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PREFACE 

The Intel i86WM Microprocessor (part number 80860XR) delivers supercomputer perfor­
mance in a single VLSI component. The 64-bit design of the i860 microprocessor bal­
ances integer, floating point, and graphics performance for applications such as 
engineering workstations, scientific computing, 3-D graphics workstations, and multiuser 
systems. Its parallel architecture achieves high throughput with RISC design techniques, 
pipelined processing units, wide data paths, large on-chip caches, and fast one micron 
CHMOS IV silicon technology. 

This book is the basic source of the detailed information that enables software designers 
and programmers to use the i860 microprocessor. This book explains all programmer­
visible features of the architecture. 

Even though the principal users of this Programmer's Reference Manual will be pro­
grammers, it contains information that is of value to systems designers and administra­
tors of software projects, as well. Readers of these latter categories may choose only to 
read the higher-level sections of the manual, skipping over much of the programmer­
oriented detail. 

HOW TO USE THIS MANUAL 
• Chapter 1, "Architectural Overview," describes the i860 microprocessor "in a nut­

shell" and presents for the first time the terms that will be used throughout the book. 

• Chapter 2, "Data Types," defines the basic units operated on by the instructions of 
the i860 microprocessor. 

• Chapter 3, "Registers," presents the processor's database. A detailed knowledge of 
the registers is important to programmers, but this chapter may be skimmed by 
administrators. 

• Chapter 4, "Addressing," presents the details of operand alignment, page-oriented 
virtual memory, and on-chip caches. Systems designers and administrators may 
choose to read the introductory sections of each topic. 

• Chapter 5, "Core Instructions," presents detailed information about those instruc­
tions that deal with memory addressing, integer arithmetic, and control flow. 

• Chapter 6, "Floating-Point Instructions," presents detailed information about those 
instructions that deal with floating-point arithmetic, long-integer arithmetic, and 3-D 
graphics support. This chapter explains how extremely high performance can be 
achieved by utilizing the parallelism and pipelining of the i860 microprocessor. 

• Chapter 7, "Traps and Interrupts," deals with both systems- and applications­
oriented exceptions, external interrupts, writing exception handlers, saving the state 
of the processor (information that is also useful for task switching), and initialization. 

• Chapter 8, "Programming Model," defines standards for the use of many features of 
the i860 microprocessor. Software administrators should be aware of the need for 
standards and should ensure that they are implemented. Following the standards 
presented here guarantees that compilers, applications programs, and operating sys­
tems written by different people and organizations will all work together. 
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PREFACE 

• Chapter 9, "Programming Examples," illustrates the use of the i860 microprocessor 
by presenting short code sequences in assembly language. 

• The appendices present instruction formats and encodings, timing information, and 
summaries of instruction characteristics. These appendices are of most interest to 
assembly-language programmers and to writers of assemblers, compilers, and 
debuggers. 

RELATED DOCUMENTATION 

The following books contain additional material concerning the i860 microprocessor: 

• i860™ 64-Bit Microprocessor (Data Sheet), order number 240296 

• i860™ 64-Bit Microprocessor Assembler and Linker Reference Manual, order number 
240436 

• i860™ 64-Bit Microprocessor Simulator-Debugger Reference Manual, order number 
240437 

NOTATION AND CONVENTIONS 

The instruction chapters contain an algorithmic description of each instruction that uses 
a notation similar to that of the Algol or Pascal languages. The metalanguage uses the 
following special symbols: 

• A ~ B indicates that the value of B is assigned to A. 

• Compound statements are enclosed between the keywords of the "if' statement (IF 
... , THEN ... , ELSE ... , FI) or of the "do" statement (DO ... , OD). 

• The operator + + indicates auto increment addressing. 

• Register names and instruction mnemonics are printed in a contrasting typestyle to 
make them stand out from the text; for example, dirbase. Individual programming 
languages may require the use of lowercase letters. 

Hexadecimal constants are written, according to the C language convention, with the 
prefix Ox. For example, OxOF is a hexadecimal number that is equivalent to decimal 15. 

RESERVED BITS AND SOFTWARE COMPATIBILITY 

In many register and memory layout descriptions, certain bits are marked as reserved or 
undefined. When bits are thus marked, it is essential for compatibility with future pro­
cessors that software not utilize these bits. Software should follow these guidelines in 
dealing with reserved or undefined bits: 

• Do not depend on the states of any reserved or undefined bits when testing the values 
of registers that contain such bits. Mask out the reserved and undefined bits before 
testing. 

• Do not depend on the states of any reserved or undefined bits when storing them in 
memory or in another register. 
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• Do not depend on the ability to retain information written into any reserved or 
undefined bits. 

• When loading a control register, always load the reserved and undefined bits with 
values previously retrieved from the same register. 

NOTE 

Depending upon the values of reserved or undefined bits makes software depen­
dent upon the unspecified manner in which the i860 microprocessor handles 
these bits. Depending upon values of reserved or undefined bits risks making 
software incompatible with future processor~ that define usages for these bits. 
AVOID ANY SOFTWARE DEPENDENCE UPON THE STATE OF RESERVED 
OR UNDEFINED BITS. 
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CUSTOMER SUPPORT 

INTEL'S COMPLETE SUPPORT SOLUTION WORLDWIDE 

Customer Support is Intel's complete support service that provides Intel customers with hardware support, 
software support, customer training, consulting services and network management services. For detailed infor­
mation contact your local sales offices. 

After a customer purchases any system hardware or software product, service and support become major 
factors in determining whether that product will continue to meet a customer's expectations. Such support 
requires an international support organization and a breadth of programs to meet a variety of customer needs. 
As you might expect, Intel's customer support is quite extensive. It can start with assistance during your 
development effort to network management. 100 Intel sales and service offices are located worldwide - in the 
U.S., Canada, Europe and the Far East. So wherever you're using Intel technology, our professional staff is 
within close reach. 

HARDWARE SUPPORT SERVICES 

Intel's hardware maintenance service, starting with complete on-site installation will boost your productivity 
from the start and keep you running at maximum efficiency. Support for system or board level products can be 
tailored to match your needs, from complete on-site repair and maintenance support to economical carry-in or 
mail-in factory service. 

Intel can provide support service for not only Intel systems and emulators, but also support for equipment in 
your development lab or provide service on your product to your end-user/customer. 

SOFIWARE SUPPORT SERVICES 

Software products are supported by our Technical Information Service (TIPS) that has a special toll free 
number to provide you with direct, ready information on known, documented problems and deficiencies, as 
well as work-arounds, patches and other solutions. 

Intel's software support consists of two levels of contracts. Standard support includes TIPS (Technical Infor­
mation Phone Service), updates and subscription service (product-specific troubleshooting guides and; 
COMMENTS Magazine). Basic support consists of updates and the subscription service. Contracts are sold in 
environments which represent product groupings (e.g., iRMX® environment). 

CONSULTING SERVICES 

Intel provides field system engineering consulting services for any phase of your development or application 
effort. You can use our system engineers in a variety of ways ranging from assistance in using a new product, 
developing an application, personalizing training and customizing an Intel product to providing technical and 
management consulting. Systems Engineers are well versed in technical areas such as microcommunications, 
real-time applications, embedded microcontrollers, and network services. You know your application needs; 
we know our products. Working together we can help you get a successful product to market in the least 
possible time. 

CUSTOMER TRAINING 

Intel offers a wide range of instructional programs covering various aspects of system design and implementa­
tion. In just three to ten days a limited number of individuals learn more in a single workshop than in weeks of 
self-study. For optimum convenience, workshops are scheduled regularly at Training Centers worldwide or we 
can take our workshops to you for on-site instruction. Covering a wide variety of topics, Intel's major course 
categories include: architecture and assembly language, programming and operating systems, BITBUS ™ and 
LAN applications. 

NETWORK MANAGEMENT SERVICES 

Today's networking products are powerful and extremely flexible. The return they can provide on your invest­
ment via increased productivity and reduced costs can be very substantial. 

Intel offers complete network support, from definition of your network's physical and functional design, to 
implementation, installation and maintenance. Whether installing your first network or adding to an existing 
one, Intel's Networking Specialists can optimize network performance for you. 
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CHAPTER 1 
ARCHITECTURAL OVERVIEW 

The Intel i860™ Microprocessor defines a complete architecture that balances integer, 
floating point, and graphics performance. Target applications include engineering work­
stations, scientific computing, 3-D graphics workstations, and multiuser systems. Its par­
allel architecture achieves high throughput with RISe design techniques, pipelined 
processing units, wide data paths, and large on-chip caches. 

1.1 OVERVIEW 

The i860 microprocessor supports more than just integer operations. The architecture 
includes on a single chip: 

• . Integer operations 

• Floating-point operations 

• Graphics operations 

• Memory-management support 

• Data and instruction caches 

Having a data cache as an integral part of the architecture provides support for vector 
operations. The data cache supports applications programs in the conventional manner, 
without explicit programming. For vector operations, however, programmers can explic­
itly use the data cache as if it were a large block of vector registers. 

To sustain high performance, the i860 microprocessor incorporates wide information 
paths that include: 

• 64-bit external data bus 

• 128-bit on-chip data bus 

• 64-bit on-chip instruction bus 

Floating-point vector operations use all three busses. 

The i860 microprocessor includes a RISe integer core processing unit with one-clock 
instruction execution. The core unit processes conventional integer programs and pro­
vides complete support for standard operating systems, such as UNIX and OS/2. The 
core unit also drives the graphics and floating point hardware. 

The i860 microprocessor supports vector floating-point operations without special vector 
instructions or vector registers. It accomplishes this by using the on-chip data cache and 
a variety of parallel techniques that include: 

• Pipelined instruction execution with delayed branch instructions to avoid breaks in 
the pipeline. 

• Instructions that automatically increment index registers so as to reduce the number 
of instructions needed for vector processing. 
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• Parallel integer core and floating-point processing units. 

• Parallel multiplier and adder units within the floating-point unit. 

• Pipelined floating-point hardware units, with both scalar (nonpipelined) and vector 
(pipelined) variants of floating-point instructions. SqftWare can switch between scalar 
and pipelined modes. ' : ' 

• Large register set: 
32 general-purpose integer registers, each 32-bits wide. 

32 floating-point registers, each 32-bits wide, which can also be configured as 64-
and 128-bit registers. The floating-point registers also serve as the staging area 
for data going into and out of the floating-point pipelines. 

Figure 1-1 illustrates the registers and data paths of the i860 microprocessor. 

240329i 

Figure 1-1. Registers and Data Paths 
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There are two classes of instructions: 

• Core instructions (executed by the integer core unit). 

• Floating-point and graphics instructions (executed by the floating-point unit and 
graphics unit). 

The processor has a dual-instruction mode that can simultaneously execute one instruc­
tion from each class (core and floating-point). Software can switch between dual- and 
single-instruction modes. Within the floating-point unit, special dual-operation instruc­
tions (add-and-multiply, subtract-and-multiply) use the adder and multiplier units in 
parallel. With both dual-instruction mode and dual operation instructions, the i860 mi­
croprocessor can execute three operations simultaneously. 

The integer core unit manages data flow and loop control for the floating point units. 
Together, they efficiently execute such common tasks as evaluating systems of linear 
equations, performing the Fast Fourier Transform (FFT), and performing graphics 
transformations. 

1.2 INTEGER CORE UNIT 

The core unit is the administrative center of the i860 microprocessor. The core unit 
fetches both integer and floating-point instructions. It contains the integer register file, 
and decodes and executes load, store, integer, bit, and control-transfer operations. 
Its pipelined organization with extensive bypassing and scoreboarding maximizes 
performance. 

A complete list of its instruction categories includes ... 

• Loads and stores between memory and the integer and floating-point registers. 
Floating-point loads can be pipelined in three levels. A pixel store instruction contrib­
utes to efficient hidden-surface elimination. 

• Transfers between the integer registers and the floating-point registers. 

• Integer arithmetic for 32-bit signed and unsigned numbers. The 32-bit operations can 
also perform arithmetic on smaller (8- or 16-bit) integers. Arithmetic on large (128-bit 
or greater) integers can be implemented via short software macros or subroutines. 
(The graphics unit provides arithmetic for 64-bit integers.) 

• Shifts of the integer registers. 

• Logical operations on the integer registers. 

• Control transfers. There are both direct and indirect branches, a call instruction, and 
a branch that can be used to form highly efficient loops. Many of these are delayed 
transfers that avoid breaks in the instruction pipeline. One instruction provides effi­
cient loop control by combining the testing and updating of the loop index with a 
delayed control transfer. 

• System control functions. 
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1.3 FLOATING-POINT UNIT 

The floating-point unit contains the floating-point register file. This file can be accessed 
as 8 x 128-bit registers, 16 x 64-bit registers, or 32 x 32-bit registers. 

The floating-point unit contains both the floating-point adder and the floating-point 
multiplier. The adder performs floating-point addition, subtraction, comparison, and 
conversions. The mUltiplier performs floating-point and integer multiply and floating­
point reciprocal operations. Both units support 64- and 32-bit floating-point values in 
IEEE Standard 754 format. Each of these units uses pipelining to deliver up to one 
result per clock. The adder and multiplier can operate in parallel, producing up to two 
results per clock. Furthermore, the t1oating-point unit can operate in parallel with the 
core unit, sustaining the two-result-per-clock rate by overlapping administrative func­
tions with floating point operations. 

The RISe design philosophy minimizes circuit delays and enables using all the available 
chip space to achieve the greatest performance for t1oating-point operations. Due to this 
fact, due to the use of pipe lining and parallelism in the t1oating-point unit, and due to 
the wide on-chip caches, the i860 microprocessor achieves extremely high levels of 
floating-point performance. 

The use of RISC design principles implies that the i860 microprocessor does not have 
high-level math macro-instructions. High-level math (and other) functions are imple­
mented in software macros and libraries. For example, the i860 microprocessor does not 
have a sin instruction. The sin function is implemented in software on the i860 micro­
processor. The sin routine for the i860 microprocessor, however, will still be very fast 
due to the extremely high speed of the basic floating-point operations. Commonly used 
math operations, such as the sin function, are offered by Intel as part of a software 
library. 

The t1oating-point data types, floating-point instructions, and exception handling all sup­
port the IEEE Standard for Binary Floating-Point Arithmetic (ANSI/IEEE Std 754-
1985) with both single- and double-precision floating-point data types. Due to the low­
level instruction set of the i860 microprocessor, not all functions defined by the standard 
are implemented directly by the hardware. The i860 microprocessor supplies the under­
lying data types, instructions, exception checking, and traps to make it possible for soft­
ware to implement the remaining functions of the standard efficiently. Intel offers a 
software library that provides programs for the i860 microprocessor with full IEEE­
compatible arithmetic. 

1.4 GRAPHICS UNIT 

The graphics unit has special 64-bit integer logic that supports 3-D· graphics drawing 
algorithms. This unit can operate in parallel with the core unit. It contains the special­
purpose MERGE register, and performs multiple additions on integers stored in the 
floating-point register file. 
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These special graphics features focus the chip's high performance on applications that 
involve three-dimensional graphics with Gouraud or Phong color intensity shading and 
hidden surface elimination via the Z-buffer algorithm. The graphics features of the i860 
microprocessor assume that: 

• The surface of a solid object is drawn with polygon patches whose shapes approxi­
mate the original object. 

• The color intensities of the vertices of the polygon and their distances from the viewer 
are known, but the distances and intensities of the other points must be calculated by 
interpolation. 

The graphics instructions of the i860 microprocessor directly aid such interpolation. Fur­
thermore, the i860 microprocessor recognizes the pixel as an 8-, 16-, or 32-bit data type. 
It can compute individual red, blue, and green color intensity values within a pixel; but it 
does so with parallel operations that take advantage of the 64-bit internal word size and 
64-bit external data bus. 

The graphics unit also provides add and subtract operations for 64-bit integers, which 
are especially useful for high-resolution distance interpolation. 

In addition to the special support provided by the graphics unit, many 3-D graphics 
applications directly benefit from the parallelism of the core and floating-point units. 
For example, the 3-D rotation represented in homogeneous vector notation by ... 

[X Y Z 1] [x y z 1] 

o 
cos t 
-sin t 
o 

o 
sin t 
cos t 
o ~l 

.. .is just one example of the kind of vector-oriented calculation that can be converted to 
a program that takes full advantage of the pipelining, dual-instruction mode, dual oper­
ations, and memory hierarchy of the i860 microprocessor. 

1.5 MEMORY MANAGEMENT UNIT 

The on-chip MMU of the i860 microprocessor performs the translation of addresses 
from the linear logical address space to the linear physical address for both data and 
instruction access. Address translation is optional; when enabled, address translation 
uses a two-level structure of page directories and page tables of 1K entries each. Infor­
mation from these tables is cached in a 64-entry, four-way set-associative memory. The 
i860 microprocessor provides basic features (bits and traps) to implement paged virtual 
memory and to implement user/supervisor protection at the page level - all compatible 
with the paged memory management of the 386 ™ and i486 ™ microprocessors. 
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1.6 CACHES 

In addition to the page translation cache mentioned previously, the i860 microprocessor 
contains separate on-chip caches for data and instructions. Caching is transparent, ex­
cept to systems programmers who must ensure that the data cache is flushed when 
switching tasks or changing system memory parameters. The on-chip cache controller 
also provides the interface to the external bus with a pipelined structure that allows up 
to three outstanding bus cycles. 

The instruction cache is a two-way, set-associative memory of four Kbytes, with 32-byte 
blocks. The data cache is a write-back cache, composed of a two-way, set-associative 
memory of eight Kbytes, with 32-byte blocks. 

1.7 PARALLEL ARCHITECTURE 

The i860 microprocessor offers a high level of parallelism in a form that is flexible 
enough to be applied to a wide variety of processing styles: 

• Conventional programs and conventional compilers can use the i860 microprocessor 
as a scalar machine and still benefit from its high-performance. Even when used as a 
scalar machine, the i860 microprocessor implements concurrency between integer and 
floating-point operations, as long as there are no conflicts for internal resources. An 
integer instruction that follows a floating-point instruction begins immediately, over­
lapping the floating-point instruction. A floating-point instruction that follows an in­
teger instruction also begins immediately. 

• Compilers designed for the vector model can treat the i860 microprocessor as a vector 
machine. 

• New instruction-scheduling technology for compilers can compare the processing re­
quirements and data dependencies of programs with the available resources of the 
i860 microprocessor, and can take maximum advantage of its dual-instruction mode, 
pipelining, and caching. 

An established compiler technology for the vector model of computation already exists. 
This technology can be applied directly to the i860 microprocessor. The key to treating 
the i860 microprocessor as a vector machine is choosing the appropriate vector primi­
tives that the compiler assumes are available on the target machine. (Intel has defined a 
standard set of vector primitives.) The vector primitives are implemented as hand-coded 
subroutines; the compiler generates calls to these subroutines. If a compiler depends on 
the traditional concept of vector registers, it can implement them by mapping these 
registers to specific memory addresses. By virtue of frequent access to these addresses, 
the simulated registers will reside permanently in the data cache. 

Existing programs can be upgraded to take better advantage of the parallel architecture 
of the i860 microprocessor using vector-oriented technology. Flow analysis or "vectoriz­
ing" tools can identify parallelism that is implicit in existing programs. When modified 
(either manually or automatically) and compiled by an appropriate compiler for the i860 
microprocessor, these programs can achieve an even greater performance gain from the 
i860 microprocessor. 
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Designers of compilers will find that the i860 microprocessor offers more flexibility than 
traditional vector processors. The instruction set of the i860 microprocessor separates 
addressing functions from arithmetic functions. Two benefits result from this separation: 

1. It is possible to address arbitrary data structures. Data structures are no longer 
limited to vectors, arrays, and matrices. Parallel algorithms can be applied to linked 
lists (for example) as easily as to matrices. 

2. A richer set of operations is available at each node of a data structure. It becomes 
possible to perform different operations at each node, and there is no limit to the 
complexity of each operation. With the i860 microprocessor, it is no longer necessary 
to pass all elem~nts of a vector several times to implement complex vector 
operations. 

1.8 SOFTWARE DEVELOPMENT ENVIRONMENT 

The software environment available from Intel for the i860 microprocessor includes: 

• Assembler, linker, C, and FORTRAN compilers, and FORTRAN vectorizer. 

• Libraries of higher-level math functions and IEEE-standard exception support. Intel 
offers such libraries in a form that can be utilized by a variety of compilers. 

• Simulator and debugger. 

1.8.1 Multiprocessing for High-Performance with Compatibility 

Memory organization of the i860 microprocessor is compatible with that of the 386 and 
i486 microprocessors (including addresses and page-table entries); all data types are 
compatible as well (both integers and floating-point numbers). The page-oriented virtual 
memory management of the i860 microprocessor is also compatible with that of the 386 
and i486 microprocessors. This level of compatibility facilitates use of the i860 micropro­
cessor in multiprocessor systems with a 386 or i486 microprocessor. Moreover, complete 
hardware and software support for such multiprocessor systems is available. 

An i860 microprocessor can be used with a 386, 386 SX, or i486 microprocessor system. 
The i860 microprocessor extends system performance to supercomputer levels, while the 
386/386' SX/i486 microprocessor provides binary compatibility with existing applications. 
The compatibility processor provides acces's to a huge software base supporting a wide 
variety of I/O devices, communications protocols, and human-interface methods. The 
computation-intensive applications enjoy the raw computational power of the i860 
microprocessor, while having access to all capabilities and resources of the compatibility 
processor. 
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CHAPTER 2 
DATA TYPES 

The i860 microprocessor provides operations for integer and floating-point data. Integer 
operations are performed on 32-bit operands with some support also for 64-bit operands. 
Load and store instructions can reference 8-bit, 16-bit, 32-bit, 64-bit, and 128-bit oper­
ands. Floating-point operations are performed on IEEE-standard 32- and 64-bit formats. 
Graphics oriented instructions operate on arrays of 8-, 16-, or 32-bit pixels. 

Bits within data formats are numbered from zero starting with the least significant bit. 
Illustrations of data formats in this manual show the least significant bit (bit zero) at the 
right. 

2.1 INTEGER 

An integer is a 32-bit signed value in standard two's complement form. A 32-bit integer 
can represent a value in the range -2,147,483,648 (_231

) to 2,147,438,647 (+231 
- 1). 

Arithmetic operations on 8- and 16-bit integers can be performed by sign-extending the 
8- or 16-bit values to 32 bits, then using the 32-bit operations. 

There are also add and subtract instructions that operate on 64-bit integers. 

When an eight- or 16-bit item is loaded into a register, it is converted to an integer by 
sign-extending the value to 32 bits. When an eight- or 16-bit item is stored from a 
register, the corresponding number of low-order bits of the register are used. 

2.2 ORDINAL 

Arithmetic operations are available for 32-bit ordinals. An ordinal is an unsigned inte­
ger. An ordinal can represent values in the range 0 to 4,294,967,295 (+232 

- 1). 

Also, there are add and subtract instructions that operate on 64-bit ordinals. 

2.3 SINGLE-PRECISION REAL 

31 23 

E 

1 t 

F 

L 

2-1 

FRACTION 

EXPONENT 

SIGN 

o 
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A single-precision real (also called "single real") data type is a 32-bit binary floating­
point number. Bit 31 is the sign bit; bits 30 .. 23 are the exponent; and bits 22 .. 0 are the 
fraction. In accordance with ANSI/IEEE standard 754, the value of a single-precision 
real is defined as follows: 

1. If e = 0 and f ~ 0 or e = 255 then generate a floating-point source-exception trap 
when encountered in a floating-point operation. 

2. If 0 < e < 255, then the value is -Is x 1.f x 2C -127. (The exponent adjustment 
127 is called the bias.) 

3. If e = 0 and f = 0, then the value is signed zero. 

The special values infinity, NaN, indefinite, and denormal generate a trap when encoun­
tered. The trap handler implements IEEE-standard results. (Refer to Table 2-2 for 
encoding of these special values.) 

2.4 DOUBLE-PRECISION REAL 

63 52 

E 

1 t 
F 

L FRACTION 

EXPONENT 

SIGN 

o 
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A double-precision real (also called "double real") data type is a 64-bit binary floating­
point number. Bit 63 is the sign bit; bits 62 .. 52 are the exponent; and bits 51..0 are the 
fraction. In accordance with ANSI/IEEE standard 754, the value of a double-precision 
real is defined as follows: 

1. If e = 0 and f ~ 0 or'e = 2047, then generate a floating-point source-exception trap 
when encountered in a floating-point operation. 

2. If 0 < e < 2047, then the value is - 1 s x 1.f x 2C 
-1023. (The exponent adjustment 

1023 is called the bias.) 

3. If e = 0 and f = 0, then the value is signed zero. 

The special values infinity, NaN, indefinite, and denormal generate a trap when encoun­
tered. The trap handler implements IEEE-standard results. (Refer to Table 2-2 for 
encoding of these special values.) 
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A double real value occupies an even/odd pair of floating-point registers. Bits 31 .. 0 are 
stored in the even-numbered floating-point register; bits 63 .. 32 are stored in the next 
higher odd-numbered floating-point register. 

2.5 PIXEL 

A pixel may be 8, 16, or 32 bits long depending on color and intensity resolution require­
ments. Regardless of the pixel size, the i860 microprocessor always operates on 64 bits 
worth of pixels at a time. The pixel data type is used by two kinds of instructions: 

• The selective pixel-store instruction that helps implement hidden surface elimination. 

• The pixel add instruction that helps implement 3-D color intensity shading. 

To perform color intensity shading efficiently in a variety of applications, the i860 micro­
processor defines three pixel formats according to Table 2-1. 

Figure 2-1 illustrates one way of assigning meaning to the fields of pixels. These assign­
ments are for illustration purposes only. The i860 microprocessor defines only the field 
sizes, not the specific use of each field. Other ways of using the fields of pixels are 
possible. 

2.6 REAL-NUMBER ENCODING 

Table 2-2 presents the complete range of values that can be stored in the single and 
double real formats. Not all possible values are directly supported by the i860 micropro­
cessor. The supported values are the normals and the zeros, both positive and negative. 
Other values are not generated by the i860 microprocessor, and, if encountered as input 
to a floating-point instruction, they trigger the floating-point source exception. 
Exception-handling software can use the unsupported values to implement denormals, 
infinities, and NaNs. 

Table 2-1. Pixel Formats 

Pixel Bits of Bits of Bits of 
Bits of 

Size Color 1* Color 2* Color 3* 
Other 

(in bits) Intensity Intensity Intensity 
Attribute 
(Texture) 

8 N (:5: 8) bits of intensity** 8 - N 

16 6 6 4 

32 8 8 8 8 

* The intensity attribute fields may be assigned to colors in any order convenient to the application. 
** With 8-bit pixels, up to 8 bits can be used for intensity; the remaining bits can be used for any other 

attribute, such as color. The intensity bits must be the low-order bits of the pixel. 
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7 

8-BIT PIXEL I C I 
15 9 

16-BIT PIXEL I R I G I 
31 23 15 7 

32-BIT PIXEL I R I G I B I T 

I-INTENSITY, R-RED INTENSITY, G-GREEN INTENSITY, B-BLUE INTENSITY, C-COLOR, 
T-TEXTURE 

3 

THESE ASSIGNMENTS OF SPECIFIC MEANINGS TO THE FIELDS OF PIXELS ARE FOR 
ILLUSTRATION PURPOSES ONLY. ONLY THE FIELD SIZES ARE DEFINED, NOT THE SPECIFIC 
USE OF EACH FIELD. 

Figure 2-1. Pixel Format Examples 
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Table 2-2. Single and Double Real Encodings 

Class Sign Biased Fraction 
Exponent ff--ff* 

0 11..11 11 .. 11 

C/) Quiet 
z 
co 0 11..11 10 .. 00 z 

0 11..11 01..11 

Signaling 
C/) 

0 11..11 00 .. 01 Q) 

.~ 
'(j) 

Infinity 0 11..11 00 .. 00 0 a.. 

0 11..10 11..11 

Normals 
C/) 0 00 .. 01 00 .. 00 (ij 
Q) 

a: 
0 00 .. 00 11..11 

Denormals 

0 00 .. 00 00 .. 01 

Zero 0 00 .. 00 00 .. 00 

Zero 1 00 .. 00 00 .. 00 

1 00 .. 00 00 .. 01 
C/) 

Cil 
Denormals 

Q) 1 00 .. 00 11..11 II: 

1 00 .. 01 00 .. 00 
C/) 
Q) Normals > 
'iii 1 11..10 11..11 0) 
Q) 

z 
Infinity 1 11..11 00 .. 00 

1 11..11 00 .. 01 

Signaling 
C/) 

11..11 01..11 Z « z 
1 11..11 10 .. 00 

Quiet 

1 11..11 11..11 

Single: ~ 8 bits--,; +-23 bits--,; 
Double: ~11 bits--,; +-52 bits--,; 

*Integer bit is implied and not stored. 
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CHAPTER 3 
REGISTERS 

As Figure 3-1 shows, the i860 ™ microprocessor has the following registers: 

• An integer register file 

• A floating-point register file 

• Six control registers (psr, epsr, db, dirbase, fir, and fsr) 

• Four special-purpose registers (KR, KI, T, and MERGE) 

FLOAnNG-POlNT 
63 0 

INTEGER 0 0 to 
31 0 12 

0 rO 14 
r1 f6 
r2 f8 
r3 110 
r4 112 
r5 114 
r6 116 
r7 118 
r8 f20 
r9 f22 
r10 124 
r11 f26 
r12 f28 
r13 f30 
r14 

CONTROL r15 
r16 -ear ear 
r17 
r18 ~~ 
r19 
r20 dll3llll 
r21 
r22 ftr 
r23 
r24 ISr 
r25 

SPECIAL PURPOSE r26 
r27 KR 
r28 KI 
r29 I 
r30 
r31 MERGE 

Figure 3-1. Register Set 
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The control registers are accessible only by load and store control-register instructions; 
the integer and floating-point registers are accessed by arithmetic operations and load 
and store instructions. The special-purpose registers KR, KI, T, and MERGE are used 
by a few specific instructions. For information about initialization of registers, refer to 
the reset trap in Chapter 7. For information about protection as it applies to registers, 
refer to the st.e instruction in Chapter 5. 

3.1 INTEGER REGISTER FILE 

There are 32 integer registers, each 32-bits wide, referred to as rO through r31, which are 
used for address computation and scalar integer computations. Register rO always re­
turns zero when read, independently of what is stored in it. This special behaviour of rO 
makes it useful for modifying the function of certain instructions. For example, specify­
ing rO as the destination of a subtract (thereby effectively discarding the result) produces 
a compare instruction. Similarly, using rO as one source operand of an OR instruction 
produces a test-for-zero instruction. 

3.2 FLOATING-POINT REGISTER FILE 

There are 32 floating-point registers, each 32-bits wide, referred to as fO through f31, 
which are used for floating-point computations. Registers fO and f1 always return zero 
when read, independently of what is stored in them. The floating-point registers are also 
used by a set of integer operations, primarily for graphics computations. 

The floating-point registers act as buffer registers in vector computations, while the data 
cache performs the role of the vector registers of a conventional vector processor. 

When accessing 64-bit floating-point or integer values, the i860 microprocessor uses an 
even/odd pair of registers. When accessing 128-bit values, it uses an aligned set of four 
registers (fO, f4, f8, ... , f28). The instruction must designate the lowest register number 
of the set of registers containing 64- or 128-bit values. Misaligned register numbers 
produce undefined results. The register with the lowest number contains the least signif­
icarit part of the value. 

3.3 PROCESSOR STATUS REGISTER 

The processor status register (psr) contains miscellaneous state information for the cur­
rent process. Figure 3-2 shows the format of the psr. Fields marked by an asterisk in the 
figure can be changed only in supervisor mode. 

• BR (Break Read) and BW (Break Write) enable a data access trap when the operand 
address matches the address in the db register and a read or write (respectively) 
occurs. (Refer to section 3.5 for more about the db register.) 

• Various instructions set CC (Condition Code) according to the value of the result, as 
explained in Chapter 5. The conditional branch instructions test CC. The bla instruc­
tion described in Chapter 5 sets and tests LCC (Loop Condition Code). 
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BREAKREAD-----------------------------------------, 

BREAK WRITE -----------------------------, 
CONDITION CODE 
LOOP CONDITION CODE ------------------------------, 
INTERRUPT MODE ----------------------------, 
PREVIOUS INTERRUPT MODE ----------------------, 
USER MODE 
PREVIOUS USER MODE -----------..., 
INSTRUCTION TRAP --------------------, 
INTERRUPT -------------'-1 
INSTRUCTION ACCESS TRAP -----------., 
DATA ACCESS TRAP ----------.., 

FLOATING-POINT TRAP --------, 1 
DELAYED SWITCH ----------..., 1 
DUAL INSTRUCTION MODE l J 

PM 

, 

KILL NEXT FLOATING-POINT 
INSTRUCTION 

(RESERVED) 
SHIFT COUNT 
PIXEL SIZE 
PIXEL MASK 

·CAN BE CHANGED ONLY FROM SUPERVISOR LEVEL. 

Figure 3·2. Processor Status Register 
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• 1M (Interrupt Mode) enables external interrupts if set; disables interrupts if clear. 
(Chapter 7 covers interrupts.) 

• PIM (Previous Interrupt Mode) and PU (Previous User Mode) save the correspond­
ing status bits (1M and U) on a trap, because those status bits are changed when a 
trap occurs. They are restored into their corresponding status bits when returning 
from a trap handler with a branch indirect instruction when a trap flag is set in the 
psr. (Chapter 7 provides the details about traps.) 

• U (User Mode) is set when the i860 microprocessor is executing in user mode; it is 
clear when the i860 microprocessor is executing in supervisor mode. In user mode, 
writes to some control registers are inhibited. This bit also controls the memory pro­
tection mechanism described in Chapter 4. 

• IT (Instruction Trap), IN (Interrupt), IAT (Instruction Access Trap), DAT (Data 
Access Trap), and FT (Floating-Point Trap) are trap flags. They are set when the 
corresponding trap condition occurs. The trap handler examines these bits to deter­
mine which condition or conditions have caused the trap. Refer to Chapter 7 for a 
more detailed explanation. 
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• DS (Delayed Switch) is set if a trap occurs during the instruction before dual­
instruction mode is entered or exited. If DS is set and DIM (Dual Instruction Mode) 
is clear, the i860 microprocessor switches to dual-instruction mode one instruction 
after returning from the trap handler. If DS and DIM are both set, the i860 micro­
processor switches to single-instruction mode one instruction after returning from the 
trap handler. Chapter 7 explains how trap handlers use these bits. 

• When a trap occurs, the i860 microprocessor sets DIM if it is executing in dual­
instruction mode; it clears DIM if it is executing in single-instruction mode. If DIM is 
set, the i860 microprocessor resumes execution in dual-instruction mode after return­
ing from the trap handler. 

• When KNF (Kill Next Floating-Point Instruction) is set, the next floating-point in­
struction is suppressed (except that its dual-instruction mode bit is interpreted). A 
trap handler sets KNF if the trapped floating-point instruction should not be reexe­
cuted. KNF is especially useful for returning from a trap that occurred in dual­
instruction mode, because it permits the core instruction to be executed while the 
floating-point instruction is suppressed. KNF is automatically reset by the i860 micro­
processor when the instruction has been successfully bypassed. It is possible that the 
core instruction may cause a trap when the floating-point instruction is suppressed. In 
this case KNF remains set, permitting retry of the core instruction. 

• SC (Shift Count) stores the shift count used by the last right-shift instruction. It 
controls the number of shifts executed by the double-shift instruction, as described in 
Chapter 5. 

• PS (Pixel Size) and PM (Pixel Mask) are used by the pixel-store instruction described 
in Chapter 5 and by the graphics instructions described in Chapter 6. The values of 
PS control pixel size as defined by Table 3-1. The bits in PM correspond to pixels to 
be updated by the pixel-store instruction pst.d. The low-order bit of PM corresponds 
to the low-order pixel of the 64-bit source operand of pst.d. The number of low-order 
bits of PM that are actually used is the number of pixels that fit into 64-bits, which 
depends upon PS. If a bit of PM is set, then pst.d stores the corresponding pixel. 

3.4 EXTENDED PROCESSOR STATUS REGISTER 

The extended processor status register (epsr) contains additional state information for 
the current process beyond that stored in the psr. Figure 3-3 shows the format of the 
epsr. Fields marked by an asterisk in the figure can be changed only in supervisor mode. 

• The processor type is one for the i860 microprocessor. 

Table 3-1. Values of PS 

Value 
Pixel Size Pixel Size 

in bits in bytes 

00 8 1 
01 16 2 
10 32 4 
11 (undefined) (undefined) 
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31 8 0 

(RESERVED) STEPPING PROCESSOR 
NUMBER TYPE 

* • * * 

1 ft .... -------- PAGE-TABLE BIT MODE 
- BIG ENDIAN MODE 

~------------ OVERFLOW FLAG 

·CAN BE CHANGED ONLY FROM SUPERVISOR LEVEL. 
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Figure 3-3. Extended Processor Status Register 

• The stepping number has a unique value that distinguishes among different revisions 
of the processor. 

• IL (Interlock) is set if a trap occurs after a lock instruction but before the load or 
store following the subsequent unlock instruction. IL indicates to the trap handler 
that a locked sequence has been interrupted. 

• WP (Write Protect) controls the semantics of the W bit of page table entries. A clear 
W bit in either the directory or the page table entry causes writes to be trapped. 
When WP is clear, writes are trapped in user mode, but not in supervisor mode. 
When WP is set, writes are trapped in both user and supervisor modes. 

• INT (Interrupt) is the value of the INT input pin. 

• DCS (Data Cache Size) is a read-only field that tells the size of the on-chip data 
cache. The number of bytes actually available is 212+DCS; therefore, a value of zero 
indicates 4 Kbytes, one indicates 8 Kbytes, etc. 

• PBM (Page-Table Bit Mode) determines which bit of page-table entries is output on 
the PTB pin. When PBM is clear, the PTB signal reflects bit CD of the page-table 
entry used for the current cycle. When PBM is set, the PTB signal reflects bit WT of 
the page-table entry used for the current cycle. 

• BE (Big Endian) controls the ordering of bytes within a data item in memory. Nor­
mally (i.e. when BE is clear) the i860 microprocessor operates in little endian mode, 
in which the addressed byte is the low-order byte. When BE is set (big endian mode), 
the low-order three bits of all load and store addresses are complemented, then 
masked to the appropriate boundary for alignment. This causes the addressed byte to 
be the most significant byte. Refer to Chapter 4 for more information on byte 
ordering. 
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• OF (Overflow Flag) is set by adds, addu, subs, and subu when integer overflow 
occurs. For adds and subs, OF is set if the carry from bit 31 is different than the carry 
from bit 30. For addu, OF is set if there is a carry from bit 31. For subu, OF is set if 
there is no carry from bit 31. Under all other conditions, it is cleared by these instruc­
tions. OF controls the function of the intovr instruction (refer to Chapter 5). 

3.5 DATA BREAKPOINT REGISTER 

The data breakpoint register (db) is used to generate a trap when the i860 microproces­
sor accesses an operand at the address stored in this register. The trap is enabled by BR 
and BW in psr. When comparing, a number of low order bits of the address are ignored, 
depending on the size of the operand. For example, a 16-bit access ignores the low-order 
bit of the address when comparing to db; a 32-bit access ignores the low-order two bits. 
This ensures that any access that overlaps the address contained in the register will 
generate a trap. The trap occurs before the register or memory update by the load or 
store instruction. 

3.6 DIRECTORY BASE REGISTER 

The directory base register dirbase (shown in Figure 3-4) controls address translation, 
caching, and bus options. 

• ATE (Address Translation Enable), when set, enables the virtual-address translation 
algorithm described in Chapter 4. The data cache must be flushed before changing 
the ATE bit. 

• DPS (DRAM Page Size) controls how many bits to ignore when comparing the cur­
rent bus-cycle address with the previous bus-cycle address to generate the NENE# 
signal. This feature allows for higher speeds when using static column or page-mode 

ADDRESS TRANSLATION ENABLE ---------------, 
DRAM PAGE SIZE 

BUS LOCK -----------------------------~ 
I-CACHE, TLB INVALIDATE -------------.j 
(RESERVED) 1 
CODE SIZE 8-BIT ------------------, 
REPLACEMENT BLOCK ! 
REPLACEMENT CONTROL ~ J 

12 

DIRECTORY TABLE BASE (DTB) RC 

Figure 3-4. Directory Base Register 
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DRAMs and consecutive reads and writes access the same column or page. The 
comparison ignores the low-order 12 + DPS bits. A value of zero is appropriate for 
one bank of 256K x n RAMs, 1 for 1M x n RAMS, etc. 

• When BL (Bus Lock) is set, external bus accesses are locked. The LOCK# signal is 
asserted the next bus cycle whose internal bus request is generated after BL is set. It 
remains set on every subsequent bus cycle as long as BL remains set. The LOCK# 
signal is deasserted on the next bus cycle whose internal bus request is generated 
after BL is cleared. A trap that occurs during a locked sequence immediately clears 
BL and the LOCK# signal and sets IL in epsr. In this case the trap handler should 
resume execution at the beginning of the locked sequence. The lock and unlock in­
structions control the BL bit (refer to Chapter 5). 

• ITI (Instruction-Cache, TLB Invalidate), when set in the value that is loaded into 
dirbase, causes the instruction cache and address-translation cache (TLB) to be 
flushed. The ITI bit does not remain set in dirbase. ITI always appears as zero when 
read from dirbase. The data cache must be flushed before invalidating the TLB (ex­
cept for the case of setting the D- or P-bit in a PTE that is not itself in the data 
cache). 

• When CS8 (Code Size 8-Bit) is set, instruction cache misses are processed as 8-bit bus 
cycles. When this bit is clear, instruction cache misses are processed as 64-bit bus 
cycles. This bit can not be set by software; hardware sets this bit at initialization time. 
It can be cleared by software (one time only) to allow the system to execute out of 
64-bit memory after bootstrapping from 8-bit EPROM. A nondelayed branch to code 
in 64-bit memory should directly ~ollow the st.c instruction that clears CS8, in order 
to make the transition from 8-bit to 64-bit memory occur at the correct time. The 
branch must be aligned on a 64-bit boundary. Refer to the CS8 mode in the i860™ 
64-Bit Microprocessor Hardware Design Guide for more information. 

• RB (Replacement Block) identifies the cache block to be replaced by cache replace­
ment algorithms. The high-order bit of RB is ignored by the instruction and data 
caches. RB conditions the cache flush instruction flush, which is discussed in 
Chapter 5. Table 3-2 explains the values of RB. ' 

• RC (Replacement Control) controls cache replacement algorithms. Table 3-3 
explains the significance of the values of RC. The use of the RC and RB to imple­
ment data cache flushing is described in Chapter 4. 

Table 3-2. Values of RS 

Value 
Replace Replace Instruction 

TLB Block and Data Cache Block 

o 0 0 0 

o 1 1 1 

1 0 2 0 

1 1 3 1 
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Table 3-3. Values of RC 

Value Meaning 

00 Selects the normal replacement algorithm where any block in the set may be replaced 
on cache misses in all caches. 

01 Instruction, data, and TLB cache misses replace the block selected by RB. The instruc-
tion and data' caches ignore the high-order bit of RB. This mode is used for instruction 
cache and TLB testing. 

10 Data cache misses replace the block selected by the low-order bit of RB. 

11 Disables data cache replacement. 

• DTB (Directory Table Base) contains the high-order 20 bits of the physical addess of 
the page directory when address translation is enabled (i.e. ATE = 1). The low-order 
12 bits of the address are zeros (therefore the directory must be located on a 4K 
boundary). 

3.7 FAULT INSTRUCTION REGISTER 

When a trap occurs, this register (the fir) contains the address of the instruction that 
caused the trap, as described in Chapter 7. Reading fir anytime except the first time after 
a trap occurs only yields the address of the Id.e instruction. The fir cannot be modified by 
the st.e instruction. 

3.8 FLOATING-POINT STATUS REGISTER 

The floating-point status register (fsr) contains the floating-point trap and rounding­
mode status for the cur~ent process. Figure 3-5 shows its format. 

• If FZ (Flush Zero) is clear and underflow occurs, a result-exception trap is generated. 
When FZ is set and underflow occurs, the result is set to zero, and no trap due to 
underflow occurs. 

• If TI (Trap Inexact) is clear, inexact results do not cause a trap. If TI is set, inexact 
results cause a trap. The sticky inexact flag (SI) is set whenever an inexact result is 
produce~, regardless of the setting of TI. 

• RM (Rounding Mode) specifies one of the four rounding modes defined by the IEEE 
standard. Given a true result b that cannot be represented by the target data type, the 
i860 microprocessor determines the two representable numbers a and c that most 
closely bracket b in value (a < b < c). The i860 microprocessor then rounds 
(changes) b to a or c according to the mode selected by RM as defined in Table 3-4. 
Rounding introduces an error in the result that is less than one least-significant bit. 

• The U-bit (Update Bit), if set in the value that is loaded into fsr by a st.e instruction, 
enables updating of the result-status bits (AE, AA, AI, AO, AU, MA, MI, MO, and 
MU) in the first-stage of the floating-point adder and multiplier pipelines. If this bit is 
clear, the result-status bits are unaffected by a st.e instruction; st.e ignores the corre­
sponding bits in the value that is being loaded. A st.e always updates fsr bits 21..17 
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Value 

00 

01 

10 

11 

FLUSH ZERO ------------------------------------------~ 
TRAP INEXACT ---------------------------------------, 
ROUNDING MODE 

UPDATE ---------------------------------------, 
FLOATING-POINT TRAP ENABLE ----------------------, 
(RESERVED) 
STICKY INEXACT FLAG 
SOURCE EXCEPTION ----------------------~ 
MULTIPLIER UNDERFLOW ----------------, 
MULTIPLIER OVERFLOW 

MULTIPLIER INEXACT J 
MULTIPLIER ADD ONE 1 
ADDER UNDERFLOW 1 1! 
ADDER OVERFLOW ----------..,; • 

t t ~ ADDER INEXACT 
ADDER ADD ONE 
RESULT REGISTER 

~------------ ADDER EXPONENT 
1..-_____________ (RESERVED) 

'------------------- LOAD PIPE RESULT PRECISION 
~-------------------- INTEGER (GRAPHICS) PIPE RESULT 

PRECISION 
'---------------------- MULTIPLIER PIPE RESULT PRECISION 

1..-______________________ ADDER PIPE RESULT PRECISION 1..-________________________ (RESERVED) 

Figure 3-5. Floating-Point Status Register 

Table 3-4. Values of RM 

Rounding Mode Rounding Action 

240329i 

Round to nearest or even Closer to b of a or c; if equally close, select even 
number (the one whose least significant bit is zero). 

Round down (toward - 00) a 

Round up (toward + 00) c 

Chop (toward zero) Smaller in magnitude of a or c. 

and 8 .. 0 directly. The U-bit does not remain set; it always appears a zero when read. 
A trap handler that has interrupted a pipelined operation sets the U-bit to enable 
restoration of the result-status bits in the pipeline. Refer to Chapter 7 fordetails. 

• The FTE (Floating-Point Trap Enable) bit, if clear, disables all floating-point traps 
(invalid input operand, overflow, underflow, and inexact reSUlt). Trap handlers clear 
it while saving and restoring the floating-point pipeline state (refer to Chapter 7) and 
to produce NaN, infinite, or denormal results without generating traps. 
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• SI (StickY Inexact) is set when the last-stage result of either the multiplier or adder is 
inexact (i.e. when either AI or MI is set). SI is "sticky" in the sense that it remains set 
until reset by software. AI and MI, on the other hand, can by changed by the subse­
quent floating-point instruction. 

• SE (Source Exception) is set when one of the source operands of a floating-point 
operation is invalid; it is cleared when all the input operands are valid. Invalid input 
operands include denormals, infinities, and all NaNs (both quiet and signaling). Trap 
handler software can implement IEEE-standard results for operations on these 
values. 

• When read from the fsr, the result-status bits MA, MI, MO, and MU (Multiplier 
Add-One, Inexact, Overflow, and Underflow, respcctively) describe the last-stage 
result of the multiplier. 

When read from the fsr, the result-status bits AA, AI, AO, AU, and AE (Adder 
Add-One, Inexact, Overflow, Underflow, and Exponent, respectively) describe the 
last-stage result of the adder. The high-order three bits of the II-bit exponent of the 
adder result are stored in the AE field. The trap handler needs the AE bits when 
overflow or underflow occurs with double-precision inputs and single-precision 
outputs. 

After a floating-point operation in a given unit (adder or multiplier), the result-status 
bits of that unit are undefined until the point at which result exceptions are reported. 

When written to the fsr with the U-bit set, the result-status bits are placed into the 
first stage of the adder and multiplier pipelines. When the processor executes pipe­
lined operations, it propagates the result-status bits of a particular unit (multiplier or 
adder) one stage for each pipelined floating-point operation for that unit. When they 
reach the last stage, they replace the normal result-status bits in the fsr. 

In a floating-point dual-operation instruction (e.g. add-and-multiply or subtract-and­
multiply), both the multiplier and the adder may set exception bits. The result-status 
bits for a particular unit remain set until the next operation that uses that unit. 

• AA (Adder Add One), whcn set, indicates that the absolute value of the fraction of 
the result of an adder operation was increased by one due to rounding. AA is not 
influenced by the sign of the result. 

• MA (Multiplier Add One), when set, indicates that the absolute value of the fraction 
of the result of a multiplier operation was increased by one due to rounding. MA is 
not influenced by the sign of the result. 

• RR (Result Register) specifies which floating-point register (fO-f31) was the destina­
tion register when a result-exception trap occurs due to a scala~ operation. 

• . LRP (Load Pipe Result Precision), IRP (Integer (Graphics) Pipe Result Precision), 
MRP (Multiplier Pipe Result Precision), and ARP (Adder Pipe Result Precision) aid 
in restoring pipeline state after a trap or process switch. Each defines the precision of 
the last-stage result in the corresponding pipeline. One of these bits is set when the 
result in the last stage of the corresponding pipeline is double precision; it is cleared 
if the result is single precision. These bits cannot be changed by software. 
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3.9 KR, KI, T, AND MERGE REGISTERS 

The KR and KI ("Konstant") registers and the T (Temporary) register are special­
purpose registers used by the dual-operation floating-point instructions described in 
Chapter 6. The MERGE register is used only by the graphics instructions also presented 
in Chapter 6. Refer to this chapter for details of their use. 
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CHAPTER 4 
ADDRESSING 

Memory is addressed in byte units with a paged virtual-address space of 232 bytes. Data 
and instructions can be located anywhere in this address space. Address arithmetic is 
performed using 32-bit input values and produces 32-bit results. The low-order 32 bits of 
the resul t are used in case of overflow. 

Normally, multibyte data values are stored in memory in little endian format, i.e. with 
the least significant byte at the lowest memory address. As an option that may be dy­
namically selected by software in supervisor mode, the i86WM microprocessor also offers 
big endian mode, in which the most significant byte of a data item is at the lowest 
address. The BE bit of epsr selects the mode, as Chapter 3 describes. Code accesses and 
page directory/page table accesses are always done with little endian addressing. 
Figure 4-1 shows the difference between the two storage modes. Figure 4-2 defines by 
example how data is transferred from memory over the bus into a register in both modes. 
Big endian and little endian data areas should not be mixed within a 64-bit data word. 
Illustrations of data structures in this manual show data stored in little endian mode, i.e. 
the rightmost (low-order) byte is at the lowest memory address. 

4.1 ALIGNMENT 

Alignment requirements are as follows: 

• A 128-bit value is aligned to an address divisible by 16 when referenced in memory 
(i.e. the four least significant address bits must be zero) or a data-access trap occurs. 

LITTLE ENDIAN FORMAT 

63 55 47 39 31 23 15 7 0 

I I I I I I I I I 
m+7 m+6 m+5 m+4 m+3 m+2 m+1 m 

BIG ENDIAN FORMAT 

63 55 47 39 31 23 15 7 0 

I I I I I I I I I 
m m+1 m+2 m+3 m+4 m+5 m+6 m+7 

m IS THE MEMORY ADDRESS OF THE WORD. 
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Figure 4-1. Memory Formats 
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Id.b O(rO), r16 

Id.b 1 (rO), r16 

Id.b 2(rO), r16 

Id.b 3("ll), r16 

Id.b 4(rO), r16 

Id.b 5(..0), r16 

Id.b 6!,o), ~16 
Id.b 7(rO), r16 

Id.8 O(rO), r16 

Id.8 2(rO), r16 

Id.8 4(rO), f1~ 

Id.8 6(rO), r16 

Id.1 O(rO), r16 

Id.l 4(rO), r16 
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Figure 4-2. Big and Little Endian Memory Transfers 

r16 

d31 dO 

H 

G 

E 

D 

C 

B 

A 

d31 dO 

0 F E 

D C 

B A 

d31 dO 

kd DeB A 

240329i 

• A 64-bit value is aligned to an address divisible by eight when referenced in memory 
(i.e. the three least significant address bits must be zero) or a data-access trap occurs. 

• A 32-bit value is aligned to an address divisible by four when referenced in memory 
(i.e. the two least significant address bits must be zero) or a data-access trap occurs. 

• A 16-bit value is aligned to an address divisible by two when referenced in memory 
(i.e. the least significant address bit must be zero) or a data-access trap occurs. 

4.2 VIRTUAL ADDRESSING 

When address translation is enabled, the i860 microprocessor maps instruction and data 
virtual addresses into physical addresses before referencing memory. This address trans­
formation is compatible with that of the 386 ™ microprocessor and implements the basic 
features qeeded for page-oriented virtual-memory systems and page-level protection. 

The address translation is optional. Address translation is in effect only when the ATE 
bit of dirbase is set. This bit is typically set by the operating system during software 
initialization. The ATE bit must be set if the operating system is to implement page­
oriented protection or page-oriented virtual memory. 
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Address translation is disabled when the processor is reset. It is enabled when a store to 
dirbase sets the ATE bit. It is disabled again when a store clears the ATE bit. 

4.2.1 Page Frame 

A page frame is a 4K-byte unit of contiguous addresses of physical main memory. Page 
frames begin on 4K-byte boundaries and are fixed in size. A page is the collection of 
data that occupies a page frame when that data is present in main memory or occupies 
some location in secondary storage when there is not sufficient space in main memory. 

4.2.2 Virtual Address 

A virtual address refers indirectly to a physical address by specifying a page table, a page 
within that table, and an offset within that page. Figure 4-3 shows the format of a virtual 
address. 

Figure 4-4 shows how the i860 microprocessor converts the DIR, PAGE, and OFFSET 
fields of a virtual address into the physical address by consulting two levels of page 
tables. The addressing mechanism uses the DIR field as an index into a page directory, 
uses the PAGE field as an index into the page table determined by the page directory, 
and uses the OFFSET field to address a byte within the page determined by the page 
table. 

4.2.3 Page Tables 

A page table is simply an array of 32-bit page specifiers. A page table is itself a page, and 
therefore contains 4 Kilobytes of memory or at most 1K 32-bit entries. 

Two levels of tables are used to address a page of memory. At the higher level is a page 
directory. The page directory addresses up to 1K page tables of the second level. A page 
table of the second level addresses up to 1K pa:ffies. All the tables addressed by one page 
directory, therefore, can address 1M pages (2 ). Because each page contains 4Kbytes 
(212 bytes), the tables of one page directory can span the entire physical address space of 
the i860 microprocessor (220 x 212 = 232). 

DIR r PAGE OFFSET 
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Figure 4-3. Format of a Virtual Address 
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PAGE FRAME 

I DIR PAGE I OFFSET I 
I PHYSICAL 

ADDRESS 

PAGE DIRECTORY PAGE TABLE 

~ PGTBLENTRY 

1.......+ DIR ENTRY -

I DTB 
I 
I 
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Figure 4-4. Address Translation 

The physical address of the current page directory is stored in the DTB field of the 
dirbase register. Memory management software has the option of using one page direc­
tory for all processes, one page directory for each process, or some combination of the 
two. 

4.2.4 Page-Table Entries 

Page-table entries (PTEs) in either level of page tables have the same format. Figure 4-5 
illustrates this format. 

4.2.4.1 PAGE FRAME ADDRESS 

The page frame address specifies the physical starting address of a page. Because pages 
are located on 4K boundaries, the low-order 12 bits are always zero. In a page directory, 
the page frame address is the address of a page table. In a second-level page table, the 
page frame address is the address of the page frame that contains the desired memory 
operand. 
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PRESENT 
WRITABLE 
USER 
WRITE-THROUGH 
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CACHE DISABLE ----------------.., 
ACCESSED ------------------, 
DIRTY ------------------, 
(RESERVED) 
AVAILABLE FOR SYSTEMS PROGRAMMER USE 1 

PAGE FRAME ADDRESS 31 •• 12 

NOTE: X INDICATES INTEL RESERVED. DO NOT USE. 

Figure 4-5. Format of a Page Table Entry 

4.2.4.2 PRESENT BIT 

, r 1 

5 3 o 
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The P (present) bit indicates whether a page table entry can be used in address transla­
tion. P = 1 indicates that the entry can be used. 

When P = 0 in either level of page tables, the entry is not valid for address translation, 
and the rest of the entry is available for software use; none of the other bits in the entry 
is tested by the hardware. Figure 4-6 illustrates the format of a page-table entry when 
p=o. 

If P = 0 in either level of page tables when an attempt is made to use a page-table entry 
for address translation, the processor signals either a data-access fault or an instruction­
access fault. In software systems that support paged virtual memory, the trap handler 
can bring the required page into physical memory. Refer to Chapter 7 for more infor­
mation on trap handlers. 

AVAILABLE 

240329i 

Figure 4·6. Invalid Page Table Entry 
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Note that there is no P bit for the page directory itself. The page directory may be 
not-present while the associated process is suspended, but the operating system must 
ensure that the page directory indicated by the dirbase image associated with the process 
is present in physical memory before the process is dispatched. 

4.2.4.3 CACHE DISABLE BIT 

If the CD (cache disable) bit in the second-level page-table entry is set, data from the 
associated page is not placed in instruction or data caches. The CD bit of page directory 
entries is not referenced by the processor, but is reserved. 

4.2.4.4 WRITE-THROUGH BIT 

The i860 microprocessor does not implement a write-through caching policy for the 
on-chip instruction and data caches; however, the WT (write-through) bit in the second­
level page-table entry does determine internal caching policy. If WT is set in a PTE, 
on-chip data caching from the corresponding page is inhibited (note, however, that in­
struction caching is not inhibited). If WT is clear, the normal write-back policy is applied 
to data from the page in the on-chip caches. (Future implementations of the architecture 
may provide a write-through policy, in which case pages'that have WT set will be written 
to cache as well as to memory.) The WT bit of page directory entries is not referenced by 
the processor, but is reserved. 

To control external caches, the PTB output pin reflects either CD or WT depending on 
the PBM bit of epsr (refer to Chapter 3). 

4.2.4.5 ACCESSED AND DIRTY BITS 

The A {accessed) and D (dirty) bits provide data about page usage in both levels of the 
page tables. 

The i860 microprocessor sets the corresponding accessed bits in both levels of page 
tables before a read or write operation to a page. The processor tests the dirty bit in the 
second-level page table before a write to an address covered by that page table entry, 
and, under certain conditions, causes traps. The trap handler then has the opportunity to 
maintain appropriate values in the dirty bits. The dirty bit in directory entries is not 
tested by the i860 microprocessor. The precise algorithm for using these bits is specified 
in Section 4.2.5. 

An operating system that supports paged virtual memory can use these bits to determine 
what pages to eliminate from physical memory when the demand for memory exceeds 
the physical memory available. The D and A bits in the PTE (page-table entry) are 
normally initialized to zero by the operating system. The processor sets the A bit when a 
page is accessed either by a read or write operation (except during a locked sequence, 
when a trap occurs instead). When a data- or instruction-access fault occurs, the trap 
handler sets the D bit if an allowable write is being performed, then reexecutes the 
instruction. 
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The operating system is responsible for coordinating its updates to the accessed and 
dirty bits with updates by the CPU and by other processors that may share the page 
tables. The i860 microprocessor automatically uses the LOCK# signal to coordinate its 
testing and setting of the A bit. 

4.2.4.6 WRITABLE AND USER BITS 

The W (writable) and U (user) bits are used for page-level protection, which the i860 
microprocessor performs at the same time as address translation. The concept of privi­
lege for pages is implemented by assigning each page to one of two levels: 

1. Supervisor level (U = 0) - for the operating system and other systems software and 
related data. 

2. User level (U = 1) - for applications procedures and data. 

The U bit of the psr indicates whether the i860 microprocessor is executing at user or 
supervisor level. The i860 microprocessor maintains the U bit of psr as follows: 

• The i860 microprocessor copies the psr PU bit into the U bit when an indirect branch 
is executed and one of the trap bits is set. If PU was one, the i860 microprocessor 
enters user level. 

• The i860 microprocessor clears the psr U bit to indicate supervisor level when a trap 
occurs (including when the trap instruction causes the trap). The prior value of U is 
copied into PU. (The trap mechanism is described in Chapter 7; the trap instruction is 
described in Chapter 5.) 

With the U bit of psr and the Wand U bits of the page table entries, the i860 micro­
processor implements the following protection rules: 

• When at user level, a read or write of a supervisor-level page causes a trap. 

• When at user level, a write to a page whose W bit is not set causes a trap. 

• When at user level, st.e to certain control registers is ignored. 

When the i860 microprocessor is executing at supervisor level, all pages are addressable, 
but, when it is executing at user level, only pages that belong to the user-level are 
addressable. 

When the i860 microprocessor is executing at supervisor level, all pages are readable. 
Whether a page is writable depends upon the write-protection mode controlled by WP 
of epsr: 

WP=O 
WP=l 

All pages are writable. 
A write to a page whose W bit is not set causes a trap~ 

When the i860 microprocessor is executing at user level, only pages that belong to user 
level and are marked writable are actually writable; pages that belong to supervisor level 
are neither readable nor writable from user level. 
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4.2.4.7 COMBINING PROTECTION OF BOTH LEVELS OF PAGE TABLES 

For anyone page, the protection attributes of its page directory entry may differ from 
those of its page table entry. The i860 microprocessor computes the effective protection 
attributes for a page by examining the protection attributes in both the directory and the 
page table. Table 4-1 shows the effective protection provided by the possible combina­
tions of protection attributes. 

4.2.5 Address Translation Algorithm. 

The algorithm below defines how the on-chip MMU translates each virtual address to a 
physical address. Let DIR, PAGE, and OFFSET be the fields of the virtual address; let 
PF Al and PF A2 be the page frame address fields of the first and second level page 
tables respectively; DTB is the page directory table base address stored in the dirbase 
register. 

Table 4-1. Combining Directory and Page Protection 

Page Directory Page Table 
Entry 

U-bit W-bit 

0 0 
0 0 
0 0 
0 0 

0 1 
0 1 
0 1 
0 1 

1 0 
1 0 
1 0 
1 0 

1 1 
1 1 
1 1 
1 1 

NOTES: 
N = No Access Allowed 
R = Read Access Only 

U-bit 

0 
0 
1 
1 

0 
0 
1 
1 

0 
0 
1 
1 

0 
0 
1 
1 

R/W = Both Reads and Writes Allowed 
X = Don't Care 

Entry 

W-bit 

0 
1 
0 
1 

0 
1 
0 
1 

0 
1 
0 
1 

0 
1 
0 
1 
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Combined Protection 

User Supervisor 
Access Access 

WP=X WP=O WP=1 

N R/W R 
N R/W R 
N R/W R 
N R/W R 

N R/W R 
N R/W R/W 
N R/W R 
N R/W R/W 

N R/W R 
N R/W R 
R R/W R 
R R/W R 

N R/W R 
N R/W R/W 
R R/W R 

R/W R/W R/W 
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1. Read the PTE (page table entry) at the physical address formed by DTB:DIR:OO. 
Note that the data cache is not accessed during PTE fetches; therefore, the operat­
ing system must ensure that the page table is not in the cache. 

2. If P in the PTE is zero, generate a data- or instruction-access fault. 

3. If W in the PTE is zero, the operation is a write, and either the U bit of the PSR is 
set or WP = 1, generate a data-access fault. 

4. If the U bit in the PTE is zero and the U bit in the psr is set, generate a data- or 
instruction-access fault. 

5. If A in the PTE is zero and if the TLB miss occurred while the bus was locked, 
generate a data- or instruction-access fault. (The trap allows software to set A to 
one and restart the sequence. This avoids ambiguity in determining what address 
corresponds to a locked semaphore for external bus hardware use.) 

6. If A in the PTE is zero and if the TLB miss occurred while the bus was not locked, 
assert LOCK#, refetch the PTE, set A, and store the PTE, deasserting LOCK# 
during the store. 

7. Locate the PTE at the physical address formed by PFA1:PAGE:00. 

8. Perform the P, A, W, and U checks as in steps 3 through 6 with the second-level 
PTE. 

9. If D in the PTE is clear and the operation is a write, generate a data-access fault. 

10. Form the physical address as PFA2:0FFSET. 

4.2.6 Address Translation Faults 

An address translation fault can be signalled as either an instruction-access fault or a 
data-access fault. (Refer to Chapter 7 for more information on this and other faults.) 
The instruction causing the fault can be reexecuted by the return-from-trap sequence 
defined in Chapter 7. 

4.2.7 Page Translation Cache 

For greatest efficiency in address translation, the i860 microprocessor stores the most 
recently used page-table data in an on-chip cache called the TLB (translation lookaside 
buffer). Only if the necessary paging information is not in the cache must both levels of 
page tables be referenced. 
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4.3 CACHING AND CACHE FLUSHING 

The i860 microprocessor has the ability to cache instruction, data, and address­
translation information in on-chip caches. When address translation is enabled 
(ATE = 1), caching uses virtual-address tags. The effects of mapping two different virtual 
addresses in the same address space to the same physical address are undefined. 

The caching policy employed is write-back; i.e. writes to memory locations that are 
cached update only the cache and do not update memory until the corresponding cache 
block is needed to cache newly read data. 

Instruction, data, and address-translation caching on the i860 microprocessor are not 
transparent. Writes do not immediately update memory, the TLB, nor the instruction 
cache. Writes to memory by other bus devices do not update the caches. Under certain 
circumstances, such as I/O references, self-modifying code, page-table updates, or 
shared data in a mUltiprocessing system, it is necessary to bypass or to flush the caches. 
The i860 microprocessor provides the following methods for doing this: 

• Bypassing Instruction and Data Caches. If deasserted during cache-miss processing, 
the KEN# pin disables instruction and data caching of the referenced data. If the CD 
bit from the associated second-level PTE is set, internal caching of data and instruc­
tions is disabled. The value of the CD or WT bit is output on the PTB pin for use by 
external caches. 

• Flushing Instruction and Address-Translation Caches. Storing to the dirbase register 
with the ITI bit set invalidates the contents of the instruction and address-translation 
caches. This bit should be set when a page table or a page containing code is modified 
or when changing the DTB field of dirbase. Note that in order to make the instruc­
tion or address-translation caches consistent with the data cache, the data cache must 
be flushed before invalidating the other caches (except for the case of setting the D-, 
P- or A-bit in a PTE that is not itself in the data cache). 

NOTE 

When an st.c dirbase changes DTB or activates ITI, the mapping of the page 
containing the currently executing instruction and the next six instructions 
should not be different in the new page tables. The next six instructions should 
be naps and should lie in the same page as the st.c. 

• Flushing the Data Cache. The data cache is flushed by the software routine shown in 
Chapter 5 with the flush instruction. The data cache must be flushed before using the 
ITI bit of dirbase to flush the instruction or address-translation cache (except for the 
case of setting the D-, P- or A-bit in a PTE that is not itself in the data cache), before 
enabling or disabling address translation (via the ATE bit), and before changing the 
page frame address field of any PTE. 

In the translation process, the i860 microprocessor searches only external memory for 
page directories and page tables. The data cache is not searched; therefore, page tables 
and directores should be kept in noncacheable memory or flushed from the cache by any 
code that modifies them. 
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CHAPTER 5 
CORE INSTRUCTIONS 

Core instructions include loads and stores of the integer, floating-point, and control 
registers; arithmetic and logical operations on the 32-bit integer registers; control trans­
fers; and system control functions. All these instructions are executed by the core unit. 

For register operands, the abbreviations that describe the operands are composed of two 
parts. The first part describes the type of register: 

c One of the control registers fir, psr, epsr, dirbase, db, or fsr 

f One of the floating-point registers: fO through f31 

One of the integer registers: rO through r31 

The second part identifies the field of the machine instruction into which the operand is 
to be placed: 

srcl 

srclni 

srcls 

src2 

dest 

The first of the two source-register designators, which may be ei­
ther a register or a 16-bit immediate constant or address offset. 
The immediate value is zero-extended for logical operations and is 
sign-extended for add and subtract operations (including addu and 
subu) and for all addressing calculations. 

Same as srcl except that no immediate constant or address offset 
value is permitted. 

Same as srcl except that the immediate constant is a 5-bit value 
that is zero-extended to 32 bits. 

The second of the two source-register designators. 

The destination register designator. 

Thus, the operand specifier isrc2, for example, means that an integer register is used and 
that the encoding of that register must be placed in the src2 field of the machine 
instruction. 

Other (nonregister) operands are specified by a one-part abbreviation that represents 
both the type of operand required and the instruction field into which the value of the 
operand is placed: 

#const 

Ibroff 

A 16-bit immediate constant or address offset that the i860™ mi­
croprocessor sign-extends to 32 bits when computing the effective 
address. 

A signed, 26-bit, immediate, relative branch offset. 
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·sbroff 

brx 

mem.x (address) 

CORE INSTRUCTIONS 

A signed, 16-bit, immediate, relative branch offset. 

A function that computes the target address by shifting the offset 
(either lbroff or sbroff) left by two bits, sign-extending it to 32 bits, 
and adding the result to the current instruction pointer plus four. 
The resulting target address may lie anywhere within the address 
space. 

The contents of the memory location indicated by address with a 
size of x. 

The comments regarding optimum performance that appear in the subsections Program­
ming Notes are recommendations only. If these recommendations are not followed, the 
i860 microprocessor automatically waits the necessary number of clocks to satisfy inter­
nal hardware requirements. 
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5.1 LOAD INTEGER 

Id.x isrc1 (isrc2), idest (Load Integer) 

idest +- mem.x (isrc1 + isrc2) 

.x = .b (8 bits), .S (16 bits), or .I (32 bits) 

The load integer instruction transfers an 8-, 16-, or 32-bit value from memory to the 
integer registers. The isrcl can be either a 16-bit immediate address offset or an index 
register. Loads of 8- or 16-bit values from memory place them in the low-order bits of 
the destination registers and sign-extend them to 32-bit values in the destination 
registers. 

Traps 

If the operand is misaligned, a data-access trap results. 

Programming Notes 

For best performance, observe the following guidelines: 

1. The destination of a load should not be referenced as a source operand by the next 
instruction. 

2. A load instruction should not directly follow a store that is expected to hit in the 
data cache. 

Even though immediate address offsets are limited to 16 bits, loads using a 32-bit ad­
dress offset may be implemented by the following sequence (r31 is recommended for all 
such addressing calculations): 

orh HIGH16a, ra, r31 
1d.1 LDW16 (r31> , ides! 

Note that the i860 microprocessor uses signed addition when it adds LOW16 to r31. If 
bit 15 of LOW16 is set, this has the effect of subtracting from r31. Therefore, when bit 
15 of LOW16 is set, HIGH16a must be derived by adding one to the high-order 16 bits, 
so that the net result is Correct. 

The assembler must align the immediate address offsets used in loads to the same 
boundary as the effective address, because the lower bits of the immediate offset are 
used to encode operand length information. 
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5.2 STORE INTEGER 

st.x isrc 1 ni, #const (isrc2) (Store Integer) 

mem.x (isrc2 + #const) ~ isrc1 ni 

.X = .b (8 bits), .S (16 bits), or .I (32 bits) 

The store instruction transfers an 8-, 16-, or 32-bit value from the integer registers to 
memory. Stores do not allow an index register in the effective-address calculation, be­
cause isrclni is used to specify the register to be stored. The #const is a signed, 16-bit, 
immediate address offset. An absolute address may be formed by using the zero register 
for isrc2. Stores of 8- or 16-bit values store the low-order 8 or 16 bits of the register. 

Traps 

If the operand is misaligned, a data-access trap results. 

Programming Notes 

For best performance, a load instruction should not directly follow a store that is ex­
pected to hit in the data cache. 

Even though immediate address offsets are limited to 16 bits, a store using a 32-bit 
immediate address offset may be implemented by the following sequence (r31 is recom­
mended for all such addressing calculations): 

orh HIGH16a, r0, r31 
st. 1 isrc 1 ni, LOW 16 ( r 31> 

Note that the i860 microprocessor uses signed addition when it adds LOW16 to r31. If 
bit 15 of LOW16 is set, this has the effect of subtracting from r31. Therefore, when bit 
15 of LOW16 is set, HIGH16a must be derived by adding one to the high-order 16 bits, 
so that the net result is correct. 

The assembler must align the immediate address offsets used in stores to the same 
boundary as the effective address, because the lower bits of the immediate offset are 
used to encode operand length information. 
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5.3 TRANSFER INTEGER TO F-P REGISTER 

Ixfr isrc 1 ni, fdest 

fdest ~ isrc1 ni 

(Transfer Integer to F-P Register) 

The ixfr instruction transfers a 32-bit value from an integer register to a floating-point 
register. 

Programming Notes 

For best performance, the destination of an ixfr should not be referenced as a source 
operand in the next two instructions. 
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5.4 LOAD FLOATING-POINT 

f1d.y isrc1(isrc2), fdest 
fld.y isrc1(isrc2) + +, fdest 

fdest ~ mem.y (isrc1 + isrc2) 
IF autoincrement 
THEN isrc2 ~ isrc1 + isrc2 
FI 

pfld.z isrc1(isrc2) , fdest 
pfld.z isrc1(isrc2) + +, fdest 

Floating-Point Load 
(Normal) 
(Autolncrement) 

Pipelined Floating-Point Load 
(Normal) 
(Autolncrement) 

fdest ~ mem.z (third previous pfld's (isrc1 + isrc2)) 
(where .z is precision of third previous pfld.z) 

IF autoincrement 
THEN isrc2 ~ isrc1 + isrc2 
FI 

.y = .I (32 bits), .d (64 bits), or .q (128 bits); .z = .I or.d 

Floating-point loads transfer 32-, 64-, or 128-bit values from memory to the floating­
point registers. These may be floating-point values or integers. An autoincrement option 
supports constant-stride vector addressing. If this option is specified, the i860 micropro­
cessor stores the effective address into isrc2. 

Floating-point loads may be either pipelined or not. The load pipeline has three stages. 
A pfld returns the data from the address calculated by the third previous pfld, thereby 
allowing three loads to be outstanding on the external bus. When the data is already in 
the cache, both pipelined and nonpipelined forms of the load instruction read the data 
from the cache. The pipelined pfld instruction, however, does not place the data in the 
data cache on a cache miss. A pfld should be used only when the data is expected to be 
used once in the near future. Data that is expected to be used several times before being 
replaced in the cache should be loaded with the nonpipelined fld instruction. The fld 
instruction does not advance the load pipeline and does not interact with outstanding 
pfid instructions. 

Traps 

If the operand is misaligned, a data-access trap results. No trap occurs when the data 
loaded is not a valid floating-point number. 

Programming Notes 

A pfld cannot load a 128-bit operand. 

For the autoincrementing form of the instruction, the register coded as isrcl must not be 
the same register as isrc2. 
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For best performance, observe the following guidelines: 

1. The destination of a fld or pfld should not be referenced as a source operand in the 
next two instructions. 

2. A fld instruction should not directly follow a store instruction that is expected to hit 
in the data cache. There is no performance impact for a pfld following a store 
instruction. 

3. A string of successive pfld instructions causes internal delays due the fact that the 
bandwith of the i860 microprocessor bus is one transfer per two cycles. 

The assembler must align the immediate address offsets used in loads to the same 
boundary as the effective address, because the lower bits of the immediate offset are 
used to encode operand length information. 
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5.5 STORE FLOATING-POINT 

fst.y fdest, isrc1(isrc2) 
fst.y fdest, isrc1(isrc2) + + 

mem.y (isrc2 + isrc1) ~ fdest 
IF autoincrement 
THEN isrc2 ~ isrc1 + isrc2 
FI 

Floating-Point Store 
(Normal) 
(Autoincrement) 

.y = .I (32 bits), .d (64 bits), or .q (128 bits) 

Floating-point stores transfer 32-, 64-, or 128-bit values from the floating-point registers 
to memory. These may be floating-point values or integers. Floating-point stores allow 
isrcl to be used as an index register. An autoincrement option supports constant-stride 
vector addressing. If this option is specified, the i860 microprocessor stores the effective 
address into isrc2. 

Traps 

If the operand is misaligned, a data-access trap results. 

Programming Notes 

For the auto incrementing form of the instruction, the register coded as isrcl must not be 
the same register as isrc2. 

For best performance, observe the following guidelines: 

1. A fld instruction should not directly follow a store instruction that is expected to hit . 
in the data cache. There is no performance impact for a pfld following a store 
instruction. 

,2. The fdest of an fst.y instruction should not reference the destination of the next 
instruction if that instruction is a pipelined floating-point operation. 

The assembler must align the immediate address offsets used in stores to the same 
boundary as the effective address, because the lower bits of the immediate offset are 
used to encode operand length information. 
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5.6 PIXEL STORE 

pst.d fdest, #const (isrc2) 
pst.d fdest, #const (isrc2) + + 

CORE INSTRUCTIONS 

Pixel Store 
(Normal) 
(Autolncrement) 

Pixels enabled by PM in mem.d (isrc2 + #const) ~ fdest 
Shift PM right by 8/pixel size (in bytes) bits 
IF autoincrement 
THEN isrc2 ~ #const + isrc2 
FI 

The pixel store instruction selectively updates the pixels in a 64-bit memory location. The 
pixel size is determined by the PS field in the psr. The pixels to be updated are selected 
by the low-order bits of the PM field in the psr. Each bit of PM corresponds to one pixel, 
with bit 0 corresponding to the pixel at the lowest address. 

This instruction is typically used in conjunction with the fzchks or fzchkl instructions to 
implement Z-buffer hidden-surface elimination. When used this way, a pixel is updated 
only when it represents a point that is closer to the viewer than the closest point painted 
so far at that particular pixel location. Refer to Chapter 6 for more about fzchks and 
fzchkl. 

Traps 

If the operand is misaligned, a data-access trap results. 
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5.7 INTEGER ADD AND SUBTRACT 

addu isrc1, isrc2, idest 

idest ~ isrc 1 + isrc2 
OF ~ bit 31 carry 
CC ~ bit 31 carry 

adds isrc1, isrc2, idest 

idest ~ isrc1 + isrc2 
OF ~ (bit 31 carry ~ bit 30 carry) 
Using signed comparison, 

CC set if isrc2 < comp2 (isrc1) 
CC clear if isrc2 ~ comp2 (isrc1) 

subu isrc1, isrc2, idest 

idest ~ isrc1 - isrc2 
OF ~ NOT (bit 31 carry) 
CC ~ bit 31 carry 

(Le., using unsigned comparison, 
CC set if isrc2 s isrc 1 
CC clear if isrc2 > isrc1) 

subs isrc1, isrc2, idest 

idest ~ isrc 1 - isrc2 
OF ~ (bit 31 carry ~ bit 30 carry) 
Using signed comparison, 

CC set if isrc2 > isrc1 
CC clear if isrc2 :s; isrc1 

(Add unsigned) 

(Add signed) 

(Subtract unsigned) 

(Subtract signed) 

In addition to their normal arithmetic functions, the add and subtract instructions are 
also used to implement comparisons. For this use, rO is specified as the destination, so 
that the result is effectively discarded. Equal and not-equal comparisons are imple­
mented with the xor instruction (refer to the section on logical instructions). 

Add and subtract ordinal (unsigned) can be used to implement multiple-precision 
arithmetic. 

Flags Affected 

CC and OF as defined above. 

Programming Notes 

For optimum performance, a conditional branch should not directly follow an add or 
subtract instruction. 

Refer to Chapter 9 for an example of how to handle the sign of 8- and 16-bit integers 
when manipulating them with 32-bit instructions. 

An instruction of the form subs -1, isrc2, idest yields the one's complement of isrc2. 

When isrcl is immediate, the immediate value is sign-extended to 32-bits even for the 
unsigned instructions addu and subu. 
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These instructions enable convenient encoding of a literal operand in a subtraction, 
regardless of whether the literal is the subtrahend or the minuend. For example: 

Calculation Encoding 

Signed r6= 2-rS subs 2, rS, r6 
r6 = rS-2 adds -2, r5, r6 

Unsigned r6= 2-rS subu 2, rS, r6 
r6=rS-2 addu -2, r5, r6 

Note that the only difference between the signed and the unsigned forms is in the setting 
of the. condition code CC and the overflow flag OF. 

The various forms of comparison between variables and constants can be encoded as 
follows: 

Branch When True 
Condition Encoding 

Signed Unsigned 

var ~ const subs const, var bnc 
subu const, var bc 

var < const adds -const, var bc 
addu -const, var* bnc 

var ~ const adds -const, var bnc 
addu -const, var* bc 

var > const subs const, var bc 
subu const, var bnc 

* Valid only when const > 0 
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5.8 SHIFT INSTRUCTIONS 

shl isrcl, isrc2, idest 

idest +- isrc2 shifted left by isrcl bits 

shr isrcl, isrc2, idest 

SC (in psr) ~ isrcl 
idest ~ isrc2 shifted right by isrcl bits 

shra isrcl, isrc2, idest 

(Shift left) 

(Shift right) 

(Shift right arithmetic) 

idest ~ isrc2 arithmetically shifted right by isrcl bits 

shrd isrcl ni, isrc2, idest (Shift right double) 

idest ~ low-order 32 bits of isrcl ni:isrc2 shifted right by SC bits 

The arithmetic shift does not change the sign bit; rather, it propagates the sign bit to the 
right isrcl bits. 

Shift counts are taken modulo 32. A shrd right-shifts a 64-bit value with isrcl being the 
high-order 32 bits and isrc2 the low-order 32 bits. The shift count for shrd is taken from 
the shift count of the last shr instruction, which is saved in the SC field of the psr. 
Shift-left is identical for integers and ordinals. 

Programming Notes 

The shift instructions are recommended for the integer register-to-register move and for 
no-operations, because they do not affect the condition code. The following assembler 
pseudo-operations utilize the shift instructions: 

mov isrc2, idest 

Assembler pseudo-operation, equivalent to: 
shl rO, isrc2, idest 

nap 

Assembler pseudo-operation, equivalent to: 
sh! rO, rO, rO 

fnop 

Assembler pseudo-operation, equivalent to: 
shrd rO, rO, rO 

Rotate is implemented by: 

(Register-to-register move) 

(Core no-operation) 

(Floating-point no-operation) 

shr COUNT, r0, r0 
shrd op, op, op 

II Only loads COUNT into SC of PSR 
II Uses SC for shift count 
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5.9 SOFTWARE TRAPS 

trap isrc 1 ni, isrc2, idest 

Generate trap with IT set in psr 

intovr 

IF OF in epsr = 1 
THEN generate trap with IT set in psr 
FI 

(Software trap) 

(Software trap on integer overflow) 

These instructions generate the instruction trap, as described in Chapter 7. 

The trap instruction can be used to implement supervisor calls and code breakpoints. 
The ides! should be zero, because its contents are undefined after the operation. The 
isrclni and isrc2 fields can be used to encode the type of trap. 

The intovr instruction generates an instruction trap if the OF bit (overflow flag) of epsr 
is set. It is used to test for integer overflow after the instructions adds, addu, subs, and 
subu. 
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5.10 LOGICAL INSTRUCTIONS 

and isrc1, isrc2, idest (Logical AND) 

idest (- isrc1 AND isrc2 
CC 15et if result is zero, cleared otherwise 

andh #const, isrc2, idest (Logical AND high) 

idest (- (#const shifted left 16 bits) AND isrc2 
CC set if result is zero, cleared otherwise 

and not isrc1, isrc2, idest (Logical AND NOT) 

idest (- NOT isrc1 AND isrc2 
CC set if result is zero, cleared otherwise 

andnoth #const, isrc2, idest (Logical AND NOT high) 

idest (- NOT (#const shifted left 16 bits) AND isrc2 
CC set if result is zero, cleared otherwise 

or isrc1, isrc2, idest (Logical OR) 

idest (- isrc1 OR isrc2 
~C set if result is zero, cleared othe~ise 

orh #const, isrc2, idest (Logical OR high) 

idest (- (#const shifted left 16 bits) OR isrc2 
CC set if result is zero, cleared otherwise 

xor isrc1, isrc2, idest (Logical XOR) 

idest (- isrc1 XOR isrc2 
CC set if result is zero, cleared otherwise 

xorh #const, isrc2, idest (Logical XOR high) 

idest (- (#const shifted left 16 bits) XOR isrc2 
CC set if result is zero, cleared otherwise 

The operation is performed bitwise on all 32 bits of isrcl and isrc2. When isrcl is an 
immediate constant, it is zero-extended to 32 bits. 

The "H" variant signifies "high" and forms one operand by using the immediate con­
stant as the high-order 16 bits and zeros as the low-order 16 bits. The resulting 32-bit 
value is then used to operate on the isrc2 operand. 

Flags Affected 

CC is set if the result is zero, cleared otherwise. 

Programming Notes 

Bit operations can be implemented using logical operations. Isrcl is an immediate con­
stant which contains a one in the bit position to be operated on and zeros elsewhere. 
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Bit Operation Equivalent Logical Operation 

Set bit or 

Clear bit andnot 

Complement bit xor 

Test bit and (CC set if bit is clear) 
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5.11 CONTROL-TRANSFER INSTRUCTIONS 

Control transfers can branch to any location within the address space. However, if a 
relative branch offset, when added to the address of the control-transfer instruction plus 
four, produces an address that is beyond the 32-bit addressing range of the i860 micro­
processor, the results are undefined. 

Many of the control-transfer instructions are delayed transfers. They are delayed in the 
sense that the i860 microprocessor executes one additional instruction following the 
control-transfer instruction before actually transferring control. During the time used to 
execute the additional instruction, the i860 microprocessor refills the instruction pipeline 
by fetching instructions from the new instruction address. This avoids breaks in the 
instruction execution pipeline. It is generally possible to find an appropriate instruction 
to execute after the delayed control-transfer instruction even if it is merely the first 
instruction of the procedure to which control is passed. 

Programming Notes 

The sequential instruction following a delayed control-transfer instruction may be nei­
ther another control-transfer instruction, nor a trap instruction, nor the target of a 
control-transfer instruction. 
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br Ibroff 

Execute one more sequential instruction. 
Continue execution at brx(lbroff). 

(Branch direct unconditionally) 

bc Ibroff (Branch on CC) 

IF CC = 1 
THEN continue execution at brx(lbroff) 
FI 

bc.t Ibroff (Branch on CC. taken) 

IF CC = 1 
THEN execute one more sequential instruction 

continue execution at brx(lbroff) 
ELSE skip next sequential instruction 
FI 

bnc Ibroff (Branch on not CC) 

IF CC = 0 
THEN continue execution at brx(lbroff) 
FI 

bnc.t Ibroff 

IF CC = 0 
THEN execute one more sequential instruction 

continue execution at brx(lbroff) 
ELSE skip next sequential instruction 
FI 

bte isrc1s, isrc2, sbroff 

IF isrc1s = isrc2 
THEN continue execution at brx(sbroff) 
FI 

btne isrc1s, isrc2, sbroff 

IF isrc1s ~ isrc2 
THEN continue execution at brx(sbroff) 
FI 

(Branch on not CC, taken) 

(Branch if equal) 

(Branch if not equal) 

bla isrc1 ni, isrc2, sbroff (Branch on LCC and add) 

LCC_temp clear if isrc2 < comp2(isrc1 nil (signed) 
LCC_temp set if isrc2 ~ comp2(isrc1 nil (signed) 
isrc2 ~ isrc1 ni + isrc2 
Execute one more sequential instruction 
IF LCC 
THEN LCC ~ LCC_temp 

continue execution at brx(sbroff) 
ELSE LCC ~ LCC_temp 
FI 

The instructions bc.t and bnc.t are delayed forms of bc and bnc. The delayed branch 
instructions bc.t and bnc.t should be used when the branch is taken more frequently than 
not; for example, at the end of a loop. The nondelayed branch instructions be, bnc, bte, 
btne should be used when branch is taken less frequently than not; for example, in 
certain search routines. 

If a trap occurs on a bla instruction or the next instruction, Lee is not updated. The trap 
handler resumes execution with the bla instruction, so the Lee setting is not lost. 
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Programming Notes 

The bla instruction is useful for implementing loop counters, where isrc2 is the loop 
counter and isrcl is set to -1. In such a loop implementation, a bla instruction may be 
performed before the loop is entered to initialize the Lee bit of the psr. The target of 
this bla should be the sequential instruction after the next, so that the next sequential 
instruction is executed regardless of the setting of Lee. Another bla instruction placed 
as the next to last instruction of the loop can test for loop completion and update the 
loop counter. The total number of iterations is the value of isrc2 before the first bla 

. instruction, plus one. Example 5-1 illustrates this use of bla. 

Programmers should avoid calling subroutines from within a bla loop, because a subrou­
tine may also use bla and change the value of Lee. 

For the bla instruction, the register coded as isrcl must not be the same register as isrc2. 

II EXAMPLE OF bla USAGE 

II Write zeros to an array of 16 single-precision numbers 
II Starting address of array is already in r4 

adds 
or 
bla 
addu 

CLEAR_LOOP: 

-1, 
15, 
r5, 
-4, 

bla r5, 
fst.l f0, 

r0, 
r0, 
r6, 
r4, 

r5 II r5 <-- loop increment 
r6 II r6 <-- loop count 

CLEAR_LOOP II One time to initialize LCC 
r4 II Start one lower to 

II. allow for autoincrement 

r6, CLEAR_LOOP II Loop for the 16 times 
4(r4)++ II Write and auto increment 

II to next word 

Example 5-1. Example of bla Usage 
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caillbroff (Subroutine call) 

r1 ~ address of next sequential instruction + 4 
Execute one more sequential instruction 
Continue execution at brx(lbroff) 

calli [isrc1 m] (Indirect subroutine call) 

r1 ~ address of next sequential instruction + 4 
Execute one more sequential instruction 
Continue execution at address in isrc1 ni 

(The original contents of isrc1 ni is used even if the next instruction 
modifies isrc1ni. Does not trap if isrc1ni is misaligned.) 

bri [isrc1 m] (Branch indirect unconditionally) 

Execute one more sequential instruction 
IF any trap bit in psr is set 
THEN copy PU to U, PIM to 1M in psr 

clear trap bits 

FI 

IF OS is set and DIM is reset 
THEN enter dual-instruction mode after executing one 

instruction in single-instruction mode 
ELSE IF OS is set and DIM is set 

FI 

THEN enter single-instruction mode afl:er executing one 
instruction in dual-instruction mode 

ELSE IF DIM is set 

FI 

THEN enter dual-instruction mode 
for next instruction pair 

ELSE enter single-instruction mode 
for next instruction pair 

FI 

Continue execution at address in isrc1ni 
(The original contents of isrc1 ni is used even if the next instruction 
modifies isrc1 ni. Does not trap if isrc1 ni is misaligned.) 

Return from a subroutine is implemented by branching to the return address with the 
indirect branch instruction brio 

Indirect branches are also used to resume execution from a trap handler (refer to Chap­
ter 7). The need for this type of branch is indicated by set trap bits in the psr at the time 
bri is executed. In this case, the instruction following the bri must be a load that restores 
isrclni to the value it had before the trap occurred. 

Programming Notes 

When using bri to return from a trap handler, programmers should take care to prevent 
traps from occurring on that or on the next sequential instruction. 1M should be zero 
(interrupts disabled). 

The register isrclni of the calli instruction must not be r1. 
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5.12 CONTROL REGISTER ACCESS 

Id.c csrc2, idest 

idest ~ csrc2 

st.c isrc1 ni, csrc2 

csrc2 ~ isrc1ni 

(Load from control register) 

(Store to control register) 

Csrc2 specifies a control register that is transferred to or from a general-purpose regis­
ter. The function of each control register is defined in Chapter 3. As shown below, some 
registers or parts of registers are write-protected when the U-bit in the psr is set. A store 
to those registers or bits is ignored when the i860 microprocessor is in user mode. The 
encoding of csrc2 is defined by Table 5-1. 

Programming Notes 

Saving fir (the fault instruction register) anytime except the first time after a trap occurs 
saves the address of the Id.c instruction. 

After a scalar floating-point operation, a st.c to fsr should not change the value of RR, 
RM, or FZ until the point at which result exceptions are reported. (Refer to Chapter 7 
for more details.) 

Only a trap handler should use the intruction st.c to set the trap bits (IT, IN, IAT, DAT, 
FT) of the psr. 

Table 5-1. Control Register Encoding for Assemblers 

Register Src2Code 
User-Mode 

Write-Protected? 

fir (Fault Instruction) 0 N/A*** 
psr (Processor Status) 1 Yes* 
dirbase (Directory Base) 2 Yes 
db (Data Breakpoint) 3 ,,--

It:::~ 

fsr (Floating-Point Status) 4 No 
epsr (Extended Process Status) 5 Yes** 

* Only the psr bits BR,BW, PIM, 1M, PU, U, IT, IN, IAT, DATA, FT, OS, DIM, and KNF are write-protected. 
** The processor type, stepping number, and cache size cannot be changed from either user or 

supervisor level. 
*** The fir register cannot be written by the st.c instruction. 
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5.13 CACHE FLUSH 

flush #const(isrc2) 
flush #const(isrc2) + + 

CORE INSTRUCTIONS 

(Cache flush) 
(Normal) 
(Autoincrement) 

Replace the block in data cache that has address (#const + isrc2). 
Contents of block undefined. 
IF autoincrement 
THEN isrc2 ~ #const + isrc2 
FI 

The flush instruction is used to force modified data in the data cache to external mem­
ory. Because the register designated by idest is undefined after flush, assemblers should 
encode idest as zero. The address #const + isrc2 must be aligned on a 16-byte boundary. 
There are two 32-byte blocks in the cache which can be replaced by the address #const 
+ isrc2. The particular block that is forced to memory is controlled by the RB field of 
dirbase. In user mode, execution of flush is suppressed; use it only in supervisor mode. 

Example 5-2 shows how to use the flush instruction. The addresses used by the flush 
instruction refer to a reserved 4 Kbytc memory area that is not used to store data. This 
ensures that, when flushing the cache before a task switch, cached data items from the 
old task are not transferred to the new task. These addresses must be valid and writable 
in both the old and the new task's space. Any other usage of flush has undefined results. 

Cache elements containing modified data are written back to memory by making two 
passes, each of which references every 32nd byte of the reserved area with the flush 
instruction. Before the first pass, the RC field in dirbase is set to two and RB is set to 
zero. This causes data-cache misses to flush element zero of each set. Before the second 
pass, RB is changed to one, causing element one of each set to be flushed. 
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II CACHE fLUSH PROCEDURE 
II Rw. Rx. Ry. Rz represent integer registers 
II fLUSH_P_H is the high-order 16 bits of a pointer to res~rved area 
II fLUSH_P_L is the low-order 16 bits of the pointer. minus 32 

ld.c dirbase. Rz 
or 0x800. Rz. Rz II RC <-- 0b10 (assuming was 00) 
adds -1 r0. Rx II Rx <-- -1 (loop increment) 
call LfLUSH 
st.c Rz. dirbase II Replace in block 0 
or 0x900. Rz. Rz II RB <-- 0b01 
call D_fLUSH 
st.c Rz. dirbase II Replace in block 1 
xor 0x900. Rz. Rz II Clear RC and RB 

II Change DrB. ATE. or ITI fields here. if necessary 
st·c Rz. dirbase 

D_fLUSH: 
orh fLUSH_P_H. r0. Rw II Rw <-- address minus 32 
or fLUSH_P_L. Rw. Rw II of flush area 
or 127. r0. Ry II Ry <-- loop count 
ld.l 32(Rw) • r31 II Clear any pending bus writes 
shl 0. r31. r31 II Wait until load finishes 
bla Rx. Ry. D_fLUSH_LOOP 
nop 

D_fLUSH_LOOP: 
bla Rx. Ry. D_fLH~~_LOOP 

flush 
bri 
ld.l 

32(Rw)++ 
rl 
-512(Rw). r0 

II One time to initialize LCC 

II Loop; execute next instruction 
II for 128 lines in cache block 
II flush and autoincrement to next line 
II Return after next instruction 
II Load from flush area to clear pending 
II writes. A hit is guaranteed 

Example 5·2. Cache Flush Procedure 
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5.14 BUS LOCK 

lock (Begin interlocked sequence) 

Set BL in dirbase. The next load or store that misses the cache 
locks that location, preventing locked access to it by other processors. 
External interrupts are disabled from the first 
instruction after the lock until the location is unlocked. 

unlock (End interlocked sequence) 

Clear BL in dirbase. The next load or store unlocks the location 
(regardless of whether it hits in the cache). Interrupts are enabled. 

These instructions allow programs running in either user or supervisor mode to perform 
read-modify-write sequences in multiprocessor and multithread systems. The interlocked 
sequence must not branch outside of the 30 sequential instructions following the lock 
instruction. The sequence must be restartable from the lock instruction in case a trap 
occurs. Simple read-modify-write sequences are automatically restartable. For sequences 
with more than one store, the software must ensure that no traps occur after the first 
non-reexecutable store. To ensure that no data access fault occurs, it must first store 
unmodified values in the other store locations. To ensure that no instruction-access fault 

. occurs, the code that is not restartable should not span a page boundary. 

After a lock instruction, the location is not locked until the first data access that misses 
the data cache. Software in a multiprocessing system should ensure that the first load 
instruction after a lock references noncacheable memory. 

If a trap occurs after a lock instruction but before the load or store that follows the 
corresponding unlock, the processor clears BL and sets the IL (interlock) bit of epsr. 
This is likely to happen, for example, during TLB miss processing, when the A-bit of the 
page table entry is not set. 

If the processor encounters another lock instruction before unlocking the bus or an 
unlock with no preceeding lock, that instruction is ignored. 

If, following a lock instruction, the processor does not encounter a load or store follow­
ing an unlock instruction by the time it has executed 30-33 instructions, it triggers an 
instruction fault. In such a case, the trap handler will find both IL and IT set. The 
instruction pointed to by fir mayor may not have been executed. 

When multiple memory locations are accessed during a locked sequence, only the first 
location with a cache miss is guaranteed to be locked against access by other processors. 

For high-performance multiprocessors, this allows a read-for-ownership policy, instead 
of locking the system bus. 

Between locked sequences, at least one cycle of LOCK# deactivation is guaranteed by 
the behavior of unlock. 
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Note that, for each shared data structure, software must establish a single location that is 
the first location referenced by any locked sequence that requires that data. For exam­
ple, the head of a doubly linked list should be referenced before accessing items in the 
middle of the list. 

Example 5-3 shows how lock and unlock can be used in a variety of interlocked 
operations. 

Programming Notes 

In a locked sequence, a transition to or from dual-instruction mode is not permitted. 

II LOCKED TEST AND SET 
II Value to put in semaphore is in r23 

lock II 
ld.b semaphore, r22 II Put current value of semaphore in r22 
unlock II 
st.b r23, semaphore II 

II LOCKED LOAD-ALU-STORE 

lock II 
ld·l word, r22 II 
addu 1, r22, r22 II Can be any ALU operation 
unlock 
st·l r22, word II 

II LOCKED COMPARE AND SWAP 
II Swaps r23 with word in memory, if word r21 

lock II 
ld.l word, r22 II 
bte r22, r21, L1 1/ 
mov r22, r23 1/ Executed only if not equal 

L1: unlock 1/ 
st·l r23, word 1/ 

Example 5-3. Examples of lock and unlock Usage 
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CHAPTER 6 
FLOATING-POINT INSTRUCTIO~S 

The floating-point section of the i860™ microprocessor comprises the floating-point reg­
isters and three processing units: 

1. The floating-point multiplier 

2, The floating-point adder 

3. The graphics unit 

This section of the i860 microprocessor executes not only floating-point operations but 
also 64-bit integer operations and graphics operations that utilize the 64-bit internal data 
path of the floating-point section. 

For register operands, the abbreviations that describe the operands are composed of two 
parts. The first part describes the type of register: 

f One of the floating-point registers: fO through f31 

One of the integer registers: rO through r31 

The second part identifies the field of the machine instruction into which the operand is 
to be placed: 

srcl The first of the two source-register designators. 

src2 The second of the two source-register designators. 

dest The destination register designator. 

Thus, the operand specifier fsrc2, for example, means that a floating-point register is 
used and that the encoding of that register must be placed in the src2 field of the 
machine instruction. 

6.1 PRECISION SPECIFICATION 

Unless otherwise specified, floating-point operations accept single- or double-precision 
source operands and produce a result of equal or greater precision. Both input operands 
must have the same precision. The source and result precision are specified by a two­
letter suffix to the mnemonic of the operation, as shown in Table 6-1. In this manual, the 
suffixes .p and .r refer to the precision specification. In an actual program, .p is to be 
replaced by the precision specification .55, .5d, or .dd (.d5 not permitted). Likewise, .r is 
to be replaced by the precision specification .55, .5d, .d5, or .dd. 
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Table 6-1. Precision Specification 

Suffix Source Precision Result Precision 

.ss single single 

.sd single double 

.dd double double 

.ds double single 

6.2 PIPELINED AND SCALAR OPERATIONS 

The architecture of the floating-point unit uses parallelism to increase the rate at which 
operations may be introduced into the unit. One type of parallelism used is called "pipe­
lining." The pipelined architecture treats each operation as a series of more primitive 
operations (called "stages") that can be executed in parallel. Consider just the floating­
point adder unit as an example. Let A represent the operation of the adder. Let the 
stages be represented by AI' Az, and A3• The stages are designed such that Ai + I for one 
adder instruction can execute in parallel with Ai for the next adder instruction. Further­
more, each Ai can be executed in just one clock. The pipelining within the multiplier and 
graphics units can be described similarly, except that the number of stages and the 
number of clocks per stage may be different. 

Figure 6-1 illustrates three-stage pipelining as found in the floating-point adder (also in 
the floating-point multiplier when single-precision input operands are employed). The 
columns of the figure represent the three stages of the pipeline. Each stage holds inter­
mediate results and also (when introduced into the first stage by software) holds status 
information pertaining to those results. The figure assumes that the instruction stream 
consists of a series of consecutive floating-point instructions, all of one type (i.e. all 
adder instructions or all single-precision multiplier instructions). The instructions are 
represented as i, i + 1, etc. The rows of the figure represent the states of the unit at 
successive clock cycles. Each time a pipelined operation is performed, the status of the 
last stage becomes available in fsr, the result of the last stage of the pipeline is stored in 
the destination register fdest, the pipeiine is advanced one stage, and the input operands 
fsrcl and fsrc2 are transferred to the first stage of the pipeline. 

In the i860 microprocessor, the number of pipeline stages ranges from one to three. A 
pipelined instruction with a three-stage pipeline writes to its fdest the result of the third 
prior instruction. A pipe lined instruction with a two-stage pipeline writes to its fdest the 
result of the second prior operation. A pipelined operation with a one-stage pipeline 
stores the result of the prior operation. ' 

There are four floating-point pipelines: one for the multiplier, one for the adder, one for 
the graphics unit, and one for floating-point loads. The adder pipeline has three stages. 
The number of stages in the multiplier pipeline depends on the precision of the source 
operands in the pipeline: two stages for double precision or three stages for single pre­
cision. The graphics unit has one stage for all precisions. The load pipeline has three 
stages for all precisions. 
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Changing the FZ (flush zero), RM (rounding mode), or RR (result register) bits of fsr 
while there are results in either the multiplier or adder pipeline produces effects that are 
not defined. 

6.2.1 Scalar Mode 

In addition to the pipelined execution mode described above, the i860 microprocessor 
also can execute floating-point instructions in "scalar" mode. Most floating-point 
instructions have both pipe lined and scalar variants, distinguished by a bit in the instruc­
tion encoding. In scalar mode, the floating-point unit does not start a new operation 
until the previous floating-point operation is completed. The scalar operation passes 
through all stages of its pipeline before a new operation is introduced, and the result is 
stored automatically. Scalar mode is used when the next operation depends on results 
from the previous few floating-point operations (or when the compiler or programmer 
does not want to deal with pipelining). 

6.2.2 Pipelining Status Information 

Result status information in the fsr consists of the AA, AI, AO, AU, and AE bits, in the 
case of the adder, and the MA, MI, MO, and MU bits, in the case of the mUltiplier. This 
information arrives at the fsr via the pipeline in one of two ways: 

1. It is calculated by the last stage of the pipeline. This is the normal case. 

2. It is propagated from the first stage of the pipeline. This method is used when 
restoring the state of the pipeline after a preemption. When a store instruction 
updates the fsr and the the U bit being written into the fsr is set, the store updates 
result status bits in the first stage of both the adder and multiplier pipelines. When 
software changes the result-status bits of the first stage of a particular unit (multi­
plier or adder), the updated result-status bits are propagated one stage for each 
pipelined floating-point operation for that unit. In this case, each stage of the adder 
and muitipiier pipeiines hoids its own copy of tht! rdevant bits of the fsf. 'vVheil they 
reach the last stage, they override the normal result-status bits computed from the 
last-stage result. 

At the next floating-point instruction (or at certain core instructions), after the result 
reaches the last stage, the i860 microprocessor traps if any of the status bits of the fsr 
indicate exceptions. Note that the instruction that creates the exceptional condition is 
not the instruction at which the trap occurs. 

6.2.3 Precision in the Pipelines 

In pipelined mode, when a floating-point operation is initiated, the result of an earlier 
pipelined floating-point operation is returned. The result precision of the current in­
struction applies to the operation being initiated. The precision of the value stored in 
fdest is that which was specified by the instruction that initiated that operation. 
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If fdest is the same as fsrcl or fsrc2, the value being stored in fdest is used as the input 
operand. In this case, the precision of fdest must be the same as the source precision. 

The multiplier pipeline has two stages when the source operand is double-precision and 
three stages when the precision of the source operand is single. This means that a 

, pipelined multiplier operation stores the result of the second previous multiplier opera­
tion for double-precision inputs and third previous for single-precision inputs (except 
when mixing precisions). The two-stage pipeline executes at two clocks per stage; the 
three-stage pipeline executes at one clock per stage. 

6.2.4 Transition between Scalar and Pipelined Operations 

When a scalar operation is executed in the adder, multiplier, or graphics unit, it passes 
through all stages of the pipeline; therefore, any unstored results in the affected pipeline 
are lost. To avoid losing information, the last pipelined operations before a scalar oper­
ation should be dummy pipelined operations that unload unstored results from the 
affected pipeline. 

After a scalar operation, the values of all pipeline stages of the affected unit (except the 
last) are undefined. No spurious result-exception traps result when the undefined values 
are subsequently stored by pipelined operations; however, the values should not be ref­
erenced as source operands. 

Note that the pfld pipeline is not affected by scalar fld and Id instructions. 

For best performance a scalar operation should not immediately precede a pipelined 
operation whose fdest is nonzero. 

6.3 MULTIPLIER INSTRUCTIONS 

The multiplier unit of the floating-point section performs not only the standard floating­
point multiply operation but also provides reciprocal operations that can be used to 
implement floating-point division and provides a special type of multiply that assists in 
coding integer multiply sequences. The multiply instructions can be pipelined. 

Programming Notes 

Complications arise with sequences of pipelined multiplier operations with mixed single­
and double-precision inputs because the pipeline length is different for the two preci­
sions. The complications can be avoided by not mixing the two precisions; i.e., by flush­
ing out all single-precision operations with dummy single-precision operations before 
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starting double-precision operations, and vice versa. For the adventuresome, the rules for 
mixing precisions follow: 

• Single to Double Transitions. When a pipelined multiplier operation with double­
precision inputs is executed and the previous multiplier operation was pipelined with 
single-precision inputs, the third previous (last stage) result is stored, and the previ­
ous operation (first stage) is advanced to the second stage (now the last stage). The 
second previous operation (old second stage) is discarded. The next pipelined multi­
plier operation stores the single-precision result. 

• Double to Single Transitions. When a pipelined multiplier operation with single­
precision inputs is executed and the previous mUltiplier operation was pipelined with 
double-precision inputs, the previous multiplier operation is advanced to the second 
stage and a single- or double-precision zero is placed in the last stage of the pipeline. 
The next pipelined multiplier operation stores zero instead of the result of the prior 
operation, and the MRP bit of fsr for that next operation is undefined. 
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6.3.1 Floating-Point Multiply 

fmul.p fsret, fsre2, fdest 

fdest - fsret x fsre2 

pfmul.p fsret, fsre2, fdest 

fdest - last stage multiplier result 
Advance M pipeline one stage 
M pipeline first stage - fsret x fsre2 

pfmul3.dd fsret, fsre2, fdest 

fdest - last stage multiplier result 
Advance 3-stage M pipeline one stage 
M pipeline first stage - fsret x fsre2 

(Floating-Point Multiply) 

(Pipelined Floating-Point Multiply) 

(Three-Stage Pipelined Multiply) 

'k, 

These instructions perform a standard multiply operation. 

Programming Notes 

Fsrcl must not be the same as fdest for pipelined operations. For best performance when 
the prior operation is scalar, fsrcl should not be the same as the fdest of the prior 
operation. 

The pfmul3.dd instruction is intended primarily for use by exception handlers in restor­
ing pipeline contents (refer to "Pipeline Preemption" in Chapter 7). It should not be 
mixed in instruction sequences with other pipelined multiplier instructions. 
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6.3.2 Floating-Point Multiply Low 

fmlow.dd fsret, fsre2, fdest (Floating-Point Multiply Low) 

fdest ~ low-order 53 bits of (fsret mantissa x fsre2 mantissa) 
fdest bit 53 ~ most significant bit of (fsret mantissa x fsre2 mantissa) 

The fmlow instruction multiplies the low-order bits of its operands. It operates only on 
double-precision operands. The high-order 10 bits of the result are undefined. 

An fmlow can perform 32-bit integer multiplies. Two 64-bit values are formed, with the 
integers in the low-order 32 bits. The low-order 32-bits of the result are the same as the 
low-order 32 bits of an integer mUltiply. The fmlow instruction does not update the 
result-status bits of fsr and does not cause source- or result-exception traps. 
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6.3.3 Floating-Point Reciprocals 

frcp.p fsrc2, fdest (Floating-Point Reciprocal) 

fdest ~ 1 / fsrc2 with absolute mantissa error < 2- 7 

frsqr.p fsrc2, fdest (Floating-Point Reciprocal Square Root) 

fdest ~ 1 / ~ with absolute mantissa error < 2- 7 

The frep and frsqr instructions are intended to be used with algorithtns such as the 
Newton-Raphson approximation to compute divide and square root. Assemblers and 
compilers must encode fsrcl as fO. A Newton-Raphson approximation may produce a 
result that is different from the IEEE standard in the two least significant bits of the 
mantissa. A library routine supplied by Intel may be used to calculate the correct IEEE­
standard rounded result. 

Traps 

The instructions frep and frsqr cause the source-exception trap if fsrc2 is zero. An frsqr 
causes the source-exception trap if fsrc2 < O. 

6.4 ADDER INSTRUCTIONS 

The adder unit of the floating-point section provides floating-point addition, subtraction, 
and comparison, as well as conversion from floating-point to integer formats. 
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6.4.1 Floating-Point Add and Subtract 

fadd.p fsre1, fsre2, fdest 

fdest - fsre 1 + fsre2 

pfadd.p fsre1, fsre2, fdest 

fdest - last stage adder result 
Advance A pipeline one stage 
A pipeline first stage - fsre1 + fsre2 

fsub.p fsre1, fsre2, fdest 

fdest - fsre1 - fsre2 

pfsub.p fsre1, fsre2, fdest 

fdest - last stage adder result 
Advance A pipeline one stage 
A pipeline first stage - fsre1 - fsre2 

famov.r fsre1, fdest 

fdest - fsre1 

pfamov.r fsre1, fdest 

fdest - last stage adder result 
Advance A pipeline one stage 
A pipeline first stage - fsre1 

(Floating-Point Add) 

(Pipelined Floating-Point Add) 

(Floating-Point Subtract) 

(Pipelined Floating-Point Subtract) 

(Floating-Point Adder Move) 

(Pipelined Floating-Point Adder Move) 

These instructions perform standard addition and subtraction operations. 

The famov and pfamov instructions send fsrcl through the floating-point adder, preserv­
ing the value of - 0 (minus zero) when fsrcl is - O. (Note that (p)fadd.p fsrcl, fO, fdest 
may round - 0 to + 0, depending on the RM bits of fsr.) The pfamov instruction is used 
by the trap handler to restore pipeline states. Fsrc2 for (p)famov must be encoded as fO 
by assemblers and compilers. 

Programming Notes 

In order to allow conversion from double precIsIon to single precision, an famov or 
pfamov instruction may have doubie-precision inputs and a single-precision output. In 
assembly language, this conversion can be specified using the fmov or pfmov pseudo­
operation with the .ds suffix. 

fmov.ds fsre1, fdest 

Equivalent to famov.ds fsre1, fdest 

pfmov.ds fsre1, fdest 

Equivalent to pfamov.ds fsre1, fdest 

(Convert Double to Single) 

(Pipelined Convert Double to Single) 
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Conversion from single to double is accomplished by famov.sd or pfamov.sd. In assembly 
language, this conversion can be specified by the fmov or pfmov pseudo-operation with 
the .sd suffix. 

fmov.sd fsrc1, fdest 

Equivalent to famov.sd fsrc1, fdest 

pfmov.sd fsrc1, fdest 

Equivalent to pfamov.sd fsrc1, fdest 

(Convert Single to Double) 

(Pipellned Convert Single to Double) 
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6.4.2 Floating-Point Compares 

pfgt.p fsre1, fsre2, fdest (Pipelined Floating-Point Greater-Than 
Compare) 

(Assembler clears R-bit of instruction) 
fdest ~ last stage adder result 
CC set if fsre1 > fsre2, else cleared 
Advance A pipeline one stage 
A pipeline first stage is undefined, but no result exception occurs 

pfle.p fsre1, fsre2, fdest (Pipellned F-P Less-Than or Equal 
Compare) 

(Identical to pfgt.p except that 
assembler sets R-bit of instruction.) 

fdest ~ last stage adder result 
CC cleared if fsre1 :5 fsre2, else set 
Advance A pipeline one stage 
A pipeline first stage is undefined, but no result exception occurs 

pfeq.p fsre1, fsre2, fdest (Pipelined Floating-Point Equal 
Compare) 

fdest ~ last stage adder result 
CC set if fsre1 = fsre2, else cleared 
Advance A pipeline one stage 
A pipeline first stage is undefined, but no result exception occurs 

There are no corresponding scalar versions of the floating-point compare instructions. 
The pipelined instructions can be used either within a sequence of pipelined instructions 
or within a sequence of nonpipelined (scalar) instructions. 

pfgt.p should be used for A > B and A < B comparisons. pfle.p should be used for A ~ 
B and A ~ B comparisons. pfeq.p should be used for A = B and A ~ B comparisons. 

Traps 

Compares never cause result exceptions when the result is stored. They do trap on 
invalid input operands. 

Programming Notes 

The only difference between pfgt.p and pfle.p is the encoding of the R bit of the instruc­
tion and the way in which the trap handler treats unordered compares. The R bit nor­
mally indicates result precision, but in the case of these instructions it is not used for that 
purpose. The trap handler can examine the R bit to help determine whether an unor­
dered compare should set or clear CC to conform with the IEEE standard for unordered 
compares. For pfgt.p artd pfeq.p, it should clear CC; for pfle.p, it should set CC. 

For best performance, a be or bne instruction should not directly follow a pfgt or pfeq 
instruction. Be sure, nowever, that intervening instructions do not change CC. 
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6.4.3 Floating-Point to Integer Conversion 

fix.p fsrc1, fdest (Floating-Point to Integer Conversion) 

fdest ~ 64-bit value with low-order 32 bits equal to integer part of fsrc1 rounded 

pfix.p fsrc1, fdest (Pipelined Floating-Point to Integer 
Conversion) 

fdest ~ last stage adder result 
Advance A pipeline one stage 
A pipeline first stage ~ 64-bit value with low-order 32 bits 

equal to integer part of fsrc1 rounded 

ftrunc.p fsrc1, fdest (Floating-Point to Integer Truncation) 

fdest ~ 64-bit value with low-order 32 bits equal to integer part of fsrc1 

pftrunc.p fsrc1, fdest (Pipelined Floating-Point to Integer 
Truncation) 

fdest ~ last stage adder result 
Advance A pipeline one stage 
A pipeline first stage ~ 64-bit value with low-order 32 bits 

equal to integer part of fsrc1 

The instructions fix, pfix, ftrunc, and pftrunc must specify double-precision results. The 
low-order 32 bits of the result contain the integer part of fsrcl represented in twos­
complement form. For fix and pfix, the integer is selected according to the rounding 
mode specified by RM in the fsr. The instructions ftrunc and pftrunc are identical to fix 
and pfix, except that RM is not consulted; rounding is always toward zero. Assembler 
and compilers should encode fsrc2 as fO. 

Traps 

The instructions fix, pfix, ftrunc, and pftrunc signal overflow if the integer part of fsrcl is 
bigger than what can be represented as a 32-bit twos-complement integer. Underflow 
and inexact are never signaled. 
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6.5 DUAL OPERATION INSTRUCTIONS 

pfam.p fsrc1, fsrc2, fdest 

fdest ~ last stage adder result 

(Plpelined Floating-Point Add and 
r.1ultlply) 

Advance A and M pipeline one stage (operands accessed before advancing pipeline) 
A pipeline first stage ~ A-op1 + A-op2 
M pipeline first stage ~ M-op1 x M-op2 

pfsm.p fsrc1, fsrc2, fdest (Pipelined Floating-Point Subtract and 
Multiply) 

fdest ~ last stage adder result 
Advance A and M pipeline one stage (operands accessed before advancing pipeline) 
A pipeline first stage ~ A-op1 - A-op2 
M pipeline first stage ~ M-op1 x M-op2 

pfmam.p fsrc1, fsrc2, fdest 

fdest ~ last stage multiplier result 

(PlpeJined Floating-Point Multiply with 
Add) 

Advance A and M pipeline one stage (operands accessed before advancing pipeline) 
A pipeline first stage ~ A-op1 + A-op2 
M pipeline first stage ~ M-op1 x M-op2 

pfmsm.p fsrc1, fsrc2, fdest 

fdest ~ last stage multiplier result 

(PlpeJined Floating-Point Multiply with 
Subtract) 

Advance A and M pipeline one stage (operands accessed before advancing pipeline) 
A pipeline first stage ~ A-op1 - A-op2 
M pipeline first stage ~ M-op1 x M-op2 

The instructions pfam, pfsm, pfmam, and pfmsm initiate both an adder (A-unit) opera­
tion and a multiplier (M-unit) operation. The source precision specified by .p applies to 
the source operands of the multiplication. The result precision normally specified by .p 
controls in this case both the precision of the source operands of the addition or sub­
traction and the precision of all the results. 

Precision of Source 
Precision of Source 

Suffix of Multiplication of Add or Subtract and 
Result of All Operations 

.ss single single 

.sd single double 

.dd double double 

The instructions pfmam and pfmsm are identical to pfam and pfsm except that pfmam 
and pfmsm transfer the last stage result of the multiplier to [dest. 
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Six operands are required, but the instruction format specifies only three operands; 
therefore, there are special provisions for specifying the operands. These special provi­
sions consist of: 

• Three special registers (KR, KI, and T), that can store values from one dual­
operation instruction and supply them as inputs to subsequent dual-operation 
instructions. 

The constant registers KR and KI can store the value of fsrcl and subsequently 
supply that value to the M-pipeline in place of fsrcl. 

The transfer register T can store the last-stage result of the multiplier pipeline 
and subsequently supply that value to the adder pipeline in place of fsrcl. 

• A four-bit data-path control field in the opcode (DPC) that specifies the operands 
and loading of the special registers. 

1. Operand-l of the multiplier can be KR, KI, or fsrcl. 

2. Operand-2 of the multiplier can be fsrc2, the last-stage result of the multiplier 
pipeline, or the last-stage result of the adder pipeline. 

3. Operand-l of the adder can be fsrcl, the T-register, the last-stage result of the 
multiplier pipeline, or the last-stage result of the adder pipeline. 

4. Operand-2 of the adder can be fsrc2, the last-stage result of the multiplier pipe­
line, or the last-stage result of the adder pipeline. 

Figure 6-2 shows all the possible data paths surrounding the adder and multiplier. 
Table 6-2 shows how the various encodings of DPC select different data paths. 
Figure 6-3 illustrates the actual data path for each dual-operation instruction. 

Note that the mnemonics pfam.p, pfsm.p, pfmam.p, and pfmsm.p are never used as such 
in the assembly language; these mnemonics are used by this manual to designate classes 
of related instructions. Each value of DPC has a unique mnemonic associated with it. An 
initial "m" distinguishes the pfmam.p, and pfmsm.p classes from the pfam.p, and pfsm.p 
classes. Figure 6-4 explains how the rest of these mnemonics are derived. 

Programming Notes 

When fsrcl goes to M-unit opl or to KR or KI, fsrcl must not be the same as fdest. For 
best performance when the prior operation is scalar and the M-unit opl is fsrcl, fsrcl 
should not be the same as the fdest of the prior operation. 
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When dual operation instructions are used in single-precision mode, all 64 bits of the T, 
KR, and KI registers are updated, but the values stored there are not converted to 
double-precision format (the exponent bias is not adjusted for double precision). 
Instead, zeros are inserted as pads in exponent bits 11:9 and as the fraction's least 
significant 29 bits (bits 28:0). All 64 bits of the T, KR, and KI registers can be initialized 
to zero using 3 single-precision r2apt.ss ID,ID,ID instructions and 1 i2apt.ss ID,ID,ID. 
Because single-precision values are stored in these 64-bit registers in a format which 
does not conform to the standard for double-precision numbers, leaving a valid single­
precision value in T, KR, or KI can cause floating-point traps if a double-precision 
operation is later performed referencing one of these registers. Likewise, valid double­
precision values left in T, KR, or KI can cause traps if a single precision operation is 
later performed using one of these registers. Therefore, programs should clear T, KR, 
and KI before switching precisions. 

fsrc1 fsrc2 fdest 

MULTIPLIER UNIT 

RESULT 

ADDER UNIT 

RESULT 

240329i 

Figure 6-2. Dual-Operation Data Paths 
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Table 6-2. OPC Encoding 

OPC 
PFAM PFSM M-Unit M-Unit A-Unit A-Unit T K 

Mnemonic Mnemonic op1 op2 op1 op2 Load Load* 

0000 r2p1 r2s1 KR src2 src1 M result No No 
0001 r2pt r2st KR src2 T M result No Yes 
0010 r2ap1 r2as1 KR src2 src1 A result Yes No 
0011 r2apt r2ast KR src2 T A result Yes Yes 
0100 i2p1 i2s1 KI src2 src1 M result No No 
0101 i2pt i2st KI src2 T M result No Yes 
0110 i2ap1 i2as1 KI src2 src1 A result Yes No 
0111 i2apt i2ast KI src2 T A result Yes Yes 
1000 rat1 p2 rat1 s2 KR A result src1 src2 Yes No 
1001 m12apm m12asm src1 src2 A result M result No No 
1010 ra1p2 ra1s2 KR A result src1 src2 No No 
1011 m12ttpa m12ttsa src1 src2 T A result Yes No 
1100 iat1p2 iat1s2 KI A result src1 src2 Yes No 
1101 m12tpm m12tsm src1 src2 T M result No No 
1110 ia1p2 ia1s2 KI A result src1 src2 No No 
1111 m12tpa m12tsa src1 src2 T A result No No 

OPC 
PFMAM PFMSM M-Unit M-Unit A-Unit A-Unit T K 

Mnemonic Mnemonic op1 op2 op1 op2 Load Load* 

0000 mr2p1 mr2s1 KR src2 src1 M result No No 
0001 mr2pt mr2st KR src2 T M result No Yes 
0010 mr2mp1 mr2ms1 KR src2 src1 M result Yes No 
0011 mr2mpt mr2mst KR src2 T M result Yes Yes 
0100 mi2p1 mi2s1 KI src2 src1 M result No No 
0101 mi2pt mi2st KI src2 T M result No Yes 
0110 mi2mp1 mi2ms1 KI src2 src1 M result Yes No 
0111 mi2mpt mi2mst KI src2 T M result Yes Yes 
1000 mrmt1p2 mrmt1s2 KR M result src1 src2 Yes No 
1001 mm12mpm mm12msm src1 src2 M result M result No No 
1010 mrm1p2 mrm1s2 KR M result src1 src2 No No 
1011 mm12ttpm mm12ttsm src1 src2 T M result Yes No 
1100 mimt1p2 mimt1s2 KI M result src1 src2 Yes No 
1101 mm12tpm mm12tsm src1 src2 T M result No No 
1110 mim1p2 mim1s2 KI M result src1 src2 No No 
1111 (reserved) (reserved) 

* If K-Ioad is set, KR is loaded when operand-1 of the multiplier is KR; KI is loaded when operand-1 of the 
multiplier is KI. 
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fare1 fsre2 fdest fare1 fsre2 fdest 

op2 op2 

MULTIPLIER UNIT MULTIPLIER UNIT 

RESULT RESULT 

op 

ADDER UNIT ADDER UNIT 

RESULT RESULT 

r2p1 & r2s1 r2pt & r2st 

fare1 fsre2 fdest fsre1 fsre2 fdest 

op2 op2 

MULTIPLIER UNIT MULTIPLIER UNIT 

RESULT 

ADDER UNIT ADDER UNIT 

RESULT RESULT 

r2ap1 & r2as1 r2apt & r2ast 

240329i 

Figure 6-3. Data Paths by Instruction (1 of 8) 
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fsre2 

op1 op2 

MULTIPLIER UNIT 

RESULT 

op1 op 

ADDER UNIT 

RESULT 

i2p1 & i2s1 

fsre2 

op2 

MULTIPLIER UNIT 

RESULT 

op1 op2 

ADDER UNIT 

RESULT 

i2ap1 & i2as1 

fdest 

fdest 

fsre1 fsre2 

op2 

MULTIPLIER UNIT 

RESULT 

ADDER UNIT 

RESULT 

i2pt & i2st 

fsre1 . fsre2 

op1 op2 

MULTIPLIER UNIT 

RESULT 

op1 op2 

ADDER UNIT 

RESULT 

i2apt & i2ast 

Figure 6-3. Data Paths by Instruction (2 of 8) 
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op1 

MULTIPLIER UNIT 

RESULT 

ADDER UNIT 

RESULT 

ran p2 & ran s2 

MULTIPLIER UNIT 

I RESULT 

fsre2 fdest 

fsrc2 fdest 

isrei fiic2 

, 
op1 op2 

MULTIPLIER UNIT 

RESULT 

I 

-

op1 op2 

ADDER UNIT 

RESULT 

I 
m12apm & m12asm 

fsre1 fsrc2 

op1 op2 

MULTIPLIER UNIT 

RESULT 

E] 

op1 op2 

ADDER UNIT ADDER UNIT 

RESULT RESULT 

I 
ra1p2 & ra1s2 m12ttpa & m12ttsa 

Figure 6-3. Data Paths by Instruction (3 of 8) 
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farcl farc2 fdest farcl fsrc2 fdaat 

opl opl op2 

MULTIPLIER UNIT MULTIPLIER UNIT 

RESULT RESULT 

opl 0P2 

ADDER UNIT ADDER UNIT 

l 
lat1 p2 & lat1s2 ml2tpm & ml2tsm 

farcl farc2 fdest farcl farc2 fdest 

4 

opl op2 

MULTIPLIER UNIT MULTIPLIER UNIT 

RESULT RESULT 

[] 

opl op2 

ADDER UNIT ADDER UNIT 

RESULT RESULT 

l 
ialp2 & ials2 ml2tpa & ml2tsa 
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Figure 6-3. Data Paths by Instruction (4 of 8) 
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fsrc2 

op1 op2 

MULTIPLIER UNIT 

RESULT 

op1 op 

ADDER UNIT 

RESULT 

mr2p1 " mr2s1 

fsrc2 

op2 

MULTIPLIER UNIT 

nESULi 

op2 

ADDER UNIT 

RESULT 

mr2mp1 " mr2ms1 

fdest 

fdest 

fsrc1 fsrc2 

op2 

MULTIPLIER UNIT 

RESULT 

i 
op1 op 

ADDER UNIT 

RESULT 

mr2pt " mr2st 

fsrc1 fsrc2 

op2 

MULTIPLIER UNIT 

RESULT 

op1 op2 

ADDER UNIT 

RESULT 

mr2mpt & mr2mst 

Figure 6-3. Data Paths by Instruction (5 of 8) 
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fsrc2 fdest 

MULTIPLIER UNIT 

RESULT 

op1 op2 

ADDER UNIT 

RESULT 

mi2p1 & mi2s1 

fsrc2 fdesl 

MULTIPLIER UNIT 

RESULT 

op2 

ADDER UNIT 

RESULT 

ml2mp1 & ml2ms1 

fsrc1 fsrc2 

op2 

MULTIPLIER UNIT 

RESULT 

op1 op 

ADDER UNIT 

RESULT 

ml2pt & ml2st 

fsrc1 fsrc2 

op2 

MULTIPLIER UNIT 

RESULT 

opl op2 

ADDER UNIT 

RESULT 

mi2mpt & ml2mst 

Figure 6-3. Data Paths by Instruction (6 of 8) 
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fsrc1 fsrc2 fdsst fsrc1 fsrc2 fdest 

op1 op1 op2 

MULTIPLIER UNIT MULTIPLIER UNIT 

RESULT 

op1 op2 

ADDER UNIT ADDER UNIT 

RESULT RESULT 

I 
mrmt1p2 & mrmt1s2 mm12mpm & mm12msm 

fsrc1 fsrc2 fdest fsrc1 fsrc2 fdest 

, , 
op1 op2 

MULTIPLIER UNIT MULTIPLIER UNIT 

RESULT 

1 
op1 op2 

ADDER UNIT ADDER UNIT 

RESULT RESULT 

I 
mrm1p2& mrm1s2 mm12ttpm & mm12ttsm 
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Figure 6-3. Data Paths by Instruction (7 of 8) 
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fsre1 fsre2 fdest fsre1 fsre2 fdest 

op1 op2 

MULTIPLIER UNIT MULTIPLIER UNIT 

RESULT RESULT 

I 

op1 op2 

ADDER UNIT ADDER UNIT 

RESULT RESULT 

I 
mimt1p2 & mimt1s2 mm12tpm & mm12tsm 

fsre1 fsre2 fdest 

MULTIPLIER UNIT 

RESULT 

ADDER UNIT 

RESULT 

mim1p2 & mlm1s2 
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Figure 6-3. Data Paths by Instruction (8 of 8) 
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M-unlt 
opt 
{r, I} 

-KI 

'---- KR 
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Series t - Assumes the M-unit operand-2 is fsrc2 

M-unlt 
op2 

2 

-'lIrc2 

A-unit 
op2 

{a, m, nUll} 

Add! A-unit 
Subtract opt 

{p, s} {I, t} 

~ ~ 
~:~;dK 

subtract 

add (plus) 
M-result 

M-reault, load T 

"'----- A-result, load T 

Series 2 - Assumes no K loading 

Not all combinations are possible. Refer to Table 6-1 for possible combinations. 

M-unlt 
opt and op2 

{ra, rrn, la, 1m, mt2} 
loadT 

{t, nUll} 

I I L .... ,,::;-
KI, M-result 
KI, A-result 
KR, M-result 

'-------- KR, A-result 

A-unit 
opt 

{I, a, m, t} 

Add! 
Subtract 

{p, s} 

A-unit 
op2 

{2, m, a} 

IT ~ . 
~L A-result 

LM-result 

'IIrc2 
subtract 

add (plus) 

!.-- M-result 

- A-result 
'---- fsret 

Figure 6-4. Data Path Mnemonics 

6.6 GRAPHICS UNIT 

2403291 

The graphics unit operates on 32- and 64-bit integers stored in the floating-point register 
file. This unit supports long-integer arithmetic and 3-D graphics drawing algorithms. 
Operations are provided for pixel shading and for hidden surface elimination using a 
Z-buffer. 
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Programming Notes 

In a pipelined graphics operation, if fdest is not fO, then fdest must not be the same as 
fsrcl or fsrc2. 

For best performance, the result of a scalar operation should not be a source operand in 
the next instruction, unless the next instruction is a multiplier or adder operation. 
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6.6.1 Long-Integer Arithmetic 

fisub.w fsrc1, fsrc2, fdest 

fdest ~ fsrc1 - fsrc2 

pfisub.w fsrc1, fsrc2, fdest 

fdest ~ last stage graphics result 
last stage graphics result ~ fsrc1 - fsrc2 

fiadd.w fsrc1, fsrc2, fdest 

fdest ~ fsrc1 + fsrc2 

pfiadd,.w fsrc1, fsrc2, fdest 

fdest ~ last stage graphics result 
last s!age graphics result ~ fsrc1 + fsrc2 

(Long-Integer Subtract) 

(Pipelined Long-Integer Subtract) 

(Long-Integer Add) 

(Pipelined Long-Integer Add) 

.w = .ss (32 bits), or .dd (64 bits) 

The fiadd and fisub instructions implement arithmetic on integers up to 64 bits wide. 
Such integers are loaded into the same registers that are normally used for floating-point 
operations. These instructions do not set CC nor do they cause floating-point traps due 
to overflow. 

Programming Notes 

In assembly language, fiadd and pfiadd are used to implement the fmov and pfmov 
pseudoinstructions. 

fmov.ss fsrc1, fdest 

Equivalent to fiadd.ss fsrc1, fO, fdest 

pfmov.ss fsrc1, fdest 

Equivalent to pfiadd.ss fsrc1, fO, fdest 

fmov.dd fsrc1, fdest 

Equivalent to fiadd.dd fsrc1, fO, fdest 

pfmov.dd fsrc1, fdest 

Equivalent to pfi~dd.dd fsrc1, fO, fdest 

6.6.2 3-D Graphics Operations 

(Single Move) 

(Pipelined Single Move) 

(Double Move) 

(Fipeiined Doubie Move) 

The i860 microprocessor supports high-performance 3-D graphics applications by sup­
plying operations that assist in the following common graphics functions: 

1. Hidden surface elimination. 

2. Distance interpolation. 

3. 3-D shading using intensity interpolation. 
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The interpolation operations of the i860 microprocessor support graphics applications in 
which the set of points on the surface of a solid object is represented by polygons. The 
distances and color intensities of the vertices of the polygon are known, but the distances 
and intensities of other points must be calculated by interpolation between the known 
values. 

Certain fields of the psr are used by the i860 microprocessor's graphics instructions, as 
illustrated in Figure 6-5. 

The merge instructions are those that utilize the 64-bit MERGE register. The purpose of 
the MERGE register is to accumulate (or merge) the results of multiple-addition oper­
ations that use as operands the color-intensity values from pixels or distance values from 
a Z-buffer. The accumulated results can then be stored in one 64-bit operation. 

Two multiple-addition instructions and an OR instruction use the MERGE register. The 
addition instructions are designed to add interpolation values to each color-intensity 
field in an array of pixels or to each distance value in a Z-buffer. 

6.6.2.1 Z-8UFFER CHECK INSTRUCTIONS 

A Z-buffer aids hidden-surface elimination by associating with a pixel a value that rep­
resents the distance of that pixel from the viewer. When painting a point at a specific 
pixel location, three-dimensional drawing algorithms calculate the distance of the point 
from the viewer. If the point is farther from the viewer than the point that is already 
represented by the pixel, the pixel is not updated. The i860 microprocessor supports 
distance values that are either 16-bits or 32-bits wide. The size of the Z-buffer values is 
independent of the pixel size. Z-buffer element size is controlled by whether the 16-bit 
instruction fzchks or the 32-bit instruction fzchkl is used; pixel size is controlled by the 
PS field of the psr. 

31 

PM 

t tL. ________ PIXEL SIZE L. _____________ PIXEL MASK 

240329i 

Figure 6-5. PSR Fields for Graphics Operations 
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Consider PM as an array of eight bits PM(0) .. PM(7), 
where PM(O) is the least-significant bit. 

fzchks fsrc1, fsrc2, fdest (16-Blt Z-Buffer Check) 

Consider fsrc1, fsrc2, and fdest as arrays of four 16-bit 
fields fsrc1(0) .. fsrc1(3), fsrc2(0) .. fsrc2(3), and fdest(O) .. fdest(3) 
where zero denotes the least-significant field. 

PM ~ PM shifted right by 4 bits 
FOR i = 0 to 3 
DO 

PM [i + 4] ~ fsrc2(i) =:; fsrc1 (i) (unsigned) 
fdest(i) ~ smaller of fsrc2(i) and fsrc1 (i) 

00 
MERGE ~ 0 

pfzchks fsrc1, fsrc2, fdest (Plpelined 16-Blt Z-Buffer Check) 

Consider fsrc1, fsrc2, and fdest as arrays of four 16-bit 
fields fsrc1 (0) .. fsrc1(3) , fsrc2 (0) .. fsrc2(3) , and fdest(0) .. fdest(3) 
where zero denotes the least-significant field. 

PM ~ PM shifted right by 4 bits 
FOR i = 0 to 3 
DO 

PM [i + 4] ~ fsrc2(i) =:; fsrc1 (i) (unsigned) 
fdest ~ last stage graphics result 
last stage graphics result (i) ~ smaller of fsrc2(i) and fsrc1 (i) 

00 
MERGE ~ 0 

fzchkl fsrc1, fsrc2, fdest (32-Blt Z-Buffer Check) 

Consider fsrc1, fsrc2, and fdest as arrays of two 32-bit 
fields fsrc1(0) .. fsrc1(1). fsrc2(0) .. fsrc2(1), and fdest(0) .. fdest(1) 
where zero denotes the least-significant field. 

PM ~ PM shifted right by 2 bits 
FOR i = 0 to 1 
DO 

PM [i + 6] ~ fsrc2(i) =:; fsrc1 (i) (unsigned) 
fdest(i) ~ smaller of fsrc2(i) and fsrc1 (i) 

00 
MERGE ~ 0 

pfzchkl fsrc1, tsrc2, tdest (Pipeiined 32-Bit Z-Buffer Check) 

Consider fsrc1, fsrc2, and fdest as arrays of two 32-bit 
fields fsrc1(0) .. fsrc1(1), fsrc2(0) .. fsrc2(1), and fdest(0) .. fdest(1) 
where zero denotes the least-significant field. 

PM ~ PM shifted right by 2 bits 
FOR i = 0 to 1 
DO 

PM [i + 6] ~ fsrc2(i) =:; fsrc1 (i) (unsigned) 
fdest(i) ~ last stage graphics result 
last stage graphics result ~ smaller of fsrc2(i) and fsrc1 (i) 

00 
MERGE ~ 0 

The instructions fzchks and fzchkl perform mUltiple unsigned-integer (ordinal) compar­
isons. The inputs to the instructions fzchks and fzchkl are normally taken from two 
arrays of values, each of which typically represents the distance of a point from the 
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viewer. One array contains distances that correspond to points that are to be drawn; the 
other contains distances that correspond to points that have already been drawn (a 
Z-buffer). The instructions compare the distances of the points to be drawn against the 
values in the Z-buffer and set bits of PM to indicate which distances are smaller than 
those in the Z-buffer. Previously calculated bits in PM are shifted right so that consecu­
tive fzchks or fzchkl instructions accumulate their results in PM. Subsequent pst.d 
instructions use the bits of PM to determine which pixels to update. 
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6.6.2.2 PIXEL ADD 

faddp fsrc1, fsrc2, fdest (Add with Pixel Merge) 

fdest ic- fsrc1 + fsrc2 
Shift and load MERGE register from fsrc1 + fsrc2 as defined in Table 6-3 

pfaddp fsrc1, fsrc2, fdest (Plpelined Add with Pixel Merge) 

fdest ~ last stage graphics result 
last stage graphics result ~ fsrc1 + fsrc2 
Shift and load MERGE register from fsrc1 + fsrc2 as defined in Table 6-3 

The faddp instruction implements interpolation of color intensities. The 8- and 16-bit 
pixel formats use 16-bit intensity interpolation. Being a 64-bit instruction, faddp does 
four 16-bit interpolations at a time. The 32-bit pixel formats use 32-bit intensity interpo­
lation; consequently, faddp performs them two at a time. By itself faddp implements 
linear interpolation; combined with fiadd, nonlinear interpolation can be achieved. 

Table 6-3. FADDP MERGE Update 

Pixel Size (from PS) 
Fields Loaded From 

Right Shift Amount (Field Size) 
Result into MERGE 

8 63 .. 56, 47 .. 40, 31 .. 24, 15 .. 8 8 
16 63 .. 58, 47 .. 42, 31 .. 26, 15 .. 10 6 
32 63 .. 56, 31 .. 24 8 

6-32 



FLOATING-POINT INSTRUCTIONS 

Figure 6-6 illustrates faddp when PS is set for 8-bit pixels. Since faddp adds 16-bit values 
in this case, each value can be treated as a fixed-point real number with an 8-bit integer 
portion and an 8-bit fractional portion. The real numbers are rounded to 8 bits by 
truncation when they are loaded into the MERGE register. With each faddp instruction, 
the MERGE register is shifted right by 8 bits. Two faddp instructions should be executed 
consecutively, one to interpolate for even-numbered pixels, the next to interpolate for 
odd-numbered pixels. The shifting of the MERGE register has the effect of merging the 
results of the two faddp instructions. 

63 47 31 15 o 

fsrc1 

I I I i INT I FRAC INT I FRAC INT I FRAC INT FRAC 
I I I I 
I I I I 

++++++ ++++++ ++++++ ++++++ 
63 47 31 15 o 

INT FRAC INT FRAC INT FRAC INT FRAC fsrc2 

INT FRAC INT FRAC INT FRAC INT FRAC fdest 

o 

MERGE 
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Figure 6-6. FADDP with a-Bit Pixels 
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Figure 6-7 illustrates faddp when PS is set for 16-bit pixels. Since faddp adds 16-bit 
values in this case, each value can be treated as a fixed-point real number with a 6-bit 
integer portion and a IO-bit fractional portion. The real numbers are rounded to 6 bits 
by truncation when they are loaded into the MERGE register. With each faddp, the 
MERGE register is shifted right by 6 bits. Normally, three faddp instructions are exe­
cuted consecutively, one for each color represented in a pixel. The shifting of MERGE 
causes the results of consecutive faddp instructions to be accumulated in the MERGE 
register. Note that each one of the first set of 6-bit values loaded into MERGE is further 
truncated to 4-bits when it is shifted to the extreme right of the 16-bit pixel. 
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Figure 6·7. FADDP with 16·Bit Pixels 
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Figure 6-8 illustrates faddp when PS is set for 32-bit pixels. Since faddp adds 32-bit 
values in this case, each value can be treated as a fixed-point real number with an 8-bit 
integer portion and an 24-bit fractional portion. The real numbers are rounded to 8 bits 
by truncation when they are loaded into the MERGE register. With each faddp, the ' 
MERGE register is shifted right by 8 bits. Normally, three faddp instructions are exe­
cuted consecutively, one for each color represented in a pixel. The shifting of MERGE 
causes the results of consecutive faddp instructions to be accumulated in the MERGE 
register. 

63 47 31 15 0 

INT FRACTION INT FRACTION I brc1 

++++++ ++++++ ++++++ ++++++ 
63 47 31 15 0 

INT FRACTION INT FRACTION fsrc2 

o 

INT FRACTION INT FRACTION fdest 

o 

MERGE 
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Figure 6-8. FADDP with 32-Bit Pixels 
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6.6.2.3 Z-BUFFER ADD 

faddz fsre 1, fsre2, fdest (Add with Z Merge) 

fdest «- fsre1 + fsre2 
Shift MERGE right 16 and load fields 31 .. 16 and 63 . .48 from fsre1 + fsre2 

pfaddz fsre1, fsre2, fdest (Pipelined Add with Z Merge) 

fdest «- last stage graphics result 
last stage graphics result «- fsre1 + fsre2 
Shift MERGE right 16 and load fields 31 .. 16 and 63 .. 48 from fsre1 + fsre2 

The faddz instruction implements linear interpolation of distance values such as those 
that form a Z-buffer. With faddz, 16-bit Z-buffers can use 32-bit distance interpolation, 
as Figure 6-9 illustrates. Since faddz adds 32-bit values, each value can be treated as a 
fixed-point real number with an 16-bit integer portion and a 16-bit fractional portion. 
The real numbers are rounded to 16 bits by truncation when they are loaded into the 
MERGE register. With each faddz, the MERGE register is shifted right by 16 bits. 

63 47 31 15 0 

• • 
INTEGER I FRACTION INTEGER I FRACTION fsrc1 I I 

I I 

++++++ ++++++ ++++++ ++++++ 
63 47 31 15 0 

INTEGER FRACTION INTEGER FRACTION fsrc2 

o 

INTEGER FRACTION INTEGER FRACTION fdest 

63 31 o 

MERGE 
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Figure 6-9. FADDZ with 16-Bit Z-Buffer 
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Normally, two faddz instructions are executed consecutively. The shifting of MERGE 
causes the results of consecutive faddz instructions to be accumulated in the MERGE 
register. 

32-bit Z-buffers can use 32-bit or 64-bit distance interpolation. For 32-bit interpolation, 
no special instructions are required. Two 32-bit adds can be performed as an 64-bit add 
instruction. The fact that data is carried from the low-order 32-bits into the high-order 
32-bits may introduce an insignificant distortion into the interpolation. 

For 32-bit Z-buffers, 64-bit distance interpolation is implemented (as Figure 6-10 shows) 
with two 64-bit fiadd instructions. The merging is implemented with the 32-bit move 
fmov.ss fsrcl, fdest. 

63 31 0 63 31 0 

I INTEGER FRACTION I I INTEGER ! FRACTION 

++++++ fladd.dd ++++++ ++++++ fladd.dd ++++++ 
63 0 63 0 

I~EGER FRACTION INTEGER FRACTION 

o o 

INTEGER FRACTION INTEGER FRACTION 

63 o 

INTEGER INTEGER 
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Figure 6-10. 64-Bit Distance Interpolation 
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6.6.2.4 OR WITH MERGE REGISTER 

form.dd fsrc1, fdest 

fdest ~ fsrc1 OR MERGE 
MERGE ~ 0 

pform.dd fsrc1, fdest 

fdest ~ last stage graphics result 
last stage graphics result ~ fsrc1 OR MERGE 
MERGE ~ 0 

(OR with MERGE Register) 

(Plpelined OR with MERGE Register) 

For intensity interpolation, the form instruction fetches the partially completed pixels 
from the MERGE register, sets any additional bits that may be needed in the pixels (e.g. 
texture values), and loads the result into a floating-point register. Fsrcl (when a register) 
and fdest are floating-point register pairs; the fsrc2 field of the instruction should contain 
zero. 

For distance interpolation or for intensity interpolation that does not require further 
modification of the value in the MERGE register, the fsrcl operand of form may be fO, 
thereby causing the instruction to simply load the MERGE register into a floating-point 
register. 
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6.7 TRANSFER F-P TO INTEGER REGISTER 

fxfr fsrc 1, idest 

idest ~ fsrc1 

(Transfer F-P to Integer Register) 

The 32-bit floating-point register selected by fsrcl is stored into the (32-bit) integer 
register selected by idest. Assemblers and compilers should encode fsrc2 as fO. 

Programming Notes 

This scalar instruction is performed by the graphics unit. When it is executed, the result 
in the graphics-unit pipeline is lost. However, executing this instruction does not impact 
performance, even if the next instruction is a pipelined operation whose fdest is nonzero 
(refer to Section 6.2). 

For best performance, idest should not be referenced in the next instruction, and fsrcl 
should not reference the result of the prior instruction if the prior instruction is scalar. 
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6.8 DUAL-INSTRUCTION MODE 

The i860 microprocessor can execute a floating-point and a core instruction in parallel. 
Such parallel execution is called dual-instruction mode. When executing in dual­
instruction mode, the instruction sequence consists of 64-bit aligned instructions with a 
floating-point instruction in the lower 32 bits and a core instruction in the upper 32 bits. 

Programmers specify dual-instruction mode either by including in the mnemonic of a 
floating-point instruction a d. prefix or by using the Assembler directives .dual '" .end­
dual. Both of the specifications cause the D-bit of floating-point instructions to be set. If 
the i860 microprocessor is executing in single-instruction mode and encounters a 
floating-point instruction with the D-bit set, one more 32-bit instruction is executed 
before dual-mode execution begins. If the i860 microprocessor is executing in dual­
instruction mode and a floating-point instruction is encountered with a clear D-bit, then 
one more pair of instructions is executed before resuming single-instruction mode. 
Figure 6-11 illustrates two variations of this sequence of events: one for extended 
sequences of dual-instructions and one for a single instruction pair. 

When a 64-bit dual-instruction pair sequentially follows a delayed branch instruction in 
dual-instruction mode, both 32-bit instructions are executed. 
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Figure 6-11. Dual-Instruction ModeTransitions (1 of 2) 
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Figure 6-11. Dual-Instruction Mode Transitions (2 of 2) 

240329i 

The recommended floating-point NOP for dual-instruction mode is shrd rO,rO,rO, be­
cause this instruction does not affect the states of the floating-point pipelines. Even 
though this is a core instruction, bit 9 is interpreted as the dual-instruction mode control 
bit. In assembly language, this instruction is specified as fnop or d.fnop. Traps are not 
reported on fnop. Because it is a core instruction, d.fnop cannot be used to initiate entry 
into dual-instruction mode. 

6.8.1 Core and Floating-Point Instruction Interaction 

1. If one of the branch-an-condition instructions bc or bnc is paired with a floating­
point compare, the branch tests the value of the condition code prior to the 
compare. 

2. If an ixfr, fld, or pfld loads the same register as a source operand in the floating­
point instruction, the floating-point instruction references the register value before 
the load updates it. 

3. An fst or pst that stores a register that is the destination register of the companion 
pipelined floating-point operation will store the result of the companion operation. 
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4. An fxfr instruction that transfers to a register referenced by the companion core 
instruction will update the register after the core instruction accesses the register. 
The destination of the core instruction will not be updated if it is an integer register. 
Likewise, if the core instruction uses auto increment indexing, the index register will 
not be updated. 

5. When the core instruction sets CC and the floating-point instruction is pfgt, pfle or 
pfeq, CC is set according to the result of the pfgt, pfle or pfeq. 

6.8.2 Dual-Instruction Mode Restrictions 

1. The result of placing a core instruction in the low-order 32 bits or a floating-point 
instruction in the high-order 32 bits is not defined (except for shrd rO, rO, rO which is 
interpreted as fnop). 

2. A floating-point instruction that has the D-bit set must be aligned on a 64-bit bound­
ary (i.e. the three least-significant bits of its address must be zero). This applies as 
well to the initial 32-bit floating-point instruction that triggers the transition into 
dual-instruction mode, but does not apply to the following instruction. 

3. When the floating-point operation is scalar and the core operation is fst or pst, the 
store should not reference the result register of the floating-point operation. When 
the core operation is pst, the floating-point instruction cannot be (p}fzchks or 
(p}fzchkl. 

4. When the core instruction of a dual-mode pair is a control-transfer operation and 
the previous instruction had the D-bit set, the floating-point instruction must also 
have the D-bit set. In other words, an exit from dual-instruction mode cannot be 
initiated (first instruction pair without D-bit set) when the core instruction is a 
control-transfer instruction. 

5. When the core operation is a Id.c or st.c, the floating-point operation must be 
d.fnop. 

6. When the floating-point operation is fxfr, the core instruction cannot be Id, Id.c, st, 
st.c, call, calli, ixfr, or any instruction that updates an integer register (including 
autoincrement indexing). Furthermore, the core instruction cannot be a fld, fst, pst, 
or pfld that uses as isrcl or isrc2 the same register as the idest of the fxfr. 

7. A bri must not be executed in dual-instruction mode if any trap bits are set. 

8. When the core operation is bc.t or bnc.t, the floating point operation cannot be 
pfeq, pfle or pfgt. The floating point operation in the sequentially following instruc­
tion pair cannot be pfeq, pfle or pfgt, either. 

9. A transition to or from dual-instruction mode cannot be initiated on the instruction 
following a brio 
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10. An ixfr, fld, or pfld cannot update the same register as the companion floating-point 
instruction unless the destination is fO or f1. No overlap of register destinations is 
permitted; for example, the following instructions must not be paired: 

d.fmul.ss f9, fl~, f5 
fld.q f4 

11. In ':llocked sequence, a transition to or from dual-instruction mode is not permitted. 
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CHAPTER 7 
TRAPS AND INTERRUPTS 

Traps are caused by exceptional conditions detected in programs or by external inter­
rupts. Traps cause interruption of normal program flow to execute a special program 
known as a trap handler. 

7.1 TYPES OF TRAPS 

Traps are divided into the types shown in Table 7-1. 

7.2 TRAP HANDLER INVOCATION 

This section applies to traps other than reset. When a trap occurs, execution of the 
current instruction is aborted. The instruction is restartable as described in Section 7.2.3. 
The processor takes the following steps while transferring control to the trap handler: 

1. Copies U (user mode) of the psr into PU (previous U). 

2. Copies 1M (interrupt mode) into PIM (previous 1M). 

3. Sets U to zero (supervisor mode). 

Table 7-1. Types of Traps 

Indication Caused by 
Type 

psr, epsr fsr Condition Instruction 

Instruction IT OF Software traps trap, intovr 
Fault IL Missing unlock Any 

SE Floating-point source exception Any M- or A-unit except fmlow 
Floating Floating-point result exception Any M- or A-unit except fmlow, pfgt, 
Point FT AO,MO overflow pfle, and pfeq. Reported on any 
Fault AU,MU underflow F-Pinstruction plus pst, fst, and 

AI, MI inexact result sometimes fld, pfld, ixfr 

Instruction IAT Address translation exception Any 
Access Fault during instruction fetch 

Load/store address translation Any load/store 

Data Access exception 

Fault DAT* Misaligned operand address Any load/store 
Operand address matches Any load/store 
db register 

Interrupt IN External interrupt 

Reset No trap bits set Hardware RESET signal 

* These cases can be distinguished by examining the operand addresses. 
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4. Sets 1M to zero (interrupts disabled). This guards against further interrupts until the 
trap information can be saved. 

5. If the processor is in dual instruction mode, it sets DIM; otherwise DIM is cleared. 

6. If the processor is in single-instruction mode and the next instruction will be exe­
cuted in dual-instruction mode or if the processor is in dual-instruction mode and 
the next instruction will be executed in single-instruction mode, DS is set; otherwise, 
it is cleared. 

7. The appropriate trap type bits in psr and epsr are set (IT, IN, IAT, DAT, FT, IL). 
Several bits may be set if the corresponding trap conditions occur simultaneously. 

8. An address is placed in the fault instruction register (fir) to help locate the trapped 
instruction. In single-instruction mode, the address in fir is the address of the 
trapped instruction itself. In dual-instruction mode, the address in fir is that of the 
floating-point half of the dual instruction. If an instruction- or data-access fault 
occurred, the associated core instruction is the high-order half of the dual instruc­
tion (fir + 4). In dual-instruction mode, when a data-access fault occurs in the 
absence of other trap conditions, the floating-point half of the dual instruction will 
already have been executed. 

9. Clears the BL bit of dirbase and deasserts LOCK#. 

The processor begins executing the trap handler by transferring execution to virtual 
address OxFFFFFFOO. The trap handler begins execution in single-instruction mode. The 
trap handler must examine the trap-type bits in psr (IT, IN, IAT, DAT, FT) and epsr 
(IL, OF) to determine the cause or causes of the trap. 

7.2.1 Saving State 

To support nesting of traps, the trap handler must save the current state before another 
trap occurs. An interrupt stack can be implemented in software (refer to the section on 
stack implementation in Chapter 8). Interrupts can then be reenabled by clearing the 
trap-type bits and setting 1M to the value of PIM. Further, the trap handler must ensure 
that no trap may occur once the restoration of the initial state (described in Section 
7.2.3) has begun prior to returning from the trap handler. The branch-indirect instruc­
tion is sensitive to the trap-type bits; therefore, clearing the trap-type bits allows normal 
indirect branches to be performed within the trap handler. 

The items that make up the current state may include any of the following: 

1. The fir. 

2. The psr. 

3. The epsr. 
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4. The fsr. 

5. The dirbase register. 

6. The MERGE register. 

7. The KR, Kl, and T registers. 

8. Any of the four pipeJines (refer to Section 7.9). 

9. The floating-point and integer register files. 

7.2.2 Inside the Trap Handler 

While most activities of trap handlers are application dependent (and, therefore, are 
beyond the scope of this manual), programmers should be aware of the following 
requirements that are imposed by the i860 microprocessor architecture: 

1. For all types of traps, the trap handler must check the IL bit of epsr to determine if 
a locked sequence is being interrupted. 

2. The trap handler must execute Id.e fir, isrcl once for each trap. Failure to do so 
prevents fir from receiving the address of the next trap. 

7.2.3 Returning from the Trap Handler 

Returning from a trap handler involves the following steps: 

1. Restoring the pipeline states, including the fsr, KR, Kl, T, and MERGE registers, 
where necessary. 

2. Subtracting srcl from src2, when a data-access fault occurred on an auto increment­
ing load/store instruction and a floating-point trap did not also occur. 

3. Determining where to resume execution by inspecting the instruction at fir - 4. The 
details for this determination are given in Section 7.2.3.1. 

4. Restoring the integer and floating-point register 'files (except for the register that 
holds the resumption address). 

5. Updating psr with the value to be used after return. It may be necessary to set the 
KNF bit in psr. The requirements for KNF are given in Section 7.2.3.2. The trap 
handler must ensure that no trap occurs between the st.e to the psr and the indirect 
branch that exits the trap handler. 

7-3 



TRAPS AND INTERRUPTS 

6. Executing an indirect branch to the resumption address, making sure that at least 
one of the trap bits is set in the psr. Neither the indirect branch nor the following 
instruction may be executed in dual-instruction mode. 

7. Restoring the register that holds the resumption address. (This is executed before 
the delayed indirect branch is completed.) 

7.2.3.1 DETERMINING WHERE TO RESUME 

To determine where to resume execution upon leaving the trap handler, examine the 
instruction at address fir - 4. If this instruction is not a delayed control instruction, then 
execution resumes at the address in fir. 

If, on the other hand, the instruction at fir - 4 is a delayed control instruction (i.e. one 
that executes the next sequential instruction on branch taken), the normal action is to 
resume at fir - 4 so that the control instruction (which did not finish because of the 
trap) is also reexecuted. If the instruction at fir - 4 is a bla instruction, then srcl should 
be subtracted from src2 before reexecuting. 

The one variance from this strategy occurs when the instruction at fir - 4 is a condi­
tional delayed branch ( be.t or bne.t), the instruction at fir is a pfgt, pfle, or pfeq, and a 
source exception has occurred. To implement the IEEE standard for unordered com­
pares, the trap handler may need to change the value of CC. In this case it cannot 
resume at fir :- 4, because the new value of CC might cause an incorrect branch. 
Instead, the trap handler must interpret the conditional branch instruction and resume 
at its target. 

When examining fir - 4, take care not to cause a page fault. If the location in fir is at the 
beginning of a page, then fir - 4 is in the prior page. If the prior page is not present, 
then examining fir - 4 will cause a page fault. In this case, however, the instruction at fir 
- 4 could not have been a delayed control instruction; therefore it is not necessary to 
examine fir - 4. Note that, when determining whether the prior page is not present, it is 
necessary to inspect both the page table and its page directory entry. 

If the i860 microprocessor was in dual-instruction mode and execution is to resume at fir 
- 4, DS should be set and DIM cleared in the psr. Clearing DIM prevents the floating­
point instruction associated with the control instruction from being reexecuted. Setting 
DS forces the processor back to dual-instruction mode after executing the control 
instruction. 

Every code section should begin with a nop instruction so that fir - 4 is defined even in 
case a trap occurs on the first real instruction of the code section. Furthermore, this nop 
should not be the target of any branch or call. 
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7.2.3.2 SETTING KNF 

The KNF bit of psr should be set if the trapped instruction is a floating-point instruction 
that should not be reexecuted; otherwise, KNF is left unchanged. Floating-point instruc­
tions should not be reexecuted under the following conditions: 

• The trap was caused in dual-instruction mode by a data-access fault or an intovr 
instruction and there are no other trap conditions. In this case, the floating-point 
instruction has already been executed. 

• The trap was caused by a source exception on any floating-point instruction (except 
when a pfgt, pfle, or pfeq follows a conditional branch, as already explained in 
Section 7.2.3.1). The trap handler determines the result that corresponds to the 
exceptional inputs; therefore, the instruction should not be reexecuted. 

7.3 INSTRUCTION FAULT 

This fault is caused by any of the following conditions. In all cases the processor sets the 
IT bit before entering the trap handler. 

1. By the trap instruction. Refer to the trap instruction in Chapter 5. 

2. By the intovr instruction. The trap occurs only if OF in epsr is set when intovr is 
executed. The trap handler should clear OF before returning. Refer to the intovr 
instruction in Chapter 5. 

3. By the lack of an unlock instruction (and subsequent load or store) within 30-33 
instructions of a lock. In this case IL is also set. When the trap handler finds IL set, 
it should scan backwards for the lock instruction and restart at that point. The 
absence of a lock instruction within 30-33 instructions of the trap indicates a pro­
gramming error. Refer to the lock instruction in Chapter 5. 

Note that trap and intovr should not be used within a locked sequence; otherwise, it 
would not be possible to distinguish among the above cases. 

7.4 FLOATING-POINT FAULT 

The floating-point faults of the i860 microprocessor support the floating-point excep­
tions defined by the IEEE standard as well as some other useful classes of exceptions. 
The i860 microprocessor divides these into two classes: 

1. Source exceptions. This class includes: 

• All the invalid operations defined by the IEEE standard (including operations on 
signaling NaNs). 

• Division by zero. 

• Operations on quiet NaNs, denormals and infinities. (These data types are imple­
mented by software.) 
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2. Result exceptions. This class includes the overflow, underflow, and inexact excep­
tions defined by the IEEE standard. 

Software available from Intel provides the IEEE standard default handling for all these 
exceptions. 

The floating-point fault occurs only on floating-point instructions, and on pst, fst, fld, 
pfld, and ixfr. No floating-point fault occurs when pst, fst, fld, pfld, or ixfr transfers an 
operand that is not a valid floating-point value. 

7.4.1 Source Exception Faults 

When used as inputs to the floating-point adder or multiplier, all exceptional operands 
(including infinities, denormalized numbers and NaNs) cause a floating-point fault and 
set SE in the fsr. Source exceptions are reported on the instruction that initiates the 
operation. For pipelined operations, the pipeline is not advanced. The trap handler can 
reference both source operands and the operation by decoding the instruction specified 
by fir. 

In the case of dual operations, the trap handler has to determine which special registers 
the source operands are stored in and inspect all four source operands to see if one or 
both operations need to be fixed up. It can then compute the appropriate result and 
store the result in [des!, in the case of a scalar operation, or replace the appropriate 
first-stage result, in the case of a pipe lined operation. 

Note that, in the following sequence, inappropriate use of the FTE bit of the fsr can 
produce an invalid operand that does not cause a source exception: 

1. Floating-point traps are masked by clearing the FTE bit. 

2. An dual-operation instruction causes underflow or overflow leaving an invalid result 
in the T register. 

3. Floating-point traps are enabled by setting the FTE bit. 

4. The invalid result in the T register is used as an operand of a subsequent instruction. 

Even though the result of an operation would normally cause a source exception, it can 
be inserted into the pipeline as follows: 

1. Disable traps by clearing FTE. 

2. Perform a pipelined add of the value with zero or a multiply by one. 

3. Set the result-status bits of fsr to "normal" by loading fsr with the U-bit set and 
zeros in the appropriate unit's result-status bits. The other unit's status must be set 
to the saved status for the first pipeline stage. 

7-6 



TRAPS AND INTERRUPTS 

4. Reenable traps by setting FTE. 

5. Set KNF in the psr to avoid reexecuting the instruction. 

The trap handler should ignore the SE bit for faults on tid, ptld, tst, pst, and ixtr instruc­
tions when in single-instruction mode or when in dual-instruction mode and the compan­
ion instruction is not a multiplier or adder operation. The SE value is undefined in this 
case. 

The trap handler should process result exceptions as described below and reexecute the 
instruction before processing source exceptions. 

7.4.2 Result Exception Faults 

The class of result exceptions includes any of the following conditions: 

• Overflow. The absolute value of the rounded true result would exceed the largest 
finite number in the destination format. 

• Underflow (when FZ is clear). The absolute value of the rounded true result would 
be smaller than the smallest finite number in the destination format. 

• Inexact result (when TI is set). The result is not exactly representable in the destina­
tion format. For example, the fraction 1/3 cannot be precisely represented in binary 
form. This exception occurs frequently and indicates that some (generally acceptable) 
accuracy has been lost. 

The point at which a result exception is reported depends upon whether pipelined 
operations are being used: 

• Scalar (nonpipelined) operations. Result exceptions are reported on the next 
floating-point, tst.x, or pst.x (and sometimes tid, ptld, ixtr) instruction after the scalar 
operation. The instructions tid, ptld and ixtr report result exceptions when the Idest of 
these instructions overlap the Idest of the instruction that caused the exception. When 
a trap occurs, the last stage of the affected unit contains the result of the scalar 
operation. The result is also written to the register indicated by the RR field of 
the psr. 

• Pipelined operations. Result exceptions are reported when the result is in the last 
stage and the next floating-point, tst.x or pst.x (and sometimes tid, ptld, ixtr) instruc­
tion is executed. The instructions tid, ptld and ixtr report result exceptions when the 
Idest of these instructions overlap the Idest of the instruction that caused the excep­
tion. When a trap occurs, the pipeline is not advanced, and the last stage results (that 
caused the trap) remain unchanged. 

When no trap occurs (either because FTE is clear or because no exception occurred), 
the pipeline is advanced normally by the new floating-point operation. The result-status 
bits of the affected unit are undefined until the point that result exceptions are reported. 
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At this point, the last stage result-status bits (bits 29 .. 22 and 16 .. 9 of the fsr) reflect the 
values in the last stages of both the adder and multiplier. For example, if the last stage 
result in the multiplier has overflowed and a pfadd is started, a trap occurs and MO 
is set. 

For scalar operations, the RR bits of fsr specify the register in which the result was 
stored. RR is updated when the scalar instruction is initiated. The trap, however, occurs 
on a subsequent instruction. Programmers must prevent intervening stores to fsr from 
modifying the RR bits. Prevention may take one of the following forms: 

• Before any store to fsr when a result exception may be pending, execute a dummy 
floating-point operation to trigger the result-exception trap. 

• Always read from fsr before storing to it, and mask updates so that the RR, RM, and 
FZ bits are not changed. 

For pipelined operations, RR is cleared; the result is in the pipeline of the appropriate 
unit. 

In either case, the result has the same mantissa as the true result and has an exponent 
which is the low-order bits of the true result. The trap handler can inspect the result, 
compute the result appropriate for that instruction (a NaN or an infinity, for example), 
and store the correct result. The result is either stored in the register specified by RR (if 
nonzero) or in the last stage of the pipeline (if RR = 0). The trap handler must clear 
the result status for the last stage, then reexecute the trapping instruction. 

Result exceptions may be reported for both the adder and multiplier units at the same 
time. In this case, the trap handler should fix up the last stage of both pipelines. 

7.5 INSTRUCTION-ACCESS FAULT 

This trap results from a page-not-present exception during instruction fetch or an 
attempt to access a supervisor-level page while in user mode. Protection checking for 
instruction accesses occurs only during instruction fetches from external memory (i.e., 
I-cache miss). 

7.6 DATA-ACCESS FAULT 

This trap results from an abnormal condition detected during data operand fetch or 
store. Such an exception can be due only to one of the following causes: 

• An attempt is being made to write to a page whose D-bit is clear. 

• A memory operand is misaligned (is not located at an address that is a multiple of the 
length of the data). 

• The address stored in the db (data breakpoint) register is equal to one of the ad­
dresses spanned by the operand. 

• The operand is in a not-present page. 
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• A memory access is being attempted in violation of the memory protection scheme 
defined in Chapter 4. 

• A-bit is zero during address translation within a locked sequence. 

7.7 INTERRUPT TRAP 

An interrupt is an event that is signaled from an external source. If the processor is 
executing with interrupts enabled (IM set in the psr), the processor sets the interrupt bit 
IN in the psr, and generates an interrupt trap. Vectored interrupts are implemented by 
interrupt controllers and software. 

7.8 RESET TRAP 

When the i860 microprocessor is reset, execution begins in single-instruction mode at 
address OxFFFFFFOO. This is the same address as for other traps. The reset trap can be 
distinguished from other traps by the fact that no trap bits are set. The instruction cache 
is flushed. The bits DPS, BL, and ATE in dirbase are cleared. CS8 is initialized by the 
value at the INT pin just before the end of RESET. The read-only fields of the epsr are 
set to identify the processor, while the IL, WP, PBM, and BE bits are cleared. The bits 
U, 1M, BR, and BW in psr are cleared. All other bits of psr and all other register 
contents are undefined. Refer to Table 7-2 for a summary of these initial settings. 

The software must ensure that the data cache is flushed (refer to Chapter 4) and control 
registers are properly initialized before performing operations that depend on the values 
of the cache or registers. The fir must be initialized with a Id.c fir, rO instruction. 

Table 7-2. Register and Cache Values after Reset 

Registers Initial Value 

Integer Registers Undefined 

Floating-Point Registers Undefined 

psr U, 1M, BR, BW = 0; others = undefined 

epsr Il, WP, PBM, BE = 0; Processor Type, Stepping 
Number, DCS are read only; others are undefined 

db Undefined 

dirbase DPS, Bl, ATE = 0 

fir Undefined 

fsr Undefined 

KR, KI, MERGE Undefined 

Caches Initial Value 

Instruction Cache Flushed 

Data Cache Undefined. All modified bits = O. 

TlB Flushed 
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Reset code must initialize the floating-point pipeline states to zero, using dummy pfadd, 
pfmul, pfiadd instructions. Floating-point traps must be disabled to ensure that no 
spurious floating-point traps are generated. 

After a RESET the i860 microprocessor starts execution at supervisor level (U = 0). 
Before branching to the first user-level instruction, the RESET trap handler or subse­
quent initialization code has to set PU and a trap bit so that an indirect branch instruc­
tion will copy PU to U, thereby changing to user level. 

7.9 PIPELINE PREEMPTION 

Each of the four pipelines (adder, multiplier, load, graphics) contains state information. 
The pipeline state must be saved when a process is preempted or when a trap handler 
performs pipelined operations using the same pipeline. The state must be restored when 
resuming the interrupted code. 

7.9.1 Floating-Point Pipelines 

The floating-point pipeline state consists of the following items: 

1. The current contents of the floating-point status register fsr (including the third­
stage result status). 

2. Unstored results from the first, second, and third stages. The number of stages that 
exist in the multiplier pipeline depends on the sizes of the operands that occupy the 
pipeline. The MRP bit of fsr helps determine how many stages are in the multiplier 
pipeline. 

3. The result-status bits for the first two stages. 

4. The contents of the KR, KI, and T registers. 

7.9.2 Load Pipeline 

The pipeline state for pfld instructions can be saved by performing three pfld instructions 
to a dummy address. Thus the pipeline is advanced three stages, causing the last three 
real operands to be stored from the pipeline into registers that are then saved in some 
memory area. The size of each saved value is indicated by the value of the LRP bit of the 
fsr. Note that the load pipeline must be saved before changing the BE bit. 

The load pipeline can be restored performing three pfld instructions using the memory 
addresses of the saved values. The pipeline will then contain the same three values it 
held before the preemption. 
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7.9.3 Graphics Pipeline 

The graphics pipeline has only one stage. To flush the pipeline, execute a pfiadd fO, fO, 
Idest. The only other state information for the graphics unit resides in the PM bits of psr, 
the IRP bit of the fsr, and in the MERGE register. Store the MERGE register with a 
form instruction. Restore the MERGE register by using faddz instructions (see 
Example 7-2). 

7.9.4 Examples of Pipeline Preemption 

Example 7-1 shows how to save the pipeline state. 

Example 7-2 shows how to restore the pipeline state. Trap handlers manipulate the 
result-status bits in the floating-point pipelines while preparing for pipeline resumption. 
When storing to fsr with the U-bit set, the result-status bits are loadeq into the first stage 
of the pipelines of the floating-point adder and multiplier. The updated result-status bits 
of a particular unit (multiplier or adder) are propagated one stage for each pipelined 
floating-point operation for that unit. When they reach the last stage, they override the 
normal result-status bits computed from the last-stage result. The result-status bits in the 
fsr always reflect the last-stage result status and cannot be directly set by software. 
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II The symbols Mres3, Ares3, Mres2, Ares2, Mres1, Ares1, 
II Ires1, Lres, KR, KI, and T refer to 64-bit FP registers. 
II The symbols Fsr3, Fsr2, Fsr1, Mergelo32, Mergehi32, and Temp 
II refer to integer registers. 
II The symbols Lres3m, Lres2m, and Lres1m refer to memory locations. 
II The symbol Dummy represents an addressing mode that refers to some 
II readable location that is always present (e.g. 0(r0». 

II Save third, 
fld.d 
ld·c 
andnot 
st.c 
pfmul.ss 
pfadd.ss 
pfld.d 
fst.d 
ld.c 
pfmul.ss 
pfadd.ss 
pfld.d 
fst.d 
ld.c 
pfmul.ss 
pfadd.ss 
pfld.d 
fst.d 
pfiadd.dd 

II Save KR, KI, 
andnot 
or 
st.c 
r2apt.dd 

i2p1.dd 
pfmul.dd 
pfmul.dd 
pfadd.dd 
pfadd.dd 
form 
fxfr 
fxfr 

second, and 
DoubOne, 
fsr, Fsr3 

first stage 
f4 II 

II 
Temp II 

II 
Mres3 II 

0x20, Fsr3, 
Temp, fsr 
f0, f0, 
f0, f0, 
Dummy, Lres 
Lres, Lres3m 
fsr, Fsr2 
f0, f0, 
f0, f0, 
Dummy, Lres 
Lres, Lres2m 
fsr, Fsr1 
f0, f0, 
f0, f0, 
Dummy, Lres 
Lres, Lres1m 

Ares3 II 
II 
II 
II 

Mres2 II 
Ares2 II 

II 
II 
II 

Mres1 II 
Ares1 II 

II 

f0, f0, Ires1 
II 
II 

T, and MERGE 

results 
get double-precision 1.0 
save third stage result status 
clear FTE bit 
disable FP traps 
save third stage M result 
save third stage A result 
save third stage pfld result 
· .. in memory 
save second stage 
save second stage 
save second stage 
save second stage 
· .• in memory 
save first stage 
save first stage 
save first stage 
save first stage 
• .. in memory 

result status 
M result 
A result 
pfld result 

result status 
M result 
A result 
pfld result 

save vector-integer result 

0x2C, Fsr1, Temp II clear RM, clear FTE 
4, Temp, Temp 
Temp, fsr 
f0, f4, 

f4, 
f0, 
f0, 
f0, 
f0, 

f0 

f0 
KR 
KI 
f0 
T 
f2 

f0, 
f0, 
f0, 
f0, 
f0, 
f0, 
f2, 
f3, 

Mergelo32 
Mergehi32 

II set RM=01, round down, so -0 
II is preserved when added to f0 
II M first stage contains KR 
II A first stage contains T 
II M first stage contains KI 
II save KR register 
II save KI register 
II adder third stage gets T 
II save T-register 
II save MERGE register 

Example 7-1. Saving Pipeline States 
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II The symbols Mres3, Ares3, Mres2, Ares2, Mresl, Aresl, 
II Iresl, KR, KI, and T refer to 64-bit FP registers. 
II The symbols Fsr3, Fsr2, Fsrl, Mergel032, Mergehi32, and Temp 
II refer to integer registers. 
II The symbols Lres3m, Lres2m, and Lreslm refer to memory locations. 

st. c rill, fsr 
II Restore MERGE 

shl 
ixfr 
shl 
ixfr 
ixfr 
ixfr 
faddz 
faddz 

II Restore KR, 
fld.l 
fld.d 
pfmul.dd 
r2pt.dd 
i2apt.dd 

II Restore 3rd 

LIIl: 

L1: 

andh 
bc.t 
pfamov.ss 
pfamov.dd 
orh 
andh 
bc·t 
pfld.l 
pfld.d 
andh 
bc.t 
pfmul.ss 
pfmu13. dd 

L2: or 

andnot 
st·c 

16, Mergel032, 
rl, f2 
16, Mergehi32, 
rl, f3 
Mergel032, 
Mergehi32, 
fill, f2, 
fill, f4, 

KI, and T 
SingOne, 
DoubOne, 
f4, T, 
KR, fill, 
KI, fill, 

stage 
III x2 III III III , Fsr3, 
LIIl 
Ares3, fill, 
Ares3, fill, 
ha%Lres3m, rill, 
III x 4 III III , Fsr3, 
L1 
I%Lres3m (r31> , 
I%Lres3m (r31> , 
IIlxll1lllllll, Fsr3, 
L2 
Mres3, 
Mres3, 
IIlxll1l, 

f2, 
f4, 
Fsr3, 

III x 2 III , Temp, 
Temp, fsr 

I I clear FTE 

rl II move low 16 bits to high 16 

rl II move low 16 bits to high 16 

f4 
f5 
fill II merge low 16s 
fill II merge high 16s 

f2 II get single-precision 1.1Il 
f4 II get double-precision 1.1Il 
fill 1/ put value of T in M 1st stage 
fill 1/ load KR, advance t 
fill // load KI and T 

rill /1 test adder result precision ARP 
1/ taken if it was single 

fill // insert single result 
fill 1/ insert double result 
r31 
rill // test load result precision LRP 

// taken if it was single 
fill // insert single result 
fill // insert double result 
rill 1/ test multiplier result precision MRP 

// taken if it was single 
fill // insert single result 
fill // insert double result 

Temp // set U (update) bit so that st.c 
// will update status bits in pipeline 

Temp // clear FTE bit so as not to cause traps 
1/ update stage 3 result status 

Example 7-2. Restoring Pipeline States (1 of 2) 
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II Restore 2nd stage 
andh "x2""", Fsr2, r" II test adder result precision ARP 
bc.t L3 II taken if it was single 
pfamov.ss Ares2, f", f" II insert single result 
pfamov.dd Ares2, f", f" II insert double result 

L3: orh ha%Lres2m, r", r31 
anah "x4"", Fsr2, r" II test load result precision LRP 
bc.t L4 II taken if it was single 
pfld.l 1%Lres2m (r31> , f" II insert single result 
pf~d.d 1%Lres2m(r31> , f" II insert double result 

L4: or "xl". Fsr2. Temp II set update bit 
andnot "x2", Temp. Temp II clear FTE 
andh hl""", Fsr2, r" II test multiplier result precision MRP 
bc.t L5 II taken if it was single 
pfmuJ.ss Mres2. f2. f" II insert single result 
pfmu13.dd Mres2, f4. f" II insert double result 

L5: st.c Temp, fsr II update stage 2 result status 
1/ Restore 1st stage 

andh "xl""". Fsrl, r" II test multiplier result precision MRP 
bc.t Lb II skip next if double 
pfmul.ss Mresl, f2. f" II insert single result 
pfmu13.dd Mresl. f4, f" II insert double result 

Lb: andh "x2""". Fsrl. r" II test adder result precision ARP 
bc.t L7 II taken if it was single 
pfamov.ss Aresl. f". f" II insert single result 
pfamov.s:!d Aresl. f", f" II insert double result 

L7: orh t· I:~ ha%Lreslm. r", r31 
andh "x4"". Fsrl, r" II test load result precision LRP 
bc.t L8 II taken if it was single 
pfld.l 1%Lreslm(r31). f" II insert single result 
pfld. d 1%Lreslm(r31> , f" II insert double result 

L8: andh h8"", Fsrl. r" II test vector-integer result precision IRP 
bc.t L9 II taken if it was single 
pfiadd.ss f". Iresl, f" II insert single result 
pfiadd.dd f". Iresl, f" II insert double result 

L9: or "xl". Fsrl, Fsrl II set U (update) bit 
st.c Fsri. fsr II update stage 1 result status 
st.c Fsr3, fsr II restore nonpipelined FSR status 

Example 7-2. Restoring Pipeline States (2 of 2) 
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CHAPTER 8 
PROGRAMMING MODEL 

This chapter defines standards for compiler and assembly language conventions of the 
i860™ microprocessor. These standards must be followed to guarantee that compilers, 
applications programs, and operating systems written by different people and organiza­
tions will work together. 

8.1 REGISTER ASSIGNMENT 

Table 8-1 defines the standard for register allocation. Figure 8-1 presents the same 
information graphically. 

NOTE 

The dividing point between locals and parameters in the floating-point registers is 
now set at 8. Earlier software used a dividing point at 16. 

Table 8-1. Register Allocation 

Register Purpose 
Left Unchanged 

by a Subroutine? 

rO Always zero Yes 
r1 Return address No 
r2 Stack pointer Note 1 
r3 Frame pointer Yes 

r4-r15 Local values Yes 
r16-r27 Parameters and temporaries No 

r16 Return value No 
r28 Memory parameter pointer No 

r28-r30 Temporaries No 
r31 Addressing temporary No 

fO-f1 Always zero Yes 
f2-f7 Local values Yes 

f8-f15 Parameters and temporaries No 
f8-f9 Return value No 

f16-f31 Temporaries No 

NOTE: 
1. The stack pointer is normally kept unchanged across a subroutine call. However, some subroutines may 

allocate stack space and return with a different value in r2. 
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Figure 8-1. Register Allocation 

8.1.1 Integer Registers 

o 
to 
f2 
f4 
f6 
f8 
flO 
f12 
f14 
f16 
f18 
f20 
f22 
f24 
f26 
f28 
130 

240329i 

Up to 12 parameters can be passed in the integer registers. The first (leftmost) param­
eter is passed in r16 (if it is an integer), the rest in successively higher-numbered regis­
ters. If fewer parameters are required, the remaining registers can be used for temporary 
variables. If more than 12 parameters are required, the overflow can be passed in mem­
ory on the stack. 

Register r16 is both a parameter register and a return value register. If a subroutine has 
an integral or pointer return value, it loads the return value into r16 before returning 
control to the caller. 

Register r1 is the required return-address register, because the call and calli instructions 
use it to save the return address. Subroutines are therefore required to use the value in 
r1 to return to the caller. If a subroutine saves r1, it may then use it as a temporary until 
it returns. 
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A separate addressing temporary register (r31) is allocated to allow construction of 
32-bit address temporaries. Assemblers may use r31 by default to construct 32-bit 
addresses from 16-bit literals. 

If there are memory parameters, either because there are more parameters than will fit 
in the registers or because there are structure parameters, they should be put in the 
caller's stack frame properly aligned. Register r28 is set to point to this area in memory 
by the caller. 

8.1.2 Floating-Point Registers 

Floating-point and 64-bit integer values in the floating-point registers must use f8-f15 
when passed by value. The leftmost such parameter is passed in f8-f9; the rest in succes­
sively higher-numbered registers. Single-precision parameters use one register, double­
precision parameters use two properly aligned registers. A single-precision floating-point 
value can be converted to double-precision with the fmov.sd jx, fy pseudoinstruction. 

Parameters beyond f15 are passed in memory on the stack. The last (i.e. rightmost) 
parameter is at the highest stack address (i.e is pushed first assuming a grow-down 
stack). The same registers used to pass the first parameter are used for the return value 
when the return value is a floating-point value or 64-bit integer. A subroutine may need 
to save the first parameter to make room for the return value. 

8.1.3 Passing Mixed Integer and Floating-Point Parameters in Registers 

Integer and floating-point parameter registers are allocated independently. If parameter 
N (N is less than or equal to 12) is an integral parameter, then it is placed in integer 
register 16 + N, with no effect on the floating-point register usage. If parameter M is the 
first floating-point parameter, then it is placed in the register pair fB and f9 if it is double 
precision, or in register fB if it is single precision. If parameter M + 1 is the second 
floating-point parameter, then it is placed in register pair flO and fl1 if it is double 
precision, regardless of the type of the first floating-point parameter. If parameter M + 1 
is single precision, then it is placed in register f9 if the first floating-point parameter is 
single precision, or in register flO if the first floating-point parameter is double precision. 

NOTE 

The conventions in Sections B.1.1 through B.1.3 remain tentative. 

8.1.4 Variable Length Parameter Lists 

Parameter passing in registers can handle a variable number of parameters. The C pro­
gramming language uses a special method to access variable-count parameters. The 
stdarg.h and varargs.h files define several functions to get at these parameters in a way 
that is independent of stack growth direction and of whether parameters are passed in 
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registers or on the stack. A subroutine with variable parameters must use the va_start 
macro to set up a data structure before the parameters can be used. The va_arg macro 
must be used to access the successive parameters. This method works with current C 
standards. 

8.2 DATA ALIGNMENT 

Compilers and assemblers must do their best to keep data aligned. It is acceptable to 
have holes in data structures to keep all items aligned. In some cases (e.g. FORTRAN 
programs with overlaid data), it is necessary to have misaligned data. A run-time trap 
handler can be provided to handle misaligned data; however, such data would impose a 
performance penalty on the application. If a compiler must reference data that is known 
to be misaligned, the compiler should generate separate instructions to access the data 
in smaller units that will not generate misaligned-data traps. Accessing 16-bit misaligned 
data requires two byte loads plus a shift. Storing a 32-bit misaligned data item may 
require four byte stores and three shifts. The code example in Example 8-1 is the 
recommended method for reading a misaligned 32-bit value whose address is in r8. 

8.3 IMPLEMENTING A STACK 

In general, compilers and programmers have to maintain a software stack. Register r2 
(called sp in assembly language) is the suggested stack pointer. Register r2 is set by the 
operating system for the application when the program is started. The stack must be a 
grow-down stack, so as to be compatible with that of the Intel386™ architecture. If a 
subroutine call requires placing parameters on the stack, then the caller is responsible 
for adjusting the stack pointer upon return. The caller must also allocate space on the 
stack for the overflow parameters (i.e. parameters that exceed the capacity of the regis­
ters reserved for passing parameters) and store them there directly for the call 
operation. 

and not 3, r8, r9 II Get address aligned on 4-byte boundary 
ld.l o (r9) , r10 II Get low 32-bit value 
ld.l 4 (r9) , rll II Get high 32-bit value 
and 3, r8, r9 II Get byte offset in 8-byte field 
shl 3, r9, r9 II Convert to bit offset 
shr r9, r0, r0 II Set shift count 
shrd rll, r10, r9 II Put 32-bit value into R9 

II If the misalignment offset (m) is known in advance, this code can be 
II optimized. Assume r8 points to next aligned address less than address 
II of misaligned field. 

ld.l 0(r8), r10 
ld·l 4(r8), rll 
shr m*8, r0, 
shrd rll, r10, 

II Get low value 
II Get high value 

r0 II Set shift count 
r9 II Put 32-bit value into R9 

Example 8-1. Reading Misaligned 32-Bit Value 
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A separate frame pointer is used because C allows calls to subroutines that change the 
stack pointer to allocate space on the stack at run-time (e.g. alJoca and va_start). Other 
languages may also return values from a subroutine allocated on stack space below the 
original top-of-stack pointer. Such a subroutine prevents the caller from using sp-relative 
addressing to get at values on the stack. If the compiler knows that it does not call 
subroutines that leave sp in an altered state when they return, then no frame pointer is 
necessary. 

The stack must be kept aligned on 16-byte boundaries to keep data arrays aligned. Each 
subroutine must use stack space in multiples of 16 bytes. The frame pointer r3 (called fp 
in assembly language) need not point to a 16-byte boundary, as long as the compiler 
keeps data correctly aligned when assigning positions relative to fp. 

Figure 8-2 shows the stack-frame format. A fixed format is necessary to allow some 
minimal stack-frame analysis by a low-level debugger. 

8.3.1 Stack Entry and Exit Code 

Example 8-2 shows the recommended entry and exit code sequences. The stack pointer 
is restored to the value it had on entry into the subroutine. Assuming the subroutine 
needs to call another subroutine, it must save the frame pointer and its return address. It 
probably also needs to save some of its internal values across that call to another sub­
routine; therefore, the example saves one local register into the stack frame and subse­
quently reloads it. 

31 0 

• • .. -----------------------1. ~old sp Direction i 
of I I 

Expansion • I 

~----------------------------------------_1 
RETURN POINTER 

OLD FRAME POINTER 

I------------------------t~currenf fp 

PROGRAM­
SPECIFIC 
DYNAMIC I 

STORAGE I 
~-----------------------t~ur~~sp 

SP-STACK POINTER 
FP-FRAME POINTER 

Figure 8-2. Stack Frame Format 
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II Subroutine entry 
adds -CLocals+8) , sp, sp II Allocate stack space for local variables 

II Locals+8 must be a multiple of 16 
st.l fp, LocalsCsp) II Save old frame pointer below old SP 
adds Locals, sp, fp II Set new frame pointer 
st.l r1, 4Cfp) II Save return address 
st.l r5, -4Cfp) II Save a local register 

II Subroutine exit 
ld -1 -4 C fp) , r5 II Restore a local register 
mov fp, sp II Deallocate stack frame 
ld -1 4 C fp) , r1 II Restore return add~ess 
ld -1 0Cfp), fp II Restore old frame pointer 
bri r1 II Return to caller after next instruction 
adds 8, sp, sp II Deallocate frame pointer save area 

Example 8-2. Subroutine Entry and Exit with Frame Pointer 

II Subroutine entry 
addu -Locals, sp, sp II Allocate stack space for local variables 

II -Locals must be a multiple of 16 

II Subroutine exit 
bri r1 II Return to caller after next instruction 
addu Locals, sp, sp II Restore stack pointer 

Example 8-3. Subroutine Entry and Exit without Frame Pointer 

Languages such as Pascal that need to maintain activation records on the stack can put 
them below the frame pointer in the program-specific area. The frame pointer is 
optional. All stack references can be made relative to sp. The code example in 
Example 8-3 shows the recommended entry and exit sequences when no frame pointer is 
required. 

A lowest-level subroutine need not perform any stack accesses if it can run completely 
from the temporary registers. No entry/exit code is required by a lowest-level subroutine. 

8.3.2 Dynamic Memory Allocation on the Stack 

Consider a function alloca that allocates space on the stack and returns a pointer to the 
space. The allocated space is lost when the caller returns. The function alloca could be 
implemented as shown in Example 8-4. For any function calling alloca a separate stack 
pointer and frame pointer are required. 

8.4 MEMORY ORGANIZATION 

Figure 8-3 illustrates an overall memory layout. The i860 Linker needs to know by 
default where to assign code and data inside a program. The output of the linker must 
normally be executable without fixups. Code and data of both the application and 
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alloca:: 
II r1b has size requested 

adds 15, r1b, r1b II Round size to ~ mod 1b 
andnot 15, r1b, r1b II 
subs sp, r1b, sp II Adjust stack downwards 
bri r1 II Return to caller after next instruction 
mov sp, r1b II Set return value to allocated space 

Example 8-4. Possible Implementation of alloca 

OxFFFFFFFF 
OPERATING SYSTEM CODE AREA 

EMPTY 

USER CODE AREA 

OxF0400000 
FIXED SUBROUTINE ENTRIES 

OxFOOOOOOO 
OPERATING SYSTEM DATA 

SPECIAL SHARED MEMORY AREA 
BETWEEN DIFFERENT TASKS 

USER STACK SPACE 

~UserSP 

EMPTY 

USER DYNAMIC HEAP 

USER DATA 

Ox00001000 
OPERATING SYSTEM DATA AREA 

OxOOOOOOOO 

240329i 

Figure 8-3. Example Memory Layout 
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operating system share a single four-gigabyte address space. The illustrated memory map 
assumes paging is being used to place DRAM-resident code in the upper 256 Mbytes of 
the address space. 

In this example, the first four Kbytes (first page) of the address space are reserved for 
the operating system. It should be a supervisor-only page and should not be swappable. 
Uninitialized external address references in user programs (which are equivalent to a 
O(rO) assembly-language address expression) reference this first page and cause a trap. 

The data space for the application begins at OxlOOO (second page). It is all readable and 
writable. The total data address space available to the application should be over 3500 
Mbytes. The user's data space has the following sections: 

• A user-data portion whose size and content is defined by the program and develop­
ment tools. 

• A section called the heap whose size is determined at run time and can change as the 
program executes. 

• A stack section. 

The application's stack area starts at some address set by the OS and grows downward. 
The starting address of the stack would normally be at a four-Mbyte boundary to allow 
easy page-table formatting. The stack's starting address is not known in advance. It 
depends on how much address space is used by the operating system at the top of the 
address space. 

The operating system may also want to reserve some portion of the application's address 
space for shared memory areas with other tasks. UNIX System V allows such shared 
memory areas. The empty areas on the diagram if Figure 8-3 would normally be marked 
as not-present in the page table entries. Some special flag in the page table entry could 
allow the operating system to determine that the page is not usable instead of just not 
present in memory. 

A four-Mbyte area of code space is reserved starting at OxFOOOOOOO for a set of entry 
addresses to subroutines commonly used by all application programs (math libraries and 
vector primitives, for example). These code sections are shared by all application pro­
grams. The code in this area is directly callable from user-level code and executes at user 
level. Standard i860 microprocessor calling conventions are used for these subroutines. 
The size of this area is chosen as four Mbytes, because that size corresponds to a 
directory-level page table entry that all applications tasks can share. It should be large 
enough to contain all desirable shared code. 

The application program code area starts at OxF0400000. It can be as large as 248 
Mbytes. The application code is write-protected. The operating system and application 
code spaces lie in the upper 256 Mbytes of the address space. The operating system code 
is in the upper part of the 256 Mbyte code space. The operating system code is protected 
from application programs. Because it is easier for the operating system to divide up the 
address space in four-Mbyte blocks, the minimum operating-system code allocation from 
the address space is probably four Mbytes. Additional space would be allocated in four­
Mbyte increments. 
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Every code section should begin with a nap instruction so that the trap handler can 
always examine the instruction at fir - 4 even in case a trap occurs on the first instruc­
tion of a section. 

The memory-mapped I/O devices should also be placed in the upper operating-system 
data space. The paging hardware allows logical addresses to be different from their 
corresponding physical addresses. The I/O device logical address area may be located 
anywhere convenient. 
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CHAPTER 9 
PROGRAMMING EXAMPLES 

9.1 SMALL INTEGERS 

The 32-bit arithmetic instructions can be used to implement arithmetic on 8- or 16-bit 
ordinals and integers. The integer load instruction places 8- or 16-bit values in the low­
order end of a 32-bit register and propagates the sign bit through the high-order bits of 
the register. 

Occasionally, it is necessary to sign extend 8- or 16-bit integers that are generated inter­
nally, not loaded from memory. Example 9-1 shows how. 

II SIGN-EXTEND 8-BIT INTEGER TO 32 BITS 
II Assume the operand is already in rlb 

shl 24, rlb, rlb II left-justify 
shra 24, rlb, rlb II right-justify all but sign bit 

Example 9-1. Sign Extension 

Example 9-2 shows how to load a small unsigned integer, converting the sign-extended 
form created by the load instruction to a zero-extended form. 

II LOADING OF 8-BIT UNSIGNED INTEGERS 
II Assume the address is already in r19 

II Load the operand (sign-extended) into r20 
Id.b 0(r19), r20 

II Mask out the high-order bits 
and 0x000000FF, r20, r20 

Example 9-2. Loading Small Unsigned Integers 
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9.2 SINGLE-PRECISION DIVIDE 

Example 9-3 computes Z = X + Y for single-precision variables. The algorithm begins 
by using the reciprocal instruction frcp to obtain an initial guess for the value of l/Y. The 
frcp instruction gives a result that can differ from the true value of l/Y by as much as 
2- 8

• The algorithm then continues to make guesses based on the prior guess, refining 
each guess until the desired accuracy is achieved. Let G represent a guess, and let E 
represent the error, i.e. the difference between G and the true value of l/Y. For each 
guess ... 

Gnew = Goli2 - GOld *Y). 

Enew = 2(Eold)2. 

This algorithm is optimized for high performance and does not produce results that are 
rounded according to the IEEE standard. Worst case error is about two least-significant 
bits. If the result is referenced by the next instruction, 22 clocks are required to perform 
the divide. 

II SINGLE-PRECISION DIVIDE 

II The dividend X is in f6 
II The divisor Y is in f2 
II The result Z is left in f3 
II f5 contains single-precision floating-point 2. 

frcp.ss f2, f3 II first guess has 2**-8 error 
fmul.ss f2, f3, f4 II guess * divisor 
fsub.ss f5, f4, f4 II 2 - guess * divisor 
fmul.ss f3, f4, f3 II second guess has 2**-15 error 
fmul.ss f2, f3, f4 II avoid using f3 as src1 
fsub.ss f5, f4, f4 II 2 - guess * divisor 
fmul.ss f6, f3, f5 II second guess * dividend 
fmul.ss f4, f5, f3 II result = second guess * dividend 

Example 9-3. Single-Piecision Divide 
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9.3 DOUBLE-PRECISION DIVIDE 

Example 9-4 computes Z = X + Y for double-precision. variables. The algorithm is 
similar to that shown previously for single-precision divide. For double-precision divide, 
one more iteration is needed to achieve the required accuracy. 

This algorithm is optimized for high performance and does not produce results that are 
rounded according to the IEEE standard. Worst case error is about two least-significant 
bits. If the result is referenced by the next instruction, 38 clocks are required to perform 
the divide. 

II DOUBLE-PRECISION DIVIDE 

II The dividend X is in f2 
II The divisor Y is in f4 
II The result Z is left in f8 

frcp.dd f4, fb 
fmul.dd f4, fb, 
fld.d flttwo, f1~ 

II The fld.d is free. It 
fsub.dd f1~, f8, 
fmul.dd fb, f8, 
fmul.dd f4, fb, 
fsub.dd f1~, f8, 
fmul.dd fb, f8, 
fmul.dd f4, fb, 
fsub.dd f1~, fB, 
fmul.dd fb, f2, 
fmul.dd f8, fb, 

II first guess has 2**-8 error 
f8 II guess * divisor 

II load double-precision floating 2 
completely overlaps the preceding fmul.dd 

f8 II 2 - guess * divisor 
fb II second guess has 2**-15 error 
f8 II avoid using fb as src1 
f8 II 2 - guess * divisor 
fb II third guess has 2**-29 error 
f8 II avoid using fb as src1 
fB II 2 - guess * divisor 
fb II guess * dividend 
f8 II result = third guess * dividend 

Example 9-4. Double-Precision Divide 
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9.4 INTEGER MULTIPLY 

A 32-bit integer multiply is implemented in Example 9-5 by transferring the operands to 
floating-point registers and using the fmlow instruction. If the result is referenced in the 
next instruction, eleven clocks are required. Seven clocks can be overlapped with other 
operations. 

II INTEGER MULTIPLY 

II The multiplier is in r4 
II The multiplicand is in r5 
II The product is left in rb 
II The registers f2, f4, and fb are used as temporaries. 

ixfr r4, f2 
ixfr r5, f4 

II Two core instructions can be inserted here without penalty. 
fmlow.dd f4, f2, fb 

II Four core instructions can be inserted here without penalty. 
fxfr fb, rb 

II One core instruction can be inserted here without penalty. 

Example 9-5. Integer Multiply 
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9.5 CONVERSION FROM SIGNED INTEGER TO DOUBLE 

The strategy used in Example 9-6 is to use the bits of the integer to construct a value in 
double-precision format. The double-precision value constructed contains two biases: 

Be 

BN 

A bias that compensates for the fact that the signed integer is stored in 
two's complement format. The value of this bias is 231. 

A bias that produces a normalized number, so that the algorithm does not 
cause a floating-point exception. The value of this bias is 252. 

If the desired value is x, then the constructed value is x + Be + BN. By later subtract­
ing Be + BN, the value x is left in double precision format, properly normalized by the 
iB60™ microprocessor. The value of Be + BN is 252 + 231 (Ox4330_0000_BOOO_OOOO). 

The conversion requires 7 clocks if the result is referenced in the next instruction. Three 
clocks can be overlapped with other operations. If a single-precision result is required, 
add an famov.ds instruction at the end. 

II CONVERT SIGNED INTEGER TO DOUBLE 

II The integer is in r4 
II The double-precision floating-point result is left in f7:f6 
II The register f5:f4 contains BN+BC 

xorh ~x8~~~, r4, r4 II Complement sign bit (equivalent to adding BC). 
ixfr r4, f6 II Construct low half. 
fmov.ss f5, f7 II Set exponent in high half (includes BN) 

II One instruction can be inserted here without penalty. 
fsub.dd f6, f4, f6 II (x + BN + B() - (BN + B() = x 

II Two core instructions can be inserted here without penalty. 

Example 9-6. Single to Double Conversion 
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9.6 SIGNED INTEGER DIVIDE 

Example 9-7 combines the techniques of Section 9.3 and 9.5. It requires 62 clocks (59 
clocks without remainder). 

II SIGNED INTEGER DIVIDE 
II The denominator is in r4 
II The numerator is in r5 
II The quotient is left in rb 
II The remainder is left in r7 
II The registers f2 through f11 are used as temporaries. 
II Convert Denominator and Numerator 

fld.d two52two31, fb II load constant 2**52 + 2**31 
xorh 0x8000, r4, r19 II 
ixfr r19 f4 II 
fmov.ss f7, f5 II 
xorh 0x8000, r5, r20 II 
fsub.dd f4, fb, f4 II 
ixfr r20, f2 II 
fmov.ss f7, f3 II 
fsub.dd f2, fb, f2 II 

II Do Floating-Point Divide 
fld.d fdtwo, f10 II load floating-point two 
frcp.dd f4, fb 
fmul.dd f4, fb, 
fsub.dd f10, f8, 
fmul.dd fb, f8, 
fmul.dd f4, fb, 
fsub.dd f10, f8, 
fmul.dd fb, f8, 
fmul.dd f4, fb, 
fsub.dd f10, f8, 
fmul.dd fb, f2, 
fmul.dd f8, fb, 

II Convert Quotient to 
fld.d onepluseps, 
fmul.dd f8, f10, 
ixfr r4, f10 
ftrunc.dd f8, 

II Compute Remainder 
fmlow.dd f10, f8, 
fxfr f10, r4 
fxfr 
subs 

eft 
Ie, 
r5, 

rb 
r7, 

f8 
f8 
fb 
f8 
f8 
fb 
f8 
f8 
fb 
f8 

Integer 
f10 
f8 

II first guess has 2**-8 error 
II guess * divisor 
II 2 - guess * divisor 
II second guess has 2**-15 error 
II avoid using fb as src1 
II 2 - guess * divisor 
II third guess has 2**-29 error 
II avoid using fb as src1 
II 2 - guess * divisor 
II guess * dividend 
II result = third guess * dividend 

II load value 1 + 2**-40 
II force quotient to be bigger than integer 
II get denominator for remainder computation 

f8 II convert to integer 

f10 II quotient * denominator 

II transfer quotient 
r7 II remainder = numerator - quotient * denominator 

Example 9-7. Signed Integer Divide 
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9.7 STRING COPY 

Example 9-8 shows how to avoid the freeze condition that might occiIr when using a load 
in a tight loop such as that commonly used for copying strings. A performance penalty is 
incurred if the destination of a load is referenced in the next instruction. In order to 
avoid this condition, Example 9-8 juggles characters of the string between two registers. 

II STRING COPY 
II Assumptions: 
II Source address alignment unknown 
II Destination address alignment unknown 
II End of string indicated by NUL 
II r17 - address of source string 
II r1b - address of destination string 

copy_string:: 
ld.b 0(r17) , r2b II Load one character 
bte 0, r2b, done II Test for NUL character 
adds 1, r17, r17 II Bump pointer to source string 
ld.b 0(r17) , r27 II Load one more character 
subs r17, r1b, r18 II Use constant offset to avoid 

II incrementing two indexes 
loop:: 

st.b r2b, 0(r1b) II Store previous character 
adds 1, r1b, r1b II Bump common index 
or r0, r27, r2b II Test for NUL character 
bnc.t loop II If not NUL, branch after loading 
ld.b r18(r1b), r27 II next character. r18(r1b) = 0(r17) 

done: : 
bri r1 II Return after storing 
st.b r26, 0(r1b) II the NUL character, too 

Example 9-8. String Copy 
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9.8 FLOATING-POINT PIPELINE 

Most instruction sequences that use pipelined instructions can be divided into three 
phases: 

Priming 

Continuous Operation 

Flushing 

Filling a pipeline with known intermediate results while dis­
posing of previous pipeline contents. 

Receiving expected results with the initiation of each new 
pipelined instruction. 

Retrieving the results that remain in the pipeline after the 
pipelined instruction sequence has terminated. 

Example 9-9 shows one strategy for using the floating-point adder, which has a three­
stage pipeline. This example assumes that the prior contents of the adder's pipeline are 
unimportant, and discards them by specifying register fO as the destination of the first 
three instructions. After performing the intended calculations, it flushes the pipeline by 
executing three dummy addition instructions with fO (which always contains zero) as the 
operands. 

II PIPELINED FLOATING-POINT ADD 

II Calculates f1a = f4 + f5, f11 = fb + f7 
II f12 = f8 + f9, f13 = f5 + fb 

II Assume f4 1. a, f5 2. a, fb 
II f7 = 4.a, f8 5. a, f9 

II Stage 1 
II Priming phase 

pfadd.ss f4, f5, fa II 1+2 
pfadd.ss fb, f7, fa II 3+4 
pfadd.ss f8, f9, f0 II 5+6 

II Continuous operation phase 

3.a 
6.a 

Stage 2 Stage 3 Result 

?? ?? Discard 
1+2 ?? Discard 
3+4 3 Discard 

pradd.ss f5, f6, flk) II 2+3 5+6 7 fl~= 3 
II For longer pipelined sequences, include more instructions here 

II Flushing phase 
pfadd.ss f0, f0, f11 
pfadd.ss f0, f0, f12 
pfadd.ss f0, f0, f13 

II 
II 
II 

0+0 
0+0 
0+0 

2+3 
0+0 
0+0 

Example 9-9. Pipelined Add 
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9.9 PIPELINING OF DUAL-OPERATION INSTRUCTIONS 

When using dual-operation instructions (all of which are pipelined), code that primes 
and flushes the pipelines must take into account both the adder and multiplier pipelines. 
Example 9-11 illustrates pipeline usage for a simple single-precision matrix operation: 
the dot product of a 1 x 8 row matrix A with an 8 x 1 column matrix B. For the purpose 
of tracking values through the pipelines, assume that the actual matrices to be multiplied 
have the following values: 

A = [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, B.O] B = 

B.O 
7.0 
6.0 
5.0 
4.0 
3.0 
2.0 
1.0 

Assume further that the two matrices are already loaded into registers thus: 

A: f4 = 1.0 
f5 = 2.0 
f6 = 3.0 
f7 = 4.0 
f8 = 5.0 
f9 = 6.0 
flO =7.0 

" fll =8.0 

B: fl2 = 8.0 
fl3 = 7.0 
fl4 = 6.0 
fl5 = 5.0 
fl6 = 4.0 
fl7 = 3.0 
fl8 = 2.0 
fl9 = 1.0 

The calculation to perform is 1.0*8.0 + 2.0*7.0 + ... + 8.0*1.0 - a series of multipli­
cations followed by additions. The dual-operation instructions are designed precisely to 
execute this type of calculation efficiently by using the adder and multiplier in parallel. 
At the heart of Example 9-10 is the dual-operation instruction m12apm, which multiplies 
its operands and adds the multiplier result to the result of the adder. 

The priming phase is somewhat different in Example 9-10 than in Example 9-9. Because 
the result of the adder is fed back into the adder, it is not possible to simply ignore the 
prior contents of the adder pipeline; and because the result of the multiplier is automat­
ically fed into the adder, it is important to consider the effect of the mUltiplier on the 
adder pipeline as well. This example waits until unknown results have been flushed from 
the multiplier pipeline, then puts zeros in all stages of the adder pipeline. 

Because the adder pipeline has three stages, the flushing phase produces three partial 
results that must be added together. 
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II PIPELINED DUAL-OPERATION INSTRUCTION 

II M!Jltiplier Adder 
II Stages Stages 
II 1 2 3 1 2 3 Result 

II Priming phase 
m12apm.ss f4, f12,f0 II 1*8 ?? ?? ?? ?? Discard 
m12apm.ss f5, f13,f0 II 2*7 1*8 ?? ?? ?? Discard 
m12apm.ss f6, f14,f0 II 3*6 2*7 8 ?? ?? Discard 

pfadd.ss f0, f0 ,f0 II 0 ?? ?? Discard 
pfadd.ss f0, f0 ,f0 II 0 0 ?? Discard 
pfadd.ss f0, f0 ,f0 II 0 0 0 Discard 

II Continuous operation phase 
m12apm.ss f7, f15,f0 II 4*5 3*6 14 8+0 0+0 0 Discard 
m12apm.ss f8, f16,f0 II 5*4 4*5 18 14+0 8+0 0 Discard 
m12apm.ss f9, f17,f0 II 6*3 5*4 20 18+0 14+0 8 Discard 
m12apm.ss f10,f18,f0 II 7*2 6*3 20 20+8 18+0 14 Discard 
m12apm.ss fll,fi9,f0 II 8*1 7*2 18 20+14 20+8 18 Discard 

II For larger matrices, include more instructions here 

II Flushing phase 
m12apm.ss f0, f0, f0 II 0*0 8*1 14 18+18 20+14 28 Discard 
m12apm.ss f0, f0, f0 II 0*0 0*0 8 14+28 18+18 34 Discard 
m12apm.ss f0, f0, f0 II 0*0 0*0 0 8+34 14+28 36 Discard 
II Sum the partial results 
pfadd.ss f0, f0, f20 II 0+0 8+34 42 f20=36 
pfadd.ss f20,f21,f21 II 42+36 0+0 42 f21=42 
pfadd.ss f0, f0, f20 II 0+0 42+36 0 f20=42 
pfadd.ss f0, f0, f0 II 0+0 0+0 78 Discard 
pfadd.ss f0, f0, f21 II 0+0 0+0 0 f21=78 
fadd.ss f20,f21,f20 II f20=120 

Example 9-10. Pipelined Dual-Operation Instruction 
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9.10 PIPELINING OF DOUBLE-PRECISION DUAL OPERATIONS 

Example 9-11 illustrates how pipeline usage for a double-precision differs from the 
single-precision Example 9-10. Example 9-11 performs the dot product of a 1 x 6 row 
matrix A with an 6 x 1 column matrix B. For the purpose of tracking values through the 
pipelines, assume that the actual matrices to be multiplied have the following values: 

A = [1.0, 2.0, 3.0, 4.0, 5.0, 6.0,] B= 

6.0 
5.0 
4.0 
3.0 
2.0 
1.0 

Assume further that the two matrices are already loaded into registers thus: 

A: f4:f5 = 1.0 
f6:f7 = 2.0 
f8:f9 = 3.0 
flO:fl1 = 4.0 
fl2:fl3 = 5.0 
fl4:fl5 = 6.0 

B: fl6:fl7 = 6.0 
fl8:fl9 = 5.0 
f20:f21 = 4.0 
f22:f23 = 3.0 
f24:f25 = 2.0 
f26:f27 = 1.0 

Example 9-11 differs from Example 9-10 in that, with double precision, the multiplier 
pipeline has only two stages; therefore the priming and flushing phases use fewer 
instructions. 
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II PIPELINED DUAL-OPERATION INSTRUCTION DOUBLE PRECISION 

II Multiplier Adder 
II Stages Stages 
II 1 2 1 2 3 Result 

II Priming phase 
m12apm.dd f4, f16,f0 II 1*6 ?? ?? ?? ?? Discard 
m12apm.dd f6, f18,f0 II 2*5 1*6 ?? ?? ?? Discard 

pfadd.dd f0, f0 ,f0 II 0 ?? ?? Discard 
pfadd.dd f0, f0 ,f0 II 0 0 ?? Discard 
pfadd.dd f0, f0 ,f0 II 0 0 0 Discard 

II Continuous operation phase 
m12apm.dd f8, f20,f0 II 3*4 2*5 6+0 0 0 Discard 
m12apm.dd f10,f22,f0 II 4*3 3*4 10+0 6+0 0 Discard 
m12apm.dd f12,f24,f0 II 5*2 4*3 12+0 10+0 6 Discard 
m12apm.dd f14,f26,f0 II 6*1 5*2 12+6 12+0 10 Discard 

II For larger vectors, include more instructions here 

II Flushing phase 
m12apm.dd f0, f0, f0 II 0*0 6*1 10+10 12+6 12 Discard 
m12apm.dd f0, f0, f0 II 0*0 0*0 6+12 10+10 18 Discard 

II Three partial sums are now in the adder pipeline. 
pfadd.dd f0 ,f0 ,f28 II 0 6+12 20 f28 = 18 
pfadd.dd f28,f30,f30 II 18+20 0 18 f30 = 20 
pfadd.dd f0 ,f0 ,f28 II 0 18+20 0 f28 = 18 
pfadd.dd f0 ,f0 ,f0 II 0 0 38 Discard 
pfadd.dd f0 ,f0 ,f30 II 0 0 0 f30 38 

fadd.dd f28,f30,f30 II f30 = 56 

Example 9-11. Pipelined Double-Precision Dual Operation 
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9.11 DUAL INSTRUCTION MODE 

The previous Example 9-9 and Example 9-10 showed how the i860 microprocessor can 
deliver up to two floating-point results per clock by using the pipelining and parallelism 
of the adder and multiplier units. These examples, however are not realistic, because 
they assume that the data is already loaded in registers. Example 9-12 goes one step 
further and shows how to maintain the high throughput of the floating-point unit while 
simultaneously loading the data from main memory and controlling the logical flow. 

The problem is to sum the single-precision elements of an arbitrarily long vector. The 
procedure uses dual-instruction mode to overlap loading, decision making, and branch­
ing with the basic pipelined floating-point add instruction pfadd.ss. To make obvious the 
pairing of core and floating-point instructions in dual-instruction mode, the listing in 
Example 9-12 shows the core instruction of a dual-mode pair indented with respect to 
the corresponding floating-point instruction. 

Elements are loaded two at a time into alternating pairs of registers: one time at loop1 
into f20 and f21, the next time at loop2 into f22 and f23. Performance would be slightly 
degraded if the destination of a fld.d were referenced as a source operand in the next 
two instructions. The strategy of alternating registers avoids this situation and maintains 
maximum performance. Some extra logic is needed at sumup to account for an odd 
number of elements. 
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II SINGLE-PRECISION VECTOR SUM 
II input: r16 - vector address, r17 - vector size (must be > 5) 
II output: f16 - sum of vector elements 

L1: : 

L2: : 

S· . .. 

fld.d r0(r16), f20 II Load first two elements 
mov -2, r21 II Loop decrement for bla 

II Initiate entry into dual-instruction mode 
d.pfadd.ss 
adds 

f0, 
-6, 

f0, f0 II Clear adder pipe (1) 
r17, r17 II Decrement size by 6 
II Enter into dual-instruction mode 

d.pfadd.ss 
bla 

d.pfadd.ss 
fld.d 

f0, f0, f0 II Clear adder pipe (2) 
r21, r17, L1 II Initialize LCC 
f0, f0, f0 II Clear adder pipe (3) 
8(r16)++, f22 II Load 3rd and 4th elements 

d.pfadd.ss f20, f30, 
bla r21, r17, 

d.pfadd.ss f21, f31, 
fld.d 8(r16)++, 

II If we reach this point, 
II r17 is either -4 or -3. 

f30 II Add f20 to pipeline 
L2 II If more, go to L2 after 
f31 II adding f21 to pipeline and 
f20 II loading next f20:f21 

at least one element remains to be loaded. 

II f20, f21, f22, and f23 still contain vector elements. 
II Add f20 and f22 to the pipeline, too. 
d.pfadd.ss f20, f30, f30 

br S 
d.pfadd.ss f21, f31, 

nop 

d.pfadd.ss f22, f30, 
bla r21, r17, 

d.pfadd.ss f23, f31, 
fld.d 8(r16)++, 

II If we reach this point, 
II r17 is either -4 or -3. 

II Exit loop after adding 
f31 II f21 to the pipeline 

f30 II Add f22 to pipeline 
L1 II If more, go to L1 after 
f31 II adding f23 to pipeline and 
f22 II loading next f22:f23 

at least one element remains to be loaded. 

II f20, f21, f22, and f23 still contain vector 
II Add f20 and f21 to the pipeline, too. 

elements. 

d.pfadd.ss f20, f30, f30 
nop 

d.pfadd.ss f21, 
nop 

pfadd.ss f22, 
mov -4, 

pfadd.ss f23, 
bte r21, 

f31, 

f30, 

f31, 
r17, 

fld.1 8(r16)++, 
pfadd.ss f20, f30, 

f31 

1/ Initiate exit from dual mode 
f30 1/ Still in dual mode 
r21 
f31 1/ Last dual-mode pair 
DONE 1/ If there is one more 
f20 1/ element, load it and 
f30 1/ add to pipeline 

II Intermediate results are sitting in the adder pipeline. 
1/ Let A1:A2:A3 represent the current pipeline contents 

DONE:: 
pfadd.ss f0, f0, f30 1/ 0:A1:A2 f30=A3 
pfadd.ss f30, f31, f31 1/ A2+A3:0:A1 f31=A2 
pfadd.ss f0, f0, f30 1/ 0:A2+A3:0 f30=A1 
pfadd.ss f0, f0, f0 1/ 0:0:A2+A3 
pfadd.ss f0, f0, f31 1/ 0:0:0 f31=A2+A3 
fadd.ss f30, f31, f16 II f16 = A1+A2+A3 

Example 9-12. Dual-Instruction Mode 
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9.12 CACHE STRATEGIES FOR MATRIX DOT PRODUCT 

Calculations that use (and reuse) massive amounts of data may render significantly less 
than optimum performance unless their memory access demands are carefully taken into 
consideration during algorithm design. The prior Example 9-12 easily executes at near 
the theoretical maximum speed of the i860 microprocessor because it does not make 
heavy demands on the memory subsystem. This section considers a more demanding 
calculation, the dot product of two matrices, and analyzes two memory access strategies 
as they apply to this calculation. 

The product of matrix A=Ai,j of dimension L xM with matrix B=Bi,j of dimension 
M x N is the matrix C = Ci,j of dimension L x N, where ... 

The basic algorithm for calculation of a dot product appears in Example 9-10. To extend 
this algorithm to the current problem requires adding instructions to: 

1. Load the entries of each matrix from memory at appropriate times. 

2. Repeat the inner loop as many times as necessary to span matrices of arbitrary M 
dimension. 

3. Repeat the entire algorithm L * N times to produce the L x N product matrix. 

Each of the examples 9-13 and 9-14 accomplishes the above extensions through straight­
forward programming techniques. Each example uses dual-instruction mode to perform 
the loading and loop control' operations in parallel with the basic floating-point calcula­
tions. The examples differ in their approaches to memory access and cache usage. To 
eliminate needless complexity, the examples require that the M dimension be a multiple 
of eight and that the B matrix be stored in memory by column instead of by row. Data is 
fetched 32 bytes beyond the higher-address end of both matrices. In real applications, 
programmers should ensure that no page protection faults occur que to these accesses. 

• Example 9-13 depends solely on cached loads. 

• Example 9-14 depends on a mix of cached and pipelined loads. 

Example 9-13 uses the fld instruction for all loads, which places all elements of both 
matrices A and B in the cache. This approach is ideal for small matrices. Accesses to all 
elements (after the first access to each) retrieve elements from the cache at the rate of 
one per clock. Using fld.q instructions to retrieve four elements at a time, it is possible to 
overlap all data access as well as loop control with m12apm instructions in the inner 
loop. 

Note, however, that Example 9-13 is "cache bound"; i.e., if the combined size of the two 
matrices is greater than that of the cache, cache misses will occur, degrading perfor­
mance. The larger the matrices, the more the misses that will occur. 
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II MATRIX MULTIPLY, C = A * 8, CACHED LOADS ONLY 
II Registers loaded by calling routine 
A=r16 II pointer into A, stored in memory by rows 
8=r17 II pointer into 8, stored in memory by columns 
C=r18 II pointer into C, stored in memory by rows 
L=r19 II the number of rows in A 
M=r20 II the number of columns in A and rows in 8 
N=r21 II the number of columns in 8 
II Registers used locally 
RC=r28 II rowlcolumn counter decremented by bla for loop control 
DEC=r27 II decrementor for rowlcolumn pointers 
Ar=r26 II counter of rows in A 
8c=r25 II counter of columns in 8 
8p=r24 II temporary pointer into 8 
SIZ=r23 II number of bytes in row of A or column of 8 
A1=f4; A2=f5; A3=f6; A4=f7; A5=f8; A6=f9; A7=f10;A8=f11 
81=f12;82=f13;83=f14;84=f15;85=f16;86=f17;87=f18;88=f19 

II matrix A row values 
II matrx 8 column vals 
II temporary results T1=f20;T2=f21;T3=f22 

shl 2, 
adds -8, 
adds -8, 
adds -4, 
d.fiadd.dd f0, 
adds -1, 
d.fnop 

M, 
r0, 
M, 
C, 
f0, 
L, 

SIZ 
DEC 
RC 
C 
f0 
Ar 

bla 
d.fnop 

subs 
start_row:: 

d.pfmul.ss 
mov 

d.pfmul.ss 
adds 

d.pfmul.ss 
fld.q 

d.pfadd.ss 
fld.q 

d.pfadd.ss 
adds 

d.pfadd.ss 
fld.q 

DEC, RC, start_row 

A, SIZ, A 

f0, f0, 
8, 8p 
f0, f0, 
SIZ, A, 
f0, f0, 
16(8p) , 
f0, f0, 
16 (A) , 
f0, f0, 
-1, N, 
f0, f0, 
0(A), 

f0 

f0 
A 
f0 
85 
f0 
A5 
f0 
8c 
f0 
A1 

II Number of bytes in M entries 
II Set decrementor for bla 
II Initialize rowlcolumn counter 
II Start C index one entry low 
II Initiate dual-instruction mode 
II Make row counter zero relative 
II First dual-mode pair 
II Initialize LCC 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 

Start pointer to A one row low 
Executed once per row of A 

Point to first col of 8 

Point to next row of A 

Load entries of 8 

Load entries of A 

Initialize column counter 

Load 4 entries of A 

Example 9-13. Matiix Multiply, Cached Loads Only (Sheet 1 of 2) 
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inner_loop:: II 
d.m12apm.ss 

fld .q 
d.m12apm.ss 

adds 
d.m12apm.ss 

adds 
d.m12apm.ss 

fld.q 
d.m12apm.ss 

fld. q 
d.m12apm.ss 

nop 

Process 
A5, B5, 
~(Bp), 

A6, B6, 
32, A, 
A7, B7, 
32, Bp, 
A8, B8, 
16(Bp), 
Ai, Bl, 
16 (A) , 
A2, B2, 

eight 
T1 
Bl 
T1 
A 
T1 
Bp 
T1 
B5 
T1 
A5 
T1 

d.m12apm.ss A3, B3, Tl 
bla DEC, RC, inner_loop 

d.m12apm.ss A4, B4, T2 
fld.q ~(A), Ai 

entries of row of A 
II 
II Load 4 entries 
II 
II Bump pointer to 
II 
II Bump pointer to 
II 
II Load 
II 
II Load 
II 
II 
II 

entries 

entries 

II Loop until end 
II 
II Load 4 entries 

II End Inner Loop. End of row/column 
d.m12apm.ss f~, f~, T3 II 

with eight of col of B 

of B 

A by 8 entries 

B by 8 entries 

of B 

of A 

of row/column 

of A 

subs A, SIZ, A II Set A pointer back to beginning of row 
d.m12apm.ss f~, f~, Tl II 

adds -8, M, RC II Reinitialize row/column counter 
d.m12apm.ss f~, f~, T2 II 

nop II 
d.pfadd.ss f~, f~, T3 II 

bla DEC, RC, inner_loop II Wont branch; initializes LCC 
d.pfadd.ss f~, f~, Tl II 

fld.q 16(A), A5 II Load entries of A 
d.pfadd.ss f~, f~, T2 II 

fld.q 16(Bp), B5 II Load entries of B 
d.fadd.ss Tl, T3, T3 II 

fld.q ~(A), Ai II Load entries of A 
d.fadd.ss T2, T3, T3 II 

adds -1, Bc, Bc II Decrement column counter 
d.pfadd.ss f~, f~, f~ II 

fst.l T3, 4(C)++ II Store row/column product in C 
II Continue with next column of B? 

d.pfadd.ss f~, f~, f~ II 
bnc.t inner_loop II CC controlled by prior adds 

d.pfadd.ss f~, f~, f~ II 
nop II 

II Continue with next row of A? 
d.fnop II 

xor 
d.fnop 

bnc.t 
d.fnop 

adds 
fnop 

nop 
fnop 

nop 

Ar, r~, r~ II Is row counter zero? 

-1, Ar, Ar 

II 
II 
II 
II 
II 
II 
II 
II 

Taken if row counter not zero 

Decrement row counter 
Initiate exit from dual mode 

Last dual-mode pair 
End 

Example 9-13. Matrix Multiply, Cached Loads Only (Sheet 2 of 2) 
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Example 9-14 uses fld for all the elements of each row of A, and uses pfld to pass all 
columns of B against each row of A. This example is less cache bound, because only rows 
of A are placed in the cache. More load instructions are required, because a pfld can 
load at most two single-precision operands. Still, with pipelined memory cycles, it re­
mains possible to overlap the loading of the eight items from matrix A, the eight items 
from matrix B, and the loop control with the eight m12apm instructions in the inner 
loop. 

The strategy of Example 9-14 is suitable for larger matrices than the strategy in Example 
9-13 because, even in the extreme case where only one row of A fits in the cache, cache 
misses occur only the first time each row is processed. However, if dimension M is so 
great that not even one row of A fits entirely in the cache, cache misses will still occur. 
On the other side, for small matrices, Example 9-14 may not perform as w~ll as Example 
9-13, because, even when there is sufficient space in the cache for elements of matrix B, 
Example 9-14 does not use it. 
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II MATRIX MULTIPLY, C = A * 8, CACHED AND PIPELINED LOADS MIXED 
II Registers loaded by calling routine 
A=r16 II pointer into A, stored in memory by rows 
8=r17 II pointer into 8, stored in memory by columns 
C=r18 II pointer into C, stored inmemory by rows 
L=r19 II the number of rows in A 
M=r20 II the number of columns in A and rows in 8 
N=r21 II the number of columns in 8 
II Registers used locally 
Ap=r29 II temporary pointer into A 
RC=r28 II rowlcolumn counter decremented by bla for loop control 
DEC=r27 II decrement or for rowlcolumn pointers 
Ar=r26 II counter of rows in A 
8c=r2S II counter of columns in 8 
8p=r24 II temporary pointer into 8 
SIZ=r23 II number of bytes in row of A or column of 8 
Al=f4; A2=fS; A3=f6; A4=f7; AS=f8; A6=f9; A7=f10;A8=fll II matrix A row values 
81=f12;82=f13;83=f14;84=flS;8S=f16;86=f17;87=f18;88=fl9 II matrx 8 column vals 
Tl=f20;T2=f21;T3=f22 II temporary results 

mov 8, 8p II Pointer to 8 
shl 2, M, SIZ II Number of bytes in M entries 
adds -8, r0, DEC II Set decrement or for bla 
adds -8, M, RC II Initialize rowlcolumn counter 
d.fiadd·dd f0, f0, f0 II Initiate dual-instruction mode 
adds -4, C, C II Start C index one entry low 
d.fnop II First dual-mode pair 

adds -1, L, Ar II Make row counter zero relative 
d.fnop II 

bla DEC, RC, start_row II Initialize LCC 
d.fnop II 

mov A, Ap II Pointer to A 
start_row:: II Executed once per row of A 

d.pfmul.ss f0, f0, f0 II 
pfld. d o (8p) , f0 II Load 2 entries of 8 into load pipe 

d.pfmul.ss f0, f0, f0 II 
pfld.d 8(8p)++, f0 II Load 2 entries of 8 into load pipe 

d.pfmul.ss f0, f0, f0 II 
pfld. d 8(8p)++, f0 II Load 2 entries of 8 into load pipe 

d.pfadd.ss f0, f0, f0 II 
fld.q o (Ap) , Al II Load entries of A 

d.pfadd.ss f0, f0, f0 II 
pfld.d 8(8p)++, 81 II Load 2 entries of 8 

d.pfadd.ss f0, f0, f0 II 
adds -1, N, 8c II Initialize column counter 

d.fnop II 
pfld.d 8(8p)++, 83 II Load 2 entries of 8 

inner_loop:: II Process eight entries from row of A with eight from col of 8 
d.m12apm.ss Al, 81, f0 II 

fld.q 16(Ap)++, AS II Load entries of A 
d.m12apm.ss A2, 82, f0 II 

pfld.d 8(8p)++, 85 II Load 2 entries of 8 
d.m12apm.ss A3, 83, f0 II 

pfld.d 8(8p)++, 87 II Load 2 entries of 8 

Ex~mple 9-14. Matrix Multiply, Cached and Pipelined Loads (Sheet 1 of 2) 
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d.m12apm.ss 
fld. q 

d.m12apm.ss 
nap 

A4, 84, f0 
16(Ap)++, A1 
AS, 85, f0 

d.m12apm.ss A6, 86, f0 
pfld.d 8(8p)++, 81 

d.m12apm.ss A7, 87, f0 
bla DEC, RC, inner_loop 

d.m12apm.ss A8, 88, f0 
pfld.d 8(8p)++, 83 

II 
II 
II 
II 
II 
II 
II 
II 
II 
II 

II End Inner Loop. End of rowlcolumn 
d.m12apm.ss f0, f0, f0 II 

nap II 
d.m12apm.ss f0, f0, f0 II 

adds -8, M, RC II 
d.m12apm.ss f0, f0, f0 II 

Load 4 entries of A 

Load 2 entries of 8 

Loop until end of rowlcolumn 

Load 2 entries of 8 

Reinitialize rowlcolumn counter 

mov A, Ap I I Set A pointer back to beginning of row 
d.pfadd.ss f0, f0, T3 II 

fld.q 0(Ap), A1 II Load first 4 entries of row of A 
d.pfadd.ss f0, f0, Tl II 

bla DEC, RC, inner_loop II Wont branch; initializes LCC 
d.pfadd.ss f0, f0, T2 II 

nap II 
d.fadd.ss Tl, T3, T3 II 

nap II 
d.fadd.ss T2, T3, T3 II 

adds -1, 8c, 8c II Decrement column counter 
d.pfadd.ss f0, f0, f0 II 

fst.l T3, 4(C)++ II Store rowlcolumn product in 
II Continue with next column of 8? 

d.pfadd.ss f0, f0, f0 II 
bnc.t inner_loop 

d.pfadd.ss f0, f0, f0 
II CC controlled by prior adds 
II 

nap 
II End of all columns of 8 

d.fnop 
mov 

d.fnop 
adds 

d.fnop 

8, 

A, 

8p 

SIZ, A 

mov A, Ap 
II Continue with next row of A? 

d.fnop 
xor 

d.fnop 
bnc.t 

d.fnop 
adds 

fnop 
nop 

fnop 
nop 

Ar, r0, r0 

-1, Ar, Ar 

II 

II 
II 
II 
II 
II 
II 

II 
II 
II 
II 
II 
II 
II 
II 
II 
II 

Point to first col of 8 

8ump pointer to A by one row 

Set A index to beginning of next 

Is row counter zero? 

Taken if row counter not zero 

Decrement row counter 
Initiate exit from dual mode 

Last dual-mode pair 
End 

row 

Example 9-14. Matrix Multiply, Cached and Pipelined Loads (Sheet 2 of 2) 
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9.13 3-D RENDERING 

This series of examples are routines that might be used at the lowest level of a graphics 
software system to convert a machine-independent description of a 3-D image into val­
ues for the frame buffer of a color video display. Typically, higher-level graphics routines 
represent an object as a set of polygons that together roughly describe the surfaces of the 
objects to be displayed. The graphics system maintains a database that describes these 
polygons in terms of their colors, properties of reflectance or translucence, and the 
locations in 3-D space of their vertices. Due to the roughness of the representation, the 
amount of information in the database is considerably less than that which must be 
delivered to the video display. A rendering procedure, such as Example 9-21, uses inter­
polation to derive the detailed information needed for each pixel in the graphics frame 
buffer. The rendering procedure also performs pixel-by-pixel hidden-surface elimination. 

The focus of this series of examples is Example 9-21, which operates on a segment of a 
scan line. The segment is bounded by two points of given location and color: from point 
(Xl, YO, Zl) with color intensities Redl, Grnl, Blul to point (X2, YO, Z2) with color 
intensities Red2, Grn2, Blu2. The points and color intensities are determined by higher­
level graphics software. The points represent the intersection of the scan line with two 
edges of the projected image of a polygon. For a given scan line, the rendering proce­
dure is executed once for each polygon that projects onto that scan line. The higher-level 
graphics software is responsible for orienting the objects with respect to the viewer, for 
making perspective calculations, for scaling, and for determining the amount of light that 
falls on each polygon vertex. 

The 16-bit pixel format is used, giving ample resolution for color shading: 26 intensity 
values for red, 26 intensity values for green, and 24 intensity values for blue. Example 
9-15 shows how to set the pixel size. For hidden-surface elimination, the Z-buffer (or 
depth buffer) technique is employed, each Z value having a resolution of 16-bits. 

Because the examples presented here use almost all of the registers of the i860 micro­
processor, the registers are given symbolic names, as defined by Example 9-16. In a real 
application, it is likely that some of the inputs to the rendering procedure would be 
passed in floating-point registers instead of the integer registers employed here. The 
register allocation shown in Example 9-16 simplifies the examples by avoiding the need 
to use any register for multiple purposes. 

II SET PIXEL SIZE TO 16 
ld., psr, Ra 
andnoth 0x00C0, Ra, 
orh 0x0040, Ra, 
st., Ra, psr 

II Work on psr 
Ra II Clear PS 
Ra II PS = 16-bit pixels 

II 

Example 9-15. Setting Pixel Size 
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II REGISTER DEFINITIONS FOR RENDERING PROCEDURE 
II INTEGER LOCALS 

II 

II 

Ra 
Rb 
Rc 
Rd 

r4 II 
= r5 II 
= r6 II 
= r7 II 

Temporary 
Temporary 
Temporary 
Temporary 

INTEGER INPUTS 
Xl 
dX 
ZBP 
Z1 
mZ 
FBP 
Redl 
Grnl 
Blul 
mR 
mG 
mB 

r16 II 
r17 II 
r18 II 
r19 II 
r20 II 
r21 II 
r22 II 
r23 II 
r24 II 
r25 II 
r26 II 
r27 II 

X coordinate of starting point of line segment in pixels 
Width of scan line segment in number of pixels 
Z-buffer pointer to the current line segment 
Initial Z value, fixed-point 16.16 format 
Z slope, fixed-point 16.16 format 
Graphics frame buffer pointer to the current line segment 
Initial red intensity, fixed-point 6.10 format, plus .5 
Initial green intensity, fixed-point 6.10 format, plus .5 
Initial blue intensity, fixed-point 6.10 format, plus .5 
Red slope, fixed-point 6.10 format 
Green slope, fixed-point 6·10 format 
Blue slope, fixed-point 6.10 format 

REAL LOCALS 
aZ 
aZh 
iZl 
iZlh 
iZ3 
iZ3h 
oldz 
newz 
newzh 
newi 
iR 
iRh 
aR 
aRh 
iG 
iGh 
aG 
aGh 
iB 
iBh 
aB 
aBh 
lZmask 
lZmaskh 
rZmask 
rZmaskh 

f2 II Accumulated Z values 
f3 II 
f4 II Z interpolant, coefficient 1.0 
f5 II 
f6 II Z interpolant, coefficient 3.0 
f7 I I 
f8 II Original values from the Z-buffer 
f10 II New Z-buffer values 
f11 I I 
f12 II New pixel values 
f14 II Red interpolant, coefficient 4.0 
f15 II 
f16 II Accumulated red intensities 
f17 II 
f18 II Green interpolant, coefficient 4.0 
f19 II 
f20 II Accumulated green intensities 
f21 II 
f22 II Blue interpolant, coefficient 4.0 
f23 II 
f24 II Accumulated blue intensities 
f25 II 
f26 II left-end Z mask 
f27 II 
f28 II right-end Z mask 
f29 II 

Example 9-16. Register Assignments 

9.13.1 Distance Interpolation 

To perform hidden surface elimination at each pixel, the rendering routine first interpo­
lates the value of Z at each pixel. Distance interpolation consists of calculating the slope 
of Z over the given line segment, then increasing the Z value of each successive pixel by 
that amount, starting from Xl. The width of the line segment in pixels is dX = X2 - Xl. 
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Calculate the reciprocal of dX: 

RdX = l/dX 

The value of dX is used several times as a divisor. It is most efficient to calculate its 
reciprocal once, then, instead of dividing by dX, multiply by RdX. The slope of Z is ... 

mZ = (22 - Zl)*RdX 

Because each polygon is a plane, the value of m2 is constant for all scan lines that 
intersect the polygon; therefore mZ needs to be calculated only once for each polygon. 
Example 9-21 assumes that dX and mZ have already been calculated, and all that re­
mains is to apply mZ to successive pixels. Let Z(Xn) be the Z value at pixel Xn. Then ... 

Z(Xl) = 21 
Z(X1 + 1) = Zl + mZ 
Z(X1 + 2) = Zl + 2*mZ 

Z(X1 + N) = Zl + N*mZ 

Z(X1 + dX) = Zl +. dX*mZ = Z(X2) 

Figure 9-1 illustrates this Z-value interpolation. 

(r, g, b, x, y, z = 4000) 

3000 - 2400 
mZ = 

12 PIXELS 

(r", gO, b", x", y", z" = 1000) 

Figure 9-1. Z-Buffer Interpolation 
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The faddz instruction helps to perform the above calculations 64 bits at a time. Because 
a Z value is 16 bits wide, Example 9-21 operates on the Z buffer in groups of four. The 
faddz instruction, however, treats the interpolation values (N*mZ) as 32-bit fixed-point 
numbers; therefore, two faddz instructions are executed for each group of four pixels. 
Because of the way the faddz shifts the MERGE register, the first faddz corresponds to 
even-numbered pixels, while the second corresponds to odd-numbered pixels. Instead of 
starting with the value for the first pixel (Z(X1)) and adding mZ to each pixel to produce 
the value for the next pixel, the example procedure starts with the values for the first two 
even-numbered pixels and adds 1 *mZ to each of these values to produce the values for 
the adjacent odd-numbered pair. Adding 3*mZ to each of the Z values of an odd­
numbered pair produces the values for the next even-numbered pair. Figure 9-2 shows 
one way of constructing the operands before starting the distance interpolations. (The 
initial value given to fsrc1 depends on the alignment of the first pixel.) Table 9-1 helps to 
visualize the process. 

After two faddz instructions, the MERGE register holds the Z values for four adjacent 
pixels (in the correct order). The form -instruction copies MERGE into one of the 64-bit 
floating-point registers. the values Zl + N*mZ. For each execution of faddz, src1 is the 
same as rdest of the prior faddz. After every two faddz instructions, a form instruction 
empties the MERGE register. 

The same register is used as both fsrc1 and fdest in all faddz instructions. This register 
serves to accumulate Z values for successive pixels; therefore, it is called an accumulator. 
The registers used as fsrc2 are called interpolants. The code in Example 9-17 constructs 
the interpolants; it needs to be executed only once for each polygon. 

ACCUMULATOR 

63 47 31 15 0 

I Z1 -1.0*mZ i FRACTION I Z1 - 3.0*mZ : FRACTION I INITIAL 
SRC1 

INTERPOLANTS 

63 47 31 15 0 

3.0*mZ i FRACTION I 3.0*mZ ; FRACTION I FIRST 
SRC2 

63 47 31 15 0 

I 1.0*mZ ! FRACTION I 1.0*mZ FRACTION I SECOND 
SRC2 

240329i 

Figure 9-2. faddz Operands 
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Table 9-1. faddz Visualization 

MERGE Register 
Operands 63-32 31-0 

I I I 63-48 47-32 31-16 15-0 

fsrc1 -1.0 -3.0 

fsrc2 3.0 3.0 

fdest/fsrc1 2.0 0.0 2 I I 0 I 
fsrc2 1.0 1.0 

fdest/fsrc1 3.0 1.0 3 I 2 I 1 I 0 

fsrc2 3.0 3.0 

fdest/fsrc1 6.0 4.0 6 I I 4 I 
fsrc2 1.0 1.0 

fdest/fsrc1 7.0 5.0 7 I 6 I 5 I 4 

fsrc2 3.0 3.0 

fdest/fsrc1 10.0 8.0 10 I I 8 I 
fsrc2 1.0 1.0 

fdest/fsrc1 11.0 9.0 11 I 10 I 9 I 8 

fsrc2 3.0 3.0 

fdest/fsrc1 14.0 12.0 14 I I 12 I 
fsrc2 1.0 1.0 

frdest 15.0 11.0 15 ~ 14 I 13 I 12 

Because the values of Z1 and mZ are constant for each loop through the rendering routine, the numbers 
shown here are the values of the coefficient N, where the actual operands have the values Z1 + N*mZ. For 
each execution of faddz, fsrc1 is the same as fdest of the prior faddz. After every two faddz instructions, a 
form instruction empties the MERGE register. 

9.13.2 Color Interpolation 

To determine the RGB color intensities at each pixel, the rendering routine interpolates 
between the color intensities at the end points. (This rendering technique is called 
"Gouraud shading" after H. Gouraud, "Continuous Shading of Curved Sufaces," IEEE 
Transactions on Computers, C-20(6), June 1971, pp. 623-628.) Let the symbol C (color) 
represent either R (red), G (green), or B (blue). Color interpolation consists of calcu­
lating the slope of C over the given line segment, then increasing the C values of each 
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II CONSTRUCT INTERPOL ANTS iZl 
ixfr mZ, iZl 
shl 1, mZ, 
adds Ra, mZ, 
ixfr Ra, iZ3 
fmov.ss iZl, iZlh 
fmov.ss iZ3, iZ3h 

AND iZ3 GIVEN mZ 
II Join each half 

Ra II Ra = 2*mZ 
Ra II Ra = 3*mZ 

II Join each half 
II Join each half 
II Join each half 

in 64-bit register 

in 64-bit register 
in 64-bit register 
in 64-bit register 

Example 9-17. Construction of Z Interpolants 

successive pixel by that amount, starting from the values for Xl. This must be done for 
C=R, C=G, and C=B. The slope of Cis ... 

mC = (C2 - Cl)*RdX 

... where RdX = l/dX 

The value of mC is constant for all scan lines that intersect a given pair of polygon edges; 
therefore mC needs to be calculated only once for each such pair. Example 9-21 assumes 
that mC has already been calculated for all colors, and all that remains is to apply mC to 
successive pixels. Let C(Xn) be a C value at pixel Xn. Then ... 

C(Xl) = Cl 
C(Xl + 1) 
C(Xl + 2) 

C(Xl + N) 

Cl + mC 
Cl + 2*mC 

Cl + N*mC 

C(Xl + dX) = Cl + dX*mC = C(X2) 

Figure 9-3 illustrates Gouraud shading of a triangle. 

The faddp instruction performs the above calculations 64 bits at a time. Because a pixel 
is 16 bits wide, Example 9-21 operates on pixels in groups of four. Instead of starting 
with the value for the first pixel (C(Xl» and adding mC to each pixel to produce the 
value for the next pixel, the example procedure starts with the values for the first four 
pixels and adds 4 *mC to each group of four to produce the values for the next four. 
Three faddp instructions are executed for each group of four pixels. The first increments 
the blue values; the second, green; the third, red. Figure 9-4 shows one way of construct­
ing the operands for each color before starting the color interpolations. (The initial value 
given to fsrcl depends on the alignment of the first pixel.) 

Setup of the accumulator and interpol ants is similar to that of the Z-buffer. The code in 
Example 9-18 constructs the interpolants; it needs to be executed only once for each pair 
of edges in each polygon. 
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(r = 20, g, b, x, y, z) 

rnR = 27 - 30 
12 PIXELS 

(r" = 40, g", b", x", y", z" ) 

Figure 9-3. Pixel Interpolation for Gouraud Shading 

ACCUMULATOR 

INTERPOLANT 

31 

Figure 9-4. faddp Operands 

9.13.3 Boundary Conditions 

240329i 

INITIAL 
SRC1 

SRC2 

240329i 

The i860 microprocessor operates on 64-bit quantities that are aligned on 8-byte bound­
aries. The code in this example takes full advantage of this design, handling four 16-bit 
pixels in each loop. However, if the first or last pixel of a line segment is not on an 8-byte 
boundary, two kinds of special considerations are required: 

1. Masking of Z values near the end points. 

2. Initialization of the accumulators. 
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9.13.3.1 Z-8UFFER MASKING 

When either the first or last pixel of the line segment is not at an 8-byte boundary, the 
rendering procedure must mask the first or last set of new Z-buffer values (newz) so that 
the Z-buffer and the frame buffer are not erroneously updated. Sometimes both the first 
and last pixels are in the same 4-pixel set, in which case either one may not be on an 
8-byte boundary. A function that looks up and calculates masks is outlined in 
Example 9-19. 

Because the value OxFFFF is used for masking, the Z-buffer is initialized with OxFFFE, 
so that the fzchks instruction always finds the mask to be greater than any Z-buffer 
contents. 

II. CONSTRUCT INTERPOLANTS iR, iG, iB GIVEN mR, mG, mB 
shl 18, mR, Ra II Multiply each color slope by four, 
shl 18, mG, Rb II shift by 16 to put the significant 
shl 18, mB, Rc II bits into the high-order half 
shr 16, Ra, mR II Return significant 16 bits 
shr 16, Rb, mG II to low-order half. Any sign bits 
shr 16, Rc, mB II in high-order half are gone. 
or mR, Ra, Ra II Join 16-bit quarters 
or mG, Rb, Rb II in 32-bit register 
or mB, Rc, Rc II 
ixfr Ra, iR II Join 32-bit halves 
ixfr Rb, iG II in-64-bit register 
ixfr Rc, iB II 
fmov·ss iR, iRh II 
fmov.ss iG, iGh II 
fmov.ss iB, iBh II 

Example 9-18. Construction of Color Interpolants 

·macro zmask I_align, r_align, Rx, Ry 
II I_align -- left-end alignment in two-byte units 
II r_align -- right-end alignment in two-byte units 
II Rx, Ry -- scratch registers 
II Left-end OR masks Right-end OR masks 
II Input Output Input 
II I_align IZmask r_align 
II ~ ~~~~ ~~~~ ~~~~ ~~~~ ~ FFFF 
II 1 ~~~~ ~~~~ ~~~~ FFFF 1 FFFF 
II 2 ~~~~ ~~~~ FFFF FFFF 2 FFFF 
II 3 ~~~~ FFFF FFFF FFFF 3 ~~~~ 
II If the first and last pixels are contained in 
II aligned set, then IZmask = IZmask DR rZmask • 
. endm 

Output 
rZmask 

FFFF FFFF ~~~~ 
FFFF ~~~~ ~~~~ 
~~~~ ~~~~ ~~~~ 
~~~~ ~~~~ ~~~~ 
the same 64-bit 

Example 9-19. Z Mask Procedure 
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9.13.3.2 ACCUMULATOR INITIALIZATION 

When the first pixel of the line segment is not at an 8-byte boundary, initial values 
placed in the accumulators (aZ, aB, aG, and aR) must be selected so that Zl, Red1, 
Gm1, and Btu1 correspond to the correct pixel. The desired result is that shown by 
Table 9-2. However, each value is a composite of two terms: one that is constant for each 
edge pair (n*mZ, n*mR, n*mG, n*mB) and one that can vary with each scan line (Zl, 
Red1, Gm1, Btul). The example assumes that the constant values have all been calcu­
lated and stored in a memory table of the format shown by Table 9-3. At the beginning 
of each line segment the values appropriate to the alignment of the line segment are 
retrieved from the table and added to the initial Z and color values, as shown in 
Example 9-20. 

9.13.4 The Inner Loop 

Once the proper preparations have been made, only a minimal amount of code is 
needed to render each scanline segment of a polygon. The code shown in Example 9-21 
operates on four pixels in each loop. The left and right ends of the line segment go 
through different logic paths so that the Z-buffer masks can be applied by the form 
instruction. All the interior points are handled by the tight inner loop. 

The controlling variable dX is zero-relative and is expressed as a number of pixels. The 
value of dX also indicates alignment of the end-points with respect to the 4-pixel groups. 
Unaligned left-end pixels are subtracted from dX before entering the inner loop; there­
fore, subsequent values of dX indicate the alignment of the right end. A value that is 3 
mod 4 indicates that the right end is aligned, which explains the test for a value of - 5 
near the end of the loop (- 5 mod 4 = 3). The fact that the value - 5 is loaded into 
register Rb on every execution of the loop does not represent a programming ineffi­
ciency, because there is nothing else for the core unit to do at that point anyway. 

Table 9-2. Accumulator Initial Values 

Alignment Initial Z Accumulator Values 

0 Z1 - 1*mZ Z1 - 3*mZ 
2 Z1 - 2*mZ Z1 - 4*mZ 
4 Z1 - 3*mZ Z1 - 5*mZ 
6 Z1 - 4*mZ Z1 - 6*mZ 

Alignment 
Initial Color Accumulator Values 

C = R, G, B 

0 C1 - 1*mC C1 - 2*mC C1 - 3*mC C1 - 4*mC 
2 C1 - 2*mC C1 - 3*mC C1 - 4*mC C1 - 5*mC 
4 C1 - 3*mC C1 - 4*mC C1 - 5*mC C1 - 6*mC 
6 C1 - 4*mC C1 - 5*mC C1 - 6*mC C1 - 7*mC 
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Table 9-3. Accumulator Initialization Table 

Table Values 
Alignment 

*mZ *mR *mG *mB 

0 -1, -3 -1, -2, -3, 
2 -2, -4 -2 -3, -4, 
4 -3, -5 -3, -4, -5, 
6 -4, -6 -4, -5, -6, 

II ACCUMULATOR INITIALIZATION TABLE 
.data; .align .double 

acc_init_tab:: .double [16] 0 
.dsect 

-4 -1, -2, 
-5 -2, -3, 
-6 -3, -4, 
-7 -4, -5, 

aBi: .double 
aGi: . double 
aRi: . double 
aZi: .double 

II Four initial 16-bit blue values 
II Four initial 16-bit green values 
II Four initial 16-bit red values 
II Two initial 32-bit Z values 

.end 

.text 
II INITIALIZE ACCUMULATORS 
·macro acc_init Lalign, Rtab, Rx, Ry, Fx, Fxh 

-3, 
-4, 
-5, 
-6, 

II Lalign -- left-end alignment C0 .. 3) in two-byte units 
II Rtab -- register to use for addressing the table 
II Rx, Ry, Fx, Fxh -- scratch registers 

mov acc_init_tab, Rtab II 

-4 
-5 
-6 
-7 

shl 5, Lalign, Lalign II Multiply by row width 

-1, -2, -3, 
-2, -3, -4, 
-3, -4, -5, 
-4, -5, -6 

adds Lalign, Rtab, Rtab II Index row corresponding to alignment 
fld·d aZiCRtab), aZ II Z 
ixfr Zl, Fx II Z 
fld.d aRiCRtab), aR II R--Load constant values 
shl 16, Redl, Rx II R--Shift startingvalue to hi-order 
fmov.ss Fx, Fxh II Z 
shr 16, Rx, Ry II R--Redl stripped of sign bits 
fiadd.dd Fx, aZ, aZ II Z 
or Rx, Ry, Ry II R--Form CRedl,Redl) 
ixfr Ry, Fx II R--Put in 64-bit register 
fld.d aGiCRtab), aG II G 
shl 16, Grnl, Rx II G 
fmov.ss Fx, Fxh II R--Form CRedl,Redl,Redl,Redl) 
shr 16, Rx, Ry II G 
fiadd.dd Fx, aR, aR II R--Add variables to constants 
or Rx, Ry, Ry I I G 
ixfr Ry, Fx II G 
fld.d aBiCRtab), aB II B 
shl 16, Blul, Rx II B 
fmov.ss Fx, Fxh II G 
shr 16, Rx, Ry I I B 
fiadd.dd Fx, aG, aG II G 
or Rx, Ry, Ry II B 
ixfr Ry, Fx II B 
fmov.ss Fx, Fxh II B 
fiadd.dd Fx, aB, aB II B 

.endm 

Example 9-20. Accumulator Initialization 

9-30 

-4 
-5 
-6 
-7 



PROGRAMMING EXAMPLES 

II RENDERING PROCEDURE 
II 16-bit pixels. 16-bit Z-buffer 

and 3. Xl. Ra II Determine alignment of starting-point 
acc_init Ra. Rb. Rc. Rd. Fa. Fah II Initialize accumulators 
subs 4. Ra. Rb II 4 - alignment 
subs dX. Rb. dX II Adjust dX by Xl alignment 
II If dX <= 0. then right end is in same set as left end 
and 3. dX. Rb II Determine alignment of right end 
zmask Ra. Rb. Rc. Rd II Prepare both left- and right-end masks 

left_end:: II Handle boundary conditions 
d.faddz aZ. iZ3. aZ II Interpolate 2 even Z values 

adds -8. FBP. FBP II Anticipate autoincrement 
d.faddz aZ. iZl. aZ II Interpolate 2 odd Z values 

adds -8. ZBP. ZBP II Anticipate autoincrement 
d.form lZmask. newz II Mask 4 new Z values 

fld.d 8CZBP). oldz II Fetch 4 old Z values 
d.faddp aBo iB. aB II Interpolate 4 blue intensities 

mov -4. Ra II Loop increment: 4 pixels 
d.faddp aGo iG. aG II Interpolate 4 green intensities 

adds -4. dX. dX II Prepare dX for bla at end of loop 
d.faddp aR. iR. aR II Interpolate 4 red intensities 

bla Ra. dX. Ll II Initial ize LCC 
d.form f0. newi II Move 4 new pixels to 64-bit reg 

adds 5. dX. r0 II Are there any whole sets CdX < -5)? 
Ll: d.fzchks oldz. newz. newz II Mark closer points in PM[7 .. 4] 

bc short_segment II Get out now if no whole set 
d.fnop II 

fld.d 16CZBP). oldz II Fetch 4 old Z values 
inner_loop:: II Handle all interior points 

d.faddz aZ. iZ3. aZ II Interpolate 2 even Z values 
nop II 

d.faddz aZ. iZl. at II Interpolate 2 odd Z values 
fst·d newz. 8CZBP)++ II Update Z buf from prior loop 

d.form f0. newz II Move 4 new Z values to 64-bit reg 
nop II 

d.fzchks f0. f0. f0 II Shift PM[7 .. 4] to PM[3 .. 0] 
mov -5.· Rb II -5 mod 4 = 3. aligned right end 

d.faddp aBo iB. aB II Interpolate 4 blue intensities 
pst.d newi. 8CFBP)++ II Store pixels indicated by PM [3 .. 0] 

d.faddp aGo iG. aG II Interpolate 4 green intensities 
xor Rb. dX. r0 II Are we at an aligned right end? 

d.faddp aR. iR. aR II Interpolate 4 red intensities 
bc aligned_end II Taken if at an aligned right end --> 

d.form f0. newi II Move 4 new pixels to 64-bit reg 
bla Ra. dX. inner~loop II Loop if not at end of line segment 

d.fzchks oldz. newz. newz II Mark closer points in PM[7 .. 4] 
fld·d 16CZBP). oldz II Fetch 4 old Z values for next loop 

II End of inner_loop. Right end not aligned 

Example 9-21. 3-D Rendering (1 of 2) 
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right_end:: II Handle boundary conditions 
d.faddz aZ, iZ3, aZ II Interpolate 2 even Z values 

nop 
d.faddz 

fst.d 
d.form 

nop 
d.fzchks 

nop 
d.faddp 

pst.d 
d.faddp 

nop 
d.faddp 

nop 

aligned_end:: 
d.form 

br 
d.fzchks 

nop 

short_segment:: 
d.fnop 

adds 
d.fnop 

bnc.t 
d.fnop 

fld.d 

II 
aZ, iZl, aZ II Interpolate 2 odd Z values 
newz, 8(ZBP)++ II Update Z buf from prior loop 
rZmask, newz II Mask 4 new Z values 

f~, 

aB, 
newi, 
aG, 

aR, 

II 
f~, f~ II Shift PM[7 .. 4] to PM[3 .. ~] 

II 
iB, aB II Interpolate 4 blue intensities 
8(FBP)++ II Store pixels indicated by PM[3 .. ~] 
iG, aG II Interpolate 4 green intensities 

iR, 
II 

aR II Interpolate 
II 

red intensities 

II No special boundary conditions 
f~, newi II Move 4 new pixels to 64-bit reg 
wrap_up II 
oldz, newz, newz II Mark closer points in PM[7 .. 4] 

II 

II 
8, dX, r~ II Is right end in same set as left? 

II 
right-end II Branch taken if no. 

II 
l6(ZBP), oldz II Fetch 4 old Z values 

wrap_up:: II 
fzchks 

fst.d 
fnop 

pst.d 

Store the un stored and leave dual mode. 
f~, f~, f~ II Shift PM[7 .. 4] to PM[3 .. ~] 
newz, 8(ZBP)++ II Update Z buf from prior loop 

newi, 8(FBP)++ II Store pixels indicated by PM[3 .• ~] 

Example 9-21. 3-D Rendering (2 of 2) 
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APPENDIX A 
INSTRUCTION SET SUMMARY 

Key to abbreviations: 

For register operands, the abbreviations that describe the operands are composed of two 
parts. The first part describes the type of register: 

c One of the control registers fir, psr, epsr, dirbase, db, or fsr 

f One of the floating-point registers: fO through f31 

One of the integer registers: rO through r31 

The second part identifies the field of the machine instruction into which the operand is 
to be placed: 

srcl 

srclni 

srcls 

src2 

dest 

The first of the two source-register designators, which may be 
either a register or a 16-bit immediate constant or address offset. 
The immediate value is zero-extended for logical operations and is 
sign-extended for add and subtract operations (including addu and 
subu) and for all addressing calculations. 

Same as srcl except that no immediate constant or address offset 
value is permitted. 

Same as srcl except that the immediate constant is a 5-bit value 
that is zero-extended to 32 bits. 

The second of the two source-register designators. 

The destination register designator. 

Thus, the operand specifier isrc2, for example, means that an integer register is used and 
that the encoding of that register must be placed in the src2 field of the machine 
instruction. 

Other (nonregister) operands are specified by a one-part abbreviation that represents 
both the type of operand required and the instruction field into which the value of the 
operand is placed: 

#const 

[broff 

sbroff 

A 16-bit immediate constant or address offset that the i860™ 
microprocessor sign-extends to 32 bits when computing the effec­
tive address. 

A signed, 26-bit, immediate, relative branch offset. 

A signed, 16-bit, immediate, relative branch offset. 
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brx 

INSTRUCTION SET SUMMARY 

A function that computes the target address by shifting the offset 
(either lbroff or sbroff) left by two bits, sign-extending it to 32 bits, 
and adding the result to the current instruction pointer plus four. 
The resulting target address may lie anywhere within the address 
space. 

Other abbreviations include: 

.p 

.r 

.W 

.X 

.y 

.Z 

Precision specification .ss, .sd, or .dd (.ds not permitted). Refer 
to Table A-I. 

Precision specification .55, .sd, .ds, or .dd. Refer to Table A-I. 

.ss (32 bits), or .dd (64 bits) 

.b (8 bits), .s (16 bits), or .I (32 bits) 

.I (32 bits), .d (64 bits), or .q (128 bits) 

.I (32 bits), or .d (64 bits) 

mem.x (address) The contents of the memory location indicated by address with a 
size of x. 

PM The pixel mask, which is considered as an array of eight bits 
PM[0] .. PM[7], where PM[O] is the least-significant bit. 

Instruction Definitions in Alphabetical Order 

adds isrcl, isrc2, idest ............................................................................................ Add Signed 
idest ~ isrcl + isrc2 
OF ~ (bit 31 carry ~ bit 30 carry) 
CC set if isrc2 < - isrcl (signed) 
CC clear if isrc2 ~ -isrcl (signed) 

addu isrcl, isrc2, idest ........................................................................................ Add Unsigned 
idest ~ isrcl + isrc2 
OF ~ bit 31 carry 
CC ~ bit 31 carry 

Suffix 

.ss 

.sd 

.dd 

.ds 

Table A-1. Precision Specification 

Source Precision Result Precision 

single single 
single double 
double double 
double single 
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and isrcl, isrc2, idest ............................................................................................ Logical AND 
idest ~ isrcl and isrc2 
CC set if result is zero, cleared otherwise 

andh #const, isrc2, idest.. ........................................................................... Logical AND High 
idest ~ (#const shifted left 16 bits) and isrc2 
CC set if result is zero, cleared otherwise 

andnot isrcl, isrc2, idest ............................................................................. Logical AND NOT 
idest ~ not isrcl and isrc2 
CC set if result is zero, cleared otherwise 

andnoth #const, isrc2, idest.. ............................................................ Logical AND NOT High 
idest ~ not (#const shifted left 16 bits) and isrc2 
CC set if result is zero, cleared otherwise 

bc lbroff ............................................................................................................. Branch on CC 
IF CC = 1 
THEN continue execution at brx(lbroff) 
FI 

bc.t lbroff ............ ................................................................................... Branch on CC, Taken 
IF CC = 1 
THEN execute one more sequential instruction 

continue execution at brx(lbroff) 
ELSE skip next sequential instruction 
FI 

bla isrclni, isrc2, sbroff ................................................................... Branch on LCC and Add 
LCC-temp clear if isrc2 < -isrclni (signed) 
LCC-temp set if isrc2 ~ -isrclni (signed) 

isrc2 ~ isrclni + isrc2 
Execute one more sequential instruction 
IF LCC 
THEN LCC ~ LCC-temp 

continue execution at brx(sbroff) 
ELSE LCC ~ LCC-temp 
FI 

bnc lbroff .................................................................................................... Branch on Not CC 
IF CC = 0 
THEN continue execution at brx(lbroff) 
FI 

bnc.t lbroff ..................................................................................... Branch on Not CC, Taken 
IF CC = 0 
THEN execute one more sequential instruction 

continue execution at brx(lbroff) 
ELSE skip next sequential instruction 
FI 
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br lbroff .................................................................................. Branch Direct Unconditionally 
Execute one more sequential instruction. 
Continue execution at br.x(lbroff). 

bri [isrclni] .......................................................................... Branch Indirect Unconditionally 
Execute one more sequential instruction 
IF any trap bit in psr is set 
THEN copy PU to U, PIM to 1M in psr 

clear trap bits 

FI 

IF DS is set and DIM is reset 
THEN enter dual-instruction mode after executing one 

instruction in single-instruction mode 
ELSE IF DS is set and DIM is set 

FI 

THEN enter single-instruction mode after executing one 
instruction in dual-instruction mode 

ELSE IF 
THEN 

ELSE 

FI 
FI 

DIM is set 
enter dual-instruction mode 

for next instruction pair 
enter single-instruction mode 

for next instructions pair 

Continue execution at address in isrclni 
(The original contents of isrclni is used even if the next instruction 
modifies isrclni. Does not trap if isrclni is misaligned.) 

bte isrcls, isrc2, sbroff .................................................................................... Branch If Equal 
IF isrcls = isrc2 
THEN continue execution at br.x(sbroff) 
FI 

btne isrcls, isrc2, sbroff ........................................................................... Branch If Not Equal 
IF isrcls ~ isrc2 
THEN continue execution at br.x(sbroff) 
FI 

call lbroff ......................................................................................................... Subroutine Call 
rl ~ address of next sequential instruction + 4 
Execute one more sequential instruction 
Continue execution at br.x(lbroff) 

calli [isrclni] .................................................................................... .Indirect Subroutine Call 
rl ~ address of next sequential instruction + 4 
Execute one more sequential instruction 
Continue execution at address in isrclni 

(The original contents of isrclni is used even if the next instruction 
modifies isrclni. Does not trap if isrclni is misaligned. The 
register isrclni must not be r1.) 
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fadd.p fsrel, fsre2, fdest ............................................................................. Floating-Point Add 
fdest ~ fsrel + fsre2 

faddp fsrel, fsre2, fdest ......................................................................... Add with Pixel Merge 
fdest ~ fsrel + fsre2 
Shift and load MERGE register from fsrel + fsre2 as defined in Table A-2 

faddz fsrel, fsre2, fdest ............................................................................... Add with Z Merge 
fdest ~ fsrel + fsre2 
Shift MERGE right 16 and load fields 31..16 and 63 . .48 from fsrel + fsre2 

famov.r fsrel, fdest ....................................................................... Floating-Point Adder Move 
fdest ~ fsrel 

fiadd.w fsrel, fsre2, fdest .............................................................................. Long-Integer Add 
fdest ~ fsrel + fsre2 

fisub.w fsrel, fsre2, fdest ...................................................................... Long-Integer Subtract 
frdest ~ fsrel - fsre2 

fix.p fsrel, fdest ............................................................ Floating-Point to Integer Conversion 
fdest ~ 64-bit value with low-order 32 bits equal to integer part of fsrel rounded 

Floating-Point Load 
fld.y isrel (isre2) , fdest ................................................................................................ (Normal) 
fld.y isrel (isre2) + +, fdest ............................................................................. (Autoincrement) 

fdest ~ mem.y (isrel + isre2) 
IF autoincrement 
THEN isre2 ~ isrel + isre2 
FI 

Cache Flush 
flush #eonst (isre2) .................................................................................................... (Normal) 
flush #const(isre2) + + ................................................................................. (Autoincrement) 

Replace block in data cache with address (#const + isre2). 
Contents of block undefined. 
IF autoincrement 
THEN isrc2 ~ #const + isrc2 
FI 

Table A-2. FADDP MERGE Update 

Pixel Size Fields Loaded from 
(from PS) Result into MERGE 

8 63 .. 56, 47 . .40, 31 .. 24, 15 .. 8 
16 63 .. 58, 47 . .42, 31 .. 26, 15 .. 10 
32 63 .. 56, 31 .. 24 
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fmlow.dd fsrcl, fsrc2, fdes! ........................................................ Floating·Point Multiply Low 
fdes! ~ low-order 53 bits of fsrcl mantissa x fsrc2 mantissa 
fdes! bit 53 ~ most significant bit of (fsrcl mantissa x fsrc2 mantissa) 

fmov.r fsrcl, fdes! ..................................................................... Floating·Point Reg·Reg Move 
Assembler pseudo-operation 

fmov.ss fsrcl, fdes! 
fmov.dd fsrcl, fdes! 
fmov.sd fsrcl, fdes! 
fmov.ds fsrcl, fdes! 

= fiadd.ss fsrcl, fO, fdes! 
= fiadd.dd fsrcl, fO, fdes! 
= famov.sd fsrcl, fdes! 
= famov.ds fsrcl, fdes! 

fmul.p fsrcl, fsrc2, fdes! ..................................................................... Floating·Point Multiply 
fdes! ~ fsrcl x fsrc2 

fnop .......................................................................................... Floating·Point No Operation 
Assembler pseudo-operation 

fnop = shrd rO, rO, rO 

form fsrcl, fdes! ............................................................................. OR with MERGE Register 
fdes! ~ fsrcl OR MERGE 
MERGE~ 0 

frcp.p fsrc2, fdes! ............................................................................ Floating-Point Reciprocal 
fdes! ~ 1 / fsrc2 with maximum mantissa error < 2- 7 

frsqr.p fsrc2, fdes! ..................................................... Floating·Point Reciprocal Square Root 
fdes! ~ 1 / y(fsrc2) with maximum mantissa error < 2- 7 

Floating·Point Store 
fst.y fdes!, fsrcl (fsrc2) ................................................................................................ (Normal) 
fst.y fdes!, fsrcl (fsrc2) + + ............................................................................ (Autoincrement) 

mem.y (fsrc2 + fsrcl) ~ fdes! 
IF auto increment 
THEN fsrc2 ~ fsrcl + fsrc2 
FI 

fsub.p fsrcl, fsrc2, fdes! ..................................................................... Floating.Point Subtract 
fdes! ~ fsrcl - fsrc2 

ftrunc.p fsrcl, fdes! ...................................................... Floating·Point to Integer Conversion 
fdes! ~ 64-bit value with low-order 32 bits equal to integer part of fsrcl 

fxfr fsrcl, ides! ..................................................................... Transfer F·P to Integer Register 
ides! ~ fsrcl 
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fzchkl fsrcl, fsrc2, fdest ........................................................................ 32-Bit Z-ButTer Check 
Consider fsrcl, fsrc2, and fdest as arrays of two 32-bit 

fields fsrcl (O)./srcl (1), fsrc2 (O)./src2 (1), and fdest (O)./dest (1) 
where zero denotes the least-significant field. 

PM ~ PM shifted right by 2 bits 
FOR i = 0 to 1 
DO 

PM [i + 6] ~ fsrc2(i) :5 fsrcl(i) (unsigned) 
fdest(i) ~ smaller of fsrc2(i) and fsrcl (i) 

OD 
MERGE~O 

fzchks fsrcl, fsrc2, fdest ....................................................................... 16-Bit Z-ButTer Check 
Consider fsrcl, fsrc2, and fdest as arrays of four 16-bit 

fields fsrcl (O)./srcl (3), fsrc2(O)./src2(3), and fdest(O)./dest(3) 
where zero denotes the least-significant field. 

PM ~ PM shifted right by 4 bits 
FOR i = 0 to 3 
DO 
PM [i + 4] ~ fsrc2(i) :5 fsrcl(i) (unsigned) 

fdest(i) ~ smaller of fsrc2(i) and fsrcl(i) 
aD 
MERGE~O 

intoYr ............................................................................... Software Trap on Integer Overflow 
IF OF = 1 
THEN generate trap with IT set in psr 
FI 

ixfr isrclni, fdest ................................................. .................. Transfer Integer to F-P Register 
fdest ~ isrclni 

Id.c csrc2, idest ............................................................................ Load from Control Register 
idest ~ csrc2 

Id.x isrcl (isrc2) , idest ............................................................................................ Load Integer 
idest ~ mem.x (isrcl + isrc2) 

lock .............................................................................................. Begin Interlocked Sequence 
Set BL in dirbase. 
The next load or store that misses the cache locks that location. 
Disable interrupts until the bus is unlocked. 

moy isrc2, idest ................................................................................... Register-Register Move 
Assembler pseudo-operation 

moy isrc2, idest = shl rO, isrc2, idest 
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nop ................................................................................................... Core-Unit No Operation 
Assembler pseudo-operation 

nop = shl rO, rO, rO 

or isrcl, isrc2, idest ................................................................................................. Logical OR 
idest ~ isrcl OR isrc2 
CC set if result is zero, cleared otherwise 

orh #const, isrc2, idest .................................................................................. Logical OR high 
idest ~ (#const shifted left 16 bits) OR isrc2 
CC set if result is zero, cleared otherwise 

pfadd.p fsrcl, fsrc2, fdest.. ........................................................ Pipelined Floating-Point Add 
fdest ~ last stage adder result 
Advance A pipeline one stage 
A pipeline first stage ~ fsrcl + fsrc2 

pfaddp fsrcl, fsrc2, fdest ...................................................... Pipelined Add with Pixel Merge 
fdest ~ last stage graphics result 
last stage graphics result ~ fsrcl + fsrc2 
Shift and load MERGE register from fsrcl + fsrc2 as defined in Table A-2 

pfaddz fsrcl, fsrc2, fdest ............................................................ Pipelined Add with Z Merge 
frdest ~ last stage graphics result 
last stage graphics result ~ fsrcl + fsrc2 
Shift MERGE right 16 and load fields 31 .. 16 and 63 .. 48 fromfsrcl + fsrc2 

pfam.p fsrcl, fsrc2, fdest .................................... Pipelined Floating-Point Add and Multiply 
fdest ~ last stage adder result 
Advance A and M pipeline one stage 

(operands accessed before advancing pipeline) 
A pipeline first stage ~ A-op1 + A-op2 
M pipeline first stage ~ M-op1 x M-op2 

pfamov.r fsrcl, fdest .................................................... Pipelined Floating-Point Adder Move 
fdest ~ last stage adder result 
Advance A pipeline one stage 
A pipeline first stage ~ fsrcl 

pfeq.p fsrcl, fsrc2, fdest ........................................ Pipelined Floating-Point Equal Compare 
fdest ~ last stage adder result 
CC set if fsrcl = fsrc2, else cleared 
Advance A pipeline one stage 
A pipeline first stage is undefined, but no result exception occurs 

pfgt.p fsrcl, fsrc2, fdest.. .......................... Pipelined Floating-Point Greater-Than Compare 
(Assembler clears R-bit of instruction) 
fdest ~ last stage adder result 
CC set if fsrcl > fsrc2, else cleared 
Advance A pipeline one stage 
A pipeline first stage is undefined, but no result exception occurs 
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pfiadd.w fsrcl, fsrc2, fdes! ........................................................... Pipelined Long-Integer Add 
fdes! ~ last stage graphics result 
last stage graphics result ~ fsrcl + fsrc2 

pfisub.w fsrcl, fsrc2, fdes! ................................................... Pipelined Long-Integer Subtract 
fdes! ~ last stage graphics result 
last stage graphics result ~ fsrcl - fsrc2 

pfix.p fsrcl, fdes! ......................................... Pipelined Floating-Point to Integer Conversion 
fdes! ~ last stage adder result 
Advance A pipeline one stage 
A pipeline first stage ~ 64-bit value with low-order 32 bits 

equal to integer part of fsrcl rounded 

Pipelined Floating-Point Load 
pfld.z isrcl (isrc2) , fdes! .............................................................................................. (Normal) 
pfld.z isrcl (isrc2) + +, fdes! ........................................................................... (Autoincrement) 

fdes! ~ mem.z (third previous pfld's (isrcl + isrc2)) 
(where .z is precision of third previous pfld.z) 

IF autoincrement 
THEN isrc2 ~ isrcl + isrc2 
FI 

pfle.p fsrcl, fsrc2, fdes! ................................... Pipelined F-P Less-Than or Equal Compare 
(Identical to pfgt.p except that 

assembler sets R-bit of instruction.) 
fdes! ~ last stage adder result 
Co. clear if fsrcl :5 fsrc2, else set 
Advance A pipeline one stage 
A pipeline first stage is undefined, but no result exception occurs 

pfmam.p fsrcl, fsrc2, fdes! ................................. Pipelined Floating-Point Add and Multiply 
fdes! ~ last stage multiplier result 
Advance A and M pipeline one stage 

(operands accessed before advancing pipeline) 
A pipeline first stage ~ A-opl + A-op2 
M pipeline first stage ~ M-opl x M-op2 

pfmov.r fsrcl, fdes! .................................................. Pipelined Floating-Point Reg-Reg Move 
Assembler pseudo-operation 

pfmov.ss fsrcl, fdes! = pfiadd.ss fsrcl, fO, fdes! 
pfmov.dd fsrcl, fdes! = pfiadd.dd fsrcl, fO, fdes! 
pfmov.sd fsrcl, fdes! = pfamov.sd fsrcl, fdes! 
pfmov.ds fsrcl, fdes! = pfamov.ds fsrcl, fdes! 

pfmsm.p fsrcl, fsrc2, fdes! ......................... Pipelined Floating-Point Subtract and Multiply 
fdes! ~ last stage multiplier result 
Advance A and M pipeline one stage 

(operands accessed before advancing pipeline) 
A pipeline first stage ~ A-opl - A-op2 
M pipeline first stage ~ M-opl x M-op2 
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pfmul.p fsrcl, fsrc2, fdest .................................................. Pipelined Floating-Point Multiply 
fdest ~ last stage multiplier result 
Advance M pipeline one stage 
M pipeline first stage ~ fsrcl x fsrc2 

pfmul3.p fsrcl, fsrc2, fdest .................................................... Three-Stage Pipelined Multiply 
fdest ~ last stage multiplier result 
Advance 3-Stage M pipeline one stage 
M pipeline first stage ~ fsrcl x fsrc2 

pform fsrcl, fdest ............................................................. Pipelined OR to MERGE Register 
fdest ~ last stage graphics result 
last stage graphics result ~ fsrcl OR MERGE 
MERGE~O 

pfsm.p fsrcl, fsrc2, fdest ............................ Pipelined Floating-Point Subtract and Multiply 
fdest ~ last stage adder result 
Advance A and M pipeline one stage 

(operands accessed before advancing pipeline) 
A pipeline first stage ~ A-op1 - A-op2 
M pipeline first stage ~ M-op1 x M-op2 

pfsub.p fsrcl, fsrc2, fdest .................................................. Pipelined Floating-Point Subtract 
fdest ~ last stage adder result 
Advance A pipeline one stage 
A pipeline first stage ~ fsrcl - fsrc2 

pftrunc.p fsrcl, fdest ................................... Pipelined Floating-Point to Integer Conversion 
fdest ~ last stage adder result 
Advance A pipeline one stage 
A pipeline first stage ~ 64-bit value with low-order 32 bits 

equal to integer part of fsrcl 

pfzchkl fsrcl, fsrc2, fdest ..................................................... Pipelined 32-Bit Z-Buffer Check 
Consider fsrcl, fsrc2, and fdest as arrays of two 32-bit 

fields fsrcl (O).fsrcl (1), fsrc2 (O).fsrc2 (1), and fdest (O).fdest(l) 
where zero denotes the least-significant field. 

PM ~ PM shifted right by 2 bits 
FOR i = 0 to 1 
DO 

PM [i + 6] ~ fsrc2(i) ~ fsrcl(i) (unsigned) 
fdest(i) ~ last stage graphics result 

last stage graphics result ~ smaller of fsrc2(i) and fsrcl (i) 
OD 
MERGE~ 0 
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pfzchks fsrcl, fsrc2, fdes! .................................................... Pipelined 16-Bit Z-Buffer Check 
Consider fsrcl, fsrc2, and fdes! as arrays of four 16-bit 

fields fsrcl (O).!srcl (3), fsrc2 (0).!src2 (3), and fdest (0).!dest(3) 
where zero denotes the least-significant field. 

PM ~ PM shifted right by 4 bits 
FOR i = 0 to 3 
DO 

PM [i + 4] ~ fsrc2(i) ~ fsrcl(i) (unsigned) 
fdest ~ last stage graphics result 
last stage graphics result(i) ~ smaller of fsrc2 (i) and fsrcl (i) 

aD 
MERGE ~ 0 

Pixel Store 
pst.d fdest, #cons!(isrc2) .......................................................................................... {Normal) 
pst.d fdest, #cons!(isrc2) + + ....................................................................... {Autoincrement) 

Pixels enabled by PM in mem.d (isrc2 + #const) ~ fdest 
Shift PM right by 8/pixel size (in bytes) bits 
IF autoincrement 
THEN isrc2 ~ #const + isrc2 
FI 

shl isrcl, isrc2, idest ................................................................................................... Shift Left 
ides! ~ isrc2 shifted left by isrcl bits 

shr isrcl, isrc2, idest ................................................................................................ Shift Right 
SC (in psr) ~ isrcl 
idest~ isrc2 shifted right by isrcl bits 

shra isrcl, isrc2, ides! ........................................................................... Shift Right Arithmetic 
idest ~ isrc2 arithmetically shifted right by isrcl bits 

shrd isrclni, isrc2, idest .............................................................................. Shift Right Double 
ides! ~ low-order 32 bits of isrclni:isrc2 shifted right by SC bits 

st.c srclni, csrc2 .............................................................................. Store to Control Register 
csrc2 ~ srclni 

st.x isrclni, #const (isrc2) .................................................................................... Store Integer 
mem.x (isrc2 + #const) ~ isrclni 

subs isrcl, isrc2, ides! ..................................................................................... Subtract Signed 
ides! ~ isrcl - isrc2 
OF ~ (bit 31 carry ~ bit 30 carry) 
CC set if isrc2 > isrcl (signed) 
CC clear if isrc2 ~ isrcl (signed) 
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subu isrcl, isrc2, idest ................................................................................ Subtract Unsigned 
idest ~ isrcl - isrc2 
OF ~ NOT (bit 31 carry) 
CC ~ bit 31 carry 
(i.e. CC set if isrc2 S; isrcl (unsigned) 

CC clear if isrc2 > isrcl (unsigned» 

trap isrclni, isrc2, idest ...................................................................................... Software Trap 
·Generate trap with IT set in psr 

unlock ............................................................................................. End Interlocked Sequence 
Clear BL in dirbase. 
The next load or store unlocks the bus. 
Interrupts are enabled. 

xor isrcl, isrc2, idest .............................................................................. Logical Exclusive OR 
idest ~ isrcl XOR isrc2 
CC set if result is zero, cleared otherwise 

xorh #const, isrc2, idest ............................................................... Logical Exclusive OR High 
idest ~ (#const shifted left 16 bits) XOR isrc2 
CC set if result is zero, cleared otherwise 
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APPENDIX B 
INSTRUCTION FORMAT AND ENCODING 

All instructions are 32 bits long and begin on a four-byte boundary. When operands are 
registers, the encodings shown in Table B-1 are used. 

Among the core instructions, there are two general formats: REG-format and CTRL­
format. Within the REG-format are several variations. 

Table 8-1. Register Encoding 

Register Encoding 

rO 0 

r31 31 

10 0 

131 31 

Fault Instruction 0 
Processor Status 1 
Directory Base 2 
Data Breakpoint 3 
Floating-Point Status 4 
Extended Processor Status 5 
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REG-Format Instructions 

OPCODE/I 

OPCODE/I 

GENERAL FORMAT 

NULL/IMMEDIATE/OFFSET 

16-BIT IMMEDIATE VARIANT (EXCEPT BTE AND BTNE) 

ST, BLA, BTE, AND BLUE 

15 

IMMEDIATE CONSTANT 
OR ADDRESS OFFSET 

10 

OFFSET LOW 

BTE AND BTNE WITH 5-BIT IMMEDIATE 

OFFSET LOW 

o 

o 

240329i 

The src2 field selects one of the 32 integer registers (most instructions) or one of the 
control registers ( st.e and Id.e). Dest selects one of the 32 integer registers (most instruc­
tions) or floating-point registers (fld, fst, pfld, pst, ixfr). For instructions where srcl is 
optionally an immediate constant or address offset, bit 26 of the opcode (I-bit) indicates 
whether srcl is immediate. If bit 26 is clear, an integer register is used; if bit 26 is set, 
srcl is contained in the low-order 16 bits, except for bte and btne instructions. For bte 
and btne, the five-bit immediate constant is contained in the srcl field. For st, bte, btne, 
and bla, the upper five bits of the offset or broffset are contained in the dest field instead 
of srcl, and the lower 11 bits of offset are the lower 11 bits of the instruction. 

For Id and st, bits 28 and zero determine operand size as follows: 

Bit 28 Bit 0 Operand Size 

0 0 8-bits 

0 1 a-bits 

1 0 16-bits 

1 1 32-bits 
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When srcl is immediate and bit 28 is set, bit zero of the immediate value is forced to 
zero. 

For fld, fst, pfld, pst, and flush, bit 0 selects autoincrement addressing if set. Bits one and 
two select the operand size as follows: 

Bit 1 Bit 2 Operand Size 

0 0 64-bits 

0 1 128-bits 

1 0 32-bits 

1 1 32-bits 

When srcl is immediate, bits zero and one of the immediate value are forced to zero to 
maintain alignment. When bit one of the immediate value is clear, bit two is also forced 
to zero. 
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REG-Format Opcodes 

Id.x 
st.x 
ixfr 

fld.x, fst.x 
flush 
pst.d 
Id.c, st.c 
bri 
trap 

bte, btne 
pfld.y 

addu, -s, subu, -s, 
shl, shr 
shrd 
bla 
shra 
and(h) 
andnot(h) 
or(h) 
xor(h) 

L Integer Length 
o -8 bits 

Load Integer 
Store Integer 
Integer to F-P Reg Transfer 
(reserved) 
Load/Store F-P 
Flush 
Pixel Store 
Load/Store Control Register 
Branch Indirect 
Trap 
(Escape for F-P Unit) 
(Escape for Core Unit) 
Branch Equal or Not Equal 
Pipelined F-P Load 
(CTRL-Format Instructions) 
Add/Subtract 
Logical Shift 
Double Shift 
Branch LCC Set and Add 
Arithmetic Shift 
AND 
ANDNOT 
OR 
XOR 
(reserved) 

1 -16 or 32 bits (selected by bit 0) 
LS Load/Store 

o -Load 
1 -Store 

SO Signed/Ordinal 
o -Ordinal 
1 -Signed 

H High 
o -and, or, andnot, xor 
1 - andh, orh, andnoth, xorh 
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31 30 29 28 27 26 

0 0 0 L 0 
0 0 0 L 1 
0 0 0 0 1 
0 0 0 1 1 
0 0 1 0 LS 
0 0 1 1 0 
0 0 1 1 1 
0 0 1 1 LS 
0 1 0 0 0 
0 1 0 0 0 
0 1 0 0 1 
0 1 0 0 1 
0 1 0 1 E 
0 1 1 0 0 
0 1 1 x x 
1 0 0 SO AS 
1 0 1 0 LR 
1 0 1 1 0 
1 0 1 1 0 
1 0 1 1 1 
1 1 0 0 H 
1 1 0 1 H 
1 1 1 0 H 
1 1 1 1 H 
1 1 x x 1 

AS Add/Subtract 
o -Add 
1 -Subtract 

LR Left/Right 
o - Left Shift 
1 - Right Shift 

E Equal 
o - Branch on Not Equal 
1 - Branch on Equal 
Immediate 
o - src1 is register 
1 - src1 is immediate 

I 
1 
0 
0 
I 
1 
1 
0 
0 
1 
0 
1 
I 
I 
x 
I 
I 
0 
1 
I 
I 
I 
I 
I 
0 
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Core Escape Instructions 

31 26 15 10 5 o 

010011 reserved SRC1 reserved OPCODE 

240329i 

Core Escape Opcodes 

4 3 2 o 
(reserved) 0 0 0 0 0 

lock Begin Interlocked Sequence 0 0 0 0 1 
calli Indirect Subroutine Call 0 0 0 1 0 

(reserved) 0 0 0 1 1 
intovr Trap on Integer Overflow 0 0 1 0 0 

(reserved) 0 0 1 0 1 
(reserved) 0 0 1 1 0 

unlock End Interlocked Sequence 0 0 1 1 1 
(reserved) 0 1 x x x 
(reserved) 1 0 x x x 
(reserved) 1 1 x x x 
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CTRL-Format Instructions 

31 28 25 o 

BROFFSET 

240329i 

CTRL-Format Opcodes 

28 27 26 

br Branch Direct 0 1 0 
call Call 0 1 1 
bc(.t) Branch on CC Set 1 0 T 
bnc(.t) Branch on CC Clear 1 1 T 

T Taken 
o -bc or bnc 
1 - bc.t or bnc.t 
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Floating-Point Instruction Encoding 

31 25 20 15 7 0 

010010 SRC2 DEST SACI Iplolslnl OPCOOE 

SRC1,SRC2 
DEST 

- Source; one of 32 floating-point registers 
- Destination register 

P 

D 

(instructions other than fxfr) one of 32 floating-point registers 
(fxfr) one of 32 integer registers 

Pipelining 
1 - Pipelined instruction mode 
o - Scalar instruction mode 
Dual-Instruction Mode 
1 - Dual-instruction mode 
o - Single-instruction mode 

S 

R 

8-7 

Source Precision 
1 - Double-precision source operands 
o - Single-precision source operands 
Result Precision 
1 - Double-precision result 
o - Single-precision result 
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Floating-Point Opcodes 

6 5 

pfam Add and Multiply* 
0 0 pfmam Multiply with Add* 

pfsm Subtract and Multiply* 
0 0 pfmsm Multiply with Subtract* 

(p)fmul Multiply 0 1 
fmlow Multiply Low 0 1 
frcp Reciprocal 0 1 
frsqr Reciprocal Square Root 0 1 
pfmul3.dd 3-Stage Pipelined Multiply 0 1 
(p)fadd Add 0 1 
(p)fsub Subtract 0 1 
(p)fix Fix 0 1 
(p)famov Adder Move 0 1 
pfgt/pfle** Greater Than 0 1 
pfeq Equal 0 1 
(p)ftrunc Truncate 0 1 
fxfr Transfer to Integer Register 1 0 
(p)fiadd Long-Integer Add 1 0 
(p)fisub Long-Integer Subtract 1 0 
(p)fzchkl Z-Check Long 1 0 
(p)fzchks Z-Check Short 1 0 
(p)faddp Add with Pixel Merge 1 0 
(p)faddz Add with Z Merge 1 0 
(p)form OR with MERGE Register 1 0 

* pfam and pfsm have P-bit set; pfmam and pfmsm have P-bit clear. 
** pfgt has R bit cleared; pfle has R bit set. 

8-8 

4 

0 

1 

0 
0 
0 
0 
0 
1 
1 
1 
1 
1 
1 
1 
0 
0 
0 
1 
1 
1 
1 
1 

3 2 o 

OPC 

OPC 

0 0 0 0 
0 0 0 1 
0 0 1 0 
0 0 1 1 
0 1 0 0 
0 0 0 0 
0 0 0 1 
0 0 1 0 
0 0 1 1 
0 1 0 0 
0 1 0 1 
1 0 1 0 
0 0 0 0 
1 0 0 1 
1 1 0 1 
0 1 1 1 
1 1 1 1 
0 0 0 0 
0 0 0 1 
1 0 1 0 
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APPENDIX C 
INSTRUCTION TIMINGS 

i860™ microprocessor instructions take one clock to execute unless a freeze condition is 
invoked. Freeze conditions and their associated delays are shown in the table below. 
Freezes due to multiple simultaneous cache misses result in a delay that is the sum of 
the delays for processing each miss by itself. Other multiple freeze conditions usually 
add only the delay of the longest individual freeze. 

Freeze Condition Delay 

Instruction-cache miss Number of clocks to read instruction (from ADS 
clock to first READY # clock) plus time to last 
READY# of block when jump or freeze occurs 
during miss processing plus two clocks if data 
cache being accessed when instruction-cache 
miss occurs. 

Reference to destination of Id instruction that One plus number of clocks to read data (from 
misses ADS clock to first READY# clock) minus number 

of instructions executed since load (not counting 
instruction that references load destination) 

fld miss One plus number of clocks from ADS to first (or 
second in the case of fld.q) READY returned 

call, calli, fxfr, Id.c, or st.C and data cache load One plus number of clocks until first (or second 
miss processing in progress in the case of 128-bit loads) READY returned 

Id, st, pfld, fld, fst, or ixfr and data cache load One plus number of clocks until last READY 
miss processing in progress returned 

Reference to dest of Id, call, calli, fxfr, or Id.c in One clock 
the next instruction. (Dest of call and calli is r1) 

Reference to dest of fld, pfld, or ixfr in the next Two clocks in the first instruction; or one in the 
two instructions second instruction 

bc, bnc, bc.t, or bnc.t following addu, adds, One clock 
subu, subs, pfeq, pfle, or pfgt 

Fsrc1 of multiplier operation refers to result of One clock 
previous operation (either scalar or pipelined) 

Floating-point operation or graphics-unit If the scalar operation is fadd, fix, fmlow, 
instruction or fst and scalar operation in fmul.ss, fmul.sd, ftrunc, or fsub, two minus the 
progress other than frcp or frsqr number of instructions (or dual pairs) executed 

after the scalar operation. If the scalar operation 
is fmul.dd, three minus the number of instruc-
tions (or dual pairs) executed after it. Add one if 
one or both of the following situations occur: 
a. There is an overlap between the result regis-

ter(s) of the previous scalar operation, and 
the source of the floating-point operation, and 
the destination precision of the scalar opera-
tion is different from the source precision of 
the floating-point operation. 

b. The floating-point operation is pipelined and 
its destination is not fO. 

If the sum of the above terms is negative, there 
is no delay. 
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Freeze Condition Delay 

Multiplier operation preceded by a double- One clock 
precision multiply 

TLB miss Five plus the number of clocks to finish two 
reads plus the number of clocks to set A-bits (if 
necessary) 

pfld when three pfld's are outstanding One plus the number of clocks to return data 
from first pfld 

pfld hits in the data cache Two plus the number of clocks to finish all out-
standing accesses 

Store pipe full (two store miss cycles pending or One plus the number of clocks until READY# 
a 256-bit WB cycle pending plus external bus active on next 64-bit write cycle or 2nd READY # 
pipeline full) and st or fst miss, Id miss, or flush of next 128-bit write cycle 

Address pipe full (two internal bus cycles pend- Number of clocks until next non-repeated ad-
ing plus external bus pipeline full) and Id, fld, dress can be issued (Le., an address which is 
pfld, st, fst not the 2nd-4th cycle of a cache fill, or the 2nd-

8th cycle of a CS8 mode instruction fetch, or the 
2nd cycle of an 128-bit write) 

Id or fld following st or fst hit One clock 

Delayed branch not taken One clock 

Nondelayed branch taken: 
bc, bnc One clock 
bte, btne Two clocks 

Branch indirect brl One clock 

st.e Two clocks 

Result of graphics-unit instruction (other than One clock 
fmov.dd) used in next instruction when the next 
instruction is an adder or multiplier instruction 

Result of graphics-unit instruction used in next One clock 
instruction when the next instruction is a 
graphics-unit instruction 

flush followed by flush Three clocks minus the number of instructions 
between the two flush instructions 

fst followed by pipe lined floating-point operation One clock 
that overwrites the register being stored 

Some multiplies, depending on data pattern and Two clocks 
rounding mode. This delay occurs on 2 data 
patterns in every 256. 

C-2 



Instruction Characteristics 0 





APPENDIX D 
INSTRUCTION CHARACTERISTICS 

The following table lists some of the characterisics of each instruction. The characteris­
tics are: 

• What processing unit executes the instruction. The codes for processing units are: 

A floating-point adder unit 
E Core execution unit 
G Graphics unit 
M Floating-point mUltiplier unit 

• Whether the instruction is pipelined or not. A P indicates that the instruction is 
pipelined. 

• Whether the instruction is a delayed branch instruction. A D marks the delayed 
branches. 

• Whether the instruction changes the condition code CC. A CC marks those instruc­
tions that change CC. 

• Which faults can be caused by the instruction. The codes used for exceptions are: 

IT Instruction Fault 
SE Floating-Point Source Exception 
RE Floating-Point Result Exception, including overflow, underflow, inexact 

result 
DAT Data Access Fault 

Note that this is not the same as specifying at which instructions faults may be reported. 
A fault is reported on the subsequent floating-point instruction plus pst, fst, and some­
times fld, pfld, and ixfr. See Section 7.4.2 for more information on result exception 
reporting. 

The instruction access fault IAT and the interrupt trap IN are not shown in the table 
because they can occur for any instruction. 

• Performance notes. These comments regarding optimum performance are recommen­
dations only. If these recommendations are not followed, the i860™ microprocessor 
automatically waits the necessary number of clocks to satisfy internal hardware re­
quirements. The following notes define the numeric codes that appear in the instruc-
tion table: . 

1. The following instruction should not be a conditional branch (be, bne, be.t, or 
bne.t). .t. 

2. The destination should not be a source operand of the next two instructions. 

3. A load should not directly follow a store that is expected to hit in the data cache. 

4. When the prior instruction is scalar, srcl should not be the same as the dest of 
the prior operation. . 

5. The [reg should not reference the destination of the next instruction if that 
instruction is a pipelined floating-point operation. 
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6. The destination should not be a source operand of the next instruction. 

7. When the prior operation is scalar and multiplier opi is fsrei, fsre2 should not be 
the same as the fdest of the prior operation. 

8. When the prior operation is scalar, srei and sre2 of the current operation should 
not be the same as dest of the prior operation. 

9. A pfld should not immediately follow a pfld 

• Programming restrictions. These indicate combinations of conditions that must be 
avoided by programmers, assemblers, and compilers. The following notes define the 
alphabetic codes that appear in the instruction table: 

a. The sequential instruction following a delayed control-transfer instruction may not 
be another control-transfer instruction, nor a trap instruction, nor the target of a 
control-transfer instruction. 

b. When using a bri to return from a trap handler, programmers should take care to 
prevent traps from occurring on that or on the next sequential instruction. 1M 
should be zero (interrupts disabled) when the bri is executed. 

c. If dest is not zero, fsrei must not be the same as dest. 

d. When fsrei goes to multiplier opi or to KR or KI, fsrei must not be the same as 
rdest. 

e. If dest is not zero, srei and sre2 must not be the same as dest. 

f. Isrei must not be the same register as isre2 for the autoincrementing form of this 
instruction. 

Instruction Execution Pipelined? Sets Faults Performance Programming 
Unit Delayed? CC? Notes Restrictions 

adds E CC 1 
addu E CC 1 
and E CC 
andh E CC 
andnot E CC 
andnoth E CC 

bc E 
bC.t E 0 a 
bla E 0 a, f 
bnc E 
bnc.t E 0 a 
br E 0 a 

bri E 0 a, b 
bte E 
btne E 
call E 0 6 a 
calli E 0 6 a 
fadd.p A SE,RE 
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Instruction Execution Pipelined? Sets Faults Performance Programming 
Unit Delayed? CC? Notes Restrictions 

faddp G 8 
faddz G 8 
famov.r A SE 
fiadd.w G 8 
fisub.w G 8 
fix.p A SE,RE 
fld.y E OAT 2,3 f 

flush E 
fmlow.dd M 4 
fmul.p M SE,RE 4 
form G 8 
frcp.p M SE,RE 
frsqr.p M SE,RE 

fst.y E OAT 5 f 
fsub.p A SE,RE 
ftrunc.p A SE,RE 
fxfr G 6,8 
fzchkl G 8 
fzchks G 8 

intovr E IT 
ixfr E 2 
Id.c E 
Id.x E OAT 6 
lock E 
or E CC 
orh E CC 

pfadd.p A P SE,RE 
pfaddp G P 8 e 
pfaddz G P 8 e 
pfamov.r A P SE 
pfam.p A&M P SE,RE 7 d 
pfeq.p A P CC SE 1 
pfgt.p A P CC SE 1 

pfiadd.w G P 8 e 
pfisub.w G P 8 e 
pfix.p A P SE,RE 
pfld.z E P OAT 2, 9 f 
pfle.p A P CC SE 1 
pfmam.p A&M P SE,RE 7 d 
pfmsm.p A&M P SE,RE 7 d 

pfmul.p M P SE,RE 4 c 
pfmul3.dd M P SE,RE 4 c 
pform G P 8 e 
pfsm.p A&M P SE,RE 7 d 
pfsub.p A P SE,RE 
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Instruction Execution Plpellned? Sets Faults Performance Programming 
Unit Delayed? CC? Notes Restrictions 

pftrunc.p A P SE.RE 
pfzchkl G P 8 
pfzchks G P 8 
pst.d E OAT f 
shl E 
shr E 

shra E 
shrd E 
st.c E 
st.x E OAT 
subs E CC 1 
subu E CC 1 

trap E IT 
unlock E 
xor E CC 
xorh E CC 
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TWX: 810-223-6020 

Arrow Electronics, Inc. Suite 3101 Indianapolis 46250 Hamilton/Avnet Electronics 
4134 E. Wood Street Wyle Distribution Group 

Lake Marv 32746 Tel: (317) 849-7300 2215 29th Street S.E. 
Phoenix 85040 124 Maryland Street Tel: (407) 323-0252 TWX: 810-260-1794 Space A5 
Tel: (602) 437-0750 TWX: 510-959-6337 Grand Rapids 49508 
TWX: 910-951-1550 EI Segundo 90254 

Tel: (616) 243-8805 Tel: (213) 322-8100 tHamiiton/Avnet Electronics IOWA 
Wyle Distribution Group 6801 NW. 15th Way 

TWX: 810-274-6921 

17855 N. Black Canyon Hwy. Wyle Distribution Group FI. Lauderdale 33309 Hamilton/Avnet Electronics Pioneer Electronics 
Phoenix 85023 7382 Lampson Ave. Tet: (305) 971-2900 915 33rd Avenue, S.W. 4504 Broadmoor S.E. 
Tel: (602) 249-2232 Garden Grove 92641 TWX: 510-956-3097 Cedar Rapids 52404 Grand Rapids 49508 
TWX: 910-951-4282 Tet: (714) 891-1717 Tel: (319) 362-4757 FAX: 616-698-1831 

TWX: 910-348-7140 or 7111 tHamiiton/Avnet Electronics tHamiiton/Avnet Electronics 
CALIFORNIA 3197 Tech Drive North KANSAS 32487 Schoolcraft Road 

Wyle Distribution Group SI. Petersburg 33702 Livonia 48150 
Arrow ElectroniCS, Inc. 11151 Sun Center Drive Tel: (813) 576-3930 Arrow Electronics Tel: (313) 522-4700 
10824 Hope Street Rancho Cordova 95670 TWX: 810-863-0374 8208 Melrose Dr., Suite 210 TWX: 810-282-8775 
Cypress 90630 Tel: (916) 638-5282 

tHamiiton/Avnet Electronics 
Lenexa 66214 

tPioneer/Michigan Tel: (714) 220-6300 Tel: (913) 541-9542 
tWyle Distribution Group 6947 University Boulevard 13485 Stamford 

Arrow ElectroniCS, Inc. 9525 Chesapeake Drive Winter Park 32792 tHamilton/Avnet Electronics Livonia 48150 
19748 Dearborn Street San Diego 92123 Tel: (305) 628-3888 9219 Quivera Road Tel: (313) 525-1800 
Chatsworth 91311 Tel: (619) 565-9171 TWX: 810-853-0322 Overland Park 66215 TWX: 810-242-3271 
Tel: (213) 701·7500 TWX: 910-335·1590 tPioneer/Technoiogies Group, Inc. 

Tel: (913) 888-8900 MINNESOTA TWX: 910·493·2086 TWX: 910·743-0005 
tWyle Distribution Group 

337 S. Lake Blvd. tArrow ElectroniCS, Inc. 
tArow Electronics, Inc. Alta Monte Springs 32701 Pioneer/Tec Gr. 5230 W. 73rd Street 
521 Weddell Drive 3000 Bowers Avenue Tel: (407) 834-9090 10551 Lockman Rd. Edina 55435 
Sunnyvale 94086 Santa Clara 95051 TWX: 810·853·0284 Lenexa 66215 Tel: (612) 830·1800 
Tel: (408) 745·6600 Tel: (408) 727·2500 Tel: (913) 492-0500 TWX: 910-576·3125 
TWX: 910-339-9371 TWX: 910-338·0296 Pioneer/Technologies Group, Inc. 

674 S. Military Trail tHamiiton/Avnet Electronics 
Arrow ElectroniCS, Inc. tWyle Distribution Group Deerfield Beach 33442 KENTUCKY 12400 Whitewater Drive 
9511 Ridgehaven Court 17872 Cowan Avenue Tel: (305) 428-8877 Minnetonka 55434 
San Diego 92123 Irvine 92714 TWX: 510·955·9653 Hamilton/Avnet Electronics Tel: (612) 932·0600 
Tel: (619) 565·4800 Tel: (714) 863-9953 1051 D. Newton Park 

tPioneer Electronics TWX: 888-064 TWX: 910-595·1572 GEORGIA 
Lexington 40511 

7625 Golden Triange Dr. 
tArrow ElectroniCS, Inc. 

Tel: (606) 259·1475 
SuiteG 

2961 Dow Avenue Wyle Distribution Group tArrow Electronics, Inc. Eden Prairi 55343 
Tustin 92680 26677 W. Agoura Rd. 3155 Northwoods Parkway MARYLAND Tel: (612) 944·3355 
Tel: (714) 838-5422 Calabasas 91302 Suite A 
TWX: 910-595-2860 Tel: (818) 880·9000 Norcross 30071 Arrow Electronics, Inc. MISSOURI 

TWX: 372-0232 Tel: (404) 449-8252 8300 Guilford Drive tArrow Electronics, Inc. 
tAvnet Electronics TWX: 810·766·0439 Suite H, River Center 2380 Schuetz 
350 McCormick Avenue Columbia 21046 SI. Louis 63141 
Costa Mesa 92626 COLORADO tHamiiton/Avnet Electronics Tel: (301) 995-0003 Tel: (314) 567-6888 
Tel: (714) 754-6071 5825 D Peachtree Corners TWX: 710-236·9005 TWX: 910·764-0882 
TWX: 910-595-1928 Arrow Electronics, Inc. Norcross 30092 

Hamilton/Avnet Electronics tHamiiton/Avnet Electronics 7060 South Tucson Way Tel: (404) 447-7500 
tHamiiton/Avnet Electronics Englewood 80112 TWX: 810·766·0432 6822 Oak Hall Lane 13743 Shoreline Court 
1175 Bordeaux Drive Columbia 21045 Earth City 63045 
Sunnyvale 94086 

Tel: (303) 790·4444 
Pioneer/Technologies Group, Inc. Tel: (301) 995·3500 Tel: (314) 344·1200 

Tel: (408) 743·3300 tHamiiton/Avnet Electronics 3100 F Northwoods Place TWX: 710·862·1861 TWX: 910·762·0684 
TWX: 910-339-9332 8765 E. Orchard Road Norcross 30071 

tMesa Technology Corp. NEW HAMPSHIRE Te~(404) 448-1711 
tHamiiton/Avnet Electronics Suite 708 TWX: 810-766·4515 9720 Patuxent Woods Dr. tArrow ElectroniCS, Inc. 
4545 Ridgeview Avenue Englewood 80111 Columbia 21046 3 Perimeter Road 
San Diego 92123 Tel: (303) 740·1017 Tel: (301) 290·8150 Manchester 03103 
Tel: (619) 571·7500 TWX: 910·935-0787 ILLINOIS TWX: 710-828-9702 Tel: (603) 668-6968 
TWX: 910-595-2638 

tWyle Distribution Group Arrow ElectroniCS, Inc. tPioneer/Technoiogies Group, Inc. TWX: 710·220-1684 

tHamiiton/Avnet Electronics 451 E. 124th Avenue 1140 W. Thorndale 9100 Gaither Road tHamiiton/Avnet Electronics 
9650 Desoto Avenue Thornton 80241 Itasca 60143 Gaithersburg 20877 444 E. Industrial Drive 
Chatsworth 91311 Tel: (303) 457·9953 Tel: (312) 250-0500 Tel: (301) 921·0660 Manchester 03103 
Tel: (818) 700·1161 TWX: 910-936-0770 TWX: 312-250-0916 TWX: 710·828-0545 Tel: (603) 624-9400 

tMicrocomputer System Technical Distributor Center CG/SALE/10n 



DOMESTIC DISTRIBUTORS (Contd.) 
NEW JERSEY 

tArrow Electronics, Inc. 
Four East Stow Road 
Unit 11 
Marlton 08053 
Tel: (609) 596-8000 
TWX: 710-897-0829 

tArrow Electronics 
6 Century Drive 
Parsipanny 07054 
Tel: (201) 538-0900 

tHamilton/Avnet Electronics 
1 Keystone Ave., Bldg. 36 
Cherry Hill 08003 
Tel: (609) 424-0110 
TWX: 710-940-0262 

tHamiiton/Avnet Electronics 
10 Industrial 
Fairfield 07006 
Tel: (201) 575-5300 
TWX: 710-734-4388 

tMTI Systems Sales 
37 Kulick Rd. 
Fairfield 07006 
Tel: (201) 227-5552 

tPioneer Electronics 
45 Route 46 
Pinebrook 07058 
Tel: (201) 575-3510 
TWX: 710-734-4382 

NEW MEXICO 

Alliance Electronics Inc. 
11030 Cochiti S.E. 
Albuquerque 87123 
Tel: (505) 292-3360 
TWX: 910-989-1151 

Hamilton/Avnet Electronics 
2524 Baylor Drive S.E. 
Albuquerque 87106 
Tel: (505) 765-1500 
TWX: 910-989-0614 

NEW YORK 

tArrow Electronics, Inc. 
3375 Brighton Henrietta 
Townline Rd. 
Rochester 14623 
Tel: (716) 275-0300 
TWX: 510-253-4766 

Arrow Electronics, Inc. 
20 Oser Avenue 
Hauppauge 11788 
Tel: (516) 231-1000 
TWX: 510-227-6623 

Hamilton/Avnet 
933 Motor Parkway 
Hauppauge 11788 
Tel: (516) 231-9800 
TWX: 510-224-6166 

tHamilton/Avnet Electronics 
333 Metro Park 
Rochester 14623 
Tel: (716) 475-9130 
TWX: 510-253-5470 

tHamilton/Avnet Electronics 
103 Twin Oaks Drive 
Syracuse 13206 
Tel: (315) 437-0288 
TWX: 710-541-1560 

tMTI Systems Sales 
38 Harbor Park Drive 
Port Washington 11050 
Tel: (516) 621-6200 

tPioneer Electronics 
68 Corporate Drive 
Binghamton 13904 
Tel: (607) 722-9300 
TWX: 510-252-0893 

Pioneer Electronics 
40 Oser Avenue 
Hauppauge 11787 
Tel: (516) 231-9200 

tPioneer Electronics 
60 Crossway Park West 
Woodbury, Long Island 11797 
Tel: (516) 921-8700 
TWX: 510-221-2184 

tPioneer Electronics 
840 Fairport Park 
Fairport 14450 
Tel: (716) 381-7070 
TWX: 510-253-7001 

NORTH CAROLINA 

tArrow Electronics, Inc. 
5240 Greensdairy Road 
Raleigh 27604 
Tel: (919) 876-3132 
TWX: 510-928-1856 

tHamilton/Avnet Electronics 
3510 Spring Forest Drive 
Raleigh 27604 
Tel: (919) 878-0819 
TWX: 510-928-1836 

Pioneer/Technologies Group, Inc. 
9801 A-Southern Pine Blvd. 
Charlotte 28210 
Tel: (919) 527-8188 
TWX: 810-621-0366 

OHIO 

Arrow Electronics, Inc. 
7620 McEwen Road 
Centerville 45459 
Tel: (513) 435-5563 
TWX: 810-459-1611 

tArrow Electronics, Inc. 
6238 Cochran Road 
Solon 44139 
Tel: (216) 248-3990 
TWX: 810-427-9409 

tHamilton/Avnet Electronics 
954 Senate Drive 
Dayton 45459 
Tel: (513) 439-6733 
TWX: 810-450-2531 

Hamilton/Avnet Electronics 
4588 Emery Industrial Pkwy. 
Warrensville Heights 44128 
Tel: (216) 349-5100 
TWX: 810-427-9452 

tHamiiton/Avnet Electronics 
777 Brooksedge Blvd. 
Westerville 43081 
Tel: (614) 882-7004 

tPioneer Electronics 
4433 Interpoint Boulevard 
Dayton 45424 
Tel: (513) 236-9900 
TWX: 810-459-1622 

tPioneer Electronics 
4800 E. 131 st Street 
Cleveland 44105 
Tel: (216) 587-3600 
TWX: 810-422-2211 

OKLAHOMA 

Arrow Electronics, Inc. 
1211 E. 51st St., Suite 101 
Tulsa 74146 
Tel: (918) 252-7537 

tMicrocomputer System Technical Distributor Center 

tHamilton/Avnet Electronics 
12121 E. 51st St., Suite 102A 
Tulsa 74146 
Tel: (918) 252-7297 

OREGON 

tAlmac Electronics Corp. 
1885 N.W. 169th Place 
Beaverton 97005 
Tel: (503) 629-8090 
TWX: 910-467-8746 

tHamilton/Avnet Electronics 
6024 S.w. Jean Road 
Bldg. C, Suite 10 
Lake Oswego 97034 
Tel: (503) 635-7848 
TWX: 910-455-8179 

Wyle Distribution Group 
5250 N.E. Elam Young Parkway 
Suite 600 
Hillsboro 97124 
Tel: (503) 640-6000 
TWX: 910-460-2203 

PENNSYLVANIA 

Arrow Electronics, Inc. 
650 Seco Road 
Monroeville 15146 
Tel: (412) 856-7000 

Hamilton/Avnet Electronics 
2800 Liberty Ave. 
Pittsburgh 15238 
Tel: (412) 281-4150 

Pioneer Electronics 
259 Kappa Drive 
Pittsburgh 15238 
Tel: (412) 782-2300 
TWX: 710-795-3122 

tPioneer/Technologies Group, Inc. 
Delaware Valley 
261 Gibralter Road 
Horsham 19044 
Tel: (215) 674-4000 
TWX: 510-665-6778 

TEXAS 

tArrow Electronics, Inc. 
3220 Commander Drive 
Carrollton 75006 
Tel: (214) 380-6464 
TWX: 910-860-5377 

tArrow Electronics, Inc. 
10899 Kinghurst 
Suite 100 
Houston 77099 
Tel: (713) 530-4700 
TWX: 910-880-4439 

tArrow Electronics, Inc. 
2227 W. Braker Lane 
Austin 78758 
Tel: (512) 835-4180 
TWX: 910-874-1348 

tHamiiton/Avnet Electronics 
1807 W. Braker Lane 
Austin 78758 
Tel: (512) 837-8911 
TWX: 910-874-1319 

tHamilton/Avnet Electronics 
2111 W. Walnut Hill Lane 
Irving 75038 
Tel: (214) 550-6111 
TWX: 910-860-5929 

tHamilton/Avnet Electronics 
4850 Wright Rd., Suite 190 
Stafford 77477 
Tel: (713) 240-7733 
TWX: 910-881-5523 

tPioneer Electronics 
18260 Kramer 
Austin 78758 
Tel: (512) 835-4000 
TWX: 910-874-1323 

tPioneer Electronics 
13710 Omega Road 
Dallas 75234 . 
Tel: (214) 386-7300 
TWX: 910-850-5563 

tPioneer Electronics 
5853 Point West Drive 
Houston 77036 
Tel: (713) 988-5555 
TWX: 910-881-1606 

Wyle Distribution Group 
1810 Greenville Avenue 
Richardson 75081 
Tel: (214) 235-9953 

UTAH 

Arrow Electronics 
1946 Parkway Blvd. 
Salt Lake City 84119 
Tel: (801) 973-6913 

tHamilton/Avnet Electronics 
1585 West 2100 South 
Salt Lake City 84119 
Tel: (801) 972-2800 
TWX: 910-925-4018 

Wyle Distribution Group 
1325 West 2200 South 
Suite E 
West Valley 84119 
Tel: (801) 974-9953 

WASHINGTON 

tAlmac Electronics Corp. 
14360 S.E. Eastgate Way 
Bellevue 98007 
Tel: (206) 643-9992 
TWX: 910-444-2067 

Arrow Electronics, Inc. 
19540 68th Ave. South 
Kent 98032 
Tel: (206) 575-4420 

tHamilton/Avnet Electronics 
14212 N.E. 21 st Street 
Bellevue 98005 
Tel: (206) 643-3950 
TWX: 910-443-2469 

Wyle Distribution Group 
15385 N.E. 90th Street 
Redmond 98052 
Tel: (206) 881-1150 

WISCONSIN 

Arrow Electronics, Inc. 
200 N. Patrick Blvd., Ste. 100 
Brookfield 53005 
Tel: (414) 767-6600 
TWX: 910-262-1193 

Hamilton/Avnet Electronics 
2975 Moorland Road 
New Berlin 53151 
Tel: (414) 784-4510 
TWX: 910-262-1182 

CANADA 

ALBERTA 

Hamilton/Avnet Electronics 
2816 21st Street N.E. 
Calgary T2E 6Z3 
Tel: (403) 230-3586 
TWX: 03-827-642 

Zentronics 
Bay No.1 
3300 14th Avenue N.E. 
Calgary T2A 6J4 
Tel: (403) 272-1021 

BRITISH COLUMBIA 

tHamilton/Avnet Electronics 
105-2550 Boundary 
Burmalay V5M 3Z3 
Tel: (604) 437-6667 

Zentronics 
108-11400 Bridgeport Road 
Richmond V6X 1T2 
Tel: (604) 273-5575 
TWX: 04-5077-89 

MANITOBA 

Zentronics 
60-1313 Border Unit 60 
Winnipeg R3H OX4 
Tel: (204) 694-1957 

ONTARIO 

Arrow Electronics, Inc. 
36 Antares Dr. 
Nepean K2E 7W5 
Tel: (613) 226-6903 

Arrow Electronics, Inc. 
1093 Meyerside 
Mississauga L5T 1 M4 
Tel: (416) 673-7769 
TWX: 06-218213 

tHamilton/Avnet Electronics 
6845 Rexwood Road 
Units 3-4-5 
Mississauga L4T 1 R2 
Tel: (416) 677-7432 
TWX: 610-492-8867 

Hamilton/Avnet Electronics 
6845 Rexwood Rd., Unit 6 
Mississauga L4T 1 R2 
Tel: (416) 277-0484 

tHamilton/Avnet Electronics 
190 Colonnade Road South 
Nepean K2E 7L5 
Tel: (613) 226-1700 
TWX: 05-349-71 

tZentronics 
8 Tilbury Court 
Brampton L6T 3T4 
Tel: (416) 451-9600 
TWX: 06-976-78 

tZentronics 
155 Colonnade Road 
Unit 17 
Nepean K2E 7Kl 
Tel: (613) 226-8840 

Zentronics 
60-1313 Border St. 
Winnipeg R3H 014 
Tel: (204) 694-7957 

QUEBEC 

tArrow Electronics Inc. 
4050 Jean Talon Quest 
Montreal H4P lWl 
Tel: (514) 735-5511 
TWX: 05-25590 

Arrow Electronics, Inc. 
500 Avenue St-Jean Baptiste 
Suite 280 
Quebec G2E 5R9 
Tel: (418) 871-7500 
FAX: 418-871-6816 

Hamilton/Avnet Electronics 
2795 Halpern 
St. Laurent H2E 7Kl 
Tel: (514) 335-1000 
TWX: 610-421-3731 

Zentronics 
817 McCaffrey 
St. Laurent H4T 1 M3 
Tel: (514) 737-9700 
TWX: 05-827-535 

CG/SALE/l01789 



DENMARK 

Inlel Denmark NS 
Glentevej 61, 3rd Floor 
2400 Copenhagen NV 
Tel: (45) (31) 198033 
TLX: 19567 

FINLAND 

Intel Finland OY 
Ruosilantie 2 
00390 Helsinki 
Tel: (358) 0 544644 
TLX: 123332 

FRANCE 

Intel Corporation S.A.R.lo 
I, Rue Edison-BP 303 
78054 SI. Quentin-en-Yvelines 
Cedex 
Tel: (33) (1) 30577000 
TLX: 699016 

EUROPEAN SALES OFFICES 
WEST GERMANY ISRAEL NORWAY 

Intel Semiconductor GmbH' Intel Semiconductor Ltd.' Intel Norway NS 
Dornacher Strasse 1 Atidim Industrial Park-Neve Sharet Hvamveien 4-PO Box 92 
8016 Feldkirchen bei Muenchen P.O. Box 43202 2013 Skjetten 
Tel: (49) 089/90992-0 Tel-Aviv 61430 Tel: (47) (6) 842420 
TLX: 5-23177 Tel: (972) 03-498080 TLX: 78018 

TLX: 371215 
Intel Semiconductor GmbH 
Hohenzollern Strasse 5 ITALY SPAIN 
3000 Hannover 1 
Tel: (49) 0511/344081 Intel Corporation Italia S.p.A.' Intel Iberia S.A. 
TLX: 9-23625 Milanofiori Palazzo E Zurbaran, 28 

20090 Assago 28010 Madrid 
Intel Semiconductor GmbH Milano Tel: (34) (1) 308.25.52 
Abraham Lincoln Strasse 16-18 Tel: (39) (02) 89200950 TLX: 46880 
6200 Wiesbaden TLX: 341286 
Tel: (49) 06121/7605-0 

SWEDEN TLX: 4-186183 NETHERLANDS 

Intel Semiconductor GmbH Intel Semiconductor B.V.' Intel Sweden A.B.' 
Zettachring lOA Poslbus 84130 Dalvagen 24 
7000 Stuttgart 80 3099 CC Rotterdam 171 36 Solna 
Tel: (49) 0711/7287-280 Tel: (31) 10.407.11.11 Tel: (46) 8 734 01 00 
TLX: 7-254826 TLX: 22283 TLX: 12261 

SWITZERLAND 

Intel Semiconductor A.G. 
Zuerichstrasse 
8185 Winkel-Rueti bei Zuerich 
Tel: (41) 01/860 62 62 
TLX: 825977 

UNITED KINGDOM 

Intel Corporation (U.K.) Ltd.' 
Pipers Way 
Swindon, Wiltshire SN3 1 RJ 
Tel: (44) (0793) 696000 
TLX: 444447/8 

EUROPEAN DISTRIBUTORS/REPRESENTATIVES 
AUSTRIA Tekelec-Airtronic ITALY Ditram Bylech-Comway Systems 

Bacher Electronics G.m.b.H. 
Cite des Bruyeres 

Intesi 
Avenida Miguel Bombarda, 133 3 The Western Centre 

Rue Carle Vernet - BP 2 1000 Lisboa Western Road 
Rotenmuehlgasse 26 92310 Sevres Divisione In Industries GmbH Tel: (35) (1) 54 5313 Bracknell RG12 lRW 
1120Wien Tel: (33) (1) 45 34 75 35 Viale Milanofiori TLX: 14182 Tel: (44) (0344) 55333 
Tel: (43) (0222) 83 5646 TLX: 204552 Palazzo E/5 TLX: 847201 
TLX: 31532 ~~?~g~sg~?a~J~~, SPAIN 

WEST GERMANY Jermyn 
BELGIUM TLX: 311351 ATD Electronica, S.A. Vestry Estate 

Inelco Belgium S.A. Electronic 2000 AG Lasi Elettronica S.p.A. Plaza Ciudad de Viena, 6 Olford Road 

Av. des CrOix de Guerre 94 Stahlgruberring 12 V. Ie Fulvio Testi, 126 28040 Madrid Sevenoaks 

1120 Bruxelles 8000 Muenchen 82 20092 Cinisello Balsamo (MI) Tel: (34) (1) 234 40 00 Kent TN14 5EU 

Oorlogskruisenlaan, 94 Tel: (49) 089/42001-0 Tel: (39) 02/2440012 TLX: 42477 Tel: (44) (0732) 450144 

1120 Brussel TLX: 522561 TLX: 352040 In-SESA TLX: 95142 

Tel: (32) (02) 216 01 60 In Multikomponent GmbH Telcom S.r.1. Calle Miguel Angel, 21-3 MMD TLX: 64475 or 22090 Poslfach 1265 Via M. Civitali 75 28010 Madrid Unit 8 Southview Park 
Bahnhofstrasse 44 20148 Milano Tel: (34) (1) 4190957 Caversham 

DENMARK 7141 Moeglingen Tel: (39) 02/4049046 TLX: 27461 Reading 
In-Multikomponent 

Tel: (49) 07141/4879 TLX: 335654 Metrologia Iberica, S.A. Berkshire RG4 OAF 
TLX: 7264472 Tel: (44) (0734) 481666 Naverland 29 In Multicomponents Ctra. de Fuencarral, n.80 

2600 Glostrup Jermyn GmbH Viale Milanofiori E/5 28100 Alcobendas (Madrid) TLX: 846669 
Tel: (45) (0) 2 45 66 45 1m Dachsstueck 9 ~~?9(g~sg~?a~J~~>' 

Tel: (34) (1) 653 86 11 
Rapid Silicon TLX: 33 355 6250 Limburg 

Tel: (49) 06431/508-0 TLX: 311351 SWEDEN Rapid House 
Denmark Street 

FINLAND TLX: 415257-0 
Silverstar Nordisk Elektronik AB High Wycombe 

OY Fintronic AB Metrologie GmbH Via Dei Gracchi 20 Torshamnsgatan 39 ~~17~~~h(~~~~r:4~~~~ 2ER Melkonkatu 24A Meglingerstrasse 49 20146 Milano Box 36 
00210 Helsinki 8000 Muenchen 71 Tel: (39) 02/49961 16493 Kista TLX: 837931 
Tel: (358) (0) 6926022 Tel: (49) 089/78042-0 TLX: 332189 Tel: (46) 08-03 46 30 

Rapid Systems TLX: 124224 TLX: 5213189 TLX: 10547 
NETHERLANDS Rapid House 

FRANCE 
Proelectron Vertriebs GmbH SWITZERLAND Denmark Street 
Max Planck Strasse 1-3 Koning en Hartman Elektrotechniek High Wycombe 

Almex 6072 Dreieich B.V. Industrade A.G. Buckinghamshire HPll 2ER 
Zone industrielle d'Antony Tel: (49) 06103/30434-3 Energieweg 1 Hertistrasse 31 Tel: (44) (0494) 450244 
48, rue de I'Aubepine TLX: 417903 2627 AP Delft 8304 Wallisellen TLX: 837931 
BP 102 Tel: (31) (0) 15/609906 Tel: (41) (01) 8328111 
92164 Antony cedex IRELAND TLX: 38250 TLX: 56788 

YUGOSLAVIA Tel: (33) (1) 46 66 21 12 Micro Marketing Ltd. NORWAY TURKEY TLX: 250067 Glenageary Office Park Nordisk Elektronikk (Norge) NS 
H.R. Microelectronics Corp. 

Jermyn-Generim Glenageary Postboks 1 23 EMPA Electronic 2005 de la Cruz Blvd., Ste. 223 
60, rue des Gemeaux Co. Dublin Smedsvingen 4 Lindwurmstrasse 95A Santa Clara, CA 95050 
Silic 580 Tel: (21) (353) (01) 85 63 25 1364 Hvalstad 8000 Muenchen 2 U.S.A. 
94653 Rungis cedex TLX: 31584 Tel: (47) (02) 84 62 10 Tel: (49) 089/53 80 570 Tel: (1) (408) 988-0286 
Tel: (33) (1) 49 78 4978 TLX: 77546 TLX: 528573 TLX: 387452 
TLX: 261585 ISRAEL 

Rapido Electronic Components 
Metrologie Eastronics Ltd. PORTUGAL UNITED KINGDOM 

S.p.a. 
Tour d'Asnieres 11 Rozanis Street ATD Portugal LOA Accent Electronic Components Ltd. Via C. Beccaria, 8 
4, avo Laurent-Cely P.O.B. 39300 Rua Dos Lusiados, 5 Sala B Jubilee House, Jubilee Road· 34133 Trieste 
92606 Asnieres Cedex Tel-Aviv 61392 1300 Lisboa Letchworth, Herts SG6 1TL Italia 
Tel: (33) (1) 47 90 6240 Tel: (972) 03-475151 Tel: (35) (1) 64 80 91 Tel: (44) (0462) 686666 Tel: (39) 040/360555 
TLX: 611448 TLX: 33638 TLX: 61562 TLX: 826293 TLX: 460461 

'Field Application Location CG/SALE/l01789 



AUSTRALIA 

Intel Australia Ply. Ltd.· 
Spectrum Building 

~~g:sa~~;t~~E,L;~~~ 6 

Tel: 612-957-2744 
FAX: 612-923-2632 

BRAZIL 

Intel Semicondutores do Brazil L TDA 
Av. Paulista, 1159-CJS 404/405 
01311 - Sao Paulo - S.P. 
Tel: 55-11-287-5899 
TLX: 3911153146 ISDB 
FAX: 55-11-287-5119 

CHINA/HONG KONG 

Intel PRC Corporation 
15/F, Office 1, Citic Bldg. 
Jian Guo Men Wai Street 
Beijing, PRC 
Tel: (1) 500-4850 
TLX: 22947 INTEL CN 
FAX: (1) 500-2953 

Intel Semiconductor Ltd." 
10/F East Tower 
Bond Center 
::lueensway, Central 
-iong Kong 
rei: (5) 8444-555 
rLX: 63869 ISHLHK HX 
=AX: (5) 8681-989 

INTERNATIONAL SALES OFFICES 
INDIA 

Intel Asia Electronics, Inc. 
4/2, Samrah Plaza 
SI. Mark's Road 
Bangalore 560001 
Tel: 011-91-812-215065 
TLX: 9538452875 DCBY 
FAX: 091-812-215067 

JAPAN 

Intel Japan K.K. 
5-6 Tokodai, Tsukuba-shi 
Ibaraki, 300-26 
Tel: 0298-47-8511 
TLX: 3656-160 
FAX: 029747-8450 

Intel Japan K.K.· 
Daiichi Mitsugi Bldg. 
1-8889 Fuchu-cho 
Fuchu-shi, Tokyo 183 
Tel: 0423-60-7871 
FAX: 0423-60-0315 

Intel Japan KK· 
Bldg. Kumagaya 
2-69 Hon-cho 
Kumagaya-shi, Saitama 360 
Tel: 0485-24-6871 
FAX: 0485-24-7518 

~~~ui~e~~~'~:sashi-kOSU9i Bldg. 
915 Shinmaruko, Nakahara-ku 
Kawasaki-shi, Kanagawa 211 
Tel: 044-733-7011 
FAX: 044-733-7010 

~i~~~a~~~~i~tsugi Bldg. 
1-2-1 Asahi-machi 
Atsugi-shi, Kanagawa 243 
Tel: 0462-29-3731 
FAX: 0462-29-3781 

Intel Japan KK· 
Ryokuchi-Eki Bldg. 
2-4-1 Terauchi 
Toyonaka-shi, Osaka 560 
Tel: 06-863-1091 
FAX: 06-863-1084 

Intel Japan K.K. 
Shinmaru Bldg. 
1-5-1 Marunouchi 
Chiyoda-ku, Tokyo 100 
Tel: 03-201-3621 
FAX: 03-201-6850 

Intel Japan KK 
Green Bldg. 
1-16-20 Nishiki 
Naka-ku, Nagoya-shi 
Aichi 450 
Tel: 052-204-1261 
FAX: 052-204-1285 

KOREA 

Intel Technology Asia, Ltd. 
16th Floor, Life Bldg. 
61 YOido-dong, Youngdeungpo-Ku 
Seoul 150-010 
Tel: (2) 784-8186, 8286, 8386 
TLX: K29312 INTELKO 
FAX: (2) 784-8096 

SINGAPORE 

Intel Singapore Technology, Ltd. 
101 Thomson Road #21-05/06 
United Square 
Singapore 1130 
Tel: 250·7811 
TLX: 39921 INTEL 
FAX: 250-9256 

TAIWAN 

Intel Technology Far East Ltd. 
8th Floor, No. 205 
Bank Tower Bldg. 
Tung Hua N. Road 
Taipei 
Tel: 886·2-716-9660 
FAX: 886-2-717-2455 

INTERNATIONAL DISTRIBUTORS/REPRESENTATIVES 
~RGENTINA 

JAFSYS S.R.L. 
~hacabuco, 90-6 PISO 
I 069-Buenos Aires 
rei: 54-1-334-7726 
'AX: 54-1-334-1871 

:mail Electronics 
5-17 Hume Street 
iuntingdale, 3166 
-el: 011-61-3-544-8244 
'LX: AA 30895 
'AX: 011-61-3-543-8179 

~SD-Australia 
~05 Middleborough Rd. 
lox Hill, Victoria 3128 
'el: 038900970 
'AX: 03 8990819 

IRAZIL 

:lebra Microelectronica SA 
lua Geraldo Flausina Gomes, 76 
Oth Floor 
14575 - Sao Paulo - S.P. 
'el: 55-11-534-9641 
LX: 55-11-54593/54591 
'AX: 55-11-534-9424 

:HILE 

liN Instruments 
:uecia 2323 
:asilla 6055, Correo 22 
:antiago 
el: 56-2-225-8139 
LX: 240.846 RUD 

:HINA/HONG KONG 

11~~~,P;~c~7~~~f~~~~~~~I~~:' Ltd. 
hase " 26 Kwai Hei Street 
I.T., Kowloon 
long Kong 
el: 852-0-4223222 
WX: 39114 JINMI HX 
AX: 852-0-4261602 

=ield Application Location 

INDIA 

Micronic Devices 
Arun Complex 
No. 65 D.V.G. Road 
Basavanagudi 
Bangalore 560 004 
Tel: 011-91-812-600-631 

011-91-812-611-365 
TLX: 9538458332 MDBG 

Micronic Devices 
No. 516 5th Floor 
Swastik Chambers 
Sion, Trombay Road 
Chembur 
Bombay 400 071 
TLX: 9531 171447 MDEV 

Micronic Devices 
25/8, 1 st Floor 
Bada Bazaar Marg 
Old Rajinder Nagar 
New Delhi 110 060 
Tel: 011-91-11-5723509 

011-91-11-589771 
TLX: 031-63253 MONO IN 

Micronic Devices 
6-3-348/12A Dwarakapuri Colony 
Hyderabad 500 482 
Tel: 011-91-842-226748 

S&S Corporation 
1587 Kooser Road 
San Jose, CA 95118 
Tel: (408) 978-6216 
TLX: 820281 
FAX: (408) 978-8635 

JAPAN 

Asahi Electronics Co. Ltd. 
KMM Bldg. 2-14-1 Asano 
Kokurakita-ku 
Kitakyushu-shi 802 
Tel: 093-511-6471 
FAX: 093-551-7861 

C. Itoh Techno-Science Co., Ltd. 
4-8-1 Dobashi, Miyamae-ku 
Kawasaki-shi, Kanagawa 213 
Tel: 044-852-5121 
FAX: 044-877-4268 

Dia Semicon Systems, Inc. 
Flower Hill Shinmachi Higashi-kan 
1-23-9 Shinmachi, Setagaya-ku 
Tokyo 154 
Tel: 03-439-1600 
FAX: 03-439-1601 

Okaya Koki 
2-4-18 Sakae 
Naka-ku, Nagoya-shi 460 
Tel: 052-204-2916 
FAX: 052-204-2901 

Ryoyo Electro Corp. 
Konwa Bldg. 
1-12-22 Tsukiji 
Chuo-ku, Tokyo 104 
Tel: 03-546-5011 
FAX: 03-546-5044 

KOREA 

J-Tek Corporation 
6th Floor, Government Pension Bldg. 
24-3 Yoido-dong 
Youngdeungpo-ku 
Seoul 150-010 
Tel: 82-2-780-8039 
TLX: 25299 KODIGIT 
FAX: 82-2-784-8391 

Samsung Electronics 
150 Taepyungro-2 KA 
Chungku, Seoul 100-102 
Tel: 82-2-751-3985 
TLX: 27970 KORSST 
FAX: 82-2-753-0967 

MEXICO 

SSB Electronics, Inc. 
675 Palomar Street, Bldg. 4, Suite A 
Chula Vista, CA 92011 
Tel: (619) 585-3253 
TLX: 287751 CBALL UR 
FAX: (619) 585-8322 

Dicopel SA 
Tochtli 368 Fracc. Ind. San Antonio 
Azcapotzalco 
C.P. 02760-Mexico, D.F. 
Tel: 52-5-561-3211 
TLX: 177 3790 Dicome 
FAX: 52-5-561-1279 

PSI de Mexico 
Francisco Villas Esq. Ajusto 
Cuernavaca-Morelos-CEP 62130 
Tel: 52-73-13-9412 
FAX: 52·73-17-5333 

NEW ZEALAND 
Email Electronics 
36 Olive Road 
Penrose, Auckland 
Tel: 011·64-9-591-155 
FAX: 011-64-9-592-681 

SINGAPORE 

Electronic Resources PIe, Ltd. 
17 Harvey Road #04-01 
Singapore 1336 
Tel: 283·0888 
TWX: 56541 ERS 
FAX: 2895327 

SOUTH AFRICA 

Electronic Building Elements 
178 Erasmus Street (off Watermeyet Street) 
Meyerspark, Pretoria, 0184 
Tel: 011·2712-803-7680 
FAX: 011-2712-803-8294 

TAIWAN 

~~r~8~~e~1~0;i~~e~°lfa~~a~~~ 
Taipei, RO.C. 
Tel: 886·2-501-8231 
FAX: 886-2-505-6609 

Sertek 
15/F 135, Section 2 
Chien Juo North Rd. 
Taipei 10479, R.O.C. 
Tel: (02) 5010055 
FAX: (02)5012521 

(02) 5058414 

VENEZUELA 

P. Benavides SA 
Avilanes a Rio 
Residencia Kamarata 
Locales 4 AL 7 
La Candelaria, Caracas 
Tel: 58-2·574-6338 
TLX: 28450 
FAX: 58-2-572-3321 

CG/SALE/l01789 



ALABAMA 

'Intel Corp. 
5015 Bradford Dr., Suite 2 
Huntsville 35805 
Tel: (205) 830-4010 

ALASKA 

Intel Corp. 
c/o TransAlaska Data Systems 
300 Old Steese Hwy. 
Fairbanks 99701-3120 
Tel: (907) 452-4401 

Intel Corp. 
c/o TransAlaska Data Systems 
1 551 Lore Road 
Anchorage 99507 
Tel: (907) 522-1776 

ARIZONA 

'Intel Corp. 
11225 N. 28th Dr. 
Suite 0-214 
Phoenix 85029 
Tel: (602) 869-4980 

'Intel Corp. 
500 E. Fry Blvd., Suite M-15 
Sierra Vista 85635 
Tel: (602) 459-5010 

CALIFORNIA 

tlntel Corp. 
21515 Vanowen St., Ste. 116 
Canoga Park 91303 
Tel: (818) 704-8500 

'Intel Corp. 
2250 E. Imperial Hwy., Ste. 218 
EI Segundo 90245 
Tel: (213) 640-6040 

'Intel Corp. 
1900 Prairie City Rd. 
Folsom 95630-9597 
Tel: (916) 351-6143 

1 -800-468-3548 

Intel Corp. 
9665 Cheasapeake Dr., Suite 325 
San Diego 92123-1326 
Tel: (619) 292-8086 

"Intel Corp. 
400 N. Tustin Avenue 
Suite 450 
Santa Ana 92705 
Tel: (714) 835-9642 

CALIFORNIA 

2700 San Tomas Expressway 
Santa Clara 95051 
Tel: (408) 970-1700 

1-800-421-0386 

DOMESTIC SERVICE OFFICES 
"tlntel Corp. 
San Tomas 4 

KANSAS NEW YORK 

2700 San Tomas Exp., 2nd Floor 'Intel Corp. 'tlntel Corp. 
Santa Clara 95051 10985 Cody, Suite 140 2950 Expressway Dr. South 
Tel: (408) 986-8086 Overland Park 66210 Islandia 11722 

Tel: (913) 345-2727 Tel: (516) 231-3300 

COLORADO 'Intel Corp. 
MARYLAND Westage Business Center 

'Intel Corp. Bldg. 300, Route 9 
650 S. Cherry St., Suite 915 "tlntel Corp. Fishkill 12524 
Denver 80222 10010 JunC1ion Dr., Suite 200 Tel: (914) 897-3860 
Tel: (303) 321-8086 Annapolis Junction 20701 

Tel: (301) 206-2860 

CONNECTICUT 
FAX: 301-206-3677 NORTH CAROLINA 

'Intel Corp. 'Intel Corp. MASSACHUSETTS 
301 Lee Farm Corporate Park 5800 Executive Dr., Ste. 105 

Charlotte 28212 83 Wooster Heights Rd. "tlntel Corp. Tel: (704) 568-8966 Danbury 06810 3 Carlisle Rd., 2nd Floor 
Tel: (203) 748-3130 Westford 01886 "Intel Corp. 

Tel: (508) 692-1060 2700 Wycliff Road 
FLORIDA Suite 102 

MICHIGAN 
Raleigh 27607 

"Intel Corp. Tel: (919) 781-8022 
6363 NW. 6th Way, Ste. 100 'tlntel Corp. 
Ft. Lauderdale 33309 7071 Orchard Lake Rd., Ste. 100 OHIO Tel: (305) 771-0600 West Bloomfield 48322 

'Intel Corp. 
Tel: (313) 851-8905 "tlntel Corp. 

5850 T.G. Lee Blvd., Ste. 340 3401 Park Center Dr., Ste. 220 
Orlando 32822 MINNESOTA Dayton 45414 
Tel: (407) 240-8000 Tel: (513) 890-5350 

'tlntel Corp. 
'tlntel Corp. 

GEORGIA 3500 W. 80th St., Suite 360 
25700 Science Park Dr., Ste. 100 Bloomington 55431 
Beachwood 44122 

'Intel Corp. Tel: (612) 835-6722 
Tel: (216) 464-2736 

3280 Pointe Pkwy., Ste. 200 
Norcross 30092 MISSOURI 
Tel: (404) 449-0541 OREGON 

'Intel Corp. 
HAWAII 4203 Earth City Exp., Ste. 131 Intel Corp. 

Earth City 63045 15254 NW. Greenbrier Parkway 

'Intel Corp. Tel: (314) 291-1990 Building B 
Beaverton 97005 

U.S.I.S.C. Signal Batt. Tel: (503) 645-8051 
Building T-1521 

NEW JERSEY Shafter Plats 'Intel Corp. Shafter 96856 
"Intel Corp. 5200 N.E. Elam Young Parkway 
300 Sylvan Avenue Hillsboro 97123 

ILLINOIS Englewood Cliffs 07632 Tel: (503) 681-8080 
Tel: (201) 567-0821 

"tlntel Corp. 
300 N. Martingale Rd., Ste. 400 'Intel Corp. PENNSYLVANIA 
Schaumburg 60173 Parkway 109 Office Center 
Tel: (312) 605-8031 328 Newman Springs Road 'tlntel Corp. 

Red Bank 07701 455 Pennsylvania Ave., Ste. 230 
Tel: (201) 747-2233 Fort Washington 19034 

INDIANA Tel: (215) 641-1000 
'Intel Corp. 

'Intel Corp. 280 Corporate Center tlntel Corp. 
8777 Purdue Rd., Sle. 125 75 Livingston Ave., 1 sl Floor 400 Penn Center Blvd., Ste. 610 
Indianapolis 46268 Roseland 07068 Pittsburgh 15235 
Tel: (317) 875-0623 Tel: (201) 740-0111 Tel: (412) 823-4970 

CUSTOMER TRAINING CENTERS 
ILLINOIS 

300 N. Martingale Road 
SUite 300 
Schaumburg 60173 
Tel: (708) 706-5700 

1-800-421-0386 

MASSACHUSETTS 

3 Carlisle Road, First Floor 
Westford 01886 
Tel: (301) 220-3380 

1-800-328-0386 

MARYLAND 

10010 Junction Dr. 
Suite 200 
Annapolis JunC1ion 20701 
Tel: (301) 206-2860 

1-800-328-0386 

Intel Corp. 
1513 Cedar Cliff Dr. 
Camp Hill 17011 
Tel: (717) 761-0860 

PUERTO RICO 
Intel Corp. 
South Industrial Park 
P.O. Box 910 
Las Piedras 00671 
Tel: (809) 733-8616 

TEXAS 

Intel Corp. 
8815 Dyer St., Suite 225 
EI Paso 79904 
Tel: (915) 751-0186 

'Intel Corp. 
313 E. Anderson Lane, Suite 314 
Austin 78752 
Tel: (512) 454-3628 

"tlntel Corp. 
12000 Ford Rd., Suite 401 
Dallas 75234 
Tel: (214) 241-8087 

'Intel Corp. 
7322 S.W. Freeway, Ste. 1490 
Houston 77074 
Tel: (713) 988-8086 

UTAH 

Intel Corp. 
428 East 6400 South, Ste. 104 
Murray 84107 
Tel: (801) 263-8051 

VIRGINIA 

'Intel Corp. 
1504 Santa Rosa Rd., Ste. 108 
Richmond 23288 
Tel: (804) 282-5668 

WASHINGTON 

'Intel Corp. 
155 108th Avenue N.E., Ste. 386 
Bellevue 98004 
Tel: (206) 453-8086 

CANADA 
ONTARIO 

Intel Semiconductor of 
Canada, Ltd. 
2650 Queensview Dr., Ste. 250 
Ottawa K2B 8H6 
Tel: (613) 829-9714 
FAX: 613-820-5936 

Intel Semiconductor of 
Canada, Ltd. 
190 Attwell Dr., Sle. 102 
Rexdale M9W 6H8 
Tel: (416) 675-2105 
FAX: 416-675-2438 

SYSTEMS ENGINEERING MANAGERS OFFICES 
MINNESOTA 

3500 W. 80th Street 
Suile 360 
Bloomington 55431 
Tel: (612) 835-6722 

tSystem Engineering locations 
'Carry-in locations 

"Carry-in/mail-in locations 

NEW YORK 

2950 Expressway Dr., South 
Islandia 11722 
Tel: (506) 231-3300 
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