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i860™ XP MICROPROCESSOR 

• Parallel Architecture that Supports Up 
to Three Operations per Clock 
- One Integer or Control Instruction 
- Up to Two Floating-Point Results 

III High Performance Design 
- 40/50 MHz Clock Rate 
-100 Peak Single Precision MFLOPS 
- 75 Peak Double Precision MFLOPS 
- 64-Bit External Data Bus 
- 64-Bit Internal Code Bus 
-128-Bit Internal Data Bus 

III High Integration on One Chip 
- 32-Bit Integer and Control Unit 
- 32/64-Bit Pipelined Floating-Point 
- 64-Bit 3-D Graphics Unit 
- Paging Unit with 64 Four-Kbyte and 

16 Four-Mbyte Pages 
- 16 Kbyte Code Cache 
- 16 Kbyte Data Cache 

III Fast, Multiprocessor-Oriented Bus 
- Burst Cycles Move 400 MbytelSec 
- Hardware Cache Snooping 
- MESI Cache Consistency Protocol 
- Supports Second-Level Cache 
- Supports DRAM 

III Compatible with Industry Standards 
- ANSIIIEEE Standard 754-1985 for 

Binary Floating-Point Arithmetic 
-Intel 386™lintei 486™/i860TM Data 

Formats and Page Table Entries 
- Binary Compatible with i860™ XR 

Applications Instruction Set 
- Detached Concurrency Control Unit 

(CCU) Supports Parallel Architecture 
Extensions (PAX) 

- JEDEC 262-pin Ceramic Pin Grid 
Array Package 

-IEEE Standard 1149.1/D6 Boundary­
Scan Architecture 

III Easy to Use 
- On-Chip Debug Register 
-UNIX'/860 
- APX Attached Processor Executive 
- Assembler, Linker, Simulator, 

Debugger, C and FORTRAN 
Compilers, FORTRAN Vectorizer, 
Scalar and Vector Math Libraries 

- Graphics Libraries 

The Intel i860 XP Microprocessor (order code A80860XP) delivers supercomputing performance in a single 
VLSI component. The 32/64-bit architecture of the i860 XP microprocessor balances integer, floating point, 
and graphics performance for applications such as engineering workstations, scientific computing, 3-D graph­
ics workstations, and multiuser systems. Its parallel architecture achieves high throughput with RiSe design 
techniques, multiprocessor support, pipelined processing units, wide data paths, large on-chip caches, 2.5 
million transistor design, and fast 0.8-micron silicon technology. 

A31 - A3 063 - DO CONTROL 

Figure 0.1. Block Diagram 

'UNIX is a registered trademark of UNIX System Laboratories, Inc. 
Intel, i860, Intel386 and Intel486 are trademarks of Intel Corporation. 
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Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel product. No other circuit patent 
licenses are implied. Information contained herein supersedes previously published speCifications on these devices from Intel. May 1991 
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inter i860™ XP MICROPROCESSOR 

1.0 FUNCTIONAL DESCRIPTION 

As ~hown by .the block diagram on the front page, 
the 1860 XP Microprocessor consists of the following 
units: 

1. Integer Registers and Core Execution Unit 

2. Floating-Point Registers and Control Unit 

3. Floating-Point Adder Unit 

4. Floating-Point Multiplier Unit 

5. Graphics Unit 

6. Paging Unit 

7. Instruction Cache 

8. Data Cache 

9. Bus and Cache Control Unit 

10. Detached Concurrency Control Unit 

The core execution unit controls overall operation of 
the i860 XP microprocessor. It executes load, store 
integer, bit, I/O, and control-transfer operations, and 
fetches instructions for the floating-point unit as well. 
A s~t of 32 x 32-bit general-purpose registers are 
provided for the manipulation of integer data. Load 
and store instructions move 8-, 16-, and 32-bit data 
to ~nd from these registers. Its full set of integer, 
logical, and control-transfer instructions give the 
core unit the ability to execute complete systems 
software and applications programs. A trap mecha­
nism provides rapid response to exceptions and ex­
ternal interrupts. Debugging is supported by the abili­
ty to trap on data or instruction reference. 

The floating-point hardware is connected to a sepa­
rate set of floating-point registers, which can be ac­
cessed as 16 x 64-bit registers or as 32 x 32-bit 
registers. Load and store instructions can also ac­
cess these same registers as 8 x 128-bit registers. 
All floating-point and graphics instructions use these 
registers as their source and destination operands. 

The floating-point control unit controls both the float­
ing-point adder and the floating-point multiplier, issu­
ing instructions, handling all source and result ex­
ceptions, and updating status bits in the floating­
point status register. The adder and multiplier can 
operate in parallel, producing up to two results per 
clock. The floating-point data types, floating-point in­
structions, and exception handling all support the 
IEEE Standard for Binary Floating-Point Arithmetic 
(ANSI/IEEE Std 754-1985). 

The floating-point adder performs addition subtrac­
tion, comparison, and conversions on 64- ~nd 32-bit 
floating-point values. An adder instruction executes 
in three clocks; however, in pipelined mode, a new 
result is generated every clock. 

9 

The floating-point multiplier performs floating-point 
and integer multiply as well as floating-point recipro­
cal operations on 64- and 32-bit floating-point val­
ues. A multiplier instruction executes in three to four 
clocks; however, in pipelined mode, a new result can 
be generated every clock for single-precision and 
every other clock for double precision. 

The graphics unit supports three-dimensional draw­
ing in a graphics frame buffer, with color intensity 
shading and hidden surface elimination via the 
Z-buffer algorithm. The graphics unit recognizes the 
pixel as an 8-, 16-, or 32-bit integer data type. It can 
compute individual red, blue, and green color inten­
sity va!ues within a pixel; but it does so with parallel 
operations that take advantage of the 64-bit internal 
word size and 64-bit external bus. The graphics fea­
tures of the i860 XP microprocessor assume that the 
surface of a solid object is drawn with polygon 
patches which, like the pieces of a puzzle collec­
tively approximate the shape of the originai object. 
The col?r i~tensities of the vertices of the polygon 
and their distances from the viewer are known but 
the distances and intensities of the other p~ints 
must be calculated by interpolation. The graphics in­
structions of the i860 XP microprocessor directly aid 
such interpolation. 

The paging unit implements protected, paged, virtual 
memory. The paging unit uses two four-way set-as­
sociative cache memories called TLBs (Translation 
Lookaside Buffers) to perform the translation of logi­
cal address to physical address, and to check for 
access violations. The access protection scheme 
employs two levels of privilege: user and supervisor. 
One TLB supports 4 Kbyte pages, and has 64 en­
tries; the other supports 4 Mbyte pages, and has 16 
entries. 

The instruction cache is a four-way set-associative 
memory of 16 Kbytes, with 32-byte lines. It transfers 
up to 64 bits per clock (400 Mbyte/sec at 50 MHz). 

The data cache is a four-way set-associative memo­
ry of 16 Kbytes, with 32-byte lines. It transfers up to 
128 bits per clock (800 Mbyte/sec at 50 MHz). The 
i860 XP microprocessor normally uses write-back 
c~ching, i.e. memory writes update the cache (if ap­
plicable) Without necessarily updating memory im­
mediately; however, under both software and hard­
ware control, write-through and write-once policies 
can be implemented, or caching can be inhibited. 
The caches are transparent to applications soft­
ware. 

The bus and cache control unit performs data and 
instruction accesses for the core unit. It receives cy­
cle requests and specifications from the core unit 
performs the data-cache or instruction-cache mis~ 
processing, controls TLB translation, and provides 
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the interface to the external bus. Its pipelined struc­
ture supports up to three outstanding bus cycles. Its 
burst mode transfers data at up to 400 Mbyte/sec at 
50 MHz. In multiprocessor systems, it maintains 
cache consistency by monitoring bus activity in par­
allel with other CPU functions. 

The DCCU (detached concurrency control unit) is a 
compatible subset of the external CCU that expe­
dites loop-level parallelism and synchronization in 
multiprocessor systems. The DCCU consists of reg­
isters and a counter that allow a single i860 XP mi­
croprocessor to run binary code compiled for a mUl­
tiprocessor system adhering to the PAX parallel ap­
plications binary interface (ASI). 

The i860 XP microprocessor may to be used with or 
without an external, secondary cache built from 
82495XP and 82490XP cache components. An 
82495XP and 82490XP cache provides up to 512 
Kbytes of high-speed storage for data and instruc­
tion combined. In most cases, an 82495XP and 
82490XP cache can provide data to the CPU with 
zero wait states. The larger size of an external cache 
can provide an increased hit rate when the size or 
number of data structures and programs exceeds 
the size of the internal caches. In multiprocessor 
systems, the external cache serves as local memo­
ry, and can reduce bus traffic. An external cache 
also hides the processor from rest of system, which 
is a double advantage: 

1. The processor can be upgraded without affecting 
design of the memory and other subsystems. 

2. Slower and less expensive memory and I/O sub­
system designs can be employed without unduly 
lowering overall system performance. 

Refer to the 82495XP Cache Control/er/82490XP 
Cache RAM Data Sheet (Intel Order # 240956) for 
more information. 

2.0 PROGRAMMING INTERFACE 

The programmer-visible aspects of the architecture 
of the i860 XP microprocessor include data types, 
registers, instructions, and traps. 

2.1 Data Types 

The i860 XP microprocessor provides operations for 
integer and floating-point data. Integer operations 
are performed on 32-bit operands with some support 
also for 64-bit operands. Load and store instructions 
can reference 8-bit, 16-bit, 32-bit, 64-bit, and 128-bit 
operands. Floating-point operations are performed 
on IEEE-standard 32- and 64-bit formats. Graphics 
instructions operate on arrays of 8-, 16-, or 32-bit 
pixels. 
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2_1.1 INTEGER 

An integer is a 32-bit signed value in standard two's 
complement form. A 32-bit integer can represent a 
value in the range -2,147,483,648 (-231 ) to 
2,147,483,647 (+ 231 - 1). Arithmetic operations on 
8- and 16-bit integers can be performed by sign-ex­
tending the 8- or 16-bit values to 32 bits, then using 
the 32-bit operations. 

There are also add and subtract instructions that op­
erate on 64-bit long integers. 

Load and store instructions may also reference (in 
addition to the 32- and 64-bit formats previously 
mentioned) 8- and 16-bit items in memory. When an 
8- or 16-bit item is loaded into a register, it is con­
verted to an integer by sign-extending the value to 
32 bits. When an 8- or 16-bit item is stored from a 
register, the corresponding number of low-order bits 
of the register are used. 

2.1.2 ORDINAL 

Arithmetic operations are available for 32-bit ordi­
nals. An ordinal is an unsigned integer. An ordinal 
can represent values in the range 0 to 
4,294,967,295 (+ 232 - 1). 

Also, there are add and subtract instructions that op­
erate on 64-bit ordinals. 

2_1.3 SINGLE- AND DOUBLE-PRECISION REAL 

Figure 2.1 shows the real number formats. A single­
precision real (also called "single real") data type is 
a 32-bit binary floating-point number. Bit 31 is the 
sign bit; bits 30 .. 23 are the exponent; and bits 22 .. 0 
are the fraction. In accordance with ANSI/IEEE 
standard 754, the value of a single-precision real is 
defined as follows: 

1. If e = 0 and f =1= 0 or e = 255 then generate a 
floating-point source-exception trap when en­
countered in a floating-point operation. 

2. If 0 < e S; 255, then the value is (-1)S x 1.f x 
26 - 127. 

3. If e = 0 and f= 0, then the value is signed zero. 

A double-precision real (also called "double real") 
data type is a 64-bit binary floating-point number. Bit 
63 is the sign bit; bits 62 .. 52 are the exponent; and 
bits 51 .. 0 are the fraction. In accordance with ANSI/ 
IEEE standard 754, the value of a double-precision 
real is defined as follows: 

1. If e = 0 and f =1= 0 or e = 2047, then generate a 
floating-point source-exception trap when en­
countered in a floating-point operation. 
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2. If 0 < e < 2047, then the value is (-1)S x 1.1 x 
2e-1023. 

3. If e = 0 and f = 0, then the value is signed zero. 

The special values infinity, NaN ("Not a Number"), 
indefinite, and denormal generate a trap when en­
countered. The trap handler implements IEEE-stan­
dard results. 

A double real value occupies an even/odd pair of 
floating-point registers. Bits 31 .. 0 are stored in the 
even-numbered floating-point register; bits 63 .. 32 
are stored in the next higher odd-numbered floating­
point register. 

2.1.4 PIXEL 

A pixel may be 8-, 16-, or 32-bits long, depending on 
color and intensity resolution requirements. Regard-

Single-Precision Real 

240874-2 

less of the pixel size, the i860 XP microprocessor 
always operates on 64 bits of pixel data at a time. 
The pixel data type is used by two kinds of instruc­
tions: 

• The selective pixel-store instruction that helps im­
plement hidden surface elimination. 

• The pixel add instruction that helps implement 
3-D color intensity shading. 

To perform color intensity shading efficiently in a va­
riety of applications, the i860 XP microprocessor de­
fines three pixel formats according to Table 2.1. 

Figure 2.2 illustrates one way of assigning meaning 
to the fields of pixels. These assignments are for 
illustration purposes only. The i860 XP microproces­
sor defines only the field sizes, not the specific use 
of each field. Other ways of using the fields of pixels 
are possible. 

Double-Precision Real 

fRACTION 
L-----------EXPONENT 

L-------------SIGN 
240874-3 

o 

Figure 2.1. Real Number Formats 

Table 2.1. Pixel Formats 

Pixel Bits of Bits of Bits of 
Bits of 

Size Color 1 Color 2 Color 3 
Other 

(in bits) Intensity(1) Intensity(1) Intensity(1) 
Attribute 

(Texture, Color) 

8 N (";8) bits of intensity(2) 8-N 
16M 6 

I 
6 

I 
4 0 

32 8 8 8 8 

NOTES: 
1. The intensity attribute fields may be assigned to colors in any order convenient to the application. 
2. With 8-bit pixels, up to 8 bits can be used for intensity; the remaining bits can be used for any other attribute, such as 
color or texture. Bits that require interpolation (shading), such as those for intensity, must be the low-order bits of the pixel. 
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8-BIT PIXEL \-( __ c_OL_O_R ______ l 
'151-1/3121110 987 654 J 2 1 0 

IS-BIT PIXEL I RED GREEN BLUE 

32-BIT PIXEL 
313029282726252-1 '2322 21 20 19 18 17 16 15/-11312 "'0 9 B 765-132 1 0 

I RED GREEN BLUE I TEXTURE 

240874-4 

NOTE: 
These aSSignments of specific meanings to the fields of pixels are for illustration only. Only the field sizes are defined, 
not the specific use of each field. 

Figure 2.2. Pixel Format Example 

2.2 Register Set 

As Figure 2.3 shows, the i860 XP microprocessor 
has the following registers: 

• An integer register file 

• A floating-point register file 

• Control registers psr, epsr, db, dirbase, fir, fsr, 
bear, ccr, p3, p2, p1, pO 

• Special-purpose registers KR, KI, T, MERGE, 
STAT, and NEWCURR 

The control registers are accessible only by load 
and store control-register instructions; the integer 
and floating-point registers are accessed by arithme­
tic operations and load and store instructions. The 
special-purpose registers KR, KI, and T are used by 
floating-point instructions; MERGE is used by graph­
ics instructions. NEWCURR and STAT are used for 
concurrency control; they are accessed by memory 
load and store instructions. 

2.2.1 INTEGER REGISTER FILE 

There are 32 integer registers, each 32 bits wide, 
referred to as rO through r31, which are used for 
address computation and scalar integer computa­
tions. Register rO always returns zero when read. 
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2.2.2 FLOATING-POINT REGISTER FILE 

There are 32 floating-point registers, each 32-bits 
wide, referred to as fO through f31, which are used 
for floating-point computations. Registers fO and f1 
always return zero when read. The floating-point 
registers are also used by a set of integer opera­
tions, primarily for graphics computations . 

When accessing 64-bit floating-point or integer val­
ues, the i860 XP microprocessor uses an even/odd 
pair of registers. When accessing 128-bit values, it 
uses an aligned set of four registers (fO, f4, f8, f12, 
f16, f20, f24, or f28). The instruction must designate 
the lowest register number of the set of registers 
containing 64- or 128-bit values. Misaligned register 
numbers produce undefined results. The register 
with the lowest number contains the least significant 
part of the value. For 128-bit values, the register pair 
with the lower number contains the value from the 
lower memory address; the register pair with the 
higher number contains the value from the higher 
address. 

The 128-bit load and store instructions, along with 
the 128-bit data path between the floating-point reg­
isters and the data cache, help to sustain an extraor­
dinarily high rate of computation. 
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Figure 2.3. Registers and Data Paths 

2.2.3 PROCESSOR STATUS REGISTER 

The processor status register (psr) contains miscel­
laneous state information for the current process. 
Figure 2.4 shows the format of the psr. 

• BR (Break Read) and BW (Break Write) enable a 
data access trap when the operand address 
matches the address in the db register and a 
read or write (respectively) occurs. 

• Various instructions set CC (Condition Code) ac­
cording to tests they perform. The branch-on­
condition-code instructions test its value. The bla 
instruction sets and tests LCC (Loop Condition 
Code). 

• 1M (Interrupt Mode), if set, enables external inter­
rupts on the INT pin; disables interrupts on INT if 
clear. 1M does not affect parity error interrupts or 
interrupts on the BERR pin. 

• U (User Mode) is set when the i860 XP micro­
processor is executing in user mode; it is clear 
when the i860 XP microprocessor is executing in 
supervisor mode. In user mode, writes to some 
control registers are inhibited. This bit also con­
trols the memory protection mechanism. 

13 

• PIM (Previous Interrupt Mode) and PU (Previous 
User Mode) save the corresponding status bits 
(1M and U) on a trap, because those status bits 
are changed when a trap occurs. They are re­
stored into their corresponding status bits when 
returning from a trap handler with a branch indi­
rect instruction when a trap flag is set in the psr. 

• FT (Floating-Point Trap), DAT (Data Access 
Trap), IAT (Instruction Access Trap), IN (Inter­
rupt), and IT (Instruction Trap) are trap flags. 
They are set when the corresponding trap condi­
tion occurs. The trap handler examines these bits 
(and other trap bits in the epsr) to determine 
which condition or conditions have caused the 
trap. 

• DS (Delayed Switch) is set if a trap occurs during 
the instruction before dual-instruction mode is en­
tered or exited. If DS is set and DIM (Dual Instruc­
tion Mode) is clear, the i860 XP microprocessor 
switches to dual-instruction mode one instruction 
after returning from the trap handler. If DS and 
DIM are both set, the i860 XP microprocessor 
switches to single-instruction mode one instruc­
tion after returning from the trap handler. 
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BREAK READ 
BREAK WRITE 
CONDITION CODE 
LOOP CONDITION CODE 
INTERRUPT MODE 
PREVIOUS INTERRUPT MODE 
USER MODE 
PREVIOUS USER MODE 
INSTRUCTION TRAP 
INTERRUPT 
INSTRUCTION ACCESS TRAP 
DATA ACCESS TRAP 
FLOATING-POINT TRAP 
DELA YEO SWITCH 
DUAL INSTRUCTION MODE 

+ 
;»30292827262524 '2322 '2120 19 18 17. 1615 1413 12 " 109 87 65-1 32 I 0 

I I PS I 11K D D F D I I I P P I L C B B' PM SC ~~ ~ ~ S T A * N 
T U U ~ M g C W R; 

T 
~. 

l - KILL NEXT FP INSTRUCTION 
(RESERVED) 
SHIFT COUNT 
PIXEL SIZE 
PIXEL MASK 

Irll RESERVED BY INTEL CORPORATION 
mil CAN BE CHANGED ONLY FROM SUPERVISOR LEVEL 
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Figure 2.4. Processor Status Register 

• When a trap occurs, the i860 XP microprocessor 
sets DIM if it is executing in dual-instruction 
mode; it clears DIM if it is executing in single-in­
struction mode. If DIM is set after returning from a 
trap handler, the i860 XP microprocessor re­
sumes execution in dual-instruction mode. 

• When KNF (Kill Next Floating-Point Instruction) is 
set, the next floating-point instruction is sup­
pressed (except that its dual-instruction mode bit 
is interpreted). A trap handler sets KNF if the 
trapped floating-point instruction should not be 
reexecuted. 

• SC (Shift Count) stores the shift count used by 
the last right-shift instruction. It controls the num­
ber of shifts executed by the double-shift instruc­
tion. 

• PS (Pixel Size) and PM (Pixel Mask) are used by 
the pixel-store and other graphics instructions. 
The values of PS control pixel size as defined by 
Table 2.2. The bits in PM correspond to pixels to 
be updated by the pixel-store instruction pst.d. 
The low-order bit of PM corresponds to the low­
order pixel of the 64-bit source operand of pst.d. 
The number of low-order bits of PM that are actu­
ally used is the number of pixels that fit into 
64-bits, which depends upon PS. If a bit of PM is 
set, then pst.d stores the corresponding pixel. 
Refer also to the pst.d instruction in section 10. 
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Table 2.2. Values of PS 

Value 
Pixel Size Pixel Size 

in Bits in Bytes 

00 8 1 
01 16 2 
10 32 4 
11 (undefined) (undefined) 

2.2.4 EXTENDED PROCESSOR STATUS 
REGISTER 

The extended processor status register (epsr) con­
tains additional state information for the current pro­
cess beyond that stored in the psr. Figure 2.5 shows 
the format of the epsr. 

• The processor type is 2 for the i860 XP micro­
processor. 

• The stepping number has a unique value that dis­
tinguishes among different revisions of the proc­
essor. 

• IL (Interlock) is set if a trap occurs after a lock 
instruction but before the last BRDY # of the load 
or store following the subsequent unlock 
instruction. IL indicates to the trap handler that a 
locked sequence has been interrupted. When the 
trap handler finds IL set, it should scan back­
wards for the lock instruction and restart at that 
point. The absence of a lock instruction within 
30-33 instructions of the trap indicates a pro­
gramming error. 
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INTERLOCK -------------, 
WRITE-PROTECT MODE ---------, 
PARITY ERROR FLAG • --------,~ 

1. () 9/29/27/29/25/24/23/22 1201919 7 9 5 4 r3 12 I 110 9 9 7 9 5 4 3 2 I 0 

Fib P PAD BOB ~ DCS I B ~lwll STEPPING PROCESSOR I 
121 0 I T I I S F E M ~ f f I P I L NUMBER TYPE 

'---- BUS ERROR FLAG' 
'-----INTERRUPT 

'-------DATA CACHE SIZE 
~-------PAGE-TABLE BIT MODE 

'----------BIG EN DIAN MODE 
'-----------OVERFLOW FLAG 
~----------BEF OR PEF AT SUPERVISOR LEVEL' 
~----------TRAP ON DELAYED INSTRUCTION • 
~----------- TRAP ON AUTOINCREMENT 

'-------------- TRAP ON PIPELINE USE 
~------------- PIPELINE INSTRUCTION 

'---------------- STRONG ORDERING MODE 

El RESERVED BY INTEL CORPORATION 

rn CAN BE WRITTEN ONLY FROM SUPERVISOR LEVEL 

I'lilI READ ONLY (NOT WRITABLE BY SOFTWARE) 

o RESERVED IN THE 80860XR CPU 
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Figure 2.5. Extended Processor Status Register 

o WP (write protect) controls the semantics of the 
W bit of page table entries. A clear W bit in either 
the directory or the page table entry causes 
writes to be trapped. When WP is clear, writes 
are trapped in user mode, but not in supervisor 
mode. When WP is set, writes are trapped in both 
user and supervisor modes. 

• PEF (parity error flag) is set by the i860 XP micro­
processor when a parity error trap occurs. As 
soon as PEF is set, further parity error and bus 
error traps are masked. Software must clear PEF 
to reenable such traps. PEF is set at RESET. 

• BEF (bus error flag) is set by the i860 XP micro­
processor when the BERR pin is asserted, indi­
cating a bus error. As soon as BEF is set, further 
parity error and bus error traps are masked. Soft­
ware must clear BEF to reenable such traps. BEF 
is set at RESET. 

• INT (Interrupt) is the value of the INT input pin. 

• DCS (Data Cache Size) is a read-only field that 
tells the size of the on-chip data cache. The num­
ber of bytes actually available is 212 + Des; 
therefore, a value of zero indicates 4 Kbytes, one 
indicates 8 Kbytes, etc. The value of DCS for the 
i860 XP microprocessor is two, which indicates 
16 Kbytes. 

• PBM (Page-Table Bit Mode) has no effect in 
the i860 XP microprocessor. PBM is used by the 
i860 XR microprocessor. 

• BE (Big Endian) controls the ordering of bytes 
within a data item in memory. Normally (i.e. when 
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BE is clear) the i860 XP microprocessor operates 
in little endian mode, in which the addressed byte 
is the low-order byte. When BE is set (big endian 
mode), the low-order three bits of all 32-bit data 
load and store addresses are complemented, 
then masked to the appropriate boundary for 
alignment. This causes the addressed byte to be 
the most significant byte. Big endian mode af­
fects not only the memory load and store instruc­
tions but also the Idio, stio, Idint, and scyc 
instructions. 

o OF (Overflow Flag) is set by adds, addu, subs, 
and subu when integer overflow occurs. For 
adds and subs, OF is set if the carry from bit 31 
is different than the carry from bit 30. For addu, 
OF is set if there is a carry from bit 31. For subu, 
OF is set if there is no carry from bit 31. Under all 
other conditions, it is cleared by these instruc­
tions. OF may be changed by arithmetic instruc­
tions in either user or supervisor mode. It may be 
changed by the st.c instruction in supervisor 
mode only. OF controls the function of the intovr 
instruction. Inside the trap handler, OF may not 
be valid for traps other than one caused by 
intovr. 

• BS (bus or parity error trap in supervisor mode) is 
set by the i860 XP microprocessor when a bus or 
parity error occurs while the processor is in su­
pervisor mode. The operating system can use 
this bit to decide, for example, whether to abort 
the process (user mode) or reboot the system 
(supervisor mode). 
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• DI (trap on delayed instruction) is set by the 
i860 XP microprocessor when a trap occurs on a 
delayed instruction (the instruction located after a 
delayed branch instruction). When DI is set, the 
trap handler must restart the interrupted proce­
dure from the branch instruction rather than at 
the address in fir. 

• AI (trap on autoincrement instruction) is set by 
the i860 XP microprocessor when a trap occurs 
on an instruction with autoincrement (including 
the bla instruction). When AI is set, the trap han­
dier should undo the autoincrement (that is, re­
store src2 to its original value). 

• PT (trap on pipeline use) indicates to the i860 XP 
microprocessor that a trap should be generated 
and PI should be set when it executes an instruc­
tion that uses the floating-point or graphics unit. 
Such instructions include all the instructions des­
ignated "Floating-Point Unit" in Table 2.9, plus 
the pfld instruction. PT is set and cleared only by 
software. It can be used by the trap handler to 
avoid unnecessary saving and restoring of the 
pipelines (refer to section 2.8). When a trap due 
to PT occurs, the floating-point operation has not 
started, and the pipelines have not been ad­
vanced. Such a trap also sets the IT bit of psr. 

• The behavior of PI (pipeline instruction) depends 
on the setting of PT. If PT = 0, the i860 XP mi­
croprocessor sets PI when any pipelined instruc­
tion or pfld is executed. If PT = 1, the processor 
sets PI and traps when it decodes any instruction 
that uses the pipes, whether scalar or pipelined. 
Refer to section 2.8. 

• SO (strong ordering) indicates whether the proc­
essor is in strong ordering mode (SO = 1) or weak 
ordering mode (SO=O). SO is set if the EWBE# 
pin is active (LOW) at RESET. (Refer to the para­
graphs on write cycle reordering in section 5.) 

LATE BACK -OFF MODE • 
CODE SIZE 8-BITS 
REPLACEM ENT BLOCK 
REPLACEMENT CONTROL 

2.2.5 DATA BREAKPOINT REGISTER 

The data breakpoint register (db) is used to gener­
ate a trap when the i860 XP microprocessor access­
es an operand at the virtual address stored in this 
register. The trap is enabled by BR and BW in psr. 
When comparing, a number of low order bits of the 
address are ignored, depending on the size of the 
operand. For example, a 16-bit access ignores the 
low-order bit of the address when comparing to db; 
a 32-bit access ignores the low-order two bits. This 
ensures that any access that overlaps the address 
contained in the register will generate a trap. The 
trap occurs before the register or memory update by 
the load or store instruction. 

2.2.6 DIRECTORY BASE REGISTER 

The directory base register dirbase (shown in Figure 
2.6) controls address translation, caching, and bus 
options. 

• ATE (Address Translation Enable), when set, en­
ables the virtual-address translation algorithm. 

• DPS (DRAM Page Size) controls how many bits 
to ignore when comparing the current bus-cycle 
address with the previous bus-cycle address to 
generate the NENE# signal. This feature allows 
for higher speeds when using static column or 
page-mode DRAMs and consecutive reads and 
writes access the same column or page. The 
comparison ignores the low-order 12 + DPS bits. 
A value of zero is appropriate for one bank of 
256K x n RAMs, 1 for 1 M x n RAMS, etc. For 
interleaved memory, increase DPS by one for 
each power of interleaving-add one for 2-way, 
two for 4-way, etc. 

+ ! 
1S0292827262520/2S2221 201918171615 lollS 12 110 9 8 7 6 50/ S 2 I 0 

I DIRECTORY TABLE BASE (DTB) RC I C L I B A 
RB i B T L 

DPS T. 
E, 

I-CACHE, TLB INVALIDATE t l BUS LOCK 
DRAM PAGE SIZE 
ADDRESS TRANSLATION ENABLE 

[!] RESERVED IN 80860XR CPU 
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Figure 2.6. Directory Base Register 
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o When BL (Bus Lock) is set, external bus access­
es are locked. The LOCK# signal is asserted 
with the next bus cycle (excluding instruction 
fetch and write-back cycles) whose internal bus 
request is generated after BL is set. It remains set 
on every subsequent bus cycle as long as BL re­
mains set. The LOCK# signal is deasserted on 
the next load or store instruction after BL is 
cleared. Traps immediately clear BL. The lock 
and unlock instructions control the BL bit. The 
result of modifying BL with the st.C instruction is 
not defined. 

o ITI (Cache and TLB Invalidate), when set in the 
value that is loaded into dirbase, causes all en­
tries in the instruction cache and virtual tags in 
the address-translation cache (TLB) to be invali­
dated. Also invalidates all virtual tags in the data 
cache. The ITI bit does not remain set in dirbase. 
ITI always appears as zero when reading 
dirbase. 

o When software sets the LB bit, the i860 XP micro­
processor enters two-clock late back-off mode. 
This mode gives two additional clock periods of 
decision time to the external logic that may need 
to use the BOFF # signal to cancel a bus cycle or 
data transfer. If the processor enters one-clock 
late back-off mode during RESET via configura­
tion pin strapping, the LB bit has no effect, and it 
is impossible to enter two-clock late back-off 
mode. Furthermore, software cannot exit two­
clock late back-off mode once it is activated; the 
LB bit cannot be cleared except by resetting the 
processor. 

o When CS8 (Code Size 8-Bit) is set, instruction 
cache misses are processed as 8-bit bus cycles. 
When this bit is clear, instruction cache misses 
are processed as 64-bit bus cycles. This bit can 
not be set by software; hardware sets this bit at 
initialization time. It can be cleared by software 
(one time only) to allow the system to execute out 
of 64-bit memory after bootstrapping from 8-bit 
EPROM. A nondelayed branch to code in 64-bit 
memory should directly follow the st.c (store con­
trol register) instruction that clears CS8, in order 
to make the transition from 8-bit to 64-bit memory 
occur at the correct time. The branch instruction 
must be aligned on a 64-bit boundary. 

• RB (Replacement Block) identifies the cache line 
(block) to be replaced by cache replacement al­
gorithms. RB conditions the cache flush instruc­
tion flush, which is discussed in Section 10. Ta­
ble 2.3 explains the values of RB. 

• RC (Replacement Control) controls cache re­
placement algorithms. Table 2.4 explains the sig­
nificance of the values of RC. 
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• DTB (Directory Table Base) contains the high-or­
der 20 bits of the physical address of the page 
directory when address translation is enabled (i.e. 
ATE = 1). The low-order 12 bits of the address 
are zeros. 

Table 2.3. Values of RB 

Value 
Replace Replace Instruction 

TLB Block and Data Cache Block 

00 0 0 
01 1 1 
10 2 2 
1 1 3 3 

Table 2.4. Values of RC 

Value Meaning 

00 Selects the normal (random) 
replacement algorithm where any block 
in the set may be replaced on cache 
misses in all caches. 

01 Instruction, data, and TLB cache misses 
replace the block selected by AB. This 
mode is used for cache and TLB testing. 

10 Data cache misses replace the block 
selected by AB. Instruction and TLB 
caches use random replacement. This 
mode is used when flushing the data 
cache with the flush instruction. 

11 Disables data cache replacement. 
Instruction and TLB caches use random 
replacement. 

2.2.7 FAULT INSTRUCTION REGISTER 

When a trap occurs, this register contains the ad­
dress of the trapping instruction (not necessarily the 
instruction that created the conditions that required 
the trap). The fir is a read-only register. In single-in­
struction mode, using a Id.c instruction to read the 
fir anytime except the first time after a trap saves in 
ides! the address of the Id.c instruction; in dual-in­
struction mode, the address of its floating-point com­
panion (address of the Id.c - 4) is saved. 

2.2.8 FLOATING-POINT STATUS REGISTER 

The floating-point status register (fsr) contains the 
floating-point trap and rounding-mode status for the 
current process. Figure 2.7 shows its format. 
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• If FZ (Flush Zero) is clear and underflow occurs, 
a result-exception trap is generated. When FZ is 
set and underflow occurs, the result is set to zero, 
and no trap due to underflow occurs. 

Table 2.5. Values of RM 

• If TI (Trap Inexact) is clear, inexact results do not 
cause a trap. If TI is set, inexact results cause a 
trap. The sticky inexact flag (51) is set whenever 
an inexact result is produced, regardless of the 
setting of TI. 

• RM (Rounding Mode) specifies one of the four 
rounding modes defined by the IEEE standard. 
Given a true result b that cannot be represented 
by the target data type, the i860 XP microproces­
sor determines the two representable numbers a 
and c that most closely bracket b in value (a < 
b < c). The i860 XP microprocessor then rounds 
(changes) b to a or c according to the mode se­
lected by RM as defined in Table 2.5. Rounding 
introduces an error in the result that is less than 
one least-significant bit. 

FLUSH ZERO 
TRAP 
ROUNDING MODE 
UPDATE 
FLOATING-POINT TRAP 
STICKY INEXACT FLAG 
SOURCE EXCEPTION 
MULTIPLIER UN 
MULTIPLIER 
MULTIPLIER INEXACT 
MULTIPLIER ADD ONE 
ADDER UNDERFLOW 
ADDER OVERFLOW 

-
'2019, 

I~I~ I~ ~ AE RR ~ t 

Value Rounding Mode 

00 Round to 
nearest or even 

01 Round down 
(toward - ex> ) 

10 Round up 
(toward + ex» 

11 Chop 
(toward zero) 

!l 
'.1 

~Ifi I~I~ IMI~ nl U RM 1m 

1 ~ ADDER INEXACT 
ADDER ADD ONE 
RESULT REGISTER 
ADDER EXPONENT 
LOAD PIPE RESULT 

PRECISION (BOB60XL ONLY) 
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RESULT PRECISION 
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a 

c 
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1m RESERVED BY INTEL CORPORATION 

Figure 2.7. Floating-Point Status Register 
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• The U-bit (Update Bit), if set in the value that is 
loaded into fsr by a st.e instruction, enables up­
dating of the result-status bits (AE, AA, AI, AO, 
AU, MA, MI, MO, and MU) in the first-stage of the 
floating-point adder and multiplier pipelines. If this 
bit is clear, the result-status bits are unaffected 
by a st.e instruction; st.e ignores the correspond­
ing bits in the value that is being loaded. An st.e 
always updates fsr bits 21 .. 17 and 8 .. 0 directly. 
The U-bit does not remain set; it always appears 
as zero when read. 

• The FTE (Floating-Point Trap Enable) bit, if clear, 
disables all floating-point traps (invalid input oper­
and, overflow, underflow, and inexact result). 

• SI (Sticky Inexact) is set when the last-stage re­
sult of either the multiplier or adder is inexact (i.e. 
when either AI or MI is set). SI is "sticky" in the 
sense that it remains set until reset by software. 
AI and MI, on the other hand, can by changed by 
the subsequent floating-point instruction. 

• SE (Source Exception) is set when one of the 
source operands of a floating-point operation is 
invalid; it is cleared when all the input operands 
are valid. Invalid input operands include denor­
mals, infinities, and all NaNs (both quiet and sig­
naling). 

• When read from the fsr, the result-status bits MA, 
MI, MO, and MU (Multiplier Add-One, Inexact, 
Overflow, and Underflow, respectively) describe 
the last-stage result of the multiplier. 

When read from the fsr, the result-status bits AA, 
AI, AO, AU, and AE (Adder Add-One, Inexact, 
Overflow, Underflow, and Exponent, respectively) 
describe the last-stage result of the adder. The 
high-order three bits of the 11-bit exponent of the 
adder result are stored in the AE field. 

The Adder Add-One and Multiplier Add-One bits 
indicate that the absolute value of the result frac­
tion grew by one least-significant bit due to 
rounding. AA and MA are not influenced by the 
sign of the result. 

After a floating-point operation in a given unit (ad­
der or multiplier), the result-status bits of that unit 
are undefined until the point at which result ex­
ceptions are reported. 

When written to the fsr with the U-bit set, the 
result-status bits are placed into the first stage of 
the adder and multiplier pipelines. When the 
processor executes pipelined operations, it prop­
agates the result-status bits of a particular unit 
(multiplier or adder) one stage for each pipelined 
floating-point operation for that unit. When they 
reach the last stage, they replace the normal re­
sult-status bits in the fsr and generate traps, if 
enabled. When the U-bit is not set, result-status 
bits in the word being written to the fsr are ig­
nored. 
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In a floating-point dual-operation instruction (e.g. 
add- and-multiply or subtract-and-multiply), both 
the multiplier and the adder may set exception 
bits. The reSUlt-status bits for a particular unit re­
main set until the next operation that uses that 
unit. 

• RR (Result Register) specifies which floating­
point register (fO-f31) was the destination register 
when a reSUlt-exception trap occurs due to a sca­
lar operation. 

• IRP (Integer (Graphics) Pipe Result Precision), 
MRP (Multiplier Pipe Result Precision), and ARP 
(Adder Pipe Result Precision) aid in restoring 
pipeline state after a trap or process switch. Each 
defines the precision of the last-stage result in 
the corresponding pipeline. One of these bits is 
set when the result in the last stage of the corre­
sponding pipeline is double precision; it is cleared 
if the result is single precision. 

• LRP1 and LRPO (Load Pipe Result Precision) to­
gether define the size of the last-stage result of 
the load pipeline. They are encoded as Table 2.6 
shows. 

Table 2.6. Values of LRP1 and LRPO 

LRP1 LRPO pfld Length 

0 0 (reserved) 
0 1 4 Bytes 
1 0 8 Bytes 
1 1 16 Bytes 

2.2.9 KR, KI, T, AND MERGE REGISTERS 

The KR, KI, and T registers are special-purpose reg­
isters used by the dual-operation floating-point in­
structions pfam, pfsm, pfmam, and pfmsm, which 
initiate both an adder operation and a multiplier op­
eration. The KR, KI, and T registers can store values 
from one dual-operation instruction and supply them 
as inputs to subsequent dual-operation instructions. 
(Refer to Figure 2.16.) 

The MERGE register is used only by the graphics 
instructions. The purpose of the MERGE register is 
to accumulate (or merge) the results of multiple-ad­
dition operations that use as operands the color-in­
tensity values from pixels or distance values from a 
Z -buffer. The accumulated results can then be 
stored in one 64-bit operation. 

Two multiple-addition instructions and an OR in­
struction use the MERGE register. The addition in­
structions are designed to add interpolation values 
to each color-intensity field in an array of pixels or to 
each distance value in a Z-buffer. 
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Refer to the instruction descriptions in section 10 for 
more information about these registers. 

2.2.10 BUS ERROR ADDRESS REGISTER 

The bear helps the trap handler determine faulty 
memory locations. The i860 XP microprocessor 
loads a valid address into bear under these condi­
tions: 

• For bus errors, the bear receives the address of 
the cycle for which the BERR signal is asserted, if 
external hardware synchronizes assertion of 
BERR with BRDY # for that cycle. 

• For parity errors on a read, the bear receives the 
address of the cycle during which the processor 
detects the error, if external hardware asserts 
PEN # with BRDY # for that cycle. 

If external hardware does not meet these conditions, 
the contents of the bear are undefined. 

A valid address in bear is accurate to 29 bits; that is, 
address signals A31-A3 are latched in the high-or­
der 29 bits of bear. At RESET and after every parity 
and bus error trap, software must read the bear be­
fore further parity and bus error traps can occur. The 
bear is a read-only register. 

2.2.11 PRIVILEGED REGISTERS 

The registers pO, p1 p2, and p3 are provided for the 
operating system to use. They do not affect proces­
sor operation. They can be accessed by the Id.c and 
st.c instructions, but they can be written only in su­
pervisor mode. They may be used to store informa­
tion such as the interrupt stack pointer, current user 
stack pointer at the beginning of the trap handler, 
register values during trap handling, processor ID in 
a multiprocessor system, or for any other purpose. 

2.2.12 CONCURRENCY CONTROL REGISTER 

The concurrency control register (ccr) controls the 
operation of the internal Concurrency Control Unit 
(CCU), which is described in section 2.5. The ccr 
can be written in supervisor mode only, but can be 
read in user or supervisor mode. Figure 2.8 shows 
the format of the ccr. 

DO (Detached Only) bit and CO (CCU On) bit togeth­
er specify the CCU configuration. DO, when set, indi­
cates that there is no external CCU. CO (CCU On) 
bit, when set, indicates that the Concurrency Control 
Architecture is enabled. Table 2.7 summarizes the 
modes defined by CO and DO bits. The reserved 
combinations should not be used by software. 

If the DCCU is on (CO = DO = 1), the processor in­
tercepts and interprets all memory loads and stores 
which are to the CCU address space, which is the 
two pages defined by CCUBASE. Loads and stores 
to that address range do not go to memory, but to 
the DCCU. 

Table 2.7. Values of CO and DO 

CO DO Mode 

0 0 External CCU, or no CCU 
0 1 reserved 
1 0 reserved 
1 1 Internal CCU (DCCU) only 

CCUBASE is the virtual address of the memory area 
into which the CCU registers are mapped. Software 
must set bit 12 to zero, because the CCUBASE must 
be aligned on a two page (8 Kbyte) boundary. This is 
because an external CCU contains supervisor regis­
ters mapped to the second page. 

DETACHED ONLY -------­
CCUON----------

CCUBASE 

Ell RESERVED BY INTEL CORPORATION 
240874-10 

Figure 2.8. Concurrency Control Register 
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2.2.13 NEWCURR REGISTER 

The NEWCURR register is part of the detached CCU 
(concurrency control unit). It a 32·bit counter that 
supplies an iteration count for loop execution. (Refer 
to section 2.5.) 

NEWCURR is architecturally a 64-bit register, but 
only the low-order 32 bits are provided in this imple­
mentation. Compiler and operating-system data 
structures should provide for a 64-bit size for future 
implementation. 

2.2.14 STAT REGISTER 

The STAT register is part of the detached CCU (con­
currency control unit). As Figure 2.9 shows, it con­
tains the following bits: 

InLoop Indicates that the processor is currently 
executing a concurrent loop. This bit is 
set when a processor starts a concur­
rent, non-nested loop, and it is cleared 
when the processor enters serial code 
when not nested or idle. It can also be 
read or written directly. 

Nested Indicates whether the processor is in the 
nested state. InLoop is copied into this 
bit when starting a nested loop. Other­
wise, it can be read or written directly. 

Detached Always contains the value of ccr bit DO. 

STAT is architecturally a 64-bit register. Compiler 
and operating-system data structures should provide 
for a 64-bit size for future implementation. 

2.3 Addressing 

Memory is addressed in byte units with a paged vir­
tual-address space of 232 bytes. Data and instruc­
tions can be located anywhere in this address 
space. Address arithmetic uses 32-bit input values 
and produces 32-bit results. The low-order 32 bits of 
the result are used in case of overflow. 

Normally, multibyte data values are stored in memo­
ry in little endian format, i.e. with the least significant 
byte at the lowest memory address. As an option, 
the ordering can be dynamically selected by soft­
ware in supervisor mode. The i860 XP microproces­
sor also offers big endian mode, in which the most 
significant byte of a data item is at the lowest ad­
dress. Figure 2.10 defines by example how data is 
transferred from memory over the bus into a register 
in both modes. Big endian and little endian data ar­
eas should not be mixed within a 64-bit data word. 
Illustrations of data structures in this data sheet 
show data stored in little endian mode, i.e. the right­
most (low-order) byte is at the lowest memory ad­
dress. 

Code accesses are always done with little endian 
addressing. This implies that instructions appear dif­
ferently than documented here when accessed as 
big endian data. Intel Corporation recommends that 
disassemblers running in a big end ian system con­
vert instructions that have been read as data back to 
little end ian form and present them in the format 
documented here. 

Page directories and page tables are also accessed 
in little end ian mode, regardless of the value of the 
BE bit. 

Big endian mode affects not only the memory load 
and store instructions but also the Idio, stio, Idint, 
and scyc instructions. 

Alignment requirements are as follows (any violation 
results in a data-access trap): 

o 128-bit values are aligned on 16-byte boundaries 
when referenced in memory (i.e. the four least 
significant address bits must be zero). 

o 64-bit values are aligned on a-byte boundaries 
when referenced in memory (i.e. the three least 
significant address bits must be zero). 

• 32-bit values are aligned on 4-byte boundaries 
when referenced in memory (i.e. the two least 
significant address bits must be zero). 

lTI!I RESERVED BY INTEL CORPORATION 

Ii1il READ ONLY 
240874-11 

Figure 2.9. Concurrency Status Register 
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Main Memory 

d63 dO 
I HGFEDCBA I 

~ ---... 
INSTRUCTION LITTLE ENDIAN BIG ENDIAN 

Byte Enables 
Asserted Dala Bus ill 

Byte Enables 
Asserted Data Bus r16 

(BEn#) d63 dO d31 dO (BEn#) d63 dO d31 dO 

d.b O(rO), r16 0 

0 ~ 
7 

Q ~ 
d.b l(rO),rI6 1 6 
d.b 2(rO), r16 2 5 
d.b 3(rO), r16 3 4 
d.b 4(rO),rI6 4 3 
d.b 5(rO), r 16 5 2 
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d63 dO d31 dO d63 dO d31 dO 

d.s O(rO), r 16 1:0 0 ~ 7:6 

LSJ [E d.s 2(rO), r 16 3:2 DC DC 5:4 FE FE 
Id.s 4(rO), r 16 5:4 FE FE 3:2 DC DC 
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d63 dO d31 dO d63 dO d31 dO 

Id.l O(rO), r 16 3:0 ~ I DCBAI 7:4 E;] IHGFE I Idol 4(rO), r 16 7:4 HGFE HGFE 3:0 DCBA DCBA 
240874-12 

NOTE: 
64- and 128-bit big end ian accesses are treated the same as little endian accesses 

Figure 2.10. Little and Big Endian Memory Transfers 

• 16-bit values are aligned on 2-byte boundaries 
when referenced in memory (Le. the least signifi­
cant address bit must be zero). 

2.4 Virtual Addressing 

When address translation is enabled, the processor 
maps instruction and data virtual addresses into 
physical addresses before referencing memory. This 
address transformation is compatible with that of the 
Intel 386 and Intel 486 microprocessors and imple­
ments the basic features needed for page-oriented 
virtual-memory systems and page-level protection. 

The address translation is optional. Address transla­
tion is disabled when the processor is reset. It is 
enabled when a store (st.c) to dirbase sets the ATE 
bit. The operating system typically does this during 
software initialization. Address translation is dis­
abled again when st.c clears the ATE bit. The ATE 
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bit must be set if the operating system is to imple­
ment page-oriented protection or page-oriented vir­
tual memory. 

2.4.1 PAGE FRAME 

A page frame is a unit of contiguous addresses of 
physical main memory. A page is the collection of 
data that occupies a page frame when that data is 
present in main memory or occupies some location 
in secondary storage when there is not sufficient 
space in main memory. 

The i860 XP microprocessor architecture supports 
two sizes of pages and page frames: four Mbytes 
and four Kbytes. Four Kbyte page frames begin on 
four Kbyte boundaries and are fixed in size. Four 
Mbyte page frames begin on four Mbyte boundaries 
and are fixed in size. The four Kbyte address trans­
formation is compatible with that of the Intel 486 mi­
croprocessor. 
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2.4.2 VIRTUAL ADDRESS 

A virtual address refers indirectly to a physical ad­
dress by specifying a page and an offset within that 
page. Figure 2.11 shows the formats of virtual ad­
dressess. The format for virtual addresses that refer 
to four Mbyte pages is different from that of four 
Kbyte pages. 

Figure 2.12 shows how the i860 XP microprocessor 
converts a virtual address into the physical address 
by consulting page tables. The addressing mecha­
nism uses the DIR field as an index into a page di­
rectory. For 4K pages, it uses the PAGE field as an 
index into the page table determined by the page 
directory and uses the OFFSET field to address a 
byte within the page determined by the page table. 
For 4M pages, the page directory entry determines 
the page address, and the OFFSET field addresses 
a byte within that page table. 

2.4.3 PAGE TABLES 

A page table is simply an array of 32-bit page specifi­
ers. A page table is itself a page, and contains 
4 Kbytes of data or at most 1 K 32-bit entries. 

At the highest level is a page directory. The page 
directory holds up to 1 K entries that address either 
page tables of the second level or 4-Mbyte pages. 

A page table of the second level addresses up to 1 K 
4-Kbyte pages. All the tables addressed by one 
page directory, therefore, can address 1 M 4-Kbyte 
pages. 

Whether 4-Mbyte pages, 4-Kbyte pages, or some 
combination of the two are used, one page directory 
can cover the entire four gigabyte physical address 
space of the i860 XP microprocessor (1 K page di­
rectory entries x 4M page or 1 K page directory en­
tries x 1 K page table entries x 4K page). 

fORMAT 
fOR 

4 KBYTE 
PAGE 

Sf 302928272625242322 '2120 '9 18 17 16 15 14 13 12 f/1090765432 I 0 

fORMAT 
fOR 

4 1.4 BYTE 
PAGE 

I 

I 

DIR I PAGE OffSET ~ 

3130 29 28 272625242322 ~ •• mO.SUDmnmg8765.32 I 0 

DlR I OffSET 

240874-13 

Figure 2.11. Formats of Virtual Addresses 

80860XR AND 80860XP 

DIR I PAGE I OffSET I 4K PAGE fRAME 

PAGE TABLE 
..... PHYS ADDRESS 

PAGE DIRECTORY 

...... PG TBL ENTRY 

--+ 4K DIR ENTRY ,. 41.4 DIR ENTRY 

~ "'''' "''' 
~ PHYS ADDRESS 

DIR OffSET I 
80860XP ONLY 

240874-14 

Figure 2.12. Address Translation 
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2.4.4.1 Page Frame Address The physical address of the current page directory is 
stored in the DTB field of the dirbase register. Mem­
ory management software has the option of using 
one page directory for all processes, one page direc­
tory for each process, or some combination of the 
two. 

2.4.4 PAGE-TABLE ENTRIES 

Page-table entries (PTEs) have one of the formats 
shown by Figure 2.13. 

The page frame address specifies the physical start­
ing address of a page. In a page directory, the page 
frame address is either the address of a page table 
or the address of the four Mbyte page frame that 
contains the desired memory operand. In a second­
level page table, the page frame address is the ad­
dress of the 4-Kbyte page frame that contains the 
desired memory operand. 

PAGE 

PRESENT ------------------------, 
WRITABLE---------------------, 
USER---------------------, 
ACCESSED ------------------, 
PAGE SIZE (0 INDICATES 4 KBYTE) ----------, 
AVAILABLE FOR SYSTEMS PROGRAMMER USE ---'! 

DIR 2"2,'2;'201918'716151413 '109/8) '6. (" 

4~~~~~Ir-___ PA_G_E_F_RA_M_E_A_D_D_RE_S_S_3_1_ .. _1_2 ___ -rA_v_A_IL~I~[I~:II-r0I~JI~'AI9PII*llu~IW~I-{PJ 
PAGE '-_______________ ..... _..l... ................. \.l....l ....... ..l... ........ 

PRESENT -----------------------, 

USER---------------------, 
WRITE-THROUGH -----------------, 
CACHE-DISABLE -----------------, 
ACCESSED ------------------, 
DIRTY -------------------, 
PAGE SIZE (1 INDICATES 4 MBYTE) ----------, 
AVAILABLE FOR SYSTEMS PROGRAMMER USE ---, 

PAGE 

DIR~~~~~~~~~~~~~~~~~~~~~~~~~~ 
ENTRY PAGE FRAME ADDRESS 

4 MBYTE 31 .. 22 
PAGE 

PRESENT -----------------------, 
WRIT 
USER---------------------, 
WRITE-THROUGH ------------------, 
CACHE-DISABLE -----------------, 
ACCESSED ------------------, 
DIRTY --------------------, 
AVAILABLE FOR SYSTEMS PROGRAMMER USE ---'! 

T:~~~ '31 30 29 28 27 26 25 24 23 22 21 2019 18 16 15 1-1 13 12/11 10 9i 8, 

ENTRY I PAGE FRAME ADDRESS 31 .. 12 AVAIL ~llil D I A D ~ U Iw I P 
4KBYTEr----------------r--9P~~~~~rt~1 ONLY '-_________________________ ..... __ ..l... ....... ~_>_ ....... .l....l ....... _" 

E] RESERVED BY INTEL CORPORATION (SHOULD BE ZERO) 

Figure 2.13. Formats of Page Table Entries 
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2.4.4.2 Present Bit 

The P (present) bit indicates whether a page table 
entry can be used in address translation. P = 1 indi­
cates that the entry can be used. When P = 0 in ei­
ther level of page tables, the entry is not valid for 
address translation, and the rest of the entry is avail­
able for software use; none of the other bits in the 
entry is tested by the hardware. If P = 0 in either lev­
el of page tables when an attempt is made to use a 
page-table entry for address translation, the proces­
sor signals either a data-access fault or an instruc­
tion-access fault. In software systems that support 
paged virtual memory, the trap handler can bring the 
required page into physical memory. 

Note that there is no P bit for the page directory 
itself. The page directory may be not-present while 
the associated process is suspended, but the oper­
ating system must ensure that the page directory 
indicated by the dirbase image associated with the 
process is present in physical memory before the 
process is dispatched. 

2.4.4.3 Writable and User Bits 

The W (writable) and U (user) bits are used for page­
level protection, which the i860 XP microprocessor 
performs at the same time as address translation. 
The concept of privilege for pages is implemented 
by assigning each page to one of two levels: 

Supervisor level 

(U=O) 

User level (U = 1) 

For the operating system 
and other systems software 
and related data. 

For applications procedures 
and data. 

The U bit of the psr indicates whether the i860 XP 
microprocessor is executing at user or supervisor 
level. The i860 XP microprocessor maintains the 
U bit of psr as follows: 

o The i860 XP microprocessor clears the psr U bit 
to indicate supervisor level when a trap occurs 
(including when the trap instruction causes the 
trap). The prior value of U is copied into PU. 

o The i860 XP microprocessor copies the psr 
PU bit into the U bit when an indirect branch is 
executed and one of the trap bits is set. If PU was 
one, the i860 XP microprocessor enters user lev­
el. 

With the U bit of psr and the Wand U bits of the 
page table entries, the i860 XP microprocessor im­
plements the following protection rules: 

• When at user level, a read or write of a supervi­
sor-level page causes a trap. 
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o When at user level, a write to a page whose W bit 
is not set causes a trap. 

• When at user level, a store (st.c) to certain con­
trol registers is ignored. 

o When at user level, privileged instructions (Idio, 
stio, scyc, Idint) have no effect. 

When the i860 XP microprocessor is executing at 
supervisor level, all pages are addressable, but, 
when it is executing at user level, only pages that 
belong to the user level are addressable. 

When the i860 XP microprocessor is executing at 
supervisor level, all pages are readable. Whether a 
page is writable depends upon the write-protection 
mode controlled by WP of epsr: 

WP = 0 All pages are writable. 

WP = 1 A write to page whose W bit is not set 
causes a trap. 

When the i860 XP microprocessor is executing at 
user level, only pages that belong to user level and 
are marked writable are actually writable; pages that 
belong to supervisor level are neither readable nor 
writable from user level. 

2.4.4.4 Write-Through Bit 

The i860 XP microprocessor implement both write­
back and write-through caching policies for the on­
chip instruction and data caches. If WT is set, the 
write-through policy is applied to data from the cor­
responding page. If WT is clear, the normal write­
back policy is applied to data from the page. 

For four-Mbyte pages, the WT bit of the page direc­
tory entry is used. For four-Kbyte pages, only the WT 
bit of the second-level page table entry is used; the 
WT bit of the page directory entry is not referenced 
by the processor, but is reserved. 

The value of the WT bit is driven externally on the 
PWT pin, so that external caches can employ the 
same policy used internally. 

2.4.4.5 Cache Disable Bit 

If a page's CD (cache disable) bit is set, data from 
the page is not placed in the internal instruction or 
data caches (regardless of the value of the WT bit). 
Clearing CD permits the processor to place data 
from the associated page into internal caches. 

For four-Mbyte pages, the CD bit of the page direc­
tory entry is used. For four-Kbyte pages, only the CD 
bit of the second-level page table entry is used; the 
CD bit of the page directory entry is not referenced 
by the processor, but is reserved. 
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The value of the CD bit is driven externally on the 
PCD pin, so that cacheability can be the same in 
both internal and external caches. 

2.4.4.6 Accessed and Dirty Bits 

The A (accessed) and D (dirty) bits provide data 
about page usage in both levels of the page tables. 

The i860 XP microprocessor sets the A-bit before a 
read or write operation to a page. For four-Kbyte 
pages, it sets the A-bit of both levels of page tables. 

The processor tests the dirty bit before a write, and, 
under certain conditions, causes traps. The trap 
handler then has the opportunity to maintain appro­
priate values in the dirty bits. For four-Mbyte pages, 
the D bit of the page directory entry is used. For four­
Kbyte pages, only the D bit of the second-level page 
table entry is used; the D bit of the page directory 
entry is not referenced by the processor, but is 
reserved. The precise algorithm for using these bits 
is specified in section 2.4.5. 

An operating system that supports paged virtual 
memory can use the D and A bits to determine what 
pages to eliminate from physical memory when the 
demand for memory exceeds the physical memory 
available. The D and A bits are normally initialized to 
zero by the operating system. The processor sets 
the A bit when a page is accessed either by a read 
or write operation. When a data-access fault occurs, 
the trap handler sets the D bit if an allowable write is 
being performed, then reexecutes the instruction. 

The operating system is responsible for coordinating 
its updates to the accessed and dirty bits with up­
dates by the CPU and by other processors that may 
share the page tables. The i860 XP microprocessor 
automatically asserts the LOCK# signal while test­
ing and setting the A bit. 

2.4.4.7 Page Tables for Trap Handlers 

When paging is enabled (ATE = 1), software that 
creates page tables and directories must assure that 
A = 1 always in the PTEs and PDEs for the code 
pages of the trap handler and the first data page 
accessed by the handler. Preallocation of these 
pages is required in case a trap occurs during a lock 
sequence. Otherwise, recursive traps would be gen­
erated, as the A-bit would need to be set by the 
translation hardware, which is a trapping situation in 
itself. 
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2.4.4.8 Combining Protection of Both Levels of 
Page Tables 

For any four-Kbyte page, the protection attributes of 
its page directory entry may differ from those of its 
page table entry. The i860 XP microprocessor com­
putes the effective protection attributes for a page 
by examining the protection attributes in both the 
directory and the page table and choosing the more 
restrictive of the two. 

2.4.5 ADDRESS TRANSLATION ALGORITHM 

The following algorithm defines the translation of 
each virtual address to a physical address. Let DIR, 
PAGE, and OFFSET be the fields of the virtual ad­
dress; let PFA1 and PFA2 be the page frame ad­
dress fields of the first and second level page tables 
respectively; DTB is the page directory table base 
address stored in the dirbase register. 

1. Read the PDE (Page Directory Entry) at the 
physical address formed by DTB:DIR:OO. 

2. If P in the PDE is zero, generate a data- or in­
struction-access fault. 

3. If W in the PDE is zero, the operation is write, 
and either the U bit of the PSR is set or WP = 1, 
generate a data-access fault. 

4. If the U bit in the PDE is zero and U bit in the psr 
is set, generate a data- or instruction-access 
fault. 

5. If A in the PDE is zero and the TLB miss oc­
curred inside a locked sequence, generate a 
data or instruction access fault. (The trap allows 
software to set A to one and restart the se· 
quence. This helps external bus hardware deter­
mine unambiguously what address corresponds 
to a locked semaphore.) 

6. If bit 7 of the PDE is one (four Mbyte page), and 
the operation is write, and D = 0 in the PDE, 
generate a data-access fault. 

7. If A = 1 in the PDE, continue at step 11. Other­
wise, assert LOCK # . 

8. Perform the PDE read as in step 1 and the P, W 
and U bit checks as in steps 2 through 4. 

9. Write the PDE with A bit set. 

10. Deassert LOCK # . 

11. If bit 7 of the PDE is one (four Mbyte page), form 
the physical address as PFA1:0FFSET, and exit 
address translation. In this case, PFA 1 is 10 bits 
and OFFSET is 22 bits. 

12. The remaining steps are for four Kbyte pages. If 
the A-bit in the PDE was zero before translation 
began, assert LOCK # . 
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13. Fetch the PTE at the physical address formed 
by PFA1:PAGE:00. 

14. Perform the po, W-, U-, and A-bit checks as in 
steps 2 through 5 with the second-level PTE. If 
A = zero in the PTE, and the TLB miss oc­
curred inside a locked sequence, generate a 
data or instruction access fault. LOCK # re­
mains active. 

15. If the operation is write, and 0 in the PTE is 
zero, generate a data access fault. 

16. If the A-bit in the POE was already active before 
translation began, and the A-bit in the PTE is 
already active, go to step 20. 

17. If LOCK# is not already active, assert it and 
refetch the PTE. 

18. Perform the U-, W-, and P-bit checks and A-bit 
setting in the PTE as in steps 8 through 9. Do 
the locked write update of the PTE to unlock the 
bus, even if the A-bit in the PTE is already one. 

19. Deassert LOCK #. 

20. Form the physical address as PFA2:0FFSET. In 
this case, PFA2 is 20 bits and OFFSET is 12 
bits. 

During translation, the i860 XP microprocessor looks 
only in external memory for page directories and 
page tables. The data cache is not searched. There­
fore, any code that modifies page directories or 
page tables must keep them out of the cache. The 
tables should either be kept in noncacheable memo­
ry or in write-through pages or should be flushed 
from the cache. 

The i860 XP microprocessor expects page directo­
ries and page tables to be in little end ian format. The 
operating system must maintain these tables in little 
endian format either by setting BE to zero when ma­
nipulating the tables or by complementing bit two of 
the 32-bit address when loading or storing entries. 

2.4.6 ADDRESS TRANSLATION FAULTS 

The address translation fault can be signalled as ei­
ther an instruction access fault or a data-access 
fault. The instruction causing the fault can be reexe­
cuted upon returning from the trap handler. 

2.5 Detached CCU 

The i860 XP microprocessor supports parallel pro­
cessing, where multiple processors work simulta­
neously on different parts of the same problem. The 
Concurrency Control Unit (CCU) controls work shar-

27 

ing among CPUs, in multiprocessor systems. The 
CCU is a VLSI chip that allows multiple processors 
to .work together to execute portions of a single pro­
gram in parallel. The CCU performs the iteration as­
signment for loop parallelization. Accesses to the 
CCU for synchronization are much faster than ac­
cesses to shared memory semaphores. The CCU is 
memory mapped, and its internal registers are ac­
cessed via memory load and store operations. 

To take advantage of the parallel architecture, soft­
ware must be compiled by parallelizing compilers 
that generate instructions to access the CCU. How­
ever, such instructions cannot run on a system that 
does not include a CCU. To allow an application 
compiled for parallel execution to run on any system 
based on the i860 XP microprocessor, a "Detached 
Only" CCU (DCCU, also referred to as "internal 
CCU") is implemented in the i860 XP microproces­
sor. The OCCU is a compatible subset of the exter­
nal CCU, consisting of the minimal set of features 
required for a single CPU. The DCCU alone neither 
increases performance nor concurrency, but does 
allow software designed for parallel processing to 
run unmodified on a single CPU. 

2.5.1 DCCU INITIALIZATION 

After reset, the i860 XP microprocessor DCCU is dis­
abled (CO and DO bits in ccr are cleared). To en­
able the DCCU, the CO and DO bits in ccr must be 
set by software. Before turning on the CCU, the op­
erating system must invalidate the TLB and flush the 
data cache to make sure that they do not contain 
data from the CCU pages. The TLB is invalidated by 
setting ITI = 1 in the dirbase register. Also, the 
flush instruction must be used once per each line of 
the data cache to invalidate the physical address of 
the cache entry, if the two pages at the CCUBASE 
address may have been cached. The flush is un­
needed if page tables or external hardware have 
prohibited caching of the CCUBASE pages. 

Neither the external CCU nor the DCCU can be ac­
cessed within four instructions after ccr is modified. 

2.5.2 DCCU ADDRESSING 

The CCU facilities are memory-mapped, manipUlat­
ed by normal load and store instructions. The DCCU 
is memory-mapped to a single 4 Kbyte user page. 
When the DCCU is active, all accesses to this page 
are satisfied by the DCCU, and no external bus cycle 
is generated. The address space of two adjacent 
pages beginning on an 8 Kbyte boundary is reserved 
for the CCU. The first (lower address) page contains 
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locations accessible in user mode (which includes 
the DCCU registers), and the second page contains 
locations accessible in supervisor mode (used for 
external CCU only). The base address of these 
pages is specified by the CCUBASE field in ccr. Ac­
cesses to the second page in DCCU-only mode 
have no effect on the DCCU, and are treated as 
normal memory accesses. 

When the DCCU is active, accesses to its address 
page use only the virtual address, and no translation 
is done on the DCCU access. However, the access­
es to an external CCU go through normal address 
translation. The operating system should make sure 
that the page table entries for the CCU pages are 
set so that no fault occurs during address transla­
tion. If an external CCU is used, the two PTEs for the 
CCU should have CD = 1 (caching disabled) and 
page frame addresses that match the external hard­
ware addresses of the CCU. Accesses to the DCCU 
that cause a TLB miss do not cause the PTE to be 
loaded into the TLB. 

If the external CCU is used when address translation 
is disabled (ATE=O), external hardware must deac­
tivate KEN # for such accesses, to avoid caching 
external CCU accesses. 

2.5.3 DCCU INTERNALS 

The DCCU consists of an address decoder, a 32-bit 
counter (NEWCURR), and three bits of state infor­
mation (InLoop, Nested, and Detached). InLoop, 
Nested and Detached). InLoop, Nested and De­
tached correspond to bits 0, 1, and 2 respectively of 
the external CCU STAT register. The Detached bit 
always reflects the value of the DO bit in eer. 

Several addresses within the DCCU memory page 
are decoded to cause actions to NEWCURR, In­
Loop, and Nested state bits. The CCU register to be 
accessed is specified by address bits 11-3. The val­
id CCU addresses are shown in Table 2.8 with their 
mnemonics. Accesses to these address may also 
have side effects within the DCCU. Refer to the 
i86()TM Microprocessor Family Programmer's Refer­
ence Manual for programming information. Loads 
from any other addresses within the DCCU memory 
page return zero; stores to any other addresses 
have no effect. Access to the DCCU by any load or 
store instructions other than Id.x and st.x produce 
undefined results. 

Assemblers should encode address bits 2-0 as zero 
for accesses in little-endian mode. However, in big­
end ian mode (epsr BE bit = 1), DCCU accesses 
should have address bit 2 active. Thus, software for 
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big-end ian access to the DCCU must differ from lit­
tie-end ian software. That allows an external CCU to 
be accessed in both big and little end ian modes. 

When reading from the DCCU, the access latency is 
the same as reading data from the data cache-the 
data is ready for use as a source by the second 
instruction after the load. The first instruction after 
the load may use the data, but that instruction will 
experience a one-clock freeze before the data be­
comes available. 

2.6 Instruction Set 

Table 2.9 shows the complete set of instructions for 
the i860 XP microprocessor, grouped by function 
within processing unit. Refer to Section 10 for an 
algorithmic definition of each instruction. The in­
struction set of the i860 XP microprocessor is fully 
upward compatible with that of the i860 XR micro­
processor, extended in a few ways to better serve 
certain application domains. User-level software ap­
plications written for the i860 XR microprocessor will 
run unmodified on the i860 XP microprocessor, but 
some supervisor code (for example, trap handlers) 
may need minor modifications. The i860 XR micro­
processor instruction set has been extended with 
the following instructions: 

• Idio, stio: liD load and store instructions 

• Idint: Load interrupt instruction to perform an in­
terrupt acknowledge cycle and read the interrupt 
vector. Used to emulate the Intel 486 interrupt 
acknowledge sequence. 

• seye: A special-cycle instruction, used to gener­
ate bus cycles that signal invalidation and syn­
chronization of an external cache. 

• pfld.q: A pipelined, floating-point load of 128 bits. 

Table 2.8. CCU Addresses 

Little Big 
Mnemonic A11-AB A7-A4 Endian Endian 

A3-AO A3-AO 

ebr.-J 0000 Oabe bOOO d100 
eget 1111 0110 0000 0100 
eneweurr 1111 1100 0000 0100 
estat 1111 1100 1000 1100 
estatei 1111 1101 0000 0100 
estatn 1111 1101 1000 1100 
eelm 1111 1110 1000 1100 
ever 1111 1111 1000 1100 

NOTE: 
Variable i is a 4-bit index formed by A6-A3. Let its binary 
form be represented by the symbols abed. 
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Table 2.9. Instruction Set (1 of 2) 

Core Unit Floating-Point Unit 

Mnemonic Description Mnemonic Description 

Load and Store Instructions Register to Register Move 

Id.x Load integer fxfr Transfer F-P to integer register 
st.x Store integer 
fld.y F-P load 

F-P Multiplier Instructions 

fst.y F-P store fmul.p F-P multiply 

pfld.y Pipelined F-P load pfmul.p Pipelined F-P multiply 

pst.d Pixel store pfmul3.dd 3-Stage pipelined F-P multiply 

Register to Register Move 
fmlow.p F-P multiply low 
frcp.p F-P reciprocal 

ixfr Transfer integer to F-P register fsqr.p F-P reciprocal square root 

Integer Arithmetic Instructions F-P Adder Instructions 

addu Add unsigned fadd.p F-P add 
adds Add signed pfadd.p Pipelined F-P add 
subu Subtract unsigned famov.r F-P adder move 
subs Subtract signed pfamov.r Pipelined F-P adder move 

Shift Instructions fsub.p F-P subtract 
pfsub.p Pipelined F-P subtract 

shl Shift left pfgt.p Pipelined greater-than compare 
shr Shift right pfeq.p Pipelined equal compare 
shra Shift right arithmetic fix.v F-P to integer conversion 
shrd Shift right double pfix.v Pipelined F-P to integer conversion 

Logical Instructions ftrunc.v F-P to integer truncation 

and Logical AND Dual-Operation Instructions 

andh Logical AND high pfam.p Pipelined F-P add and multiply 
and not Logical AND NOT pfsm.p Pipelined F-P subtract and multiply 
andnoth Logical AND NOT high pfmam.p Pipelined F-P multiply with add 
or Logical OR pfmsm.p Pipelined F-P multiply with subtract 
orh Logical OR high 
xor Logical exclusive OR Long Integer Instructions 

xorh Logical exclusive OR high fisub.z Long-integer subtract 

Control-Transfer Instructions pfisub.z Pipe lined long-integer subtract 
fiadd.z Long-integer add 

br Branch direct pfiadd.z Pipe lined long-integer add 
bri Branch indirect 
bc Branch on ee Graphics Instructions 

bc.t Branch on ee taken fzchks 16-bit Z-buffer check 
bnc Branch on not ee pfzchds Pipelined 16-bit Z-buffer check 
bnc.t Branch on not ee taken fzchkl 32-bit Z-buffer check 
bte Branch if equal pfzchkl Pipelined 32-bit Z-buffer check 
btne Branch if not equal faddp Add with pixel merge 
bla Branch on Lee and add pfaddp Pipe lined add with pixel merge 
call Subroutine call faddz Add with Z merge 
calli Indirect subroutine call pfaddz Pipe lined add with Z merge 
intovr Software trap on integer overflow form OR with MERGE register 
trap Software trap pform Pipelined OR with MERGE register 
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Table 2.9. Instruction Set (2 of 2) 

Core Unit 

Mnemonic Description 

I/O Instructions 

Idio.x Load 1/0 
stio.x Store 1/0 
Idint.x Load interrupt vector 

System Control Instructions 

flush Cache flush 
Id.c Load from control register 
st.c Store to control register 
lock Begin interlocked sequence 
unlock End interlocked sequence 
scyc.x Special bus cycles 

Assembler Pseudo-Operations 

Register to Register Move 

mov Integer move 
fmov.r F·P reg·reg move 
pfmov.r Pipelined F·P reg·reg move 
nop Core no·operation 
fnop F-P no·operation 
pfle.p Pipelined F·P less·than or equal 

The architecture of the i860 XP microprocessor uses 
parallelism to increase the rate at which operations 
may be introduced into the unit. Parallelism in the 
i860 XP microprocessor is not transparent; rather, 
programmers have complete control over parallel­
ism and therefore can achieve maximum perform­
ance for a variety of computational problems. 

Clock Instruction Stage 1 

1 A A 

2 B B 

3 C C 

4 D D 

5 E E 

6 F F 

2.6.1 PIPELINED AND SCALAR OPERATIONS 

One type of parallelism used within the floating·point 
unit is "pipelining". The pipelined architecture treats 
each operation as a series of more primitive opera­
tions (called "stages") that can be executed in par· 
allel. Consider just the floating-point adder as an ex­
ample. Let A represent the operation of the adder. 
Let the stages be represented by Al, A2, and A3. 
The stages are designed such that Ai+ 1 for one ad­
der instruction can execute in parallel with Ai for the 
next adder instruction. Furthermore, each Ai can be 
executed in just one clock. The pipelining within the 
multiplier and graphics units can be described simi­
larly, except that the number of stages may be differ­
ent. 

Figure 2.14 illustrates three·stage pipelining as 
found in the floating·point adder (also in the floating· 
point multiplier when single·precision input operands 
are employed). The central columns of the table rep· 
resent the three stages of the pipeline. Each stage 
holds intermediate results and also (when intro­
duced into the first stage by software) holds status 
information pertaining to those results. The table as· 
sumes that the instruction stream consists of a se­
ries of consecutive floating·point instructions, all of 
one type (i.e. all adder instructions or all single-preci­
sion multiplier instructions). The instructions are rep­
resented as A, B, etc. The rows of the table repre· 
sent the states of the unit at successive clock cy­
cles. Each time a pipelined operation is performed, 
the result of the last stage of the pipeline is stored in 
the destination register fdest, the pipeline is ad· 
vanced one stage, and the input operands of the 
operation are transferred to the first stage of the 
pipeline. 

Pipeline 

Stage 2 Stage 3 Result 

A 

B A 

C B A-+ fdestof D 

D C B-+ fdestof E 

E D C -+ fdestof F 

Figure 2.14. Pipelined Instruction Execution 
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In the i860 XP microprocessor, the number of pipe­
line stages ranges from one to three. A pipelined 
operation with a three-stage pipeline stores the re­
sult of the third prior operation. A pipelined operation 
with a two-stage pipeline stores the result of the sec­
ond prior operation. A pipelined operation with a 
one-stage pipeline stores the result of the prior oper­
ation. 

There are four floating-point pipelines: one for the 
multiplier, one for the adder, one for the graphics 
unit, and one for floating-point loads. The adder 
pipeline has three stages. The number of stages in 
the multiplier pipeline depends on the precision of 
the source operands in the pipeline; it may have two 
or three stages. The graphics unit has one stage for 
a" precisions. The load pipeline has three stages for 
a" precisions. 

Changing the FZ (flush zero), RM (rounding mode), 
or RR (result register) bits of fsr while there are re­
sults in either the multiplier or adder pipeline produc­
es effects that are not defined. 

2.6.1.1 Scalar Mode 

In addition to the pipe lined execution mode, the 
i860 XP microprocessor also can execute floating­
point instructions in "scalar" mode. Most floating­
point instructions have both pipelined and scalar 
variants, distinguished by a bit in the instruction en­
coding. In scalar mode, the floating-point unit does 
not start a new operation until the previous floating­
point operation is completed. The scalar operation 
passes through a" stages of its pipeline before a 
new operation is introduced, and the result is stored 
automatically. Scalar mode is used when the next 
operation depends on results from the previous few 
floating-point operations (or when the compiler or 
programmer does not want to deal with pipelining). 

2.6.1.2 Pipelining Status Information 

Result status information in the fsr consists of the 
AA, AI, AD, AU, and AE bits, in the case of the ad­
der, and the MA, MI, MO, and MU bits, in the case of 
the multiplier. This information arrives at the fsr via 
the pipeline in one of two ways: 

1. It is calculated by the last stage of the pipeline. 
This is the normal case. 

2. It is propagated from the first stage of the pipe­
line. This method is used when restoring the 
state of the pipeline after a preemption. When a 
store instruction updates the fsr and the the U bit 
being written into the fsr is set, the store updates 
the result status bits in the first stage of both the 
adder and multiplier pipelines. When software 
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changes the result-status bits of the first stage of 
a particular unit (multiplier or adder), the updated 
result-status bits are propagated one stage for 
each pipelined floating-point operation for that 
unit. In this case, each stage of the adder and 
multiplier pipelines holds its own copy of the rele­
vant bits of the fsr. When they reach the last 
stage, they override the normal result-status bits 
computed from the last-stage result. 

At the next floating-point instruction (or at certain 
core instructions), after the result reaches the last 
stage, the i860 XP microprocessor traps if any of the 
status bits of the fsr indicate exceptions. Note that 
the instruction that creates the exceptional condition 
is not the instruction at which the trap occurs. 

2.6.1.3 Precision in the Pipelines 

In pipelined mode, when a floating-point operation is 
initiated, the result of an earlier pipelined floating­
point operation is returned. The result precision of 
the current instruction applies to the operation being 
initiated. The precision of the value stored in {des! is 
that which was specified by the instruction that initia­
ted that operation. 

If {des! is the same as {src1 or {src2, the value being 
stored in {des! is used as the input operand. In this 
case, the precision of {des! must be the same as the 
source precision. 

The multiplier pipeline has two stages when the 
source operands are double-precision and three 
stages when they are single. This means that a pipe­
lined multiplier operation stores the result of the sec­
ond previous multiplier operation for double-preci­
sion inputs and third previous for single-precision in­
puts (except when changing precisions). 

2.6.1.4 Transition between Scalar and Pipelined 
Operations 

When a scalar operation is executed, it passes 
through a" stages of the pipeline; therefore, any un­
stored results in the affected pipeline are lost. To 
avoid losing information, the last pipelined opera­
tions before a scalar operation should be dummy 
pipelined operations that unload unstored results 
from the affected pipeline. 

After a scalar operation, the values of a" pipeline 
stages of the affected unit (except the last) are un­
defined. No spurious reSUlt-exception traps result 
when the undefined values are subsequently stored 
by pipelined operations; however, the values should 
not be referenced as source operands. 
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For best performance a scalar operation should not 
immediately precede a pipelined operation whose 
{dest is nonzero. 

2.6.1.5 Pipelined Loads 

The pfld instruction is optimized for accesses that 
miss the data cache and transfer directly from mem­
ory. Therefore, even when there is a data cache hit 
a pfld may generate a bus cycle. The data from th~ 
internal cache is used only if it was modified. Other­
wise, data is taken from the external bus, even if it 
resides in the on-board cache. 

The pfld FIFO can be extended externally, due to 
the facts that a pfld always generates a bus cycle 
and that such a cycle can be identified externally by 
the value on the CTYP pin. Software written for an 
externally-extended pfld pipeline must ensure that it 
does not pfld from a location that was modified in 
the data cache. When a pfld cache hit to a modified 
~ine occur~, the pfld pipeline length used by the 
1~60 XP microprocessor is three stages. The modi­
fied data from the cache is put into the internal 
three-stage data FIFO, and the third pfld instruction 
after the data cache hit will update its {dest register 
with the modified data. 

2.6.2 DUAL-INSTRUCTION MODE 

Another form of parallelism results from the fact that 
the i860 XP microprocessor can execute both a 
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op 

d.fp-op 

floating-point and a core instruction simultaneously. 
Such parallel execution is called dual-instruction 
mode. When executing in dual-instruction mode, the 
instruction sequence consists of 64-bit aligned in­
struction pairs, with a floating-point instruction in the 
I~wer 32 bits and a core instruction in the upper 32 
bits. Table 2.9 identifies which instructions are exe­
cu~ed by the core unit and which by the floating­
pOint unit. 

Programmers specify dual-instruction mode either 
by including in the mnemonic of a floating-point in­
struction a d. prefix or by using the Assembler direc­
tives .dual .... enddual. Both of the specifications 
cause the D-bit of floating-point instructions to be 
set. If the i860 XP microprocessor is executing in 
single~instruc~ion mode and encounters a floating­
pOint Instruction With the D-bit set, one more 32-bit 
instruction is executed before dual-mode execution 
begins. If the i860 XP microprocessor is executing in 
dual-instruction mode and a floating-point instruction 
is encountered with a clear D-bit, then one more pair 
of instructions is executed before resuming single-in­
struction mode. Figure 2.15 illustrates two variations 
of this sequence of events: one for extended se­
quences of dual-instructions and one for a single in­
struction pair. 

Note that d.fnop cannot be used to initiate dual in­
struction mode. 

o 

63 core op or d.fp-op 1 
core op d.fp-op 

core op d.fp-op 

core-op fp op 

core-op fp-op 

op 

op 

Enter Dual Instruction Mode 

I nitiote Exit from 
Dual Instruction Mode 

t 
Leave Dual Instruction Mode 

! 
Figure 2.15. Dual-Instruction Mode Transitions (1 of 2) 
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op 

d.fp-op 

63 fp-op 

I core-op fp-op 

op 

op 

1 
Temporary 
Dual Inrruction Modo 

Figure 2.15. Dual-Instruction Mode Transitions (2 of 2) 
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When a 64-bit dual-instruction pair sequentially fol­
lows a delayed branch instruction in dual-instruction 
mode, both 32-bit instructions are executed. 

2.6.3 DUAL-OPERATION INSTRUCTIONS 

Special dual-operation floating-point instructions 
(add-and-multiply, subtract-and-multiply) use both 
the multiplier and adder units within the floating­
point unit in parallel to efficiently execute such com­
mon tasks as evaluating systems of linear equa­
tions, performing the Fast Fourier Transform (FFT), 
and performing graphics transformations. 

The instruction classes pfam fsrc1, fsrc2, fdest, 
pfmam fsrc1, fsrc2, fdest (add and multiply), pfsm 
fsrc1, fsrc2, fdest, and pfmsm fsrc1, fsrc2, fdest 
(subtract and multiply) initiate both an adder opera­
tion and a multiplier operation. Six operands are re­
quired, but the instruction format specifies only three 
operands; therefore, there are special provisions for 
specifying the operands. These special provisions 
consist of: 

o Three special registers (KR, KI, and T) that can 
store values from one dual-operation instruction 
and supply them as inputs to subsequent dual-op­
eration instructions. 

- The constant registers KR and KI can store 
the value of fsrc1 and subsequently supply 
that value to the multiplier pipeline in place of 
fsrc1. 

Single Precision 
3-Stage Multiplier and Adder 

fsrel fsre2 fdest 

__ ~~!:-Ilnl_E~ __ 
result 

ADDER ------------
result 

240874-20 

- The transfer register T can store the last-stage 
result of the multiplier pipeline and subse­
quently supply that value to the adder pipeline 
in place of fsrc 1. 

• A four-bit data-path control field in the opcode 
(opC) that specifies the operands and loading of 
the special registers. 

1. Operand-1 of the multiplier can be KR, KI, or 
fsrc1. 

2. Operand-2 of the multiplier can be fsrc2, the 
last-stage result of the multiplier pipeline, or 
the last-stage result of the adder pipeline. 

3. Operand-1 of the adder can be fsrc1, the 
T-register, the last-stage result of the multiplier 
pipeline, or the last-stage result of the adder 
pipeline. 

4. Operand-2 of the adder can be fsrc2, the last­
stage result of the multiplier pipeline, or the 
last-stage result of the adder pipeline. 

Figure 2.16 shows all the possible data paths sur­
rounding the adder and multiplier. The ope field in 
these instructions selects different data paths. Sec­
tion 10 shows the various encodings of the ope 
field. 

Note that the mnemonics pfam.p, pfsm.p, 
pfmam.p, and pfmsm.p are never used as such in 
the assembly language; these mnemonics are used 
here to designate classes of related instructions. 
Each value of ope has a unique mnemonic associ­
ated with it. 

Double Precision 
2-Stage Multiplier, 3-Stage Adder 

fsrel fsre2 fdest 

- -MUL TlPLlER- -
result 

____ ~QQE.R. __ _ 
result 

240874-21 

Figure 2.16. Dual-Operation Data Paths 
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2.7 Addressing Modes 

Data access is limited to load and store instructions. 
Memory addresses are computed from two fields of 
load and store instructions: isrc1 and isrc2. 

1. isrc1 either contains the identifier of a 32-bit inte­
ger register or contains an immediate 16-bit ad­
d ress offset. 

2. isrc2 always specifies a register. 

Because either isrc1 or isrc2 may be null (zero), a 
variety of useful addressing modes result: 

offset + register Useful for accessing fields 
within a record, where register 
points to the beginning of the 
record. Useful for accessing 
items in a stack frame, where 
register is r3, the register used 
for pointing to the beginning of 
the stack frame. 

register + register Useful for two-dimensional ar­
rays or for array access within 
the stack frame. 

register 

offset 

Useful as the end result of any 
arbitraryaddress calculation. 

Absolute address into the first 
or last 32K of the logical ad­
dress space. 

In addition, the floating-point load and store instruc­
tions may select autoincrement addressing. In this 
mode isrc2 is replaced by the sum of isrc1 and isrc2 
after performing the load or store. This mode makes 
stepping through arrays more efficient, because it 
eliminates one address-calculation instruction. 

2.8 Traps and Interrupts 

Traps are caused by exceptional conditions detect­
ed in programs or by external interrupts. Traps 
cause interruption of normal program flow to exe­
cute a special program known as a trap handler. 
Traps are divided into the types shown in Table 2.10. 

2.8.1 TRAP HANDLER INVOCATION 

This section applies to traps other than reset. When 
a trap occurs, execution of the current instruction is 
aborted. Except for bus error and parity error traps, 
the instruction is restartable. The processor takes 
the following steps while transferring control to the 
trap handler: 

1. Copies U (user mode) of the psr into PU (previ­
ous U). 

2. Copies 1M (interrupt mode) into PIM (previous 
1M). 
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3. Sets U to zero (supervisor mode). 

4. Sets 1M to zero (interrupts disabled). 

5. If the processor is in dual instruction mode, it sets 
DIM; otherwise it clears DIM. 

6. If the processor is in single-instruction mode and 
the next instruction will be executed in dual-in­
struction mode or if the processor is in dual-in­
struction mode and the next instruction will be 
executed in single-instruction mode, OS is set; 
otherwise, it is cleared. 

7. The appropriate trap type bits in psr and epsr are 
set (IT, IN, IAT, OAT, FT, OF, IL, PI, PT, BEF, 
PEF). Several bits may be set if the correspond­
ing trap conditions occur simultaneously. 

8. An address is placed in the fault instruction regis­
ter (fir) to help locate the trapped instruction. In 
single-instruction mode, the address in fir is the 
address of the trapped instruction itself. In dual­
instruction mode, the address in fir is that of the 
floating-point half of the dual instruction. If an in­
struction or data access fault occurred, the asso­
ciated core instruction is the high-order half of 
the dual instruction (fir + 4). In dual-instruction 
mode, when a data access fault occurs in the 
absence of other trap conditions, the floating­
point half of the dual instruction will already have 
been executed (except in the case of the fxfr 
instruction). 

The processor begins executing the trap handler by 
transferring execution to virtual address 
OxFFFFFFOO. The trap handler begins execution in 
single-instruction mode. The trap handler must ex­
amine the trap-type bits in psr (IT, IN, IAT, OAT, FT) 
and epsr (OF, IL, PT, PI, BEF, PEF) to determine the 
cause or causes of the trap. 

2.8.2 INSTRUCTION FAULT 

This fault is caused by any of the following condi­
tions. In all cases the processor sets the IT bit be­
fore entering the trap handler. 

1. By the trap instruction. When trap is executed in 
dual-instruction mode, the floating-point compan­
ion of the trap instruction is not executed before 
the trap is taken. 

2. By the intovr instruction. The trap occurs only if 
OF in epsr is set when intovr is executed. To 
distinguish between cases 1 and 2, the trap han­
dier must examine the instruction addressed by 
fir. The trap handler should clear OF before re­
turning. When intovr causes a trap in dual-in­
struction mode, the floating-point companion of 
the intovr instruction is completely executed be­
fore the trap is taken. 
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Table 2.10. Types of Traps 

Indication Caused by 
Type 

fsr Condition Instruction psr epsr 

Instruction IT OF Software traps trap 
Fault intovr 

IL Missing unlock Any 
PT&PI Pipeline usage Any scalar or pipelined 

instruction that uses a 
pipeline 

Floating FT SE Floating·point source Any M- or A-unit except 
Point exception fmlow 
Fault 

Floating-point result Any M- or A-unit except 
exception fmlow, pfgt, and pfeq. 

AO,MO overflow Reported on any F-P 
AU,MU underflow instruction, pst, fst, and 
AI,MI inexact result sometimes fld, pfld, and 

ixfr 

Instruction IAT Address translation Any 
Access Fault exception during instruction 

fetch 

Data DAT Load/store address Any load/store 
Access translation exception 
Fault Misaligned operand address Any load/store 

Operand address matches Any load/store 
db register 

Parity IN PEF Parity error on data pins during bus read operation 
Error Fault when PEN # pin active 

Bus Error Fault IN BEF External interrupt signal on BERR pin 

Interrupt IN INT External interrupt signal on INT pin 

Reset None PEF, BEF Hardware RESET signal 

3. By violation of lock/unlock protocol, explained 
below. (Note that trap and intovr should not be 
used within a locked sequence; otherwise, it 
would be difficult to distinguish between this and 
the prior cases.) 

There may be other instructions between any of 
these steps. The bus is locked after step 2, and re­
mains locked until step 4. Step 4 must follow step 1 
by 30 instructions or less; otherwise, an instruction 
trap occurs. In case of a trap, IL is also set. If the 
load or store instruction of step 2 accesses a previ­
ously unaccessed page (A = 0), the bus is locked 
briefly while the A bit is set, unlocked, then locked 
again to satisfy the lock instruction and start the 
locked sequence. 

4. By execution of an instruction that uses a pipeline 
when the PT bit of epsr is set. (Refer to section 
2.8.2.2.) 

2.8.2.1 Lock Protocol 

The lock protocol requires the following sequence of 
activities: 

1. lock 

2. Any load or store instruction. For compatibility 
with future processor generations, this should be 
a load. 

3. unlock 

4. Any load or store instruction. For compatibility 
with future processor generations, this should be 
a store. 
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2.8.2.2 Using PT and PI Bits 

The PI and PT bits are provided to help the trap 
handler avoid unnecessarily saving and restoring the 
pipelines (refer to the section "Pipeline Preemption" 
in the iS60 Microprocessor Family Programmer's 
Reference Manual). 

Trap handlers that use PI or PT must initially exam­
ine fsr. If a pending trap exists-that is, if the FTE 
(floating-point trap enable) bit is set and any of the 



infef i860™ XP MICROPROCESSOR 

floating-point exception bits (AI, AO, AU, MI, MO, 
MU) is active-the trap handler must save the pipe­
lines. The i860 XP microprocessor, like the i860 XR 
microprocessor, may set an fsr exception bit before 
the floating-point trap is generated, and this pending 
trap relies on information in the pipeline. For exam­
ple, an external interrupt might invoke the trap han­
dier between the scalar floating-point instruction that 
produces an overflow and the next floating-point op­
eration-the one that would cause a branch to the 
trap handler for the floating-point trap. 

If no pending trap exists, the handler can follow ei­
ther of the following two methods: 

• Using both PT and PI: Upon invocation, the trap 
handler saves the state of PI and PT (in epsr), 
but does not save the pipes. If PI is found set 
(which means that the interrupted code needs 
the state information currently in the floating­
point pipelines), the handler sets PT and clears PI 
(with a single st.c to epsr instruction), then con­
tinues with trap processing. If the pipes are used 
during trap handling (even by a scalar instruc­
tion), a trap will be generated with IT and PI set 
by hardware. The trap handler may then check PI 
and PT, and if both are set, clear PT, PI, and IT, 
save the pipes, set an indication that they were 
saved, and restart execution from the instruction 
that caused the trap. At the end of trap handling, 
the trap handler restores the pipes if they were 
saved, and restores PI and PT to their values be­
fore the trap. This method avoids both saving and 
restoring the pipes, assuming that most trap han­
dling sequences do not alter the pipes, and there­
fore a trap for PT = 1 will not happen very often. 

• Using only PI: Another approach is to leave 
PT = 0, using only the PI bit, which the processor 
sets each time a pipe lined instruction or pfld is 
executed. The trap handler saves PI, saves the 
pipes if PI is set, sets an indication that they were 
saved, and clears PI. At the end of trap handling, 
the trap handler restores the pipes if they were 
saved, and restores PI to its value before the 
trap. With this method, the pipes are sometimes 
saved and restored unnecessarily if the trap han­
dier code does not use the pipes. This method is 
advised when it is known that the trap handler 
uses the pipes. 

2.8.3 FLOATING-POINT FAULT 

The floating-point fault is reported on floating-point 
instructions, pst, fst, and sometimes fld, pfld, and 
ixfr. The floating-point faults of the i860 XP micro­
processor support the floating-point exceptions de­
fined by the IEEE standard as well as some other 
useful classes of exceptions. The i860 XP micro-
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processor divides these into two classes: source ex­
ceptions and result exceptions. The numerics library 
supplied by Intel provides the IEEE standard default 
handling for all these exceptions. 

2.8.3.1 Source Exception Faults 

All exceptional operands, including infinities, denor­
malized numbers and NaNs, cause a floating-point 
fault and set SE in the fsr. Source exceptions are 
reported on the instruction that initiates the opera­
tion. For pipelined operations, the pipeline is not ad­
vanced. 

SE is undefined for faults on fld, pfld, fst. pst, and 
ixfr instructions under these conditions: 

• In single-instruction mode, always. 

• In dual-instruction mode, when the companion in­
struction is not a multiplier or adder operation. 

2.8.3.2 Result Exception Faults 

The result exceptions include: 

• Overflow. The absolute value of the rounded true 
result would exceed the largest positive finite 
number in the destination format. 

• Underflow (when FZ is clear). The absolute value 
of the rounded true result would be smaller than 
the smallest positive finite number in the destina­
tion format. 

e Inexact result (when TI is set). The result is not 
exactly representable in the destination format. 
For example, the fraction Va cannot be precisely 
represented in binary form. This exception occurs 
frequently and indicates that some (generally ac­
ceptable) accuracy has been lost. 

The point at which a result exception is reported de­
pends upon whether pipelined operations are being 
used: 

• Scalar (nonpipelined) operations. Result ex­
ceptions are reported on the next floating-point, 
fst.x, or pst.x (and sometimes fld, pfld, ixfr) in­
struction after the scalar operation. When a trap 
occurs, the last-stage of the affected unit con­
tains the result of the scalar operation. 

• Pipelined operations. Result exceptions are re­
ported when the result is in the last stage and the 
next floating-point (and sometimes fld, pfld, ixfr) 
instruction is executed. When a trap occurs, the 
pipeline is not advanced, and the last-stage re­
sults (that caused the trap) remain unchanged. 

When no trap occurs (either because FTE is clear or 
because no exception occurred), the pipeline is ad-
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vanced normally by the new floating-point operation. 
The result-status bits of the affected unit are unde­
fined until the point that result exceptions are report­
ed. At this point, the last-stage result-status bits (bits 
29 .. 22 and 16 .. 9 of the fsr) reflect the values in the 
last stages of both the adder and multiplier. For ex­
ample, if the last-stage result in the multiplier has 
overflowed and a pfadd is started, a trap occurs and 
MO is set. 

For scalar operations, the RR bits of fsr report in 
which register the result was stored. RR is updated 
when the scalar instruction is initiated. The result ex­
ception trap, however, occurs on a subsequent in­
struction. Programmers must prevent intervening 
stores to fsr from modifying the RR bits. Prevention 
may take one of the following forms: 

co Before any store to fsr when a result exception 
may be pending, execute a dummy floating-point 
operation to trigger the result-exception trap. 

• Always read from fsr before storing to it, and 
mask updates so that the RR bits are not 
changed. 

For pipelined operations, RR is cleared; the result is 
in the last stage of the pipeline of the appropriate 
unit. The trap handler must flush the pipeline, saving 
the results and the status bits. 

In either pipelined or scalar mode, the trap handler 
must compute the result to be returned. In either 
case, the result delivered by the CPU has the same 
significand as the true result and has an exponent 
that is the low-order bits of the true result. The trap 
handler can inspect the delivered result, compute 
the result appropriate for that instruction (a NaN or 
an infinity, for example), and store the computed re­
sult. If RR is nonzero, the trap handler must store 
the computed result in the register specified by RR; 
if RR is zero, it must load the last stage of the pipe­
line with the computed result instead of the saved 
result. 

Result exceptions may be reported for both the ad­
der and multiplier at the same time. In this case, the 
trap handler should fix up the last stage of both pipe­
lines. 

2.8.4 INSTRUCTION ACCESS FAULT 

This trap occurs during address translation for in­
struction fetches in any of these cases: 

• The address fetched is in a page whose P (pres­
ent) bit in the page table is clear (not present). 
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• The address fetched is in a supervisor mode 
page, but the processor is in user mode. 

• The address fetched is in a page whose PTE has 
A = 0, and the access occurs during a locked 
sequence (i.e. between lock and unlock). 

Note that several instructions are fetched at one 
time, either due to instruction prefetching or to in­
struction caching. Therefore, a trap handler can 
change from supervisor to user mode and continue 
to execute instructions fetched from a supervisor 
page. An instruction access trap occurs only when 
the next group of instructions is fetched from a su­
pervisor page (up to eight instructions later). If, in the 
meantime, the handler branches to a user page, no 
instruction access trap occurs. No protection viola­
tion results, because the processor does not permit 
data accesses to supervisor pages while running in 
user mode. 

2.8.5 DATA ACCESS FAULT 

This trap results from an abnormal condition detect­
ed during data operand fetch or store. Such an ex­
ception can be due only to one of the following caus­
es: 

.. An attempt is being made to write to a page 
whose D (dirty) bit is clear. 

.. A memory operand is misaligned (is not located 
at an address that is a multiple of the length of 
the data). 

• The address stored in the debug register is equal 
to one of the addresses spanned by the operand. 

• The operand is in a not-present page. 

.. An attempt is being made from user level to write 
to a read-only page or to access a supervisor-lev­
el page. 

• The operand is in a page whose PTE has A = 0, 
and the access occurs during a locked sequence 
(i.e. between lock and unlock). 

.. Write protection (determined by epsr bit WP = 1) 
is violated in supervisor mode. 

When a data access trap is taken on a pipelined 
floating-point instruction that occurs immediately af­
ter the load or store instruction that causes the trap, 
the destination register of the pipe lined floating-point 
instruction may be partially updated. Correct execu­
tion will occur when the trap handler resumes execu­
tion after handling the DAT, because the pipelined 
floating-point instruction will then correctly update its 
destination register. 
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2.8.6 PARITY ERROR TRAP 

If the PEN # pin is active and the bus unit detects a 
parity error during a bus read operation, the proces­
sor sets PEF and IN, then generates a trap. Further 
parity error traps are masked as soon as PEF is set. 
To reenable such traps, software must clear PEF 
and unfreeze BEAR by executing Id.c bear, rdest. 

The interrupted program is not restartable. BS (bus 
or parity error trap in supervisor mode) is set by the 
i860 XP microprocessor when a parity error occurs 
while the processor is in supervisor mode. The oper­
ating system can use this bit to decide, for example, 
whether to abort the process (user mode) or reboot 
the system (supervisor mode). 

2.8.7 BUS ERROR TRAP 

When external hardware asserts the BERR pin, the 
processor sets BEF (bus error flag) and IN (inter­
rupt), and then traps. Further BERR traps are 
masked as soon as BEF is set by hardware. To 
reenable such traps, software must clear BEF and 
unfreeze BEAR by executing Id.c bear, rdest. 

The interrupted program is not restartable. BS (bus 
or parity error trap in supervisor mode) is set by the 
i860 XP microprocessor when a bus error occurs 
while the processor is in supervisor mode. The oper­
ating system can use this bit to decide, for example, 
whether to abort the process (user mode) or reboot 
the system (supervisor mode). 

2.8.8 INTERRUPT TRAP 

An interrupt is an event that is signaled from an ex­
ternal source. If the processor is executing with in­
terrupts enabled (1M set in the psr), the processor 
sets the interrupt bit IN in the psr and INT in the 
epsr, then generates an interrupt trap. 

Vectored interrupts are implemented by interrupt 
controllers and software. Software can use the Idint 
instruction to generate an interrupt acknowledge 
(INTA) cycle. This instruction generates a bus cycle 
with INT A cycle specifications, and places the data 
returned from the bus to the destination register. 
Tags are not checked in the data cache for hit, and 
the cycle is not burstable. 

The Intel 486 microprocessor generates two INTA 
cycles as a response to-an interrupt and inserts four 
idle clocks in between. To generate an interrupt ac­
knowledge sequence that is compatible with the 
Intel 486 microprocessor, the Idint instruction se­
quence documented in section 5.1.4 should be exe­
cuted. 
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2.8.9 RESET TRAP 

When the i860 XP microprocessor is reset, execu­
tion begins in single-instruction mode at virtual ad­
dress OxFFFFFFOO. This is the same address as for 
other traps. The reset trap can be distinguished from 
other traps by the fact that no trap bits are set. The 
instruction cache is flushed. The bits OPS, BL, and 
ATE in dirbase are cleared. GS8 is initialized by the 
value at the INT pin at the end of reset. The read­
only fields of the epsr are set to identify the proces­
sor, while the IL, WP, and PBM bits are cleared. The 
bits U, 1M, BR, and BW in psr are cleared, as are the 
trap bits FT, OAT, IAT, IN, and IT. All other bits of 
psr and all other register contents are undefined. 
Refer to Table 2.11 for a summary of these initial 
settings. 

The software must ensure that the control registers 
are properly initialized before performing operations 
that depend on the values of those registers. 

Reset code must initialize the floating-point pipeline 
state to zero with floating-point traps disabled to en­
sure that no spurious floating-point traps are gener­
ated. 

After a RESET the i860 XP microprocessor starts 
execution at supervisor level (U = 0). Before branch­
ing to the first user-level instruction, the RESET trap 
handler or subsequent initialization code has to set 
PU and a trap bit. so that an indirect branch instruc­
tion will copy PU to U, thereby changing to user lev­
el. 

2.9 Debugging 

The i860 XP microprocessor supports debugging 
with both data and instruction breakpoints. The fea­
tures of the i860 XP microprocessor architecture 
that support debugging include: 

• db (data breakpoint register), which permits 
specification of a data address that the i860 XP 
microprocessor will monitor. 

• BR (break read) and BW (break write) bits of the 
psr, which enable trapping of either reads or 
writes (respectively) to the address in db. 

• OAT (data access trap) bit of the psr, which al­
lows the trap handler to determine when a data 
breakpoint was the cause of the trap. 

• trap instruction that can be used to set break­
points in code. Any number of code breakpoints 
can be set. The values of the isrc1 and isrc2 
fields help identify which breakpoint has oc­
curred. 

• IT (instruction trap) bit of the psr, which allows 
the trap handler to determine when a trap 
instruction was the cause of the trap. 
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Table 2.11. Register and Cache Values after Reset 

Registers 

Integer Registers 
Floating-Point Registers 
psr 

epsr 

db 
dirbase 
fir 
fsr 
bear 
p3-pO 
ccr 
KR, KI, T, MERGE 
NEWCURR 
STATUS 

Caches 

Instruction Cache 
Data Cache 
TLB 

3.0 ON-CHIP CACHES 

By holding data, instructions, and address transla­
tion on-chip, the caches of the i860 XP microproces­
sor provide the following advantages: 

1. Low chip count for the CPU subsystem. 

2. Wide processor-to-cache path: 16 bytes for data, 
8 bytes for instructions. 

3. Fast access without requiring much additional 
high-speed design in the system. The fast 
(50 MHz) cache-access circuitry is hidden on 
chip; the external bus can respond more slowly 
without significantly degrading performance. 

3.1 Address Translation Caches 

The i860 XP microprocessor allows both four Kbyte 
and four Mbyte page sizes, and a separate transla­
tion look-aside buffer (TLB) is used to cache ad­
dress translation information for each page size. The 
TLB for four-Kbyte pages (Figure 3.1) has 64 entries, 
and the TLB for four-Mbyte pages (Figure 3.2) has 
16 entries. Both are four-way set associative. The 
TLBs function when paging is enabled. When a page 
is first accessed, its translation information is saved 
in the appropriate TLB along with other page attri­
butes, such as access rights and cacheability. Every 
address translation operation looks up the virtual ad­
dress simultaneously in both TLBs. Only if the nec-

Initial Vaule 

Undefined 
Undefined 
U, 1M, BR, BW, FT, DAT, IAT, IN, IT = 0; 
others are undefined 
IL, WP, PBM, BE, PT = 0; BEF, PEF = 1; 
Processor Type, Stepping Number, DCS, 
SO are read only; others are undefined 
Undefined 
DPS, BL, LB, ATE = 0; others are undefined 
Undefined 
Undefined 
Undefined 
Undefined 
CO, DO = 0; others are undefined 
Undefined 
Undefined 
InLoop, Nested, Detached = 0 

Initial Value 

All entries invalid 
All entries invalid 
All entries invalid 
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essary paging information is not in either of the 
caches must the paging tables in memory be refer­
enced. Both TLBs employ a random replacement al­
gorithm to choose which of the four ways to replace. 

If an instruction's virtual address is found in the in­
struction cache, the virtual address is not translated, 
and code access rights are not verified. However, 
when an instruction's virtual address is not found in 
the cache, address translation does occur, and all 
access rights are verified. The virtual addresses of 
data are always translated, and access rights are 
always verified. 

The i860 XP microprocessor requires simultaneous 
access to data and instruction caches, but the TLBs 
can service only one address translation at a time. 
Data address translation has higher priority in the 
TLBs than instruction address translation, if both are 
required at the same time. 

Any data or instruction access fault halts address 
translation at once, and the TLB is not updated. If a 
directory read causes an access fault, the page ta­
ble is not read at all. 

If the paging unit generates a fault (in setting the D 
bit for the first write to a nondirty page, for example), 
the corresponding entry is deleted from the TLB. 
Therefore, software does not need to invalidate the 
TLB entry in response to DAT or IAT faults. 
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If TLB replacement is initiated during a locked se­
quence generated by the lock instruction and if an­
other locked sequence has to be executed to set the 
A-bit, the paging unit generates an access fault. This 
helps external hardware implement "locking by ad­
dress" by preventing generation of nested lock se­
quences. 

3.2 Internal Instruction and Data 
Caches 

The i860 XP microprocessor has separate data and 
instruction caches on-chip. Having separate caches 
for instructions and data allows simultaneous cache 
look-up. Up to two instructions and 128 bits of data 
can be accessed simultaneously from these caches. 
The data and instruction caches hold 16 Kbytes 
each. A line can be filled from memory with a four­
transfer burst. 

The caches are fully transparent to applications soft­
ware. Snooping (address monitoring) is designed 
into both instruction and data caches, to maintain 
cache consistency in multiprocessor systems. 

Each cache has two sets of tags: virtual tags used 
for internal access, and physical tags used for 

snooping. Figure 3.3 shows how the bits of both vir­
tual and physical addresses are mapped for cach­
ing. The presence of both virtual and physical tags 
supports aliasing, a situation in which the TLBs as­
sociate a single physical address with two or more 
virtual addresses. 

Any area of memory can be cached, although both 
software and hardware can disallow certain areas 
from being cached-software by setting the CD bit in 
their page table entries; hardware by deasserting the 
KEN # signal for bus cycles with addresses that fall 
in those areas. (Data reads from the two four-Kbyte 
pages pointed to by the CCUBASE field of ccr are 
not cached (and the CACHE# signal is inactive), if 
the DCCU is activated by setting CO of the ccr 
register. This is independent of the value of KEN #.) 
When both software and hardware agree that a re­
quested datum is cacheable, the i860 XP microproc­
essor fetches an entire 32-byte line and places it 
into the appropriate cache. Cache line fills are gen­
erated only for read misses, not for write misses. A 
store that misses the cache does not copy the 
missed line into cache from memory, but rather 
posts the datum in a write buffer, then sends it to the 
external bus when the bus is available. 

INTERNALLY GENERATED ADDRESSES 
'SIJ0292827262524 2322 21 20191817161514 13 121110 9 8 7 6 5 -I J 2 

CACHE TAG SET SELECT 

CACHE TAG 

EXTERNALLY GENERATED INQUIRY (SNOOP) ADDRESSES 
240874-24 

Figure 3.3. Cache Address Usage 
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3.2.1 DATA CACHE 

Figure 3.4 shows the organization of the data cache. 
The data cache has two status bits per physical tag 
and one validity status bit for the virtual tag. A virtual 
tag hit is possible only when the validity bit of the 
virtual tag is set and the state of the physical tag is 
M, E, or S. 

Aliasing support is built into the cache look-up algo­
rithm. Even though a physical line may be aliased, 
the processor never enters the line twice in the data 
cache. If a virtual address is not found among the 
virtual tags in the data cache, a bus cycle is initiated 
(except a read is not issued at this time if the bus 
pipeline is full) and, at the same time, the physical 
tags are searched for the physical address (which by 
this time has been retrieved from the paging unit). 
For reads, if the physical address is found, the data 
returned from the bus is ignored, on-chip data is 
used, and the virtual tag is replaced with the new 
one. For writes, if a virtual address is not found, the 
write is issued on the bus and memory is updated. If 
the physical address is found, the line in cache is 
updated, and the virtual tag is replaced with the new 
one. However, the cache state (M, E, or S) of the 
physical-address tag does not change when the vir­
tual tag is overwritten. 

Note that the BE (big end ian) bit of epsr has no 
influence on data cache behavior. Data items are 
kept in cache in exactly the same ordering as in ex­
ternal memory. Byte-shifting operations invoked by 
the BE bit upon loads and stores occur at the input 
to the register files only. 

3.2.1.1 Data Cache Update Policies 

To minimize bus traffic, a write-back policy is normal­
ly used. The write-back policy (also called copy-back 
and deferred-write) reduces bus traffic by eliminating 

VIRTUAL 
V Ox18 Ox10 NOTES: TAG 

M Modified VIRTUAL 
V Ox18 Ox10 

E Exclusive TAG 

S Shared VIRTUAL 
V Ox18 Ox10 TAG 

many unnecessary writes. Writes to a line in the 
cache are not immediately forwarded to main mem­
ory; instead, they are accumulated in the cache. The 
modified cache line is written to main memory only 
when its cache space is needed for other data, 
when the modified data is needed by another proc­
essor, or when a flush procedure is executed. 

Under the write-back policy, a write that hits the 
cache utilizes it for two cycles (one to check the 
virtual tags for hit, another to update the cache line). 
However, the cache pipeline allows successive 
store hits to operate at one per cycle. The proces­
sor's internal write buffers can hold two successive 
stores, preventing a freeze upon store miss. 

Under a write-through policy, a write request to a line 
in the cache triggers updates to both cache and 
main memory. An address decoder, for example, 
can select the write-through policy for writes to video 
RAM, where it is necessary that writes be seen on 
the video display. Software, by setting the WT page­
table bit, can select the write-through policy for spe­
cific areas of memory-those that are used for inter­
processor message queues, for example. 

A write-once policy combines write-through with 
write-back. Write-through is employed for the first 
write to a cache line, while subsequent writes to the 
same line follow the write-back policy. Write-once is 
valuable in multiprocessor systems to maintain 
cache consistency with the least possible bus traffic. 
The first write broadcasts to other processor nodes 
the fact that a line has been modified. Write-once is 
also used if a second-level cache is attached to the 
i860 XP microprocessor to maintain consistency be­
tween the first- and second-level caches. 

The external system can dynamically change the up­
date policy (write-back, write-through, write-once) of 
the i860 XP microprocessor with each cache line. 

8 0 
PHYSICAL MESI 

TAG 
I Invalid ~32-BYTE LlNES--l 
V Validity 240874-25 

Figure 3.4. Data Cache Organization 
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3.2.2 INSTRUCTION CACHE 

Figure 3.5 shows the organization of the instruction 
cache. The instruction cache has one validity bit that 
is common to both virtual and physical tags. Aliasing 
support for instructions consists not simply of chang­
ing the virtual tag, but rather fetching a line whenev­
er a virtual tag miss occurs. If the physical address 
already exists in the instruction cache, its line and its 
tags are overwritten. So, even though a physical line 
may be aliased, the processor never enters the line 
twice in the instruction cache. 

3.2.3 CACHE REPLACEMENT ALGORITHM 

The data, instruction, and address-translation 
caches all use similar algorithms to choose which of 
the four cache blocks will be overwritten when a 
miss causes a line fetch. 

First, the first invalid line (if any) in a set of four is 
replaced (in the order 0, 1, 2, 3). When there are no 
more invalid lines in a set, a pseudorandom replace­
ment algorithm chooses which valid lines to replace. 
The algorithm is controlled by counters inside the 
chip. RESET initializes these counters to zero, so 
that the "randomness" is deterministic and two 
i860 XP CPUs executing the same code on identical 
boards have exactly the same series of cache hits, 
misses, and replacements. 

r OxlO 

'" ,.. VIRTUAL 
"" Oxl0 
~ TAG 

'" VIRTUAL 
=> TAG OxlO 

1 VIRTUAL 
Oxl0 TAG 

NOTE: 
V Validity 

Setting ITI to invalidate the caches and TLSs also 
resets the counters used to select the set used for 
cache line replacement. This brings the i860 XP mi­
croprocessor cache-replacement mechanism to a 
known state without resetting the whole chip. 

When the flush instruction is used to write back 
modified lines in the data cache, the flush routine 
must alter the RC (replacement control) field of 
dirbase. Therefore, replacement is not random. In­
stead, the block (or "way") replaced is the one se­
lected by the RS (replacement block) field of 
dirbase. 

3.2.4 CACHE CONSISTENCY PROTOCOL 

The i860™ XP Microprocessor implements cache 
consistency via its use of a MESI (Modified, Exclu­
sive, Shared, Invalid) protocol. 

3.2.4.1 Data Cache States 

Each line of the data cache of the i860 XP micro­
processor can be in one of the states defined in Ta­
ble 3.1. Note that the instruction cache of the 
i860 XP only implements the "SI" part of the MESI 
protocol, because the instruction cache is not writa­
ble. 

PHYSICAL 
TAG 

PHYSICAL 
TAG 

PHYSICAL 
TAG 

240874-26 

Figure 3.5. Instruction Cache Organization 

Table 3.1. MESI Cache Line States 

M E S I 
Cache Line State: Modified Exclusive Shared Invalid 

This cache line is valid? Yes Yes Yes No 

The memory copy is ... ... out of date . .. valid ... valid -
Copies exist in other caches? No No Maybe Maybe 

A write to this line ... ... does not go ... does not go ... goes to bus . .. goes 
to bus to bus and updates directly to bus 

the cache 
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Table 3.2. Internally Initiated Cache State Transitions 

State Next State after Read Next State after Write' 

I If WB/WT# = 1; E; else S Write-through 
Line fill I 

S S Write·through 
If WB/WT# = 1, E; else S 

E E M 
M M M 

NOTE: 
, "Write" does not include write·backs due to replacement. Those can only cause an M to I 

transition. 

The state of a cache line can change as the result of 
either internal or external activity related to that line. 
Table 3.2 presents the line state transitions that re­
sult from internal activity of the i860 XP microproces­
sor in the data cache. 

External cache-consistency support is provided 
through inquiry cycles. Inquiry cycles are initiated by 
other processors in a multiprocessor system to 
check whether an address is cached in the internal 
cache of the i860 XP microprocessor. Table 3.3 
shows the line state transitions initiated by inquiry 
cycles. 

State 

I 
S 
E 
M 

Table 3.3. Inquiry-Initiated 
Cache State Transitions 

INV=O INV=1 

I I 
S I 
S I 

S; write back the line I; write back the line 

3.2.4.2 Write-Once Policy 

A write-once cache policy can be implemented 
through use of the WB/WT # input pin. The signal 
on this pin is sampled in both read and write cycles. 
A read miss causes a line to enter either S or E after 
the line fill. If WB/WT # is sampled LOW at the time 
of NA # or the first BRDY # activation, the line en­
ters S state, forcing the next write hit to this line to 
show up on the bus. If WB/WT# is sampled HIGH, 
the line enters E state. In write-through cycles, the 
state of a line is changed from S to E when WBI 
WT# is sampled HIGH, so that subsequent writes 
will not be written through to the bus. Thus, if this 
signal is driven LOW on read cycles and HIGH on 
write cycles, a write-once cache policy is implement­
ed. The easiest way to implement write-once (in sys­
tems not using the 82495XP cache controller) is to 
tie this pin to the W IR # output of the processor. 
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If the WT bit in the page table entry is set, the 
i860 XP microprocessor ignores the WB/WT # sig­
nal for the cycles that hit that page and always per­
forms a write-through. In other words, hardware can­
not override software's selection of the write­
through policy. 

3.2.4.3 Locked Access 

Locked accesses are those data loads and stores 
that occur after a lock instruction up to and including 
the first load or store after the corresponding unlock 
instruction. 

State transitions for locked accesses differ from 
those in Table 3.2 in ways that guarantee that 
locked accesses are seen by all processors in the 
system. Any locked load or store generates both a 
cache look-up and an external bus cycle, regardless 
of cache hit or miss. 

1. In a locked read: 

a. If the required data is not found in the cache, 
the data from the bus is used. The data is 
placed in the cache if it is cacheable and 
KEN # is also asserted. 

b. If the required data is found in an unmodified 
(E or S) state, the data from the bus is used. 

c. If the data is found in the cache in a modified 
(M) state, the cached data is used, and the 
bus data is ignored, as long as no inquiry 
write-back occurs before the BRDY # of the 
bus cycle. If, however, an intervening inquiry 
write-back changes the line to S or I state, the 
bus data is used. 

2. A locked store is forced through the cache and 
issued on the bus. No more data accesses occur 
until the last BRDY # for the store. If the store 
hits the internal cache, the cache update is done 
after the last BRDY # from the bus. Note that the 
line written by a locked store remains in M state 
in spite of the write-through to the bus, because 
the length of the write-through is less than the 
line size of 32 bytes. 
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Locked accesses are totally serializing in the sense 
that: 

1. All loads and stores that precede the lock 
instruction are issued on the bus (if they miss the 
cache) before the first locked access is issued. 
The locked access can be issued before the last 
BRDY # of the prior cycle if NA # is activated in 
response to the prior cycle. . 

2. No load or store after the last locked access is 
issued internally or on the bus until the final 
BRDY # for all locked accesses. 

To maximize performance, instruction fetches during 
the locked sequence are not serializing. When NA # 
invokes pipelining, instruction fetches may be issued 
while locked data fetches or stores remain on the 
bus. 

3.3 Internal Cache Consistency 

Both the instruction and the data caches can be 
snooped by externally generated inquiry cycles, and 
the result of the look-up is presented on the HIT# 
and HITM # output pins. These inquiry cycles help 
maintain consistency with caches of other proces­
sors. However, software must take care not to cre­
ate inconsistencies such as the following among the 
internal caches (including the TLBs): 

1. Changing the address space while leaving virtual­
address tags from the prior space in the instruc­
tion or data cache. 

2. Changing instructions in memory (or in the data 
cache) without changing them in the instruction 
cache. 

3. Changing page table information in memory (or in 
the data cache) without changing the same infor­
mation in the TLBs. 

Under certain circumstances, such as 1/0 refer­
ences, self-modifying code, page-table updates, or 
shared data in a multiprocessing system, it is neces­
sary to bypass, to invalidate, or to flush the caches. 
The i860 XP microprocessor provides the following 
methods for doing this: 

• Bypassing Instruction and Data Caches. 

1. If de asserted during cache-miss processing, 
the KEN # pin disables instruction and data 
caching of the referenced data. 

2. If the CD bit of the associated page table is 
set, caching of a page is disabled. The value of 
the CD bit is output on the PCD pin for use by 
external caches. 
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3. If the WT bit of the associated page table is 
set, caching is not disabled, but writes pass 
through the cache. The value of the WT bit is 
output on the PWT pin for use by external 
caches. (Note that WT does not affect policy 
for the instruction cache, because the instruc­
tion cache is not writable. However, when an 
instruction from a page having the WT bit of 
the PTE set is placed in the data cache, the 
write-through policy applies just as for a data 
page.) 

• Invalidating Cache Entries. Storing to the 
dirbase register with the ITI bit set invalidates 
each line of the instruction and address-transla­
tion caches. In the data cache, it invalidates the 
virtual tags, but not the physical tags. 

• Flushing the Data Cache. The data cache is 
flushed by a software routine that uses the flush 
instruction. The flush instruction speeds up write­
backs. The same effect (writing back modified 
lines) can be achieved with the load instruction 
Id.l, but this would be more than twice as slow­
the load must first do four bus transfers to get 
new data, then write back the modified line. The 
flush instruction causes the write-backs without 
requiring a read from external memory to replace 
the modified line. 

3.3.1 ADDRESS SPACE CONSISTENCY 

In a multitasking virtual-address system, the operat­
ing system may intentionally employ aliasing, where 
several processes use the same physical memory 
while accessing it with different virtual addresses. 
When the operating system switches control from 
one process to the next, it changes the DTB field of 
the dirbase to point to a different page directory that 
defines the new address space. When this happens, 
all caches must be invalidated: the TLBs, so that the 
new page directory is read into the TLBs; the data 
and instruction caches, so that virtual addresses 
from the new space don't accidently match cached 
virtual addresses from the old space. 

The caches are invalidated by setting the ITI bit 
when writing to dirbase. Invalidating the instruction 
cache invalidates both the physical and the virtual 
tags, because the instruction cache has one status 
(valid) bit, which is common to both physical and 
virtual tags. In the data cache, setting ITI does not 
invalidate physical tags. However, any modified lines 
will eventually be written back when their space is 
required for lines from the new address space or 
when external agents on the bus express a need for 
the modified data via inquiry cycles. 
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The caches are invalidated by setting the ITI bit 
when writing to dirbase. Note, however, that the op­
erating system code that flushes the caches must 
be present during the flushing. Typically this code 
has the same virtual address for all processes. 

NOTE: 
The mapping of the page(s) containing the cur­
rently executing instruction, the next six in­
structions, and any data referenced by these 
instructions should not be different in the new 
page tables when the OTB is changed. 

Enabling or disabling address translation (via the 
ATE bit) is similar to changing the OTB, in that the 
address mapping is changed. The virtual tags in the 
data and instruction cache must be invalidated prior 
to changing ATE. 

3.3.2 INSTRUCTION CACHE CONSISTENCY 

When software modifies a page containing instruc­
tions (as when a debugger replaces an instruction 
with the trap instruction to set a breakpoint), the in­
struction cache can become inconsistent for any of 
the following reasons: 

• Because the data cache uses a write-back policy, 
changes to cached instruction pages do not im­
mediately update memory. 

• Changes to instructions do not automatically up­
date the instruction cache. 

• Instruction cache misses are not checked in the 
data cache. 

Software must ensure that modified lines containing 
instructions are written to main memory before the 
instruction cache tries to read them. There are two 
methods for this: 

1. Flush the data cache using the flush instruction. 
Note that to make the instruction cache consist­
ent with the data cache, the data cache must be 
flushed before invalidating the instruction cache. 

2. Mark all instruction pages as WT (write through) 
so that modifications to instructions are immedi­
ately written to memory. This is the better alterna­
tive. 

In either case, the instruction cache must be invali­
dated (by a store to dirbase with ITI set) after a 
code page has been modified, so that the updated 
instructions will be read from memory. 
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3.3.3 PAGE TABLE CONSISTENCY 

When the operating system modifies page tables or 
directories, the TLBs can become inconsistent with 
the modifications for any of the following reasons: 

• Because the data cache uses a write-back policy, 
updates to cached page tables do not immediate­
ly update memory. 

• Changes to page tables do not automatically up­
date the TLB. 

• The i860 XP microprocessor searches only exter­
nal memory for page directories and page tables 
in the translation process. The data cache is not 
searched. (Data is not transferred from the data 
cache to the TLBs during TLB replacement cy­
cles.) 

Software must ensure that modified lines containing 
page table entries are written to main memory be­
fore the paging unit tries to read them. There are two 
methods for this: 

1. Keep page tables and directories in noncachea­
ble memory or write-through pages. 

2. Flush the data cache using the flush instruction. 

The processor itself invalidates the affected TLB en­
try, when a trap is triggered by the need to set the A 
or 0 bit. In other cases, after a page table or directo­
ry has been modified, software must invalidate the 
TLBs (by a store to dirbase with ITI set) so that the 
updated entries will be read from memory. 

The data cache does not need flushing if the pro­
gram is modifying only the P, U, W, A, or 0 bits of a 
PTE (as long as the page frame address is not 
changed and the PTE itself is not in the data cache.) 
The i860 XP CPU does not use the TLB for cache 
line write-backs; it writes to the address in the physi­
cal tag. 

Thus, a trap handler can service a data access trap 
for O-bit zero merely by setting 0 = 1. When setting 
the P or A bits, there is no need to invalidate or flush 
any caches, because the processor does not load 
entries into the TLB that have P = 0 or A = O. 

Two potential TLB inconsistencies are avoided auto­
matically by the i860 XP microprocessor. 

1. If the paging unit issues a write cycle (to set the A 
bit, for example), this cycle is snooped by the 
data cache for invalidation. 

2. Any TLB entry that causes a OAT or IAT is auto­
matically invalidated. 
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3.3.4 CONSISTENCY OF CACHEABILITY 

Normally, an operating system ensures that the 
page attributes (CD and WT) of a memory access 
are consistent with the cache contents. However, 
the operating system can fail to maintain consisten­
cy by the following actions: 

• Changing the CD or WT bits while related lines 
are in the cache. 

• Aliasing a physical address with virtual addresses 
that have differing CD or WT bits. 

In these situations, the i860 XP microprocessor 
gives priority to cache state. For example: 

1. If a read or write request is to a noncacheable 
page (CD = 1), but the data (or code) is found in 
cache, the request is satisfied by the cache, and 
no external cycle is issued. 

2. If the physical address of a read or write request 
hits in the cache but the virtual address misses, 
the virtual tag is overwritten by the new virtual 
address, but the CD bit of the new virtual address 
is ignored. 

3. If a store to a write-through page (WT= 1) hits a 
cache line in E or M state, no write-through cycle 
is issued; only the cache is updated. 

3.3.5 LOAD PIPE CONSISTENCY 

The pfld (pipelined floating-point load) instruction fa­
cilitates transfer of data from memory to registers, 
and avoids placing data in the data cache. When 
large amounts of data are used, pfld allows the pro­
grammer to keep rarely-used data out of the cache. 
The i860 XP microprocessor ensures consistency 
between cached data and pfld references. It checks 
the data cache and, upon a data cache hit to a modi­
fied line, forwards data from cache into the three­
stage pfld pipeline. 
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3.3.6 SUMMARY 

Table 3.4 summarizes flush and invalidation require­
ments, assuming that WT is set in the PTEs of in­
struction and page-table pages: 

Table 3.4. Summary of 
Cache Flushing And Invalidation 

Flush Invalidate 
Action Data Caches 

Cache (ITI) 

Setting A No No 
Setting P No No 
Clearing P No Yes 
Setting 0 No No 
Changing protection (U,w) No Yes 
Setting CD or WT Yes Yes 
Changing PFA in a used(l) PTE No Yes 
Changing dirbase DTB No Yes 
Changing dirbase ATE No Yes 
Changing epsr WP No No 
Setting ccr DO and CO Yes(2) Yes(2) 
Modifying code No(3) Yes 

NOTES: 
1. "Used" means a PTE that at some past time had P set. 
2. If data from either of the CCU pages could have been 
cached. 
3. Assuming all instructions and their page directories and 
page tables are in write-through or noncacheable pages. 

4.0 HARDWARE INTERFACE 

In the following description of hardware interface, 
the # symbol at the end of a signal name indicates 
that the active or asserted state occurs when the 
signal is at a low Voltage. When no # is present after 
the signal name, the signal is asserted when at the 
high voltage level. 

4.1 Pins Overview 

Figure 4.1 identifies functional groupings of the pins. 
Table 4.1 lists every pin by its identifier, gives a brief 
description of its function, and lists some of its char­
acteristics. All output pins are tristate, except BREQ, 
HIT#, HITM#, HLDA, LOCK#, and PCHK#. 
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Table 4.1. Pin Summary 

Pin Active When Floated Internal 
10 Name Level Synch/Asynch Resistor 

Output Pins 

ADS# Address Status LOW HLDA, clock after BOFF # 
BE7#-BEO# Byte Enable LOW HLDA, BOFF# 
BREQ Bus Request HIGH 
CACHE# Cache LOW HLDA,BOFF# 
CTYP Cycle Type HIGH HlDA, BOFF# 
D/C# Data/Code HLDA, BOFF# 
HIT# Snoop Hit Cache LOW 
HITM# Snoop Hit Modified Line LOW 
HLDA Hold Acknowledge HIGH 
KBO,KB1 Cache Block HIGH HLDA, BOFF# 
LEN Length HIGH HLDA, BOFF# 
LOCK# Address Lock LOW 
M/IO# Memory/IO HLDA, BOFF# 
NENE# Next Near LOW HLDA, BOFF# 
PCD Page Cache Disable HIGH HLDA, BOFF# 
PCHK# Parity Check lOW 
PCYC Page Cycle HIGH HLDA, BOFF# 
PWT Page Write·Through HIGH HLDA,BOFF# 
TOO Test Output Nonscan Mode 
W/R# Write/Read HLDA, BOFF# 

Input/Output Pins 

A31-A3 Address HIGH AHOLD,HLDA,BOFF# 
D63-DO Data HIGH HLDA, BOFF# 
DP7-DPO Data Parity HIGH HLDA, BOFF# 

Input Pins 

AHOlD Address Hold HIGH Synch 
BERR Bus Error HIGH Synch 
BOFF# Back-Off LOW Synch 
RSRVD Intel Reserved 
BRDY# Burst Ready LOW Synch 
BYPASS# Intel Reserved LOW 
ClK Clock 
RESET Reset HIGH Asynch 
EADS# External Address Status LOW Synch 
EWBE# External Write Buffer Empty LOW Synch 
FLlNE# Flush Line LOW Synch 
HOLD Bus Hold HIGH Synch 
INT/CS8 Interrupt/Code-Size 8 HIGH Asynch 
INV Invalidate HIGH Synch 
KEN# Cache Enable LOW Synch 
NA# Next Address LOW Synch 
PEN# Parity Enable LOW Synch 
TCK Test Clock 
TDI Test Data Input Synch Pull-up 
TMS Test Mode Select Synch Pull-up 
TRST# Test Reset LOW Asynch Pull-up 
WB/WT# Write-Back/Write-Through Synch 
SPARE Intel Reserved 
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The pins D/C#, W/R#, and MIIO# define bus cy­
cle types. They are summarized in Table 4.2. For 
data transfers to or from memory, two additional 
pins, CTYP and PCYC, provide further information 
regarding the type of transfer, as shown in Table 4.3. 
Table 4.4 shows how the LEN and CACHE# pins 
determine cycle length. 

Table 4.2. ADS# Initiated Bus Cycle Definitions 

M/IO# D/C# W/R# Bus Cycle Initiated 

0 0 0 Interrupt Acknowledge 
0 0 1 Special Cycle 
0 1 0 1/0 Read 
0 1 1 110 Write 
1 0 0 Code Read 
1 0 1 Reserved 
1 1 0 Memory Read 
1 1 1 Memory Write 

Table 4.3. Memory Data Transfer Cycle Types 

PCYC CTYP W/R# Data Transfer Type 

0 0 0 Normal read 

A " < 063-00 
~ I' 

A. j,. < DP7-DPO 

~N# " 

BRDY# 
NA# 

KEN# 

WB/WT# 
AHOlD 
EADS# 

INV 
FLlNE# 
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BOFF# 

INT/csa 

I " A31 A3 
DATA ADDRESS II ~ 

~ 
BE7#-B£o#) 

PARITY 
t PCHK# 

~ 
: ADS# 

"', lEN 
CYCLE __ CACHE# 

CONTROL ~ lOCK# 
, NENE# 

§ PWT 
CACHE 
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HIT# 

HITM# 
CACHE ., KBO 

CONSISTENCY 
KB1 

,~ BREQ 
BUS 

" HlDA ARBITRATION 
, M/IO# 

D C# 
CYCLE W/R# 

0 1 0 Pipelined load (pfld instruction) 
BERR INTERRUPT 

DEFINITION" PCYC 

1 0 0 Page directory read 
1 1 0 Page table read 
0 0 1 Write-through (S-state hit) 
0 1 1 Store miss or write-back 
1 0 1 Page directory update 
1 1 1 Page table update 

NOTE: 
PGYG and CTYP are defined only for memory data transfer 
cycles (D/C# = 1, M/IO# = 1) 

, 
CTYP 

TCK 
~ TOI 

TMS 
BOUNDARY ,- TOO 

SCAN 
TRST# 

RESET 

ClK 
EWBE# 

BYPASS# 
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Figure 4.1. Signal Grouping 

Table 4.4. Cycle Length Definition 

W/R# LEN CACHE# KEN# Cycle Description 

0 0 1 - Noncacheable** 64-bit (or less) read 
0 0 - 1 Noncacheable 64-bit (or less) read 
1 0 1 - 64-bit (or less) write 

- 0 1 - 1/0 and Special Cycles 
0 1 1 - Noncacheable 128-bit read (p)fld.q 
0 1 - 1 Noncacheable 128-bit read (p)fld.q 
1 1 1 - 128-bit write fst.q 
0 - 0 0 Cache line fill 
1 - 0 - Cache write-back 

NOTE: 
.. Includes GS8-mode code fetches, which may be cached by the processor. 
-Indicates "don't care" values. 
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Burst Length 

1 
1 
1 
1 
2 
2 
2 
4 
4 
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4.2 Signal Description 

In this section descriptions of all pins are presented 
in alphabetical order. 

4.2.1 A31-A3 (ADDRESS PINS) 

The 29-bit address bus (A31-A3) identifies address­
es to a 64-bit location. Separate byte-enable signals 
(BE7 # - BEO #) identify which bytes should be ac­
cessed within the 64-bit location. 

The address lines are bidirectional. The iB60 XP mi­
croprocessor drives the address lines unless it is in a 
hold state. The system drives address lines A31-A5 
to perform cache line inquiries (refer to the EADS# 
signal description). 

4.2.2 ADS# (ADDRESS STATUS) 

The iB60 XP microprocessor asserts ADS# to iden­
tify the first clock period of each bus cycle, the clock 
period during which new values become valid on the 
address bus and cycle-definition pins. This signal is 
held active for one clock. 

If BOFF # is asserted, the processor floats ADS # 
two clocks after sampling BOFF # (and not, like all 
other pins, on the next clock). This is to ensure that 
ADS# is deasserted before it floats, and therefore is 
never left floating active. 

ADS# can be asserted while AHOLD is active to 
initiate a cache write-back cycle. 

4.2.3 AHOLD (ADDRESS HOLD) 

The external system asserts AHOLD to perform a 
cache inquiry. In response to assertion of AHOLD, 
the iB60 XP microprocessor immediately (in the next 
clock) stops driving the address bus (A31-A3 lines). 
The other buses remain active, and data can be 
transferred for previously issued read or write bus 
cycles during address hold. AHOLD is recognized 
even during RESET and LOCK #. The earliest that 
AHOLD can be deasserted is the clock after EADS# 
is asserted to start the inquiry. 

If HITM # has activated due to an inquiry, the 
iB60 XP microprocessor asserts ADS # while 
AHOLD is active to start the write-back of the modi­
fied line that was the target of the inquiry. 

4.2.4 BE7#-BEO# (BYTE ENABLES) 

The byte-enable pins are driven with the address. 
BE7# applies to 063-056, BEO# applies to 07-
DO. 
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In write cycles (noncacheable writes as well as 
cache line write-backs), the BEn# signals determine 
which bytes must be written into external memory 
for the current cycle. 

In read cycles, the BEn# values indicate which byte 
the load instruction has requested. In all noncachea­
ble read cycles (CACHE# or KEN # deasserted), 
the byte enables match the length and address of 
the requested data. Gacheable read cycles (KEN # 
asserted), however, result in four 64-bit memory 
transfers to fill an entire 32-byte cache line. The 
BEn# pins activated are those that represent the 
operand of the load instruction that caused the line 
fill, and these same BEn# pins remain activated for 
as long as A31-A5. All 64 bits must be returned for 
each cacheable cycle without regard for the BEn# 
signals. 

While in GSB mode, BE2#-BEO# serve as (active­
high) lower-order address bits for instruction fetches 
(from the ROM). Data fetches and stores are not 
affected by GSB mode, and BE2# -BEO# retain 
their normal byte-enable function for data. 

4.2.5 BERR (BUS ERROR) 

This is a nonmaskable interrupt input, which sup­
ports bus error handling or other urgent circum­
stances. BERR is not masked by the 1M bit of the 
psr nor by lock cycles. When BERR is activated, the 
iB60 XP microprocessor vectors to the trap handler 
and sets the bus error flag (BEF) in the epsr. BERR 
causes the physical address of the current bus cycle 
to be latched into the BEAR control register; thus, if 
asserted the clock of BRDY # or the clock after 
BRDY #, it causes the bus address to be latched for 
software to examine. BERR is rising-edge sensitive. 
Once the trap has occurred, further BEF traps can­
not occur until software has cleared BEF and read 
BEAR. 

BERR does not terminate outstanding bus cycles. 
Therefore, the system must still activate BRDY # a 
sufficient number of times or activate BOFF # for 
those cycles. Even though activating BOFF # tem­
porarily halts the erring cycles, the iB60 XP micro­
processor will retry them when BOFF # is deassert­
ed, in spite of BERR. 

Timing of BERR is not influenced by late back-off 
mode. 

4.2.6 BOFF # (BACK-OFF) 

The system can assert this signal to abort all out­
standing bus cycles that have not yet completed. In 
response to BOFF #, the iB60 XP microprocessor 
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immediately (in the next clock) floats its bus, except 
for ADS#, which is floated one clock later. The 
processor floats all the same pins normally floated 
during bus hold; however, unlike a bus hold, HLDA is 
not asserted. (HLDA is asserted only in response to 
HOLD; no acknowledgment is required for BOFF#.). 
Any data and BRDY # returned to the processor 
while BOFF # is asserted are ignored. The proces­
sor remains in bus hold until BOFF # is deasserted, 
at which time it restarts the bus cycles by driving the 
address and cycle definition pins and asserting 
ADS#. When BOFF# deactivates, ADS# may be 
asserted the following clock. Thus a BOFF # dura­
tion of one clock results in not floating ADS# at all. 
BOFF # cannot be used to force the pins to float 
during RESET; use HOLD for that purpose. 

4.2.7 BRDY # (BURST READY) 

BRDY # indicates either that the external system has 
driven valid data on the data pins in response to a read 
request or that the external system has latched the 
data in response to a write request. The CPU ignores 
this signal when no bus requests are outstanding. 
During a bus cycle, BRDY # is sampled at each clock, 
starting with the clock after assertion of ADS # and 
continuing until all data for the cycle has been trans­
ferred. When BRDY # is sampled active in a read 
cycle, the data present on the pins is sampled. 

4.2.8 BREQ (BUS REQUEST) 

BREQ allows the i860 XP microprocessor to share 
the local bus with other bus masters. An external 
bus arbiter can use BREQ to implement an "on de­
mand only" policy for granting the bus to the iB60 XP 
microprocessor. The iB60 XP microprocessor as­
serts BREQ the clock after it realizes an internal re­
quest for the bus. The system should sample this pin 
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only when the i860 XP microprocessor is not in con­
trol of the bus (that is, when HLDA, BOFF#, or 
AHOLD is active). BREQ is undefined when the 
iB60 XP microprocessor is driving the bus. BREQ 
may be deasserted between assertions of ADS # , 
but this does not imply that the CPU does not need 
the bus. 

4.2.9 BYPASS# (BYPASS) 

This pin is reserved by Intel Corporation and should 
be tied HIGH to Vee through a resistor. When LOW, 
the phase-locked loop that generates the internal 
clock is unused. In this case, the internal clock has 
more skew relative to the external CLK, and the A.C. 
timing parameters are not guaranteed. 

4.2.10 CACHE# (CACHEABILlTY) 

This output signal indicates internal cacheability of a 
bus request. Its timing follows that of the address 
bus. 

The iB60 XP microprocessor asserts CACHE# for 
cacheable reads and code fetches to announce its 
intention to cache the data. If CACHE# is asserted 
on a read cycle and if the KEN # input is active, the 
cycle is a burst line fill. If CACHE# is inactive in a 
read cycle, the i860 XP microprocessor does not 
cache the returned data, regardless of the KEN # 
pin. CACHE# is also asserted for cache line write­
backs. 

CACHE# is inactive for noncacheable reads (for ex­
ample, pfld, Idio, Idint), TLB replacements, and 
store misses. 

Table 4.4 shows how cacheability determines the 
number of data transfers in a cycle. 

Note that the CACHE# output is always inactive for 
CSB (Code-Size 8 bits) mode instruction fetches so 
that the instructions are fetched with single-transfer 
cycles. However, the code fetched may then be 
placed in the instruction cache, unless KEN # was 
inactive. 

4.2.11 ClK (CLOCK) 

The CLK input determines execution rate and timing 
of the i860 XP microprocessor. External timing pa­
rameters are specified relative to the rising edge of 
this signal. The iB60 XP microprocessor can utilize a 
clock rate of 50 Mhz. The internal operating frequen­
cy is the same as the external clock. This signal re­
quires TTL levels. 
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4.2.12 CTYP (CYCLE TYPE) 

CTYP is one of the bus cycle definition signals. Ta­
bles 4.2 and 4.3 show the types of bus cycle gener­
ated. CTYP is defined only for data write and read 
requests. The value of this pin changes only when 
AOS# is asserted. 

4.2.13 D/C# (DATA/CODE) 

O/C# specifies whether the current request is for 
data or instructions. The data/code line is one of the 
bus cycle definition pins. Tables 4.2 and 4.3 show 
the types of bus cycle generated. The value of this 
pin changes only when AOS# is asserted. 

4.2.14 063-00 (DATA PINS) 

The bus interface has 64 bidirectional data pins 
(063-00) to transfer data in eight- to 64-bit quanti­
ties. Pins 07-00 transfer the least significant byte; 
pins 063-056 transfer the most significant byte. In 
read cycles, all 64 bits of the data bus are latched, 
even in CS8-mode instruction fetches when only the 
low-order eight bits are used. In write cycles, the 
i860 XP microprocessor does not drive 063-00 in 
the clock of AOS#, but in the following clock. 

4.2.15 DP7-DPO (DATA PARITY) 

There is one parity signal for each byte of the data 
bus. They are driven by the i860 XP microprocessor 
with even parity information on writes with the same 
timing as write data. Likewise, if parity checking is 
enabled by PEN #, the system must drive even pari­
ty information on these pins with the same timing as 
read information to ensure that the correct parity 
check status is indicated by the i860 XP microproc­
essor. "Even parity" means that the total number of 
set bits in a byte, including the parity bit, is even. 
Refer also to the PCHK# signal. 

4.2.16 EADS# (EXTERNAL ADDRESS STATUS) 

This signal indicates that a valid external address 
has been driven onto address pins A31-A5 of the 
i860 XP microprocessor to be used for a cache in­
quiry. This signal is recognized while the processor 
is in hold (HLOA is driven active), while forced off the 
bus with BOFF # input, or while AHOLO is asserted. 
The i860 XP microprocessor ignores EAOS# at all 
other times. EAOS# is not recognized if HITM# is 
active, nor during the clock after ADS #, nor during 
the clock after a valid assertion of EAOS#. Table 
4.5 shows when EAOS is first sampled. It is then 
sampled in every clock as long as the hold remains 
active and HITM# remains inactive. 
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Table 4.5. EADS# Sample Time 

Trigger EADS# First Sampled 

AHOLO Second clock after AHOLO asserted 
HOLD First clock after HLOA asserted 

BOFF# Second clock after BOFF # asserted 

INV and FLlNE# are sampled in the same clock pe­
riod that EAOS# is validly asserted. HIT# and 
HITM# may be asserted as the results of a cache 
inquiry. 

4.2.17 EWBE# (EXTERNAL WRITE BUFFER 
EMPTY) 

At RESET, the value on EWBE# determines the or­
dering mode. The processor enters strong ordering 
mode if EWBE # is sampled active for at least the 
last three clocks before RESET deactivates; other­
wise, it enters weak ordering mode. 

In weak ordering mode, the value of EWBE# after 
reset does not affect processor operation. 

in strong ordering mode, the external system asserts 
EWBE # as long as all external write buffers are 
empty. If an external write buffer is not empty 
(EWBE # deasserted) or the intenal write buffer is 
not empty, the processor delays data cache updates 
so as to keep the external order of writes the same 
as the programmed order. 

In systems that do not have external write buffers, 
EWBE# can be tied to Vss, if strong ordering is de­
sired, or to Vee, if weak ordering is acceptable. Re­
fer to sections 5.3.3 and 5.3.4 for more explanation 
and for other ways to control write ordering. 

4.2.18 FLlNE# (FLUSH LINE) 

The system asserts FLlNE# to request that the 
i860 XP microprocessor write back a modified cache 
line before other outstanding bus cycles are com­
pleted, if the line is hit by an external inquiry. If this 
pin is active in the same clock that EAOS# is assert­
ed, the write-back cycle is initiated, and the i860 XP 
microprocessor expects BROY #s for the write-back 
before outstanding cycles (if any) are returned. If 
data transfer for another cycle is currently in prog­
ress when FLiNE # is asserted (i.e. first BROY # re­
turned before HITM# asserted), the i860 XP micro­
processor waits until the data transfers for that burst 
have completed, and only then does it assert the 
ADS # for the write-back. If the first BROY # has not 
yet occurred for an outstanding cycle, NA# must be 
activated to trigger AOS# for the write-back. 
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At RESET, the value on FLlNE# determines config­
uration. The processor enters one-clock late back­
off mode if FLiNE # is sampled active for at least the 
last three clocks before RESET deactivates. 

4.2.19 HIT# (CACHE INQUIRY HIT) 

This pin is one output of inquiry cycles. If an inquiry 
cycle hits a valid line in the caches of the i860 XP 
microprocessor (either data or instruction), HIT # is 
asserted two clocks after EADS # is activated. If the 
inquiry cycle misses the caches, this pin is negated 
two clocks after EADS # activation. 

This pin changes its value only as a result of EADS# 
activation during AHOLD, HOLD, or BOFF # and re­
tains its value until two clocks after the next valid 
activation of EADS #. 

HIT# can be used to control the WB/WT# pin of 
other processors in a multiprocessor system. Activa­
tion of HIT# indicates that the inquiring processors 
should cache the line as S-state, not E-state. 

4.2.20 HITM # (HIT MODIFIED LINE) 

This pin is an output of inquiry cycles. When an in­
quiry hits a modified line in the internal data cache, 
the i860 XP microprocessor asserts HITM # two 
clocks after EADS# is activated. (Refer also to the 
EADS# signaL) The HITM# signal stays active until 
the last BRDY # for the corresponding write-back 
cycle. At all other times, HITM # is inactive. HIT # is 
also asserted when HITM# is asserted (except for 
the special case of an inquiry after the ADS# of a 
write-back). 

4.2.21 HLDA (BUS HOLD ACKNOWLEDGE) 

The i860 XP microprocessor activates HLDA in re­
sponse to a hold request presented on the HOLD 
pin. Assertion of HLDA indicates that the i860 XP 
microprocessor has given the bus to another local 
bus master. It is driven active in the same clock that 
the i860 XP microprocessor floats its bus. All output 
pins are floated except LOCK#, BREQ, HLDA, 
PCHK#, HIT#, and HITM#. 

The time required to acknowledge a hold request is 
one clock plus the number of clocks needed to finish 
any outstanding bus cycles (maximum of four out­
standing cycles of four burst transfers each for total 
of 16 transfers). If this hold latency is too long for a 
given application, BOFF # can be used instead. 

When leaving a bus hold, the i860 XP microproces­
sor deactivates HLDA and, in the same clock period, 
initiates a pending bus cycle, if any. 
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4.2.22 HOLD (BUS HOLD) 

This pin, along with the output signal HLDA, is used 
for local bus arbitration. At some time after the 
HOLD signal is asserted, the i860 XP microproces­
sor releases control of the local bus and puts most 
bus interface outputs in floating state, then asserts 
HLDA-all during the same clock period. It main­
tains this state until HOLD is deasserted. Instruction 
execution stops only if required instructions or data 
cannot be read from the on-chip instruction and data 
caches. The i860 XP microprocessor ignores HOLD 
until all outstanding bus cycles are complete (until 
the last BRDY#). The i860 XP microprocessor rec­
ognizes HOLD even during RESET and LOCK #. 
HOLD cannot be used when the 82495XP cache 
controller is attached. 

4.2.23 INV (INVALIDATE) 

The external system asserts this signal to invalidate 
the cache-line state in the case of an inquiry cycle 
hit. It is sampled together with A31-A5 in the clock 
EADS # is active. 

4.2.24 INT ICSS (INTERRUPT ICODE-SIZE 
EIGHT BITS) 

This input, like the BERR input, allows interruption of 
the current instruction stream. The processor sam­
ples INT as instruction boundaries. If interrupts are 
enabled (1M set in psr) when INT is sampled active, 
the i860 XP microprocessor fetches the next instruc­
tion from virtual address OxFFFFFFOO. INT is level 
triggered. To assure that an interrupt is recognized, 
INT should remain asserted until the software ac­
knowledges the interrupt (by executing an interrupt­
acknowledge cycle, for example). The interrupt may 
be ignored by the processor if the INT signal does 
not remain active. 

:nterruptlatency (the maximum time between asser­
tion of INT and execution of the first instruction of 
the trap handler) depends both on the internal con­
text and on the external system. After INT is assert­
ed, the i860 XP microprocessor finishes all instruc­
tions currently being executed, including any out­
standing bus cycles, before starting the trap handler. 
The following instruction sequence is an example of 
the worst case: 

pfld.q 
pfld.q 
ld.l 
br 
ld.l 
st.l 
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If INT is asserted during the execution stage of the 
last Idol instruction, the execution of the trap handler 
may have to wait for: 

• Two 2-transfer bursts (the pfld instructions) 

• Two data cache line fills (misses by the Idol 
instructions) 

• Two data cache line write-backs (eliminating 
modified lines to open space for the fills) 

• Two instruction cache line fills (the target of the 
br and the first instruction of the trap handler) 

• Three TLB miss sequences of up to six non pipe­
lined accesses each (the br, the last Idol, and the 
trap handler) 

The time to finish the above bus activities can be 
extended by inquiry cycles and associated write­
backs initiated by an external cache or bus control­
ler. 

Besides the bus-related delays, the i860 XP micro­
processor has internal freeze conditions that can de­
lay interrupt response by up to 10 additional clocks. 

During a locked sequence, the INT pin is ignored, 
and the INT bit of epsr reflects the value on the INT 
pin. To limit the time that INT is ignored, the lock 
instruction can assert LOCK # for only 30-33 in­
structions before trapping. 

This input is asynchronous, but appropriate setup 
and hold times must be met to insure recognition on 
any specific clock. 

If INT is asserted for at least the last three clock 
periods before the falling edge of RESET, the 
i860 XP microprocessor enters eight-bit code-size 
(CS8) mode. 

4.2.25 KBD, KB1 (CACHE BLOCK) 

For reads, these output signals define which cache 
block (line) is going to receive the data. For write­
backs, these lines specify which block is being 
flushed. They are driven together with cycle defini­
tion for cacheable data reads, TLB replacement, 
code fetch cycles, and write-backs. External hard­
ware can use these Signals to observe changes to 
cache blocks. 

4.2.26 KEN # (CACHE ENABLE) 

The i860 XP microprocessor samples KEN # to de­
termine whether the data being read for the current 
cache-miss cycle is to be cached. When the i860 XP 
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microprocessor generates a read cycle that can be 
cached (CACHE# output active) and KEN# is ac­
tive, the cycle is transformed into a burst line fill. By 
activating KEN #, the memory system commits to a 
four-transfer burst. The entire 64 bits of the data bus 
are used for the read, regardless of the state of the 
byte-enable pins. 

If KEN # is sampled inactive, code fetches are not 
transferred in bursts, but 128-bit data items may still 
be transferred with a burst length of two. 

KEN# is sampled together with NA# or BRDY#, 
whichever comes first. It is sampled only with the 
first BRDY # of a burst; its value at any other time 
has no effect. 

4.2.27 LEN (DATA LENGTH) 

The LEN output pin specifies the number of burst 
transfers for each cycle. This pin and the CACHE# 
output pin are used by the system to determine the 
burst length for each cycle (refer to Table 4.4). The 
i860 XP microprocessor can generate 1, 2, or 4-
transfer bursts for reads and writes. 

LEN is inactive if the internal request is for 64 bits or 
less. If LEN is active, the internal request is for 128 
bits or more, and the cycle should be returned as a 
two- or four-transfer burst. LEN is always active for 
128-bit data accesses. LEN is always inactive for 
code accesses. 

A cacheable read (CACHE# active) can be auto­
matically converted to a four-transfer burst regard­
less of LEN by assertion of KEN # . 

Table 4.4 summarizes different cycle lengths as they 
are calculated from the LEN and CACHE# signals. 
LEN has the same timing as the address. 

4.2.28 LOCK # (ADDRESS LOCK) 

This signal is used to provide atomic (indivisible) 
read-modify-write sequences in multiprocessor sys­
tems. The address to be locked is the one being 
driven on A31-A3 when LOCK # is activated. A mul­
tiprocessor bus arbiter must permit only one proces­
sor a locked read, locked write, or unlocked write to 
that address and must maintain the lock of that loca­
tion across cycle boundaries until LOCK # deacti­
vates. The simplest arbitration hardware can just 
lock the entire bus against all other accesses during 
LOCK# assertion; however, software must never 
assume that this implementation is being used. 
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The i860 XP microprocessor coordinates the exter­
nal LOCK # signal with the lock and unlock 
instructions. Programmers do not have to be con­
cerned about the fact that bus activity is not always 
synchronous with instruction execution. LOCK # is 
asserted with ADS # for the address operand of the 
first load or store instruction executed after the lock 
instruction. 

After an unlock instruction, LOCK # is deasserted 
with the next load or store. The i860 XP microproc­
essor deactivates LOCK# one clock after ADS# for 
the last locked bus cycle. Unlike the i860 XR micro­
processor, the i860 XP microprocessor does not 
deassert LOCK # immediately when a trap occurs. 
Instead, the trap handler must execute a load or 
store instruction to deassert LOCK #. (The handler 
does not have to execute an unlock instruction, 
however. The unlocking function is performed by the 
processor's trap logic.) 

The i860 XP microprocessor also asserts LOCK # 
during TLB miss processing for updates of the ac­
cessed bit in page-directory and page-table entries. 
The maximum time that LOCK # can be asserted in 
this case is the time required to perform a nonpipe­
lined, four-byte, read-modify-write sequence. 

Between locked sequences, at least one cycle of no 
LOCK # is guaranteed by the behavior of the unlock 
instruction. 

Between lock and unlock instructions, the INT pin is 
ignored. 

Instruction fetches do not alter the LOCK# signal. 

4.2.29 MIIO# (MEMORY-I/O) 

M/IO# specifies whether the current cycle is for the 
memory address space or for the 1/0 address 
space. M/IO# is one of the bus cycle definition pins. 
Tables 4.2 and 4.3 show the types of bus cycle gen­
erated. The value of this pin changes only when 
ADS # js asserted. 

4.2.30 NA# (NEXT ADDRESS REQUEST) 

NA # makes address pipelining possible. The sys­
tem asserts NA # for at least one clock to indicate 
that it is ready to accept the next address from the 
i860 XP microprocessor. (If the system does not im­
plement pipelining, NA# must not be activated.) The 
i860 XP microprocessor samples NA # every clock, 
starting one clock after the activation of ADS #. If 
the i860 XP microprocessor has a new cycle pend­
ing internally when NA # is activated, it initiates that 
cycle in the clock after NA# is asserted. Up to three 
bus cycles can be outstanding simultaneously. 
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NA # is latched internally; the i860 XP microproces­
sor remembers that NA# was asserted until it has 
an internal request to send to the bus; so, assertion 
of NA# for a single clock can trigger an ADS# sev­
eral clocks later. NA # is ignored in the clock of 
ADS#. 

KEN # and WB/WT # inputs for the current cycle 
are sampled with NA #, if NA # is asserted before 
the first BRDY # of the current cycle. 

NA# is also used in conjunction with FLlNE# to 
invoke write-back of a modified line during outstand­
ing bus cycles. 

4.2.31 NENE# (NEXT NEAR) 

The i860 XP microprocessor asserts NENE# when 
the current address is in the same DRAM page as 
the previous bus cycle. This signal allows higher­
speed reads and writes in the case of consecutive 
accesses to static column or page-mode DRAMs. 
The i860 XP microprocessor determines the DRAM 
page size by inspecting the software-controlled DPS 
field in the dirbase register. The page size can 
range from 29 to 216 64-bit words, supporting DRAM 
sizes from 256K x 1 to 4G x n. The value of this 
pin changes only when ADS# is asserted. NENE# 
is never asserted for the next bus cycle after the 
address bus has been floating (after AHOLD, 
BOFF #, or HLDA is deasserted). 

4.2.32 PCD (PAGE CACHE DISABLE) 

PCD provides a cacheability indication on a page by 
page basis. This signal, together with PWT, is set to 
an attribute bit in the page table entry for the current 
cycle. When paging is enabled, PCD corresponds to 
the CD bit (bit 4) of the page table entry. The i860 XP 
microprocessor does not perform a cache fill to any 
page for which CD of the page table entry is set. 
When paging is disabled, or for any cycle that is not 
paged (Idio, stio, Idint, scyc), the i860 XP micro­
processor drives PCD inactive. 

During TLB miss processing, PCD is inactive while 
the address translation hardware is acceSSing the 
first level page directory. During accesses to the 
second-level page-table entry, PCD reflects the CD 
values taken from the first level page-table entry. 

The value of this pin changes only when ADS # is 
asserted. 

4.2.33 PCHK # (PARITY CHECK) 

This output shows the result of the parity check on 
data pins in the previous clock of a read cycle. It is 
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asserted for one clock when incorrect parity has 
been detected. It reflects the parity status for the 
entire data bus. It should be ignored by external 
hardware except during the clock after BRDY # is 
activated for reads. 

PCHK # does not terminate outstanding bus cycles, 
so the system must still activate BRDY# a sufficient 
number of times or activate BOFF # for those cy­
cles. 

4.2.34 PCYC (PAGE CYCLE) 

The page cycle line is active during memory read or 
write cycles to distinguish page-table accesses from 
other accesses. The types of bus cycle generated 
are indicated in Tables 4.2 and 4.3. The value of this 
pin changes only when ADS# is asserted. 

4.2.35 PEN# (PARITY ENABLE) 

The i860 XP microprocessor samples this signal for 
read cycles on the same clock edge at which 
BRDY # is found asserted. If sampled active, the 
i860 XP microprocessor feeds the parity check re­
sult into the interrupt logic. If a parity error is encoun­
tered, the i860 XP microprocessor vectors to the 
trap handler. The BEAR register latches the offend­
ing address, as described with the BERR signal. 
This interrupt is not masked by the 1M bit of the PSR, 
nor is it masked during lock cycles. 

The system should deassert PEN # any time the 
DP7-DPO pins are known not to reflect the parity of 
the full eight-byte bus (for example, reads from 110 
devices or ROMs that are not parity protected). 

4.2.36 PWT (PAGE WRITE-THROUGH) 

PWT provides a write-back/write-through indication 
on a page by page basis. This signal, together with 
PCD, is set to an attribute bit in the page table entry 
for the current cycle. When paging is enabled, PWT 
corresponds to the WT bit (bit 3), and write-back 
caching is implemented for this page only if WT is 
clear. When paging is disabled, or for any cycle that 
is not paged (Idio, stio, Idint, scyc), the i860 XP 
microprocessor drives PWT inactive. 

During TlB miss processing, PWT is inactive while 
the address translation hardware is accessing the 
first level page directory. During accesses to the 
second-level page-table entry, PWT reflects the WT 
value taken from the first level page-table entry. 

The value of this pin changes only when ADS # is 
asserted. 
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4.2.37 RESET (SYSTEM RESET) 

Asserting RESET for at least ten ClK periods caus­
es initialization of the i860 XP microprocessor. On 
power up, RESET should remain active at least one 
millisecond after Vee and ClK have reached their 
proper DC and AC specs. RESET is synchronous 
with ClK. 

4.2.38 RSRVD, SPARE 

The RSRVD input is reserved by Intel. Tie it high. The 
spare input should be left unconnected. 

4.2.39 TCK (TEST CLOCK) 

This is the clock input for the TAP (test access port). 
If the TAP is to be used, this signal must be connect­
ed to a clock synchronous to ClK. If the TAP is not 
used, TCK can be tied low. TCK does not need to be 
kept running when boundary scan is not active. 

The rising edge of TCK must be externally synchro­
nized to ClK. The boundary scan latches retain their 
state when TCK is stopped at either logic zero or 
one. 

4.2.40 TDI (TEST DATA INPUT) 

TDI is the input for test instructions and data to the 
TAP. TDI is sampled on the rising edge of TCK. It is 
provided with an internal pull-up resistor, so that an 
open circuit at TDI produces a result equivalent to 
driving continuous HIGH signals. 

4.2.41 TDO (TEST DATA OUTPUT) 

This is the serial output of the TAP. The contents of 
TAP registers are shifted out through TDO on the 
falling edge of TCK. The data is moved from TDI to 
TDO without inversion, which allows easy serial cas­
cading of different components for scanning. 

TDO is held in high-impedance state, except while 
scanning is in progress. This allows parallel connec­
tion of these outputs for several components. 

4.2.42 TMS (TEST MODE SELECT) 

This input is decoded by the TAP to select the oper­
ation of the TAP. It is sampled at the rising edge of 
TCK. It is provided with an internal pull-up resistor to 
assure deterministic behavior for open-circuit failure 
at this pin. If boundary scan is not used, TMS can be 
tied high or left unconnected. 
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4.2.43 TRST # (TEST RESET) 

This input resets the TAP. If the TAP is not used, 
TRST# should be tied lOW. To ensure determinist­
ic behavior of the test logic, TMS should be held 
HIGH while TRST# changes from lOW to HIGH. 

4.2.44 Vee (SYSTEM POWER) AND Vss 
(GROUND) 

The i860 XP microprocessor has 54 pins for power 
and 56 for ground. All pins must be connected to the 
appropriate low-inductance power and ground sig­
nals in the system. 

4.2.45 VccCLK (CLOCK POWER) 

This is the power supply for the internal ClK buffer. 
It should be connected to the same Vee plane as 
the other Vee pins. 

4.2.46 WB/WT # (WRITE-BACK/WRITE­
THROUGH) 

This input signal defines cache policy for the line 
being accessed in the current bus cycle. The proc­
essor samples WB/WT # for both reads and writes 
on the same clock edge at which it finds NA# or the 
first BRDY # asserted, whichever comes first. If this 
signal is sampled low, the write-through policy is ap­
plied to the cache line-if an internal write hits this 
line, it causes a write-through cycle. If this signal is 
sampled high, the write-back policy is applied-fu­
ture write hits to this line do not show up on the bus. 

2 3 4 

elK 

SIGNAL 10 I 

NOTES: 
1. HIGH (high voltage) 
2. Don't care or undefined 
3. LOW (low voltage) 
4. High-impedance (floating) 
5. Either HIGH or LOW 

5 

4.2.47 W/R# (WRITE/READ) 

This pin specifies whether a bus cycle is a read 
(lOW) or write (HIGH) cycle. Tables 4.2 and 4.3 
show the types of bus cycle generated. The value of 
this pin changes only when ADS# is asserted. 

5.0 BUS OPERATION 

The interaction among signals is illustrated by timing 
diagrams. Figure 5.1 shows the conventions used in 
the timing diagrams. 

5.1 Bus Cycles 

A bus cycle begins when the i860 XP microproces­
sor activates ADS # and ends when the system acti­
vates the last of a predetermined number of BRDY # 
signals. Figure 4.4 shows how the i860 XP micro­
processor and the external system cooperate to de­
termine the number of BRDY # activations in each 
cycle. The processor starts sampling BRDY # one 
clock after assertion of ADS# and continues sam­
pling in every clock until the last BRDY # becomes 
active. 

The i860 XP microprocessor supports several differ­
ent types of bus cycle. These are introduced in order 
of complexity: 

1. Single-transfer cycles 

2. Multiple-transfer (burst) cycles 

3. Pipelined cycles 

4. Cache inquiry cycles 

7 8 9 10 

I I , 'm P--.,-- e 
I I 
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Figure 5.1. Timing Diagram Conventions 
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5.1.1 SINGLE-TRANSFER CYCLE 

The simplest bus cycle is the single-transfer, non­
cacheable, 64-bit cycle either with or without wait 
states. The shortest bus cycle is two clock periods 
long. Read and write cycles of this type are shown in 
Figure 5.2. 

A wait state is any clock in which the i860 XP micro­
processor samples BRDY # but the system does not 
assert it. The system can add wait states to any cy­
cle. Figure 5.3 shows cycles with two wait states 
added. Any number of wait states can be added to 
i860 XP microprocessor bus cycles by maintaining 
BRDY # inactive. 

2 3 4 

elK 

5 

5.1.2 BURST CYCLES 

When a bus request requires more than a single 
data transfer (refer to Table 4.4), the i860 XP micro­
processor requires that the memory system perform 
a burst data transfer. Burst cycles allow the maxi­
mum bus transfer rate by eliminating unnecessary 
driving of the address bus. The addresses of the 
data items in burst cycles all fall within the same 32-
byte aligned area (corresponding to an internal 
i860 XP microprocessor cache line). Given the ad­
dress of the first transfer, external hardware can cal­
culate the addresses of subsequent transfers. With 
these addresses eliminated from the bus, a new 
data item can be sampled into the i860 XP micro­
processor every clock period. 

7 8 9 10 

~'-____ '-JX~~~ ____ ~JX~~ ______ ~JX~~ ____ ~ ____ ~ ____ ~ 

__ a...-___ , 
\~ ________ J' 

DATA : :8' :9' :8' :9':: 
&. - - - - ... - TO CPU - -1- - FROM CPU - -1- - TO CPU - -1- - rROM CPU - ... - - - - .& 
I I I I I I I , , 

PCHK# 
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Figure 5.2. Fastest Single-Transfer Cycles 
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2 4 5 6 7 8 9 10 

CLK 

ADS#~ 
I I 

ADDRESS ;:::x,..... ... : --..... --..... --~X\., ....... ________ .,... __ ,....._-. 
I 

LEN =-' 
I 

CACHE# 0 
W/R# 

BRDY# 1;&1;0; 
I I I I I I 

DATA ~ ----~ ----~ ----:- -<2=> --:<~--""'--FR-O-t.t-C-P-U-""'--}:- ---~ 
I I I I I I I 
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Figure 5.3. Single-Transfer Cycles with Wait States 

The fastest possible burst cycle requires two clock 
periods for the first data item: one clock for ADS# 
and one clock for BRDY #; subsequent data items 
are transferred every clock period. One such bus 
cycle is shown in Figure 5.4. Note that, in this case, 
the initial cycle generated by the i860 XP microproc­
essor could be satisfied by a single data transfer, but 
the system transforms it into a multiple-transfer 
cache line fill by activating KEN # in the clock period 
of the first BRDY #. KEN # has this effect only if the 
CACHE# pin is active, which means the cycle is in­
ternally cacheable in the i860 XP microprocessor. 
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Read data is sampled only in the clock period in 
which BRDY # is returned, which means that data 
need not be sent to the i860 XP microprocessor ev­
ery clock period in the burst cycle. Figure 5.5 shows 
an example of a burst cycle in which two clock peri­
ods are required for every burst item. 

The burst length attributes LEN and CACHE# are 
driven with the address. Figure 5.6 illustrates two 
consecutive burst cycles with differing length attri­
butes: the first one is a noncacheable 128-bit read, 
and the second one is a cache line fill initiated by a 
cacheable 64-bit read. 
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1. KEN # driven with first assertion of BRDY # 

NOTE: 

ClK 

ADS# 

ADDRESS 

lEN 

CACHE# 

W/R# 

BRDY# 

KEN# 

Figure 5.4. Basic Burst Cycle 
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1. Wait states added by delaying assertion of BRDY # 

Figure 5.5. Slow Burst Cycle 
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NOTE: 
1. Length attributes driven with ADS # 

Figure 5.6. Different Lengths of Burst Cycles 

The timing of write bursts is similar to that of read 
bursts. The i860 XP microprocessor does not put 
data on 063-00 for writes until the clock period af· 
ter AOS#. 

When initiating any read, the i860 XP microproces· 
sor presents the address for the data item request­
ed. When the cycle is converted into a cache fill, the 
first data item returned corresponds to the address 
sent out by the i860 XP microprocessor. The remain­
ing items must be returned in the order shown in 
Table 5.1. This ordering is optimized for two-bank 
memories, but works equally well with noninter­
leaved memories. 

In i860 XP microprocessor systems, memory must 
support the burst order as defined in Table 5.1 for 
~eads. :or writes: the burst addresses are always 
Increasing, so wntes With four transfers match the 
~irst lin~ of the table. In GS8 (code-size 8 bits) mode, 
instructions are not fetched in bursts. 

Note that the i860 XP microprocessor drives only 
the fi.rst addres~ of a burst cycle; the memory sys­
tem IS responsible for calculating subsequent ad­
dresses as shown in the table. The addresses can 
be derived by complementing A3 after every trans­
fer, and complementing A4 after two transfers. 

61 

Table 5.1. Burst Order for Cache Line Transfers 

1st 2nd 3rd 4th 
Address Address Address Address 

0 8 Ox10 Ox18 
8 0 Ox18 Ox10 

Ox10 Ox18 0 8 
Ox18 Ox10 8 0 

5.1.3 PIPELINED CYCLES 

A pipelined cycle is one that starts while one or two 
other bus cycles are outstanding. A cycle is consid­
ered outstanding until the last BROY # is asserted to 
terminate that cycle. A nonpipelined cycle is one 
that starts when no other bus cycles are outstand­
ing. Both types of cycle can be either read or write 
cycles. To allow high transfer rates in large memory 
systems, the i860 XP microprocessor supports two­
level pipelining. New cycles can start as often as 
every other clock until three cycles are outstanding. 

The system asserts NA# to indicate that the 
i860 XP microprocessor can start another cycle be­
fore the current one is completed. (NA# can even 
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be asserted while BRDY # is active.) The i860 XP 
microprocessor begins sampling NA # in the next 
clock after ADS# is asserted. If the following condi­
tions are met, a new (pipelined) cycle begins: 

1. NA# having been active 

2. An internal request pending 

3. Compatibility between the pending request and 
the outstanding requests (refer to Table 5.2) 

4. HOLD, BOFF #, and AHOLD not active 

5. Fewer than three cycles outstanding 

The following "compatibility" rules determine when 
the processor does not issue a pipelined ADS# 
(they are the source of Table 5.2): 

• Data cache line fills are pipelined into each other 
only in the case of an aliasing virtual tag miss with 
a physical tag hit. 

• Reads can be pipelined into TLB miss writes. TLB 
misses for instructions can be pipelined into data 
accesses, and vice versa. 

• No data cycle is ever pipe lined while LOCK # is 
active. 

• 1/0 cycles, special cycles, and Idint cycles never 
begin when any cycle is outstanding. 

NA# may be asserted before, simultaneously with, 
or after the first BRDY # of the current cycle. If NA# 
is asserted before the first BRDY # , the cacheability 
(KEN#) and cache policy (WB/WT#) indicators for 
the current cycle are sampled during the same clock 
period as NA# is sampled active; otherwise, they 
are sampled with the first BRDY #. Figure 5.7 shows 
an example of four-transfer, pipelined, back-to-back 
reads. Note the timing of KEN #. Because NA # is 
asserted before the first BRDY# of the cycle A, 
KEN # is sampled with the NA # for cycle B. 

Table 5.2. Pipeline Cycle Compatibility 

B 
If A is Outstanding, can B be pipelined? 

Data Data Cache Data Cache 
Cache Store Miss, Read Miss 

Write- Instruction 
pfld 

TLB Idio,stio, LOCK# 
A Back" Fetch Miss Idint, scyc Active 

Line Fill Write-Thru KEN# =1 

Data 

Cache YES' YES' YES' YES YES YES' YES NO YES 
Line Fill 

Data Cache 

Store Miss, YES YES YES YES YES YES YES NO YES 
Write-Thru 

w Data Cache 
..J Read Miss YES YES YES YES YES YES YES NO YES u 
>- KEN#=1 u 
VI 
:::l Write-Back YES YES YES YES YES YES YES NO YES 
0 
:> Instruction w YES YES YES YES YES YES YES NO YES Ie 
n. Fetch 

pfld YES YES YES YES YES YES YES NO YES 

TLB Miss YES YES YES YES YES YES YES NO YES 

Idio,stio, 
YES 

Idint, scyc 
YES YES YES YES YES YES NO YES 

LOCK# 

Active 
NO NO NO NO YES NO YES NO NO 

NOTE: 
, Pipelining can occur if the first ADS# is for an aliasing virtual tag miss with a physical tag hit. 

"Inquiry write-backs are not pipelined into prior cycle unless FLiNE # is asserted. 
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2 3 4 5 6 7 8 9 10 

ClK 
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I 
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ADS# 

NOTES: 
A Four-transfer, cache line fill cycle 
B Four-transfer, cache line fill cycle 

I 

1. KEN # for A simultaneous with NA # 

Figure 5.7. Pipelined Cache Line Fills 

240874-34 

Write cycles can be pipelined into read cycles and 
vice versa, but, in both cases, one clock period 
should be left idle between bursts to allow bus turn­
over. Pipe lined back-to-back read and write cycles 
are shown in Figure 5.B. On writes, assertion of NA# 
does not cause the values on the data bus to 
change; it just enables new address and cycle speci­
fication outputs. 

5.1.4 INTERRUPT ACKNOWLEDGE CYCLES 

liThe following 
lock 
ldint.b src2, 
or rdest, 
unlock 

Iinop 
Iinop 

ldint.b rO, 

In response to a trap caused by assertion of the INT 
pin, trap-handling software can generate interrupt 
acknowledge cycles by executing a procedure simi­
lar to the following. 

lock instruction must be on a 32-byte boundary: 
II Lock the bus 

rdest II 
rO, rdest II 

First INTA cycle. Src2 contains 8. 
Won't proceed until rdest loaded. 
Unlock the bus after the next ldint 
Insert 4 + <number of Naps> idle 

rdest 

II 
II 
II clocks for 8259A recovery. 
II Second INTA cycle 
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2 3 4 5 6 7 8 9 10 

ClK 
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lEN# !....J 

I 

CACHE# U 
ADS# :\i.J \if ill 

NA# I 

BRDY# 
I 

I I I I I I I I : I I 

DATA r -n - ~ - n - ~ n{TO CPUXTO CPU} n ~ n { F!~~ X F~~~ } n + n {TO CPUXTO CPU) 
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NOTES: 
R Two-transfer, noncacheable read cycle 
W Two-transfer, noncacheable write cycle 
1. Idle clock for bus turnaround 
2. Second assertion of NA# could be here 
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Figure 5.S. Pipe lined Back-to-Back Read and Write Cycles 

Figure 5.9 shows the interrupt acknowledge cycles 
generated by the code sequence. Interrupt acknowl­
edge cycles are generated in locked pairs. The inter­
rupt vector is returned during the second cycle. Each 
of the interrupt acknowledge cycles is terminated 
when the external system responds by asserting 
BRDY #. Wait states can be added by withholding 
BRDY #. There must be a number of idle clocks be­
tween the first and second cycles to allow for 8259A 
recovery time. The software controls the number of 
intervening clocks via the number of nop instruc­
tions in the interrupt acknowledge routine. 

5.1.5 SPECIAL BUS CYCLES 

The i860 XP microprocessor provides a special cy­
cle to indicate to the external system that certain 
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internal conditions have occurred. The special bus 
cycle (indicated by MIIO# = 0, D/C# = 0, and 
W/R# = 1) is generated by the i860 XP microproc­
essor as a response to scyc instruction execution. 
This cycle (defined in Table 5.3) is used to flush or 
invalidate a secondary cache. The defined value of 
byte enables can be generated by using an appropri­
ate address operand in the scyc instruction. The 
scyc instruction does not have any effect on the 
internal caches. External hardware must acknowl­
edge a special bus cycle by asserting BRDY # once. 
The data driven on the data bus with BRDY # is 
undefined. The effect of scyc is determined by de­
coders in external hardware. 
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Figure 5.9. Example Interrupt Acknowledge Sequence 

Table 5.3. Encoding of Special Bus Cycles 

BE7#-BEO# Special Bus Cycle 

11110111 Write Back External Cache and Invalidate 
11111011 Halt 
11111101 Invalidate External Cache 
11111110 ShutDown 

All other encodlngs are reserved 

5.2 Bus Arbitration 

The i860 XP microprocessor responds to three dif­
ferent signals that tell it to stop driving the bus: 

HOLD Finishes outstanding cycles before giving 
up the bus. 

BOFF# Aborts outstanding cycles and gives up bus 
immediately. 

AHOLD Stops driving address bus and permits a 
cache inquiry. 

AHOLD results in a partial hold state, which is cov­
ered in Section 5.3. The present section concen­
trates on HOLD and BOFF # . 

When in a hold state (due either to HOLD or 
BOFF#), the i860 XP microprocessor uses BREQ to 
request control of the bus. If holding due to HOLD, 
AHOLD, or BOFF #, the processor activates BREQ 
in the clock after an internal bus request is generat-
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ed. (In the case of HOLD, BREQ is asserted even 
though HLDA is asserted.) If holding due to BOFF # 
and cycles need to be restarted or there is a new 
internal request, it asserts the BREQ signal within 
four clock periods after the assertion of BOFF#. In 
all cases, BREQ remains active at least until the 
clock after ADS# is activated for the requested cy­
cle. 

5.2.1 HOLD AND HLDA ARBITRATION 

HOLD indicates to the i860 XP microprocessor that 
another bus master needs control of the bus. When 
HOLD is asserted, the i860 XP microprocessor 
keeps control of the bus until all outstanding cycles 
are completed. Then it floats the output signals (ex­
cept BREQ, HLDA, LOCK#, PCHK#, HIT#, and 
HITM#) and asserts HLDA. These outputs remain at 
the high-impedance state until HOLD is deasserted. 
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HLDA may be asserted as soon as the clock period 
after the one in which HOLD is asserted. HLDA may 
be deasserted as soon as the clock after the one in 
which HOLD is deasserted. 

An example HOLD/HLDA transaction is shown in 
Figure 5.10. The i860 XP microprocessor recognizes 
HOLD even while RESET is asserted, and it drives 
HLDA in this case as well. 

HOLD is recognized even when BOFF # is active, 
and the i860 XP microprocessor responds with 
HLDA the same as when the bus is idle. 

5.2.2 BUS CYCLE BACK-OFF AND RESTART 

The i860 XP microprocessor provides the ability to 
abort bus cycles and restart them again. It is neces­
sary to abort cycles for reasons such as the follow­
ing: 

1. Retry after an error is detected by ECC or parity 
logic. 

2. Escape from a deadlock; for example, when the 
i860 XP microprocessor is using A31-A3 to load 
a new cache line, but the 82495XP cache con­
troller needs A31-A5 to invalidate a line in the 
CPU cache which the 82495XP cache controller 
is replacing in its cache in order to satisfy the 
CPU's line-fill request. 

2 

elK 

ADS# I 

I 

I 

W 

4 5 

3. Maintain cache consistency; for example, the 
i860 XP microprocessor is attempting to read or 
write to a line that has been modified in the cache 
of another CPU. 

4. Prevent illegal access to an address already 
locked by another CPU in a multiprocessor sys­
tem. 

5.2.2.1 Cycle Back-Off 

Bus cycles are aborted when the system asserts 
BOFF #. The i860 XP microprocessor samples this 
pin in every clock period that it is driving the bus. 
When BOFF # is asserted, the i860 XP microproces­
sor immediately (in the next clock period) floats the 
bus. It floats the ADS# pin one clock period later, 
thereby giving time for ADS # to be deasserted so 
that it is not left floating active. The i860 XP micro­
processor floats the same pins as for HOLD, but 
HLDA is not asserted. If a bus cycle is in progress at 
the time BOFF # is asserted, the cycle is aborted, 
and, in a read cycle, any data returned to the proc­
essor while BOFF # is active is ignored. BOFF # 
overrides BRDY #; so, if both are sampled active in 
the same clock, BRDY # is ignored. BOFF # aborts 
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Figure 5.10. HOLD/HLDA Handshake 
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a burst cycle even if it arrives with the last BRDY # 
of the cycle. However, for read bursts, data transfers 
completed before assertion of BOFF # are used by 
the processor if they satisfy an internal request. 
Cacheable data is cached in spite of BOFF #; how­
ever, the cached data is overwritten when the cycle 
is restarted. 

The bus remains in the high-impedance state until 
BOFF # is deasserted. If cycles need to be restarted 
or if a new internal request has been generated, the 
BREQ signal is asserted within four clock periods 
after the assertion of BOFF # . 

5.2.2.2 Cycle Restart 

When the system deasserts BOFF #, the i860 XP 
microprocessor restarts aborted bus cycles from the 
beginning by driving the address and status (A31-
A3, W/R#, D/C#, etc.) and asserting ADS#. If 
more than one cycle was outstanding when BOFF # 
was asserted, the i860 XP microprocessor restarts 
all outstanding cycles in the same order. If HITM# is 
active due to an inquiry, the write-back for it will be 
the first cycle after deassertion of BOFF #. BOFF # 
restarts all aborted cycles except: 

o The stale cycles mentioned in section 5.3.5. 

o The read that may have been generated by an 
alias hit (virtual tag miss, but physical tag hit). 

• The read that may have been generated by a 
pfld that hit the data cache. 

If the processor's KEN# pin was active (with NA# 
or first BRDY #) before the cycle was aborted, exter­
nal hardware must activate it again after the cycle is 
restarted. In other words, the system cannot use 
BOFF # to change the cacheability of a cycle via 
KEN#. 

The LOCK # signal is not affected by restarted cy­
cles; it retains its state in spite of BOFF# assertion. 

5.2.2.3 Late Back-Off Modes 

In some cases the logic that needs to assert 
BOFF # cannot make the necessary decision in time 
to cancel the relevant cycle or data transfer. For ex­
ample: 

1. The result of checking ECC or parity may not be 
available until one or two cycles after the BRDY # 
to which it corresponds. 

2. When the i860 XP microprocessor is attempting 
to read or write to a line that might be modified in 
the cache of another processor on the same bus, 
it may be advantageous to let part of a burst run 

67 

in parallel with inquiries to the other processors, 
rather than delay the entire burst until the inquir­
ies are finished. 

For such situations, the i860 XP microprocessor pro­
vides late back-off mode. For a read cycle in this 
mode, the processor employs a buffer to internally 
delay data and BRDY #, which allows BOFF # as­
sertion to be delayed relative to the external 
BRDY #. Likewise, for a write cycle in this mode, 
BOFF # assertion can be delayed relative to 
BRDY #. However, data for a write cycle is not de­
layed. 

Two flavors of late back-off mode are provided: 

1. One allows BOFF # to be delayed by one clock 
period relative to the data transfer. The proces­
sor enters one-clock late back-off mode when 
the FLlNE# pin has been sampled active for at 
least three clock periods when RESET deacti­
vates. 

2. The other allows BOFF # to be delayed by up to 
two clock periods relative to the data transfer. 
The i860 XP microprocessor enters this mode 
when software sets the LB bit of the dirbase 
register. 

If the processor enters one-clock late back-off mode 
during RESET, it is impossible to enter two-clock 
late back-off mode. The LB bit has no effect. Fur­
thermore, software cannot exit two-clock late back­
off mode once it is activated, and the LB bit cannot 
be cleared except by resetting the processor. 

Figures 5.12-5.17 illustrate variations on late back­
off mode cycles. BOFF # can be (and usually is) as­
serted longer than one clock period, as Figure 5.11 
shows; the remaining figures show an active time of 
only one clock. 

5.2.2.4 One-Clock Late Back-Off Mode 

In one-clock late back-off mode the data is delayed 
internally by one clock before it is used. 

In this mode, data and BRDY # are seen by internal 
logic one clock period later than they appear on the 
bus, which is equivalent to adding an extra wait state 
to reads on the external bus (Figure 5.13). All re­
sponses to BRDY # (assertion of the ADS# for the 
next cycle, assertion of HLDA in response to a 
HOLD request, and deassertion of HITM#) are de­
layed by one clock period compared to the normal 
mode of operation. Not delayed, however, are write 
data on 063-00 and sampling of KEN# and WBI 
WT#. KEN# and WB/WT# must be valid with the 
first BRDY # assertion. 
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NOTES: 
A Noncacheable, 54-bit cycle (one transfer) 
B Next cycle (any type) 
1. BOFF # cancels cycle and data transfer 
2. Cycle A restarts one clock after BOFF # is deasserted 
3. Earliest ADS # assertion for next cycle 

Figure 5.11. Normal Back-Off 
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3. Earliest ADS # assertion for next cycle 

Figure 5.12. One-Clock Normal Back-Off 
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NOTE: 
1. Idle clock due to internal delay of BRDY # 

Figure 5.13. Fastest Nonpipelined Cycles in One-Clock Late Back-Off Mode 

If BOFF # is asserted as late as the second BRDY # 
(Figure 5.14), it cancels the entire cycle, ignores 
data latched with the first BRDY #, and ignores the 
data being driven with the second BRDY #. This is 
true of a two·transfer burst (shown) as well as a four­
transfer burst (not shown). 

In a two·transfer burst, if BOFF# is asserted in the 
clock after the second BRDY # (Figure 5.15), it still 
cancels the cycle. 

In a four-transfer burst, if BOFF# is asserted within 
one clock after the last BRDY # (Figure 5.16), it still 
forces a retry of the cycle, but previously transferred 
read data is used by the processor if it satisfies the 
read request. 

5.2.2.5 Two-Clock Late Back-Off Mode 

Two-clock late back-off mode gives external logic 
even more time to decide to use BOFF #. In this 
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mode, data delivery is delayed by either one or two 
clock periods, depending on external activity. For 
any BRDY #, the data is delayed by one clock peri­
od. If in the next clock period BRDY # is again as­
serted, the previous data is used. However, if in that 
next clock period BRDY # remains inactive, the data 
is delayed for one extra clock period before it is 
used. The responses to BRDY # (assertion of the 
ADS# for the next cycle, assertion of HLDA, and 
deassertion of HITM#) are delayed by one or two 
clock periods, depending on the value of BRDY # in 
the next clock. 

The st.c dirbase instruction that sets the LB bit 
must be aligned on a 32-byte boundary and must be 
followed by seven nop instructions. Software must 
not enable late back-off mode when the processor is 
used with the 82495XP external cache controller. 
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Figure 5.14. One-Clock Late Back-Off Mode (Case 1) 
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Figure 5.15. One-Clock Late Back-Off Mode (Case 2) 
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1. BOFF # cancels A2 and A3 transfers. but A 1 transfer has already satisfied request 
2. Cycle A restarts one clock after BOFF # is deasserted 
3. Earliest ADS # assertion for next cycle 

Figure 5.16. One-Clock Late Back-Off Mode (Case 3) 
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Figure 5_17. Two-Clock Late Back-Off Mode 

5.3 Cache Inquiry Cycles (Snooping) 

Another processor initiates an inquiry cycle to check 
whether an address is cached in the internal data or 
instruction cache of the i860 XP microprocessor. An 
inquiry cycle differs from any other cycle in that it is 
initiated externally to the i860 XP microprocessor, 
and the signal for beginning the cycle is EADS# (Ex­
ternal Address Status) instead of ADS #. The ad­
dress bus of the i860 XP microprocessor is bidirec-
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tional in order to allow the address of inquiry to be 
driven by the system. An inquiry cycle can begin dur­
ing any hold state: 

1. While HOLD and HLDA are asserted. 

2. While BOFF # is asserted. 

3. While AHOLD (address hold) is asserted. 
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If neither a HOLD nor a BOFF# is in effect, the sys­
tem can assert AHOLD to interrupt the current bus 
activity. 

EADS# is first sampled two clocks after BOFF# or 
AHOLD assertion, or one clock after HLDA. This al­
lows time for the processor to float A31-A5 and for 
the system to stabilize the inquiry address there. 

In the clock in which EADS# is asserted, the 
iB60 XP microprocessor samples these inputs, 
which qualify the type of inquiry: 

INV Specifies whether the line (if found) must 
be invalidated (that is, changed to I-state). 

FLlNE# Specifies whether the line (if found in M­
state) must be written back immediately or 
after outstanding bus cycles are complet­
ed. 

The i860 XP microprocessor compares the address 
of the inquiry request with addresses of lines in 
cache and of any line in the write-back buffer waiting 

2 3 4 

ClK 

\ . :, I AHOlD ~ , , , 

to be transferred on the bus. It does not, however, 
compare with the address of write-miss data in the 
write buffers. Two clock periods after sampling 
EADS#, the i860 XP drives the results of the inquiry 
look-up on these output pins: 

HIT# Specifies whether the address was found 
(active) or not found (inactive). 

HITM # If active, the line found was in the M-state; 
if inactive, the line was in E- or S-state, or 
was not found. 

Figure 5.18 shows an inquiry with AHOLD that miss­
es the cache. When the system asserts AHOLD, the 
i860 XP microprocessor floats A31-A3 in the next 
clock period. It does not, however, assert HLDA; no 
acknowledge is required. Once the address pins are 
floating, external logic drives the address for the in­
quiry on A31-A5 and starts the inquiry cycle by acti­
vating EADS #. The i860 XP microprocessor does 
not begin sampling EADS# until the second clock 
after AHOLD is activated. EADS# activation may be 
delayed any number of clocks. 

5 6 7 8 10 

ADDRESS FROM CPU: } --:--s --:--< __ --..... ---F .. ~O-M-C-P-U ...... --..... --_ 

EADS# 

HITM# 

HIT# -------------------' , , 
ADS# "\lJ V!I 

BRDY# 
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NOTES: 
A Outstanding cycle (for example, a single-transfer read) finishes during the inquiry 
1. Earliest assertion of EADS# is two clocks after assertion of AHOLD 
2. Earliest deassertion of AHOLD is one clock after assertion of EADS# 
3. HIT# is valid two clocks after assertion of EADS# 
4. Earliest assertion of ADS# for next cycle is one clock after deassertion of AHOLD 

Figure 5.18. Inquiry Miss Cycle 
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The earliest that AHOLD can be deasserted is the 
clock after EADS# assertion. However, by maintain­
ing AHOLD active, multiple inquiry cycles can be ex­
ecuted in one AHOLD session (Figure 5.19). The 
i860 XP microprocessor can accept inquiry cycles at 
a rate of one every other clock period, unless a 
write-back is required. The earliest that ADS# can 
be asserted for the next cycle is the clock after 
AHOLD deassertion. 

The second inquiry in Figure 5.19 hits an unmodified 
line in the cache. When a cache line with matching 
address is found and the INV input signal is asserted 
(as in this case), that line is invalidated (changed to 
I-state). If the INV signal is inactive, the line enters 
S-state. 
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I 

5.3.1 INQUIRY WRITE-BACK CYCLES 

If an inquiry cycle hits a dirty (M-state) line in the 
i860 XP microprocessor cache, the i860 XP micro­
processor asserts the HITM# signal to indicate that 
the line will be written on the bus. The HITM# output 
becomes valid in the same clock period as HIT #. In 
this case the modified line is written out, and the 
cache entry is changed to either I or S state accord­
ing to INV. The HITM# signal stays active through 
the last BRDY # for the corresponding write-back 
cycle. 

An inquiry write-back cycle is similar to ordinary 
write-back cycles. It is initiated by assertion of 
ADS#. ADS# is asserted even when the AHOLD 
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NOTES: 
A Outstanding cycle (for example, a single-transfer read) finishes during the inquiry 
B Earliest inquiry, no invalidation 
C Earliest successive inquiry, with invalidation 
1. EADS # is not sampled in the clock after its assertion 
2. Inquiry B misses cache 
3. Earliest deassertion of AHOLD is one clock after last assertion of EADS # 
4. Inquiry C hits cache, invalidates line 
5. Earliest assertion of ADS# for next cycle is one clock after deassertion of AHOLD 

Figure 5.19. Fastest Inquiry Cycles (Miss and Hit) 
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signal is active. The cycle definition signals are driv­
en properly by the processor, however, the address 
pins are not driven, because activation of AHOLD 
forces the i860 XP microprocessor off the address 
bus. If, however, AHOLD is deasserted before or 
during the write-back cycle, the i860 XP microproc­
essor drives the correct address for the write-back. 

For all types of inquiry, the write-backs are not pipe­
lined into an outstanding cycle, except when the 
FLlNE# pin is used (refer to section 5.3.5). ADS# 
for the inquiry write-back is asserted from one to four 

2 4 5 

ClK 

AHOlD J 
1 

clock periods after the HITM# pin is driven active or 
after the last BRDY # is returned for any outstanding 
cycle, whichever occurs later. 

Bursts for a HITM# write-back, as for any write­
back, are in the order 0, 8, Ox10, Ox18, because the 
i860 XP microprocessor ignores A4-A3 of the in­
quiry address. 

Figure 5.20 shows an inquiry cycle that hits an M­
state line. 
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NOTES: 
A Outstanding cycle (for example, a single-transfer read) 
W Write-back cycle 
1. EADS# is not sampled while HITM# is active 
2. Earliest ADS # assertion if not delayed by outstanding cycle 
3. ADS # for write-back delayed by outstanding cycle 
4. HITM # deactivates after last BRDY # of write-back 

Figure 5_20_ Inquiry Hit Cycle with Write-Back 
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The fact that a write-back cycle is initiated while ad­
dress lines are floating supports multiple inquiries 
(with write-backs) during a single AHOLD session. 
This is especially useful during secondary cache re­
placement processing, when the secondary-cache 
line is larger than that of the i860 XP microproces­
sor. 

Note that EADS# is ignored as long as HITM# is 
active. If the system is executing a series of inquir­
ies, it might happen that the HITM# assertion for 
one inquiry masks the EADS# for a subsequent in­
quiry. In that case the system must reassert EADS# 
to restart the masked inquiry. 

Inquiries can occur during a hold due to HOLD/ 
HLDA or BOFF #. However, in these cases, the cy­
cle definition pins and ADS # are floating. If an in­
quiry requires a write-back, the HOLD or BOFF # 
must be deasserted so that the cycle definition pins 
and ADS# can be driven to start the write-back cy­
cle. 

5.3.2 SNOOPING RESPONSIBILITY LIMITS 

The i860 XP microprocessor takes responsibility for 
responding to inquiry cycles for a cache line only 
during the time that the line is actually in the cache 
or in a write-back buffer. There are times during the 
cache line fill cycle and during the cache replace­
ment cycle when the line is "in transit", and inquiry 
(snooping) responsibility must be taken by other sys­
tem components. 

Systems designers should consider the possibility 
that an inquiry cycle may arrive at the same time as 
a cache line fill or replacement for the same ad­
dress. This situation can occur: 

o In multiprocessor systems that have external 
(secondary) caches with separate CPU and 
memory busses, thereby allowing concurrent ac­
tivity on the two busses. In such systems, it is 

desirable to run invalidation cycles concurrently 
with other i860 XP microprocessor bus activity. It 
can happen that writes on the memory bus cause 
invalidation requests to the i860 XP microproces­
sor at the same time that the i860 XP microproc­
essor fetches data from the secondary cache. 
Such events can occur at any time relative to 
each other. 

o In multiprocessor systems with no secondary 
cache, if memory is dual-ported. In such systems, 
two processors can simultaneously read the 
same line, each sending an inquiry to the other. 

The simultaneous activities considered here may be 
for different data items in the same cache line. Un­
less the inquiry request is timed carefully with re­
spect to the cache fill cycle, the cache-consistency 
mechanism may be subverted, and data inconsist­
encies may result (for example, both CPUs may get 
the line in E-state on a read). If the 82495XP and 
82490XP cache is being used, the timing with re­
spect to the i860 XP microprocessor is handled cor­
rectly by the cache controller; however, the same 
problem may arise between the memory system and 
the secondary cache. 

There are two cases to consider: 

1. Inquiry for a line that is being cached. 

2. Inquiry for a line that is being replaced. 

5.3.2.1 Inquiry for a Line Being Cached 

The i860 XP microprocessor accepts an inquiry cy­
cle at any time, even if it hits the line being cached at 
that time. Regardless of the timing of the cycle, the 
i860 XP microprocessor delivers the read data to the 
load instruction that initiated the read request. How­
ever, the timing of the invalidation cycle determines 
whether the line is placed in the cache and what 
value the i860 XP microprocessor drives on HIT #. 
Table 5.4 summarizes the different cases. 

Table 5.4. Inquiry for a Line being Cached 

EADS# before EADS# after 
or with NA# NA# or 

or 1st BRDY# 1st BRDY# 

Line is cached? YES NO 

HIT#= Inactive Active 

Data/Instruction 
YES YES 

used by CPU? 
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If EADS# is asserted before or with the sampling of 
KEN #, the processor cannot match the address of 
the line being cached with an invalidation request. 
Thus, the processor does not assert HIT #. The ex­
ternal system must satisfy the inquiry with the cor­
rect data and WB/WT # status. If invalidation of that 
line is required, the system must do one of the fol­
lowing: 

• Delay assertion of EADS# until one clock after 
assertion of KEN #. 

• Reassert EADS# after KEN #. 

4 5 

elK 

AHOlD 

• Make KEN# inactive at the first BRDY# or NA#, 
thereby preventing the line from being cached. 

Figures 5.21 and 5.22 show when the i860 XP micro­
processor picks up responsibility for inquiries for a 
line that it is caching. Figure 5.21 shows the earliest 
EADS# assertion that invalidates the line being 
cached relative to the first BRDY # for nonpipelined 
cycles. Figure 5.22 shows the earliest EADS# as­
sertion that invalidates the line being cached relative 
to the first NA# for pipelined cycles. These timings 
hold for normal and late back-off modes. 
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A Cache line fill cycle 
S Snoop (inquiry) cycle 
R Addresses of cache line fill and snoop are the same 
1. Earliest EADS# assertion that can invalidate line being filled 

Figure 5.21. Snoop Responsibility Pickup (Nonpipelined Cycle) 
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1. Earliest EADS # assertion that can invalidate line being filled 

Figure 5.22. Snoop Responsibility Pickup (Pipelined Cycle) 

5.3.2.2 Inquiry for a Line Being Replaced 

When the i86a XP microprocessor is replacing a line, 
there are two cases: 

1. If the replacement does not require write·back, 
the address being replaced can be matched by 
an inquiry until assertion of NA# or first BRDY # 
of the line·fill cycle. From that point on, the in­
quiry has no effect. 

2. If the replacement requires a write-back, the ad­
dress being replaced can be matched by an in­
quiry until assertion of the last BRDY # for the 
write-back. An EADS # as late as two clocks be­
fore the last BRDY # can cause HITM # to be 
asserted. 
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Figures 5.23 through 5.25 show when the i86a XP 
microprocessor drops responsibility for recognizing 
inquiries for a line that it is writing back. They show 
the latest EADS# assertion that can cause HITM # 
assertion. In late back-off mode, EADS# can be as­
serted later, because BRDY # is internally delayed 
(Figures 5.24 and 5.25). 

In all these cases, HITM# remains active for only 
one clock period. HITM#, as always, remains active 
through the last BRDY # of the corresponding write­
back; in these cases the write-back has already 
completed. 

If an inquiry cycle hits the write-back address after 
its ADS# has been issued, the i86a XP microproc­
essor asserts HITM#; however, HIT# is deassert­
ed. This unique combination of values on HIT# and 
HITM# indicates that the write-back cycle corre­
sponding to the HITM# has already been issued. 
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NOTES: 
A Write-back cycle 
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Figure 5.23. Latest Snooping of Write-Back (Not Late Back-Off Mode) 
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NOTES: 
A Write-back cycle 
S Snoop (inquiry) cycle 
R Addresses of cycles A and S are the same 

Figure 5.24. Latest Snooping of Write-Back (One-Clock Late Back-Off Mode) 
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NOTES: 
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S Snoop (inquiry) cycle 
R Addresses of cycles A and S are the same 

Figure 5.25. Latest Snooping of Write-Back (Two-Clock Late Back-Off Mode) 

5.3.3 WRITE CYCLE REORDERING DUE TO 
BUFFERING 

The MESI cache protocol and the ability to perform 
and respond to inquiry cycles guarantee that writes 
to the cache are logically equivalent to writes that go 
to memory. In particular, the order of read and write 
operations on cached data is the same as if the op· 
erations were on data in memory. Even uncached 
memory read and write requests usually occur on 
the external bus in the same order that they are is· 
sued in the program. For example, when a write miss 
is followed by a read miss, the write data goes onto 
the bus before the read request is put on the bus. 
However, the posting of writes in write buffers cou· 
pled with inquiry cycles may cause the order of 
writes seen on the external bus to differ from the 
order they appear in the program. Consider the fol· 
lowing example, which is illustrated in Figure 5.26: 

1. Three bus cycles are outstanding. 

2. Processor 1 executes a store to address A, which 
misses the cache. This store is posted; that is, 
the data is latched in the write buffer while the 
processor continues execution without waiting for 
the store to be completed on the bus. In this case 
the store is not even put on the bus because 
there are already three outstanding cycles. 
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3. Processor 1 executes a store to address B, which 
hits the cache. 

4. Processor 2 executes an inquiry for address B. 
Processor 1 looks in its cache, finds the modified 
line, asserts HIT# and HITM#, and executes a 
write-back cycle to address B, while the data for 
address A is still in the write buffer. 

5. Processor 1 issues the write to address A on the 
bus. 

In this example, the original order of the writes has 
been changed. In most cases it is not necessary that 
the ordering of writes be strictly maintained. But 
there are cases (for example, semaphore updates in 
a multiprocessor system) that require stores to be 
observed externally in the same order as pro­
grammed. There are several ways to ensure seriali­
zation of stores: 

1. Bracket one of the stores with the lock and 
unlock instructions. That forces serialization of 
the stores (refer to section 5.4). In the above ex­
ample of a store-miss followed by store-hit, lock­
ing either store would ensure that the internal 
store-hit does not update the cache until the miss 
gets to the external bus. 

2. Apply the write-through policy to the critical data, 
by setting WT = 1 in the page table entries or by 
driving the WB/WT # pin low. 
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Figure 5.26. Write Reordering due to Buffering 

3. Configure the processor for Strong Ordering 
Mode by asserting EWBE# during RESET. 

Option 1 is implementable by user-level programs, 
while option 2 is an operating-system level solution, 
not directly implementable by user-level code. Op­
tion 3, the hardware solution, is discussed in greater 
detail in section 5.3.4. 

5.3.4 STRONG ORDERING MODE 

In strong ordering mode, the processor delays up­
dates to its internal data cache in either of these 
conditions: 

1. The internal write buffer is not empty. 

2. An external write buffer is not empty (the external 
system signals this condition by deactivating the 
EWBE # signal). 

By delaying the cache update until all write buffers 
are empty, the i860 XP microprocessor avoids the 
out-of-order sequence shown in section 5.3.3. 
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In strong ordering mode, EWBE# can be asserted 
only between the ADS# and the last BRDY# of a 
store. The earliest assertion is the clock after 
ADS#; the latest assertion is together with the last 
BRDY#. EWBE# can be deasserted any time, ex­
cept when the processor is performing an inquiry 
write-back. In other words, EWBE# must not deacti­
vate while HITM# is active. When EWBE# is deas­
serted, the processor completes any cache update 
that may have been delayed by its assertion. 

Figure 5.27 shows how an external cache can use 
EWBE # when a store miss in the i860 XP micro­
processor is also a miss in the external cache. 

An external cache controller should also refrain from 
updating the external cache while EWBE# is active. 
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NOTE: 
1. Assumes the external cache needs five cycles to write the data to memory. 
2. Pending internal data cache updates are delayed until the clock in which EWBE # is sampled LOW. 

Figure 5.27. Timing of EWBE# 

5.3.5 SCHEDULING INQUIRY WRITE·BACK 
CYCLES 

In order to preserve system-wide ordering of memo­
ry transactions in multiprocessor systems that have 
a pipelined or split-transaction memory bus, it may 
be necessary to get the data corresponding to an 
inquiry hit before outstanding bus cycles are com­
pleted. Another bus master can always request an 
inquiry while the i86a XP microprocessor has cycles 
outstanding on the bus. However, when AHOLD is 
asserted, the i86a XP microprocessor normally com­
pletes outstanding cycles before it performs any 
write-back that may be required. The i86a XP micro­
processor provides two methods for causing the in­
quiry write-back before outstanding cycles are com­
pleted: 

FLlNE# When FLlNE# is asserted during the 
EADS# of an inquiry that hits an M-state 
line, the i86a XP microprocessor issues a 
write-back cycle and writes the dirty line to 
memory before the outstanding bus cycles 
are completed. 

BOFF # If there are outstanding cycles on the bus, 
asserting BOFF # clears the bus pipeline. 
If an inquiry causes HITM# to be asserted, 
then the first cycle issued by the i86a XP 
microprocessor after deassertion of 
BOFF # is the inquiry write-back cycle. Af­
ter the inquiry write-back, it reissues the 
aborted cycles. 

5.3.5.1 Choosing between FLiNE # and BOFF # 

FLlNE#, although the more efficient choice, cannot 
handle all situations. Under certain circumstances, it 
can happen that outstanding stores on the bus cor-
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respond to data that is obsolete relative to the data 
in the cache, because a subsequent store has up­
dated the cache after the ADS# for the outstanding 
store has occurred. For example: 

• An aliasing store hit, in which a cache virtual-tag 
miss occurs and the ADS# is issued at the same 
time as a physical-tag hit. Then the cached data 
would be updated before external memory, and a 
subsequent store to the new virtual address 
could also update cache before the outstanding 
bus store completed. 

• Back-to-back writes to the same line can also up­
date the cache more recently than the bus when 
the write-once update policy is employed. The 
first write updates the cache and generates a bus 
write request, but the second write only updates 
the cache. 

In both of these examples the outstanding stores on 
the bus are obsolete relative to the data in the cache 
line. If an inquiry cycle hits a line and this line is 
written back out of order (that is, before outstanding 
stores are completed), special care should be taken 
to discard the outstanding stores. 

The easiest way to avoid this situation is not to as­
sert FLlNE# when stores are outstanding, but use 
BOFF# instead. If out-of-order write-back is imple­
mented with BOFF #, the i86a XP microprocessor 
does not restart the outstanding store to that line if 
such a store has been obsoleted by a later cache hit 
store. That is, the i86a XP microprocessor detects 
this condition and kills the obsolete data. However, 
lock-bracketed stores (including the last store in the 
lock sequence) are restarted by the i86a XP micro­
processor, because lock-bracketed stores update 
the cache only after BRDY # is returned. 
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If, on the other hand, out-of-order write-back is im­
plemented by using only the FLlNE# pin, the exter­
nal system must return BRDY#s for outstanding 
stores, but the data must be ignored if it has already 
been written out by an inquiry write-back. 

Note that if a replacement write-back is in progress 
(ADS# has been issued, but last BRDY# has not 
occurred) and an inquiry hits the same line that is 
being written back, the FLlNE# pin is ignored. The 
system can recognize this special case by the fact 
that HITM # is asserted while HIT # is deasserted. If 
other cycles are outstanding and it is necessary to 
write the line back before the other cycles, BOFF# 
can be used. 

5.3.5.2 Reordering Write-Backs with FLlNE# 

FLlNE# must be active during the EADS# that initi­
ates an inquiry. BRDY # must not be asserted forthe 
previously issued cycles while HITM# is active. If 
HITM# is asserted while the data transfer of the 
outstanding cycle is in progress (Le. first BRDY # 
has been asserted, but the entire transfer has not 

2 3 4 5 6 

ClK 

AHOlD 

EADS# 

HIT# I ~ 
HITM# I \ 
W/R# 

CACHE 

FLlNE# 

ADS# 

NA# 

BRDY# 

yet been completed), the i860 XP microprocessor 
waits for the current cycle to complete, and only 
then issues the write-back. After the last BRDY # for 
the ongoing burst (if any), BRDY # is ignored until 
the clock period after ADS# is asserted for the 
write-back. 

From the viewpoint of the i860 XP microprocessor, 
an inquiry write-back cycle is just another bus cycle; 
so, if there is an outstanding cycle at the time of 
FLlNE# and HITM# activation, the system must as­
sert NA # to initiate the write-back. 

Figure 5.28 illustrates simple cycle reordering, when 
FLlNE# is not asserted during the data transfer of 
another cycle. The outstanding request could be ei­
ther a read or write. 

Figure 5.29 shows the case in which FLlNE# is as­
serted after data transfer for the outstanding cycle 
has already started. In this case, the i860 XP micro­
processor does not issue a write-back until the out­
standing transfer is completed. NA# is needed in 
this example only if other outstanding cycles remain. 
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Figure 5.28. Cycle Reordering via FLlNE# (No Ongoing Burst) 
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NOTES: 
1. BRDY # is ignored by CPU from end of ongoing burst through ADS# of write-back, even if other cycles remain 
outstanding 
2. NA # required only if another cycle is outstanding 
3. If the first BRDY # is asserted here or sooner (relative to HITM #), the outstanding cycle completes before the 
FLlNE# write-back. 

Figure 5.29. Cycle Reordering via FLlNE# (Ongoing Burst) 
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5.3.5.3 Reordering Write-Backs with BOFF # 

Back-off cycles are discussed in general in Section 
5.2.2. Figure 5.30 shows how BOFF # can be used 
to cancel outstanding cycles so that an inquiry write­
back can take place immediately. 

elK 

AHOlD ... ' _......;,........1 • \ 
, 

80fF# I VU 

5.4 The LOCK # Cycle Attribute 

The processor asserts the LOCK # signal when sev­
eral accesses to a single memory location must be 
effectively uninterruptible. By causing LOCK # to be 
asserted, a programmer can, for example, increment 
the contents of a memory variable and be assured 
that the variable will not be accessed between the 
read and the update of that variable. 
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CACHE# 
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NOTES: 
A Outstanding cycle (for example, noncacheable 128-bit read) W Write-back cycle 
1. AHOLD begins an inquiry while one cycle is outstanding. 
2. Earliest assertion of EADS# is two clocks after assertion of AHOLD 
3. Inquiry hits modified line. 
4. Assertion of BOFF # aborts the outstanding cycle. 
5. BRDY# asserted during BOFF# is ignored by CPU. 
6. Write-back begins after deassertion of BOFF#. 
7. Earliest assertion of ADS# for restart of cycle A (assuming no pipelining). 

Figure 5.30. Cycle Reordering via BOFF # (Ongoing Burst) 
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The memory location to be locked is the one whose 
address is driven during the cycle in which LOCK # 
is first activated. In multiprocessor systems, external 
hardware should guarantee that no other processor 
is granted a locked read, locked write, or unlocked 
write to the same location until LOCK # is de assert­
ed. The i860 XP microprocessor has no hardware 
provision to prevent another master from also lock­
ing the variable; this responsibility falls on the bus 
arbiter. In the simplest implementation, the arbiter 
can globally prevent other masters from accessing 
the bus. 

Not all cycles affect the value of LOCK #. Code 
fetches, write-backs due to replacement or inquiry, 
and cycles restarted due to BOFF # do not affect 
LOCK #. Any other type of cycle can be used to initi­
ate or terminate LOCK #, including cache line fills, 
interrupt acknowledge, 1/0, and special cycles. 

Data accesses with LOCK # asserted are not pipe­
lined, and other data cycles are not pipelined while a 
LOCK# cycle remains outstanding. Instruction 
fetches, however, may be pipe lined during lock. 

The i860 XP microprocessor can run very long lock 
sequences; therefore, to guarantee reasonable bus 
turnover latency in multimaster systems, the i860 XP 

CLK 

LEN \ 

CACHE# , I 

microprocessor recognizes bus hold (HOLD), ad­
dress hold (AHOLD), and back-off (BOFF #) while 
the LOCK# signal is active. In spite of such inter­
vening conditions, the arbiter should prevent any 
other bus master from also locking or updating the 
variable the i860 XP microprocessor locked. In sim­
ple systems the HOLD input can be masked by the 
LOCK# output (that is, the external logic that gener­
ates HOLD can AND the LOCK# signal with other 
hold conditions). More sophisticated systems, how­
ever, may allow the bus to be turned over while 
LOCK# is asserted. 

Whatever the lock implementation, arbiter design 
must, in one case, allow another processor to write 
the locked variable. That case is when another 
i860 XP microprocessor or master asserts HITM# in 
response to the inquiry generated by the locking 
processor's initial read. That other master must write 
back the locked variable before the i860 XP micro­
processor can read it. This HITM # write-back must 
always be allowed. 

The timing of LOCK # is shown in Figure 5.31. Note 
that LOCK # is asserted in the same clock period as 
ADS # for the locked address, but is de asserted in 
the clock period after ADS# for the unlocking load 
or store. 
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ADDRESS ~, ______ ~x~ __ ~~~ __ ~x~ ________________ ~ 
, , 

BRDY# r01M' Xii/ex' <{;ii);i£W;gt:&;~;l;f ;m> V0\j~.iAi!t;;j!i& 'Wflf! 

DATA ~ ____ ~ ____ : __ {][}o __ : __ {]fDROM _~ ____ ~ 
I CPU I CPU 

I I I I I I 

LOCK#: '\' : '!, ' , . , 

NOTES: 
L Locking access 
U Unlocking access 
1. This address is to be locked 
2. LOCK# is asserted with ADS# 
3. LOCK# is deasserted one clock after ADS# 

Figure 5.31. LOCK# Timing 
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5.5 RESET Initialization 

Initialization of the i860 XP microprocessor is caused 
when the system asserts the RESET signal for at 
least ten clocks. Table 5.5 shows the status of out­
put pins during the time that RESET is asserted. 
Note that the bidirectional data pins (063-00 and 
DP7-DPO) are floated during RESET, though the bi­
directional A31-A3 pins are not. If the i860 XP mi­
croprocessor is used with 82495XP and 82496XP 
cache, however, the latter do float the bidirectional 
pins they share with i860 XP microprocessor during 
RESET. Note that HOLD requests are honored dur­
ing RESET and that the HLDA output signal may 
also become active. The status of output pins de­
pends on whether a HOLD request is being acknowl­
edged. Note also that the test logic may be active 
during RESET and that the EXTEST instruction may 
drive other values on the output pins. 

Some aspects of processor configuration are deter­
mined by asserting input signals during RESET. To 
select a given option, the corresponding input must 
be asserted for at least the last three clocks before 
the falling edge of RESET; to deselect, the corre­
sponding input must be de asserted for at least the 
last three clocks before the falling edge of RESET: 

EWBE# Enter strong ordering mode. 

FLlNE# Enter one clock late back-off mode. 

INT less Enter eight-bit code-size mode. 

Figure 5.32 shows how configuration pins are sam­
pled during the three clock periods just before the 
falling edge of RESET. No inputs besides EWBE #, 
HOLD, FLlNE#, and INT/CS8 are sampled during 
RESET. 

Table 5.5. Output Pin Status during Reset 

Pin Value 
Pin Name HOLD HOLD 

Not Acknowledged Acknowledged 

BREQ LOW LOW 
HLDA LOW HIGH 
W/R#, PWT, PCD LOW Tristate OFF 
ADS# HIGH Tristate OFF 
063-00, DP7-DPO Tristate OFF Tristate OFF 
A31-A3, BE7#0-BEO#, NENE# CACHE#, CTYP, D/C#, Undefined Tristate OFF 

KBO, KB1, LEN, M/IO#, PCYC 
PCHK#, HIT# Undefined Undefined 
HITM#, LOCK# HIGH HIGH 

NOTE: 
This table does not apply if the test logic is running the EXTEST instruction. 
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1. The CPU samples these inputs in the clock preceding the falling edge of reset. 

Figure 5.32. Reset Activities 
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While in eight-bit code-size mode, instruction cache 
misses are one-byte reads (transferred on 07 -00 of 
the data bus) instead of eight-byte reads. This allows 
the i860 XP microprocessor to be bootstrapped from 
an eight-bit ROM. For these code reads, byte en­
ables BE2#-BEO# are redefined to be the low or­
der three bits of the address, so that a complete 
byte address is available. The entire eight-byte data 
bus continues to be parity-checked by the i860 XP 
microprocessor during eS8-mode instruction fetch­
es; therefore, external hardware must either gener­
ate good parity on all eight bytes or disable parity 
traps by deasserting PEN # during eS8 mode. 

While in this mode, instructions must reside in an 
eight-bit wide memory, while data must reside in a 
separate 64-bit wide memory. After the code has 
been loaded into 64-bit memory, initialization code 
can initiate 64-bit code fetches by clearing the eS8 
bit of the dirbase register (refer to section 2). Once 
eight-bit code-size mode is disabled by software, it 
cannot be reenabled except by resetting the i860 XP 
microprocessor. 

Instruction fetches in eS8 mode update the instruc­
tion cache if KEN # is asserted during NA # or all of 
the first eight BROY#s (refer to section 4.2.26). 
They are pipelined if NA# is asserted. When used 
with the 82495XP and 82496XP cache, eS8 mode 
works only if the ROM locations are made non­
cacheable. 

6.0 TESTABILITY 

The i860 XP microprocessor provides testability fea­
tures compatible with the proposed Standard Test 
Access Port and Boundary-Scan Architecture (IEEE 
Std. P1149.1/06). The subset of the standard test 
logic implemented in the i860 XP microprocessor 
provides for testing the interconnections between 
the i860 XP microprocessor and other integrated cir­
cuits once they have been assembled onto a printed 
circuit board. 

The test logic consists of a boundary-scan register 
and other building blocks that are accessed through 
a test access port (TAP). The TAP provides a simple 
serial interface that makes it possible to test all sig­
nal traces with only a few probes. 

The TAP can be controlled by a bus master. The bus 
master can be either automatic test equipment or a 
component that interfaces to a four-pin test bus. 
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6.1 Test Architecture 

The test logic contains the following elements: 

• Test access port (TAP), which consists of input 
pins TMS, TeK, TOI, and TRST#; and output pin 
TOO. 

• TAP controller, which receives the dedicated test 
clock (TeK) and interprets the signals on the test 
mode select (TMS) line. The TAP controller gen­
erates clock and control signals for the instruc­
tion and test data registers and for other parts of 
the test logic. 

• Instruction register (IR), which allows instruction 
codes to be shifted into the test logic. The in­
struction codes are used to select the test to be 
performed or the test data register to be ac­
cessed. 

• Test data registers: Bypass Register (BPR), Oe­
vice Identification Register (010), and Boundary­
Scan Register (BSR). 

The instruction and test data registers are separate 
shift-register paths connected in parallel and having 
a common serial data input and a common serial 
data output connected to the TAP TOI and TOO sig­
nals respectively. 

6.2 Test Data Registers 

The test logic contains the following data registers: 

• Bypass Register (BPR): BPR is a one-bit shift 
register that provides a minimum-length path be­
tween TOI and TOO when no test operation of 
the component is required. This allows more rap­
id movement of test data to and from other board 
components that are required to perform test op­
erations. While running through BPR, the data is 
transferred without inversion from TOI to TOO. 

• Device Identification Register (DID): This reg­
ister contains the manufacturer's identification 
code, part number code, and version code in the 
format shown by Figure 6.1. The values are: man­
ufacturer's identification code (9), part number 
code (61AO), version code (8), entire 32-bit value 
(Ox861 A0013). 

• Boundary Scan Register (BSR): The BSR is a 
single shift-register path containing 150 cells that 
are connected to all input and output pins of the 
i860 XP microprocessor. Figure 6.2 shows the 
logical structure of the BSA. Input cells only cap­
ture data; they do not affect operation of the 
i860 XP microprocessor. Oata is transferred with­
out inversion from TOI to TOO through the BSR 
during scanning. The BSR can be operated by 
the EXTEST and SAMPLE instructions. 
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Figure 6.1. Format of DID Register 
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Figure 6.2. Logical Structure of BSR Register 

6.3 Instruction Register 

The Instruction Register (IR) selects the test to be 
performed and the test data register to be accessed. 
It is four bits wide, with no parity bit. Table 6.1 shows 
the encoding of the instructions supported by the 
TAP controller of the i860 XP microprocessor. The 
rightmost bit is the least significant and is the first 
shifted out on TOO. 

Table 6.1. TAP Instruction Encoding 

Instruction Code Instruction 

0000 EXTEST Boundary Scan 
0001 SAMPLE Boundary Scan 
0010 10COOE 

0011 ... 1110 Intel reserved CAUTION' 
1111 BYPASS 

• CAUTION: Operation of these private instructions may 
cause damage to the component. 
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EXT EST The BSR cells associated with output pins 
drive the output pins of the i860 XP micro­
processor. Values scanned into the BSR 
cells become the output values. The BSR 
cells associated with input pins sample 
the inputs of the i860 XP microprocessor. 
Note that I/O pins can be input or output 
for this test, depending on their control 
setting. The values shifted to the input 
latches are not used by the internal logic 
of the i860 XP microprocessor. After use 
of the EXTEST command, the i860 XP mi­
croprocessor must be reset (with the RE­
SET signal) before normal use. 

SAMPLE The BSR cells associated with output pins 
sample the value driven by the i860 XP 
microprocessor. BSR cells associated 
with input pins sample on the rising edge 
of TCK the values driven to the i860 XP 
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microprocessor. BSR cells associated 
with I/O pins sample the value on the re­
spective pin. The I/O pin can be driven by 
the i860 XP microprocessor or by external 
hardware. The values shifted to the input 
latches are not used by the internal logic 
of the i860 XP microprocessor. 

IDCODE The identification code of the i860 XP mi­
croprocessor from the 010 register is 
passed to TOO. The 010 register is not 
altered by data shifted in on TOI. 

BYPASS Test data is passed from TOI to TOO via 
the single-bit BPR, effectively bypassing 
the test logic of the i860 XP microproces­
sor. Because of its special encoding, this 
instruction can be entered by holding TOI 
HIGH while completing an instruction­
scan cycle. This reduces the demands on 
the host test system in cases where ac­
cess is required, for example, only to chip 
57 on a 100-chip board. 

Note that an open circuit fault in the 
board-level test data path causes the 
BPR register to be selected following an 
instruction-scan cycle, because the TOI 
input has a pull-up resistor. Therefore, no 
unwanted interference with the operation 
of the on-chip system logic can occur. 

Table 6.2 defines which registers are active during 
execution of each instruction. 

6.4 TAP Controller 

The TAP Controller is a synchronous, finite state 
machine. It controls the sequence of operations of 
the test logic. The TAP Controller changes state 
only in response to the following events: 

1. A rising edge of TCK. 

2. A transition to logic zero at the TRST # input. 

3. Power-up. 

The value of the TMS input signal at a rising edge of 
TCK controls the sequence of state changes. The 
state diagram for the TAP controller is shown in Fig­
ure 6.3. Test designers must consider the operation 
of the state machine in order to design the correct 
sequence of values to drive on TMS. 

6.4.1 TEST-LOGIC-RESET STATE 

In this state, the test logic is disabled so that normal 
operation of the i860 XP microprocessor can contin­
ue unhindered. This is achieved by initializing the in­
struction register such that the 10COOE instruction 
is loaded. No matter what the original state of the 
controller, the controller enters Test-Logie-Reset 
when the TMS input is held HIGH for at least five 
rising edges of TCK. The controller remains in this 
state while TMS is HIGH. 

If the controller leaves the Test-Logie-Reset state as 
a result of an erroneous LOW signal on the TMS line 
at the time of a riSing edge of TCK (for example, a 
glitch due to external interference), it returns to the 
Test-Logie-Reset state following three rising edges 
of TCK while the TMS signal at the intended HIGH 
logic level. The operation of the test logic is such 
that no disturbance is caused to on-chip system log­
ic operation as the result of such an error. On leav­
ing the Test-Logie-Reset state, the controller moves 
into the Run-Test/Idle state, where no action occurs 
because the current instruction has been set to se­
lect operation of the 010 register. The test logic is 
also inactive in the Select-OR-Scan and Seleet-fR­
Scan states. 

The TAP controller is also forced to the Test-Logie­
Reset state by applying a LOW logic level to the 
TRST# input and at power-up. 

Table 6.2. Registers Active by Instruction 

Register 
Mode BSR DID BPR 

EXT EST TOI ~ BSR ~ TOO Inactive Inactive 
SAMPLE TOI ~ BSR ~ TOO Inactive Inactive 
10COOE Inactive OIO~TOO Inactive 
BYPASS Inactive Inactive TOI ~ BPR ~ TOO 
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NOTE: 
0,1 The values present on TMS at the time of a rising edge on TCK. 

Figure 6.3. TAP Controller State Diagram 

6.4.2 RUN-TEST/IDLE STATE 

The controller enters this state between scan opera­
tions. Once in this state, the controller remains in 
this state as long as TMS is held LOW. No activity 
occurs in the test logic. The instruction register and 
all test data registers retain their previous state. 
When TMS is HIGH and a rising edge is applied to 
TCK, the controller moves to the Se/ect-DR-Scan 
state. 
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6.4.3 SELECT-OR-SCAN STATE 

This is a temporary controller state. The test data 
register selected by the cLirrent instruction retains its 
previous state. If TMS is held LOW and a rising edge 
is applied to TCK when in this state, the controller 
moves into the Capture-DR state, and a scan se­
quence for the selected test data register is initiated. 
If TMS is held HIGH and a rising edge is applied to 
TCK, the controller moves to the Se/ect-/R-Scan 
state. 

The instruction does not change in this state. 
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6.4.4 SELECT-IR-SCAN STATE 

This is a temporary controller state. The test data 
register selected by the current instruction retains its 
previous state. If TMS is held LOW and a rising edge 
is applied to TCK when in this state, the controller 
moves into the Capture-IR· state, and a scan se­
quence for the instruction register is initiated. If TMS 
is held HIGH and a rising edge is applied to TCK, the 
controller moves to the Test-Logic-Reset state. 

The instruction does not change in this state. 

6.4.5 CAPTURE-DR STATE 

In this state, the BSR captures input pin data if the 
current instruction is EXTEST or SAMPLE. The other 
test data registers, which do not have parallel input, 
are not changed. 

The instruction does not change in this state. 

When the TAP controller is in this state and a rising 
edge is applied to TCK, the controller enters the 
Exit1-DR state if TMS is HIGH or the Shift-DR state 
if TMS is LOW. 

6.4.6 SHIFT-DR STATE 

In this controller state, the test data register con­
nected between TOI and TOO as a result of the cur­
rent instruction shifts data one stage toward its serial 
output on each rising edge of TCK. 

The instruction does not change in this state. 

When the TAP controller is in this state and a rising 
edge is applied to TCK, the controller enters the 
Exit1-DR state if TMS is HIGH or remains in the 
Shift-DR state if TMS is LOW. 

6.4.7 EXIT1-DR STATE 

This is a temporary state. If TMS is held HIGH, a 
rising edge applied to TCK while in this state causes 
the controller to enter the Update-DR state, which 
terminates the scanning process. If TMS is held low 
and a rising edge is applied to TCK, the controller 
enters the Pause-DR state. 

The test data register selected by the current in­
struction retains its previous state unchanged. The 
instruction does not change in this state. 
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6.4.8 PAUSE-DR STATE 

The pause state allows the test controller to tempo­
rarily halt the shifting of data through the test data 
register in the serial path between TOI and TOO. 
This might be necessary, for example, to allow the 
tester to reload its pin memory from disk during ap­
plication of a long test sequence. 

The test data register selected by the current in­
struction retains its previous state. The instruction 
does not change in this state. 

The controller remains in this state as long as TMS 
is LOW. When TMS goes HIGH and a rising edge is 
applied to TCK, the controller moves to the Exit2-DR 
state. 

6.4.9 EXIT2-DR STATE 

This is a temporary state. If TMS is held HIGH and a 
rising edge is applied to TCK, the scanning process 
terminates, and the TAP controller enters the 
Update-DR state. If TMS is held LOW and a rising 
edge is applied to TCK, the controller enters the 
Shift-DR state. 

The test data register selected by the current in­
struction retains its previous state unchanged. The 
instruction does not change in this state. 

6.4.10 UPDATE-DR STATE 

The BSR register is provided with a latched parallel 
output to prevent changes at the parallel output 
while data is shifted in response to the EXTEST and 
SAMPLE instructions. When the TAP controller is in 
this state and the BSR register is selected, data is 
latched onto the parallel output of this register from 
the shift-register path on the falling edge of TCK. 
The data held at the latched parallel output does not 
change other than in this state. 

All shift-register stages in test data registers select­
ed by the current instruction retain their previous 
state unchanged. The instruction does not change in 
this state. 

When the TAP controller is in this state and a rising 
edge is applied to TCK, the controller enters the 
Select-OR-Scan state if TMS is held HIGH or the 
Run-Test/Idle state if TMS is held LOW. 

6.4.11 CAPTURE-IR STATE 

In this controller state the shift register contained in 
the instruction register loads the fixed value 0001 on 
the rising edge of TCK. 
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The test data register selected by the current in­
struction retains its previous state. The instruction 
does not change in this state. 

When the controller is in this state and a rising edge 
is applied to TCK, the controller enters the Exit1-1R 
state if TMS is held HIGH or the Shift-IR state if TMS 
is held LOW. 

6.4.12 SHIFT-IR STATE 

In this state, the shift register contained in the in­
struction register is connected between TDI and 
TDO and shifts data one stage towards its serial out­
put on each rising edge of TCK. 

The test data register selected by the current in­
struction retains its previous state. The instruction 
does not change in this state. 

When the controller is in this state and a rising edge 
is applied to TCK, the controller enters the Exit1-IR 
state if TMS is held HIGH or remains in the Shift-IR 
state if TMS is held LOW. 

6.4.13 EXIT1-IR STATE 

This is a temporary state. If TMS is held HIGH, a 
rising edge applied to TCK while in this state causes 
the controller to enter the Update-IR state, which 
terminates the scanning process. If TMS is held low 
and a rising edge is applied to TCK, the controller 
enters the Pause-IR state. 

The test data register selected by the current in­
struction retains its previous state unchanged. The 
instruction does not change in this state, and the 
instruction register retains its state. 

6.4.14 PAUSE-IR STATE 

This state allows the shifting of the instruction regis­
ter to be temporarily halted. 

The test data register selected by the current in­
struction retains its previous state. The instruction 
does not change in this state, and the instruction 
register retains its state. 

The controller remains in this state as long as TMS 
is LOW. When TMS goes HIGH and a rising edge is 
applied to TCK, the controller moves to the Exit2-IR 
state. 

6.4.15 EXIT2-IR STATE 

This is a temporary state. If TMS is held HIGH and a 
rising edge is applied to TCK, the scanning process 
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terminates, and the TAP controller enters the 
Update-IR state. If TMS is held LOW and a rising 
edge is applied to TCK, the controller enters the 
Shift-/R state. 

The test data register selected by the current in­
struction retains its previous state unchanged. The 
instruction does not change in this state, and the 
instruction register retains its state. 

6.4.16 UPDATE-IR STATE 

The instruction shifted into the instruction register is 
latched onto the parallel output from the shift-regis­
ter path on the falling edge of TCK. Once the new 
instruction has been latched, it becomes the current 
instruction. 

Test data registers selected by the current instruc­
tion retain the previous state. 

6.5 Boundary Scan Register Cell 
Ordering 

Figure 6.4 shows the order of cells in the BSA. 
There are 150 cells including TDO. TDI is not a BSR 
cell. 

The DCTL, ACTL, TCTL, and OCTL cells do not cor­
respond to pins of the i860 XP microprocessor; rath­
er, they control the bidirectional and tristate pins: 

DCTL D63-DO, DP7-DPO 

ACTL A31-A3 

TCTL Tristate outputs: ADS#, BE7#-BEO#, 
CACHE#, CTYP, D/C#, KBO, KB1, LEN, 
M/IO#, NENE#, PCD, PCYC, PWT, W/R# 

OCTL Outputs not floated in normal operation: 
BREO, HIT#, HITM#, HLDA, LOCK#, 
PCHK# 

If a value of one is loaded into any of these control 
latches, the associated pins will not drive the exter­
nal bus while running EXTEST. 

The values of DCTL, ACTL, TCTL, and OCTL are 
undefined during the SAMPLE instruction. 

The values and direction of 1/0 and outputs do not 
change during the scanning process (that is, during 
Shift-DR states). They only change after scanning is 
completed (in the Update-DR state). 

The decision table, Table 6.3, defines how the 
boundary scan instructions EXTEST and SAMPLEI 
PRELOAD utilize BSR. 



inter i860TM XP MICROPROCESSOR 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

110 

120 

130 

140 

240874-63 

Figure 6.4. Boundary Scan Register Ordering 
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6.6 TAP Controller Initialization 7.0 MECHANICAL DATA 

TAP can be initialized by applying a high signal level 
on the TMS input for five periods of TCK or by acti­
vating the TRST # input pin. TCK does not have to 
be running in order to initialize TAP with the TRST# 
pin. TRST # is provided with an internal pull-up resis­
tor; so, even if an open circuit fault occurs, the TAP 
logic can still be used. 

Figures 7.1 and 7.2 show the locations of pins; Ta­
bles 7.1 and 7.2 help to locate pin identifiers. 

Table 6.3. Instruction Functions 

Instruction: EXTEST SAMPLE/PRELOAD 

Control Cell: LOW I HIGH LOW I HIGH 

Input BSR cells ... ... sample values driven to ... sample values driven to 
processor by system processor by system 

Values of input cells 
NO NO 

used by processor? 

Output BSR cells ... ... drive output pins with ... sample values driven 
cell values by processor 

Input/output BSR cells: Treat as 

I 
Treat as Treat as 

I 
Treat as 

output input output input 

94 



BROY# KEN# NA# WB/WT# vee vee vee vee 
U 0 0 0 0 0 0 0 0 

W/R# lEN PWT PCYC Vss Vss Vss Vss 
T 0 0 0 0 0 0 0 0 

." cEo 
A3 RESET lOCK# M/IO# EAOS# INT /CS8 BERR FLlNE# 

S 0 0 0 0 0 0 0 0 
I: .. 
CII 

:"'I 

A4 Vss Vee BOFF# o/c# PCO INV PEN# 

R 0 0 0 0 0 0 0 0 ... 
ai en 

TCK Vss Vee CACHE# AHOlO 

Q 0 0 0 0 0 

C) 
-l 
i!: 

VeeClK Vee Vss RSRVD CTYP 

P 0 0 0 0 0 
>< 
"C 

:5: 
VCC Vce Vss AOS# HITM# 

N 0 0 0 0 0 

n" 
0 
"C 

Vee Vss Vss ClK A5 

M 0 0 0 0 0 .. 
0 
0 
CII 

Vee Vee Vss SPARE A6 

L 0 0 0 0 0 
III 
III 
0 

(0 
.. 

01 "C 
5" 
0 

Vee Vss Vss Al0 A8 

K 0 0 0 0 0 

Vee Vee Vss A12 A14 

J 0 0 0 0 0 

0 
::I -cEo 
I: 

iil .. 
Vee Vss Vss A16 A20 

H 0 0 0 0 0 

Vee Vee Vss A22 A26 

G 0 0 0 0 0 

0" 
::I 

I 
A7 Vee Vss A28 A30 

F 0 0 0 0 0 

< 
iii" 
:l: 

A9 Vss Vee A27 8EO# 

E 0 0 0 0 0 -.. 0 
3 
"C 
5" 

A11 Vss Vee A29 BE1# BE2# 8E6# EW8E# 

D 0 0 0 0 0 0 0 0 

A13 A19 AlB A31 8E4# Vss Vss Vss 

C 0 0 0 0 0 0 0 0 

~ 
CII 

A15 A21 A24 8E3# Vss Vee Vee Vss 
B 0 0 0 0 0 0 0 0 

A17 A23 A25 BE5# BE7# BYPASS# DO Vee 

A 0 0 0 0 0 0 0 0 

1 2 3 4 5 6 7 8 

vee vee vee vee vee vee 
0 0 0 0 0 0 

Vss Vss Vss Vss Vss Vss 
0 0 0 0 0 0 

HlOA KBl NENE# HIT# TRST# TOI 

0 0 0 0 0 0 

BRE<I TOO K80 HOlO TMS 063 

0 0 0 0 0 0 

PINOUT 

PIN SIDE VIEW 

01 05 010 014 OP2 017 

0 0 0 0 0 0 

Vss Vss Vss Vss Vss Vss 
0 0 0 0 0 0 

Vee Vss Vee Vss Vee Vee 
0 0 0 0 0 0 

Vee Vee Vee Vee D2 Vee 
0 0 0 0 0 0 

9 10 11 12 13 14 

vee 055 051 

0 0 0 

Vss 056 049 

0 0 0 

062 058 046 

0 0 0 

060 057 Vee 
0 0 0 

061 054 Vee 
0 0 0 

059 OP6 Vss 
0 0 0 

OP7 050 Vss 
0 0 0 

053 047 Vss 
0 0 0 

048 041 Vss 
0 0 0 

045 043 Vss 
0 0 0 

OP5 038 Vss 
0 0 0 

032 PCHK# Vss 
0 0 0 

028 030 Vss 
0 0 0 

024 026 Vss 
0 0 0 

021 023 025 

0 0 0 

019 020 Vee 
0 0 0 

D12 D8 D7 

0 0 0 

Vss D9 Dll 
0 0 0 

DPO D3 D4 

0 0 0 

15 16 17 

044 

0 

042 

0 

052 

0 

033 

0 

Vss 
0 

Vee 
0 

Vee 
0 

Vss 
0 

Vee 
0 

Vss 
0 

Vee 
0 

Vss 
0 

Vee 
0 

Vee 
0 

Vss 
0 

OP3 

0 

D16 

0 

D13 

0 

D6 

0 

18 

040 

0 

039 

0 

037 

0 

035 

0 

OP4 

0 

034 

0 

036 

0 

031 

0 

Vee 
0 

Vee 
0 

Vee 
0 

Vee 
0 

029 

0 

027 

0 

Vee 
0 

022 

0 

D1B 

0 

D15 
0 

DPl 

0 
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040 044 051 055 Vee Vee Vee Vee Vee Vee Vee 
U 0 0 0 0 0 0 0 0 0 0 0 

039 042 049 056 Vss Vss Vss Vss Vss Vss Vss 
T 0 0 0 0 0 0 0 0 0 0 0 

!! 
cc 
c 

037 052 046 058 062 TOI TRST# HIT# NENE# KB1 HlOA 

S 0 0 0 0 0 0 0 0 0 0 0 .. 
QI 
-..I 

~ 
0) 
01 

035 033 Vee 057 060 063 TtAS HOLD K80 TOO BREQ 

R 0 0 0 0 0 0 0 0 0 0 0 

OP4 Vss Vee 054 061 

Q 0 0 0 0 0 
0 .... 
~ 

034 Vee Vss OP6 059 

P 0 0 0 0 0 
X 
." 
3: 

036 Vee Vss 050 OP7 

N 0 0 0 0 0 
n' a 
'0 

031 Vss Vss 047 053 

M 0 0 0 0 0 

a 
() 
QI 
til 
til 
0 .. 

co ." en ;5' 
n 

Vee Vee Vss 041 04B 

L 0 0 0 0 0 
PINOUT 

Vee Vss Vss 043 045 

K 0 0 0 0 0 TOP SIDE VIEW 
Vee Vee Vss 038 OP5 

J 0 0 0 0 0 

0 
:::I 

~ 
Vee Vss Vss PCHK# 032 

H 0 0 0 0 0 

C .. 
III 
e-

029 Vee Vss 030 02B 

G 0 0 0 0 0 

o 
:::I 

~ 
QI :: 

027 Vee Vss 026 024 

F 0 0 0 0 0 

Vee Vss 025 023 021 

E 0 0 0 0 0 -.. 0 
3 

022 OP3 Vee 020 019 017 OP2 014 010 05 01 

0 0 0 0 0 0 0 0 0 0 0 0 

-I 
0 
'0 

01B 016 07 DB 012 Vss Vss Vss Vss Vss Vss 
C 0 0 0 0 0 0 0 0 0 0 0 

CJ) 

a: 
QI 

015 013 011 09 Vss Vee Vee Vss Vee Vss Vee 

B 0 0 0 0 0 0 0 0 0 0 0 

OP1 06 04 03 OPO Vee 02 Vee Vee Vee Vee 

A 0 0 0 0 0 0 0 0 0 0 0 

19 18 17 16 15 14 13 12 1 1 10 9 

Vee Vee Vee Vee WB/wT# 

0 0 0 0 0 

Vss Vss Vss Vss PCYC 

0 0 0 0 0 

FLlNE# BERR INT ICS8 EAOS# tA/IO# 

0 0 0 0 0 

PEN# INV PCO o/c# BOFF# 

0 0 0 0 0 

AHOlO CACHE# 

0 0 

CTYP RSRVD 

0 0 

HITt.I# AOS# 

0 0 

A5 ClK 

0 0 

A6 SPARE 

0 0 

A8 A10 
0 0 

A14 A12 

0 0 

A20 A16 
0 0 

A26 A22 

0 0 

A30 A28 

0 0 

8EO# A27 

0 0 

EW8E# 8E6# 8E2# 8E1# A29 

0 0 0 0 0 

Vss Vss Vss 8E4# A31 

0 0 0 0 0 

Vss Vee Vee Vss 8E3# 

0 0 0 0 0 

Vee DO 8YPASS# 8E7# 8E5# 

0 0 0 0 0 

8 7 6 5 4 

NA# KEN# 

0 0 

PWT lEN 

0 0 

lOCK# RESET 

0 0 

Vee Vss 
0 0 

Vee Vss 
0 0 

Vss Vee 
0 0 

Vss Vee 
0 0 

Vss Vss 
0 0 

Vss Vee 
0 0 

Vss Vss 
0 0 

Vss Vee 
0 0 

Vss Vss 
0 0 

Vss Vee 
0 0 

Vss Vee 
0 0 

Vee Vss 
0 0 

Vee Vss 
0 0 

A1B A19 
0 0 

A24 A21 

0 0 

A25 A23 

0 0 

3 2 

BROY # 

0 

W/R# 
0 

A3 

0 

A4 

0 

TCK 

0 

VoeCLK 
0 

Vee 
0 

Vee 
0 

Vee 
0 

Vee 
0 

Vee 
0 

Vee 
0 

Vee 
0 

A7 

0 

A9 

0 

A11 

0 

A13 

0 

A15 

0 

A17 

0 
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Table 7.1. Pin Cross Reference by Location 

Location Signal Location Signal Location Signal Location Signal 

A01 ............ A17 C1S ............ 012 G18 ........... Vee N01 ............ Vee 
A02 ............ A23 C16 ............. 08 G19 ........... 029 N02 ............ Vee 
A03 ............ A2S C17 ............. 07 H01 ............ Vee N03 ............ Vss 
A04 .......... BES# C18 ............ 016 H02 ............ Vss N04 .......... AOS# 
AOS .......... BE7# C19 ............ 018 H03 ............ Vss NOS ......... HITM# 
A06 ...... BYPASS# 001 ............ A11 H04 ............ A16 N1S ............ OP7 
A07 ............. 00 002 ............ Vss HOS ............ A20 N16 ............ OSO 
A08 ............ Vee 003 ............ Vee H1S ............ 032 N17 ............ Vss 
A09 ............ Vee 004 ............ A29 H16 ........ PCHK# N18 ............ Vee 
A10 ............ Vee ~OS .......... BE1 # H17 ............ Vss N19 ............ 036 
A11 ............ Vee 006 .......... BE2# H18 ............ Vss P01 ........ VeeCLK 
A12 ............ Vee 007 .......... BE6# H19 ............ Vee P02 ............ Vee 
A13 ............. 02 008 ........ EWBE# J01 ............ Vee P03 ............ Vss 
A14 ............ Vee 009 ............. 01 J02 ............ Vee P04 ....... RSRVO 
A1S ............ OPO 010 ............. OS J03 ............ Vss POS .......... CTYP 
A16 ............. 03 011 ............ 010 J04 .... , ....... A12 P1S ............ OS9 
A17 ............. 04 012 ............ 014 JOS ............ A14 P16 ............ OP6 
A18 ............. 06 013 ........... OP2 J1S ............ OPS P17 ............ Vss 
A19 ............ 0P1 014 ............ 017 J16 ............ 038 P18 ............ Vee 
B01 ............ A1S 01S ............ 019 J17 ............ Vss P19 ............ 034 
B02 ............ A21 016 ............ 020 J18 ............ Vee 001 ........... TCK 
B03 ............ A24 017 ............ Vee J19 ............ Vee 002 ............ Vss 
B04 .......... BE3# 018 ........... OP3 K01 ............ Vee 003 ............ Vee 
BOS ............ Vss 019 ............ 022 K02 ............ Vss 004 ....... CACHE# 
B06 ............ Vee E01 ............. A9 K03 ............ Vss OOS ........ AHOLO 
B07 ............ Vee E02 ............ Vss K04 ............ A10 01S ............ 061 
B08 ............ Vss E03 ............ Vee KOS ............. A8 016 ............ OS4 
B09 ............ Vee E04 ............ A27 K1S ............ 04S 017 ............ Vee 
B10 ............ Vss EOS .......... BEO# K16 ............ 043 018 ............ Vss 
B11 ............ Vee E1S ............ 021 K17 ............ Vss 019 ........... OP4 
B12 ............ Vss E16 ............ 023 K18 ............ Vss R01 ............. A4 
B13 ............ Vee E17 ............ 02S K19 ............ Vee R02 ............ Vss 
B14 ............ Vee E18 ............ Vss L01 ............ Vee R03 ............ Vee 
B1S ............ Vss E19 ............ Vee L02 ............ Vee R04 ........ BOFF# 
B16 ............. 09 F01 ............. A7 L03 ............ Vss ROS ......... . 0/C# 
B17 ............ 011 F02 ............ Vee L04 ......... SPARE R06 ........... PCO 
B18 ............ 013 F03 ............ Vss LOS ............. A6 R07 ............ INV 
B19 ............ 01S F04 ............ A28 L1S ............ 048 R08 .......... PEN# 
C01 ............ A13 FOS ............ A30 L16 ............ 041 R09 .......... BREO 
C02 ............ A19 F1S ............ 024 L17 ............ Vss R10 ........... TOO 
C03 ............ A18 F16 ............ 026 L18 ............ Vee R11 ............ KBO 
C04 ............ A31 F17 ............ Vss L19 ............ Vee R12 .......... HOLO 
COS .......... BE4# F18 ............ Vee M01 ........... Vee R13 ........... TMS 
C06 ............ Vss F19 ............ 027 M02 ........... Vss R14 ............ 063 
C07 ............ Vss G01 ........... Vee M03 ........... Vss R1S ............ 060 
C08 ............ Vss G02 ........... Vee M04 ........... CLK R16 ............ OS7 
C09 ............ Vss G03 ............ Vss MOS ............. AS R17 ............ Vee 
C10 ............ Vss G04 ............ A22 M1S ........... OS3 R18 ............ 033 
C11 ............ Vss GOS ............ A26 M16 ........... 047 R19 ............ 03S 
C12 ............ Vss G1S ........... 028 M17 ........... Vss S01 ............. A3 
C13 ............ Vss G16 ........... 030 M18 ........... Vss S02 ......... RESET 
C14 ............ Vss G17 ............ Vss M19 ........... 031 S03 ........ LOCK# 
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Table 7.1. Pin Cross Reference by Location (Continued) 

Location Signal Location Signal Location Signal Location Signal 

804 ......... M/IO# 818 ............ 052 T13 ............ VSS U08 ............ Vee 
805 ........ EA08# 819 ............ 037 T14 ............ Vss U09 ............ Vee 
806 ....... INT/C88 T01 ......... W/R# T15 ............ Vss U10 ............ Vee 
807 .......... BERR T02 ............ lEN T16 ............ 056 U11 ............ Vee 
808 ........ FLlNE# T03 ........... PWT T17 ............ 049 U12 ............ Vee 
809 .......... HlOA T04 .......... PCYC T18 ............ 042 U13 ............ Vee 
810 ............ KB1 T05 ............ Vss T19 ............ 039 U14 ............ Vee 
811 ........ NENE# T06 ............ Vss U01 ....... BROY# U15 ............ Vee 
812 ........... HIT# T07 ............ Vss U02 ......... KEN# U16 ............ 055 
813 ......... TR8T# T08 ............ Vss U03 ........... NA# U17 ............ 051 
814 ............ TOI T09 ............ Vss U04 ...... WB/WT# U18 ............ 044 
815 ............ 062 T10 ............ Vss U05 ............ Vee U19 ............ 040 
816 ............ 058 T11 ............ Vss U06 ............ Vee 
817 ............ 046 T12 ............ Vss U07 ............ Vee 

Table 7.2. Pin Cross Reference by Pin Name 

Signal Location Signal Location Signal Location Signal Location 

A3 801 AHOlO 005 021 E15 049 T17 
A4 R01 BEO# E05 022 019 04 A17 
A5 M05 BE1# 005 023 E16 050 N16 
A6 l05 BE2# 006 024 F15 051 U17 
A7 F01 BE3# B04 025 E17 052 818 
A8 K05 BE4# C05 026 F16 053 M15 
A9 E01 BE5# A04 027 F19 054 016 
A10 K04 BE6# 007 028 G15 055 U16 
A11 001 BE7# A05 029 G19 056 T16 
A12 J04 BERR 807 02 A13 057 R16 
A13 C01 BOFF# R04 030 G16 058 816 
A14 J05 R8RVO P04 031 M19 059 P15 
A15 B01 BAOY# U01 032 H15 05 010 
A16 H04 BREO R09 033 R18 060 R15 
A17 A01 CACHE# 004 034 P19 061 015 
A18 C03 ClK M04 035 R19 062 815 
A19 CO2 CTYP P05 036 N19 063 R14 
A20 H05 00 A07 037 819 06 A18 
A21 B02 010 011 038 J16 07 C17 
A22 G04 011 B17 039 T19 08 C16 
A23 A02 012 C15 03 A16 09 B16 
A24 B03 013 B18 040 U19 O/C# R05 
A25 A03 014 012 041 l16 OPO A15 
A26 G05 015 B19 042 T18 OP1 A19 
A27 E04 016 C18 043 K16 OP2 013 
A28 F04 017 014 044 U18 OP3 018 
A29 004 018 C19 045 K15 OP4 019 
A30 F05 019 015 046 817 OP5 J15 
A31 C04 01 009 047 M16 OP6 P16 
A08# N04 020 016 048 l15 OP7 N15 
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Table 7.2. Pin Cross Reference by Pin Name (Continued) 

Signal Location Signal Location Signal Location Signal Location 

EAOS# S05 Vee B06 Vee R17 Vss H17 
FLlNE# S08 Vee B07 Vee U05 Vss H18 
HIT# S12 Vee B09 Vee U06 Vss J03 
HITM# N05 Vee B11 Vee U07 Vss J17 
HLOA S09 Vee B13 Vee U08 Vss K02 
HOL R12 Vee B14 Vee U09 Vss K03 
INT/CS8 S06 Vee 003 Vee U10 Vss K17 
INV R07 Vee 017 Vee U11 Vss K18 
KBO R11 Vee E03 Vee U12 Vss L03 
KB1 S10 Vee E19 Vee U13 Vss L17 
KEN# U02 Vee F02 Vee U14 Vss M02 
LEN T02 Vee F18 Vee U15 Vss M03 
LOCK# S03 Vee G01 VeeCLK P01 Vss M17 
MIIO# S04 Vee G02 Vss B05 Vss M18 
NA# U03 Vee G18 Vss B08 Vss N03 
NENE# S11 Vee H01 Vss B10 Vss N17 
PC R06 Vee H19 Vss B12 Vss P03 
PCHK# H16 Vee J01 Vss B15 Vss P17 
PCYC T04 Vee J02 Vss C06 Vss 002 
PEN# R08 Vee J18 Vss C07 Vss 018 
PWT T03 Vee J19 Vss C08 Vss R02 
RESET S02 Vee K01 Vss C09 Vss T05 
SPARE L04 Vee K19 Vss C10 Vss T06 
EWBE# 008 Vee L01 Vss C11 Vss T07 
BYPASS# A06 Vee L02 Vss C12 Vss T08 
TCK 001 Vee L18 Vss C13 Vss T09 
TOI S14 Vee L19 Vss C14 Vss T10 
TOO R10 Vee M01 Vss 002 Vss T11 
TMS R13 Vee N01 Vss E02 Vss T12 
TRST# S13 Vee N02 Vss E18 Vss T13 
Vee A08 Vee N18 Vss F03 Vss T14 
Vee A09 Vee P02 Vss F17 Vss T15 
Vee A10 Vee P18 Vss G03 W/R# T01 
Vee A11 Vee 003 Vss G17 WB/WT# U04 
Vee A12 Vee 017 Vss H02 
Vee A14 Vee R03 Vss H03 
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Table 7.3. Ceramic PGA Package Dimension Symbols 

Letter or 
Description of Dimensions Symbol 

A Distance from seating plane to highest point of body 

A1 Distance between seating plane and base plane (lid) 

A2 Distance from base plane to highest point of body 

A3 Distance from seating plane to bottom of body 

B Diameter of terminal lead pin 

D Largest overall package dimension of length 

D1 A body length dimension, outer lead center to outer lead center 

e1 Linear spacing between true lead position centerlines 

L Distance from seating plane to end of lead 

51 Other body dimension, outer lead center to edge of body 

NOTES: 
1. Controlling dimension: millimeter. 
2. Dimension "e1" ("e") is noncumulative. 
3. Seating plane (standoff) is defined by P.C. board hole size: 0.0415-0.0430 inch. 
4. Dimensions "B", "B1", and "c" are nominal. 
5. Details of Pin 1 identifier are optional. 
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Symbol 

A 

A1 

A2 

A3 

B 

D 

D1 

e1 

L 

N 

S1 

ISSUE 

Min 

3.56 

0.64 

2.79 

1.14 

0.43 

49.28 

45.59 

2.29 

2.54 

240 

1.52 

9/90 

i860™ XP MICROPROCESSOR 

SEATING 
PLANE 

Family: Ceramic Pin Grid Array Package 

Millimeters 

Max Notes Min 

4.57 .140 

1.14 Solid Lid .025 

3.56 Solid Lid .110 

1.40 .045 

0.51 .017 

49.96 1.940 

45.85 1.795 

2.79 .090 

3.30 .100 

280 240 

2.54 .060 

"B (ALL PINS) 

L,__----1 
t 

SWAGGED 
PIN 

DETAIL 

240874-66 

Inches 

Max Notes 

.180 

.045 Solid Lid 

.140 Solid Lid 

.055 

.020 

1.967 

1.805 

.110 

.130 

280 

.100 

Figure 7.3. 262·Lead Ceramic PGA Package Dimensions 
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8.0 PACKAGE THERMAL 
SPECIFICATIONS 

For this section, let: 

P = maximum power consumption 

T C = case temperature 

T A = ambient air temperature 

(JCA = thermal resistance from case to ambient air 

(JJC = thermal resistance from junction to case 

(JJA = thermal resistance from junction to ambient 
air 

The i860 XP microprocessor is specified for opera­
tion when T C is within the range of 0°C-85°C. T C may 
be measured in any environment to determine 
whether the i860 XP microprocessor is within speci­
fied operating range. The case temperature should 
be measured at the center of the top surface oppo­
site the pins. 

T A can be calculated from (JCA with the following 
equation: 

Typical values for (JCA at various airflows and for (J JC 
are given in Table 8.1 for the 1.95 sq. in., 262 pin, 
ceramic PGA. (JJC is shown so that (JJA can be cal­
culated by: 

Note that (JJC with a heatsink differs from (JJC with­
out a heatsink because case temperature is mea­
sured differently. Case temperature for (JJC with 
heatsink is measured at the center of the heat fin 
base. Case temperature for (JJC without heatsink is 
measured at the center of the package top surface. 

Table 8.2 shows the maximum T A allowable {without 
exceeding T c> at various airflows. 

Note that T A is greatly improved by attaching "fins" 
or a "heat sink" to the package. P (the maximum 
power consumption) is calculated by using the maxi­
mum Icc at 5V as tabulated in the D.G. Characteris­
tics of section 9. 

Figure 8.1 gives typical Icc derating with case tem­
perature. For more information on heat sinks, mea­
surement techniques, or package characteristics, re­
fer to Intel Packaging Handbook, order number 
240800. 

Table 8 1 Thermal Resistance-In °C/Watt .. 
(JCA as a Function of Airflow - ft/min (m/sec) 

(JJC 0 200 400 600 800 1000 
{OJ (1.01) (2.03) (3.04) (4.06) (S.07) 

I With Heat Sink" 1.6 10.1 6.3 4.3 3.2 2.5 2.2 

l Without Heat Sink 1.0 13.5 11.0 8.0 6.5 5.5 5.0 

NOTE: 
" Nine-fin, unidirectional heat sink (fin dimensions: 0.250" height. 0.040· fin width, 0.100· center-to-center spaCing. 1.730· 
length) 

Table 8.2. Maximum T A at Various Airflows-In °C 

Airflow - ft/min (m/sec) 

fClK 0 200 400 600 800 1000 
(MHz) {OJ (1.01) (2.03) (3.04) (4.06) (S.07) 

TA with 50 24 47 59 66 70 72 
Heat Sink" 

TA without 50 4 19 37 46 52 55 
Heat Sink 

TA with 40 34.5 53.5 63.5 69 72.5 74 
HeatSink* 

TA without 40 17.5 30 45 52.5 57.5 60 
Heat Sink 

NOTE: 
• Nine-fin, unidirectional heat sink (fin dimensions: 0.250" height, 0.040" fin width. 0.100" center-to-center spacing, 1.730" 
length) 
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1.30 

1.20 ,.... 
: 50t.4Hz 

'" E 
.5 1.10 

" ..Y 

1.00 

0.90 :-i-_'""'"';_.;.;..._....:.... ________ !--_____ ~~ ___ __ 
• .40 MHz 

0.80L-~---+----~--~--~----+_--~--~----+_~-J 

o 10 20 30 40 50 60 70 

TEMPERATURE (Degrees Centigrade) 

Figure 8.1. IcC Derating with Case Temperature 

9.0 ELECTRICAL DATA 

All TTL input and output timings are specified relative 
to the 1.5V input level of the rising edge of elK and 
refer to the point that the signal reaches 1.5V. 

NOTE: 
This data sheet contains preliminary information on 
new products in production. The specifications are 
subject to change without notice. 
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9.1 Absolute Maximum Ratings 

Case Temperature T C under Bias ...... O°C to 85°C 

Storage Temperature .......... - 65°C to + 150°C 

Voltage on Any Pin with 
Respect to Ground .......... - 0.5 to Vcc + 0.5V 

9.2 D.C. Characteristics 

NOTICE: This data sheet contains preliminary infor­
mation on new products in production. The specifica­
tions are subject to change without notice. 

• WARNING: Stressing the device beyond the "Absolute 
Maximum Ratings" may cause permanent damage. 
These are stress ratings only. Operation beyond the 
"Operating Conditions" is not recommended and ex­
tended exposure beyond the "Operating Conditions" 
may affect device reliability. 

Table 9.1. D.C. Characteristics Operating Conditions: VCC = 5V ±5%; TC = O°C to 85°C 

Symbol Parameter Min Max Units Notes 

VIL Input LOW voltage (TTL) -0.3 +0.8 V 

VIH Input HIGH voltage (TTL) 2.0 VCC+ 0.3 V 

VOL Output LOW voltage (TTL) 0.45 V 1 

VOH Output HIGH voltage (TTL) 2.4 V 2 

Icc Power supply current (@ 50 MHz) 1.2 Amp 3 

Icc Power supply current (@40 MHz) 1.0 Amp 3 

III Input leakage current ±15 )J-A 4 

ILiP Input leakage current (pull-up) -400 )J-A 5 

ILO Output leakage current ±15 )J-A 6 

CIN Input capacitance 11.5 pF 7 

Co 1/0 or output capacitance 14 pF 7 

CCLK Clock capacitance 20 pF 7 

NOTES: 
1. This parameter is measured with current load of 5 mAo 
2. This parameter is measured with current load of 1 mA. Typical value is Vee - 0.45V. 
3. Measured at 50 MHz and Vee = 5V. 
4. This parameter is for inputs without pullups. Vce is on, and 0.45V s VIN s Vee + 0.45V. 
5. This parameter is for inputs with pullups and VIL = 0.45V. Note that if the pull-ups are put in high-impedance state via the 
DCTL boundary scan cell that also tri-states the data outputs, then the leakage is ± 15 pA 
6. 0.45V ,; VIN s Vee - 0.45V. 
7. These parameters are not tested; they are guaranteed by design characterization. 

104 



infef i860TM XP MICROPROCESSOR 

9.3 A.C. Characteristics 

Table 9.2. 50 MHz A.C. Characteristics Operating Conditions: Vee = 5V ± 5%; T e = O°C to 85°C 

TTL Level 

Symbol Parameter Fig 
Load 
(pF)(a) Min Max 

(ns) (ns) 

tc ClK period 9.1 20 40 

ttc TCK period 9.2 40 1000 

ClK stability 9.1 0.1% 

tch ClK high time 9.1 7 

tcl ClKlowtime 9.1 7 

tr ClK rise time 9.1 3 

tf ClKfall time 9.1 3 

ts TCK to ClK skew 9.3 ±1 

ttch TCK high time 9.2 10 

ttel TCK low time 9.2 10 

ttcr TCK rise time 9.2 4 

ttcf TCK fall time 9.2 4 

tsu.1 RESET, HOlO, BERR, 9.1 7 
PEN #, INT ICS8 setup time 

tsu.2 BOFF#,AHOl~FUNE# 9.1 8 
KEN#, NA#, EWBE# 
INV, WB/WT# setup time 

tsu.3 EAOS # setup time 9.1 9 

tsu.5 BROY # setup time 9.1 7.5 

tsu.6 063-00, OP7 -OPO setup time 9.1 7.5 

tsu.7 063-00, OP7-0PO setup time 9.1 6 
(Processor in late Backoff mode) 

tsu.8 A31-A5 setup time 9.1 11 
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Table 9.2. 50 MHz A.C. Characteristics (Continued) 
Operating Conditions: VCC = 5V ± 5%; T C = O°C to 85°C 

Symbol Parameter Fig 
Load 

(pF)(a) 

ttsu TOI, TMS, TRST # setup time 9.2 

tth TOI, TMS, TRST# hold time(b) 9.2 

th Hold time all other inputs(c) 9.1 

tteo TOO valid delay and all outputs 9.2 50 
valid delay in EXTEST mode(f) 

teo.1 A31-A22 valid delay 9.1 50 

teo.2 A21-A3 valid delay 9.1 150(9) 

teo.3 063-00, OP7-0PO valid delay 9.1 50 
(for 1 st write after float)(d) 

teo.4 063-00, OP7-0PO valid delay 9.1 50 
for 2nd thru 4th writes of burst 
and for pipelined write-after-write)(d) 

teo.5 BREQ, HLOA, PCHK#, 9.1 50 
NENE#, KBO, KB1 valid delay 

teo.6 AOS#, W/R#, HITM# valid delay 9.1 150(9) 

teo.7 PWT, PCO, HIT#, CTYP 9.1 50 
O/C#, MIIO#, PCYC, LOCK# 
CACHE#, LEN valid delay 

teo.8 BEO#-BE7# valid delay 9.1 100(9) 

tz Float time all outputs(e) 9.1 

tzt Float time during boundary sean EXTEST(f) 

NOTES: 
a. Minimum delays are for 20 pF load. 
b. These hold times are referenced to the falling edge of TCK. 
c. These hold times are referenced to the rising edge of ClK. 
d. Output delay for 063-00, DP7-DPO is from the ClK after ADS# activation. 
e. Float time = delay until maximum output current is less than ± ILQ. Float time is not tested. 
f. Delay from falling edge of TCK. 
g. These pins have high·current buffers designed for interface with cache memory. 

TTL Level 

Min Max 
(ns) (ns) 

7 

1 

1 

2 20 

2 14 

2 14 

3 16 

3 15 

2 15 

2 14 

2 14 

2 14 

2 18 

20 

In systems that do not use external cache, series resistor termination (located near the output pins of the i860 XP micro· 
processor) may be required to prevent overshoot and dampen reflections. A resistor of approximately Z -15(1 is recom­
mended to match the impedance of the driver to the board net, where Z is the impedance of the net, including loads, trace, 
and parallel termination. 
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Table 9.3. 40 MHz A.C. Characteristics Operating Conditions: Vee = 5V ± 5%; Te = O°C to 85°C 

TTL Level 

Symbol Parameter Fig 
Load 

(pF)(a) Min Max 
(ns) (ns) 

tc ClK Period 9.1 25 40 

ttc TCK Period 9.2 50 1000 
ClK Stability 9.1 0.1% 

tch ClK High Time 9.1 7 

tcl ClK low Time 9.1 7 

tr ClK Rise Time 9.1 3 

tf ClK Fall Time 9.1 3 

ts TCK to ClK Skew 9.3 ±1 

ttch TCK high time 9.2 10 

ttcl TCK low time 9.2 10 

ttcr TCK rise time 9.2 4 

ttcf TCK fall time 9.2 4 

tsu.1 RESET, HOlO, BERR, PEN#, INT/CS8 9.1 8 
Setup Time 

tsu.2 BOFF#, AHOlO, FLlNE#, KEN#, NA#, 9.1 8 
EWBE #, INV, WB/WT # Setup Time 

tsu.3 EAOS# Setup Time 9.1 11 

tsu.5 BROY # Setup Time 9.1 8 

tsu.6 063-00, OP7-0PO Setup Time 9.1 10 

tsu.7 063-00, OP7-0PO Setup Time 9.1 8.5 
(Processor in late Backoff Mode) 

tsu.8 A31-A 15 Setup Time 9.1 11 

ttsu TOI, TMS, TRST # Setup Time 9.2 8 

tth TOI, TMS, TRST # Hold Time(b) 9.2 3 

th Hold Time, All Other Inputs(c) 9.1 3 

ttco TOO Valid Oelay and All Outputs 9.2 50 2 20 
Valid Oelay in EXTEST Mode(f) 

tco.1 A31-A22 Valid Oelay 9.1 50 2 14 

tco.2 A21-A3 Valid Oelay 9.1 150(9) 2 14 

tco.3 063-00, OP7-0PO Valid Oelay 9.1 50 2 16 
(for 1 st Write after Float) 

tcoA 063-00, OP7-0PO Valid Oelay (for 2nd 9.1 50 2 15 
through 4th Writes of Burst 
and for Pipelined Write-after-Write)(4) 

tco.5 BREQ,HlOA,PCHK#,NENE#, 9.1 50 2 15 
KBO, KB1 Valid Oelay 

tco.6 AOS#, W/R#, HITM# Valid Oelay 9.1 150(9) 2 14 
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Table 9.3. 40 MHz A.C. Characteristics (Continued) 
Operating Conditions: Vcc = 5V ± 5%; Tc = O°C to 85°C 

TTL level 

Symbol Parameter Fig 
load 

(pF)(a) Min Max 
(ns) (ns) 

teo.? PWT, PCD, HIT#, CTYP, D/C#, M/IO#, 9.1 50 2 14 
PCYC, LOCK #, CACHE #, LEN Valid Delay 

teo.8 BEO#-BE?# Valid Delay 9.1 100(9) 2 14 

tz Float Time, All Outputs(e) 9.1 2 18 

tzt Float Time during Boundary Sean EXTEST(f) 20 

NOTES: 
a. Minimum delays are for 20 pF load. 
b. These hold times are referenced to the falling edge of TCK. 
c. These hold times are referenced to the rising edge of ClK. 
d. Output delay for D63-DO, DP7-DPO is from the ClK after ADS# activation. 
e. Float time = delay until maximum output current is less than ± ILQ. Float time is not tested. 
f. Delay from falling edge of TCK. 
g. These pins have high-current buffers designed for interface with cache memory. 
In systems that do not use external cache, series resistor termination (located near the output pins of the i860 XP micro­
processor) may be required to prevent overshoot and dampen reflections. A resistor of approximately Z -15n is recom­
mended to match the impedance of the driver to the board net, where Z is the impedance of the net, including loads, trace, 
and parallel termination. 

ClK I.SV -

OUTPUTS 

OUTPUTS 

~--------------------tc--------------------~ 

~------tch---------i-------- tol-----------+I 

~2.0VX 
TTL 

INPUTS I.SV - -

~O.8V 

- - - - - - 1.5V 

Figure 9.1. ClK, Input, and Output Timings 

108 

240874-68 



inter 

TCK 

TOI. 
Tt.4S. 

TRST# 
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I-----------Itc----------i 
!-----Itch----+e-----Itcl-------! 

TOO - - - - - - - - - - - LSV 

Figure 9.2. TAP Signal Timings 

CLK - LSV 

TCK - 1.SV 

Figure 9.3. TCK to ClK Skew 
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Graphs are not linear outside the CL range shown. 
NOMINAL = Nominal value given in the AC Timings table. 
'Typical part under worst-case conditions. 

20 40 60 80 
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Figure 9.4. Typical Output Delay vs. load Capacitance under Worst-Case Conditions 
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Graphs are not linear outside the CL range shown. 
'Typical part under worst-case conditions. 
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Figure 9.5a. Typical Slew Time vs. Load Capacitance under Worst-Case Conditions (Rising Voltage) 
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'Typical part under worst-case conditions. 
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Figure 9.5b_ Typical Slew Time vs. Load Capacitance under Worst-Case Conditions (Falling Voltage) 
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'Worst-case supply current at 5V. 

Figure 9.S. Typical Icc vs. Frequency 
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10.0 INSTRUCTION SET 

Key to abbreviations: 

For register operands, the abbreviations that de­
scribe the operands are composed of two parts. The 
first part describes the type of register: 

c One of the control registers fir, psr, epsr, 
dirbase, db, fsr, bear, ccr, pO, p1, p2, or p3 

, One of the floating-point registers: fO through 
f31 

One of the integer registers: rO through r31 

The second part identifies the field of the machine 
instruction into which the operand is to be placed: 

src 1 The first of the two source-register desig­
nators, which may be either a register or a 
16-bit immediate constant or address off­
set. The immediate value is zero-extended 
for logical operations and is sign-extended 
for add and subtract operations (including 
addu and subu) and for all addressing cal­
culations. 

srclni Same as src1 except that no immediate 
constant or address offset value is permit­
ted. 

srels Same as src1 except that the immediate 
constant is a 5-bit value that is zero-ex­
tended to 32 bits. 

sre2 The second of the two source-register des­
ignators. 

dest The destination register designator. 

Thus, the operand specifier isrc2, for example, 
means that an integer register is used and that the 
encoding of that register must be placed in the src2 
field of the machine instruction. 

Other (nonregister) operands are specified by a one­
part abbreviation that represents both the type of 
operand required and the instruction field into which 
the value of the operand is placed: 

#eonst A 16-bit immediate constant or address off­
set that the i860 XP microprocessor sign­
extends to 32 bits when computing the ef­
fective address. 

Ibroff A signed, 26-bit, immediate, relative branch 
offset. 

sbroff A signed, 16-bit, immediate, relative branch 
offset. 
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brx A function that computes the target ad­
dress by shifting the offset (either Ibroff or 
sbroff) left by two bits, sign-extending it to 
32 bits, and adding the result to the current 
instruction pointer plus four. The resulting 
target address may lie anywhere within the 
address space. 

Table 10.1. Precision Specification 

Suffix Source Precision Result Precision 

.ss single single 

.sd single double 

.dd double double 

.ds double single 

Unless otherwise speclficed, floating-point operations ac­
cept single- or double-precision source operands and pro­
duce a result of equal or greater precision. Both input oper­
ands must have the same precision. The source and result 
precision are specified by a two-letter suffix to the mne­
monic of the operation. 

Other abbreviations include: 

.p 

.r 

.V 

.w 

.x 

.y 

mem.x(address) 

Precision specification .ss, 
.sd, or .dd (.ds not permit­
ted). Refer to Table 10.1. 

Precision specification .ss, 
.sd, .ds, or .dd. Refer to 
Table 10.1. 

.sd or .dd Refer to Table 
10.1. 

.ss or .dd. Refer to Table 
10.1. 

.b (8 bits), .s (16 bits), or .I 
(32 bits) 

.I (32 bits), .d (64 bits), or 

.q (128 bits) 

The memory location indi­
cated by address with a 
size of x. 

port.x(address) The 1/0 port indicated by 
address with a size of x. 

int_veetor.x(address) The interrupt vector with a 
size of x returned from 1/0 
port address. 

PM The pixel mask, which is 
considered as an array of 
eight bits PM(7) .. PM(0), 
where PM(O) is the least­
significant bit. 



i860™ XP MICROPROCESSOR 

10.1 Instruction Definitions in Alphabetical Order 

adds isrc1, isrc2, idest ... ................. " ............................................ Add Signed 
idest ~ isrc1 + isrc2 
OF ~ (bit 31 carry oF bit 30 carry) 
CC set if isrc2 + isrc1 < 0 (signed) 
CC clear if isrc2 + isrc1 ~ 0 (signed) 

addu isrc1, isrc2, idest ............................................................... Add Unsigned 
idest ~ isrc1 + isrc2 
OF ~ bit 31 carry 
CC ~ bit 31 carry 

and isrc 1, isrc2, idest .................................................................. Logical AND 
idest ~ isrc1 and isrc2 
CC set if result is zero, cleared otherwise 

andh # const, isrc2, idest .......................................................... Logical AND High 
idest ~ (# const shifted left 16 bits) and isrc2 
CC set if result is zero, cleared otherwise 

andnotisrc1, isrc2, idest .......................................................... Logical AND NOT 
idest ~ (not isrc1) and isrc2 
CC set if result is zero, cleared otherwise 

andnoth #const, isrc2, idest . ................................................. Logical AND NOT High 
idest ~ (not (#const shifted left 16 bits)) and isrc2 
CC set if result is zero, cleared otherwise 

bc Ibroff ............................................................................ Branch on CC 
IF CC = 1 
THEN continue execution at brx(lbraff) 
FI 

bc.tlbroff .................................................................... Branch on ee, Taken 
IF CC = 1 
THEN execute one more sequential instruction 

continue execution at brx(lbroff) 
ELSE skip next sequential instruction 
FI 

bla isrc 1 ni,isrc2, sbroff . ..................................................... Branch on Lee and Add 
LCC-temp clear if isrc2 + isrc1ni < 0 (signed) 
LCC-temp set if isrc2 + isrc1ni ~ 0 (signed) 
isrc2 ~ isrc 1 ni + isrc2 
Execute one more sequential instruction 
IF LCC 
THEN LCC ~ LCC-temp 

continue execution at brx(sbroff) 
ELSE LCC ~ LCC-temp 
FI 

bnc Ibraff ....................................................................... Branch on Not ee 
IF CC = 0 
THEN continue execution at brx(lbroff) 
FI 
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bnc. t /broff ............................................................... Branch on Not CC, Taken 
IF CC = 0 
THEN execute one more sequential instruction 

continue execution at brx(/broff) 
ELSE skip next sequential instruction 
FI 

br /broff ............................................................. Branch Direct Unconditionally 
Execute one more sequential instruction. 
Continue execution at brx(/broff). 

bri [isrc1m] ........................................................ Branch Indirect Unconditionally 
Execute one more sequential instruction 
IF any trap bit in psr is set 
THEN copy PU to U, PIM to 1M in psr 

clear trap bits 
IF DS is set and DIM is reset 
THEN enter dual-instruction mode after executing one 

instruction in single-instruction mode 
ELSE 

FI 
FI 

IF 
THEN 

ELSE 

FI 

Continue execution at address in isrc1ni 

DS is set and DIM is set 
enter single-instruction mode after executing one 

instruction in dual-instruction mode 
IF 
THEN 

ELSE 

FI 

DIM is set 
enter dual-instruction mode 

for next instruction pair 
enter single-instruction mode 

for next instruction pair 

(The original contents of isrc 1 ni is used even if the next instruction 
modifies isrc1ni. Does not trap if isrc1ni is misaligned.) 

bte isrc1s, isrc2, sbroff .............................................................. Branch If Equal 
IF isrc1s = isrc2 
THEN continue execution at brx(sbroff) 
FI 

btne isrc 15, isrc2, sbroff ......................................................... Branch If Not Equal 
IF isrc1s * isrc2 
THEN continue execution at brx(sbroff) 
FI 

call/broff .......................................................................... Subroutine Call 
r1 ~ address of next sequential instruction + 4 (or + 8 in dual mode) 
Execute one more sequential instruction 
Continue execution at brx(/broff) 

calli [isrc1m] ............................................................... Indirect Subroutine Call 
r1 ~ address of next sequential instruction + 4 (or + 8 in dual mode) 
Execute one more sequential instruction 
Continue execution at address in isrc1ni 

(The original contents of isrc1ni is used even if the next instruction 
modifies isrc1ni. Does not trap if isrc1ni is misaligned. The 
register isrc1ni must not be r1.) 

fadd.p fsrc1, fsrc2, fdest ......................................................... Floating-Point Add 
fdest ~ fsrc 1 + fsrc2 

114 



i860™ XP MICROPROCESSOR 

faddp fsrc1, fsrc2, fdest .............. .......................................... Add with Pixel Merge 
fdest +- fsrc1 + fsrc2 (using integer arithmetic; a-byte operands and destination) 
Shift and load MERGE register from fsrc1 + fsrc2 as defined in Table 10.2 

faddz fsrc1, fsrc2, fdest ........................................................... Add with Z Merge 
fdest +- fsrc1 + fsrc2 (using integer arithmetic; 8-byte operands and destination) 
Shift MERGE right 16 and load fields 31 .. 16 and 63 . .48 from fsrc1 + fsrc2 

famov.r fsrc1, fdest . ..................................................... Floating-Point Adder Move 
fdest +- fsrc1 

fiadd.w fsrc1, fsrc2, fdest ......................................................... Long-Integer Add 
fdest +- fsrc1 + fsrc2 (2's complement integer arithmetic) 

fisub.w fsrc1, fsrc2, fdest ..................................................... Long-Integer Subtract 
frdest +- fsrc1 - fsrc2 (2's complement integer arithmetic) 

fix.v fsrc1, fdes! ................................................ Floating-Point to Integer Conversion 
fdest +- 64-bit value with low-order 32 bits equal to integer part of fsrc1 rounded 

Floating-Point Load 
fld.y isrc1(isrc2), fdest .................................................................... (Normal) 
fld.yisrc1(isrc2)+ +, fdes! ........................................................ . (Autoincrement) 

fdest +- mem.y (isrc1 + isrc2) 
IF autoincrement 
THEN isrc2 +- isrc1 + isrc2 
FI 

Cache Flush 
flush # const(isrc2) ....................................................................... (Normal) 
flush # const(isrc2) + + ............................................................ (Autoincrement) 

Write back (if modified) the line in data cache that has address (# cons! + isrc2) 
80860XR: and set tag value to (# const + isrc2). 
80860XP: and invalidate its virtual and physical tags. 

Contents of line undefined. 
IF autoincrement 
THEN isrc2 +- #cons! + isrc2 
FI 

fmlow.dd fsrc1, fsrc2, fdest .............................................. Floating-Point Multiply Low 
fdest +- low-order 53 bits of (fsrc1 mantissa x fsrc2 mantissa) 
fdes! bit 53 +- most significant bit of (fsrc1mantissa x fsrc2 mantissa) 

fmov.r fsrc1, fdes! .................................................... Floating-Point Reg-Reg Move 
Assembler pseudo-operation 

fmov.ss fsrc1, fdes! 
fmov.dd fsrc1, fdest 
fmov.sd fsrc1, fdes! 
fmov.ds fsrc1, fdes! 

= fiadd.ss fsrc1, to, fdes! 
= fiadd.dd fsrc1, fO, fdes! 
= famov.sd fsrc1, fdest 
= famov.ds fsrc1, fdes! 

fmul.p fsrc 1, fsrc2, fdes! ...................................................... Floating-Point Multiply 
fdes! +- fsrc 1 x fsrc2 

fnop ................................................................. Floating-Point No Operation 
Assembler pseudo-operation 

fnop = shrd rO, rO, rO 
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form fsrc1, fdes! .......................................................... OR with MERGE Register 
fdes! -- fsrc1 OR MERGE 
MERGE -- 0 

frcp.p fsrc2, fdes! ......................................................... Floating-Point Reciprocal 
fdes! -- 1 / fsrc2 with maximum mantissa error < 2- 7 

frsqr.p fsrc2, fdes! . ........................................... Floating-Point Reciprocal Square Root 
fdes! -- 1 / Hsrc2 with maximum mantissa error < 2-7 

Floating-Point Store 
fst.y fdest,isrc1(isrc2) ..................................................................... (Normal) 
fst.y fdes!, isrc 1(isrc2) + + ......................................................... (Autoincrement) 

mem.y (isrc2 + isrc1) -- fdes! 
IF autoincrement 
THEN isrc2 -- isrc1 + isrc2 
FI 

fsub.p fsrc 1, fsrc2, fdes! ..................................................... Floating-Point Subtract 
fdes! -- fsrc 1 - fsrc2 

ftrunc.v fsrc1, fdest . ........................................... Floating-Point to Integer Conversion 
fdest -- 64-bit value with low-order 32 bits equal to integer part of fsrc1 

fxfr fsrc 1, idest ..................................................... Transfer F-P to Integer Register 

ides! -- fsrc 1 

fzchkl fsrc1, fsrc2, fdes! ....................................................... 32-Bit Z-Buffer Check 
Consider the 64-bit operands as arrays of two 32-bit 

fields fsrc1(1 )..fsrc1(O), fsrc2(1 )..fsrc2(O). and fdest(1 )..fdes!(O) 
where zero denotes the least-significant field. 

PM -- PM shifted right by 2 bits 
FOR i = 0 to 1 
DO 

PM [i + 6] -- fsrc2(i) ,0; fsrc1(i) (unsigned) 
fdes!(i) -- smaller of fsrc2(i) and fsrc1(i) 

aD 
MERGE -- 0 

fzchks fsrc1, fsrc2, fdes! ...................................................... 16-Bit Z-Buffer Check 
Consider the 64-bit operands as arrays of four 16-bit 

fields fsrc1(3) . .fsrc1(O). fsrc2(3)..fsrc2(O). and fdest(3)..fdest(O) 
where zero denotes the least-significant field. 

PM -- PM shifted right by 4 bits 
FOR i = 0 to 3 
DO 

PM [i + 4] -- fsrc2(i) ,0; fsrc1(i) (unsigned) 
fdest(i) -- smaller of fsrc2(i) and fsrc1(i) 

aD 
MERGE -- 0 

intovr .......................................................... Software Trap on Integer Overflow 
IF OF = 1 
THEN generate trap with IT set in psr 
FI 

ixfr isrc 1 ni, fdest . ................................................... Transfer Integer to F-P Register 
fdes! -- isrc1ni 
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Id.c esre2, idest ......................................................... Load from Control Register 
idest ~ esre2 

Id.x isret(isre2j, idest . ................................................................. Load Integer 
idest ~ mem.x (isret + isre2j 

Idint.x isre2, idest ............................................................ Load Interrupt Vector 
idest ~ int_veetor.x (isre2) 
NOTE: Not available with the i860 XR CPU 

Idio.x isre2, ides! ......................................................................... Load 110 
idest ~ port.x (isre2) 
NOTE: Not available with the i860 XR CPU 

lock .................................................................. Begin Interlocked Sequence 
Set BL in dirbase. 
The next load or store that appears on the bus locks that location. 
Disable interrupts until the bus is unlocked. 

mov isre2, ides! ............................................................ Register-Register Move 
Assembler pseudo-operation 

mov isre2, idest = shl rO, isre2, ides! 

mov eonst32, idest ...................................................... Constant-to-Register Move 
Assembler pseudo-operation 

when OxFFFF8000 ~ eons!32 < Ox8000 ... 
adds l%eonst32, rO, idest 

otherwise ... 
orh h %eonst32, rO, idest 
or l%eonst32, idest, ides! 

nop ...................................................................... Core-Unit No Operation 
Assembler pseudo-operation 

nop = shl rO, rO, rO 

or isret, isre2, idest ..................................................................... Logical OR 
idest ~ isret OR isre2 
CC set if result is zero, cleared otherwise 

orh #eonst, isre2, idest ................ ............................................. Logical OR high 
idest ~ (# eonst shifted left 16 bits) OR isre2 
CC set if result is zero, cleared otherwise 

pfadd.p fsret, fsre2, fdest . .............................................. Pipelined Floating-Point Add 
fdest ~ last stage adder result 
Advance A pipeline one stage 
A pipeline first stage ~ fsre t + fsre2 

pfaddp fsret, fsre2, fdest ............................................. Pipelined Add with Pixel Merge 
fdest ~ last-stage graphics-unit result 
last-stage graphics-unit result ~ fsret + fsre2 

(using integer arithmetic; 8-byte operands and destination) 
Shift, then load MERGE register from fsret + fsre2 as defined in Table 10.2 

pfaddz fsre 1, fsre2, fdes! . ................................................ Pipelined Add with Z Merge 
frdest ~ last-stage graphics-unit result 
last-stage graphics-unit result ~ fsret + fsre2 

(using integer arithmetic; 8-byte operands and destination) 
Shift MERGE right 16, then load fields 31..16 and 63 . .48 fromfsret + fsre2 
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pfam.p fsrc1, fsrc2, fdest ................................... Pipelined Floating-Point Add and Multiply 
fdest +- last stage adder result 
Advance A and M pipeline one stage (operands accessed before advancing pipeline) 
A pipeline first stage +- A-op1 + A-op2 
M pipeline first stage +- M-op1 x M-op2 

pfamov.r fsrc1, fdest ........................................... Pipelined Floating-Point Adder Move 
fdest +- last stage adder result 
Advance A pipeline one stage 
A pipeline first stage +- fsrc1 

pfeq.p fsrc1, fsrc2, fdest ..................................... Pipelined Floating-Point Equal Compare 
fdest +- last stage adder result 
CC set if fsrc1 = fsrc2, else cleared 
Advance A pipeline one stage 
A pipeline first stage is undefined, but no result exception occurs 

pfgt.p fsrc1, fsrc2, (dest .............................. Pipelined Floating-Point Greater-Than Compare 
(Assembler clears R-bit of instruction) 
fdest +- last stage adder result 
CC set if fsrc1 > fsrc2, else cleared 
Advance A pipeline one stage 
A pipeline first stage is undefined, but no result exception occurs 

pfiadd.w fsrc1, fsrc2, (dest . .............................................. Pipelined Long-Integer Add 
(dest +- last-stage graphics-unit result 
last-stage graphics-unit result +- fsrc1 + fsrc2 (2's complement integer arithmetic) 

pfisub.w fsrc1, fsrc2, (dest . .......................................... Pipelined Long-Integer Subtract 
(dest +- last-stage graphics-unit result 
last-stage graphics-unit result +- fsrc1 - fsrc2 (2's complement integer arithmetic) 

pfix.v fsrc1, fdest ..................................... Pipelined Floating-Point to Integer Conversion 
fdest +- last stage adder result 
Advance A pipeline one stage 
A pipeline first stage +- 64-bit value with low-order 32 bits 

equal to integer part of fsrc1 rounded 

Pipelined Floating-Point Load 

pfld.y isrc1(isrc2),fdest . ................................................................... (Normal) 
pfld.y isrc 1(isrc2) + +, fdest .. ...................................................... (Autoincrement) 

fdest +- mem.y (third previous pfld's (isrc1 + isrc2)) 
(where .y is precision of third previous pfld.y) 

IF autoincrement 
THEN isrc2 +- isrc1 + isrc2 
FI 
NOTE: pfld.q is not available with the i860 XR CPU 

pfle.p fsrc 1, fsrc2, fdest ................................... Pipelined F-P Less-Than or Equal Compare 
Assembler sets R-bit of instruction 
(dest +- last stage adder result 

CC clear if fsrc 1 ,,; fsrc2, else set 
Advance A pipeline one stage 
A pipeline first stage is undefined, but no result exception occurs 
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pfmam.p fsrc1, fsrc2, fdest ................................. . PipelinedFloating-Point Add and Multiply 
fdest +- last stage multiplier result 
Advance A and M pipeline one stage (operands accessed before advancing pipeline) 
A pipeline first stage +- A-op1 + A-op2 
M pipeline first stage +- M-op1 X M-op2 

pfmov.r fsrc1, fdest ......................................... . Pipelined Floating-Point Reg-Reg Move 
Assembler pseudo-operation 

pfmov.ss fsrc1, fdest = pfiadd.ss fsrc1, fO, fdest 
pfmov.dd fsrc1, fdest = pfiadd.dd fsrc1, fO, fdest 
pfmov.sd fsrc1, fdes! = pfamov.sd fsrc1, fdes! 
pfmov.ds fsrc1, fdes! = pfamov.ds fsrc1, fdest 

pfmsm.p fsrc1, fsrc2, fdes! ............................. Pipelined Floating-Point Subtract and Multiply 
fdest +- last stage multiplier result 
Advance A and M pipeline one stage (operands accessed before advancing pipeline) 
A pipeline first stage +- A-op1 - A-op2 
M pipeline first stage +- M-op1 x M-op2 

pfmul.p fsrc1, fsrc2, fdes! .......................................... . Pipelined Floating-Point Multiply 
fdest +- last stage multiplier result 
Advance M pipeline one stage 
M pipeline first stage +- fsrc1 x fsrc2 

pfmul3.dd fsrc1, fsrc2, fdest . .......................................... Three-Stage Pipelined Multiply 
fdest +- last stage multiplier result 
Advance 3-5tage M pipeline one stage 
M pipeline first stage +- fsrc1 x fsrc2 

pform fsrc1, fdes! . ................................................. Pipelined OR to MERGE Register 
fdes! +- last-stage graphics-unit result 
last-stage graphics-unit result +- fsrc1 OR MERGE 
MERGE +- 0 

pfsm.p fsrc1, fsrc2, fdest ............................... Pipelined Floating-Point Subtract and Multiply 
fdes! +- last stage adder result 
Advance A and M pipeline one stage (operands accessed before advancing pipeline) 
A pipeline first stage +- A-op1 - A-op2 
M pipeline first stage +- M-op1 x M-op2 

pfsub.p fsrc 1, fsrc2, fdest . .......................................... Pipelined Floating-Point Subtract 
fdes! +- last stage adder result 
Advance A pipeline one stage 
A pipeline first stage +- fsrc1 - fsrc2 

pftrunc.v fsrc1, fdest . ................................. Pipelined Floating-Point to Integer Conversion 
fdest +- last stage adder result 
Advance A pipeline one stage 
A pipeline first stage +- 64-bit value with low-order 32 bits 

equal to integer part of fsrc1 
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pfzchkl fsrc 1, fsrc2, fdest ............................................ Pipelined 32-Bit Z-Buffer Check 
Consider the 64-bit operands as arrays of two 32-bit 

fields fsrc1(1)..fsrc1(0), fsrc2(1)..fsrc2(0), and fdest(1)..fdest(0) 
where zero denotes the least-significant field. 

PM +- PM shifted right by 2 bits 
FOR i = 0 to 1 
DO 

PM [i + 61 +- fsrc2(i) s:; fsrc1(i) (unsigned) 
fdest(i) +- last-stage graphics-unit result 
last-stage graphics-unit result +- smaller of fsrc2(i) and fsrc1 

00 
MERGE +- 0 

pfzchks fsrc1, fsrc2, fdest . ........................................... Pipelined 16-Bit Z-Buffer Check 
Consider the 64-bit operands as arrays of four 16-bit 

fields fsrc1(3) . .fsrc1(0), fsrc2(3) .. fsrc2(0), and fdest(3)..fdest(0) 
where zero denotes the least-significant field. 

PM +- PM shifted right by 4 bits 
FOR i = 0 to 3 
DO 

PM [i + 41 +- fsrc2(i) s:; fsrc1(i) (unsigned) 
fdest +- last-stage graphics-unit result 
last-stage graphics-unit result(i) +- smaller of fsrc2(i) and fsrc1(i) 

00 
MERGE +- 0 

pst.d fdest, # const(isrc2) ................................................................ Pixel Store 
pst.d fdest, # const(isrc2) + + ............................................. Pixel Store Autoincrement 

Pixels enabled by PM in mem.d (isrc2 + #const) +- fdest 
Shift PM right by 8/pixel size (in bytes) bits 
IF autoincrement 
THEN isrc2 +- #const + isrc2 
FI 

scyc.x isrc2 ........................................................................ Special Cycles 
Generate a special bus cycle (O/C# =0, W/R# = 1, M/IO# =0) and 
set BE7#-BEO# according to the value contained in the register isrc2 
NOTE: Not available with the i860 XR CPU 

shl isrc1, isrc2, idest ........ , .. , " ... , ........... , ... " '" ................................ Shift Left 
idest +- isrc2 shifted left by isrc1 bits 

shr isrc 1, isrc2, idest . .................................................................... Shift Right 
SC (in psr) +- isrc1 
idest +- isrc2 shifted right by isrc1 bits 

shra isrc1, isrc2, idest ......................................................... Shift Right Arithmetic 
ides! +- isrc2 arithmetically shifted right by isrc1 bits 

shrd isrc1ni, isrc2, idest . ....................................... '" ......... " ..... Shift Right Double 
idest +- low-order 32 bits of isrc1ni:isrc2 shifted right by SC bits 

st.c isrc1ni, csrc2 ......................................................... Store to Control Register 
csrc2 +- src 1 ni 

st.x isrc1ni, #const(isrc2) ............................................................. Store Integer 
mem.x (isrc2 + #const) +- isrc1ni 
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stio.x isrc1ni, isrc2 ...................................................................... . Store I/O 
port.x (isrc2) ~ isrc1ni 
NOTE: Not available with the i860 XR CPU 

subs isrc 1, isrc2, idest .............................................................. Subtract Signed 
idest ~ isrc1 - isrc2 
OF ~ (bit 31 carry '* bit 30 carry) 
CC set if isrc2 > isrc1 (signed) 
CC clear if isrc2 :S: isrc1 (signed) 

subu isrc 1, isrc2, idest ........................................................... Subtract Unsigned 
idest ~ isrc 1 - isrc2 
OF ~ NOT (bit 31 carry) 
CC ~ bit 31 carry 

(i.e. CC set if isrc2 :S: isrc1 (unsigned) 
CC clear if isrc2 > isrc1 (unsigned)) 

trap isrc 1 ni, isrc2, idest . .............................................................. Software Trap 
Generate trap with IT set in psr 

unlock ................................................................. End Interlocked Sequence 
Clear BL in dirbase. The next load or store 
unlocks the bus. Interrupts are enabled. 

xor isrc1, isrc2, idest .......................................................... Logical Exclusive OR 
idest ~ isrc1 XOR isrc2 
CC set if result is zero, cleared otherwise 

xorh # canst, isrc2, idest .................................................. Logical Exclusive OR High 
idest ~ (# canst shifted left 16 bits) XOR isrc2 
CC set if result is zero, cleared otherwise 

Table 10.2. FADDP MERGE Update 

Pixel Size Fields Loaded from Right Shift Amount 
(from PS) Result into MERGE (Field Size) 

8 63 .. 56, 47 . .40, 31 .. 24, 15 .. 8 8 
16 63 .. 58, 47 . .42, 31 .. 26, 15 .. 10 6 
32 63 .. 56, 31 .. 24 8 
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10.2 Instruction Format and Encoding 

All instructions are 32 bits long and begin on a four· 
byte boundary. When operands are registers, the 
encodings shown in Table 10.3 are used. 

There are two general core·instruction formats 
(REG·format and CTRL·format) and a separate for· 
mat for floating·point instructions. 

Table 10.3. Register Encoding 

Register Encoding 

rO 0 

r31 31 

fO 0 

f31 31 

Fault Instruction 0 
Processor Status 1 
Directory Base 2 
Data Breakpoint 3 
Floating·Point Status 4 
Extended Processor Status 5 

Bus Error Address' 6 
Concurrency Control' 7 

pO' 8 
p1' 9 
p2' 10 
p3' 11 

NOTE: 
'Available only with i860 XP CPU. Using these encodings 
with the i860 XR CPU produces undefined results. 
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10.2.1 REG-FORMAT INSTRUCTIONS 

Within the REG·format are several variations as 
shown in Figure 10.1. Table 10.4 gives the encod· 
ings for these instructions. One encoding is an es­
cape code that defines yet another variation: the 
core escape instructions. Figure 10.2 shows the for· 
mat of this group, and Table 10.5 shows the encod· 
ings. 

In these instructions, the src2 field selects one of 
the 32 integer registers (most instructions) or one of 
the control registers (st.c and Id.c). Dest selects 
one of the 32 integer registers (most instructions) or 
floating·point registers (fld, fst, pfld, pst, ixfr). For 
instructions where src1 is optionally an immediate 
value, bit 26 of the opcode (I·bit) indicates whether 
src1 is an immediate. If bit 26 is clear, an integer 
register is used; if bit 26 is set, src1 is contained in 
the low·order 16 bits, except for bte and btne 
instructions. For bte and btne, the five· bit immediate 
value is contained in the src1 field. For st, bte, btne, 
and bla, the upper five bits of the offset or broffset 
are contained in the dest field instead of src1, and 
the lower 11 bits of offset are the lower 11 bits of 
the instruction. 

For Id and st, bits 28 and zero determine operand 
size as follows: 

Bit 28 Bit 0 Operand Size 

0 0 8·bits 
0 1 8·bits 
1 0 16·bits 
1 1 32·bits 

When src1 is immediate and bit 28 is set, bit zero of 
the immediate value is forced to zero. 
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For f1d, fst, pfld, pst, and flush, bit 0 selects autoin­
crement addressing if set. For fld, fst, pfld, and pst, 
bits one and two select the operand size as follows: 

Bit 1 Bit2 Operand Size 

0 0 64-bits 
0 1 128-bits 
1 0 32-bits 
1 1 32-bits 

For flush, bits one and two must be zero. 

313029282726. r.2524 2322 21 '2019181716 

I OPCODE/I SRC2 DEST 

3130292827. '26/25242322 21. '20 19 18 17 16 

1 
OPCODE 1 11 SRC2 DEST 

313029282726. r.2524 2322 21 '20 19 18 17 16 

I OPCODE/I I SRC2 OFFSET 
HIGH 

3130292827. '26/2524 2322 21 '20 19 18 17 16 

1 
OPCODE 1 11 SRC2 OFFSET 

HIGH 

When sret is immediate, bits zero and one of the 
immediate value are forced to zero to maintain align­
ment. When bit one of the immediate value is clear, 
bit two is also forced to zero. 

For the instructions Idio, stio, Idint, and seye, the 
operand size is encoded by bits 9 and 10 as follows. 
For other instructions, these bits are reserved and 
should be set to zero. 

Operand Size Bit 10 Bit9 

8 Bits (.b) 0 0 
16 Bits (.s) 0 1 
32 Bits (.I) 1 0 
reserved 1 1 

15 14 13 12 " 1098765432 1 0 

SRC1 IMMEDIATE, OFFSET, 
OR NULL 

240874-74 

151413121110 9 876 5 -I J 2 1 0 

IMMEDIATE 

240874-75 

15 14 13 12 11 1098765432 1 0 

SRC1 OFFSET LOW 
SRC1S 

240874-76 

15 14 13 12 If 1090765432 1 o. 

IMMEDIATE OFFSET LOW 

240874-77 

Figure 10.1. REG-Format Variations 
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Table 10.4. REG-Format Opcodes 
31 30 29 28 27 26 

Id.x Load Integer 0 0 0 L 0 I 
st.x Store Integer 0 0 0 L 1 1 
ixfr Integer to F-P Reg Transfer 0 0 0 0 1 0 
- (reserved) 0 0 0 1 1 0 

fld.x, fst.x Load/Store F-P 0 0 1 0 LS I 
flush Flush 0 0 1 1 0 1 
pst.d Pixel Store 0 0 1 1 1 1 
Id.c, st.c Load/Store Control Register 0 0 1 1 LS 0 

bri Branch Indirect 0 1 0 0 0 0 
trap Trap 0 1 0 0 0 1 
- (Escape for F-P Unit) 0 1 0 0 1 0 
- (Escape for Core Unit) 0 1 0 0 1 1 
bte, btne Branch Equal or Not Equal 0 1 0 1 E I 
pfld.y Pipelined F-P Load 0 1 1 0 0 I 
- (CTRL-Format Instructions) 0 1 1 x x x 

addu, Os, subu, -s Add/Subtract 1 0 0 SO AS I 
shl, shr Logical Shift 1 0 1 0 LR I 
shrd Double Shift 1 0 1 1 0 0 
bla Branch LCe Set and Add 1 0 1 1 0 1 
shra Arithmetic Shift 1 0 1 1 1 I 

and(h) AND 1 1 0 0 H I 
andnot(h) ANDNOT 1 1 0 1 H I 
or(h) OR 1 1 1 0 H I 
xor(h) XOR 1 1 1 1 H I 

- (reserved) 1 1 x x 1 0 

L Integer Length AS Add/Subtract 
0 -8 bits 0 -Add 
1 -16 or 32 bits (selected by bit 0) 1 -Subtract 

LS Load/Store LR Left/Right 
0 -Load 0 -Left Shift 
1 -Store 1 -Right Shift 

SO Signed/Ordinal E Equal 
0 -Ordinal 0 -Branch on Unequal 
1 -Signed 1 -Branch on Equal 

H High Immediate 
0 -and, or, andnot, xor 0 -src 1 is register 
1 -andh,orh,andnoth,xorh 1 -src 1 is immediate 

IT] RESERVED BY INTEL CORPORATION (SET TO ZERO) 
240874-78 

Figure 10.2. Core Escape Instructions 
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Table 10.5. Core Escape Opcodes 
4 3 2 o 

- (reserved) 0 0 0 0 0 
lock Begin Interloacked Sequence 0 0 0 0 1 
calli Indirect Subroutine Call 0 0 0 1 0 
- (reserved) 0 0 0 1 1 
introvr Trap on Integer Overflow 0 0 1 0 0 
- (reserved) 0 0 1 0 1 
- (reserved) 0 0 1 1 0 
unlock End Interlocked Sequence 0 0 1 1 1 
Idio' Load 1/0 0 1 0 0 0 
stio' Store 1/0 0 1 0 0 1 
Idint' Load Interrupt Vector 0 1 0 1 0 
scyc' Special Cycles 0 1 0 1 1 
- (reserved) 0 1 1 x x 
- (reserved) 1 0 x x x 
- (reserved) 1 1 x x x 

NOTE: 
'Available only with i860 XP CPU, not with i860 XR CPU 

10.2.2 CTRL-FORMAT INSTRUCTIONS 

The CTRL·Format instructions do not refer to registers; so, instead of the register fields, they have a 26-bit 
relative branch offset. Figure 10.3 shows the format of these instructions and Table 10.6 defines the encod· 
ings. 

313029, '282726, _NDll~.mmom.uuu"m. 87 6 5 4 32 1 0 

10 1 1 ope I BRorrSET I 
240874-79 

NOTE: 
BROFFSET is a signed 26-bit relative branch offset 

Figure 10.3. CTRL-Format Instructions 

Table 10.6. CTRL-Format Opcodes 
28 27 26 

- (reserved) 
- (reserved) 
br Branch Direct 
call Call 
bc(.t) Branch on CC Set 
bnc(.t) Branch on CC Clear 

T Taken 
o -be or bnc 
1 -be.t or bnc.t 

10.2.3 FLOATING-POINT INSTRUCTION 
ENCODING 

The floating-point instructions also constitute an es­
cape series. All these instructions begin with the bit 
sequence 010010. Figure 10.4 shows the format of 
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0 0 0 
0 0 1 
0 1 0 
0 1 1 
1 0 T 
1 1 T 

the floating-point instructions, and Table 10.7 gives 
the encodings. Within the dual-operation instructions 
is a subcode DPC whose values are given in Table 
10.9 along with the mnemonic that corresponds to 
each. 



intJ i860™ XP MICROPROCESSOR 

313029282726. '2524232221 '2019181716 1514131211 10 9 B 7 6 5 ., .; 2 1 0 

10 1 o 0 1 01 SRC2 DEST SRCl Ip D S R OPCODE ~ 
240874-80 

SRC1, SRC2 Source; one of 32 floating-point registers 
OEST Destination; one of 32 floating-point registers (except fxfr; one of 32 integer registers) 

P Pipelining 
1 Pipelined instruction mode 
o Scalar instruction mode 

o Dual-Instruction Mode 
1 Dual-instruction mode 
o Single-instruction mode 

S Source Precision 
1 Double-precision source operands 
o Single-precision source operands 

R Result Precision 
1 Double-precision result 
o Single-precision result 

Figure 10.4. Floating-Point Instruction Encoding 

Table 10.7. Floating-Point Opcodes 
6 5 4 

pfam Add and Multiply' 
0 pfmam Multiply with Add' 

pfsm Subtract and Multiply' 
0 pfmsm Multiply with Subtract' 

(p)fmul Multiply 0 
fmlow Multiply Low 0 
frcp Reciprocal 0 
frsqr Reciprocal Square Root 0 
pfmul3.dd 3-Stage Pipelined Multiply 0 

(p)fadd Add 0 
(p)fsub Subtract 0 
(p)fix Fix 0 
(p)famov Adder Move 0 
pfgt/pfle' , Greater Than 0 
pfeq Equal 0 
(p)ftrunc Truncate 0 

fxfr Transfer to Integer Register 1 
(p)fiadd Long-Integer Add 1 
(p)fisub Long-Integer Subtract 1 

(p)fzchkl Z-Check Long 1 
(p)fzchks Z-Check Short 1 
(p)faddp Add with Pixel Merge 1 
(p)faddz Add with Z Merge 1 
(p)form OR with MERGE Register 1 

NOTE: 
All opcodes not shown are reserved . 
• pfam and pfsm have P-bit set; pfmam and pfmsm have P-bit clear. 
,. pfgt has R bit cleared; pfle has R bit set. 
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0 0 

0 1 

1 0 
1 0 
1 0 
1 0 
1 0 

1 1 
1 1 
1 1 
1 1 
1 1 
1 1 
1 1 

0 0 
0 0 
0 0 

0 1 
0 1 
0 1 
0 1 
0 1 

3 2 

OPC 

OPC 

0 0 0 
0 0 0 
0 0 1 
0 0 1 
0 1 0 

0 0 0 
0 0 0 
0 0 1 
0 0 1 
0 1 0 
0 1 0 
1 0 1 

0 0 0 
1 0 0 
1 1 0 

0 1 1 
1 1 1 
0 0 0 
0 0 0 
1 0 1 

o 

0 
1 
0 
1 
0 

0 
1 
0 
1 
0 
1 
0 

0 
1 
1 

1 
1 
0 
1 
0 
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Table 10.8. ope Encoding 

ope PFAM PFSM M-Unit M-Unit A-Unit A-Unit T K 
Mnemonic Mnemonic 01 op2 op1 op2 Load Load' 

0000 r2p1 r2s1 KR src2 src1 M result No No 
0001 r2pt r2st KR src2 T M result No Yes 
0010 r2ap1 r2as1 KR src2 src1 A result Yes No 
0011 r2apt r2ast KR src2 T A result Yes Yes 

0100 i2p1 i2s1 KI src2 src1 M result No No 
0101 i2pt i2st KI src2 T M result No Yes 
0110 i2ap1 i2as1 KI src2 src1 A result Yes No 
0111 i2apt i2ast KI src2 T A result Yes Yes 

1000 rat1p2 rat1 s2 KR A result src1 src2 Yes No 
1001 m12apm m12asm src1 src2 A result M result No No 
1010 ra1p2 ra2s2 KR A result src1 src2 No No 
1011 m12ttpa m12ttsa src1 src2 T A result Yes No 

1100 iat1p2 iat1 s2 KI A result src1 src2 Yes No 
1101 m12tpm m12tsm src1 src2 T M result No No 
1110 ia1p2 ia1s2 KI A result src1 src2 No No 
1111 m12tpa m12tsa src1 src2 T A result No No 

ope PFMAM PFMSM M-Unit M-Unit A-Unit A-Unit T K 
Mnemonic Mnemonic op1 op2 op1 op2 Load Load" 

0000 mr2p1 mr2s1 KR src2 src1 M result No No 
0001 mr2pt mr2st KR src2 T M result No Yes 
0010 mr2mp1 mr2ms1 KR src2 src1 M result Yes No 
0011 mr2mpt mr2mst KR src2 T M result Yes Yes 

0100 mi2p1 mi2s1 KI src2 src1 M result No No 
0101 mi2pt mi2st KI src2 T M result No Yes 
0110 mi2mp1 mi2ms1 KI src2 src1 M result Yes No 
0111 mi2mpt mi2mst KI src2 T M result Yes Yes 

1000 mrmt1p2 mrmt1s2 KR M result src1 src2 Yes No 
1001 mm12mpm mm12msm src1 src2 M result M result No No 
1010 mrm1p2 mrm1s2 KR M result src1 src2 No No 
1011 mm12ttpm mm12ttsm src1 src2 T M result Yes No 

1100 mimt1p2 mimt1s2 KI M result src1 src2 Yes No 
1101 mm12tpm mm12tsm src1 src2 T M result No No 
1110 mim1p2 mim1s2 KI M result src1 src2 No No 

1111 Intel Reserved 

NOTE: 
• If K-Ioad is set, KR is loaded when operand-1 of the multiplier is KR; KI is loaded when operand-1 of the multiplier is KI. 
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10.3 Instruction Timings 

Generally, i860 XP microprocessor instructions take 
one clock to execute unless a freeze condition is 
invoked. Detailed times, along with freeze conditions 
and their associated delays, are shown in the table 
on the following pages. The following symbols are 
used for brevity in the timing table: 

+ n n clocks must be added to the execution 
time if the stated conditions apply. 

~ n The processor requires at least n clocks be­
tween the indicated instructions. The actual 
delay will be n minus the number of clocks 
for executing intervening instructions (or 
dual-mode pairs). If the time for intervening 
instructions is ~ n, there is no delay. 

n_.m Indicates a range of clocks. These cases 
are accompanied by a reference to a note 
where further explanation is available. 

XR: 

XP: 

OA 

R1 

R2 

RL 

RL1 

RN 

RX 

Applies to i860 XR microprocessors only. 

Applies to i860 XP microprocessors only. 

The number of clocks to finish all outstand­
ing accesses. 

The number of clocks from ADS# through 
the first READY # (80860XR) or BRDY # 
(80860XP) of the indicated bus activity. 

The number of clocks from ADS# through 
the second READY# or BRDY#. 

The number of clocks from ADS# through 
the last READY # or BRDY #. 

XL: The number of clocks through last 
BRDY # of first access. 

XR: The number of clocks until next nonre­
peated address can be issued (Le., an ad­
dress that is not the 2nd-4th cycle of a 
cache fill, the 2nd-8th cycle of a CS8 mode 
instruction fetch, nor the 2nd cycle of a 128-
bit write). 

The number of clocks through READY # or 
BRDY # for the next 64-bit-or-less write cy­
cle or second READY # or BRDY # for the 
next 128-bit write cycle. 

NOTES: 

a. "Address path full" means one address inter­
nally waiting for bus while external bus pipeline 
full. 
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b. "Store path full" means two stores or one 256-
bit write-back internally waiting for bus plus ex­
ternal bus pipeline full. 

c. If a floating-point instruction, graphics-unit in­
struction, fst, or pst is executed when a scalar 
floating-point operation (other than frcp or 
frsqr) is in progress, the scalar operation must 
complete first: two additional clocks for fadd, 
fix, fmlow, fmul.ss, fmul.sd, ftrunc, and 
fsub; three additional clocks for fmul.dd. Add 
one if either or both of these situations occur: 

1. There is an overlap between the result reg­
ister of the previous scalar operation and 
the source of the floating-point operation, 
and the destination precision of the scalar 
operation differs from the source precision 
of the floating-paint operation. 

2. The floating-point operation is pipelined 
and its destination is not to. 

TLB TLB miss. Five clocks plus the number of 
clocks to finish two reads plus the number of 
clocks to set A-bits (if necessary). 

In addition, any instruction may be delayed due to an 
instruction cache miss or TLB miss during the in­
struction fetch. The time for a TLB miss is shown 
above in note TLB. An instruction cache miss adds 
the following delays: 

• The number of clocks to get the next instruction 
from the bus (ADS# clock to first READY# or 
BRDY # clock, inclusive). 

• XR: When any of the instructions in the new in­
struction-cache line is a branch or call or causes 
a freeze, the time through the last READY # for 
the new line. 

• If the data cache is being accessed when the in­
struction-cache miss occurs, two clocks for data 
cache miss; one clock for hit. 

Not included in the table is the delay caused by a 
trap. This depends on the trap handler. 

In dual instruction mode, each pair of instructions 
requires the maximum of the times required by each 
individual instruction. 
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Instruction 

adds 

addu 

and 

andh 

andnot 

andnoth 

bc 

bc.t 

bla 

bnc 

bnc.t 

br 

brl 

bte 

btne 

call 

calli 

fadd.p 

Execution 
Clocks 

1 
2 

i860™ XP MICROPROCESSOR 

If branch not taken. 
If branch taken. 

Condition 

+ If the prior instruction is addu, adds, subu, subs, pfeq, or pfgt. 

1 
2 

If branch taken. 
If branch not taken. 

+ 1 If the prior instruction is addu, adds, subu, subs, pfeq, or pfgt. 

1 
2 

2 

3 

+1 
+1 +R1 
+1 +R2 

2 
+1 

+1 +R1 
+1 +R2 

-2 .. 4 

If branch taken. 
If branch not taken. 

(same as bc) 

(same as bc.t) 

If branch not taken. 
If branch taken. 

(same as bte) 

If r1 referenced in next instruction. 
If data cache load miss in progress for a read of less than 128 bits. 
If data cache load miss in progress for 128-bit read. 

If r1 referenced in next instruction. 
If data cache load miss in progress for a read of less than 128 bits. 
If data cache load miss in progress for 128-bit read. 

( ... and all other A-unit instructions except dual operations) 
If executed when a scalar floating-point operation (other than frcp 
or frsqr) is in progress.(el 
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Instruction Execution 
Clocks 

Condition 

faddp 

faddz 

famov.r 

fiadd.w 

fisub.w 

fix.v 

fld_y 

flush 

fmlow.dd 

fmov.r 

fmul.p 

( ... and all other G-unit instructions except fiadd.w, fxfr) 
+ 1 If Idest is used by next instruction and next instruction is G-, M- or A-unit instruction 

- 2 . .4 If executed when a scalar floating-point operation (other than frcp or frsqr) is in 
progress'(c) 

(same as faddp) 

(same as fadd.p) 

+1 

+1 
-2 . .4 

+1 
-2 

+1 +R1 
+1 +R2 
+1 +RL 
-2 

+2 
+R2 
+RN 

+RL1 
+TLB 

If Idesf is used by next instruction and next instruction is M- or A-unit instruction 
(except when fiadd is used for fmov.dd or fmov.ss). 
If fdesf is used by next instruction and next instruction is G-unit instruction. 
If executed when a scalar floating-point operation (other than frcp or frsqr) is in 
progress.(c) 

(same as faddp) 

(same as fadd.p) 

If this is the instruction after a st, fst or pst that hits the data cache. 
If Idest is referenced in the next two instructions. 
If 32-bit fld.l or 64-bit fld.d misses the data cache. 
If 128-bit fld.q misses the data cache. 
If data cache load miss in progress (except in the following case). 
XP: If this instruction follows a data cache access that misses in the virtual tags but 
hits in the physical tags. 
XP: If the prior instruction is a pfld.y that hits a modified line in the data cache. 
XP: If data-cache line write-back due to snoop is in progress. 
XR: If address path fuli.<a) 
XP: If address path full,(a) 
IfTLB miss. 

- 3 XR: If preceded by another flush. 
- 2 XP: If preceded by another flush. 

+ R2 XP: If data-cache line write-back due to snoop is in progress. 
+ 1 + RX If flush to modified line when store path full,(b) 

+ TLB If TLB miss. 

( ... and all other M-unit instruction except dual operations) 
+ 1 If Isrc1 refers to result of the prior operation (either scalar or pipelined). 
+ 1 If the prior operation is a double-precision multiply. 

- 2 .. 4 If executed when a scalar floating-point operation (other than frcp or frsqr) is in 
progress.(c) 

fmov.ss and fmov.dd same as fiadd.w 
fmov.sd and fmov.ds same as fadd.p 

(same as fmlow.dd) 
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fnop 

form 

frcp.p 

frsqr.p 

fst.y 

fsub.p 

ftrunc.v 

fxfr 

Execution 
Clocks 

i860TM XP MICROPROCESSOR 

Condition 

(same as faddp) 

(same as fmlow.dd) 

(same as fmlow.dd) 

+1 

+1 +RL 
+2 

~2 

+R2 
~2 . .4 

+RN 
+RL1 

+1+RX 
+TLB 

If followed by pipelined floating-point operation that overwrites the register 
being stored. 
If data cache load miss in progress. 
XP: If the prior instruction is a pfld.y that hits a modified line in the data cache. 
XP: If this instruction follows a data cache access that misses in the virtual 
tags but hits in the physical tags. 
XP: If data-cache line write-back due to snoop is in progress. 
If executed when a scalar floating-point operation (other than frcp or frsqr) is 
in progress.(c) 
XR: If address path lull.(a) 
XP: If address path fulUa) 
II cache miss when store path full.(b) 
IfTLB miss. 

(same as fadd.p) 

(same as fadd.p) 

+ 1 II idest referenced in next instruction. 
+ 1 + R1 If data cache load miss in progress for 64-bit read. 
+ 1 + R2 II data cache load miss in progress for 128-bit read. 
~ 2 . .4 If executed when a scalar floating-point operation (other than frcp or frsqr) is 

in progress. (c) 

fzchkl (same as faddp) 

fzchks (same as faddp) 

intovr 

ixfr 

Id.c 

1 
+1 +R1 
+1 +R2 
~2 

+1 
+1 +R1 
+1 +R2 

If data cache load miss in progress for 64-bit read. 
If data cache load miss in progress for 128-bit read. 
If {dest is referenced in the next two instructions. 

If idest referenced in next instruction. 
If data cache load miss in progress for 64-bit read. 
If data cache load miss in progress for 128-bit read. 
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Id.x 

Idint.x 

Idio.x 

lock 

mov 

nop 

or 

orh 

pfadd.p 

pfaddp 

pfaddz 

pfam.p 

pfamov.r 

pfeq.p 

pfgt.p 

pfiadd.w 

pfisub.w 

pfix.v 

Execution 
Clocks 

+1 
+1 

+1 +RL 
+--+1+R1 

+--+ 2 

+2 
+R2 
+RN 

+RL1 
+1+RX 

+TLB 

i860™ XP MICROPROCESSOR 

Condition 

If ides! referenced in next instruction. 
If this is the instruction after a st, fst or pst that hits the data cache. 
If data cache load miss in progress. 
If Id.x misses the data cache and a subsequent instruction references the 
ides! of the Id.x (except for following case). 
XP: If this instruction follows a data cache access that misses in the virtual 
tags but hits in the physical tags. 
XP: If the prior instruction is a pfld.y that hits a modified line in the data cache. 
XP: If data-cache line write-back due to snoop is in progress. 
XR: If address path fulL<a) 
XP: If address path fulL<a) 
If cache miss when store path full.(b) 
IfTLB miss. 

+ OA 

+ OA 

(same as fadd.p) 

(same as faddp) 

(same as faddp) 

( ... and all other dual operations) 
+ 1 If {srel refers to result of the prior operation (either scalar or pipelined). 
+ 1 If the prior operation is a double-precision multiply. 

+--+ 2 . .4 If executed when a scalar floating-point operation (other than frcp or frsqr) is 
in progress'(c) 

(same as fadd.p) 

(same as fadd.p) 

(same as fadd.p) 

(same as faddp) 

(same as faddp) 

(same as fadd.p) 
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pfld.y 

pfle.p 

pfmam.p 

pfmov.r 

pfmsm.p 

pfmul.p 

pfmul3.dd 

pform 

pfsm.p 

pfsub.p 

pftrunc.v 

pfzchkl 

pfzehks 

pst.d 

seye.x 

shl 

shr 

shra 

shrd 

st.e 

Execution 
Clocks 

1 
+1 +RL 
~2 

+ 1 +RL1 
+2+0A 

+2 

~2 

+R2 
+RN 

+RL1 
+TLB 

+ OA 

3 
+1 +R1 
+1 +R2 

i860™ XP MICROPROCESSOR 

Condition 

If data cache load miss in progress. 
If (dest is referenced in the next two instructions. 
If three pfld's are outstanding. 
XR: If pfld hits data cache. 
XP: If the prior instruction is a pfld.y that hits a modified line in the 
data cache. 
XP: If this instruction follows a data cache access that misses in 
the virtual tags but hits in the physical tags. 
XP: If data-cache line write-back due to snoop is in progress. 
XR: If address path fullJa) 
XP: If address path fulUa) 
IfTLB miss. 

(same as pfam.p) 

pfmov.ss and pfmov.dd same as faddp 
pfmov.sd and pfmov.ds same as fadd.p 

(same as pfam.dd) 

(same as fmlow.dd) 

(same as fmlow.dd) 

(same as faddp) 

(same as pfam.dd) 

(same as fadd.p) 

(same as fadd.p) 

(same as faddp) 

(same as faddp) 

(same as fst.d) 

If data cache load miss in progress for a read of less than 128 bits. 
If data cache load miss in progress for 128-bit read. 
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Instruction Execution 
Clocks 

Condition 

st.x 1 
+1 +RL If data cache load miss in progress. 

+2 
~2 

XP: If the prior instruction is a pfld.y that hits a modified line in the data cache. 
XP: If this instruction follows a data cache access that misses in the virtual 
tags but hits in the physical tags. 

+R2 
+RN 

XP: If data-cache line write-back due to snoop is in progress. 
XR: If address path fulUa) 

+RL1 XP: If address path fullJa) 
+1+RX 

+TLB 
If cache miss when store path fulUb) 
IfTLB miss. 

stio.x 1 + OA 

subs 

subu 

trap 

unlock 

xor 

xorh 

10.4 Instruction Characteristics 

The following table lists some of the characterisics 
of each instruction. The characteristics are: 

• What processing unit executes the instruction. 
The codes for processing units are: 

A Floating-point adder unit 
E Core execution unit 
G Graphics unit 
M Floating-point multiplier unit 

• Whether the instruction is pipelined or not. A P 
indicates that the instruction is pipelined. 

• Whether the instruction is a delayed branch in­
struction. A D marks the delayed branches. 

• Whether execution is suppressed in user mode. 
An SU marks supervisor-only instructions. 

• Whether the instruction is available on both the 
i860 XR and i860 XP microprocessors. An XL 
marks instructions that are available only on the 
i860 XP microprocessor. 

• Whether the instruction changes the condition 
code CC. A CC marks those instructions that 
change CC. 

• Which faults can be caused by the instruction. 
The codes used for exceptions are: 

IT Instruction Fault 

SE Floating-Point Source Exception 
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RE Floating-Point Result Exception, including 
overflow, underflow, inexact result 

OAT Data Access Fault 

Note that this is not the same as specifying at which 
instructions faults may be reported. A result excep­
tion is reported on the subsequent floating-point in­
struction, pst, fst, or sometimes fld, pfld, and ixfr. 

The instruction access fault IAT and the interrupt 
trap IN are not shown in the table because they can 
occur for any instruction. 

• Performance notes. These comments regarding 
optimum performance are recommendations only. 
If these recommendations are not followed, the 
i860 XP microprocessor automatically waits the 
necessary number of clocks to satisfy internal 
hardware requirements. The following notes de­
fine the numeric codes that appear in the instruc­
tion table: 

1. The following instruction should not be a condi­
tional branch (bc, bnc, bc.t, or bnc.t). 

2. The destination should not be a source oper­
and of the next two instructions. 

3. A load should not directly follow a store that is 
expected to hit in the data cache. 

4. When the prior instruction is scalar, {src1 
should not be the same as the {dest of the prior 
operation. 
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5. The fdest should not reference the destination 
of the next instruction if that instruction is a 
pipelined floating-point operation. 

6. The destination should not be a source oper­
and of the next instruction. (For call and calli, 
the destination is r1.) 

7. When the prior operation is scalar and multipli­
er op1 is fsrc1, fsrc2 should not be the same as 
the Idest of the prior operation. 

8. When the prior operation is scalar, src1 and 
src2 of the current operation should not be the 
same as dest of the prior operation. 

9. A pfld should not immediately follow a pfld 

• Programming restrictions. These indicate combi­
nations of conditions that must be avoided by pro­
grammers, assemblers, and compilers. The fol­
lowing notes define the alphabetic codes that 
appear in the instruction table: 

Pipelined? 
Execution Delayed? 

Instruction Unit Supervisor? 
i860TM XP Only? 

adds E 
addu E 
and E 
andh E 
andnot E 

andnoth E 
bc E 
bc.t E D 
bla E D 
bnc E 

bnc.t E D 
br E D 
bri E D 
bte E 
btne E 

call E D 
calli E D 
fadd.p A 
faddp G 
faddz G 

famov.r A 
fiadd.w G 
fisub.w G 

fix.p A 
fld.y E 

NOTES: 

Sets 
CC? 

CC 
CC 
CC 
CC 
CC 

CC 

a. The sequential instruction following a delayed 
control-transfer instruction may not be another 
control-transfer instruction, nor a trap instruc­
tion, nor the target of a control-transfer instruc­
tion. 

b. When using a bri to return from a trap handler, 
programmers should take care to prevent traps 
from occurring on that or on the next sequen­
tial instruction. 1M should be zero (interrupts 
disabled) when the bri is executed. 

c. If Idest is not zero, Isrc1 must not be the same 
as Idest. 

d. When fsrc1 goes to multiplier op1 or to KR or 
KI, Isrc1 must not be the same as Idest. 

e. If dest is not zero, src1 and src2 must not be 
the same as dest. 

f. /src1 must not be the same register as isrc2for 
the autoincrementing form of this instruction. 

g. /src1 must not be the same register as isrc2. 

Performance Programming 
Faults Notes Restrictions 

1 
1 

a 
a,g 

a 
a 

a,b 

6 a 
6 a 

SE,RE 
8 
8 

SE,RE 
8 
8 

SE,RE 
DAT 2,3 f 

• On the i860 XP microprocessor, the pipolinocJ instructions can generate ITR with PI . 
•• On the i860 XP micropocessor, the 128·bit pfld.q is not available. If used it causes an instruction trap. 
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Pipelined? 

Instruction 
Execution Delayed? Sets Performance Programming 

Unit Supervisor? CC? Faults Notes Restrictins 
i860™ XP Only? 

flush E 
fmlow.dd M 4 
fmul.p M SE,RE 4 
form G 8 
frcp.p M SE,RE 

frsqr.p M SE,RE 
fst.y E OAT 5 f 
fsub.p A SE,RE 
ftrunc.p A SE,RE 
fxfr G 6,8 

fzchkl G 8 
fzchks G 8 
Intovr E IT 
ixfr E 2 
Id.c E 

Id.x E OAT 6 
Idint.x E SU,XL OAT 
Idio.x E SU,XL OAT 
lock E 
or E CC 
orh E CC 

pfadd.p A P SE,RE* 
pfaddp G P * 8 e 
pfaddz G P * 8 e 
pfam.p A&M P SE,RE* 7 d 
pfamov.r A P SE,RE* 

pfeq.p A P CC SE* 1 
pfgt.p A P CC SE* 1 
pfiadd.w G P * 8 e 
pfisub.w G P * 8 e 
pfix.p A P SE,RE* 

pfld.y E P,(XL)** OAT' 2,9 f 
pfmam.p A&M P SE,RE* 7 d 
pfmsm.p A&M P SE,RE* 7 d 
pfmul.p M P SE,RE* 4 c 
pfmul3.dd M P SE,RE* 4 c 

pform G P * 8 e 
pfsm.p A&M P SE,RE* 7 d 
pfsub.p A P SE,RE* 
pftrunc.p A P SE,RE* 
pfzchkl G P * 8 

NOTES: 
• On the i860 XP microprocessor, the pipelined instructions can generate ITR with PI. 
•• On the i860 XP micropocessor, the 128-bit pfld.q is not available. If used it causes an instruction trap. 
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Pipelined? 

Instruction 
Execution Delayed? Sets Performance Programming 

Unit Supervisor? CC? Faults Notes Restrictions 
i860™ XP Only? 

pfzchks G P * 8 
pst.d E OAT 5 f 
scyc.x E SU,XL OAT 
shl E 
shr E 

shra E 
shrd E 
st.c E 
st.x E OAT 
stio.x E SU,XL OAT 

subs E CC 1 
subu E CC 1 
trap E IT 
unlock E 
xor E CC 
xorh E CC 

NOTES: 
.:On the i860 XP microprocessor, the pipelined instructions can generate ITR with PI. 

On the 1860 XP mlcropocessor, the 128-bit pfld.q is not available. If used it causes an instruction trap. 

10.5 Software Compatibility 

10.5.1 REQUIRED CHANGES 

To port existing systems software from the i860 XR 
micro~rocessor to the i860 XP microprocessor, the 
follOWing changes may be required. Applications 
software does not require changes. 

1. Data cache flush. All four ways of the data cache 
must be flushed on the i860 XP microprocessor. 
The cache flush routine can be modified to check 
processor type in epsr or the OCS field of 
dirbase and flush the appropriate number of 
ways. 

2. Parity and bus error traps. If the i860 XP system 
signals these errors, the trap handler must be ex­
tended to handle them. Software must avoid test­
ing the BEF and PEF bits unless executing on the 
i860 XP microprocessor. 

3. LOCK # deactivation. On the i860 XP microproc­
essor, traps do not automatically deactivate the 
LOCK # signal, so the trap handler must do a 
data access to deactivate LOCK #. Trap handlers 
that already access data soon after invocation do 
not require this modification. 

4. Load pipe precision. The precision of the last 
stage of the load pipeline is specified by the LRP 
bit on the i860 XR microprocessor but by the 
LRPO and LRP1 bits on the i860 XP microproces-
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sor. The procedure that restores the load pipe 
must check the processor type, use the appropri­
ate blts~ and restore the correct precision. Pipe 
restoration code for the i860 XR microprocessor 
will work correctly on the i860 XP microprocessor 
if pfld.q is not used. 

5. Pre-accessed trap handler pages. Page-directory 
and page-table entries for the instruction pages 
of the trap handler and for the first data page 
accessed by the trap handler must always have 
A.= 1. Software modified to allocate page tables 
thiS way works on both i860 XR and i860 XP mi­
croprocessors. 

6. Page directory entry bit 7 must be zero. This is 
t~e bit that selects four Mbyte or four Kbyte page 
size. On the 1860 XR microprocessor, it is re­
served and should be set to zero. It must be set 
to zero for four Kbyte pages to work on the 
i860 XP microprocessor. 

10.5.2 PERFORMANCE OPTIMIZATIONS 

Software developers may wish to make the following 
performance enhancements in systems software for 
the i860 XP microprocessor. Systems software that 
must execute on both i860 XP and i860 XR systems 
~an contain code both with and without the optimiza­
~Ions. B.y testing the processor type, the appropriate 
Instruction path can be determined. 
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1. Data cache flush. On the i860 XP microproces­
sor, a complete flushing of the data cache is not 
needed when changing context or marking a 
page not present. 

2. The epsr bits AI, 01, PI, and PT can be used on 
the i860 XP microprocessor to make trap han­
dlers more efficient. 

3. Four-Mbyte pages can be allocated to frame buff­
ers and the operating-system kernel, thereby re­
ducing the cost of TLB misses. 

10.5.3 NEW FEATURES 

Software that uses the new features available only 
on the i860 XP microprocessor will not be compati­
ble with the i860 XR microprocessor unless alter­
nate instruction paths are provided. 

Systems software features: 

1. New instructions Idio, stio, Idint, and scyc. 

2. Four-Mbyte pages. 
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3. Privileged Registers pO, p1, p2, and p3. 

4. Concurrency control unit. 

5. 128-bit load instruction pfld.q. 

6. Support for virtual address aliases. 

Applications software features: 

1. Concurrency control unit. 

2. 128-bit load instruction pfld.q. The i860 XR mi­
croprocessor traps on pfld.q; therefore, software 
has the opportunity to emulate a pfld.q with two 
pfld.d instructions. However, this strategy does 
not yield optimal performance on the i860 XR mi­
croprocessor. 

10.5.4 NOTES 

On the i860 XP microprocessor, pages with WT = 
are cached with the write-through policy; whereas, 
on the i860 XR microprocessor, they are not cached 
at all. Because this change in the function of WT 
was anticipated in the i860 XR microprocessor docu­
mentation, no incompatibility should arise. 
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8-bit pixel 

data type, 2.1.4 

16-bit pixel 

data type, 2.1.4 

16-bit values 

alignment requirements, 2.3 

32-bit binary floating-point 

single-precision real, 2.1.3 

32-bit integer 

data type, 2.1.1 

32-bit ordinal 

data type, 2.1.2 

32-bit pixel 

data type, 2.1.4 

32-bit values 

alignment requirements, 2.3 

54-bit binary floating-point 

double-precision real, 2.1.3 

floating-point register file, 2.2.2 

54-bit integer 

data type, 2.1.1 

floating-point register file, 2.2.2 

64-bit values 

alignment requirements, 2.3 

128-bit load and store instructions 

floating-point register file, 2.2.2 

128-bit values 

alignment requirements, 2.3 

82495XP/82490XP cache 

BRDY # (burst ready), 4.2.7 

external secondary cache, 1.0 

write-once policy, 3.2.4.2 

A31-A3 (address pins) 

signal description, 4.2.1 

A (accessed) 

page-table entries (PTEs), 2.4.4.5 
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AA 

fsr U-bit (update bit), 2.2.8 

access rights 

address translation caches, 3.1 

A.C. characteristics 

electrical data, 9.3 

addressing 

i860 XP microprocessor, 2.3 

modes, 2.7 

address space 

consistency, 3.3.1 

address translation 

algorithm, 2.4.5 

caches, 3.1 

faults, 2.4.6 

P (present) bit, 2.4.4.2 

virtual addressing, 2.4 

adds (Add Signed) 

epsr OF (overflow flag), 2.2.4 

instruction definition, 10.1 

instruction timing, 10.3 

addu (Add Unsigned) 

epsr OF (overflow flag), 2.2.4 

instruction definition, 10.1 

instruction timing, 10.3 

ADS # (address status) 

AE 

AHOLD (address hold), 4.2.3 

signal description, 4.2.2 

fsr U-bit (update bit), 2.2.8 

AHOLD (address hold) 

bus arbitration, 5.2 

signal description, 4.2.3 

algorithm 

address translation, 2.4.5 

cache replacement, 3.2.3 

aliasing 

instruction cache, 3.2.2 

internal instruction and data caches, 3.2 
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alignment 

requirements, 2.3 

andh (Logical AND High) 

instruction definition, 10.1 

instruction timing, 10.3 

and (Logical AND) 

instruction definition, 10.1 

instruction timing, 10.3 

andnoth (Logical AND NOT High) 

instruction definition, 10.1 

instruction timing, 10.3 

andnot (Logical AND NOT) 

instruction definition, 10.1 

instruction timing, 10.3 

ANSI/IEEE Standard, 754 to 1985, 1.0 

AO 

fsr U-bit (update bit), 2.2.8 

arbitration 

bus operation, 5.2 

HOLD and HLDA, 5.2.1 

ATE (address translation enable) 

address translation, 2.4 

dirbase format description, 2.2.6 

AU 

fsr U-bit (update bit), 2.2.8 

B 

back-off 

bus cycle, 5.2.2 

late modes, 5.2.2.3 

one-clock late mode, 5.2.2.4 

two-clock late mode, 5.2.2.5 

bc (Branch on CC) 

instruction definition, 10.1 

instruction timing, 10.3 

bc.t (Branch on CC, Taken) 

instruction definition, 10.1 

instruction timing, 10.3 
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BE7#-BEO# (byte enables) 

signal description, 4.2.4 

bear (bus error address register) 

format description, 2.2.10 

BE (big endian) 

data cache, 3.2.1 

epsr format description, 2.2.4 

BEF (bus error flag) 

epsr format description, 2.2.4 

BEn# 

BE7 # - BEO # (byte enables), 4.2.4 

BERR (bus error) 

bear (bus error address register), 2.2.10 

bus error trap, 2.8.7 

epsr BEF (bus error flag), 2.2.4 

psr 1M (interupt mode), 2.2.3 

signal description, 4.2.5 

big endian mode 

addressing, 2.3 

bla (Branch on LCC and Add) 

epsr AI (trap on autoincrement instruction), 2.2.4 

instruction definition, 10.1 

instruction timing, 10.3 

BL (bus lock) 

dirbase format description, 2.2.6 

bnc (Branch on Not CC) 

instruction definition, 10.1 

instruction timing, 10.3 

bnc.t (Branch on Not CC, Taken) 

instruction definition, 10.1 

instruction timing, 10.3 

BOFF # (back-off) 

ADS# (address status), 4.2.2 

BERR (bus error), 4.2.5 

bus arbitration, 5.2 

dirbase LB (late back·off mode), 2.2.6 

FLiNE # choice, 5.3.5.1 

signal description, 4.2.6 
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boundary scan 

register cell ordering, 6.5 

BPR (bypass register) 

test, 6.2 

br (Branch Direct Unconditionally) 

instruction definition, 10.1 

instruction timing, 10.3 

BR (break read) 

debugging i860 XP microprocessor, 2.9 

psr format description, 2.2.3 

BRDY # (burst ready) 

bear (bus error address register), 2.2.10 

BERR (bus error), 4.2.5 

epsr IL (interlock), 2.2.4 

locked access, 3.2.4.3 

signal description, 4.2.7 

write-once policy, 3.2.4.2 

BREQ (bus request) 

signal description, 4.2.8 

bri (Branch Indirect Unconditionally) 

instruction definition, 10.1 

brl (Branch Indirect Unconditionally) 

instruction timing, 10.3 

BS (bus or parity error trap in supervisory mode) 

epsr format description, 2.2.4 

BSR (boundary scan register) 

test, 6.2 

bte (Branch If Equal) 

instruction definition, 10.1 

instruction timing, 10.3 

btne (Branch If Not Equal) 

instruction timing, 10.3 

burst cycles 

bus cycle, 5.1.2 

bus arbitration 

bus operation, 5.2 

bus and cache control unit 

function of, 1.0 

141 

bus cycles 

back-off and restart, 5.2.2 

bus operation, 5.1 

type output pins, 4.1 

bus errors 

bear (bus error address register), 2.2.10 

trap, 2.8.7 

bus operation 

i860 XP microprocessor, 5.0 

BW (break write) 

debugging i860 XP microprocessor, 2.9 

psr format description, 2.2.3 

BYPASS# (bypass) 

C 

signal description, 4.2.9 

TAP encoding, 6.3 

CACHE# (cacheability) 

BE7#-BEO# (byte enables), 4.2.4 

signal description, 4.2.10 

cache 

address translation, 3.1 

consistency protocol, 3.2.4 

external secondary, 1.0 

inquiry cycles (snooping), 5.3 

internal instruction and data, 3.2 

invalidating entries, 3.3 

on-chip, 3.0 

replacement algorithm, 3.2.3 

cacheability 

address translation caches, 3.1 

consistency, 3.3.4 

calli (Indirect Subroutine Call) 

instruction definition, 10.1 

instruction timing, 10.3 

call (Subroutine Call) 

instruction definition, 10.1 

instruction timing, 10.3 

capture-DR 

test state, 6.4.5 
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capture-IR 

test state, 6.4.11 

CC (condition code) 

psr format description, 2.2.3 

ccr (concurrency control register) 

OCCU initialization, 2.5.1 

format description, 2.2.12 

CCUBASE 

ccr (concurrency control register), 2.2.12 

OCCU addressing, 2.5.2 

OCCU initialization, 2.5.1 

CO (cache disable) 

bypassing instruction and data cache, 3.3 

page-table entries (PTEs), 2.4.4.5 

ClK (clock) 

signal description, 4.2.11 

co (CCU on) 

ccr (concurrency control register), 2.2.12 

color intensity shading 

pixel formats, 2.1.4 

compatibility 

pipelined cycles, 5.1.3 

software changes, 10.5.1 

concurrency control unit (CCU) 

ccr (concurrency control register), 2.2.12 

detached CCU, 2.5 

NEWCURR register, 2.2.13 

consistency 

address space, 3.3.1 

cacheability, 3.3.4 

instruction cache, 3.3.2 

internal cache, 3.3 

load pipe, 3.3.5 

page table, 3.3.3 

protocol, 3.2.4 

write-once policy, 3.2.4.2 

control registers 

register set, 2.2 
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copy-back policy 

data cache update, 3.2.1.1 

core execution unit 

function of, 1.0 

CS8 (code size 8-bit) 

BE7#-BEO# (byte enables), 4.2.4 

dirbase format description, 2.2.6 

CTRl-format 

instructions, 10.2.2 

CTYP (cycle type) 

signal description, 4.2.12 

cycles 

D 

back-off, 5.2.2.1 

burst cycles, 5.1.2 

interrupt acknowledge, 5.1.4 

pipelined, 5.1.3 

restart, 5.2.2.2 

special bus, 5.1.5 

063-00 (data pins) 

signal description, 4.2.14 

data access 

fault, 2.8.5 

data cache 

bypassing, 3.3 

flushing, 3.3 

function of, 1.0 

operation, 3.2 

organization, 3.2.1 

states, 3.2.4.1 

update policies, 3.2.1.1 

data types 

i860 XP microprocessor, 2.1 

OAT (data access trap) 

debugging i860 XP microprocessor, 2.9 

psr format description, 2.2.3 
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db (data breakpoint register) 

debugging i860 XP microprocessor, 2.9 

format description, 2.2.5 

psr BR (break read) and BW (break write), 2.2.3 

Obit 

dual-instruction mode, 2.6.2 

D/C# (data/code) 

signal description, 4.2.13 

D.C. characteristics 

electrical data, 9.2 

DCCU (detached concurrency control unit) 

addressing, 2.5.2 

ccr (concurrency control register), 2.2.12 

function of, 1.0 

initialization, 2.5.1 

internals, 2.5.3 

DCS (data cache size) 

epsr format description, 2.2.4 

o (dirty) 

page-table entries (PTEs), 2.4.4.6 

debugging 

i860 XP microprocessor, 2.9 

deferred-write policy 

data cache update, 3.2.1.1 

denormal 

special floating-point values, 2.1.3 

Detached 

STAT register description, 2.2.14 

detached CCU 

i860 XP microprocessor, 2.5 

d.fnop 

dual-instruction mode, 2.6.2 

DID (device identification register) 

test, 6.2 

DIR 

virtual address, 2.4.2 
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dirbase (directory base register) 

address space consistency, 3.3.1 

cache replacement algorithm, 3.2.3 

DCCU initialization, 2.5.1 

format description, 2.2.6 

instruction cache consistency, 3.3.2 

page directory, 2.4.3 

page table consistency, 3.3.3 

P (present) bit, 2.4.4.2 

disassemblers 

big endian mode, 2.3 

01 (trap on delayed instruction) 

epsr format description, 2.2.4 

OM (dual instruction mode) 

psr format description, 2.2.3 

DO (detached only) 

ccr (concurrency control register), 2.2.12 

double-precision real 

data type, 2.1.3 

double real value 

floating-point registers, 2.1.3 

double-shift instruction 

psr SC (shift count), 2.2.3 

DP7-DPO (data parity) 

signal description, 4.2.15 

DPC (data-path control) 

dual-operation instructions, 2.6.3 

DPS (DRAM page size) 

dirbase format description, 2.2.6 

OS (delayed switch) 

psr format description, 2.2.3 

DTB (directory table base) 

dirbase format description, 2.2.6 

dual-instruction mode 

paralieliism, 2.6.2 

dual-operation instructions 

floating-point, 2.6.3 



infef i860™ XP MICROPROCESSOR 

E 

EAOS# 

AHOLO (address hold), 4.2.3 

EAOS# (external address status) 

signal description, 4.2.16 

epsr (extended processor status register) 

data cache, 3.2.1 

OCCU internals, 2.5.3 

format description, 2.2.4 

page-table entries (PTEs), 2.4.4.3 

EWBE# (external write buffer empty) 

epsr SO (strong ordering), 2.2.4 

signal description, 4.2.17 

exit1-0R 

test state, 6.4.7 

exit1-IR 

test state, 6.4.13 

exit2-0R 

test state, 6.4.9 

exit2-IR 

test state, 6.4.15 

EXTEST 

TAP encoding, 6.3 

F 

faddp (Add with Pixel Merge) 

instruction definition, 10.1 

instruction timing, 10.3 

fadd.p (Floating-Point Add) 

instruction definition, 10.1 

instruction timing, 10.3 

faddz (Add with Z Merge) 

instruction definition, 10.1 

instruction timing, 10.3 

famov.r (Floating-Point Adder Move) 

instruction definition, 10.1 

instruction timing, 10.3 
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fault 

address translation, 2.4.6 

data access, 2.8.5 

floating-point, 2.8.3 

instruction access, 2.8.4 

result exception fault, 2.8.3.1 

source exception fault, 2.8.3.1 

fiadd.w (Long-Integer Add) 

instruction definition, 10.1 

instruction timing, 10.3 

fir (fault instruction register) 

epsr 01 (trap on delayed instruction), 2.2.4 

format description, 2.2.7 

fisub.w (Long-Integer Subtract) 

instruction definition, 10.1 

instruction timing, 10.3 

fix.v (Floating-Point to Integer Conversion) 

instruction definition, 10.1 

instruction timing, 10.3 

fld.y (Floating-Point Load) 

instruction definition, 10.1 

instruction timing, 10.3 

FLlNE# (flush line) 

BOFF # choice, 5.3.5.1 

signal description, 4.2.18 

floating-point 

adder, 1.0 

control unit, 1.0 

fault, 2.8.3 

instruction encoding, 10.2.3 

multiplier, 1.0 

register file, 2.2.2 

flush (Cache Flush) 

cache replacement algorithm, 3.2.3 

dirbase RB (replacement block), 2.2.6 

flushing data cache, 3.3 

instruction definition, 10.1 

instruction timing, 10.3 

requirements summary, 3.3.6 
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fmlow.dd (Floating-Point Multiply Low) 

instruction definition, 10.1 

instruction timing, 10.3 

fmov.r (Floating-Point Reg-Reg Move) 

instruction definition, 10.1 

instruction timing, 10.3 

fmul.p (Floating-Point Multiply) 

instruction definition, 10.1 

instruction timing, 10.3 

fnop (Floating-Point No Operation) 

instruction definition, 10.1 

instruction timing, 10.3 

form (OR with MERGE Register) 

instruction definition, 10.1 

instruction timing, 10.3 

frcp.p (Floating-Point Reciprocal) 

instruction definition, 10.1 

instruction timing, 10.3 

frsqr.p (Floating-Point Reciprocal Square Root) 

instruction definition, 10.1 

instruction timing, 10.3 

fsr (floating-point status register) 

format description, 2.2.8 

pipelining status information, 2.6.1.2 

fst.y (Floating-Point Store) 

instruction definition, 10.1 

instruction timing, 10.3 

fsub.p (Floating-Point Subtract) 

instruction definition, 10.1 

instruction timing, 10.3 

FTE (floating-point trap enable) 

fsr format description, 2.2.8 
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FT (floating-point trap) 

psr format description, 2.2.3 

ftrunc.v (Floating-Point to Integer Conversion) 

instruction definition, 10.1 

instruction timing, 10.3 

fxfr (Transfer F-P to Integer Register) 

instruction definition, 10.1 

instruction timing, 10.3 

fzchkl (32-Bit Z-Buffer Check) 

instruction definition, 10.1 

instruction timing, 10.3 

fzchks (16-Bit Z-Buffer Check) 

instruction definition, 10.1 

instruction timing, 10.3 

FZ (flush zero) 

fsr format description, 2.2.8 

G 

graphics unit 

function of, 1.0 

H 

hardware interface 

i860 XP microprocessor, 4.0 

HIT # (cache inquiry hit) 

signal description, 4.2.19 

HITM# (hit modified line) 

internal cache consistency, 3.3 

signal description, 4.2.20 

HLDA (bus hold acknowledge) 

signal description, 4.2.21 

HOLD (bus hold) 

bus arbitration, 5.2 

signal description, 4.2.22 
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i860 XP microprocessor 

bus operation, 5.0 

functional description, 1.0 

hardware interface, 4.0 

instruction set, 8.0 

mechanical data, 7.0 

on-chip caches, 3.0 

programming interface, 2.0 

testability, 6.0 

IAT (instruction access trap) 

psr format description, 2.2.3 

10GOOE 

TAP encoding, 6.3 

IEEE Standard 

for Binary Floating-Point Arithmetic, 1.0 

P1149.1 106 testability, 6.0 

IL (interlock) 

epsr format description, 2.2.4 

1M (interrupt mode) 

psr format description, 2.2.3 

indefinite 

special floating-point values, 2.1.3 

inexact result 

result exception fault, 2.8.3.2 

infinity 

special floating-point values, 2.1.3 

IN (interrupt) 

psr format description, 2.2.3 

InLoop 

STAT register description, 2.2.14 

inquiry cycles 

data cache states, 3.2.4.1 

for line being cached, 5.3.2.1 

for line being replaced, 5.3.2.2 

snooping, 5.3 

write-back, 5.3.1 
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instruction 

access fault, 2.8.4 

characteristics, 10.4 

GTRL-format, 10.2.2 

definitions, 10.1 

dual-operation, 2.6.3 

encoding floating-point, 10.2.3 

fault, 2.8.2 

format and encoding, 10.2 

REG-format, 10.2.1 

timing, 10.3 

instruction cache 

bypassing, 3.3 

consistency, 3.3.2 

function of, 1.0 

operation, 3.2 

organization, 3.2.2 

instruction set 

abbreviations, 10.0 

extensions of i860 XR, 2.6 

i860 XP microprocessor, 8.0 

INT/GS8 (interrupt/code-size 8-bits) 

signal description, 4.2.24 

integer 

data type, 2.1.1 

register file, 2.2.1 

internal cache 

consistency, 3.3 

interrupt 

acknowledge cycles, 5.1.4 

i860 XP microprocessor, 2.8 

trap, 2.8.8 

INT (interrupt) 

epsr format description, 2.2.4 

intovr (Software Trap on Integer Overflow) 

instruction definition, 10.1 

instruction timing, 10.3 

INT pin 

epsr INT (interrupt), 2.2.4 

psr 1M (interrupt mode), 2.2.3 
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invalidation requirements 

summary, 3.3.6 

INV (invalidate) 

signal description, 4.2.23 

IR (instruction register) 

test, 6.3 

IRP (integer graphics) 

fsr format description, 2.2.8 

ITI (cache and TLB invalidate) 

dirbase format description, 2.2.6 

IT (instruction trap) 

psr format description, 2.2.3 

ixfr (Transfer Integer to F-P Register) 

instruction definition, 10.1 

instruction timing, 10.3 

K 

KBO, KB1 (cache block) 

signal description, 4.2.25 

KEN# (cache enable) 

KI 

BE7#-BEO# (byte enables), 4.2.4 

bypassing instruction and data cache, 3.3 

DCCU addressing, 2.5.2 

internal instruction and data caches, 3.2 

locked access, 3.2.4.3 

signal description, 4.2.26 

special purpose register description, 2.2.9 

KNF (kill next floating-point instruction) 

psr format description, 2.2.3 

KR 

special purpose register description, 2.2.9 

L 

LB (late back-off mode) 

dirbase format description, 2.2.6 

LCC (loop condition code) 

psr CC (condition code), 2.2.3 
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Id.c (Load from Control Register) 

fir (fault instruction register), 2.2.7 

instruction definition, 10.1 

instruction timing, 10.3 

Idint.x (Load Interrupt Vector) 

big endian mode, 2.3 

epsr BE (big endian), 2.2.4 

extensions of i860 XR, 2.6 

instruction definition, 10.1 

instruction timing, 10.3 

Idio.x (Load 1/0) 

big endian mode, 2.3 

ex1ensions of i860 XR, 2.6 

instruction definition, 10.1 

instruction timing, 10.3 

Idol 

flushing data cache, 3.3 

Id.x (Load Integer) 

DCCU internals, 2.5.3 

instruction definition, 10.1 

instruction timing, 10.3 

LEN (data length) 

signal description, 4.2.27 

LFBSR (linear feedback shift register) 

cache replacement algorithm, 3.2.3 

little endian mode 

addressing, 2.3 

load pipe 

consistency, 3.3.5 

LOCK # (address lock) 

A (accessed) bit, 2.4.4.6 

cycle attribute, 5.4 

dirbase BL (bus lock), 2.2.6 

signal description, 4.2.28 

lock (Begin Interlocked Sequence) 

dirbase BL (bus lock), 2.2.6 

instruction definition, 10.1 

instruction timing, 10.3 

locked access, 3.2.4.3 
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locked access 

cache consistency, 3.2.4.3 

lock instruction 

epsr IL (interlock), 2.2.4 

lock protocol 

instruction fault, 2.8.2.1 

LRPO (load pipe result precision) 

fsr format description, 2.2.8 

LRP1 (load pipe result precision) 

fsr format description, 2.2.8 

M 

MA 

fsr U-bit (update bit), 2.2.8 

mechanical data 

i860 XP microprocessor, 7.0 

MERGE 

special purpose register description, 2.2.9 

MESI 

MI 

cache consistency protocol, 3.2.4 

write cycle reordering, 5.3.3 

fsr U-bit (update bit), 2.2.8 

M/IO# (memory-liD) 

signal description, 4.2.29 

MO 

fsr U-bit (update bit), 2.2.8 

moy (Constant-to-Register Move) 

instruction definition, 10.1 

moy (Register-Register Move) 

instruction definition, 10.1 

instruction timing, 10.3 

MU 

fsr U-bit (update bit), 2.2.8 
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N 

NA# (next address request) 

locked access, 3.2.4.3 

signal description, 4.2.30 

write-once policy, 3.2.4.2 

NaN (Not a Number) 

special floating-point values, 2.1.3 

NENE# (next near) 

dirbase DPS (DRAM page size), 2.2.6 

signal description, 4.2.31 

Nested 

STAT register description, 2.2.14 

NEWCURR register 

DCCU internals, 2.5.3 

format description, 2.2.13 

nonpipelined cycle 

bus cycle, 5.1.3 

nop (Core-Unit No Operation) 

instruction definition, 10.1 

instruction timing, 10.3 

o 

offset 

addressing modes, 2.7 

virtual address, 2.4.2 

OF (overflow flag) 

epsr format description, 2.2.4 

on-chip caches 

i860 XP microprocessor, 3.0 

ordinal 

data type, 2.1.2 

orh (Logical OR High) 

instruction definition, 10.1 

instruction timing, 10.3 

or (Logical OR) 

instruction definition, 10.1 

instruction timing, 10.3 
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output pins 

pins overview, 4.1 

overflow 

result exception fault, 2.8.3.2 

p 

package 

thermal specifications, 8.0 

PAGE 

virtual address, 2.4.2 

page directory 

little endian mode, 2.3 

page tables, 2.4.3 

paged virtual-address space 

addressing, 2.3 

page frame 

address, 2.4.4.1 

physical main memory, 2.4.1 

page table 

combining protection, 2.4.4.8 

consistency, 3.3.3 

entry format description, 2.4.4 

format description, 2.4.3 

little endian mode, 2.3 

for trap handlers, 2.4.4.7 

paging unit 

address translation caches, 3.1 

function of, 1.0 

parallelism 

dual-instruction mode, 2.6.2 

use of, 2.6 

parity error 

bear (bus error address register), 2.2.10 

psr 1M (interrupt mode), 2.2.3 

trap, 2.8.6 

pause-DR 

test state, 6.4.8 

pause-IR 

test state, 6.4.14 
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PBM (page-table bit mode) 

epsr format description, 2.2.4 

PCD (page cache disable) 

bypassing instruction and data cache, 3.3 

CD (cache disable), 2.4.4.5 

signal description, 4.2.32 

PCHK # (parity check) 

signal description, 4.2.33 

PCYC (page cycle) 

signal description, 4.2.34 

PEF (parity error flag) 

epsr format description, 2.2.4 

PEN # (parity enable) 

bear (bus error address register), 2.2.10 

parity error trap, 2.8.6 

signal description, 4.2.35 

performance optimizations 

software compatibility, 10.5.2 

pfaddp (Pipelined Add with Pixel Merge) 

instruction definition, 10.1 

instruction timing, 10.3 

pfadd.p (Pipelined Floating-Point Add) 

instruction definition, 10.1 

instruction timing, 10.3 

pfaddz (Pipelined Add with Z Merge) 

instruction definition, 10.1 

instruction timing, 10.3 

pfamov.r (Pipelined Floating-Point Adder Move) 

instruction definition, 10.1 

instruction timing, 10.3 

pfam.p (Pipelined Floating-Point Add and Multiply) 

dual-operation, 2.6.3 

instruction definition, 10.1 

instruction timing, 10.3 

special purpose registers, 2.2.9 

pfeq.p (Pipelined Floating-Point Equal Compare) 

instruction definition, 10.1 

instruction timing, 10.3 
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pfgt.p (Pipelined Floating-Point Greater-Than 
Compare) 

instruction definition, 10.1 

instruction timing, 10.3 

pfiadd.w (Pipe lined Long-Integer Add) 

instruction definition, 10.1 

instruction timing, 10.3 

pfisub.w (Pipelined Long-Integer Subtract) 

instruction definition, 10.1 

instruction timing, 10.3 

pfix.v (Pipelined Floating-Point to Integer 
Conversion) 

instruction definition, 10.1 

instruction timing, 10.3 

pfld (Pipelined Floating-Point Load) 

epsr PT (trap on pipeline use), 2.2.4 

load pipe consistency, 3.3.5 

pipeline loads, 2.6.1.5 

pfld.q 

extensions of i860 XR, 2.6 

pfld.y (Pipelined Floating-Point Load) 

instruction definition, 10.1 

instruction timing, 10.3 

pfle.p (Pipelined F-P Less-Than or Equal Compare) 

instruction definition, 10.1 

instruction timing, 10.3 

pfmam.p (Pipe lined Floating-Point Add and Multiply) 

dual operation, 2.6.3 

instruction definition, 10.1 

instruction timing, 10.3 

special purpose registers, 2.2.9 

pfmov.r (Pipelined Floating-Point Reg-Reg Move) 

instruction definition, 10.1 

instruction timing, 10.3 

pfmsm.p (Pipelined Floating-Point Subtract 
and Multiply) 

dual operation, 2.6.3 

instruction definition, 10.1 

instruction timing, 10.3 

special purpose registers, 2.2.9 
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pfmul3.dd (Three-Stage Pipelined Multiply 

instruction definition, 10.1 

instruction timing, 10.3 

pfmul.p (Pipelined Floating-Point Multiply) 

instruction definition, 10.1 

instruction timing, 10.3 

pform (Pipe lined OR to MERGE Register) 

instruction definition, 10.1 

instruction timing, 10.3 

pfsm.p (Pipelined Floating-Point Subtract 
and Multiply) 

dual-operation, 2.6.3 

instruction definition, 10.1 

instruction timing, 10.3 

special purpose registers, 2.2.9 

pfsub.p (Pipelined Floating-Point Subtract) 

instruction definition, 10.1 

instruction timing, 10.3 

pftrunc.v (Pipe lined Floating-Point to 
Integer Conversion) 

instruction definition, 10.1 

instruction timing, 10.3 

pfzchkl (Pipelined 32-Bit Z-Buffer Check) 

instruction definition, 10.1 

instruction timing, 10.3 

pfzchks (Pipelined 16-Bit Z-Buffer Check) 

instruction definition, 10.1 

instruction timing, 10.3 

physical main memory 

page frame, 2.4.1 

physical tags 

internal instruction and data caches, 3.2 

PI bit 

using, 2.8.2.2 

PIM (previous interrupt mode) 

psr format description, 2.2.3 

pins overview 

hardware interface, 4.1 
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pipeline 

cycles, 5.1.3 

loads, 2.6.1.5 

operations, 2.6.1 

precision in, 2.6.1.3 

scalar transition, 2.6.1.4 

status information, 2.6.1.2 

PI (pipeline instruction) 

epsr format description, 2.2.4 

pixel 

data type, 2.1.4 

PM (pixel mask) 

psr format description, 2.2.3 

P (present) 

page-table entries (PTEs), 2.4.4.2 

privileged registers 

format description, 2.2.11 

processor 

revisions, 2.2.4 

type, 2.2.4 

programming interface 

i860 XP microprocessor, 2.0 

PS (pixel size) 

psr format description, 2.2.3 

psr (processor status register) 

debugging i860 XP microprocessor, 2.9 

format description, 2.2.3 

page-table entries (PTEs), 2.4.4.3 

pst.d (Pixel Store) 

instruction definition, 10.1 

instruction timing, 10.3 

psr PS (pixel size) and PM (pixel mask), 2.2.3 

PT (trap on pipeline use) 

epsr format description, 2.2.4 

using, 2.8.2.2 

PU (previous user mode) 

psr format description, 2.2.3 
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PWT (page write-through) 

signal description, 4.2.36 

WT (write-through), 2.4.4.4 

R 

ratings 

absolute maximum, 9.1 

RB (replacement block) 

dirbase format description, 2.2.6 

RC (replacement control) 

dirbase format description, 2.2.6 

REG-format 

instructions, 10.2.1 

register cell ordering 

boundary scan, 6.5 

replacement algorithm 

cache, 3.2.3 

RESET (system reset) 

AHOLD (address hold), 4.2.3 

bear (bus error address register), 2.2.10 

cache replacement algorithm, 3.2.3 

epsr BEF (bus error flag), 2.2.4 

epsr SO (strong ordering), 2.2.4 

initialization, 5.5 

signal description, 4.2.37 

trap, 2.8.9 

restart 

bus cycle, 5.2.2 

result exception fault 

floating-point, 2.8.3.1 

right-shift instruction 

psr SC (shift count), 2.2.3 

RM (rounding mode) 

fsr format description, 2.2.8 

RR (result register) 

fsr format description, 2.2.8 

run-test/idle 

test state, 6.4.2 



S 

SAMPLE 

TAP encoding, 6.3 

scalar 

mode, 2.6.1.1 

operations, 2.6.1 

pipelined transition, 2.6.1.4 

SC (shift count) 

psr format description, 2.2.3 

scyc.x (Special Cycles) 

big endian mode, 2.3 

epsr BE (big endian), 2.2.4 

extensions of i860 XR, 2.6 

instruction definition, 10.1 

instruction timing, 10.3 

select-OR-scan 

test state, 6.4.3 

select-IR-scan 

test state, 6.4.4 

serializing 

locked access, 3.2.4.3 

SE (source exception) 

fsr format description, 2.2.8 

shift-DR 

test state, 6.4.6 

shift-IR 

test state, 6.4.12 

shl (Shift Left) 

instruction definition, 10.1 

instruction timing, 10.3 

shra (Shift Right Arithmetic) 

instruction definition, 10.1 

instruction timing, 10.3 

shrd (Shift Right Double) 

instruction definition, 10.1 

instruction timing, 10.3 
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shr (Shift Right) 

instruction definition, 10.1 

instruction timing, 10.3 

signal description 

hardware interface, 4.2 

single-precision real 

data type, 2.1.3 

single-transfer cycle 

bus cycle, 5.1.1 

SI (sticky inexact) 

fsr format description, 2.2.8 

snooping 

inquiry cycles, 5.3 

internal instruction and data caches, 3.2 

responsibility limits, 5.3.2 

software compatibility 

required changes, 10.5.1 

SO (strong ordering) 

epsr format description, 2.2.4 

source exception fault 

floating-pOint, 2.8.3.1 

spare 

signal description, 4.2.38 

special bus 

cycles, 5.1.5 

special-purpose registers 

register set, 2.2 

special values 

floating-point numbers, 2.1.3 

STAT register 

DCCU internals, 2.5.3 

format description, 2.2.14 
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st.c (Store to Control Register) 

address translation, 2.4 

dirbase BL (bus lock), 2.2.6 

dirbase CSB (code size B-bit), 2.2.6 

fsr U-bit (update bit), 2.2.B 

instruction definition, 10.1 

instruction timing, 10.3 

privileged registers, 2.2.11 

stepping number 

epsr format description, 2.2.4 

stio.x (Store 1/0) 

big endian mode, 2.3 

epsr BE (big endian), 2.2.4 

extensions of iB60 XR, 2.6 

instruction definition, 10.1 

instruction timing, 10.3 

strong ordering mode 

inquiry cycle, 5.3.4 

st.x (Store Integer) 

DCCU internals, 2.5.3 

instruction definition, 10.1 

instruction timing, 10.3 

subs (Subtract Signed) 

epsr OF (overflow flag), 2.2.4 

instruction definition, 10.1 

instruction timing, 10.3 

subu (Subtract Unsigned) 

epsr OF (overflow flag), 2.2.4 

instruction definition, 10.1 

instruction timing, 10.3 

supervisor/user mode 

addressing, 2.3 

T 

ccr (concurrency control register), 2.2.12 

psr U (user mode), 2.2.3 

special purpose register description, 2.2.9 

tags 

internal instruction and data caches, 3.2 
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TAl (Trap On Autoincrement) 

epsr format description, 2.2.4 

fsr U-bit (update bit), 2.2.B 

TAP (test access port) 

controller, 6.4 

controller initialization, 6.6 

testability, 6.0 

TCK (test clock) 

signal description, 4.2.39 

TDI (test data input) 

signal description, 4.2.40 

TDO (test data output) 

signal description, 4.2.41 

test 

architecture, 6.1 

data registers, 6.2 

testability 

iB60 XP microprocessor, 6.0 

test-logic-reset 

test state, 6.4.1 

test state 

capture-DR, 6.4.5 

capture-IR, 6.4.11 

exit1-DR,6.4.7 

exit1-IR, 6.4.13 

exit2-DR, 6.4.9 

exit2-IR, 6.4.15 

pause-DR, 6.4.B 

pause-IR, 6.4.14 

run-test/idle, 6.4.2 

select-DR-scan, 6.4.3 

select-IR-scan, 6.4.4 

shift-DR, 6.4.6 

shift-IR, 6.4.12 

test-logic-reset, 6.4.1 

update-DR, 6.4.10 

update-IR,6.4.16 

thermal specifications 

package, B.O 
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TI (trap inexact) 

fsr format description, 2.2.8 

TLB 

address translation caches, 3.1 

DCCU addressing, 2.5.2 

internal cache consistency, 3.3 

TMS (test mode select) 

signal description, 4.2.42 

trap handler 

invocation, 2.8.1 

page tables, 2.4.4.7 

trap (Software Trap) 

bus error, 2.8.7 

i860 XP microprocessor, 2.8 

instruction cache consistency, 3.3.2 

instruction definition, 10.1 

instruction timing, 10.3 

interrupt, 2.8:8 

parity error, 2.8.6 

RESET, 2.8.9 

tri-state 

output pins, 4.1 

TRST # (test reset) 

signal description, 4.2.43 

U 

U-bit (update bit) 

fsr format description, 2.2.8 

underflow 

result exception fault, 2.8.3.2 

unlock (End Interlocked Sequence) 

dirbase BL (bus lock), 2.2.6 

epsr IL (interlock), 2.2.4 

instruction definition, 10.1 

instruction timing, 10.3 

update-DR 

test state, 6.4.10 

154 

update-IR 

test state, 6.4.16 

user/supervisor mode 

ccr (concurrency control register), 2.2.12 

psr U (user mode), 2.2.3 

U (user) 

v 

page-table entries (PTEs), 2.4.4.3 

psr format description, 2.2.3 

VeeCLK (clock power) 

signal description, 4.2.45 

Vee (system ground) 

signal description, 4.2.44 

virtual address 

address translation caches, 3.1 

CCUBASE, 2.2.12 

format description, 2.4.2 

i860 XP microprocessor, 2.4 

virtual tag 

instruction cache, 3.2.2 

internal instruction and data caches, 3.2 

Vss (ground) 

signal description, 4.2.44 

w 
wait state 

single-transfer cycle, 5.1.1 

WB/WT # (write-back/write-through) 

signal description, 4.2.46 

write-once policy, 3.2.4.2 

WP (write protect) 

epsr format description, 2.2.4 

page-table entries (PTEs), 2.4.4.3 

W/R # (write/read) 

signal description, 4.2.47 

write-once policy, 3.2.4.2 
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write-back 

data cache update policy, 3.2.1.1 

with FLlNE#, 5.3.5.2 

inquiry cycles, 5.3.1 

scheduling inquiry cycles, 5.3.5 

write cycle 

reordering due to buffering, 5.3.3 

write-once 

cache consistency, 3.2.4.2 

data cache update policy, 3.2.1.1 

write-through 

data cache update policy, 3.2.1.1 

WT (write-through) 

page-table entries (PTEs), 2.4.4.4 

write-through policy, 3.2.1.1 
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W (writable) 

page-table entries (PTEs), 2.4.4.3 

x 
xorh (Logical Exclusive OR High) 

instruction definition, 10.1 

instruction timing, 10.3 

xor (Logical Exclusive OR) 

instruction definition, 10.1 

instruction timing, 10.3 

z 
Z-buffer 

special purpose registers, 2.2.9 
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FAX: (708) 706-9762 Red Bank 07701 Blue Bell 19422 BRITISH COLUMBIA Tel: (908) 747-2233 Tel: (215) 641-1000 
INDIANA FAX: (908) 747-0983 FAX: (215) 641-0785 Intel Semiconductor of 

tlntel Corp.* Canada, Ltd. 
tlntel Corp. NEW YORK 4585 Canada Way 
8910 Purdue Road 400 Penn Center Blvd. 

Suite 202 
Suite 350 Intel Corp.* Suite 610 Burnaby V5G 4L6 
Indianapolis 46268 850 Crosskeys Office Park Pittsburgh 15235 

Tel: (604) 298-0387 
Tel: (317) 875-0623 Fairport 14450 Tel: (412) 823-4970 

FAX: (604) 298-8234 
FAX: (317) 875-8938 Tel: (716) 425-2750 FAX: (412) 829-7578 

TWX: 510-253-7391 

IOWA 
FAX: (716) 223-2561 PUERTO RICO ONTARIO 

tlntel Corp. * tlntel Corp. tlntel Semiconductor of Intel Corp. 2950 Express Dr., South South Industrial Park Canada, Ltd. 1930 SI. Andrews Drive N.E. Suite 130 P.O. Box 910 2650 Queensview Drive 2nd Floor Islandia 11722 Las Piedras 00671 Suite 250 Cedar Rapids 52402 Tel: (516) 231-3300 Tel: (809) 733-8616 Ottawa K2B 8H6 Tel: (319) 393-5510 TWX: 510-227·6236 Tel: (613) 829-9714 
FAX: (516) 348-7939 TEXAS FAX: (613) 820-5936 

KANSAS tlntel Corp. tlntel Corp. 
8911 N. Capital of Texas Hwy. tlntel Semiconductor of 

tlntel Corp. 300 Westage Business Center 
Suite 4230 Canada, Ltd. 

10985 Cody S1. Suite 230 190 Attwell Drive 
Suite 140 Fishkill 12524 Austin 78759 Suite 500 
Overland Park 66210 Tel: (914) 897·3860 Tel: (512) 794-8086 Rexdale M9W 6H8 
Tel: (913) 345-2727 FAX: (914) 897-3125 FAX: (512) 338-9335 Tel: (416) 675-2105 
FAX: (913) 345-2076 

Intel Corp. tlntel Corp. * FAX: (416) 675-2438 
12000 Ford Road Seventeen State Street Suite 400 MARYLAND 14th Floor Dallas 75234 QUEBEC 

New York 10004 
tlntel Corp. * Tel: (212) 248-8086 Tel: (214) 241-8087 tlntel Semiconductor of FAX: (214) 484-1180 10010 Junction Dr. FAX: (212) 248-0888 Canada, Ltd. 
Suite 200 tlntel Corp.* 1 RUB Holiday 
Annapolis Junction 20701 

NORTH CAROLINA 7322 S.W. Freeway Suite 115 
Tel: (301) 206-2860 Suite 1490 Tour East 
FAX: (301) 206-3677 

tlntel Corp. Houston 77074 PI. Claire H9R 5N3 
(301) 206-3678 Tel: (713) 988-8086 Tel: (514) 694-9130 5800 Executive Center Dr. 

Suite 105 TWX: 910-881-2490 FAX: 514·694·0064 
MASSACHUSETTS Charlotte 28212 FAX: (713) 988-3660 

Tel: (704) 568-8966 
tlntel Corp.* FAX: (704) 535-2236 UTAH 
Westford Corp. Center 
3 Carlisle Road tlntel Corp. tlntel Corp. 
2nd Floor 5540 Centerview Dr. 428 East 6400 South 
Westford 01886 Suite 215 Suite 104 
Tel: (508) 692-0960 Raleigh 27606 Murray 84107 
TWX: 710-343-6333 Tel: (919) 851·9537 Tel: (801) 263-8051 
FAX: (508) 692-7867 FAX: (919) 851-8974 FAX: (801) 268·1457 
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ALABAMA 

Arrow Electronics, Inc. 
1015 Henderson Road 
Huntsville 35805 
Tel: (205) 837-6955 
FAX: 205-751-1581 

Hamilton/Avnet Computer 
4930 I Corporate Drive 
Huntsville 35805 

Hamilton/Avnet Electronics 
4940 Research Drive 
Huntsville 35805 
Tel: (205) 837-7210 
FAX: 205-721-0356 

MTI Systems Sales 
4950 Corporate Drive 
Suite 120 
Huntsville 35806 
Tel: (205) 830-9526 
FAX: (205) 830-9557 

Pioneer!Technologies Group, Inc. 
4825 University Square 
Huntsville 35805 
Tel: (205) 837-9300 
FAX: 205-837-9358 

ALASKA 

Hamilton/Avnet Computer 
1400 W. Benson Blvd., Suite 400 
Anchorage 99503 

ARIZONA 

tArrow Electronics, Inc. 
4134 E. Wood Street 
Phoenix 85040 
Tel: (602) 437-0750 
TWX: 910-951-1550 

Hamilton/Avnet Computer 
30 South McKemy Avenue 
Chandler 85226 

Hamilton/Avnet Computer 
90 South McKemy Road 
Chandler 85226 

tHamilton/Avnet Electronics 
505 S. Madison Drive 
Tempe 85281 
Tel: (602) 231-5140 
TWX: 910-950-0077 

Hamilton/Avnet Electronics 
30 South McKemy 
Chandler 85226 
Tel: (602) 961-6669 
FAX: 602-961-4073 

Wyle Distribution Group 
4141 E. Raymond 
Phoenix 85040 
Tel: (602) 249-2232 
TWX: 910-371-2871 

CALIFORNIA 

Arrow Commercial System Group 
1502 Crocker Avenue 
Hayward 94544 
Tel: (415) 489-5371 
FAX: (415) 489-9393 

Arrow Commercial System Group 
14242 Chombers Road 
Tustin 92680 
Tel: (714) 544-0200 
FAX: (714) 731-8438 

tArrow Eloctronics, Inc. 
19748 Dearborn Street 
Chatsworth 91311 
Tel: (213) 701-7500 
TWX: 910-493-2086 

tArrow Eloctronics, Inc. 
9511 Ridgehavon Court 
San Diego 92123 
Tel: (619) 565-4800 
FAX: 619-279·8062 

tArrow Electronic:., Inc. 
521 Weddell Drivo 
Sunnyvalo 94086 
Tel: (408) 745·6600 
TWX: 910·339·9371 

tCertified Technical Distributor 

DOMESTIC DISTRIBUTORS 
tArrow Electronics, Inc. 
2961 Dow Avenue 
Tustin 92680 
Tel: (714) 838-5422 
TWX: 910-595-2860 

Hamilton/Avne! Computer 
3170 Pullman Street 
Costa Mesa 92626 

Hamilton/Avnet Computer 
1361 B West 190th Street 
Gardena 90248 

Hamilton/Avnet Computer 
4103 Northgate Blvd. 
Sacramento 95834 

Hamilton/Avne! Computer 
4545 Viewridge Avenue 
San Diego 92123 

Hamilton/Avnet Computer 
1175 Bordeaux Drive 
Sunnyvale 94089 

Hamilton/Avnet Electronics 
21150 Califa Street 
Woodland Hills 91367 

tHamilton/Avnet Electronics 
3170 Pullman Street 
Costa Mesa 92626 
Tel: (714) 641-4150 
TWX: 910-595-2638 

tHamilton/Avnet Electronics 
1175 Bordeaux Drive 
Sunnyvale 94086 
Tel: (408) 743-3300 
TWX: 910-339-9332 

tHamilton/Avnet Electronics 
4545 Ridgeview Avenue 
San Diego 92123 
Tel: (619) 571-7500 
TWX: 910-595-2638 

tHamilton/Avnet Electronics 
21150 Califa St. 
Woodland Hills 91376 
Tel: (818) 594-0404 
FAX: 818-594-8233 

tHamilton/Avnet Electronics 
10950 W. Washington Blvd. 
Culver City 20230 
Tel: (213) 558-2458 
TWX: 910-340-6364 

tHamilton/Avnet Electronics 
1361 B West 190th Street 
Gardena 90248 
Tel: (213) 217-6700 
TWX: 910-340-6364 

tHamiiton/Avnet Electronics 
4103 Northgate Blvd. 
Sacramento 95834 
Tel: (916) 920-3150 

PioneerfTechnologies Group, Inc. 
134 Rio Robles 
San Jose 95134 
Tel: (408) 954-9100 
FAX: 408-954-9113 

Wylo Distribution Group 
t24 Maryland Street 
1::1 Segundo 90254 
Tel: (213) 322-8100 

Wyto Distribution Group 
7431 Chapman Ave. 
Garden Grove 92641 
Tel: (714) 891-1717 
FAX: 714-891-1621 

tWyle Distribution Group 
2951 Sunrise Blvd., Suite 175 
Rancho Cordova 95742 
Tel: (916) 638-5282 

tWyle Distribution Group 
9525 Chesapeake Drive 
San Diego 92123 
Tel: (619) 565-9171 
TWX: 910-335-1590 

tWyle Distribution Group 
3000 Bowers Avenue 
Santa Clara 95051 
Tel: (408) 727-2500 
TWX: 408-988-2747 

tWyle Distribution Group 
17872 Cowan Avenue 
Irvine 92714 
Tel: (714) 863-9953 
TWX: 910-371-7127 

tWyle Distribution Group 
26677 W. Agoura Rd. 
Calabasas 91302 
Tel: (818) 880-9000 
TWX: 372-0232 

COLORADO 

Arrow Electronics, Inc. 
7060 South Tucson Way 
Englewood 80112 
Tel: (303) 790-4444 

Hamilton/Avnet Computer 
9605 Maroon Circle, Ste. 200 
Engelwood 80112 

tHamilton/Avnet Electronics 
9605 Maroon Circle 
Suite 200 
Englewood 80112 
Tel: (303) 799-0663 
TWX: 910-935-0787 

tWyle Distribution Group 
451 E. 124th Avenue 
Thornton 80241 
Tel: (303) 457-9953 
TWX: 910-936-0770 

CONNECTICUT 

tArrow Electronics, Inc. 
12 Beaumont Road 
Wallingford 06492 
Tel: (203) 265-7741 
TWX: 710-476-0162 

Hamilton/Avnet Computer 
Commerce Industrial Park 
Commerce Drive 
Danbury 06810 

tHamilton/Avnet Electronics 
Commerce Industrial Park 
Commerce Drive 
Danbury 06810 
Tel: (203) 797-2800 
TWX: 710-456-9974 

tPioneer/Standard ElectroniCS 
112 Main Street 
Norwalk 06851 
Tel: (203) 853-1515 
FAX: 203-838-9901 

FLORIDA 

tArrow Electronics, Inc. 
400 Fairway Drive 
Suite 102 
Deerfield Beach 33441 
Tel: (305) 429-8200 
FAX: 305-428-3991 

tArrow ElectroniCS, Inc. 
37 Skyline Drive 
Suite 3101 
Lake Marv 32746 
Tel: (407) 323-0252 
FAX: 407-323-3189 

Hamilton/Avnet Computer 
6801 N.W. 151h Way 
Ft. Lauderdale 33309 

Hamilton/Avnet Computer 
3247 Spring Forest Road 
St. Petersburg 33702 

tHamiiton/Avnet Electronics 
6801 N.W. 15th Way 
Ft. Lauderdale 33309 
Tel: (305) 971-2900 
FAX: 305-971-5420 

tHamilton/Avnet Electronics 
3197 Tech Drive North 
St. Petersburg 33702 
Tel: (813) 573-3930 
FAX: 813-572-4329 

tHamilton/Avnet Electronics 
6947 University Boulevard 
Winter Park 32792 
Tel: (407) 628-3888 
FAX: 407-678-1878 

tPioneer!Technologies Group, Inc. 
337 Northlake Blvd., Suite 1000 
Alta Monte Springs 32701 
Tel: (407) 834-9090 
FAX: 407-834-0865 

Pioneer/Technologies Group, Inc. 
674 S. Military Trail 
Deerfield Beach 33442 
Tel: (305) 428-8877 
FAX: 305-481-2950 

GEORGIA 

Arrow Commercial System Group 
3400 C. Corporate Way 
Deluth 30139 
Tel: (404) 623-8825 
FAX: (404) 623-8802 

tArrow Electronics, Inc. 
4250 E. Rivergreen Parkway 
Deluth 30136 
Tel: (404) 497-1300 
"TWX: 810-766-0439 

Hamilton/Avnet Computer 
5825 D. Peachtree Corners E. 
Norcross 30092 

tHamilton/Avnet Electronics 
5825 D Peachtree Corners 
Norcross 30092 
Tel: (404) 447-7500 
1WX: 810-766-0432 

PioneerfTechnologies Group, Inc. 
3100 F Northwoods Place 
Norcross 30071 
Tel: (404) 448-1711 
FAX: 404-446-8270 

ILLINOIS 

tArrow Electronics, Inc. 
1140 W. Thorndale 
Itasca 60143 
Tel: (708) 250-0500 
"TWX: 708-250-0916 

Hamilton/Avnet Computer 
1130 Thorndale Avenue 
Bensenville 60106 

tHamilton/Avnet Electronics 
1130 Thorndale Avenue 
Bensenville 60106 
Tel: (708) 860-7780 
TWX: 708-860-8530 

MTI Systems Sales 
1100 W. Thorndale 
Itasca 60143 
Tel: (708) 773-2300 

tPioneer/Standard Electronics 
2171 Executive Dr., Suite 200 
Addison 60101 
Tel: (708) 495-9680 
FAX: 708-495-9831 

INDIANA 

tArrow Electronics, Inc. 
7108 Lakeview Parkway West Drive 
Indianapolis 46268 
Tel: (317) 299-2071 
FAX: 317-299-0255 

Hamilton/Avnet Computer 
485 Gradle Drive 
Carmel 46032 

Hamilton/Avnet Electronics 
485 Gradle Drive 
Carmel 46032 
Tel: (317) 844-9333 
FAX: 317-844-5921 

tpioneer/Standard Electronics 
9350 Priority Way 
West Drive 
Indianapolis 46250 
Tel: (317) 573-0880 
FAX: 317-573-0979 

CG/SALE, 



IOWA 

Hamilton/Avnet Computer 
915 33rd Avenue SW 
Cedar Rapids 52404 

Hamilton/Avnel Electronics 
915 33rd Avenue, S.W. 
Cedar Rapids 52404 
Tel: (319) 362-4757 

KANSAS 

Arrow Electronics, Inc. 
8208 Melrose Dr., Suite 210 
Lenexa 66214 
Tel: (913)541-9542 
FAX: 913-541-0328 

Hamilton/Avnet Computer 
15313 W. 95th Street 
lenexa 61219 

tHamilton/Avnet Electronics 
15313 W. 951h 
Overland Park 66215 
Tel: (913) 888-8900 
FAX: 913-541-7951 

KENTUCKY 

Hamilton/Avnet Electronics 
805 A. Newtown Circle 
Lexington 40511 
Tel: (606)259-1475 

MARYLAND 

tArrow Electronics, Inc. 
8300 Guilford Drive 
Suite H, River Center 
Columbia 21046 
Tel: (301)995-6002 
FAX: 301-381-3854 

Hamilton/Avne! Computer 
6822 Oak Hall Lane 
Columbia 21045 

tHamiiton/Avnet Electronics 
6822 Oak Hall Lane 
Columbia 21045 
Tel: (301) 995-3500 
FAX: 301-995-3593 

~~e~~It~~~~~'&J'o~~r8r . 
Columbia 21046 
Tel: (301) 290-8150 
FAX: 301-290-6474 

tpioneerfTechnologies Group, Inc. 
9100 Gaither Road 
Gaithersburg 20877 
Tel: (301) 921-0660 
FAX: 301-921-4255 

MASSACHUSETTS 

Arrow Electronics, Inc. 
25 Upton Dr. 
Wilmington 01887 
Tel: (508) 658-0900 
TWX: 710-393-6770 

Hamilton/Avnet Computer 
10 D Centennial Drive 
Peabody 01960 

tHamiiton/Avnet Electronics 
100 Centennial Drive 
Peabody 01960 
Tel: (508) 532-9838 
FAX: 508-596-7802 

tPioneer/Standard Electronics 
44 Hartwell Avenue 
Lexington 02173 
Tel: (617)861-9200 
FAX: 617-863-1547 

Wyle Distribution Group 
15 Third Avenue 
Burlington 01803 
Tel: (617) 272-7300 
FAX: 617-272-6809 

MICHIGAN 

tArrow Electronics, Inc. 
19880 Haggerty Road 
Livonia 48152 
Tel: (313) 665-4100 
TWX: 810-223-6020 

tCertified Technical Distributor 

DOMESTIC DISTRIBUTORS (Contd.) 
Hamilton/Avnet Computer 
2215 S.E. A-5 
Grand Rapids 49508 

Hamilton/Avnet Computer 
41650 Garden Rd., Ste. 100 
Novi 48050 

Hamilton/Avnet Electronics 
2215 29th Street S.E. 
Space A5 
Grand Rapids 49508 
Tel: (616) 243-8805 
FAX: 616-698-1831 

Hamilton/Avnet Electronics 
41650 Garden Brook 
Novi 48050 
Tel: (313) 347-4271 
FAX: 313-347-4021 

tPioneer/Standard Electronics 
4505 Broadmoor S.E. 
Grand Rapids 49508 
Tel: (616)698-1800 
FAX: 616-698-1831 

tPioneer/Standard Electronics 
13485 Stamford 
Livonia 48150 
Tel: (313) 525-1800 
FAX: 313-427-3720 

MINNESOTA 

fArrow Electronics, Inc. 
5230 W. 73rd Street 
Edina 55435 
Tel: (612)830-1800 
TWX: 910-576-3125 

Hamilton/Avnet Computer 
12400 Whitewater Drive 
Minnetonka 55343 

tHamiiton/Avnet Electronics 
12400 Whitewater Drive 
Minnetonka 55434 
Tel: (612) 932-0600 
TWX: 910-576-2720 

tPioneer/Standard Electronics 
7625 Golden Triange Dr. 
Suite G 
Eden Prairie 55343 
Tel: (612) 944-3355 
FAX: 612-944-3794 

MISSOURI 

tArrow Electronics, Inc. 
2380 Schuetz 
SI. Louis 63141 
Tel: (314) 567-6888 
FAX: 314-567-1164 

Hamilton/Avnet Computer 
739 Goddard Avenue 
Chesterfield 63005 

tHamiiton/Avnet Electronics 
741 Goddard 
Chesterfield 63005 
Tel: (314) 537-1600 
FAX: 314-537-4248 

NEW HAMPSHIRE 

Hamilton/Avnet Computer 
2 Executive Park Drive 
Bedford 03102 

Hamilton/Avnet Computer 
444 East Industrial Park Dr. 
Manchester 03103 

NEW JERSEY 

fArrow Electronics, Inc. 
4 East Stow Road 
Unit 11 
Marlton 08053 
Tel: (609) 596-8000 
FAX: 609-596-9632 

tArrow Electronics 
6 Century Drive 
Parsipanny 07054 
Tel: (201) 538-0900 
FAX: 201-538-0900 

Hamilton/Avnet Computer 
1 Keystone Ave., Bldg. 36 
Cherry Hill 08003 

Hamilton/Avnet Computer 
10 Industrial Road 
Fairfield 07006 

tHamilton/Avnet Electronics 
1 Keystone Ave., Bldg. 36 
Cherry Hill 08003 
Tel: (609) 424-0110 
FAX: 609-751-2552 

tHamilton/Avnet Electronics 
10 Industrial 
Fairfield 07006 
Tel: (201) 575-3390 
FAX: 201-575-5839 

tMTI Systems Sales 
9 Law Drive 
Fairfield 07006 
Tel: (201) 227-5552 
FAX: 201-575-6336 

tPioneer/Standard Electronics 
14·A Madison Rd. 
Fairfield 07006 
Tel: (201) 575-3510 
FAX: 201-575-3454 

NEW MEXICO 

Alliance Electronics Inc. 
10510 Research Avenue 
Albuquerque 87123 
Tel: (505) 292-3360 
FAX: 505-292-6537 

Hamilton/Avnet Computer 
5659 Jefferson, N.E. Suites A & 8 
Albuquerque 87109 

tHamilton/Avnet Electronics 
5659A Jefferson N.E. 
Albuquerque 87109 
Tel: (50S) 765-1500 
FAX: 505-243-1395 

NEW YORK 

fArrow Electronics, Inc. 
3375 Brighton Henrietta Townline Rd. 
Rochester 14623 
Tel: (716)427-0300 
TWX: 510-253-4766 

Arrow Electronics, Inc. 
20 Oser Avenue 
Hauppauge 11788 
Tel: (516)231-1000 
TWX: 510-227-6623 

Hamilton/Avnet Computer 
933 Motor Parkway 
Haupauge 11788 

Hamilton/Avnet Computer 
2060 Townline 
Rochester 14623 

tHamilton/Avnet Electronics 
933 Motor Parkway 
Hauppauge 11788 
Tel: (516) 231-9800 
TWX: 510-224-6166 

tHamiiton/Avnet Electronics 
2060 Townline Rd. 
Rochester 14623 
Tel: (716) 272-2744 
TWX: 510·253·5470 

Hamilton/Avnot Electronics 
103 Twin Oaks Drive 
Syracuso 13206 
Tel: (315) 437-0288 
TWX: 710·541·1560 

tMTI Systems Sales 
38 Harbor Pnrk Drive 
Port Wrtshinglon 11050 
Tel: (516)621-6200 
FAX: 510·223·0846 

Pioneor/Standmd Electronics 
68 Corporate Drive 
Binghamton 13904 
Tel: (607) 722-9300 
FAX: 607-722-9562 

Pioneer/Standard Electronics 
40 Qser Avenuo 
Hauppauge 11787 
Tel: (516)231-9200 
FAX: 510·227·9869 

tPioneer/Standard Electronics 
60 Crossway Park West 
Woodbury, Long Island 11797 
Tel: (516)921-8700 
FAX: 516-921-2143 

tPioneerlStandard Electronics 
840 Fairport Park 
Fairport 14450 
Tel: (716)381-7070 
FAX: 716-381-5955 

NORTH CAROLINA 

tArrow Electronics, Inc. 
5240 Greensdairy Road 
Raleigh 27604 
Tel: (919) 876-3132 
TWX: 510-928-1856 

Hamilton/Avnet Computer 
3510 Spring Forest Road 
Raleigh 27604 

tHamilton/Avnet Electronics 
3510 Spring Forest Drive 
Raleigh 27604 
Tel: (919) 878-0819 
TWX: 510-928-1836 

Pioneer!Techno!ogies Group, Inc. 
9401 L-Southern Pine Blvd. 
Charlotte 28210 
Tel: (919) 527-8188 
FAX: 704-522-8564 

Pioneer Technologies Group, Inc. 
2810 Meridian Parkway 
Suite 148 
Durham 27713 
Tel: (919) 544-5400 
FAX: 919-544-5885 

OHIO 

Arrow Commercial System Group 
284 Cramer Creek Court 
Dublin 43017 
Tel: (614) 889-9347 
FAX: (614) 889-9680 

tArrow Electronics, Inc. 
6238 Cochran Road 
Solon 44139 
Tel: (216) 248·3990 
TWX: 810-427-9409 

Hamilton/Avnet Computer 
7764 Washington Village Dr. 
Dayton 45459 

Hamilton/Avne! Computer 
30325 Bainbridge Rd., Bldg. A 
Solon 44139 

tHamilton/Avnet Electronics 
7760 Washington Village Or. 
Dayton 45459 
Tel: (513) 439-6733 
FAX: 513-439-6711 

tHamiiton/Avnet Electronics 
30325 Bainbridge 
Solon 44139 
Tel: (216) 349-5100 
TWX: 810-427-9452 

Hamilton/Avnet Computer 
777 Brooksedge Blvd. 
Westerville 43081 
Tel: (614) 882-7004 
FAX: 614-882-8650 

Hamilton/Avnet Electronics 
777 Brooksedge Blvd. 
Westerville 43081 
Tel: (614) 882-7004 

MTI Systems Sales 
23400 Commerce Park Road 
Beachwood 44122 
Tel: (216) 464-6688 

tPioneer/Standard Electronics 
4433 Interpoint Boulevard 
Dayton 45424 
Tel: (513) 236-9900 
FAX: 513-236-8133 

tPioneer/Standard Electronics 
4800 E. 131s1 Street 
Cleveland 44105 
Tel: (216) 587-3600 
FAX: 216·663·1004 



OKLAHOMA 

Arrow electronics, Inc. 
4719 South Memorial Dr. 
Tulsa 74145 

tHamilton/Avnet Electronics 
12121 E. 51st 51., Suite 102A 
Tulsa 74146 
Tel: (918) 252·7297 

OREGON 

tArmac Electronics Corp. 
1885 N.w. 169th Place 
Beaverton 97005 
Tel: (503) 629·8090 
FAX: 503·645-0611 

Hamilton/Avnet COmputer 
9409 Southwest Nimbus Ave. 
Beaverton 97005 

tHamiiton/Avnet Electronics 
9409 S.W. Nimbus Ave. 
Beaverton 97005 
Tel: (503) 627·0201 
FAX: 503·641·4012 

Wyle 
9640 Sunshine Court 
Bldg. G, Suite 200 
Beaverton 97005 
Tel: (503) 643·7900 
FAX: 503·646-5466 

PENNSYLVANIA 

Arrow Electronics, Inc. 
650 Seea Road 
Monroeville 15146 
Tel: (412) 856·7000 

Hamilton/Avnet Computer 

~:Ob~~~~"5~~~" Bldg. E 

Hamilton/Avnet Electronics 
2800 Liberty Ave. 
Pittsburgh 15238 
Tel: (412) 281-4150 

Pioneer/Standard Electronics 
259 Kappa Drive 
Pittsburgh 15238 
Tel: (412) 782·2300 
FAX: 412·963·8255 

tPioneer/Technolagies Group, Inc. 
Delaware Valley 
261 Gibraltar Road 
Horsham 19044 
Tel: (215) 674·4000 
FAX: 215·674-3107 

TENNESSEE 

Arrow Commercial System Group 
3635 Knight Road 
Suite 7 

~~~rs~\~ ~~~~3540 
FAX: (901) 367·2081 

TEXAS 

Arrow Electronics, Inc. 
3220 Comml.1nder Drive 
Carrollton 75006 
Tel: (214) 380·6464 
FAX: (214) 248-7208 

tCertified Technical Distributor 

DOMESTIC DISTRIBUTORS (Contd.) 
Hamilton/Avnel Computer Hamilton/Avnet Computer tArrow Electronics, Inc. 
1807A West Braker Lane 17761 Northeast 78th Place 1093 Meyerside, Unit 2 
Austin 78758 Redmond 98052 Mississauga LST 1 M4 

Hamilton/Avnet Computer tHamiiton/Avnet Electronics 
Tel: (416) 673·7769 

Forum 2 17761 N.E. 7Bth Place 
FAX: 416-672·0849 

4004 Beltline, Suite 200 Redmond 98052 Hamilton/Avnst Computer 
Dallas 75244 Tel: (206) 881·6697 Canada System Engineering 

Hamilton/Avnet Computer 
FAX: 206·867·0159 Group 

Wyle Distribution Group 
3688 Nashua Drive 

4850 Wright Rd., Suite 190 Units7&8 
Stafford 77477 15385 N.E. 90th Street Mississuaga L4V 1 M5 

Redmond 96052 
tHamilton/Avnet Electronics Tel: (206) 88H 150 Hamilton/Avnet Computer 
1807 W. Braker lane FAX: 206·88H 567 3688 Nashua Drive 
Austin 78758 UnHs 9 & 10 
Tel: (512) 837·8911 WISCONSIN Mississuaga l4V 1 M5 
TWX: 910·874-1319 Hamilton/Avnet Computer Arrow Electronics, Inc. 
tHamiiton/Avnet Electronics 200 N. Patrick Blvd., Ste. 100 6845 Rexwood Road 
4004 Beltline, Suite 200 Brookfield 53005 UnHs 7, 8, & 9 
Dallas 75234 Tel: (414) 792-0150 Mississuaga l4V 1 R2 
Tel: (214) 308·8111 FAX: 414-792·0156 Hamilton/Avnst Computer 
TWX: 910·860·5929 190 Colonade Road 
tHamilton/Avnet Electronics 

Hamilton/Avnet Computer Nepean K2E 7J5 
20875 Crossroads Circle 

4850 Wright Rd., Suite 190 Suite 400 tHamilton/Avnet Electronics 
Stafford 77477 Waukesha 53186 6845 Rexwood Road 
Tel: (713) 240·7733 Units 3-4-5 
TWX: 910·881·5523 tHamilton/Avnet Electronics Mississauga L4T 1 R2 
tPioneer/Standard Electronics 

28875 Crossroads Circle Tel: (416) 677·7432 
Suite 400 FAX: 416·677·0940 1826-0 Kramer Waukesha 53186 

Austin 78758 Tel: (414) 784-4510 tHamilton/Avnet Electronics 
Tel: (512) 835-4000 FAX: 414·784-9509 190 Colonnade Road South 
FAX: 512·835·9829 Nepean K2E 7LS 

tPioneer/Standard Electronics 
Tel: (613) 226·1700 

13710 Omega Road CANADA FAX: 613·226·1184 

Dallas 75244 tZentronics 
Tel: (214) 386·7300 ALBERTA 1355 Meyerside Drive 
FAX: 214-490·6419 Mississauga LST 1 C9 

tPioneer/Standard Electronics 
Hamilton/Avnet Computer Tel: (416) 564-9600 
2816 21st Street Northeast FAX: 416·564·8320 

10530 Rockley Road Calgary T2E 6Z2 tZentronics Houston n099 
Tel: (713) 495-4700 Hamilton/Avnet Electronics 155 Colonnade Road 
FAX: 713-495·5642 2816 21st Street N.E. #3 Unit 17 

~:r1:9~~3f~~~86 
Nepean K2E 7Kl 

tWyle Distribution Group Tel: (613) 226-8840 
1810 Greenville Avenue FAX: 403·250·1591 FAX: 613·226-6352 
Richardson 75081 

QUEBEC Tel: (214) 235·9953 Zentronics 
FAX: 214-644·5064 6815 #8 Street N.E. Arrow Electronics Inc. 

Suite 100 1100 SI. Regis 
UTAH Calgary T2E 7H Dorval H9P 2T5 

Hamilton/Avnet Computer 
Tel: (403) 295·8818 Tel: (514) 421·7411 
FAX: 403·295·8714 FAX: 514·421·7430 

1585 West 2100 South 
Salt Lake City 84119 BRITISH COLUMBIA Arrow Electronics, Inc. 

SOD Boul. St-Jean-Bapliste 
tHamilton/Avnet Electronics tHamilton/Avnet Electronics SuHe 280 
1585 West 2100 South 8610 Commerce Ct. Quebec G2E 5R9 
Salt Lake City 84119 Burnaby V5A 4N6 Tel: (418) 871·7500 
Tel: (801) 972·2800 Tel: (604) 420·4101 FAX: 418-871·6816 
TWX: 910·925·4018 FAX: 604-437·4712 Hamilton/Avnet Computer 
tWyle Distribution Group Zentronics 2795 Rue Halpern 
1325 West 2200 South ~?~h~~~3 ~~~~~rt Road 

SI. Laurent H4S 1 P8 
Suite E tHamiiton/Avnet Electronics West Valley 84119 Tel: (604) 273-5575 2795 Halpern 
Tel: (801) 974·9953 FAX: 604·27:3-2413 SI. Laurent H2E 7Kl 

WASHINGTON ONTARIO 
Tel: (514) 335·1000 
FAX: 514-335·2481 

tAlmac Electronics Corp. Arrow ElectroniCS, Inc. tZentronics 
14360 S.E. Eastgate Way 36 Antares Dr., Unit 100 520 McCaffrey 
Bellevue 98007 Nepean K2E 7W5 SI. Laurent H4T 1 N3 
Tel: (206) 643·9992 Tel: (613) 226-6903 Tel: (514) 737·9700 
FAX: 206·643·9709 FAX: 613·723·2018 FAX: 514-737·5212 



AUSTRALIA 

Intel Australia Ply. Ltd. 
Unit 13 
Allambie Grove Business Park 
25 Frenchs Forest Road East 
Frenchs Forest. NSW, 2086 
Tel: 61-2975-3300 
FAX: 61-2975-3375 

BRAZIL 

Intel Semiconductores do Brazil LTDA 
Avenida Paulista, 11S9-CJS 404/405 
01311 - Sao Paulo - S,P. 
Tel: 55-11-287-5899 
TLX: 11-37-557-160B 
FAX: 55-11-287-5119 

CHINA/HONG KONG 

Intel PRC Corporation 
lS/F, Office 1, Cilie Bldg. 
Jian Guo Men Wai Street 
Beijing, PAC 
Tel: (1) 500-4850 
TLX: 22947 INTEL CN 
FAX: (1) 500-2953 

Intel Semiconductor Ltd.'" 
lOfF East Tower 
Bond Center 
Queensway, Central 
Hong Kong 
Tel: (852) 844-4555 
FAX: (852) 868-1989 

INTERNATIONAL SALES OFFICES 
INDIA 

Intel Asia Electronics, Inc. 
4/2, Samrah Plaza 
St. Mark's Road 
Bangatere 560001 
Tel: 91-812-215773 
TLX: 953-845-2646 INTEL IN 
FAX: 091-812-215067 

JAPAN 

Intel Japan K.K. 
5-6 Takodai, Tsukuba-shi 
Ibaraki, 300-26 
Tel: 0298-47-8511 
TLX: 3656-160 
FAX: 0298-47-8450 

Intel Japan K.K. '" 
Hachioji ON Bldg. 
4-7-14 Myojin-machi 
Hachioji-shi, Tokyo 192 
Tel: 0426-48-8770 
FAX: 0426-48-8775 

Intel Japan KK * 
Bldg. Kumagaya 
2-69 Hon-cho 
Kumagaya-shi, Saitama 360 
Tel: 0485-24-6871 
FAX: 0485-24-7518 

Intel Japan KK.* 
Kawa-asa Bldg. 
2-11-5 Shin-Yokohama 
Kohoku-ku, Yokohama-shi 
Kanagawa, 222 
Tel: 045-474-7661 
FAX: 045-471-4394 

Intel Japan K.K.* 
Ryokuchi-Eki Bldg. 
2-4-1 Terauchi 

i~r:oon:-~~~_~i6~saka 560 
FAX: 06-863-1084 

Intel Japan KK. 
Shinmaru Bldg. 
1-5-1 Marunouchi 
Chiyoda-ku, Tokyo 100 
Tel: 03-3201-3621 
FAX: 03-3201-6850 

Intel Japan KK. 
Green Bldg. 
1-16-20 Nishiki 
Naka-ku, Nagoya-shi 
Aichi 450 
Tel: 052-204-1261 
FAX: 052-204-1285 

KOREA 

Intel Korea, Ltd. 
16th Floor, Life Bldg. 
61 Yoida-dong, Yaungdeungpo-Ku 
Seoul 150-010 
Tel: (2) 784-8186 
FAX: (2) 784-8096 

SINGAPORE 

Intel Singapore Technology, Ltd. 
101 Thomson Road #08-03/06 
United Square 
Singapore 1130 
Tel: (65) 250-7811 
FAX: (65) 250-9256 

TAIWAN 

Intel Technology Far East Ltd. 
Taiwan Branch Office 
8th Floor, No. 205 
Bank Tower Bldg. 
Tung Hua N. Road 
Taipei 
Tel: 886-2-716-9660 
FAX: 886-2-717-2455 

INTERNATIONAL DISTRIBUTORS/REPRESENTATIVES 
ARGENTINA 

Dafsys S.R.L. 
Chacabuco, 90-6 Piso 
1 069-Buenos Aires 
Tel: 54-1-34-7726 
FAX: 54-1-34-1871 

AUSTRALIA 

Email Electronics 
15-17 Hume Street 
Huntingdale, 3166 
Tel: 011-61-3-544-8244 
TLX: M 30895 
FAX: 011-61-3-543-8179 

NSD-Australia 
205 Middleborough Rd. 
Box Hill, Victoria 3128 
Tel: 03 8900970 
FAX: 03 8990819 

BRAZIL 

Elebra Componentes 
Rua Geraldo Flausina Gomes, 78 
7 Andar 
04575 - Sao Paulo - S.P. 
Tel: 55-11-534-9641 
TLX: 55-11-54593/54591 
FAX: 55-11-534-9424 

CHINA/HONG KONG 

Novel Precision Machinery Co., Ltd. 
Room 728 Trade Square 
681 Cheung Sha Wan Road 
Kowloon, Hong Kong 
Tel: (852) 360-8999 
TWX: 32032 NVTNL HX 
FAX: (852) 725-3695 

INDIA 

Micronic Devices 
Arun Complex 
No. 65 D.V.G. Road 
Basavanagudi 
Bangalore 560 004 
Tel: 011-91-812-600-631 

011-91-812-611-365 
TLX: 9538458332 MOBG 

*Field Application Location 

Micronic Devices 
No. 516 5th Floor 
Swastik Chambers 
Sion, Trombay Road 
Chembur 
Bombay 400 071 
TLX: 9531 171447 MOEV 

Micronic Devices 
25/8, 1 st Floor 
Bada Bazaar Marg 
Old Rajinder Nagar 
New Delhi 110 060 
Tel: 011-91-11-5723509 

011-91-11-589771 
TLX: 031-63253 MDNO IN 

Micronic Devices 
6-3-348/12A Dwarakapuri Colony 
Hyderabad 500 482 
Tel: 011-91-842-226748 

S&S Corporation 
1587 Kooser Road 
San Jose, CA 95118 
Tel: (408) 978-6216 
TLX: 820281 
FAX: (408) 978-8635 

JAPAN 

Asahi Electronics Co. Ltd. 
KMM Bldg. 2-14-1 Asano 
Kokurakita-ku 
Kitakyushu-shi 802 
Tel: 093-511-6471 
FAX: 093-551-7861 

GTC Components Systems Co., Ltd. 
4-8-1 Dobashi, Miyamae-ku 
Kawasaki-shi, Kanagawa 213 
Tel: 044-852-5121 
FAX: 044-877-4268 

Dia Semicon Systems, Inc. 
Flower Hill Shinmachi Higashi-kan 
1-23-9 Shinmachi, Setagaya-ku 
Tokyo 154 
Tel: 03-3439-1600 
FAX: 03-3439-1601 

Okaya Koki 
24-18 Sakae 
Naka-ku, Nagoya-shi 460 
Tel: 052-204-2916 
FAX: 052-204-2901 

Ryoyo Electro Corp. 
Konwa Bldg. 
1-12-22 Tsukiji 
Chuo-ku, Tokyo 104 
Tel: 03-3546-5011 
FAX: 03-3546-5044 

KOREA 

J-Tek Corporation 
Dong Sung Bldg. 9/F 
158-24, Samsung-Dong, Kangnam-Ku 
Seoul 135-090 
Tel: (822) 557-8039 
FAX: (822) 557-8304 

Samsung Electronics 
Samsung Main Bldg. 
150 Taepyung-Ro-2KA, Chung-Ku 
Seoul 100-102 
C.P.O. Box 8780 
Tel: (822) 751-3680 
TWX: KORSST K 27970 
FAX: (822) 753-9065 

MEXICO 

SSB Electronics, Inc. 
675 Palomar Street, Bldg. 4, Suite A 
Chula Vista, CA 92011 
Tel: (619) 585-3253 
TLX: 287751 CBALL UR 
FAX: (619) 585-8322 

Dicopel SA 
Tochtli 368 Frace. Ind. San Antonio 
Azcapotzalco 
C.P. 02760-Mexico, D.F. 
Tel: 52-5-561-3211 
TLX: 177 3790 Dicome 
FAX: 52-5-561-1279 

PSI SA de C.V. 
Fco. Villa esq. Ajusco sIn 
Cuernavaca - Morelos 
Tel: 52-73-13-9412 
FAX: 52-73-17-5333 

NEWZEALANO 

Email Electronics 
36 Olive Road 
Penrose, Auckland 
Tel: 011-64-9-591-155 
FAX: 011-64-9-592-681 

SAUDI ARABIA 

AAE Systems, Inc. 
642 N. Pastoria Ave. 
Sunnyvale, CA 94086 
U.S.A. 
Tel: (408) 732-1710 
FAX: (408) 732-3095 
TLX: 494-3405 ME SYS 

SINGAPORE 

Electronic Resources Pte, Ltd. 
17 Harvey Road 
#03-01 Singapore 1336 
Tel: (65) 283-0888 
TWX: RS 56541 ERS 
FAX: (65) 289-5327 

SOUTH AFRICA 

Electronic Building Elements 
178 Erasmus SI. (off Watermeyet SI.) 
Meyerspark. Pretoria, 0184 
Tel: 011-2712-803-7680 
FAX: 011-2712-803-8294 

TAIWAN 

Micro Electronics Corporation 
12th F!oor, Section 3 
285 Nanking East Road 
Taipei, R.O.C. 
Tel: (886) 2-7198419 
FAX: (886) 2-7197916 

Acer Sertek Inc. 
15th Floor, Section 2 
Chien Kuo North Rd. 
Taipei 18479 R.O.C. 
Tol: 886-2-501-0055 
TWX: 23756 6ERTEK 
FAX: (006) 2-5012521 

CG/SALE/0228S 




