS THE REMAINGER OF THE
256 BYTE PASE POINTED TQ BY <H:. STARTING AT BYTE <L>.

€, LEADER: SET UP LERDER EURST LENGTH

R.ACAH ;SET ACCUMULATOR TO RESULT IN TONE BURST

BURST ; OUTPUT TONE

C

BR1 i SUSTAIN LERDER TONE

R + CLERR ACCUMULATOR & OUTPUT SPACE. 5D THAT

BURST ;% START OF FIRST DHTH BYTE CAM BE DETECTED

o +GET DATH BYTE TO BE RECORDED

TRPEQ ; QUTPUT FEGISTER C TO RECORDER
L FPDINT TO MEXT BYTE
Br2

+AFTER BLOCK 1S COMPLETE

QUTPUTS THE BYTE IN FEGISTER L TO THE RECORDER
REGISTERS A.B.C. [8E ARE ALL USED

b +D&E USED AS COUNTERS BY SUBROUTINE BURST
E.9 ;MILL RESULT IN & DRTA BITS AND OME STOP BIT
A i CLEAR ACCUMULATOR

R, ACAH :SET ACCUMULATOR TO CRUSE A TOME BURST

EURET

A.C +MOYE MEXT DRTR BIT INTO THE CARRY

C.A ;CARRY WILL BECOME SO0 ENABLE IN BURST ROUTINE
R.@1H SET BIT TD BE REPEATEDLY COMPLEMENTED IN BURST

BURST ;OUTPUT EITHER A TONE OR R FRUSE
R + CLERR ACCUMULATOR

BURST ; DUTPUT PAUSE

B

T s REPERT UNTIL EYTE FINISHED
o s FESTORE STRTUS AMD RETURN

[, CYCNG ; SET NUMBER OF CYCLES
+ COMPLEMENT SO0 LINE IF SOD EMABLE BIT SET
£ HALFCYC
E i FEGULATE TOME FREGUENCY
Bu2
284 i COMPLEMENT S0D DATA BIT IN ACCUMULATOR
D
Bl s CONTINUE UNTIL BURST (OR EQUIVILENT PRUSEY FINISHED

17

ISIS-I1 2B2A/2A85 RSSEMBLER, Y19 MODULE PAGE &
8885 SERIAL I/0 MOTE APPENDIX

Loc oBJ SED SOURCE STRTEMENT
agFF L3 293 RET
299
218 ; PLRYBE HAITS FOR THE LONG LEADER BURST TO ARRIVE, THEN COMTINUES
211 READING BYTES FROM THE RECORDER AND STORING THEM
22 ; IN MEMORY STARTING AT LOCATION <HL>
213 CONTINUES UNTIL THE END OF THE CURRENT PAGE ({L>=8FFH) IS RERCHED
a90a BEFR 214 PLAYRK: MVI C, LORCHE + CLDRCHKZ SUCCESSIYE HIGHS MUST BE READ
3992 CDDA9 215 PBL: CRLL BITIN +% TO YERIFY THAT THE LERDER IS PRESENT
8383 D208a9 e INC PLAYBK # N\ AND ELECTRONICS HRS STRBILIZED
3382 @D 217 bCR C
8389 26209 218 INZ FE1
A3aC CD15A9 219 PE2: CHLL TAPEIN ;GET DATA BYTE FROM RECORDER
agaF 71 228 M MC +STORE IN MEMORY
a%1a 2C 221 INR L + INCREMENT PRINTER
A211 C2ace2 222 Nz Pe2 s REPERT FOR REST OF CURRENT PAGE
A%14 L3 222 RET
224

223 TAPEIN CRSSETTE TAPE INPUT SUBROUTINE. READS OME BYTE OF DRTA

226 ; FROM THE RECORDER INTERFACE AND RETURNS WITH THE BYTE IN REGISTER C
@315 @6Rg 227 TRPEIN: MYI B9 ;READ EIGHT DATA BITS
8317 1689 222 TI4: MYI [.@8H :CLEAR UP/DOMN COUNTER
@919 15 229 TI2: DR D ; DECREMENT COUNTER EACH TIME ONE LEVEL IS RERD
A91A COI0AS 23 CALL BITIN
8910 DA1989 221 I TI2 ;REPERT IF STILL AT ONE LEYEL
928 CD0AI 232 CALL BITIN
@922 DAL9AI 232 I TI2
3926 14 4TI IR D ; INCREMENT COUNTER ERCH TIME ZERO IS RERD
A327 CD20RS 275 CALL BITIN
B92R D22599 2% IN: TIT SREFEAT EACH TIME ZERD IS READ
A920 CDHI0A? 237 CALL BITIN
928 D226A9 278 Mo T2
932 7 239 WY RO
8924 17 248 RAL i MOYE COUNTER MOST SIGNIFICANT BIT INTO CARRY
@915 79 241 MY A
B934 4F 242 FAR ;MVE DATA BIT RECIEVED (CY: INTO BYTE REGISTER
8937 4F 243 MY C.A
#9238 85 244 DR B
G939 C21769 245 INZ TIL :REPEAT UNTIL FULL BYTE ASSEMBLED
@930 09 246 RET
247
@930 1F1€ 243 RITIN: MYI E.CERATE
BI3F 1D 249 B14: OOR E
A940 [22FE9 258 MNZ BIL ;LIMIT INPUT SRMPLIMG RATE
B943 28 251 RIM i SRMPLE SID LINE
8944 17 752 RAL ;MOYE DATA INTO CY RIT
3945 2 252 RET
754
255 END

PUBLIC SYMBOLS

18

ISIS-11 2828/0825 ASSEMBLER, Y1 @

8683 SERIAL 10 HATE APPENDIX

EXTERNAL SYMEOLS

USER SYMBOLE
BEI1 PR B9cF
BRZ H 8202
BURST R BSFa
CKRATE A B&ls
ECHY A @2ac
PLRYEK R @30a
TI2 R @919

BITINM
ERI1
CIL
Cot
HALFEI
1
TIZ

A 89:0
A ag1F
A23E
azeF
26CR
#24A

#4326

T o I

jos & i o

ASSEMELY COMPLETE. NO ERFORCS)

BIT=I
ERIZ
CIz
coz

MODLE

T

HALFCY A
STGHON A

T2

A

Gaas

p227

T O

=
oD O
b
(a2

=

Dol
[mc
-] MM

1=
[I]
o“n -

BITSO R 229

ERI4 R 8229
CIZ A A89

COUT . R 829
LORCHE A i

EITTIM
BRID
CI4
CRT1
LERCER
TAFEIN

je s o » Jies u)

-4

2acs
B21A
83A1
3863
aaFA
8913

ELKRCD A a2B3
EUL f BeF2
CIS A 88B6
CRTTST A @228

PB1 A 8%2
TAPECD A 8301

BrR1
BUZ
CIN
CYCNO
PEZ
T

R @8BD
A 88F3
R 888A
f eaia
A B3aC
R 8917

19

ISIS-II ASSEMELER SYMBOL CROSS REFERENCE V1. @ PRGE

P11 249 254

BITIN 215 2z 232 233 237 2484
BITST 1e¢ 128

BITSO 1% 95

BITTIM 43 c@ 188 129

BLKRCD 13%

BR1 1658 167

BR2 178 17z

BRI1 a5 47

BRIZ 4% 53

BRI4 WM 5l

BRID 28 24 44

Bl 2018 287

Buz2 2834 2

BURST 163 169 184 191 493 ook
£l 2% 123

£12 1254 126 122

cIz 1254 142

CI4 1za 131 122

CI5 137 1434

CIN @ 118%
CKRATE 1554 248

o arg 118

coz2 1p1% 142 1
cout 25 e1

CRTL it
CRTTST 254

CYCNO 153% 284
ECHO ek 2%
HALFBI 14 71 124
HALFTY 15d4¢ 202
LORCHE 137% 214

LERDER 156% 163

PEL 245% 218

O
na P
£

pe2 2194 22
PLAYBE 214% 216
1 77 ez

CIGHON 29 7E#
STRNG 78 25#

TAPEIN 245 227
TAPED 171 179
i1 222% 245
TI2 229% 231 ZEE
TIZ 2244 3¢ 238
ToL 1924 195

CROSS REFERENCE COMPLETE

20

Related Intel Publications

“8085 Microcomputer Systems User’s Manual”’

“8080/8085 Assembly Language Programming Manual’

The material in this Application Note is for informational purposes only and is subject
to change without notice. Intel Corporation has made an effort to verify that the mate-
rial in this document is correct. However, Intel Corporation does not assume any respon-
sibility for errors that may appear in this document.

The following are trademarks of Intel Corporation and may be used only to describe
Intel Products:

MCS
SDK-85
ICE-85

Printed in U.S.A./A246/0877/I15K BL

	Contents

