

LITERATURE

To order Intel Literature or obtain literature pricing information in the U.S. and Canada call or write Intel
Literature Sales. In Europe and other international locations, please contact your local sales office or
distributor.

INTEL LITERATURE SALES
P.O. BOX 7641
Mt. Prospect, IL 60056-7641

CURRENT HANDBOOKS

In the U.S. and Canada
call toll free
(800) 548-4725

Product line handbooks contain data sheets, application notes, article reprints and other design informa­
tion.

TITLE

SET OF 11 HANDBOOKS
(Available in U.S. and Canada only)

EMBEDDED APPLICATIONS

8-BIT EMBEDDED CONTROLLERS

16-BIT EMBEDDED CONTROLLERS

16/32-BIT EMBEDDED PROCESSORS

MEMORY

MICROCOMMUNICATIONS
(2 volume set)

MICROCOMPUTER SYSTEMS

MICROPROCESSORS

PERIPHERALS

PRODUCT GUIDE
(Overview of Intel's complete product lines)

PROGRAMMABLE LOGIC

ADDITIONAL LITERATURE
(Not included in handbook set)

AUTOMOTIVE SUPPLEMENT

COMPONENTS QUALITY/RELIABILITY HANDBOOK

INTEL PACKAGING OUTLINES AND DIMENSIONS
(Packaging types, number of leads, etc.)

INTERNATIONAL LITERATURE GUIDE

LITERATURE PRICE LIST (U.S. and Canada)
(Comprehensive list of current Intel literature)

MILITARY
(2 volume set)

SYSTEMS QUALITY/RELIABILITY

LITERATURE
ORDER NUMBER

231003

270648

270645

270646

270647

210830

231658

280407

230843

296467

210846

296083

231792

210997

231369

E00029

210620

210461

231762

LlTINCOV/10/89

u.s. and CANADA LITERATURE ORDER FORM

NAME: __ __

COMPANY: __ _

ADDRESS: __ _

CITY: _________________________________ STATE: ______ ZIP: ___ _

COUNTRY: __ __

PHONE NO.: ,....:....(__ --'--_____________________________ __

ORDER NO TITLE QTY. PRICE TOTAL

___ X ___ = ____ _

____ X ___ = ____ _

__ X ___ = ____ _

___ X ___ = ____ _

__ X ___ ' = ___ __

__ X ___ = __ __

___ X ___ = ___ __

__ X ___ = ___ _

__ X ___ = ___ __

__ X ___ = ___ _

Subtotal _____ __

Must Add Your
Local Sales Tax ____ __

Postage: add 10% of subtotal ------------i .. ~ Postage _____ __

Total ___ __
Pay by check, money order, or include company purchase order with this form ($100 minimum).We also
accept VISA, MasterCard or American Express. Make payment to Intel Literature Sales. Allow 2-4 weeks
for delivery.
o VISA 0 MasterCard 0 American Express Expiration Date _______________ _

Account No. ___ ___

Signature ___ __

Mail To: Intel Literature Sales
P.O. Box 7641
Mt. Prospect, II 60056-7641

International Customers outside the U.S. and Canada
should use the International order form or contact their local
Sales Office or Distributor.

For phone orders in the U.S. and Canada
Call Toll Free: (800) 548-4725
Prices good until 12/31/90,

Source HB

INTERNATIONAL LITERATURE ORDER FORM

NAME: _______________________________________ __

COMPANY: __ _

ADDRESS: __ _

CITY: __________________ STATE: ____ ZIP: ___ _

COUNTRY: __ __

PHONENO.:~ ___ ~ __ ___

ORDER NO. TITLE QTY. PRICE TOTAL

I I ____ X ____ = ___ _

I I ___ X _____ = ____ __

___ X ____ = ____ _

___ X _____ = ___ _

____ X _____ = ___ __

____ X _____ = ___ __

___ X ____ = ___ _

___ X ____ = ____ __

___ X _____ = ___ __

___ X _____ = ___ _

Subtotal ____ _

Must Add Your
Local Sales Tax _____ _

Total ____ _

PAYMENT

Cheques should be made payable to your local Intel Sales Office (see inside back cover.)

Other forms of payment may be available in your country. Please contact the Literature Coordinator at your
local Intel Sales Office for details.

The completed form should be marked to the attention of the LITERATURE COORDINATOR and returned
to your local Intel Sales Office.

i860™
64-BIT

MICROPROCESSOR
PROGRAMMER'S

REFERENCE MANUAL

1990

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which may
appear in this document nor does it make a commitment to update the information contained herein.

Intel retains the right to make changes to these specifications at any time, without notice.

Contact your local sales office to obtain the latest specifications before placing your order.
I

The following are trademarks of Intel Corporation and may only be used to identify Intel products:

376, 386, 387, 486, 4-SITE, Above, ACE51, ACE96, ACE186, ACE196, ACE960,
BITBUS, COMMputer, CREDIT, Data Pipeline, DVI, ETOX, FaxBACK, Genius, i, ~,
i486, i750, i860, ICE, iCEL, ICEVIEW, iCS, iDBP, iDIS, 121CE, iLBX, iMDDX, iMMX,
Inboard, Insite, Intel, intel, Inte1386, intelBOS, Intel Certified, Intelevision, inteligent
Identifier, inteligent Programming, Intellec, Intellink, iOSP, iPAT, iPDS, iPSC, iRMK,
iRMX, iSBC, iSBX, iSDM, iSXM, Library Manager, MAPNET, MCS, Megachassis,
MICROMAINFRAME, MULTIBUS, MULTICHANNEL, MULTIMODULE, MultiSERVER,
ONCE, OpenNET, OTP, PR0750, PROMPT, Promware, QUEST, QueX, Quick-Erase,
Quick-Pulse Programming, Ripplemode, RMXJ80, RUPI, Seamless, SLD,
SugarCube, TooITALK, UPI, Visual Edge, VLSiCEL, and ZapCode, and the combina­
tion of ICE, iCS, iRMX, iSBC, iSBX, iSXM, MCS, or UPI and a numerical suffix.

MDS is an ordering code only and is not used as a product name or trademark. MDS® is a registered trademark of Mohawk
Data Sciences Corporation.

MUL TIBUS is a patented Intel bus.

CHMOS and HMOS are patented processes of Intel Corp.

Intel Corporation and Intel's FASTPATH are not affiliated with Kinetics, a division of Excelan, Inc. or its FASTPATH trade­
mark or products.

OS/2 is a trademark of International Business Machines Corporation.

UNIX is a registered trademark of AT&T.

Additional copies of this manual or other Intel literature may be obtained from:

Intel Corporation
Literature Sales
P.O. Box 7641
Mt. Prospect, IL 60056-7641

©INTEL CORPORATION 1987, 1988, 1989 CG·101789

PREFACE

The Intel i86WM Microprocessor (part number 80860XR) delivers supercomputer perfor­
mance in a single VLSI component. The 64-bit design of the i860 microprocessor bal­
ances integer, floating point, and graphics performance for applications such as
engineering workstations, scientific computing, 3-D graphics workstations, and multiuser
systems. Its parallel architecture achieves high throughput with RISC design techniques,
pipelined processing units, wide data paths, large on-chip caches, and fast one micron
CHMOS IV silicon technology.

This book is the basic source of the detailed information that enables software designers
and programmers to use the i860 microprocessor. This book explains all programmer­
visible features of the architecture.

Even though the principal users of this Programmer's Reference Manual will be pro­
grammers, it contains information that is of value to systems designers and administra­
tors of software projects, as well. Readers of these latter categories may choose only to
read the higher-level sections of the manual, skipping over much of the programmer­
oriented detail.

HOW TO USE THIS MANUAL
• Chapter 1, "Architectural Overview," describes the i860 microprocessor "in a nut­

shell" and presents for the first time the terms that will be used throughout the book.

• Chapter 2, "Data Types," defines the basic units operated on by the instructions of
the i860 microprocessor.

• Chapter 3, "Registers," presents the processor's database. A detailed knowledge of
the registers is important to programmers, but this chapter may be skimmed by
administrators.

• Chapter 4, "Addressing," presents the details of operand alignment, page-oriented
virtual memory, and on-chip caches. Systems designers and administrators may
choose to read the introductory sections of each topic.

• Chapter 5, "Core Instructions," presents detailed information about those instruc­
tions that deal with memory addressing, integer arithmetic, and control flow.

• Chapter 6, "Floating-Point Instructions," presents detailed information about those
instructions that deal with floating-point arithmetic, long-integer arithmetic, and 3-D
graphics support. This chapter explains how extremely high performance can be
achieved by utilizing the parallelism and pipelining of the i860 microprocessor.

• Chapter 7, "Traps and Interrupts," deals with both systems- and applications­
oriented exceptions, external interrupts, writing exception handlers, saving the state
of the processor (information that is also useful for task switching), and initialization.

• Chapter 8, "Programming Model," defines standards for the use of many features of
the i860 microprocessor. Software administrators should be aware of the need for
standards and should ensure that they are implemented. Following the standards
presented here guarantees that compilers, applications programs, and operating sys­
tems written by different people and organizations will all work together.

iii

PREFACE

• Chapter 9, "Programming Examples," illustrates the use of the i860 microprocessor
by presenting short code sequences in assembly language.

• The appendices present instruction formats and encodings, timing information, and
summaries of instruction characteristics. These appendices are of most interest to
assembly-language programmers and to writers of assemblers, compilers, and
debuggers.

RELATED DOCUMENTATION

The following books contain additional material concerning the i860 microprocessor:

• i860™ 64-Bit Microprocessor (Data Sheet), order number 240296

• i860™ 64-Bit Microprocessor Assembler and Linker Reference Manual, order number
240436

• i860™ 64-Bit Microprocessor Simulator-Debugger Reference Manual, order number
240437

NOTATION AND CONVENTIONS

The instruction chapters contain an algorithmic description of each instruction that uses
a notation similar to that of the Algol or Pascal languages. The metalanguage uses the
following special symbols:

• A ~ B indicates that the value of B is assigned to A.

• Compound statements are enclosed between the keywords of the "if' statement (IF
... , THEN ... , ELSE ... , FI) or of the "do" statement (DO ... , OD).

• The operator + + indicates auto increment addressing.

• Register names and instruction mnemonics are printed in a contrasting typestyle to
make them stand out from the text; for example, dirbase. Individual programming
languages may require the use of lowercase letters.

Hexadecimal constants are written, according to the C language convention, with the
prefix Ox. For example, OxOF is a hexadecimal number that is equivalent to decimal 15.

RESERVED BITS AND SOFTWARE COMPATIBILITY

In many register and memory layout descriptions, certain bits are marked as reserved or
undefined. When bits are thus marked, it is essential for compatibility with future pro­
cessors that software not utilize these bits. Software should follow these guidelines in
dealing with reserved or undefined bits:

• Do not depend on the states of any reserved or undefined bits when testing the values
of registers that contain such bits. Mask out the reserved and undefined bits before
testing.

• Do not depend on the states of any reserved or undefined bits when storing them in
memory or in another register.

iv

PREFACE

• Do not depend on the ability to retain information written into any reserved or
undefined bits.

• When loading a control register, always load the reserved and undefined bits with
values previously retrieved from the same register.

NOTE

Depending upon the values of reserved or undefined bits makes software depen­
dent upon the unspecified manner in which the i860 microprocessor handles
these bits. Depending upon values of reserved or undefined bits risks making
software incompatible with future processor~ that define usages for these bits.
AVOID ANY SOFTWARE DEPENDENCE UPON THE STATE OF RESERVED
OR UNDEFINED BITS.

v

CUSTOMER SUPPORT

INTEL'S COMPLETE SUPPORT SOLUTION WORLDWIDE

Customer Support is Intel's complete support service that provides Intel customers with hardware support,
software support, customer training, consulting services and network management services. For detailed infor­
mation contact your local sales offices.

After a customer purchases any system hardware or software product, service and support become major
factors in determining whether that product will continue to meet a customer's expectations. Such support
requires an international support organization and a breadth of programs to meet a variety of customer needs.
As you might expect, Intel's customer support is quite extensive. It can start with assistance during your
development effort to network management. 100 Intel sales and service offices are located worldwide - in the
U.S., Canada, Europe and the Far East. So wherever you're using Intel technology, our professional staff is
within close reach.

HARDWARE SUPPORT SERVICES

Intel's hardware maintenance service, starting with complete on-site installation will boost your productivity
from the start and keep you running at maximum efficiency. Support for system or board level products can be
tailored to match your needs, from complete on-site repair and maintenance support to economical carry-in or
mail-in factory service.

Intel can provide support service for not only Intel systems and emulators, but also support for equipment in
your development lab or provide service on your product to your end-user/customer.

SOFIWARE SUPPORT SERVICES

Software products are supported by our Technical Information Service (TIPS) that has a special toll free
number to provide you with direct, ready information on known, documented problems and deficiencies, as
well as work-arounds, patches and other solutions.

Intel's software support consists of two levels of contracts. Standard support includes TIPS (Technical Infor­
mation Phone Service), updates and subscription service (product-specific troubleshooting guides and;
COMMENTS Magazine). Basic support consists of updates and the subscription service. Contracts are sold in
environments which represent product groupings (e.g., iRMX® environment).

CONSULTING SERVICES

Intel provides field system engineering consulting services for any phase of your development or application
effort. You can use our system engineers in a variety of ways ranging from assistance in using a new product,
developing an application, personalizing training and customizing an Intel product to providing technical and
management consulting. Systems Engineers are well versed in technical areas such as microcommunications,
real-time applications, embedded microcontrollers, and network services. You know your application needs;
we know our products. Working together we can help you get a successful product to market in the least
possible time.

CUSTOMER TRAINING

Intel offers a wide range of instructional programs covering various aspects of system design and implementa­
tion. In just three to ten days a limited number of individuals learn more in a single workshop than in weeks of
self-study. For optimum convenience, workshops are scheduled regularly at Training Centers worldwide or we
can take our workshops to you for on-site instruction. Covering a wide variety of topics, Intel's major course
categories include: architecture and assembly language, programming and operating systems, BITBUS ™ and
LAN applications.

NETWORK MANAGEMENT SERVICES

Today's networking products are powerful and extremely flexible. The return they can provide on your invest­
ment via increased productivity and reduced costs can be very substantial.

Intel offers complete network support, from definition of your network's physical and functional design, to
implementation, installation and maintenance. Whether installing your first network or adding to an existing
one, Intel's Networking Specialists can optimize network performance for you.

CG/CUSTSUPP/l00389

TABLE OF CONTENTS

CHAPTER 1 Page
ARCHITECTURAL OVERVIEW
1.1 OVERVIEW .. 1-1
1.2 INTEGER CORE UNIT 1-3
1.3 FLOATING-POINT UNIT .. 1-4
1.4 GRAPHICS UNIT 1-4
1.5 MEMORY MANAGEMENT UNIT ... 1-5
1.6 CACHES ... 1-6
1.7 PARALLEL ARCHITECTURE ... 1-6
1.8 SOFTWARE DEVELOPMENT ENVIRONMENT .. 1-7
1.8.1 Multiprocessing for High-Performance with Compatibility.. 1-7

CHAPTER 2
DATA TYPES
2.1 INTEGER ... 2-1
2.2 ORDINAL 2-1
2.3 SINGLE-PRECISION REAL 2-1
2.4 DOUBLE-PRECISION REAL ... 2-2
2.5 PiXEL... 2-3
2.6 REAL-NUMBER ENCODING ... 2-3

CHAPTER 3
REGISTERS
3.1 INTEGER REGISTER FILE .. 3-2
3.2 FLOATING-POINT REGISTER FILE .. 3-2
3.3 PROCESSOR STATUS REGISTER .. 3-2
3.4 EXTENDED PROCESSOR STATUS REGISTER .. 3-4
3.5 DATA BREAKPOINT REGISTER ... 3-6
3.6 DIRECTORY BASE REGISTER ... 3-6
3.7 FAULT INSTRUCTION REGISTER ... 3-8
3.8 FLOATING-POINT STATUS REGISTER ... 3-8
3.9 KR, KI, T, AND MERGE REGISTERS ... 3-11

CHAPTER 4
ADDRESSING
4.1 ALIGNMENT 4-1
4.2 VIRTUAL ADDRESSING 4-2
4.2.1 Page Frame ... 4-3
4.2.2 Virtual Address ... 4-3
4.2.3 Page Tables 4-3
4.2.4 Page-Table Entries 4-4
4.2.4.1 PAGE FRAME ADDRESS 4-4
4.2.4.2 PRESENT BIT .. 4-5
4.2.4.3 CACHE DISABLE BIT 4-6
4.2.4.4 WRITE-THROUGH BIT ... 4-6
4.2.4.5 ACCESSED AND DIRTY BITS 4-6
4.2.4.6 WRITABLE AND USER BITS ... 4-7
4.2.4.7 COMBINING PROTECTION OF BOTH LEVELS OF PAGE TABLES 4-8
4.2.5 Address Translation Algorithm 4-8
4.2.6 Address Translation Faults 4-9
4.2.7 Page Translation Cache .. 4-9
4.3 CACHING AND CACHE FLUSHING ... 4-10

vii

TABLE OF CONTENTS

CHAPTER 5 Page
CORE INSTRUCTIONS
5.1 LOAD INTEGER 5-3
5.2 STORE INTEGER .. 5-4
5.3 TRANSFER INTEGER TO F-P REGISTER .. 5-5
5.4 LOAD FLOATING-POINT .. 5-6
5.5 STORE FLOATING-POINT .. 5-8
5.6 PIXEL STORE 5-9
5.7 INTEGER ADD AND SUBTRACT .. 5-10
5.8 SHIFT INSTRUCTIONS ... 5-12
5.9 SOFTWARE TRAPS .. 5-13
5.10 LOGICAL INSTRUCTIONS 5-14
5.11 CONTROL-TRANSFER INSTRUCTIONS .. 5-16
5.12 CONTROL REGISTER ACCESS 5-20
5.13 CACHE FLUSH ... 5-21
5.14 BUS LOCK 5-23

CHAPTER 6
FLOATING-POINT INSTRUCTIONS
6.1 PRECISION SPECIFICATION ... 6-1
6.2 PIPELINED AND SCALAR OPERATIONS .. 6-2
6.2.1 Scalar Mode... 6-4
6.2.2 Pipelining Status Information ... 6-4
6.2.3 Precision in the Pipelines 6-4
6.2.4 Transition between Scalar and Pipelined Operations ,................... 6-5
6.3 MULTIPLIER INSTRUCTIONS ... ,............ 6-5
6.3.1 Floating-Point Multiply 6-7
6.3.2 Floating-Point Multiply Low.................. 6-8
6.3.3 Floating-Point Reciprocals 6-9
6.4 ADDER INSTRUCTIONS ... 6-9
6.4.1 Floating-Point Add and Subtract 6-10
Q.4.2 Floating-Point Compares 6-12
6.4.3 Floating-Point to Integer Conversion................................... 6-13
6.5 DUAL OPERAT!ON INSTRUCTIONS .. 6-14
6.6 GRAPHICS UNIT ... 6-26
6.6.1 Long-Integer Arithmetic 6-28
6.6.2 3-D Graphics Operations 6-28
6.6.2.1 Z-BUFFER CHECK INSTRUCTIONS .. 6-29
6.6.2.2 PIXEL ADD 6-32
6.6.2.3 Z-BUFFER ADD 6-36
6.6.2.4 OR WITH MERGE REGISTER .. 6-38
6.7 TRANSFER F-P TO INTEGER REGISTER .. 6-39
6.8 DUAL-INSTRUCTION MODE .. 6-40
6.8.1 Core and Floating-Point Instruction Interaction .. ~.. 6-41
6.8.2 Dual-Instruction Mode Restrictions 6-42

CHAPTER 7
TRAPS AND INTERRUPTS
7.1 TYPES OF TRAPS .. 7-1
7.2 TRAP HANDLER INVOCATION ... 7-1
7.2.1 Saving State ... 7-2
7.2.2 Inside the Trap Handler ... :... 7-3
7.2.3 Returning from the Trap Handler .. 7-3
7.2.3.1 DETERMINING WHERE TO RESUME ... 7-4

viii

TABLE OF CONTENTS

Page
7.2.3.2 SETTING KNF ... 7-5
7.3 INSTRUCTION FAULT .. 7-5
7.4 FLOATING-POINT FAULT ... 7-5
7.4.1 Source Exception Faults .. 7-6
7.4.2 Result Exception Faults ... 7-7
7.5 INSTRUCTION-ACCESS FAULT ... 7-8
7.6 DATA-ACCESS FAULT ... 7-8
7.7 INTERRUPT TRAP .. 7-9
7.8 RESET TRAP ... 7-9
7.9 PIPELINE PREEMPTION .. 7-10
7.9.1 Floating-Point Pipelines 7-10
7.9.2 Load Pipeline ... 7-10
7.9.3 Graphics Pipeline ... 7-11
7.9.4 Examples of Pipeline Preemption ... 7-11

CHAPTER 8
PROGRAMMING MODEL
8.1 REGISTER ASSIGNMENT .. 8-1
8.1.1 Integer Registers .. 8-2
8.1.2 Floating-Point Registers 8-3
8.1.3 Passing Mixed Integer and Floating-Point Parameters in Registers 8-3
8.1.4 Variable Length Parameter Lists 8-3
8.2 DATA ALIGNMENT ... 8-4
8.3 IMPLEMENTING A STACK ... 8-4
8.3.1 Stack Entry and Exit Code 8-5
8.3.2 Dynamic Memory Allocation on the Stack .. 8-6
8.4 MEMORY ORGANIZATION ... 8-6

CHAPTER 9
PROGRAMMING EXAMPLES
9.1 SMALL INTEGERS 9-1
9.2 SINGLE-PRECISION DIVIDE 9-2
9.3 DOUBLE-PRECISION DIVIDE 9-3
9.4 INTEGER MULTIPLY 9-4
9.5 CONVERSION FROM SIGNED INTEGER TO DOUBLE 9-5
9.6 SIGNED INTEGER DIVIDE 9-6
9.7 STRING COpy .. 9-7
9.8 FLOATING-POINT PIPELINE .. 9-8
9.9 PIPELINING OF DUAL-OPERATION INSTRUCTIONS ... 9-9
9.10 PIPELINING OF DOUBLE-PRECISION DUAL OPERATIONS 9-11
9.11 DUAL INSTRUCTION MODE .. 9-13
9.12 CACHE STRATEGIES FOR MATRIX DOT PRODUCT ... 9-15
9.13 3-D RENDERING 9-21
9.13.1 Distance Interpolation .. 9-22
9.13.2 Color Interpolation 9-25
9.13.3 Boundary Conditions 9-27
9.13.3.1 Z-BUFFER MASKING 9-28
9.13.3.2 ACCUMULATOR INITIALIZATION ... 9-29
9.13.4 The Inner Loop .. 9-29

ix

TABLE OF CONTENTS

APPENDIX A
INSTRUCTION SET SUMMARY

APPENDIX B
INSTRUCTION FORMAT AND ENCODING

APPENDIX C
INSTRUCTION TIMINGS

APPENDIX D
INSTRUCTION CHARACTERISTICS

Figures

Figure Title Page

1-1 Registers and Data Paths ... 1-2
2-1 Pixel Format Examples ... 2-4
3-1 Register Set .. 3-1
3-2 Processor Status Register
3-3 Extended Processor Status Register ... 3-5
3-4 Directory Base Register .. 3-6
3-5 Floating-Point Status Register .. 3-9
4-1 Memory Formats ... 4-1
4-2 Big and Little Endian Memory Transfers 4-2
4-3 Format of a Virtual Address .. 4-3
4-4 Address Translation .. 4-4
4-5 Format of a Page Table Entry .. 4-5
4-6 Invalid Page Table Entry 4-5
6-1 Pipelined Instruction Execution 6-3
6-2 Dual-Operation Data Paths ... 6-16
6-3 Data Paths by Instruction (1 of 8) 6-18
6-4 Data Path Mnemonics 6-26
6-5 PSR Fields for Graphics Operations 6-29
6-6 FADDP with 8-Bit Pixels .. 6-33
6-7 FADDP with 16-Bit Pixels .. 6-34
6-8 FADDP with 32-Bit Pixels .. 6-35
6-9 FADDZ with 16-Bit Z-Buffer 6-36
6-10 64-Bit Distance Interpolation .. 6-37
6-11 Dual-Instruction Mode Transitions (1 of 2) 6-40
8-1 Register Allocation .. 8-2
8-2 Stack Frame Format ... 8-6
8-3 Example Memory Layout .. 8-7
9-1 Z-Buffer Interpolation 9-23
9-2 faddz Operands ... 9-24
9-3 Pixel Interpolation for Gouraud Shading .. 9-27
9-4 faddp Operands ... 9-27

x

Table

2-1
2-2
3-1
3-2
3-3
3-4
4-1
5-1
6-1
6-2
6-3
7-1
7-2
8-1
9-1
9-2
9-3
A-1
A-2
B-1

Example

5-1
5-2
5-3
7-1
7-2
8-1
8-2
8-3
8-4
9-1
9-2
9-3
9-4
9-5
9-6
9-7
9-8
9-9
9-10
9-11
9-12
9-13
9-14
9-15
9-16
9-17

TABLE OF CONTENTS

Tables

Title Page

Pixel Formats .. 2-3
Single and Double Real Encodings ... ~... 2-5
Values of PS 3-4
Values of RB ... 3-7
Values of RC 3-8
Values of RM 3-9
Combining Directory and Page Protection 4-8
Control Register Encoding for Assemblers .. 5-20
Precision Specification 6-2
DPC Encoding 6-17
FADDP MERGE Update 6-32
Types of Traps .. 7-1
Register and Cache Values after Reset ... 7-9
Register Allocation 8-1
faddz Visualization .. 9-25
Accumulator Initial Values .. 9-29
Accumulator Initialization Table 9-30
Precision Specification A-2
FADDP MERGE Update ... A-5
Register Encoding B-1

Examples

Title

Example of bla Usage .. .
Cache Flush Procedure
Examples of lock and unlock Usage
Saving Pipeline States
Restoring Pipeline States (1 of 2)
Reading Misaligned 32-Bit Value .. .
Subroutine Entry and Exit with Frame Pointer .. .
Subroutine Entry and Exit without Frame Pointer .. .
Possible Implementation of alloca .. .
Sign Extension
Loading Small Unsigned Integers
Single-Precision Divide .. .
Double-Precision Divide .. .
Integer Multiply .. .
Single to Double Conversion .. .
Signed Integer Divide .. .
String Copy .. .
Pipelined Add .. .
Pipelined Dual-Operation Instruction .. .
Pipelined Double-Precision Dual Operation
Dual-Instruction Mode
Matrix Multiply, Cached Loads Only (Sheet 1 of 2)
Matrix Multiply, Cached and Pipelined Loads (Sheet 1 of 2)
Setting Pixel Size
Register Assignments .. .
Construction of Z Interpolants

xi

Page

5-18
5-22
5-24
7-12
7-13

8-4
8-6
8-7
8-8
9-1
9-1
9-2
9-3
9-4
9-5
9-6
9-7
9-8

9-10
9-12
9-14
9-16
9-19
9-21
9-22
9-26

TABLE OF CONTENTS

Examples

Example Title

9-18
9-19
9-20
9-21

Construction of Color Interpolants
Z Mask Procedure
Accumulator Initialization
3-D Rendering (1 of 2) .. .

xii

Page

9-28
9-28
9-30
9-31

Architectural Overview 1

CHAPTER 1
ARCHITECTURAL OVERVIEW

The Intel i860™ Microprocessor defines a complete architecture that balances integer,
floating point, and graphics performance. Target applications include engineering work­
stations, scientific computing, 3-D graphics workstations, and multiuser systems. Its par­
allel architecture achieves high throughput with RISe design techniques, pipelined
processing units, wide data paths, and large on-chip caches.

1.1 OVERVIEW

The i860 microprocessor supports more than just integer operations. The architecture
includes on a single chip:

• . Integer operations

• Floating-point operations

• Graphics operations

• Memory-management support

• Data and instruction caches

Having a data cache as an integral part of the architecture provides support for vector
operations. The data cache supports applications programs in the conventional manner,
without explicit programming. For vector operations, however, programmers can explic­
itly use the data cache as if it were a large block of vector registers.

To sustain high performance, the i860 microprocessor incorporates wide information
paths that include:

• 64-bit external data bus

• 128-bit on-chip data bus

• 64-bit on-chip instruction bus

Floating-point vector operations use all three busses.

The i860 microprocessor includes a RISe integer core processing unit with one-clock
instruction execution. The core unit processes conventional integer programs and pro­
vides complete support for standard operating systems, such as UNIX and OS/2. The
core unit also drives the graphics and floating point hardware.

The i860 microprocessor supports vector floating-point operations without special vector
instructions or vector registers. It accomplishes this by using the on-chip data cache and
a variety of parallel techniques that include:

• Pipelined instruction execution with delayed branch instructions to avoid breaks in
the pipeline.

• Instructions that automatically increment index registers so as to reduce the number
of instructions needed for vector processing.

1-1

ARCHITECTURAL OVERVIEW

• Parallel integer core and floating-point processing units.

• Parallel multiplier and adder units within the floating-point unit.

• Pipelined floating-point hardware units, with both scalar (nonpipelined) and vector
(pipelined) variants of floating-point instructions. SqftWare can switch between scalar
and pipelined modes. ' : '

• Large register set:
32 general-purpose integer registers, each 32-bits wide.

32 floating-point registers, each 32-bits wide, which can also be configured as 64-
and 128-bit registers. The floating-point registers also serve as the staging area
for data going into and out of the floating-point pipelines.

Figure 1-1 illustrates the registers and data paths of the i860 microprocessor.

240329i

Figure 1-1. Registers and Data Paths

1-2

ARCHITECTURAL OVERVIEW

There are two classes of instructions:

• Core instructions (executed by the integer core unit).

• Floating-point and graphics instructions (executed by the floating-point unit and
graphics unit).

The processor has a dual-instruction mode that can simultaneously execute one instruc­
tion from each class (core and floating-point). Software can switch between dual- and
single-instruction modes. Within the floating-point unit, special dual-operation instruc­
tions (add-and-multiply, subtract-and-multiply) use the adder and multiplier units in
parallel. With both dual-instruction mode and dual operation instructions, the i860 mi­
croprocessor can execute three operations simultaneously.

The integer core unit manages data flow and loop control for the floating point units.
Together, they efficiently execute such common tasks as evaluating systems of linear
equations, performing the Fast Fourier Transform (FFT), and performing graphics
transformations.

1.2 INTEGER CORE UNIT

The core unit is the administrative center of the i860 microprocessor. The core unit
fetches both integer and floating-point instructions. It contains the integer register file,
and decodes and executes load, store, integer, bit, and control-transfer operations.
Its pipelined organization with extensive bypassing and scoreboarding maximizes
performance.

A complete list of its instruction categories includes ...

• Loads and stores between memory and the integer and floating-point registers.
Floating-point loads can be pipelined in three levels. A pixel store instruction contrib­
utes to efficient hidden-surface elimination.

• Transfers between the integer registers and the floating-point registers.

• Integer arithmetic for 32-bit signed and unsigned numbers. The 32-bit operations can
also perform arithmetic on smaller (8- or 16-bit) integers. Arithmetic on large (128-bit
or greater) integers can be implemented via short software macros or subroutines.
(The graphics unit provides arithmetic for 64-bit integers.)

• Shifts of the integer registers.

• Logical operations on the integer registers.

• Control transfers. There are both direct and indirect branches, a call instruction, and
a branch that can be used to form highly efficient loops. Many of these are delayed
transfers that avoid breaks in the instruction pipeline. One instruction provides effi­
cient loop control by combining the testing and updating of the loop index with a
delayed control transfer.

• System control functions.

1-3

ARCHITECTURAL OVERVIEW

1.3 FLOATING-POINT UNIT

The floating-point unit contains the floating-point register file. This file can be accessed
as 8 x 128-bit registers, 16 x 64-bit registers, or 32 x 32-bit registers.

The floating-point unit contains both the floating-point adder and the floating-point
multiplier. The adder performs floating-point addition, subtraction, comparison, and
conversions. The mUltiplier performs floating-point and integer multiply and floating­
point reciprocal operations. Both units support 64- and 32-bit floating-point values in
IEEE Standard 754 format. Each of these units uses pipelining to deliver up to one
result per clock. The adder and multiplier can operate in parallel, producing up to two
results per clock. Furthermore, the t1oating-point unit can operate in parallel with the
core unit, sustaining the two-result-per-clock rate by overlapping administrative func­
tions with floating point operations.

The RISe design philosophy minimizes circuit delays and enables using all the available
chip space to achieve the greatest performance for t1oating-point operations. Due to this
fact, due to the use of pipe lining and parallelism in the t1oating-point unit, and due to
the wide on-chip caches, the i860 microprocessor achieves extremely high levels of
floating-point performance.

The use of RISC design principles implies that the i860 microprocessor does not have
high-level math macro-instructions. High-level math (and other) functions are imple­
mented in software macros and libraries. For example, the i860 microprocessor does not
have a sin instruction. The sin function is implemented in software on the i860 micro­
processor. The sin routine for the i860 microprocessor, however, will still be very fast
due to the extremely high speed of the basic floating-point operations. Commonly used
math operations, such as the sin function, are offered by Intel as part of a software
library.

The t1oating-point data types, floating-point instructions, and exception handling all sup­
port the IEEE Standard for Binary Floating-Point Arithmetic (ANSI/IEEE Std 754-
1985) with both single- and double-precision floating-point data types. Due to the low­
level instruction set of the i860 microprocessor, not all functions defined by the standard
are implemented directly by the hardware. The i860 microprocessor supplies the under­
lying data types, instructions, exception checking, and traps to make it possible for soft­
ware to implement the remaining functions of the standard efficiently. Intel offers a
software library that provides programs for the i860 microprocessor with full IEEE­
compatible arithmetic.

1.4 GRAPHICS UNIT

The graphics unit has special 64-bit integer logic that supports 3-D· graphics drawing
algorithms. This unit can operate in parallel with the core unit. It contains the special­
purpose MERGE register, and performs multiple additions on integers stored in the
floating-point register file.

1-4

ARCHITECTURAL OVERVIEW

These special graphics features focus the chip's high performance on applications that
involve three-dimensional graphics with Gouraud or Phong color intensity shading and
hidden surface elimination via the Z-buffer algorithm. The graphics features of the i860
microprocessor assume that:

• The surface of a solid object is drawn with polygon patches whose shapes approxi­
mate the original object.

• The color intensities of the vertices of the polygon and their distances from the viewer
are known, but the distances and intensities of the other points must be calculated by
interpolation.

The graphics instructions of the i860 microprocessor directly aid such interpolation. Fur­
thermore, the i860 microprocessor recognizes the pixel as an 8-, 16-, or 32-bit data type.
It can compute individual red, blue, and green color intensity values within a pixel; but it
does so with parallel operations that take advantage of the 64-bit internal word size and
64-bit external data bus.

The graphics unit also provides add and subtract operations for 64-bit integers, which
are especially useful for high-resolution distance interpolation.

In addition to the special support provided by the graphics unit, many 3-D graphics
applications directly benefit from the parallelism of the core and floating-point units.
For example, the 3-D rotation represented in homogeneous vector notation by ...

[X Y Z 1] [x y z 1]

o
cos t
-sin t
o

o
sin t
cos t
o ~l

.. .is just one example of the kind of vector-oriented calculation that can be converted to
a program that takes full advantage of the pipelining, dual-instruction mode, dual oper­
ations, and memory hierarchy of the i860 microprocessor.

1.5 MEMORY MANAGEMENT UNIT

The on-chip MMU of the i860 microprocessor performs the translation of addresses
from the linear logical address space to the linear physical address for both data and
instruction access. Address translation is optional; when enabled, address translation
uses a two-level structure of page directories and page tables of 1K entries each. Infor­
mation from these tables is cached in a 64-entry, four-way set-associative memory. The
i860 microprocessor provides basic features (bits and traps) to implement paged virtual
memory and to implement user/supervisor protection at the page level - all compatible
with the paged memory management of the 386 ™ and i486 ™ microprocessors.

1-5

ARCHITECTURAL OVERVIEW

1.6 CACHES

In addition to the page translation cache mentioned previously, the i860 microprocessor
contains separate on-chip caches for data and instructions. Caching is transparent, ex­
cept to systems programmers who must ensure that the data cache is flushed when
switching tasks or changing system memory parameters. The on-chip cache controller
also provides the interface to the external bus with a pipelined structure that allows up
to three outstanding bus cycles.

The instruction cache is a two-way, set-associative memory of four Kbytes, with 32-byte
blocks. The data cache is a write-back cache, composed of a two-way, set-associative
memory of eight Kbytes, with 32-byte blocks.

1.7 PARALLEL ARCHITECTURE

The i860 microprocessor offers a high level of parallelism in a form that is flexible
enough to be applied to a wide variety of processing styles:

• Conventional programs and conventional compilers can use the i860 microprocessor
as a scalar machine and still benefit from its high-performance. Even when used as a
scalar machine, the i860 microprocessor implements concurrency between integer and
floating-point operations, as long as there are no conflicts for internal resources. An
integer instruction that follows a floating-point instruction begins immediately, over­
lapping the floating-point instruction. A floating-point instruction that follows an in­
teger instruction also begins immediately.

• Compilers designed for the vector model can treat the i860 microprocessor as a vector
machine.

• New instruction-scheduling technology for compilers can compare the processing re­
quirements and data dependencies of programs with the available resources of the
i860 microprocessor, and can take maximum advantage of its dual-instruction mode,
pipelining, and caching.

An established compiler technology for the vector model of computation already exists.
This technology can be applied directly to the i860 microprocessor. The key to treating
the i860 microprocessor as a vector machine is choosing the appropriate vector primi­
tives that the compiler assumes are available on the target machine. (Intel has defined a
standard set of vector primitives.) The vector primitives are implemented as hand-coded
subroutines; the compiler generates calls to these subroutines. If a compiler depends on
the traditional concept of vector registers, it can implement them by mapping these
registers to specific memory addresses. By virtue of frequent access to these addresses,
the simulated registers will reside permanently in the data cache.

Existing programs can be upgraded to take better advantage of the parallel architecture
of the i860 microprocessor using vector-oriented technology. Flow analysis or "vectoriz­
ing" tools can identify parallelism that is implicit in existing programs. When modified
(either manually or automatically) and compiled by an appropriate compiler for the i860
microprocessor, these programs can achieve an even greater performance gain from the
i860 microprocessor.

1-6

ARCHITECTURAL OVERVIEW

Designers of compilers will find that the i860 microprocessor offers more flexibility than
traditional vector processors. The instruction set of the i860 microprocessor separates
addressing functions from arithmetic functions. Two benefits result from this separation:

1. It is possible to address arbitrary data structures. Data structures are no longer
limited to vectors, arrays, and matrices. Parallel algorithms can be applied to linked
lists (for example) as easily as to matrices.

2. A richer set of operations is available at each node of a data structure. It becomes
possible to perform different operations at each node, and there is no limit to the
complexity of each operation. With the i860 microprocessor, it is no longer necessary
to pass all elem~nts of a vector several times to implement complex vector
operations.

1.8 SOFTWARE DEVELOPMENT ENVIRONMENT

The software environment available from Intel for the i860 microprocessor includes:

• Assembler, linker, C, and FORTRAN compilers, and FORTRAN vectorizer.

• Libraries of higher-level math functions and IEEE-standard exception support. Intel
offers such libraries in a form that can be utilized by a variety of compilers.

• Simulator and debugger.

1.8.1 Multiprocessing for High-Performance with Compatibility

Memory organization of the i860 microprocessor is compatible with that of the 386 and
i486 microprocessors (including addresses and page-table entries); all data types are
compatible as well (both integers and floating-point numbers). The page-oriented virtual
memory management of the i860 microprocessor is also compatible with that of the 386
and i486 microprocessors. This level of compatibility facilitates use of the i860 micropro­
cessor in multiprocessor systems with a 386 or i486 microprocessor. Moreover, complete
hardware and software support for such multiprocessor systems is available.

An i860 microprocessor can be used with a 386, 386 SX, or i486 microprocessor system.
The i860 microprocessor extends system performance to supercomputer levels, while the
386/386' SX/i486 microprocessor provides binary compatibility with existing applications.
The compatibility processor provides acces's to a huge software base supporting a wide
variety of I/O devices, communications protocols, and human-interface methods. The
computation-intensive applications enjoy the raw computational power of the i860
microprocessor, while having access to all capabilities and resources of the compatibility
processor.

1-7

Data Types 2

CHAPTER 2
DATA TYPES

The i860 microprocessor provides operations for integer and floating-point data. Integer
operations are performed on 32-bit operands with some support also for 64-bit operands.
Load and store instructions can reference 8-bit, 16-bit, 32-bit, 64-bit, and 128-bit oper­
ands. Floating-point operations are performed on IEEE-standard 32- and 64-bit formats.
Graphics oriented instructions operate on arrays of 8-, 16-, or 32-bit pixels.

Bits within data formats are numbered from zero starting with the least significant bit.
Illustrations of data formats in this manual show the least significant bit (bit zero) at the
right.

2.1 INTEGER

An integer is a 32-bit signed value in standard two's complement form. A 32-bit integer
can represent a value in the range -2,147,483,648 (_231

) to 2,147,438,647 (+231
- 1).

Arithmetic operations on 8- and 16-bit integers can be performed by sign-extending the
8- or 16-bit values to 32 bits, then using the 32-bit operations.

There are also add and subtract instructions that operate on 64-bit integers.

When an eight- or 16-bit item is loaded into a register, it is converted to an integer by
sign-extending the value to 32 bits. When an eight- or 16-bit item is stored from a
register, the corresponding number of low-order bits of the register are used.

2.2 ORDINAL

Arithmetic operations are available for 32-bit ordinals. An ordinal is an unsigned inte­
ger. An ordinal can represent values in the range 0 to 4,294,967,295 (+232

- 1).

Also, there are add and subtract instructions that operate on 64-bit ordinals.

2.3 SINGLE-PRECISION REAL

31 23

E

1 t

F

L

2-1

FRACTION

EXPONENT

SIGN

o

240329i

DATA TYPES

A single-precision real (also called "single real") data type is a 32-bit binary floating­
point number. Bit 31 is the sign bit; bits 30 .. 23 are the exponent; and bits 22 .. 0 are the
fraction. In accordance with ANSI/IEEE standard 754, the value of a single-precision
real is defined as follows:

1. If e = 0 and f ~ 0 or e = 255 then generate a floating-point source-exception trap
when encountered in a floating-point operation.

2. If 0 < e < 255, then the value is -Is x 1.f x 2C -127. (The exponent adjustment
127 is called the bias.)

3. If e = 0 and f = 0, then the value is signed zero.

The special values infinity, NaN, indefinite, and denormal generate a trap when encoun­
tered. The trap handler implements IEEE-standard results. (Refer to Table 2-2 for
encoding of these special values.)

2.4 DOUBLE-PRECISION REAL

63 52

E

1 t
F

L FRACTION

EXPONENT

SIGN

o

240329i

A double-precision real (also called "double real") data type is a 64-bit binary floating­
point number. Bit 63 is the sign bit; bits 62 .. 52 are the exponent; and bits 51..0 are the
fraction. In accordance with ANSI/IEEE standard 754, the value of a double-precision
real is defined as follows:

1. If e = 0 and f ~ 0 or'e = 2047, then generate a floating-point source-exception trap
when encountered in a floating-point operation.

2. If 0 < e < 2047, then the value is - 1 s x 1.f x 2C
-1023. (The exponent adjustment

1023 is called the bias.)

3. If e = 0 and f = 0, then the value is signed zero.

The special values infinity, NaN, indefinite, and denormal generate a trap when encoun­
tered. The trap handler implements IEEE-standard results. (Refer to Table 2-2 for
encoding of these special values.)

2-2

DATA TYPES

A double real value occupies an even/odd pair of floating-point registers. Bits 31 .. 0 are
stored in the even-numbered floating-point register; bits 63 .. 32 are stored in the next
higher odd-numbered floating-point register.

2.5 PIXEL

A pixel may be 8, 16, or 32 bits long depending on color and intensity resolution require­
ments. Regardless of the pixel size, the i860 microprocessor always operates on 64 bits
worth of pixels at a time. The pixel data type is used by two kinds of instructions:

• The selective pixel-store instruction that helps implement hidden surface elimination.

• The pixel add instruction that helps implement 3-D color intensity shading.

To perform color intensity shading efficiently in a variety of applications, the i860 micro­
processor defines three pixel formats according to Table 2-1.

Figure 2-1 illustrates one way of assigning meaning to the fields of pixels. These assign­
ments are for illustration purposes only. The i860 microprocessor defines only the field
sizes, not the specific use of each field. Other ways of using the fields of pixels are
possible.

2.6 REAL-NUMBER ENCODING

Table 2-2 presents the complete range of values that can be stored in the single and
double real formats. Not all possible values are directly supported by the i860 micropro­
cessor. The supported values are the normals and the zeros, both positive and negative.
Other values are not generated by the i860 microprocessor, and, if encountered as input
to a floating-point instruction, they trigger the floating-point source exception.
Exception-handling software can use the unsupported values to implement denormals,
infinities, and NaNs.

Table 2-1. Pixel Formats

Pixel Bits of Bits of Bits of
Bits of

Size Color 1* Color 2* Color 3*
Other

(in bits) Intensity Intensity Intensity
Attribute
(Texture)

8 N (:5: 8) bits of intensity** 8 - N

16 6 6 4

32 8 8 8 8

* The intensity attribute fields may be assigned to colors in any order convenient to the application.
** With 8-bit pixels, up to 8 bits can be used for intensity; the remaining bits can be used for any other

attribute, such as color. The intensity bits must be the low-order bits of the pixel.

2-3

DATA TYPES

7

8-BIT PIXEL I C I
15 9

16-BIT PIXEL I R I G I
31 23 15 7

32-BIT PIXEL I R I G I B I T

I-INTENSITY, R-RED INTENSITY, G-GREEN INTENSITY, B-BLUE INTENSITY, C-COLOR,
T-TEXTURE

3

THESE ASSIGNMENTS OF SPECIFIC MEANINGS TO THE FIELDS OF PIXELS ARE FOR
ILLUSTRATION PURPOSES ONLY. ONLY THE FIELD SIZES ARE DEFINED, NOT THE SPECIFIC
USE OF EACH FIELD.

Figure 2-1. Pixel Format Examples

2-4

0

I
0

B I
0

I

240329i

DATA TYPES

Table 2-2. Single and Double Real Encodings

Class Sign Biased Fraction
Exponent ff--ff*

0 11..11 11 .. 11

C/) Quiet
z
co 0 11..11 10 .. 00 z

0 11..11 01..11

Signaling
C/)

0 11..11 00 .. 01 Q)

.~
'(j)

Infinity 0 11..11 00 .. 00 0 a..

0 11..10 11..11

Normals
C/) 0 00 .. 01 00 .. 00 (ij
Q)

a:
0 00 .. 00 11..11

Denormals

0 00 .. 00 00 .. 01

Zero 0 00 .. 00 00 .. 00

Zero 1 00 .. 00 00 .. 00

1 00 .. 00 00 .. 01
C/)

Cil
Denormals

Q) 1 00 .. 00 11..11 II:

1 00 .. 01 00 .. 00
C/)
Q) Normals >
'iii 1 11..10 11..11 0)
Q)

z
Infinity 1 11..11 00 .. 00

1 11..11 00 .. 01

Signaling
C/)

11..11 01..11 Z « z
1 11..11 10 .. 00

Quiet

1 11..11 11..11

Single: ~ 8 bits--,; +-23 bits--,;
Double: ~11 bits--,; +-52 bits--,;

*Integer bit is implied and not stored.

2-5

Registers 3

CHAPTER 3
REGISTERS

As Figure 3-1 shows, the i860 ™ microprocessor has the following registers:

• An integer register file

• A floating-point register file

• Six control registers (psr, epsr, db, dirbase, fir, and fsr)

• Four special-purpose registers (KR, KI, T, and MERGE)

FLOAnNG-POlNT
63 0

INTEGER 0 0 to
31 0 12

0 rO 14
r1 f6
r2 f8
r3 110
r4 112
r5 114
r6 116
r7 118
r8 f20
r9 f22
r10 124
r11 f26
r12 f28
r13 f30
r14

CONTROL r15
r16 -ear ear
r17
r18 ~~
r19
r20 dll3llll
r21
r22 ftr
r23
r24 ISr
r25

SPECIAL PURPOSE r26
r27 KR
r28 KI
r29 I
r30
r31 MERGE

Figure 3-1. Register Set

3-1

240329i

REGISTERS

The control registers are accessible only by load and store control-register instructions;
the integer and floating-point registers are accessed by arithmetic operations and load
and store instructions. The special-purpose registers KR, KI, T, and MERGE are used
by a few specific instructions. For information about initialization of registers, refer to
the reset trap in Chapter 7. For information about protection as it applies to registers,
refer to the st.e instruction in Chapter 5.

3.1 INTEGER REGISTER FILE

There are 32 integer registers, each 32-bits wide, referred to as rO through r31, which are
used for address computation and scalar integer computations. Register rO always re­
turns zero when read, independently of what is stored in it. This special behaviour of rO
makes it useful for modifying the function of certain instructions. For example, specify­
ing rO as the destination of a subtract (thereby effectively discarding the result) produces
a compare instruction. Similarly, using rO as one source operand of an OR instruction
produces a test-for-zero instruction.

3.2 FLOATING-POINT REGISTER FILE

There are 32 floating-point registers, each 32-bits wide, referred to as fO through f31,
which are used for floating-point computations. Registers fO and f1 always return zero
when read, independently of what is stored in them. The floating-point registers are also
used by a set of integer operations, primarily for graphics computations.

The floating-point registers act as buffer registers in vector computations, while the data
cache performs the role of the vector registers of a conventional vector processor.

When accessing 64-bit floating-point or integer values, the i860 microprocessor uses an
even/odd pair of registers. When accessing 128-bit values, it uses an aligned set of four
registers (fO, f4, f8, ... , f28). The instruction must designate the lowest register number
of the set of registers containing 64- or 128-bit values. Misaligned register numbers
produce undefined results. The register with the lowest number contains the least signif­
icarit part of the value.

3.3 PROCESSOR STATUS REGISTER

The processor status register (psr) contains miscellaneous state information for the cur­
rent process. Figure 3-2 shows the format of the psr. Fields marked by an asterisk in the
figure can be changed only in supervisor mode.

• BR (Break Read) and BW (Break Write) enable a data access trap when the operand
address matches the address in the db register and a read or write (respectively)
occurs. (Refer to section 3.5 for more about the db register.)

• Various instructions set CC (Condition Code) according to the value of the result, as
explained in Chapter 5. The conditional branch instructions test CC. The bla instruc­
tion described in Chapter 5 sets and tests LCC (Loop Condition Code).

3-2

REGISTERS

BREAKREAD---,

BREAK WRITE -----------------------------,
CONDITION CODE
LOOP CONDITION CODE ------------------------------,
INTERRUPT MODE ----------------------------,
PREVIOUS INTERRUPT MODE ----------------------,
USER MODE
PREVIOUS USER MODE -----------...,
INSTRUCTION TRAP --------------------,
INTERRUPT -------------'-1
INSTRUCTION ACCESS TRAP -----------.,
DATA ACCESS TRAP ----------..,

FLOATING-POINT TRAP --------, 1
DELAYED SWITCH ----------..., 1
DUAL INSTRUCTION MODE l J

PM

,

KILL NEXT FLOATING-POINT
INSTRUCTION

(RESERVED)
SHIFT COUNT
PIXEL SIZE
PIXEL MASK

·CAN BE CHANGED ONLY FROM SUPERVISOR LEVEL.

Figure 3·2. Processor Status Register

240329i

• 1M (Interrupt Mode) enables external interrupts if set; disables interrupts if clear.
(Chapter 7 covers interrupts.)

• PIM (Previous Interrupt Mode) and PU (Previous User Mode) save the correspond­
ing status bits (1M and U) on a trap, because those status bits are changed when a
trap occurs. They are restored into their corresponding status bits when returning
from a trap handler with a branch indirect instruction when a trap flag is set in the
psr. (Chapter 7 provides the details about traps.)

• U (User Mode) is set when the i860 microprocessor is executing in user mode; it is
clear when the i860 microprocessor is executing in supervisor mode. In user mode,
writes to some control registers are inhibited. This bit also controls the memory pro­
tection mechanism described in Chapter 4.

• IT (Instruction Trap), IN (Interrupt), IAT (Instruction Access Trap), DAT (Data
Access Trap), and FT (Floating-Point Trap) are trap flags. They are set when the
corresponding trap condition occurs. The trap handler examines these bits to deter­
mine which condition or conditions have caused the trap. Refer to Chapter 7 for a
more detailed explanation.

3-3

REGISTERS

• DS (Delayed Switch) is set if a trap occurs during the instruction before dual­
instruction mode is entered or exited. If DS is set and DIM (Dual Instruction Mode)
is clear, the i860 microprocessor switches to dual-instruction mode one instruction
after returning from the trap handler. If DS and DIM are both set, the i860 micro­
processor switches to single-instruction mode one instruction after returning from the
trap handler. Chapter 7 explains how trap handlers use these bits.

• When a trap occurs, the i860 microprocessor sets DIM if it is executing in dual­
instruction mode; it clears DIM if it is executing in single-instruction mode. If DIM is
set, the i860 microprocessor resumes execution in dual-instruction mode after return­
ing from the trap handler.

• When KNF (Kill Next Floating-Point Instruction) is set, the next floating-point in­
struction is suppressed (except that its dual-instruction mode bit is interpreted). A
trap handler sets KNF if the trapped floating-point instruction should not be reexe­
cuted. KNF is especially useful for returning from a trap that occurred in dual­
instruction mode, because it permits the core instruction to be executed while the
floating-point instruction is suppressed. KNF is automatically reset by the i860 micro­
processor when the instruction has been successfully bypassed. It is possible that the
core instruction may cause a trap when the floating-point instruction is suppressed. In
this case KNF remains set, permitting retry of the core instruction.

• SC (Shift Count) stores the shift count used by the last right-shift instruction. It
controls the number of shifts executed by the double-shift instruction, as described in
Chapter 5.

• PS (Pixel Size) and PM (Pixel Mask) are used by the pixel-store instruction described
in Chapter 5 and by the graphics instructions described in Chapter 6. The values of
PS control pixel size as defined by Table 3-1. The bits in PM correspond to pixels to
be updated by the pixel-store instruction pst.d. The low-order bit of PM corresponds
to the low-order pixel of the 64-bit source operand of pst.d. The number of low-order
bits of PM that are actually used is the number of pixels that fit into 64-bits, which
depends upon PS. If a bit of PM is set, then pst.d stores the corresponding pixel.

3.4 EXTENDED PROCESSOR STATUS REGISTER

The extended processor status register (epsr) contains additional state information for
the current process beyond that stored in the psr. Figure 3-3 shows the format of the
epsr. Fields marked by an asterisk in the figure can be changed only in supervisor mode.

• The processor type is one for the i860 microprocessor.

Table 3-1. Values of PS

Value
Pixel Size Pixel Size

in bits in bytes

00 8 1
01 16 2
10 32 4
11 (undefined) (undefined)

3-4

REGISTERS

31 8 0

(RESERVED) STEPPING PROCESSOR
NUMBER TYPE

* • * *

1 ft -------- PAGE-TABLE BIT MODE
- BIG ENDIAN MODE

~------------ OVERFLOW FLAG

·CAN BE CHANGED ONLY FROM SUPERVISOR LEVEL.

240329i

Figure 3-3. Extended Processor Status Register

• The stepping number has a unique value that distinguishes among different revisions
of the processor.

• IL (Interlock) is set if a trap occurs after a lock instruction but before the load or
store following the subsequent unlock instruction. IL indicates to the trap handler
that a locked sequence has been interrupted.

• WP (Write Protect) controls the semantics of the W bit of page table entries. A clear
W bit in either the directory or the page table entry causes writes to be trapped.
When WP is clear, writes are trapped in user mode, but not in supervisor mode.
When WP is set, writes are trapped in both user and supervisor modes.

• INT (Interrupt) is the value of the INT input pin.

• DCS (Data Cache Size) is a read-only field that tells the size of the on-chip data
cache. The number of bytes actually available is 212+DCS; therefore, a value of zero
indicates 4 Kbytes, one indicates 8 Kbytes, etc.

• PBM (Page-Table Bit Mode) determines which bit of page-table entries is output on
the PTB pin. When PBM is clear, the PTB signal reflects bit CD of the page-table
entry used for the current cycle. When PBM is set, the PTB signal reflects bit WT of
the page-table entry used for the current cycle.

• BE (Big Endian) controls the ordering of bytes within a data item in memory. Nor­
mally (i.e. when BE is clear) the i860 microprocessor operates in little endian mode,
in which the addressed byte is the low-order byte. When BE is set (big endian mode),
the low-order three bits of all load and store addresses are complemented, then
masked to the appropriate boundary for alignment. This causes the addressed byte to
be the most significant byte. Refer to Chapter 4 for more information on byte
ordering.

3-5

REGISTERS

• OF (Overflow Flag) is set by adds, addu, subs, and subu when integer overflow
occurs. For adds and subs, OF is set if the carry from bit 31 is different than the carry
from bit 30. For addu, OF is set if there is a carry from bit 31. For subu, OF is set if
there is no carry from bit 31. Under all other conditions, it is cleared by these instruc­
tions. OF controls the function of the intovr instruction (refer to Chapter 5).

3.5 DATA BREAKPOINT REGISTER

The data breakpoint register (db) is used to generate a trap when the i860 microproces­
sor accesses an operand at the address stored in this register. The trap is enabled by BR
and BW in psr. When comparing, a number of low order bits of the address are ignored,
depending on the size of the operand. For example, a 16-bit access ignores the low-order
bit of the address when comparing to db; a 32-bit access ignores the low-order two bits.
This ensures that any access that overlaps the address contained in the register will
generate a trap. The trap occurs before the register or memory update by the load or
store instruction.

3.6 DIRECTORY BASE REGISTER

The directory base register dirbase (shown in Figure 3-4) controls address translation,
caching, and bus options.

• ATE (Address Translation Enable), when set, enables the virtual-address translation
algorithm described in Chapter 4. The data cache must be flushed before changing
the ATE bit.

• DPS (DRAM Page Size) controls how many bits to ignore when comparing the cur­
rent bus-cycle address with the previous bus-cycle address to generate the NENE#
signal. This feature allows for higher speeds when using static column or page-mode

ADDRESS TRANSLATION ENABLE ---------------,
DRAM PAGE SIZE

BUS LOCK -----------------------------~
I-CACHE, TLB INVALIDATE -------------.j
(RESERVED) 1
CODE SIZE 8-BIT ------------------,
REPLACEMENT BLOCK !
REPLACEMENT CONTROL ~ J

12

DIRECTORY TABLE BASE (DTB) RC

Figure 3-4. Directory Base Register

3-6

240329i

REGISTERS

DRAMs and consecutive reads and writes access the same column or page. The
comparison ignores the low-order 12 + DPS bits. A value of zero is appropriate for
one bank of 256K x n RAMs, 1 for 1M x n RAMS, etc.

• When BL (Bus Lock) is set, external bus accesses are locked. The LOCK# signal is
asserted the next bus cycle whose internal bus request is generated after BL is set. It
remains set on every subsequent bus cycle as long as BL remains set. The LOCK#
signal is deasserted on the next bus cycle whose internal bus request is generated
after BL is cleared. A trap that occurs during a locked sequence immediately clears
BL and the LOCK# signal and sets IL in epsr. In this case the trap handler should
resume execution at the beginning of the locked sequence. The lock and unlock in­
structions control the BL bit (refer to Chapter 5).

• ITI (Instruction-Cache, TLB Invalidate), when set in the value that is loaded into
dirbase, causes the instruction cache and address-translation cache (TLB) to be
flushed. The ITI bit does not remain set in dirbase. ITI always appears as zero when
read from dirbase. The data cache must be flushed before invalidating the TLB (ex­
cept for the case of setting the D- or P-bit in a PTE that is not itself in the data
cache).

• When CS8 (Code Size 8-Bit) is set, instruction cache misses are processed as 8-bit bus
cycles. When this bit is clear, instruction cache misses are processed as 64-bit bus
cycles. This bit can not be set by software; hardware sets this bit at initialization time.
It can be cleared by software (one time only) to allow the system to execute out of
64-bit memory after bootstrapping from 8-bit EPROM. A nondelayed branch to code
in 64-bit memory should directly ~ollow the st.c instruction that clears CS8, in order
to make the transition from 8-bit to 64-bit memory occur at the correct time. The
branch must be aligned on a 64-bit boundary. Refer to the CS8 mode in the i860™
64-Bit Microprocessor Hardware Design Guide for more information.

• RB (Replacement Block) identifies the cache block to be replaced by cache replace­
ment algorithms. The high-order bit of RB is ignored by the instruction and data
caches. RB conditions the cache flush instruction flush, which is discussed in
Chapter 5. Table 3-2 explains the values of RB. '

• RC (Replacement Control) controls cache replacement algorithms. Table 3-3
explains the significance of the values of RC. The use of the RC and RB to imple­
ment data cache flushing is described in Chapter 4.

Table 3-2. Values of RS

Value
Replace Replace Instruction

TLB Block and Data Cache Block

o 0 0 0

o 1 1 1

1 0 2 0

1 1 3 1

3-7

REGISTERS

Table 3-3. Values of RC

Value Meaning

00 Selects the normal replacement algorithm where any block in the set may be replaced
on cache misses in all caches.

01 Instruction, data, and TLB cache misses replace the block selected by RB. The instruc-
tion and data' caches ignore the high-order bit of RB. This mode is used for instruction
cache and TLB testing.

10 Data cache misses replace the block selected by the low-order bit of RB.

11 Disables data cache replacement.

• DTB (Directory Table Base) contains the high-order 20 bits of the physical addess of
the page directory when address translation is enabled (i.e. ATE = 1). The low-order
12 bits of the address are zeros (therefore the directory must be located on a 4K
boundary).

3.7 FAULT INSTRUCTION REGISTER

When a trap occurs, this register (the fir) contains the address of the instruction that
caused the trap, as described in Chapter 7. Reading fir anytime except the first time after
a trap occurs only yields the address of the Id.e instruction. The fir cannot be modified by
the st.e instruction.

3.8 FLOATING-POINT STATUS REGISTER

The floating-point status register (fsr) contains the floating-point trap and rounding­
mode status for the cur~ent process. Figure 3-5 shows its format.

• If FZ (Flush Zero) is clear and underflow occurs, a result-exception trap is generated.
When FZ is set and underflow occurs, the result is set to zero, and no trap due to
underflow occurs.

• If TI (Trap Inexact) is clear, inexact results do not cause a trap. If TI is set, inexact
results cause a trap. The sticky inexact flag (SI) is set whenever an inexact result is
produce~, regardless of the setting of TI.

• RM (Rounding Mode) specifies one of the four rounding modes defined by the IEEE
standard. Given a true result b that cannot be represented by the target data type, the
i860 microprocessor determines the two representable numbers a and c that most
closely bracket b in value (a < b < c). The i860 microprocessor then rounds
(changes) b to a or c according to the mode selected by RM as defined in Table 3-4.
Rounding introduces an error in the result that is less than one least-significant bit.

• The U-bit (Update Bit), if set in the value that is loaded into fsr by a st.e instruction,
enables updating of the result-status bits (AE, AA, AI, AO, AU, MA, MI, MO, and
MU) in the first-stage of the floating-point adder and multiplier pipelines. If this bit is
clear, the result-status bits are unaffected by a st.e instruction; st.e ignores the corre­
sponding bits in the value that is being loaded. A st.e always updates fsr bits 21..17

3-8

intel® REGISTERS

Value

00

01

10

11

FLUSH ZERO --~
TRAP INEXACT ---------------------------------------,
ROUNDING MODE

UPDATE ---------------------------------------,
FLOATING-POINT TRAP ENABLE ----------------------,
(RESERVED)
STICKY INEXACT FLAG
SOURCE EXCEPTION ----------------------~
MULTIPLIER UNDERFLOW ----------------,
MULTIPLIER OVERFLOW

MULTIPLIER INEXACT J
MULTIPLIER ADD ONE 1
ADDER UNDERFLOW 1 1!
ADDER OVERFLOW ----------..,; •

t t ~ ADDER INEXACT
ADDER ADD ONE
RESULT REGISTER

~------------ ADDER EXPONENT
1..-_____________ (RESERVED)

'------------------- LOAD PIPE RESULT PRECISION
~-------------------- INTEGER (GRAPHICS) PIPE RESULT

PRECISION
'---------------------- MULTIPLIER PIPE RESULT PRECISION

1..-______________________ ADDER PIPE RESULT PRECISION 1..-________________________ (RESERVED)

Figure 3-5. Floating-Point Status Register

Table 3-4. Values of RM

Rounding Mode Rounding Action

240329i

Round to nearest or even Closer to b of a or c; if equally close, select even
number (the one whose least significant bit is zero).

Round down (toward - 00) a

Round up (toward + 00) c

Chop (toward zero) Smaller in magnitude of a or c.

and 8 .. 0 directly. The U-bit does not remain set; it always appears a zero when read.
A trap handler that has interrupted a pipelined operation sets the U-bit to enable
restoration of the result-status bits in the pipeline. Refer to Chapter 7 fordetails.

• The FTE (Floating-Point Trap Enable) bit, if clear, disables all floating-point traps
(invalid input operand, overflow, underflow, and inexact reSUlt). Trap handlers clear
it while saving and restoring the floating-point pipeline state (refer to Chapter 7) and
to produce NaN, infinite, or denormal results without generating traps.

3-9

REGISTERS

• SI (StickY Inexact) is set when the last-stage result of either the multiplier or adder is
inexact (i.e. when either AI or MI is set). SI is "sticky" in the sense that it remains set
until reset by software. AI and MI, on the other hand, can by changed by the subse­
quent floating-point instruction.

• SE (Source Exception) is set when one of the source operands of a floating-point
operation is invalid; it is cleared when all the input operands are valid. Invalid input
operands include denormals, infinities, and all NaNs (both quiet and signaling). Trap
handler software can implement IEEE-standard results for operations on these
values.

• When read from the fsr, the result-status bits MA, MI, MO, and MU (Multiplier
Add-One, Inexact, Overflow, and Underflow, respcctively) describe the last-stage
result of the multiplier.

When read from the fsr, the result-status bits AA, AI, AO, AU, and AE (Adder
Add-One, Inexact, Overflow, Underflow, and Exponent, respectively) describe the
last-stage result of the adder. The high-order three bits of the II-bit exponent of the
adder result are stored in the AE field. The trap handler needs the AE bits when
overflow or underflow occurs with double-precision inputs and single-precision
outputs.

After a floating-point operation in a given unit (adder or multiplier), the result-status
bits of that unit are undefined until the point at which result exceptions are reported.

When written to the fsr with the U-bit set, the result-status bits are placed into the
first stage of the adder and multiplier pipelines. When the processor executes pipe­
lined operations, it propagates the result-status bits of a particular unit (multiplier or
adder) one stage for each pipelined floating-point operation for that unit. When they
reach the last stage, they replace the normal result-status bits in the fsr.

In a floating-point dual-operation instruction (e.g. add-and-multiply or subtract-and­
multiply), both the multiplier and the adder may set exception bits. The result-status
bits for a particular unit remain set until the next operation that uses that unit.

• AA (Adder Add One), whcn set, indicates that the absolute value of the fraction of
the result of an adder operation was increased by one due to rounding. AA is not
influenced by the sign of the result.

• MA (Multiplier Add One), when set, indicates that the absolute value of the fraction
of the result of a multiplier operation was increased by one due to rounding. MA is
not influenced by the sign of the result.

• RR (Result Register) specifies which floating-point register (fO-f31) was the destina­
tion register when a result-exception trap occurs due to a scala~ operation.

• . LRP (Load Pipe Result Precision), IRP (Integer (Graphics) Pipe Result Precision),
MRP (Multiplier Pipe Result Precision), and ARP (Adder Pipe Result Precision) aid
in restoring pipeline state after a trap or process switch. Each defines the precision of
the last-stage result in the corresponding pipeline. One of these bits is set when the
result in the last stage of the corresponding pipeline is double precision; it is cleared
if the result is single precision. These bits cannot be changed by software.

3-10

REGISTERS

3.9 KR, KI, T, AND MERGE REGISTERS

The KR and KI ("Konstant") registers and the T (Temporary) register are special­
purpose registers used by the dual-operation floating-point instructions described in
Chapter 6. The MERGE register is used only by the graphics instructions also presented
in Chapter 6. Refer to this chapter for details of their use.

3-11

Addressing 4

CHAPTER 4
ADDRESSING

Memory is addressed in byte units with a paged virtual-address space of 232 bytes. Data
and instructions can be located anywhere in this address space. Address arithmetic is
performed using 32-bit input values and produces 32-bit results. The low-order 32 bits of
the resul t are used in case of overflow.

Normally, multibyte data values are stored in memory in little endian format, i.e. with
the least significant byte at the lowest memory address. As an option that may be dy­
namically selected by software in supervisor mode, the i86WM microprocessor also offers
big endian mode, in which the most significant byte of a data item is at the lowest
address. The BE bit of epsr selects the mode, as Chapter 3 describes. Code accesses and
page directory/page table accesses are always done with little endian addressing.
Figure 4-1 shows the difference between the two storage modes. Figure 4-2 defines by
example how data is transferred from memory over the bus into a register in both modes.
Big endian and little endian data areas should not be mixed within a 64-bit data word.
Illustrations of data structures in this manual show data stored in little endian mode, i.e.
the rightmost (low-order) byte is at the lowest memory address.

4.1 ALIGNMENT

Alignment requirements are as follows:

• A 128-bit value is aligned to an address divisible by 16 when referenced in memory
(i.e. the four least significant address bits must be zero) or a data-access trap occurs.

LITTLE ENDIAN FORMAT

63 55 47 39 31 23 15 7 0

I I I I I I I I I
m+7 m+6 m+5 m+4 m+3 m+2 m+1 m

BIG ENDIAN FORMAT

63 55 47 39 31 23 15 7 0

I I I I I I I I I
m m+1 m+2 m+3 m+4 m+5 m+6 m+7

m IS THE MEMORY ADDRESS OF THE WORD.

240329i

Figure 4-1. Memory Formats

4-1

Id.b O(rO), r16

Id.b 1 (rO), r16

Id.b 2(rO), r16

Id.b 3("ll), r16

Id.b 4(rO), r16

Id.b 5(..0), r16

Id.b 6!,o), ~16
Id.b 7(rO), r16

Id.8 O(rO), r16

Id.8 2(rO), r16

Id.8 4(rO), f1~

Id.8 6(rO), r16

Id.1 O(rO), r16

Id.l 4(rO), r16

ADDRESSING

MAIN MEMORY

.
~g~g ~ H G FED C B A

d63 dO

lITILE END IAN BIG ENDIAN

BYTE ENABLES DATA BUS r16 BYTE ENABLES DATA BUS
(BE#)

dO

A

d63 dO d63

~---------A~ p----~

D

B

C

B

C

D

4 E E

5 F F

6 G G

H H

d63 dO d63 dO

1:0

CJ[] 3:2 D CDC

5:4 F E F E

7:6 H G H G

d63 dO d63 dO
3:0

IH G
FED C B AI ~ 7:4 H G F E

(BE#)

d63 dO

7 H

6 G

F

4 E

3 D

C

1 B

0 A

d63 dO
7:6

CJ 5:4 F E

3:2 . D C

1:0 BA

d63 dO
7:4

IHGFE D
C B AI 3:0

Figure 4-2. Big and Little Endian Memory Transfers

r16

d31 dO

H

G

E

D

C

B

A

d31 dO

0 F E

D C

B A

d31 dO

kd DeB A

240329i

• A 64-bit value is aligned to an address divisible by eight when referenced in memory
(i.e. the three least significant address bits must be zero) or a data-access trap occurs.

• A 32-bit value is aligned to an address divisible by four when referenced in memory
(i.e. the two least significant address bits must be zero) or a data-access trap occurs.

• A 16-bit value is aligned to an address divisible by two when referenced in memory
(i.e. the least significant address bit must be zero) or a data-access trap occurs.

4.2 VIRTUAL ADDRESSING

When address translation is enabled, the i860 microprocessor maps instruction and data
virtual addresses into physical addresses before referencing memory. This address trans­
formation is compatible with that of the 386 ™ microprocessor and implements the basic
features qeeded for page-oriented virtual-memory systems and page-level protection.

The address translation is optional. Address translation is in effect only when the ATE
bit of dirbase is set. This bit is typically set by the operating system during software
initialization. The ATE bit must be set if the operating system is to implement page­
oriented protection or page-oriented virtual memory.

4-2

ADDRESSING

Address translation is disabled when the processor is reset. It is enabled when a store to
dirbase sets the ATE bit. It is disabled again when a store clears the ATE bit.

4.2.1 Page Frame

A page frame is a 4K-byte unit of contiguous addresses of physical main memory. Page
frames begin on 4K-byte boundaries and are fixed in size. A page is the collection of
data that occupies a page frame when that data is present in main memory or occupies
some location in secondary storage when there is not sufficient space in main memory.

4.2.2 Virtual Address

A virtual address refers indirectly to a physical address by specifying a page table, a page
within that table, and an offset within that page. Figure 4-3 shows the format of a virtual
address.

Figure 4-4 shows how the i860 microprocessor converts the DIR, PAGE, and OFFSET
fields of a virtual address into the physical address by consulting two levels of page
tables. The addressing mechanism uses the DIR field as an index into a page directory,
uses the PAGE field as an index into the page table determined by the page directory,
and uses the OFFSET field to address a byte within the page determined by the page
table.

4.2.3 Page Tables

A page table is simply an array of 32-bit page specifiers. A page table is itself a page, and
therefore contains 4 Kilobytes of memory or at most 1K 32-bit entries.

Two levels of tables are used to address a page of memory. At the higher level is a page
directory. The page directory addresses up to 1K page tables of the second level. A page
table of the second level addresses up to 1K pa:ffies. All the tables addressed by one page
directory, therefore, can address 1M pages (2). Because each page contains 4Kbytes
(212 bytes), the tables of one page directory can span the entire physical address space of
the i860 microprocessor (220 x 212 = 232).

DIR r PAGE OFFSET

240329i

Figure 4-3. Format of a Virtual Address

4-3

ADDRESSING

PAGE FRAME

I DIR PAGE I OFFSET I
I PHYSICAL

ADDRESS

PAGE DIRECTORY PAGE TABLE

~ PGTBLENTRY

1.......+ DIR ENTRY -

I DTB
I
I

240329i

Figure 4-4. Address Translation

The physical address of the current page directory is stored in the DTB field of the
dirbase register. Memory management software has the option of using one page direc­
tory for all processes, one page directory for each process, or some combination of the
two.

4.2.4 Page-Table Entries

Page-table entries (PTEs) in either level of page tables have the same format. Figure 4-5
illustrates this format.

4.2.4.1 PAGE FRAME ADDRESS

The page frame address specifies the physical starting address of a page. Because pages
are located on 4K boundaries, the low-order 12 bits are always zero. In a page directory,
the page frame address is the address of a page table. In a second-level page table, the
page frame address is the address of the page frame that contains the desired memory
operand.

4-4

PRESENT
WRITABLE
USER
WRITE-THROUGH

ADDRESSING

CACHE DISABLE ----------------..,
ACCESSED ------------------,
DIRTY ------------------,
(RESERVED)
AVAILABLE FOR SYSTEMS PROGRAMMER USE 1

PAGE FRAME ADDRESS 31 •• 12

NOTE: X INDICATES INTEL RESERVED. DO NOT USE.

Figure 4-5. Format of a Page Table Entry

4.2.4.2 PRESENT BIT

, r 1

5 3 o

240329i

The P (present) bit indicates whether a page table entry can be used in address transla­
tion. P = 1 indicates that the entry can be used.

When P = 0 in either level of page tables, the entry is not valid for address translation,
and the rest of the entry is available for software use; none of the other bits in the entry
is tested by the hardware. Figure 4-6 illustrates the format of a page-table entry when
p=o.

If P = 0 in either level of page tables when an attempt is made to use a page-table entry
for address translation, the processor signals either a data-access fault or an instruction­
access fault. In software systems that support paged virtual memory, the trap handler
can bring the required page into physical memory. Refer to Chapter 7 for more infor­
mation on trap handlers.

AVAILABLE

240329i

Figure 4·6. Invalid Page Table Entry

4-5

ADDRESSING

Note that there is no P bit for the page directory itself. The page directory may be
not-present while the associated process is suspended, but the operating system must
ensure that the page directory indicated by the dirbase image associated with the process
is present in physical memory before the process is dispatched.

4.2.4.3 CACHE DISABLE BIT

If the CD (cache disable) bit in the second-level page-table entry is set, data from the
associated page is not placed in instruction or data caches. The CD bit of page directory
entries is not referenced by the processor, but is reserved.

4.2.4.4 WRITE-THROUGH BIT

The i860 microprocessor does not implement a write-through caching policy for the
on-chip instruction and data caches; however, the WT (write-through) bit in the second­
level page-table entry does determine internal caching policy. If WT is set in a PTE,
on-chip data caching from the corresponding page is inhibited (note, however, that in­
struction caching is not inhibited). If WT is clear, the normal write-back policy is applied
to data from the page in the on-chip caches. (Future implementations of the architecture
may provide a write-through policy, in which case pages'that have WT set will be written
to cache as well as to memory.) The WT bit of page directory entries is not referenced by
the processor, but is reserved.

To control external caches, the PTB output pin reflects either CD or WT depending on
the PBM bit of epsr (refer to Chapter 3).

4.2.4.5 ACCESSED AND DIRTY BITS

The A {accessed) and D (dirty) bits provide data about page usage in both levels of the
page tables.

The i860 microprocessor sets the corresponding accessed bits in both levels of page
tables before a read or write operation to a page. The processor tests the dirty bit in the
second-level page table before a write to an address covered by that page table entry,
and, under certain conditions, causes traps. The trap handler then has the opportunity to
maintain appropriate values in the dirty bits. The dirty bit in directory entries is not
tested by the i860 microprocessor. The precise algorithm for using these bits is specified
in Section 4.2.5.

An operating system that supports paged virtual memory can use these bits to determine
what pages to eliminate from physical memory when the demand for memory exceeds
the physical memory available. The D and A bits in the PTE (page-table entry) are
normally initialized to zero by the operating system. The processor sets the A bit when a
page is accessed either by a read or write operation (except during a locked sequence,
when a trap occurs instead). When a data- or instruction-access fault occurs, the trap
handler sets the D bit if an allowable write is being performed, then reexecutes the
instruction.

4-6

ADDRESSING

The operating system is responsible for coordinating its updates to the accessed and
dirty bits with updates by the CPU and by other processors that may share the page
tables. The i860 microprocessor automatically uses the LOCK# signal to coordinate its
testing and setting of the A bit.

4.2.4.6 WRITABLE AND USER BITS

The W (writable) and U (user) bits are used for page-level protection, which the i860
microprocessor performs at the same time as address translation. The concept of privi­
lege for pages is implemented by assigning each page to one of two levels:

1. Supervisor level (U = 0) - for the operating system and other systems software and
related data.

2. User level (U = 1) - for applications procedures and data.

The U bit of the psr indicates whether the i860 microprocessor is executing at user or
supervisor level. The i860 microprocessor maintains the U bit of psr as follows:

• The i860 microprocessor copies the psr PU bit into the U bit when an indirect branch
is executed and one of the trap bits is set. If PU was one, the i860 microprocessor
enters user level.

• The i860 microprocessor clears the psr U bit to indicate supervisor level when a trap
occurs (including when the trap instruction causes the trap). The prior value of U is
copied into PU. (The trap mechanism is described in Chapter 7; the trap instruction is
described in Chapter 5.)

With the U bit of psr and the Wand U bits of the page table entries, the i860 micro­
processor implements the following protection rules:

• When at user level, a read or write of a supervisor-level page causes a trap.

• When at user level, a write to a page whose W bit is not set causes a trap.

• When at user level, st.e to certain control registers is ignored.

When the i860 microprocessor is executing at supervisor level, all pages are addressable,
but, when it is executing at user level, only pages that belong to the user-level are
addressable.

When the i860 microprocessor is executing at supervisor level, all pages are readable.
Whether a page is writable depends upon the write-protection mode controlled by WP
of epsr:

WP=O
WP=l

All pages are writable.
A write to a page whose W bit is not set causes a trap~

When the i860 microprocessor is executing at user level, only pages that belong to user
level and are marked writable are actually writable; pages that belong to supervisor level
are neither readable nor writable from user level.

4-7

ADDRESSING

4.2.4.7 COMBINING PROTECTION OF BOTH LEVELS OF PAGE TABLES

For anyone page, the protection attributes of its page directory entry may differ from
those of its page table entry. The i860 microprocessor computes the effective protection
attributes for a page by examining the protection attributes in both the directory and the
page table. Table 4-1 shows the effective protection provided by the possible combina­
tions of protection attributes.

4.2.5 Address Translation Algorithm.

The algorithm below defines how the on-chip MMU translates each virtual address to a
physical address. Let DIR, PAGE, and OFFSET be the fields of the virtual address; let
PF Al and PF A2 be the page frame address fields of the first and second level page
tables respectively; DTB is the page directory table base address stored in the dirbase
register.

Table 4-1. Combining Directory and Page Protection

Page Directory Page Table
Entry

U-bit W-bit

0 0
0 0
0 0
0 0

0 1
0 1
0 1
0 1

1 0
1 0
1 0
1 0

1 1
1 1
1 1
1 1

NOTES:
N = No Access Allowed
R = Read Access Only

U-bit

0
0
1
1

0
0
1
1

0
0
1
1

0
0
1
1

R/W = Both Reads and Writes Allowed
X = Don't Care

Entry

W-bit

0
1
0
1

0
1
0
1

0
1
0
1

0
1
0
1

4-8

Combined Protection

User Supervisor
Access Access

WP=X WP=O WP=1

N R/W R
N R/W R
N R/W R
N R/W R

N R/W R
N R/W R/W
N R/W R
N R/W R/W

N R/W R
N R/W R
R R/W R
R R/W R

N R/W R
N R/W R/W
R R/W R

R/W R/W R/W

ADDRESSING

1. Read the PTE (page table entry) at the physical address formed by DTB:DIR:OO.
Note that the data cache is not accessed during PTE fetches; therefore, the operat­
ing system must ensure that the page table is not in the cache.

2. If P in the PTE is zero, generate a data- or instruction-access fault.

3. If W in the PTE is zero, the operation is a write, and either the U bit of the PSR is
set or WP = 1, generate a data-access fault.

4. If the U bit in the PTE is zero and the U bit in the psr is set, generate a data- or
instruction-access fault.

5. If A in the PTE is zero and if the TLB miss occurred while the bus was locked,
generate a data- or instruction-access fault. (The trap allows software to set A to
one and restart the sequence. This avoids ambiguity in determining what address
corresponds to a locked semaphore for external bus hardware use.)

6. If A in the PTE is zero and if the TLB miss occurred while the bus was not locked,
assert LOCK#, refetch the PTE, set A, and store the PTE, deasserting LOCK#
during the store.

7. Locate the PTE at the physical address formed by PFA1:PAGE:00.

8. Perform the P, A, W, and U checks as in steps 3 through 6 with the second-level
PTE.

9. If D in the PTE is clear and the operation is a write, generate a data-access fault.

10. Form the physical address as PFA2:0FFSET.

4.2.6 Address Translation Faults

An address translation fault can be signalled as either an instruction-access fault or a
data-access fault. (Refer to Chapter 7 for more information on this and other faults.)
The instruction causing the fault can be reexecuted by the return-from-trap sequence
defined in Chapter 7.

4.2.7 Page Translation Cache

For greatest efficiency in address translation, the i860 microprocessor stores the most
recently used page-table data in an on-chip cache called the TLB (translation lookaside
buffer). Only if the necessary paging information is not in the cache must both levels of
page tables be referenced.

4-9

ADDRESSING

4.3 CACHING AND CACHE FLUSHING

The i860 microprocessor has the ability to cache instruction, data, and address­
translation information in on-chip caches. When address translation is enabled
(ATE = 1), caching uses virtual-address tags. The effects of mapping two different virtual
addresses in the same address space to the same physical address are undefined.

The caching policy employed is write-back; i.e. writes to memory locations that are
cached update only the cache and do not update memory until the corresponding cache
block is needed to cache newly read data.

Instruction, data, and address-translation caching on the i860 microprocessor are not
transparent. Writes do not immediately update memory, the TLB, nor the instruction
cache. Writes to memory by other bus devices do not update the caches. Under certain
circumstances, such as I/O references, self-modifying code, page-table updates, or
shared data in a mUltiprocessing system, it is necessary to bypass or to flush the caches.
The i860 microprocessor provides the following methods for doing this:

• Bypassing Instruction and Data Caches. If deasserted during cache-miss processing,
the KEN# pin disables instruction and data caching of the referenced data. If the CD
bit from the associated second-level PTE is set, internal caching of data and instruc­
tions is disabled. The value of the CD or WT bit is output on the PTB pin for use by
external caches.

• Flushing Instruction and Address-Translation Caches. Storing to the dirbase register
with the ITI bit set invalidates the contents of the instruction and address-translation
caches. This bit should be set when a page table or a page containing code is modified
or when changing the DTB field of dirbase. Note that in order to make the instruc­
tion or address-translation caches consistent with the data cache, the data cache must
be flushed before invalidating the other caches (except for the case of setting the D-,
P- or A-bit in a PTE that is not itself in the data cache).

NOTE

When an st.c dirbase changes DTB or activates ITI, the mapping of the page
containing the currently executing instruction and the next six instructions
should not be different in the new page tables. The next six instructions should
be naps and should lie in the same page as the st.c.

• Flushing the Data Cache. The data cache is flushed by the software routine shown in
Chapter 5 with the flush instruction. The data cache must be flushed before using the
ITI bit of dirbase to flush the instruction or address-translation cache (except for the
case of setting the D-, P- or A-bit in a PTE that is not itself in the data cache), before
enabling or disabling address translation (via the ATE bit), and before changing the
page frame address field of any PTE.

In the translation process, the i860 microprocessor searches only external memory for
page directories and page tables. The data cache is not searched; therefore, page tables
and directores should be kept in noncacheable memory or flushed from the cache by any
code that modifies them.

4-10

Core Instructions 5

CHAPTER 5
CORE INSTRUCTIONS

Core instructions include loads and stores of the integer, floating-point, and control
registers; arithmetic and logical operations on the 32-bit integer registers; control trans­
fers; and system control functions. All these instructions are executed by the core unit.

For register operands, the abbreviations that describe the operands are composed of two
parts. The first part describes the type of register:

c One of the control registers fir, psr, epsr, dirbase, db, or fsr

f One of the floating-point registers: fO through f31

One of the integer registers: rO through r31

The second part identifies the field of the machine instruction into which the operand is
to be placed:

srcl

srclni

srcls

src2

dest

The first of the two source-register designators, which may be ei­
ther a register or a 16-bit immediate constant or address offset.
The immediate value is zero-extended for logical operations and is
sign-extended for add and subtract operations (including addu and
subu) and for all addressing calculations.

Same as srcl except that no immediate constant or address offset
value is permitted.

Same as srcl except that the immediate constant is a 5-bit value
that is zero-extended to 32 bits.

The second of the two source-register designators.

The destination register designator.

Thus, the operand specifier isrc2, for example, means that an integer register is used and
that the encoding of that register must be placed in the src2 field of the machine
instruction.

Other (nonregister) operands are specified by a one-part abbreviation that represents
both the type of operand required and the instruction field into which the value of the
operand is placed:

#const

Ibroff

A 16-bit immediate constant or address offset that the i860™ mi­
croprocessor sign-extends to 32 bits when computing the effective
address.

A signed, 26-bit, immediate, relative branch offset.

5-1

·sbroff

brx

mem.x (address)

CORE INSTRUCTIONS

A signed, 16-bit, immediate, relative branch offset.

A function that computes the target address by shifting the offset
(either lbroff or sbroff) left by two bits, sign-extending it to 32 bits,
and adding the result to the current instruction pointer plus four.
The resulting target address may lie anywhere within the address
space.

The contents of the memory location indicated by address with a
size of x.

The comments regarding optimum performance that appear in the subsections Program­
ming Notes are recommendations only. If these recommendations are not followed, the
i860 microprocessor automatically waits the necessary number of clocks to satisfy inter­
nal hardware requirements.

5-2

CORE INSTRUCTIONS

5.1 LOAD INTEGER

Id.x isrc1 (isrc2), idest (Load Integer)

idest +- mem.x (isrc1 + isrc2)

.x = .b (8 bits), .S (16 bits), or .I (32 bits)

The load integer instruction transfers an 8-, 16-, or 32-bit value from memory to the
integer registers. The isrcl can be either a 16-bit immediate address offset or an index
register. Loads of 8- or 16-bit values from memory place them in the low-order bits of
the destination registers and sign-extend them to 32-bit values in the destination
registers.

Traps

If the operand is misaligned, a data-access trap results.

Programming Notes

For best performance, observe the following guidelines:

1. The destination of a load should not be referenced as a source operand by the next
instruction.

2. A load instruction should not directly follow a store that is expected to hit in the
data cache.

Even though immediate address offsets are limited to 16 bits, loads using a 32-bit ad­
dress offset may be implemented by the following sequence (r31 is recommended for all
such addressing calculations):

orh HIGH16a, ra, r31
1d.1 LDW16 (r31> , ides!

Note that the i860 microprocessor uses signed addition when it adds LOW16 to r31. If
bit 15 of LOW16 is set, this has the effect of subtracting from r31. Therefore, when bit
15 of LOW16 is set, HIGH16a must be derived by adding one to the high-order 16 bits,
so that the net result is Correct.

The assembler must align the immediate address offsets used in loads to the same
boundary as the effective address, because the lower bits of the immediate offset are
used to encode operand length information.

5-3

CORE INSTRUCTIONS

5.2 STORE INTEGER

st.x isrc 1 ni, #const (isrc2) (Store Integer)

mem.x (isrc2 + #const) ~ isrc1 ni

.X = .b (8 bits), .S (16 bits), or .I (32 bits)

The store instruction transfers an 8-, 16-, or 32-bit value from the integer registers to
memory. Stores do not allow an index register in the effective-address calculation, be­
cause isrclni is used to specify the register to be stored. The #const is a signed, 16-bit,
immediate address offset. An absolute address may be formed by using the zero register
for isrc2. Stores of 8- or 16-bit values store the low-order 8 or 16 bits of the register.

Traps

If the operand is misaligned, a data-access trap results.

Programming Notes

For best performance, a load instruction should not directly follow a store that is ex­
pected to hit in the data cache.

Even though immediate address offsets are limited to 16 bits, a store using a 32-bit
immediate address offset may be implemented by the following sequence (r31 is recom­
mended for all such addressing calculations):

orh HIGH16a, r0, r31
st. 1 isrc 1 ni, LOW 16 (r 31>

Note that the i860 microprocessor uses signed addition when it adds LOW16 to r31. If
bit 15 of LOW16 is set, this has the effect of subtracting from r31. Therefore, when bit
15 of LOW16 is set, HIGH16a must be derived by adding one to the high-order 16 bits,
so that the net result is correct.

The assembler must align the immediate address offsets used in stores to the same
boundary as the effective address, because the lower bits of the immediate offset are
used to encode operand length information.

5-4

CORE INSTRUCTIONS

5.3 TRANSFER INTEGER TO F-P REGISTER

Ixfr isrc 1 ni, fdest

fdest ~ isrc1 ni

(Transfer Integer to F-P Register)

The ixfr instruction transfers a 32-bit value from an integer register to a floating-point
register.

Programming Notes

For best performance, the destination of an ixfr should not be referenced as a source
operand in the next two instructions.

5-5

CORE INSTRUCTIONS

5.4 LOAD FLOATING-POINT

f1d.y isrc1(isrc2), fdest
fld.y isrc1(isrc2) + +, fdest

fdest ~ mem.y (isrc1 + isrc2)
IF autoincrement
THEN isrc2 ~ isrc1 + isrc2
FI

pfld.z isrc1(isrc2) , fdest
pfld.z isrc1(isrc2) + +, fdest

Floating-Point Load
(Normal)
(Autolncrement)

Pipelined Floating-Point Load
(Normal)
(Autolncrement)

fdest ~ mem.z (third previous pfld's (isrc1 + isrc2))
(where .z is precision of third previous pfld.z)

IF autoincrement
THEN isrc2 ~ isrc1 + isrc2
FI

.y = .I (32 bits), .d (64 bits), or .q (128 bits); .z = .I or.d

Floating-point loads transfer 32-, 64-, or 128-bit values from memory to the floating­
point registers. These may be floating-point values or integers. An autoincrement option
supports constant-stride vector addressing. If this option is specified, the i860 micropro­
cessor stores the effective address into isrc2.

Floating-point loads may be either pipelined or not. The load pipeline has three stages.
A pfld returns the data from the address calculated by the third previous pfld, thereby
allowing three loads to be outstanding on the external bus. When the data is already in
the cache, both pipelined and nonpipelined forms of the load instruction read the data
from the cache. The pipelined pfld instruction, however, does not place the data in the
data cache on a cache miss. A pfld should be used only when the data is expected to be
used once in the near future. Data that is expected to be used several times before being
replaced in the cache should be loaded with the nonpipelined fld instruction. The fld
instruction does not advance the load pipeline and does not interact with outstanding
pfid instructions.

Traps

If the operand is misaligned, a data-access trap results. No trap occurs when the data
loaded is not a valid floating-point number.

Programming Notes

A pfld cannot load a 128-bit operand.

For the autoincrementing form of the instruction, the register coded as isrcl must not be
the same register as isrc2.

5-6

CORE INSTRUCTIONS

For best performance, observe the following guidelines:

1. The destination of a fld or pfld should not be referenced as a source operand in the
next two instructions.

2. A fld instruction should not directly follow a store instruction that is expected to hit
in the data cache. There is no performance impact for a pfld following a store
instruction.

3. A string of successive pfld instructions causes internal delays due the fact that the
bandwith of the i860 microprocessor bus is one transfer per two cycles.

The assembler must align the immediate address offsets used in loads to the same
boundary as the effective address, because the lower bits of the immediate offset are
used to encode operand length information.

5-7

CORE INSTRUCTIONS

5.5 STORE FLOATING-POINT

fst.y fdest, isrc1(isrc2)
fst.y fdest, isrc1(isrc2) + +

mem.y (isrc2 + isrc1) ~ fdest
IF autoincrement
THEN isrc2 ~ isrc1 + isrc2
FI

Floating-Point Store
(Normal)
(Autoincrement)

.y = .I (32 bits), .d (64 bits), or .q (128 bits)

Floating-point stores transfer 32-, 64-, or 128-bit values from the floating-point registers
to memory. These may be floating-point values or integers. Floating-point stores allow
isrcl to be used as an index register. An autoincrement option supports constant-stride
vector addressing. If this option is specified, the i860 microprocessor stores the effective
address into isrc2.

Traps

If the operand is misaligned, a data-access trap results.

Programming Notes

For the auto incrementing form of the instruction, the register coded as isrcl must not be
the same register as isrc2.

For best performance, observe the following guidelines:

1. A fld instruction should not directly follow a store instruction that is expected to hit .
in the data cache. There is no performance impact for a pfld following a store
instruction.

,2. The fdest of an fst.y instruction should not reference the destination of the next
instruction if that instruction is a pipelined floating-point operation.

The assembler must align the immediate address offsets used in stores to the same
boundary as the effective address, because the lower bits of the immediate offset are
used to encode operand length information.

5-8

5.6 PIXEL STORE

pst.d fdest, #const (isrc2)
pst.d fdest, #const (isrc2) + +

CORE INSTRUCTIONS

Pixel Store
(Normal)
(Autolncrement)

Pixels enabled by PM in mem.d (isrc2 + #const) ~ fdest
Shift PM right by 8/pixel size (in bytes) bits
IF autoincrement
THEN isrc2 ~ #const + isrc2
FI

The pixel store instruction selectively updates the pixels in a 64-bit memory location. The
pixel size is determined by the PS field in the psr. The pixels to be updated are selected
by the low-order bits of the PM field in the psr. Each bit of PM corresponds to one pixel,
with bit 0 corresponding to the pixel at the lowest address.

This instruction is typically used in conjunction with the fzchks or fzchkl instructions to
implement Z-buffer hidden-surface elimination. When used this way, a pixel is updated
only when it represents a point that is closer to the viewer than the closest point painted
so far at that particular pixel location. Refer to Chapter 6 for more about fzchks and
fzchkl.

Traps

If the operand is misaligned, a data-access trap results.

5-9

CORE INSTRUCTIONS

5.7 INTEGER ADD AND SUBTRACT

addu isrc1, isrc2, idest

idest ~ isrc 1 + isrc2
OF ~ bit 31 carry
CC ~ bit 31 carry

adds isrc1, isrc2, idest

idest ~ isrc1 + isrc2
OF ~ (bit 31 carry ~ bit 30 carry)
Using signed comparison,

CC set if isrc2 < comp2 (isrc1)
CC clear if isrc2 ~ comp2 (isrc1)

subu isrc1, isrc2, idest

idest ~ isrc1 - isrc2
OF ~ NOT (bit 31 carry)
CC ~ bit 31 carry

(Le., using unsigned comparison,
CC set if isrc2 s isrc 1
CC clear if isrc2 > isrc1)

subs isrc1, isrc2, idest

idest ~ isrc 1 - isrc2
OF ~ (bit 31 carry ~ bit 30 carry)
Using signed comparison,

CC set if isrc2 > isrc1
CC clear if isrc2 :s; isrc1

(Add unsigned)

(Add signed)

(Subtract unsigned)

(Subtract signed)

In addition to their normal arithmetic functions, the add and subtract instructions are
also used to implement comparisons. For this use, rO is specified as the destination, so
that the result is effectively discarded. Equal and not-equal comparisons are imple­
mented with the xor instruction (refer to the section on logical instructions).

Add and subtract ordinal (unsigned) can be used to implement multiple-precision
arithmetic.

Flags Affected

CC and OF as defined above.

Programming Notes

For optimum performance, a conditional branch should not directly follow an add or
subtract instruction.

Refer to Chapter 9 for an example of how to handle the sign of 8- and 16-bit integers
when manipulating them with 32-bit instructions.

An instruction of the form subs -1, isrc2, idest yields the one's complement of isrc2.

When isrcl is immediate, the immediate value is sign-extended to 32-bits even for the
unsigned instructions addu and subu.

5-10

CORE INSTRUCTIONS

These instructions enable convenient encoding of a literal operand in a subtraction,
regardless of whether the literal is the subtrahend or the minuend. For example:

Calculation Encoding

Signed r6= 2-rS subs 2, rS, r6
r6 = rS-2 adds -2, r5, r6

Unsigned r6= 2-rS subu 2, rS, r6
r6=rS-2 addu -2, r5, r6

Note that the only difference between the signed and the unsigned forms is in the setting
of the. condition code CC and the overflow flag OF.

The various forms of comparison between variables and constants can be encoded as
follows:

Branch When True
Condition Encoding

Signed Unsigned

var ~ const subs const, var bnc
subu const, var bc

var < const adds -const, var bc
addu -const, var* bnc

var ~ const adds -const, var bnc
addu -const, var* bc

var > const subs const, var bc
subu const, var bnc

* Valid only when const > 0

5-11

CORE INSTRUCTIONS

5.8 SHIFT INSTRUCTIONS

shl isrcl, isrc2, idest

idest +- isrc2 shifted left by isrcl bits

shr isrcl, isrc2, idest

SC (in psr) ~ isrcl
idest ~ isrc2 shifted right by isrcl bits

shra isrcl, isrc2, idest

(Shift left)

(Shift right)

(Shift right arithmetic)

idest ~ isrc2 arithmetically shifted right by isrcl bits

shrd isrcl ni, isrc2, idest (Shift right double)

idest ~ low-order 32 bits of isrcl ni:isrc2 shifted right by SC bits

The arithmetic shift does not change the sign bit; rather, it propagates the sign bit to the
right isrcl bits.

Shift counts are taken modulo 32. A shrd right-shifts a 64-bit value with isrcl being the
high-order 32 bits and isrc2 the low-order 32 bits. The shift count for shrd is taken from
the shift count of the last shr instruction, which is saved in the SC field of the psr.
Shift-left is identical for integers and ordinals.

Programming Notes

The shift instructions are recommended for the integer register-to-register move and for
no-operations, because they do not affect the condition code. The following assembler
pseudo-operations utilize the shift instructions:

mov isrc2, idest

Assembler pseudo-operation, equivalent to:
shl rO, isrc2, idest

nap

Assembler pseudo-operation, equivalent to:
sh! rO, rO, rO

fnop

Assembler pseudo-operation, equivalent to:
shrd rO, rO, rO

Rotate is implemented by:

(Register-to-register move)

(Core no-operation)

(Floating-point no-operation)

shr COUNT, r0, r0
shrd op, op, op

II Only loads COUNT into SC of PSR
II Uses SC for shift count

5-12

, CORE INSTRUCTIONS

5.9 SOFTWARE TRAPS

trap isrc 1 ni, isrc2, idest

Generate trap with IT set in psr

intovr

IF OF in epsr = 1
THEN generate trap with IT set in psr
FI

(Software trap)

(Software trap on integer overflow)

These instructions generate the instruction trap, as described in Chapter 7.

The trap instruction can be used to implement supervisor calls and code breakpoints.
The ides! should be zero, because its contents are undefined after the operation. The
isrclni and isrc2 fields can be used to encode the type of trap.

The intovr instruction generates an instruction trap if the OF bit (overflow flag) of epsr
is set. It is used to test for integer overflow after the instructions adds, addu, subs, and
subu.

5-13

CORE INSTRUCTIONS

5.10 LOGICAL INSTRUCTIONS

and isrc1, isrc2, idest (Logical AND)

idest (- isrc1 AND isrc2
CC 15et if result is zero, cleared otherwise

andh #const, isrc2, idest (Logical AND high)

idest (- (#const shifted left 16 bits) AND isrc2
CC set if result is zero, cleared otherwise

and not isrc1, isrc2, idest (Logical AND NOT)

idest (- NOT isrc1 AND isrc2
CC set if result is zero, cleared otherwise

andnoth #const, isrc2, idest (Logical AND NOT high)

idest (- NOT (#const shifted left 16 bits) AND isrc2
CC set if result is zero, cleared otherwise

or isrc1, isrc2, idest (Logical OR)

idest (- isrc1 OR isrc2
~C set if result is zero, cleared othe~ise

orh #const, isrc2, idest (Logical OR high)

idest (- (#const shifted left 16 bits) OR isrc2
CC set if result is zero, cleared otherwise

xor isrc1, isrc2, idest (Logical XOR)

idest (- isrc1 XOR isrc2
CC set if result is zero, cleared otherwise

xorh #const, isrc2, idest (Logical XOR high)

idest (- (#const shifted left 16 bits) XOR isrc2
CC set if result is zero, cleared otherwise

The operation is performed bitwise on all 32 bits of isrcl and isrc2. When isrcl is an
immediate constant, it is zero-extended to 32 bits.

The "H" variant signifies "high" and forms one operand by using the immediate con­
stant as the high-order 16 bits and zeros as the low-order 16 bits. The resulting 32-bit
value is then used to operate on the isrc2 operand.

Flags Affected

CC is set if the result is zero, cleared otherwise.

Programming Notes

Bit operations can be implemented using logical operations. Isrcl is an immediate con­
stant which contains a one in the bit position to be operated on and zeros elsewhere.

5-14

CORE INSTRUCTIONS

Bit Operation Equivalent Logical Operation

Set bit or

Clear bit andnot

Complement bit xor

Test bit and (CC set if bit is clear)

5-15

CORE INSTRUCTIONS

5.11 CONTROL-TRANSFER INSTRUCTIONS

Control transfers can branch to any location within the address space. However, if a
relative branch offset, when added to the address of the control-transfer instruction plus
four, produces an address that is beyond the 32-bit addressing range of the i860 micro­
processor, the results are undefined.

Many of the control-transfer instructions are delayed transfers. They are delayed in the
sense that the i860 microprocessor executes one additional instruction following the
control-transfer instruction before actually transferring control. During the time used to
execute the additional instruction, the i860 microprocessor refills the instruction pipeline
by fetching instructions from the new instruction address. This avoids breaks in the
instruction execution pipeline. It is generally possible to find an appropriate instruction
to execute after the delayed control-transfer instruction even if it is merely the first
instruction of the procedure to which control is passed.

Programming Notes

The sequential instruction following a delayed control-transfer instruction may be nei­
ther another control-transfer instruction, nor a trap instruction, nor the target of a
control-transfer instruction.

5-16

CORE INSTRUCTIONS

br Ibroff

Execute one more sequential instruction.
Continue execution at brx(lbroff).

(Branch direct unconditionally)

bc Ibroff (Branch on CC)

IF CC = 1
THEN continue execution at brx(lbroff)
FI

bc.t Ibroff (Branch on CC. taken)

IF CC = 1
THEN execute one more sequential instruction

continue execution at brx(lbroff)
ELSE skip next sequential instruction
FI

bnc Ibroff (Branch on not CC)

IF CC = 0
THEN continue execution at brx(lbroff)
FI

bnc.t Ibroff

IF CC = 0
THEN execute one more sequential instruction

continue execution at brx(lbroff)
ELSE skip next sequential instruction
FI

bte isrc1s, isrc2, sbroff

IF isrc1s = isrc2
THEN continue execution at brx(sbroff)
FI

btne isrc1s, isrc2, sbroff

IF isrc1s ~ isrc2
THEN continue execution at brx(sbroff)
FI

(Branch on not CC, taken)

(Branch if equal)

(Branch if not equal)

bla isrc1 ni, isrc2, sbroff (Branch on LCC and add)

LCC_temp clear if isrc2 < comp2(isrc1 nil (signed)
LCC_temp set if isrc2 ~ comp2(isrc1 nil (signed)
isrc2 ~ isrc1 ni + isrc2
Execute one more sequential instruction
IF LCC
THEN LCC ~ LCC_temp

continue execution at brx(sbroff)
ELSE LCC ~ LCC_temp
FI

The instructions bc.t and bnc.t are delayed forms of bc and bnc. The delayed branch
instructions bc.t and bnc.t should be used when the branch is taken more frequently than
not; for example, at the end of a loop. The nondelayed branch instructions be, bnc, bte,
btne should be used when branch is taken less frequently than not; for example, in
certain search routines.

If a trap occurs on a bla instruction or the next instruction, Lee is not updated. The trap
handler resumes execution with the bla instruction, so the Lee setting is not lost.

5-17

CORE INSTRUCTIONS

Programming Notes

The bla instruction is useful for implementing loop counters, where isrc2 is the loop
counter and isrcl is set to -1. In such a loop implementation, a bla instruction may be
performed before the loop is entered to initialize the Lee bit of the psr. The target of
this bla should be the sequential instruction after the next, so that the next sequential
instruction is executed regardless of the setting of Lee. Another bla instruction placed
as the next to last instruction of the loop can test for loop completion and update the
loop counter. The total number of iterations is the value of isrc2 before the first bla

. instruction, plus one. Example 5-1 illustrates this use of bla.

Programmers should avoid calling subroutines from within a bla loop, because a subrou­
tine may also use bla and change the value of Lee.

For the bla instruction, the register coded as isrcl must not be the same register as isrc2.

II EXAMPLE OF bla USAGE

II Write zeros to an array of 16 single-precision numbers
II Starting address of array is already in r4

adds
or
bla
addu

CLEAR_LOOP:

-1,
15,
r5,
-4,

bla r5,
fst.l f0,

r0,
r0,
r6,
r4,

r5 II r5 <-- loop increment
r6 II r6 <-- loop count

CLEAR_LOOP II One time to initialize LCC
r4 II Start one lower to

II. allow for autoincrement

r6, CLEAR_LOOP II Loop for the 16 times
4(r4)++ II Write and auto increment

II to next word

Example 5-1. Example of bla Usage

5-18

CORE INSTRUCTIONS

caillbroff (Subroutine call)

r1 ~ address of next sequential instruction + 4
Execute one more sequential instruction
Continue execution at brx(lbroff)

calli [isrc1 m] (Indirect subroutine call)

r1 ~ address of next sequential instruction + 4
Execute one more sequential instruction
Continue execution at address in isrc1 ni

(The original contents of isrc1 ni is used even if the next instruction
modifies isrc1ni. Does not trap if isrc1ni is misaligned.)

bri [isrc1 m] (Branch indirect unconditionally)

Execute one more sequential instruction
IF any trap bit in psr is set
THEN copy PU to U, PIM to 1M in psr

clear trap bits

FI

IF OS is set and DIM is reset
THEN enter dual-instruction mode after executing one

instruction in single-instruction mode
ELSE IF OS is set and DIM is set

FI

THEN enter single-instruction mode afl:er executing one
instruction in dual-instruction mode

ELSE IF DIM is set

FI

THEN enter dual-instruction mode
for next instruction pair

ELSE enter single-instruction mode
for next instruction pair

FI

Continue execution at address in isrc1ni
(The original contents of isrc1 ni is used even if the next instruction
modifies isrc1 ni. Does not trap if isrc1 ni is misaligned.)

Return from a subroutine is implemented by branching to the return address with the
indirect branch instruction brio

Indirect branches are also used to resume execution from a trap handler (refer to Chap­
ter 7). The need for this type of branch is indicated by set trap bits in the psr at the time
bri is executed. In this case, the instruction following the bri must be a load that restores
isrclni to the value it had before the trap occurred.

Programming Notes

When using bri to return from a trap handler, programmers should take care to prevent
traps from occurring on that or on the next sequential instruction. 1M should be zero
(interrupts disabled).

The register isrclni of the calli instruction must not be r1.

5-19

CORE INSTRUCTIONS

5.12 CONTROL REGISTER ACCESS

Id.c csrc2, idest

idest ~ csrc2

st.c isrc1 ni, csrc2

csrc2 ~ isrc1ni

(Load from control register)

(Store to control register)

Csrc2 specifies a control register that is transferred to or from a general-purpose regis­
ter. The function of each control register is defined in Chapter 3. As shown below, some
registers or parts of registers are write-protected when the U-bit in the psr is set. A store
to those registers or bits is ignored when the i860 microprocessor is in user mode. The
encoding of csrc2 is defined by Table 5-1.

Programming Notes

Saving fir (the fault instruction register) anytime except the first time after a trap occurs
saves the address of the Id.c instruction.

After a scalar floating-point operation, a st.c to fsr should not change the value of RR,
RM, or FZ until the point at which result exceptions are reported. (Refer to Chapter 7
for more details.)

Only a trap handler should use the intruction st.c to set the trap bits (IT, IN, IAT, DAT,
FT) of the psr.

Table 5-1. Control Register Encoding for Assemblers

Register Src2Code
User-Mode

Write-Protected?

fir (Fault Instruction) 0 N/A***
psr (Processor Status) 1 Yes*
dirbase (Directory Base) 2 Yes
db (Data Breakpoint) 3 ,,--

It:::~

fsr (Floating-Point Status) 4 No
epsr (Extended Process Status) 5 Yes**

* Only the psr bits BR,BW, PIM, 1M, PU, U, IT, IN, IAT, DATA, FT, OS, DIM, and KNF are write-protected.
** The processor type, stepping number, and cache size cannot be changed from either user or

supervisor level.
*** The fir register cannot be written by the st.c instruction.

5-20

5.13 CACHE FLUSH

flush #const(isrc2)
flush #const(isrc2) + +

CORE INSTRUCTIONS

(Cache flush)
(Normal)
(Autoincrement)

Replace the block in data cache that has address (#const + isrc2).
Contents of block undefined.
IF autoincrement
THEN isrc2 ~ #const + isrc2
FI

The flush instruction is used to force modified data in the data cache to external mem­
ory. Because the register designated by idest is undefined after flush, assemblers should
encode idest as zero. The address #const + isrc2 must be aligned on a 16-byte boundary.
There are two 32-byte blocks in the cache which can be replaced by the address #const
+ isrc2. The particular block that is forced to memory is controlled by the RB field of
dirbase. In user mode, execution of flush is suppressed; use it only in supervisor mode.

Example 5-2 shows how to use the flush instruction. The addresses used by the flush
instruction refer to a reserved 4 Kbytc memory area that is not used to store data. This
ensures that, when flushing the cache before a task switch, cached data items from the
old task are not transferred to the new task. These addresses must be valid and writable
in both the old and the new task's space. Any other usage of flush has undefined results.

Cache elements containing modified data are written back to memory by making two
passes, each of which references every 32nd byte of the reserved area with the flush
instruction. Before the first pass, the RC field in dirbase is set to two and RB is set to
zero. This causes data-cache misses to flush element zero of each set. Before the second
pass, RB is changed to one, causing element one of each set to be flushed.

5-21

CORE INSTRUCTIONS

II CACHE fLUSH PROCEDURE
II Rw. Rx. Ry. Rz represent integer registers
II fLUSH_P_H is the high-order 16 bits of a pointer to res~rved area
II fLUSH_P_L is the low-order 16 bits of the pointer. minus 32

ld.c dirbase. Rz
or 0x800. Rz. Rz II RC <-- 0b10 (assuming was 00)
adds -1 r0. Rx II Rx <-- -1 (loop increment)
call LfLUSH
st.c Rz. dirbase II Replace in block 0
or 0x900. Rz. Rz II RB <-- 0b01
call D_fLUSH
st.c Rz. dirbase II Replace in block 1
xor 0x900. Rz. Rz II Clear RC and RB

II Change DrB. ATE. or ITI fields here. if necessary
st·c Rz. dirbase

D_fLUSH:
orh fLUSH_P_H. r0. Rw II Rw <-- address minus 32
or fLUSH_P_L. Rw. Rw II of flush area
or 127. r0. Ry II Ry <-- loop count
ld.l 32(Rw) • r31 II Clear any pending bus writes
shl 0. r31. r31 II Wait until load finishes
bla Rx. Ry. D_fLUSH_LOOP
nop

D_fLUSH_LOOP:
bla Rx. Ry. D_fLH~~_LOOP

flush
bri
ld.l

32(Rw)++
rl
-512(Rw). r0

II One time to initialize LCC

II Loop; execute next instruction
II for 128 lines in cache block
II flush and autoincrement to next line
II Return after next instruction
II Load from flush area to clear pending
II writes. A hit is guaranteed

Example 5·2. Cache Flush Procedure

5-22

CORE INSTRUCTIONS

5.14 BUS LOCK

lock (Begin interlocked sequence)

Set BL in dirbase. The next load or store that misses the cache
locks that location, preventing locked access to it by other processors.
External interrupts are disabled from the first
instruction after the lock until the location is unlocked.

unlock (End interlocked sequence)

Clear BL in dirbase. The next load or store unlocks the location
(regardless of whether it hits in the cache). Interrupts are enabled.

These instructions allow programs running in either user or supervisor mode to perform
read-modify-write sequences in multiprocessor and multithread systems. The interlocked
sequence must not branch outside of the 30 sequential instructions following the lock
instruction. The sequence must be restartable from the lock instruction in case a trap
occurs. Simple read-modify-write sequences are automatically restartable. For sequences
with more than one store, the software must ensure that no traps occur after the first
non-reexecutable store. To ensure that no data access fault occurs, it must first store
unmodified values in the other store locations. To ensure that no instruction-access fault

. occurs, the code that is not restartable should not span a page boundary.

After a lock instruction, the location is not locked until the first data access that misses
the data cache. Software in a multiprocessing system should ensure that the first load
instruction after a lock references noncacheable memory.

If a trap occurs after a lock instruction but before the load or store that follows the
corresponding unlock, the processor clears BL and sets the IL (interlock) bit of epsr.
This is likely to happen, for example, during TLB miss processing, when the A-bit of the
page table entry is not set.

If the processor encounters another lock instruction before unlocking the bus or an
unlock with no preceeding lock, that instruction is ignored.

If, following a lock instruction, the processor does not encounter a load or store follow­
ing an unlock instruction by the time it has executed 30-33 instructions, it triggers an
instruction fault. In such a case, the trap handler will find both IL and IT set. The
instruction pointed to by fir mayor may not have been executed.

When multiple memory locations are accessed during a locked sequence, only the first
location with a cache miss is guaranteed to be locked against access by other processors.

For high-performance multiprocessors, this allows a read-for-ownership policy, instead
of locking the system bus.

Between locked sequences, at least one cycle of LOCK# deactivation is guaranteed by
the behavior of unlock.

5-23

CORE INSTRUCTIONS

Note that, for each shared data structure, software must establish a single location that is
the first location referenced by any locked sequence that requires that data. For exam­
ple, the head of a doubly linked list should be referenced before accessing items in the
middle of the list.

Example 5-3 shows how lock and unlock can be used in a variety of interlocked
operations.

Programming Notes

In a locked sequence, a transition to or from dual-instruction mode is not permitted.

II LOCKED TEST AND SET
II Value to put in semaphore is in r23

lock II
ld.b semaphore, r22 II Put current value of semaphore in r22
unlock II
st.b r23, semaphore II

II LOCKED LOAD-ALU-STORE

lock II
ld·l word, r22 II
addu 1, r22, r22 II Can be any ALU operation
unlock
st·l r22, word II

II LOCKED COMPARE AND SWAP
II Swaps r23 with word in memory, if word r21

lock II
ld.l word, r22 II
bte r22, r21, L1 1/
mov r22, r23 1/ Executed only if not equal

L1: unlock 1/
st·l r23, word 1/

Example 5-3. Examples of lock and unlock Usage

5-24

Floating-Point Instructions 6

CHAPTER 6
FLOATING-POINT INSTRUCTIO~S

The floating-point section of the i860™ microprocessor comprises the floating-point reg­
isters and three processing units:

1. The floating-point multiplier

2, The floating-point adder

3. The graphics unit

This section of the i860 microprocessor executes not only floating-point operations but
also 64-bit integer operations and graphics operations that utilize the 64-bit internal data
path of the floating-point section.

For register operands, the abbreviations that describe the operands are composed of two
parts. The first part describes the type of register:

f One of the floating-point registers: fO through f31

One of the integer registers: rO through r31

The second part identifies the field of the machine instruction into which the operand is
to be placed:

srcl The first of the two source-register designators.

src2 The second of the two source-register designators.

dest The destination register designator.

Thus, the operand specifier fsrc2, for example, means that a floating-point register is
used and that the encoding of that register must be placed in the src2 field of the
machine instruction.

6.1 PRECISION SPECIFICATION

Unless otherwise specified, floating-point operations accept single- or double-precision
source operands and produce a result of equal or greater precision. Both input operands
must have the same precision. The source and result precision are specified by a two­
letter suffix to the mnemonic of the operation, as shown in Table 6-1. In this manual, the
suffixes .p and .r refer to the precision specification. In an actual program, .p is to be
replaced by the precision specification .55, .5d, or .dd (.d5 not permitted). Likewise, .r is
to be replaced by the precision specification .55, .5d, .d5, or .dd.

6-1

FLOATING-POINT INSTRUCTIONS

Table 6-1. Precision Specification

Suffix Source Precision Result Precision

.ss single single

.sd single double

.dd double double

.ds double single

6.2 PIPELINED AND SCALAR OPERATIONS

The architecture of the floating-point unit uses parallelism to increase the rate at which
operations may be introduced into the unit. One type of parallelism used is called "pipe­
lining." The pipelined architecture treats each operation as a series of more primitive
operations (called "stages") that can be executed in parallel. Consider just the floating­
point adder unit as an example. Let A represent the operation of the adder. Let the
stages be represented by AI' Az, and A3• The stages are designed such that Ai + I for one
adder instruction can execute in parallel with Ai for the next adder instruction. Further­
more, each Ai can be executed in just one clock. The pipelining within the multiplier and
graphics units can be described similarly, except that the number of stages and the
number of clocks per stage may be different.

Figure 6-1 illustrates three-stage pipelining as found in the floating-point adder (also in
the floating-point multiplier when single-precision input operands are employed). The
columns of the figure represent the three stages of the pipeline. Each stage holds inter­
mediate results and also (when introduced into the first stage by software) holds status
information pertaining to those results. The figure assumes that the instruction stream
consists of a series of consecutive floating-point instructions, all of one type (i.e. all
adder instructions or all single-precision multiplier instructions). The instructions are
represented as i, i + 1, etc. The rows of the figure represent the states of the unit at
successive clock cycles. Each time a pipelined operation is performed, the status of the
last stage becomes available in fsr, the result of the last stage of the pipeline is stored in
the destination register fdest, the pipeiine is advanced one stage, and the input operands
fsrcl and fsrc2 are transferred to the first stage of the pipeline.

In the i860 microprocessor, the number of pipeline stages ranges from one to three. A
pipelined instruction with a three-stage pipeline writes to its fdest the result of the third
prior instruction. A pipe lined instruction with a two-stage pipeline writes to its fdest the
result of the second prior operation. A pipelined operation with a one-stage pipeline
stores the result of the prior operation. '

There are four floating-point pipelines: one for the multiplier, one for the adder, one for
the graphics unit, and one for floating-point loads. The adder pipeline has three stages.
The number of stages in the multiplier pipeline depends on the precision of the source
operands in the pipeline: two stages for double precision or three stages for single pre­
cision. The graphics unit has one stage for all precisions. The load pipeline has three
stages for all precisions.

6-2

Instruction
i

Instruction
1+1

Instruction
1+2

Instruction
1+3

Instruction
1+4

Instruction
1+5

r

r

r

r

r

r

FLOATING-POINT INSTRUCTIONS

StagG 1
results (status)

i
(s)

"\
i + 1

(s)

'" i +2
(s)

"\
i +3

(5)

'" i + 4
(s)

\,
i +5

(s)

r

r

r

r

r

Stage 2
results (status)

Clockm

Clock m + 1 '"

i
(s)

Clock m + 2 '"

i + 1
(s)

Clock m + 3 "\

i+ 2
(s)

Clock m + 4 "\

i +3
(8)

Clock m + 5 "\

i + 4
(6)

r

r

r

r

Stage 3
results (status)

i

i + 1

i+ 2

i + 3

Figure 6-1. Pipelined Instruction Execution

6-3

s

~
s

~
8

fdeat
+3 I

fdeat
1+4

~
6

fd.at
1+5

240329i

FLOATING·POINT INSTRUCTIONS

Changing the FZ (flush zero), RM (rounding mode), or RR (result register) bits of fsr
while there are results in either the multiplier or adder pipeline produces effects that are
not defined.

6.2.1 Scalar Mode

In addition to the pipelined execution mode described above, the i860 microprocessor
also can execute floating-point instructions in "scalar" mode. Most floating-point
instructions have both pipe lined and scalar variants, distinguished by a bit in the instruc­
tion encoding. In scalar mode, the floating-point unit does not start a new operation
until the previous floating-point operation is completed. The scalar operation passes
through all stages of its pipeline before a new operation is introduced, and the result is
stored automatically. Scalar mode is used when the next operation depends on results
from the previous few floating-point operations (or when the compiler or programmer
does not want to deal with pipelining).

6.2.2 Pipelining Status Information

Result status information in the fsr consists of the AA, AI, AO, AU, and AE bits, in the
case of the adder, and the MA, MI, MO, and MU bits, in the case of the mUltiplier. This
information arrives at the fsr via the pipeline in one of two ways:

1. It is calculated by the last stage of the pipeline. This is the normal case.

2. It is propagated from the first stage of the pipeline. This method is used when
restoring the state of the pipeline after a preemption. When a store instruction
updates the fsr and the the U bit being written into the fsr is set, the store updates
result status bits in the first stage of both the adder and multiplier pipelines. When
software changes the result-status bits of the first stage of a particular unit (multi­
plier or adder), the updated result-status bits are propagated one stage for each
pipelined floating-point operation for that unit. In this case, each stage of the adder
and muitipiier pipeiines hoids its own copy of tht! rdevant bits of the fsf. 'vVheil they
reach the last stage, they override the normal result-status bits computed from the
last-stage result.

At the next floating-point instruction (or at certain core instructions), after the result
reaches the last stage, the i860 microprocessor traps if any of the status bits of the fsr
indicate exceptions. Note that the instruction that creates the exceptional condition is
not the instruction at which the trap occurs.

6.2.3 Precision in the Pipelines

In pipelined mode, when a floating-point operation is initiated, the result of an earlier
pipelined floating-point operation is returned. The result precision of the current in­
struction applies to the operation being initiated. The precision of the value stored in
fdest is that which was specified by the instruction that initiated that operation.

6-4

FLOATING-POINT INSTRUCTIONS

If fdest is the same as fsrcl or fsrc2, the value being stored in fdest is used as the input
operand. In this case, the precision of fdest must be the same as the source precision.

The multiplier pipeline has two stages when the source operand is double-precision and
three stages when the precision of the source operand is single. This means that a

, pipelined multiplier operation stores the result of the second previous multiplier opera­
tion for double-precision inputs and third previous for single-precision inputs (except
when mixing precisions). The two-stage pipeline executes at two clocks per stage; the
three-stage pipeline executes at one clock per stage.

6.2.4 Transition between Scalar and Pipelined Operations

When a scalar operation is executed in the adder, multiplier, or graphics unit, it passes
through all stages of the pipeline; therefore, any unstored results in the affected pipeline
are lost. To avoid losing information, the last pipelined operations before a scalar oper­
ation should be dummy pipelined operations that unload unstored results from the
affected pipeline.

After a scalar operation, the values of all pipeline stages of the affected unit (except the
last) are undefined. No spurious result-exception traps result when the undefined values
are subsequently stored by pipelined operations; however, the values should not be ref­
erenced as source operands.

Note that the pfld pipeline is not affected by scalar fld and Id instructions.

For best performance a scalar operation should not immediately precede a pipelined
operation whose fdest is nonzero.

6.3 MULTIPLIER INSTRUCTIONS

The multiplier unit of the floating-point section performs not only the standard floating­
point multiply operation but also provides reciprocal operations that can be used to
implement floating-point division and provides a special type of multiply that assists in
coding integer multiply sequences. The multiply instructions can be pipelined.

Programming Notes

Complications arise with sequences of pipelined multiplier operations with mixed single­
and double-precision inputs because the pipeline length is different for the two preci­
sions. The complications can be avoided by not mixing the two precisions; i.e., by flush­
ing out all single-precision operations with dummy single-precision operations before

6-5

FLOATING-POINT INSTRUCTIONS

starting double-precision operations, and vice versa. For the adventuresome, the rules for
mixing precisions follow:

• Single to Double Transitions. When a pipelined multiplier operation with double­
precision inputs is executed and the previous multiplier operation was pipelined with
single-precision inputs, the third previous (last stage) result is stored, and the previ­
ous operation (first stage) is advanced to the second stage (now the last stage). The
second previous operation (old second stage) is discarded. The next pipelined multi­
plier operation stores the single-precision result.

• Double to Single Transitions. When a pipelined multiplier operation with single­
precision inputs is executed and the previous mUltiplier operation was pipelined with
double-precision inputs, the previous multiplier operation is advanced to the second
stage and a single- or double-precision zero is placed in the last stage of the pipeline.
The next pipelined multiplier operation stores zero instead of the result of the prior
operation, and the MRP bit of fsr for that next operation is undefined.

6-6

FLOATING-POINT INSTRUCTIONS

6.3.1 Floating-Point Multiply

fmul.p fsret, fsre2, fdest

fdest - fsret x fsre2

pfmul.p fsret, fsre2, fdest

fdest - last stage multiplier result
Advance M pipeline one stage
M pipeline first stage - fsret x fsre2

pfmul3.dd fsret, fsre2, fdest

fdest - last stage multiplier result
Advance 3-stage M pipeline one stage
M pipeline first stage - fsret x fsre2

(Floating-Point Multiply)

(Pipelined Floating-Point Multiply)

(Three-Stage Pipelined Multiply)

'k,

These instructions perform a standard multiply operation.

Programming Notes

Fsrcl must not be the same as fdest for pipelined operations. For best performance when
the prior operation is scalar, fsrcl should not be the same as the fdest of the prior
operation.

The pfmul3.dd instruction is intended primarily for use by exception handlers in restor­
ing pipeline contents (refer to "Pipeline Preemption" in Chapter 7). It should not be
mixed in instruction sequences with other pipelined multiplier instructions.

6-7

FLOATING-POINT INSTRUCTIONS·

6.3.2 Floating-Point Multiply Low

fmlow.dd fsret, fsre2, fdest (Floating-Point Multiply Low)

fdest ~ low-order 53 bits of (fsret mantissa x fsre2 mantissa)
fdest bit 53 ~ most significant bit of (fsret mantissa x fsre2 mantissa)

The fmlow instruction multiplies the low-order bits of its operands. It operates only on
double-precision operands. The high-order 10 bits of the result are undefined.

An fmlow can perform 32-bit integer multiplies. Two 64-bit values are formed, with the
integers in the low-order 32 bits. The low-order 32-bits of the result are the same as the
low-order 32 bits of an integer mUltiply. The fmlow instruction does not update the
result-status bits of fsr and does not cause source- or result-exception traps.

6-8

FLOATING-POINT INSTRUCTIONS

6.3.3 Floating-Point Reciprocals

frcp.p fsrc2, fdest (Floating-Point Reciprocal)

fdest ~ 1 / fsrc2 with absolute mantissa error < 2- 7

frsqr.p fsrc2, fdest (Floating-Point Reciprocal Square Root)

fdest ~ 1 / ~ with absolute mantissa error < 2- 7

The frep and frsqr instructions are intended to be used with algorithtns such as the
Newton-Raphson approximation to compute divide and square root. Assemblers and
compilers must encode fsrcl as fO. A Newton-Raphson approximation may produce a
result that is different from the IEEE standard in the two least significant bits of the
mantissa. A library routine supplied by Intel may be used to calculate the correct IEEE­
standard rounded result.

Traps

The instructions frep and frsqr cause the source-exception trap if fsrc2 is zero. An frsqr
causes the source-exception trap if fsrc2 < O.

6.4 ADDER INSTRUCTIONS

The adder unit of the floating-point section provides floating-point addition, subtraction,
and comparison, as well as conversion from floating-point to integer formats.

6-9

FLOATING-POINT INSTRUCTIONS

6.4.1 Floating-Point Add and Subtract

fadd.p fsre1, fsre2, fdest

fdest - fsre 1 + fsre2

pfadd.p fsre1, fsre2, fdest

fdest - last stage adder result
Advance A pipeline one stage
A pipeline first stage - fsre1 + fsre2

fsub.p fsre1, fsre2, fdest

fdest - fsre1 - fsre2

pfsub.p fsre1, fsre2, fdest

fdest - last stage adder result
Advance A pipeline one stage
A pipeline first stage - fsre1 - fsre2

famov.r fsre1, fdest

fdest - fsre1

pfamov.r fsre1, fdest

fdest - last stage adder result
Advance A pipeline one stage
A pipeline first stage - fsre1

(Floating-Point Add)

(Pipelined Floating-Point Add)

(Floating-Point Subtract)

(Pipelined Floating-Point Subtract)

(Floating-Point Adder Move)

(Pipelined Floating-Point Adder Move)

These instructions perform standard addition and subtraction operations.

The famov and pfamov instructions send fsrcl through the floating-point adder, preserv­
ing the value of - 0 (minus zero) when fsrcl is - O. (Note that (p)fadd.p fsrcl, fO, fdest
may round - 0 to + 0, depending on the RM bits of fsr.) The pfamov instruction is used
by the trap handler to restore pipeline states. Fsrc2 for (p)famov must be encoded as fO
by assemblers and compilers.

Programming Notes

In order to allow conversion from double precIsIon to single precision, an famov or
pfamov instruction may have doubie-precision inputs and a single-precision output. In
assembly language, this conversion can be specified using the fmov or pfmov pseudo­
operation with the .ds suffix.

fmov.ds fsre1, fdest

Equivalent to famov.ds fsre1, fdest

pfmov.ds fsre1, fdest

Equivalent to pfamov.ds fsre1, fdest

(Convert Double to Single)

(Pipelined Convert Double to Single)

6-10

FLOATING-POINT INSTRUCTIONS

Conversion from single to double is accomplished by famov.sd or pfamov.sd. In assembly
language, this conversion can be specified by the fmov or pfmov pseudo-operation with
the .sd suffix.

fmov.sd fsrc1, fdest

Equivalent to famov.sd fsrc1, fdest

pfmov.sd fsrc1, fdest

Equivalent to pfamov.sd fsrc1, fdest

(Convert Single to Double)

(Pipellned Convert Single to Double)

6-11

FLOATING-POINT INSTRUCTIONS

6.4.2 Floating-Point Compares

pfgt.p fsre1, fsre2, fdest (Pipelined Floating-Point Greater-Than
Compare)

(Assembler clears R-bit of instruction)
fdest ~ last stage adder result
CC set if fsre1 > fsre2, else cleared
Advance A pipeline one stage
A pipeline first stage is undefined, but no result exception occurs

pfle.p fsre1, fsre2, fdest (Pipellned F-P Less-Than or Equal
Compare)

(Identical to pfgt.p except that
assembler sets R-bit of instruction.)

fdest ~ last stage adder result
CC cleared if fsre1 :5 fsre2, else set
Advance A pipeline one stage
A pipeline first stage is undefined, but no result exception occurs

pfeq.p fsre1, fsre2, fdest (Pipelined Floating-Point Equal
Compare)

fdest ~ last stage adder result
CC set if fsre1 = fsre2, else cleared
Advance A pipeline one stage
A pipeline first stage is undefined, but no result exception occurs

There are no corresponding scalar versions of the floating-point compare instructions.
The pipelined instructions can be used either within a sequence of pipelined instructions
or within a sequence of nonpipelined (scalar) instructions.

pfgt.p should be used for A > B and A < B comparisons. pfle.p should be used for A ~
B and A ~ B comparisons. pfeq.p should be used for A = B and A ~ B comparisons.

Traps

Compares never cause result exceptions when the result is stored. They do trap on
invalid input operands.

Programming Notes

The only difference between pfgt.p and pfle.p is the encoding of the R bit of the instruc­
tion and the way in which the trap handler treats unordered compares. The R bit nor­
mally indicates result precision, but in the case of these instructions it is not used for that
purpose. The trap handler can examine the R bit to help determine whether an unor­
dered compare should set or clear CC to conform with the IEEE standard for unordered
compares. For pfgt.p artd pfeq.p, it should clear CC; for pfle.p, it should set CC.

For best performance, a be or bne instruction should not directly follow a pfgt or pfeq
instruction. Be sure, nowever, that intervening instructions do not change CC.

6-12

FLOATING-POINT INSTRUCTIONS

6.4.3 Floating-Point to Integer Conversion

fix.p fsrc1, fdest (Floating-Point to Integer Conversion)

fdest ~ 64-bit value with low-order 32 bits equal to integer part of fsrc1 rounded

pfix.p fsrc1, fdest (Pipelined Floating-Point to Integer
Conversion)

fdest ~ last stage adder result
Advance A pipeline one stage
A pipeline first stage ~ 64-bit value with low-order 32 bits

equal to integer part of fsrc1 rounded

ftrunc.p fsrc1, fdest (Floating-Point to Integer Truncation)

fdest ~ 64-bit value with low-order 32 bits equal to integer part of fsrc1

pftrunc.p fsrc1, fdest (Pipelined Floating-Point to Integer
Truncation)

fdest ~ last stage adder result
Advance A pipeline one stage
A pipeline first stage ~ 64-bit value with low-order 32 bits

equal to integer part of fsrc1

The instructions fix, pfix, ftrunc, and pftrunc must specify double-precision results. The
low-order 32 bits of the result contain the integer part of fsrcl represented in twos­
complement form. For fix and pfix, the integer is selected according to the rounding
mode specified by RM in the fsr. The instructions ftrunc and pftrunc are identical to fix
and pfix, except that RM is not consulted; rounding is always toward zero. Assembler
and compilers should encode fsrc2 as fO.

Traps

The instructions fix, pfix, ftrunc, and pftrunc signal overflow if the integer part of fsrcl is
bigger than what can be represented as a 32-bit twos-complement integer. Underflow
and inexact are never signaled.

6-13

FLOATING-POINT INSTRUCTIONS

6.5 DUAL OPERATION INSTRUCTIONS

pfam.p fsrc1, fsrc2, fdest

fdest ~ last stage adder result

(Plpelined Floating-Point Add and
r.1ultlply)

Advance A and M pipeline one stage (operands accessed before advancing pipeline)
A pipeline first stage ~ A-op1 + A-op2
M pipeline first stage ~ M-op1 x M-op2

pfsm.p fsrc1, fsrc2, fdest (Pipelined Floating-Point Subtract and
Multiply)

fdest ~ last stage adder result
Advance A and M pipeline one stage (operands accessed before advancing pipeline)
A pipeline first stage ~ A-op1 - A-op2
M pipeline first stage ~ M-op1 x M-op2

pfmam.p fsrc1, fsrc2, fdest

fdest ~ last stage multiplier result

(PlpeJined Floating-Point Multiply with
Add)

Advance A and M pipeline one stage (operands accessed before advancing pipeline)
A pipeline first stage ~ A-op1 + A-op2
M pipeline first stage ~ M-op1 x M-op2

pfmsm.p fsrc1, fsrc2, fdest

fdest ~ last stage multiplier result

(PlpeJined Floating-Point Multiply with
Subtract)

Advance A and M pipeline one stage (operands accessed before advancing pipeline)
A pipeline first stage ~ A-op1 - A-op2
M pipeline first stage ~ M-op1 x M-op2

The instructions pfam, pfsm, pfmam, and pfmsm initiate both an adder (A-unit) opera­
tion and a multiplier (M-unit) operation. The source precision specified by .p applies to
the source operands of the multiplication. The result precision normally specified by .p
controls in this case both the precision of the source operands of the addition or sub­
traction and the precision of all the results.

Precision of Source
Precision of Source

Suffix of Multiplication of Add or Subtract and
Result of All Operations

.ss single single

.sd single double

.dd double double

The instructions pfmam and pfmsm are identical to pfam and pfsm except that pfmam
and pfmsm transfer the last stage result of the multiplier to [dest.

6-14

FLOATING-POINT INSTRUCTIONS

Six operands are required, but the instruction format specifies only three operands;
therefore, there are special provisions for specifying the operands. These special provi­
sions consist of:

• Three special registers (KR, KI, and T), that can store values from one dual­
operation instruction and supply them as inputs to subsequent dual-operation
instructions.

The constant registers KR and KI can store the value of fsrcl and subsequently
supply that value to the M-pipeline in place of fsrcl.

The transfer register T can store the last-stage result of the multiplier pipeline
and subsequently supply that value to the adder pipeline in place of fsrcl.

• A four-bit data-path control field in the opcode (DPC) that specifies the operands
and loading of the special registers.

1. Operand-l of the multiplier can be KR, KI, or fsrcl.

2. Operand-2 of the multiplier can be fsrc2, the last-stage result of the multiplier
pipeline, or the last-stage result of the adder pipeline.

3. Operand-l of the adder can be fsrcl, the T-register, the last-stage result of the
multiplier pipeline, or the last-stage result of the adder pipeline.

4. Operand-2 of the adder can be fsrc2, the last-stage result of the multiplier pipe­
line, or the last-stage result of the adder pipeline.

Figure 6-2 shows all the possible data paths surrounding the adder and multiplier.
Table 6-2 shows how the various encodings of DPC select different data paths.
Figure 6-3 illustrates the actual data path for each dual-operation instruction.

Note that the mnemonics pfam.p, pfsm.p, pfmam.p, and pfmsm.p are never used as such
in the assembly language; these mnemonics are used by this manual to designate classes
of related instructions. Each value of DPC has a unique mnemonic associated with it. An
initial "m" distinguishes the pfmam.p, and pfmsm.p classes from the pfam.p, and pfsm.p
classes. Figure 6-4 explains how the rest of these mnemonics are derived.

Programming Notes

When fsrcl goes to M-unit opl or to KR or KI, fsrcl must not be the same as fdest. For
best performance when the prior operation is scalar and the M-unit opl is fsrcl, fsrcl
should not be the same as the fdest of the prior operation.

6-15

FLOATING-POINT INSTRUCTIONS

When dual operation instructions are used in single-precision mode, all 64 bits of the T,
KR, and KI registers are updated, but the values stored there are not converted to
double-precision format (the exponent bias is not adjusted for double precision).
Instead, zeros are inserted as pads in exponent bits 11:9 and as the fraction's least
significant 29 bits (bits 28:0). All 64 bits of the T, KR, and KI registers can be initialized
to zero using 3 single-precision r2apt.ss ID,ID,ID instructions and 1 i2apt.ss ID,ID,ID.
Because single-precision values are stored in these 64-bit registers in a format which
does not conform to the standard for double-precision numbers, leaving a valid single­
precision value in T, KR, or KI can cause floating-point traps if a double-precision
operation is later performed referencing one of these registers. Likewise, valid double­
precision values left in T, KR, or KI can cause traps if a single precision operation is
later performed using one of these registers. Therefore, programs should clear T, KR,
and KI before switching precisions.

fsrc1 fsrc2 fdest

MULTIPLIER UNIT

RESULT

ADDER UNIT

RESULT

240329i

Figure 6-2. Dual-Operation Data Paths

6-16

FLOATING-POINT INSTRUCTIONS

Table 6-2. OPC Encoding

OPC
PFAM PFSM M-Unit M-Unit A-Unit A-Unit T K

Mnemonic Mnemonic op1 op2 op1 op2 Load Load*

0000 r2p1 r2s1 KR src2 src1 M result No No
0001 r2pt r2st KR src2 T M result No Yes
0010 r2ap1 r2as1 KR src2 src1 A result Yes No
0011 r2apt r2ast KR src2 T A result Yes Yes
0100 i2p1 i2s1 KI src2 src1 M result No No
0101 i2pt i2st KI src2 T M result No Yes
0110 i2ap1 i2as1 KI src2 src1 A result Yes No
0111 i2apt i2ast KI src2 T A result Yes Yes
1000 rat1 p2 rat1 s2 KR A result src1 src2 Yes No
1001 m12apm m12asm src1 src2 A result M result No No
1010 ra1p2 ra1s2 KR A result src1 src2 No No
1011 m12ttpa m12ttsa src1 src2 T A result Yes No
1100 iat1p2 iat1s2 KI A result src1 src2 Yes No
1101 m12tpm m12tsm src1 src2 T M result No No
1110 ia1p2 ia1s2 KI A result src1 src2 No No
1111 m12tpa m12tsa src1 src2 T A result No No

OPC
PFMAM PFMSM M-Unit M-Unit A-Unit A-Unit T K

Mnemonic Mnemonic op1 op2 op1 op2 Load Load*

0000 mr2p1 mr2s1 KR src2 src1 M result No No
0001 mr2pt mr2st KR src2 T M result No Yes
0010 mr2mp1 mr2ms1 KR src2 src1 M result Yes No
0011 mr2mpt mr2mst KR src2 T M result Yes Yes
0100 mi2p1 mi2s1 KI src2 src1 M result No No
0101 mi2pt mi2st KI src2 T M result No Yes
0110 mi2mp1 mi2ms1 KI src2 src1 M result Yes No
0111 mi2mpt mi2mst KI src2 T M result Yes Yes
1000 mrmt1p2 mrmt1s2 KR M result src1 src2 Yes No
1001 mm12mpm mm12msm src1 src2 M result M result No No
1010 mrm1p2 mrm1s2 KR M result src1 src2 No No
1011 mm12ttpm mm12ttsm src1 src2 T M result Yes No
1100 mimt1p2 mimt1s2 KI M result src1 src2 Yes No
1101 mm12tpm mm12tsm src1 src2 T M result No No
1110 mim1p2 mim1s2 KI M result src1 src2 No No
1111 (reserved) (reserved)

* If K-Ioad is set, KR is loaded when operand-1 of the multiplier is KR; KI is loaded when operand-1 of the
multiplier is KI.

6-17

FLOATING-POINT INSTRUCTIONS

fare1 fsre2 fdest fare1 fsre2 fdest

op2 op2

MULTIPLIER UNIT MULTIPLIER UNIT

RESULT RESULT

op

ADDER UNIT ADDER UNIT

RESULT RESULT

r2p1 & r2s1 r2pt & r2st

fare1 fsre2 fdest fsre1 fsre2 fdest

op2 op2

MULTIPLIER UNIT MULTIPLIER UNIT

RESULT

ADDER UNIT ADDER UNIT

RESULT RESULT

r2ap1 & r2as1 r2apt & r2ast

240329i

Figure 6-3. Data Paths by Instruction (1 of 8)

6-18

fsre1

fsre1

FLOATING-POINT INSTRUCTIONS

fsre2

op1 op2

MULTIPLIER UNIT

RESULT

op1 op

ADDER UNIT

RESULT

i2p1 & i2s1

fsre2

op2

MULTIPLIER UNIT

RESULT

op1 op2

ADDER UNIT

RESULT

i2ap1 & i2as1

fdest

fdest

fsre1 fsre2

op2

MULTIPLIER UNIT

RESULT

ADDER UNIT

RESULT

i2pt & i2st

fsre1 . fsre2

op1 op2

MULTIPLIER UNIT

RESULT

op1 op2

ADDER UNIT

RESULT

i2apt & i2ast

Figure 6-3. Data Paths by Instruction (2 of 8)

6-19

fdest

fdest

240329i

fsre1

fsre1

FLOATING-POINT INSTRUCTIONS

op1

MULTIPLIER UNIT

RESULT

ADDER UNIT

RESULT

ran p2 & ran s2

MULTIPLIER UNIT

I RESULT

fsre2 fdest

fsrc2 fdest

isrei fiic2

,
op1 op2

MULTIPLIER UNIT

RESULT

I

-

op1 op2

ADDER UNIT

RESULT

I
m12apm & m12asm

fsre1 fsrc2

op1 op2

MULTIPLIER UNIT

RESULT

E]

op1 op2

ADDER UNIT ADDER UNIT

RESULT RESULT

I
ra1p2 & ra1s2 m12ttpa & m12ttsa

Figure 6-3. Data Paths by Instruction (3 of 8)

6-20

fdest

240329i

FLOATING-POINT INSTRUCTIONS

farcl farc2 fdest farcl fsrc2 fdaat

opl opl op2

MULTIPLIER UNIT MULTIPLIER UNIT

RESULT RESULT

opl 0P2

ADDER UNIT ADDER UNIT

l
lat1 p2 & lat1s2 ml2tpm & ml2tsm

farcl farc2 fdest farcl farc2 fdest

4

opl op2

MULTIPLIER UNIT MULTIPLIER UNIT

RESULT RESULT

[]

opl op2

ADDER UNIT ADDER UNIT

RESULT RESULT

l
ialp2 & ials2 ml2tpa & ml2tsa

240329i

Figure 6-3. Data Paths by Instruction (4 of 8)

6-21

fsrc1

fsrc1

FLOATING-POINT INSTRUCTIONS

fsrc2

op1 op2

MULTIPLIER UNIT

RESULT

op1 op

ADDER UNIT

RESULT

mr2p1 " mr2s1

fsrc2

op2

MULTIPLIER UNIT

nESULi

op2

ADDER UNIT

RESULT

mr2mp1 " mr2ms1

fdest

fdest

fsrc1 fsrc2

op2

MULTIPLIER UNIT

RESULT

i
op1 op

ADDER UNIT

RESULT

mr2pt " mr2st

fsrc1 fsrc2

op2

MULTIPLIER UNIT

RESULT

op1 op2

ADDER UNIT

RESULT

mr2mpt & mr2mst

Figure 6-3. Data Paths by Instruction (5 of 8)

6-22

fdest

fdest

240329i

fsrc1

fsrc1

FLOATING-POINT INSTRUCTIONS

fsrc2 fdest

MULTIPLIER UNIT

RESULT

op1 op2

ADDER UNIT

RESULT

mi2p1 & mi2s1

fsrc2 fdesl

MULTIPLIER UNIT

RESULT

op2

ADDER UNIT

RESULT

ml2mp1 & ml2ms1

fsrc1 fsrc2

op2

MULTIPLIER UNIT

RESULT

op1 op

ADDER UNIT

RESULT

ml2pt & ml2st

fsrc1 fsrc2

op2

MULTIPLIER UNIT

RESULT

opl op2

ADDER UNIT

RESULT

mi2mpt & ml2mst

Figure 6-3. Data Paths by Instruction (6 of 8)

6-23

fdest

fdest

240329i

FLOATING-POINT INSTRUCTIONS

fsrc1 fsrc2 fdsst fsrc1 fsrc2 fdest

op1 op1 op2

MULTIPLIER UNIT MULTIPLIER UNIT

RESULT

op1 op2

ADDER UNIT ADDER UNIT

RESULT RESULT

I
mrmt1p2 & mrmt1s2 mm12mpm & mm12msm

fsrc1 fsrc2 fdest fsrc1 fsrc2 fdest

, ,
op1 op2

MULTIPLIER UNIT MULTIPLIER UNIT

RESULT

1
op1 op2

ADDER UNIT ADDER UNIT

RESULT RESULT

I
mrm1p2& mrm1s2 mm12ttpm & mm12ttsm

240329i

Figure 6-3. Data Paths by Instruction (7 of 8)

6-24

FLOATING-POINT INSTRUCTIONS

fsre1 fsre2 fdest fsre1 fsre2 fdest

op1 op2

MULTIPLIER UNIT MULTIPLIER UNIT

RESULT RESULT

I

op1 op2

ADDER UNIT ADDER UNIT

RESULT RESULT

I
mimt1p2 & mimt1s2 mm12tpm & mm12tsm

fsre1 fsre2 fdest

MULTIPLIER UNIT

RESULT

ADDER UNIT

RESULT

mim1p2 & mlm1s2

240329i

Figure 6-3. Data Paths by Instruction (8 of 8)

6-25

M-unlt
opt
{r, I}

-KI

'---- KR

FLOATING-POINT INSTRUCTIONS

Series t - Assumes the M-unit operand-2 is fsrc2

M-unlt
op2

2

-'lIrc2

A-unit
op2

{a, m, nUll}

Add! A-unit
Subtract opt

{p, s} {I, t}

~ ~
~:~;dK

subtract

add (plus)
M-result

M-reault, load T

"'----- A-result, load T

Series 2 - Assumes no K loading

Not all combinations are possible. Refer to Table 6-1 for possible combinations.

M-unlt
opt and op2

{ra, rrn, la, 1m, mt2}
loadT

{t, nUll}

I I L ,,::;-
KI, M-result
KI, A-result
KR, M-result

'-------- KR, A-result

A-unit
opt

{I, a, m, t}

Add!
Subtract

{p, s}

A-unit
op2

{2, m, a}

IT ~ .
~L A-result

LM-result

'IIrc2
subtract

add (plus)

!.-- M-result

- A-result
'---- fsret

Figure 6-4. Data Path Mnemonics

6.6 GRAPHICS UNIT

2403291

The graphics unit operates on 32- and 64-bit integers stored in the floating-point register
file. This unit supports long-integer arithmetic and 3-D graphics drawing algorithms.
Operations are provided for pixel shading and for hidden surface elimination using a
Z-buffer.

6-26

FLOATING-POINT INSTRUCTIONS

Programming Notes

In a pipelined graphics operation, if fdest is not fO, then fdest must not be the same as
fsrcl or fsrc2.

For best performance, the result of a scalar operation should not be a source operand in
the next instruction, unless the next instruction is a multiplier or adder operation.

6-27

FLOATING-POINT INSTRUCTIONS

6.6.1 Long-Integer Arithmetic

fisub.w fsrc1, fsrc2, fdest

fdest ~ fsrc1 - fsrc2

pfisub.w fsrc1, fsrc2, fdest

fdest ~ last stage graphics result
last stage graphics result ~ fsrc1 - fsrc2

fiadd.w fsrc1, fsrc2, fdest

fdest ~ fsrc1 + fsrc2

pfiadd,.w fsrc1, fsrc2, fdest

fdest ~ last stage graphics result
last s!age graphics result ~ fsrc1 + fsrc2

(Long-Integer Subtract)

(Pipelined Long-Integer Subtract)

(Long-Integer Add)

(Pipelined Long-Integer Add)

.w = .ss (32 bits), or .dd (64 bits)

The fiadd and fisub instructions implement arithmetic on integers up to 64 bits wide.
Such integers are loaded into the same registers that are normally used for floating-point
operations. These instructions do not set CC nor do they cause floating-point traps due
to overflow.

Programming Notes

In assembly language, fiadd and pfiadd are used to implement the fmov and pfmov
pseudoinstructions.

fmov.ss fsrc1, fdest

Equivalent to fiadd.ss fsrc1, fO, fdest

pfmov.ss fsrc1, fdest

Equivalent to pfiadd.ss fsrc1, fO, fdest

fmov.dd fsrc1, fdest

Equivalent to fiadd.dd fsrc1, fO, fdest

pfmov.dd fsrc1, fdest

Equivalent to pfi~dd.dd fsrc1, fO, fdest

6.6.2 3-D Graphics Operations

(Single Move)

(Pipelined Single Move)

(Double Move)

(Fipeiined Doubie Move)

The i860 microprocessor supports high-performance 3-D graphics applications by sup­
plying operations that assist in the following common graphics functions:

1. Hidden surface elimination.

2. Distance interpolation.

3. 3-D shading using intensity interpolation.

6-28

FLOATING·POINT INSTRUCTIONS

The interpolation operations of the i860 microprocessor support graphics applications in
which the set of points on the surface of a solid object is represented by polygons. The
distances and color intensities of the vertices of the polygon are known, but the distances
and intensities of other points must be calculated by interpolation between the known
values.

Certain fields of the psr are used by the i860 microprocessor's graphics instructions, as
illustrated in Figure 6-5.

The merge instructions are those that utilize the 64-bit MERGE register. The purpose of
the MERGE register is to accumulate (or merge) the results of multiple-addition oper­
ations that use as operands the color-intensity values from pixels or distance values from
a Z-buffer. The accumulated results can then be stored in one 64-bit operation.

Two multiple-addition instructions and an OR instruction use the MERGE register. The
addition instructions are designed to add interpolation values to each color-intensity
field in an array of pixels or to each distance value in a Z-buffer.

6.6.2.1 Z-8UFFER CHECK INSTRUCTIONS

A Z-buffer aids hidden-surface elimination by associating with a pixel a value that rep­
resents the distance of that pixel from the viewer. When painting a point at a specific
pixel location, three-dimensional drawing algorithms calculate the distance of the point
from the viewer. If the point is farther from the viewer than the point that is already
represented by the pixel, the pixel is not updated. The i860 microprocessor supports
distance values that are either 16-bits or 32-bits wide. The size of the Z-buffer values is
independent of the pixel size. Z-buffer element size is controlled by whether the 16-bit
instruction fzchks or the 32-bit instruction fzchkl is used; pixel size is controlled by the
PS field of the psr.

31

PM

t tL. ________ PIXEL SIZE L. _____________ PIXEL MASK

240329i

Figure 6-5. PSR Fields for Graphics Operations

6-29

FLOATING-POINT INSTRUCTIONS

Consider PM as an array of eight bits PM(0) .. PM(7),
where PM(O) is the least-significant bit.

fzchks fsrc1, fsrc2, fdest (16-Blt Z-Buffer Check)

Consider fsrc1, fsrc2, and fdest as arrays of four 16-bit
fields fsrc1(0) .. fsrc1(3), fsrc2(0) .. fsrc2(3), and fdest(O) .. fdest(3)
where zero denotes the least-significant field.

PM ~ PM shifted right by 4 bits
FOR i = 0 to 3
DO

PM [i + 4] ~ fsrc2(i) =:; fsrc1 (i) (unsigned)
fdest(i) ~ smaller of fsrc2(i) and fsrc1 (i)

00
MERGE ~ 0

pfzchks fsrc1, fsrc2, fdest (Plpelined 16-Blt Z-Buffer Check)

Consider fsrc1, fsrc2, and fdest as arrays of four 16-bit
fields fsrc1 (0) .. fsrc1(3) , fsrc2 (0) .. fsrc2(3) , and fdest(0) .. fdest(3)
where zero denotes the least-significant field.

PM ~ PM shifted right by 4 bits
FOR i = 0 to 3
DO

PM [i + 4] ~ fsrc2(i) =:; fsrc1 (i) (unsigned)
fdest ~ last stage graphics result
last stage graphics result (i) ~ smaller of fsrc2(i) and fsrc1 (i)

00
MERGE ~ 0

fzchkl fsrc1, fsrc2, fdest (32-Blt Z-Buffer Check)

Consider fsrc1, fsrc2, and fdest as arrays of two 32-bit
fields fsrc1(0) .. fsrc1(1). fsrc2(0) .. fsrc2(1), and fdest(0) .. fdest(1)
where zero denotes the least-significant field.

PM ~ PM shifted right by 2 bits
FOR i = 0 to 1
DO

PM [i + 6] ~ fsrc2(i) =:; fsrc1 (i) (unsigned)
fdest(i) ~ smaller of fsrc2(i) and fsrc1 (i)

00
MERGE ~ 0

pfzchkl fsrc1, tsrc2, tdest (Pipeiined 32-Bit Z-Buffer Check)

Consider fsrc1, fsrc2, and fdest as arrays of two 32-bit
fields fsrc1(0) .. fsrc1(1), fsrc2(0) .. fsrc2(1), and fdest(0) .. fdest(1)
where zero denotes the least-significant field.

PM ~ PM shifted right by 2 bits
FOR i = 0 to 1
DO

PM [i + 6] ~ fsrc2(i) =:; fsrc1 (i) (unsigned)
fdest(i) ~ last stage graphics result
last stage graphics result ~ smaller of fsrc2(i) and fsrc1 (i)

00
MERGE ~ 0

The instructions fzchks and fzchkl perform mUltiple unsigned-integer (ordinal) compar­
isons. The inputs to the instructions fzchks and fzchkl are normally taken from two
arrays of values, each of which typically represents the distance of a point from the

6-30

FLOATING-POINT INSTRUCTIONS

viewer. One array contains distances that correspond to points that are to be drawn; the
other contains distances that correspond to points that have already been drawn (a
Z-buffer). The instructions compare the distances of the points to be drawn against the
values in the Z-buffer and set bits of PM to indicate which distances are smaller than
those in the Z-buffer. Previously calculated bits in PM are shifted right so that consecu­
tive fzchks or fzchkl instructions accumulate their results in PM. Subsequent pst.d
instructions use the bits of PM to determine which pixels to update.

6-31

FLOATING-POINT INSTRUCTIONS

6.6.2.2 PIXEL ADD

faddp fsrc1, fsrc2, fdest (Add with Pixel Merge)

fdest ic- fsrc1 + fsrc2
Shift and load MERGE register from fsrc1 + fsrc2 as defined in Table 6-3

pfaddp fsrc1, fsrc2, fdest (Plpelined Add with Pixel Merge)

fdest ~ last stage graphics result
last stage graphics result ~ fsrc1 + fsrc2
Shift and load MERGE register from fsrc1 + fsrc2 as defined in Table 6-3

The faddp instruction implements interpolation of color intensities. The 8- and 16-bit
pixel formats use 16-bit intensity interpolation. Being a 64-bit instruction, faddp does
four 16-bit interpolations at a time. The 32-bit pixel formats use 32-bit intensity interpo­
lation; consequently, faddp performs them two at a time. By itself faddp implements
linear interpolation; combined with fiadd, nonlinear interpolation can be achieved.

Table 6-3. FADDP MERGE Update

Pixel Size (from PS)
Fields Loaded From

Right Shift Amount (Field Size)
Result into MERGE

8 63 .. 56, 47 .. 40, 31 .. 24, 15 .. 8 8
16 63 .. 58, 47 .. 42, 31 .. 26, 15 .. 10 6
32 63 .. 56, 31 .. 24 8

6-32

FLOATING-POINT INSTRUCTIONS

Figure 6-6 illustrates faddp when PS is set for 8-bit pixels. Since faddp adds 16-bit values
in this case, each value can be treated as a fixed-point real number with an 8-bit integer
portion and an 8-bit fractional portion. The real numbers are rounded to 8 bits by
truncation when they are loaded into the MERGE register. With each faddp instruction,
the MERGE register is shifted right by 8 bits. Two faddp instructions should be executed
consecutively, one to interpolate for even-numbered pixels, the next to interpolate for
odd-numbered pixels. The shifting of the MERGE register has the effect of merging the
results of the two faddp instructions.

63 47 31 15 o

fsrc1

I I I i INT I FRAC INT I FRAC INT I FRAC INT FRAC
I I I I
I I I I

++++++ ++++++ ++++++ ++++++
63 47 31 15 o

INT FRAC INT FRAC INT FRAC INT FRAC fsrc2

INT FRAC INT FRAC INT FRAC INT FRAC fdest

o

MERGE

240329i

Figure 6-6. FADDP with a-Bit Pixels

6-33

FLOATING·POINT INSTRUCTIONS

Figure 6-7 illustrates faddp when PS is set for 16-bit pixels. Since faddp adds 16-bit
values in this case, each value can be treated as a fixed-point real number with a 6-bit
integer portion and a IO-bit fractional portion. The real numbers are rounded to 6 bits
by truncation when they are loaded into the MERGE register. With each faddp, the
MERGE register is shifted right by 6 bits. Normally, three faddp instructions are exe­
cuted consecutively, one for each color represented in a pixel. The shifting of MERGE
causes the results of consecutive faddp instructions to be accumulated in the MERGE
register. Note that each one of the first set of 6-bit values loaded into MERGE is further
truncated to 4-bits when it is shifted to the extreme right of the 16-bit pixel.

63

I

tNT I
I

FRAC

I

++++++
63

tNT I
I FRAC

47

I

tNT I
I

FRAC

I

++++++
47

tNT I
I FRAC

31

I

tNT I
I

FRAC

I

++++++
31

tNT I
I FRAC

15

I

tNT I
I

FRAC

1

++++++
15

tNT I
I FRAC

Figure 6·7. FADDP with 16·Bit Pixels

6-34

o

fsrc1

o

fsrc2

fdest

MERGE

240329i

FLOATING-POINT INSTRUCTIONS

Figure 6-8 illustrates faddp when PS is set for 32-bit pixels. Since faddp adds 32-bit
values in this case, each value can be treated as a fixed-point real number with an 8-bit
integer portion and an 24-bit fractional portion. The real numbers are rounded to 8 bits
by truncation when they are loaded into the MERGE register. With each faddp, the '
MERGE register is shifted right by 8 bits. Normally, three faddp instructions are exe­
cuted consecutively, one for each color represented in a pixel. The shifting of MERGE
causes the results of consecutive faddp instructions to be accumulated in the MERGE
register.

63 47 31 15 0

INT FRACTION INT FRACTION I brc1

++++++ ++++++ ++++++ ++++++
63 47 31 15 0

INT FRACTION INT FRACTION fsrc2

o

INT FRACTION INT FRACTION fdest

o

MERGE

240329i

Figure 6-8. FADDP with 32-Bit Pixels

6-35

FLOATING-POINT INSTRUCTIONS

6.6.2.3 Z-BUFFER ADD

faddz fsre 1, fsre2, fdest (Add with Z Merge)

fdest «- fsre1 + fsre2
Shift MERGE right 16 and load fields 31 .. 16 and 63 . .48 from fsre1 + fsre2

pfaddz fsre1, fsre2, fdest (Pipelined Add with Z Merge)

fdest «- last stage graphics result
last stage graphics result «- fsre1 + fsre2
Shift MERGE right 16 and load fields 31 .. 16 and 63 .. 48 from fsre1 + fsre2

The faddz instruction implements linear interpolation of distance values such as those
that form a Z-buffer. With faddz, 16-bit Z-buffers can use 32-bit distance interpolation,
as Figure 6-9 illustrates. Since faddz adds 32-bit values, each value can be treated as a
fixed-point real number with an 16-bit integer portion and a 16-bit fractional portion.
The real numbers are rounded to 16 bits by truncation when they are loaded into the
MERGE register. With each faddz, the MERGE register is shifted right by 16 bits.

63 47 31 15 0

• •
INTEGER I FRACTION INTEGER I FRACTION fsrc1 I I

I I

++++++ ++++++ ++++++ ++++++
63 47 31 15 0

INTEGER FRACTION INTEGER FRACTION fsrc2

o

INTEGER FRACTION INTEGER FRACTION fdest

63 31 o

MERGE

240329i

Figure 6-9. FADDZ with 16-Bit Z-Buffer

6-36

FLOATING-POINT INSTRUCTIONS

Normally, two faddz instructions are executed consecutively. The shifting of MERGE
causes the results of consecutive faddz instructions to be accumulated in the MERGE
register.

32-bit Z-buffers can use 32-bit or 64-bit distance interpolation. For 32-bit interpolation,
no special instructions are required. Two 32-bit adds can be performed as an 64-bit add
instruction. The fact that data is carried from the low-order 32-bits into the high-order
32-bits may introduce an insignificant distortion into the interpolation.

For 32-bit Z-buffers, 64-bit distance interpolation is implemented (as Figure 6-10 shows)
with two 64-bit fiadd instructions. The merging is implemented with the 32-bit move
fmov.ss fsrcl, fdest.

63 31 0 63 31 0

I INTEGER FRACTION I I INTEGER ! FRACTION

++++++ fladd.dd ++++++ ++++++ fladd.dd ++++++
63 0 63 0

I~EGER FRACTION INTEGER FRACTION

o o

INTEGER FRACTION INTEGER FRACTION

63 o

INTEGER INTEGER

240329i

Figure 6-10. 64-Bit Distance Interpolation

6-37

FLOATING-POINT INSTRUCTIONS

6.6.2.4 OR WITH MERGE REGISTER

form.dd fsrc1, fdest

fdest ~ fsrc1 OR MERGE
MERGE ~ 0

pform.dd fsrc1, fdest

fdest ~ last stage graphics result
last stage graphics result ~ fsrc1 OR MERGE
MERGE ~ 0

(OR with MERGE Register)

(Plpelined OR with MERGE Register)

For intensity interpolation, the form instruction fetches the partially completed pixels
from the MERGE register, sets any additional bits that may be needed in the pixels (e.g.
texture values), and loads the result into a floating-point register. Fsrcl (when a register)
and fdest are floating-point register pairs; the fsrc2 field of the instruction should contain
zero.

For distance interpolation or for intensity interpolation that does not require further
modification of the value in the MERGE register, the fsrcl operand of form may be fO,
thereby causing the instruction to simply load the MERGE register into a floating-point
register.

6-38

FLOATING-POINT INSTRUCTIONS

6.7 TRANSFER F-P TO INTEGER REGISTER

fxfr fsrc 1, idest

idest ~ fsrc1

(Transfer F-P to Integer Register)

The 32-bit floating-point register selected by fsrcl is stored into the (32-bit) integer
register selected by idest. Assemblers and compilers should encode fsrc2 as fO.

Programming Notes

This scalar instruction is performed by the graphics unit. When it is executed, the result
in the graphics-unit pipeline is lost. However, executing this instruction does not impact
performance, even if the next instruction is a pipelined operation whose fdest is nonzero
(refer to Section 6.2).

For best performance, idest should not be referenced in the next instruction, and fsrcl
should not reference the result of the prior instruction if the prior instruction is scalar.

6-39

FLOATING-POINT INSTRUCTIONS

6.8 DUAL-INSTRUCTION MODE

The i860 microprocessor can execute a floating-point and a core instruction in parallel.
Such parallel execution is called dual-instruction mode. When executing in dual­
instruction mode, the instruction sequence consists of 64-bit aligned instructions with a
floating-point instruction in the lower 32 bits and a core instruction in the upper 32 bits.

Programmers specify dual-instruction mode either by including in the mnemonic of a
floating-point instruction a d. prefix or by using the Assembler directives .dual '" .end­
dual. Both of the specifications cause the D-bit of floating-point instructions to be set. If
the i860 microprocessor is executing in single-instruction mode and encounters a
floating-point instruction with the D-bit set, one more 32-bit instruction is executed
before dual-mode execution begins. If the i860 microprocessor is executing in dual­
instruction mode and a floating-point instruction is encountered with a clear D-bit, then
one more pair of instructions is executed before resuming single-instruction mode.
Figure 6-11 illustrates two variations of this sequence of events: one for extended
sequences of dual-instructions and one for a single instruction pair.

When a 64-bit dual-instruction pair sequentially follows a delayed branch instruction in
dual-instruction mode, both 32-bit instructions are executed.

63

31

op

d. fp-op

d. fp-op or core-op

cgr~~ d. fp-op

core-op fp-op

core-op fp-op

op

op

o

Enter Dual Instruction Mode.

Initiate Exit from
Dual-Instruction Mode.

1
.Leave Dual-Instruction Mode.

1
240329i

Figure 6-11. Dual-Instruction ModeTransitions (1 of 2)

6-40

63

I co re-o p

FLOATING-POINT INSTRUCTIONS

31

op

d. fp-op

.poop

.p-op

op

op

o

Temporary
Dual-Instruction Mode.

I
Figure 6-11. Dual-Instruction Mode Transitions (2 of 2)

240329i

The recommended floating-point NOP for dual-instruction mode is shrd rO,rO,rO, be­
cause this instruction does not affect the states of the floating-point pipelines. Even
though this is a core instruction, bit 9 is interpreted as the dual-instruction mode control
bit. In assembly language, this instruction is specified as fnop or d.fnop. Traps are not
reported on fnop. Because it is a core instruction, d.fnop cannot be used to initiate entry
into dual-instruction mode.

6.8.1 Core and Floating-Point Instruction Interaction

1. If one of the branch-an-condition instructions bc or bnc is paired with a floating­
point compare, the branch tests the value of the condition code prior to the
compare.

2. If an ixfr, fld, or pfld loads the same register as a source operand in the floating­
point instruction, the floating-point instruction references the register value before
the load updates it.

3. An fst or pst that stores a register that is the destination register of the companion
pipelined floating-point operation will store the result of the companion operation.

6-41

FLOATING-POINT INSTRUCTIONS

4. An fxfr instruction that transfers to a register referenced by the companion core
instruction will update the register after the core instruction accesses the register.
The destination of the core instruction will not be updated if it is an integer register.
Likewise, if the core instruction uses auto increment indexing, the index register will
not be updated.

5. When the core instruction sets CC and the floating-point instruction is pfgt, pfle or
pfeq, CC is set according to the result of the pfgt, pfle or pfeq.

6.8.2 Dual-Instruction Mode Restrictions

1. The result of placing a core instruction in the low-order 32 bits or a floating-point
instruction in the high-order 32 bits is not defined (except for shrd rO, rO, rO which is
interpreted as fnop).

2. A floating-point instruction that has the D-bit set must be aligned on a 64-bit bound­
ary (i.e. the three least-significant bits of its address must be zero). This applies as
well to the initial 32-bit floating-point instruction that triggers the transition into
dual-instruction mode, but does not apply to the following instruction.

3. When the floating-point operation is scalar and the core operation is fst or pst, the
store should not reference the result register of the floating-point operation. When
the core operation is pst, the floating-point instruction cannot be (p}fzchks or
(p}fzchkl.

4. When the core instruction of a dual-mode pair is a control-transfer operation and
the previous instruction had the D-bit set, the floating-point instruction must also
have the D-bit set. In other words, an exit from dual-instruction mode cannot be
initiated (first instruction pair without D-bit set) when the core instruction is a
control-transfer instruction.

5. When the core operation is a Id.c or st.c, the floating-point operation must be
d.fnop.

6. When the floating-point operation is fxfr, the core instruction cannot be Id, Id.c, st,
st.c, call, calli, ixfr, or any instruction that updates an integer register (including
autoincrement indexing). Furthermore, the core instruction cannot be a fld, fst, pst,
or pfld that uses as isrcl or isrc2 the same register as the idest of the fxfr.

7. A bri must not be executed in dual-instruction mode if any trap bits are set.

8. When the core operation is bc.t or bnc.t, the floating point operation cannot be
pfeq, pfle or pfgt. The floating point operation in the sequentially following instruc­
tion pair cannot be pfeq, pfle or pfgt, either.

9. A transition to or from dual-instruction mode cannot be initiated on the instruction
following a brio

6-42

FLOATING-POINT INSTRUCTIONS

10. An ixfr, fld, or pfld cannot update the same register as the companion floating-point
instruction unless the destination is fO or f1. No overlap of register destinations is
permitted; for example, the following instructions must not be paired:

d.fmul.ss f9, fl~, f5
fld.q f4

11. In ':llocked sequence, a transition to or from dual-instruction mode is not permitted.

6-43

Traps and Interrupts 7

CHAPTER 7
TRAPS AND INTERRUPTS

Traps are caused by exceptional conditions detected in programs or by external inter­
rupts. Traps cause interruption of normal program flow to execute a special program
known as a trap handler.

7.1 TYPES OF TRAPS

Traps are divided into the types shown in Table 7-1.

7.2 TRAP HANDLER INVOCATION

This section applies to traps other than reset. When a trap occurs, execution of the
current instruction is aborted. The instruction is restartable as described in Section 7.2.3.
The processor takes the following steps while transferring control to the trap handler:

1. Copies U (user mode) of the psr into PU (previous U).

2. Copies 1M (interrupt mode) into PIM (previous 1M).

3. Sets U to zero (supervisor mode).

Table 7-1. Types of Traps

Indication Caused by
Type

psr, epsr fsr Condition Instruction

Instruction IT OF Software traps trap, intovr
Fault IL Missing unlock Any

SE Floating-point source exception Any M- or A-unit except fmlow
Floating Floating-point result exception Any M- or A-unit except fmlow, pfgt,
Point FT AO,MO overflow pfle, and pfeq. Reported on any
Fault AU,MU underflow F-Pinstruction plus pst, fst, and

AI, MI inexact result sometimes fld, pfld, ixfr

Instruction IAT Address translation exception Any
Access Fault during instruction fetch

Load/store address translation Any load/store

Data Access exception

Fault DAT* Misaligned operand address Any load/store
Operand address matches Any load/store
db register

Interrupt IN External interrupt

Reset No trap bits set Hardware RESET signal

* These cases can be distinguished by examining the operand addresses.

7-1

TRAPS AND INTERRUPTS

4. Sets 1M to zero (interrupts disabled). This guards against further interrupts until the
trap information can be saved.

5. If the processor is in dual instruction mode, it sets DIM; otherwise DIM is cleared.

6. If the processor is in single-instruction mode and the next instruction will be exe­
cuted in dual-instruction mode or if the processor is in dual-instruction mode and
the next instruction will be executed in single-instruction mode, DS is set; otherwise,
it is cleared.

7. The appropriate trap type bits in psr and epsr are set (IT, IN, IAT, DAT, FT, IL).
Several bits may be set if the corresponding trap conditions occur simultaneously.

8. An address is placed in the fault instruction register (fir) to help locate the trapped
instruction. In single-instruction mode, the address in fir is the address of the
trapped instruction itself. In dual-instruction mode, the address in fir is that of the
floating-point half of the dual instruction. If an instruction- or data-access fault
occurred, the associated core instruction is the high-order half of the dual instruc­
tion (fir + 4). In dual-instruction mode, when a data-access fault occurs in the
absence of other trap conditions, the floating-point half of the dual instruction will
already have been executed.

9. Clears the BL bit of dirbase and deasserts LOCK#.

The processor begins executing the trap handler by transferring execution to virtual
address OxFFFFFFOO. The trap handler begins execution in single-instruction mode. The
trap handler must examine the trap-type bits in psr (IT, IN, IAT, DAT, FT) and epsr
(IL, OF) to determine the cause or causes of the trap.

7.2.1 Saving State

To support nesting of traps, the trap handler must save the current state before another
trap occurs. An interrupt stack can be implemented in software (refer to the section on
stack implementation in Chapter 8). Interrupts can then be reenabled by clearing the
trap-type bits and setting 1M to the value of PIM. Further, the trap handler must ensure
that no trap may occur once the restoration of the initial state (described in Section
7.2.3) has begun prior to returning from the trap handler. The branch-indirect instruc­
tion is sensitive to the trap-type bits; therefore, clearing the trap-type bits allows normal
indirect branches to be performed within the trap handler.

The items that make up the current state may include any of the following:

1. The fir.

2. The psr.

3. The epsr.

7-2

TRAPS AND INTERRUPTS

4. The fsr.

5. The dirbase register.

6. The MERGE register.

7. The KR, Kl, and T registers.

8. Any of the four pipeJines (refer to Section 7.9).

9. The floating-point and integer register files.

7.2.2 Inside the Trap Handler

While most activities of trap handlers are application dependent (and, therefore, are
beyond the scope of this manual), programmers should be aware of the following
requirements that are imposed by the i860 microprocessor architecture:

1. For all types of traps, the trap handler must check the IL bit of epsr to determine if
a locked sequence is being interrupted.

2. The trap handler must execute Id.e fir, isrcl once for each trap. Failure to do so
prevents fir from receiving the address of the next trap.

7.2.3 Returning from the Trap Handler

Returning from a trap handler involves the following steps:

1. Restoring the pipeline states, including the fsr, KR, Kl, T, and MERGE registers,
where necessary.

2. Subtracting srcl from src2, when a data-access fault occurred on an auto increment­
ing load/store instruction and a floating-point trap did not also occur.

3. Determining where to resume execution by inspecting the instruction at fir - 4. The
details for this determination are given in Section 7.2.3.1.

4. Restoring the integer and floating-point register 'files (except for the register that
holds the resumption address).

5. Updating psr with the value to be used after return. It may be necessary to set the
KNF bit in psr. The requirements for KNF are given in Section 7.2.3.2. The trap
handler must ensure that no trap occurs between the st.e to the psr and the indirect
branch that exits the trap handler.

7-3

TRAPS AND INTERRUPTS

6. Executing an indirect branch to the resumption address, making sure that at least
one of the trap bits is set in the psr. Neither the indirect branch nor the following
instruction may be executed in dual-instruction mode.

7. Restoring the register that holds the resumption address. (This is executed before
the delayed indirect branch is completed.)

7.2.3.1 DETERMINING WHERE TO RESUME

To determine where to resume execution upon leaving the trap handler, examine the
instruction at address fir - 4. If this instruction is not a delayed control instruction, then
execution resumes at the address in fir.

If, on the other hand, the instruction at fir - 4 is a delayed control instruction (i.e. one
that executes the next sequential instruction on branch taken), the normal action is to
resume at fir - 4 so that the control instruction (which did not finish because of the
trap) is also reexecuted. If the instruction at fir - 4 is a bla instruction, then srcl should
be subtracted from src2 before reexecuting.

The one variance from this strategy occurs when the instruction at fir - 4 is a condi­
tional delayed branch (be.t or bne.t), the instruction at fir is a pfgt, pfle, or pfeq, and a
source exception has occurred. To implement the IEEE standard for unordered com­
pares, the trap handler may need to change the value of CC. In this case it cannot
resume at fir :- 4, because the new value of CC might cause an incorrect branch.
Instead, the trap handler must interpret the conditional branch instruction and resume
at its target.

When examining fir - 4, take care not to cause a page fault. If the location in fir is at the
beginning of a page, then fir - 4 is in the prior page. If the prior page is not present,
then examining fir - 4 will cause a page fault. In this case, however, the instruction at fir
- 4 could not have been a delayed control instruction; therefore it is not necessary to
examine fir - 4. Note that, when determining whether the prior page is not present, it is
necessary to inspect both the page table and its page directory entry.

If the i860 microprocessor was in dual-instruction mode and execution is to resume at fir
- 4, DS should be set and DIM cleared in the psr. Clearing DIM prevents the floating­
point instruction associated with the control instruction from being reexecuted. Setting
DS forces the processor back to dual-instruction mode after executing the control
instruction.

Every code section should begin with a nop instruction so that fir - 4 is defined even in
case a trap occurs on the first real instruction of the code section. Furthermore, this nop
should not be the target of any branch or call.

7-4

TRAPS AND INTERRUPTS

7.2.3.2 SETTING KNF

The KNF bit of psr should be set if the trapped instruction is a floating-point instruction
that should not be reexecuted; otherwise, KNF is left unchanged. Floating-point instruc­
tions should not be reexecuted under the following conditions:

• The trap was caused in dual-instruction mode by a data-access fault or an intovr
instruction and there are no other trap conditions. In this case, the floating-point
instruction has already been executed.

• The trap was caused by a source exception on any floating-point instruction (except
when a pfgt, pfle, or pfeq follows a conditional branch, as already explained in
Section 7.2.3.1). The trap handler determines the result that corresponds to the
exceptional inputs; therefore, the instruction should not be reexecuted.

7.3 INSTRUCTION FAULT

This fault is caused by any of the following conditions. In all cases the processor sets the
IT bit before entering the trap handler.

1. By the trap instruction. Refer to the trap instruction in Chapter 5.

2. By the intovr instruction. The trap occurs only if OF in epsr is set when intovr is
executed. The trap handler should clear OF before returning. Refer to the intovr
instruction in Chapter 5.

3. By the lack of an unlock instruction (and subsequent load or store) within 30-33
instructions of a lock. In this case IL is also set. When the trap handler finds IL set,
it should scan backwards for the lock instruction and restart at that point. The
absence of a lock instruction within 30-33 instructions of the trap indicates a pro­
gramming error. Refer to the lock instruction in Chapter 5.

Note that trap and intovr should not be used within a locked sequence; otherwise, it
would not be possible to distinguish among the above cases.

7.4 FLOATING-POINT FAULT

The floating-point faults of the i860 microprocessor support the floating-point excep­
tions defined by the IEEE standard as well as some other useful classes of exceptions.
The i860 microprocessor divides these into two classes:

1. Source exceptions. This class includes:

• All the invalid operations defined by the IEEE standard (including operations on
signaling NaNs).

• Division by zero.

• Operations on quiet NaNs, denormals and infinities. (These data types are imple­
mented by software.)

7-5

TRAPS AND INTERRUPTS

2. Result exceptions. This class includes the overflow, underflow, and inexact excep­
tions defined by the IEEE standard.

Software available from Intel provides the IEEE standard default handling for all these
exceptions.

The floating-point fault occurs only on floating-point instructions, and on pst, fst, fld,
pfld, and ixfr. No floating-point fault occurs when pst, fst, fld, pfld, or ixfr transfers an
operand that is not a valid floating-point value.

7.4.1 Source Exception Faults

When used as inputs to the floating-point adder or multiplier, all exceptional operands
(including infinities, denormalized numbers and NaNs) cause a floating-point fault and
set SE in the fsr. Source exceptions are reported on the instruction that initiates the
operation. For pipelined operations, the pipeline is not advanced. The trap handler can
reference both source operands and the operation by decoding the instruction specified
by fir.

In the case of dual operations, the trap handler has to determine which special registers
the source operands are stored in and inspect all four source operands to see if one or
both operations need to be fixed up. It can then compute the appropriate result and
store the result in [des!, in the case of a scalar operation, or replace the appropriate
first-stage result, in the case of a pipe lined operation.

Note that, in the following sequence, inappropriate use of the FTE bit of the fsr can
produce an invalid operand that does not cause a source exception:

1. Floating-point traps are masked by clearing the FTE bit.

2. An dual-operation instruction causes underflow or overflow leaving an invalid result
in the T register.

3. Floating-point traps are enabled by setting the FTE bit.

4. The invalid result in the T register is used as an operand of a subsequent instruction.

Even though the result of an operation would normally cause a source exception, it can
be inserted into the pipeline as follows:

1. Disable traps by clearing FTE.

2. Perform a pipelined add of the value with zero or a multiply by one.

3. Set the result-status bits of fsr to "normal" by loading fsr with the U-bit set and
zeros in the appropriate unit's result-status bits. The other unit's status must be set
to the saved status for the first pipeline stage.

7-6

TRAPS AND INTERRUPTS

4. Reenable traps by setting FTE.

5. Set KNF in the psr to avoid reexecuting the instruction.

The trap handler should ignore the SE bit for faults on tid, ptld, tst, pst, and ixtr instruc­
tions when in single-instruction mode or when in dual-instruction mode and the compan­
ion instruction is not a multiplier or adder operation. The SE value is undefined in this
case.

The trap handler should process result exceptions as described below and reexecute the
instruction before processing source exceptions.

7.4.2 Result Exception Faults

The class of result exceptions includes any of the following conditions:

• Overflow. The absolute value of the rounded true result would exceed the largest
finite number in the destination format.

• Underflow (when FZ is clear). The absolute value of the rounded true result would
be smaller than the smallest finite number in the destination format.

• Inexact result (when TI is set). The result is not exactly representable in the destina­
tion format. For example, the fraction 1/3 cannot be precisely represented in binary
form. This exception occurs frequently and indicates that some (generally acceptable)
accuracy has been lost.

The point at which a result exception is reported depends upon whether pipelined
operations are being used:

• Scalar (nonpipelined) operations. Result exceptions are reported on the next
floating-point, tst.x, or pst.x (and sometimes tid, ptld, ixtr) instruction after the scalar
operation. The instructions tid, ptld and ixtr report result exceptions when the Idest of
these instructions overlap the Idest of the instruction that caused the exception. When
a trap occurs, the last stage of the affected unit contains the result of the scalar
operation. The result is also written to the register indicated by the RR field of
the psr.

• Pipelined operations. Result exceptions are reported when the result is in the last
stage and the next floating-point, tst.x or pst.x (and sometimes tid, ptld, ixtr) instruc­
tion is executed. The instructions tid, ptld and ixtr report result exceptions when the
Idest of these instructions overlap the Idest of the instruction that caused the excep­
tion. When a trap occurs, the pipeline is not advanced, and the last stage results (that
caused the trap) remain unchanged.

When no trap occurs (either because FTE is clear or because no exception occurred),
the pipeline is advanced normally by the new floating-point operation. The result-status
bits of the affected unit are undefined until the point that result exceptions are reported.

7-7

TRAPS AND INTERRUPTS

At this point, the last stage result-status bits (bits 29 .. 22 and 16 .. 9 of the fsr) reflect the
values in the last stages of both the adder and multiplier. For example, if the last stage
result in the multiplier has overflowed and a pfadd is started, a trap occurs and MO
is set.

For scalar operations, the RR bits of fsr specify the register in which the result was
stored. RR is updated when the scalar instruction is initiated. The trap, however, occurs
on a subsequent instruction. Programmers must prevent intervening stores to fsr from
modifying the RR bits. Prevention may take one of the following forms:

• Before any store to fsr when a result exception may be pending, execute a dummy
floating-point operation to trigger the result-exception trap.

• Always read from fsr before storing to it, and mask updates so that the RR, RM, and
FZ bits are not changed.

For pipelined operations, RR is cleared; the result is in the pipeline of the appropriate
unit.

In either case, the result has the same mantissa as the true result and has an exponent
which is the low-order bits of the true result. The trap handler can inspect the result,
compute the result appropriate for that instruction (a NaN or an infinity, for example),
and store the correct result. The result is either stored in the register specified by RR (if
nonzero) or in the last stage of the pipeline (if RR = 0). The trap handler must clear
the result status for the last stage, then reexecute the trapping instruction.

Result exceptions may be reported for both the adder and multiplier units at the same
time. In this case, the trap handler should fix up the last stage of both pipelines.

7.5 INSTRUCTION-ACCESS FAULT

This trap results from a page-not-present exception during instruction fetch or an
attempt to access a supervisor-level page while in user mode. Protection checking for
instruction accesses occurs only during instruction fetches from external memory (i.e.,
I-cache miss).

7.6 DATA-ACCESS FAULT

This trap results from an abnormal condition detected during data operand fetch or
store. Such an exception can be due only to one of the following causes:

• An attempt is being made to write to a page whose D-bit is clear.

• A memory operand is misaligned (is not located at an address that is a multiple of the
length of the data).

• The address stored in the db (data breakpoint) register is equal to one of the ad­
dresses spanned by the operand.

• The operand is in a not-present page.

7-8

TRAPS AND INTERRUPTS

• A memory access is being attempted in violation of the memory protection scheme
defined in Chapter 4.

• A-bit is zero during address translation within a locked sequence.

7.7 INTERRUPT TRAP

An interrupt is an event that is signaled from an external source. If the processor is
executing with interrupts enabled (IM set in the psr), the processor sets the interrupt bit
IN in the psr, and generates an interrupt trap. Vectored interrupts are implemented by
interrupt controllers and software.

7.8 RESET TRAP

When the i860 microprocessor is reset, execution begins in single-instruction mode at
address OxFFFFFFOO. This is the same address as for other traps. The reset trap can be
distinguished from other traps by the fact that no trap bits are set. The instruction cache
is flushed. The bits DPS, BL, and ATE in dirbase are cleared. CS8 is initialized by the
value at the INT pin just before the end of RESET. The read-only fields of the epsr are
set to identify the processor, while the IL, WP, PBM, and BE bits are cleared. The bits
U, 1M, BR, and BW in psr are cleared. All other bits of psr and all other register
contents are undefined. Refer to Table 7-2 for a summary of these initial settings.

The software must ensure that the data cache is flushed (refer to Chapter 4) and control
registers are properly initialized before performing operations that depend on the values
of the cache or registers. The fir must be initialized with a Id.c fir, rO instruction.

Table 7-2. Register and Cache Values after Reset

Registers Initial Value

Integer Registers Undefined

Floating-Point Registers Undefined

psr U, 1M, BR, BW = 0; others = undefined

epsr Il, WP, PBM, BE = 0; Processor Type, Stepping
Number, DCS are read only; others are undefined

db Undefined

dirbase DPS, Bl, ATE = 0

fir Undefined

fsr Undefined

KR, KI, MERGE Undefined

Caches Initial Value

Instruction Cache Flushed

Data Cache Undefined. All modified bits = O.

TlB Flushed

7-9

TRAPS AND INTERRUPTS

Reset code must initialize the floating-point pipeline states to zero, using dummy pfadd,
pfmul, pfiadd instructions. Floating-point traps must be disabled to ensure that no
spurious floating-point traps are generated.

After a RESET the i860 microprocessor starts execution at supervisor level (U = 0).
Before branching to the first user-level instruction, the RESET trap handler or subse­
quent initialization code has to set PU and a trap bit so that an indirect branch instruc­
tion will copy PU to U, thereby changing to user level.

7.9 PIPELINE PREEMPTION

Each of the four pipelines (adder, multiplier, load, graphics) contains state information.
The pipeline state must be saved when a process is preempted or when a trap handler
performs pipelined operations using the same pipeline. The state must be restored when
resuming the interrupted code.

7.9.1 Floating-Point Pipelines

The floating-point pipeline state consists of the following items:

1. The current contents of the floating-point status register fsr (including the third­
stage result status).

2. Unstored results from the first, second, and third stages. The number of stages that
exist in the multiplier pipeline depends on the sizes of the operands that occupy the
pipeline. The MRP bit of fsr helps determine how many stages are in the multiplier
pipeline.

3. The result-status bits for the first two stages.

4. The contents of the KR, KI, and T registers.

7.9.2 Load Pipeline

The pipeline state for pfld instructions can be saved by performing three pfld instructions
to a dummy address. Thus the pipeline is advanced three stages, causing the last three
real operands to be stored from the pipeline into registers that are then saved in some
memory area. The size of each saved value is indicated by the value of the LRP bit of the
fsr. Note that the load pipeline must be saved before changing the BE bit.

The load pipeline can be restored performing three pfld instructions using the memory
addresses of the saved values. The pipeline will then contain the same three values it
held before the preemption.

7-10

TRAPS AND INTERRUPTS

7.9.3 Graphics Pipeline

The graphics pipeline has only one stage. To flush the pipeline, execute a pfiadd fO, fO,
Idest. The only other state information for the graphics unit resides in the PM bits of psr,
the IRP bit of the fsr, and in the MERGE register. Store the MERGE register with a
form instruction. Restore the MERGE register by using faddz instructions (see
Example 7-2).

7.9.4 Examples of Pipeline Preemption

Example 7-1 shows how to save the pipeline state.

Example 7-2 shows how to restore the pipeline state. Trap handlers manipulate the
result-status bits in the floating-point pipelines while preparing for pipeline resumption.
When storing to fsr with the U-bit set, the result-status bits are loadeq into the first stage
of the pipelines of the floating-point adder and multiplier. The updated result-status bits
of a particular unit (multiplier or adder) are propagated one stage for each pipelined
floating-point operation for that unit. When they reach the last stage, they override the
normal result-status bits computed from the last-stage result. The result-status bits in the
fsr always reflect the last-stage result status and cannot be directly set by software.

7-11

TRAPS AND INTERRUPTS

II The symbols Mres3, Ares3, Mres2, Ares2, Mres1, Ares1,
II Ires1, Lres, KR, KI, and T refer to 64-bit FP registers.
II The symbols Fsr3, Fsr2, Fsr1, Mergelo32, Mergehi32, and Temp
II refer to integer registers.
II The symbols Lres3m, Lres2m, and Lres1m refer to memory locations.
II The symbol Dummy represents an addressing mode that refers to some
II readable location that is always present (e.g. 0(r0».

II Save third,
fld.d
ld·c
andnot
st.c
pfmul.ss
pfadd.ss
pfld.d
fst.d
ld.c
pfmul.ss
pfadd.ss
pfld.d
fst.d
ld.c
pfmul.ss
pfadd.ss
pfld.d
fst.d
pfiadd.dd

II Save KR, KI,
andnot
or
st.c
r2apt.dd

i2p1.dd
pfmul.dd
pfmul.dd
pfadd.dd
pfadd.dd
form
fxfr
fxfr

second, and
DoubOne,
fsr, Fsr3

first stage
f4 II

II
Temp II

II
Mres3 II

0x20, Fsr3,
Temp, fsr
f0, f0,
f0, f0,
Dummy, Lres
Lres, Lres3m
fsr, Fsr2
f0, f0,
f0, f0,
Dummy, Lres
Lres, Lres2m
fsr, Fsr1
f0, f0,
f0, f0,
Dummy, Lres
Lres, Lres1m

Ares3 II
II
II
II

Mres2 II
Ares2 II

II
II
II

Mres1 II
Ares1 II

II

f0, f0, Ires1
II
II

T, and MERGE

results
get double-precision 1.0
save third stage result status
clear FTE bit
disable FP traps
save third stage M result
save third stage A result
save third stage pfld result
· .. in memory
save second stage
save second stage
save second stage
save second stage
· .• in memory
save first stage
save first stage
save first stage
save first stage
• .. in memory

result status
M result
A result
pfld result

result status
M result
A result
pfld result

save vector-integer result

0x2C, Fsr1, Temp II clear RM, clear FTE
4, Temp, Temp
Temp, fsr
f0, f4,

f4,
f0,
f0,
f0,
f0,

f0

f0
KR
KI
f0
T
f2

f0,
f0,
f0,
f0,
f0,
f0,
f2,
f3,

Mergelo32
Mergehi32

II set RM=01, round down, so -0
II is preserved when added to f0
II M first stage contains KR
II A first stage contains T
II M first stage contains KI
II save KR register
II save KI register
II adder third stage gets T
II save T-register
II save MERGE register

Example 7-1. Saving Pipeline States

7-12

TRAPS AND INTERRUPTS

II The symbols Mres3, Ares3, Mres2, Ares2, Mresl, Aresl,
II Iresl, KR, KI, and T refer to 64-bit FP registers.
II The symbols Fsr3, Fsr2, Fsrl, Mergel032, Mergehi32, and Temp
II refer to integer registers.
II The symbols Lres3m, Lres2m, and Lreslm refer to memory locations.

st. c rill, fsr
II Restore MERGE

shl
ixfr
shl
ixfr
ixfr
ixfr
faddz
faddz

II Restore KR,
fld.l
fld.d
pfmul.dd
r2pt.dd
i2apt.dd

II Restore 3rd

LIIl:

L1:

andh
bc.t
pfamov.ss
pfamov.dd
orh
andh
bc·t
pfld.l
pfld.d
andh
bc.t
pfmul.ss
pfmu13. dd

L2: or

andnot
st·c

16, Mergel032,
rl, f2
16, Mergehi32,
rl, f3
Mergel032,
Mergehi32,
fill, f2,
fill, f4,

KI, and T
SingOne,
DoubOne,
f4, T,
KR, fill,
KI, fill,

stage
III x2 III III III , Fsr3,
LIIl
Ares3, fill,
Ares3, fill,
ha%Lres3m, rill,
III x 4 III III , Fsr3,
L1
I%Lres3m (r31> ,
I%Lres3m (r31> ,
IIlxll1lllllll, Fsr3,
L2
Mres3,
Mres3,
IIlxll1l,

f2,
f4,
Fsr3,

III x 2 III , Temp,
Temp, fsr

I I clear FTE

rl II move low 16 bits to high 16

rl II move low 16 bits to high 16

f4
f5
fill II merge low 16s
fill II merge high 16s

f2 II get single-precision 1.1Il
f4 II get double-precision 1.1Il
fill 1/ put value of T in M 1st stage
fill 1/ load KR, advance t
fill // load KI and T

rill /1 test adder result precision ARP
1/ taken if it was single

fill // insert single result
fill 1/ insert double result
r31
rill // test load result precision LRP

// taken if it was single
fill // insert single result
fill // insert double result
rill 1/ test multiplier result precision MRP

// taken if it was single
fill // insert single result
fill // insert double result

Temp // set U (update) bit so that st.c
// will update status bits in pipeline

Temp // clear FTE bit so as not to cause traps
1/ update stage 3 result status

Example 7-2. Restoring Pipeline States (1 of 2)

7-13

TRAPS AND INTERRUPTS

II Restore 2nd stage
andh "x2""", Fsr2, r" II test adder result precision ARP
bc.t L3 II taken if it was single
pfamov.ss Ares2, f", f" II insert single result
pfamov.dd Ares2, f", f" II insert double result

L3: orh ha%Lres2m, r", r31
anah "x4"", Fsr2, r" II test load result precision LRP
bc.t L4 II taken if it was single
pfld.l 1%Lres2m (r31> , f" II insert single result
pf~d.d 1%Lres2m(r31> , f" II insert double result

L4: or "xl". Fsr2. Temp II set update bit
andnot "x2", Temp. Temp II clear FTE
andh hl""", Fsr2, r" II test multiplier result precision MRP
bc.t L5 II taken if it was single
pfmuJ.ss Mres2. f2. f" II insert single result
pfmu13.dd Mres2, f4. f" II insert double result

L5: st.c Temp, fsr II update stage 2 result status
1/ Restore 1st stage

andh "xl""". Fsrl, r" II test multiplier result precision MRP
bc.t Lb II skip next if double
pfmul.ss Mresl, f2. f" II insert single result
pfmu13.dd Mresl. f4, f" II insert double result

Lb: andh "x2""". Fsrl. r" II test adder result precision ARP
bc.t L7 II taken if it was single
pfamov.ss Aresl. f". f" II insert single result
pfamov.s:!d Aresl. f", f" II insert double result

L7: orh t· I:~ ha%Lreslm. r", r31
andh "x4"". Fsrl, r" II test load result precision LRP
bc.t L8 II taken if it was single
pfld.l 1%Lreslm(r31). f" II insert single result
pfld. d 1%Lreslm(r31> , f" II insert double result

L8: andh h8"", Fsrl. r" II test vector-integer result precision IRP
bc.t L9 II taken if it was single
pfiadd.ss f". Iresl, f" II insert single result
pfiadd.dd f". Iresl, f" II insert double result

L9: or "xl". Fsrl, Fsrl II set U (update) bit
st.c Fsri. fsr II update stage 1 result status
st.c Fsr3, fsr II restore nonpipelined FSR status

Example 7-2. Restoring Pipeline States (2 of 2)

7-14

Programming Model 8

CHAPTER 8
PROGRAMMING MODEL

This chapter defines standards for compiler and assembly language conventions of the
i860™ microprocessor. These standards must be followed to guarantee that compilers,
applications programs, and operating systems written by different people and organiza­
tions will work together.

8.1 REGISTER ASSIGNMENT

Table 8-1 defines the standard for register allocation. Figure 8-1 presents the same
information graphically.

NOTE

The dividing point between locals and parameters in the floating-point registers is
now set at 8. Earlier software used a dividing point at 16.

Table 8-1. Register Allocation

Register Purpose
Left Unchanged

by a Subroutine?

rO Always zero Yes
r1 Return address No
r2 Stack pointer Note 1
r3 Frame pointer Yes

r4-r15 Local values Yes
r16-r27 Parameters and temporaries No

r16 Return value No
r28 Memory parameter pointer No

r28-r30 Temporaries No
r31 Addressing temporary No

fO-f1 Always zero Yes
f2-f7 Local values Yes

f8-f15 Parameters and temporaries No
f8-f9 Return value No

f16-f31 Temporaries No

NOTE:
1. The stack pointer is normally kept unchanged across a subroutine call. However, some subroutines may

allocate stack space and return with a different value in r2.

8-1

31
INTEGER

ZERO
RETURN ADDRESS
STACK POINTER
FRAME POINTER

LOCALS

PARAMETERS

TEMPORARIES

-'-
ADDRESS TEMP.

o

PROGRAMMING MODEL

rO
rl
r2
r3
r4
r5
r6
r7
r8
r9
rl0
rll
r12
r13
r14
r15
r16
r17
r18
r19
r20
r21
r22
r23
r24
r25
r26
r27
r28
r29
r30
r31

63
FLOATING-POINT

ZERO
!

LOCALS

PARAA ETERS

TEMPORARIES

Figure 8-1. Register Allocation

8.1.1 Integer Registers

o
to
f2
f4
f6
f8
flO
f12
f14
f16
f18
f20
f22
f24
f26
f28
130

240329i

Up to 12 parameters can be passed in the integer registers. The first (leftmost) param­
eter is passed in r16 (if it is an integer), the rest in successively higher-numbered regis­
ters. If fewer parameters are required, the remaining registers can be used for temporary
variables. If more than 12 parameters are required, the overflow can be passed in mem­
ory on the stack.

Register r16 is both a parameter register and a return value register. If a subroutine has
an integral or pointer return value, it loads the return value into r16 before returning
control to the caller.

Register r1 is the required return-address register, because the call and calli instructions
use it to save the return address. Subroutines are therefore required to use the value in
r1 to return to the caller. If a subroutine saves r1, it may then use it as a temporary until
it returns.

8-2

PROGRAMMING MODEL

A separate addressing temporary register (r31) is allocated to allow construction of
32-bit address temporaries. Assemblers may use r31 by default to construct 32-bit
addresses from 16-bit literals.

If there are memory parameters, either because there are more parameters than will fit
in the registers or because there are structure parameters, they should be put in the
caller's stack frame properly aligned. Register r28 is set to point to this area in memory
by the caller.

8.1.2 Floating-Point Registers

Floating-point and 64-bit integer values in the floating-point registers must use f8-f15
when passed by value. The leftmost such parameter is passed in f8-f9; the rest in succes­
sively higher-numbered registers. Single-precision parameters use one register, double­
precision parameters use two properly aligned registers. A single-precision floating-point
value can be converted to double-precision with the fmov.sd jx, fy pseudoinstruction.

Parameters beyond f15 are passed in memory on the stack. The last (i.e. rightmost)
parameter is at the highest stack address (i.e is pushed first assuming a grow-down
stack). The same registers used to pass the first parameter are used for the return value
when the return value is a floating-point value or 64-bit integer. A subroutine may need
to save the first parameter to make room for the return value.

8.1.3 Passing Mixed Integer and Floating-Point Parameters in Registers

Integer and floating-point parameter registers are allocated independently. If parameter
N (N is less than or equal to 12) is an integral parameter, then it is placed in integer
register 16 + N, with no effect on the floating-point register usage. If parameter M is the
first floating-point parameter, then it is placed in the register pair fB and f9 if it is double
precision, or in register fB if it is single precision. If parameter M + 1 is the second
floating-point parameter, then it is placed in register pair flO and fl1 if it is double
precision, regardless of the type of the first floating-point parameter. If parameter M + 1
is single precision, then it is placed in register f9 if the first floating-point parameter is
single precision, or in register flO if the first floating-point parameter is double precision.

NOTE

The conventions in Sections B.1.1 through B.1.3 remain tentative.

8.1.4 Variable Length Parameter Lists

Parameter passing in registers can handle a variable number of parameters. The C pro­
gramming language uses a special method to access variable-count parameters. The
stdarg.h and varargs.h files define several functions to get at these parameters in a way
that is independent of stack growth direction and of whether parameters are passed in

8-3

PROGRAMMING MODEL

registers or on the stack. A subroutine with variable parameters must use the va_start
macro to set up a data structure before the parameters can be used. The va_arg macro
must be used to access the successive parameters. This method works with current C
standards.

8.2 DATA ALIGNMENT

Compilers and assemblers must do their best to keep data aligned. It is acceptable to
have holes in data structures to keep all items aligned. In some cases (e.g. FORTRAN
programs with overlaid data), it is necessary to have misaligned data. A run-time trap
handler can be provided to handle misaligned data; however, such data would impose a
performance penalty on the application. If a compiler must reference data that is known
to be misaligned, the compiler should generate separate instructions to access the data
in smaller units that will not generate misaligned-data traps. Accessing 16-bit misaligned
data requires two byte loads plus a shift. Storing a 32-bit misaligned data item may
require four byte stores and three shifts. The code example in Example 8-1 is the
recommended method for reading a misaligned 32-bit value whose address is in r8.

8.3 IMPLEMENTING A STACK

In general, compilers and programmers have to maintain a software stack. Register r2
(called sp in assembly language) is the suggested stack pointer. Register r2 is set by the
operating system for the application when the program is started. The stack must be a
grow-down stack, so as to be compatible with that of the Intel386™ architecture. If a
subroutine call requires placing parameters on the stack, then the caller is responsible
for adjusting the stack pointer upon return. The caller must also allocate space on the
stack for the overflow parameters (i.e. parameters that exceed the capacity of the regis­
ters reserved for passing parameters) and store them there directly for the call
operation.

and not 3, r8, r9 II Get address aligned on 4-byte boundary
ld.l o (r9) , r10 II Get low 32-bit value
ld.l 4 (r9) , rll II Get high 32-bit value
and 3, r8, r9 II Get byte offset in 8-byte field
shl 3, r9, r9 II Convert to bit offset
shr r9, r0, r0 II Set shift count
shrd rll, r10, r9 II Put 32-bit value into R9

II If the misalignment offset (m) is known in advance, this code can be
II optimized. Assume r8 points to next aligned address less than address
II of misaligned field.

ld.l 0(r8), r10
ld·l 4(r8), rll
shr m*8, r0,
shrd rll, r10,

II Get low value
II Get high value

r0 II Set shift count
r9 II Put 32-bit value into R9

Example 8-1. Reading Misaligned 32-Bit Value

8-4

PROGRAMMING MODEL

A separate frame pointer is used because C allows calls to subroutines that change the
stack pointer to allocate space on the stack at run-time (e.g. alJoca and va_start). Other
languages may also return values from a subroutine allocated on stack space below the
original top-of-stack pointer. Such a subroutine prevents the caller from using sp-relative
addressing to get at values on the stack. If the compiler knows that it does not call
subroutines that leave sp in an altered state when they return, then no frame pointer is
necessary.

The stack must be kept aligned on 16-byte boundaries to keep data arrays aligned. Each
subroutine must use stack space in multiples of 16 bytes. The frame pointer r3 (called fp
in assembly language) need not point to a 16-byte boundary, as long as the compiler
keeps data correctly aligned when assigning positions relative to fp.

Figure 8-2 shows the stack-frame format. A fixed format is necessary to allow some
minimal stack-frame analysis by a low-level debugger.

8.3.1 Stack Entry and Exit Code

Example 8-2 shows the recommended entry and exit code sequences. The stack pointer
is restored to the value it had on entry into the subroutine. Assuming the subroutine
needs to call another subroutine, it must save the frame pointer and its return address. It
probably also needs to save some of its internal values across that call to another sub­
routine; therefore, the example saves one local register into the stack frame and subse­
quently reloads it.

31 0

• • .. -----------------------1. ~old sp Direction i
of I I

Expansion • I

~--_1
RETURN POINTER

OLD FRAME POINTER

I------------------------t~currenf fp

PROGRAM­
SPECIFIC
DYNAMIC I

STORAGE I
~-----------------------t~ur~~sp

SP-STACK POINTER
FP-FRAME POINTER

Figure 8-2. Stack Frame Format

8-5

•
240329i

PROGRAMMING MODEL

II Subroutine entry
adds -CLocals+8) , sp, sp II Allocate stack space for local variables

II Locals+8 must be a multiple of 16
st.l fp, LocalsCsp) II Save old frame pointer below old SP
adds Locals, sp, fp II Set new frame pointer
st.l r1, 4Cfp) II Save return address
st.l r5, -4Cfp) II Save a local register

II Subroutine exit
ld -1 -4 C fp) , r5 II Restore a local register
mov fp, sp II Deallocate stack frame
ld -1 4 C fp) , r1 II Restore return add~ess
ld -1 0Cfp), fp II Restore old frame pointer
bri r1 II Return to caller after next instruction
adds 8, sp, sp II Deallocate frame pointer save area

Example 8-2. Subroutine Entry and Exit with Frame Pointer

II Subroutine entry
addu -Locals, sp, sp II Allocate stack space for local variables

II -Locals must be a multiple of 16

II Subroutine exit
bri r1 II Return to caller after next instruction
addu Locals, sp, sp II Restore stack pointer

Example 8-3. Subroutine Entry and Exit without Frame Pointer

Languages such as Pascal that need to maintain activation records on the stack can put
them below the frame pointer in the program-specific area. The frame pointer is
optional. All stack references can be made relative to sp. The code example in
Example 8-3 shows the recommended entry and exit sequences when no frame pointer is
required.

A lowest-level subroutine need not perform any stack accesses if it can run completely
from the temporary registers. No entry/exit code is required by a lowest-level subroutine.

8.3.2 Dynamic Memory Allocation on the Stack

Consider a function alloca that allocates space on the stack and returns a pointer to the
space. The allocated space is lost when the caller returns. The function alloca could be
implemented as shown in Example 8-4. For any function calling alloca a separate stack
pointer and frame pointer are required.

8.4 MEMORY ORGANIZATION

Figure 8-3 illustrates an overall memory layout. The i860 Linker needs to know by
default where to assign code and data inside a program. The output of the linker must
normally be executable without fixups. Code and data of both the application and

8-6

PROGRAMMING MODEL

alloca::
II r1b has size requested

adds 15, r1b, r1b II Round size to ~ mod 1b
andnot 15, r1b, r1b II
subs sp, r1b, sp II Adjust stack downwards
bri r1 II Return to caller after next instruction
mov sp, r1b II Set return value to allocated space

Example 8-4. Possible Implementation of alloca

OxFFFFFFFF
OPERATING SYSTEM CODE AREA

EMPTY

USER CODE AREA

OxF0400000
FIXED SUBROUTINE ENTRIES

OxFOOOOOOO
OPERATING SYSTEM DATA

SPECIAL SHARED MEMORY AREA
BETWEEN DIFFERENT TASKS

USER STACK SPACE

~UserSP

EMPTY

USER DYNAMIC HEAP

USER DATA

Ox00001000
OPERATING SYSTEM DATA AREA

OxOOOOOOOO

240329i

Figure 8-3. Example Memory Layout

8-7

PROGRAMMING MODEL

operating system share a single four-gigabyte address space. The illustrated memory map
assumes paging is being used to place DRAM-resident code in the upper 256 Mbytes of
the address space.

In this example, the first four Kbytes (first page) of the address space are reserved for
the operating system. It should be a supervisor-only page and should not be swappable.
Uninitialized external address references in user programs (which are equivalent to a
O(rO) assembly-language address expression) reference this first page and cause a trap.

The data space for the application begins at OxlOOO (second page). It is all readable and
writable. The total data address space available to the application should be over 3500
Mbytes. The user's data space has the following sections:

• A user-data portion whose size and content is defined by the program and develop­
ment tools.

• A section called the heap whose size is determined at run time and can change as the
program executes.

• A stack section.

The application's stack area starts at some address set by the OS and grows downward.
The starting address of the stack would normally be at a four-Mbyte boundary to allow
easy page-table formatting. The stack's starting address is not known in advance. It
depends on how much address space is used by the operating system at the top of the
address space.

The operating system may also want to reserve some portion of the application's address
space for shared memory areas with other tasks. UNIX System V allows such shared
memory areas. The empty areas on the diagram if Figure 8-3 would normally be marked
as not-present in the page table entries. Some special flag in the page table entry could
allow the operating system to determine that the page is not usable instead of just not
present in memory.

A four-Mbyte area of code space is reserved starting at OxFOOOOOOO for a set of entry
addresses to subroutines commonly used by all application programs (math libraries and
vector primitives, for example). These code sections are shared by all application pro­
grams. The code in this area is directly callable from user-level code and executes at user
level. Standard i860 microprocessor calling conventions are used for these subroutines.
The size of this area is chosen as four Mbytes, because that size corresponds to a
directory-level page table entry that all applications tasks can share. It should be large
enough to contain all desirable shared code.

The application program code area starts at OxF0400000. It can be as large as 248
Mbytes. The application code is write-protected. The operating system and application
code spaces lie in the upper 256 Mbytes of the address space. The operating system code
is in the upper part of the 256 Mbyte code space. The operating system code is protected
from application programs. Because it is easier for the operating system to divide up the
address space in four-Mbyte blocks, the minimum operating-system code allocation from
the address space is probably four Mbytes. Additional space would be allocated in four­
Mbyte increments.

8-8

PROGRAMMING MODEL

Every code section should begin with a nap instruction so that the trap handler can
always examine the instruction at fir - 4 even in case a trap occurs on the first instruc­
tion of a section.

The memory-mapped I/O devices should also be placed in the upper operating-system
data space. The paging hardware allows logical addresses to be different from their
corresponding physical addresses. The I/O device logical address area may be located
anywhere convenient.

8-9

Programming Examples 9

CHAPTER 9
PROGRAMMING EXAMPLES

9.1 SMALL INTEGERS

The 32-bit arithmetic instructions can be used to implement arithmetic on 8- or 16-bit
ordinals and integers. The integer load instruction places 8- or 16-bit values in the low­
order end of a 32-bit register and propagates the sign bit through the high-order bits of
the register.

Occasionally, it is necessary to sign extend 8- or 16-bit integers that are generated inter­
nally, not loaded from memory. Example 9-1 shows how.

II SIGN-EXTEND 8-BIT INTEGER TO 32 BITS
II Assume the operand is already in rlb

shl 24, rlb, rlb II left-justify
shra 24, rlb, rlb II right-justify all but sign bit

Example 9-1. Sign Extension

Example 9-2 shows how to load a small unsigned integer, converting the sign-extended
form created by the load instruction to a zero-extended form.

II LOADING OF 8-BIT UNSIGNED INTEGERS
II Assume the address is already in r19

II Load the operand (sign-extended) into r20
Id.b 0(r19), r20

II Mask out the high-order bits
and 0x000000FF, r20, r20

Example 9-2. Loading Small Unsigned Integers

9-1

PROGRAMMING EXAMPLES

9.2 SINGLE-PRECISION DIVIDE

Example 9-3 computes Z = X + Y for single-precision variables. The algorithm begins
by using the reciprocal instruction frcp to obtain an initial guess for the value of l/Y. The
frcp instruction gives a result that can differ from the true value of l/Y by as much as
2- 8

• The algorithm then continues to make guesses based on the prior guess, refining
each guess until the desired accuracy is achieved. Let G represent a guess, and let E
represent the error, i.e. the difference between G and the true value of l/Y. For each
guess ...

Gnew = Goli2 - GOld *Y).

Enew = 2(Eold)2.

This algorithm is optimized for high performance and does not produce results that are
rounded according to the IEEE standard. Worst case error is about two least-significant
bits. If the result is referenced by the next instruction, 22 clocks are required to perform
the divide.

II SINGLE-PRECISION DIVIDE

II The dividend X is in f6
II The divisor Y is in f2
II The result Z is left in f3
II f5 contains single-precision floating-point 2.

frcp.ss f2, f3 II first guess has 2**-8 error
fmul.ss f2, f3, f4 II guess * divisor
fsub.ss f5, f4, f4 II 2 - guess * divisor
fmul.ss f3, f4, f3 II second guess has 2**-15 error
fmul.ss f2, f3, f4 II avoid using f3 as src1
fsub.ss f5, f4, f4 II 2 - guess * divisor
fmul.ss f6, f3, f5 II second guess * dividend
fmul.ss f4, f5, f3 II result = second guess * dividend

Example 9-3. Single-Piecision Divide

9-2

PROGRAMMING EXAMPLES

9.3 DOUBLE-PRECISION DIVIDE

Example 9-4 computes Z = X + Y for double-precision. variables. The algorithm is
similar to that shown previously for single-precision divide. For double-precision divide,
one more iteration is needed to achieve the required accuracy.

This algorithm is optimized for high performance and does not produce results that are
rounded according to the IEEE standard. Worst case error is about two least-significant
bits. If the result is referenced by the next instruction, 38 clocks are required to perform
the divide.

II DOUBLE-PRECISION DIVIDE

II The dividend X is in f2
II The divisor Y is in f4
II The result Z is left in f8

frcp.dd f4, fb
fmul.dd f4, fb,
fld.d flttwo, f1~

II The fld.d is free. It
fsub.dd f1~, f8,
fmul.dd fb, f8,
fmul.dd f4, fb,
fsub.dd f1~, f8,
fmul.dd fb, f8,
fmul.dd f4, fb,
fsub.dd f1~, fB,
fmul.dd fb, f2,
fmul.dd f8, fb,

II first guess has 2**-8 error
f8 II guess * divisor

II load double-precision floating 2
completely overlaps the preceding fmul.dd

f8 II 2 - guess * divisor
fb II second guess has 2**-15 error
f8 II avoid using fb as src1
f8 II 2 - guess * divisor
fb II third guess has 2**-29 error
f8 II avoid using fb as src1
fB II 2 - guess * divisor
fb II guess * dividend
f8 II result = third guess * dividend

Example 9-4. Double-Precision Divide

9-3

PROGRAMMING EXAMPLES

9.4 INTEGER MULTIPLY

A 32-bit integer multiply is implemented in Example 9-5 by transferring the operands to
floating-point registers and using the fmlow instruction. If the result is referenced in the
next instruction, eleven clocks are required. Seven clocks can be overlapped with other
operations.

II INTEGER MULTIPLY

II The multiplier is in r4
II The multiplicand is in r5
II The product is left in rb
II The registers f2, f4, and fb are used as temporaries.

ixfr r4, f2
ixfr r5, f4

II Two core instructions can be inserted here without penalty.
fmlow.dd f4, f2, fb

II Four core instructions can be inserted here without penalty.
fxfr fb, rb

II One core instruction can be inserted here without penalty.

Example 9-5. Integer Multiply

9-4

PROGRAMMING EXAMPLES

9.5 CONVERSION FROM SIGNED INTEGER TO DOUBLE

The strategy used in Example 9-6 is to use the bits of the integer to construct a value in
double-precision format. The double-precision value constructed contains two biases:

Be

BN

A bias that compensates for the fact that the signed integer is stored in
two's complement format. The value of this bias is 231.

A bias that produces a normalized number, so that the algorithm does not
cause a floating-point exception. The value of this bias is 252.

If the desired value is x, then the constructed value is x + Be + BN. By later subtract­
ing Be + BN, the value x is left in double precision format, properly normalized by the
iB60™ microprocessor. The value of Be + BN is 252 + 231 (Ox4330_0000_BOOO_OOOO).

The conversion requires 7 clocks if the result is referenced in the next instruction. Three
clocks can be overlapped with other operations. If a single-precision result is required,
add an famov.ds instruction at the end.

II CONVERT SIGNED INTEGER TO DOUBLE

II The integer is in r4
II The double-precision floating-point result is left in f7:f6
II The register f5:f4 contains BN+BC

xorh ~x8~~~, r4, r4 II Complement sign bit (equivalent to adding BC).
ixfr r4, f6 II Construct low half.
fmov.ss f5, f7 II Set exponent in high half (includes BN)

II One instruction can be inserted here without penalty.
fsub.dd f6, f4, f6 II (x + BN + B() - (BN + B() = x

II Two core instructions can be inserted here without penalty.

Example 9-6. Single to Double Conversion

9-5

PROGRAMMING EXAMPLES

9.6 SIGNED INTEGER DIVIDE

Example 9-7 combines the techniques of Section 9.3 and 9.5. It requires 62 clocks (59
clocks without remainder).

II SIGNED INTEGER DIVIDE
II The denominator is in r4
II The numerator is in r5
II The quotient is left in rb
II The remainder is left in r7
II The registers f2 through f11 are used as temporaries.
II Convert Denominator and Numerator

fld.d two52two31, fb II load constant 2**52 + 2**31
xorh 0x8000, r4, r19 II
ixfr r19 f4 II
fmov.ss f7, f5 II
xorh 0x8000, r5, r20 II
fsub.dd f4, fb, f4 II
ixfr r20, f2 II
fmov.ss f7, f3 II
fsub.dd f2, fb, f2 II

II Do Floating-Point Divide
fld.d fdtwo, f10 II load floating-point two
frcp.dd f4, fb
fmul.dd f4, fb,
fsub.dd f10, f8,
fmul.dd fb, f8,
fmul.dd f4, fb,
fsub.dd f10, f8,
fmul.dd fb, f8,
fmul.dd f4, fb,
fsub.dd f10, f8,
fmul.dd fb, f2,
fmul.dd f8, fb,

II Convert Quotient to
fld.d onepluseps,
fmul.dd f8, f10,
ixfr r4, f10
ftrunc.dd f8,

II Compute Remainder
fmlow.dd f10, f8,
fxfr f10, r4
fxfr
subs

eft
Ie,
r5,

rb
r7,

f8
f8
fb
f8
f8
fb
f8
f8
fb
f8

Integer
f10
f8

II first guess has 2**-8 error
II guess * divisor
II 2 - guess * divisor
II second guess has 2**-15 error
II avoid using fb as src1
II 2 - guess * divisor
II third guess has 2**-29 error
II avoid using fb as src1
II 2 - guess * divisor
II guess * dividend
II result = third guess * dividend

II load value 1 + 2**-40
II force quotient to be bigger than integer
II get denominator for remainder computation

f8 II convert to integer

f10 II quotient * denominator

II transfer quotient
r7 II remainder = numerator - quotient * denominator

Example 9-7. Signed Integer Divide

9-6

PROGRAMMING EXAMPLES

9.7 STRING COPY

Example 9-8 shows how to avoid the freeze condition that might occiIr when using a load
in a tight loop such as that commonly used for copying strings. A performance penalty is
incurred if the destination of a load is referenced in the next instruction. In order to
avoid this condition, Example 9-8 juggles characters of the string between two registers.

II STRING COPY
II Assumptions:
II Source address alignment unknown
II Destination address alignment unknown
II End of string indicated by NUL
II r17 - address of source string
II r1b - address of destination string

copy_string::
ld.b 0(r17) , r2b II Load one character
bte 0, r2b, done II Test for NUL character
adds 1, r17, r17 II Bump pointer to source string
ld.b 0(r17) , r27 II Load one more character
subs r17, r1b, r18 II Use constant offset to avoid

II incrementing two indexes
loop::

st.b r2b, 0(r1b) II Store previous character
adds 1, r1b, r1b II Bump common index
or r0, r27, r2b II Test for NUL character
bnc.t loop II If not NUL, branch after loading
ld.b r18(r1b), r27 II next character. r18(r1b) = 0(r17)

done: :
bri r1 II Return after storing
st.b r26, 0(r1b) II the NUL character, too

Example 9-8. String Copy

9-7

PROGRAMMING EXAMPLES

9.8 FLOATING-POINT PIPELINE

Most instruction sequences that use pipelined instructions can be divided into three
phases:

Priming

Continuous Operation

Flushing

Filling a pipeline with known intermediate results while dis­
posing of previous pipeline contents.

Receiving expected results with the initiation of each new
pipelined instruction.

Retrieving the results that remain in the pipeline after the
pipelined instruction sequence has terminated.

Example 9-9 shows one strategy for using the floating-point adder, which has a three­
stage pipeline. This example assumes that the prior contents of the adder's pipeline are
unimportant, and discards them by specifying register fO as the destination of the first
three instructions. After performing the intended calculations, it flushes the pipeline by
executing three dummy addition instructions with fO (which always contains zero) as the
operands.

II PIPELINED FLOATING-POINT ADD

II Calculates f1a = f4 + f5, f11 = fb + f7
II f12 = f8 + f9, f13 = f5 + fb

II Assume f4 1. a, f5 2. a, fb
II f7 = 4.a, f8 5. a, f9

II Stage 1
II Priming phase

pfadd.ss f4, f5, fa II 1+2
pfadd.ss fb, f7, fa II 3+4
pfadd.ss f8, f9, f0 II 5+6

II Continuous operation phase

3.a
6.a

Stage 2 Stage 3 Result

?? ?? Discard
1+2 ?? Discard
3+4 3 Discard

pradd.ss f5, f6, flk) II 2+3 5+6 7 fl~= 3
II For longer pipelined sequences, include more instructions here

II Flushing phase
pfadd.ss f0, f0, f11
pfadd.ss f0, f0, f12
pfadd.ss f0, f0, f13

II
II
II

0+0
0+0
0+0

2+3
0+0
0+0

Example 9-9. Pipelined Add

9-8

11
5
o

f11= 7
f12=11
f13= 5

PROGRAMMING EXAMPLES

9.9 PIPELINING OF DUAL-OPERATION INSTRUCTIONS

When using dual-operation instructions (all of which are pipelined), code that primes
and flushes the pipelines must take into account both the adder and multiplier pipelines.
Example 9-11 illustrates pipeline usage for a simple single-precision matrix operation:
the dot product of a 1 x 8 row matrix A with an 8 x 1 column matrix B. For the purpose
of tracking values through the pipelines, assume that the actual matrices to be multiplied
have the following values:

A = [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, B.O] B =

B.O
7.0
6.0
5.0
4.0
3.0
2.0
1.0

Assume further that the two matrices are already loaded into registers thus:

A: f4 = 1.0
f5 = 2.0
f6 = 3.0
f7 = 4.0
f8 = 5.0
f9 = 6.0
flO =7.0

" fll =8.0

B: fl2 = 8.0
fl3 = 7.0
fl4 = 6.0
fl5 = 5.0
fl6 = 4.0
fl7 = 3.0
fl8 = 2.0
fl9 = 1.0

The calculation to perform is 1.0*8.0 + 2.0*7.0 + ... + 8.0*1.0 - a series of multipli­
cations followed by additions. The dual-operation instructions are designed precisely to
execute this type of calculation efficiently by using the adder and multiplier in parallel.
At the heart of Example 9-10 is the dual-operation instruction m12apm, which multiplies
its operands and adds the multiplier result to the result of the adder.

The priming phase is somewhat different in Example 9-10 than in Example 9-9. Because
the result of the adder is fed back into the adder, it is not possible to simply ignore the
prior contents of the adder pipeline; and because the result of the multiplier is automat­
ically fed into the adder, it is important to consider the effect of the mUltiplier on the
adder pipeline as well. This example waits until unknown results have been flushed from
the multiplier pipeline, then puts zeros in all stages of the adder pipeline.

Because the adder pipeline has three stages, the flushing phase produces three partial
results that must be added together.

9-9

PROGRAMMING EXAMPLES

II PIPELINED DUAL-OPERATION INSTRUCTION

II M!Jltiplier Adder
II Stages Stages
II 1 2 3 1 2 3 Result

II Priming phase
m12apm.ss f4, f12,f0 II 1*8 ?? ?? ?? ?? Discard
m12apm.ss f5, f13,f0 II 2*7 1*8 ?? ?? ?? Discard
m12apm.ss f6, f14,f0 II 3*6 2*7 8 ?? ?? Discard

pfadd.ss f0, f0 ,f0 II 0 ?? ?? Discard
pfadd.ss f0, f0 ,f0 II 0 0 ?? Discard
pfadd.ss f0, f0 ,f0 II 0 0 0 Discard

II Continuous operation phase
m12apm.ss f7, f15,f0 II 4*5 3*6 14 8+0 0+0 0 Discard
m12apm.ss f8, f16,f0 II 5*4 4*5 18 14+0 8+0 0 Discard
m12apm.ss f9, f17,f0 II 6*3 5*4 20 18+0 14+0 8 Discard
m12apm.ss f10,f18,f0 II 7*2 6*3 20 20+8 18+0 14 Discard
m12apm.ss fll,fi9,f0 II 8*1 7*2 18 20+14 20+8 18 Discard

II For larger matrices, include more instructions here

II Flushing phase
m12apm.ss f0, f0, f0 II 0*0 8*1 14 18+18 20+14 28 Discard
m12apm.ss f0, f0, f0 II 0*0 0*0 8 14+28 18+18 34 Discard
m12apm.ss f0, f0, f0 II 0*0 0*0 0 8+34 14+28 36 Discard
II Sum the partial results
pfadd.ss f0, f0, f20 II 0+0 8+34 42 f20=36
pfadd.ss f20,f21,f21 II 42+36 0+0 42 f21=42
pfadd.ss f0, f0, f20 II 0+0 42+36 0 f20=42
pfadd.ss f0, f0, f0 II 0+0 0+0 78 Discard
pfadd.ss f0, f0, f21 II 0+0 0+0 0 f21=78
fadd.ss f20,f21,f20 II f20=120

Example 9-10. Pipelined Dual-Operation Instruction

9-10

PROGRAMMING EXAMPLES

9.10 PIPELINING OF DOUBLE-PRECISION DUAL OPERATIONS

Example 9-11 illustrates how pipeline usage for a double-precision differs from the
single-precision Example 9-10. Example 9-11 performs the dot product of a 1 x 6 row
matrix A with an 6 x 1 column matrix B. For the purpose of tracking values through the
pipelines, assume that the actual matrices to be multiplied have the following values:

A = [1.0, 2.0, 3.0, 4.0, 5.0, 6.0,] B=

6.0
5.0
4.0
3.0
2.0
1.0

Assume further that the two matrices are already loaded into registers thus:

A: f4:f5 = 1.0
f6:f7 = 2.0
f8:f9 = 3.0
flO:fl1 = 4.0
fl2:fl3 = 5.0
fl4:fl5 = 6.0

B: fl6:fl7 = 6.0
fl8:fl9 = 5.0
f20:f21 = 4.0
f22:f23 = 3.0
f24:f25 = 2.0
f26:f27 = 1.0

Example 9-11 differs from Example 9-10 in that, with double precision, the multiplier
pipeline has only two stages; therefore the priming and flushing phases use fewer
instructions.

9-11

PROGRAMMING EXAMPLES

II PIPELINED DUAL-OPERATION INSTRUCTION DOUBLE PRECISION

II Multiplier Adder
II Stages Stages
II 1 2 1 2 3 Result

II Priming phase
m12apm.dd f4, f16,f0 II 1*6 ?? ?? ?? ?? Discard
m12apm.dd f6, f18,f0 II 2*5 1*6 ?? ?? ?? Discard

pfadd.dd f0, f0 ,f0 II 0 ?? ?? Discard
pfadd.dd f0, f0 ,f0 II 0 0 ?? Discard
pfadd.dd f0, f0 ,f0 II 0 0 0 Discard

II Continuous operation phase
m12apm.dd f8, f20,f0 II 3*4 2*5 6+0 0 0 Discard
m12apm.dd f10,f22,f0 II 4*3 3*4 10+0 6+0 0 Discard
m12apm.dd f12,f24,f0 II 5*2 4*3 12+0 10+0 6 Discard
m12apm.dd f14,f26,f0 II 6*1 5*2 12+6 12+0 10 Discard

II For larger vectors, include more instructions here

II Flushing phase
m12apm.dd f0, f0, f0 II 0*0 6*1 10+10 12+6 12 Discard
m12apm.dd f0, f0, f0 II 0*0 0*0 6+12 10+10 18 Discard

II Three partial sums are now in the adder pipeline.
pfadd.dd f0 ,f0 ,f28 II 0 6+12 20 f28 = 18
pfadd.dd f28,f30,f30 II 18+20 0 18 f30 = 20
pfadd.dd f0 ,f0 ,f28 II 0 18+20 0 f28 = 18
pfadd.dd f0 ,f0 ,f0 II 0 0 38 Discard
pfadd.dd f0 ,f0 ,f30 II 0 0 0 f30 38

fadd.dd f28,f30,f30 II f30 = 56

Example 9-11. Pipelined Double-Precision Dual Operation

9-12

PROGRAMMING EXAMPLES

9.11 DUAL INSTRUCTION MODE

The previous Example 9-9 and Example 9-10 showed how the i860 microprocessor can
deliver up to two floating-point results per clock by using the pipelining and parallelism
of the adder and multiplier units. These examples, however are not realistic, because
they assume that the data is already loaded in registers. Example 9-12 goes one step
further and shows how to maintain the high throughput of the floating-point unit while
simultaneously loading the data from main memory and controlling the logical flow.

The problem is to sum the single-precision elements of an arbitrarily long vector. The
procedure uses dual-instruction mode to overlap loading, decision making, and branch­
ing with the basic pipelined floating-point add instruction pfadd.ss. To make obvious the
pairing of core and floating-point instructions in dual-instruction mode, the listing in
Example 9-12 shows the core instruction of a dual-mode pair indented with respect to
the corresponding floating-point instruction.

Elements are loaded two at a time into alternating pairs of registers: one time at loop1
into f20 and f21, the next time at loop2 into f22 and f23. Performance would be slightly
degraded if the destination of a fld.d were referenced as a source operand in the next
two instructions. The strategy of alternating registers avoids this situation and maintains
maximum performance. Some extra logic is needed at sumup to account for an odd
number of elements.

9-13

PROGRAMMING EXAMPLES

II SINGLE-PRECISION VECTOR SUM
II input: r16 - vector address, r17 - vector size (must be > 5)
II output: f16 - sum of vector elements

L1: :

L2: :

S· . ..

fld.d r0(r16), f20 II Load first two elements
mov -2, r21 II Loop decrement for bla

II Initiate entry into dual-instruction mode
d.pfadd.ss
adds

f0,
-6,

f0, f0 II Clear adder pipe (1)
r17, r17 II Decrement size by 6
II Enter into dual-instruction mode

d.pfadd.ss
bla

d.pfadd.ss
fld.d

f0, f0, f0 II Clear adder pipe (2)
r21, r17, L1 II Initialize LCC
f0, f0, f0 II Clear adder pipe (3)
8(r16)++, f22 II Load 3rd and 4th elements

d.pfadd.ss f20, f30,
bla r21, r17,

d.pfadd.ss f21, f31,
fld.d 8(r16)++,

II If we reach this point,
II r17 is either -4 or -3.

f30 II Add f20 to pipeline
L2 II If more, go to L2 after
f31 II adding f21 to pipeline and
f20 II loading next f20:f21

at least one element remains to be loaded.

II f20, f21, f22, and f23 still contain vector elements.
II Add f20 and f22 to the pipeline, too.
d.pfadd.ss f20, f30, f30

br S
d.pfadd.ss f21, f31,

nop

d.pfadd.ss f22, f30,
bla r21, r17,

d.pfadd.ss f23, f31,
fld.d 8(r16)++,

II If we reach this point,
II r17 is either -4 or -3.

II Exit loop after adding
f31 II f21 to the pipeline

f30 II Add f22 to pipeline
L1 II If more, go to L1 after
f31 II adding f23 to pipeline and
f22 II loading next f22:f23

at least one element remains to be loaded.

II f20, f21, f22, and f23 still contain vector
II Add f20 and f21 to the pipeline, too.

elements.

d.pfadd.ss f20, f30, f30
nop

d.pfadd.ss f21,
nop

pfadd.ss f22,
mov -4,

pfadd.ss f23,
bte r21,

f31,

f30,

f31,
r17,

fld.1 8(r16)++,
pfadd.ss f20, f30,

f31

1/ Initiate exit from dual mode
f30 1/ Still in dual mode
r21
f31 1/ Last dual-mode pair
DONE 1/ If there is one more
f20 1/ element, load it and
f30 1/ add to pipeline

II Intermediate results are sitting in the adder pipeline.
1/ Let A1:A2:A3 represent the current pipeline contents

DONE::
pfadd.ss f0, f0, f30 1/ 0:A1:A2 f30=A3
pfadd.ss f30, f31, f31 1/ A2+A3:0:A1 f31=A2
pfadd.ss f0, f0, f30 1/ 0:A2+A3:0 f30=A1
pfadd.ss f0, f0, f0 1/ 0:0:A2+A3
pfadd.ss f0, f0, f31 1/ 0:0:0 f31=A2+A3
fadd.ss f30, f31, f16 II f16 = A1+A2+A3

Example 9-12. Dual-Instruction Mode

9-14

PROGRAMMING EXAMPLES

9.12 CACHE STRATEGIES FOR MATRIX DOT PRODUCT

Calculations that use (and reuse) massive amounts of data may render significantly less
than optimum performance unless their memory access demands are carefully taken into
consideration during algorithm design. The prior Example 9-12 easily executes at near
the theoretical maximum speed of the i860 microprocessor because it does not make
heavy demands on the memory subsystem. This section considers a more demanding
calculation, the dot product of two matrices, and analyzes two memory access strategies
as they apply to this calculation.

The product of matrix A=Ai,j of dimension L xM with matrix B=Bi,j of dimension
M x N is the matrix C = Ci,j of dimension L x N, where ...

The basic algorithm for calculation of a dot product appears in Example 9-10. To extend
this algorithm to the current problem requires adding instructions to:

1. Load the entries of each matrix from memory at appropriate times.

2. Repeat the inner loop as many times as necessary to span matrices of arbitrary M
dimension.

3. Repeat the entire algorithm L * N times to produce the L x N product matrix.

Each of the examples 9-13 and 9-14 accomplishes the above extensions through straight­
forward programming techniques. Each example uses dual-instruction mode to perform
the loading and loop control' operations in parallel with the basic floating-point calcula­
tions. The examples differ in their approaches to memory access and cache usage. To
eliminate needless complexity, the examples require that the M dimension be a multiple
of eight and that the B matrix be stored in memory by column instead of by row. Data is
fetched 32 bytes beyond the higher-address end of both matrices. In real applications,
programmers should ensure that no page protection faults occur que to these accesses.

• Example 9-13 depends solely on cached loads.

• Example 9-14 depends on a mix of cached and pipelined loads.

Example 9-13 uses the fld instruction for all loads, which places all elements of both
matrices A and B in the cache. This approach is ideal for small matrices. Accesses to all
elements (after the first access to each) retrieve elements from the cache at the rate of
one per clock. Using fld.q instructions to retrieve four elements at a time, it is possible to
overlap all data access as well as loop control with m12apm instructions in the inner
loop.

Note, however, that Example 9-13 is "cache bound"; i.e., if the combined size of the two
matrices is greater than that of the cache, cache misses will occur, degrading perfor­
mance. The larger the matrices, the more the misses that will occur.

9-15

PROGRAMMING EXAMPLES

II MATRIX MULTIPLY, C = A * 8, CACHED LOADS ONLY
II Registers loaded by calling routine
A=r16 II pointer into A, stored in memory by rows
8=r17 II pointer into 8, stored in memory by columns
C=r18 II pointer into C, stored in memory by rows
L=r19 II the number of rows in A
M=r20 II the number of columns in A and rows in 8
N=r21 II the number of columns in 8
II Registers used locally
RC=r28 II rowlcolumn counter decremented by bla for loop control
DEC=r27 II decrementor for rowlcolumn pointers
Ar=r26 II counter of rows in A
8c=r25 II counter of columns in 8
8p=r24 II temporary pointer into 8
SIZ=r23 II number of bytes in row of A or column of 8
A1=f4; A2=f5; A3=f6; A4=f7; A5=f8; A6=f9; A7=f10;A8=f11
81=f12;82=f13;83=f14;84=f15;85=f16;86=f17;87=f18;88=f19

II matrix A row values
II matrx 8 column vals
II temporary results T1=f20;T2=f21;T3=f22

shl 2,
adds -8,
adds -8,
adds -4,
d.fiadd.dd f0,
adds -1,
d.fnop

M,
r0,
M,
C,
f0,
L,

SIZ
DEC
RC
C
f0
Ar

bla
d.fnop

subs
start_row::

d.pfmul.ss
mov

d.pfmul.ss
adds

d.pfmul.ss
fld.q

d.pfadd.ss
fld.q

d.pfadd.ss
adds

d.pfadd.ss
fld.q

DEC, RC, start_row

A, SIZ, A

f0, f0,
8, 8p
f0, f0,
SIZ, A,
f0, f0,
16(8p) ,
f0, f0,
16 (A) ,
f0, f0,
-1, N,
f0, f0,
0(A),

f0

f0
A
f0
85
f0
A5
f0
8c
f0
A1

II Number of bytes in M entries
II Set decrementor for bla
II Initialize rowlcolumn counter
II Start C index one entry low
II Initiate dual-instruction mode
II Make row counter zero relative
II First dual-mode pair
II Initialize LCC
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II

Start pointer to A one row low
Executed once per row of A

Point to first col of 8

Point to next row of A

Load entries of 8

Load entries of A

Initialize column counter

Load 4 entries of A

Example 9-13. Matiix Multiply, Cached Loads Only (Sheet 1 of 2)

9-16

PROGRAMMING EXAMPLES

inner_loop:: II
d.m12apm.ss

fld .q
d.m12apm.ss

adds
d.m12apm.ss

adds
d.m12apm.ss

fld.q
d.m12apm.ss

fld. q
d.m12apm.ss

nop

Process
A5, B5,
~(Bp),

A6, B6,
32, A,
A7, B7,
32, Bp,
A8, B8,
16(Bp),
Ai, Bl,
16 (A) ,
A2, B2,

eight
T1
Bl
T1
A
T1
Bp
T1
B5
T1
A5
T1

d.m12apm.ss A3, B3, Tl
bla DEC, RC, inner_loop

d.m12apm.ss A4, B4, T2
fld.q ~(A), Ai

entries of row of A
II
II Load 4 entries
II
II Bump pointer to
II
II Bump pointer to
II
II Load
II
II Load
II
II
II

entries

entries

II Loop until end
II
II Load 4 entries

II End Inner Loop. End of row/column
d.m12apm.ss f~, f~, T3 II

with eight of col of B

of B

A by 8 entries

B by 8 entries

of B

of A

of row/column

of A

subs A, SIZ, A II Set A pointer back to beginning of row
d.m12apm.ss f~, f~, Tl II

adds -8, M, RC II Reinitialize row/column counter
d.m12apm.ss f~, f~, T2 II

nop II
d.pfadd.ss f~, f~, T3 II

bla DEC, RC, inner_loop II Wont branch; initializes LCC
d.pfadd.ss f~, f~, Tl II

fld.q 16(A), A5 II Load entries of A
d.pfadd.ss f~, f~, T2 II

fld.q 16(Bp), B5 II Load entries of B
d.fadd.ss Tl, T3, T3 II

fld.q ~(A), Ai II Load entries of A
d.fadd.ss T2, T3, T3 II

adds -1, Bc, Bc II Decrement column counter
d.pfadd.ss f~, f~, f~ II

fst.l T3, 4(C)++ II Store row/column product in C
II Continue with next column of B?

d.pfadd.ss f~, f~, f~ II
bnc.t inner_loop II CC controlled by prior adds

d.pfadd.ss f~, f~, f~ II
nop II

II Continue with next row of A?
d.fnop II

xor
d.fnop

bnc.t
d.fnop

adds
fnop

nop
fnop

nop

Ar, r~, r~ II Is row counter zero?

-1, Ar, Ar

II
II
II
II
II
II
II
II

Taken if row counter not zero

Decrement row counter
Initiate exit from dual mode

Last dual-mode pair
End

Example 9-13. Matrix Multiply, Cached Loads Only (Sheet 2 of 2)

9-17

PROGRAMMING EXAMPLES

Example 9-14 uses fld for all the elements of each row of A, and uses pfld to pass all
columns of B against each row of A. This example is less cache bound, because only rows
of A are placed in the cache. More load instructions are required, because a pfld can
load at most two single-precision operands. Still, with pipelined memory cycles, it re­
mains possible to overlap the loading of the eight items from matrix A, the eight items
from matrix B, and the loop control with the eight m12apm instructions in the inner
loop.

The strategy of Example 9-14 is suitable for larger matrices than the strategy in Example
9-13 because, even in the extreme case where only one row of A fits in the cache, cache
misses occur only the first time each row is processed. However, if dimension M is so
great that not even one row of A fits entirely in the cache, cache misses will still occur.
On the other side, for small matrices, Example 9-14 may not perform as w~ll as Example
9-13, because, even when there is sufficient space in the cache for elements of matrix B,
Example 9-14 does not use it.

9-18

PROGRAMMING EXAMPLES

II MATRIX MULTIPLY, C = A * 8, CACHED AND PIPELINED LOADS MIXED
II Registers loaded by calling routine
A=r16 II pointer into A, stored in memory by rows
8=r17 II pointer into 8, stored in memory by columns
C=r18 II pointer into C, stored inmemory by rows
L=r19 II the number of rows in A
M=r20 II the number of columns in A and rows in 8
N=r21 II the number of columns in 8
II Registers used locally
Ap=r29 II temporary pointer into A
RC=r28 II rowlcolumn counter decremented by bla for loop control
DEC=r27 II decrement or for rowlcolumn pointers
Ar=r26 II counter of rows in A
8c=r2S II counter of columns in 8
8p=r24 II temporary pointer into 8
SIZ=r23 II number of bytes in row of A or column of 8
Al=f4; A2=fS; A3=f6; A4=f7; AS=f8; A6=f9; A7=f10;A8=fll II matrix A row values
81=f12;82=f13;83=f14;84=flS;8S=f16;86=f17;87=f18;88=fl9 II matrx 8 column vals
Tl=f20;T2=f21;T3=f22 II temporary results

mov 8, 8p II Pointer to 8
shl 2, M, SIZ II Number of bytes in M entries
adds -8, r0, DEC II Set decrement or for bla
adds -8, M, RC II Initialize rowlcolumn counter
d.fiadd·dd f0, f0, f0 II Initiate dual-instruction mode
adds -4, C, C II Start C index one entry low
d.fnop II First dual-mode pair

adds -1, L, Ar II Make row counter zero relative
d.fnop II

bla DEC, RC, start_row II Initialize LCC
d.fnop II

mov A, Ap II Pointer to A
start_row:: II Executed once per row of A

d.pfmul.ss f0, f0, f0 II
pfld. d o (8p) , f0 II Load 2 entries of 8 into load pipe

d.pfmul.ss f0, f0, f0 II
pfld.d 8(8p)++, f0 II Load 2 entries of 8 into load pipe

d.pfmul.ss f0, f0, f0 II
pfld. d 8(8p)++, f0 II Load 2 entries of 8 into load pipe

d.pfadd.ss f0, f0, f0 II
fld.q o (Ap) , Al II Load entries of A

d.pfadd.ss f0, f0, f0 II
pfld.d 8(8p)++, 81 II Load 2 entries of 8

d.pfadd.ss f0, f0, f0 II
adds -1, N, 8c II Initialize column counter

d.fnop II
pfld.d 8(8p)++, 83 II Load 2 entries of 8

inner_loop:: II Process eight entries from row of A with eight from col of 8
d.m12apm.ss Al, 81, f0 II

fld.q 16(Ap)++, AS II Load entries of A
d.m12apm.ss A2, 82, f0 II

pfld.d 8(8p)++, 85 II Load 2 entries of 8
d.m12apm.ss A3, 83, f0 II

pfld.d 8(8p)++, 87 II Load 2 entries of 8

Ex~mple 9-14. Matrix Multiply, Cached and Pipelined Loads (Sheet 1 of 2)

9-19

PROGRAMMING EXAMPLES

d.m12apm.ss
fld. q

d.m12apm.ss
nap

A4, 84, f0
16(Ap)++, A1
AS, 85, f0

d.m12apm.ss A6, 86, f0
pfld.d 8(8p)++, 81

d.m12apm.ss A7, 87, f0
bla DEC, RC, inner_loop

d.m12apm.ss A8, 88, f0
pfld.d 8(8p)++, 83

II
II
II
II
II
II
II
II
II
II

II End Inner Loop. End of rowlcolumn
d.m12apm.ss f0, f0, f0 II

nap II
d.m12apm.ss f0, f0, f0 II

adds -8, M, RC II
d.m12apm.ss f0, f0, f0 II

Load 4 entries of A

Load 2 entries of 8

Loop until end of rowlcolumn

Load 2 entries of 8

Reinitialize rowlcolumn counter

mov A, Ap I I Set A pointer back to beginning of row
d.pfadd.ss f0, f0, T3 II

fld.q 0(Ap), A1 II Load first 4 entries of row of A
d.pfadd.ss f0, f0, Tl II

bla DEC, RC, inner_loop II Wont branch; initializes LCC
d.pfadd.ss f0, f0, T2 II

nap II
d.fadd.ss Tl, T3, T3 II

nap II
d.fadd.ss T2, T3, T3 II

adds -1, 8c, 8c II Decrement column counter
d.pfadd.ss f0, f0, f0 II

fst.l T3, 4(C)++ II Store rowlcolumn product in
II Continue with next column of 8?

d.pfadd.ss f0, f0, f0 II
bnc.t inner_loop

d.pfadd.ss f0, f0, f0
II CC controlled by prior adds
II

nap
II End of all columns of 8

d.fnop
mov

d.fnop
adds

d.fnop

8,

A,

8p

SIZ, A

mov A, Ap
II Continue with next row of A?

d.fnop
xor

d.fnop
bnc.t

d.fnop
adds

fnop
nop

fnop
nop

Ar, r0, r0

-1, Ar, Ar

II

II
II
II
II
II
II

II
II
II
II
II
II
II
II
II
II

Point to first col of 8

8ump pointer to A by one row

Set A index to beginning of next

Is row counter zero?

Taken if row counter not zero

Decrement row counter
Initiate exit from dual mode

Last dual-mode pair
End

row

Example 9-14. Matrix Multiply, Cached and Pipelined Loads (Sheet 2 of 2)

9-20

PROGRAMMING EXAMPLES

9.13 3-D RENDERING

This series of examples are routines that might be used at the lowest level of a graphics
software system to convert a machine-independent description of a 3-D image into val­
ues for the frame buffer of a color video display. Typically, higher-level graphics routines
represent an object as a set of polygons that together roughly describe the surfaces of the
objects to be displayed. The graphics system maintains a database that describes these
polygons in terms of their colors, properties of reflectance or translucence, and the
locations in 3-D space of their vertices. Due to the roughness of the representation, the
amount of information in the database is considerably less than that which must be
delivered to the video display. A rendering procedure, such as Example 9-21, uses inter­
polation to derive the detailed information needed for each pixel in the graphics frame
buffer. The rendering procedure also performs pixel-by-pixel hidden-surface elimination.

The focus of this series of examples is Example 9-21, which operates on a segment of a
scan line. The segment is bounded by two points of given location and color: from point
(Xl, YO, Zl) with color intensities Redl, Grnl, Blul to point (X2, YO, Z2) with color
intensities Red2, Grn2, Blu2. The points and color intensities are determined by higher­
level graphics software. The points represent the intersection of the scan line with two
edges of the projected image of a polygon. For a given scan line, the rendering proce­
dure is executed once for each polygon that projects onto that scan line. The higher-level
graphics software is responsible for orienting the objects with respect to the viewer, for
making perspective calculations, for scaling, and for determining the amount of light that
falls on each polygon vertex.

The 16-bit pixel format is used, giving ample resolution for color shading: 26 intensity
values for red, 26 intensity values for green, and 24 intensity values for blue. Example
9-15 shows how to set the pixel size. For hidden-surface elimination, the Z-buffer (or
depth buffer) technique is employed, each Z value having a resolution of 16-bits.

Because the examples presented here use almost all of the registers of the i860 micro­
processor, the registers are given symbolic names, as defined by Example 9-16. In a real
application, it is likely that some of the inputs to the rendering procedure would be
passed in floating-point registers instead of the integer registers employed here. The
register allocation shown in Example 9-16 simplifies the examples by avoiding the need
to use any register for multiple purposes.

II SET PIXEL SIZE TO 16
ld., psr, Ra
andnoth 0x00C0, Ra,
orh 0x0040, Ra,
st., Ra, psr

II Work on psr
Ra II Clear PS
Ra II PS = 16-bit pixels

II

Example 9-15. Setting Pixel Size

9-21

PROGRAMMING EXAMPLES

II REGISTER DEFINITIONS FOR RENDERING PROCEDURE
II INTEGER LOCALS

II

II

Ra
Rb
Rc
Rd

r4 II
= r5 II
= r6 II
= r7 II

Temporary
Temporary
Temporary
Temporary

INTEGER INPUTS
Xl
dX
ZBP
Z1
mZ
FBP
Redl
Grnl
Blul
mR
mG
mB

r16 II
r17 II
r18 II
r19 II
r20 II
r21 II
r22 II
r23 II
r24 II
r25 II
r26 II
r27 II

X coordinate of starting point of line segment in pixels
Width of scan line segment in number of pixels
Z-buffer pointer to the current line segment
Initial Z value, fixed-point 16.16 format
Z slope, fixed-point 16.16 format
Graphics frame buffer pointer to the current line segment
Initial red intensity, fixed-point 6.10 format, plus .5
Initial green intensity, fixed-point 6.10 format, plus .5
Initial blue intensity, fixed-point 6.10 format, plus .5
Red slope, fixed-point 6.10 format
Green slope, fixed-point 6·10 format
Blue slope, fixed-point 6.10 format

REAL LOCALS
aZ
aZh
iZl
iZlh
iZ3
iZ3h
oldz
newz
newzh
newi
iR
iRh
aR
aRh
iG
iGh
aG
aGh
iB
iBh
aB
aBh
lZmask
lZmaskh
rZmask
rZmaskh

f2 II Accumulated Z values
f3 II
f4 II Z interpolant, coefficient 1.0
f5 II
f6 II Z interpolant, coefficient 3.0
f7 I I
f8 II Original values from the Z-buffer
f10 II New Z-buffer values
f11 I I
f12 II New pixel values
f14 II Red interpolant, coefficient 4.0
f15 II
f16 II Accumulated red intensities
f17 II
f18 II Green interpolant, coefficient 4.0
f19 II
f20 II Accumulated green intensities
f21 II
f22 II Blue interpolant, coefficient 4.0
f23 II
f24 II Accumulated blue intensities
f25 II
f26 II left-end Z mask
f27 II
f28 II right-end Z mask
f29 II

Example 9-16. Register Assignments

9.13.1 Distance Interpolation

To perform hidden surface elimination at each pixel, the rendering routine first interpo­
lates the value of Z at each pixel. Distance interpolation consists of calculating the slope
of Z over the given line segment, then increasing the Z value of each successive pixel by
that amount, starting from Xl. The width of the line segment in pixels is dX = X2 - Xl.

9-22

PROGRAMMING EXAMPLES

Calculate the reciprocal of dX:

RdX = l/dX

The value of dX is used several times as a divisor. It is most efficient to calculate its
reciprocal once, then, instead of dividing by dX, multiply by RdX. The slope of Z is ...

mZ = (22 - Zl)*RdX

Because each polygon is a plane, the value of m2 is constant for all scan lines that
intersect the polygon; therefore mZ needs to be calculated only once for each polygon.
Example 9-21 assumes that dX and mZ have already been calculated, and all that re­
mains is to apply mZ to successive pixels. Let Z(Xn) be the Z value at pixel Xn. Then ...

Z(Xl) = 21
Z(X1 + 1) = Zl + mZ
Z(X1 + 2) = Zl + 2*mZ

Z(X1 + N) = Zl + N*mZ

Z(X1 + dX) = Zl +. dX*mZ = Z(X2)

Figure 9-1 illustrates this Z-value interpolation.

(r, g, b, x, y, z = 4000)

3000 - 2400
mZ =

12 PIXELS

(r", gO, b", x", y", z" = 1000)

Figure 9-1. Z-Buffer Interpolation

9-23

8 o
CO)

240329i

PROGRAMMING EXAMPLES

The faddz instruction helps to perform the above calculations 64 bits at a time. Because
a Z value is 16 bits wide, Example 9-21 operates on the Z buffer in groups of four. The
faddz instruction, however, treats the interpolation values (N*mZ) as 32-bit fixed-point
numbers; therefore, two faddz instructions are executed for each group of four pixels.
Because of the way the faddz shifts the MERGE register, the first faddz corresponds to
even-numbered pixels, while the second corresponds to odd-numbered pixels. Instead of
starting with the value for the first pixel (Z(X1)) and adding mZ to each pixel to produce
the value for the next pixel, the example procedure starts with the values for the first two
even-numbered pixels and adds 1 *mZ to each of these values to produce the values for
the adjacent odd-numbered pair. Adding 3*mZ to each of the Z values of an odd­
numbered pair produces the values for the next even-numbered pair. Figure 9-2 shows
one way of constructing the operands before starting the distance interpolations. (The
initial value given to fsrc1 depends on the alignment of the first pixel.) Table 9-1 helps to
visualize the process.

After two faddz instructions, the MERGE register holds the Z values for four adjacent
pixels (in the correct order). The form -instruction copies MERGE into one of the 64-bit
floating-point registers. the values Zl + N*mZ. For each execution of faddz, src1 is the
same as rdest of the prior faddz. After every two faddz instructions, a form instruction
empties the MERGE register.

The same register is used as both fsrc1 and fdest in all faddz instructions. This register
serves to accumulate Z values for successive pixels; therefore, it is called an accumulator.
The registers used as fsrc2 are called interpolants. The code in Example 9-17 constructs
the interpolants; it needs to be executed only once for each polygon.

ACCUMULATOR

63 47 31 15 0

I Z1 -1.0*mZ i FRACTION I Z1 - 3.0*mZ : FRACTION I INITIAL
SRC1

INTERPOLANTS

63 47 31 15 0

3.0*mZ i FRACTION I 3.0*mZ ; FRACTION I FIRST
SRC2

63 47 31 15 0

I 1.0*mZ ! FRACTION I 1.0*mZ FRACTION I SECOND
SRC2

240329i

Figure 9-2. faddz Operands

9-24

PROGRAMMING EXAMPLES

Table 9-1. faddz Visualization

MERGE Register
Operands 63-32 31-0

I I I 63-48 47-32 31-16 15-0

fsrc1 -1.0 -3.0

fsrc2 3.0 3.0

fdest/fsrc1 2.0 0.0 2 I I 0 I
fsrc2 1.0 1.0

fdest/fsrc1 3.0 1.0 3 I 2 I 1 I 0

fsrc2 3.0 3.0

fdest/fsrc1 6.0 4.0 6 I I 4 I
fsrc2 1.0 1.0

fdest/fsrc1 7.0 5.0 7 I 6 I 5 I 4

fsrc2 3.0 3.0

fdest/fsrc1 10.0 8.0 10 I I 8 I
fsrc2 1.0 1.0

fdest/fsrc1 11.0 9.0 11 I 10 I 9 I 8

fsrc2 3.0 3.0

fdest/fsrc1 14.0 12.0 14 I I 12 I
fsrc2 1.0 1.0

frdest 15.0 11.0 15 ~ 14 I 13 I 12

Because the values of Z1 and mZ are constant for each loop through the rendering routine, the numbers
shown here are the values of the coefficient N, where the actual operands have the values Z1 + N*mZ. For
each execution of faddz, fsrc1 is the same as fdest of the prior faddz. After every two faddz instructions, a
form instruction empties the MERGE register.

9.13.2 Color Interpolation

To determine the RGB color intensities at each pixel, the rendering routine interpolates
between the color intensities at the end points. (This rendering technique is called
"Gouraud shading" after H. Gouraud, "Continuous Shading of Curved Sufaces," IEEE
Transactions on Computers, C-20(6), June 1971, pp. 623-628.) Let the symbol C (color)
represent either R (red), G (green), or B (blue). Color interpolation consists of calcu­
lating the slope of C over the given line segment, then increasing the C values of each

9-25

PROGRAMMING EXAMPLES

II CONSTRUCT INTERPOL ANTS iZl
ixfr mZ, iZl
shl 1, mZ,
adds Ra, mZ,
ixfr Ra, iZ3
fmov.ss iZl, iZlh
fmov.ss iZ3, iZ3h

AND iZ3 GIVEN mZ
II Join each half

Ra II Ra = 2*mZ
Ra II Ra = 3*mZ

II Join each half
II Join each half
II Join each half

in 64-bit register

in 64-bit register
in 64-bit register
in 64-bit register

Example 9-17. Construction of Z Interpolants

successive pixel by that amount, starting from the values for Xl. This must be done for
C=R, C=G, and C=B. The slope of Cis ...

mC = (C2 - Cl)*RdX

... where RdX = l/dX

The value of mC is constant for all scan lines that intersect a given pair of polygon edges;
therefore mC needs to be calculated only once for each such pair. Example 9-21 assumes
that mC has already been calculated for all colors, and all that remains is to apply mC to
successive pixels. Let C(Xn) be a C value at pixel Xn. Then ...

C(Xl) = Cl
C(Xl + 1)
C(Xl + 2)

C(Xl + N)

Cl + mC
Cl + 2*mC

Cl + N*mC

C(Xl + dX) = Cl + dX*mC = C(X2)

Figure 9-3 illustrates Gouraud shading of a triangle.

The faddp instruction performs the above calculations 64 bits at a time. Because a pixel
is 16 bits wide, Example 9-21 operates on pixels in groups of four. Instead of starting
with the value for the first pixel (C(Xl» and adding mC to each pixel to produce the
value for the next pixel, the example procedure starts with the values for the first four
pixels and adds 4 *mC to each group of four to produce the values for the next four.
Three faddp instructions are executed for each group of four pixels. The first increments
the blue values; the second, green; the third, red. Figure 9-4 shows one way of construct­
ing the operands for each color before starting the color interpolations. (The initial value
given to fsrcl depends on the alignment of the first pixel.)

Setup of the accumulator and interpol ants is similar to that of the Z-buffer. The code in
Example 9-18 constructs the interpolants; it needs to be executed only once for each pair
of edges in each polygon.

9-26

63

RED COLOR
(0-63)

PROGRAMMING EXAMPLES

(r = 20, g, b, x, y, z)

rnR = 27 - 30
12 PIXELS

(r" = 40, g", b", x", y", z")

Figure 9-3. Pixel Interpolation for Gouraud Shading

ACCUMULATOR

INTERPOLANT

31

Figure 9-4. faddp Operands

9.13.3 Boundary Conditions

240329i

INITIAL
SRC1

SRC2

240329i

The i860 microprocessor operates on 64-bit quantities that are aligned on 8-byte bound­
aries. The code in this example takes full advantage of this design, handling four 16-bit
pixels in each loop. However, if the first or last pixel of a line segment is not on an 8-byte
boundary, two kinds of special considerations are required:

1. Masking of Z values near the end points.

2. Initialization of the accumulators.

9-27

PROGRAMMING EXAMPLES

9.13.3.1 Z-8UFFER MASKING

When either the first or last pixel of the line segment is not at an 8-byte boundary, the
rendering procedure must mask the first or last set of new Z-buffer values (newz) so that
the Z-buffer and the frame buffer are not erroneously updated. Sometimes both the first
and last pixels are in the same 4-pixel set, in which case either one may not be on an
8-byte boundary. A function that looks up and calculates masks is outlined in
Example 9-19.

Because the value OxFFFF is used for masking, the Z-buffer is initialized with OxFFFE,
so that the fzchks instruction always finds the mask to be greater than any Z-buffer
contents.

II. CONSTRUCT INTERPOLANTS iR, iG, iB GIVEN mR, mG, mB
shl 18, mR, Ra II Multiply each color slope by four,
shl 18, mG, Rb II shift by 16 to put the significant
shl 18, mB, Rc II bits into the high-order half
shr 16, Ra, mR II Return significant 16 bits
shr 16, Rb, mG II to low-order half. Any sign bits
shr 16, Rc, mB II in high-order half are gone.
or mR, Ra, Ra II Join 16-bit quarters
or mG, Rb, Rb II in 32-bit register
or mB, Rc, Rc II
ixfr Ra, iR II Join 32-bit halves
ixfr Rb, iG II in-64-bit register
ixfr Rc, iB II
fmov·ss iR, iRh II
fmov.ss iG, iGh II
fmov.ss iB, iBh II

Example 9-18. Construction of Color Interpolants

·macro zmask I_align, r_align, Rx, Ry
II I_align -- left-end alignment in two-byte units
II r_align -- right-end alignment in two-byte units
II Rx, Ry -- scratch registers
II Left-end OR masks Right-end OR masks
II Input Output Input
II I_align IZmask r_align
II ~ ~~~~ ~~~~ ~~~~ ~~~~ ~ FFFF
II 1 ~~~~ ~~~~ ~~~~ FFFF 1 FFFF
II 2 ~~~~ ~~~~ FFFF FFFF 2 FFFF
II 3 ~~~~ FFFF FFFF FFFF 3 ~~~~
II If the first and last pixels are contained in
II aligned set, then IZmask = IZmask DR rZmask •
. endm

Output
rZmask

FFFF FFFF ~~~~
FFFF ~~~~ ~~~~
~~~~ ~~~~ ~~~~ 
~~~~ ~~~~ ~~~~ 
the same 64-bit

Example 9-19. Z Mask Procedure

9-28

then

PROGRAMMING EXAMPLES

9.13.3.2 ACCUMULATOR INITIALIZATION

When the first pixel of the line segment is not at an 8-byte boundary, initial values
placed in the accumulators (aZ, aB, aG, and aR) must be selected so that Zl, Red1,
Gm1, and Btu1 correspond to the correct pixel. The desired result is that shown by
Table 9-2. However, each value is a composite of two terms: one that is constant for each
edge pair (n*mZ, n*mR, n*mG, n*mB) and one that can vary with each scan line (Zl,
Red1, Gm1, Btul). The example assumes that the constant values have all been calcu­
lated and stored in a memory table of the format shown by Table 9-3. At the beginning
of each line segment the values appropriate to the alignment of the line segment are
retrieved from the table and added to the initial Z and color values, as shown in
Example 9-20.

9.13.4 The Inner Loop

Once the proper preparations have been made, only a minimal amount of code is
needed to render each scanline segment of a polygon. The code shown in Example 9-21
operates on four pixels in each loop. The left and right ends of the line segment go
through different logic paths so that the Z-buffer masks can be applied by the form
instruction. All the interior points are handled by the tight inner loop.

The controlling variable dX is zero-relative and is expressed as a number of pixels. The
value of dX also indicates alignment of the end-points with respect to the 4-pixel groups.
Unaligned left-end pixels are subtracted from dX before entering the inner loop; there­
fore, subsequent values of dX indicate the alignment of the right end. A value that is 3
mod 4 indicates that the right end is aligned, which explains the test for a value of - 5
near the end of the loop (- 5 mod 4 = 3). The fact that the value - 5 is loaded into
register Rb on every execution of the loop does not represent a programming ineffi­
ciency, because there is nothing else for the core unit to do at that point anyway.

Table 9-2. Accumulator Initial Values

Alignment Initial Z Accumulator Values

0 Z1 - 1*mZ Z1 - 3*mZ
2 Z1 - 2*mZ Z1 - 4*mZ
4 Z1 - 3*mZ Z1 - 5*mZ
6 Z1 - 4*mZ Z1 - 6*mZ

Alignment
Initial Color Accumulator Values

C = R, G, B

0 C1 - 1*mC C1 - 2*mC C1 - 3*mC C1 - 4*mC
2 C1 - 2*mC C1 - 3*mC C1 - 4*mC C1 - 5*mC
4 C1 - 3*mC C1 - 4*mC C1 - 5*mC C1 - 6*mC
6 C1 - 4*mC C1 - 5*mC C1 - 6*mC C1 - 7*mC

9-29

PROGRAMMING EXAMPLES

Table 9-3. Accumulator Initialization Table

Table Values
Alignment

*mZ *mR *mG *mB

0 -1, -3 -1, -2, -3,
2 -2, -4 -2 -3, -4,
4 -3, -5 -3, -4, -5,
6 -4, -6 -4, -5, -6,

II ACCUMULATOR INITIALIZATION TABLE
.data; .align .double

acc_init_tab:: .double [16] 0
.dsect

-4 -1, -2,
-5 -2, -3,
-6 -3, -4,
-7 -4, -5,

aBi: .double
aGi: . double
aRi: . double
aZi: .double

II Four initial 16-bit blue values
II Four initial 16-bit green values
II Four initial 16-bit red values
II Two initial 32-bit Z values

.end

.text
II INITIALIZE ACCUMULATORS
·macro acc_init Lalign, Rtab, Rx, Ry, Fx, Fxh

-3,
-4,
-5,
-6,

II Lalign -- left-end alignment C0 .. 3) in two-byte units
II Rtab -- register to use for addressing the table
II Rx, Ry, Fx, Fxh -- scratch registers

mov acc_init_tab, Rtab II

-4
-5
-6
-7

shl 5, Lalign, Lalign II Multiply by row width

-1, -2, -3,
-2, -3, -4,
-3, -4, -5,
-4, -5, -6

adds Lalign, Rtab, Rtab II Index row corresponding to alignment
fld·d aZiCRtab), aZ II Z
ixfr Zl, Fx II Z
fld.d aRiCRtab), aR II R--Load constant values
shl 16, Redl, Rx II R--Shift startingvalue to hi-order
fmov.ss Fx, Fxh II Z
shr 16, Rx, Ry II R--Redl stripped of sign bits
fiadd.dd Fx, aZ, aZ II Z
or Rx, Ry, Ry II R--Form CRedl,Redl)
ixfr Ry, Fx II R--Put in 64-bit register
fld.d aGiCRtab), aG II G
shl 16, Grnl, Rx II G
fmov.ss Fx, Fxh II R--Form CRedl,Redl,Redl,Redl)
shr 16, Rx, Ry II G
fiadd.dd Fx, aR, aR II R--Add variables to constants
or Rx, Ry, Ry I I G
ixfr Ry, Fx II G
fld.d aBiCRtab), aB II B
shl 16, Blul, Rx II B
fmov.ss Fx, Fxh II G
shr 16, Rx, Ry I I B
fiadd.dd Fx, aG, aG II G
or Rx, Ry, Ry II B
ixfr Ry, Fx II B
fmov.ss Fx, Fxh II B
fiadd.dd Fx, aB, aB II B

.endm

Example 9-20. Accumulator Initialization

9-30

-4
-5
-6
-7

PROGRAMMING EXAMPLES

II RENDERING PROCEDURE
II 16-bit pixels. 16-bit Z-buffer

and 3. Xl. Ra II Determine alignment of starting-point
acc_init Ra. Rb. Rc. Rd. Fa. Fah II Initialize accumulators
subs 4. Ra. Rb II 4 - alignment
subs dX. Rb. dX II Adjust dX by Xl alignment
II If dX <= 0. then right end is in same set as left end
and 3. dX. Rb II Determine alignment of right end
zmask Ra. Rb. Rc. Rd II Prepare both left- and right-end masks

left_end:: II Handle boundary conditions
d.faddz aZ. iZ3. aZ II Interpolate 2 even Z values

adds -8. FBP. FBP II Anticipate autoincrement
d.faddz aZ. iZl. aZ II Interpolate 2 odd Z values

adds -8. ZBP. ZBP II Anticipate autoincrement
d.form lZmask. newz II Mask 4 new Z values

fld.d 8CZBP). oldz II Fetch 4 old Z values
d.faddp aBo iB. aB II Interpolate 4 blue intensities

mov -4. Ra II Loop increment: 4 pixels
d.faddp aGo iG. aG II Interpolate 4 green intensities

adds -4. dX. dX II Prepare dX for bla at end of loop
d.faddp aR. iR. aR II Interpolate 4 red intensities

bla Ra. dX. Ll II Initial ize LCC
d.form f0. newi II Move 4 new pixels to 64-bit reg

adds 5. dX. r0 II Are there any whole sets CdX < -5)?
Ll: d.fzchks oldz. newz. newz II Mark closer points in PM[7 .. 4]

bc short_segment II Get out now if no whole set
d.fnop II

fld.d 16CZBP). oldz II Fetch 4 old Z values
inner_loop:: II Handle all interior points

d.faddz aZ. iZ3. aZ II Interpolate 2 even Z values
nop II

d.faddz aZ. iZl. at II Interpolate 2 odd Z values
fst·d newz. 8CZBP)++ II Update Z buf from prior loop

d.form f0. newz II Move 4 new Z values to 64-bit reg
nop II

d.fzchks f0. f0. f0 II Shift PM[7 .. 4] to PM[3 .. 0]
mov -5.· Rb II -5 mod 4 = 3. aligned right end

d.faddp aBo iB. aB II Interpolate 4 blue intensities
pst.d newi. 8CFBP)++ II Store pixels indicated by PM [3 .. 0]

d.faddp aGo iG. aG II Interpolate 4 green intensities
xor Rb. dX. r0 II Are we at an aligned right end?

d.faddp aR. iR. aR II Interpolate 4 red intensities
bc aligned_end II Taken if at an aligned right end -->

d.form f0. newi II Move 4 new pixels to 64-bit reg
bla Ra. dX. inner~loop II Loop if not at end of line segment

d.fzchks oldz. newz. newz II Mark closer points in PM[7 .. 4]
fld·d 16CZBP). oldz II Fetch 4 old Z values for next loop

II End of inner_loop. Right end not aligned

Example 9-21. 3-D Rendering (1 of 2)

9-31

PROGRAMMING EXAMPLES

right_end:: II Handle boundary conditions
d.faddz aZ, iZ3, aZ II Interpolate 2 even Z values

nop
d.faddz

fst.d
d.form

nop
d.fzchks

nop
d.faddp

pst.d
d.faddp

nop
d.faddp

nop

aligned_end::
d.form

br
d.fzchks

nop

short_segment::
d.fnop

adds
d.fnop

bnc.t
d.fnop

fld.d

II
aZ, iZl, aZ II Interpolate 2 odd Z values
newz, 8(ZBP)++ II Update Z buf from prior loop
rZmask, newz II Mask 4 new Z values

f~,

aB,
newi,
aG,

aR,

II
f~, f~ II Shift PM[7 .. 4] to PM[3 .. ~]

II
iB, aB II Interpolate 4 blue intensities
8(FBP)++ II Store pixels indicated by PM[3 .. ~]
iG, aG II Interpolate 4 green intensities

iR,
II

aR II Interpolate
II

red intensities

II No special boundary conditions
f~, newi II Move 4 new pixels to 64-bit reg
wrap_up II
oldz, newz, newz II Mark closer points in PM[7 .. 4]

II

II
8, dX, r~ II Is right end in same set as left?

II
right-end II Branch taken if no.

II
l6(ZBP), oldz II Fetch 4 old Z values

wrap_up:: II
fzchks

fst.d
fnop

pst.d

Store the un stored and leave dual mode.
f~, f~, f~ II Shift PM[7 .. 4] to PM[3 .. ~]
newz, 8(ZBP)++ II Update Z buf from prior loop

newi, 8(FBP)++ II Store pixels indicated by PM[3 .• ~]

Example 9-21. 3-D Rendering (2 of 2)

9-32

Instruction Set Summary A

APPENDIX A
INSTRUCTION SET SUMMARY

Key to abbreviations:

For register operands, the abbreviations that describe the operands are composed of two
parts. The first part describes the type of register:

c One of the control registers fir, psr, epsr, dirbase, db, or fsr

f One of the floating-point registers: fO through f31

One of the integer registers: rO through r31

The second part identifies the field of the machine instruction into which the operand is
to be placed:

srcl

srclni

srcls

src2

dest

The first of the two source-register designators, which may be
either a register or a 16-bit immediate constant or address offset.
The immediate value is zero-extended for logical operations and is
sign-extended for add and subtract operations (including addu and
subu) and for all addressing calculations.

Same as srcl except that no immediate constant or address offset
value is permitted.

Same as srcl except that the immediate constant is a 5-bit value
that is zero-extended to 32 bits.

The second of the two source-register designators.

The destination register designator.

Thus, the operand specifier isrc2, for example, means that an integer register is used and
that the encoding of that register must be placed in the src2 field of the machine
instruction.

Other (nonregister) operands are specified by a one-part abbreviation that represents
both the type of operand required and the instruction field into which the value of the
operand is placed:

#const

[broff

sbroff

A 16-bit immediate constant or address offset that the i860™
microprocessor sign-extends to 32 bits when computing the effec­
tive address.

A signed, 26-bit, immediate, relative branch offset.

A signed, 16-bit, immediate, relative branch offset.

A-1

brx

INSTRUCTION SET SUMMARY

A function that computes the target address by shifting the offset
(either lbroff or sbroff) left by two bits, sign-extending it to 32 bits,
and adding the result to the current instruction pointer plus four.
The resulting target address may lie anywhere within the address
space.

Other abbreviations include:

.p

.r

.W

.X

.y

.Z

Precision specification .ss, .sd, or .dd (.ds not permitted). Refer
to Table A-I.

Precision specification .55, .sd, .ds, or .dd. Refer to Table A-I.

.ss (32 bits), or .dd (64 bits)

.b (8 bits), .s (16 bits), or .I (32 bits)

.I (32 bits), .d (64 bits), or .q (128 bits)

.I (32 bits), or .d (64 bits)

mem.x (address) The contents of the memory location indicated by address with a
size of x.

PM The pixel mask, which is considered as an array of eight bits
PM[0] .. PM[7], where PM[O] is the least-significant bit.

Instruction Definitions in Alphabetical Order

adds isrcl, isrc2, idest .. Add Signed
idest ~ isrcl + isrc2
OF ~ (bit 31 carry ~ bit 30 carry)
CC set if isrc2 < - isrcl (signed)
CC clear if isrc2 ~ -isrcl (signed)

addu isrcl, isrc2, idest .. Add Unsigned
idest ~ isrcl + isrc2
OF ~ bit 31 carry
CC ~ bit 31 carry

Suffix

.ss

.sd

.dd

.ds

Table A-1. Precision Specification

Source Precision Result Precision

single single
single double
double double
double single

A-2

INSTRUCTION SET SUMMARY

and isrcl, isrc2, idest .. Logical AND
idest ~ isrcl and isrc2
CC set if result is zero, cleared otherwise

andh #const, isrc2, idest.. ... Logical AND High
idest ~ (#const shifted left 16 bits) and isrc2
CC set if result is zero, cleared otherwise

andnot isrcl, isrc2, idest ... Logical AND NOT
idest ~ not isrcl and isrc2
CC set if result is zero, cleared otherwise

andnoth #const, isrc2, idest.. .. Logical AND NOT High
idest ~ not (#const shifted left 16 bits) and isrc2
CC set if result is zero, cleared otherwise

bc lbroff ... Branch on CC
IF CC = 1
THEN continue execution at brx(lbroff)
FI

bc.t lbroff Branch on CC, Taken
IF CC = 1
THEN execute one more sequential instruction

continue execution at brx(lbroff)
ELSE skip next sequential instruction
FI

bla isrclni, isrc2, sbroff ... Branch on LCC and Add
LCC-temp clear if isrc2 < -isrclni (signed)
LCC-temp set if isrc2 ~ -isrclni (signed)

isrc2 ~ isrclni + isrc2
Execute one more sequential instruction
IF LCC
THEN LCC ~ LCC-temp

continue execution at brx(sbroff)
ELSE LCC ~ LCC-temp
FI

bnc lbroff .. Branch on Not CC
IF CC = 0
THEN continue execution at brx(lbroff)
FI

bnc.t lbroff ... Branch on Not CC, Taken
IF CC = 0
THEN execute one more sequential instruction

continue execution at brx(lbroff)
ELSE skip next sequential instruction
FI

A-3

INSTRUCTION SET SUMMARY

br lbroff .. Branch Direct Unconditionally
Execute one more sequential instruction.
Continue execution at br.x(lbroff).

bri [isrclni] .. Branch Indirect Unconditionally
Execute one more sequential instruction
IF any trap bit in psr is set
THEN copy PU to U, PIM to 1M in psr

clear trap bits

FI

IF DS is set and DIM is reset
THEN enter dual-instruction mode after executing one

instruction in single-instruction mode
ELSE IF DS is set and DIM is set

FI

THEN enter single-instruction mode after executing one
instruction in dual-instruction mode

ELSE IF
THEN

ELSE

FI
FI

DIM is set
enter dual-instruction mode

for next instruction pair
enter single-instruction mode

for next instructions pair

Continue execution at address in isrclni
(The original contents of isrclni is used even if the next instruction
modifies isrclni. Does not trap if isrclni is misaligned.)

bte isrcls, isrc2, sbroff .. Branch If Equal
IF isrcls = isrc2
THEN continue execution at br.x(sbroff)
FI

btne isrcls, isrc2, sbroff ... Branch If Not Equal
IF isrcls ~ isrc2
THEN continue execution at br.x(sbroff)
FI

call lbroff ... Subroutine Call
rl ~ address of next sequential instruction + 4
Execute one more sequential instruction
Continue execution at br.x(lbroff)

calli [isrclni] .. .Indirect Subroutine Call
rl ~ address of next sequential instruction + 4
Execute one more sequential instruction
Continue execution at address in isrclni

(The original contents of isrclni is used even if the next instruction
modifies isrclni. Does not trap if isrclni is misaligned. The
register isrclni must not be r1.)

A-4

INSTRUCTION SET SUMMARY

fadd.p fsrel, fsre2, fdest ... Floating-Point Add
fdest ~ fsrel + fsre2

faddp fsrel, fsre2, fdest ... Add with Pixel Merge
fdest ~ fsrel + fsre2
Shift and load MERGE register from fsrel + fsre2 as defined in Table A-2

faddz fsrel, fsre2, fdest ... Add with Z Merge
fdest ~ fsrel + fsre2
Shift MERGE right 16 and load fields 31..16 and 63 . .48 from fsrel + fsre2

famov.r fsrel, fdest ... Floating-Point Adder Move
fdest ~ fsrel

fiadd.w fsrel, fsre2, fdest .. Long-Integer Add
fdest ~ fsrel + fsre2

fisub.w fsrel, fsre2, fdest .. Long-Integer Subtract
frdest ~ fsrel - fsre2

fix.p fsrel, fdest .. Floating-Point to Integer Conversion
fdest ~ 64-bit value with low-order 32 bits equal to integer part of fsrel rounded

Floating-Point Load
fld.y isrel (isre2) , fdest .. (Normal)
fld.y isrel (isre2) + +, fdest ... (Autoincrement)

fdest ~ mem.y (isrel + isre2)
IF autoincrement
THEN isre2 ~ isrel + isre2
FI

Cache Flush
flush #eonst (isre2) .. (Normal)
flush #const(isre2) + + ... (Autoincrement)

Replace block in data cache with address (#const + isre2).
Contents of block undefined.
IF autoincrement
THEN isrc2 ~ #const + isrc2
FI

Table A-2. FADDP MERGE Update

Pixel Size Fields Loaded from
(from PS) Result into MERGE

8 63 .. 56, 47 . .40, 31 .. 24, 15 .. 8
16 63 .. 58, 47 . .42, 31 .. 26, 15 .. 10
32 63 .. 56, 31 .. 24

A·5

Right Shift Amount
(Field Size)

8
6
8

INSTRUCTION SET SUMMARY

fmlow.dd fsrcl, fsrc2, fdes! .. Floating·Point Multiply Low
fdes! ~ low-order 53 bits of fsrcl mantissa x fsrc2 mantissa
fdes! bit 53 ~ most significant bit of (fsrcl mantissa x fsrc2 mantissa)

fmov.r fsrcl, fdes! ... Floating·Point Reg·Reg Move
Assembler pseudo-operation

fmov.ss fsrcl, fdes!
fmov.dd fsrcl, fdes!
fmov.sd fsrcl, fdes!
fmov.ds fsrcl, fdes!

= fiadd.ss fsrcl, fO, fdes!
= fiadd.dd fsrcl, fO, fdes!
= famov.sd fsrcl, fdes!
= famov.ds fsrcl, fdes!

fmul.p fsrcl, fsrc2, fdes! ... Floating·Point Multiply
fdes! ~ fsrcl x fsrc2

fnop .. Floating·Point No Operation
Assembler pseudo-operation

fnop = shrd rO, rO, rO

form fsrcl, fdes! ... OR with MERGE Register
fdes! ~ fsrcl OR MERGE
MERGE~ 0

frcp.p fsrc2, fdes! .. Floating-Point Reciprocal
fdes! ~ 1 / fsrc2 with maximum mantissa error < 2- 7

frsqr.p fsrc2, fdes! ... Floating·Point Reciprocal Square Root
fdes! ~ 1 / y(fsrc2) with maximum mantissa error < 2- 7

Floating·Point Store
fst.y fdes!, fsrcl (fsrc2) .. (Normal)
fst.y fdes!, fsrcl (fsrc2) + + .. (Autoincrement)

mem.y (fsrc2 + fsrcl) ~ fdes!
IF auto increment
THEN fsrc2 ~ fsrcl + fsrc2
FI

fsub.p fsrcl, fsrc2, fdes! ... Floating.Point Subtract
fdes! ~ fsrcl - fsrc2

ftrunc.p fsrcl, fdes! .. Floating·Point to Integer Conversion
fdes! ~ 64-bit value with low-order 32 bits equal to integer part of fsrcl

fxfr fsrcl, ides! ... Transfer F·P to Integer Register
ides! ~ fsrcl

A-6

INSTRUCTION SET SUMMARY

fzchkl fsrcl, fsrc2, fdest .. 32-Bit Z-ButTer Check
Consider fsrcl, fsrc2, and fdest as arrays of two 32-bit

fields fsrcl (O)./srcl (1), fsrc2 (O)./src2 (1), and fdest (O)./dest (1)
where zero denotes the least-significant field.

PM ~ PM shifted right by 2 bits
FOR i = 0 to 1
DO

PM [i + 6] ~ fsrc2(i) :5 fsrcl(i) (unsigned)
fdest(i) ~ smaller of fsrc2(i) and fsrcl (i)

OD
MERGE~O

fzchks fsrcl, fsrc2, fdest ... 16-Bit Z-ButTer Check
Consider fsrcl, fsrc2, and fdest as arrays of four 16-bit

fields fsrcl (O)./srcl (3), fsrc2(O)./src2(3), and fdest(O)./dest(3)
where zero denotes the least-significant field.

PM ~ PM shifted right by 4 bits
FOR i = 0 to 3
DO
PM [i + 4] ~ fsrc2(i) :5 fsrcl(i) (unsigned)

fdest(i) ~ smaller of fsrc2(i) and fsrcl(i)
aD
MERGE~O

intoYr ... Software Trap on Integer Overflow
IF OF = 1
THEN generate trap with IT set in psr
FI

ixfr isrclni, fdest Transfer Integer to F-P Register
fdest ~ isrclni

Id.c csrc2, idest .. Load from Control Register
idest ~ csrc2

Id.x isrcl (isrc2) , idest .. Load Integer
idest ~ mem.x (isrcl + isrc2)

lock .. Begin Interlocked Sequence
Set BL in dirbase.
The next load or store that misses the cache locks that location.
Disable interrupts until the bus is unlocked.

moy isrc2, idest ... Register-Register Move
Assembler pseudo-operation

moy isrc2, idest = shl rO, isrc2, idest

A-7

INSTRUCTION SET SUMMARY

nop ... Core-Unit No Operation
Assembler pseudo-operation

nop = shl rO, rO, rO

or isrcl, isrc2, idest ... Logical OR
idest ~ isrcl OR isrc2
CC set if result is zero, cleared otherwise

orh #const, isrc2, idest .. Logical OR high
idest ~ (#const shifted left 16 bits) OR isrc2
CC set if result is zero, cleared otherwise

pfadd.p fsrcl, fsrc2, fdest.. .. Pipelined Floating-Point Add
fdest ~ last stage adder result
Advance A pipeline one stage
A pipeline first stage ~ fsrcl + fsrc2

pfaddp fsrcl, fsrc2, fdest .. Pipelined Add with Pixel Merge
fdest ~ last stage graphics result
last stage graphics result ~ fsrcl + fsrc2
Shift and load MERGE register from fsrcl + fsrc2 as defined in Table A-2

pfaddz fsrcl, fsrc2, fdest .. Pipelined Add with Z Merge
frdest ~ last stage graphics result
last stage graphics result ~ fsrcl + fsrc2
Shift MERGE right 16 and load fields 31 .. 16 and 63 .. 48 fromfsrcl + fsrc2

pfam.p fsrcl, fsrc2, fdest Pipelined Floating-Point Add and Multiply
fdest ~ last stage adder result
Advance A and M pipeline one stage

(operands accessed before advancing pipeline)
A pipeline first stage ~ A-op1 + A-op2
M pipeline first stage ~ M-op1 x M-op2

pfamov.r fsrcl, fdest .. Pipelined Floating-Point Adder Move
fdest ~ last stage adder result
Advance A pipeline one stage
A pipeline first stage ~ fsrcl

pfeq.p fsrcl, fsrc2, fdest .. Pipelined Floating-Point Equal Compare
fdest ~ last stage adder result
CC set if fsrcl = fsrc2, else cleared
Advance A pipeline one stage
A pipeline first stage is undefined, but no result exception occurs

pfgt.p fsrcl, fsrc2, fdest.. Pipelined Floating-Point Greater-Than Compare
(Assembler clears R-bit of instruction)
fdest ~ last stage adder result
CC set if fsrcl > fsrc2, else cleared
Advance A pipeline one stage
A pipeline first stage is undefined, but no result exception occurs

A-a

INSTRUCTION SET SUMMARY

pfiadd.w fsrcl, fsrc2, fdes! ... Pipelined Long-Integer Add
fdes! ~ last stage graphics result
last stage graphics result ~ fsrcl + fsrc2

pfisub.w fsrcl, fsrc2, fdes! ... Pipelined Long-Integer Subtract
fdes! ~ last stage graphics result
last stage graphics result ~ fsrcl - fsrc2

pfix.p fsrcl, fdes! ... Pipelined Floating-Point to Integer Conversion
fdes! ~ last stage adder result
Advance A pipeline one stage
A pipeline first stage ~ 64-bit value with low-order 32 bits

equal to integer part of fsrcl rounded

Pipelined Floating-Point Load
pfld.z isrcl (isrc2) , fdes! .. (Normal)
pfld.z isrcl (isrc2) + +, fdes! ... (Autoincrement)

fdes! ~ mem.z (third previous pfld's (isrcl + isrc2))
(where .z is precision of third previous pfld.z)

IF autoincrement
THEN isrc2 ~ isrcl + isrc2
FI

pfle.p fsrcl, fsrc2, fdes! Pipelined F-P Less-Than or Equal Compare
(Identical to pfgt.p except that

assembler sets R-bit of instruction.)
fdes! ~ last stage adder result
Co. clear if fsrcl :5 fsrc2, else set
Advance A pipeline one stage
A pipeline first stage is undefined, but no result exception occurs

pfmam.p fsrcl, fsrc2, fdes! Pipelined Floating-Point Add and Multiply
fdes! ~ last stage multiplier result
Advance A and M pipeline one stage

(operands accessed before advancing pipeline)
A pipeline first stage ~ A-opl + A-op2
M pipeline first stage ~ M-opl x M-op2

pfmov.r fsrcl, fdes! .. Pipelined Floating-Point Reg-Reg Move
Assembler pseudo-operation

pfmov.ss fsrcl, fdes! = pfiadd.ss fsrcl, fO, fdes!
pfmov.dd fsrcl, fdes! = pfiadd.dd fsrcl, fO, fdes!
pfmov.sd fsrcl, fdes! = pfamov.sd fsrcl, fdes!
pfmov.ds fsrcl, fdes! = pfamov.ds fsrcl, fdes!

pfmsm.p fsrcl, fsrc2, fdes! Pipelined Floating-Point Subtract and Multiply
fdes! ~ last stage multiplier result
Advance A and M pipeline one stage

(operands accessed before advancing pipeline)
A pipeline first stage ~ A-opl - A-op2
M pipeline first stage ~ M-opl x M-op2

A-9

INSTRUCTION SET SUMMARY

pfmul.p fsrcl, fsrc2, fdest .. Pipelined Floating-Point Multiply
fdest ~ last stage multiplier result
Advance M pipeline one stage
M pipeline first stage ~ fsrcl x fsrc2

pfmul3.p fsrcl, fsrc2, fdest .. Three-Stage Pipelined Multiply
fdest ~ last stage multiplier result
Advance 3-Stage M pipeline one stage
M pipeline first stage ~ fsrcl x fsrc2

pform fsrcl, fdest ... Pipelined OR to MERGE Register
fdest ~ last stage graphics result
last stage graphics result ~ fsrcl OR MERGE
MERGE~O

pfsm.p fsrcl, fsrc2, fdest Pipelined Floating-Point Subtract and Multiply
fdest ~ last stage adder result
Advance A and M pipeline one stage

(operands accessed before advancing pipeline)
A pipeline first stage ~ A-op1 - A-op2
M pipeline first stage ~ M-op1 x M-op2

pfsub.p fsrcl, fsrc2, fdest .. Pipelined Floating-Point Subtract
fdest ~ last stage adder result
Advance A pipeline one stage
A pipeline first stage ~ fsrcl - fsrc2

pftrunc.p fsrcl, fdest Pipelined Floating-Point to Integer Conversion
fdest ~ last stage adder result
Advance A pipeline one stage
A pipeline first stage ~ 64-bit value with low-order 32 bits

equal to integer part of fsrcl

pfzchkl fsrcl, fsrc2, fdest ... Pipelined 32-Bit Z-Buffer Check
Consider fsrcl, fsrc2, and fdest as arrays of two 32-bit

fields fsrcl (O).fsrcl (1), fsrc2 (O).fsrc2 (1), and fdest (O).fdest(l)
where zero denotes the least-significant field.

PM ~ PM shifted right by 2 bits
FOR i = 0 to 1
DO

PM [i + 6] ~ fsrc2(i) ~ fsrcl(i) (unsigned)
fdest(i) ~ last stage graphics result

last stage graphics result ~ smaller of fsrc2(i) and fsrcl (i)
OD
MERGE~ 0

A-10

INSTRUCTION SET SUMMARY

pfzchks fsrcl, fsrc2, fdes! .. Pipelined 16-Bit Z-Buffer Check
Consider fsrcl, fsrc2, and fdes! as arrays of four 16-bit

fields fsrcl (O).!srcl (3), fsrc2 (0).!src2 (3), and fdest (0).!dest(3)
where zero denotes the least-significant field.

PM ~ PM shifted right by 4 bits
FOR i = 0 to 3
DO

PM [i + 4] ~ fsrc2(i) ~ fsrcl(i) (unsigned)
fdest ~ last stage graphics result
last stage graphics result(i) ~ smaller of fsrc2 (i) and fsrcl (i)

aD
MERGE ~ 0

Pixel Store
pst.d fdest, #cons!(isrc2) .. {Normal)
pst.d fdest, #cons!(isrc2) + + ... {Autoincrement)

Pixels enabled by PM in mem.d (isrc2 + #const) ~ fdest
Shift PM right by 8/pixel size (in bytes) bits
IF autoincrement
THEN isrc2 ~ #const + isrc2
FI

shl isrcl, isrc2, idest ... Shift Left
ides! ~ isrc2 shifted left by isrcl bits

shr isrcl, isrc2, idest .. Shift Right
SC (in psr) ~ isrcl
idest~ isrc2 shifted right by isrcl bits

shra isrcl, isrc2, ides! ... Shift Right Arithmetic
idest ~ isrc2 arithmetically shifted right by isrcl bits

shrd isrclni, isrc2, idest .. Shift Right Double
ides! ~ low-order 32 bits of isrclni:isrc2 shifted right by SC bits

st.c srclni, csrc2 .. Store to Control Register
csrc2 ~ srclni

st.x isrclni, #const (isrc2) .. Store Integer
mem.x (isrc2 + #const) ~ isrclni

subs isrcl, isrc2, ides! ... Subtract Signed
ides! ~ isrcl - isrc2
OF ~ (bit 31 carry ~ bit 30 carry)
CC set if isrc2 > isrcl (signed)
CC clear if isrc2 ~ isrcl (signed)

A-11

INSTRUCTION SET SUMMARY

subu isrcl, isrc2, idest .. Subtract Unsigned
idest ~ isrcl - isrc2
OF ~ NOT (bit 31 carry)
CC ~ bit 31 carry
(i.e. CC set if isrc2 S; isrcl (unsigned)

CC clear if isrc2 > isrcl (unsigned»

trap isrclni, isrc2, idest .. Software Trap
·Generate trap with IT set in psr

unlock ... End Interlocked Sequence
Clear BL in dirbase.
The next load or store unlocks the bus.
Interrupts are enabled.

xor isrcl, isrc2, idest .. Logical Exclusive OR
idest ~ isrcl XOR isrc2
CC set if result is zero, cleared otherwise

xorh #const, isrc2, idest ... Logical Exclusive OR High
idest ~ (#const shifted left 16 bits) XOR isrc2
CC set if result is zero, cleared otherwise

A-12

Instruction Format and B
Encoding

APPENDIX B
INSTRUCTION FORMAT AND ENCODING

All instructions are 32 bits long and begin on a four-byte boundary. When operands are
registers, the encodings shown in Table B-1 are used.

Among the core instructions, there are two general formats: REG-format and CTRL­
format. Within the REG-format are several variations.

Table 8-1. Register Encoding

Register Encoding

rO 0

r31 31

10 0

131 31

Fault Instruction 0
Processor Status 1
Directory Base 2
Data Breakpoint 3
Floating-Point Status 4
Extended Processor Status 5

B-1

INSTRUCTION FORMAT AND ENCODING

REG-Format Instructions

OPCODE/I

OPCODE/I

GENERAL FORMAT

NULL/IMMEDIATE/OFFSET

16-BIT IMMEDIATE VARIANT (EXCEPT BTE AND BTNE)

ST, BLA, BTE, AND BLUE

15

IMMEDIATE CONSTANT
OR ADDRESS OFFSET

10

OFFSET LOW

BTE AND BTNE WITH 5-BIT IMMEDIATE

OFFSET LOW

o

o

240329i

The src2 field selects one of the 32 integer registers (most instructions) or one of the
control registers (st.e and Id.e). Dest selects one of the 32 integer registers (most instruc­
tions) or floating-point registers (fld, fst, pfld, pst, ixfr). For instructions where srcl is
optionally an immediate constant or address offset, bit 26 of the opcode (I-bit) indicates
whether srcl is immediate. If bit 26 is clear, an integer register is used; if bit 26 is set,
srcl is contained in the low-order 16 bits, except for bte and btne instructions. For bte
and btne, the five-bit immediate constant is contained in the srcl field. For st, bte, btne,
and bla, the upper five bits of the offset or broffset are contained in the dest field instead
of srcl, and the lower 11 bits of offset are the lower 11 bits of the instruction.

For Id and st, bits 28 and zero determine operand size as follows:

Bit 28 Bit 0 Operand Size

0 0 8-bits

0 1 a-bits

1 0 16-bits

1 1 32-bits

B-2

INSTRUCTION FORMAT AND ENCODING

When srcl is immediate and bit 28 is set, bit zero of the immediate value is forced to
zero.

For fld, fst, pfld, pst, and flush, bit 0 selects autoincrement addressing if set. Bits one and
two select the operand size as follows:

Bit 1 Bit 2 Operand Size

0 0 64-bits

0 1 128-bits

1 0 32-bits

1 1 32-bits

When srcl is immediate, bits zero and one of the immediate value are forced to zero to
maintain alignment. When bit one of the immediate value is clear, bit two is also forced
to zero.

8-3

INSTRUCTION FORMAT AND ENCODING

REG-Format Opcodes

Id.x
st.x
ixfr

fld.x, fst.x
flush
pst.d
Id.c, st.c
bri
trap

bte, btne
pfld.y

addu, -s, subu, -s,
shl, shr
shrd
bla
shra
and(h)
andnot(h)
or(h)
xor(h)

L Integer Length
o -8 bits

Load Integer
Store Integer
Integer to F-P Reg Transfer
(reserved)
Load/Store F-P
Flush
Pixel Store
Load/Store Control Register
Branch Indirect
Trap
(Escape for F-P Unit)
(Escape for Core Unit)
Branch Equal or Not Equal
Pipelined F-P Load
(CTRL-Format Instructions)
Add/Subtract
Logical Shift
Double Shift
Branch LCC Set and Add
Arithmetic Shift
AND
ANDNOT
OR
XOR
(reserved)

1 -16 or 32 bits (selected by bit 0)
LS Load/Store

o -Load
1 -Store

SO Signed/Ordinal
o -Ordinal
1 -Signed

H High
o -and, or, andnot, xor
1 - andh, orh, andnoth, xorh

B-4

31 30 29 28 27 26

0 0 0 L 0
0 0 0 L 1
0 0 0 0 1
0 0 0 1 1
0 0 1 0 LS
0 0 1 1 0
0 0 1 1 1
0 0 1 1 LS
0 1 0 0 0
0 1 0 0 0
0 1 0 0 1
0 1 0 0 1
0 1 0 1 E
0 1 1 0 0
0 1 1 x x
1 0 0 SO AS
1 0 1 0 LR
1 0 1 1 0
1 0 1 1 0
1 0 1 1 1
1 1 0 0 H
1 1 0 1 H
1 1 1 0 H
1 1 1 1 H
1 1 x x 1

AS Add/Subtract
o -Add
1 -Subtract

LR Left/Right
o - Left Shift
1 - Right Shift

E Equal
o - Branch on Not Equal
1 - Branch on Equal
Immediate
o - src1 is register
1 - src1 is immediate

I
1
0
0
I
1
1
0
0
1
0
1
I
I
x
I
I
0
1
I
I
I
I
I
0

INSTRUCTION FORMAT AND ENCODING

Core Escape Instructions

31 26 15 10 5 o

010011 reserved SRC1 reserved OPCODE

240329i

Core Escape Opcodes

4 3 2 o
(reserved) 0 0 0 0 0

lock Begin Interlocked Sequence 0 0 0 0 1
calli Indirect Subroutine Call 0 0 0 1 0

(reserved) 0 0 0 1 1
intovr Trap on Integer Overflow 0 0 1 0 0

(reserved) 0 0 1 0 1
(reserved) 0 0 1 1 0

unlock End Interlocked Sequence 0 0 1 1 1
(reserved) 0 1 x x x
(reserved) 1 0 x x x
(reserved) 1 1 x x x

B-5

INSTRUCTION FORMAT AND ENCODING

CTRL-Format Instructions

31 28 25 o

BROFFSET

240329i

CTRL-Format Opcodes

28 27 26

br Branch Direct 0 1 0
call Call 0 1 1
bc(.t) Branch on CC Set 1 0 T
bnc(.t) Branch on CC Clear 1 1 T

T Taken
o -bc or bnc
1 - bc.t or bnc.t

B-6

INSTRUCTION FORMAT AND ENCODING

Floating-Point Instruction Encoding

31 25 20 15 7 0

010010 SRC2 DEST SACI Iplolslnl OPCOOE

SRC1,SRC2
DEST

- Source; one of 32 floating-point registers
- Destination register

P

D

(instructions other than fxfr) one of 32 floating-point registers
(fxfr) one of 32 integer registers

Pipelining
1 - Pipelined instruction mode
o - Scalar instruction mode
Dual-Instruction Mode
1 - Dual-instruction mode
o - Single-instruction mode

S

R

8-7

Source Precision
1 - Double-precision source operands
o - Single-precision source operands
Result Precision
1 - Double-precision result
o - Single-precision result

240329i

INSTRUCTION FORMAT AND ENCODING

Floating-Point Opcodes

6 5

pfam Add and Multiply*
0 0 pfmam Multiply with Add*

pfsm Subtract and Multiply*
0 0 pfmsm Multiply with Subtract*

(p)fmul Multiply 0 1
fmlow Multiply Low 0 1
frcp Reciprocal 0 1
frsqr Reciprocal Square Root 0 1
pfmul3.dd 3-Stage Pipelined Multiply 0 1
(p)fadd Add 0 1
(p)fsub Subtract 0 1
(p)fix Fix 0 1
(p)famov Adder Move 0 1
pfgt/pfle** Greater Than 0 1
pfeq Equal 0 1
(p)ftrunc Truncate 0 1
fxfr Transfer to Integer Register 1 0
(p)fiadd Long-Integer Add 1 0
(p)fisub Long-Integer Subtract 1 0
(p)fzchkl Z-Check Long 1 0
(p)fzchks Z-Check Short 1 0
(p)faddp Add with Pixel Merge 1 0
(p)faddz Add with Z Merge 1 0
(p)form OR with MERGE Register 1 0

* pfam and pfsm have P-bit set; pfmam and pfmsm have P-bit clear.
** pfgt has R bit cleared; pfle has R bit set.

8-8

4

0

1

0
0
0
0
0
1
1
1
1
1
1
1
0
0
0
1
1
1
1
1

3 2 o

OPC

OPC

0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
1 0 1 0
0 0 0 0
1 0 0 1
1 1 0 1
0 1 1 1
1 1 1 1
0 0 0 0
0 0 0 1
1 0 1 0

Instruction Timings c

APPENDIX C
INSTRUCTION TIMINGS

i860™ microprocessor instructions take one clock to execute unless a freeze condition is
invoked. Freeze conditions and their associated delays are shown in the table below.
Freezes due to multiple simultaneous cache misses result in a delay that is the sum of
the delays for processing each miss by itself. Other multiple freeze conditions usually
add only the delay of the longest individual freeze.

Freeze Condition Delay

Instruction-cache miss Number of clocks to read instruction (from ADS
clock to first READY # clock) plus time to last
READY# of block when jump or freeze occurs
during miss processing plus two clocks if data
cache being accessed when instruction-cache
miss occurs.

Reference to destination of Id instruction that One plus number of clocks to read data (from
misses ADS clock to first READY# clock) minus number

of instructions executed since load (not counting
instruction that references load destination)

fld miss One plus number of clocks from ADS to first (or
second in the case of fld.q) READY returned

call, calli, fxfr, Id.c, or st.C and data cache load One plus number of clocks until first (or second
miss processing in progress in the case of 128-bit loads) READY returned

Id, st, pfld, fld, fst, or ixfr and data cache load One plus number of clocks until last READY
miss processing in progress returned

Reference to dest of Id, call, calli, fxfr, or Id.c in One clock
the next instruction. (Dest of call and calli is r1)

Reference to dest of fld, pfld, or ixfr in the next Two clocks in the first instruction; or one in the
two instructions second instruction

bc, bnc, bc.t, or bnc.t following addu, adds, One clock
subu, subs, pfeq, pfle, or pfgt

Fsrc1 of multiplier operation refers to result of One clock
previous operation (either scalar or pipelined)

Floating-point operation or graphics-unit If the scalar operation is fadd, fix, fmlow,
instruction or fst and scalar operation in fmul.ss, fmul.sd, ftrunc, or fsub, two minus the
progress other than frcp or frsqr number of instructions (or dual pairs) executed

after the scalar operation. If the scalar operation
is fmul.dd, three minus the number of instruc-
tions (or dual pairs) executed after it. Add one if
one or both of the following situations occur:
a. There is an overlap between the result regis-

ter(s) of the previous scalar operation, and
the source of the floating-point operation, and
the destination precision of the scalar opera-
tion is different from the source precision of
the floating-point operation.

b. The floating-point operation is pipelined and
its destination is not fO.

If the sum of the above terms is negative, there
is no delay.

C-1

INSTRUCTION TIMINGS

Freeze Condition Delay

Multiplier operation preceded by a double- One clock
precision multiply

TLB miss Five plus the number of clocks to finish two
reads plus the number of clocks to set A-bits (if
necessary)

pfld when three pfld's are outstanding One plus the number of clocks to return data
from first pfld

pfld hits in the data cache Two plus the number of clocks to finish all out-
standing accesses

Store pipe full (two store miss cycles pending or One plus the number of clocks until READY#
a 256-bit WB cycle pending plus external bus active on next 64-bit write cycle or 2nd READY #
pipeline full) and st or fst miss, Id miss, or flush of next 128-bit write cycle

Address pipe full (two internal bus cycles pend- Number of clocks until next non-repeated ad-
ing plus external bus pipeline full) and Id, fld, dress can be issued (Le., an address which is
pfld, st, fst not the 2nd-4th cycle of a cache fill, or the 2nd-

8th cycle of a CS8 mode instruction fetch, or the
2nd cycle of an 128-bit write)

Id or fld following st or fst hit One clock

Delayed branch not taken One clock

Nondelayed branch taken:
bc, bnc One clock
bte, btne Two clocks

Branch indirect brl One clock

st.e Two clocks

Result of graphics-unit instruction (other than One clock
fmov.dd) used in next instruction when the next
instruction is an adder or multiplier instruction

Result of graphics-unit instruction used in next One clock
instruction when the next instruction is a
graphics-unit instruction

flush followed by flush Three clocks minus the number of instructions
between the two flush instructions

fst followed by pipe lined floating-point operation One clock
that overwrites the register being stored

Some multiplies, depending on data pattern and Two clocks
rounding mode. This delay occurs on 2 data
patterns in every 256.

C-2

Instruction Characteristics 0

APPENDIX D
INSTRUCTION CHARACTERISTICS

The following table lists some of the characterisics of each instruction. The characteris­
tics are:

• What processing unit executes the instruction. The codes for processing units are:

A floating-point adder unit
E Core execution unit
G Graphics unit
M Floating-point mUltiplier unit

• Whether the instruction is pipelined or not. A P indicates that the instruction is
pipelined.

• Whether the instruction is a delayed branch instruction. A D marks the delayed
branches.

• Whether the instruction changes the condition code CC. A CC marks those instruc­
tions that change CC.

• Which faults can be caused by the instruction. The codes used for exceptions are:

IT Instruction Fault
SE Floating-Point Source Exception
RE Floating-Point Result Exception, including overflow, underflow, inexact

result
DAT Data Access Fault

Note that this is not the same as specifying at which instructions faults may be reported.
A fault is reported on the subsequent floating-point instruction plus pst, fst, and some­
times fld, pfld, and ixfr. See Section 7.4.2 for more information on result exception
reporting.

The instruction access fault IAT and the interrupt trap IN are not shown in the table
because they can occur for any instruction.

• Performance notes. These comments regarding optimum performance are recommen­
dations only. If these recommendations are not followed, the i860™ microprocessor
automatically waits the necessary number of clocks to satisfy internal hardware re­
quirements. The following notes define the numeric codes that appear in the instruc-
tion table: .

1. The following instruction should not be a conditional branch (be, bne, be.t, or
bne.t). .t.

2. The destination should not be a source operand of the next two instructions.

3. A load should not directly follow a store that is expected to hit in the data cache.

4. When the prior instruction is scalar, srcl should not be the same as the dest of
the prior operation. .

5. The [reg should not reference the destination of the next instruction if that
instruction is a pipelined floating-point operation.

D-1

INSTRUCTION CHARACTERISTICS

6. The destination should not be a source operand of the next instruction.

7. When the prior operation is scalar and multiplier opi is fsrei, fsre2 should not be
the same as the fdest of the prior operation.

8. When the prior operation is scalar, srei and sre2 of the current operation should
not be the same as dest of the prior operation.

9. A pfld should not immediately follow a pfld

• Programming restrictions. These indicate combinations of conditions that must be
avoided by programmers, assemblers, and compilers. The following notes define the
alphabetic codes that appear in the instruction table:

a. The sequential instruction following a delayed control-transfer instruction may not
be another control-transfer instruction, nor a trap instruction, nor the target of a
control-transfer instruction.

b. When using a bri to return from a trap handler, programmers should take care to
prevent traps from occurring on that or on the next sequential instruction. 1M
should be zero (interrupts disabled) when the bri is executed.

c. If dest is not zero, fsrei must not be the same as dest.

d. When fsrei goes to multiplier opi or to KR or KI, fsrei must not be the same as
rdest.

e. If dest is not zero, srei and sre2 must not be the same as dest.

f. Isrei must not be the same register as isre2 for the autoincrementing form of this
instruction.

Instruction Execution Pipelined? Sets Faults Performance Programming
Unit Delayed? CC? Notes Restrictions

adds E CC 1
addu E CC 1
and E CC
andh E CC
andnot E CC
andnoth E CC

bc E
bC.t E 0 a
bla E 0 a, f
bnc E
bnc.t E 0 a
br E 0 a

bri E 0 a, b
bte E
btne E
call E 0 6 a
calli E 0 6 a
fadd.p A SE,RE

0-2

INSTRUCTION CHARACTERISTICS

Instruction Execution Pipelined? Sets Faults Performance Programming
Unit Delayed? CC? Notes Restrictions

faddp G 8
faddz G 8
famov.r A SE
fiadd.w G 8
fisub.w G 8
fix.p A SE,RE
fld.y E OAT 2,3 f

flush E
fmlow.dd M 4
fmul.p M SE,RE 4
form G 8
frcp.p M SE,RE
frsqr.p M SE,RE

fst.y E OAT 5 f
fsub.p A SE,RE
ftrunc.p A SE,RE
fxfr G 6,8
fzchkl G 8
fzchks G 8

intovr E IT
ixfr E 2
Id.c E
Id.x E OAT 6
lock E
or E CC
orh E CC

pfadd.p A P SE,RE
pfaddp G P 8 e
pfaddz G P 8 e
pfamov.r A P SE
pfam.p A&M P SE,RE 7 d
pfeq.p A P CC SE 1
pfgt.p A P CC SE 1

pfiadd.w G P 8 e
pfisub.w G P 8 e
pfix.p A P SE,RE
pfld.z E P OAT 2, 9 f
pfle.p A P CC SE 1
pfmam.p A&M P SE,RE 7 d
pfmsm.p A&M P SE,RE 7 d

pfmul.p M P SE,RE 4 c
pfmul3.dd M P SE,RE 4 c
pform G P 8 e
pfsm.p A&M P SE,RE 7 d
pfsub.p A P SE,RE

0-3

INSTRUCTION CHARACTERISTICS

Instruction Execution Plpellned? Sets Faults Performance Programming
Unit Delayed? CC? Notes Restrictions

pftrunc.p A P SE.RE
pfzchkl G P 8
pfzchks G P 8
pst.d E OAT f
shl E
shr E

shra E
shrd E
st.c E
st.x E OAT
subs E CC 1
subu E CC 1

trap E IT
unlock E
xor E CC
xorh E CC

0-4

intel"
ALABAMA

tlntel Corp.
5015 Bradford Dr., #2
Huntsville 35805
Tel: (205) 830-4010
FAX: (205) 837-2640

ARIZONA

tlntel Corp.
11225 N. 28th Dr.
Suite 0-214
Phoenix 85029
Tel: (602) 869-4980
FAX: (602) 869-4294

~nlt~~ ~~r~i Dorado Place
Suite 301
Tucson 85715
Tel: (602) 299-6815
FAX: (602) 296-8234

CALIFORNIA

tlntel Corp.
21515 Vanowen Street
SUite 116
Canoga Park 91303
Tel: (818) 704-8500
FAX: (818) 340-1144

tlntel Corp.
2250 E. Imperial Highway
Suite 218
EI Segundo 90245
Tel: (213) 640-6040
FAX: (213) 640-7133

Intel Corp.
1510 Arden Way
Suite 101
Sacramento 95815
Tel: (916) 920-8096
FAX: (916) 920-8253

tlntel Corp.
9665 Chesapeake Dr.
Suite 325
San Diego 95123
Tel: (619) 292-8086
FAX: (619) 292-0628

tlntel Corp.·
400 N. Tustin Avenue
Suite 450
Santa Ana 92705
Tel: (714) 835-9642
TWX: 910-595-1114
FAX: (714) 541-9157

tlntel Corp.·
San Tomas 4
2700 San Tomas Expressway
2nd Floor
Santa Clara 95051
Tel: (408) 986-8086
TWX: 910-338-0255
FAX: (408) 727-2620

COLORADO

Intel Corp.
4445 Northpark Drive
Suite 100
::olorado Springs 80907
Tel: (719) 594-6622
FAX: (303) 594-0720

tlntel Corp.·
550 S. Cherry SI.
Suite 915
)enver 80222
rei: (303) 321-8086
rwx: 910-931-2289
=AX: (303) 322-8670

·Sales and Service Office
'Field Application Location

DOMESTIC SALES
CONNECTICUT MASSACHUSETTS

~~~t~~°ff.irm Corporate Park 
tlntel Corp.· 
Westford Corp. Center 

83 Wooster Heights Rd. 3 Carlisle Road 
Danbury 06810 2nd Floor 
Tel: (203) 748-3130 Westford 01886 
FAX: (203) 794-0339 Tel: (508) 692-3222 

TWX: 710-343-6333 
FLORIDA FAX: (508) 692-7867 

~~I ~.W.6th Way 
MICHIGAN 

Suite 100 tlntel Corp. 
FI. Lauderdale 33309 7071 Orchard Lake Road 
Tel: (305) 771-0600 SUite 100 
TWX: 510-956-9407 West Bloomfield 48322 
FAX: (305) 772-8193 Tel: (313) 851-8096 

FAX: (313) 851-8770 
tlntel Corp. 
5850 T.G. Lee Blvd. MINNESOTA 
Suite 340 
Orlando 32822 tlntel Corp. 
Tel: (407) 240-8000 3500 W. 80th SI. 
FAX: (407) 240-8097 Suite 360 

Bloomington 55431 
Intel Corp. Tel: (612) 835-6722 
11300 4th Street North TWX: 910-576-2867 
Suite 170 FAX: (612) 831-6497 
SI. Petersburg 33716 
Tel: (813) 577-2413 MISSOURI 
FAX: (813) 578-1607 

tlntel Corp. 

GEORGIA 4203 Earth City Expressway 
Suite 131 

Intel Corp. ~:1~~3~~ gg~~~90 20 Technology Parkway, N.W. 
Suite 150 FAX: (314) 291-4341 
Norcross 30092 
Tel: (404) 449-0541 NEW JERSEY 
FAX: (404) 605-9762 tlntel Corp.· 

Parkway 109 Office Center 
ILLINOIS 328 Newman Springs Road 
tlntel Corp.· Red Bank 07701 

300 N. Martingale Road Tel: (201) 747-2233 
Suite 400 FAX: (201) 747-0983 

Schaumburg 60173 tlntel Corp. 
Tel: (312) 605-8031 280 Corporate Center 
FAX: (312) 706-9762 75 Uvingston Avenue 

First Floor 
INDIANA Roseland 07068 

tlntel Corp. 
Tel: (201) 740-0111 
FAX: (201) 740-0626 

8777 Purdue Road 
Suite 125 NEW YORK 
Indianapolis 46268 
Tel: (317) 875-0623 Intel Corp.· 
FAX: (317) 875-8938 850 Cross Keys Office Park 

Fairport 14450 
IOWA Tel: (716) 425-2750 

TWX: 510-253-7391 
Intel Corp. FAX: (716) 223-2561 
1930 SI. Andrews Drive N.E. 

tlntel Corp.· 2nd Floor 
Cedar Rapids 52402 2950 Expressway Dr., South 
Tel: (319) 393-1294 Suite 130 

Islandia 11722 
Tel: (516) 231-3300 KANSAS 
TWX: 510-227-6236 

tlntel Corp. FAX: (516) 348-7939 

~~~:51~8.d~I~~. 0 tlntel Corp. 
Westage Business Center Overland Park 66210 Bldg. 300, Route 9 Tel: (913) 345-2727 Fishkill 12524 FAX: (913) 345-2076 Tel: (914) 897-3860

MARYLAND
FAX: (914) 897-3125

tlntel Corp.· NORTH CAROLINA

10010 Junelion Dr. tlntel Corp.
Suite 200 5800 Executive Center Dr.
Annapolis Junelion 20701 SUite 105
Tel: (301) 206-2860 Charlotte 28212
FAX: (301) 206-3677 Tel: (704) 568-8966

(301) 206-3678 FAX: (704) 535-2236

OFFICES
Intel Corp. tlntel Corp.·
5540 Centerview Dr. 7322 S.w. Freeway
Suite 215 Suite 1490
Raleigh 27606 Houston 77074
Tel: (919) 851-9537 Tel: (713) 988-8086
FAX: (919) 851·8974 TWX: 910·881-2490

FAX: (713) 988-3660
OHIO UTAH
tlntel Corp.· tlntel Corp.
3401 Park Center Drive 428 East 6400 South
Suite 220 Suite 104
Dayton 45414 Murray 84107
Tel: (513) 890-5350 Tel: (801) 263-8051
TWX: 810-450-2528 FAX: (801) 268-1457
FAX: (513) 890-8658

VIRGINIA
tlntel Corp.· tlntel Corp. 25700 Science Park Dr. 1504 Santa Rosa Road Suite 100 Suite 108
Beachwood 44122 Richmond 23288
Tel: (216) 464-2736 Tel: (804) 282-5668
TWX: 810-427-9298 FAX: (216) 464-2270 FAX: (804) 282-0673

WASHINGTON
OKLAHOMA tlntel Corp.

Intel Corp. 155 108th Avenue N.E.

6801 N. Broadway Suite 386

Suite 115 Bellevue 98004

Oklahoma City 73162 Tel: (206) 453-8086
TWX: 910-443-3002 Tel: (405) 848-8086 FAX: (206) 451-9556 FAX: (405) 840-9819

~ci:1 ~°r:fullan Road
OREGON Suite 102
tlntel Corp. Spokane 99206
15254 N.w. Greenbrier Parkway Tel: (509) 928-8086
Building B FAX: (509) 928-9467
Beaverton 97005 WISCONSIN Tel: (503) 645-8051
TWX: 910-467-8741 Intel Corp.
FAX: (503) 645-8181 330 S. Executive Dr.

Suite 102

PENNSYLVANIA
Brookfield 53005
Tel: (414) 784-8087

tlntel Corp.· FAX: (414) 796-2115
455 Pennsylvania Avenue
Suite 230
Fort Washington 19034

CANADA
Tel: (215) 641-1000 BRITISH COLUMBIA
TWX: 510-661-2077 Intel Semiconductor of FAX: (215) 641-0785 Canada, Ltd.
tl ntel Corp.· 4585 Canada Way
400 Penn Center Blvd. Suite 202
Suite 610 Burnaby V5G 4L6
Pittsburgh 15235 Tel: (604) 298-0387
Tel: (412) 823-4970 FAX: (604) 298-8234
FAX: (412) 829-7578 ONTARIO

PUERTO RICO tlntel Semiconductor of
Canada, Ltd.

tlntel Corp. 2650 Queensview Drive
Suite 250 South Industrial Park

P.O. Box 910 Ottawa K2B 8H6
Las Piedras 00671 Tel: (613) 829-9714

Tel: (809) 733-8616 FAX: (613) 820-5936

tlntel Semiconduelor of

TEXAS Canada, Ltd.
190 Anwell Drive

Intel Corp. Suite 500
8911 Capital of Texas Hwy. Rexdale M9W 6H8
Austin 78759 Tel: (416) 675-2105
Tel: (512) 794-8086 FAX: (416) 675-2438
FAX: (512) 338-9335 QUEBEC

tlntel Corp.· Intel Semiconduelor of
12000 Ford Road Canada, Ltd.
Suite 400 620 SI. Jean Boulevard
Dallas 75234 Pointe Claire H9R 3K2
Tel: (214) 241-8087 Tel: (514) 694-9130
FAX: (214) 484-1180 FAX: 514-694-0064

CG/SALE/l01789

DOMESTIC DISTRIBUTORS
ALABAMA tHamilton Electro Sales CONNECTICUT tHamilton/Avnet Electronics Arrow Electronics, Inc.

10950 W. Washington Blvd. 1130 Thorndale Avenue 7524 Standish Place
Arrow Electronics, Inc. Culver City 20230 tArrow Electronics, Inc. Bensenville 60106 Rockville 20855
1015 Henderson Road Tel: (213) 558-2458 12 Beaumont Road Tel: (312) 860-7780 Tel: 301-424-0244
Huntsville 35805 TWX: 910-340-6364 Wallingford 06492 TWX: 910-227-0060

MASSACHUSETTS Tel: (205) 837-6955 Tel: (203) 265-7741

tHamilton/Avnet Electronics Hamilton Electro Sales TWX: 710-476-0162 MTI Systems Sales Arrow Electronics, Inc.
1361B West 190th Street 1100 W. Thorndale 25 Upton Dr. 4940 Research Drive Hamilton/Avnet Electronics Itasca 60143

Huntsville 35805 Gardena 90248
Commerce Industrial Park Tel: (312) 773-2300

Wilmington 01887

Tel: (205) 837-7210 Tel: (213) 217-6700
Commerce Drive

Tel: (617) 935-5134

TWX: 810-726-2162
tHamilton/Avnet Electronics Danbury 06810 tPioneer Electronics tHamilton/Avnet Electronics

Tel: (203) 797-2800 1551 Carmen Drive 10D Centennial Drive
Pioneer/Technologies Group, Inc. 3002 'G' Street Elk Grove Village 60007 Peabody 01960

Ontario 91761 TWX: 710-456-9974
4825 University Square Tel: (312) 437-9680 Tel: (617) 531-7430
Huntsville 35805 Tel: (714) 989-9411 tPioneer Electronics TWX: 910-222-1834 TWX: 710-393-0382
Tel: (205) 837-9300

tAvnet Electronics
112 Main Street MTI Systems Sales TWX: 810-726-2197 Norwalk 06851 INDIANA 20501 Plummer Tel: (203) 853-1515

83 Cambridge SI.

ARIZONA Chatsworth 91351 TWX: 710-468-3373 tArrow Electronics, Inc.
Burlington 01813

Tel: (213) 700-6271 2495 Directors Row, Suite H Pioneer Electronics
tHamiiton/Avnet Electronics TWX: 910-494-2207 Indianapolis 46241 44 Hartwell Avenue
505 S. Madison Drive FLORIDA Tel: (317) 243-9353 Lexington 02173
Tempe 85281 tHamiiton Electro Sales

t Arrow Electronics, Inc. TWX: 810-341-3119 Tel: (617) 861-9200
Tel: (602) 231-5140 3170 Pullman Street

400 Fairway Drive TWX: 710-326-6617
TWX: 910-950-0077 Costa Mesa 92626 Hamilton/Avnet Electronics

Tel: (714) 641-4150 Suite 102 485 Gradle Drive MICHIGAN
Hamilton/Avnet Electronics TWX: 910-595-2638 Deerfield Beach 33441 Carmel 46032 Arrow Electronics, Inc.
30 South McKiemy Tel: (305) 429-8200 Tel: (317) 844-9333 755 Phoenix Drive Chandler 85226 tHamiiton/Avnet Electronics TWX: 510-955-9456 TWX: 810-260-3966 Ann Arbor 48104 Tel: (602) 961-6669 4103 Northgate Blvd. Arrow ElectroniCS, Inc. Tel: (313) 971-8220 TWX: 910-950-0077 Sacramento 95834 tPioneer Electronics

Tel: (916) 920-3150 37 Skyline Drive 6408 Castleplace Drive
TWX: 810-223-6020

Arrow Electronics, Inc. Suite 3101 Indianapolis 46250 Hamilton/Avnet Electronics
4134 E. Wood Street Wyle Distribution Group

Lake Marv 32746 Tel: (317) 849-7300 2215 29th Street S.E.
Phoenix 85040 124 Maryland Street Tel: (407) 323-0252 TWX: 810-260-1794 Space A5
Tel: (602) 437-0750 TWX: 510-959-6337 Grand Rapids 49508
TWX: 910-951-1550 EI Segundo 90254

Tel: (616) 243-8805 Tel: (213) 322-8100 tHamiiton/Avnet Electronics IOWA
Wyle Distribution Group 6801 NW. 15th Way

TWX: 810-274-6921

17855 N. Black Canyon Hwy. Wyle Distribution Group FI. Lauderdale 33309 Hamilton/Avnet Electronics Pioneer Electronics
Phoenix 85023 7382 Lampson Ave. Tet: (305) 971-2900 915 33rd Avenue, S.W. 4504 Broadmoor S.E.
Tel: (602) 249-2232 Garden Grove 92641 TWX: 510-956-3097 Cedar Rapids 52404 Grand Rapids 49508
TWX: 910-951-4282 Tet: (714) 891-1717 Tel: (319) 362-4757 FAX: 616-698-1831

TWX: 910-348-7140 or 7111 tHamiiton/Avnet Electronics tHamiiton/Avnet Electronics
CALIFORNIA 3197 Tech Drive North KANSAS 32487 Schoolcraft Road

Wyle Distribution Group SI. Petersburg 33702 Livonia 48150
Arrow ElectroniCS, Inc. 11151 Sun Center Drive Tel: (813) 576-3930 Arrow Electronics Tel: (313) 522-4700
10824 Hope Street Rancho Cordova 95670 TWX: 810-863-0374 8208 Melrose Dr., Suite 210 TWX: 810-282-8775
Cypress 90630 Tel: (916) 638-5282

tHamiiton/Avnet Electronics
Lenexa 66214

tPioneer/Michigan Tel: (714) 220-6300 Tel: (913) 541-9542
tWyle Distribution Group 6947 University Boulevard 13485 Stamford

Arrow ElectroniCS, Inc. 9525 Chesapeake Drive Winter Park 32792 tHamilton/Avnet Electronics Livonia 48150
19748 Dearborn Street San Diego 92123 Tel: (305) 628-3888 9219 Quivera Road Tel: (313) 525-1800
Chatsworth 91311 Tel: (619) 565-9171 TWX: 810-853-0322 Overland Park 66215 TWX: 810-242-3271
Tel: (213) 701·7500 TWX: 910-335·1590 tPioneer/Technoiogies Group, Inc.

Tel: (913) 888-8900 MINNESOTA TWX: 910·493·2086 TWX: 910·743-0005
tWyle Distribution Group

337 S. Lake Blvd. tArrow ElectroniCS, Inc.
tArow Electronics, Inc. Alta Monte Springs 32701 Pioneer/Tec Gr. 5230 W. 73rd Street
521 Weddell Drive 3000 Bowers Avenue Tel: (407) 834-9090 10551 Lockman Rd. Edina 55435
Sunnyvale 94086 Santa Clara 95051 TWX: 810·853·0284 Lenexa 66215 Tel: (612) 830·1800
Tel: (408) 745·6600 Tel: (408) 727·2500 Tel: (913) 492-0500 TWX: 910-576·3125
TWX: 910-339-9371 TWX: 910-338·0296 Pioneer/Technologies Group, Inc.

674 S. Military Trail tHamiiton/Avnet Electronics
Arrow ElectroniCS, Inc. tWyle Distribution Group Deerfield Beach 33442 KENTUCKY 12400 Whitewater Drive
9511 Ridgehaven Court 17872 Cowan Avenue Tel: (305) 428-8877 Minnetonka 55434
San Diego 92123 Irvine 92714 TWX: 510·955·9653 Hamilton/Avnet Electronics Tel: (612) 932·0600
Tel: (619) 565·4800 Tel: (714) 863-9953 1051 D. Newton Park

tPioneer Electronics TWX: 888-064 TWX: 910-595·1572 GEORGIA
Lexington 40511

7625 Golden Triange Dr.
tArrow ElectroniCS, Inc.

Tel: (606) 259·1475
SuiteG

2961 Dow Avenue Wyle Distribution Group tArrow Electronics, Inc. Eden Prairi 55343
Tustin 92680 26677 W. Agoura Rd. 3155 Northwoods Parkway MARYLAND Tel: (612) 944·3355
Tel: (714) 838-5422 Calabasas 91302 Suite A
TWX: 910-595-2860 Tel: (818) 880·9000 Norcross 30071 Arrow Electronics, Inc. MISSOURI

TWX: 372-0232 Tel: (404) 449-8252 8300 Guilford Drive tArrow Electronics, Inc.
tAvnet Electronics TWX: 810·766·0439 Suite H, River Center 2380 Schuetz
350 McCormick Avenue Columbia 21046 SI. Louis 63141
Costa Mesa 92626 COLORADO tHamiiton/Avnet Electronics Tel: (301) 995-0003 Tel: (314) 567-6888
Tel: (714) 754-6071 5825 D Peachtree Corners TWX: 710-236·9005 TWX: 910·764-0882
TWX: 910-595-1928 Arrow Electronics, Inc. Norcross 30092

Hamilton/Avnet Electronics tHamiiton/Avnet Electronics 7060 South Tucson Way Tel: (404) 447-7500
tHamiiton/Avnet Electronics Englewood 80112 TWX: 810·766·0432 6822 Oak Hall Lane 13743 Shoreline Court
1175 Bordeaux Drive Columbia 21045 Earth City 63045
Sunnyvale 94086

Tel: (303) 790·4444
Pioneer/Technologies Group, Inc. Tel: (301) 995·3500 Tel: (314) 344·1200

Tel: (408) 743·3300 tHamiiton/Avnet Electronics 3100 F Northwoods Place TWX: 710·862·1861 TWX: 910·762·0684
TWX: 910-339-9332 8765 E. Orchard Road Norcross 30071

tMesa Technology Corp. NEW HAMPSHIRE Te~(404) 448-1711
tHamiiton/Avnet Electronics Suite 708 TWX: 810-766·4515 9720 Patuxent Woods Dr. tArrow ElectroniCS, Inc.
4545 Ridgeview Avenue Englewood 80111 Columbia 21046 3 Perimeter Road
San Diego 92123 Tel: (303) 740·1017 Tel: (301) 290·8150 Manchester 03103
Tel: (619) 571·7500 TWX: 910·935-0787 ILLINOIS TWX: 710-828-9702 Tel: (603) 668-6968
TWX: 910-595-2638

tWyle Distribution Group Arrow ElectroniCS, Inc. tPioneer/Technoiogies Group, Inc. TWX: 710·220-1684

tHamiiton/Avnet Electronics 451 E. 124th Avenue 1140 W. Thorndale 9100 Gaither Road tHamiiton/Avnet Electronics
9650 Desoto Avenue Thornton 80241 Itasca 60143 Gaithersburg 20877 444 E. Industrial Drive
Chatsworth 91311 Tel: (303) 457·9953 Tel: (312) 250-0500 Tel: (301) 921·0660 Manchester 03103
Tel: (818) 700·1161 TWX: 910-936-0770 TWX: 312-250-0916 TWX: 710·828-0545 Tel: (603) 624-9400

tMicrocomputer System Technical Distributor Center CG/SALE/10n

DOMESTIC DISTRIBUTORS (Contd.)
NEW JERSEY

tArrow Electronics, Inc.
Four East Stow Road
Unit 11
Marlton 08053
Tel: (609) 596-8000
TWX: 710-897-0829

tArrow Electronics
6 Century Drive
Parsipanny 07054
Tel: (201) 538-0900

tHamilton/Avnet Electronics
1 Keystone Ave., Bldg. 36
Cherry Hill 08003
Tel: (609) 424-0110
TWX: 710-940-0262

tHamiiton/Avnet Electronics
10 Industrial
Fairfield 07006
Tel: (201) 575-5300
TWX: 710-734-4388

tMTI Systems Sales
37 Kulick Rd.
Fairfield 07006
Tel: (201) 227-5552

tPioneer Electronics
45 Route 46
Pinebrook 07058
Tel: (201) 575-3510
TWX: 710-734-4382

NEW MEXICO

Alliance Electronics Inc.
11030 Cochiti S.E.
Albuquerque 87123
Tel: (505) 292-3360
TWX: 910-989-1151

Hamilton/Avnet Electronics
2524 Baylor Drive S.E.
Albuquerque 87106
Tel: (505) 765-1500
TWX: 910-989-0614

NEW YORK

tArrow Electronics, Inc.
3375 Brighton Henrietta
Townline Rd.
Rochester 14623
Tel: (716) 275-0300
TWX: 510-253-4766

Arrow Electronics, Inc.
20 Oser Avenue
Hauppauge 11788
Tel: (516) 231-1000
TWX: 510-227-6623

Hamilton/Avnet
933 Motor Parkway
Hauppauge 11788
Tel: (516) 231-9800
TWX: 510-224-6166

tHamilton/Avnet Electronics
333 Metro Park
Rochester 14623
Tel: (716) 475-9130
TWX: 510-253-5470

tHamilton/Avnet Electronics
103 Twin Oaks Drive
Syracuse 13206
Tel: (315) 437-0288
TWX: 710-541-1560

tMTI Systems Sales
38 Harbor Park Drive
Port Washington 11050
Tel: (516) 621-6200

tPioneer Electronics
68 Corporate Drive
Binghamton 13904
Tel: (607) 722-9300
TWX: 510-252-0893

Pioneer Electronics
40 Oser Avenue
Hauppauge 11787
Tel: (516) 231-9200

tPioneer Electronics
60 Crossway Park West
Woodbury, Long Island 11797
Tel: (516) 921-8700
TWX: 510-221-2184

tPioneer Electronics
840 Fairport Park
Fairport 14450
Tel: (716) 381-7070
TWX: 510-253-7001

NORTH CAROLINA

tArrow Electronics, Inc.
5240 Greensdairy Road
Raleigh 27604
Tel: (919) 876-3132
TWX: 510-928-1856

tHamilton/Avnet Electronics
3510 Spring Forest Drive
Raleigh 27604
Tel: (919) 878-0819
TWX: 510-928-1836

Pioneer/Technologies Group, Inc.
9801 A-Southern Pine Blvd.
Charlotte 28210
Tel: (919) 527-8188
TWX: 810-621-0366

OHIO

Arrow Electronics, Inc.
7620 McEwen Road
Centerville 45459
Tel: (513) 435-5563
TWX: 810-459-1611

tArrow Electronics, Inc.
6238 Cochran Road
Solon 44139
Tel: (216) 248-3990
TWX: 810-427-9409

tHamilton/Avnet Electronics
954 Senate Drive
Dayton 45459
Tel: (513) 439-6733
TWX: 810-450-2531

Hamilton/Avnet Electronics
4588 Emery Industrial Pkwy.
Warrensville Heights 44128
Tel: (216) 349-5100
TWX: 810-427-9452

tHamiiton/Avnet Electronics
777 Brooksedge Blvd.
Westerville 43081
Tel: (614) 882-7004

tPioneer Electronics
4433 Interpoint Boulevard
Dayton 45424
Tel: (513) 236-9900
TWX: 810-459-1622

tPioneer Electronics
4800 E. 131 st Street
Cleveland 44105
Tel: (216) 587-3600
TWX: 810-422-2211

OKLAHOMA

Arrow Electronics, Inc.
1211 E. 51st St., Suite 101
Tulsa 74146
Tel: (918) 252-7537

tMicrocomputer System Technical Distributor Center

tHamilton/Avnet Electronics
12121 E. 51st St., Suite 102A
Tulsa 74146
Tel: (918) 252-7297

OREGON

tAlmac Electronics Corp.
1885 N.W. 169th Place
Beaverton 97005
Tel: (503) 629-8090
TWX: 910-467-8746

tHamilton/Avnet Electronics
6024 S.w. Jean Road
Bldg. C, Suite 10
Lake Oswego 97034
Tel: (503) 635-7848
TWX: 910-455-8179

Wyle Distribution Group
5250 N.E. Elam Young Parkway
Suite 600
Hillsboro 97124
Tel: (503) 640-6000
TWX: 910-460-2203

PENNSYLVANIA

Arrow Electronics, Inc.
650 Seco Road
Monroeville 15146
Tel: (412) 856-7000

Hamilton/Avnet Electronics
2800 Liberty Ave.
Pittsburgh 15238
Tel: (412) 281-4150

Pioneer Electronics
259 Kappa Drive
Pittsburgh 15238
Tel: (412) 782-2300
TWX: 710-795-3122

tPioneer/Technologies Group, Inc.
Delaware Valley
261 Gibralter Road
Horsham 19044
Tel: (215) 674-4000
TWX: 510-665-6778

TEXAS

tArrow Electronics, Inc.
3220 Commander Drive
Carrollton 75006
Tel: (214) 380-6464
TWX: 910-860-5377

tArrow Electronics, Inc.
10899 Kinghurst
Suite 100
Houston 77099
Tel: (713) 530-4700
TWX: 910-880-4439

tArrow Electronics, Inc.
2227 W. Braker Lane
Austin 78758
Tel: (512) 835-4180
TWX: 910-874-1348

tHamiiton/Avnet Electronics
1807 W. Braker Lane
Austin 78758
Tel: (512) 837-8911
TWX: 910-874-1319

tHamilton/Avnet Electronics
2111 W. Walnut Hill Lane
Irving 75038
Tel: (214) 550-6111
TWX: 910-860-5929

tHamilton/Avnet Electronics
4850 Wright Rd., Suite 190
Stafford 77477
Tel: (713) 240-7733
TWX: 910-881-5523

tPioneer Electronics
18260 Kramer
Austin 78758
Tel: (512) 835-4000
TWX: 910-874-1323

tPioneer Electronics
13710 Omega Road
Dallas 75234 .
Tel: (214) 386-7300
TWX: 910-850-5563

tPioneer Electronics
5853 Point West Drive
Houston 77036
Tel: (713) 988-5555
TWX: 910-881-1606

Wyle Distribution Group
1810 Greenville Avenue
Richardson 75081
Tel: (214) 235-9953

UTAH

Arrow Electronics
1946 Parkway Blvd.
Salt Lake City 84119
Tel: (801) 973-6913

tHamilton/Avnet Electronics
1585 West 2100 South
Salt Lake City 84119
Tel: (801) 972-2800
TWX: 910-925-4018

Wyle Distribution Group
1325 West 2200 South
Suite E
West Valley 84119
Tel: (801) 974-9953

WASHINGTON

tAlmac Electronics Corp.
14360 S.E. Eastgate Way
Bellevue 98007
Tel: (206) 643-9992
TWX: 910-444-2067

Arrow Electronics, Inc.
19540 68th Ave. South
Kent 98032
Tel: (206) 575-4420

tHamilton/Avnet Electronics
14212 N.E. 21 st Street
Bellevue 98005
Tel: (206) 643-3950
TWX: 910-443-2469

Wyle Distribution Group
15385 N.E. 90th Street
Redmond 98052
Tel: (206) 881-1150

WISCONSIN

Arrow Electronics, Inc.
200 N. Patrick Blvd., Ste. 100
Brookfield 53005
Tel: (414) 767-6600
TWX: 910-262-1193

Hamilton/Avnet Electronics
2975 Moorland Road
New Berlin 53151
Tel: (414) 784-4510
TWX: 910-262-1182

CANADA

ALBERTA

Hamilton/Avnet Electronics
2816 21st Street N.E.
Calgary T2E 6Z3
Tel: (403) 230-3586
TWX: 03-827-642

Zentronics
Bay No.1
3300 14th Avenue N.E.
Calgary T2A 6J4
Tel: (403) 272-1021

BRITISH COLUMBIA

tHamilton/Avnet Electronics
105-2550 Boundary
Burmalay V5M 3Z3
Tel: (604) 437-6667

Zentronics
108-11400 Bridgeport Road
Richmond V6X 1T2
Tel: (604) 273-5575
TWX: 04-5077-89

MANITOBA

Zentronics
60-1313 Border Unit 60
Winnipeg R3H OX4
Tel: (204) 694-1957

ONTARIO

Arrow Electronics, Inc.
36 Antares Dr.
Nepean K2E 7W5
Tel: (613) 226-6903

Arrow Electronics, Inc.
1093 Meyerside
Mississauga L5T 1 M4
Tel: (416) 673-7769
TWX: 06-218213

tHamilton/Avnet Electronics
6845 Rexwood Road
Units 3-4-5
Mississauga L4T 1 R2
Tel: (416) 677-7432
TWX: 610-492-8867

Hamilton/Avnet Electronics
6845 Rexwood Rd., Unit 6
Mississauga L4T 1 R2
Tel: (416) 277-0484

tHamilton/Avnet Electronics
190 Colonnade Road South
Nepean K2E 7L5
Tel: (613) 226-1700
TWX: 05-349-71

tZentronics
8 Tilbury Court
Brampton L6T 3T4
Tel: (416) 451-9600
TWX: 06-976-78

tZentronics
155 Colonnade Road
Unit 17
Nepean K2E 7Kl
Tel: (613) 226-8840

Zentronics
60-1313 Border St.
Winnipeg R3H 014
Tel: (204) 694-7957

QUEBEC

tArrow Electronics Inc.
4050 Jean Talon Quest
Montreal H4P lWl
Tel: (514) 735-5511
TWX: 05-25590

Arrow Electronics, Inc.
500 Avenue St-Jean Baptiste
Suite 280
Quebec G2E 5R9
Tel: (418) 871-7500
FAX: 418-871-6816

Hamilton/Avnet Electronics
2795 Halpern
St. Laurent H2E 7Kl
Tel: (514) 335-1000
TWX: 610-421-3731

Zentronics
817 McCaffrey
St. Laurent H4T 1 M3
Tel: (514) 737-9700
TWX: 05-827-535

CG/SALE/l01789

DENMARK

Inlel Denmark NS
Glentevej 61, 3rd Floor
2400 Copenhagen NV
Tel: (45) (31) 198033
TLX: 19567

FINLAND

Intel Finland OY
Ruosilantie 2
00390 Helsinki
Tel: (358) 0 544644
TLX: 123332

FRANCE

Intel Corporation S.A.R.lo
I, Rue Edison-BP 303
78054 SI. Quentin-en-Yvelines
Cedex
Tel: (33) (1) 30577000
TLX: 699016

EUROPEAN SALES OFFICES
WEST GERMANY ISRAEL NORWAY

Intel Semiconductor GmbH' Intel Semiconductor Ltd.' Intel Norway NS
Dornacher Strasse 1 Atidim Industrial Park-Neve Sharet Hvamveien 4-PO Box 92
8016 Feldkirchen bei Muenchen P.O. Box 43202 2013 Skjetten
Tel: (49) 089/90992-0 Tel-Aviv 61430 Tel: (47) (6) 842420
TLX: 5-23177 Tel: (972) 03-498080 TLX: 78018

TLX: 371215
Intel Semiconductor GmbH
Hohenzollern Strasse 5 ITALY SPAIN
3000 Hannover 1
Tel: (49) 0511/344081 Intel Corporation Italia S.p.A.' Intel Iberia S.A.
TLX: 9-23625 Milanofiori Palazzo E Zurbaran, 28

20090 Assago 28010 Madrid
Intel Semiconductor GmbH Milano Tel: (34) (1) 308.25.52
Abraham Lincoln Strasse 16-18 Tel: (39) (02) 89200950 TLX: 46880
6200 Wiesbaden TLX: 341286
Tel: (49) 06121/7605-0

SWEDEN TLX: 4-186183 NETHERLANDS

Intel Semiconductor GmbH Intel Semiconductor B.V.' Intel Sweden A.B.'
Zettachring lOA Poslbus 84130 Dalvagen 24
7000 Stuttgart 80 3099 CC Rotterdam 171 36 Solna
Tel: (49) 0711/7287-280 Tel: (31) 10.407.11.11 Tel: (46) 8 734 01 00
TLX: 7-254826 TLX: 22283 TLX: 12261

SWITZERLAND

Intel Semiconductor A.G.
Zuerichstrasse
8185 Winkel-Rueti bei Zuerich
Tel: (41) 01/860 62 62
TLX: 825977

UNITED KINGDOM

Intel Corporation (U.K.) Ltd.'
Pipers Way
Swindon, Wiltshire SN3 1 RJ
Tel: (44) (0793) 696000
TLX: 444447/8

EUROPEAN DISTRIBUTORS/REPRESENTATIVES
AUSTRIA Tekelec-Airtronic ITALY Ditram Bylech-Comway Systems

Bacher Electronics G.m.b.H.
Cite des Bruyeres

Intesi
Avenida Miguel Bombarda, 133 3 The Western Centre

Rue Carle Vernet - BP 2 1000 Lisboa Western Road
Rotenmuehlgasse 26 92310 Sevres Divisione In Industries GmbH Tel: (35) (1) 54 5313 Bracknell RG12 lRW
1120Wien Tel: (33) (1) 45 34 75 35 Viale Milanofiori TLX: 14182 Tel: (44) (0344) 55333
Tel: (43) (0222) 83 5646 TLX: 204552 Palazzo E/5 TLX: 847201
TLX: 31532 ~~?~g~sg~?a~J~~, SPAIN

WEST GERMANY Jermyn
BELGIUM TLX: 311351 ATD Electronica, S.A. Vestry Estate

Inelco Belgium S.A. Electronic 2000 AG Lasi Elettronica S.p.A. Plaza Ciudad de Viena, 6 Olford Road

Av. des CrOix de Guerre 94 Stahlgruberring 12 V. Ie Fulvio Testi, 126 28040 Madrid Sevenoaks

1120 Bruxelles 8000 Muenchen 82 20092 Cinisello Balsamo (MI) Tel: (34) (1) 234 40 00 Kent TN14 5EU

Oorlogskruisenlaan, 94 Tel: (49) 089/42001-0 Tel: (39) 02/2440012 TLX: 42477 Tel: (44) (0732) 450144

1120 Brussel TLX: 522561 TLX: 352040 In-SESA TLX: 95142

Tel: (32) (02) 216 01 60 In Multikomponent GmbH Telcom S.r.1. Calle Miguel Angel, 21-3 MMD TLX: 64475 or 22090 Poslfach 1265 Via M. Civitali 75 28010 Madrid Unit 8 Southview Park
Bahnhofstrasse 44 20148 Milano Tel: (34) (1) 4190957 Caversham

DENMARK 7141 Moeglingen Tel: (39) 02/4049046 TLX: 27461 Reading
In-Multikomponent

Tel: (49) 07141/4879 TLX: 335654 Metrologia Iberica, S.A. Berkshire RG4 OAF
TLX: 7264472 Tel: (44) (0734) 481666 Naverland 29 In Multicomponents Ctra. de Fuencarral, n.80

2600 Glostrup Jermyn GmbH Viale Milanofiori E/5 28100 Alcobendas (Madrid) TLX: 846669
Tel: (45) (0) 2 45 66 45 1m Dachsstueck 9 ~~?9(g~sg~?a~J~~>'

Tel: (34) (1) 653 86 11
Rapid Silicon TLX: 33 355 6250 Limburg

Tel: (49) 06431/508-0 TLX: 311351 SWEDEN Rapid House
Denmark Street

FINLAND TLX: 415257-0
Silverstar Nordisk Elektronik AB High Wycombe

OY Fintronic AB Metrologie GmbH Via Dei Gracchi 20 Torshamnsgatan 39 ~~17~~~h(~~~~r:4~~~~ 2ER Melkonkatu 24A Meglingerstrasse 49 20146 Milano Box 36
00210 Helsinki 8000 Muenchen 71 Tel: (39) 02/49961 16493 Kista TLX: 837931
Tel: (358) (0) 6926022 Tel: (49) 089/78042-0 TLX: 332189 Tel: (46) 08-03 46 30

Rapid Systems TLX: 124224 TLX: 5213189 TLX: 10547
NETHERLANDS Rapid House

FRANCE
Proelectron Vertriebs GmbH SWITZERLAND Denmark Street
Max Planck Strasse 1-3 Koning en Hartman Elektrotechniek High Wycombe

Almex 6072 Dreieich B.V. Industrade A.G. Buckinghamshire HPll 2ER
Zone industrielle d'Antony Tel: (49) 06103/30434-3 Energieweg 1 Hertistrasse 31 Tel: (44) (0494) 450244
48, rue de I'Aubepine TLX: 417903 2627 AP Delft 8304 Wallisellen TLX: 837931
BP 102 Tel: (31) (0) 15/609906 Tel: (41) (01) 8328111
92164 Antony cedex IRELAND TLX: 38250 TLX: 56788

YUGOSLAVIA Tel: (33) (1) 46 66 21 12 Micro Marketing Ltd. NORWAY TURKEY TLX: 250067 Glenageary Office Park Nordisk Elektronikk (Norge) NS
H.R. Microelectronics Corp.

Jermyn-Generim Glenageary Postboks 1 23 EMPA Electronic 2005 de la Cruz Blvd., Ste. 223
60, rue des Gemeaux Co. Dublin Smedsvingen 4 Lindwurmstrasse 95A Santa Clara, CA 95050
Silic 580 Tel: (21) (353) (01) 85 63 25 1364 Hvalstad 8000 Muenchen 2 U.S.A.
94653 Rungis cedex TLX: 31584 Tel: (47) (02) 84 62 10 Tel: (49) 089/53 80 570 Tel: (1) (408) 988-0286
Tel: (33) (1) 49 78 4978 TLX: 77546 TLX: 528573 TLX: 387452
TLX: 261585 ISRAEL

Rapido Electronic Components
Metrologie Eastronics Ltd. PORTUGAL UNITED KINGDOM

S.p.a.
Tour d'Asnieres 11 Rozanis Street ATD Portugal LOA Accent Electronic Components Ltd. Via C. Beccaria, 8
4, avo Laurent-Cely P.O.B. 39300 Rua Dos Lusiados, 5 Sala B Jubilee House, Jubilee Road· 34133 Trieste
92606 Asnieres Cedex Tel-Aviv 61392 1300 Lisboa Letchworth, Herts SG6 1TL Italia
Tel: (33) (1) 47 90 6240 Tel: (972) 03-475151 Tel: (35) (1) 64 80 91 Tel: (44) (0462) 686666 Tel: (39) 040/360555
TLX: 611448 TLX: 33638 TLX: 61562 TLX: 826293 TLX: 460461

'Field Application Location CG/SALE/l01789

AUSTRALIA

Intel Australia Ply. Ltd.·
Spectrum Building

~~g:sa~~;t~~E,L;~~~ 6

Tel: 612-957-2744
FAX: 612-923-2632

BRAZIL

Intel Semicondutores do Brazil L TDA
Av. Paulista, 1159-CJS 404/405
01311 - Sao Paulo - S.P.
Tel: 55-11-287-5899
TLX: 3911153146 ISDB
FAX: 55-11-287-5119

CHINA/HONG KONG

Intel PRC Corporation
15/F, Office 1, Citic Bldg.
Jian Guo Men Wai Street
Beijing, PRC
Tel: (1) 500-4850
TLX: 22947 INTEL CN
FAX: (1) 500-2953

Intel Semiconductor Ltd."
10/F East Tower
Bond Center
::lueensway, Central
-iong Kong
rei: (5) 8444-555
rLX: 63869 ISHLHK HX
=AX: (5) 8681-989

INTERNATIONAL SALES OFFICES
INDIA

Intel Asia Electronics, Inc.
4/2, Samrah Plaza
SI. Mark's Road
Bangalore 560001
Tel: 011-91-812-215065
TLX: 9538452875 DCBY
FAX: 091-812-215067

JAPAN

Intel Japan K.K.
5-6 Tokodai, Tsukuba-shi
Ibaraki, 300-26
Tel: 0298-47-8511
TLX: 3656-160
FAX: 029747-8450

Intel Japan K.K.·
Daiichi Mitsugi Bldg.
1-8889 Fuchu-cho
Fuchu-shi, Tokyo 183
Tel: 0423-60-7871
FAX: 0423-60-0315

Intel Japan KK·
Bldg. Kumagaya
2-69 Hon-cho
Kumagaya-shi, Saitama 360
Tel: 0485-24-6871
FAX: 0485-24-7518

~~~ui~e~~~'~:sashi-kOSU9i Bldg. 
915 Shinmaruko, Nakahara-ku 
Kawasaki-shi, Kanagawa 211 
Tel: 044-733-7011 
FAX: 044-733-7010 

~i~~~a~~~~i~tsugi Bldg. 
1-2-1 Asahi-machi 
Atsugi-shi, Kanagawa 243 
Tel: 0462-29-3731 
FAX: 0462-29-3781 

Intel Japan KK· 
Ryokuchi-Eki Bldg. 
2-4-1 Terauchi 
Toyonaka-shi, Osaka 560 
Tel: 06-863-1091 
FAX: 06-863-1084 

Intel Japan K.K. 
Shinmaru Bldg. 
1-5-1 Marunouchi 
Chiyoda-ku, Tokyo 100 
Tel: 03-201-3621 
FAX: 03-201-6850 

Intel Japan KK 
Green Bldg. 
1-16-20 Nishiki 
Naka-ku, Nagoya-shi 
Aichi 450 
Tel: 052-204-1261 
FAX: 052-204-1285 

KOREA 

Intel Technology Asia, Ltd. 
16th Floor, Life Bldg. 
61 YOido-dong, Youngdeungpo-Ku 
Seoul 150-010 
Tel: (2) 784-8186, 8286, 8386 
TLX: K29312 INTELKO 
FAX: (2) 784-8096 

SINGAPORE 

Intel Singapore Technology, Ltd. 
101 Thomson Road #21-05/06 
United Square 
Singapore 1130 
Tel: 250·7811 
TLX: 39921 INTEL 
FAX: 250-9256 

TAIWAN 

Intel Technology Far East Ltd. 
8th Floor, No. 205 
Bank Tower Bldg. 
Tung Hua N. Road 
Taipei 
Tel: 886·2-716-9660 
FAX: 886-2-717-2455 

INTERNATIONAL DISTRIBUTORS/REPRESENTATIVES 
~RGENTINA 

JAFSYS S.R.L. 
~hacabuco, 90-6 PISO 
I 069-Buenos Aires 
rei: 54-1-334-7726 
'AX: 54-1-334-1871 

:mail Electronics 
5-17 Hume Street 
iuntingdale, 3166 
-el: 011-61-3-544-8244 
'LX: AA 30895 
'AX: 011-61-3-543-8179 

~SD-Australia 
~05 Middleborough Rd. 
lox Hill, Victoria 3128 
'el: 038900970 
'AX: 03 8990819 

IRAZIL 

:lebra Microelectronica SA 
lua Geraldo Flausina Gomes, 76 
Oth Floor 
14575 - Sao Paulo - S.P. 
'el: 55-11-534-9641 
LX: 55-11-54593/54591 
'AX: 55-11-534-9424 

:HILE 

liN Instruments 
:uecia 2323 
:asilla 6055, Correo 22 
:antiago 
el: 56-2-225-8139 
LX: 240.846 RUD 

:HINA/HONG KONG 

11~~~,P;~c~7~~~f~~~~~~~I~~:' Ltd. 
hase " 26 Kwai Hei Street 
I.T., Kowloon 
long Kong 
el: 852-0-4223222 
WX: 39114 JINMI HX 
AX: 852-0-4261602 

=ield Application Location 

INDIA 

Micronic Devices 
Arun Complex 
No. 65 D.V.G. Road 
Basavanagudi 
Bangalore 560 004 
Tel: 011-91-812-600-631 

011-91-812-611-365 
TLX: 9538458332 MDBG 

Micronic Devices 
No. 516 5th Floor 
Swastik Chambers 
Sion, Trombay Road 
Chembur 
Bombay 400 071 
TLX: 9531 171447 MDEV 

Micronic Devices 
25/8, 1 st Floor 
Bada Bazaar Marg 
Old Rajinder Nagar 
New Delhi 110 060 
Tel: 011-91-11-5723509 

011-91-11-589771 
TLX: 031-63253 MONO IN 

Micronic Devices 
6-3-348/12A Dwarakapuri Colony 
Hyderabad 500 482 
Tel: 011-91-842-226748 

S&S Corporation 
1587 Kooser Road 
San Jose, CA 95118 
Tel: (408) 978-6216 
TLX: 820281 
FAX: (408) 978-8635 

JAPAN 

Asahi Electronics Co. Ltd. 
KMM Bldg. 2-14-1 Asano 
Kokurakita-ku 
Kitakyushu-shi 802 
Tel: 093-511-6471 
FAX: 093-551-7861 

C. Itoh Techno-Science Co., Ltd. 
4-8-1 Dobashi, Miyamae-ku 
Kawasaki-shi, Kanagawa 213 
Tel: 044-852-5121 
FAX: 044-877-4268 

Dia Semicon Systems, Inc. 
Flower Hill Shinmachi Higashi-kan 
1-23-9 Shinmachi, Setagaya-ku 
Tokyo 154 
Tel: 03-439-1600 
FAX: 03-439-1601 

Okaya Koki 
2-4-18 Sakae 
Naka-ku, Nagoya-shi 460 
Tel: 052-204-2916 
FAX: 052-204-2901 

Ryoyo Electro Corp. 
Konwa Bldg. 
1-12-22 Tsukiji 
Chuo-ku, Tokyo 104 
Tel: 03-546-5011 
FAX: 03-546-5044 

KOREA 

J-Tek Corporation 
6th Floor, Government Pension Bldg. 
24-3 Yoido-dong 
Youngdeungpo-ku 
Seoul 150-010 
Tel: 82-2-780-8039 
TLX: 25299 KODIGIT 
FAX: 82-2-784-8391 

Samsung Electronics 
150 Taepyungro-2 KA 
Chungku, Seoul 100-102 
Tel: 82-2-751-3985 
TLX: 27970 KORSST 
FAX: 82-2-753-0967 

MEXICO 

SSB Electronics, Inc. 
675 Palomar Street, Bldg. 4, Suite A 
Chula Vista, CA 92011 
Tel: (619) 585-3253 
TLX: 287751 CBALL UR 
FAX: (619) 585-8322 

Dicopel SA 
Tochtli 368 Fracc. Ind. San Antonio 
Azcapotzalco 
C.P. 02760-Mexico, D.F. 
Tel: 52-5-561-3211 
TLX: 177 3790 Dicome 
FAX: 52-5-561-1279 

PSI de Mexico 
Francisco Villas Esq. Ajusto 
Cuernavaca-Morelos-CEP 62130 
Tel: 52-73-13-9412 
FAX: 52·73-17-5333 

NEW ZEALAND 
Email Electronics 
36 Olive Road 
Penrose, Auckland 
Tel: 011·64-9-591-155 
FAX: 011-64-9-592-681 

SINGAPORE 

Electronic Resources PIe, Ltd. 
17 Harvey Road #04-01 
Singapore 1336 
Tel: 283·0888 
TWX: 56541 ERS 
FAX: 2895327 

SOUTH AFRICA 

Electronic Building Elements 
178 Erasmus Street (off Watermeyet Street) 
Meyerspark, Pretoria, 0184 
Tel: 011·2712-803-7680 
FAX: 011-2712-803-8294 

TAIWAN 

~~r~8~~e~1~0;i~~e~°lfa~~a~~~ 
Taipei, RO.C. 
Tel: 886·2-501-8231 
FAX: 886-2-505-6609 

Sertek 
15/F 135, Section 2 
Chien Juo North Rd. 
Taipei 10479, R.O.C. 
Tel: (02) 5010055 
FAX: (02)5012521 

(02) 5058414 

VENEZUELA 

P. Benavides SA 
Avilanes a Rio 
Residencia Kamarata 
Locales 4 AL 7 
La Candelaria, Caracas 
Tel: 58-2·574-6338 
TLX: 28450 
FAX: 58-2-572-3321 

CG/SALE/l01789 



ALABAMA 

'Intel Corp. 
5015 Bradford Dr., Suite 2 
Huntsville 35805 
Tel: (205) 830-4010 

ALASKA 

Intel Corp. 
c/o TransAlaska Data Systems 
300 Old Steese Hwy. 
Fairbanks 99701-3120 
Tel: (907) 452-4401 

Intel Corp. 
c/o TransAlaska Data Systems 
1 551 Lore Road 
Anchorage 99507 
Tel: (907) 522-1776 

ARIZONA 

'Intel Corp. 
11225 N. 28th Dr. 
Suite 0-214 
Phoenix 85029 
Tel: (602) 869-4980 

'Intel Corp. 
500 E. Fry Blvd., Suite M-15 
Sierra Vista 85635 
Tel: (602) 459-5010 

CALIFORNIA 

tlntel Corp. 
21515 Vanowen St., Ste. 116 
Canoga Park 91303 
Tel: (818) 704-8500 

'Intel Corp. 
2250 E. Imperial Hwy., Ste. 218 
EI Segundo 90245 
Tel: (213) 640-6040 

'Intel Corp. 
1900 Prairie City Rd. 
Folsom 95630-9597 
Tel: (916) 351-6143 

1 -800-468-3548 

Intel Corp. 
9665 Cheasapeake Dr., Suite 325 
San Diego 92123-1326 
Tel: (619) 292-8086 

"Intel Corp. 
400 N. Tustin Avenue 
Suite 450 
Santa Ana 92705 
Tel: (714) 835-9642 

CALIFORNIA 

2700 San Tomas Expressway 
Santa Clara 95051 
Tel: (408) 970-1700 

1-800-421-0386 

DOMESTIC SERVICE OFFICES 
"tlntel Corp. 
San Tomas 4 

KANSAS NEW YORK 

2700 San Tomas Exp., 2nd Floor 'Intel Corp. 'tlntel Corp. 
Santa Clara 95051 10985 Cody, Suite 140 2950 Expressway Dr. South 
Tel: (408) 986-8086 Overland Park 66210 Islandia 11722 

Tel: (913) 345-2727 Tel: (516) 231-3300 

COLORADO 'Intel Corp. 
MARYLAND Westage Business Center 

'Intel Corp. Bldg. 300, Route 9 
650 S. Cherry St., Suite 915 "tlntel Corp. Fishkill 12524 
Denver 80222 10010 JunC1ion Dr., Suite 200 Tel: (914) 897-3860 
Tel: (303) 321-8086 Annapolis Junction 20701 

Tel: (301) 206-2860 

CONNECTICUT 
FAX: 301-206-3677 NORTH CAROLINA 

'Intel Corp. 'Intel Corp. MASSACHUSETTS 
301 Lee Farm Corporate Park 5800 Executive Dr., Ste. 105 

Charlotte 28212 83 Wooster Heights Rd. "tlntel Corp. Tel: (704) 568-8966 Danbury 06810 3 Carlisle Rd., 2nd Floor 
Tel: (203) 748-3130 Westford 01886 "Intel Corp. 

Tel: (508) 692-1060 2700 Wycliff Road 
FLORIDA Suite 102 

MICHIGAN 
Raleigh 27607 

"Intel Corp. Tel: (919) 781-8022 
6363 NW. 6th Way, Ste. 100 'tlntel Corp. 
Ft. Lauderdale 33309 7071 Orchard Lake Rd., Ste. 100 OHIO Tel: (305) 771-0600 West Bloomfield 48322 

'Intel Corp. 
Tel: (313) 851-8905 "tlntel Corp. 

5850 T.G. Lee Blvd., Ste. 340 3401 Park Center Dr., Ste. 220 
Orlando 32822 MINNESOTA Dayton 45414 
Tel: (407) 240-8000 Tel: (513) 890-5350 

'tlntel Corp. 
'tlntel Corp. 

GEORGIA 3500 W. 80th St., Suite 360 
25700 Science Park Dr., Ste. 100 Bloomington 55431 
Beachwood 44122 

'Intel Corp. Tel: (612) 835-6722 
Tel: (216) 464-2736 

3280 Pointe Pkwy., Ste. 200 
Norcross 30092 MISSOURI 
Tel: (404) 449-0541 OREGON 

'Intel Corp. 
HAWAII 4203 Earth City Exp., Ste. 131 Intel Corp. 

Earth City 63045 15254 NW. Greenbrier Parkway 

'Intel Corp. Tel: (314) 291-1990 Building B 
Beaverton 97005 

U.S.I.S.C. Signal Batt. Tel: (503) 645-8051 
Building T-1521 

NEW JERSEY Shafter Plats 'Intel Corp. Shafter 96856 
"Intel Corp. 5200 N.E. Elam Young Parkway 
300 Sylvan Avenue Hillsboro 97123 

ILLINOIS Englewood Cliffs 07632 Tel: (503) 681-8080 
Tel: (201) 567-0821 

"tlntel Corp. 
300 N. Martingale Rd., Ste. 400 'Intel Corp. PENNSYLVANIA 
Schaumburg 60173 Parkway 109 Office Center 
Tel: (312) 605-8031 328 Newman Springs Road 'tlntel Corp. 

Red Bank 07701 455 Pennsylvania Ave., Ste. 230 
Tel: (201) 747-2233 Fort Washington 19034 

INDIANA Tel: (215) 641-1000 
'Intel Corp. 

'Intel Corp. 280 Corporate Center tlntel Corp. 
8777 Purdue Rd., Sle. 125 75 Livingston Ave., 1 sl Floor 400 Penn Center Blvd., Ste. 610 
Indianapolis 46268 Roseland 07068 Pittsburgh 15235 
Tel: (317) 875-0623 Tel: (201) 740-0111 Tel: (412) 823-4970 

CUSTOMER TRAINING CENTERS 
ILLINOIS 

300 N. Martingale Road 
SUite 300 
Schaumburg 60173 
Tel: (708) 706-5700 

1-800-421-0386 

MASSACHUSETTS 

3 Carlisle Road, First Floor 
Westford 01886 
Tel: (301) 220-3380 

1-800-328-0386 

MARYLAND 

10010 Junction Dr. 
Suite 200 
Annapolis JunC1ion 20701 
Tel: (301) 206-2860 

1-800-328-0386 

Intel Corp. 
1513 Cedar Cliff Dr. 
Camp Hill 17011 
Tel: (717) 761-0860 

PUERTO RICO 
Intel Corp. 
South Industrial Park 
P.O. Box 910 
Las Piedras 00671 
Tel: (809) 733-8616 

TEXAS 

Intel Corp. 
8815 Dyer St., Suite 225 
EI Paso 79904 
Tel: (915) 751-0186 

'Intel Corp. 
313 E. Anderson Lane, Suite 314 
Austin 78752 
Tel: (512) 454-3628 

"tlntel Corp. 
12000 Ford Rd., Suite 401 
Dallas 75234 
Tel: (214) 241-8087 

'Intel Corp. 
7322 S.W. Freeway, Ste. 1490 
Houston 77074 
Tel: (713) 988-8086 

UTAH 

Intel Corp. 
428 East 6400 South, Ste. 104 
Murray 84107 
Tel: (801) 263-8051 

VIRGINIA 

'Intel Corp. 
1504 Santa Rosa Rd., Ste. 108 
Richmond 23288 
Tel: (804) 282-5668 

WASHINGTON 

'Intel Corp. 
155 108th Avenue N.E., Ste. 386 
Bellevue 98004 
Tel: (206) 453-8086 

CANADA 
ONTARIO 

Intel Semiconductor of 
Canada, Ltd. 
2650 Queensview Dr., Ste. 250 
Ottawa K2B 8H6 
Tel: (613) 829-9714 
FAX: 613-820-5936 

Intel Semiconductor of 
Canada, Ltd. 
190 Attwell Dr., Sle. 102 
Rexdale M9W 6H8 
Tel: (416) 675-2105 
FAX: 416-675-2438 

SYSTEMS ENGINEERING MANAGERS OFFICES 
MINNESOTA 

3500 W. 80th Street 
Suile 360 
Bloomington 55431 
Tel: (612) 835-6722 

tSystem Engineering locations 
'Carry-in locations 

"Carry-in/mail-in locations 

NEW YORK 

2950 Expressway Dr., South 
Islandia 11722 
Tel: (506) 231-3300 

CG/SALE/1017E 
















