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i860™ 64-Bit Microprocessor 

• Parallel Architecture that Supports Up 
to Three Operations per Clock 
- One Integer or Control Instruction 

per Clock 
- Up to Two Floating-Point Results per 

Clock 

• High Performance Design 
-33.3/40 MHz Clock Rates 
- 80 Peak Single Precision MFLOPs 
- 60 Peak Double Precision MFLOPs 
- 64-Blt External Data Bus 
- 64-Blt Internal Instruction Cache Bus 
-128-Blt Internal Data Cache Bus 

• High Level of Integration on One Chip 
- 32-Bit Integer and Control Unit 
- 32/64-Blt Plpellned Floating-Point 

Adder and Multiplier Units 
- 64-Bit 3-D Graphics Unit 
- Paging Unit with Translation 

Lookaside Buffer 
- 4 Kbyte Instruction Cache 
- 8 Kbyte Data Cache 

• Compatible with Industry Standards 
-ANSI/IEEE Standard 754-1985 for 

Binary Floating-Point Arithmetic 
- 386™/486TM Microprocessor Data 

Formats and Page Table Entries 
-JEDEC 168-pin Ceramic Pin Grid 

Array Package (see Packaging 
Outlines and DimensIons, order 
#231369) 

• Easy to Use 
- On-Chip Debug Register 
- Assembler, Linker, Simulator, 

Debugger, C and FORTRAN 
Compilers, FORTRAN Vectorizer, 
Scalar and Vector Math Libraries for 
both OS/2* and UNIX* Environments 

The Intel i860™ Microprocessor (order codes A80860·33 and A80860-40) delivers supercomputing perform­
ance in a single VLSI component. The 64-bit design of the 860 microprocessor balances integer, floating point, 
and graphics performance for applications such as engineering workstations, scientific computing, 3-D graph­
ics workstations, and multiuser systems. Its parallel architecture achieves high throughput with RISC design 
techniques, pipelined proceSSing units, wide data paths, large on-chip caches, million-transistor design, and 
fast one-micron CHMOS IV silicon technology. 
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1.0 FUNCTIONAL DESCRIPTION 

As shown by the block diagram on the front page, 
the 860 microprocessor consists of 9 units: 

1. Core Execution Unit 
2. Floating-Point Control Unit 
3. Floating-Point Adder Unit 
4. Floating-Point Multiplier Unit 
5. Graphics Unit 
6. Paging Unit 
7. Instruction Cache 
8. Data Cache 
9. Bus and Cache Control Unit 

The core execution unit controls overall operation of 
the 860 microprocessor. The core unit executes 
load, store, integer, bit, and control-transfer opera­
tions, and fetches instructions for the floating-point 
unit as well. A set of 32 x 32-bit general-purpose 
registers are provided for the manipulation of integer 
data. Load and store instructions move 8-, 16-, and 
32-bit data to and from these registers. Its full set of 
integer, logical, and control-transfer instructions give 
the core unit the ability to execute complete systems 
software and applications programs. A trap mecha­
nism provides rapid response to exceptions and ex­
ternal interrupts. Debugging is supported by the abili­
ty to trap on data or instruction reference. 

The floating-point hardware is connected to a sepa­
rate set of floating-point registers, which can be 
accessed as 16 x 64-bit registers, or 32 x 32-bit reg­
isters. Special load and store instructions can also 
access these same registers as 8 x 128-bit registers. 
All floating-point instructions use these registers as 
their source and destination operands. 

The floating-point control unit controls both the float­
ing-point adder and the floating-point multiplier, issu­
ing instructions, handling all source and result 
exceptions, and updating status bits in the floating­
pOint status register. The adder and multiplier can 
operate in parallel, producing up to two results per 
clock. The floating-point data types, floating-point in­
structions, and exception handling all support the 
IEEE Standard for Binary Floating-Point Arithmetic 
(ANSI/IEEE Std 754-1985). 

The floating-point adder performs addition, subtrac­
tion, comparison, and conversions on 64- and 32-bit 
floating-point values. An adder instruction executes 
in three to four clocks; however, in pipelined mode, a 
new result is generated every clock. 

The floating-point multiplier performs floating-point 
and integer multiply and floating-point reciprocal op­
erations on 64- and 32-bit floating-point values. A 
multiplier instruction executes in three to four clocks; 
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however, in pipelined mode, a new result can be 
generated every clock for single-precision and every 
other clock for double precision. 

The graphics unit has special integer logic that sup­
ports three-dimensional drawing in a graphics frame 
buffer, with color intensity shading and hidden sur­
face elimination via the Z-buffer algorithm. The 
graphics unit recognizes the pixel as an 8-, 16-, or 
32-bit data type. It can compute individual red, blue, 
and green color intensity values within a pixel; but it 
does so with parallel operations that take advantage 
of the 64-bit internal word size and 64-bit external 
bus. The graphics features of the 860 microproces­
sor assume that the surface of a solid object is 
drawn with polygon patches whose shapes approxi­
mate the original object. The color intensities of the 
vertices of the polygon and their distances from the 
viewer are known, but the distances and intensities 
of the other points must be calculated by interpola­
tion. The graphics instructions of the 860 microproc­
essor directly aid such interpolation. 

The paging unit implements protected, paged, virtual 
memory via a 64-entry, four-way set-associative 
memory called the TLB (Translation Lookaside Buff­
er). The paging unit uses the TLB to perform the 
translation of logical address to physical address, 
and to check for access violations. The access pro­
tection scheme employs two levels of privilege: user 
and supervisor. 

The instruction cache is a two-way set-associative 
memory of four Kbytes, with 32-byte blocks. It trans­
fers up to 64 bits per clock (266 Mbyte/sec at 
33.3 MHz). 

The data cache is a two-way set-associative memo­
ry of eight Kbytes, with 32-byte blocks. It transfers 
up to 128 bits per clock (533 Mbyte/sec at 33.3 
MHz). The 860 microprocessor normally uses write­
back caching, i.e. memory writes update the cache 
(if applicable) without necessarily updating memory 
immediately; however, caching can be inhibited by 
software where necessary. 

The bus and cache control unit performs data and 
instruction accesses for the core unit. It receives cy­
cle requests and specifications from the core unit, 
performs the data-cache or instuction-cache miss 
processing, controls TLB translation, and provides 
the interface to the external bus. Its pipelined struc­
ture supports up to three outstanding bus cycles. 

2.0 PROGRAMMING INTERFACE 

The programmer-visible aspects of the architecture 
of the 860 microprocessor include data types, regis­
ters, instructions, and traps. 
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2.1 Data Types 

The 860 microprocessor provides operations for in­
teger and floating-point data. Integer operations are 
performed on 32-bit operands with some support 
also for 64-bit operands. Load and store instructions 
can reference 8-bit, 16-bit, 32-bit, 64-bit, and 128-bit 
operands. Floating-point operations are performed 
on IEEE-standard 32- and 64-bit formats. Graphics 
oriented instructions operate on arrays of 8-, 16-, or 
32-bit pixels. 

2.1.1 INTEGER 

An integer is a 32-bit signed value in standard two's 
complement form. A 32-bit integer can represent a 
value in the range -2,147,483,648 (-231 ) to 
2,147,438,647 (+ 231 - 1). Arithmetic operations on 
8- and 16-bit integers can be performed by sign-ex­
tending the 8- or 16-bit values to 32 bits, then using 
the 32-bit operations. 

There are also add and subtract instructions that op­
erate on 64-bit long integers. 

Load and store instructions may also reference (in 
addition to the 32- and 64-bit formats previously 
mentioned) 8- and 16-bit items in memory. When an 
8- or 16-bit item is loaded into a register, it is con­
verted to an integer by sign-extending the value to 
32 bits. When an 8- or 16-bit item is stored from a 
register, the corresponding number of low-order bits 
of the register are used. 

2.1.2 ORDINAL 

Arithmetic operations are available for 32-bit ordi­
nals. An ordinal is an unsigned integer. An ordinal 
can represent values in the range 0 to 
4,294,967,295 (+ 232 - 1). 

Also, there are add and subtract instructions that op­
erate on 64-bit ordinals. 

2.1.3 SINGLE- AND DOUBLE-PRECISION REAL 

Figure 2.1 shows the real number formats. A single­
precision real (also called "single real") data type is 
a 32-bit binary floating-point number. Bit 31 is the 
sign bit; bits 30 .. 23 are the exponent; and bits 22 .. 0 
are the fraction. In accordance with ANSIIIEEE 
standard 754, the value of a Single-precision real is 
defined as follows: 

1. If e = 0 and f "* 0 or e = 255 then generate a 
floating-point source-exception trap when en­
countered in a floating-point operation. 

2. If 0 < e < 255, then the value is -1 5 X 1.1 x 
2e - 127. 

3. If e = 0 and f = 0, then the value is signed zero. 

A double-precision real (also called "double real") 
data type is a 64-bit binary floating-point number. Bit 
63 is the sign bit; bits 62 .. 52 are the exponent; and 
bits 51 .. 0 are the fraction. In accordance with ANSI! 
IEEE standard 754, the value of a double-precision 
real is defined as follows: 

1. If e = 0 and f "* 0 or e = 2047, then generate a 
floating-point source-exception trap when en­
countered in a floating-point operation. 

2. If 0 < e < 2047, then the value is -1 5 x 1.1 x 
2e-1023. 

Single-Precision Real 

31 23 

Is I 

I L FRACTION 

L ___ ~================ EXPONENT SIGN 

Double-Precision Real 

63 52 

Is I 

I L FRACTION 

L __ ~================ EXPONENT SIGN 

Figure 2.1. Real Number Formats 
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3. If e = 0 and f = 0, then the value is signed zero. 

The special values infinity, NaN ("Not a Number"), 
indefinite, and denormal generate a trap when en­
countered. The trap handler implements IEEE-stan­
dard results. 

A double real value occupies an even/odd pair of 
floating-point registers. Bits 31 .. 0 are stored in the 
even-numbered floating-point register; bits 63 .. 32 
are stored in the next higher odd-numbered floating­
point register. 

2.1.4 PIXEL 

A pixel may be 8, 16, or 32 bits long depending on 
color and intensity resolution requirements. Regard­
less of the pixel size, the 860 microprocessor always 
operates on 64 bits worth of pixels at a time. The 
pixel data type is used by two kinds of instructions: 

• The selective pixel-store instruction that helps im­
plement hidden surface elimination. 

• The pixel add instruction that helps implement 
3-D color intensity shading. 

To perform color intensity shading efficiently in a va­
riety of applications, the 860 microprocessor defines 
three pixel formats according to Table 2.1. 

Figure 2.2 illustrates one way of assigning meaning 
to the fields of pixels. These assignments are for 
illustration purposes only. The 860 microprocessor 
defines only the field sizes, not the specific use of 
each field. Other ways of using the fields of pixels 
are possible. 

16-BIT PIXEL 

32-BIT PIXEL 

31 23 

R G 

15 

15 

Table 2.1. Pixel Formats 

Pixel Bits of Bits of Bits of 
Bits of 

Size Color 1 Color 2 Color 3 
Other 

Attribute 
(in bits) Intensity Intensity Intensity 

(Texture) 

8 N (~ 8) bits of intensity' 8-N 
16 

6 I 6 I 4 
32 888 8 

The Intensity attribute fields may be aSSigned to colors In 
any order convenient to the application. 
'With a-bit pixels, up to a bits can be used for intensity; the 
remaining bits can be used for any other attribute, such as 
color. The intensity bits must be the low-order bits of the 
pixel. 

2.2 Register Set 

As Figure 2.3 shows, the 860 microprocessor has 
the following registers: 

• An integer register file 

• A floating-point register file 

• Six control registers (psr, epsr, db, dirbase, fir, 
and fsr) 

• Four special-purpose registers (KR, KI, T, and 
MERGE) 

The control registers are accessible only by load 
and store control-register instructions; the integer 
and floating-point registers are accessed by arithme­
tic operations and load and store instructions. The 
special-purpose registers KR, KI, T, and MERGE are 
used by a few specific instructions. 

7 5 o 

8- BIT PIXEL L.1_c.....L ____ ---' 

9 3 0 

R G B 

7 o 

B T 

240296-4 
I-Intensity, R-Red intensity, G-Green intensity, B-Blue intensity, C-Color, T-Texture 
These assignments of specific meanings to the fields of pixels are for illustration purposes only. Only the field sizes are 
defined, not the specific use of each field. 

Figure 2.2. Pixel Format Example 

9 
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2.2.1 INTEGER REGISTER FILE 

There are 32 integer registers, each 32·bits wide, 
referred to as rO through r31, which are used for 
address computation and scalar integer computa­
tions. Register rO always returns zero when read, 
independently of what is stored in it. 

2.2.2 FLOATING-POINT REGISTER FILE 

There are 32 floating-point registers, each 32-bits 
wide, referred to as fO through f31, which are used 
for floating-point computations. Registers fO and f1 
always return zero when read, independently of 
what is stored in them. The floating-point registers 
are also used by a set of integer operations, primari­
ly for vector integer computations. 

When accessing 64-bit floating-point or integer val­
ues, the 860 microprocessor uses an even/odd pair 
of registers. When accessing 128-bit values, it uses 
an aligned set of four registers (fO, f4, fS, ... , 12S). 
The instruction must designate the lowest register 
number of the set of registers containing 64- or 128-
bit values. Misaligned register numbers produce un­
defined results. The register with the lowest number 
contains the least significant part of the value. For 
128-bit values, the register pair with the lower num­
ber contains the 64 bits at the lowest memory ad­
dress; the register pair with the higher number con­
tains the 64 bits at the highest address. 

10 

The 128-bit load and store instructions, along with 
the 128-bit data path between the floating-point reg­
isters and the data cache help to sustain an extraor­
dinarily high rate of computation. 

2.2.3 PROCESSOR STATUS REGISTER 

The processor status register (psr) contains miscel­
laneous state information for the current process. 
Figure 2.4 shows the format of the psr. 

• BR (Break Read) and BW (Break Write) enable a 
data access trap when the operand address 
matches the address in the db register and a 
read or write (respectively) occurs. 

• Various instructions set CC (Condition Code) ac­
cording to tests they perform. The branch-on­
condition-code instructions test its value. The bla 
instruction sets and tests LCC (Loop Condition 
Code). 

• 1M (Interrupt Mode) enables external interrupts if 
set; disables interrupts if clear. 

• U (User Mode) is set when the 860 microproces­
sor is executing in user mode; it is clear when the 
860 microprocessor is executing in supervisor 
mode. In user mode, writes to some control regis­
ters are inhibited. This bit also controls the mem­
ory protection mechanism. 
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32 32 32 

Figure 2.3. Registers and Data Paths 
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BREAK READ 
BREAK WRITE ---------------------------, 
CONDITION CODE -------------------------, 
LOOP CONDITION CODE ---------------------, 
INTERRUPT MODE ------------------------, 
PREVIOUS INTERRUPT MODE -------------------, 
USER MODE ---------------------, 
PREVIOUS USER MODE 
INSTRUCTION TRAP --------------------, I 
INTERRUPT ---------------------, I 
INSTRUCTION ACCESS TRAP 
DATA ACCESS TRAP -------------, I 
FLOATING-POINT TRAP 1 
DELAYED SWITCH 1 
DUAL INSTRUCTION MODE ! 

PM 

i i . . . KILL NEXT FLOATING-POINT INSTRUCTION 

(RESERVED) 
SHIFT COUNT 
PIXEL SIZE 
PIXEL MASK 

'Can be changed only from supervisor level. 

Figure 2.4 Processor Status Register 

INTERLOCK --------------, 

WRITE-PROTECT MODE -----------,11 
DATA CACHE SIZE ---------, 

(RESERVED) 

It tL.. _________ PAGE-TABLE BIT MODE 
- BIG ENDIAN MODE 

L-___________ OVERFLOW FLAG 

'Can be changed only from supervisor level 

Figure 2.5 Extended Processor Status Register 

PROCESSOR 
TYPE 

240296-6 

o 

240296-31 

• PIM (Previous Interrupt Mode) and PU (Previous 
User Mode) save the corresponding status bits 
(1M and U) on a trap, because those status bits 
are changed when a trap occurs. They are re­
stored into their corresponding status bits when 
returning from a trap handler with a branch indi­
rect instruction when a trap flag is set in the psr. 

• DS (Delayed Switch) is set if a trap occurs during 
the instruction before dual-instruction mode is en­
tered or exited. If DS is set and DIM (Duallnstruc­
tion Mode) is clear, the 860 microprocessor 
switches to dual-instruction mode one instruction 
after returning from the trap handler. If DS and 
DIM are both set, the 860 microprocessor 
switches to single-instruction mode one instruc­
tion after returning from the trap handler. 

• FT (Floating-Point Trap), DAT (Data Access 
Trap), IAT (Instruction Access Trap), IN (Inter­
rupt), and IT (Instruction Trap) are trap flags. 
They are set when the corresponding trap condi­
tion occurs. The trap handler examines these bits 
to determine which condition or conditions have 
caused the trap. 

12 

• When a trap occurs, the 860 microprocessor sets 
DIM if it is executing in dual-instruction mode; it 
clears DIM if it is executing in single-instruction 
mode. If DIM is set after returning from a trap 
handler, the 860 microprocessor resumes execu­
tion in dual-instruction mode. 
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• When KNF (Kill Next Floating-Point Instruction) is 
set, the next floating-point instruction is sup­
pressed (except that its dual-instruction mode bit 
is interpreted). A trap handler sets KNF if the 
trapped floating-point instruction should not be 
reexecuted. 

• SC (Shift Count) stores the shift count used by 
the last right-shift instruction. It controls the num­
ber of shifts executed by the double-shift instruc­
tion. 

• PS (Pixel Size) and PM (Pixel Mask) are used by 
the pixel-store instruction and by the vector inte­
ger instructions. The values of PS control pixel 
size as defined by Table 2.2. The bits in PM cor­
respond to pixels to be updated by the pixel-store 
instruction pst.d. The low-order bit of PM corre­
sponds to the low-order pixel of the 64-bit source 
operand of pst.d. The number of low-order bits of 
PM that are actually used is the number of pixels 
that fit into 64-bits, which depends upon PS. If a 
bit of PM is set, then pst.d stores the corre­
sponding pixel. Refer also to the pst.d instruction 
in section 8. 

Table 2.2. Values of PS 

Value 
Pixel Size Pixel Size 

in bits in bytes 

00 8 1 
01 16 2 
10 32 4 
11 (undefined) (undefined) 

2.2.4 EXTENDED PROCESSOR STATUS 
REGISTER 

The extended processor status register (epsr) con­
tains additional state information for the current pro­
cess beyond that stored in the psr. Figure 2.5 shows 
the format of the epsr. 

• The processor type is one for the 860 microproc­
essor. 

• The stepping number has a unique value that dis­
tinguishes among different revisions of the proc­
essor. 

• IL (Interlock) is set if a trap occurs after a lock 
instruction but before the load or store following 
the subsequent unlock instruction. IL indicates to 
the trap hadnler that a locked sequence has 
been interrupted. 

• WP (write protect) controls the semantics of the 
W bit of page table entries. A clear W bit in either 
the directory or the page table entry causes 
writes to be trapped. When WP is clear, writes 
are trapped in user mode, but not in supervisor 
mode. When WP is set, writes are trapped in both 
user and supervisor modes. 

• DCS (Data Cache Size) is a read-only field that 
tells the size of the on-chip data cache. The num­
ber of bytes actually available is 212 + Des; there­
fore, a value of zero indicates 4 Kbytes, one indi­
cates 8 Kbytes, etc. 

ADDRESS TRANSLATION ENABLE ----------------------, 
DRAM PAGE SIZE -------------------------, 

BUS LOCK ------------------------, I 
31 

CODE SIZE 8-BIT -------------------, 
REPLACEMENT BLOCK ----------------, 
REPLACEMENT CONTROL -------------, 

I-CACHE, TLB INVALIDATE --I j 1 (RESERVED) ----------------------,-

DIRECTORY TABLE BASE (DTB) 

Figure 2.6. Directory Base Register 
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• PBM (Page-Table Bit Mode) determines which bit 
of page-table entries is output on the PTB pin. 
When PBM is clear, the PTB signal reflects bit CD 
of the page-table entry used for the current cycle. 
When PBM is set, the PTB Signal reflects bit WT 
of the page-table entry used for the current cycle. 

• BE (Big Endian) controls the ordering of bytes 
within a data item in memory. Normally (Le. when 
BE is clear) the 860 microprocessor operates in 
little end ian mode, in which the addressed byte is 
the low-order byte. When BE is set (bit end ian 
mode), the low-order three bits of all load and 
store addresses are complemented, then 
masked to the appropriate boundary for align­
ment. This causes the addressed byte to be the 
most significant byte. 

• OF (Overflow Flag) is set by adds, addu, subs, 
and subu when integer overflow occurs. For 
adds and subs, OF is set if the carry from bit 31 
is different than the carry from bit 30. For addu, 
OF is set if there is a carry from bit 31. For subu, 
OF is set if there is no carry from bit 31. Under all 
other conditions, it is cleared by these instruc­
tions. OF controls the function of the intovr 
instruction. 

2.2.5 DATA BREAKPOINT REGISTER 

The data breakpoint register (db) is used to gener­
ate a trap when the 860 microprocessor makes a 
data-operand access to the address stored in this 
register. The trap is enabled by BR and BW in psr. 
When comparing, a number of low order bits of the 
address are ignored, depending on the size of the 
operand. For example, a 16-bit access ignores the 
low-order bit of the address when comparing to db; 
a 32-bit access ignores the low-order two bits. This 
ensures that any access that overlaps the address 
contained in the register will generate a trap. 

2.2.6 DIRECTORY BASE REGISTER 

The directory base register dirbase (shown in Figure 
2.5) controls address translation, caching, and bus 
options. 

• ATE (Address Translation Enable), when set, en­
ables the virtual-address translation algorithm. 
The data cache must be flushed before changing 
the ATE bit. 

• DPS (DRAM Page Size) controls how many bits 
to ignore when comparing the current bus-cycle 
address with the previous bus-cycle address to 
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generate the NENE# signal. This feature allows 
for higher speeds when using static column or 
page-mode DRAMs and consecutive reads and 
writes access the row. The comparison ignores 
the low-order 12 + DPS bits. A value of zero is 
appropriate for one bank of 256K x n RAMs, 1 
for 1 M x n RAMS, etc. 

• When BL (Bus Lock) is set, external bus access­
es are locked. The LOCK # signal is asserted the 
next bus cycle whose internal bus request is gen­
erated after BL is set. It remains set on every 
subsequent bus cycle as long as BL remains set. 
The LOCK # signal is deasserted on the next bus 
cycle whose internal bus request is generated af­
ter BL is cleared. Traps immediately clear BL. 
The lock and unlock instructions control the BL 
bit. 

• ITI (I-Cache, TLB Invalidate), when set in the val­
ue that is loaded into dirbase, causes the instruc­
tion cache and address-translation cache (TLB) 
to be flushed. The ITI bit does not remain set in 
dirbase. ITI always appears as zero when read­
ing dirbase. The data cache must be flushed be­
fore invalidating the TLB. 

• When CS8 (Code Size 8-Bit) is set, instruction 
cache misses are processed as 8-bit bus cycles. 
When this bit is clear, instruction cache misses 
are processed as 64-bit bus cycles. This bit can 
not be set by software; hardware sets this bit at 
initialization time. It can be cleared by software 
(one time only) to allow the system to execute out 
of 64-bit memory after bootstrapping from 8-bit 
EPROM. A nondelayed branch to code in 64-bit 
memory should directly follow the st.c (store con­
trol register) instruction that clears CS8, in order 
to make the transition from 8-bit to 64-bit memory 
occur at the correct time. The branch must be 
aligned on a 64-bit boundary. 

• RB (Replacement Block) identifies the cache 
block to be replaced by cache replacement algo­
rithms. The high-order bit of RB is ignored by the 
instruction and data caches. RB conditions the 
cache flush instruction flush, which is discussed 
in Section 8. Table 2.3 explains the values of RB. 

• RC (Replacement Control) controls cache re­
placement algorithms. Table 2.4 explains the sig­
nificance of the values of RC. 

• DTB (Directory Table Base) contains the high-or­
der 20 bits of the physical address of the page 
directory when address translation is enabled (Le. 
ATE = 1). The low-order 12 bits of the address 
are zeros. 
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0 0 
0 1 
1 0 
1 1 

Value 

00 

01 

10 

11 
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FLUSH ZERO 
TRAP INEXACT -------------------------, 
ROUNDING MODE -----------------------, 
UPDATE -------------------------, 
FLOATING-POINT TRAP ENABLE ----------------, 
(RESERVED) ---------------------, 

STICKY INEXACT FLAG ------------------,1 
SOURCE EXCEPTION -------------------,\ 
MULTIPLIER UNDERFLOW --------------'] 
MULTIPLIER OVERFLOW --------------j 
MULTIPLIER INEXACT I 
MULTIPLIER ADD ONE 1 1 
ADDER UNDERFLOW -----------, 
ADDER OVERFLOW --------------, 

I I 1 I tt ADDER INEXACT 
ADDER ADD ONE 

RESULT REGISTER 
'--------- ADDER EXPONENT 

(RESERVED) 
LOAD PIPE RESULT PRECISION 

- INTEGER (GRAPHICS) PIPE RESULT PRECISION 
MULTIPLIER PIPE RESULT PRECISION 

ADDER PIPE RESULT PRECISION 
(RESERVED) 

240296-8 

Figure 2.7. Floating-Point Status Register 

Table 2.3. Values of RB 

Replace Replace Instruction 
TLBBlock and Data Cache Block 

0 0 
1 1 
2 0 
3 1 

Table 2.4. Values of RC 

Meaning 

Selects the normal replacement 
alogrithm where any block in the set 
may be replaced on cache misses in all 
caches. 

Instruction, data, and TLB cache 
misses replace the block selected by 
RB. The instruction and data caches 
ignore the high-order bit of RB. This 
mode is used for instruction cache and 
TLB testing. 

Data cache misses replace the block 
selected by the low-order bit of RB. 

Disables data cache replacement. 
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2.2.7 FAULT INSTRUCTION REGISTER 

When a trap occurs, this register contains the ad­
dress of the trapping instruction (not necessarily the 
instruction that created the conditions that required 
the trap). 

2.2.8 FLOATING-POINT STATUS REGISTER 

The floating-point status register (fsr) contains the 
floating-point trap and rounding-mode status for the 
current process. Figure 2.6 shows its format. 

• If FZ (Flush Zero) is clear and underflow occurs, 
a reSUlt-exception trap is generated. When FZ is 
set and underflow occurs, the result is set to zero, 
and no trap due to underflow occurs. 

• If TI (Trap Inexact) is clear, inexact results do not 
cause a trap. If TI is set, inexact results cause a 
trap. The sticky inexact flag (SI) is set whenever 
an inexact result is produced, regardless of the 
setting of TI. 

• RM (Rounding Mode) specifies one of the four 
rounding modes defined by the IEEE standard. 
Given a true result b that cannot be represented 
by the target data type, the 860 microprocessor 
determines the two representable numbers a and 
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Table 2.5. Values of RM 

Value Rounding Mode 

00 Round to nearest or even 

01 Round down (toward - 00) 
10 Round up {toward + 00 
11 Chop (toward zero) 

c that most closely bracket b in value (a < b < 
c). The 860 microprocessor then rounds (chang· 
es) b to a or c according to the mode selected by 
RM as defined in Table 2.5. Rounding introduces 
an error in the result that is less than one least­
significant bit. 

• The U-bit (Update Bit), if set in the value that is 
loaded into fsr by a st.c instruction, enables up­
dating of the result-status bits (AE, AA, AI, AD, 
AU, MA, MI, MO, and MU) in the first-stage of the 
floating-point adder and multiplier pipelines. If this 
bit is clear, the result-status bits are unaffected 
by a st.c instruction; st.c ignores the correspond­
ing bits in the value that is being loaded. An st.c 
always updates fsr bits 21 .. 17 and 8 .. 0 directly. 
The U-bit does not remain set; it always appears 
as zero when read. 

• The FTE (Floating-Point Trap Enable) bit, if clear, 
disables all floating-point traps (invalid input oper­
and, overflow, underflow, and inexact result). 

• SI (Sticky Inexact) is set when the last-stage re­
sult of either the multiplier or adder is inexact (Le. 
when either AI or MI is set). SI is "sticky" in the 
sense that it remains set until reset by software. 
AI and MI, on the other hand, can by changed by 
the subsequent floating-point instruction. 

• SE (Source Exception) is set when one of the 
source operands of a floating-point operation is 
invalid; it is cleared when all the input operands 
are valid. Invalid input operands include denor­
mals, infinities, and all NaNs (both quiet and sig­
naling). 

• When read from the fsr, the result-status bits MA, 
MI, MO, and MU (Multiplier Add-One, Inexact, 
Overflow, and Underflow, respectively) describe 
the last-stage result of the multiplier. 

When read from the fsr, the result-status bits AA, 
AI, AD, AU, and AE (Adder Add-One, Inexact, 
Overflow, Underflow, and Exponent, respectively) 
describe the last-stage result of the adder. The 
high-order three bits of the 11-bit exponent of the 
adder result are stored in the AE field. 

After a floating-point operation in a given unit (ad­
der or multiplier), the result-status bits of that unit 
are undefined until the point at which result ex­
ceptions are reported. 
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Rounding Action 

Closer to b of a or c; if equally 
close, select even number 
(the one whose least 
significant bit is zero). 
a 
c 
Smaller in magnitude of a or c. 

When written to the fsr with the U-bit set, the 
result-status bits are placed into the first stage of 
the adder and multiplier pipelines. When the 
processor executes pipelined operations, it prop­
agates the result-status bits of a particular unit 
(multiplier or adder) one stage for each pipelined 
floating-point operation for that unit. When they 
reach the last stage, they replace the normal re­
sult-status bits in the fsr. When the U-bit is not 
set, result-status bits in the word being writeen to 
the fsr are ignored. 

In a floating-point dual-operation instruction (e.g. 
add-and-multiply or subtract-and-multiply), both 
the multiplier and the adder may set exception 
bits. The result-status bits for a particular unit re­
main set until the next operation that uses that 
unit. 

• RR (Result Register) specifies which floating­
point register (fO-f31) was the destination regis­
ter when a result-exception trap occurs due to a 
scalar operation. 

• LRP (Load Pipe Result Precision), IRP (Vector-In­
teger Pipe Result Precision), MRP (Multiplier Pipe 
Result Precision), and ARP (Adder Pipe Result 
Precision) aid in restoring pipeline state after a 
trap or process switch. Each defines the preci­
sion of the last-stage result in the corresponding 
pipeline. One of these bits is set when the result 
in the last stage of the corresponding pipeline is 
double precision; it is cleared if the result is single 
precision. These bits cannot be changed by soft­
ware. 

2.2.9 KR, KI, T, AND MERGE REGISTERS 

The KR, KI, and T registers are special-purpose reg­
isters used by the dual-operation floating-point 
instructions pfam,/pfmam, and pfmsm, which initi­
ate both an adder (A-unit) operation and a multiplier 
(M-unit) operation. The KR, KI, and T registers can 
store values from one dual-operation instruction and 
supply them as inputs to subsequent dual-operation 
instructions. (Refer to Table 2.9.) 

The MERGE register is used only by the vector-inte­
ger instructions. The purpose of the MERGE register 
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is to accumulate (or merge) the results of multiple­
addition operations that use as operands the color­
intensity values from pixels or distance values from 
a Z-buffer. The accumulated results can then be 
stored in one 64-bit operation. 

Two multiple-addition instructions and an OR in­
struction use the MERGE register. The addition in­
structions are designed to add interpolation values 
to each color-intensity field in an array of pixels or to 
each distance value in a Z-buffer. 

Refer to the instruction descriptions in section 8 for 
more information about these registers. 

2.3 Addressing 

Memory is addressed in byte units with a paged vir­
tual-address space of 232 bytes. Data and instruc­
tions can be located anywhere in this address 
space. Address arithmetic is performed using 32-bit 
input values and produces 32-bit results. The low-or­
der 32 bits of the result ae used in case of overflow. 

Normally, multibyte data values are stored in memo­
ry in little endian format, i.e., with the least significant 
byte at the lowest memory address. As an option 
that may be dynamically selected by software in su­
pervisor mode, the 860 microprocessor also offers 
big end ian mode, in which the most significant byte 
of a data item is at the lowest address. Code ac­
cesses are always done with little end ian address­
ing. Figure 2.8 shows the difference between the 
two storage modes. Big endian and little endian data 
areas should not be mixed within a 64-bit data word. 
Illustrations of data structures in this data sheet 

show data stored in little endian mode, i.e., the right­
most (low-order) byte is at the lowest memory ad­
dress. 

Alignment requirements are as follows (any violation 
results in a data-access trap): 

• 128-bit values are aligned on 16-byte boundaries 
when referenced in memory (i.e. the four least 
significant address bits must b~ zero). 

• 64-bit values are aligned on 8-byte boundaries 
when referenced in memory (i.e. the three least 
significant address bits must be zero). 

• 32-bit values are aligned on 4-byte boundaries 
when referenced in memory (i.e. the two least 
significant address bits must be zero). 

• 16-bit values are aligned on 2-byte boundaries 
when referenced in memory (i.e. the least signifi­
cant address bit must be zero). 

2.4 Virtual Addressing 

When address translation is enabled, the 860 micro­
processor maps instruction and data virtual address­
es into physical addresses before referencing mem­
ory. This address transformation is compatible with 
that of the 386 microprocessor and implements the 
basic features needed for page-oriented virtual­
memory systems and page-level protection. 

The address translation is optional. Address transla­
tion is in effect only when the ATE bit of dirbase is 
set. This bit is typically set by the operating system 
during software initialization. The ATE bit must be 
set if the operating system is to implement page-ori­
ented protection or page-oriented virtual memory. 

Little Endian Format 
63 55 47 39 31 23 15 7 o 

m+7 m+6 m+5 m+4 m+3 m+2 m + 1 m 

Big Endian Format 
63 55 47 39 31 23 15 7 o 

m m + 1 m+2 m+3 m+4 m+5 m+6 m+7 

m is the memory address of the 64·bit word 

Figure 2.8. Little Big Endian Memory Format 
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31 21 11 o 
DIR PAGE OFFSET 

Figure 2.9. Format of a Virtual Address 

Address translation is disabled when the processor 
is reset. It is enabled when a store to dirbase sets 
the ATE bit. It is disabled again when a store clears 
the ATE bit. 

2.4.1 PAGE FRAME 

A page frame is a 4·Kbyte unit of contiguous ad· 
dresses of physical main memory. Page frames be· 
gin on 4·Kbyte boundaries and are fixed in size. A 
page is the collection of data that occupies a page 
frame when that data is present in main memory or 
occupies some location in secondary storage when 
there is not sufficient space in main memory. 

2.4.2 VIRTUAL ADDRESS 

A virtual address refers indirectly to a physical ad· 
dress by specifying a page table, a page within that 

I DIR I PAGE I OFFSET I 

I 
PAGE DIRECTORY 

-. 
~ DIR ENTRY -

DTB 

table, and an offset within that page. Figure 2.9 
shows the format of a virtual address. 

Figure 2.9 shows how the 860 microprocessor con· 
verts the DIR, PAGE, and OFFSET fields of a virtual 
address into the physical address by consulting two 
levels of page tables. The addressing mechanism 
uses the DIR field as an index into a page directory, 
uses the PAGE field as an index into the page table 
determined by the page directory, and uses the 
OFFSET field to address a byte within the page de· 
termined by the page table. 

2.4.3 PAGE TABLES 

A page table is simply an array of 32·bit page specifi· 
ers. A page table is itself a page, and therefore con· 
tains 4 Kbytes of memory or at most 1 K 32·bit en· 
tries. 

PAGE FRAME 

PHYSICAL 
ADDRESS 

PAGE TABLE 

PG TBL ENTRY 

240296-32 

Figure 2.10. Address Translation 
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Two levels of tables are used to address a page of 
memory. At the higher level is a page directory. The 
page directory addresses up to 1 K page tables of 
the second level. A page table of the second level 
addresses up to 1 K pages. All the tables addressed 
by one page directory, therefore, can address 1 M 
pages (220). Because each page contains 4 Kbytes 
(212 bytes), the tables of one page directory can 
span the entire physical address space of the 860 
microprocessor (220 x 212 = 232). 

The physical address of the current page directory is 
stored in OTB field of the dirbase register. Memory 
management software has the option of using one 
page directory for all processes, one page directory 
for each process, or some combination of the two. 

2.4.4 PAGE-TABLE ENTRIES 

Page-table entries (PTEs) in either level of page ta­
bles have the same format. Figure 2.11 illustrates 
this format. 

2.4.4.1 Page Frame Address 

The page frame address specifies the physical start­
ing address of a page. Because pages are located 
on 4K boundaries, the low-order 12 bits are always 
zero. In a page directory, the page frame address is 
the address of a page table. In a second-level page 
table, the page frame address is the address of the 
page frame that contains the desired memory oper­
and. 

2.4.4.2 Present Bit 

The P (present) bit indicates whether a page table 
entry can be used in address translation. P = 1 indi­
cates that the entry can be used. When P = a in 
either level of page tables, the entry is not valid for 
address translation, and the rest of the entry is avail­
able for software use; none of the other bits in the 
entry is tested by the hardware. If P = a in either 
level of page tables when an attempt is made to use 
a page-table entry for address translation, the proc­
essor signals either a data-access fault or an in­
struction-access fault. In software systems that sup­
port paged virtual memory, the trap handler can 
bring the required page into physical memory. 

Note that there is no P bit for the page directory 
itself. The page directory may be not-present while 
the associated process is suspended, but the oper­
ating system must ensure that the page directory 
indicated by the dirbase image associated with the 
process is present in physical memory before the 
process is dispatched. 

2.4.4.3 Writable and User Bits 

The W (writable) and U (user) bits are used for page­
level protection, which the 860 microprocessor per­
forms at the same time as address translation. The 
concept of privilege for pages is implemented by as­
signing each page to one of two levels: 

1. Supervisor level (U = a)-for the operating sys­
tem and other systems software and related data. 

2. User level (U = 1 )-for applications procedures 
and data. 

PRESENT--------------------------------------------------------~ 

WRITABLE -------------------------------------------------------, 

31 

NOTE: 

USER ------------------------------------------------------~ 
WRITE-THROUGH --------------------------------~----------__, 
CACHE DISABLE -------------------------------------------~ 
ACCESSED --------------------------------------------, 
DIRTY -----------------------------------------~ 
(RESERVED) --------------------------------------, 

""CA'" ,., "",., ""''''''' "" I 
12 

PAGE FRAME ADDRESS 31. .12 

X indicates Intel reserved. Do not use. 

Figure 2.11. Format of a Page Table Entry 
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The U bit of the psr indicates whether the 860 mi­
croprocessor is executing at user or supervisor level. 
The 860 microprocessor maintains the U bit of psr 
as follows: 

• The 860 microprocessor clears the psr U bit to 
indicate supervisor level when a trap occurs (in­
cluding when the trap instruction causes the 
trap). The prior value fo U is copied into PU. 

• The 860 microprocessor copies the psr PU bit 
into the U bit when an indirect branch is executed 
and one of the trap bits is set. If PU was one, the 
860 microprocessor enters user level. 

With the U bit of psr and the Wand U bits of the 
page table entries, the 860 microprocessor imple­
ments the following protection rules: 

• When at user level, a read or write of a supervi­
sor-level pages causes a trap. 

• When at user level, a write to a page whose W bit 
is not set causes a trap. 

• When at user level, st.c to certain control regis-
ters is ignored. 

When the 860 microprocessor is executing at super­
visor level, all pages are addressable, but, when it is 
executing at user level, only pages that belong to the 
user-level are addressable. 

When the 860 microprocessor is executing at super­
visor level, all pages are readable. Whether a page 
is writable depends upon the write-protection mode 
controlled by WP of epsr: 

WP = 0 

WP = 1 
All pages are writable. 

A write to page whose W bit is not 
set causes a trap. 

When the 860 microprocessor is executing at user 
level, only pages that belong to user level and are 
marked writable are actually writable; pages that be­
long to supervisor level are neither readable nor wri­
table from user level. 

2.4.4.4 Write-Through Bit 

The 860 microprocessor does not implement a 
write-through caching policy for the on-chip instruc­
tion and data caches; however, the WT (write­
through) bit in the second-level page-table entry 
does determine internal caching policy. If WT is set 
in a PTE, on-chip caching of data from the corre­
sponding page is inhibited. If WT is clear, the normal 
write-back policy is applied to data from the page in 
the on-chip caches. The WT bit of page directory 
entries is not referenced by the processor, but is 
reserved. 

The WT bit is independent of the CO bit; therefore, 
data may be placed in a second-level coherent 
cache, but kept out of the on·chip caches. 
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2.4.4.5 Cache Disable Bit 

If the CD (cache disable) bit in the second-level 
page-table entry is set, data from the associated 
page is not placed in external instruction or data 
caches. Clearing CD permits the external cache 
hardware to place data from the associated page 
into external caches. The CD bit of page directory 
entries is not referenced by the processor, but is 
reserved. 

2.4.4.6 Accessed and Dirty Bits 

The A (accessed) and 0 (dirty) bits provide data 
about page usage in both levels of the page tables. 

The 860 microprocessor sets the corresponding ac­
cessed bits in both levels of page tables before a 
read or write operation to a page. The processor 
tests the dirty bit in the second-level page table be­
fore a write to an address covered by that page table 
entry, and, under certain conditions, causes traps. 
The trap handler than has the opportunity to main­
tain appropriate values in the dirty bits. The dirty bit 
in directory entries is not tested by the 860 micro­
processor. The precise algorithm for using these bits 
is specified in Subsection 2.4.5. 

An operating system that supports paged virtual 
memory can use these bits to determine what pages 
to eliminate from physical memory when the de­
mand for memory exceeds the physical memory 
available. The 0 and A bits in the PTE (page-table 
entry) are normally initialized to zero by the operat­
ing system. The processor sets the A bit when a 
page is accessed either by a read or write operation. 
When a data- or instruction-access fault occurs, the 
trap handler sets the 0 bit if an allowable write is 
being performed, then re-executes the instruction. 

The operating system is responsible for coordinating 
its updates to the accessed and dirty bits with up­
dates by the CPU and by other processors that may 
share the page tables. The 860 microprocessor au­
tomatically asserts the LOCK # signal while testing 
and setting the A bit. 

2.4.4.7 Combining Protection of Both Levels of 
Page Tables 

For anyone page, the protection attributes of its 
page directory entry may differ from those of its 
page table entry. The 860 microprocessor computes 
the effective protection attributes for a page by ex­
amining the protection attributes in both the directo­
ry and the page table. Table 2.6 shows the effective 
protection provided by the possible combinations of 
protection attributes. 
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2.4.5 ADDRESS TRANSLATION ALGORITHM 

The algorithm below defines the translation of each 
virtual address to a physical address. Let DIR, 
PAGE, and OFFSET be the fields of the virtual ad­
dress; let PFA1 and PFA2 be the page frame ad­
dress fields of the first and second level page tables 
respectively; DTB is the page directly table base ad­
dress stored in the dirbase register. 

1. Assert LOCK # . 

2. Read the PTE (page table entry) at the physical 
address formed by DTB:DIR:OO. 

3. If P in the PTE is zero, generate a data- or instruc­
tion-access fault. 

4. If W in the PTE is zero, the operation is a write, 
and either the U-bit of the PSR is set or WP = 1, 
generate a data- or instruction-access fault. 

5. If the U-bit in the PTE is zero and the U-bit in the 
psr is set, generate a data- or instruction-access 
fault. 

6. If A in the PTE is zero, set A. 

7. Locate the PTE at the physical address formed by 
PFA 1 :PAGE:OO. 

8. Perform the P, A, W, and U checks as in steps 3 
through 6 with the second-level PTE. 

9. If D in the PTE is clear and the operation is a 
write, generate a data- or instruction-access fault. 

10. Form the physical address as PFA2:0FFSET. 

11. Deassert LOCK # . 

2.4.6 ADDRESS TRANSLATION FAULTS 

The address translation fault is one instance of the 
data-access fault. The instruction causing the fault 
can be re-executed upon returning from the trap 
handler. 

2.4.7 PAGE TRANSLATION CACHE 

For greatest efficiency in address translation, the 
860 microprocessor stores the most recently used 
page-table data in an on-chip cache called the TLB 
(translation lookaside buffer). Only if the necessary 
paging information is not in the cache must both lev­
els of page tables be referenced. 

2.5 Caching and Cache Flushing 

The 860 microprocessor has the ability to cache in­
struction, data, and address-translation information 
in on-chip caches. Caching may use virtual-address 
tags. The effects of mapping two different virtual ad­
dresses in the same address space to the same 
physical address are undefined. 

Table 2.6. Combining Directory and Page Protection 

Page Directory Page Table 
Entry Entry 

U-bit W-bit U-bit W-bit 

0 0 0 0 
0 0 0 1 
0 0 1 0 
0 0 1 1 
0 1 0 0 
0 1 0 1 
0 1 1 0 
0 1 1 1 
1 0 0 0 
1 0 0 1 
1 0 1 0 
1 0 1 1 
1 1 0 0 
1 1 0 1 
1 1 1 0 
1 1 1 1 

NOTES: 
U = O-Supervisor W = O-Read only 
U = 1-User W = 1-Read and write 
x indicates that, when the combined U attribute is supervisor 
and WP = 0, the W attribute is not checked. 

Combined Protection 

WP = 0 WP = 1 

U W U W 

0 x 0 0 
0 x 0 0 
0 x 0 0 
0 x 0 0 
0 x 0 0 
0 x 0 1 
0 x 0 0 
0 x 0 1 
0 x 0 0 
0 x 0 0 
1 0 1 0 
1 0 1 0 
0 x 0 0 
0 x 0 1 
1 0 1 0 
1 1 1 1 
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Instruction, data, and address-translation caching on 
the 860 microprocessor are not transparent. Writes 
do not immediately update memory, the TLS, nor the 
instruction cache. Writes to memory by other bus 
devices do not update the caches. Under certain cir­
cumstances, such as I/O references, self-modifying 
code, page-table updates, or shared data in a multi­
processing system, it is necessary to bypass or to 
flush the caches. 860 microprocessor provides the 
following methods for doing this: 

• Bypassing Instruction and Data Caches_ If 
deasserted during cache-miss processing, the 
KEN # pin disables instruction and data caching 
of the referenced data. If the CD bit from the as­
sociated second-level PTE is set, caching of data 
and instructions is disabled. The value of the CD 
bit is output on the PTS pin for use by external 
caches. 

• Flushing Instruction and Address-Translation 
Caches_ Storing to the dirbase register with the 
ITI bit set invalidates the contents of the instruc­
tion and address-translation caches. This bit 
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should be set when a page table or a page con­
taining code is modified or when changing the 
DTS field of dirbase. Note that in order to make 
the instruction or address-translation caches con­
sistent with the data cache, the data cache must 
be flushed before invalidating the other caches. 

NOTE: 

The mapping of the page(s) containing the cur­
rently executing instruction, the next six instruc­
tions, and any data referenced by these instruc­
tions should not be different in the new page 
tables when the DTS is changed. 

• Flushing the Data Cache. The data cache is 
flushed by a software routine using the flush in­
struction. The data cache must be flushed prior to 
flushing the instruction or address-translation 
cache (as controlled by the ITI bit of dirbase) or 
enabling or disabling address translation (via the 
ATE bit). While the cache is being flushed, no 
interrupt or trap routines should be executed that 
load sharable data into the cache. 
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2.6 Instruction Set 

Table 2.7 shows the complete set of instructions 
grouped by function within processing unit. Refer to 
Section 8 for an algorithmic definition of each in­
struction. 

The architecture of the 860 microprocessor uses 
parallelism to increase the rate at which operations 
may be introduced into the unit. Parallelism in the 
860 microprocessor is not transparent; rather, pro­
grammers have complete control over parallelism 
and therefore can achieve maximum performance 
for a variety of computational problems. 

2.6.1 PIPELINED AND SCALAR OPERATIONS 

One type of parallelism used within the floating-point 
unit is "pipelining". The pipelined architecture treats 
each operation as a series of more primitive opera­
tions (called "stages") that can be executed in par­
allel. Consider just the floating-point adder unit as an 
example. Let A represent the operation of the adder. 
Let the stages be represented by A1. A2, and A3. 
The stages are designed such that Ai + 1 for one ad­
der instruction can execute in parallel with Ai for the 
next adder instruction. Furthermore, each Ai can be 
executed in just one clock. The pipelining within the 
multiplier and vector-integer units can be described 
similarly, except that the number of stages may be 
different. 

Figure 2.7 illustrates three-stage pipelining as found 
in the floating-point adder (also in the floating-point 
multiplier when single-precision input operands are 
employed). The columns of the figure represent the 
three stages of the pipeline. Each stage holds inter­
mediate results and also (when introduced into first 
stage by software) holds status information pertain­
ing to those results. The figure assumes that the in­
struction stream consists of a series of consecutive 
floating-point instructions, all of one type (Le. all ad­
der instructions or all single-precision multiplier in­
structions). The instructions are represented as i, 
i + 1, etc. The rows of the figure represent the states 
of the unit at successive clock cycles. Each time a 
pipelined operation is performed, the result of the 
last stage of the pipeline is stored in the destination 
register rdest, the pipeline is advanced one stage, 
and the input operands src1 and src2 are trans­
ferred to the first stage of the pipeline. 
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In the 860 microprocessor, the number of pipeline 
stages ranges from one to three. A pipelined opera­
tion with a three-stage pipeline stores the result of 
the third prior operation. A pipelined operation with a 
two-stage pipeline stores the result of the second 
prior operation. A pipelined operation with a one­
stage pipeline stores the result of the prior opera­
tion. 

There are four floating-point pipelines: one for the 
multiplier, one for the adder, one for the vector-inte­
ger unit, and one for floating-point loads. The adder 
pipeline has three stages. The number of stages in 
the multiplier pipeline depends on the precision of 
the source operands in the pipeline; it may have two 
or three stages. The vector-integer unit has one 
stage for all precisions. The load pipeline has three 
stages for all precisions. 

Changing the FZ (flush zero), RM (rounding mode), 
or RR (result register) bits of fsr while there are re­
sults in either the multiplier or adder pipeline produc­
es effects that are not defined. 

2.6.1.1 Scalar Mode 

In addition to the pipelined execution mode, the 860 
microprocessor also can execute floating-point in­
structions in "scalar" mode. Most floating-point in­
structions have both pipelined and scalar variants, 
distinguished by a bit in the instruction encoding. In 
scalar mode, the floating-point unit does not start a 
new operation until the previous floating-point oper­
ation is completed. The scalar operation passes 
through all stages of its pipeline before a new opera­
tion is introduced, and the result is stored automati­
cally. Scalar mode is used when the next operation 
depends on results from the previous few floating­
point operations (or when the compiler or program­
mer does not want to deal with pipelining). 

2.6.1.2 Pipelining Status Information 

Result status information in the fsr consists of the 
AA, AI, AD, AU, and AE bits, in the case of the ad­
der, and the MA, MI, MO, and MU bits, in the case of 
the multiplier. This information arrives at the fsr via 
the pipeline in one of two ways: 
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Table 2.7. Instruction Set 

Core Unit Floating-Point Unit 

Mnemonic Description Mnemonic Description 

Load and Store Instructions F-P Multiplier Instruction 

Id.x Load integer fmul.p F-P multiply 
st.x Store integer pfmul.p Pipelined F-P multiply 
fld.y F-P load pfmul3.dd 3-Stage pipelined F-P multiply 
pfld.z Pipelined F-P load fmlow.p F-P multiply low 
fst.y F-P store frcp.p F-P reciprocal 
pst.d Pixel store frsqr.p F-P reciprocal square root 

Register to Register Moves F-P Adder Instructions 

ixfr Transfer integer to F-P register fadd.p F-P add 
fxfr Transfer F-P to integer register pfadd.p Pipelined F-P add 

Integer Arithmetic Instructions fsub.p F-P subtract 
pfsub.p Pipelined F-P subtract 

addu Add unsigned pfgt.p Pipelined F-P greater-than compare 
adds Add signed pfeq.p Pipelined F-P equal compare 
subu Subtract unsigned fix.p F-P to integer conversion 
subs Subtract signed pfix.p Pipelined F-P to integer conversion 

Shift Instructions 

shl Shift left 
shr Shift right 

ftrunc.p F-P to integer truncation 
pftrunc.p Pipelined F-P to integer truncation 

Dual-Operation Instructions 

shra Shift right arithmetic pfam.p Pipelined F-P add and multiply 
shrd Shift right double pfsm.p Pipelined F-P subtract and multiply 

Logical Instructions 

and Logical AND 
andh Logical AND high 

pfmam Pipelined F-P multiply with add 
pfmsm Pipelined F-P multiply with subtract 

Long Integer Instructions 

andnot Logical AND NOT fisub.z Long-integer subtract 
andnoth Logical AND NOT high pfisub.z Pipelined long-integer subtract 
or Logical OR fiadd.z Long-integer add 
orh Logical OR high pfiadd.z Pipelined long-integer add 
xor Logical exclusive OR 
xorh Logical exclusive OR high Graphics Instructions 

Control-Transfer Instructions fzchks 16-bit Z-buffer check 
pfzchks Pipelined 16-bit Z -buffer check 

trap Software trap fzchkl 32-bit Z -buffer check 
intovr Software trap on integer overflow pfzchkl Pipelined 32-bit Z-buffer check 
br Branch direct faddp Add with pixel merge 
bri Branch indirect pfaddp Pipelined add with pixel merge 
bc Branch on CC faddz Add with Z merge 
bc.t Branch on CC taken pfaddz Pipelined add with Z merge 
bnc Branch on not CC form OR with MERGE register 
bnc.t Branch on not CC taken pform Pipelined OR with MERGE register 
bte Branch if equal 
btne Branch if not equal 
bla Branch on LCC and add Assembler Pseudo-Operations 
call Subroutine call 
calli Indirect subroutine call 

Mnemonic Description 

System Control Instructions 
mov Integer register-register move 
fmov.q F-P reg-reg move 

flush Cache flush 
Id.c Load from control register 
st.c Store to control register 
lock Begin interlocked sequence 
unlock End interlocked sequence 

pfmov.q Pipelined F-P reg-reg move 
nop Core no-operation 
fnop F-P no-operation 
pfle.p Pipelined F-P less-than or equal 
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Figure 2.12. Pipelined Instruction Execution 

1. It is calculated by the last stage of the pipeline. 
This is the normal case. 

2. It is propagated from the first stage of the pipe­
line. This method is used when restoring the state 
of the pipeline after a preemption. When a store 
instruction updates the fsr and the value of the 
U bit in the word being written into the fsr is set, 
the store updates the result status bits in the first 
stage of both the adder and multiplier pipelines. 
When software changes the result-status bits of 
the first stage of a particular unit (multiplier or ad­
der), the updated result-status bits are propagat­
ed one stage for each pipe lined floating-point op­
eration for that unit. In this case, each stage of the 
adder and multiplier pipelines holds its own copy 
of the relevant bits of the fsr. When they reach 
the last stage, they override the normal result­
status bits computed from the last-stage result. 
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At the next floating-point instruction (or at certain 
core instructions), after the result reaches the last 
stage, the 860 microprocessor traps if any of the 
status bits of the fsr indicate exceptions. Note that 
the instruction that creates the exceptional condition 
is not the instruction at which the trap occurs. 

2.6.1.3 Precision in the Pipelines 

In pipelined mode, when a floating-point operation is 
initiated, the result of an earlier pipelined floating­
point operation is returned. The result precision of 
the current instruction applies to the operation being 
initiated. The precision of the value stored in rdest is 
that which was specified by the instruction that initia­
ted that operation. 
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Figure 2.13. Dual·lnstruction Mode Transitions 

If (dest is the same as s(c1 or s(c2, the value being 
stored in (dest is used as the input operand. In this 
case, the precision of (dest must be the same as the 
source precision. 

The multiplier pipeline has two stages when the 
source operand is double-precision and three stages 
when the precision of the source operand is single. 
This means that a pipelined multiplier operation 
stores the result of the second previous multiplier 
operation for double-precision inputs and third previ­
ous for single-precision inputs (except when chang­
ing precisions). 

2.6.1.4 Transition between Scalar and Pipelined 
Operations 

When a scalar operation is executed, it passes 
through all stages of the pipeline; therefore, any un­
stored results in the affected pipeline are lost. To 
avoid losing information, the last pipelined opera­
tions before a scalar operation should be dummy 
pipelined operations that unload unstored results 
from the affected pipeline. 
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After a scalar operation, the values of all pipeline 
stages of the affected unit (except the last) are un­
defined. No spurious result-exception traps result 
when the undefined values are subsequently stored 
by pipelined operations; however, the values should 
not be referenced as source oeprands. 

For best performance a scalar operation should not 
immediately precede a pipelined operation whose 
(dest is nonzero. 

2.6.2 DUAL-INSTRUCTION MODE 

Another form of parallelism results from the fact that 
the 860 microprocessor can execute both a floating­
point and a core instruction simultaneously. Such 
parallel execution is called [dual-instruction modeJ. 
When executing in dual-instruction mode, the in­
struction sequence consists of 64-bit aligned instruc­
tions with a floating-point instruction inthe lower 32 
bits and a core instruction in the upper 32 bits. Table 
2.6 identifies which instructions are executed by the 
core unit and which by the floating-point unit. 
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Programmers specify dual-instruction mode either 
by including in the mnemonic of a floating-point in­
struction a d. prefix or by using the Assembler direc­
tives .dual .... enddual. Both of the specifications 
cause the D-bit of floating-point instructions to be 
set. If the 860 microprocessor is executing in single· 
instruction mode and encounters a floating-point in­
struction with the D-bit set, one more 32-bit instruc­
tion is executed before dual-mode execution begins. 
If the 860 microprocessor is executing in dual-in­
struction mode and a floating-point instruction is en­
countered with a clear D-bit, then one more pair of 
instructions is executed before resuming single-in­
struction mode. Figure 2.13 illustrates two variations 
of this sequence of events: one for extended se­
quences of dual-instructions and one for a single in­
struction pair. 

When a 64-bit dual-instruction pair sequentially fol­
lows a delayed branch instruction in dual-instruction 
mode, both 32-bit instructions are executed. 

2.6.3 DUAL-OPERATION INSTRUCTIONS 

Special dual-operation floating-point instructions 
(add-and-multiply, subtract-and-multiply) use both 
the multiplier and adder units within the floating­
point unit in parallel to efficiently execute such com­
mon tasks as evaluating systems of linear equa­
tions, performing the Fast Fourier Transform (FFT), 
and performing graphics transformations. 

The instructions pfam sre1, sre2, rdest (add and 
multiply), pfsm sre1, sre2, rdest (subtract and multi­
ply), pfmam serl, sre2, rdest (multiply and add), and 
pfmsm srel, sre2, rdest (multiply and subtract) initi­
ate both an adder operation and a multiplier opera­
tion. Six operands are required, but the instruction 
format specifies only three operands; therefore, 
there are special provisions for specifying the oper­
ands. These special provisions consist of: 

• Three special registers (KR, KI, and T), that can 
store values from one dual-operation instruction 
and supply them as inputs to subsequent dual­
operation instructions. 

1. The constant registers KR and KI can store the 
value of srel and subsequently supply that val­
ue to the multiplier pipeline in place of srel. 

2. The transfer register T can store the last-stage 
result of the multiplier pipeline and subse­
quently supply that value to the adder pipeline 
in place of srel. 

• A four-bit data-path control field in the opcode 
(DPC) that specifies the operands and loading of 
the special registers. 

1. Operand-1 of the multiplier can be KR, KI, or 
srel. 

2. Operand-2 of the multiplier can be sre2 or the 
last-stage result of the adder pipeline. 
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3. Operand-1 of the adder can be srel, the T-reg­
ister, or the last -stage result of the adder pipe­
line. 

4. Operand-2 of the adder can be sre2, the last­
stage result of the multiplier pipeline, or the 
last-stage result of the adder pipeline. 

Figure 2.14 shows all the possible data paths sur­
rounding the adder and multiplier. A DPe field in 
these instructions select different data paths. Sec­
tion 8 shows the various encodings of the DPe field. 

SRC1 SRC2 RDEST 

MULTIPLIER UNIT 

ADDER UNIT 

RESULT 

240296-11 

Figure 2.14, Dual-Operation Data Paths 

Note that the mnemonics pfam.p, pfsm.p, 
pfmam.p, and pfmsm.p are never used as such in 
the assembly language; these mnemonics are used 
here to designate classes of related instructions. 
Each value of DPe has a unique mnemonic associ­
ated with it. 

2.7 Addressing Modes 

Data access is limited to load and store instructions . 
Memory addresses are computed from two fields of 
load and store instructions: srel and sre2. 

1. srel either contains the identifier of a 32-bit inte­
ger register or contains an immediate 16-bit ad­
dress offset. 

2. sre2 always specifies a register. 
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Table 2.8. Types of Traps 

Type 
Indication Caused by 

PSR FSR Condition Instruction 

Instruction IT Software traps trap, intovr 
Fault Missing unlock Any 

Floating SE Floating-point source exception Any M- or A-unit except fmlow 
Point Floating-point result exception Any M- or A-unit except fmlow, pfgt, 
Fault FT AO,MO overflow and pfeq. Reported on any F-P 

AU,MU underflow instruction plus pst, fst, and 
AI,MI inexact result sometimes fld, pfld, ixfr 

Instruction IAT Address translation exception Any 
Access Fault during instruction fetch 

Data Access Load/store address translation Any load/store 
Fault exception 

OAT' Misaligned operand address Any load/store 
Operand address matches Any load/store 

db register 

Interrupt IN External interrupt 

Reset No trap bits set Hardware RESET signal 
. . .. 

'These cases can be distingUished by examining the operand addresses . 

Because either src1 or src2 may be null (zero), a 
variety of useful addressing modes result: 

offset + register Useful for accessing fields within 
a record, where register points 
to the beginning of the record. 
Useful for accessing items in a 
stack frame, where register is 
r3, the register used for pointing 
to the beginning of the stack 
frame. 

register + register Useful for two-dimensional ar­
rays or for array access within 
the stack frame. 

register Useful as the end result of any 
arbitrary address calculation. 

offset Absolute address into the first 
64K of the logical address 
space. 

In addition, the floating-point load and store instruc­
tions may select autoincrement addressing. In this 
mode src2 is replaced by the sum of src1 and src2 
after performing the load or store. This mode makes 
stepping through arrays more efficient, because it 
eliminates one address-calculation instruction. 

2.8 Interrupts and Traps 

Traps are caused by exceptional conditions detect­
ed in programs or by external interrupts. Traps 
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cause interruption of normal program flow to exe­
cute a special program known as a trap handler. 
Traps are divided into the types shown in Table 2.8. 

2.8.1 TRAP HANDLER INVOCATION 

This section applies to traps other than reset. When 
a trap occurs, execution of the current instruction is 
aborted. The instruction is restartable. The proces­
sor takes the following steps while transferring con­
trol to the trap handler: 

1. Copies U (user mode) of the psr into PU (previous 
U). 

2. Copies 1M (interrupt mode) into PIM (previous 1M). 

3. Sets U to zero (supervisor mode). 

4. Sets 1M to zero (interrupts disabled). 

5. If the processor is in dual instruction mode, it sets 
DIM; otherwise it clears DIM. 

6. If the processor is in single-instruction mode and 
the next instruction will be executed in dual­
instruction mode or if the processor is in dual-in­
struction mode and the next instruction will be 
executed in single-instruction mode, OS is set; 
otherwise, it is cleared. 

7. The appropriate trap type bits in psr are set (IT, 
IN, IAT, OAT, FT). Several bits may be set if the 
corresponding trap conditions occur simulta­
neously. 

8. An address is placed in the fault instruction regis­
ter (fir) to help locate the trapped instruction. In 
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single-instruction mode, the address in fir is the 
address of the trapped instruction itself. In dual-in­
struction mode, the address in fir is that of the 
floating-point half of the dual instruction. If an in­
struction or data access fault occurred, the asso­
ciated core instruction is the high-order hal.f of the 
dual instruction (fir + 4). In dual-instruction 
mode, when a data access fault occurs in the ab­
sence of other trap conditions, the floating-point 
half of the dual instruction will already have been 
executed (except in the case of the fxfr 
instruction). 

The processor begins executing the trap handler by 
transferring execution to address OxFFFFFFOO. The 
trap handler begins execution in single-instruction 
mode. The trap handler must examine the trap-type 
bits in psr (IT, IN, IAT, OAT, FT) to determine the 
cause or causes of the trap. 

2.8.2 INSTRUCTION FAULT 

This fault is caused by any of the following condi­
tions. In all cases the processor sets the IT bit be­
fore entering the trap handler. 

• By the trap instruction. 

• By the intovr instruction. The trap occurs only if 
OF in epsr is set when intovr is executed. The 
trap handler should clear OF before returning. 

• By the lack of an unlock instruction within 32 in­
structions of a lock. In this case IL is also set. 
When the trap handler finds IL set, it should scan 
backwards for the lock instruction and restart at 
that point. The absence of a lock instruction with­
in 32 instructions of the trap indicates a program­
ming error. 

2.8.3 FLOATING-POINT FAULT 

The floating-point fault occurs on floating-point in­
structions pst, fst, and sometimes fld, pfld, ixfr. 
The floating-point faults of the 860 microprocessor 
support the floating-point exceptions defined by the 
IEEE standard as well as some other useful classes 
of exceptions. The 860 microprocessor divides 
these into two classes: source exceptions and result 
exceptions. The numerics library supplied by Intel 
provides the IEEE standard default handling for all 
these exceptions. 

2.8.3.1 Source Exception Faults 

All exceptional operands, including infinities, denor­
malized numbers and NaNs, cause a floating-point 
fault and set SE in the fsr. Source exceptions are 
reported on the instruction that initiates the opera­
tion. For pipelined operations, the pipeline is not ad­
vanced. 
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The SE value is undefined for faults on fld, pfld, fst, 
pst, and Ixfr instructions when in single-instruction 
mode or when in dual-instruction mode and the com­
panion instruction is not a multiplier or adder opera­
tion. 

2.8.3.2 Result Exception Faults 

The class of result exceptions includes any of the 
following conditions: 

• Overflow. The absolute value of the rounded 
true result would exceed the largest positive finite 
number in the destination format. 

• Underflow (when FZ is clear). The absolute val­
ue of the rounded true result 'iVould be smaller 
than the smallest positive finite number in the 
destination format. 

• Inexact result (when TI is set). The result is not 
exactly representable in the destination format. 
For example, the fraction % cannot be precisely 
represented in binary form. This exception occurs 
frequently and indicates that some (generally ac­
ceptable) accuracy has been lost. 

The point at which a result exception is reported de­
pends upon whether pipe lined operations are being 
used: 

• Scalar (nonpipelined) operations. Result ex­
ceptions are reported on the next floating-point, 
fst.x, or pst.x (and sometimes fld, pfld, ixfr) in­
struction after the scalar operation. When a trap 
occurs, the last·stage of the affected unit con­
tains the result of the scalar operation. 

• Pipelined operations. Result exceptions are re­
ported when the result is in the last stage and the 
next floating-point (and sometimes fld, pfld, Ixfr) 
instruction is executed. When a trap occurs, the 
pipeline is not advanced, and the last-stage re­
sults (that caused the trap) remain unchanged. 

When no trap occurs (either because FTE is clear or 
because no exception occurred), the pipeline is ad~ 
vanced normally by the new floating-point operation. 
The result-status bits of the affected unit are unde­
fined until the point that result exceptions are report­
ed. At this point, the last-stage result-status bits (bits 
29 .. 22 and 16 .. 9 of the fsr) reflect the values in the 
last stages of both the adder and multiplier. For ex­
ample, if the last-stage result in the multiplier has 
overflowed and a pipelined floating-point pfadd is 
started, a trap occurs and MO is set. 

For scalar operations, the RR bits of fsr specify the 
register in which the result was stored. RR is updat­
ed when the scalar instruction is initiated. The trap, 
however, occurs on a subsequent instruction. Pro­
grammers must prevent intervening stores to fsr 
from modifying the RR bits. Prevention may take one 
of the following forms: 
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• Before any store to fsr when a result exception 
may be pending, execute a dummy floating-point 
operation to trigger the result-exception trap. 

• Always read from fsr before storing to it, and 
mask updates so that the RR bits are not 
changed. 

For pipelined operations, RR is cleared; the result is 
in the pipeline of the appropriate unit. 

In either case, the result has the same fraction as 
the true result and has an exponent which is the low­
order bits of the true result. The trap handler can 
inspect the result, compute the result appropriate for 
that instruction (a NaN or an infinity, for example), 
and store the correct result. The result is either 
stored in the register specified by RR (if nonzero) or 
in the last stage of the pipeline (if RR = 0). The trap 
handler must clear the result status for the last 
stage, then reexecute the trapping instruction. 

Result exceptions may be reported for both the ad­
der and multiplier units at the same time. In this 
case, the trap handler should fix up the last stage of 
both pipelines. 

2.8.4 INSTRUCTION ACCESS FAULT 

This trap results from a page-not-present exception 
during instruction fetch. If a supervisor-level page is 
fetched in user mode, an exception mayor may not 
occur. 

2.8.5 DATA ACCESS FAULT 

This trap results from an abnormal condition detect­
ed during data operand fetch or store. Such an ex­
ception can be due only to one of the following caus­
es: 

• An attempt is being made to write to a page 
whose O-bit is clear. 

• A memory operand is misaligned (is not located 
at an address that is a multiple of the length of 
the data). 

• The address stored in the debug register is equal 
to one of the addresses spanned by the operand. 

• The operand is in a not-present page. 

• An attempt is being made from user level to write 
to a read-only page or to access a supervisor-lev­
el page. 

2.8.6 INTERRUPT TRAP 

An interrupt is an event that is signaled from an ex­
ternal source. If the processor is executing with in-
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terrupts enabled (1M set in the psr), the processor 
sets the interrupt bit IN in the psr, and generates an 
interrupt trap. Vectored interrupts are implemented 
by interrupt controllers and software. 

2.8.7 RESET TRAP 

When the 860 microprocessor is reset, execution 
begins in single-instruction mode at address 
OxFFFFFFOO. This is the same address as for other 
traps. The reset trap can be distinguished from other 
traps by the fact that no trap bits are set. The in­
struction cache is flushed. The bits OPS, BL, and 
ATE in dirbase are cleared. CS8 is initialized by the 
value at the INT pin at the end of reset. The bits U, 
1M, BR, and BW in psr are cleared. All other bits of 
psr and all other register contents are undefined. 

The software must ensure that the data cache is 
flushed and control registers are properly initialized 
before performing operations that depend on the 
values of the cache or registers. 

Reset code must initialize the floating-point pipeline 
state to zero with floating-point traps disabled to en­
sure that no spurious floating-point traps are gener­
ated. 

After a RESET the 860 microprocessor starts execu­
tion at supervisor level (U = 0). Before branching to 
the first user-level instruction, the RESET trap han­
dier or subsequent initialization code has to set PU 
and a trap bit so that an indirect branch instruction 
will copy PU to U, thereby changing to user level. 

2.9 Debugging 

The 860 microprocessor supports debugging with 
both data and instruction breakpoints. The features 
of the 860 architecture that support debugging in­
clude: 

• db (data breakpoint register) which permits speci­
fication of a data addresses that the 860 micro­
processor will monitor. 

• BR (break read) and BW (break write) bits of the 
psr, which enable trapping of either reads or 
writes (respectively) to the address in db. 

• OAT (data access trap) bit of the psr, which al­
lows the trap handler to determine when a data 
breakpoint was the cause of the trap. 

• trap instruction that can be used to set break­
points in code. Any number of code breakpoints 
can be set. The values of the src1 and src2 fields 
help identify which breakpoint has occurred. 

• IT (instruction trap) bit of the psr, which allows 
the trap handler to determine when a trap 
instruction was the cause of the trap. 
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3.0 HARDWARE INTERFACE 

In the following description of hardware interface, 
the # symbol at the end of a signal name indicates 
that the active or asserted state occurs when the 
signal is at a low Voltage. When no # is present after 
the signal name, the signal is asserted when at the 
high voltage level. 

3.1 Signal Description 

Table 3.1 identifies functional groupings of the pins, 
lists every pin by its identifier, gives a brief descrip­
tion of its function, and lists some of its characteris­
tics. All output pins are tristate, except HLDA and 
BREO. All inputs are synchronous, except HOLD 
and INT. 

3.1.1 CLOCK (ClK) 

The CLK input determines execution rate and timing 
of the 860 microprocessor. Timing of other signals is 
specified relative to the rising edge of this signal. 
The 860 microprocessor can utilize a clock rate of 
33.3 MHz. The internal operating frequency is the 
same as the external clock. This signal is TTL com­
patible. 
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3.1.2 SYSTEM RESET (RESET) 

Asserting RESET for at least 16 CLK periods causes 
initialization of the 860 microprocessor. Refer to 
section 3.2 "Initialization" for more details related to 
RESET. 

3.1.3 BUS HOLD (HOLD) AND BUS HOLD 
ACKNOWLEDGE (HLDA) 

These pins are used for 860 microprocessor bus ar­
bitration. At some time after the HOLD signal is as­
serted, the 860 microprocessor releases control of 
the local bus and puts all bus interface outputs (ex­
cept BREO and HLDA) in floating state, then asserts 
HLDA-all during the same clock period. It main­
tains this state until HOLD is deasserted. Instruction 
execution stops only if required instructions or data 
cannot be read from the on-chip instruction and data 
caches. 

The time required to acknowledge a hold request is 
one clock plus the number of clocks needed to finish 
any outstanding bus cycles. HOLD is recognized 
even while RESET is asserted. 

When leaving a bus hold, the 860 microprocessor 
deactivates HLDA and, in the same clock period, ini­
tiates a pending bus cycle, if any. 

Hold is an asynchronous input. 
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Table 3.1. Pin Summary 
~ 

Pin 
Function 

Active Input! 
Name State Output 

Execution Control Pins 

CLK CLocK I 
RESET System reset High I 
HOLD Bus hold High I 
HLDA Bus hold acknowledge High 0 
BREQ Bus request High 0 
INT/CS8 Interrupt, code-size High I 

Bus Interface Pins 

A31-A3 Address bus High 0 
BE7#-BEO# Byte Enables Low 0 
D63-DO Data bus High I/O 
LOCK# Bus lock Low 0 
W/R# Write/Read bus cycle Hi/Low 0 
NENE# NExt NEar Low 0 
NA# Next Address request Low I 
READY# Transfer Acknowledge Low I 
ADS# ADdress Status Low 0 

Cache Interface Pins 

KEN# Cache ENable Low I 
PTB Page Table Bit High 0 

Testability Pins 

SHI Boundary Scan Shift Input High I 
BSCN Boundary Scan Enable High I 
SCAN Shift Scan Path High I 

Intel-Reserved Configuration Pins 

CC1-CCO Configuration High I 

Power and Ground Pins 

Vee System power 
Vss System ground 

A # after a Pin name Indicates that the signal is active when at the low voltage level. 

3.1.4 BUS REQUEST (BREQ) 

This signal is asserted when the 860 microprocessor 
has a pending memory request, even when HLDA is 
asserted. This allows an external bus arbiter to im­
plement an "on demand only" policy for granting the 
bus to the 860 microprocessor. 

3.1.5 INTERRUPT/CODE-SIZE (INT/CS8) 

This input allows interruption of the current instruc­
tion stream. If interrupts are enabled (1M set in psr) 
when INT is asserted, the 860 microprocessor fetch­
es the next instruction from address OxFFFFFFOO. 
To assure that an interrupt is recognized, INT should 
remain asserted until the software acknowledges 
the interrupt (by writing, for example, to a memory-
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mapped port of an interrupt controller). The maxi­
mum time between the assertion of INT and execu­
tion of the first instruction of the trap handler is 10 
clocks, plus the time for eight nonpipelined read cy­
cles (four TLB misses), plus the time for eight non­
pipelined writes (updates to the A bit), plus the time 
for three sets of four pipelined read cycles and two 
sets of four pipelined writes (instruction and data 
cache misses and write-back cycles to update mem­
ory). 

If INT is asserted during the clock before the falling 
edge of RESET, the eight-bit code-size mode is se­
lected. For more about this mode, refer to section 
3.2 "Initialization". 

INT is an asynchronous input. 
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3.1.6 ADDRESS PINS (A31-A3) AND BYTE 
ENABLES (BE7#-BEO#) 

The 29·bit address bus (A31-A3) identifies address· 
es to a 64·bit location. Separate byte·enable signals 
(BE7 # -BEO#) identify which bytes should be ac­
cessed within the 64-bit location. Cache reads 
should return 64 bits without regard for the byte-en­
able signals. 

Instruction fetches (W fR # is low) are distinguished 
from data accesses by the unique combinations of 
BE7#-BEO# defined in Table 3.2. For an eight-bit 
code fetch in eight-bit code-size (CS8) mode, 
BE2#-BEO# are redefined to be A2-AO of the ad­
dress. In this case BE7#-BE3# form the code 
shown in Table 3.2 that identifies an instruction 
fetch. 

3.1.7 DATA PINS (D63-DO) 

The bus interface has 64 bidirectional data pins 
(063-00) to transfer data in eight- to 64-bit quanti­
ties. Pins 07-00 transfer the least significant byte; 
pins 063-056 transfer the most significant byte. 

In write bus cycles, the point at which data is driven 
onto the bus depends on the type of the preceding 
cycle. If there was no preceding cycle (Le. the bus 
was idle), data is driven with the address. If the pre­
ceding cycle was a write, data is driven as soon as 
READY # is returned from the previous cycle. If the 
preceding cycle was a read, data is driven one clock 
after READY # is returned from the previous cycle, 
thereby allowing time for the bus to be turned 
around. 

3.1.8 BUS LOCK (LOCK#) 

This signal is used to provide atomic (indivisible) 
read-modify-write sequences in multiprocessor sys­
tems. Once the external bus arbiter has accepted a 
memory access for a locked bus cycle from the 860 
microprocessor, it should not accept locked cycles 
(or any cycles, depending on software convention) 
from other bus masters until LOCK# is deasserted. 

The 860 microprocessor coordinates the external 
LOCK# signal with the software-controlled BL bit of 

the dirbase register. Programmers do not have to 
be concerned about the fact that bus activity is not 
always synchronous with instruction execution. 
LOCK # is asserted with ADS # for the first bus cycle 
that results from an instruction executed after the BL 
bit is set. Even if the BL bit is changed between the 
time that an instruction generates an internal bus 
request and the time that the cycle appears on the 
bus, the 860 microprocessor still asserts LOCK# for 
that bus cycle. LOCK# is deasserted with ADS# for 
the next bus cycle that results from an instruction 
executed after the BL bit is cleared. 

The 860 microprocessor also asserts LOCK # during 
TLB miss processing for updates of the accessed bit 
in page-table entries. The maximum time that 
LOCK # can be asserted in this case is five clocks 
plus the time required by software to perform a read­
modify-write sequence. 

The 860 microprocessor does not acknowledge bus 
hold requests while LOCK # is asserted. 

3.1.9 WRITE/READ BUS CYCLE (W/R#) 

This pin specifies whether a bus cycle is a read 
(LOW) or write (HIGH) cycle. 

3.1.10 NEXT NEAR (NENE#) 

This signal allows higher-speed reads and writes in 
the case of consecutive reads and writes that ac­
cess static column or page-mode DRAMs. The 860 
microprocessor asserts NENE# when the current 
address is in the same DRAM page as the previous 
bus cycle. The 860 microprocessor determines the 
DRAM page size by inspecting the DPS field in the 
dirbase register. The page size can range from 29 to 
216 64-bit words, supporting DRAM sizes from 256K 
x 1, 256K x 4, and up. NENE # is never asserted 
on the next bus cycle after HLDA is deasserted. 

3.1.11 NEXT ADDRESS REQUEST (NA#) 

NA# makes address pipelining possible. The sys­
tem asserts NA # to indicate that it is ready to ac-

Table 3.2. Identifying Instruction Fetches 

Code 
A2 BE7# BE6# BE5# BE4# BE3# BE2# BE1# BEO# 

Fetch 

Normal 0 1 1 1 1 1 0 1 0 
(Non-CS8) 

Normal 1 1 0 1 0 1 1 1 1 
(Non-CS8) 

CS8 1 0 
Mode 

x 1 0 x Low-order address bits 
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cept the next address from the 860 microprocessor. 
NA # may be asserted before the current cycle 
ends. (If the system does not implement pipelining, 
NA# does not have to be activated.) The 860 micro­
processor samples NA # every clock, starting one 
clock after the prior activation of ADS #. When NA # 
is active, the 860 microprocessor is free to drive ad­
dress and bus-cycle definition for the next pending 
bus cycle. The 860 microprocessor remembers that 
NA # was asserted when no internal request is 
pending; therefore, NA# can be deactivated after 
the next rising edge of the ClK signal. Up to three 
bus cycles can be outstanding simultaneously on 
the processor's bus. 

3.1.12 TRANSFER ACKNOWLEDGE (READY#) 

The system asserts the READY # signal during read 
cycles when valid data is on the data pins and during 
a write cycles when the system has accepted data 
from the data pins. READY # is sampled one clock 
after prior ADS# or prior READY # in case of pipe­
lining. 

3.1.13 ADDRESS STATUS (ADS#) 

The 860 microprocessor asserts ADS # during the 
first clock of each bus cycle to identify the clock 
period during which it begins to assert outputs on 
the address bus. This signal is not held active during 
a pipelined bus cycle. This allows two-level pipelin­
ing, for a maximum of three outstanding cycles. 

3.1.14 CACHE ENABLE (KEN#) 

The 860 microprocessor samples KEN # to deter­
mine whether the data being read for the current 
cache-miss cycle is to be cached. This pin is inter­
nally NORed with the PTB pin to control cache abili­
ty on a page by page basis (refer to Table 3.3). 

If the address in one that is permitted to be in the 
cache, KEN # must be continuously asserted during 
the sampling period starting from the clock after 
ADS # is asserted, through the clock NA # or 
READY # is asserted. The entire 64-bit of the data 
bus will be used for the read, regardless of the state 
of the byte-enable pins. Three additional 64-bit bus 
cycles will generate to fill the rest of the 32-byte 
cache block. KEN# must continue to be asserted 
for each of these cycles as well. 

If KEN # is found deasserted at any time during the 
above-described sampling period, the data being 
read will not cached and two scenarios can occur: 1) 
if the cycle is due to data-cache miss, no subse­
quent cache-fill cycles will be generated; 2) if the 
cycle is due to an instruction-cache miss, additional 
cycle(s) will be generated until the address reaches 
a 32-byte boundary. 

34 

3.1.15 PAGE TABLE BIT (PTB) 

Depending on the setting of the PBM (page-table bit 
mode) bit of the epsr, the PTB reflects the value of 
either the CD (cache disable) bit or the WT (write 
through) bit of the page-table entry used for the cur­
rent cycle. This pin is internally NORed with the 
KEN # pin to control cacheability on a page by page 
basis. Table 3.3 shows the relationship between 
PTB and KEN #. When paging is disabled, PTB re­
mains inactive. 

Table 3 3 Cacheability based on KEN # and PTB 

PTB KEN# Meaning 

0 0 Cacheable access 
0 1 Noncacheable access 
1 0 Noncacheable page 
1 1 Noncacheable page 

3.1.16 BOUNDARY SCAN SHIFT INPUT (SHI) 

This pin is used with the testability features. Refer to 
section 3.4. 

3.1.17 BOUNDARY SCAN ENABLE (BSCN) 

This pin is used with the testability features. Refer to 
section 3.4. 

3.1.18 SHIFT SCAN PATH (SCAN) 

This pin is used with the testability features. Refer to 
section 3.3. 

3.1.19 CONFIGURATION (CC1-CCO) 

These two pins are reserved by Intel. Strap both pins 
lOW. 

3.1.20 SYSTEM POWER (Vee) AND GROUND 
(Vss) 

The 860 microprocessor has 48 pins for power and 
ground. All pins must be connected to the appropri­
ate low-inductance power and ground signals in the 
system. 

3.2 Initialization 

Initialization of the 860 microprocessor is caused by 
assertion of the RESET signal for at least 16 clocks. 
Table 3.4 shows the status of output pins during the 
time that RESET is asserted. Note that HOLD re­
quests are honored during RESET and that the 
status of output pins depends on whether a HOLD 
request is being acknowledged. 

• 
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Table 3.4. Output Pin Status during Reset 

Pin Value 

Pin Name HOLD 
HOLD 

Not 
Acknowledged 

Acknowledged 

ADS#, LOCK# HIGH Tri·State OFF 

W/R#, PTB LOW Tri-State OFF 

BREQ LOW LOW 

HLDA LOW HIGH 

063-00 Tri-State OFF Tri-State OFF 

A31-A3, 
BE7#-BEO#, Undefined Tri-State OFF 
NENE# 

After a reset, the 860 microprocessor begins execut­
ing at address OxFFFFFFOO. The program-visible 
state of the 860 microprocessor after reset is de­
tailed in section 2. 

Eight-bit code-size mode is selected when INT is as­
serted during the clock before the falling edge of 
RESET. While in eight-bit code-size mode, instruc­
tion cache misses are byte reads (transferred on D7-
DO of the data bus) instead of eight-byte reads. This 
allows the 860 microprocessor to be bootstrapped 
from an eight-bit EPROM. For these code reads, 
byte enables BE2#-BEO# are redefined to be the 
low order three bits of the address, so that a com­
plete byte address is available. These reads update 
the instruction cache if KEN # is asserted (refer to 
section 3.1.1.4) and are not pipelined even if NA# is 
asserted. While in this mode, instructions must re­
side in an eight-bit wide memory, while data must 
reside in a separate 64-bit wide memory. After the 
code has been loaded into 64-bit memory, initializa­
tion code can initiate 64-bit code fetches by clearing 
the CS8 bit of the dirbase register (refer to section 
2). Once eight-bit code-size mode is disabled by 
software, it cannot be reenabled except by resetting 
the 860 microprocessor. 

3.3 Testability 

The 860 microprocessor has a boundary scan mode 
that may be used in component- or board-level test­
ing to test the signal traces leading to and from the 
860 microprocessor. Boundary scan mode provides 
a simple serial interface that makes it possible to 
test all signal traces with only a few probes. Probes 
need be connected only to CLK, BSCN, SCAN, SHI, 
and BREQ. 

The pins BSCN and SCAN control the boundary 
scan mode (refer to Table 3.5). When BSCN is as-
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serted, the 860 microprocessor enters boundary 
scan mode on the next rising clock edge. Boundary 
scan mode can be activated even while RESET is 
active. When BSCN is deasserted while in boundary 
scan mode, the 860 microprocessor leaves bounda­
ry scan mode on the next rising clock edge. After 
leaving boundary scan mode, the internal state is 
undefined; therefore, RESET should be asserted. 

Table 3.5. Test Mode Selection 

BSCN SCAN Testability Mode 

La LO No testability mode selected 
La HI (Reserved for Intel) 
HI La Boundary scan mode, normal 
HI HI Boundary scan mode, shift 

SHI as input; BREQ as 
output 

For testing purposes, each signal pin has associated 
with it an internal latch. Table 3.6 indentifies these 
latches by name and classifies them as input, out­
put, or control. The input and output latches carry 
the name of the corresponding pins. 

Table 3.6. Test Mode Latches 

Input Output 
Associated 

Control 
Latch Latch 

Latch 

SHI 
BSCN 
SCAN 
RESET 
00-063 00-063 DATAt 
CC1-CCO 

A31-A3 ADDRt 
NENE# NENEt 
PTB# PTBt 
W/R# W/Rt 
ADS# ADSt 
HLDA 
LOCK# LOCKt 

READY# 
KEN# 
NA# 
INT/CS8 
HOLD 

BE7#-BEO# BEt 
BREQ 

Within boundary scan mode the 860 microprocessor 
operates in one of two submodes: normal mode or 
shift mode, depending on the value of the SCAN 
input. A typical test sequence is ... 
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1. Enter shift mode to assign values to the latches 
that correspond with the pins. 

2. Enter normal mode. In normal mode the 860 mi­
croprocessor transfers the latched values to the 
output pins and latches the values that are being 
driven onto the input pins. 

3. Reenter shift mode to read the new values of the 
input pins. 

3.3.1 NORMAL MODE 

When SCAN is deasserted, the normal mode is se­
lected. For each input pin (RESET, HOLD, 
INT/CS8, NA#, READY#, KEN#, SHI, BSCN, 
SCAN, CC1, and CCO), the corresponding latch is 
loaded with the value that is being driven onto the 
pin. 

The tristate output pins (A31-A3, BE7 # -BEO #, 
W/R#, NENE#, ADS#, lOCK#, and PTB) are en­
abled by the control latches ADDRt (for A31-A3), 
BEt, WIRt, NENEt, ADSt, lOCKt, and PTBt. If a con­
trol latch is set, the corresponding output latches 
drive their output pins; otherwise the pins are not 
driven. 

The 1/0 pins (D63-DO) are enabled by the control 
latch DAT At, which is similar to the other control 
latches. In addition, when DATAt is not set, the data 
pins are treated as input pins and their values are 
latched. 

3.3.2 SHIFT MODE 

When SCAN is asserted, the shift mode is selected. 
In shift mode, the pins are organized into a boundary 
scan chain. The scan chain is configured as a shift 
register that is shifted on the rising edge of ClK. The 
SHI pin is connected to the input of one end of the 
boundary scan chain. The value of the most signifi­
cant bit of the scan chain is output on the BREQ pin. 
To avoid glitches while the values are being shifted 
along the chain, all tristate outputs are disabled. The 
order of the pins within the chain is shown in Figure 
3.1. 

1 2 3 4 
-+ SHI -+ BSCN -+ SCAN ..... RESET -+ 

70 71 72 100 
CCI ..... ceo -+ A31 ..... -+ A3 

105 106 107 106 109 
PTB# ..... W/RI ..... W/R# ..... ADS! -+ ADS# 

114 115 116 117 118 
KEN# ..... NA# -+ INT/CS8 ..... HOLD -+ BEl 

A tester causes entry into this mode for one of two 
purposes: 

1. To assign values to output latches to be driven 
onto output pins upon subsequent entry into nor­
mal mode. 

2. To read the values of input pins previously latched 
in normal mode. 

4.0 BUS OPERATION 

A bus cycle begins when ADS# is activated and 
ends when READY # is sampled active. READY # is 
sampled one clock after assertion of ADS# and 
thereafter until it becomes active. New cycles can 
start as often as every other clock until three cycles 
are outstanding. A bus cycle is considered outstand­
ing as long as READY # has not been asserted to 
terminate that cycle. After READY # becomes ac­
tive, it is not sampled again for the following (out­
standing) cycle until the second clock after the one 
during which it became active. READY # is assumed 
to be inactive when it is not sampled. 

With regard to how a bus cycle is generated by the 
860 microprocessor, there are two types of cycles: 
pipelined and nonpipelined. Both types of cycles can 
be either read or write cycles. A pipelined cycle is 
one that starts while one or two other bus cycles are 
outstanding. A non pipe lined cycle is one that starts 
when no other bus cycles are outstanding. 

4.1 Pipelining 

A m-n read or write cycle is a cycle with a total cycle 
time of m clocks and a cycle-to-cycle time of n 
clocks (m ~ n). Total cycle time extends from the 
clock in which ADS# is activated to the clock in 
which READY # becomes active; whereas, cycle-to­
cycle time extends from the time that READY # is 
sampled active for the previous cycle to the time 
that it is sampled active again for the current cycle. 
When m = n; a nonpipelined cycle is implied; m > n 
implies a pipelined cycle. 

5 6 69 
DATAl ..... DO -+ ..... D63 -+ 

1-01 102 103 104 
-+ ADDRI -+ NENEI -+ NENE# -+ PTBt ..... 

110 111 112 113 ..... HLDA -+ LOCKI ..... LOCK# ..... READY# ..... 
119 126 127 

-+ BE7# -+ ..... BEO# -+ BREQ ..... 

Figure 3.1. Order of Boundary Scan Chain 
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Pipelining may occur for the next bus cycle any time 
the current bus cycle requires more than two clock 
periods to finish (m > 2). The next cycle can be 
initiated when NA # is sampled active, even if the 
current cycle has not terminated. In this case, pipe­
lining occurs. NA # is recognized only in the clock 
when ADS# has become inactive. 

To allow high transfer rates in large memory sys­
tems, two-level pipelining is supported (Le there may 
be up to three cycles in progress at one time). Pipe­
lining enables a new word of data to be transferred 
every two clocks, even though the total cycle time 
may be up to six clocks. 

4.2 Bus State Machine 

The operation of the bus is described in terms of a 
bus state machine using a state transition diagram. 
Figure 4.1 illustrates the 860 microprocessor bus 
state machine. A bus cycle is composed of two or 
more states. Each bus state lasts for one CLK peri­
od. 

The 860 microprocessor supports up to two levels of 
address pipelining. Once it has started the first bus 
cycle, it can generate up to two more cycles as long 
as READY # remains inactive. To start a new bus 
cycle while other cycles are still outstanding, NA# 
must be active for at least one clock cycle starting 
with the clock after the previous ADS #. NA # is 
latched internally. 

States Tj and Tjk' for j = {1,2,3l and k = {1,2l, are 
used to describe the state of the 860 microproces­
sor Bus State Machine. Index j indicates the number 
of outstanding bus cycles while index k distinguishes 
the intermediate states for the j-th outstanding cycle. 
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Therefore there can be up to three outstanding cy­
cles, and there are two possible intermediate states 
for each level of pipelining. Tj1 is the next state after 
Tj' as long as j cycles are outstanding. Tj2 is entered 
when NA # is active but the 860 microprocessor is 
not ready to start a new cycle. 

Five conditions have to be met to start a new cycle 
while one or more cycles are already pending: 

1. READY # inactive 

2. NA# having been active 

3. An internal request pending 

4. HOLD not active (or HOLD active, but not being 
serviced because LOCK# is active) 

5. Fewer than three cycles outstanding 

Upon hardware RESET, the bus control logic enters 
the idle state TI and awaits an internal request for a 
bus cycle. If a bus cycle is requested while there is 
no hold request from the system, a bus cycle begins, 
advanCing to state T 1. On the next cycle, the state 
machine automatically advances to state T 11. If 
READY # is active in state T 11, the bus control logic 
returns either to TI, if no new cycle is started, or to 
T1, if a new cycle request is pending internally. In 
fact, if an internal bus request is pending each time 
READY # is active, the state machine continues to 
cycle between T 11 and T 1. 

However, if READY # is not active but the next ad­
dress request is pending (as indicated by an active 
NA#), the state machine advances either to state 
T 2 (if an internal bus request is pending, signifying 
that two bus cycles are now outstanding), or to state 
T12 (if no bus internal request is pending, signifying 
NA# has been found active). Transitions from state 
T 12 are similar to those from T 11. 



intJ i860TM MICROPROCESSOR 

HOLD ASSERTED 

READY# DEASSERTED 

NOTES: 
READY# 

NA# 
ADS# 
HLDA 
HOLD 

REQUEST 

Assumed deasserted one clock after the ac­
tive clock 
Not sampled during ADS# active clock 
Active in T1. T2 and T3 
Active in TH 
Synchronized internally and masked by bus 
lock request 
Internal Bus Request Pending 

240296-29 

Figure 4.1. Bus State Machine 

If two bus cycles are already outstanding (as indicat­
ed by T 2k for k = {1 ,2l) and NA # is latched active 
but READY # is not active, one more bus request 
causes entry into state T3. Transitions from this 
state are similar to those from T 2. 

In general, if there is an internal bus request each 
time both READY# and NA# are active, the state 
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machine continues to oscillate between Tj1 and Tj, 
for j = {2,3l. 

When NA # is sampled active while there is a pend­
ing bus request, ADS # is activated in the next clock 
period (provided no more than two cycles are al­
ready outstanding). 
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Internal pending bus requests start new bus cycles 
only if no HOLQ request has been recognized. THis 
entered from the idle state TI only. HLDA is active in 
this state. There is a one clock delay to synchronize 
the HOLD input when the signal meets the respec­
tive minimum setup and hold time requirements. The 
state machine uses the synchronized HOLD to move 
from state to state. 

4.3 Bus Cycles 

Figures 4.2 through 4.10 illustrate combinations of 
bus cycles. 

ClK 

ADS# 

A31-A3, W/R#, 
BEn#, NENE#, 

lOCK#, PTB 

NA# 

READY# 

D63-DD 

CYCLE 1 
NON-PIPELINED 

READ 
(2-2) 

Tl TIl 

4.3.1 NONPIPELINED READ CYCLES 

A read cycle begins with the clock in which ADS# is 
asserted. The 860 microprocessor begins driving the 
address during this clock. It samples READY # for 
active state every clock after the first clock. A mini­
mum of two clocks is required per cycle. Data is 
latched when READY # is found active when sam­
pled at the end of a clock period. Figure 4.2 illus­
trates nonpipelined read cycles with zero wait 
states. 

Normally, all 64 bits of the data bus are latched; 
however, in the case of noncacheable bus cycles, 
the byte enables BE7#-BEO# determine which 
bytes are used. In CS8 mode, only the low-order 
eight bits are latched. 

CYCLE 2 CYCLE 3 
NON-PIPELINED NON-PIPELINED 

READ READ 
(2-2) (2-2) 

Tl Tll Tl TIl 

240296-13 

Figure 4.2. Fastest Read Cycles 
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ClK 

AOS# 

A31-A3, W/R#, 
BEn#, NENE#, 

lOCK#, PTB 

NA# 

REAOY# 

063-00 

CYCLE 1 
NON-PIPELINEO 

WRITE 
(2-2) 

Tl Tn 

CYCLE 2 CYCLE 3 
NON-PIPELINED NON-PIPELINED 

WRITE WRITE 
(2-2) (2-2) 

Tl TIl Tl Tn 

240296-14 

Figure 4.3. Fastest Write Cycles 

4.3.2 NONPIPELINED WRITE CYCLES 

The ADS# and READY# activity for write cycles 
follows the same logic as that for read cycles, as 
Figure 4.3 illustrates for back-to-back, nonpipelined 
write cycles with zero wait-states. The byte enables 
BE7#-BEO# indicate which bytes on the data bus 
are valid. 

The fastest write cycle takes only two clocks to com­
plete. However, when a read cycle immediately pre-
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cedes a write cycle, the write cycle must contain a 
wait state, as illustrated in Figure 4.4. Because the 
device being read might still be driving the data bus 
during the first clock of the write cycle, there is a 
potential for bus contention. To help avoid such con­
tention, the 860 microprocessor does not drive the 
data bus until the second clock of the write cycle. 
The wait state is required to provide the additional 
time necessary to terminate the write cycle. In other 
read-write combinations, the 860 microprocessor 
does not require a wait state. 
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ClK 

AOS# 

A31-A3. W/R#. 
BEn#. NENE#. 

lOCK#. PTB 

NA# 

REAOY# 

063-00 

CYCLE 1 
NON-PIPELINEO 

READ 
(2-2) 

Tl Tll Tl 

CYCLE 2 
NON- PIPELINEO 

WRITE 
(3-3) 

Tll Tll 

Figure 4.4. Fastest Read/Write Cycles 

CYCLE 1 CYCLE 2 
NON-PIPELINED PIPELINED 

READ READ 
(5-5) (5-2) 

Tl TIl T2 T21 T3 T21 T3 T21 

l-L'..L.Lo4LLI 

CYCLE 3 
NON-PIPELINEO 

READ 
(2-2) 

Tl Tll 

CYCLE 3 
PIPELINED 

WRITE 
(6-3) 

T3 T31 

Figure 4.5. Pipelined Read Followed by Pipelined Write 
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CYCLE 4 
PIPELINED 

WRITE 
(6-2) 

T3 T31 

240296-16 
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ADS# 

A31-A3. W/R#. 
BEn#. NENE#. 

lOCK#. PTB 

NA# 

READY# 
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CYCLE 1 
NON-PIPELINED 

WRITE 
(5-5) 

CYCLE 2 
PIPELINED 

WRITE 
(5-2) 

CYCLE 3 
PIPELINED 

READ 
(5-2) 

CYCLE 4 
PIPELINED 

READ 
(5-2) 

240296-17 

Figure 4.6. Pipelined Write Followed by Pipelined Read 

4.3.3 PIPE LINED READ AND WRITE CYCLES 

Figures 4.5 and 4.6 illustrate combinations of non­
pipelined and pipelined read and write cycles. The 
following description applies to both diagrams. While 
Cycle 1 is still in progress. two new cycles are initiat­
ed. By the time READY # first becomes active, the 
state machine has moved through states T 1. T 11. 
T 2, T 21, and T 3. Cycles 3 and 4 show how activating 
READY # terminates an outstanding cycle (Cycle 3 
in this case). and yet activating NA # while there is 
an internal request pending adds a new outstanding 
cycle. 

In Figure 4.5. Cycle 3 is a write cycle following a read 
cycle; therefore, one wait state must be inserted. 
The 860 microprocessor does not drive the data bus 
until one clock after the read data is returned from 
the preceding read cycle. During Cycles 3 and 4, the 
state machine oscillates between states T 3 and T 31 
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maintaining full bus capacity (two levels of pipelin­
ing; three outstanding cycles). Cycles 2, 3. and 4 in 
Figure 4.6 are 5-2 cycles; I.e. each requires a total 
cycle time of five clocks while the throughput rate is 
one cycle every two clocks. 

Figure 4.7 illustrates in a more general manner how 
the NA# signal controls pipelining. Cycle 1 is a 2-2 
cycle. the fastest possible. The next cycle cannot be 
started any earlier; therefore. there is no need to 
activate NA# to start the next cycle early. Cycle 2. a 
3-3 read. is different. Cycle 3 can be started during 
the third state (a wait state) of Cycle 2, and NA# is 
asserted to accomplish this. 

NA# is not activated following the ADS# clock of 
Cycle 3. thereby allowing Cycle 3 to terminate be­
fore the start of Cycle 4. As a result, Cycle 4 is a 
nonpipelined cycle. 
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CYCLE 1 
NON-PIPELINED 

READ 
(2-2) 

T, T" 

ClK 

AOS# 

A31-A3. W/R#. 
BEn#. NENE#. 

lOCK#. PTB 

NA# 

REAOY# 

063-00 

CYCLE 2 CYCLE 3 
NON-PIPELINED PIPELINED 

READ READ 
(3-3) (3-2) 

T, T" T2 T" T" 

Figure 4.7. Pipelining Driven by NA# 

T2 T2, T22 T'2 T'2 

CYCLE 4 
NON-PIPELINEO 

READ 
(2-2) 

T, T" 

T, T, 

Figure 4.8. NA # Active with No Internal Bus Requ~st 
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IDLE IDLE 

T, T, 

240296-18 

240296-19 
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CYCLE 1 CYCLE 2 CYCLE 3 
NON-PIPELINED NON-PIPELINED NON-PIPELINED 

READ WRITE WRITE 
(2-2) (2-2) (2-2) 

T, Til T, Til T, Til 

ClK 

240296-20 

Figure 4.9. Locked Cycles 

When there is no internal bus request, activating 
NA # does not start a new cycle; the 860 microproc­
essor, however, remembers that NA# has been ac­
tivated. Figure 4.8 illustrates the situation where 
NA# i.s acti~e but no internal bus request is pending. 
NA # IS activated when two cycles are outstanding. 
Because there is no internal request pending until 
after one idle state, no new bus cycle is started dur­
ing that period. 

4.3.4 LOCKED CYCLES 

The LOCK # signal is asserted when the current bus 
cycle is to be locked with the next bus cycle. Asser­
tion of LOCK# ml!Y be initiated by a program's set­
ting the BL bit of the dirbase register (refer to sec­
tion 2) or by the 860 micrcprocessor itself during 
page table updates. 

In Figure 4.9, the first read cycle is to be locked with 
the following write cycle. If there were idle states 
between the cycles, the LOCK # signal would re­
main asserted. This is the case for a read/modify/ 
write operation. HOLD is not acknowledged until all 
locked cycles are finished. The second write cycle is 
not locked because LOCK # is no longer asserted 
when the first write cycle starts. 
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4.3.5 HOLD AND BREQ ARBITRATION CYCLES 

The HOLD, HLDA, and BREQ signals permit bus ar­
bitration between the 860 microprocessor and an­
other bus master. 

As Figure 4.10 illustrates, the T H (hold) state can be 
entered only from the idle state TI. When HOLD is 
asserted, the 860 microprocessor keeps control of 
the bus until all outstanding cycles, including locked 
cycles, are completed. 

If HOLD were asserted one clock earlier, the last 
860 microprocessor bus cycle before HLDA would 
not be started. LOCK # is assumed to be inactive in 
the last bus cycle. If LOCK # were active the 860 
microprocessor would not give up the bus. 

The outputs (except HLDA and BREQ) float when 
HLDA is asserted. HOLD is sampled at the end of 
the clock in which it is activated. Recommended set­
up and hold times must be met to guarantee sam­
pling one clock after external HOLD activation. 
When HOLD is sampled active, a one clock delay for 
internal synchronization follows. HLDA may be 
deasserted as early as the clock following deasser­
tion of HOLD. 
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ClK 

ADS# 

A31-A3. W/R#. ~-...,.,..,...,.....t.,..,...-I--+--"""'.,...,.....I-... 
BEn#. NENE#. 

lOCK#. PTB ~--+L.lI:.l1:.JI1lI:..l--I--+--+'~&..:lf-:J/ 

HOLD 

BREQ 

240296-21 

Figure 4.10. HOLD, HLDA, and BREQ 

If, during a HOLD cycle, an internal bus request is 
generated, BREQ is activated even though HLDA is 
asserted. It remains active at least until the clock 
after ADS # is activated for the requested cycle. 

4.4 Bus States During RESET 

Figure 4.11 shows how INT/GS8 is sampled during 
the clock period just before the falling edge of RE-

ClK 

RESET 

INT/CS8 

OTHER 
INPUTS 

I· 

SET. If INT IGS8 is sampled active, the 860 micro­
processor enters GS8 mode. No inputs (except for 
HOLD, INT IGS8, and GG1 -GGO) are sampled dur­
ing RESET. 

Note that, because HOLD is recognized even while 
RESET is active, the HLDA output signal may also 
become active during RESET. Refer to Figure "Out­
put Pin Status during Reset" in section 3. 

~ 16 ClKs 

·1 

240296-22 

Figure 4.11. Reset Activities 
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5.0 MECHANICAL DATA 

Figures 5.1 and 5.2 show the locations of pins; Tables 5.1 and 5.2 help to locate pin identifiers. 

Q A 

.... 
() () () () () () () () () () () () () () () () () 
vee Vss vee Vss A12 .4.17 A19 A21 A23 .4.25 .4.29 A31 Vee Vss Yee Vss Vee 

() () () () () () () () () () () () () () () () () 
Vss Vee ¥ss A8 A10 A13 .4.15 A18 A20 .4.24 A27 A28 ceo Vee Vss Vee Vss 

() () () () () () () () () () () () () () () () () 
Vee Vss A6 .4.7 A9 A11 .4.14 A16 elK A22 A26 .4.30 ce1 062 060 Vss Vee 

() () () () () () 
¥ss Vee AS 063 059 Vss 

() () () () () () 
Vee "'4 .4.3 061 058 056 

() () () () () () 
W/R# NENE# PTa 057 054 052 

() () () () () () 
ADS# HLDA BREQ 055 053 050 

() () () () () () 
LOCK# KEN, READY# 051 049 048 

() () () () () () 
INT/CS8 NAD HOLD 047 045 046 

10 () () () () () () 10 

BE5# BEl# BE6# 

11 () () () 

BE3, BE2# BE.# 

12 () () () 
SHI BEl # BEO# 

13 () () () 
RESET SCAN 95CH 

,. () 

VSS 

15 () 

() 
DO 

() 

Vee Vss 

16 () () 

Vss Vee 

17 () () 

() 
01 

() 
02 

() 

() 

() 

03 

() 

() 

() 
05 

() 
04 

() 

Vee Vss Vee Vss Vee 

() 
07 

() 

09 

() 

06 

043 042 04,( 

o () () 11 

039 041 040 

() () () 12 
037 036 038 

() () () 13 

035 034 Vee 

() () () ,. 
033 Vee Yss 

() () () () () () () () () () () 15 

011 013 017 021 023 027 029 031 032 Vss Vee 

() 

08 

() 

() () () () () () () () () () 16 

015 014 019 022 025 028 030 Vss Vee Vss 

() () () () () () () () () () 17 
010 012 016 018 020 024 026 ¥ss Vee Vss Vee 

A 

240296-23 

Figure 5.1. Pin Configuration-View from Top Side 
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M 

000 0 0 000 0 0 0 0 0 0 0 0 0 
Vee Vss Vee Vss Vee 14.31 14.29 14.25 A23 14.21 14.19 14.17 14.12 Vss Vee Vss Vee 

000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Vss Vee Vss Vee ceo A2B 14.27 14.24 14.20 1.18 A1S 14.13 14.10 14.8 Vss Vee Vss 

o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Vee Vss 060 062 ee1 14.30 14.26 A22 elK A 16 A 14 A 11 14.9 A7 AS Vss Vee 

o o o o o o 
Vss 059 063 

METAL LID 
A5 

000 000 
056 058 061 14.3 A4 Vee 

000 000 
052 054 057 PTB NENE# W/R# 

000 000 
050 053 055 BREO HLDA ADS# 

000 000 
048 049 051 READY# KEN# LOCK# 

000 000 
046 045 D47 HOLD NAI INT/csa 

10 0 o o o o o 10 
044 042 043 BE6# BE7# 8E5# 

11 0 o o o o o 11 
040 041 039 BE4# BE2# 8E3# 

12 0 o o o o o 12 
038 036 037 SEO# BE1 # SHI 

13 0 o o o o o 13 
Vee 034 035 8SCN SCAN RESET 

,. 0 o o o o Vss Vee 033 '--______________________ ----' 
01 DO 

o ,. 
Vss 

15 0 o o o o 000 0 o o o o o o o o 15 
Vee Vss 032 031 029 027 023 021 017 013 Dl1 07 05 03 02 Vss Vee 

16 0 o o o o 000 0 o o o o o o o o 16 

Vss Vee Vss 030 028 025 022 019 014 015 DB D9 D4 Va:. Vss Vee Vss 

17 0 o o o o 000 0 o o o o o o o o 17 
Vee Vss Vee Vss 026 024 020 018 016 012 010 06 Vee Vss Vee Vss Vee 

M 

240296-24 

Figure 5.2. Pin Configuration-View from Pin Side 
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Table 5.1. Pin Cross Reference by location 

location Signal location Signal location Signal location Signal 

A1 ............. Vee C9 ............. 047 J15 ............ 017 010 .......... BE6# 
A2 ............. Vss C10 ............ 043 J16 ............ 014 011 .......... BE4# 
A3 ............. Vee C11 ............ 039 J17 ............ 016 012 .......... BEO# 
A4 ............. Vss C12 ............ 037 K1 ............. A21 013 .......... BSCN 
A5 ............. 056 C13 ............ 035 K2 ............. A18 014 ............. 01 
A6 ............. 052 C14 ............ 033 K3 ............. A16 015 ............. 02 
A7 ............. 050 C15 ............ 032 K15 ............ 013 016 ............ Vss 
A8 ............. 048 C16 ............ Vss K16 ............ 015 017 ........... Vee 
A9 ............. 046 C17 ............ Vee K17 ............ 012 R1 ............. Vss 
A10 ............ 044 01 ............. Vss l1 ............. A19 R2 ............. Vee 
A11 ............ 040 02 ............. Vee l2 ............. A15 R3 ............. Vss 
A12 ............ 038 03 ............. 062 l3 ............. A14 R4 ............. Vee 
A13 ............ Vee 015 ............ 031 l15 ............ 011 R5 .............. A4 
A14 ............ Vss 016 ............ 030 L16 ............. 08 R6 ......... NENE# 
A15 ............ Vee 017 ............ Vss L17 ............ 010 R7 ........... HLOA 
A16 ............ Vss E1 ............. Vee M1 ............. A17 R8 .......... KEN# 
A17 ............ Vee E2 ............. CCO M2 ............. A13 R9 ............ NA# 
B1 ............. Vss E3 ............. CC1 M3 ............. A11 R10 .......... BE7# 
B2 ............. Vee E15 ............ 029 M15 ............ 07 R11 .......... BE2# 
B3 .......... : .. Vss E16 ............ 028 M16 ............ 09 R12 .......... BE1# 
B4 ............. 059 E17 ............ 026 M17 ............ 06 R13 .......... SCAN 
B5 ............. 058 F1 ............. A31 N1 ............. A12 R14 ............. ~O 
B6 ............. 054 F2 ............. A28 N2 ............. A10 R15 ............ Vss 
B7 ............. 053 F3 ............. A30 N3 .............. A9 R16 ............ Vee 
B8 ............. 049 F15 ............ 027 N15 ............. 05 R17 ............ Vss 
B9 ............. 045 F16 ............ 025 N16 ............. 04 S1 ............. Vee 
B10 ............ 042 F17 ............ 024 N17 ............ Vee S2 ............. Vss 
B11 ............ 041 G1 ............. A29 P1 ............. Vss S3 ............. Vee 
B12 ............ 036 G2 ............. A27 P2 .............. A8 S4 ............. Vss 
B13 ............ 034 G3 ............. A26 P3 .............. A7 S5 ............. Vee 
B14 ............ Vee G15 ........... 023 P15 ............. 03 S6 .......... W/R# 
B15 ............ Vss G16 ........... 022 P16 ............ Vee S7 ........... AOS# 
B16 ............ Vee G17 ........... 020 P17 ............ Vss S8 ......... LOCK# 
B17 ............ Vss H1 ............. A25 01 ............. Vee S9 ........ INT/CS8 
C1 ............. Vee H2 ............. A24 02 ............. Vss S10 .......... BE5# 
C2 ............. Vss H3 ............. A22 03 .............. A6 S11 .......... BE3# 
C3 ............. 060 H15 ............ 021 04 .............. A5 S12 ............ SHI 
C4 ............. 063 H16 ............ 019 05 .............. A3 S13 ......... RESET 
C5 ............. 061 H17 ............ 018 06 ............ PTB S14 ............ Vss 
C6 ............. 057 J1 ............. A23 07 ........... BREO S15 ............ Vee 
C7 ............. 055 J2 ............. A20 08 ........ REAOY# S16 ............ Vss 
C8 ............. 051 J3 ............. ClK 09 ........... HOLO S17 ............ Vee 
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Table 5.2. Pin Cross Reference by Pin Name 

Signal Location Signal Location Signal Location Signal Location 

A3 .............. Q5 ClK ............. J3 041 ............ B11 Vee ............ B16 
A4 .............. R5 00 ............. R14 042 ............ B10 Vee ............. C1 
A5 .............. Q4 01 ............. Q14 043 ............ C10 Vee ............ C17 
A6 .............. Q3 02 ............. Q15 044 ............ A10 Vee ............. 02 
A7 .............. P3 03 ............. P15 045 ............. B9 Vee ............. E1 
A8 .............. P2 04 ............. N16 046 ............. A9 Vee ............ N17 
A9 .............. N3 05 ............. N15 047 ............. C9 Vee ............ P16 
A10 ............. N2 06 ............ M17 048 ............. A8 Vee ............. Q1 
A11 ............. M3 07 ............ M15 049 ............. B8 Vee ........... Q17 
A12 ............. N1 08 ............. L16 050 ............. A7 Vee ............. R2 
A13 ............. M2 09 ............ M16 051 ............. C8 Vee ............. R4 
A14 ............. l3 010 ............ l17 052 ............. A6 Vee ............ R16 
A15 ............. l2 011 ............ L15 053 ............. B7 Vee ............. S1 
A16 ............. K3 012 ............ K17 054 ............. B6 Vee ............. S3 
A17 ............. M1 013 ............ K15 055 ............. C7 Vee ............. S5 
A18 ............. K2 014 ............ J16 056 ............. A5 Vee ............ S15 
A19 ............. L1 015 ............ K16 057 ............. C6 Vee ............ S17 
A20 ............. J2 016 ............ J17 058 ............. B5 Vss ............. A2 
A21 .............. K1 017 ............ J15 059 ............. B4 Vss ............. M 
A22 ............. H3 018 ............ H17 060 ............. C3 Vss ............ A14 
A23 ............. J1 019 ............ H16 061 ............. C5 Vss ............ A16 
A24 ............. H2 020 ........... G17 062 ............. 03 Vss ............. B1 
A25 ............. H1 021 ............ H15 063 ............. C4 Vss ............. B3 
A26 ............. G3 022 ........... G16 HlOA ........... R7 Vss ............ B15 
A27 ............. G2 023 ........... G15 HaLO ........... Q9 Vss ............ B17 
A28 ............. F2 024 ............ F17 INT/CS8 ........ S9 Vss ............. C2 
A29 ............. G1 025 ............ F16 KEN# .......... R8 Vss ............ C16 
A30 ............. F3 026 ............ E17 LOCK# ......... S8 Vss ............. 01 
A31 ............. F1 027 ............ F15 NA# ............ R9 Vss ............ 017 
AOS# ........... S7 028 ............ E16 NENE# ......... R6 Vss ............. P1 
BEO# .......... Q12 029 ............ E15 PTB ............ Q6 Vss ............ P17 
BE1 # .......... R12 030 ............ 016 REAOY# ........ Q8 Vss ............. Q2 
BE2# .......... R11 031 ............ 015 RESET ......... S13 Vss ............ Q16 
BE3# .......... S11 032 ............ C15 SCAN .......... R13 Vss ............. R1 
BE4# .......... Q11 033 ............ C14 SHI ............ S12 Vss ............. R3 
BE5# .......... S10 034 ............ B13 Vee ............. A1 Vss ............ R15 
BE6# .......... Q10 035 ............ C13 Vee ............. A3 Vss ............ R17 
BE7# .......... R10 036 ............ B12 Vee ............ A13 Vss ............. S2 
BREQ ........... 07 037 ............ C12 Vee ............ A15 Vss ............. S4 
BSCN .......... Q13 038 ............ A12 Vee ............ A17 Vss ............ S14 
CCo ............. E2 039 ............ C11 Vee ............. B2 Vss ............ S16 
CC1 ............. E3 040 ............ A11 Vee ............ B14 W/R# .......... S6 
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Table 5.3. Ceramic PGA Package Dimension Symbols 

Letter or 
Description of Dimensions 

Symbol 

A Distance from seating plane to highest point of body 

AI Distance between seating plane and base plane (lid) 

A2 Distance from base plane to highest point of body 

A3 Distance from seating plane to bottom of body 

B Diameter of terminal lead pin 

D Largest overall package dimension of length 

Dl A body length dimension, outer lead center to outer lead center 

el Linear spacing between true lead position centerlines 

L Distance from seating plane to end of lead 

51 Other body dimension, outer lead center to edge of body 

NOTES: 
1. Controlling dimension: millimeter. 
2. Dimension "el" ("e") is non-cumulative. 
3. Seating plane (standoff) is defined by P.C. board hole size: 0.0415-0.0430 inch. 
4. Dimensions "B", "Bl" and "c" are nominal. 
5. Details of Pin 1 identifier are optional. 

50 



inter i860™ MICROPROCESSOR 

r·~I··===========~------------·~.'1 Sl-1 r-
01.65 @@@@@@@@@@@@@@@@@ 
RTF. L-@@@@@@@@@@@@@@@@@ 
.-@@@@@@@@@@@@@@@@@ 
T @@@ @@@ 

@@@ @@@ 
@@@ 
@@@ 
@@@ 
@@@ 

( 
-

\ 
@@@ 
@@@ 
@@@ 
@@@ D 

@@@ @@@ 
PIN C3~ @ @ @ "./ @@@ 

@@@ @@@ 

~@@ @@@ 
@ @ @@@ 
@@O@@@@@@@@@@@ij@;@ 
@@@@@@@@@@@@@@@o@ 

~@@@@@@@@@@@@@@@o@ 

t \ 
2.29 REF SWAGGED 
1.52 • PIN 

450 CHAMFER (4 PL) 
(INDEX CORNER) 

Family: Ceramic Pin Grid Array Package 

Symbol 
Millimeters Inches 

Min Max Notes Min Max 

A 3.56 4.57 0.140 0.180 

Al 0.64 1.14 SOLID LID 0.025 0.045 

A2 23 0.30 SOLID LID 0.110 0.140 

A3 1.14 1.40 0.045 0.055 

B 0.43 0.51 0.017 0.020 

D 44.07 44.83 1.735 1.765 

Dl 40.51 40.77 1.595 1.605 

el 2.29 2.79 0.090 0.110 

L 2.54 3.30 0.100 0.130 

N 168 168 

Sl 1.52 2.54 0.060 0.100 

ISSUE IWS REVX 7/15/88 

Notes 

SEATING 
PLANEI 

0S (ALL PINS) I 

}=~ 
SWAGGED 

PIN 
DETAIL 

240296-30 

SOLID LID 

SOLID LID 

Figure 5.3. 1.68 Lead Ceramic PGA Package Dimensions 
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6.0 PACKAGE THERMAL 
SPECIFICATIONS 

The 860 microprocessor is specified for operation 
when T C (the case temperature) is within the range 
of 0°C-85°C. T c may be measured in any environ­
ment to determine whether the 860 microprocessor 
is within specified operating range. The case tem­
perature should be measured at the center of the 
top surface opposite the pins. 

T A (the ambient temperature) can be calculated 
from (JCA (thermal resistance from case to ambient) 
with the following equation: 

Typical values for (JCA at various airflows are given 
in Table 6.1 for the 1.75 sq. in., 168 pin, ceramic 
PGA. 

Table 6.2 shows the maximum T A allowable (without 
exceeding T d at various airflows and operating fre­
quencies (fCLK)' 

Note that T A is greatly improved by attaching "fins" 
or a "heat sink" to the package. P (the maximum 
power consumption) is calculated by using the maxi­
mum Icc at 5V as tabulated in the DC Characteris­
tics of section 7. 

Table S.1. Thermal Resistance {(JCA) at Various 
Airflows 

In DC/Watt 

Airflow-ft/min (m/sec) 

0 200 400 SOO 800 1000 
{OJ (1.01) (2.03) (3.04) (4.0S) (S.07) 

(JCA with 13 9 5.5 5.0 3.9 3.4 
Heat Sink' 

(JCA without 
17 14 11 9 7.1 6.6 

Heat Sink 

'0.285" high unidirectional heat sink (AI alloy 6061, 50 mil 
fin width, 150 mil center-to-center fin spacing). 

Table S.2. Maximum T A at Various Airflows 

InOC 

Airflow-ft/min (m/sec) 

fClK 0 200 400 SOO 800 1000 
(MHz) {OJ (1.01) (2.03) (3.04) (4.0S) (S.07) 

TA with 33.3 46 58 69 70 73 75 
Heat Sink' 40.0 43 56 67 69 72 74 

TA without 33.3 34 43 52 58 64 65 
Heat Sink 40.0 30 40 49 56 62 64 

'0.285" high unidirectional heat sink (AI alloy 6061, 50 mil fin width, 150 mil 
center-to-center fin spacing). 
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7.0 ELECTRICAL DATA 

Inputs and outputs are TTL compatible. All input and 
output timings are specified relative to the 1.5 volt 
level of the rising edge of ClK and refer to the point 
that the signal reaches 1.5V. 

7.1 Absolute Maximum Ratings 

Case Temperature T e under Bias ...... O°C to 85°C 

Storage Temperature .......... -65°C to + 150°C 

Voltage on Any Pin 
with Respect to Ground ........ -0.5 to Vee+ 0.5V 

7.2 D.C. Characteristics 

• Notice: Stresses above those listed under "Abso­
lute Maximum Ratings" may cause permanent dam­
age to the device. This is a stress rating only and 
functional operation of the device at these or any 
other conditions above those indicated in the opera­
tional sections of this specification is not implied Ex­
posure to absolute maximum rating conditions for 
extended periods may affect device reliability. 

NOTICE: Specifications contained within the 
following tables are subject to change. 

Table 7.1. DC Characteristics 

Symbol Parameter Min Max Units Notes 

VIL Input lOW Voltage -0.3 +0.8 V 
VIH Input HIGH Voltage 2.0 Vee+ 0.3 V 
VOL Output lOW Voltage 0.45 V (Note 1) 
VOH Output HIGH Voltage 2.4 V (Note 2) 
lee Power Supply Current 

ClK = 33.3 MHz 600 mA Vee@5V 
ClK = 40.0 MHz 650 mA Vee@5V 

III Input leakage Current ±15 /LA No pullup 
or pulldown 

ILO Output leakage Current ±15 /LA 
CIN Input Capacitance 15 pF 
Co 1/0 or Output Capacitance 15 pF 

CCLK Clock Capacitance 20 pF 

NOTES: 
1. This parameter is measured at 4.0 mA for address, data, and byte enables; at 5.0 mA for definition and control. 
2. This parameter is measured at 1.0 mA for address, data, and byte enables; at 0.9 mA for definition and control. 
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7.3 A.C. Characteristics 

Symbol 

t1 
t2 
t3 
t4 
t5 
t6a 
t6b 
t7 
t8 
t9 
t10 
t11 
t12 
t13 

NOTES: 

Table 7.2. A.C. Characteristics T e = 0 to 85°C, Vee = 5V ± 5% 
All timings measured at 1.5V unless otherwise specified. 

33.3 MHz 40.0 MHz 
Parameter Min Max Min Max 

(ns) (ns) (ns) (ns) 

ClK period 30 125 25 125 
ClK high time 7 5 
ClK low time 7 5 
ClK fall time 4 4 
ClK rise time 4 4 
A31-A3, PTB, W/R#, NENE# valid 3.5 38 3.5 29 
BEn# valid 3.5 41 3.5 32 
Float time, all outputs 3.5 30 3.5 25 
AOS#, BREQ, lOCK #, HlOA valid delay 3.5 26 3.5 21 
063-00 valid delay 3.5 47 3.5 43 
Setup time, all inputs except INT, HOLD 13 10 
Hold time, all inputs except INT, HOLD 4 4 
INT, HOLD setup time 22 15 
INT, HOLD hold time 5 5 

Test 
Conditions 

at2V 
at .8V 

50 pF load 
50 pF load 
(Note 1) 
50 pF load 
50 pF load 

(Note 2) 
(Note 2) 

1. Float condition occurs when maximum output current becomes less than ILO in magnitude. Float delay is not tested. 
2. INT and HOLD are asynchronous inputs. The setup and hold specifications are given for test purposes or to assure 
recognition on a specific rising edge of elK. 
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2.0V 
elK 

1.5V t3 

O.BV 

INPUT INPUT 
SETUP HOLD 

t12mln t13m!n 

INPUTS 

t10min t11min 

t6max/tBmax/t9ma: 

VALID 

AT 

240296-25 

Figure 7.1. elK, Input, and Output Timings 
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nom +15 ,----,----r----"T---,---, 

nom +10 I-----+--+---+----t:."c----=r 

TYPICAL' OUTPUT 
DELAY (ns) nom +5 1-----+--+----7oLf---::7""'----!-------1 

@ 1.5V 

nom I----~""'--+---+~';!I;;---';F-~-;-;;I-K#. HLDA 

nom -5 L-_.....J... __ -'-_--" __ -'-_--' 
25 50 75 100 125 

LOAD CAPACITANCE. CL (pf) 

150 

Graphs are not linear outside the CL range shown. 
nom = nominal value given in the AC timing table. 
'Typical part under worst-case conditions. 

240296-26 

Figure 7.2. Typical Output Delay vs Load Capacitance under Worst-Case Conditions 

TYPICAL' OUTPUT A S#. BREO. LOCK#. HLDA 
SLEW TIME (ns) 91----t----:;r-+----7'9---7''9 

(0.8- 2.0V) 

OL--~--'--~--'--~ 

25 50 75 100 125 150 

LOAD CAPACITANCE. CL (pf) 

NOTES: 
Graphs are not linear outside the CL range shown. 
'Typical part under worst-case conditions. 

240296-27 

Figure 7.3. Typical Slew Time vs Load Capacitance under Worst-Case Conditions 
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700 

600 

. 
500 <' 

,5. 
u 400 .9 

./ 

V "" ./ 

V 
,,/ 

V 
300 

200 
8 12 16 20 24 26 30 34 3840 

FREQUENCY (MHz) 

240296-28 

NOTES: 
Graphs are not linear outside the frequency range 
shown. 
'Worst-case supply current at 5V. 

Figure 7.4. Typical Icc vs Frequency 

8.0 INSTRUCTION SET 

Key to abbreviations: 

srct 

srctni 

src2 

rdest 

freg 

ireg 

ctr/reg 

#const 

A register (integer or floating-point 
depending on class of instruction) 
or a 16-bit immediate value. The 
immediate value is sign-extended 
for add and subtract operations 
and zero-extended for logical oper­
ations. 

Same as srct except that no im­
mediate value is permitted. 

A register (integer or floating-point 
depending on class of instruction). 

A register (integer or floating-point 
depending on class of instruction). 

A floating-point register. 

An integer register. 

One of the control registers fir, 
psr, dirbase, db, or fsr. 

A 16-bit immediate address offset 
that the 860 microprocessor sign­
extends to 32 bits when computing 
the effective address. 
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mem.x(address) The contents of the memory loca­
tion indicated by address with a 
size of x. 

.p 

.W 

.x 

.y 

.Z 

Ibroff 

sbrott 

brx 

srcts 

PM 

Precision specification. Unless oth­
erwise specified, floating-point op­
erations accept single- or double­
precision source operands and 
produce a result of equal or great­
er precision. Both input operands 
must have the same precision. The 
source and result precision are 
specified by a two-letter suffix to 
the mnemonic of the operation, as 
shown in the table below. 

Suffix 
Source Result 

Precision Precision 

.ss single single 

.sd single double 

.dd double double 

.ss (32 bits), or .dd (64 bits) 

.b (8 bits), .s (16 bits), or .11 (32 
bits) 

.I (32 bits), .d (64 bits), or .q (128 
bits) 

.I (32 bits, or .d (64 bits) 

A signed, 26-bit, immediate, rela­
tive branch offset 

A signed, 16-bit, immediate, relat­
vie branch offset 

A function that computes the tar­
get address of a branch by shifting 
the offset (either Ibrott or sbroff) 
left by two bits, sign-extending it to 
32 bits, and adding the result to 
the address of the current control­
transfer instruction plus four. 

An integer register or a 5-bit imme­
diate that is zero-extended to 32 
bits. 

The pixel mask, which is consid­
ered as an array of eight bits 
PM[Oj .. PM[71, where PM[Oj is the 
least significant bit. 



inter i860TM MICROPROCESSOR 

8.1 Instruction Definitions in Alphabetical Order 

adds src1, src2, rdest . ............................................................ Add Signed 
rdest +- src 1 + src2 
OF +- (bit 31 carry =1= bit 30 carry) 
CC set if src2 < comp2(src1) (signed) 
CC clear if src2 2 comp2(src1) (signed) 

addu src1, src2, rdest .......................................................... Add Unsigned 
rdest +- src1 + src2 
OF +- bit 31 carry 
CC +- bit 31 carry 

and src1, src2, rdest ............................................................ Logical AND 
rdest +- src1 and src2 
> CC set if result is zero, cleared otherwise 

andh # const, src2, rdest .................................................... Logical AND High 
rdest +- (# const shifted left 16 bits) and src2 
> CC set if result is zero, cleared otherwise 

and not src1, src2, rdest ....................................................... Logical AND NOT 
rdest +- not src1 and src2 
> CC set if result is zero, cleared otherwise 

andnoth # cons!, src2, rdest . ............................................... Logical AND NOT High 
rdest +- not (# const shifted left 16 bits) and src2 
> CC set if result is zero, cleared otherwise 

bc Ibroff .................................................................... Branch on ee 
IF CC = 1 
THEN continue execution at brx(lbroff) 
FI 

bc.t Ibroff ............................................................. Branch on ee, Taken 
IF CC = 1 
THEN execut one more sequential instruction 

continue execution at brx(lbroff) 
ELSE skip next sequential instruction 
FI 

bla src 1 ni, src2, sbroff . .............................................. Branch on Lee and Add 
LCC-temp clear if src2 < comp2(src1ni) (signed) 
LCC-temp set if src2 2 comp2(src1ni) (signed) 

src2 +- src 1 ni + src2 
Execute one more sequential instruction 
IF LCC 
THEN LCC +- LCC-temp 

Continue execution at brx(sbroff) 
ELSE LCC +- LCC-temp 
FI 

bnc Ibroff ................................................................ Branch on Not ee 
IF CC = 0 
THEN continue execution at brx(lbroff) 
FI 

bnc.t Ibroff ......................................................... Branch on Not ee, Taken 
IF CC = 0 
THEN execute one more sequential instruction 

continue execution at brx(lbroff) 
ELSE skip next sequential instruction 
FI 

br Ibroff . .................................................... Branch Direct Unconditionally 
Execute one more sequential instruction. 
Continue execution at brx(/broff). 
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bri [sre 1 nil ................................................. Branch indirect unconditionally 

bte 

Execute one more sequential instruction 
IF any trap bit in psr is set 
THEN copy PU to U, PIM to 1M in psr 

clear trap bits 

FI 

IF OS is set and DIM is reset 
THEN enter dual-instruction mode after executing one 

instruction in single-instruction mode 
ELSE IF OS is set and DIM is set 

FI 

THEN enter single-instruction mode after executing one 
instruction in dual-instruction mode 

ELSE IF DIM is set 

FI 

THEN enter dual-instruction mode 
for next two instructions 

ELSE enter single-instruction mode 
for next two instructions 

FI 

Continue execution at address in sre1ni 
(The original contents of sre1ni is used even if the next instruction 
modifies sre1ni. Does not trap if sre1ni is misaligned.) 

IF 
THEN 
FI 

sre1s, sre2, sbroff ..... ................................................... Branch If Equal 
sre1s = sre2 
continue execution at brx(sbrotf) 

btne sre1s, sre2, sbrott ... ................................................. Branch If Not Equal 
IF 
THEN 
FI 

sre1s oF sre2 
continue execution at brx(sbroff) 

call Ibrott . .................................................................. Subroutine Call 
r1 +- address of next sequential instruction + 4 
Execute one more sequential instruction 
Continue execution at brx(lbroff) 

calli [sre1ni} ...................................................... .. Indirect Subroutine Call 
r1 +- address of next sequential instruction + 4 
Execute one more sequential instruction 
Continue execution at address in sre1ni 

(The original contents of sre1ni is used even if the next instruction 
modifies sre1ni. Does not trap if sre1ni is misaligned.) 

fadd.p sre 1, sre2, rdest ...................................................... Floating-Point Add 
rdest +- sre1 + sre2 

faddp sre1, sre2, rdest. ..... ............................................. . Add with Pixel Merge 
rdest +- sre1 + sre2 
Shift and load MERGE register as defined in Table 8.1 

faddz sre1, sre2, rdest ....................................................... Add with Z Merge 
rdest +- sre1 + sre2 
Shift MERGE right 16 and load fields 31..16 and 63 .. 48 

fladd.w sre1, sre2, rdest ....................................................... Long-Integer Add 
rdest +- sre1 + sre2 

flsub.w sre1, sre2, rdest . .................................................. Long-Integer Subtract 
rdest +- sre1 - sre2 

flx.p sre1, rdest . ......................................... Floating-Point to Integer Conversion 
rdest +- 64- bit value with low-order 32 bits equal to integer part of sre1 rounded 

Floating-Point Load 
fld.y sre1(sre2j, treg ............................................................... . (Normal) 
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fld.y src1(src2)+ +, freg . .................................................... (Autoincrement) 
treg +- mem.y (src1 + src2) 
IF autoincrement 
THEN src2 +- src1 + src2 
FI 

Cache Flush 
flush # const(src2) .................................................................. (Normal) 
flush # const(src2) + + ...................................................... (Autoincrement) 

Replace block in data cache with address (# const + src2). 
Contents of block undefined. 
IF autoincrement 
THEN src2 +- #const + src2 
FI 

fmlow.p src1, src2, rdest . ............................................. Floating-Point Multiply Low 
rdest +- low-order 53 bits of src1 mantissa x src2 mantissa 
rdest bit 53 +- most significant bit of mantissa 

fmov.r src1, rdest . ................................................ Floating-Point Reg-Reg Move 
Assembler pseudo-operation 

fmov.ss src1, rdest = fiadd.ss src1, fO, rdest 
fmov.dd src1, rdest = fiadd.dd src1, fO, rdest 
fmov.sd src1, rdest = fadd. sd src1, fO, rdest 
fmov.ds src1, rdest = fadd.ds src1, fO, rdest 

fmul.p src1, src2, rdest .................................................. Floating-Point Multiply 
rdest +- src1 x src2 

fnop .................................................................. Floating-Point No Operation 
Assembler pieudo-operation 

fnop = shrd rO, rO, rO 
form src1, rdest .................................... ................. OR with MERGE Register 

rdest +- src1 OR MERGE 
MERGE +- 0 

frcp.p src2, rdest .................................................... Floating-Point Reciprocal 
rdest +- 1/ src2 with maximum mantissa error < 2-7 

frsqr.p src2, rdest ........................................ Floating-Point Reciprocal Square Root 
rdest +- 1/SQRT (src2) with maximum mantissa error < 2-7 

Floating-Point Store 
fst.y treg, src1(src2) ................................................................ (Normal) 
fst.y treg, src1(src2) + + ..................................................... (Autoincrement) 

mem.y (src2 + src1) +- treg 
IF autoincrement 
THEN src2 +- src1 + src2 
FI 

fsub.p src 1, src2, rdest . ................................................. Floating-Point Subtract 
rdest +- src1 - src2 

ftrunc.p src1, rdest ......................................... . Floating-Pointto Integer Conversion 
rdest +- 64-bit value with low-order 32 bits equal to integer part of src1 

fxfr src1, ireg . ............................................... Transfer F-P to Integer Register 
ireg +- src1 

fzchkl src1, src2,rdest ................................................... 32-Bit Z-Buffer Check 
Consider src1, src2, and rdest as arrays of two 32-bit 

fields src1(0) .. src1(1), src2(0) .. src2(1), and rdest(0) .. rdest(1) 
where zero denotes the least-significant field. 

PM +- PM shifted right by 2 bits 
FOR i = 0 to 1 
DO 

PM Ii + 61 +- src2(i) ~ src1(i) (unsigned) 
rdest(i) +- smaller of src2(i) and src1(i) 

00 
MERGE +- 0 

60 



inter 1860TM MICROPROCESSOR 

fzchks src1, src2, rdest ................................................... 16-Bit Z-Buffer Check 
Consider src1, src2, and rdest as arrays of four 16-bit 

fields src1(O) .. src1(3), src2(O) .. src2(3), and rdest(O)..rdest(3) 
where zero denotes the least-significant field. 

PM +- PM shifted right by 4 bits 
FOR i = 0 to 3 
DO 

PM (j + 41 +- src2(i) s src1(i) (unsigned) 
rdest(i) +- smaller of src2(i) and src1(i) 

00 
MERGE +- 0 

intovr .......................................................... Software Trap on Integer Overflow 
If OF in epsr = 1, generate trap with IT set in psr. 

ixfr src1ni, freg . ............................................. Transfer Integer to F-P Register 
freg +- src 1 ni 

Id_c ctr1reg, rdest ................................................ Load from Control Register 
rdest +- ctr1 reg 

Id_x src1(src2), rdest ........................................................... Load Integer 
rdest +- mem.x (src1 + src2) 

lock .................................................................. Begin Interlocked Sequence 
Set BL in dirbase. The next load or store locks the bus. 
Disable interrupts until the bus is unlocked. 

mov src2, rdest ...................................................... Register-Register Move 
Assembler pseudo-operation 

mov src2, rdest = shl rO, src2, rdest 

nop ....................................................................... Core-Unit No Operation 
Assembler pseudo-operation 

nop = sh1 rO, rO, rO 

or src1, src2,rdest ............................................................. Logical OR 
rdest +- src1 OR src2 
> CC set if result is zero, cleared otherwise 

orh # cons!, src2, rdest . ..................................................... Logical OR High 
rdest +- (# const shifted left 16 bits) OR src2 
> CC set if result is zero, cleared otherwise 

pfadd.p src1, src2, rdest . ............................................ Pipelined Floating-Point Add 
rdest +- last A-stage result 
Advance a pipeline one stage 
A pipeline first stage +- src1 + src2 

pfaddp src1, src2, rdest .......................................... Pipelined Add with Pixel Merge 
rdest +- last-stage I-result 
last stage I-result +- src1 + src2 
Shift and load MERGE register from last-stage I-result as defined in Table 8.1 

pfaddz src1, src2, rdest ......................... ..................... Pipelined Add with Z Merge 
rdest +- last-stage I-result 
last stage I-result +- src1 + src2 
Shift MERGE right 16 and loadfields 31..16 and 63 .. 48 from last-stage I-result 

pfam.p src1, src2, rdest . ................................ Pipelined Floating-Point Add and Multiply 
rdest +- last A-stage result 
Advance A and M pipeline one stage (operands accessed before advancing pipeline) 
A pipeline first stage +- A-op1 + A-op2 
M pipeline first stage +- M-op1 x M-op2 
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pfeq.p src1, src2, rdest ................................. . PipelinedFloating-Point Equal Compare 
rdest +- last A·stage result 
CC set if src1 = src2, else cleared 
Advance A pipeline one stage 
A pipeline first stage is undefined, but no result exception occurs 

pfgt.p src1, src2, rdest ......................... Plpelined Floating-Point Greather-Than Compare 
(Assembler clears R-bit of instruction) 
rdest +- last A-stage result 
CC set if src1 > src2, else cleared 
Advance A pipeline one stage 
A pipeline first stage is undefined, but no result exception occurs 

pfiadd.w src1, src2,rdest ..... ......................................... Pipelined Long-Integer Add 
rdest +- last-stage I-result 
last-stage I-result +- src1 + src2 

pfisub.w src1, src2, rdest ......................................... Pipelined Long-Integer Subtract 
rdest +- last-stage I-result 
last-stage I-result +- src1 - src2 

pfix.p src1, rdest ................................ Pipelined Floating-Pointto Integer Conversion 
rdest +- last A-stage result 
Advance A pipeline one stage 
A pipeline first stage +- 64-bit value with low-order 32 bits 

equal to integer part of src1 rounded 

Pipelined Floating-Point Load 
pfld.z src1(src2),freg ................................................................ (Normal) 
pfld.z src1(src2) + + ,freg ... .................................................. (Autolncrement) 

freg +- mem.z (third previous pfld's (src1 + src2) 
(where .Z is precision of third previous pfld.z) 

If autoincrement 
THEN src2 +- src1 + src2 
FI 

pfle.p src 1, src2, rdest ............................... Pipe lined F-P Less-Than or Equal Compare 
Assembler pseudo-operation, identical to pfgt.p except that 

assembler sets R-bit of instruction. 
rdest +- last A-stage result 
CC clear if src1 :5: src2, else set 
Advance A pipeline one stage 
A pipeline first stage is undefined, but no result exception occurs 

pfmam.p src1, src2, rdest ..... ............................ Pipelined Floating-Point Add and Multiply 
rdest +- last M-stage result 
Advance A and M pipeline one stage (operands accessed before advancing pipeline) 
A pipeline first stage +- A-op1 - A-op2 
M pipeline first stage +- M-op1 x M-op2 

pfmov.r src1, rdest ................ ; ...................... Pipelined Floating-Point Reg-Reg Move 
Assembler pseudo-operation 

pfmov.ss src1, rdest = pfiadd.ss src1, fO, rdest 
pfmov.dd src1, rdest = pfiadd.dd src1, fO, rdest 
pfmov.sd src1, rdest = pfadd.sd src1, fO, rdest 
pfmov.ds src1, rdest = pfadd.ds src1, fO, rdest 

pfmsm.p src1, src2, rdest ............................ Pipelined Floating-Point Subtract and Multiply 
rdest +- last M-stage result 
Advance A and M pipeline one stage (operands accessed before advancing pipeline) 
A pipeline first stage +- A-op1 - A-op2 
M pipeline first stage +- M-op1 x M-op2 

pfmul.p src1, src2, rdest ......................................... Pipe lined Floating-Point Multiply 
rdest +- last M-stage result 
Advance M pipeline one stage 
M pipeline first stage +- src1 x src2 
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pfmul3.p sret, sre2, rdes! . .......................................... Three-Stage Pipelined Multiply 
rdes! ~ last M-stage result 
Advance 3-Stage M pipeline one stage 
M pipeline first stage ~ sret x sre2 

pform sre t, rdes! . ............................................. Pipelined OR to MERGE Register 
rdes! ~ last-stage I-result 
last stage I-result ~ sret OR MERGE 
MERGE ~ 0 

pfsm.p sre1, sre2, rdes! ............................ Pipelined Floating-Point Subtract and Multiply 
rdes! ~ last A-stage result 
Advance A and M pipeline one stage (operands accessed before advancing pipeline) 
A pipeline first stage ~ A-op1 - A-op2 
M pipeline first stage +- M-op1 x M-op2 

pfsub.p sre1, sre2, rdest ....................................... . Pipelined Floating-Point Subtract 
rdes! ~ last A-stage result 
Advance A pipeline one stage 
A pipeline first stage ~ sre1 + sre2 

pftrunc.p sre1, rdes! ................................ Pipelined Floating-Point to Integer Conversion 
rdes! ~ last A-stage result 
Advance A pipeline one stage 
A pipeline first stage ~ 64-bit value with low-order 32 bits 

equal to integer part of sre1 

pfzchkl sret, sre2, rdes! ..................... .................... . Pipelined 32-Bit Z-Buffer Check 
Consider sre1, sre2, and rdes!, as arrays of two 32-bit 

fields sre1(O) .. sre1(1), sre2(O) .. sre2(1), and rdest(O) .. rdest(1) 
where zero denotes the least significant field. 

PM ~ PM shifted right by 2 bits 
FOR i = 0 to 1 
DO 

PM [i + 6) ~ sre2(i) s sre1(i) (unsigned) 
rdest(i) ~ last-stage I-result 
last-stage I-result ~ smaller of sre2(i) and sre1(i) 

00 
MERGE ~ 0 

pfzchks sre1, sre2, rdest .......................................... Pipelined 16-Bit Z-Buffer Check 
Consider sre1, sre2, and rdest, as arrays of four 16-bit 

fields sre1(O) .. sre1(3), sre2(O) .. sre2(3), and rdest(O) .. rdest(3) 
where zero denotes the least significant field. 

PM ~ PM shifted right by 4 bits 
FORi = 0 to 3 
DO 

PM [i + 4) ~ sre2(i) s sre1(i) (unsigned) 
rdest(i) ~ last-stage I-result 
last-stage I-result ~ smaller of sre2(i) and sre1(i) 

00 
MERGE ~ 0 

pst.d treg, #eons!(sre2) ........................................................... Pixel Store 
pst.d treg, #eons!(sre2)+ + ........................................ Pixel Store Autoincrement 

Pixels enabled by PM in mem.O (sre2 + #eonsf) ~ treg 
Shift PM right by a/pixel size (in bytes) bits 
IF autoincrement THEN sre2 ~ #eonst + sre2 FI 

shl srdet, sre2,rdest ................................ .............................. Shift Left 
rdest ~ sre2 shifted left by sre1 bits 

shr sre1, sre2, rdes! .. ........... " ........ , ...................................... Shift Right 
SC (in psr) ~ sre1 
rdes! ~ sre2 shifted right by sret bits 
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shra src1, src2, rdest ................................................... Shift Right Arithmetic 
rdest +- src2 arithmetically shifted right by src1 bits 

shrd src1, src2, rdest ...................................................... Shift Right Double 
rdest +- low-order 32 bits of src1:src2 shifted right by SC bits 

st.c src1ni, ctrlreg .................................................. Store to Control Register 
ctrlreg +- src 1 ni 

st.x src1ni, #const(src2) ....................................................... Store Integer 
mem.x (src2 + #consf) +- src1ni 

subs src1, src2, rdest ........................................................ Subtract Signed 
rdest +- src 1 - src2 
OF +- (bit 31 carry *- bit 30 carry) 
CC set if src2 > src1 (signed) 
CC clear if src2 !S: src1 (signed) 

subu src1, src2, rdest ...................................................... Subtract Unsigned 
rdest +- src1 - src2 
OF +- NOT (bit 31 carry) 
CC +- bit 31 carry 
(Le. CC set if src2 !S: src1 (unsigned) 

CC clear if src2 > src1 (unsigned) 

trap src 1, src2, rdest .......................................................... Software Trap 
Generate trap with IT set in psr 

unlock ................................................................. End Interlocked Sequence 
Clear BL in dirbase. The next load or store unlocks the bus. 

xor src1, src2, rdest . ................................................... Logical Exclusive OR 
rdest +- src1 XOR src2 
CC set if result is zero, cleared otherwise 

xorh # canst, src2, rdest ............................................ Logical Exclusive OR High 
rdest +- (# canst shifted left 16 bit) XOR src2 
CC set if result is zero, cleared otherwise 
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Table 8.1. FADDP MERGE Update 

Pixel 
Fields Loaded From 

Right Shift 
Size 

Result into MERGE 
Amount 

(from PS) (Field Size) 

8 63 .. 56,47 .. 40,31..24,15 .. 8 8 
16 63 .. 58,47 .. 42,31..26,15 .. 10 6 
32 63 .. 56, 31 .. 24 8 

8.2 Instruction Format and Encoding 

All instructions are one word long and begin on a 
word boundary. There are two general core-instruc­
tion formats: REG-format and CTRL-format. Within 
the REG-format are several variations. 

8.2.1 REG·FORMAT INSTRUCTIONS 

The src2 field selects one of the 32 integer registers 
(most instructions) or five control registers (st.c and 
Id.c). Dest selects one of the 32 integer registers 
(most instructions) or floating-point registers (fld, 
fst, pfld, pst, ixfr). For instructions where src1 is 
optionally an immediate value, bit 26 of the opcode 
(I-bit) indicates whether src1 is an immediate. If bit 
26 is clear, an integer register is used; if bit 26 is set, 
src1 is contained in the low-order 16 bits, except for 
bte and btne instructions. For bte and btne, the 
five-bit immediate value is contained in the src1 
field. For st, bte, btne, and bla, the upper five bits of 
the offset or broffset are contained in the dest field 

instead of src1, and the lower 11 bits of offset are 
the lower 11 bits of the instruction. 

For Id and st, bits 28 and zero determine operand 
size as follows: 

Bit 28 Bit 0 Operand Size 

0 0 8-bits 
0 1 8-bits 
1 0 16-bits 
1 1 32-bits 

When src1 is an immediate and bit 28 is set, bit zero 
of the immediate value is forced to zero. 

For fld, fst, pfld, pst, and flush, bit 0 selects autoin­
crement addressing if set. Bits one and two select 
the operand size as follows: 

Bit 1 Bit2 Operand Size 

0 0 64-bits 
0 1 128-bits 
1 0 32-bits 
1 1 32-bits 

When src1 is an immediate value, bits zero and one 
of the immediate value are forced to zero to main­
tain alignment. When bit one of the immediate value 
is clear, bit two is also forced to zero. 

31 25 20 
General Format 

15 10 o 

OPCODE!I SRC2 DEST SRC1 IMMEDIATE, OFFSET, OR NULL 

16·Bit Immediate Variant (except bte and btne) 
31 25 20 15 o 

OPCODE 11 1 SRC2 1 DEST 1 IMMEDIATE 

st, bla, bte, and btne 
31 25 20 15 10 o 

OPCODE!I SRC2 
OFFSET SRC1 

OFFSET LOW 
HIGH SRC1S 

bte and btne with 5·Bit Immediate 
25 20 15 10 o 

SRC2 
OFFSET 

IMMEDIATE OFFSET LOW 
HIGH 
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8.2.2 REG-FORMAT OPCODES 
31 26 

Id.x Load Integer 0 0 0 L 0 I 
st.x Store Integer 0 0 0 L 1 1 
ixfr Integer to F-P Reg Transfer 0 0 0 0 1 0 

(reserved) 0 0 0 1 1 0 
fld.x, fst.x Load/Store F-P 0 0 1 0 LS I 
flush Flush 0 0 1 1 0 1 
pst.d Pixel Store 0 0 1 1 1 1 
Id.c, st.c Load/Store Control Register 0 0 1 1 LS 0 
bri Branch Indirect 0 1 0 0 0 0 
trap Trap 0 1 0 0 0 1 

(Escape for F-P Unit) 0 1 0 0 1 0 
(Escape for Core Unit) 0 1 0 0 1 1 

bte, btne Branch Equal or Not Equal 0 1 0 1 E I 
pfld.y Pipelined F-P Load 0 1 1 0 0 I 

(CTRL-Format Instructions) 0 1 1 x x x 
addu, Os, subu, Os, Add/Subtract 1 0 0 SO AS I 
shl, shr Logical Shift 1 0 1 0 LR I 
shrd Double Shift 1 0 1 1 0 0 
bla Branch LCC Set and Add 1 0 1 1 0 1 
shra Arithmetic Shift 1 0 1 1 1 I 
and (h) AND 1 1 0 0 H I 
andnot(h) ANDNOT 1 1 0 1 H I 
or(h) OR 1 1 1 0 H I 
xor(h) XOR 1 1 1 1 H I 

(reserved) 1 1 x x 1 0 

L Integer Length AS Add/Subtract 
0 -8 bits 0 -Add 
1 -16 or 32 bits (selected by bit 0) 1 -Subtract 

LS Load/Store LR Left/Right 
0 -Load 0 -Left Shift 
1 -Store 1 -Right Shift 

SO Signed/Ordinal E Equal 
0 -Ordinal 0 -Branch on Not Equal 
1 -Signed 1 -Branch on Equal 

H High Immediate 
0 --and,or, andnot, xor 0 -src 1 is register 
1 --andh, orh, andnoth, xorh 1 -src1 is immediate 

8.2.3 CORE ESCAPE INSTRUCTIONS 

31 26 15 10 5 0 

1
0 1 0 0 1 1 I reserved I SRCI I reserved I OPCODE I 
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8.2.4 CORE ESCAPE OPCODES 
4 o 

(reserved) 0 0 0 0 0 
lock Begin Interlocked Sequence 0 0 0 0 1 
calli Indirect Subroutine Call 0 0 0 1 0 

(reserved) 0 0 0 1 1 
intovr Trap on Integer Overflow 0 0 1 0 0 

(reserved) 0 0 1 0 1 
(reserved) 0 0 1 1 0 

unlock End Interlocked Sequence 0 0 1 1 1 
(reserved) 0 1 x x x 
(reserved) 1 0 x x x 
(reserved) 1 1 x x x 

8.2.5 CTRL-FORMAT INSTRUCTIONS 

31 28 25 

BROFFSET 

BROFFSET is a signed 26-bit relative branch offset. 

8.2.6 CTRL-FORMAT OPCODES 
28 26 

br Branch Direct 0 1 0 
call Call 0 1 1 
bc(.t) Branch on CC Set 1 0 T 
bnc{.t) Branch on CC Clear 1 1 T 

T Taken 
o -bc or bnc 
1 -bc.t or bnc.t 

8.2.7 FLOATING-POINT INSTRUCTION ENCODING 

31 25 20 15 

SRC2 DEST SRC1 OPCODE 

SRC1, SRC2 -Source; one of 32 floating-point registers 
DEST -Destination register 

(instructions other than fxfr) one of 32 floating-point registers 
(fxfr) one of 32 integer registers 

P Pipelining 
1 -Pipelined instruction mode 
o -Scalar instruction mode 

D Dual-Instruction Mode 
1 -Dual-instruction mode 
o -Single-instruction mode 
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S Source Precision 
1 -Double-precision source operands 
o -Single-precision source operands 

R Result Precision 
1 -Double-precision result 
o -Single-precision result 

o 
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8.2.8 FLOATING-POINT OPCODES 
6 

pfam Add and Multiply' 
pfmam Multiply with Add' 0 
pfsm Subtract and Multiply' 

0 
pfmsm Multiply with Subtract' 
(p)fmul Multiply 0 
fmlow Multiply Low 0 
frep Reciprocal 0 
frsqr Reciprocal Square Root 0 
(p)fadd Add 0 
(p)fsub Subtract 0 
(p)fix Fix 0 
pfgt/pfle** Greater Than 0 
pfeq Equal 0 
(p)ftrune Truncate 0 
fxfr Transfer to Integer Register 1 
(p)fiadd Long-Integer Add 1 
(p)fisub Long-Integer Subtract 1 
(p)fzehkl Z-Check Long 1 
(p)fzehks Z-Check Short 1 
(p)faddp Add with Pixel Merge 1 
(p)faddz Add with Z Merge 1 
(p)form OR with MERGE Register 1 

'pfam and pfsm have P-blt set; pfmam and pfmsm have P-bit clear . 
•• pfgt has R bit cleared; pfle has R bit set. 
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0 0 OPC 

0 1 OPC 

1 0 0 0 0 0 
1 0 0 0 0 1 
1 0 0 0 1 0 
1 0 0 0 1 1 
1 1 0 0 0 0 
1 1 0 0 0 1 
1 1 0 0 1 0 
1 1 0 1 0 0 
1 1 0 1 0 1 
1 1 1 0 1 0 
0 0 0 0 0 0 
0 0 1 0 0 1 
0 0 1 1 0 1 
0 1 0 1 1 1 
0 1 1 1 1 1 
0 1 0 0 0 0 
0 1 0 0 0 1 
0 1 1 0 1 0 
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The following table shows the opcode mnemonics that generate the various encodings of ope and explains 
each encoding. 

Table 8.2. ope Encoding 

ope PFAM PFSM M-Unit M-Unit A-Unit A-Unit T K 
Mnemonic Mnemonic op1 op2 op1 op2 Load Load' 

0000 r2p1 r2s1 KR src2 src1 M result No No 
0001 r2pt r2st KR src2 T M result No Yes 
0010 r2ap1 r2as1 KR src2 src1 A result Yes No 
0011 r2apt r2ast KR src2 T A result Yes Yes 
0100 i2p1 i2s1 KI src2 src1 M result No No 
0101 i2pt i2st KI src2 T M result No Yes 
0110 i2ap1 i2as1 KI src2 src1 A result Yes No 
0111 i2apt i2ast KI src2 T A result Yes Yes 
1000 rat1p2 rat1s2 KR A result src1 src2 Yes No 
1001 m12apm m12asm src1 src2 A result M result No No 
1010 ra1p2 ra1s2 KR A result src1 src2 No No 
1011 m12ttpa m12ttsa src1 src2 T A result Yes No 
1100 iat1p2 iat1s2 KI A result src1 src2 Yes No 
1101 m12tpm m12tsm src1 src2 T M result No No 
1110 ia1p2 ia1s2 KI A result src1 src2 No No 
1111 m12tpa m12tsa src1 src2 T A result No No 

ope PFMAM PFMSM M-Unit M-Unit A-Unit A-Unit T K 
Mnemonic Mnemonic op1 op2 op1 op2 Load Load' 

0000 mr2p1 mr2s1 KR src2 src1 M result No No 
0001 mr2pt mr2st KR src2 T M result No Yes 
0010 mr2mp1 mr2ms1 KR src2 src1 M result Yes No 
0011 mr2mpt mr2mst KR src2 T M result Yes Yes 
0100 mi2p1 mi2s1 KI src2 src1 M result No No 
0101 mi2pt mi2st KI src2 T M result No Yes 
0110 mi2mp1 mi2ms1 KI src2 src1 M result Yes No 
0111 mi2mpt mi2mst KI src2 T M result Yes Yes 
1000 mrmt1p2 mrmt1s2 KR M result src1 src2 Yes No 
1001 mm12mpm mm12msm src1 src2 M result M result No No 
1010 mrm1p2 mrm1s2 KR M result src1 src2 No No 
1011 mm12ttpm mm12ttsm src1 src2 T A result Yes No 
1100 mimt1p2 mimt1s2 KI M result src1 src2 Yes No 
1101 mm12tpm mm12tsm src1 src2 T M result No No 
1110 mim1p2 mim1s2 KI M result src1 src2 No No 
1111 mm12tpm mm12tsm src1 src2 T M result No No 

'If K·load is set, KR is loaded when operand·1 of the multiplier is KR; KI is loaded when operand·1 of the multiplier is KI. 
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8.3 Instruction Timings 

860 microprocessor instructions take one clock to 
execute unless a freeze condition is invoked. Freeze 
conditions and their associated delays are shown in 

Freeze Condition 

Instruction-cache miss 

Reference to destination of load instruction that 
misses 

fld miss 

cali/calli/ixfr/fxfr/ld.c/st.c and data cache miss 
processing in progress 

Id/st/pfld/fld/fst and data cache miss 
processing in progress 

Reference to dest of Id, call, calli, fxfr, or Id.c in 
the next instruction 
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the table below. Freezes due to multiple simulta­
neous cache misses result in a delay that is the sum 
of the delays for processing each miss by itself. Oth­
er multiple freeze conditions usually add only the de­
lay of the longest individual freeze. 

Delay 

Number of clocks to read instruction (from ADS 
clock to first READY # clock) plus time to last 
READY # of block when jump or freeze occurs 
during miss processing plus two clocks if data-
cache being accessed when instruction-cache 
miss occurs. 

One plus number of clocks to read data (from 
ADS # clock to first READY # clock) minus number 
of instructions executed since load (not counting 
instruction that references load destination) 

One plus number of clocks from ADS# to first 
READY# 

One plus number of clocks until first READY # 
returned 

One plus number of clocks until last READY # 
returned 

One clock 
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Freeze Condition Delay 

Reference to destof fld/pfldlixfr in the next two Two clocks in the first instruction; one in the 
instructions second instruction 

bc/bnc/bc.tlbnc.t following fadd/fsub/pfegl One clock 
pfgt 

Src1 of multiplier operation refers to result of One dock 
previous operation 

Floating-point operation or fst and scalar If the scalar operation is fadd, fix, fmlow, fmul.ss, 
operation in progress other than frcp or frsqr fmul.sd, ftrunc, or fsub, three minus the number 

of instructions executed after the scalar operation. 
If the scalar operation is fmul.dd, four minus the 
number of instructions executed after it. Add one if 
the precision of the result of the previous scalar 
operation is different than that of the source. Add 
one if the floating-point operation is pipelined and 
its destination is not fO. If the sum of the above 
terms is negative, there is no delay. 

Multiplier operation preceded by a double- One clock 
precision multiply 

TLB miss Five plus the number of clocks to finish two reads 
plus the number of clocks to set A-bits (if 
necessary) 

pfld when three pfld's are outstanding One plus the number of clocks to return data from 
first pfld 

pfld hits in the data cache Two plus the number of clocks to finish all 
outstanding accesses 

Store pipe full (two internal plus outstanding bus One plus the number of clocks until READY # 
cycles) and st/fst miss, Id miss, or flush with active on next write data 
modified block 

Address pipe full (one internal plus outstanding Number of clocks until next address can be issued 
bus cycles) and Id/fld/plfd/st/fst 

Id/fld following stlfst hit One clock 

Delayed branch not taken One clock 

Nondelayed branch taken One clock 

Branch indirect br One clock 

st.c Two clocks 

Result of graphics-unit instruction (other than One clock 
fmov) used in next instruction when the next 
instruction is an adder- or multiplier-unit instruction 

Result of graphics-unit instruction used in next One clock 
instruction when the next instruction is a graphics-
unit instruction 

flush followed by flush Two clocks 

fst followed by pipelined floating-paint operation One clock 
that overwrites the register being stored 
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8.4 Instruction Characteristics 

The following table lists some of the characteristics 
of each instruction. The characteristics are: 

• What processing unit executes the instruction. 
The codes for processing units are: 
A Floating-point adder unit 
E Core execution unit 
G Graphics (vector-integer) unit 
M Floating-point multiplier unit 

• Whether the instruction is pipelined or not. A P 
indicates that the instruction is pipelined. 

• Whether the instruction is a delayed branch in­
struction. A D marks the delayed branches. 

• Whether the instruction changes the condition 
code CC. A CC marks those instructions that 
change CC. 

• Which faults can be caused by the instruction. 
The codes used for exceptions are: 

IT Instruction Fault 
SE Floating-Point Source Exception 
RE Floating-Point Result Exception, including 

overflow, underflow, inexact result 
DAT Data Access Fault 

The instruction access fault IAT and the interrupt 
trap IN are not shown in the table because they 
can occur for any instruction. 

• Performance notes. These comments regarding 
optimum performance are recommendations 
only. If these recommendations are not followed, 
the 860 microprocessor automatically waits the 
necessary number of clocks to satisfy internal 
hardware requirements. The following notes de­
fine the numeric codes that appear in the instruc­
tion table: 

1. The following instruction should not be a con­
ditional branch (bc, bnc, bc.t, or bnc.t). 

2. The destination should not be a source oper­
and of the next two instructions. 
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3. A load should not directly follow a store that is 
expected to hit in the data cache. 

4. When the prior instruction is scalar, sret 
should not be the same as the rdes! of the 
prior operation. 

5. The freg should not reference the destination 
of the next instruction if that instruction is a 
pipelined floating-point operation. 

6. The destination should not be a source oper­
and of the next instruction. 

7. When the prior operation is scalar and multipli­
er opt is sret, sre2 should not be the same as 
the rdes! of the prior operation. 

8. When the prior operation is scalar, sret and 
sre2 of the current operation should not be the 
same as rdes! of the prior operation. 

• Programming restrictions. These indicate combi­
nations of conditions that must be avoided by 
programmers, assemblers, and compilers. The 
following notes define the alphabetic codes that 
appear in the instruction table: 

a. The sequential instruction following a delayed 
control-transfer instruction may not be another 
control-transfer instruction (except in the case 
of external interrupts), nor a trap instruction, 
nor the target of a control-transfer instruction. 

b. When using a bri to return from a trap handler, 
programmers should take care to prevent traps 
from occurring on that or on the next sequen­
tial instruction. 1M should be zero (interrupts 
disabled) when the bri is executed. 

c. If rdes! is no! zero, sret must not be the same 
as rdest 

d. When the multiplier opt is sret, sret must not 
be the same as rdes!. 

e. If rdes! is no! zero, sret and sre2 must not be 
the same as rdes!. 
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Instruction 
Execution Pipelined? Sets Faults 

Performance Programming 
Unit Delayed? CC? Notes Restrictions 

adds E CC 1 
addu E CC 1 
and E CC 
andh E CC 
andnot E CC 
andnoth E CC 
bc E 
bc.t E D a 
bla E D a 
bnc E 
bnc.t E D a 
br E D a 
brl E D a,b 
bte E 
btne E 
call E D 2 a 
calli E D 2 a 
fadd.p A SE,RE 
faddp G 8 
faddz G 8 
fiadd.z G 8 
flsub.z G 8 
fix.p A SE,RE 
fld.y E DAT 2,3 
flush E 
fmlow.p M 4 
fmul.p M SE,RE 4 
form G 8 
frep.p M SE,RE 
frsqr.p M SE,RE 
fst.y E DAT 5 
fsub.p A SE,RE 
ftrunc.p A SE,RE 
fxfr G 6,8 
fzchkl G 8 
fzchks G 8 
Intovr E IT 
Ixfr E 2 
Id.c E 
Id.x E DAT 6 
or E CC 
orh E CC 
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Instruction 
Execution Pipelined? Sets 

Faults 
Performance Programming 

Unit Delayed? CC? Notes Restrictions 

pfadd.p A P SE,RE 
pfaddp G P 8 e 
pfaddz G P 8 e 
pfam.p A&M P SE, RE 7 d 
pfeq.p A P CC SE 1 
pfgt.p A P CC SE 1 
pfiadd.z G P 8 e 
pfisub.z G P 8 e 
pfix.p A P SE, RE 
pfld.z E P 2 
pfmul.p M P SE, RE 4 c 
pform G P 8 e 
pfsm.p A&M P SE, RE 7 d 
pfsub.p A P SE, RE 
pftrunc.p A P SE, RE 
pfzchkl G P 8 
pfzchks G P 8 
pst.d E OAT 
shl E 
shr E 
shra E 
shrd E 
st.c E 
st.x E OAT 
subs E CC 1 
subu E CC 1 
trap E IT 
xor E CC 
xorh E CC 
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