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1.0 FUNCTIONAL DESCRIPTION

As shown by the block diagram on the front page,
the 860 microprocessor consists of 9 units:

. Core Execution Unit

. Floating-Point Control Unit

. Floating-Point Adder Unit
Floating-Point Multiplier Unit
. Graphics Unit

. Paging Unit

. Instruction Cache

. Data Cache

. Bus and Cache Control Unit

©CONOOAWN =

The core execution unit controls overall operation of
the 860 microprocessor. The core unit executes
load, store, integer, bit, and control-transfer opera-
tions, and fetches instructions for the floating-point
unit as well. A set of 32 x 32-bit general-purpose
registers are provided for the manipulation of integer
data. Load and store instructions move 8-, 16-, and
32-bit data to and from these registers. Its full set of
integer, logical, and control-transfer instructions give
the core unit the ability to execute complete systems
software and applications programs. A trap mecha-
nism provides rapid response to exceptions and ex-
ternal interrupts. Debugging is supported by the abili-
ty to trap on data or instruction reference.

The floating-point hardware is connected to a sepa-
rate set of floating-point registers, which can be
accessed as 16 x 64-bit registers, or 32 x 32-bit reg-
isters. Special load and store instructions can also
access these same registers as 8 x 128-bit registers.
All floating-point instructions use these registers as
their source and destination operands.

The floating-point control unit controls both the float-
ing-point adder and the floating-point multiplier, issu-
ing instructions, handling all source and result
exceptions, and updating status bits in the floating-
point status register. The adder and multiplier can
operate in parallel, producing up to two results per
clock. The floating-point data types, floating-point in-
structions, and exception handling all support the
IEEE Standard for Binary Floating-Point Arithmetic
(ANSI/IEEE Std 754-1985).

The floating-point adder performs addition, subtrac-
tion, comparison, and conversions on 64- and 32-bit
floating-point values. An adder instruction executes
in three to four clocks; however, in pipelined mode, a
new result is generated every clock.

The floating-point multiplier performs floating-point
and integer multiply and floating-point reciprocal op-
erations on 64- and 32-bit floating-point values. A
multiplier instruction executes in three to four clocks;

however, in pipelined mode, a new result can be
generated every clock for single-precision and every
other clock for double precision.

The graphics unit has special integer logic that sup-
ports three-dimensional drawing in a graphics frame
buffer, with color intensity shading and hidden sur-
face elimination via the Z-buffer algorithm. The
graphics unit recognizes the pixel as an 8-, 16-, or
32-bit data type. It can compute individual red, blue,
and green color intensity values within a pixel; but it
does so with parallel operations that take advantage
of the 64-bit internal word size and 64-bit external
bus. The graphics features of the 860 microproces-
sor assume that the surface of a solid object is
drawn with polygon patches whose shapes approxi-
mate the original object. The color intensities of the
vertices of the polygon and their distances from the
viewer are known, but the distances and intensities
of the other points must be calculated by interpola-
tion. The graphics instructions of the 860 microproc-
essor directly aid such interpolation.

The paging unit implements protected, paged, virtual
memory via a 64-entry, four-way set-associative
memory called the TLB (Translation Lookaside Buff-
er). The paging unit uses the TLB to perform the
translation of logical address to physical address,
and to check for access violations. The access pro-
tection scheme employs two levels of privilege: user
and supervisor.

The instruction cache is a two-way set-associative
memory of four Kbytes, with 32-byte blocks. It trans-
fers up to 64 bits per clock (266 Mbyte/sec at
33.3 MH_z).

The data cache is a two-way set-associative memo-
ry of eight Kbytes, with 32-byte blocks. It transfers
up to 128 bits per clock (533 Mbyte/sec at 33.3
MHz). The 860 microprocessor normally uses write-
back caching, i.e. memory writes update the cache
(if applicable) without necessarily updating memory
immediately; however, caching can be inhibited by
software where necessary.

The bus and cache control unit performs data and
instruction accesses for the core unit. It receives cy-
cle requests and specifications from the core unit,
performs the data-cache or instuction-cache miss
processing, controls TLB translation, and provides
the interface to the external bus. Its pipelined struc-
ture supports up to three outstanding bus cycles.

2.0 PROGRAMMING INTERFACE

The programmer-visible aspects of the architecture
of the 860 microprocessor include data types, regis-
ters, instructions, and traps.
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2.1 Data Types

The 860 microprocessor provides operations for in-
teger and floating-point data. Integer operations are
performed on 32-bit operands with some support
also for 64-bit operands. Load and store instructions
can reference 8-bit, 16-bit, 32-bit, 64-bit, and 128-bit
operands. Floating-point operations are performed
on |EEE-standard 32- and 64-bit formats. Graphics
oriented instructions operate on arrays of 8-, 16-, or
32-bit pixels.

2.1.1 INTEGER

An integer is a 32-bit signed value in standard two’s
complement form. A 32-bit integer can represent a
value in the range —2,147,483,648 (—231) to
2,147,438,647 (+231 — 1). Arithmetic operations on
8- and 16-bit integers can be performed by sign-ex-
tending the 8- or 16-bit values to 32 bits, then using
the 32-bit operations.

There are also add and subtract instructions that op-
erate on 64-bit long integers.

Load and store instructions may also reference (in
addition to the 32- and 64-bit formats previously
mentioned) 8- and 16-bit items in memory. When an
8- or 16-bit item is loaded into a register, it is con-
verted to an integer by sign-extending the value to
32 bits. When an 8- or 16-bit item is stored from a
register, the corresponding number of low-order bits
of the register are used.

2.1.2 ORDINAL

Arithmetic operations are available for 32-bit ordi-
nals. An ordinal is an unsigned integer. An ordinal
can represent values in the range 0 to
4,294,967,295 (+232 — 1).

Also, there are add and subtract instructions that op-
erate on 64-bit ordinals.

2.1.3 SINGLE- AND DOUBLE-PRECISION REAL

Figure 2.1 shows the real number formats. A single-
precision real (also called “‘single real’’) data type is
a 32-bit binary floating-point number. Bit 31 is the
sign bit; bits 30..23 are the exponent; and bits 22..0
are the fraction. In accordance with ANSI/IEEE
standard 754, the value of a single-precision real is
defined as follows:

1.1fe = 0 and f # 0 or e = 255 then generate a
floating-point source-exception trap when en-
countered in a floating-point operation.

2.1f 0 < e < 255, then the value is —18 X 1.f X
2e—127.

3.1fe = 0 and f = 0, then the value is signed zero.

A double-precision real (also called “double real”)
data type is a 64-bit binary floating-point number. Bit
63 is the sign bit; bits 62..52 are the exponent; and
bits 51..0 are the fraction. In accordance with ANSI/
IEEE standard 754, the value of a double-precision
real is defined as follows:

1.1fe = 0andf + 0 ore = 2047, then generate a
floating-point source-exception trap when en-
countered in a floating-point operation.

2.1f 0 < e < 2047, then the value is —18 X 1.f X
2e—1023,

Single-Precision Real

31 23 (4]
Ll - I f |
I T—FRACT!ON
EXPONENT
SIGN
240296-2
Double-Precision Real
63 52 0
Ll - ,
] l—FRACTION
EXPONENT
SIGN
240296-3

Figure 2.1. Real Number Formats
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3.l1fe = 0 and f = 0, then the value is signed zero.

The special values infinity, NaN (“Not a Number”),
indefinite, and denormal generate a trap when en-
countered. The trap handler implements IEEE-stan-
dard results.

A double real value occupies an even/odd pair of
floating-point registers. Bits 31..0 are stored in the
even-numbered floating-point register; bits 63..32
are stored in the next higher odd-numbered floating-
point register.

2.1.4 PIXEL

A pixel may be 8, 16, or 32 bits long depending on
color and intensity resolution requirements. Regard-
less of the pixel size, the 860 microprocessor always
operates on 64 bits worth of pixels at a time. The
pixel data type is used by two kinds of instructions:

® The selective pixel-store instruction that helps im-
plement hidden surface elimination.

e The pixel add instruction that helps implement
3-D color intensity shading.

To perform color intensity shading efficiently in a va-
riety of applications, the 860 microprocessor defines
three pixel formats according to Table 2.1.

Figure 2.2 illustrates one way of assigning meaning
to the fields of pixels. These assignments are for
illustration purposes only. The 860 microprocessor
defines only the field sizes, not the specific use of
each field. Other ways of using the fields of pixels
are possible.

Table 2.1. Pixel Formats

Pixel | Bits of | Bits of | Bits of Bits.of
Other
Size | Color1 | Color2 | Color3
(in bits) | Intensity | Intensity | Intensity | AttriPute
Y y (Texture)
8 N (< 8) bits of intensity* 8 —N
16 6 6 4
32 8 8 8 8

The intensity attribute fields may be assigned to colors in
any order convenient to the application.

*With 8-bit pixels, up to 8 bits can be used for intensity; the
remaining bits can be used for any other attribute, such as
color. The intensity bits must be the low-order bits of the
pixel.

2.2 Register Set

As Figure 2.3 shows, the 860 microprocessor has
the following registers:

® An integer register file
o A floating-point register file

e Six control registers (psr, epsr, db, dirbase, fir,
and fsr)

® Four special-purpose registers (KR, Kl, T, and
MERGE)

The control registers are accessible only by load
and store control-register instructions; the integer
and floating-point registers are accessed by arithme-
tic operations and load and store instructions. The
special-purpose registers KR, Kl, T, and MERGE are
used by a few specific instructions.

8=BIT PIXEL | ¢ !

defined, not the specific use of each field.

15 9 3 0
16=BIT PIXEL R G B
32=BIT PIXEL
31 23 15 7 0
R G B T
240296-4

I—Intensity, R—Red intensity, G—Green intensity, B—Blue intensity, C—Color, T—Texture
These assignments of specific meanings to the fields of pixels are for illustration purposes only.

Only the field sizes are

Figure 2.2. Pixel Format Example
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2.2.1 INTEGER REGISTER FILE

There are 32 integer registers, each 32-bits wide,
referred to as r0 through r31, which are used for
address computation and scalar integer computa-
tions. Register r0 always returns zero when read,
independently of what is stored in it.

2.2.2 FLOATING-POINT REGISTER FILE

There are 32 floating-point registers, each 32-bits
wide, referred to as f0 through 31, which are used
for floating-point computations. Registers f0 and f1
always return zero when read, independently of
what is stored in them. The floating-point registers
are also used by a set of integer operations, primari-
ly for vector integer computations.

When accessing 64-bit floating-point or integer val-
ues, the 860 microprocessor uses an even/odd pair
of registers. When accessing 128-bit values, it uses
an aligned set of four registers (f0, f4, 8, ..., 128).
The instruction must designate the lowest register
number of the set of registers containing 64- or 128-
bit values. Misaligned register numbers produce un-
defined results. The register with the lowest number
contains the least significant part of the value. For
128-bit values, the register pair with the lower num-
ber contains the 64 bits at the lowest memory ad-
dress; the register pair with the higher number con-
tains the 64 bits at the highest address.

10

The 128-bit load and store instructions, along with
the 128-bit data path between the floating-point reg-
isters and the data cache help to sustain an extraor-
dinarily high rate of computation.

2.2.3 PROCESSOR STATUS REGISTER

The processor status register (psr) contains miscel-
laneous state information for the current process.
Figure 2.4 shows the format of the psr.

¢ BR (Break Read) and BW (Break Write) enable a
data access trap when the operand address
matches the address in the db register and a
read or write (respectively) occurs.

® Various instructions set CC (Condition Code) ac-
cording to tests they perform. The branch-on-
condition-code instructions test its value. The bla
instruction sets and tests LCC (Loop Condition
Code).

* IM (Interrupt Mode) enables external interrupts if
set; disables interrupts if clear.

® U (User Mode) is set when the 860 microproces-
sor is executing in user mode; it is clear when the
860 microprocessor is executing in supervisor
mode. In user mode, writes to some control regis-
ters are inhibited. This bit also controls the mem-
ory protection mechanism.
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Figure 2.3. Registers and Data Paths
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Figure 2.4 Processor Status Register
INTERLOCK
WRITE=PROTECT MODE
DATA CACHE SIZE ———\ |
31 24 22 18 15 13 8 0
P
o|s wlt STEPPING PROCESSOR
(RESERVED) Fle : DCsS (ReserveD) | o | NUMBER TYPE
. * . *
I T PAGE=TABLE BIT MODE
BIG ENDIAN MODE
OVERFLOW FLAG
240296-31

*Can be changed only from supervisor level

Figure 2.5 Extended Processor Status Register

® PIM (Previous Interrupt Mode) and PU (Previous
User Mode) save the corresponding status bits
(IM and U) on a trap, because those status bits
are changed when a trap occurs. They are re-
stored into their corresponding status bits when
returning from a trap handler with a branch indi-
rect instruction when a trap flag is set in the psr.

® FT (Floating-Point Trap), DAT (Data Access
Trap), IAT (Instruction Access Trap), IN (Inter-
rupt), and IT (Instruction Trap) are trap flags.
They are set when the corresponding trap condi-
tion occurs. The trap handler examines these bits
to determine which condition or conditions have
caused the trap.
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e DS (Delayed Switch) is set if a trap occurs during
the instruction before dual-instruction mode is en-
tered or exited. If DS is set and DIM (Dual Instruc-
tion Mode) is clear, the 860 microprocessor
switches to dual-instruction mode one instruction
after returning from the trap handler. If DS and
DIM are both set, the 860 microprocessor
switches to single-instruction mode one instruc-
tion after returning from the trap handler.

® When a trap occurs, the 860 microprocessor sets
DIM if it is executing in dual-instruction mode; it
clears DIM if it is executing in single-instruction
mode. If DIM is set after returning from a trap
handler, the 860 microprocessor resumes execu-
tion in dual-instruction mode.
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* When KNF (Kill Next Floating-Point Instruction) is
set, the next floating-point instruction is sup-
pressed (except that its dual-instruction mode bit
is interpreted). A trap handler sets KNF if the
trapped floating-point instruction should not be
reexecuted.

e SC (Shift Count) stores the shift count used by
the last right-shift instruction. It controls the num-
ber of shifts executed by the double-shift instruc-
tion.

® PS (Pixel Size) and PM (Pixel Mask) are used by
the pixel-store instruction and by the vector inte-
ger instructions. The values of PS control pixel
size as defined by Table 2.2. The bits in PM cor-
respond to pixels to be updated by the pixel-store
instruction pst.d. The low-order bit of PM corre-
sponds to the low-order pixel of the 64-bit source
operand of pst.d. The number of low-order bits of
PM that are actually used is the number of pixels
that fit into 64-bits, which depends upon PS. If a
bit of PM is set, then pst.d stores the corre-
sponding pixel. Refer also to the pst.d instruction
in section 8.

Table 2.2. Values of PS

Value Pixel Size Pixel Size
in bits in bytes
00 8 1
01 16 2
10 32 4
1 (undefined) (undefined)

2.2.4 EXTENDED PROCESSOR STATUS

REGISTER

The extended processor status register (epsr) con-
tains additional state information for the current pro-
cess beyond that stored in the psr. Figure 2.5 shows
the format of the epsr.

The processor type is one for the 860 microproc-
essor.

The stepping number has a unique value that dis-
tinguishes among different revisions of the proc-
essor.

IL (Interlock) is set if a trap occurs after a lock
instruction but before theload or store following
the subsequent unlock instruction. IL indicates to
the trap hadnler that a locked sequence has
been interrupted.

WP (write protect) controls the semantics of the
W bit of page table entries. A clear W bit in either
the directory or the page table entry causes
writes to be trapped. When WP is clear, writes
are trapped in user mode, but not in supervisor
mode. When WP is set, writes are trapped in both
user and supervisor modes.

DCS (Data Cache Size) is a read-only field that
tells the size of the on-chip data cache. The num-
ber of bytes actually available is 212+ DCS; there-
fore, a value of zero indicates 4 Kbytes, one indi-
cates 8 Kbytes, etc.

ADDRESS TRANSLATION ENABLE

DRAM PAGE SIZE
BUS LOCK

I=CACHE, TLB INVALIDATE

(RESERVED)

CODE SIZE 8=BIT
REPLACEMENT BLOCK

REPLACEMENT CONTROL

31

> —

DIRECTORY TABLE BASE (DTB)

RB DPS

r o

MmM—A>»|0 -——

-
-~
OUVNOIN ——r

240296-7

Figure 2.6. Directory Base Register
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* PBM (Page-Table Bit Mode) determines which bit
of page-table entries is output on the PTB pin.
When PBM is clear, the PTB signal reflects bit CD
of the page-table entry used for the current cycle.
When PBM is set, the PTB signal reflects bit WT
of the page-table entry used for the current cycle.

* BE (Big Endian) controls the ordering of bytes
within a data item in memory. Normally (i.e. when
BE is clear) the 860 microprocessor operates in
little endian mode, in which the addressed byte is
the low-order byte. When BE is set (bit endian
mode), the low-order three bits of all load and
store addresses are complemented, then
masked to the appropriate boundary for align-
ment. This causes the addressed byte to be the
most significant byte.

® OF (Overflow Flag) is set by adds, addu, subs,
and subu when integer overflow occurs. For
adds and subs, OF is set if the carry from bit 31
is different than the carry from bit 30. For addu,
OF is set if there is a carry from bit 31. For subu,
OF is set if there is no carry from bit 31. Under all
other conditions, it is cleared by these instruc-
tions. OF controls the function of the intovr
instruction.

2.2.5 DATA BREAKPOINT REGISTER

The data breakpoint register (db) is used to gener-
ate a trap when the 860 microprocessor makes a
data-operand access to the address stored in this
register. The trap is enabled by BR and BW in psr.
When comparing, a number of low order bits of the
address are ignored, depending on the size of the
operand. For example, a 16-bit access ignores the
low-order bit of the address when comparing to db;
a 32-bit access ignores the low-order two bits. This
ensures that any access that overlaps the address
contained in the register will generate a trap.

2.2.6 DIRECTORY BASE REGISTER

The directory base register dirbase (shown in Figure
2.5) controls address translation, caching, and bus
options.

® ATE (Address Translation Enable), when set, en-
ables the virtual-address translation algorithm.
The data cache must be flushed before changing
the ATE bit.

® DPS (DRAM Page Size) controls how many bits
to ignore when comparing the current bus-cycle
address with the previous bus-cycle address to
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generate the NENE # signal. This feature allows
for higher speeds when using static column or
page-mode DRAMs and consecutive reads and
writes access the row. The comparison ignores
the low-order 12 + DPS bits. A value of zero is
appropriate for one bank of 256K X n RAMs, 1
for 1M X n RAMS, etc.

When BL (Bus Lock) is set, external bus access-
es are locked. The LOCK# signal is asserted the
next bus cycle whose internal bus request is gen-
erated after BL is set. It remains set on every
subsequent bus cycle as long as BL remains set.
The LOCK# signal is deasserted on the next bus
cycle whose internal bus request is generated af-
ter BL is cleared. Traps immediately clear BL.
The lock and unlock instructions control the BL
bit.

ITI (I-Cache, TLB Invalidate), when set in the val-
ue that is loaded into dirbase, causes the instruc-
tion cache and address-translation cache (TLB)
to be flushed. The ITI bit does not remain set in
dirbase. ITI| always appears as zero when read-
ing dirbase. The data cache must be flushed be-
fore invalidating the TLB.

When CS8 (Code Size 8-Bit) is set, instruction
cache misses are processed as 8-bit bus cycles.
When this bit is clear, instruction cache misses
are processed as 64-bit bus cycles. This bit can
not be set by software; hardware sets this bit at
initialization time. It can be cleared by software
(one time only) to allow the system to execute out
of 64-bit memory after bootstrapping from 8-bit
EPROM. A nondelayed branch to code in 64-bit
memory should directly follow the st.c (store con-
trol register) instruction that clears CS8, in order
to make the transition from 8-bit to 64-bit memory
occur at the correct time. The branch must be
aligned on a 64-bit boundary.

RB (Replacement Block) identifies the cache
block to be replaced by cache replacement algo-
rithms. The high-order bit of RB is ignored by the
instruction and data caches. RB conditions the
cache flush instruction flush, which is discussed
in Section 8. Table 2.3 explains the values of RB.

RC (Replacement Control) controls cache re-
placement algorithms. Table 2.4 explains the sig-
nificance of the values of RC.

DTB (Directory Table Base) contains the high-or-
der 20 bits of the physical address of the page
directory when address translation is enabled (i.e.
ATE = 1). The low-order 12 bits of the address
are zeros.
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Figure 2.7. Floating-Point Status Register
Table 2.3. Values of RB 2.2.7 FAULT INSTRUCTION REGISTER
value | _Replace Replace Instruction When a trap occurs, this register contains the ad-
TLB Block | and Data Cache Block dress of the trapping instruction (not necessarily the
00 0 0 instruction that created the conditions that required
0 1 1 1 the trap).
10 2 0
11 3 1 2.2.8 FLOATING-POINT STATUS REGISTER
The floating-point status register (fsr) contains the
Table 2.4. Values of RC floating-point trap and rounding-mode status for the
Value Meaning current process. Figure 2.6 shows its format.

00 Selects the normal replacement e |f FZ (Flush Zero) is clear and underflow occurs,
alogrithm where any block in the set a result-exception trap is generated. When FZ is
may be replaced on cache misses in all set and underflow occurs, the result is set to zero,
caches and no trap due to underflow occurs.

- e |f TI (Trap Inexact) is clear, inexact results do not

01 Instruction, data, and TLB cache cause a trap. If Tl is set, inexact results cause a
misses replace the block selected by trap. The sticky inexact flag (Sl) is set whenever
RB. The instruction and data caches an inexact result is produced, regardless of the
ignore the high-order bit of RB. This setting of TI.
mode is used for instruction cache and ) .

TLB testing. * RM (Rounding Mode) specifies one of the four
- rounding modes defined by the IEEE standard.

10 Data cache misses replace the block Given a true result b that cannot be represented
selected by the low-order bit of RB. by the target data type, the 860 microprocessor

1 Disables data cache replacement. determines the two representable numbers a and
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Table 2.5. Values of RM
Value Rounding Mode Rounding Action

00 Round to nearest or even Closer to b of a or ¢; if equally
close, select even number
(the one whose least
significant bit is zero).

01 Round down (toward — <o) a

10 Round up (toward + o0 c

11 Chop (toward zero) Smaller in magnitude of a or c.

¢ that most closely bracket b in value (a < b <
¢). The 860 microprocessor then rounds (chang-
es) b to a or ¢ according to the mode selected by
RM as defined in Table 2.5. Rounding introduces
an error in the result that is less than one least-
significant bit.

The U-bit (Update Bit), if set in the value that is
loaded into fsr by a st.c instruction, enables up-
dating of the result-status bits (AE, AA, Al, AO,
AU, MA, M|, MO, and MU) in the first-stage of the
floating-point adder and muiltiplier pipelines. If this
bit is clear, the result-status bits are unaffected
by a st.c instruction; st.c ignores the correspond-
ing bits in the value that is being loaded. An st.c
always updates fsr bits 21..17 and 8..0 directly.
The U-bit does not remain set; it always appears
as zero when read.

The FTE (Floating-Point Trap Enable) bit, if clear,
disables all floating-point traps (invalid input oper-
and, overflow, underflow, and inexact result).

Sl (Sticky Inexact) is set when the last-stage re-
sult of either the multiplier or adder is inexact (i.e.
when either Al or Ml is set). Sl is “sticky” in the
sense that it remains set until reset by software.
Al and M, on the other hand, can by changed by
the subsequent floating-point instruction.

SE (Source Exception) is set when one of the
source operands of a floating-point operation is
invalid; it is cleared when all the input operands
are valid. Invalid input operands include denor-
mals, infinities, and all NaNs (both quiet and sig-
naling).

When read from the fsr, the result-status bits MA,
MI, MO, and MU (Multiplier Add-One, Inexact,
Overflow, and Underflow, respectively) describe
the last-stage result of the multiplier.

When read from the fsr, the result-status bits AA,
Al, AO, AU, and AE (Adder Add-One, Inexact,
Overflow, Underflow, and Exponent, respectively)
describe the last-stage result of the adder. The
high-order three bits of the 11-bit exponent of the
adder result are stored in the AE field.

After a floating-point operation in a given unit (ad-
der or multiplier), the result-status bits of that unit
are undefined until the point at which result ex-
ceptions are reported.
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When written to the fsr with the U-bit set, the
result-status bits are placed into the first stage of
the adder and multiplier pipelines. When the
processor executes pipelined operations, it prop-
agates the result-status bits of a particular unit
(multiplier or adder) one stage for each pipelined
floating-point operation for that unit. When they
reach the last stage, they replace the normal re-
sult-status bits in the fsr. When the U-bit is not
set, result-status bits in the word being writeen to
the fsr are ignored.

In a floating-point dual-operation instruction (e.g.
add-and-multiply or subtract-and-multiply), both
the multiplier and the adder may set exception
bits. The result-status bits for a particular unit re-
main set until the next operation that uses that
unit.

¢ RR (Result Register) specifies which floating-
point register (f0-f31) was the destination regis-
ter when a result-exception trap 6ccurs due to a
scalar operation.

® | RP (Load Pipe Result Precision), IRP (Vector-In-
teger Pipe Result Precision), MRP (Multiplier Pipe
Result Precision), and ARP (Adder Pipe Result
Precision) aid in restoring pipeline state after a
trap or process switch. Each defines the preci-
sion of the last-stage result in the corresponding
pipeline. One of these bits is set when the result
in the last stage of the corresponding pipeline is
double precision; it is cleared if the result is single
precision. These bits cannot be changed by soft-
ware.

2.2.9 KR, KI, T, AND MERGE REGISTERS

The KR, KI, and T registers are special-purpose reg-
isters used by the dual-operation floating-point
instructions pfam,/pfmam, and pfmsm, which initi-
ate both an adder (A-unit) operation and a multiplier
(M-unit) operation. The KR, Ki, and T registers can
store values from one dual-operation instruction and
supply them as inputs to subsequent dual-operation
instructions. (Refer to Table 2.9.)

The MERGE register is used only by the vector-inte-
ger instructions. The purpose of the MERGE register
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is to accumulate (or merge) the results of multiple-
addition operations that use as operands the color-
intensity values from pixels or distance values from
a Z-buffer. The accumulated results can then be
stored in one 64-bit operation.

Two multiple-addition instructions and an OR in-
struction use the MERGE register. The addition in-
structions are designed to add interpolation values
to each color-intensity field in an array of pixels or to
each distance value in a Z-buffer.

Refer to the instruction descriptions in section 8 for
more information about these registers.

2.3 Addressing

Memory is addressed in byte units with a paged vir-
tual-address space of 232 bytes. Data and instruc-
tions can be located anywhere in this address
space. Address arithmetic is performed using 32-bit
input values and produces 32-bit results. The low-or-
der 32 bits of the result ae used in case of overflow.

Normally, multibyte data values are stored in memo-
ry in little endian format, i.e., with the least significant
byte at the lowest memory address. As an option
that may be dynamically selected by software in su-
pervisor mode, the 860 microprocessor also offers
big endian mode, in which the most significant byte
of a data item is at the lowest address. Code ac-
cesses are always done with little endian address-
ing. Figure 2.8 shows the difference between the
two storage modes. Big endian and little endian data
areas should not be mixed within a 64-bit data word.
lllustrations of data structures in this data sheet

show data stored in little endian mode, i.e., the right-
most (low-order) byte is at the lowest memory ad-
dress.

Alignment requirements are as follows (any violation
results in a data-access trap):

e 128-bit values are aligned on 16-byte boundaries
when referenced in memory (i.e. the four least
significant address bits must be zero).

® 64-bit values are aligned on 8-byte boundaries
when referenced in memory (i.e. the three least
significant address bits must be zero).

e 32-bit values are aligned on 4-byte boundaries
when referenced in memory (i.e. the two least
significant address bits must be zero).

e 16-bit values are aligned on 2-byte boundaries
when referenced in memory (i.e. the least signifi-
cant address bit must be zero).

2.4 Virtual Addressing

When address translation is enabled, the 860 micro-
processor maps instruction and data virtual address-
es into physical addresses before referencing mem-
ory. This address transformation is compatible with
that of the 386 microprocessor and implements the
basic features needed for page-oriented virtual-
memory systems and page-level protection.

The address translation is optional. Address transla-
tion is in effect only when the ATE bit of dirbase is
set. This bit is typically set by the operating system
during software initialization. The ATE bit must be
set if the operating system is to implement page-ori-
ented protection or page-oriented virtual memory.

Little Endian Format
63 55 47 39 31 23 15 7 0
m+7 m+ 6 m+5 m+ 4 m+ 3 m+ 2 m+1 m
Big Endian Format
63 55 47 39 31 23 15 7 0
m m+ 1 m+ 2 m+ 3 m+ 4 m+5 m+ 6 m+7
m is the memory address of the 64-bit word

Figure 2.8. Little Big Endian Memory Format
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31 21 1 0
[ DIR | PAGE T OFFSET ]

Figure 2.9. Format of a Virtual Address

Address translation is disabled when the processor
is reset. It is enabled when a store to dirbase sets
the ATE bit. It is disabled again when a store clears
the ATE bit.

2.4.1 PAGE FRAME

A page frame is a 4-Kbyte unit of contiguous ad-
dresses of physical main memory. Page frames be-
gin on 4-Kbyte boundaries and are fixed in size. A
page is the collection of data that occupies a page
frame when that data is present in main memory or
occupies some location in secondary storage when
there is not sufficient space in main memory.

2.4.2 VIRTUAL ADDRESS

A virtual address refers indirectly to a physical ad-
dress by specifying a page table, a page within that

table, and an offset within that page. Figure 2.9
shows the format of a virtual address.

Figure 2.9 shows how the 860 microprocessor con-
verts the DIR, PAGE, and OFFSET fields of a virtual
address into the physical address by consulting two
levels of page tables. The addressing mechanism
uses the DIR field as an index into a page directory,
uses the PAGE field as an index into the page table
determined by the page directory, and uses the
OFFSET field to address a byte within the page de-
termined by the page table.

2.4.3 PAGE TABLES

A page table is simply an array of 32-bit page specifi-
ers. A page table is itself a page, and therefore con-
tains 4 Kbytes of memory or at most 1K 32-bit en-
tries.

| or | Pace | oFFser |

PAGE FRAME

PHYSICAL

PAGE DIRECTORY

» DIR ENTRY

DTB

|  ADDRESS

PAGE TABLE

PG TBL ENTRY

240296-32

Figure 2.10. Address Translation
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Two levels of tables are used to address a page of
memory. At the higher level is a page directory. The
page directory addresses up to 1K page tables of
the second level. A page table of the second level
addresses up to 1K pages. All the tables addressed
by one page directory, therefore, can address 1M
pages (220). Because each page contains 4 Kbytes
(212 bytes), the tables of one page directory can
span the entire physical address space of the 860
microprocessor (220 X 212 = 232),

The physical address of the current page directory is
stored in DTB field of the dirbase register. Memory
management software has the option of using one
page directory for all processes, one page directory
for each process, or some combination of the two.

2.4.4 PAGE-TABLE ENTRIES

Page-table entries (PTEs) in either level of page ta-
bles have the same format. Figure 2.11 illustrates
this format.

2.4.4.1 Page Frame Address

The page frame address specifies the physical start-
ing address of a page. Because pages are located
on 4K boundaries, the low-order 12 bits are always
zero. In a page directory, the page frame address is
the address of a page table. In a second-level page
table, the page frame address is the address of the
page frame that contains the desired memory oper-
and.

2.4.4.2 Present Bit

The P (present) bit indicates whether a page table
entry can be used in address translation. P = 1 indi-
cates that the entry can be used. When P = 0 in
either level of page tables, the entry is not valid for
address translation, and the rest of the entry is avail-
able for software use; none of the other bits in the
entry is tested by the hardware. If P = 0 in either
level of page tables when an attempt is made to use
a page-table entry for address translation, the proc-
essor signals either a data-access fault or an in-
struction-access fault. In software systems that sup-
port paged virtual memory, the trap handler can
bring the required page into physical memory.

Note that there is no P bit for the page directory
itself. The page directory may be not-present while
the associated process is suspended, but the oper-
ating system must ensure that the page directory
indicated by the dirbase image associated with the
process is present in physical memory before the
process is dispatched.

2.4.4.3 Writable and User Bits

The W (writable) and U (user) bits are used for page-
level protection, which the 860 microprocessor per-
forms at the same time as address translation. The
concept of privilege for pages is implemented by as-
signing each page to one of two levels:

1. Supervisor level (U = 0)—for the operating sys-
tem and other systems software and related data.

2. User level (U = 1)—for applications procedures
and data.

PRESENT
WRITABLE

USER
WRITE=THROUGH

CACHE DISABLE

ACCESSED

DIRTY

(RESERVED)
AVAILABLE FOR SYSTEMS PROGRAMMER USER

31

PAGE FRAME ADDRESS 31..12

AVAIL | X X|DJA Ujw|Ppr

NOTE:
X indicates Intel reserved. Do not use.

240296-33

Figure 2.11. Format of a Page Table Entry
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The U bit of the psr indicates whether the 860 mi-
croprocessor is executing at user or supervisor level.
The 860 microprocessor maintains the U bit of psr
as follows:

® The 860 microprocessor clears the psr U bit to
indicate supervisor level when a trap occurs (in-
cluding when the trap instruction causes the
trap). The prior value fo U is copied into PU.

® The 860 microprocessor copies the psr PU bit
into the U bit when an indirect branch is executed
and one of the trap bits is set. If PU was one, the
860 microprocessor enters user level.

With the U bit of psr and the W and U bits of the
page table entries, the 860 microprocessor imple-
ments the following protection rules:

e When at user level, a read or write of a supervi-
sor-level pages causes a trap.

® When at user level, a write to a page whose W bit
is not set causes a trap.

® When at user level, st.c to certain control regis-
ters is ignored.

When the 860 microprocessor is executing at super-
visor level, all pages are addressable, but, when it is
executing at user level, only pages that belong to the
user-level are addressable.

When the 860 microprocessor is executing at super-
visor level, all pages are readable. Whether a page
is writable depends upon the write-protection mode
controlled by WP of epsr:

WP =0
WP = 1

All pages are writable.

A write to page whose W bit is not
set causes a trap.

When the 860 microprocessor is executing at user
level, only pages that belong to user level and are
marked writable are actually writable; pages that be-
long to supervisor level are neither readable nor wri-
table from user level.

2.4.4.4 Write-Through Bit

The 860 microprocessor does not implement a
write-through caching policy for the on-chip instruc-
tion and data caches; however, the WT (write-
through) bit in the second-level page-table entry
does determine internal caching policy. If WT is set
in a PTE, on-chip caching of data from the corre-
sponding page is inhibited. If WT is clear, the normal
write-back policy is applied to data from the page in
the on-chip caches. The WT bit of page directory
entries is not referenced by the processor, but is
reserved.

The WT bit is independent of the CD bit; therefore,
data may be placed in a second-level coherent
cache, but kept out of the on-chip caches.

20

2.4.4.5 Cache Disable Bit

If the CD (cache disable) bit in the second-level
page-table entry is set, data from the associated
page is not placed in external instruction or data
caches. Clearing CD permits the external cache
hardware to place data from the associated page
into external caches. The CD bit of page directory
entries is not referenced by the processor, but is
reserved.

2.4.4.6 Accessed and Dirty Bits

The A (accessed) and D (dirty) bits provide data
about page usage in both levels of the page tables.

The 860 microprocessor sets the corresponding ac-
cessed bits in both levels of page tables before a
read or write operation to a page. The processor
tests the dirty bit in the second-level page table be-
fore a write to an address covered by that page table
entry, and, under certain conditions, causes traps.
The trap handler than has the opportunity to main-
tain appropriate values in the dirty bits. The dirty bit
in directory entries is not tested by the 860 micro-
processor. The precise algorithm for using these bits
is specified in Subsection 2.4.5.

An operating system that supports paged virtual
memory can use these bits to determine what pages
to eliminate from physical memory when the de-
mand for memory exceeds the physical memory
available. The D and A bits in the PTE (page-table
entry) are normally initialized to zero by the operat-
ing system. The processor sets the A bit when a
page is accessed either by a read or write operation.
When a data- or instruction-access fault occurs, the
trap handler sets the D bit if an allowable write is
being performed, then re-executes the instruction.

The operating system is responsible for coordinating
its updates to the accessed and dirty bits with up-
dates by the CPU and by other processors that may
share the page tables. The 860 microprocessor au-
tomatically asserts the LOCK# signal while testing
and setting the A bit.

2.4.4.7 Combining Protection of Both Levels of
Page Tables

For any one page, the protection attributes of its
page directory entry may differ from those of its
page table entry. The 860 microprocessor computes
the effective protection attributes for a page by ex-
amining the protection attributes in both the directo-
ry and the page table. Table 2.6 shows the effective
protection provided by the possible combinations of
protection attributes.
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2.4.5 ADDRESS TRANSLATION ALGORITHM

The algorithm below defines the translation of each
virtual address to a physical address. Let DIR,
PAGE, and OFFSET be the fields of the virtual ad-
dress; let PFA1 and PFA2 be the page frame ad-
dress fields of the first and second level page tables
respectively; DTB is the page directly table base ad-
dress stored in the dirbase register.

1. Assert LOCK#.

2. Read the PTE (page table entry) at the physical
address formed by DTB:DIR:00.

3. If P in the PTE is zero, generate a data- or instruc-
tion-access fault.

4. If W in the PTE is zero, the operation is a write,
and either the U-bit of the PSR is set or WP = 1,
generate a data- or instruction-access fault.

5. If the U-bit in the PTE is zero and the U-bit in the
psr is set, generate a data- or instruction-access
fault.

6. If A in the PTE is zero, set A.

7. Locate the PTE at the physical address formed by
PFA1:PAGE:00.

8. Perform the P, A, W, and U checks as in steps 3
through 6 with the second-level PTE.

9. If D in the PTE is clear and the operation is a
write, generate a data- or instruction-access fault.

10. Form the physical address as PFA2:OFFSET.
11. Deassert LOCK #.

2.4.6 ADDRESS TRANSLATION FAULTS

The address translation fault is one instance of the
data-access fault. The instruction causing the fault
can be re-executed upon returning from the trap
handler.

2.4.7 PAGE TRANSLATION CACHE

For greatest efficiency in address translation, the
860 microprocessor stores the most recently used
page-table data in an on-chip cache called the TLB
(translation lookaside buffer). Only if the necessary
paging information is not in the cache must both lev-
els of page tables be referenced.

2.5 Caching and Cache Flushing

The 860 microprocessor has the ability to cache in-
struction, data, and address-translation information
in on-chip caches. Caching may use virtual-address
tags. The effects of mapping two different virtual ad-
dresses in the same address space to the same
physical address are undefined.

Table 2.6. Combining Directory and Page Protection

Page Directory Page Table Combined Protection
Entry Entry WP =0 WP = 1
U-bit W-bit U-bit W-bit U w 1) w

0 0 0 0 0 X 0 0
0 0 0 1 0 X 0 0
0 0 1 0 0 X 0 0
0 0 1 1 0 X 0 0
0 1 0 0 0 X 0 0
0 1 0 1 0 X 0 1
0 1 1 0 0 X 0 0
0 1 1 1 0 X 0 1
1 0 0 0 0 X 0 0
1 0 0 1 0 X 0 0
1 0 1 0 1 0 1 0
1 0 1 1 1 0 1 0
1 1 0 0 0 X 0 0
1 1 0 1 0 X 0 1
1 1 1 0 1 0 1 0
1 1 1 1 1 1 1 1

NOTES:

U = 0—Supervisor W = 0—Read only

U = 1—User W = 1—Read and write

x indicates that, when the combined U attribute is supervisor
and WP = 0, the W attribute is not checked.
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Instruction, data, and address-translation caching on
the 860 microprocessor are not transparent. Writes
do not immediately update memory, the TLB, nor the
instruction cache. Writes to memory by other bus
devices do not update the caches. Under certain cir-
cumstances, such as 1/0 references, self-modifying
code, page-table updates, or shared data in a multi-
processing system, it is necessary to bypass or to
flush the caches. 860 microprocessor provides the
following methods for doing this:

e Bypassing Instruction and Data Caches. If
deasserted during cache-miss processing, the
KEN# pin disables instruction and data caching
of the referenced data. If the CD bit from the as-
sociated second-level PTE is set, caching of data
and instructions is disabled. The value of the CD
bit is output on the PTB pin for use by external
caches.

® Flushing Instruction and Address-Translation
Caches. Storing to the dirbase register with the
ITI bit set invalidates the contents of the instruc-
tion and address-translation caches. This bit
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should be set when a page table or a page con-
taining code is modified or when changing the
DTB field of dirbase. Note that in order to make
the instruction or address-translation caches con-
sistent with the data cache, the data cache must
be flushed before invalidating the other caches.

NOTE:

The mapping of the page(s) containing the cur-
rently executing instruction, the next six instruc-
tions, and any data referenced by these instruc-
tions should not be different in the new page
tables when the DTB is changed.

Flushing the Data Cache. The data cache is
flushed by a software routine using the flush in-
struction. The data cache must be flushed prior to
flushing the instruction or address-translation
cache (as controlled by the ITI bit of dirbase) or
enabling or disabling address translation (via the
ATE bit). While the cache is being flushed, no
interrupt or trap routines should be executed that
load sharable data into the cache.
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2.6 Instruction Set

Table 2.7 shows the complete set of instructions
grouped by function within processing unit. Refer to
Section 8 for an algorithmic definition of each in-
struction.

The architecture of the 860 microprocessor uses
parallelism to increase the rate at which operations
may be introduced into the unit. Parallelism in the
860 microprocessor is not transparent; rather, pro-
grammers have complete control over parallelism
and therefore can achieve maximum performance
for a variety of computational problems.

2.6.1 PIPELINED AND SCALAR OPERATIONS

One type of parallelism used within the floating-point
unit is “pipelining”. The pipelined architecture treats
each operation as a series of more primitive opera-
tions (called “stages”) that can be executed in par-
allel. Consider just the floating-point adder unit as an
example. Let A represent the operation of the adder.
Let the stages be represented by A4, Ag, and As.
The stages are designed such that A; ;- 1 for one ad-
der instruction can execute in parallel with A; for the
next adder instruction. Furthermore, each A; can be
executed in just one clock. The pipelining within the
multiplier and vector-integer units can be described
similarly, except that the number of stages may be
different.

Figure 2.7 illustrates three-stage pipelining as found
in the floating-point adder (also in the floating-point
multiplier when single-precision input operands are
employed). The columns of the figure represent the
three stages of the pipeline. Each stage holds inter-
mediate results and also (when introduced into first
stage by software) holds status information pertain-
ing to those results. The figure assumes that the in-
struction stream consists of a series of consecutive
floating-point instructions, all of one type (i.e. all ad-
der instructions or all single-precision multiplier in-
structions). The instructions are represented as i,
i+ 1, etc. The rows of the figure represent the states
of the unit at successive clock cycles. Each time a
pipelined operation is performed, the result of the
last stage of the pipeline is stored in the destination
register rdest, the pipeline is advanced one stage,
and the input operands src7 and src2 are trans-
ferred to the first stage of the pipeline.
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In the 860 microprocessor, the number of pipeline
stages ranges from one to three. A pipelined opera-
tion with a three-stage pipeline stores the result of
the third prior operation. A pipelined operation with a
two-stage pipeline stores the result of the second
prior operation. A pipelined operation with a one-
stage pipeline stores the result of the prior opera-
tion.

There are four floating-point pipelines: one for the
multiplier, one for the adder, one for the vector-inte-
ger unit, and one for floating-point loads. The adder
pipeline has three stages. The number of stages in
the multiplier pipeline depends on the precision of
the source operands in the pipeline; it may have two
or three stages. The vector-integer unit has one
stage for all precisions. The load pipeline has three
stages for all precisions.

Changing the FZ (flush zero), RM (rounding mode),
or RR (result register) bits of fsr while there are re-
sults in either the multiplier or adder pipeline produc-
es effects that are not defined.

2.6.1.1 Scalar Mode

In addition to the pipelined execution mode, the 860
microprocessor also can execute floating-point in-
structions in “scalar” mode. Most floating-point in-
structions have both pipelined and scalar variants,
distinguished by a bit in the instruction encoding. In
scalar mode, the floating-point unit does not start a
new operation until the previous floating-point oper-
ation is completed. The scalar operation passes
through all stages of its pipeline before a new opera-
tion is introduced, and the result is stored automati-
cally. Scalar mode is used when the next operation
depends on results from the previous few floating-
point operations (or when the compiler or program-
mer does not want to deal with pipelining).

2.6.1.2 Pipelining Status Information

Result status information in the fsr consists of the
AA, Al, AO, AU, and AE bits, in the case of the ad-
der, and the MA, MI, MO, and MU bits, in the case of
the multiplier. This information arrives at the fsr via
the pipeline in one of two ways:
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Table 2.7. Instruction Set
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Core Unit Floating-Point Unit
Mnemonic Description Mnemonic Description
Load and Store Instructions F-P Multiplier Instruction
Id.x Load integer fmul.p F-P multiply
st.x Store integer pfmul.p Pipelined F-P multiply
fld.y F-P load pfmuld.dd | 3-Stage pipelined F-P multiply
pfld.z Pipelined F-P load fmlow.p F-P multiply low
fsty F-P store frep.p F-P reciprocal
pst.d Pixel store frsqr.p F-P reciprocal square root
Register to Register Moves F-P Adder Instructions
ixfr Transfer integer to F-P register fadd.p F-P add
fxfr Transfer F-P to integer register pfadd.p Pipelined F-P add
n - N fsub.p F-P subtract
Integer Arithmetic In.structlons pfsub.p Pipelined F-P subtract
addu Add unsigned pfgt.p Pipelined F-P greater-than compare
adds Add signed pfeq.p Pipelined F-P equal compare
subu Subtract unsigned fix.p F-P to integer conversion
subs Subtract signed pfix.p Pipelined F-P to integer conversion
Shift Instructions ftrunc.p F;P to integer trupcation )
i Shiftloft pftrunc.p Pipelined F-P to integer truncation
sl e
shr Sh:ft right Dual-Operation Instructions
shra Shift right arithmetic pfam.p Pipelined F-P add and multiply
shrd Shift right double pfsm.p Pipelined F-P subtract and multiply
Logical Instructi pfmam Pipelined F-P multiply with add
grea’ natuctons pfmsm Pipelined F-P multiply with subtract
and Logical AND "
andh Logical AND high Long Integer Instructions
andnot Logical AND NOT fisub.z Long-integer subtract
andnoth Logical AND NOT high pfisub.z Pipelined long-integer subtract
or Logical OR fiadd.z Long-integer add
orh Logical OR high pfiadd.z Pipelined long-integer add
xor Logical exclusive OR - -
xorh Logical exclusive OR high Graphics Instructions
- fzchks 16-bit Z-buffer check
Control-Transfer Instructions pfzchks Pipelined 16-bit Z-buffer check
trap Software trap ] fzchkl 32-bit Z-buffer check
intovr Software trap on integer overflow pfzchkl Pipelined 32-bit Z-buffer check
br Branch direct faddp Add with pixel merge
bri Branch indirect pfaddp Pipelined add with pixel merge
bc Branch on CC faddz Add with Z merge
bc.t Branch on CC taken pfaddz Pipelined add with Z merge
bnc Branch on not CC form OR with MERGE register
bnc.t Branch on not CC taken pform Pipelined OR with MERGE register
bte Branch if equal
btne Branch if not equal
bla Branch on LCC and add Assembler Pseudo-Operations
call Subroutine call . inti
calli Indirect subroutine call Mnemonic Description
. mov Integer register-register move
System Control Instructions fmov.q F-P reg-reg move
flush Cache flush pfmov.q Pipelined F-P reg-reg move
Id.c Load from control register nop Core no-operation
st.c Store to control register fnop F-P no-operation
lock Begin interlocked sequence pfle.p Pipelined F-P less-than or equal
unlock End interlocked sequence




-
Inter i860T™M MICROPROCESSOR ADVANCE INFORMATION
STAGE 1 STAGE 2 STAGE 3
results (status) results (status) results status
CLOCK n
INSTRUC i
1o ()
\ CLOCK n#1
INSTRUC i+ i
L o | - s)
\ CLOCK n+2
INSTRUC w2 i+ !
2 r (s) r (s) r s
\ CLOCK n+3\\ \
. rdest
INSTRUC "3 2 i+1 +3
w3 r (s) r (s) r s
\ cLocK n+4\\ \
+4 i+3 2 rdest
INSTRUC i*4
4 r (s) r (s) r s
CLOCK n+5 \
. . rdest
INSTRUC i+5 i+4 +3 e
S r (s) r (s) r s
240296-9

Figure 2.12. Pipelined Instruction Execution

1. It is calculated by the last stage of the pipeline.
This is the normal case.

2. It is propagated from the first stage of the pipe-
line. This method is used when restoring the state
of the pipeline after a preemption. When a store
instruction updates the fsr and the value of the
U bit in the word being written into the fsr is set,
the store updates the result status bits in the first
stage of both the adder and multiplier pipelines.
When software changes the result-status bits of
the first stage of a particular unit (multiplier or ad-
der), the updated result-status bits are propagat-
ed one stage for each pipelined floating-point op-
eration for that unit. In this case, each stage of the
adder and multiplier pipelines holds its own copy
of the relevant bits of the fsr. When they reach
the last stage, they override the normal result-
status bits computed from the last-stage result.
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At the next floating-point instruction (or at certain
core instructions), after the result reaches the last
stage, the 860 microprocessor traps if any of the
status bits of the fsr indicate exceptions. Note that
the instruction that creates the exceptional condition
is not the instruction at which the trap occurs.

2.6.1.3 Precision in the Pipelines

In pipelined mode, when a floating-point operation is
initiated, the result of an earlier pipelined floating-
point operation is returned. The result precision of
the current instruction applies to the operation being
initiated. The precision of the value stored in rdest is
that which was specified by the instruction that initia-
ted that operation.
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Figure 2.13. Dual-Instruction Mode Transitions

If rdest is the same as src? or src2, the value being
stored in rdest is used as the input operand. In this
case, the precision of rdest must be the same as the
source precision.

The multiplier pipeline has two stages when the
source operand is double-precision and three stages
when the precision of the source operand is single.
This means that a pipelined multiplier operation
stores the result of the second previous multiplier
operation for double-precision inputs and third previ-
ous for single-precision inputs (except when chang-
ing precisions).

2.6.1.4 Transition between Scalar and Pipelined
Operations

When a scalar operation is executed, it passes
through all stages of the pipeline; therefore, any un-
stored results in the affected pipeline are lost. To
avoid losing information, the last pipelined opera-
tions before a scalar operation should be dummy
pipelined operations that unload unstored results
from the affected pipeline.
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After a scalar operation, the values of all pipeline
stages of the affected unit (except the last) are un-
defined. No spurious result-exception traps result
when the undefined values are subsequently stored
by pipelined operations; however, the values should
not be referenced as source oeprands.

For best performance a scalar operation should not
immediately precede a pipelined operation whose
rdest is nonzero.

2.6.2 DUAL-INSTRUCTION MODE

Another form of parallelism results from the fact that
the 860 microprocessor can execute both a floating-
point and a core instruction simultaneously. Such
parallel execution is called [dual-instruction mode].
When executing in dual-instruction mode, the in-
struction sequence consists of 64-bit aligned instruc-
tions with a floating-point instruction in the lower 32
bits and a core instruction in the upper 32 bits. Table
2.6 identifies which instructions are executed by the
core unit and which by the floating-point unit.
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Programmers specify dual-instruction mode either
by including in the mnemonic of a floating-point in-
struction a d. prefix or by using the Assembler direc-
tives .dual ... .enddual. Both of the specifications
cause the D-bit of floating-point instructions to be
set. If the 860 microprocessor is executing in single-
instruction mode and encounters a floating-point in-
struction with the D-bit set, one more 32-bit instruc-
tion is executed before dual-mode execution begins.
If the 860 microprocessor is executing in dual-in-
struction mode and a floating-point instruction is en-
countered with a clear D-bit, then one more pair of
instructions is executed before resuming single-in-
struction mode. Figure 2.13 illustrates two variations
of this sequence of events: one for extended se-
quences of dual-instructions and one for a single in-
struction pair.

When a 64-bit dual-instruction pair sequentially fol-
lows a delayed branch instruction in dual-instruction
mode, both 32-bit instructions are executed.

2.6.3 DUAL-OPERATION INSTRUCTIONS

Special dual-operation floating-point instructions
(add-and-multiply, subtract-and-multiply) use both
the multiplier and adder units within the floating-
point unit in parallel to efficiently execute such com-
mon tasks as evaluating systems of linear equa-
tions, performing the Fast Fourier Transform (FFT),
and performing graphics transformations.

The instructions pfam src?, src2, rdest (add and
multiply), pfsm src1, src2, rdest (subtract and multi-
ply), pfmam scr1, src2, rdest (multiply and add), and
pfmsm src1, src2, rdest (multiply and subtract) initi-
ate both an adder operation and a multiplier opera-
tion. Six operands are required, but the instruction
format specifies only three operands; therefore,
there are special provisions for specifying the oper-
ands. These special provisions consist of:

® Three special registers (KR, Kl, and T), that can
store values from one dual-operation instruction
and supply them as inputs to subsequent dual-
operation instructions.

1. The constant registers KR and Kl can store the
value of src7 and subsequently supply that val-
ue to the multiplier pipeline in place of src7.

2. The transfer register T can store the last-stage
result of the multiplier pipeline and subse-
quently supply that value to the adder pipeline
in place of sref1.

e A four-bit data-path control field in the opcode
(DPC) that specifies the operands and loading of
the special registers.

1. Operand-1 of the multiplier can be KR, KI, or
srel.

2. Operand-2 of the multiplier can be src2 or the
last-stage result of the adder pipeline.
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3. Operand-1 of the adder can be src7, the T-reg-
ister, or the last-stage result of the adder pipe-
line.

4. Operand-2 of the adder can be src2, the last-
stage result of the multiplier pipeline, or the
last-stage result of the adder pipeline.

Figure 2.14 shows all the possible data paths sur-
rounding the adder and multiplier. A DPC field in
these instructions select different data paths. Sec-
tion 8 shows the various encodings of the DPC field.

SRC1 SRC2 RDEST
-~
e
A4 A\ 4 1
OP1 OP2
MULTIPLIER UNIT
RESULT
y
T
, }I ! I
OP1 0oP2
ADDER UNIT
RESULT
240296-11

Figure 2.14. Dual-Operation Data Paths

Note that the mnemonics pfam.p, pfsm.p,
pfmam.p, and pfmsm.p are never used as such in
the assembly language; these mnemonics are used
here to designate classes of related instructions.
Each value of DPC has a unique mnemonic associ-
ated with it.

2.7 Addressing Modes

Data access is limited to load and store instructions.
Memory addresses are computed from two fields of
load and store instructions: src7 and src2.

1. srct either contains the identifier of a 32-bit inte-
ger register or contains an immediate 16-bit ad-
dress offset.

2. src2 always specifies a register.
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Table 2.8. Types of Traps

Indication Caused by
Type
PSR FSR Condition Instruction
Instruction IT Software traps trap, intovr
Fault Missing unlock Any
Floating SE Floating-point source exception | Any M- or A-unit except fmlow
Point Floating-point result exception Any M- or A-unit except fmlow, pfgt,
Fault FT AO, MO overflow and pfeq. Reported on any F-P
AU, MU underflow instruction plus pst, fst, and
Al, Ml inexact result sometimes fid, pfld, ixfr
Instruction IAT Address translation exception Any
Access Fault during instruction fetch
Data Access Load/store address translation | Any load/store
Fault exception
DAT* Misaligned operand address Any load/store
Operand address matches Any load/store
db register
Interrupt IN External interrupt
Reset No trap bits set Hardware RESET signal

*These cases can be distinguished by examining the operand addresses.

Because either src7 or src2 may be null (zero), a
variety of useful addressing modes result:

offset + register  Useful for accessing fields within
a record, where register points
to the beginning of the record.
Useful for accessing items in a
stack frame, where register is
r3, the register used for pointing
to the beginning of the stack
frame.

Useful for two-dimensional ar-
rays or for array access within
the stack frame.

register + register

register Useful as the end result of any
arbitrary address calculation.

offset Absolute address into the first
64K of the logical address
space.

In addition, the floating-point load and store instruc-
tions may select autoincrement addressing. In this
mode src2 is replaced by the sum of src7 and src2
after performing the load or store. This mode makes
stepping through arrays more efficient, because it
eliminates one address-calculation instruction.

2.8 Interrupts and Traps

Traps are caused by exceptional conditions detect-
ed in programs or by external interrupts. Traps
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cause interruption of normal program flow to exe-
cute a special program known as a trap handler.
Traps are divided into the types shown in Table 2.8.

2.8.1 TRAP HANDLER INVOCATION

This section applies to traps other than reset. When
a trap occurs, execution of the current instruction is
aborted. The instruction is restartable. The proces-
sor takes the following steps while transferring con-
trol to the trap handler:

1. Copies U (user mode) of the psr into PU (previous
v).

. Copies IM (interrupt mode) into PIM (previous IM).

. Sets U to zero (supervisor mode).

. Sets IM to zero (interrupts disabled).

. If the processor is in dual instruction mode, it sets
DIM; otherwise it clears DIM.

6. If the processor is in single-instruction mode and
the next instruction will be executed in dual-
instruction mode or if the processor is in dual-in-
struction mode and the next instruction will be
executed in single-instruction mode, DS is set;
otherwise, it is cleared.

7. The appropriate trap type bits in psr are set (IT,
IN, IAT, DAT, FT). Several bits may be set if the
corresponding trap conditions occur simulta-
neously.

8. An address is placed in the fault instruction regis-
ter (fir) to help locate the trapped instruction. In

g A~ ON
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single-instruction mode, the address in fir is the
address of the trapped instruction itself. In dual-in-
struction mode, the address in fir is that of the
floating-point half of the dual instruction. If an in-
struction or data access fault occurred, the asso-
ciated core instruction is the high-order half of the
dual instruction (fir + 4). In dual-instruction
mode, when a data access fault occurs in the ab-
sence of other trap conditions, the floating-point
half of the dual instruction will already have been
executed (except in the case of the fxfr
instruction).

The processor begins executing the trap handler by
transferring execution to address OxFFFFFFQ0. The
trap handler begins execution in single-instruction
mode. The trap handler must examine the trap-type
bits in psr (IT, IN, IAT, DAT, FT) to determine the
cause or causes of the trap.

2.8.2 INSTRUCTION FAULT

This fault is caused by any of the following condi-
tions. In all cases the processor sets the IT bit be-
fore entering the trap handler.

® By the trap instruction.

e By the intovr instruction. The trap occurs only if
OF in epsr is set when intovr is executed. The
trap handler should clear OF before returning.

e By the lack of an unlock instruction within 32 in-
structions of a lock. In this case IL is also set.
When the trap handler finds IL set, it should scan
backwards for the lock instruction and restart at
that point. The absence of a lock instruction with-
in 32 instructions of the trap indicates a program-
ming error.

2.8.3 FLOATING-POINT FAULT

The floating-point fault occurs on floating-point in-
structions pst, fst, and sometimes fid, pfld, ixfr.
The floating-point faults of the 860 microprocessor
support the floating-point exceptions defined by the
|IEEE standard as well as some other useful classes
of exceptions. The 860 microprocessor divides
these into two classes: source exceptions and result
exceptions. The numerics library supplied by Intel
provides the IEEE standard default handling for all
these exceptions.

2.8.3.1 Source Exception Faults

All exceptional operands, including infinities, denor-
malized numbers and NaNs, cause a floating-point
fault and set SE in the fsr. Source exceptions are
reported on the instruction that initiates the opera-
tion. For pipelined operations, the pipeline is not ad-
vanced.
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The SE value is undefined for faults on fid, pfld, fst,
pst, and ixfr instructions when in single-instruction
mode or when in dual-instruction mode and the com-
panion instruction is not a multiplier or adder opera-
tion.

2.8.3.2 Result Exception Faults

The class of result exceptions includes any of the
following conditions:

e Overflow. The absolute value of the rounded
true result would exceed the largest positive finite
number in the destination format.

e Underflow (when FZ is clear). The absolute val-
ue of the rounded true result would be smaller
than the smallest positive finite number in the
destination format.

* |nexact result (when Tl is set). The result is not
exactly representable in the destination format.
For example, the fraction 1/3 cannot be precisely
represented in binary form. This exception occurs
frequently and indicates that some (generally ac-
ceptable) accuracy has been lost.

The point at which a result exception is reported de-
pends upon whether pipelined operations are being
used:

e Scalar (nonpipelined) operations. Result ex-
ceptions are reported on the next floating-point,
fst.x, or pst.x (and sometimes fld, pfld, ixfr) in-
struction after the scalar operation. When a trap
occurs, the last-stage of the affected unit con-
tains the result of the scalar operation.

* Pipelined operations. Result exceptions are re-
ported when the result is in the last stage and the
next floating-point (and sometimes fid, pfld, ixfr)
instruction is executed. When a trap occurs, the
pipeline is not advanced, and the last-stage re-
sults (that caused the trap) remain unchanged.

When no trap occurs (either because FTE is clear or
because no exception occurred), the pipeline is ad-
vanced normally by the new floating-point operation.
The result-status bits of the affected unit are unde-
fined until the point that result exceptions are report-
ed. At this point, the last-stage result-status bits (bits
29..22 and 16..9 of the fsr) reflect the values in the
last stages of both the adder and multiplier. For ex-
ample, if the last-stage result in the multiplier has
overflowed and a pipelined floating-point pfadd is
started, a trap occurs and MO is set.

For scalar operations, the RR bits of fsr specify the
register in which the result was stored. RR is updat-
ed when the scalar instruction is initiated. The trap,
however, occurs on a subsequent instruction. Pro-
grammers must prevent intervening stores to fsr
from modifying the RR bits. Prevention may take one
of the following forms:



intel

i860™ MICROPROCESSOR

ADVANCE INFORMATION

* Before any store to fsr when a result exception
may be pending, execute a dummy floating-point
operation to trigger the result-exception trap.

e Always read from fsr before storing to it, and
mask updates so that the RR bits are not
changed.

For pipelined operations, RR is cleared; the result is
in the pipeline of the appropriate unit.

In either case, the result has the same fraction as
the true result and has an exponent which is the low-
order bits of the true result. The trap handler can
inspect the result, compute the result appropriate for
that instruction (a NaN or an infinity, for example),
and store the correct result. The result is either
stored in the register specified by RR (if nonzero) or
in the last stage of the pipeline (if RR = 0). The trap
handler must clear the result status for the last
stage, then reexecute the trapping instruction.

Result exceptions may be reported for both the ad-
der and multiplier units at the same time. In this
case, the trap handler should fix up the last stage of
both pipelines.

2.8.4 INSTRUCTION ACCESS FAULT

This trap results from a page-not-present exception
during instruction fetch. If a supervisor-level page is
fetched in user mode, an exception may or may not
occur.

2.8.5 DATA ACCESS FAULT

This trap results from an abnormal condition detect-

ed during data operand fetch or store. Such an ex-

ception can be due only to one of the following caus-

es:

® An attempt is being made to write to a page
whose D-bit is clear.

* A memory operand is misaligned (is not located
at an address that is a multiple of the length of
the data).

e The address stored in the debug register is equal
to one of the addresses spanned by the operand.

e The operand is in a not-present page.

® An attempt is being made from user level to write

to a read-only page or to access a supervisor-lev-
el page.

2.8.6 INTERRUPT TRAP

An interrupt is an event that is signaled from an ex-
ternal source. If the processor is executing with in-
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terrupts enabled (IM set in the psr), the processor
sets the interrupt bit IN in the psr, and generates an
interrupt trap. Vectored interrupts are implemented
by interrupt controllers and software.

2.8.7 RESET TRAP

When the 860 microprocessor is reset, execution
begins in single-instruction mode at address
OxFFFFFFOO. This is the same address as for other
traps. The reset trap can be distinguished from other
traps by the fact that no trap bits are set. The in-
struction cache is flushed. The bits DPS, BL, and
ATE in dirbase are cleared. CS8 is initialized by the
value at the INT pin at the end of reset. The bits U,
IM, BR, and BW in psr are cleared. All other bits of
psr and all other register contents are undefined.

The software must ensure that the data cache is
flushed and control registers are properly initialized
before performing operations that depend on the
values of the cache or registers.

Reset code must initialize the floating-point pipeline
state to zero with floating-point traps disabled to en-
sure that no spurious floating-point traps are gener-
ated.

After a RESET the 860 microprocessor starts execu-
tion at supervisor level (U=0). Before branching to
the first user-level instruction, the RESET trap han-
dler or subsequent initialization code has to set PU
and a trap bit so that an indirect branch instruction
will copy PU to U, thereby changing to user level.

2.9 Debugging

The 860 microprocessor supports debugging with
both data and instruction breakpoints. The features
of the 860 architecture that support debugging in-
clude:

o db (data breakpoint register) which permits speci-
fication of a data addresses that the 860 micro-
processor will monitor.

e BR (break read) and BW (break write) bits of the
psr, which enable trapping of either reads or
writes (respectively) to the address in db.

e DAT (data access trap) bit of the psr, which al-
lows the trap handler to determine when a data
breakpoint was the cause of the trap.

e trap instruction that can be used to set break-
points in code. Any number of code breakpoints
can be set. The values of the src7 and src2 fields
help identify which breakpoint has occurred.

e |T (instruction trap) bit of the psr, which allows
the trap handler to determine when a trap
instruction was the cause of the trap.
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3.0 HARDWARE INTERFACE

In the following description of hardware interface,
the # symbol at the end of a signal name indicates
that the active or asserted state occurs when the
signal is at a low voltage. When no # is present after
the signal name, the signal is asserted when at the
high voltage level.

3.1 Signal Description

Table 3.1 identifies functional groupings of the pins,
lists every pin by its identifier, gives a brief descrip-
tion of its function, and lists some of its characteris-
tics. All output pins are ftristate, except HLDA and
BREQ. All inputs are synchronous, except HOLD
and INT.

3.1.1 CLOCK (CLK)

The CLK input determines execution rate and timing
of the 860 microprocessor. Timing of other signals is
specified relative to the rising edge of this signal.
The 860 microprocessor can utilize a clock rate of
33.3 MHz. The internal operating frequency is the
same as the external clock. This signal is TTL com-
patible.
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3.1.2 SYSTEM RESET (RESET)

Asserting RESET for at least 16 CLK periods causes
initialization of the 860 microprocessor. Refer to
section 3.2 “Initialization” for more details related to
RESET.

3.1.3 BUS HOLD (HOLD) AND BUS HOLD
ACKNOWLEDGE (HLDA)

These pins are used for 860 microprocessor bus ar-
bitration. At some time after the HOLD signal is as-
serted, the 860 microprocessor releases control of
the local bus and puts all bus interface outputs (ex-
cept BREQ and HLDA) in floating state, then asserts
HLDA—all during the same clock period. It main-
tains this state until HOLD is deasserted. Instruction
execution stops only if required instructions or data
cannot be read from the on-chip instruction and data
caches.

The time required to acknowledge a hold request is
one clock plus the number of clocks needed to finish
any outstanding bus cycles. HOLD is recognized
even while RESET is asserted.

When leaving a bus hold, the 860 microprocessor
deactivates HLDA and, in the same clock period, ini-
tiates a pending bus cycle, if any.

Hold is an asynchronous input.
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Table 3.1. Pin Summary

Pin . Active Input/
Name Function State Output
Execution Control Pins
CLK CLocK |
RESET System reset High |
HOLD Bus hold High |
HLDA Bus hold acknowledge High (0]
BREQ Bus request High o}
INT/CS8 Interrupt, code-size High |
Bus Interface Pins
A31-A3 Address bus High (0]
BE7# -BEO# Byte Enables Low (0]
D63-D0 Data bus High 1/0
LOCK # Bus lock Low (0]
W/R# Write/Read bus cycle Hi/Low (0]
NENE # NExt NEar Low (0]
NA# Next Address request Low |
READY # Transfer Acknowledge Low |
ADS # ADdress Status Low (0]
Cache Interface Pins
KEN # Cache ENable Low |
PTB Page Table Bit High (0]
Testability Pins
SHI Boundary Scan Shift Input High |
BSCN Boundary Scan Enable High |
SCAN Shift Scan Path High |
Intel-Reserved Configuration Pins
CC1-CCo Configuration High |
Power and Ground Pins
Vece System power
Vss System ground

A # after a pin name indicates that the signal is active when at the low voltage level.

3.1.4 BUS REQUEST (BREQ)

This signal is asserted when the 860 microprocessor
has a pending memory request, even when HLDA is
asserted. This allows an external bus arbiter to im-
plement an *“on demand only” policy for granting the
bus to the 860 microprocessor.

3.1.5 INTERRUPT/CODE-SIZE (INT/CS8)

This input allows interruption of the current instruc-
tion stream. If interrupts are enabled (IM set in psr)
when INT is asserted, the 860 microprocessor fetch-
es the next instruction from address OxFFFFFFO0O.
To assure that an interrupt is recognized, INT should
remain asserted until the software acknowledges
the interrupt (by writing, for example, to a memory-
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mapped port of an interrupt controller). The maxi-
mum time between the assertion of INT and execu-
tion of the first instruction of the trap handler is 10
clocks, plus the time for eight nonpipelined read cy-
cles (four TLB misses), plus the time for eight non-
pipelined writes (updates to the A bit), plus the time
for three sets of four pipelined read cycles and two
sets of four pipelined writes (instruction and data
cache misses and write-back cycles to update mem-

ory).

If INT is asserted during the clock before the falling
edge of RESET, the eight-bit code-size mode is se-
lected. For more about this mode, refer to section
3.2 “Initialization”.

INT is an asynchronous input.
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3.1.6 ADDRESS PINS (A31-A3) AND BYTE
ENABLES (BE7 # -BEO #)

The 29-bit address bus (A31-A3) identifies address-
es to a 64-bit location. Separate byte-enable signals
(BE7 #-BEO#) identify which bytes should be ac-
cessed within the 64-bit location. Cache reads
should return 64 bits without regard for the byte-en-
able signals.

Instruction fetches (W/R# is low) are distinguished
from data accesses by the unique combinations of
BE7#-BEO# defined in Table 3.2. For an eight-bit
code fetch in eight-bit code-size (CS8) mode,
BE2# -BEO# are redefined to be A2-A0 of the ad-
dress. In this case BE7#-BE3# form the code
shown in Table 3.2 that identifies an instruction
fetch.

3.1.7 DATA PINS (D63-D0)

The bus interface has 64 bidirectional data pins
(D63-D0) to transfer data in eighi- to 64-bit quanti-
ties. Pins D7-DO transfer the least significant byte;
pins D63-D56 transfer the most significant byte.

In write bus cycles, the point at which data is driven
onto the bus depends on the type of the preceding
cycle. If there was no preceding cycle (i.e. the bus
was idle), data is driven with the address. If the pre-
ceding cycle was a write, data is driven as soon as
READY # is returned from the previous cycle. If the
preceding cycle was a read, data is driven one clock
after READY # is returned from the previous cycle,
thereby allowing time for the bus to be turned
around.

3.1.8 BUS LOCK (LOCK #)

This signal is used to provide atomic (indivisible)
read-modify-write sequences in multiprocessor sys-
tems. Once the external bus arbiter has accepted a
memory access for a locked bus cycle from the 860
microprocessor, it should not accept locked cycles
(or any cycles, depending on software convention)
from other bus masters until LOCK# is deasserted.

The 860 microprocessor coordinates the external
LOCK# signal with the software-controlled BL bit of

the dirbase register. Programmers do not have to
be concerned about the fact that bus activity is not
always synchronous with instruction execution.
LOCK # is asserted with ADS # for the first bus cycle
that results from an instruction executed after the BL
bit is set. Even if the BL bit is changed between the
time that an instruction generates an internal bus
request and the time that the cycle appears on the
bus, the 860 microprocessor still asserts LOCK# for
that bus cycle. LOCK # is deasserted with ADS # for
the next bus cycle that results from an instruction
executed after the BL bit is cleared.

The 860 microprocessor also asserts LOCK# during
TLB miss processing for updates of the accessed bit
in page-table entries. The maximum time that
LOCK# can be asserted in this case is five clocks
plus the time required by software to perform a read-
modify-write sequence.

The 860 microprocessor does not acknowledge bus
hold requests while LOCK # is asserted.

3.1.9 WRITE/READ BUS CYCLE (W/R#)

This pin specifies whether a bus cycle is a read
(LOW) or write (HIGH) cycle.

3.1.10 NEXT NEAR (NENE #)

This signal allows higher-speed reads and writes in
the case of consecutive reads and writes that ac-
cess static column or page-mode DRAMs. The 860
microprocessor asserts NENE# when the current
address is in the same DRAM page as the previous
bus cycle. The 860 microprocessor determines the
DRAM page size by inspecting the DPS field in the
dirbase register. The page size can range from 29 to
216 64-bit words, supporting DRAM sizes from 256K
X 1, 256K X 4, and up. NENE# is never asserted
on the next bus cycle after HLDA is deasserted.

3.1.11 NEXT ADDRESS REQUEST (NA#)

NA# makes address pipelining possible. The sys-
tem asserts NA# to indicate that it is ready to ac-

Table 3.2. Identifying Instruction Fetches

g’t‘;ﬁ A2 | BE7# | BE6# | BE5# | BE4# | BE3# | BE2# | BE1# | BEO#
?:\fgn’“_‘é'ss) 0 1 1 1 1 1 0 1 0
I\:\?c:nmgse) 1 1 0 1 0 1 1 1 1
:\:,1%39 X 1 0 1 0 X Low-order address bits
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cept the next address from the 860 microprocessor.
NA# may be asserted before the current cycle
ends. (If the system does not implement pipelining,
NA# does not have to be activated.) The 860 micro-
processor samples NA# every clock, starting one
clock after the prior activation of ADS#. When NA #
is active, the 860 microprocessor is free to drive ad-
dress and bus-cycle definition for the next pending
bus cycle. The 860 microprocessor remembers that
NA# was asserted when no internal request is
pending; therefore, NA# can be deactivated after
the next rising edge of the CLK signal. Up to three
bus cycles can be outstanding simultaneously on
the processor’s bus.

3.1.12 TRANSFER ACKNOWLEDGE (READY #)

The system asserts the READY # signal during read
cycles when valid data is on the data pins and during
a write cycles when the system has accepted data
from the data pins. READY # is sampled one clock
after prior ADS# or prior READY # in case of pipe-
lining.

3.1.13 ADDRESS STATUS (ADS #)

The 860 microprocessor asserts ADS# during the
first clock of each bus cycle to identify the clock
period during which it begins to assert outputs on
the address bus. This signal is not held active during
a pipelined bus cycle. This allows two-level pipelin-
ing, for a maximum of three outstanding cycles.

3.1.14 CACHE ENABLE (KEN#)

The 860 microprocessor samples KEN# to deter-
mine whether the data being read for the current
cache-miss cycle is to be cached. This pin is inter-
nally NORed with the PTB pin to control cache abili-
ty on a page by page basis (refer to Table 3.3).

If the address in one that is permitted to be in the
cache, KEN# must be continuously asserted during
the sampling period starting from the clock after
ADS# is asserted, through the clock NA# or
READY # is asserted. The entire 64-bit of the data
bus will be used for the read, regardless of the state
of the byte-enable pins. Three additional 64-bit bus
cycles will generate to fill the rest of the 32-byte
cache block. KEN# must continue to be asserted
for each of these cycles as well.

If KEN# is found deasserted at any time during the
above-described sampling period, the data being
read will not cached and two scenarios can occur: 1)
if the cycle is due to data-cache miss, no subse-
quent cache-fill cycles will be generated; 2) if the
cycle is due to an instruction-cache miss, additional
cycle(s) will be generated until the address reaches
a 32-byte boundary.
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3.1.15 PAGE TABLE BIT (PTB)

Depending on the setting of the PBM (page-table bit
mode) bit of the epsr, the PTB reflects the value of
either the CD (cache disable) bit or the WT (write
through) bit of the page-table entry used for the cur-
rent cycle. This pin is internally NORed with the
KEN# pin to control cacheability on a page by page
basis. Table 3.3 shows the relationship between
PTB and KEN#. When paging is disabled, PTB re-
mains inactive.

Table 3.3. Cacheability based on KEN# and PTB

PTB KEN # Meaning
0 0 Cacheable access
0 1 Noncacheable access
1 0 Noncacheable page
1 1 Noncacheable page

3.1.16 BOUNDARY SCAN SHIFT INPUT (SHI)

This pin is used with the testability features. Refer to
section 3.4.

3.1.17 BOUNDARY SCAN ENABLE (BSCN)

This pin is used with the testability features. Refer to
section 3.4.

3.1.18 SHIFT SCAN PATH (SCAN)

This pin is used with the testability features. Refer to
section 3.3.

3.1.19 CONFIGURATION (CC1-CC0)

These two pins are reserved by Intel. Strap both pins
LOW.

3.1.20 SYSTEM POWER (Vcc) AND GROUND
(Vss)

The 860 microprocessor has 48 pins for power and
ground. All pins must be connected to the appropri-
ate low-inductance power and ground signals in the
system.

3.2 Initialization

Initialization of the 860 microprocessor is caused by
assertion of the RESET signal for at least 16 clocks.
Table 3.4 shows the status of output pins during the
time that RESET is asserted. Note that HOLD re-
quests are honored during RESET and that the
status of output pins depends on whether a HOLD
request is being acknowledged.
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Table 3.4. Output Pin Status during Reset

Pin Value
Pin Name H’C‘);D HOLD
Acknowledged | ACknoWledged

ADS#, LOCK # HIGH Tri-State OFF
W/R#, PTB LOW Tri-State OFF
BREQ Low LOW
HLDA LOW HIGH
D63-D0 Tri-State OFF | Tri-State OFF
A31-A3,
BE7 # -BEO#, Undefined Tri-State OFF
NENE #

After a reset, the 860 microprocessor begins execut-
ing at address OxFFFFFF00. The program-visible
state of the 860 microprocessor after reset is de-
tailed in section 2.

Eight-bit code-size mode is selected when INT is as-
serted during the clock before the falling edge of
RESET. While in eight-bit code-size mode, instruc-
tion cache misses are byte reads (transferred on D7-
DO of the data bus) instead of eight-byte reads. This
allows the 860 microprocessor to be bootstrapped
from an eight-bit EPROM. For these code reads,
byte enables BE2# -BEO# are redefined to be the
low order three bits of the address, so that a com-
plete byte address is available. These reads update
the instruction cache if KEN# is asserted (refer to
section 3.1.1.4) and are not pipelined even if NA# is
asserted. While in this mode, instructions must re-
side in an eight-bit wide memory, while data must
reside in a separate 64-bit wide memory. After the
code has been loaded into 64-bit memory, initializa-
tion code can initiate 64-bit code fetches by clearing
the CS8 bit of the dirbase register (refer to section
2). Once eight-bit code-size mode is disabled by
software, it cannot be reenabled except by resetting
the 860 microprocessor.

3.3 Testability

The 860 microprocessor has a boundary scan mode
that may be used in component- or board-level test-
ing to test the signal traces leading to and from the
860 microprocessor. Boundary scan mode provides
a simple serial interface that makes it possible to
test all signal traces with only a few probes. Probes
need be connected only to CLK, BSCN, SCAN, SHI,
and BREQ.

The pins BSCN and SCAN control the boundary
scan mode (refer to Table 3.5). When BSCN is as-
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serted, the 860 microprocessor enters boundary
scan mode on the next rising clock edge. Boundary
scan mode can be activated even while RESET is
active. When BSCN is deasserted while in boundary
scan mode, the 860 microprocessor leaves bounda-
ry scan mode on the next rising clock edge. After
leaving boundary scan mode, the internal state is
undefined; therefore, RESET should be asserted.

Table 3.5. Test Mode Selection

BSCN | SCAN Testability Mode

LO LO No testability mode selected

LO HI (Reserved for Intel)

HI LO Boundary scan mode, normal

HI HI Boundary scan mode, shift
SHI as input; BREQ as
output

For testing purposes, each signal pin has associated
with it an internal latch. Table 3.6 indentifies these
latches by name and classifies them as input, out-
put, or control. The input and output latches carry
the name of the corresponding pins.

Table 3.6. Test Mode Latches

Input Output Associated
Latch Latch Control
Latch

SHI

BSCN

SCAN

RESET

D0-D63 D0-D63 DATAt

CC1-CCo
A31-A3 ADDRt
NENE # NENEt
PTB# PTBt
W/R# W/Rt
ADS # ADSt
HLDA
LOCK # LOCKt

READY #

KEN #

NA#

INT/CS8

HOLD
BE7#-BEO# BEt
BREQ

Within boundary scan mode the 860 microprocessor
operates in one of two submodes: normal mode or
shift mode, depending on the value of the SCAN
input. A typical test sequence is . ..
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1. Enter shift mode to assign values to the latches
that correspond with the pins.

2. Enter normal mode. In normal mode the 860 mi-
croprocessor transfers the latched values to the
output pins and latches the values that are being
driven onto the input pins.

3. Reenter shift mode to read the new values of the
input pins.

3.3.1 NORMAL MODE

When SCAN is deasserted, the normal mode is se-
lected. For each input pin (RESET, HOLD,
INT/CS8, NA#, READY#, KEN#, SHI, BSCN,
SCAN, CC1, and CCO0), the corresponding latch is
loaded with the value that is being driven onto the

pin.

The tristate output pins (A31-A3, BE7#-BEO#,
W/R#, NENE#, ADS#, LOCK#, and PTB) are en-
abled by the control latches ADDRt (for A31-A3),
BEt, W/Rt, NENEt, ADSt, LOCKt, and PTBt. If a con-
trol latch is set, the corresponding output latches
drive their output pins; otherwise the pins are not
driven.

The 1/0 pins (D63-D0) are enabled by the control
latch DATAt, which is similar to the other control
latches. In addition, when DATAt is not set, the data
pins are treated as input pins and their values are
latched.

3.3.2 SHIFT MODE

When SCAN is asserted, the shift mode is selected.
In shift mode, the pins are organized into a boundary
scan chain. The scan chain is configured as a shift
register that is shifted on the rising edge of CLK. The
SHI pin is connected to the input of one end of the
boundary scan chain. The value of the most signifi-
cant bit of the scan chain is output on the BREQ pin.
To avoid glitches while the values are being shifted
along the chain, all tristate outputs are disabled. The
order of the pins within the chain is shown in Figure
3.1.

A tester causes entry into this mode for one of two
purposes:

1. To assign values to output latches to be driven
onto output pins upon subsequent entry into nor-
mal mode.

2. To read the values of input pins previously latched
in normal mode.

4.0 BUS OPERATION

A bus cycle begins when ADS# is activated and
ends when READY # is sampled active. READY # is
sampled one clock after assertion of ADS# and
thereafter until it becomes active. New cycles can
start as often as every other clock until three cycles
are outstanding. A bus cycle is considered outstand-
ing as long as READY # has not been asserted to
terminate that cycle. After READY # becomes ac-
tive, it is not sampled again for the following (out-
standing) cycle until the second clock after the one
during which it became active. READY # is assumed
to be inactive when it is not sampled.

With regard to how a bus cycle is generated by the
860 microprocessor, there are two types of cycles:
pipelined and nonpipelined. Both types of cycles can
be either read or write cycles. A pipelined cycle is
one that starts while one or two other bus cycles are
outstanding. A nonpipelined cycle is one that starts
when no other bus cycles are outstanding.

4.1 Pipelining

A m-n read or write cycle is a cycle with a total cycle
time of m clocks and a cycle-to-cycle time of n
clocks (m > n). Total cycle time extends from the
clock in which ADS# is activated to the clock in
which READY # becomes active; whereas, cycle-to-
cycle time extends from the time that READY # is
sampled active for the previous cycle to the time
that it is sampled active again for the current cycle.
When m = n, a nonpipelined cycle is implied; m > n
implies a pipelined cycle.

1 2 .3 4 5 6 69 ;
— SHI — BSCN —> SCAN —> RESET — DATAt — D0 — ... — D83 —
70 7 72 100 101 102 103 104
cct — cc0 — AM  — ... — A3 — ADDRt — NENEt — NENE# — PTBt —
105 106 107 108 109 110 11 12 113
PTB# — W/Rt — W/R# — ADSt —> ADS# — HLDA — LOCKt —> LOCK# —> READY# —>
114 115 116 17 118 119 126 127
KEN# — NA# — INT/CS8 —> HOLD — BEt — BE7# — — BEO# — BREQ —

Figure 3.1. Order of Boundary Scan Chain
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Pipelining may occur for the next bus cycle any time
the current bus cycle requires more than two clock
periods to finish (m > 2). The next cycle can be
initiated when NA# is sampled active, even if the
current cycle has not terminated. In this case, pipe-
lining occurs. NA# is recognized only in the clock
when ADS# has become inactive.

To allow high transfer rates in large memory sys-
tems, two-level pipelining is supported (i.e there may
be up to three cycles in progress at one time). Pipe-
lining enables a new word of data to be transferred
every two clocks, even though the total cycle time
may be up to six clocks.

4.2 Bus State Machine

The operation of the bus is described in terms of a
bus state machine using a state transition diagram.
Figure 4.1 illustrates the 860 microprocessor bus
state machine. A bus cycle is composed of two or
more states. Each bus state lasts for one CLK peri-
od.

The 860 microprocessor supports up to two levels of
address pipelining. Once it has started the first bus
cycle, it can generate up to two more cycles as long
as READY # remains inactive. To start a new bus
cycle while other cycles are still outstanding, NA #
must be active for at least one clock cycle starting
with the clock after the previous ADS#. NA# is
latched internally.

States Tj and Tjx, forj = {1,2,3} andk = {1,2}, are
used to describe the state of the 860 microproces-
sor Bus State Machine. Index j indicates the number
of outstanding bus cycles while index k distinguishes
the intermediate states for the j-th outstanding cycle.
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Therefore there can be up to three outstanding cy-
cles, and there are two possible intermediate states
for each level of pipelining. Ty is the next state after
Tj, as long as j cycles are outstanding. Tj2 is entered
when NA# is active but the 860 microprocessor is
not ready to start a new cycle.

Five conditions have to be met to start a new cycle
while one or more cycles are already pending:

1. READY # inactive
2. NA# having been active
3. An internal request pending

4. HOLD not active (or HOLD active, but not being
serviced because LOCK # is active)

5. Fewer than three cycles outstanding

Upon hardware RESET, the bus control logic enters
the idle state T, and awaits an internal request for a
bus cycle. If a bus cycle is requested while there is
no hold request from the system, a bus cycle begins,
advancing to state T4. On the next cycle, the state
machine automatically advances to state Tqq. If
READY # is active in state T44, the bus control logic
returns either to T, if no new cycle is started, or to
T4, if a new cycle request is pending internally. In
fact, if an internal bus request is pending each time
READY # is active, the state machine continues to
cycle between T11 and Tj.

However, if READY # is not active but the next ad-
dress request is pending (as indicated by an active
NA#), the state machine advances either to state
To (if an internal bus request is pending, signifying
that two bus cycles are now outstanding), or to state
T12 (if no bus internal request is pending, signifying
NA# has been found active). Transitions from state
T12 are similar to those from Tq4.
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READY# DEASSERTED-
(NO REQUEST+
HOLD ASSERTED)

READY# DEASSERTED-
Y REQUEST PENDING-

READY# DEASSERTED- HOLD DEASSERTED
(NO REQUEST +.
HOLD ASSERTED)

READY# DEASSERTED-
NA# ASSERTED-
(NO REQUEST+.

HOLD ASSERTED

READY# DEASSERTED-
NA# DEASSERTED

READY# ASSERTED-
(NO REQUEST+
HOLD ASSERTED)
""ALWAYS"

READY# ASSERTED-
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NOTES:

READY#  Assumed deasserted one clock after the ac-
tive clock

NA # Not sampled during ADS# active clock

ADS # Active in Tq, To and T3

HLDA Active in Ty

HOLD Synchronized internally and masked by bus
lock request

REQUEST Internal Bus Request Pending

240296-29

Figure 4.1. Bus State Machine

If two bus cycles are already outstanding (as indicat-
ed by Tok for k = {1,2}) and NA# is latched active
but READY # is not active, one more bus request
causes entry into state Tg3. Transitions from this
state are similar to those from To.

In general, if there is an internal bus request each
time both READY # and NA# are active, the state

machine continues to oscillate between Tj; and T,
forj = {2,3}.

When NA# is sampled active while there is a pend-
ing bus request, ADS # is activated in the next clock
period (provided no more than two cycles are al-
ready outstanding).
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Internal pending bus requests start new bus cycles
only if no HOLD request has been recognized. Ty is
entered from the idle state T, only. HLDA is active in
this state. There is a one clock delay to synchronize
the HOLD input when the signal meets the respec-
tive minimum setup and hold time requirements. The
state machine uses the synchronized HOLD to move
from state to state.

4.3 Bus Cycles

Figures 4.2 through 4.10 illustrate combinations of
bus cycles.

4.3.1 NONPIPELINED READ CYCLES

A read cycle begins with the clock in which ADS # is
asserted. The 860 microprocessor begins driving the
address during this clock. It samples READY # for
active state every clock after the first clock. A mini-
mum of two clocks is required per cycle. Data is
latched when READY # is found active when sam-
pled at the end of a clock period. Figure 4.2 illus-
trates nonpipelined read cycles with zero wait
states.

Normally, all 64 bits of the data bus are latched;
however, in the case of noncacheable bus cycles,
the byte enables BE7#-BEO# determine which
bytes are used. In CS8 mode, only the low-order
eight bits are latched.

CYCLE 2 CYCLE 3
NON=PIPELINED | NON-PIPELINED
READ READ
(2=2) (2-2)

gl
™
XXX

2P -

H'J
17
X

E

v/4

X
b

(0,

S

CYCLE 1
NON~=PIPELINED
READ
(2-2)
T T
CLK | |
o N 27
A31=A3, W/R#,
BEn#, NENE#,
LOCK#, PTB
we | (SN
READY# / 77 /
D63-DO }-----<

Dt

)t

240296-13

Figure 4.2. Fastest Read Cycles
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CYCLE1 | CYCLE2 | CYCLE3
NON=PIPELINED | NON=PIPELINED | NON=PIPELINED
WRITE WRITE WRITE
(2-2) (2-2) (2-2)
Ty T11 T T11 Ty T11
o N7 TN TN |
A31=A3, W/R#,
oeng NeNER | OOXX [ XX [ XXX
we | (/200 LD LD
READY# /77/ /77/ /77/
os-20. [ XOORKXOC_|XOOORXX_|X00X
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Figure 4.3. Fastest Write Cycles

4.3.2 NONPIPELINED WRITE CYCLES

The ADS# and READY# activity for write cycles
follows the same logic as that for read cycles, as
Figure 4.3 illustrates for back-to-back, nonpipelined
write cycles with zero wait-states. The byte enables
BE7#-BEO# indicate which bytes on the data bus
are valid.

The fastest write cycle takes only two clocks to com-
plete. However, when a read cycle immediately pre-

cedes a write cycle, the write cycle must contain a
wait state, as illustrated in Figure 4.4. Because the
device being read might still be driving the data bus
during the first clock of the write cycle, there is a
potential for bus contention. To help avoid such con-
tention, the 860 microprocessor does not drive the
data bus until the second clock of the write cycle.
The wait state is required to provide the additional
time necessary to terminate the write cycle. In other
read-write combinations, the 860 microprocessor
does not require a wait state.
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Figure 4.4. Fastest Read/Write Cycles
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Figure 4.5. Pipelined Read Followed by Pipelined Write
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CYCLE 1 CYCLE2 | CYCLE3 | CYCLE 4
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Figure 4.6. Pipelined Write Followed by Pipelined Read

4.3.3 PIPELINED READ AND WRITE CYCLES

Figures 4.5 and 4.6 illustrate combinations of non-
pipelined and pipelined read and write cycles. The
following description applies to both diagrams. While
Cycle 1 is still in progress, two new cycles are initiat-
ed. By the time READY # first becomes active, the
state machine has moved through states T4, Tq1,
To, T21, and T3. Cycles 3 and 4 show how activating
READY # terminates an outstanding cycle (Cycle 3
in this case), and yet activating NA# while there is
an internal request pending adds a new outstanding
cycle.

In Figure 4.5, Cycle 3 is a write cycle following a read
cycle; therefore, one wait state must be inserted.
The 860 microprocessor does not drive the data bus
until one clock after the read data is returned from
the preceding read cycle. During Cycles 3 and 4, the
state machine oscillates between states T3 and T34
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maintaining full bus capacity (two levels of pipelin-
ing; three outstanding cycles). Cycles 2, 3, and 4 in
Figure 4.6 are 5-2 cycles; i.e. each requires a total
cycle time of five clocks while the throughput rate is
one cycle every two clocks.

Figure 4.7 illustrates in a more general manner how
the NA# signal controls pipelining. Cycle 1 is a 2-2
cycle, the fastest possible. The next cycle cannot be
started any earlier; therefore, there is no need to
activate NA# to start the next cycle early. Cycle 2, a
3-3 read, is different. Cycle 3 can be started during
the third state (a wait state) of Cycle 2, and NA# is
asserted to accomplish this.

NA# is not activated following the ADS# clock of
Cycle 3, thereby allowing Cycle 3 to terminate be-
fore the start of Cycle 4. As a result, Cycle 4 is a
nonpipelined cycle.
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Figure 4.7. Pipelining Driven by NA # —
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Figure 4.8. NA# Active with No Internal Bus Request
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NON=PIPELINED | NON=PIPELINED | NON=PIPELINED
EA WRITE WRITE
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Figure 4.9. Locked Cycles

When there is no internal bus request, activating
NA# does not start a new cycle; the 860 microproc-
essor, however, remembers that NA# has been ac-
tivated. Figure 4.8 illustrates the situation where
NA# is active but no internal bus request is pending.
NA# is activated when two cycles are outstanding.
Because there is no internal request pending until
after one idle state, no new bus cycle is started dur-
ing that period.

4.3.4 LOCKED CYCLES

The LOCK # signal is asserted when the current bus
cycle is to be locked with the next bus cycle. Asser-
tion of LOCK # ma})]( be initiated by a program’s set-
ting the BL bit of the dirbase register (refer to sec-
tion 2) or by the 860 micrcprocessor itself during
page table updates.

In Figure 4.9, the first read cycle is to be locked with
the following write cycle. If there were idle states
between the cycles, the LOCK# signal would re-
main asserted. This is the case for a read/modify/
write operation. HOLD is not acknowledged until all
locked cycles are finished. The second write cycle is
not locked because LOCK# is no longer asserted
when the first write cycle starts.

4.3.5 HOLD AND BREQ ARBITRATION CYCLES

The HOLD, HLDA, and BREQ signals permit bus ar-
bitration between the 860 microprocessor and an-
other bus master.

As Figure 4.10 illustrates, the Ty (hold) state can be
entered only from the idle state T|. When HOLD is
asserted, the 860 microprocessor keeps control of
the bus until all outstanding cycles, including locked
cycles, are completed.

If HOLD were asserted one clock earlier, the last
860 microprocessor bus cycle before HLDA would
not be started. LOCK# is assumed to be inactive in
the last bus cycle. If LOCK# were active the 860
microprocessor would not give up the bus.

The outputs (except HLDA and BREQ) float when
HLDA is asserted. HOLD is sampled at the end of
the clock in which it is activated. Recommended set-
up and hold times must be met to guarantee sam-
pling one clock after external HOLD activation.
When HOLD is sampled active, a one clock delay for
internal synchronization follows. HLDA may be
deasserted as early as the clock following deasser-
tion of HOLD.
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Figure 4.10. HOLD, HLDA, and BREQ

If, during a HOLD cycle, an internal bus request is SET. If INT/CS8 is sampled active, the 860 micro-
generated, BREQ is activated even though HLDA is processor enters CS8 mode. No inputs (except for
asserted. It remains active at least until the clock HOLD, INT/CS8, and CC1-CC0) are sampled dur-
after ADS# is activated for the requested cycle. ing RESET.

Note that, because HOLD is recognized even while
4.4 Bus States During RESET RESET is active, the HLDA output signal may also
become active during RESET. Refer to Figure “Out-
Figure 4.11 shows how INT/CS8 is sampled during put Pin Status during Reset” in section 3.
the clock period just before the falling edge of RE-

| = 16 CLKs

o FLALAS L

RESET

INT/CS8 ‘ :XXXX X
4 C
on | %, X0

L

240296-22

Figure 4.11. Reset Activities
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5.0 MECHANICAL DATA

Figures 5.1 and 5.2 show the locations of pins; Tables 5.1 and 5.2 help to locate pin identifiers.

S R Q P N ™M L K J H G F E D c B A
AN
o o o o o o o0 o O O O O O 0 0 O O]
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Figure 5.1. Pin Configuration—View from Top Side
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Figure 5.2. Pin Configuration—View from Pin Side
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Table 5.1. Pin Cross Reference by Location

Location Signal Location Signal Location Signal Location Signal
Al Vee (o7 F D47 5. D17 Q10.......... BE6#
A2l Vss Cl10............ D43 J16 ...l D14 Qtt.......... BE4 #
A3.. ...l Vee [ s I D39 J17 ool D16 Ql2.......... BEO#
Ad .. ... Vss Cl2a............ D37 Kiooooooooat A21 Qi3.......... BSCN
AS5............. D56 C13............ D35 K2............. A18 Ql4............. D1
AB............. D52 Cl4............ D33 K3.oooviviinnn A16 Q15 D2
A7 . i D50 Ci5............ D32 KI6........o... D13 Q16............ Vss
AB........... D48 Cl6............ Vss K16............ D15 Q17 ...l Vee
A9.. ...l D46 Cl7.....ccont Vee KI17....ooooatt. D12 Rl........ooet Vss
A10............ D44 Dl............. Vss L1 ..l A19 R2............. Vee
PN | I D40 D2............. Vee L2......ooll A15 R3.........o. Vss
Al2.......o.e. D38 D3............. D62 L3 ...oiiinan A4 R4............. Vee
A13............ Vece Di5............ D31 L15........ ... D11 R5....ocveven A4
Ald............ Vss D16............ D30 L16.....coetaet D8 R6......... NENE #
AlS........... Vce D17............ Vss [ Iy 2 D10 R7 ........... HLDA
Al6............ Vss E1.......ooo Vee M1l A17 R8 .......... KEN#
Al7............ Vce E2............. CCo M2.. ...l A13 RO............ NA #
Bl............. Vss E3............. CCt M3............. A1 R10.......... BE7 #
B2............. Vee E15............ D29 Mi15 ......ooLLL D7 Ri1.......... BE2#
B3............. Vss E16............ D28 M16 ............ D9 R12.......... BE1#
B4............. D59 E17............ D26 M17 ..ol D6 R13.......... SCAN
BS............. D58 | A31 NTf....oooiat A12 Ri4............. Do
B6.....oounnnn. D54 F2 oo, A28 N2 A10 R15...ccivvnn.. Vss
B7............. D53 F3...oviiinn A30 N3....ocovvinnn A9 R16............ Vee
B8............. D49 F15............ D27 N15............. D5 R17............ Vss
BO9............. D45 F16............ D25 N16............. D4 53 I Vee
B10............ D42 F17...... .. D24 N17............ Vee S2......ll Vss
Bil............ D41 Gl............. A29 P1........ooot Vss S3 ... Vee
Bi2............ D36 G2......ooanne A27 P2.............. A8 S4.... Vss
B13............ D34 G3.....ooivetn A26 P3 ...l A7 S5 Vee
B14............ Vee G156 ........... D23 P15........ .. .. D3 S6 .......... W/R#
Bi15............ Vss G16 ........... D22 P16............ Vee S7. vt ADS#
B16............ Vee G17 ........... D20 P17 ............ Vss S8 ......... LOCK #
B17............ Vss Hi.......o..... A25 Ql............. Veo S9 ........ INT/CS8
(07 I Veo H2............. A24 Q2............. Vss S10.......... BE5#
C2......ceutn Vss H3............. A22 Q3.....coeinnn A6 S11.......... BE3#
C3..iiiiiin D60 Hi5............ D21 Q4.............. A5 S12............ SHI
(O D63 H16............ D19 Q5. A3 S13......... RESET
C5...ciiininnn D61 H17............ D18 Q6 ............ PTB S14............ Vss
C6...ooevvnnnn D57 i A23 Q7........... BREQ S16......iit Vee
C7. v, D55 N - A20 Qs8........ READY # S16............ Vss
C8..ovvinnnn D51 3., CLK Q9........... HOLD S17....iit Vce
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Table 5.2. Pin Cross Reference by Pin Name

Signal Location Signal Location Signal Location Signal Location
A3.. .o, Q5 CLK ...ttt J3 D41............ B11 VEG e evvernvenns B16
Ad. ..., R5 DO............. R14 D42............ B10 VoG o vveineinnn C1
A5 i, Q4 [0 U Q14 D43...coeeennn. C10 VG rerrrnnnnns Cc17
AG.............. Q3 D2............. Q15 D44............ A10 VEG e vvvennnenns D2
A7 oo P3 D3............. P15 D45............. B9 VoG vvvevennenns E1
A8 ..o, P2 Dd.....connnn N16 D46......c.c...... A9 VCGevnnernnnnnn N17
A9.............. N3 D5......c.o.t N15 D47 .o Cco VoG vvenvennnns P16
A10............. N2 D6 ..ennnn M17 D48............. A8 VCGrrrerrennnnnn Qi
TN U M3 D7 e, M15 D49............. B8 VO veerenn Q17
Al2............. N1 D8 ............. L16 D50............. A7 VoG vveereennnnn R2
A13............. M2 D9 ............ M16 D51............. C8 VoG o ovveeeennnn R4
A4 ..o, L3 DI10............ L17 D52.....ccvnn. A6 VOG- veeennnns R16
A5 .. ........... L2 Di1............ L15 D53............. B7 Ve oot S1
A6t K3 Di2............ K17 D54.....cccunn B6 VEG vrrerennnnnn S3
Al7.. ..., M1 D13............ K15 D55............. C7 VoG vvveevnnnnn S5
A8 ............. K2 D14 ............ J16 D56....cccnnnn. A5 VCCvoeennnnns S15
A19 ............. L1 Di15............ K16 D57............. C6 VeGevevvonnnnnn S17
A20 ............. J2 D16 ............ J17 D58............. B5 Veg oot A2
A21............. K1 D17 ............ J15 D59............. B4 Veg vt A4
A22............. H3 DI8............ H17 D60........n.... c3 VSS . eevrnaennnn Al4
A23 ... Ji D19............ H16 D61............. C5 Vesivvievennnn Al16
A24 ...l H2 D20 ........... G17 D62............. D3 VSS tverernnnnnnn B1
A25.. ... ....... H1 D21......c...... H15 D63.....ccvn... Ca VSS e vvneeennnnnn B3
A26............. G3 D22 ........... G16 HLDA ........... R7 Vg evvunnnnnn B15
A27 ..o G2 D23 ........... G15 HOLD........... Q9 Veg . vveeinnnnn B17
A28 ...l F2 D24............ F17 INT/CS8 ........ S9 L R c2
A29............. G1 D25............ F16 KEN# .......... R8 Vgg.vvevvvnnnnn Ci16
A30............. F3 D26............ E17 LOCK# ......... S8 Vg eviiiinnnnnn D1
A3l F1 D27 ............ F15 NA# ...ooovnnn.. R9 VSS . vneerennnnn D17
ADS# ........... S7 D28............ E16 NENE# ......... R6 VS vvvevnnnnns P1
BEO#.......... Q12 D29............ E15 PTB ............ Q6 Vggovevennennnn P17
BE1#.......... R12 D30............ D16 READY#........ Q8 Ves. vt Q2
BE2#.......... R11 D31..cvvvnnnnn. D15 RESET......... S13 VSS.evvneennnn Q16
BE3# .......... S11 D32............ Ci15 SCAN.......... R13 VSS - terrnnennnnn R1
BE4#.......... Qi1 D33............ C14 SHI ............ S12 Veg v iveeannnn R3
BES# .......... S10 D34............ B13 VCG . errerennnnnn Al VS8 veernnnnnn R15
BE6#.......... Q10 D35............ C13 VCGC-vvveronunen. A3 Vgs.vvveennnnn. R17
BE7#.......... R10 D36............ B12 VCGeervrnnnnnn A13 R S2
BREQ........... Q7 D37............ C12 VO vvvvvennnnn A15 VES eeveennnnnnn S4
BSCN.......... Q13 D38............ A12 VOG:tvvernnenns A17 Vag e rneennnn. S14
CCO....oovvnnn E2 D39............ c11 VG vrneeennnnnn B2 VS errnrnnnns S16
CCl.evvrnnn.. E3 D40............ A1 VG errrnnnnnn B14 W/R# .......... S6
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Table 5.3. Ceramic PGA Package Dimension Symbols

Lse;t':;:'r Description of Dimensions
A Distance from seating plane to highest point of body
Aq Distance between seating plane and base plane (lid)
Az Distance from base plane to highest point of body
A3 Distance from seating plane to bottom of body
B Diameter of terminal lead pin
D Largest overall package dimension of length
D4 A body length dimension, outer lead center to outer lead center
eq Linear spacing between true lead position centerlines
L Distance from seating plane to end of lead
Sq Other body dimension, outer lead center to edge of body

NOTES:

1. Controlling dimension: millimeter.

2. Dimension “e¢” (“‘e€”) is non-cumulative.

3. Seating plane (standoff) is defined by P.C. board hole size: 0.0415-0.0430 inch.
4. Dimensions “B”, “B¢” and “C” are nominal.

5. Details of Pin 1 identifier are optional.
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SEATING
D PLANE |
D1 - A e
51_. le— A3—> p-—
LA
¢;E-§5 [OXONONONORONOXONORORONONOROXONOXO)
N [CROXCXCXCROCROXCXORONOROXORONOROXO) T
ICXORCNONONONONONONONONONONORONONO) o
© 0 [ONOXO)
[OXOXC] [OXOXO)] SEATING
[OXOXO) — [OXOXO) PLANE
©e00e ©e0e @B (ALL PlN;;}
©006 / \ ©0 O 1
(ONOXO©] ©@@@]D0
@O0 @O0 T
PIN C3 [ONOXO] [OXOXC) SWAGGED
Neoo N S ©O® oo
O © ©@O0
© A0 @O0
(ONON © FOXOXONONONONORONONCRONOYOXC)
' [ONONONONOXONONORONORORORORONOAOKO)
}_\@@@@(@@@@@@@@@@@@__ ||
_Z.L REF. sw,t\cc;m—A A
1527 PIN sase ] A2
45° CHAMFER (4PL) PLANE
(INDEX CORNER)
240296-30
Family: Ceramic Pin Grid Array Package
Symbol Millimeters Inches
Min Max Notes Min Max Notes
A 3.56 4.57 0.140 | 0.180
Aq 0.64 1.14 SOLID LID 0.025 0.045 SOLID LID
Az 23 0.30 SOLID LID 0.110 0.140 SOLID LID
A3 1.14 1.40 0.045 | 0.055
B 0.43 0.51 0.017 0.020
D 44.07 4483 1.735 1.765
Dy 40.51 40.77 1.595 1.605
€4 2.29 2.79 0.090 0.110
L 2.54 3.30 0.100 | 0.130
N 168 168
S4 1.52 2.54 0.060 0.100
ISSUE IWS REVX 7/15/88

Figure 5.3. 168 Lead Ceramic PGA Package Dimensions
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6.0 PACKAGE THERMAL
SPECIFICATIONS

The 860 microprocessor is specified for operation
when T¢ (the case temperature) is within the range
of 0°C-85°C. Tg may be measured in any environ-
ment to determine whether the 860 microprocessor
is within specified operating range. The case tem-
perature should be measured at the center of the
top surface opposite the pins.

Ta (the ambient temperature) can be calculated
from O¢p (thermal resistance from case to ambient)
with the following equation:

Ta = Tc — P*6ca

Typical values for 6ca at various airflows are given
in Table 6.1 for the 1.75 sq. in., 168 pin, ceramic
PGA.

Table 6.2 shows the maximum Tp allowable (without
exceeding T¢) at various airflows and operating fre-
quencies (foLk)-

Note that Tp is greatly improved by attaching “fins”
or a “heat sink” to the package. P (the maximum
power consumption) is calculated by using the maxi-
mum Igc at 5V as tabulated in the DC Characteris-
tics of section 7.

Table 6.1. Thermal Resistance (6ca) at Various

Airflows
In °C/Watt
Airflow-ft/min (m/sec)
0| 200 | 400 | 600 | 800 | 1000
(0)|(1.01){(2.03) | (3.04) | (4.06) | (5.07)
Oca with
Heat Sink* 13| 9 55 | 50 | 39 | 34
Oca without
Heat Sink 17| 14 1 9 71 6.6

*0.285" high unidirectional heat sink (Al alloy 6061, 50 mil
fin width, 150 mil center-to-center fin spacing).

Table 6.2. Maximum Tp at Various Airflows

In°C
Airflow-ft/min (m/sec)
fok | 0 | 200 | 400 | 600 | 800 | 1000
(MHz) | (0) | (1.01) | (2.03) | (3.04) | (4.06) | (5.07)
Ta with 333 (46| 58 | e9 | 70 | 73 | 75
HeatSink* | 400 [43| 56 | 67 | 69 | 72 | 74
Tawithout | 333 34| 43 | 52 | 58 | 64 | 65
HeatSink | 400 [30| 40 | 40 | 56 | 62 | 64

*0.285" high unidirectional heat sink (Al alloy 6061, 50 mil fin width, 150 mil

center-to-center fin spacing).
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7.0 ELECTRICAL DATA

Inputs and outputs are TTL compatible. All input and
output timings are specified relative to the 1.5 volt
level of the rising edge of CLK and refer to the point
that the signal reaches 1.5V.

7.1 Absolute Maximum Ratings

0°Cto 85°C
—65°Cto +150°C

Case Temperature T under Bias
Storage Temperature

Voltage on Any Pin
with Respect to Ground

—0.5to Vg + 0.5V

7.2 D.C. Characteristics

*Notice: Stresses above those listed under “Abso-
lute Maximum Ratings” may cause permanent dam-
age to the device. This is a stress rating only and
functional operation of the device at these or any
other conditions above those indicated in the opera-
tional sections of this specification is not implied. Ex-
posure to absolute maximum rating conditions for
extended periods may affect device reliability.

NOTICE: Specifications contained within the
following tables are subject to change.

Table 7.1. DC Characteristics

Symbol Parameter Min Max Units Notes
ViL Input LOW Voltage -0.3 +0.8 \
VIH Input HIGH Voltage 2.0 Vcc+0.3 \"
VoL Output LOW Voltage 0.45 \" (Note 1)
VoH Output HIGH Voltage 24 \ (Note 2)
Ilcc Power Supply Current
CLK = 33.3 MHz 600 mA Vce @5V
CLK = 40.0 MHz 650 mA Vcc @5V
I Input Leakage Current +15 rA No pullup
or pulidown
ILo Output Leakage Current +15 pA
CiN Input Capacitance 15 pF
Co 170 or Output Capacitance 15 pF
CoLk Clock Capacitance 20 pF
NOTES:

1. This parameter is measured at 4.0 mA for address, data, and byte enables; at 5.0 mA for definition and control.
2. This parameter is measured at 1.0 mA for address, data, and byte enables; at 0.9 mA for definition and control.
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7.3 A.C. Characteristics

Table 7.2. A.C. Characteristics Tc = 0t0 85°C,Vgc = 5V + 5%
All timings measured at 1.5V unless otherwise specified.

33.3 MHz 40.0 MHz
Symbol Parameter : ¢ Test
Min Max Min Max Conditions
(ns) (ns) (ns) (ns)
t1 CLK period 30 125 25 125
t2 CLK high time 7 5 at2v
3 CLK low time 7 5 at .8V
t4 CLK fall time 4 4
t5 CLK rise time 4 4
téa A31-A3, PTB, W/R#, NENE # valid 3.5 38 3.5 29 50 pF load
téb BEn# valid 3.5 41 3.5 32 50 pF load
t7 Float time, all outputs 3.5 30 3.5 25 (Note 1)
t8 ADS#, BREQ, LOCK #, HLDA valid delay 3.5 26 3.5 21 50 pF load
19 D63-DO0 valid delay 3.5 47 3.5 43 50 pF load
t10 Setup time, all inputs except INT, HOLD 13 10
t11 Hold time, all inputs except INT, HOLD 4 4
t12 INT, HOLD setup time 22 15 (Note 2)
t13 INT, HOLD hold time 5 5 (Note 2)

NOTES:

1. Float condition occurs when maximum output current becomes less than I o in magnitude. Float delay is not tested.

2. INT and HOLD are asynchronous inputs. The setup and hold specifications are given for test purposes or to assure
recognition on a specific rising edge of CLK.
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2.0V
CLK
1.5V t2 13

INPUT INPUT
SETUP HOLD

1200 13 0in

INPUTS —" "—

t10min 11 in

tsmax/w max/tg ma:
S ——

—»| e t6in/t8min/t9,

N A

OUTPUTS

t7!’!‘10)(

— [-— t7min

ourars [TTTTT 77004

240296-25

Figure 7.1. CLK, Input, and Output Timings
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nom +15

nom +10 ASS-DO
TYPICAL* OUTPUT

7
DELAY (ns)  nom +5 ///

7
@ 1.5V ?
A31-A3, PTB, W/R#, NENES

BE7#=HEO#
ADS#, BREQ, LQCK#, HLDA

nom

nom =5

25 50 75 100 125 150

LOAD CAPACITANCE, C; (pf)
240296-26

NOTES:

Graphs are not linear outside the C range shown.
nom = nominal value given in the AC timing table.
*Typical part under worst-case conditions.

Figure 7.2. Typical Output Delay vs Load Capacitance under Worst-Case Conditions

18
15 ,/
2 63-D0

TYPICAL* OUTPUT
SLEW TIME (ns) 9

(0.8~ 2.0V)
6 P
/ A31-A3,|PTB, W/R#, NENE#
S BEY #=BED#
/

0

PS#, BREQ, LOCK#, HLDA

NN

25 50 75 100 125 150
LOAD CAPACITANCE, C, (pf)
240296-27

NOTES:
Graphs are not linear outside the C| range shown.
*Typical part under worst-case conditions.

Figure 7.3. Typical Slew Time vs Load Capacitance under Worst-Case Conditions
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lec (mA)*

NOTES:

shown.

700

600

500

400

300

200
8

Graphs are not linear outside the frequency range

*Worst-case supply current at 5V.

12 16 20 24 26 30 34 3840

FREQUENCY (MHz)
240296-28

Figure 7.4. Typical Igc vs Frequency

8.0 INSTRUCTION SET

Key to abbreviations:

src1

srcini
src2
rdest
freg
ireg
ctrireg

#const

A register (integer or floating-point
depending on class of instruction)
or a 16-bit immediate value. The
immediate value is sign-extended
for add and subtract operations
and zero-extended for logical oper-
ations.

Same as src? except that no im-
mediate value is permitted.

A register (integer or floating-point
depending on class of instruction).
A register (integer or floating-point
depending on class of instruction).
A floating-point register.

An integer register.

One of the control registers fir,
psr, dirbase, db, or fsr.

A 16-bit immediate address offset
that the 860 microprocessor sign-
extends to 32 bits when computing
the effective address.

mem.x(address) The contents of the memory loca-

Ibroff

sbroff

brx

srcils

PM

57

tion indicated by address with a
size of x.

Precision specification. Unless oth-
erwise specified, floating-point op-
erations accept single- or double-
precision source operands and
produce a result of equal or great-
er precision. Both input operands
must have the same precision. The
source and result precision are
specified by a two-letter suffix to
the mnemonic of the operation, as
shown in the table below.

Suffix Source Result
Precision | Precision
.SS single single
.sd single double
.dd double double

.8s (32 bits), or .dd (64 bits)

.b (8 bits), .s (16 bits), or .I1 (32
bits)

.1 (32 bits), .d (64 bits), or .q (128
bits)

.1 (32 bits, or .d (64 bits)

A signed, 26-bit, immediate, rela-
tive branch offset

A signed, 16-bit, immediate, relat-
vie branch offset

A function that computes the tar-
get address of a branch by shifting
the offset (either lbroff or sbroff)
left by two bits, sign-extending it to
32 bits, and adding the result to
the address of the current control-
transfer instruction plus four.

An integer register or a 5-bit imme-
diate that is zero-extended to 32
bits.

The pixel mask, which is consid-
ered as an array of eight bits
PMI[0]..PM[7], where PM[0] is the
least significant bit.
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8.1 Instruction Definitions in Alphabetical Order
adds SICT, SIC2, IAESE . . . . ..o e Add Signed
rdest <— src1 + src2
OF <« (bit 31 carry #* bit 30 carry)
CC set if sre2 < comp2(src1) (signed)
CC clear if sre2 > comp2(src1) (signed)
addu SICT, SICZ, FAEST . . . ..o oottt ettt ettt Add Unsigned
rdest <— srcl1 + src2
OF <« bit 31 carry
CC <« bit 31 carry
and SICT,SIC2, IAESE . . ..ot e e i e Logical AND
rdest <— src1 and src2
> CC set if result is zero, cleared otherwise
andh #FCONSE SICE, 1deSt .. ... e e Logical AND High
rdest <— (#const shifted left 16 bits) and src2
> CC set if result is zero, cleared otherwise
andnot SICT, SIC2, IAEST . ...ttt ittt enenaneeeennnns Logical AND NOT
rdest <— not src? and src2
> CC set if result is zero, cleared otherwise
andnoth  #const, src2,rdest. ... Logical AND NOT High
rdest <— not (#const shifted left 16 bits) and src2
> CC set if result is zero, cleared otherwise
be IOFOff . o oo e e e Branch on CC
IF CC =
THEN continue execution at brx(lbroff)
Fl
be.t /o) A AP Branch on CC, Taken
IF CC =
THEN execut one more sequential instruction
continue execution at brx(lbroff)
ELSE skip next sequential instruction
Fl
bla SICTINI, SIC2, SOIOff . . ..o o v oottt Branch on LCC and Add
LCC-temp clear if src2 < comp2(src1ni) (signed)
LCC-temp set if src2 > comp2(src1ni) (signed)
src2 < srcini + src2
Execute one more sequential instruction
IF LCC
THEN LCC < LCC-temp
continue execution at brx(sbroff)
ELSE LCC <« LCC-temp
Fi
bnec /) Branch on Not CC
IF CC =
THEN continue execution at brx(lbroff)
FI
bne.t IBFOff . . o oo e Branch on Not CC, Taken
IF CC =
THEN execute one more sequential instruction
continue execution at brx(lbroff)
ELSE skip next sequential instruction
Fi
br IBroff .. ... e Branch Direct Unconditionally

Execute one more sequential instruction.
Continue execution at brx(lbroff).
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bri [Sretnil ... Branch indirect unconditionally
Execute one more sequential instruction
IF any trap bit in psr is set

THEN  copy PU to U, PIM to IM in psr
clear trap bits
IF DS is set and DIM is reset
THEN enter dual-instruction mode after executing one
instruction in single-instruction mode
ELSE IF DS is set and DIM is set
THEN enter single-instruction mode after executing one
instruction in dual-instruction mode
ELSE IF DIM is set
THEN enter dual-instruction mode
for next two instructions
ELSE enter single-instruction mode
for next two instructions
Fl
Fi
Fl
Fl
Continue execution at address in src1ni
(The original contents of src7ni is used even if the next instruction
modifies src7ni. Does not trap if src7ni is misaligned.)

bte SICTS, SIC2, SDIOff . . . . . oot et e e Branch If Equal
IF src1s = src2
THEN continue execution at brx(sbroff)
Fl

btne SICTS, SIC2, SDIOff . . . . oo e e Branch If Not Equal
IF src1s + src2
THEN continue execution at brx(sbroff)
Fl

call IOroff . . . ..o Subroutine Call

r1 <— address of next sequential instruction + 4
Execute one more sequential instruction
Continue execution at brx(lbroff)

calli [SICTNI] . oo e Indirect Subroutine Call
r1 <« address of next sequential instruction + 4
Execute one more sequential instruction
Continue execution at address in src7ni
(The original contents of src7ni is used even if the next instruction
modifies src7ni. Does not trap if src7ni is misaligned.)

fadd.p SICT, SICZ, TABST . . . ... e e Floating-Point Add
rdest <— src1 + src2
faddp SICT, SIC2, IABSE . . ..o ettt et e Add with Pixel Merge

rdest <— src1 + src2
Shift and load MERGE register as defined in Table 8.1

faddz SICT, SICE, IAEST . . ... oottt ettt et e e Add with Z Merge
rdest <— src1 + src2
Shift MERGE right 16 and load fields 31..16 and 63..48

fiadd.w SICT, SIC2, IAEST . . . ..o ettt et e Long-Integer Add
rdest «<— src1 + src2
fisub.w SICT, SIC2, MAESE . ... ..ottt e Long-Integer Subtract
rdest <— src1 — src2
fix.p SICT, Idest . ..ot Floating-Point to Integer Conversion
rdest <— 64- bit value with low-order 32 bits equal to integer part of src7 rounded
Floating-Point Load
fid.y SICT(SICE), fTOG .. e oottt et ettt ettt (Normal)
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fid.y SICT(SIC2)+ +,T8G . . .. e (Autoincrement)
freg <— mem.y (src1 + src2)
IF autoincrement
THEN src2 <— srcl + src2

Fi
Cache Flush

flush FOONSHSICD) . . o e ettt ittt taeaae e teennnesaeennennnaennsenans (Normal)
flush FOONSHSIC) + F it e e e (Autoincrement)

Replace block in data cache with address (#const + src2).

Contents of block undefined.

IF autoincrement

THEN src2 <«— #const + src2

FI
fMIOW.p  SrCT,Src2,rdest . ... e e Floating-Point Multiply Low

rdest <— low-order 53 bits of src7 mantissa X src2 mantissa
rdest bit 53 <— most significant bit of mantissa

fmov.r SICT, FAEST. . ..o e e Floating-Point Reg-Reg Move
Assembler pseudo-operation
fmov.ss src1, rdest = fiadd.ss src1, f0, rdest
fmov.dd src?, rdest = fiadd.dd src?, 10, rdest
fmov.sd src1, rdest = fadd. sd src?, 0, rdest
fmov.ds srci, rdest = fadd.ds src1, 10, rdest

fmul.p SICT, SIC2, IABST . ...ttt e e Floating-Point Multiply
rdest <— src1 X src2
. + Floating-Point No Operation

Assembler péeudo-operation
fnop = shrd r0, r0, r0

form o P (= N OR with MERGE Register
rdest <— src1 OR MERGE
MERGE <« 0

frcp.p SICZ, FAEST . ...ttt et Floating-Point Reciprocal
rdest <— 1/src2 with maximum mantissa error < 2-7

frsqr.p SIC2, IAESE . . ... e Floating-Point Reciprocal Square Root
rdest <— 1/SQRT (src2) with maximum mantissa error < 2-7

Floating-Point Store

fst.y fr6g, SICT(SIC2) ..ottt e e e i e (Normal)

fst.y freg, SrCT(SIC2)t + .o et et e (Autoincrement)
mem.y (src2 + srcl) < freg
IF autoincrement
THEN src2 < srct1 + src2
FI

fsub.p SICT, SIC2, IAESTE . . . . .ottt ittt ninaeeraeenaaens Floating-Point Subtract
rdest <— src1 — src2

ftrunc.p sret,rdest. ... Floating-Point to Integer Conversion
rdest <— 64-bit value with low-order 32 bits equal to integer part of src?

fxfr SICT,IIBG . . oot e Transfer F-P to Integer Register
ireg <— srci

fzchkl SICT, SIC2, IdEST . ... oottt ettt 32-Bit Z-Buffer Check

Consider src1, src2, and rdest as arrays of two 32-bit
fields src1(0)..src1(1), src2(0)..src2(1), and rdest(0)..rdest(1)
where zero denotes the least-significant field.
PM < PM shifted right by 2 bits
FORi=0to1
DO
PM [i + 6] <« src2(i) < srei(i) (unsigned)
rdest(i) <— smaller of src2(i) and src1(j)

MERGE <« 0
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fzchks SICT, STC2, IAESE . . ..ottt et 16-Bit Z-Buffer Check
Consider src1, src2, and rdest as arrays of four 16-bit
fields src1(0)..src1(3), src2(0)..src2(3), and rdest(0)..rdest(3)
where zero denotes the least-significant field.
PM <« PM shifted right by 4 bits
FORi=0to3
DO
PM [i + 4] <« sre2(i) < srei(i) (unsigned)
rdest(i) <— smaller of src2(i) and src1(i)

oD
MERGE <« 0

IMBOVE .. e e e e Software Trap on Integer Overflow
If OF in epsr = 1, generate trap with IT set in psr.

ixfr SICTNE IO . . oo vttt et Transfer Integer to F-P Register
freg <— srcini

Id.c CIFIreg, rdeSt . . ...t e i Load from Control Register
rdest <— ctrireg

Id.x SICT(SIC2), FAEST . . ..o ettt Load Integer
rdest «— mem.x (src1 + src2)

IOCK ..o e Begin Interlocked Sequence

Set BL in dirbase. The next load or store locks the bus.
Disable interrupts until the bus is unlocked.

mov SICZ, FABST . . e Register-Register Move
Assembler pseudo-operation
mov src2, rdest = shl r0, src2, rdest

1T + Core-Unit No Operation
Assembler pseudo-operation
nop = sh1r0, r0, r0
or SICT, SIC2, IABST . ...t Logical OR
rdest «<— src1 OR src2
> CC set if result is zero, cleared otherwise

orh #FCOONSE, SIC2, 1dESE. . ... o o e Logical OR High
rdest <— (#const shifted left 16 bits) OR src2
> CC set if result is zero, cleared otherwise

pfadd.p srcl,src2 rdest.......... ... Pipelined Floating-Point Add
rdest <— last A-stage result
Advance a pipeline one stage
A pipeline first stage <«— src? + src2

pfaddp SIC1, SIC2,rdest ... e Pipelined Add with Pixel Merge
rdest <— last-stage |-result
last stage I-result < src? + src2
Shift and load MERGE register from last-stage I-result as defined in Table 8.1

pfaddz SICT, SIC2, 1deSt . . .....oo ot Pipelined Add with Z Merge
rdest <— last-stage |-result
last stage |-result «<— src? + src2
Shift MERGE right 16 and load fields 31..16 and 63..48 from last-stage I-result

- pfam.p Srct, sre2, rdest. . ... Pipelined Floating-Point Add and Multiply
rdest <— last A-stage result

Advance A and M pipeline one stage (operands accessed before advancing pipeline)

A pipeline first stage <— A-op1 + A-op2

M pipeline first stage <— M-op1 X M-op2
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pfeq.p SICT,SIC2,rdest . ......ooovviiiiiiiienneinnnnns Pipelined Floating-Point Equal Compare
rdest <— last A-stage result
CC set if sre1 = src2, else cleared
Advance A pipeline one stage
A pipeline first stage is undefined, but no result exception occurs

pfgt.p srctl,sre2 rdest ..., Pipelined Floating-Point Greather-Than Compare
(Assembler clears R-bit of instruction)
rdest <— last A-stage result
CC set if sre1 > sre2, else cleared
Advance A pipeline one stage
A pipeline first stage is undefined, but no result exception occurs

pfiadd.w src7,src2,rdest. ... Pipelined Long-Integer Add
rdest <— last-stage I-result
last-stage I-result <— src? + src2

pfisub.w srel,srcZrdest .......... ... Pipelined Long-Integer Subtract
rdest <— last-stage |-result
last-stage |-result «<— src? — src2

pfix.p SICT, rdest .......ooovviiiiiiiiii i Pipelined Floating-Point to Integer Conversion
rdest <— last A-stage result
Advance A pipeline one stage
A pipeline first stage <— 64-bit value with low-order 32 bits
equal to integer part of src7 rounded

Pipelined Floating-Point Load
pfid.z SICI(SIC2), fTOG « e e ettt e i e s (Normal)
pfid.z SICI(SIC2)+ +,f18G . ... oot e s (Autoincrement)

freg <— mem.z (third previous pfld’s (src7 + src2))
(where .z is precision of third previous pfld.z)

If autoincrement

THEN src2 <« src1 + src2

Fl

pfle.p Srct, sre2, rdest . ... Pipelined F-P Less-Than or Equal Compare
Assembler pseudo-operation, identical to pfgt.p except that
assembler sets R-bit of instruction.
rdest <— last A-stage result
CC clear if sre1 < src2, else set
Advance A pipeline one stage
A pipeline first stage is undefined, but no result exception occurs

pfmam.p src1,src2,rdest............. . i Pipelined Floating-Point Add and Multiply
rdest <— last M-stage result
Advance A and M pipeline one stage (operands accessed before advancing pipeline)
A pipeline first stage <— A-op1 — A-op2
M pipeline first stage «<— M-op1 X M-op2

pfmov.r  srel,rdest ... Pipelined Floating-Point Reg-Reg Move
Assembler pseudo-operation
pfmov.ss src1, rdest = pfiadd.ss src1, {0, rdest
pfmov.dd src?, rdest = pfiadd.dd src?, f0, rdest
pfmov.sd src?, rdest = pfadd.sd src7, 10, rdest
pfmov.ds src1, rdest = pfadd.ds src1, 10, rdest

pfmsm.p srct,src2,rdest .................iiiiiiii.. Pipelined Floating-Point Subtract and Multiply
rdest <— last M-stage result
Advance A and M pipeline one stage (operands accessed before advancing pipeline)
A pipeline first stage <— A-op1 — A-op2
M pipeline first stage <— M-op1 X M-op2
pfmul.p SICT, SIC2, IdESt . . ..o Pipelined Floating-Point Multiply
rdest <— last M-stage result
Advance M pipeline one stage
M pipeline first stage <— src? X src2
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PIMUIB.p  SrcT, Src2,rdest. ... Three-Stage Pipelined Multiply
rdest <— last M-stage result
Advance 3-Stage M pipeline one stage
M pipeline first stage «— src?1 X src2

pform SICT, IABSE. . ..o e Pipelined OR to MERGE Register
rdest <— last-stage |-result
last stage I-result «— src7 OR MERGE
MERGE <« 0

pfsm.p Srct, src2, rdest ..., Pipelined Floating-Point Subtract and Multiply
rdest <— last A-stage result
Advance A and M pipeline one stage (operands accessed before advancing pipeline)
A pipeline first stage <— A-op1 — A-op2
M pipeline first stage «<— M-op1 X M-op2
pfsub.p SICT,SIC2, rdeSt .......ccoovviiiiiiiiiiiiiiiiiiiiiina, Pipelined Floating-Point Subtract
rdest <— last A-stage result
Advance A pipeline one stage
A pipeline first stage <— src? + src2

pftrunc.p srel,rdest ......... ... ... it Pipelined Floating-Point to Integer Conversion
rdest <— last A-stage result
Advance A pipeline one stage
A pipeline first stage <— 64-bit value with low-order 32 bits
equal to integer part of src7

pfzchkl SICT,SIC2, rdeSt . .......ccovviiii i Pipelined 32-Bit Z-Buffer Check
Consider src1, src2, and rdest, as arrays of two 32-bit
fields src1(0)..src1(1), src2(0)..src2(1), and rdest(0)..rdest(1)
where zero denotes the least significant field.
PM <« PM shifted right by 2 bits
FORi=0to 1
DO
PM [i + 6] <« src2()) < srci(i) (unsigned)
rdest{i) «<— last-stage I-result
last-stage I-result «<— smaller of src2(i) and src1(i)

oD
MERGE <« 0
pfzchks  srel,src2 rdest ... Pipelined 16-Bit Z-Buffer Check

Consider src1, src2, and rdest, as arrays of four 16-bit
fields src1(0)..src1(3), src2(0)..src2(3), and rdest(0)..rdest(3)
where zero denotes the least significant field.
PM <« PM shifted right by 4 bits
FORi=0to03
DO
PM [i + 4] <« src2()) < src1(i) (unsigned)
rdest(i) <— last-stage |-result
last-stage I-result <— smaller of src2(j) and src1(i)

MERGE <« 0
pst.d freg, #CONSHSICE) .. ..ot i ettt niees Pixel Store
pst.d freg, #Const(Src2)+ + . ... Pixel Store Autoincrement

Pixels enabled by PM in mem.D (src2 + #const) <— freg
Shift PM right by 8/pixel size (in bytes) bits
IF autoincrement THEN src2 <«— #const + src2 Fl

shi SIACT, SIC2, IABST . . . . oo oee ittt e e e e Shift Left
rdest <— src2 shifted left by src? bits
shr SICT, SIC2, IAESL. .. ..ottt i i e e Shift Right

SC (in psr) < sret
rdest <— src2 shifted right by src7 bits

63



mte[ i860™ MICROPROCESSOR ADVANCE INFORMATION

shra SICT, SIC2, IABSE . . ..ottt ettt Shift Right Arithmetic
rdest <— src2 arithmetically shifted right by src? bits

shrd SICT, SIC2, IAESE . ..ot i i e Shift Right Double
rdest <— low-order 32 bits of src7:src2 shifted right by SC bits

st.c SICTNI, CIINEG . ..o Store to Control Register
ctrireg <— srcini

st.x SICTNI, #CONSHSICE) ..o o v et it ettt Store Integer
mem.x (src2 + #const) <— srcini

subs SICT, SIC2Z, IAEST ... ...ttt e e e Subtract Signed

rdest <— src1 — src2

OF <« (bit 31 carry # bit 30 carry)
CC set if src2 > sret (signed)

CC clear if sre2 < sret (signed)

subu SICT, SICE, FABST . . . . ..o e Subtract Unsigned
rdest <— src1 — src2
OF <« NOT (bit 31 carry)
CC <« bit 31 carry
(i.e. CC set if sre2 < sre1 (unsigned)
CC clear if src2 > src1 (unsigned)

trap SICT, SICE, FAEST . . ... oottt i e e Software Trap
Generate trap with IT set in psr

UNIOCK ... e e e e s End Interlocked Sequence
Clear BL in dirbase. The next load or store unlocks the bus.

xor SICT, SIC2, IAESE . . . ... e oottt e e Logical Exclusive OR

rdest <— src1 XOR src2
CC set if result is zero, cleared otherwise
xorh FCONSE SIC2, ISt . . ..ot s Logical Exclusive OR High
rdest <— (# const shifted left 16 bit) XOR src2
CC set if result is zero, cleared otherwise



intel

i860™ MICROPROCESSOR

ADVANCE INFORMATION

" Table 8.1. FADDP MERGE Update

Pixel Fields Loaded From | ight Shift
Size Result into MERGE | Amount
(from PS) (Field Size)
8  |63.56, 47.40, 31..24, 15.8 8
16 |63.58, 47.42, 31.26, 15.10| 6
32 |63.56, 31..24 8

8.2 Instruction Format and Encoding

All instructions are one word long and begin on a
word boundary. There are two general core-instruc-
tion formats: REG-format and CTRL-format. Within
the REG-format are several variations.

8.2.1 REG-FORMAT INSTRUCTIONS

The src2 field selects one of the 32 integer registers
(most instructions) or five control registers (st.c and
Id.c). Dest selects one of the 32 integer registers
(most instructions) or floating-point registers (fld,
fst, pfid, pst, ixfr). For instructions where src? is
optionally an immediate value, bit 26 of the opcode
(I-bit) indicates whether src? is an immediate. If bit
26 is clear, an integer register is used; if bit 26 is set,
src1 is contained in the low-order 16 bits, except for
bte and btne instructions. For bte and btne, the
five-bit immediate value is contained in the src?
field. For st, bte, btne, and bla, the upper five bits of
the offset or broffset are contained in the dest field

instead of src?, and the lower 11 bits of offset are
the lower 11 bits of the instruction.

For Id and st, bits 28 and zero determine operand
size as follows:

Bit 28 Bit0 Operand Size
0 0 8-bits
0 1 8-bits
1 0 16-bits
1 1 32-bits

When src? is an immediate and bit 28 is set, bit zero
of the immediate value is forced to zero.

For fld, fst, pfid, pst, and flush, bit 0 selects autoin-
crement addressing if set. Bits one and two select
the operand size as follows:

Bit 1 Bit 2 Operand Size
0 0 64-bits
0 1 128-bits
1 0 32-bits
1 1 32-bits

When src? is an immediate value, bits zero and one
of the immediate value are forced to zero to main-
tain alignment. When bit one of the immediate value
is clear, bit two is also forced to zero.

31 25 20

General Format

15 10 0

OPCODE/I SRC2 DEST

SRCH IMMEDIATE, OFFSET, OR NULL

16-Bit Inmediate Variant (except bte and btne)

31 25 20 15 0
OPCODE 1 SRC2 DEST IMMEDIATE
st, bla, bte, and btne
31 25 20 15 10 0
OFFSET SRC1
OPCODE/I SRC2 HIGH SRO1S OFFSET LOW

31 25 20

bte and btne with 5-Bit Inmediate

15 10 0

OFFSET

OPCODE 1 HIGH

SRC2

IMMEDIATE OFFSET LOW
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8.2.2 REG-FORMAT OPCODES
31 26
Id.x Load Integer 0 0 0 L 0 |
st.x Store Integer 0 0 0 L 1 1
ixfr Integer to F-P Reg Transfer 0 0 0 0 1 0
(reserved) 0 0 0 1 1 0
fld.x, fst.x Load/Store F-P 0 0 1 0 LS |
flush Flush 0 0 1 1 0 1
pst.d Pixel Store 0 0 1 1 1 1
Id.c, st.c Load/Store Control Register 0 0 1 1 LS 0
bri Branch Indirect 0 1 0 0 0 0
trap Trap 0 1 0 0 0 1
(Escape for F-P Unit) 0 1 0 0 1 0
(Escape for Core Unit) 0 1 0 0 1 1
bte, btne Branch Equal or Not Equal 0 1 0 1 E |
pfid.y Pipelined F-P Load 0 1 1 0 0 |
(CTRL-Format Instructions) 0 1 1 X X X
addu, -s, subu, -s, Add/Subtract 1 0 0 SO AS |
shl, shr Logical Shift 1 0 1 0 LR |
shrd Double Shift 1 0 1 1 0 0
bla Branch LCC Set and Add 1 0 1 1 0 1
shra Arithmetic Shift 1 0 1 1 1 |
and(h) AND 1 1 0 0 H |
andnot(h) ANDNOT 1 1 0 1 H |
or(h) OR 1 1 1 0 H |
xor(h) XOR 1 1 1 1 H |
(reserved) 1 1 X X 1 0
L  Integer Length AS  Add/Subtract
0 —8 bits 0 —Add
1 —16 or 32 bits (selected by bit 0) 1 —Subtract
LS Load/Store LR Left/Right
0 —Load 0 —Left Shift
1 —Store 1 —Right Shift
SO Signed/Ordinal E Equal
0 —Ordinal 0 —Branch on Not Equal
1 —Signed 1 —Branch on Equal
H  High | Immediate
0 —and, or, andnot, xor 0 —sreft is register
1 —andh, orh, andnoth, xorh 1 —srct is immediate
8.2.3 CORE ESCAPE INSTRUCTIONS
31 26 15 10 0
0100 1 1 reserved SRC1 reserved OPCODE
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8.2.4 CORE ESCAPE OPCODES

4 0
(reserved) 0 0 0 0 0
lock Begin Interlocked Sequence 0 0 0 0 1
calli Indirect Subroutine Call 0 0 0 1 0
(reserved) 0 0 0 1 1
intovr Trap on Integer Overflow 0 0 1 0 0
(reserved) 0 0 1 0 1
(reserved) 0 0 1 1 0
unlock End Interlocked Sequence 0 0 1 1 1
(reserved) 0 1 X X X
(reserved) 1 0 X X X
(reserved) 1 1 X X X
8.2.5 CTRL-FORMAT INSTRUCTIONS
31 28 25
of11]1 OPC BROFFSET
BROFFSET is a signed 26-bit relative branch offset.
8.2.6 CTRL-FORMAT OPCODES
26
br Branch Direct 0 1 0
call Call 0 1 1
be(.t) Branch on CC Set 1 0 T
bne(.t) - Branch on CC Clear 1 1 T
T Taken
0 —bc or bnc
1 —bec.t or bne.t
8.2.7 FLOATING-POINT INSTRUCTION ENCODING
31 25 20 15 7
01 0 0 1 0 SRC2 DEST SRC1 P|p|s|R OPCODE

SRC1, SRC2 —Source; one of 32 floating-point registers
DEST —Destination register

(instructions other than fxfr) one of 32 floating-point registers

(fxfr) one of 32 integer registers

P Pipelining
1 —Pipelined instruction mode
0 —Scalar instruction mode
D Dual-Instruction Mode
1 —Dual-instruction mode
0 —Single-instruction mode
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S Source Precision
1 —Double-precision source operands
0 —Single-precision source operands
R Result Precision
1 —Double-precision result
0 —Single-precision result
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8.2.8 FLOATING-POINT OPCODES

6 0
pfam Add and Multiply*
pfmam Multiply with Add* 0 0 0 DPC
pfsm Subtract and Multiply*
pfmsm Multiply with Subtract* °o o DPC
(p)fmul Multiply 0 1 0 0 0 0 0
fmlow Multiply Low 0 1 0 0 0 0 1
frcp Reciprocal 0 1 0 0 0 1 0
frsqr Reciprocal Square Root 0 1 0 0 0 1 1
(p)fadd Add 0 1 1 0 0 0 0
(p)fsub Subtract 0 1 1 0 0 0 1
(p)fix Fix 0 1 1 0 0 1 0
pfgt/pfle** Greater Than 0 1 1 0 1 0 0
pfeq Equal 0 1 1 0 1 0 1
(p)ftrunc Truncate 0 1 1 1 0 1 0
fxfr Transfer to Integer Register 1 0 0 0 0 0 0
(p)fiadd Long-Integer Add 1 0 0 1 0 0 1
(p)fisub Long-Integer Subtract 1 0 0 1 1 0 1
(p)fzchkl Z-Check Long 1 0 1 0 1 1 1
(p)fzchks Z-Check Short 1 0 1 1 1 1 1
(p)faddp Add with Pixel Merge 1 0 1 0 0 0 0
(p)faddz Add with Z Merge 1 0 1 0 0 0 1
(p)form OR with MERGE Register 1 0 1 1 0 1 0

*pfam and pfsm have P-bit set; pfmam and pfmsm have P-bit clear.
**pfgt has R bit cleared; pfle has R bit set.
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The following table shows the opcode mnemonics that generate the various encodings of DPC and explains
each encoding.

i860™ MICROPROCESSOR

Table 8.2. DPC Encoding

DPC PFAM PFSM M-Unit M-Unit A-Unit A-Unit T K
Mnemonic Mnemonic op1 op2 op1 op2 Load Load*
0000 r2p1 r2s1 KR src2 src M result No No
0001 r2pt r2st KR src2 T M result No Yes
0010 r2ap1 r2as1 KR src2 srcl A result Yes No
0011 r2apt r2ast KR src2 T A result Yes Yes
0100 i2p1 i2s1 Ki src2 srci M result No No
0101 i2pt i2st Ki src2 T M result No Yes
0110 i2ap1 i2as1 Ki src2 srcl A result Yes No
0111 i2apt i2ast Kl src2 T A result Yes Yes
1000 ratip2 rat1s2 KR Aresult srci src2 Yes No
1001 m1i2apm m12asm srci src2 A result M result No No
1010 raip2 rais2 KR A result srci1 src2 No No
1011 m12ttpa m12ttsa srci src2 T A result Yes No
1100 iat1p2 iatis2 Kl Aresult srct src2 Yes No
1101 mi2tpm m12tsm srci src2 T M result No No
1110 ialp2 ia1s2 Kl Aresult srci src2 No No
1111 mi2tpa m1i2tsa srcl src2 T A result No No
DPC PFMAM PFMSM M-Unit M-Unit A-Unit A-Unit T K
Mnemonic Mnemonic opi op2 opi op2 Load Load*
0000 mr2p1 mr2s1 KR src2 srcl M result No No
0001 mr2pt mr2st KR src2 T M result No Yes
0010 mr2mp1 mr2ms1 KR src2 srct M result Yes No
0011 mr2mpt mr2mst KR src2 T M result Yes Yes
0100 mi2p1 mi2s1 Kl src2 srci M result No No
0101 mi2pt mi2st Ki src2 T M result No Yes
0110 mi2mp1 mi2ms1 Ki src2 srci M result Yes No
0111 mi2mpt mi2mst Ki src2 T M result Yes Yes
1000 mrmt1p2 mrmtis2 KR M result src src2 Yes No
1001 mmi2mpm mmi2msm srcl src2 M result M result No No
1010 mrm1ip2 mrmis2 KR M result srci src2 No No
1011 mmi2ttpm mmi2ttsm srcl src2 T A result Yes No
1100 mimt1p2 mimtis2 Kl M result srci src2 Yes No
1101 mmi2tpm mmi2tsm srci src2 T M result No No
1110 mim1p2 mim1s2 Kl M result srci src2 No No
1111 mm1i2tpm mm12tsm srcl src2 T M result No No

*If K-load is set, KR is loaded when operand-1 of the multiplier is KR; Kl is loaded when operand-1 of the muiltiplier is K.
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8.3 Instruction Timings

860 microprocessor instructions take one clock to
execute unless a freeze condition is invoked. Freeze
conditions and their associated delays are shown in

the table below. Freezes due to multiple simulta-
neous cache misses result in a delay that is the sum
of the delays for processing each miss by itself. Oth-
er multiple freeze conditions usually add only the de-
lay of the longest individual freeze.

Freeze Condition

Delay

Instruction-cache miss

Reference to destination of load instruction that
misses

fld miss
call/calli/ixfr/fxfr/ld.c/st.c and data cache miss
processing in progress

Id/st/pfld/fld/fst and data cache miss
processing in progress

Reference to dest of Id, call, calli, fxfr, or Id.c in
the next instruction

" READY # of block when jump or freeze occurs

Number of clocks to read instruction (from ADS
clock to first READY # clock) plus time to last

during miss processing plus two clocks if data-
cache being accessed when instruction-cache
miss occurs.

One plus number of clocks to read data (from
ADS # clock to first READY # clock) minus number
of instructions executed since load (not counting
instruction that references load destination)

One plus number of clocks from ADS # to first
READY #

One plus number of clocks until first READY #
returned

One plus number of clocks until last READY #
returned

One clock
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Freeze Condition

Delay

Reference to dest of fld/pfid/ixfr in the next two
instructions

be/bne/be.t/bne.t following fadd/fsub/pfeg/
pfat

Src1 of multiplier operation refers to result of
previous operation

Floating-point operation or fst and scalar
operation in progress other than frcp or frsqr

Multiplier operation preceded by a double-
precision multiply

TLB miss

pfld when three pfld’s are outstanding

pfld hits in the data cache

Store pipe full (two internal plus outstanding bus
cycles) and st/fst miss, Id miss, or flush with
modified block

Address pipe full (one internal plus outstanding
bus cycles) and Id/fld/plfd/st/fst

Id/fld following st/fst hit

Delayed branch not taken
Nondelayed branch taken
Branch indirect br

st.c

Result of graphics-unit instruction (other than
fmov) used in next instruction when the next
instruction is an adder- or multiplier-unit instruction

Result of graphics-unit instruction used in next
instruction when the next instruction is a graphics-
unit instruction

flush followed by flush

st followed by pipelined floating-point operation
that overwrites the register being stored

Two clocks in the first instruction; one in the
second instruction

One clock

One clock

If the scalar operation is fadd, fix, fmlow, fmul.ss,
fmul.sd, ftrunc, or fsub, three minus the number
of instructions executed after the scalar operation.
If the scalar operation is fmul.dd, four minus the
number of instructions executed after it. Add one if
the precision of the result of the previous scalar
operation is different than that of the source. Add
one if the floating-point operation is pipelined and
its destination is not 0. If the sum of the above
terms is negative, there is no delay.

One clock

Five plus the number of clocks to finish two reads
plus the number of clocks to set A-bits (if
necessary)

One plus the number of clocks to return data from
first pfld

Two plus the number of clocks to finish all
outstanding accesses

One plus the number of clocks until READY #
active on next write data

Number of clocks until next address can be issued

One clock
One clock
One clock
One clock
Two clocks

One clock

One clock

Two clocks

One clock
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8.4 Instruction Characteristics

The following table lists some of the characteristics
of each instruction. The characteristics are:

e What processing unit executes the instruction.
The codes for processing units are:
A Floating-point adder unit
E Core execution unit
G Graphics (vector-integer) unit
M Floating-point multiplier unit

e Whether the instruction is pipelined or not. A P
indicates that the instruction is pipelined.

® Whether the instruction is a delayed branch in-
struction. A D marks the delayed branches.

e Whether the instruction changes the condition
code CC. A CC marks those instructions that
change CC.

e Which faults can be caused by the instruction.
The codes used for exceptions are:

IT Instruction Fault

SE  Floating-Point Source Exception

RE  Floating-Point Result Exception, including
overflow, underflow, inexact result

DAT Data Access Fault

The instruction access fault IAT and the interrupt
trap IN are not shown in the table because they
can occur for any instruction.

® Performance notes. These comments regarding
optimum performance are recommendations
only. If these recommendations are not followed,
the 860 microprocessor automatically waits the
necessary number of clocks to satisfy internal
hardware requirements. The following notes de-
fine the numeric codes that appear in the instruc-
tion table:

1. The following instruction should not be a con-
ditional branch (bc, bnc, be.t, or bnce.t).

2. The destination should not be a source oper-
and of the next two instructions.
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3. A load should not directly follow a store that is
expected to hit in the data cache.

4. When the prior instruction is scalar, src?
should not be the same as the rdest of the
prior operation.

5. The freg should not reference the destination
of the next instruction if that instruction is a
pipelined floating-point operation.

6. The destination should not be a source oper-
and of the next instruction.

7. When the prior operation is scalar and multipli-
er op1 is src1, src2 should not be the same as
the rdest of the prior operation.

8. When the prior operation is scalar, src7 and
src2 of the current operation should not be the
same as rdest of the prior operation.

Programming restrictions. These indicate combi-
nations of conditions that must be avoided by
programmers, assemblers, and compilers. The
following notes define the alphabetic codes that
appear in the instruction table:

a. The sequential instruction following a delayed
control-transfer instruction may not be another
control-transfer instruction (except in the case
of external interrupts), nor a trap instruction,
nor the target of a control-transfer instruction.

b. When using a bri to return from a trap handler,
programmers should take care to prevent traps
from occurring on that or on the next sequen-
tial instruction. IM should be zero (interrupts
disabled) when the bri is executed.

c. If rdest is not zero, src1 must not be the same
as rdest.

d. When the multiplier op?7 is src1, src1 must not
be the same as rdest.

e. If rdest is not zero, src1 and src2 must not be
the same as rdest.
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Execution Pipelined? Sets Faults Performance Programming

Instruction Unit Delayed? | CC? Notes Restrictions

CC 1
CcC 1

adds
addu
and
andh
andnot
andnoth
be
be.t
bla
bne
bne.t
br

bri

bte
btne
call
calli
fadd.p
faddp
faddz
fiadd.z
fisub.z
fix.p
fid.y
flush
fmlow.p
fmul.p
form
frep.p
frsqr.p
fst.y
fsub.p
ftrunc.p
fxfr
fzchkl
fzchks
intovr
Ixfr
Id.c
Id.x

or

orh

OO0OQo lolw}
[

oRw)
N
[

SE, RE

® ® ™ ™

SE, RE
DAT 2,3

SE, RE

[ JE N

SE, RE
SE, RE

DAT 5
SE, RE
SE, RE

DAT 6
CC

mmmMmMmMmMMOOOPP>PMIIOIIMMPO000>MMMMmMMMMMMMMMMMMM
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Execution Pipelined? Sets Faults Performance Programming

Instruction Unit Delayed? | CC? Notes Restrictions

pfadd.p A SE, RE
pfaddp G
pfaddz G
pfam.p A&M
pfeq.p A
pfgt.p
pfiadd.z
pfisub.z
pfix.p
pfid.z
pfmul.p
pform
pfsm.p
pfsub.p
pftrunc.p
pfzchkl
pfzchks
pst.d

shl

shr

shra
shrd

st.c

st.x

subs
subu
trap

xor

xorh

Qo

SE, RE
CC SE
CC SE

00 = =y

SE, RE

SE, RE

>
<
N ® BN

Qo

SE, RE
SE, RE
SE, RE

TV UVUTUVUVUVUVUUVUUVUUVUUVUTUVUTUVUTUTUTUTUT
@©

DAT

DAT

MMMMMMMMMMMMOOP>PI>PROIM>0O00>
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