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INTRODUCTION

~ This application note is intended to acquaint the
reader with the Intel® MCS-85 family, and to
explain how to use one of its key features, a direct
serial data link between the CPU and the outside
world. Two design examples will be provided: a
versatile method for direct communications be­
tween the CPU and a CRT or other peripheral at
any rate from 110 to 9600 baud, and a magnetic
tape interface system which allows programs and
data to be stored or loaded using a cheap audio
cassette recorder. Both examples use software
routines to replace extensive extenlal hardware and
to provide additional flexibility.

MCS Family Members

The MCS-85 family consists of the new 8085
N-channel, 8-bit microprocessor (Figure I) and a
variety of parts which provide memory, input/out­
put, timing, and peripheral control capability.
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Figure 1. 8085 Pinout Diagram

In many respects the 8085 can be thought of as
simply a hardware refinement of the extremely
popular Intel® 8080 processor, which was intro­
duced in 1973. It is 100% software-compatible
with its predecessor. In addition to being 50%

~ faster, many of the external timing and control
functions needed by the 8080A have been inte­
grated into the 8085 (such as the 8224 Clock

Generator and the 8228 System Controller), thus
reducing the system part count. Additional fea­
tures include four additional maskable and non­
maskable interrupt pins, increased drive capability,
and two new input and output lines. These pins,
called SID and SOD, provide a serial I/O data link
with the CPU. The 8085 uses a standard 40-pin
DIP package.

All members of the MCS-85 family require a single
5-volt power supply, greatly reducing system over­
head. Several components combine a number of
systelTI functions (e.g., ROM and I/O), allowing a
complete, useful microcomputer system to be
assembled with as few as three integrated circuits,
as shown in Figure 2. For example, the 8155 and
8156 RAM/IO/TIMER chips each contain 256
8-bit bytes of program or data storage, three pro­
grammable I/O ports, and a 14-bit timer/counter.

Since the internal architecture and instruction set
of the 8085 is an extension of that of the 8080, all
software written for the 8080 - including com­
pilers, assemblers, and individual applications
programs - will run without modification on the
new processor. In fact, the complete upward com­
patibility of the MCS-85 system means that appli­
cations designed around the 8080 can be converted
to using the 8085 at minimal cost, requiring little
hardware redesign or program modification. An
engineer already familiar with the 8080 will not
need to learn a new architecture or mnemonics.
Conlpanies now using Intel's extensive line of
design, development, and debugging tools can aug­
ment their systems with a series of 8085 support
products (such as the SDK-85, ICE-85, and SBC
boards) which are compatible with their present
mainframe and peripherals.

Additional 8085 Instructions

The additional hardware features of the 8085
(handling multiple-level maskable interrupts and
serial I/O) are supported with two new instruc­
tions. RIM (machine code 20H) is used to read the
current status of the three interrupt masks into the
accumulator. Additional bits are set to show what
interrupts (if any) are pending, and the logical state
of the SID input pin (pin 5). The complement of
RIM is SIM (machine code 30H), which has a dual
function depending on the current accumulator
contents. If bits 3 or 4 of the accumulator are a
logical one, SIM can be used to change the three
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This note does not concern itself with the interrupt
mask manipulation also made possible with RIM
and 81M; for a full understanding of the interrupt
capabilities of the 8085, see the User's Manual. To
use SIM for altering the SOD state without fear of
interfering with the interrupt mask status, one
need only make sure that bits 3 and 4 of the
accumulator are set to zero first.

Figure 3. Effect of RIM and SIM Instructions

A detailed explanation of the accumulator con­
tents after and before RIM and SIM is given in
Figure 3. The I/O pins both function with respect
to positive logic: a "I" in the accumulator corre­
sponds to a high voltage level, "0" to a level near
ground. The SID and SOD lines are electrically
compatible with normal TTL logic levels. (For full
electrical specifications, the reader should consult

the MCS-85 User's Manual.) If A6 is "0" prior to
executing SIM, SOD will remain unchanged,
regardless of the state of A7. After a Reset, SOD
will be low. It should be noted that RIM does not
affect the Sign Flag; in order to make a conditional
jump based on the Serial Input Data state, a three
instruction sequence should be used, such as shown
in Examples 1 and 2. When serial data is to be
assembled into a parallel word, a sequence such as
in Example 3 can be used, which shifts the con­
tents of register pair HL one bit to the left and
appends the input data bit.
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Figure 2. 8085 Minimum System

interrupt masks; if bit 6= I, SIM can set the SOD
output (pin 4). The two functions of the SIM
instruction operate independently. (If, at this
point, the acronyms RIM, SIM, SID, and SOD are
starting to blur in your mind, try to remember
their roots instead: Read Interrupt Mask, Set Inter­
rupt Mask, Serial Input Data, and Serial Output
Data. Don't worry; of the other four ordered
permutations of R&S, 1&0, and M&D, only ROM
is used elsewhere in this note, and then only in its
traditional sense.)
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RIM :READ SID LEVEL
ORA A .: SET SIGN FLAG !F" A7=1
IN LA8EL ;JUMP IF SID WAS HIGH.
:;.:::~::~~~ ; ", ELSE i=:t:I~~Tlr1!_IE.

E>·:ANPLE 2:

RIM ;P.EAD SID
PAL ;MOVE A7 INTO CY
CNC SERVICE ;CALL SERYICE ROUTINE

;\ IF SID WAS LOW~

?llX. i":, .; \, THEN CONTINUE.

zero "Start" bit, 8 data bits (least significant bit
first), and one or more stop bits (logic 1). An
II-bit sequence with two stop bits is used for 110
baud TTY's. The logic one level continues until the
start bit of the next byte to ensure that each 10-bit
sequence is initiated with a one-to-zero transition.
The 8 bits transferred might be raw binary data or
alphanumeric characters using the standard ASCII
code. In this case, tIle most significant bit - the
last data bit transmitted - will depend on the
parity convention being used. This sequence is
illustrated for the ASCII "space" character in
Figure 4.

6 BITS

CRT INTERFACE

On the following pages, examples are given show­
ing two possible uses of the SID and SOD lines.
The main purpose of these examples is not to give
the reader a design after which he could model his
own system - though, of course, this might be the
case - but rather to illustrate the hardware and
software interfaces and tecllniques necessary to
implement a typical working subsystem.

Most microprocessor systems require some sort of
serial communications. This may be selected for
reasons of economy (to reduce the nUlnber of
interconnections required in a distributed system),
or it may be necessary in order to communicate
with such common peripherals as CRT's or tele­
typewriters.

These peripherals all use a standard convention for
transmitting serial ASCII code. Each data byte is
transmitted as a series of 10 or 11 bits. The uni­
form time per bit corresponds to the data trans­
mission rate. For example, if the transmission rate
is to be 2400 baud (2400 bits per second), each bit
time must be 1/2400 bps = 416.7 Jlsec/bit. The
standard 10-bit sequence consists of a logically

The algorithm for receIVIng serial code involves
sampling the incoming data at the middle of each
bit time. The eight sampled values are shifted into
a serial byte corresponding to the data originally
transmitted. The one-to-zero transition at the
beginning of each byte makes it possible to syn­
chronize the sampling points relative to the start
of each data sequence.

Figure 4. ASCII Space Character

I~I~I~I_I_I~I~I_I_I--
DO 0, O2 0 3 0 4 Os 0 6 0 7

START STOP
BIT BITS

Software Package

The software needed to drive the CRT interface is
divided into three parts. All three use software
timing and delay loops, with fixed and variable
parameters. In conjunction, they are able to
identify incoming signals at any rate from below
110 to over 9600 baud and respond at the same
rate.

Hardware Interface

In general, any serial communications system will
require both hardware and software interfaces.
Since the SOD line can drive only one TTL load,
additional current and voltage buffering is required
to be compatible with the RS-232C interface
standard used by most peripherals. A schematic for
achieving this buffering is shown in Figure 5. The
MCI488 and MCl489 circuits interface positive
logic TTL signals with the RS-232 high voltage
inverted logic levels.
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Figure 5. RS-232C Interface Schematic

Upon power-up or reset, or when the console
device baud rate is changed, the baud rate identifi­
cation subroutine (BRID) is called. This routine
waits until an ASCII space character (20H) is
received from the console. (Any other character
will result in a case of mistaken identification.)
When a space character is received, two time
parameters are computed which correspond to the
bit time and one-half the bit time of the baud rate
being used. These are stored as variables BITTIME
and HALFBIT. To output a character to the con­
sole, the character code is placed in register C, and
the subroutine COUT is called. This routine uses
BITTIME as a parameter for the software delay
loop which determines the baud rate. To accept a
character from the keyboard, CIN is called. CIN
returns after the next key is typed, with the corre­
sponding character code in register C. CIN uses
both parameters BITTIME and HALFBIT.

Since COUT and CIN use time parameters com­
puted by BRID, they will function at a rate the
same as that of the initial space character input.
Because of the nature of the software, the rate
does not depend on the CPU clock frequency. This

4

results in additional flexibility in the following
respects:

1. The software does not need to be modified
if the 8085 crystal frequency is changed or
Wait states are added.

2. Since the time base is no longer critical, the
quartz crystal could be replaced by a less
expensive RC network, provided the fre­
quency does not drift by more than a few
percent during a session. Additional drift can
be accommodated by periodically recalling
the BRID routine.

3. Communication is possible at non-standard
baud rates which relaxes the constraints on
system peripherals.

It should be noted, though, that slowing down the
CPU clock will decrease its throughput proportion­
ately. In addition, it will degrade the maximum
resolution of the delay loops, with the result that
the highest baud rates may no longer be achievable.

A more detailed analysis of the CRT interface
routines will be presented in the order of increasing
complexity: COUT, CIN, and BRID. Since SID and



SOD are ideal for many applications which involve
~ critical I/O timing, the timing techniques used here

may be of interest to software designers. Accord­
ingly, the mathematical derivation of the timing
parameters is included in this analysis, as well as a
justification for the BRID algorithm. The algebra
involved might be a bit too tedious for designers
unconcerned with generating software delays. If so,
they (and other bored readers) have the freedom of
choice to skip over the sections they find objec­
tionable.

REGISTER c:

STC

CY: 1

OUTPUT

START BIT

OUTPUT

DO

OUTPUT

OUTPUT ROUTINE

It would seem natural to write data in the standard
format in three stages: output a zero start bit, then
the 8 data bits (using a loop sequence), then the
stop bits. Each stage would incorporate its own
appropriate delay and output sections, leading to
unnecessary duplication. Instead, the code below
executes the same main loop 11 times. Its bit
manipulation routine inherently results in the cor­
rect data sequence being formed. It accomplishes
this by using the carry and C register as a 9-bit
pseudo-circular shift register. Initially CY=O. The

",.,.. algorithm outputs CY, waits one bit time, sets
CY=I, and then rotates the pseudo-register right
one bit. This repeats for 11 cycles. On the tenth
and all subsequent loops, the output bit will be a
logical one, since that bit had been set nine loops
earlier while in the CY (see Figure 6).

When COUT is called the registers to be used must
be preserved and interrupts disabled so the timing
loop will not be disrupted. Clear the CY in prepara­
tion for outputting the start bit, and set the loop
counter for 11 bits (if 110 baud will never be used,
the counter could be set to 10):

COUT- PUSH 8
PUSH H
DI
:v:RA A
f1VI 8..11

-.._----------_---/

.~ST-C----------------------------_--__- ~--...$-O-U:-:U-T--

OUTPUT

OUTPUT

STOP BITS
..--._---------_---/

Figure 6. Data Serialization Algorithm

Get stuck in a loop for the appropriate time (don't
WOITY for now how "BITTIME" is determined):

LHlD 8IiT It'1E (16)

CO2- [:(:F.: L (0)

-INZ CO2 <D)
DCP H ([:,)

..INZ CO2 ([)

Rotate the contents of register C right into the CY,
while moving a one into the left end. Continue
until all bits l1ave been transmitted:

The numbers in brackets indicate how many ma­
cine cycles are required for each instruction. They
will be referred to in the timing analysis section. Restore processor status and return:

Output of the contents of the CY:

COl: <•• ,••••'

(4)
'-::4)

5

5TC
t'10V A.le
PAF.~

t'10V C.' A
[:{F.~ B
JNZ C01

(4)
(4)
(4)
(4)
(4}

<113)



eIN: PUSH H
DI
MVI 8.·9

The console input routine uses the opposite pro­
cedure; instead of moving a bit from register C to
the CY, then to A7, then to SOD, CIN loads a bit
from SID into A7, then moves it to CY, then into
register C.

First, set up the CPU as before:

Otherwise, continue. Rotate the data bit right into
register C, and repeat the cycle:

(A NOP is needed to make the COUT and CIN
loops exactly equal in number of machine cycles,
so that each can use the same delay parameter.)
Restore status and return.

H

MOV A,e (4)

RAR (4)

MOV C.I A (4)

NOP (4)
.IMP CIs (fa>

CIS· POP
EI
~~ET

TIMING ANALYSIS

H
B

POP
POP
EI
RET

INPUT ROUTINE

COUT and CIN now need to be provided with
parameters for BITTIME and HALFBIT. It can be
seen from the above code that each routine uses
61 + D machine cycles per input or output bit,
where D is the number of cycles spent in either
four line delay segment. If (H) and (L) are the
contents of the Hand L registers going into this
section of code, then:

D = 22 +«L)-I) X 14 +«H)-I) X

[(255 X 14) + 25]

When a start bit transition arrives, the first sam­
pling should not be taken until the middle of the
first data bit, one and one-half bit times after the
transition. Await the start bit transition, then set
up the delay parameter for one-half bit time:

Cli: RIt'l (4)

ORA A (4)

J~l Cli /7-·\
·... 1 ...

LHLC' HALFBIT (16)

Loop for one-half bit time before starting to
sample data:

CI2: DCR L (D)

JNZ CI2 ((I)

DCR H (0)

..TNZ CI2 ([.)

If (H)'

then
D

(H) - 1, (L)' == (L) - 1, and

(HL)' == 256 (H)' + (L)'

22 + 14 (L)' + 3595 (H)'

(1)

(2)

(3)

Wait until the middle of the next bit before sam­
pling SID, then move the data bit into CY:

This can be approximated by:

D = 22 + 14 (HL)' (4)

(:15: LHLD BITTItiE (16)

C14: DCR L (D)

.IN::: CI4 ([1)

DCR H -::D)
JNZ C14 ([))

RB'1 (4)
PAL {4>

This approximation is exact for (H)' = 0; otherwise,
it is accurate to within 0.3%. Thus each loop of
COUT or CIN uses a total of:

C = 61 + D = 83 + 14 (HL)' machine cycles (5)

Decrement the bit counter. If this is the ninth
cycle, the 8 data bits are in register C, so quit (the
first stop bit will already have been received, and
be in CY):

Each machine cycle uses two crystal cycles in the
8085, so the resulting data rate is:

B = cycle frequency ~.

C

DCF.1 B (4)
JZ CI5 (7)

= (crystal frequency) 72

83 + 14 (HL)'
(6)

6



EXAMPLE 4

For a typical calculation, see Example 4.

To produce 2400 baud with the standard 6.144 MHz
crystal:

To determine the true data rate this parameter will
produce, substitute into equation (6):

6.144 X 106 -7 2
Date Rate = ------

83 + 14(86)

desired. This guarantees that at rates up to 9600
baud, where each bit time is at least 104 J.1sec wide,
some value of BITTIME can be found which will
be accurate to within 2.2%.

BAUD RATE IDENTIFICATION ROUTINE

The function of BRIO is to compute the appropri­
ate parameters BITTIME and HALFBIT. It accom­
plishes this by observing the data pattern received
when the space bar is pressed on the console
device. Since a space character has the ASCII code
20H =00 100000B, the pattern represented back in
Figure 4 is transmitted. Notice that the initial zero
level is 6 bits wide. Suppose it could be determined
that this corresponds to M machine cycles. Then
one bit would correspond to (M-76) machine
cycles. The reason for dividing down a space
several bits long is so that any d·istortion caused by
the signal rise and fall times, or any lack of pre­
cision in detecting the two transitions, will be
reduced by a factor of six. Since the bit period of
COUT and CIN is 83 + 14 (HL)', BRID must gener­
ate a value (HL)' such that:

0157H = BITTIME

8610 = 0056H

(6.144 X 106) -7 2

83+ 14 (HL)'

(
6.144 X 106

-7 2)_ 83
2400

[(6.1442~O~067 2) _ 83]

-7 14 = 85.5 == 86

2400

14 (HL)'

(HL)

(HL)'

(HL)'

M -7 6 = 83 + 14 (HL)'

2387 baud, which is 0.54% slow.

For 9600 baud, the same calculations will yield (HL)'
= 17, which is actually 0.3% slow; a sizzling 19200
baud or 38400 baud could each be generated to with­
in 5% if (HL)' = 6 or O! Table 1 presents the param­
eters for several standard baud rates.

(HL)' (M -7 6) - 83
14

(7)

(8)

This value can be determined by setting register
pair HL to -6, then incrementing it once every 84
machine cycles during the period that the incom-

Notice that the resolution of the delay algorithm ­
the difference between bit times resulting from
parameters which differ by one - is 14 machine
cycles. As a result, the true bit delay produced can
always manage to be within ±2.3 J.1sec of the delay

(HL)'
M
84 - 6 (approximately) (9)

Table 1

DELAY PARAMETERS FOR STANDARD BAND RATES USING 6.144 MHz CRYSTAL

TARGET , , (HL) or ACTUAL
(HL) 10 (H L) 16 %

BAUD BITTIME HALFBIT BAUD RATE
RATE

(See Text) (See Text)
(See Text) PRODUCED ERROR

110 1989 07C5 OaC6 04E3 109.99 -0.006
150 1457 0581 0682 0309 149.99 -0.005
300 726 0206 0307 026C 299.80 -0.068
600 360 0168 0269 01A5 599.65 -0.059

1200 177 00B1 01B2 0159 1199.5 -0.039
2400 86 0056 0157 012C 2386.9 -0.547
4800 40 0028 0129 0115 4777.6 -0.469
9600 17 0011 0112 0109 9570.1 -0.312

19200 6 0006 0107 0104 18395.2 -4.37

7



Check if SID is still low. Ifso, repeat:

Otherwise continue. Store HL temporarily for the
HALFBIT calculation. Obtain and store BITTIME:

BRIso IN;~:: H (6:::-
MVI E.,0'lH < ~ ~

0.1.'-

BRI4: DCR E (51.)
.JNZ BRI4 ( ... /)

Increment register pair HL, then delay so that each
cycle will require 84 machine cycles:

CASSETTE RECORDER INTERFACE

The recording scheme used here makes very few
denlands on the transmission medium. It makes no
attempt to transmit DC voltage levels. Instead, data
is transmitted by a series of variable length tone
bursts. The dominant frequency of the tone used
can be selected to be within the passband of the ~
particular medium. Data is transmitted with each
bit composed of a tone burst followed by a pause.
The first third of a bit period is always a tone
burst, the middle third is either a tone burst con­
tinuous with the first or a pause corresponding to,
respectively, a one or zero, and the final third is
always a pause, as shown in Figure 7. TIlus, data is
distinguished by tIle burst/pause ratio.

There are many situations where data has to be
transmitted through a non-ideal medium. To give
three typical examples, a system with electrically
isolated elements might require that signals be AC
coupled, comnlunications through an audio net­
work (such as telephone or radio) are greatly band­
width limited, and some applications (such as a
distributed network in an industrial environment)
must tolerate random electrical noise. Attempting
to record data on a cheap cassette recorder (the
one used for this note cost $17.00) will reveal all
of these shortcomings, plus one: The tape speed
fluctuates significantly and varies as the batteries
run down, hence the data rate is inconsistent.

The assembled listings for these subroutines, along
with a simple test program, is presented in the ~.

Appendix.

(4)
(4:::­

(1~3)

A
BRIs

RI~l

ORA
...TP

BF.~ID : MVI H1 eCt3H
SIM
LXI H.-6H

BRI1: Rlt'1
OF.~A A
JP BF.~I1

BPI2: Rlt'l
O~~A A
Jt'l BRI2

ing signal is zero. BITTIME is then obtained by
individually incrementing registers Hand L. To
obtain HALFBIT, divide the value of (HL)' deter­
mined above by two before incrementing each
register.

In order to 'implement this algorithm, set HL to -6,
verify that the incoming signal is a logic one, then
wait for the start bit transition.

PUSH H
INR H
I~JR L
SHLD BITTlt'lE

Restore HL, calculate HALFBIT, and return:

POP H
OF.~A A
MOV R.. H
RAR
MOV H.. A
~10V A.. L
RAF.~

~10V L..A
I~IR H
INF.~ L
SHLD HALF8IT
RET

I-Iardware Design

These tone bursts are obtained from the 8085 SOD
line, using analog signal conditioning to eliminate
the DC component of the waveform. (This low
frequency component is due to the single-ended
nature of the SOD line: it's deviations from ground
are all positive, which unbalances the capacitive
input stage of the recorder.) A suggested interface

circuit is shown in Figure 8, using one LM324
quad op amp and a few standard value discrete
components which should be available in even a
digital design laboratory. On playback, analog cir­
cuitry is again used to detect the presence of a tone
burst. In Figure 8, A2 buffers the incoming signal,
and A3 inverts it. The peaks of these two signals
are transmitted through D 1 or D2 and are filtered
by an RC network. Comparator A4 then squares
up the output and produces the logic signal read

8



by the SID pin. Since the op amps are powered by
the single 5-volt supply, a 2.0-volt reference level
is obtained from a resistive voltage divider. The
waveforms present at several points in the circuit
are shown in Figure 9.

Software

The algorithm for reading a data bit off the tape is
simple and straightforward: If the tone burst is
longer than the pause, the bit is a one. Otherwise,
it is a zero. Since only the time ratio is considered,
any variation in tape speed will not affect the data
determination.

VOLUME CONTROL

A question that arises with any audio cassette inter­
face is how to set the volume control. (Recording
level is usually determined internally.) When the play­
back level is correct, the logic signal output from A4
will have either a one-third or two-thirds duty cycle.
This can be readily observed with an oscilloscope. In
the field, an old-fashioned mechanical-type voltmeter
could be connected to the A4 output, and the volume
adjusted until the meter needle hovered somewhere
between 1/3 and 2/3 the high level output voltage.
With random data, the reading would be about 2
volts. There will be a fairly wide range of acceptable
volume settings. (Since the quivering meter needle is
being used here for inertial signal averaging, a digital
voltmeter would not be very helpful in this applica­
tion.)

VOH

SOD OUTPUT

VOL

TIME

DATA "0" DATA "1"

Figure 7. Tape Interface Data Recording Scheme

8085

>----------1SID

lK
10K

A2

0.1 pF

100

RECORDER
EARPHONE

OUTPUT

0.001 pF

10K 20K

+5V
10K

RECORDER 0.1 pF

AUX Al
INPUT 0

lK

lK
2.5V

200

-=
2.0V

820
10K

Dl -= A4
10K

NOTES: A 1 - A4: Y<s LM324 QUAD OP AMP
Dl - D2: ANY LOW CURRENT DIODE
ALL RESISTORS ±5%

Figure 8. One Chip Magnetic Tape Interface Schematic
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~TONEBURST~ Rotate register C through CY:

Move CY to the SOD enable bit position, A6.
Simultaneously set A7 to one, and clear all other
bits. Output a tone burst or space, depending on
the previous contents of CY:

VOH

®
VOL

®
3V

1V

@ GND

_----oIUl _ MOV
RAR
MO'I

A.• C

C.' A

( RECORDING OR TRANSMISSION MEDIUM)

I_ RECONSTRUCTED SIGNAL _I

Clear the accumulator, and output a space:

B
T01

OCR
JNZ
RET

t~VI A.. 01H
RAR
~~A~~

CALL BUF.5T

1:RA A
CALL BURST

Keep cycling until the full 9-bit sequence is fin­
ished:

L
~"
"'" ~ COMPARATOR_____A ., t'~ LEVEL

+1V

@ GND

-1V

@ 2.0V

GND

0 2.0V

GND

+4V

® 2.0V

4V

0
GND

Figure 9. Analog Signal Waveforms

After the CRT software analysis, the tape routines
are almost trivial. TAPEO is a subroutine for out­
putting the contents of register C to a cassette
recorder. TAPEIN reads 8 bits into register C.

OUTPUT ROUTINE

TAPEO calls a subroutine named BURST three
times for each bit. If A6 (the SOD enable bit) is set
when BURST is called, a square-wave tone burst
will be transmitted. If A6 is not set, BURST
simply delays for exactly the same amount of time
before returning. The three calls are used to,
respectively, output the initial burst, output the
data burst/space, and create the space at the end of
each bit. Nine bits will be output: the eight data
bits (LSB first) followed by a zero bit. The start of
the initial burst of the trailing zero is needed to
mark the end of the final space of the preceding
data bit.

Start each bit by outputting a tone burst:

TAPEO : talV I
T01: t'lVI

CALL

8..9
A.I l)Cl;1H

BUF.ST

The BURST subroutine executes the SIM in­
struction CYCNO times, at intervals of 29 + 14
(HALFCYC) machine cycles. In between each SIM,
bit A7 is complemented. CYCNO should be an
even number. If A6 is set upon calling BURST a
square-wave will be created. Otherwise, the same
code sequence is followed but SOD does not
change - thus a space results.

E:U~5T: W·lI D.> C'r'CNO <'-{ )

BU1' SIN (4}
NVI [. HALFC~lC <·oj" .,:'

BU2: DCR E (4)

JNZ BU2 (7.l i0)
>:;F.~ I 8€1H .0"'"

':'.{ ••'>

DCR [J (4)
JNZ BU1 (7/'10)
RET (10)

INPUT ROUTINE

TAPEIN uses a subroutine called BITIN to move
the data at the SID pin into the CY. The maximum
rate at which SID is read is limited by a delay loop
in BITIN.

Initialize the bit counter and the register D, which
will keep track of the tone burst time. If a tone

10



burst is being received when TAPEIN is· called,
~ wait until the burst is over:

Continue until the last bit has been received:

TAPEIN: NVI B c'.. '_I

t'f,,"I D.· 00H
Tli- CtilL 8ITIN

.JC TIl
CALL BITIN
JC Tli

(Throughout this subroutine, a level transition is
recognized only after it has been read once initially
and then verified on the next reading. This pro­
vides some degree of software noise immunity.)
Now await the start of the next burst:

[:tCR B
JNZ TI3:
F.~ET

(Notice that the first half of this subroutine is
incorporated in the second half. In fact, the as­
sembled listing included in the Appendix makes
use of this fact to eliminate 24 bytes of duplicated
code.)

BITIN waits a short time in order to regulate the
sampling rate, then reads SID and moves the data
bit into the CY:

Now continue reading the SID pin, incrementing
the D register (back towards zero), each cycle until
the next burst is received:

The next burst has now arrived. Keep reading the
SID pin, decrementing register D (thus making it
more negative), each cycle until the pause is
detected:

TIZ' DCR D
CALL BITIN
.Ie TI?
CALl. BITIN
.JC TI~:

Table 2

EXAMPLE COMBINATIONS OF HALFCYC AND CYCNO.
ALL VALUES IN DECIMAL

(7)
{4:·;·

(7/1H)
(4)
{4>

(1~3)

E.,CKRATE
E
811

BITlN: W",'I
BIl: [{:F.'

.TNZ
Plt'l
PAL
RET

APPROXIMATE CORRESPONDING RESULTING DATA RATE

TONE HALFCYC 8 20 100 CYCNO
FREQUENCY VALUE 4 10 50 CYC/BURST

500 Hz 217 42 17 3.3 bps
1 kHz 108 83 33 6.6 bps
2 kHz 53 166 66 13 bps
5 kHz 20 414 166 33 bps

10 kHz 9 826 330 66 bps

The tone burst frequency and duration, and
the TAPEIN sampling rate are determined by
HALFCYC, CYCNO, and CKRATE. Tables 2 and
3 give typical values.

D
BITIN
TI4
BITIN
TI4

BrTIN
TI2
E:ITH'~

TI2

INP
CALL
.JNC
CALL
JNC

CALL
..INC
CALL

..TNC

T14:

TT":I .
.L~.

Now, if the burst lasted longer than the space, D
was not incremented all the way back to zero; it is
still negative. If the -space was longer, D was incre­
mented up through zero; it is now positive. In
other words, the sign bit of D will now correspond
to the data bit that would lead to each of these
results. Move the sign bit into the CY, then rotate
it into register C:

NO\,! A.I D
~ PAL

t'll)'./ A.. C
F.~A~~

!'lO\-' C.' A
j'l\·! I D.. ~j0H

Table 3

MAXIMUM SAMPLING RATES
FOR VARIOUS VALUES OF

CKRATE

CKRATE
SAMPLING RATE

VALUE
(INCLUDING
CALL & RET)

1 17.6 J1sec
20 104 J1sec
80 378 J.lsec

250 1.14 msec

11



+12V -12V

Figure 10. Interfacing 8085 to Multiple Peripherals

TO
PERIPHERAL
OUTPUTS

+5V

MC14897408

SID ....-------1-1

SOD t------f- ~

8085

As explained before, the BRID routine computed
rate parameters based on the fact that an ASCII
"space" character resulted in a zero level 6 bits
long. Conceivably, some obscure peripherals might
produce a transient between successive zero bits.
(This might be the case, for example, if the signal
was produced by mechanical rather than electronic
means.) If so, the BRID algorithm used here prob­
ably would not work reliably. Once the two time
parameters were identified, though, COUT and
CIN could still be used. An alternate algorithm for
baud rate identification would require a table in
ROM (note the fifth and final R/S-I/O-M/D permu­
tation). This table would contain a list of delay
parameters corresponding to the standard transmis-

The software needed to support additional periph­
erals would be simple and straightforward. A
routine intended to dump a section of memory to
a paper tape punch, for example, would first have
to store BITTIME and HALFBIT somewhere (per­
haps on stack), load the variables with new param­
eters corresponding to the paper tape punch rate,
and then write a bit pattern to the output port
which would disable the console driver and enable
the punch (and perhaps a typewriter). After the
dump was over, the original time parameters and
driver status would be restored.

The two design examples given so far were built up
using an SDK-85 System Design Kit. Both hard­
ware interfaces were wire-wrapped on the ample
breadboarding area provided on the board. The
connections between SID and SOD and the on­
board TTY interface were broken, so as not to
affect the 8085 I/O electrical characteristics.

The CRT interface was tested with a Beehive Mini­
Bee II Terminal in the full duplex mode at each of
its 14 possible transmission rates, from 110 to
9600 baud. It was also checked out at 19200 baud
using a Beehive B-100 terminal. In addition, the
software was exercised using an SBC 80/20 system
as a variable baud rate character generator and
receiver.

ADDITIONAL COMMENTS

The Appendix also includes a simple block record
routine utilizing TAPEO. Before calling BLKRCD,
HL must be set to the start of the desired block,
and the recorder turned on manually. Successive
bytes will be recorded until the end of that page,
Le., until L is incremented to zero. The playback
routine requires presetting HL to the target address
and turning on the recorder before PLAYBK is
called. These routines incorporate a long tone burst
before each data block to allow a recorder with
Automatic Gain Control to stabilize before the
data starts.

An additional advantage to having software select­
able communications rates is that it would be pos­
sible to communicate with several system periper­
als, each at its own preferred rate, without having
to duplicate hardware. For example, the addition
of a single 7408 AND gate and an output port
(such as on the 8155) would make it possible to
use the same two RS-232 circuits to interface with
up to seven I/O devices (see Figure 10). Three of the
MCI488 drivers have Enable inputs which can be
controlled by the output port. One AND gate can
be used to buffer the SOD line and drive the
MCI488 Data inputs. The rest of the 7408 can be
configured as a four input AND gate. This would
act as an inverted logic OR gate to reduce the four
MCl489 receiver outputs to a single line, which
could be read by the SID. This assumes that only
one input device (CRT, PTR) at a time will be used
(which is usually the case in a non-time shared,
interactive application), and that the unused
devices are transmitting a logic one level (which
should also be the case).

12
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sion rates, as computed for the selected crystal
frequency. Initialization would require the oper­
ator to hit a specific key several times (usually the
"U" key, which generates a pattern of alternating
ones and zeros). The identification routine would
attempt to "read" this pattern at each baud rate,
in turn, until finding the rate at which the read
was successful.

The cassette recorder used to develop the tape
interface was a Lloyd's push-button model which
cost $17 in 1972. Empirical testing has indicated
that for this application, the quality of the cassette
recorder is less critical than the quality of the tape
itself. In other words, some 33¢ cassettes were not
very reliable, even when used with more expensive
recorders.

When using a cassette at the beginning of a side,
allow the tape to run for about 10 seconds until
the leader has passed before starting to write data.
Otherwise, data will be lost to the leader.

Depending on the recorder quality, the tone burst
frequency and duration can be optimized for
higher data rates by modifying HALFCYC and
CYCNO. If so, CKRATE should also be reduced,
so that between about 10 and 80 data samplings
are made during a single (one-third width) tone
burst. At greatly increased frequencies, some of the

components in the analog interface might also be
modified.

The two simple routines for recording and playing
back blocks of data were intended to illustrate one
way of using TAPEIN and TAPEO, and therefore
do not contain any provisions for error detection
or correction. Depending on the nature of a partic­
ular application, these routines could be aug­
mented with parity bit or checksum comparison,
or an error correcting code technique.

Funny things happen when recording and playing
back a page of RAM which includes the subroutine
stack. Eventually, PLAYBK will start writing over
the data at the top of the stack, destroying the
subroutine traceback sequence. The next RET
instruction will then cause a jump to a place where
you'd rather not be.

The printout reproduced in the Appendix includes
the assembled listings for the CRT and magnetic
tape interfaces discussed in this application note.
The object code produced was programmed into
an 8755 EPROM, which was installed in the expan­
sion PROM socket of the SDK-85 board. Some
very minor differences exist between this listing
and the code segments presented earlier, which
were written for maximum clarity.

APPENDIX

ISIS- II S080/8085 ASSENBLER.. V1. B PAGE 1

~.

LOC OBJ SEt) SOURCE STATEMENT

~3! ~10De5 TITLE( '8~385 SERIAl I/O NOTE APPENDI::~:·~)
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ISIS-II 8080/8085 ASSEMBLER} Y1.0
e885 SERIAL IiO HOTE APPENDIX

t'10DfjLE PAGE 2

LOC OBJ 5EG~ SOURCE STATE~1E~lT

1
2 ; THE FOLLOWING PROGRAMS AND SUBROUTINES ARE DESCRIBED IN DETAIL
2 ; IN INTEL CORPERATION/S APPLICATION NOTE AP-291 "USING THE 8085
4 ; 5ERIAL I/O LINES II . THE FIRST SECT ION IS AGE~IERAL PURPOSE CRT
5 .: INTERFACE ~HTH AUTO~lATIC BAUD RATE IDENTIFICATION.; THE ~.ECOND

t. .; SECTION IS A t1AGNETIC TAPE INTERFACE FOR STORING DATA ON CASSETTE
7 = TAPES. THE CODE PRESENTED HERE IS ORIGINED AT LOCATION S0eH}
8 ; AND MIGHT BE PART OF AN EXPANSION PROM IN AN INTEL 5[~-85

9 .; S'~STEt~ DESIGN KIT.
10 .;
11

20C8
20CA
eeeB
ee09

1] BITTH'lE EQU
14 HALFBIT EQIJ
15 81T50 ElJfJ
16 BITSI EOU

20C8H
20CAH
11
9

;ADDRESS OF STORAGE FOR COMPUTED BIT DELAY
; ADDRESS OF STORAGE FOR HALF BIT DELAY
;DATA BITS PUT OUT (INCLl~ING TWO ST(~ BITS)
; DATA BITS TO BE RECIEVED (INCLUDI~ffi ONE STOP BIT)

jINCREMENT COUNTER EVERY 84 CYCLES WHILE SID IS LOW

;5} MACHINE CYCLE DELAY LOOP

; LOOP 11~TIL START BIT IS RECIEVED
;BIAS COUNTER USED IN DETERMINING ZERO DURATION

;MONITOR SID LINE STATUS

;CHECK IF CHARACTER WAS A<BREAK) (ASCII 00H)
.; IF 50.1 RE- IDENT IFIT' DATA RATE
jTHIS ALLOWS ANOTHER RATE TO BE SELECTED ON CRT
;OTHE~WISE COPY REGISTER CTO THE SCREEN
;COHTINUE INDEFINITELY (L~TIL BREAK)

;STARTING A[,DRESS OF SDK-85 EXPANSI(~ PROM

COUT
ECHO

A
BF.~I1

H.1-6
E.,04H
E
BRI4
H

BaSH

BRIO j IDENTIFY DATA RATE USED BY TE~1INAl

5I GNON .; OUTPUT SIGNON r1ESSAGE AT RATE DETECTED
CIN .; READ NEi·;T KEYSTROKE INTO REGI5TER C
A.I C
A
CRT1

BAUD RATE Ir~NTIFICATION SUBROUTINE
EXPECTS A{CR) (ASCII 2~3H) TO BE RECIEVED FROM THE CONSOLE.
THE LENGTH OF THE INITIAL ZERO lEVEL (SIX BITS WI[~) IS MEASURED
IN ORDER TO DETERMINE THE DATA RATE FOR FUTURE COMMUNICATI(~S.

RIt1 .; VERIFY THAT THE nONE It LEVEL HAS BEEN ESTRBlISHED
ORA A ;\ AS THE CRT IS PO~ERING UP
JP BRIO
RIt'l
ORA
...TN

L,:I
NVI
DCR
.JNZ
IN:~\:

Rlt'l

ORG

CALL
Jt·lP

.12

7Q ._"J ..

51
52

Z4
35

40 .;
41 .;
42 B~'ID'

45
44
45 BRI1:
46
47
48
49 BRI1:
50 BR!4:

36.,.,
.,jl

17
18
19
2e ;CRTTST CRT INTERFACE TEST. ~~EN CALLED} AWAITS THE SPACE BAR BEING PRESSED ~~

21 j THE SYSTEM CONSOLE} AND THEN RESPONDS WITH ADATA RATE VERIFICATION
22 ; MESSAGE. THERE AFTERJ CHARACTERS TYPED ON THE KEYBOARD ARE ECHOED
2~ ; ON THE DISPLAY TUBE. WHEN ABREAK KEY IS TYPED, THE ROUTI~~ IS
24 ; RE-STAPTED} ALLOWING ADIFFERENT BAUD RATE TO BE SELECTED ON THE CRT.
25 CRTT5T· LXI SP}20ceH
26 CRT1: t'lVI A.I J3C0H .; 500 ~lIjST BE HIGH BET~JEEN CHARACTERS
27 5It1
2:3 CALL
29 CALL
18 ECHO: CALL
31 ~10V

32 ORA

082D 23
i382E 20

aSiA 29
e81B 87
081e F21A0B
081F 20
0820 87
J3821 FA1F~38

0824 21FAFF
0827 1E04
8829 10
~382A C229~38

13814 CD6908
'3817 C30C08

08e0 3iC020
0803 3Eee
0805 30
0806 CD1A0S
0809 CD4708
0eee CDBRas
BeeF 79
0810 87
0811 CA€1s08

14



!SIS-II 8080/:::085 A55E~lBLER., Vi. 13

8085 SERIAL I/O NOTE APPENDIX
~10DULE PAGE 3

Lor OS.J SEQ

0:32F 87 :r4
0830 F22708 55

r:.-
·JC

13833 E5 57
0834 24 58
08~5 2C 59
08]6 22C82€1 €0
08Z9 E1 61
083A B7 62
383B 7C 6::
0S3e iF 64
eS3E! 67 65
e:33E 7D 66
0S1F iF h"_ I

0840 6F 6:3
0841 24 69
0842 2C 70
B84i 22CA20 71
0846 C9 -,.-.

it:.

-"
i'::·

SrnJRCE STATEMENT

ORA A
JP BRI3:

; (HL) NOW CORRESPONDS TO INCOMING DATA RATE
PUSH H ;SAVE COUNT FOR HALFBIT TIME COMPUTATION
IN~~ ..'H .; BITTINE I5 (JETEF.~t'1 INED BITI INCREr1ENTING
INR L ;\ HAND L INDIVIDUALLY
SHLD SITTINE
POP H .;RE5TORE C~JNT FOR HALFBIT DETERMINATION
OPR A ; CLEAR CARRY
MOV A~H ; ROTATE RIGHT EXTENDED <HL)
RAR ;\ TO DIVIDE COUNT BY 2
t'10V H.. A
NOV R., L
RAR
~10V L., A
INR H ;PUT HAND L IN PROPER FORMAT FOR DELAY
INR L ;\ 5EI]1ENTS (I~:REMENT EACH)
SHLD HALF8IT ; SAVE AS HALF-BIT TIME DELAY PARAMETER
RET

0DH., 0AH .; (CR)(LF)

IBAUD RATE CHECK~

00H ;END-OF-STRING ESCAPE CODE

0DH~eAH ; (CR)(LF)

DB

DBC'7
'-'I

76 SIGNON: L::-]
~.., 51: r'10VI-j

70 i-~RA1'_'

79 ORA
80 RZ
81 CALL
0"") IN;~I_'C.

Cl 7 .JNP1_'';-

84
85 STRNG: DB

0'" DB,_,tl

74 ;5I!1~ON WRITES ASIGN-ON MESSAGE TO THE CRT AT WHAT SHOULD BE THE CORRECT RATE.
75 ; IF THE t'1ESSAGE IS UN INTELLIGIBLE. . . WELL.. SO IT GOES.

HiSTRNG ;LOAD START OF SIGN-ON MESSAGE
C.l M .: GET NE~'(:T CHARACTER
A ; CLEAR ACCl~ULATOR

C ;CHECK IF CHARACTER IS END OF STRING
;RETURN IF SIGN-ON COMPLETE

COUT .: ELSE OUTPUT CHARACTER TO CRT
H .; IN[:t£;.:: POINTEF.~
Sl ; ECHO NE~T CHARACTER

0855 eo
0856 0A
t1857 42415544
0858 20524154
0S5F 452~34i48

13S6] 454148
0865 0D
e867 8A
0868 00

0847 2155~38

J384A 4E
0848 AF
084C B1
0840 C8
0S4E CD6908
0851 2]
J3852 C34R08

E~

H
8) 81T50 ;SET NUMBER OF BITS TO BE TRANSMITTED
A ; CLEAR CARRY
A.I 8~3H .; SET ~JHAT lot ILL BECOME SOD ENABLE BIT

; MOVE CARRY INTO SOD DATA BIT OF Ace
;OUTPUT DATA BIT TO SOD

BITTIt'1E
L ;WAIT UNTIL APPROPRIATE TIME HAS PASSED

0869 Fi
a86A C5
0868 E5
086C 0608
aS6E AF
086F 3E8~3

0871 iF
0872 30
0:373 2AC820
l3876 2D

9E1 .: COUT
91 .:
92 COLlT:
93
94

96
97 COl:
98
99

1ee
101 C02:

CONSOLE OUTPUT SL~ROUTlNE

WRITES THE CONTENTS OF THE CREGISTER TO THE CRT DISPLAY SCREEN
[;1

PUSH
PUSH
tilVI
::-::RA

t1"lI
RAP
SIN
LHLD
DCF.~
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ISIS-II 8080/8085 ASSEMBLER} Vi. e
8085 SERIAL I/O NOTE APPENDIX

NO[;ULE PAGE 4

LOC OBJ SEQ SOUF.fE STATEt1ENT

~..

;CHARACTER COMPLETE

;5ET WHAT WILL EVENTUALLY BECOME ASTOP BIT
; ROTATE CHARACTER RIGHT ONE BIT}
;.... ~10V ING NE;~:T DATA E: IT!NTO CARF.~lTI

.; EI)UAL IZES COUT AND CINLOOP TIrilES

;CHECK IF CHARACTER (AND STOP 81T(S) [{tHE
;IF NOT} OUTPUT CURRENT CARRY
;RESTORE STATUS AND RETURN

;CHECK SID LINE LEVEL
.; DATA BIT IN CY
;DETERMINE IF THIS IS FIRST STOP BIT
j IF so} JUMP OUT OF LOOP
;ELSE ROTATE INTO PARTIAL CHARACTER IN C
;ACC HOLDS UPDATED CHARACTER

C.' A

Cli
H

A
CI1
HALFBIT
L .; HAlT UNTIL NIDDLE OF 5TAF.~T BIT
C12
H
CI2
BITTIME ;WAIT OUT BIT TIME
L
CI4
H
CI4

B
C15

8

C.' A
8
COl
H

C02
H
C02

~10V

RAF.:
t10V
NOP
JtiP
POP
El
RET

JZ

CONSOL INPUT SUBROUTINE WAITS FOR AKEYSTROKE AND
RETURNS WITH 8 BITS IN REG C.
D1
PUSH H
MVI BJBITSI ;DATA BITS TO BE READ (LAST RETURNED IN CY)
RIM ;WAIT FOR SYNC BIT TRANSITION
ORA
.J~1

LHLD
e-eR
JN2
DCR
.INZ
LHLD
DCF.~

J~lZ

[~CR

JN2
RIt1
RAL
DCR

..TN:
DCR
JNZ
STC
MOV
RAR
~10V

OCR
JNZ
POP
POP
El
RET

:1.3:2

128
127
126

129 CI]::
lZ!3 C14:
131

125 (:12:

1~~:

:139
140
141
142
143 CI5:
144
145
146
147 ;***t**********t****t*~**t********************~****************************:
148
149 ; THE FOLLOWING CODE IS USED BY THE CASSETTE INTERFACE.
150 ; SUBROUTINES TAPEO AHD TAPEIN ARE USED RESPECTIVELY
151 ; TO OUTPUT OR RECEIVE AN EIGHT BIT BYTE OF DATA. REGISTER C
152 .; HOLDS THE rJATA IN EITHER CASE. REGISTERS A.I E:., &C A~~E ALL DE5TRO'r'ED.
153 CYCNO EQU 16 .:TWICE THE NUMBER OF CYCLES PER TO~E BURSi
154 HALFCYC EQU sa ;DETERMINES TONE FREQUENCY

134
1sS
l~h

137

117 .:
118 CIN:
119
128
121 Cli:
122
123
124

102
le~

104
105
106
107
108
le9
1113
111
112
113
114
115
116 ;(:IN

88B6 Ei
e8B7 FB
08B8 C9

eSB3 C~9E~38

0010
ee1E

a8BA Fs
088B E5
ease ef09
eS8E 20
888F 87
9890 FA8E08
8893 2ACA2l3
0896 20
e897 C29608
889A 25
0898 C29608
e89E 2AC820
eSAl 2D
0SA2 C2A10e
0SA5 25
08A6 C2A108
0SA9 2e
08AA 17
08AB 0S
MAC CAB6es
0SAF 79
eSBe iF
0881 4F
0882 €.«3

0S77 C2760S
0S7A 25
8878 C27608
087E s7
eS7F 79
e88~3 iF
8881 4F
0882 05
eBSs C26F0S
e886 El
0S87 C1
9888 Fe
0889 C9
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ISIS-II se80/8085 ASSEMBLER) Vi. e
8085 5ERIAL I/O NOTE APPENC' IX

MODULE PAGE 5

LOC 08.1 SEQ SOURCE STATEMENT

;SETS SAMPLE RATE
; NUMBER OF SUCCESlv~ TONE BURSTS COMPRISING LEADER
;USED IN PLAYBK TO VERIFY PRESENCE OF LEADER

; AFTER BLOCK IS COMPLETE

BR1 ;SUSTAIN LEADER TONE
A ;CLEAR ACCUMULATOR &OUTPUT SPACE~ SO THAT
BURST .i I••" STAF.~T OF FIRST DATA BI~TE CAN BE DETECTED
C.I t1 .: GET DATA BliTE TO BE RECORDED
TAPEO j OUTPUT F:EG I5TEF.: C TO RECORC€F.:
L .: POINT TO NEXT BYTE
BR2

C

22
25~3

250

OUTPUTS AVERY LONG TONE BURST «LEA[~R) TIMES
THE NORMAL BL~ST DURATION) TO ALLOW RECORDER ELECTRONICS
AND AGe TO 5TABILIZE~ THEN OUTPUTS THE REMAINDER OF THE
256 BYTE P~3E POINTED TO BY <H)~ STARTING AT BYTE (L).
C,LEADER;SET UP LEADER BURST LENGTH
A.. 0C0H .; SET Accur1ULATOR TO RESULT IN TONE BURST
BURST ; OUTPUT T(~'JE

CALL
INR
JNZ
RET

MOV

MVI
t~VI

CAlL
DCR
JNZ
~\::RA

CALL

174
175

173
172

155 CKRATE EQU
156 LEADER EQU
157 LDRCHf< EQU
158
159 .= BLKRCD
160 .;
161 j

162 .;
16J BLKRCD:
164
165 BR1:
166
167
168
169
170 BR2:
171

8889 8EFA
eSBB JECe
eSBD CDF0J38
08C0 eo
egCl C2BD0B
0SC4 AF
eSGS C(:'F008
eSG8 4E
08C9 CDDies
0SCC 2C
08eo C2C80S
0SDe C9

0016
00FA
OOFA

08D1 F3
08D2 05
0803 0609
08C'5 AF
0806 2Ece
0SD8 CCf00S
e8CtB 79
B8De iF
0SDD 4F
08CtE 3E01
08Ee iF
aBEl 1F
08£2 CDF008
08E5 AF
08E6 CDFaes
08E9 05
08EA C2D508
08ED D1
08EE FB
08EF C9

08F0 161~3

0SF2 30
88Fi. 1E1E
J38F5 1D
08F6 C2F5f18
8SF9 EE8B
J38FB 15
08FC C2F29S

176
177 .; TAPEO
178 .:
179 TAPEO: DI
1813 PUSH
181 t~VI

182 T01: :~=:RA

18i ~1VI

184 CALL
185 tll0V
186 RAR
187 t'10\,'
1:38 tilVI
189 RAR
190 RAR
191 CALL
192 :~:RA

193 CAlL
194 DCR
195 JNZ
1% POP
197 EI
198 ~ET

199
200 BURST: tilVI
2131 8U1: 51:'1
202 ~lVI

20i BU2: DCR
2~34 JNZ
205 :~::R!

206 OCR
207 JNZ

OUTPUTS THE BYTE IN REGISTER CTO THE RECORDER.
REGISTERS A!BIC~D}&E ARE ALL USED.

D .;D&E USED AS COUNTERS BY SUBROUTINE BURST
B.. 9 ; ~'JILL RESULT IN BDATA BITS AND ONE STOP BIT
A ; CLEAR ACCUMULATOR
A.I 01)3H .i SET ACCU~lULATOF.: TO CAUSE A TONE BURST
BURST
A.I C .; ~10VE NE:~:T DATA BIT INTI) THE CARRl!'

C~A ; CARRY WILL BECOME SOD ENABLE IN BURST ROUTINE
AJ01H ;SET BIT TO BE REPEATEDLY COMPLEMENTED IN BL~ST

BURST .; OUTPUT EITHER ATONE OR APAUSE
A ;CLEAR ACCUMULATOR
BURST .; OUTPUT PAUSE
B
TOl ; REPEAT UNTIL BYTE FINISHED
o ;RESTORE STATUS AND RETURN

0.1 C'r'CNO .; SET NUt'1BER OF C~'CLE5

; COMPLEMENT SOD LINE IF SOD ENABLE BIT SET
E.. HALFCIr'C
E ;REGULATE TONE FREQUENCY
8U2
e0H jCOMPLEMENT SOD DATA BIT IN ACCUMULATOR
D
BU1 ; CONTINUE UHTIL BURST (OR EQUIVILENT PAUSE) FINISHED

17
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MODULE PAGE 6

LOC OSJ SEt) SOURCE STATEMENT

l38FF C9

0gee ~3EFA

0902 CD1D09
0905 0200e9
8ge8 eD
8909 C20209
090C CD1509
890F 71
09113 2C
0911 C20C09
~3914 C9

208 F.~ET

209
210 ;PLAYBK WAITS FOR THE LONG LEADER BURST TO ARRIVE} THEN CONTINUES
211 ; READING BYTES FROM THE RECORDER AND STORING THEM
212 ; IN MEMORY STARTING AT LOCATIt]~ (HL).
213 ; CONTINUES UNTIL THE END OF THE CURRENT P~3E «1-)=0FFH) IS REACHED.
214 PLAYBK: MVI CJL[~CHK ;<Lr~CHK) SUCCESSIVE HIGHS ML~T BE READ
215 PB1: CALL BITIN ;\ TO YERIFY THAT THE LEADER IS PRESENT
216 ..TNC PLAYBK ,; \ AND ELECTRONICS HAS STABILIZED
217 DCR C
218 JNZ PBi
219 PB2: CALL TAPEIN j GET DATA B~'TE FRON RECORDER
220 t10V M.. C .; STORE IN t·1ENOR'T'
221 INR L .= It·~~REt·1ENT PO INTER
222 JNZ PB2 ;REPEAT FOR REST OF CURRENT PAGE
223 RET
224
225 ;TAPEIN CASSETTE TAPE INPUT SUBRrnJTINE. READS ONE BYTE OF DATA
226 ; FRI)1 THE RECORDER INTERFACE AND RETURNS WITH THE BYTE IN REGISTER C.

E..CKRATE
E
BI1

0915 0609 /.,'7 TAPEIN: ~lVI_ .... 1

9917 16e~3 228 TIl: ttl"'! I
0919 15 229 TI2: DCR
091A C(J]C,e9 230 CALL
991ft DA1909 231 JC
0920 CD3009 23:2 CALL
~3923 DA1909 23:3 JC
0926 14 234 TI3: INR
0927 CD3D09 225 CALL
092A D22609 216 .INC
092D CC'3D09 ?-'~ CALL... .5..(

13930 D22609 21.8 JNC
~3933 7A 259 t'10V
~3934 17 240 RAL
J3935 79 241 t·l0V
0936 iF 242 F.:AR
AQ?''7 4F 243 t10V_J~'I

~3938 05 244 DC~~

~39~9 C21709 245 .JNZ
l39:?C (:9 246 RET

247
093D lE16 248 8ITIN: W,ll
093F 10 249 Bli: DCR
09413 C21.F09 250 JNZ
0943 213 251 Rlt·1
0944 17 252 RAL
~3945 C9 ....C'""} RET~.J:'.

254
'jC'C: END{...J._l

PIJBL IC s~'r~BOL5

819
DJ00H
D
BIT1N
T12
BITIN
T12
D
8ITIN
TI3:
BITIN
TI3
AJ [j

A.. C

C.' A
B
TIl

;READ EIGHT DATA BITS
.; CLEAR UP/DtJ·JN COUNTER
;DECREMENT COL~TER EACH TIME ONE LEVEL 15 READ

;REPEAT IF STILL AT ONE LEVEL

; INCREMENT COUNTER EACH TIME ZERO IS READ

;REPEAT EACH TI~E ZERO IS READ

iMOVE COUNTER MOST 5IGNIFICffi~T BIT INTO CARRY

~~jVE DATA BIT RECIE~~D (CY) INTO BYTE REGISTER

;REPEAT UNTIL FULL BYTE ASSEMBLED

jLIMIT INPUT Sffi1PLI~ro RATE
.; SANPLE SID LINE
;MOVE DATA INTO CY BIT

18
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EXTERNAL SYMBOLS

~10[:tULE PAGE 7

USEH 5~'t1BOLS

E: 1:1 A t39i:F
BR2 A 08(:8
BURST A ~38F0

CKRATE A 0ft16
ECHO A 8Sf1C
PLA'iBK A ege~3

TI2 A 0919

BTTIN A 093:D
BRI1 A ~381F

CI1 A0BBE
COl A086F
HALFB I A 2€1CA
S1 A J384A
TI~: A 0926

BITSI A B€109
BRli A l382?
C12 A J3896
C02 A 0876
HALFC'r' A 0131E
SIGNON A ~3847

TOl A08D5

BIT50 A 0008 BITTIN A2ecs BLKRCD A0BB9 SRi A 0880
BF.~I4 A 8f~29 BRID A ~3:31A BUi A 08F2 BU2 A 08F5
CI3 A089E (:14 A08A1 CI5 A 0886 eIN A M8A
COUTo A 0869 C~~T1 A i38e3 CRTTST A0800 CYCNO A9010
LCtRCHK Ae0FA LEAC'ER A 00FA PBi A0902 PB2 A 090C
STRNG Ft 0:355 TAPEIN A0915 TAPEO A 0:3Cfl TIi A '1917

ASSEMBLY COMPLETE~ NO ERR(~(S)
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BI1 249# 25~3

BITIN 215 230 232 235 --I"''' 248#~';·i

BITSI 16# 12t1
BITSO 15# 95
BITTlf'1 lZit 6e 100 129
BLKRCD 163#
SRi 165# 167
BR2 170# 173:
BRI! 45# 47
BRIs 49# 55
BRI4 501 51
BRID 28 42# 44
BUi 201# 207
BIJ2 285# 204
BURST 165 169 184 191 193 2~30tt

Cli 121# 123:
CI2 125# 126 128
Cli 129# 142
CI4 13:e# 151 133
CIS 137 145#
eIN s0 118tt
CKRATE 155# 248
C01 97# 110

~

CO2 101# 182 104
COUT 35 81 92.
CRTf 26# -:.~

~.~.

CRTTST 25#
CITleNO 151# 208
ECHO set 36
HAlFBI 141 71 124
HALFCY 154# 202
LDRCHK 157# 214
LEA[>ER 156# 163
P81 215t 218
PB2 219# ·1..,....

""~

PLAYBK 214# 216
51 77# 85
SIGNON 29 76#
STRNG 7'- 85#It·

TAPEIN 219 227#
TAPEO 171 1791
TIl 228# 245
TI2 229# 23:1 23:3:
TIs 21.4# 236 218
TOl 182# 195

CROSS REFERENCE COtllPLETE

~
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