
I • , _

"-f ' -

inter
i860™ XP MICROPROCESSOR

• Parallel Architecture that Supports Up
to Three Operations per Clock
- One Integer or Control Instruction
- Up to Two Floating-Point Results

III High Performance Design
- 40/50 MHz Clock Rate
-100 Peak Single Precision MFLOPS
- 75 Peak Double Precision MFLOPS
- 64-Bit External Data Bus
- 64-Bit Internal Code Bus
-128-Bit Internal Data Bus

III High Integration on One Chip
- 32-Bit Integer and Control Unit
- 32/64-Bit Pipelined Floating-Point
- 64-Bit 3-D Graphics Unit
- Paging Unit with 64 Four-Kbyte and

16 Four-Mbyte Pages
- 16 Kbyte Code Cache
- 16 Kbyte Data Cache

III Fast, Multiprocessor-Oriented Bus
- Burst Cycles Move 400 MbytelSec
- Hardware Cache Snooping
- MESI Cache Consistency Protocol
- Supports Second-Level Cache
- Supports DRAM

III Compatible with Industry Standards
- ANSIIIEEE Standard 754-1985 for

Binary Floating-Point Arithmetic
-Intel 386™lintei 486™/i860TM Data

Formats and Page Table Entries
- Binary Compatible with i860™ XR

Applications Instruction Set
- Detached Concurrency Control Unit

(CCU) Supports Parallel Architecture
Extensions (PAX)

- JEDEC 262-pin Ceramic Pin Grid
Array Package

-IEEE Standard 1149.1/D6 Boundary­
Scan Architecture

III Easy to Use
- On-Chip Debug Register
-UNIX'/860
- APX Attached Processor Executive
- Assembler, Linker, Simulator,

Debugger, C and FORTRAN
Compilers, FORTRAN Vectorizer,
Scalar and Vector Math Libraries

- Graphics Libraries

The Intel i860 XP Microprocessor (order code A80860XP) delivers supercomputing performance in a single
VLSI component. The 32/64-bit architecture of the i860 XP microprocessor balances integer, floating point,
and graphics performance for applications such as engineering workstations, scientific computing, 3-D graph­
ics workstations, and multiuser systems. Its parallel architecture achieves high throughput with RiSe design
techniques, multiprocessor support, pipelined processing units, wide data paths, large on-chip caches, 2.5
million transistor design, and fast 0.8-micron silicon technology.

A31 - A3 063 - DO CONTROL

Figure 0.1. Block Diagram

'UNIX is a registered trademark of UNIX System Laboratories, Inc.
Intel, i860, Intel386 and Intel486 are trademarks of Intel Corporation.

240874-1

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel product. No other circuit patent
licenses are implied. Information contained herein supersedes previously published speCifications on these devices from Intel. May 1991
© INTEL CORPORATION. 1991 Order Number: 240874-001

i860™ XP MICROPROCESSOR

CONTENTS PAGE CONTENTS PAGE

1.0 FUNCTIONAL DESCRIPTION 9 2.4.4.6 Accessed and Dirty
Bits 26

2.0 PROGRAMMING INTERFACE 10 2.4.4.7 Page Tables for Trap

2.1 Data Types 10

2.1.1 Integer 10

Handlers 26

2.4.4.8 Combining Protection of
Both Levels of Page Tables 26

2.1.2 Ordinal 10 2.4.5 Address Translation
2.1.3 Single- and Double-Precision Algorithm 26

Real 10 2.4.6 Address Translation Faults 27
2.1.4 Pixel 11 2.5 Detached CCU 27

2.2 Register Set 12 2.5.1 DCCU Initialization 27
2.2.1 Integer Register File 12 2.5.2 DCCU Addressing 27
2.2.2 Floating-Point Register File 12 2.5.3 DCCU Internals 28
2.2.3 Processor Status Register 13 2.6 Instruction Set 28
2.2.4 Extended Processor Status

Register 14
2.6.1 Pipelined and Scalar

Operations 30
2.2.5 Data Breakpoint Register 16 2.6.1.1 Scalar Mode 31
2.2.6 Directory Base Register 16 2.6.1.2 Pipelining Status
2.2.7 Fault Instruction Register 17 Information 31

2.2.8 Floating-Point Status 2.6.1.3 Precision in the
Register 17 Pipelines 31

2.2.9 KR, KI, T, and MERGE 2.6.1.4 Transition between
Registers 19 Scalar and Pipelined

2.2.1 a Bus Error Address Operations 31

Register 20 2.6.1.5 Pipelined Loads 32

2.2.11 Privileged Registers 20 2.6.2 Dual-Instruction Mode 32

2.2.12 Concurrency Control 2.6.3 Dual-Operation Instructions 33
Register 20 2.7 Addressing Modes 34

2.2.13 NEWCURR Register 21 2.8 Traps and Interrupts 34
2.2.14 STAT Register 21 2.8.1 Trap Handler Invocation 34

2.3 Addressing 21 2.8.2 Instruction Fault 34
2.4 Virtual Addressing 22 2.8.2.1 Lock Protocol 35

2.4.1 Page Frame 22 2.8.2.2 Using PT and PI Bits 35
2.4.2 Virtual Address 23 2.8.3 Floating-Point Fault 36
2.4.3 Page Tables 23 2.8.3.1 Source Exception
2.4.4 Page-Table Entries 24 Faults 36.

2.4.4.1 Page Frame Address 24 2.8.3.2 Result Exception

2.4.4.2 Present Bit ...•........... 25 Faults 36

2.4.4.3 Writable and User Bits 25 2.8.4 Instruction Access Fault 37

2.4.4.4 Write-Through Bit 25 2.8.5 Data Access Fault 37

2.4.4.5 Cache Disable Bit 25 2.8.6 Parity Error Trap 38

2.8.7 Bus Error Trap 38

2

CONTENTS PAGE CONTENTS PAGE

2.8.8 Interrupt Trap 38 4.2.11 ClK (Clock) 51

2.8.9 Reset Trap 38 4.2.12 CTYP (Cycle Type) 52

2.9 Debugging 38 4.2.13 D/C# (Data/Code) 52

3.0 ON-CHIP CACHES 39 4.2.14063-00 (Data Pins) 52

3.1 Address Translation Caches 39 4.2.15 DP7 -DPO (Data Parity) 52

3.2 Internal Instruction and Data
Caches , 41

3.2.1 Data Cache 42

4.2.16 EADS # (External Address
Status) 52

4.2.17 EWBE # (External Write
Buffer Empty) 52

3.2.1.1 Data Cache Update
Policies 42 4.2.18 FLlNE# (Flush Line) 52

3.2.2 Instruction Cache 43 4.2.19 HIT# (Cache Inquiry Hit) 53

3.2.3 Cache Replacement
Algorithm 43

3.2.4 Cache Consistency
Protocol 43

4.2.20 HITM# (Hit Modified
Line) 53

4.2.21 HlDA (Bus Hold
Acknowledge) 53

3.2.4.1 Data Cache States 43 . 4.2.22 HOLD (Bus Hold) 53

3.2.4.2 Write-Once Policy 44

3.2.4.3 locked Access 44

3.3 Internal Cache Consistency 45

4.2.23 INV (Invalidate) 53

4.2.24 INT /CS8 (Interrupt/Code-
Size Eight Bits) 53

4.2.25 KBO, KB1 (Cache Block) 54
3.3.1 Address Space

Consistency 45

3.3.2 Instruction Cache

4.2.26 KEN # (Cache Enable) 54

4.2.27 lEN (Data length) 54

Consistency 46 4.2.28 lOCK # (Address lock) 54

3.3.3 Page Table Consistency 46 4.2.29 MIIO# (Memory-I/O) 55

3.3.4 Consistency of
Cacheability 47

4.2.30 NA # (Next Address
Request) 55

3.3.5 load Pipe Consistency 47 4.2.31 NENE# (Next Near) 55

3.3.6 Summary 47 4.2.32 PCD (Page Cache
Disable) 55

4.0 HARDWARE INTERFACE 47 4.2.33 PCHK# (Parity Check) 55
4.1 Pins Overview 47 4.2.34 PCYC (Page Cycle) 56
4.2 Signal Description 50 4.2.35 PEN # (Parity Enable) 56

4.2.1 A31-A3 (Address Pins) 50 4.2.36 PWT (Page
4.2.2 ADS# (Address Status) 50 Write-Through) 56

4.2.3 AHOlD(Address Hold) 50 4.2.37 RESET (System Reset) 56

4.2.4 BE7#-BEO# 4.2.38 RSRVD, SPARE 56
(Byte Enables) 50 4.2.39 TCK (Test Clock) 56

4.2.5 BERR (Bus Error) 50 4.2.40 TDI (Test Data Input) 56
4.2.6 BOFF # (Back-Off) 50 4.2.41 TOO (Test Data Output) 56
4.2.7 BRDY#

(Burst Ready) 51

4.2.8 BREQ (Bus Request) 51

4.2.9 BYPASS# (Bypass) 51

4.2.42 TMS (Test Mode Select) 56

4.2.43 TRST# (Test Reset) 57

4.2.44 Vcc (System Power) and Vss
(Ground) 57

4.2.10 CACHE # (Cacheability) 51 4.2.45 VccClK (Clock Power) 57

3

CONTENTS PAGE CONTENTS PAGE

4.2.46 WB/WT # (Write-Back/
Write-Through) 57 6.0 TESTABILITY 87

4.2.47 W/R# (Write/Read) 57 6.1 Test Architecture 87

6.2 Test Data Registers 87
5.0 BUS OPERATION 57

5.1 Bus Cycles 57
6.3 Instruction Register 88

6.4 TAP Controller 89
5.1.1 Single-Transfer Cycle 58 6.4.1 Test-Logic-Reset State 89
5.1.2 Burst Cycles 58 6.4.2 Run-Test/Idle State 90
5.1.3 Pipelined Cycles 61 6.4.3 Select-DR-Scan State 90
5.1.4 Interrupt Acknowledge

Cycles 63

5.1.5 Special Bus Cycles 64

5.2 Bus Arbitration 65

6.4.4 Select-IR-Scan State 91

6.4.5 Capture-DR State 91

6.4.6 Shift-DR State 91

5.2.1 HOLD and HLDA 6.4.7 Exit1-DR State 91

Arbitration 65 6.4.8 Pause-DR State 91

5.2.2 Bus Cycle Back-Off and 6.4.9 Exit2-DR State 91
Restart 66 6.4.10 Update-DR State 91
5.2.2.1 Cycle Back-Off 66 6.4.11 Capture-IR State 91
5.2.2.2 Cycle Restart 67 6.4.12 Shift-IR State 92
5.2.2.3 Late Back-Off Modes 67 6.4.13 Exit1-IR State 92
5.2.2.4 One-Clock Late Back-Off

Mode 67

5.2.2.5 Two-Clock Late Back-Off

6.4.14 Pause-I R State 92

6.4.15 Exit2-IR State 92

Mode 69 6.4.16 Update-IR State 92

5.3 Cache Inquiry Cycles
(Snooping) 70

6.5 Boundary Scan Register Cell
Ordering 92

5.3.1 Inquiry Write-Back Cycles 73 6.6 TAP Controller Initialization 94

5.3.2 Snooping Responsibility
Limits 75

7.0 MECHANICAL DATA 94

5.3.2.1 Inquiry for a Line Being
Cached 75

8~PACKAGETHERMAL
SPECIFICATIONS 102

5.3.2.2 Inquiry for a Line Being
Replaced 77

5.3.3 Write Cycle Reordering Due to
Buffering 79

9.0 ELECTRICAL DATA 103

9.1 Absolute Maximum Ratings 104

9.2 D.C. Characteristics 104

5.3.4 Strong Ordering Mode 80 9.3 A.C. Characteristics 105

5.3.5 Scheduling Inquiry Write-Back
Cycles 81

5.3.5.1 Choosing between
FLlNE# and BOFF# 81

10.0 INSTRUCTION SET 112

10.1 Instruction Definitions in
Alphabetical Order 113

5.3.5.2 Reordering Write-Backs
with FLlNE# 82

10.2 Instruction Format and
Encoding 122

5.3.5.3 Reordering Write-Backs
with BOFF # 84

10.2.1 REG-Format Instructions 122

10.2.2 CTRL-Format Instructions ... 125

5.4 The LOCK # Cycle Attribute 84

5.5 RESET Initialization 86

10.2.3 Floating-Point Instruction
Encoding 125

4

CONTENTS PAGE

10.3 Instruction Timings 128

10.4 Instruction Characteristics 134

10.5 Software Compatibility 137

10.5.1 Required Changes 137

10.5.2 Performance
Optimizations 137

10.5.3 New Features 138

10.5.4 Notes 138

INDEX 139

5

CONTENTS PAGE

FIGURES

Figure 0.1

Figure 2.1

Block Diagram 1

Real Number Formats 11

Figure 2.2 Pixel Format Example 12

Figure 2.3 Registers and Data Paths 13

Figure 2.4 Processor Status Register 14

Figure 2.5 Extended Processor Status
Register 15

Figure 2.6 Directory Base Register 16

Figure 2.7 Floating-Point Status
Register 18

Figure 2.8 Concurrency Control
Register 20

Figure 2.9 Concurrency Status
Register 21

Figure 2.10 Little and Big Endian Memory
Transfers 22

Figure 2.11 Formats of Virtual
Addresses 23

Figure 2.12 Address Translation 23

Figure 2.13 Formats of Page Table
Entries 24

Figure 2.14 Pipelined Instruction
Execution 30

Figure 2.15 Dual-Instruction Mode
Transitions (1 of 2) 32

Figure 2.15 Dual-Instruction Mode
Transitions (2 of 2) 32

Figure 2.16 Dual-Operation Data
Paths 33

Figure 3.1 4K TLB Organization 40

Figure 3.2 4M TLB Organization 40

Figure 3.3 Cache Address Usage 41

Figure 3.4 Data Cache Organization 42

Figure 3.5 Instruction Cache
Organization 43

Figure 4.1 Signal Grouping 49

Figure 5.1 Timing Diagram
Conventions 57

Figure 5.2 Fastest Single-Transfer
Cycles 58

Figure 5.3 Single-Transfer Cycles with
Wait States 59

Figure 5.4 Basic Burst Cycle 60

Figure 5.5 Slow Burst Cycle 60

6

CONTENTS PAGE

Figure 5.6 Different Lengths of Burst
Cycles 61

Figure 5.7 Pipelined Cache Line Fills 63

Figure 5.8 Pipelined Back-to-Back Read
and Write Cycles 64

Figure 5.9 Example Interrupt
Acknowledge Sequence 65

Figure 5.10 HOLD/HLDA Handshake 66

Figure 5.11 Normal Back-Off .. : 68

Figure 5.12 One-Clock Normal
Back-Off 68

Figure 5.13 Fastest Nonpipelined Cycles
in One-Clock Late Back-Off
Mode 69

Figure 5.14 One-Clock Late Back-Off
Mode (Case 1) 70

Figure 5.15 One-Clock Late Back-Off
Mode (Case 2) 70

Figure 5.16 One-Clock Late Back-Off
Mode (Case 3) 71

Figure 5.17 Two-Clock Late Back-Off
Mode 71

Figure 5.18 Inquiry Miss Cycle 72

Figure 5.19 Fastest Inquiry Cycles
(Miss and Hit) 73

Figure 5.20 Inquiry Hit Cycle with
Write-Back 74

Figure 5.21 Snoop Responsibility Pickup
(Nonpipelined Cycle) 76

Figure 5.22 Snoop Responsibility Pickup
(Pipelined Cycle) 77

Figure 5.23 Latest Snooping of
Write-Back (Not Late
Back-Off Mode) 78

Figure 5.24 Latest Snooping of Write-
Back (One-Clock
Late Back-Off Mode) 78

Figure 5.25 Latest Snooping of Write-
Back (Two-Clock Late Back-
Off Mode) 79

Figure 5.26 Write Reordering due to
Buffering 80

Figure 5.27 Timing of EWBE# 81

Figure 5.28 Cycle Reordering via FLlNE#
(No Ongoing Burst) 82

Figure 5.29 Cycle Reordering via FLlNE#
(Ongoing Burst) 83

CONTENTS PAGE

Figure 5.30 Cycle Reordering via BOFF #
(Ongoing Burst) 84

Figure 5.31 lOCK# Timing 85

Figure 5.32 Reset Activities 86

Figure 6.1 Format of DID Register 88

Figure 6.2 logical Structure of BSR
Register 88

Figure 6.3 TAP Controller State
Diagram 90

Figure 6.4 Boundary Scan Register
Ordering 93

Figure 7.1 i860™ XP Microprocessor
Pin Configuration-View from
Pin Side 95

Figure 7.2 i860™ XP Microprocessor
Pin Configuration-View from
Top Side 96

Figure 7.3 262-lead Ceramic PGA
Package Dimensions 101

Figure 8.1 Icc Derating with Case
Temperature 103

7

CONTENTS PAGE

Figure 9.1 ClK, Input, and Output
Timings 108

Figure 9.2 TAP Signal Timings 109

Figure 9.3 TCK to ClK Skew 109

Figure 9.4 Typical Output Delay vs.
load Capacitance under
Worst-Case Conditions 109

Figure 9.5a Typical Slew Time vs. load
Capacitance under Worst­
Case Conditions (Rising
Voltage) 110

Figure 9.5b Typical Slew Time vs. load
Capacitance under Worst­
Case Conditions (Falling
Voltage) 110

Figure 9.6 Typical Icc vs. Frequency 111

Figure 10.1 REG-Format Variations 123

Figure 10.2 Core Escape Instructions 124

Figure 10.3 CTRl-Format Instructions ... 125

Figure 10.4 Floating-Point Instruction
Encoding 126

CONTENTS PAGE CONTENTS PAGE

TABLES Table 5.3 Encoding of Special Bus
Cycles 65

Table 2.1 Pixel Formats 11
Table 2.2 Values of PS 14

Table 5.4 Inquiry for a Line being
Cached 75

Table 2.3 Values of RB 17 Table 5.5 Output Pin Status during

Table 2.4 Values of RC 17 Reset 86

Table 2.5 Values of RM 18 Table 6.1 TAP Instruction Encoding 88

Table 2.6 Values of LRP1 and LRPO 19 Table 6.2 Registers Active by
Instruction 89

Table 2.7 Values of CO and DO 20 Table 6.3 Instruction Functions 94
Table 2.8 CCU Addresses 28

Table 2.9 Instruction Set (1 of 2) 29
Table 7.1 Pin Cross Reference by

Location 97
Table 2.9 Instruction Set (2 of 2) 30 Table 7.2 Pin Cross Reference by Pin
Table 2.10 Types ofTraps 35 Name 98

Table 2.11 Register and Cache Values
after Reset 39

Table 7.3 Ceramic PGA Package
Dimension Symbols 100

Table 3.1 MESI Cache Line States 43 Table 8.1 Thermal Resistance 102

Table 3.2 Internally Initiated Cache
State Transitions 44

Table 8.2 Maximum T A at Various
Airflows 102

Table 3.3 Inquiry-Initiated Cache State Table 9.1 D.C. Characteristics 104
Transitions 44 Table 9.2 50 MHz A.C.

Table 3.4 Summary of Cache Flushing
And Invalidation 47

Characteristics 105

Table 9.3 40 MHz A.C.
Table 4.1 Pin Summary 48 Characteristics 107

Table 4.2 ADS# Initiated Bus Cycle Table 10.1 Precision Specification 112
Definitions 49 Table 10.2 FADDP MERGE Update 121

Table 4.3 Memory Data Transfer Cycle
Types 49

Table 4.4 Cycle Length Definition 49

Table 4.5 EADS# Sample Time 52

Table 5.1 Burst Order for Cache Line
Transfers 61

Table 10.3 Register Encoding 122

Table 10.4 REG-Format Opcodes 124

Table 10.5 Core Escape Opcodes 125

Table 10.6 CTRL-Format Opcodes 125

Table 10.7 Floating-PointOpcodes 126

Table 5.2 Pipeline Cycle Table 10.8 DPC Encoding 127

Compatibility 62

8

inter i860™ XP MICROPROCESSOR

1.0 FUNCTIONAL DESCRIPTION

As ~hown by .the block diagram on the front page,
the 1860 XP Microprocessor consists of the following
units:

1. Integer Registers and Core Execution Unit

2. Floating-Point Registers and Control Unit

3. Floating-Point Adder Unit

4. Floating-Point Multiplier Unit

5. Graphics Unit

6. Paging Unit

7. Instruction Cache

8. Data Cache

9. Bus and Cache Control Unit

10. Detached Concurrency Control Unit

The core execution unit controls overall operation of
the i860 XP microprocessor. It executes load, store
integer, bit, I/O, and control-transfer operations, and
fetches instructions for the floating-point unit as well.
A s~t of 32 x 32-bit general-purpose registers are
provided for the manipulation of integer data. Load
and store instructions move 8-, 16-, and 32-bit data
to ~nd from these registers. Its full set of integer,
logical, and control-transfer instructions give the
core unit the ability to execute complete systems
software and applications programs. A trap mecha­
nism provides rapid response to exceptions and ex­
ternal interrupts. Debugging is supported by the abili­
ty to trap on data or instruction reference.

The floating-point hardware is connected to a sepa­
rate set of floating-point registers, which can be ac­
cessed as 16 x 64-bit registers or as 32 x 32-bit
registers. Load and store instructions can also ac­
cess these same registers as 8 x 128-bit registers.
All floating-point and graphics instructions use these
registers as their source and destination operands.

The floating-point control unit controls both the float­
ing-point adder and the floating-point multiplier, issu­
ing instructions, handling all source and result ex­
ceptions, and updating status bits in the floating­
point status register. The adder and multiplier can
operate in parallel, producing up to two results per
clock. The floating-point data types, floating-point in­
structions, and exception handling all support the
IEEE Standard for Binary Floating-Point Arithmetic
(ANSI/IEEE Std 754-1985).

The floating-point adder performs addition subtrac­
tion, comparison, and conversions on 64- ~nd 32-bit
floating-point values. An adder instruction executes
in three clocks; however, in pipelined mode, a new
result is generated every clock.

9

The floating-point multiplier performs floating-point
and integer multiply as well as floating-point recipro­
cal operations on 64- and 32-bit floating-point val­
ues. A multiplier instruction executes in three to four
clocks; however, in pipelined mode, a new result can
be generated every clock for single-precision and
every other clock for double precision.

The graphics unit supports three-dimensional draw­
ing in a graphics frame buffer, with color intensity
shading and hidden surface elimination via the
Z-buffer algorithm. The graphics unit recognizes the
pixel as an 8-, 16-, or 32-bit integer data type. It can
compute individual red, blue, and green color inten­
sity va!ues within a pixel; but it does so with parallel
operations that take advantage of the 64-bit internal
word size and 64-bit external bus. The graphics fea­
tures of the i860 XP microprocessor assume that the
surface of a solid object is drawn with polygon
patches which, like the pieces of a puzzle collec­
tively approximate the shape of the originai object.
The col?r i~tensities of the vertices of the polygon
and their distances from the viewer are known but
the distances and intensities of the other p~ints
must be calculated by interpolation. The graphics in­
structions of the i860 XP microprocessor directly aid
such interpolation.

The paging unit implements protected, paged, virtual
memory. The paging unit uses two four-way set-as­
sociative cache memories called TLBs (Translation
Lookaside Buffers) to perform the translation of logi­
cal address to physical address, and to check for
access violations. The access protection scheme
employs two levels of privilege: user and supervisor.
One TLB supports 4 Kbyte pages, and has 64 en­
tries; the other supports 4 Mbyte pages, and has 16
entries.

The instruction cache is a four-way set-associative
memory of 16 Kbytes, with 32-byte lines. It transfers
up to 64 bits per clock (400 Mbyte/sec at 50 MHz).

The data cache is a four-way set-associative memo­
ry of 16 Kbytes, with 32-byte lines. It transfers up to
128 bits per clock (800 Mbyte/sec at 50 MHz). The
i860 XP microprocessor normally uses write-back
c~ching, i.e. memory writes update the cache (if ap­
plicable) Without necessarily updating memory im­
mediately; however, under both software and hard­
ware control, write-through and write-once policies
can be implemented, or caching can be inhibited.
The caches are transparent to applications soft­
ware.

The bus and cache control unit performs data and
instruction accesses for the core unit. It receives cy­
cle requests and specifications from the core unit
performs the data-cache or instruction-cache mis~
processing, controls TLB translation, and provides

inter i860™ XP MICROPROCESSOR

the interface to the external bus. Its pipelined struc­
ture supports up to three outstanding bus cycles. Its
burst mode transfers data at up to 400 Mbyte/sec at
50 MHz. In multiprocessor systems, it maintains
cache consistency by monitoring bus activity in par­
allel with other CPU functions.

The DCCU (detached concurrency control unit) is a
compatible subset of the external CCU that expe­
dites loop-level parallelism and synchronization in
multiprocessor systems. The DCCU consists of reg­
isters and a counter that allow a single i860 XP mi­
croprocessor to run binary code compiled for a mUl­
tiprocessor system adhering to the PAX parallel ap­
plications binary interface (ASI).

The i860 XP microprocessor may to be used with or
without an external, secondary cache built from
82495XP and 82490XP cache components. An
82495XP and 82490XP cache provides up to 512
Kbytes of high-speed storage for data and instruc­
tion combined. In most cases, an 82495XP and
82490XP cache can provide data to the CPU with
zero wait states. The larger size of an external cache
can provide an increased hit rate when the size or
number of data structures and programs exceeds
the size of the internal caches. In multiprocessor
systems, the external cache serves as local memo­
ry, and can reduce bus traffic. An external cache
also hides the processor from rest of system, which
is a double advantage:

1. The processor can be upgraded without affecting
design of the memory and other subsystems.

2. Slower and less expensive memory and I/O sub­
system designs can be employed without unduly
lowering overall system performance.

Refer to the 82495XP Cache Control/er/82490XP
Cache RAM Data Sheet (Intel Order # 240956) for
more information.

2.0 PROGRAMMING INTERFACE

The programmer-visible aspects of the architecture
of the i860 XP microprocessor include data types,
registers, instructions, and traps.

2.1 Data Types

The i860 XP microprocessor provides operations for
integer and floating-point data. Integer operations
are performed on 32-bit operands with some support
also for 64-bit operands. Load and store instructions
can reference 8-bit, 16-bit, 32-bit, 64-bit, and 128-bit
operands. Floating-point operations are performed
on IEEE-standard 32- and 64-bit formats. Graphics
instructions operate on arrays of 8-, 16-, or 32-bit
pixels.

10

2_1.1 INTEGER

An integer is a 32-bit signed value in standard two's
complement form. A 32-bit integer can represent a
value in the range -2,147,483,648 (-231) to
2,147,483,647 (+ 231 - 1). Arithmetic operations on
8- and 16-bit integers can be performed by sign-ex­
tending the 8- or 16-bit values to 32 bits, then using
the 32-bit operations.

There are also add and subtract instructions that op­
erate on 64-bit long integers.

Load and store instructions may also reference (in
addition to the 32- and 64-bit formats previously
mentioned) 8- and 16-bit items in memory. When an
8- or 16-bit item is loaded into a register, it is con­
verted to an integer by sign-extending the value to
32 bits. When an 8- or 16-bit item is stored from a
register, the corresponding number of low-order bits
of the register are used.

2.1.2 ORDINAL

Arithmetic operations are available for 32-bit ordi­
nals. An ordinal is an unsigned integer. An ordinal
can represent values in the range 0 to
4,294,967,295 (+ 232 - 1).

Also, there are add and subtract instructions that op­
erate on 64-bit ordinals.

2_1.3 SINGLE- AND DOUBLE-PRECISION REAL

Figure 2.1 shows the real number formats. A single­
precision real (also called "single real") data type is
a 32-bit binary floating-point number. Bit 31 is the
sign bit; bits 30 .. 23 are the exponent; and bits 22 .. 0
are the fraction. In accordance with ANSI/IEEE
standard 754, the value of a single-precision real is
defined as follows:

1. If e = 0 and f =1= 0 or e = 255 then generate a
floating-point source-exception trap when en­
countered in a floating-point operation.

2. If 0 < e S; 255, then the value is (-1)S x 1.f x
26 - 127.

3. If e = 0 and f= 0, then the value is signed zero.

A double-precision real (also called "double real")
data type is a 64-bit binary floating-point number. Bit
63 is the sign bit; bits 62 .. 52 are the exponent; and
bits 51 .. 0 are the fraction. In accordance with ANSI/
IEEE standard 754, the value of a double-precision
real is defined as follows:

1. If e = 0 and f =1= 0 or e = 2047, then generate a
floating-point source-exception trap when en­
countered in a floating-point operation.

inter i860™ XP MICROPROCESSOR

2. If 0 < e < 2047, then the value is (-1)S x 1.1 x
2e-1023.

3. If e = 0 and f = 0, then the value is signed zero.

The special values infinity, NaN ("Not a Number"),
indefinite, and denormal generate a trap when en­
countered. The trap handler implements IEEE-stan­
dard results.

A double real value occupies an even/odd pair of
floating-point registers. Bits 31 .. 0 are stored in the
even-numbered floating-point register; bits 63 .. 32
are stored in the next higher odd-numbered floating­
point register.

2.1.4 PIXEL

A pixel may be 8-, 16-, or 32-bits long, depending on
color and intensity resolution requirements. Regard-

Single-Precision Real

240874-2

less of the pixel size, the i860 XP microprocessor
always operates on 64 bits of pixel data at a time.
The pixel data type is used by two kinds of instruc­
tions:

• The selective pixel-store instruction that helps im­
plement hidden surface elimination.

• The pixel add instruction that helps implement
3-D color intensity shading.

To perform color intensity shading efficiently in a va­
riety of applications, the i860 XP microprocessor de­
fines three pixel formats according to Table 2.1.

Figure 2.2 illustrates one way of assigning meaning
to the fields of pixels. These assignments are for
illustration purposes only. The i860 XP microproces­
sor defines only the field sizes, not the specific use
of each field. Other ways of using the fields of pixels
are possible.

Double-Precision Real

fRACTION
L-----------EXPONENT

L-------------SIGN
240874-3

o

Figure 2.1. Real Number Formats

Table 2.1. Pixel Formats

Pixel Bits of Bits of Bits of
Bits of

Size Color 1 Color 2 Color 3
Other

(in bits) Intensity(1) Intensity(1) Intensity(1)
Attribute

(Texture, Color)

8 N (";8) bits of intensity(2) 8-N
16M 6

I
6

I
4 0

32 8 8 8 8

NOTES:
1. The intensity attribute fields may be assigned to colors in any order convenient to the application.
2. With 8-bit pixels, up to 8 bits can be used for intensity; the remaining bits can be used for any other attribute, such as
color or texture. Bits that require interpolation (shading), such as those for intensity, must be the low-order bits of the pixel.

11

intJ i860™ XP MICROPROCESSOR

8-BIT PIXEL \-(__ c_OL_O_R ______ l
'151-1/3121110 987 654 J 2 1 0

IS-BIT PIXEL I RED GREEN BLUE

32-BIT PIXEL
313029282726252-1 '2322 21 20 19 18 17 16 15/-11312 "'0 9 B 765-132 1 0

I RED GREEN BLUE I TEXTURE

240874-4

NOTE:
These aSSignments of specific meanings to the fields of pixels are for illustration only. Only the field sizes are defined,
not the specific use of each field.

Figure 2.2. Pixel Format Example

2.2 Register Set

As Figure 2.3 shows, the i860 XP microprocessor
has the following registers:

• An integer register file

• A floating-point register file

• Control registers psr, epsr, db, dirbase, fir, fsr,
bear, ccr, p3, p2, p1, pO

• Special-purpose registers KR, KI, T, MERGE,
STAT, and NEWCURR

The control registers are accessible only by load
and store control-register instructions; the integer
and floating-point registers are accessed by arithme­
tic operations and load and store instructions. The
special-purpose registers KR, KI, and T are used by
floating-point instructions; MERGE is used by graph­
ics instructions. NEWCURR and STAT are used for
concurrency control; they are accessed by memory
load and store instructions.

2.2.1 INTEGER REGISTER FILE

There are 32 integer registers, each 32 bits wide,
referred to as rO through r31, which are used for
address computation and scalar integer computa­
tions. Register rO always returns zero when read.

12

2.2.2 FLOATING-POINT REGISTER FILE

There are 32 floating-point registers, each 32-bits
wide, referred to as fO through f31, which are used
for floating-point computations. Registers fO and f1
always return zero when read. The floating-point
registers are also used by a set of integer opera­
tions, primarily for graphics computations .

When accessing 64-bit floating-point or integer val­
ues, the i860 XP microprocessor uses an even/odd
pair of registers. When accessing 128-bit values, it
uses an aligned set of four registers (fO, f4, f8, f12,
f16, f20, f24, or f28). The instruction must designate
the lowest register number of the set of registers
containing 64- or 128-bit values. Misaligned register
numbers produce undefined results. The register
with the lowest number contains the least significant
part of the value. For 128-bit values, the register pair
with the lower number contains the value from the
lower memory address; the register pair with the
higher number contains the value from the higher
address.

The 128-bit load and store instructions, along with
the 128-bit data path between the floating-point reg­
isters and the data cache, help to sustain an extraor­
dinarily high rate of computation.

intJ i860™ XP MICROPROCESSOR

240874-5

Figure 2.3. Registers and Data Paths

2.2.3 PROCESSOR STATUS REGISTER

The processor status register (psr) contains miscel­
laneous state information for the current process.
Figure 2.4 shows the format of the psr.

• BR (Break Read) and BW (Break Write) enable a
data access trap when the operand address
matches the address in the db register and a
read or write (respectively) occurs.

• Various instructions set CC (Condition Code) ac­
cording to tests they perform. The branch-on­
condition-code instructions test its value. The bla
instruction sets and tests LCC (Loop Condition
Code).

• 1M (Interrupt Mode), if set, enables external inter­
rupts on the INT pin; disables interrupts on INT if
clear. 1M does not affect parity error interrupts or
interrupts on the BERR pin.

• U (User Mode) is set when the i860 XP micro­
processor is executing in user mode; it is clear
when the i860 XP microprocessor is executing in
supervisor mode. In user mode, writes to some
control registers are inhibited. This bit also con­
trols the memory protection mechanism.

13

• PIM (Previous Interrupt Mode) and PU (Previous
User Mode) save the corresponding status bits
(1M and U) on a trap, because those status bits
are changed when a trap occurs. They are re­
stored into their corresponding status bits when
returning from a trap handler with a branch indi­
rect instruction when a trap flag is set in the psr.

• FT (Floating-Point Trap), DAT (Data Access
Trap), IAT (Instruction Access Trap), IN (Inter­
rupt), and IT (Instruction Trap) are trap flags.
They are set when the corresponding trap condi­
tion occurs. The trap handler examines these bits
(and other trap bits in the epsr) to determine
which condition or conditions have caused the
trap.

• DS (Delayed Switch) is set if a trap occurs during
the instruction before dual-instruction mode is en­
tered or exited. If DS is set and DIM (Dual Instruc­
tion Mode) is clear, the i860 XP microprocessor
switches to dual-instruction mode one instruction
after returning from the trap handler. If DS and
DIM are both set, the i860 XP microprocessor
switches to single-instruction mode one instruc­
tion after returning from the trap handler.

inter i860™ XP MICROPROCESSOR

BREAK READ
BREAK WRITE
CONDITION CODE
LOOP CONDITION CODE
INTERRUPT MODE
PREVIOUS INTERRUPT MODE
USER MODE
PREVIOUS USER MODE
INSTRUCTION TRAP
INTERRUPT
INSTRUCTION ACCESS TRAP
DATA ACCESS TRAP
FLOATING-POINT TRAP
DELA YEO SWITCH
DUAL INSTRUCTION MODE

+
;»30292827262524 '2322 '2120 19 18 17. 1615 1413 12 " 109 87 65-1 32 I 0

I I PS I 11K D D F D I I I P P I L C B B' PM SC ~~ ~ ~ S T A * N
T U U ~ M g C W R;

T
~.

l - KILL NEXT FP INSTRUCTION
(RESERVED)
SHIFT COUNT
PIXEL SIZE
PIXEL MASK

Irll RESERVED BY INTEL CORPORATION
mil CAN BE CHANGED ONLY FROM SUPERVISOR LEVEL

240874-6

Figure 2.4. Processor Status Register

• When a trap occurs, the i860 XP microprocessor
sets DIM if it is executing in dual-instruction
mode; it clears DIM if it is executing in single-in­
struction mode. If DIM is set after returning from a
trap handler, the i860 XP microprocessor re­
sumes execution in dual-instruction mode.

• When KNF (Kill Next Floating-Point Instruction) is
set, the next floating-point instruction is sup­
pressed (except that its dual-instruction mode bit
is interpreted). A trap handler sets KNF if the
trapped floating-point instruction should not be
reexecuted.

• SC (Shift Count) stores the shift count used by
the last right-shift instruction. It controls the num­
ber of shifts executed by the double-shift instruc­
tion.

• PS (Pixel Size) and PM (Pixel Mask) are used by
the pixel-store and other graphics instructions.
The values of PS control pixel size as defined by
Table 2.2. The bits in PM correspond to pixels to
be updated by the pixel-store instruction pst.d.
The low-order bit of PM corresponds to the low­
order pixel of the 64-bit source operand of pst.d.
The number of low-order bits of PM that are actu­
ally used is the number of pixels that fit into
64-bits, which depends upon PS. If a bit of PM is
set, then pst.d stores the corresponding pixel.
Refer also to the pst.d instruction in section 10.

14

Table 2.2. Values of PS

Value
Pixel Size Pixel Size

in Bits in Bytes

00 8 1
01 16 2
10 32 4
11 (undefined) (undefined)

2.2.4 EXTENDED PROCESSOR STATUS
REGISTER

The extended processor status register (epsr) con­
tains additional state information for the current pro­
cess beyond that stored in the psr. Figure 2.5 shows
the format of the epsr.

• The processor type is 2 for the i860 XP micro­
processor.

• The stepping number has a unique value that dis­
tinguishes among different revisions of the proc­
essor.

• IL (Interlock) is set if a trap occurs after a lock
instruction but before the last BRDY # of the load
or store following the subsequent unlock
instruction. IL indicates to the trap handler that a
locked sequence has been interrupted. When the
trap handler finds IL set, it should scan back­
wards for the lock instruction and restart at that
point. The absence of a lock instruction within
30-33 instructions of the trap indicates a pro­
gramming error.

i860™ XP MICROPROCESSOR

INTERLOCK -------------,
WRITE-PROTECT MODE ---------,
PARITY ERROR FLAG • --------,~

1. () 9/29/27/29/25/24/23/22 1201919 7 9 5 4 r3 12 I 110 9 9 7 9 5 4 3 2 I 0

Fib P PAD BOB ~ DCS I B ~lwll STEPPING PROCESSOR I
121 0 I T I I S F E M ~ f f I P I L NUMBER TYPE

'---- BUS ERROR FLAG'
'-----INTERRUPT

'-------DATA CACHE SIZE
~-------PAGE-TABLE BIT MODE

'----------BIG EN DIAN MODE
'-----------OVERFLOW FLAG
~----------BEF OR PEF AT SUPERVISOR LEVEL'
~----------TRAP ON DELAYED INSTRUCTION •
~----------- TRAP ON AUTOINCREMENT

'-------------- TRAP ON PIPELINE USE
~------------- PIPELINE INSTRUCTION

'---------------- STRONG ORDERING MODE

El RESERVED BY INTEL CORPORATION

rn CAN BE WRITTEN ONLY FROM SUPERVISOR LEVEL

I'lilI READ ONLY (NOT WRITABLE BY SOFTWARE)

o RESERVED IN THE 80860XR CPU
240874-7

Figure 2.5. Extended Processor Status Register

o WP (write protect) controls the semantics of the
W bit of page table entries. A clear W bit in either
the directory or the page table entry causes
writes to be trapped. When WP is clear, writes
are trapped in user mode, but not in supervisor
mode. When WP is set, writes are trapped in both
user and supervisor modes.

• PEF (parity error flag) is set by the i860 XP micro­
processor when a parity error trap occurs. As
soon as PEF is set, further parity error and bus
error traps are masked. Software must clear PEF
to reenable such traps. PEF is set at RESET.

• BEF (bus error flag) is set by the i860 XP micro­
processor when the BERR pin is asserted, indi­
cating a bus error. As soon as BEF is set, further
parity error and bus error traps are masked. Soft­
ware must clear BEF to reenable such traps. BEF
is set at RESET.

• INT (Interrupt) is the value of the INT input pin.

• DCS (Data Cache Size) is a read-only field that
tells the size of the on-chip data cache. The num­
ber of bytes actually available is 212 + Des;
therefore, a value of zero indicates 4 Kbytes, one
indicates 8 Kbytes, etc. The value of DCS for the
i860 XP microprocessor is two, which indicates
16 Kbytes.

• PBM (Page-Table Bit Mode) has no effect in
the i860 XP microprocessor. PBM is used by the
i860 XR microprocessor.

• BE (Big Endian) controls the ordering of bytes
within a data item in memory. Normally (i.e. when

15

BE is clear) the i860 XP microprocessor operates
in little endian mode, in which the addressed byte
is the low-order byte. When BE is set (big endian
mode), the low-order three bits of all 32-bit data
load and store addresses are complemented,
then masked to the appropriate boundary for
alignment. This causes the addressed byte to be
the most significant byte. Big endian mode af­
fects not only the memory load and store instruc­
tions but also the Idio, stio, Idint, and scyc
instructions.

o OF (Overflow Flag) is set by adds, addu, subs,
and subu when integer overflow occurs. For
adds and subs, OF is set if the carry from bit 31
is different than the carry from bit 30. For addu,
OF is set if there is a carry from bit 31. For subu,
OF is set if there is no carry from bit 31. Under all
other conditions, it is cleared by these instruc­
tions. OF may be changed by arithmetic instruc­
tions in either user or supervisor mode. It may be
changed by the st.c instruction in supervisor
mode only. OF controls the function of the intovr
instruction. Inside the trap handler, OF may not
be valid for traps other than one caused by
intovr.

• BS (bus or parity error trap in supervisor mode) is
set by the i860 XP microprocessor when a bus or
parity error occurs while the processor is in su­
pervisor mode. The operating system can use
this bit to decide, for example, whether to abort
the process (user mode) or reboot the system
(supervisor mode).

inter i860TM XP MICROPROCESSOR

• DI (trap on delayed instruction) is set by the
i860 XP microprocessor when a trap occurs on a
delayed instruction (the instruction located after a
delayed branch instruction). When DI is set, the
trap handler must restart the interrupted proce­
dure from the branch instruction rather than at
the address in fir.

• AI (trap on autoincrement instruction) is set by
the i860 XP microprocessor when a trap occurs
on an instruction with autoincrement (including
the bla instruction). When AI is set, the trap han­
dier should undo the autoincrement (that is, re­
store src2 to its original value).

• PT (trap on pipeline use) indicates to the i860 XP
microprocessor that a trap should be generated
and PI should be set when it executes an instruc­
tion that uses the floating-point or graphics unit.
Such instructions include all the instructions des­
ignated "Floating-Point Unit" in Table 2.9, plus
the pfld instruction. PT is set and cleared only by
software. It can be used by the trap handler to
avoid unnecessary saving and restoring of the
pipelines (refer to section 2.8). When a trap due
to PT occurs, the floating-point operation has not
started, and the pipelines have not been ad­
vanced. Such a trap also sets the IT bit of psr.

• The behavior of PI (pipeline instruction) depends
on the setting of PT. If PT = 0, the i860 XP mi­
croprocessor sets PI when any pipelined instruc­
tion or pfld is executed. If PT = 1, the processor
sets PI and traps when it decodes any instruction
that uses the pipes, whether scalar or pipelined.
Refer to section 2.8.

• SO (strong ordering) indicates whether the proc­
essor is in strong ordering mode (SO = 1) or weak
ordering mode (SO=O). SO is set if the EWBE#
pin is active (LOW) at RESET. (Refer to the para­
graphs on write cycle reordering in section 5.)

LATE BACK -OFF MODE •
CODE SIZE 8-BITS
REPLACEM ENT BLOCK
REPLACEMENT CONTROL

2.2.5 DATA BREAKPOINT REGISTER

The data breakpoint register (db) is used to gener­
ate a trap when the i860 XP microprocessor access­
es an operand at the virtual address stored in this
register. The trap is enabled by BR and BW in psr.
When comparing, a number of low order bits of the
address are ignored, depending on the size of the
operand. For example, a 16-bit access ignores the
low-order bit of the address when comparing to db;
a 32-bit access ignores the low-order two bits. This
ensures that any access that overlaps the address
contained in the register will generate a trap. The
trap occurs before the register or memory update by
the load or store instruction.

2.2.6 DIRECTORY BASE REGISTER

The directory base register dirbase (shown in Figure
2.6) controls address translation, caching, and bus
options.

• ATE (Address Translation Enable), when set, en­
ables the virtual-address translation algorithm.

• DPS (DRAM Page Size) controls how many bits
to ignore when comparing the current bus-cycle
address with the previous bus-cycle address to
generate the NENE# signal. This feature allows
for higher speeds when using static column or
page-mode DRAMs and consecutive reads and
writes access the same column or page. The
comparison ignores the low-order 12 + DPS bits.
A value of zero is appropriate for one bank of
256K x n RAMs, 1 for 1 M x n RAMS, etc. For
interleaved memory, increase DPS by one for
each power of interleaving-add one for 2-way,
two for 4-way, etc.

+ !
1S0292827262520/2S2221 201918171615 lollS 12 110 9 8 7 6 50/ S 2 I 0

I DIRECTORY TABLE BASE (DTB) RC I C L I B A
RB i B T L

DPS T.
E,

I-CACHE, TLB INVALIDATE t l BUS LOCK
DRAM PAGE SIZE
ADDRESS TRANSLATION ENABLE

[!] RESERVED IN 80860XR CPU
240874-8

Figure 2.6. Directory Base Register

16

i860TM XP MICROPROCESSOR

o When BL (Bus Lock) is set, external bus access­
es are locked. The LOCK# signal is asserted
with the next bus cycle (excluding instruction
fetch and write-back cycles) whose internal bus
request is generated after BL is set. It remains set
on every subsequent bus cycle as long as BL re­
mains set. The LOCK# signal is deasserted on
the next load or store instruction after BL is
cleared. Traps immediately clear BL. The lock
and unlock instructions control the BL bit. The
result of modifying BL with the st.C instruction is
not defined.

o ITI (Cache and TLB Invalidate), when set in the
value that is loaded into dirbase, causes all en­
tries in the instruction cache and virtual tags in
the address-translation cache (TLB) to be invali­
dated. Also invalidates all virtual tags in the data
cache. The ITI bit does not remain set in dirbase.
ITI always appears as zero when reading
dirbase.

o When software sets the LB bit, the i860 XP micro­
processor enters two-clock late back-off mode.
This mode gives two additional clock periods of
decision time to the external logic that may need
to use the BOFF # signal to cancel a bus cycle or
data transfer. If the processor enters one-clock
late back-off mode during RESET via configura­
tion pin strapping, the LB bit has no effect, and it
is impossible to enter two-clock late back-off
mode. Furthermore, software cannot exit two­
clock late back-off mode once it is activated; the
LB bit cannot be cleared except by resetting the
processor.

o When CS8 (Code Size 8-Bit) is set, instruction
cache misses are processed as 8-bit bus cycles.
When this bit is clear, instruction cache misses
are processed as 64-bit bus cycles. This bit can
not be set by software; hardware sets this bit at
initialization time. It can be cleared by software
(one time only) to allow the system to execute out
of 64-bit memory after bootstrapping from 8-bit
EPROM. A nondelayed branch to code in 64-bit
memory should directly follow the st.c (store con­
trol register) instruction that clears CS8, in order
to make the transition from 8-bit to 64-bit memory
occur at the correct time. The branch instruction
must be aligned on a 64-bit boundary.

• RB (Replacement Block) identifies the cache line
(block) to be replaced by cache replacement al­
gorithms. RB conditions the cache flush instruc­
tion flush, which is discussed in Section 10. Ta­
ble 2.3 explains the values of RB.

• RC (Replacement Control) controls cache re­
placement algorithms. Table 2.4 explains the sig­
nificance of the values of RC.

17

• DTB (Directory Table Base) contains the high-or­
der 20 bits of the physical address of the page
directory when address translation is enabled (i.e.
ATE = 1). The low-order 12 bits of the address
are zeros.

Table 2.3. Values of RB

Value
Replace Replace Instruction

TLB Block and Data Cache Block

00 0 0
01 1 1
10 2 2
1 1 3 3

Table 2.4. Values of RC

Value Meaning

00 Selects the normal (random)
replacement algorithm where any block
in the set may be replaced on cache
misses in all caches.

01 Instruction, data, and TLB cache misses
replace the block selected by AB. This
mode is used for cache and TLB testing.

10 Data cache misses replace the block
selected by AB. Instruction and TLB
caches use random replacement. This
mode is used when flushing the data
cache with the flush instruction.

11 Disables data cache replacement.
Instruction and TLB caches use random
replacement.

2.2.7 FAULT INSTRUCTION REGISTER

When a trap occurs, this register contains the ad­
dress of the trapping instruction (not necessarily the
instruction that created the conditions that required
the trap). The fir is a read-only register. In single-in­
struction mode, using a Id.c instruction to read the
fir anytime except the first time after a trap saves in
ides! the address of the Id.c instruction; in dual-in­
struction mode, the address of its floating-point com­
panion (address of the Id.c - 4) is saved.

2.2.8 FLOATING-POINT STATUS REGISTER

The floating-point status register (fsr) contains the
floating-point trap and rounding-mode status for the
current process. Figure 2.7 shows its format.

intJ i860TM XP MICROPROCESSOR

• If FZ (Flush Zero) is clear and underflow occurs,
a result-exception trap is generated. When FZ is
set and underflow occurs, the result is set to zero,
and no trap due to underflow occurs.

Table 2.5. Values of RM

• If TI (Trap Inexact) is clear, inexact results do not
cause a trap. If TI is set, inexact results cause a
trap. The sticky inexact flag (51) is set whenever
an inexact result is produced, regardless of the
setting of TI.

• RM (Rounding Mode) specifies one of the four
rounding modes defined by the IEEE standard.
Given a true result b that cannot be represented
by the target data type, the i860 XP microproces­
sor determines the two representable numbers a
and c that most closely bracket b in value (a <
b < c). The i860 XP microprocessor then rounds
(changes) b to a or c according to the mode se­
lected by RM as defined in Table 2.5. Rounding
introduces an error in the result that is less than
one least-significant bit.

FLUSH ZERO
TRAP
ROUNDING MODE
UPDATE
FLOATING-POINT TRAP
STICKY INEXACT FLAG
SOURCE EXCEPTION
MULTIPLIER UN
MULTIPLIER
MULTIPLIER INEXACT
MULTIPLIER ADD ONE
ADDER UNDERFLOW
ADDER OVERFLOW

-
'2019,

I~I~ I~ ~ AE RR ~ t

Value Rounding Mode

00 Round to
nearest or even

01 Round down
(toward - ex>)

10 Round up
(toward + ex»

11 Chop
(toward zero)

!l
'.1

~Ifi I~I~ IMI~ nl U RM 1m

1 ~ ADDER INEXACT
ADDER ADD ONE
RESULT REGISTER
ADDER EXPONENT
LOAD PIPE RESULT

PRECISION (BOB60XL ONLY)
INTEGER (GRAPHICS) PIPE

RESULT PRECISION

Rounding Action

Closer to b of a or C;
if equally close,
select even number
(the one whose
least significant bit
is zero).

a

c

5mallerin
magnitude of a or c.

MULTIPLIER PIPE RESULT PRECISI ON

IB60Tt.! XR
ONLY

ADDER PIPE RESULT PRECISION

LOAD PIPE RESULT PRECISION

1m RESERVED BY INTEL CORPORATION

Figure 2.7. Floating-Point Status Register

18

240B74-9

infef i860™ XP MICROPROCESSOR

• The U-bit (Update Bit), if set in the value that is
loaded into fsr by a st.e instruction, enables up­
dating of the result-status bits (AE, AA, AI, AO,
AU, MA, MI, MO, and MU) in the first-stage of the
floating-point adder and multiplier pipelines. If this
bit is clear, the result-status bits are unaffected
by a st.e instruction; st.e ignores the correspond­
ing bits in the value that is being loaded. An st.e
always updates fsr bits 21 .. 17 and 8 .. 0 directly.
The U-bit does not remain set; it always appears
as zero when read.

• The FTE (Floating-Point Trap Enable) bit, if clear,
disables all floating-point traps (invalid input oper­
and, overflow, underflow, and inexact result).

• SI (Sticky Inexact) is set when the last-stage re­
sult of either the multiplier or adder is inexact (i.e.
when either AI or MI is set). SI is "sticky" in the
sense that it remains set until reset by software.
AI and MI, on the other hand, can by changed by
the subsequent floating-point instruction.

• SE (Source Exception) is set when one of the
source operands of a floating-point operation is
invalid; it is cleared when all the input operands
are valid. Invalid input operands include denor­
mals, infinities, and all NaNs (both quiet and sig­
naling).

• When read from the fsr, the result-status bits MA,
MI, MO, and MU (Multiplier Add-One, Inexact,
Overflow, and Underflow, respectively) describe
the last-stage result of the multiplier.

When read from the fsr, the result-status bits AA,
AI, AO, AU, and AE (Adder Add-One, Inexact,
Overflow, Underflow, and Exponent, respectively)
describe the last-stage result of the adder. The
high-order three bits of the 11-bit exponent of the
adder result are stored in the AE field.

The Adder Add-One and Multiplier Add-One bits
indicate that the absolute value of the result frac­
tion grew by one least-significant bit due to
rounding. AA and MA are not influenced by the
sign of the result.

After a floating-point operation in a given unit (ad­
der or multiplier), the result-status bits of that unit
are undefined until the point at which result ex­
ceptions are reported.

When written to the fsr with the U-bit set, the
result-status bits are placed into the first stage of
the adder and multiplier pipelines. When the
processor executes pipelined operations, it prop­
agates the result-status bits of a particular unit
(multiplier or adder) one stage for each pipelined
floating-point operation for that unit. When they
reach the last stage, they replace the normal re­
sult-status bits in the fsr and generate traps, if
enabled. When the U-bit is not set, result-status
bits in the word being written to the fsr are ig­
nored.

19

In a floating-point dual-operation instruction (e.g.
add- and-multiply or subtract-and-multiply), both
the multiplier and the adder may set exception
bits. The reSUlt-status bits for a particular unit re­
main set until the next operation that uses that
unit.

• RR (Result Register) specifies which floating­
point register (fO-f31) was the destination register
when a reSUlt-exception trap occurs due to a sca­
lar operation.

• IRP (Integer (Graphics) Pipe Result Precision),
MRP (Multiplier Pipe Result Precision), and ARP
(Adder Pipe Result Precision) aid in restoring
pipeline state after a trap or process switch. Each
defines the precision of the last-stage result in
the corresponding pipeline. One of these bits is
set when the result in the last stage of the corre­
sponding pipeline is double precision; it is cleared
if the result is single precision.

• LRP1 and LRPO (Load Pipe Result Precision) to­
gether define the size of the last-stage result of
the load pipeline. They are encoded as Table 2.6
shows.

Table 2.6. Values of LRP1 and LRPO

LRP1 LRPO pfld Length

0 0 (reserved)
0 1 4 Bytes
1 0 8 Bytes
1 1 16 Bytes

2.2.9 KR, KI, T, AND MERGE REGISTERS

The KR, KI, and T registers are special-purpose reg­
isters used by the dual-operation floating-point in­
structions pfam, pfsm, pfmam, and pfmsm, which
initiate both an adder operation and a multiplier op­
eration. The KR, KI, and T registers can store values
from one dual-operation instruction and supply them
as inputs to subsequent dual-operation instructions.
(Refer to Figure 2.16.)

The MERGE register is used only by the graphics
instructions. The purpose of the MERGE register is
to accumulate (or merge) the results of multiple-ad­
dition operations that use as operands the color-in­
tensity values from pixels or distance values from a
Z -buffer. The accumulated results can then be
stored in one 64-bit operation.

Two multiple-addition instructions and an OR in­
struction use the MERGE register. The addition in­
structions are designed to add interpolation values
to each color-intensity field in an array of pixels or to
each distance value in a Z-buffer.

intJ i860™ XP MICROPROCESSOR

Refer to the instruction descriptions in section 10 for
more information about these registers.

2.2.10 BUS ERROR ADDRESS REGISTER

The bear helps the trap handler determine faulty
memory locations. The i860 XP microprocessor
loads a valid address into bear under these condi­
tions:

• For bus errors, the bear receives the address of
the cycle for which the BERR signal is asserted, if
external hardware synchronizes assertion of
BERR with BRDY # for that cycle.

• For parity errors on a read, the bear receives the
address of the cycle during which the processor
detects the error, if external hardware asserts
PEN # with BRDY # for that cycle.

If external hardware does not meet these conditions,
the contents of the bear are undefined.

A valid address in bear is accurate to 29 bits; that is,
address signals A31-A3 are latched in the high-or­
der 29 bits of bear. At RESET and after every parity
and bus error trap, software must read the bear be­
fore further parity and bus error traps can occur. The
bear is a read-only register.

2.2.11 PRIVILEGED REGISTERS

The registers pO, p1 p2, and p3 are provided for the
operating system to use. They do not affect proces­
sor operation. They can be accessed by the Id.c and
st.c instructions, but they can be written only in su­
pervisor mode. They may be used to store informa­
tion such as the interrupt stack pointer, current user
stack pointer at the beginning of the trap handler,
register values during trap handling, processor ID in
a multiprocessor system, or for any other purpose.

2.2.12 CONCURRENCY CONTROL REGISTER

The concurrency control register (ccr) controls the
operation of the internal Concurrency Control Unit
(CCU), which is described in section 2.5. The ccr
can be written in supervisor mode only, but can be
read in user or supervisor mode. Figure 2.8 shows
the format of the ccr.

DO (Detached Only) bit and CO (CCU On) bit togeth­
er specify the CCU configuration. DO, when set, indi­
cates that there is no external CCU. CO (CCU On)
bit, when set, indicates that the Concurrency Control
Architecture is enabled. Table 2.7 summarizes the
modes defined by CO and DO bits. The reserved
combinations should not be used by software.

If the DCCU is on (CO = DO = 1), the processor in­
tercepts and interprets all memory loads and stores
which are to the CCU address space, which is the
two pages defined by CCUBASE. Loads and stores
to that address range do not go to memory, but to
the DCCU.

Table 2.7. Values of CO and DO

CO DO Mode

0 0 External CCU, or no CCU
0 1 reserved
1 0 reserved
1 1 Internal CCU (DCCU) only

CCUBASE is the virtual address of the memory area
into which the CCU registers are mapped. Software
must set bit 12 to zero, because the CCUBASE must
be aligned on a two page (8 Kbyte) boundary. This is
because an external CCU contains supervisor regis­
ters mapped to the second page.

DETACHED ONLY -------­
CCUON----------

CCUBASE

Ell RESERVED BY INTEL CORPORATION
240874-10

Figure 2.8. Concurrency Control Register

20

i860™ XP MICROPROCESSOR

2.2.13 NEWCURR REGISTER

The NEWCURR register is part of the detached CCU
(concurrency control unit). It a 32·bit counter that
supplies an iteration count for loop execution. (Refer
to section 2.5.)

NEWCURR is architecturally a 64-bit register, but
only the low-order 32 bits are provided in this imple­
mentation. Compiler and operating-system data
structures should provide for a 64-bit size for future
implementation.

2.2.14 STAT REGISTER

The STAT register is part of the detached CCU (con­
currency control unit). As Figure 2.9 shows, it con­
tains the following bits:

InLoop Indicates that the processor is currently
executing a concurrent loop. This bit is
set when a processor starts a concur­
rent, non-nested loop, and it is cleared
when the processor enters serial code
when not nested or idle. It can also be
read or written directly.

Nested Indicates whether the processor is in the
nested state. InLoop is copied into this
bit when starting a nested loop. Other­
wise, it can be read or written directly.

Detached Always contains the value of ccr bit DO.

STAT is architecturally a 64-bit register. Compiler
and operating-system data structures should provide
for a 64-bit size for future implementation.

2.3 Addressing

Memory is addressed in byte units with a paged vir­
tual-address space of 232 bytes. Data and instruc­
tions can be located anywhere in this address
space. Address arithmetic uses 32-bit input values
and produces 32-bit results. The low-order 32 bits of
the result are used in case of overflow.

Normally, multibyte data values are stored in memo­
ry in little endian format, i.e. with the least significant
byte at the lowest memory address. As an option,
the ordering can be dynamically selected by soft­
ware in supervisor mode. The i860 XP microproces­
sor also offers big endian mode, in which the most
significant byte of a data item is at the lowest ad­
dress. Figure 2.10 defines by example how data is
transferred from memory over the bus into a register
in both modes. Big endian and little endian data ar­
eas should not be mixed within a 64-bit data word.
Illustrations of data structures in this data sheet
show data stored in little endian mode, i.e. the right­
most (low-order) byte is at the lowest memory ad­
dress.

Code accesses are always done with little endian
addressing. This implies that instructions appear dif­
ferently than documented here when accessed as
big endian data. Intel Corporation recommends that
disassemblers running in a big end ian system con­
vert instructions that have been read as data back to
little end ian form and present them in the format
documented here.

Page directories and page tables are also accessed
in little end ian mode, regardless of the value of the
BE bit.

Big endian mode affects not only the memory load
and store instructions but also the Idio, stio, Idint,
and scyc instructions.

Alignment requirements are as follows (any violation
results in a data-access trap):

o 128-bit values are aligned on 16-byte boundaries
when referenced in memory (i.e. the four least
significant address bits must be zero).

o 64-bit values are aligned on a-byte boundaries
when referenced in memory (i.e. the three least
significant address bits must be zero).

• 32-bit values are aligned on 4-byte boundaries
when referenced in memory (i.e. the two least
significant address bits must be zero).

lTI!I RESERVED BY INTEL CORPORATION

Ii1il READ ONLY
240874-11

Figure 2.9. Concurrency Status Register

21

intJ i860™ XP MICROPROCESSOR

Main Memory

d63 dO
I HGFEDCBA I

~ ---...
INSTRUCTION LITTLE ENDIAN BIG ENDIAN

Byte Enables
Asserted Dala Bus ill

Byte Enables
Asserted Data Bus r16

(BEn#) d63 dO d31 dO (BEn#) d63 dO d31 dO

d.b O(rO), r16 0

0 ~
7

Q ~
d.b l(rO),rI6 1 6
d.b 2(rO), r16 2 5
d.b 3(rO), r16 3 4
d.b 4(rO),rI6 4 3
d.b 5(rO), r 16 5 2
d.b 6(rO), r 16 6 1
d.b 7(rO), r 16 7 0

d63 dO d31 dO d63 dO d31 dO

d.s O(rO), r 16 1:0 0 ~ 7:6

LSJ [E d.s 2(rO), r 16 3:2 DC DC 5:4 FE FE
Id.s 4(rO), r 16 5:4 FE FE 3:2 DC DC
d.s 6(rO),rI6 7:6 HG HG 1:0 BA BA

d63 dO d31 dO d63 dO d31 dO

Id.l O(rO), r 16 3:0 ~ I DCBAI 7:4 E;] IHGFE I Idol 4(rO), r 16 7:4 HGFE HGFE 3:0 DCBA DCBA
240874-12

NOTE:
64- and 128-bit big end ian accesses are treated the same as little endian accesses

Figure 2.10. Little and Big Endian Memory Transfers

• 16-bit values are aligned on 2-byte boundaries
when referenced in memory (Le. the least signifi­
cant address bit must be zero).

2.4 Virtual Addressing

When address translation is enabled, the processor
maps instruction and data virtual addresses into
physical addresses before referencing memory. This
address transformation is compatible with that of the
Intel 386 and Intel 486 microprocessors and imple­
ments the basic features needed for page-oriented
virtual-memory systems and page-level protection.

The address translation is optional. Address transla­
tion is disabled when the processor is reset. It is
enabled when a store (st.c) to dirbase sets the ATE
bit. The operating system typically does this during
software initialization. Address translation is dis­
abled again when st.c clears the ATE bit. The ATE

22

bit must be set if the operating system is to imple­
ment page-oriented protection or page-oriented vir­
tual memory.

2.4.1 PAGE FRAME

A page frame is a unit of contiguous addresses of
physical main memory. A page is the collection of
data that occupies a page frame when that data is
present in main memory or occupies some location
in secondary storage when there is not sufficient
space in main memory.

The i860 XP microprocessor architecture supports
two sizes of pages and page frames: four Mbytes
and four Kbytes. Four Kbyte page frames begin on
four Kbyte boundaries and are fixed in size. Four
Mbyte page frames begin on four Mbyte boundaries
and are fixed in size. The four Kbyte address trans­
formation is compatible with that of the Intel 486 mi­
croprocessor.

inter i860TM XP MICROPROCESSOR

2.4.2 VIRTUAL ADDRESS

A virtual address refers indirectly to a physical ad­
dress by specifying a page and an offset within that
page. Figure 2.11 shows the formats of virtual ad­
dressess. The format for virtual addresses that refer
to four Mbyte pages is different from that of four
Kbyte pages.

Figure 2.12 shows how the i860 XP microprocessor
converts a virtual address into the physical address
by consulting page tables. The addressing mecha­
nism uses the DIR field as an index into a page di­
rectory. For 4K pages, it uses the PAGE field as an
index into the page table determined by the page
directory and uses the OFFSET field to address a
byte within the page determined by the page table.
For 4M pages, the page directory entry determines
the page address, and the OFFSET field addresses
a byte within that page table.

2.4.3 PAGE TABLES

A page table is simply an array of 32-bit page specifi­
ers. A page table is itself a page, and contains
4 Kbytes of data or at most 1 K 32-bit entries.

At the highest level is a page directory. The page
directory holds up to 1 K entries that address either
page tables of the second level or 4-Mbyte pages.

A page table of the second level addresses up to 1 K
4-Kbyte pages. All the tables addressed by one
page directory, therefore, can address 1 M 4-Kbyte
pages.

Whether 4-Mbyte pages, 4-Kbyte pages, or some
combination of the two are used, one page directory
can cover the entire four gigabyte physical address
space of the i860 XP microprocessor (1 K page di­
rectory entries x 4M page or 1 K page directory en­
tries x 1 K page table entries x 4K page).

fORMAT
fOR

4 KBYTE
PAGE

Sf 302928272625242322 '2120 '9 18 17 16 15 14 13 12 f/1090765432 I 0

fORMAT
fOR

4 1.4 BYTE
PAGE

I

I

DIR I PAGE OffSET ~

3130 29 28 272625242322 ~ •• mO.SUDmnmg8765.32 I 0

DlR I OffSET

240874-13

Figure 2.11. Formats of Virtual Addresses

80860XR AND 80860XP

DIR I PAGE I OffSET I 4K PAGE fRAME

PAGE TABLE
..... PHYS ADDRESS

PAGE DIRECTORY

...... PG TBL ENTRY

--+ 4K DIR ENTRY ,. 41.4 DIR ENTRY

~ "'''' "'''
~ PHYS ADDRESS

DIR OffSET I
80860XP ONLY

240874-14

Figure 2.12. Address Translation

23

i860™ XP MICROPROCESSOR

2.4.4.1 Page Frame Address The physical address of the current page directory is
stored in the DTB field of the dirbase register. Mem­
ory management software has the option of using
one page directory for all processes, one page direc­
tory for each process, or some combination of the
two.

2.4.4 PAGE-TABLE ENTRIES

Page-table entries (PTEs) have one of the formats
shown by Figure 2.13.

The page frame address specifies the physical start­
ing address of a page. In a page directory, the page
frame address is either the address of a page table
or the address of the four Mbyte page frame that
contains the desired memory operand. In a second­
level page table, the page frame address is the ad­
dress of the 4-Kbyte page frame that contains the
desired memory operand.

PAGE

PRESENT ------------------------,
WRITABLE---------------------,
USER---------------------,
ACCESSED ------------------,
PAGE SIZE (0 INDICATES 4 KBYTE) ----------,
AVAILABLE FOR SYSTEMS PROGRAMMER USE ---'!

DIR 2"2,'2;'201918'716151413 '109/8) '6. ("

4~~~~~Ir-___ PA_G_E_F_RA_M_E_A_D_D_RE_S_S_3_1_ .. _1_2 ___ -rA_v_A_IL~I~[I~:II-r0I~JI~'AI9PII*llu~IW~I-{PJ
PAGE '-_______________ _..l... \.l....ll...

PRESENT -----------------------,

USER---------------------,
WRITE-THROUGH -----------------,
CACHE-DISABLE -----------------,
ACCESSED ------------------,
DIRTY -------------------,
PAGE SIZE (1 INDICATES 4 MBYTE) ----------,
AVAILABLE FOR SYSTEMS PROGRAMMER USE ---,

PAGE

DIR~~~~~~~~~~~~~~~~~~~~~~~~~~
ENTRY PAGE FRAME ADDRESS

4 MBYTE 31 .. 22
PAGE

PRESENT -----------------------,
WRIT
USER---------------------,
WRITE-THROUGH ------------------,
CACHE-DISABLE -----------------,
ACCESSED ------------------,
DIRTY --------------------,
AVAILABLE FOR SYSTEMS PROGRAMMER USE ---'!

T:~~~ '31 30 29 28 27 26 25 24 23 22 21 2019 18 16 15 1-1 13 12/11 10 9i 8,

ENTRY I PAGE FRAME ADDRESS 31 .. 12 AVAIL ~llil D I A D ~ U Iw I P
4KBYTEr----------------r--9P~~~~~rt~1 ONLY '-_________________________ __ ..l... ~_>_l....l _"

E] RESERVED BY INTEL CORPORATION (SHOULD BE ZERO)

Figure 2.13. Formats of Page Table Entries

24

240874-15

240874-16

240874-17

i860™ XP MICROPROCESSOR

2.4.4.2 Present Bit

The P (present) bit indicates whether a page table
entry can be used in address translation. P = 1 indi­
cates that the entry can be used. When P = 0 in ei­
ther level of page tables, the entry is not valid for
address translation, and the rest of the entry is avail­
able for software use; none of the other bits in the
entry is tested by the hardware. If P = 0 in either lev­
el of page tables when an attempt is made to use a
page-table entry for address translation, the proces­
sor signals either a data-access fault or an instruc­
tion-access fault. In software systems that support
paged virtual memory, the trap handler can bring the
required page into physical memory.

Note that there is no P bit for the page directory
itself. The page directory may be not-present while
the associated process is suspended, but the oper­
ating system must ensure that the page directory
indicated by the dirbase image associated with the
process is present in physical memory before the
process is dispatched.

2.4.4.3 Writable and User Bits

The W (writable) and U (user) bits are used for page­
level protection, which the i860 XP microprocessor
performs at the same time as address translation.
The concept of privilege for pages is implemented
by assigning each page to one of two levels:

Supervisor level

(U=O)

User level (U = 1)

For the operating system
and other systems software
and related data.

For applications procedures
and data.

The U bit of the psr indicates whether the i860 XP
microprocessor is executing at user or supervisor
level. The i860 XP microprocessor maintains the
U bit of psr as follows:

o The i860 XP microprocessor clears the psr U bit
to indicate supervisor level when a trap occurs
(including when the trap instruction causes the
trap). The prior value of U is copied into PU.

o The i860 XP microprocessor copies the psr
PU bit into the U bit when an indirect branch is
executed and one of the trap bits is set. If PU was
one, the i860 XP microprocessor enters user lev­
el.

With the U bit of psr and the Wand U bits of the
page table entries, the i860 XP microprocessor im­
plements the following protection rules:

• When at user level, a read or write of a supervi­
sor-level page causes a trap.

25

o When at user level, a write to a page whose W bit
is not set causes a trap.

• When at user level, a store (st.c) to certain con­
trol registers is ignored.

o When at user level, privileged instructions (Idio,
stio, scyc, Idint) have no effect.

When the i860 XP microprocessor is executing at
supervisor level, all pages are addressable, but,
when it is executing at user level, only pages that
belong to the user level are addressable.

When the i860 XP microprocessor is executing at
supervisor level, all pages are readable. Whether a
page is writable depends upon the write-protection
mode controlled by WP of epsr:

WP = 0 All pages are writable.

WP = 1 A write to page whose W bit is not set
causes a trap.

When the i860 XP microprocessor is executing at
user level, only pages that belong to user level and
are marked writable are actually writable; pages that
belong to supervisor level are neither readable nor
writable from user level.

2.4.4.4 Write-Through Bit

The i860 XP microprocessor implement both write­
back and write-through caching policies for the on­
chip instruction and data caches. If WT is set, the
write-through policy is applied to data from the cor­
responding page. If WT is clear, the normal write­
back policy is applied to data from the page.

For four-Mbyte pages, the WT bit of the page direc­
tory entry is used. For four-Kbyte pages, only the WT
bit of the second-level page table entry is used; the
WT bit of the page directory entry is not referenced
by the processor, but is reserved.

The value of the WT bit is driven externally on the
PWT pin, so that external caches can employ the
same policy used internally.

2.4.4.5 Cache Disable Bit

If a page's CD (cache disable) bit is set, data from
the page is not placed in the internal instruction or
data caches (regardless of the value of the WT bit).
Clearing CD permits the processor to place data
from the associated page into internal caches.

For four-Mbyte pages, the CD bit of the page direc­
tory entry is used. For four-Kbyte pages, only the CD
bit of the second-level page table entry is used; the
CD bit of the page directory entry is not referenced
by the processor, but is reserved.

infef i860™ XP MICROPROCESSOR

The value of the CD bit is driven externally on the
PCD pin, so that cacheability can be the same in
both internal and external caches.

2.4.4.6 Accessed and Dirty Bits

The A (accessed) and D (dirty) bits provide data
about page usage in both levels of the page tables.

The i860 XP microprocessor sets the A-bit before a
read or write operation to a page. For four-Kbyte
pages, it sets the A-bit of both levels of page tables.

The processor tests the dirty bit before a write, and,
under certain conditions, causes traps. The trap
handler then has the opportunity to maintain appro­
priate values in the dirty bits. For four-Mbyte pages,
the D bit of the page directory entry is used. For four­
Kbyte pages, only the D bit of the second-level page
table entry is used; the D bit of the page directory
entry is not referenced by the processor, but is
reserved. The precise algorithm for using these bits
is specified in section 2.4.5.

An operating system that supports paged virtual
memory can use the D and A bits to determine what
pages to eliminate from physical memory when the
demand for memory exceeds the physical memory
available. The D and A bits are normally initialized to
zero by the operating system. The processor sets
the A bit when a page is accessed either by a read
or write operation. When a data-access fault occurs,
the trap handler sets the D bit if an allowable write is
being performed, then reexecutes the instruction.

The operating system is responsible for coordinating
its updates to the accessed and dirty bits with up­
dates by the CPU and by other processors that may
share the page tables. The i860 XP microprocessor
automatically asserts the LOCK# signal while test­
ing and setting the A bit.

2.4.4.7 Page Tables for Trap Handlers

When paging is enabled (ATE = 1), software that
creates page tables and directories must assure that
A = 1 always in the PTEs and PDEs for the code
pages of the trap handler and the first data page
accessed by the handler. Preallocation of these
pages is required in case a trap occurs during a lock
sequence. Otherwise, recursive traps would be gen­
erated, as the A-bit would need to be set by the
translation hardware, which is a trapping situation in
itself.

26

2.4.4.8 Combining Protection of Both Levels of
Page Tables

For any four-Kbyte page, the protection attributes of
its page directory entry may differ from those of its
page table entry. The i860 XP microprocessor com­
putes the effective protection attributes for a page
by examining the protection attributes in both the
directory and the page table and choosing the more
restrictive of the two.

2.4.5 ADDRESS TRANSLATION ALGORITHM

The following algorithm defines the translation of
each virtual address to a physical address. Let DIR,
PAGE, and OFFSET be the fields of the virtual ad­
dress; let PFA1 and PFA2 be the page frame ad­
dress fields of the first and second level page tables
respectively; DTB is the page directory table base
address stored in the dirbase register.

1. Read the PDE (Page Directory Entry) at the
physical address formed by DTB:DIR:OO.

2. If P in the PDE is zero, generate a data- or in­
struction-access fault.

3. If W in the PDE is zero, the operation is write,
and either the U bit of the PSR is set or WP = 1,
generate a data-access fault.

4. If the U bit in the PDE is zero and U bit in the psr
is set, generate a data- or instruction-access
fault.

5. If A in the PDE is zero and the TLB miss oc­
curred inside a locked sequence, generate a
data or instruction access fault. (The trap allows
software to set A to one and restart the se·
quence. This helps external bus hardware deter­
mine unambiguously what address corresponds
to a locked semaphore.)

6. If bit 7 of the PDE is one (four Mbyte page), and
the operation is write, and D = 0 in the PDE,
generate a data-access fault.

7. If A = 1 in the PDE, continue at step 11. Other­
wise, assert LOCK # .

8. Perform the PDE read as in step 1 and the P, W
and U bit checks as in steps 2 through 4.

9. Write the PDE with A bit set.

10. Deassert LOCK # .

11. If bit 7 of the PDE is one (four Mbyte page), form
the physical address as PFA1:0FFSET, and exit
address translation. In this case, PFA 1 is 10 bits
and OFFSET is 22 bits.

12. The remaining steps are for four Kbyte pages. If
the A-bit in the PDE was zero before translation
began, assert LOCK # .

intJ i860™ XP MICROPROCESSOR

13. Fetch the PTE at the physical address formed
by PFA1:PAGE:00.

14. Perform the po, W-, U-, and A-bit checks as in
steps 2 through 5 with the second-level PTE. If
A = zero in the PTE, and the TLB miss oc­
curred inside a locked sequence, generate a
data or instruction access fault. LOCK # re­
mains active.

15. If the operation is write, and 0 in the PTE is
zero, generate a data access fault.

16. If the A-bit in the POE was already active before
translation began, and the A-bit in the PTE is
already active, go to step 20.

17. If LOCK# is not already active, assert it and
refetch the PTE.

18. Perform the U-, W-, and P-bit checks and A-bit
setting in the PTE as in steps 8 through 9. Do
the locked write update of the PTE to unlock the
bus, even if the A-bit in the PTE is already one.

19. Deassert LOCK #.

20. Form the physical address as PFA2:0FFSET. In
this case, PFA2 is 20 bits and OFFSET is 12
bits.

During translation, the i860 XP microprocessor looks
only in external memory for page directories and
page tables. The data cache is not searched. There­
fore, any code that modifies page directories or
page tables must keep them out of the cache. The
tables should either be kept in noncacheable memo­
ry or in write-through pages or should be flushed
from the cache.

The i860 XP microprocessor expects page directo­
ries and page tables to be in little end ian format. The
operating system must maintain these tables in little
endian format either by setting BE to zero when ma­
nipulating the tables or by complementing bit two of
the 32-bit address when loading or storing entries.

2.4.6 ADDRESS TRANSLATION FAULTS

The address translation fault can be signalled as ei­
ther an instruction access fault or a data-access
fault. The instruction causing the fault can be reexe­
cuted upon returning from the trap handler.

2.5 Detached CCU

The i860 XP microprocessor supports parallel pro­
cessing, where multiple processors work simulta­
neously on different parts of the same problem. The
Concurrency Control Unit (CCU) controls work shar-

27

ing among CPUs, in multiprocessor systems. The
CCU is a VLSI chip that allows multiple processors
to .work together to execute portions of a single pro­
gram in parallel. The CCU performs the iteration as­
signment for loop parallelization. Accesses to the
CCU for synchronization are much faster than ac­
cesses to shared memory semaphores. The CCU is
memory mapped, and its internal registers are ac­
cessed via memory load and store operations.

To take advantage of the parallel architecture, soft­
ware must be compiled by parallelizing compilers
that generate instructions to access the CCU. How­
ever, such instructions cannot run on a system that
does not include a CCU. To allow an application
compiled for parallel execution to run on any system
based on the i860 XP microprocessor, a "Detached
Only" CCU (DCCU, also referred to as "internal
CCU") is implemented in the i860 XP microproces­
sor. The OCCU is a compatible subset of the exter­
nal CCU, consisting of the minimal set of features
required for a single CPU. The DCCU alone neither
increases performance nor concurrency, but does
allow software designed for parallel processing to
run unmodified on a single CPU.

2.5.1 DCCU INITIALIZATION

After reset, the i860 XP microprocessor DCCU is dis­
abled (CO and DO bits in ccr are cleared). To en­
able the DCCU, the CO and DO bits in ccr must be
set by software. Before turning on the CCU, the op­
erating system must invalidate the TLB and flush the
data cache to make sure that they do not contain
data from the CCU pages. The TLB is invalidated by
setting ITI = 1 in the dirbase register. Also, the
flush instruction must be used once per each line of
the data cache to invalidate the physical address of
the cache entry, if the two pages at the CCUBASE
address may have been cached. The flush is un­
needed if page tables or external hardware have
prohibited caching of the CCUBASE pages.

Neither the external CCU nor the DCCU can be ac­
cessed within four instructions after ccr is modified.

2.5.2 DCCU ADDRESSING

The CCU facilities are memory-mapped, manipUlat­
ed by normal load and store instructions. The DCCU
is memory-mapped to a single 4 Kbyte user page.
When the DCCU is active, all accesses to this page
are satisfied by the DCCU, and no external bus cycle
is generated. The address space of two adjacent
pages beginning on an 8 Kbyte boundary is reserved
for the CCU. The first (lower address) page contains

i860™ XP MICROPROCESSOR

locations accessible in user mode (which includes
the DCCU registers), and the second page contains
locations accessible in supervisor mode (used for
external CCU only). The base address of these
pages is specified by the CCUBASE field in ccr. Ac­
cesses to the second page in DCCU-only mode
have no effect on the DCCU, and are treated as
normal memory accesses.

When the DCCU is active, accesses to its address
page use only the virtual address, and no translation
is done on the DCCU access. However, the access­
es to an external CCU go through normal address
translation. The operating system should make sure
that the page table entries for the CCU pages are
set so that no fault occurs during address transla­
tion. If an external CCU is used, the two PTEs for the
CCU should have CD = 1 (caching disabled) and
page frame addresses that match the external hard­
ware addresses of the CCU. Accesses to the DCCU
that cause a TLB miss do not cause the PTE to be
loaded into the TLB.

If the external CCU is used when address translation
is disabled (ATE=O), external hardware must deac­
tivate KEN # for such accesses, to avoid caching
external CCU accesses.

2.5.3 DCCU INTERNALS

The DCCU consists of an address decoder, a 32-bit
counter (NEWCURR), and three bits of state infor­
mation (InLoop, Nested, and Detached). InLoop,
Nested and Detached). InLoop, Nested and De­
tached correspond to bits 0, 1, and 2 respectively of
the external CCU STAT register. The Detached bit
always reflects the value of the DO bit in eer.

Several addresses within the DCCU memory page
are decoded to cause actions to NEWCURR, In­
Loop, and Nested state bits. The CCU register to be
accessed is specified by address bits 11-3. The val­
id CCU addresses are shown in Table 2.8 with their
mnemonics. Accesses to these address may also
have side effects within the DCCU. Refer to the
i86()TM Microprocessor Family Programmer's Refer­
ence Manual for programming information. Loads
from any other addresses within the DCCU memory
page return zero; stores to any other addresses
have no effect. Access to the DCCU by any load or
store instructions other than Id.x and st.x produce
undefined results.

Assemblers should encode address bits 2-0 as zero
for accesses in little-endian mode. However, in big­
end ian mode (epsr BE bit = 1), DCCU accesses
should have address bit 2 active. Thus, software for

28

big-end ian access to the DCCU must differ from lit­
tie-end ian software. That allows an external CCU to
be accessed in both big and little end ian modes.

When reading from the DCCU, the access latency is
the same as reading data from the data cache-the
data is ready for use as a source by the second
instruction after the load. The first instruction after
the load may use the data, but that instruction will
experience a one-clock freeze before the data be­
comes available.

2.6 Instruction Set

Table 2.9 shows the complete set of instructions for
the i860 XP microprocessor, grouped by function
within processing unit. Refer to Section 10 for an
algorithmic definition of each instruction. The in­
struction set of the i860 XP microprocessor is fully
upward compatible with that of the i860 XR micro­
processor, extended in a few ways to better serve
certain application domains. User-level software ap­
plications written for the i860 XR microprocessor will
run unmodified on the i860 XP microprocessor, but
some supervisor code (for example, trap handlers)
may need minor modifications. The i860 XR micro­
processor instruction set has been extended with
the following instructions:

• Idio, stio: liD load and store instructions

• Idint: Load interrupt instruction to perform an in­
terrupt acknowledge cycle and read the interrupt
vector. Used to emulate the Intel 486 interrupt
acknowledge sequence.

• seye: A special-cycle instruction, used to gener­
ate bus cycles that signal invalidation and syn­
chronization of an external cache.

• pfld.q: A pipelined, floating-point load of 128 bits.

Table 2.8. CCU Addresses

Little Big
Mnemonic A11-AB A7-A4 Endian Endian

A3-AO A3-AO

ebr.-J 0000 Oabe bOOO d100
eget 1111 0110 0000 0100
eneweurr 1111 1100 0000 0100
estat 1111 1100 1000 1100
estatei 1111 1101 0000 0100
estatn 1111 1101 1000 1100
eelm 1111 1110 1000 1100
ever 1111 1111 1000 1100

NOTE:
Variable i is a 4-bit index formed by A6-A3. Let its binary
form be represented by the symbols abed.

i860™ XP MICROPROCESSOR

Table 2.9. Instruction Set (1 of 2)

Core Unit Floating-Point Unit

Mnemonic Description Mnemonic Description

Load and Store Instructions Register to Register Move

Id.x Load integer fxfr Transfer F-P to integer register
st.x Store integer
fld.y F-P load

F-P Multiplier Instructions

fst.y F-P store fmul.p F-P multiply

pfld.y Pipelined F-P load pfmul.p Pipelined F-P multiply

pst.d Pixel store pfmul3.dd 3-Stage pipelined F-P multiply

Register to Register Move
fmlow.p F-P multiply low
frcp.p F-P reciprocal

ixfr Transfer integer to F-P register fsqr.p F-P reciprocal square root

Integer Arithmetic Instructions F-P Adder Instructions

addu Add unsigned fadd.p F-P add
adds Add signed pfadd.p Pipelined F-P add
subu Subtract unsigned famov.r F-P adder move
subs Subtract signed pfamov.r Pipelined F-P adder move

Shift Instructions fsub.p F-P subtract
pfsub.p Pipelined F-P subtract

shl Shift left pfgt.p Pipelined greater-than compare
shr Shift right pfeq.p Pipelined equal compare
shra Shift right arithmetic fix.v F-P to integer conversion
shrd Shift right double pfix.v Pipelined F-P to integer conversion

Logical Instructions ftrunc.v F-P to integer truncation

and Logical AND Dual-Operation Instructions

andh Logical AND high pfam.p Pipelined F-P add and multiply
and not Logical AND NOT pfsm.p Pipelined F-P subtract and multiply
andnoth Logical AND NOT high pfmam.p Pipelined F-P multiply with add
or Logical OR pfmsm.p Pipelined F-P multiply with subtract
orh Logical OR high
xor Logical exclusive OR Long Integer Instructions

xorh Logical exclusive OR high fisub.z Long-integer subtract

Control-Transfer Instructions pfisub.z Pipe lined long-integer subtract
fiadd.z Long-integer add

br Branch direct pfiadd.z Pipe lined long-integer add
bri Branch indirect
bc Branch on ee Graphics Instructions

bc.t Branch on ee taken fzchks 16-bit Z-buffer check
bnc Branch on not ee pfzchds Pipelined 16-bit Z-buffer check
bnc.t Branch on not ee taken fzchkl 32-bit Z-buffer check
bte Branch if equal pfzchkl Pipelined 32-bit Z-buffer check
btne Branch if not equal faddp Add with pixel merge
bla Branch on Lee and add pfaddp Pipe lined add with pixel merge
call Subroutine call faddz Add with Z merge
calli Indirect subroutine call pfaddz Pipe lined add with Z merge
intovr Software trap on integer overflow form OR with MERGE register
trap Software trap pform Pipelined OR with MERGE register

29

infef i860™ XP MICROPROCESSOR

Table 2.9. Instruction Set (2 of 2)

Core Unit

Mnemonic Description

I/O Instructions

Idio.x Load 1/0
stio.x Store 1/0
Idint.x Load interrupt vector

System Control Instructions

flush Cache flush
Id.c Load from control register
st.c Store to control register
lock Begin interlocked sequence
unlock End interlocked sequence
scyc.x Special bus cycles

Assembler Pseudo-Operations

Register to Register Move

mov Integer move
fmov.r F·P reg·reg move
pfmov.r Pipelined F·P reg·reg move
nop Core no·operation
fnop F-P no·operation
pfle.p Pipelined F·P less·than or equal

The architecture of the i860 XP microprocessor uses
parallelism to increase the rate at which operations
may be introduced into the unit. Parallelism in the
i860 XP microprocessor is not transparent; rather,
programmers have complete control over parallel­
ism and therefore can achieve maximum perform­
ance for a variety of computational problems.

Clock Instruction Stage 1

1 A A

2 B B

3 C C

4 D D

5 E E

6 F F

2.6.1 PIPELINED AND SCALAR OPERATIONS

One type of parallelism used within the floating·point
unit is "pipelining". The pipelined architecture treats
each operation as a series of more primitive opera­
tions (called "stages") that can be executed in par·
allel. Consider just the floating-point adder as an ex­
ample. Let A represent the operation of the adder.
Let the stages be represented by Al, A2, and A3.
The stages are designed such that Ai+ 1 for one ad­
der instruction can execute in parallel with Ai for the
next adder instruction. Furthermore, each Ai can be
executed in just one clock. The pipelining within the
multiplier and graphics units can be described simi­
larly, except that the number of stages may be differ­
ent.

Figure 2.14 illustrates three·stage pipelining as
found in the floating·point adder (also in the floating·
point multiplier when single·precision input operands
are employed). The central columns of the table rep·
resent the three stages of the pipeline. Each stage
holds intermediate results and also (when intro­
duced into the first stage by software) holds status
information pertaining to those results. The table as·
sumes that the instruction stream consists of a se­
ries of consecutive floating·point instructions, all of
one type (i.e. all adder instructions or all single-preci­
sion multiplier instructions). The instructions are rep­
resented as A, B, etc. The rows of the table repre·
sent the states of the unit at successive clock cy­
cles. Each time a pipelined operation is performed,
the result of the last stage of the pipeline is stored in
the destination register fdest, the pipeline is ad·
vanced one stage, and the input operands of the
operation are transferred to the first stage of the
pipeline.

Pipeline

Stage 2 Stage 3 Result

A

B A

C B A-+ fdestof D

D C B-+ fdestof E

E D C -+ fdestof F

Figure 2.14. Pipelined Instruction Execution

30

inter i860™ XP MICROPROCESSOR

In the i860 XP microprocessor, the number of pipe­
line stages ranges from one to three. A pipelined
operation with a three-stage pipeline stores the re­
sult of the third prior operation. A pipelined operation
with a two-stage pipeline stores the result of the sec­
ond prior operation. A pipelined operation with a
one-stage pipeline stores the result of the prior oper­
ation.

There are four floating-point pipelines: one for the
multiplier, one for the adder, one for the graphics
unit, and one for floating-point loads. The adder
pipeline has three stages. The number of stages in
the multiplier pipeline depends on the precision of
the source operands in the pipeline; it may have two
or three stages. The graphics unit has one stage for
a" precisions. The load pipeline has three stages for
a" precisions.

Changing the FZ (flush zero), RM (rounding mode),
or RR (result register) bits of fsr while there are re­
sults in either the multiplier or adder pipeline produc­
es effects that are not defined.

2.6.1.1 Scalar Mode

In addition to the pipe lined execution mode, the
i860 XP microprocessor also can execute floating­
point instructions in "scalar" mode. Most floating­
point instructions have both pipelined and scalar
variants, distinguished by a bit in the instruction en­
coding. In scalar mode, the floating-point unit does
not start a new operation until the previous floating­
point operation is completed. The scalar operation
passes through a" stages of its pipeline before a
new operation is introduced, and the result is stored
automatically. Scalar mode is used when the next
operation depends on results from the previous few
floating-point operations (or when the compiler or
programmer does not want to deal with pipelining).

2.6.1.2 Pipelining Status Information

Result status information in the fsr consists of the
AA, AI, AD, AU, and AE bits, in the case of the ad­
der, and the MA, MI, MO, and MU bits, in the case of
the multiplier. This information arrives at the fsr via
the pipeline in one of two ways:

1. It is calculated by the last stage of the pipeline.
This is the normal case.

2. It is propagated from the first stage of the pipe­
line. This method is used when restoring the
state of the pipeline after a preemption. When a
store instruction updates the fsr and the the U bit
being written into the fsr is set, the store updates
the result status bits in the first stage of both the
adder and multiplier pipelines. When software

31

changes the result-status bits of the first stage of
a particular unit (multiplier or adder), the updated
result-status bits are propagated one stage for
each pipelined floating-point operation for that
unit. In this case, each stage of the adder and
multiplier pipelines holds its own copy of the rele­
vant bits of the fsr. When they reach the last
stage, they override the normal result-status bits
computed from the last-stage result.

At the next floating-point instruction (or at certain
core instructions), after the result reaches the last
stage, the i860 XP microprocessor traps if any of the
status bits of the fsr indicate exceptions. Note that
the instruction that creates the exceptional condition
is not the instruction at which the trap occurs.

2.6.1.3 Precision in the Pipelines

In pipelined mode, when a floating-point operation is
initiated, the result of an earlier pipelined floating­
point operation is returned. The result precision of
the current instruction applies to the operation being
initiated. The precision of the value stored in {des! is
that which was specified by the instruction that initia­
ted that operation.

If {des! is the same as {src1 or {src2, the value being
stored in {des! is used as the input operand. In this
case, the precision of {des! must be the same as the
source precision.

The multiplier pipeline has two stages when the
source operands are double-precision and three
stages when they are single. This means that a pipe­
lined multiplier operation stores the result of the sec­
ond previous multiplier operation for double-preci­
sion inputs and third previous for single-precision in­
puts (except when changing precisions).

2.6.1.4 Transition between Scalar and Pipelined
Operations

When a scalar operation is executed, it passes
through a" stages of the pipeline; therefore, any un­
stored results in the affected pipeline are lost. To
avoid losing information, the last pipelined opera­
tions before a scalar operation should be dummy
pipelined operations that unload unstored results
from the affected pipeline.

After a scalar operation, the values of a" pipeline
stages of the affected unit (except the last) are un­
defined. No spurious reSUlt-exception traps result
when the undefined values are subsequently stored
by pipelined operations; however, the values should
not be referenced as source operands.

i860™ XP MICROPROCESSOR

For best performance a scalar operation should not
immediately precede a pipelined operation whose
{dest is nonzero.

2.6.1.5 Pipelined Loads

The pfld instruction is optimized for accesses that
miss the data cache and transfer directly from mem­
ory. Therefore, even when there is a data cache hit
a pfld may generate a bus cycle. The data from th~
internal cache is used only if it was modified. Other­
wise, data is taken from the external bus, even if it
resides in the on-board cache.

The pfld FIFO can be extended externally, due to
the facts that a pfld always generates a bus cycle
and that such a cycle can be identified externally by
the value on the CTYP pin. Software written for an
externally-extended pfld pipeline must ensure that it
does not pfld from a location that was modified in
the data cache. When a pfld cache hit to a modified
~ine occur~, the pfld pipeline length used by the
1~60 XP microprocessor is three stages. The modi­
fied data from the cache is put into the internal
three-stage data FIFO, and the third pfld instruction
after the data cache hit will update its {dest register
with the modified data.

2.6.2 DUAL-INSTRUCTION MODE

Another form of parallelism results from the fact that
the i860 XP microprocessor can execute both a

31

op

d.fp-op

floating-point and a core instruction simultaneously.
Such parallel execution is called dual-instruction
mode. When executing in dual-instruction mode, the
instruction sequence consists of 64-bit aligned in­
struction pairs, with a floating-point instruction in the
I~wer 32 bits and a core instruction in the upper 32
bits. Table 2.9 identifies which instructions are exe­
cu~ed by the core unit and which by the floating­
pOint unit.

Programmers specify dual-instruction mode either
by including in the mnemonic of a floating-point in­
struction a d. prefix or by using the Assembler direc­
tives .dual enddual. Both of the specifications
cause the D-bit of floating-point instructions to be
set. If the i860 XP microprocessor is executing in
single~instruc~ion mode and encounters a floating­
pOint Instruction With the D-bit set, one more 32-bit
instruction is executed before dual-mode execution
begins. If the i860 XP microprocessor is executing in
dual-instruction mode and a floating-point instruction
is encountered with a clear D-bit, then one more pair
of instructions is executed before resuming single-in­
struction mode. Figure 2.15 illustrates two variations
of this sequence of events: one for extended se­
quences of dual-instructions and one for a single in­
struction pair.

Note that d.fnop cannot be used to initiate dual in­
struction mode.

o

63 core op or d.fp-op 1
core op d.fp-op

core op d.fp-op

core-op fp op

core-op fp-op

op

op

Enter Dual Instruction Mode

I nitiote Exit from
Dual Instruction Mode

t
Leave Dual Instruction Mode

!
Figure 2.15. Dual-Instruction Mode Transitions (1 of 2)

31

op

d.fp-op

63 fp-op

I core-op fp-op

op

op

1
Temporary
Dual Inrruction Modo

Figure 2.15. Dual-Instruction Mode Transitions (2 of 2)

32

240874-18

240874-19

i860TM XP MICROPROCESSOR

When a 64-bit dual-instruction pair sequentially fol­
lows a delayed branch instruction in dual-instruction
mode, both 32-bit instructions are executed.

2.6.3 DUAL-OPERATION INSTRUCTIONS

Special dual-operation floating-point instructions
(add-and-multiply, subtract-and-multiply) use both
the multiplier and adder units within the floating­
point unit in parallel to efficiently execute such com­
mon tasks as evaluating systems of linear equa­
tions, performing the Fast Fourier Transform (FFT),
and performing graphics transformations.

The instruction classes pfam fsrc1, fsrc2, fdest,
pfmam fsrc1, fsrc2, fdest (add and multiply), pfsm
fsrc1, fsrc2, fdest, and pfmsm fsrc1, fsrc2, fdest
(subtract and multiply) initiate both an adder opera­
tion and a multiplier operation. Six operands are re­
quired, but the instruction format specifies only three
operands; therefore, there are special provisions for
specifying the operands. These special provisions
consist of:

o Three special registers (KR, KI, and T) that can
store values from one dual-operation instruction
and supply them as inputs to subsequent dual-op­
eration instructions.

- The constant registers KR and KI can store
the value of fsrc1 and subsequently supply
that value to the multiplier pipeline in place of
fsrc1.

Single Precision
3-Stage Multiplier and Adder

fsrel fsre2 fdest

__ ~~!:-Ilnl_E~ __
result

ADDER ------------
result

240874-20

- The transfer register T can store the last-stage
result of the multiplier pipeline and subse­
quently supply that value to the adder pipeline
in place of fsrc 1.

• A four-bit data-path control field in the opcode
(opC) that specifies the operands and loading of
the special registers.

1. Operand-1 of the multiplier can be KR, KI, or
fsrc1.

2. Operand-2 of the multiplier can be fsrc2, the
last-stage result of the multiplier pipeline, or
the last-stage result of the adder pipeline.

3. Operand-1 of the adder can be fsrc1, the
T-register, the last-stage result of the multiplier
pipeline, or the last-stage result of the adder
pipeline.

4. Operand-2 of the adder can be fsrc2, the last­
stage result of the multiplier pipeline, or the
last-stage result of the adder pipeline.

Figure 2.16 shows all the possible data paths sur­
rounding the adder and multiplier. The ope field in
these instructions selects different data paths. Sec­
tion 10 shows the various encodings of the ope
field.

Note that the mnemonics pfam.p, pfsm.p,
pfmam.p, and pfmsm.p are never used as such in
the assembly language; these mnemonics are used
here to designate classes of related instructions.
Each value of ope has a unique mnemonic associ­
ated with it.

Double Precision
2-Stage Multiplier, 3-Stage Adder

fsrel fsre2 fdest

- -MUL TlPLlER- -
result

____ ~QQE.R. __ _
result

240874-21

Figure 2.16. Dual-Operation Data Paths

33

intJ i860™ XP MICROPROCESSOR

2.7 Addressing Modes

Data access is limited to load and store instructions.
Memory addresses are computed from two fields of
load and store instructions: isrc1 and isrc2.

1. isrc1 either contains the identifier of a 32-bit inte­
ger register or contains an immediate 16-bit ad­
d ress offset.

2. isrc2 always specifies a register.

Because either isrc1 or isrc2 may be null (zero), a
variety of useful addressing modes result:

offset + register Useful for accessing fields
within a record, where register
points to the beginning of the
record. Useful for accessing
items in a stack frame, where
register is r3, the register used
for pointing to the beginning of
the stack frame.

register + register Useful for two-dimensional ar­
rays or for array access within
the stack frame.

register

offset

Useful as the end result of any
arbitraryaddress calculation.

Absolute address into the first
or last 32K of the logical ad­
dress space.

In addition, the floating-point load and store instruc­
tions may select autoincrement addressing. In this
mode isrc2 is replaced by the sum of isrc1 and isrc2
after performing the load or store. This mode makes
stepping through arrays more efficient, because it
eliminates one address-calculation instruction.

2.8 Traps and Interrupts

Traps are caused by exceptional conditions detect­
ed in programs or by external interrupts. Traps
cause interruption of normal program flow to exe­
cute a special program known as a trap handler.
Traps are divided into the types shown in Table 2.10.

2.8.1 TRAP HANDLER INVOCATION

This section applies to traps other than reset. When
a trap occurs, execution of the current instruction is
aborted. Except for bus error and parity error traps,
the instruction is restartable. The processor takes
the following steps while transferring control to the
trap handler:

1. Copies U (user mode) of the psr into PU (previ­
ous U).

2. Copies 1M (interrupt mode) into PIM (previous
1M).

34

3. Sets U to zero (supervisor mode).

4. Sets 1M to zero (interrupts disabled).

5. If the processor is in dual instruction mode, it sets
DIM; otherwise it clears DIM.

6. If the processor is in single-instruction mode and
the next instruction will be executed in dual-in­
struction mode or if the processor is in dual-in­
struction mode and the next instruction will be
executed in single-instruction mode, OS is set;
otherwise, it is cleared.

7. The appropriate trap type bits in psr and epsr are
set (IT, IN, IAT, OAT, FT, OF, IL, PI, PT, BEF,
PEF). Several bits may be set if the correspond­
ing trap conditions occur simultaneously.

8. An address is placed in the fault instruction regis­
ter (fir) to help locate the trapped instruction. In
single-instruction mode, the address in fir is the
address of the trapped instruction itself. In dual­
instruction mode, the address in fir is that of the
floating-point half of the dual instruction. If an in­
struction or data access fault occurred, the asso­
ciated core instruction is the high-order half of
the dual instruction (fir + 4). In dual-instruction
mode, when a data access fault occurs in the
absence of other trap conditions, the floating­
point half of the dual instruction will already have
been executed (except in the case of the fxfr
instruction).

The processor begins executing the trap handler by
transferring execution to virtual address
OxFFFFFFOO. The trap handler begins execution in
single-instruction mode. The trap handler must ex­
amine the trap-type bits in psr (IT, IN, IAT, OAT, FT)
and epsr (OF, IL, PT, PI, BEF, PEF) to determine the
cause or causes of the trap.

2.8.2 INSTRUCTION FAULT

This fault is caused by any of the following condi­
tions. In all cases the processor sets the IT bit be­
fore entering the trap handler.

1. By the trap instruction. When trap is executed in
dual-instruction mode, the floating-point compan­
ion of the trap instruction is not executed before
the trap is taken.

2. By the intovr instruction. The trap occurs only if
OF in epsr is set when intovr is executed. To
distinguish between cases 1 and 2, the trap han­
dier must examine the instruction addressed by
fir. The trap handler should clear OF before re­
turning. When intovr causes a trap in dual-in­
struction mode, the floating-point companion of
the intovr instruction is completely executed be­
fore the trap is taken.

i860™ XP MICROPROCESSOR

Table 2.10. Types of Traps

Indication Caused by
Type

fsr Condition Instruction psr epsr

Instruction IT OF Software traps trap
Fault intovr

IL Missing unlock Any
PT&PI Pipeline usage Any scalar or pipelined

instruction that uses a
pipeline

Floating FT SE Floating·point source Any M- or A-unit except
Point exception fmlow
Fault

Floating-point result Any M- or A-unit except
exception fmlow, pfgt, and pfeq.

AO,MO overflow Reported on any F-P
AU,MU underflow instruction, pst, fst, and
AI,MI inexact result sometimes fld, pfld, and

ixfr

Instruction IAT Address translation Any
Access Fault exception during instruction

fetch

Data DAT Load/store address Any load/store
Access translation exception
Fault Misaligned operand address Any load/store

Operand address matches Any load/store
db register

Parity IN PEF Parity error on data pins during bus read operation
Error Fault when PEN # pin active

Bus Error Fault IN BEF External interrupt signal on BERR pin

Interrupt IN INT External interrupt signal on INT pin

Reset None PEF, BEF Hardware RESET signal

3. By violation of lock/unlock protocol, explained
below. (Note that trap and intovr should not be
used within a locked sequence; otherwise, it
would be difficult to distinguish between this and
the prior cases.)

There may be other instructions between any of
these steps. The bus is locked after step 2, and re­
mains locked until step 4. Step 4 must follow step 1
by 30 instructions or less; otherwise, an instruction
trap occurs. In case of a trap, IL is also set. If the
load or store instruction of step 2 accesses a previ­
ously unaccessed page (A = 0), the bus is locked
briefly while the A bit is set, unlocked, then locked
again to satisfy the lock instruction and start the
locked sequence.

4. By execution of an instruction that uses a pipeline
when the PT bit of epsr is set. (Refer to section
2.8.2.2.)

2.8.2.1 Lock Protocol

The lock protocol requires the following sequence of
activities:

1. lock

2. Any load or store instruction. For compatibility
with future processor generations, this should be
a load.

3. unlock

4. Any load or store instruction. For compatibility
with future processor generations, this should be
a store.

35

2.8.2.2 Using PT and PI Bits

The PI and PT bits are provided to help the trap
handler avoid unnecessarily saving and restoring the
pipelines (refer to the section "Pipeline Preemption"
in the iS60 Microprocessor Family Programmer's
Reference Manual).

Trap handlers that use PI or PT must initially exam­
ine fsr. If a pending trap exists-that is, if the FTE
(floating-point trap enable) bit is set and any of the

infef i860™ XP MICROPROCESSOR

floating-point exception bits (AI, AO, AU, MI, MO,
MU) is active-the trap handler must save the pipe­
lines. The i860 XP microprocessor, like the i860 XR
microprocessor, may set an fsr exception bit before
the floating-point trap is generated, and this pending
trap relies on information in the pipeline. For exam­
ple, an external interrupt might invoke the trap han­
dier between the scalar floating-point instruction that
produces an overflow and the next floating-point op­
eration-the one that would cause a branch to the
trap handler for the floating-point trap.

If no pending trap exists, the handler can follow ei­
ther of the following two methods:

• Using both PT and PI: Upon invocation, the trap
handler saves the state of PI and PT (in epsr),
but does not save the pipes. If PI is found set
(which means that the interrupted code needs
the state information currently in the floating­
point pipelines), the handler sets PT and clears PI
(with a single st.c to epsr instruction), then con­
tinues with trap processing. If the pipes are used
during trap handling (even by a scalar instruc­
tion), a trap will be generated with IT and PI set
by hardware. The trap handler may then check PI
and PT, and if both are set, clear PT, PI, and IT,
save the pipes, set an indication that they were
saved, and restart execution from the instruction
that caused the trap. At the end of trap handling,
the trap handler restores the pipes if they were
saved, and restores PI and PT to their values be­
fore the trap. This method avoids both saving and
restoring the pipes, assuming that most trap han­
dling sequences do not alter the pipes, and there­
fore a trap for PT = 1 will not happen very often.

• Using only PI: Another approach is to leave
PT = 0, using only the PI bit, which the processor
sets each time a pipe lined instruction or pfld is
executed. The trap handler saves PI, saves the
pipes if PI is set, sets an indication that they were
saved, and clears PI. At the end of trap handling,
the trap handler restores the pipes if they were
saved, and restores PI to its value before the
trap. With this method, the pipes are sometimes
saved and restored unnecessarily if the trap han­
dier code does not use the pipes. This method is
advised when it is known that the trap handler
uses the pipes.

2.8.3 FLOATING-POINT FAULT

The floating-point fault is reported on floating-point
instructions, pst, fst, and sometimes fld, pfld, and
ixfr. The floating-point faults of the i860 XP micro­
processor support the floating-point exceptions de­
fined by the IEEE standard as well as some other
useful classes of exceptions. The i860 XP micro-

36

processor divides these into two classes: source ex­
ceptions and result exceptions. The numerics library
supplied by Intel provides the IEEE standard default
handling for all these exceptions.

2.8.3.1 Source Exception Faults

All exceptional operands, including infinities, denor­
malized numbers and NaNs, cause a floating-point
fault and set SE in the fsr. Source exceptions are
reported on the instruction that initiates the opera­
tion. For pipelined operations, the pipeline is not ad­
vanced.

SE is undefined for faults on fld, pfld, fst. pst, and
ixfr instructions under these conditions:

• In single-instruction mode, always.

• In dual-instruction mode, when the companion in­
struction is not a multiplier or adder operation.

2.8.3.2 Result Exception Faults

The result exceptions include:

• Overflow. The absolute value of the rounded true
result would exceed the largest positive finite
number in the destination format.

• Underflow (when FZ is clear). The absolute value
of the rounded true result would be smaller than
the smallest positive finite number in the destina­
tion format.

e Inexact result (when TI is set). The result is not
exactly representable in the destination format.
For example, the fraction Va cannot be precisely
represented in binary form. This exception occurs
frequently and indicates that some (generally ac­
ceptable) accuracy has been lost.

The point at which a result exception is reported de­
pends upon whether pipelined operations are being
used:

• Scalar (nonpipelined) operations. Result ex­
ceptions are reported on the next floating-point,
fst.x, or pst.x (and sometimes fld, pfld, ixfr) in­
struction after the scalar operation. When a trap
occurs, the last-stage of the affected unit con­
tains the result of the scalar operation.

• Pipelined operations. Result exceptions are re­
ported when the result is in the last stage and the
next floating-point (and sometimes fld, pfld, ixfr)
instruction is executed. When a trap occurs, the
pipeline is not advanced, and the last-stage re­
sults (that caused the trap) remain unchanged.

When no trap occurs (either because FTE is clear or
because no exception occurred), the pipeline is ad-

i860™ XP MICROPROCESSOR

vanced normally by the new floating-point operation.
The result-status bits of the affected unit are unde­
fined until the point that result exceptions are report­
ed. At this point, the last-stage result-status bits (bits
29 .. 22 and 16 .. 9 of the fsr) reflect the values in the
last stages of both the adder and multiplier. For ex­
ample, if the last-stage result in the multiplier has
overflowed and a pfadd is started, a trap occurs and
MO is set.

For scalar operations, the RR bits of fsr report in
which register the result was stored. RR is updated
when the scalar instruction is initiated. The result ex­
ception trap, however, occurs on a subsequent in­
struction. Programmers must prevent intervening
stores to fsr from modifying the RR bits. Prevention
may take one of the following forms:

co Before any store to fsr when a result exception
may be pending, execute a dummy floating-point
operation to trigger the result-exception trap.

• Always read from fsr before storing to it, and
mask updates so that the RR bits are not
changed.

For pipelined operations, RR is cleared; the result is
in the last stage of the pipeline of the appropriate
unit. The trap handler must flush the pipeline, saving
the results and the status bits.

In either pipelined or scalar mode, the trap handler
must compute the result to be returned. In either
case, the result delivered by the CPU has the same
significand as the true result and has an exponent
that is the low-order bits of the true result. The trap
handler can inspect the delivered result, compute
the result appropriate for that instruction (a NaN or
an infinity, for example), and store the computed re­
sult. If RR is nonzero, the trap handler must store
the computed result in the register specified by RR;
if RR is zero, it must load the last stage of the pipe­
line with the computed result instead of the saved
result.

Result exceptions may be reported for both the ad­
der and multiplier at the same time. In this case, the
trap handler should fix up the last stage of both pipe­
lines.

2.8.4 INSTRUCTION ACCESS FAULT

This trap occurs during address translation for in­
struction fetches in any of these cases:

• The address fetched is in a page whose P (pres­
ent) bit in the page table is clear (not present).

37

• The address fetched is in a supervisor mode
page, but the processor is in user mode.

• The address fetched is in a page whose PTE has
A = 0, and the access occurs during a locked
sequence (i.e. between lock and unlock).

Note that several instructions are fetched at one
time, either due to instruction prefetching or to in­
struction caching. Therefore, a trap handler can
change from supervisor to user mode and continue
to execute instructions fetched from a supervisor
page. An instruction access trap occurs only when
the next group of instructions is fetched from a su­
pervisor page (up to eight instructions later). If, in the
meantime, the handler branches to a user page, no
instruction access trap occurs. No protection viola­
tion results, because the processor does not permit
data accesses to supervisor pages while running in
user mode.

2.8.5 DATA ACCESS FAULT

This trap results from an abnormal condition detect­
ed during data operand fetch or store. Such an ex­
ception can be due only to one of the following caus­
es:

.. An attempt is being made to write to a page
whose D (dirty) bit is clear.

.. A memory operand is misaligned (is not located
at an address that is a multiple of the length of
the data).

• The address stored in the debug register is equal
to one of the addresses spanned by the operand.

• The operand is in a not-present page.

.. An attempt is being made from user level to write
to a read-only page or to access a supervisor-lev­
el page.

• The operand is in a page whose PTE has A = 0,
and the access occurs during a locked sequence
(i.e. between lock and unlock).

.. Write protection (determined by epsr bit WP = 1)
is violated in supervisor mode.

When a data access trap is taken on a pipelined
floating-point instruction that occurs immediately af­
ter the load or store instruction that causes the trap,
the destination register of the pipe lined floating-point
instruction may be partially updated. Correct execu­
tion will occur when the trap handler resumes execu­
tion after handling the DAT, because the pipelined
floating-point instruction will then correctly update its
destination register.

inter i860TM XP MICROPROCESSOR

2.8.6 PARITY ERROR TRAP

If the PEN # pin is active and the bus unit detects a
parity error during a bus read operation, the proces­
sor sets PEF and IN, then generates a trap. Further
parity error traps are masked as soon as PEF is set.
To reenable such traps, software must clear PEF
and unfreeze BEAR by executing Id.c bear, rdest.

The interrupted program is not restartable. BS (bus
or parity error trap in supervisor mode) is set by the
i860 XP microprocessor when a parity error occurs
while the processor is in supervisor mode. The oper­
ating system can use this bit to decide, for example,
whether to abort the process (user mode) or reboot
the system (supervisor mode).

2.8.7 BUS ERROR TRAP

When external hardware asserts the BERR pin, the
processor sets BEF (bus error flag) and IN (inter­
rupt), and then traps. Further BERR traps are
masked as soon as BEF is set by hardware. To
reenable such traps, software must clear BEF and
unfreeze BEAR by executing Id.c bear, rdest.

The interrupted program is not restartable. BS (bus
or parity error trap in supervisor mode) is set by the
i860 XP microprocessor when a bus error occurs
while the processor is in supervisor mode. The oper­
ating system can use this bit to decide, for example,
whether to abort the process (user mode) or reboot
the system (supervisor mode).

2.8.8 INTERRUPT TRAP

An interrupt is an event that is signaled from an ex­
ternal source. If the processor is executing with in­
terrupts enabled (1M set in the psr), the processor
sets the interrupt bit IN in the psr and INT in the
epsr, then generates an interrupt trap.

Vectored interrupts are implemented by interrupt
controllers and software. Software can use the Idint
instruction to generate an interrupt acknowledge
(INTA) cycle. This instruction generates a bus cycle
with INT A cycle specifications, and places the data
returned from the bus to the destination register.
Tags are not checked in the data cache for hit, and
the cycle is not burstable.

The Intel 486 microprocessor generates two INTA
cycles as a response to-an interrupt and inserts four
idle clocks in between. To generate an interrupt ac­
knowledge sequence that is compatible with the
Intel 486 microprocessor, the Idint instruction se­
quence documented in section 5.1.4 should be exe­
cuted.

38

2.8.9 RESET TRAP

When the i860 XP microprocessor is reset, execu­
tion begins in single-instruction mode at virtual ad­
dress OxFFFFFFOO. This is the same address as for
other traps. The reset trap can be distinguished from
other traps by the fact that no trap bits are set. The
instruction cache is flushed. The bits OPS, BL, and
ATE in dirbase are cleared. GS8 is initialized by the
value at the INT pin at the end of reset. The read­
only fields of the epsr are set to identify the proces­
sor, while the IL, WP, and PBM bits are cleared. The
bits U, 1M, BR, and BW in psr are cleared, as are the
trap bits FT, OAT, IAT, IN, and IT. All other bits of
psr and all other register contents are undefined.
Refer to Table 2.11 for a summary of these initial
settings.

The software must ensure that the control registers
are properly initialized before performing operations
that depend on the values of those registers.

Reset code must initialize the floating-point pipeline
state to zero with floating-point traps disabled to en­
sure that no spurious floating-point traps are gener­
ated.

After a RESET the i860 XP microprocessor starts
execution at supervisor level (U = 0). Before branch­
ing to the first user-level instruction, the RESET trap
handler or subsequent initialization code has to set
PU and a trap bit. so that an indirect branch instruc­
tion will copy PU to U, thereby changing to user lev­
el.

2.9 Debugging

The i860 XP microprocessor supports debugging
with both data and instruction breakpoints. The fea­
tures of the i860 XP microprocessor architecture
that support debugging include:

• db (data breakpoint register), which permits
specification of a data address that the i860 XP
microprocessor will monitor.

• BR (break read) and BW (break write) bits of the
psr, which enable trapping of either reads or
writes (respectively) to the address in db.

• OAT (data access trap) bit of the psr, which al­
lows the trap handler to determine when a data
breakpoint was the cause of the trap.

• trap instruction that can be used to set break­
points in code. Any number of code breakpoints
can be set. The values of the isrc1 and isrc2
fields help identify which breakpoint has oc­
curred.

• IT (instruction trap) bit of the psr, which allows
the trap handler to determine when a trap
instruction was the cause of the trap.

i860TM XP MICROPROCESSOR

Table 2.11. Register and Cache Values after Reset

Registers

Integer Registers
Floating-Point Registers
psr

epsr

db
dirbase
fir
fsr
bear
p3-pO
ccr
KR, KI, T, MERGE
NEWCURR
STATUS

Caches

Instruction Cache
Data Cache
TLB

3.0 ON-CHIP CACHES

By holding data, instructions, and address transla­
tion on-chip, the caches of the i860 XP microproces­
sor provide the following advantages:

1. Low chip count for the CPU subsystem.

2. Wide processor-to-cache path: 16 bytes for data,
8 bytes for instructions.

3. Fast access without requiring much additional
high-speed design in the system. The fast
(50 MHz) cache-access circuitry is hidden on
chip; the external bus can respond more slowly
without significantly degrading performance.

3.1 Address Translation Caches

The i860 XP microprocessor allows both four Kbyte
and four Mbyte page sizes, and a separate transla­
tion look-aside buffer (TLB) is used to cache ad­
dress translation information for each page size. The
TLB for four-Kbyte pages (Figure 3.1) has 64 entries,
and the TLB for four-Mbyte pages (Figure 3.2) has
16 entries. Both are four-way set associative. The
TLBs function when paging is enabled. When a page
is first accessed, its translation information is saved
in the appropriate TLB along with other page attri­
butes, such as access rights and cacheability. Every
address translation operation looks up the virtual ad­
dress simultaneously in both TLBs. Only if the nec-

Initial Vaule

Undefined
Undefined
U, 1M, BR, BW, FT, DAT, IAT, IN, IT = 0;
others are undefined
IL, WP, PBM, BE, PT = 0; BEF, PEF = 1;
Processor Type, Stepping Number, DCS,
SO are read only; others are undefined
Undefined
DPS, BL, LB, ATE = 0; others are undefined
Undefined
Undefined
Undefined
Undefined
CO, DO = 0; others are undefined
Undefined
Undefined
InLoop, Nested, Detached = 0

Initial Value

All entries invalid
All entries invalid
All entries invalid

39

essary paging information is not in either of the
caches must the paging tables in memory be refer­
enced. Both TLBs employ a random replacement al­
gorithm to choose which of the four ways to replace.

If an instruction's virtual address is found in the in­
struction cache, the virtual address is not translated,
and code access rights are not verified. However,
when an instruction's virtual address is not found in
the cache, address translation does occur, and all
access rights are verified. The virtual addresses of
data are always translated, and access rights are
always verified.

The i860 XP microprocessor requires simultaneous
access to data and instruction caches, but the TLBs
can service only one address translation at a time.
Data address translation has higher priority in the
TLBs than instruction address translation, if both are
required at the same time.

Any data or instruction access fault halts address
translation at once, and the TLB is not updated. If a
directory read causes an access fault, the page ta­
ble is not read at all.

If the paging unit generates a fault (in setting the D
bit for the first write to a nondirty page, for example),
the corresponding entry is deleted from the TLB.
Therefore, software does not need to invalidate the
TLB entry in response to DAT or IAT faults.

inter

NOTES:
D Dirty
CD Cache Disable
WT Write-Through
U User Mode
W Writable
V Validity

NOTES:
D Dirty
CD Cache Disable
WT Write-Through
U User Mode
W Writable
V Validity

i860TM XP MICROPROCESSOR

VIRTUAL ADDRESS
8765-132

-"""."~'~'"

VIRTUAL C W
U

ADDRESS D T

VIRTUAL D C W
ADDRESS D T

VIRTUAL D C W
ADDRESS D T

PAGE FRAME BYTE SELECT

PHYSICAL ADDRESS
240874-22

Figure 3_1_ 4K TLB Organization

VIRTUAL ADDRESS

BYTE SELECT

VIRTUAL
D W

ADDRESS T

VIRTUAL
D

W
ADDRESS T

VIRTUAL C W
ADDRESS D T

PAGE FRAME BYTE SELECT

PHYSICAL ADDRESS
240874-23

Figure 3_2_ 4M TLB Organization

40

inter i860™ XP MICROPROCESSOR

If TLB replacement is initiated during a locked se­
quence generated by the lock instruction and if an­
other locked sequence has to be executed to set the
A-bit, the paging unit generates an access fault. This
helps external hardware implement "locking by ad­
dress" by preventing generation of nested lock se­
quences.

3.2 Internal Instruction and Data
Caches

The i860 XP microprocessor has separate data and
instruction caches on-chip. Having separate caches
for instructions and data allows simultaneous cache
look-up. Up to two instructions and 128 bits of data
can be accessed simultaneously from these caches.
The data and instruction caches hold 16 Kbytes
each. A line can be filled from memory with a four­
transfer burst.

The caches are fully transparent to applications soft­
ware. Snooping (address monitoring) is designed
into both instruction and data caches, to maintain
cache consistency in multiprocessor systems.

Each cache has two sets of tags: virtual tags used
for internal access, and physical tags used for

snooping. Figure 3.3 shows how the bits of both vir­
tual and physical addresses are mapped for cach­
ing. The presence of both virtual and physical tags
supports aliasing, a situation in which the TLBs as­
sociate a single physical address with two or more
virtual addresses.

Any area of memory can be cached, although both
software and hardware can disallow certain areas
from being cached-software by setting the CD bit in
their page table entries; hardware by deasserting the
KEN # signal for bus cycles with addresses that fall
in those areas. (Data reads from the two four-Kbyte
pages pointed to by the CCUBASE field of ccr are
not cached (and the CACHE# signal is inactive), if
the DCCU is activated by setting CO of the ccr
register. This is independent of the value of KEN #.)
When both software and hardware agree that a re­
quested datum is cacheable, the i860 XP microproc­
essor fetches an entire 32-byte line and places it
into the appropriate cache. Cache line fills are gen­
erated only for read misses, not for write misses. A
store that misses the cache does not copy the
missed line into cache from memory, but rather
posts the datum in a write buffer, then sends it to the
external bus when the bus is available.

INTERNALLY GENERATED ADDRESSES
'SIJ0292827262524 2322 21 20191817161514 13 121110 9 8 7 6 5 -I J 2

CACHE TAG SET SELECT

CACHE TAG

EXTERNALLY GENERATED INQUIRY (SNOOP) ADDRESSES
240874-24

Figure 3.3. Cache Address Usage

41

intJ i860™ XP MICROPROCESSOR

3.2.1 DATA CACHE

Figure 3.4 shows the organization of the data cache.
The data cache has two status bits per physical tag
and one validity status bit for the virtual tag. A virtual
tag hit is possible only when the validity bit of the
virtual tag is set and the state of the physical tag is
M, E, or S.

Aliasing support is built into the cache look-up algo­
rithm. Even though a physical line may be aliased,
the processor never enters the line twice in the data
cache. If a virtual address is not found among the
virtual tags in the data cache, a bus cycle is initiated
(except a read is not issued at this time if the bus
pipeline is full) and, at the same time, the physical
tags are searched for the physical address (which by
this time has been retrieved from the paging unit).
For reads, if the physical address is found, the data
returned from the bus is ignored, on-chip data is
used, and the virtual tag is replaced with the new
one. For writes, if a virtual address is not found, the
write is issued on the bus and memory is updated. If
the physical address is found, the line in cache is
updated, and the virtual tag is replaced with the new
one. However, the cache state (M, E, or S) of the
physical-address tag does not change when the vir­
tual tag is overwritten.

Note that the BE (big end ian) bit of epsr has no
influence on data cache behavior. Data items are
kept in cache in exactly the same ordering as in ex­
ternal memory. Byte-shifting operations invoked by
the BE bit upon loads and stores occur at the input
to the register files only.

3.2.1.1 Data Cache Update Policies

To minimize bus traffic, a write-back policy is normal­
ly used. The write-back policy (also called copy-back
and deferred-write) reduces bus traffic by eliminating

VIRTUAL
V Ox18 Ox10 NOTES: TAG

M Modified VIRTUAL
V Ox18 Ox10

E Exclusive TAG

S Shared VIRTUAL
V Ox18 Ox10 TAG

many unnecessary writes. Writes to a line in the
cache are not immediately forwarded to main mem­
ory; instead, they are accumulated in the cache. The
modified cache line is written to main memory only
when its cache space is needed for other data,
when the modified data is needed by another proc­
essor, or when a flush procedure is executed.

Under the write-back policy, a write that hits the
cache utilizes it for two cycles (one to check the
virtual tags for hit, another to update the cache line).
However, the cache pipeline allows successive
store hits to operate at one per cycle. The proces­
sor's internal write buffers can hold two successive
stores, preventing a freeze upon store miss.

Under a write-through policy, a write request to a line
in the cache triggers updates to both cache and
main memory. An address decoder, for example,
can select the write-through policy for writes to video
RAM, where it is necessary that writes be seen on
the video display. Software, by setting the WT page­
table bit, can select the write-through policy for spe­
cific areas of memory-those that are used for inter­
processor message queues, for example.

A write-once policy combines write-through with
write-back. Write-through is employed for the first
write to a cache line, while subsequent writes to the
same line follow the write-back policy. Write-once is
valuable in multiprocessor systems to maintain
cache consistency with the least possible bus traffic.
The first write broadcasts to other processor nodes
the fact that a line has been modified. Write-once is
also used if a second-level cache is attached to the
i860 XP microprocessor to maintain consistency be­
tween the first- and second-level caches.

The external system can dynamically change the up­
date policy (write-back, write-through, write-once) of
the i860 XP microprocessor with each cache line.

8 0
PHYSICAL MESI

TAG
I Invalid ~32-BYTE LlNES--l
V Validity 240874-25

Figure 3.4. Data Cache Organization

42

inter i860™ XP MICROPROCESSOR

3.2.2 INSTRUCTION CACHE

Figure 3.5 shows the organization of the instruction
cache. The instruction cache has one validity bit that
is common to both virtual and physical tags. Aliasing
support for instructions consists not simply of chang­
ing the virtual tag, but rather fetching a line whenev­
er a virtual tag miss occurs. If the physical address
already exists in the instruction cache, its line and its
tags are overwritten. So, even though a physical line
may be aliased, the processor never enters the line
twice in the instruction cache.

3.2.3 CACHE REPLACEMENT ALGORITHM

The data, instruction, and address-translation
caches all use similar algorithms to choose which of
the four cache blocks will be overwritten when a
miss causes a line fetch.

First, the first invalid line (if any) in a set of four is
replaced (in the order 0, 1, 2, 3). When there are no
more invalid lines in a set, a pseudorandom replace­
ment algorithm chooses which valid lines to replace.
The algorithm is controlled by counters inside the
chip. RESET initializes these counters to zero, so
that the "randomness" is deterministic and two
i860 XP CPUs executing the same code on identical
boards have exactly the same series of cache hits,
misses, and replacements.

r OxlO

'" ,.. VIRTUAL
"" Oxl0
~ TAG

'" VIRTUAL
=> TAG OxlO

1 VIRTUAL
Oxl0 TAG

NOTE:
V Validity

Setting ITI to invalidate the caches and TLSs also
resets the counters used to select the set used for
cache line replacement. This brings the i860 XP mi­
croprocessor cache-replacement mechanism to a
known state without resetting the whole chip.

When the flush instruction is used to write back
modified lines in the data cache, the flush routine
must alter the RC (replacement control) field of
dirbase. Therefore, replacement is not random. In­
stead, the block (or "way") replaced is the one se­
lected by the RS (replacement block) field of
dirbase.

3.2.4 CACHE CONSISTENCY PROTOCOL

The i860™ XP Microprocessor implements cache
consistency via its use of a MESI (Modified, Exclu­
sive, Shared, Invalid) protocol.

3.2.4.1 Data Cache States

Each line of the data cache of the i860 XP micro­
processor can be in one of the states defined in Ta­
ble 3.1. Note that the instruction cache of the
i860 XP only implements the "SI" part of the MESI
protocol, because the instruction cache is not writa­
ble.

PHYSICAL
TAG

PHYSICAL
TAG

PHYSICAL
TAG

240874-26

Figure 3.5. Instruction Cache Organization

Table 3.1. MESI Cache Line States

M E S I
Cache Line State: Modified Exclusive Shared Invalid

This cache line is valid? Yes Yes Yes No

The memory copy is out of date . .. valid ... valid -
Copies exist in other caches? No No Maybe Maybe

A write to this line does not go ... does not go ... goes to bus . .. goes
to bus to bus and updates directly to bus

the cache

43

inter i860™ XP MICROPROCESSOR

Table 3.2. Internally Initiated Cache State Transitions

State Next State after Read Next State after Write'

I If WB/WT# = 1; E; else S Write-through
Line fill I

S S Write·through
If WB/WT# = 1, E; else S

E E M
M M M

NOTE:
, "Write" does not include write·backs due to replacement. Those can only cause an M to I

transition.

The state of a cache line can change as the result of
either internal or external activity related to that line.
Table 3.2 presents the line state transitions that re­
sult from internal activity of the i860 XP microproces­
sor in the data cache.

External cache-consistency support is provided
through inquiry cycles. Inquiry cycles are initiated by
other processors in a multiprocessor system to
check whether an address is cached in the internal
cache of the i860 XP microprocessor. Table 3.3
shows the line state transitions initiated by inquiry
cycles.

State

I
S
E
M

Table 3.3. Inquiry-Initiated
Cache State Transitions

INV=O INV=1

I I
S I
S I

S; write back the line I; write back the line

3.2.4.2 Write-Once Policy

A write-once cache policy can be implemented
through use of the WB/WT # input pin. The signal
on this pin is sampled in both read and write cycles.
A read miss causes a line to enter either S or E after
the line fill. If WB/WT # is sampled LOW at the time
of NA # or the first BRDY # activation, the line en­
ters S state, forcing the next write hit to this line to
show up on the bus. If WB/WT# is sampled HIGH,
the line enters E state. In write-through cycles, the
state of a line is changed from S to E when WBI
WT# is sampled HIGH, so that subsequent writes
will not be written through to the bus. Thus, if this
signal is driven LOW on read cycles and HIGH on
write cycles, a write-once cache policy is implement­
ed. The easiest way to implement write-once (in sys­
tems not using the 82495XP cache controller) is to
tie this pin to the W IR # output of the processor.

44

If the WT bit in the page table entry is set, the
i860 XP microprocessor ignores the WB/WT # sig­
nal for the cycles that hit that page and always per­
forms a write-through. In other words, hardware can­
not override software's selection of the write­
through policy.

3.2.4.3 Locked Access

Locked accesses are those data loads and stores
that occur after a lock instruction up to and including
the first load or store after the corresponding unlock
instruction.

State transitions for locked accesses differ from
those in Table 3.2 in ways that guarantee that
locked accesses are seen by all processors in the
system. Any locked load or store generates both a
cache look-up and an external bus cycle, regardless
of cache hit or miss.

1. In a locked read:

a. If the required data is not found in the cache,
the data from the bus is used. The data is
placed in the cache if it is cacheable and
KEN # is also asserted.

b. If the required data is found in an unmodified
(E or S) state, the data from the bus is used.

c. If the data is found in the cache in a modified
(M) state, the cached data is used, and the
bus data is ignored, as long as no inquiry
write-back occurs before the BRDY # of the
bus cycle. If, however, an intervening inquiry
write-back changes the line to S or I state, the
bus data is used.

2. A locked store is forced through the cache and
issued on the bus. No more data accesses occur
until the last BRDY # for the store. If the store
hits the internal cache, the cache update is done
after the last BRDY # from the bus. Note that the
line written by a locked store remains in M state
in spite of the write-through to the bus, because
the length of the write-through is less than the
line size of 32 bytes.

i860™ XP MICROPROCESSOR

Locked accesses are totally serializing in the sense
that:

1. All loads and stores that precede the lock
instruction are issued on the bus (if they miss the
cache) before the first locked access is issued.
The locked access can be issued before the last
BRDY # of the prior cycle if NA # is activated in
response to the prior cycle. .

2. No load or store after the last locked access is
issued internally or on the bus until the final
BRDY # for all locked accesses.

To maximize performance, instruction fetches during
the locked sequence are not serializing. When NA #
invokes pipelining, instruction fetches may be issued
while locked data fetches or stores remain on the
bus.

3.3 Internal Cache Consistency

Both the instruction and the data caches can be
snooped by externally generated inquiry cycles, and
the result of the look-up is presented on the HIT#
and HITM # output pins. These inquiry cycles help
maintain consistency with caches of other proces­
sors. However, software must take care not to cre­
ate inconsistencies such as the following among the
internal caches (including the TLBs):

1. Changing the address space while leaving virtual­
address tags from the prior space in the instruc­
tion or data cache.

2. Changing instructions in memory (or in the data
cache) without changing them in the instruction
cache.

3. Changing page table information in memory (or in
the data cache) without changing the same infor­
mation in the TLBs.

Under certain circumstances, such as 1/0 refer­
ences, self-modifying code, page-table updates, or
shared data in a multiprocessing system, it is neces­
sary to bypass, to invalidate, or to flush the caches.
The i860 XP microprocessor provides the following
methods for doing this:

• Bypassing Instruction and Data Caches.

1. If de asserted during cache-miss processing,
the KEN # pin disables instruction and data
caching of the referenced data.

2. If the CD bit of the associated page table is
set, caching of a page is disabled. The value of
the CD bit is output on the PCD pin for use by
external caches.

45

3. If the WT bit of the associated page table is
set, caching is not disabled, but writes pass
through the cache. The value of the WT bit is
output on the PWT pin for use by external
caches. (Note that WT does not affect policy
for the instruction cache, because the instruc­
tion cache is not writable. However, when an
instruction from a page having the WT bit of
the PTE set is placed in the data cache, the
write-through policy applies just as for a data
page.)

• Invalidating Cache Entries. Storing to the
dirbase register with the ITI bit set invalidates
each line of the instruction and address-transla­
tion caches. In the data cache, it invalidates the
virtual tags, but not the physical tags.

• Flushing the Data Cache. The data cache is
flushed by a software routine that uses the flush
instruction. The flush instruction speeds up write­
backs. The same effect (writing back modified
lines) can be achieved with the load instruction
Id.l, but this would be more than twice as slow­
the load must first do four bus transfers to get
new data, then write back the modified line. The
flush instruction causes the write-backs without
requiring a read from external memory to replace
the modified line.

3.3.1 ADDRESS SPACE CONSISTENCY

In a multitasking virtual-address system, the operat­
ing system may intentionally employ aliasing, where
several processes use the same physical memory
while accessing it with different virtual addresses.
When the operating system switches control from
one process to the next, it changes the DTB field of
the dirbase to point to a different page directory that
defines the new address space. When this happens,
all caches must be invalidated: the TLBs, so that the
new page directory is read into the TLBs; the data
and instruction caches, so that virtual addresses
from the new space don't accidently match cached
virtual addresses from the old space.

The caches are invalidated by setting the ITI bit
when writing to dirbase. Invalidating the instruction
cache invalidates both the physical and the virtual
tags, because the instruction cache has one status
(valid) bit, which is common to both physical and
virtual tags. In the data cache, setting ITI does not
invalidate physical tags. However, any modified lines
will eventually be written back when their space is
required for lines from the new address space or
when external agents on the bus express a need for
the modified data via inquiry cycles.

i860™ XP MICROPROCESSOR

The caches are invalidated by setting the ITI bit
when writing to dirbase. Note, however, that the op­
erating system code that flushes the caches must
be present during the flushing. Typically this code
has the same virtual address for all processes.

NOTE:
The mapping of the page(s) containing the cur­
rently executing instruction, the next six in­
structions, and any data referenced by these
instructions should not be different in the new
page tables when the OTB is changed.

Enabling or disabling address translation (via the
ATE bit) is similar to changing the OTB, in that the
address mapping is changed. The virtual tags in the
data and instruction cache must be invalidated prior
to changing ATE.

3.3.2 INSTRUCTION CACHE CONSISTENCY

When software modifies a page containing instruc­
tions (as when a debugger replaces an instruction
with the trap instruction to set a breakpoint), the in­
struction cache can become inconsistent for any of
the following reasons:

• Because the data cache uses a write-back policy,
changes to cached instruction pages do not im­
mediately update memory.

• Changes to instructions do not automatically up­
date the instruction cache.

• Instruction cache misses are not checked in the
data cache.

Software must ensure that modified lines containing
instructions are written to main memory before the
instruction cache tries to read them. There are two
methods for this:

1. Flush the data cache using the flush instruction.
Note that to make the instruction cache consist­
ent with the data cache, the data cache must be
flushed before invalidating the instruction cache.

2. Mark all instruction pages as WT (write through)
so that modifications to instructions are immedi­
ately written to memory. This is the better alterna­
tive.

In either case, the instruction cache must be invali­
dated (by a store to dirbase with ITI set) after a
code page has been modified, so that the updated
instructions will be read from memory.

46

3.3.3 PAGE TABLE CONSISTENCY

When the operating system modifies page tables or
directories, the TLBs can become inconsistent with
the modifications for any of the following reasons:

• Because the data cache uses a write-back policy,
updates to cached page tables do not immediate­
ly update memory.

• Changes to page tables do not automatically up­
date the TLB.

• The i860 XP microprocessor searches only exter­
nal memory for page directories and page tables
in the translation process. The data cache is not
searched. (Data is not transferred from the data
cache to the TLBs during TLB replacement cy­
cles.)

Software must ensure that modified lines containing
page table entries are written to main memory be­
fore the paging unit tries to read them. There are two
methods for this:

1. Keep page tables and directories in noncachea­
ble memory or write-through pages.

2. Flush the data cache using the flush instruction.

The processor itself invalidates the affected TLB en­
try, when a trap is triggered by the need to set the A
or 0 bit. In other cases, after a page table or directo­
ry has been modified, software must invalidate the
TLBs (by a store to dirbase with ITI set) so that the
updated entries will be read from memory.

The data cache does not need flushing if the pro­
gram is modifying only the P, U, W, A, or 0 bits of a
PTE (as long as the page frame address is not
changed and the PTE itself is not in the data cache.)
The i860 XP CPU does not use the TLB for cache
line write-backs; it writes to the address in the physi­
cal tag.

Thus, a trap handler can service a data access trap
for O-bit zero merely by setting 0 = 1. When setting
the P or A bits, there is no need to invalidate or flush
any caches, because the processor does not load
entries into the TLB that have P = 0 or A = O.

Two potential TLB inconsistencies are avoided auto­
matically by the i860 XP microprocessor.

1. If the paging unit issues a write cycle (to set the A
bit, for example), this cycle is snooped by the
data cache for invalidation.

2. Any TLB entry that causes a OAT or IAT is auto­
matically invalidated.

inter i860TM XP MICROPROCESSOR

3.3.4 CONSISTENCY OF CACHEABILITY

Normally, an operating system ensures that the
page attributes (CD and WT) of a memory access
are consistent with the cache contents. However,
the operating system can fail to maintain consisten­
cy by the following actions:

• Changing the CD or WT bits while related lines
are in the cache.

• Aliasing a physical address with virtual addresses
that have differing CD or WT bits.

In these situations, the i860 XP microprocessor
gives priority to cache state. For example:

1. If a read or write request is to a noncacheable
page (CD = 1), but the data (or code) is found in
cache, the request is satisfied by the cache, and
no external cycle is issued.

2. If the physical address of a read or write request
hits in the cache but the virtual address misses,
the virtual tag is overwritten by the new virtual
address, but the CD bit of the new virtual address
is ignored.

3. If a store to a write-through page (WT= 1) hits a
cache line in E or M state, no write-through cycle
is issued; only the cache is updated.

3.3.5 LOAD PIPE CONSISTENCY

The pfld (pipelined floating-point load) instruction fa­
cilitates transfer of data from memory to registers,
and avoids placing data in the data cache. When
large amounts of data are used, pfld allows the pro­
grammer to keep rarely-used data out of the cache.
The i860 XP microprocessor ensures consistency
between cached data and pfld references. It checks
the data cache and, upon a data cache hit to a modi­
fied line, forwards data from cache into the three­
stage pfld pipeline.

47

3.3.6 SUMMARY

Table 3.4 summarizes flush and invalidation require­
ments, assuming that WT is set in the PTEs of in­
struction and page-table pages:

Table 3.4. Summary of
Cache Flushing And Invalidation

Flush Invalidate
Action Data Caches

Cache (ITI)

Setting A No No
Setting P No No
Clearing P No Yes
Setting 0 No No
Changing protection (U,w) No Yes
Setting CD or WT Yes Yes
Changing PFA in a used(l) PTE No Yes
Changing dirbase DTB No Yes
Changing dirbase ATE No Yes
Changing epsr WP No No
Setting ccr DO and CO Yes(2) Yes(2)
Modifying code No(3) Yes

NOTES:
1. "Used" means a PTE that at some past time had P set.
2. If data from either of the CCU pages could have been
cached.
3. Assuming all instructions and their page directories and
page tables are in write-through or noncacheable pages.

4.0 HARDWARE INTERFACE

In the following description of hardware interface,
the # symbol at the end of a signal name indicates
that the active or asserted state occurs when the
signal is at a low Voltage. When no # is present after
the signal name, the signal is asserted when at the
high voltage level.

4.1 Pins Overview

Figure 4.1 identifies functional groupings of the pins.
Table 4.1 lists every pin by its identifier, gives a brief
description of its function, and lists some of its char­
acteristics. All output pins are tristate, except BREQ,
HIT#, HITM#, HLDA, LOCK#, and PCHK#.

intJ i860™ XP MICROPROCESSOR

Table 4.1. Pin Summary

Pin Active When Floated Internal
10 Name Level Synch/Asynch Resistor

Output Pins

ADS# Address Status LOW HLDA, clock after BOFF #
BE7#-BEO# Byte Enable LOW HLDA, BOFF#
BREQ Bus Request HIGH
CACHE# Cache LOW HLDA,BOFF#
CTYP Cycle Type HIGH HlDA, BOFF#
D/C# Data/Code HLDA, BOFF#
HIT# Snoop Hit Cache LOW
HITM# Snoop Hit Modified Line LOW
HLDA Hold Acknowledge HIGH
KBO,KB1 Cache Block HIGH HLDA, BOFF#
LEN Length HIGH HLDA, BOFF#
LOCK# Address Lock LOW
M/IO# Memory/IO HLDA, BOFF#
NENE# Next Near LOW HLDA, BOFF#
PCD Page Cache Disable HIGH HLDA, BOFF#
PCHK# Parity Check lOW
PCYC Page Cycle HIGH HLDA, BOFF#
PWT Page Write·Through HIGH HLDA,BOFF#
TOO Test Output Nonscan Mode
W/R# Write/Read HLDA, BOFF#

Input/Output Pins

A31-A3 Address HIGH AHOLD,HLDA,BOFF#
D63-DO Data HIGH HLDA, BOFF#
DP7-DPO Data Parity HIGH HLDA, BOFF#

Input Pins

AHOlD Address Hold HIGH Synch
BERR Bus Error HIGH Synch
BOFF# Back-Off LOW Synch
RSRVD Intel Reserved
BRDY# Burst Ready LOW Synch
BYPASS# Intel Reserved LOW
ClK Clock
RESET Reset HIGH Asynch
EADS# External Address Status LOW Synch
EWBE# External Write Buffer Empty LOW Synch
FLlNE# Flush Line LOW Synch
HOLD Bus Hold HIGH Synch
INT/CS8 Interrupt/Code-Size 8 HIGH Asynch
INV Invalidate HIGH Synch
KEN# Cache Enable LOW Synch
NA# Next Address LOW Synch
PEN# Parity Enable LOW Synch
TCK Test Clock
TDI Test Data Input Synch Pull-up
TMS Test Mode Select Synch Pull-up
TRST# Test Reset LOW Asynch Pull-up
WB/WT# Write-Back/Write-Through Synch
SPARE Intel Reserved

48

i860TM XP MICROPROCESSOR

The pins D/C#, W/R#, and MIIO# define bus cy­
cle types. They are summarized in Table 4.2. For
data transfers to or from memory, two additional
pins, CTYP and PCYC, provide further information
regarding the type of transfer, as shown in Table 4.3.
Table 4.4 shows how the LEN and CACHE# pins
determine cycle length.

Table 4.2. ADS# Initiated Bus Cycle Definitions

M/IO# D/C# W/R# Bus Cycle Initiated

0 0 0 Interrupt Acknowledge
0 0 1 Special Cycle
0 1 0 1/0 Read
0 1 1 110 Write
1 0 0 Code Read
1 0 1 Reserved
1 1 0 Memory Read
1 1 1 Memory Write

Table 4.3. Memory Data Transfer Cycle Types

PCYC CTYP W/R# Data Transfer Type

0 0 0 Normal read

A " < 063-00
~ I'

A. j,. < DP7-DPO

~N# "

BRDY#
NA#

KEN#

WB/WT#
AHOlD
EADS#

INV
FLlNE#

HOLD
BOFF#

INT/csa

I " A31 A3
DATA ADDRESS II ~

~
BE7#-B£o#)

PARITY
t PCHK#

~
: ADS#

"', lEN
CYCLE __ CACHE#

CONTROL ~ lOCK#
, NENE#

§ PWT
CACHE

, PCD CONTROL
HIT#

HITM#
CACHE ., KBO

CONSISTENCY
KB1

,~ BREQ
BUS

" HlDA ARBITRATION
, M/IO#

D C#
CYCLE W/R#

0 1 0 Pipelined load (pfld instruction)
BERR INTERRUPT

DEFINITION" PCYC

1 0 0 Page directory read
1 1 0 Page table read
0 0 1 Write-through (S-state hit)
0 1 1 Store miss or write-back
1 0 1 Page directory update
1 1 1 Page table update

NOTE:
PGYG and CTYP are defined only for memory data transfer
cycles (D/C# = 1, M/IO# = 1)

,
CTYP

TCK
~ TOI

TMS
BOUNDARY ,- TOO

SCAN
TRST#

RESET

ClK
EWBE#

BYPASS#

240874-27

Figure 4.1. Signal Grouping

Table 4.4. Cycle Length Definition

W/R# LEN CACHE# KEN# Cycle Description

0 0 1 - Noncacheable** 64-bit (or less) read
0 0 - 1 Noncacheable 64-bit (or less) read
1 0 1 - 64-bit (or less) write

- 0 1 - 1/0 and Special Cycles
0 1 1 - Noncacheable 128-bit read (p)fld.q
0 1 - 1 Noncacheable 128-bit read (p)fld.q
1 1 1 - 128-bit write fst.q
0 - 0 0 Cache line fill
1 - 0 - Cache write-back

NOTE:
.. Includes GS8-mode code fetches, which may be cached by the processor.
-Indicates "don't care" values.

49

Burst Length

1
1
1
1
2
2
2
4
4

i860™ XP MICROPROCESSOR

4.2 Signal Description

In this section descriptions of all pins are presented
in alphabetical order.

4.2.1 A31-A3 (ADDRESS PINS)

The 29-bit address bus (A31-A3) identifies address­
es to a 64-bit location. Separate byte-enable signals
(BE7 # - BEO #) identify which bytes should be ac­
cessed within the 64-bit location.

The address lines are bidirectional. The iB60 XP mi­
croprocessor drives the address lines unless it is in a
hold state. The system drives address lines A31-A5
to perform cache line inquiries (refer to the EADS#
signal description).

4.2.2 ADS# (ADDRESS STATUS)

The iB60 XP microprocessor asserts ADS# to iden­
tify the first clock period of each bus cycle, the clock
period during which new values become valid on the
address bus and cycle-definition pins. This signal is
held active for one clock.

If BOFF # is asserted, the processor floats ADS #
two clocks after sampling BOFF # (and not, like all
other pins, on the next clock). This is to ensure that
ADS# is deasserted before it floats, and therefore is
never left floating active.

ADS# can be asserted while AHOLD is active to
initiate a cache write-back cycle.

4.2.3 AHOLD (ADDRESS HOLD)

The external system asserts AHOLD to perform a
cache inquiry. In response to assertion of AHOLD,
the iB60 XP microprocessor immediately (in the next
clock) stops driving the address bus (A31-A3 lines).
The other buses remain active, and data can be
transferred for previously issued read or write bus
cycles during address hold. AHOLD is recognized
even during RESET and LOCK #. The earliest that
AHOLD can be deasserted is the clock after EADS#
is asserted to start the inquiry.

If HITM # has activated due to an inquiry, the
iB60 XP microprocessor asserts ADS # while
AHOLD is active to start the write-back of the modi­
fied line that was the target of the inquiry.

4.2.4 BE7#-BEO# (BYTE ENABLES)

The byte-enable pins are driven with the address.
BE7# applies to 063-056, BEO# applies to 07-
DO.

50

In write cycles (noncacheable writes as well as
cache line write-backs), the BEn# signals determine
which bytes must be written into external memory
for the current cycle.

In read cycles, the BEn# values indicate which byte
the load instruction has requested. In all noncachea­
ble read cycles (CACHE# or KEN # deasserted),
the byte enables match the length and address of
the requested data. Gacheable read cycles (KEN #
asserted), however, result in four 64-bit memory
transfers to fill an entire 32-byte cache line. The
BEn# pins activated are those that represent the
operand of the load instruction that caused the line
fill, and these same BEn# pins remain activated for
as long as A31-A5. All 64 bits must be returned for
each cacheable cycle without regard for the BEn#
signals.

While in GSB mode, BE2#-BEO# serve as (active­
high) lower-order address bits for instruction fetches
(from the ROM). Data fetches and stores are not
affected by GSB mode, and BE2# -BEO# retain
their normal byte-enable function for data.

4.2.5 BERR (BUS ERROR)

This is a nonmaskable interrupt input, which sup­
ports bus error handling or other urgent circum­
stances. BERR is not masked by the 1M bit of the
psr nor by lock cycles. When BERR is activated, the
iB60 XP microprocessor vectors to the trap handler
and sets the bus error flag (BEF) in the epsr. BERR
causes the physical address of the current bus cycle
to be latched into the BEAR control register; thus, if
asserted the clock of BRDY # or the clock after
BRDY #, it causes the bus address to be latched for
software to examine. BERR is rising-edge sensitive.
Once the trap has occurred, further BEF traps can­
not occur until software has cleared BEF and read
BEAR.

BERR does not terminate outstanding bus cycles.
Therefore, the system must still activate BRDY # a
sufficient number of times or activate BOFF # for
those cycles. Even though activating BOFF # tem­
porarily halts the erring cycles, the iB60 XP micro­
processor will retry them when BOFF # is deassert­
ed, in spite of BERR.

Timing of BERR is not influenced by late back-off
mode.

4.2.6 BOFF # (BACK-OFF)

The system can assert this signal to abort all out­
standing bus cycles that have not yet completed. In
response to BOFF #, the iB60 XP microprocessor

intJ i860™ XP MICROPROCESSOR

immediately (in the next clock) floats its bus, except
for ADS#, which is floated one clock later. The
processor floats all the same pins normally floated
during bus hold; however, unlike a bus hold, HLDA is
not asserted. (HLDA is asserted only in response to
HOLD; no acknowledgment is required for BOFF#.).
Any data and BRDY # returned to the processor
while BOFF # is asserted are ignored. The proces­
sor remains in bus hold until BOFF # is deasserted,
at which time it restarts the bus cycles by driving the
address and cycle definition pins and asserting
ADS#. When BOFF# deactivates, ADS# may be
asserted the following clock. Thus a BOFF # dura­
tion of one clock results in not floating ADS# at all.
BOFF # cannot be used to force the pins to float
during RESET; use HOLD for that purpose.

4.2.7 BRDY # (BURST READY)

BRDY # indicates either that the external system has
driven valid data on the data pins in response to a read
request or that the external system has latched the
data in response to a write request. The CPU ignores
this signal when no bus requests are outstanding.
During a bus cycle, BRDY # is sampled at each clock,
starting with the clock after assertion of ADS # and
continuing until all data for the cycle has been trans­
ferred. When BRDY # is sampled active in a read
cycle, the data present on the pins is sampled.

4.2.8 BREQ (BUS REQUEST)

BREQ allows the i860 XP microprocessor to share
the local bus with other bus masters. An external
bus arbiter can use BREQ to implement an "on de­
mand only" policy for granting the bus to the iB60 XP
microprocessor. The iB60 XP microprocessor as­
serts BREQ the clock after it realizes an internal re­
quest for the bus. The system should sample this pin

51

only when the i860 XP microprocessor is not in con­
trol of the bus (that is, when HLDA, BOFF#, or
AHOLD is active). BREQ is undefined when the
iB60 XP microprocessor is driving the bus. BREQ
may be deasserted between assertions of ADS # ,
but this does not imply that the CPU does not need
the bus.

4.2.9 BYPASS# (BYPASS)

This pin is reserved by Intel Corporation and should
be tied HIGH to Vee through a resistor. When LOW,
the phase-locked loop that generates the internal
clock is unused. In this case, the internal clock has
more skew relative to the external CLK, and the A.C.
timing parameters are not guaranteed.

4.2.10 CACHE# (CACHEABILlTY)

This output signal indicates internal cacheability of a
bus request. Its timing follows that of the address
bus.

The iB60 XP microprocessor asserts CACHE# for
cacheable reads and code fetches to announce its
intention to cache the data. If CACHE# is asserted
on a read cycle and if the KEN # input is active, the
cycle is a burst line fill. If CACHE# is inactive in a
read cycle, the i860 XP microprocessor does not
cache the returned data, regardless of the KEN #
pin. CACHE# is also asserted for cache line write­
backs.

CACHE# is inactive for noncacheable reads (for ex­
ample, pfld, Idio, Idint), TLB replacements, and
store misses.

Table 4.4 shows how cacheability determines the
number of data transfers in a cycle.

Note that the CACHE# output is always inactive for
CSB (Code-Size 8 bits) mode instruction fetches so
that the instructions are fetched with single-transfer
cycles. However, the code fetched may then be
placed in the instruction cache, unless KEN # was
inactive.

4.2.11 ClK (CLOCK)

The CLK input determines execution rate and timing
of the i860 XP microprocessor. External timing pa­
rameters are specified relative to the rising edge of
this signal. The iB60 XP microprocessor can utilize a
clock rate of 50 Mhz. The internal operating frequen­
cy is the same as the external clock. This signal re­
quires TTL levels.

inter i860™ XP MICROPROCESSOR

4.2.12 CTYP (CYCLE TYPE)

CTYP is one of the bus cycle definition signals. Ta­
bles 4.2 and 4.3 show the types of bus cycle gener­
ated. CTYP is defined only for data write and read
requests. The value of this pin changes only when
AOS# is asserted.

4.2.13 D/C# (DATA/CODE)

O/C# specifies whether the current request is for
data or instructions. The data/code line is one of the
bus cycle definition pins. Tables 4.2 and 4.3 show
the types of bus cycle generated. The value of this
pin changes only when AOS# is asserted.

4.2.14 063-00 (DATA PINS)

The bus interface has 64 bidirectional data pins
(063-00) to transfer data in eight- to 64-bit quanti­
ties. Pins 07-00 transfer the least significant byte;
pins 063-056 transfer the most significant byte. In
read cycles, all 64 bits of the data bus are latched,
even in CS8-mode instruction fetches when only the
low-order eight bits are used. In write cycles, the
i860 XP microprocessor does not drive 063-00 in
the clock of AOS#, but in the following clock.

4.2.15 DP7-DPO (DATA PARITY)

There is one parity signal for each byte of the data
bus. They are driven by the i860 XP microprocessor
with even parity information on writes with the same
timing as write data. Likewise, if parity checking is
enabled by PEN #, the system must drive even pari­
ty information on these pins with the same timing as
read information to ensure that the correct parity
check status is indicated by the i860 XP microproc­
essor. "Even parity" means that the total number of
set bits in a byte, including the parity bit, is even.
Refer also to the PCHK# signal.

4.2.16 EADS# (EXTERNAL ADDRESS STATUS)

This signal indicates that a valid external address
has been driven onto address pins A31-A5 of the
i860 XP microprocessor to be used for a cache in­
quiry. This signal is recognized while the processor
is in hold (HLOA is driven active), while forced off the
bus with BOFF # input, or while AHOLO is asserted.
The i860 XP microprocessor ignores EAOS# at all
other times. EAOS# is not recognized if HITM# is
active, nor during the clock after ADS #, nor during
the clock after a valid assertion of EAOS#. Table
4.5 shows when EAOS is first sampled. It is then
sampled in every clock as long as the hold remains
active and HITM# remains inactive.

52

Table 4.5. EADS# Sample Time

Trigger EADS# First Sampled

AHOLO Second clock after AHOLO asserted
HOLD First clock after HLOA asserted

BOFF# Second clock after BOFF # asserted

INV and FLlNE# are sampled in the same clock pe­
riod that EAOS# is validly asserted. HIT# and
HITM# may be asserted as the results of a cache
inquiry.

4.2.17 EWBE# (EXTERNAL WRITE BUFFER
EMPTY)

At RESET, the value on EWBE# determines the or­
dering mode. The processor enters strong ordering
mode if EWBE # is sampled active for at least the
last three clocks before RESET deactivates; other­
wise, it enters weak ordering mode.

In weak ordering mode, the value of EWBE# after
reset does not affect processor operation.

in strong ordering mode, the external system asserts
EWBE # as long as all external write buffers are
empty. If an external write buffer is not empty
(EWBE # deasserted) or the intenal write buffer is
not empty, the processor delays data cache updates
so as to keep the external order of writes the same
as the programmed order.

In systems that do not have external write buffers,
EWBE# can be tied to Vss, if strong ordering is de­
sired, or to Vee, if weak ordering is acceptable. Re­
fer to sections 5.3.3 and 5.3.4 for more explanation
and for other ways to control write ordering.

4.2.18 FLlNE# (FLUSH LINE)

The system asserts FLlNE# to request that the
i860 XP microprocessor write back a modified cache
line before other outstanding bus cycles are com­
pleted, if the line is hit by an external inquiry. If this
pin is active in the same clock that EAOS# is assert­
ed, the write-back cycle is initiated, and the i860 XP
microprocessor expects BROY #s for the write-back
before outstanding cycles (if any) are returned. If
data transfer for another cycle is currently in prog­
ress when FLiNE # is asserted (i.e. first BROY # re­
turned before HITM# asserted), the i860 XP micro­
processor waits until the data transfers for that burst
have completed, and only then does it assert the
ADS # for the write-back. If the first BROY # has not
yet occurred for an outstanding cycle, NA# must be
activated to trigger AOS# for the write-back.

i860™ XP MICROPROCESSOR

At RESET, the value on FLlNE# determines config­
uration. The processor enters one-clock late back­
off mode if FLiNE # is sampled active for at least the
last three clocks before RESET deactivates.

4.2.19 HIT# (CACHE INQUIRY HIT)

This pin is one output of inquiry cycles. If an inquiry
cycle hits a valid line in the caches of the i860 XP
microprocessor (either data or instruction), HIT # is
asserted two clocks after EADS # is activated. If the
inquiry cycle misses the caches, this pin is negated
two clocks after EADS # activation.

This pin changes its value only as a result of EADS#
activation during AHOLD, HOLD, or BOFF # and re­
tains its value until two clocks after the next valid
activation of EADS #.

HIT# can be used to control the WB/WT# pin of
other processors in a multiprocessor system. Activa­
tion of HIT# indicates that the inquiring processors
should cache the line as S-state, not E-state.

4.2.20 HITM # (HIT MODIFIED LINE)

This pin is an output of inquiry cycles. When an in­
quiry hits a modified line in the internal data cache,
the i860 XP microprocessor asserts HITM # two
clocks after EADS# is activated. (Refer also to the
EADS# signaL) The HITM# signal stays active until
the last BRDY # for the corresponding write-back
cycle. At all other times, HITM # is inactive. HIT # is
also asserted when HITM# is asserted (except for
the special case of an inquiry after the ADS# of a
write-back).

4.2.21 HLDA (BUS HOLD ACKNOWLEDGE)

The i860 XP microprocessor activates HLDA in re­
sponse to a hold request presented on the HOLD
pin. Assertion of HLDA indicates that the i860 XP
microprocessor has given the bus to another local
bus master. It is driven active in the same clock that
the i860 XP microprocessor floats its bus. All output
pins are floated except LOCK#, BREQ, HLDA,
PCHK#, HIT#, and HITM#.

The time required to acknowledge a hold request is
one clock plus the number of clocks needed to finish
any outstanding bus cycles (maximum of four out­
standing cycles of four burst transfers each for total
of 16 transfers). If this hold latency is too long for a
given application, BOFF # can be used instead.

When leaving a bus hold, the i860 XP microproces­
sor deactivates HLDA and, in the same clock period,
initiates a pending bus cycle, if any.

53

4.2.22 HOLD (BUS HOLD)

This pin, along with the output signal HLDA, is used
for local bus arbitration. At some time after the
HOLD signal is asserted, the i860 XP microproces­
sor releases control of the local bus and puts most
bus interface outputs in floating state, then asserts
HLDA-all during the same clock period. It main­
tains this state until HOLD is deasserted. Instruction
execution stops only if required instructions or data
cannot be read from the on-chip instruction and data
caches. The i860 XP microprocessor ignores HOLD
until all outstanding bus cycles are complete (until
the last BRDY#). The i860 XP microprocessor rec­
ognizes HOLD even during RESET and LOCK #.
HOLD cannot be used when the 82495XP cache
controller is attached.

4.2.23 INV (INVALIDATE)

The external system asserts this signal to invalidate
the cache-line state in the case of an inquiry cycle
hit. It is sampled together with A31-A5 in the clock
EADS # is active.

4.2.24 INT ICSS (INTERRUPT ICODE-SIZE
EIGHT BITS)

This input, like the BERR input, allows interruption of
the current instruction stream. The processor sam­
ples INT as instruction boundaries. If interrupts are
enabled (1M set in psr) when INT is sampled active,
the i860 XP microprocessor fetches the next instruc­
tion from virtual address OxFFFFFFOO. INT is level
triggered. To assure that an interrupt is recognized,
INT should remain asserted until the software ac­
knowledges the interrupt (by executing an interrupt­
acknowledge cycle, for example). The interrupt may
be ignored by the processor if the INT signal does
not remain active.

:nterruptlatency (the maximum time between asser­
tion of INT and execution of the first instruction of
the trap handler) depends both on the internal con­
text and on the external system. After INT is assert­
ed, the i860 XP microprocessor finishes all instruc­
tions currently being executed, including any out­
standing bus cycles, before starting the trap handler.
The following instruction sequence is an example of
the worst case:

pfld.q
pfld.q
ld.l
br
ld.l
st.l

i860™ XP MICROPROCESSOR

If INT is asserted during the execution stage of the
last Idol instruction, the execution of the trap handler
may have to wait for:

• Two 2-transfer bursts (the pfld instructions)

• Two data cache line fills (misses by the Idol
instructions)

• Two data cache line write-backs (eliminating
modified lines to open space for the fills)

• Two instruction cache line fills (the target of the
br and the first instruction of the trap handler)

• Three TLB miss sequences of up to six non pipe­
lined accesses each (the br, the last Idol, and the
trap handler)

The time to finish the above bus activities can be
extended by inquiry cycles and associated write­
backs initiated by an external cache or bus control­
ler.

Besides the bus-related delays, the i860 XP micro­
processor has internal freeze conditions that can de­
lay interrupt response by up to 10 additional clocks.

During a locked sequence, the INT pin is ignored,
and the INT bit of epsr reflects the value on the INT
pin. To limit the time that INT is ignored, the lock
instruction can assert LOCK # for only 30-33 in­
structions before trapping.

This input is asynchronous, but appropriate setup
and hold times must be met to insure recognition on
any specific clock.

If INT is asserted for at least the last three clock
periods before the falling edge of RESET, the
i860 XP microprocessor enters eight-bit code-size
(CS8) mode.

4.2.25 KBD, KB1 (CACHE BLOCK)

For reads, these output signals define which cache
block (line) is going to receive the data. For write­
backs, these lines specify which block is being
flushed. They are driven together with cycle defini­
tion for cacheable data reads, TLB replacement,
code fetch cycles, and write-backs. External hard­
ware can use these Signals to observe changes to
cache blocks.

4.2.26 KEN # (CACHE ENABLE)

The i860 XP microprocessor samples KEN # to de­
termine whether the data being read for the current
cache-miss cycle is to be cached. When the i860 XP

54

microprocessor generates a read cycle that can be
cached (CACHE# output active) and KEN# is ac­
tive, the cycle is transformed into a burst line fill. By
activating KEN #, the memory system commits to a
four-transfer burst. The entire 64 bits of the data bus
are used for the read, regardless of the state of the
byte-enable pins.

If KEN # is sampled inactive, code fetches are not
transferred in bursts, but 128-bit data items may still
be transferred with a burst length of two.

KEN# is sampled together with NA# or BRDY#,
whichever comes first. It is sampled only with the
first BRDY # of a burst; its value at any other time
has no effect.

4.2.27 LEN (DATA LENGTH)

The LEN output pin specifies the number of burst
transfers for each cycle. This pin and the CACHE#
output pin are used by the system to determine the
burst length for each cycle (refer to Table 4.4). The
i860 XP microprocessor can generate 1, 2, or 4-
transfer bursts for reads and writes.

LEN is inactive if the internal request is for 64 bits or
less. If LEN is active, the internal request is for 128
bits or more, and the cycle should be returned as a
two- or four-transfer burst. LEN is always active for
128-bit data accesses. LEN is always inactive for
code accesses.

A cacheable read (CACHE# active) can be auto­
matically converted to a four-transfer burst regard­
less of LEN by assertion of KEN # .

Table 4.4 summarizes different cycle lengths as they
are calculated from the LEN and CACHE# signals.
LEN has the same timing as the address.

4.2.28 LOCK # (ADDRESS LOCK)

This signal is used to provide atomic (indivisible)
read-modify-write sequences in multiprocessor sys­
tems. The address to be locked is the one being
driven on A31-A3 when LOCK # is activated. A mul­
tiprocessor bus arbiter must permit only one proces­
sor a locked read, locked write, or unlocked write to
that address and must maintain the lock of that loca­
tion across cycle boundaries until LOCK # deacti­
vates. The simplest arbitration hardware can just
lock the entire bus against all other accesses during
LOCK# assertion; however, software must never
assume that this implementation is being used.

inter i860™ XP MICROPROCESSOR

The i860 XP microprocessor coordinates the exter­
nal LOCK # signal with the lock and unlock
instructions. Programmers do not have to be con­
cerned about the fact that bus activity is not always
synchronous with instruction execution. LOCK # is
asserted with ADS # for the address operand of the
first load or store instruction executed after the lock
instruction.

After an unlock instruction, LOCK # is deasserted
with the next load or store. The i860 XP microproc­
essor deactivates LOCK# one clock after ADS# for
the last locked bus cycle. Unlike the i860 XR micro­
processor, the i860 XP microprocessor does not
deassert LOCK # immediately when a trap occurs.
Instead, the trap handler must execute a load or
store instruction to deassert LOCK #. (The handler
does not have to execute an unlock instruction,
however. The unlocking function is performed by the
processor's trap logic.)

The i860 XP microprocessor also asserts LOCK #
during TLB miss processing for updates of the ac­
cessed bit in page-directory and page-table entries.
The maximum time that LOCK # can be asserted in
this case is the time required to perform a nonpipe­
lined, four-byte, read-modify-write sequence.

Between locked sequences, at least one cycle of no
LOCK # is guaranteed by the behavior of the unlock
instruction.

Between lock and unlock instructions, the INT pin is
ignored.

Instruction fetches do not alter the LOCK# signal.

4.2.29 MIIO# (MEMORY-I/O)

M/IO# specifies whether the current cycle is for the
memory address space or for the 1/0 address
space. M/IO# is one of the bus cycle definition pins.
Tables 4.2 and 4.3 show the types of bus cycle gen­
erated. The value of this pin changes only when
ADS # js asserted.

4.2.30 NA# (NEXT ADDRESS REQUEST)

NA # makes address pipelining possible. The sys­
tem asserts NA # for at least one clock to indicate
that it is ready to accept the next address from the
i860 XP microprocessor. (If the system does not im­
plement pipelining, NA# must not be activated.) The
i860 XP microprocessor samples NA # every clock,
starting one clock after the activation of ADS #. If
the i860 XP microprocessor has a new cycle pend­
ing internally when NA # is activated, it initiates that
cycle in the clock after NA# is asserted. Up to three
bus cycles can be outstanding simultaneously.

55

NA # is latched internally; the i860 XP microproces­
sor remembers that NA# was asserted until it has
an internal request to send to the bus; so, assertion
of NA# for a single clock can trigger an ADS# sev­
eral clocks later. NA # is ignored in the clock of
ADS#.

KEN # and WB/WT # inputs for the current cycle
are sampled with NA #, if NA # is asserted before
the first BRDY # of the current cycle.

NA# is also used in conjunction with FLlNE# to
invoke write-back of a modified line during outstand­
ing bus cycles.

4.2.31 NENE# (NEXT NEAR)

The i860 XP microprocessor asserts NENE# when
the current address is in the same DRAM page as
the previous bus cycle. This signal allows higher­
speed reads and writes in the case of consecutive
accesses to static column or page-mode DRAMs.
The i860 XP microprocessor determines the DRAM
page size by inspecting the software-controlled DPS
field in the dirbase register. The page size can
range from 29 to 216 64-bit words, supporting DRAM
sizes from 256K x 1 to 4G x n. The value of this
pin changes only when ADS# is asserted. NENE#
is never asserted for the next bus cycle after the
address bus has been floating (after AHOLD,
BOFF #, or HLDA is deasserted).

4.2.32 PCD (PAGE CACHE DISABLE)

PCD provides a cacheability indication on a page by
page basis. This signal, together with PWT, is set to
an attribute bit in the page table entry for the current
cycle. When paging is enabled, PCD corresponds to
the CD bit (bit 4) of the page table entry. The i860 XP
microprocessor does not perform a cache fill to any
page for which CD of the page table entry is set.
When paging is disabled, or for any cycle that is not
paged (Idio, stio, Idint, scyc), the i860 XP micro­
processor drives PCD inactive.

During TLB miss processing, PCD is inactive while
the address translation hardware is acceSSing the
first level page directory. During accesses to the
second-level page-table entry, PCD reflects the CD
values taken from the first level page-table entry.

The value of this pin changes only when ADS # is
asserted.

4.2.33 PCHK # (PARITY CHECK)

This output shows the result of the parity check on
data pins in the previous clock of a read cycle. It is

inter i860™ XP MICROPROCESSOR

asserted for one clock when incorrect parity has
been detected. It reflects the parity status for the
entire data bus. It should be ignored by external
hardware except during the clock after BRDY # is
activated for reads.

PCHK # does not terminate outstanding bus cycles,
so the system must still activate BRDY# a sufficient
number of times or activate BOFF # for those cy­
cles.

4.2.34 PCYC (PAGE CYCLE)

The page cycle line is active during memory read or
write cycles to distinguish page-table accesses from
other accesses. The types of bus cycle generated
are indicated in Tables 4.2 and 4.3. The value of this
pin changes only when ADS# is asserted.

4.2.35 PEN# (PARITY ENABLE)

The i860 XP microprocessor samples this signal for
read cycles on the same clock edge at which
BRDY # is found asserted. If sampled active, the
i860 XP microprocessor feeds the parity check re­
sult into the interrupt logic. If a parity error is encoun­
tered, the i860 XP microprocessor vectors to the
trap handler. The BEAR register latches the offend­
ing address, as described with the BERR signal.
This interrupt is not masked by the 1M bit of the PSR,
nor is it masked during lock cycles.

The system should deassert PEN # any time the
DP7-DPO pins are known not to reflect the parity of
the full eight-byte bus (for example, reads from 110
devices or ROMs that are not parity protected).

4.2.36 PWT (PAGE WRITE-THROUGH)

PWT provides a write-back/write-through indication
on a page by page basis. This signal, together with
PCD, is set to an attribute bit in the page table entry
for the current cycle. When paging is enabled, PWT
corresponds to the WT bit (bit 3), and write-back
caching is implemented for this page only if WT is
clear. When paging is disabled, or for any cycle that
is not paged (Idio, stio, Idint, scyc), the i860 XP
microprocessor drives PWT inactive.

During TlB miss processing, PWT is inactive while
the address translation hardware is accessing the
first level page directory. During accesses to the
second-level page-table entry, PWT reflects the WT
value taken from the first level page-table entry.

The value of this pin changes only when ADS # is
asserted.

56

4.2.37 RESET (SYSTEM RESET)

Asserting RESET for at least ten ClK periods caus­
es initialization of the i860 XP microprocessor. On
power up, RESET should remain active at least one
millisecond after Vee and ClK have reached their
proper DC and AC specs. RESET is synchronous
with ClK.

4.2.38 RSRVD, SPARE

The RSRVD input is reserved by Intel. Tie it high. The
spare input should be left unconnected.

4.2.39 TCK (TEST CLOCK)

This is the clock input for the TAP (test access port).
If the TAP is to be used, this signal must be connect­
ed to a clock synchronous to ClK. If the TAP is not
used, TCK can be tied low. TCK does not need to be
kept running when boundary scan is not active.

The rising edge of TCK must be externally synchro­
nized to ClK. The boundary scan latches retain their
state when TCK is stopped at either logic zero or
one.

4.2.40 TDI (TEST DATA INPUT)

TDI is the input for test instructions and data to the
TAP. TDI is sampled on the rising edge of TCK. It is
provided with an internal pull-up resistor, so that an
open circuit at TDI produces a result equivalent to
driving continuous HIGH signals.

4.2.41 TDO (TEST DATA OUTPUT)

This is the serial output of the TAP. The contents of
TAP registers are shifted out through TDO on the
falling edge of TCK. The data is moved from TDI to
TDO without inversion, which allows easy serial cas­
cading of different components for scanning.

TDO is held in high-impedance state, except while
scanning is in progress. This allows parallel connec­
tion of these outputs for several components.

4.2.42 TMS (TEST MODE SELECT)

This input is decoded by the TAP to select the oper­
ation of the TAP. It is sampled at the rising edge of
TCK. It is provided with an internal pull-up resistor to
assure deterministic behavior for open-circuit failure
at this pin. If boundary scan is not used, TMS can be
tied high or left unconnected.

i860TM XP MICROPROCESSOR

4.2.43 TRST # (TEST RESET)

This input resets the TAP. If the TAP is not used,
TRST# should be tied lOW. To ensure determinist­
ic behavior of the test logic, TMS should be held
HIGH while TRST# changes from lOW to HIGH.

4.2.44 Vee (SYSTEM POWER) AND Vss
(GROUND)

The i860 XP microprocessor has 54 pins for power
and 56 for ground. All pins must be connected to the
appropriate low-inductance power and ground sig­
nals in the system.

4.2.45 VccCLK (CLOCK POWER)

This is the power supply for the internal ClK buffer.
It should be connected to the same Vee plane as
the other Vee pins.

4.2.46 WB/WT # (WRITE-BACK/WRITE­
THROUGH)

This input signal defines cache policy for the line
being accessed in the current bus cycle. The proc­
essor samples WB/WT # for both reads and writes
on the same clock edge at which it finds NA# or the
first BRDY # asserted, whichever comes first. If this
signal is sampled low, the write-through policy is ap­
plied to the cache line-if an internal write hits this
line, it causes a write-through cycle. If this signal is
sampled high, the write-back policy is applied-fu­
ture write hits to this line do not show up on the bus.

2 3 4

elK

SIGNAL 10 I

NOTES:
1. HIGH (high voltage)
2. Don't care or undefined
3. LOW (low voltage)
4. High-impedance (floating)
5. Either HIGH or LOW

5

4.2.47 W/R# (WRITE/READ)

This pin specifies whether a bus cycle is a read
(lOW) or write (HIGH) cycle. Tables 4.2 and 4.3
show the types of bus cycle generated. The value of
this pin changes only when ADS# is asserted.

5.0 BUS OPERATION

The interaction among signals is illustrated by timing
diagrams. Figure 5.1 shows the conventions used in
the timing diagrams.

5.1 Bus Cycles

A bus cycle begins when the i860 XP microproces­
sor activates ADS # and ends when the system acti­
vates the last of a predetermined number of BRDY #
signals. Figure 4.4 shows how the i860 XP micro­
processor and the external system cooperate to de­
termine the number of BRDY # activations in each
cycle. The processor starts sampling BRDY # one
clock after assertion of ADS# and continues sam­
pling in every clock until the last BRDY # becomes
active.

The i860 XP microprocessor supports several differ­
ent types of bus cycle. These are introduced in order
of complexity:

1. Single-transfer cycles

2. Multiple-transfer (burst) cycles

3. Pipelined cycles

4. Cache inquiry cycles

7 8 9 10

I I , 'm P--.,-- e
I I

240874-28

Figure 5.1. Timing Diagram Conventions

57

inter i860™ XP MICROPROCESSOR

5.1.1 SINGLE-TRANSFER CYCLE

The simplest bus cycle is the single-transfer, non­
cacheable, 64-bit cycle either with or without wait
states. The shortest bus cycle is two clock periods
long. Read and write cycles of this type are shown in
Figure 5.2.

A wait state is any clock in which the i860 XP micro­
processor samples BRDY # but the system does not
assert it. The system can add wait states to any cy­
cle. Figure 5.3 shows cycles with two wait states
added. Any number of wait states can be added to
i860 XP microprocessor bus cycles by maintaining
BRDY # inactive.

2 3 4

elK

5

5.1.2 BURST CYCLES

When a bus request requires more than a single
data transfer (refer to Table 4.4), the i860 XP micro­
processor requires that the memory system perform
a burst data transfer. Burst cycles allow the maxi­
mum bus transfer rate by eliminating unnecessary
driving of the address bus. The addresses of the
data items in burst cycles all fall within the same 32-
byte aligned area (corresponding to an internal
i860 XP microprocessor cache line). Given the ad­
dress of the first transfer, external hardware can cal­
culate the addresses of subsequent transfers. With
these addresses eliminated from the bus, a new
data item can be sampled into the i860 XP micro­
processor every clock period.

7 8 9 10

~'-____ '-JX~~~ ____ ~JX~~ ______ ~JX~~ ____ ~ ____ ~ ____ ~

__ a...-___ ,
\~ ________ J'

DATA : :8' :9' :8' :9'::
&. - - - - ... - TO CPU - -1- - FROM CPU - -1- - TO CPU - -1- - rROM CPU - ... - - - - .&
I I I I I I I , ,

PCHK#

240874-29

Figure 5.2. Fastest Single-Transfer Cycles

58

inter i860™ XP MICROPROCESSOR

2 4 5 6 7 8 9 10

CLK

ADS#~
I I

ADDRESS ;:::x,..... ... : --..... --..... --~X\., ________ .,... __ ,....._-.
I

LEN =-'
I

CACHE# 0
W/R#

BRDY# 1;&1;0;
I I I I I I

DATA ~ ----~ ----~ ----:- -<2=> --:<~--""'--FR-O-t.t-C-P-U-""'--}:- ---~
I I I I I I I

240874-30

Figure 5.3. Single-Transfer Cycles with Wait States

The fastest possible burst cycle requires two clock
periods for the first data item: one clock for ADS#
and one clock for BRDY #; subsequent data items
are transferred every clock period. One such bus
cycle is shown in Figure 5.4. Note that, in this case,
the initial cycle generated by the i860 XP microproc­
essor could be satisfied by a single data transfer, but
the system transforms it into a multiple-transfer
cache line fill by activating KEN # in the clock period
of the first BRDY #. KEN # has this effect only if the
CACHE# pin is active, which means the cycle is in­
ternally cacheable in the i860 XP microprocessor.

59

Read data is sampled only in the clock period in
which BRDY # is returned, which means that data
need not be sent to the i860 XP microprocessor ev­
ery clock period in the burst cycle. Figure 5.5 shows
an example of a burst cycle in which two clock peri­
ods are required for every burst item.

The burst length attributes LEN and CACHE# are
driven with the address. Figure 5.6 illustrates two
consecutive burst cycles with differing length attri­
butes: the first one is a noncacheable 128-bit read,
and the second one is a cache line fill initiated by a
cacheable 64-bit read.

inter

NOTE:

i860™ XP MICROPROCESSOR

2 4 5 7 8 9 10

ClK

ADS# \..i..J
I

ADDRESS X :
lEN \

CACHE# \
W/R# \

BRDY#

KEN#

I I I I I I I I I I I

II'~'III
DATA ,,---- .. ---- ... - TO CPU TO cpu TO CPU TO CPU --.---- ... ---- .. ----""

r I I r I I I

240874-31

1. KEN # driven with first assertion of BRDY #

NOTE:

ClK

ADS#

ADDRESS

lEN

CACHE#

W/R#

BRDY#

KEN#

Figure 5.4. Basic Burst Cycle

2 4 5 6

\....U
I

_~x :
\

\

7 8 9 10

r I I I I I I I

DATA ~ ____ ~ _ J~_ .:. _ ~ _ .:. _ ~ _ .:. _ ~ _ ~ ____ ;
J I~'~'~'~I I

240874-32

1. Wait states added by delaying assertion of BRDY #

Figure 5.5. Slow Burst Cycle

60

i860TM XP MICROPROCESSOR

2 3 4 5

elK

,
ADS# :uJ \...iJ ,

lEN :.J \
, 0

CACHE# U \
,

W/R# t=\ ,
BRDY#

KEN#

DATA

,
"~' ' .----,..- TO CPU TO CPU --,--~-~----~
II I~
, • I I I I I I I : :

240874-33

NOTE:
1. Length attributes driven with ADS #

Figure 5.6. Different Lengths of Burst Cycles

The timing of write bursts is similar to that of read
bursts. The i860 XP microprocessor does not put
data on 063-00 for writes until the clock period af·
ter AOS#.

When initiating any read, the i860 XP microproces·
sor presents the address for the data item request­
ed. When the cycle is converted into a cache fill, the
first data item returned corresponds to the address
sent out by the i860 XP microprocessor. The remain­
ing items must be returned in the order shown in
Table 5.1. This ordering is optimized for two-bank
memories, but works equally well with noninter­
leaved memories.

In i860 XP microprocessor systems, memory must
support the burst order as defined in Table 5.1 for
~eads. :or writes: the burst addresses are always
Increasing, so wntes With four transfers match the
~irst lin~ of the table. In GS8 (code-size 8 bits) mode,
instructions are not fetched in bursts.

Note that the i860 XP microprocessor drives only
the fi.rst addres~ of a burst cycle; the memory sys­
tem IS responsible for calculating subsequent ad­
dresses as shown in the table. The addresses can
be derived by complementing A3 after every trans­
fer, and complementing A4 after two transfers.

61

Table 5.1. Burst Order for Cache Line Transfers

1st 2nd 3rd 4th
Address Address Address Address

0 8 Ox10 Ox18
8 0 Ox18 Ox10

Ox10 Ox18 0 8
Ox18 Ox10 8 0

5.1.3 PIPELINED CYCLES

A pipelined cycle is one that starts while one or two
other bus cycles are outstanding. A cycle is consid­
ered outstanding until the last BROY # is asserted to
terminate that cycle. A nonpipelined cycle is one
that starts when no other bus cycles are outstand­
ing. Both types of cycle can be either read or write
cycles. To allow high transfer rates in large memory
systems, the i860 XP microprocessor supports two­
level pipelining. New cycles can start as often as
every other clock until three cycles are outstanding.

The system asserts NA# to indicate that the
i860 XP microprocessor can start another cycle be­
fore the current one is completed. (NA# can even

i860™ XP MICROPROCESSOR

be asserted while BRDY # is active.) The i860 XP
microprocessor begins sampling NA # in the next
clock after ADS# is asserted. If the following condi­
tions are met, a new (pipelined) cycle begins:

1. NA# having been active

2. An internal request pending

3. Compatibility between the pending request and
the outstanding requests (refer to Table 5.2)

4. HOLD, BOFF #, and AHOLD not active

5. Fewer than three cycles outstanding

The following "compatibility" rules determine when
the processor does not issue a pipelined ADS#
(they are the source of Table 5.2):

• Data cache line fills are pipelined into each other
only in the case of an aliasing virtual tag miss with
a physical tag hit.

• Reads can be pipelined into TLB miss writes. TLB
misses for instructions can be pipelined into data
accesses, and vice versa.

• No data cycle is ever pipe lined while LOCK # is
active.

• 1/0 cycles, special cycles, and Idint cycles never
begin when any cycle is outstanding.

NA# may be asserted before, simultaneously with,
or after the first BRDY # of the current cycle. If NA#
is asserted before the first BRDY # , the cacheability
(KEN#) and cache policy (WB/WT#) indicators for
the current cycle are sampled during the same clock
period as NA# is sampled active; otherwise, they
are sampled with the first BRDY #. Figure 5.7 shows
an example of four-transfer, pipelined, back-to-back
reads. Note the timing of KEN #. Because NA # is
asserted before the first BRDY# of the cycle A,
KEN # is sampled with the NA # for cycle B.

Table 5.2. Pipeline Cycle Compatibility

B
If A is Outstanding, can B be pipelined?

Data Data Cache Data Cache
Cache Store Miss, Read Miss

Write- Instruction
pfld

TLB Idio,stio, LOCK#
A Back" Fetch Miss Idint, scyc Active

Line Fill Write-Thru KEN# =1

Data

Cache YES' YES' YES' YES YES YES' YES NO YES
Line Fill

Data Cache

Store Miss, YES YES YES YES YES YES YES NO YES
Write-Thru

w Data Cache
..J Read Miss YES YES YES YES YES YES YES NO YES u
>- KEN#=1 u
VI
:::l Write-Back YES YES YES YES YES YES YES NO YES
0
:> Instruction w YES YES YES YES YES YES YES NO YES Ie
n. Fetch

pfld YES YES YES YES YES YES YES NO YES

TLB Miss YES YES YES YES YES YES YES NO YES

Idio,stio,
YES

Idint, scyc
YES YES YES YES YES YES NO YES

LOCK#

Active
NO NO NO NO YES NO YES NO NO

NOTE:
, Pipelining can occur if the first ADS# is for an aliasing virtual tag miss with a physical tag hit.

"Inquiry write-backs are not pipelined into prior cycle unless FLiNE # is asserted.

62

i860™ XP MICROPROCESSOR

2 3 4 5 6 7 8 9 10

ClK

CACHE# ~~--~~----~i----~------------~----~----~----~----~----~-­
I

KEN# h ,,;,,;v'ti"'<;i'~.t.A'!, ,~,;,; :V}:;;;'i; ':!/§'!1 i:ft/;;t;i W;;,,:;,l,;:t' YN~ ;;;a:;i, ij:;"v
I I

ADS#

NOTES:
A Four-transfer, cache line fill cycle
B Four-transfer, cache line fill cycle

I

1. KEN # for A simultaneous with NA #

Figure 5.7. Pipelined Cache Line Fills

240874-34

Write cycles can be pipelined into read cycles and
vice versa, but, in both cases, one clock period
should be left idle between bursts to allow bus turn­
over. Pipe lined back-to-back read and write cycles
are shown in Figure 5.B. On writes, assertion of NA#
does not cause the values on the data bus to
change; it just enables new address and cycle speci­
fication outputs.

5.1.4 INTERRUPT ACKNOWLEDGE CYCLES

liThe following
lock
ldint.b src2,
or rdest,
unlock

Iinop
Iinop

ldint.b rO,

In response to a trap caused by assertion of the INT
pin, trap-handling software can generate interrupt
acknowledge cycles by executing a procedure simi­
lar to the following.

lock instruction must be on a 32-byte boundary:
II Lock the bus

rdest II
rO, rdest II

First INTA cycle. Src2 contains 8.
Won't proceed until rdest loaded.
Unlock the bus after the next ldint
Insert 4 + <number of Naps> idle

rdest

II
II
II clocks for 8259A recovery.
II Second INTA cycle

63

intJ i860TM XP MICROPROCESSOR

2 3 4 5 6 7 8 9 10

ClK

W/R# ~' I \
lEN# !....J

I

CACHE# U
ADS# :\i.J \if ill

NA# I

BRDY#
I

I I I I I I I I : I I

DATA r -n - ~ - n - ~ n{TO CPUXTO CPU} n ~ n { F!~~ X F~~~ } n + n {TO CPUXTO CPU)
I I I I I

I r I I I I

NOTES:
R Two-transfer, noncacheable read cycle
W Two-transfer, noncacheable write cycle
1. Idle clock for bus turnaround
2. Second assertion of NA# could be here

240874-35

Figure 5.S. Pipe lined Back-to-Back Read and Write Cycles

Figure 5.9 shows the interrupt acknowledge cycles
generated by the code sequence. Interrupt acknowl­
edge cycles are generated in locked pairs. The inter­
rupt vector is returned during the second cycle. Each
of the interrupt acknowledge cycles is terminated
when the external system responds by asserting
BRDY #. Wait states can be added by withholding
BRDY #. There must be a number of idle clocks be­
tween the first and second cycles to allow for 8259A
recovery time. The software controls the number of
intervening clocks via the number of nop instruc­
tions in the interrupt acknowledge routine.

5.1.5 SPECIAL BUS CYCLES

The i860 XP microprocessor provides a special cy­
cle to indicate to the external system that certain

64

internal conditions have occurred. The special bus
cycle (indicated by MIIO# = 0, D/C# = 0, and
W/R# = 1) is generated by the i860 XP microproc­
essor as a response to scyc instruction execution.
This cycle (defined in Table 5.3) is used to flush or
invalidate a secondary cache. The defined value of
byte enables can be generated by using an appropri­
ate address operand in the scyc instruction. The
scyc instruction does not have any effect on the
internal caches. External hardware must acknowl­
edge a special bus cycle by asserting BRDY # once.
The data driven on the data bus with BRDY # is
undefined. The effect of scyc is determined by de­
coders in external hardware.

inter i860TM XP MICROPROCESSOR

, 1 , 2 , 3 ,

CLK~
I

1.1/10# D .. ' -'&-"T"--"T"--"T""

D/C#

I

W/R# D
I

ADDRESS t:x~---.-__
f----\:~

NUMBER or CLOCKS
BETWEEN CYCLES
CONTROLLED BY

SOFTWARE
::::x ---+---..----!

7':
~ \..:...J; ;
I I I I

ADS#

BRDY#

DATA
: : G3-' : ,.---- ... - TO CPU _-t.
I I I

I I

LOCK# ;\""------

; \...:,..J: ; :
I I I I

I I I I I

I I G3- I I
... ---- .. - TO CPU - .. ----~

I I I I

I ___ I

240874-36

Figure 5.9. Example Interrupt Acknowledge Sequence

Table 5.3. Encoding of Special Bus Cycles

BE7#-BEO# Special Bus Cycle

11110111 Write Back External Cache and Invalidate
11111011 Halt
11111101 Invalidate External Cache
11111110 ShutDown

All other encodlngs are reserved

5.2 Bus Arbitration

The i860 XP microprocessor responds to three dif­
ferent signals that tell it to stop driving the bus:

HOLD Finishes outstanding cycles before giving
up the bus.

BOFF# Aborts outstanding cycles and gives up bus
immediately.

AHOLD Stops driving address bus and permits a
cache inquiry.

AHOLD results in a partial hold state, which is cov­
ered in Section 5.3. The present section concen­
trates on HOLD and BOFF # .

When in a hold state (due either to HOLD or
BOFF#), the i860 XP microprocessor uses BREQ to
request control of the bus. If holding due to HOLD,
AHOLD, or BOFF #, the processor activates BREQ
in the clock after an internal bus request is generat-

65

ed. (In the case of HOLD, BREQ is asserted even
though HLDA is asserted.) If holding due to BOFF #
and cycles need to be restarted or there is a new
internal request, it asserts the BREQ signal within
four clock periods after the assertion of BOFF#. In
all cases, BREQ remains active at least until the
clock after ADS# is activated for the requested cy­
cle.

5.2.1 HOLD AND HLDA ARBITRATION

HOLD indicates to the i860 XP microprocessor that
another bus master needs control of the bus. When
HOLD is asserted, the i860 XP microprocessor
keeps control of the bus until all outstanding cycles
are completed. Then it floats the output signals (ex­
cept BREQ, HLDA, LOCK#, PCHK#, HIT#, and
HITM#) and asserts HLDA. These outputs remain at
the high-impedance state until HOLD is deasserted.

i860™ XP MICROPROCESSOR

HLDA may be asserted as soon as the clock period
after the one in which HOLD is asserted. HLDA may
be deasserted as soon as the clock after the one in
which HOLD is deasserted.

An example HOLD/HLDA transaction is shown in
Figure 5.10. The i860 XP microprocessor recognizes
HOLD even while RESET is asserted, and it drives
HLDA in this case as well.

HOLD is recognized even when BOFF # is active,
and the i860 XP microprocessor responds with
HLDA the same as when the bus is idle.

5.2.2 BUS CYCLE BACK-OFF AND RESTART

The i860 XP microprocessor provides the ability to
abort bus cycles and restart them again. It is neces­
sary to abort cycles for reasons such as the follow­
ing:

1. Retry after an error is detected by ECC or parity
logic.

2. Escape from a deadlock; for example, when the
i860 XP microprocessor is using A31-A3 to load
a new cache line, but the 82495XP cache con­
troller needs A31-A5 to invalidate a line in the
CPU cache which the 82495XP cache controller
is replacing in its cache in order to satisfy the
CPU's line-fill request.

2

elK

ADS# I

I

I

W

4 5

3. Maintain cache consistency; for example, the
i860 XP microprocessor is attempting to read or
write to a line that has been modified in the cache
of another CPU.

4. Prevent illegal access to an address already
locked by another CPU in a multiprocessor sys­
tem.

5.2.2.1 Cycle Back-Off

Bus cycles are aborted when the system asserts
BOFF #. The i860 XP microprocessor samples this
pin in every clock period that it is driving the bus.
When BOFF # is asserted, the i860 XP microproces­
sor immediately (in the next clock period) floats the
bus. It floats the ADS# pin one clock period later,
thereby giving time for ADS # to be deasserted so
that it is not left floating active. The i860 XP micro­
processor floats the same pins as for HOLD, but
HLDA is not asserted. If a bus cycle is in progress at
the time BOFF # is asserted, the cycle is aborted,
and, in a read cycle, any data returned to the proc­
essor while BOFF # is active is ignored. BOFF #
overrides BRDY #; so, if both are sampled active in
the same clock, BRDY # is ignored. BOFF # aborts

7 8 9 10

I r I I

_~----~----~----~-<
I I I I '----..,

I I I
I I I I~---_

\ I r-~----~----~----~-< ...-----.... ..,....-----_ ---1 I I I I '----...
lEN

HOLD '----_-#/ ,"-----_
HlDA# ~------~-~~/ ,'-----'

BREQ 1;c"");;;;jH; ;:iE;in'f,);vS.;; .. , .. ",;i) li;;!:;HX~ ___ "'---_......-JXi;ii.\;/ "('i,id
,

240874-37

Figure 5.10. HOLD/HLDA Handshake

66

i860™ XP MICROPROCESSOR

a burst cycle even if it arrives with the last BRDY #
of the cycle. However, for read bursts, data transfers
completed before assertion of BOFF # are used by
the processor if they satisfy an internal request.
Cacheable data is cached in spite of BOFF #; how­
ever, the cached data is overwritten when the cycle
is restarted.

The bus remains in the high-impedance state until
BOFF # is deasserted. If cycles need to be restarted
or if a new internal request has been generated, the
BREQ signal is asserted within four clock periods
after the assertion of BOFF # .

5.2.2.2 Cycle Restart

When the system deasserts BOFF #, the i860 XP
microprocessor restarts aborted bus cycles from the
beginning by driving the address and status (A31-
A3, W/R#, D/C#, etc.) and asserting ADS#. If
more than one cycle was outstanding when BOFF #
was asserted, the i860 XP microprocessor restarts
all outstanding cycles in the same order. If HITM# is
active due to an inquiry, the write-back for it will be
the first cycle after deassertion of BOFF #. BOFF #
restarts all aborted cycles except:

o The stale cycles mentioned in section 5.3.5.

o The read that may have been generated by an
alias hit (virtual tag miss, but physical tag hit).

• The read that may have been generated by a
pfld that hit the data cache.

If the processor's KEN# pin was active (with NA#
or first BRDY #) before the cycle was aborted, exter­
nal hardware must activate it again after the cycle is
restarted. In other words, the system cannot use
BOFF # to change the cacheability of a cycle via
KEN#.

The LOCK # signal is not affected by restarted cy­
cles; it retains its state in spite of BOFF# assertion.

5.2.2.3 Late Back-Off Modes

In some cases the logic that needs to assert
BOFF # cannot make the necessary decision in time
to cancel the relevant cycle or data transfer. For ex­
ample:

1. The result of checking ECC or parity may not be
available until one or two cycles after the BRDY #
to which it corresponds.

2. When the i860 XP microprocessor is attempting
to read or write to a line that might be modified in
the cache of another processor on the same bus,
it may be advantageous to let part of a burst run

67

in parallel with inquiries to the other processors,
rather than delay the entire burst until the inquir­
ies are finished.

For such situations, the i860 XP microprocessor pro­
vides late back-off mode. For a read cycle in this
mode, the processor employs a buffer to internally
delay data and BRDY #, which allows BOFF # as­
sertion to be delayed relative to the external
BRDY #. Likewise, for a write cycle in this mode,
BOFF # assertion can be delayed relative to
BRDY #. However, data for a write cycle is not de­
layed.

Two flavors of late back-off mode are provided:

1. One allows BOFF # to be delayed by one clock
period relative to the data transfer. The proces­
sor enters one-clock late back-off mode when
the FLlNE# pin has been sampled active for at
least three clock periods when RESET deacti­
vates.

2. The other allows BOFF # to be delayed by up to
two clock periods relative to the data transfer.
The i860 XP microprocessor enters this mode
when software sets the LB bit of the dirbase
register.

If the processor enters one-clock late back-off mode
during RESET, it is impossible to enter two-clock
late back-off mode. The LB bit has no effect. Fur­
thermore, software cannot exit two-clock late back­
off mode once it is activated, and the LB bit cannot
be cleared except by resetting the processor.

Figures 5.12-5.17 illustrate variations on late back­
off mode cycles. BOFF # can be (and usually is) as­
serted longer than one clock period, as Figure 5.11
shows; the remaining figures show an active time of
only one clock.

5.2.2.4 One-Clock Late Back-Off Mode

In one-clock late back-off mode the data is delayed
internally by one clock before it is used.

In this mode, data and BRDY # are seen by internal
logic one clock period later than they appear on the
bus, which is equivalent to adding an extra wait state
to reads on the external bus (Figure 5.13). All re­
sponses to BRDY # (assertion of the ADS# for the
next cycle, assertion of HLDA in response to a
HOLD request, and deassertion of HITM#) are de­
layed by one clock period compared to the normal
mode of operation. Not delayed, however, are write
data on 063-00 and sampling of KEN# and WBI
WT#. KEN# and WB/WT# must be valid with the
first BRDY # assertion.

inter i860™ XP MICROPROCESSOR

10 11 12 13 14

ClK

,
I I I I

lEN n ,--;----.,----.,----'T--,'-,.' __ -. ___ ..-__ ..,... __ ...,. __ -;

CACHE# 0 \ __ ~ __ --~----~----~--J
,

BorF# I 'I....-T-,--.--.;...----;......J!
A31:A3

--------:-------." , , ,,.----:--..., ~-----:::-----..
..... ______ A..;.. __ - __ -I} - -:- - - - -:- - - - -:- - - - -:- - {\.. __ .;.;A..;.._-IX'-____ ..;;B-___ -..

_ __________ '"'\ : : I • ,.... __ -., 4)
:---\lJ \.--~-----:-----:---~ W ADS#

I I I I I I

BRDY# !'" :;: .. :.;;<:~..;..;: ; . ..;.. .• ,,_i" .• _i " . ..;.. .. " . ..;.. ... -1. :~::

NOTES:
A Noncacheable, 54-bit cycle (one transfer)
B Next cycle (any type)
1. BOFF # cancels cycle and data transfer
2. Cycle A restarts one clock after BOFF # is deasserted
3. Earliest ADS # assertion for next cycle

Figure 5.11. Normal Back-Off

2 4

ClK

5 7

,
,
I

10

240874-38

11

LEN n I ,-,- '\.-...,.---.----i----.

CACHE# '0
BOFT# I

, ,

W

I

_:.1

A31:A3 .. ' _A;";,,,. ____________ --_____ J> - -;- -<
I

ADS# :--\.ij

A X B ;
4) ,

\..if: , I I I I

8ROY# ··::·~ ... ;:: ···., ·.,·· ·"'""···;_;iW;:;··;··\;;:.:

NOTES:
A Noncacheable, 54-bit cycle (one transfer)
B Next cycle (any type)
1. BOFF # cancels cycle and data transfer
2. Cycle A restarts one clock after BOFF # is deasserted
3. Earliest ADS # assertion for next cycle

Figure 5.12. One-Clock Normal Back-Off

68

240874-39

inter i860TM XP MICROPROCESSOR ~~[g[!J[M]OOO~~W

10 11 12 13 14

CLK

I I I

ADS# :--\iJ • U ij U '8
I I I I

ADDRESS ::x : X : : X : X
I

LEN t\
I

CACHE# W
W/R# ~ ~ ______ ~I \ I

I I

;·8"-z,:~ ':;S ""'" ;x._~_.i;~:;; ,\,;;,,;;;;::,'8<; ~:t:;""" '",'"
I I t I I I I I I I I I I I I

DATA ~ - - - - ~- -{ CT~OU } - -~ - - - -! - -< F~eU~} -- ~ - - --! -- { cWU } - .. ! - - _.! .. -< Fl~~} -- ~ - - - -! - - - - ~
I I I I I I I I I I I

240874-40

NOTE:
1. Idle clock due to internal delay of BRDY #

Figure 5.13. Fastest Nonpipelined Cycles in One-Clock Late Back-Off Mode

If BOFF # is asserted as late as the second BRDY #
(Figure 5.14), it cancels the entire cycle, ignores
data latched with the first BRDY #, and ignores the
data being driven with the second BRDY #. This is
true of a two·transfer burst (shown) as well as a four­
transfer burst (not shown).

In a two·transfer burst, if BOFF# is asserted in the
clock after the second BRDY # (Figure 5.15), it still
cancels the cycle.

In a four-transfer burst, if BOFF# is asserted within
one clock after the last BRDY # (Figure 5.16), it still
forces a retry of the cycle, but previously transferred
read data is used by the processor if it satisfies the
read request.

5.2.2.5 Two-Clock Late Back-Off Mode

Two-clock late back-off mode gives external logic
even more time to decide to use BOFF #. In this

69

mode, data delivery is delayed by either one or two
clock periods, depending on external activity. For
any BRDY #, the data is delayed by one clock peri­
od. If in the next clock period BRDY # is again as­
serted, the previous data is used. However, if in that
next clock period BRDY # remains inactive, the data
is delayed for one extra clock period before it is
used. The responses to BRDY # (assertion of the
ADS# for the next cycle, assertion of HLDA, and
deassertion of HITM#) are delayed by one or two
clock periods, depending on the value of BRDY # in
the next clock.

The st.c dirbase instruction that sets the LB bit
must be aligned on a 32-byte boundary and must be
followed by seven nop instructions. Software must
not enable late back-off mode when the processor is
used with the 82495XP external cache controller.

i860™ XP MICROPROCESSOR

ClK

,
lEN P ,

CACHE# 0
BOFF# ,

ADS# :\iJ
I

BRDY#

NOTES:

3

A Noncacheable, 128·bit cycle (two transfers)
B Next cycle (any type)

,
_:_J

,
\.:_1

e
ill

1. BOFF # cancels both transfers (A 1 in buffer, A2 on 063-00)
2. Cycle A restarts one clock after BOFF # is deasserted
3. Earliest AOS# assertion for next cycle

10

Figure 5.14. One-Clock Late Back-Off Mode (Case 1)

3 4

ClK

,
lEN P ,

CACHE# 0
BOFF# ,

ADS# :\iJ
BRDY#

NOTES:
A Noncacheable, 128·bit cycle (two transfers)
B Nex1 cycle (noncacheable)

,
_:_J

1. BOFF# cancels both transfers (A2 in buffer is needed to satisfy request)
2. Cycle A restarts one clock after BOFF # is deasserted
3. Earliest AOS # assertion for next cycle

10

Figure 5.15. One-Clock Late Back-Off Mode (Case 2)

70

11 12 13 14

240874-41

11 12 13 14

• W

240874-42

i860TM XP MICROPROCESSOR

10 11 12 13 14

ClK

lEN =--' ' ,-:- ,\.-..,..---.---,....--...... ---,---....,.--......
CACHE# ~-:>-.'-.......-J! \ -;- ,"'_ ____ __ _._..J!

KEN# [" " ""8 '" ______ ="',='Si ""' '+"':,;f8 tt"' "'''' """ "" ""' "; ~"" '" " y[
BOFF#

AD$# ~

NA# I

BRDY#

NOTES:
A Cacheable 54-bit (or less) cycle (four transfers)
B Next cycle (any type)

,

w: ,

240B74-43

1. BOFF # cancels A2 and A3 transfers. but A 1 transfer has already satisfied request
2. Cycle A restarts one clock after BOFF # is deasserted
3. Earliest ADS # assertion for next cycle

Figure 5.16. One-Clock Late Back-Off Mode (Case 3)

2 4 10 11 12 13

ClK

lEN '0
CACHE# '0

BOFF# ,

ADS#~ 8 ~
, ,

240B74-44

Figure 5_17. Two-Clock Late Back-Off Mode

5.3 Cache Inquiry Cycles (Snooping)

Another processor initiates an inquiry cycle to check
whether an address is cached in the internal data or
instruction cache of the i860 XP microprocessor. An
inquiry cycle differs from any other cycle in that it is
initiated externally to the i860 XP microprocessor,
and the signal for beginning the cycle is EADS# (Ex­
ternal Address Status) instead of ADS #. The ad­
dress bus of the i860 XP microprocessor is bidirec-

71

tional in order to allow the address of inquiry to be
driven by the system. An inquiry cycle can begin dur­
ing any hold state:

1. While HOLD and HLDA are asserted.

2. While BOFF # is asserted.

3. While AHOLD (address hold) is asserted.

i860™ XP MICROPROCESSOR

If neither a HOLD nor a BOFF# is in effect, the sys­
tem can assert AHOLD to interrupt the current bus
activity.

EADS# is first sampled two clocks after BOFF# or
AHOLD assertion, or one clock after HLDA. This al­
lows time for the processor to float A31-A5 and for
the system to stabilize the inquiry address there.

In the clock in which EADS# is asserted, the
iB60 XP microprocessor samples these inputs,
which qualify the type of inquiry:

INV Specifies whether the line (if found) must
be invalidated (that is, changed to I-state).

FLlNE# Specifies whether the line (if found in M­
state) must be written back immediately or
after outstanding bus cycles are complet­
ed.

The i860 XP microprocessor compares the address
of the inquiry request with addresses of lines in
cache and of any line in the write-back buffer waiting

2 3 4

ClK

\ . :, I AHOlD ~ , , ,

to be transferred on the bus. It does not, however,
compare with the address of write-miss data in the
write buffers. Two clock periods after sampling
EADS#, the i860 XP drives the results of the inquiry
look-up on these output pins:

HIT# Specifies whether the address was found
(active) or not found (inactive).

HITM # If active, the line found was in the M-state;
if inactive, the line was in E- or S-state, or
was not found.

Figure 5.18 shows an inquiry with AHOLD that miss­
es the cache. When the system asserts AHOLD, the
i860 XP microprocessor floats A31-A3 in the next
clock period. It does not, however, assert HLDA; no
acknowledge is required. Once the address pins are
floating, external logic drives the address for the in­
quiry on A31-A5 and starts the inquiry cycle by acti­
vating EADS #. The i860 XP microprocessor does
not begin sampling EADS# until the second clock
after AHOLD is activated. EADS# activation may be
delayed any number of clocks.

5 6 7 8 10

ADDRESS FROM CPU: } --:--s --:--< __ --..... ---F .. ~O-M-C-P-U --..... --_

EADS#

HITM#

HIT# -------------------' , ,
ADS# "\lJ V!I

BRDY#

DATA

240874-45

NOTES:
A Outstanding cycle (for example, a single-transfer read) finishes during the inquiry
1. Earliest assertion of EADS# is two clocks after assertion of AHOLD
2. Earliest deassertion of AHOLD is one clock after assertion of EADS#
3. HIT# is valid two clocks after assertion of EADS#
4. Earliest assertion of ADS# for next cycle is one clock after deassertion of AHOLD

Figure 5.18. Inquiry Miss Cycle

72

i860™ XP MICROPROCESSOR

The earliest that AHOLD can be deasserted is the
clock after EADS# assertion. However, by maintain­
ing AHOLD active, multiple inquiry cycles can be ex­
ecuted in one AHOLD session (Figure 5.19). The
i860 XP microprocessor can accept inquiry cycles at
a rate of one every other clock period, unless a
write-back is required. The earliest that ADS# can
be asserted for the next cycle is the clock after
AHOLD deassertion.

The second inquiry in Figure 5.19 hits an unmodified
line in the cache. When a cache line with matching
address is found and the INV input signal is asserted
(as in this case), that line is invalidated (changed to
I-state). If the INV signal is inactive, the line enters
S-state.

2 3 4

elK

AHOlD
I

5.3.1 INQUIRY WRITE-BACK CYCLES

If an inquiry cycle hits a dirty (M-state) line in the
i860 XP microprocessor cache, the i860 XP micro­
processor asserts the HITM# signal to indicate that
the line will be written on the bus. The HITM# output
becomes valid in the same clock period as HIT #. In
this case the modified line is written out, and the
cache entry is changed to either I or S state accord­
ing to INV. The HITM# signal stays active through
the last BRDY # for the corresponding write-back
cycle.

An inquiry write-back cycle is similar to ordinary
write-back cycles. It is initiated by assertion of
ADS#. ADS# is asserted even when the AHOLD

5 6

I

I

\ . 7 8 9 10

I 1 I I I

ADDRESS ___ FR_O_M_C_P_U :,......J} - -;- -< TO CPU 14YiS%i'ti.tYK TO ~pu} - -: - - {\._,...... __ .,.~R_O_t.4_C_P_u...",...... __ ;

I

EADS#

INV !iW7~\;;;~"", ·.;;22J.,.;};;;.,. Ws4GiE;&i '5);/,-, tmmft%i~0;~;;'. :f:~ft!ii'JJ:1., .~;; j/~;;'~tt·Wt)tY!j
I

HITM#

HIT#
_______________________ ~I ij

ADS#
I

I

\ 0
I

I

W
I I I I

,..&\;7 ·:~;;:~~;;~;t} ih~,' \iW~:' A 4~1:~t~~%i ?::{?t!f;:;~;41;;:~J:.ft;;0VjW1 Wt!;~:;:i%i%t0;~f0~;t~r~;iti:: ':;t;:;~ ;~>~Xf;j$~}ti;i k*l
I I I

BRDY#

I I I

I I CD I I I I I I I I

DATA - - - .. - - - - ... - A --1- -- - ... - - ---- -- -- ---- .. - - - - .. - - --. - --- ..
I I I I I I I I I I

NOTES:
A Outstanding cycle (for example, a single-transfer read) finishes during the inquiry
B Earliest inquiry, no invalidation
C Earliest successive inquiry, with invalidation
1. EADS # is not sampled in the clock after its assertion
2. Inquiry B misses cache
3. Earliest deassertion of AHOLD is one clock after last assertion of EADS #
4. Inquiry C hits cache, invalidates line
5. Earliest assertion of ADS# for next cycle is one clock after deassertion of AHOLD

Figure 5.19. Fastest Inquiry Cycles (Miss and Hit)

73

240874-46

intJ i860™ XP MICROPROCESSOR

signal is active. The cycle definition signals are driv­
en properly by the processor, however, the address
pins are not driven, because activation of AHOLD
forces the i860 XP microprocessor off the address
bus. If, however, AHOLD is deasserted before or
during the write-back cycle, the i860 XP microproc­
essor drives the correct address for the write-back.

For all types of inquiry, the write-backs are not pipe­
lined into an outstanding cycle, except when the
FLlNE# pin is used (refer to section 5.3.5). ADS#
for the inquiry write-back is asserted from one to four

2 4 5

ClK

AHOlD J
1

clock periods after the HITM# pin is driven active or
after the last BRDY # is returned for any outstanding
cycle, whichever occurs later.

Bursts for a HITM# write-back, as for any write­
back, are in the order 0, 8, Ox10, Ox18, because the
i860 XP microprocessor ignores A4-A3 of the in­
quiry address.

Figure 5.20 shows an inquiry cycle that hits an M­
state line.

7 8 10 11 12

\
ADDRESS FROM cpu} - -:- - ~"!''''''''_'.,;.',;.' ____ __ .,;..,..,;. ,;. .. ________ ,;.· .. ',;.·,·,,;.··i .. f ... '..,i'} - -:- - <"' __ --_FR_O_M_C_P_U ___ ...

EADS# · ·;"'~.;.;.;;.u;_'· "' , ··.;.;.;;.···';';;,;;::;0 ::.;.;.;;.···,,·· ... • .. • .. .;.;.;;. ".;::
1 1

INV ",;C""!;"!:!.;;: ..• y;-'<"""';,: ' "........... ~~"' ' ~ ... ··· ..• ' ;, ... ';,;;...;..:.;.; '"""""<f;

HITM# \~I~ ____ ~ ________ ~~II 0
HIT#

lEN#

CACHE#

ADS# ""'\.lJ

I I I I I I I I I I I

IIIII@'~"
DATA --- .. ---- .. ---- .. ----,..----,..-- A ---1--- W W W W -- .. ----.

I I I I I I I I

NOTES:
A Outstanding cycle (for example, a single-transfer read)
W Write-back cycle
1. EADS# is not sampled while HITM# is active
2. Earliest ADS # assertion if not delayed by outstanding cycle
3. ADS # for write-back delayed by outstanding cycle
4. HITM # deactivates after last BRDY # of write-back

Figure 5_20_ Inquiry Hit Cycle with Write-Back

74

240874-47

i860TM XP MICROPROCESSOR

The fact that a write-back cycle is initiated while ad­
dress lines are floating supports multiple inquiries
(with write-backs) during a single AHOLD session.
This is especially useful during secondary cache re­
placement processing, when the secondary-cache
line is larger than that of the i860 XP microproces­
sor.

Note that EADS# is ignored as long as HITM# is
active. If the system is executing a series of inquir­
ies, it might happen that the HITM# assertion for
one inquiry masks the EADS# for a subsequent in­
quiry. In that case the system must reassert EADS#
to restart the masked inquiry.

Inquiries can occur during a hold due to HOLD/
HLDA or BOFF #. However, in these cases, the cy­
cle definition pins and ADS # are floating. If an in­
quiry requires a write-back, the HOLD or BOFF #
must be deasserted so that the cycle definition pins
and ADS# can be driven to start the write-back cy­
cle.

5.3.2 SNOOPING RESPONSIBILITY LIMITS

The i860 XP microprocessor takes responsibility for
responding to inquiry cycles for a cache line only
during the time that the line is actually in the cache
or in a write-back buffer. There are times during the
cache line fill cycle and during the cache replace­
ment cycle when the line is "in transit", and inquiry
(snooping) responsibility must be taken by other sys­
tem components.

Systems designers should consider the possibility
that an inquiry cycle may arrive at the same time as
a cache line fill or replacement for the same ad­
dress. This situation can occur:

o In multiprocessor systems that have external
(secondary) caches with separate CPU and
memory busses, thereby allowing concurrent ac­
tivity on the two busses. In such systems, it is

desirable to run invalidation cycles concurrently
with other i860 XP microprocessor bus activity. It
can happen that writes on the memory bus cause
invalidation requests to the i860 XP microproces­
sor at the same time that the i860 XP microproc­
essor fetches data from the secondary cache.
Such events can occur at any time relative to
each other.

o In multiprocessor systems with no secondary
cache, if memory is dual-ported. In such systems,
two processors can simultaneously read the
same line, each sending an inquiry to the other.

The simultaneous activities considered here may be
for different data items in the same cache line. Un­
less the inquiry request is timed carefully with re­
spect to the cache fill cycle, the cache-consistency
mechanism may be subverted, and data inconsist­
encies may result (for example, both CPUs may get
the line in E-state on a read). If the 82495XP and
82490XP cache is being used, the timing with re­
spect to the i860 XP microprocessor is handled cor­
rectly by the cache controller; however, the same
problem may arise between the memory system and
the secondary cache.

There are two cases to consider:

1. Inquiry for a line that is being cached.

2. Inquiry for a line that is being replaced.

5.3.2.1 Inquiry for a Line Being Cached

The i860 XP microprocessor accepts an inquiry cy­
cle at any time, even if it hits the line being cached at
that time. Regardless of the timing of the cycle, the
i860 XP microprocessor delivers the read data to the
load instruction that initiated the read request. How­
ever, the timing of the invalidation cycle determines
whether the line is placed in the cache and what
value the i860 XP microprocessor drives on HIT #.
Table 5.4 summarizes the different cases.

Table 5.4. Inquiry for a Line being Cached

EADS# before EADS# after
or with NA# NA# or

or 1st BRDY# 1st BRDY#

Line is cached? YES NO

HIT#= Inactive Active

Data/Instruction
YES YES

used by CPU?

75

i860™ XP MICROPROCESSOR

If EADS# is asserted before or with the sampling of
KEN #, the processor cannot match the address of
the line being cached with an invalidation request.
Thus, the processor does not assert HIT #. The ex­
ternal system must satisfy the inquiry with the cor­
rect data and WB/WT # status. If invalidation of that
line is required, the system must do one of the fol­
lowing:

• Delay assertion of EADS# until one clock after
assertion of KEN #.

• Reassert EADS# after KEN #.

4 5

elK

AHOlD

• Make KEN# inactive at the first BRDY# or NA#,
thereby preventing the line from being cached.

Figures 5.21 and 5.22 show when the i860 XP micro­
processor picks up responsibility for inquiries for a
line that it is caching. Figure 5.21 shows the earliest
EADS# assertion that invalidates the line being
cached relative to the first BRDY # for nonpipelined
cycles. Figure 5.22 shows the earliest EADS# as­
sertion that invalidates the line being cached relative
to the first NA# for pipelined cycles. These timings
hold for normal and late back-off modes.

8 10 11 12 13

\
EADS# ---,Y

.. : ~~:~----~----~----~----~--~

~~------------------­,
HIT# \

ADS# ~----------------~------------------~----------------~
NA# ~ y I

KEN#

8RDY#

ADDRESS

NOTES:

, ,

~------------------------~~~--~ I I I I r I I

, " " A A A A ;-.-----..... '" ---------------------------i ,
R }-~----:-----:-----:--_'R" }--:,._< R

~--~-~, , , ,~----------~ ~--------~~------~
240874-48

A Cache line fill cycle
S Snoop (inquiry) cycle
R Addresses of cache line fill and snoop are the same
1. Earliest EADS# assertion that can invalidate line being filled

Figure 5.21. Snoop Responsibility Pickup (Nonpipelined Cycle)

76

i860™ XP MICROPROCESSOR

ClK

:, I AHOlD ;,........J

HIT#

I

ADS# :--uJ

NOTES:
A Cache line fill cycle
B Next cycle (any type)
S Snoop (inquiry) cycle

3 4

,
o '

!;!;;VUll!JJJJJll!l

\

R Addresses of cycles A and S are the same

8 10 11 12 13

,

ill

240874-49

1. Earliest EADS # assertion that can invalidate line being filled

Figure 5.22. Snoop Responsibility Pickup (Pipelined Cycle)

5.3.2.2 Inquiry for a Line Being Replaced

When the i86a XP microprocessor is replacing a line,
there are two cases:

1. If the replacement does not require write·back,
the address being replaced can be matched by
an inquiry until assertion of NA# or first BRDY #
of the line·fill cycle. From that point on, the in­
quiry has no effect.

2. If the replacement requires a write-back, the ad­
dress being replaced can be matched by an in­
quiry until assertion of the last BRDY # for the
write-back. An EADS # as late as two clocks be­
fore the last BRDY # can cause HITM # to be
asserted.

77

Figures 5.23 through 5.25 show when the i86a XP
microprocessor drops responsibility for recognizing
inquiries for a line that it is writing back. They show
the latest EADS# assertion that can cause HITM #
assertion. In late back-off mode, EADS# can be as­
serted later, because BRDY # is internally delayed
(Figures 5.24 and 5.25).

In all these cases, HITM# remains active for only
one clock period. HITM#, as always, remains active
through the last BRDY # of the corresponding write­
back; in these cases the write-back has already
completed.

If an inquiry cycle hits the write-back address after
its ADS# has been issued, the i86a XP microproc­
essor asserts HITM#; however, HIT# is deassert­
ed. This unique combination of values on HIT# and
HITM# indicates that the write-back cycle corre­
sponding to the HITM# has already been issued.

inter i860™ XP MICROPROCESSOR

2 3 4 5 7 8 10 11 12 13

ClK

:, I AHOlD ;,.....J

HIT# ________________________ --J!

HITM# '-i..J ,
ADS#

BRDY#

ADDRESS

240874-50

NOTES:
A Write-back cycle
S Snoop (inquiry) cycle
R Addresses of cycles A and S are the same

Figure 5.23. Latest Snooping of Write-Back (Not Late Back-Off Mode)

4 8 10 11 12 13

ClK

:, I AHOlD ;,.....J

HIT#
~ ________________________ --J!

HITM#

ADS#

ADDRESS R

240B74-51

NOTES:
A Write-back cycle
S Snoop (inquiry) cycle
R Addresses of cycles A and S are the same

Figure 5.24. Latest Snooping of Write-Back (One-Clock Late Back-Off Mode)

78

i860™ XP MICROPROCESSOR

elK

:, I AHOlD ;.......J \
[ADS#

HIT# ~--------------------~I
HITM#

ADS# ~~--~~--~~--~~--~~--~~~
, ,
i"f!"';:t;;"'(> .. i,::?t .. ·'\· :~+ ... j!i ... t;~n4~;,::::;y:·:::ir~:t7'.,-,-.::-,-.",M-,,:~:.~-".:~.:,M,:~,::e;:, M.::.:;M":}:,:M,,; . .-,M:.,-""!. ======.,......,."...,.".""""", . .< .. :,',s,...:tt

,....._.;.R -J} - ~ - - - - ~ - - - - ~ - - -+ -GJG .. 4tf"';:;;iio\l; ... ::r; ... t~",t:~.;.t~\:-"i . .. ':::wtN:> - _:_ - <r-----R------i

BRDY#

ADDRESS

240874-52

NOTES:
A Write· back cycle
S Snoop (inquiry) cycle
R Addresses of cycles A and S are the same

Figure 5.25. Latest Snooping of Write-Back (Two-Clock Late Back-Off Mode)

5.3.3 WRITE CYCLE REORDERING DUE TO
BUFFERING

The MESI cache protocol and the ability to perform
and respond to inquiry cycles guarantee that writes
to the cache are logically equivalent to writes that go
to memory. In particular, the order of read and write
operations on cached data is the same as if the op·
erations were on data in memory. Even uncached
memory read and write requests usually occur on
the external bus in the same order that they are is·
sued in the program. For example, when a write miss
is followed by a read miss, the write data goes onto
the bus before the read request is put on the bus.
However, the posting of writes in write buffers cou·
pled with inquiry cycles may cause the order of
writes seen on the external bus to differ from the
order they appear in the program. Consider the fol·
lowing example, which is illustrated in Figure 5.26:

1. Three bus cycles are outstanding.

2. Processor 1 executes a store to address A, which
misses the cache. This store is posted; that is,
the data is latched in the write buffer while the
processor continues execution without waiting for
the store to be completed on the bus. In this case
the store is not even put on the bus because
there are already three outstanding cycles.

79

3. Processor 1 executes a store to address B, which
hits the cache.

4. Processor 2 executes an inquiry for address B.
Processor 1 looks in its cache, finds the modified
line, asserts HIT# and HITM#, and executes a
write-back cycle to address B, while the data for
address A is still in the write buffer.

5. Processor 1 issues the write to address A on the
bus.

In this example, the original order of the writes has
been changed. In most cases it is not necessary that
the ordering of writes be strictly maintained. But
there are cases (for example, semaphore updates in
a multiprocessor system) that require stores to be
observed externally in the same order as pro­
grammed. There are several ways to ensure seriali­
zation of stores:

1. Bracket one of the stores with the lock and
unlock instructions. That forces serialization of
the stores (refer to section 5.4). In the above ex­
ample of a store-miss followed by store-hit, lock­
ing either store would ensure that the internal
store-hit does not update the cache until the miss
gets to the external bus.

2. Apply the write-through policy to the critical data,
by setting WT = 1 in the page table entries or by
driving the WB/WT # pin low.

intJ i860™ XP MICROPROCESSOR

ClK

DECODE

WRITE
BUffER

CACHED
DATA

AHOLD

EADS#

4

st.xA I st.xB

A
I I I I

B (updated)

7 8 10 11 12 13 14

\~--------------~

HITM# \~------+-~~--------~
ADS#

BRDY#

NOTES:
A Data written by st.x A instruction
B Data written by st.x B instruction
1. Snoop for address of B
2. Snoop look-up in tag array occurs here; finds B modified
3. Write-back of line containing B occurs before write of A

B

240674-53

Figure 5.26. Write Reordering due to Buffering

3. Configure the processor for Strong Ordering
Mode by asserting EWBE# during RESET.

Option 1 is implementable by user-level programs,
while option 2 is an operating-system level solution,
not directly implementable by user-level code. Op­
tion 3, the hardware solution, is discussed in greater
detail in section 5.3.4.

5.3.4 STRONG ORDERING MODE

In strong ordering mode, the processor delays up­
dates to its internal data cache in either of these
conditions:

1. The internal write buffer is not empty.

2. An external write buffer is not empty (the external
system signals this condition by deactivating the
EWBE # signal).

By delaying the cache update until all write buffers
are empty, the i860 XP microprocessor avoids the
out-of-order sequence shown in section 5.3.3.

80

In strong ordering mode, EWBE# can be asserted
only between the ADS# and the last BRDY# of a
store. The earliest assertion is the clock after
ADS#; the latest assertion is together with the last
BRDY#. EWBE# can be deasserted any time, ex­
cept when the processor is performing an inquiry
write-back. In other words, EWBE# must not deacti­
vate while HITM# is active. When EWBE# is deas­
serted, the processor completes any cache update
that may have been delayed by its assertion.

Figure 5.27 shows how an external cache can use
EWBE # when a store miss in the i860 XP micro­
processor is also a miss in the external cache.

An external cache controller should also refrain from
updating the external cache while EWBE# is active.

i860™ XP MICROPROCESSOR

2 3 4 5 6 7 8 9 10

ClK

ADS# .--......... ---....-.....,...-1/ ,\......-ro---i----r
W/R# _ -_-_.......J/ ,\...--.....----.

8RDY#

I

EW8E# '0 , .
240874-54

NOTE:
1. Assumes the external cache needs five cycles to write the data to memory.
2. Pending internal data cache updates are delayed until the clock in which EWBE # is sampled LOW.

Figure 5.27. Timing of EWBE#

5.3.5 SCHEDULING INQUIRY WRITE·BACK
CYCLES

In order to preserve system-wide ordering of memo­
ry transactions in multiprocessor systems that have
a pipelined or split-transaction memory bus, it may
be necessary to get the data corresponding to an
inquiry hit before outstanding bus cycles are com­
pleted. Another bus master can always request an
inquiry while the i86a XP microprocessor has cycles
outstanding on the bus. However, when AHOLD is
asserted, the i86a XP microprocessor normally com­
pletes outstanding cycles before it performs any
write-back that may be required. The i86a XP micro­
processor provides two methods for causing the in­
quiry write-back before outstanding cycles are com­
pleted:

FLlNE# When FLlNE# is asserted during the
EADS# of an inquiry that hits an M-state
line, the i86a XP microprocessor issues a
write-back cycle and writes the dirty line to
memory before the outstanding bus cycles
are completed.

BOFF # If there are outstanding cycles on the bus,
asserting BOFF # clears the bus pipeline.
If an inquiry causes HITM# to be asserted,
then the first cycle issued by the i86a XP
microprocessor after deassertion of
BOFF # is the inquiry write-back cycle. Af­
ter the inquiry write-back, it reissues the
aborted cycles.

5.3.5.1 Choosing between FLiNE # and BOFF #

FLlNE#, although the more efficient choice, cannot
handle all situations. Under certain circumstances, it
can happen that outstanding stores on the bus cor-

81

respond to data that is obsolete relative to the data
in the cache, because a subsequent store has up­
dated the cache after the ADS# for the outstanding
store has occurred. For example:

• An aliasing store hit, in which a cache virtual-tag
miss occurs and the ADS# is issued at the same
time as a physical-tag hit. Then the cached data
would be updated before external memory, and a
subsequent store to the new virtual address
could also update cache before the outstanding
bus store completed.

• Back-to-back writes to the same line can also up­
date the cache more recently than the bus when
the write-once update policy is employed. The
first write updates the cache and generates a bus
write request, but the second write only updates
the cache.

In both of these examples the outstanding stores on
the bus are obsolete relative to the data in the cache
line. If an inquiry cycle hits a line and this line is
written back out of order (that is, before outstanding
stores are completed), special care should be taken
to discard the outstanding stores.

The easiest way to avoid this situation is not to as­
sert FLlNE# when stores are outstanding, but use
BOFF# instead. If out-of-order write-back is imple­
mented with BOFF #, the i86a XP microprocessor
does not restart the outstanding store to that line if
such a store has been obsoleted by a later cache hit
store. That is, the i86a XP microprocessor detects
this condition and kills the obsolete data. However,
lock-bracketed stores (including the last store in the
lock sequence) are restarted by the i86a XP micro­
processor, because lock-bracketed stores update
the cache only after BRDY # is returned.

inter i860TM XP MICROPROCESSOR

If, on the other hand, out-of-order write-back is im­
plemented by using only the FLlNE# pin, the exter­
nal system must return BRDY#s for outstanding
stores, but the data must be ignored if it has already
been written out by an inquiry write-back.

Note that if a replacement write-back is in progress
(ADS# has been issued, but last BRDY# has not
occurred) and an inquiry hits the same line that is
being written back, the FLlNE# pin is ignored. The
system can recognize this special case by the fact
that HITM # is asserted while HIT # is deasserted. If
other cycles are outstanding and it is necessary to
write the line back before the other cycles, BOFF#
can be used.

5.3.5.2 Reordering Write-Backs with FLlNE#

FLlNE# must be active during the EADS# that initi­
ates an inquiry. BRDY # must not be asserted forthe
previously issued cycles while HITM# is active. If
HITM# is asserted while the data transfer of the
outstanding cycle is in progress (Le. first BRDY #
has been asserted, but the entire transfer has not

2 3 4 5 6

ClK

AHOlD

EADS#

HIT# I ~
HITM# I \
W/R#

CACHE

FLlNE#

ADS#

NA#

BRDY#

yet been completed), the i860 XP microprocessor
waits for the current cycle to complete, and only
then issues the write-back. After the last BRDY # for
the ongoing burst (if any), BRDY # is ignored until
the clock period after ADS# is asserted for the
write-back.

From the viewpoint of the i860 XP microprocessor,
an inquiry write-back cycle is just another bus cycle;
so, if there is an outstanding cycle at the time of
FLlNE# and HITM# activation, the system must as­
sert NA # to initiate the write-back.

Figure 5.28 illustrates simple cycle reordering, when
FLlNE# is not asserted during the data transfer of
another cycle. The outstanding request could be ei­
ther a read or write.

Figure 5.29 shows the case in which FLlNE# is as­
serted after data transfer for the outstanding cycle
has already started. In this case, the i860 XP micro­
processor does not issue a write-back until the out­
standing transfer is completed. NA# is needed in
this example only if other outstanding cycles remain.

7 8 10 11 12 13

r:
7

DATA

I I I I I I I I I I I I I I

IIIIIIIII~' .----.----""'---- .. ____ .. ____ ... ____ ~ ____ ... ____ I-- fROU FROM FROM FROM _ ..
I I I I I I I I I CPU OPU CPU CPU I

240874-55

Figure 5.28. Cycle Reordering via FLlNE# (No Ongoing Burst)

82

i860TM XP MICROPROCESSOR

10 11 12 13 14

ClK

,
;,' I AHOlD i--' \~----~~------------

EADS#

HIT# .' ________________________ \~~ ____ ~ ____ ~ ________ ~ ____ ~ ____ ~ ____ ~ ________ ~~

HITM# I \~~~--~--~~--~~--~~--~I
W/R# ~~ __________ ~ ________ ~ ____ ~--~-JI

CACHE

rLlNE#

ADS#

NA#

BRDY#

DATA

\~----~~--------------~

~----+---------------------~\JLJ

~---~---------------------~~-----------------
I I I I

~' , " ;;;; lwAwJ'!>..wAwl ! '" ~ , ~ , ~ , ~,:," P%,;\I*i{i '% '; , ~
I I :: : I I I I I I I : :

~----~- --:-----:-----:-----:-----:--< rl~uM X Fl~UM X Ft~~ X Fl~~)
240874-56

NOTES:
1. BRDY # is ignored by CPU from end of ongoing burst through ADS# of write-back, even if other cycles remain
outstanding
2. NA # required only if another cycle is outstanding
3. If the first BRDY # is asserted here or sooner (relative to HITM #), the outstanding cycle completes before the
FLlNE# write-back.

Figure 5.29. Cycle Reordering via FLlNE# (Ongoing Burst)

83

intJ i860™ XP MICROPROCESSOR

5.3.5.3 Reordering Write-Backs with BOFF #

Back-off cycles are discussed in general in Section
5.2.2. Figure 5.30 shows how BOFF # can be used
to cancel outstanding cycles so that an inquiry write­
back can take place immediately.

elK

AHOlD ... ' _......;,........1 • \
,

80fF# I VU

5.4 The LOCK # Cycle Attribute

The processor asserts the LOCK # signal when sev­
eral accesses to a single memory location must be
effectively uninterruptible. By causing LOCK # to be
asserted, a programmer can, for example, increment
the contents of a memory variable and be assured
that the variable will not be accessed between the
read and the update of that variable.

11 12 13 14 15 16

HITM# I \~~'--~~----------------~I
H1T# \

[,

LEN# :----........ ----"-....... - --+-~L+_< ________ __'y
,

\ --:-- ,'--::':-------_____ -11
C) •

CACHE#

ADS#~ \.JLl UJ ,

240874-57

NOTES:
A Outstanding cycle (for example, noncacheable 128-bit read) W Write-back cycle
1. AHOLD begins an inquiry while one cycle is outstanding.
2. Earliest assertion of EADS# is two clocks after assertion of AHOLD
3. Inquiry hits modified line.
4. Assertion of BOFF # aborts the outstanding cycle.
5. BRDY# asserted during BOFF# is ignored by CPU.
6. Write-back begins after deassertion of BOFF#.
7. Earliest assertion of ADS# for restart of cycle A (assuming no pipelining).

Figure 5.30. Cycle Reordering via BOFF # (Ongoing Burst)

84

i860™ XP MICROPROCESSOR

The memory location to be locked is the one whose
address is driven during the cycle in which LOCK #
is first activated. In multiprocessor systems, external
hardware should guarantee that no other processor
is granted a locked read, locked write, or unlocked
write to the same location until LOCK # is de assert­
ed. The i860 XP microprocessor has no hardware
provision to prevent another master from also lock­
ing the variable; this responsibility falls on the bus
arbiter. In the simplest implementation, the arbiter
can globally prevent other masters from accessing
the bus.

Not all cycles affect the value of LOCK #. Code
fetches, write-backs due to replacement or inquiry,
and cycles restarted due to BOFF # do not affect
LOCK #. Any other type of cycle can be used to initi­
ate or terminate LOCK #, including cache line fills,
interrupt acknowledge, 1/0, and special cycles.

Data accesses with LOCK # asserted are not pipe­
lined, and other data cycles are not pipelined while a
LOCK# cycle remains outstanding. Instruction
fetches, however, may be pipe lined during lock.

The i860 XP microprocessor can run very long lock
sequences; therefore, to guarantee reasonable bus
turnover latency in multimaster systems, the i860 XP

CLK

LEN \

CACHE# , I

microprocessor recognizes bus hold (HOLD), ad­
dress hold (AHOLD), and back-off (BOFF #) while
the LOCK# signal is active. In spite of such inter­
vening conditions, the arbiter should prevent any
other bus master from also locking or updating the
variable the i860 XP microprocessor locked. In sim­
ple systems the HOLD input can be masked by the
LOCK# output (that is, the external logic that gener­
ates HOLD can AND the LOCK# signal with other
hold conditions). More sophisticated systems, how­
ever, may allow the bus to be turned over while
LOCK# is asserted.

Whatever the lock implementation, arbiter design
must, in one case, allow another processor to write
the locked variable. That case is when another
i860 XP microprocessor or master asserts HITM# in
response to the inquiry generated by the locking
processor's initial read. That other master must write
back the locked variable before the i860 XP micro­
processor can read it. This HITM # write-back must
always be allowed.

The timing of LOCK # is shown in Figure 5.31. Note
that LOCK # is asserted in the same clock period as
ADS # for the locked address, but is de asserted in
the clock period after ADS# for the unlocking load
or store.

4 5 6

W/R# ___ \..a......_-..--I!
ADS# '

ADDRESS ~, ______ ~x~ __ ~~~ __ ~x~ ________________ ~
, ,

BRDY# r01M' Xii/ex' <{;ii);i£W;gt:&;~;l;f ;m> V0\j~.iAi!t;;j!i& 'Wflf!

DATA ~ ____ ~ ____ : __ {][}o __ : __ {]fDROM _~ ____ ~
I CPU I CPU

I I I I I I

LOCK#: '\' : '!, ' , . ,

NOTES:
L Locking access
U Unlocking access
1. This address is to be locked
2. LOCK# is asserted with ADS#
3. LOCK# is deasserted one clock after ADS#

Figure 5.31. LOCK# Timing

85

240B74-58

inter i860™ XP MICROPROCESSOR

5.5 RESET Initialization

Initialization of the i860 XP microprocessor is caused
when the system asserts the RESET signal for at
least ten clocks. Table 5.5 shows the status of out­
put pins during the time that RESET is asserted.
Note that the bidirectional data pins (063-00 and
DP7-DPO) are floated during RESET, though the bi­
directional A31-A3 pins are not. If the i860 XP mi­
croprocessor is used with 82495XP and 82496XP
cache, however, the latter do float the bidirectional
pins they share with i860 XP microprocessor during
RESET. Note that HOLD requests are honored dur­
ing RESET and that the HLDA output signal may
also become active. The status of output pins de­
pends on whether a HOLD request is being acknowl­
edged. Note also that the test logic may be active
during RESET and that the EXTEST instruction may
drive other values on the output pins.

Some aspects of processor configuration are deter­
mined by asserting input signals during RESET. To
select a given option, the corresponding input must
be asserted for at least the last three clocks before
the falling edge of RESET; to deselect, the corre­
sponding input must be de asserted for at least the
last three clocks before the falling edge of RESET:

EWBE# Enter strong ordering mode.

FLlNE# Enter one clock late back-off mode.

INT less Enter eight-bit code-size mode.

Figure 5.32 shows how configuration pins are sam­
pled during the three clock periods just before the
falling edge of RESET. No inputs besides EWBE #,
HOLD, FLlNE#, and INT/CS8 are sampled during
RESET.

Table 5.5. Output Pin Status during Reset

Pin Value
Pin Name HOLD HOLD

Not Acknowledged Acknowledged

BREQ LOW LOW
HLDA LOW HIGH
W/R#, PWT, PCD LOW Tristate OFF
ADS# HIGH Tristate OFF
063-00, DP7-DPO Tristate OFF Tristate OFF
A31-A3, BE7#0-BEO#, NENE# CACHE#, CTYP, D/C#, Undefined Tristate OFF

KBO, KB1, LEN, M/IO#, PCYC
PCHK#, HIT# Undefined Undefined
HITM#, LOCK# HIGH HIGH

NOTE:
This table does not apply if the test logic is running the EXTEST instruction.

4 5 7 8 10 11 12 13

ClK

RESET 'oJ \'--f--"';-_ ,
EWBE#,
fLlNE#,

INT/CS8
.... 1·//; ".1·; w'; s ' \ii' ;<(;_tfj ;> 0'2~>···' ' ,.' ". ~~~w'·'w·""w'·w"""i"_'<f;;iiiJ,A *,-_~O_---JX\... ___

OTHER
INPUTS

HOLD

HlDA

NOTE:

jizy',,;;)?!))

1. The CPU samples these inputs in the clock preceding the falling edge of reset.

Figure 5.32. Reset Activities
86

240874-59

inter i860TM XP MICROPROCESSOR

While in eight-bit code-size mode, instruction cache
misses are one-byte reads (transferred on 07 -00 of
the data bus) instead of eight-byte reads. This allows
the i860 XP microprocessor to be bootstrapped from
an eight-bit ROM. For these code reads, byte en­
ables BE2#-BEO# are redefined to be the low or­
der three bits of the address, so that a complete
byte address is available. The entire eight-byte data
bus continues to be parity-checked by the i860 XP
microprocessor during eS8-mode instruction fetch­
es; therefore, external hardware must either gener­
ate good parity on all eight bytes or disable parity
traps by deasserting PEN # during eS8 mode.

While in this mode, instructions must reside in an
eight-bit wide memory, while data must reside in a
separate 64-bit wide memory. After the code has
been loaded into 64-bit memory, initialization code
can initiate 64-bit code fetches by clearing the eS8
bit of the dirbase register (refer to section 2). Once
eight-bit code-size mode is disabled by software, it
cannot be reenabled except by resetting the i860 XP
microprocessor.

Instruction fetches in eS8 mode update the instruc­
tion cache if KEN # is asserted during NA # or all of
the first eight BROY#s (refer to section 4.2.26).
They are pipelined if NA# is asserted. When used
with the 82495XP and 82496XP cache, eS8 mode
works only if the ROM locations are made non­
cacheable.

6.0 TESTABILITY

The i860 XP microprocessor provides testability fea­
tures compatible with the proposed Standard Test
Access Port and Boundary-Scan Architecture (IEEE
Std. P1149.1/06). The subset of the standard test
logic implemented in the i860 XP microprocessor
provides for testing the interconnections between
the i860 XP microprocessor and other integrated cir­
cuits once they have been assembled onto a printed
circuit board.

The test logic consists of a boundary-scan register
and other building blocks that are accessed through
a test access port (TAP). The TAP provides a simple
serial interface that makes it possible to test all sig­
nal traces with only a few probes.

The TAP can be controlled by a bus master. The bus
master can be either automatic test equipment or a
component that interfaces to a four-pin test bus.

87

6.1 Test Architecture

The test logic contains the following elements:

• Test access port (TAP), which consists of input
pins TMS, TeK, TOI, and TRST#; and output pin
TOO.

• TAP controller, which receives the dedicated test
clock (TeK) and interprets the signals on the test
mode select (TMS) line. The TAP controller gen­
erates clock and control signals for the instruc­
tion and test data registers and for other parts of
the test logic.

• Instruction register (IR), which allows instruction
codes to be shifted into the test logic. The in­
struction codes are used to select the test to be
performed or the test data register to be ac­
cessed.

• Test data registers: Bypass Register (BPR), Oe­
vice Identification Register (010), and Boundary­
Scan Register (BSR).

The instruction and test data registers are separate
shift-register paths connected in parallel and having
a common serial data input and a common serial
data output connected to the TAP TOI and TOO sig­
nals respectively.

6.2 Test Data Registers

The test logic contains the following data registers:

• Bypass Register (BPR): BPR is a one-bit shift
register that provides a minimum-length path be­
tween TOI and TOO when no test operation of
the component is required. This allows more rap­
id movement of test data to and from other board
components that are required to perform test op­
erations. While running through BPR, the data is
transferred without inversion from TOI to TOO.

• Device Identification Register (DID): This reg­
ister contains the manufacturer's identification
code, part number code, and version code in the
format shown by Figure 6.1. The values are: man­
ufacturer's identification code (9), part number
code (61AO), version code (8), entire 32-bit value
(Ox861 A0013).

• Boundary Scan Register (BSR): The BSR is a
single shift-register path containing 150 cells that
are connected to all input and output pins of the
i860 XP microprocessor. Figure 6.2 shows the
logical structure of the BSA. Input cells only cap­
ture data; they do not affect operation of the
i860 XP microprocessor. Oata is transferred with­
out inversion from TOI to TOO through the BSR
during scanning. The BSR can be operated by
the EXTEST and SAMPLE instructions.

i860™ XP MICROPROCESSOR

3130292 2726252423222120191817161514 1312 111098765432 I 0

I VERSION PART NUMBER I MANUFACTURER III IDENTITY
, <l <l <l <l , , <l <l <l <l , , <l , <l <l <l <l <l <l <l <l <l <l <l <l , <l <l , ,

61AO 9
240874-60

Figure 6.1. Format of DID Register

BOUNDARY SCAN REGISTER

System
Logic.---I
Input

TCK

TOI

SYSTEM
LOGIC

TOO

System
> Bidirectional

Pin

System
>---1. 3-State

Output

240874-61

Figure 6.2. Logical Structure of BSR Register

6.3 Instruction Register

The Instruction Register (IR) selects the test to be
performed and the test data register to be accessed.
It is four bits wide, with no parity bit. Table 6.1 shows
the encoding of the instructions supported by the
TAP controller of the i860 XP microprocessor. The
rightmost bit is the least significant and is the first
shifted out on TOO.

Table 6.1. TAP Instruction Encoding

Instruction Code Instruction

0000 EXTEST Boundary Scan
0001 SAMPLE Boundary Scan
0010 10COOE

0011 ... 1110 Intel reserved CAUTION'
1111 BYPASS

• CAUTION: Operation of these private instructions may
cause damage to the component.

88

EXT EST The BSR cells associated with output pins
drive the output pins of the i860 XP micro­
processor. Values scanned into the BSR
cells become the output values. The BSR
cells associated with input pins sample
the inputs of the i860 XP microprocessor.
Note that I/O pins can be input or output
for this test, depending on their control
setting. The values shifted to the input
latches are not used by the internal logic
of the i860 XP microprocessor. After use
of the EXTEST command, the i860 XP mi­
croprocessor must be reset (with the RE­
SET signal) before normal use.

SAMPLE The BSR cells associated with output pins
sample the value driven by the i860 XP
microprocessor. BSR cells associated
with input pins sample on the rising edge
of TCK the values driven to the i860 XP

i860TM XP MICROPROCESSOR

microprocessor. BSR cells associated
with I/O pins sample the value on the re­
spective pin. The I/O pin can be driven by
the i860 XP microprocessor or by external
hardware. The values shifted to the input
latches are not used by the internal logic
of the i860 XP microprocessor.

IDCODE The identification code of the i860 XP mi­
croprocessor from the 010 register is
passed to TOO. The 010 register is not
altered by data shifted in on TOI.

BYPASS Test data is passed from TOI to TOO via
the single-bit BPR, effectively bypassing
the test logic of the i860 XP microproces­
sor. Because of its special encoding, this
instruction can be entered by holding TOI
HIGH while completing an instruction­
scan cycle. This reduces the demands on
the host test system in cases where ac­
cess is required, for example, only to chip
57 on a 100-chip board.

Note that an open circuit fault in the
board-level test data path causes the
BPR register to be selected following an
instruction-scan cycle, because the TOI
input has a pull-up resistor. Therefore, no
unwanted interference with the operation
of the on-chip system logic can occur.

Table 6.2 defines which registers are active during
execution of each instruction.

6.4 TAP Controller

The TAP Controller is a synchronous, finite state
machine. It controls the sequence of operations of
the test logic. The TAP Controller changes state
only in response to the following events:

1. A rising edge of TCK.

2. A transition to logic zero at the TRST # input.

3. Power-up.

The value of the TMS input signal at a rising edge of
TCK controls the sequence of state changes. The
state diagram for the TAP controller is shown in Fig­
ure 6.3. Test designers must consider the operation
of the state machine in order to design the correct
sequence of values to drive on TMS.

6.4.1 TEST-LOGIC-RESET STATE

In this state, the test logic is disabled so that normal
operation of the i860 XP microprocessor can contin­
ue unhindered. This is achieved by initializing the in­
struction register such that the 10COOE instruction
is loaded. No matter what the original state of the
controller, the controller enters Test-Logie-Reset
when the TMS input is held HIGH for at least five
rising edges of TCK. The controller remains in this
state while TMS is HIGH.

If the controller leaves the Test-Logie-Reset state as
a result of an erroneous LOW signal on the TMS line
at the time of a riSing edge of TCK (for example, a
glitch due to external interference), it returns to the
Test-Logie-Reset state following three rising edges
of TCK while the TMS signal at the intended HIGH
logic level. The operation of the test logic is such
that no disturbance is caused to on-chip system log­
ic operation as the result of such an error. On leav­
ing the Test-Logie-Reset state, the controller moves
into the Run-Test/Idle state, where no action occurs
because the current instruction has been set to se­
lect operation of the 010 register. The test logic is
also inactive in the Select-OR-Scan and Seleet-fR­
Scan states.

The TAP controller is also forced to the Test-Logie­
Reset state by applying a LOW logic level to the
TRST# input and at power-up.

Table 6.2. Registers Active by Instruction

Register
Mode BSR DID BPR

EXT EST TOI ~ BSR ~ TOO Inactive Inactive
SAMPLE TOI ~ BSR ~ TOO Inactive Inactive
10COOE Inactive OIO~TOO Inactive
BYPASS Inactive Inactive TOI ~ BPR ~ TOO

89

inter i860™ XP MICROPROCESSOR

o

240874-62

NOTE:
0,1 The values present on TMS at the time of a rising edge on TCK.

Figure 6.3. TAP Controller State Diagram

6.4.2 RUN-TEST/IDLE STATE

The controller enters this state between scan opera­
tions. Once in this state, the controller remains in
this state as long as TMS is held LOW. No activity
occurs in the test logic. The instruction register and
all test data registers retain their previous state.
When TMS is HIGH and a rising edge is applied to
TCK, the controller moves to the Se/ect-DR-Scan
state.

90

6.4.3 SELECT-OR-SCAN STATE

This is a temporary controller state. The test data
register selected by the cLirrent instruction retains its
previous state. If TMS is held LOW and a rising edge
is applied to TCK when in this state, the controller
moves into the Capture-DR state, and a scan se­
quence for the selected test data register is initiated.
If TMS is held HIGH and a rising edge is applied to
TCK, the controller moves to the Se/ect-/R-Scan
state.

The instruction does not change in this state.

i860™ XP MICROPROCESSOR

6.4.4 SELECT-IR-SCAN STATE

This is a temporary controller state. The test data
register selected by the current instruction retains its
previous state. If TMS is held LOW and a rising edge
is applied to TCK when in this state, the controller
moves into the Capture-IR· state, and a scan se­
quence for the instruction register is initiated. If TMS
is held HIGH and a rising edge is applied to TCK, the
controller moves to the Test-Logic-Reset state.

The instruction does not change in this state.

6.4.5 CAPTURE-DR STATE

In this state, the BSR captures input pin data if the
current instruction is EXTEST or SAMPLE. The other
test data registers, which do not have parallel input,
are not changed.

The instruction does not change in this state.

When the TAP controller is in this state and a rising
edge is applied to TCK, the controller enters the
Exit1-DR state if TMS is HIGH or the Shift-DR state
if TMS is LOW.

6.4.6 SHIFT-DR STATE

In this controller state, the test data register con­
nected between TOI and TOO as a result of the cur­
rent instruction shifts data one stage toward its serial
output on each rising edge of TCK.

The instruction does not change in this state.

When the TAP controller is in this state and a rising
edge is applied to TCK, the controller enters the
Exit1-DR state if TMS is HIGH or remains in the
Shift-DR state if TMS is LOW.

6.4.7 EXIT1-DR STATE

This is a temporary state. If TMS is held HIGH, a
rising edge applied to TCK while in this state causes
the controller to enter the Update-DR state, which
terminates the scanning process. If TMS is held low
and a rising edge is applied to TCK, the controller
enters the Pause-DR state.

The test data register selected by the current in­
struction retains its previous state unchanged. The
instruction does not change in this state.

91

6.4.8 PAUSE-DR STATE

The pause state allows the test controller to tempo­
rarily halt the shifting of data through the test data
register in the serial path between TOI and TOO.
This might be necessary, for example, to allow the
tester to reload its pin memory from disk during ap­
plication of a long test sequence.

The test data register selected by the current in­
struction retains its previous state. The instruction
does not change in this state.

The controller remains in this state as long as TMS
is LOW. When TMS goes HIGH and a rising edge is
applied to TCK, the controller moves to the Exit2-DR
state.

6.4.9 EXIT2-DR STATE

This is a temporary state. If TMS is held HIGH and a
rising edge is applied to TCK, the scanning process
terminates, and the TAP controller enters the
Update-DR state. If TMS is held LOW and a rising
edge is applied to TCK, the controller enters the
Shift-DR state.

The test data register selected by the current in­
struction retains its previous state unchanged. The
instruction does not change in this state.

6.4.10 UPDATE-DR STATE

The BSR register is provided with a latched parallel
output to prevent changes at the parallel output
while data is shifted in response to the EXTEST and
SAMPLE instructions. When the TAP controller is in
this state and the BSR register is selected, data is
latched onto the parallel output of this register from
the shift-register path on the falling edge of TCK.
The data held at the latched parallel output does not
change other than in this state.

All shift-register stages in test data registers select­
ed by the current instruction retain their previous
state unchanged. The instruction does not change in
this state.

When the TAP controller is in this state and a rising
edge is applied to TCK, the controller enters the
Select-OR-Scan state if TMS is held HIGH or the
Run-Test/Idle state if TMS is held LOW.

6.4.11 CAPTURE-IR STATE

In this controller state the shift register contained in
the instruction register loads the fixed value 0001 on
the rising edge of TCK.

intJ i860™ XP MICROPROCESSOR

The test data register selected by the current in­
struction retains its previous state. The instruction
does not change in this state.

When the controller is in this state and a rising edge
is applied to TCK, the controller enters the Exit1-1R
state if TMS is held HIGH or the Shift-IR state if TMS
is held LOW.

6.4.12 SHIFT-IR STATE

In this state, the shift register contained in the in­
struction register is connected between TDI and
TDO and shifts data one stage towards its serial out­
put on each rising edge of TCK.

The test data register selected by the current in­
struction retains its previous state. The instruction
does not change in this state.

When the controller is in this state and a rising edge
is applied to TCK, the controller enters the Exit1-IR
state if TMS is held HIGH or remains in the Shift-IR
state if TMS is held LOW.

6.4.13 EXIT1-IR STATE

This is a temporary state. If TMS is held HIGH, a
rising edge applied to TCK while in this state causes
the controller to enter the Update-IR state, which
terminates the scanning process. If TMS is held low
and a rising edge is applied to TCK, the controller
enters the Pause-IR state.

The test data register selected by the current in­
struction retains its previous state unchanged. The
instruction does not change in this state, and the
instruction register retains its state.

6.4.14 PAUSE-IR STATE

This state allows the shifting of the instruction regis­
ter to be temporarily halted.

The test data register selected by the current in­
struction retains its previous state. The instruction
does not change in this state, and the instruction
register retains its state.

The controller remains in this state as long as TMS
is LOW. When TMS goes HIGH and a rising edge is
applied to TCK, the controller moves to the Exit2-IR
state.

6.4.15 EXIT2-IR STATE

This is a temporary state. If TMS is held HIGH and a
rising edge is applied to TCK, the scanning process

92

terminates, and the TAP controller enters the
Update-IR state. If TMS is held LOW and a rising
edge is applied to TCK, the controller enters the
Shift-/R state.

The test data register selected by the current in­
struction retains its previous state unchanged. The
instruction does not change in this state, and the
instruction register retains its state.

6.4.16 UPDATE-IR STATE

The instruction shifted into the instruction register is
latched onto the parallel output from the shift-regis­
ter path on the falling edge of TCK. Once the new
instruction has been latched, it becomes the current
instruction.

Test data registers selected by the current instruc­
tion retain the previous state.

6.5 Boundary Scan Register Cell
Ordering

Figure 6.4 shows the order of cells in the BSA.
There are 150 cells including TDO. TDI is not a BSR
cell.

The DCTL, ACTL, TCTL, and OCTL cells do not cor­
respond to pins of the i860 XP microprocessor; rath­
er, they control the bidirectional and tristate pins:

DCTL D63-DO, DP7-DPO

ACTL A31-A3

TCTL Tristate outputs: ADS#, BE7#-BEO#,
CACHE#, CTYP, D/C#, KBO, KB1, LEN,
M/IO#, NENE#, PCD, PCYC, PWT, W/R#

OCTL Outputs not floated in normal operation:
BREO, HIT#, HITM#, HLDA, LOCK#,
PCHK#

If a value of one is loaded into any of these control
latches, the associated pins will not drive the exter­
nal bus while running EXTEST.

The values of DCTL, ACTL, TCTL, and OCTL are
undefined during the SAMPLE instruction.

The values and direction of 1/0 and outputs do not
change during the scanning process (that is, during
Shift-DR states). They only change after scanning is
completed (in the Update-DR state).

The decision table, Table 6.3, defines how the
boundary scan instructions EXTEST and SAMPLEI
PRELOAD utilize BSR.

inter i860TM XP MICROPROCESSOR

10

20

30

40

50

60

70

80

90

100

110

120

130

140

240874-63

Figure 6.4. Boundary Scan Register Ordering

93

i860™ XP MICROPROCESSOR

6.6 TAP Controller Initialization 7.0 MECHANICAL DATA

TAP can be initialized by applying a high signal level
on the TMS input for five periods of TCK or by acti­
vating the TRST # input pin. TCK does not have to
be running in order to initialize TAP with the TRST#
pin. TRST # is provided with an internal pull-up resis­
tor; so, even if an open circuit fault occurs, the TAP
logic can still be used.

Figures 7.1 and 7.2 show the locations of pins; Ta­
bles 7.1 and 7.2 help to locate pin identifiers.

Table 6.3. Instruction Functions

Instruction: EXTEST SAMPLE/PRELOAD

Control Cell: LOW I HIGH LOW I HIGH

Input BSR cells sample values driven to ... sample values driven to
processor by system processor by system

Values of input cells
NO NO

used by processor?

Output BSR cells drive output pins with ... sample values driven
cell values by processor

Input/output BSR cells: Treat as

I
Treat as Treat as

I
Treat as

output input output input

94

BROY# KEN# NA# WB/WT# vee vee vee vee
U 0 0 0 0 0 0 0 0

W/R# lEN PWT PCYC Vss Vss Vss Vss
T 0 0 0 0 0 0 0 0

." cEo
A3 RESET lOCK# M/IO# EAOS# INT /CS8 BERR FLlNE#

S 0 0 0 0 0 0 0 0
I: ..
CII

:"'I

A4 Vss Vee BOFF# o/c# PCO INV PEN#

R 0 0 0 0 0 0 0 0 ...
ai en

TCK Vss Vee CACHE# AHOlO

Q 0 0 0 0 0

C)
-l
i!:

VeeClK Vee Vss RSRVD CTYP

P 0 0 0 0 0
><
"C

:5:
VCC Vce Vss AOS# HITM#

N 0 0 0 0 0

n"
0
"C

Vee Vss Vss ClK A5

M 0 0 0 0 0 ..
0
0
CII

Vee Vee Vss SPARE A6

L 0 0 0 0 0
III
III
0

(0
..

01 "C
5"
0

Vee Vss Vss Al0 A8

K 0 0 0 0 0

Vee Vee Vss A12 A14

J 0 0 0 0 0

0
::I -cEo
I:

iil ..
Vee Vss Vss A16 A20

H 0 0 0 0 0

Vee Vee Vss A22 A26

G 0 0 0 0 0

0"
::I

I
A7 Vee Vss A28 A30

F 0 0 0 0 0

<
iii"
:l:

A9 Vss Vee A27 8EO#

E 0 0 0 0 0 -.. 0
3
"C
5"

A11 Vss Vee A29 BE1# BE2# 8E6# EW8E#

D 0 0 0 0 0 0 0 0

A13 A19 AlB A31 8E4# Vss Vss Vss

C 0 0 0 0 0 0 0 0

~
CII

A15 A21 A24 8E3# Vss Vee Vee Vss
B 0 0 0 0 0 0 0 0

A17 A23 A25 BE5# BE7# BYPASS# DO Vee

A 0 0 0 0 0 0 0 0

1 2 3 4 5 6 7 8

vee vee vee vee vee vee
0 0 0 0 0 0

Vss Vss Vss Vss Vss Vss
0 0 0 0 0 0

HlOA KBl NENE# HIT# TRST# TOI

0 0 0 0 0 0

BRE<I TOO K80 HOlO TMS 063

0 0 0 0 0 0

PINOUT

PIN SIDE VIEW

01 05 010 014 OP2 017

0 0 0 0 0 0

Vss Vss Vss Vss Vss Vss
0 0 0 0 0 0

Vee Vss Vee Vss Vee Vee
0 0 0 0 0 0

Vee Vee Vee Vee D2 Vee
0 0 0 0 0 0

9 10 11 12 13 14

vee 055 051

0 0 0

Vss 056 049

0 0 0

062 058 046

0 0 0

060 057 Vee
0 0 0

061 054 Vee
0 0 0

059 OP6 Vss
0 0 0

OP7 050 Vss
0 0 0

053 047 Vss
0 0 0

048 041 Vss
0 0 0

045 043 Vss
0 0 0

OP5 038 Vss
0 0 0

032 PCHK# Vss
0 0 0

028 030 Vss
0 0 0

024 026 Vss
0 0 0

021 023 025

0 0 0

019 020 Vee
0 0 0

D12 D8 D7

0 0 0

Vss D9 Dll
0 0 0

DPO D3 D4

0 0 0

15 16 17

044

0

042

0

052

0

033

0

Vss
0

Vee
0

Vee
0

Vss
0

Vee
0

Vss
0

Vee
0

Vss
0

Vee
0

Vee
0

Vss
0

OP3

0

D16

0

D13

0

D6

0

18

040

0

039

0

037

0

035

0

OP4

0

034

0

036

0

031

0

Vee
0

Vee
0

Vee
0

Vee
0

029

0

027

0

Vee
0

022

0

D1B

0

D15
0

DPl

0

19
240874-64

l

(j)
al
o
-i
~

X
"U

iii:
(=)
:II o
"U
:II o
(")
111 en en o
:II

"@
22J
IMI
IF'

~
~
~
22J
~

040 044 051 055 Vee Vee Vee Vee Vee Vee Vee
U 0 0 0 0 0 0 0 0 0 0 0

039 042 049 056 Vss Vss Vss Vss Vss Vss Vss
T 0 0 0 0 0 0 0 0 0 0 0

!!
cc
c

037 052 046 058 062 TOI TRST# HIT# NENE# KB1 HlOA

S 0 0 0 0 0 0 0 0 0 0 0 ..
QI
-..I

~
0)
01

035 033 Vee 057 060 063 TtAS HOLD K80 TOO BREQ

R 0 0 0 0 0 0 0 0 0 0 0

OP4 Vss Vee 054 061

Q 0 0 0 0 0
0
~

034 Vee Vss OP6 059

P 0 0 0 0 0
X
."
3:

036 Vee Vss 050 OP7

N 0 0 0 0 0
n' a
'0

031 Vss Vss 047 053

M 0 0 0 0 0

a
()
QI
til
til
0 ..

co ." en ;5'
n

Vee Vee Vss 041 04B

L 0 0 0 0 0
PINOUT

Vee Vss Vss 043 045

K 0 0 0 0 0 TOP SIDE VIEW
Vee Vee Vss 038 OP5

J 0 0 0 0 0

0
:::I

~
Vee Vss Vss PCHK# 032

H 0 0 0 0 0

C ..
III
e-

029 Vee Vss 030 02B

G 0 0 0 0 0

o
:::I

~
QI ::

027 Vee Vss 026 024

F 0 0 0 0 0

Vee Vss 025 023 021

E 0 0 0 0 0 -.. 0
3

022 OP3 Vee 020 019 017 OP2 014 010 05 01

0 0 0 0 0 0 0 0 0 0 0 0

-I
0
'0

01B 016 07 DB 012 Vss Vss Vss Vss Vss Vss
C 0 0 0 0 0 0 0 0 0 0 0

CJ)

a:
QI

015 013 011 09 Vss Vee Vee Vss Vee Vss Vee

B 0 0 0 0 0 0 0 0 0 0 0

OP1 06 04 03 OPO Vee 02 Vee Vee Vee Vee

A 0 0 0 0 0 0 0 0 0 0 0

19 18 17 16 15 14 13 12 1 1 10 9

Vee Vee Vee Vee WB/wT#

0 0 0 0 0

Vss Vss Vss Vss PCYC

0 0 0 0 0

FLlNE# BERR INT ICS8 EAOS# tA/IO#

0 0 0 0 0

PEN# INV PCO o/c# BOFF#

0 0 0 0 0

AHOlO CACHE#

0 0

CTYP RSRVD

0 0

HITt.I# AOS#

0 0

A5 ClK

0 0

A6 SPARE

0 0

A8 A10
0 0

A14 A12

0 0

A20 A16
0 0

A26 A22

0 0

A30 A28

0 0

8EO# A27

0 0

EW8E# 8E6# 8E2# 8E1# A29

0 0 0 0 0

Vss Vss Vss 8E4# A31

0 0 0 0 0

Vss Vee Vee Vss 8E3#

0 0 0 0 0

Vee DO 8YPASS# 8E7# 8E5#

0 0 0 0 0

8 7 6 5 4

NA# KEN#

0 0

PWT lEN

0 0

lOCK# RESET

0 0

Vee Vss
0 0

Vee Vss
0 0

Vss Vee
0 0

Vss Vee
0 0

Vss Vss
0 0

Vss Vee
0 0

Vss Vss
0 0

Vss Vee
0 0

Vss Vss
0 0

Vss Vee
0 0

Vss Vee
0 0

Vee Vss
0 0

Vee Vss
0 0

A1B A19
0 0

A24 A21

0 0

A25 A23

0 0

3 2

BROY #

0

W/R#
0

A3

0

A4

0

TCK

0

VoeCLK
0

Vee
0

Vee
0

Vee
0

Vee
0

Vee
0

Vee
0

Vee
0

A7

0

A9

0

A11

0

A13

0

A15

0

A17

0

240B74-65

(

OJ
Q)
o
3:

><
."
s::
(;
::D o
."
::D o
(")
m
CJ)
CJ)
o
::D

"@
2$
fiiiil
IF

~
~
~
2$
~

intJ i860TM XP MICROPROCESSOR

Table 7.1. Pin Cross Reference by Location

Location Signal Location Signal Location Signal Location Signal

A01 A17 C1S 012 G18 Vee N01 Vee
A02 A23 C16 08 G19 029 N02 Vee
A03 A2S C17 07 H01 Vee N03 Vss
A04 BES# C18 016 H02 Vss N04 AOS#
AOS BE7# C19 018 H03 Vss NOS HITM#
A06 BYPASS# 001 A11 H04 A16 N1S OP7
A07 00 002 Vss HOS A20 N16 OSO
A08 Vee 003 Vee H1S 032 N17 Vss
A09 Vee 004 A29 H16 PCHK# N18 Vee
A10 Vee ~OS BE1 # H17 Vss N19 036
A11 Vee 006 BE2# H18 Vss P01 VeeCLK
A12 Vee 007 BE6# H19 Vee P02 Vee
A13 02 008 EWBE# J01 Vee P03 Vss
A14 Vee 009 01 J02 Vee P04 RSRVO
A1S OPO 010 OS J03 Vss POS CTYP
A16 03 011 010 J04 , A12 P1S OS9
A17 04 012 014 JOS A14 P16 OP6
A18 06 013 OP2 J1S OPS P17 Vss
A19 0P1 014 017 J16 038 P18 Vee
B01 A1S 01S 019 J17 Vss P19 034
B02 A21 016 020 J18 Vee 001 TCK
B03 A24 017 Vee J19 Vee 002 Vss
B04 BE3# 018 OP3 K01 Vee 003 Vee
BOS Vss 019 022 K02 Vss 004 CACHE#
B06 Vee E01 A9 K03 Vss OOS AHOLO
B07 Vee E02 Vss K04 A10 01S 061
B08 Vss E03 Vee KOS A8 016 OS4
B09 Vee E04 A27 K1S 04S 017 Vee
B10 Vss EOS BEO# K16 043 018 Vss
B11 Vee E1S 021 K17 Vss 019 OP4
B12 Vss E16 023 K18 Vss R01 A4
B13 Vee E17 02S K19 Vee R02 Vss
B14 Vee E18 Vss L01 Vee R03 Vee
B1S Vss E19 Vee L02 Vee R04 BOFF#
B16 09 F01 A7 L03 Vss ROS 0/C#
B17 011 F02 Vee L04 SPARE R06 PCO
B18 013 F03 Vss LOS A6 R07 INV
B19 01S F04 A28 L1S 048 R08 PEN#
C01 A13 FOS A30 L16 041 R09 BREO
C02 A19 F1S 024 L17 Vss R10 TOO
C03 A18 F16 026 L18 Vee R11 KBO
C04 A31 F17 Vss L19 Vee R12 HOLO
COS BE4# F18 Vee M01 Vee R13 TMS
C06 Vss F19 027 M02 Vss R14 063
C07 Vss G01 Vee M03 Vss R1S 060
C08 Vss G02 Vee M04 CLK R16 OS7
C09 Vss G03 Vss MOS AS R17 Vee
C10 Vss G04 A22 M1S OS3 R18 033
C11 Vss GOS A26 M16 047 R19 03S
C12 Vss G1S 028 M17 Vss S01 A3
C13 Vss G16 030 M18 Vss S02 RESET
C14 Vss G17 Vss M19 031 S03 LOCK#

97

intJ i860™ XP MICROPROCESSOR

Table 7.1. Pin Cross Reference by Location (Continued)

Location Signal Location Signal Location Signal Location Signal

804 M/IO# 818 052 T13 VSS U08 Vee
805 EA08# 819 037 T14 Vss U09 Vee
806 INT/C88 T01 W/R# T15 Vss U10 Vee
807 BERR T02 lEN T16 056 U11 Vee
808 FLlNE# T03 PWT T17 049 U12 Vee
809 HlOA T04 PCYC T18 042 U13 Vee
810 KB1 T05 Vss T19 039 U14 Vee
811 NENE# T06 Vss U01 BROY# U15 Vee
812 HIT# T07 Vss U02 KEN# U16 055
813 TR8T# T08 Vss U03 NA# U17 051
814 TOI T09 Vss U04 WB/WT# U18 044
815 062 T10 Vss U05 Vee U19 040
816 058 T11 Vss U06 Vee
817 046 T12 Vss U07 Vee

Table 7.2. Pin Cross Reference by Pin Name

Signal Location Signal Location Signal Location Signal Location

A3 801 AHOlO 005 021 E15 049 T17
A4 R01 BEO# E05 022 019 04 A17
A5 M05 BE1# 005 023 E16 050 N16
A6 l05 BE2# 006 024 F15 051 U17
A7 F01 BE3# B04 025 E17 052 818
A8 K05 BE4# C05 026 F16 053 M15
A9 E01 BE5# A04 027 F19 054 016
A10 K04 BE6# 007 028 G15 055 U16
A11 001 BE7# A05 029 G19 056 T16
A12 J04 BERR 807 02 A13 057 R16
A13 C01 BOFF# R04 030 G16 058 816
A14 J05 R8RVO P04 031 M19 059 P15
A15 B01 BAOY# U01 032 H15 05 010
A16 H04 BREO R09 033 R18 060 R15
A17 A01 CACHE# 004 034 P19 061 015
A18 C03 ClK M04 035 R19 062 815
A19 CO2 CTYP P05 036 N19 063 R14
A20 H05 00 A07 037 819 06 A18
A21 B02 010 011 038 J16 07 C17
A22 G04 011 B17 039 T19 08 C16
A23 A02 012 C15 03 A16 09 B16
A24 B03 013 B18 040 U19 O/C# R05
A25 A03 014 012 041 l16 OPO A15
A26 G05 015 B19 042 T18 OP1 A19
A27 E04 016 C18 043 K16 OP2 013
A28 F04 017 014 044 U18 OP3 018
A29 004 018 C19 045 K15 OP4 019
A30 F05 019 015 046 817 OP5 J15
A31 C04 01 009 047 M16 OP6 P16
A08# N04 020 016 048 l15 OP7 N15

98

intJ i860™ XP MICROPROCESSOR

Table 7.2. Pin Cross Reference by Pin Name (Continued)

Signal Location Signal Location Signal Location Signal Location

EAOS# S05 Vee B06 Vee R17 Vss H17
FLlNE# S08 Vee B07 Vee U05 Vss H18
HIT# S12 Vee B09 Vee U06 Vss J03
HITM# N05 Vee B11 Vee U07 Vss J17
HLOA S09 Vee B13 Vee U08 Vss K02
HOL R12 Vee B14 Vee U09 Vss K03
INT/CS8 S06 Vee 003 Vee U10 Vss K17
INV R07 Vee 017 Vee U11 Vss K18
KBO R11 Vee E03 Vee U12 Vss L03
KB1 S10 Vee E19 Vee U13 Vss L17
KEN# U02 Vee F02 Vee U14 Vss M02
LEN T02 Vee F18 Vee U15 Vss M03
LOCK# S03 Vee G01 VeeCLK P01 Vss M17
MIIO# S04 Vee G02 Vss B05 Vss M18
NA# U03 Vee G18 Vss B08 Vss N03
NENE# S11 Vee H01 Vss B10 Vss N17
PC R06 Vee H19 Vss B12 Vss P03
PCHK# H16 Vee J01 Vss B15 Vss P17
PCYC T04 Vee J02 Vss C06 Vss 002
PEN# R08 Vee J18 Vss C07 Vss 018
PWT T03 Vee J19 Vss C08 Vss R02
RESET S02 Vee K01 Vss C09 Vss T05
SPARE L04 Vee K19 Vss C10 Vss T06
EWBE# 008 Vee L01 Vss C11 Vss T07
BYPASS# A06 Vee L02 Vss C12 Vss T08
TCK 001 Vee L18 Vss C13 Vss T09
TOI S14 Vee L19 Vss C14 Vss T10
TOO R10 Vee M01 Vss 002 Vss T11
TMS R13 Vee N01 Vss E02 Vss T12
TRST# S13 Vee N02 Vss E18 Vss T13
Vee A08 Vee N18 Vss F03 Vss T14
Vee A09 Vee P02 Vss F17 Vss T15
Vee A10 Vee P18 Vss G03 W/R# T01
Vee A11 Vee 003 Vss G17 WB/WT# U04
Vee A12 Vee 017 Vss H02
Vee A14 Vee R03 Vss H03

99

intJ i860TM XP MICROPROCESSOR

Table 7.3. Ceramic PGA Package Dimension Symbols

Letter or
Description of Dimensions Symbol

A Distance from seating plane to highest point of body

A1 Distance between seating plane and base plane (lid)

A2 Distance from base plane to highest point of body

A3 Distance from seating plane to bottom of body

B Diameter of terminal lead pin

D Largest overall package dimension of length

D1 A body length dimension, outer lead center to outer lead center

e1 Linear spacing between true lead position centerlines

L Distance from seating plane to end of lead

51 Other body dimension, outer lead center to edge of body

NOTES:
1. Controlling dimension: millimeter.
2. Dimension "e1" ("e") is noncumulative.
3. Seating plane (standoff) is defined by P.C. board hole size: 0.0415-0.0430 inch.
4. Dimensions "B", "B1", and "c" are nominal.
5. Details of Pin 1 identifier are optional.

100

intJ

Symbol

A

A1

A2

A3

B

D

D1

e1

L

N

S1

ISSUE

Min

3.56

0.64

2.79

1.14

0.43

49.28

45.59

2.29

2.54

240

1.52

9/90

i860™ XP MICROPROCESSOR

SEATING
PLANE

Family: Ceramic Pin Grid Array Package

Millimeters

Max Notes Min

4.57 .140

1.14 Solid Lid .025

3.56 Solid Lid .110

1.40 .045

0.51 .017

49.96 1.940

45.85 1.795

2.79 .090

3.30 .100

280 240

2.54 .060

"B (ALL PINS)

L,__----1
t

SWAGGED
PIN

DETAIL

240874-66

Inches

Max Notes

.180

.045 Solid Lid

.140 Solid Lid

.055

.020

1.967

1.805

.110

.130

280

.100

Figure 7.3. 262·Lead Ceramic PGA Package Dimensions

101

inter i860TM XP MICROPROCESSOR

8.0 PACKAGE THERMAL
SPECIFICATIONS

For this section, let:

P = maximum power consumption

T C = case temperature

T A = ambient air temperature

(JCA = thermal resistance from case to ambient air

(JJC = thermal resistance from junction to case

(JJA = thermal resistance from junction to ambient
air

The i860 XP microprocessor is specified for opera­
tion when T C is within the range of 0°C-85°C. T C may
be measured in any environment to determine
whether the i860 XP microprocessor is within speci­
fied operating range. The case temperature should
be measured at the center of the top surface oppo­
site the pins.

T A can be calculated from (JCA with the following
equation:

Typical values for (JCA at various airflows and for (J JC
are given in Table 8.1 for the 1.95 sq. in., 262 pin,
ceramic PGA. (JJC is shown so that (JJA can be cal­
culated by:

Note that (JJC with a heatsink differs from (JJC with­
out a heatsink because case temperature is mea­
sured differently. Case temperature for (JJC with
heatsink is measured at the center of the heat fin
base. Case temperature for (JJC without heatsink is
measured at the center of the package top surface.

Table 8.2 shows the maximum T A allowable {without
exceeding T c> at various airflows.

Note that T A is greatly improved by attaching "fins"
or a "heat sink" to the package. P (the maximum
power consumption) is calculated by using the maxi­
mum Icc at 5V as tabulated in the D.G. Characteris­
tics of section 9.

Figure 8.1 gives typical Icc derating with case tem­
perature. For more information on heat sinks, mea­
surement techniques, or package characteristics, re­
fer to Intel Packaging Handbook, order number
240800.

Table 8 1 Thermal Resistance-In °C/Watt ..
(JCA as a Function of Airflow - ft/min (m/sec)

(JJC 0 200 400 600 800 1000
{OJ (1.01) (2.03) (3.04) (4.06) (S.07)

I With Heat Sink" 1.6 10.1 6.3 4.3 3.2 2.5 2.2

l Without Heat Sink 1.0 13.5 11.0 8.0 6.5 5.5 5.0

NOTE:
" Nine-fin, unidirectional heat sink (fin dimensions: 0.250" height. 0.040· fin width, 0.100· center-to-center spaCing. 1.730·
length)

Table 8.2. Maximum T A at Various Airflows-In °C

Airflow - ft/min (m/sec)

fClK 0 200 400 600 800 1000
(MHz) {OJ (1.01) (2.03) (3.04) (4.06) (S.07)

TA with 50 24 47 59 66 70 72
Heat Sink"

TA without 50 4 19 37 46 52 55
Heat Sink

TA with 40 34.5 53.5 63.5 69 72.5 74
HeatSink*

TA without 40 17.5 30 45 52.5 57.5 60
Heat Sink

NOTE:
• Nine-fin, unidirectional heat sink (fin dimensions: 0.250" height, 0.040" fin width. 0.100" center-to-center spacing, 1.730"
length)

102

i860™ XP MICROPROCESSOR

1.30

1.20 ,....
: 50t.4Hz

'" E
.5 1.10

" ..Y

1.00

0.90 :-i-_'""'"';_.;.;..._....:.... ________ !--_____ ~~ ___ __
• .40 MHz

0.80L-~---+----~--~--~----+_--~--~----+_~-J

o 10 20 30 40 50 60 70

TEMPERATURE (Degrees Centigrade)

Figure 8.1. IcC Derating with Case Temperature

9.0 ELECTRICAL DATA

All TTL input and output timings are specified relative
to the 1.5V input level of the rising edge of elK and
refer to the point that the signal reaches 1.5V.

NOTE:
This data sheet contains preliminary information on
new products in production. The specifications are
subject to change without notice.

103

80 85

240874-67

intJ i860™ XP MICROPROCESSOR

9.1 Absolute Maximum Ratings

Case Temperature T C under Bias O°C to 85°C

Storage Temperature - 65°C to + 150°C

Voltage on Any Pin with
Respect to Ground - 0.5 to Vcc + 0.5V

9.2 D.C. Characteristics

NOTICE: This data sheet contains preliminary infor­
mation on new products in production. The specifica­
tions are subject to change without notice.

• WARNING: Stressing the device beyond the "Absolute
Maximum Ratings" may cause permanent damage.
These are stress ratings only. Operation beyond the
"Operating Conditions" is not recommended and ex­
tended exposure beyond the "Operating Conditions"
may affect device reliability.

Table 9.1. D.C. Characteristics Operating Conditions: VCC = 5V ±5%; TC = O°C to 85°C

Symbol Parameter Min Max Units Notes

VIL Input LOW voltage (TTL) -0.3 +0.8 V

VIH Input HIGH voltage (TTL) 2.0 VCC+ 0.3 V

VOL Output LOW voltage (TTL) 0.45 V 1

VOH Output HIGH voltage (TTL) 2.4 V 2

Icc Power supply current (@ 50 MHz) 1.2 Amp 3

Icc Power supply current (@40 MHz) 1.0 Amp 3

III Input leakage current ±15)J-A 4

ILiP Input leakage current (pull-up) -400)J-A 5

ILO Output leakage current ±15)J-A 6

CIN Input capacitance 11.5 pF 7

Co 1/0 or output capacitance 14 pF 7

CCLK Clock capacitance 20 pF 7

NOTES:
1. This parameter is measured with current load of 5 mAo
2. This parameter is measured with current load of 1 mA. Typical value is Vee - 0.45V.
3. Measured at 50 MHz and Vee = 5V.
4. This parameter is for inputs without pullups. Vce is on, and 0.45V s VIN s Vee + 0.45V.
5. This parameter is for inputs with pullups and VIL = 0.45V. Note that if the pull-ups are put in high-impedance state via the
DCTL boundary scan cell that also tri-states the data outputs, then the leakage is ± 15 pA
6. 0.45V ,; VIN s Vee - 0.45V.
7. These parameters are not tested; they are guaranteed by design characterization.

104

infef i860TM XP MICROPROCESSOR

9.3 A.C. Characteristics

Table 9.2. 50 MHz A.C. Characteristics Operating Conditions: Vee = 5V ± 5%; T e = O°C to 85°C

TTL Level

Symbol Parameter Fig
Load
(pF)(a) Min Max

(ns) (ns)

tc ClK period 9.1 20 40

ttc TCK period 9.2 40 1000

ClK stability 9.1 0.1%

tch ClK high time 9.1 7

tcl ClKlowtime 9.1 7

tr ClK rise time 9.1 3

tf ClKfall time 9.1 3

ts TCK to ClK skew 9.3 ±1

ttch TCK high time 9.2 10

ttel TCK low time 9.2 10

ttcr TCK rise time 9.2 4

ttcf TCK fall time 9.2 4

tsu.1 RESET, HOlO, BERR, 9.1 7
PEN #, INT ICS8 setup time

tsu.2 BOFF#,AHOl~FUNE# 9.1 8
KEN#, NA#, EWBE#
INV, WB/WT# setup time

tsu.3 EAOS # setup time 9.1 9

tsu.5 BROY # setup time 9.1 7.5

tsu.6 063-00, OP7 -OPO setup time 9.1 7.5

tsu.7 063-00, OP7-0PO setup time 9.1 6
(Processor in late Backoff mode)

tsu.8 A31-A5 setup time 9.1 11

105

inter i860™ XP MICROPROCESSOR

Table 9.2. 50 MHz A.C. Characteristics (Continued)
Operating Conditions: VCC = 5V ± 5%; T C = O°C to 85°C

Symbol Parameter Fig
Load

(pF)(a)

ttsu TOI, TMS, TRST # setup time 9.2

tth TOI, TMS, TRST# hold time(b) 9.2

th Hold time all other inputs(c) 9.1

tteo TOO valid delay and all outputs 9.2 50
valid delay in EXTEST mode(f)

teo.1 A31-A22 valid delay 9.1 50

teo.2 A21-A3 valid delay 9.1 150(9)

teo.3 063-00, OP7-0PO valid delay 9.1 50
(for 1 st write after float)(d)

teo.4 063-00, OP7-0PO valid delay 9.1 50
for 2nd thru 4th writes of burst
and for pipelined write-after-write)(d)

teo.5 BREQ, HLOA, PCHK#, 9.1 50
NENE#, KBO, KB1 valid delay

teo.6 AOS#, W/R#, HITM# valid delay 9.1 150(9)

teo.7 PWT, PCO, HIT#, CTYP 9.1 50
O/C#, MIIO#, PCYC, LOCK#
CACHE#, LEN valid delay

teo.8 BEO#-BE7# valid delay 9.1 100(9)

tz Float time all outputs(e) 9.1

tzt Float time during boundary sean EXTEST(f)

NOTES:
a. Minimum delays are for 20 pF load.
b. These hold times are referenced to the falling edge of TCK.
c. These hold times are referenced to the rising edge of ClK.
d. Output delay for 063-00, DP7-DPO is from the ClK after ADS# activation.
e. Float time = delay until maximum output current is less than ± ILQ. Float time is not tested.
f. Delay from falling edge of TCK.
g. These pins have high·current buffers designed for interface with cache memory.

TTL Level

Min Max
(ns) (ns)

7

1

1

2 20

2 14

2 14

3 16

3 15

2 15

2 14

2 14

2 14

2 18

20

In systems that do not use external cache, series resistor termination (located near the output pins of the i860 XP micro·
processor) may be required to prevent overshoot and dampen reflections. A resistor of approximately Z -15(1 is recom­
mended to match the impedance of the driver to the board net, where Z is the impedance of the net, including loads, trace,
and parallel termination.

106

i860™ XP MICROPROCESSOR

Table 9.3. 40 MHz A.C. Characteristics Operating Conditions: Vee = 5V ± 5%; Te = O°C to 85°C

TTL Level

Symbol Parameter Fig
Load

(pF)(a) Min Max
(ns) (ns)

tc ClK Period 9.1 25 40

ttc TCK Period 9.2 50 1000
ClK Stability 9.1 0.1%

tch ClK High Time 9.1 7

tcl ClK low Time 9.1 7

tr ClK Rise Time 9.1 3

tf ClK Fall Time 9.1 3

ts TCK to ClK Skew 9.3 ±1

ttch TCK high time 9.2 10

ttcl TCK low time 9.2 10

ttcr TCK rise time 9.2 4

ttcf TCK fall time 9.2 4

tsu.1 RESET, HOlO, BERR, PEN#, INT/CS8 9.1 8
Setup Time

tsu.2 BOFF#, AHOlO, FLlNE#, KEN#, NA#, 9.1 8
EWBE #, INV, WB/WT # Setup Time

tsu.3 EAOS# Setup Time 9.1 11

tsu.5 BROY # Setup Time 9.1 8

tsu.6 063-00, OP7-0PO Setup Time 9.1 10

tsu.7 063-00, OP7-0PO Setup Time 9.1 8.5
(Processor in late Backoff Mode)

tsu.8 A31-A 15 Setup Time 9.1 11

ttsu TOI, TMS, TRST # Setup Time 9.2 8

tth TOI, TMS, TRST # Hold Time(b) 9.2 3

th Hold Time, All Other Inputs(c) 9.1 3

ttco TOO Valid Oelay and All Outputs 9.2 50 2 20
Valid Oelay in EXTEST Mode(f)

tco.1 A31-A22 Valid Oelay 9.1 50 2 14

tco.2 A21-A3 Valid Oelay 9.1 150(9) 2 14

tco.3 063-00, OP7-0PO Valid Oelay 9.1 50 2 16
(for 1 st Write after Float)

tcoA 063-00, OP7-0PO Valid Oelay (for 2nd 9.1 50 2 15
through 4th Writes of Burst
and for Pipelined Write-after-Write)(4)

tco.5 BREQ,HlOA,PCHK#,NENE#, 9.1 50 2 15
KBO, KB1 Valid Oelay

tco.6 AOS#, W/R#, HITM# Valid Oelay 9.1 150(9) 2 14

107

infef i860™ XP MICROPROCESSOR

Table 9.3. 40 MHz A.C. Characteristics (Continued)
Operating Conditions: Vcc = 5V ± 5%; Tc = O°C to 85°C

TTL level

Symbol Parameter Fig
load

(pF)(a) Min Max
(ns) (ns)

teo.? PWT, PCD, HIT#, CTYP, D/C#, M/IO#, 9.1 50 2 14
PCYC, LOCK #, CACHE #, LEN Valid Delay

teo.8 BEO#-BE?# Valid Delay 9.1 100(9) 2 14

tz Float Time, All Outputs(e) 9.1 2 18

tzt Float Time during Boundary Sean EXTEST(f) 20

NOTES:
a. Minimum delays are for 20 pF load.
b. These hold times are referenced to the falling edge of TCK.
c. These hold times are referenced to the rising edge of ClK.
d. Output delay for D63-DO, DP7-DPO is from the ClK after ADS# activation.
e. Float time = delay until maximum output current is less than ± ILQ. Float time is not tested.
f. Delay from falling edge of TCK.
g. These pins have high-current buffers designed for interface with cache memory.
In systems that do not use external cache, series resistor termination (located near the output pins of the i860 XP micro­
processor) may be required to prevent overshoot and dampen reflections. A resistor of approximately Z -15n is recom­
mended to match the impedance of the driver to the board net, where Z is the impedance of the net, including loads, trace,
and parallel termination.

ClK I.SV -

OUTPUTS

OUTPUTS

~--------------------tc--------------------~

~------tch---------i-------- tol-----------+I

~2.0VX
TTL

INPUTS I.SV - -

~O.8V

- - - - - - 1.5V

Figure 9.1. ClK, Input, and Output Timings

108

240874-68

inter

TCK

TOI.
Tt.4S.

TRST#

i860™ XP MICROPROCESSOR

I-----------Itc----------i
!-----Itch----+e-----Itcl-------!

TOO - - - - - - - - - - - LSV

Figure 9.2. TAP Signal Timings

CLK - LSV

TCK - 1.SV

Figure 9.3. TCK to ClK Skew

5.00

I A31-A22. OTHER 1"

--' « z
'i
o
z 2.00
on
>

--' «
u
0::
~ -1.00

-2.00

, :

, ,

-3.00 1-..; __ -'--_-'--_-'-_-'--_-'-_--' __ '--_-'---_-'-_---'----'

-120 -100 -80 -60 -40 -20 0

LOAD (pr) VS. NOMINAL

NOTES:
Graphs are not linear outside the CL range shown.
NOMINAL = Nominal value given in the AC Timings table.
'Typical part under worst-case conditions.

20 40 60 80

240874-69

240874-70

240874-71

Figure 9.4. Typical Output Delay vs. load Capacitance under Worst-Case Conditions

109

intJ i860TM XP MICROPROCESSOR

NOTES:

:;-
o
N
I

>
to

e

.
...J
«
u
ii:
~

o 25 50 75

Graphs are not linear outside the CL range shown.
'Typical part under worst-case conditions.

-------,-

100 125 150 175 200 225 250

LOAD .CAPACITANCE, ~ (pf)
240874-81

Figure 9.5a. Typical Slew Time vs. Load Capacitance under Worst-Case Conditions (Rising Voltage)

3.5

:;- 3.0

to
c:i
I 2.5 >

0

~
~ 2.0

-5
!oJ

'" ;::
1.5

~
!oJ
...J
(f) . 1.0 ...J
«
u
ii:
>-
I- 0.5

o 25 50 75

NOTES:
Graphs are not linear outside the CL range shown.
'Typical part under worst-case conditions.

ADS#, A21-A3, 8E7#-8EO#, W/R#, HITt.t#

100 125 150 175 200 225 250

LOAD CAPACITANCE, ~ (pf)
240874-82

Figure 9.5b_ Typical Slew Time vs. Load Capacitance under Worst-Case Conditions (Falling Voltage)

110

inter i860™ XP MICROPROCESSOR

1.30

1.20

1.10

1.00

<>
E
~ 0.90

" -"

0.80

0.70

0.60
25 30 35 40

FREQUENCY (MHz)

NOTES:
Graph is not linear outside the frequency range shown.
'Worst-case supply current at 5V.

Figure 9.S. Typical Icc vs. Frequency

111

45 50

240874-73

i860™ XP MICROPROCESSOR

10.0 INSTRUCTION SET

Key to abbreviations:

For register operands, the abbreviations that de­
scribe the operands are composed of two parts. The
first part describes the type of register:

c One of the control registers fir, psr, epsr,
dirbase, db, fsr, bear, ccr, pO, p1, p2, or p3

, One of the floating-point registers: fO through
f31

One of the integer registers: rO through r31

The second part identifies the field of the machine
instruction into which the operand is to be placed:

src 1 The first of the two source-register desig­
nators, which may be either a register or a
16-bit immediate constant or address off­
set. The immediate value is zero-extended
for logical operations and is sign-extended
for add and subtract operations (including
addu and subu) and for all addressing cal­
culations.

srclni Same as src1 except that no immediate
constant or address offset value is permit­
ted.

srels Same as src1 except that the immediate
constant is a 5-bit value that is zero-ex­
tended to 32 bits.

sre2 The second of the two source-register des­
ignators.

dest The destination register designator.

Thus, the operand specifier isrc2, for example,
means that an integer register is used and that the
encoding of that register must be placed in the src2
field of the machine instruction.

Other (nonregister) operands are specified by a one­
part abbreviation that represents both the type of
operand required and the instruction field into which
the value of the operand is placed:

#eonst A 16-bit immediate constant or address off­
set that the i860 XP microprocessor sign­
extends to 32 bits when computing the ef­
fective address.

Ibroff A signed, 26-bit, immediate, relative branch
offset.

sbroff A signed, 16-bit, immediate, relative branch
offset.

112

brx A function that computes the target ad­
dress by shifting the offset (either Ibroff or
sbroff) left by two bits, sign-extending it to
32 bits, and adding the result to the current
instruction pointer plus four. The resulting
target address may lie anywhere within the
address space.

Table 10.1. Precision Specification

Suffix Source Precision Result Precision

.ss single single

.sd single double

.dd double double

.ds double single

Unless otherwise speclficed, floating-point operations ac­
cept single- or double-precision source operands and pro­
duce a result of equal or greater precision. Both input oper­
ands must have the same precision. The source and result
precision are specified by a two-letter suffix to the mne­
monic of the operation.

Other abbreviations include:

.p

.r

.V

.w

.x

.y

mem.x(address)

Precision specification .ss,
.sd, or .dd (.ds not permit­
ted). Refer to Table 10.1.

Precision specification .ss,
.sd, .ds, or .dd. Refer to
Table 10.1.

.sd or .dd Refer to Table
10.1.

.ss or .dd. Refer to Table
10.1.

.b (8 bits), .s (16 bits), or .I
(32 bits)

.I (32 bits), .d (64 bits), or

.q (128 bits)

The memory location indi­
cated by address with a
size of x.

port.x(address) The 1/0 port indicated by
address with a size of x.

int_veetor.x(address) The interrupt vector with a
size of x returned from 1/0
port address.

PM The pixel mask, which is
considered as an array of
eight bits PM(7) .. PM(0),
where PM(O) is the least­
significant bit.

i860™ XP MICROPROCESSOR

10.1 Instruction Definitions in Alphabetical Order

adds isrc1, isrc2, idest " .. Add Signed
idest ~ isrc1 + isrc2
OF ~ (bit 31 carry oF bit 30 carry)
CC set if isrc2 + isrc1 < 0 (signed)
CC clear if isrc2 + isrc1 ~ 0 (signed)

addu isrc1, isrc2, idest ... Add Unsigned
idest ~ isrc1 + isrc2
OF ~ bit 31 carry
CC ~ bit 31 carry

and isrc 1, isrc2, idest .. Logical AND
idest ~ isrc1 and isrc2
CC set if result is zero, cleared otherwise

andh # const, isrc2, idest .. Logical AND High
idest ~ (# const shifted left 16 bits) and isrc2
CC set if result is zero, cleared otherwise

andnotisrc1, isrc2, idest .. Logical AND NOT
idest ~ (not isrc1) and isrc2
CC set if result is zero, cleared otherwise

andnoth #const, isrc2, idest Logical AND NOT High
idest ~ (not (#const shifted left 16 bits)) and isrc2
CC set if result is zero, cleared otherwise

bc Ibroff .. Branch on CC
IF CC = 1
THEN continue execution at brx(lbraff)
FI

bc.tlbroff .. Branch on ee, Taken
IF CC = 1
THEN execute one more sequential instruction

continue execution at brx(lbroff)
ELSE skip next sequential instruction
FI

bla isrc 1 ni,isrc2, sbroff Branch on Lee and Add
LCC-temp clear if isrc2 + isrc1ni < 0 (signed)
LCC-temp set if isrc2 + isrc1ni ~ 0 (signed)
isrc2 ~ isrc 1 ni + isrc2
Execute one more sequential instruction
IF LCC
THEN LCC ~ LCC-temp

continue execution at brx(sbroff)
ELSE LCC ~ LCC-temp
FI

bnc Ibraff ... Branch on Not ee
IF CC = 0
THEN continue execution at brx(lbroff)
FI

113

i860™ XP MICROPROCESSOR

bnc. t /broff ... Branch on Not CC, Taken
IF CC = 0
THEN execute one more sequential instruction

continue execution at brx(/broff)
ELSE skip next sequential instruction
FI

br /broff ... Branch Direct Unconditionally
Execute one more sequential instruction.
Continue execution at brx(/broff).

bri [isrc1m] .. Branch Indirect Unconditionally
Execute one more sequential instruction
IF any trap bit in psr is set
THEN copy PU to U, PIM to 1M in psr

clear trap bits
IF DS is set and DIM is reset
THEN enter dual-instruction mode after executing one

instruction in single-instruction mode
ELSE

FI
FI

IF
THEN

ELSE

FI

Continue execution at address in isrc1ni

DS is set and DIM is set
enter single-instruction mode after executing one

instruction in dual-instruction mode
IF
THEN

ELSE

FI

DIM is set
enter dual-instruction mode

for next instruction pair
enter single-instruction mode

for next instruction pair

(The original contents of isrc 1 ni is used even if the next instruction
modifies isrc1ni. Does not trap if isrc1ni is misaligned.)

bte isrc1s, isrc2, sbroff .. Branch If Equal
IF isrc1s = isrc2
THEN continue execution at brx(sbroff)
FI

btne isrc 15, isrc2, sbroff ... Branch If Not Equal
IF isrc1s * isrc2
THEN continue execution at brx(sbroff)
FI

call/broff .. Subroutine Call
r1 ~ address of next sequential instruction + 4 (or + 8 in dual mode)
Execute one more sequential instruction
Continue execution at brx(/broff)

calli [isrc1m] ... Indirect Subroutine Call
r1 ~ address of next sequential instruction + 4 (or + 8 in dual mode)
Execute one more sequential instruction
Continue execution at address in isrc1ni

(The original contents of isrc1ni is used even if the next instruction
modifies isrc1ni. Does not trap if isrc1ni is misaligned. The
register isrc1ni must not be r1.)

fadd.p fsrc1, fsrc2, fdest ... Floating-Point Add
fdest ~ fsrc 1 + fsrc2

114

i860™ XP MICROPROCESSOR

faddp fsrc1, fsrc2, fdest Add with Pixel Merge
fdest +- fsrc1 + fsrc2 (using integer arithmetic; a-byte operands and destination)
Shift and load MERGE register from fsrc1 + fsrc2 as defined in Table 10.2

faddz fsrc1, fsrc2, fdest ... Add with Z Merge
fdest +- fsrc1 + fsrc2 (using integer arithmetic; 8-byte operands and destination)
Shift MERGE right 16 and load fields 31 .. 16 and 63 . .48 from fsrc1 + fsrc2

famov.r fsrc1, fdest Floating-Point Adder Move
fdest +- fsrc1

fiadd.w fsrc1, fsrc2, fdest ... Long-Integer Add
fdest +- fsrc1 + fsrc2 (2's complement integer arithmetic)

fisub.w fsrc1, fsrc2, fdest ... Long-Integer Subtract
frdest +- fsrc1 - fsrc2 (2's complement integer arithmetic)

fix.v fsrc1, fdes! .. Floating-Point to Integer Conversion
fdest +- 64-bit value with low-order 32 bits equal to integer part of fsrc1 rounded

Floating-Point Load
fld.y isrc1(isrc2), fdest .. (Normal)
fld.yisrc1(isrc2)+ +, fdes! .. . (Autoincrement)

fdest +- mem.y (isrc1 + isrc2)
IF autoincrement
THEN isrc2 +- isrc1 + isrc2
FI

Cache Flush
flush # const(isrc2) ... (Normal)
flush # const(isrc2) + + .. (Autoincrement)

Write back (if modified) the line in data cache that has address (# cons! + isrc2)
80860XR: and set tag value to (# const + isrc2).
80860XP: and invalidate its virtual and physical tags.

Contents of line undefined.
IF autoincrement
THEN isrc2 +- #cons! + isrc2
FI

fmlow.dd fsrc1, fsrc2, fdest .. Floating-Point Multiply Low
fdest +- low-order 53 bits of (fsrc1 mantissa x fsrc2 mantissa)
fdes! bit 53 +- most significant bit of (fsrc1mantissa x fsrc2 mantissa)

fmov.r fsrc1, fdes! .. Floating-Point Reg-Reg Move
Assembler pseudo-operation

fmov.ss fsrc1, fdes!
fmov.dd fsrc1, fdest
fmov.sd fsrc1, fdes!
fmov.ds fsrc1, fdes!

= fiadd.ss fsrc1, to, fdes!
= fiadd.dd fsrc1, fO, fdes!
= famov.sd fsrc1, fdest
= famov.ds fsrc1, fdes!

fmul.p fsrc 1, fsrc2, fdes! .. Floating-Point Multiply
fdes! +- fsrc 1 x fsrc2

fnop ... Floating-Point No Operation
Assembler pseudo-operation

fnop = shrd rO, rO, rO

115

inter i860TM XP MICROPROCESSOR

form fsrc1, fdes! .. OR with MERGE Register
fdes! -- fsrc1 OR MERGE
MERGE -- 0

frcp.p fsrc2, fdes! ... Floating-Point Reciprocal
fdes! -- 1 / fsrc2 with maximum mantissa error < 2- 7

frsqr.p fsrc2, fdes! Floating-Point Reciprocal Square Root
fdes! -- 1 / Hsrc2 with maximum mantissa error < 2-7

Floating-Point Store
fst.y fdest,isrc1(isrc2) ... (Normal)
fst.y fdes!, isrc 1(isrc2) + + ... (Autoincrement)

mem.y (isrc2 + isrc1) -- fdes!
IF autoincrement
THEN isrc2 -- isrc1 + isrc2
FI

fsub.p fsrc 1, fsrc2, fdes! ... Floating-Point Subtract
fdes! -- fsrc 1 - fsrc2

ftrunc.v fsrc1, fdest Floating-Point to Integer Conversion
fdest -- 64-bit value with low-order 32 bits equal to integer part of fsrc1

fxfr fsrc 1, idest ... Transfer F-P to Integer Register

ides! -- fsrc 1

fzchkl fsrc1, fsrc2, fdes! ... 32-Bit Z-Buffer Check
Consider the 64-bit operands as arrays of two 32-bit

fields fsrc1(1)..fsrc1(O), fsrc2(1)..fsrc2(O). and fdest(1)..fdes!(O)
where zero denotes the least-significant field.

PM -- PM shifted right by 2 bits
FOR i = 0 to 1
DO

PM [i + 6] -- fsrc2(i) ,0; fsrc1(i) (unsigned)
fdes!(i) -- smaller of fsrc2(i) and fsrc1(i)

aD
MERGE -- 0

fzchks fsrc1, fsrc2, fdes! .. 16-Bit Z-Buffer Check
Consider the 64-bit operands as arrays of four 16-bit

fields fsrc1(3) . .fsrc1(O). fsrc2(3)..fsrc2(O). and fdest(3)..fdest(O)
where zero denotes the least-significant field.

PM -- PM shifted right by 4 bits
FOR i = 0 to 3
DO

PM [i + 4] -- fsrc2(i) ,0; fsrc1(i) (unsigned)
fdest(i) -- smaller of fsrc2(i) and fsrc1(i)

aD
MERGE -- 0

intovr .. Software Trap on Integer Overflow
IF OF = 1
THEN generate trap with IT set in psr
FI

ixfr isrc 1 ni, fdest Transfer Integer to F-P Register
fdes! -- isrc1ni

116

i860™ XP MICROPROCESSOR

Id.c esre2, idest ... Load from Control Register
idest ~ esre2

Id.x isret(isre2j, idest Load Integer
idest ~ mem.x (isret + isre2j

Idint.x isre2, idest .. Load Interrupt Vector
idest ~ int_veetor.x (isre2)
NOTE: Not available with the i860 XR CPU

Idio.x isre2, ides! ... Load 110
idest ~ port.x (isre2)
NOTE: Not available with the i860 XR CPU

lock .. Begin Interlocked Sequence
Set BL in dirbase.
The next load or store that appears on the bus locks that location.
Disable interrupts until the bus is unlocked.

mov isre2, ides! .. Register-Register Move
Assembler pseudo-operation

mov isre2, idest = shl rO, isre2, ides!

mov eonst32, idest .. Constant-to-Register Move
Assembler pseudo-operation

when OxFFFF8000 ~ eons!32 < Ox8000 ...
adds l%eonst32, rO, idest

otherwise ...
orh h %eonst32, rO, idest
or l%eonst32, idest, ides!

nop .. Core-Unit No Operation
Assembler pseudo-operation

nop = shl rO, rO, rO

or isret, isre2, idest ... Logical OR
idest ~ isret OR isre2
CC set if result is zero, cleared otherwise

orh #eonst, isre2, idest Logical OR high
idest ~ (# eonst shifted left 16 bits) OR isre2
CC set if result is zero, cleared otherwise

pfadd.p fsret, fsre2, fdest . .. Pipelined Floating-Point Add
fdest ~ last stage adder result
Advance A pipeline one stage
A pipeline first stage ~ fsre t + fsre2

pfaddp fsret, fsre2, fdest ... Pipelined Add with Pixel Merge
fdest ~ last-stage graphics-unit result
last-stage graphics-unit result ~ fsret + fsre2

(using integer arithmetic; 8-byte operands and destination)
Shift, then load MERGE register from fsret + fsre2 as defined in Table 10.2

pfaddz fsre 1, fsre2, fdes! . .. Pipelined Add with Z Merge
frdest ~ last-stage graphics-unit result
last-stage graphics-unit result ~ fsret + fsre2

(using integer arithmetic; 8-byte operands and destination)
Shift MERGE right 16, then load fields 31..16 and 63 . .48 fromfsret + fsre2

117

i860™ XP MICROPROCESSOR

pfam.p fsrc1, fsrc2, fdest Pipelined Floating-Point Add and Multiply
fdest +- last stage adder result
Advance A and M pipeline one stage (operands accessed before advancing pipeline)
A pipeline first stage +- A-op1 + A-op2
M pipeline first stage +- M-op1 x M-op2

pfamov.r fsrc1, fdest ... Pipelined Floating-Point Adder Move
fdest +- last stage adder result
Advance A pipeline one stage
A pipeline first stage +- fsrc1

pfeq.p fsrc1, fsrc2, fdest Pipelined Floating-Point Equal Compare
fdest +- last stage adder result
CC set if fsrc1 = fsrc2, else cleared
Advance A pipeline one stage
A pipeline first stage is undefined, but no result exception occurs

pfgt.p fsrc1, fsrc2, (dest Pipelined Floating-Point Greater-Than Compare
(Assembler clears R-bit of instruction)
fdest +- last stage adder result
CC set if fsrc1 > fsrc2, else cleared
Advance A pipeline one stage
A pipeline first stage is undefined, but no result exception occurs

pfiadd.w fsrc1, fsrc2, (dest . .. Pipelined Long-Integer Add
(dest +- last-stage graphics-unit result
last-stage graphics-unit result +- fsrc1 + fsrc2 (2's complement integer arithmetic)

pfisub.w fsrc1, fsrc2, (dest . .. Pipelined Long-Integer Subtract
(dest +- last-stage graphics-unit result
last-stage graphics-unit result +- fsrc1 - fsrc2 (2's complement integer arithmetic)

pfix.v fsrc1, fdest Pipelined Floating-Point to Integer Conversion
fdest +- last stage adder result
Advance A pipeline one stage
A pipeline first stage +- 64-bit value with low-order 32 bits

equal to integer part of fsrc1 rounded

Pipelined Floating-Point Load

pfld.y isrc1(isrc2),fdest (Normal)
pfld.y isrc 1(isrc2) + +, fdest (Autoincrement)

fdest +- mem.y (third previous pfld's (isrc1 + isrc2))
(where .y is precision of third previous pfld.y)

IF autoincrement
THEN isrc2 +- isrc1 + isrc2
FI
NOTE: pfld.q is not available with the i860 XR CPU

pfle.p fsrc 1, fsrc2, fdest Pipelined F-P Less-Than or Equal Compare
Assembler sets R-bit of instruction
(dest +- last stage adder result

CC clear if fsrc 1 ,,; fsrc2, else set
Advance A pipeline one stage
A pipeline first stage is undefined, but no result exception occurs

118

inter i860TM XP MICROPROCESSOR

pfmam.p fsrc1, fsrc2, fdest PipelinedFloating-Point Add and Multiply
fdest +- last stage multiplier result
Advance A and M pipeline one stage (operands accessed before advancing pipeline)
A pipeline first stage +- A-op1 + A-op2
M pipeline first stage +- M-op1 X M-op2

pfmov.r fsrc1, fdest Pipelined Floating-Point Reg-Reg Move
Assembler pseudo-operation

pfmov.ss fsrc1, fdest = pfiadd.ss fsrc1, fO, fdest
pfmov.dd fsrc1, fdest = pfiadd.dd fsrc1, fO, fdest
pfmov.sd fsrc1, fdes! = pfamov.sd fsrc1, fdes!
pfmov.ds fsrc1, fdes! = pfamov.ds fsrc1, fdest

pfmsm.p fsrc1, fsrc2, fdes! Pipelined Floating-Point Subtract and Multiply
fdest +- last stage multiplier result
Advance A and M pipeline one stage (operands accessed before advancing pipeline)
A pipeline first stage +- A-op1 - A-op2
M pipeline first stage +- M-op1 x M-op2

pfmul.p fsrc1, fsrc2, fdes! .. . Pipelined Floating-Point Multiply
fdest +- last stage multiplier result
Advance M pipeline one stage
M pipeline first stage +- fsrc1 x fsrc2

pfmul3.dd fsrc1, fsrc2, fdest . .. Three-Stage Pipelined Multiply
fdest +- last stage multiplier result
Advance 3-5tage M pipeline one stage
M pipeline first stage +- fsrc1 x fsrc2

pform fsrc1, fdes! Pipelined OR to MERGE Register
fdes! +- last-stage graphics-unit result
last-stage graphics-unit result +- fsrc1 OR MERGE
MERGE +- 0

pfsm.p fsrc1, fsrc2, fdest Pipelined Floating-Point Subtract and Multiply
fdes! +- last stage adder result
Advance A and M pipeline one stage (operands accessed before advancing pipeline)
A pipeline first stage +- A-op1 - A-op2
M pipeline first stage +- M-op1 x M-op2

pfsub.p fsrc 1, fsrc2, fdest . .. Pipelined Floating-Point Subtract
fdes! +- last stage adder result
Advance A pipeline one stage
A pipeline first stage +- fsrc1 - fsrc2

pftrunc.v fsrc1, fdest Pipelined Floating-Point to Integer Conversion
fdest +- last stage adder result
Advance A pipeline one stage
A pipeline first stage +- 64-bit value with low-order 32 bits

equal to integer part of fsrc1

119

intJ i860™ XP MICROPROCESSOR

pfzchkl fsrc 1, fsrc2, fdest .. Pipelined 32-Bit Z-Buffer Check
Consider the 64-bit operands as arrays of two 32-bit

fields fsrc1(1)..fsrc1(0), fsrc2(1)..fsrc2(0), and fdest(1)..fdest(0)
where zero denotes the least-significant field.

PM +- PM shifted right by 2 bits
FOR i = 0 to 1
DO

PM [i + 61 +- fsrc2(i) s:; fsrc1(i) (unsigned)
fdest(i) +- last-stage graphics-unit result
last-stage graphics-unit result +- smaller of fsrc2(i) and fsrc1

00
MERGE +- 0

pfzchks fsrc1, fsrc2, fdest Pipelined 16-Bit Z-Buffer Check
Consider the 64-bit operands as arrays of four 16-bit

fields fsrc1(3) . .fsrc1(0), fsrc2(3) .. fsrc2(0), and fdest(3)..fdest(0)
where zero denotes the least-significant field.

PM +- PM shifted right by 4 bits
FOR i = 0 to 3
DO

PM [i + 41 +- fsrc2(i) s:; fsrc1(i) (unsigned)
fdest +- last-stage graphics-unit result
last-stage graphics-unit result(i) +- smaller of fsrc2(i) and fsrc1(i)

00
MERGE +- 0

pst.d fdest, # const(isrc2) .. Pixel Store
pst.d fdest, # const(isrc2) + + ... Pixel Store Autoincrement

Pixels enabled by PM in mem.d (isrc2 + #const) +- fdest
Shift PM right by 8/pixel size (in bytes) bits
IF autoincrement
THEN isrc2 +- #const + isrc2
FI

scyc.x isrc2 .. Special Cycles
Generate a special bus cycle (O/C# =0, W/R# = 1, M/IO# =0) and
set BE7#-BEO# according to the value contained in the register isrc2
NOTE: Not available with the i860 XR CPU

shl isrc1, isrc2, idest , .. , " ... , , ... " '" Shift Left
idest +- isrc2 shifted left by isrc1 bits

shr isrc 1, isrc2, idest . .. Shift Right
SC (in psr) +- isrc1
idest +- isrc2 shifted right by isrc1 bits

shra isrc1, isrc2, idest ... Shift Right Arithmetic
ides! +- isrc2 arithmetically shifted right by isrc1 bits

shrd isrc1ni, isrc2, idest '" " Shift Right Double
idest +- low-order 32 bits of isrc1ni:isrc2 shifted right by SC bits

st.c isrc1ni, csrc2 ... Store to Control Register
csrc2 +- src 1 ni

st.x isrc1ni, #const(isrc2) ... Store Integer
mem.x (isrc2 + #const) +- isrc1ni

120

i860™ XP MICROPROCESSOR

stio.x isrc1ni, isrc2 .. . Store I/O
port.x (isrc2) ~ isrc1ni
NOTE: Not available with the i860 XR CPU

subs isrc 1, isrc2, idest .. Subtract Signed
idest ~ isrc1 - isrc2
OF ~ (bit 31 carry '* bit 30 carry)
CC set if isrc2 > isrc1 (signed)
CC clear if isrc2 :S: isrc1 (signed)

subu isrc 1, isrc2, idest ... Subtract Unsigned
idest ~ isrc 1 - isrc2
OF ~ NOT (bit 31 carry)
CC ~ bit 31 carry

(i.e. CC set if isrc2 :S: isrc1 (unsigned)
CC clear if isrc2 > isrc1 (unsigned))

trap isrc 1 ni, isrc2, idest . .. Software Trap
Generate trap with IT set in psr

unlock ... End Interlocked Sequence
Clear BL in dirbase. The next load or store
unlocks the bus. Interrupts are enabled.

xor isrc1, isrc2, idest .. Logical Exclusive OR
idest ~ isrc1 XOR isrc2
CC set if result is zero, cleared otherwise

xorh # canst, isrc2, idest .. Logical Exclusive OR High
idest ~ (# canst shifted left 16 bits) XOR isrc2
CC set if result is zero, cleared otherwise

Table 10.2. FADDP MERGE Update

Pixel Size Fields Loaded from Right Shift Amount
(from PS) Result into MERGE (Field Size)

8 63 .. 56, 47 . .40, 31 .. 24, 15 .. 8 8
16 63 .. 58, 47 . .42, 31 .. 26, 15 .. 10 6
32 63 .. 56, 31 .. 24 8

121

inter i860™ XP MICROPROCESSOR

10.2 Instruction Format and Encoding

All instructions are 32 bits long and begin on a four·
byte boundary. When operands are registers, the
encodings shown in Table 10.3 are used.

There are two general core·instruction formats
(REG·format and CTRL·format) and a separate for·
mat for floating·point instructions.

Table 10.3. Register Encoding

Register Encoding

rO 0

r31 31

fO 0

f31 31

Fault Instruction 0
Processor Status 1
Directory Base 2
Data Breakpoint 3
Floating·Point Status 4
Extended Processor Status 5

Bus Error Address' 6
Concurrency Control' 7

pO' 8
p1' 9
p2' 10
p3' 11

NOTE:
'Available only with i860 XP CPU. Using these encodings
with the i860 XR CPU produces undefined results.

122

10.2.1 REG-FORMAT INSTRUCTIONS

Within the REG·format are several variations as
shown in Figure 10.1. Table 10.4 gives the encod·
ings for these instructions. One encoding is an es­
cape code that defines yet another variation: the
core escape instructions. Figure 10.2 shows the for·
mat of this group, and Table 10.5 shows the encod·
ings.

In these instructions, the src2 field selects one of
the 32 integer registers (most instructions) or one of
the control registers (st.c and Id.c). Dest selects
one of the 32 integer registers (most instructions) or
floating·point registers (fld, fst, pfld, pst, ixfr). For
instructions where src1 is optionally an immediate
value, bit 26 of the opcode (I·bit) indicates whether
src1 is an immediate. If bit 26 is clear, an integer
register is used; if bit 26 is set, src1 is contained in
the low·order 16 bits, except for bte and btne
instructions. For bte and btne, the five· bit immediate
value is contained in the src1 field. For st, bte, btne,
and bla, the upper five bits of the offset or broffset
are contained in the dest field instead of src1, and
the lower 11 bits of offset are the lower 11 bits of
the instruction.

For Id and st, bits 28 and zero determine operand
size as follows:

Bit 28 Bit 0 Operand Size

0 0 8·bits
0 1 8·bits
1 0 16·bits
1 1 32·bits

When src1 is immediate and bit 28 is set, bit zero of
the immediate value is forced to zero.

i860™ XP MICROPROCESSOR

For f1d, fst, pfld, pst, and flush, bit 0 selects autoin­
crement addressing if set. For fld, fst, pfld, and pst,
bits one and two select the operand size as follows:

Bit 1 Bit2 Operand Size

0 0 64-bits
0 1 128-bits
1 0 32-bits
1 1 32-bits

For flush, bits one and two must be zero.

313029282726. r.2524 2322 21 '2019181716

I OPCODE/I SRC2 DEST

3130292827. '26/25242322 21. '20 19 18 17 16

1
OPCODE 1 11 SRC2 DEST

313029282726. r.2524 2322 21 '20 19 18 17 16

I OPCODE/I I SRC2 OFFSET
HIGH

3130292827. '26/2524 2322 21 '20 19 18 17 16

1
OPCODE 1 11 SRC2 OFFSET

HIGH

When sret is immediate, bits zero and one of the
immediate value are forced to zero to maintain align­
ment. When bit one of the immediate value is clear,
bit two is also forced to zero.

For the instructions Idio, stio, Idint, and seye, the
operand size is encoded by bits 9 and 10 as follows.
For other instructions, these bits are reserved and
should be set to zero.

Operand Size Bit 10 Bit9

8 Bits (.b) 0 0
16 Bits (.s) 0 1
32 Bits (.I) 1 0
reserved 1 1

15 14 13 12 " 1098765432 1 0

SRC1 IMMEDIATE, OFFSET,
OR NULL

240874-74

151413121110 9 876 5 -I J 2 1 0

IMMEDIATE

240874-75

15 14 13 12 11 1098765432 1 0

SRC1 OFFSET LOW
SRC1S

240874-76

15 14 13 12 If 1090765432 1 o.

IMMEDIATE OFFSET LOW

240874-77

Figure 10.1. REG-Format Variations

123

inter i860™ XP MICROPROCESSOR

Table 10.4. REG-Format Opcodes
31 30 29 28 27 26

Id.x Load Integer 0 0 0 L 0 I
st.x Store Integer 0 0 0 L 1 1
ixfr Integer to F-P Reg Transfer 0 0 0 0 1 0
- (reserved) 0 0 0 1 1 0

fld.x, fst.x Load/Store F-P 0 0 1 0 LS I
flush Flush 0 0 1 1 0 1
pst.d Pixel Store 0 0 1 1 1 1
Id.c, st.c Load/Store Control Register 0 0 1 1 LS 0

bri Branch Indirect 0 1 0 0 0 0
trap Trap 0 1 0 0 0 1
- (Escape for F-P Unit) 0 1 0 0 1 0
- (Escape for Core Unit) 0 1 0 0 1 1
bte, btne Branch Equal or Not Equal 0 1 0 1 E I
pfld.y Pipelined F-P Load 0 1 1 0 0 I
- (CTRL-Format Instructions) 0 1 1 x x x

addu, Os, subu, -s Add/Subtract 1 0 0 SO AS I
shl, shr Logical Shift 1 0 1 0 LR I
shrd Double Shift 1 0 1 1 0 0
bla Branch LCe Set and Add 1 0 1 1 0 1
shra Arithmetic Shift 1 0 1 1 1 I

and(h) AND 1 1 0 0 H I
andnot(h) ANDNOT 1 1 0 1 H I
or(h) OR 1 1 1 0 H I
xor(h) XOR 1 1 1 1 H I

- (reserved) 1 1 x x 1 0

L Integer Length AS Add/Subtract
0 -8 bits 0 -Add
1 -16 or 32 bits (selected by bit 0) 1 -Subtract

LS Load/Store LR Left/Right
0 -Load 0 -Left Shift
1 -Store 1 -Right Shift

SO Signed/Ordinal E Equal
0 -Ordinal 0 -Branch on Unequal
1 -Signed 1 -Branch on Equal

H High Immediate
0 -and, or, andnot, xor 0 -src 1 is register
1 -andh,orh,andnoth,xorh 1 -src 1 is immediate

IT] RESERVED BY INTEL CORPORATION (SET TO ZERO)
240874-78

Figure 10.2. Core Escape Instructions

124

i860™ XP MICROPROCESSOR

Table 10.5. Core Escape Opcodes
4 3 2 o

- (reserved) 0 0 0 0 0
lock Begin Interloacked Sequence 0 0 0 0 1
calli Indirect Subroutine Call 0 0 0 1 0
- (reserved) 0 0 0 1 1
introvr Trap on Integer Overflow 0 0 1 0 0
- (reserved) 0 0 1 0 1
- (reserved) 0 0 1 1 0
unlock End Interlocked Sequence 0 0 1 1 1
Idio' Load 1/0 0 1 0 0 0
stio' Store 1/0 0 1 0 0 1
Idint' Load Interrupt Vector 0 1 0 1 0
scyc' Special Cycles 0 1 0 1 1
- (reserved) 0 1 1 x x
- (reserved) 1 0 x x x
- (reserved) 1 1 x x x

NOTE:
'Available only with i860 XP CPU, not with i860 XR CPU

10.2.2 CTRL-FORMAT INSTRUCTIONS

The CTRL·Format instructions do not refer to registers; so, instead of the register fields, they have a 26-bit
relative branch offset. Figure 10.3 shows the format of these instructions and Table 10.6 defines the encod·
ings.

313029, '282726, _NDll~.mmom.uuu"m. 87 6 5 4 32 1 0

10 1 1 ope I BRorrSET I
240874-79

NOTE:
BROFFSET is a signed 26-bit relative branch offset

Figure 10.3. CTRL-Format Instructions

Table 10.6. CTRL-Format Opcodes
28 27 26

- (reserved)
- (reserved)
br Branch Direct
call Call
bc(.t) Branch on CC Set
bnc(.t) Branch on CC Clear

T Taken
o -be or bnc
1 -be.t or bnc.t

10.2.3 FLOATING-POINT INSTRUCTION
ENCODING

The floating-point instructions also constitute an es­
cape series. All these instructions begin with the bit
sequence 010010. Figure 10.4 shows the format of

125

0 0 0
0 0 1
0 1 0
0 1 1
1 0 T
1 1 T

the floating-point instructions, and Table 10.7 gives
the encodings. Within the dual-operation instructions
is a subcode DPC whose values are given in Table
10.9 along with the mnemonic that corresponds to
each.

intJ i860™ XP MICROPROCESSOR

313029282726. '2524232221 '2019181716 1514131211 10 9 B 7 6 5 ., .; 2 1 0

10 1 o 0 1 01 SRC2 DEST SRCl Ip D S R OPCODE ~
240874-80

SRC1, SRC2 Source; one of 32 floating-point registers
OEST Destination; one of 32 floating-point registers (except fxfr; one of 32 integer registers)

P Pipelining
1 Pipelined instruction mode
o Scalar instruction mode

o Dual-Instruction Mode
1 Dual-instruction mode
o Single-instruction mode

S Source Precision
1 Double-precision source operands
o Single-precision source operands

R Result Precision
1 Double-precision result
o Single-precision result

Figure 10.4. Floating-Point Instruction Encoding

Table 10.7. Floating-Point Opcodes
6 5 4

pfam Add and Multiply'
0 pfmam Multiply with Add'

pfsm Subtract and Multiply'
0 pfmsm Multiply with Subtract'

(p)fmul Multiply 0
fmlow Multiply Low 0
frcp Reciprocal 0
frsqr Reciprocal Square Root 0
pfmul3.dd 3-Stage Pipelined Multiply 0

(p)fadd Add 0
(p)fsub Subtract 0
(p)fix Fix 0
(p)famov Adder Move 0
pfgt/pfle' , Greater Than 0
pfeq Equal 0
(p)ftrunc Truncate 0

fxfr Transfer to Integer Register 1
(p)fiadd Long-Integer Add 1
(p)fisub Long-Integer Subtract 1

(p)fzchkl Z-Check Long 1
(p)fzchks Z-Check Short 1
(p)faddp Add with Pixel Merge 1
(p)faddz Add with Z Merge 1
(p)form OR with MERGE Register 1

NOTE:
All opcodes not shown are reserved .
• pfam and pfsm have P-bit set; pfmam and pfmsm have P-bit clear.
,. pfgt has R bit cleared; pfle has R bit set.

126

0 0

0 1

1 0
1 0
1 0
1 0
1 0

1 1
1 1
1 1
1 1
1 1
1 1
1 1

0 0
0 0
0 0

0 1
0 1
0 1
0 1
0 1

3 2

OPC

OPC

0 0 0
0 0 0
0 0 1
0 0 1
0 1 0

0 0 0
0 0 0
0 0 1
0 0 1
0 1 0
0 1 0
1 0 1

0 0 0
1 0 0
1 1 0

0 1 1
1 1 1
0 0 0
0 0 0
1 0 1

o

0
1
0
1
0

0
1
0
1
0
1
0

0
1
1

1
1
0
1
0

i860TM XP MICROPROCESSOR

Table 10.8. ope Encoding

ope PFAM PFSM M-Unit M-Unit A-Unit A-Unit T K
Mnemonic Mnemonic 01 op2 op1 op2 Load Load'

0000 r2p1 r2s1 KR src2 src1 M result No No
0001 r2pt r2st KR src2 T M result No Yes
0010 r2ap1 r2as1 KR src2 src1 A result Yes No
0011 r2apt r2ast KR src2 T A result Yes Yes

0100 i2p1 i2s1 KI src2 src1 M result No No
0101 i2pt i2st KI src2 T M result No Yes
0110 i2ap1 i2as1 KI src2 src1 A result Yes No
0111 i2apt i2ast KI src2 T A result Yes Yes

1000 rat1p2 rat1 s2 KR A result src1 src2 Yes No
1001 m12apm m12asm src1 src2 A result M result No No
1010 ra1p2 ra2s2 KR A result src1 src2 No No
1011 m12ttpa m12ttsa src1 src2 T A result Yes No

1100 iat1p2 iat1 s2 KI A result src1 src2 Yes No
1101 m12tpm m12tsm src1 src2 T M result No No
1110 ia1p2 ia1s2 KI A result src1 src2 No No
1111 m12tpa m12tsa src1 src2 T A result No No

ope PFMAM PFMSM M-Unit M-Unit A-Unit A-Unit T K
Mnemonic Mnemonic op1 op2 op1 op2 Load Load"

0000 mr2p1 mr2s1 KR src2 src1 M result No No
0001 mr2pt mr2st KR src2 T M result No Yes
0010 mr2mp1 mr2ms1 KR src2 src1 M result Yes No
0011 mr2mpt mr2mst KR src2 T M result Yes Yes

0100 mi2p1 mi2s1 KI src2 src1 M result No No
0101 mi2pt mi2st KI src2 T M result No Yes
0110 mi2mp1 mi2ms1 KI src2 src1 M result Yes No
0111 mi2mpt mi2mst KI src2 T M result Yes Yes

1000 mrmt1p2 mrmt1s2 KR M result src1 src2 Yes No
1001 mm12mpm mm12msm src1 src2 M result M result No No
1010 mrm1p2 mrm1s2 KR M result src1 src2 No No
1011 mm12ttpm mm12ttsm src1 src2 T M result Yes No

1100 mimt1p2 mimt1s2 KI M result src1 src2 Yes No
1101 mm12tpm mm12tsm src1 src2 T M result No No
1110 mim1p2 mim1s2 KI M result src1 src2 No No

1111 Intel Reserved

NOTE:
• If K-Ioad is set, KR is loaded when operand-1 of the multiplier is KR; KI is loaded when operand-1 of the multiplier is KI.

127

inter i860™ XP MICROPROCESSOR

10.3 Instruction Timings

Generally, i860 XP microprocessor instructions take
one clock to execute unless a freeze condition is
invoked. Detailed times, along with freeze conditions
and their associated delays, are shown in the table
on the following pages. The following symbols are
used for brevity in the timing table:

+ n n clocks must be added to the execution
time if the stated conditions apply.

~ n The processor requires at least n clocks be­
tween the indicated instructions. The actual
delay will be n minus the number of clocks
for executing intervening instructions (or
dual-mode pairs). If the time for intervening
instructions is ~ n, there is no delay.

n_.m Indicates a range of clocks. These cases
are accompanied by a reference to a note
where further explanation is available.

XR:

XP:

OA

R1

R2

RL

RL1

RN

RX

Applies to i860 XR microprocessors only.

Applies to i860 XP microprocessors only.

The number of clocks to finish all outstand­
ing accesses.

The number of clocks from ADS# through
the first READY # (80860XR) or BRDY #
(80860XP) of the indicated bus activity.

The number of clocks from ADS# through
the second READY# or BRDY#.

The number of clocks from ADS# through
the last READY # or BRDY #.

XL: The number of clocks through last
BRDY # of first access.

XR: The number of clocks until next nonre­
peated address can be issued (Le., an ad­
dress that is not the 2nd-4th cycle of a
cache fill, the 2nd-8th cycle of a CS8 mode
instruction fetch, nor the 2nd cycle of a 128-
bit write).

The number of clocks through READY # or
BRDY # for the next 64-bit-or-less write cy­
cle or second READY # or BRDY # for the
next 128-bit write cycle.

NOTES:

a. "Address path full" means one address inter­
nally waiting for bus while external bus pipeline
full.

128

b. "Store path full" means two stores or one 256-
bit write-back internally waiting for bus plus ex­
ternal bus pipeline full.

c. If a floating-point instruction, graphics-unit in­
struction, fst, or pst is executed when a scalar
floating-point operation (other than frcp or
frsqr) is in progress, the scalar operation must
complete first: two additional clocks for fadd,
fix, fmlow, fmul.ss, fmul.sd, ftrunc, and
fsub; three additional clocks for fmul.dd. Add
one if either or both of these situations occur:

1. There is an overlap between the result reg­
ister of the previous scalar operation and
the source of the floating-point operation,
and the destination precision of the scalar
operation differs from the source precision
of the floating-paint operation.

2. The floating-point operation is pipelined
and its destination is not to.

TLB TLB miss. Five clocks plus the number of
clocks to finish two reads plus the number of
clocks to set A-bits (if necessary).

In addition, any instruction may be delayed due to an
instruction cache miss or TLB miss during the in­
struction fetch. The time for a TLB miss is shown
above in note TLB. An instruction cache miss adds
the following delays:

• The number of clocks to get the next instruction
from the bus (ADS# clock to first READY# or
BRDY # clock, inclusive).

• XR: When any of the instructions in the new in­
struction-cache line is a branch or call or causes
a freeze, the time through the last READY # for
the new line.

• If the data cache is being accessed when the in­
struction-cache miss occurs, two clocks for data
cache miss; one clock for hit.

Not included in the table is the delay caused by a
trap. This depends on the trap handler.

In dual instruction mode, each pair of instructions
requires the maximum of the times required by each
individual instruction.

intJ

Instruction

adds

addu

and

andh

andnot

andnoth

bc

bc.t

bla

bnc

bnc.t

br

brl

bte

btne

call

calli

fadd.p

Execution
Clocks

1
2

i860™ XP MICROPROCESSOR

If branch not taken.
If branch taken.

Condition

+ If the prior instruction is addu, adds, subu, subs, pfeq, or pfgt.

1
2

If branch taken.
If branch not taken.

+ 1 If the prior instruction is addu, adds, subu, subs, pfeq, or pfgt.

1
2

2

3

+1
+1 +R1
+1 +R2

2
+1

+1 +R1
+1 +R2

-2 .. 4

If branch taken.
If branch not taken.

(same as bc)

(same as bc.t)

If branch not taken.
If branch taken.

(same as bte)

If r1 referenced in next instruction.
If data cache load miss in progress for a read of less than 128 bits.
If data cache load miss in progress for 128-bit read.

If r1 referenced in next instruction.
If data cache load miss in progress for a read of less than 128 bits.
If data cache load miss in progress for 128-bit read.

(... and all other A-unit instructions except dual operations)
If executed when a scalar floating-point operation (other than frcp
or frsqr) is in progress.(el

129

i860™ XP MICROPROCESSOR

Instruction Execution
Clocks

Condition

faddp

faddz

famov.r

fiadd.w

fisub.w

fix.v

fld_y

flush

fmlow.dd

fmov.r

fmul.p

(... and all other G-unit instructions except fiadd.w, fxfr)
+ 1 If Idest is used by next instruction and next instruction is G-, M- or A-unit instruction

- 2 . .4 If executed when a scalar floating-point operation (other than frcp or frsqr) is in
progress'(c)

(same as faddp)

(same as fadd.p)

+1

+1
-2 . .4

+1
-2

+1 +R1
+1 +R2
+1 +RL
-2

+2
+R2
+RN

+RL1
+TLB

If Idesf is used by next instruction and next instruction is M- or A-unit instruction
(except when fiadd is used for fmov.dd or fmov.ss).
If fdesf is used by next instruction and next instruction is G-unit instruction.
If executed when a scalar floating-point operation (other than frcp or frsqr) is in
progress.(c)

(same as faddp)

(same as fadd.p)

If this is the instruction after a st, fst or pst that hits the data cache.
If Idest is referenced in the next two instructions.
If 32-bit fld.l or 64-bit fld.d misses the data cache.
If 128-bit fld.q misses the data cache.
If data cache load miss in progress (except in the following case).
XP: If this instruction follows a data cache access that misses in the virtual tags but
hits in the physical tags.
XP: If the prior instruction is a pfld.y that hits a modified line in the data cache.
XP: If data-cache line write-back due to snoop is in progress.
XR: If address path fuli.<a)
XP: If address path full,(a)
IfTLB miss.

- 3 XR: If preceded by another flush.
- 2 XP: If preceded by another flush.

+ R2 XP: If data-cache line write-back due to snoop is in progress.
+ 1 + RX If flush to modified line when store path full,(b)

+ TLB If TLB miss.

(... and all other M-unit instruction except dual operations)
+ 1 If Isrc1 refers to result of the prior operation (either scalar or pipelined).
+ 1 If the prior operation is a double-precision multiply.

- 2 .. 4 If executed when a scalar floating-point operation (other than frcp or frsqr) is in
progress.(c)

fmov.ss and fmov.dd same as fiadd.w
fmov.sd and fmov.ds same as fadd.p

(same as fmlow.dd)

130

inter

Instruction

fnop

form

frcp.p

frsqr.p

fst.y

fsub.p

ftrunc.v

fxfr

Execution
Clocks

i860TM XP MICROPROCESSOR

Condition

(same as faddp)

(same as fmlow.dd)

(same as fmlow.dd)

+1

+1 +RL
+2

~2

+R2
~2 . .4

+RN
+RL1

+1+RX
+TLB

If followed by pipelined floating-point operation that overwrites the register
being stored.
If data cache load miss in progress.
XP: If the prior instruction is a pfld.y that hits a modified line in the data cache.
XP: If this instruction follows a data cache access that misses in the virtual
tags but hits in the physical tags.
XP: If data-cache line write-back due to snoop is in progress.
If executed when a scalar floating-point operation (other than frcp or frsqr) is
in progress.(c)
XR: If address path lull.(a)
XP: If address path fulUa)
II cache miss when store path full.(b)
IfTLB miss.

(same as fadd.p)

(same as fadd.p)

+ 1 II idest referenced in next instruction.
+ 1 + R1 If data cache load miss in progress for 64-bit read.
+ 1 + R2 II data cache load miss in progress for 128-bit read.
~ 2 . .4 If executed when a scalar floating-point operation (other than frcp or frsqr) is

in progress. (c)

fzchkl (same as faddp)

fzchks (same as faddp)

intovr

ixfr

Id.c

1
+1 +R1
+1 +R2
~2

+1
+1 +R1
+1 +R2

If data cache load miss in progress for 64-bit read.
If data cache load miss in progress for 128-bit read.
If {dest is referenced in the next two instructions.

If idest referenced in next instruction.
If data cache load miss in progress for 64-bit read.
If data cache load miss in progress for 128-bit read.

131

inter

Instruction

Id.x

Idint.x

Idio.x

lock

mov

nop

or

orh

pfadd.p

pfaddp

pfaddz

pfam.p

pfamov.r

pfeq.p

pfgt.p

pfiadd.w

pfisub.w

pfix.v

Execution
Clocks

+1
+1

+1 +RL
+--+1+R1

+--+ 2

+2
+R2
+RN

+RL1
+1+RX

+TLB

i860™ XP MICROPROCESSOR

Condition

If ides! referenced in next instruction.
If this is the instruction after a st, fst or pst that hits the data cache.
If data cache load miss in progress.
If Id.x misses the data cache and a subsequent instruction references the
ides! of the Id.x (except for following case).
XP: If this instruction follows a data cache access that misses in the virtual
tags but hits in the physical tags.
XP: If the prior instruction is a pfld.y that hits a modified line in the data cache.
XP: If data-cache line write-back due to snoop is in progress.
XR: If address path fulL<a)
XP: If address path fulL<a)
If cache miss when store path full.(b)
IfTLB miss.

+ OA

+ OA

(same as fadd.p)

(same as faddp)

(same as faddp)

(... and all other dual operations)
+ 1 If {srel refers to result of the prior operation (either scalar or pipelined).
+ 1 If the prior operation is a double-precision multiply.

+--+ 2 . .4 If executed when a scalar floating-point operation (other than frcp or frsqr) is
in progress'(c)

(same as fadd.p)

(same as fadd.p)

(same as fadd.p)

(same as faddp)

(same as faddp)

(same as fadd.p)

132

intJ

Instruction

pfld.y

pfle.p

pfmam.p

pfmov.r

pfmsm.p

pfmul.p

pfmul3.dd

pform

pfsm.p

pfsub.p

pftrunc.v

pfzchkl

pfzehks

pst.d

seye.x

shl

shr

shra

shrd

st.e

Execution
Clocks

1
+1 +RL
~2

+ 1 +RL1
+2+0A

+2

~2

+R2
+RN

+RL1
+TLB

+ OA

3
+1 +R1
+1 +R2

i860™ XP MICROPROCESSOR

Condition

If data cache load miss in progress.
If (dest is referenced in the next two instructions.
If three pfld's are outstanding.
XR: If pfld hits data cache.
XP: If the prior instruction is a pfld.y that hits a modified line in the
data cache.
XP: If this instruction follows a data cache access that misses in
the virtual tags but hits in the physical tags.
XP: If data-cache line write-back due to snoop is in progress.
XR: If address path fullJa)
XP: If address path fulUa)
IfTLB miss.

(same as pfam.p)

pfmov.ss and pfmov.dd same as faddp
pfmov.sd and pfmov.ds same as fadd.p

(same as pfam.dd)

(same as fmlow.dd)

(same as fmlow.dd)

(same as faddp)

(same as pfam.dd)

(same as fadd.p)

(same as fadd.p)

(same as faddp)

(same as faddp)

(same as fst.d)

If data cache load miss in progress for a read of less than 128 bits.
If data cache load miss in progress for 128-bit read.

133

intJ i860TM XP MICROPROCESSOR

Instruction Execution
Clocks

Condition

st.x 1
+1 +RL If data cache load miss in progress.

+2
~2

XP: If the prior instruction is a pfld.y that hits a modified line in the data cache.
XP: If this instruction follows a data cache access that misses in the virtual
tags but hits in the physical tags.

+R2
+RN

XP: If data-cache line write-back due to snoop is in progress.
XR: If address path fulUa)

+RL1 XP: If address path fullJa)
+1+RX

+TLB
If cache miss when store path fulUb)
IfTLB miss.

stio.x 1 + OA

subs

subu

trap

unlock

xor

xorh

10.4 Instruction Characteristics

The following table lists some of the characterisics
of each instruction. The characteristics are:

• What processing unit executes the instruction.
The codes for processing units are:

A Floating-point adder unit
E Core execution unit
G Graphics unit
M Floating-point multiplier unit

• Whether the instruction is pipelined or not. A P
indicates that the instruction is pipelined.

• Whether the instruction is a delayed branch in­
struction. A D marks the delayed branches.

• Whether execution is suppressed in user mode.
An SU marks supervisor-only instructions.

• Whether the instruction is available on both the
i860 XR and i860 XP microprocessors. An XL
marks instructions that are available only on the
i860 XP microprocessor.

• Whether the instruction changes the condition
code CC. A CC marks those instructions that
change CC.

• Which faults can be caused by the instruction.
The codes used for exceptions are:

IT Instruction Fault

SE Floating-Point Source Exception

134

RE Floating-Point Result Exception, including
overflow, underflow, inexact result

OAT Data Access Fault

Note that this is not the same as specifying at which
instructions faults may be reported. A result excep­
tion is reported on the subsequent floating-point in­
struction, pst, fst, or sometimes fld, pfld, and ixfr.

The instruction access fault IAT and the interrupt
trap IN are not shown in the table because they can
occur for any instruction.

• Performance notes. These comments regarding
optimum performance are recommendations only.
If these recommendations are not followed, the
i860 XP microprocessor automatically waits the
necessary number of clocks to satisfy internal
hardware requirements. The following notes de­
fine the numeric codes that appear in the instruc­
tion table:

1. The following instruction should not be a condi­
tional branch (bc, bnc, bc.t, or bnc.t).

2. The destination should not be a source oper­
and of the next two instructions.

3. A load should not directly follow a store that is
expected to hit in the data cache.

4. When the prior instruction is scalar, {src1
should not be the same as the {dest of the prior
operation.

i860™ XP MICROPROCESSOR

5. The fdest should not reference the destination
of the next instruction if that instruction is a
pipelined floating-point operation.

6. The destination should not be a source oper­
and of the next instruction. (For call and calli,
the destination is r1.)

7. When the prior operation is scalar and multipli­
er op1 is fsrc1, fsrc2 should not be the same as
the Idest of the prior operation.

8. When the prior operation is scalar, src1 and
src2 of the current operation should not be the
same as dest of the prior operation.

9. A pfld should not immediately follow a pfld

• Programming restrictions. These indicate combi­
nations of conditions that must be avoided by pro­
grammers, assemblers, and compilers. The fol­
lowing notes define the alphabetic codes that
appear in the instruction table:

Pipelined?
Execution Delayed?

Instruction Unit Supervisor?
i860TM XP Only?

adds E
addu E
and E
andh E
andnot E

andnoth E
bc E
bc.t E D
bla E D
bnc E

bnc.t E D
br E D
bri E D
bte E
btne E

call E D
calli E D
fadd.p A
faddp G
faddz G

famov.r A
fiadd.w G
fisub.w G

fix.p A
fld.y E

NOTES:

Sets
CC?

CC
CC
CC
CC
CC

CC

a. The sequential instruction following a delayed
control-transfer instruction may not be another
control-transfer instruction, nor a trap instruc­
tion, nor the target of a control-transfer instruc­
tion.

b. When using a bri to return from a trap handler,
programmers should take care to prevent traps
from occurring on that or on the next sequen­
tial instruction. 1M should be zero (interrupts
disabled) when the bri is executed.

c. If Idest is not zero, Isrc1 must not be the same
as Idest.

d. When fsrc1 goes to multiplier op1 or to KR or
KI, Isrc1 must not be the same as Idest.

e. If dest is not zero, src1 and src2 must not be
the same as dest.

f. /src1 must not be the same register as isrc2for
the autoincrementing form of this instruction.

g. /src1 must not be the same register as isrc2.

Performance Programming
Faults Notes Restrictions

1
1

a
a,g

a
a

a,b

6 a
6 a

SE,RE
8
8

SE,RE
8
8

SE,RE
DAT 2,3 f

• On the i860 XP microprocessor, the pipolinocJ instructions can generate ITR with PI .
•• On the i860 XP micropocessor, the 128·bit pfld.q is not available. If used it causes an instruction trap.

135

intJ i860™ XP MICROPROCESSOR

Pipelined?

Instruction
Execution Delayed? Sets Performance Programming

Unit Supervisor? CC? Faults Notes Restrictins
i860™ XP Only?

flush E
fmlow.dd M 4
fmul.p M SE,RE 4
form G 8
frcp.p M SE,RE

frsqr.p M SE,RE
fst.y E OAT 5 f
fsub.p A SE,RE
ftrunc.p A SE,RE
fxfr G 6,8

fzchkl G 8
fzchks G 8
Intovr E IT
ixfr E 2
Id.c E

Id.x E OAT 6
Idint.x E SU,XL OAT
Idio.x E SU,XL OAT
lock E
or E CC
orh E CC

pfadd.p A P SE,RE*
pfaddp G P * 8 e
pfaddz G P * 8 e
pfam.p A&M P SE,RE* 7 d
pfamov.r A P SE,RE*

pfeq.p A P CC SE* 1
pfgt.p A P CC SE* 1
pfiadd.w G P * 8 e
pfisub.w G P * 8 e
pfix.p A P SE,RE*

pfld.y E P,(XL)** OAT' 2,9 f
pfmam.p A&M P SE,RE* 7 d
pfmsm.p A&M P SE,RE* 7 d
pfmul.p M P SE,RE* 4 c
pfmul3.dd M P SE,RE* 4 c

pform G P * 8 e
pfsm.p A&M P SE,RE* 7 d
pfsub.p A P SE,RE*
pftrunc.p A P SE,RE*
pfzchkl G P * 8

NOTES:
• On the i860 XP microprocessor, the pipelined instructions can generate ITR with PI.
•• On the i860 XP micropocessor, the 128-bit pfld.q is not available. If used it causes an instruction trap.

136

inter i860TM XP MICROPROCESSOR

Pipelined?

Instruction
Execution Delayed? Sets Performance Programming

Unit Supervisor? CC? Faults Notes Restrictions
i860™ XP Only?

pfzchks G P * 8
pst.d E OAT 5 f
scyc.x E SU,XL OAT
shl E
shr E

shra E
shrd E
st.c E
st.x E OAT
stio.x E SU,XL OAT

subs E CC 1
subu E CC 1
trap E IT
unlock E
xor E CC
xorh E CC

NOTES:
.:On the i860 XP microprocessor, the pipelined instructions can generate ITR with PI.

On the 1860 XP mlcropocessor, the 128-bit pfld.q is not available. If used it causes an instruction trap.

10.5 Software Compatibility

10.5.1 REQUIRED CHANGES

To port existing systems software from the i860 XR
micro~rocessor to the i860 XP microprocessor, the
follOWing changes may be required. Applications
software does not require changes.

1. Data cache flush. All four ways of the data cache
must be flushed on the i860 XP microprocessor.
The cache flush routine can be modified to check
processor type in epsr or the OCS field of
dirbase and flush the appropriate number of
ways.

2. Parity and bus error traps. If the i860 XP system
signals these errors, the trap handler must be ex­
tended to handle them. Software must avoid test­
ing the BEF and PEF bits unless executing on the
i860 XP microprocessor.

3. LOCK # deactivation. On the i860 XP microproc­
essor, traps do not automatically deactivate the
LOCK # signal, so the trap handler must do a
data access to deactivate LOCK #. Trap handlers
that already access data soon after invocation do
not require this modification.

4. Load pipe precision. The precision of the last
stage of the load pipeline is specified by the LRP
bit on the i860 XR microprocessor but by the
LRPO and LRP1 bits on the i860 XP microproces-

137

sor. The procedure that restores the load pipe
must check the processor type, use the appropri­
ate blts~ and restore the correct precision. Pipe
restoration code for the i860 XR microprocessor
will work correctly on the i860 XP microprocessor
if pfld.q is not used.

5. Pre-accessed trap handler pages. Page-directory
and page-table entries for the instruction pages
of the trap handler and for the first data page
accessed by the trap handler must always have
A.= 1. Software modified to allocate page tables
thiS way works on both i860 XR and i860 XP mi­
croprocessors.

6. Page directory entry bit 7 must be zero. This is
t~e bit that selects four Mbyte or four Kbyte page
size. On the 1860 XR microprocessor, it is re­
served and should be set to zero. It must be set
to zero for four Kbyte pages to work on the
i860 XP microprocessor.

10.5.2 PERFORMANCE OPTIMIZATIONS

Software developers may wish to make the following
performance enhancements in systems software for
the i860 XP microprocessor. Systems software that
must execute on both i860 XP and i860 XR systems
~an contain code both with and without the optimiza­
~Ions. B.y testing the processor type, the appropriate
Instruction path can be determined.

i860™ XP MICROPROCESSOR

1. Data cache flush. On the i860 XP microproces­
sor, a complete flushing of the data cache is not
needed when changing context or marking a
page not present.

2. The epsr bits AI, 01, PI, and PT can be used on
the i860 XP microprocessor to make trap han­
dlers more efficient.

3. Four-Mbyte pages can be allocated to frame buff­
ers and the operating-system kernel, thereby re­
ducing the cost of TLB misses.

10.5.3 NEW FEATURES

Software that uses the new features available only
on the i860 XP microprocessor will not be compati­
ble with the i860 XR microprocessor unless alter­
nate instruction paths are provided.

Systems software features:

1. New instructions Idio, stio, Idint, and scyc.

2. Four-Mbyte pages.

138

3. Privileged Registers pO, p1, p2, and p3.

4. Concurrency control unit.

5. 128-bit load instruction pfld.q.

6. Support for virtual address aliases.

Applications software features:

1. Concurrency control unit.

2. 128-bit load instruction pfld.q. The i860 XR mi­
croprocessor traps on pfld.q; therefore, software
has the opportunity to emulate a pfld.q with two
pfld.d instructions. However, this strategy does
not yield optimal performance on the i860 XR mi­
croprocessor.

10.5.4 NOTES

On the i860 XP microprocessor, pages with WT =
are cached with the write-through policy; whereas,
on the i860 XR microprocessor, they are not cached
at all. Because this change in the function of WT
was anticipated in the i860 XR microprocessor docu­
mentation, no incompatibility should arise.

A

8-bit pixel

data type, 2.1.4

16-bit pixel

data type, 2.1.4

16-bit values

alignment requirements, 2.3

32-bit binary floating-point

single-precision real, 2.1.3

32-bit integer

data type, 2.1.1

32-bit ordinal

data type, 2.1.2

32-bit pixel

data type, 2.1.4

32-bit values

alignment requirements, 2.3

54-bit binary floating-point

double-precision real, 2.1.3

floating-point register file, 2.2.2

54-bit integer

data type, 2.1.1

floating-point register file, 2.2.2

64-bit values

alignment requirements, 2.3

128-bit load and store instructions

floating-point register file, 2.2.2

128-bit values

alignment requirements, 2.3

82495XP/82490XP cache

BRDY # (burst ready), 4.2.7

external secondary cache, 1.0

write-once policy, 3.2.4.2

A31-A3 (address pins)

signal description, 4.2.1

A (accessed)

page-table entries (PTEs), 2.4.4.5

i860™ XP MICROPROCESSOR

139

AA

fsr U-bit (update bit), 2.2.8

access rights

address translation caches, 3.1

A.C. characteristics

electrical data, 9.3

addressing

i860 XP microprocessor, 2.3

modes, 2.7

address space

consistency, 3.3.1

address translation

algorithm, 2.4.5

caches, 3.1

faults, 2.4.6

P (present) bit, 2.4.4.2

virtual addressing, 2.4

adds (Add Signed)

epsr OF (overflow flag), 2.2.4

instruction definition, 10.1

instruction timing, 10.3

addu (Add Unsigned)

epsr OF (overflow flag), 2.2.4

instruction definition, 10.1

instruction timing, 10.3

ADS # (address status)

AE

AHOLD (address hold), 4.2.3

signal description, 4.2.2

fsr U-bit (update bit), 2.2.8

AHOLD (address hold)

bus arbitration, 5.2

signal description, 4.2.3

algorithm

address translation, 2.4.5

cache replacement, 3.2.3

aliasing

instruction cache, 3.2.2

internal instruction and data caches, 3.2

inter i860™ XP MICROPROCESSOR

alignment

requirements, 2.3

andh (Logical AND High)

instruction definition, 10.1

instruction timing, 10.3

and (Logical AND)

instruction definition, 10.1

instruction timing, 10.3

andnoth (Logical AND NOT High)

instruction definition, 10.1

instruction timing, 10.3

andnot (Logical AND NOT)

instruction definition, 10.1

instruction timing, 10.3

ANSI/IEEE Standard, 754 to 1985, 1.0

AO

fsr U-bit (update bit), 2.2.8

arbitration

bus operation, 5.2

HOLD and HLDA, 5.2.1

ATE (address translation enable)

address translation, 2.4

dirbase format description, 2.2.6

AU

fsr U-bit (update bit), 2.2.8

B

back-off

bus cycle, 5.2.2

late modes, 5.2.2.3

one-clock late mode, 5.2.2.4

two-clock late mode, 5.2.2.5

bc (Branch on CC)

instruction definition, 10.1

instruction timing, 10.3

bc.t (Branch on CC, Taken)

instruction definition, 10.1

instruction timing, 10.3

140

BE7#-BEO# (byte enables)

signal description, 4.2.4

bear (bus error address register)

format description, 2.2.10

BE (big endian)

data cache, 3.2.1

epsr format description, 2.2.4

BEF (bus error flag)

epsr format description, 2.2.4

BEn#

BE7 # - BEO # (byte enables), 4.2.4

BERR (bus error)

bear (bus error address register), 2.2.10

bus error trap, 2.8.7

epsr BEF (bus error flag), 2.2.4

psr 1M (interupt mode), 2.2.3

signal description, 4.2.5

big endian mode

addressing, 2.3

bla (Branch on LCC and Add)

epsr AI (trap on autoincrement instruction), 2.2.4

instruction definition, 10.1

instruction timing, 10.3

BL (bus lock)

dirbase format description, 2.2.6

bnc (Branch on Not CC)

instruction definition, 10.1

instruction timing, 10.3

bnc.t (Branch on Not CC, Taken)

instruction definition, 10.1

instruction timing, 10.3

BOFF # (back-off)

ADS# (address status), 4.2.2

BERR (bus error), 4.2.5

bus arbitration, 5.2

dirbase LB (late back·off mode), 2.2.6

FLiNE # choice, 5.3.5.1

signal description, 4.2.6

intJ i860TM XP MICROPROCESSOR

boundary scan

register cell ordering, 6.5

BPR (bypass register)

test, 6.2

br (Branch Direct Unconditionally)

instruction definition, 10.1

instruction timing, 10.3

BR (break read)

debugging i860 XP microprocessor, 2.9

psr format description, 2.2.3

BRDY # (burst ready)

bear (bus error address register), 2.2.10

BERR (bus error), 4.2.5

epsr IL (interlock), 2.2.4

locked access, 3.2.4.3

signal description, 4.2.7

write-once policy, 3.2.4.2

BREQ (bus request)

signal description, 4.2.8

bri (Branch Indirect Unconditionally)

instruction definition, 10.1

brl (Branch Indirect Unconditionally)

instruction timing, 10.3

BS (bus or parity error trap in supervisory mode)

epsr format description, 2.2.4

BSR (boundary scan register)

test, 6.2

bte (Branch If Equal)

instruction definition, 10.1

instruction timing, 10.3

btne (Branch If Not Equal)

instruction timing, 10.3

burst cycles

bus cycle, 5.1.2

bus arbitration

bus operation, 5.2

bus and cache control unit

function of, 1.0

141

bus cycles

back-off and restart, 5.2.2

bus operation, 5.1

type output pins, 4.1

bus errors

bear (bus error address register), 2.2.10

trap, 2.8.7

bus operation

i860 XP microprocessor, 5.0

BW (break write)

debugging i860 XP microprocessor, 2.9

psr format description, 2.2.3

BYPASS# (bypass)

C

signal description, 4.2.9

TAP encoding, 6.3

CACHE# (cacheability)

BE7#-BEO# (byte enables), 4.2.4

signal description, 4.2.10

cache

address translation, 3.1

consistency protocol, 3.2.4

external secondary, 1.0

inquiry cycles (snooping), 5.3

internal instruction and data, 3.2

invalidating entries, 3.3

on-chip, 3.0

replacement algorithm, 3.2.3

cacheability

address translation caches, 3.1

consistency, 3.3.4

calli (Indirect Subroutine Call)

instruction definition, 10.1

instruction timing, 10.3

call (Subroutine Call)

instruction definition, 10.1

instruction timing, 10.3

capture-DR

test state, 6.4.5

inter i860™ XP MICROPROCESSOR

capture-IR

test state, 6.4.11

CC (condition code)

psr format description, 2.2.3

ccr (concurrency control register)

OCCU initialization, 2.5.1

format description, 2.2.12

CCUBASE

ccr (concurrency control register), 2.2.12

OCCU addressing, 2.5.2

OCCU initialization, 2.5.1

CO (cache disable)

bypassing instruction and data cache, 3.3

page-table entries (PTEs), 2.4.4.5

ClK (clock)

signal description, 4.2.11

co (CCU on)

ccr (concurrency control register), 2.2.12

color intensity shading

pixel formats, 2.1.4

compatibility

pipelined cycles, 5.1.3

software changes, 10.5.1

concurrency control unit (CCU)

ccr (concurrency control register), 2.2.12

detached CCU, 2.5

NEWCURR register, 2.2.13

consistency

address space, 3.3.1

cacheability, 3.3.4

instruction cache, 3.3.2

internal cache, 3.3

load pipe, 3.3.5

page table, 3.3.3

protocol, 3.2.4

write-once policy, 3.2.4.2

control registers

register set, 2.2

142

copy-back policy

data cache update, 3.2.1.1

core execution unit

function of, 1.0

CS8 (code size 8-bit)

BE7#-BEO# (byte enables), 4.2.4

dirbase format description, 2.2.6

CTRl-format

instructions, 10.2.2

CTYP (cycle type)

signal description, 4.2.12

cycles

D

back-off, 5.2.2.1

burst cycles, 5.1.2

interrupt acknowledge, 5.1.4

pipelined, 5.1.3

restart, 5.2.2.2

special bus, 5.1.5

063-00 (data pins)

signal description, 4.2.14

data access

fault, 2.8.5

data cache

bypassing, 3.3

flushing, 3.3

function of, 1.0

operation, 3.2

organization, 3.2.1

states, 3.2.4.1

update policies, 3.2.1.1

data types

i860 XP microprocessor, 2.1

OAT (data access trap)

debugging i860 XP microprocessor, 2.9

psr format description, 2.2.3

i860™ XP MICROPROCESSOR

db (data breakpoint register)

debugging i860 XP microprocessor, 2.9

format description, 2.2.5

psr BR (break read) and BW (break write), 2.2.3

Obit

dual-instruction mode, 2.6.2

D/C# (data/code)

signal description, 4.2.13

D.C. characteristics

electrical data, 9.2

DCCU (detached concurrency control unit)

addressing, 2.5.2

ccr (concurrency control register), 2.2.12

function of, 1.0

initialization, 2.5.1

internals, 2.5.3

DCS (data cache size)

epsr format description, 2.2.4

o (dirty)

page-table entries (PTEs), 2.4.4.6

debugging

i860 XP microprocessor, 2.9

deferred-write policy

data cache update, 3.2.1.1

denormal

special floating-point values, 2.1.3

Detached

STAT register description, 2.2.14

detached CCU

i860 XP microprocessor, 2.5

d.fnop

dual-instruction mode, 2.6.2

DID (device identification register)

test, 6.2

DIR

virtual address, 2.4.2

143

dirbase (directory base register)

address space consistency, 3.3.1

cache replacement algorithm, 3.2.3

DCCU initialization, 2.5.1

format description, 2.2.6

instruction cache consistency, 3.3.2

page directory, 2.4.3

page table consistency, 3.3.3

P (present) bit, 2.4.4.2

disassemblers

big endian mode, 2.3

01 (trap on delayed instruction)

epsr format description, 2.2.4

OM (dual instruction mode)

psr format description, 2.2.3

DO (detached only)

ccr (concurrency control register), 2.2.12

double-precision real

data type, 2.1.3

double real value

floating-point registers, 2.1.3

double-shift instruction

psr SC (shift count), 2.2.3

DP7-DPO (data parity)

signal description, 4.2.15

DPC (data-path control)

dual-operation instructions, 2.6.3

DPS (DRAM page size)

dirbase format description, 2.2.6

OS (delayed switch)

psr format description, 2.2.3

DTB (directory table base)

dirbase format description, 2.2.6

dual-instruction mode

paralieliism, 2.6.2

dual-operation instructions

floating-point, 2.6.3

infef i860™ XP MICROPROCESSOR

E

EAOS#

AHOLO (address hold), 4.2.3

EAOS# (external address status)

signal description, 4.2.16

epsr (extended processor status register)

data cache, 3.2.1

OCCU internals, 2.5.3

format description, 2.2.4

page-table entries (PTEs), 2.4.4.3

EWBE# (external write buffer empty)

epsr SO (strong ordering), 2.2.4

signal description, 4.2.17

exit1-0R

test state, 6.4.7

exit1-IR

test state, 6.4.13

exit2-0R

test state, 6.4.9

exit2-IR

test state, 6.4.15

EXTEST

TAP encoding, 6.3

F

faddp (Add with Pixel Merge)

instruction definition, 10.1

instruction timing, 10.3

fadd.p (Floating-Point Add)

instruction definition, 10.1

instruction timing, 10.3

faddz (Add with Z Merge)

instruction definition, 10.1

instruction timing, 10.3

famov.r (Floating-Point Adder Move)

instruction definition, 10.1

instruction timing, 10.3

144

fault

address translation, 2.4.6

data access, 2.8.5

floating-point, 2.8.3

instruction access, 2.8.4

result exception fault, 2.8.3.1

source exception fault, 2.8.3.1

fiadd.w (Long-Integer Add)

instruction definition, 10.1

instruction timing, 10.3

fir (fault instruction register)

epsr 01 (trap on delayed instruction), 2.2.4

format description, 2.2.7

fisub.w (Long-Integer Subtract)

instruction definition, 10.1

instruction timing, 10.3

fix.v (Floating-Point to Integer Conversion)

instruction definition, 10.1

instruction timing, 10.3

fld.y (Floating-Point Load)

instruction definition, 10.1

instruction timing, 10.3

FLlNE# (flush line)

BOFF # choice, 5.3.5.1

signal description, 4.2.18

floating-point

adder, 1.0

control unit, 1.0

fault, 2.8.3

instruction encoding, 10.2.3

multiplier, 1.0

register file, 2.2.2

flush (Cache Flush)

cache replacement algorithm, 3.2.3

dirbase RB (replacement block), 2.2.6

flushing data cache, 3.3

instruction definition, 10.1

instruction timing, 10.3

requirements summary, 3.3.6

infef i860TM XP MICROPROCESSOR

fmlow.dd (Floating-Point Multiply Low)

instruction definition, 10.1

instruction timing, 10.3

fmov.r (Floating-Point Reg-Reg Move)

instruction definition, 10.1

instruction timing, 10.3

fmul.p (Floating-Point Multiply)

instruction definition, 10.1

instruction timing, 10.3

fnop (Floating-Point No Operation)

instruction definition, 10.1

instruction timing, 10.3

form (OR with MERGE Register)

instruction definition, 10.1

instruction timing, 10.3

frcp.p (Floating-Point Reciprocal)

instruction definition, 10.1

instruction timing, 10.3

frsqr.p (Floating-Point Reciprocal Square Root)

instruction definition, 10.1

instruction timing, 10.3

fsr (floating-point status register)

format description, 2.2.8

pipelining status information, 2.6.1.2

fst.y (Floating-Point Store)

instruction definition, 10.1

instruction timing, 10.3

fsub.p (Floating-Point Subtract)

instruction definition, 10.1

instruction timing, 10.3

FTE (floating-point trap enable)

fsr format description, 2.2.8

145

FT (floating-point trap)

psr format description, 2.2.3

ftrunc.v (Floating-Point to Integer Conversion)

instruction definition, 10.1

instruction timing, 10.3

fxfr (Transfer F-P to Integer Register)

instruction definition, 10.1

instruction timing, 10.3

fzchkl (32-Bit Z-Buffer Check)

instruction definition, 10.1

instruction timing, 10.3

fzchks (16-Bit Z-Buffer Check)

instruction definition, 10.1

instruction timing, 10.3

FZ (flush zero)

fsr format description, 2.2.8

G

graphics unit

function of, 1.0

H

hardware interface

i860 XP microprocessor, 4.0

HIT # (cache inquiry hit)

signal description, 4.2.19

HITM# (hit modified line)

internal cache consistency, 3.3

signal description, 4.2.20

HLDA (bus hold acknowledge)

signal description, 4.2.21

HOLD (bus hold)

bus arbitration, 5.2

signal description, 4.2.22

infel" i860TM XP MICROPROCESSOR

i860 XP microprocessor

bus operation, 5.0

functional description, 1.0

hardware interface, 4.0

instruction set, 8.0

mechanical data, 7.0

on-chip caches, 3.0

programming interface, 2.0

testability, 6.0

IAT (instruction access trap)

psr format description, 2.2.3

10GOOE

TAP encoding, 6.3

IEEE Standard

for Binary Floating-Point Arithmetic, 1.0

P1149.1 106 testability, 6.0

IL (interlock)

epsr format description, 2.2.4

1M (interrupt mode)

psr format description, 2.2.3

indefinite

special floating-point values, 2.1.3

inexact result

result exception fault, 2.8.3.2

infinity

special floating-point values, 2.1.3

IN (interrupt)

psr format description, 2.2.3

InLoop

STAT register description, 2.2.14

inquiry cycles

data cache states, 3.2.4.1

for line being cached, 5.3.2.1

for line being replaced, 5.3.2.2

snooping, 5.3

write-back, 5.3.1

146

instruction

access fault, 2.8.4

characteristics, 10.4

GTRL-format, 10.2.2

definitions, 10.1

dual-operation, 2.6.3

encoding floating-point, 10.2.3

fault, 2.8.2

format and encoding, 10.2

REG-format, 10.2.1

timing, 10.3

instruction cache

bypassing, 3.3

consistency, 3.3.2

function of, 1.0

operation, 3.2

organization, 3.2.2

instruction set

abbreviations, 10.0

extensions of i860 XR, 2.6

i860 XP microprocessor, 8.0

INT/GS8 (interrupt/code-size 8-bits)

signal description, 4.2.24

integer

data type, 2.1.1

register file, 2.2.1

internal cache

consistency, 3.3

interrupt

acknowledge cycles, 5.1.4

i860 XP microprocessor, 2.8

trap, 2.8.8

INT (interrupt)

epsr format description, 2.2.4

intovr (Software Trap on Integer Overflow)

instruction definition, 10.1

instruction timing, 10.3

INT pin

epsr INT (interrupt), 2.2.4

psr 1M (interrupt mode), 2.2.3

inter i860™ XP MICROPROCESSOR

invalidation requirements

summary, 3.3.6

INV (invalidate)

signal description, 4.2.23

IR (instruction register)

test, 6.3

IRP (integer graphics)

fsr format description, 2.2.8

ITI (cache and TLB invalidate)

dirbase format description, 2.2.6

IT (instruction trap)

psr format description, 2.2.3

ixfr (Transfer Integer to F-P Register)

instruction definition, 10.1

instruction timing, 10.3

K

KBO, KB1 (cache block)

signal description, 4.2.25

KEN# (cache enable)

KI

BE7#-BEO# (byte enables), 4.2.4

bypassing instruction and data cache, 3.3

DCCU addressing, 2.5.2

internal instruction and data caches, 3.2

locked access, 3.2.4.3

signal description, 4.2.26

special purpose register description, 2.2.9

KNF (kill next floating-point instruction)

psr format description, 2.2.3

KR

special purpose register description, 2.2.9

L

LB (late back-off mode)

dirbase format description, 2.2.6

LCC (loop condition code)

psr CC (condition code), 2.2.3

147

Id.c (Load from Control Register)

fir (fault instruction register), 2.2.7

instruction definition, 10.1

instruction timing, 10.3

Idint.x (Load Interrupt Vector)

big endian mode, 2.3

epsr BE (big endian), 2.2.4

extensions of i860 XR, 2.6

instruction definition, 10.1

instruction timing, 10.3

Idio.x (Load 1/0)

big endian mode, 2.3

ex1ensions of i860 XR, 2.6

instruction definition, 10.1

instruction timing, 10.3

Idol

flushing data cache, 3.3

Id.x (Load Integer)

DCCU internals, 2.5.3

instruction definition, 10.1

instruction timing, 10.3

LEN (data length)

signal description, 4.2.27

LFBSR (linear feedback shift register)

cache replacement algorithm, 3.2.3

little endian mode

addressing, 2.3

load pipe

consistency, 3.3.5

LOCK # (address lock)

A (accessed) bit, 2.4.4.6

cycle attribute, 5.4

dirbase BL (bus lock), 2.2.6

signal description, 4.2.28

lock (Begin Interlocked Sequence)

dirbase BL (bus lock), 2.2.6

instruction definition, 10.1

instruction timing, 10.3

locked access, 3.2.4.3

infef i860™ XP MICROPROCESSOR

locked access

cache consistency, 3.2.4.3

lock instruction

epsr IL (interlock), 2.2.4

lock protocol

instruction fault, 2.8.2.1

LRPO (load pipe result precision)

fsr format description, 2.2.8

LRP1 (load pipe result precision)

fsr format description, 2.2.8

M

MA

fsr U-bit (update bit), 2.2.8

mechanical data

i860 XP microprocessor, 7.0

MERGE

special purpose register description, 2.2.9

MESI

MI

cache consistency protocol, 3.2.4

write cycle reordering, 5.3.3

fsr U-bit (update bit), 2.2.8

M/IO# (memory-liD)

signal description, 4.2.29

MO

fsr U-bit (update bit), 2.2.8

moy (Constant-to-Register Move)

instruction definition, 10.1

moy (Register-Register Move)

instruction definition, 10.1

instruction timing, 10.3

MU

fsr U-bit (update bit), 2.2.8

148

N

NA# (next address request)

locked access, 3.2.4.3

signal description, 4.2.30

write-once policy, 3.2.4.2

NaN (Not a Number)

special floating-point values, 2.1.3

NENE# (next near)

dirbase DPS (DRAM page size), 2.2.6

signal description, 4.2.31

Nested

STAT register description, 2.2.14

NEWCURR register

DCCU internals, 2.5.3

format description, 2.2.13

nonpipelined cycle

bus cycle, 5.1.3

nop (Core-Unit No Operation)

instruction definition, 10.1

instruction timing, 10.3

o

offset

addressing modes, 2.7

virtual address, 2.4.2

OF (overflow flag)

epsr format description, 2.2.4

on-chip caches

i860 XP microprocessor, 3.0

ordinal

data type, 2.1.2

orh (Logical OR High)

instruction definition, 10.1

instruction timing, 10.3

or (Logical OR)

instruction definition, 10.1

instruction timing, 10.3

intJ i860™ XP MICROPROCESSOR

output pins

pins overview, 4.1

overflow

result exception fault, 2.8.3.2

p

package

thermal specifications, 8.0

PAGE

virtual address, 2.4.2

page directory

little endian mode, 2.3

page tables, 2.4.3

paged virtual-address space

addressing, 2.3

page frame

address, 2.4.4.1

physical main memory, 2.4.1

page table

combining protection, 2.4.4.8

consistency, 3.3.3

entry format description, 2.4.4

format description, 2.4.3

little endian mode, 2.3

for trap handlers, 2.4.4.7

paging unit

address translation caches, 3.1

function of, 1.0

parallelism

dual-instruction mode, 2.6.2

use of, 2.6

parity error

bear (bus error address register), 2.2.10

psr 1M (interrupt mode), 2.2.3

trap, 2.8.6

pause-DR

test state, 6.4.8

pause-IR

test state, 6.4.14

149

PBM (page-table bit mode)

epsr format description, 2.2.4

PCD (page cache disable)

bypassing instruction and data cache, 3.3

CD (cache disable), 2.4.4.5

signal description, 4.2.32

PCHK # (parity check)

signal description, 4.2.33

PCYC (page cycle)

signal description, 4.2.34

PEF (parity error flag)

epsr format description, 2.2.4

PEN # (parity enable)

bear (bus error address register), 2.2.10

parity error trap, 2.8.6

signal description, 4.2.35

performance optimizations

software compatibility, 10.5.2

pfaddp (Pipelined Add with Pixel Merge)

instruction definition, 10.1

instruction timing, 10.3

pfadd.p (Pipelined Floating-Point Add)

instruction definition, 10.1

instruction timing, 10.3

pfaddz (Pipelined Add with Z Merge)

instruction definition, 10.1

instruction timing, 10.3

pfamov.r (Pipelined Floating-Point Adder Move)

instruction definition, 10.1

instruction timing, 10.3

pfam.p (Pipelined Floating-Point Add and Multiply)

dual-operation, 2.6.3

instruction definition, 10.1

instruction timing, 10.3

special purpose registers, 2.2.9

pfeq.p (Pipelined Floating-Point Equal Compare)

instruction definition, 10.1

instruction timing, 10.3

intJ i860TM XP MICROPROCESSOR

pfgt.p (Pipelined Floating-Point Greater-Than
Compare)

instruction definition, 10.1

instruction timing, 10.3

pfiadd.w (Pipe lined Long-Integer Add)

instruction definition, 10.1

instruction timing, 10.3

pfisub.w (Pipelined Long-Integer Subtract)

instruction definition, 10.1

instruction timing, 10.3

pfix.v (Pipelined Floating-Point to Integer
Conversion)

instruction definition, 10.1

instruction timing, 10.3

pfld (Pipelined Floating-Point Load)

epsr PT (trap on pipeline use), 2.2.4

load pipe consistency, 3.3.5

pipeline loads, 2.6.1.5

pfld.q

extensions of i860 XR, 2.6

pfld.y (Pipelined Floating-Point Load)

instruction definition, 10.1

instruction timing, 10.3

pfle.p (Pipelined F-P Less-Than or Equal Compare)

instruction definition, 10.1

instruction timing, 10.3

pfmam.p (Pipe lined Floating-Point Add and Multiply)

dual operation, 2.6.3

instruction definition, 10.1

instruction timing, 10.3

special purpose registers, 2.2.9

pfmov.r (Pipelined Floating-Point Reg-Reg Move)

instruction definition, 10.1

instruction timing, 10.3

pfmsm.p (Pipelined Floating-Point Subtract
and Multiply)

dual operation, 2.6.3

instruction definition, 10.1

instruction timing, 10.3

special purpose registers, 2.2.9

150

pfmul3.dd (Three-Stage Pipelined Multiply

instruction definition, 10.1

instruction timing, 10.3

pfmul.p (Pipelined Floating-Point Multiply)

instruction definition, 10.1

instruction timing, 10.3

pform (Pipe lined OR to MERGE Register)

instruction definition, 10.1

instruction timing, 10.3

pfsm.p (Pipelined Floating-Point Subtract
and Multiply)

dual-operation, 2.6.3

instruction definition, 10.1

instruction timing, 10.3

special purpose registers, 2.2.9

pfsub.p (Pipelined Floating-Point Subtract)

instruction definition, 10.1

instruction timing, 10.3

pftrunc.v (Pipe lined Floating-Point to
Integer Conversion)

instruction definition, 10.1

instruction timing, 10.3

pfzchkl (Pipelined 32-Bit Z-Buffer Check)

instruction definition, 10.1

instruction timing, 10.3

pfzchks (Pipelined 16-Bit Z-Buffer Check)

instruction definition, 10.1

instruction timing, 10.3

physical main memory

page frame, 2.4.1

physical tags

internal instruction and data caches, 3.2

PI bit

using, 2.8.2.2

PIM (previous interrupt mode)

psr format description, 2.2.3

pins overview

hardware interface, 4.1

intJ i860TM XP MICROPROCESSOR

pipeline

cycles, 5.1.3

loads, 2.6.1.5

operations, 2.6.1

precision in, 2.6.1.3

scalar transition, 2.6.1.4

status information, 2.6.1.2

PI (pipeline instruction)

epsr format description, 2.2.4

pixel

data type, 2.1.4

PM (pixel mask)

psr format description, 2.2.3

P (present)

page-table entries (PTEs), 2.4.4.2

privileged registers

format description, 2.2.11

processor

revisions, 2.2.4

type, 2.2.4

programming interface

i860 XP microprocessor, 2.0

PS (pixel size)

psr format description, 2.2.3

psr (processor status register)

debugging i860 XP microprocessor, 2.9

format description, 2.2.3

page-table entries (PTEs), 2.4.4.3

pst.d (Pixel Store)

instruction definition, 10.1

instruction timing, 10.3

psr PS (pixel size) and PM (pixel mask), 2.2.3

PT (trap on pipeline use)

epsr format description, 2.2.4

using, 2.8.2.2

PU (previous user mode)

psr format description, 2.2.3

151

PWT (page write-through)

signal description, 4.2.36

WT (write-through), 2.4.4.4

R

ratings

absolute maximum, 9.1

RB (replacement block)

dirbase format description, 2.2.6

RC (replacement control)

dirbase format description, 2.2.6

REG-format

instructions, 10.2.1

register cell ordering

boundary scan, 6.5

replacement algorithm

cache, 3.2.3

RESET (system reset)

AHOLD (address hold), 4.2.3

bear (bus error address register), 2.2.10

cache replacement algorithm, 3.2.3

epsr BEF (bus error flag), 2.2.4

epsr SO (strong ordering), 2.2.4

initialization, 5.5

signal description, 4.2.37

trap, 2.8.9

restart

bus cycle, 5.2.2

result exception fault

floating-point, 2.8.3.1

right-shift instruction

psr SC (shift count), 2.2.3

RM (rounding mode)

fsr format description, 2.2.8

RR (result register)

fsr format description, 2.2.8

run-test/idle

test state, 6.4.2

S

SAMPLE

TAP encoding, 6.3

scalar

mode, 2.6.1.1

operations, 2.6.1

pipelined transition, 2.6.1.4

SC (shift count)

psr format description, 2.2.3

scyc.x (Special Cycles)

big endian mode, 2.3

epsr BE (big endian), 2.2.4

extensions of i860 XR, 2.6

instruction definition, 10.1

instruction timing, 10.3

select-OR-scan

test state, 6.4.3

select-IR-scan

test state, 6.4.4

serializing

locked access, 3.2.4.3

SE (source exception)

fsr format description, 2.2.8

shift-DR

test state, 6.4.6

shift-IR

test state, 6.4.12

shl (Shift Left)

instruction definition, 10.1

instruction timing, 10.3

shra (Shift Right Arithmetic)

instruction definition, 10.1

instruction timing, 10.3

shrd (Shift Right Double)

instruction definition, 10.1

instruction timing, 10.3

i860™ XP MICROPROCESSOR

152

shr (Shift Right)

instruction definition, 10.1

instruction timing, 10.3

signal description

hardware interface, 4.2

single-precision real

data type, 2.1.3

single-transfer cycle

bus cycle, 5.1.1

SI (sticky inexact)

fsr format description, 2.2.8

snooping

inquiry cycles, 5.3

internal instruction and data caches, 3.2

responsibility limits, 5.3.2

software compatibility

required changes, 10.5.1

SO (strong ordering)

epsr format description, 2.2.4

source exception fault

floating-pOint, 2.8.3.1

spare

signal description, 4.2.38

special bus

cycles, 5.1.5

special-purpose registers

register set, 2.2

special values

floating-point numbers, 2.1.3

STAT register

DCCU internals, 2.5.3

format description, 2.2.14

i860TM XP MICROPROCESSOR

st.c (Store to Control Register)

address translation, 2.4

dirbase BL (bus lock), 2.2.6

dirbase CSB (code size B-bit), 2.2.6

fsr U-bit (update bit), 2.2.B

instruction definition, 10.1

instruction timing, 10.3

privileged registers, 2.2.11

stepping number

epsr format description, 2.2.4

stio.x (Store 1/0)

big endian mode, 2.3

epsr BE (big endian), 2.2.4

extensions of iB60 XR, 2.6

instruction definition, 10.1

instruction timing, 10.3

strong ordering mode

inquiry cycle, 5.3.4

st.x (Store Integer)

DCCU internals, 2.5.3

instruction definition, 10.1

instruction timing, 10.3

subs (Subtract Signed)

epsr OF (overflow flag), 2.2.4

instruction definition, 10.1

instruction timing, 10.3

subu (Subtract Unsigned)

epsr OF (overflow flag), 2.2.4

instruction definition, 10.1

instruction timing, 10.3

supervisor/user mode

addressing, 2.3

T

ccr (concurrency control register), 2.2.12

psr U (user mode), 2.2.3

special purpose register description, 2.2.9

tags

internal instruction and data caches, 3.2

153

TAl (Trap On Autoincrement)

epsr format description, 2.2.4

fsr U-bit (update bit), 2.2.B

TAP (test access port)

controller, 6.4

controller initialization, 6.6

testability, 6.0

TCK (test clock)

signal description, 4.2.39

TDI (test data input)

signal description, 4.2.40

TDO (test data output)

signal description, 4.2.41

test

architecture, 6.1

data registers, 6.2

testability

iB60 XP microprocessor, 6.0

test-logic-reset

test state, 6.4.1

test state

capture-DR, 6.4.5

capture-IR, 6.4.11

exit1-DR,6.4.7

exit1-IR, 6.4.13

exit2-DR, 6.4.9

exit2-IR, 6.4.15

pause-DR, 6.4.B

pause-IR, 6.4.14

run-test/idle, 6.4.2

select-DR-scan, 6.4.3

select-IR-scan, 6.4.4

shift-DR, 6.4.6

shift-IR, 6.4.12

test-logic-reset, 6.4.1

update-DR, 6.4.10

update-IR,6.4.16

thermal specifications

package, B.O

intJ i860™ XP MICROPROCESSOR

TI (trap inexact)

fsr format description, 2.2.8

TLB

address translation caches, 3.1

DCCU addressing, 2.5.2

internal cache consistency, 3.3

TMS (test mode select)

signal description, 4.2.42

trap handler

invocation, 2.8.1

page tables, 2.4.4.7

trap (Software Trap)

bus error, 2.8.7

i860 XP microprocessor, 2.8

instruction cache consistency, 3.3.2

instruction definition, 10.1

instruction timing, 10.3

interrupt, 2.8:8

parity error, 2.8.6

RESET, 2.8.9

tri-state

output pins, 4.1

TRST # (test reset)

signal description, 4.2.43

U

U-bit (update bit)

fsr format description, 2.2.8

underflow

result exception fault, 2.8.3.2

unlock (End Interlocked Sequence)

dirbase BL (bus lock), 2.2.6

epsr IL (interlock), 2.2.4

instruction definition, 10.1

instruction timing, 10.3

update-DR

test state, 6.4.10

154

update-IR

test state, 6.4.16

user/supervisor mode

ccr (concurrency control register), 2.2.12

psr U (user mode), 2.2.3

U (user)

v

page-table entries (PTEs), 2.4.4.3

psr format description, 2.2.3

VeeCLK (clock power)

signal description, 4.2.45

Vee (system ground)

signal description, 4.2.44

virtual address

address translation caches, 3.1

CCUBASE, 2.2.12

format description, 2.4.2

i860 XP microprocessor, 2.4

virtual tag

instruction cache, 3.2.2

internal instruction and data caches, 3.2

Vss (ground)

signal description, 4.2.44

w
wait state

single-transfer cycle, 5.1.1

WB/WT # (write-back/write-through)

signal description, 4.2.46

write-once policy, 3.2.4.2

WP (write protect)

epsr format description, 2.2.4

page-table entries (PTEs), 2.4.4.3

W/R # (write/read)

signal description, 4.2.47

write-once policy, 3.2.4.2

infef i860TM XP MICROPROCESSOR

write-back

data cache update policy, 3.2.1.1

with FLlNE#, 5.3.5.2

inquiry cycles, 5.3.1

scheduling inquiry cycles, 5.3.5

write cycle

reordering due to buffering, 5.3.3

write-once

cache consistency, 3.2.4.2

data cache update policy, 3.2.1.1

write-through

data cache update policy, 3.2.1.1

WT (write-through)

page-table entries (PTEs), 2.4.4.4

write-through policy, 3.2.1.1

155

W (writable)

page-table entries (PTEs), 2.4.4.3

x
xorh (Logical Exclusive OR High)

instruction definition, 10.1

instruction timing, 10.3

xor (Logical Exclusive OR)

instruction definition, 10.1

instruction timing, 10.3

z
Z-buffer

special purpose registers, 2.2.9

ALABAMA

Intel Corp.
5015 Bradford Dr., #2
Huntsville 35805
Tel: (205) 830-4010
FAX: (205) 837-2640

ARIZONA

tlntel Corp.
410 North 44th Street
Suite 500
Phoenix 85008
Tel: (602) 231-0386
FAX: (602) 244-0446

Intel Corp.
7225 N. Mona Lisa Ad.
Suite 215
Tucson 85741
Tel: (602) 544-0227
FAX: (602) 544-0232

CALIFORNIA

tlntel Corp.
21515 Vanowen Street
Suite 116
Canoga Park 91303
Tel: (818) 704-8500
FAX: (818) 340-1144

tlntel Corp.
300 N. Continental Blvd.
Suite 100
EI Segundo 90245
Tel: (213) 640-6040
FAX: (213) 640-7133

Intel Corp.
1 Sierra Gate Plaza
Suite 280C
Roseville 95678
Tel: (916) 782-8086
FAX: (916) 782-8153

tlntel Corp.
9665 Chesapeake Dr.
Suite 325
San Diego 92123
Tel: (619) 292-8086
FAX: (619) 292-0628

tlntel Corp.*
400 N. Tustin Avenue
Suite 450
Santa Ana 92705
Tel: (714) 835-9642
TWX: 910-595-1114
FAX: (714) 541-9157

tlntel Corp.*
San Tomas 4
2700 San Tomas Expressway
2nd Floor
Santa Clara 95051
Tel: (408) 986-8086
TWX: 910-338-0255
FAX: (408) 727-2620

COLORADO

Intel Corp.
4445 Northpark Drive
Suite 100
Colorado Springs 80907
Tel: (719) 594-6622
FAX: (303) 594-0720

tlntel Corp.*
600 S. Cherry S1.
Suite 700
Denver 80222
Tel: (303) 321-8086
TWX: 910-931-2289
FAX: (303) 322-8670

CONNECTICUT

tlntel Corp.
301 Lee Farm Corporate Park
83 Wooster Heights Rd.
Danbury 06810
Tel: (203) 748-3130
FAX: (203) 794·0339

tSales and Service Office
*Field Application Location

DOMESTIC SALES OFFICES
FLORIDA MICHIGAN OHIO VIRGINIA

tlntel Corp. tlntel Corp. tlntel Corp.* tlntel Corp.
800 Fairway Drive 7071 Orchard Lake Road 3401 Park Center Drive 9030 Stony Point Pkwy.
Suite 160 Suite 100 Suite 220 Suite 360
Deerfield Beach 33441 West Bloomfield 48322 Dayton 45414 Richmond 23235
Tel: (305) 421-0506 Tel: (313) 851-8096 Tel: (513) 890-5350 Tel: (804) 330-9393
FAX: (305) 421-2444 FAX: (313) 851-8770 TWX: 810-450-2528 FAX: (804) 330-3019

FAX: (513) 890-8658
tlntel Corp.

MINNESOTA tlntel Corp.* WASHINGTON 5850 T.G. Lee Blvd.
25700 Science Park Dr. Suite 340 tlntel Corp. Suite 100 Orlando 32822 tlntel Corp.

Tel: (407) 240-8000
3500 W. 80th SI. Beachwood 44122 155 lOath Avenue N.E. Suite 360 Tel: (216) 464-2736 FAX: (407) 240-8097 Bloomington 55431 TWX: 810-427-9298

Suite 386
Bellevue 98004

Intel Corp. Tel: (612) 835-6722 FAX: (804) 282-0673 Tel: (206) 453-8086 TWX: 910-576-2867 11300 4th Street North FAX: (612) 831-6497. TVVX: 910-443-3002
Suite 170 OKLAHOMA FAX: (206) 451-9556
St. Petersburg 33716

Intel Corp. Tel: (813) 577-2413 MISSOURI Intel Corp.
FAX: (813) 578-1607 6801 N. Broadway 408 N. Mullan Road

tlntel Corp. Suite 115 Suite 102
3300 Rider Trail South Oklahoma City 73162 Spokane 99206 GEORGIA Suite 170 Tel: (405) 848-8086 Tel: (509) 928-8086

tlntel Corp.
Earth Ci1y 63045 FAX: (405) 840-9819 FAX: (509) 928-9467
Tel: (314) 291-1990

20 Technology Parkway FAX: (314) 291-4341 OREGON
Suite 150 WISCONSIN Norcross 30092 tlntel Corp.
Tel: (404) 449-0541 NEW JERSEY 15254 N.W. Greenbrier Pkwy. Intel Corp.
FAX: (404) 605-9762

Intel Corp.
Building B 330 S. Executive Dr.
Beaverton 97006 Suite 102 Arbor Circle South Tel: (503) 645-8051 Brookfield 53005 ILLINOIS 8 Campus Drive TWX: 910-467-8741 Tel: (414) 784-8087

tlntel Corp. *
Parsippany 07054 FAX: (503) 645-8181 FAX: (414) 796-2115 Tel: (201) 455-1868

Woodfield Corp. Center III FAX: (201) 644-0680 PENNSYLVANIA 300 N. Martingale Road
Suite 400 tlntel Corp.* tlntel Corp.* CANADA Schaumburg 60173 Lincroft Office Center 925 Harvest Drive
Tel: (708) 605-8031 125 Half Mile Road Suite 200
FAX: (708) 706-9762 Red Bank 07701 Blue Bell 19422 BRITISH COLUMBIA Tel: (908) 747-2233 Tel: (215) 641-1000
INDIANA FAX: (908) 747-0983 FAX: (215) 641-0785 Intel Semiconductor of

tlntel Corp.* Canada, Ltd.
tlntel Corp. NEW YORK 4585 Canada Way
8910 Purdue Road 400 Penn Center Blvd.

Suite 202
Suite 350 Intel Corp.* Suite 610 Burnaby V5G 4L6
Indianapolis 46268 850 Crosskeys Office Park Pittsburgh 15235

Tel: (604) 298-0387
Tel: (317) 875-0623 Fairport 14450 Tel: (412) 823-4970

FAX: (604) 298-8234
FAX: (317) 875-8938 Tel: (716) 425-2750 FAX: (412) 829-7578

TWX: 510-253-7391

IOWA
FAX: (716) 223-2561 PUERTO RICO ONTARIO

tlntel Corp. * tlntel Corp. tlntel Semiconductor of Intel Corp. 2950 Express Dr., South South Industrial Park Canada, Ltd. 1930 SI. Andrews Drive N.E. Suite 130 P.O. Box 910 2650 Queensview Drive 2nd Floor Islandia 11722 Las Piedras 00671 Suite 250 Cedar Rapids 52402 Tel: (516) 231-3300 Tel: (809) 733-8616 Ottawa K2B 8H6 Tel: (319) 393-5510 TWX: 510-227·6236 Tel: (613) 829-9714
FAX: (516) 348-7939 TEXAS FAX: (613) 820-5936

KANSAS tlntel Corp. tlntel Corp.
8911 N. Capital of Texas Hwy. tlntel Semiconductor of

tlntel Corp. 300 Westage Business Center
Suite 4230 Canada, Ltd.

10985 Cody S1. Suite 230 190 Attwell Drive
Suite 140 Fishkill 12524 Austin 78759 Suite 500
Overland Park 66210 Tel: (914) 897·3860 Tel: (512) 794-8086 Rexdale M9W 6H8
Tel: (913) 345-2727 FAX: (914) 897-3125 FAX: (512) 338-9335 Tel: (416) 675-2105
FAX: (913) 345-2076

Intel Corp. tlntel Corp. * FAX: (416) 675-2438
12000 Ford Road Seventeen State Street Suite 400 MARYLAND 14th Floor Dallas 75234 QUEBEC

New York 10004
tlntel Corp. * Tel: (212) 248-8086 Tel: (214) 241-8087 tlntel Semiconductor of FAX: (214) 484-1180 10010 Junction Dr. FAX: (212) 248-0888 Canada, Ltd.
Suite 200 tlntel Corp.* 1 RUB Holiday
Annapolis Junction 20701

NORTH CAROLINA 7322 S.W. Freeway Suite 115
Tel: (301) 206-2860 Suite 1490 Tour East
FAX: (301) 206-3677

tlntel Corp. Houston 77074 PI. Claire H9R 5N3
(301) 206-3678 Tel: (713) 988-8086 Tel: (514) 694-9130 5800 Executive Center Dr.

Suite 105 TWX: 910-881-2490 FAX: 514·694·0064
MASSACHUSETTS Charlotte 28212 FAX: (713) 988-3660

Tel: (704) 568-8966
tlntel Corp.* FAX: (704) 535-2236 UTAH
Westford Corp. Center
3 Carlisle Road tlntel Corp. tlntel Corp.
2nd Floor 5540 Centerview Dr. 428 East 6400 South
Westford 01886 Suite 215 Suite 104
Tel: (508) 692-0960 Raleigh 27606 Murray 84107
TWX: 710-343-6333 Tel: (919) 851·9537 Tel: (801) 263-8051
FAX: (508) 692-7867 FAX: (919) 851-8974 FAX: (801) 268·1457

CG/SALE/02289

ALABAMA

Arrow Electronics, Inc.
1015 Henderson Road
Huntsville 35805
Tel: (205) 837-6955
FAX: 205-751-1581

Hamilton/Avnet Computer
4930 I Corporate Drive
Huntsville 35805

Hamilton/Avnet Electronics
4940 Research Drive
Huntsville 35805
Tel: (205) 837-7210
FAX: 205-721-0356

MTI Systems Sales
4950 Corporate Drive
Suite 120
Huntsville 35806
Tel: (205) 830-9526
FAX: (205) 830-9557

Pioneer!Technologies Group, Inc.
4825 University Square
Huntsville 35805
Tel: (205) 837-9300
FAX: 205-837-9358

ALASKA

Hamilton/Avnet Computer
1400 W. Benson Blvd., Suite 400
Anchorage 99503

ARIZONA

tArrow Electronics, Inc.
4134 E. Wood Street
Phoenix 85040
Tel: (602) 437-0750
TWX: 910-951-1550

Hamilton/Avnet Computer
30 South McKemy Avenue
Chandler 85226

Hamilton/Avnet Computer
90 South McKemy Road
Chandler 85226

tHamilton/Avnet Electronics
505 S. Madison Drive
Tempe 85281
Tel: (602) 231-5140
TWX: 910-950-0077

Hamilton/Avnet Electronics
30 South McKemy
Chandler 85226
Tel: (602) 961-6669
FAX: 602-961-4073

Wyle Distribution Group
4141 E. Raymond
Phoenix 85040
Tel: (602) 249-2232
TWX: 910-371-2871

CALIFORNIA

Arrow Commercial System Group
1502 Crocker Avenue
Hayward 94544
Tel: (415) 489-5371
FAX: (415) 489-9393

Arrow Commercial System Group
14242 Chombers Road
Tustin 92680
Tel: (714) 544-0200
FAX: (714) 731-8438

tArrow Eloctronics, Inc.
19748 Dearborn Street
Chatsworth 91311
Tel: (213) 701-7500
TWX: 910-493-2086

tArrow Eloctronics, Inc.
9511 Ridgehavon Court
San Diego 92123
Tel: (619) 565-4800
FAX: 619-279·8062

tArrow Electronic:., Inc.
521 Weddell Drivo
Sunnyvalo 94086
Tel: (408) 745·6600
TWX: 910·339·9371

tCertified Technical Distributor

DOMESTIC DISTRIBUTORS
tArrow Electronics, Inc.
2961 Dow Avenue
Tustin 92680
Tel: (714) 838-5422
TWX: 910-595-2860

Hamilton/Avne! Computer
3170 Pullman Street
Costa Mesa 92626

Hamilton/Avnet Computer
1361 B West 190th Street
Gardena 90248

Hamilton/Avnet Computer
4103 Northgate Blvd.
Sacramento 95834

Hamilton/Avne! Computer
4545 Viewridge Avenue
San Diego 92123

Hamilton/Avnet Computer
1175 Bordeaux Drive
Sunnyvale 94089

Hamilton/Avnet Electronics
21150 Califa Street
Woodland Hills 91367

tHamilton/Avnet Electronics
3170 Pullman Street
Costa Mesa 92626
Tel: (714) 641-4150
TWX: 910-595-2638

tHamilton/Avnet Electronics
1175 Bordeaux Drive
Sunnyvale 94086
Tel: (408) 743-3300
TWX: 910-339-9332

tHamilton/Avnet Electronics
4545 Ridgeview Avenue
San Diego 92123
Tel: (619) 571-7500
TWX: 910-595-2638

tHamilton/Avnet Electronics
21150 Califa St.
Woodland Hills 91376
Tel: (818) 594-0404
FAX: 818-594-8233

tHamilton/Avnet Electronics
10950 W. Washington Blvd.
Culver City 20230
Tel: (213) 558-2458
TWX: 910-340-6364

tHamilton/Avnet Electronics
1361 B West 190th Street
Gardena 90248
Tel: (213) 217-6700
TWX: 910-340-6364

tHamiiton/Avnet Electronics
4103 Northgate Blvd.
Sacramento 95834
Tel: (916) 920-3150

PioneerfTechnologies Group, Inc.
134 Rio Robles
San Jose 95134
Tel: (408) 954-9100
FAX: 408-954-9113

Wylo Distribution Group
t24 Maryland Street
1::1 Segundo 90254
Tel: (213) 322-8100

Wyto Distribution Group
7431 Chapman Ave.
Garden Grove 92641
Tel: (714) 891-1717
FAX: 714-891-1621

tWyle Distribution Group
2951 Sunrise Blvd., Suite 175
Rancho Cordova 95742
Tel: (916) 638-5282

tWyle Distribution Group
9525 Chesapeake Drive
San Diego 92123
Tel: (619) 565-9171
TWX: 910-335-1590

tWyle Distribution Group
3000 Bowers Avenue
Santa Clara 95051
Tel: (408) 727-2500
TWX: 408-988-2747

tWyle Distribution Group
17872 Cowan Avenue
Irvine 92714
Tel: (714) 863-9953
TWX: 910-371-7127

tWyle Distribution Group
26677 W. Agoura Rd.
Calabasas 91302
Tel: (818) 880-9000
TWX: 372-0232

COLORADO

Arrow Electronics, Inc.
7060 South Tucson Way
Englewood 80112
Tel: (303) 790-4444

Hamilton/Avnet Computer
9605 Maroon Circle, Ste. 200
Engelwood 80112

tHamilton/Avnet Electronics
9605 Maroon Circle
Suite 200
Englewood 80112
Tel: (303) 799-0663
TWX: 910-935-0787

tWyle Distribution Group
451 E. 124th Avenue
Thornton 80241
Tel: (303) 457-9953
TWX: 910-936-0770

CONNECTICUT

tArrow Electronics, Inc.
12 Beaumont Road
Wallingford 06492
Tel: (203) 265-7741
TWX: 710-476-0162

Hamilton/Avnet Computer
Commerce Industrial Park
Commerce Drive
Danbury 06810

tHamilton/Avnet Electronics
Commerce Industrial Park
Commerce Drive
Danbury 06810
Tel: (203) 797-2800
TWX: 710-456-9974

tPioneer/Standard ElectroniCS
112 Main Street
Norwalk 06851
Tel: (203) 853-1515
FAX: 203-838-9901

FLORIDA

tArrow Electronics, Inc.
400 Fairway Drive
Suite 102
Deerfield Beach 33441
Tel: (305) 429-8200
FAX: 305-428-3991

tArrow ElectroniCS, Inc.
37 Skyline Drive
Suite 3101
Lake Marv 32746
Tel: (407) 323-0252
FAX: 407-323-3189

Hamilton/Avnet Computer
6801 N.W. 151h Way
Ft. Lauderdale 33309

Hamilton/Avnet Computer
3247 Spring Forest Road
St. Petersburg 33702

tHamiiton/Avnet Electronics
6801 N.W. 15th Way
Ft. Lauderdale 33309
Tel: (305) 971-2900
FAX: 305-971-5420

tHamilton/Avnet Electronics
3197 Tech Drive North
St. Petersburg 33702
Tel: (813) 573-3930
FAX: 813-572-4329

tHamilton/Avnet Electronics
6947 University Boulevard
Winter Park 32792
Tel: (407) 628-3888
FAX: 407-678-1878

tPioneer!Technologies Group, Inc.
337 Northlake Blvd., Suite 1000
Alta Monte Springs 32701
Tel: (407) 834-9090
FAX: 407-834-0865

Pioneer/Technologies Group, Inc.
674 S. Military Trail
Deerfield Beach 33442
Tel: (305) 428-8877
FAX: 305-481-2950

GEORGIA

Arrow Commercial System Group
3400 C. Corporate Way
Deluth 30139
Tel: (404) 623-8825
FAX: (404) 623-8802

tArrow Electronics, Inc.
4250 E. Rivergreen Parkway
Deluth 30136
Tel: (404) 497-1300
"TWX: 810-766-0439

Hamilton/Avnet Computer
5825 D. Peachtree Corners E.
Norcross 30092

tHamilton/Avnet Electronics
5825 D Peachtree Corners
Norcross 30092
Tel: (404) 447-7500
1WX: 810-766-0432

PioneerfTechnologies Group, Inc.
3100 F Northwoods Place
Norcross 30071
Tel: (404) 448-1711
FAX: 404-446-8270

ILLINOIS

tArrow Electronics, Inc.
1140 W. Thorndale
Itasca 60143
Tel: (708) 250-0500
"TWX: 708-250-0916

Hamilton/Avnet Computer
1130 Thorndale Avenue
Bensenville 60106

tHamilton/Avnet Electronics
1130 Thorndale Avenue
Bensenville 60106
Tel: (708) 860-7780
TWX: 708-860-8530

MTI Systems Sales
1100 W. Thorndale
Itasca 60143
Tel: (708) 773-2300

tPioneer/Standard Electronics
2171 Executive Dr., Suite 200
Addison 60101
Tel: (708) 495-9680
FAX: 708-495-9831

INDIANA

tArrow Electronics, Inc.
7108 Lakeview Parkway West Drive
Indianapolis 46268
Tel: (317) 299-2071
FAX: 317-299-0255

Hamilton/Avnet Computer
485 Gradle Drive
Carmel 46032

Hamilton/Avnet Electronics
485 Gradle Drive
Carmel 46032
Tel: (317) 844-9333
FAX: 317-844-5921

tpioneer/Standard Electronics
9350 Priority Way
West Drive
Indianapolis 46250
Tel: (317) 573-0880
FAX: 317-573-0979

CG/SALE,

IOWA

Hamilton/Avnet Computer
915 33rd Avenue SW
Cedar Rapids 52404

Hamilton/Avnel Electronics
915 33rd Avenue, S.W.
Cedar Rapids 52404
Tel: (319) 362-4757

KANSAS

Arrow Electronics, Inc.
8208 Melrose Dr., Suite 210
Lenexa 66214
Tel: (913)541-9542
FAX: 913-541-0328

Hamilton/Avnet Computer
15313 W. 95th Street
lenexa 61219

tHamilton/Avnet Electronics
15313 W. 951h
Overland Park 66215
Tel: (913) 888-8900
FAX: 913-541-7951

KENTUCKY

Hamilton/Avnet Electronics
805 A. Newtown Circle
Lexington 40511
Tel: (606)259-1475

MARYLAND

tArrow Electronics, Inc.
8300 Guilford Drive
Suite H, River Center
Columbia 21046
Tel: (301)995-6002
FAX: 301-381-3854

Hamilton/Avne! Computer
6822 Oak Hall Lane
Columbia 21045

tHamiiton/Avnet Electronics
6822 Oak Hall Lane
Columbia 21045
Tel: (301) 995-3500
FAX: 301-995-3593

~~e~~It~~~~~'&J'o~~r8r .
Columbia 21046
Tel: (301) 290-8150
FAX: 301-290-6474

tpioneerfTechnologies Group, Inc.
9100 Gaither Road
Gaithersburg 20877
Tel: (301) 921-0660
FAX: 301-921-4255

MASSACHUSETTS

Arrow Electronics, Inc.
25 Upton Dr.
Wilmington 01887
Tel: (508) 658-0900
TWX: 710-393-6770

Hamilton/Avnet Computer
10 D Centennial Drive
Peabody 01960

tHamiiton/Avnet Electronics
100 Centennial Drive
Peabody 01960
Tel: (508) 532-9838
FAX: 508-596-7802

tPioneer/Standard Electronics
44 Hartwell Avenue
Lexington 02173
Tel: (617)861-9200
FAX: 617-863-1547

Wyle Distribution Group
15 Third Avenue
Burlington 01803
Tel: (617) 272-7300
FAX: 617-272-6809

MICHIGAN

tArrow Electronics, Inc.
19880 Haggerty Road
Livonia 48152
Tel: (313) 665-4100
TWX: 810-223-6020

tCertified Technical Distributor

DOMESTIC DISTRIBUTORS (Contd.)
Hamilton/Avnet Computer
2215 S.E. A-5
Grand Rapids 49508

Hamilton/Avnet Computer
41650 Garden Rd., Ste. 100
Novi 48050

Hamilton/Avnet Electronics
2215 29th Street S.E.
Space A5
Grand Rapids 49508
Tel: (616) 243-8805
FAX: 616-698-1831

Hamilton/Avnet Electronics
41650 Garden Brook
Novi 48050
Tel: (313) 347-4271
FAX: 313-347-4021

tPioneer/Standard Electronics
4505 Broadmoor S.E.
Grand Rapids 49508
Tel: (616)698-1800
FAX: 616-698-1831

tPioneer/Standard Electronics
13485 Stamford
Livonia 48150
Tel: (313) 525-1800
FAX: 313-427-3720

MINNESOTA

fArrow Electronics, Inc.
5230 W. 73rd Street
Edina 55435
Tel: (612)830-1800
TWX: 910-576-3125

Hamilton/Avnet Computer
12400 Whitewater Drive
Minnetonka 55343

tHamiiton/Avnet Electronics
12400 Whitewater Drive
Minnetonka 55434
Tel: (612) 932-0600
TWX: 910-576-2720

tPioneer/Standard Electronics
7625 Golden Triange Dr.
Suite G
Eden Prairie 55343
Tel: (612) 944-3355
FAX: 612-944-3794

MISSOURI

tArrow Electronics, Inc.
2380 Schuetz
SI. Louis 63141
Tel: (314) 567-6888
FAX: 314-567-1164

Hamilton/Avnet Computer
739 Goddard Avenue
Chesterfield 63005

tHamiiton/Avnet Electronics
741 Goddard
Chesterfield 63005
Tel: (314) 537-1600
FAX: 314-537-4248

NEW HAMPSHIRE

Hamilton/Avnet Computer
2 Executive Park Drive
Bedford 03102

Hamilton/Avnet Computer
444 East Industrial Park Dr.
Manchester 03103

NEW JERSEY

fArrow Electronics, Inc.
4 East Stow Road
Unit 11
Marlton 08053
Tel: (609) 596-8000
FAX: 609-596-9632

tArrow Electronics
6 Century Drive
Parsipanny 07054
Tel: (201) 538-0900
FAX: 201-538-0900

Hamilton/Avnet Computer
1 Keystone Ave., Bldg. 36
Cherry Hill 08003

Hamilton/Avnet Computer
10 Industrial Road
Fairfield 07006

tHamilton/Avnet Electronics
1 Keystone Ave., Bldg. 36
Cherry Hill 08003
Tel: (609) 424-0110
FAX: 609-751-2552

tHamilton/Avnet Electronics
10 Industrial
Fairfield 07006
Tel: (201) 575-3390
FAX: 201-575-5839

tMTI Systems Sales
9 Law Drive
Fairfield 07006
Tel: (201) 227-5552
FAX: 201-575-6336

tPioneer/Standard Electronics
14·A Madison Rd.
Fairfield 07006
Tel: (201) 575-3510
FAX: 201-575-3454

NEW MEXICO

Alliance Electronics Inc.
10510 Research Avenue
Albuquerque 87123
Tel: (505) 292-3360
FAX: 505-292-6537

Hamilton/Avnet Computer
5659 Jefferson, N.E. Suites A & 8
Albuquerque 87109

tHamilton/Avnet Electronics
5659A Jefferson N.E.
Albuquerque 87109
Tel: (50S) 765-1500
FAX: 505-243-1395

NEW YORK

fArrow Electronics, Inc.
3375 Brighton Henrietta Townline Rd.
Rochester 14623
Tel: (716)427-0300
TWX: 510-253-4766

Arrow Electronics, Inc.
20 Oser Avenue
Hauppauge 11788
Tel: (516)231-1000
TWX: 510-227-6623

Hamilton/Avnet Computer
933 Motor Parkway
Haupauge 11788

Hamilton/Avnet Computer
2060 Townline
Rochester 14623

tHamilton/Avnet Electronics
933 Motor Parkway
Hauppauge 11788
Tel: (516) 231-9800
TWX: 510-224-6166

tHamiiton/Avnet Electronics
2060 Townline Rd.
Rochester 14623
Tel: (716) 272-2744
TWX: 510·253·5470

Hamilton/Avnot Electronics
103 Twin Oaks Drive
Syracuso 13206
Tel: (315) 437-0288
TWX: 710·541·1560

tMTI Systems Sales
38 Harbor Pnrk Drive
Port Wrtshinglon 11050
Tel: (516)621-6200
FAX: 510·223·0846

Pioneor/Standmd Electronics
68 Corporate Drive
Binghamton 13904
Tel: (607) 722-9300
FAX: 607-722-9562

Pioneer/Standard Electronics
40 Qser Avenuo
Hauppauge 11787
Tel: (516)231-9200
FAX: 510·227·9869

tPioneer/Standard Electronics
60 Crossway Park West
Woodbury, Long Island 11797
Tel: (516)921-8700
FAX: 516-921-2143

tPioneerlStandard Electronics
840 Fairport Park
Fairport 14450
Tel: (716)381-7070
FAX: 716-381-5955

NORTH CAROLINA

tArrow Electronics, Inc.
5240 Greensdairy Road
Raleigh 27604
Tel: (919) 876-3132
TWX: 510-928-1856

Hamilton/Avnet Computer
3510 Spring Forest Road
Raleigh 27604

tHamilton/Avnet Electronics
3510 Spring Forest Drive
Raleigh 27604
Tel: (919) 878-0819
TWX: 510-928-1836

Pioneer!Techno!ogies Group, Inc.
9401 L-Southern Pine Blvd.
Charlotte 28210
Tel: (919) 527-8188
FAX: 704-522-8564

Pioneer Technologies Group, Inc.
2810 Meridian Parkway
Suite 148
Durham 27713
Tel: (919) 544-5400
FAX: 919-544-5885

OHIO

Arrow Commercial System Group
284 Cramer Creek Court
Dublin 43017
Tel: (614) 889-9347
FAX: (614) 889-9680

tArrow Electronics, Inc.
6238 Cochran Road
Solon 44139
Tel: (216) 248·3990
TWX: 810-427-9409

Hamilton/Avnet Computer
7764 Washington Village Dr.
Dayton 45459

Hamilton/Avne! Computer
30325 Bainbridge Rd., Bldg. A
Solon 44139

tHamilton/Avnet Electronics
7760 Washington Village Or.
Dayton 45459
Tel: (513) 439-6733
FAX: 513-439-6711

tHamiiton/Avnet Electronics
30325 Bainbridge
Solon 44139
Tel: (216) 349-5100
TWX: 810-427-9452

Hamilton/Avnet Computer
777 Brooksedge Blvd.
Westerville 43081
Tel: (614) 882-7004
FAX: 614-882-8650

Hamilton/Avnet Electronics
777 Brooksedge Blvd.
Westerville 43081
Tel: (614) 882-7004

MTI Systems Sales
23400 Commerce Park Road
Beachwood 44122
Tel: (216) 464-6688

tPioneer/Standard Electronics
4433 Interpoint Boulevard
Dayton 45424
Tel: (513) 236-9900
FAX: 513-236-8133

tPioneer/Standard Electronics
4800 E. 131s1 Street
Cleveland 44105
Tel: (216) 587-3600
FAX: 216·663·1004

OKLAHOMA

Arrow electronics, Inc.
4719 South Memorial Dr.
Tulsa 74145

tHamilton/Avnet Electronics
12121 E. 51st 51., Suite 102A
Tulsa 74146
Tel: (918) 252·7297

OREGON

tArmac Electronics Corp.
1885 N.w. 169th Place
Beaverton 97005
Tel: (503) 629·8090
FAX: 503·645-0611

Hamilton/Avnet COmputer
9409 Southwest Nimbus Ave.
Beaverton 97005

tHamiiton/Avnet Electronics
9409 S.W. Nimbus Ave.
Beaverton 97005
Tel: (503) 627·0201
FAX: 503·641·4012

Wyle
9640 Sunshine Court
Bldg. G, Suite 200
Beaverton 97005
Tel: (503) 643·7900
FAX: 503·646-5466

PENNSYLVANIA

Arrow Electronics, Inc.
650 Seea Road
Monroeville 15146
Tel: (412) 856·7000

Hamilton/Avnet Computer

~:Ob~~~~"5~~~" Bldg. E

Hamilton/Avnet Electronics
2800 Liberty Ave.
Pittsburgh 15238
Tel: (412) 281-4150

Pioneer/Standard Electronics
259 Kappa Drive
Pittsburgh 15238
Tel: (412) 782·2300
FAX: 412·963·8255

tPioneer/Technolagies Group, Inc.
Delaware Valley
261 Gibraltar Road
Horsham 19044
Tel: (215) 674·4000
FAX: 215·674-3107

TENNESSEE

Arrow Commercial System Group
3635 Knight Road
Suite 7

~~~rs~\~ ~~~~3540 
FAX: (901) 367·2081 

TEXAS 

Arrow Electronics, Inc. 
3220 Comml.1nder Drive 
Carrollton 75006 
Tel: (214) 380·6464 
FAX: (214) 248-7208 

tCertified Technical Distributor 

DOMESTIC DISTRIBUTORS (Contd.) 
Hamilton/Avnel Computer Hamilton/Avnet Computer tArrow Electronics, Inc. 
1807A West Braker Lane 17761 Northeast 78th Place 1093 Meyerside, Unit 2 
Austin 78758 Redmond 98052 Mississauga LST 1 M4 

Hamilton/Avnet Computer tHamiiton/Avnet Electronics 
Tel: (416) 673·7769 

Forum 2 17761 N.E. 7Bth Place 
FAX: 416-672·0849 

4004 Beltline, Suite 200 Redmond 98052 Hamilton/Avnst Computer 
Dallas 75244 Tel: (206) 881·6697 Canada System Engineering 

Hamilton/Avnet Computer 
FAX: 206·867·0159 Group 

Wyle Distribution Group 
3688 Nashua Drive 

4850 Wright Rd., Suite 190 Units7&8 
Stafford 77477 15385 N.E. 90th Street Mississuaga L4V 1 M5 

Redmond 96052 
tHamilton/Avnet Electronics Tel: (206) 88H 150 Hamilton/Avnet Computer 
1807 W. Braker lane FAX: 206·88H 567 3688 Nashua Drive 
Austin 78758 UnHs 9 & 10 
Tel: (512) 837·8911 WISCONSIN Mississuaga l4V 1 M5 
TWX: 910·874-1319 Hamilton/Avnet Computer Arrow Electronics, Inc. 
tHamiiton/Avnet Electronics 200 N. Patrick Blvd., Ste. 100 6845 Rexwood Road 
4004 Beltline, Suite 200 Brookfield 53005 UnHs 7, 8, & 9 
Dallas 75234 Tel: (414) 792-0150 Mississuaga l4V 1 R2 
Tel: (214) 308·8111 FAX: 414-792·0156 Hamilton/Avnst Computer 
TWX: 910·860·5929 190 Colonade Road 
tHamilton/Avnet Electronics 

Hamilton/Avnet Computer Nepean K2E 7J5 
20875 Crossroads Circle 

4850 Wright Rd., Suite 190 Suite 400 tHamilton/Avnet Electronics 
Stafford 77477 Waukesha 53186 6845 Rexwood Road 
Tel: (713) 240·7733 Units 3-4-5 
TWX: 910·881·5523 tHamilton/Avnet Electronics Mississauga L4T 1 R2 
tPioneer/Standard Electronics 

28875 Crossroads Circle Tel: (416) 677·7432 
Suite 400 FAX: 416·677·0940 1826-0 Kramer Waukesha 53186 

Austin 78758 Tel: (414) 784-4510 tHamilton/Avnet Electronics 
Tel: (512) 835-4000 FAX: 414·784-9509 190 Colonnade Road South 
FAX: 512·835·9829 Nepean K2E 7LS 

tPioneer/Standard Electronics 
Tel: (613) 226·1700 

13710 Omega Road CANADA FAX: 613·226·1184 

Dallas 75244 tZentronics 
Tel: (214) 386·7300 ALBERTA 1355 Meyerside Drive 
FAX: 214-490·6419 Mississauga LST 1 C9 

tPioneer/Standard Electronics 
Hamilton/Avnet Computer Tel: (416) 564-9600 
2816 21st Street Northeast FAX: 416·564·8320 

10530 Rockley Road Calgary T2E 6Z2 tZentronics Houston n099 
Tel: (713) 495-4700 Hamilton/Avnet Electronics 155 Colonnade Road 
FAX: 713-495·5642 2816 21st Street N.E. #3 Unit 17 

~:r1:9~~3f~~~86 
Nepean K2E 7Kl 

tWyle Distribution Group Tel: (613) 226-8840 
1810 Greenville Avenue FAX: 403·250·1591 FAX: 613·226-6352 
Richardson 75081 

QUEBEC Tel: (214) 235·9953 Zentronics 
FAX: 214-644·5064 6815 #8 Street N.E. Arrow Electronics Inc. 

Suite 100 1100 SI. Regis 
UTAH Calgary T2E 7H Dorval H9P 2T5 

Hamilton/Avnet Computer 
Tel: (403) 295·8818 Tel: (514) 421·7411 
FAX: 403·295·8714 FAX: 514·421·7430 

1585 West 2100 South 
Salt Lake City 84119 BRITISH COLUMBIA Arrow Electronics, Inc. 

SOD Boul. St-Jean-Bapliste 
tHamilton/Avnet Electronics tHamilton/Avnet Electronics SuHe 280 
1585 West 2100 South 8610 Commerce Ct. Quebec G2E 5R9 
Salt Lake City 84119 Burnaby V5A 4N6 Tel: (418) 871·7500 
Tel: (801) 972·2800 Tel: (604) 420·4101 FAX: 418-871·6816 
TWX: 910·925·4018 FAX: 604-437·4712 Hamilton/Avnet Computer 
tWyle Distribution Group Zentronics 2795 Rue Halpern 
1325 West 2200 South ~?~h~~~3 ~~~~~rt Road 

SI. Laurent H4S 1 P8 
Suite E tHamiiton/Avnet Electronics West Valley 84119 Tel: (604) 273-5575 2795 Halpern 
Tel: (801) 974·9953 FAX: 604·27:3-2413 SI. Laurent H2E 7Kl 

WASHINGTON ONTARIO 
Tel: (514) 335·1000 
FAX: 514-335·2481 

tAlmac Electronics Corp. Arrow ElectroniCS, Inc. tZentronics 
14360 S.E. Eastgate Way 36 Antares Dr., Unit 100 520 McCaffrey 
Bellevue 98007 Nepean K2E 7W5 SI. Laurent H4T 1 N3 
Tel: (206) 643·9992 Tel: (613) 226-6903 Tel: (514) 737·9700 
FAX: 206·643·9709 FAX: 613·723·2018 FAX: 514-737·5212 



AUSTRALIA 

Intel Australia Ply. Ltd. 
Unit 13 
Allambie Grove Business Park 
25 Frenchs Forest Road East 
Frenchs Forest. NSW, 2086 
Tel: 61-2975-3300 
FAX: 61-2975-3375 

BRAZIL 

Intel Semiconductores do Brazil LTDA 
Avenida Paulista, 11S9-CJS 404/405 
01311 - Sao Paulo - S,P. 
Tel: 55-11-287-5899 
TLX: 11-37-557-160B 
FAX: 55-11-287-5119 

CHINA/HONG KONG 

Intel PRC Corporation 
lS/F, Office 1, Cilie Bldg. 
Jian Guo Men Wai Street 
Beijing, PAC 
Tel: (1) 500-4850 
TLX: 22947 INTEL CN 
FAX: (1) 500-2953 

Intel Semiconductor Ltd.'" 
lOfF East Tower 
Bond Center 
Queensway, Central 
Hong Kong 
Tel: (852) 844-4555 
FAX: (852) 868-1989 

INTERNATIONAL SALES OFFICES 
INDIA 

Intel Asia Electronics, Inc. 
4/2, Samrah Plaza 
St. Mark's Road 
Bangatere 560001 
Tel: 91-812-215773 
TLX: 953-845-2646 INTEL IN 
FAX: 091-812-215067 

JAPAN 

Intel Japan K.K. 
5-6 Takodai, Tsukuba-shi 
Ibaraki, 300-26 
Tel: 0298-47-8511 
TLX: 3656-160 
FAX: 0298-47-8450 

Intel Japan K.K. '" 
Hachioji ON Bldg. 
4-7-14 Myojin-machi 
Hachioji-shi, Tokyo 192 
Tel: 0426-48-8770 
FAX: 0426-48-8775 

Intel Japan KK * 
Bldg. Kumagaya 
2-69 Hon-cho 
Kumagaya-shi, Saitama 360 
Tel: 0485-24-6871 
FAX: 0485-24-7518 

Intel Japan KK.* 
Kawa-asa Bldg. 
2-11-5 Shin-Yokohama 
Kohoku-ku, Yokohama-shi 
Kanagawa, 222 
Tel: 045-474-7661 
FAX: 045-471-4394 

Intel Japan K.K.* 
Ryokuchi-Eki Bldg. 
2-4-1 Terauchi 

i~r:oon:-~~~_~i6~saka 560 
FAX: 06-863-1084 

Intel Japan KK. 
Shinmaru Bldg. 
1-5-1 Marunouchi 
Chiyoda-ku, Tokyo 100 
Tel: 03-3201-3621 
FAX: 03-3201-6850 

Intel Japan KK. 
Green Bldg. 
1-16-20 Nishiki 
Naka-ku, Nagoya-shi 
Aichi 450 
Tel: 052-204-1261 
FAX: 052-204-1285 

KOREA 

Intel Korea, Ltd. 
16th Floor, Life Bldg. 
61 Yoida-dong, Yaungdeungpo-Ku 
Seoul 150-010 
Tel: (2) 784-8186 
FAX: (2) 784-8096 

SINGAPORE 

Intel Singapore Technology, Ltd. 
101 Thomson Road #08-03/06 
United Square 
Singapore 1130 
Tel: (65) 250-7811 
FAX: (65) 250-9256 

TAIWAN 

Intel Technology Far East Ltd. 
Taiwan Branch Office 
8th Floor, No. 205 
Bank Tower Bldg. 
Tung Hua N. Road 
Taipei 
Tel: 886-2-716-9660 
FAX: 886-2-717-2455 

INTERNATIONAL DISTRIBUTORS/REPRESENTATIVES 
ARGENTINA 

Dafsys S.R.L. 
Chacabuco, 90-6 Piso 
1 069-Buenos Aires 
Tel: 54-1-34-7726 
FAX: 54-1-34-1871 

AUSTRALIA 

Email Electronics 
15-17 Hume Street 
Huntingdale, 3166 
Tel: 011-61-3-544-8244 
TLX: M 30895 
FAX: 011-61-3-543-8179 

NSD-Australia 
205 Middleborough Rd. 
Box Hill, Victoria 3128 
Tel: 03 8900970 
FAX: 03 8990819 

BRAZIL 

Elebra Componentes 
Rua Geraldo Flausina Gomes, 78 
7 Andar 
04575 - Sao Paulo - S.P. 
Tel: 55-11-534-9641 
TLX: 55-11-54593/54591 
FAX: 55-11-534-9424 

CHINA/HONG KONG 

Novel Precision Machinery Co., Ltd. 
Room 728 Trade Square 
681 Cheung Sha Wan Road 
Kowloon, Hong Kong 
Tel: (852) 360-8999 
TWX: 32032 NVTNL HX 
FAX: (852) 725-3695 

INDIA 

Micronic Devices 
Arun Complex 
No. 65 D.V.G. Road 
Basavanagudi 
Bangalore 560 004 
Tel: 011-91-812-600-631 

011-91-812-611-365 
TLX: 9538458332 MOBG 

*Field Application Location 

Micronic Devices 
No. 516 5th Floor 
Swastik Chambers 
Sion, Trombay Road 
Chembur 
Bombay 400 071 
TLX: 9531 171447 MOEV 

Micronic Devices 
25/8, 1 st Floor 
Bada Bazaar Marg 
Old Rajinder Nagar 
New Delhi 110 060 
Tel: 011-91-11-5723509 

011-91-11-589771 
TLX: 031-63253 MDNO IN 

Micronic Devices 
6-3-348/12A Dwarakapuri Colony 
Hyderabad 500 482 
Tel: 011-91-842-226748 

S&S Corporation 
1587 Kooser Road 
San Jose, CA 95118 
Tel: (408) 978-6216 
TLX: 820281 
FAX: (408) 978-8635 

JAPAN 

Asahi Electronics Co. Ltd. 
KMM Bldg. 2-14-1 Asano 
Kokurakita-ku 
Kitakyushu-shi 802 
Tel: 093-511-6471 
FAX: 093-551-7861 

GTC Components Systems Co., Ltd. 
4-8-1 Dobashi, Miyamae-ku 
Kawasaki-shi, Kanagawa 213 
Tel: 044-852-5121 
FAX: 044-877-4268 

Dia Semicon Systems, Inc. 
Flower Hill Shinmachi Higashi-kan 
1-23-9 Shinmachi, Setagaya-ku 
Tokyo 154 
Tel: 03-3439-1600 
FAX: 03-3439-1601 

Okaya Koki 
24-18 Sakae 
Naka-ku, Nagoya-shi 460 
Tel: 052-204-2916 
FAX: 052-204-2901 

Ryoyo Electro Corp. 
Konwa Bldg. 
1-12-22 Tsukiji 
Chuo-ku, Tokyo 104 
Tel: 03-3546-5011 
FAX: 03-3546-5044 

KOREA 

J-Tek Corporation 
Dong Sung Bldg. 9/F 
158-24, Samsung-Dong, Kangnam-Ku 
Seoul 135-090 
Tel: (822) 557-8039 
FAX: (822) 557-8304 

Samsung Electronics 
Samsung Main Bldg. 
150 Taepyung-Ro-2KA, Chung-Ku 
Seoul 100-102 
C.P.O. Box 8780 
Tel: (822) 751-3680 
TWX: KORSST K 27970 
FAX: (822) 753-9065 

MEXICO 

SSB Electronics, Inc. 
675 Palomar Street, Bldg. 4, Suite A 
Chula Vista, CA 92011 
Tel: (619) 585-3253 
TLX: 287751 CBALL UR 
FAX: (619) 585-8322 

Dicopel SA 
Tochtli 368 Frace. Ind. San Antonio 
Azcapotzalco 
C.P. 02760-Mexico, D.F. 
Tel: 52-5-561-3211 
TLX: 177 3790 Dicome 
FAX: 52-5-561-1279 

PSI SA de C.V. 
Fco. Villa esq. Ajusco sIn 
Cuernavaca - Morelos 
Tel: 52-73-13-9412 
FAX: 52-73-17-5333 

NEWZEALANO 

Email Electronics 
36 Olive Road 
Penrose, Auckland 
Tel: 011-64-9-591-155 
FAX: 011-64-9-592-681 

SAUDI ARABIA 

AAE Systems, Inc. 
642 N. Pastoria Ave. 
Sunnyvale, CA 94086 
U.S.A. 
Tel: (408) 732-1710 
FAX: (408) 732-3095 
TLX: 494-3405 ME SYS 

SINGAPORE 

Electronic Resources Pte, Ltd. 
17 Harvey Road 
#03-01 Singapore 1336 
Tel: (65) 283-0888 
TWX: RS 56541 ERS 
FAX: (65) 289-5327 

SOUTH AFRICA 

Electronic Building Elements 
178 Erasmus SI. (off Watermeyet SI.) 
Meyerspark. Pretoria, 0184 
Tel: 011-2712-803-7680 
FAX: 011-2712-803-8294 

TAIWAN 

Micro Electronics Corporation 
12th F!oor, Section 3 
285 Nanking East Road 
Taipei, R.O.C. 
Tel: (886) 2-7198419 
FAX: (886) 2-7197916 

Acer Sertek Inc. 
15th Floor, Section 2 
Chien Kuo North Rd. 
Taipei 18479 R.O.C. 
Tol: 886-2-501-0055 
TWX: 23756 6ERTEK 
FAX: (006) 2-5012521 

CG/SALE/0228S 




