

intJ
i860™ 64-Bit Microprocessor

• Parallel Architecture that Supports Up
to Three Operations per Clock
- One Integer or Control Instruction

per Clock
- Up to Two Floating-Point Results per

Clock

• High Performance Design
-33.3/40 MHz Clock Rates
- 80 Peak Single Precision MFLOPs
- 60 Peak Double Precision MFLOPs
- 64-Blt External Data Bus
- 64-Blt Internal Instruction Cache Bus
-128-Blt Internal Data Cache Bus

• High Level of Integration on One Chip
- 32-Bit Integer and Control Unit
- 32/64-Blt Plpellned Floating-Point

Adder and Multiplier Units
- 64-Bit 3-D Graphics Unit
- Paging Unit with Translation

Lookaside Buffer
- 4 Kbyte Instruction Cache
- 8 Kbyte Data Cache

• Compatible with Industry Standards
-ANSI/IEEE Standard 754-1985 for

Binary Floating-Point Arithmetic
- 386™/486TM Microprocessor Data

Formats and Page Table Entries
-JEDEC 168-pin Ceramic Pin Grid

Array Package (see Packaging
Outlines and DimensIons, order
#231369)

• Easy to Use
- On-Chip Debug Register
- Assembler, Linker, Simulator,

Debugger, C and FORTRAN
Compilers, FORTRAN Vectorizer,
Scalar and Vector Math Libraries for
both OS/2* and UNIX* Environments

The Intel i860™ Microprocessor (order codes A80860·33 and A80860-40) delivers supercomputing perform­
ance in a single VLSI component. The 64-bit design of the 860 microprocessor balances integer, floating point,
and graphics performance for applications such as engineering workstations, scientific computing, 3-D graph­
ics workstations, and multiuser systems. Its parallel architecture achieves high throughput with RISC design
techniques, pipelined proceSSing units, wide data paths, large on-chip caches, million-transistor design, and
fast one-micron CHMOS IV silicon technology.

A31-A3 063-DO CONTROL

+ ! 1
BUS.t CACHE

I CONTROL UNIT

64 64 64

$$11 32 PHYSICAL FP FP FP 64 J. ADDRESS 1 .. su~ src2

64
DATA BUS ,l. ,l. 1 32 FP INSTRUCTION BUS .I FlOATINC-POINT I 64 I FP ,64

MULTIPLIER UNIT "I CONTROLLING UNIT .t
32 CORE INSTRUCTION BUS FP REGISTER FilE

IINS6:~~ON 17:1 RISC CORE I h £fl •• r-
64 64 •

64

! 32
,l.

CACHE lOW CACHE HIGH

I • FP I INSTRUCTION DATA DATA
ADDRESS ALIGNMENT ADDER UNIT

"I 30
T 64 - 32 ,l. ,l.

PAGEUNIT ~ 32 32 DATA ADDRESS I I DATA CACHE 1 GRAPHICS UNIT

240296-1

Figure 0.1. Block Diagram

Intel, intel, 386, 486, i860, Multibus \I and Parallel System Bus are trademarks of Intel Corporation.
·UNIX is a registered trademark of AT&T. OS/2 is a trademark of International Business Machines Corporation,

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel product. No other circuit patent
licenses are implied. Information contained herein supersedes previously published specifications on these devices from Intel. February 1989
@ Intel Corporation. 1989 Order Number: 240296-001

infef i860TM MICROPROCESSOR

TABLE OF CONTENTS

CONTENTS PAGE

1.0 FUNCTIONAL DESCRiPTION 7

2.0 PROGRAMMING INTERFACE .. 7

2.1 Data Types .. 8
2.1.1 Integer ... 8

2.1.2 Ordinal. .. 8

2.1.3 Single- and Double-Precision Real .. 8
2.1.4 Pixel .. 9

2.2 Register Set .. 9

2.2.1 Integer Register File. .. 10
2.2.2 Floating-Point Register File. .. 10

2.2.3 Processor Status Register. .. 10

2.2.4 Extended Processor Status Register. .. 13
2.2.5 Data Breakpoint Register .. 14

2.2.6 Directory Base Register. .. 14

2.2.7 Fault Instruction Register. .. 15

2.2.8 Floating-Point Status Register. .. 15
2.2.9 KR, KI, T, and MERGE Registers .. 16

2.3 Addressing 17

2.4 Virtual Addressing 17

2.4.1 Page Forms. .. 18
2.4.2 Virtual Address. .. 18
2.4.3 Pages Tables ... 18

2.4.4 Page-Table Entries. .. 19

2.4.4.1 Page Frame Address 19

2.4.4.2 Present Bit .. 19

2.4.4.3 Writable and User Bits. .. 19
2.4.4.4 Write-Through Bit. .. 20

2.4.4.5 Cache Disable Bit. ... 20

2.4.4.6 Accessed and Dirty Bits. .. 20

2.4.4.7 Combining Protection of Both Levels of Page Tables 20
2.4.5 Address Translation Algorithm. .. 21

2.4.6 Address Translation Faults .. 21

2.4.7 Page Translation Cache ... 21

2.5 Caching and Cache Flushing .. 21
2.6 Instruction Set .. 23

2.6.1 Pipelined and Scalar Operations. .. 23

2.6.1.1 Scalar Mode. .. 23

2.6.1.2 Pipelining Status Information ... 23
2.6.1.3 Precision in the Pipelines .. 25

2.6.1.4 Transition between Scalar and Pipelined Operations 26

2

i860™ MICROPROCESSOR

CONTENTS PAGE

2.6.2 Dual-Instruction Mode ... 26

2.6.3 Dual-Operation Instruction .. 27

2.7 Addressing Modes. .. 27

2.8 Interrupt and Traps ... 28

2.8.1 Trap Handler Invocation ... 28

2.8.2 Instruction Fault ... 29

2.8.3 Floating-Point Fault 29

2.8.3.1 Source Exception Faults ... 29

2.8.3.2 Result Exception Faults .. 29

2.8.4 Instruction Access Fault ... 30

2.8.5 Data Access Fault .. 30

2.8.6 Interrupt Trap ... 30

2.8.7 Reset Trap. .. 30

2.9 Debugging .. 30

3.0 HARDWARE INTERFACE . .. 31

3.1 Signal Description .. 31

3.1.1 Clock (ClK) ... 31

3.1.2 System Reset (RESET) ... 31

3.1.3 Bus Hold (HOLD) and Bus Hold Acknowledge (HLDA) 31

3.1.4 Bus Request (BREQ) .. 32

3.1.5 Interrupt/Code-Size (INT /CS8) .. 32

3.1.6 Address Pins (A31-A3) and Byte Enables (BE7 # -BEO#) 33

3.1.7 Data Pins (D63-DO) ... 33

3.1.8 Bus lock (lOCK #) ... 33

3.1.9 Write/Read Bus Cycle (W /R #) .. 33

3.1.10 Next Near (NENE#) ... 33

3.1.11 Next Address Request (NA #) 33

3.1.12 Transfer Acknowledge (READY#) ... 34

3.1.13 Address Status (ADS #) 34

3.1.14 Cache Enable (KEN #) .. 34

3.1.15 Page Table Bit (PTB) ... 34

3.1.16 Boundary Scan Shift Input (SHI) .. 34

3.1.17 Boundary Scan Enable (BSCN) .. 34

3.1.18 Shift Scan Path (SCAN) .. 34

3.1.19 Configuration (CC1-CCO) .. 34

3.1.20 System Power (Vee) and Ground (Vss) ... 34

3.2 Initialization ... 34

3.3 Testability .. 35

3.3.1 Normal Mode 36

3.3.2 Shift Mode. .. 36

3

intJ 1860TM MICROPROCESSOR

CONTENTS PAGE

4.0 BUS OPERATION .. 36

4.1 Pipelining... 36

4.2 Bus State Machine ... 37

4.3 Bus Cycles ... 39

4.3.1 Nonpipelined Read Cycles .. 39

4.3.2 Nonpipelined Write Cycles .. 40

4.3.3 Pipelined Read and Write Cycles .. 42

4.3.4 Locked Cycles .. '. 44

4.3.5 HOLD and BREQ Arbitration Cycles .. 44

4.4 Bus States during RESET. .. 45

5.0 MECHANICAL DATA .. 46

6.0 PACKAGE THERMAL SPECIFICATIONS .. 52

7.0 ELECTRICAL DATA .. 53

7.1 Absolute Maximum Ratings ... 53

7.2 D.C. Characteristics ... 53

7.3 A.C. Characteristics ... 54

8.0 INSTRUCTION SET .. 57

8.1 Instruction Definitions in Alphabetical Order 58

8.2 Instruction Format and Encoding .. 65

8.2.1 REG-Format Instructions .. 65

8.2.2 REG-Format Opcodes .. 66

8.2.3 Core Escape Instructions. .. 66

8.2.4 Core Escape Opcodes 67

8.2.5 CTRL-Format Instructions ... 67

8.2.6 CTRL-Format Opcodes ... 67

8.2.7 Floating-Point Instruction Encoding .. 67

8.2.8 Floating-Point Opcodes ... 68

8.3 Instruction Timings ... 70

8.4 Instruction Characteristics .. 72

4

infef i860™ MICROPROCESSOR

FIGURES PAGE

Figure 2.1 Real Number Formats. .. 8

Figure 2.2 Pixel Format Example .. 9
Figure 2.3 Registers and Data Paths .. 11

Figure 2.4 Processor Status Register. .. 12

Figure 2.5 Extended Processor Status Register. .. 12

Figure 2.6 Directory Base Register .. 13

Figure 2.7 Floating-Point Status Register. .. 15

Figure 2.8 Little and Big Endian Memory Format. .. 17

Figure 2.9 Format of a Virtual Address. .. 18

Figure 2.10 Address Translation. .. 18

Figure 2.11 Format of a Page Table Entry. .. 19
Figure 2.12 Pipelined Instruction Execution ... 25

Figure 2.13 Dual-Instruction Mode Transitions .. 26

Figure 2.14 Dual-Operation Data Paths. .. 27

Figure 3.1 Order of Boundary Scan Chain ... 36

Figure 4.1 Bus State Machine ... 38

Figure 4.2 Fastest Read Cycles .. 39

Figure 4.3 Fastest Write Cycles " .. 40

Figure 4.4 Fastest Read/Write Cycles ... 41

Figure 4.5 Pipelined Read Followed by Pipelined Write. .. 41

Figure 4.6 Pipelined Write Followed by Pipelined Read. .. 42

Figure 4.7 Pipelining Driven by NA # .. 43

Figure 4.8 NA# Active with No Internal Bus Request .. 43

Figure 4.9 locked Cycles ... 44

Figure 4.10 HOLD, HlDA, and BREQ ... 45

Figure 4.11 Reset Activities .. 45

Figure 5.1 Pin Configuration-View from Top Side ... 46

Figure 5.2 Pin Configuration-View from Pin Side .. 47

Figure 5.3 168-lead Ceramic PGA Package Dimensions 51

Figure 7.1 ClK, Input, and Output Timings ... 55

Figure 7.2 Typical Output Delay vs load Capacitance under Worst-Case Conditions 56

Figure 7.3 Typical Slew Time vs load Capacitance under Worst-Case Conditions 56

Figure 7.4 Typical Icc vs Frequency ... 57

5

inter 1860TM MICROPROCESSOR

TABLES PAGE

Table 2.1 Pixel Formats ... 9
Table 2.2 Values of PS .. 13
Table 2.3 Values of RB ... 15
Table 2.4 Values of RC ... 15
Table 2.5 Values of RM .. 16

Table 2.6 Combining Directory and Page Protection ... 21
Table 2.7 Instruction Set ... 24
Table 2.8 Types of Traps ... 28
Table 3.1 Pin Summary ... 32
Table 3.2 Indentifying Instruction Fetches ... 33
Table 3.3 CacheabiJity based on KEN# and PTB ... 34
Table 3.4 Output Pin Status during RESET .. 35
Table 3.5 Test Mode Selection ... 35
Table 3.6 Test Mode Latches ... 35
Table 5.1 Pin Cross Reference by Location ... 48
Table 5.2 Pin Cross Reference by Pin Name .. 49
Table 5.3 Ceramic PGA Package Dimension Symbols 50
Table 6.1 Thermal Resistance (8eN at Various Airflows 52
Table 6.2 Maximum T A at Various Airflows .. 52
Table 7.1 D.C. Characteristics .. 53
Table 7.2 A.C. Characteristics .. 54
Table 8.1 FADDP MERGE Update .. 65
Table 8.2 DPC Encoding ... 69

6

intJ i860TM MICROPROCESSOR

1.0 FUNCTIONAL DESCRIPTION

As shown by the block diagram on the front page,
the 860 microprocessor consists of 9 units:

1. Core Execution Unit
2. Floating-Point Control Unit
3. Floating-Point Adder Unit
4. Floating-Point Multiplier Unit
5. Graphics Unit
6. Paging Unit
7. Instruction Cache
8. Data Cache
9. Bus and Cache Control Unit

The core execution unit controls overall operation of
the 860 microprocessor. The core unit executes
load, store, integer, bit, and control-transfer opera­
tions, and fetches instructions for the floating-point
unit as well. A set of 32 x 32-bit general-purpose
registers are provided for the manipulation of integer
data. Load and store instructions move 8-, 16-, and
32-bit data to and from these registers. Its full set of
integer, logical, and control-transfer instructions give
the core unit the ability to execute complete systems
software and applications programs. A trap mecha­
nism provides rapid response to exceptions and ex­
ternal interrupts. Debugging is supported by the abili­
ty to trap on data or instruction reference.

The floating-point hardware is connected to a sepa­
rate set of floating-point registers, which can be
accessed as 16 x 64-bit registers, or 32 x 32-bit reg­
isters. Special load and store instructions can also
access these same registers as 8 x 128-bit registers.
All floating-point instructions use these registers as
their source and destination operands.

The floating-point control unit controls both the float­
ing-point adder and the floating-point multiplier, issu­
ing instructions, handling all source and result
exceptions, and updating status bits in the floating­
pOint status register. The adder and multiplier can
operate in parallel, producing up to two results per
clock. The floating-point data types, floating-point in­
structions, and exception handling all support the
IEEE Standard for Binary Floating-Point Arithmetic
(ANSI/IEEE Std 754-1985).

The floating-point adder performs addition, subtrac­
tion, comparison, and conversions on 64- and 32-bit
floating-point values. An adder instruction executes
in three to four clocks; however, in pipelined mode, a
new result is generated every clock.

The floating-point multiplier performs floating-point
and integer multiply and floating-point reciprocal op­
erations on 64- and 32-bit floating-point values. A
multiplier instruction executes in three to four clocks;

7

however, in pipelined mode, a new result can be
generated every clock for single-precision and every
other clock for double precision.

The graphics unit has special integer logic that sup­
ports three-dimensional drawing in a graphics frame
buffer, with color intensity shading and hidden sur­
face elimination via the Z-buffer algorithm. The
graphics unit recognizes the pixel as an 8-, 16-, or
32-bit data type. It can compute individual red, blue,
and green color intensity values within a pixel; but it
does so with parallel operations that take advantage
of the 64-bit internal word size and 64-bit external
bus. The graphics features of the 860 microproces­
sor assume that the surface of a solid object is
drawn with polygon patches whose shapes approxi­
mate the original object. The color intensities of the
vertices of the polygon and their distances from the
viewer are known, but the distances and intensities
of the other points must be calculated by interpola­
tion. The graphics instructions of the 860 microproc­
essor directly aid such interpolation.

The paging unit implements protected, paged, virtual
memory via a 64-entry, four-way set-associative
memory called the TLB (Translation Lookaside Buff­
er). The paging unit uses the TLB to perform the
translation of logical address to physical address,
and to check for access violations. The access pro­
tection scheme employs two levels of privilege: user
and supervisor.

The instruction cache is a two-way set-associative
memory of four Kbytes, with 32-byte blocks. It trans­
fers up to 64 bits per clock (266 Mbyte/sec at
33.3 MHz).

The data cache is a two-way set-associative memo­
ry of eight Kbytes, with 32-byte blocks. It transfers
up to 128 bits per clock (533 Mbyte/sec at 33.3
MHz). The 860 microprocessor normally uses write­
back caching, i.e. memory writes update the cache
(if applicable) without necessarily updating memory
immediately; however, caching can be inhibited by
software where necessary.

The bus and cache control unit performs data and
instruction accesses for the core unit. It receives cy­
cle requests and specifications from the core unit,
performs the data-cache or instuction-cache miss
processing, controls TLB translation, and provides
the interface to the external bus. Its pipelined struc­
ture supports up to three outstanding bus cycles.

2.0 PROGRAMMING INTERFACE

The programmer-visible aspects of the architecture
of the 860 microprocessor include data types, regis­
ters, instructions, and traps.

inter i860TM MICROPROCESSOR

2.1 Data Types

The 860 microprocessor provides operations for in­
teger and floating-point data. Integer operations are
performed on 32-bit operands with some support
also for 64-bit operands. Load and store instructions
can reference 8-bit, 16-bit, 32-bit, 64-bit, and 128-bit
operands. Floating-point operations are performed
on IEEE-standard 32- and 64-bit formats. Graphics
oriented instructions operate on arrays of 8-, 16-, or
32-bit pixels.

2.1.1 INTEGER

An integer is a 32-bit signed value in standard two's
complement form. A 32-bit integer can represent a
value in the range -2,147,483,648 (-231) to
2,147,438,647 (+ 231 - 1). Arithmetic operations on
8- and 16-bit integers can be performed by sign-ex­
tending the 8- or 16-bit values to 32 bits, then using
the 32-bit operations.

There are also add and subtract instructions that op­
erate on 64-bit long integers.

Load and store instructions may also reference (in
addition to the 32- and 64-bit formats previously
mentioned) 8- and 16-bit items in memory. When an
8- or 16-bit item is loaded into a register, it is con­
verted to an integer by sign-extending the value to
32 bits. When an 8- or 16-bit item is stored from a
register, the corresponding number of low-order bits
of the register are used.

2.1.2 ORDINAL

Arithmetic operations are available for 32-bit ordi­
nals. An ordinal is an unsigned integer. An ordinal
can represent values in the range 0 to
4,294,967,295 (+ 232 - 1).

Also, there are add and subtract instructions that op­
erate on 64-bit ordinals.

2.1.3 SINGLE- AND DOUBLE-PRECISION REAL

Figure 2.1 shows the real number formats. A single­
precision real (also called "single real") data type is
a 32-bit binary floating-point number. Bit 31 is the
sign bit; bits 30 .. 23 are the exponent; and bits 22 .. 0
are the fraction. In accordance with ANSIIIEEE
standard 754, the value of a Single-precision real is
defined as follows:

1. If e = 0 and f "* 0 or e = 255 then generate a
floating-point source-exception trap when en­
countered in a floating-point operation.

2. If 0 < e < 255, then the value is -1 5 X 1.1 x
2e - 127.

3. If e = 0 and f = 0, then the value is signed zero.

A double-precision real (also called "double real")
data type is a 64-bit binary floating-point number. Bit
63 is the sign bit; bits 62 .. 52 are the exponent; and
bits 51 .. 0 are the fraction. In accordance with ANSI!
IEEE standard 754, the value of a double-precision
real is defined as follows:

1. If e = 0 and f "* 0 or e = 2047, then generate a
floating-point source-exception trap when en­
countered in a floating-point operation.

2. If 0 < e < 2047, then the value is -1 5 x 1.1 x
2e-1023.

Single-Precision Real

31 23

Is I

I L FRACTION

L ___ ~================ EXPONENT SIGN

Double-Precision Real

63 52

Is I

I L FRACTION

L __ ~================ EXPONENT SIGN

Figure 2.1. Real Number Formats
8

o

240296-2

o

240296-3

i860TM MICROPROCESSOR

3. If e = 0 and f = 0, then the value is signed zero.

The special values infinity, NaN ("Not a Number"),
indefinite, and denormal generate a trap when en­
countered. The trap handler implements IEEE-stan­
dard results.

A double real value occupies an even/odd pair of
floating-point registers. Bits 31 .. 0 are stored in the
even-numbered floating-point register; bits 63 .. 32
are stored in the next higher odd-numbered floating­
point register.

2.1.4 PIXEL

A pixel may be 8, 16, or 32 bits long depending on
color and intensity resolution requirements. Regard­
less of the pixel size, the 860 microprocessor always
operates on 64 bits worth of pixels at a time. The
pixel data type is used by two kinds of instructions:

• The selective pixel-store instruction that helps im­
plement hidden surface elimination.

• The pixel add instruction that helps implement
3-D color intensity shading.

To perform color intensity shading efficiently in a va­
riety of applications, the 860 microprocessor defines
three pixel formats according to Table 2.1.

Figure 2.2 illustrates one way of assigning meaning
to the fields of pixels. These assignments are for
illustration purposes only. The 860 microprocessor
defines only the field sizes, not the specific use of
each field. Other ways of using the fields of pixels
are possible.

16-BIT PIXEL

32-BIT PIXEL

31 23

R G

15

15

Table 2.1. Pixel Formats

Pixel Bits of Bits of Bits of
Bits of

Size Color 1 Color 2 Color 3
Other

Attribute
(in bits) Intensity Intensity Intensity

(Texture)

8 N (~ 8) bits of intensity' 8-N
16

6 I 6 I 4
32 888 8

The Intensity attribute fields may be aSSigned to colors In
any order convenient to the application.
'With a-bit pixels, up to a bits can be used for intensity; the
remaining bits can be used for any other attribute, such as
color. The intensity bits must be the low-order bits of the
pixel.

2.2 Register Set

As Figure 2.3 shows, the 860 microprocessor has
the following registers:

• An integer register file

• A floating-point register file

• Six control registers (psr, epsr, db, dirbase, fir,
and fsr)

• Four special-purpose registers (KR, KI, T, and
MERGE)

The control registers are accessible only by load
and store control-register instructions; the integer
and floating-point registers are accessed by arithme­
tic operations and load and store instructions. The
special-purpose registers KR, KI, T, and MERGE are
used by a few specific instructions.

7 5 o

8- BIT PIXEL L.1_c.....L ____ ---'

9 3 0

R G B

7 o

B T

240296-4
I-Intensity, R-Red intensity, G-Green intensity, B-Blue intensity, C-Color, T-Texture
These assignments of specific meanings to the fields of pixels are for illustration purposes only. Only the field sizes are
defined, not the specific use of each field.

Figure 2.2. Pixel Format Example

9

intJ i860™ MICROPROCESSOR

2.2.1 INTEGER REGISTER FILE

There are 32 integer registers, each 32·bits wide,
referred to as rO through r31, which are used for
address computation and scalar integer computa­
tions. Register rO always returns zero when read,
independently of what is stored in it.

2.2.2 FLOATING-POINT REGISTER FILE

There are 32 floating-point registers, each 32-bits
wide, referred to as fO through f31, which are used
for floating-point computations. Registers fO and f1
always return zero when read, independently of
what is stored in them. The floating-point registers
are also used by a set of integer operations, primari­
ly for vector integer computations.

When accessing 64-bit floating-point or integer val­
ues, the 860 microprocessor uses an even/odd pair
of registers. When accessing 128-bit values, it uses
an aligned set of four registers (fO, f4, fS, ... , 12S).
The instruction must designate the lowest register
number of the set of registers containing 64- or 128-
bit values. Misaligned register numbers produce un­
defined results. The register with the lowest number
contains the least significant part of the value. For
128-bit values, the register pair with the lower num­
ber contains the 64 bits at the lowest memory ad­
dress; the register pair with the higher number con­
tains the 64 bits at the highest address.

10

The 128-bit load and store instructions, along with
the 128-bit data path between the floating-point reg­
isters and the data cache help to sustain an extraor­
dinarily high rate of computation.

2.2.3 PROCESSOR STATUS REGISTER

The processor status register (psr) contains miscel­
laneous state information for the current process.
Figure 2.4 shows the format of the psr.

• BR (Break Read) and BW (Break Write) enable a
data access trap when the operand address
matches the address in the db register and a
read or write (respectively) occurs.

• Various instructions set CC (Condition Code) ac­
cording to tests they perform. The branch-on­
condition-code instructions test its value. The bla
instruction sets and tests LCC (Loop Condition
Code).

• 1M (Interrupt Mode) enables external interrupts if
set; disables interrupts if clear.

• U (User Mode) is set when the 860 microproces­
sor is executing in user mode; it is clear when the
860 microprocessor is executing in supervisor
mode. In user mode, writes to some control regis­
ters are inhibited. This bit also controls the mem­
ory protection mechanism.

intJ

CONTROL
REGISTERS 32

i860™ MICROPROCESSOR

32 32 32

Figure 2.3. Registers and Data Paths

11

128

FLOATING POINT
REGISTERS

128

64

240296-5

31

31

i860™ MICROPROCESSOR

BREAK READ
BREAK WRITE ---------------------------,
CONDITION CODE -------------------------,
LOOP CONDITION CODE ---------------------,
INTERRUPT MODE ------------------------,
PREVIOUS INTERRUPT MODE -------------------,
USER MODE ---------------------,
PREVIOUS USER MODE
INSTRUCTION TRAP --------------------, I
INTERRUPT ---------------------, I
INSTRUCTION ACCESS TRAP
DATA ACCESS TRAP -------------, I
FLOATING-POINT TRAP 1
DELAYED SWITCH 1
DUAL INSTRUCTION MODE !

PM

i i . . . KILL NEXT FLOATING-POINT INSTRUCTION

(RESERVED)
SHIFT COUNT
PIXEL SIZE
PIXEL MASK

'Can be changed only from supervisor level.

Figure 2.4 Processor Status Register

INTERLOCK --------------,

WRITE-PROTECT MODE -----------,11
DATA CACHE SIZE ---------,

(RESERVED)

It tL.. _________ PAGE-TABLE BIT MODE
- BIG ENDIAN MODE

L-___________ OVERFLOW FLAG

'Can be changed only from supervisor level

Figure 2.5 Extended Processor Status Register

PROCESSOR
TYPE

240296-6

o

240296-31

• PIM (Previous Interrupt Mode) and PU (Previous
User Mode) save the corresponding status bits
(1M and U) on a trap, because those status bits
are changed when a trap occurs. They are re­
stored into their corresponding status bits when
returning from a trap handler with a branch indi­
rect instruction when a trap flag is set in the psr.

• DS (Delayed Switch) is set if a trap occurs during
the instruction before dual-instruction mode is en­
tered or exited. If DS is set and DIM (Duallnstruc­
tion Mode) is clear, the 860 microprocessor
switches to dual-instruction mode one instruction
after returning from the trap handler. If DS and
DIM are both set, the 860 microprocessor
switches to single-instruction mode one instruc­
tion after returning from the trap handler.

• FT (Floating-Point Trap), DAT (Data Access
Trap), IAT (Instruction Access Trap), IN (Inter­
rupt), and IT (Instruction Trap) are trap flags.
They are set when the corresponding trap condi­
tion occurs. The trap handler examines these bits
to determine which condition or conditions have
caused the trap.

12

• When a trap occurs, the 860 microprocessor sets
DIM if it is executing in dual-instruction mode; it
clears DIM if it is executing in single-instruction
mode. If DIM is set after returning from a trap
handler, the 860 microprocessor resumes execu­
tion in dual-instruction mode.

i860TM MICROPROCESSOR

• When KNF (Kill Next Floating-Point Instruction) is
set, the next floating-point instruction is sup­
pressed (except that its dual-instruction mode bit
is interpreted). A trap handler sets KNF if the
trapped floating-point instruction should not be
reexecuted.

• SC (Shift Count) stores the shift count used by
the last right-shift instruction. It controls the num­
ber of shifts executed by the double-shift instruc­
tion.

• PS (Pixel Size) and PM (Pixel Mask) are used by
the pixel-store instruction and by the vector inte­
ger instructions. The values of PS control pixel
size as defined by Table 2.2. The bits in PM cor­
respond to pixels to be updated by the pixel-store
instruction pst.d. The low-order bit of PM corre­
sponds to the low-order pixel of the 64-bit source
operand of pst.d. The number of low-order bits of
PM that are actually used is the number of pixels
that fit into 64-bits, which depends upon PS. If a
bit of PM is set, then pst.d stores the corre­
sponding pixel. Refer also to the pst.d instruction
in section 8.

Table 2.2. Values of PS

Value
Pixel Size Pixel Size

in bits in bytes

00 8 1
01 16 2
10 32 4
11 (undefined) (undefined)

2.2.4 EXTENDED PROCESSOR STATUS
REGISTER

The extended processor status register (epsr) con­
tains additional state information for the current pro­
cess beyond that stored in the psr. Figure 2.5 shows
the format of the epsr.

• The processor type is one for the 860 microproc­
essor.

• The stepping number has a unique value that dis­
tinguishes among different revisions of the proc­
essor.

• IL (Interlock) is set if a trap occurs after a lock
instruction but before the load or store following
the subsequent unlock instruction. IL indicates to
the trap hadnler that a locked sequence has
been interrupted.

• WP (write protect) controls the semantics of the
W bit of page table entries. A clear W bit in either
the directory or the page table entry causes
writes to be trapped. When WP is clear, writes
are trapped in user mode, but not in supervisor
mode. When WP is set, writes are trapped in both
user and supervisor modes.

• DCS (Data Cache Size) is a read-only field that
tells the size of the on-chip data cache. The num­
ber of bytes actually available is 212 + Des; there­
fore, a value of zero indicates 4 Kbytes, one indi­
cates 8 Kbytes, etc.

ADDRESS TRANSLATION ENABLE ----------------------,
DRAM PAGE SIZE -------------------------,

BUS LOCK ------------------------, I
31

CODE SIZE 8-BIT -------------------,
REPLACEMENT BLOCK ----------------,
REPLACEMENT CONTROL -------------,

I-CACHE, TLB INVALIDATE --I j 1 (RESERVED) ----------------------,-

DIRECTORY TABLE BASE (DTB)

Figure 2.6. Directory Base Register

13

240296-7

inter 1860™ MICROPROCESSOR

• PBM (Page-Table Bit Mode) determines which bit
of page-table entries is output on the PTB pin.
When PBM is clear, the PTB signal reflects bit CD
of the page-table entry used for the current cycle.
When PBM is set, the PTB Signal reflects bit WT
of the page-table entry used for the current cycle.

• BE (Big Endian) controls the ordering of bytes
within a data item in memory. Normally (Le. when
BE is clear) the 860 microprocessor operates in
little end ian mode, in which the addressed byte is
the low-order byte. When BE is set (bit end ian
mode), the low-order three bits of all load and
store addresses are complemented, then
masked to the appropriate boundary for align­
ment. This causes the addressed byte to be the
most significant byte.

• OF (Overflow Flag) is set by adds, addu, subs,
and subu when integer overflow occurs. For
adds and subs, OF is set if the carry from bit 31
is different than the carry from bit 30. For addu,
OF is set if there is a carry from bit 31. For subu,
OF is set if there is no carry from bit 31. Under all
other conditions, it is cleared by these instruc­
tions. OF controls the function of the intovr
instruction.

2.2.5 DATA BREAKPOINT REGISTER

The data breakpoint register (db) is used to gener­
ate a trap when the 860 microprocessor makes a
data-operand access to the address stored in this
register. The trap is enabled by BR and BW in psr.
When comparing, a number of low order bits of the
address are ignored, depending on the size of the
operand. For example, a 16-bit access ignores the
low-order bit of the address when comparing to db;
a 32-bit access ignores the low-order two bits. This
ensures that any access that overlaps the address
contained in the register will generate a trap.

2.2.6 DIRECTORY BASE REGISTER

The directory base register dirbase (shown in Figure
2.5) controls address translation, caching, and bus
options.

• ATE (Address Translation Enable), when set, en­
ables the virtual-address translation algorithm.
The data cache must be flushed before changing
the ATE bit.

• DPS (DRAM Page Size) controls how many bits
to ignore when comparing the current bus-cycle
address with the previous bus-cycle address to

14

generate the NENE# signal. This feature allows
for higher speeds when using static column or
page-mode DRAMs and consecutive reads and
writes access the row. The comparison ignores
the low-order 12 + DPS bits. A value of zero is
appropriate for one bank of 256K x n RAMs, 1
for 1 M x n RAMS, etc.

• When BL (Bus Lock) is set, external bus access­
es are locked. The LOCK # signal is asserted the
next bus cycle whose internal bus request is gen­
erated after BL is set. It remains set on every
subsequent bus cycle as long as BL remains set.
The LOCK # signal is deasserted on the next bus
cycle whose internal bus request is generated af­
ter BL is cleared. Traps immediately clear BL.
The lock and unlock instructions control the BL
bit.

• ITI (I-Cache, TLB Invalidate), when set in the val­
ue that is loaded into dirbase, causes the instruc­
tion cache and address-translation cache (TLB)
to be flushed. The ITI bit does not remain set in
dirbase. ITI always appears as zero when read­
ing dirbase. The data cache must be flushed be­
fore invalidating the TLB.

• When CS8 (Code Size 8-Bit) is set, instruction
cache misses are processed as 8-bit bus cycles.
When this bit is clear, instruction cache misses
are processed as 64-bit bus cycles. This bit can
not be set by software; hardware sets this bit at
initialization time. It can be cleared by software
(one time only) to allow the system to execute out
of 64-bit memory after bootstrapping from 8-bit
EPROM. A nondelayed branch to code in 64-bit
memory should directly follow the st.c (store con­
trol register) instruction that clears CS8, in order
to make the transition from 8-bit to 64-bit memory
occur at the correct time. The branch must be
aligned on a 64-bit boundary.

• RB (Replacement Block) identifies the cache
block to be replaced by cache replacement algo­
rithms. The high-order bit of RB is ignored by the
instruction and data caches. RB conditions the
cache flush instruction flush, which is discussed
in Section 8. Table 2.3 explains the values of RB.

• RC (Replacement Control) controls cache re­
placement algorithms. Table 2.4 explains the sig­
nificance of the values of RC.

• DTB (Directory Table Base) contains the high-or­
der 20 bits of the physical address of the page
directory when address translation is enabled (Le.
ATE = 1). The low-order 12 bits of the address
are zeros.

Value

0 0
0 1
1 0
1 1

Value

00

01

10

11

i860TM MICROPROCESSOR

FLUSH ZERO
TRAP INEXACT -------------------------,
ROUNDING MODE -----------------------,
UPDATE -------------------------,
FLOATING-POINT TRAP ENABLE ----------------,
(RESERVED) ---------------------,

STICKY INEXACT FLAG ------------------,1
SOURCE EXCEPTION -------------------,\
MULTIPLIER UNDERFLOW --------------']
MULTIPLIER OVERFLOW --------------j
MULTIPLIER INEXACT I
MULTIPLIER ADD ONE 1 1
ADDER UNDERFLOW -----------,
ADDER OVERFLOW --------------,

I I 1 I tt ADDER INEXACT
ADDER ADD ONE

RESULT REGISTER
'--------- ADDER EXPONENT

(RESERVED)
LOAD PIPE RESULT PRECISION

- INTEGER (GRAPHICS) PIPE RESULT PRECISION
MULTIPLIER PIPE RESULT PRECISION

ADDER PIPE RESULT PRECISION
(RESERVED)

240296-8

Figure 2.7. Floating-Point Status Register

Table 2.3. Values of RB

Replace Replace Instruction
TLBBlock and Data Cache Block

0 0
1 1
2 0
3 1

Table 2.4. Values of RC

Meaning

Selects the normal replacement
alogrithm where any block in the set
may be replaced on cache misses in all
caches.

Instruction, data, and TLB cache
misses replace the block selected by
RB. The instruction and data caches
ignore the high-order bit of RB. This
mode is used for instruction cache and
TLB testing.

Data cache misses replace the block
selected by the low-order bit of RB.

Disables data cache replacement.

15

2.2.7 FAULT INSTRUCTION REGISTER

When a trap occurs, this register contains the ad­
dress of the trapping instruction (not necessarily the
instruction that created the conditions that required
the trap).

2.2.8 FLOATING-POINT STATUS REGISTER

The floating-point status register (fsr) contains the
floating-point trap and rounding-mode status for the
current process. Figure 2.6 shows its format.

• If FZ (Flush Zero) is clear and underflow occurs,
a reSUlt-exception trap is generated. When FZ is
set and underflow occurs, the result is set to zero,
and no trap due to underflow occurs.

• If TI (Trap Inexact) is clear, inexact results do not
cause a trap. If TI is set, inexact results cause a
trap. The sticky inexact flag (SI) is set whenever
an inexact result is produced, regardless of the
setting of TI.

• RM (Rounding Mode) specifies one of the four
rounding modes defined by the IEEE standard.
Given a true result b that cannot be represented
by the target data type, the 860 microprocessor
determines the two representable numbers a and

i860™ MICROPROCESSOR

Table 2.5. Values of RM

Value Rounding Mode

00 Round to nearest or even

01 Round down (toward - 00)
10 Round up {toward + 00
11 Chop (toward zero)

c that most closely bracket b in value (a < b <
c). The 860 microprocessor then rounds (chang·
es) b to a or c according to the mode selected by
RM as defined in Table 2.5. Rounding introduces
an error in the result that is less than one least­
significant bit.

• The U-bit (Update Bit), if set in the value that is
loaded into fsr by a st.c instruction, enables up­
dating of the result-status bits (AE, AA, AI, AD,
AU, MA, MI, MO, and MU) in the first-stage of the
floating-point adder and multiplier pipelines. If this
bit is clear, the result-status bits are unaffected
by a st.c instruction; st.c ignores the correspond­
ing bits in the value that is being loaded. An st.c
always updates fsr bits 21 .. 17 and 8 .. 0 directly.
The U-bit does not remain set; it always appears
as zero when read.

• The FTE (Floating-Point Trap Enable) bit, if clear,
disables all floating-point traps (invalid input oper­
and, overflow, underflow, and inexact result).

• SI (Sticky Inexact) is set when the last-stage re­
sult of either the multiplier or adder is inexact (Le.
when either AI or MI is set). SI is "sticky" in the
sense that it remains set until reset by software.
AI and MI, on the other hand, can by changed by
the subsequent floating-point instruction.

• SE (Source Exception) is set when one of the
source operands of a floating-point operation is
invalid; it is cleared when all the input operands
are valid. Invalid input operands include denor­
mals, infinities, and all NaNs (both quiet and sig­
naling).

• When read from the fsr, the result-status bits MA,
MI, MO, and MU (Multiplier Add-One, Inexact,
Overflow, and Underflow, respectively) describe
the last-stage result of the multiplier.

When read from the fsr, the result-status bits AA,
AI, AD, AU, and AE (Adder Add-One, Inexact,
Overflow, Underflow, and Exponent, respectively)
describe the last-stage result of the adder. The
high-order three bits of the 11-bit exponent of the
adder result are stored in the AE field.

After a floating-point operation in a given unit (ad­
der or multiplier), the result-status bits of that unit
are undefined until the point at which result ex­
ceptions are reported.

16

Rounding Action

Closer to b of a or c; if equally
close, select even number
(the one whose least
significant bit is zero).
a
c
Smaller in magnitude of a or c.

When written to the fsr with the U-bit set, the
result-status bits are placed into the first stage of
the adder and multiplier pipelines. When the
processor executes pipelined operations, it prop­
agates the result-status bits of a particular unit
(multiplier or adder) one stage for each pipelined
floating-point operation for that unit. When they
reach the last stage, they replace the normal re­
sult-status bits in the fsr. When the U-bit is not
set, result-status bits in the word being writeen to
the fsr are ignored.

In a floating-point dual-operation instruction (e.g.
add-and-multiply or subtract-and-multiply), both
the multiplier and the adder may set exception
bits. The result-status bits for a particular unit re­
main set until the next operation that uses that
unit.

• RR (Result Register) specifies which floating­
point register (fO-f31) was the destination regis­
ter when a result-exception trap occurs due to a
scalar operation.

• LRP (Load Pipe Result Precision), IRP (Vector-In­
teger Pipe Result Precision), MRP (Multiplier Pipe
Result Precision), and ARP (Adder Pipe Result
Precision) aid in restoring pipeline state after a
trap or process switch. Each defines the preci­
sion of the last-stage result in the corresponding
pipeline. One of these bits is set when the result
in the last stage of the corresponding pipeline is
double precision; it is cleared if the result is single
precision. These bits cannot be changed by soft­
ware.

2.2.9 KR, KI, T, AND MERGE REGISTERS

The KR, KI, and T registers are special-purpose reg­
isters used by the dual-operation floating-point
instructions pfam,/pfmam, and pfmsm, which initi­
ate both an adder (A-unit) operation and a multiplier
(M-unit) operation. The KR, KI, and T registers can
store values from one dual-operation instruction and
supply them as inputs to subsequent dual-operation
instructions. (Refer to Table 2.9.)

The MERGE register is used only by the vector-inte­
ger instructions. The purpose of the MERGE register

inter i860TM MICROPROCESSOR

is to accumulate (or merge) the results of multiple­
addition operations that use as operands the color­
intensity values from pixels or distance values from
a Z-buffer. The accumulated results can then be
stored in one 64-bit operation.

Two multiple-addition instructions and an OR in­
struction use the MERGE register. The addition in­
structions are designed to add interpolation values
to each color-intensity field in an array of pixels or to
each distance value in a Z-buffer.

Refer to the instruction descriptions in section 8 for
more information about these registers.

2.3 Addressing

Memory is addressed in byte units with a paged vir­
tual-address space of 232 bytes. Data and instruc­
tions can be located anywhere in this address
space. Address arithmetic is performed using 32-bit
input values and produces 32-bit results. The low-or­
der 32 bits of the result ae used in case of overflow.

Normally, multibyte data values are stored in memo­
ry in little endian format, i.e., with the least significant
byte at the lowest memory address. As an option
that may be dynamically selected by software in su­
pervisor mode, the 860 microprocessor also offers
big end ian mode, in which the most significant byte
of a data item is at the lowest address. Code ac­
cesses are always done with little end ian address­
ing. Figure 2.8 shows the difference between the
two storage modes. Big endian and little endian data
areas should not be mixed within a 64-bit data word.
Illustrations of data structures in this data sheet

show data stored in little endian mode, i.e., the right­
most (low-order) byte is at the lowest memory ad­
dress.

Alignment requirements are as follows (any violation
results in a data-access trap):

• 128-bit values are aligned on 16-byte boundaries
when referenced in memory (i.e. the four least
significant address bits must b~ zero).

• 64-bit values are aligned on 8-byte boundaries
when referenced in memory (i.e. the three least
significant address bits must be zero).

• 32-bit values are aligned on 4-byte boundaries
when referenced in memory (i.e. the two least
significant address bits must be zero).

• 16-bit values are aligned on 2-byte boundaries
when referenced in memory (i.e. the least signifi­
cant address bit must be zero).

2.4 Virtual Addressing

When address translation is enabled, the 860 micro­
processor maps instruction and data virtual address­
es into physical addresses before referencing mem­
ory. This address transformation is compatible with
that of the 386 microprocessor and implements the
basic features needed for page-oriented virtual­
memory systems and page-level protection.

The address translation is optional. Address transla­
tion is in effect only when the ATE bit of dirbase is
set. This bit is typically set by the operating system
during software initialization. The ATE bit must be
set if the operating system is to implement page-ori­
ented protection or page-oriented virtual memory.

Little Endian Format
63 55 47 39 31 23 15 7 o

m+7 m+6 m+5 m+4 m+3 m+2 m + 1 m

Big Endian Format
63 55 47 39 31 23 15 7 o

m m + 1 m+2 m+3 m+4 m+5 m+6 m+7

m is the memory address of the 64·bit word

Figure 2.8. Little Big Endian Memory Format

17

inter i860™ MICROPROCESSOR

31 21 11 o
DIR PAGE OFFSET

Figure 2.9. Format of a Virtual Address

Address translation is disabled when the processor
is reset. It is enabled when a store to dirbase sets
the ATE bit. It is disabled again when a store clears
the ATE bit.

2.4.1 PAGE FRAME

A page frame is a 4·Kbyte unit of contiguous ad·
dresses of physical main memory. Page frames be·
gin on 4·Kbyte boundaries and are fixed in size. A
page is the collection of data that occupies a page
frame when that data is present in main memory or
occupies some location in secondary storage when
there is not sufficient space in main memory.

2.4.2 VIRTUAL ADDRESS

A virtual address refers indirectly to a physical ad·
dress by specifying a page table, a page within that

I DIR I PAGE I OFFSET I

I
PAGE DIRECTORY

-.
~ DIR ENTRY -

DTB

table, and an offset within that page. Figure 2.9
shows the format of a virtual address.

Figure 2.9 shows how the 860 microprocessor con·
verts the DIR, PAGE, and OFFSET fields of a virtual
address into the physical address by consulting two
levels of page tables. The addressing mechanism
uses the DIR field as an index into a page directory,
uses the PAGE field as an index into the page table
determined by the page directory, and uses the
OFFSET field to address a byte within the page de·
termined by the page table.

2.4.3 PAGE TABLES

A page table is simply an array of 32·bit page specifi·
ers. A page table is itself a page, and therefore con·
tains 4 Kbytes of memory or at most 1 K 32·bit en·
tries.

PAGE FRAME

PHYSICAL
ADDRESS

PAGE TABLE

PG TBL ENTRY

240296-32

Figure 2.10. Address Translation

18

inter i860TM MICROPROCESSOR

Two levels of tables are used to address a page of
memory. At the higher level is a page directory. The
page directory addresses up to 1 K page tables of
the second level. A page table of the second level
addresses up to 1 K pages. All the tables addressed
by one page directory, therefore, can address 1 M
pages (220). Because each page contains 4 Kbytes
(212 bytes), the tables of one page directory can
span the entire physical address space of the 860
microprocessor (220 x 212 = 232).

The physical address of the current page directory is
stored in OTB field of the dirbase register. Memory
management software has the option of using one
page directory for all processes, one page directory
for each process, or some combination of the two.

2.4.4 PAGE-TABLE ENTRIES

Page-table entries (PTEs) in either level of page ta­
bles have the same format. Figure 2.11 illustrates
this format.

2.4.4.1 Page Frame Address

The page frame address specifies the physical start­
ing address of a page. Because pages are located
on 4K boundaries, the low-order 12 bits are always
zero. In a page directory, the page frame address is
the address of a page table. In a second-level page
table, the page frame address is the address of the
page frame that contains the desired memory oper­
and.

2.4.4.2 Present Bit

The P (present) bit indicates whether a page table
entry can be used in address translation. P = 1 indi­
cates that the entry can be used. When P = a in
either level of page tables, the entry is not valid for
address translation, and the rest of the entry is avail­
able for software use; none of the other bits in the
entry is tested by the hardware. If P = a in either
level of page tables when an attempt is made to use
a page-table entry for address translation, the proc­
essor signals either a data-access fault or an in­
struction-access fault. In software systems that sup­
port paged virtual memory, the trap handler can
bring the required page into physical memory.

Note that there is no P bit for the page directory
itself. The page directory may be not-present while
the associated process is suspended, but the oper­
ating system must ensure that the page directory
indicated by the dirbase image associated with the
process is present in physical memory before the
process is dispatched.

2.4.4.3 Writable and User Bits

The W (writable) and U (user) bits are used for page­
level protection, which the 860 microprocessor per­
forms at the same time as address translation. The
concept of privilege for pages is implemented by as­
signing each page to one of two levels:

1. Supervisor level (U = a)-for the operating sys­
tem and other systems software and related data.

2. User level (U = 1)-for applications procedures
and data.

PRESENT--~

WRITABLE ---,

31

NOTE:

USER --~
WRITE-THROUGH --------------------------------~----------__,
CACHE DISABLE ---~
ACCESSED --,
DIRTY ---~
(RESERVED) --------------------------------------,

""CA'" ,., "",., ""''''''' "" I
12

PAGE FRAME ADDRESS 31. .12

X indicates Intel reserved. Do not use.

Figure 2.11. Format of a Page Table Entry

19

240296-33

i860™ MICROPROCESSOR

The U bit of the psr indicates whether the 860 mi­
croprocessor is executing at user or supervisor level.
The 860 microprocessor maintains the U bit of psr
as follows:

• The 860 microprocessor clears the psr U bit to
indicate supervisor level when a trap occurs (in­
cluding when the trap instruction causes the
trap). The prior value fo U is copied into PU.

• The 860 microprocessor copies the psr PU bit
into the U bit when an indirect branch is executed
and one of the trap bits is set. If PU was one, the
860 microprocessor enters user level.

With the U bit of psr and the Wand U bits of the
page table entries, the 860 microprocessor imple­
ments the following protection rules:

• When at user level, a read or write of a supervi­
sor-level pages causes a trap.

• When at user level, a write to a page whose W bit
is not set causes a trap.

• When at user level, st.c to certain control regis-
ters is ignored.

When the 860 microprocessor is executing at super­
visor level, all pages are addressable, but, when it is
executing at user level, only pages that belong to the
user-level are addressable.

When the 860 microprocessor is executing at super­
visor level, all pages are readable. Whether a page
is writable depends upon the write-protection mode
controlled by WP of epsr:

WP = 0

WP = 1
All pages are writable.

A write to page whose W bit is not
set causes a trap.

When the 860 microprocessor is executing at user
level, only pages that belong to user level and are
marked writable are actually writable; pages that be­
long to supervisor level are neither readable nor wri­
table from user level.

2.4.4.4 Write-Through Bit

The 860 microprocessor does not implement a
write-through caching policy for the on-chip instruc­
tion and data caches; however, the WT (write­
through) bit in the second-level page-table entry
does determine internal caching policy. If WT is set
in a PTE, on-chip caching of data from the corre­
sponding page is inhibited. If WT is clear, the normal
write-back policy is applied to data from the page in
the on-chip caches. The WT bit of page directory
entries is not referenced by the processor, but is
reserved.

The WT bit is independent of the CO bit; therefore,
data may be placed in a second-level coherent
cache, but kept out of the on·chip caches.

20

2.4.4.5 Cache Disable Bit

If the CD (cache disable) bit in the second-level
page-table entry is set, data from the associated
page is not placed in external instruction or data
caches. Clearing CD permits the external cache
hardware to place data from the associated page
into external caches. The CD bit of page directory
entries is not referenced by the processor, but is
reserved.

2.4.4.6 Accessed and Dirty Bits

The A (accessed) and 0 (dirty) bits provide data
about page usage in both levels of the page tables.

The 860 microprocessor sets the corresponding ac­
cessed bits in both levels of page tables before a
read or write operation to a page. The processor
tests the dirty bit in the second-level page table be­
fore a write to an address covered by that page table
entry, and, under certain conditions, causes traps.
The trap handler than has the opportunity to main­
tain appropriate values in the dirty bits. The dirty bit
in directory entries is not tested by the 860 micro­
processor. The precise algorithm for using these bits
is specified in Subsection 2.4.5.

An operating system that supports paged virtual
memory can use these bits to determine what pages
to eliminate from physical memory when the de­
mand for memory exceeds the physical memory
available. The 0 and A bits in the PTE (page-table
entry) are normally initialized to zero by the operat­
ing system. The processor sets the A bit when a
page is accessed either by a read or write operation.
When a data- or instruction-access fault occurs, the
trap handler sets the 0 bit if an allowable write is
being performed, then re-executes the instruction.

The operating system is responsible for coordinating
its updates to the accessed and dirty bits with up­
dates by the CPU and by other processors that may
share the page tables. The 860 microprocessor au­
tomatically asserts the LOCK # signal while testing
and setting the A bit.

2.4.4.7 Combining Protection of Both Levels of
Page Tables

For anyone page, the protection attributes of its
page directory entry may differ from those of its
page table entry. The 860 microprocessor computes
the effective protection attributes for a page by ex­
amining the protection attributes in both the directo­
ry and the page table. Table 2.6 shows the effective
protection provided by the possible combinations of
protection attributes.

inter i860TM MICROPROCESSOR

2.4.5 ADDRESS TRANSLATION ALGORITHM

The algorithm below defines the translation of each
virtual address to a physical address. Let DIR,
PAGE, and OFFSET be the fields of the virtual ad­
dress; let PFA1 and PFA2 be the page frame ad­
dress fields of the first and second level page tables
respectively; DTB is the page directly table base ad­
dress stored in the dirbase register.

1. Assert LOCK # .

2. Read the PTE (page table entry) at the physical
address formed by DTB:DIR:OO.

3. If P in the PTE is zero, generate a data- or instruc­
tion-access fault.

4. If W in the PTE is zero, the operation is a write,
and either the U-bit of the PSR is set or WP = 1,
generate a data- or instruction-access fault.

5. If the U-bit in the PTE is zero and the U-bit in the
psr is set, generate a data- or instruction-access
fault.

6. If A in the PTE is zero, set A.

7. Locate the PTE at the physical address formed by
PFA 1 :PAGE:OO.

8. Perform the P, A, W, and U checks as in steps 3
through 6 with the second-level PTE.

9. If D in the PTE is clear and the operation is a
write, generate a data- or instruction-access fault.

10. Form the physical address as PFA2:0FFSET.

11. Deassert LOCK # .

2.4.6 ADDRESS TRANSLATION FAULTS

The address translation fault is one instance of the
data-access fault. The instruction causing the fault
can be re-executed upon returning from the trap
handler.

2.4.7 PAGE TRANSLATION CACHE

For greatest efficiency in address translation, the
860 microprocessor stores the most recently used
page-table data in an on-chip cache called the TLB
(translation lookaside buffer). Only if the necessary
paging information is not in the cache must both lev­
els of page tables be referenced.

2.5 Caching and Cache Flushing

The 860 microprocessor has the ability to cache in­
struction, data, and address-translation information
in on-chip caches. Caching may use virtual-address
tags. The effects of mapping two different virtual ad­
dresses in the same address space to the same
physical address are undefined.

Table 2.6. Combining Directory and Page Protection

Page Directory Page Table
Entry Entry

U-bit W-bit U-bit W-bit

0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

NOTES:
U = O-Supervisor W = O-Read only
U = 1-User W = 1-Read and write
x indicates that, when the combined U attribute is supervisor
and WP = 0, the W attribute is not checked.

Combined Protection

WP = 0 WP = 1

U W U W

0 x 0 0
0 x 0 0
0 x 0 0
0 x 0 0
0 x 0 0
0 x 0 1
0 x 0 0
0 x 0 1
0 x 0 0
0 x 0 0
1 0 1 0
1 0 1 0
0 x 0 0
0 x 0 1
1 0 1 0
1 1 1 1

21

inter i860™ MICROPROCESSOR

Instruction, data, and address-translation caching on
the 860 microprocessor are not transparent. Writes
do not immediately update memory, the TLS, nor the
instruction cache. Writes to memory by other bus
devices do not update the caches. Under certain cir­
cumstances, such as I/O references, self-modifying
code, page-table updates, or shared data in a multi­
processing system, it is necessary to bypass or to
flush the caches. 860 microprocessor provides the
following methods for doing this:

• Bypassing Instruction and Data Caches_ If
deasserted during cache-miss processing, the
KEN # pin disables instruction and data caching
of the referenced data. If the CD bit from the as­
sociated second-level PTE is set, caching of data
and instructions is disabled. The value of the CD
bit is output on the PTS pin for use by external
caches.

• Flushing Instruction and Address-Translation
Caches_ Storing to the dirbase register with the
ITI bit set invalidates the contents of the instruc­
tion and address-translation caches. This bit

22

should be set when a page table or a page con­
taining code is modified or when changing the
DTS field of dirbase. Note that in order to make
the instruction or address-translation caches con­
sistent with the data cache, the data cache must
be flushed before invalidating the other caches.

NOTE:

The mapping of the page(s) containing the cur­
rently executing instruction, the next six instruc­
tions, and any data referenced by these instruc­
tions should not be different in the new page
tables when the DTS is changed.

• Flushing the Data Cache. The data cache is
flushed by a software routine using the flush in­
struction. The data cache must be flushed prior to
flushing the instruction or address-translation
cache (as controlled by the ITI bit of dirbase) or
enabling or disabling address translation (via the
ATE bit). While the cache is being flushed, no
interrupt or trap routines should be executed that
load sharable data into the cache.

inter i860TM MICROPROCESSOR

2.6 Instruction Set

Table 2.7 shows the complete set of instructions
grouped by function within processing unit. Refer to
Section 8 for an algorithmic definition of each in­
struction.

The architecture of the 860 microprocessor uses
parallelism to increase the rate at which operations
may be introduced into the unit. Parallelism in the
860 microprocessor is not transparent; rather, pro­
grammers have complete control over parallelism
and therefore can achieve maximum performance
for a variety of computational problems.

2.6.1 PIPELINED AND SCALAR OPERATIONS

One type of parallelism used within the floating-point
unit is "pipelining". The pipelined architecture treats
each operation as a series of more primitive opera­
tions (called "stages") that can be executed in par­
allel. Consider just the floating-point adder unit as an
example. Let A represent the operation of the adder.
Let the stages be represented by A1. A2, and A3.
The stages are designed such that Ai + 1 for one ad­
der instruction can execute in parallel with Ai for the
next adder instruction. Furthermore, each Ai can be
executed in just one clock. The pipelining within the
multiplier and vector-integer units can be described
similarly, except that the number of stages may be
different.

Figure 2.7 illustrates three-stage pipelining as found
in the floating-point adder (also in the floating-point
multiplier when single-precision input operands are
employed). The columns of the figure represent the
three stages of the pipeline. Each stage holds inter­
mediate results and also (when introduced into first
stage by software) holds status information pertain­
ing to those results. The figure assumes that the in­
struction stream consists of a series of consecutive
floating-point instructions, all of one type (Le. all ad­
der instructions or all single-precision multiplier in­
structions). The instructions are represented as i,
i + 1, etc. The rows of the figure represent the states
of the unit at successive clock cycles. Each time a
pipelined operation is performed, the result of the
last stage of the pipeline is stored in the destination
register rdest, the pipeline is advanced one stage,
and the input operands src1 and src2 are trans­
ferred to the first stage of the pipeline.

23

In the 860 microprocessor, the number of pipeline
stages ranges from one to three. A pipelined opera­
tion with a three-stage pipeline stores the result of
the third prior operation. A pipelined operation with a
two-stage pipeline stores the result of the second
prior operation. A pipelined operation with a one­
stage pipeline stores the result of the prior opera­
tion.

There are four floating-point pipelines: one for the
multiplier, one for the adder, one for the vector-inte­
ger unit, and one for floating-point loads. The adder
pipeline has three stages. The number of stages in
the multiplier pipeline depends on the precision of
the source operands in the pipeline; it may have two
or three stages. The vector-integer unit has one
stage for all precisions. The load pipeline has three
stages for all precisions.

Changing the FZ (flush zero), RM (rounding mode),
or RR (result register) bits of fsr while there are re­
sults in either the multiplier or adder pipeline produc­
es effects that are not defined.

2.6.1.1 Scalar Mode

In addition to the pipelined execution mode, the 860
microprocessor also can execute floating-point in­
structions in "scalar" mode. Most floating-point in­
structions have both pipelined and scalar variants,
distinguished by a bit in the instruction encoding. In
scalar mode, the floating-point unit does not start a
new operation until the previous floating-point oper­
ation is completed. The scalar operation passes
through all stages of its pipeline before a new opera­
tion is introduced, and the result is stored automati­
cally. Scalar mode is used when the next operation
depends on results from the previous few floating­
point operations (or when the compiler or program­
mer does not want to deal with pipelining).

2.6.1.2 Pipelining Status Information

Result status information in the fsr consists of the
AA, AI, AD, AU, and AE bits, in the case of the ad­
der, and the MA, MI, MO, and MU bits, in the case of
the multiplier. This information arrives at the fsr via
the pipeline in one of two ways:

inter i860™ MICROPROCESSOR

Table 2.7. Instruction Set

Core Unit Floating-Point Unit

Mnemonic Description Mnemonic Description

Load and Store Instructions F-P Multiplier Instruction

Id.x Load integer fmul.p F-P multiply
st.x Store integer pfmul.p Pipelined F-P multiply
fld.y F-P load pfmul3.dd 3-Stage pipelined F-P multiply
pfld.z Pipelined F-P load fmlow.p F-P multiply low
fst.y F-P store frcp.p F-P reciprocal
pst.d Pixel store frsqr.p F-P reciprocal square root

Register to Register Moves F-P Adder Instructions

ixfr Transfer integer to F-P register fadd.p F-P add
fxfr Transfer F-P to integer register pfadd.p Pipelined F-P add

Integer Arithmetic Instructions fsub.p F-P subtract
pfsub.p Pipelined F-P subtract

addu Add unsigned pfgt.p Pipelined F-P greater-than compare
adds Add signed pfeq.p Pipelined F-P equal compare
subu Subtract unsigned fix.p F-P to integer conversion
subs Subtract signed pfix.p Pipelined F-P to integer conversion

Shift Instructions

shl Shift left
shr Shift right

ftrunc.p F-P to integer truncation
pftrunc.p Pipelined F-P to integer truncation

Dual-Operation Instructions

shra Shift right arithmetic pfam.p Pipelined F-P add and multiply
shrd Shift right double pfsm.p Pipelined F-P subtract and multiply

Logical Instructions

and Logical AND
andh Logical AND high

pfmam Pipelined F-P multiply with add
pfmsm Pipelined F-P multiply with subtract

Long Integer Instructions

andnot Logical AND NOT fisub.z Long-integer subtract
andnoth Logical AND NOT high pfisub.z Pipelined long-integer subtract
or Logical OR fiadd.z Long-integer add
orh Logical OR high pfiadd.z Pipelined long-integer add
xor Logical exclusive OR
xorh Logical exclusive OR high Graphics Instructions

Control-Transfer Instructions fzchks 16-bit Z-buffer check
pfzchks Pipelined 16-bit Z -buffer check

trap Software trap fzchkl 32-bit Z -buffer check
intovr Software trap on integer overflow pfzchkl Pipelined 32-bit Z-buffer check
br Branch direct faddp Add with pixel merge
bri Branch indirect pfaddp Pipelined add with pixel merge
bc Branch on CC faddz Add with Z merge
bc.t Branch on CC taken pfaddz Pipelined add with Z merge
bnc Branch on not CC form OR with MERGE register
bnc.t Branch on not CC taken pform Pipelined OR with MERGE register
bte Branch if equal
btne Branch if not equal
bla Branch on LCC and add Assembler Pseudo-Operations
call Subroutine call
calli Indirect subroutine call

Mnemonic Description

System Control Instructions
mov Integer register-register move
fmov.q F-P reg-reg move

flush Cache flush
Id.c Load from control register
st.c Store to control register
lock Begin interlocked sequence
unlock End interlocked sequence

pfmov.q Pipelined F-P reg-reg move
nop Core no-operation
fnop F-P no-operation
pfle.p Pipelined F-P less-than or equal

24

inter i860TM MICROPROCESSOR

STAGE 1 STAGE 2 STAGE 3

results (status) results (status) results status

CLOCK n

INSTRUC

CLOCK n+1

INSTRUC
1+1

INSTRUC
1+2

r

1+1

1+2

(s) r

(s)

CLOCK n+~
1+1 1

(s) r s

~ CLOCK n+~ ~
INSTRUC

1+3 r

1+3 1+2

(s) r

1+1

(s) r s

rdest
1+3

~ CLOCKn+~ ~
INSTRUC

1+4
r

1+4 1+3

(s) r

1+2

(s) r s

rdest
1+4

CLOCKn+~ ~
INSTRUC

1+5

1+5 1+4 1+3 rdest
1+5

240296-9

Figure 2.12. Pipelined Instruction Execution

1. It is calculated by the last stage of the pipeline.
This is the normal case.

2. It is propagated from the first stage of the pipe­
line. This method is used when restoring the state
of the pipeline after a preemption. When a store
instruction updates the fsr and the value of the
U bit in the word being written into the fsr is set,
the store updates the result status bits in the first
stage of both the adder and multiplier pipelines.
When software changes the result-status bits of
the first stage of a particular unit (multiplier or ad­
der), the updated result-status bits are propagat­
ed one stage for each pipe lined floating-point op­
eration for that unit. In this case, each stage of the
adder and multiplier pipelines holds its own copy
of the relevant bits of the fsr. When they reach
the last stage, they override the normal result­
status bits computed from the last-stage result.

25

At the next floating-point instruction (or at certain
core instructions), after the result reaches the last
stage, the 860 microprocessor traps if any of the
status bits of the fsr indicate exceptions. Note that
the instruction that creates the exceptional condition
is not the instruction at which the trap occurs.

2.6.1.3 Precision in the Pipelines

In pipelined mode, when a floating-point operation is
initiated, the result of an earlier pipelined floating­
point operation is returned. The result precision of
the current instruction applies to the operation being
initiated. The precision of the value stored in rdest is
that which was specified by the instruction that initia­
ted that operation.

infef i860™ MICROPROCESSOR

31 o

OP

d.FP-OP

63
d.FP-OP or CORE-OP

CORE-OP

CORE-OP

CORE-OP

31

63

I CORE-OP

d.FP-OP

FP-OP

FP-OP

OP

OP

OP

d.FP-OP

FP-OP

FP-OP

OP

OP

o

ENTER DUAL­
INSTRUCTION MODE.
INITIATE EXIT FROM
DUAL-INSTRUCTION MODE.

LEAVE DUAL­
INSTRUCTION MODE.

TEMPORARY DUAL­
INSTRUCTION MODE

240296-10

Figure 2.13. Dual·lnstruction Mode Transitions

If (dest is the same as s(c1 or s(c2, the value being
stored in (dest is used as the input operand. In this
case, the precision of (dest must be the same as the
source precision.

The multiplier pipeline has two stages when the
source operand is double-precision and three stages
when the precision of the source operand is single.
This means that a pipelined multiplier operation
stores the result of the second previous multiplier
operation for double-precision inputs and third previ­
ous for single-precision inputs (except when chang­
ing precisions).

2.6.1.4 Transition between Scalar and Pipelined
Operations

When a scalar operation is executed, it passes
through all stages of the pipeline; therefore, any un­
stored results in the affected pipeline are lost. To
avoid losing information, the last pipelined opera­
tions before a scalar operation should be dummy
pipelined operations that unload unstored results
from the affected pipeline.

26

After a scalar operation, the values of all pipeline
stages of the affected unit (except the last) are un­
defined. No spurious result-exception traps result
when the undefined values are subsequently stored
by pipelined operations; however, the values should
not be referenced as source oeprands.

For best performance a scalar operation should not
immediately precede a pipelined operation whose
(dest is nonzero.

2.6.2 DUAL-INSTRUCTION MODE

Another form of parallelism results from the fact that
the 860 microprocessor can execute both a floating­
point and a core instruction simultaneously. Such
parallel execution is called [dual-instruction modeJ.
When executing in dual-instruction mode, the in­
struction sequence consists of 64-bit aligned instruc­
tions with a floating-point instruction inthe lower 32
bits and a core instruction in the upper 32 bits. Table
2.6 identifies which instructions are executed by the
core unit and which by the floating-point unit.

inter i860TM MICROPROCESSOR

Programmers specify dual-instruction mode either
by including in the mnemonic of a floating-point in­
struction a d. prefix or by using the Assembler direc­
tives .dual enddual. Both of the specifications
cause the D-bit of floating-point instructions to be
set. If the 860 microprocessor is executing in single·
instruction mode and encounters a floating-point in­
struction with the D-bit set, one more 32-bit instruc­
tion is executed before dual-mode execution begins.
If the 860 microprocessor is executing in dual-in­
struction mode and a floating-point instruction is en­
countered with a clear D-bit, then one more pair of
instructions is executed before resuming single-in­
struction mode. Figure 2.13 illustrates two variations
of this sequence of events: one for extended se­
quences of dual-instructions and one for a single in­
struction pair.

When a 64-bit dual-instruction pair sequentially fol­
lows a delayed branch instruction in dual-instruction
mode, both 32-bit instructions are executed.

2.6.3 DUAL-OPERATION INSTRUCTIONS

Special dual-operation floating-point instructions
(add-and-multiply, subtract-and-multiply) use both
the multiplier and adder units within the floating­
point unit in parallel to efficiently execute such com­
mon tasks as evaluating systems of linear equa­
tions, performing the Fast Fourier Transform (FFT),
and performing graphics transformations.

The instructions pfam sre1, sre2, rdest (add and
multiply), pfsm sre1, sre2, rdest (subtract and multi­
ply), pfmam serl, sre2, rdest (multiply and add), and
pfmsm srel, sre2, rdest (multiply and subtract) initi­
ate both an adder operation and a multiplier opera­
tion. Six operands are required, but the instruction
format specifies only three operands; therefore,
there are special provisions for specifying the oper­
ands. These special provisions consist of:

• Three special registers (KR, KI, and T), that can
store values from one dual-operation instruction
and supply them as inputs to subsequent dual­
operation instructions.

1. The constant registers KR and KI can store the
value of srel and subsequently supply that val­
ue to the multiplier pipeline in place of srel.

2. The transfer register T can store the last-stage
result of the multiplier pipeline and subse­
quently supply that value to the adder pipeline
in place of srel.

• A four-bit data-path control field in the opcode
(DPC) that specifies the operands and loading of
the special registers.

1. Operand-1 of the multiplier can be KR, KI, or
srel.

2. Operand-2 of the multiplier can be sre2 or the
last-stage result of the adder pipeline.

27

3. Operand-1 of the adder can be srel, the T-reg­
ister, or the last -stage result of the adder pipe­
line.

4. Operand-2 of the adder can be sre2, the last­
stage result of the multiplier pipeline, or the
last-stage result of the adder pipeline.

Figure 2.14 shows all the possible data paths sur­
rounding the adder and multiplier. A DPe field in
these instructions select different data paths. Sec­
tion 8 shows the various encodings of the DPe field.

SRC1 SRC2 RDEST

MULTIPLIER UNIT

ADDER UNIT

RESULT

240296-11

Figure 2.14, Dual-Operation Data Paths

Note that the mnemonics pfam.p, pfsm.p,
pfmam.p, and pfmsm.p are never used as such in
the assembly language; these mnemonics are used
here to designate classes of related instructions.
Each value of DPe has a unique mnemonic associ­
ated with it.

2.7 Addressing Modes

Data access is limited to load and store instructions .
Memory addresses are computed from two fields of
load and store instructions: srel and sre2.

1. srel either contains the identifier of a 32-bit inte­
ger register or contains an immediate 16-bit ad­
dress offset.

2. sre2 always specifies a register.

intJ i860™ MICROPROCESSOR

Table 2.8. Types of Traps

Type
Indication Caused by

PSR FSR Condition Instruction

Instruction IT Software traps trap, intovr
Fault Missing unlock Any

Floating SE Floating-point source exception Any M- or A-unit except fmlow
Point Floating-point result exception Any M- or A-unit except fmlow, pfgt,
Fault FT AO,MO overflow and pfeq. Reported on any F-P

AU,MU underflow instruction plus pst, fst, and
AI,MI inexact result sometimes fld, pfld, ixfr

Instruction IAT Address translation exception Any
Access Fault during instruction fetch

Data Access Load/store address translation Any load/store
Fault exception

OAT' Misaligned operand address Any load/store
Operand address matches Any load/store

db register

Interrupt IN External interrupt

Reset No trap bits set Hardware RESET signal
. . ..

'These cases can be distingUished by examining the operand addresses .

Because either src1 or src2 may be null (zero), a
variety of useful addressing modes result:

offset + register Useful for accessing fields within
a record, where register points
to the beginning of the record.
Useful for accessing items in a
stack frame, where register is
r3, the register used for pointing
to the beginning of the stack
frame.

register + register Useful for two-dimensional ar­
rays or for array access within
the stack frame.

register Useful as the end result of any
arbitrary address calculation.

offset Absolute address into the first
64K of the logical address
space.

In addition, the floating-point load and store instruc­
tions may select autoincrement addressing. In this
mode src2 is replaced by the sum of src1 and src2
after performing the load or store. This mode makes
stepping through arrays more efficient, because it
eliminates one address-calculation instruction.

2.8 Interrupts and Traps

Traps are caused by exceptional conditions detect­
ed in programs or by external interrupts. Traps

28

cause interruption of normal program flow to exe­
cute a special program known as a trap handler.
Traps are divided into the types shown in Table 2.8.

2.8.1 TRAP HANDLER INVOCATION

This section applies to traps other than reset. When
a trap occurs, execution of the current instruction is
aborted. The instruction is restartable. The proces­
sor takes the following steps while transferring con­
trol to the trap handler:

1. Copies U (user mode) of the psr into PU (previous
U).

2. Copies 1M (interrupt mode) into PIM (previous 1M).

3. Sets U to zero (supervisor mode).

4. Sets 1M to zero (interrupts disabled).

5. If the processor is in dual instruction mode, it sets
DIM; otherwise it clears DIM.

6. If the processor is in single-instruction mode and
the next instruction will be executed in dual­
instruction mode or if the processor is in dual-in­
struction mode and the next instruction will be
executed in single-instruction mode, OS is set;
otherwise, it is cleared.

7. The appropriate trap type bits in psr are set (IT,
IN, IAT, OAT, FT). Several bits may be set if the
corresponding trap conditions occur simulta­
neously.

8. An address is placed in the fault instruction regis­
ter (fir) to help locate the trapped instruction. In

inter i860TM MICROPROCESSOR

single-instruction mode, the address in fir is the
address of the trapped instruction itself. In dual-in­
struction mode, the address in fir is that of the
floating-point half of the dual instruction. If an in­
struction or data access fault occurred, the asso­
ciated core instruction is the high-order hal.f of the
dual instruction (fir + 4). In dual-instruction
mode, when a data access fault occurs in the ab­
sence of other trap conditions, the floating-point
half of the dual instruction will already have been
executed (except in the case of the fxfr
instruction).

The processor begins executing the trap handler by
transferring execution to address OxFFFFFFOO. The
trap handler begins execution in single-instruction
mode. The trap handler must examine the trap-type
bits in psr (IT, IN, IAT, OAT, FT) to determine the
cause or causes of the trap.

2.8.2 INSTRUCTION FAULT

This fault is caused by any of the following condi­
tions. In all cases the processor sets the IT bit be­
fore entering the trap handler.

• By the trap instruction.

• By the intovr instruction. The trap occurs only if
OF in epsr is set when intovr is executed. The
trap handler should clear OF before returning.

• By the lack of an unlock instruction within 32 in­
structions of a lock. In this case IL is also set.
When the trap handler finds IL set, it should scan
backwards for the lock instruction and restart at
that point. The absence of a lock instruction with­
in 32 instructions of the trap indicates a program­
ming error.

2.8.3 FLOATING-POINT FAULT

The floating-point fault occurs on floating-point in­
structions pst, fst, and sometimes fld, pfld, ixfr.
The floating-point faults of the 860 microprocessor
support the floating-point exceptions defined by the
IEEE standard as well as some other useful classes
of exceptions. The 860 microprocessor divides
these into two classes: source exceptions and result
exceptions. The numerics library supplied by Intel
provides the IEEE standard default handling for all
these exceptions.

2.8.3.1 Source Exception Faults

All exceptional operands, including infinities, denor­
malized numbers and NaNs, cause a floating-point
fault and set SE in the fsr. Source exceptions are
reported on the instruction that initiates the opera­
tion. For pipelined operations, the pipeline is not ad­
vanced.

29

The SE value is undefined for faults on fld, pfld, fst,
pst, and Ixfr instructions when in single-instruction
mode or when in dual-instruction mode and the com­
panion instruction is not a multiplier or adder opera­
tion.

2.8.3.2 Result Exception Faults

The class of result exceptions includes any of the
following conditions:

• Overflow. The absolute value of the rounded
true result would exceed the largest positive finite
number in the destination format.

• Underflow (when FZ is clear). The absolute val­
ue of the rounded true result 'iVould be smaller
than the smallest positive finite number in the
destination format.

• Inexact result (when TI is set). The result is not
exactly representable in the destination format.
For example, the fraction % cannot be precisely
represented in binary form. This exception occurs
frequently and indicates that some (generally ac­
ceptable) accuracy has been lost.

The point at which a result exception is reported de­
pends upon whether pipe lined operations are being
used:

• Scalar (nonpipelined) operations. Result ex­
ceptions are reported on the next floating-point,
fst.x, or pst.x (and sometimes fld, pfld, ixfr) in­
struction after the scalar operation. When a trap
occurs, the last·stage of the affected unit con­
tains the result of the scalar operation.

• Pipelined operations. Result exceptions are re­
ported when the result is in the last stage and the
next floating-point (and sometimes fld, pfld, Ixfr)
instruction is executed. When a trap occurs, the
pipeline is not advanced, and the last-stage re­
sults (that caused the trap) remain unchanged.

When no trap occurs (either because FTE is clear or
because no exception occurred), the pipeline is ad~
vanced normally by the new floating-point operation.
The result-status bits of the affected unit are unde­
fined until the point that result exceptions are report­
ed. At this point, the last-stage result-status bits (bits
29 .. 22 and 16 .. 9 of the fsr) reflect the values in the
last stages of both the adder and multiplier. For ex­
ample, if the last-stage result in the multiplier has
overflowed and a pipelined floating-point pfadd is
started, a trap occurs and MO is set.

For scalar operations, the RR bits of fsr specify the
register in which the result was stored. RR is updat­
ed when the scalar instruction is initiated. The trap,
however, occurs on a subsequent instruction. Pro­
grammers must prevent intervening stores to fsr
from modifying the RR bits. Prevention may take one
of the following forms:

i860TM MICROPROCESSOR

• Before any store to fsr when a result exception
may be pending, execute a dummy floating-point
operation to trigger the result-exception trap.

• Always read from fsr before storing to it, and
mask updates so that the RR bits are not
changed.

For pipelined operations, RR is cleared; the result is
in the pipeline of the appropriate unit.

In either case, the result has the same fraction as
the true result and has an exponent which is the low­
order bits of the true result. The trap handler can
inspect the result, compute the result appropriate for
that instruction (a NaN or an infinity, for example),
and store the correct result. The result is either
stored in the register specified by RR (if nonzero) or
in the last stage of the pipeline (if RR = 0). The trap
handler must clear the result status for the last
stage, then reexecute the trapping instruction.

Result exceptions may be reported for both the ad­
der and multiplier units at the same time. In this
case, the trap handler should fix up the last stage of
both pipelines.

2.8.4 INSTRUCTION ACCESS FAULT

This trap results from a page-not-present exception
during instruction fetch. If a supervisor-level page is
fetched in user mode, an exception mayor may not
occur.

2.8.5 DATA ACCESS FAULT

This trap results from an abnormal condition detect­
ed during data operand fetch or store. Such an ex­
ception can be due only to one of the following caus­
es:

• An attempt is being made to write to a page
whose O-bit is clear.

• A memory operand is misaligned (is not located
at an address that is a multiple of the length of
the data).

• The address stored in the debug register is equal
to one of the addresses spanned by the operand.

• The operand is in a not-present page.

• An attempt is being made from user level to write
to a read-only page or to access a supervisor-lev­
el page.

2.8.6 INTERRUPT TRAP

An interrupt is an event that is signaled from an ex­
ternal source. If the processor is executing with in-

30

terrupts enabled (1M set in the psr), the processor
sets the interrupt bit IN in the psr, and generates an
interrupt trap. Vectored interrupts are implemented
by interrupt controllers and software.

2.8.7 RESET TRAP

When the 860 microprocessor is reset, execution
begins in single-instruction mode at address
OxFFFFFFOO. This is the same address as for other
traps. The reset trap can be distinguished from other
traps by the fact that no trap bits are set. The in­
struction cache is flushed. The bits OPS, BL, and
ATE in dirbase are cleared. CS8 is initialized by the
value at the INT pin at the end of reset. The bits U,
1M, BR, and BW in psr are cleared. All other bits of
psr and all other register contents are undefined.

The software must ensure that the data cache is
flushed and control registers are properly initialized
before performing operations that depend on the
values of the cache or registers.

Reset code must initialize the floating-point pipeline
state to zero with floating-point traps disabled to en­
sure that no spurious floating-point traps are gener­
ated.

After a RESET the 860 microprocessor starts execu­
tion at supervisor level (U = 0). Before branching to
the first user-level instruction, the RESET trap han­
dier or subsequent initialization code has to set PU
and a trap bit so that an indirect branch instruction
will copy PU to U, thereby changing to user level.

2.9 Debugging

The 860 microprocessor supports debugging with
both data and instruction breakpoints. The features
of the 860 architecture that support debugging in­
clude:

• db (data breakpoint register) which permits speci­
fication of a data addresses that the 860 micro­
processor will monitor.

• BR (break read) and BW (break write) bits of the
psr, which enable trapping of either reads or
writes (respectively) to the address in db.

• OAT (data access trap) bit of the psr, which al­
lows the trap handler to determine when a data
breakpoint was the cause of the trap.

• trap instruction that can be used to set break­
points in code. Any number of code breakpoints
can be set. The values of the src1 and src2 fields
help identify which breakpoint has occurred.

• IT (instruction trap) bit of the psr, which allows
the trap handler to determine when a trap
instruction was the cause of the trap.

inter i860TM MICROPROCESSOR

3.0 HARDWARE INTERFACE

In the following description of hardware interface,
the # symbol at the end of a signal name indicates
that the active or asserted state occurs when the
signal is at a low Voltage. When no # is present after
the signal name, the signal is asserted when at the
high voltage level.

3.1 Signal Description

Table 3.1 identifies functional groupings of the pins,
lists every pin by its identifier, gives a brief descrip­
tion of its function, and lists some of its characteris­
tics. All output pins are tristate, except HLDA and
BREO. All inputs are synchronous, except HOLD
and INT.

3.1.1 CLOCK (ClK)

The CLK input determines execution rate and timing
of the 860 microprocessor. Timing of other signals is
specified relative to the rising edge of this signal.
The 860 microprocessor can utilize a clock rate of
33.3 MHz. The internal operating frequency is the
same as the external clock. This signal is TTL com­
patible.

31

3.1.2 SYSTEM RESET (RESET)

Asserting RESET for at least 16 CLK periods causes
initialization of the 860 microprocessor. Refer to
section 3.2 "Initialization" for more details related to
RESET.

3.1.3 BUS HOLD (HOLD) AND BUS HOLD
ACKNOWLEDGE (HLDA)

These pins are used for 860 microprocessor bus ar­
bitration. At some time after the HOLD signal is as­
serted, the 860 microprocessor releases control of
the local bus and puts all bus interface outputs (ex­
cept BREO and HLDA) in floating state, then asserts
HLDA-all during the same clock period. It main­
tains this state until HOLD is deasserted. Instruction
execution stops only if required instructions or data
cannot be read from the on-chip instruction and data
caches.

The time required to acknowledge a hold request is
one clock plus the number of clocks needed to finish
any outstanding bus cycles. HOLD is recognized
even while RESET is asserted.

When leaving a bus hold, the 860 microprocessor
deactivates HLDA and, in the same clock period, ini­
tiates a pending bus cycle, if any.

Hold is an asynchronous input.

intJ i860TM MICROPROCESSOR

Table 3.1. Pin Summary
~

Pin
Function

Active Input!
Name State Output

Execution Control Pins

CLK CLocK I
RESET System reset High I
HOLD Bus hold High I
HLDA Bus hold acknowledge High 0
BREQ Bus request High 0
INT/CS8 Interrupt, code-size High I

Bus Interface Pins

A31-A3 Address bus High 0
BE7#-BEO# Byte Enables Low 0
D63-DO Data bus High I/O
LOCK# Bus lock Low 0
W/R# Write/Read bus cycle Hi/Low 0
NENE# NExt NEar Low 0
NA# Next Address request Low I
READY# Transfer Acknowledge Low I
ADS# ADdress Status Low 0

Cache Interface Pins

KEN# Cache ENable Low I
PTB Page Table Bit High 0

Testability Pins

SHI Boundary Scan Shift Input High I
BSCN Boundary Scan Enable High I
SCAN Shift Scan Path High I

Intel-Reserved Configuration Pins

CC1-CCO Configuration High I

Power and Ground Pins

Vee System power
Vss System ground

A # after a Pin name Indicates that the signal is active when at the low voltage level.

3.1.4 BUS REQUEST (BREQ)

This signal is asserted when the 860 microprocessor
has a pending memory request, even when HLDA is
asserted. This allows an external bus arbiter to im­
plement an "on demand only" policy for granting the
bus to the 860 microprocessor.

3.1.5 INTERRUPT/CODE-SIZE (INT/CS8)

This input allows interruption of the current instruc­
tion stream. If interrupts are enabled (1M set in psr)
when INT is asserted, the 860 microprocessor fetch­
es the next instruction from address OxFFFFFFOO.
To assure that an interrupt is recognized, INT should
remain asserted until the software acknowledges
the interrupt (by writing, for example, to a memory-

32

mapped port of an interrupt controller). The maxi­
mum time between the assertion of INT and execu­
tion of the first instruction of the trap handler is 10
clocks, plus the time for eight nonpipelined read cy­
cles (four TLB misses), plus the time for eight non­
pipelined writes (updates to the A bit), plus the time
for three sets of four pipelined read cycles and two
sets of four pipelined writes (instruction and data
cache misses and write-back cycles to update mem­
ory).

If INT is asserted during the clock before the falling
edge of RESET, the eight-bit code-size mode is se­
lected. For more about this mode, refer to section
3.2 "Initialization".

INT is an asynchronous input.

•

inter i860™ MICROPROCESSOR

3.1.6 ADDRESS PINS (A31-A3) AND BYTE
ENABLES (BE7#-BEO#)

The 29·bit address bus (A31-A3) identifies address·
es to a 64·bit location. Separate byte·enable signals
(BE7 # -BEO#) identify which bytes should be ac­
cessed within the 64-bit location. Cache reads
should return 64 bits without regard for the byte-en­
able signals.

Instruction fetches (W fR # is low) are distinguished
from data accesses by the unique combinations of
BE7#-BEO# defined in Table 3.2. For an eight-bit
code fetch in eight-bit code-size (CS8) mode,
BE2#-BEO# are redefined to be A2-AO of the ad­
dress. In this case BE7#-BE3# form the code
shown in Table 3.2 that identifies an instruction
fetch.

3.1.7 DATA PINS (D63-DO)

The bus interface has 64 bidirectional data pins
(063-00) to transfer data in eight- to 64-bit quanti­
ties. Pins 07-00 transfer the least significant byte;
pins 063-056 transfer the most significant byte.

In write bus cycles, the point at which data is driven
onto the bus depends on the type of the preceding
cycle. If there was no preceding cycle (Le. the bus
was idle), data is driven with the address. If the pre­
ceding cycle was a write, data is driven as soon as
READY # is returned from the previous cycle. If the
preceding cycle was a read, data is driven one clock
after READY # is returned from the previous cycle,
thereby allowing time for the bus to be turned
around.

3.1.8 BUS LOCK (LOCK#)

This signal is used to provide atomic (indivisible)
read-modify-write sequences in multiprocessor sys­
tems. Once the external bus arbiter has accepted a
memory access for a locked bus cycle from the 860
microprocessor, it should not accept locked cycles
(or any cycles, depending on software convention)
from other bus masters until LOCK# is deasserted.

The 860 microprocessor coordinates the external
LOCK# signal with the software-controlled BL bit of

the dirbase register. Programmers do not have to
be concerned about the fact that bus activity is not
always synchronous with instruction execution.
LOCK # is asserted with ADS # for the first bus cycle
that results from an instruction executed after the BL
bit is set. Even if the BL bit is changed between the
time that an instruction generates an internal bus
request and the time that the cycle appears on the
bus, the 860 microprocessor still asserts LOCK# for
that bus cycle. LOCK# is deasserted with ADS# for
the next bus cycle that results from an instruction
executed after the BL bit is cleared.

The 860 microprocessor also asserts LOCK # during
TLB miss processing for updates of the accessed bit
in page-table entries. The maximum time that
LOCK # can be asserted in this case is five clocks
plus the time required by software to perform a read­
modify-write sequence.

The 860 microprocessor does not acknowledge bus
hold requests while LOCK # is asserted.

3.1.9 WRITE/READ BUS CYCLE (W/R#)

This pin specifies whether a bus cycle is a read
(LOW) or write (HIGH) cycle.

3.1.10 NEXT NEAR (NENE#)

This signal allows higher-speed reads and writes in
the case of consecutive reads and writes that ac­
cess static column or page-mode DRAMs. The 860
microprocessor asserts NENE# when the current
address is in the same DRAM page as the previous
bus cycle. The 860 microprocessor determines the
DRAM page size by inspecting the DPS field in the
dirbase register. The page size can range from 29 to
216 64-bit words, supporting DRAM sizes from 256K
x 1, 256K x 4, and up. NENE # is never asserted
on the next bus cycle after HLDA is deasserted.

3.1.11 NEXT ADDRESS REQUEST (NA#)

NA# makes address pipelining possible. The sys­
tem asserts NA # to indicate that it is ready to ac-

Table 3.2. Identifying Instruction Fetches

Code
A2 BE7# BE6# BE5# BE4# BE3# BE2# BE1# BEO#

Fetch

Normal 0 1 1 1 1 1 0 1 0
(Non-CS8)

Normal 1 1 0 1 0 1 1 1 1
(Non-CS8)

CS8 1 0
Mode

x 1 0 x Low-order address bits

33

inter i860TM MICROPROCESSOR

cept the next address from the 860 microprocessor.
NA # may be asserted before the current cycle
ends. (If the system does not implement pipelining,
NA# does not have to be activated.) The 860 micro­
processor samples NA # every clock, starting one
clock after the prior activation of ADS #. When NA #
is active, the 860 microprocessor is free to drive ad­
dress and bus-cycle definition for the next pending
bus cycle. The 860 microprocessor remembers that
NA # was asserted when no internal request is
pending; therefore, NA# can be deactivated after
the next rising edge of the ClK signal. Up to three
bus cycles can be outstanding simultaneously on
the processor's bus.

3.1.12 TRANSFER ACKNOWLEDGE (READY#)

The system asserts the READY # signal during read
cycles when valid data is on the data pins and during
a write cycles when the system has accepted data
from the data pins. READY # is sampled one clock
after prior ADS# or prior READY # in case of pipe­
lining.

3.1.13 ADDRESS STATUS (ADS#)

The 860 microprocessor asserts ADS # during the
first clock of each bus cycle to identify the clock
period during which it begins to assert outputs on
the address bus. This signal is not held active during
a pipelined bus cycle. This allows two-level pipelin­
ing, for a maximum of three outstanding cycles.

3.1.14 CACHE ENABLE (KEN#)

The 860 microprocessor samples KEN # to deter­
mine whether the data being read for the current
cache-miss cycle is to be cached. This pin is inter­
nally NORed with the PTB pin to control cache abili­
ty on a page by page basis (refer to Table 3.3).

If the address in one that is permitted to be in the
cache, KEN # must be continuously asserted during
the sampling period starting from the clock after
ADS # is asserted, through the clock NA # or
READY # is asserted. The entire 64-bit of the data
bus will be used for the read, regardless of the state
of the byte-enable pins. Three additional 64-bit bus
cycles will generate to fill the rest of the 32-byte
cache block. KEN# must continue to be asserted
for each of these cycles as well.

If KEN # is found deasserted at any time during the
above-described sampling period, the data being
read will not cached and two scenarios can occur: 1)
if the cycle is due to data-cache miss, no subse­
quent cache-fill cycles will be generated; 2) if the
cycle is due to an instruction-cache miss, additional
cycle(s) will be generated until the address reaches
a 32-byte boundary.

34

3.1.15 PAGE TABLE BIT (PTB)

Depending on the setting of the PBM (page-table bit
mode) bit of the epsr, the PTB reflects the value of
either the CD (cache disable) bit or the WT (write
through) bit of the page-table entry used for the cur­
rent cycle. This pin is internally NORed with the
KEN # pin to control cacheability on a page by page
basis. Table 3.3 shows the relationship between
PTB and KEN #. When paging is disabled, PTB re­
mains inactive.

Table 3 3 Cacheability based on KEN # and PTB

PTB KEN# Meaning

0 0 Cacheable access
0 1 Noncacheable access
1 0 Noncacheable page
1 1 Noncacheable page

3.1.16 BOUNDARY SCAN SHIFT INPUT (SHI)

This pin is used with the testability features. Refer to
section 3.4.

3.1.17 BOUNDARY SCAN ENABLE (BSCN)

This pin is used with the testability features. Refer to
section 3.4.

3.1.18 SHIFT SCAN PATH (SCAN)

This pin is used with the testability features. Refer to
section 3.3.

3.1.19 CONFIGURATION (CC1-CCO)

These two pins are reserved by Intel. Strap both pins
lOW.

3.1.20 SYSTEM POWER (Vee) AND GROUND
(Vss)

The 860 microprocessor has 48 pins for power and
ground. All pins must be connected to the appropri­
ate low-inductance power and ground signals in the
system.

3.2 Initialization

Initialization of the 860 microprocessor is caused by
assertion of the RESET signal for at least 16 clocks.
Table 3.4 shows the status of output pins during the
time that RESET is asserted. Note that HOLD re­
quests are honored during RESET and that the
status of output pins depends on whether a HOLD
request is being acknowledged.

•

inter i860™ MICROPROCESSOR

Table 3.4. Output Pin Status during Reset

Pin Value

Pin Name HOLD
HOLD

Not
Acknowledged

Acknowledged

ADS#, LOCK# HIGH Tri·State OFF

W/R#, PTB LOW Tri-State OFF

BREQ LOW LOW

HLDA LOW HIGH

063-00 Tri-State OFF Tri-State OFF

A31-A3,
BE7#-BEO#, Undefined Tri-State OFF
NENE#

After a reset, the 860 microprocessor begins execut­
ing at address OxFFFFFFOO. The program-visible
state of the 860 microprocessor after reset is de­
tailed in section 2.

Eight-bit code-size mode is selected when INT is as­
serted during the clock before the falling edge of
RESET. While in eight-bit code-size mode, instruc­
tion cache misses are byte reads (transferred on D7-
DO of the data bus) instead of eight-byte reads. This
allows the 860 microprocessor to be bootstrapped
from an eight-bit EPROM. For these code reads,
byte enables BE2#-BEO# are redefined to be the
low order three bits of the address, so that a com­
plete byte address is available. These reads update
the instruction cache if KEN # is asserted (refer to
section 3.1.1.4) and are not pipelined even if NA# is
asserted. While in this mode, instructions must re­
side in an eight-bit wide memory, while data must
reside in a separate 64-bit wide memory. After the
code has been loaded into 64-bit memory, initializa­
tion code can initiate 64-bit code fetches by clearing
the CS8 bit of the dirbase register (refer to section
2). Once eight-bit code-size mode is disabled by
software, it cannot be reenabled except by resetting
the 860 microprocessor.

3.3 Testability

The 860 microprocessor has a boundary scan mode
that may be used in component- or board-level test­
ing to test the signal traces leading to and from the
860 microprocessor. Boundary scan mode provides
a simple serial interface that makes it possible to
test all signal traces with only a few probes. Probes
need be connected only to CLK, BSCN, SCAN, SHI,
and BREQ.

The pins BSCN and SCAN control the boundary
scan mode (refer to Table 3.5). When BSCN is as-

35

serted, the 860 microprocessor enters boundary
scan mode on the next rising clock edge. Boundary
scan mode can be activated even while RESET is
active. When BSCN is deasserted while in boundary
scan mode, the 860 microprocessor leaves bounda­
ry scan mode on the next rising clock edge. After
leaving boundary scan mode, the internal state is
undefined; therefore, RESET should be asserted.

Table 3.5. Test Mode Selection

BSCN SCAN Testability Mode

La LO No testability mode selected
La HI (Reserved for Intel)
HI La Boundary scan mode, normal
HI HI Boundary scan mode, shift

SHI as input; BREQ as
output

For testing purposes, each signal pin has associated
with it an internal latch. Table 3.6 indentifies these
latches by name and classifies them as input, out­
put, or control. The input and output latches carry
the name of the corresponding pins.

Table 3.6. Test Mode Latches

Input Output
Associated

Control
Latch Latch

Latch

SHI
BSCN
SCAN
RESET
00-063 00-063 DATAt
CC1-CCO

A31-A3 ADDRt
NENE# NENEt
PTB# PTBt
W/R# W/Rt
ADS# ADSt
HLDA
LOCK# LOCKt

READY#
KEN#
NA#
INT/CS8
HOLD

BE7#-BEO# BEt
BREQ

Within boundary scan mode the 860 microprocessor
operates in one of two submodes: normal mode or
shift mode, depending on the value of the SCAN
input. A typical test sequence is ...

intJ 1860™ MICROPROCESSOR

1. Enter shift mode to assign values to the latches
that correspond with the pins.

2. Enter normal mode. In normal mode the 860 mi­
croprocessor transfers the latched values to the
output pins and latches the values that are being
driven onto the input pins.

3. Reenter shift mode to read the new values of the
input pins.

3.3.1 NORMAL MODE

When SCAN is deasserted, the normal mode is se­
lected. For each input pin (RESET, HOLD,
INT/CS8, NA#, READY#, KEN#, SHI, BSCN,
SCAN, CC1, and CCO), the corresponding latch is
loaded with the value that is being driven onto the
pin.

The tristate output pins (A31-A3, BE7 # -BEO #,
W/R#, NENE#, ADS#, lOCK#, and PTB) are en­
abled by the control latches ADDRt (for A31-A3),
BEt, WIRt, NENEt, ADSt, lOCKt, and PTBt. If a con­
trol latch is set, the corresponding output latches
drive their output pins; otherwise the pins are not
driven.

The 1/0 pins (D63-DO) are enabled by the control
latch DAT At, which is similar to the other control
latches. In addition, when DATAt is not set, the data
pins are treated as input pins and their values are
latched.

3.3.2 SHIFT MODE

When SCAN is asserted, the shift mode is selected.
In shift mode, the pins are organized into a boundary
scan chain. The scan chain is configured as a shift
register that is shifted on the rising edge of ClK. The
SHI pin is connected to the input of one end of the
boundary scan chain. The value of the most signifi­
cant bit of the scan chain is output on the BREQ pin.
To avoid glitches while the values are being shifted
along the chain, all tristate outputs are disabled. The
order of the pins within the chain is shown in Figure
3.1.

1 2 3 4
-+ SHI -+ BSCN -+ SCAN RESET -+

70 71 72 100
CCI ceo -+ A31 -+ A3

105 106 107 106 109
PTB# W/RI W/R# ADS! -+ ADS#

114 115 116 117 118
KEN# NA# -+ INT/CS8 HOLD -+ BEl

A tester causes entry into this mode for one of two
purposes:

1. To assign values to output latches to be driven
onto output pins upon subsequent entry into nor­
mal mode.

2. To read the values of input pins previously latched
in normal mode.

4.0 BUS OPERATION

A bus cycle begins when ADS# is activated and
ends when READY # is sampled active. READY # is
sampled one clock after assertion of ADS# and
thereafter until it becomes active. New cycles can
start as often as every other clock until three cycles
are outstanding. A bus cycle is considered outstand­
ing as long as READY # has not been asserted to
terminate that cycle. After READY # becomes ac­
tive, it is not sampled again for the following (out­
standing) cycle until the second clock after the one
during which it became active. READY # is assumed
to be inactive when it is not sampled.

With regard to how a bus cycle is generated by the
860 microprocessor, there are two types of cycles:
pipelined and nonpipelined. Both types of cycles can
be either read or write cycles. A pipelined cycle is
one that starts while one or two other bus cycles are
outstanding. A non pipe lined cycle is one that starts
when no other bus cycles are outstanding.

4.1 Pipelining

A m-n read or write cycle is a cycle with a total cycle
time of m clocks and a cycle-to-cycle time of n
clocks (m ~ n). Total cycle time extends from the
clock in which ADS# is activated to the clock in
which READY # becomes active; whereas, cycle-to­
cycle time extends from the time that READY # is
sampled active for the previous cycle to the time
that it is sampled active again for the current cycle.
When m = n; a nonpipelined cycle is implied; m > n
implies a pipelined cycle.

5 6 69
DATAl DO -+ D63 -+

1-01 102 103 104
-+ ADDRI -+ NENEI -+ NENE# -+ PTBt

110 111 112 113 HLDA -+ LOCKI LOCK# READY#
119 126 127

-+ BE7# -+ BEO# -+ BREQ

Figure 3.1. Order of Boundary Scan Chain

36

- - ------- --- - - ---------------- --

inter i860™ MICROPROCESSOR

Pipelining may occur for the next bus cycle any time
the current bus cycle requires more than two clock
periods to finish (m > 2). The next cycle can be
initiated when NA # is sampled active, even if the
current cycle has not terminated. In this case, pipe­
lining occurs. NA # is recognized only in the clock
when ADS# has become inactive.

To allow high transfer rates in large memory sys­
tems, two-level pipelining is supported (Le there may
be up to three cycles in progress at one time). Pipe­
lining enables a new word of data to be transferred
every two clocks, even though the total cycle time
may be up to six clocks.

4.2 Bus State Machine

The operation of the bus is described in terms of a
bus state machine using a state transition diagram.
Figure 4.1 illustrates the 860 microprocessor bus
state machine. A bus cycle is composed of two or
more states. Each bus state lasts for one CLK peri­
od.

The 860 microprocessor supports up to two levels of
address pipelining. Once it has started the first bus
cycle, it can generate up to two more cycles as long
as READY # remains inactive. To start a new bus
cycle while other cycles are still outstanding, NA#
must be active for at least one clock cycle starting
with the clock after the previous ADS #. NA # is
latched internally.

States Tj and Tjk' for j = {1,2,3l and k = {1,2l, are
used to describe the state of the 860 microproces­
sor Bus State Machine. Index j indicates the number
of outstanding bus cycles while index k distinguishes
the intermediate states for the j-th outstanding cycle.

37

Therefore there can be up to three outstanding cy­
cles, and there are two possible intermediate states
for each level of pipelining. Tj1 is the next state after
Tj' as long as j cycles are outstanding. Tj2 is entered
when NA # is active but the 860 microprocessor is
not ready to start a new cycle.

Five conditions have to be met to start a new cycle
while one or more cycles are already pending:

1. READY # inactive

2. NA# having been active

3. An internal request pending

4. HOLD not active (or HOLD active, but not being
serviced because LOCK# is active)

5. Fewer than three cycles outstanding

Upon hardware RESET, the bus control logic enters
the idle state TI and awaits an internal request for a
bus cycle. If a bus cycle is requested while there is
no hold request from the system, a bus cycle begins,
advanCing to state T 1. On the next cycle, the state
machine automatically advances to state T 11. If
READY # is active in state T 11, the bus control logic
returns either to TI, if no new cycle is started, or to
T1, if a new cycle request is pending internally. In
fact, if an internal bus request is pending each time
READY # is active, the state machine continues to
cycle between T 11 and T 1.

However, if READY # is not active but the next ad­
dress request is pending (as indicated by an active
NA#), the state machine advances either to state
T 2 (if an internal bus request is pending, signifying
that two bus cycles are now outstanding), or to state
T12 (if no bus internal request is pending, signifying
NA# has been found active). Transitions from state
T 12 are similar to those from T 11.

intJ i860TM MICROPROCESSOR

HOLD ASSERTED

READY# DEASSERTED

NOTES:
READY#

NA#
ADS#
HLDA
HOLD

REQUEST

Assumed deasserted one clock after the ac­
tive clock
Not sampled during ADS# active clock
Active in T1. T2 and T3
Active in TH
Synchronized internally and masked by bus
lock request
Internal Bus Request Pending

240296-29

Figure 4.1. Bus State Machine

If two bus cycles are already outstanding (as indicat­
ed by T 2k for k = {1 ,2l) and NA # is latched active
but READY # is not active, one more bus request
causes entry into state T3. Transitions from this
state are similar to those from T 2.

In general, if there is an internal bus request each
time both READY# and NA# are active, the state

38

machine continues to oscillate between Tj1 and Tj,
for j = {2,3l.

When NA # is sampled active while there is a pend­
ing bus request, ADS # is activated in the next clock
period (provided no more than two cycles are al­
ready outstanding).

infef i860™ MICROPROCESSOR

Internal pending bus requests start new bus cycles
only if no HOLQ request has been recognized. THis
entered from the idle state TI only. HLDA is active in
this state. There is a one clock delay to synchronize
the HOLD input when the signal meets the respec­
tive minimum setup and hold time requirements. The
state machine uses the synchronized HOLD to move
from state to state.

4.3 Bus Cycles

Figures 4.2 through 4.10 illustrate combinations of
bus cycles.

ClK

ADS#

A31-A3, W/R#,
BEn#, NENE#,

lOCK#, PTB

NA#

READY#

D63-DD

CYCLE 1
NON-PIPELINED

READ
(2-2)

Tl TIl

4.3.1 NONPIPELINED READ CYCLES

A read cycle begins with the clock in which ADS# is
asserted. The 860 microprocessor begins driving the
address during this clock. It samples READY # for
active state every clock after the first clock. A mini­
mum of two clocks is required per cycle. Data is
latched when READY # is found active when sam­
pled at the end of a clock period. Figure 4.2 illus­
trates nonpipelined read cycles with zero wait
states.

Normally, all 64 bits of the data bus are latched;
however, in the case of noncacheable bus cycles,
the byte enables BE7#-BEO# determine which
bytes are used. In CS8 mode, only the low-order
eight bits are latched.

CYCLE 2 CYCLE 3
NON-PIPELINED NON-PIPELINED

READ READ
(2-2) (2-2)

Tl Tll Tl TIl

240296-13

Figure 4.2. Fastest Read Cycles

39

infef i860™ MICROPROCESSOR

ClK

AOS#

A31-A3, W/R#,
BEn#, NENE#,

lOCK#, PTB

NA#

REAOY#

063-00

CYCLE 1
NON-PIPELINEO

WRITE
(2-2)

Tl Tn

CYCLE 2 CYCLE 3
NON-PIPELINED NON-PIPELINED

WRITE WRITE
(2-2) (2-2)

Tl TIl Tl Tn

240296-14

Figure 4.3. Fastest Write Cycles

4.3.2 NONPIPELINED WRITE CYCLES

The ADS# and READY# activity for write cycles
follows the same logic as that for read cycles, as
Figure 4.3 illustrates for back-to-back, nonpipelined
write cycles with zero wait-states. The byte enables
BE7#-BEO# indicate which bytes on the data bus
are valid.

The fastest write cycle takes only two clocks to com­
plete. However, when a read cycle immediately pre-

40

cedes a write cycle, the write cycle must contain a
wait state, as illustrated in Figure 4.4. Because the
device being read might still be driving the data bus
during the first clock of the write cycle, there is a
potential for bus contention. To help avoid such con­
tention, the 860 microprocessor does not drive the
data bus until the second clock of the write cycle.
The wait state is required to provide the additional
time necessary to terminate the write cycle. In other
read-write combinations, the 860 microprocessor
does not require a wait state.

inter

elK

ADS#

READY#

063-00

i860™ MICROPROCESSOR

ClK

AOS#

A31-A3. W/R#.
BEn#. NENE#.

lOCK#. PTB

NA#

REAOY#

063-00

CYCLE 1
NON-PIPELINEO

READ
(2-2)

Tl Tll Tl

CYCLE 2
NON- PIPELINEO

WRITE
(3-3)

Tll Tll

Figure 4.4. Fastest Read/Write Cycles

CYCLE 1 CYCLE 2
NON-PIPELINED PIPELINED

READ READ
(5-5) (5-2)

Tl TIl T2 T21 T3 T21 T3 T21

l-L'..L.Lo4LLI

CYCLE 3
NON-PIPELINEO

READ
(2-2)

Tl Tll

CYCLE 3
PIPELINED

WRITE
(6-3)

T3 T31

Figure 4.5. Pipelined Read Followed by Pipelined Write

41

240296-15

CYCLE 4
PIPELINED

WRITE
(6-2)

T3 T31

240296-16

inter

ClK

ADS#

A31-A3. W/R#.
BEn#. NENE#.

lOCK#. PTB

NA#

READY#

063-00

i860TM MICROPROCESSOR

CYCLE 1
NON-PIPELINED

WRITE
(5-5)

CYCLE 2
PIPELINED

WRITE
(5-2)

CYCLE 3
PIPELINED

READ
(5-2)

CYCLE 4
PIPELINED

READ
(5-2)

240296-17

Figure 4.6. Pipelined Write Followed by Pipelined Read

4.3.3 PIPE LINED READ AND WRITE CYCLES

Figures 4.5 and 4.6 illustrate combinations of non­
pipelined and pipelined read and write cycles. The
following description applies to both diagrams. While
Cycle 1 is still in progress. two new cycles are initiat­
ed. By the time READY # first becomes active, the
state machine has moved through states T 1. T 11.
T 2, T 21, and T 3. Cycles 3 and 4 show how activating
READY # terminates an outstanding cycle (Cycle 3
in this case). and yet activating NA # while there is
an internal request pending adds a new outstanding
cycle.

In Figure 4.5. Cycle 3 is a write cycle following a read
cycle; therefore, one wait state must be inserted.
The 860 microprocessor does not drive the data bus
until one clock after the read data is returned from
the preceding read cycle. During Cycles 3 and 4, the
state machine oscillates between states T 3 and T 31

42

maintaining full bus capacity (two levels of pipelin­
ing; three outstanding cycles). Cycles 2, 3. and 4 in
Figure 4.6 are 5-2 cycles; I.e. each requires a total
cycle time of five clocks while the throughput rate is
one cycle every two clocks.

Figure 4.7 illustrates in a more general manner how
the NA# signal controls pipelining. Cycle 1 is a 2-2
cycle. the fastest possible. The next cycle cannot be
started any earlier; therefore. there is no need to
activate NA# to start the next cycle early. Cycle 2. a
3-3 read. is different. Cycle 3 can be started during
the third state (a wait state) of Cycle 2, and NA# is
asserted to accomplish this.

NA# is not activated following the ADS# clock of
Cycle 3. thereby allowing Cycle 3 to terminate be­
fore the start of Cycle 4. As a result, Cycle 4 is a
nonpipelined cycle.

ClK

AOS#

A31-A3. W/R#.
BEn#. NENE#.

lOCK#. PTB

NA#

REAOY#

063-00

i860™ MICROPROCESSOR

CYCLE 1
NON-PIPELINED

READ
(2-2)

T, T"

ClK

AOS#

A31-A3. W/R#.
BEn#. NENE#.

lOCK#. PTB

NA#

REAOY#

063-00

CYCLE 2 CYCLE 3
NON-PIPELINED PIPELINED

READ READ
(3-3) (3-2)

T, T" T2 T" T"

Figure 4.7. Pipelining Driven by NA#

T2 T2, T22 T'2 T'2

CYCLE 4
NON-PIPELINEO

READ
(2-2)

T, T"

T, T,

Figure 4.8. NA # Active with No Internal Bus Requ~st

43

IDLE IDLE

T, T,

240296-18

240296-19

inter i860TM MICROPROCESSOR

CYCLE 1 CYCLE 2 CYCLE 3
NON-PIPELINED NON-PIPELINED NON-PIPELINED

READ WRITE WRITE
(2-2) (2-2) (2-2)

T, Til T, Til T, Til

ClK

240296-20

Figure 4.9. Locked Cycles

When there is no internal bus request, activating
NA # does not start a new cycle; the 860 microproc­
essor, however, remembers that NA# has been ac­
tivated. Figure 4.8 illustrates the situation where
NA# i.s acti~e but no internal bus request is pending.
NA # IS activated when two cycles are outstanding.
Because there is no internal request pending until
after one idle state, no new bus cycle is started dur­
ing that period.

4.3.4 LOCKED CYCLES

The LOCK # signal is asserted when the current bus
cycle is to be locked with the next bus cycle. Asser­
tion of LOCK# ml!Y be initiated by a program's set­
ting the BL bit of the dirbase register (refer to sec­
tion 2) or by the 860 micrcprocessor itself during
page table updates.

In Figure 4.9, the first read cycle is to be locked with
the following write cycle. If there were idle states
between the cycles, the LOCK # signal would re­
main asserted. This is the case for a read/modify/
write operation. HOLD is not acknowledged until all
locked cycles are finished. The second write cycle is
not locked because LOCK # is no longer asserted
when the first write cycle starts.

44

4.3.5 HOLD AND BREQ ARBITRATION CYCLES

The HOLD, HLDA, and BREQ signals permit bus ar­
bitration between the 860 microprocessor and an­
other bus master.

As Figure 4.10 illustrates, the T H (hold) state can be
entered only from the idle state TI. When HOLD is
asserted, the 860 microprocessor keeps control of
the bus until all outstanding cycles, including locked
cycles, are completed.

If HOLD were asserted one clock earlier, the last
860 microprocessor bus cycle before HLDA would
not be started. LOCK # is assumed to be inactive in
the last bus cycle. If LOCK # were active the 860
microprocessor would not give up the bus.

The outputs (except HLDA and BREQ) float when
HLDA is asserted. HOLD is sampled at the end of
the clock in which it is activated. Recommended set­
up and hold times must be met to guarantee sam­
pling one clock after external HOLD activation.
When HOLD is sampled active, a one clock delay for
internal synchronization follows. HLDA may be
deasserted as early as the clock following deasser­
tion of HOLD.

i860TM MICROPROCESSOR

ClK

ADS#

A31-A3. W/R#. ~-...,.,..,...,.....t.,..,...-I--+--"""'.,...,.....I-...
BEn#. NENE#.

lOCK#. PTB ~--+L.lI:.l1:.JI1lI:..l--I--+--+'~&..:lf-:J/

HOLD

BREQ

240296-21

Figure 4.10. HOLD, HLDA, and BREQ

If, during a HOLD cycle, an internal bus request is
generated, BREQ is activated even though HLDA is
asserted. It remains active at least until the clock
after ADS # is activated for the requested cycle.

4.4 Bus States During RESET

Figure 4.11 shows how INT/GS8 is sampled during
the clock period just before the falling edge of RE-

ClK

RESET

INT/CS8

OTHER
INPUTS

I·

SET. If INT IGS8 is sampled active, the 860 micro­
processor enters GS8 mode. No inputs (except for
HOLD, INT IGS8, and GG1 -GGO) are sampled dur­
ing RESET.

Note that, because HOLD is recognized even while
RESET is active, the HLDA output signal may also
become active during RESET. Refer to Figure "Out­
put Pin Status during Reset" in section 3.

~ 16 ClKs

·1

240296-22

Figure 4.11. Reset Activities

45

intJ i860TM MICROPROCESSOR

5.0 MECHANICAL DATA

Figures 5.1 and 5.2 show the locations of pins; Tables 5.1 and 5.2 help to locate pin identifiers.

Q A

....
() () () () () () () () () () () () () () () () ()
vee Vss vee Vss A12 .4.17 A19 A21 A23 .4.25 .4.29 A31 Vee Vss Yee Vss Vee

() () () () () () () () () () () () () () () () ()
Vss Vee ¥ss A8 A10 A13 .4.15 A18 A20 .4.24 A27 A28 ceo Vee Vss Vee Vss

() () () () () () () () () () () () () () () () ()
Vee Vss A6 .4.7 A9 A11 .4.14 A16 elK A22 A26 .4.30 ce1 062 060 Vss Vee

() () () () () ()
¥ss Vee AS 063 059 Vss

() () () () () ()
Vee "'4 .4.3 061 058 056

() () () () () ()
W/R# NENE# PTa 057 054 052

() () () () () ()
ADS# HLDA BREQ 055 053 050

() () () () () ()
LOCK# KEN, READY# 051 049 048

() () () () () ()
INT/CS8 NAD HOLD 047 045 046

10 () () () () () () 10

BE5# BEl# BE6#

11 () () ()

BE3, BE2# BE.#

12 () () ()
SHI BEl # BEO#

13 () () ()
RESET SCAN 95CH

,. ()

VSS

15 ()

()
DO

()

Vee Vss

16 () ()

Vss Vee

17 () ()

()
01

()
02

()

()

()

03

()

()

()
05

()
04

()

Vee Vss Vee Vss Vee

()
07

()

09

()

06

043 042 04,(

o () () 11

039 041 040

() () () 12
037 036 038

() () () 13

035 034 Vee

() () () ,.
033 Vee Yss

() () () () () () () () () () () 15

011 013 017 021 023 027 029 031 032 Vss Vee

()

08

()

() () () () () () () () () () 16

015 014 019 022 025 028 030 Vss Vee Vss

() () () () () () () () () () 17
010 012 016 018 020 024 026 ¥ss Vee Vss Vee

A

240296-23

Figure 5.1. Pin Configuration-View from Top Side

46

inter i860™ MICROPROCESSOR

M

000 0 0 000 0 0 0 0 0 0 0 0 0
Vee Vss Vee Vss Vee 14.31 14.29 14.25 A23 14.21 14.19 14.17 14.12 Vss Vee Vss Vee

000 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Vss Vee Vss Vee ceo A2B 14.27 14.24 14.20 1.18 A1S 14.13 14.10 14.8 Vss Vee Vss

o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Vee Vss 060 062 ee1 14.30 14.26 A22 elK A 16 A 14 A 11 14.9 A7 AS Vss Vee

o o o o o o
Vss 059 063

METAL LID
A5

000 000
056 058 061 14.3 A4 Vee

000 000
052 054 057 PTB NENE# W/R#

000 000
050 053 055 BREO HLDA ADS#

000 000
048 049 051 READY# KEN# LOCK#

000 000
046 045 D47 HOLD NAI INT/csa

10 0 o o o o o 10
044 042 043 BE6# BE7# 8E5#

11 0 o o o o o 11
040 041 039 BE4# BE2# 8E3#

12 0 o o o o o 12
038 036 037 SEO# BE1 # SHI

13 0 o o o o o 13
Vee 034 035 8SCN SCAN RESET

,. 0 o o o o Vss Vee 033 '--______________________ ----'
01 DO

o ,.
Vss

15 0 o o o o 000 0 o o o o o o o o 15
Vee Vss 032 031 029 027 023 021 017 013 Dl1 07 05 03 02 Vss Vee

16 0 o o o o 000 0 o o o o o o o o 16

Vss Vee Vss 030 028 025 022 019 014 015 DB D9 D4 Va:. Vss Vee Vss

17 0 o o o o 000 0 o o o o o o o o 17
Vee Vss Vee Vss 026 024 020 018 016 012 010 06 Vee Vss Vee Vss Vee

M

240296-24

Figure 5.2. Pin Configuration-View from Pin Side

47

inter i860™ MICROPROCESSOR

Table 5.1. Pin Cross Reference by location

location Signal location Signal location Signal location Signal

A1 Vee C9 047 J15 017 010 BE6#
A2 Vss C10 043 J16 014 011 BE4#
A3 Vee C11 039 J17 016 012 BEO#
A4 Vss C12 037 K1 A21 013 BSCN
A5 056 C13 035 K2 A18 014 01
A6 052 C14 033 K3 A16 015 02
A7 050 C15 032 K15 013 016 Vss
A8 048 C16 Vss K16 015 017 Vee
A9 046 C17 Vee K17 012 R1 Vss
A10 044 01 Vss l1 A19 R2 Vee
A11 040 02 Vee l2 A15 R3 Vss
A12 038 03 062 l3 A14 R4 Vee
A13 Vee 015 031 l15 011 R5 A4
A14 Vss 016 030 L16 08 R6 NENE#
A15 Vee 017 Vss L17 010 R7 HLOA
A16 Vss E1 Vee M1 A17 R8 KEN#
A17 Vee E2 CCO M2 A13 R9 NA#
B1 Vss E3 CC1 M3 A11 R10 BE7#
B2 Vee E15 029 M15 07 R11 BE2#
B3 : .. Vss E16 028 M16 09 R12 BE1#
B4 059 E17 026 M17 06 R13 SCAN
B5 058 F1 A31 N1 A12 R14 ~O
B6 054 F2 A28 N2 A10 R15 Vss
B7 053 F3 A30 N3 A9 R16 Vee
B8 049 F15 027 N15 05 R17 Vss
B9 045 F16 025 N16 04 S1 Vee
B10 042 F17 024 N17 Vee S2 Vss
B11 041 G1 A29 P1 Vss S3 Vee
B12 036 G2 A27 P2 A8 S4 Vss
B13 034 G3 A26 P3 A7 S5 Vee
B14 Vee G15 023 P15 03 S6 W/R#
B15 Vss G16 022 P16 Vee S7 AOS#
B16 Vee G17 020 P17 Vss S8 LOCK#
B17 Vss H1 A25 01 Vee S9 INT/CS8
C1 Vee H2 A24 02 Vss S10 BE5#
C2 Vss H3 A22 03 A6 S11 BE3#
C3 060 H15 021 04 A5 S12 SHI
C4 063 H16 019 05 A3 S13 RESET
C5 061 H17 018 06 PTB S14 Vss
C6 057 J1 A23 07 BREO S15 Vee
C7 055 J2 A20 08 REAOY# S16 Vss
C8 051 J3 ClK 09 HOLO S17 Vee

48

inter i860TM MICROPROCESSOR

Table 5.2. Pin Cross Reference by Pin Name

Signal Location Signal Location Signal Location Signal Location

A3 Q5 ClK J3 041 B11 Vee B16
A4 R5 00 R14 042 B10 Vee C1
A5 Q4 01 Q14 043 C10 Vee C17
A6 Q3 02 Q15 044 A10 Vee 02
A7 P3 03 P15 045 B9 Vee E1
A8 P2 04 N16 046 A9 Vee N17
A9 N3 05 N15 047 C9 Vee P16
A10 N2 06 M17 048 A8 Vee Q1
A11 M3 07 M15 049 B8 Vee Q17
A12 N1 08 L16 050 A7 Vee R2
A13 M2 09 M16 051 C8 Vee R4
A14 l3 010 l17 052 A6 Vee R16
A15 l2 011 L15 053 B7 Vee S1
A16 K3 012 K17 054 B6 Vee S3
A17 M1 013 K15 055 C7 Vee S5
A18 K2 014 J16 056 A5 Vee S15
A19 L1 015 K16 057 C6 Vee S17
A20 J2 016 J17 058 B5 Vss A2
A21 K1 017 J15 059 B4 Vss M
A22 H3 018 H17 060 C3 Vss A14
A23 J1 019 H16 061 C5 Vss A16
A24 H2 020 G17 062 03 Vss B1
A25 H1 021 H15 063 C4 Vss B3
A26 G3 022 G16 HlOA R7 Vss B15
A27 G2 023 G15 HaLO Q9 Vss B17
A28 F2 024 F17 INT/CS8 S9 Vss C2
A29 G1 025 F16 KEN# R8 Vss C16
A30 F3 026 E17 LOCK# S8 Vss 01
A31 F1 027 F15 NA# R9 Vss 017
AOS# S7 028 E16 NENE# R6 Vss P1
BEO# Q12 029 E15 PTB Q6 Vss P17
BE1 # R12 030 016 REAOY# Q8 Vss Q2
BE2# R11 031 015 RESET S13 Vss Q16
BE3# S11 032 C15 SCAN R13 Vss R1
BE4# Q11 033 C14 SHI S12 Vss R3
BE5# S10 034 B13 Vee A1 Vss R15
BE6# Q10 035 C13 Vee A3 Vss R17
BE7# R10 036 B12 Vee A13 Vss S2
BREQ 07 037 C12 Vee A15 Vss S4
BSCN Q13 038 A12 Vee A17 Vss S14
CCo E2 039 C11 Vee B2 Vss S16
CC1 E3 040 A11 Vee B14 W/R# S6

49

intJ i860™ MICROPROCESSOR

Table 5.3. Ceramic PGA Package Dimension Symbols

Letter or
Description of Dimensions

Symbol

A Distance from seating plane to highest point of body

AI Distance between seating plane and base plane (lid)

A2 Distance from base plane to highest point of body

A3 Distance from seating plane to bottom of body

B Diameter of terminal lead pin

D Largest overall package dimension of length

Dl A body length dimension, outer lead center to outer lead center

el Linear spacing between true lead position centerlines

L Distance from seating plane to end of lead

51 Other body dimension, outer lead center to edge of body

NOTES:
1. Controlling dimension: millimeter.
2. Dimension "el" ("e") is non-cumulative.
3. Seating plane (standoff) is defined by P.C. board hole size: 0.0415-0.0430 inch.
4. Dimensions "B", "Bl" and "c" are nominal.
5. Details of Pin 1 identifier are optional.

50

inter i860™ MICROPROCESSOR

r·~I··===========~------------·~.'1 Sl-1 r-
01.65 @@@@@@@@@@@@@@@@@
RTF. L-@@@@@@@@@@@@@@@@@
.-@@@@@@@@@@@@@@@@@
T @@@ @@@

@@@ @@@
@@@
@@@
@@@
@@@

(
-

\
@@@
@@@
@@@
@@@ D

@@@ @@@
PIN C3~ @ @ @ "./ @@@

@@@ @@@

~@@ @@@
@ @ @@@
@@O@@@@@@@@@@@ij@;@
@@@@@@@@@@@@@@@o@

~@@@@@@@@@@@@@@@o@

t \
2.29 REF SWAGGED
1.52 • PIN

450 CHAMFER (4 PL)
(INDEX CORNER)

Family: Ceramic Pin Grid Array Package

Symbol
Millimeters Inches

Min Max Notes Min Max

A 3.56 4.57 0.140 0.180

Al 0.64 1.14 SOLID LID 0.025 0.045

A2 23 0.30 SOLID LID 0.110 0.140

A3 1.14 1.40 0.045 0.055

B 0.43 0.51 0.017 0.020

D 44.07 44.83 1.735 1.765

Dl 40.51 40.77 1.595 1.605

el 2.29 2.79 0.090 0.110

L 2.54 3.30 0.100 0.130

N 168 168

Sl 1.52 2.54 0.060 0.100

ISSUE IWS REVX 7/15/88

Notes

SEATING
PLANEI

0S (ALL PINS) I

}=~
SWAGGED

PIN
DETAIL

240296-30

SOLID LID

SOLID LID

Figure 5.3. 1.68 Lead Ceramic PGA Package Dimensions

51

inter i860TM MICROPROCESSOR

6.0 PACKAGE THERMAL
SPECIFICATIONS

The 860 microprocessor is specified for operation
when T C (the case temperature) is within the range
of 0°C-85°C. T c may be measured in any environ­
ment to determine whether the 860 microprocessor
is within specified operating range. The case tem­
perature should be measured at the center of the
top surface opposite the pins.

T A (the ambient temperature) can be calculated
from (JCA (thermal resistance from case to ambient)
with the following equation:

Typical values for (JCA at various airflows are given
in Table 6.1 for the 1.75 sq. in., 168 pin, ceramic
PGA.

Table 6.2 shows the maximum T A allowable (without
exceeding T d at various airflows and operating fre­
quencies (fCLK)'

Note that T A is greatly improved by attaching "fins"
or a "heat sink" to the package. P (the maximum
power consumption) is calculated by using the maxi­
mum Icc at 5V as tabulated in the DC Characteris­
tics of section 7.

Table S.1. Thermal Resistance {(JCA) at Various
Airflows

In DC/Watt

Airflow-ft/min (m/sec)

0 200 400 SOO 800 1000
{OJ (1.01) (2.03) (3.04) (4.0S) (S.07)

(JCA with 13 9 5.5 5.0 3.9 3.4
Heat Sink'

(JCA without
17 14 11 9 7.1 6.6

Heat Sink

'0.285" high unidirectional heat sink (AI alloy 6061, 50 mil
fin width, 150 mil center-to-center fin spacing).

Table S.2. Maximum T A at Various Airflows

InOC

Airflow-ft/min (m/sec)

fClK 0 200 400 SOO 800 1000
(MHz) {OJ (1.01) (2.03) (3.04) (4.0S) (S.07)

TA with 33.3 46 58 69 70 73 75
Heat Sink' 40.0 43 56 67 69 72 74

TA without 33.3 34 43 52 58 64 65
Heat Sink 40.0 30 40 49 56 62 64

'0.285" high unidirectional heat sink (AI alloy 6061, 50 mil fin width, 150 mil
center-to-center fin spacing).

52

inter i860TM MICROPROCESSOR

7.0 ELECTRICAL DATA

Inputs and outputs are TTL compatible. All input and
output timings are specified relative to the 1.5 volt
level of the rising edge of ClK and refer to the point
that the signal reaches 1.5V.

7.1 Absolute Maximum Ratings

Case Temperature T e under Bias O°C to 85°C

Storage Temperature -65°C to + 150°C

Voltage on Any Pin
with Respect to Ground -0.5 to Vee+ 0.5V

7.2 D.C. Characteristics

• Notice: Stresses above those listed under "Abso­
lute Maximum Ratings" may cause permanent dam­
age to the device. This is a stress rating only and
functional operation of the device at these or any
other conditions above those indicated in the opera­
tional sections of this specification is not implied Ex­
posure to absolute maximum rating conditions for
extended periods may affect device reliability.

NOTICE: Specifications contained within the
following tables are subject to change.

Table 7.1. DC Characteristics

Symbol Parameter Min Max Units Notes

VIL Input lOW Voltage -0.3 +0.8 V
VIH Input HIGH Voltage 2.0 Vee+ 0.3 V
VOL Output lOW Voltage 0.45 V (Note 1)
VOH Output HIGH Voltage 2.4 V (Note 2)
lee Power Supply Current

ClK = 33.3 MHz 600 mA Vee@5V
ClK = 40.0 MHz 650 mA Vee@5V

III Input leakage Current ±15 /LA No pullup
or pulldown

ILO Output leakage Current ±15 /LA
CIN Input Capacitance 15 pF
Co 1/0 or Output Capacitance 15 pF

CCLK Clock Capacitance 20 pF

NOTES:
1. This parameter is measured at 4.0 mA for address, data, and byte enables; at 5.0 mA for definition and control.
2. This parameter is measured at 1.0 mA for address, data, and byte enables; at 0.9 mA for definition and control.

53

intJ i860TM MICROPROCESSOR

7.3 A.C. Characteristics

Symbol

t1
t2
t3
t4
t5
t6a
t6b
t7
t8
t9
t10
t11
t12
t13

NOTES:

Table 7.2. A.C. Characteristics T e = 0 to 85°C, Vee = 5V ± 5%
All timings measured at 1.5V unless otherwise specified.

33.3 MHz 40.0 MHz
Parameter Min Max Min Max

(ns) (ns) (ns) (ns)

ClK period 30 125 25 125
ClK high time 7 5
ClK low time 7 5
ClK fall time 4 4
ClK rise time 4 4
A31-A3, PTB, W/R#, NENE# valid 3.5 38 3.5 29
BEn# valid 3.5 41 3.5 32
Float time, all outputs 3.5 30 3.5 25
AOS#, BREQ, lOCK #, HlOA valid delay 3.5 26 3.5 21
063-00 valid delay 3.5 47 3.5 43
Setup time, all inputs except INT, HOLD 13 10
Hold time, all inputs except INT, HOLD 4 4
INT, HOLD setup time 22 15
INT, HOLD hold time 5 5

Test
Conditions

at2V
at .8V

50 pF load
50 pF load
(Note 1)
50 pF load
50 pF load

(Note 2)
(Note 2)

1. Float condition occurs when maximum output current becomes less than ILO in magnitude. Float delay is not tested.
2. INT and HOLD are asynchronous inputs. The setup and hold specifications are given for test purposes or to assure
recognition on a specific rising edge of elK.

54

i860TM MICROPROCESSOR

2.0V
elK

1.5V t3

O.BV

INPUT INPUT
SETUP HOLD

t12mln t13m!n

INPUTS

t10min t11min

t6max/tBmax/t9ma:

VALID

AT

240296-25

Figure 7.1. elK, Input, and Output Timings

55

infef

NOTES:

i860™ MICROPROCESSOR

nom +15 ,----,----r----"T---,---,

nom +10 I-----+--+---+----t:."c----=r

TYPICAL' OUTPUT
DELAY (ns) nom +5 1-----+--+----7oLf---::7""'----!-------1

@ 1.5V

nom I----~""'--+---+~';!I;;---';F-~-;-;;I-K#. HLDA

nom -5 L-_.....J... __ -'-_--" __ -'-_--'
25 50 75 100 125

LOAD CAPACITANCE. CL (pf)

150

Graphs are not linear outside the CL range shown.
nom = nominal value given in the AC timing table.
'Typical part under worst-case conditions.

240296-26

Figure 7.2. Typical Output Delay vs Load Capacitance under Worst-Case Conditions

TYPICAL' OUTPUT A S#. BREO. LOCK#. HLDA
SLEW TIME (ns) 91----t----:;r-+----7'9---7''9

(0.8- 2.0V)

OL--~--'--~--'--~

25 50 75 100 125 150

LOAD CAPACITANCE. CL (pf)

NOTES:
Graphs are not linear outside the CL range shown.
'Typical part under worst-case conditions.

240296-27

Figure 7.3. Typical Slew Time vs Load Capacitance under Worst-Case Conditions

56

inter i860™ MICROPROCESSOR

700

600

.
500 <'

,5.
u 400 .9

./

V "" ./

V
,,/

V
300

200
8 12 16 20 24 26 30 34 3840

FREQUENCY (MHz)

240296-28

NOTES:
Graphs are not linear outside the frequency range
shown.
'Worst-case supply current at 5V.

Figure 7.4. Typical Icc vs Frequency

8.0 INSTRUCTION SET

Key to abbreviations:

srct

srctni

src2

rdest

freg

ireg

ctr/reg

#const

A register (integer or floating-point
depending on class of instruction)
or a 16-bit immediate value. The
immediate value is sign-extended
for add and subtract operations
and zero-extended for logical oper­
ations.

Same as srct except that no im­
mediate value is permitted.

A register (integer or floating-point
depending on class of instruction).

A register (integer or floating-point
depending on class of instruction).

A floating-point register.

An integer register.

One of the control registers fir,
psr, dirbase, db, or fsr.

A 16-bit immediate address offset
that the 860 microprocessor sign­
extends to 32 bits when computing
the effective address.

57

mem.x(address) The contents of the memory loca­
tion indicated by address with a
size of x.

.p

.W

.x

.y

.Z

Ibroff

sbrott

brx

srcts

PM

Precision specification. Unless oth­
erwise specified, floating-point op­
erations accept single- or double­
precision source operands and
produce a result of equal or great­
er precision. Both input operands
must have the same precision. The
source and result precision are
specified by a two-letter suffix to
the mnemonic of the operation, as
shown in the table below.

Suffix
Source Result

Precision Precision

.ss single single

.sd single double

.dd double double

.ss (32 bits), or .dd (64 bits)

.b (8 bits), .s (16 bits), or .11 (32
bits)

.I (32 bits), .d (64 bits), or .q (128
bits)

.I (32 bits, or .d (64 bits)

A signed, 26-bit, immediate, rela­
tive branch offset

A signed, 16-bit, immediate, relat­
vie branch offset

A function that computes the tar­
get address of a branch by shifting
the offset (either Ibrott or sbroff)
left by two bits, sign-extending it to
32 bits, and adding the result to
the address of the current control­
transfer instruction plus four.

An integer register or a 5-bit imme­
diate that is zero-extended to 32
bits.

The pixel mask, which is consid­
ered as an array of eight bits
PM[Oj .. PM[71, where PM[Oj is the
least significant bit.

inter i860TM MICROPROCESSOR

8.1 Instruction Definitions in Alphabetical Order

adds src1, src2, rdest . .. Add Signed
rdest +- src 1 + src2
OF +- (bit 31 carry =1= bit 30 carry)
CC set if src2 < comp2(src1) (signed)
CC clear if src2 2 comp2(src1) (signed)

addu src1, src2, rdest .. Add Unsigned
rdest +- src1 + src2
OF +- bit 31 carry
CC +- bit 31 carry

and src1, src2, rdest .. Logical AND
rdest +- src1 and src2
> CC set if result is zero, cleared otherwise

andh # const, src2, rdest .. Logical AND High
rdest +- (# const shifted left 16 bits) and src2
> CC set if result is zero, cleared otherwise

and not src1, src2, rdest ... Logical AND NOT
rdest +- not src1 and src2
> CC set if result is zero, cleared otherwise

andnoth # cons!, src2, rdest Logical AND NOT High
rdest +- not (# const shifted left 16 bits) and src2
> CC set if result is zero, cleared otherwise

bc Ibroff .. Branch on ee
IF CC = 1
THEN continue execution at brx(lbroff)
FI

bc.t Ibroff ... Branch on ee, Taken
IF CC = 1
THEN execut one more sequential instruction

continue execution at brx(lbroff)
ELSE skip next sequential instruction
FI

bla src 1 ni, src2, sbroff . .. Branch on Lee and Add
LCC-temp clear if src2 < comp2(src1ni) (signed)
LCC-temp set if src2 2 comp2(src1ni) (signed)

src2 +- src 1 ni + src2
Execute one more sequential instruction
IF LCC
THEN LCC +- LCC-temp

Continue execution at brx(sbroff)
ELSE LCC +- LCC-temp
FI

bnc Ibroff .. Branch on Not ee
IF CC = 0
THEN continue execution at brx(lbroff)
FI

bnc.t Ibroff ... Branch on Not ee, Taken
IF CC = 0
THEN execute one more sequential instruction

continue execution at brx(lbroff)
ELSE skip next sequential instruction
FI

br Ibroff . .. Branch Direct Unconditionally
Execute one more sequential instruction.
Continue execution at brx(/broff).

58

i860™ MICROPROCESSOR

bri [sre 1 nil ... Branch indirect unconditionally

bte

Execute one more sequential instruction
IF any trap bit in psr is set
THEN copy PU to U, PIM to 1M in psr

clear trap bits

FI

IF OS is set and DIM is reset
THEN enter dual-instruction mode after executing one

instruction in single-instruction mode
ELSE IF OS is set and DIM is set

FI

THEN enter single-instruction mode after executing one
instruction in dual-instruction mode

ELSE IF DIM is set

FI

THEN enter dual-instruction mode
for next two instructions

ELSE enter single-instruction mode
for next two instructions

FI

Continue execution at address in sre1ni
(The original contents of sre1ni is used even if the next instruction
modifies sre1ni. Does not trap if sre1ni is misaligned.)

IF
THEN
FI

sre1s, sre2, sbroff Branch If Equal
sre1s = sre2
continue execution at brx(sbrotf)

btne sre1s, sre2, sbrott Branch If Not Equal
IF
THEN
FI

sre1s oF sre2
continue execution at brx(sbroff)

call Ibrott . .. Subroutine Call
r1 +- address of next sequential instruction + 4
Execute one more sequential instruction
Continue execution at brx(lbroff)

calli [sre1ni} Indirect Subroutine Call
r1 +- address of next sequential instruction + 4
Execute one more sequential instruction
Continue execution at address in sre1ni

(The original contents of sre1ni is used even if the next instruction
modifies sre1ni. Does not trap if sre1ni is misaligned.)

fadd.p sre 1, sre2, rdest .. Floating-Point Add
rdest +- sre1 + sre2

faddp sre1, sre2, rdest. Add with Pixel Merge
rdest +- sre1 + sre2
Shift and load MERGE register as defined in Table 8.1

faddz sre1, sre2, rdest ... Add with Z Merge
rdest +- sre1 + sre2
Shift MERGE right 16 and load fields 31..16 and 63 .. 48

fladd.w sre1, sre2, rdest ... Long-Integer Add
rdest +- sre1 + sre2

flsub.w sre1, sre2, rdest . .. Long-Integer Subtract
rdest +- sre1 - sre2

flx.p sre1, rdest Floating-Point to Integer Conversion
rdest +- 64- bit value with low-order 32 bits equal to integer part of sre1 rounded

Floating-Point Load
fld.y sre1(sre2j, treg (Normal)

59

intJ i860™ MICROPROCESSOR

fld.y src1(src2)+ +, freg . .. (Autoincrement)
treg +- mem.y (src1 + src2)
IF autoincrement
THEN src2 +- src1 + src2
FI

Cache Flush
flush # const(src2) .. (Normal)
flush # const(src2) + + .. (Autoincrement)

Replace block in data cache with address (# const + src2).
Contents of block undefined.
IF autoincrement
THEN src2 +- #const + src2
FI

fmlow.p src1, src2, rdest Floating-Point Multiply Low
rdest +- low-order 53 bits of src1 mantissa x src2 mantissa
rdest bit 53 +- most significant bit of mantissa

fmov.r src1, rdest . .. Floating-Point Reg-Reg Move
Assembler pseudo-operation

fmov.ss src1, rdest = fiadd.ss src1, fO, rdest
fmov.dd src1, rdest = fiadd.dd src1, fO, rdest
fmov.sd src1, rdest = fadd. sd src1, fO, rdest
fmov.ds src1, rdest = fadd.ds src1, fO, rdest

fmul.p src1, src2, rdest .. Floating-Point Multiply
rdest +- src1 x src2

fnop .. Floating-Point No Operation
Assembler pieudo-operation

fnop = shrd rO, rO, rO
form src1, rdest OR with MERGE Register

rdest +- src1 OR MERGE
MERGE +- 0

frcp.p src2, rdest .. Floating-Point Reciprocal
rdest +- 1/ src2 with maximum mantissa error < 2-7

frsqr.p src2, rdest .. Floating-Point Reciprocal Square Root
rdest +- 1/SQRT (src2) with maximum mantissa error < 2-7

Floating-Point Store
fst.y treg, src1(src2) .. (Normal)
fst.y treg, src1(src2) + + ... (Autoincrement)

mem.y (src2 + src1) +- treg
IF autoincrement
THEN src2 +- src1 + src2
FI

fsub.p src 1, src2, rdest Floating-Point Subtract
rdest +- src1 - src2

ftrunc.p src1, rdest Floating-Pointto Integer Conversion
rdest +- 64-bit value with low-order 32 bits equal to integer part of src1

fxfr src1, ireg Transfer F-P to Integer Register
ireg +- src1

fzchkl src1, src2,rdest ... 32-Bit Z-Buffer Check
Consider src1, src2, and rdest as arrays of two 32-bit

fields src1(0) .. src1(1), src2(0) .. src2(1), and rdest(0) .. rdest(1)
where zero denotes the least-significant field.

PM +- PM shifted right by 2 bits
FOR i = 0 to 1
DO

PM Ii + 61 +- src2(i) ~ src1(i) (unsigned)
rdest(i) +- smaller of src2(i) and src1(i)

00
MERGE +- 0

60

inter 1860TM MICROPROCESSOR

fzchks src1, src2, rdest ... 16-Bit Z-Buffer Check
Consider src1, src2, and rdest as arrays of four 16-bit

fields src1(O) .. src1(3), src2(O) .. src2(3), and rdest(O)..rdest(3)
where zero denotes the least-significant field.

PM +- PM shifted right by 4 bits
FOR i = 0 to 3
DO

PM (j + 41 +- src2(i) s src1(i) (unsigned)
rdest(i) +- smaller of src2(i) and src1(i)

00
MERGE +- 0

intovr .. Software Trap on Integer Overflow
If OF in epsr = 1, generate trap with IT set in psr.

ixfr src1ni, freg Transfer Integer to F-P Register
freg +- src 1 ni

Id_c ctr1reg, rdest .. Load from Control Register
rdest +- ctr1 reg

Id_x src1(src2), rdest ... Load Integer
rdest +- mem.x (src1 + src2)

lock .. Begin Interlocked Sequence
Set BL in dirbase. The next load or store locks the bus.
Disable interrupts until the bus is unlocked.

mov src2, rdest .. Register-Register Move
Assembler pseudo-operation

mov src2, rdest = shl rO, src2, rdest

nop ... Core-Unit No Operation
Assembler pseudo-operation

nop = sh1 rO, rO, rO

or src1, src2,rdest ... Logical OR
rdest +- src1 OR src2
> CC set if result is zero, cleared otherwise

orh # cons!, src2, rdest Logical OR High
rdest +- (# const shifted left 16 bits) OR src2
> CC set if result is zero, cleared otherwise

pfadd.p src1, src2, rdest . .. Pipelined Floating-Point Add
rdest +- last A-stage result
Advance a pipeline one stage
A pipeline first stage +- src1 + src2

pfaddp src1, src2, rdest .. Pipelined Add with Pixel Merge
rdest +- last-stage I-result
last stage I-result +- src1 + src2
Shift and load MERGE register from last-stage I-result as defined in Table 8.1

pfaddz src1, src2, rdest Pipelined Add with Z Merge
rdest +- last-stage I-result
last stage I-result +- src1 + src2
Shift MERGE right 16 and loadfields 31..16 and 63 .. 48 from last-stage I-result

pfam.p src1, src2, rdest Pipelined Floating-Point Add and Multiply
rdest +- last A-stage result
Advance A and M pipeline one stage (operands accessed before advancing pipeline)
A pipeline first stage +- A-op1 + A-op2
M pipeline first stage +- M-op1 x M-op2

61

inter i860™ MICROPROCESSOR

pfeq.p src1, src2, rdest PipelinedFloating-Point Equal Compare
rdest +- last A·stage result
CC set if src1 = src2, else cleared
Advance A pipeline one stage
A pipeline first stage is undefined, but no result exception occurs

pfgt.p src1, src2, rdest Plpelined Floating-Point Greather-Than Compare
(Assembler clears R-bit of instruction)
rdest +- last A-stage result
CC set if src1 > src2, else cleared
Advance A pipeline one stage
A pipeline first stage is undefined, but no result exception occurs

pfiadd.w src1, src2,rdest Pipelined Long-Integer Add
rdest +- last-stage I-result
last-stage I-result +- src1 + src2

pfisub.w src1, src2, rdest ... Pipelined Long-Integer Subtract
rdest +- last-stage I-result
last-stage I-result +- src1 - src2

pfix.p src1, rdest Pipelined Floating-Pointto Integer Conversion
rdest +- last A-stage result
Advance A pipeline one stage
A pipeline first stage +- 64-bit value with low-order 32 bits

equal to integer part of src1 rounded

Pipelined Floating-Point Load
pfld.z src1(src2),freg .. (Normal)
pfld.z src1(src2) + + ,freg (Autolncrement)

freg +- mem.z (third previous pfld's (src1 + src2)
(where .Z is precision of third previous pfld.z)

If autoincrement
THEN src2 +- src1 + src2
FI

pfle.p src 1, src2, rdest Pipe lined F-P Less-Than or Equal Compare
Assembler pseudo-operation, identical to pfgt.p except that

assembler sets R-bit of instruction.
rdest +- last A-stage result
CC clear if src1 :5: src2, else set
Advance A pipeline one stage
A pipeline first stage is undefined, but no result exception occurs

pfmam.p src1, src2, rdest Pipelined Floating-Point Add and Multiply
rdest +- last M-stage result
Advance A and M pipeline one stage (operands accessed before advancing pipeline)
A pipeline first stage +- A-op1 - A-op2
M pipeline first stage +- M-op1 x M-op2

pfmov.r src1, rdest ; Pipelined Floating-Point Reg-Reg Move
Assembler pseudo-operation

pfmov.ss src1, rdest = pfiadd.ss src1, fO, rdest
pfmov.dd src1, rdest = pfiadd.dd src1, fO, rdest
pfmov.sd src1, rdest = pfadd.sd src1, fO, rdest
pfmov.ds src1, rdest = pfadd.ds src1, fO, rdest

pfmsm.p src1, src2, rdest Pipelined Floating-Point Subtract and Multiply
rdest +- last M-stage result
Advance A and M pipeline one stage (operands accessed before advancing pipeline)
A pipeline first stage +- A-op1 - A-op2
M pipeline first stage +- M-op1 x M-op2

pfmul.p src1, src2, rdest ... Pipe lined Floating-Point Multiply
rdest +- last M-stage result
Advance M pipeline one stage
M pipeline first stage +- src1 x src2

62

inter i860TM MICROPROCESSOR

pfmul3.p sret, sre2, rdes! . .. Three-Stage Pipelined Multiply
rdes! ~ last M-stage result
Advance 3-Stage M pipeline one stage
M pipeline first stage ~ sret x sre2

pform sre t, rdes! Pipelined OR to MERGE Register
rdes! ~ last-stage I-result
last stage I-result ~ sret OR MERGE
MERGE ~ 0

pfsm.p sre1, sre2, rdes! Pipelined Floating-Point Subtract and Multiply
rdes! ~ last A-stage result
Advance A and M pipeline one stage (operands accessed before advancing pipeline)
A pipeline first stage ~ A-op1 - A-op2
M pipeline first stage +- M-op1 x M-op2

pfsub.p sre1, sre2, rdest Pipelined Floating-Point Subtract
rdes! ~ last A-stage result
Advance A pipeline one stage
A pipeline first stage ~ sre1 + sre2

pftrunc.p sre1, rdes! Pipelined Floating-Point to Integer Conversion
rdes! ~ last A-stage result
Advance A pipeline one stage
A pipeline first stage ~ 64-bit value with low-order 32 bits

equal to integer part of sre1

pfzchkl sret, sre2, rdes! Pipelined 32-Bit Z-Buffer Check
Consider sre1, sre2, and rdes!, as arrays of two 32-bit

fields sre1(O) .. sre1(1), sre2(O) .. sre2(1), and rdest(O) .. rdest(1)
where zero denotes the least significant field.

PM ~ PM shifted right by 2 bits
FOR i = 0 to 1
DO

PM [i + 6) ~ sre2(i) s sre1(i) (unsigned)
rdest(i) ~ last-stage I-result
last-stage I-result ~ smaller of sre2(i) and sre1(i)

00
MERGE ~ 0

pfzchks sre1, sre2, rdest .. Pipelined 16-Bit Z-Buffer Check
Consider sre1, sre2, and rdest, as arrays of four 16-bit

fields sre1(O) .. sre1(3), sre2(O) .. sre2(3), and rdest(O) .. rdest(3)
where zero denotes the least significant field.

PM ~ PM shifted right by 4 bits
FORi = 0 to 3
DO

PM [i + 4) ~ sre2(i) s sre1(i) (unsigned)
rdest(i) ~ last-stage I-result
last-stage I-result ~ smaller of sre2(i) and sre1(i)

00
MERGE ~ 0

pst.d treg, #eons!(sre2) ... Pixel Store
pst.d treg, #eons!(sre2)+ + .. Pixel Store Autoincrement

Pixels enabled by PM in mem.O (sre2 + #eonsf) ~ treg
Shift PM right by a/pixel size (in bytes) bits
IF autoincrement THEN sre2 ~ #eonst + sre2 FI

shl srdet, sre2,rdest Shift Left
rdest ~ sre2 shifted left by sre1 bits

shr sre1, sre2, rdes! " , Shift Right
SC (in psr) ~ sre1
rdes! ~ sre2 shifted right by sret bits

63

infef i860™ MICROPROCESSOR

shra src1, src2, rdest ... Shift Right Arithmetic
rdest +- src2 arithmetically shifted right by src1 bits

shrd src1, src2, rdest .. Shift Right Double
rdest +- low-order 32 bits of src1:src2 shifted right by SC bits

st.c src1ni, ctrlreg .. Store to Control Register
ctrlreg +- src 1 ni

st.x src1ni, #const(src2) ... Store Integer
mem.x (src2 + #consf) +- src1ni

subs src1, src2, rdest .. Subtract Signed
rdest +- src 1 - src2
OF +- (bit 31 carry *- bit 30 carry)
CC set if src2 > src1 (signed)
CC clear if src2 !S: src1 (signed)

subu src1, src2, rdest .. Subtract Unsigned
rdest +- src1 - src2
OF +- NOT (bit 31 carry)
CC +- bit 31 carry
(Le. CC set if src2 !S: src1 (unsigned)

CC clear if src2 > src1 (unsigned)

trap src 1, src2, rdest .. Software Trap
Generate trap with IT set in psr

unlock ... End Interlocked Sequence
Clear BL in dirbase. The next load or store unlocks the bus.

xor src1, src2, rdest Logical Exclusive OR
rdest +- src1 XOR src2
CC set if result is zero, cleared otherwise

xorh # canst, src2, rdest .. Logical Exclusive OR High
rdest +- (# canst shifted left 16 bit) XOR src2
CC set if result is zero, cleared otherwise

64

inter i860™ MICROPROCESSOR

Table 8.1. FADDP MERGE Update

Pixel
Fields Loaded From

Right Shift
Size

Result into MERGE
Amount

(from PS) (Field Size)

8 63 .. 56,47 .. 40,31..24,15 .. 8 8
16 63 .. 58,47 .. 42,31..26,15 .. 10 6
32 63 .. 56, 31 .. 24 8

8.2 Instruction Format and Encoding

All instructions are one word long and begin on a
word boundary. There are two general core-instruc­
tion formats: REG-format and CTRL-format. Within
the REG-format are several variations.

8.2.1 REG·FORMAT INSTRUCTIONS

The src2 field selects one of the 32 integer registers
(most instructions) or five control registers (st.c and
Id.c). Dest selects one of the 32 integer registers
(most instructions) or floating-point registers (fld,
fst, pfld, pst, ixfr). For instructions where src1 is
optionally an immediate value, bit 26 of the opcode
(I-bit) indicates whether src1 is an immediate. If bit
26 is clear, an integer register is used; if bit 26 is set,
src1 is contained in the low-order 16 bits, except for
bte and btne instructions. For bte and btne, the
five-bit immediate value is contained in the src1
field. For st, bte, btne, and bla, the upper five bits of
the offset or broffset are contained in the dest field

instead of src1, and the lower 11 bits of offset are
the lower 11 bits of the instruction.

For Id and st, bits 28 and zero determine operand
size as follows:

Bit 28 Bit 0 Operand Size

0 0 8-bits
0 1 8-bits
1 0 16-bits
1 1 32-bits

When src1 is an immediate and bit 28 is set, bit zero
of the immediate value is forced to zero.

For fld, fst, pfld, pst, and flush, bit 0 selects autoin­
crement addressing if set. Bits one and two select
the operand size as follows:

Bit 1 Bit2 Operand Size

0 0 64-bits
0 1 128-bits
1 0 32-bits
1 1 32-bits

When src1 is an immediate value, bits zero and one
of the immediate value are forced to zero to main­
tain alignment. When bit one of the immediate value
is clear, bit two is also forced to zero.

31 25 20
General Format

15 10 o

OPCODE!I SRC2 DEST SRC1 IMMEDIATE, OFFSET, OR NULL

16·Bit Immediate Variant (except bte and btne)
31 25 20 15 o

OPCODE 11 1 SRC2 1 DEST 1 IMMEDIATE

st, bla, bte, and btne
31 25 20 15 10 o

OPCODE!I SRC2
OFFSET SRC1

OFFSET LOW
HIGH SRC1S

bte and btne with 5·Bit Immediate
25 20 15 10 o

SRC2
OFFSET

IMMEDIATE OFFSET LOW
HIGH

65

inter i860™ MICROPROCESSOR

8.2.2 REG-FORMAT OPCODES
31 26

Id.x Load Integer 0 0 0 L 0 I
st.x Store Integer 0 0 0 L 1 1
ixfr Integer to F-P Reg Transfer 0 0 0 0 1 0

(reserved) 0 0 0 1 1 0
fld.x, fst.x Load/Store F-P 0 0 1 0 LS I
flush Flush 0 0 1 1 0 1
pst.d Pixel Store 0 0 1 1 1 1
Id.c, st.c Load/Store Control Register 0 0 1 1 LS 0
bri Branch Indirect 0 1 0 0 0 0
trap Trap 0 1 0 0 0 1

(Escape for F-P Unit) 0 1 0 0 1 0
(Escape for Core Unit) 0 1 0 0 1 1

bte, btne Branch Equal or Not Equal 0 1 0 1 E I
pfld.y Pipelined F-P Load 0 1 1 0 0 I

(CTRL-Format Instructions) 0 1 1 x x x
addu, Os, subu, Os, Add/Subtract 1 0 0 SO AS I
shl, shr Logical Shift 1 0 1 0 LR I
shrd Double Shift 1 0 1 1 0 0
bla Branch LCC Set and Add 1 0 1 1 0 1
shra Arithmetic Shift 1 0 1 1 1 I
and (h) AND 1 1 0 0 H I
andnot(h) ANDNOT 1 1 0 1 H I
or(h) OR 1 1 1 0 H I
xor(h) XOR 1 1 1 1 H I

(reserved) 1 1 x x 1 0

L Integer Length AS Add/Subtract
0 -8 bits 0 -Add
1 -16 or 32 bits (selected by bit 0) 1 -Subtract

LS Load/Store LR Left/Right
0 -Load 0 -Left Shift
1 -Store 1 -Right Shift

SO Signed/Ordinal E Equal
0 -Ordinal 0 -Branch on Not Equal
1 -Signed 1 -Branch on Equal

H High Immediate
0 --and,or, andnot, xor 0 -src 1 is register
1 --andh, orh, andnoth, xorh 1 -src1 is immediate

8.2.3 CORE ESCAPE INSTRUCTIONS

31 26 15 10 5 0

1
0 1 0 0 1 1 I reserved I SRCI I reserved I OPCODE I

66

intJ i860TM MICROPROCESSOR

8.2.4 CORE ESCAPE OPCODES
4 o

(reserved) 0 0 0 0 0
lock Begin Interlocked Sequence 0 0 0 0 1
calli Indirect Subroutine Call 0 0 0 1 0

(reserved) 0 0 0 1 1
intovr Trap on Integer Overflow 0 0 1 0 0

(reserved) 0 0 1 0 1
(reserved) 0 0 1 1 0

unlock End Interlocked Sequence 0 0 1 1 1
(reserved) 0 1 x x x
(reserved) 1 0 x x x
(reserved) 1 1 x x x

8.2.5 CTRL-FORMAT INSTRUCTIONS

31 28 25

BROFFSET

BROFFSET is a signed 26-bit relative branch offset.

8.2.6 CTRL-FORMAT OPCODES
28 26

br Branch Direct 0 1 0
call Call 0 1 1
bc(.t) Branch on CC Set 1 0 T
bnc{.t) Branch on CC Clear 1 1 T

T Taken
o -bc or bnc
1 -bc.t or bnc.t

8.2.7 FLOATING-POINT INSTRUCTION ENCODING

31 25 20 15

SRC2 DEST SRC1 OPCODE

SRC1, SRC2 -Source; one of 32 floating-point registers
DEST -Destination register

(instructions other than fxfr) one of 32 floating-point registers
(fxfr) one of 32 integer registers

P Pipelining
1 -Pipelined instruction mode
o -Scalar instruction mode

D Dual-Instruction Mode
1 -Dual-instruction mode
o -Single-instruction mode

67

S Source Precision
1 -Double-precision source operands
o -Single-precision source operands

R Result Precision
1 -Double-precision result
o -Single-precision result

o

o

intJ i860TM MICROPROCESSOR

8.2.8 FLOATING-POINT OPCODES
6

pfam Add and Multiply'
pfmam Multiply with Add' 0
pfsm Subtract and Multiply'

0
pfmsm Multiply with Subtract'
(p)fmul Multiply 0
fmlow Multiply Low 0
frep Reciprocal 0
frsqr Reciprocal Square Root 0
(p)fadd Add 0
(p)fsub Subtract 0
(p)fix Fix 0
pfgt/pfle** Greater Than 0
pfeq Equal 0
(p)ftrune Truncate 0
fxfr Transfer to Integer Register 1
(p)fiadd Long-Integer Add 1
(p)fisub Long-Integer Subtract 1
(p)fzehkl Z-Check Long 1
(p)fzehks Z-Check Short 1
(p)faddp Add with Pixel Merge 1
(p)faddz Add with Z Merge 1
(p)form OR with MERGE Register 1

'pfam and pfsm have P-blt set; pfmam and pfmsm have P-bit clear .
•• pfgt has R bit cleared; pfle has R bit set.

68

o

0 0 OPC

0 1 OPC

1 0 0 0 0 0
1 0 0 0 0 1
1 0 0 0 1 0
1 0 0 0 1 1
1 1 0 0 0 0
1 1 0 0 0 1
1 1 0 0 1 0
1 1 0 1 0 0
1 1 0 1 0 1
1 1 1 0 1 0
0 0 0 0 0 0
0 0 1 0 0 1
0 0 1 1 0 1
0 1 0 1 1 1
0 1 1 1 1 1
0 1 0 0 0 0
0 1 0 0 0 1
0 1 1 0 1 0

inter i860™ MICROPROCESSOR

The following table shows the opcode mnemonics that generate the various encodings of ope and explains
each encoding.

Table 8.2. ope Encoding

ope PFAM PFSM M-Unit M-Unit A-Unit A-Unit T K
Mnemonic Mnemonic op1 op2 op1 op2 Load Load'

0000 r2p1 r2s1 KR src2 src1 M result No No
0001 r2pt r2st KR src2 T M result No Yes
0010 r2ap1 r2as1 KR src2 src1 A result Yes No
0011 r2apt r2ast KR src2 T A result Yes Yes
0100 i2p1 i2s1 KI src2 src1 M result No No
0101 i2pt i2st KI src2 T M result No Yes
0110 i2ap1 i2as1 KI src2 src1 A result Yes No
0111 i2apt i2ast KI src2 T A result Yes Yes
1000 rat1p2 rat1s2 KR A result src1 src2 Yes No
1001 m12apm m12asm src1 src2 A result M result No No
1010 ra1p2 ra1s2 KR A result src1 src2 No No
1011 m12ttpa m12ttsa src1 src2 T A result Yes No
1100 iat1p2 iat1s2 KI A result src1 src2 Yes No
1101 m12tpm m12tsm src1 src2 T M result No No
1110 ia1p2 ia1s2 KI A result src1 src2 No No
1111 m12tpa m12tsa src1 src2 T A result No No

ope PFMAM PFMSM M-Unit M-Unit A-Unit A-Unit T K
Mnemonic Mnemonic op1 op2 op1 op2 Load Load'

0000 mr2p1 mr2s1 KR src2 src1 M result No No
0001 mr2pt mr2st KR src2 T M result No Yes
0010 mr2mp1 mr2ms1 KR src2 src1 M result Yes No
0011 mr2mpt mr2mst KR src2 T M result Yes Yes
0100 mi2p1 mi2s1 KI src2 src1 M result No No
0101 mi2pt mi2st KI src2 T M result No Yes
0110 mi2mp1 mi2ms1 KI src2 src1 M result Yes No
0111 mi2mpt mi2mst KI src2 T M result Yes Yes
1000 mrmt1p2 mrmt1s2 KR M result src1 src2 Yes No
1001 mm12mpm mm12msm src1 src2 M result M result No No
1010 mrm1p2 mrm1s2 KR M result src1 src2 No No
1011 mm12ttpm mm12ttsm src1 src2 T A result Yes No
1100 mimt1p2 mimt1s2 KI M result src1 src2 Yes No
1101 mm12tpm mm12tsm src1 src2 T M result No No
1110 mim1p2 mim1s2 KI M result src1 src2 No No
1111 mm12tpm mm12tsm src1 src2 T M result No No

'If K·load is set, KR is loaded when operand·1 of the multiplier is KR; KI is loaded when operand·1 of the multiplier is KI.

69

inter 1860TM MICROPROCESSOR

8.3 Instruction Timings

860 microprocessor instructions take one clock to
execute unless a freeze condition is invoked. Freeze
conditions and their associated delays are shown in

Freeze Condition

Instruction-cache miss

Reference to destination of load instruction that
misses

fld miss

cali/calli/ixfr/fxfr/ld.c/st.c and data cache miss
processing in progress

Id/st/pfld/fld/fst and data cache miss
processing in progress

Reference to dest of Id, call, calli, fxfr, or Id.c in
the next instruction

70

the table below. Freezes due to multiple simulta­
neous cache misses result in a delay that is the sum
of the delays for processing each miss by itself. Oth­
er multiple freeze conditions usually add only the de­
lay of the longest individual freeze.

Delay

Number of clocks to read instruction (from ADS
clock to first READY # clock) plus time to last
READY # of block when jump or freeze occurs
during miss processing plus two clocks if data-
cache being accessed when instruction-cache
miss occurs.

One plus number of clocks to read data (from
ADS # clock to first READY # clock) minus number
of instructions executed since load (not counting
instruction that references load destination)

One plus number of clocks from ADS# to first
READY#

One plus number of clocks until first READY #
returned

One plus number of clocks until last READY #
returned

One clock

inter i860TM MICROPROCESSOR

Freeze Condition Delay

Reference to destof fld/pfldlixfr in the next two Two clocks in the first instruction; one in the
instructions second instruction

bc/bnc/bc.tlbnc.t following fadd/fsub/pfegl One clock
pfgt

Src1 of multiplier operation refers to result of One dock
previous operation

Floating-point operation or fst and scalar If the scalar operation is fadd, fix, fmlow, fmul.ss,
operation in progress other than frcp or frsqr fmul.sd, ftrunc, or fsub, three minus the number

of instructions executed after the scalar operation.
If the scalar operation is fmul.dd, four minus the
number of instructions executed after it. Add one if
the precision of the result of the previous scalar
operation is different than that of the source. Add
one if the floating-point operation is pipelined and
its destination is not fO. If the sum of the above
terms is negative, there is no delay.

Multiplier operation preceded by a double- One clock
precision multiply

TLB miss Five plus the number of clocks to finish two reads
plus the number of clocks to set A-bits (if
necessary)

pfld when three pfld's are outstanding One plus the number of clocks to return data from
first pfld

pfld hits in the data cache Two plus the number of clocks to finish all
outstanding accesses

Store pipe full (two internal plus outstanding bus One plus the number of clocks until READY #
cycles) and st/fst miss, Id miss, or flush with active on next write data
modified block

Address pipe full (one internal plus outstanding Number of clocks until next address can be issued
bus cycles) and Id/fld/plfd/st/fst

Id/fld following stlfst hit One clock

Delayed branch not taken One clock

Nondelayed branch taken One clock

Branch indirect br One clock

st.c Two clocks

Result of graphics-unit instruction (other than One clock
fmov) used in next instruction when the next
instruction is an adder- or multiplier-unit instruction

Result of graphics-unit instruction used in next One clock
instruction when the next instruction is a graphics-
unit instruction

flush followed by flush Two clocks

fst followed by pipelined floating-paint operation One clock
that overwrites the register being stored

71

inter i860™ MICROPROCESSOR

8.4 Instruction Characteristics

The following table lists some of the characteristics
of each instruction. The characteristics are:

• What processing unit executes the instruction.
The codes for processing units are:
A Floating-point adder unit
E Core execution unit
G Graphics (vector-integer) unit
M Floating-point multiplier unit

• Whether the instruction is pipelined or not. A P
indicates that the instruction is pipelined.

• Whether the instruction is a delayed branch in­
struction. A D marks the delayed branches.

• Whether the instruction changes the condition
code CC. A CC marks those instructions that
change CC.

• Which faults can be caused by the instruction.
The codes used for exceptions are:

IT Instruction Fault
SE Floating-Point Source Exception
RE Floating-Point Result Exception, including

overflow, underflow, inexact result
DAT Data Access Fault

The instruction access fault IAT and the interrupt
trap IN are not shown in the table because they
can occur for any instruction.

• Performance notes. These comments regarding
optimum performance are recommendations
only. If these recommendations are not followed,
the 860 microprocessor automatically waits the
necessary number of clocks to satisfy internal
hardware requirements. The following notes de­
fine the numeric codes that appear in the instruc­
tion table:

1. The following instruction should not be a con­
ditional branch (bc, bnc, bc.t, or bnc.t).

2. The destination should not be a source oper­
and of the next two instructions.

72

3. A load should not directly follow a store that is
expected to hit in the data cache.

4. When the prior instruction is scalar, sret
should not be the same as the rdes! of the
prior operation.

5. The freg should not reference the destination
of the next instruction if that instruction is a
pipelined floating-point operation.

6. The destination should not be a source oper­
and of the next instruction.

7. When the prior operation is scalar and multipli­
er opt is sret, sre2 should not be the same as
the rdes! of the prior operation.

8. When the prior operation is scalar, sret and
sre2 of the current operation should not be the
same as rdes! of the prior operation.

• Programming restrictions. These indicate combi­
nations of conditions that must be avoided by
programmers, assemblers, and compilers. The
following notes define the alphabetic codes that
appear in the instruction table:

a. The sequential instruction following a delayed
control-transfer instruction may not be another
control-transfer instruction (except in the case
of external interrupts), nor a trap instruction,
nor the target of a control-transfer instruction.

b. When using a bri to return from a trap handler,
programmers should take care to prevent traps
from occurring on that or on the next sequen­
tial instruction. 1M should be zero (interrupts
disabled) when the bri is executed.

c. If rdes! is no! zero, sret must not be the same
as rdest

d. When the multiplier opt is sret, sret must not
be the same as rdes!.

e. If rdes! is no! zero, sret and sre2 must not be
the same as rdes!.

inter i860TM MICROPROCESSOR

Instruction
Execution Pipelined? Sets Faults

Performance Programming
Unit Delayed? CC? Notes Restrictions

adds E CC 1
addu E CC 1
and E CC
andh E CC
andnot E CC
andnoth E CC
bc E
bc.t E D a
bla E D a
bnc E
bnc.t E D a
br E D a
brl E D a,b
bte E
btne E
call E D 2 a
calli E D 2 a
fadd.p A SE,RE
faddp G 8
faddz G 8
fiadd.z G 8
flsub.z G 8
fix.p A SE,RE
fld.y E DAT 2,3
flush E
fmlow.p M 4
fmul.p M SE,RE 4
form G 8
frep.p M SE,RE
frsqr.p M SE,RE
fst.y E DAT 5
fsub.p A SE,RE
ftrunc.p A SE,RE
fxfr G 6,8
fzchkl G 8
fzchks G 8
Intovr E IT
Ixfr E 2
Id.c E
Id.x E DAT 6
or E CC
orh E CC

73

i860TM MICROPROCESSOR

Instruction
Execution Pipelined? Sets

Faults
Performance Programming

Unit Delayed? CC? Notes Restrictions

pfadd.p A P SE,RE
pfaddp G P 8 e
pfaddz G P 8 e
pfam.p A&M P SE, RE 7 d
pfeq.p A P CC SE 1
pfgt.p A P CC SE 1
pfiadd.z G P 8 e
pfisub.z G P 8 e
pfix.p A P SE, RE
pfld.z E P 2
pfmul.p M P SE, RE 4 c
pform G P 8 e
pfsm.p A&M P SE, RE 7 d
pfsub.p A P SE, RE
pftrunc.p A P SE, RE
pfzchkl G P 8
pfzchks G P 8
pst.d E OAT
shl E
shr E
shra E
shrd E
st.c E
st.x E OAT
subs E CC 1
subu E CC 1
trap E IT
xor E CC
xorh E CC

74

intJ
ALABAMA

!~~tgl ~~ord Dr., #2
Huntsville 35605
Tel: (205) 830-4010

ARIZONA

r~nJ~k ~~~8th Dr.
Suite 0·214
Phoenix 85029
Tel: (602) 869-4980

n"Jrl ~OErDorado Place
Suite 301
Tucson 85715
Tel: (602) 299-6815

CALIFORNIA

!~~~k '(,~~~wen Street
Sulle 116

~~~(31a8r~~3JW 

Zk"J81 ~~~Perial Highway 
Suite 218 

!f~~(ar£dM~~~O 
tintal Corp. 

~;~a~~~~ ~:~1~uite 101 
Tel: (916) 920-8096 

l~nJ~~~~;n Avenue 
Suite 450 
Santa Ana 92705 

~~iJ{b~t,~~ 

t~~i~~~ 
2700 San Tomas Expressway 
2nd Floor 
Santa Clara 95051 

~~?'~~O~65 
FAX: 408-727-2620 

COLORADO 

tlntal Corp. 
4445 Northpark. Drive 
Suite 100 

~,':OH'f9) ~C~~~~0907 

~~nJeJ.~~~~ St.. Suite 915 
Denver 80222 

~i~~~~I-!f2~~ 
CONNECTICUT 

~~n~:,f~'~n Road 
2nd Floor 

$1~1b!?~I'~9 
FLORIDA 

~~d~:~t ~sune 100 

~~~b-VJ6~20°7 
FAX: 305-772-8193

~~Jg~T~g~Lee Blvd.
Sulte34Q
Orlando 32822

~~f~c:r!-~:8:r~~
l~nJ~ ~PStreet North
Sune 170

~~~~~~i~~!~16 

DOMESTIC SALES OFFICES 

GEORGIA 

thn¥'~~~~Ogy Parkway, NW. 
Suite 150 
Norcross 30092 
Tel: (404) 449-0541 

ILUNOIS 

tlnteICorp.· 

~~:um~~rtin2c~~~oad, Suite 400 

~~I~~~11~~t~~ 
INDIANA 

~~~~~eRoad 
Suite 125
Indianapolis 46268
Tel: (317) 875-0623

IOWA

Intel Corp.
1930 S1. Andrews Drive N.E.
2nd Floor
Cedar Rapids 52402
Tel: (319) 393-5510

KANSAS

tlntel Corp.

~~:S1~8~~1~~. 0
Overland Park 6621 0
Tel: (913) 345-2727

MARYLAND

;~11~~:r~~ Drive South
SuiteC
Hanover 21076

~~~~~b?s~!,~04 

;~I~~erDrive 
Suite 550 
Greenbelt 20770 
Tel: (301) 441·1020 

MASSACHUSEnS 

tlntel Corp: 
Westford Corp. Center 
3 Carlisle Road 
2nd Floor 
Westford 01886 

rni~~~b~f-tss22fs 
MICHIGAN 

tlntal Corp. 
7071 Orchard Lake Road 
Suite 100 
West Bloomfield 48322 
Tel: (313) 851·8096 

MINNESOTA 

1~~1$.'~~ St.. Suite 360 
Bloominr,on 55431 

~~6~~b.s:ta~ii, 
MISSOURI 

l~nJg' ~g'Clty Expressway 
Suite 131 

f:rr3~~~ ~~~~ 
NEW JERSEY 

t~:~~~rro; Office Center 
328 Newman Springs Road 
Red Bank 07701 
Tel: (2Ql) 747·2233 

~k"ote~~~'ate Center 
75 Uvlngston Avenue 
First Floor 
Roseland 07068 

~~I~~~(N.~:g:~~ 

NEW MEXICO 

tlntel Corp. 
8500 Menaul Boulevard N.E. 
Suite B 295 

~~~:~~~~2~lJJl 
NEW YORK

tlntet Corp ..
rae~~s,s~~s Office Park

~J;Jn~5t21i9~
tlntel Corp'-
~~Tt~ ~~gressway Or., South

Islandia 11722

~~~J~~:2;~2~6 

~~:~~r&Uslness Center 
Bldg. 300, Route 9 
Fishkill 12524 

~~~~\~.rs~~~~ 
NORTH CAROLINA

tlntelCorp.
5800 Executive Center Dr.
Suite 105
Charlotte 28212

~~f7061.~3t~~

i~i~I~;ififf Road

~:II~la~9r7~~8022
OHIO

~~11 ~~6enter Drive
Suite 220

~~J;~~~i208

OKLAHOMA

tlntelCorp.
6801 N. Broadway
Suite 115

Or., Suite 100

Oklahoma City 73162
Tel: (405) 848:.s086

OREGON

T~~~~ ~re: Greenbrier Parkway
Building B
Beaverton 97006

rni~~~S:i~8~\
PENNSYLVANIA

tlntel Corp'-
455 Pennsylvania Avenue
Suite 230

~J~V~~~~~¥~034
Intel Corp"
400 Penn Center Blvd., Suite 610

~~~:S(~~~h a1~1370 
PUERTO RICO 

tlntel Microprocessor Corp. 
South Industrial Park 
P.O. Box 910 
Las Piedras 00671 
Tel: (809) 733-8616 

TEXAS 

l~~~.~nrgerson Lane 
Suite 314 
AustIn 78752 
Tel: (512) 454-3628 

tlntel Corp'-
12000 Ford Road 
Suite 400 
Dallas 75234 

~:i~22\~1~l~~ 
tlntel Corp" 
7322 S.W. Freeway 
Suite 1490 
Houston 77074 

~~;~n~:~'~2~9~ 
UTAH 

1~"steJ~n)4OO South 
Suite 104 

~eln;tl~igr6051 
VIRGINIA 

tlntel Corp. 
1504 Santa Rosa Road 
Suite 108 
Richmond 23288 
Tel: (804) 282·5668 

WASHINGTON 

tlntel Corp. 
155108th Avenue N.E. 
Suite 386 
Bellevue 98004 

~~~grb~3~DJ'~2 
tlntel Corp.
408 N. Mullan Road
Suite 102
Spokane 99206
Tel: (509) 928-8086

WISCONSIN

tlntelCorp.
330 S. Executive Or.
SuIte 102
Brookfield 53005
Tel: (414) 784·8087
FAX: (414) 796·2115

CANADA
BRITISH COLUMBIA

Intel Semiconductor of Canada, Ltd.

:U~a~~n:3~ 'Z~. Suite 202

Tel: (604) 298-0387
FAX: (604) 298-8234
ONTARIO

~:rstgI8~:~~~~~c~~~~ Canada, Ltd.

Suite 250
Ottawa K2B8H6
Tel: (613) 829·9714
TLX: 053-4115

tlntel Semiconductor of canada. Ltd.
190 Attwett Drive
Suite50Q
Rexdale M9W 6H8
Tel: (416) 675-2105
TLX: 06983574
FAX: (416) 675-2438

QUEBEC

t1nJ~t~~~g~:~f Canada, Ltd.

Pointe Claire H9R 3K2
Tel: (514) 694-9130
TWX: 514·694·9134

ALABAMA

Intel Corp.
5015 Bradford Dr., #2
Huntsville 35805
Tel: (205) 830-4010

ARIZONA

Intel Corp.
500 E. Fry Blvd., Suite M-15
Sierra Vista 85635
Tel: (602) 459-5010

~~t~~ ~~r~i Dorado Place
Suite 301
Tucson 85715
Tel: (602) 299-6815

CALIFORNIA

Intel Corp.
21515 Vanowen Street
Suite 116

~:I~(H1a8r~~~;:
I

hway

Intel Corp.

~~?s~9~~~;5~~·
Tel: (916) 351-6143

~~!~~~ro ~~A1~ulte 101
Tel: (916) 920-8096

Intel Corp.
4350 Executive Drive
Suite 105

~:r (~~~°.J~~;Jao
Intel Corp."
400 N. Tustin Avenue
Suite 450
Santa Ana 92705

~~;J:b-S;i5~~~
Intel Corp."
San Tomas 4
2700 San Tomas Expressway
2nd Floor
Santa Clara 95051

~~g~~~8565
COLORADO

Intel Corp.
4445 Northpark Drive
Suite 100

~:r:0[a~) ~Ct's~~g0907

~~~!,r~ St., Suite 915 

~:~~~b~ii'~S:9 
CONNECTICUT 

Intel Corp. 
26 MiII- Plain Road 
2nd Floor 

~J~~b!i~\3909 

CALIFORNIA 

2700 San Tomas Expressway 
Santa Clara 95051 
Tel: (408) 970-1700 

CALIFORNIA 

2700 San Tomas Expressway 
Santa Clara 95051 
Tel: (408) 986-8086 

DOMESTIC SERVICE OFFICES 
FLORIDA 

Intel Corp. 
6363 N.W. 6th Way 
Suite 100 
F1. Lauderdale 33309 

~~~~ib?;5~~0~ 
FAX: 305-772-8193

Intel Corp.
5850 T.G. Lee Blvd.
Suite 340
Orlando 32822

~~~~~05J_~:~m~ 

~~t:~~~~. Street North 
Suite 170 
S1. Petersburg 33716 

~~f~,sJ-~j~~~6~ 
GEORGIA 

Intel Corp. 
3280 POinte Parkway 
Suite 200 
Norcross 30092 
Tel: (404) 449-0541 

ILLINOIS 

~nJgl~°t!:f.l~ingale Road 
Suite 400 

~;r(M~~~po~Jj~ 
INDIANA 

Intel Corp. 
8777 Purdue Road 
Suite 125 

~e~~~m~~)~~t-i~~~ 
IOWA 

Intel Corp. 
1930 S1. Andrews Drive N.E. 
2nd Floor 
Cedar Rapids 52402 
Tel: (319) 393-5510 

KANSAS 

Intel Corp. 
8400 W. 11 Oth Street 
Suite 170 
Overland Park 66210 
Tel: (913) 345-2727 

MARYLAND 

Intel Corp" 
7321 Pamway Drive South 
SuiteC 
Hanover 21076 

~~~~1b?ia~~5:4 

~~~ ~~ker Drive 
Suite 550 
GreenbeH 20770 
Tel: (301) 441-1020 

MASSACHUSETTS 

Intel Corp.· 
Westford Corp. Center 
3 Cartlsle Road 
2nd Floor 
Westford 01886 

~~~~~b~~~6'f~ 

MICHIGAN

Intel Corp.
7071 Orchard Lake Road
Suite 100
West Bloomfield 48033
Tel: (313) 851.s096

MINNESOTA

MISSOURI

Intel Corp.
4203 Earth City Expressway
Suite 131

~:rr3r~? 2~~~0
NEW JERSEY

W!~lt~~~aza III
Raritan Cenler
Edison 08817
Tel: (201) 225-3000

Intel Corp.
385 Sylvan Avenue

f~P:I&~~)~~~~:2~7632
TWX: 710-991-8593

Intel Corp"
Parkway 109 Office Center
328 Newman Springs Road
Red Bank 07701
Tel: (201) 747-2233

!~nJe~~r~ce.·ate Center
75 Uvingston Avenue
First Floor
Roseland 07068

~1~~~~-j~~~~
NEW MEXICO

Intel Corp.
8500 Menaul Boulevard N.E.
SuiteB 295

~~~~&~'§)W2~:JJ~ 
NEW YORK 

Intel Corp. 
127 Main Street 
Binghamton 13905 

~~~~66Wi_j~~~~j 
Intel Corp"
ra~c~~~sJ50s Office Park

~~;J~b~2553-2J3~

NORTH CAROLINA

Intel Corp.
5700 Executive Drive
Suite 213
Charlotte 28212
Tel: (704) 568-8966

~~~ ~~~eadowview Road 
Suite 206 
Greensboro 27407 
Tel: (919) 294-1541 

Intel Corp. 

~~~ f62Cliff Road 

~:II~i8~ 9r7\~7.s022
OHIO

Intel Corp:
3401 Park Center Drive
Suite 220

~~J~i~5~08

OKLAHOMA

:,ra~~ ~~rGroadway
Suite 115
Oklahoma City 73162
Tel: (405) 848-8086

OREGON

Parkway

~2~ ~~2\lam Young Pamway
Hillsboro 97123
Tel: (503) 681·8080

PENNSYLVANIA

IntelCorp.*
455 Pennsylvania Avenue
Suite 230

~~T'~\~l~o~034
Intel Corp"
400 Penn Center Blvd.
8ulte610

~:(~~~nJ~~~70
PUERTO RICO

Intel Microprocessor Corp.
South Industrial Park
P.O.80x910
Las Piedras 00671
Tel: (809) 733-8616

TEXAS

Intel Corp.
313 E. Anderson lane
Suite 314
Austin 78752
Tel: (512) 454-3628

CUSTOMER TRAINING CENTERS
ILLINOIS

~~~:u~~~inH8~eil300 
Tel: (312) 3fo-5700 

MASSACHUSETTS 

3 Canisle Road 
Westford 01886 
Tel: (508) 692-1000 

MARYLAND 

7833 Walker Dr., 4th Floor 
Greenbelt 20770 
Tel: (301) 220-3380 

SYSTEMS ENGINEERING OFFICES 
ILLINOIS NEW YORK 

~:;~~nH8~l!;l300 
Tel: (312) 3f0-8031 

300 Motor Parkway 

~:I~fc,a~g:a1~:g0 

TEXAS (Cont'd.) 

Intel Corp." 
12000 Ford Road 
Suite 400 
Dallas 75234 

~~f~l,~~:t~ 
Intel Corp." 
7322 S.w. Freeway 
Suite 1490 
Houston 77074 
Tel: (713) 988-808tI 
TWX: 910-881-2490 

UTAH 

Inlel Corp. 
428 East 6400 South 
Suite 104 

~~~~1S:J:.s051 
VIRGINIA

WASHINGTON

~~ll~~·Avenue N.E.
Suite 386
Bellevue 98004

~~~n~::OS2 

WISCONSIN 

CANADA 
BRITISH COLUMBIA 

ONTARIO 

Lid. 

Intel Semiconductor of canada, Ltd. 
2650 Queensview Drive 
Suite 250 
Ottawa K2B8H6 

+~~~1\l-~~~9714 
Intel Semiconductor of Canada, Ltd. 
190 Attwell Drive 

QUEBEC 

Intel SemiConductor of Canada, Ltd. 
620 St. John Boulevard 
Pointe Claire H9R 3K2 

~~J:~~,~ 

CG/SALE/012589 




