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1.0 INTRODUCTION

The i486™ CPU contains several improvements over
its predecessor, the highly successful 386™ CPU. One
of the most important of these is the processor’s data
access rate. The i486 CPU can access instructions and
data from its on-chip cache in the same clock cycle. To
support the processor’s redesigned internal data path,
the external bus has also been optimized and can access
external memory at twice the rate of the 386 CPU. The
internal cache requires rapid access to entire cache
lines. Invalidation cycles must be supported to maintain
consistency with external memory. All of these func-
tions must be supported by the external memory sys-
tem. Without them, the full performance potential of
the CPU cannot be attained.

The requirements of todays multitasking and multipro-
cessor operating systems also put increased demand on
the external memory system. OS support functions
such as paging and context switching can degrade refer-
ence locality. Without efficient access to external mem-
ory, the performance of these functions is reduced.

Second level caching is a technique used to improve the

memory interface. Some applications, such as multiuser -

office computers, require this feature to meet perform-
ance goals. Single-user systems, on the other hand, may
not warrant the extra cost. Given the variety of applica-
tions incorporating the i486 CPU, memory system ar-
chitecture will be very diverse.

In this application note, we will work with an example
to discuss the details of memory system design. In the
example, we have supported as many functions of the
CPU as possible. An optional second-level cache is in-
cluded. A write buffer is also implemented to reduce
write latency. The cache supports zero wait state read
cycles. The DRAM controller supports the following
devices with the wait states shown in Table 2. The
DRAM speed given in Table 1 is the RAS access time
(tRAC). Table 2 summarizes the bus clocks required
for each function.

Table 1
DRAM
CPU Clock Freq. Speed
25 MHz 100 ns
33 MHz 70 ns

Many of the functions and optimizations included here
will not be required in every application. The example
provides guidelines for the hardware designer but will
not necessarily provide the optimal cost/performance
solution for many applications. For example, 11 PLDs
are required to implement the memory control logic
partially due to the implementation of a back-off capa-
bility. An address register must also be used to imple-
ment this function. If this function is not used, the con-

trol logic can be substantially reduced. These and other
optimizations will be discussed in the summary.

Table 2
First Subsequent .
(DR, | Access | “murs | e
Burst Accesses Y
Page Hit 3 1 2
Page Miss 7 1 5*
NOTE:

*Write miss latencies occur only during cycles subsequent
to a write miss cycle.

The discussion assumes a working knowledge of com-
puter system design. Items discussed but not explained
include DRAM operation, PLD programming and op-
eration, worst-case timing analysis and i486 CPU bus
operation. The complete schematics and PLD equa-
tions are in Appendix A.

2.0 THE 485TURBOCACHE SECOND
LEVEL CACHE MODULE

Several different types of second level cache architec-
tures are possible candidates for use with the 486 CPU.
For single cpu systems the different architectures offer
similar performance benefits in most cases. The reason
they are so similar is the mechanism which improves
performance. The primary benefit of the second level
cache is bus cycle latency reduction.

In most systems which incorporate a single i486 CPU,
bus traffic from other bus masters is minimal. With any
reasonable memory system the CPU uses at most 50%
to 70% of the bus. Therefore reduction of bus cycle
latency is the only performance benefit external logic
can offer.

The second level cache used in this example is an eco-
nonmical method of reducing read cycle latency. The
485Turbocache module contains the control circuits,
data and tag ram required to implement a 128k byte
cache. It is organized as a two way set associative
cache. Modules can be cascaded to provide up to 512K
bytes of cache memory.

One of the most interesting aspects of this device is it
can be a system option. To provide this capability the
device is configured as a look-aside cache. It monitors
the CPU address and control signals. When a cycle
occurs in which the cache can supply data, it inter-
venes. The cache module then supplies an entire
16-byte line with no wait states.

The performance improvement offered by this cache is
substantial in some environments. This performance
improvement is particularly obvious when executing
multitasking, multiuser operating systems such as
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UNIX and OS/2. Some users, however, may not re-
quire the performance improvement offered by the
cache. In these cases the cache as an option is attract-
ive.

By designing the cache subsystem as an option both
user’s requirements can be met. A single system design
can be manufactured for both customers. The UNIX or
0S/2 user can add the cache module. Other users may
or may not require the module. They can choose the
system configuration which meets their price-perform-
ance needs.

When a single or multiple 485Turbocache Module de-
vices are connected to an i486 processor system, the
processor’s internal cache should map the entire ad-
dress space including that of the 485Turbocache Mod-
ule devices to provide the highest performance. This is
the most efficient configuration. The 1486 CPU can ac-
cess a line from its internal cache in one clock and the
485Turbocache Module provides the next fastest access
in two clocks for the first doubleword and the remain-
ing three doublewords in three clocks.

No matter how many 128-kbyte modules are cascaded,
the set and tag addresses are connected to the same pins
on the 485Turbocache Module. The processor’s address
bits A2-A31 are connected to A2- -A31 on the
485Turbocache Module. Internally, address bits Ad—
AL15 are sent to both sets, to select one of 4,096 loca-
tions. Because the cache is two-way set associative,
each address points to information stored in two banks.
On each read or write cycle, the value of A16—-A31 is
compared to the tags stored at the location addressed
by A4-Al1S5. If they are equal, and if the valid bit is set,
then a hit occurs. If a read cycle is in progress, then the
485Turbocache Module returns data to the 1486 CPU.
If the hit cycle is a write cycle, then the new data is
updated in the 485Turbocache Module.

‘When multiple 485Turbocache Modules are used, the
chip select starts by decoding A 16 onwards. For exam-
ple, with a 256-kbyte cache A16 and A17 are decoded
for generating the CS#. The set and tag addresses of a
system with four 485Turbocache Modules is shown in
Figure 1.

SYSTEM KEN#
CKEN# START#
485TURBOCACHE
CS# MODULE __ SKEN#
KEN# | SYSTEM
- = CKEN# , START# > START#
- 485TURBOCACHE >
cs# SKEN# >
ﬁ > MODULE < o
CKEN# START#
Cs# | 48STURBOCACHE| gpyy
A16 0
—_—
A7 1
— ICKEN# START#
ADS# PLD 2
—> 485TURBOCACHE
ca0s s cs# MODULE | SENF
—_— —
240799-71

Figure 1. Multiple 485Turbocache Module Configuration
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The BRDYO# output and the CBRDY # input must
be used in forming of the i486 CPU’s BRDY # input.
Similarly, the CRDY # input must be used in forming
of the 1486 CPU’s RDY # input. Signals that are com-
mon to the i486 CPU and the 485Turbocache Module
include BOFF#, BLAST #, EADS#, BEO# -BE3 #,
and DPO-DP3.

The memory system generates KEN # to the 1486 CPU
when read data needs to be cached. The 485Turbocache
Module receives this signal as the SKEN# input and
produces CKEN#  when  appropriate.  The
485Turbocache Module’s CKEN# output can be used
in the formation of the KEN# input to the 486 CPU.
CKEN# can be used in conjunction with other logic
that can deassert KEN# to the CPU when the system
wants the current line fill to be cached by the
485Turbocache Module and not cached in the 1486
CPU. The CKEN # signal is always asserted in T1, but
is then deasserted if CS# is inactive.

The 485Turbocache Module connects directly to the
i486 CPU’s address lines A2-A31. The designer may
have to add external buffers to the address outputs,

depending upon the loading. Other signals connected to
the 1486 CPU include the burst control signals, the bus
cycle definition signals, the byte enables, the ADS#
signal, and the data and parity signals. The
485Turbocache Module and CPU connections are
shown in Figure 2. The 485Turbocache Module main
memory controller and bus controller interface are
shown in Figure 3.

Read Hit Cycles

A read hit cycle occurs when requested data is present
in the 485Turbocache Module. The i486 CPU attempts
to retrieve the entire line from the 485Turbocache
Module without incurring wait states. This may be ac-
complished by activating the KEN# input at the end
of T1 (the clock in which ADS# becomes active).
There is very little time to decode the address, generate
the KEN# signal to the i486 CPU, and complete a
zero wait state read operation. Because KEN # is sam-
pled twice, it is possible to always assert KEN# in T1
and to wait until the end of a line fill to decide whether
the data is cacheable. (See Section 3.2.)

7]

D0-D31, DPO-DP3
A A2-A31, BEO#-BE3#, A A
ADS#, M/IO#, W/R# L
A 1 A
y Y y vV we Yy Y
__ CKEN# P CBRDY#
BRDYO# |} 485 TURBOCACHE | CROY#
h MODULE o SKEN#
START# =
. MAIN
i486™ CPU AAAAA MEMORY
| EADS#
| FLUSH#
BOFF#
BLAST# -

A

CLK, RESET

[ ——————————— ———
AAA

—————— ]

— e am e
[

240799-72

Figure 2. 485Turbocache Module and i486™ CPU Connections
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"""
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|
|
\ l A
vV | Yy ¥ we Yy Y |
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240799-73

Figure 3. 485Turbocache Module and Main Memory Connections

CKEN# is used in the formation of the KEN # signal
to the 1486 CPU. Therefore, CKEN # is always activat-
ed in T1 (see Figure 4 and Figure 5). If a read hit
occurs, data can be sent to the 1486 CPU in zero wait
states and can still be cached in the processor’s on-chip
cache. The 485Turbocache Module asserts CKEN #
which remains asserted for the duration of the read hit
cycle (unless WPSTRP# is low and the line is write
protected). This means that the 1486 CPU will cache
the entire line unless external logic is added to cause the
KEN# signal to be sampled high in the clock.before
the last BRDYO# from the 485Turbocache Module.

If the CKEN # input from the 485Turbocache Module
is connected directly to the KEN# input of the i486
CPU, then the CPU will always sample KEN# active
at the end of T1. To deassert KEN# to the processor,
the system must create another signal that is used in the
formation of the i486 CPU’s KEN#, and the
485Turbocache Module’s SKEN#. Using this tech-
nique a non-cacheable, non-burst cycle can be per-
formed.

The BRDY # signal to the i486 CPU can be generated
from many sources. Therefore, the various signals
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should be logically “ORed” to generate the actual 486
BRDY # input.

On a cache read hit, the 485Turbocache Module gener-
ates a BRDYO# signal for each of the doublewords it
transfers. The 485Turbocache Module asserts
BRDYO# in the first T2 cycle, and BRDYO0# remains
asserted for the duration of the burst. If the 1486 CPU
either terminates a burst early or fails to generate a
burst cycle as defined by BLAST #, the 485Turbocache
Module will deassert BRDYO# after the i486 CPU has
sampled the required data.

Write Cycles and 1/0 Cycles

The 485Turbocache Module is a write-through cache,
so main memory is updated with every write hit or
miss. The 485Turbocache Module is not required to
generate a ready signal to the i486 CPU for write cy-
cles. However, it does perform a comparison and up-
dates the cache memory when a write hit occurs (pro-
vided the location isn’t write protected). The
485Turbocache Module is not updated on write misses.
The timings for write operations are shown in Figure 4
and Figure 5.

READ HIT WRITE MISS
T T2 T2 T2 T T2 T2
CLK _.{y'—l__#—\_.,l—L_m e T o, B
ADDR Y » e ¢ ) ¢
1
ADS# | | N 1 | | S S
W/R# J | ' I
M/IO # ﬁl —t }
l L}
H | l I !
CRDY# T T i T T 1 | I
CBRDY# : I 4 t
SEAST# I ' 7 S e e
CKEN# |ft ' { =" S \—
BRDYO# ,: WPSTRP & WP |t
START# S I I T
| | | i

240799-74

Figure 4. Read Hit-Write
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WRITE HIT READ MISS (1 CLK BURST)
| ™| T2 ™ T2 T2 2| 121 12|
CLK | —L_ L
ADDR X X X T X X
M e
ADS# '—I_|_.l——l_'_| Y |
' | | |
W/R# t — } } }
1 2 1 1 Il
M/IO# : - t 1 T 1
crov# |l gt t } |
CBRDY# I : T T 1 | Y o
M |
BLAST# [t + | 4 t ! L —
P 1
skeny oo | —_l_—
1 2 "
CKEN# I 1 | | T t—
wp 'oveecnsocssocosasiascoeisnsesisscaciococlilreccoceec
BRDYO# } - } } + —t-
starte | B s | 1 lr—
I | | ! | | | I
240799-76

Figure 5. Write-Read Miss

Because the 485Turbocache Module is a write-through
cache, writes are immediately forwarded to the system.
If a processor write occurs on a valid entry that is not
write protected, the new data will be stored into the
memory in zero wait states. The 485Turbocache Mod-
ule will not generate a ready signal. It is the systems’s
responsibility to update the system memory on all
writes and to terminate all cycles with a ready signal.
Even after the 485Turbocache Module has completed
its internal write update, it remains idle until the system
returns a ready to the processor.

A cache location can be write protected by asserting the
WP input to the 485Turbocache Module. The WP sig-
nal must be valid during the third BRDYO0# or RDY #
of a cache line fill cycle. It sets a state bit within a
particular cache location and remains in effect until the
bit is invalidated. Tieing WPSTRP # low will not allow
the write protected entry to be cached by the i486 CPU
in subsequent accesses. The entry can be invalidated by

any of the following: a flush operation, a reset opera-
tion, an invalidation cycle, or an LRU replacement.

When an i486 CPU cycle produces a write hit to a
write-protected 485Turbocache Module location, data
in the cache is not modified. The 485Turbocache Mod-
ule responds in the same way whether or not a write hit
location is write protected by asserting the START #
signal. It is the designer’s responsibility to prevent in-
consistencies between the 485Turbocache Module and
main memory when using the WP signal.

The 485Turbocache Module ignores all I/0 cycles.
When an 1/0 cycle is executed by the 1486 processor,
the system responds and terminates .the cycle. The
485Turbocache Module does not assert the START #
signal for I/0 accesses, and the system should monitor
the M/IO# signal rather than wait for the assertion of
the START # signal.
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System Cacheability Indication

The 485Turbocache Module uses the cache enable
scheme of the i486 CPU. A cache update to the
485Turbocache Module requires activating the
SKEN# signal. The signal is sampled twice, first on
the rising clock edge before the first ready signal from
BRDY # or RDY #, and again on the rising clock edge
before the last ready. If SKEN# was deasserted at ei-
ther of the specified sample times, then the access is
considered non-cacheable. SKEN# is ignored during
write cycles. .

Typically, the system will use the same logic to gener-
ate the i486 CPU’s KEN# signal and the
485Turbocache Module requires activating the
SKEN # signal. However, it is not necessary for both to
be asserted during an access. It is possible to use differ-
ent cacheing maps for the CPU cache and the
485Turbocache Module cache because the 1486 CPU
and the 485Turbocache Module maintains their own
cache contents via snooping.

Cascadable Cache

The 485Turbocache Module can be cascaded to config-
ure a deeper cache memory for the processor. Up to
four can be used to provide as much as 512 kbyte of
cache.

System Control Signals and Cascadable
Caches

The START # signal used by memory is the logical OR
for each individual 485Turbocache Module START #
output. If any cache has information that is needed by
the processor, then its START # signal is at a high
level, and it inhibits the main memory START # signal
(as there is no need to access the main memory). If
needed data is not present in any of the 485Turbocache
Modules, then the START # signals are low, and main
memory data is accessed.

The KEN# input to the i486 processor should be a
logical OR for each of the 485Turbocache Modules and
for a memory controller output. The memory control-
ler output can be asserted high to indicate that the in-
formation to the 1486 CPU is non-cacheable.

The SKEN# signal is the cache input to the
485Turbocache Module. The memory controllers must
assert SKEN# when a transfer to the 485Turbocache
Module is cacheable. The SKEN # inputs for all of the
485Turbocache Modules must be tied together. The
controller that has its CS# asserted determines which
cache will receive the information.

The EADS# signal from the memory controller must
be connected to the i486 CPU and to all of the
485Turbocache Modules. In this way, invalidation cy-
cles are executed in all the 485Turbocache Module de-
vices simultaneously.

The entire memory space is covered in a single cache or
a cascaded cache configuration. When multiple
485Turbocache Modules are wused, only one
485Turbocache Module is selected by asserting the
CS# pin.

For example, TAO through TA15 are always connect-
ed to Al6 to A3l. In the configuration with one
485Turbocache Module, the chip select is grounded. In
the two 485Turbocache Module configurations, A16 is
used to decode between the two caches. In the four
485Turbocache Module configurations, A16 and A17
are used to generate the CS# signals.

3.0 PROCESSOR FEATURE REVIEW

The improvements made to the CPU bus interface obvi-
ously impact the memory subsystem design. It is im-
portant to understand the impact of these features be-
fore attempting to define the system. This section is a
review of the bus features which affect the memory in-
terface. The features and their impact on memory sys-
tem design is discussed.

3.1 The Burst Cycle

The 1486 CPU’s burst bus cycle feature has more im-
pact on the memory logic than any other feature. It is
the most significant departure from previous bus archi-
tectures. A large portion of the control logic is dedicat-
ed to supporting this feature. The second level cache is
also primarily dedicated to supporting burst cycles.

To understand why the logic is designed this way, we
must first understand the function of the burst cycle.
Burst cycles are generated by the CPU if, and only if,
two events occur. First, the CPU must request a cycle
which is longer in bytes than the data bus can accomo-
date. Second, the BRDY # signal must be activated to
terminate the cycle. When these two events occur a
burst cycle will take place. Note that this cycle will
occur regardless of the state of the KEN# input. The
KEN# input’s function is discussed in the next section.

With this definition we see that several cases are includ-
ed as “burstable”. Some examples of burstable cycles
are listed in Table 3. These cycle’s length is shown in
bytes to clarify the case listed.
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Table 3
Burst Bus Cycle (bsyitzees)
All Code Fetches 16
Descriptor Loads 8
Cacheable Reads 16
Floating Point Operand Loads 8
Bus Size 8(16) Writes 4 (max)

The last case shows that write cycles are burstable. In
this case a write cycle is transfered on an 8 or 16 bit
bus. If BRDY # is returned to terminate this cycle the
CPU will generate another without activating ADS#.

Using the burst write feature has debatable perform-
ance benefit. Some systems may implement special
functions which benefit from ‘the use of burst writes.
However, the 486 CPU does not write cache lines.
Therefore, all write cycles are 4 bytes long. Also, most
of the devices which use dynamic bus sizing are read
only. This fact further reduces the utility of burst
writes.

Due to these facts, the design example used here does
not implement burst write cycles. In fact, the BRDY #
input is only asserted during main memory read cycles
and cache hit cycles. RDY # is used to terminate all
memory write cycles. RDY # is also used for all cycles
which are not in the memory subsystem or are not ca-
pable of supporting burst cycles. The RDY # input is
used, for example, to terminate an EPROM or 1/0 cy-
cle.

3.2 The KEN# input

The primary purpose of the KEN# input is to deter-
mine whether a cycle is to be cached. Only read data
and code cycles can be cached. Therefore, these cycles
are the only cycles affected by the KEN# input.

Figure 6 shows a typical burst cycle. In this sequence
the value of KEN# is important in two different
places. First, to begin a cacheable cycle KEN # must be
active the clock before BRDY # is returned. Second,
KEN# is sampled the clock before BLAST # is active.
At this time the CPU determines whether this line will
be written to the cache.

The state of KEN# also determines when read cycles
can be bursted. Most read cycles are initiated as 4 byte
long from the CPU’s cache unit. When KEN # is sam-
pled active the clock before BRDY # or RDY # is re-
turned, the cycle is converted to a 16 byte cache line fill
by the bus unit. This way, a cycle which would not
have been bursted can now be bursted by activating
BRDY #.

Some read cycles can be bursted without activating
KEN#. The most prevalent example of this type of
read cycle is code fetches. All code fetches are generat-
ed as 16-byte cycles from the CPU’s cache unmit. So,
regardless of the state of KEN#, code fetches are al-
ways burstable. In addition, several types of data read
cycles are generated as 8-byte cycles. These cycles,
mentioned previously, are descriptor loads and floating
point operand loads. These cycles can also be bursted at
any time.

T2

T2 T2

ADS#

/

BLAST#

SAMPLED
HERE

KEN# \ V'

gigligigigigB
N\
/S

N

AND

/ HERE

DATA X 1 X

/
X X X

BRDY# ; _\

—

240799-1

Figure 6. Typical Burst Cycle
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It’s obvious that the use of the KEN# input affects
performance. The design example used here illustrates
one way to use this signal effectively.

The primary concern when using KEN# is generating
it in time for zero wait state read cycles. Most main
memory cycles will be zero wait state if a second level
cache is implemented. In this example, the main memo-
ry is one wait state during most read cycles. Any Cache
access will take place with zero wait states. KEN#
must, therefore, be valid during the first T2 of any read
cycle.

Once this requirement is established, a problem arises.
Decode functions are inherently asynchronous. There-
. fore, the decoded output which generates KEN# must
be synchronized. If not, the setup and hold times of the
CPU will be violated and internal metastability will re-
sult. With synchronization, the delay required to gener-
ate KEN# will be at least three clocks. In this example
4 clocks are required. In either case the KEN# signal
will not be valid before BRDY # is returned for zero or
one wait state cycles.

This problem is resolved if KEN# is made normally
active. Figure 7 illustrates this function. In this diagram
KEN# is active during the first two clocks of the burst
cycle. If this is a data read cycle, KEN # being active at
this time causes it to be converted to a 16 byte length.
The decode and synchronization of KEN# takes place
during the first two T2 states of the cycle. If the cycle
turns ott to be non-cacheable, KEN# will be deacit-
vated in the third T2. Otherwise KEN# will be left
active and the data retrieved will be written to the
cache.

Some memory devices may be slow enough that 16-byte
cycles are undesireable. In this case more than three
wait states will exist. The KEN # signal can be deacti-
vated prior to returning RDY # or BRDY # if three or
more wait states are present. As a result these slow
cycles will not be converted to 16-byte cache line fills.

3.3 Bus Characteristics

The internal cache causes other effects which impact
the memory subsystem design. Perhaps the most obvi-
ous of these is the effect on bus traffic. The fact that the
internal cache uses the write-through policy dramati-
cally increases the number of write bus cycles. Fig. 8
illustrates this effect. The top chart shows the bus cycle
mix for an application executed with the 386DX CPU.
The bottom chart shows the same application executed
with the i486 CPU. The percentage of write bus cycles
jumps to 70% from 30% when this application is exe-
cuted with the 486 CPU.

It seems intuitively obvious that many of these write
cycles would be consecutive. In fact, 70% .of all write
cycles are consecutive. Furthermore, 50% of all write
cycles occur three in a row. It is obvious from these
statistics that optimizing the memory subsystem for
write cycles can improve performance. But it is impor-
tant to optimize the memory system for consecutive
write cycles. Improving individual write cycle latency
will not buy much performance if subsequent write cy-
cles suffer.

A technique called write posting proves ideal for this
purpose. This technique allows consecutive write cycles
to be overlapped. It also allows write cycles to be over-
lapped with second level cache cycles and reduces over-
all write miss latency.
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X
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Figure 7. Burst Cycle KEN Normally Active
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Using the write posting technique adds complexity to
the system logic. It is therefore valid to ask what per-
formance improvement is gained by using this tech-
nique. This question is especially pertinent when we
consider the logic already implemented in the 486
CPU to improve write performance. The internal 1486
write buffers decouple the processor execution unit
from the external bus.

Analysis has shown that, in general, 6% degradation in
performance can be expected for every additional wait

state added to write cycles. This analysis was per-
formed by measuring the CPU clocks required to exe-
cute several applications.

The same analysis has shown that write posting reduces
average write latency to 2.5 clocks. Without write post-
ing average write latency is 4 clocks. From this data we
can conclude that approximately 9% performance im-
provement can be obtained by using write posting. This
improvement may increase due to other affects. These
affects, such as overlapping write cycles with cache
reads, are discussed in subsequent sections.

KSEL#
FROM SKEN# R
DECODE " (TO CACHE)
SYNCHRONIZER
> KEN#
> (10 cPU)
CKEN#
«—
(FROM CACHE)
240799-5
CKEN#
(FROM CACHE)
FRom  KSEL# KEN#
DECODE > (T0 CPU)
SYNCHRONIZER
KMSEL# MSKEN# (TO CACHE)
—’_
240799-6

Figure 9. KEN# Logic for Second-Level Cache
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4.0 DRAM INTERFACE OVERVIEW

The 1486 CPU bus interface unit integrates several
functions which improve the memory access rate.
These features must be supported by the memory sub-
system to provide the intended performance benefit.
They are supported by the memory subsystem example.
The example also includes logic support for a second-
level cache. An overview of the subsystem is presented
in this section. Details of the function and logic design
of this subsystem are presented in later sections.

This subsystem follows a modular design. Only minor
changes to particular logic sections are needed to imple-
ment variations. For instance, the PLD which gener-
ates the CAS # signal needs only minor changes to sup-
port Static Column mode DRAMs. It is also simple to
implement a non-interleaved DRAM: controller based
on this design.

Other possible optimizations will be pointed out
throughout the discussion. This first section summa-
rizes the features and functions present in the design
example presented in this section.

4.1 Functional Blocks

Two common design techniques are employed in inter-
facing the i486 CPU to DRAMs. The first, interleaving,
is used to support the burst bus feature. The second,
write posting, is used to reduce write cycle latency.
Both techniques improve performance, and without
them, performance is degraded by the access require-
ments of currently available DRAMs.

Interleaving can be implemented in several ways. Here,
alternate 32-bit DRAM banks are accessed.The bank
accessed is determined by the value of A2. In this
way,even DWORDs (A2=0) are stored in one bank
while odd DWORDs (A2=1) are stored in the other.
When data is retrieved from memory during a cache
line fill, cycles are overlapped to allow single clock
DWORD accesses. Timing of this operation is detailed
in the next section.

A multiplexor alternates data flow between the DRAM
banks and the appropriate data path is selected accord-
ing to the value of A2. The multiplexor prevents bus
contention.

With write posting, bus cycles are again overlapped to
reduce latency. Figure 10 illustrates how this technique
is applied within the write cycle. The RDY # signal
terminates the cycle in the clock after ADS# becomes
active. This creates a zero- waitstate write cycle, the
fastest possible.

When the cycle terminates, however, data must still be
written to memory. The delay allows additional
DRAM access time. Figure 10 shows that data is actu-
ally written to memory two clocks after RDY # is re-
turned to the CPU. The CAS# signal completes the
write cycle four clocks after it is started by the CPU.

Write data and address registers support the posted
write function by holding write data and address after
RDY # is returned to the CPU. These registers are re-
quired to allow the CPU to start another cycle immedi-
ately following the first (see Figure 10). ADS# is acti-
vated in the clock after RDY # is returned to the CPU.
This cycle starts before the first is complete, and the
cycles overlap by two clocks.

CYCLE 2

RDY# RETURNED
TO PROCESSOR

o ‘2
ADS# . ‘
1 1 1 1
1 1 1
PROCESSOR  XCoveE T Xt
ADDRESS 'CYCL';: 2
1 1 1 1
RDY# o/ U
1 1 1 1
1 1 1 1
1 1 1 1
ED : / ———
LATCH ——
ADDRESS CYCLE
CAS#

/DATA TO DRAM
[ ! /
' g

(- 0 DRAM
CYCLE 1 / DATA TO D

240799-7

Figure 10. Write Posting
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In effect the write cycle completes in two clocks. Write
cycles can be overlapped in this manner indefinitely.
The timing and logic required to support this function
is described in Section 5.3.

Address registers also support invalidation with the
AHOLD signal. They are required if AHOLD is acti-
vated when bus are cycles in progress to hold the cur-
rent address while the bus cycle completes.

The efficient CPU interface and invalidation support
make this DRAM subsystem well-suited for use with
an optional cache. The memory system includes specif-
ic functions designed to support the optional 486 Tur-
bocache module. The subsystem supports 256K X 4
and IMbyte X 1 DRAM configurations.The minimum
memory configuration is 2 Mbytes with 256K X 4 de-
vices; the maximum is 16 Mbytes with 1Mbyte X 1
devices. Additional banks can be added to increase the
memory capacity.

The control logic for this example is implemented with
EPLDs.The modular approach allows quick modifica-
tion so that the example can be tailored for specific
implementation requirements.

The control state machine is distributed among the var-
ious EPLDs, and each functional block receives control
input from other blocks. In addition most of the func-
tional blocks are implemented as state machines.

Figure 11a is a top level block diagram of the memory
system. This diagram depicts the sections of logic that

will be described subsequently. We will first discuss the
address path logic.

4.2 Address Path Logic

Unlike processors without on-chip caches, the address
bus of the i486 processor is bidirectional. The address
pins serve as inputs whenever external memory is
changed by DMA or another CPU. The address is driv-
en into the CPU to invalidate the corresponding cache
entry if present.

Invalidation of the 486 CPU’s internal cache can be
performed in several different ways. This example sup-
ports invalidation cycles during a memory access.

As described in the previous section, AHOLD is used
to perform the invalidation function. AHOLD tristates
the 486 address bus. Address registers must be used to
hold the address to allow the current bus cycle to be
completed. These registers hold the current address
when AHOLD is activated.

The registers shown in Figure 11b hold the entire row
and column address, as well as the current byte enables
and control definition. These signals are latched at the
rising clock edge of the first T2 of a bus cycle. They
must be held from this edge to allow zero wait state
write cycles.

o - - .
] 1
1 —
] 1
! Address AP:S[E‘SS Address 1
+ T0 1
1 LOGIC 1
] 1
] 1
] 1
: RAS#, CAS#, :
, Control Controi WE#, etc. DRAM H

i486™ ' Logic ARRAY 1

CPU 1 1
1 ]
] ]
1 ]
] 1
' Date DATA . '
T PATH 736 1
i LOGIC 1
i 1
1 1
] 1
1 ]
1 )
' OPTIONAL !
1 485TURBOCACHE 1
1 MODULE 1l
] ]
] ]
] ]
! MEMORY SUBSYSTEM_ |

240799-75

Figure 11a. Memory Subsystem Block Diagram
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Figure 11b. Address Path Logic

Registers with enable inputs are needed. The enable in-
put can select the CLK edge appropriate for latching
the address and control state. The control logic gener-
ates the enable signal ALD which disables the CLK
input of the registers during a bus cycle. When ALD is
active (High) the current row and column addresses are
held in the registers. 74AS823 registers have enable in-
puts and are used in this example.

An additional address register is required for posted
write cycles. This register holds the write column ad-
dress. The address is latched only on write cycles and is
held -until the write cycle completes at the DRAM.

Separate write and read address paths are implemented
with a 3 to 1 address multiplexor. The read address
path is required to meet the timing of a three CLK read
cycle. In this case the read address must propagate
through the address mux one CLK sooner than the
write address. If the initial read access is 4 CLKs long
the read and write address paths can be combined. See
section 5.1 for a complete description of read cycle tim-
ing. The third address path is for the row address.

A delay line is used to meet the row address DRAM
hold time requirement(tRAH). The RAS# signal is de-
layed 20ns to create the DRAS# signal. This signal is
used as the multiplexor path select input. When
DRAS# is inactive (high) the multiplexor always se-
lects the row address path. When DRAS# is active

(low) the mux enable signal (MENO# or MEN1#)
controls whether the read path or the write path is se-
lected.

The comparator and register combination is connected
to the row addréss path to generate the HIT # signal.
This signal indicates that the current cycles address is

" in the same DRAM row as that of the previous cycle

and also determines whether RAS# will be deactivat-
ed.

In this example a standard component designed specifi-
cally for this purpose is used. This component contains

' aregister and a comparator. The register in this compo-

nent holds the previous row address. When a bus cycle
occurs to a new DRAM row, the new row address is
latched. The RALE signal enables the row address
latch.

The timing of this component meets the requirements
of a 33 MHz CPU clock. Discrete registers and com-
parators can be used to improve the timing of the
HIT # signal, if desired.

The last important address logic component is the burst
address generator. This state machine generate A3 and
A2 during burst accesses and is needed to achieve zero
wait state performance during burst cycles. It predicts

. the value of A2 and A3. Section 5.6 contains a com-

plete description of the burst cycle timing.
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Note that because interleaving is used, A3 is the lowest
order DRAM address. Two A3 equivalent signals are
generated. One for Bank O (BOAO) and one for Bank
B1AO. These signals are connected directly to the
DRAM devices to meet critical timing requirements.
The signals must also reflect the lowest order row ad-
dress during miss cycles. As a result A13 is, therefore,
an input to this logic. It is the lowest order row address
when 1MBx1 DRAMs are used.

4.3 Data Path

A2 must also be predicted during burst read accesses.
For this purpose, the burst address logic creates the
DATASEL signal. DATASEL reflects the value of A2
for each access of a burst cycle and is used to control
the data multiplexor as shown in Figure 12.

During burst cycles, the data multiplexor alternates be-
tween the bank 0 and bank 1 data paths. A2 must alter-
nate states each clock for interleaving to function prop-
erly. The i486 CPU’s burst address sequence is defined
such that A2 changes state on every access.

A2 also selects the bank to which data is written. Data
path logic is not involved in steering data during writes.
Figure 12 shows separate data registers for each bank.
Separate registers are only required to divide the data
paths. These registers hold the same write data on every

write cycle. The CAS# and WE# (write enable) sig-
nals control doubleword and byte steering.

Because of write data timing, the data registers must
have the enable function. This function, can be used to
select the clock upon which data is latched. The proces-
sor clock can be used as the register clock input to
guarantee proper data setup and hold times.

As Figure 12 indicates, the MRDY # signal enables the
write data registers and terminates memory write cy-
cles. Data is therefore latched during the last clock of
any write cycle.

MRDY # is restricted to write cycles while the
MBRDY # signal is used for read cycles. The need for
these signals illustrates the convenience of the CPU’s
dual-ready inputs. The MBRDY # signal enables the
output of the data path multiplexor to prevent bus con-
tention.

These ready signals are combined with similar system
logic signals to form the processor RDY# and
BRDY # inputs. I/0, peripheral and other non-burst
devices can use the RDY # input. Burst devices, such
as a second level cache controller must also use the
BRDY # input. The MBRDY # and MRDY # signals
are, therefore, used only with the DRAM control logic.
They are isolated from the rest of the system by combi-
natorial logic.

DATASEL
MBRDY#

PROCESSOR
DATA (0-31)

DATA PARITY (0-3)

CLK

BANKO DRAM DATA (0-31) AND PARITY

BANK1 DRAM DATA (0=31) AND PARITY

240799-9

Figure 12. Data Path Logic
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4.4 Second Level Cache Support

Second level cache strategies for the 1486 CPU are di-
verse and application dependent. The example de-
scribed illustrates a second level cache strategy that is
ideal for single CPU systems.

The 485Turbocache second level cache used in this ex-
ample is optional and is used to complement the 1486
internal cache to improve the performance when run-
ning complex applications and operating systems. Some
users will not require the extra performance. Since the
cache is optional, O.E.M.’s or end-users can decide
whether it should be included. System board design and
manufacturing costs are thus eased since one system
board supports multiple performance requirements.

The 485Turbocache is a completely self contained
cache module. Optionality is accomplished by includ-
ing control logic, tag ram and data ram in one package.
A socket is added to the system board in much the
same manner as a math coprocessor socket. In systems
which, for example, run UNIX, the cache module is
simply plugged in.

This option must; of course, be supported by the system
logic. Specifically, the memory control logic is directly
interfaced to the cache module. The DRAM controller
suited for

example described here is particularly well-
this cache configurations.

The support included in the 485Turbocache module’s
memory control logic for the 485Turbocache module is
illustrated in Figure 13. Since the 485Turbocache is a
write-through cache, provision must be made for read
cycles. When read data is found in the second level
cache, the cycle is called a cache hit. At the time this
cycle is determined to be a cache hit, it has already been
started in the DRAM controller. This cycle must be

aborted by the DRAM controller.

The BRDYO # signal from the 485Turbocache module
provides a convenient cache hit indication. This signal
is included in the decoder function. When a cache hit
occurs, the DRAM controller aborts the cycle. The
meinory chip select signal is not activated and the first
level control logic is reset aborting the cycle. The con-
trol logic then waits for -another cycle to start. This

function is very similar to the back-off function.

\
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MEMCS TO MEMORY CONTROL
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PKEN

BRDYO | C6KEN
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1/0 RDY
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Figure 13. Logic Required for Optional 485Turbocache Module
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Like the 1486 internal cache, the 485Turbocache mod-
ule supports non-cacheable memory by decoding. The
SKEN# input is analogous to the 486 CPU’s KEN #
input. This function is also supported by the decode
logic. Note that, as with the KEN# signal, SKEN #
must be synchronized to the CPU clock.

Separate cache enable inputs also allow areas of memo-
ry to be noncacheable in the 1486 CPU internal cache
yet cachable in the second level cache. This feature is
convienient for BIOS.

4.5 Control Logic

Memory control logic generates the signals that control
the memory devices, multiplexors, and registers de-
scribed earlier. These control signals can be generated
in a variety of ways. This example employs a distribut-
ed state machine.

Since this example is a prototype, PLDs were the logi-
cal choice for the controller implementation. Because
the number of terms in a PLD is limited, the state ma-
chine implementation must be distributed. Function
distribution was determined based on this constraint.
Figure 14 shows a block diagram of the controller, with
each block made up of one or two PLDs.

There are two levels of logic in the controller shown in
Figure 14. The first is made up of two PLDs, one which
tracks bus cycles and another which generates the
MRDY # signal. The first level signals to PLDs in the
second level that a cycle has started. The second level is
made up of several PLDs which generate the actual
control signals such as RAS# and CAS#.

Implementing the controller in this manner has two
important advantages. First, more decode time is al-
lowed. The cycle start signal, CIP#, is used by the
second level logic to sample the decode output. CIP #
is valid in the first T2 of any bus cycle. As a result,
decode does not need to be valid until the end of this T2
bus state. Without this function, the decode output
must be valid at the end of every T1 bus state. In this
case, the time allowed for decode at 33 MHz is very
short. With 7-ns PLDs, the time allowed for decode
would be 7ns. With 5-ns PLDs, this time is still only
9ns. The advantage of the extra clock period is clear.

The second advantage of the two level approach is simi-
larly clear. The AQO signal indicates the start of a bus
cycle to all second-level PLDs. Without this signal
ADS# would have to be connected to these devices,
and the resulting load on ADS# would be prohibitive.

MEMCS#
BOFF#

CPU CONTROL

RESET DRAM
CONTROL

BRDYO#

M CAS 0 CASO# (2)

BRDYO#
(485Turbocache Module)
OTHER SYSTEM RDY RDY#
MRDY COMB.
READY MBRDt# Locic |srovy
LOGIC
T0 CPU
Ras | _RAS#(2)
BANK 0
cAS 1 | cAs1#(2)
BANK 1 [———
DATASEL TO DRAM
DATASEL | RALE
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Figure 14. Control Logic Overview
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Invalidation within bus cycles is another case that
makes decode design difficult. The AHOLD signal
must be used to implement this function. As its name
implies, AHOLD can be active in any clock. If
AHOLD is active in the first clock (T1) of a bus cycle,
the CPU address lines are tristated in T2. Unless de-
‘code is latched at the begining of T2, it will not be valid
for the DRAM cycle.

The two-level approach allows decode to be a transpar-
ent function. The decode circuit is shown in Figure 15.
The 85C508 shown here includes a.flow-through latch
function. Using this function, the decode outputs can
be latched. The DALE signal is generated at the beg-
gining of the first T2 of any bus cycle. This signal acti-
vates the latch input of the 85C508. In this manner,
decode is held during T2. If AHOLD is active in T1,
the decode outputs may not be valid in T2. In this case,
the cycle must not be started until the CPU address is
redriven. Cycle-tracking PLD handles this function. By
delaying the cycle start signal, the DRAM cycle is de-
layed. When AHOLD is deasserted, the CPU redrives
the address again. ‘At that time, CIP# is activated and
the cycle begins. If AHOLD is active in any other
clock, the bus cycle can continue normally.

The first level of interface with the memory subsystem,
the cycle tracking PLD handles many other functions,
most of which relate to synchronization. Refresh syn-
chronization is one example, as is determining the

RAS# precharge duration. AQO# is not the only sig-
nal which supports the AHOLD function. Address reg-
isters, controlled by the PLD, generate the ALD signal
to disable the registers during bus cycles. These and
other functions of the control logic are described com-
pletely in Section 5.11.

The PLDs in the next level of logic perform more spe-
cific functions. RAS# and CAS# are generated at this
level, and the PLDs that generate these signals are de-
voted solely to this function. The RAS# PLD gener-
ates four RAS# signals, RASO# -RAS3#. These sig-
nals are identical but drive different DRAM modules to
reduce the load on the RAS# signal.

The RAS# function is designed to support page or
static column mode memory devices. To support these
devices, RAS# must be left active between accesses to
the same row. The RAS# state machine is designed so
that RAS is deactivated only for a refresh or page miss
cycle. This module generates RAS# for both DRAM
banks.

For the CAS# function, the PLD’s are responsible for
implementing burst accesses. During write cycles, the
CAS# signals determine which DRAM bank is written
to. All even doublewords (A2 = 0) are stored in bank 0
while odd doublewords (A2 = 1) are stored in bank 1.
When data is retrieved from memory, cycles can be
overlapped. to allows zero wait state burst accesses.
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A14-A23/10 EPH# 10CS# 4 i Attt Ittt 1
M/i0 | 8scs08 | EPL# MEMCS# T J )
104 COMB. : :
WEmog | LOGIC |PKEN# | ok 0 oRq 70 80486 !
1 KEN# |
MEM# COKEN# | > > '
1 ]
PKEN# : :
' 1
DALE l CKEN# N I -1 '
) [ D Q D QJ TO 485Turbocache }
—P : SKEN# :
' > — 1
BRDYO# . .
' !
1 |
' '
h oo o s e e e e e Ee e e e o e e o o e 4
240799-12
Figure 15. Decode Logic
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Address generation is another important consideration
in burst accesses. The address for the last three access
of a burst must be generated by logic because the CPU
cannot generate these addresses in time to allow zero-
wait state accesses. The burst address logic shown in
Figure 14 is actually two PLDs which generate the
burst address for bank 0 and bank 1, respectively. The
burst address consists of two signals- -the lowest order
DRAM addresses from each PLD.

Because of timing constraints, these signals are con-
nected directly to the DRAM devices. The burst ad-
dress PLD must generate the burst address, provide the
multiplexer function for row and column addresses and
generate the write address. The burst address signals
must, therefore, reflect the value of A13 during miss
cycles. These reflect during burst read and write cycles.
These signals reflect A3.

BOOMAO and BOIMAUO are the burst address signals for
bank 0. Two identical signals are used to divide load-
ing. BIOMAO and B11MAO are the burst address sig-
nals for bank 1. A detailed description of the burst ad-
dress function is given in Sections 5.6 and 5.16.

The DSEL PLD main function is to generate the data
select signal. As described above, this signal is used
during a burst to switch the data path multiplexer. It
reflects the value of A2 during burst read cycles only
and is one component of the burst address. The DSEL
PLD also generates the RALE signal to control the row
address register described above.

BRDY # terminates all read cycles. MBRDY # is gen-
erated by the MRDY PLD and is separated from the
RDY # signal to facilitate posted writes by preventing
data bus contention. When a write cycle is immediately
followed by a read, the read cycle must be delayed. This
delay is implemented by delaying MBRDY # until the
previous write cycle is complete. MBRDY # is com-
bined with other burst ready inputs using combinatorial
logic.

WIP# (write in progress) indicates to the MRDY PLD
that a write is taking place, and MBRDY # is not gen-
erated unless this signal is inactive. WIP# tracks the
state of the CAS# state machines.

The WE PLD generates WIP# and other signals asso-
ciated with the write function. The MUXEN # signals
control the address multiplexors and activate the write
address path during write cycles. The WE# signals are
used to create the DRAM W inputs and to implement
byte steering. They are combined with latched CPU
byte enables using combinatorial logic. In this way,
DRAM W inputs are not active for unselected bytes.
Data bus contention on unselected bytes is prevented
by controling the write data register output enables.

By implementing byte steering in this way the CAS #
logic is. simplified. The CAS# timing path is critical
during burst read cycles, and by placing the byte steer-
ing logic in the write enable path, CAS# timing restric-
tions are eased.

The MRDY # signal terminates all write cycles. The
logic used to generate this signal is unusual because it
uses the ADS# input and is therefore at the first level.
This configuration is needed to implement zero wait
state write cycles.

MRDY # must be active by the end of the first T2 to
terminate a write cycle and maintain zero wait-state
performance. To meet this restriction, it must be active
during any write cycle, or before decode is available
because the CPU RDY # signal must not be activated
during non-memory write cycles, MRDY # is inhibited
by the decode output, MEMCS #, in combinatorial log-
ic.

5.0 MEMORY SUBSYSTEM FUNCTION

In this section we will explore the function of the mem-
ory subsystem in detail. Each of the signals will be de-
scribed, and bus cycles will be illustrated to show the
memory logic function.

The bus cycle description in this section is specific to
this example. Signals such as KEN# and RDY #, for
example, are shown as they are driven by this particular
control logic. The signals are not restricted to the tim-
ing shown here.

A list of the memory control signals follows.

Memory Interface Signals

5.1 CPU Interface Signals

KEN # KEN# is an input to the proc-
essor, indicating whether the
next bus cycle is cacheable or
not. This signal is a logical
AND of SKEN # and CKEN #

signals.

PBRDY # is the burst ready in-
put to the processor. This is a
logical AND of the BRDY #
signal from the system and the
BRDYO# from the second lev-
el cache.

PBRDY #
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5.2 Data Path Control

DATASEL

MRDY #

MBRDY #

WEO#/WEI1#

WBEO0O #-WBEO3 #

WBE10#-WBE13 #

DATASEL reflects the value of
A2 during burst accesses. It is
used to control the data multi-
plexor for bank O and bank 1
data paths.

MRDY # enables the write data
registers that are used to sup-
port write posting and termi-
nates memory write cycles.

MBRDY # is used for read cy-
cles and enables the output of
the data path multiplexor.

WEO# and WE1# signals en-
able the outputs of data write
registers used for write posting.
Both the signals are active dur-
ing a write and CAS# deter-
mines the correct bank to which
the data is written.

WBEQO# -WBEOQO3# are a
combination of write enable and
byte enable signals. They con-
trol which byte is written into
bank 0 during a write cycle.

WBE10#-WBE13#  control
which byte is written into bank
1 during write cycles.

5.3 Address Path Control

ALD

MUXENO#,1#

RALE#

DALE#

BOOMAO/BO1IMAO

ALD disables the clock input to
the registers that hold the row
and column addresses corre-
sponding to the current bus cy-
cle.

MUXENO#, MUXEN1# con-
trol signals are inputs to the ad-
dress multiplexors and are used
in selecting the read or write
paths to the respective banks.

RALE# enables the row. ad-
dress latch, allowing a new row
address to be latched for succes-
sive bus cycles.

DALE# activates the latch in-
puts of the decode logic in the
first T2 of a bus cycle and holds
the decode during the bus cycle.
BOOMAO and BOIMAO are the
burst address signals for bank 0.
They correspond to the value of
A3 during burst read cycles.

BI0MAO/B11MAO

B10MAO and B11MAO are the
burst address signals for bank 1.
They correspond to the value of
A3 during burst read cycles.

5.4 DRAM Interface

HIT#

WIP #

CIP#

RASO-3#

DRAS#
RFRQ

RFACK

PCHG

CASO#/CAS1#

MEMCS #
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HIT# is active if the row ad-
dress for the current memory
cycle is the same as the previous
memory cycle. :

WIP# indicates that a write cy-
cle is in progress and a read to -
the DRAM needs to be delayed
till WIP# becomes inactive.

CIP #indicates a memory cycle
is in progress. If the current cy-
cle is not to DRAM, CIP# is
deactivated else it remains ac-
tive till the end of the bus cycle.

RASO0-3# go active for a valid
row address. It remains active
between accesses to the same
row and is de-activated only for
page miss and refresh cycles.
DRAS# is the delayed RAS#
signal to accomodate the RAS #
hold time requirements.

RFRQ indicates that a refresh
of the DRAM is required. This
signal is activated every 15.6 us.
RFACK is asserted as a re-
sponse to RFRQ and indicates
that the DRAM controller is

‘ready to perform the refresh cy-

cle. It is active during idle cy-
cles or after the current cycle is
complete.

PCHG determines the timing of
refresh cycles and RAS# pre-
charge count.

CASO# and CAS1# signals are
active when a valid column ad-
dress is present on the bus and
control the bank to which the
data is written into.

. MEMCS# is active when a

read or a write is performed to
the DRAM. It is the synchro-
nized output of the address de-
coder.
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5.5 Controller Signals

M# M# indicates the occurrance of

a write miss.

CT CT indicates that a new cycle BRDYO# BRDYO# is a burst ready sig-
had started while a cycle was in nal driven by the second level
progress or the refresh cycle cache. It is activated when a
was taking place. It is de-acti- read hit occurs in this cache.
vated when the pending cycle is
recognized.
SKEN # SKEN# indicates if any of the 5.6 Read Cycles
caches is enabled. It is an input . .
to the second level cache and is Timing Diagram 16 shows a burst read cycle. At the
similar to the KEN# signal in- start of the bus cycle, RAS# is inactive. This case is a
put to the processor. rare occurence because RAS# is normally active. Un-
. less a cycle is the first bus cycle after a reset or refresh
CKEN# CKEN# is the output of the  ;upjc RAS# will be active in T1.
second level cache. It is activat-
t‘id :‘:’we f%li a :;l;‘,jr lul;e ﬁ“h- It is useful to examine this case because it demonstrates
1rsh olgna feua q tl‘: rbocac ; a complete DRAM cycle. The basic function of most of
cache lne L% an ¢ secon the control logic is illustrated.
time to validate it.
LA2,LA313 LA2 and LA313 are latched The cycle begins with the activation of ADS#. The
versions of address lines A2 and controller samples this signal and activates both ALD
A13. LA313 is the lowest order and CIP#. The CPU address registers are disabled by
DRAM address line. The multi- ALD. Therefore, the previously latched address is held
plexor output reflects A3 when throughout the bus cycle. The latched address is valid
RAS# is loand A13 when in the first T2 of the bus cycle.
RAS# is high.
T 12 T2 T2 2 T2 T2 T2 it
CLK 1 1 1 1 1 1 1
ADSE T N / N
[ BN e
ALD / N——
A2-A31 BEX# ) & VALID 1 X VALD 2 VALID 3 VALID 4
MEMCS# N LN
HIT#/MISS N
BLAST# ~— N
RAS# \
R
DADDRO [ ROW ADDRESS | COLUMN ADDRESS 1 C VALD 3
CASO# L / N\ / |
CcAS1# \ / N/ ‘
DDATAD === === ccqdeocccodecooodemcnn -==X i XX 3
DADDR1 X X COLUMN ADDRESS 2 X VALID 4
L e T L e -==< 2 XX 4
POATA == ===-=coodeoccmcdecocodon oo === XXK 2 OO T X0—
BROY# N —
DATASSEL MK /1T N\ S/ NOOOKNA
0
240799-13

Figure 16. Burst Read Cycle
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The row address comparison is made with this address.
As aresult, the HIT # signal is not valid until the rising
edge of the second T2. At this rising clock edge, the
CIP#, MEMCS# and HIT# signals are sampled. If
MEMCS # is sampled active, the RAS# signal is acti-
vated.

The delay line holds the DRAS# signal high for 20 ns
after RAS# is activated. In this way the row address is
maintained to meet tRAH, the row address hold time.
When DRAS# is activated, the address multiplexers
switch to the column address path. The MUXEN # sig-
nals are not active, and the read path is selected.

In the third T2 of the bus cycle CAS# is asserted. This
cycle begins with A2 low and the first access is to bank
0. Due to the access time of the DRAM two clocks are
required to retrieve data from memory. MBRDY # is
asserted in the fourth T2 of the bus cycle, and this
action completes the first access of the burst read. The
access is completed in five clocks. The minimum time
for this access is two clocks indicating that three wait-
states were added to the first cycle.

The timing diagram reveals two important points about
burst cycle implementation. First DRAM access re-
quires two clocks. Second, the burst address from the
CPU is not available until the clock after MBRDY # is
sampled active. These circumstances make implement-
ing zero-wait-state burst cycles difficult. The DRAM
bank interleaving alleviates this difficulty.

The first advantage of interleaving is revealed in the
second and third T2 states. Access to both the first and
second memory doublewords can be made simulta-
neously. This function requires that the burst address
be predicted. As mentioned above, the burst address
from the CPU is not available until several clocks later.
The burst address for both the first and second accesses
is generated in the second T2. Therefore, CAS# for
both banks can be asserted in the next T2 state.

The second advantage of interleaving is seen in fifth T2
of the burst cycles in which DATASEL switches the
data multiplexer. The second doubleword is driven on
the CPU data bus. In this CLK, the burst address for
the third access of the cycle is generated. CASO0# and
CASO1# are also deasserted to begin the third access.
Note that this access is started before the second access
is completed. The cycle overlap shown allows new data
to be driven on the CPU data bus every clock. This way
zero-wait-state access is achieved.

Timing is even more critical during page hit cycles. Fig.
17 shows the timing of this cycle. Because of the func-
tion of RAS#, this cycle is more common than the
cycle discussed above. The row address is the same as
in the previous cycle. Therefore, the RAS# signal is
left active.

T1 T2 T2 T2 T2 2
CLK L ) L 1| 1 ] 1 ) L J 1 ] 1
X L . L ) N
ADS# \ | /[ ' ' ' 1
1 1 1 1 1
S : : : /a—
1 1 1 | 1 1
ALD '/ T i y | [ W—
A L 1 )
ADDRESS )& " VALD1 7 )_(_‘_)r'_ "VALIDS X__'_VALD 4
T T T T T N
BLAST# 7.7 Y 0 I ™\ S
' I
RAS# : ! X , ! !
L N ! ! L 1
DADDRO X X X vatbz T X X vaib4
1 '
CASO# X T\ : "/ T\ '
1 | 1 U
I
I v N B = i
—
DDATAQ o : W D2 : (o2 !
DADDR1 L X VAt X vaups ) !
] | N H | '
DDATA1 T XXX BT 5T T
| ! ! L 1
PDATA —YWO—————————CBT X X 55— X B
' 1 s N T —T
' ' MUST BE SAMPLED ACTIVE HERE ' '
KENg ! L . ' ! | —
1 1 1 [ 1 I
ot —/ ! A : : : —~/
DATASEL L0000 . TN/ T
240799-14

Figure 17. Burst Read DRAM Page Hit
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When a burst read starts with RAS# active, fewer
clock, are required to complete the first access. This
reduction improves performance. As a result, however,
some timings become more critical. One of these is the
time allowed to generate the burst address.

The CAS# signals are asserted in the second T2 of the
bus cycle. MBRDY # is also asserted at this time. To
meet the address access time of the DRAMS, the burst
address must be generated in the second T2. The rest of
the read column address must also be available at this
time. Two logic functions are needed to meet this tim-
ing requirement. First, read and write address paths
must be separate to allow the read address to be avail-
able in the first T2. Second, the burst address path logic
must latch the CPU A3 signal directly. In this way, the
logic can generate the necessary address in time. The
burst address state machine must track the state of A3
at the begining of every cycle. The state machine func-
tion is described in Section 5.11.

The timing of KEN# must also be considered in this
example. KEN# must be valid at the begining of the
second T2 of the cycle. If it is not, the cycle will not be
cached, and a 16-byte access can not be generated. If
KEN # is active, a 16-byte burst access will be generat-
ed, and the cycle will be cached as long as KEN# is
active in the second to last T2.

At first glance this timing may not appear critical.
KEN# is a decode function, and decode is valid at the
clock edge called for. The KEN# input to the CPU
must be synchronized to clock, however. Since decode
is not synchronous, a two-clock synchronizer delay is
required, and this delay is the reason that KEN# is
normally active in this example.

From the time CAS# is activated, this cycle is exactly
the same as in the previously described burst cycle. It is
terminated when BLAST # is asserted, and MBRDY #
is deasserted when BLAST # is sampled active.

5.7 Write Cycles

As described in Section 4.1, a posted or delayed write
function is employed in this example to reduce write
cycle latency. Latency is reduced since write cyles are
overlapped with other cycles including other Write cy-
cles or reads from the second level cache. Write cycles
normally make up 70 percent of all cycles, and overlap-
ping can increase performance accordingly.

Figure 18 illustrates the posted write implementation.
In this example cycles begin when RAS# is inactive.
As with read cycles, this case is rare in practice.

LAl T2

T L
i

PADDR X ) ! ) & .
1 1
RASH T ™\ ' : :
! i 5 X N DATA WRITTEN
DADDRO ' X_ROW XX —_cotuuN__ | TO DRAM
1 I : 1 /
CASO# j X : - L wi
| | y | |
WEO# : : N\ o 1 I
| N ;
DDATAO f ~C T X VALD 1, .
1 1 I ]
" —
PDATA . L vamb1__ X T T X
: | ' | |
MROY | R I e pn W S
CST# — T\ ! &Y, T\
| ] VA ' ]
BROY# ___/ | | / | I N
1 L 1 1 1
WIP# ] 1 \ | ] ] /
| | L L} T

RDY RETURNED TO
PROCESSOR HERE
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Figure 18. Basic Write Cycle
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The cycle begins like a read. The CPU drives ADS#
active, and the decode is sampled. RAS# is activated if
the cycle is in DRAM space. In the second T2 of the
cycle, however, the latched version of W/R# (LW/
R #) is sampled active at the rising edge of the second
T2. In response, the control logic begins several write
cycle functions at this clock edge.

The CAS# state machine for the appropriate bank en-
ters the write sequence. The MUXEN # and WE# sig-
nals are asserted. MRDY # is also asserted, terminating
the cycle at the CPU. The MUXEN# signals activate
the write address path. This address is not present at
the multiplexor outputs, however, until the next clock
at which the write pipeline register latches the write
address.

The write data is latched at the same clock edge. The
write data registers are enabled by MRDY # which
simultaneously terminates the CPU cycle. Note that
data is latched ‘in both the bank 0 and bank 1 registers.

The WEO# and WE1# signals are also both active.
The CAS# signals determine which bank is written to.
These signals are asserted within two clocks after
MRDY #. This action completes the write cycle. Note
that, while five clocks are required clocks are required
to complete the cycle, the CPU cycle is terminated in
three CLKs. The wait state is only required if RAS# is
inactive at the start of the cycle.

In Figure 18 the next bus cycle starts immediately after
RDY # is sampled. In this case, CAS# is activated
during the second clock of the next bus cycle. This
overlap of cycles is similar to the pipelining feature
used by many processors except that the i486 processor
bus is not involved in the posting function. All logic for
this function is implemented in the memory controller.

Figure 19 is a more typical 486 processor bus sequence
which clearly illustrates the advantages of the posting
technique. Four write cycles have occurred together

. without idle bus clocks occurring between cycles. Since

all writes access the same DRAM row, RAS # is active
throughout the sequence.

Without the extra clock to activate RAS#, MRDY #
can be asserted in the clock after ADS# is asserted.
These cycles, therefore, have no wait-states. As before,
the write cycle is not complete when MRDY # is as-
serted but instead when CAS# is asserted two clocks
after MRDY # to terminate the CPU bus cycle.

At zero wait-states, each write cycle still requires four
clock cycles. The last two clocks of each write cycle
overlap with the next cycle. The net effect on the CPU
bus is the same as a string of two-clock write cycles, as
illustrated in Figure 19.

The first write in this figure is to bank 0. The falling
edge of CASO# clocks the data into the bank 0
DRAM. This edge is denoted by W1 in the diagram.

T 2 2 T T2 T 2 m T2 T
] i L 1 L i il 1
w1 w2 w3 w4
w04 N A A e
o N N/ A Y 2t Y 2
| 1 | 1 [ | i | 1
PADDR X ! X . ) Gl . A .
N i ' | ' |
RASO# . o N ; | i | :
1 1 1 1 l o ‘: . 1 :
DADDRO + DADDR1 HD G+ &N N D, G X - X
| | | | ' i [ ' [
w1| T T
casos o\
WEO# . N : Y : . ™\
1] | [ ] N 1 !
WE14 ; ; ; T . ! | ! Y
1 1 )
WiP# : N\ " : : ! ; !
: : : T i Al | T 1
DDATAO + DDATA1 T — X LVALID 1 ' X  VALID 2 X L VALID 3 X
| 1 | | \ i \ | \
CAS1# T . X i ' Yz / N\ /
1 L A e ! I 1
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Figure 19. Back to Back Write Cycles
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CASO# is asserted in the same clock that MRDY #
terminates the second write (W2), which accesses bank
1. CAS1# is activated in the same clock as MRDY #
for the third write (W3).

The second and third writes happen to be to the same
DRAM bank. As we see, no timing modification is re-
quired in this case. Write cycles can be completed with
zero wait states in either case. This is important since
writes often occur in sequence on the i486 bus, but not
necessarily to sequential addresses. Write posting sup-
ports zero wait-state write cycles to sequential and non-
sequential addresses.

This fact is also important if the design is to be modi-
fied. For example while, interleaved DRAMSs may not
be required in systems with a permanent second level-
cache, the write posting technique may still be used in
the system. The benefits of this technique still apply
since write cycles may still be overlapped as described.

5.8 Consecutive Bus Cycles

The DRAM control logic is optimized for write cycles,
‘as warranted by the i486 processor’s bus characteris-
tics. Over 70 percent of all cycles are writes. By em-
ploying the posted write technique, system performance
is increased.

The posted write technique poses some special prob-
lems, however. Page miss, refresh and consecutive
write-read cycles require special consideration. We will
begin by discussing the consecutive write-read case.
Page miss and refresh cycles will be discussed in sec-
tions 5.9 and 5.10.

When a read cycle immediately follows a write, the
read cycle must be delayed as illustrated in Figure 20.
The read cycle is delayed to allow the write to com-
plete. Only read cycles to DRAM, i.e. (cache misses)
need be delayed. Cache hits and write cycles overlap
easily because the cache is on the CPU side of the
DRAM controller.

T T2 it T2 2 12 2 2
o L L L L L L
ADS# _\ w f R
ADDRESS X |vaLow X| vaLibr X r2
RAS#
DADDR1 X vaLiow | X VALID R x:
CASO# \_zw_ _/
MEN1# /
WE1# /
DDATAO j X } Gz:m::
CAS1# W _/_ _\
PDATA ij {7 X r2 X
ooatat [ Y Tew X[ YW —O0CR XX
KEN# \
BRDY# \
MRDY# j— —\l [
WiP# /
DATASEL x: l:x:l:l:x:x v':'vl \_ _/

240799-17

Figure 20. Consecutive Write-Read Cycle
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Write cycles cannot overlap DRAM read cycles, how-
ever, primarily because of data bus contention. The
DRAMs used here have common data I/0 pins. In this
case read and write data paths cannot be active at the
same time.

To prevent data bus contention, the first data access of
the read is delayed. In Figure 20 the first read access is
to the same bank as the write. In addition, the read
cycle accesses the same DRAM row. Two functions are
required to ensure that the write is completed. First, the
write address must be held until CAS# is asserted. Sec-
ond, the data mux outputs must not be enabled until
the CPU tristates the bus.

The first function is accomplished by the MUXEN #
signals. The MUXEN# state machine tracks the
CAS# function for the appropriate bank. When the
write for that bank is complete, MUXEN # is deacti-
vated. In this way, the read address path is not enabled
until the CLK after CAS# becomes active. Normally,
the read address would be valid in the first T2 of the
read cycle; however it must be delayed one clock to
allow the write complete. Note that if one or more idle
CLKs intervenes between these cycles, no delay occurs.

The second function is accomplished with the WIP#

signal which is active until all write cycles are com-

plete. A read cycle to either bank will be delayed if it
immediately follows a write. The first access of the read
is delayed by MBRDY #, which is not asserted until
the WIP# signal is deasserted.

WIP# is deasserted once all pending writes are com-
plete. In Figure 20 the read cycle is delayed 3 CLKs by
this signal; in other words, three additional wait-states
are added. If a read does occur immediately after a
write, the number of wait-states added will decrease by
the number of idle CLKs between cycles. For example,
if ADS# for the read is asserted three clocks after
MRDY # for the write, MBRDY # will not be delayed.

5.9 Page Miss Cycles

As described previously, page miss cycles occur when
the CPU generates a cycle which changes the DRAM
row address. The RAS# signal must be deasserted to
change the ROW address in the DRAMS. Any time
RAS# is deasserted, it must remain high for the pre-
charge time (tRP). A delay is added to every page miss:
cycle to satisfy this requirement.

For read cycles this function simply requires extra wait
states as illustrated in Figure 21.
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Figure 21. DRAM Page Miss-Read Cycle
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The bus cycle starts with RAS# low or active. The row
address generated by the CPU is different than in the
previous cycle, and the row address comparator deas-
serts HIT #. This signal is valid in the first T2. HIT #
is sampled at the RAS# PLD at the rising edge of the
second T2. In response, RAS # is immediately deassert-
ed and held inactive for two clocks. This time satisfies
the RAS# precharge requirement.

Four wait states are added to process the miss cycle.
These clocks are added to every read cycle which ac-
cesses a new DRAM row. The delay is accomplished,
again, with the MBRDY # signal. MBRDY # will not
be asserted when RAS# is inactive. Once RAS# is
sampled active, MBRDY # is asserted. From here, the
cycle proceeds as described in section 5.7.

Write miss cycles are more complex than read miss
cycles, due mainly to the write posting technique. The
added complexity results in lower latency than in a
non-posted memory system, however. Figure 22 illus-
trates how this improvement is achieved.

The write cycle in Figure 22 also begins with RAS#
active. The HIT # signal is deasserted in the first T2 at
the same time that MRDY # is asserted. MRDY #
could be inhibited at this point to prevent write cycle
termination. The wait-states added to meet RAS# pre-
charge time would then be added to this cycle. Five
wait states are required to meet the precharge time.

The average number of write cycle clocks can be re-
duced, however, if another method is used. MRDY #
can be allowed to terminate the cycle. In this case, any
necesary wait-states will be added to the next cycle.

This method improves the average in two ways. First,
some write miss cycles will not require wait- states.
This is the case when the next cycle occurs four or
more clocks after a write miss. In addition, wait states
will be reduced when the next cycle occurs in two or
three clocks. Second, three wait-states are required to
complete the next cycle when it follows immediately as
illustrated in Figure 22.
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Figure 22. DRAM Page Miss-Write Cycle
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The first cycle in this figure is a page miss. It is termi-
nated at the CPU without wait-states. Because HIT # is
not active in the first T2, RAS# is deasserted. At this
point, additional clocks are added to perform the miss
function. Part of the time required for RAS# pre-
charge is overlapped with the next cycle. The two clock
overlap reduces the number of wait-states required in

" the next cycle. Therefore, the average write cycle laten-
cy is reduced.

5.10 Refresh Cycles

The CAS# before RAS# refresh function is used in
this example. This function uses internal counters in
the DRAM devices to generate the refresh address.
When the CAS# input is activated prior to RAS#, the
internal counter is incremented. The output of the
counter is then used as the address of the row to be
refreshed.

Each refresh cycle refreshes one row of the DRAM
array. The refresh cycles are distributed such that one
occurs every 15.6 us, with every row being refreshed in
8 ms. Refresh cycles are initiated by the RFRQ signal.
This signal is activated every 15.6 us by a counter.

RFACK is asserted in response to RFRQ. This signal
indicates that the DRAM controller is ready to per-
form the refresh cycle. It also signals the counter circuit
that RFRQ can be deasserted.

The function of RFRQ and RFACK is very similar to
that of the CPU’s HOLD and HLDA signals. RFRQ is
sampled at the end of each cycle and during idle cycles.
RFACK is activated in the clock after RFRQ is sam-
pled, except immediately after write cycles.

Again, the posted write function must complete before
the refresh cycle begins. If WIP # is active when RFRQ
is sampled, RFACK will not be immediately asserted.
RFACK will be asserted after WIP# is deactivated as
illustrated in Figure 23.
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Figure 23. Refresh Timing Concurrent with Write
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Another cycle can start between RFRQ and RFACK.
The cycle start PLD tracks this case. GP# ~ will not
be asserted for any cycle that starts during this interval.
Once the refresh cycle is complete, this cycle can be
started.

6.0 CONTROLLER IMPLEMENTATION

The functions described in the previous section are gen-
erated by the control logic. The controller, as outlined
in Section 4.0, is made up of several PLDs. These devic-
es enerate the control signals described in Section 5.0.
The function of the logic is determined by the state
machine definition. These state machines are distribut-
ed in the different PLDs of the controller.

In this section, we will explore the implementation of
the control logic. The discussion will focus on the state
machine definition. Certain conventions are followed
throughout the discussion. These conventions are based
on the state machine compiler used to generate the
PLD equations. This compiler uses the exclamation
point (!) to indicate the low or “0” condition of a signal.
It uses the number symbols (#) to indicate that the

signal is active low. For example, !ADS# indicates that
the ADS signal is both low and active. The # symbol
indicates that a signal is active when low. So symbol
!ALD means that the ALD signal is not active. These
symbols are used to indicate state transitions as shown
in Figure 24. The state transition in Figure 24 depends
on three signals: ADS#, ALD, and RAS#. The equa-
tion indicates that if both ADS# and ALD are active
or if RAS# is not ctive at the next clock edge. the
transition from SO to S1 takes place. In the transition
between SO and S1, the Y# signal is activated. The
definition of states indicates which outputs are changed
in the transition. These conventions are used to de-
scribe the control state machines in the next section.

@ IADS*ALD+RAS# @

240799--21

Figure 24. State Transition Example
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6.1 Cycle Tracking Logic

The cycle tracking logic is contained in one PLD. The
five state machines implemented in this PLD start and
end DRAM cycles, control refresh timing and control
the address registers. These state machines, along with
the MRDY # state machine comprise the first level of
control logic. All other control state machines depend
on this first level to generate signals at the proper time.

The signals generated by this PLD are the following:

CIP# - Cycle in Progress
ALD - Address Latch Disable

CT - Cycle Track
RFACK - Refresh Acknowledge
PCHG- RAS Precharge Count

The primary cycle tracking state machine is shown in
Figure 25. This state machine generates the CIP# and
M # signals, CIP# indicates that the CPU has started a
cycle. When it is active, the rest of the logic samples the
CPU control and MEMCS # signals. If the current cy-
cle is not to DRAM, it will be ignored and CIP# will
be deactivated.

MEMCS#+
IBRDY#+BLAST#+
IMRDY#+

IBOFF#

RESET

IBOFF#*IPCHG+ICT

PCHG

IRASH*HITA*IMRDY# S2 )

peHGeCT 240799-22

Figure 25. Cycle in Progress State Diagram
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This function is defined by the SO and S1 states in Fig-
ure 25. As shown, CIP# is activated when either
ADS# or CT are sampled active. If the cycle is not to a
DRAM address, the MEMCS# signal will not be ac-
tive in the next clock. In this case, CIP# is deactivated
to wait for the next ADS#. If the cycle is to DRAM,
CIP# stays active until the end of the bus cycle. The
bus cycle is terminated by one of three circumstances.
All write cycles are terminated with the MRDY # sig-
nal. Read cycles are terminated by BRDY # and by
BLAST#. The cycle can be aborted by BOFF#. Any
of these three events causes CIP # to be deactivated (S1
to SO).

Two special cases are also handled by this state ma-
chine. When AHOLD is active in the same clock as
ADS #, MEMCS # is not valid. In this case, the CIP #
signal is not activated until AHOLD is deasserted. The
state machine remains in SO when AHOLD is active.

The second case is a write miss cycle. During a write
miss, CIP# must be active for the cycle to complete.
CIP# is active in this case after MRDY # is returned
to the CPU. Cycles that start during the time CIP# is
active must be tracked by the CT state machine. The
M# signal indicates to the CT state machine that the
cycles must be tracked.

The state in which M# and CIP# are both active is S2.
This state is entered when MRDY # and RAS# are
active and HIT# is inactive. By using MRDY # to
qualify this transition, S2 is entered only during write
cycles. Therefore, M# is only activated during write
miss cycles. Note that any cycle will be recognized by
the CT state machine when M # is active.

The CT state machine is shown in Figure 26. This state
machine tracks cycles that start while the CIP# state
machine is busy. It tracks CPU cycles that start during
refresh cycles as well as to the two cases mentioned
above.

This state machine tracks one cycle. Any cycle that
starts while CIP# is busy is not terminated immediate-
ly. The MRDY # and MBRDY # signals are delayed
until the previous cycle is finished. Therefore, anytime
CT is active, there is only one cycle pending.

CT is deactivated when the pending cycle is recognized
by the CIP# state machine. This event is indicated by
CIP # active and M # inactive. When this event occurs,
the CT state machine transitions to SO deactivating CT.

The ALD signal is also active only during DRAM cy-
cles. Therefore, its state machine is very similar to that
of CIP#. As with CIP#, ALD is asserted when
ADS# is sampled active. If the cycle is not to a
DRAM address, ALD is deasserted. When a DRAM
cycle is terminated, ALD is also deasserted. The SO- to-
S1 transition is quite similar to that of CIP#.

The difference between the two state machines is re-
vealed during write miss cycles. The S1-to-S2 transition
is made if a write miss occurs. ALD must be held active
during a write miss until RAS# is active. In this way
the row address is held even if another cycle occurs.
The combination of CIP # being active while PCHG is
inactive indicates that RAS# will be active in this
clock. ALD must be deactivated in this clock to allow
the next address to be latched. ALD is re-activated if

CT

SO 0
S1 1

ICIP#*M#

240799-23
IADS# * (AHOLD + FACK + IM# + EP)

Figure 26. Cycle Tracking State Machine

RAS Precharge and Refresh Counter
RESET

RAS#*IEP

EP*RFACK*IRAS#

240799-24

Figure 27. Precharge State Machine
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another cycle has started during the write miss process.
CIP# and MEMCS# are sampled during SO for this

purpose.

The PCHG state machine provides two functions. It
determines the time RAS# is inactive during a miss or
refresh cycle, and it determines the timing of refresh
cycles. Figure 27 shows the state transitions of the
PCHG state machine. Because the timing of this signal
is not obvious, Figure 28 has been included. It shows a
refresh cycle which occurs following a write cycle.

After RAS# is active the PCHG signal is activated.
State S1 is maintained then until RAS# is deactivated.
‘RAS# is only deactivated during a miss or refresh cy-
cle or, of course, if RESET is asserted. During a miss
cycle the transition to SO is made deactivating PCHG.

RAS# is then activated, resulting in two CPU clocks
of RAS# precharge time.

States S2 and S3 define the timing of refresh cycles. The
transition to this sequence is made when RAS# is sam-
pled inactive while EP active. EP indicates that the
RAS# state machine has entered the refresh sequence.

RFACK# initiates the refresh sequence. It indicates
that the control logic is ready to accept a refresh re-
quest. The RFRQ signal is sampled at the end of a
DRAM cycle or during idle clocks. Note that RFRQ
cannot be recognized during a write miss.

RFACK # is deactivated after RAS# is deactivated at
the beginning of the refresh sequence (See Figure 27
and Figure 28).

RAS# STATE |S2|S2|s2{s2|s3|s3]|s4|s4|s3|s3|s1]|s1|s2]s2
PCHG STATE | s1|sSt|s1|s1|st|s1]|s1|s2|s2|s3]|so|so|so]s1
T2 T T2 T2 T2 T2 T2 T2 T2 2|2 T2 {2 T2
o Loy
READ OR WRITE CYCLE
aps# W/TA\M2/T\ L/
cst+ INL/T\ / \
PADDR X X
RAS# / \
DADDRO + 1 X Y coLumn | T row X(cotumnX
casor |/ \
WE# |
csi# WARNT4 \ /
DDATAO + 1 X X X X
rRove \_| /7 '\_‘_\l/ L/
1
RFRQ 1//// S
RFACK / \
WIP# / N
) 240799-25

Figure 28. Refresh State-Timing Example
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6.2 RAS# Logic

The RAS# logic for both memory banks occupies one
PLD. Four RAS# signals are generated: RASO# —
RAS3#. These signals are generated to divide loading.
Their timing is identical. The state machine for RAS is
relatively simple and is shown in Figure 29.

States SO and S1 are used to implement RAS# function
for normal cycles. After RESET, the state machine
waits for the first bus cycle. The first bus cycle is sig-
naled by the CIP# signal. When CIP#, MEMCS#
and PCHG are sampled active, RAS# is asserted.
RAS# stays active until a miss or refresh cycle occurs.

A miss cycle is indicated when the HIT # signal is driv-
en inactive. It is qualified by CIP# and MEMCS#
being active. In this way, RAS# is only deactivated
during DRAM cycles.

Once RAS# is deasserted during a miss cycle, it stays
high until PCHG is sampled active. This function im-
plements the RAS# precharge time. CIP# and
MEMCS # will still be active during read miss cycles.
Therefore, RAS# will be asserted in the next clock.
For write miss cycles the WIP # signal must be used to
restart RAS#. With a write miss, a non-DRAM cycle
can occur before RAS# is asserted. WIP# is the only
valid indication that a DRAM cycle has occurred in
this case. WIP# is combined with MEMCS # to create
the CSWIP# term which indicates a valid RAS# cy-
cle.

When a refresh cycle occurs, the RAS# state machine
transitions to S2. S2 and S3 are devoted to the refresh
function. When RFACK is sampled active, the tran-
sition occurs. The refresh sequence shown in Figure 28
illustrates the function of these two states. Note that
after a refresh cycle, RAS# is left inactive. The tran-
sition from SO to S4 allows for refresh cycles that start

- when RAS# is inactive.

RFACK*WIP#

RESET RAS | EP

RFACK*WIIP#
Q1

S1 1 0

s2| o 0

S3 0 1

S4 | 1 1

IRFACK * IPCHG
IAQO#*IMEMCS# * IPCHG
1AQO#*HIT#*IMEMCS#
240799-26

Figure 29. RAS State Machine
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6.3 CAS# Logic

Two separate PLDs implement the CAS# function.
These PLDs generate the CAS# signals for bank 0 and
bank. 1, respectively. The state machines which gener-
ate these signals are separate and independent. Each
generates two CAS# signals. CASO0# and CASO1#
for bank O, and CAS10# and CAS11# for bankl.
" These signals drive separate DRAM modules due to
drive requirements. ‘

Figure 30 shows the state diagram for the bank 0
CAS# function. The states on the left side of the dia-
gram implement the write function. The states on the
right implement the read function. As with RAS#, the
state machine waits until CIP# indicates that a cycle
has started. When CIP# is active, the state of the
latched version of W/R # determines which sequence is
started.

_ AQO#+1AQO#*(MEMCS#+1LW/R)+
IAQO#*LW /R*LA2

7 IAQO#*IMEMCS#*
LA2*LWR*IRFACK

IRAS#*RDY#

IAQO#*LA2*
LW/Re
IMEMCS#

RESET

IAQO#*IMEMCS#*IHIT#*LW /R*IRAS#*IRFACK+
RFACK*RAS#
/,9,?0}%
13(4
STe

IBRDY#*

IBRDY#*BLAST#*LA2+
RFACK

BLAST#*

IBRDY#*
IBLAST#
BRDY#

CASO | C1 | C2
SO 1 1 1
S1 1 0 1
S2 0 0 0
S3 1 0 0
S4 0 1 1
S5 1 1 0
S6 0 1 0
240799-27

Figure 30. CAS State Machine
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If the cycle is a read, S4 is entered. If the cycle is a
write, LA2 is sampled to determine if the cycle is to
bank 0. If LA2 is low, Sl is entered. Note that this
function is the same for the bank 1 state machine. The
only difference is the state of LA2, which starts the
write sequence.

During a write cycle, CAS# is held inactive until the
clock after RDY # is asserted. The state machine also
waits in S1 during a write miss cycle. CAS# is asserted
during S2. In this state, several events can occur. First,
the CPU may not start another bus cycle. Second, it
may start a bus cycle other than a DRAM cycle. Third,
it may initiate a read cycle, and fourth, it may begin a
write cycle to bank 1. If any of these events occur, S1 is
entered. If another write cycle starts to the same bank,
however, S3 is entered.

The case of sequential writes to the same bank involves
S2 and S3 only. An unlimited number of write cycles
can occur in the same bank. If the DRAM row is same,
they will occur without wait-states. If a write miss oc-
curs, RAS# will be deasserted, and the transition from
S3 to S1 takes place.

During read cycles, the CAS# signals for bank 0 and
bank 1 are activated at the same time. Therefore, the
state machines enter S4 at the same clock. At this
point, however, the state of LA2 determines which
state machine enters S5. In S5, CAS# is deasserted to
prepare that bank for the next access. If S6 is entered,
the data from that bank has not yet been accessed.
CAS# must be held active, in this case, until the data is
sampled by the CPU. From S6, the next transition will
be to S5 to continue the cycle, or SO to terminate the
cycle. If this bank was accessed first, the cycle will ter-
minate from this state.

The read sequence is much simpler if static column
mode DRAMs are used. The state sequence for static
column mode is shown in Figure 31. The write se-
quence in this diagram is exactly the same as for the
page mode CAS# control logic. The read function,
however, requires only two states. From SO, the tran-
sition is made to S5 any time that a DRAM read cycle
starts. Note that LA2 is not used to qualify this tran-
sition. Therefore, the CAS# signals for bank 0 and
bank 1 are active at the same time.

AQO#41AQ0#*(MEMCS#+ILW/R)+
IAQO#*LW /R*LA2

1AQO#*IMEMCS #*
LA2*LWR*IRFACK

IRAS#*RDY#

1AQO#*LA2®
LW/R

RESET

IAQO#*IMEMCS#*IHIT#*LW /R*!IRAS#*IRFACK+
RFACK*RAS#

IBRDY#*!BLAST#*

IRFACK#+RFACK#*RAS#
CASO0 | C1 | C2
S0 1 1 1
S1 1 0 1
S2 0 0 0
S3 1 0 0
S4 0 1 1

240799-28

Figure 31. Static Column CAS State Machine
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6.4 Write Control Logic

The posted write implementation requires logic support
for a few key functions. These functions are required
mainly to support posting with interleaved memory.
Three types of signals are generated to n'nplement these
functions:

Multiplexer Select - These signals control the address
multiplexers when RAS# is active. During write cy-
cles, they must be active to select the write address
path. These signals stay active during read cycles which
are immediately preceded by a write. They are deacti-
vated, when the write cycle is complete. Once they are
deactivated the read cycle may proceed as the read path
is selected.

Write Enable - These signals are combined with the
byte enable CPU outputs (BEO# —BE3 #) to create the
WBE# signals. The WBE0OO# —-WBEO3 # signals con-
trol which byte is written in bank 0 during a write cy-
cle. The WBE10# —-WBE13 # signals perform the same
function for bank 1.

Write In Progress - This signal is active when a write
cycle has been started by either DRAM bank. It is ac-
tive when either CO1# or C11# is active. CO1# and
Cl11# are state outputs from the CAS# state machine
which indicates that a write cycle is being performed.
CO1# is generated for bank 0 and C11# for bank 1.
WIP# is only required for interleaved memory sys-
tems. The CO1# (or C11#) output would be sufficient
for a non-interleaved (single bank) system.

The state machines which generate these signals are
shown in figure 32. The state diagram for the MENO#
signal is shown. This signal enables the address multi-
plexer for bank 0. MENO# is activated whenever a
write cycle occurs to an address with A2 low (0). The
MEN1# function is the same except that it is activated
when A2 is high (1). The AQ0O#, MEMCS# and LW/
R # signals are used to indicate a valid write cycle.

The MEN # signals are deactivated when the write cy-
cle is complete. The cycle is complete when CAS# for
that bank is sampled active. For bank 0, CO1# is used
to indicate that a write is in progress. MENO# is held
active when CO1# is active. When CASQ0# is sampled
active, CIP# is checked to determine if another valid
write to the same bank has occured. If so, MENO#
stays active until CASO0# is sampled active. This func-
tion keeps the write address path open during consecu-
tive writes to the same bank.

The WE# state machine is very similar to that of the
MEN# state machine. When a write cycle starts,
WEOQO# is activated in the same manner as MENO#.

The write enable signals, however, must stay active one
clock longer than the MEN# signals. Therefore, the
WE# signal is not deactivated untll C01# is sampled
inactive.

WIP# is generated in part by combinatorial logic so
that it can be active in the same clock as the CO1# and
C11# signals. WIP# must be active in this clock to
ensure that a write miss is completed before a refresh
cycle takes place. WIP# must also be held active one
clock after CO1# and CO2# are sampled inactive. This
timing ensures the proper sequence for subsequent read
cycles. The logic equation and state machine for WIP #
are shown in Figure 32.

6.5 Burst Address Logic

The burst address logic generates the BIMAO and
BOMADO signals. These signals are connected directly to
the low order address inputs of the DRAMs. Because
of the direct connection, these signals must perform
several different functions. They must multiplex the
low order row and column addresses, multiplex the

. write and read addresses and generate the burst address

during read cycles.

These functions are performed separately for each bank
by two PLDs. Each PLD generates two identical sig-
nals to reduce the drive requirements. These signals are
connected directly to two bytes of the DRAM array.
The signals are generated partly by combinatorial logic
and partly by the state machine.

The logic equations and state diagram for this function
are shown in Figure 33. The state machine generates
the burst address for read cycles. The logic equatlons
handle the multiplexing functions.

The burst address is generated after a burst read cycle
has started. Note that the i486 CPU cache need not be
enabled for burst cycles to occur. Cycles such as 64-bit
floating-point operand reads will burst if BRDY is re-
turned to the processor. SO and S3 track the state of the
A3 CPU address output. When a burst read cycle
starts, S1 or S2 is entered. The BOMAO address output
will then change its state when MBRDY # and DATA-
SEL are both low. This function is the burst address for
bank 0. The BIMAO address output changes its state
when MBRDY # is low and DATASEL is high. This
function is the burst address for bank1. The only differ-
ence in the two PLDs is the value of DATASEL used
to determine the time of which the burst address chang-
es its state.
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SO
S1
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ICo141C11
IWIP#=ILWIP# + ICO1 + IC11

WEO# S0 | 1

s1l o
@ RESET

ICIP#*LW/R*IMEMCS#*I1LA2
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ICIP#*LW /R*IMEMCS#*LA2*ICASO1 #
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1CO1 +iC11 WEO#
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240799-29

Figure 32. State Machines for MENO#, WIP #, and WEO #

RESET

IALD*IA3*AQO# IALD*IA3*AQO#

1AQO*ILW/R#*
IMEMCS#*HIT#

IBRDY#*BLAST# IBRDY#*BLAST#

240799-30

IBOOMAO = IWEO# * ILA313 + WEO# * RAS# * ILA313 * WEO# * IRAS# * IBOA

RAS Precharge and Refresh Counter

Figure 33. Burst Address Generation
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The SO and S3 states are required only to ensure that
the burst address outputs are valid during the T2 of any
read cycle. Figure 17 shows the timing of a burst read
hit cycle. In the first access of this cycle, the burst ad-
dress must be valid in the first T2 to satisfy the address
access time requirements of the DRAM. The value of
A3 is sampled with ALD to statisfy this requirement.
In this way, the burst address state machine always

starts from the correct value of A3. If another wait

state is added to this access, this function is not re-
quired.

The logic equations which provide the multiplexor
function are very simple. The first term of the equations
shown in Figure 33 enables the write path. The write
enable signals are used to enable this path. When WEQ
is active, for example, the value of the multiplexor out-
put is passed through to the DRAM. The second term
allows the row address A13 to be passed to the DRAM
during a read page miss. This term is also qualified by
the write enable signals. In this way, the write address
is not disabled early during a read miss. The third term
enables the burst address output from the state machine
“onto the address pins.

7.0 SUMMARY

We have discussed an example memory subsystem for
the i486TM CPU. The material has been presented as a
design guide for systems under development or as an
optimization for existing systems. We have discussed
several key functions which will be summarized in this
section. We will also discuss some important timing
restrictions. The key functions discussed include an ex-
ternal or second level cache, posted write cycles, and
interleaved DRAM banks.

The interleaving technique is used to support the burst
bus feature of the i486 CPU. The use of this technique
allows the DRAM to supply a DWORD every clock
during burst cycles. Interleaving proves to be very use-
ful in 486 CPU memory designs. Without its use
DRAM timings such as tPC (Page Mode Cycle time)

and tCP (CAS Precharge time) would prevent zero.
wait state access at 33 MHz.

Data registers are also used to improve average write
cycle latency. These registers hold write data during
posted write cycles. Write posting can improve average
write latency to under 3 clocks for many applications.
This improvement is important in i486 CPU based sys-
tems because 65% to 70%: of all bus cycles are writes.
Without using a latency improvement technique such
as write posting average write latency will be above 5
clocks.

The write posting technique also improves memory per-
formance in other ways. Write cycles, particularly

'DRAM page misses, can be overlapped with read hit

cycles in the second level cache. This fact greatly reduc-
es the delay caused by read cycles which immediatly
follow write cycles.

Analysis of this memory subsystem design has shown
that use of these features has resulted in a low latency
response to the CPU. Over several important applica-
tions the following characteristics have been recorded.
The average clock cycles required to complete the first
read is 3.5 clocks. Subsequent cycles of a burst are al-
ways processed in one clock. Write cycles average 2.5
clocks. These average counts result from the following
DRAM access rates. Read accesses from the cache al-
ways occur in zero wait states.

Table 3. Dram Function Latencies

First Subsequent .
DRAM Write
. .| Access Burst
Function Burst Accesses Cycles
Page Hit 3 1 2
Page Miss 7 1 5*
NOTE:

*Write miss latencies occur only during cycles subsequent
to a write miss cycle.
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7.1 Timing Restrictions

A few DRAM timing restrictions must be mentioned.
These timings become critical at 33 MHz. These tim-
ings are critical due primarily to the latency of the first
cycle of a read page hit. Since three clocks are used the
following timing restrictions exist.

tRAC = Data access time from RAS# active

tCAA = Data access time from column address valid
tCAC = Data access time from CAS# active

tRP = RAS# precharge time

At 33 MHz
tRAC = 71.5 ns
tCAA = 37.5 ns
tCAC = 34 ns
tRP = 60.6 ns
At 25 MHz

tRAC = 101.5 ns

tCAA = Sl ns
tCAC = 61.5ns
tRP = 80 ns
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APPENDIX A |
PLD CODES AND SCHEMATICS

A.1 PLD DEVICES

Many design examples in this manual use PLDs (Pro-
grammable Logic Devices) which can be programmed
by the user to implement random logic. A PLD device
can be used as a state machine or a signal decoder, for
example. The advantages of PLDs include the follow-
ing:
1. PLD pinout is determined by the designer, which
can simplify board layout by moving signals as re-
quired.’

2. PLDs are inexpensive as compared to dedicated bus

controllers. .

Intel EPLDs (Erasable Programmable Logic Devices)
have the following additional advantages:

1. Programmability/erasability allows EPLD func-
tions to be changed easily, simplifying prototype de-
velopment.

2. Since EPLDs are implemented in CMOS technolo-
gy, they can consume an order of magnitude less
power than bipolar PLDs. Power-conscious applica-
tions can benefit greatly from using EPLDs.

3. Since the EPROM cell size is an order of magnitude
smaller than an equivalent bipolar fuse, EPLDs can
implement more functions in the same package.
This higher integration can result in a lower overall
component count for a design. The added flexibility
can also mean that an extremely low number of
“raw” (unprogrammed) devices need to be stocked
versus bipolar PLDs.

4. Once an EPLD design has been tested, plastic OTP

(One-Time Programmable) versions of the device
can be used in a production environment.

PLDs have the following tradeoffs:

1. Most PLDs do not have buried (not connected to
outputs) registers. For some state machine applica-
tions, this means using an otherwise available output
pin to store the current state.

2. The drive capability of CMOS EPLDs may be insuf-

ficient for some applications. While the trend is
towards use of CMOS throughout a system, in cases

where high current levels are required, some addi-
tional buffering may be required with EPLDs.

A PLD consists logically of a programmable AND ar-
ray whole output terms feed a fixed OR array. Any
sum-of-products equations, within the limits of the
number of PLD inputs, outputs, and equation terms,
can be realized by specifying the correct AND array
connections. Figure B-1 shows an example of two PLD
equations and the corresponding logic array. Note that
every horizontal line in the AND array represents a
multi-input AND gate; every vertical line represents a
possible input to the AND gate. An X at the intersec-
tion of a horizontal line and a vertical line represents a
connection from the input to the AND gate.

" The sum-of-products is then routed to a configurable

macrocell. The macrocell in Figure B-2 can be config-

" ured as a combinational output or registered output.

The output can be active high or active low. A separate
AND term controls the output buffer.

Designing with PLDs consists of determining where Xs
must be placed in the AND array and how to configure
the macrocell. This task is simplified by logic compil-
ers, such as iPLS II (Intel’s Programmable Logic Soft-
ware II) or ABEL. Logic compilers accept input in the
form of sum-of-product equations and translate the in-
put into a JEDEC programming file that can be used
by programming hardware/software.

Intel PLDs are described in the Programmable Logic
Handbook. Three Intel PLDs have been used in this
manual to implement state machine and decode func-
tions. These PLDs include:

® 85C220—fast 20-pin superset of 16 x 8 type bipolar
and CMOS PLDs.

® 85C224—fast 24-pin superset of 20 x 8 type bipolar
and CMOS PLDs.

® 85C508—fast address decode PLD with integral
transparent latches.

The 85C220 and 85C224 PLDs are both available at
clock speeds to support fast state-machines in i486 sys-
tems. The 85C508 provides a fast Enable-to-Output
time with a minimal system setup time.
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Figure A-2. 85C220/85C224 EPLD Macrocell Architecture
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module SC_MODE_DRAM_CTRL 4 flag ‘-r4’

title ‘STATIC COLUMN MODE DRAM CONTROLLER - PLD 4, INTEL CORPORATION’
* This pld generates MRDY and MBRDY
* Implemented with Intel 85C224 EPLD.

SCk device ‘E224";

X
c

X ‘“ ABEL ‘don’t care’ symbol
* ABEL ‘clocking input’ symbol

[l

* Inputs

CLK pin 1; “P4 input CLK”

M~ pin 2; “Miss Indicator
CIP~ pin 3; “Cycle OK
MEMCS~ pin 4; “Latched A2.
HIT~ pin 5; “DRAM Page Hit Signal
RFACK pin 6; “Refresh acknowledge”
ADS ~ pin 7; “CPU ADS~
W_R pin 8; “CPU W/R
RESET pin 9; “System Reset
dum1 pin 10; “Write in progress
BOFF ~ pin 11; “CPU Backoff input
WIP ~ pin 14; “CPU Burst Last output
CAS~ pin 15; “Row Address strobe
BLAST~  pin 22;
RAS ~ pin 23; “Any CAS# signal
* Output
dumO pin 16;
MT pin 17; * BRDY state miss tracking
MRDY ~ pin 18; “ Memory RDY (modified with other RDYs)
DALE~ pin 19; “ Decode Latch enable
LWR pin 20; “ Internally latched W/R# for rdy

BRDY ~ pin 21; *“ Processor BRDY ~
state_diagram [MRDY ~]

state [1]:  if (RFACK & IADS~ & WR & {RAS~ & M~) # (ICIP~ & LWR &
IMEMCS ~ & !RFACK & M~) then [0] else [1];

state [0]:  goto [1];
state_diagram [BRDY ~, MT]

state {1, 1]: if ICIP~ & IHIT~ & IMEMCS~ & !LWR & !RFACK & WIP~ & !RAS~
then [0, 1] else if ICIP~ & IMEMCS~ & HIT~ & ILWR #
ICIP~ & IMEMCS~ & RAS~ & ILWR then [1, 0];
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state [1, 0]: if RESET then [1, 1] else
If WIP~ & IRFACK & !CAS ~ then [0, 1];

state [0, 1]: if RESET # !BOFF~ # IBLAST ~ then [1, 1] else [0, 1];
state_diagram [DALE ~]

state [0]:  if RESET then [0] else
if IADS ~ then [1] else [0];

state [1]:  if RESET # !BOFF~ then [0] else
if ICIP~ then [0] else [1];

state_diagram [LWR]

state [0]:  if RESET then [0] else
if JADS~ & W_R then [1] else [0];

state [1]:  if RESET # !BOFF~ then [0] else
if !ADS~ & !W_R then [0] else [1];

test vectors

([CLK,M~ ,CIP~ ,MEMCS ~ ,HIT ~ ,RFACK,ADS ~ ,W_R,RESET,WIP ~ ,BOFF ~ ,BLAST ~ ]
->  [RAS~,MRDY~ DALE~,LWR,BRDY~])

“CMAMHRAWRWBBR MDLB
“L~QEIFD_EIOLA RAWR

“K OMTASRSPFAS DLRD

“ ~C~F~ E FS~ YE Y
. s K T ~T ~~ -

X, X, X] = > [X, X, X, X];

[e, x, x, x, x, %, 1, %, 1, X,

[ex 1,1, %% 1,%x,1,x, % x,x] —>[1,0,0, 1];

[e,1,1,1,%x0,1,%0,0,1,1,1 —> [1,0,0, 1];
[c,1,1,1,%0,1,%0,0,1,1,1] —>[1,0,0, 1];
[e,1,1,1,%x0,0,1,0,0,1,1,1] —> [1,1,1,1];
[c,1,0,0,0,0,1,%0,0,1,1,1] —> [0, 0, x, 1];
[c,1,0,0,0,0,1,%x0,1,1,1,0] —> [1,0, 1, 1];
[e,1,1,0,0,0,0,1,0,1,1,1,0] —> [0, 1, 1, 1];
[c,1,0,0,0,0,1,%x0,1,1,1,0] —> [1,0, x, 1];
[c,1,1,%x,0,0,0,1,0,1,1,1,0] —> [0, 1,1, 1];
[c,1,0,0,0,0,1,%x,0,1,1,1,0] —> [1,0, x, 1];
[e,1,1,%x,0,0,1,%x,0,1,1,1,0] —> [1,0, x, 1];
[c,1,1,1,%x0,1,%x,0,1,1,1,0] —> [1,0, x, 1];

end SC_MODE_DRAM_CTRL 4,
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module SC_MODE DRAM_CTRL 3 flag "-r4’

title ‘STATIC COLUMN MODE DRAM CONTROLLER - PLD 3, INTEL CORPORATION’
* This PLD generates RAS
“ Implemented with the Intel 85C220 EPLD.

SC3 device ‘E0320’;
X = X “ ABEL ‘don’t care’ symbol
c = .C; ‘** ABEL ‘clocking input’ symbol
“ Inputs
CLK pin 1; “P4 input CLK”
M~ pin 2; “Refresh Acknowledge
CIP~ pin 3; “Cycle OK
MEMCS~ pin 4; “Latched A2.
HIT~ pin 5; “DRAM Page Hit Signal
RFACK pin 6; “Backoff input to P4”
PCHG pin 7; “RAS precharge count
WIP~ pin 8; “Write in Progress
RESET pin 9; “System Reset
Q1 pin 12; “RAS refresh count
“ Qutput
RAS2 ~ pin 13; “
RAS1~ pin 14; * RAS byte 0,2
EP pin 15; * state variable
EP1 pin 16; * state variable
RASO~ pin 17; *“ RAS byte 1,3
RAS3 ~ pin 18; *
CSWIP~ pin19;

state_diagram [RASO~,RAS1~ ,EP]

state [1, 1, 0]:

state [0, 0, 0]:

state [0, O, 1]:

state [1, 1, 1]:

if RESET then [1, 1, 0] else

if ICIP~ & ICSWIP~ & IPCHG then [0, O, 0] else
if RFACK & WIP~ then [1, 1, 1] else

[1,1,0];

if RESET then [1, 1, 0] else

if RFACK then [0, 0, 1] else

if ICIP~ & HIT~ & IMEMCS~ then [1, 1, 0]
else [0, 0, 0];

if RESET then [1, 1, 0] else

if IRFACK & !PCHG then [1, 1, 0] else

if RFACK & !WIP~ # IRFACK & PCHG then

[0, O, 1] else if RFACK & WIP~ & !Q1 then [1, 1, 1];

if RESET then [1, 1, 0] else
if IPCHG then [0, 0, 1] else [1, 1, 1];
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state [0, 1, 0]:
state [0, 1, 1}:
state [1, 0, O]:
state [1, 0, 1]:

goto [1, 1, O];
goto [1, 1, O];
goto [1, 1, O];
goto [1, 1, 0];

state_diagram [RAS2~,RAS3 ~,EP1]

state [1, 1, 0]:

state [0, 0, 0]:

state [0, O, 1]:

state (1, 1, 1]:

state [0, 1, 0]:

state [0, 1, 1]:

state [1, 0, 0]:
state [1, 0, 1]:

equations

it RESET then [1, 1, 0] else

if ICIP~ & !CSWIP~ & IPCHG then [0, 0, 0] else
if RFACK & WIP~ then [1, 1, 1] else

[1,1,0];

if RESET then [1, 1, 0] else

if RFACK then [0, 0, 1] else

if ICIP~ & HIT~ & IMEMCS~ then [1, 1, 0]
else [0, 0, 0];

if RESET then [1, 1, 0] else

if IRFACK & |PCHG then [1, 1, 0] else

if RFACK & IWIP~ # IRFACK & PCHG then

[0, 0, 1] else if RFACK & WIP~ & !Q1 then [1, 1, 1];

if RESET then [1, 1, 0] else
if IPCHG then [0, 0, 1] else [1, 1, 1];

goto [1, 1, O];
goto [1, 1, O];
goto [1, 1, O];
goto [1, 1, 0];

ICSWIP~ = (IMEMCS~ # IWIP~)& !RESET;

test.vectors

([CLK,M~ ,CIP~ MEMCS ~ HIT ~ RFACK,PCHG,WIP ~,Q1,RESET] — >
[RASO~,RAS1 ~,EP,RAS2 ~,RAS3 ~,EP1])

“ CMAMHRPWAQR RRERRE

“L~QEIFCI1TE AAPAAP
AHP S SS S8
C

“ K OMT
~C ~
S K

T

1
E 01 23

X, X, 1] — > X , X];
X% 1 ->[1,1,0,1,1,0];
x,x 1] ->101,1,0,1,1,0];
x,x,1 ->[1,1,0,1,1,0];
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end SC_MODE_DRAM_CTRL_3;
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module SC_MODE_DRAM_CTRL.1 flag ‘-r4’

title ‘STATIC COLUMN MODE DRAM CONTROLLER - PLD 1, INTEL CORPORATION
* Cycle Tracking Logic
“ Implemented with Intel 85C224 EPLD.

SCy device ‘E224";

= X3 * ABEL ‘don’t care’ symbol
c = .C; * ABEL ‘clocking input’ symbol

© “Inputs

CLK pin 1; “P4 input CLK”

BLAST~ pin 2; “P4 BLAST output
MEMCS~ pin 3; “Memory Chip Select
AHOLD pin 4; “Address HOLD input to P4”

HIT~ pin 5; “DRAM Page Hit Signal

BOFF ~ pin 6;Backoff input to P4”

ADS~ pin 7; “Address Status output of P4”

RFRQ pin 8; “Refresh Request Signal

RESET pin 9; “System Reset

BRDY ~ pin 10; “Processor burst ready pin.

MRDY ~ pin 11; “Memory ready

RAS ~ pin 14; “Row Address Strobe

EP pin 23; “Refresh indicator - count on RAS ~ low
* Output

RFACK~  pin 15; “Refresh acknowledge

CIP~ pin 16; “ ADS~ active indicator

M~ pin 17; *“ AQO~ Miss state indicator

CT pin 18; “ AHOLD with ADS ~ indicator

PCHG . pin 19; “ Precharge state indicator

Q1 pin 20; *“ Precharge state indicator

ALD pin 21; *“ Address Latch Disable

adist~ i pin 22; *“ ADL state variable

state_diagram [CIP~, M~]

state [1, 1]: if RESET then [1, 1] else
if AHOLD # |RFACK~ # EP then [1, 1] else
if IADS~ # CT then [0, 1] else [1, 1];

state [0, 1]: if RESET # !BOFF~ # MEMCS~
then [1, 1] else
if HIT~ & 'RAS~ & IMRDY ~ then [0, 0] else
If {MRDY~ # (!BRDY~ & IBLAST~)) then [1, 1]
else [0, 1];

state [0, 0]: if RESET # !BOFF~ then [1, 1] else
: if IPCHG & (CT # !ADS~) then [0, 1] else
if IPCHG & !CT then [1, 1] else
[o, 0};
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state [1, 0]: goto [1, 1];
state_diagram [PCHG, Q1]

state [0, 0]: if RESET then [0, 0] else
if IRAS~ then [1, 0] else
if RAS~ & |IRFACK~ then [0, 1] else [0, O}];

state [1, O]: if RESET then [0, 0] else
if RAS~ & !EP then [0, O] else
if RFACK~ & EP & !RAS~ then [1, 1] else
if RAS~ & EP then [0, 1] else [1, O];

state [0, 1]: goto [1, 0];
state [1, 1]: goto [0, 0];
state_diagram [CT]

state [0]: if RESET then [0] else
if IADS~ & (AHOLD # !'RFACK~ # IM~ # EP) then [1] else [0];

state [1]: if RESET # !BOFF~ then [0] else
if ICIP~ & M~ then [0] else [1];

state_diagram [RFACK~]

state[1]: if RESET then [1] else
if ICIP~ & RFRQ & !MRDY~ & !'HIT~ then [0] else
if ICIP~ & RFRQ & (!BRDY~ & !BLAST~) #
RFRQ & CIP~ & ADS~ then [0] else [1];

state[0]: if RESET # !BOFF~ then [1] else
if RAS~ then [1] else [0];

state_diagram [ALD, adist~]

state [0, 1]: if RESET then [0, 1] else
if /ADS~ # ICIP~ & IMEMCS~ then [1, 0] else [0, 1];

state [1, 0]: if RESET then [0,1] else
if ICIP~ & MEMCS ~ then [0, 1] else
if HIT~ & IMRDY ~ then [1, 1] else
if IHIT~ & IMRDY ~ then [0, 1] else
if IBRDY ~ & !IBLAST~ then [0, 1] else [1, O];

state [1, 1]: if RESET then [0, 1] else
if ICIP~ & (IPCHG # MEMCS~) then [0, 1] else [1, 1];

state [0, 0]: goto [0, 1];

test vectors
240799-39

5-257




RFRQ,RESET] - >

AP-447

[BRDY ~,MRDY ~ ,RAS ~ ,EP,RFACK~,CIP~ ,M~,CT,PCHG,Q1,ALD,adlst~])

([CLK,BLAST ~ , MEMCS ~ ,AHOLD,HIT ~ ,BOFF ~ ,ADS ~,

intgl

o oy oy P P oy oy oy Py

oooocoocoo~

r—— T

- ,01111111100

®C 585688 SS g

OC oo~ o
©°9s5oddsodacg

Md A I SE . L S L L S .
-0 bl R P I R I S -
-0 LLrgsggg8gg s
aT__ ! SIS il bbb b b bl )
N RS ot =
C.n.uv © AAAAAAAANARAAN
= \_:_,___________
< = e e ey P P e e oy e ey
<O xx00850555555
. e - TrO000000g

u- x XX e e e e
xl o, 0S8 08088 g
RAnV- X X = >
oQn> e
RHSE~ X XOOOOOOSCC0Sg
oc o O+ 4h,1h.1h o~ - iy
<! U kil
0Quu XX ROSSSSSS %
IO, e e T
Ix:0-0 XXX RXCTSSSS S %
WEM%S~ EC R R NN N N NN e
B o TN e
00 00000
Oux 0000000000009,

240799-40

5-258

end SC_.MODE_DRAM_CTRL 1;




I‘lter AP-447

module SC_MODE_DRAM.CTRL 7 flag “-r4’

tite ‘STATIC COLUMN MODE DRAM CONTROLLER - PLD 7, INTEL CORPORATION’
“ This PLD generates DATASL and WE
“ Implemented with the Intel 85C220 EPLD.

SC7 device ‘E0320’;

X

5 ‘*“ ABEL ‘don’t care’ symbol
c ;

X
.C; ‘* ABEL ‘clocking input’ symbol

It}

*“ Inputs

CLK pin 1; “P4 input CLK”

BRDY ~ pin 2; “Burst Ready
ClP~ pin 3; “Cycle OK
MEMCS~ pin 4; “memory select
LA2 pin 5; “Latched A2.

CAS00~  pin 6; “CAS output Bank1
CAS10~  pin 7; “CAS output Bank1

LW.R pin 8; “CPU W/R latched ~
RESET pin 9; “System Reset
BLAST~  pin 12; “CPU BLAST ~ output
BOFF ~ pin 13; “CPU Backoff input
HIT~ pin 19;
* Output
DATASEL pin 14; “ Bank select for reads
RS~ pin 15; * state variable
RALE ~ pin 16; *“ state variable
WE~ pin 17; “ Write Enable posted writes
BSEL pin 18; “ Selects read or write data path

state_diagram [DATASEL, RS ~]

state [1, 1]: if RESET then [1, 1] else
if ICIP~ & ILA2 & ILW_R & IMEMCS ~ then [0, 0] else
if ICIP~ & LA2 & ILW_R & IMEMCS ~ then [1, 0] else [1, 1];

state [1, 0]: if RESET # IBOFF~ # (IBRDY~ & !BLAST~) then [1, 1] else
if \BRDY~ & BLAST~ then [0, 0] else [1, O];

state [0, 0]: if RESET # !|BOFF~ # (IBRDY~ & !BLAST~) then [1, 1] else
if IBRDY ~ & BLAST~ then [1, 0] else [0, 0];

state [0, 1]: goto [1, 1];
state_diagram [WE ~]

state [1]:  if RESET then [1] else
if LW.R & ICIP~ & IMEMCS~ then [0] else [1];
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state [0]: if RESET # !|BOFF ~ then [1] else =
if LW.R & ICIP~ & IMEMCS ~ then [0] else
if CAS00~ + CAS10~ then [1];
state_diagram [RALE ~]

state [0]: if RESET then [0] else ‘
if ICIP~ & HIT~ & IMEMCS ~ then [1] else [0];

state [1]:  if RESET # !BOFF ~ then [0] else
if IHIT~ then [0] else [1];

end SC.MODE_DRAM_CTRL 7;
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module SC_MODE_DRAM._CTRL 11 flag ‘-r4’
title ‘STATIC COLUMN MODE DRAM CONTROLLER - PLD 11, INTEL CORPORATION’
* This PLD generates the mux enables write enables and WIP#
* Implemented with the Intel 856C220 EPLD.
SCw device ‘E0320’;

X
o

X “ ABEL ‘don’t care’ symbol
.C,; *“ ABEL ‘clocking input’ symbol

I

*“ Inputs

CLK pin 1; “P4 input CLK”

LA2 pin 2; “Latched A2.

CIP~ pin 3; “Cycle OK

MEMCS~ pin 4; “Memory Chip select.
RESET pin 5; “DRAM Page Hit Signal
LWR pin 6; “latched CPU W/R#
CO01 pin 7; “Write indication Bank0
CASO1~ pin 8;“

C11 pin 9; “Write indication Bank1
CASt11~ pin19; "

* Output
WIP ~ pin 12; “New Wip signal comb
MENO~ pin 13; “Mux enables
WEO~ pin 14; “
LWIP ~ pin 15; “Latched WIP ~
dum pin 16; “
WE1~ pin 17; “
MEN1 ~ pin 18; *“ Mux enable Bank1

state_diagram [WEO~]

state [1]:  if RESET then [1] else
if ICIP~ & LW.R & IMEMCS~ & !LA2 then [0];

state [0]:  if RESET then [1] else
if ICO1 then [0] else
if CO1 then [1];

state_diagram [WE1 ~]

state [1]:  if RESET then [1] else
if ICIP~ & LW_R & IMEMCS~ & LA2 then [0];

state [0]:  if RESET then [1] else
if 1IC11 then [0] else
if C11 then [1];
state_diagram [LWIP ~]
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state [1]:  if 1CO1 # IC11 then [0] else [1];

state [0]:  if RESET then [1] else
if ICO1 # IC11 then [0] else [1];

state_diagram [MENO~]

state [1]:  if RESET then [1] else
if ICIP~ & LW.R & IMEMCS~ & ILA2 then [0];

state [0]:  if RESET then [1] else
if 1C01 & CASO1~ then [0] else
if ICIP~ & LW.R & IMEMCS~ & ILA2 & ICAS01~ then [0] else
if \CASO1~ then [1];

state_diagram [MEN1 ~]

state [1]:  if RESET then [1] else ;
if ICIP~ & LW.R & IMEMCS~ & LA2 then [0];

state [0]:  if RESET then [1] else
if IC11 & CAS11~ then [0] else
if ICIP~ & LW.R & IMEMCS~ & ILA2 & !CAS11~ then [0] else
if ICAS11~ then [1];

equations
IWIP~ = ILWIP~ # ICO1 # !C11;
“test:-vectors

“([CLKMIO ,CIP ~,MEMCS ~ HIT ~ ,RFACK,ADS ~ ,W_R,RESET,CAS0 ~ ,BOFF ~ ,BLAST ~]
> [RAS ~ ,MRDY ~ DALE ,LWR,BRDY ~])

“CMAMHRAWRCBBR MDLB

“L_QEIFD_EAOLA RAWR
“KIOMTASRSSFAS DLRD

“ 0~C~F~ EOFS~ YE Y

“ 8K T~eT ~~ =~

e X X X, % %, 1, %, 1, %, %, %, X] = > [x, X, X, X];
“ [c, X, 1; 1: X, X, 1: X, 1,X, X, X, X] -> [1: ov 0)’ 1]:
“le,1,1,1,%1,1,%0,1,0,1,1] —=>[1,0,0,1];
“le,1,1,1,%1,1,%0,1,0,1,1] —=> [1,0,0, 1];
“ [C, 11 1y 11 X, 110, 1; 0: 1)01 11 1] -> [1: 11 11 1]:
‘lc,1,0,0,0,1,1,%0,1,0,1,1] —> [0,0, x, 1];
“[e,1,0,001,1,%0,1,0,1,0] ->[1,0,x, 1];
“[e,1,1,001,01,0,1,0,1,0] —> [0, 1,1, 1];
“ [cv 1’ 01 0, o’ 1: 11 X, O, On ov 11 0] -> [1y 0: X, 1];
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module SC_MODE DRAM CTRL 11 flag -4’

titte ‘STATIC COLUMN MODE DRAM CONTROLLER - PLD 11, INTEL CORPORATION’
“ This PLD generates the mux enables write enables and WIP#

LA | 4 itk daa lmidal OCEAANN PO N
.mplemen.ed Wit Ui€ 1t oouecau Lruu.

SCw device ‘E0320’;

X = X3 *“ ABEL ‘don’t care’ symbol
c = .C; * ABEL ‘clocking input’ symbol
“ Inputs

CLK pin 1; “P4 input CLK”

LA2 pin 2; “Latched A2.

CIP~ pin 3; “Cycle OK

MEMCS~ pin 4; “Memory Chip select.
RESET pin 5; “DRAM Page Hit Signal
LWR pin 6; “latched CPU W/R#
CO01 pin 7; “Write indication Bank0
CASO1~ pin 8;“

C11 pin 9; “Write indication Bank1
CAS11~ pin 19; “

* Output
WIP ~ pin 12; “New Wip signal comb
MENO~ pin 13; *“ Mux enables
WEO~ pin 14; “
LWIP ~ pin 15; “Latched WIP ~
dum pin 16; “
WE1~ pin 17; “
MEN1 ~ pin 18; “ Mux enable Bank1

state_diagram [WEO~]

state [1]:  if RESET then [1] else
if ICIP~ & LW_R & IMEMCS~ & !LA2 then [0];

state [0]:  if RESET then [1] else
if 1CO1 then [0] else
if CO1 then [1];
state_diagram [WE1 ~]

state [1]:  if RESET then [1] else
if ICIP~ & LW_R & IMEMCS~ & LA2 then [0];

state [0]:  if RESET then [1] else
if IC11 then [0] else
if C11 then [1];

state_diagram [LWIP ~]
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state [1]:  if 1CO1 # !C11 then [0] else [1];

state [0]:  if RESET then [1] else
if 1ICO1 # !C11 then [0] else [1];

state_diagram [MENO~]

state [1]:  if RESET then [1] else
if ICIP~ & LW.R & IMEMCS ~ & !LA2 then [0];

state [0]: if RESET then [1] else
if IC01 & CASO1 ~ then [0] else
if ICIP~ & LW.R & IMEMCS~ & !LA2 & !CAS01~ then [0] else
if \ICAS01~ then [1];

state_diagram [MEN1 ~]

state [1]: if RESET then [1] else
if ICIP~ & LW_R & IMEMCS~ & LA2 then [0];

state [0]:  if RESET then [1] else
if IC11 & CAS11~ then [0] else
if ICIP~ & LWR & IMEMCS~ & !LA2 & !ICAS11~ then [0] else
if \CAS11~then [1];

equations
IWIP~ = ILWIP~ # !CO1 # IC11;
“test vectors

*([CLK,M_I0 ~,CIP ~ ,MEMCS ~ HIT ~ ,RFACK,ADS ~ ,W_R,RESET,CASO ~ ,BOFF ~]
Y>> [BLAST ~,RAS ~ ,MRDY ~ ,DALE ~ ,LWR,BRDY ~])
CMAMHRAWRCBBR MDLB
“L_QEIFD_EAOLA RAWR

oM

“KI TASRSSFAS DLRD
“O~C~F~ EOFS~ YE Y

“ S T~ ~T ~~ ~

“Te,x, x, x, x, %, 1,x, 1, X, X, X, Xx] —> [X, X, X, x];
“le,x, 1,1, x,x, 1,x, 1,x,x,x,x] —>[1,0,0, 1];
“le,1,1,1,x,1,1,%0,1,0,1,1 —> [1,0,0, 1];
H [C, 1| 11 1; X, 11 11x1 01 11 0) 1: 1] -> [11 01 ov 1];
“le, 1,1,1,%x1,0,1,0,1,0,1,1] —> [1, 1,1, 1];
“[c,1,0,0,0,1,1,%0,1,0,1,1] —=> [0, 0, x, 1];
“fc, 1,0,0,0,1,1,%x,0,1,0,1,0] —> [1,0,x, 1];
“le,1,1,00,1,0,1,0,1,0,1,0] —> [0, 1,1, 1];
“[le, 1,00,0,1,1,%0,0,0,1,0] —> [1,0, x, 1];
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module SC MODE DRAM CTRL 8 flag *-r4’
titte ‘STATIC COLUMN MODE DRAM CONTROLLER - PLD 8, INTEL CORPORATION’
* This PLD generates CAS1 (CAS for bank 1)
“ Implemented with the Intel 856C220 EPLD.
SC8 device °‘E0320';

X = X “ ABEL ‘don’t care’ symbol
= .C; * ABEL ‘clocking input’ symbol

“ Inputs

CLK pin 1; “P4 input CLK”
RFACK pin 2; “Refresh Acknowledge

CiP~ pin 3; “Cycle OK

LA2 pin 4; “Latched A2.

HIT~ pin 5; “DRAM Page Hit Signal

BOFF ~ pin 6; “Backoff input to P4”

LWR~ pin 7;“

RAS ~ pin 8; “

RESET pin 9; “System Reset

RDY ~ pin 12; ** Processor RDY#

MEMCS~ pin 13; *“ Memory Chip Select

BRDY ~ pin 18; ““ Processor BREADY #

BLAST~  pin 19; * Processor BLAST#
* Output

CAS10~ pin 14; ““ CAS1 byte 0,2

C1 pin 15;  state variable

Cc2 pin 16; * state variable

CAS11~  pin 17; “ CAS1 byte 1,3
state_diagram [CAS10~,CAS11~,C1,C2]

state [1, 1, 1, 1]: if RESET # |BOFF~ then [1, 1, 1, 1] else
if IRFACK & ICIP~ & LA2 & LW.R~ & IMEMCS~ then
[1, 1,0, 1] else if IRFACK & !ICIP~ & LW R~ & IRAS~
& IHIT~ & IMEMCS~ # (RFACK & RAS ~) then
[0, 0, 1, 1] else [1, 1,1, 1];

state [1, 1, 0, 1]: if RESET # IBOFF~ then [1, 1, 1, 1] else
if IRAS~ & RDY~ then [0, 0, 0, 0] else
[1,1,0,1];

" state [0, 0, 0, 0]: if RESET # !BOFF~ then [1, 1, 1, 1] else
if ICIP~ & LA2 & LW.R~ & IMEMCS~ then [1, 1, 0, 0] eilse
if CIP~ # (ICIP~ & (MEMCS~ # ILW.R~)) # (ICIP~ & LW R~ &
ILA2) then [1, 1, 1, 1] else [0, 0, O, O];

state [1, 1, 0, 0]: if IRAS~ then [0, 0, O, 0] else [1, 1, O, 0];
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state [0, O, 1, 1]:

state [1, 1, 1, O]:

state [0, 0, 1, 0]:

test_vectors

if RESET # !BOFF~ then [1, 1, 1, 1] else

if IBRDY ~ & !BLAST~ & !RFACK then

[1, 1, 1, 1] else
if IBRDY ~ & BLAST~ & LA2 then [1,1,1,0] else
it IBRDY ~ & BLAST~ & ILA2 then [0, 0, 1, O] else
if RFACK then [0, O, 1, 0] else
if BRDY~ & !RFACK then [0, 0, 1, 1];

if RESET then [1, 1, 1, 1] else
if IBOFF~ then [1, 1, 1, O] else
if IBRDY ~ & BLAST~ then [0, O, 1, 1] else
if IBRDY~ & IBLAST~ then [1, 1,1, 1] else
[1,1,1,0}];

if RESET # |BOFF~ then [1, 1, 1, 1] else
if IBRDY~ & BLAST~ then [1, 1, 1, 0] else
if IBRDY ~ & IBLAST~ # BRDY~ then [1, 1,1, 1];

-> [BLAST~,CAS10~,C1,C2,CAS11~])
“CRALHBLRRRMBB cccCccC
“LFQAIOWAEDERL A12A
“KAO2TFRSSYMDA S S
“C~~F~~E~CYS O 0
“ K ~ T 8 T 0 1
e, x, x, x, x, X, 1, %, 1, X, X, X, X] —> [X, X, X, X];
[eox, 1,1, % x1,x,1,x,x,x,x] —>[1,1,1,x];
[e,x,1,1,x,1,1,0,0,1,0,1,1] —> [1,1,1,1];
[e,0,1,1,x,1,1,0,0,1,0,1,1] —> [1,1,1,1];
[c,0,1,1,%x,1,1,0,0,1,0,1,1] —> [1,1,1,1];
[c,0,0,1,0,1,1,0,0,1,0,1,1] —> [1,0,1,1];
[c,0,0,10,11,0,0,0,0,1,1] —> [1,0, 1, 1];
[c,0,1,1,0,1,1,0,0,1,0,1,1] —> [0, 0, 0, O};
[c,0,0,1,0,1,1,0,0,0,0,1,1] —> [1,0,0, 1};
[c,0,1,%x,0,1,1,0,0,1,0,1,1] —> [0, 0, O, O];
[c,0,0,1,0,1,1,0,0,0,0,1,1] —> [1,0,0, 1];
[c,0,1,%x,0,1,1,0,0,1,0,1,1] —> [0, 0,0, 0];
[c,0,1,0,%x,1,1,0,0,1,0,1,1] —>[1,1,1,1];
end SC_MODE_DRAM_CTRL_8;

([CLK,RFACK,CIP ~ ,LA2 HIT, ~ BOFF ~ LW_R~ ,RAS ~ ,RESET,RDY ~ ,MEMCS ~ ,BRDY ~]
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module PG MODE_DRAM_CTRL 2 flag ‘-r4’

titte  ‘PAGE MODE DRAM CONTROLLER - PLD 2, INTEL CORPORATION’
“ This PLD generates CASO
“ Implemented with the Intel 85C220 EPLD.

SC2 device ‘E0320’;

X
(o}

“Inputs

X *“ ABEL ‘don’t care’ symbol
.C,; * ABEL ‘clocking input’ symbol

CLK pin 1; “P4 input CLK”

RFACK
CiP~

pin 2; “Refresh Acknowledge
pin 3; “Cycle OK

LA2 pin 4; “Latched A2.

HIT~
BOFF ~
LWR~
RAS ~
RESET
RDY ~
MEMCS ~
BRDY ~
BLAST~

* Output

CAS10~
C1
Cc2

" CAS11~

pin 5; “DRAM Page Hit Signal
pin 6; “Backoff input to P4”
pin 7;*

pin 8;“

pin 9; “System Reset

pin 12; “Processor RDY#

pin 13; “Memory Chip Select
pin 18; “Processor BREADY#
pin 19; “Processor BLAST#

pin 14; “ CAS1 byte 0,2
pin 15; * state variable
pin 16; * state variable
pin 17; *“ CAS1 byte 1,3

state_diagram [CAS10~, CAS11~, C1, C2]

state [1, 1, 1, 1]: if RESET # !BOFF~ then [1, 1, 1, 1] else

if IRFACK & ICIP~ & ILA2 & LW R~ & IMEMCS~ then
[1,1,0, 1] else if IRFACK & !ICIP~ & ILW.R~ & !RAS~
& HIT~ & IMEMCS~ # (RFACK & RAS~) then
[0,0,1, 1] else [1, 1, 1, 1];

state [1, 1, 0, 1]: if RESET # !BOFF~ then [1, 1, 1, 1] else

if IRAS~ & RDY ~ then [0, 0, O, 0] else
[1,1,0,1];

state [0, 0, 0, 0]: if RESET # !BOFF ~ then [1, 1, 1, 1] else

if ICIP~ & ILA2 & LW.R~ & IMEMCS~ then [1, 1, 0, 0] else
if CIP~ # (ICIP~ & (MEMCS~ # !LW_R)) # (ICIP~ & LW.R~ &
LA2) then [1, 1, 1, 1] else [0, O, O, 0];

state [1, 1, 0, 0]: if IRAS~ then [0, O, 0, 0] else [1, 1, O, 0];
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state [0, 0, 1, 1]: if RESET # |BOFF ~ then [1, 1, 1, 1] else
if IBRDY ~ & |BLAST~ & !RFACK then
[1, 1,1, 1] else
if IBRDY ~ & BLAST~ & ILA2 then [1, 1, 1, 0] else
it IBRDY ~ & BLAST~ & LA2 then [0, 0, 1, 0] else
if RFACK then [0, 0, 1, 0] else -
if BRDY~ & IRFACK then [0, O, 1, 1];

state [1, 1, 1, 0]: if RESET then [1, 1, 1, 1] else
if IBOFF~ then [1, 1, 1, 0] else
if IBRDY ~ & BLAST~ then [0, 0, 1, 1] else
if IBRDY ~ & IBLAST~ then [1, 1, 1, 1] else
[17 11 11 0];

state [0, 0, 1, 0]: if RESET # !BOFF~ then [1,-1, 1, 1] else
if IBRDY ~ & BLAST ~ then [1, 1, 1, 0] else
if IBRDY ~ & IBLAST~ # BRDY~ then [1, 1, 1, 1];
test vectors

([CLK,RFACK,CIP ~ ,LA2 HIT ~ BOFF ~ ,LW_R~ ,RAS ~ ,RESET,RDY ~,MEMCS ~ ,BRDY ~ ]
-> [BLAST ~,CAS10~,C1,C2,CAS11~])

“CRALHBLRRRMBB CCCC
“LFQAIOWAEDERL A12A
“KAO2TFRSSYMDA S S
“*C~ ~F~~E~CYS 0 O
“ K ~ T 8 T 0 1

[, x, x, x, x, X, 1, %, 1, X, X, X, ] —> [X, X, X, X];

[e,x, 1,0, x,x,1,x, 1, x, x, x, x] —>[1,1,1,1];

[c,0,1,0,x,1,1,0,0,1,0,1,1] —> [1,1,1,1];
[c,0,1,0,x,1,1,0,0,1,0,1,1] —> [1,1,1,1];
[c,0,1,0,x,1,1,0,0,1,0,1,1] —> [1,1,1,1];
[e,0,0,0,0,1,1,0,0,1,0,1,1] —> [1,0,1, 1];
[¢,0,0,0,0,1,1,0,0,0,0,1,1] —>[1,0, 1, 1];
[c,0,1,0,0,1,1,0,0,1,0,1,1] —> [0, 0, 0, O];
[c,0,0,0,0,1,1,0,0,0,0,1,1] —> [1,0,0, 1];
[c,0,1,x,0,1,1,0,0,1,0,1,1] —> [0, 0,0, O];
[c,0,0,0,0,1,1,0,0,0,0,1,1] —> [1,0,0, 1];
[e,0,1,x,0,1,1,0,0,1,0,1,1] —> [0, 0, 0, 0];
[c,0,1,1,%x,1,1,0,0,1,0,1,1] —> [1,1,1, 1],

end PG_.MODE_DRAM_CTRL 2;
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module SC_MODE_DRAM_CTRL 15 flag ‘-r4’

titte 'STATIC COLUMN MODE DRAM CONTROLLER - PLD 15, INTEL CORPORATION’

* This PLD combines ready signals
* Implemented with the Intel 85C220 EPLD.

SC15K device ‘E0320’;

X = X * ABEL ‘don’t care’ symbol

c = .C; ** ABEL ‘clocking input’ symbol
* Inputs

MEMCS~ pin 1;*

JRDY ~ pin 2;“

MRDY~  pin 3;“

BRDY ~ pin 4;*

ALD pin 5; “

CKEN~ pin 6; “

SKEN ~ pin 7;“

BRDYO~ pin 8;“

M~ pin 9; “miss indicator for CIP~

CiP~ pin 11; “ Cycle indicator
* Output

WEN~ pin 12; “Write enable for write latches

RDY ~ pin 13; “to 486

MRDYCS~ pin 14;
MALD~ pin 15; “Modified ALD for FF's
dumi10 pin 16; “
PBRDY~ pin17; “
KEN ~ pin 18; “
DRDY ~ pin 19; “
equations
IMALD~ = (IMEMCS~ & !ALD);
IRDY~ = (IMRDY~ & M~ & IMEMCS~) # !JRDY ~;
IMRDYCS~ = (IMRDY~ & M~ & IMEMCS~);
IWEN~ = ICIP~ & M~;
IDRDY~ = I|BRDY~ # IMRDYCS~;
KEN~ = SKEN~ & CKEN~;

PBRDY~ = BRDY~ & BRDYO~;
“test vectors
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“ ([CLK,RESET] - >
“ [RESETO))

“CR R
NL
IIK

“mom
O-monm

“[e, 0] —> [x];
“[e, 0] —> [0];
“[c, 0] —> [0];
“[c, 0] —> [O};
“[c, 0] —> [0];
“Ic, 0] — > [O];
“Ic, 0] —> [0];
“le, 1] —=> [1]
“le, 1] = > [1]
“le, 1] —> 1]
“le, 1] —=> [1]
“le, 1] —> [}
“le, 1] —> 1]
“Ie, 1] —> 1]
“le, 1] —> [1];
“[c, 0] — > [0];
“Ic, 0] —> [O];
“[c, 0] - > [0];

end SC.MODE DRAM_CTRL 15;
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module SC_MODE_DRAM_CTRL 17 flag ‘-r4’

titte ‘STATIC COLUMN MODE DRAM CONTROLLER - PLD 17, INTEL CORPORATION’
* This PLD generates the AO signal for bank 1
“ Implemented with the Intel 86C224 EPLD.

SC17 device ‘E224’;

X
c

X.; *“ ABEL ‘don’t care’ symbol
.C,; * ABEL ‘clocking input’ symbol

“ Inputs

CLK pin 1; “P4 input CLK”

BRDY ~ pin 2; “Burst Ready

CiP~ pin 3; “Cycle OK

MEMCS~ pin 4; “memory select

LA313 pin 5; “Latched A2.

DATASEL pin 6; “Refresh acknowledge”
RAS ~ pin 7; “Row address strobe
LWR pin 8; “CPU W/R latched ~
RESET pin 9; “System Reset
BLAST~  pin 10; “CPU BLAST ~ output

A3 pin 11; “CPU Backoff input

ALD pin 14; “Address Latch disable

dumi pin 15;

WE1~ pin 22; “Write enable

dum2 pin 23; “Address Latch disable
*“ Output

B1OMAO  pin 21; “Bank 1 AO
B1A pin 20; “Burst A3 bank0

CSo0~ pin 19; “ state variable
dun pin 18; * state variable
dum pin 17; * Burst A3 bank1

B11MAO  pin 16; “Bank 1 AO
state_diagram [B1A, CS0~]

state [1, 1]: if RESET then [1, 1] else
if CIP~ & !ALD & !A3 then [0, 1] else
if ICIP~ & !ALD & !A3 then [0, 1] else
if ICIP~ & ILW_R & IMEMCS~ & WE1 ~ then [1, 0] else [1, 1];

state [0, 1]: if RESET then [1, 1] else
if CIP~ & !ALD & A3 then [1, 1] else
if ICIP~ & !ALD & A3 then [1, 1] else
if ICIP~ & ILWR & IMEMCS~ & WE1~ then [0, 0] else [0, 1];

state [1, 0]: if RESET # (IBRDY~ & IBLAST~) then [1, 1] else
if 'BRDY~ & DATASEL then [0, 0] else [1, O];
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state [0, 0]: if RESET # (IBRDY~ & IBLAST~) then [1, 1] else
’ if IBRDY~ & DATASEL then [1, 0] else [0, O};

equations

IBIOMAO = IWE1~ & ILA313 # WE1~ & RAS~ & ILA313 # WE1~ & IRAS~ & IB1A;
IB11MAO = IWE1~ & ILA313 # WE1~ & RAS~ & ILA313 # WE1~ & !HAS; & IB1A;
end SC_MODE DRAM_CTRL 17;
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module SC_MODE_DRAM_CTRL 6 flag ‘-r4’

titte ‘STATIC COLUMN MODE DRAM CONTROLLER - PLD 6, INTEL CORPORATION’
* This PLD generates A0 for bank 0
*“ Implemented with the Intel 85C224 EPLD.

SC6 device ‘E224';

X
- C

[}

X * ABEL ‘don’t care’ symbol
.C,; * ABEL ‘clocking input’ symbol

*“ Inputs

CLK pin 1; “P4 input CLK”

BRDY ~ pin 2; “Burst Ready

CIP~ pin 3; “Cycle OK

MEMCS~ pin 4; “memory select

LA313 pin 5; “Latched A2.

DATASEL pin 6; “Refresh acknowledge’
RAS ~ pin 7; “Row address strobe
LW.R pin 8; “CPU W/R latched~
RESET pin 9; “System Reset
BLAST~  pin 10; “CPU BLAST ~ output

A3 pin 11; “CPU Backoff input

ALD pin 14; “Address Latch disable

dumi pin 15;

WEOQO~ pin 22; “Write enable

dum2 pin 23; “Address Latch disable
* Output

BOOMAO  pin 21; “Bank 0 AO
BOA pin 20; “ Burst A3 bank 0

CS0~ pin 19; * state variable
dun pin 18; “ state variable
dum pin 17; “ Burst A3 bank1

BO1MAO  pin 16; “Bank 0 A0
state_diagram [BOA, CS0~]

state [1, 1]: if RESET then [1, 1] else
if CIP~ & !ALD & !A3 then [0, 1] else
if ICIP~ & !ALD & !A3 then [0, 1] else
if ICIP~ & ILW_R & IMEMCS~ & WEO~ then [1, 0] else [1, 1];

state [0, 1]: if RESET then [1, 1] else
if CIP~ & !ALD & A3 then [1, 1] else
if ICIP~ & !ALD & A3 then [1, 1] else
if ICIP~ & ILW_R & IMEMCS~ & WEO~ then [0, 0] else [0, 1];

state [1, 0]: if RESET # (IBRDY~ & !BLAST~) then [1, 1] else
if IBRDY ~ & IDATASEL then [0, 0] else [1, 0];
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state [0, 0]: if RESET # (IBRDY~ & IBLAST~) then [1, 1] else
if IBRDY~ & IDATASEL then [, 0] else [0, O];

equations
IBOOMAO = IWEO~ & ILA313 # WEO~ & RAS~ & ILA313 # WEO~ & !RAS~ & !BOA;

'BOIMAO = IWEO~ & !LA313 # WEO~ & RAS~ & !LA313 # WEO~ & !RAS~ & !BOA;
end SC_MODE_ DRAM_CTRL 6;
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